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ABSTRACT
Community organizations face challenges in harnessing the power
of qualitative data analysis, or sensemaking, to understand the di-
verse perspectives and needs brought up by their constituents. One
of the most time-consuming and tedious parts of sensemaking is
qualitative coding, or the process of identifying themes across a
large and unstructured corpus of community input. A challenge in
qualitative coding is attaining high intercoder reliability, especially
between expert and beginner sensemakers. In this work, we present
SenseMate, a novel human-AI system designed to help with qual-
itative coding. SenseMate leverages rationale extraction models,
a new machine learning strategy to semi-automate sensemaking,
which produces theme recommendations and human-interpretable
explanations. The models were trained on a dataset of people’s
experiences living in Boston, which was annotated for themes by
expert sensemakers. We integrated rationale extraction models into
SenseMate through an iterative, human-centered design process
revolving around four key design principles derived from an ex-
tensive literature review. The design process consisted of three
iterations with continuous feedback from seven people associated
with community organizations. Through an online experiment in-
volving 180 novice sensemakers, we aimed to determine whether
AI-generated recommendations and rationales would decrease cod-
ing time, increase intercoder reliability (i.e. Cohen’s kappa), and
minimize differences between novice and expert coding decisions
(i.e. F-score of participant answers compared to expert gold labels).
We found that though the model recommendations and explana-
tions increased coding time by 49 seconds per unit of analysis,
they raised intercoder reliability by 29% and coding F-score by 10%.
Regarding the effectiveness of SenseMate’s design, participants re-
ported that the platform was generally easy to use. In summary,
Sensemate is (1) built for beginner sensemakers without a techni-
cal background, a user group that prior work doesn’t focus on, (2)
implements rationale extraction models to recommend themes and
generate explanations, which has advantages over large language

This work is licensed under a Creative Commons Attribution International
4.0 License.

IUI ’24, March 18–21, 2024, Greenville, SC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0508-3/24/03
https://doi.org/10.1145/3640543.3645194

models in terms of user privacy and control, and (3) contains origi-
nal and intuitive features created from user feedback that can be
applied to future QDA systems.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI);User interface design; •Computingmethodologies
→ Natural language processing.

KEYWORDS
Human-AI Collaboration, Explainable AI Methods, User Experi-
ments and Studies, Content Analysis, Qualitative Coding

ACM Reference Format:
Cassandra Overney, Belén Saldías, Dimitra Dimitrakopoulou, and Deb Roy.
2024. SenseMate: An Accessible and Beginner-Friendly Human-AI Platform
for Qualitative Data Analysis. In 29th International Conference on Intelligent
User Interfaces (IUI ’24), March 18–21, 2024, Greenville, SC, USA. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3640543.3645194

1 INTRODUCTION
Gathering qualitative feedback from constituents is essential for
local entities (e.g. non-profits, municipalities, and businesses) to
better understand the experiences, perspectives, and needs of the
communities they serve. However, even if community-centered or-
ganizations want to engage in conversations with their constituents,
they often don’t have the skills or resources to analyze the rich
data they gather through methods like surveys, interviews, and
facilitated dialogue. As a result, organizations either outsource the
analysis to individuals who are not immersed in the community,
complete a superficial examination of the data, or let the data lan-
guish in obscurity and never uplift the perspectives that people
share. To address this problem, we need accessible qualitative data
analysis (QDA) tools that are beginner-friendly. Unfortunately, ex-
isting QDA software (e.g. NVivo1 and ATLAS.ti2) has steep learning
curves [49, 61], and open-source AI-assisted annotation tools (e.g.
Prodigy3) cater to data scientists, potentially excluding beginner
sensemakers without a technical background. Additionally, QDA
platforms introduced by prior work [29, 57] tend to be designed for
and evaluated by expert qualitative researchers.

1https://lumivero.com/products/nvivo/.
2https://atlasti.com/.
3https://prodi.gy/.
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In contrast to these other systems, our platform supports individ-
uals working in community organizations seeking to understand
constituent needs for decision-making but lacking the expertise to
efficiently and reliably analyze qualitative data. We focus specif-
ically on sensemaking, a QDA method similar to thematic analy-
sis [9, 38, 58]. The goal of sensemaking is to systematically extract
patterns, or themes, in large-scale nuanced data. After segmenting
the data into units of analysis, sensemakers construct a codebook,
which serves as a comprehensive guide of patterns within the data.
Codebooks typically consist of a hierarchical list of codes, or themes,
which need to be applied to the entire dataset through a process
called qualitative coding. With large datasets, qualitative coding is
typically carried out manually within groups and can feel tedious
and time-consuming [7, 35, 51]. In addition, a group of sensemakers
may struggle to attain high intercoder reliability, which adds to the
overall analysis time. The challenge of achieving high consistency
is enhanced when comparing novice and expert coding decisions.
Prior work found that novice sensemakers struggle to produce
coding decisions similar to those made by experts [13, 32].

Finding a balance between manual and fully automated coding
can help increase efficiency and consistency while allowing hu-
man judgment and preventing systematic machine errors. Several
studies have interviewed researchers to identify opportunities for
human-AI collaboration in qualitative coding and found that AI
needs to be modifiable and transparent about its recommendations
for successful collaboration [39, 51]. Previous work that created
transparent algorithms for qualitative coding mainly applied man-
ually generated keyword-based rules, which require knowledge
of pattern rules [29, 51, 57]. To increase the accessibility of semi-
automated qualitative coding for non-technical users, we apply a
machine learning strategy, known as rationale extraction models.
Rationale extraction models are helpful in this context by generat-
ing concise, contextualized, and easily interpretable justifications
for coding decisions. The explicit extraction of reasoning behind a
suggestion enables researchers to concentrate on specific aspects
of the data, fostering a more nuanced and accurate coding process.
Notably, these models are fine-tuned on domain-specific data, en-
hancing their relevance for qualitative coding in specialized areas.
Though rationale extraction models have been applied to other
data annotation tasks [42, 45], SenseMate is the first platform that
utilizes these models for qualitative coding. To facilitate bidirec-
tional human-AI communication, we created SenseMate through
a human-centered design process with input from people associ-
ated with community organizations. The platform acknowledges
the ambiguous and subjective nature of qualitative coding [15]
by providing affordances for users to revise and improve model
behaviors.

This paper describes the process of developing SenseMate. First,
we trained rationale extraction models to recommend themes and
generate human-interpretable rationales for each unit of analysis
in qualitative data. The models were trained using a supervised
extract-to-predict pipeline on an annotated dataset containing 69
facilitated small-group conversations about people’s experiences
living in Boston. Annotations, or gold labels, were created by a
group of highly experienced sensemakers with a plethora of back-
ground knowledge about the Boston community. We focused on
classifying nine themes from the dataset, such as “Community

Values” and “Housing Affordability”. Next, we implemented an iter-
ative, human-centered design process to create SenseMate. Based
on our literature review and personal sensemaking experiences,
we identified four design principles to guide the creation of Sense-
Mate: 1) providing AI suggestions on demand, 2) generating model
explanations that are easy to judge and non-repetitive, 3) creating
user-driven and intuitive processes to collect high-quality feedback
on AI suggestions, and 4) reducing model overreliance through
simple design interventions. Throughout the design process, we
gathered feedback through wizard-of-oz user testing from seven
people connected with our target user group. Only one participant
received formal training in qualitative data analysis. Six people
were either actively working in community-based organizations or
had helped community-based organizations analyze their data, and
one person had never done sensemaking before.

After thirteen user testing sessions and three design iterations,
we implemented a prototype of SenseMate and conducted a com-
prehensive user evaluation through an online experiment. A ma-
jority of participants had little to no sensemaking experience and
were randomly assigned to one of three experiment conditions:
no AI assistance, only theme recommendations, and both theme
recommendations and rationales. From the user study, we aimed to
determine whether AI-generated recommendations and rationales
would decrease coding time (RQ-1), increase intercoder reliability
(RQ-2), and minimize differences between novice and expert coding
decisions (RQ-3). We refer to the gap between novice and expert
coding decisions as coding performance, which is measured by cal-
culating the accuracy, precision, recall, and F-score of participant
answers compared to expert gold labels. Besides examining the
impact of AI assistance on qualitative coding, we wanted to evalu-
ate SenseMate’s usability and the effectiveness of various design
decisions.

The user study revealed that participants with access to AI assis-
tance in the form of theme recommendations and rationales had
higher coding times compared to participants without access to AI
(RQ-1). Though the models did not make qualitative coding less
time-consuming, participants who spent longer on the platform
still thought their experiences were productive. Furthermore, com-
pared to participants without AI support, those who received theme
recommendations and rationales had higher intercoder reliability
(RQ-2) and coding performance in terms of accuracy, precision,
recall, and F-score (RQ-3). The rationale extraction models helped
novice sensemakers become more aligned with each other and with
experts. However, an increase in coding alignment may occur only
in situations where models have high performance with respect to
expert labels.

Regarding the effectiveness of SenseMate’s design, participants
reported that the platform was generally easy to use. One of our
design principles was to generate model explanations that are easy
to judge and non-repetitive. We found that the rationales were
helpful and efficient to evaluate since participants chose to view, on
average, a third of the model explanations and only spent a few sec-
onds studying each one. Another design principle involved creating
efficient ways of collecting high-quality feedback on AI suggestions.
On average, participants with access to model recommendations
and rationales only spent around four seconds correcting a ratio-
nale, while achieving more than 90% agreement. We reflect on
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these results, along with qualitative feedback from our wizard-of-
oz sessions and user study, to generate several design implications
when creating AI-based sensemaking platforms (e.g. considering
first impressions on AI assistance, developing varied and efficient
feedback mechanisms, and letting users choose when to receive AI
assistance). The primary contributions of our work are:

(1) Implementing SenseMate, a novel human-AI system
for qualitative coding. SenseMate is an accessible quali-
tative coding platform for beginner sensemakers without a
technical background, a user group that prior work doesn’t
focus on. Wizard-of-oz (WOz) sessions with non-researchers
from community organizations ensured that all features were
created based on user feedback.

(2) Applying a new natural language processing method
(i.e. rationale extraction models) for qualitative coding.
Few methods of semi-automated qualitative coding have
also produced human-interpretable explanations. SenseMate
attempts to address this gap with rationale extractionmodels,
which have advantages over large language models in terms
of user privacy and control.

(3) Evaluating SenseMate through a user study with 180
participants. After running an online experiment, we doc-
ument insights into the effectiveness of our tool. We synthe-
size these insights into lessons and design implications for
future human-AI sensemaking systems.

2 RELATEDWORK
Previous work in the automated qualitative data analysis (QDA)
space has explored the idea that AI can make sensemaking less
time-consuming [1, 31, 53, 61] and expensive [1], while increasing
its scalability [1, 2, 31, 53]. Though automation can address some
of the main challenges around sensemaking, full automation of
the process should be approached with caution due to possible
biases from machine-generated analyses [25]. Semi-automation can
mitigate the challenges of full automation while retaining the ben-
efits of using AI-based methods. One of the most helpful areas for
semi-automation is qualitative coding because it is a tedious and
time-consuming part of the sensemaking process [7, 35, 51]. When
creating new approaches to semi-automate qualitative coding, prior
work emphasizes the importance of methods that are transparent
and modifiable [15, 51], while honoring reflection and serendip-
ity [16, 39]. Research in human-AI collaboration can shed light on
ways to satisfy some of these requirements. Specifically, our work
builds on the following main areas of prior work: 1) algorithm-in-
the-loop decision-making, 2) explainable AI, and 3) systems that
semi-automate sensemaking.

2.1 Algorithm-in-the-Loop Decision-Making
One form of human-AI collaboration that is especially applica-
ble to sensemaking is algorithm-in-the-loop decision-making, also
known as AI-assisted decision-making. In algorithm-in-the-loop
systems, AI performs an assistive role by providing recommenda-
tions, while humans are the final decision makers [33]. SenseMate
supports algorithm-in-the-loop decision-making because qualita-
tive coding is a high-stakes task, in which coding decisions deter-
mine how the data is interpreted later on in the analysis pipeline.

Creators of algorithm-in-the-loop systems need to consider how
automation impacts human agency [64]. Lai & Tan proposed a
spectrum between full human agency and full automation with
varying levels of machine assistance along the spectrum (e.g. show-
ing machine-predicted labels with or without explanations) [43].
Green &Chen introduced three principles for algorithm-in-the-loop
decision-making: accuracy, reliability, and fairness. The authors
tested six different model interactions and found that while almost
every treatment improved the accuracy of predictions, no treatment
satisfied the criteria for reliability and fairness [33]. Consequently,
there is growing interest in integrating machine learning and user
interface design to improve reliability and fairness in algorithm-in-
the-loop systems.

Several types of human-AI systems that integrate machine learn-
ing and design include interactive machine learning (IML) [26, 30,
59, 60], machine teaching [30], and mixed-initiative systems [14,
27, 36]. Interactive machine learning makes AI more accessible
to non-experts by framing the model training process as an HCI
task. A typical IML system has four components: 1) user, 2) model,
3) data, and 4) interface [26]. The machine teaching paradigm is
similar to IML in that humans are tasked with helping AI models
improve over time. The goal of machine teaching is to make the
process of developing models as intuitive as teaching students. As
a result, the emphasis in machine teaching systems is to support
the teacher by helping them understand the reasoning behind a
model’s decisions, especially for mistakes. A machine teaching par-
adigm can make algorithms more transparent and interpretable
during qualitative coding [15]. A slightly different human-AI sys-
tem involves the mixed-initiative approach, in which machines
and humans collaborate efficiently to achieve the user’s goals [36].
Computationally appropriate tasks are offloaded to the machines,
which enables humans to complete the other, typically more ab-
stract, tasks. Mixed-initiative systems differ from IML and machine
teaching since they don’t prioritize asking users to teach the models
but let users focus on higher-level analytical reasoning, which can
be helpful for sensemaking. The next section describes the role of
machine-generated explanations to increase the interpretability of
AI suggestions, which is a key factor in promoting transparency in
algorithm-in-the-loop systems.

2.2 Explainable AI
Model explanations provide a form of communication between
humans and AI models in algorithm-in-the-loop systems. Expla-
nations can be white-box or black-box (i.e. showing the internal
workings of an algorithm or not), as well as static or interactive [17].
Local explanations summarize the model’s rationale for a particular
example, while global explanations provide a high-level understand-
ing of how the model works [42]. Several characteristics that model
explanations should strive for include interpretability, trust calibra-
tion, a low cognitive effort for users, improved understanding of the
model, and help in recognizingmodel uncertainty [11, 30, 55, 63, 67].
Trust calibration involves providing users with the right amount of
trust, such that they don’t over-rely on model recommendations
when they are wrong or ignore the recommendations when they
are correct [11, 63, 67]. Ribeiro et al. define trust in two ways: 1)
trusting a prediction, and 2) trusting the model [55]. Understanding
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the reasons behind a model’s predictions can help users achieve
both types of trust.

Prior studies found that explanations can improve user experi-
ence [42], the understanding of AI systems [17], and human percep-
tion of AI’s usefulness [48]. There aremixed results in terms of using
explanations to enhance efficiency [42, 52], trust [17, 19, 30, 43, 67],
and accuracy [11, 19, 43, 48, 52]. In addition, some studies found
that explanations can increase model overreliance [6, 30], while
others discovered the opposite effect [62]. One way to prevent over-
reliance is through cognitive forcing functions (e.g. adding a time
delay or having someone click on a button to see the AI’s recom-
mendation). Buçinca et al. found that cognitive forcing significantly
reduced overreliance but resulted in lower ratings for usability and
trust [11]. Vasconcelos et al. applied a cost-benefit framework and
found that overreliance decreases when 1) the task becomes more
difficult compared to the explanation, 2) the explanation is easier
to understand, or 3) participants receive a higher monetary reward
for accuracy [62]. Vasconcelos et al.’s research provides insight into
the nuanced relationship between explanations and model overre-
liance. As Bansal et al. and Ghai et al. observed, explanations that
are difficult to verify can lead to increased overreliance. On the
other hand, when explanations are easy to understand, especially
in comparison to the original task difficulty, users are less likely to
blindly rely on the recommendations.

Previous work on automated sensemaking emphasizes the impor-
tance of including explanations to increase trust and transparency
while fostering reflection [37, 39, 56, 57]. To address these require-
ments, we generate explanations from rationale extraction models.
Rationale extraction models apply unsupervised machine learning
to identify words within a text input that is connected with a partic-
ular label [45]. Explanations from these models are easy to generate
and are human-interpretable, which makes it promising to use in
text classification tasks like qualitative coding.

2.3 Systems that Semi-Automate Sensemaking
Various algorithms have been applied to automate aspects of the
sensemaking process, including clustering [31, 40, 46], topic mod-
eling [1, 13], simple machine learning models [24, 32, 47, 57], and
large language models [32, 46]. Nonetheless, very few methods
of semi-automated qualitative coding have also produced model
explanations. The main exception includes studies that applied
rule-based qualitative coding, in which the presence of particular
keywords determines whether a piece of data is associated with a
code [21, 51, 57]. However, keyword-based rules are typically spec-
ified by users and are not machine-generated. SenseMate attempts
to address the lack of machine learning algorithms that can gen-
erate human-interpretable explanations during qualitative coding.
Specifically, SenseMate is the first qualitative coding platform that
employs rationale extraction models.

Several studies have designed systems to semi-automate sense-
making. These systems include not only machine learning algo-
rithms but also carefully designed features to support human-AI
collaboration. QuAD is a platform that helps research teams clus-
ter qualitative data into themes using BERT embeddings and the
Girvan-Newman algorithm [31]. Machine-generated grouping sug-
gestions can be accepted, edited, or declined, and users can also

pin locations for easy and quick navigation [31]. SenseMate adapts
QuAD’s ability to display suggestions that users can easily ap-
prove or reject. Drouhard et al. took a unique approach to support
collaborative qualitative coding by designing Aeonium, a visual
analytics interface that trains a supervised machine learning model
to identify disagreement between coders. The goal is to focus user
attention on ambiguous parts of the data and codebook. From an
experimental study, the authors discovered that Aeonium increased
user understanding of the themes and helped people reflect on their
coding decisions [24]. A few features within Aeonium inspired
SenseMate’s initial designs, including the ability to flag ambiguous
data and highlight keywords to explain coding decisions. Of all
the platforms we investigated, SenseMate is most similar to Cody,
a system that semi-automates qualitative coding with supervised
machine learning [57]. In Cody, users define code rules that AI ex-
tends to unseen data. AI suggestions are supported by explanations
that highlight relevant keywords from the code rules. Through an
evaluation of Cody, Rietz & Maedche found that the AI suggestions
improved coding quality and not speed, and the explanations were
commonly desired but rarely used [57]. Our work builds upon Cody
by exploring how a new method of generating theme suggestions
and explanations would impact qualitative coding. SenseMate is
the first qualitative coding platform that facilitates collaboration
between human sensemakers and rationale extraction models. Be-
sides applying a novel machine learning method, SenseMate stands
out from other systems described in this section by supporting
beginner sensemakers without a technical background, as opposed
to aiding experienced researchers.

3 THE SENSEMATE SYSTEM
SenseMate has been carefully built, with equal attention given to
the modeling and design elements. The modeling side focuses on
how we use rationale extraction models to recommend themes for
qualitative data. The design side is primarily concerned with how
users interact with the models.

3.1 Rationale Extraction Models
Rationale extraction models produce two outputs from a piece of
text: recommendations for possible codes, or themes, (Figure 2) and
corresponding rationales as to which words relate to the recom-
mended themes (Figure 3). The following sections explain how we
trained and evaluated SenseMate’s rationale extraction models.

3.1.1 Method. To design and evaluate SenseMate, we worked with
an annotated dataset containing 69 facilitated small-group conver-
sations, in English, about people’s experiences living in Boston, a
United States city with over 650,000 people. These 69 conversations
account for 175,899 words and 68 hours of transcribed audio. The
community conversations were recorded and transcribed. From
there, five people conducted sensemaking on the data. (The team
consisted of researchers trained in QDA methods and community
leaders with extensive knowledge of the local context around the
data.) The unit of analysis was responses to conversation prompts
(e.g. what is your question about the future of Boston and your place
in it?). The responses were extracted from conversation transcripts
to create 1,151 snippets that went into the sensemaking process.
After four codebook iterations, the sensemaking team reached a

925



SenseMate IUI ’24, March 18–21, 2024, Greenville, SC, USA

consensus on nine parent themes and forty sub-themes. Each snip-
pet was labeled with one or more themes, which form the expert
gold labels. To reduce the complexity of the codebook for partici-
pants in our user study, we decided to sample a diverse subset of
nine themes: “Community Values”, “Covid-19”, “Housing Afford-
ability”, “Income”, “Processes”, “Quality of Education”, “Race-Based
Inequality”, “Sense of Safety”, and “Transportation”. Table 3 in the
Appendix contains more information about each theme.

Rationale extraction models have two components: an encoder
that classifies whether a conversation snippet contains a code or
not and a generator that tries to identify the subset of words within
a snippet that relates to the code (i.e. the rationale) [45]. We train
binary rationale extraction models for each theme, resulting in nine
separate models. The input into the model is a conversation snippet,
which goes through an embedding layer to convert the text into
numeric data. BERT (Bidirectional Encoder Representations from
Transformers) word embeddings are used to capture contextual
information [22]. From there, the data goes through the generator,
or rationale extraction layer, which produces a rationale, or a subset
of words in the input. The generator applies a soft attention mech-
anism to improve rationale quality [4]. Afterward, the rationale is
passed through the encoder, or classification layer, and outputs a
binary prediction of whether the input contains one of the themes.
Various model architectures can be used to create the encoder and
generator. We apply the recurrent neural network (RNN) structures
that were initially proposed by Lei et al. [45]. The encoder and
generator are learned jointly based on the human-labeled classifi-
cation for each training example. For each of the nine themes, the
dataset is split into a training (80%), validation (10%), and test (10%)
set. When training the models, we used 20 epochs, a batch size of
8, the Adam Optimizer with a learning rate of 2 × 10−5, and the
cross-entropy loss function. To evaluate the rationales produced
by the models, we manually created rationales for all the valida-
tion and test examples. Each rationale extraction model produces a
classification score (i.e. the probability that a conversation snippet
contains a particular theme) and a rationale prediction array. The
rationale prediction array contains a probability for each token, or
word, in a snippet. The higher the probability, the more attention
the model gave to a token when generating the final classification.
The tokens with the highest probabilities would form the model’s
rationale.

3.1.2 Evaluation. To evaluate the models, we calculated perfor-
mance metrics to determine which themes have the highest and
lowest performances. The encoder is evaluated through metrics,
such as accuracy, precision, recall, and F-score (Table 1). The genera-
tor is assessed by calculating the intersection between machine and
human-generated rationales for all positive examples in the valida-
tion and test sets (Table 2). Table 1 displays the classification perfor-
mance for each of the nine themes. The twomost ambiguous themes,
“Processes” and “Community Values” consistently have some of
the lowest values in all metrics. “Processes” has noticeably worse
performance compared to the other themes. More precisely defined
themes, such as “Housing Affordability” and “Race-Based Inequal-
ity”, have better performance. The rationale extraction performance
is summarized in Table 2. Similar to classification performance, the

two most ambiguous themes, “Processes” and “Community Val-
ues”, have the lowest average rationale extraction performance
in terms of accuracy, recall (how much of the human-generated
rationale was detected by the model), and F-score. Precision tends
to be slightly lower than recall, suggesting a high false positive rate.
In general, it appears that more concrete themes (e.g. “Housing
Affordability”) have better-performing rationale extraction models
compared to more ambiguous themes (e.g. “Processes” and “Com-
munity Values”).

3.2 User Interface
We applied an iterative human-centered design process when cre-
ating SenseMate.

3.2.1 Design Process. Our design process involved three design
iterations and two rounds of user feedback. We started the design
process by conducting several rounds of concept sketching, or
simplified sketches, before creating slightly higher fidelity mockups.
To evaluate the mockups, we gathered feedback through wizard-
of-oz (WOz) user testing. Wizard-of-oz testing is a prototyping
method where participants interact with a system that is controlled
by the experimenter [10, 23]. This approach allows designers to
explore and evaluate ideas before investing the time needed to
build a working prototype. Each WOz session lasted an hour and
was recorded and transcribed for further analysis. We analyzed the
feedback using affinity diagramming, a popular analysis method in
user interface design [50] where text data is segmented into notes
and then clustered into groups.

We received feedback from seven people during the first round of
WOz sessions, six of whom participated in the second user testing
round. We mainly recruited non-researchers with minimal expe-
rience in qualitative data analysis. Only one person was formally
trained in QDAmethods. Six people were either actively working in
community-based organizations or had helped community-based
organizations analyze their data, and one person had never done
sensemaking before.

3.2.2 Design Principles. Based on our literature review and per-
sonal sensemaking experiences, we identified four design principles
(DP). We use our principles to guide the design of SenseMate and
its main features.

(1) Provide AI suggestions on demand (DP-1): In algorithm-
in-the-loop systems, AI plays an assistive role. To promote
human agency, SenseMate should provide AI recommenda-
tions on demand instead of by default.

(2) Generate model explanations that are easy to judge
and non-repetitive (DP-2): Model explanations should
be easy to judge to avoid model overreliance [62]. Prior
work on mixed-initiative systems suggests presenting se-
mantically meaningful recommendations in context to avoid
repetitive explanations [20]. In addition, explanations should
enable quick visual interpretation to prevent information
overload [20, 44].

(3) Create user-driven and intuitive processes to collect
high-quality feedback on AI suggestions (DP-3): The
field of interactive machine learning emphasizes the impor-
tance of scaffolding the process of collecting high-quality
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Table 1: Model classification performance by theme among the validation and test examples.

Theme Accuracy Precision Recall F-Score

Community Values 81.3% 0.86 0.75 0.80
Covid-19 88.9% 0.94 0.83 0.88
Housing Affordability 90.9% 0.91 0.91 0.91
Income 84.4% 0.92 0.75 0.83
Processes 65.0% 0.71 0.50 0.59
Quality of Education 88.6% 0.90 0.86 0.88
Race-Based Inequality 90.9% 0.93 0.89 0.91
Sense of Safety 84.4% 0.79 0.94 0.86
Transportation 87.5% 1.00 0.75 0.86

Table 2: Comparison between machine and human-generated rationales. The average balanced accuracy, precision, recall, and
F-score are calculated across the positive validation and test examples.

Theme Accuracy Precision Recall F-Score

Community Values (n=16) 55.9 (8.0)% 0.26 (0.21) 0.2 (0.17) 0.2 (0.11)
Covid-19 (n=18) 82 (15.5)% 0.29 (0.22) 0.74 (0.3) 0.33 (0.18)
Housing Affordability (n=44) 81.9 (14.0)% 0.52 (0.27) 0.72 (0.26) 0.57 (0.22)
Income (n=16) 81.8 (15.5)% 0.39 (0.33) 0.76 (0.3) 0.48 (0.26)
Processes (n=50) 62.2 (11.6)% 0.33 (0.24) 0.33 (0.23) 0.32 (0.13)
Quality of Education (n=22) 68 (10.9)% 0.51 (0.27) 0.46 (0.26) 0.44 (0.22)
Race-Based Inequality (n=44) 83.8 (11.2)% 0.39 (0.29) 0.77 (0.22) 0.45 (0.23)
Sense of Safety (n=16) 71.8 (9.3)% 0.39 (0.2) 0.54 (0.16) 0.42 (0.17)
Transportation (n=8) 78 (14.8)% 0.39 (0.28) 0.68 (0.27) 0.41 (0.15)

and targeted user feedback in simple and intuitive ways,
such as minor refinements to topic models and providing
keywords to clustering algorithms [30, 59, 60]. Similarly, one
of the design principles in mixed-initiative systems involves
providing optional mechanisms for efficient human-machine
collaboration in case users want to refine any analysis pro-
vided by the system. Previous work elaborates that these
refinements should be easy and quick to do [36, 44].

(4) Reduce model overreliance through simple design in-
terventions (DP-4): Model overreliance can be reduced
through easy-to-understand model explanations [62]. In ad-
dition, simple cognitive forcing functions have also been
found to reduce overreliance [11, 54].

3.2.3 Platform Layout and Coding Process. A major design com-
ponent in SenseMate concerns the overall information layout and
the coding process, or how users can assign themes to each unit of
analysis. Figure 1 shows SenseMate’s interface, which includes key
features that make up the layout and coding process.

Grid Structure, Figure 1 (A). SenseMate is organized into two
sections: the data (i.e. conversation snippets) on the left side and
the codebook on the right side. When designing the overall layout
of SenseMate, we took inspiration from existing QDA tools. The
coding areas of these tools typically consist of multiple sections,
each of which performs a certain function. We wanted to create
a simpler interface that emulated an organized grid system. By
separating the snippets from the codebook, both sections could be

Figure 1: The overall layout of the SenseMate platform. Con-
tent is organized in two columns; the left side shows a series
of community stories that users would code (A), and the right
side shows the codebook that users select themes from. The
second story is currently selected with the “Community Val-
ues” and “COVID-19” themes applied to it (B). Users can click
on a code in the codebook to view its definition and an ex-
ample (C).

viewed alongside each other with independent scrolling, which can
support multiple coding approaches.

Coding Action, Figure 1 (B). The coding action involves clicking
on a snippet and then selecting the relevant codes in the codebook.
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When a snippet is selected, the codebook section becomes a check-
list. Clicking on a checkbox would assign a code to the selected
snippet.

Code Definitions, Figure 1 (C). Users can click on a code in the
codebook to view its definition and an example. We included this
information, so people would not have to reference a separate
document to access the codebook in its entirety (i.e. code names,
definitions, and examples).

3.2.4 Theme Recommendations. Learning from previous work on
semi-automated qualitative coding, we knew that human sense-
makers want to retain total control over the coding process, which
means having the agency to make the final call on all coding deci-
sions [51]. As a result, we wanted AI models to play a supportive
role, which required optional, intuitive, and fast human-AI interac-
tions. Figure 2 depicts how people can interact with theme recom-
mendations.

Figure 2: Users can choose to expand the “SenseMate’s Rec-
ommendations” section for each story to view and interact
with AI recommendations (A). From there, they can click
through each recommendation via a tab bar (B). For each
recommendation, users can perform various actions (C).

Expanding or Collapsing Recommendations, Figure 2 (A). We de-
cided to move all the theme recommendations to the bottom of
each snippet and have them hidden by default to provide AI sug-
gestions when the user wants them DP-1 . In addition, hiding
the recommendations is an example of a “cognitive forcing func-
tion” in human-AI decision-making literature, which can reduce
model overreliance [11, 54] DP-4 . In general, participants from
the user testing sessions would generally read and code the stories
before viewing the recommendations, even when working with
hundreds of stories. P7 would “always read [the story] first, and then
[she] would think about what [she] would do, and then look at the
recommendations and see if they match up.” The ability to expand
the recommendations allows users to think on their own before
accessing the AI suggestions.

Recommendation Tab Bar, Figure 2 (B). Only one recommendation
is shown at a time to prevent users from quickly approving all of the
suggestions DP-4 . Throughout the design process, we explored

the pros and cons of showing one recommendation at a time versus
showing all of them in a list. Participants appreciated how seeing
one recommendation at a time was less overwhelming, but more
effort was required to navigate between the AI suggestions. On the
other hand, seeing all the recommendations at once made it easier
to quickly act on each one, though the mockup appeared cluttered.
We decided to combine the strengths of both designs by creating a
tab bar with all the recommendations listed but only showing the
details for one recommendation at a time to prevent information
overload.

Recommendation Actions, Figure 2 (C). For each recommendation,
users can complete the following actions: 1) approve the recommen-
dation, 2) reject the recommendation, 3) mark the recommendation
as unsure, or 4) view SenseMate’s reason for the recommendation.
The “view reason” button displays the model’s explanations on
demand DP-1 . In general, participants from WOz testing appreci-
ated the breadth of possible interactions with the recommendations.
The quick actions provide intuitive ways of responding to a recom-
mendation DP-3 .

3.2.5 Model Explanations. An important aspect of SenseMate is
the ability to view and interact with explanations for each theme
recommendation. Figure 3 shows how model rationales are dis-
played within SenseMate, and Figures 4 and 5 detail the different
ways participants can give feedback on model explanations.

Figure 3: An example of how model rationales are displayed
in SenseMate. The rationale is bolded within the story. Users
can give feedback on the rationales by clicking on the “HELP
IMPROVE SENSEMATE’S REASON” button.

Figure 4: An example of the quick yes/no questions that get
asked when a user rejects a recommendation. At most five
questions are asked for each recommendation.

Bolded Rationales, Figure 3. Providing rationales can slow down
the coding process by encouraging people to think carefully about
whether to accept a recommendation or not. P3 emphasized that
“having the reasons as to why is a very needed part.” We bold the
rationale within the story, so users can quickly view the explanation
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Figure 5: More nuanced feedback on the rationales can be
provided through a highlighting interface. Users can add and
remove words via the “SELECT” and “DESELECT” buttons.

without having to scroll somewhere else or read extra content. As
a result, model explanations are easy to read and integrated into
each snippet, making them non-repetitive DP-2 . P4 confirms our
design by stating, “bolding is really essential. To link the color in the
highlight to the actual color of the code is important.”

Quick Questions, Figure 4. When designing how users give feed-
back on the rationales, we decided not to ask for feedback through
open-ended questions because theymay be distracting and require a
lot of energy to answer. We wanted to gather feedback through very
simple questions since people would be more likely to answer them
for multiple stories. In addition, several WOz participants wanted
to provide feedback through multiple-choice questions. P6 said it
would be “better to have more narrowed down questions [because]
it feels like [the platform] is more likely to listen to your feedback.”
As a result, we decided to display optional yes/no questions after
users reject a recommendation. The questions would ask if several
phrases in the rationale relate to the recommended theme. An ex-
ample quick question is in Figure 4. The questions provide another
way for users to quickly view and evaluate model explanations
DP-2 . In addition, WOz participants appreciated how the ques-
tions were straightforward and specific. By answering yes or no,
users can give feedback on what parts of the rationale make sense,
which can help the models generate better explanations over time
DP-3 . Since the quick questions “add an extra layer of thinking”,
participants preferred answering them for rejected recommenda-
tions. As P6 said, they “give me an opportunity to think about [a
recommendation] again.”

Highlighting Interface, Figure 5. The quick questions provide pre-
liminary feedback on the rationales, but they have a few limitations.
First, the questions don’t allow users to add new phrases to ratio-
nales. Second, no feedback can be collected for themes that the
models missed. Third, the questions don’t allow for more nuanced
feedback (e.g. this part of the phrase is relevant but not this part).
To address these limitations, we constructed another way of pro-
viding feedback on the rationales through a highlighting interface.
Within this interface, users can selectively include or exclude any
word in a theme’s rationale. We took inspiration from text edit-
ing tools to make the user experience as familiar as possible. In

addition, we added signifiers in the form of colored text to indicate
the current and modified rationales. The colored text helped WOz
participants “more efficiently give feedback on the rationales without
having to read the whole story again” DP-3 . From user feedback,
we observed that the highlighting interface is better for more rele-
vant recommendations. WOz participants also preferred to use the
highlighting interface for new themes, or themes that the models
missed. P6 liked highlighting the new themes to “verify what [she
was] thinking.” P4 viewed the interaction as “an investment of [her]
analysis back into [SenseMate]” DP-3 .

3.3 Implementation Details
We implemented a prototype of SenseMate based on our third de-
sign iteration. The frontend was created using React4, Redux5, and
Material UI6. The backend consisted of a Flask web framework7,
which was served with Nginx8. SenseMate was deployed to an EC2
instance. While implementing SenseMate, we strived to develop a
minimal viable product (MVP). One implementation decision we
made involved not re-training the models based on user feedback.
Though closing the human-AI feedback loop will be critical in fu-
ture versions of SenseMate, participants in the user study would
not have spent enough time with the models to change their behav-
ior. Only two to three snippets were associated with each theme,
which is a very small sample size to fine-tune the models. Another
major implementation decision we made was to carefully order the
snippets and recommendations. Stories would be ordered by the
number of recommendations and then by the story length, such
that shorter stories with fewer recommendations would be at the
top and more complex stories would be at the bottom. Within each
story, theme recommendations would be arranged in descending
order bymodel classification confidence.We selected these ordering
strategies to scaffold the interactions between human sensemakers
and the models.

4 USER STUDY
We conducted a summative evaluation of SenseMate through an on-
line experiment with 180 participants. Participants were randomly
assigned to one of three experiment conditions: receiving no AI
assistance, receiving only theme recommendations, and receiving
both theme recommendations and rationales. We aimed to address
the following research questions:

(1) How do varying levels of AI assistance impact coding
efficiency? (RQ-1): We hypothesize that people who receive
any AI assistance in the form of theme recommendations
and rationales will spend less time on qualitative coding
compared to those without AI support.

(2) How do varying levels of AI assistance impact inter-
coder reliability? (RQ-2): We hypothesize that people who
receive any AI assistance will have higher rates of intercoder
reliability compared to those who don’t receive AI assistance.
In addition, people with the maximum level of AI assistance

4https://react.dev/.
5https://redux.js.org/.
6https://mui.com/.
7https://flask.palletsprojects.com/en/2.2.x/.
8https://www.nginx.com/.
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in the form of theme recommendations and rationales will
have the highest rates of intercoder reliability.

(3) How do varying levels of AI assistance impact coding
performance? (RQ-3): We define coding performance as
the accuracy, precision, recall, and F-score of participant
answers compared to expert gold labels. A high coding per-
formance indicates a small difference between novice and
expert coding decisions. Similar to intercoder reliability, we
hypothesize that people who receive any AI assistance will
have higher coding performances compared to those without
AI support. We also predict that people with the maximum
level of AI assistance will have higher coding performances
than people who receive only theme recommendations.

In addition to the research questions, we strived to evaluate
SenseMate’s overall usability and the effectiveness of various human-
AI interactions, such as viewing and giving feedback on theme
recommendations and rationales.

4.1 Study Design
4.1.1 Participants. We recruited 180 participants (82 male, 92 fe-
male, 5 non-binary, and 1 transgender) from Prolific, a crowdsourc-
ing platform. Section B.1 describes how we calculated the sample
size. Most participants (N = 58) were 25 to 34 years old, followed
by the 35 to 44 age range (N = 42). 69 participants completed high
school as their highest level of education, and one-third of partici-
pants obtained a bachelor’s degree. All participants resided in the
United States and were able to communicate clearly in written and
spoken English. Participants had varying levels of tech-savviness
with 70% having little to no programming knowledge. Over 97%
of participants felt confident using computers. Most participants
had little (N = 89) to no (N = 49) prior experience in qualitative data
analysis.

4.1.2 Procedure. Participants were randomly assigned to one of
three conditions: 1) using SenseMate without any theme recommen-
dations and rationales [Control], 2) using SenseMate with only
theme recommendations [Rec Only], and 3) using SenseMate with
theme recommendations and corresponding rationales [Rec and
Rationale]. Participants were first presented with some general
instructions and provided informed consent. From there, they were
shown a short video tutorial on how to use the platform, which
was tailored for each experiment condition. Once participants an-
swered 12 comprehension check questions, they obtained access
to the SenseMate platform. Everyone was asked to code the same
collection of snippets, displayed in a particular order. We curated
a sample of 10 snippets to cover different combinations of themes.
The snippets ranged in length and number of themes. We excluded
the “Processes” theme because even after including a definition
and two examples, participants during a pilot study struggled to
conceptualize the theme. “Processes” also has, by far, the worst-
performing rationale extraction model among the validation and
test examples. All other themes were represented by at least one
snippet. After coding the 10 snippets, participants were directed to
a Qualtrics post-survey, where they were asked to answer a series
of usability and background questions. On average, participants
took 35 minutes to complete the entire task and were paid $16.53
per hour.

4.1.3 Analysis. To answer our research questions, wemeasured the
following quantitative variables: Time (number of seconds it takes
a participant to assign themes to each snippet), Performance (the
accuracy, precision, recall, and F-score of a participant’s answer for
each snippet with respect to the gold labels), and Reliability (the
Cohen’s kappa between every unique pair of participants in each
experiment condition based on their answers across all snippets).
We also collected metrics on platform usage for each participant.
These metrics include how often participants used various fea-
tures in SenseMate, and the feedback participants provided for each
recommendation and rationale. In the post-survey, we asked partic-
ipants a series of Likert-scale questions (1 = strongly disagree and
7 = strongly agree) relating to the overall user experience. A few
questions were adapted from the system usability scale (SUS) [5].
The Appendix (Section B.2) contains a list of all the Likert-scale
questions.

Part of our analysis is pre-registered at https://aspredicted.org/
P2C_41F. We created linear mixed-effect models for the “Time” and
“Performance” metrics using the lmer function in the lme4 R pack-
age [8]. The experiment condition was the fixed effect, and the user
and snippet ids were random intercepts. (We logged the coding time
outcome measure since it was heavily skewed toward higher val-
ues.) We created a linear regression model for “Reliability” with the
experiment condition as the independent variable. We controlled
for both users in each pair by including their demographic data and
performed F-tests to determine any differences across the experi-
ment conditions. In addition, we conducted an exploratory analysis
of usage metrics to understand how participants interacted with
the platform. This analysis provided insight into how our design
decisions impacted people’s coding experiences.

4.2 Results
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Average Seconds per Snippet

Control

Rec Only

Rec and Rationale

(a) Average seconds spent on a
snippet for each experiment con-
dition.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Average Cohen's Kappa between Participants
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Rec Only

Rec and Rationale

(b) Average reliability, measured
using Cohen’s kappa, between
pairs of participants from each
experiment condition.

Figure 6: Impact of varying levels of AI assistance on coding
time and intercoder reliability.

4.2.1 Impact of AI Assistance on Coding Time (RQ1). Figure 6a
compares the time spent on each snippet across the experiment
conditions. Participants in the control condition spent on average
59.1 seconds (𝜎 = 74.8) per snippet, which is significantly less time
compared to the 89.0 seconds (𝜎 = 79.3) spent in the “Rec Only”
condition and 108.5 seconds (𝜎 = 145.5) spent in the “Rec and
Rationale” condition. For context, participants would spend around
10 minutes coding 10 snippets compared to 18 minutes with access
to the theme recommendations and rationales. The difference in
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coding time is statistically significant according to the linear mixed-
effect models (“Rec Only”: 𝛽 = 0.48, 𝑆𝐸 = 0.11, 𝑡 = 4.45; “Rec and
Rationale”: 𝛽 = 0.59, 𝑆𝐸 = 0.11, 𝑡 = 5.42). After accounting for
fixed and random effects, participants with the maximum level of
AI assistance had an 80% higher geometric mean in coding time
compared to those without any AI assistance. Participants who
only had access to theme recommendations had a 62% increase in
geometricmean for coding time. ThoughAI assistance in SenseMate
did not make qualitative coding less time-consuming, participants
in the treatment conditions still thought their experiences were
productive. At the end of the task, participants were asked to rate
from 1 to 7 whether they felt productive quickly and whether they
were able to complete the task quickly. We did not observe any
significant differences in productivity (“Control”: 𝜇 = 6.2, 𝜎 = 0.9;
“Rec Only”: 𝜇 = 6.2, 𝜎 = 0.9; “Rec and Rationale”: 𝜇 = 6.0, 𝜎 = 0.9)
and working speed (“Control”: 𝜇 = 6.3, 𝜎 = 0.8; “Rec Only”: 𝜇 =

6.1, 𝜎 = 1.0; “Rec and Rationale”: 𝜇 = 5.9, 𝜎 = 1.1) between the
experiment conditions. In general, participants gave high ratings
to both Likert-scale questions.

4.2.2 Impact of AI Assistance on Intercoder Reliability (RQ2). Fig-
ure 6b depicts a large difference in intercoder reliability between the
control and treatment conditions. The average Cohen’s kappa be-
tween pairs of participants in the control condition is 0.58 (𝜎 = 0.16),
which suggests moderate agreement. In comparison, the average
Cohen’s kappa is 0.73 (𝜎 = 0.13) in the “RecOnly” condition and 0.76
(𝜎 = 0.13) in the “Rec and Rationale” condition, which corresponds
to substantial agreement. According to a linear regression model, in-
tercoder reliability is on average an estimated 26% higher in the “Rec
Only” condition (𝛽 = 0.15, 𝑆𝐸 = 0.005, 𝑡 = 31) and 29% higher in the
“Rec and Rationale” condition (𝛽 = 0.17, 𝑆𝐸 = 0.005, 𝑡 = 33) relative
to the control. The differences are significant (F(22, 5287) = 107.4,
p < 2.2 × 10−16). As hypothesized, participants with the maximum
level of AI assistance in the form of recommendations and ratio-
nales had the highest rates of intercoder reliability. Nonetheless,
there is a small difference between the treatment conditions, which
suggests that the theme recommendations had a larger impact on
intercoder reliability compared to the rationales.

4.2.3 Impact of AI Assistance on Coding Performance (RQ3). As
shown in Figure 7a, receiving assistance from the models had an
observable effect on coding performance in terms of accuracy, pre-
cision, recall, and F-score (Table 5). Participants who received any
form of AI assistance tended to select themes that were closer to
expert-level decisions compared to those without the models. Ac-
curacy and precision have smaller differences between the control
and treatment conditions compared to recall and F-score. Partici-
pants with access to recommendations and rationales had slightly
higher averages for F-score, recall, and precision than those who
received only theme recommendations, but the differences are not
significant.

Our observations in Figure 7a are confirmed by the linear mixed-
effect models. Figure 9 in the Appendix displays the regression
coefficient values, which are all statistically significant. F-score, a
combination of precision and recall, is on average an estimated
10% higher in both treatment conditions relative to the control
condition (“Rec Only”: 𝛽 = 0.09, 𝑆𝐸 = 0.02, 𝑡 = 5.72; “Rec and
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Figure 7: Impact of varying levels of AI assistance on coding
performance.

Rationale”: 𝛽 = 0.10, 𝑆𝐸 = 0.02, 𝑡 = 6.39). The treatment conditions
have nearly twice as large coefficients for recall (“Rec Only”: 𝛽 =

0.09, 𝑆𝐸 = 0.02, 𝑡 = 4.33; “Rec and Rationale”: 𝛽 = 0.10, 𝑆𝐸 =

0.02, 𝑡 = 5.06) compared to precision (“Rec Only”: 𝛽 = 0.05, 𝑆𝐸 =

0.02, 𝑡 = 3.30; “Rec and Rationale”: 𝛽 = 0.06, 𝑆𝐸 = 0.02, 𝑡 = 3.57).
On average, the AI assistance within SenseMate is more effective
in helping people select the correct themes than avoiding incorrect
themes.When examiningwhether humanswith AI support perform
better than AI alone, Figure 7a shows that the models have higher
values compared to the averages in each experiment condition. For
example, the models have the highest average F-score (𝜇 = 0.89)
across the snippets, followed by the “Rec and Rationale” condition
(𝜇 = 0.86, 𝜎 = 0.17), “Rec Only” condition (𝜇 = 0.85, 𝜎 = 0.20), and
then the “Control” condition (𝜇 = 0.76, 𝜎 = 0.25). Since the model
performance is already quite high, participants tended to follow
the models’ suggestions and human-AI collaboration did not add
anything more to coding performance.

To better understand how participants utilized the models in
SenseMate, we explored the dynamics of trust (appropriate trust,
undertrust, overtrust) and model reliance across the treatment con-
ditions, which is shown in Figure 7b. Section C.2 of the Appendix
contains details on how these metrics were calculated. In general,
model reliance is over 0.9 for both treatment conditions (“Rec Only”:
𝜇 = 0.91, 𝜎 = 0.11; “Rec and Rationale”: 𝜇 = 0.93, 𝜎 = 0.10). Model
reliance does not reach 1.0, which suggests that there is some dis-
agreement between the participants and models. Undertrust (“Rec
Only”: 𝜇 = 0.06, 𝜎 = 0.10; “Rec and Rationale”: 𝜇 = 0.04, 𝜎 = 0.08)
accounts for some of the disagreement. A value of 0.05 means that,
on average, participants disagreed with 5% of the correct model
predictions. Alternatively, overtrust (“Rec Only”: 𝜇 = 0.49, 𝜎 = 0.44;
“Rec and Rationale”: 𝜇 = 0.54, 𝜎 = 0.43) accounts for the number of
false positives and negatives from the models that people agreed
with. A value of 0.5 implies that, on average, participants agreed
with incorrect model predictions 50% of the time. Overtrust is sig-
nificantly higher than undertrust, suggesting that users are more
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likely to follow an incorrect recommendation than ignore a correct
one.
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(a) Average frequency of various human-AI interactions
among participants in the “Rec Only” and “Rec and Rationale”
treatment conditions.
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and giving feedback on ratio-
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Figure 8: A summary of SenseMate’s human-AI interaction
patterns.

4.2.4 Usability and Interaction Patterns. In addition to answering
the main research questions, we were curious about how partici-
pants viewed SenseMate’s usability and interacted with different
elements of the platform. These interactions served as another way
of evaluating our design choices in addition to the user testing
sessions. After interacting with SenseMate, participants reported
high ratings (out of 7) on whether the platform was easy to use
(“Control”: 𝜇 = 6.6, 𝜎 = 0.6; “Rec Only”: 𝜇 = 6.3, 𝜎 = 0.8; “Rec
and Rationale”: 𝜇 = 6.1, 𝜎 = 1.1), well integrated (“Control”:
𝜇 = 6.3, 𝜎 = 0.8; “Rec Only”: 𝜇 = 6.2, 𝜎 = 0.9; “Rec and Ratio-
nale”: 𝜇 = 6.1, 𝜎 = 1.0), and contained effective information
(“Control”: 𝜇 = 6.4, 𝜎 = 0.7; “Rec Only”: 𝜇 = 6.4, 𝜎 = 0.7; “Rec
and Rationale”: 𝜇 = 6.2, 𝜎 = 1.0). In general, 98% of participants
agreed that SenseMate was easy to use. We did notice a difference
in rating between the control and treatment conditions, in which
fewer participants in the “Rec and Rationale” condition thought
SenseMate was easy to use (“Control”: 100% agreement; “Rec Only”:
98% agreement; “Rec and Rationale”: 95% agreement). The addition
of various ways to interact with the AI models might have made
SenseMate more complicated for beginners.

Figure 8a shows the frequency of different actions that partici-
pants applied to the recommendations and new themes. “Improve
New Theme” refers to moments when participants were willing to
give feedback on themes that the models missed. On average, par-
ticipants in the treatment conditions chose to give feedback on over
75% of new themes they selected (“Rec Only”: 𝜇 = 85.6%, 𝜎 = 28.8%;

“Rec and Rationale”: 𝜇 = 75.9%, 𝜎 = 36.9%). Regarding the frequency
of actions applied to AI suggestions, approving a recommendation
had by far the highest rates (“Rec Only”: 𝜇 = 57.7%, 𝜎 = 29.2%;
“Rec and Rationale”: 𝜇 = 53.9%, 𝜎 = 32.7%) compared to rejecting
a recommendation (“Rec Only”: 𝜇 = 12.4%, 𝜎 = 10.3%; “Rec and
Rationale”: 𝜇 = 8.8%, 𝜎 = 7.3%) or marking a recommendation
as unsure (“Rec Only”: 𝜇 = 2.0%, 𝜎 = 2.9%; “Rec and Rationale”:
𝜇 = 1.4%, 𝜎 = 3.2%). In addition, participants in the “Rec and Ratio-
nale” condition chose to view the rationale for a recommendation
around 28.2% of the time (𝜎 = 31.5%).

Figure 8b shows the average amount of time, in seconds, partici-
pants in the “Rec and Rationale” condition spent viewing and giv-
ing feedback on a rationale. On average, participants spent around
4.0 seconds (𝜎 = 11.1) viewing a rationale (Figure 3), 4.2 seconds
(𝜎 = 17.1) using the highlighting interface to give feedback on
the rationales (Figure 5), and 1.7 seconds (𝜎 = 9.7) answering the
quick questions (Figure 4). All of these interactions are quite short.
The quick questions are a more efficient way of providing feedback
compared to the highlighting interface. Assuming a snippet has five
recommendations and a user chooses to view and give feedback
on each recommendation, they would only spend around 2 extra
minutes on the snippet. In terms of feedback quality, Figure 8c illus-
trates that participants obtained high agreement in their feedback
on the rationales. All of the average agreements are above 80%. The
average agreement on feedback for themes that the models missed
(i.e. new themes) is around 83%. The average agreement on the
rationale feedback is 94.5% (𝜎 = 8.1%), which is higher than the av-
erage agreement between user feedback and the original rationales
(𝜇 = 92.9%, 𝜎 = 7.5%). Participants have higher agreement among
each other than with the original machine-generated rationales,
suggesting that participants can collectively improve the rationales
instead of confusing the models with conflicting feedback.

5 DISCUSSION AND FUTUREWORK
While building and evaluating SenseMate, we gained a thorough
understanding of what a semi-automated qualitative coding plat-
form could and should support. We reflect on our findings and
suggest several design implications for human-AI collaboration in
sensemaking efforts.

5.1 Lessons Learned from Applying Rationale
Extraction Models to Qualitative Coding

5.1.1 Reflections on Coding Time (RQ1). We found that partic-
ipants with access to machine-generated recommendations and
rationales spent the most time on qualitative coding followed by
those who only received theme recommendations and then partici-
pants without AI support. Contrary to our original hypothesis, the
introduction of rationale extraction models did not make qualita-
tive coding less time-consuming. Limitations in the user study may
have impacted how AI support affects coding time. Due to time and
cost constraints, we only asked participants to analyze 10 snippets,
which does not represent a realistic qualitative coding experience.
We attempted to mitigate this limitation through careful sampling
of the snippets. Even so, the small sample of snippets may explain
our finding of increased coding time between the treatment and
control conditions. Participants in the treatment conditions could
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have spent more time on the task while learning how to interact
with the AI models, and the task may have ended just as they were
becoming more familiar with the platform. Thus, an increase in
efficiency may be observed when users interact with SenseMate to
code more data. The creators of Cody, another qualitative coding
platform, similarly found that AI suggestions benefit coding quality
rather than speed. The authors mentioned that improving quality
can reduce the workload in the long run because users would have
to spend less time correcting coding errors [57]. Though we did
not find an immediate increase in coding efficiency, it is worth
exploring whether any time is saved when using SenseMate in the
field. In addition, we observed a difference between objective and
subjective measures of coding efficiency. Though participants with
AI assistance spent more time on the task, they still reported high
ratings in terms of feeling productive and being able to complete the
task quickly. When evaluating the effectiveness of semi-automated
sensemaking, researchers should not only consider whether the
presence of AI models reduces the absolute coding time but also
if the models encourage people to be productive and spend more
time in the analytical zone.

5.1.2 Reflections on Intercoder Reliability (RQ2). Intercoder relia-
bility is a measure of how consistently a codebook is applied to the
data. As hypothesized, we found that participants who received any
AI assistance had higher rates of intercoder reliability compared to
those without access to the models. In addition, participants with
the maximum level of AI assistance in the form of theme recom-
mendations and rationales obtained the highest rates of intercoder
reliability. Without obtaining high reliability, patterns or insights
derived from the data may be flawed, which could negatively impact
downstream decision-making. High rates of intercoder reliability
are especially helpful during deductive coding where sensemakers
start with a predefined set of thematic codes, which are assigned
to qualitative data. The AI support in SenseMate can help users
stay grounded in the codebook and minimize coding errors, which
can speed up the analysis. Though the rationale extraction models
can increase intercoder reliability, there could be unintended con-
sequences, such as high model overreliance. When AI dominates
the decision-making process, the reliability will naturally increase
while harming human agency. This pattern could be harmful to
inductive coding, in which thematic codes are determined using
a bottom-up approach and disagreements between sensemakers
can highlight the most interesting areas of the dataset. It is impor-
tant to consider the potential impacts of model overreliance on
intercoder reliability. While designing SenseMate, we intentionally
created several features to reduce model overreliance, including cog-
nitive forcing functions DP-4 . From the user study, we detected
high rates of appropriate trust and lower rates of undertrust and
overtrust (Figure 7b). Though participants tended to agree with AI
suggestions, we did not observe signs of high model overreliance.

5.1.3 Reflections on Coding Performance (RQ3). We found that par-
ticipants with access to the rationale extraction models had higher
coding performance in terms of accuracy, precision, recall, and
F-score compared to those without AI support, which supports our
initial hypothesis. Participants who received the maximum level

of AI assistance had slightly higher coding performance than par-
ticipants who only had access to AI recommendations. Accuracy,
precision, recall, and F-score were measured relative to expert gold
labels, so a high coding performance indicates a small difference
between novice and expert coding decisions. Rationale extraction
models can help novice sensemakers more efficiently reach a higher
quality standard. However, this finding may depend on the model
performance, in which models need to achieve high coding perfor-
mance on their own to help novices. The rationale extractionmodels
had high classification performance with an average F-score of 0.89
on the snippets from the user study. When comparing model-only
coding performance with the average coding performance among
participants in each experiment condition, model-only performance
remained the highest. Novices from the user study were not able to
surpass model-only performance after getting access to the theme
recommendations. Zhang et al. suggest that humans need to bring
in unique knowledge to complement AI errors [67]. Consequently,
beginner sensemakers with a wealth of information about the com-
munity represented in the data may provide more complementary
knowledge compared to individuals without any context.

5.2 Design Implications for Human-AI
Sensemaking Systems

5.2.1 First Impressions on AI Assistance. Through our wizard-of-
oz (WOz) user testing, we found that initial impressions on AI
assistance matter, especially when users have to analyze a large
dataset. People would interact with the recommendations less if
the first few were not very accurate. For example, P5, from the
WOz sessions, shared that if the recommendations were “taking
things too literally,” then she would not look at them. P6 would
stop viewing recommended themes “if there was always one out-
landish recommendation coming up.” P7 mentioned the importance
of trust. If the recommendations were “pretty accurate after the
first few,” she would trust them more and hence use them “ear-
lier on in the decision-making process.” With less trust, she would
“just use [them] more as confirmation.” The importance of positive
first impressions motivated the careful ordering of snippets within
SenseMate. We observed that participants usually code in sequen-
tial order, so we placed shorter stories with fewer recommendations
at the top to help users more quickly evaluate the models. We also
ordered theme recommendations at the snippet level according to
model confidence to increase the likelihood of having a positive
first impression of model suggestions. Additionally, we strived to
create rationales that are easy to judge and non-repetitive DP-2 ,
so users can more effectively evaluate AI suggestions. From the
user study, we observed that participants in the “Rec and Rationale”
condition viewed, on average, 28% of the rationales, which contrasts
with results from prior studies where explanations are desired but
rarely used because they take too much time to evaluate [57]. When
designing human-AI collaborative tools, we recommend factoring
in possible first impressions. Intentional scaffolding can promote
positive initial interactions with AI, which can result in more col-
laborative human-AI relationships.

5.2.2 Varied and Efficient Feedback Mechanisms. DP-3 involves
creating user-driven and intuitive processes to collect feedback on
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AI suggestions. To accomplish this design principle, we learned that
it is important to provide different ways of giving feedback. The
highlighting interface allows users to provide nuanced feedback on
model rationales, which is helpful for approved recommendations
and new themes. As one participant in the user study reflected, “the
process of highlighting words that matched with new theme recom-
mendations that I made was great.” On the other hand, the quick
questions are more helpful for rejected recommendations. Besides
having access to a variety of feedback mechanisms, users wanted
to provide feedback without significantly increasing their work-
load, which meant answering simple closed-ended questions. P4
from the WOz sessions did not want the feedback mechanisms to
feel like she was interacting with a human sensemaker because
it would take “too much emotional energy” to “attend to it like a
person.” Participants appreciated how straightforward and efficient
the quick questions and highlighting interface were. From the user
study, we found that the feedback mechanisms are straightforward
and fast to utilize. Participants only spent a few seconds at a time
giving feedback on the rationales. In addition, we observed high
agreement in user feedback, which contrasts with Ghai et al.’s con-
cern that user feedback on AI explanations can have high variance,
which can negatively impact how much a model improves [30].
The carefully designed highlighting interface and quick questions
may have resulted in higher-quality feedback because they are less
open-ended. As a result, we recommend designing a variety of feed-
back mechanisms in human-AI systems that prioritize ease of use
and quick interactions. Effective feedback mechanisms not only
improve the models but also promote human learning, an important
outcome of sensemaking [29]. Features such as the quick questions
create valuable learning opportunities for users to reflect on their
decisions, which can inform the design of future QDA platforms.

5.2.3 Choosing When to Receive AI Assistance. A major design
principle we followed was DP-1 , or providing AI suggestions
on demand. While talking with potential users, we noticed that
optional AI support is critical to provide flexibility during sense-
making. The ability to decide when to view AI suggestions supports
different types of users. During the WOz sessions, we observed that
some participants were more willing to use the recommendations
than others. P6 mentioned that since she has a habit of second-
guessing herself, she “would probably view recommended themes
every time.” P3 also finds the recommendations helpful for similar
reasons: “sometimes I will just ruminate on one highlight for a long
time, so having the recommended tags is also another way of me
getting that support of knowing there’s something here that’s helping
me analyze this... ultimately the decision is mine of what to tag it
with, but at least having that extra support is really helpful.” On the
other hand, experienced sensemakers, like P4, may be less likely to
interact with the recommendations. P4 described the differences
between coding independently and coding with SenseMate’s help,
highlighting that both forms of coding are important. Coding inde-
pendently involves “focusing on the text and [one’s] own thoughts.”
It is similar to working with “Play-Doh”, in which everything is
collapsed and you canmake whatever you want. Coding with Sense-
Mate is “working with a system,” and is comparable to “Legos”, in

which there is a constant back-and-forth between the user and in-
structions. A system that supports qualitative coding should allow
the user to freely pivot between these two modes.

5.3 Ethical Considerations
The use of a system such as SenseMate raises several ethical con-
cerns. First, model misclassifications can result in misinterpretation
and bad decision-making, so it’s critical for humans to stay in con-
trol of the sensemaking process. Second, the long-term effects of us-
ing SenseMate remain unclear. Users may become overly dependent
on AI recommendations, especially since the models are intended
to improve over time. Cognitive forcing functions and generally
slowing down the process of interacting with AI models can reduce
overreliance. Interventions we explored during the design process
include: letting sensemakers code without seeing the recommen-
dations, encouraging users to interact with one recommendation
at a time, and asking people who approve recommendations too
quickly to confirm their actions. Third, there is the risk of missing
important patterns in the data, especially as users start to trust the
models more. It will be important to evaluate what information
SenseMate is ignoring before deploying it.

5.4 Opportunities for Future Research
SenseMate offers a range of exciting possibilities for future research
in the automated sensemaking space.

5.4.1 Applying Large Language Models (LLMs). One area of future
work is to experiment with ways to apply more powerful language
models to semi-automate the entire sensemaking process. At the
tail end of our work, ChatGPT and then GPT-4 were released. Both
models have proven to be tremendously powerful in many analyti-
cal tasks. To get a sense of how useful LLMs would be for qualitative
coding, we conducted a preliminary investigation into the feasibil-
ity of using ChatGPT for rationale extraction. We gave ChatGPT
examples of stories with ambiguous codes like “Processes” and
“Community Values” and asked the model to find concise and ver-
batim parts of the story that are related to a particular theme. We
found that ChatGPT was able to explain the connection between
stories and themes that were false negatives according to the ra-
tionale extraction models. Though ChatGPT may perform better
with ambiguous themes and snippets, it isn’t clear how the model
produces these rationales and how users can impact ChatGPT’s
responses. Prior work highlights concerns with utilizing LLMs for
qualitative coding, citing issues such as lack of transparency, con-
sistency challenges, and data privacy risks [65, 66]. Users grapple
with a lack of control over the outputs, making it challenging to
achieve proper alignment, particularly on a handful of examples. In
contrast, rationale extraction models can be trained locally without
significant runtime costs, and user feedback can contribute to the
fine-tuning of model parameters. Importantly, SenseMate’s contri-
bution extends beyond model choice: its design integrates feedback
mechanisms directly into the coding process, eliminating the need
for prompt engineering, which requires experimentation and exper-
tise. Explanations are seamlessly displayed within the text without
requiring additional content reading. As aforementioned concerns
get addressed, SenseMate can incorporate more powerful LLMs,
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while retaining the effective features identified through our design
process and user study.

5.4.2 Designing Collaborative Sensemaking Platforms. We built
SenseMate to support collaboration between AI and an individ-
ual user. Ideally, the AI model would improve over time based
on user feedback. However, if the model only takes in feedback
from one person, then it would start to emulate the person’s cod-
ing behaviors, including their biases, which can skew the analysis.
One way of incorporating multiple perspectives when analyzing
qualitative data is through collaborative sensemaking [18, 24, 28].
An exciting area of future work is to design and evaluate collab-
orative sensemaking platforms that integrate AI assistance and
group deliberation. For example, AI models can strategically dele-
gate work using deferral systems [41] or flag ambiguous data for
future group discussions [15, 24]. It is important to consider the
impacts of implicit social incentives when designing group-AI sys-
tems for sensemaking [12]. For example, prior research has found
that informing a human user that AI assistance has been utilized
by others can increase the user’s adherence to AI’s suggestions [3].
Intentional design decisions would have to be made around how
information is shared between AI and a group of sensemakers.

6 CONCLUSION
In summary, our research tackles a pressing challenge faced by
community-centered organizations in gathering and analyzing qual-
itative data to understand constituent needs and perspectives. One
of the most tedious and time-consuming parts of qualitative data
analysis is qualitative coding, or identifying themes in the entire
dataset. A challenge in qualitative coding involves attaining high in-
tercoder reliability. Additionally, beginner sensemakers may strug-
gle to produce similar quality coding decisions as experts who
are formally trained in qualitative data analysis. By harnessing
rationale extraction models, a new machine learning method to
semi-automate qualitative coding, and an iterative, human-centered
design process, we have developed SenseMate, a novel human-AI
system for people with minimal sensemaking experience. Through
a comprehensive user study, we demonstrate that access to AI as-
sistance in the form of theme recommendations and rationales
significantly improves intercoder reliability by 29% while increas-
ing the alignment between novice and expert coding decisions.
However, we found that the models increased coding time by 49
seconds per unit of analysis, which may have been caused by hav-
ing to learn a new system while only coding a small number of
snippets. Though users with AI support had higher coding times,
they still thought their experiences were productive. In addition,
participants reported that SenseMate was generally easy to use. As
the AI community tackles challenges in privacy and consistency
when utilizing LLMs to analyze qualitative community data, Sense-
Mate can adapt these models, while maintaining the user-driven
and intuitive feedback mechanisms verified through our iterative
design process and user study. We hope the design explorations
and lessons in our paper will inspire future endeavors to make
qualitative data analysis more accessible to non-researchers.
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A DESCRIPTION OF THEMATIC CODES
Table 3 contains a description of the themes we classified.

B USER STUDY DESIGN
B.1 Power Analysis
To determine the sample size for the user study, we conducted a pilot
study with 20 people. We applied the WebPower and simr packages
in R [34, 68]- and specifically the kanova and powerCurve functions-
to compute sample size requirements for a given type I error rate
(𝛼) and power level (𝛽). We set 𝛼 and 𝛽 at conventional levels of
0.05 and 0.8, respectively. The kanova function conducts power
analyses for k-way ANOVAs. The function requires specifying the
numerator degrees of freedom ndf (2), effect size f (Cohen’s f),
total number of groups ng (3), alpha (0.05), and power (0.8). The
powerCurve function conducts power analyses for linear mixed-
effect models by running multiple simulations at varying sample
sizes. From the power analyses, we discovered that we would need
at least 40 participants per condition to achieve a power of 80% for
coding performance. We decided to increase our sample size to 180
participants, or 60 per condition.

B.2 Usability Questions
Table 4 lists all the Likert-scale questions we asked participants
after they completed the qualitative coding task. Participants in
the treatment conditions (“Rec Only” and “Rec and Rationale”)
received additional Likert-scale questions about how much they
understood and trusted the recommendations, how much control
they had over the recommendations, and whether they thought the
recommendations (and rationales) were accurate.

C ADDITIONAL USER STUDY RESULTS
C.1 Coding Performance Metrics Across

Experiment Conditions
Table 5 contains the means and standard deviations of coding accu-
racy, precision, recall, and F-score for each experiment condition.
These values complement the patterns shown in Figure 7a. Fig-
ure 9 displays the regression coefficient values for coding accuracy,
precision, recall, and F-score, which are all statistically significant.

Rec and Rationale

Rec Only

0.00 0.05 0.10

Estimate

Outcome Measures

Accuracy

Precision

Recall

F−score

Figure 9: Associations between coding performance and treat-
ment conditions, relative to the control condition. Circles
represent average associations (i.e. regression coefficient val-
ues), and lines represent 95% confidence intervals. Intervals
that do not intersect zero indicate statistically significant
associations.

C.2 Analysis on Model Reliance and Trust
To better understand how participants utilized the models in Sense-
Mate, we explored the dynamics of trust and model reliance across
the treatment conditions, which is shown in Figure 7b. We first
filtered out 64 cases where participants chose not to expand the
recommendations for a snippet. Only 14 out of 120 participants
(9 from “Rec and Rationale” and 5 from “Rec Only”) did not view
the recommendations for all 10 snippets. From there, we calcu-
lated various metrics relating to trust, taking inspiration from prior
work in human-AI collaboration [63]. Undertrust is the proportion
of themes where participants chose not to apply a correct recom-
mendation relative to the number of correct model predictions.
Overtrust represents the proportion of themes where participants
applied an incorrect recommendation relative to the number of
incorrect model predictions. Appropriate trust is the proportion of
themes where participants applied correct model predictions and
ignored incorrect ones. Model reliance is the agreement between
participant and model answers for a snippet.

To complement the trust metrics in Figure 7b, we asked partici-
pants in the treatment conditions to rate (from 1 to 7) how much
they understood, trusted, and felt in control of the models. Partici-
pants gave high ratings on all three factors: understanding (“Rec
Only”: 𝜇 = 6.3, 𝜎 = 0.8; “Rec and Rationale”: 𝜇 = 6.1, 𝜎 = 0.8), trust
(“Rec Only”: 𝜇 = 5.7, 𝜎 = 1.0; “Rec and Rationale”: 𝜇 = 5.7, 𝜎 = 1.1),
and agency (“Rec Only”: 𝜇 = 6.0, 𝜎 = 0.8; “Rec and Rationale”:
𝜇 = 5.8, 𝜎 = 1.0). The ratings for understanding tended to be
slightly higher compared to those for trust and agency. Trust has
the lowest average ratings, yet 92% of participants agreed to some
extent that they trusted the theme recommendations.
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Table 3: A description of the 9 themes we focus on, including their names and definitions. In addition, the second column
depicts the number of unique snippets that contain each theme.

Theme Name and Definition # Examples

Community Values: values instilled throughout the community and differences in values within and across communities 85
Covid-19: COVID-19, vaccines, masks, COVID tests, boosters, and the impacts of COVID-19, such as working from home,
school closures, and jobs lost

93

Housing Affordability: cost of housing and how affordable that cost is to residents, regardless of tenure (tenant/owner) and
subsidy (e.g. workforce housing, public housing)

222

Income: references to income/wages and wealth. This can include discussions about: one’s personal income; satisfaction
with their income; in/ability to increase their income; in/ability to build wealth; income inequality; the income/wage levels
to be able to afford the cost of living in Boston

81

Processes: references to processes through which the public interfaces with government, such as voting, community
engagement, campaigning, electoral processes, and other decision-making processes

257

Quality of Education: education that empowers individuals and communities to get more control over their own situations
and environments; education systems that focus on the importance of quality learners, quality learning environments,
quality content, quality processes, and quality outcomes

118

Race-Based Inequality: defined as lack of jobs, services, and goods based on skin color, ethnicity, and language 224
Sense of Safety: refers to feeling unsafe at home, in one’s neighborhood, and throughout the city 87
Transportation: references to public transportation— like the MBTA, buses, and trains. This can include discussions about:
the quality, affordability, accessibility, and safety of transportation

49

Table 4: Description of Likert-scale questions asked during the user study. Participants were asked to rate how much they
agreed with several statements (1 = strongly disagree and 7 = strongly agree).

Metric Name Description

Productivity Level of agreement towards the statement: “I became productive quickly while using SenseMate.” [5]
Working speed Level of agreement towards the statement: “I was able to complete the task quickly using SenseMate.” [5]
Ease of use Level of agreement towards the statement: “I thought the SenseMate platform was easy to use.” [5]
Well integrated Level of agreement towards the statement: “I found the various functions in SenseMate were well inte-

grated.” [5]
Effective information Level of agreement towards the statement: “The information provided in SenseMate was effective in helping

me complete my work.” [5]
Confidence Level of agreement towards the statement: “I’m confident about the themes I selected for the stories”
Want to use in future Level of agreement towards the statement: “I would like to use SenseMate for similar labeling tasks.” [5]
Would recommend Level of agreement towards the statement: “I would recommend SenseMate to people who do similar labeling

tasks.” [5]
Understanding Level of agreement towards the statement: “I understand why SenseMate gave particular theme recommenda-

tions.” [“Rec Only” and “Rec and Rationale” conditions]
Trust Level of agreement towards the statement: “I trust the theme recommendations made by SenseMate.” [“Rec

Only” and “Rec and Rationale” conditions]
Agency Level of agreement towards the statement: “I was able to shape SenseMate’s theme recommendations with

my feedback and actions.” [“Rec Only” and “Rec and Rationale” conditions]
Perceived accuracy Level of agreement towards the statements: “I thought SenseMate’s theme recommendations were accurate

overall.” [“Rec Only” and “Rec and Rationale” conditions] + “I thought SenseMate’s reasons for theme recom-
mendations were accurate overall.” [“Rec and Rationale” conditions]

938



IUI ’24, March 18–21, 2024, Greenville, SC, USA Cassandra Overney, Belén Saldías, Dimitra Dimitrakopoulou, and Deb Roy

Table 5: Mean and standard deviation of coding accuracy, precision, recall, and F-score for each experiment condition.

Experiment Condition Accuracy Precision Recall F-Score

Control 0.87 (0.14) 0.83 (0.28) 0.76 (0.29) 0.76 (0.25)
Rec Only 0.91 (0.11) 0.86 (0.21) 0.86 (0.23) 0.85 (0.20)
Rec and Rationale 0.91 (0.10) 0.89 (0.19) 0.88 (0.20) 0.86 (0.17)
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