
MIT Open Access Articles

Quantum Control Machine: The Limits of 
Control Flow in Quantum Programming

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yuan, Charles, Villanyi, Agnes and Carbin, Michael. 2024. "Quantum Control Machine: 
The Limits of Control Flow in Quantum Programming." Proceedings of the ACM on Programming 
Languages, 8 (OOPSLA1).

As Published: 10.1145/3649811

Publisher: Association for Computing Machinery

Persistent URL: https://hdl.handle.net/1721.1/154392

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/154392
https://creativecommons.org/licenses/by/4.0/


�antum Control Machine

The Limits of Control Flow in �antum Programming

CHARLES YUAN,MIT CSAIL, USA

AGNES VILLANYI,MIT CSAIL, USA

MICHAEL CARBIN,MIT CSAIL, USA

Quantum algorithms for tasks such as factorization, search, and simulation rely on control flow such as branch-
ing and iteration that depends on the value of data in superposition. High-level programming abstractions for
control flow, such as switches, loops, higher-order functions, and continuations, are ubiquitous in classical
languages. By contrast, many quantum languages do not provide high-level abstractions for control flow in
superposition, and instead require the use of hardware-level logic gates to implement such control flow.

The reason for this gap is that whereas a classical computer supports control flow abstractions using a
program counter that can depend on data, the typical architecture of a quantum computer does not analogously
provide a program counter that can depend on data in superposition. As a result, the complete set of control
flow abstractions that can be correctly realized on a quantum computer has not yet been established.

In this work, we provide a complete characterization of the properties of control flow abstractions that are
correctly realizable on a quantum computer. First, we prove that even on a quantum computer whose program
counter exists in superposition, one cannot correctly realize control flow in quantum algorithms by lifting the
classical conditional jump instruction to work in superposition. This theorem denies the ability to directly lift
general abstractions for control flow such as the _-calculus from classical to quantum programming.

In response, we present the necessary and sufficient conditions for control flow to be correctly realizable
on a quantum computer. We introduce the quantum control machine, an instruction set architecture featuring
a conditional jump that is restricted to satisfy these conditions. We show how this design enables a developer
to correctly express control flow in quantum algorithms using a program counter in place of logic gates.

CCS Concepts: • Software and its engineering→ Control structures; • Theory of computation→ Abstract
machines; Control primitives; • Computer systems organization → Quantum computing.

Additional Key Words and Phrases: quantum programming languages, quantum instruction set architectures

ACM Reference Format:

Charles Yuan, Agnes Villanyi, and Michael Carbin. 2024. Quantum Control Machine: The Limits of Control
Flow in Quantum Programming. Proc. ACM Program. Lang. 8, OOPSLA1, Article 94 (April 2024), 28 pages.
https://doi.org/10.1145/3649811

1 INTRODUCTION

Quantum algorithms promise computational advantage in areas ranging from factorization [Shor
1997] and search [Grover 1996] to data analysis [Harrow et al. 2009; Lloyd et al. 2014; Wiebe et al.
2012] and simulation [Abrams and Lloyd 1997; Babbush et al. 2018; Childs et al. 2018].
The power of a quantum algorithm arises from its ability to manipulate quantum data, which

exists in a weighted sum over many classical states known as a superposition. The basic unit of

Authors’ addresses: Charles Yuan, MIT CSAIL, 32 Vassar St, Cambridge, MA, 02139, USA, chenhuiy@csail.mit.edu; Agnes
Villanyi, MIT CSAIL, 32 Vassar St, Cambridge, MA, 02139, USA, agivilla@mit.edu; Michael Carbin, MIT CSAIL, 32 Vassar St,
Cambridge, MA, 02139, USA, mcarbin@csail.mit.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART94
https://doi.org/10.1145/3649811

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-4918-4467
HTTPS://ORCID.ORG/0009-0005-3121-2537
HTTPS://ORCID.ORG/0000-0002-6928-0456
https://doi.org/10.1145/3649811
https://orcid.org/0000-0002-4918-4467
https://orcid.org/0009-0005-3121-2537
https://orcid.org/0009-0005-3121-2537
https://orcid.org/0000-0002-6928-0456
https://doi.org/10.1145/3649811


94:2 Charles Yuan, Agnes Villanyi, and Michael Carbin

quantum information is the qubit — a superposition of the bits 0 and 1. A quantum computer can
transform the values and weights within a superposition by performing quantum logic gates, for-
mally known as unitary operators. It can alsomeasure quantum data, which collapses a superposition
to a classical state with a probability that is determined by its weight in the superposition.
One example of data in superposition is a 2-qubit quantum integer : that takes on the values

0, 1, 2, and 3 at the same time. In the notation of quantum algorithms, one such : is written as
1
2
|0⟩ + 1

2
|1⟩ − 1

2
|2⟩ + 1

2
|3⟩ where |2⟩ or |102⟩ in binary denotes a qubit in the 1 state and a qubit in

the 0 state, and − 1
2
denotes the weight of that state, whose sign component is called a phase.

Unlike classical probabilities that are non-negative real numbers, the weights in a superposition
are complex numbers whose values can combine or cancel when added, in a phenomenon known
as interference. In turn, interference enables quantum advantage by amplifying the probability that
a quantum algorithm produces a correct result to be larger than that of any classical algorithm.

A widely adopted representation of a quantum computation is as a quantum circuit, a sequence of
quantum logic gates operating over qubits that is the quantum analogue of a Boolean logic circuit.
To assist in manipulating the complex quantum circuits that arise when implementing quantum
algorithms, researchers have developed quantum programming languages [Altenkirch and Grattage
2005; Bichsel et al. 2020; Green et al. 2013; Paykin et al. 2017; Svore et al. 2018; Voichick et al. 2023].

1.1 The Challenge of Control Flow in Superposition

A programming abstraction that is integral to classical algorithms is control flow such as branching
and iteration that depends on the value of data. An analogous concept is also integral to quantum
algorithms, in which control flow depends on the value of data in quantum superposition.

Example 1.1 (Branching). Where a classical computation takes a value : and executes the :th
branch of a switch statement on the value G , a quantum computation takes a superposition of :
and executes a superposition of the corresponding branches to produce a superposition of G .
In the formal notation of quantum algorithms, given a set of functions {*8 } representing the

branches, branching transforms the data from
∑

: |:⟩ |G⟩ ↦→
∑

: |:⟩ (*: |G⟩). This operation is used
in algorithms for physical simulation [Babbush et al. 2018; Childs and Wiebe 2012; Low and Chuang
2019], in which each*8 encodes a component of the description of the target system.

Example 1.2 (Iteration). Where a classical computation takes a value : and repeats an operation
for : iterations on the value G , a quantum computation takes a superposition of : and repeats the
operation for a superposition of numbers of iterations to produce a superposition of G .

In formal notation, given a function* whose 8th power is* 8 , iteration transforms the data from
∑

: |:⟩ |G⟩ ↦→
∑

: |:⟩ (* : |G⟩). Iteration is a special case of branching that is used in algorithms for
factoring [Shor 1997], where* maps |G⟩ ↦→ |0G mod # ⟩, and for phase estimation [Kitaev 1995] as
found in simulation [Abrams and Lloyd 1997] and linear algebra [Harrow et al. 2009].

Programming abstractions for control flow are natively supported by the typical architecture of
a classical computer. In imperative programming, the if-statement for branching and for-loop for
iteration compile to a program counter that determines the current instruction and a conditional
jump instruction that updates the program counter using a condition on a data register. Control flow
is also straightforward to realize in functional programming, in which abstractions for branching
and iteration emerge from the Church encoding [Church 1941] of data types in the _-calculus.
By contrast, programming abstractions for control flow in superposition are not natively sup-

ported by the typical architecture of a quantum computer. Whereas a classical computer provides a
program counter that can depend on data, the typical architecture of a quantum computer does
not provide a program counter that can depend on data in superposition, nor a representation of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:3

_-terms in superposition. Instead, it requires a program to be represented as a quantum circuit, a
fixed sequence of bit-level logic gates whose structure cannot depend on data in superposition.

In turn, the lack of a program counter requires alternatives to the typical strategy of compiling
abstractions for control flow to manipulations of the program counter. For example, some quantum
languages [Green et al. 2013; Paykin et al. 2017; Qiskit Developers 2021; Svore et al. 2018] enable
the developer to implement Examples 1.1 and 1.2 by explicitly building a circuit of bit-controlled
logic gates. Alternatively, emerging languages [Bichsel et al. 2020; Yuan and Carbin 2022] provide
certain abstractions for control flow, such as a quantum if-statement that branches over a qubit in
superposition, that are guaranteed to be physically realizable and can be compiled into circuits.
Prior work, however, leaves unknown whether it is possible to program a quantum computer

using other general forms of control flow, such as higher-order functions, that underpin expressive
classical languages. Answering this question requires identifying the complete set of control flow
abstractions that a quantum computer can support – that is, the necessary and sufficient conditions
for control flow in superposition to be correctly realizable – which has not been done to date.

1.2 Theoretical Limits of Control Flow in Superposition

In this work, we provide a complete characterization of the properties of control flow abstractions
that are correctly realizable on a quantum computer, showing that many general forms of control
flow from classical programming fail to work correctly over data in quantum superposition.

First, we prove that even given a quantum computer endowed with a representation of a program
counter in superposition, one cannot correctly realize control flow within a quantum algorithm by
directly lifting the classical conditional jump instruction to work on data in superposition. In turn,
the typical strategy from classical programming of compiling arbitrary control flow abstractions to
conditional jumps can lead a quantum computer to incorrectly execute quantum algorithms.

Landauer Embedding. To explain why the classical conditional jump does not work on a quantum
computer, we first show that the standard technique researchers use to lift a classical computation
into a quantum one gives incorrect results for control flow abstractions such as conditional jump.
Fundamentally, the hardware primitives that can be used to realize a quantum computer that

supports control flow in superposition are quantum logic gates, which operate on quantum data
without measuring it and thereby inappropriately collapsing its superposition. The reason that it is
critical for quantum data to not collapse from superposition is to ensure that the data correctly
exhibits interference. Without interference, an algorithm such as Shor [1997] would produce a
correct output with exponentially smaller probability and thus lose its quantum advantage.

The challenge is that the mathematical semantics of each quantum logic gate is a unitary operator,
which is an invertible and therefore injective function. By contrast, the state transition function of
the conventional conditional jump instruction is not injective. When two distinct instructions jump
to the same point, then the identity of the machine state before the jump is lost after the jump.

One reason to hope that this problem may be solvable is a technique, developed by researchers
in quantum algorithms and complexity theory, to lift a non-injective classical computation to an
injective quantum computation. Specifically, one can convert any function 5 (G) into an injective
function 6(G) = (G, 5 (G)) that returns a copy of its input. When iterated over an entire computation,
this process yields the computation’s output alongside a history of its intermediate states.

This standard technique is known as Landauer embedding [Landauer 1961], so named as it embeds
a computation into a larger state space containing the history. Prior work [Lagana et al. 2009] has
proposed to use Landauer embedding to implement the non-injective semantics of conditional
jump as a unitary operator. In this scheme, the machine stores a history of previous values of the
program counter, and appends a value to the history upon executing each jump instruction.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:4 Charles Yuan, Agnes Villanyi, and Michael Carbin

Disruptive Entanglement. In this work, however, we demonstrate that a quantum computer that
uses Landauer embedding to implement conditional jump produces incorrect outputs, which lead a
quantum algorithm to not correctly produce interference and to lose its quantum advantage.

The cause is quantum entanglement, the phenomenon in which a superposition state cannot be
represented as the product of independent components, and in which discarding one component
necessarily collapses the superposition of the other. For a program whose control flow depends
on data, the machine produces a state in which the history of the program counter is entangled
with the output data. Here, being entangled with the history means that the output data fails to
correctly produce interference, and the quantum algorithm produces incorrect results.

No-Embedding Theorem. More generally, we prove that a quantum computer cannot correctly
support any form of control flow in superposition, including conditional jump, whose state transition
semantics is not injective. Formally, we generalize the Landauer embedding to the concept of a
quantum embedding that defines the most general way to lift a classical computation to a quantum
one by storing auxiliary information. Then, we prove a no-embedding theorem stating that using
any such technique to realize control flow causes the computer to produce incorrect outputs.

As a corollary, we prove that a _-calculus featuring superpositions of _-terms cannot be used to
program a quantum computer, as conjectured by van Tonder [2004]. The reason is that V-reduction
is not injective — both _G .G and (_G .G) (_G .G) reduce to _G.G . This result precludes the Church
encoding of quantum information into _-terms, in that it prevents the superposition of two bits
1√
2
( |0⟩ + |1⟩) from being represented as a superposition of _-terms 1√

2
( |_G ._~.G⟩ + |_G ._~.~⟩).

Implications. Our theorem provides a unifying explanation of why numerous classical control
flow abstractions, ranging from closures to continuations, remain challenging to adapt to quantum
programming since their classical basis in conditional jumps or the _-calculus cannot be correctly
realized in superposition. New abstractions must take their place in quantum programming.

This result raises caution for proposals from the hardware community [Meier et al. 2024; Wang
2022] for a quantum equivalent of the von Neumann architecture in the form of a reprogrammable
quantum computer that stores instructions alongside data in superposition. Though experimentalists
have attempted to physically realize such a design [Kjaergaard et al. 2020], our theorem implies
that it necessarily supports limited forms of control flow compared to classical computers.

To our knowledge, prior designs of quantum von Neumann architectures do not acknowledge or
account for the fundamental limitations to control flow that are formalized by our no-embedding
theorem. For instance, to implement a conditional jump instruction, the proposal of Lagana et al.
[2009] uses the approach of histories and hence does not correctly execute quantum algorithms.

1.3 Specification for Sound Control Flow in Superposition

The no-embedding theorem implies that one cannot use arbitrary classical abstractions for control
flow to correctly program a quantum computer. To codify the properties of forms of control flow that
are correct to use on a quantum computer, we next present the necessary and sufficient conditions
for control flow in superposition to be correctly realizable as part of a quantum program.
The first correctness condition, injectivity, specifies the control flow abstractions that may be

correctly realized on a quantum computer. The second, synchronization, specifies the valid programs
that may be constructed using these abstractions to correctly implement quantum algorithms.

Injectivity. As stated by the no-embedding theorem, a quantum computer can correctly realize a
programming abstraction for control flow in superposition only if its state transition semantics is
inherently injective. The semantics cannot use an embedding — that is to say, it cannot accumulate
a history or any other auxiliary information not integral to the control state of the machine.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:5

Synchronization. Injectivity is strong enough to guarantee that an abstraction is realizable, but
not that all programs constructed from it produce correct outputs. Given a computation in which the
program counter exists in superposition, it is possible for the program counter to become entangled
with the data registers and remain entangled in the final machine state of the computation. If so,
the problem of disruptive entanglement arises once again, meaning the output is incorrect.

To address this issue, the second necessary condition of synchronization states that control flow
must eventually become separable from, i.e. not entangled with, the data. More precisely, a program
is synchronized when at the end of execution, the value of the program counter is identical across
each classical state within the machine state superposition. Hence, the data registers and program
counter are not entangled, making the output data correct for use by the quantum algorithm.

Implications. Critically, the fact that control flow must be synchronized to be correctly realizable
implies that a quantum computer based on the concept of a program counter can support a while-
loop whose number of iterations is a data-dependent value in superposition only if that number is
bounded by a classical value. Only then can the loop be synchronized and thus correctly realizable.

1.4 Instruction Set Architecture for Control Flow in Superposition

To implement the specification above, we present the quantum control machine, an instruction set
architecture for quantum programming with control flow in superposition. This architecture is
physically realizable via quantum logic gates and is the first to provide both a representation of the
program counter in superposition and a sound means of manipulating the program counter.

Instruction Set. Instead of the conventional conditional jump, the machine uses other control flow
instructions whose state transition semantics are inherently injective. These instructions, originally
introduced by architectures for classical reversible computers [Axelsen et al. 2007; Thomsen et al.
2012], use reversible arithmetic to manipulate a branch control register whose value tracks how
much the program counter advances and is added to the program counter after each cycle.

On top of the control flow instructions from prior work, the quantum control machine adds the
ability to execute unitary operators that create and manipulate superpositions of data such as the
Hadamard gate, and provides a representation of a program counter in superposition.

Case Studies. The quantum control machine unifies several forms of control flow that can be
implemented in existing quantum programming languages. In a case study that implements core
components of quantum algorithms for phase estimation, quantum walk, and physical simulation,
we illustrate how a developer can realize the imperative control flow abstractions of branching
(switch) and bounded iteration (for) as synchronized programs. The case study demonstrates how
existing control flow patterns that appear in quantum algorithms can be represented in a uniform
way using the abstraction of a program counter in superposition and its correct manipulation.

Implications. Rather than as a target for near-term hardware realization, which is likely to be
challenging, we view the quantum control machine as a theoretical model for expressing algorithms
that reduces reliance on hardware-level logic gates, and as an intermediate compilation target for
proposed quantum programming languages with control flow abstractions such as recursion [Ying
2014; Ying et al. 2012] that have to date not been realized directly in terms of circuits.
A problem that remains open is whether an injective analogue of the _-calculus could be sim-

ilarly developed, which would enable functional programming abstractions for control flow in
superposition. The challenge is that in general, function application is not injective, as there is no
general way to turn the result of a function application back into a pair of the function and its
argument. Moreover, any substitution-based model of computation in which an expression reduces
to a final value, and that value also reduces to itself, is fundamentally not injective.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:6 Charles Yuan, Agnes Villanyi, and Michael Carbin

1.5 Contributions

In this work, we present the following contributions:

• (Section 3) We identify that the Landauer embedding, a standard approach to lift classical to
quantum computation, does not correctly realize a conditional jump instruction in superposition.

• (Section 4.1) We prove that programming abstractions with non-injective transition semantics,
such as the conventional conditional jump or the V-reduction of _-calculus, cannot correctly
realize control flow in superposition, thereby proving conjecture of van Tonder [2004].

• (Section 4.2) We define the necessary and sufficient conditions for control flow in superposition
to be correctly realizable as part of a quantum program. First, each programming abstraction
must have injective state transition semantics. Second, a program must not entangle the states
of data and control flow in its final output, a condition we term synchronization.

• (Sections 5 and 6)We introduce the quantum controlmachine, an instruction set architecture that
correctly supports imperative abstractions for branching and bounded iteration in superposition,
and present a case study that uses the machine to implement a range of quantum algorithms.

Summary. In this work, we reveal limits on our ability to lift foundational programming abstrac-
tions such as the conditional jump and the _-calculus to work with data in quantum superposition,
a stark contrast to the historical development of control flow abstractions in classical programming.
Faced with these limits, we propose sound principles for using control flow in quantum programs.
These principles underpin a new instruction set architecture that paves way to more convenient
theoretical models for quantum algorithms and more expressive quantum programming languages.

2 BACKGROUND ON QUANTUM COMPUTATION

This section overviews key concepts in quantum computation relevant to this work. For a compre-
hensive reference in quantum computation, please see Nielsen and Chuang [2010].

Superposition. A qubit exists in a superposition of the classical states 0 and 1— a linear combination
W0 |0⟩ +W1 |1⟩ where W0, W1 ∈ C are complex amplitudes satisfying |W0 |2 + |W1 |2 = 1. Examples of qubits
are classical |0⟩ and |1⟩, as well as the states 1√

2
( |0⟩ + 48i |1⟩) where i ∈ [0, 2c) is known as a phase.

More precisely, i is the phase of |1⟩ relative to |0⟩. By contrast, two states that differ only by a
global phase, such as |0⟩ and 48i |0⟩, are physically indistinguishable and considered equivalent.

Quantum State. More generally, a quantum state |k ⟩ of dimension 2= is a superposition over
=-bit strings. For example, |k ⟩ = 1√

2
( |00⟩ + |11⟩) is a quantum state over two qubits.

The set of 2=-dimensional quantum states constitutes the Hilbert space, i.e. the formal vector
space, C2= . A frequently used basis for this space, known as the computational basis, is the subset
of states {|G⟩ | G is an =-bit string} in which one classical state has the entire amplitude 1.

Tensor Product. Formally, multiple component states form a composite state by the tensor product
operator ⊗. For example, the state |01⟩ is equal to |0⟩ ⊗ |1⟩. As is standard in quantum computation,
we interchangeably use the notations |0⟩ |1⟩, |01⟩, and |0, 1⟩ to represent |0⟩ ⊗ |1⟩.

Physical Operations. The norm of a quantum state |k ⟩ = ∑

8 W8 |k8⟩ is defined as ∥|k ⟩∥ = ∑

8 |W8 |2.
A quantum state is physically realizable only if its norm is 1. An operator, i.e. function$ over states
is norm-preserving if ∥|k ⟩∥ = ∥$ |k ⟩∥ for any |k ⟩, and linear if $ (W1 |k1⟩ + W2 |k2⟩) = W1 ($ |k1⟩) +
W2 ($ |k2⟩) for any W8 and |k8⟩. There are exactly two types of operations over quantum states that
are physically realizable on a quantum computer — unitary operators and measurement.

Unitary Operator. A unitary operator * is a linear and norm-preserving operator over quantum
states. Any unitary operator* satisfies the property that its inverse* −1 is equal to its Hermitian

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:7

adjoint * †. Formally, a unitary operator may be constructed as a circuit of quantum gates. For
example, the quantum gates that operate over a single qubit include:

• Bit flip (X or NOT), which maps |G⟩ ↦→ |1 − G⟩ for G ∈ {0, 1};
• Phase flip (Z), which maps |G⟩ ↦→ (−1)G |G⟩;
• Hadamard (H), which maps |G⟩ ↦→ 1√

2
( |0⟩ + (−1)G |1⟩).

A gate may be controlled by one or more qubits, forming a larger unitary operator. For example,
the two-qubit CNOT gate maps |0⟩ |G⟩ ↦→ |0⟩ |G⟩ and |1⟩ |G⟩ ↦→ |1⟩ NOT |G⟩ = |1⟩ |1 − G⟩.

Measurement. Measuring a quantum state probabilistically collapses its superposition into a clas-
sical outcome.1 Measuring a qubit W0 |0⟩ +W1 |1⟩ yields 0with probability |W0 |2 and 1with probability
|W1 |2. Selectively measuring a state yields a partial outcome and an unmeasured remainder. For
example, measuring the first qubit in the state |k ⟩ = W0 |0⟩ |k0⟩ + W1 |1⟩ |k1⟩ yields the outcome 0
and remainder |k0⟩ with probability |W0 |2, and outcome 1 and remainder |k1⟩ with probability |W1 |2.

Copying and Discarding. The no-cloning theorem [Wootters and Zurek 1982] says that no physical
process can transform |k ⟩ ↦→ |k ⟩ ⊗ |k ⟩ for arbitrary |k ⟩. Quantum data can be copied only if its
basis is fixed — that is, classical information in computational basis can be copied, whereas arbitrary
superpositions cannot. The no-deleting theorem [Pati and Braunstein 2000] states that no unitary
operator realizes the converse process |k1⟩ ⊗ |k2⟩ ↦→ |k1⟩ to delete an arbitrary |k2⟩. In fact, the
principle of implicit measurement [Nielsen and Chuang 2010, Section 4.4] dictates that discarding a
quantum state, i.e. throwing it away permanently, is indistinguishable from measuring it.

Entanglement. Given a product |k ⟩ = |k1⟩ ⊗ |k2⟩, measuring |k1⟩ leaves behind the remainder
|k2⟩, and we call such a state |k ⟩ separable. The opposite of a separable state is an entangled state that
cannot be written as a tensor product of two components. Given an entangled state, measuring one
component causes the superposition of the other to also collapse. For example, the Bell state [Bell
1964] |k ⟩ = 1√

2
( |00⟩ + |11⟩) is entangled as it cannot be written as a product of two independent

qubits. In this state, measuring either of the qubits causes both qubits to collapse from superposition
to equal outcomes: either |0⟩ and |0⟩ or |1⟩ and |1⟩ with probability

�

�
1√
2

�

�
2
=

1
2
each.

Interference. A superposition state fundamentally differs from the distribution of outcomes to
which it collapses — only the former exhibits quantum interference, the phenomenon in which the
complex amplitudes of a state combine and cancel, as needed by quantum algorithms.

For example, applying the Hadamard gate to the qubit |0⟩ yields the new state 1√
2
( |0⟩ + |1⟩) for

that qubit. Next, applying the Hadamard gate to that qubit a second time yields:

1√
2

(

1√
2
( |0⟩ + |1⟩) + 1√

2
( |0⟩ − |1⟩)

)

=
1
2
( |0⟩ + |1⟩ + |0⟩ − |1⟩) = |0⟩

which when measured always yields 0. Here, interference is the phenomenon that the branches |1⟩
and − |1⟩ with opposite phase mathematically cancel, leaving only the branch |0⟩.
In a quantum algorithm such as integer factorization [Shor 1997], interference is essential to

efficiently pruning down a large search space and achieving computational advantage.

Disruptive Measurement. Given the qubit 1√
2
( |0⟩ + |1⟩) after performing the first Hadamard gate,

suppose we were to measure it before performing the second Hadamard gate.

1For ease of understanding, the definition of measurement given here is for a projective measurement in the computational
basis. Nevertheless, all results in this work hold equally on the more general definitions of measurement, which can be
realized using only unitary operations and projective measurements in the computational basis.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:8 Charles Yuan, Agnes Villanyi, and Michael Carbin

Upon measurement, the qubit collapses from superposition to an equal probabilistic mixture of
|0⟩ and |1⟩. When we then apply the second Hadamard gate on this mixture, we obtain not |0⟩ but
rather a mixture of 1√

2
( |0⟩ + |1⟩) and 1√

2
( |0⟩ − |1⟩). Now, no interference occurs — if we measure this

new mixture, we observe an outcome of 0 or 1 with equal probability rather than 0 with certainty.

Disruptive Entanglement. A key building block for the results in this paper is the fact that the
presence of entanglement between the primary state of a computation and an auxiliary or temporary
value can cause quantum interference to not occur and quantum advantage to be lost.

To demonstrate, let us start with the same qubit 1√
2
( |0⟩ + |1⟩) from above, and then execute the

two-qubit CNOT gate on this qubit alongside a new second qubit initialized to |0⟩:
1√
2
( |0⟩ + |1⟩) ⊗ |0⟩ CNOT↦−−−→ 1√

2
( |00⟩ + |11⟩)

The result is the entangled Bell state. If we were to discard the second qubit, which is equivalent
to measuring it, then the first qubit would also collapse from superposition and fail to exhibit
interference, as above. A key fact is that even if we refuse to discard or measure the second qubit,
and simply apply the Hadamard gate again to the first qubit, interference still fails to occur:2

1√
2

(

1√
2
( |0⟩ + |1⟩) ⊗ |0⟩ + 1√

2
( |0⟩ − |1⟩) ⊗ |1⟩

)

=
1
2
( |00⟩ + |10⟩ + |01⟩ − |11⟩) ≠ |0⟩ ⊗ |k ⟩ for any |k ⟩

Unlike |1⟩ and − |1⟩, the branches |10⟩ and − |11⟩ do not interfere, meaning that measuring the
first qubit of the final state yields 0 or 1 with equal probability rather than 0 with certainty.

A quantum computation subject to disruptive entanglement degrades to a classical probabilistic
computation, which is commonly understood to result in a loss of quantum advantage [Nielsen
and Chuang 2010, Section 3.2.5]. In an algorithm such as Shor [1997], disrupting interference via
entanglement as above causes a wrong answer to be produced or quantum advantage to be lost.
In the example, a correct way to recover the qubit 1√

2
( |0⟩ + |1⟩) with its superposition intact

from the entangled state 1√
2
( |00⟩ + |11⟩) is to execute the inverse of the CNOT gate, eliminating the

undesired entanglement so as to recover the separable state of 1√
2
( |0⟩ + |1⟩) ⊗ |0⟩ once again.

3 FAILURE OF CONDITIONAL JUMP IN SUPERPOSITION

In this section, we illustrate the challenges in programming with control flow that depends on
data in quantum superposition, and reveal that standard techniques for lifting classical to quantum
computation produce incorrect outputs when applied to abstractions for control flow.

Running Example. Suppose we must implement a program % that, given two machine integer
variables x and y, updates their values according to the following transformation:

|x, y⟩ %↦→
{

|x, y + 1⟩ if x = 0

|x + 1, y⟩ if x ≠ 0
(1)

where |x : 0, y : 3⟩ denotes a state in which x is 0 and y is 3. For example, given input |x : 0, y : 3⟩, the
program should yield output |x : 0, y : 4⟩, and given |x : 3, y : 0⟩, it should yield |x : 4, y : 0⟩. We assume
that arithmetic operations do not overflow in this example and address overflow in Appendix A.
Basic operations interleaving arithmetic and control flow such as this example are essential to

algorithms for simulation [Babbush et al. 2018] and factoring [Proos and Zalka 2003; Shor 1997]
and more generally illustrate the use of control flow in the algorithms we will present in Section 6.

2Familiar readers may see this case as the deferred measurement principle [Nielsen and Chuang 2010].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:9

3.1 Classical Implementation with Conditional Jumps

1 jnz l1 x ; if x != 0, goto l1

2 add y $1 ; add 1 to y

3 jmp l2 ; goto l2

4 l1: add x $1 ; add 1 to x

5 jmp l2 ; goto l2

6 l2: nop ; no-op

Fig. 1. Classical assembly implementing Equation (1).

On a classical computer, it would be straight-
forward to realize Equation (1) as a transfor-
mation of classical data. In Figure 1, we depict
a typical implementation of this specification
as a classical assembly program that relies on
conditional jump instructions.

In this assembly program, the machine state
contains three registers: x, y, and the program
counter pc. Given the two example initial states of x and y from above, the machine executes the
program in Figure 1 by evolving the state according to the following two execution traces:

|x : 0, y : 3, pc : 1⟩ jnz l1 x↦−−−−−−−→ |x : 0, y : 3, pc : 2⟩ add y $1↦−−−−−−−→ |x : 0, y : 4, pc : 3⟩ jmp l2↦−−−−−→ |x : 0, y : 4, pc : 6⟩ (2)

|x : 3, y : 0, pc : 1⟩ jnz l1 x↦−−−−−−−→ |x : 3, y : 0, pc : 4⟩ add x $1↦−−−−−−−→ |x : 4, y : 0, pc : 5⟩ jmp l2↦−−−−−→ |x : 4, y : 0, pc : 6⟩ (3)

where the first trace is the x = 0 branch of Equation (1), and the second is the x ≠ 0 branch.

3.2 Superposition of Program Executions

On a quantum computer, we require a program % that manipulates x and y as data that exist in
quantum superposition. Given a superposition of the two input states of Equations (2) and (3), the
program must produce the corresponding superposition of their output states:

1√
2
( |x : 0, y : 3⟩ − |x : 3, y : 0⟩) %↦→ 1√

2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) (4)

As a contrast, it would be incorrect for the machine to simply measure x and branch on the
outcome. Doing so collapses superposition,3 meaning the program produces the output:

{

|x : 0, y : 4⟩ with probability 1
2

|x : 4, y : 0⟩ with probability 1
2

(5)

If conditional branching collapsed the state as above, it would prevent a quantum algorithm such
as Ambainis [2004]; Babbush et al. [2018]; Shor [1997] from leveraging interference (Section 2) in
order to obtain computational advantage. Specifically, interference cannot possibly occur after the
phase stored by the minus sign in Equation (4) is lost upon collapse.

Program Superposition. As an alternative to measuring the data, we consider the possibility of
a quantum instruction set architecture analogous to the classical one in Section 3.1 in which the
control flow of the program, as embodied by the program counter, may depend on the value of data.

Such a machine is specified as follows. Its state contains quantum registers x, y, and pc, and its
state transition function lifts the machine in Section 3.1 to superposition, taking:

∑

8 W8 |x8 , y8 , pc8⟩ ↦→
∑

8 W8 |x′8 , y′8 , pc′8 ⟩

whenever the classical machine of Section 3.1 would step each constituent |x8 , y8 , pc8⟩ ↦→ |x′8 , y′8 , pc′8 ⟩.
Mathematically, this operator is linear over the quantum state of the machine.

3As a technical note, measuring x in this example also collapses y because x and y are entangled (Section 2), but that fact is
not crucial, as the output would be incorrect even if x alone collapsed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:10 Charles Yuan, Agnes Villanyi, and Michael Carbin

Running Example. One may envision that on this machine, we could directly execute the program
in Figure 1 to manipulate x and y while preserving their superposition.
Given the superposition input from Equation (4), this machine sets the initial pc to 1. It then

evolves the state according to a superposition of the traces in Equations (2) and (3):

1√
2
( |x : 0, y : 3, pc : 1⟩ − |x : 3, y : 0, pc : 1⟩)

jnz l1 x + jnz l1 x↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 3, pc : 2⟩ − |x : 3, y : 0, pc : 4⟩)

add y $1 + add x $1↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 4, pc : 3⟩ − |x : 4, y : 0, pc : 5⟩)

jmp l2 + jmp l2↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 4, pc : 6⟩ − |x : 4, y : 0, pc : 6⟩)

=
1√
2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) ⊗ |pc : 6⟩

(6)

In this trace, each ↦→ represents the execution of a superposition of instructions. For example,
the first instance of ↦→ executes a superposition of jnz l1 x and itself, the second executes a
superposition of add y $1 and add x $1, and the third a superposition of jmp l2 and itself.
At the end, the machine may discard the value of pc, leaving behind only the desired output

1√
2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) as specified by the right-hand side of Equation (4).

Physical Realizability. However, the ideal semantics in Equation (6) is not physically realizable
on a quantum computer. Physical principles dictate that a transformation over quantum states
must take any physically realizable input state to a physically realizable output state. Formally, it
must preserve norms of states. By contrast, given certain physically realizable states over x, y, and
pc, the state transition function described above can produce a physically unrealizable state:

1√
2
( |x : 0, y : 0, pc : 3⟩ − |x : 0, y : 0, pc : 5⟩)

jmp l2 + jmp l2↦−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 0, pc : 6⟩ − |x : 0, y : 0, pc : 6⟩) = 0

Here, the output has norm 0, a physically impossible outcome. The reason is that the state
transition in Section 3.1 is not injective — it maps two distinct inputs to the same output:

|x : 0, y : 0, pc : 3⟩ jmp l2↦−−−−−→ |x : 0, y : 0, pc : 6⟩ (7)

|x : 0, y : 0, pc : 5⟩ jmp l2↦−−−−−→ |x : 0, y : 0, pc : 6⟩ (8)

By contrast, for an operator over quantum states to be both linear and norm-preserving, it must
be unitary (Section 2), meaning it has an inverse and is injective by definition.

3.3 Landauer Embedding and Disruptive Entanglement

There exists a standard technique to compute a non-injective function inside a quantum computa-
tion, known as Landauer embedding [Landauer 1961]. We show, however, that using this technique
to implement control flow leads a quantum algorithm to produce incorrect outputs.

Definition 3.1 (Landauer Embedding). Given a non-injective function 5 , one may embed it into
an injective function � (B) = (B, 5 (B)) that also returns a copy of the input. From � (B), one extracts
the embedded value of 5 (B) by discarding B . This process can be iterated as necessary.

History. One may attempt to apply Landauer embedding to the semantics of conditional jump by
maintaining a history of program counters in memory, into which each executed step is written.
We denote the current program counter by pc0 and the history after C time steps have elapsed by
pc1, pc2, . . . , pcC , such that pc1 is the value from the immediately previous time step, and so on.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:11

Physical Realizability. This construction is realizable as a unitary operator. One can see that under
Landauer embedding, the analogues of the states from Equations (7) and (8) evolve differently:

|x : 0, y : 0, pc0 : 3, . . . , pcC : 1⟩
jmp l2↦−−−−−→ |x : 0, y : 0, pc0 : 6, pc1 : 3, . . . , pcC+1 : 1⟩

|x : 0, y : 0, pc0 : 5, . . . , pcC : 1⟩
jmp l2↦−−−−−→ |x : 0, y : 0, pc0 : 6, pc1 : 5, . . . , pcC+1 : 1⟩

Disruptive Entanglement. Landauer embedding, however, introduces a new problem that causes
the computation to produce incorrect results. Consider the new execution trace of the program in
Figure 1, which updates the old trace in Equation (6) to add a history of program counters:

1√
2
( |x : 0, y : 3, pc0 : 1⟩ − |x : 3, y : 0, pc0 : 1⟩)

jnz l1 x + jnz l1 x↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 3, pc0 : 2, pc1 : 1⟩

− |x : 3, y : 0, pc0 : 4, pc1 : 1⟩)
add y $1 + add x $1↦−−−−−−−−−−−−−−−−−→ 1√

2
( |x : 0, y : 4, pc0 : 3, pc1 : 2, pc2 : 1⟩

− |x : 4, y : 0, pc0 : 5, pc1 : 4, pc2 : 1⟩)
jmp l2 + jmp l2↦−−−−−−−−−−−−−−−−−→ 1√

2
( |x : 0, y : 4, pc0 : 6, pc1 : 3, pc2 : 2, pc3 : 1⟩

− |x : 4, y : 0, pc0 : 6, pc1 : 5, pc2 : 4, pc3 : 1⟩)
≠

1√
2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) ⊗ |k ⟩ for any |k ⟩

(9)

Like in Equation (6), each ↦→ represents the execution of a superposition of instructions. The
difference is that the final state is now entangled, meaning that discarding or, equivalently, measur-
ing one component collapses the superposition of the other (Section 2). Thus, the machine cannot
discard the history without destroying the superposition of x and y. Discarding pc1 yields:

{

|x : 0, y : 4, pc0 : 6, pc2 : 2, pc3 : 1⟩ w.p. 1
2

|x : 4, y : 0, pc0 : 6, pc2 : 4, pc3 : 1⟩ w.p. 1
2

which is the same incorrect outcome as having measured x to begin with, as in Equation (5).
Moreover, as established in Section 2, simply refusing to measure or discard the history is not an

admissible workaround — using part of an entangled state in place of the right side of Equation (4)
still leads a quantum algorithm to produce a wrong answer or lose computational advantage.

3.4 No Recovery from Disruptive Entanglement

From this point, one conceivable avenue to recover from entanglement is to use uncomputation [Ben-
nett 1973], the standard technique to erase temporary data in quantum computation.

Definition 3.2 (Uncomputation). Suppose we have non-injective 5 and 6, and seek an injective �
such that � (B) = (B, 6(5 (B))). Denote by � and� the Landauer embeddings of 5 and 6 respectively.
Composing � and � produces � (B) alongside a temporary value 5 (B), which we seek to erase.

Since � is injective, we execute its partial inverse, denoted � †, thereby uncomputing 5 (B):

B
�↦→ (B, 5 (B)) id ⊗�↦−−−−→ (B, 5 (B), 6(5 (B))) � † ⊗ id↦−−−−−→ (B, 6(5 (B)))

Iterating this process in a computation enables all values, except for the initial B , to be erased
from the machine state. Importantly, the initial B necessarily persists in the state.

Pitfall. One may hope to use uncomputation to erase all but the initial program counter from
the history in Equation (9). The problem is that uncomputing 5 (B) both requires and leaves behind
the value B , and when 5 is the machine state transition function, the value of B must store not only
the value of pc but also that of all data registers on which a jump may depend.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:12 Charles Yuan, Agnes Villanyi, and Michael Carbin

1 l0: jnz l2 x ; if x != 0, goto l2

2 add y $1 ; add 1 to y

3 l1: jmp l3 ; jump to l3

4 l2: rjmp l0 ; come from l0

5 add x $1 ; add 1 to x

6 l3: rjz l1 x ; if x = 0, come from l1

7 nop ; no-op

|x : 3, y : 0, pc : 1, br : 1⟩
jnz l2 x↦−−−−−−−−→ |x : 3, y : 0, pc : 4, br : 3⟩
rjmp l0↦−−−−−−−−→ |x : 3, y : 0, pc : 5, br : 1⟩
add x $1↦−−−−−−−−→ |x : 4, y : 0, pc : 6, br : 1⟩
rjz l1 x↦−−−−−−−−→ |x : 4, y : 0, pc : 7, br : 1⟩

Fig. 2. Assembly program for the quantum control ma-

chine implementing Equation (1) using reverse jumps.

Fig. 3. Execution trace of the program in Figure 2,

given the input state |x : 3, y : 0⟩ from Equation (3).

One may suggest modifying the history to store copies of all data registers, but even when doing
so is possible,4 it still does not resolve the problem of entanglement. The initial values of data
registers x and y, denoted xin and yin respectively, are now stored in the history and persist in the
state that is left behind after all possible uncomputation, which remains entangled:

1√
2
( |x : 0, y : 4, xin : 0, yin : 3⟩ − |x : 4, y : 0, xin : 3, yin : 0⟩)

≠
1√
2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) ⊗ |k ⟩ for any |k ⟩

No-Embedding Theorem. Onemay hope that the presence of entanglement is caused by the specific
encoding of the history in Landauer embedding, and can be avoided by storing less information.
In Section 4.1, we prove otherwise. By generalizing the arguments above, we show that any

attempt to implement an instruction set with a non-injective state transition semantics on a quantum
computer necessarily suffers from the problem of disruptive entanglement. This theorem implies
that there is fundamentally no way to lift the conventional conditional jump to superposition and
guarantee that the output of the program is correct for use by a quantum algorithm.

3.5 �antum Control Machine

Faced with the impossibility of lifting conventional conditional jumps to superposition, we present
a new instruction set architecture called the quantum control machine. The key idea of the approach
is to start over with alternative control flow primitives, originally introduced by classical reversible
architectures [Axelsen et al. 2007; Thomsen et al. 2012], whose transition semantics are inherently
injective without the need for Landauer embedding.

Branch Control. Instead of a history, this machine tracks the difference in pc from the previous
instruction in a new branch control register [Axelsen et al. 2007; Thomsen et al. 2012] denoted
br. The design of the machine redefines the semantics of each jump instruction to manipulate br,
and adds its value to pc after each instruction. Specifically, a jmp updates br, and the value of br
persists until it is changed again. When br is 1, the program executes step by step, and when br is
greater than 1, it continually jumps forward. To resume single-step execution, the program invokes
designated instructions, known as reverse jumps, that reset br back to 1.

Running Example. In Figure 2, we present an implementation of Equation (1) on the quantum
control machine. The notable differences from Figure 1 are the new reverse jump instructions rjmp
and rjz. To illustrate how these instructions work, in Figure 3 we depict the execution trace of the
program in Figure 2 given the input state |x : 3, y : 0⟩ from Equation (3).
First, jnz l2 x increases br from 1 to 3. The value of pc advances by 3 from 1 to 4, and br

remains 3. If nothing else is done, on the next iteration pc would jump again from 4 to 7.

4As a technical note, copying data registers is not possible in general under the no-cloning theorem (Section 2).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:13

However, the next instruction is a reverse jump, rjmp l0. The effect of this instruction is precisely
the opposite of the jump from l0— it decreases br from 3 to 1. The rest of the program then executes
step by step, where rjz l1 x has no effect when x is not 0.

Physical Realizability. This transition function is injective and unitary, even without employing
Landauer embedding. The reason is that jumps from different lines to the same line must leave
behind distinct values of br, as can be seen using the examples from Equations (7) and (8):

|x : 0, y : 0, pc : 3, br : 1⟩
jump by +3
↦−−−−−−−−−→ |x : 0, y : 0, pc : 6, br : 3⟩

|x : 0, y : 0, pc : 5, br : 1⟩
jump by +1
↦−−−−−−−−−→ |x : 0, y : 0, pc : 6, br : 1⟩

Furthermore, no matter what instruction comes on the next line, it is impossible for the two
states above to both transition to exactly the same state:

• an unconditional jmp (or rjmp) adds the same value to br in both states, meaning the values
of br cannot both become equal when they are initially different, and

• a conditional jnz (or rjnz or jump with any other condition) sees the same values for data
registers x and y in both states, meaning it always modifies br the same way in both states.

Disruptive Entanglement Avoided. We now demonstrate how the program in Figure 2 avoids the
entanglement problem and produces output data that is correct for use by a quantum algorithm.
When given the superposition input of Equation (4), this program executes as follows:

1√
2
( |x : 0, y : 3, pc : 1, br : 1⟩ − |x : 3, y : 0, pc : 1, br : 1⟩)

jnz l2 x + jnz l2 x↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 3, pc : 2, br : 1⟩ − |x : 3, y : 0, pc : 4, br : 3⟩)

add y $1 + rjmp l0↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 4, pc : 3, br : 1⟩ − |x : 3, y : 0, pc : 5, br : 1⟩)

jmp l3 + add x $1↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 4, pc : 6, br : 3⟩ − |x : 4, y : 0, pc : 6, br : 1⟩)

rjz l1 x + rjz l1 x↦−−−−−−−−−−−−−−−−−→ 1√
2
( |x : 0, y : 4, pc : 7, br : 1⟩ − |x : 4, y : 0, pc : 7, br : 1⟩)

=
1√
2
( |x : 0, y : 4⟩ − |x : 4, y : 0⟩) ⊗ |pc : 7, br : 1⟩

Just as in Equation (6), each ↦→ in the trace denotes the execution of a superposition of instructions.
In particular, the final ↦→ executes a superposition of rjz l1 x and itself. On both branches of the
superposition, this instruction causes pc to become 7 and br to become 1, but by different means.
On the branch where x is 0, br decreases from 3 to 1, and on the branch where x is 3, br starts as 1
and does not change. Note that the transition function is injective thanks to the presence of distinct
values of x and y, as |x : 0, y : 4, pc : 7, br : 1⟩ and |x : 4, y : 0, pc : 7, br : 1⟩ are distinct states.

At the end of this execution, the final machine state is separable, i.e. not entangled, and discarding
pc and br leaves behind the state of x and y with superposition intact. Thus, the program produces
the output that is specified by Equation (4) and correct for use by a quantum algorithm.

Synchronization. The example illustrates how a program avoids the entanglement problem by
ensuring that at the end of execution, pc and br are equal again across all branches of the state
superposition. To do so, the program must possess an appropriate reverse jump instruction at the
target of each forward jump instruction according to the structure of its control flow.

In Section 4.2, we define the class of synchronized programs, which include Figure 2, that satisfy
this condition and thereby guarantee that their output is correct for use by a quantum algorithm.
Moreover, whereas the analysis above depicts detailed formal reasoning to show that a program is
synchronized, in Section 6 we demonstrate how in practice a developer may leverage the structure
of control flow within a program to more easily identify the program as synchronized.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:14 Charles Yuan, Agnes Villanyi, and Michael Carbin

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

H

H

Z
1/21

Z
1/21

H

Z
1/22

H

Z
1/22

Z
1/21

Z
1/23

Z
1/21

Z
1/23

H

Z
1/22

Z
1/24

H

Z
1/22

Z
1/24

Z
1/21

Z
1/23

Z
1/25

Z
1/21

Z
1/23

Z
1/25

H

Z
1/22

Z
1/24

Z
1/26

H

Z
1/22

Z
1/24

Z
1/26

Z
1/21

Z
1/23

Z
1/25

Z
1/27

Z
1/21

Z
1/23

Z
1/25

Z
1/27

H

Z
1/22

Z
1/24

Z
1/26

H

Z
1/22

Z
1/24

Z
1/26

Z
1/21

Z
1/23

Z
1/25

Z
1/21

Z
1/23

Z
1/25

H

Z
1/22

Z
1/24

H

Z
1/22

Z
1/24

Z
1/21

Z
1/23

Z
1/21

Z
1/23

H

Z
1/22

H

Z
1/22

Z
1/21

Z
1/21

H

H

Z
1/27

Z
1/26

Z
1/25

Z
1/24

Z
1/23

Z
1/22

Z
1/21

Z
1/20

X

H

Z
1/27

Z
−1/21

Z
1/26

Z
−1/22

H

Z
1/25

Z
−1/23

Z
−1/21

Z
1/24

Z
−1/24

Z
−1/22

H

Z
1/23

Z
−1/25

Z
−1/23

Z
−1/21

Z
1/22

Z
−1/26

Z
−1/24

Z
−1/22

H

Z
1/21

Z
−1/27

Z
−1/25

Z
−1/23

Z
−1/21

Z
1/20

Z
−1/26

Z
−1/24

Z
−1/22

H

Z
−1/25

Z
−1/23

Z
−1/21

H

Z
−1/24

Z
−1/22

H

Z
−1/21

Z
−1/23

Z
−1/21

Z
−1/22

H

Z
−1/22

H

Z
−1/23

Z
−1/21

Z
−1/21

Z
−1/24

Z
−1/22

H

H

Z
−1/25

Z
−1/23

Z
−1/21

Z
−1/26

Z
−1/24

Z
−1/22

H

Z
−1/27

Z
−1/25

Z
−1/23

Z
−1/21

Z
−1/26

Z
−1/24

Z
−1/22

H

Z
−1/25

Z
−1/23

Z
−1/21

Z
−1/24

Z
−1/22

H

Z
−1/23

Z
−1/21

Z
−1/22

H

Z
−1/21 H

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

Fig. 4. �antum circuit for Equation (1), restricted to 8-bit integers, as implemented by a Q# program.

Existing Methods. In principle, Equation (1) may be implemented using an existing quantum
programming language such as Quipper [Green et al. 2013], QWire [Paykin et al. 2017], or Q# [Svore
et al. 2018]. These languages expose the abstractions of qubits and bit-controlled logic gates that
enable the developer to build a representation of the program as a quantum circuit.

It can be challenging, however, to represent control flow in superposition directly via a quantum
circuit of logic gates. When expressed as an explicit circuit, a conditional branch over a variable x
corresponds to a sequence of logic gates controlled on individual qubits that realize the comparison
with x. We illustrate this complexity in Appendix B, in which we present a 15-line Q# program that
implements Equation (1) by instantiating the 229-gate circuit in Figure 4.

To alleviate the complexity of building circuits, researchers have developed higher-level languages
such as Silq [Bichsel et al. 2020], which provides a quantum if-statement that branches on the value
of a qubit in superposition. In Appendix B, we show that the Silq implementation of Equation (1)
using quantum if also uses the forget statement, an unsafe operation whose correctness must be
shown using reasoning outside the immediate automated capabilities of Silq’s type system. The
condition that forget must use for the Silq program to be correct is analogous to the condition
that the reverse jump instruction must use for the program in Figure 2 to be synchronized.

Thus, by formally characterizing the properties of sound and realizable control flow on a quantum
computer, our work generalizes the reasoning that type systems of existing quantum programming
languages perform to enforce injectivity and synchronization.

Summary. In this section, we presented examples of programs that are important for quantum
algorithms and easy to implement on a classical computer, yet are hard to implement on a quantum
computer without the abstraction of control flow that can depend on data in superposition.

We illustrated why one cannot program a quantum computer using the conventional conditional
jump instruction, and presented an alternative – reversible jumps and synchronization in the
quantum control machine – that enables correct programming with control flow in superposition.

4 THEORETICAL LIMITS OF CONTROL FLOW IN SUPERPOSITION

In this section, we present the no-embedding theorem, a no-go theorem for the design of quantum
programming languages that states that no programming abstraction with non-injective transition
semantics, such as the conventional conditional jump and the _-calculus, can be correctly realized
in superposition. More generally, we present the necessary and sufficient conditions for the correct
realizability of control flow in superposition. Alongside injectivity, we introduce synchronization,
the property that the state of data is separable from the state of control flow in the final output of a
computation, so that the output data can be correctly used by a quantum algorithm.

4.1 No-Embedding Theorem and Injectivity

We begin by defining a transition system [Hines 2008], a formalization of any classical model of
computation as a set of computation states ( and a partial transition function ) : ( ⇀ ( . For
example, the Turing machine has ( as its state-head-tape configurations and) as its state transition
function, while the _-calculus has ( as the set of _-terms and ) as V-reduction.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:15

Though ( may be a countably infinite set in principle, any physical computer has a bounded
state space in reality. In this section, we assume that all sets are finite and bounded by a function of
the length of the longest computation that is physically feasible on the computer.

Superposition of Data. We lift the definition of transition system to operate over data in quantum
superposition. Formally, we generalize the definitions of Section 2 from concrete bit strings to
abstract states. Given a finite set of classical states - , we denote the corresponding Hilbert space of
quantum states asH- , spanned by the basis {|G⟩ | G ∈ - }. Then, a transition system acts on the
Hilbert space H( via the linear mapping T that takes |B⟩ ↦→ |B′⟩ whenever ) (B) = B′ and takes |B⟩
to an unspecified value if ) (B) is not defined.

Physical Realizability. Physically realizing a transition system that operates over quantum infor-
mation requires constructing it as a unitary operator over an appropriate Hilbert space. When ) is
an injective function, T corresponds to a unitary operator over the Hilbert space H( .

By contrast, as established in Section 3, the transition ) of the conventional conditional jump is
not injective, meaning that it cannot be realized as a unitary operator overH( . In the non-injective
case, the only alternative possibility is to embed ) into a Hilbert space of higher dimension.

Example 4.1 (Landauer Embedding). Let the set ! be of histories — lists of elements of ( . Then,
the larger Hilbert spaceH( ⊗H! contains a unitary* that embeds the classical behavior of) on ( .
Specifically, whenever ) (B) = B′, we may define * |B, ℓ⟩ = |B′, ℓ ′⟩ where ℓ ′ = append(ℓ, B). In

the Landauer embedding, computation starts with the empty history ℓ0 = [], and discarding, i.e.
measuring the final ℓ ′ enables a classical output B′ ∈ ( to be extracted from the system.

More generally, the use of an auxiliary space makes it possible to embed the classical behavior
of a transition system. The Landauer embedding is a specific instance of the following concept:

Definition 4.2 (Classical Embedding). A classical embedding for ((,) ) is a triple (H!,* , |[0⟩)
where H! is an auxiliary Hilbert space, |[0⟩ is a quantum state with norm 1 that is fixed in H! ,
and * is a unitary operator over H( ⊗ H! such that for any B, B′ ∈ ( where ) (B) = B′, we have
* |B, [0⟩ = |B′, [′⟩ for some |[′⟩ ∈ H! with norm 1.

In the above definition, the fact that |[0⟩ must be fixed in H! is essential to avoid the possibility
of cheating by, for example, setting |[0⟩ = |B′⟩ given advanced knowledge of B .
Next, we generalize the above definition to account for not only how a transition system takes

classical inputs to classical outputs, but also how in a quantum computation it should accept a
superposition of input states and produce a superposition of corresponding output states:

Definition 4.3 (Quantum Embedding). A quantum embedding for ((,) ) is a triple (H!,* , |[0⟩)
where H! is an auxiliary Hilbert space, |[0⟩ is a quantum state with norm 1 that is fixed in H! ,
and * is a unitary over H( ⊗ H! such that for any |k ⟩ , |k ′⟩ ∈ H( where T |k ⟩ = |k ′⟩, we have
* ( |k ⟩ ⊗ |[0⟩) = |k ′⟩ ⊗ |[′⟩ for some |[′⟩ ∈ H! with norm 1.

Critically, this definition ensures that the output state |k ′⟩ ⊗ |[′⟩ is separable, and subsumes the
classical embedding, in which the output state is classical and trivially separable. As established in
Section 3.3, separability is necessary to guarantee that the output data exhibits correct quantum
interference so that the quantum algorithm being implemented produces correct results.

However, while this separability requirement is essential for correctness of algorithms, it in fact
precludes the existence of a quantum embedding for any non-injective transition system:

Theorem 4.4 (No-Embedding). If the state transition function ) is not injective, then no quantum

embedding exists for the transition system ((,) ).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:16 Charles Yuan, Agnes Villanyi, and Michael Carbin

Proof. Assume that a quantum embedding (H!,* , |[0⟩) exists for the transition system ((,) ),
where ) is not injective. Let B1 and B2 in ( with B1 ≠ B2 be such that ) (B1) = ) (B2) = B′. Let |k ⟩ =
1√
2
( |B1⟩ − |B2⟩). By linearity of T , we have T |k ⟩ = 1√

2
(T |B1⟩ − T |B2⟩) = 1√

2
( |B′⟩ − |B′⟩) = 0 ≕ |k ′⟩.

By Definition 4.3, we therefore have* ( |k ⟩ ⊗ |[0⟩) = |k ′⟩ ⊗ |[′⟩ = 0 ⊗ |[′⟩ = 0 for some |[′⟩ ∈ H! .
This is a contradiction to the assumption that* is unitary and thus norm-preserving. □

In other words, even though one can embed the purely classical component of a non-injective
transition system into a unitary operator, one cannot successfully realize the desired semantics of
such a transition system over superpositions of data. There exists no general scheme that correctly
lifts a programming abstraction with non-injective transition semantics into superposition.

An immediate corollary of the theorem is that a quantum _-calculus featuring superpositions of
_-terms is not physically realizable, because V-reduction is not injective — the distinct terms _G .G
and (_G .G) (_G.G) reduce to the same term _G .G . This result formalizes an informal claim of van
Tonder [2004], and we give a detailed instantiation of the theorem to this case in Appendix C.

4.2 Synchronization

We next present synchronization, the property that the state of data is separable from the state of
control flow in the final output of a computation. Together, injectivity and synchronization form a
complete specification of the forms of control flow that are correctly realizable in superposition.
We consider transition systems in which ) is injective and ( = � × � , where � and � denote

the control state and data state of the model of computation respectively. By control state, we
refer to the component of the machine state that is not an explicit output of the algorithm being
implemented, and will be discarded at the end of computation to leave behind the data.

We define a transition system with ) : � × � → � × � as having control flow dependent on data

when there exist 2, 2′1, 2
′
2 ∈ � and 31, 3 ′1, 32, 3

′
2 ∈ � such that) (2, 31) = (2′1, 3 ′1) and) (2, 32) = (2′2, 3 ′2)

and 31 ≠ 32 and 2′1 ≠ 2′2. In other words, the evolution of the control state may depend on the value
of data, and the function) does not factor into two independent transitions� → � and� ×� → � .

Example 4.5. A classical register machine has a program counter pc and a set ' of data registers,
in which the semantics of an instruction is a function {pc} × ' → {pc} × '. Here, � is the state
of pc and � is the state of '. Control flow dependent on data manifests in the conditional jump
instruction, whose semantics updates pc based on the value of '.

Given a termination time and initial quantum states of control and data, a transition system
executes a computation to produce a corresponding final quantum state over control and data:

Definition 4.6 (Final State). Given an initial control state |^0⟩ ∈ H� , a termination time C ∈ N,
and an input data state |X0⟩ ∈ H� , the transition system ((,) ) performs the unitary T (defined in
Section 4.1) for C iterations on the state |^0⟩ ⊗ |X0⟩ to produce the final state |k ⟩ ∈ H� ⊗ H� .

When control flow can depend on data, the final |k ⟩ can be an entangled state in general. However,
as established in Section 3.3, the presence of entanglement would make the output data incorrect
for use by a quantum algorithm. To prevent this issue, the property of synchronization specifies
that in the final output, the state of data is always separable from the state of control flow:

Definition 4.7 (Synchronization). The transition system ((,) ) is synchronized at initial control
state |^0⟩ and termination time C if there exists some final control state |^′⟩ ∈ H� such that for any
input |X0⟩ ∈ H� , there exists some output |X ′⟩ ∈ H� such that the final state of the machine after
executing C instructions, as defined in Definition 4.6, is |k ⟩ = |^′⟩ ⊗ |X ′⟩.
To show that a transition system is synchronized, by linearity it suffices to show that the final

value of |^′⟩ is fixed across all values of |X0⟩ in computational basis, i.e. classical input data alone.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:17

Terminologically, we refer to a program as synchronized when the transition system and initial
control state corresponding to the program are synchronized. This term is agnostic to whether the
model of computation hardcodes its program in the transition function ) , as does the standard
Turing machine, or whether it accepts its program in |^0⟩, as does the universal Turing machine.

A synchronized transition system expresses a computation over the data state that is a unitary
operator corresponding to a quantum circuit without measurement. The converse also holds — if a
transition system is not synchronized, then it does not express a unitary computation over the data.

Theorem 4.8 (Soundness). If a transition system is injective and synchronized, then given any

input data |X0⟩, it produces a final state after C instructions in which the output data |X ′⟩ is separable
from the control state. Furthermore, its mapping from input data to output data is a unitary operator.

Proof. If ((,) ) is synchronized, then given any |X0⟩ =
∑

8 W8 |X8⟩ ∈ H� such thatT C ( |^0⟩⊗|X8⟩) =
|^′⟩⊗|X ′8 ⟩, we have |k ⟩ = T C ( |^0⟩⊗

∑

8 W8 |X8⟩) =
∑

8 W8 ( |^′⟩⊗|X ′8 ⟩) = |^′⟩⊗|X ′⟩where |X ′⟩ = ∑

8 W8 |X ′8 ⟩.
The mapping |X0⟩ =

∑

8 W8 |X8⟩ ↦→ |X ′⟩ = ∑

8 W8 |X ′8 ⟩ is linear and norm-preserving as T is unitary. □

Theorem 4.9 (Completeness). If a transition system is not synchronized, then either there exists

some input |X0⟩ for which it produces a final state |k ⟩ after C instructions in which data and control

are entangled, or its mapping from input data to output data is not injective and hence not unitary.

Proof. If ((,) ) is not synchronized, then there exist |X�⟩ , |X�⟩ ∈ H� with unit norm such that
|X�⟩ ≠ |X�⟩, T C ( |^0⟩ ⊗ |X�⟩) = |^�⟩ ⊗ |X ′�⟩, T C ( |^0⟩ ⊗ |X�⟩) = |^�⟩ ⊗ |X ′�⟩, and |^�⟩ ≠ |^�⟩. Then,
T C ( |^0⟩⊗ 1√

2
( |X�⟩+ |X�⟩)) = 1√

2
( |^�⟩⊗ |X ′�⟩+ |^�⟩⊗ |X ′�⟩), which is entangled unless |X ′�⟩ = |X ′�⟩. □

Together, injectivity and synchronization provide a complete specification for the forms of control
flow in superposition that are correctly realizable on a quantum computer — the programming
abstractions must have injective semantics, and the program must be synchronized.

5 QUANTUM CONTROL MACHINE

In this section, we present the quantum control machine, an instruction set architecture for quantum
programming with control flow in superposition. This architecture provides for the first time both
a program counter in superposition and a sound means of manipulating the program counter.
To satisfy the specification for correctly realizable control flow in superposition, the machine

uses variants of conditional jump introduced by classical reversible architectures [Axelsen et al.
2007; Thomsen et al. 2012] that possess inherently injective semantics and can be used to build
synchronized programs. On top of that concept, the quantum control machine adds the ability to
execute unitary operators that create and manipulate superpositions of data such as the Hadamard
gate, and provides a sound representation of a program counter that exists in superposition.

5.1 Architectural Overview

The quantum control machine operates over word-sized quantum registers. Let : , the system word
size, be large enough for a word to represent a machine integer or an encoding of an instruction.

Program Encoding. A program is a sequence of instructions of length ℓ where 0 < log2 ℓ < : . We
denote by ]8 the word-size encoding of the 8th instruction of the program.

As is the case for a classical Turing machine, a specific instance of the quantum control machine
executes a specific fixed program. The machine obtains access to the instruction sequence through
a unitary operator P, defined such that given integer 1 ≤ 8 ≤ ℓ , we have P |8, 0⟩ = |8, ]8⟩.

In principle, the operator P and its inverse may be physically realized via any technology to make
classical data available for read-only use in superposition, such as those in the works of Babbush
et al. [2018]; Berry et al. [2019]; Giovannetti et al. [2008]; Low et al. [2018].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:18 Charles Yuan, Agnes Villanyi, and Michael Carbin

Table 1. Core instruction set for the quantum control machine. The notation G8 denotes the 8th bit of G and

G\8 denotes G with 8th bit set to zero. The notation ? denotes a signed immediate offset and the notation *

denotes a built-in unitary operator. The expression [~ = 0] evaluates to 1 if ~ = 0 or 0 otherwise.

Instruction Semantics

No-op nop (identity)

Unitary u* r0 |G⟩r0 ↦→ (* |G⟩)r0 * ∈ {H, NOT}
Swap swap r0 r1 |G⟩r0 |~⟩r1 ↦→ |~⟩r0 |G⟩r1

Get Bit get r0 r1 r2 |8⟩r0 |0⟩r1 |G⟩r2 ↦→ |8⟩r0 |G8⟩r1 |G\8⟩r2
Add add r0 r1 |G⟩r0 |~⟩r1 ↦→ |G + ~⟩r0 |~⟩r1

add r0 r0 |G⟩r0 ↦→ |G × 2⟩r0
Multiply mul r0 r1 |G⟩r0 |~⟩r1 ↦→ |G × ~⟩r0 |~⟩r1 ~ ≠ 0

mul r0 r0 |G⟩r0 ↦→ |G2⟩r0
Jump jmp ? |G⟩br ↦→ |G + ?⟩br

Conditional Jump jz ? r0 |G⟩br |~⟩r0 ↦→ |G + ? × [~ = 0]⟩br |~⟩r0
Indirect Jump jmp* r0 |G⟩br |~⟩r0 ↦→ |G + ~⟩br |~⟩r0

Data Registers. The machine provides a finite number of quantum registers – binary-encoded
qubit arrays of word size : – that are indexed and addressable by classical names. The = data
registers are named r1, r2, . . . , r= and are initialized to 0.

Control Unit. The machine contains three control registers: the program counter pc, initially 0;
the branch control register br, signed and initially 1; and the instruction register in, initially 0.

5.2 Machine Execution

Execution occurs in cycles consisting of fetch, execute, and retire stages. Each of the three stages
has as its mathematical semantics a unitary operator over the Hilbert space of machine states:

• The fetch stage loads the next instruction to execute. First, it adds the value of br to pc, using
a unitary circuit construction for arithmetic [Cheng and Tseng 2002; Cho et al. 2020; Draper
2000; Islam et al. 2009; Rines and Chuang 2018]. It then executes the operator P defined above
on |pc, in⟩ to load ]pc, the instruction at the new pc, into register in.
As is the case for a classical architecture, the behavior is implementation-defined when the
program counter does not point to a valid instruction, i.e. when pc = 0 or pc > ℓ .

• The execute stage updates the registers r1 through r= and br according to the semantics of
the instruction in the in register, which is specified in Section 5.3.

• The retire stage executes the inverse of P on |pc, in⟩, so that after a cycle, in has value 0.

5.3 Instruction Set

In Table 1, we present the core instruction set and the semantics of each instruction, which updates
the data registers r1, . . . , r= and the control register br. The control registers pc and in are updated
only by the fetch and retire stages, and not explicitly by any instruction.

No-op. In Table 1, the first instruction nop is a no-op that simply causes the machine to advance
to the next cycle, and its semantics is the identity operator over the machine state.

Unitary Gates. The next instruction u executes a unitary quantum logic gate, specified by its
encoded name* from a fixed set of built-in primitive gates, on the specified register r0.
Any unitary operator can be approximated to any degree of precision using single-qubit gates

that can be controlled by arbitrarily many qubits [Kitaev 1997]. Among the gates that are sufficient

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:19

for this purpose, the choice of gate set is arbitrary in principle.5 In this work, we use the single-qubit
gate set consisting of {H, NOT} — Hadamard and bit-flip gates on the zeroth qubit of the register,
whose controlled variants are sufficient to approximate any unitary operator [Shi 2003].

We note that in the quantum control machine, because the choice of instruction may be controlled
on quantum data by the program counter, multi-qubit gates such as CNOT need not be primitive,
and can instead be implemented through control flow instructions.

Data and Arithmetic. The swap instruction swaps the contents of registers r0 and r1. The get
instruction extracts the 8th qubit of r2 into r1 and leaves 0 in place of that qubit in r2 , where 8 is
a quantum integer stored in the register r0. In principle, the get instruction may be realized in
hardware via the quantum analogue of random-access memory, as presented by Arunachalam et al.
[2015]; Giovannetti et al. [2008]; Matteo et al. [2020]; Paler et al. [2020]. For a detailed description
of the arithmetic instructions add and mul for addition and multiplication and the behavior of these
operations under integer overflow, please see Appendix A.

Control Flow. The jump instructions of the machine are from classical reversible architectures [Ax-
elsen et al. 2007; Thomsen et al. 2012]. The unconditional jump instruction jmp adds the signed
immediate value ? to the branch control register br, producing a relative jump. The magnitude of
the jump stored by br persists across cycles until reset by another jump instruction.

The conditional jump instruction jz adds ? to br if the value of r0 is 0, and has no effect on br

otherwise. The indirect jump instruction jmp* adds the value of r0 to br.

Derived Instructions. Each instruction in the table also has a corresponding reverse instruction
prefixed by the character r, whose semantics inverts input and output. For example, the instruction
ru executes the operator* † on r0. The exceptions are nop and swap, which are self-inverse.
In a quantum computation, reverse instructions are used to uncompute (Section 3.4) a register

after it is no longer useful, by reversing the sequence of operations that produced its value and
restoring it to 0. Reverse instructions must be used for this purpose as no instruction can in general
erase a register from an arbitrary value to 0, which is not mathematically a unitary operator.
The core instruction set is readily extended with other derived instructions. For example, we

use jnz to denote a jump-if-not-zero instruction, the opposite of jz. In this work, we also permit
immediates in place of registers and named labels in place of offsets. Named labels may be translated
to a signed offset relative to a jmp instruction that is negated for a rjmp instruction.

5.4 Termination and Measurement

Following Section 4, we represent the machine state as the product of the control state� containing
pc, br, and in, and the data state � containing all of the data registers. We denote the unitary
operator corresponding to one execution cycle by E : H� ⊗H� → H� ⊗H� . The machine repeats
for a total of C ∈ N cycles, so that EC describes the overall evolution of the machine state. After C
cycles, the machine discards, or equivalently measures, the registers pc, br, and in. If desired, an
external process then has the opportunity to measure the states of the data registers.

We follow established convention [Bernstein and Vazirani 1997; Deutsch 1985] in performing all
measurement at the end of computation, so that the machine evolution is realizable via unitary
logic gates alone. The principle of deferred measurement states that one final measurement is suffi-
cient to express any quantum computation [Nielsen and Chuang 2010]. Though mid-computation
measurement could be added as an extension of the design, it is not strictly necessary to express
any computation and does not in general produce output data with superposition intact.

5As a technical note, since it is not possible to construct a controlled-* gate given only the ability to apply an unknown gate
* [Araújo et al. 2014; Nielsen and Chuang 1997], the set of gates of the machine must at a minimum be fixed and known.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:20 Charles Yuan, Agnes Villanyi, and Michael Carbin

5.5 Synchronization

As shown in Section 3.5, the quantum control machine enables the construction of synchronized
programs. We now instantiate the definition of synchronization (Section 4.2) for this machine.

Inputs and Outputs. We identify a program with two sets /in and /out of data registers that are
assumed to be 0 at its start and end respectively. Let I be the subspace ofH� where all registers in
/in are 0 — the input states of � . Similarly, let O be where those in /out are 0 — its output states.

Final State. Instantiating Definition 4.6, we say that given an input state |X0⟩ ∈ I, and a termina-
tion time C ∈ N, the quantum control machine performs the unitary EC (defined in Section 5.4) on
the state |pc : 0, br : 1, in : 0⟩ ⊗ |X0⟩ to produce the final state |k ⟩ ∈ H� ⊗ O.

Synchronization. Instantiating Definition 4.7, we say that the machine is synchronized at time C if
there exists G so that for any |X0⟩ ∈ I, there exists |X ′⟩ ∈ O such that |k ⟩ = |pc :G, br : 1, in : 0⟩ ⊗ |X ′⟩.

Expressiveness. In principle, one can express any unitary quantum computation as a synchronized
program for the quantum control machine given some appropriate set of primitive unitary gates.
Any unitary operator can be approximated to arbitrary precision as a polynomial-length circuit in
our gate set of Hadamard and arbitrarily controllable NOT gates [Shi 2003], the latter of which can
be implemented by a synchronized program using conditional jumps.
In practice, a developer can verify that a program built from structured branching or iteration

constructs is synchronized without use of detailed mathematical reasoning, through two insights:

• To verify that all conditional branches are synchronized, one needs only to check that the
target of each conditional jump instruction in the program is a reverse jump that points back
to the original jump and has the same semantic condition as the original jump.

• To verify that all bounded loops are synchronized, one needs only to check that the execution
time of the overall program is independent of each quantum variable in the program, which
does not require any specific information about the values of the quantum variables.

In the next section, we illustrate how to use the above principles to build synchronized programs
for a variety of high-level control flow constructs as found in quantum algorithms.

6 CASE STUDIES

In this section, we illustrate how a developer uses the abstractions for control flow in superposition
provided by the quantum control machine to express quantum algorithms. Specifically, we show
how a developer can implement imperative abstractions for control flow – analogues of classical
for, if, and switch – as synchronized programs. The case study demonstrates how a developer
can represent control flow patterns from existing quantum algorithms and programming languages
in a uniform way by correctly manipulating a program counter in superposition.
We have implemented a simulator for the quantum control machine, which accepts a program,

input, and runtime C , and outputs the machine state after C steps. Implementations of all case study
examples as executable programs are packaged with the simulator in the artifact of this paper.

6.1 Iteration and Phase Estimation

The quantum control machine enables a program to execute a loop for a quantum number of itera-
tions bounded by a classical value, which is integral to the algorithmic building block of quantum
phase estimation [Kitaev 1995] as used in algorithms for factoring [Shor 1997], simulation [Abrams
and Lloyd 1997], and linear algebra [Abrams and Lloyd 1999; Harrow et al. 2009].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:21

1 add res $1 ; copy 1 into res

2 add r1 y ; copy y into r1

3 l1: jz l2 r1 ; if r1 == 0, break

4 mul res x ; multiply res by x

5 radd r1 $1 ; decrement r1

6 jmp l1 ; goto loop start

7 l2: nop ; end of program

1 add res $1 ; copy 1 into res

2 add r1 y ; copy y into r1

3 l1: rjne l3 r1 y ; if r1 != y, come from l3

4 l2: jz l4 r1 ; if r1 == 0, break

5 mul res x ; multiply res by x

6 radd r1 $1 ; decrement r1

7 l3: jmp l1 ; goto loop start

8 l4: rjmp l2 ; come from l2

Fig. 5. Classical program for exponentiation. Fig. 6. Exponentiation with reverse jumps.

Exponentiation. In Figure 5, we present a classical assembly program for exponentiation. Given x

and y, it stores xy into the register res. To do so, it repeatedly decrements a copy of y, multiplying
res by x on each iteration using the quantum analogue of a for-loop (Example 1.2).
For ease of understanding, in this example we store the output in an auxiliary register rather

than in place and use repeated multiplication rather than squaring as is typical, which would be
more efficient but also more difficult to understand as an example program.

Adapted Program. Adapting this program to the quantum control machine is done by 1) adapting
its control flow to use reversible jumps, and then 2) ensuring that the program is synchronized.

The first step is not the main challenge. By leveraging prior work [Axelsen 2011; Yokoyama et al.
2008] that presents reversible variants of structured if and while constructs, we may straightfor-
wardly insert the appropriate reverse jumps. In Figure 6, we present the adapted program in which
we insert a corresponding reverse jump as the target of every conditional or backward jump.

The main challenge is the second step of ensuring that the resulting program is synchronized,
which in the example means that the final values of pc and br are independent of x and y. We can
see this challenge by executing the program in Figure 6. On the input |x : 2, y : 1⟩, it produces the final
state |x : 2, y : 1, res : 2, pc : 8, br : 1⟩. Likewise, input |x : 2, y : 2⟩ results in |x : 2, y : 2, res : 4, pc : 8, br : 1⟩.
At first glance, the program seems synchronized — pc is always 8 and br is 1.

Problem: Tortoise and Hare. However, the above values of pc are not for the same time step C . The
loop from lines 4 to 7 executes once when y is 1, but twice when y is 2. At C = 10, the first input has
a pc of 8, having exited the loop, but the second input has a pc of 5, starting the second iteration.

One could continue the slower execution until it also reaches line 8, but by that time, the faster
execution will have advanced further again. In a reversible machine semantics, there can exist no
concept of a barrier at which the faster execution stops and waits for the slower one. If execution
momentarily halts at an instruction that decrements br to 0, then on the next cycle, br would
decrement again, meaning pc starts moving again. In general, if the tortoise never catches up to
the hare, then there is no point in time at which execution may be safely terminated.

Solution: Padding. In Figure 7, we present a synchronized program that avoids the problem. This
program executes the loop a fixed, rather than data-dependent, number of times. Its loop body
multiplies res by x for only y iterations, and afterward, it executes padding nops with no effect.

The new argument max, which we require to be classical, upper-bounds the possible values of y.
After max iterations of the loop, each branch stores the correct res, and the values of pc and br are
equal across all branches, so the program is synchronized. Here, padding is not the only possible
approach, but it is simple to use and verify as it guarantees that the program is synchronized.
This example demonstrates how the fundamental property of synchronization restricts the

space of valid programs on any quantum computer supporting control flow in superposition. In
particular, loops without classical upper bounds cannot be synchronized, which is consistent with
prior impossibility results in quantum Turing machines — for more details, see Appendix F.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:22 Charles Yuan, Agnes Villanyi, and Michael Carbin

1 add res $1 ; copy 1 into res

2 add r1 max ; copy max into r1

3 l1: rjne l3 r1 max ; if r1 != max, come from l3

4 l2: jz l4 r1 ; if r1 == 0, break

5 l5: jg l7 r1 y ; if r1 > y, goto l7

6 mul res x ; multiply res by x

7 l6: jmp l8 ; break

8 l7: rjmp l5 ; come from l5

9 nop ; no-op padding

10 l8: rjle l6 r1 y ; if r1 <= y, come from l6

11 radd r1 $1 ; decrement r1

12 l3: jmp l1 ; goto start of loop

13 l4: rjmp l2 ; come from l2

1 add r1 i ; copy i into r1

2 l1: rjne l3 r1 i ; if r1 != i, come from l3

3 l2: jz l4 r1 ; if r1 == 0, break

4 u H c ; apply H gate to c

5 l5: jz l7 c ; if c == 0, goto l7

6 add x $1 ; add 1 to x

7 l6: jmp l8 ; break

8 l7: rjmp l5 ; come from l5

9 radd x $1 ; subtract 1 from x

10 l8: rjnz l6 c ; if c != 0, come from l6

11 radd r1 $1 ; subtract 1 from r1

12 l3: jmp l1 ; goto start of loop

13 l4: rjmp l2 ; come from l2

Fig. 7. Synchronized exponentiation. Fig. 8. Program implementing a Hadamard walk.

6.2 Branch Interference and �antum Walk

|x : 3, c : 0, pc : 5⟩
↦→ 1√

2
(|x : 3, c : 0, pc : 9⟩ + |x : 3, c : 1, pc : 6⟩)

↦→ 1√
2
(|x : 2, c : 0, pc : 5⟩ + |x : 4, c : 1, pc : 5⟩)

↦→ 1
2
(|x : 2, c : 0, pc : 9⟩ + |x : 2, c : 1, pc : 6⟩
+ |x : 4, c : 0, pc : 9⟩ − |x : 4, c : 1, pc : 6⟩)

↦→ 1
2
(|x : 1, c : 0, pc : 5⟩ + |x : 3, c : 1, pc : 5⟩
+ |x : 3, c : 0, pc : 5⟩ − |x : 5, c : 1, pc : 5⟩)

↦→ 1

2
√
2
(|x : 1, c : 0, pc : 9⟩ + |x : 1, c : 1, pc : 6⟩
+ |x : 3, c : 0, pc : 9⟩ − |x : 3, c : 1, pc : 6⟩
+ |x : 3, c : 0, pc : 9⟩ + |x : 3, c : 1, pc : 6⟩
− |x : 5, c : 0, pc : 9⟩ + |x : 5, c : 1, pc : 6⟩)

↦→ 1

2
√
2
(|x : 0, c : 0, pc : 14⟩ + |x : 2, c : 1, pc : 14⟩
+ |x : 2, c : 0, pc : 14⟩ + |x : 2, c : 0, pc : 14⟩
− |x : 4, c : 0, pc : 14⟩ + |x : 6, c : 1, pc : 14⟩)

Fig. 9. Partial execution trace of Figure 8, showing only

steps where br = 1. In each state, i and r1 are uniform

across the superposition, and they are not shown.

The quantum control machine distinguishes it-
self from any classical computer by its ability
to exhibit quantum interference across control
flow paths of the computation. Such interfer-
ence is essential to the advantage of quantum
walk algorithms such as Aharonov et al. [2001];
Ambainis [2004]; Ambainis et al. [2010]; Childs
et al. [2007]; Shenvi et al. [2003].

In Figure 8, we present a program that imple-
ments a Hadamard walk [Ambainis et al. 2001],
adapted from Ying [2014]. This program loops
over i iterations, where the algorithm specifies
i to be classical. Each round, the program exe-
cutes an H gate over a qubit c and then adds or
subtracts 1 from x based on c, using the quan-
tum analogue of an if-statement (Example 1.1).

Branch Interference. The way in which this
program demonstrates quantum interference
is that measuring the final x value it produces
yields a substantially different distribution from
a classical random walk that on every round moves x in a uniformly random direction.
In particular, letting the initial x and i be 3, the program executes as in Figure 9. At the end

of the program, measuring the value of x yields outcome 4 with probability only 1/6 ≈ 17%, as
compared to 3/8 ≈ 38% for the classical random walk. The reason is that quantum interference
cancels two execution paths, corresponding to outcome 4, that have opposite phase.
The correctness of the program relies on the use of injective abstractions for control flow as

opposed to writing down a history of the program counter as in Section 3.3. For contrast, we depict
in Appendix D the incorrect execution that would result from writing down such a history. The
difference is that the analogues of the identical states that cancel in Figure 9 are instead distinct
and do not interfere to cancel. In the final measurement outcome of the incorrect execution, the
outcome of 4 occurs with probability 3/8, the same result as on a classical computer.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:23

6.3 Indexed Branching and �antum Simulation

The quantum control machine enables branching operations to be indexed by data in superposition,
in a way analogous to classical array indexing or switch-statements (Example 1.1).
In Figure 10, we present a program that, given two quantum registers i and x, applies a Majo-

rana fermion operator |i⟩ |x⟩ ↦→ |i⟩ Yi · Zi−1 · · · Z0 |x⟩ to them, which is useful to algorithms for
simulation of fermionic systems [Babbush et al. 2018]. In this operator, Y is a single-qubit Pauli-.
gate as defined in Nielsen and Chuang [2010], and we assume that the Y and Z (Section 2) gates are
supported as primitive unitary gates.

1 get i r1 x ; put bit i of x into r1

2 u Y r1 ; apply Y gate to r1

3 rget i r1 x ; put r1 into bit i of x

4 add r1 i ; copy i into r1

5 l1: rjne l3 r1 i ; if r1 != i, come from l3

6 l2: jz l4 r1 ; if r1 == 0, break

7 radd r1 $1 ; subtract 1 from r1

8 get r1 r2 x ; put bit r1 of x into r2

9 u Z r2 ; apply Z gate to r2

10 rget r1 r2 x ; put r2 into bit r1 of x

11 l3: jmp l1 ; goto start of loop

12 l4: rjmp l2 ; come from l2

Fig. 10. Program for a Majorana fermion operator.

The program operates as follows. First, lines
1 to 3 apply the Y gate on the ith qubit of the x
register. The following loop then performs the
Z gate on each of the qubits i − 1 through 0 of
the x register. For clarity, the loop has not yet
been subject to padding as in Section 6.1, which
must still be done if i is in superposition.

Though this program has not been optimized
for practical concerns such as qubit and gate
usage, it exemplifies a new programmingmodel
in which one can work with quantum data via
abstractions similar to classical arrays.

7 IMPLICATIONS AND DIRECTIONS FORWARD

In this section, we discuss implications of this work to research in quantum programming languages,
computer architecture, and theory of computation. For a detailed discussion of the practical costs to
realizing control flow in superposition in terms of hardware support and program verification, see
Appendix E. For other related work studying designs for quantum _-calculi, reversible computation,
oblivious computation, and unbounded-time quantum computation, see Appendix F.

7.1 �antum Programming Languages

Abstractions for control flow in superposition such as quantum if-statements and for-loops have
become a value proposition in emerging quantum programming languages [Bichsel et al. 2020; Pal
and Ghosh 2022; Voichick et al. 2023; Yuan and Carbin 2022]. The no-embedding theorem provides
a unifying explanation for why these abstractions, and others such as recursion and continuations,
cannot be adapted to superposition by directly lifting the classical conditional jump.

As an example, language designers have repeatedly and independently confronted the fact that a
quantum if-statement is not realizable in general if its branches can be arbitrary statements. Pro-
posed solutions have included the dynamic enforcement of an orthogonality judgment [Altenkirch
and Grattage 2005] and the static enforcement of conditions such as preventing the condition of the
if from being modified under its branches [Bichsel et al. 2020; Yuan and Carbin 2022]. This work
presents a correctness condition for control flow in superposition that unifies and generalizes prior
approaches, which is that the semantics of each abstraction must be injective and the program
must be synchronized. In principle, this condition can be enforced at the level of the if-statement
or at the more primitive level of assembly, as in the quantum control machine.

An advantage of sound primitives at the assembly level is that they in turn empower generalized
reasoning about the space of realizable abstractions and can act as an intermediate compilation target
for emerging abstractions. For instance, though researchers have proposed quantum analogues of
recursion and closures [Díaz-Caro et al. 2019; Ying 2014; Ying et al. 2012], to date we are not aware

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



94:24 Charles Yuan, Agnes Villanyi, and Michael Carbin

of their realization via a compiler or equivalent. We hope that the quantum control machine may
act as a compilation target for such proposals and create new opportunities in language design.

7.2 �antum Computer Architecture

Researchers have proposed stored-program quantum architectures, commonly referred to as quan-
tum von Neumann architectures, with suggested benefits for the efficiency [Kjaergaard et al. 2020],
realizability [Meier et al. 2024], and security [Wang 2022] of the resulting system.

For example, Kjaergaard et al. [2020] experimentally realize a device that uses one set of qubits
to parameterize a rotation gate over another set of qubits. That work describes the “use of quantum
instructions to implement a quantum program” and “instructions derived from the present quan-
tum state of the processor” as potentially advantageous in quantum algorithms for semi-definite
programming, simulation, and principal component analysis [Kjaergaard et al. 2020].
However, to our best knowledge, these prior designs have not acknowledged the challenges

that will be ultimately encountered when making instructions such as conditional jump operate
in superposition. For instance, the no-embedding theorem implies that the machine proposed by
Lagana et al. [2009], which attempts to provide conditional jump via a history of program counters,
does not correctly execute quantum algorithms. While the designs of Meier et al. [2024]; Wang
[2022] lack an operational specification for the control unit as an instruction set, these designs
would face the same fundamental limitations on expressible control flow when fully formalized.

7.3 Theory of�antum Computation

A common, and true, maxim in quantum computation is that any classical computation is also
realizable on a quantum computer [Nielsen and Chuang 2010, Section 1.4.1]. By contrast, in this
work, we show that a stronger assumption – any classical programming abstraction is also correctly
realizable on a quantum computer – is false, as seen in the conventional conditional jump.
An implication is that designers of algorithms would benefit from explicitly specifying control

flow as part of the state of a quantum computation rather than leaving it as an implementation
detail. The realization of a control flow abstraction requires careful reasoning from the language
and potentially the programmer to produce a correct output and preserve quantum advantage.

The scope of this implication is over algorithms that transform quantum data and then leverage
interference on the output data, which include Shor [1997] and the other examples in Section 6. We
note that it may be possible in limited cases for the design of algorithms to preemptively avoid this
concern — for example, the classical oracle component of Grover [1996] produces an output that is
promptly uncomputed, and the algorithm instead leverages interference on the input data.

8 CONCLUSION

Researchers have long studied designs for quantum computers to learn how to realize the design in
hardware or analyze its theoretical power. This work advocates for a new dimension of study —
how to correctly and intuitively program the computer to implement quantum algorithms.

Studying a quantum computer through the lens of a programmer reveals the danger that trying
to implement a quantum algorithm using classical control flow abstractions such as conditional
jump can cause the algorithm to produce incorrect results. Put plainly, programming a quantum
computer in the same way as a classical one can in fact turn the quantum computer into a classical
computer. If so, the computer’s quantum advantage and the return on its investment are lost.

Despite these challenges, we believe that control flow in superposition will remain an indispen-
sible abstraction for expressing quantum algorithms. This work makes it possible for the first time
to correctly program a quantum computer using the abstraction of a program counter, bringing the
vision of making quantum programs as easy to write as classical programs closer to reach.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.



�antum Control Machine: The Limits of Control Flow in�antum Programming 94:25

DATA AVAILABILITY STATEMENT

The software that supports Section 6 is available on Zenodo [Yuan et al. 2024].

ACKNOWLEDGEMENTS

We thank Ellie Cheng, Tian Jin, Jesse Michel, Patrick Rall, and Logan Weber for helpful feedback
on this work, and also Scott Aaronson, Soonwon Choi, Isaac Chuang, Aram Harrow, Stacey Jeffrey,
Bobak Toussi Kiani, and Yuval Sanders for providing references to related work. This work was
supported in part by the National Science Foundation (CCF-1751011) and the Sloan Foundation.

REFERENCES

Daniel S. Abrams and Seth Lloyd. 1997. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. Phys.
Rev. Letters 79 (Sep 1997). Issue 13. https://doi.org/10.1103/PhysRevLett.79.2586

Daniel S. Abrams and Seth Lloyd. 1999. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues
and Eigenvectors. Phys. Rev. Letters 83, 24 (Dec 1999). https://doi.org/10.1103/PhysRevLett.83.5162

Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. 2001. Quantum Walks on Graphs. In ACM Symposium

on Theory of Computing. https://doi.org/10.1145/380752.380758
Thorsten Altenkirch and J. Grattage. 2005. A Functional Quantum Programming Language. In IEEE Symposium on Logic in

Computer Science. https://doi.org/10.1109/LICS.2005.1
Andris Ambainis. 2004. Quantum walk algorithm for element distinctness. In IEEE Symposium on Foundations of Computer

Science. https://doi.org/10.1109/FOCS.2004.54
Andris Ambainis, Eric Bach, Ashwin Nayak, Ashvin Vishwanath, and John Watrous. 2001. One-Dimensional Quantum

Walks. In ACM Symposium on Theory of Computing. https://doi.org/10.1145/380752.380757
Andris Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. 2010. Any AND-OR Formula of Size N Can Be

Evaluated in Time # 1/2+> (1) on a Quantum Computer. SIAM J. Comput. 39, 6 (2010). https://doi.org/10.1137/080712167
Pablo Andrés-Martínez and Chris Heunen. 2022. Weakly measured while loops: peeking at quantum states. Quantum

Science and Technology 7, 2 (Feb 2022). https://doi.org/10.1088/2058-9565/ac47f1
Mateus Araújo, Adrien Feix, Fabio Costa, and Časlav Brukner. 2014. Quantum circuits cannot control unknown operations.

New Journal of Physics 16, 9 (Sep 2014). https://doi.org/10.1088/1367-2630/16/9/093026
Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. 2017. The vectorial _-calculus. Information and Computation 254

(2017). https://doi.org/10.1016/j.ic.2017.04.001
Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca, and Priyaa Varshinee Srinivasan. 2015.

On the robustness of bucket brigade quantum RAM. New Journal of Physics 17, 12 (Dec 2015). https://doi.org/10.1088/1367-
2630/17/12/123010

Holger Bock Axelsen. 2011. Clean Translation of an Imperative Reversible Programming Language. In International

Conference on Compiler Construction. https://doi.org/10.1007/978-3-642-19861-8_9
Holger Bock Axelsen, Robert Glück, and Tetsuo Yokoyama. 2007. Reversible Machine Code and Its Abstract Processor

Architecture. In International Conference on Computer Science: Theory and Applications. https://doi.org/10.1007/978-3-
540-74510-5_9

Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and
Hartmut Neven. 2018. Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity. Phys. Rev. X 8, 4 (Oct
2018). https://doi.org/10.1103/PhysRevX.8.041015

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2019.
Formal Verification of a Constant-Time Preserving C Compiler. InACM SIGPLAN Symposium on Principles of Programming

Languages. https://doi.org/10.1145/3371075
J. S. Bell. 1964. On the Einstein Podolsky Rosen paradox. Physics 1 (Nov 1964). Issue 3. https://doi.org/10.1103/

PhysicsPhysiqueFizika.1.195
Charles H. Bennett. 1973. Logical Reversibility of Computation. IBM Journal of Research and Development 17, 6 (1973).

https://doi.org/10.1147/rd.176.0525
Ethan Bernstein and Umesh Vazirani. 1997. Quantum Complexity Theory. SIAM J. Comput. 26, 5 (1997). https://doi.org/10.

1137/S0097539796300921
Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush. 2019. Qubitization of Arbitrary Basis

Quantum Chemistry Leveraging Sparsity and Low Rank Factorization. Quantum 3 (Dec 2019). https://doi.org/10.22331/q-
2019-12-02-208

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language
with Safe Uncomputation and Intuitive Semantics. In ACM SIGPLAN Conference on Programming Language Design and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.

https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1145/380752.380758
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/FOCS.2004.54
https://doi.org/10.1145/380752.380757
https://doi.org/10.1137/080712167
https://doi.org/10.1088/2058-9565/ac47f1
https://doi.org/10.1088/1367-2630/16/9/093026
https://doi.org/10.1016/j.ic.2017.04.001
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1007/978-3-642-19861-8_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1145/3371075
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.22331/q-2019-12-02-208
https://doi.org/10.22331/q-2019-12-02-208


94:26 Charles Yuan, Agnes Villanyi, and Michael Carbin

Implementation. https://doi.org/10.1145/3385412.3386007
Kai-Wen Cheng and Chien-Cheng Tseng. 2002. Quantum full adder and subtractor. Electronics Letters 38 (2002). https:

//doi.org/10.1049/el:20020949
Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. 2018. Toward the first quantum simulation

with quantum speedup. Proceedings of the National Academy of Sciences 115, 38 (Sep 2018). https://doi.org/10.1073/pnas.
1801723115

Andrew M. Childs, Ben W. Reichardt, Robert Spalek, and Shengyu Zhang. 2007. Every NAND formula of size #

can be evaluated in time # 1/2+> (1) on a quantum computer. https://doi.org/10.48550/ARXIV.QUANT-PH/0703015
arXiv:0703015 [quant-ph]

Andrew M. Childs and Nathan Wiebe. 2012. Hamiltonian Simulation Using Linear Combinations of Unitary Operations.
Quantum Information and Computation 12, 11&12 (Nov 2012). https://doi.org/10.26421/qic12.11-12

Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoît Valiron. 2013. Quantum computations without
definite causal structure. Phys. Rev. A 88, 2 (Aug 2013). https://doi.org/10.1103/PhysRevA.88.022318

Seong-Min Cho, Aeyoung Kim, Dooho Choi, Byung-Soo Choi, and Seung-Hyun Seo. 2020. Quantum Modular Multiplication.
IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.3039167

Alonzo Church. 1941. The Calculi of Lambda Conversion. https://doi.org/10.1515/9781400881932
Pierre Clairambault and Marc de Visme. 2019. Full Abstraction for the Quantum Lambda-Calculus. In ACM SIGPLAN

Symposium on Principles of Programming Languages. https://doi.org/10.1145/3371131
Pierre Clairambault, Marc De Visme, and Glynn Winskel. 2019. Game Semantics for Quantum Programming. In ACM

SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/3290345
David Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of

the Royal Society A 400, 1818 (1985). https://doi.org/10.1098/rspa.1985.0070
Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. 2006. On Reversible Combinatory Logic. In International

Workshop on Developments in Computational Models. https://doi.org/10.1016/j.entcs.2005.09.018
Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. 2019. Realizability in the Unitary Sphere.

In ACM/IEEE Symposium on Logic in Computer Science. https://doi.org/10.1109/LICS.2019.8785834
Thomas G. Draper. 2000. Addition on a Quantum Computer. arXiv:quant-ph/0008033 [quant-ph]
Michael Frank. 1999. Reversibility for Efficient Computing. Ph. D. Dissertation. Massachusetts Institute of Technology.

https://doi.org/1721.1/9464
Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum Random Access Memory. Phys. Rev. Letters 100, 16

(Apr 2008). https://doi.org/10.1103/PhysRevLett.100.160501
Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation on Oblivious RAMs. J. ACM 43, 3 (May

1996). https://doi.org/10.1145/233551.233553
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable

Quantum Programming Language. In ACM SIGPLAN Conference on Programming Language Design and Implementation.
https://doi.org/10.1145/2491956.2462177

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In ACM Symposium on Theory of

Computing. https://doi.org/10.1145/237814.237866
Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm for Linear Systems of Equations. Phys.

Rev. Letters 103, 15 (Oct 2009). https://doi.org/10.1103/PhysRevLett.103.150502
Ichiro Hasuo and Naohiko Hoshino. 2017. Semantics of higher-order quantum computation via geometry of interaction. In

Games for Logic and Programming Languages Workshop. https://doi.org/10.1016/j.apal.2016.10.010
Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum

circuits. In ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/3434318
Peter Hines. 2008. Machine semantics. Theoretical Computer Science 409, 1 (2008). https://doi.org/10.1016/j.tcs.2008.07.015
Peter Hines. 2011. Can a Quantum Computer Run the von Neumann Architecture? In New Structures for Physics. https:

//doi.org/10.1007/978-3-642-12821-9_14
Md Saiful Islam, Muhammad Mahbubur Rahman, Zerina Begum, and Mohd Z Hafiz. 2009. Low cost quantum realization of

reversible multiplier circuit. Information Technology Journal 8, 2 (2009). https://doi.org/10.3923/itj.2009.208.213
Tien D. Kieu and Michael Danos. 1998. The halting problem for universal quantum computers. https://doi.org/10.48550/

ARXIV.QUANT-PH/9811001 arXiv:9811001 [quant-ph]
A. Yu. Kitaev. 1995. Quantum measurements and the Abelian Stabilizer Problem. https://doi.org/10.48550/arXiv.quant-

ph/9511026 arXiv:quant-ph/9511026 [quant-ph]
A. Yu. Kitaev. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 6 (Dec

1997). https://doi.org/10.1070/RM1997V052N06ABEH002155
Morten Kjaergaard,Mollie E. Schwartz, Ami Greene, Gabriel O. Samach, Andreas Bengtsson,Michael O’Keeffe, ChristopherM.

McNally, Jochen Braumüller, David K. Kim, Philip Krantz, Milad Marvian, Alexander Melville, Bethany M. Niedzielski,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.

https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1049/el:20020949
https://doi.org/10.1049/el:20020949
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.48550/ARXIV.QUANT-PH/0703015
https://arxiv.org/abs/0703015
https://doi.org/10.26421/qic12.11-12
https://doi.org/10.1103/PhysRevA.88.022318
https://doi.org/10.1109/ACCESS.2020.3039167
https://doi.org/10.1515/9781400881932
https://doi.org/10.1145/3371131
https://doi.org/10.1145/3290345
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1016/j.entcs.2005.09.018
https://doi.org/10.1109/LICS.2019.8785834
https://arxiv.org/abs/quant-ph/0008033
https://doi.org/1721.1/9464
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1016/j.apal.2016.10.010
https://doi.org/10.1145/3434318
https://doi.org/10.1016/j.tcs.2008.07.015
https://doi.org/10.1007/978-3-642-12821-9_14
https://doi.org/10.1007/978-3-642-12821-9_14
https://doi.org/10.3923/itj.2009.208.213
https://doi.org/10.48550/ARXIV.QUANT-PH/9811001
https://doi.org/10.48550/ARXIV.QUANT-PH/9811001
https://arxiv.org/abs/9811001
https://doi.org/10.48550/arXiv.quant-ph/9511026
https://doi.org/10.48550/arXiv.quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1070/RM1997V052N06ABEH002155


�antum Control Machine: The Limits of Control Flow in�antum Programming 94:27

Youngkyu Sung, Roni Winik, Jonilyn Yoder, Danna Rosenberg, Kevin Obenland, Seth Lloyd, Terry P. Orlando, Iman
Marvian, Simon Gustavsson, and William D. Oliver. 2020. Programming a quantum computer with quantum instructions.
https://doi.org/10.48550/ARXIV.2001.08838 arXiv:2001.08838 [quant-ph]

Andre Kornell, Bert Lindenhovius, and Michael Mislove. 2021. Quantum CPOs. Electronic Proceedings in Theoretical Computer

Science 340 (Sep 2021). https://doi.org/10.4204/eptcs.340.9
Antonio A. Lagana, M. A. Lohe, and Lorenz von Smekal. 2009. Construction of a universal quantum computer. Phys. Rev. A

79, 5 (May 2009). https://doi.org/10.1103/PhysRevA.79.052322
R. Landauer. 1961. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development

5, 3 (1961). https://doi.org/10.1147/rd.53.0183
Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-Based Runtime Assertions for

Testing and Debugging Quantum Programs. In ACM Conference on Object-Oriented Programming, Systems, Languages,

and Applications. https://doi.org/10.1145/3428218
Noah Linden and Sandu Popescu. 1998. The Halting Problem for Quantum Computers. https://doi.org/10.48550/ARXIV.

QUANT-PH/9806054 arXiv:9806054 [quant-ph]
Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. 2014. Quantum algorithms for topological and geometric analysis of big

data. Nature Communications 7 (Aug 2014). https://doi.org/10.1038/ncomms10138
Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (Jul 2019). https:

//doi.org/10.22331/q-2019-07-12-163
Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer. 2018. Trading T-gates for dirty qubits in state preparation and

unitary synthesis. https://doi.org/10.48550/arXiv.1812.00954 arXiv:1812.00954 [quant-ph]
Octavio Malherbe, Philip Scott, and Peter Selinger. 2013. Presheaf Models of Quantum Computation: An Outline. In

Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. https://doi.org/10.1007/978-
3-642-38164-5_13

Olivia Di Matteo, Vlad Gheorghiu, andMichele Mosca. 2020. Fault-Tolerant Resource Estimation of Quantum Random-Access
Memories. IEEE Transactions on Quantum Engineering 1 (2020). https://doi.org/10.1109/tqe.2020.2965803

Florian Meier, Marcus Huber, Paul Erker, and Jake Xuereb. 2024. Autonomous Quantum Processing Unit: What does
it take to construct a self-contained model for quantum computation? https://doi.org/10.48550/arXiv.2402.00111
arXiv:2402.00111 [quant-ph]

John M. Myers. 1997. Can a Universal Quantum Computer Be Fully Quantum? Phys. Rev. Letters 78, 9 (Mar 1997).
https://doi.org/10.1103/PhysRevLett.78.1823

Moni Naor and Vanessa Teague. 2001. Anti-persistence: History independent data structures. In ACM Symposium on Theory

of Computing. https://doi.org/10.1145/380752.380844
Michael A. Nielsen and Isaac L. Chuang. 1997. Programmable Quantum Gate Arrays. Phys. Rev. Letters 79, 2 (Jul 1997).

https://doi.org/10.1103/PhysRevLett.79.321
Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition.

https://doi.org/10.1017/CBO9780511976667
Michele Pagani, Peter Selinger, and Benoît Valiron. 2014. Applying Quantitative Semantics to Higher-Order Quantum

Computing. In ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/2535838.
2535879

Abhinandan Pal and Anubhab Ghosh. 2022. Qiwi: A Beginner Friendly Quantum Language. In Companion Proceedings of the

ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity.
https://doi.org/10.1145/3563768.3563959

Alexandru Paler, Oumarou Oumarou, and Robert Basmadjian. 2020. Parallelizing the queries in a bucket-brigade quantum
random access memory. Phys. Rev. A 102, 3 (Sep 2020). https://doi.org/10.1103/PhysRevA.102.032608

A. Pati and S. Braunstein. 2000. Impossibility of deleting an unknown quantum state. Nature 404 (2000). https://doi.org/10.
1038/404130b0

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for Quantum Circuits. In ACM SIGPLAN

Symposium on Principles of Programming Languages. https://doi.org/10.1145/3009837.3009894
Nicholas Pippenger and Michael J. Fischer. 1979. Relations Among Complexity Measures. J. ACM 26, 2 (Apr 1979).

https://doi.org/10.1145/322123.322138
John Proos and Christof Zalka. 2003. Shor’s Discrete Logarithm Quantum Algorithm for Elliptic Curves. Quantum

Information and Computation 3, 4 (Jul 2003).
Qiskit Developers. 2021. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.

2573505
Mathys Rennela and Sam Staton. 2018. Classical Control and Quantum Circuits in Enriched Category Theory. In Conference

on the Mathematical Foundations of Programming Semantics. https://doi.org/10.1016/j.entcs.2018.03.027

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.

https://doi.org/10.48550/ARXIV.2001.08838
https://arxiv.org/abs/2001.08838
https://doi.org/10.4204/eptcs.340.9
https://doi.org/10.1103/PhysRevA.79.052322
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1145/3428218
https://doi.org/10.48550/ARXIV.QUANT-PH/9806054
https://doi.org/10.48550/ARXIV.QUANT-PH/9806054
https://arxiv.org/abs/9806054
https://doi.org/10.1038/ncomms10138
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.48550/arXiv.1812.00954
https://arxiv.org/abs/1812.00954
https://doi.org/10.1007/978-3-642-38164-5_13
https://doi.org/10.1007/978-3-642-38164-5_13
https://doi.org/10.1109/tqe.2020.2965803
https://doi.org/10.48550/arXiv.2402.00111
https://arxiv.org/abs/2402.00111
https://doi.org/10.1103/PhysRevLett.78.1823
https://doi.org/10.1145/380752.380844
https://doi.org/10.1103/PhysRevLett.79.321
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/3563768.3563959
https://doi.org/10.1103/PhysRevA.102.032608
https://doi.org/10.1038/404130b0
https://doi.org/10.1038/404130b0
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/322123.322138
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1016/j.entcs.2018.03.027


94:28 Charles Yuan, Agnes Villanyi, and Michael Carbin

Mathys Rennela, Sam Staton, and Robert Furber. 2017. Infinite-Dimensionality in Quantum Foundations: W*-algebras
as Presheaves over Matrix Algebras. Electronic Proceedings in Theoretical Computer Science 236 (Jan 2017). https:
//doi.org/10.4204/eptcs.236.11

Rich Rines and Isaac Chuang. 2018. High Performance Quantum Modular Multipliers. https://doi.org/10.48550/arXiv.1801.
01081 arXiv:1801.01081 [quant-ph]

Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. 2018. From Symmetric Pattern-Matching to Quantum Control. In
International Conference on Foundations of Software Science and Computation Structures. https://doi.org/10.1007/978-3-
319-89366-2_19

Peter Selinger. 2004. Towards a quantum programming language. Mathematical Structures in Computer Science 14 (Aug
2004). https://doi.org/10.1017/S0960129504004256

Sanjit A. Seshia and Jonathan Kotker. 2011. GameTime: A Toolkit for Timing Analysis of Software. In Tools and Algorithms

for the Construction and Analysis of Systems. https://doi.org/10.1007/978-3-642-19835-9_34
Neil Shenvi, Julia Kempe, and K. Birgitta Whaley. 2003. Quantum random-walk search algorithm. Phys. Rev. A 67, 5 (May

2003). https://doi.org/10.1103/PhysRevA.67.052307
Yaoyun Shi. 2003. Both Toffoli and Controlled-NOT need little help to do universal quantum computing. Quantum

Information and Computation 3, 1 (Jan 2003). https://doi.org/10.26421/QIC3.1-7
Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (Oct 1997). https://doi.org/10.1137/S0097539795293172
Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying K-Safety Properties. In ACM SIGPLAN Conference

on Programming Language Design and Implementation. https://doi.org/10.1145/2908080.2908092
Krysta Svore, Martin Roetteler, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym

Kliuchnikov, Mariia Mykhailova, and Andres Paz. 2018. Q#: Enabling Scalable Quantum Computing and Development
with a High-level DSL. In Real World Domain Specific Languages Workshop. https://doi.org/10.1145/3183895.3183901

Michael Kirkedal Thomsen, Holger Bock Axelsen, and Robert Glück. 2012. A Reversible Processor Architecture and Its
Reversible Logic Design. In Conference on Reversible Computation. https://doi.org/10.1007/978-3-642-29517-1_3

Dominique Unruh. 2019. Quantum Relational Hoare Logic. In ACM SIGPLAN Symposium on Principles of Programming

Languages. https://doi.org/10.1145/3290346
André van Tonder. 2004. A Lambda Calculus for Quantum Computation. SIAM J. Comput. 33, 5 (2004). https://doi.org/10.

1137/S0097539703432165
Carlin Vieri, M. Ammer, Michael Frank, Norman Margolus, and Tom Knight. 1998. A Fully Reversible Asymptotically Zero

Energy Microprocessor. In Power-Driven Microarchitecture Workshop.
Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks. 2023. Qunity: A Unified Language for Quantum and Classical

Computing. In ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/3571225
Dong-Sheng Wang. 2022. A prototype of quantum von Neumann architecture. Communications in Theoretical Physics 74, 9

(Aug 2022). https://doi.org/10.1088/1572-9494/ac68d8
Nathan Wiebe, Daniel Braun, and Seth Lloyd. 2012. Quantum Algorithm for Data Fitting. Phys. Rev. Letters 109, 5 (Aug

2012). https://doi.org/10.1103/PhysRevLett.109.050505
W. Wootters and W. Zurek. 1982. A single quantum cannot be cloned. Nature 299 (1982). https://doi.org/10.1038/299802a0
Mingsheng Ying. 2014. Quantum Recursion and Second Quantisation. https://doi.org/10.48550/ARXIV.1405.4443

arXiv:1405.4443 [quant-ph]
Mingsheng Ying and Yuan Feng. 2010. Quantum Loop Programs. Acta Informatica 6 (2010). https://doi.org/10.1007/s00236-

010-0117-4
Mingsheng Ying, Nengkun Yu, and Yuan Feng. 2012. Defining Quantum Control Flow. https://doi.org/10.48550/ARXIV.

1209.4379 arXiv:1209.4379 [quant-ph]
Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. 2008. Reversible Flowchart Languages and the Structured

Reversible Program Theorem. In Automata, Languages and Programming. https://doi.org/10.1007/978-3-540-70583-3_22
Nengkun Yu and Jens Palsberg. 2021. Quantum Abstract Interpretation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation. https://doi.org/10.1145/3410291
Charles Yuan and Michael Carbin. 2022. Tower: Data Structures in Quantum Superposition. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications. https://doi.org/10.1145/3563297
Charles Yuan, Christopher McNally, and Michael Carbin. 2022. Twist: Sound Reasoning for Purity and Entanglement in

Quantum Programs. In ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/
3498691

Charles Yuan, Agnes Villanyi, and Michael Carbin. 2024. Quantum Control Machine: The Limits of Control Flow in Quantum

Programming. https://doi.org/10.5281/zenodo.10452601

Received 16-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 94. Publication date: April 2024.

https://doi.org/10.4204/eptcs.236.11
https://doi.org/10.4204/eptcs.236.11
https://doi.org/10.48550/arXiv.1801.01081
https://doi.org/10.48550/arXiv.1801.01081
https://arxiv.org/abs/1801.01081
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1007/978-3-642-19835-9_34
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.26421/QIC3.1-7
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1007/978-3-642-29517-1_3
https://doi.org/10.1145/3290346
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1145/3571225
https://doi.org/10.1088/1572-9494/ac68d8
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1038/299802a0
https://doi.org/10.48550/ARXIV.1405.4443
https://arxiv.org/abs/1405.4443
https://doi.org/10.1007/s00236-010-0117-4
https://doi.org/10.1007/s00236-010-0117-4
https://doi.org/10.48550/ARXIV.1209.4379
https://doi.org/10.48550/ARXIV.1209.4379
https://arxiv.org/abs/1209.4379
https://doi.org/10.1007/978-3-540-70583-3_22
https://doi.org/10.1145/3410291
https://doi.org/10.1145/3563297
https://doi.org/10.1145/3498691
https://doi.org/10.1145/3498691
https://doi.org/10.5281/zenodo.10452601

	Abstract
	1 Introduction
	1.1 The Challenge of Control Flow in Superposition
	1.2 Theoretical Limits of Control Flow in Superposition
	1.3 Specification for Sound Control Flow in Superposition
	1.4 Instruction Set Architecture for Control Flow in Superposition
	1.5 Contributions

	2 Background on Quantum Computation
	3 Failure of Conditional Jump in Superposition
	3.1 Classical Implementation with Conditional Jumps
	3.2 Superposition of Program Executions
	3.3 Landauer Embedding and Disruptive Entanglement
	3.4 No Recovery from Disruptive Entanglement
	3.5 Quantum Control Machine

	4 Theoretical Limits of Control Flow in Superposition
	4.1 No-Embedding Theorem and Injectivity
	4.2 Synchronization

	5 Quantum Control Machine
	5.1 Architectural Overview
	5.2 Machine Execution
	5.3 Instruction Set
	5.4 Termination and Measurement
	5.5 Synchronization

	6 Case Studies
	6.1 Iteration and Phase Estimation
	6.2 Branch Interference and Quantum Walk
	6.3 Indexed Branching and Quantum Simulation

	7 Implications and Directions Forward
	7.1 Quantum Programming Languages
	7.2 Quantum Computer Architecture
	7.3 Theory of Quantum Computation

	8 Conclusion
	References

