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SECTION 1 -- INTRODUCTION

In 1979, Aaron Wyner of Bell Telephone Taboratories published a
pair of papers which answered the theoretical question, can speech
be scrambled and then transmitted through a telephone? He made a
mathematical argument for existence of a scrambler with such a property,
and showed it could be extremely secure.

Since that time, Bell has develoved a need for a scrambler for
mobile radio with the same property, and all of telecommunications is
becoming aware of the need for security in any transmission. Wyner's
scheme is one of those being considered for a standard for all devices
in a product line requiring speech encryption.

This thesis is concerned with the need for that scrambler, its
properties, and its effectiveness in providing secure ard accurate
speech encryption. A simulation of a speech scrambler is tested on a
Lisp machine to verify the theoretical properties, in preparation for
a future hardware implemenation.

There are four main sections to the thesis. The first is a state-
ment of the problem, and an attempt at solving it in a naive fashion.
The second contains the results of the simulation. It is suggested that
section be read before the remaining two, then reread in light of the
description of the'scrambler and its simulation. The third and fourth

sections describe the properties of the scrambler, and how one is

simulated on a Lisp machine.



3ECTION 2 -- THE “ROBIEH

Modern telecommunications is becoming increasingly in need of
security, both for digital and analog transmission. A great deal of
effort has been devoted to digital encryntion, and research is underway
in secure methods of scrambling sneech signals. An ideal scrambler
would produce outoput that could be transmitted over any channel that
the input could be. The question is, how fast, how secure, and how
accurate can such a scrambler be?

Section 2.1 reviews the current needs for such scrambling 'systems.
In particular, a need for narrow-band scrambling is explained. 1In
section 2.2, a variety of naive solutions are given in an effort to show
the difficulty of designing a scrambler which does not expand bandwi' th.
The scrambler, performing its encryotion in the digital domain, must
meet certain performance constraints; these are shown in section 2.4,
Wyner's scrambling method, as an intuitive argument, is presented in

section 2.3.



21 Nxeld) FOR SCRAMBT,HR

Security in communications is becoming more important in the modern
world. law enforcement agencies desire secure scrambling of voice
transmission [Nelson]. Radio scrambling has long been used in the
military. Mobile radio transmission of telephone communication is easily
intercepted. But most conventional systems rely on wide-band
transmission channels, and hence are unsuited for n row-bard
epplications,

What is needed is a narrow-band scrambler. One case in which this
is evident is that of the Dallas police department. It installed a
relatively modern scrambling system between patrol cars and police
headquarters in the 1970s. But the transmission line between the two
points had several relays between radio antennas, and used telephone
lines in some places. What worked well for plaintext speech failed for
ciphertext speech. The narrow-band parts of the channel destroyed much
of the information in the scrambled signal.

A narrow-band scrambler would provide users of telephone networks
a s'mple method of producing security in communication, An accurate
scrambler would enhance operation even more, allowing users to identify
one another (as much as in ordinary telephone speech; as opposed to
merely understanding what is said). This would allow a way of "authen-
tication" similar to that orovided in most data encryption systems.

Fear of Soviet interception of U.S. microwave broadcast of
unencrypted telephone speech led to a desire for security in that area

in the early 1970s. Wyner's original research then answered the



key theoretical question: Are bandlimitedness and security mutually
exclusive? The answer, in theory, is yes. Bell Taboratories, according
to [Wyner 8#], is now seeking to make secure the transmission of
telephone communication at FM frequencies, which is easily tapped and
in fact carries no legal penalty for such interception. A new project
to develop a standard encryption unit for all mobile radlo requires a
scrambling system such as Wyner's and may in fact use his.

There are some problems with building such a system, however.
Wide-band scramblers can use the large channel capacity to reduce the

work necessary to scramble a signal, and hence most are relatively

cheap and simple. A narrow-band scrambler must produce a signal with

the same band characteristics of its input, and thus more complicated

equipment is needed. In addition, permutation of the frequency spectrum
(a method used by many simple scramblers) is no longer effective, and
the operation of the scrambler moves into the digital domain. This
requires a more powerful processor than a driver for some analog
circuitry. A scheme must combine security, bandlimitedness, and speed

to be an acceptable solution for the telecommunications industry.

2,2 POSSIBLE ANATOG ENCRYPTION SCHEMES

We consider here several simplified analog encryption schemes, and
show why decomposition into prolate spheroidal sequences is the
preferred method.

The first scheme is time-sample scrambling. Tet the input x[n] be

broken into blocks xk[n], where



x(1+kN], 0§ i< N

xJ11=

Each xk[n] is then a vector in R'. The output of the scrambler is

0, otherwise

blocks yk[n], where Yie = Mk xk. for some randomly-selected orthogonal

matrix M, . The output y[n] is then the concatenation of the smaller

k
blocks, or ind
1] = Z ¥, [1-KkN]
k = -00

Clearly if we desire y[n] to be a sequence approximately limited
to the band [ul, w2] (where the band is within [0, .5]), thils method
is not likely to work. Indeed it provides high security, but the

randomness of the M, causes the Yi to be distributed uniformly on RN.

k
Hence sequences outside the band are equally well reoresented, and the

independence of successive M, makes the expected frequency distribution

k

of y[n] uniform across the band [0, .5].

The problem is the size of the M We seek to preserve the lack

k.
of frequenci~= outside [W,, ¥,], but an N x N matrix M_ scrambles into
those frequncies as well. The desired output really only has 2(w2 - HI)N

degrees of freedom, and the M, really should scramble no more than that

k
number of items. One naive solution immediately comes to mind --
frequency scrambling, in which only those components in the desired band
are exchanged by the scrambler.

Let X [7] be the inverse discrete Fourier transform of x,[n]
defined above., Then set Y

= Mk X In this version, Mk is generated

k k'
such that elements corresponding to frequencies outside the band cause

no permutation, but those within the band are scrambled.



Now yk[n] i{s the forward DFT of Yk[f]. By concatecnation, we can
construct the output y{n]. #e now show some properties of these yk[n].‘
Suppose x{ n] is a sinusoid of some frequency in the band [wl, w2], with

an integer number of periods in each N points. Consider the time

window 1, 0 ng 63
h[n} =

0, otherwise

This has frequency transform

63 1 -641 21w
:EE: -12min _ 1 - °
H(w) € T B ~12mw
1 - e
n=20
Clearly, this is not uniformly distributed across [-.5, .5]. In fact,

tabulation of values at various points shows

W H(w! 2

0. 1.0
.01 .20
.02 .037
.03 .0017
.04 .015
.25 0.0
48 00014
49 .00020

What this all means is that although the sequence h[n] = 1 for all
n has a frequency transform which is an impulse, the sequence Timited to
some set of n has a spread-out frequency transform. In the same way,
although the sinusoidal x[nj above has two imnulses in iis frequency

transform, taking just xk[n] will yield a less focused frequency
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transform.

The reason is that the discrete Fourier transform assumes the time
input is part of an infinite sequence of period N. When xk[n] is
defined so that it is zero outside of a certain range, the DFT will give
undesired results. Thus scrambling the xk[n] in this naive way will have

the unintended effect of nroducing energy outside the bamd [wI, W,

2.3 AN INTUITIVE SOLUTION

It seems plausible that the N-point sequences bandlimited to
[-W, W] over a spectrum of [-.5, .5] form a space of dimension 2WN, All
N-point sequences are in RN, of course. If we restrict them to be
defined over a range of 2W in each unit in the frequency domain, then
they are likely to be of the space RZHN.

This 1s Wyner's assumption also. There exists a set of sequences
of which 2WN are nearly bandlimited and the rest are nearly outside the
band completely. As we discovered above, mere frequency scrambling is
insufficient, because segments of sinusoids are not bandlimited.

What intultion says is that a space of dimension 2WN should have
that many 1inearly indevendent components. This independence implies
orthogonality. and it is conventional to represent components as having
a length of 1.

Suppose we have these components. Then we can use a digital
computer to measure them and mix them, and the outout is guaranteed to
stay in the vector space RZWN. The broblem is the need for a digital

computer, as such sequences are unlikely to have any simple physical
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meaning which can be adaoted in an analoz fashion. The benefit, of

course, is the near-perfect security nrovided by a digital scrambler.

2.4 SPEED V3. ACCURACY

This denendence on 2WN comnonents of the N-dimensional space may
cause some error. Some information can be lost in the decompositicn
into a set of welghts indicating the relative nresence of the components
in the basis. The actual permutation of those weights is designed to be
orthogonal so that any error in the signal will not be expanded.

We can improve verformance by increasing the rate at which samoles
are taken, introducing redundancy and hence reducing errors. Increasing
the number of noints N in a block of samnles is another way to lower
error, hecause a greater value of N nlaces more energy in the 2Z2WN
components.

Meanwhile, we are faced with digital onerations which are likely
to take time nroportional to N2. A simple matrix-vector multiplication
is of this complexity. Suppose N is 32, and sample time T is 125 us.
Then the time available to process one set of samples is 4 ms. In this
time, verhaps 2048 operations are required, assuming two matrix-vector
multiplications. This is only 2 us per operation, and if N is doubled
to reduce error, we have only 1 us for each oneration.

As a comparative measure of comnlexity, consider that a typical
mainframe computer takes ! ms to nerform a 32-point FFT [vander Steen].
The FFT algorithm is O(n 1g n).

Clearly the required speed n»nresents a nroblem to the designer.
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A small N or large T would require less orocessor power, but could
produce errors greater than some acceotable level. Conversely, a
very accurate scrambler may require a dedicated signal processor.

The ontimal solution needs careful study.
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SECTION 3 -- THE RESUTTS

This section briefly pnresents the results obtained from a
simulation of the scrambler, It is primarily concerned with the
selection of parameters N, v, T, [WI, w2], and [ﬁl' Wé] that kee>
the error level low. Samples from an utterance of the word "potato”
are used to simulate the properties of speech, and tést the many
‘arts of the scrambler.

Section 3.1 glves a general overview of the testing, and the
assumptions made which may differ from a real environment. Some
features of speech and their effects on the performance of the
scrambler are given in the next section. Section 3.3 reviews the
trial-and-error methods used to find an optimal set of parameters,
leading to a reasonable error level. The effect of channel noise
is discussed briefly in section 3.4.

The remaining sections present results not relevant to the actual
testing, but of general interest. A possible security flaw and its
solution are given in section 3.5. Section 3.6 presents a scenario in
which public-key algorithms could be used to make a protocol for the
scrambler. Finally, a fast, but as yet unknown, method to perform the

scrambling 1s presented in Section 3.7.
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3.1 RESUTL,TS OF TESTING

Results of a simulation of Wyner's algorithm show that it can
operate at acceptable levels of error without requiring a very powerful
processor to perform the encryotion. An error level (signal-to-noise
ratio) of 13 dB is possible for a sample rate of 8 kHz and block size of
32 points. This error level is called "poor" by some standards (see
section 5.5), but it is nonetheless reasonable, given the security pro-
vided.

One assumption on which this result is based is that the equalizer
used to compensate for linear distortion in the channel is very accurate.
The one used in the simulator is accurate to within 30 dB. This requires
knowledge of the channel frequency resvonse during design, which is not
possible for a real device which can be used on a variety of channels.

The equalizer modeled 1s also incompatible with a real tapped delay
line, in that it uses some 7N taps to restore a signal. Conventional
tapped delay lines may have at most 64 taps. Real inaccuracies, however,
would affect scrambled speech as much as real speech. For this reason,
the results obtained are valid approximations. A real telephone trans-
mission line may introduce some error, but as long as it is, say, 10 dB
less than the scrambler's built-in error, the bullt-in error will be
dominant.

The best simulated model of the scrambler uses an input band of
[0, 2?00] and an outnut band of [300, 3200]. These bandwidths allow a
value of 22 for v, the number of weights scrambled (see section 4.3).

Now scrambling can be viewed as an 0(N2) operation if we precompute
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a set of matrices which translate an input sequence into weights,
scramble them, and convert the weights to an output sequence. In this
case, a matrix-vector multiplication is all that is needed, requiring
1024 multiply and 1024 add operations. The 32-point block time of 4 ms
allows about 2 us per operation, a sveed which can he achieved by many
special-purpose array vrocessor chips, including one used by Beli
Telephone Taboratories [Wyner 847,

A poor error level, of course, may be unsuitable for many uses.
By doubling N, and reducing the time per operation, it may be possible
to move the error level down somewhat, but this has not been tested.
Some types of errors are acceotable, such as phase shifts. For this
reason, errors &re measured in a different way than they are defined in
section 4.4 -- all phase is removed when making a comparison between
actual output and expected output. The human ear operates in the same

way.

3.2 CHARACTERISTICS OF SPEECH

Speech signals obtained from the M.I.T. Speech Taboratory aprear to
be somewhat harder to scramble than Wyner's analysis implies. An
utterance of the word "potato" has significant energy in the band [0,
200], ostensibly the pitch of the three vowels., The effect is impecrtant
to the ear, and hence cannot be removed without making the utterance
sound whispered, eccording to the laboratory.

Most of the energy in a discrete Fourier transform of a block of

size 32, 64, 128, or 256 taken from the utterance is in the band [O. 3000].
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Smaller sample block sizes have greater concentrations at the DC value,
and are narrower. Of course, the entire signal has no DC value, but the
samples taken in blocks smaller than one period of the slowest sinusoid
will reflect that value into the DC component. This is the result of
the discrete Fourier transform.

To scramble all the energy in the speech, a prolate spheroidal
basis with a large bandwidth is necessary. In fact, to cap ure 2ll the
energy, weights up to those representing vectors almost entirely outside
the desired band must be used. As section 4.3 shows, a large input
band requires an even'larger output band. The question is, will a
larger output band still be small enough for the channel?

The question, however, is probably not that important. Like most
of the effects and errors studied in the simulation, the consideration
of the band of the input is not limited to the scrambler. Any system
transmitting real speech will have the same limitations, although to
a lesser extent. So one need not consider too greatly the band of the
input, because many real systems cut off quite a bit (the ear is a poor
receiver of high frequencies) and conform to the channel.

Without an initial bandlihiting of the input signal from “potato"
the simulation faces large errors in its transmission line. The 13 4B
level mentioned above comes from a non-bandlimited signal. The way in

which this level is achieved is described below.

3.3 CHOICE OF PARAMETERS

Testing of the scrambler began with 32-point blocks of points taken
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at rates of 16 kHz, the samec rate at which they were recorded in a
file from original speech samples. The output band [Wl' Wé] was set
to [400, 26007, apparently the largest band the simulated transmission
line could hamdle without great distortion.

This set of parameters failed to produce output resembling the
innut. The output bandwidth -- only 2200 Hz -- required the number of
weights scrambled, v, to be less than 8.8, This in turn required the
input bandwidth to be only 1500, from 0 to 1500 Hz. As described above,
the speech samples are not well-suited to such bandlimiting. They lost
significant energy during the scrambling, and the channel introduced
sizeabdle errors as well.

An initial solution was to reduce the sample rate, thus providing
a larger value v and widehing the input band. A rate of 10 kHz was
tried first, but it made the simulation very slow, since a non-integral
down-sampling was necessary. A rate of 8 kHz was tried instead, and
with 1t an input band of [0, 22007, the same bandwidth as the output.

In the second set of trials, the input scrambling again introduced
large errors, sometimes cutting half the energy from the input. The band
apparently was too small, and the basis itself too inconsistent, since
not all the weights for vectors in the desired band were used,

The solution lay in the output bandwidth. Were it larger, more of
the input could be scrambled. A change in the definition of the desam-
pler allowed the transmission line to pass a wider band of frequencies.
The original desampler had "cut off" the frequencies at ﬁl and _é; this

Wwas not required of the device in a real system. By extending the band
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vassed, as one would in a real system, the equalizing was also ma e
more effective. The result was a transmission line band of [300, 3200]
typical of a real system.

The wider band for output both increased v and extended the inpuf
bard. An input bandwidth of 2700, with the output bandwidth of 2900,
were reasonable for v of 22, and typical errors were 13 dB. Table 3-1
has a list of the energy and error at various parts of the block diagram
of the scrambler.

A larger N would probably allow the input and output bandwidth to
be brought closer, since it would increase v and the rate of convergence
of the vectors around it. Most of the 13 dB error is from the channel.
Apparently the input scrambler outputs some vectors which are not
entirely in the output band -- 13 dB would be consistent with one in 22.
The unscrambler, of course, has no error, since it follows the narrow-
band channel. The input scrambler, surprisingly, has little error as
well. This serves to confirm that a larger N would improve the channel

error, although no such test has been run.

3.4 EFfECT OF CHANNET, NOISE

The only observation of the effect of nolse in the channel 1is
from the set of parameters in which input bandwidth was 2200. The
simulator introduces a three-block delay between input and the outvut,
due to the nature of the transmission line. The first threce blocks
output, then, should be near zero energy.

Adding noise equal to about 20 dB less than the typical signal
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level in the simulated channel appeared to introducc about half as
much noise in the output. For most of the cases with that set of para-

meters, the built-in error outweighed the added noise.

3.5 SECURITY FTLAWS

The scrambler, which relies on orthogonal transformation, does not
expand any errors introduced in transmission. But the same pronerty
gives away a clue to the original signal. It is easily seen from theory
and from experiment that the energy in the channel is proportiocnal to
that in the input, Hence an adversary can get a rough image of the
speech being transmitted.

Wyner reports that speech experts at Bell feel that the adversary
will not be able to learn much from short-time energy measurements
[Wyner 84]. The measurements can only determine whether a person is
speaking, and the person's gender. It still se ms uncomfortable to
reveal even that much information.

One solution, Wyner suggests, is to reserve one of the output
vectors for use as a dummy, Its weight is defined such that the energy
of all the output veptors is constant for all blocks. Indeed, the
identity of that vector also will have to be kept randem, so an adver-
sary cannot simply filter it away (in the prolate spheroidal sense) and
defeat its purpose., Selecting this one dummy vector at random for each

block would remove any worry about the security of the system.
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3.6 A POSSIBIE PUBTIC-KEY PROTOCO",

Establishing communication between two parties Alice and Bob has
two steps. They must first agree on a set of random orthogonal matrices
to do the scrambling, amd then, each time they want to talk, they must
decide in what order to use those matrices. If the matrices are made
on the fly (see section 4,5), the first step is unnecessary.

This type of communication seems a good use for a public key
protocol. Since Alice knows Bob's phone number when she calls, it's
not unreasonable to assume she can also look up his public key. Alter-
natively, she could access a network designed for this protocol that
would determine Bob's public key based on his phone number from a large
data file,

The callers can first identify themselves by communicating in
digitael form using the opublic keys. Now the only problem is the same
one on a real phone call -- Carla could pretend to be Alice to fool Bob,
and he would not know until she had spoken a few words. In the same
way, Bob does not know who is calling hinm at the first transmission, but
he will at the second, requiring Alice to sign her message.

After these three transactions -- Alice to Bob, Bob to Alice, and
Alice to Bob again, the seed for a random number generator can be
exchanged. Bob may send it to Alice, with his signature; she can then
return it, with her signature, and both can switch from digital to ana-
log mode.

when they're done, they just hang up.
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3.7 A FAST TRANSFORM?

One final note concerns an algorithm which would vastly improve
the soeed of the scramtler. The key time-consuming operations are those

to transform a signal from time domain to prolate spheroidal weights.

If a block of 32 samples is converted to 22 weights, those weights

are scrambled, and then they are built into another block of 32 samnles,
then 22%32 + 22%22 + 22%32 = 1892 operations are required. (For this
reason & 32 x 32 matrix multinlication is preferred.)

However, if a fast transform of O(n 1g n) were available, then
only 5%32 +22#22 + 5%32 = 804 operations are needed. Although no such
algorithm has been found, the prolate spheroidal sequences do have many
interesting nroperties which may make theilr weights easier to find. An

algorithm to do this would be of great mathematical interest.
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Scrambler Unscrambler

input output error input output error
41,68 41,04 18 dB *

60.8 57.77 13 *

7009 68.9 15 *

150.3 138.1 11 32.9 32.8 25 dB
35.6 b4 15 51.5 51.4 27
54.8 52.0 13 63.3 63.1 25
69.3 © 1 67.2 15 131.3 131.2 31.
157.4 141.7 1.0 27.95 27.92 30

Channel Complete system**

input " output error input output error
41.04 32.9 7 dB 41.68 32.8 15 dB
57.77 51.5 10 60.8 51.4 14
68.9 63.3 11 70.9 63.1 19
138.1 131.3 13 150.3 131.2 11

*
- no input because of three-block delay

»x
- error measured with phase removed; is always less than error

betreen energy levels

Table 3-1 Sources of errors in simulated scrambler on 8 blocks of input
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SECTION 4 -- THE SOTLUTION

Soheroidal functlons, which have several applications in vohysics,
provide the key to a narrow-band scrambling scheme. They relate the
index1imited sequences to the bandlimited ones, and show how well one
can be represented in terms of the other. By using these functions, in
a form called discrete nrolate snheroidal sequences, it is possible to
scramble certain characteristics of a signal with high security and
little error.

Section 4.1 reviews the history of spheroidal functions, and their
application to the problem at hand. The nature of the discrete prolate
spheroidal sequences is discussed in section 4.2. Using their properties,
a basic version of the scrambler is presented in section 4.3, and a
complete version is analyzed in section 4.4, These provide the basis
for the software model in section 5. Finally, section 4.5 gives an
overview of anothef issue related to the scrambler: the selection of

encryotion matrices for maximum security.
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4.1 TROTATE SPHEROIDAT. WAVE FUNCTIONS

In this section we discuss tne history of orolate spheroidal wave
functions and some of their mathematical properties. In particular, we
show the relationship between indexlimited sequences and bandlimited

sequences.,

As described above, a voice scrambler must not expand the bandwidth
of its iInput if the output is intended for transmission over a telephone
channel. 3ince we scramble in finite blocks, we must find some way of
representing these finite blocks as combinations of indexlimited
sequences which are approximately bandlimited.

Consider the following problem, presented in [Slepian]. Suppose

we have & sequence h[n]. The sequence has a frequency transform H(w),

1/2
h{n | =4 HG) e ~2™0 g n = 0, 1, 2, ...

Assume h[n] is bandlimited to W (that is, H(w) = 0 for W < |w|< 1/2).

where

Since H(w) is periodic, it is also true, for instance, that H(w) = 0
for 1 + W < || § 3/2.

We seek the sequence h[n] for which a particular set of indices
contains the greatest proportion of the energy in the entire sequence,
that 1s, to maximize the ratio of the energy in some set of indices
[NO, NO + N - 1] to that in the entire sequence. Recall this is an
infinite sequence, so that bandlimitedness really means the same in a

periodic sense. The problem then is to find the largest A, defined as
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i-= NO + N -1

1] 2

> e ?

i = -oe

over all sequences h[n] bandlimited to W« The solution is based on the
discrete prolate spheroidal wave functions with parameters N and W.

Also note that since h[n] is concentrated to [Ny, Ny + N - 1],
1f we set to zero all values outside that range, we lose very little
energy. Hence the sequence, now indexlimited, is approximately band-
limited.

Before giving the solution, let us first review a l1ittle history
of the prolate spheroidal sequences. Mathieu functions and spheroidal
functions are special functions of vhysics first documented in the 19th
century. Flammer of Stanford and Stratton, Chu, and Corbato of M.I.T.
continued study of these functions in the 1950s. They are the simplest
functions of physics arising from a time-indenendent wave equation
[Meixner |.

Prolate svheroldal waveforms are of svecial interest in physics
because they are the only eigenfunctions of the finite Fourier trans-
form. In particular, for any real Y and € , define PSn(szz) to be the

solution to the integral equation

1
/ o1YET PS, () a1 = 217 (V) ps_(E)
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and its iterate

1
/ %?H%m b, p) o = 2¢,(1)° 5, ()

The first integral equation shows why the waveforms are useful
for mathematical physics. The second equation explains why they are
of interest to us. The multiplication by the sin x / x is really a
convolution; such a convolution is 1ike filtering or windowing the
waveform. The solutions then are those sequences or functions which,
over a certain interval in one domain (time or frequency), are only
scaled by a.constant when filtered or windowed in the other domain.
The interval is [-1, 1] in the equation above.

The discrete prolate svheroidal wave functions, on which Wyner
bases his scheme for scrambling, are successors‘to the continuous
wave functions discussed above. Landau, Pollak, and Slepian at Bell
Laboratories investigated the sequences related to the wave functions
as well in a series of five papers published between 1962 and 1977.

Discrete prolate spheroidal sequences are based on a certain
interval, or set of indices (just as their continuous counterparts rely
on the interval [-1, 1].) Let this set be (1, N]. The sequences also
depend on a parameter W, 1ike theY2 above. Define the set vk(N: W)

for k=1 .. N to be the solutions to

N
Z sinﬂ?gwgnmg m) Vk(Ng w)[m_] = )\k(N: W) Vk(N3 W)[n]
m=1

for n = 0, *1, t2, ,,,
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It is this relationshis which makes the 5753 useful. & large )\,_:
for some N, ¥ will produce a sequenca Vi which is highly concentrated
to the indices [1, N]; in other words, it loses little energy when it is
Indexlimited. This produces the most "concentrated" sequence and
solves the problem above. It is conventional to 1et')«1 be the largest
(L.e. closest to 1) of the values )k' so that v, solves the original
problenm,

As an additional result, note that since this DP33 is already
bandlimited, when it is now limited to a set of indices, it strays
1ittle from the desired band. Hence bandlimiting the indexlimited
version also loses little energy. It is the set of indexlimited
versions we choose for the scrambler, and these:are explored in the next

section.

4,2 DERIVATION OF PROTATZ SPHEROIDAL SEQUENCES

As shown above, a prolate spheroidal sequence does not change its
direction, or relative set of values, in a certain set of indices when
it is bandlimited. If we look at bandlimiting as a discrete convolution
then we can find the discrete prolate spheroidal sequences .

Band1imiting a sequence x[n] is the same as convolving it with the
non-causal impulse response of an "ideal" filter. If the desired band
1s [4,, W,], the filter is

1, W, < (wl < W,

" (w) =
0, lwl < Wii Wy < (vl < .5

Its non-causal impulse resoonse is
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Y ([n] = L (51n 2md,n - sin 2mi n), -00<¢nc<oo

Then if we bandlimif some x[ n], we Droduce

y{n] = Z L 0vn - z (1] ¥ [n-1]

or, for the 1ndices from 0toN-1, since y[n] = N x[n],

yLo] = x{oJy[o] + [\ JY[-1] + ... + x(n=1]Y[-nt1] = Ax{0]

s[1] = «LoT¥[1] + 1]y (01 + .vv + x[n-1]Y[-m2] = Ax{1]

s{n-17 = «L0]Y[n-1] + {1]¥ [n-2] + ... + *{n-1]Y[0] = Ax{n-1]
This can be expressed more compactly if we define an N x N matrix K
such that

K 5 = Y[1-3]
and observe ¥ = K X = XX. This eigenvector equation has N solutions
which are indeed the discrete prolate spheroidal sequences for the
parameters N and [W,, W,].
The discrete prolate spheroidal sequences, being eigenvectors of

a real symmetric matrix, are hence orthogonal to one another, and they
form a basis for RN. Assume they are normalized, i.e. “le| = 1.

Consider the eigenvalue \ 3 corresponding to each eigenvector xj.

If we define
,lj[ij =Xye 1€ 1€ N
c.=49.
J B¢J
that is, the sequence resulting from bandlimiting X to [w]. ”2]' then

e 1] = A }‘jfij. 1$1€N

The energy of ¢j in the desired band is
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/2 *
lEJ(H)‘z dw = A léJ(w) r(w)i éJ(w) dw = (cj'ﬁ‘)}

W1~‘IW|~‘ W,

N N
12;1_ of1]#{1] - 21 M 20T = M-

Hence the energy of ﬁ% in the desired band is exactly Aj' and since
energy cannot be restricted to a given band and set of indices, we
knbw 0< Xj <1.

label the Ay such thath, ¥X, ¥ ...» Ay, We know that band-
limiting ¢j reduces its energy from 1 to Xj: also, the amplitudes in
the range (1, N] are reduced by the factor xj' so that thelr combined
energy becomes ij. Thus the energy outside the indices increases from
0 to Aj(l - Aj). We would like to minimize the energy which strays
outside the set of indices and which is cut off by bandlimiting. This
requires Aj close to 1. The question is, how many and how close to 1
are the Aj?

Observe that, since the sum of the elgenvalues of a matrix is the

same as the sum of the elements along the diagonal,

N
E )\J = trace K = 2(w2 - Wl)N

J=1
Next, by squaring the eigenvalues, we have, using a trick in [r,andau_'],

N N
Z ij = trace (KTK) = Z Yz(n-m)
Jg=1 n,m = 1

< 2(w2 - WI)N - 0(1og N)

as N-eo, For any 5. the proportion of eigenvalues A, such that & < A
J J
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<1 -8, 2pproaches 0 as N0, A1l Xj approach elther 1 or 0 to
satisfy the 1limit above.

Wyner and [Slepian] prove other useful theorems about the rates at
which the Aj approach 0 or 1. TIn particular, the sevaration occurs at
Ayyne in that

A oA, ¢ n€2(W, - ¥)Q - ¢)
)\n %0, 2(w‘2 -W)Q+€)s ngN

These sequences form a basis for RN, since they are orthogonal,
and, as desired, the first 2WN or 2(w2 - wl)N of them form an approx-
imate basis for the near-bandlimited sequences on [1, N].

By pverforming a. prolate spheroidal transform, we are able to

determine 2(w2 - HI)N values which describe accurately a section of a

bandlimited signal. These can be scrambled and recomposed,

4,3 SIMPLIFIED SCRAMBLING SCHEME

Having shown how to find a basis for the approximately band1limited
sequences over [1, N]. we now show how to use such a basis to scramble
sequences. Define the operatorﬁ to bandlimit a sequence to [wl. wzj,

and define C(a) for a sequence a[n] to be
s &)
ali®

that is, the concentration of a[n] to the desired band. Note that a[n]

c(a)

1s defined for all :integers n, but is zero outside the region [1. N].
For any such sequence a[n], the "contributlion" or "weight" dﬁ of

t e discrete prolate spheroidal sequence}?sj i1s the dot product, or
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€= D> {1140
i=1
To see this 1s true, observe the recomposition of the welghts, recalling

that <¢j’ ¢k> = 1 if and only if j = k, since the eigenvectors are

orthogonal.
o[1] =jZl <« B1]
1Z=1 L1]4,01] - :Zl( :}:_"1 a f1] )km
-3« }: oL
o

Now if we expamd C(a), it is seen that
a nZac sk 2 o <66, 84>

BE ﬂ a|f loll?
Z A thz )

c(a) =

= Lk 1ff § = k, or 3
2 2
] «
J
We have seen that Xj %0 for j = 2(w2 - wl)(l +€ ). Thus, for large N,
2(w2 - Wl)N
>,  af
‘ J
cla) n 427

[N
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The scrambler permutes these first 2(w2 - WI)N weights,
Let M be a v x v orthogonal matrix, where v = 2(w2 - wl)N. Then

-h - -
let the encrypted weights 8 be defined as 8= (B, ..., ) = ML The

output sequence of the scrambler, for one block, is then

L]+ > @ -a) g
=1

So that we do not lose the parts of a[n] not in the first v weights.

This is the same as

v N
0 5 A 3w
=1 Jj=v

It is clear we can recover an] from Y n] using ML, The key result

comes from analysis of C(b):

v N
Z AEAs + Z G N

o
The denominator is obtained from the fact that llall = |l ull, because the

transformation is orthogonal.
v

2 2 2
Vell® (c(a) - c(v)) - _}:1 o2\ - BEN
£

\4

2 2
‘Z @ - fy A

J=1
= (1 -X) Z ocj2 € =) [alf
J=1

Hence C(a) - c(b) £ 1 = A\,» and if we choose xv close to 1, both

Sequences are equally concentrated., In this case, b[n] is no worse
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than a[n] for transmission throush a bandlimited channel.
But choosing kv close to 1 has a drawback: It requires v less than
2(w2 - H1)N. We would 1ike to scramble as much energy in a[n] as is

possible, and it seems a larger v is necessary. To see this, consider

N v
D I D I S D I Y
Jg=1 J=1 J= vl
v N v v
€€t eN, ) at - > e Q- ) ad)
a ] J= v+l jJ=1 =1
BRI L i
J=1

Hence, recalling the definition of C(a) and casting out a factor,
v
E 2
. x‘
- ‘ J
g(a) )\v < j=1

Ch

\4

This means we should keep )gv small to bring the energy in the first
v weights Aj close to ||5a"2 This also leads to a better method for
scrambling. Suppose we have two bands, one for input and one for output
which we denote by [Wl, W,] and [Wi, WZ_]. Now 1f v = 2(W, - wl)N(l +€)
we can scramble nearly all the energy in the input signal, since XV will
be near zero. And if v also is equal to Z(ﬁ2 - ﬁl)N(l -€ ), the output
signal will be very much concentrated to the desired band, since fv will
be near 1,

The result is that we choose W, - W.l = (1 + 2€)(W, - W,), for some
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small €, When we use separate bases (corresponding to the different
bands), we can no longer preserve the energy in a[n] not in the first v
weights. Thus in this method, we have two bases ¢j and 8 48 ve compute

Cand B as above, and set
{1] = Z - BVEY
Jjg=1

4.4 COMPLETE SCRAMBLING SCHEME

We are ready to describe the full scrambling scheme presented by
Wyner. Refer to Figure 4-1 for a block diagram. There are seven
components in the full scrambler system from transmitter to receiver.

We have shown above how to nermute v weights; what is shown here is the
analysis of a compiete transmission system using the scrambler.

What we have discussed above is a mapping from RN to RN through
some matrix M. In the complete version, the input is separated into
blocks of size N, and the output is the concatenation of their scrambled
versions. Hence input a.[n] for -00 < n<00 to the simple scrambler
produces output Y n], where

a[ kN]. . .a[ k#N-1] e Y kN]. . . b[kMN-1], -e0<k < 00
It 1s these infirite a[n] and Y n] which are discussed here.

The input waveform x(t) is taken from the voice source, and sampled
at some period T to vroduce a[n|[, where a[ n] = x(nT). This a[n], in
- blocks of N values, is scrambled using the scheme above. The output

of the scrambler, b n], is modulated. We use a reconstructing filter

go(t) which is restricted to the desired band, to produce
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Lt/7]
y(t) = Z B n] g,(t-nT)

n= -0
The signal y(t) is ready for transmission through a channel. The

channel will have some frequency response Hc(w), so that the output is
Z,(£) = H (£) Y(f)

where Zc(f) 1s the inverse Fourier transform of zc(t), ard Y(f) that

of y(t). The channel also has some random stationary noise u(t); let

z(t) = zc(t) + u(t) be the channel output.

Now it's the receiver's turn. A sampler produces values
(impulses) at intervals of time T, and these are passed through a
tapped delay 1line or equalizer of length 2K + 1 to compensate for the
effects of the channel and modulator. Call the output of the
equalizer Y n]. Note that C(w) is the frequency spectrum of the
discrete-time equalizer.

Finally, Y n] is unscrambled anmd yields 8 n], the receiver's

estimate of the original sequence. A desampler allows the final output
Lt/7l
x(t) = E a[n] gl(t - nT)

n= -0
We examine the effects of the various components on the expected

error between x(t) and x(t). Define P,,+ the average vower of the

transmitted signal y(t), to be
Pav =l ) 5? y (+)d+ ]

and the mean-squared error G

€= un o 5= [x(t) - x(t)T? at ]

T-wo0 -7
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dyner nroves two theorems about the upver bounds on these
qQuantities. The first theorem bounds Pav based on the input energy.
A typical voice signal can be characterized as a statlionary random
process with power spectrum Px(f)‘ Let the expected energy

o2 = o] xz(t) ] = ' P (f) af

X
The theorem is F‘lS lﬁSF 2

v
2 N 2 1
< — - -
Pay - § o'x VT/ GO(f) df"'Alvz , ¢ xj)
F, slei<F, j=1
Go(f) is the frequency spectrum of the modulator above. N, T, v,

F,» and F, are the system parameters, and )—"j are the eigenvalues for
the basis on N and [H1 0 Wy] (F‘1 and F, are the "real” frequencies
desired, whereas wl and H2 are those in the discrete version. They
are related by W = FT.) TzAl 1s the largest magnitude in GO outside
[Fys Fyl, or \
[co(6) |
A.l = sup ———

The term summing the (1 - )\J) is small, according to the way we
chose v above, as all Xj are close to 1.

The second theorem beounds 62 as the sum of errors from noise, the
channel, and the scrambling itself:

2 2 . 2l

€2 -c?:+¢?.¢

n c s
2 2 1 -
9 = -
€ S 5 <lel<F c(fT) Pu(f) df + A, 2 (1 ;j)
LA =1
where Pu(f) is the power spectrum of the stationary noise u(t). The
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second term, again, is small; the noise error is no more than the

power of the noisc in the desired band, as modified by the equalizer,

¢° so;z[% I%C(fT)Hc(f)Go(f)-lldf + . Z (1-Xj)]
=

(o]
F.ffleF,

Here, again, the second addend is small; A3 depends on the energy
outside [El' FEJ. It is desirable to make a very accurate delay line,
so that the integrand is near 0. Of course, the cffect of that term
i1s not related to the scrambler, and would introduce the same error for
typical speech as for encrypted speech.

652 f[m;x P(f)] Z )\

=V+‘|_
Finally, the error implicit in the scrambler using two bases

corresponds to the energy omitted in the input transformation. This
is bounded by the power spectrum of the input. These errors, as

revealed by simulated results, are discussed in section 3.2.

4,5 SELECTION OF RANDOM MATRICES

The key property of the matrices used foi scrambling in Wyner's
method is thelr orthogonality. This property is necessary to avoid
expanding errors during the decryotion. Theoretically, the matrix used
should have no effect on the system's performance, as long as it is
orthogonal. But certain matrices are clearly unsuitable from a security
standpoint. We look at the generation and oproperties of the matrices
here,

Wyner shows that if the scrambling matrices Mk' -0 < kcoo, are
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chosen from a uniform distribution on the set of all orthogonal matrices
then the scrambled weights Bj have no correlation from one block to the
next. Hence matrices with uniform Haar measure provide perfect
security, because an adversary is unable to gain any information from
the transmitted signal about the exact form of the original speech.

The time required to generate these matrices can be quite large --
say 0(n3) for Gram-Schmidt orthogomalization -- and a more desirable
method is to select from a set of precomputed matrices.

A method based on Hadamard matrices is discussed in [Sloane].

These matrices are said to exist for n = 1, 2, or a multiple of 4, and
each entry of such a matrix Hn is 1 /rﬁ' or -1 /yn. There is also an
algorithm known as the fast Hadamard transform which allows multi-
plication of a vector by Hn in time proportional to n 1g n.

The suggested use of Hadamard matrices is within permutations and

diagonal matrices, that is, defining

M= D1 PH QD,
where P and Q are arbitrary permutation matrices, and D1 and D2 are 1 or
=1 on the diagonal, and 0 elsewhere. These products can be precomputed
and saved; when one is needed, it is selected at random from the set.

Let Sn be the set of all such matrices. Sloane shows the following

about the security of scrambling with matrices 1in Sn:

o The covering radius of 5, 1s J2n(1 -1 /v'n) . A covering
radius is a measure of how well a set covers the orthogonal group
0(n). A small covering radius is mor= secure.

o The deep holes in S, -- the matrices in 0(n) furthest from S, -~
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are the monomial matriccs; These matrices have exactly one non-

zero element in each column, and the element is 1 or -1.

The "tighter" Sn is, then, the less likely it is that a matrix
wWill become a deep hole. A larger value of n, as exnected, increases
security, in that degenerate cases are unlikely. One other observation

is that Sn is very large:

22n (n' 2

(n-1)(n“-2n-2)

Sn =

when n-1 is a prime greater than or equal to 19, and the prime is of

the form 4a-1.
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SECTION 5 -- THE SOFTWARX

Software simulation of Wyner's model requires about 40 pages of
programs, given in apoerdix A. The organization of the programs, and
the assumotions underlylng the simulation, are discussed here. The
simulation is verformed on a Tisp machine, useful because of its
granhical output and debugging facilities. The Tisp language also
provides a clever system of object-oriented programming used to build
a model of the scrambler.

The basic components are presented in section 5.1, with an intro-
duction to the concepts of flavors in Lisp. The following section
describes the components of the block diagram as they are simulated.
Three of these components -- the desampler, channel, and equalizer --
are discussed in greater detail in section 5.3. The simulation of
channel noise, a somewhat tricky phenomenon, is explained in section
S.4. The last section reviews the major algorithms used in various

vparts of the simulation,
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5.1 SOFTWARE COMPONENTS

An 1deal test of the scrambler would be provided by an actual
hardware implementation, using a real channel and measuring real errors
in specch quality. Since the purvose of this thesis is to find the
required complexity of such a hardware impiementation, software is
used instead to model real overation.

M.I.T. has many Lisp machines, ideal tools for building a model
of the scrambler. The use of Lisp 1s a drawback for the required
mathematical operations, but this drawback is easily outweighed by the
debugging system and graphical capabilities of the machine.

In addition, Lisp data abstraction simplifies the representation
of the scrambler and its components. Objects called flavors provide a
means of message-passing and object-oriented programming. These objects

maintain states called instance variables and operate on those

variables through messages, or methods.
One basic data type of the scrambler is the discrete-signal., It

has five instance variables:
o time-values, an array containing the discrete samples;
o time-base, the time at which the first sam le is taken;
o time-increment, the sampling period;
o freq-values, an array containing the discrete inverse Fourier
transform of the time values; and
o sample-size, the number of samples.
A discrete signal correspornds to a finite segment of a voice signal

transferred among the various components of the scrambler. It can also
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approximate a continuwous signal, when the time increment is sufficiently
small.

The methods for the discrete-signal objects include, among the
obvious ones,

sample period

bandlimit low high

indexlimit low high

convolve signal2
Note that the methods have arguments, which are also passed as part of
a message to the object. These and other methods are described in full
in appendix A, which contains the programs.

The other basic data type is the matrix, which is used for the
transforms to and from the prolate spheroidal basis, and the scrambling
of weights in that basis., It has, of course, the instance variables

0 Trows

o coluwnns

o elements
and the operations

o multiply matrix2

o eigenvectors-and-eigenvalues

The second operation above is relevant only for square matrices in
this system; in fact, it is used only for real symmetric matrices. The
flavor system allows mixing (hence the name flavors) of operations ard of

data types. A real-symmetric-metrix is a matrix with a few more

- methods,
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Much of the software is directed toward management of the data
types listed above. The other feature of flavors -- their use in

message passing -- is exploited in the functions which drive the model.

5.2 BLOCK DIAGRAM OF THEZ SCRAMBLER

A data object is defined for each component in the block diagram
of the scrambler, explained in section 4.4. These objects have two
operations, namely

O process signal

0 connect module

The process operation performs appropriate functions on the input
signal -- scramﬁling. desampling, addirg noise, etc., then passes the
output signal to other modules. The connect operation adds a module to
the 1ist of successors to which output is sent. A signal is sent by
passing a process message, with the signal, to a module.

This system creates a dataflow-1ike network. The operation is
sequential, but the message pasaing allows the comprnents to operate
independently. A driver routine connects the modules, and enters a
loop from which it sends the initial module a series of input signals.
These signals correspond to blocks of samples of speech.

The following modules arc used:

o sampler -- samples signal at specified rate;

0 scrambler -- scrambles values in signal and outputs scrambled

signal;

O unscrambler -- reverses scrambling;
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0 comparator -- prints energy of error between most recently
recelved nair of signals;

o display -- plots values of signal on screen;

o desampler -- outnuts "continuous" signal derived from an impulse
response apolied to two most recent signals;

o channel -- applies tyvical channel impulse response to recent
signals, amd adds noise;

0 delay -- introduces a wait between receiving a signal and send
ing it to another module;

0 equalizer -- applies equalizer impulse response to simulate
tapped delay line.

One more module synchronizes the operation of the scrambler and

unscrambler:

o random-selector -- chooses a random orthogonal matrix.

It is intended the random-selector will pass the matrix to the
scrambler and unscrambler. The complete diagram of the scrambler as it
is used for simulation is found in the documentation for the programs,
in appendix A,

The display module enhances testing of the scrambler, using the
graphics of the lisp machine to produce a plot of the time sequence a
signal represents. It is connected to the Input and output parts of the
block diagram to provide a visual method of inspection of the signals,
in addition to the comnarator's quantitative error measure.

The driver routine starts the data flow by reading a set of voice

samples from a file and passing them to the 1nput samples. These voice



-

samples are stored at a rate of 16 kilz, and the innut sampler converts
them to a slower rate. The signals move throuzh the network until they
reach the disnlay and comvarator modules, which do not sernd them any
further; at this point, the driver senmds another set of samples.

The operation of the scrambler, sampler, random-selecinr, ard
comparator are relatively straightforward. The other modules --
desampler, channel, and equalizer -- requlre more careful implenentation

ard are discussed below.

5.3 DESAMPLER, CHANNEL, AND EQUATLIZER

Consider first the model of a desampler. It transforms a sequence
of time samples into a "continuous" waveform limited to some band, say
[Fl' FZJ' (The actual model uses a slightly wider band, for reasons
explained in section 3.3,) One simple method which comes to mind is the
following:

1. Convert the input sequence, of size N, to one of size 8N,

by putting 7 zeroes between each sample,

2., Compute the discrete Fourier transform and set to zero the

values at those frequencies outside the desired band.

This method does not work, for reasons much 1like those explaining
why sinusoids cannot be used as the basis for the scrambler. One cannot
perform operations like these "in place," because the discrete Fourier
transform assumes the time sequence is reoeated over and over again; it
has no provision for non-periodic sequences.

We would like to avoid, however, explicit convolution with an



~47.

impulse response, as that method is slow, running in time O(NZ). The
discrete Fourler transform can perform a circular convolution in time
O(N 1g N). We can avold the circularity by a simple trick.

The i1dea is to represent the impulse response as 16N points, where
the second 8N are all 0. Then any circular convolution with an input
sequence of 16N points will produce outout which is correct for the
second 8N points. In other words, let h[n] be the impulse response
and X[ n] the input. We have, in circular convolution of 16N-point

samples, -

n_ 6N~
y{n] = ?:;‘o x(1] h[n-1] + 11}:::1 ' . x1] h{n-1+16N]

Clearly this dependence on values of x[i] for i < n is undesirable in a

model of a causal system. But since h[i] = 0 for i » 8N, we have,
n
y{n] = ?: x{1] n{n-1] 1f n< BN-1
= n-8M1

n 16N-1
yo] = iZ; o x(1] h[n-17 + 1Z-n+ x(1] h[16N-1-n] otherwise

8N+1

The values y[1] for 8N-1€ 1 € 16N-1 are dependent only on those
values of previous x[1]. Other values of y{1] we can discard, and the
correct y[1] values become the output of the desampler. In fact, it is
this method we use for each of the modules discussed in this section.

The desamnler exvands an innut into 8N values as describad in sten
1 of the naive algorithm. These 8N values are combined with the pre-
vious 8N, and the resulting 16N are convolved with the h{n]. The upper

half of the output is the result.
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The channel, meanwhile, has an input of size 8N already (from the
desampler). It does not require exnansion. Finally, the equalizer
operates on the output of the samnler, and performs a convolution of
slze 8N -- a long response is necessary to compensate for the other two
components.,

We next discuss the creation of the impulse resnonses for the
modules above. The desampler is quite simnle -- the 8N relevant vpoints
are those surrounding time O in an "ideal” filter, shifted by 4N. Here
an impulse at time 4N is bandlimited to the desired [F,, F,].

One may wonder if 8N points are sufficient to represent the entire
impulse response with 1ittle error. Recall the impulse response of an
i1deal filter is

1

h(t) = I (sin 2nF,t - sin ZnFlt)
Suppose Fl is about 300 Hz and Fé is about 3000 Hz. Assume also that

a sample is taken every 100 us, and N is 32 (or, each continuous block
256 points). Then the value at 800 us is the first not included when
approximating the imoulse response. We have

h(0) = 2(F, - F,) = 5400.

h(.0008) = -163.

h(.001.6) = =214,
Hence the energy at the center of the response is 1000 times that at the
cutoff, and 640 times that twice as far away. Approximating the response
is reasonably accurate, according to these calculations.

The impulse response of the channel is derived 1n a similar way,
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except that a real filter is applied to the impulse at 4N, The values
of the real filter are taken from a graph in [Rabiner]. Stince the
majority of the 16N-point frequency domain is outside [Fl' FZJ' only
a few values of the real filter can be used. For example, if N = 32
amd the fundamental frequency is 312.5 Hz, then only 18 of the 512
points in the continuous renresentation are non-zero.

These points are very rough. The typical telephone channel
frequency response is smooth when plotted in decibels, but such
smoothness is lost when the decibels are converted to magnitudes. See
graphs 5-2 ard 5-3 for a comparison. The other function of the
channel module, to add noise to a signal, is discussed in the next
section,

The equalizer, finally, compensates for the effects of the
desampler and the channel, excluding noise. 1Its impulse response
is the inverse of the combined impulse response of the desampler
and the channel. The frequency response of the equalizer is computed
by finding the impulse response required to convert the combined
response above to an "ideal" filter over [F,» F,]. The required
response 1s long, and includes a delay of 3N points (that is, three
blocks), to provide the most accurate output. The equalizer, since it
follows the second sampler in the block dlagram, operates in sampled

form, not continuous form as the other modules above.

5.4 NOISE SIMULATION

 Nolse in an-actual transmission line is a phenomenon which is very
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difficult to measure. Comparing the average power of noise to that of
the intended signal is not normally useful. [3ell]

Indeed, noise level and voice level are measured in different units
to avoid their comparison. Voice levels are measured on a qualitative
scale of volume units, or vu; nolse is measured in dBrnc, with respect
to a specific noise threshold.

The average power Pav of a voice signal with volume level V depends
on the channel load TL' that is, on the percentage of use of the channel
being measured. This relationship holds:

Pav =V =~-1l.4+ loglo TL

A typical volume level is between -14 and -25 vu, with typical
load of .25. Hence Py 15 generally between -12.4 and -23.4 dBm. (A
dBn is defined such that 1 m¥ is O dBm.)

Noise is measured in dBrnc, where O dBrnc is -90 dBm, and the
measurement is scaled with respect to something called "C-weighting."

Understanding of a voice signal is related to noise level as follows:

Understanding Noise Level
excellent 29,5 dBrnc
good 39.0
fair 48.0
poor 55.5

Excellent understanding is possible, then, when noise is at -60.5
dBm, or 37.1 dB less than the lowest voice level, in thils simnlified
analysis. Poor understanding occurs at only 11.1 dB less than the voice

level.
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Two observations confirm these noise estimates. A tynical stereo
casette deck has seraration between left and right channels of "better
than 30 dB at 1 kHz" and signal to noise ratio of "57 dB without Dolby."
A Tincoln laboratories report [Holsinger] estimates low-level nolse in
a telephone channel is between 20 and 50 dB less than the signal energy.

Since, as shown below, the variance of a random variable with a
normal distribution is also its expected energy, we need only to
multiply a random variable by the square root of the desired nolse level
and divide this by the square root of the sample time, to determine the
amplitude of the noise to be added in the channel. The resulting value,
when squared and multinlied by the sample period to compute its energy,

has the desired ncise level.

5.5 AULGORITHMS

Four algorithms are central to the implementation of the scrambler.
To generate random orthogonal matrices we need, of course, & random
number generator and a method to make 2 matrix orthogonal. To compute
the discrete prolate spheroidal basis, we must be able to fimi elgen-
vectors. And to switch between time and frequency sgpresentations of a
signal, we need a Fourier transform algorithm.

The FFT algorithm used is an iterative method adapted from
LSedgewick]. It operates only on sets of data whose lengths are powers
of 2. (Another algorithm is included for lengths not powers of 2, but
it is much slower.) The algorithm relies on complex number ooerations.
Some Lisp machines suppnort them, and others do not; the scrambler has

its own.
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The algorithm is basically in three varts:

1. Reordering the data in bit-reversed fashion.

2. Performing successive FFT passes, in place, over the data.

3. Scallng the results if the transform is from time to frequency.

Running time is about 1.5 n 1g n, in ms. This is about 15 seconds
for a 1024-voint FFT, and 3 seconds for a 256-point FFT.

We turn next to generation of random numbers. The Lisp machine
provides a uniform generator over the range |0, 1). What is needed for
random orthogonal matrices and for noise is a pseudo-random value with
normal distribution, mean 0, and variance 1.

There are several good generators of this type | Sloane]. We choose
the oldest ana simplest, because it is easy to implement, and because an
exact normal distribution is not necessary. The main purpose of the
random matrix is to scramble the signals, but the choice of the matrix
has 1ittle effect on the performance of the system.

The algorithm used is straightforward:

1. Compute uniformly distributed random numbers Ul' ceep U12.

2, Return Up ¥ oo v 0, - 6.

The computation of the actual distribution produced by this algorithm
is comnlicated, but experimeni shows the distribution is roughly normal
(graph 5-1).

Now a word on normal distributions and their energy contents. The

distribution p(x) with mean 0 and variance v can be expressed as

1 X/

p(x) = =
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where
oe

v = x> o(x) dx
-0

Note that v, the variance, is also the expected energy E[xzj.

These random numbers can either be used to add noise to a trans-
mitted signal or to create a2 random orthogonal matrix. When they are
used to make a matrix, the matrix must be orthogonalized, and the Gram-
Schmidt algorithm from [Strang] is used.

This algorithm is iterative on a matrix A of size n x n, making
columns 1, ..., n orthogonal and of length 1. For each célumn 1, the

components of columns 1 + 1, ..., n are removed. Denote column i by Cye

o
'
*u1=

2, ere op>es

“ ¢ - %(_': <c1. c:j) c; “

i

(=

Thé contribution of cj in ¢y is thelr inner-product. For only
those columns following ¢, are the components removed, because we have
2lready made previous columns orthogonal to Cye

The adjusted c, 1s then divided by its length so that 1t becomes
orthonormal. When this process terminates, the matrix is orthonormal.
The generation of such a matrix requires n2 operations to produce the
initial entries, and n3 for the orthogonalization. Since the matrices
are generated infrequently, such expense is negligible. Other methods
in which matrices are generated during scrambling may also be used; one

such method is discussed in section 4.5.
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Finally, we adant an algorithm in [Goldstein] based on Jacobi's
method for computing the eigenvalues and eigenvectors of a real symmet-
ric matrix A, The algorithm is iterative, and it computes the desired
qQuantities by eliminating off-diagonal elements of A. The algori thm
terminates when the sum of the squares of the diagonal elements does not

change much between successive passes. The diagonal values are then

elgenvalues,
Let Rij be a rotation to eiiminate some element Aij' Since A is
symmetric, RijT can eliminate Aji’ So both are removed by calculating
T
. =
A" Rij A'Rij

In each pass, all Aij' i Jo greater than a small value are eliminated
by rotation. The matrices Rij are used also to compute the eigenvectors
as follows:

E' 3= Rij E
where E is initialized to the identity matrix. 7The final E will contain
the eigenvectors. Column i of E will hold the eigenvector corresponding

to eigenvalue Aii'
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Granph 5-1

Exvected normal distribution for 10,000 samples at .25 intervals
vs, actual distribution from pseudo-random generator

Mean = 0, variance = 1
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Graphs 5-2 and 5-3 Comparison of log-magnitude and amplitude plots

o - for simulated channel filter.

A
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SECTION 6 -- CONCT.USION

The scrambler anpears to meet its requirements, to the extent of
producing a poor but intelligible outout signal. Its security is suffi-
cient; its operating speed is reasonable. But the results presented
here are far from conclusive, for there are other issues at hand.

A complele hardware implementation of the scrambler is needed
to verify that its simulated properties hold in real systems with non-
linear distortion, and that complicated forms of modulation do not
adversely affect the quality of the scrambled signal. Telephone trans-
mission lines are designed for speech, not scrambled, but bandlimited,
signals -- will they operate as expected?

Modern integrated circuit technulogy will make the digital part of
the scrambler fast enough for poor or fair output at a low price. In
the near future, high quality outnut will also be possible, as processor
speeds increase, But at the same time, digital encryption and trans-
mission will become more accurate, and may compete against analog forms
of encryption on any potential market.

Wyner's method is a clever solution to a theoretical problen.

With some further ressarch, it could be determined whether the scrambler

solves a oractical problem as well,
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APPENDIX A -- PROGRAMS

The following programs are written in Zetalisp, and will run on
either an M.I.T. or a Symbolics Lisp Machine., Ther  are four files,
including

o the matrix operations;

o the discrete signal operations;

o system atilities; amd

o a block diagram for the scrambler.,

This version of programs is not the same as that actually used
for simulation, and it may include minor bugs. The real versions
contain few comments; the ones printed were documented on another
computer system. Minor reorganization of code may have introduced

Some errors.,
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-%~ Mode!l.ISP} Fonts:CPTFONT# Basell® —%-

Software for simulation of Aaron Wuyner’s analod encrurtion scheme,
Written by Burt S. Kaliski as rart of an underdcraduate thesis
proJect.

Massachusetts Institute of Technolosguyr, Mauw 1984.
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f —mmmmmemmm e m e Utility functions ------=—=-—-—--———=c=---
(tor x) returns the least inteder dreater than or eaual
(bottom x) ::t:rns the dreatest inteder less than or eaual
{(find-char s i) ::tzrns character i (at least 1) of strind s
(exriQ x) returns 10 Xx x

(array-size values) returns the lendth of an array
(arrau-disa values n) returns dimension n (at least 0) nf an arrav

(daamd n Wl w2) evaluates the imPulse response of an ideal
filter over L[wly w21 at tine n
(normal-random) returns a random number taken from 2 normal

WS WP WO WS WP W WS W O VS W W ™

distribution with mean 0 and variance 1

(defun tor (x)
(let ((trunc (fix %x)))
(if (= trunc X} trunc (1+ trunc))))

(defun bottom (x)
(Pix X))

(defun find-char (str 1)
(character (substring str 1 (1+ 1))))

(defun exprl0 (x)
(" 10, x))

(defun arrag-size (values)
(arrau-¢-dims values))

(defun arras-dim (values n)
(arraw~-dimension-n (1+ n) values))

(defun damma (n wl w2)
(let ((pi-sum (X 3.1415926 (+ w2 wl)))
(Pi-diff (%X 3,31415924 (- w2 wi))))
(X ,6366197835 (cos (X pi-sum n))
(if (= n 0) pi-diff (/7 (sin (x pi-diff n)) n))))))

(defun noraal-random ()
(do ((i O (14 i))
(value 0.0 (+ value (siirandom~in-rande 0.0 1.0))))
((= i 12,) (- value 6.0))
nil))

b~ Complex number orerations ----------=--—-==-==-

{ The twrical coarlex number constructors selectorssy and orerators
} are supported. Nax-fun-comprlex comrutes the maximun value of an



arbitary function of each element over an arrau of comrley numbers.

Comrlex numbers are rerresented as flonums (indicating 8 Zero
imadinary part)r or 3s dotted erairs of flonunms.

(defun make-comrlex (3 b)
(cons 2 b))

(defun make-rolar (andgle)
(make-complex (cos ansle) (sin andle)))

(defun add-comrlex (zl z2)
(make-comrlex (+ (real-rart z1) (real-rpart z2))
(+ (imag-rart z1) (imad-rpart z2))))

(defun sub-comrlex (z1 z2)
(make-comrlex (- (real-part z1) (real-rart z2))
(- (imad-rart z1) (imad-part z2))))

(defun ault-comrlex (z1 z2)
(mzke-comprlex (- (¥ (real-rpart z1) (real-part z2))

(kx (imad-rart zl1) (imad-rart z2)))
(+ (X (real-part z1) (imadg-part z2))
(X (imadg-rart z1) (real-part z2)))))

(defun div-comrlex (z1 z2)
(let ((scale (float (+ (" (real-part z2) 2)
(" (imad-rart z2) 2))))

(real-sum (+ (X (real-rart z1) (real-rart z2))
(x (imas-prart z1) (imad-rart z2))))

(imad-sum (- (X (imag-rart z1) (real-rart z2))
(X (real-part z1) (imad-rart z2)))))

(cond ((= scale 0.0) (make-complex real-sum imad—-sum))
(T (make-comrlex (// real-sum scale) (// imad-sum scale))))))

(defun resl-rart (2)
(if (numberr z) z (car 2)))

(defun iaad-part (z)
(if (numberpr z) 0. (cdr z)))

(defun abs-comrlex (z)
(let ((r (abs (real-part z2)))
(i (abs (imad-rart z))))
(cond ((< r 1.e-15) i)
((< i 1.e~1%) r)
(T (sart ¢+ (" r 2) (™ i 23))))))

(defun max-fun-comprlex (z-array fun)
(let ((size (arrau-active-lendgth z-array)))
(do ((i 0 (1¢+ 1))
(m 0 (max (abs (aprly fun (list (aref z-array i)))) @)))
((= i size) m)
nil)))

S LR L D L L Discrete rrolate srheroidal basis ~----~----o—-

The followind functions are used to generate a discrete prolate
sPheroidal basis. A DPSS is defined bw three rarameters! wlr w2, and
ny where (wlr w2l is the redgion of C.0s .51 on which rart of the



} basis is concentratedy and n is the number of roints in the basis.

(defun make-prolate-srheraidal-basis (n nu f1 2 reriod)

Returns the basis defined for f1 X reriody f2 X reriods and ro
where nu is the number of vectars in the basis returned. The basis

is represented a3s an n x nu matrix.

- W e

(send (make-damma-filter-matrix n (X f1 period) (X £2 reriod))
‘teidenvectors~ordered nu))

i it Sidgnal constructors ---=----=--------s---==

(defun mske-discrete-signal (time-values time-base time-increment)

Returns a sisnal obJect whose time rerresentation is taken from
time-values: with base and increment set to Lhe corresronding

arduments.
Reauires that time-values has a fill rointer.

(let¥ ((samrle-size (arrau-lendth time-values))
(frea-values (make-array sample-size ‘!fill-rointer 0
‘¢initial-value 0.0)))
(make-instance ’‘discrete-signal
‘tcamprle-size sample-size
‘ttime-values time-values
‘ttime-base time-base
‘ttime-increment time-increament
’$frea-values frea-values)))

(defun make-discrete-filter (frea-values time-base time-increment)

$ Returns & sisnal ob.ect whose freauency representation is taken
} from frea-valuess with time base and increwment set to the

} corresronding arduments.

) Reauires that frea-values has a fill rointer.

(letx ((saarle-size (array-lendth frea-values))
(time-velues (make-array sample-size ’‘ifill-pointer O
‘Yinitial-value 0.,0)))
(make-instance ‘discrete-sisnal _
‘{samrle-size samrle-size
‘ttime-values time-values
‘ttime-base time-base
‘ttime-increment time-increment
‘{frea-values frea-values)))

------------------------- Matrix constructors -------—-======-=-==-o=—-

(make-matrix elements) returns a8 matrix obJdect with size
on the array elementsy which nay
have one or two dimensions

(nake-syanetric-matrix elements) returns a8 summetric-matrix ob.Jdecti
elements must have two eaual
dimensions

(make-identitu-matrix n) returns an n x n identity matrix

(make-daama-filter-matrix a wl w2) returns the m x m matrix used for
making the DPSS of wly w2r n

(make-random-orthosgonal-matrix n) returns a randomlu~generated:r
orthadonal, n x n matrix
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$ Make column i orthodonal! Subtract compaonents nf columns O0,.i-1y
¢ then normalize

(do ((i O (1+ i)))
(¢(= 1 n) (make-matrix elements))
(do ((k O (1+ Kk)))
({(= k n) T)
(aset 0.0 suam k))

i Comrute dot product of columns i and Jé¢ accuaulate in sum

(do ((J O (i+ JD)))
((= J i) T)
(let ((dot
(do ((k 0 (1+ K))
(dat 0.0 (+ dot
(X (aref elements k i)
(aref elements k J)))))
((= k n) dot)
nil)))
(do ((k O (1+ Kk)))>
((= Kk n) T)
(aset (+ (x daot (aref elements k J))
(aref sum k)) sum k))))

$ Subtract sum from column i and normalize

(let ((lendth
(do ((k O (1+ Kk))
(lendth 0.0 (+ lensgth
(" (nref elements k i) 2))))
((= k n) (sart lendgth))
nil)))
(do ((k 0 (1+ Kk)))
(= k n) T)
(aset (// (aref elements k i) lendgth) elements k i))))))

-------------------- Random orthosonal satrices -----------—--c====--

A scraabling matrix for 2 samarle is selected from 8 set of
Previouslu-denerated randoms orthodsonsl matrices.

(aske-random-orthosonal-matrices n count) returns a set of count
n X n such matrices

(choose-random-orthodsonal-matrix m) selects 8 sinsgle such matrix
from the sel m

(defun mske-random-orthogonal-matrices (n count)
(let ((matrices (make-arrauy caunt)))
(do ((i O (1+ 1)))
((= i count) maetrices)
(aset (make-random-orthodgonal-matrix n) matrices i))))

(defun choose-randaom-orthodonal-matrix (matrices)
(aref matrices (random (arrasv-lendth matricecs))))

) mmmmmmmme e Loading and dumpind aobdects --=~-=---=----------

i The following orereations allow the matrices and sidnals which



characterize the scrambler to be dumred to a filer in human-readsble
forsr» and later loadedy thus savindg the time of denerating them.

The dume- orerations take two arduments, the obdect to be dumreds
and the stream on which to write. These orerations are!

(duar-mstrices matrices stream)
(duar-matrix metrixl streasa)
(dump-discrete~-sidnal sidnall stream)
(dump~discrete-filter sidnall stream)

The load orerations take onlu one ardumenty 2 stream. Thew reauire
that the contents of the stream be in the rraorer form$ no error
checking is provided. Theuw return the obdect dumped to the strezam.

They are!

(load-matrices stream)
(load-matrix stream)
(load-discrete-sidnal stream)
(load-discrete-filter streanm)

(defun dump-matrices (matrices stream)
(let ((count (arraw-lendth matrices)))
(rrinc count stream) (efrinc * Scount® stream)
(do (¢i 0 (1+ i)))
((= i count))

(terprri stream)
(send (aref matrices i) ‘{dumr stream "$Random orthodonal matrix®))))

(defun load-matrices (stream)
(letx ((count (read streanm))
(matrices (make-arraw count)))
(do (¢i O (1+ i))) -
((= i count) metrices)
(aset (load-matrix stream) matrices i))))

(defun dump-matrix (matrixl stream)
(send matrixl ‘{dump stream))

(defun load-matrix (stream)
(letx ((rows (read stream))
(columns (read stream))
(elements (make-array (list rows columns))))
(do ((i O (1+ i)))
((= i rows) T)
(do ((J O (14 J)))
((= J columns) T)
(aset (read stream) elements i J)))
(make-matrix elements)))

(defun dump-discrete-signal (sidnall stream)
(send sidnall ‘{dumr-time stream))

(defun dump-discrete-filter (sidnall stream)
(send signall ‘tdump-frea stream))

(defun load-discrete-sisnal (stream)
(multirle-value-bind (oridin inc roints)
(load-sisnsl streaun))
(make-discrete-sidgnal roints oridin inc))



(defun load-discrete-filter (stream)
(multirple-value-bind (oridin inc roints)
(load-sidnial strean))
(make-discrete-filter roints oridin inc))

(defun load-sidnal (straeam)

} Loeds either a2 discrete-signal or 3 discrete-filter from a stream.
} Returns three values! the oridins the incrementr and the arras of
i rpoints.

# Reauires the contents of stream weare rraduced by a dume.

(letx ((oridin (read streaa))
(inc (read stream))
(size (read stream))
(points (make-array size ‘!fill-rointer size)))
(do ((i 0 (1+ 1)))
((= 1 size) T)
(aset (read stream) pPoints i))
(values oridin inc points)))

b e Transmission line constructors -----------o--—--—-

(de?un make-channel (n reriod)

Creates a3 turical telerhone channel impulse resronser in
*continuous® formats Oof lendth 2 X n X rperiod. The resronse is
taken from 3 Bell Telerhone Labhoratories model. The resronse
lasts two ssmrles so it can be used for convolution without
circularity in the ueprer half,

(let ((full-filter (make-array 91. ‘!fill-pointer 91.))
(rotate (make-array n '¢fill-pointer n ‘$initial-value 0.0))
(filter (make-arraw n ‘!fill-pointer n ‘{initial-value 0.0)))

(fillarray full-filter
(marcar ‘exprll
'(-3,5 -3,2 -2.8 -2:9 =2.2 -1 -1.95 -1.3
'101 -009 -007 "006 -0.,4 "003 “003 '002

-0.2 -0.2 -0.1 "001_ -0.1 -0.1 -0.,1 -0.1
.0 0.0 0.0 0.0 0,0 0.0 0.0 0.1
0.1 0.% 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.2 0,2 0.2 0.3 0.3 0.3 0.4
¢.4 0.4 0.5 0.5 0.4 0.4 0,3 0.3
0.3 0.2 0.2 0.1 0,1 0.0 0.0 -0.1

-001 -0.1 -0:¢2 -0.2 -0.3 -0.4 -0.5 -0.5

-0.6 -0.7 "007 -0.8 -0.8 -0.9 -1.0 -1.0

-1, ~-1.,2 -1.,2 -1,3 -1.4 -1.,6 -1.7 -2.0

-2,3 =2.,4 -2,9)))
(aset 1.0 rotate (// n 2))
# Fundamental freauency ie 1 /7 n X reriod: Full-filter counts in
i increments of 39.0425 Hz., Transfer from full-filter (il) tc
i Pilter (i2)¢

(do ((i1 0.0 (+ il (// (% 39.0625 n period))))
(12 0 (1+ 12)))



((>= i1 921.5) T)
(aset (aref full-filter (fixv i1)) filter i2))

? Copy pPaositive freauencies to nedative freauencies!?

(do ((i 1 (14 i)))
((>= 1 (// o 2)))
(aset (aref filter i) filter (-~ n i)))

(let ((filter-signal (mske-discrete-filter filter 0.0 period))
(rotate-signal (make-discrete-sidnal rotate 0.0 reriod)))

i Convert to continuous formatr remove hidgh-freauency alissinds
# rotate reak into lower half of timn sampler and extend for

{ convolution.

(send filter-sidnal ‘!desamrle)

(send rotate-sidnal ‘!desample)

(send filter-sidgnal ‘ibandlimit 0.0 (// .5 reriod))
(send filter-sidnal ‘!filter rotate-sidnal)

(send filter-sidnal ’!extend 2)

filter-sisgnal)))

(defun meke-desamrler (n f1 £2 period)

} Crestes a desampler imrulse resronse whichs when arrlied to 3

f sisnal converted to ‘continuous® faorms» bandlimits that sidnal to a
i band slightly wider than Cf1, 2], The second half of the response
f is zeros so it can be used for convolution.

(let ((imrpulse (make-arraw n ‘$fill-pointer n ‘!initial-value 0.0)))

(aset 1.0 imrulse (// n 2))
(let ((impulse-sisnal (make-discrete-signal imrulse 0.0 Feriod}))
(send impulse-sidnal ’‘!desample)
(send imrulse-sidnal ‘!bandlimit
(/77 ?1 2,0) (/7 (+ 2 (// .5 perind)) 2.0))
(send impulse-sidnal ‘!extend 2)
impPpulse-signal)))

(defun make-eaualizer (desaarler channel n f1 2 reriod)

} Creates a samrled imPulse resronse for an eaualizer. The 8n-roint
} resronse comrensates for the effects of = desamprler and channel to
} rroduce 3 flat attenuation over the freauency rande Cf1y £21.

(let ((eauslizer (send channel ’‘icopw))

(desired-array
(make-array (X B8, n) ’!fill-rointer (X 8, n) ’iinitial-value 0.0))

(aset 1.0 desired-array (x 3 n))

(let ((desired-sisnzl (make-discrete-sidnal desired-array 0.0 period)))
(send desired-signal ’!bandlimit f1 r2)

i} Comrute combined impulse resronses convert to szmple rates and
} rad with zeroes.

(send eaualizer ‘i!filter desamrler)
(send eaualizer ‘isample reriod)
(send eaualizer ‘!{extend 4)



# Eaualize combined impulse resronse to praduce necessary
? response of tarred delay line.,

(send esauzlizer ‘!eaualize desired-sidnal)
(send eeualizer ‘!indexlimit 0. (¥ 7 n reriod))
eaualizer)))

(defun get-voice-samrle (source n 1 f£2 rperiod)

} Returns 3 discrete-sidnal of lendth ny sample rate reriod. Socurce
} determines how the sidnal is produced.

]

§ ‘random a8 randem sidnal over [f1, 21

; ‘impPulse an impulse at 0 followed by n-1 0’s

H ‘zero 8 series of n 0’s

H ‘band a8 sidnal uniformly weighted over Cf1, 21
§ (other) n values from sources assumed to be

] 3 streanm

(cond ((ea source ‘random)
(make~-randoms-voice-signal n f1 £2 period))

((ea source ‘impulse)
(let ((voice-arraw
(make-arraw n ‘$fill-rointer n ’tinitial-value 0.0)))
(aset 1.0 voice-arrasu Q)
(make-discrete-signal voice-arraw 0.0 period)))
((ea source ’‘zera)
(make-discrete-sidanal
(make-array n ‘$fill-pointer n ‘finitial-value 1e-7) 0.0 period)’
((@a source ‘band)
(let ((voice-arraw
(make-array n ‘$fill-rointer n ‘tinitial-value 0.0)))
(aset 1.0 voice-arrau 0)
(let ((voice-sidnal (make-discrete-sidnal voice-array 0.0 period
(send voice-sidnal ‘!bandlimit f1 £2)
voice-signal}))
(T (let ((voice-arraw (make-arraw n ’‘ifill-pointer n)))
(do ((1 O (1+ 1)))
((= 1 n) T)
(sset (read source) voice-array i))
(ma3ke-discrete-signal voice-array 0,0 reriod)))))

D iy Swstem constants ~----------ommo o

(defconst %XnkX 32. °*Nuamaber of roints in sample")

(defconst ¥fix 0, °*Input/cutrut low freaquency®)

(defconst k2% 2700. "Inrut/outrut hidh freauencu®)

(defconst Xf14x 300. °"Transmitted low freauencu")

(defconst 2% 3200, °*Transmitted high freauency"®)

(defconst Xnuk 22, °*Nuamber of weigshts scramhled®)

(defconst kdiscrete-samrlie-reriod% 1.25e-4 *Discrete sigdnal sample time®)
(defconst kvoice-samprle-periodk 4.25e-5 °"Voice signal sample time®)
(dafconst Xnoise-levelk 40.0 °Chennel noise enerdu®)

(defvar %rrolste-srheroidal-basisk nil *Input/outrut scramblind basis®)
(defvar %prolate-sprheroidal-basis”x nil °*Transmitted scramblingd basis®)
(defvar &random-orthodonal-matriceskX nil *Set of scramblind matrices®)
(defvar Echannel-filterx nil °*Channel transfer function®)

(defvar kdesserler-imrulse-resronseX nil "Desaarler imrulse resronse®)
(defvar Rtarred-delaw-linex nil °*Discrete-tiwe channel eaualizer®)



$} ———mmmmmrm e Loading and dumrind scrambler

i
3 The operations dump-scrambler and load-scrambler allow all of the
} sustem constants to be uwritten to or read from 3 file. They are

} provided to avoid dgeneratindg rarameters.

(dafun dusp-scrambler (file)

(with-oren—-file (s file ’‘idirection ‘louterut)
(Princ "iScrambler® s)
(print XnXx s) (princ * in" s)
(print Xf1% &) (princ * $f1° s)
(print xXf2% s) (princ * §#f2° s)
(print ¥XP17X s) (princ * if1® s)
(print £2*% s) (princ " #f2° <)

(print Xnuk s) (princ * inu" s)
(print ¥discrete-saarle-periodk s) (princ ° jdiscrete-samrle-reriod" s)

(print Xnoise-levelX s) (princ " inoise-level® s) (terrri s)
(dumr—-aatrix ¥prolate-spheroidal-basisX s)

(duar-matrix Xprolate-spheroidal-basis”¥% s)

{dunr-astrices ¥random-orthodonal-matricesx s)
(dusp~-discrete-sidnal ¥channel-filterx s)
(duap-discrete-signal ¥desamrler-impulse-resronsek s)
(dump-discrete-sidnal xtarred-delay-linex s)

(defun ioad-scrambler (file)
(with-oren-file (s file ’‘!direction ’!inrut)
(seta . '

Xnk (read s)
X?1% (read s)
*72X% (read s)
xf1~% (read s)
k2% (read s)
tnuX (read s)
%discrete-samrle-reriodk (read s)
Xnoise-levelX (read s)
¥prolate-srheroidal-basisk (load-matrix s)
srrolate-srhercidal-basis”%x (load-matrix s)
grandom-orthosonal-matricesk (load-matrices s)
2channal-filterk (load-discrete-sidnal s)
idesaarler-imrulse-resronseX (load-discrete-sidnal s)
starred-delav-linex (load-discrete-sidnal s))))

(defun make-scrambler ()

{ Creates the scrambler database for Xnky Xnuk, Xfik, X2k, Xf1%%,
} %XP2%%, and ¥discrete-samerle-reriodk. Six elemants are created:

)
trrolate-serhercidal-basisk?! for inrput and outerut C[fly f21;

trrolate-srheraidal-basis”%! transmission Cf1%y £2%3}
¥randoa-orthodaonal-matricesk¥! nu % nuj

schannel-filter¥j
tdesasrler-inrulse-resronsekt Lf1%y £271§ and

kterred-delas-linexs CPr1~, P21,

(seta
trrolate-srheroidaol-hasisXx (make-prolste-spheroidal-basis
*n% ¥nuk XP1k ¥P2% Xdiscrete-samrle-reriodX)

%rrolate-srheroidal-basis”x (make-rrolate-sprhercidal-basis
An® Xnuk XP1~7% Xf27% kdiscrete-samrle-rerio
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krandom-orthedonal-matricesk (make-random-orthodonal-matrices Xnux 2,)
Xchannel-filterkx (make-channel XnX Xdiscrete-samrle-reriadk)
¥desamrler-impulse-resronseX (make-desamrler
Xnk ¥f1~“%x Xf2*%k Xdiscrete-samrle-reriodx

Xtarred-delaw-lineX (make-eaualizer

Xdeszmirler-imPulse-resraonsek

Xchannel-filterx

Xnk Xf1% Xf2%% Xdiscrete-samrle-reriod%)))
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--------------------- Sidnal array operations --------------—-—o—a—o

The det-xx-index-44 orerations convert from °‘real® time or freauency
units tno an index to the time or freauency arrave. The difference
between low and high is in the roundind of the index (low backs ury

high advances).

Make-earty and em=iy-F¢ are used to indicate an array is not valid
and test its validitu,

The first four Pt orerations are macros which cause an fft to be
run if the tiame or freauency arraw is not valid. The function fft is
necessary because the FFT aldoritha below is in-rlace.

(defun det-frea-index-louv (frea time-increment time-size)
(1- (tor (X frea time-increment time-size))))

(defun set-frea~index-high (free time-increment time-size)
(1+ (bottom (X frea time-increment time-size))))

(defun let-tiie-tndex-lou (time time-base time-increment)
(1- (tor (// (- time time-base) time-increment))))

(defun gset-time-index-high (time time-base time-increment)
(1+ (bottom (// (- time time-base) time-increment))))

(defun emarptu-p (values)
(= 0 (arrav-zctive-lendgth values)))

(defun make-earty (values)
(store-arrauy-leader 0 values 0))

(defmacro forvard-fft ()
‘(cond ((emptuy-r time-values)
(Pt frea-values time-values samprle-size 1))))

(defascro inverse-fft ()
‘*(cond ((emptu—-p freac-values)
(Pt time-values frea-values sample-size -1))))

(defaacro faruward-fft2 ()
*(cond ((emprtuy-r time-velues?)
(fft frea-vazlues?2 time-values? samrle-size2 1))))

(defmacro inverse~frr+2 ()
‘(cond ((emprty-+ frea-values?)
(Pt Ltime-values?2 frea-values? samrle-size?2 -1))))

(defun fft (from to size exeponent)
(coru-arraw-contents froms to)
(store-arravw-leader size to 0)
(fast-fourier-transfora to size exronent))
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T Seeemmmmsmmssm— e e Discrete signal flaver --—-=-~-—-————-—-=-=———~-———---

This flavor is used to rerresent discrete sidnals and to arrroximate

continunus sidnals. It maintains an array of time values and an
array of freauency valuesi at least one is valid at anuy time.

Many operations are provided.

They can bhe put into four catedories.,

The selectors return information about the discrete signal?

enersy

enerdy-band low high

seauence

errar sidnal2

extract low-i high-i

corw foptional signal2

returns the enerdy of the sidnals» were
it 2 series of imrulses

comrutes the enerdu in the freauency
spectrum between Clow, hidhl and also
between [-high» -lowl

returns the tiwme values rerresented
as a 1-column matrix

computes the error enerdws as shown
bu differences between freauency
valuesr between two sidnals

returns 3 new sidnal taken from the
time values indexed from low-i to
hidgh-i$ note that low» high in other
orerations are abstract values
returns a cord of the sidnall ruts

it in sidnal2, if specified

These orerators mutate the discrete/siSnalt

samnrle rperiod

dessaprle factor

indexlimit low hish

bandliait low hidgh

extend factor

add~-noise level

scale factor

chandes samrle size so that sanmnrle
separated bw reriod are rerresented
exrands sampPle size bu rlacind zeroes
betwean oridinasl samplest ftactor is
amount of exransion

sets to zero thosie time samrles rot
in the rande [laws hidghl

sets to zero those freauency values
not in the randes [lowr highl or
C-highe -low)d

exrands sample size by factor by
addindg zeroes to the end aof the time
secuence

adds to the time values random naoise
with mean 0 and variance level
scales the time values buy factor

Some orerators take another sisnal as an ardument» and mutate the

first signal?
arrand signal2
filter signal2

convolve sisgnal2

eaualize sidnal2

adds the time values of sidnal2 to
those alreaduy in the discrete signal
multirlies the sidgnal’s freauency
values by those in sidgnal2

rerforms circular tire-domain
convolution with sidnal2) can be used
vwhen sidnals are of different sizes
modifties sidnal so that filtering it
with its oridinal value would produce

sidnal2
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The remaining methods are used for outrut!

fun to each value

]

’

} dumpr-time stream writes to stream a rerresentation of

¢ S%ortional doc sidn3l’cs time valuesy with string doc
# dump-frea stream writes to stream @ rerresentation of

3} %optional doc sidnal‘’s freauency valuesy with strind
$ doc

} disrlau-time disrlays non window a8 rlot of time

# 2optional fun window va2lues of sidnaly arrluind function

’ fun to each value

} disrlau-frea disrlavws aon window 3 rlot of freauency
$ gfortional fun window values of sidnaly appluind function

]

(defflavor discrete-sidnal
(time-values
time-base
/ time-increment
sample-size
frea-values)
)
tinitsble-instance-variables
tdettable-instance-variables
{erecial-instance-variables)

L e i Selectors —--==---c-comomemnmmm—— e e

(defmethod (discrete-sidnal !enerdy)
()
(forward-f7rt)
(do ((4 O (14 1))
(e 0,0 (+ @ (" (abs-comrlex (aref time-values i)) 2))))
((= { sample~-size) (X e time-increment))

nil))

(defaethod (discrete-signal !enerdy-band)
{low high)

(inverse-fft)
(let ((low-index (det-frea-index-low low time-increment samrle-size))

(high-index (det-frea-index-hidh high time-increment samrle-size)))
(let ((e (+ (do ((i (1+ low-index) (1+ 1))
(e 0.0 (+ e (T (abs-comprlex (aref frea-values i)) 2))))
((or (>= i hidh-index)
(>=m i (1+ (- samprle-size high-index))))
e)
nil)
(do ((i (1+ (- sample-size hidgh-index)) (1% i))
(@ 0.0 (+ @ (" (abs—~comrlex (aref frea-values i)) 2))))
((or (>= i (- samprle-size louw-index))
(>= i sample-size))
e)
nil))))
(¥ @ saarle-size time-increment))))

(defaethod (discrete-sisnal {seauence)
)
(forward-fft)
(make-matrix time-values))

(defmethod (discrete-sidnal iextract)



(low-index hish-index)
(forward-fft)
(let ((result (make-array (- hidh-index low-index -1)
"tfill-rointer (- hish-index low-index -1))))
(do ((i low-index (1+ i)))
((> i high-index)
(make-discrete-sidnal result
(+ time-base (X low-index time-increment))
time-increment))
(aset (aref time-values i) result (- i low-indesx)))))

(defmaethod (discrete-sidnal lcoryw)
(Zorticonal signsl?2)
(let ((time-values2
(if signal2 (send sidnal2 ‘!time-values)
(make-array sample-size ‘!fill-rointer 0)))
(frea-values?2
(if signal? (send signal2?2 ‘$frea-values)

(make-array sample-size ’'{fill-pointer 0))))
(coru-arrav-contents-and-leader time-values time-values?)
(coru-arrav-contenks-and-leader frea-values frea-values?)

(if sisgnal2 signal?2
(naka-instance ‘discrete-sisgnal ‘{time-values time-values?2
‘ifraa-values frea-values?
( ‘Ytime-base time-base
' ‘time-increment time-increment
‘{samrle-size samrle-size)))

(defrethod (discrete-sisnal {error)
(gignal2)

(inverse-frft)

(let ((samrle-size2 (send sifgnal2 ‘isamrle-size))
| (time-values? (send signal?2 ‘itima-values))
(frea-values2 (send sidnal2 ’‘!frea-values)))
| (inverse-rft2) -
(do ((i 0 (14 1))

(e 0,0 (+ e (~ (abs-comrlex
(sub-comrlex (abs-comrlex (aref frea-values i))
(abs-complex (aref freac-values? i))))

2))))
((= i gssarle-size) (X e time-increment sample-size))

nil)))

e D Mutators -----------mmmm o

(defrethod (discrete-signsl !samrle)
(reriod)
(forward~-fft)
(let ((count (tor (// period time-increment))))
(do ((i 0 (1+ i))
(d 0 (+ count 4)))
((>= J samrle~-size) T)
(aset (aref time-values J) time-values i))
(seta time-increment reriod)
(seta saaprle-size (tor (// sample-size count))))
(store-arrav-ieader sanrle-size time-values 0)
(make-eaprty frea-values))

(defmethod (discrete-signal !desamrle)
(8ortional (factor B.))



(forward-fft)
(adJiust-arrag-size time-values (X factor samrple-size))
(addust-arrauy-size frea-values (%X factor samrle-size))
(do ((i (1- sampPle-size) (1- 1i)))
((< i 0) T
(agset (aref time-values i) time-values (X factor i))
(do ((J 1 (1+ J)))
((= . factor) T)
(aset 0.0 time-values (+ (% factar i) 4d))))
(seta time-increament (// time-increment factaor))
(seta sanrle-size (X samrle-size factor))
(do ((i 0 (1+ i)))
((= i sample-size) T)
(aset 0.0 frea-values i))
(store-arraw~-leader samrle-size time-values 0)
(make-empivw frea-valuaesd))

(defmethod (discrete-sidnal {indexlimit)
(low hish)
(forward-frt)
(let ((low-index (det-time-index-louw low time-base time-increment)))
(do ((i O (1+ 1i)))
((> i low-index) T)
(aset 0.0 time~values i)))
(let ((high-index (get-time-index-high high time-base time-increment)))
(do ((i (1~ sample-siza) (1- 1i)))
((< i high~index) T)
(aset 0,0 time-values i)))
(make-empty frea-values))

(defmethod (discrete-signal (bandlimit)
(low high)
(inverse-fft)
(let ((low-index (det-frea-index-low low time-increment sample-size))
(high-index (det-frea-index-hidh hidh time-increment samprle-size)))
(do ((1i O (14 1))
((> i low-index) T)
(aset 0,0 frea-values i))
(do ((i hish-index (1+ i)))
((> 1 (- samrle-size high-index)) T)
(aset 0.0 frea-values 1))
(do ((i (- sample-size low-index) (1+ i)))
((>= 1 samprle-size) T)
(aset 0,0 frea-values i)))
(make-emrty time-values))

(defmethod (discrete-sisgnal lextend)
(factor)

(forward-rft)

(let ((new-size (%X samprle-size factor)))
(adJust-arravu-size time-values new-size)
(adJust-array-size frea-values new-size)
(do ((1L sample-size (1+ i)))

((= 1 new-size) T)
(aset 0.0 time-values i)
(aset 0,0 frea-values 1))
(seta sample-size new-uize)
(store~arrav-leader sample-size time-values 0)
(make-amrty frea-values)))



(defmethod (discrete-sidnal {add-naise)
(level)
(forward-fft)
(de ((i 0 (1+ i)))
((= i samrle-size) T)
(aset (add-complex (aref time-values i)
(X level (normal-random))) time-values i))

(make-emprty frea-values))

(defmethod (discrete-sidgnal !scale)
(factoaor)
(forward-fft)
(inverse~-frfrt)
(do ((i O (1+ i)))
((= § sample-size))
(aset (mult-comrlex (aref time-values i) factor) time-values i)
(aset (mult-coarlex (aref frea-values i) factor) frea-values i)))

L L L DD D DD DL e Orerators —===-----mmm e

(defmethod (discrete-sidgnal tarrend)
(sienal2)
(forward-fft)
(let ((samrle-size2 (send signal? ‘isample-size))
(time-values2 (send sidgnal2 ‘!time-values))
{(frea~values2 (send sidnal2 ’‘!frea-values)))
(forward-rrt2)
(do ((i samrle-size?2 (1+ i)))
((>= i sample-size) T)
(aset (aref time-values i) time-values (- i sanrle-size2)))
(do ((i2 0 (1+ i2))
(i (- samrle-size samrle-size2) (14 i)))
((= i2 samrle-size2) T)
(aseat (aref time-values? i2) time-values i))
(seta tiwe-base (+ time-base (X sample-size? time-increment)))
(make-emrty frea-values)))

(defaethod (discrete-sidgnal filter)
(eignal2)

(inverse-frt)

(let ((samrle-size?2 (send signal? ‘{samrle~-size))
(time-values2 (send sifnal2 ‘itime-values))
(frea-values? (send signal2 ’!frea-values)))

(inverse-ffrt2)
(do ((i O (14 i)))
((= i sample~size) T)
(aset (mult-comrlex sample-size?
(mult-comrlex (aref frea-values i) (aref frea-valu
frea-values 1)))
(make-emnrty time-values))

(defaethod (discrete-sisgnal {canvolve)
(sidnal2)

(forward-frt)

(let ((samrle-size2 (send sisnal? ’isamprle-size))
(time-values2 (send sidnal?2 ’ltime-values))
(frea-values2 (send sisnal? ‘ifrea-values))
(convolution (make-array sample-size)))

(forward-frte2)
(do ((i O (1+ i)))



((= i sampPle-size) T)
(de ((J2 0 (14 .i2))
(sum 0.0 (add-complex sum (mult-comrlex
(aref time-values2 J2)
(if (> J2 1)
(aref time-values
(+ samprle-size (- 1 J2)))
(aref time-values (- i 4d2)))))))

((= .j2 samrle-size2) (aset sum convolution 1))
nil))
(do ¢¢(i 0 (1+ 1))
{((= i sampPle-size) T)
(aget (aref convolution i) time-values i))))

(defm@thod (discrete-sisnal !eaqualize)
(sidnal2)
(inverse-fft)
(let ((sample-size2 (send sisnal? ’‘isamrle-size))
(time-values? (send signal2 ‘ittime-values))
{frea~-values?2 (send sidnal2 ’!frea-values)))

(inverse~-fft2)
(da ((i O (14 i)))
((= i sample-size) T)
(aset (div-comrlex (aref frea-values2 i)
(mult-comrlex (aref frea-values i) sample-size2))
frea-values i)))
(make-enrty time-values))

b ——mmmmmmmmmm e m e m e Dumpr and display --~-=---==---—--======-===-=

(defsethod (discrete-signal idump-time)
(stream Rortional (documentation *iTime Values®))

{(forward-fTft)
(dump-sigtnal time-values time-base time-increment
saarle-size stream daocumentation))

(defmethod (discrete-signal {dump-frea)
(stream faptional (documentatiaon *iFrea Values®))
(inverse-rft)
(duar-signal frea-values time-base time-increment
sample-size stream documentation))

(defun dumpr-signal (roints oridin inc cize streanm documentation)
(princ documentation stream)
(rrint origin stream) (princ ® jtime base® stream)
(print inc stream) (princ * jtime increment® stream)
(print size stream) (Princ " isamrle size® stream)
(do ((1i O (14 1)))
((= i gsize) (terpri stream))
(print (aref points i) stream)
(princ * $° stream) (princ i stream)))

(defasthod (discrete-sisnal (displaw-time)
(Rartional (fun ’‘real-rart)

(window terminsl-io))

(forward-fft)
(displav-sisnasl time-values time-base time-increment

sanrle-size window °Time (sec)® *Amplitude® fun))

(defmethad . (discrete-signal idisrlaw-frea)
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(tortional (fun ‘abs-comrlex)
(window terminal-ia))
(inverse-fft)
(displaw-sidnal frea-values 0.0 (// (x time-increment samrle-size))
sample-size window °Freauency (Hz)" "Amrlitude® fun))

(defun disrlaw-sidnal (roints oridin inc size window x-label y-1lahel fun)
(let ((max-w (max-fun-comrlex roints fun}))
(drau-axes window oridin inc size max-4¥ x-label uy-label)
(draw-roints window size max-w roints fun)))

(defun drav-axes (window oridin inc size max-3 x-label uy-label)
(aultiple-value-bind (iw ih) (send window ’‘f!inside-sive)
(letx ((font (send window ‘icurrent-font))

{(ftw (tvifont-char-width font))

(fh (tvisheet-line-heidht window))

(dw (- iw (¥ 22 fuw)))

(dh (- ih (k¥ 8 fh))))

(send window ‘iclear-screen)

} DPraw frame around drarhy and dashed x-axis

{send window ‘tdraw-lines (tvisheet-char-aluf window)
(% 10 fuw) (X 3 fh)
(- iw (% 10 fuw)) (X 3 fh)
(~ iy (x 10 fuw)) (- ih (x 3 fh))
(k 10 Pu) (- ih (x I Th))
(x 10 fu) (x 3 th))

(send window ’!draw-dashed-line (X 10 fw) (// ih 2)
(- iw (x 10 tW)) (/7 ih 2))

} Print x-axis label, centered, at tor and bottom of screen

(send window ‘lset-cursarros
(/7 (- iw (% (strind-lendgth x-label) fw)) 2) (- ih fh))
(send windaow ‘!strind-out x-labhel)
(send window ‘!set-cursorros
(/77 (- iw (% (strindg~lendth x-label) fuw)) 2) fh)
(send windaw ‘istrind-aout x-label)

$ Print w—-axis labelr centeredr alond left and ridht mardins

(do ((w (/7 (~ ih (X% (strind-lendth w-1abel) fh)) 2) (+ w fh))
(i 0 (14 1)))
({(=z i (string-lendth w-label)) T)
(send window ’‘{set-cursarras 0 4)
(send window ‘$tue (find-char w-label i))
(send windouw ’{set-cursorpros (- iw fw) )
(send window ‘$tuyo (find-char w-label i)))

$} Print x-axis coordinates to divide axis intn ten Parts at tor,
#} bottom of screen

(do ((x (X 8.5 fw) (+ x (X .1 dw)))
(i 0 (14 i)))
((= 1 10,) T)
(send window ’‘i{set-cursorros (fixr x) (¥ 2 fh))
(foreaat window °~2E° (+ oridin (X .1 i inc (1- size))))
(send window ‘!set-cursorpos (fixr %) (- ih (x 2 fh)))
(format windaw "“2E* (+ oridin (X .1 i inc (1- size)))))



i Print w-axis coordinates to divide axis into ten rarts at
} lefty ridht mardins

(do ((g (+ (// ih 2.,0) (x .4 gh) (/7 fh =-2.,0)) (- g (X .1 gh)))
(i -4 (1+ i)Y)) '
((= 157D
(send window ’‘${set-cursorros (X 2 fu) (fixr 4))
(format window °*~“2E°® (X max-w (// i 5.0)))
(send window ‘iset-cursorros (- iw (X 7 fw)) (fixr w))
(format window °"“2E"' (X max~-y (/7 i 5.0)))))))

(defun draw-roints (window size max-y points fun)
(aultirle-value-bind (iw ih) (send window ‘!inside-size)
(letk ((font (send window ‘!current-font))
(fvw (tvifont-char-width font))
(fh (tvisheet-line-heidht window))
(8w (- iw (X 22 fu)))
(gh (-~ ih (x 8 fh))))

(do ((x (1- (X% 11 fw)) (+ x (// du (float (1- size)))))
(i 0 (1+ 1)))
((= i size) T)
(letx ((val (float (arprly fun (list (aref rpoints i)))))
(w (= (/7 ih 2,0) (% (// ¢h 2,0) (// val max-u)))))
(it (< val 0.0)
(send window ’?!draw-rectandle 1 (fixr (- 9 (// ih 2)))
(1+ (Pixer %)) (/7 ih 2))
(send window ‘i!draw-rectandle 1 (fixr (- (// ih 2) w))
(1+ (Pixr X)) (Pixr w)))
(send window ‘{draw-circle {1+ (fixr x)) (fixr u) 3)))))
(send window ‘thome-douwn))

------------------------- Fast Fourier Transform -—------c--=m—-———cou———-.

The fast Fourier transform is adarted from class notes for 4.046
(Algorithes). It is iterative and uses 8 preliminary bit reversal of
its inrut., The FFT is done in rplace. The outerut is scaled for
inverse transfores. Only sizes which are rpowers of 2 are surrorted.
It the size is not 8 power of 2y it uses the slowery recursive
sldgoritha below.

(fast-fourier-transform comrutes the FFT of array a of size n»
@ n iexp) where iexp is the direction (1 =
forward)
(fft-reorder a n) reorders by bit reversal n elements of
ai
(swar i J) exchandes elements alil and al.ilj
(vev i n) reversnes the n lowest bits of i}

Turical run-time of fast algorithe is 1.5 ms X n lod né slow
algorithe takes twice is lond for n s rowver of 2¢ and much londer
for other n.
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(defun fest-fourier-transforme (3 n iexp)
(if ((nat (= (© 2 (1- (haulond n))) n))
(slow-fourier-transform a3 n iexr)
(PPt-rearder a3 n)
(do ((s 1 (+ s g))



(omeda (- iexp) (make-rolar (/7 (X iexer 3.141592) 2. s))))

((= s n) T)
(do ((omeda-J 1.0 (mult-complex omeda omeda-J))
(Jd 0 (14 4)))
((= J s) T)
(da ((i J (+ i s s)))
(¢(>= i n) T)
(let ((tt (mult-complex oneda-J (aref a (+ i s))))
(u Caref & 1)))
(aset (add-comrlex u tt) 3 i)
(ssat (sub-comrplex u 4Lt) a (+ 1 s)¥)¥))
(cond ((= iexe -1)
(do ((J O (1+ .)))
((= Jn) T)
(aset (div-comrlex (aref 3 J) n) 3 Jd)idN)y)

{defun ?ft-reorder (a3 n)
(do ((i O (14 1))
((= 1 n) nil)
(let ((r (rev i n)))
(cond ((< 1 r) (swar @ 1 ™))) )

(defun swar (3 i J)
(let ((temr (arvaf a i)))
(aset (aref a J) 3 i)
(aset tewmr & J)))

(defun rev (i n)
(do (CJ 1 C//7 4 2))
(m (/7 n 2) (/7 wm 2))
(r 0 (if Codde J) (+ r r 1) (4 r r))))
((< m 1} ™)
nil))

(defun slow-fourier-transform (a3 n iexr)

(let ((n2 (// n 2))
(¢ (make-polar (X iexr 6.28318352 (/77 1.0 n))3»)

} Three cases —-- if n is 1¢ DFT is ai

§ if n is eveny DFT is comrosition of smaller
] DFTs of even and odd elements of a?

) if n is otherwise» DFT is naive calculation

(cond ((= n 1) a)

((= n (¥ n2 2))
(let ((1 (make-arraw n2))
(h (make-array n2)))
(do ((4 O (+ i 2))
(i2 0 (14 i2)))
((= i2 n2) T)

(aset (aref a i) 1 1i2)

(sset (aref a (1+ 1)) h i2))
(slow-fourier-transform 1 n2 iexr)
(slow-fourier-transform h n2 iexp)
(do ((i O (1t i))

(wl 1.0 (mult-complex wl w))
(wh -1.0 (mult-comrlex wh w)))
((= i n2) T)

(aset (add-complex (aref 1 i)
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(mult-comrlex wl (aref h i))) a i)
(aset (add-comrlex (aref 1 i)
(mult-comerlex wh (aref h i))) 3 (+ i n2):
(if (= iexpr -1)
(do ((i O (14 i)))
((=1in) T
(aset (div-comrlex (aref a i) 2.0) a i))))
a)

(T (let ((r (make-arraw n ‘linitial-value 0.0)))
(do ((i 0 (14 i))
(Wi 1.0 (mult-comrlex wi w)))
((= i n) T
(do ((J O (14 .))
(wid 1.0 (mult~comprlex wid wi)))
((= Jdn) T)
(aset (add-complex (aref r i)
(nult-comrlex wid (aref a J4)))
r i)))
(do ((i 0 (i+ 1)))
((= 1 n) T)
(aset (aref r i) a3 i))
(i? (= jexpr -1)
(do (¢(i 0 (14 i)))
((=inp)
(aset (div-comprlex (aref a i) n) a i))))
2))))
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j ——mmemrmmm e Scrambhler ——-———=-——=————-——-—-————————
?

{ Test-scrambler uses the block diadram below to simulate the comrlete
$} scrawblind aldorithm. It includes a channel which adds noise. The

} signal at each stage is disrlauedy and the inrFut and outrut sidnals
} (with a delay of 3 sidnals) are compared. The inrut is from a sreach
} source file at 16 kHz. A simple downsamrling to the desired rate is
} assuaed.
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(defun test-scraabler ()
(with-oren-file (inrut °*mcluserslikalisk inrput® ‘ldirection ‘sinput)

(let ((saarlrrl (aake-instance ‘samrler))
(scrambler (make-instance ‘scrambhler))
(desanrler (make-instancae ‘desamrler))
(channel (make-instance ‘channel))
(sampler? (make-instance ‘samrler))
(randon-selector (make-instance ’‘random-selector))
(unscrambler (wake-instance ‘unscrambler))
(eaualizer (make-instance ‘eaualizer))
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(delaw (make-instance ‘delau))

{comparator (make-instance ’‘comrarator))

(display (make-instunce ’‘disrlau))

(voice-n (Pixr (X %xnk (// %*discrete-samrle-reriodX

Xvnice-samrle-reriodXx)))))

(send samplerl ’‘iconnect scrambler)
(send samplerl ‘!connect random-selector)
(send samrlerl ‘tconnect delay)
(send samPlerl ‘{connect disrlaw)
(send random-selector ‘fconnect unscrambler)
(send random-selector ’‘lconnect scrambler)
(send scrambler ’‘jconnect desamrler)
(send scrambler ’‘!connect disrlaw)
(send desamrler ‘!connect channel)
(send desamrler ’‘i{connect disrlau)
(send channel ’!connect samrler2)
(send channel ‘!connect disrlaw)
(send samrler? ’‘!caonnect eaualizer)
(send samfler? ‘i!connect disrlau)
(send eaualizer ’‘!connect unscrambler)
(send eaualizer ’‘!connect disrlay)
(send unscrambler ’‘!connect comrarator)
(send unscrambler ‘!{connect disrlay)
(send delaus ’‘!connect comparator)
(do ((i O (1+ i)))

({= i 146.,) T)
(send samrlerl ’‘!rrocess

(det-voice-samrle
input voice-n Xf1X Xf2X Xvoice-samrle-reriodx)))))

Fast-scrambler aerproximates the scramblind aldorithm. It ruts the
desaarler» channels and eaualizer in one stade. Noise is not added.
The output it each stade is disrlaved$ this could easily be chanded
to dume transmitted and received autrut to two files for later

plavback.,
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(defun fast-scrambler ()
(with-aoren-file (inep it "mciusersiikalisk input®)
(let ((samrlerl (m. -~-instance ‘sampler))
{(scrambler (m -instance ‘scrambler))
(random-select.. (make-instance ‘random-selector))
(transmission (make-instance ‘transmission))
(unscrambler (make-instance ‘unscraabler))
(disprlay (make—-instance ’‘disrlaw))
(voice-n (Pixr (¥ Xnk (// Xdiscrete-samrle-reriodX
¥voice-samrle-reriodx)))))
(send samplerl ‘!{connect scrambler)
(send samprlerl ‘jconnect random-selector)
(send samrlerl ‘iconnect disrlay)
(send random-selector ’‘!connect unscrambler)
(send random-selector ‘iconnect scrambler)
(send scrambler ‘fconnect transmission)
(send scraabler ‘lconnect disrlay)
(send transmission ‘!{connect unscrambler)
(send transmaission ’!connect disrlay)
(send unscrambler ‘!{connect disrlay)))
(do ((i 0 (1+ 1i)))
((= i 146,) T)
(send samplerl ’lProcess
(det-voice-samrle
inrut voice-n Xfix Xf2%x Xvoice-samrle-reriodX)))))

Send-signal is used to move a sidnal from one module to those which
follow it in the block diadram. Send-random-matrix is used by
randoa-selector to set the next random matrix in scrambler and
unscraasbler.

(defun send-sidnal (connect-list sidnall)

sidgnall
(marcar ‘(lambda (%) (send x ’‘!Process sidnall)) connect-list))

(defun send-random-satrix (connect-list materix)

matrix
(mapcar ‘(lambda (x) (send x ‘!set-random-matrix matrix)) connect-list))

---------------------------- Basic module ----=------=----—oo-osso—m s o

]
]
$ Basic~module is the common comronent of all module flavors which can
$ be connected to other modules. Connect-1list is the list of modules
§ in the block diadram which follow & module. The oreration connect
) adds a new module to that list.
(defflavor basic-module
((connect-list nil)>

A ()

tinitable-instance-variables

tspecial-instance-variables)

(deftmethod (basic-module !{connect)
(module?)
(seta connect-list (cons module? connect-list)))

e Down-samplepr --=-=--=—-———=————-===—oe=s

} The down-sampler is used to convert a sidnal at some samrle rate to
$} ane at another samrle rate when the tun rates are not related bu a
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constant factor. Inrut-reriod and outrput-reriod are those rates., The
process areration desauwrles its input sidnsl tn some larde rate
divisible bw both ratesy then samrles the result to send to its

SUCCasSSOTS.,.

(defflavor down—-samrler
((inrut-reriod Xvoice-samrle-reriodx)
(output-reriod Xdiscrete-samrle-reriodX))
(basic-module)
tinitable-instance-variables)

(defmnethod (down-samrler !Process)
(sidnall)
(let ((factor (fixr (// (X outrut-reriod
(gcd (Pixrer (// inrut-periad))
(fixr (// output-reriod))))))))

(send sidnall ‘idesamrle factor)

(send signall ‘ibandlimit 0.0 (// outrut-reriod))

(send sidnall ‘isamprle onutput-reriod)

(send sidnall ‘iscale factoer)

(sand-sidnal connect-list sidnall)))

b e e e e SamPler —=-=—mem e

} The samrler converts a signal from one reriod to another which is a3
} aultirle. It sends the result tn its successors.

(defflavor saarler
{(reriod ¥discrete-samrle-reriodx))

(basic-module)
tinitable-instance-variables)

(defmethod (samrler (Process)
(signall)
(send sidnall ‘!{samrle pPeriod)
(send-signal connect-list signall))

e ittt Random selector ---------------—m—-woo———-

} The randoa selector chooses a scramblindg matrix from the set
} aatricesr and rpasses that matrix to its successors.

(defflavor randos-selector
((matrices Xrandom-orthogconal-matricesk))
(basic-madule)
tinitable-instance-variables)

(defrethod (random-selector !(Process)
(sigdnzll)
sidnall
(send-random-matrix connect-list
(choose-random-orthodonal-matrix matrices)))

) - bl bl e Ol DD LSt Scramblep ----------s--——-—sooo——-o—oo

The scrambler rerforms the forwardr or inrut to transmissior
scranbling of 8 sisnal. It uses basisl to compute the weidhts to be
scrambledy rotates those weidhts by random-matrixes and recomrposes
thea using basie2 to make & signal to be transwitted to its
SUCC@SSOTS,
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(defflaver scrambler
((basisl Xrrolate-srheroidal-bacisk)
(basis2 Xprolate-srheroidal~basis”X)
random-matrix) )
(basic—-mndule)
(tinitable-instance-variables basisl basis?2)
‘isettable-ingstance~-variables random—matrix))

1

(defaethod (scrambler !rrocess)
(sidnall)

(let ((output (send (send (senc (send \
ysigdnall ’isequence)

’tmultirly-transposed basisl)
‘tmultirly random-matrix)
‘tmultirly basis)))
(let ((outrput-sidnal .
(make-discrete-sidnal (send autrput ‘tcclumn 0)
(send sidnall “ltime-base)
(send sidnall ‘itime-increment))))

(send-sivnal connect-list outrut—-sidnal))))

b e ittty Unscrambler -=-=--------coomemmmme e
The unscraabler rerforas the inverser or transmission to outeut,
scraabling of a8 signal, It uses basisl to compute the weidghts to be
scramabledy rotater, those weidhts by random-matrix» and recomroses
thea using basis? to make & sidnal to be transmitted to successors.

(dafflavar unscrambler
((basisl %¥Xprolate-srheroidal-basis”¥)
{basis? ¥rrolate-srheroidal-basisX)
random-matrix)
(basic-module)
(tinitable-instance-variables basisl basis2)
(isettable-instance-variables random-matrix))

(defmethod (unscraabler (process)
(signall)
(let ((outrut (send (send (send (send
; sidnall ‘!=seauence)

‘tmultielu-transrosed basisl)
‘tmultirly-transrosed random-matrix)
‘¢multirly basis?)))
(let ((output-signal
(make-discrete-sisnal (send output ’icolumn 0)
(send sidnall ‘ttime-base)
(send sidnsll ’'ittime-increment))))

(send-signal caonnect-list output-sidnal))))
i Comparator -=--rm----mmomm e

The ccararator determines the error enersy between two signals and
displaws it, along with the enersies of the sidnaly aoan window. The
rrocess oreration uses rairs of signals. It saves the first sidnal
it receivesr and rerforms the comrarison when the second sidnal is
received, It has no sucressors,

- W T W W W

(defflavor coararator
((window terminal-io)
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(sidnall nil))

¢)
tinitable-instance-variables
(¢special-instance~variables sidgnall))

(defmethod (comparator irrocess)

(sidnal2)
(cond ((not sidnall) (seta sidnall sidnall))
(t (send window ‘iselect)

(send window ‘thome-cursor)

\ (princ "Enerdy aof first sidnal = * window)
(princ (send signall ‘!enerdy) window)
(princ *$ enerdw aof second sidnal = * window)
(princ (send signal2 ’‘ltenerdy) window)
{princ % ecror = ° window)
(princ (send signall ‘ferror sifgnal2) window)
(erinc *,")
(t¥l window)
(seta signall nil))))

e i Display -------------——---—o-o——sse==
’

$ The displaw plots on window the time and freauency representations

$ of a sisgnalr and the enersiv of that sidnal. It has no successors.

(defflavor disrlaew
((window terminal-io))
()
tinitable-instance-variables)

(defmethod (disrlaw (process) (sidnall)
(send window ‘lselect)
(send window ‘ithome-cursor)
(send window ’‘$fresh-line)
{princ 'Enerdy of signal = ®" window)
(princ (send sidnall ’l{enerdy) window)
(princ *.*)
(twi window)
(send signall ’idisplau-time ’‘real-rart winc )
(tui window)
(send signall ‘!disrlau-frea ’‘abs-complex window)

(tvi windaow))

b mormmemms e e Desamrler —-—=-==-=---—-------ssss=osss

]

¢y The desamrler converts sidnals from a discrete rerresentation to a
} continuous oner which has 2 smaller samplind reriod., It arrlies an
§ impulse resronse to two most recent input sidnals to rroduce an

} outrut signal., Buffer holds the recent inrut sidnalsi buffer?2 is

} used for arrluwing the imrulse-resronse. The process oreration sends
[

8 continaus sisgnal to 1ts successors.,

(defflavor desamrler
((buffer (make-discrete-sidnal
(make-array (X XnX 16.)
‘3fill-rointer (X XnX 16.)
‘tinitial-value 0.,0)
(- (X knX Xdiscrete-sample-reriodXx))
(/7 xdiscrete-samprle-reriodx 8.)))
(buffer2 (make-discrete-signal
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(make-array (X Xnx 14,)
‘3fill-rointer (X Xnkx 14,)
‘sinitial-value 0,0)
(- (¥ XnX kdiscrete-samrle-reriodx))
(// %discrete-samrle-reriodx 8.)))
(impulse-resronse Xdesamrler-impulse-resronsek))
(basic-maodule)
tinitable-instance-variables)

(defmethod (desamrler !rrocess) (signall)
(let ((sisfnall (send sidnall ‘!copy)))
(send sidgnall ‘!desamprle)
(send buffer ‘!arrend sidnall)
(send buffer ‘{corw buffer?)
(let ((samrle-size (send buffer ‘{semple-size)))
(send buffer?2 “ifilter imrulse-resronse)
(send-sidnal connect-list
(send buffer2 ’textract (// sample~size 2)

(1- sample-size))))))
b} - et by Eaualizer —-------—mmmmm e

]
} The eaualizer srrlies impulse-resronse to its eight most recent

} inrut sidnals to produce an eauslized output sidnal. Buffer holds
# the recent signaler» and buffer2 is used for arpluing the imrulse
)} response. The outrPut is sent to successors.

(defflavor eaualizer
((buffer (make-discrete-sidgnal
(make-arraw (X ¥nk 8,)
‘ifill-rointer (X %Xnk 8,)
‘tinitial-value 0,0)
(- (X XnX kdiscrete-samrle-reriodx))
Xdiscrete-samrle-reriadx))
(buffer2 (make-discrete~-signal
(nake-arrsy (X xpx 8,)
re¢fill-rPointer (X %knkx B8,)
‘timpitial-value 0.0)
(- (¥ Xn¥ Xdiscrete-sample-reriodx))
¥kdiscrete-samrle-reriodx))
(imrulse-resronse Xtarred-delas-linex))
: (basic-module)
tinitable-instance-variables)

(defmethod (eaualizer !process)
(signall)

(send buffer ‘!arrend signall)
(send buffer ‘{corw buffer?)
(let ((samrle-size (send buffer ‘!samrle-size))}

(send buffer2 ’‘t{filter imrulse-resronse)

(send-sidnal connect-list

(send buffer2 ‘lextract (// (X sample-size 7) 8.)
(1- sample-size)))))

it L L D D Channel ----------——mmmm e

The channel mars continous inrfut sidnals to continuocus outrut
sidnals, usind an imrulse-resronse on the twn most recent sidnals,
Buffer holds the recent sidgnalsy and buffer? is used to arrly the
imprulse resronse. Noise determines the level of randomr noise added
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!} after arpluing the impulse resronse, The output sidgnal is sent to
} successars.

(defflavor channel
((buffer (make-discrete-sidgnal
(mn3ke-array (X Inkx 16.)
‘tfill-rointer (X XnX 16.)
‘¢initial-value 0,0)
(- (X ¥nX Xdiscrete~-samrle-reriodx))
(// %discrete-samrle-rerindx 8.)))
(buffer2 (make-discrete-signal
(make—-array (X Xnk 16,)
‘$§fill-rointer (X %Xn¥X 16.)
‘tinitial-value 0,0)
(-~ (X XnX Xdiscrete-samprle-reriodk))
(// %discrete-samrle-reriodx 8,)))
(impulse-resronse Xchannel-filterk)
(noise Xnoiwne-levelx))
(basic-module)
tinitable-instance-variables)

(defmethod (channel !erocess)
(gsisgnall)
(send buffer ‘!srrend signall)
(send buffer ‘lcory buffer?)
(let ((samrle~size (send buffer ‘i!samrle-size)))
(send buffer?2 ‘ifilter imrulse-resronue)
(send buffer2 ’‘tadd-noise noise)
(send-sidnal connect-list (send buffer? ‘lextract (// sample-size 2)
(1- sample-size)))))

--------------------------- Transmission -—-=-=-----—cmmmem e

The transmaission rprovides a fast way to rerform desamrleryr channels
and eaualizer orerationsy without usind continous sidnals. Buffer
holds the eight most recent inPput sidnals. Ruffer? is used for
arrluing the imprulse resronser which is computed Ly combining the
impulse resronses of the three mcdules above. The outrput sidnal is

sent to successors.

(defflavaor transmission
((buffer (make-discrete-sidgnal
(make-array (X knx 8,)
‘tfill-rointer (X xXnx B8.,)
‘dinitial-value 0.0)
(-~ (X XnX Xdiscrete-samrle-reriodX))
Xdiscrete-samrle-periodx))
(buffer2 (make-discrete-sidgnal
(make-arraw (X Xn%x 8.)
‘tfill-rointer (X %Xnkx 8,)
‘tinitial-value 0.,0)
(- (& XnX Xdiscrete-samrle-reriodx))
¥discrete-samprle-reriodx))
(imPulse-resronse
(let ((i-r (send Nchannel-filterX ’{cory)))
(send i-r ‘ifilter Xdesamrler-impPulse-resronseX)
(send i-r ’isamprle Xdiscrete-sample-reriodx)
(send i-r ‘lextend 4)
(send i-r ‘$filter ktarred-delau-lineX)
i-r)))
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(basic-module)
tinitable-instance-variables)

(defmethod (transmission !{process) (sidnall)
(send buffer ‘iaprend sidnall)
(send buffer ’‘!cory buffer2)
(let ((samrle-size (send buffer ’'i!sample-size)))
(send buffer?2 ‘!filter imrulse-resronse)
(send-signal connect-list (send buffer? ‘lextract
(/7 (X gsamprle-size 7.) 8,)
(1- sample-size))))

The delaw introduces a wait between receiving input and rroducing
outrut, Wait is the number of samrles delavedf sidnals is a buffer
of samrles accumulated. The process operation outruts zero-valued
sidnals until the buffer is fully then bedins outputting previous
inruts., The outrput signals are sent to successors., Wait is 3 to

natch the transaission line response.

(defflavor delay
((wait 3J)
(signals nii))
(basic-madule)
tiniteble-instance~-variables
(ispeciel-instance-variables sidgnals))

(defaethod (delaw tProcess)
(sidnall)
(cond ((= wait 0) (send-sidnal connect-list sidnall))
(T (if (null sidnals)
(let ((s (nend sidnall ’‘tcaryg)))
(send s ‘iscale 0.)
(do ((i 0 (1+ i)))
((= 1 wait))
(seta sidnals (cons s signals)))))
(seta signals (copns sidnali signals))
(send-signal connect-list (nth wait signals))
(do ((i 1 (1+ 1))
(s sidnals (cdr 8)))
{((= i wait) (replacd s nil)))
nil)))

e ittt bbbt Testing utility routines -------------------—-

(defun dump~-basis (basis file)

} Dumprs to file a3 rerresentation of basisy in time and freauency
} domain. Assumes sizer pPeriodr etc.r ave eaual to suystem constants.

(with-oren-file (s file ’‘t!direction ’‘{outrut)
(let ((nu (send basis ‘$columns)))
(do ((i O (14 i)))
((= i nu))
(let ((d (make-discrete-signal
(send basis ‘!column i) 0.0 Xdiscrete-samrle-reriodX)))
(send d ‘ldump-time s (skrind-arrend
*$Time seauence--vector &°
(format nil °~A° 1i)))
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(send d ’‘'{dunpr-frea s (strind-arrend
*iFreauency transform--vector #°

(format nil *~A°" 1))))N)M)

(defun show-voice-weights ()

I Reads voice samrles from input file and disrplaus their
$} concentrations to vectors in the inrut basis.

(with-oren-ftile (inrut "mclusersitkalisk input® ‘idirection ‘linrut)
(do ((i O (14 1)))
((= i 40,) T)
(let ((sidsnall

(det-vaoice—-samprle inrut
(Pixr (X XnX (// %Xdiscrete-samrle-reriodX

Xvoice-samprle-reriodx)))
Xf1X XP2% Xvoice-sample-reriodk)))

(send signall ’‘!sample Xdiscrcte-samrle-reriodX)

(let ((weights (send (send sidgnall ‘!seauence)
‘tmultirlu-transrosed
Xrrolate-spheroidal-basisk))

(enardw (// (send sidnall ‘lenerdy)
(send sidnall ’ttime-increment))))
{ '~ (¢did 0 (1+ 1))
(e 0.0 (+ e
(77 (" (real-rart (send weidhts
‘telement i 0)) 2)
enersgw))))
((= i Xnukx) (print e))
nil)))))

(defun snhow-basis (basis f1 f2)

# Displaws concentrations of vectors in basis to desired band

(do ((i O (1+ i))}
({= i XnuX))

(let ((d (make-discrete-sisgnal ,
(send basis ‘icolumn i) 0.0 Xdiscrete-samprle-reriodX)))?

(print (/7 (send d ’‘‘!enerdy-hand f1 £2) (send d ‘lenerdw))))))
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### -¥- Mode! LLISP} Fonts?! CPTFONT#? Base! 10, --X-

------------------------ Matrix crerations ---------------—----—m e

The matrix obdect rerpresents the turical mathematical
notion of a Lwo-dimensional set of values. There are

tuwo tures of matrix obdects?! the matrixs which may

be any size and contain any elementsy and the summetric-
matrixs which is restricted to he reals sauares and

syametric.

The usual orperators and selectors are suprorted. Let
A be an m x n matrix., Indices ir J of A bedin at 0s 0.

row 1 returns 2 1 x n matrix containind
the elements of row 1

column J returns an m X 1 matrix containind
the elemenst of column J

element i J returns the element at index ir J

sultirly returns the rroduct B x A} Frints

B %0aptional C an errar if sizes don’t matchi if

C is srpecifiedy puts product in it
multirlu-transrosed returns the product B’ X Ar where

B &ortional C B’ is B transroseds if C is
specifiedy pPuts product in it

The summetric-matrix cbdect has two other orerations?

eisgenvectors-and-

eigenvalues returns an & x m matrix in which
column i is an eidenvectors a3nd
an m-element arraw in which element
i is the corresrpondindg eidenvalue

eisenvectors-

ordered nu returns 3 nu ¥ m matrix in which

column i is an eidenvector such
that corresrondindg eidenvalues are
arranded in decreasind orcder

Finallyy the followingd output orerators are suprorted!?

dumr streaa doc writes to stream a representation
of matrixs headed by string dac

disrlay stream writes to stream a rectangular
representation aof matrix

- W W W ‘i’.‘--‘l.....’mo.’"‘“‘.’ W W WS WP W W WS W W W W W W WS W WP W WO - W W W wr

(defflavor matrix
(rous
columns
elements)
()
tinitable-instance-variables
tdettable-instance-variables)

(defflavor summetric-matriy
(rous
columns
elements)
(matriy)
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tinitable-instance~variibles
tdettable-instance-variables)

(defaethad (matrix (row)
(i)
(let ((row (make-arrauw columns ‘{fill-rointer columns)))
(do ((J 0 (14 .i)))
((= J columns) row)
(aset (aref elements i J) row .J))))

(defmethod (matrix !column)
(J)
(let ((column (make-arrad rows ‘{fill-pointer rows)))
(do ((i O (14 i)))
((= i rows) coluan)
(aset (aref elewments i J4) column i))))

(defmethod (matrix $disrlay)
(Sortional (stream terminal-io))
(do ((i O (1+ i)))
((= i rows) T)
(terrri stream)
(do ((Jd O (1+ J)))
((= J columns) T)
(format stream ""“4,1+8+8$° (aref elements i .)))))

(defmethod (matrix $dumr)
(stream
tortional (documentation *$Matrix®))

(princ documentation streaw)
(rrint rows streas) (princ * frous® stream)
(Print columns streaa) (princ * #tcnlumns® stream)
(do ((i O (14 1i)))

((= i rows) (terpri stream))

(do ((J O (14 J)))
((= 4 columns) T)

(print (aref elements i J) stream)

(princ "§° stream) (efrinc i stream)

(princ * * stream) (frinc J stream))))

(defaethod (maatrix jelement)
(i J)
(aref elaements 1 J))

(defmethod (matrix (multirly)
(matrix2 Zortional amatrix3)
(let ((rows2 (send matrix2?2 ‘!rows))
(calumns2 (send matrix?2 ‘{columns})
(elements? (send matrix2 ‘telements)))
(let ((product
(if matrix3 (send matrix3 ’telements)
(make-array (list rows2 columns)))))

(do ((i O (14 i)))

((= 1 rows2)

(if matrix3 matrix3 (make-matrix product)))

(do ((J O (14 .i)))

((= i columns) T)

(do ((k 0 (1+ k))
(sum 0,0
(add-compPlex
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SUm
(mult-comprlex (aref elements? i k)
(aref elements F .i)))))
((= k ¢oluans?) (aset sum product i J))
nil))))»)

(defmethod (matrix !maultirlw-transrosed)
(matrix2 Rorptional matrixl)
(let ((rows2 (send amatrix?2 ‘Srouws))
(columns2 (send matrix2 ‘i{columns))
(elements?2 (send matrin? ’‘lelements)))
(let ((rroduct
(if matrin3 (send matrind ‘telements)
(make-array (list columns2 columns))})))
(do ((i O (1¢+ i)))
((= i coluans?)

(1f matrix3 matrix3 (make-matrix product)))
(do ((J O (14 .i)))

((= J columns) T)

(do ((k 0 (1+ k))
(sum 0.0
(add-comprlex
sSum
(mult-complex (aref elements2 k i)
(aref elements k 4)))))
((= k rows2) (aset sum product i J))
nil))))

(defmethod (summetric-matrix leidenvectors-and-eigenvalues)
()
(let ((E (make-array (list rows columns) ‘!initial-value 0.0))
(val (make-arraw caolumns))
(A (make-array (list rows columns))))

i Matrix A is reduced into eigenvalues;i identity matrix E
i accumulates eigenvectors.,

(copw-arravy-contents elements A)
(do ((J 0 (1+ J)))
({(= J columns) T)
(aset 1,0 E 4 J4)) '
(dacobi columns 50, A 1.0e-10 1.0e-10 1,0e-5 E)

b} Normalize columns of E and cory diadonal elemenis of A into val.

(do ((J O (1% J)))
((= J columns) (values (make-matrix E) val))

(aset (arvef A J .J) val J)
(let ((lendth
(do ((i O (1+ i)
(lendth 0.0 (+ lendth (~ (aref E i 4) 2.))))

((= 1 rows) (sart lendth)))))
(daoa ((i O (1+ 1i)))
((=z i rows) T)

(aset (// (aref E i J) lendth) E i J4))))))

(defmethod {(swvametric-matrix !eidenvectors-ordered)
(nu)
(let ((index (make-3rrau racus))
(o-vecs (make-array (list rous nu)))
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(o-vals (make-array raws)))

? Index is used for soartindg eidenvalues. 0-vecs and o-vals hold
#i the sorted versions of eidenvectors and eidenvalues.

(do ((J 0 (1+ .)))
((= J rows) T)
(aset J index J))
(multirle-value-bind (vecs vals)
(send self ‘leidenvectors—-and-eidenvalues)

$} Sortindg aldoritha is essentially a3 bubble sort., Eidenvalues
$ 2re accessed indirectly throudh indexi elements are swarped
§ bw exchandind indices» to put them in increasind order.

(do ((i (1- rows) (1- 1i)))
((=1i 0) T
(do ((.d O (14 J4)))
((= 4§ 1) T
(cond ((< (aref vals (aref index J))
(aref vals (aref index (1+ 4))))
(swar index J (14 J))))))

} 0-vals and o-vecs are created from elements aof vals and
§ vecs accessed bw indices.

(do ((1i O (1+ i)))
((= i raows))
(sset (aref vals (aref index i)) o-vals i))
(let ((elements-v (send vecs ‘teleaents)))
(do ((i 0 (1% 1)))
({(= i rows) (values (make-matrix o-veecs) o-vals))
(do ((J.0 (1+ J)))
((= J nu))
(aset (arof elements-v i (aref index J)) o-vecs i J))))))»)

L et i Jacobi aldorithm ------v-------come—omom——

The Jacobi aldorithm is used for comrputation of eidenvectors of a
real symametric matrix of elements of A. Diadonal elements of A
becosavw eidenvalues?) corresrondindg columns of E become eidenvectors.

A is an n X n matrix.

The Jacobi aldorithm is iterativer and durind each pass rotations
are arrlied to A to remave off-diadonal elements. Kmax is the
maximum number of iterations. El1 indicates the lardest value whose
arctandant can be aspproximated with 0., E2 is the lardest value of
an off-diadonal element which should not be eliminated. The
aldorithma terminates when the sum of the sauares of diadonal
elements of A differs by less than the fraction e3.

(defun .jacobi (n kmax A ¢l e2 e3 E)

} Terminate after kmax iterationss or when diagonal sums chande
} by small amount.

(do (C(k O (11 k))
(sigmal (diasonal-sauare-sum A n) (diadonal-sauare-sum A n))

(sigma2 0.0 sidmal))
((or (= k kmax) (< (abs (- 1.0 (// sidmaa2 sidmal))) e3)) T)
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$} Move aover elements below diadonal (same as thase abaver since
? matrix remains symmetric).,

(do ((i 0 (1¢ i)))
((= i (1- n)) T)
(do ((J (it i) (1+ .0)))
((= i n) T)

$ Idgnore element if already near 0.

(cond ((> (abs (aref A i J)) e?)

(letx ((a (abs (-

Computer in a precise fashion» the cosine and sine of

the reauired andle of rotation.

The rotation uses as

pivats the diadonal elements in the same row or
coluen as the current element.

{aref A i i) (aref A J J))))

(pr (if (< @ 21) 0.0
(X 2.0 (aref A i J) @

(77 (- Caref A i 1) (aref A J J))))))

(cos-a8 (if (< a el) 0.70710677
(sart

(X 0.5
(+ 1.0

(// a (sart (+ (" r 2)

(" a 2)))))))))

(sin-a (if (< a el) 0.,70710477
(/77 ¢ (X 2.0 cos-2&
(sart (+ (" r 2)

} Arrly rotation to E and A
} columns and rows affected (that isr those
} contatning the eliminated and pivot elements).

(do ((1 0 (1+ 1)))

(=1 n) T
(let ((eli (+
(eld (-

(ali (4

(ald (-

(aset eli E
(aset eld F
(aset ali A
(aset ald A

(x
(%
(%
(x
(x
(X
(x
(%

(aref
(aref
(aref
(aref
(aref
(aref
(aref
(aref

> >MMmMM
Pt b pt ot pd et Pt et

1 1)
1 J)
1 i)
1 3N

§ Arrluy rotation for element

(do ((1 0 (1+ 1)))

((=1 n) T
(let ((ail (+

(adl (-

(%
(x
(%
(%

(aref A
(aref A
(aref A
(aref A

(" a 2))))))))

but only in those

i)
d)
i)
J4)
i)
J)
i)
J)

cos-a)
sin-a)))
sin-a)
cos-3)))
cos-3)
sin-a)))
sin-a)
cos=-a))))

above diadgonal in A.

1)
1)
1)
1)

cos-a)
sitn-a)))
sin-a)

cos-a3))))
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(aset a3il A i1 1)
(aset adl A J 1))YMH)M)

(defun diasonal-sauare-sum (A n)

i Effect! Returns sum of sauares of n diadonal elements of matrix A.

(do ((i 0 (1+ i))
(sum 0.0 (+ sum (" (aref a4 i i) 2))))

((= i n) sum)
nil))
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