Integrating Coordination Support
into
Automated information Systems

by
John Jeffrey Cimral

B.S., United States Military Academy
(1975)
M.A., Pepperdine University
(1978)

Submitted in partial fulfillment
of the requirements for the degrees of

Master of Science
and
Electrical Engineer

at the
Massachusetts Institute of Technology

May 1983
© John J. Cimral 1983
The author hereby grants to M.LT. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author . .. ... .. TNV L) T

Department of Electrical Engineering and Computer Science
May 13, 1983

Certifiedby .. ........ AR e A A .

Accep[ed‘\)'w e X e e s e s s e v -‘r’.}( R ) ,&."\,) s STe. v s e e 6 8 s s e s
Arthur C. Smith, Chairman, Departmental Committce

Archives
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
SEP 11983

11A0ARIES



Integrating Coordination Support
into
Automated Information Systems

by
John Jeffrey Cimral

Submitted to the Department of Electrical Engineering
and Computer Science in May, 1983 in partial fulfillment
of the requirements for the Degrees of
Master of Science
and
Electrical Engineer

Abstract

This thesis explores the issues surrounding the design and implementation of
coordination support applications. A role based Multi-Person Calendar (MPCAL)
is described. MPCAL facilitates structured coordination, information sharing, and
delegation of authority. A role knowledge base provides flexible and precise control
over the system. Each role defines information access procedures, enforces integrity
constraints, and guides the recording of significant coordination events.

The design criteria presented are derived from several disciplines. Linguistic
philosophy is used as a basis for describing coordination primitives. Role theory
suggests the use of personal and organizational expectations as a coordination
control mechanism. The psychology of man-machine systems highlights the need for
usable systems.

Thesis Supervisor: Dr. Irene Greif
Title: Principal Research Associate



Acknowledgrments

[ am thankful for the support | have received during this work. First, I would like to
thank Irene Greif for her encouragement and advice over the last two yecars. She
strongly influenced the final decision to build MPCAL and suggested many
interesting approaches to the work. I appreciate the constructive feedback she has
always given me.

Andrea Aparo and Dan Carnese both deserve speciai recognition. They always
found time to listen to my ideas and help me over the rough spots. Andrea will
always have my greatest respect for his breadth of knowledge and willingness to try
new ideas. Dan has taught me to check my assumptions and then check them again.

Several people have given me important advice. I must acknowledge the interest
and concern of Marvin Sirbu. Sunil Sarin has helped me since the day I arrived in
the group. Dick McKinnon made me appreciate "So What?". Tom Lece made me
think.

My friends at M.L.T. are very special. Bob lannucci, Juliet Sutherland, Stan Zdonik,
Renata Sorkin, Nancye Mims, and "the Kids" put up with my craziness. Ann Finn
was not only a good friend, but she broke my writer's block by being honest.

I must also thank the people of the U.S. Army and the United States Military
Academy for sending me to M.L.T. Your confidence has kept me going.

Most of all my family has made this possible. My wife, Joyce, has supported and
encouraged me every day. She is the light of my life. My daughters, Heather and
Melanie, are very special. They always wait for me to come home and I hope they
will not have to wait so long again. Yes girls, it is only a 'Puter. Finally, I must thank
l(gy Duffy for teaching me how important it is to relax and learn from everyone you
meet. . : :



Table of Contents

Chapter One: Introduction
1.1 Thesis Overview
Chapter Two: Background

2.1 Office Workstation Design

2.2 Office Calendar Coordination
2.2.1 The Personal Calendar (PCAL)
2.2.2 The Option Calendar (OPTICAL)
2.2.3 The Shared Calendar (SHARACAL)
2.2.4 The Room Calendar (201CAL)

2.3 Why Another Calendar?

Chapter Three: MPCAL

3.1 Design
3.1.1 Functionality
3.1.2 Features
3.2 Implementation
3.2.1 MPCAL’s Program Structure
3.2.2 MPCAL'’s Role Facility
3.3 Evaluation
3.3.1 Lessons Learned
3.3.2 Areas for Improvement

Chapter Four: Coordination Support

4.1 The Structure and Design of MPCAL Conversations
4.1.1 Conversations for Action
4.1.2 Meeting Conversations

4.2 Information Sharing

4.3 Delegation of Authority

4.4 Role Theory :

4.5 Why Use Roles in Coordination Systems?

4.6 Role Design
4.6.1 Predefined Organizational Roles

10
12

12
14
15
16
18
20
21

23

24
24
35
39

41
51
51
52

54
55
59
62

69
13
76
76



4.6.2 User Defined Roles

4.7 Designing Usable Office Applications
4.7.1 Functionality First
4.7.2 Exceed User Expectations
4.7.3 Humanize the Interface
4.7.4 Reducing User Anxiety

4.8 Summary

Chapter Five: Conclusions

5.1 Summary
5.2 Future Research
5.3 Conclusion

Appendix A: MPCAL Screen Examples

11
18
18
80
31
85
87

88

88
39
90

92



Table of Figures

Figure 3-1: Role Rule Structure

Figure 3-2: Role Rule for Change Appointment Command
Figure 4-1: An Unstructured Conversation between Peers
Figure 4-2: A Structured Conversation between Peers
Figure 4-3: A Conversation with Information Sharing
Figure A-1: The Standard MPCAL Display

Figure A-2: A Summary Display of a MPCAL Week
Figure A-3: Detailed Display of an Appointment

Figure A-4: Highlighting Calendar Changes

Figure A-5: Principal Notification Report

Figure A-6: MPCAL Commands

Figure A-7: The List of Objects "CHANGE" Can Manipulate
Figure A-8: MPCAL Help

Figure A-9: Content Specific Help

Figure A-10: A Command Form

Figure A-11: Visiting a Calendar

Figure A-12: Checking a set of calendars

Figure A-13: Creating a Request

Figure A-14: Distributing a Request

Figure A-15: List of Roles

Figure A-16: List of Known Users

Figure A-17: An MPCAL User Description

43

60
61
62
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108



Chapter One

Introduction

The quality of office work can be improved by computer systems. Traditionally
office automation has emphasized applications that improve the efficiency of
individual work. In contras:, this thesis is dedicated to the design and
implementation of coordination support applications. These systems can facilitate
group activities, improve the distribution of work requirements, and track the

progress of projects. Coordination based systems "add value” to office work.

Automated coordination support facilities are not available today. In the past,
economic and technical barriers stood in the way. These barriers have been
reduced, but new roadblocks lie ahead. Some of these concerns are:

- Whether or not an application can draw upon a general conceptual
model of coordination.

- The fundamental nature of computer communication raises new issues
in interpersonal coordination. Functional extensions to basic conceptual
models are necessary.

- Coordination systems must recognize individual capabilities.

- An application for coordination support must incorporate organizational
and individual behavioral expectations into its design.

- The system designer cannot ignore basic "usability" issues.

This thesis has tried to address each of these concerns with practical insight and



theoretical discussion.

The M.LT. Office automation group has built several automated calendar
systems as research vehicles for developing computer based coordinalioﬁ support
'mechanisms. Even though prcvious-calendar projects were fruitful, an effort to
consolidate and extend the application theory was necessary. The Multi-Person
Calendar (MPCAL) took the work of PCAL, OPTICAL, SHARACAL and
201CAL, revised the basic coordination model, and extended information sharing
and delegation of authority capabilities with an independent role based control

mechanism.

MPCAL is used to highlight the design and implementation requirements of a
-computer based coordination system. It supports calendar browsing, information
sharing, structured meeting conversatiohs, and delegation of authority. It can be
tailored for various calendar applications, and it is capable of tracking significant
calendar events. MPCAL also features an integrated interface design. The display
structure, command language, on-line assistance and feedback messages have all

received special attention.

<

Coordination on a computer system requires more then a structured
conversation model. Information sharing and delegation of authority are important
parts of an automated coordination system. Information sharing reduces the need

for expensive and time consuming secondary conversations. Delegation of authority




allows one person to legitimately act for another. This latter facility can be used to
filter calendar requests, redistribute work load and increase the probability of

important information being seen.

An effective coordination suppoirt mechanism requires information about the
people using it. Capturing individual and group behavioral expectations is vital to
the system’s success. MPCAL has taken role theory from the social sciences and
applied it to calendar design. A role in MPCAL captures organizational and
individual behavior expectations for people using a calendar. Each role defines
information access procedures, enforces integrity constraints nnd records significant

calendar events.

MPCAL has a separate role knowledge base. Each role is a set of rules that
encapsulates organizational and individual expectations. MPCAL can be tailored to
the organization it serves. Predefined system roles allow the organization to specify
general expectations for individual capabilities. Each person also has the ability to
define new roles to meet theif needs. The scparate role base permits tailoring. It is

"

an effective control mechanism separate from the remainder of the system. This

separation allows easy inspection and modification of the control structure.

"Usability" is a critical concern for every system designer. It goes well beyond
the user interface design. It is easy to lose track of a project’s primary goal unless the

audience’s needs are consciously and continuously integrated into every design



decision. User expectations require carcful consideration. Physical and conceptual
requirements are important. An appreciation for user anxiety during initial

encounters with the system must be cultivated. "Usability” is the bottom line.

1.1 Thesis Overview

The remainder of this thesis is divided into four chapters.

Chapter Two describes the M.LT. Office Automation Group's interest in
coordination support. ECOLE, an advanced office workstation project, is outlined
and the methodologies used to develop ECOLE software modules are summarized.
Earlier group work in calendar ccordination is presented. Chapter Two sets the stage

for the Multi-Person Calendar Project (MPCAL).

Chapter Three presents the design, implementation and evaluation of MPCAL.
MPCAL’s facilities for browsing, coordinating meetings, supporting different
calendar types and recording significant events are discussed. MPCAL's interface
design is reviewed. The implementation is described with special emphasis on the
program'’s structure and unique role database. MPCAL is then critiqued in terms of

lessons learned and areas for improvement.

Chapter Four presents the justification for MPCAL's design. A coordination
model is presented and several meeting conversations are analyzed. Information

sharing and delegation of authority issues are reviewed. Role theory is described as a

10



basis for the MPCAL role facility. This chapter also presents four criteria for
building usable systems. These criteria emphasize a general perspective on system

design that transcends more traditional concerns for user interface design.

Finally, Chapter Five summarizes the work and consolidates the key findings.
Coordination  support applications and roles are briefly critiqued.

Recommendations are made for further research.

11



Chapter Two

Background

This chapter summarizes the M.LT. Office Automation Group's interest in
coordination support. It discusses the relationship between coordination support
and the design of an advanced office workstation, ECOLE. The evolution of the
Personal Calendar (PCAL) application, as a coordination support test bed, is
described. Finally, the stage is set for the design and implementation of the Multi-

Person Calendar (MPCAL).

2.1 Office Workstation Design

Coordination support research in the Office Automation Group has always
taken place within the larger context of ECOLE, the advanced office workstation
project. ECOLE is dedicated to the development of an office application builder’s
tool kit. Each individual fool in ECOLF serves a particular function. In
combination, the tools can effectively fashion a collection of integrated office

applications, that share a common interface and are easy to maintain.

Two methods of tool design and implementation have been used in ECOLE.
They are:

1. Application Based Design: An application is designed and built.

12



Subsequently, generic tools are constructed based on this application
experience.

2. Conceptually Based Design: A conceptual requirement for the system is
formulated. A generic tool is built to meet the requirement. The tool is
tested in an application.

Both approaches have been successfully used to develop ECOLE software tools.

The Easy To Use Document Editor (ETUDE) [28] is an example of application
based tool development. ETUDE was designed for ease of use and easc of lcarning.
It is a "what you see is what you get" text editing system. During the process of
building ETUDE, the ECOLE command parsing and window management
packages were implemented. As ETUDE was gradually developed, the underlying
packages were continuously refined and expanded. When ETUDE's interface was
tested [21], user feedback was not only integrated into the editor, but also
contributed to implementation of the underlying ECOLE packages. The entire
process of designing, implementing and testing an application provided important

insights at several design levels.

The Extensible and Natural Common Object Resource (ENCORE) exempliﬁes
the seéond method of tool design. It is an "object management system" intended to
replace more traditional file and database systems [52). ENCORE benefited from
the ETUDE project. It was greatly influenced by the ETUDE experience. In
contrast to ETUDE, ENCORE' is an ECOLE package being constructed before it’s

integration into an application. ENCORE is designed to meet the unique data

13



storage requirements of the office environment. It can maintain several object
versions to support multiple views. It can also establish complex relationships
between objects and maintain these relationships automatically. When ENCORE is

complete it will be tested in a joint document writing application.

2.2 Office Calendar Coordination

Coordinated activities are a critical part of every office. ECOLE would be
incomplete without tools for building coordination support applications.
Constructing these tools requires a clear understanding of the office coordinaticn
process and its support requirements. As a research aid, calendar applications have

been used to explore office coordination.

There are two primary goals for the group’s calendar research efforts [25]. They
are:

1. To provide software support for groups of people working together,
whether within one organization or across organizational boundaries;

2. To provide software development tools and design guidelines for
building systems that will be used by groups of people, in evolving work
situations.

Modeling how people coordinate work in an organization illustrates what
coordination support is required. In a group activity, each person adopts a set of
appropriate behaviors based upon relative status, the task at hand, and the accepted

norms of the group [42]. People coordinate and communicate according to the role

14



they choose, or arc assigned by the people around them. Working relationships
develop between individuals and work is completed in a coordinated manner.
Therefore, to effectively support a group, an automated system must support the

coordination and communication protocols that exist within the group.

Several experimental calendar systems in the Office Automation group have
sought to develop coordination features based upon individual roles. It is important

to review this work, since it forms the basis for this thesis.

2.2.1 The Personal Calendar (PCAL)

The original PCAL [24] was the first calendar system built in the Office
Automation Group. It defined the basic single user calendar functionality that has
remained the common heritage of every calendar version. Implicitly, PCAL
enforced the rights of a single calendar owner. The owner could create, change, and
cancel appointments, but support for meeting coordination was limited. It was
possible to "LOOK AT" other calendars, but impossible to change foreign calendars

or view several calendars simultaneously. There were no significant features that

-

"supported cooperative scheduling, and this was a major drawback.

Consequently, PCAL was expanded to include two elementary coordination
features. A secretary "role” was created which could be assigned to other calendar
users. The secretary could not only see the calendar, but he also had extended

capabilities that permitted him to act for the owner. The secretary was allowed to

15



create, change, and cancel appointments for the owner without restriction. The
second feature added to PCAL was a command that checked the schedules of a
meeting’s participants for conflicts. The command returned a report on -apparent
.-schcduling conflicts and listed participants that did not have calendars. These
extensions reflected a growing appreciation for coordination support. The simple
mechanization of a common office calendar was not very useful, so these extentions

were added to increase PCAL's support for cooperative activities.

PCAL extensions demonstrate some potential types of coordinatior that are
possible on a computer system. The major requirements for information sharing and
personal privacy in this "multi-person” system were recognized, but there were
many unanswered questions about appropriate functionality, the control of the
sharing process, and the proper interface design. Other calendar versions have

helped answer these questions.

2.2.2 The Option Calendar (OPTICAL)

OPTICAL, like all subsequent versions of th¢ calendar, is a PCAL derivative. It
was the first of several experimental calendars that explored the broader use and
definition of roles. In OPTICAL roles were defined as a collection of calendar
access rights that could be assigned to an individual. They were used to support

information sharing while preserving some degree of privacy.

OPTICAL defined a role as a collection of access rights to various time periods

16



in a calendar. There were four types of access rights in OPTICAL; full access, read
only access, filtered read access, and no access. Each day was also broken down into
several time periods, such as office hours or business hours. The time period
.aeﬁnitions could be changed. Each appointment in this calendar fell into a defined
time period. A role was defined by the type of access it had to each time period. For
instance, the owner had "full" access to all time periods, while the secretary might

have "full" access to all times except "private hours".

OPTICAL had three built-in roles and it allowed the definition of new roles.
The owner, secretary and public roles were standard. A new role was created and
assigned to users in several steps. First a unique name was assigned to the new role.
Second, each time period was given one type of the access. Finally, a user could be
assigned one role that controlled everything he could see and do in a particular

calendar.

OPTICAL was a useful exercise for several reasons. It clarified the idea of a user
"role". Roles served as a valuable abstraction mechanism for the definition of
individual information sharing abilities. Additionally, the names associated with
roles carry enough "conceptual baggage" to make them recognizable without having
to understanding every part of the role. A well named role has an intuitive feel. For
instance, people have behavioral expectations for a secretary. When these

expectations can be buiit into a system, it becomes easier to learn and use.

17



Default roles were very important in OPTICAL. They provided common points
of reference between calendars. If a good default role set is available, most casual
users never define new roles. In OPTICAL's case the roles were useful, but more

.could have been predefined.

OPTICAL also demonstrated no matter how many default roles are defined, a
facility for dcfining new roles is necessary. Since defaults are fixed, they cannot
meet the expectations or needs of every user. A casual system user should be able to

define new roles effectively.

OPTICAL highlighted the importance of appointment classification. Using the
combination of time period classifications and access rights was unwieldy. The
relationships between a day’s time periods attributes and access rights were too
obscure. It was always difficult to determine why a command was possible during
one period and not during another. Classification of appointments for access

became the next topic of calendar research.

2.2.3 The Shared Calendar (SHARACAL)

After the work on OPTICAL two other calendar projects were started in parallel.
SHARACAL [32] was one of these. SHARACAL tried a new approach to
4appointment clasgiﬁcation. It ‘also explored the problems of maintaining several

versions of a shared calendar.

18



Explicit classification of appointments is one means for supporting information
sharing and maintaining privacy. SHARACAL took this approach. Whenever an
appointment was created, it could be classified explicitly as either personal or
i)rivate. The three roles, owner, secretary and public were built on these
classifications. The owner had full access to every appointment in the calendar. A
secretary could not create or see the details of personal appointments and the public
could only see and create unclassified appointments. If a person did not have access

to a particular appointment type, only the appointment’s outline was shown in the

various calendar displays.

SHARACAL was the first calendar version to recognize the importance of
highlighting calendar changes. When a calendar is shared, some users are very
interested in being able to identify changes that other people make. For example, if
a secretary makes an appointment for a manager, the manager probably wants the
new appointment highlighted to make sure the new commitment is seen.
SHARACAL did this by flagging appointments in different roles. SHARACAL
maintained five types of flags for new, unseen,changed, canceled and aciion

appointments,

~

SHARACAL represented an important milestone. Roles effectively supported

the calendars functionality and the highlighting flags helped organize the interface.

SHARACAL also was not perfect. It had major functional and conceptual

19



defects. There was no way to create a new role, and role access was based upon the
single appointment classification attribute. Explicitly classifying appointments made
the user’s job more difficult. The classifications were one more thing a person had
-;o understand before the system was usable. Another means of classification is

required.

2.2.4 The Room Calendar (201CAL)

201CAL [36] was another experimental calendar that explored the role concept.
[t defined more roles based upon two general role types. A calendar was classified
as either a resource or personal calendar. Personal calendars were the same as
calendars in PCAL, and resource calendars were used to allocate limited resources
such as conference rooms. The fixed resource calendar roles were:

- Owner
- Requester

- Allocator

An owner was responsible for the room, but did not manage it. A requester
could reservé a resource on a first come, first served basis. A requester could only
modify appointments that he madé. On the (.)ther hand, an allocator could change or
cancel any appointment and was able to schedule conflicts. This role refereed the

resource. An especially interesting feature of the 201CAL was the ability to

"ASSUME" other roles. By "changing hats", a person could narrow or expand his

20



calendar view based on the set of roles he had been assigned.

2.3 Why Another Calendar?

Despite the limitations of previous versions, significant lessons have been
learned. Role definitions can be used effectively to control the sharing of
information and limit the ability of outsiders to act on personal calendars.
Predefined roles, with natural defaults, are uscful for new users. Experienced users
not only want to modify existing roles, but also want to create entircly new roles.
The pro.cess of creating a role should be separate from the action of assigning users
to the role. Finally, it should be possible for a user to move freely between several

assigned roles.

All of the previous versions of the calendar have run into problems in one way or
another. Each was completely dependent on some “coded in" feature of the
implementation.

-PCAL, SHARACAL, and 201CAL roles were fixed and could not be
modified. Neither customization nor extensibility were allowed.

- OPTICAL =llowed the definition of new roles, but only based on fixed
time period classifications.

- SHARACAL attacked the classification problem by defining fixed roles
based on access to fixed appointment types.

- Fither OPTICAL or a logical extension of SHARACAL would place a
heavy burden on the appointment creator.

21



Difficulties with extending role definitions and classifying appointments has

limited the effectiveness of all previous calendar implementations.

The Multi-person Calendar (MPCAL) Project has addressed these dif! ficulties.

22



Chapter Three
MPCAL

This chapter describes the Multi-Person Calendar (MPCAL) research project.
The design and implementation of MPCAL are presented, followed by an
evaluation of the project. The project’s primary goal is to identify the design and
implementation requirements of a computer supported office coordination system.
It explores the type of coordination support that is possible when basic functionality,
information sharing, delegation of authority, and effective user interface design are

integrated into a single application.

It is useful to make some observations about MPCAL before discussing its
general functions. MPCAL does not replace more traditional means of appointment
scheduling. It does complement them. Face to face conversations, mail and phone
calls are commonly used to schedule meetings. MPCAL is useful when the other
means are impractical or inconvenient. It offers a structured environment for

calendar management.

MPCAL supports coordination better than previous calendars built by the Office
Automation Group at M.L.T. Previous calendar projects focused on supporting
several people sharing a single calendar. MPCAL coordinates meeting conversations

between calendars. Previous calendars acted as a static recording mechanism.

23



MPCAL. supports dynamic coordination. MPCAL's general appearance is similar to

previous calendars (see Appendix A), but its functionality is greatly expanded.

31 Design

MPCAL provides a complete sct of calendar functions. Much of its functionality
is directed toward the support of meeting scheduling. There are commands for
exchangine meeting proposals and confirmations. It is possible for people to share
calendar information and still maintain control over the sharing policy. MPCAL can
Le tailor'ed to act as either a personal, group or resource calendar. MPCAL also
records significant calendar events, notifies the "principal” calendar user of new
commitments and highlights calendar changes that require either confirmation or

rejection.

Additionally, MPCAL includes significant interface features that support the
functionality. The command language is designed to provide a uniform dialogue.
The display layout is carefully structured. Finally, there are extensive help and

feedback facilities.

3.1.1 Functionality
MPCAL'’s primary functional objective is to facilitate meeting scheduling. It

does this in two wéys.

1. Ad hoc browsing through several calendars is possible either by visiting
several calendars sequentially or by checking several calendars in

24



parallel.

2. A structured conversation facility exists for creating meeting proposals
and tracking responscs to these proposals.

Both the ad hoc method and the structured method of meeting coordination are

effective.

Calendar Browsing

Browsing through calendars in an ad hoc manner is useful when a person is
trying to schedule a meeting. There arc two separate methods for browsing through
MPCAL calendars. First, the "VISIT" command allows a person in one calendar to
switch to another. The use of this command may be restricted. The calendar being
entered may either deny access or the information displayed may be modified to
reflect only blocks of busy time (See Figure A-11). A person might use "VISIT" to
manually collect information from several calendars and then return to their own

calendar to schedule a meeting.

Instead of sequentially visiting several calendars to gather information, it is
possible to "CHECK" several calendars at once. Either "CHECK DAY" or
"CHECK WEEK" can be used to collect and combine information for a structured
report (See Figure A-12). This command has the same effect as visiting several
calendars, but it keeps track of the information for the user. "CHECK" can directly

support the scheduling process.

25



Structured Meeting Conversations

The ad hoc browsing facilities in MPCAL are an extension of the ﬁmctions
‘available in previous calendar versions. In contrast, the support for "structured
meeting conversations” is unique to MPCAL. Even though ad hoc information
sharing functions are useful, MPCAL conversations are a more effective and

complete method for scheduling meetings.

A structured meeting conversation is a clearly defined method for exchanging
meeting proposals and responses to the proposals. Fach MPCAL conversation
follows a general pattern of interaction.

- A meeting proposal is created.
- The proposal is distributed to other calendar users.

- Each calendar user either explicitly responds to the proposal or a
rejection is assumed after an RSVP date.

- All responses to a proposals are recorded and available for review by the
meeting caller.

Each of these steps is fully supported in MPCAL.

Creating a proposal is the first step in an MPCAL conversation. A proposal is a
type of appointment object. These appointments include enough information to
make the proposal meaningful (see Figure A-10). For instance, every proposal

includes a date and time. Optional information such as an end time, keywords,

26



participant list and general comments may also be included. The identity of the

person creating the object is automatically part of the appointment proposal.

- The next step in a conversation is the distribution of the meeting proposal to
other people. Distributing a proposal requires the creation of a distribution list, and
the attachment of an RSVP date. The distribution list determines which calendars
receive a proposal. The RSVP date assures every conversation is completed in one
way or another. Failing to reply by the RSVP date is an implicit rejection of a

proposal.

There are several ways a person can respond to a proposal. A proposal can be
confirmed, rejected or held for later action. If an appointment proposal is confirmed
a commitment is made to attend the meeting and the conversation is complete. If
the proposal is rejected, the person who made the proposal is notified and the
conversation is complete. If a proposal is held for action, the meeting caller may be

optionally notified.

=+ MPCAL deals with two problems that do not arise in face to face conversations.
Flrst, there is a potential problem with delivery of proposals, commitments and
rejections. It is impossible to absolutely guarantee any MPCAT. conversation
message will arrive at its destination. Second, even if a message is delivered there is
no way to insure éomebody will' see it. For example, a calendar user may either be

out of town or may forget to check the calendar for a few days.

27



In order to deal with these difficultics, MPCAL has adopted a fixed
acknowledgment policy based on three rules. These rules are:

1. Every message sent to another calendar is either immediately delivered
or never delivered. A person sending a message always knows whether
or not it is dclivered. Every appointment contains a complete history of
both successful and unsuccessful attempts to deliver proposals.

2. Whenever a user looks at the details of a pending proposal, there is an
opportunity provided to notify the person who sent the proposal. This
second rule addresses the lack of user presence by keeping the proposal
creator aware of who has seen the message.

3. All confirmations and rejections, responding to a proposal, are
automatically returned to the calendar where the proposal originated.

These three rules try to insure people on the system always know what has

happened to proposals they make.

Information Sharing in MPCAL

MPCAL’s information sharing facility enhances the process of creating meetings.
Information sharing in this application is designed to make initial proposals in a
conversation more feasible. A proposal is feasible if it is based on the best
information available to the meeting creator abdut the participant’s schedules. In
order to create feasible proposals MPCAL users share information about their
calendars. This facility reduces the likelihood of expensive conversations about

alternate times for the same meeting.

Information sharing in MPCAL respects individual privacy requirements.

28



-

Calendar information can be very sensitive and personal. The calendar strikes an
equitable balance between sharing and individual privacy. MPCAL only shares a

minimal amount of information when it supports the creation of meeting proposals.

,-Each information sharing calendar releases a single day's schedule outline. This

information only includes meeting times and whether a meeting is confirmed or not.
No keywords, participant lists or other information leaves a calendar. The potential
for abusing this limited amount of information is slight. Every person in the
calendar can potentially benefit from sharing, since time consuming secondary

conversations are less likely.

The fairness of information sharing in MPCAL is another privacy concern.
Fairness is judged according to three criteria [17].

1. Each person should be able to decide whether or not they wish to share
information.

2. The information should be used only for its intended purpose.

3. Precautions should be taken to insure information is not misused.
MPCAL meets the first criteria by giving each person the capability to specify who
may and may not share information. Since information sharing only supports
meeting creation the second criteria is met. Finally, disclosure of shared
information to third parties is controlled in MPCAL. The calendar outlines are only
available to produce the temporary display seen during the appointment creation

process. The information is discarded when the process is completed. There is no

29



way for the limited information to be distributed on the system. Of course, there is
nothing that can preclude the information from being copied down while tie report
is visible, but the limited nature of the shared information reduces the potential for

nmisusing the information.

In MPCAL sharing takes place while a new proposal is being created (sce Figure
A-13). The date and participant fields of a proposal are used to define what day and
which calendars are important. Each listed participant’s calendar is checked and if
information sharing is allowed an outline of the day is returned. The outlines are
merged together and a report is produced that highlights a feasible set of meeting

times.

The report is presented in two parts. Each calendar in the participant list is
asked to share information. If a calendar does not exist or information sharing is not
allowed, the shortcomings are presented in the first part. The report then highlights

free periods each calendar has in common.

Information sharing is not required during proposal creation. Gathering
calendar outlines takes time. A person may only be interested in a specific meetiﬁg
time, or another means of communication may have already established the meeting
and the verbal commitment is simply being recorded in the calendar. In either case,
the report is unnécessary. Wl;enever a meeting is created without using a form,

participant calendars are not checked. When a form is used calendar checking must

30



be explicitly requested.

Delegation of Authority in MPCAL

MPCAL’s facility for delegating authority is a critical part of the system. One
principal actor exists in every calendar. Only the principal is committed by
proposals or confirmations made in a particular calendar. In addition to the
principal, a calendar may have several people who are authorized to take part in
conversations. The principal can delegate authority, but never responsibility to
other people. A secretary, for instance, may have authorization to schedule
meetings, distribute and answer proposals for a manager. In this case, the secretary
may act for the manager, even though the manager remains responsible for any

action the secretary takes.

Delegation of authority fulfills two major needs. First, it permits action even
though the principal is absent. This reduces problems stemming from a lack of
principal user presence on the system. Additionally, very busy individuals fnay
authorize other people to act as filters for them. Often an assistant can decide what
should be done with a proposal without ever bothering the principal. The
principal’s time is saved for the most important decisions when other people are

authorized to take part in conversations.

This concludes the summary of MPCAL’s support for meeting scheduling.

)|



MPCAL provides for ad hoc and structured scheduling. Ad hoc scheduling may use
the "VISIT" and "CHECK" commands. Structured scheduling follows a
coordinated sequence of actions that include methods for creating, distributing and

responding to meeting proposals.

Supporting Different Calendar Types

A calendar in MPCAL can be tailored to serve as a personal, group or resource
calendar. This flexibility allows MPCAL to serve several purposes. For example, a
personal calendar is used by one person to record meetings and generate meeting
proposals. The information in a personal calendar may be protected to insure
individual privacy. Information sharing can be limited or the ability for other

people to "visit" the calendar can be restricted.

On the other hand, a group calendar can serve as a central information
repository for several people. Members of the group might be allowed to schedule
and confirm meetings, while group supervisors can reserve the rights to cancel

meetings and assign new group members.

A group calendar has been used in the M.LT. Office Automation Group. Itis
records group meetings, announces social events, and lists interesting seminars. Each
member can "visit" the calendar, add new meetings, or copy appointments to their

own personal calendars. The group supervisors may also define group membership,

32



confinn proposals, and cancel commitiments.

An MPCAL calendar can also manage scheduled resources, such as rooms. It is
possible to create a MPCAL calendar for a room, assign a person o mandge it and
'dcﬁne a policy for scheduling its use. For instance, a secretary might manage a room
on a first come first served basis. Proposals could be made for times that are not

shown as committed and the secretary could decide between conflicting proposals.

Calendars can be used for many things. The primary point is that MPCAL is

flexible enough to support many types of calendar activities.

Tracking Significant Calendar Events

MPCAL has special facilities for recording, highlighting, and notifying calendar

users about significant events.

Calendar events can have different degrees of importance. MPCAL uses three
methods showing significant actions. Their use is situation dependent. For example,
arf action such as "confirming” a meeting proposal may generate different side

effects depending upon who is taking the action.

Some MPCAL objects, such as appointments and reminders, have a history
associated with them. Often it is important to record when a meeting is created,

changed or seen by some person. Actually any action in MPCAL, that affects an

33



object with history, may be recorded. The calendar can automatically add a notation
about an action, including a date, time, and the actors name. The history is a
running commentary on important events. It can be scen with the "SHOW

APPOINTMENT" command (See Figure A-3).

Important changes to the calendar can be highlighted or "flagged". New or
unseen proposed appointments, changed or canceled committed meetings often
require special emphasis at the interface. An appointinent can be "flagged" in

various displays to emphasize their importance (See Figure A-4).

Since MPCAL allows the delegation of authority, special issues arise. In some
situations, it is extremely important to notify a person that a commitment has been
made for them. In a system without delegation of authority, the individual who is
responsible for a conversation is the only person authorized to make a commitment
and principal is always assumed to be aware of his proposals and commitments.
This assumption does not hold when other people are authorized to act. When
delegation of authority is allowed principals must be notified of proposals and

commitments made in their behalf. MPCAL supports notification is several ways.

Notification is more than just highlighting changes in a calendar. New
proposals, canceled or changed meetings require highlighting until they are acted
upon. Commitments must be seen by the principal on the system. Highlighting

changes in the calendar is not as critical as notifying the principal of new

34



commitments. A proposal, for example, may be ignored and it will be removed after
its RSVP date. A commitment can never be ignored because other actions may be

dependent upon it.

MPCAL recognizes the notification problem and deals with it in two ways. First,
the principal in a calendar always sees new commitments at the beginning of any
MPCAL session (See Figure A-5). They are summarized in a short report format.
Second, if a commitment date approaches without the principal being notified, the
person who authorized the commitment is requested to notify the principal by some

other means.

Notification, highlighting and history are used extensively in MPCAL. They
may be used separately or they may complement each other. They are an important

part of the calendar’s functionality.

3.1.2 Features

MPCAL'’s functionality as a calendar system cannot be separated from the
features that make it conceptually compatible with the people whc use it. The
display layout, command language, help facilities and feedback messages all

contribute to the cognitive interface. These features are described in this section.

Displaying MPCAL Information

35



Each MPCAL display is a carcfully designed structure for displaying
information. Various screen areas serve different purposes. There is an area for
context information about the particular calendar. There is an central display area
.}“or presenting different views of calendar objects and help information. At the

bottom of the display are the command and feedback lines.

The top two lines in MPCAL display context specific information about a
calendar (See Figure A-1). It includes the calendar’s name, the current user’'s name
and active role, and the last command. In the case shown in A-1 CIMRAL'’s
calendar is being displayed for JOYCE. JOYCE is acting as a secretary and the last

command was "SHOW DAY".

The central portion of the screen is used to display calendar objects, such as
appointments, reminders, days or weeks. In Figure A-1, the default MPCAL
display, "SHOW DAY" lists one day's appointments and reminders, along with a
separate list of highlighted appointments. The command "SHOW WEEK" displays
(Figure A-2) appointment prdposa]s, and commitments for an entire week. "SHOW
APPOINTMENT" prescnts the complete details of a particular appointment next to
a day summary (See Figure A-3). Notice each presentation presents a different view

of the same appointment at 9am Tuesday, 10 May 1983.

The central screen area is also used to display help, command forms and long

error messages (See Figures A-8 and A-10). These displays temporarily "pop up"

36



over the main display.

The bottom lines of the screen are used for the command entry and feedback
messages. As a command is entered it appears after the "MPCAL >" prompt. The

line above the command line is used to highlight feedback message from the system.

The MPCAL Command Language

MPCAL’s command language presents a familiar calendar model. It capitalizes
upon a user’s prior knowledge and expectations for a calendar by consistently
applying a limited set of actions, such as "SHOW" and "CHANGE", to a limited set
of obiects, such as "WEEK" and "APPOINTMENT". The language is self

documenting and task specific.

In MPCAL every command applies one action to one object. Each command’s
execution time is relatively short. Whenever processing may exceed a couple
seconds, the user is reassured with a specific interface message. Finally, the major
portion of processing and updating is done when the command is completed. The
user is released to start thinking about the next action, even though the machine is

still working.

MPCAL uses a consistent set of actions to manipulate every object in the system
(Figure A-6). The same action names are always used to create, change, display, and

delete objects. For instance, after a person uses the command "CHANGE

37



APPOINTMENT" then he knows that other object may be modified by
"CHANGE". He can find which objects are modificd by entering "CHANGE"

followed by a "?". A list of MPCAL objects is then displayed (Figure A-7).

MPCAL allows two styles of dialogue. There is a command line interface that
may either be used to specify details directly or may expand into a form (Figure
A-10) when important information is missing. Novice and casual users often use

forms, while experts use direct entry.

The MPCAL Help Facility

MPCAL has an extensive on-line help facility. There are "HELP" and "7"
commands that provide general and situation specific information about the use of
the system. The general "HELP" facility. tells what a function does, its composition,
effect, generic type, escape procedures and how to reverse its effeci (Figure A-8).
The situation dependent facility, "?" gives specific information. It describes current

options, and format rules (Figure A-9).

MPCAL Feedback Messages

Feedback messages in MPCAL are used for several purposes.

- They reduce user frustration associated with time delays.

- They inform the user when a action is successfully completed.

38



- They return specific error information when a command is not
completed.

Feedback messages help reduce user frustration in MPCAL. The execution time
--for MPCAL commands can vary significantly. Some commands, such as "SHOW
DAY", are very fast. Other commands, such as "CHECK WEEK", are relatively
slow. The amount of processing and communication each command must do is
variable. People get frustrated when they finish some part of a dialogue and must
wait for the machine. Messages do not eliminate the problem, but at least they

reassure the user something is being done.

MPCAL always tells a person when it completes an action. The message
confirms the last action took place successfully. This information releases the user to

work on other tasks.

MPCAL also provides detailed information when a command fails. There can be
any number of reasons for an action being rejected. For instance, assess may not be
allowed when a persoﬁ tries to visit a calendar. Error messages tell the user what has

-

Tlappened and often point to some method for correcting the situation.

3.2 Implementation
MPCAL is a large application program. Even though its appearance is similar to

previous calendars, it is structured very differently. It took approf(imately 1000

39



hours of work to bring MPCAL up and it is continually being refitted and
debugged. The most significant aspects of the implementation are its general
structure and its unique role facility. These two parts of MPCAL are reviewed in this

section.

3.2.1 MPCAL’s Program Structure

MPCAL's code is structu: ¢ d in a straightforward manner. There are three levels
of modules. The top level controls the start and finish of a session and it contains the
primary command loop. The second level has a module for every MPCAL object.
Every action that can be applied to a specific objcct type is contained in the object
module. The lowest level of the code includes the window manager, command

parser, form generator and other shared facilities.

The object level is the most interesting part of the MPCAL structure. MPCAL
does everything by dealing with primitive and aggregate objects. Appointments,
reminders and roles are primitive objects. Days, weeks, months, users and calendars
are all aggregate objects. Aggregate objects contain primitive objects. For example, a

day includes all reminders, and appointments that are part of that day.

Each object has its own second level module. The command loop at the top level
reads a command and invokes the proper object module. That module in return
does some processing and may call upon shared services from lower level modules.

This structure makes it very easy to manage the code that applies to one object. The

40



object module is a set of action prbccdurcs that can manipulate the object. The
"help" associated with each command is located with the object. This make it simple
to change the help for a command when the procedure is changed in some way. This
.-structure also allows the role facility to interface and control the calendar at the

object level, while still remaining separate from the procedures it controls.

3.2.2 MPCAL’s Role Facility

MPCAL improves computer based meeting scheduling by sharing calendar
information and allowing delegation of authority. The role facility controls every
function, including sharing and delegation of authority, in a simple, general and
very precise manner. A role database supports this control activity. The calendar’s
support for conversations and the implementation of the role database are described

in this section.

Every MPCAL user acts within a well defined set of capabilities. These calendar
capabilities are assigned to individuals and refcrenced to specific calendars. They
may be either explicitly or implicitly assigned to a person. Depending upon the
calendar, an individual's capabilities may vary across a wide range of access to
information and commands. For'instance, a principal actor in one calendar may

have no rights in another calendar.

MPCAL is capable of recognizing what people can see and do in various

calendars. It recognizes the principal actors énd the people authorized to act for

41



them. It understands when people can share information, and under what conditions
a proposal may be directly attached to a calendar. To provide this support MPCAL

requires extensive facilities for recognizing individual capabilities.

MPCAL also records significant calendar acts as they occur. For example,
meeting proposals and confirmations are recorded. Principal users receive special
notification of important actions. Fach meeting has a history that includes

information about its creation, and distribution.

The aeﬁnition of a significant act may vary according to the person and calendar
involved. For instance, when a calendar object is created it is always significant. On
the other hand, when the details of an appointment are read the importance of the
action varies with the situation and the person doing the reading. For example, if a
secretary creates an appointment the date of creation is recorded as part of the
appointment’s history. When the manager sees the new commitment the
notification is recorded in the history. If another person sees the appointment it
may not be important, so the’ act is not recorded. The calendar needs a means for

distinguishing what is significant and what is not.

Role Rules

MPCAL’s ability to recogniZe individual abilities, share information, and record

significant events is based upon specific rules that apply to every object and

42



operation in the calendar. These rules are combined into complete sets, one rule per
object class and operation, and these sets are called rcles. A role in MPCAL is a
complete set of control rules. A person interacting with a particular calendar always
.-acts within a role. When a command is invoked the role is checked to see if the
command is allowed and whether or not special notification, highlighting or
recording functions are needed. Roles are either specifically assigned to a user or a

default calendar role may be given unknown users.

Individual rules are the foundation for all delegation of authority, information
sharing, principal notification, change highlighting and significant event recording
in MPCAL. They have several important characteristics. Each rule is a precise
control mechanism that specifies the conditions for command access to MPCAL
objects plus an arbitrary number of trigger [16] functions used for notification,
highlighting and recording purposes. The rule structure is general enough to
support every MPCAL function. Each rule is easy to understand and completely

self contained.

(1) OPERATOR

(2) OBJECT CLASS

(3) ACCESS PREDICATES

(4) INTEGRITY CONSTRAINTS
(5) TRIGGER FUNCTIONS

Figm"e 3-1:Role Rule Structure

43



The structure of the role rule is precisely defined in MPCAL (Figure 3-1). There
is one rule for every command in MPCAL. The rule includes an operation, an object

class, a set of access predicates, integrity constraints and trigger functions.

Each rule is written for a specific object class. A class is a group of objects which
are semantically similar. MPCAL object classes include appointments, reminders,
roles, days, weeks, months, and calendars. Fach individual object has content and a
set of attributes. The content includes a unique identifier plus several named fields.
For instance, an appointment includes an identifier, date, start time, end time,
keywords, participant list and comments. The attributes of an object describe it in

some way. Appointments have history, highlighting and notification attributes.

(1) OPERATOR: Change
(2) OBJECT CLASS : Appointment

(3) ACCESS PREDICATES:
a) If the current user made this appointment
allow change.
b) If the current user is the PRINCIPAL
allow change.

(4) INTEGRITY CONSTRAINTS:
a) If changed appointment does not
conflict with current commitments
allow change.

(5) TRIGGER FUNCTIONS: N
a) Add history note to appointment.
b) Highlight change to authorized actors.

Figure 3-2:Role Rule for Change Appointment Command



A rule exists to control every command in MPCAL. Figure 3-2 is an example. A
command is a request for a specific operation to be applied to an object. Each rule
contains a set of access predicates, and integrity constraints. The predicates specify
ﬁavhen an operation can be attempted. The constraints are used to check the

calendars semantic integrity before the operation is completed.

An operation’s access to an object is controlled with content dependent
predicates. MPCAL is a closed system [17], which means that it is necessary for
access to be explicitly granted before an object can be operated upon. For instance,
in a rule for appointment changes (Figure 3-2), the user must either be the creator of
the meeting or a participant before any change is attempted. If one of these

conditions is not met it is impossible to change the specific appointment.

A rule’s access control can be very precise. It is possible to write a predicate
based on any field of the object. General predicates can be written that always grant
or always restrict access to an object class. Different types of access are also possible.
For example, when a display 6peration is applied to an appointment either access to

The entire content of the appointment is granted or only a limited outline is released.

Before an operation is completed semantic integrity constraints are checked.
Integrity constraints are designed to maintain the correctness of the MPCAL
database. Whenever an operation creates, changes or deletes an object all assertions

(semantic constraints) on the database must hold true after the operation [17]. For

45



example, some calendars do not allow new appointments that conflict with other
confirmed appointments. This constraint cannot be checked until the new object is
completely defined. If there is a conflict the opcration is rejected before it changes

,.the database.

Role rules also contain trigger functions. These functions control notification,
highlighting and recording in the calendar. They produce very important side
effects. Immediately prior to completing the operation each listed function

activates. If the trigger fails the operation also fails.

Precise control of recording, notification and highlighting in MPCAL is
extremely important. Often a rule for a given command in different roles may be
exactly the same except for the use of these functions. For instance, when a
principal confirms a meeting proposal no notification is required, but if a different
person confirms the appointment it is essential the principal be notified. Instead of
burying the control for notification in each operation, control resides in individual

role rules.

This completes the description of individual rules and their structure. This rule
structure provides a flexibility that would not be available if all the access, integrity
and trigger functions were built into each operation. Consolidating this control
information in one place pennfts easy review and change. The rules provide precise

control over calendar functionality.



MPCAL Roles

- Arole is a set of control rules. The set includes one rule for each command in the
'application. Even though several role definitions may exist in a calendar only one is
active. This role defines the conditions each command must meet before being
attempted. It also enforces semantic integrity, event recording, highlighting, and

notification policy.

The behavioral science definition of a role as a set of behavior expectations
based on individual identity and work context [7] closely parallels MPCAL's role
concept. Each control rule defines an individual behavior and a command context.
The role is a collection of these rules. Furthermore, the active role is always based
on the identity of the current user. Indeed, MPCAL roles are roles in the more

classical sense.

MPCAL uses roles for several reasons. First, a role is an effective abstraction for
a complete rule set. A person does not have to deal with individual rules to
understand a role. People have an intuitive feel for the meaning of a role and they
are not interested in specific rules. Second, capitalizing on a user’s role expectations
makes the system easier to learn and use. Finally, roles can be tailored either by an
ofganizaﬁon or an individual to meet specific information sharing and delegation of

authority requirements.

47



There are six predefined roles in the MPCAL version used by the M.1.T. Office
Automation Group (See Figure A-15). There are owner, secretary, supervisor,
group, public, and outcast roles in this version. These roles meet the needs of most
.'new and casual users of the calendar. They allow new users to immediately start
using the calendar without having to worry about a role definition. Casual users
seldom require other roles. These standard roles also act as a common point of

reference for group interaction.

MPCAL's role based control structure permits calendar tailoring. Standard roles
are designed to match organizational expectations for behavior. They should reflect
how most people coordinate meetings in the organization. These roles need to fit
the specific organization. Therefore, it is unlikely the standard roles in the M.L.T.

version of MPCAL would meet another organizations requirements.

It is very important that individual MPCAL users be able to create and modify
roles. Standard role creation is significant for the organization so it is reasonable to
expect a system developer to be involved. Roles defined by individuals are used by
a limited audience and the organization should not be involved. There is too much

overhead if people cannot meet their own requirements in a timely way.

Creating a new MPCAL role is straightforward. All it requires is a limited
understanding of the current role capabilities. A new role must be uniquely named,

given a short description and related to an existing role. A new role is created by

43



making an exact copy of the related role, changing the name and inscrting the new

description. Once a new role exists it can be changed one rule at a time.

The method for changing a MPCAL role takes time. It tries to ensure the user
understands the options available, and it requires the change to be confirmed before
it 1s completed. If the role is almost correct to begin with, only a few control rules
may require modification. The MPCAL facility for changing roles is designed for
"tuning up" a role, not changing every control rule at once. Changing a role is a
gradual process. Each individual control rule in a role can be changed. A rule’s

access conditions, integrity constraints, trigger function list can all be modified.

Changing a control rule in a role definiticn takes several steps. First, a specific
command is identified. The command includes the operation and object class of the
rule. Next, the rule is displayed. The user can edit the display by choosing access
predicates, integrity constraints and trigger functions that may apply in the rule.
Once the rule is redefined a complete description of the rule is generated and must

be confirmed before the new rule is installed in the role description.

lndividual capabilities in MPCAL are controlled by the role the person is using.
Users always interact with a calendar according to their active role. Each person is
explicitly or implicitly assigned a role set in every calendar. The role set has at least a

default role and may include several secondary roles.

49



Default roles control information sharing and determine the initial role a person
uses to visit a calendar. During the process of creating a meeting proposal
information may be extracted from several calendars. As each calendar is-checked,
.ihe role of the person creating the proposal is checked to see if any information can
be released. Whenever a person starts or visits a calendar a default role is assigned.
If no explicit default role exists for a user the calendar provides a standard default

(See Figure A-16).

Secondary roles may be assigned to each calendar user. These roles can be
assumed at any time. Secondary roles allow users to switch their working context.
For example, a person acting in a secretary role might assume a public role. The
public role would limit the person's abilities. Secondary roles are also useful when a
role is being assigned, created or changed. The role can be played before the action

is taken.

The description of MPCAL roles is now complete. The roles provide a simple,
easy to use, general and precise mechanism for controlling every function in
MPCAL. In particular they make information sharing and delegation of authority
possible. Without these two capabilities the functionality of MPCAL would be

severely limited.

50



3.3 Evaluation

The MPCAL project has been a useful research vehicle. It explored
computerized coordination support. Many problem scen in earlier calendar versions
.imve been resolved. New issues came up and most were dealt with effectively. Some

problems still await resolution. This section summarizes the lessons lecarned and

highlights MPCAL's shortcomings.

3.3.1 Lessons Learned
Three significant lessons have been learned from MPCAL. They are:
1. Role based control is effective, flexible and precise.

2. Ad hoc and structured techniques for coordination are both necessary.

3. The system’s basic functionality cannot be separated from features that

support uscr interaction.

The role mechanism in MPCAL has worked very well. It controls access,
enforces integrity constraints, and activates trigger functions in a consistent manner.
The rule structure is gencrzﬂ enough to support any command. Separating the
“Ec;ntrol from the remainder of the application has made it possible to centralize role

information and allows the effective modification of the role base.

Previous calendars supported an ad hoc approach to meeting coordination. This
was fine, but MPCAL'’s "structured meeting conversations" has provided a complete

method for creating, distributing, and responding to meeting proposals. This facility

51



has proven very useful.

The design of MPCAL's interface features cannot be separated from its
functional design. Access to support information is always available and the user
knows what the system is doing at all times. MPCAL's interface is integrated into

the functionality of the system.

3.3.2 Areas for Improvement
Four areas require further attention. These arcas are:

1. Communication reliability nceds improvement.

2. Applications must share resources that optimize window management,
form management and other common services.

3. Support for a wider range of predicates should be integrated into the
system.

4. The calendar application should be tied into other applications such as a
mail server or common text editor.
Moving messages in MPCAL is unwieldy. It is important to extract information
from other calendars in real time, but the distribution of a proposal or response does
not require this type of service. MPCAL gives up when it cannot immediately

deliver a message. A mail system could be utilized to provide more robust service.

MPCAL is a large program. It is almost too large to be linked on a DEC-20 with

CLU. MPCAL includes too many service functions, such as the window manager,

52



command parser and distribution system. Either a machine with a larger address
space must be used or common services should run as separate processes with their

own address space.

MPCAL implements a limited range of access predicates and integrity
constraints. A more general method for defining these predicates is required.
Organizations and users should have the ability to define new procedures that can
be used by the application. The CLU programming language is a major stumbling

block since it does not support run time linking.

MPCAL has not been tied into other applications. A common text editor could
be utilized for example. Other means for notification, such as electronic mail, could
be added fairly easily. The application could be improved by integrating it into a

work station environment.

53



Chapter Four

Coordination Support

One of the primary goals of the MPCAL projcct is to produce a set of guidelines
for the design and implementation of coordination enhancing software. Chapter
Three described MPCAL's design. This chapter presents the justification for the
design. First, a coordination model is presented. Next information sharing and
delegation of authority are reviewed. Third, role theory is described as a foundation
for recognizing individual capabilities on a computer system. Finally, an overview of

application design completes this chapter.

4.1 The Structure and Design of MPCAL Conversations

"Structured meeting conversations” in MPCAL are similar to Flores’
coordination model! "conversations for action" [18]. MPCAL was designed without a
knowledge of Flores’ work.' As people initially started to use MPCAL several
problems with its conversation facility became obvious. The conversations were not
complete. For instance, they did not provide return messages when a proposal was
rejected or confirmed. It turns out "conversations for action" provide one model of
structuring complete conversatigns. Several of MPCAL original shortcomings might
have been avoided if some model of a conversation had been recognized. At least, it

is interesting to consider one model, to see where it leads and to analyze its

54



shortcomings.

In the following pages, important terms are defined and the "conversations for
action" model is summarized. After explaining the fundamental conccpté, several
'example conversations illustrate the model and highlight the coordination process it
supports. This model is not a panacea, but it does highlight critical coordination

issues.

4.1.1 Conversations for Action

The basic functionality of MPCAL is similar to a mode! for coordination called
"conversations for action”. This model is based on a philosophy of language started
by Austin [2]. These conversations follow a structured pattern of clearly defined
linguistic utterances. These conversations are "the minimal unit for social interaction
oriented toward the successful performance of action”. It is important to

understand this model, the ideas that support it, and the propositions it uses.

"Conversations for actions” take place when an organization acts. Every
conversation starts in response to a perceived need. Without the need there is no
conversation. This idea of need, this justification for organizational action, is called a

breakdown.

When a breakdown occurs equipment becomes the focus of attention. Most

people are unaware of the equipment they use to perform routine tasks. Its

55



"transparent” to them until something unusual happens. A sccretary does not
consider how a typewriter works as a letter is typed. An executive does not worry
about a recorder as a report is dictated. If the typewriter stops typing or the recorder

stops recording, then the equipment snaps into focus and a breakdown is perceived.

After a breakdown is seen by a person, several things take place before a
"conversation for action” is initiated. First, the person becomes an actor, since he
accepts the requirement to personally act or to cause some action. Sccond, some
blame for the breakdown is assigned. Next, the actor evaluates the current situation,
considers prior commitments and places a priority on the problem. A major
problem may be broken down into smaller parts and each part may require separate
action and a different priority. Once priorities are assigned, tools for dealing with
the situation are necessary. If the tools are unavailable, inadequate, missing, or the
actor does not have the ability to use them, the organization’s "network of help" is

called upon to assist with the breakdown.

Consider a short example of a breakdown [1]. Your supervisor has asked you to
attend an important business meeting across town. You promise to go and the
company provides you with a car to make the trip. As you drive along the car starts
to pull to the right so you stop. At this point, the car is no longer "transparent” to
you. Possible explanations for the trouble rush through your mind. The problem
could be in the ball-joints, alignment, or tires. As you get out of the car you notice a

flat tire and the other hypothesis are forgotten. Your first reaction is to "blame” the

56



T T .-

tire. Then you blame yourself for not checking the car before lcaving. You are
forced to reconsider your current commitments and the possibilitics for action. You
could leave the car, but instead you try to fix the flat. You start looking for a jack
fmd tire iron. You finally notice the car has no spare tire but a note in the trunk tells
you to call the company’s dispatcher for assistance. At this point you are ready to
start a conversation. In order (o fulfill your previous commitments, you phone the
company's garage, then you talk with your boss and finally, you catch a taxi to the
meeting. Notice in this example the pattern of assigning blame, reconsidering

priorilieé, searching for tools and locating a "network or help”.

Every conversation, resulting from a breakdown, follows a distinct pattern of
utterances between a human speaker and a human listener. A conversation always
starts with a request for action. A conversation always ends with either a rejection of
the request, or a promise to fulfill the request within mutually agreed upon

specifications.

"Conversations for action” may be simple or complex. A simple one might only
tlude an initial request and a rejection or promise. A complex one may have any
number of secondary conversations within it. Secondary conversations are generally
used to clarify and negotiate the specifications of the original request. Every
conversation must be completg, but individual conversations can follow many

different patterns before reaching a conclusion.

57



The individual requests, promises, and rejections that comprise a conversation
are highly structured and precisely defined. A request is sent from a human speaker

and it is reccived by a human listener. It is similar to an MPCAL "proposal”. It

-requires a future action, includes a time of completion, and describes the

measurements used to judge satisfactory performance. A promise expresses a
person’s commitment to meet a specific request.  An MPCAL commitment is
essentially the same as a promise. A rejection is a promise not to meet a particular

request.

For requests or promises to be valid they must be complete. If any clement is
missing the utterance is meaningless and therefore contributes nothing to the
conversation. This is not to say every element is explicitly stated. When pcople have
a common understanding of a situation it is only necessary to provide the

information that is not "obvious".

Every conversation’s g ,al is a promise. A rejection is useless because the original
problem still has no prospective solution. On the other hand, a promise is valuable.
It is a commitment to repair a breakdown. When a promise is made an individual
believes the resources and time necessary to complete the action are available. Even
though there is never an "iron clad" guarantee the action will be accomplished, a
promise is sufficient reason to believe the action will be completed and other
promises can be made on this assumption. When a promise is made "a person

commits himself to the intelligibility, truth, sincerity, and appropriateness of what

58



he says. [18]"

This partial summary is sufficient. The concepts of requests, promises,
breakdowns and conversations are all present in MPCAL's functional design. The
MPCAL system addresses a particular kind of recurring breakdown: the nced for a

meeting.

4.1.2 Meeting Conversations

Now, two conversations are presented to illustrate the use of requests and
promises in “conversations for action”. In each example the situation is the same.
Two managers, Susan and Arnold are talking face to face. Susan needs to discuss an
Office Automation Project with Arnold. The need for a meeting is the primary
breakdown or reason for having the conversation. Susan's goal is to extract a
promise from Arnold. If he agrees to see her, Susan can make other commitments
based on this promise. They are peers in an organization and. each one is trying to
cooperate with the other. Susan knows nothing about Arnold's schedule. Each

person is fully aware of their own current work schedules.

Figure 4-1 shows a typical unstructured conversation. In statement (1) Susan
opens the conversation with Arnold. Notice, the statement is not a request. It does
not include a specific time, so it is not a complete request. Arnold only knows the
subject and a general time of day for the meeting so there is no way he could

respond with a promise at this point. Arnold sees the first statement as a breakdown

59



i




request is made and a promise is returned. The meeting will occur unless

extraordinary circumstances arise. Susan can act based on Arnold’s promise.

1) Susan: Let's meet ir my office at 10am Friday to
discuss the office automation project.

2) Arnold: How about 9am, instead?

3) Susan: Fine.

Figure 4-2: A Structured Conversation between Feers

The second conversation, in Figure 4-2, achieves the same result as the first. In
this case, the conversation’s structure is more efficient. (1) is a complecte request. It
includes all the essential information. (2) is a counter request that is exactly the same
as the request in (1) except for the time. (3) is an acceptance by Susan of the counter
request. It is a promise between Susan and Arnold to hold the meeting. Arnold’s

agreement to the meeting is implied in (2).

The scenario picked for these conversations eliminated many important issues.
Peer level, face to face conversation are straightforward. Conversations over a
computer system must consider more general issues. Information sharing and

delegation of authority are necessary.

61



4.2 Information Sharing

Coordination can be enhanced if information sharing is allowed. To clarify this,
consider the following short example. Once again, Susan and Arnold are trying to
.coordinate a meeting. This time Susan knows something about Arnold's schedule

(i.e., Arnold plays golf on Friday).

1) Susan: Let's meet in my office at 9am Friday to discuss the
office automation project.

2) Arnold: Fine.

Figure 4-3: A Conversation with Information Sharing

The conversation in Figure 4-3 is short and to the point. A clear request is made
by Susan and Arnold immediately responds with a promise. No secondary
conversations are necessary. In the previous example conversations, Susan preferred
a meeting time of 10am, but it is never mentioned. In this case, Susan knew Arnold
always plays golf on Friday at 10:30. She uses this information to make a request
with a higher probability of acceptance. The request that Susan makes is feasible,
based on the information she has about A;rnold‘s schedule. Of course there is no
guarantee Arnold will accept any request, but there is no need to discuss a request

for a 10am appointment that will probably be rejected.

The idea of a feasible request is separate from whether a request is complete or

62



not. A request is feasible if it is based on the best information available to the sender
about the receiver's commitments. In the carlier example conversations, the original
requests were feasible because Susan did not know about Arnold's golf date. In the
‘last example, if Susan had asked for a mecting at 10am, knowing Arnold had a
conflicting commitment the request would have been complete, but infeasible.
Making a feasible request never insures the request will be acceptable. Only the

person who receives the request can decide to accept or reject it.

Sharjng information reduces, but never eliminates, the possibility of secondary
conversations. Creating a request without any information about the receiver’s
commitments is like taking "a shot in the dark”. The lack of information increases
the likelihood of secondary conversations. At the same time, it is unreasonable to
expect perfect knowledge about other people’s commitments. Secondary

conversations will always be a necessary part of "conversations for action".

Why is it important that an initial request be as feasible as possible? In face to

face conversations, there is usually no need to worry about such things. Secondary
-

conversations can quickly change the original request into a mutually acceptable
form. In an automated coordination system the situation is very different. The
problems of time delay and lack of user presence are always making effective
conversation more difficult. Secondary conversations are at least expensive, and
sometimes impossible. They are hard to keep track of and time consuming.

Information sharing is a fundamental requirement for automated conversation

63



A

support. Without some inforination sharing capability the coordination process

becomes inefficient and unwieldy.

- Initial requests can be made more feasible if information about other pcople’s

commitments can be shared. The sharing cannot be uncontrolled or intrusive.
Individual privacy should never be threatened. Individual privacy rights must be

respected.

"Information privacy is the claim of individuals, groups, or institutions to
determine for themselves when, how and to what extent information about them is
communicated to others. [17]" There are two basic guidelines to consider when
discussing privacy issues. First, a balance is required between the personal cost of
divulging information and the benefits of sharing information. It is important that
an individual understand why the organization or another person wants the
information. Second, the information collection system must be fair. An individual
needs to control the collection process, correct errors in information that has been
collected and ultimately be able to prevent the system from making unwanted

disclosures.

There may be some conflict between an organization's desire to share
information freely and the individual’s desire for privacy. Information sharing is an
important part of an automated coordination process, but individuals do not want

their own information used against them in a coordination process. A solution to the

64



conflict should neither eliminate the ability to share information during a
coordination process, nor allow an organization to decree all information public
knowledge. Either approach could ultimately destroy a coordination system that

relies on shared information.

To summarize, while information sharing is desirable, unlimited sharing is not.
Control is required whenever information is released to support a coordination
process. Privacy guidelines must be respected. The organization's need to enhance
coordination activities should be balanced with the individual's need for privacy.

Mechanisms that allow controlled information sharing are necessary.

For information sharing to be controlled individual capabilities need
recognition. It is unreasonable for people in an organization to have full access to
each others information. In the previous conversation examples Susan and Arnold
were always portrayed as cooperating peers in an organization. It did not seem too
unreasonable that Susan knew about Arnold’s golf matches. Arnold probably told
her at one time or another and her knowledge did not threaten him. The situation

might be very different if Susan was Arnold’s supervisor in the organization.

Information sharing is often based upon persoral identity and individual
positions in the organization. For example, the amount and type of information
sharingé colleague enjoys, will probably be different than the sharing allowed with

a supervisor. This does not mean no information can be shared, it means different

65



levels of sharing should be possible. Susan, the supervisor, might be told by
Arnold’s secretary that he has a commitment at 10am Friday, while Susan, the
colleague, might be told about the golf date. If Susan, in either position, asked about

-Arnold’s weekend schedule the secretary might feign ignorance.

4.3 Delegation of Authority

Information sharing is not the only way to enhance a coordination process. The
process can also be improved by recognizing that people often are allowed to act for
other péople in organizations. There can be a major difference between being

authorized to act and being responsible for the action.

Two terms, responsibility and authority, necd clarification. Responsibility is the
obligation to give a satisfactory accounting for some action or state of affairs. In
many organizations accountability is synonymous with this decfinition of
responsibility. Authority is the legitimate ability to take some action. The two
concepts are very different. Responsible individuals can be held accountable for an
action even though they did not authorize it themselves. A person acting with

proper authority often is not responsible for what happens.

An effective coordination system requires a facility that allows individuals to act
for other individuals. There are-.several reasons for this. A single person may not be

capable of managing every commitment. The President of the United States



certainly does not hear about all requests for mectings or promises made for him.
The President has other things to worry about. A few people may have direct access
to him, but even this access is very structured. The same idea applies in many
,brganizations. Some people need authorization to act for other people, if only to

keep the work load manageable.

Modern technology is contributing to a proliferation of junk information and
requests for action. The courtesy copy often is no courtesy. Electronic mail can
easily smother some people in the organization unless something is done to filter the

traffic,

The solution may be to have the computer system act as a filter. Immediate
rejection of requests from outside the organization can force the person making the
request to use an alternatc means of communication, such as mail. This technique
can also be used within an organization to limit the capabilities of individuals who
insist on sending junk. Often simple automatic message rejection is not a viable
solution. The shear volume of valid requests may require some delegation of

authority.

Additionally, the speed of the coordination process can be improved when
several people share the authority to create and respond to requests for action. It is
not surprising several people can do more than one person acting alone. Similarly

having several people authorized to act reduces the problem of user presence.

67



Consider a situation where a manager is on an important business trip for a week. A
request from the chief executive officer of the firm may arrive while the manager is
absent. The manager's secretary should have the authority to act in this situation.
.The secretary knows the manager would accept the request, so the secretary should

be allowed to confirm it.

Finally, a system that allows delegation of authority supports organizational
specialization. Different people in organizations are often authorized to do different
things. One person may be authorized to make meeting commitments for a firm'’s
president while another person is authorized to make financial commitments. A
single individual may be responsible for both activities, but never be directly

involved.

When a person decides to delegate ‘authority in a computer system there are
special issues to be considered. First, the act of delegating authority should always
be confirmed. It is important enough to always be double checked. Second, the
system needs to notify responsible individuals when they are committed by
somebody else. Finally, audit trails are necessary. They insure people who misuse

their authority can be found.

Informaticn sharing and delegation of authority are important functions that an
automated coordination system should include. An easy to understand, abstraction

mechanism for information sharing and delegation of authority is required. People

68



need to understand what they can do without being forced to learn individual rules

of behavior. Roles meet this need.

;1.4 Role Theory

The ruler rules, the minister ministers,
the father fathers and the son sons
-- Confusius

Recognizing individual capabilities on a system is a central issue in computerized
coordination support. Most computer systems either ignore the issue or provide
limited facilities for recognizing categories of users. For instance, most text editors
treat each user exactly the same. On the other hand, operating systems often have

/
built-in categories of users, such as "operators”, "wheels" and common users.
Coordination support requires more general, flexible and precise mechanisms for

controlling individual behavior on a system. Role theory lends several important

insights into this area.

There are five generally aécepted propositions in role theory [7]. They are:

1. Role theorists assert that "some" behaviors are patterned and are
characteristic of persons within contexts(i.e., form roles).

2. Roles are often associated with sets of persons who share a
common identity(i.e. who constitute social positions).

3. People are often aware of roles, and to some extent roles are
governed by the fact of their awareness(i.e.,by expectations).

4. Roles persist, in part, because of their consequences (functions)

69



and because they are often embedded within larger social systems.

5. Persons must be taught roles (i.c.,must be socialized) and may find
either joy or sorrow in the performance thereof.

"A role is a set of behavior expectations based upon individual identity and work

context [7)." The emphasis in this definition is on "set of behavior", "expectations”,

"individual identity" and "context". Each one of these is an important part of a role,

Roles are sets of patterned behavior. Each behavior must be observable. A
behavior set is often used to characterize how pcople act in a given role. For
example, a doctor is characterized as seeing patients, visiting hospitals, reading
medical journals and sending out large bills. Doctors are expected do these things,
so each behavior is part of the doctor role. Notice, the role does not include

characteristics like hair color, shoe size or religious belief.

Roles only apply to people. For instance, fate and computers do not play roles.
The number of people actually associated with a role can vary greatly. There are

roles that extend across society and there are roles that apply to one person.

Role based behavior is often triggered by contextual cues. For example, a
secretary in an ofﬁce will usually answer a phone when it rings, while a manager will
not answer unless the secretary is absent. Many roles are only defined within a
certain context. The actual cor;text may be based on many different factors. The

time of day, physical surroundings, specific activity, or presence of another person

70



may all contribute to the definition of a context.

Roles are characteristic sets of behavior that people display in certain
situations. They make individual behavior more predictable. If a person’s current
‘tole is known, characteristic role behaviors are iikely to occur. For instance, people
at a political rally are expected to cheer for their candidate or give a standing ovation
after an inspiring speech. Roles also restrict behavior in certain situations. For

example, standing ovations are not usually given in church.

Two prerequisite conditions must be met before people can be expected to
display characteristic role behavior. First, they must recognize the social situation.
Second, they must "know" how to act in the situation. When these two conditions

are met behavior is more predictable.

Role behavior is learned. People learn to act like doctors, clerks or managers.
Socialization, the ability to act more effectively in society, teaches roles.
Socialization helps people learn behaviors that accommodate other people. Formal
education also teaches people hcw to act in certain situations. A lawyer, for instance,

is taught in law school how to effectively present arguments to juries.

Learning a role takes time., Some role behaviors are very complex, and are
difficult to remember initially. It may be necessary, when learning a role, to refer to

an expert for assistance. With practice, the behavior patterns become internalized

)



and the role feels "natural™ without any conscious thought.

Each person has many roles. An individual may act as a teacher at work, as a
gardener on weekends, and as a pitcher on the local baseball team. Normally roles
do not conflict because the recurring behavioral contexts are narrow enough to only
require one role. Peopie have little trouble switching roles. There is no conscious
thought to the switching process. It is 1ot difficult to be acting as a business manager

at ore moment, and a baseball fan the next.

'Role.s are constantly changing. They evolve and specialize over time. For
example, a new secretary in an office arrives with some general expectations about
the job. These general behavior patterns are a start, but as specific situations arise
more specialized behaviors are learned. A supervisor may teach the szcretary how to
accomplish specific tasks either by providing detailed procedural instructions or by
assigning the task and critiquing the results. Either way the secretary learns what to
do when the task occurs in the future. As time passes the secretary knows from
experience what the superviéor expects. Mutual expectations develop. Both the
supervisor and the secretary make changes to their standard roles to reach an

accommodation. In this case, both the secretary role and the managef role evolve.

It is misleading to think that roles determine all human behavior. They do not.
Each person is an individual who may have many different roles. No matter how

much is known about a person's roles it is impossible to predict how they will act in

12



many situations. In new situations roles generally do not apply or several roles may
come into conflict. Roles are only guidelines for action. They may be very strong or
very weak guidelines depending on the situation. Individuals ultimately decide on

.appropriate action, and a person’s roles may or may not influence the final decision.

4.5 Why Use Roles in Coordination Systems?

There are several important reasons for building role support mechanisms into
office systems. Roles make the systems easier to learn and use. They draw their
power from the social expectations people have already learned. They allow the
evolution individual capabilities. They can serve as an effective teaching
mechanism. Finally, they can be used to control information sharing and delegation

of authority.

Using roles in a computer supported coordination system capitalizes upon the
internalized behavior expectations that people have for themselves and others.
People use their role expectations everyday to help them define appropﬁate
behavior in different situations. A secretary "knows" it is proper to open business
mail for a manager and improper to open personal mail. A salesperson walking into
an office "knows" it is proper to ask when a manager is free for a meeting, and it is

improper to ask what the manager is doing at a specific time.

Roles also serve as an effective abstraction mechanism for complex sets of

13



behavior rules. It is not necessary for a person to be conscious of every specific
behavior rule that is part of a role. For example, people who act as temporary

secretaries do not need to ask for help every time they have to do something. They

already have an idea about what a secretary can sce and do in different situations.

These expectations have been developed over long periods of time and they are
valid until something changes them. An application that uses roles naturally uses

these general expectations to simplify its use.

Furthermore, a coordination system that uses roles immediately takes advantage
of peoples understanding that roles change and become more specific as social
accommodations between various actofs take place. This puts some burden on the
system to provide easy means for modifying roles, but it supports the idea that
individual roles do emerge. People understand there are differences between a

generic manager role and the way Susan acts as a manager.

A system with built-in roles can help individuals learn about their capabilities in
different situations. For instance, a new person in an organization may know very
little about a secretary role when it comes to sharing a manager’s calendar or making
commitments for the manager. Using an aytomated calendar system will show the
person what can and cannot be done. The organizational socialization process is
being enhanced, since the system teaches simple role behaviors as tasks are

performed.

74



Roles are particularly useful in recurring situations. In a coordination support
application the context and the structure of the coordination process are limited.
Most actions on the system occur very often. Only a few activities are supported at
_bne time. For example, in MPCAL mectings are the primary concern of the system.
Only two activities are supported. A means for carrying on conversations about
meetings is provided and a structured display of mecting commitments and requests
is presented. As long as the activities are well defined the role definitions are easily

understood.

Roles can cross application boundaries. A work station might have a role
management system that providcs information sharing and dclegation of authority
capabilities for several programs. For example, a person’s generic role does not
necessarily change very much between a calendar system and an electronic mail
application. Some role behaviors would be applied to several activities. At the same

time, very application dependent behavior rules would be part of the system.

To summarize, roles are uéed in MPCAL because they make the system easier to
Tearn and easier_to use. They capitalize upon the knowledge people have about
social capabilities and limitations. They provide a flexible mechanism for
controlling information sharing and delegation of authority. Without roles it would
be difficult to provide these capabilities in a simple integrated package. Indeed,

roles are the central feature of a usable coordination system for the office.

15



4.6 Role Design

Practical experience with building roles into coordination systems has
highlighted several important design considerations. Role names must be
_}ecognizable and distinguishable. Additionally, the design of standard roles must be
tailored to an organization's policies and common expectations for behavior.

Finally, methods for creating and modifying uscr defined roles are very important.

4.6.1 Predefined Organizational Roles

Standard roles are based upon observed organizational behavior. People act
differently in different organizations, so it is important to study organizational
behavier before building the standard roles. Once the context specific role
expectations of an organization are defined, MPCAL can support these

expectations.

Standard roles must be recognizable. A role is recognizable if its name evokes a
set of behavioral expectations. These expectations, whether they are conscious or
not, are extremely important. They make the system natural, easy to use and easy to
learn. For instance, creating a "manager” role is useless, unless people have definite

behavior expectations for “managers”.

Standard roles should be distinct from each other. The behavioral expectations
users have for each role must clearly distinguish the role. For instance, the

behavioral differences between a secretary role and a public role must significant

76



and obvious. Practically speaking, the range of behavior is limited in MPCAL,

therefore only a small number of individual roles can remain distinct. Three to six

standard roles are sufficient in MPCAL.

4.6.2 User Defined Roles

In addition to the organization’s ability to define standard roles, all MPCAL
users can build their own role definitions. Standard roles, if properly researched
and implemented meet the needs of most users. It is unlikely either new or casual
system users will want to build new roles. On the other hand, people that use the
system regularly often want to define and refine roles for their own use. MPCAL

provides an integrated role definition facility for this purpose.

There are two fundamenta! reasons standard roles cannot sufficiently meet the
needs of every user. First, they are generalizations of observed office behavior.
They meet average expectations, but they cannot fit every need. A standard
secretary role, for example, may include the authority to make commitments for the
principal. Most people in an organization may expect this, but some may not.
Second, while standard roles may work very well for a new user they need to evolve
and become more specific over time. Individual capabilities change and the system

must be flexible enough to keep roles current.

1



4.7 Designing Usable Office Applications

User interface issucs have dominated the design and implementation of
MPCAL. The interface is inscparable from the remainder of the system. In
.MPCAL, every design decision has been considered an interface decision. Every
command, every screen display, and cvery error message, contributes to the

development of the user’s model of the system.

The primary concern of user interface design is not "ease of use", "ease of
learning”, or some ill defined notion of "user friendliness”. The primary emphasis
is on the factors that make the system "usable”. A usable office application has four
attributes:

1. It augments the effectiveness of managers and professionals in the
office [41].

2. It meets and exceeds user expectations.

3. It is physically and conceptually compatible with a well defined user
audience.

4. 1t reduces user anxiety, especially during initial encounters with the
system,

4.7.1 Functionality First
Computer office applications should improve the quality of office work. In the
past, "value-added" [41] app‘lications were difficult to implement. They required

communication and processing power that was not economically available.

78



Technology no longer stands in the way. Highly structured, cfficiency oriented
applications, such as word processing, are going to be supplemented with tools that
serve the needs of managers, professionals and knowledge workers. These "value-
,.added" applications are going to emphasize communication and coordination

support activities.

The individual tools must be simple, consistent, and task spccific. Peoplé
interacting with computerized office systems are task oriented. They have a specific
goal in mind, and they want to reach that goal with minimum effort. MPCAL is a
key example. It manages conversations about meeting commitments. It is a calendar
system and it is completely focused on that single application. By maintaining this
focus, MPCAL has a simplicity and consistency that would be difficult to maintain

in a more general application.

A personal workstation is an integrated set of individual tools. The applications
must complement each other, even though they are conceptually separate. A person
should be able to learn about a workstation’s capability incrementally. Since each
tool is functionally independent and internally consistent, it is possible to start with
very simple tasks and gradually combine the tasks into complex personalized
support systems. MPCAL, for instance, might be complemented with a time

management application to produce a more generalized commitment manager.

Managers, professionals and knowledge workers need support for

79



communication and coordination activities. These people arc action oriented, and
they require a simple method for coordinating their work requircments.
"Conversations for Action” are MPCAL’s method. They are simple, structured and

precise.

A usable coordination system also is a recognition of the communication
limitations inherent in computer systems. Computer based conversations are not
face to face conversations. Any model of automated coordination support must
recognize reliability and user presence problems. The system must provide relevant,
succinct, action oriented information during the coordination process. Information

sharing and delegation of authority are practical necessities.

4.7.2 Exceed User Expectations

Once a "value-added" application .is identified, the designer analyzes user
expectations. The application must meet and exceed the user's needs. An
uninformed designer’s opinion does not mean very much. People always have an
idea of what a computer should do. It is important an application designer

understand how to meet specific needs and how to control unrealistic desires.

People resist changes to their working environment. To overcome this resistance
a successful system immediately presents concrete advantages to a user. It does
things naturally and it improves upon the process it replaces. It enhances the

working environment.

80



Finding a natural model for an application is not easy. A "transparent” [12]
model based upon organizational and individual expectations is required.
Organizational expectations are typically reflected in policy and standard operating
f)rocedures. Individual expectations often center on the control structure of the
system. In MPCAL, organizational needs are part of the default structure and
individual desires for security are part of the control mechanism. MPCAL's physical
model is a desk calendar, while its conceptual model is similar to "conversations for

action”.

One way to do more for the user is to encourage "problem mindedness” over
"solution mindedness”. There is always a tendency for the user to want the
computer system to provide an "optimal” solution. In semi-structured situations,
"optimal” solutions are not easy to find or may not exist. The system should try to
turn problem situations into choice situations by generating alternatives for the user
and letting him choose a solution. For example, information sharing in MPCAL
only assists in the generation of meeting requests. The system guides, but never

restricts a user’s problem solving behavior.

4.7.3 Humanize the Interface
A usable application is physically and conceptually compatible with the people
that use it. While the physical tesign of equipment is very important, it is usually

outside the control of the typical application designer. On the other hand,

81



application designers do have direct control over a system's conceptual support
facilities.  Specifically, a designer determines the dialogue, help, and error

prevention methods.

Dialogue Design

The design of the man-machine dialogue dircctly effects the usability of the
system. When an application’s interface is unwieldy, a common reason is a poorly
designed dialogue. Because of this, dialogue design has been called the first step in
the "user-centered design" process [31]. Specifying the method for information

exchange is the first step in dialogue design.

Cheriton [9] has outlined the key issues in dialogue design. The command
language should project a natural model to the user. This capitalizes on prior
knowledge and gives a sense of recognition that contributes to the acceptance of the
system. The dialogue should be centered on specific objects and the actions that
affect them. Consistent relationships should exist between objects and the actions
that operate on them. Finally, the language should be self documenting for the
common user. This can be accomplished by using a vocabulary he can easily relate

to the task.

Choosing the actual style of the dialogue is an important decision. Hebditch [31]

talks of eight styles and Martin [37] outlines 21 different types. These range from

82



natural language and Query-By-Example to menus and forms. Flexibility is very
important. As people initially learn about a system or as their nceds evolve, a

dialogue’s style may change.

The concept of "closure” [37] adds another dimension to the dialogue. Closure
occurs when a task is conceptually complete and the user is psychologically released
to start another task. The intervals between closure points should be short. A single
task should not exceed human short term memory capacity (5 to 9 steps or
"chunks"). The system should take advantage of the closure points. They indicate
times when the system can consolidate previous work without interfering with the
human cognitive process. Immediately after task closure people usually hesitate,
while they plan their next action. The system can use this time to finish processing.

The system dialogue should clearly indicate closure points.

On-line Assistance

One of the major support features for any system is it’s on-line assistance facility.
On-line assistance replaces the hardcopy documentation found in manuals, The
general attitude toward off-line documentation has become "The more (off-line)
documentation to read, the fewer the readers [11]". For this reason on-line facilities

have expanded signiﬁéantly in recent years,

The on-line assistance must also take into account the relative needs of its users.

83



The main criterion is to adjust the flow of interaction to the ability of
the respondent. Nothing upscts a fluent speaker more than to be
continually interrupted by comments, whereas a hesitant speaker may be
grateful for the help. [34]

The system must recognize the character of its human dialogue partner. Each person
will have individual needs and the computer should try to meet them on a case by
case basis. In MPCAL different amounts of help are available depending on the

style of dialogue being used.

Error Prevention and Correction

The prevention and correction of errors is a key topic in most human factors
texts [38, 39,40]. Errors can be divided into errors of omission, errors of
commission, and sequencing errors. There are methods to correct or prevent each
type. Errors can also be classified as idiosyncratic or situational [39]. Idiosyncratic
errors reflect operator aptitude and motivation and they are influenced by skiil and
training. Situational errors are caused by poor procedures and incorrect training.

Error frequency is related to task complexity and overload.

The fear of disastrous errors, where large a amount of work is lost or the systeﬁl
is brought "down", strongly inﬂuénces the novice user. Nobody likes to lose work
accidentally and most systems provide either a safety catch, by confirmation, or a
reprieve, by undoing the operation. One of the first things a novice needs to know is

he is always in control and apparent disasters can be dealt with easily.

84



Error prevention can be built into the interface. Using sclf-explanatory
commands and natural syntax instead of codes and strange formats will help.
Reasonableness checks can be used to localize errors as they occur. Defaults should

.be used when possible and they can be adapted to the users pattern of interaction.

4.7.4 Reducing User Anxiety

Whenever a person sits down to work on a computer system there is a certain
amount of awe, fear, and uncertainty involved. Computers produce anxiety. The
anxiety felt by a computer expert may be very focused, while new users tend to have
a general sense of confusion and frustration. In any case, an application designer

must recognize anxiety, and support individual efforts to cope with it.

People can be classified into several user types as they learn an application [6).
Novices are "uncertain" about the system. Novices hesitate to try new features and
they view each dialogue step as a problem solving exercise [43]. By developing a
mental model, novices gradually gain "insight” into an application. Infrequent users
with insight are casual users. A frequent user, whq continually uses an application in
a task oriented manner, is an expert. Experts have "incorporated” the application

and it is transparent to them.

Novice, casual and expert users share one common trait. They all are trying to
complete a task using a computer tool. Each person is using the system in response

to a "breakdown". The computer is seen as a tool, and as a network of help.

85



Novices require special attention. People are usually very anxious when they
start to use a new application. They come with a problem to solve, but they are faced
with a series of potential secondary breakdowns [50].

- "Reality shock" may occur when the computer model does not match
the individual's view of the world.

- Confusion may set in and a novice may become disoriented and
overwhelmed.

- Attempts to control the application environment often occur.
The system must recognize these potential breakdown areas and provide a "network
of help" for each. If the breakdowns are not dealt with, the novice will reject the
system before ever having any "insight" into its potential value. Secondary
conversations associated with reality shock, confusion, and control attempts should
be focused. Each secondary conversation is pure overhead, and too much overhead

may make other methcds more practical.'

To summarize, the four attributes of a "usable” system are not independent of
one another. For instance, the command language affects the conceptual model, and
on-line assistance is largely designed to meet the novice’s needs. The entire system
fits together like a jigsaw puzzle. As long as any piece is missing the application is

-

incomplete.

86



4.8 Summary

This chapter has sought to justify the design of MPCAL. It has touched upon a
model for "conversations forj action”, the need for dclegation of authority and
-infonmation sharing, the use of role theory, and a general overview of designing

"usable" systems. All of these things are important when integrating coordination

support into automated information systems,

87



Chapter Five

Conclusions

5.1 Summary

A majority of office automation tools in the future will actively support
organizational communication and coordination. Traditional applications, such as
word processing and report generation, will be supplemented with structured
communication aids. These new systems will develop the simple communication
capabilities seen in electronic mail into more application oriented coordination
support. This thesis explores the general character of these new tools and describes

the design, implementation and use of a calendar coordination system.

The design of coordination support applications for the office is the central
theme of this work. These applications will serve as the tools for organizational
action in the future, and they require special consideration. People in offices
coordinate to accomplish work, and computer systems can effectively support the
coordination process. Computers can augment the definition and distribution of
tasks and task related information within organizations. Coordination support
applications can help organize task specifications, keep track of resource
requirements, and generate up to date progress reports. These applications can help

structure negotiations about task requirements and provide a dynamic history

88



mechanism that documents significant events in the coordination process.

This thesis goes beyond a discussion of design concepts. The concepts have
actually been applied and tested during the implementation of the Multi-Person
‘Calendar (MPCAL) coordination system. MPCAL supports structured
coordination. It augments the process with information sharing and delegation of
authority facilities. A unique role based control mechanism provides a simple,
flexible and precise means for integrating organizational and individual expectations

into the system.

5.2 Future Research
Research into coordination support should continue in several directions. Three
of these are:

1. A method for identifying application specific behavioral expectations
needs to be developed.

2. Coordination support applications, other then meeting scheduling, need
to be implemented and critiqued.

3. The role mechanism should be extended to other applications.

Methods for integrating new applications into organizations are necessary.
Effective coordination support applications must be tailored to the organizations
they serve. Standard methods for identifying organizational expectations are

needed.

89



Opportunities for research exist in other coordination applications. Meeting
scheduling is a limited application. People coordinate in many ways. Joint document
writing is another example. It is important to look at several applications and extract

.the underlying primitives of coordination support.

The structure of MPCAL'’s role facility could be used to provide flexible, precise
control over other applications. It may be possible to build a more general role
knowledge base that several applications share. This would reduce the overhead for
each application and would provide and central repository of access rules, integrity
constraints and trigger functions. The role base could be used to control both

individual applications and their interactions.

Coordination support is a relatively new research area, so there are many

opportunities for constructive research.

5.3 Conclusion

The primary goal of this tﬁesis was to explore the design and implementation of
automated coordination support applications. It has consolidated and extended
previous work. Its design theory is based upon seemingly diverse dis;:iplines of role
theory, linguistic philosophy and the psychology of man-machine interfaces. These
ideas have been brought together and applied to the implementation of a calendar

coordination system. The implementation has highlighted many practical issues of



system design.

This work is neither the start nor the end of a long term research effort in the
Office Automation Group at M.LT. It has added more depth to the design theory
‘behind coordination support. The MPCAL implementation is flexible enough to
allow organizational testing and refinement of the role facility. Hopefully this work

provides practical advise to system designers and a firm basis for further research.

91



Appendix A

MPCAL Screen Examples

CIMRAL'S CALENDAR: VIEWED FROM JOYCE'S SECRETARY ROLE
LAST COMMAND: SHOW DAY

TUESDAY

9:
9
10:
10:
11:
11:

00

:30

00
30
00
30

NOON

12

N WWNN ==

MPCAL>

:30
:00
:30
:00
:30
:00
:30
:00
:30
:00

10 MAY 1983

EXAMPLE APPT

XX

** PROPOSALS **

No Pending Proposals

** REMINDERS **

No Reminders for Today

Figure A-1: The Standard MPCAL Display

The MPCAL display as seen by an owner.
There are three separate display windows.

92



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: SHOW WEEK

THURSDAY | FRIDAY

EARLY

9:00 BUSY
9:30 XX
10:00 XX
10:30 XX
11:00 XX
11:30 XX
NOON XX
12:30 XX

1:00 XX

1:30 XX

2:00 XX

2:30 XX

3:00 XX
3:30 XX

4:00

4:30

5:00

LATE BUSY
MPCAL>

-

WEEK FROM 5 May 1983 TO 11 May 1983
| SATURDAY | SUNDAY

| BUSY
| xx
|  xx
| xx
| xx
| xx
| xx
| xx
| xx
|  xx
| xx
| xx
|  xx
| xx
|
|
I
I

BUSY

| MONDAY

PROP
XX
XX
XX
XX
XX

PROP
XX
XX
XX

BUSY

TUESDAY |WEDNESDAY

BUSY
XX

BUSY BUSY

Figure A-2: A Summary Display of a MPCAL Week

93



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: SHOW APPOINTMENT

TUESDAY 10 May 1983 | ¢++ PROPOSAL ***

; I
9:00 EXAMPLE APPT | keywords: EXAMPLE APPT
9:30 xx | date: 5-10-1983

10:00 xx | from: 9:00am

10:30 | until: 10:00am

11:00 |

11:30 | participants:
NOON | andrea

12:30 | djc
1:00 |
1:30 | ¢+  HISTORY =***
2:00 | Appointment entered in this
2:30 | calendar on 28 April 1983 03:57
3:00 | by joyce. Flagged for
3:30 | confirmation. Proposal shown 28
4:00 | April 1983 04:05 to cimral.
4:30 |
5:00 |

MPCAL> show app 9

Figure A-3: Detailed Display of an Appointment

The history of the appointment is visible
when "SHOW APPOINTMENT" is used.



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE

- LAST COMMAND: SHOW DAY

_MONDAY 2 May 1983

9:00 MPCAL DEMO [New]
9:30 xx
10:00 xx

10:30 xx

11:00 xx

11:30 xx

NOON **#* [Can]
12:30 **

1:00 **

1:30 =+

2:00

:30

:00

: 30
:00

: 30

:00

OahWwwNn

MPCAL>

** PROPOSALS =+

MPCAL DEMO [New]
5-2-1983 9:00 12:00

A Test [Canceled]
5-2-1983 12:00 14:00

- - ——————— = - > - - - = = - - .

** REMINDERS **

No Reminders for Today

Figure A-4: Highlighting Calendar Changes

New and Canceled appointments are
highlighted until they are confirmed.

95



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: START
THURSDAY == === == == == o o o e o o e e e e

9:
9:;
10:
:30

10

11:
:30

11

00
30
00

00

NOON

12:
1:
1:
2:
2:
3:
3:
4.
4:
5:

MPCAL>

30
00
30
00
30
00
30
00
30
00

| s*+* PRINCIPAL ALERT ®***
ARPA|
xx | 1) JOYCE made a commitment for you to
xx | attend a MPCAL DEMO on 5-2-83
xx |
xx |
xx |
xx |

I

I

I

I

I

I

from 9am to Noon.

XX

XX
xx
XX
XX
S R i D ittt

Figure A-5: Principal Notification Report

This report is presented to the principal
calendar user when the MPCAL starts.

96



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: HELP

THURSDAY === o o o o o e e e e e e
: l
9:00 ARPA| Choose one of the following:
9:30 xx |
10:00 xx | ARCHIVE ASSUME
10:30 xx |  CANCEL CHANGE CONFIRM
11:00 xx |  COPY ESCAPE HELP
11:30 xx |  LIST MAKE PRINT
NOON xx |  QUIT REJECT SEND
12:30 xx |  SHOW UNDO VISIT
1:00 OA M|
1:30 xx | Use HELP {Command Name} for more
2:00 xx | information on a specific command.
2:30 xx |
3:0C xx |
3130 XX  mmmm e e e el
4:00 |
4:30 |
5:00 |
Evening: 6:00 Writing Thesis |

MPCAL>

Figure A-6: MPCAL Commands

Each command may apply to several MPCAL objects.

97



CIMRAL'S CALENDAR: VIF.JED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: CHANGE ?

MONDAY === mmm o oo mmm oo o o oo e e
. |
- 9:00 |
9:30 |
10:00 |
10:30 |
11:00 |
11:30 Use HELP {Command Name} for more |
I
I
|
|
|
I
|

I

| Choose one of the following:
I

I

|

I

|

NOON | information on a specific command.

|

|

I

|

|

I

APPOINTMENT REMINDER ROLE
USER

12:30
1:00
1:30
2:00
2:30
3:00
3:30 2 ~-m-mmeeeemeecememeee e e m e m e
4:00 |
4:30 ~ |
5:00 |

Evening: 6:00 Writing Thesis |

MPCAL> CHANGE

Figure A-7: The List of Objects "CHANGE" Can Manipulate

By entering a command followed by "7" a list
of objects the command applies to is available.

98



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: HELP

THURSDAY  =--mmmmmmm s e e e e ———=--
_ | |
. 9:00 ARPA| s** MPCAL HELP **=* |

9:30 xx | |
10:00 xx | MPCAL is an automated calendar system used |
10:30 xx | to manipulate and share appointment |
11:00 xx | information. |
11:30 xx | |

NOON xx | QUIT will exit the calendar, |
12:30 xx | |

1:00 OA M| HELP will explain different MPCAL commands. |

1:30 xx | For example, HELP LIST ROLES will return an |

2:00 xx | explanation of LIST ROLES. |

2:30 xx | |

3:00 xx | There are six basic items that MPCAL helps |

3:30 XX mmmmmmmmmme e e e —m————————m o -

4:00 |

4:30 |

5:00 |

I
MPCAL>
Figure A-8: MPCAL Help
This is the top level help message in MPCAL.
Each command has some help associated with it.
The help window scrolls to allow larger amounts
of information to be displayed.
-



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: MAKE APPOINTMENT ‘

MONDAY  ~=-----------mm o mmm e ec e m o mmme—m e
. Start Time of Appointment (REQUIRED)
9:00 FORMAT: 3:00pm or 3pm
9:30
10:0C
10:30
11:00
11:30

I
|
| For help with the editor, type 'tH'
|
|
I
NOON |
I
I
|
I
|
I

To insert a ?, type 'tQ?'

12:30
:00
:30
:00
:30
:00
230 2 ememmemmmmemmmmmmmmm e e eeee s - e mec e m e
DATE : 5-9-1983 START TIME: (7) END TIME: KEYWORDS:
PARTICIPANTS:

WWNN ==

COMMENTS:

MPCAL>

Figure A-9: Content Specific Help

Help for a field in a form is available
by typing "7" in the field.

100



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: MAKE APPOINTMENT

9:
9:
10:
10:
11:
11:

MONDAY

00
30
00
30
00
30

NOON

12

WWNN ==

:30
: 00
: 30
:00
: 30
: 00
: 30
DATE:5-9-1983

9 May 1983

** PROPOSALS =*

No Pending Proposals

** REMINDERS **

. No Reminders for Today
START TIME:10:00am END TIME:NOON KEYWORDS:test

PARTICIPANTS:cimral greif sirbu sks

COMMENTS:This is a test
MPCAL> make appointment

Figure A-10: A Command Form

101



SIRBU'S CALENDAR: VIEWED FROM CIMRAL'S GROUP ROLE

LAS
MONDAY

-9:00
- 9:30
10:00
10:30
11:00
11:30

NOON
12:30
:00
:30
:00
: 30
:00
:30
:00
: 30
:00

N EaBWWMNN ==

MPCAL>

T COMMAND: VISIT
9 May 1983

sss BYUSY *ee
XX

sss BUSY **e
XX
XX

** PROPOSALS **

No Pending Proposals

** REMINDERS **

No Reminders for Today

Now in SIRBU's calendar.

Figure A-11: Visiting a Calendar

Note SIRBU’s calendar will not release the titles
of the appointments to CIMRAL.

102



_CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: CHECK WEEK
WEEK FROM 5 May 1983 TO 11 May 1983

(1) : CIMRAL

EARLY

9:00

9:30 XX
10:00 XX
10:30 XX
11:00 XX
11:30 XX
NOON XX
12:30 XX
1:00 XX
1:30 XX
2:00 XX
2:30 XX
3:00 XX
3:30 XX
4:00

4:30

5:00

LATE
MPCAL>

|
BUSY(1)| BUSY(2)

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

(2) : SIRBU
THURSDAY |FRIDAY

. CE— G . . . —— — — —— — — C— t— — —— —

(3) : GREIF (4): SKS
| SATURDAY | SUNDAY

|MONDAY | TUESDAY |WEDNESDAY

|
PROP(1)| BUSY(2)
XX |  xx
XX
XX
XX
XX
PROP(3)
XX
XX

|
|
|
|
|
|
|
|
|
| xx
|
I
|
|
|
I
|
|

Figure A-12: Checking a set of calendars

"CHECK WEEK" takes a list of calendars and creates
a combined week display.

103



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE

LAST COMMAND: MAKE PROPOSAL

*** PARTICIPANT CHECK ®*==*

MONDAY 2 May 1983 |
. |

9:00 MPCAL DEMO [New] | This calendar checked.

9:30 xx | andrea - calendar checked
10:00 xx | cal - refuses sharing
10:30 xx | sks - calendar checked
11:00 xx | djc - calendar checked
11:30 xx |

NOON | TIMES WITHOUT CONFLICTS
12:30 | 8:30 - 9:00

1:00 | 12:00 - 14:00

1:30 | 15:30 - 17:00

2:00 |

2:30 |

3:00 |
DATE:5-2-1983 CHECK: x

PARTICIPANTS:andrea cal sks djc

START TIME :NOON END TIME:2:00pm  KEYWORDS:A Test
COMMENTS:Please ignore this.

MPCAL>

Figure A-13: Creating a Request

When a request is being created a report
on participant calendars may be requested.
Time without conflicts are highlighted. Notice
that CAL refused to share information with CIMRAL

104



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: SEND :

MONDAY 2 May 1983 ** SUMMARY OF PROPOSAL ACTIONS *=

9:00 MPCAL DEMO [New] Proposal sent to ANDREA.

9:30 xx .
10:00 xx
10:30 xx
11:00 xx
11:30 xx

NOON A Test[New]
12:30 xx

1:00 xx
1:30 xx
2:00 -
2:30
3:00
3
4
4

Cannot send to CAL.
Proposal sent to SKS.

Proposal sent to DJC.

: 30
:00
:30
5:00

MPCAL> Send 12 andrea cal sks djc

Figure A-14: Distributing a Request

When a request is distributed a report is
immediately returned. It summarizes which
calendars received the request.

105



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: LIST ROLES

THURSDAY

.9:00

9:30
10:00
10:30
11:00
11:30

NOON
:30
:00
:30
:00
:30
:00
:30
:00
:30
:00

[y
N WWNN =N

MPCAL>

ARPA
XX
XX
XX
XX
XX
XX
XX

o
>
£

XX
XX
XX
XX

D Bt

LIST OF DEFINED ROLES

BASIC MPCAL ROLES
owner
secretary
supervisor
group
public
outcast

USER DEFINED ROLES
friend

Figure A-15: List of Roles

There are six predefined roles in M.LT’s
version of MPCAL., This calendar also has
a user defined role of "Friend".

106

- —— . ——— - ——————— ———— = = — = = = = = = e = . = - Wb W e e - e s D G v e



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: LIST USERS
THURSDAY = === = === == oo oo oo o o o e e -

9:00 ARPA
9:30 xx
10:00 xx
10:30 xx
11:00 xx
11:30 xx
NOON xx
:30 xx
:00
:30 xx
:00 xx
:30 xx
:00 xx
230 XX ~-mmmmmrmmmemece e m e e e e —e s ceemocom—a——
:00 |
:30 |
:00 |

|

USER LIST

CIMRAL
default role: owner

I

|

|

I

|

|

DJC |
default role: friend |
|

|

|

|

|

I

(=]
>
=

A11 others assigned the PUBLIC role.

—
N BB WWNNE=N

MPCAL>

Figure A-16: List of Known Users

Each user is either explicitly assigned
arole or is given a default.

107



CIMRAL'S CALENDAR: VIEWED FROM CIMRAL'S OWNER ROLE
LAST COMMAND: SHOW USER

THURSDAY == -======-mommmmmecoco oo e oo e e oo o—eomoosomoo-oe
‘ I I
9:00 ARPA| USER INFORMATION |
9:30 xx | |
10:00 xx | CIMRAL |
10:30 xx | default role: owner |
11:00 xx | other role(s): |
11:30 xx | secretary |
NOON xx | supervisor |
12:30 xx | group |
1:00 OA M| public |
1:30 xx | |
2:00 xx | |
2:30 xx | Use SHOW ROLE for more details on |
3:00 xx | assigned roles. |
3:30 XX ~mmm-mmmmmo - e e ee e e oS C s oo CCossmssssm—o—ss
4:00 |
4:30 |
5:00 i
I
MPCAL>

Figure A-17: An MPCAL User Description

Each system user is given a default role and
may optionally be assigned a set of secondary roles.

108



References

1. Aparo, Andrea. The Breakdown Process. Personal Communication.
2. Austin, John L. Philosophical Papers. Clarendan Press, Oxford, 1962.

3. Bair, James H. An Analysis of Organizational Productivity and The Use of
Electronic Office Systems. BNR, Inc., July, 1980.

4. Barrett, Fred K. Communication through Shared Data. Massachusetts Institute
of Technology Bachelor's Thesis. June 1981

5. Bennett, J. L. The Commercial Impact of Usabilty in Interactive Systems. In
Man/Computer Communication, Vol. 2, Infotech State of the Art Report,
Maidenhead, England, 1979.

6. Bennett, J. L. The User Interface in Interactive Systems. In Annual Review of
Infomation Science and Technology, American Society for Information Science,
Washington, 1972, pp. 159-196.

7. Biddle, Bruce J. Role Theory: Expectations, Identities, and Behaviors. Academic
Press, New York, N.Y., 1979.

8. Card, S. K., Moran, T.P., and Newell, A. The Psychology of Human-Computer
Interaction. Erlbaum, Hillsdale, N.J., 1981.

9. Cheriton, David R. Man-Machine Interface Design for Timesharing Systems.
Proceedings of the ACM National Conference, ACM, 1976, pp. 362-366.

10. Conrath, David W. Measuring the Impact of Office Automation Technology
Needs, Methods and Consequences.  Proceedings of Office Automation
Conference, Stanford University, Carmel, CA, 1980.

11. Cuff, R.N. On Casual Users . Internation Journal of Man-Machine Studies 12
(1980), 163-187.

12. Dehning, W., Essig, H., and Maass, S. The Adaptation of Virtual Man-Computer
Interfaces 1o User Requirements in Dialogs. Springer-Verlag, Berlin, 1981.

109



13. Driscoll, James W. Office Automation: The Organizational Redesign of Office
Work. Working Paper 106479, Alfred P. Sloan School of Management, MIT, May,
1979.

14. Driver, M.J., Streufert, S. Integrative Complexity: An Approach to Individuals
and Groups as Information Processing Systems . Administrative Science Quarterly
{(Spring 1969).

15. Dzida, W., Herda, S. and Itzfeldt, W.D. User-Perceived Quality of Interactive
Systems. /EEE Transactions on Software Engineering SE-4 (1978), 270-276.

16. Eswaran, K.P. Specifications, Implementations, and Interactions of a Trigger
Subsystem in an Integrated Database System. Report RJ 1820, IBM, San Jose, CA,
1976. - :

17. Fernandez, E.B, Summers, R.C., Wood, C. Database Security and Ingegrity.
Addison-Wesley, Reading, Mass., 1981.

18. Flores, Carlos F. Management and Communication in the Office of the Future.
Ph.D. Th., University of California, 1982.

19. Gaines, B. R., Hill, D. R. Man-computer communication - what next. 5th Man-
computer communications Conf, International Journal of Man-Machine Studies,
1978, pp. 225-232. -

2¢. Gaines, B. and Facey, P. Some Experience in Interactive System Development
and Applications. Proceedings of the IEEE, Vol. 63, 1975, pp. 894-911.

21. Good, Michael. An Ease of Use Evaluation of an Integrated Editor and
Formatter. Master Th., Massachusetts Institute of Technology, 1981.

22. Greif, Irene, and Hammer, Michael. Multi-person Information Work (Proposal
to DARPA). Massachusetts Institute of Technology Office Automation Group
Working Paper, WP-026. August 1980

23. Greif, Irene. Support Tools for Calendar Activities. Massachusetts Institute of
Technology Office Automation Group Working Paper, WP-025. August 1980

24. Greif, Irene. PCAL: A Personal Calendar. Massachusetts Institute of
Technology, 1981.

110



25. Greif, Irene. Cooperating Systems. Unpublished Proposal. August 1982

26. Greif, Irene. Software for the 'Roles’ People Play. Massachusetts Institute of
Technology Laboratory of Computer Science Technical Manual MIT/LCS/TM210.
February 1983

:27. Giuliano,Vincent E. The Hidden Productivity Factors of Office Information
Systems . Telephony Magazine (July 1980).

28. Hammer, Michael, R. Ilson, et al. Etude: An Integrated Document Processing
System.  Proceedings of the 1981 Office Automation Confecrence, AFIPS,
March, 1981.

29. Hammer, Michael M. and Marvin A.Sirbu. What is Office Automation?
Proceedings of the National Computer Conference Office Automation Cenference,
AFIPS, March, 1980, pp. 37-49.

30. Hammer, Michael and Michael Zisman. Design and Implementation of Office
Information Systems. Proc. NYU Symposium on Automated Office Systems, New
York University Graduate School of Business Administration, May, 1979, pp. 13-24.

31. Hebditch, D. Design of Dialogues for Interactive Commercial Applications. In
Man/Computer Communication, Vol. 2, Infotech State of the Art Report,
Maidenhead, England, 1979.

32. Hsu, K. Sharing of an Office Calendar. Massachusetts Institute of Technology
Bachelor’s Thesis. May 1982

33. Kedzierski, Beverly I. Communication and Management Support in System
Development Environments. ACM Computing Surveys 13,1 (March 1981).

34. Kennedy, T.C.S. The Design of Interactive Procedures for Man-Machine
Communication.” International Journal of Man-Machine Studies 6 (January 1974),
309-334. '

35. Kennedy, T.C. S. Some Behavior Factors Affecting the Training of Naive
Users of an Interactive Computer System. International Journal of Man-Machine
Studies (1975), 817-834. .

111



36. Kim, Y.J. Resource Sharing in an Automated Calendar System (PCAL).
Massachusetts Institute of Technology Bachelor's Thesis. May 1982

37. Martin, James. Design of Man-Machine Dialogues. Prentice-Hall, Englewood
Cliffs, N.J., 1973.

138. McCormick, E.J. Human Factors in Engineering and Design. McGraw-Hill,
New York, 1976.

39. Meister, David. Human Factors: Theory and Practice. John Wiley and Sons,
New York, 1971.

40. Meister, David. Behavioral Foundations of System Design. John Wiley and
Sons, New York, 1976.

41. Meyer, N. Dean. The Office Automation Cookbook: Management Strategies
for Getting Office Automation Moving. Sloan Management Review (Winter 1983),
51-60.

42. Mintzberg, Henry. The Structuring of Organizations. Prentice-Hall, Englewood
Cliffs, N.J., 1979.

43. Moran, T.P. An Applied Physchology of the User. ACM Computing Surveys
13, 1 (March 1981).

44. Munford, E., Mercer, D., Mills, S., and Weir, M. The Human Problems of
Computer Introduction. Management Decision 10 (1972), 6-17.

45. Petit, Thomas A. Fundamentals of Management Coordination: Supervisors,
Middle Managers and Executives. John Wiley and Sons, New York, 1975.

46. Prager, J. M. and Borkin, S.A. POLITE Project Progress Report. 1BM Progress
Report. April 1982

47. Roberts, Teresa L. Evaluation of Computer Text Editors. Ph.D. Th., Stanford,
1979.

48. Rohlfs, Sabine. User Interface Requirements. Convergence, Vol 2., Infotech
State of the Art Report, Infotec, 1979, pp. 165-199.

112



49. Ben Schneiderman.  Sofiware Psychology: Human Factors in Computer and
Information Systems. Winthrop Pub. Inc., Cambridge, Mass., 1980.

50. Sproull, L.S., Kiesler, S., Zubrow, D. Encountering an Alien Culture. CMU
Department of Social Sciences Working Paper. Feb 83

.'51. Sutherland, Juliet B. An Office Analysis and Diagnosis Methodology.
Massachusetts Institute of Technology Master’s Thesis. Feb 83

52. Zdonik, Stanley. Object Management System Concepts: Supporting Integrated
Office Workstation Applications. Ph.D. Th., Massachusetts Institute of Technology,
1983.

583. Zisman, M.D. Office Automation: Revoiution or Evolution. Sloan
Management Review 19, 3 (June 1978), 1-16. .

113



