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ABSTRACT

A new coordinate and variable transformation for the two-dimensional
boundary layer equations is presented. The normal coordinate is
stretched with a scaling length determined by the local solution. The
boundary layer thickness is then essentially constant in computational
space for most types of flows, including separation bubbles and rapidly
growing turbulent boundary layers. Similarity solutions can be obtained
for all wedge flows.

Two finite difference schemes are presented: the Shifted Box Scheme
and the Double-Shifted Box Scheme. Both schemes are more resistant to
streamwise profile oscillations than the standard Keller's Box Scheme.
All governing equations, including the turbulence model, are solved
similtaneously as a fully coupled system. This is faster and more
robust than conventional weak-coupling iteration schemes. The solution
scheme implementation presented makes no restriction on one boundary
condition. Any point or integral quantity such as edge velocity, wall
shear, displacement thickness, or some functional relationship between
two or morz of such quantities can be prescribed.

The behavior of the boundary layer solution near separation is
investigated. It is demonstrated that non-unique solutions always exist
whenever an adverse pressure gradient is specified. This bifurcation of
the solution is responsible for inability of calculations with
prescribed pressure or edge velocity to be carried past separation.
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INTRODUCTION

The primary purpose of this thesis is to develop a new, efficient,
versatile finite-difference method for the solution of the compressible
boundary layer equations. The method differs in several ways from the
other methods which currently exist, such as those of Carter [2] and
Cebeci and Smith [6]. Most of these methods use some form of the un-
necessarily complicated Levy~Lees transformation, in which the stream-
wise node locations usually depend on the solution. To simplify the
application of the present method to viscous-inviscid coupling, the
streamwise coordinate is not transformed. The normal coordinate is
simply scaled by a length which is roughly proportional to the boundary
layer thickness for virtually all types of flow found in practice.

Thus the boundary layer always remains within the computational grid.

It is found that the popular Keller's Box Scheme discretization as
found in Cebeci and Bradshaw [4] is not suitable for solving the gover-
ning equations with the present transformation, since it is susceptible
to streamwise profile and wall shear stress oscillations. The reason
for this behavior is investigated and two new discretization schemes are
introduced to eliminate the problem.

Most real flow situations involve turbulence, and hence some form
of turbulence modeling is necessary for practical calculations. For
simplicity, the popular Cebeci-Smith two-layer algebraic eddy viscosity
model obtained from Cebeci and Smith [6] is used in this thesis.

In the Newton-Raphson procedure used to solve the non-linear finite
difference equations most methods found in literature neglect the coup-
ling between some of the governing equations. 1In particular, the eddy
viscosity formulas are not linearized, possibly in the belief that it is
not important or just to simplify programming. The solution method in
this thesis solves all governing equations simultaneously. This is
demonstrated to produce large reductions in computation time,

The final unique feature of this method is versatility. With most
other methods one is restricted to either a so-called direct mode, where

the edge velocity is prescribed, or an inverse mode, where the displa-

cement thickness is prescribed. This method makes no particular dis-

tinction between direct and inverse modes. Any quantity can be pre-




scribed in lieu of the edge velocity or displacement thickness. This
feature is very useful for design work. For instance, by specifing a
zero wall shear everywhere one can determine the fastest pressure
recovery possible without separation. Efficient viscous-inviscid
coupling can be achieved by prescribing a functional relationship
between edge velocity and displacement thickness. Four different types
of prescribed quantities are programmed demonstrating the flexibility of
the solution scheme.

A secondary purpose of this thesis is ié to investigate the well-
known inability of all direct solution schemes to calculate a solution
past a separation point. Using the developed program it is shown that
there are always two solutions to the finite difference equations when-
ever a decelerating edge velocity is prescribed and that near separation
these two solutions approach each other causing the failure of the
Newton-Raphson algorithm. It is also shown that it is possible to
prescribe an edge velocity for which there is no solution to the finite

difference equations.




ANALYSIS

Equations (1-5) are the two-dimensional, compressible, boundary

layer equations written as a first-order system. An eddy viscosity and

turbulent Prandtl number have been included to allow for turbulence

modeling. Bars denote dimensioned quantites. The "e" subscript denotes

edge,; or freestream quantities.

N 3(pu) 3(pVv)
: = + = =
continuity 2% 37 0 1
3u - 8. 9T - da
X-momentum pu 3% pv 35 27 + Delle = (2)
. 3h __ 8h 33
: = t A =
total enthalpy Pl -2 oV 23 2y (3)
shear: T = (§+ ) 23 (4)
H ut ag’
-~ _ (E_ . @ig_ ) ah - 1) . 3G
flux: = |0+ = — + - = -
enthalpy flux g (Pr Prt) 35 Tl ( pr| © 25 (5)
With the reference quantities L, pgo, Ug, Ty, ag = YYRT,, and
Reg = poagl/ug, non-dimensional variables are defined as follows:
- X - ¥ ==
x = T Y = 1 YReg (6a=b)
v — o h
f = = — = — -
bomdlL YReg u ag h aZ (6c~e)
3 P & _
T = vYRe = 2 /Re (6f-q)
Pold © 9 Poo © ’
- B _ B¢ .
o= - g = = (6h-i)
Ho t Ho
where W'represents the usual dimensioned stream function.
The computational coordinates x and n used in this analysis are
defined as:
X = x n = -’Ai (7a-b)



A = A(x) is a scaling length which depends on the solution itself. It
will be defined later.

With the above definitions, equations (1-5) become:

pur = 3; (8)
3f 3u af 3u 9T du
—_— —— - —_— —— = —_— + —_—e
an 3x X an an Pelel dx (9)
3£ 3h _ 3£ 3h _  2q (10)
an 3Ix ax an an
au
= + — 1
A (w + ue) 5o (11)
_ u e 2h 1 au
= — 4+ = — + - — —
qh (Pr Prt) an H ( Pr v an (12)

Equations (8-12) are singular at a leading edge, and therefore
cannot be used to generate a similarity solution to start streamwise
marching. To remove this singularity, the dependent variables are
scaled with appropriate local reference values, giving the following

transformed variables (in uppercase):

F = % where n = paugh (13a~b)

U = %’; H = :—e R = z—e (13c-e)
5 = %‘t—e T o = %ﬁ—e q (13£f-q)

Bu = %; %e Bn = %;— %Ee Bn = %:—;‘ (14a-c)

The resulting equation set with relevant boundary conditions is:

oF

an (15)

RU =

35S 30 aF aF 23U 3F 30
—_ 4 —_ 4 - — = _— e - ————
Bn F n Bu b u ) x (aﬂ Py = 3“) (16)




:19] oF 3H aF 9H
= 4 = - — = —_— - == 17
an Bn F o0 Bh B 35 X (an ax ax an) (17

= DPeleX au

S n2 ( ut) an (18)

PeleX |(u_ , pe ) 3H 1) uwh o au
Q n? (Pr Prt] an S he v an (19)

Boundary conditions:

n=0: 1) uU=0 (20a)
2) F=0 (20b)
3) H = Hy, or Q= 0y (20c)
n = Ng: 4) U = 1 (204)
5) H=1 (20e)

In virtually all practical situations, the outer flow is adiabatic,ﬁand
hence By is zero. This quantity will therefore be ignored in the
ensuing discussion.

Using equations (15-20), the calculation of Falkner-Skan type
similarity solutions is straightforward, provided the requirements for
similarity are satisfied. For similarity, the lefthand sides of equa-
tions (16) and (17) must be independent of x, and therefore B, and
Bnh must be constants. By integrating equations (14a) and (14c), one

concludes that ug(x) and n(x) must be of the form:

B B
Ua(x) ~ x u n(x) ~ x n (21a-b)
To make the grouping pguegx/n? in equations (18) and (19)
independent of x, B, must be related to 8, by
1 +
Bp = > Bu (22)

Finally, of the remaining x-dependent quantities, pe must be constant,
and ug?/he and p¢ must be either constant or negligibly small near
the leading edge.

Fortunately, all these requirements are satisfied for laminar wedge
flows in the vicinity of the leading edge, provided that A(x) varies

with % as follows:




B -
A(x) ~ x A where Bp = ! Bu

(23a~b)

For the zero pressure gradient case (B, = 0), pe and ug?/hg are
indeed constant, assuring similarity. For (8, > 0), near-stagnation
conditions exist in the vicinity of the leading edge. 1In this case,
Pe is nearly equal to its constant stagnation value, and ue?/hg

is negligible,.again producing similarity within some small interval
close to the 1eadin§ edge.

It only remains to specify the scaling length 4 to close equations
(15~19). Although A is arbitrary, it is desirable that it satisfy
equations (23a-b) so that similarity solutions can be obtained.

Ideally, A is proportional to some nominal boundary layer thickness &
for nonsimilar as well as similar flows. If &8/A is constant, then the
boundary’ layer thickness in the computational x-n space is constanrt, and
grid extension is never necessary during marching calculations.

‘Several various definitions of A have been tried, including the
displacement thickness and the momentum thickness.v The deginition
selected as most suitable is:

Ye Ne
AMx) = U0(1 - U) dy implying 1 = j u(t - U) dn (24a-b)
0 0

This corresponds to the momentum thickness in the incompressible limit.
With this definition, the ratio &8/A varies by no more than 10% for such
diverse flows as laminar separation bubbles and rapidly growing turbu-

lent boundary layers.

-
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SOLUTION SCHEMES

Tc solve equations (15-19), three finite difference schemes were

-

tried (Figures 1-3):

1) Standard Keller's Box Scheme (KBS)
2) Shifted Box Scheme (SBS)
3) Double~Shifted Box Scheme (DBS)

When KBS is used to solve equations (15-19), the gradient parame-
ters (B's) must be defined midway between che profiles if second-order
accurarv is to be maintained. This formulation has a serious drawback
in'that it permits the occurence of streamwise profile oscillations with
little tendency to damp out (see Figure 4). This behavior is readily
explained by nmnoting that equations (16) and (18) at the wall reduce to

32U

5;; (25)

By = ki(x)

where k(x) is a weak function of x. Since B, is defined at the box
midpoints, equation (25) constrains the average of 32U/3n? between any

two successive streamwise stations:
k 32U 32U
gyt | Bt 65 (26)
i+d an"Ji+1 nJif o

Hence, at the wall, 32U/3n? can have large amplitude excursions with

alternating signs and still satisfy the finite difference equations.
Figure 4 shows that the velocity profiles do indeed exhibit these fluc-
tuations following a disturbance. SBS and DBS eliminate this problem by
calculating the profiles midway between the x stations. This permits

By to be defined at the same position as the profiles:

32U
By,

= Pyry) 7
i+d . [3“2)i+§ (27

Thus, the velocity profiles cannot oscillate at the wall because each
one is individually constrained (see Fiqure 5).

Both KBS and SBS require the solution of block tridiagonal systems
with 5x5 blocks. 1In contrast, DBS has only 3x3 blocks. As a result, it
requires roughly one-half the calculation time of the other two
schemes--a substantial savings. Furthermore, it has the same high

resistance to streamwise oscillations that SBS has.
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SOLUTION PROCEDIURE

At each streamwise marching step, there are five unknowns for each
n station at streamwise station xj4+1/2: F, U, H, S, and Q. In addi-
tion, there are two global (independent of n) unknowns at xj41q: o
Uej+1s @and nj4q. Although ug is often prescribed for typical
applications, it is convenient to always treat both ug and n as
unknown when the governing equations are discretized.

Since the discretized equations do not call for ugj+t1 Or nj4+q,
but instead require the midpoint values uegj4+1/2 and Nj+1/2¢ the
latter are temporarily taken as the global unknowns while the profiles
are calculated. For convenience, the lack of a subscript will from now

on imply i+1/2. The discretized gradient parameters are given by:

. - In (ug/ugjy) g = iﬂ_ﬁﬂiﬁil (28a-b)
u In (x/x3) n In (x/x;3)

In effect, ue lies on a power curve in x between ug; and ugj+1, with

By being the exponent of x (likewise for n and Bp). This interpolation
scheme for u, and n was chosen because it allows arbitrarily large
streamwise steps in similar flows. Conventional linear interpolation of

ue and n does not have this property.

After ug, n, By, Bp and the unknown profiles are calculated,
Uej+1 and nj4+q are determined from the following relationships and

stored for the next marching step.

_ xj4+1) Pu _ xi+1)En (29a-b)
Yejpq T VYey X3 Ni+1 = 1§ X1 a

Because the discretized equations for each marching step are coup-
led and highly non-linear, the Newton-Raphson method is used to solve
them iteratively. Following common practice, the iterates §F, 68U, 6&H,
§s, and 68Q are introduced in the linearization and discretization pro-
cess. For DBS, the iterates 6S and 6Q can be expressed as linear combi-
nations of the other iterates and are thus eliminated. See Appendix A
for discretization examples of equations (16) and (18).

The Cebeci-Smith two-layer eddy viscosity formulas given in Appen-
dix B contain the wall shear velocity U, and the normalized velocity

thickness A,. Their respective iterates &U, and A, are therefore
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included in the linearized equations.

Together with §U; and é§A,, the global iterates dug and 6n are lumped
on the righthand side to effectively produce five block tridiagonal
systems with a common coefficient matrix of 5x5 (KBS and SBS) or 3x3
(DBS) blocks. The unknown column vector & contains the profile

iterates 6F, 68U, &8H (for DBS), and also &S, and 6Q (for KBS and SBS):

31 - B e ol - e

All iterates (such as ép and 6§py) which are not explicitly inclu-
ded in this system are expressed as linear combinations of the included
iterates. Equations (31-33) are three examples of how these combina-

tions are defined.

R= P o Te _ 17 ué/he (31a)
Pe T H - U2u2/2hg
3R aR 3
= — + — + —
SR = 8U - SH §ue 2ue (31b)
B - ln (ue/uei) (32é)
" In (x/xj)
3B
8By = fug —= =  sug ——— (32b)
dug Ue 1n (x/x4)
outer py = 0.0168 R YRegy Ay N vy (33a)
3ut aut al.lt
= §R - + —t o+ —
Sug SR 88y ™ 6n (33b)

Since 6R is not included in the block system, the 6R in equation (33b)
must still be eliminated by using equation (31b). Clearly, eliminating
iterates not included in the system consists of repeated application of
the chain rule of differentiation. Although very methodical, this
process can and does get rather tedious, particularly with the inner
eddy viscosity formula given in Appendix B. Nevertheless, the elimina-
tion is clearly worthwhile since it has a drastic effect on CPU time,

as will be demostrated shortly.
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In turbulent flow, the normalized velocity thickness Ay changes
only slightly between Newton iterations. Its iterate can therefore be
safely dropped from equation (30), simplifying the computational task
somewhat. There is no noticable effect on the convergence rate.

After equation (30) is solved with a UL block factorization algo-
rithm, each profile iterate is expressed as a residue r minus the global

iterates times their respective influence coefficients a, b, and c:

[¢] = F]-cue[z]-an[s]-wTF] (34)

Since there are three unknowns left, namely $ug, 6n, and 8U,,
three more equations are necessary. One is obtained from the linearized
definition of the scaling length A (equation (24b)). Another equation
is obtained from the linearized definition of the wall shear velocity.
The third equation results when some arbitrary point or integral quanti-
ty is prescribed. The derivations of these equations are given in
Appendix C. Four different versions of the third equation are given,
corresponding to specified ug, peuec* (i.e. mass defect), 6*, and Tyayl-
These four versions are implemented in the program listed in Appendix D.

Once the three global iterates 8ug, 6n, and 8U; are calculated,
the profile iterates §F, §U, 8H (DBS), and also §S, and 6Q (SBS and KBS)
are easily determined from (34). The profile quantities are then up-
dated and the process repeated to convergence.

Because all the governing equations are solved as a fully~coupled
system (i.e. the variations of all quantities are taken into account by
the chain rule elimination process), the entire system converges quad-
ratically for both laminar and turbulent flow. Typically, two to four
Newton iterations are needed per streamwise step. If the eddy viscosity
formulas were not linearized, the calculation time would increase dras-
tically for transitioning and turbulent flow, as shown in Fiqure 6. 1In
this example, transition was achieved by artificially varying the turbu-
lence intermittency factor in a continuous manner. Note that the higher
the Reynolds Number, the stronger the effect of the turbulence on the
momentum equation, and the higher the payoff of linearizing the eddy
viscosity.

The Reyhner-Flugge-Lotz approximation, which is applied to regions

of reverse flow, consists of setting the streamwise convective terms
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U 3U/3x and U 3H/3x to zero. This is necessary to avoid growth of
numerical errors and to prevent a zone of dependence violation. All the
test cases run indicated that it is possible to retain the momentum
convection term U 3U/3x in reverse flow simply by eliminating only its
contribution to the variable iterates, thus avoiding artificial growth
of numerical errors. This convection term is still retained in the
residues (i.e. the righthand side of (30)). The fact that such a
procedure results in stable calculations strongly suggests that upstream
convection plays a very small role in limited separation regions. Of
course, setting the variation of any term to zero adversely affects the
quadratic convergence of the overall system. However, the contribution
of the omitted terms is small, and as a result the number of iterations
per streamwise step in separated flow rarely exceeds five. The separa-
tion behavior results which are presented in the next section were

calculated using this modified Reyhner-Flugge-Lotz approximation.

Iter
Re_= 10° ———
- ~N—
10 _ e NN
7~
~
/
__._//
— tronsition — *

Iter.

301 ——=— |, Not linearized

7\ —— W, linearized

Re, = 10° / \
201 /

NN TN
101 //
__/ ~

| | x

Figure 6. Effect of linearizing eddy viscosity on the
number of iterations per streamwise
station. Convergence criterion: 6U < 10°
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RESULTS AND DISCUSSION

Using the solution scheme presented here it is possible to investi-
gate in detail the relationships between ug, 6" and wall shear at
any given x station with relative ease, since the calculation mode
(specified quantity) can be changed at any marching step. The separa-
tion behavior study given below was performed with SBS. DBS is a later
development, but is expected to reproduce the results of SBS.

We first assume that all global guantities at the i-1th and ith
stations, and the profiles midway between those two stations are known
(see Figure 2). Now consider the problem of calculating the ue and
profiles at Xj+1/2 which correspond to a specified 6*. If this
specified §* is deliberately varied in some systematic manner, a
relationship between u, and s* (or, equivalently, between B, and
Bg* = x/a* ds*/dx) can be determined. Figqure 7a shows such a
relationship together with the corresponding wall shear at Xj+1/2- In
this case the known upstream profile corresponds closely to the Blasius
profile for zero pressure gradient. Several surprising features are

apparent:

1)—When—By—turns—out—to-benegative; (ive+ ug is less—thanugj

and an adverse pressure gradient is present) there are two values of
§* and corresponding Bg* which will produce this By,. The numerical
solution bifurcates whenever B8, < 0.

2) The smaller &% always gives a positive wall shear, the larger
&* always gives a negative wall shear.

3) There is a minimum permissible By and hence a minimum permissible
Ug. If u, was specified to be less than this minimum, no solution
to the finite difference equations would exist.

4) The minimum ue occurs when the wall shear equals zero.

Assume now that a moderate adverse pressure gradient (By = -0.16)
is specified at xj41/2. Figure 7a clearly shows that two distinct
solutions are possible. However, the &* corresponding to attached
flow produces a smooth continuation from the preceding stations, while
the &* corresponding to separated flow is ridiculously large and has a
radically different profile from the previous stations (see Figure 7b).

Because the initial guesses for the profiles are obtained directly from
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the previous station, the iterative solution scheme in this case always
converges on the "reasonable" leg of the bifurcating solution, since it
is the one closest to the initial quess.

This situation changes significantly if the known upstream profile
is close to separation. If the same pressure gradient parameter as in
the previous case is specified (Figure 8a), the two possible values of
8% are now quite close together. Furthermore, it is not clear which
solution is reasonable and which is not since the two possible profiles
are very nearly the same (see Figure 8b). Also note that B, is local-
ly quite insensitive to Bg* in contrast to the case in Figure 7a.

This implies that specifying edge velocity poses a problem which is
ill-conditioned near separation. Of course, it is also possible to
specify a value ug which is below the minimum and therefore has no
solution. In either case, the iterative Newton-Raphson algorithm will
fail spectacularly if convergence to a specified ug is blindly at-
tempted near this point. On the other hand, it is easy to see that
convergence to a specified displacement thickness is well-conditioned at
separation.

The relationships ‘between .8, and Bg* shown in Figqures 7 and 8
correspond to a freestream Mach Number of 0.0625, making the flow essen-
tially incompressible. To determine what effect compressibility might
have on solution behavior at separation, tests were also performed for
Mach Numbers of 0.80 and 1.50. There was no qualitative change in the
Bu~Bs* relationships shown in Figures 7 and 8.

It is highly unlikely that the bifurcation of the solution is due
to the modified Reyhner-Flugge-Lotz approximation, although this is
difficult to prove. It can only be stated here that at the separation
point, where the occurence of solution bifurcation is most important, no

upstream momentum convection exists.
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APPENDIX A
DISCRETIZATION EXAMPLES FOR DBS

The following shorthand definitions are used:

1) An overline implies i-%, and lack of one implies i+i.

2) A "+" superscript implies j+}, a "-" superscript implies j-%.

Example 1: Shear Definition, Equation (18)

PalaX U, - U;
gt = Z&¢&° ut + ut —a+1 ~ 73 (Ata)
2 t +
n An
PalaX Us =~ Uso
s = == [y + HE -2 __J-1 (A1b)
n? An~

Example 2: x-Momentum, Equation (16)

Let L denote the discretized lefthand side of equation (16) at i+%:

+ . g- . . Usiq - Us . . .~ U
S ST, Bn [Fye1 *F5 Ujuq U5 Fy ¥ Fyoq Uy - Ujog

L - 2 —
ant + an” 2 2 ant 2 An~
1 (Uj4q + U3y Fspq = Fy  Us + Us_q Fs = Fi_
+ By |1 - - 3+1 B R i, 3 =1 73 i-1 (A2)
2 2 ant 2 An~

Similarly, L denotes the entire lefthand side of equation (16) at i-%.

The discretized righthand side of equation (16) is defined as:

X + % Fi+1 + Fy4q9 = F5 = Fy Ujyq + U4 ~ Ujyq = Uy
2 2 ant 2 Ax

Fj+1 + Fj - Fj+1 - Fj Uj+1 + Uj+1 - Uj - Uj

2 Ax 2 ant
+ Fj + Fj - Fj_1 - Fj_1 Uj + Uj_1 - Uj - Uj-1
2 An~ 2 Ax
Fi + Fioq = F3 = Fa_q Us + Uy - Us_q - Ui
. 3 J-1 ] -1 3 J i-1 i-1 (A3)

2 Ax 2 An~T

where Ax is the distance between the profiles: Ax = x - X




22

The complete discretized form of equation (16) is therefore:

% (L + L) = RHS (A4)

Introducing iterates L + L + 8L and RHS + RHS + GRHS gives:

6L - 2 6RHS = 2 RHS - L - L (A5)
Note that L contains only known quantities at X and therefore sL = 0.

Before equation (A5) can be put into the block tridiagonal system
(30), the iterates 6L and SRHS must first be expressed in terms of the
profile iterates §F, 8U, §H, and global iterates §ug, 6&n and §Ur.

This is accomplished by straightforward differentiation:
[ oL } (aL ] ( 9L
8F s + 8Fs|——| + 6Fs_
j+1 ] 3 ) j-1 ]
3F541 3Fy BF5-1

oL (3L [ 3L
+ GUj+1 + GUj—'— + 6Uj_1

SL

3Uj+1 Lan Lan_1
3L aL L L
+ &st—| + 6sT|—| + &Bu|— |+ 68,|— (n6)
ast) as™/ 3By 3Bn

The iterate SRHS is similarly broken down.

The §S and 68 iterates in equation (A6) must still be expressed in
terms of the profile and global iterates. BAgain, this is done by
repeated differentiation of the finite difference expressions for S and

B as described in the main text.
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APPENDIX B
MOLECULAR AND EDDY VISCOSITY FORMULAS

As in the Analysis section, a bar denotes a dimensioned quantity

and L, pgs Ugsr Tos 8g = YYRTy, Reg = pnagL/lip are dimensioned

reference quantities.

Molecular Viscosity

Sutherland's Law &s given by Schlichting [7] is:

- ’ - —
T 2T + T -
= |= ref ~ ¢ where Te = 110 K for air (B1)
Tyef T + Tq

M
Ho

Eref is the temperature at which § = py. It is not necessary that

Tyef = Toe Using T, to non-dimensionalize all temperatures gives

T Y3 T, + T
§o= ref c (B2)
Tref T + Tc

In terms of the profile variables and ug, the local temperature T is:

T = (y-1) (he H - %ug U’] (B3)

Eddy Viscosity

This is the two-layer Cebeci-Smith model as given in Cebeci and
Smith [6]. Starting from the wall, the inner formula is used up to the

point where (p¢)inner > (Mt)outer+ The outer formula is used from

there on.

Outer formula

Ve
g = ap J (Gg = U) dY vy where a = 0.0168 (B4)
0

Ytr is the intermittency factor which varies from 0 to 1 in the tran-
sition zone. Although empirical formulas for y{, are available, for

simplicity it is user-prescribed in the program listed in Appendix D.
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In the transformed variables, (B4) becomes:

Ug = o R n Ay YReg Yer (B5)
: Ne
where Ay = j (1 - U) dn (B6)
0

Inner formula

For brevity, the inner eddy viscosity is given directly in terms of

the transformed variables..

3u
H¢ = Rn A2 a_ﬂl YReg Yer (B7)
A = Kn [1 - exp (—£)) where «k = 0.40 (B8)
- 26 ﬂﬂeﬂe& w1 -4
A N 3R UTReo (B9)
t
N = [1 - 11.8 p+) (B10)

- PeleX Hy 1 -
pt = By, }’—eﬁ— Eg G7) Reof (B11)

When p' is linearized, the variations su, and 6R,, are approximated

by the local variations ép and §R. Since p and R do not vary substan-
tially across the inner layer or between Newton iterations, these are
good approximafions, and hence convergence rate is not noticably

affected.




APPENDIX C
GLOBAL ITERATE SOLUTION FOR DBS

After solution of the block tridiagonal system (30), the profile

iterates are in the following form (equation (34)):

§Fy = Ty - dug alj - &n blj -  8U; €13 (c1)

§U; = Tay dug 3y " én sz - §U, €2y (c2)

§H; = r,. - dug a,. - én b, . - 8U. c,. (c3)
3 5 e 3y 35 T “3y

The residues r and influence coefficients a, b, and ¢ are known.
To determine the profile iterates §F, §U, and 8H, three more linearized
relations are needed. These will produce a 3x3 system which is then

readily solved for 8ug,, én, and §U.:

Relation. 1: fug A, + én B, + 68U, C, = D, (c4)
Relation 2: dug A, + én B, + 68Uy C, = D, (Cc5)
Relation 3: Sug, A, + én By, + 6U; C, = D, (c6)

The coefficients A, B, C, and D are derived below for each relation.

Relation 1
Ne
Equation (24b) restated: 1 = j U(1 - U) dn (C7a)
0
Ox, in discretized form:
=) u + U u + U
+ . i+ .
1 = Z T_J__1__4 [1 - L__l) Anj (C7b)
by 2 2
=1

where T =

- N'_a

for 1< j < J-1

Letting U} = (Uj4q + U5)/2, and introducing iterates Uj » Uj + 6U5 :

J-1 J=-1
‘= + - . . . l_ + .

T= ), TU (1 -UY) ang + )T (80341 + 603 (5 - UF) ang (c8)
=1 i=1

By using equation (C2) to eliminate §Uj and §Uj+9, equation (C8) is

readily put into the form of equation (C4). The coefficients are then
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given by:
J~1
- 1yt .
A, = ' T (azj+1 + a*j) 5 U3) Any (c9a)
=1
J-1 ]
= — - gt .
B, L T byt by) (5= UF) anj (C9b)
i=1
J-1
1
= — -yt .
c, }g; T (czj+1 + czj) (2 U3) Any (C9c)
J-1
D, = T (4 +d,.) (2 - ut) ans
! ! 2 441 257 2 3’ Anj
J=1
J-1
- + - .
1o+ ) 1 u (1 - U8) ang (coa)
i=1
Relation 2:
. Sw
U, definition: U = 9f/— or R, U% = Sy (C10a-b)
Ry
Using the fact that uy = 0 and U = 0 at the wall, Sy and Ry are
given by:
PelaX Uy = U 2 - ui/h
Sy = —— uq 2—21 R, = ——2 (C11a-b)

n2 Anq Ho + H4q

Introducing iterates into equation (C10b) and linearizing (C1la=-b):

2 R,U; 68Uy + U2 6R, - &S, = S, - R,UZ (c12)
3s (39S aS 3s as
8, = — _ls(pw) g + |[—|6n + |—2]6U, + |—2|sUq + |—2|su (C13a)
e 2 1 1
3(pu) g (an Uy U IR ]
3R, 3 3
8R, = -;R-y- Su, + —;—Rw 6Hy + ;Rw S§H (C13b)
e 2 1
dug) 3Hp 3H4

The iterate 6§(pu)e in equation (C13a) can be expressed solely in terms
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of 8ug as follows (pgt denotes edge stagnation density and M3 = ud/Te

is the edge Mach number squared):

A a2
_ Te y-1 ~ ] ud v=1 1
Pe = Pst |(3-1) he T Pst 2hg (Cl4a)

)
§(pu)g = pelug + uglpg = [pe + Ug —age) Sug = pall - M2) Sug (C14b)
e

The iterate 6uq is similarly expressed in terms of S§ug, 6Hq, and
8Hy by straightforward differentiation of Sutherland's formula for
viscosity listed in Appendix B.

Using equations (C13), (C14), and the expression for &u4, equation

(C12) can be put in the form of equation (C5). The coefficients are

given by:

A, = (:%:] 2, +(:—[s]'ﬂa21 + 2—?—?{2”—}{—;}%2 + :::J ay, - :z; —{83:1)}3(1—Mé)
- U?r (—:——:jaaz +[—:%]a31 - :—l‘j—: (C15a)
- vl @%wjbaz + gsﬂbﬂ (C15b)

as 3s asy|f? an
¢, = = c,. +[==Yc, +_Wﬂ\c’ I bl
aUp| 22 " {3Uq] 21 3u, aHZJ 2 |aH4| *1

oR,, Ry, ]

- 2 ||—— —_ :
Uz [aﬂch32 +(8H1}c’1 + 2 R,U, . (C15c)

7/

a5y, 95y aSy[{3u 4 auq
= |— + |— + ——|}—_—
P2 (auz]rn {auJ T21 7 3, (anz Tsp ¥ [aH,) To

3R, 3R,
- y2 ||-—2 — - 2
u% [31-12] sy, + (QHJ sy + S, - R,UZ (c154)
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Relation 3
This relation is completely arbitrary. However, for stable
calculations it must produce a well-posed problem. Four examples of
this relation are given, corresponding to the four mode options
implemented the program listed in Appendix D. The "sp" subscript

denotes a specified quantity.

Example 1: Edge velocity u, specified.

u + Sug = uesp (c16)
This can be put immediately in the form of equation (C6), with the
coefficients given by:
A, = 1 B, = 0 cC, =0 D, = uesp - ug (C17a-4d)
Example 2: Mass defect m = peueé* specified.
* *
Peled” t+ 8(poued’) = mgy (c18)
The displacement thickness §* is expressed as:
Ne Ne
* _ aF _
§ = A |(1 -RU) dn = A |(1 - 3;) dn = A (ng = Fp) (C19)
0 0
_ 1 _ 1
where Fe = E (FJ_1 + FJ) Ne = ‘E (nJ_-l + nJ) (C20a-b)
Expanding 6(peueé*) in equation (C18) and using (C19) gives:
n
én (ng - Fg) 3 (8Fg.q + 6F3) = mgp = n (ne - Fg) (c21)

Using equation (C1) to eliminate the &§F iterates, equation (C21) is

readily put into the form of equation (C6). The coefficients are:

Ay = 3 (a5 4+ a,) (c22a)
B, = % (be_1 + le) + ne = Fe (Cc22b)
Cy = 3 (Cyy, *+cy) (c22¢)
Dy= S (ry,+r ) + mgp=-n (ng - Fe) (c224)



Examgle 3:

s* +
From equation (C19)
& = A (ng -

Or, in linearized form:

Ne = Fe
Pele

5(8%) = én -
Substituting for &§(&%),
8Fe with equation (C1),

The coefficients are:

Displacement thickness s*
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specified.
s(8%) = &'gp (c23)
Fo) = —— (ne = Fa) (C24a)
e peue e e
n n b
—— &F —_— - Fa) 6(pu c24
ooue Te pTul (ne e) S(pu)g ( )

multiplying through by pgua, and eliminating
(C23) is put into the form of equation (C6).

= -’l - 2 - - 2
A, 7 (15, * ay3) ue(ne Fe)(1 = M3) (c25a)
n
By = 3 (le_1 + le) + ne - Fe (C25b)
C, = = (c +c, ) (C25c)
s 2 Tig-1 'y
= n *
D, = Py (rlJ_1 + rlJ) + peUedsp = n (ne - Fg) (C254)
Example 4: Wall shear 171, specified.
Tw + 6ty = Twsp (C26)
. Peud Uz - Uy
From equations (13f) and (18): Tw= W “Ane (C27a)
1
Or, in linearized form:
8 o2 - mg) s M gn kY (sup - sUq) + 2 s (c27b)
Tw = —— - Ug = — én + ——— - —
w Ug e e~ 4 Uy - Uq 072 1 1 H1

As in previous examples, equation (C26) can be put in the form of

equation (C6), with the

coefficients given by:
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_— (C28a)
W (M)
uq _ Tw
Ve
au1) ay - o
+ |—
%32 7 [aH,

— (C28b)
3 Ty
rau"\ b’1 . n_ )
Vb,z | LBHU J (c28c¢c
\
) €14
32 * LBHU !

— (c284)
A i Twsp
T
rau1 r’1 . y
+
iLp) By
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APPENDIX D
PROGRAM LISTING
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PROGRAM BLAKE
INCLUDE 'BLAKE.INC'

c

c ARANRRAARNRANRAAATAARANRANARTARANANAARNSARNRNANRANRNNANNAANANR
c » »
(o] " 2-D, Compressible Boundary-Layer Program "
c L ] -
c " Turbulence Model: »
o ol Cebeci~-Smith Two Layer Eddy Viscosity *
c ] -
c - Solution Scheme: -
c - Double-Shifted Box Scheme, *
o] * second order accurate for all grids. *
c L ] -
c bl Options currently implemented -
(o} - ( streamwise quantity prescribed: "
Cc - 1) Ue -
c " 2) Rhoe"Ue*Dstar ( = mass defect) ol
c » 3) Dstar bl
c " 4) Wall Shear -
c - -
c - Mark Drela May 1983 »
(o} " MIT Gas Turbine and Plasma Dynamics Lab L
c L] L ]
c AARAARNRAARNARAAAANATARAAARNRIARTARAARAARARNANRAANAAVARNAANAS
c

CALL INPUT
(o]

IF(NSTR.GT.®) OPEN(UNIT=LSTR,NAME='STREAM.DAT',TYPE«'NEW')
IF(NPFL.GT.d) OPEN(UNIT=LPFL,NAME='PROFIL.DAT',TYPE='NEW')

o
C---- generate starting solution between first two X stations
NSIM = 1
CALL SIMIL
o
C---- output first station solution from similarity solution
I =1
CALL HEADER
CALL STROUT
Cc
C---- output profiles at X(1+1/2)
CALL PFLOUT
o]
C---- march downstream
NSIM = &
DO 19098 I=-2, IEND-1
c
C-=—==- calculate profiles at X(I+1/2)
CALL INIT
CALL PROFL
[o]
Cr===== output solution at X{(I)
CALL STROUT
c
C-~—---- output profiles at X(I+1l/2)
CALL PFLOUT
(o]
Comemm== set edge quantities at X(I+1l)

CALL IPSET

19090 CONTINUE

o
C---- output last station solution
I = IEND
CALL STROUT
(od
WRITE(LTTI,*) '[ BLAKE ]: Normal Termination'
(o]
CALL STOPIT
c
[od The

END




ARARRARARAAARNARANARAARANAIRNAAARNRRARAANANRRAT RN N

This is file BLAKE.INC which is INCLUDED
at compile time in each subroutine.

RARARR A NN ARANRNRANR N ARRRRINRRARARNRAARNAANRNAN

IMPLICIT REAL (M)

N oaonoaoano

COMMON /C21/ Al1l(41),Al12(41),A13(41),
A21(41),R22(41),A23(4)),
A31(41),A32(41),A33(41])

COMMON /CPl/ Bl1l(41),B12(41),Bl3(41),
B21(41),B22(41),B23(41),
B31(41),B32(41),B33(41)

COMMON /Cf1/ Cl11(41),Cl2(41),Cl3(41),
C21(41),C22(41),C23(41),
C31(41),C32(41),C33(41)

COMMON /C@4/ R11(41),R12(41),R13(41),R14(41),
R21(41),R22(4)),R23(41),R24(41),
R31(41),R32(41),R33(41),R34(41)

COMMON /CQ5/ F(41), U(41), H(41), S(41), Q(41),
FB(41) ,UB(41) ,HB(41),SB(41),0B(41),
VIS(41),VTB( 41),DY( 41) ,ETAE,GEO,JJ

COMMON /C@96/ BH,BCON

COMMON /C@7/ XTR1,XTR2,TURB,UTAU,DUNORM

COMMON /C@8/ EPS,ITER,ITMAX,

& REQ,SRE, PR, PRT,GAM,GM1,TVIS, TVCON

COMMON /C@%/ DUE,DMS,DUT

oL DD PO DO

DR

---- assorted quantities at X(I+1/2)

UTAU = wall shear velocity (for inner eddy viscosity)
DUNORM = normalized velocity thickness (for outer eddy viscosity)

RHOE = edge density
UE = edge velocity

SC = length scale
MS = mass scale = Rhoe"Ue*Sc
DS = displacement thickness = Dstar
TH = momentum thickness = Dmom
MD = mass defect = Rhoe*Ue*Dstar
SR = physical wall shear
ye
/
Sc¢ = | U(l - U) dy
/
)

[eNoKeNeNoNoNoNoRoRe o ReNoNoNeNo ReNoNeNole

COMMON /Cl1g/ UE, Ms, sC, MD, DS, S8R, TH,
UEI, MSI, SCI, MDI, DSI, SRI,
UEIP,MSIP,SCIP,MDIP,DSIP,SRIP,
TE,EE,EEC,ME2 ,ME2C,PE,RHOE, TST,RST

COMMON /Cll/ PPAR,UGUESS,RNU

COMMON /Cl2/ I,IEND,X(108),SPEC(108#0),R3TAG(108),TSTAG,
BETN, BETU, BETH, BETM, BETD, BETS,
BETNB,BETUB,BETHB,
XF,XB,XLOG, FLOG, SHPF,SHPB, SPECF

COMMON /Cl13/ KODE,NSTR,NPFL,NSIM

COMMON /Cl4/ LINP,LFLO,LTTI,LSTR,LPFL

COMMON /C15/ VUP(41),VHP(41),VUO(41),VHO(41),

& TUP(41),THP(41),TUO(41),THO(41),

& VUE( 41),TUE(41),TMS(41),TUT(41)

COMMON /Cl6/ Al,A2,A3,Bl1,B2,B3,C1,C2,C3,D1,D2,D3

Lo o]

R R
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SUBROUTINE INPUT
INCLUDE 'BLAKE.INC®

ARARARARAARANRANANANRANANANNARRRANRANNRACRARANNANSCARAANNAAANNARN

This routine reads the input files INPUT.DAT and FLOW.DAT

ames Description of INPUT.DAT NN SN O e ENMEEEE N EEEEDSS WS

KODE ! option number...see label in main progam
EPS ! convergence epsilon...recommended: l.e-5
ITMAX 1 maximum number of Newton iterations...recommended: 28

output flags: © = no output
1l = output every x station
2 = output every 2nd x station, etc.

NSTR f STREAM.DAT output flag

NPFL t PROFIL.DAT output flag

RES ! reference Reynolds Number...mainly used in turbulence model
PR f Prandtl Number

PRT f turbulent Prandtl Number

GAM 1 Cp/Cv

TSTAG ! freestream stagnation temperature

TVIS ! temperature corresponding to reference viscosity

TVCON t 112 Kelvin normalized with reference temperature
XTR1,XTR2 | x positions marking beginning and end of transition zone
BH,BCON 1 constants in wall BC: bh*Hwall + (l-bh)*aQwall = bcon
PPAR { pressure gradient parameter x/ue due/dx at leading edge
UGUESS ! initial edge velocity guess for KODEs 2 & 3 (see SIMIL)
JJ ! number of normal grid lines

GEO ! geometric grid stretching constant gqeo = dETA)+1/dETA}
ETAE ! edge value of ETA...recommended: 14

asew Description of rLow.DAT AR SO ANN GG RARE®Ee
IEND { number of streamwise stations
X(I) t x value array
RSTAG(I) 1 stagnation density array
SPEC(I) !t specified quantity array...interpreted according to KODE

AN NN A RANT RN RAARARNARAAN TN AAANNANAR A AN RN AT RAANAAANNRAARARARTARARNAN

(e No e e Ne Ne Ne e NeNeNe e e NeRe Ko e Re e Re e NeNe RoNe NoNeNeNo RoReReRo NoRe Re!

-=-=-- set logical unit numbers

LINP = 1 t global input file

LFLO = 2 { streamwise station input file
LTTI = 5 f terminal
H
1

LSTR = 7 streamwise output file
LPFL = 8 profile output file (caution! tends to get large real fast)

C~--- read main input
OPEN( UNIT=LINP,NAME="'INPUT.DAT',TYPE~'OLD"')
READ( LINP,*) KODE,EPS,ITMAX
READ(LINP,*) NSTR,NPFL
READ( LINP,*) REO,PR,PRT,GAM
READ( LINP,*) TSTAG,TVIS,TVCON
READ(LINP,*) XTR1l,XTR2
READ( LINP,*) BH,BCON
READ(LINP,*) PPAR,UGUESS
READ( LINP,*) JJ,GEO,ETAE
CLOSE( UNIT~LINP)

SRE = SQRT( REZ)
GMl1 = GAM -~ 1.8

C---- generate normal grid
CALL GRID

C-~-- read streamwise station input
OPEN( UNIT-LFLO,NAME="'FLOW.DAT',TYPE~'OLD"')
READ(LFLO,*) IEND
DO 4 I=1, IEND
READ( LFLO,*,END=5) X(I),RSTAG(I),SPEC(I)
4 CONTINUE
CLOSE( UNIT=LFLO)

RETURN
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S IEND = I - 1

WRITE(LTTI,®) '[ INPUT ]: Number of streamwise stations found
& was less than expected.'

WRITE( LTTI,*)} °* IEND changed to ',IEND

CLOSE( UNIT=LFLO)

c

RETURN

END

SUBROUTINE GRID

INCLUDE 'BLAKE.INC®
c HRAN AN N AR ANTIANAARNTIAARNRRAANRAANTNANTANRAANARAANSIRANIANRAND
[ This routine calculates the DY's for a geometric-
[ progression-type normal grid which are then scaled
Cc to obtain the specified ETAE.
c AARAANRARAAAANNARNNALCANARARANAATARANANANAANANAATANANRRARNRNANAR
Cc
C=--~-- calculate nor.ial grid spacing DY(J) ... ETA(J+1) = ETA(J) + DY(J)

DY(1l) = 1.9
YTEST = 4.
DO 3 J=2, JJ-1
DY(J) = GEO*DY(J-1)
YTEST = YTEST + 9.5*(DY(J)+D¥Y(J-1))
3 CONTINUE

C---- scale DY(J) to get specified ETAE
FUDGE = ETAE/YTEST
Do 5 J=1, J3-1
DY(J) = FUDGE*DY(J)
5 CONTINUE
RETURN
END



SUBROUTINE SIMIL
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INCLUDE ‘BLAKE.INC'
c ARANANAANAANNRARRARNARARAANRNARNARARNARNAAAR NNV AR AN AANRNRAN NN TN AN
Cc This routine calculates a similarity solution using the
[od same transformation as the main program. The sclution
Cc is calculated midway between X(1l) and X(2).
c The specified edge quantity is assumed to be in SPEC(2).
(o4 Four types of similarity solutions are implemented
(o corresponding to the four modes of the main program,
] although similarity with prescribed wall shear 1is
[od probably not very useful due to the singular nature of
(o} the wall shear at a leading edge for certain cases.
c ARNANARNARRANANARAANRRNANRRNARNAANRCRNARNAN AN RANANARAS ANV AANRRNARRR A NAR
o
C-~~~ pet prescribed gradient parameters
BETU = PPAR ! edge velocity gradient parameter
BETN = 9.5%"(1.9 + BETU) ! mass scale " "
BETH = @. 1 total enthalpy " "
C
C~~--- these relationships must hold if there is similarity
BETM = §.5%(1.9 + BETU) ! mass defect " "
BETD = 9.5%( 1.9 - BETU) {1 disp. thickness " "
BETS = £.5*(3.9*BETU - 1.0) ! wall shear "
c
C---- there iz no upstream station for similarity, so...
BETUB = 4.
BETNB = .
BETHB = £,
TURB = #. ! no turbulence
XP = #.5%"(X(1) + X(2)) | similarity x position
TST = TSTAG t similarity
RST = 9.5  RSTAG(1l) + RSTAG(2)) t stagnation
PST = RST*TST/GAM { quantities
c
C---- calculate Falkner-Skan Dstar, Theta, and Shear with empirical formulas...
Cc ...necessary for initial estimates to start the Newton-Raphson procedure
BMl = 1.8 - BETU
DFS = £.647%91 + BM1*( .2008 + BM1%(.22973 + .6431*BM1**3))
TFS = 9,29234 + BM1*(.125 + BM1*( .06660 + .1802*"BM1**3))
SPS = 1.23259 - BM1*(.5690 + BM1*(.18213 + .1584*BM1**3))
SHPF = DFS/TFS ! shape parameter
c
C---- Similarity solutions with BETU=Z and specified Mass Defect or Dstar
c- are non-unique if they exist at all. There is a high and low Mach Number
c- solution for each case. UGUESS is the first guess for Ue which will put
c- the Newton-Raphson solver on one of the two branches.
C---- But first we must see if UGUESS was given:
(o
IF((XODE.EQ.2 .OR. KODE.EQ.3)
& .AND. BETU.EQ.9.8 .AND. UGUESS.EQ.8.9) GO TO 508
o
C---~ set SPECF at XF for whatever KODE it may be
IF(KODE.EQ.l1) SPECF = SPEC(2)*(XF/X(2))**BETU
IF(KODE.EQ.2) SPECF = SPEC(2)*(XF/X(2))**BETM
IF( KODE.EQ.3) SPECF = SPEC(2)*(XF/X(2))**BETD
IF(KODE.EQ.4) SPECF = SPEC(2)*(XF/X(2))**BETS
c
C---- set specified quantity for some KODE
UE = SPECF t assumes KODE=1l
MD = SPECF t assumes KODE=2
DS = SPECF f assumes KODE~3
SR = SPECF ! assumes KODE=4
(o]
C---- initialize UE for iteration for KODEs oiner than 1

IF(KODE.NE.1l
IF(KODE.EQ.2
IF(KODE.EQ.3
IF(KODE.EQ.4

.AND.

.AND. BETU.EQ.9.9)
BETU.GT.4.9)
.AND. BETU.GT.Q.#£)
.AND. BETU.GT.®.9)

UE = UGUESS

UE = (MD/DFS)**2/XF

UE = (DFS/DS)**2*XF

UE = (XFP*(SR/SFS)**2)**(1./3.)
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C
C~=-- initialize MS for iteration
EE = @.5"GM1*UE**2/TST ! edge kinetic energy/total enthalpy ratio
EEC = 1.8 - EE
RHOE = RST * EEC**(1.9/GMl) ! edge density
MS = TFS*"SQRT( RHOE*UE*XF) t f£firet guess for mass scale
(o]
C---- set initial profiles ... simple polynomials are used
2 = -9.5"DY(1)/7.5
DO 19 J=1, JJ ! march up from the wall
FB(J) = 4.
UB(J) = 4.
HB(J) = 9.
SB(J) = 0.
QB(J) = 2.
o
HJ) = 1.9
U(J) = Z2%(2.8-2)
IF(2.GT.1.8) U(J) = 1.8
o]
R2 = EEC/(H(J) - EE*U(J)**2) ! density at eta(J)
IF(J.EQ.1) F(J) = &.
IF(J.GT.1) F(J) = F(J-1) + B.5*"DY(JI-1)*(R2*"U(J) + R1*U(J-1))
c
C~----- Note: S(J) and Q(J) will be set by SQSET
c
2 =2 + DY(J)/7.5
Rl = R2
19 CONTINUE
(o]
C~---- initialize everything else for iteration
CALL ECALC § edge quantities
CALL DCALC ! Dstar, Dmom, and other thicknesses
CALL VISC ! viscosity
CALL SQSET ! S and Q arrays
DO 58 ITER=l, ITMAX t Newton iteration loop
c
C---~-- f111 blocks of tridiagonal system
CALL SETUP
o]
Commm=- get base profile iterates and global iterate influence coefficients
CALL SOLVE
C
Cmmw==-=- get global variable iterates and corrected profile iterates
CALL DELTAS
c
C--===- - update profile variables
DUMAX = 9.9
DO 55 J=1, JJ
F(J) = P(J) + R1L(T)
U(J) = U(J) + R21(J)
H(J) = H(J) + R3L(J)
DUMAX = AMAX1(DUMAX,ABS(R21(J)))
55 CONTINUE
c
C-e—==- update edge velocity UE and mass scale MS
UE = UE + DUE
MS = M5 + DMS
c
Co=m=== test for negative edge values (divergence)
IF(UE.LE.2.8) GO TO 680
IF(MS.LE.Q@.0) GO TO 7280
c
C-====- recalculate edge quantities
CALL ECALC
o]
C~------ recalculate DS, TH, MD, SC, and shape parameter
CALL DCALC
(o]
C====-- recalculate viscosity
CALL VISC
c
C-====-- recalculate S and Q arrays

CALL SQSET
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(o]
C------ test for convergence
DGLBL = ABS(DMS)/MS + ABS(DUE)/UE
IF(DUMAX.LE.EPS .AND. DGLBL.LE.EPS) GO TO 984
(o]
59 CONTINUE 1 end of Newton iteration loop

c

c

C1t!} PANIC messages

[+
WRITE(LTTI,®) '[ SIMIL l: Newton iteration did not converge.'
WRITE(LTTI,*) ° Max U velocity iterate t ',DUMAX
WRITE(LTTI,*) ° Ue + mass scale iterates : ' ,DGLBL
IF(KODE.EQ.2 .AND. BETU.EQ.Z.9)

& WRITE(LTTI,*) ° Specified Mass is possibly too amall.'
IF(KODE.EQ.3 .AND. BETU.EQ.0.9)

& WRITE(LTTI,*) ° Specified Dstar is possibly too small.'
CALL STOPIT ! Crash softly

o]

Sg9 WRITE(LTTI,*) '( SIMIL ]l: UGUESS must be given for inverse'
WRITE(LTTI,*) ° flat plate similarity sclution.®
CALL STOPIT ! Crash softly
c
608 WRITE(LTTI,*) ‘[ SIMIL 1l: Negative edge velocity was calculated.’
WRITE(LTTI,*) °* Sclution probably diverged. Crashing...'
CALL STOPIT ! Crash softly

c .

798 WRITE(LTTI,") 'Ll SIMIL ): Negative mass scale was calculated.'
WRITE( LTTI,*) ' Solution probably diverged. Crashing...'
CALL STOPIT | Crash softly .

(o]

(o]

C---- The normal graceful exit

o]

9209 WRITE(LTTI,*)'Ll SIMIL J: Similarity ees',ITER,' Iterations'

o]

C---- set edge quantities for X(2) station
UEIP = UE®(X(2)/XF)®*BETU
MSIP = MS*"(X(2)/XF)**BETN
MDIP = MD*(X(2)/XF)**BETM
DSIP = DS%(X(2)/XF)**BETD
SRIP = SR®(X(2)/XF)**BETS

Cc

C--~-- set edge quantities for X(1l) station...

c ...assume first that streamwise gradients are zero
UEI = UEIP
MSI =~ MSIP
MDI = MDIP
DSI = DSIP

(o]

C---- and 1f they are not zero...

IF(BETU.NE.Q.9) UEI = UE*(X(1)/XF)**BETU
IF(BETN.NE.Q.d) MSI = MS*(X(1l)/XF)**BETN
IF(BETM.NE.#.0) MDI = MD*(X(1l)/XF)**BETM
IF(BETD.NE.2.8) DSI = DS*(X(1)/XF)**BETD

(o]

C---~ treat shear carefully, it might be infinite at leading edge...
SRI = 99.9999 { ...or at least very large
IF(BETS.EQ.Q.Q) SRI = SRIP
IF(BETS.NE.Q.Q2 .AND. X(1).GT.9.f) SRI = SR*(X(1)/XF)**BETS

(o}

C---- One last thing to take care of...

C ... for BETU > @, warn if incompressibility assumption is invalid
MACH = SQRT(ME2)}

IF(BETU.EQ.9.8 .OR. MACH.LE.9.85) RETURN ! the 90.05 is arbitrary

(o]

WRITE(LTTI,*) '[ SIMIL 1: WARNING! Edge Mach number = ' ,MACH
WRITE(LTTI,*) ° Heat production might upset similarity.'
WRITE(LTTI,*) ° X(1l) and/or X(2) should he smaller.'
RETURN 1 keep going anyway

c

END
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SUBROUTINE INIT
INCLUDE 'BLAKE.INC'

c .t.'.tii"..'.!ﬁ..tt..tﬁ.......it't..."tl
(o} This routine initializes everything for
[od solution of profiles and edge gquantities
o] between the Ith and I+lth stations.
c Q.t..tl..'t't'..‘t.ﬁl".l'..'l.'.-tll‘tt...
(o
o]
Cun== firgt, set stuff for the previous profile station I-1/72 o%=
(o]
C---- set profiles at I-1/2
DO 2 J=1, JJ
FB(J) = F(J)
UB(J) = U(J)
HB(J) = H(J)
SB(J) = S(J)
QB(J) = Q(J)
2 CONTINUE
(o]
C---- set gradient parameters at I-1/2
BETJB = BETU
BETNB = BETN
BETHB = BETH
(o
C---- set X value at I-1/2
XB = XF
c
C---- set shape parameter at I-1/2 for the output routines
SHPB = SHPF
(o]
(o]
Cxmmx naxt, set stuff for station I ***
(o]
c---- set UEI, MSI, etc.
UEI = UEIP
MSI = MSIP
MDI = MDIP
DSI = DSIP
SRI = SRIP
c
C~--- set known TST and PST
RST = @.5*( RSTAG(I) + RSTAG(I+l))
TST = TSTAG
c
o]
C*»*» finally, set or initialize stuff at I+1/2 for iteration *=*
o
XP = g.5%"(X(I+1l) + X(I))
XLOG = ALOG(X(I+1l)/X(I))
FLOG = ALOG(XF/X(I))
e e .
C---- the normal power-curve interpolation of SPECF is done here...
(o] ...this is exact for similar flows
IF( KODE.NE.4) BSPEC = ALOG(SPEC(I+1l)/SPEC(1))/XLOG
IF( KODE.NE.4) SPECF = SPEC(I)*{XF/X(I))**BSPEC
IF(KODE.EQ.1) BETU = BSPEC
IF(KODE.EQ.2) BETM = BSPEC
IF{ KODE.EQ.3) BETD = BSPEC
Cc
C---- linear interpolation is used for wall shear since it might be negative...
o] ...this is NOT exact for similar flows and requires smaller x steps
IF( KODE.EQ.4) SPECF = @.5%( SPEC(I+l) + SPEC(I))
(o]
c---- set or initialize UE and MS
UE = UEI*(XF/X(I))**BETU
MS = MSI*(XF/X(I))**BETN
c
C---- met known total enthalpy gradient parameter

BETH = 4.
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C---- set turbulence weighting coefficient with cubic transition zone
XT = 9.5
IF( XTR1 .NE.XTR2) XT = (2.9*XF - (XTR2+XTR1))/(XTR2-XTR1)
TURB = 8.5 + 8.25%(3.9"XT - XT**®3)
IF(XF.LT.XTR1) TURB = #.
IF(XF.GE.XTR2) TURB = 1.9

C---- calculate edge quantities, viscosity, S and 0O
CALL ECALC
CALL DCALC
CALL VISC
CALL SQSET
C
RETURN
END
SUBROUTINE IPSET
INCLUDE 'BLAKE.INC®
c -.ttn'..u.*'...ttl..'..i..ﬁ.ﬂ..ﬁ..l'.ﬂﬁ'tt.l
o] This routine sets streamwise quantities at
[ I+] after calculation of profiles at I+1/2
c ..'tt"tt..t...u..tt....'ttﬂ-..-ttﬁ.tl--.tﬂ.
Cc
C---- calculate gradient parameters for power curve extrapolation
BETM = ALOG(MD/MDI)/FLOG
BETD = ALOG(DS/DSI)/FLOG
o
C~--- set quantities for the I+1lth station
UEIP = UEI®(X(I+1)/X(I))**BETU
MSIP = MSI®(X(I+1)/X(I))**"BETN
MDIP = MDI®(X(I+1l)/X(I))**BETM
DSIP = DSI™{ X(I+1)/X(I))**BETD
SRIP = 2.@%SR ~ SRI { linear extrapolation for wall shear
C
RETURN

END
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SUBROUTINE PROFL

INCLUDE 'BLAKE.INC'

AR NNARRARAN AN R TN A TR R AN AN AN RRRARANARARNANNNANARRSCNANR
This routine calculates the BL profiles between
the Ith and I+lth stations using Newton-Raphson.

AR R AR AN RARN A RN N AN ARAR RN T RNRARRNRRARRARRANRNRAARNRAARTANRR

DO 5 ITER=1l, ITMAX 1 Newton iteration loop

o0 aooana

~===== £jl]1 block tridiagonal system
CALL SETUP
c
C------ get uncorrected profile iterates and global influence coefficients
CALL SOLVE
C
C-~---- get global variable iterates and corrected profile iterates
CALL DELTAS

Com—=—- update profiles and get max U iterate

DUMAX = 0.

DO 52 J=1, JJ
F(J) = F(J) + R1l1(J)
U(J) = U(J) + R2I(JT)
H(J) = H(J) + R31(J)
DUMAX = AMAX1(DUMAX,ABS(R21(J)))

52 CONTINUE

C----=-- update UE and/or MS
UE = UE + DUE
MS « MS + DMS
(o4 UTAU will be updated from its definition in VISC

C-~=--~~ check for divergence
IF{UE.LE.@.0) GO TO 18
IF(MS.LE.2.8) GO TO 11

o

Comeme=- recalculate edge quantities
CALL ECALC

c

Commme- recalculate DS, TH, and all that
CALL DCALC

c

C------ recalculate gradient parameters
BETU = ALOG(UE/UEI)/FLOG
BETN = ALOG(MS/MSI)/FLOG

o
Commm=- recalculate UTAU, viscosity, and viscosity influence coefficients
CALL VISC
c
Co====- recalculate S and Q arrays
CALL SQSET
Cc
Commm—- check for convergence or lack thereof
DGLBL = ABS({DMS)/MS + ABS(DUE)/UE
IF(DUMAX.LE.EPS .AND. DGLBL.LE.EPS) GO TO 20
(o]
5 CONTINUE 1 end of Newton iteration loop
(o}
Cc
Ct!1!! PANIC Messages. We normally don't get to this point
(o}
WRITE(LTTI,*) ‘[ PROFL ): CONVERGENCE FAILED at station ',I,'.5'
WRITE(LTTI,*) °* Max U velocity residual: ' ,URES
WRITE(LTTI,*) ° Uedge + Mass residuals : ' ,DRES
CALL STOPIT ! Crash softly
c
19 WRITE(LTTI,*) '[ PROFL l: Negative edge velocity was calculated.'
WRITE(LTTI,*) ° Solution probably diverged. Crashing...'
CALL STOPIT ! Crash softly
C

11 WRITE(LTTI,*) 'l PROFL J): Negative mass scale was calculated.'
WRITE(LTTI,™) ° Solution probably diverged. Crashing...'
CALL STOPIT ! Crash softly
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oaonoan

C---- We normally DO get to this point.
]
2% WRITE(LTTI,*) '[ PROFL }: Station ',I,'.5 ...',ITER,' Iterations'
RETURN
o]
END
SUBROUTINE ECALC
INCLUDE ‘BLAKE.INC'
c '23 3232222322823 X222 22 2 2 X2 2 % ]
Cc This routine calculates edge
c quantities at X(I+1/2).
c [ 3 S22 X322 3 2222222 2 2 2 2 2 22 2 2 2 220 ]
c
EE = @.5*GM1*UE**2/TST ! edge Kinetic Energy to enthalpy ratio...
EEC = 1.2 - EE ! ...1its complement
TE = TST®*EEC t edge static temperature
RHOE = RST*EEC**(1.9/GMl) ! edge static density
PE = RHOE*TE/GAM { edge static pressure
ME2 = UE*UE/TE t edge Mach Number squared...
ME2C = 1.8 - ME2 ! ...1ts8 complement
RNU = XF*RHOE*UE/MS**2 1 group in front of S and Q definitions
(]
RETURN
END
SUBROUTINE DCALC
INCLUDE ‘BLAKE.INC'
ﬂ_lttﬁﬁﬁﬁtﬁItitﬂ'tﬁt"'..*.."..'t.i'ﬂ..-
This routine calculates the profile
parameters DS, TH etc. at I+l1/2
(23222 2222222222 22222222222 R 2 2 2 2220202
DUNORM = 2. !t normalized velocity thickness for outer eddy viscosity
THNORM = £&. ! normalized momentum thickness
DO 19 J=1, JJ-1
UPS = 1.0
IF(J.EQ.1 .OR. J.EQ.JJ-1) UPS = 9.5
THNORM = THNORM + UPS*(F(J+1)~F(J)) * (1.2 - F.5*(U(J+1)+U(J)))
DUNORM = DUNORM + UPS*(1.8 - Z.5%(U(J+1)+U(J)))*DY¥(J)
19 CONTINUE
(o]
DSNORM = ETAE - #.5%*(F(JJ) + F(JJ-1)) ! normalized displacement thickness
c
SHPF = DSNORM/THNORM ! shape parameter
o]
SC = MS/(RHOE*UE) ! normal scaling length
TH = THNORM*SC { momentum thickness
DS = DSNORM*SC it displacement thickness
MD = RHOE*UE*DS { mass defect
(]
RETURN
END
SUBROUTINE SQSET
INCLUDE 'BLAKE.INC'
(o]
C~--- set S and O
DO 18 J=1, JJ-1
JP = J+1
S(J) = RNU*( VIS(J)+VTB(JI))I*(U(JIP)-U(J))/DY(J)
Q(J) = RNU/DY(J)™*
& ((VIS(J)/PR + VTB(J)/PRT)*(H(JIP) - H(J))
& 4+ VIS(JI)™(1.- 1./PR)*EE*(U(JP)**2 - U(J)**2))
19 CONTINUE
o]
C-~--- set physical wall shear SR
SR = S(1)*MS*UE/XF
c

RETURN
END
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SUBROUTINE SETUP
INCLUDE ‘ELAKE.INC'

c .i'**.i'.‘ﬂ'.i...t."‘ﬁ'.'.."..."'-.'..-"Q.ﬁ.'.ﬁﬂtﬁiiﬁtﬁ.'-.t
(o] This routine sets up the block-tridiagonal system for either
(] the similarity (NSIM=1) or marching problem (NSIM=£).
c Influence coefficients for variations of molecular and eddy
C viscosities are received from subroutine VISC and incorporated
(o} into the block matrix to obtain overall quadratic convergence.
c .'Qﬂ..'*ﬁﬂ.'t--.ﬁﬂ"ﬁ"'tﬁ."....-.....ﬂQ'h"..ﬁﬁ-.ﬁ..t...ﬂﬁﬂﬁ..
C
IP = I+l )
IM = I-1
Cc
IF(NSIM.EQ.1) XBAR = 4. !t XBAR multiplies the
IF(NSIM.EQ.8) XBAR = O.5*( XF+XB)/(XFP-XB) | x~dependent terms
(o]
C~--- set variational conversion factors for BETU and BETN...
Cc ... ABETU = DBDU x AUE ; dBETN = DBDN x dMS
DBDU = 2. {1 for similarity, 4dBETU
DBDN = 4. { and AdBETN are zexo
IF(NSIM.EQ.Z) DBDU = 1.@/(UE*FLOG)
IF(NSIM.EQ.92) DBDR = 1.R/(MS"FLOG)
(o]
CcCC-- €111 last A and B blocks and righthand side vectors
o
C---- first line: continuity (will be set in the first DO loop pass below)
o
C---- second line: U = 1 edge boundary condition
B2l(JJ) = 4.
B22(JJ) ~ 1.8
B23(JJ) = &.
c
A21(JJ) = 2.
A22(JJ3) - 1.0
A23(JJ) = 2.
(o]
R21(JJ) = 1.8 -~ 8.5"(U(JT) + U(JII-1))
R22(JJ) = 2.
R23(JJ) = 4.
R24(JJ) = 4.
(o]
C--=-- third line: H = 1 edge boundary condition
B31(JJ) ~ 4.
B32(JJ) = 4. .
B33(JJ) = 1.2
C
A31(JIT) = 2.
A32(JJ) = @&. -
R33(JJ) = 1.9
Cc
R31(JJ) = 1.8 - @.5*(H(JJI) + H(JIJI-1))
R32(JJ3) = 4.
R33(JJ) = #&.
R34(JJ) = 2.
(o]
DO 1828 JIBACK=1l, JJ-1 { sweep from edge to wall
C

C-~-~- set shorthand definitions
J = JJ - JBACK + 1
JM = J-1
JP = J+1

DYP = DY(J)
DYM = DYCJM)
DYO = Q.5*(DYP+DYM)

FSM ~« F(J) + F(JIM)
USM = U(J) + U(JM)
HSM = H(J) + H(JIM)

FDM = F(J) - F(JIM)
UDM = U(J) Ul aM)
HDM = H(J) - H(JIM)
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SEP = 1.8 { separation trigger
IF(USM .LE. 9.) SEP = #g. !
o
FYM = (FDM + FB(J) - FB(JM))*SEP
UYM = UDM + UB(J) - UB(JM)
HYM = HDM + HB(J) - HB(JM)
c
FXM = FSM - FB(J) - FB(JM)
UXM = (USM -~ UB(J) - UB(JM))*SEP
HXM = (HSM - HB(J) - HB(JM))*SEP
o]
CCCm=mmmmmmmm——= ———
CCC-- continuity =---
c
C-~-- set more shorthand
TRM = H(JM) - EE"U(JM)**2
TRO = H(J) - EE®U(J)%*2
Rl = EEC/TRM
RO = EEC/TRO
Cc
C-~--- £111 first line of A, B, C blocks
Bll(J) = 2.9
B12(J) = DYM*(RM + 2.9*EE*EEC*(U(JM)/TRM)**2)
B13(J) = -DYM*U(JM)*EEC/TRM**2
Cc
All(J) = -2.0
Al2(J) = DYM*(RO + 2.@*EE"EEC*(U(J)/TRO)**2)
Al3(J) = -DYM*U(J)"EEC/TRO**2
Cc
Cll(J) = #.
cCl2(J) = 2.
Cl3(J) = 2.
Cc
C---- £11]1 first line of righthand side column vectors
R11(J) = 2.8*(F(J)-F(IM)) - DYM*(RO*U(J)+RM*U(JIM))
R12(J) = -DYM*GM1*UE/TST
& *(U(IM)*(H(TM)~U(IM)**2)/TRM**2 + U(J)*(H(J)-U(J)**2)/TRO**2)
R13(J) = 4.
R14(J) = 4.
o
IF(J.EQ.JJ) GO TO 119
Cc
CCCm=wmmmmmm = -
CCC-- x-momentum =---
c
C---- set weights for shear influence coefficients
AUM = RNU*(VIS(JM)+VTB(JIM))/DYM 1 dS(J-1/2)/4uU(J)
AUP = RNU®(VIS(J)+VTB(J))/DYP ! dS(J+1/2)/4uU(JpP)
AVTM = RNU*UDM/DYM 1t ds(J-1/72)/dmu(J-1/2)
AVTP = RNU*UDP/DYP t AdS(J+1/2)/dmu(J+1/2)
(o]
C-~-- £f111 second line of A, B, C blocks
B21(J) = Z.25%( BETU*USM + BETN*UDM + XBAR*(UYM + UXM))/DYM
B22(J) = ©0.25*( -BETU*FDM - BETN*FSM - XBAR*(FXM + FYM))/DYM
& - (-AUM + AVTM=*( VUO(JM)+TUO(JIM)))/DYO
B23(J) = -AVTM*( VHO({JM)+THO(JM))/DYO
(o]
A21(J) = @.25%( BETU*USP + BETN*UDP + XBAR*(UYP + UXP))/DYP
& + @.25%( ~-BETU*USM + BETN*UDM + XBAR*(UYM - UXM))/DYM
A22(J) = P.25%( ~-BETU*FDP - BETN*FSP - XBAR*(FXP + FYP))/DYP
& + §.25*( -BETU*FDM + BETN®FSM + XBAR*(FXM - FYM))/DYM
& + (-AUP + AVTP*(VUO(J)+TUO(J)))/DYO
& - ( AUM + AVTM*( VUP(JM)+TUP(JM)))/DYO
A23(J) = AVTP*( VHO(J)+THO(J))/DYO
& - AVTM*( VEKP( JM)+THP(JM) ) /DYO
(o]

C21(J) = @.25%( -BETU*USP + BETN*UDP + XBAR*(UYP - UXP))/DYP
C22(J) = §.25%( -BETUFDP + BETN*FSP + XBAR"(FXP - FYP))/DYP
& + (AUP + AVTP*(VUP(J)+TUP(J)))/DYO

C23(J) = AVTP*( VHP(J)+THP(J))/DYO
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C---- 8till more shorthand
UDFDY = 0.25%( USP*FDP/DYP + USM*FDM/DYMj;
FDUDY = g.25*( FSP*UDP/DYP + FSM*UDM/DYM)
RLHS = (SB(J)-SB(JM))/DYO + BETUB
& - BETUB*((UB(JP)+UB(J))*(FB(JP)-FB(J))/DYP

& +( UB(J)+UB(JM))*( FB(J)~-FB(JM) ) /DYM)*Q.25
& + BETNB*((FB(JP)+FB(J))*(UB(JP)-UB(J))/DYP
& +(FB(J)+FB(JM))*(UB(J)~-UB(JM))/DYM)*@.25
Cc
C~--~ £111 second line of righthand side column vectors
R21(J) = §.25*XBAR*( ( FYP*UXP-FXP*UYP)/DYP + ( FYM*UXM-FXM*UYM)/DYM)
& - (S(J)-S(JIM))/DYO - BETU + BETU*UDFDY - BETN*FDUDY - RLHS
R22(-J)—= (1.9 - UDFDY)*DBDU
& + (AVTP*(VUE(J)+TUE(J)) - AVTM*( VUE(JM)+TUE(JM)))/DYO
& + (S(J)-S(JIJM))/DYO*ME2C/UE
R23(J) = FDUDY*DBDN
& + (AVTP"TMS(J) - AVTM*TMS(JM))/DYO
& - (S(J)-S(JIM))/DYO*2.0/MS
R24(J) = (AVTP*TUT(J) - AVTM=TUT(JM))/DYO
c
CCC--=mm=———m—==
CCC-- enexrgy ---
[+
C---- set weights for heat flux influence coefficients
AUM = VIS(IJM)*(1l.-1./PR)*2,.Q9*EE*RNU/DYM t dQ(J-1/2)/4U(J)
AHM = (VIS(JIJM)/PR + VTB(JM)/PRT)*RNU/DYM 1t da(J-1/72)/4B(J)
AVM = (HDM/PR + (1l.-1./PR)*EE®USM*UDM)*RNU/DYM t ao(J-1/2)/dmu(J-1/2)
ATM = HDM/PRT*RNU/DYM d4a(J-1/2)/dmut(J-1/2)
AUEM = VIS(JIM)*(1l.-1. /PR)*GMl'UE/TST*USM‘UDM*RNU/DYM 1 da(J-1/2)/due
(o]
AUP = VIS(J)*(1l.-1./PR)*2.9*EE*RNU/DYP 1 dQ(J+1/2)/au(ap)
AHP = (VIS(J)/PR + VTB(J)/PRT)*RNU/DYP 1 dQ(J+1/2)/dH(JP)
AVP = (HDP/PR + (l.-1./PR)*EE"USP*UDP)*RNU/DYP ! dQ(J+1/2)/dmu(J+1/2)
ATP = HDP/PRT*RNU/DYP 1 dQ(J+1/2)/dmut(J+1/2)
AUEP = VIS(J)*(l.-1./PR)*GM1®"UE/TST*USP*UDP*RNU/DYP ! dQ(J+1/2)/due
(o]
C---- £11) second line of A, B, C blocks
B31(J) = @.25%( BETH*HSM + BETN*HDM + XBAR"( HYM + HXM) ) /DYM
B32(J) = -(-AUM*U(JM) + AVM*VUO(JM) + ATM*TUO(JM))/DYO
B33(J) = £.25*( -BETH*"FDM - BETN*FSM - XBAR*(FXM + FYM))/DYM
& - (-AHM + AVM*VHO(JM) + ATM*THO(JM))/DYO
[+
A31(J) = §.25%( BETH"HSP + BETN"FEDP + XBAR*(HYP + HXP))/DYP
& + @.25%( -BETH*HSM + BETN®"HDM + XBAR*(HYM - HXM))/DYM
A32(J) = (-AUP™U(J) + AVP*VUO(J) + ATP*TUO(J))/DYO
& - ( AUM*U(J) + AVM*VUP(JIM) + ATM*TUP(JM))/DYO
A33(J) = F.25%( -BETH*FDP - BETN"FSP - XBAR*(FXP + FYP))/DYP
& + @.25*( ~-BETH*FDM + BETN*FSM + XBAR*(FXM - FYM))/DYM
& + (~AHP + AVP*VHO(J) + ATP*THO(J))/DYO
& - ( AHM + AVM*VHP(JM) + ATM*THP(JM))}/DYO
Cc
C31(J) = @.25*( ~-BETH*"HSP + BETN*HDP + XBAR"(HYP - HXP))/DYP
C32(J) = (AUP*U(JP) + AVP*VHP(J) + ATP*THP(J))/DYO
C33(J) = 2.25*( -BETH*FDP + BETN*FSP + XBAR*(FXP - FYP))/DYP
& + (AHP + AVP*VHP(J) + ATP*THP(J))/DYO
(o]
HDFDY = @.25*( HSP*FDP/DYP + HSM*FDM/DYM)
FDHDY = 8.25*( FSP*"HDP/DYP + FSM*HDM/DYM)
RLHS =~ (QB(J)-QB(JM))/DYO
& ~ BETHB*((HB(JP)+HB(J))*(FB(JP)-FB(J))/DYP
& +(HB(J)+HB(JM))*( FB(J)-FB(JM) ) /DYM)*0 .25
& + BETNB*((FB(JP)+FB(J))*(HB(JP)~HB(J))/DYP
& +(FB(J)+FB(JM))*( HB(J)-HB(JM))/DYM)*@.25
Cc
C~=--- £111 third line of righthand side column vectors

R31(J) = £.25"XBAR*(( FYP*HXP-FXP*HYP)/DYP + ( PYM*HXM-FXM*HYM)/DYM)
& - (0(J)-Q(JM))/DYO + BETH"HDFDY ~ BETN*FDHDY - RLHS

R32(J) = (AVP*VUE(J) + ATP*TUE(J) - AVM*VUE(JM) - ATM*TUE(JM))/DYO
& + (Q(J)~-a(JM))/DYO*ME2C/UE

& + (AUEP-AUEM)/DYO

R33(J) = FDHDY*DBDN

& + (ATP*TMS(J) - ATM*TMS(JM))/DYO

& - (Q(J)-Q(JIM))/DYO*2.0/MS

R34(J) = (ATP*TUT(J) - ATM"TUT(JIM))/DYO
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C--~-- set shorthand definitions for next J loop sweep
C
114 FSP = FSM
UsSp = USM
HSP = HSM

FDP ~ FDM
UDP = UDM
HDP = HDM

FYP = FYM
UYP = UYM
HYP = HYM

FXP = FXM
UXP = UXM
HXP = HXM

(]
1828 CONTINUE ! end of J loop
ccc-- set first A and C blocks and righthand sides

C---- first line: F = & wall boundary condition
All(l) = 1.8
Al2(1) = 2.
Al3(l) = 2.

Cli(l) = 1.9
Cl2(1) 2.
C13(1) g.

-(F(1l) + F(2))
a.
a.
B.

R11(1)
R12(1)
R13(1)
R14(1)

C---- second line:s U = @ boundary condition
A21(1) = 2.
R22(1) = 1.9
A23(1) = 2.

c21(1) = 2.
c22(1) 1.8
c23(1) 2.

R21(1)
R22( 1)
R23(1)
R24(1)

-(U(l) + UC2))
g.
2.
g.

C---- third line: bh H + (1-bh) AH/dy = bcon boundary condition
A3l(l) = A2,
A32{(1) = 2.
A33(1) = @.5*BH - (1.8-BH)/DY(1l)

C31(1) = 2.
c32(1) =~ &.
C33(1) =~ 9.5*BH + (1.8-BH)/DY(1)

R31l( 1)
R32(1)
R33(1)
R34(1)

BCON + (BH-1.2)*(H(2)-H(1))/DY(1l) - .5*BH*(H(1)+H(2))
2.

g.

z'

RLTURN
END
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SUBROUTINE SOLVE

INCLUDE ‘BLAKE.INC'
ttﬁ.ttt*.t*t't..ti'.t."ﬂ.lﬁ'u.".."'i'l'."t*t"
This routine solves the block-tridiagonal system
(with four righthand sides) received from SETUP.
A UL decomposition method is used. Diagonal

dominance of the diagonal blocks is assumed.
*.ﬁﬁ'ﬁ.ﬂ.i'ﬁiﬁ.ﬁ.'i'*t*".ﬂtt'..*'..ﬁ'ﬂ.'tt*...ﬁ"

(e NeNoNeNoReNe!

DO 198 JBACK=1l, JJ ! backward elimination loop
J = JJ - JBACK + 1
JP = J + 1

IF{J.EQ.JJ) GO TO 118 'l~1ast A3 block is unchanged

C---- eliminate Cj block (calculate modified Aj block and Rj vectors)
All(J) = All(J) - (Cll(J)*Bl1(JP)+Cl2(J)*B21(JP)+C13(J)*B31(JTP))
Al2(J) = Al2(J) - (Cl1(J)*Bl2(JP)+C12(J)*B22(JP)+C13(J)*B32(JP))
Al13(J) = A13(J) - (Cl1(J)*B13(JP)+C12(J)I*B23(JP)+C13(J)*B33(JTP))

c
A21(J) = A2L(J) - (C21L{J)*Bll(JIP)+C22(JI*B21(JP}+C23(J)I*B3L(TP);
A22(J) = A22(J) - (C2L(J)*B1l2(JIP)+C22(J)*B22(JP)+C23(J)*B32(JP))
A23(J) = A23(J) - (C21(J)*B13(JP)+C22(J)*B23(JP)+C23(J)*B33(JP))
c
A31(T) = A3L(J) - (C31(J)*BLlI(IP)I+C32(J)*B21(JP)+C33(J)*B31(TP))
A32(J) = A32(J) - (C31(J)*Bl2(JIP)+C32(J)*B22(JP)+C33(J)*B32(JP))
A33(J) = A33(J) - (C3L(J)*BLl3(JP)+C32(J)I*B23(IJP)+C33(J)*B33(JTP))
Cc
R11(J) = R11(J) - (ClL(J)*R1L(JIP)+Cl2(J)*R21(JIP)+C1l3{J)*R3L(IP))
R12(J) = R12(J) - (Cl1(J)*R12(JP)+C1l2( J)*R22(JP)+C13(J)*R32(JP))
R13(J) = R13(J) - (CLL(J)*R13(JIP)+C1l2(J)*R23(JP)+C1l3(J)*R33(JP))
R14(J) = R14(J) - (Cl1(J)*R14(JP)+Cl2(J)"R24(JP)+C13(J)*R34(JP))
(od
R21(J) = R21(JT) - (C2L(JTI*RLI(JIP)+C22(J)*R21(JP)+C23(J)I*R31(JIP)}
R22(J) = R22(J) - (C21(J)*R12(IP)+C22(J)*R22(IP)+C23(J)*R32(JTP))
R23(J) = R23(J) - (C2L(I)I*R13(JP)I+C22(J)*R23(JP)+C23(J)*R33(JTP))
R24(J) = R24(J) - (C21L(J)*R14(JP)+C22(J)*R24(JP)+C23(J)"R34(JIP))
c
R31(J) = R31(J) - (C3L{I)*R11(IP)+C32(T)*R21(IP)+C33(J)*R31(JIP))
R32(J) = R32(J) - (C31(J)*R12( JP)+C32(J)*R22(JIP)+C33(J)*R32(JP))
R33(J) = R33(J) - (C31(J)*R13(JP)+C32(J)*R23(JP)+C33(J)*R3I3(JITP))
R34(J) = R34(J) - (C31(J)*"R14(JIP)+C32(J)*R24(JP)+C33(J)*R34(JTP))
Cc
CCC-- solve A3jG3 = By and AjW) = R) systems by Gaussian elimination
(o} Gj is stored in B) space and W3 is stored in R) space
C
C---- normalize 1lst row

112 ALlINV = 1.8/A11(J)
Al12(J) = Al2(J)*AllINV
Al3(J) = Al13(J)*Al1INV

(o}
Bll(J) = Bll(J)*AllINV
B12(J) = B12(J)*AllINV
B13(J) = Bl3(J)*AllINV
o
R11(J) = R1M(J)*AllINV~
R12(J) = R12(J)"AllINV
R13(J) = R13(J)*AllINV
R14(J) = R14(J)*Al1lINV
C
C---- eliminate 2nd row
A22(J) = A22(J) - Al12(J)*A21(J)
A23(J) = A23(J) - A13(J)I*A2L(J)
c
B21(J) = B21(J) - Bll(J)*A2l(J)
B22(J) = B22(J) - Bl2(J)*A21(J)
B23(J) = B23(J) - B13(J)*A21(J)
(o]
R21(J) = R21(J) - R1l(J)*A21(T)
R22(J) = R22(J) - R12(J)*A21(J)
R23(J) = R23(J) - R13(J)*A21(J)
R24(J) = R24(J) - R14(J)*A21(J)
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é---- eliminate 3rd row

A32(J) = A32(J) - Al2(J)*A31l(J)
A33(J) = A33(J) - Al3(J)*A31(J)
(o]
B31(J) = B31(J) - Bll(J)*A31l(J)
B32(J) = B32(J) - Bl2(J)*A3l(J)
B33(J) = B33(J) - Bl3(J)*A31(J)
(o]
R31(J) = R31(J) - R1IIM(I)*A3L(J)
R32(J) = R32(J) - R12(J)*A31(J)
R33(J) = R33(J) - R13{(J)*A31(J)
R34(J) = R34(J) - R14(J)*A31(J)
(o]
C---- normalize 2nd row
A22INV = 1.08/R22(J)
A23(J) = A23(J)*A22INV
o
B21l(J) = B21(J)*A22INV
B22(J) = B22(J)*A22INV
B23(J) = B23(J)*A22INV
C
R21(J) = R21(J)*A22INV
R22(J) = R22(J)*A22INV
R23(J) = R23(J)*A22INV
R24(J) = R24(J)*A22INV
[
C---- eliminate 3rd row
A33(J) = A33(J) - A23(J)*aA32(J)
o]
B31(J) = B31(J) - B21(J)*A32(J)
B32(J) = B32(J) - B22(J)*A32(J)
B33(J) = B33(J) - B23(J)*A32(J)
C
R31(J) = R31(J) - R2I(JI)*A32(JT)
R32(J) = R32(J) - R22(J)*A32(J)
R33(J) = R33(J) - R23(J)*a32(J)
R34(J) = R34(J) - R24(J)™A32(J)
o]
C-~-- normalize 3rd row
A33INV = 1.08/A33(J)
B31(J) = B31(J)*A33INV
B32(J) = B32(J)*A33INV
B33(J) = B33(J)*A33INV
Cc
R31(J) = R31(J)*A33INV
R32(J) = R32(J)*A33INV
R33(J) ~ R3I3(J)I*A3I3INV
R34(J) = R34(J)*A33INV
(o]
CCC-- back substitution
(o]
C--=-- 2nd row
B21(J) = B21l(J) - B3l(J)*A23(J)
B22(J) = B22(J) - B32(J)*A23(J)
B23(J) = B23(J) - B33(J)*A23(J)
(o]
R21(J) = R21(J) - R31(J)*A23(J)
R22(J) = R22(J) - R3I2(J)™A23(J)
R23(J) = R23(J) - R33(J)*A23(J)
R24(J) = R24(J) - R34(J)*A23(J)
(o]
C---- 1lat row
Bll(J) = Bll(J) - B2M I)*Al12{J) - B31(J)*Al3(J)
B12(J) = B12(J) - B22(J)*Al12(J) - B32(J)*Al3(J)
Bl3(J) = B13(J) - B23(J)*Al2(J}) - B33(J)*Al3(J)
(o
R11(J) = R11(J) - R2LU(JI)*Al2(J) - R3LU{(JT)*"Al13(J)
R12(J) = R12(J) - R22(JI)*Al2(J) - R3I2(I)*Al13(J)
R13(J) = R13(J) -~ R23(J)*Al2(J) - R33(J)*Al3(J)
R14(J) = R14(J) - R24(J)*Al2(J) - R34(J)*al3(J)
(o]

109

CONTINUE
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DO 288 J=2, JJ

JM = J-

R11(J)
R12(J)
R13(J)
R14(J)

R21(J)
R22(J)
R23(J)
R24(J)

R31(J)
R32(J)
R33(J)
R34(J)

1

CONTINUE

RETURN
END

R11(J)
R12(J)
R13(J)
R14(J)

R21(J)
R22(J)
R23(J)
R24(J)

R31(J)
R32(J)
R33(J)
R34(J)
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forward substitution loop

(Bl1(J)*R11(JM)+B12(J)*R21(IJM)+B13(JT)*R31(IM))
(B1l1(J)*R12(IM)+Bl2( J)*R22(JM)+B13(J)*R32(JIM))
(Bl1(J)*R13(IM)+B12{ J)*R23( JM)+B13(J)*R33(JM))
(B1l1(J)*R14(JM)+B1l2( J)*R24(JM)+B13(J)*R34(JM))

(B21(J)*R11(JM)+B22( J)*R21( TM)+B23(J)*R31(JTM))
(B21(J)*R12(JIM)+B22( J)*R22(IJM)+B23(J)"R32(JIM))
(B21(J)*R13(JM)+B22(J)*R23( JM) +B23(J)*R33(JIM))
(B21(J)*R14(IJM)+B22( J)*R24( IJM)+B23(J)*R34(IM))

(B31(J)*R11(IM)+B32( J)*R21I(IJM)+B33(TJ)*R3L(TM))
(B31(J)*R12(JM)+B32(J)*R22( JM)+B33(J)*R32(JIM))
(B31(J)*R13(JIM)+B32(J)*R23( IM)+B33(J)*R33(IM))
(B31(J)*R14(JM)+B32(J)*R24(IM)+B33(J)*R34(JTM))



50

SUBROUTINE DELTAS
INCLUDE ‘BLAKE.INC'

c P 3322222232222 22 2 3 R X222 22 2 2 22 Q22
(o] This routine calculates the iterates of
o] global unknowns and uses them to correct
c the profile iterates using the influence
[od coefficients calculated by SOLVE.
c ARERRABRNEANRRN A RARANANRRRRANRNRNRRX TN NRRTN NN
(o]
C---- calculate RNORM and its global iterate influence coefficients
RNORM = &,
DNRES = 4.
DNDUE = 4, ’ { dNorm/due
DNDMS = #. 1 dNorm/dn
DNDUT = 0. ! dNorm/dUtau
DO 186 J=1, JJI-1
JP = J+1 .
UMID = Z2.5*(U(JP) + U(J))
Ups = 1.8
IF(J.EQ.1 .OR. JP.EQ.JJ) UPS = £.5
RNORM = RNORM + UPS*UMID*(1l.¢ - UMID)*DY(J)
DNRES = DNRES + UPS*DY(J)*( 9.5 - UMID)*(R21(JP) + R21L(J))
DNDUE = DNDUE + UPS*DY(J)*(£.5 - UMID)*(R22(JP) + R22(J))
DNDMS = DNDMS + UPS*DY(J)*(@.5 - UMID)*( R23(JP) + R23(J))
DNDUT = DNDUT + UPS*DY(J)*(2.5 - UMID)*(R24(JP) + R24(J))
198 CONTINUE
(o

C-~--~ calculate influence coefficients for U, H, Ue, Ms, and Utau iterates

SMU = RNU®(U(2)-U(1))/DY(1l) { dSw/dmu
SU2 = RNU*VIS(1)/DY(1l) { dsw/4Qu2
SUl = -RNU*VIS(1)/DY(1l) ! dsw/d4ul
SUE = S(1)*ME2C/UE t dSw/due
SMS = -2.0"S(1l)/MS t dSw/dn
C
RH2 = -2.0%EEC/(H(2) + H(1))**2 1 dRw/dH2
RH1 = -2.9*EEC/(H(2) + H(1))**2 1 dRw/dH1
RUE = -2.@9"GM1*UE/TST/(H(2) + H(1)) ! dRw/due
(o]
o]
C**** Set up system for DUE, DMS, and DUT
c
C---- first line ... drive RNORM to 1
Al = DNDUE
Bl = DNDMS
Cl = DNDUT
D1 -~ RNORM - 1.0 + DNRES
[
C---- second line ... drive current Utau to UTAU
RWALL = 2.@*EEC/(H(2) + H(1l)) { density at wall
A2 = SU2*R22(2) + SU1*R22(1)
& + SMU*(VHP(1)*R32(2) + VHO(1)*R32(1l) - VUE(1l)) - SUE
& - UTAU**2 * (RH2*R32(2) + RH1*R32(1l) - RUE)
B2 = SU2*"R23(2) + SUl1"R23(1)
& + SMU*( VHP(1)*R33(2) + VHO({1)*R33(1)) - SMS
& - UTAU®=*2 * (RH2*R33(2) + RH1*R33(1l))
C2 = SU2®R24(2) + SU1*R24(1) .
& + SMU*( VHP( 1)*"R34(2) + VHO(1)*R34(1))
& - UTAU*=2 * ( RH2*R34(2) + RH1"R34(1)) + 2.@2*RWALL*UTAU
D2 = SU2®*R21(2) + SU1*R21{1l)
& + SMU*(VHP(1)*R31(2) + VHO(1)*R31(1l))
& ~ UTAU**2 * (RH2*R31(2) + RH1*R31l(1))
& + S(1) - RWALL"UTAU**2
(o]
C---- third line ... drive (whatever's specified) to specified value

IF(KODE.EQ.1) CALL KODEl
IF( KODE.EQ.2) CALL KODE2
IF(KODE.EQ.3) CALL KODE3
IF(KODE.EQ.4) CALL KODE4
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Cc
c—-
c-- iAl Bl Cli IDUEI D11
c-- 1 [ | (|
c-- 3X3 system: (A2 B2 C2IXIDMSI = ID21|
c-~ | (I} | [
C-- IA3 B3 cC3! IDUTI ID3I
c-—
C
C-~--- solve 3x3 system for global iterates
19 CALL GSOLVE
o}
CCC~-- correct profile iterates
DO 12 J=1, JJ
R11(J) = R11(J) - DUE%R12(J) - DMS"R13(J) - DUT"R1l4{J)
R21(J) = R21(J) - DUE*R22(J) - DMS"R23(J) - DUT"R24(J)
R31(J) = R31(J) - DUE®R32(J) ~ DMS*R33(J) - DUT*R34(J)
12 CONTINUE
(o4
RETURN
END
SUBROUTINE GSOLVE
INCLUDE ‘'BLAKE.INC®
[od
C---- solve 3x3 system by using Cramer's rule
DET = A3*(Bl*C2 - Cl*B2)
& -B3*(Al1*C2 - Cl1l*A2)
& +C3*(Al1*B2 - B1l*A2)
DUE = (D3*(B1l*C2 - Cl1l*B2)
& -B3*(D1*C2 - C1*D2)
& +C3*(D1*B2 - B1*D2))/DET
DMS = (A3*(Dl1*C2 - Cl1l*D2)
& -D3*(Al*C2 - C1l*A2)
& +C3*(Al1*D2 - D1*A2))/DET
DUT = (A3*(Bl*D2 - D1*B2)
& -B3*(Al1*D2 - D1*A2)
& +D3*(Al1*"B2 - B1*A2))/DET
c
RETURN

END
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c P R 2 SR 2222323 XXTr23 333222 2 20 R R X2 2 X 2 R 2R X 2R 2 2 2 2 2 R 2 2 2 R 2 A0 A B2 & 28 A R X 2 2 J
[o
(o} Each KODEn routine sets up the third line of the 3x3 system for the
Cc global iterates which is then solved in DELTAS. Quadratic convergence
(o to some specified quantity (stored in SPECF) is then achieved.
o
C ' 2232232232322 223322 223 222222222 2222 R 22 222222222 a2 R 222 2 2 2 2 222 2R 2
SUBROUTINE KODE1l
INCLUDE ‘BLAKE.INC'
(o
C-~--- Ue specified
c
A3 =~ 1.9
B3 = 2.
cC3 - 2,
D3 = SPECF - UE
(]
RETURN
END
SUBROUTINE KODE2
INCLUDE ‘'BLAKE.INC'
o]
C---- Rhoe*Ue*Dstar (= mass defect) specified
c
JM = JJ-1
A3 = @.5*MS*(R12(JJ) + R12(JM))
B3 = 9.5*MS*(R13(JJ) + R13(JM)) + ETAE ~ Z.5*(F(JJ) + F(JIM))
C3 = 2.5*MS*(R14(JJ) + R14(JM))
D3 = 2.5*MS*(R11(JJ) + R1l1(JM)) + SPECF - MD
c
RETURN
END
SUBROUTINE KODE3
INCLUDE 'BLAKE.INC'
o
C---- Dstar specified
C
JM = JJ-1
A3 = @9.5*MS*(R12(JJ) + R12(JM))
& - MS/UE*(ETAE - F.5*(F(JJ) + F(JIM)))*ME2C
B3 = £.5*"MS*(R13(JJ) + R13(JM)) + ETAE - @9.5*(F(JJ) + F(IM))
C3 = g.5*"MS*(R14(JJ) + R14(JM))
D3 « Z.5"MS*(R11{(JJ) + R11(JIM)) + RHOE*UE*SPECF ~ MD
o]
RETURN
END
SUBROUTINE KODE4
INCLUDE 'BLAKE.INC®
c
C---- Wall Shear specified
[o]
(o] SR = current physical wall shear (set in SQSET)
C
SU2 = UE/SC*VIS(1)/DY(1l) { 48Sxr/d4(U2-Ul)
SMU = SR/VIS(1) ! dSsr/dmu
c
A3 = SU2*(R22(2) - R22(1))
& + SMU*(VHP(1)*R32(2) + VHO(1l)*R32(1) - VUE(1l))
& - SR/UE*( 2.8 - ME2)
B3 = SU2*(R23(2) - R23(1))
& + SMU*(VHP{1)*"R33(2) + VHO(1)*R33(1)) +« SR/MS
C3 = SU2*(R24(2) - R24(1))
& + SMU%(VHP(1)*R34(2) + VHO(1l)*R34(1l))
D3 = S5U2*(R21(2) - R21(1))
& + SMU®(VHP(1)*R31(2) + VHO(1)*R31(1)) + SR - SPECF
o]
RETURN

END
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SUBROUTINE VISC

INCLUDE ‘'BLAKE.INC®

'Y 3222222333232 2322222222 2222 22 2R 20222 22222222222 2l g2 22
This routine calculates molecular and eddy viscosities using
the current boundary layer profiles. Sutherland's formula and
the Cebeci-Smith 2-layer turbulence model is used. Influence
coefficients for viscosity variations are also calculated to

give overall quadratic convergence.
P Y 2 R R 2 223 322223232 2 X2 R R R 2R R 2 X2 2 R 2 R 2 R 2 R R R X 2 0 R 2 2R B2 2 R R 2 2 2 2.2 2 2

(s NeNeNeNeNeNeNeoNe!

--=-~ empirical turbulence constants
DATA VKAP, DAMPC, ALPHA, PPC
& / Q.49, 26.9, g.9168, 11.8 /

[od
C---- set wall shear velocity UTAU
T = @.5*TST*(H(1) + H(2))
V1l = SQRT((T/TVIS)**3)*( TVIS+TVCON)/( T+TVCON)
SWALL = RNU*V1*(U(2)-U(1))/DY(1l)
RWALL = 2.@%EEC/(H(1l) + H(2))
UTAU = SQRT(ABS(SWALL)/RWALL)
IF(UTAU.LT.1.E-£4) UTAU = 1.E-94 t zero UTAU is a no-no

C---- assorted shorthand
ECONST = SQRT(SRE*MS**3/( RHOE*UE*XF))
BCONST = ECONST*UTAU/DAMPC
DBDU = @,
IF(NSIM.EQ.9) DBDU = 1.8/(UE*FLOG) t ABETU/due

C---- set pressure gradient correction factor PN
PTEMP = VIS(1l)/( ECONST*UTAU**3*RWALL"*2)
PPLUS = BETU*PTEMP
PN2 = 1.2 - PPC*PPLUS _
IF(PN2.LE.O.Q) GO TC 8899 t test 1f correction factor is imaginary (1)
PN = SQRT(PN2) :

TR1 = H(1l) - EE*U(1l)**2

RUl = 2.@*EE*EEC*U(1)/TR1"*2
RH1 = -EEC/TR1%**2
RUEl = -GM1*UE*(H(1l) - U(1l)**2)/(TST*TR1**2)

Tl = TST*TR1
Rl = EEC/TR1
ETA - 4.

CCC-- inner =ddy viscosity loop
DO 28 J=1, JJ-1
JP = J+1
TR2 = H(JP) - EE*U(JP)**2

c
RU2 = 2.g*EE*EEC*U(JP)/TR1**2 1 dRj+1/4U3+1
RH2 = ~EE/TR2%*2 ! drRy+1/dH3+1
RUE2 = -GM1*UE*{H(JP) - U(JP)**2)/(TST*TR2**2) 1 dRj+l/due
(o
T2 = TST*TR2
R2 = EEC/TR2
T = §.5*(T1 + T2) { temperature at J+1/2
R = #.5*(R1 + R2) t density at J+1/2
C
Com=—=- test if temperature is negative
IF(T.LT.9.08) GO 70 798
Cc
C-===== set molecular viscosity with Sutherland's formula
VIS(J) = SQRT((T/TVIS)**3)*( TVIS+TVCON)/{(T+TVCON)
VTB(J) = 2.
c

CCC-~-- set coefficients for molecular viscosity iterates (dmu)j

(o] dmu = (dmu/du)du + (dmu/dH)dH + ... etc
c
DMUDT = @.5"VIS(J)*(1.5/T - 1.8/(T+TVCONR)) 1 dmu/aT
(o
Comm==- U3 and Uj+l influence coefficients

VUP(J) = -DMUDT*2.0*TST*EE*U(JP)} ! dmu/duj+l
VUO(J) = -DMUDT*2.8*TST*EE*U(J) ! dmu/du)
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C------ Hj and Hj+l influence coefficients
VHP(J) = DMUDT*TST 1 dmu/dHj+1
VHO(J) = DMUDT*TST 1 dmu/dH)

C

C-====~= Ue influence coefficient

VUE(J) = ~DMUDT*GM1*UE*(U(JP)**2 + U(J)**2) 1 dmu/due

C------ don't bother calculating eddy viscosity if TURB = §
IF( TURB.EQ.Q@.98) GO TO 285

(o}
US = ABS(U(JP) - U(J))
SGN = 1.0
IF(U(JP).LT.U(J)) SGN = -1.89
BK = BCONST*PN*R/VIS(J)
EK = 2.
IF( ETA*BK .LT. 3#.0) EK = EXP(-ETA*BK)
YL = VKAP*ETA*(1.8 - EK)
VTP = R*YL*YL*MS*SRE/DY(J)*TURB
[od
C--=--~- get inner eddy viscosity
VTB(J) = VTP*US
c
Crmmm=m— calculate outer eddy viscosity
VTBOUT = ALPHA*R*MS*DUNORM*SRE“TURB
]
C------ go to outer viscosity loop if inner-outer match point has been reached
IF(VTB(J).GT.VTBOUT) GO TO 39
o
cCcC---- set coefficients for inner eddy viscosity iterates (dmut))
c .
C dmut = (dmut/du)du + (dmut/dH)dH + ... etc
o
CK = VKAP*ETA*ETA™EK
DK = 0.
IF(J.GT.l) DK = 2.9*CK*BK/YL
o
Cmm==-- Uj and Uj+l influence coefficients
TUP(J) = SGN*VTP + QA.5*VTB(J)*RU2/R + VTB(J)*DK ! dmut/dujg+l
& 'Q-VUP(J)/VIS(J) + .5*RU2/R
& ~ @ .5*PPC*PPLUS/PN2*(VUP(J)/VIS(1l) - Z.5*RU2/RWALL))
TUO(J) = -SGN*VTP + @.5*VTB({(J)*RU2/R + VTB(J)}*DK 1 dmut/dUj+1
& *( -YUO{ J)/VIS(J) + B.5*RU1l/R
& - Z.5*PPC*PPLUS/PN2*(VUO(J)/VIS(1l) - @&.5*RU1/RWALL))
(o
Cemmmm= Hj and Hj+l influence coefficients
THP(J) = @.5*VTB(J)*RH2/R + VTB(J)*DK ! dmut/dHj+l
& ®( -VHP(J)/VIS(J) + O0.5*RH2/R
& - @.5*PPC*PPLUS/PN2*( VHP(J)/VIS(1l) - @.5*RH2/RWALL)) i
THO(J) = Z.5*"VTB{(J)*RH1/R + VTB(J)"DK ! dmut/4H)
& »( ~-VHO(J)/VIS(JI) + B.5*RH1/R
& - @.5%PPC*PPLUS/PN2*( VHO(J)/VIS(1l) - @.5*RH1/RWALL))
o
Com=m=- Ue influence coefficient
TUE(J) = VITB(J)*@.5*( RUE2+RUE1l)/R + VTB(J)*DK ! dmut/due
& *( -VUE(J)/VIS(J) + @.5*( RUE2+RUE1)/R - @.5"EEC/UE
& - [#.5*PPC/PN2
& »( PTEMP*DBDU + g.5*PPLUS*EEC/UE + PPLUS*VUE(1}/VIS(1l)
& + PPLUS/RWALL*2 .@*GM1*UE/( TST*(H(1)+H(2))) ))
c
Cr=mm—= Ms influence coefficient
TMS(J) = VTB(J)/MS + VTB(J)*DK*(1.5 + P.75*PPC*PPLUS/PN2)/MS 1! dmut/dms
o]
Cemme==- Utau influence coefficient
TUT(J) = VTB(J)*DK*(1.8 - 1.S5"PPC®*PPLUS/PN2)/UTAU ! dmut/dUtau
(o]
205 TR1 = TR2
RUl = RU2
RH1 = RH2
RUE1 = RUE2
Tl = T2
Rl = R2

ETA = ETA + £.5*(DY(J) + DY(JP))
2@ CONTINUE
IF( TURB.EQ.Q2.9) RETURN
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WRITE(LTTI,*) ‘[ VISC 1: WARNING! Streamwise station ',I

WRITE(LTTI,*) ° Inner turbulence model reached BL edge.'
WRITE(LTTI,*) °* Local Reynolds Number is too low.'
RETURN
c
ccC-- outer eddy viscosity loop
39 JSTART = J
DO 48 J=JSTART, JJ-1
JP = J+]
TR2 = H(JP) - EE*U(JP)**2
T2 = TST=TR2
R2 = EEC/TR2
R = #.5%(R1 + R2) ! density at J+1/2
T = .5%(T1 + T2) 1 temperature at J+1/2
IFKT.LT.2.8) GO TO 788
Cmmom== set molecular and outer eddy viscosity
VIS(J) = SQRT{ (T/TVIS)**3)*( TVIS+TVCON)/( T+TVCON)
VTB(J) = ALPHA*R*MS*DUNORM*SRE*TURB
o
CCC-~--- set coefficients for molecular viscosity iterates
DMUDT = 9.5%VIS(J)*(1.5/T - 1.8/(T+TVCON))
o]
C-=-=--- Uj and Uj+l influence coefficients
VUP(J) = -DMUDT*2.@*TST®*EE*U(JP)
. VUO(J) = ~-DMUDT*2.@*TST*EE*U(J)
c .
Cr====- Hy and Hjy+l influence coefficients
VHP(J) = DMUDT*TST
VHO(J) = DMUDT*TST
(o]
Cr===-=- Ue influence coefficient
VUE(J) = ~DMUDT*GM1*UE*(U(JP)**2 + U(J)**2)
c
CCC-~--~- set coefficients for outer eddy viscosity iterates
o]
C------ U3 and Uj+1l influence ccefficients
TUP(J) = VTB(J)/R*EE*EEC*U(JP)/TR2**2
TUO(J) = VTB(J)/R*EE*EEC*U(J)/TR1**2
Cc
C-——--- Hj and Hj+l influence coefficients
THP(J) = -Q.5*VTB(J)/R*EE/TR2%**2
THO(J) = -@.5*VTB(J)/R*EE/TR1%"*2
[
Ce=m===- Ue influence coefficient
TUE(J) = -@.5*VTB(J)/R*GM1*UE/TST
& *(H(JP)-EE*U(JP)*"*2 + H(J)-EE*U(J)**2)
c
Com===- Ms influence coefficient
TMS(J) = VTB(J)/MS
o
C-===-- Utau influence coefficient
TUT(J) = @. ! no wall shear effect on outer eddy viscosity
(o]
491 TR1 = TR2
Tl = T2
R1 = R2
49 CONTINUE
RETURN

780 WRITE(LTTI,*) ‘[ VISC ): Negative temperature calculated.'
WRITE(LTTI,*) ° Solution probably diverged.'

CALL STOPIT
o]

80@ WRITE(LTTI,*) ‘[ VISC J]: Negative dUe/dx correction factor.'
WRITE(LTTI,*) ° Local Reynolds Number is too low or'
WRITE(LTTI,*) °* dUe/dx 4is too high to be corrected for,'
CALL STOPIT

Cc

END
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SUBROUTINE HEADER
INCLUDE ‘'BLAKE.INC'

IF(NSTR.EQ.9) RETURN

o
IF(KODE.EQ.l) WRITE(LSTR,1821)
IF(KODE.EQ.2) WRITE(LSTR,1902)
IF(KODE.EQ.3) WRITE{LSTR,1003)
IF(KODE.EQ.4) WRITE(LSTR,10084)
Cc

1821 FORMAT( 'l CODE 1: Ue prescribed')
1892 FORMAT( 'l CODE 2: Mass defect prescribed')
1983 FORMAT( 'l CODE 3: Dstar prescribed')
1924 FORMAT( 'l CODE 4: Wall shear prescribed')
(o
WRITE(LSTR,1950) REQ
1959 FORMAT('® RE =',El12.4)
c
WRITE(LSTR,2008)
200% FORMAT( '® Sta',6X,'x',7X,'Ue',6X, 'Mach’,
& 6X,'Pe',8X,'m',6X,*'Shear',4X,'Dstar’,
& 4X,'Dmom',6%X,'H',7X,'Te',6X, 'Twall',4X,'0Qwall'/
& 1X,115('-*')) .
RETURN
END

SUBROUTINE STROUT
INCLUDE 'BLAKE.INC'

c AN TR ARNREN N R AARANRARNNANANRANRARANRNNRAKCKRRNANRNRACKRANRRRRR
(o} This routine outputs X(I) station quantities to
c unit LSTR. If needed, profile values at X(I) are
[od interpolated from X(I-1/2) and X(I+1/2).
c 'It.'...."'Iﬂ-...'Iﬁ."'ﬁﬁ!*"'..-.ﬁ'.-t...t'ﬂtﬁ
o
IF(NSTR.EQ.Q) RETURN
IF(MOD( I,NSTR).NE.Z) RETURN
Cc
C~---- set weights for interpolation ... similarity case
WEF = 1.8 t I+1/2 weight
WB = 9. 1t I-1/2 weight
IF(NSIM.EQ.1) GO TO 3
c .

IF(I.LT.IEND) GO TO 2
C----- set weights for extrapolation ... I = IEND case
IF(I.LT.3) GO TO 3
WE = (X(I) - X(I-2)) / (X(
WB = (X(I-1) - X(I)) / (X(I-1)
UEI = UEIP
MSI = MSIP
MDI = MDIP
DSI = DSIP
SRI = SRIP

I-1) - X(I-2))
X(I-2))

~ IF(I.EQ.IEND) GO TO 3
C-—=== set weights for interpolation ... normal case
2 WP = (X(I) - X(I-1)) / (X{I+l) - X(I-1))

WB = (X(I+1) - X(I)) /7 (X(I+l) - X(I-1))
c
3 TSTI = TSTAG
RSTI = RSTAG(I)
c
EEI = @.5*GM1*UEI**2/TSTI
TEI = TSTI*(1.8 - EEI)
REI = RSTI*(1.9 - EEI)**(1.9/GM1)
PEI = REI*TEI/GAM
MACH = UEI/SQRT(TEI)
Cc
SHPI = SHPF"WF + SHPB"WB
THI = DSI/SHPI
c

QX = WF*Q(1l) + WB*QB(1)
HX = O.5"(WF*(H(1)+H(2)) + WB*(HB(1)+HB(2)))
TWALL = TSTI*HX

(unless I < 3)
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C
WRITE(LSTR,192098) I,X(X),UEI,MACH,PEI,MDI,SRI,
& DSI,THI,SHPI,TEI,TWALL,QX
1999 FORMAT(1X,I4,8F9.4,F8.3,3F9.4)
o
RETURN
END

SUBROUTINE PFLOUT

INCLUDE ‘'BLAKE.INC®
MEARNRRARN ARV RAANRIRNARRRRNT AN NANR
This routine outputs profiles
at X(I+1/2) to unit LPFL.

ARBRARARAARNANANTARNABR RN ANNRRANARND

aoaan

IF(NPFL.EQ.9) RETURN
IF(MOD( I,NPFL) .NE.&) RETURN

[¢]

MACH = UE/SQRT(TE)

WRITE( LPFL,1009)
1900 FORMAT( 'l',94(‘'='))
c
WRITE( LPFL,10190) I,XF,DS,TH,UE,MACH
1919 FORMAT( 'QI =',I3,'.5 X =*,FP9.5,' Dstar ~',F8.4,
& * Dmom ~',F8.4,' Ue =',F8.4,' Mach =',F8.4)
c
WRITE( LPFL,1811) SC,RHOE,BETU,SHPF
1811 FORMAT( ‘BY scale =',Fl0.6,' Rhoe =',F8.4,
& BETAu =',F8.4," srhape parameter =',F6.3)
c
WRITE( LPFL,10289)
1028 FORMAT( ‘£ ,94('-')/'® J',6X,'Eta’,8X,'F',9X,'U’',9X,'8",
& 9X,'R',9%,'H',9%X,'0',108X%,'Mu',7X,'Mut'/
& 1X,3('='),3%X,70'="),3%X,7C*=°),3X,7('-"),3X,¥{'=")
')

.
& 3%X,7('-'),3X,7(°'='),3%X,8('-"),3X,7('-'),3X,7('~"'))

(o]
ETA = 9.
DO 19 J=1, JJ-1
JP = J+1
c
Cem===- calculate values midway between eta grid lines
FM = Z.5*(F(JP) + F(J))
UM = g.5*(u(Jp) + U(J))
HM = .5*(H(JP) + H(J))
RM = Z.5*(EEC/(H(J) -~ EE*U(J)*"2) + EEC/(H(JP) - EE*U(JP)*%"2))
o]

WRITE( LPFL,10598) J,ETA,FM,UM,S(J),RM,HM,Q(J),VIS(J) ,VTB(J)
1258 FORMAT( 1X,13,6F19.5,F11.6,2F10.5)

ETA = ETA + £.5*(DY(JP) + DY(J))

19 CONTINUE
WRITE( LPFL,1070)
1979 FORMAT( ‘0’ ,94('-"'))
RETURN
END

SUBROUTINE STOPIT
INCLUDE ‘'BLAXE.INC'
CLOSE( URIT=LSTR)
CLOSE(UNIT=LPFL)
STOP

END




