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of Morphing Airfoils
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Analyzing and optimizing the aerodynamic performance of a morphing airfoil concept
typically requires the numerical solution of many complex, computationally expensive fluid-
structure interaction (FSI) problems. This approach becomes intractable against current
developments in intelligent, programmable materials and additive manufacturing techniques,
which drastically increase the design space and open novel opportunities for passively and
actively morphing wings. To fully exploit these capabilities, a new paradigm for analyzing
and optimizing aeroelastic structures in high-dimensional parameter spaces is required. This
work presents an efficient numerical design approach for elastically morphing structures in
aerodynamic flows. Our approach centers on using deep neural network surrogate models
to predict the aerodynamic loading as a function of a given shape. The models are trained
through a set of flow simulations around rigid stationary bodies randomly sampled from a
parametrized design space of the shapes. Once trained, the surrogate model can be used to
evaluate the aerodynamic performance of any structural design without the need for further
costly flow or FSI simulations. Consequently, this approach can analyze and optimize airfoils
within a higher-dimensional structure and structure-actuator problems than currently possible.
Though the approach is general, we focus here on establishing a proof-of-concept of this idea for
a 2D multi-hinged airfoil at a steady-state condition. The specific contributions are validating
the surrogate model, estimating the cost benefits of this approach, and providing first insights
into the approach’s capabilities. A practical optimization of a 2D morphing airfoil in steady
flows demonstrates that training and using the surrogate model reduces the number of required
flow solutions by several orders of magnitude compared with a fully coupled FSI approach.

I. Introduction
Morphing wings offer the possibility to design lifting aerodynamic surfaces that adapt the wing shape to operating

conditions for maximum steady performance and stability [1–3]. Developments in additive manufacturing enable
the fabrication of such structures out of multiple materials and with fine-grained control over stiffness and thickness
distributions. On top of passive shape control, programmable materials and smart shape-changing structures further
offer the potential to embed actuation within the structure, so that the shape can be actively adapted to specific flow
conditions and applications [2, 4, 5]. Such actuation strategies could potentially transform the design of morphing
structures to achieve near-optimal performance across operating conditions, and provide avenues for continuous shape
control in unsteady flows.
To exploit these capabilities, design methods are required that are able to traverse the high-dimensional structural

and control spaces that govern the underlying fluid-structure interaction (FSI) problem. Currently, typical numerical
approaches to FSI optimization rely on repeated evaluation of a coupled FSI numerical solver, evaluating the aerodynamic
performance at each iteration. This approach has been successfully used for parametric structural designs [6] as well
as topological optimization strategies [7, 8]. The cost of the optimization can be reduced by using gradient-based
information and adjoint solvers [9–11], as well as surrogate models [12, 13]. Nevertheless, in all these cases the
number of expensive FSI simulations required is still fundamentally related to the number of design parameters chosen
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Fig. 1 A functional diagram as described by Fung [14] for the fundamental case of a torsional-spring-supported
rigid wing segment that models bending deformation of a cantilever wing (top). The functional diagram for
steady-steady deformation (bottom) consists of the aerodynamic operator that takes the initial angle of attack 𝛼
to compute aerodynamic loading (lift 𝐿 and moment 𝑀). The structural operator takes the aerodynamic moment
and updates the twisting angle Θ, which will change the angle of attack to 𝛼 + 𝜃, leading to a new moment. When
equilibrium is obtained, the steady-state lift 𝐿 is recorded.

in the structural model. As argued above, with modern material developments and manufacturing techniques, this
design space can be arbitrarily large and could exceed the number of degrees-of-freedom governing the aerodynamic
problem. Moreover, in the typical approach any optimal results are strongly tied to the structural parameterization, so
that revisiting that parametrization often requires a repeat of all numerical simulations and discarding the earlier results.
We propose a surrogate model based approach for FSI problems that decouples the structural optimization problem

from expensive FSI simulations. The surrogate model is trained to predict the aerodynamic loading over the airfoil as
a function of the deformed airfoil shape. The training occurs by running a set of simulations for aerodynamic flows
around rigid airfoils with parametrically varied shapes. Once trained, the surrogate model can be used to evaluate
arbitrary structural designs and optimize over high-dimensional structural design and control spaces, without reverting
to further expensive flow simulations. This approach directly relates to the concept of ‘functional diagrams’ sketched
in Fung [14] (Chpt 11), and reproduced in Fig. 1 for a simple single-degree-of-freedom static aeroelastic problem.
Referring to this functional diagram, we propose to train a surrogate model to predict the aerodynamic loading (here the
lift 𝐿 and twisting moment 𝑀) from the aerodynamic conditions and kinematic deformations (here angle of attack 𝛼
and twisting angle Θ). For flexible airfoils that contain more degrees of freedom than sketched in Fig. 1, the same idea
can be followed when Θ is replaced with a parametrized deformation field, and 𝐿 and 𝑀 with the aerodynamic loading
contributions required to update the structural solver associated with the deformation field.
In this work we examine a proof of concept of this idea applied to a steady-state FSI problem. Our problem

description is based on a 2D hinged airfoil with 𝑁 segments, connected by torsion springs with controllable stiffness
parameters, as well as a global torsion spring. The aerodynamic configuration is fully described with the incident angle
of attack; the deformation parameters are the hinge angles and the global twisting angle; and the structural design
parameters are the hinge spring constants, hinge spring rest angles, and global torsion spring constant. We use a deep
neural network to train and represent the surrogate model. For the aerodynamic simulations we use XFOIL [15], which
in itself is sufficiently cheap to do large-scale optimizations without a surrogate model, so that we can validate our
approach. With this setup, we can assess the accuracy of the surrogate model approach compared to full flow evaluations,
and quantify the number of flow evaluations required to train the surrogate model compared to the number required to
perform coupled FSI optimizations.
The rest of this work presents the problem setup (II), where we mathematically formulate a description of a deformed

multi-segment airfoil. Section III discusses details of the deep learning neural network architecture and how we build the
surrogate model. Section IV presents the validation cases considered for finding equilibrium deformed configurations
using the surrogate model (denoted the forward problem). Section V presents validation cases for finding optimal shape
and structural configurations (denoted the inverse problem), where we wrap a gradient-free optimization algorithm
around our approach to the forward problem. In Section VI, we demonstrate the proposed approach to a large-scale
multi-objective optimization of a flexible airfoil and analyze the results, as well as the effectiveness of the surrogate
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model approach to such problems. Finally, in Section VII, we summarize our thoughts and point out possible extensions
of this work towards more complex problems.

II. Problem setup
In this section we discuss the aerodynamic setting and structural design parametrization.

A. Aerodynamic setting
We consider the flow past a 2D airfoil whose centerline is represented with 𝑁 segments interconnected with hinges.

The shape of the centerline is uniquely defined by specifying the hinge angles 𝛾𝑖 1 ≤ 𝑖 ≤ 𝑁 − 1, where 𝛾𝑖 represents the
angle between segments 𝑖 and 𝑖 + 1, and additionally the segment lengths 𝐿 𝑗 , with 1 ≤ 𝑗 ≤ 𝑁 . For all airfoils considered
here, we set 𝐿 𝑗 = 𝐿/𝑁 , with 𝐿 a fixed chord length. The thickness distribution of each airfoil is given by a symmetric
NACA0012 profile, where we assure 𝐶1 continuity of the airfoil outline by replacing the centerline at each hinge by a
small circular arc that smoothly connects the two adjacent segments. To evaluate aerodynamic performance, the surfaces
are discretized within XFOIL using 𝑁𝑝 = 256 panels. We run XFOIL with chord-based Reynolds number 𝑅𝑒 = 106 and
Mach number 𝑀𝑎 = 0.1, and store the simulated distribution of surface pressure. This loading is integrated to compute
the net aerodynamic moment coefficient acting on each hinge, and we store these moments as 𝐶𝑚,𝑖 for 1 ≤ 𝑖 ≤ 𝑁 − 1.
We further store the total lift coefficient 𝐶𝐿 , total drag coefficient 𝐶𝐷 and moment coefficient around the quarter-chord
position 𝐶𝑚,ref. These force and moment coefficients are used in the FSI coupling, described in the next section.

B. Structural design and FSI coupling
The elastic response of the airfoil is governed by torsion springs attached to each of the 𝑁 − 1 interior hinges, as well

as a global torsion spring attached to the quarter-chord location to mimic an overall twist of the airfoil section. In this
work, we use 𝑁 ≤ 4 and so the global torsion spring is always situated on the first segment. For the hinge torsion spring
on hinge 𝑖 the linear elastic response follows from 𝑀𝑖 = 𝑘𝑖 (𝛾𝑖 − 𝛾𝑖,0) where 𝑀𝑖 is the aerodynamic moment around
this hinge, and the structural parameters are the linear spring constant 𝑘𝑖 and the spring rest angle 𝛾𝑖,0. Expressed
non-dimensionally, this relationship is 𝐶𝑚,𝑖 = �̃�𝑖 (𝛾𝑖 − 𝛾𝑖,0) where �̃�𝑖 = 2𝑘𝑖/(𝜌𝑐2𝑈2∞) with 𝜌 the density, 𝑐 the chord
length, and𝑈∞ the free-stream velocity. The elastic response of the global torsion spring located at the quarter-chord
location is given similarly by 𝐶𝑀 = �̃�Θ, with 𝐶𝑀 the total aerodynamic moment around the quarter-chord location, �̃�
the non-dimensional twisting spring constant, and Θ the current twisting angle.
For a given set of structural parameters {�̃�, �̃�1, 𝛾1,0, . . . �̃�𝑁1 , 𝛾𝑁−1,0} and an incident angle of attack 𝛼inc (further

clarified below) we use an iterative process to find the equilibrium configuration of the airfoil. The update from iteration
𝑛 to 𝑛 + 1 follows the gradient descent with momentum as follows

𝛿𝛾
(𝑛+1)
𝑖

= 𝛽𝑑𝛿𝛾
(𝑛)
𝑖

+
[
𝐶

(𝑛)
𝑚,𝑖

− �̃�𝑖 (𝛾 (𝑛)𝑖
− 𝛾𝑖,0)

]
,

𝛾
(𝑛+1)
𝑖

= 𝛾
(𝑛)
𝑖

+ 𝛽𝛿𝛾 (𝑛+1)
𝑖

,
(1)

where 𝛽 and 𝛽𝑑 are the relaxation and decay factors. For all FSI problems here, we set the decay factor to 𝛽𝑑 = 0.5,
and relaxation factor to 𝛽 = 0.1. Using equation (1) and a similar equation for the twisting angle Θ we can update the
hinge and twisting angles, and thus update the shape for a new flow solver evaluation that leads to updated hinge and
twisting moment coefficients for the next iteration. This process is repeated until we find values for {Θ, 𝛾1, . . . , 𝛾𝑁−1}
that represent an equilibrium state between the aerodynamic loading and the response of the torsion springs.

C. Definition of angle of attack
To clarify the definition of the angle of attack throughout this process, we sketch in Figure 2 configurations of

undeformed and deformed airfoils with 𝑁 = 2 segments. We define the incident angle of attack 𝛼inc as the angle between
the incoming flow and the first segment of the undeformed airfoil. The value of 𝛼inc is kept constant throughout the FSI
iterations for any given problem. The effective angle of attack 𝛼eff, on the other hand, is defined as the angle between
the incoming flow and the chordline. As the airfoil deforms and twists, 𝛼eff necessarily changes. The precise value
of 𝛼eff can be computed for both the undeformed and the deformed configurations as follows. For the undeformed
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(a) Undeformed. (b) Deformed.

Fig. 2 Comparison of an undeformed and deformed airfoil with 𝑁 = 2 segments, and the notation of the
different angles described in the text. The flow in both panels is considered from left-to-right with angle 𝛼inc with
respect to the horizontal.

configuration, we have 𝛼eff,0 = 𝛼inc + Γ0, where (for equal-length segments)

tan(Γ0) =
∑𝑁−1

𝑖=1 sin(𝛾𝑖,0)
1 +∑𝑁−1

𝑖=1 cos(𝛾𝑖,0)

is the angle between the chordline and the first segment in the undeformed configuration. The numerator and denominator
in the right-hand side can be understood respectively as the 𝑦 and 𝑥 positions of the trailing edge relative to the leading
edge. In the deformed configuration, we have 𝛼eff = 𝛼inc + Θ + Γ = 𝛼eff,0 + Θ + (Γ − Γ0), where

tan(Γ) =
∑𝑁−1

𝑖=1 sin(𝛾𝑖)
1 +∑𝑁−1

𝑖=1 cos(𝛾𝑖)

is the angle between the chordline and the first segment in the deformed configuration. It follows that during the FSI
iterations, Θ and Γ change as the airfoil twists and deforms, which modifies the effective angle of attack until equilibrium
is achieved.

III. Surrogate model
The development of the surrogate model in this study is based on a deep neural network. Deep learning (DL) aims

to capture non-linear manifolds in a dataset and uses those manifolds as essential features in the surrogate model. Here
we leverage DL to find patterns in the dataset that relate geometric parameters to aerodynamic loads for each segment
of the 2D airfoil. We use a Multi-Layer Perceptron (MLP) architecture to be able to import a set of input parameters
into the DL model and receive multivariant output parameters. The input parameters that form the design space D in
our case are the effective angle of attack, 𝛼eff, and the 𝑁 − 1 hinge angles, 𝛾𝑖 . The model returns the global force and
moment coefficients 𝐶𝐿 , 𝐶𝐷 , 𝐶𝑀 , as well as the 𝑁 − 1 moment coefficients around each hinge, 𝐶𝑚,𝑖 , which are in the
physical space. Moreover, we added the inverse of drag coefficient, 𝐶−1

𝐷
, to reduce the sensitivity of the output of the DL

model in case the ratio between lift and drag forces (𝐶𝐿/𝐶𝐷) is required as design parameter.
For an airfoil with 𝑁 segments, the input layer ℎin thus has 𝑁 neurons: one for 𝛼eff and 𝑁 − 1 for the hinge angles

𝛾𝑖 (see Fig. 3 for an example with 𝑁 = 3). The output layer ℎout has 𝑁 + 3 neurons, associated with the 𝑁 − 1 hinge
torques 𝐶𝑚,𝑖 and the four overall aerodynamic coefficients associated with lift, drag, inverse drag, and moment. Here we
use a neural network architecture that connects the input and output layers with two hidden layers, ℎ1 and ℎ2, of 20
neurons each, and a “tanh" activation function 𝜎. We can then write

ℎ1 = 𝜎
(
W1ℎin + 𝑏1

)
,

ℎ2 = 𝜎
(
W2ℎ1 + 𝑏2

)
,

ℎout = 𝜎
(
W3ℎ2 + 𝑏3

)
,

(2)

whereW𝑖 and 𝑏𝑖 (with 1 ≤ 𝑖 ≤ 3) are the unknown weight matrix and bias, respectively. For each number of segments
𝑁 , we findW𝑖 and 𝑏𝑖 by optimizing the network against a training data set. To do so, we use Adam with a learning rate
of 10−3, a batch size of 64, and an epoch of 103. Further, we enrich our training data set based on a “jittering" method to
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Fig. 3 Schematic of the deep neural network underlying the surrogate model, here for an airfoil with 𝑁 = 3
segments.

synthesize new samples [16]. In practice, this approach leads to have a stable and less sensitive DL model that can learn
manifoldsM in the design space D. Moreover, having such less sensitive DL model will fit better with FSI solver,
leading to a faster convergence.
The root mean-square error (RMSE) is used to measure the model’s accuracy. The RMSE is minimized with respect

to a dataset with 𝑁samp samples. We can define this error as follows

𝜀RMSE =

√√√
1

𝑁samp

𝑁samp∑︁
𝑛=1

(
𝑌
(𝑛)
pred − 𝑌

(𝑛)
samp

)2
, (3)

where𝑌 (𝑛)
pred is the prediction from the output layer of the DL model on the 𝑛th data point, and𝑌

(𝑛)
samp is the associated entry

in the dataset. In our case, the dataset is formed by a random sampling of the design parameters in the space D, running
XFOIL simulations for each of the samples, and post-processing the XFOIL simulation to find the force and moment
coefficients. In some cases, XFOIL fails to converge, for instance when the inflow or hinge angles are very large. When
this happens, we discard the associated points from the dataset. Throughout our validation and optimization studies, we
are not interested in these regions so discarding these data points is inconsequential for the results presented here.
Ultimately, a main concern in the approach is the amount of data samples required to train the network effectively.

This is especially relevant as we intend to replace XFOIL with high-fidelity data from CFD solvers, which will be much
more expensive to generate. To examine this in more detail, we consider an airfoil with 𝑁 = 2 segments and one hinge
angle as an example. We generate two datasets, one with 200 samples and one with 400 samples, where each sample is
drawn from a multi-dimensional uniform distribution within the design space. We train two DL models with identical
architecture using 80% of each dataset. The other 20% of the dataset is set aside as testing data. Figure 4 visualizes the
design space built for three aerodynamic load coefficients as a function of the incident and hinge angles. The black
mesh interpolates the random samples (black dots) selected as training data within the design space D, and the red dots
show the predicted values using the trained DL models evaluated at the testing points. The root-mean-square error
between the exact and predicted values of test data 𝜀RMSE for the 200- and 400-sample DL models are 3.58 × 10−4 and
1.60 × 10−4, respectively. Although a reduction in the 𝜀RMSE in the 400-sample DL model is observed, the aerodynamic
coefficients behave sufficently smooth that the 200-sample model already provides sufficient accuracy needed for the
analysis. After further analysis of airfoils with different number of hinges, we proceeded with using 100 × 𝑁 random
samples for an airfoil with 𝑁 segments, where 𝑁 ≤ 4 in this work.
We note here that, as the focus in this work is on demonstration and validation of the proposed approach, and since

XFOIL samples are relatively inexpensive to generate, we did not improve further upon the specific training strategy
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and network architecture described. When we extend the approach to more expensive, high-fidelity CFD simulations,
the efficient sampling and use of training data becomes a crucial part of the problem, and we discuss this further in
section VII.
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Fig. 4 Model evaluation for two different datasets for the DL model with 200 samples (a–c), and for the DL
model with 400 samples (d–f). The figures show the lift (a,d), drag (b,e), and twisting moment (c,f) coefficients,
plotted as a function of the instantaneous hinge angle 𝛾1 and the incident angle 𝛼inc. In each plot the black mesh
interpolates the random samples (black dots) selected as training data within the design space, and the red dots
show the predicted values using the trained DL models evaluated at the testing points.

IV. Validation of forward problem
We define the forward problem as finding the equilibrium configuration (defined through the twisting and hinge

angles) of an airfoil at a fixed incident angle 𝛼inc and for a given set of spring constants. The equilibrium configuration
is found through the approach detailed in section II.B, and we compare the result obtained between using XFOIL vs the
DL surrogate model to evaluate the aerodynamic load. Below we detail the results of this comparison for three different
cases of increasing complexity.

A. Case 1: single hinge, zero angle of attack and hinge rest angle
In the first case, we consider an airfoil with two segments and thus a single hinge. We set the the incident angle

𝛼inc = 0◦ and the rest angle of the hinge 𝛾1,0 = 0◦. In this case, because the flow and structure are symmetric, the FSI
problem should converge to a straight shape with Θ = 𝛾1 = 0◦. To test our FSI procedure, we initialize the iterations by
setting Θ(0) = 5◦ and 𝛾 (0)1 = 5◦, respectively, and use torsional-spring stiffnesses of �̃� = �̃�1 = 1. Figure 5a shows the
initial shape (in grey) with specified initial twisting and hinge angles, and the equilibrium shapes predicted by DL (red)
and XFOIL (blue), both corresponding to a symmetric airfoil. In Figure 5b, we show the error evolution of the FSI
iterations when using the DL model. Here, and in the following two cases, the error is defined as the difference between
the predicted angles using the DL model and the converged value obtained from the FSI iterations using the XFOIL
model. We observe that the DL model converges within about 40 iterations to angles that match well with the XFOIL
values.
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Fig. 5 Comparison of FSI solver results using XFOIL and the DL model for validation Case 1.

B. Case 2: single hinge, non-zero angle of attack and rest angle
We increase the complexity over the previous case by changing the incident angle of attack to 𝛼inc = 10◦ and the

rest angle of the hinge to 𝛾1,0 = −5◦, without changing the other parameters. We initialize the FSI iterations with
Θ(0) = 𝛾 (0)1 = 0◦. The torsional-spring stiffnesses are set to �̃� = �̃�1 = 0.25. Figure 6a shows the initial shape of the
airfoil and the final shapes obtained by XFOIL and DL models. The flexible airfoil deforms due to the aerodynamic
moment around the hinges, and subsequently, it changes the twisting angle in such a way that the moments are in
equilibrium. The final shape obtained by the DL model is in good agreement with the one obtained by XFOIL. In
Figure 6b, we show the error evolution of the FSI iterations when using the DL model, showing a convergence up to
roughly 1% in the hinge angle 𝛾1.
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Fig. 6 Comparison of FSI solver results using XFOIL and the DL model for validation Case 2.

C. Case 3: multiple hinges, non-zero angle of attack and rest angles
To extend our validation to flexible airfoils with 𝑁 = 3 and 𝑁 = 4 segments, we first build and train DL models for

each of these segmented airfoils in the same way as for the 𝑁 = 2 segments airfoil discussed so-far. We then validate the
FSI equilibrium iterations for a configuration with 𝛼inc = 5◦, and rest angles of 𝛾𝑖,0 = −10◦ for all hinges. Moreover, the
torsional-spring stiffness for the global twist and for all hinges are set to �̃� = 0.025 and �̃�𝑖 = 0.5. We initialize the hinge
angles to the rest angles and run the algorithm described in section II.B until equilibrium, both with XFOIL and the
DL models to evaluate aerodynamic loading for a given shape. Figures 7a and 7c show that the DL models with both
three and four segments are able to find sufficiently similar equilibrium shapes of the flexible airfoil compared to those
obtained by XFOIL. Moreover, Figures 7b and 7d display the error for both DL models are approximately 𝑂 (10−3),
indicating the DL models perform very well on these FSI test cases.
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Fig. 7 Comparison of FSI solver results using XFOIL and the DL model for validation Case 3 using 𝑁 = 3
segments (a,b) and 𝑁 = 4 segments (c,d).

Summarizing all three cases, we conclude that the forward problem of finding an equilibrium configuration for a
given structural design using the approach outlined in section II.B is reliable and robust. Further, the developed deep
learning models provide an adequate surrogate approach to XFOIL for retrieving the aerodynamic loading for a given
shape and incident angle.

V. Validation of the inverse problem
One of the main goals of developing the surrogate model described here is to accelerate the FSI design process. In

this section we couple the forward problem described in section II.B with a gradient-free optimization framework to
find optimal structural parameters of a morphing airfoil. Specifically, we perform validation studies on the optimization
of both airfoil shapes and airfoil structures. For shape optimization we essentially set the spring stiffnesses to infinity,
thereby ensuring that no deformation takes place; we then only optimize over the angles that immediately define the
shape. For structural optimization, we optimize over the rest angles and the (finite) spring stiffnesses. In this case, for
each set of structural parameters we need to find the equilibrium configuration using the procedure of section II.B before
being able to evaluate the aerodynamic performance of the airfoil. Since the objective function is unchanged, we expect
the structural optimization to converge to a configuration whose equilibrium deformed shape is the same as the result
from the direct shape optimization.
Throughout this work, we use the Mesh Adaptive Direct Search (MADS) algorithm as optimization algorithm
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because of its suitability for non-smooth and complex design spaces [17, 18]. MADS is a new version of the Generalized
Pattern Search (GPS) class of algorithms [19] with features of the Coope and Price frame-based methods [20]. A brief
description of MADS is provided in the Appendix, further details can be found in literature [17, 21].

A. Shape optimization
For the shape optimization we consider a rigid airfoil with 𝑁 = 2 segments. The optimization parameters are the

instantaneous incident angle 𝛼𝑖𝑛𝑐 and the instantaneous hinge angle 𝛾1, with both parameters initialized to 0◦. The
bounds for the incident and hinge angles are set to 𝛼inc = [−10◦, 10◦] and 𝛾1 = [−20◦, 10◦]. The objective function J
is defined as a non-dimensional function that minimizes drag at a certain target lift coefficient:

J =

(
1.0 − 𝐶𝐿

𝐶𝐿,target

)2
+ 𝜆

(
𝐶𝐷

𝐶𝐿,target

)
, 𝐶𝐿,target = 0.8, (4)

where 𝐶𝐿,target is the target lift coefficient. The scalar constant 𝜆 is tuned to appropriately weigh the two terms in the
objective function; based on initial evaluations we choose here 𝜆 = 20. For the MADS optimizer, we scale Δ(0)

𝑚 and Δ(0)
𝑝

by a factor of 5, and set the minimum tolerance for Δ𝑝 = 10−3 with maximum design iteration of 100.
For illustration, since both the XFOIL and DL function evaluations are computationally cheap, we compute the

objective function within our entire parametric domain using both approaches. The contours of the objective function in
both cases (Fig. 8 match well, and the optimizer follows a similar trajectory in both cases.
The optimized parameter values are shown in the first two rows of Table 1, with ‘RIG-XF’ denoting the results

found using XFOIL as flow solver, and ‘RIG-DL’ the results found using the Deep Learning surrogate model instead
of XFOIL. Since this is a rigid airfoil, we have Θ = 0 and 𝛾1 = 𝛾1,0. We observe that the surrogate-model based
optimization finds an optimum very similar to that of the XFOIL-based optimization, both in terms of the final angles as
well as the predicted lift, drag, and objective function value. The three right-most columns indicate that the number of
optimization iterations and number of function evaluations are similar between the two models. These values depend
on the optimization trajectory, which itself is partially driven by a stochastic process so that a precise comparison is
not informative. We do note that the cost per evaluation of the DL is about 1.5–3.5 times faster than for XFOIL on a
standard laptop, so even though XFOIL is already a low-order model the DL surrogate model still offers a moderate
improvement in computational cost. Once the approach is scaled to a Navier-Stokes solver instead of XFOIL, this
improvement will increase by several orders of magnitude.

Case �̃� �̃�1 𝛼inc 𝛼inc + Θ 𝛾1,0 𝛾1 𝐶𝐿 𝐶𝐷 · 102 J iters fevals time

RIG-XF ∞ ∞ -3.1◦ -3.1◦ -11.9◦ -11.9◦ 0.78 0.54 0.136 36 138 0.57
RIG-DL ∞ ∞ -2.7◦ -2.7◦ -11.1◦ -11.1◦ 0.78 0.57 0.144 52 220 0.61

FSI-1-XF 0.025 1.5 1.1◦ -3.2◦ -13.9◦ -12.0◦ 0.78 0.54 0.136 26 1849 6.4
FSI-1-DL 0.025 1.5 1.3◦ -2.7◦ -12.9◦ -11.1◦ 0.78 0.57 0.144 32 1882 2.31

FSI-2-XF 0.025 0.15 3.1◦ -3.4◦ -33.5◦ -13.2◦ 0.77 0.53 0.135 49 7250 25.8
FSI-2-DL 0.025 0.15 1.3◦ -2.7◦ -29.0◦ -11.4◦ 0.78 0.57 0.144 60 4234 4.3

Table 1 Optimization results for different cases discussed in section V. The last three columns indicate the
number of iterations in the optimization loop (iters), the number of function evaluations (fevals, either XFOIL
for ‘XF’ or the DL surrogate model for ‘DL’), and the total time (in minutes) taken during optimization running
on a standard laptop.

B. Structural optimization
In this section, we investigate the structural optimization of a deformed airfoil using DL surrogate model. Specifically,

we optimize the rest angle of the hinge 𝛾1,0 and the incident angle of attack 𝛼inc, while fixing the global and hinge spring
stiffnesses �̃� and �̃� . We set �̃� = 0.025 and examine the optimization for two different values of �̃�: the case denoted with
‘FSI-1’ has �̃� = 1.5 and the case denoted with ‘FSI-2’ has �̃� = 0.15.
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Initial

Optimized
J

(b) RIG-DL

Fig. 8 Contour map of the cost function J as function of the incident angle 𝛼inc and the instantaneous hinge
angle 𝛾1 for a rigid (undeformed) airfoil, evaluated using XFOIL (left) and the DL model (right). The black lines
in each contour plot show the optimization trajectory.

The evolution of the lift and drag coefficients as well as the objective function J during the course of the optimization
are shown in Fig. 9. The optimization algorithm requires more design iterations to convergence for the more flexible
airfoils (panel (b)) compared to the more rigid airfoils (panel (a)), presumably due to a higher sensitivity between the
input parameters and the objective function. Nevertheless, in all cases the optimizer finds structural parameters that
yield lift coefficients close to the target lift coefficient of 0.8. The optimal parameters for 𝛼inc and 𝛾1,0 across the FSI-1
and FSI-2 scenarios are reported in the last four rows of Table 1. We observe that the incident angles in both cases
FSI-1 and FSI-2 are optimized to values so that, after accounting for the twisting angle Θ, the sum 𝛼inc + Θ closely
matches the rigid airfoil incident angle found in the RIG-XF and RIG-DL cases. Similarly, the rest hinge angles 𝛾1,0 are
chosen so that, after accounting for the deformation, the deformed equilibrium airfoils have hinge angles 𝛾1 that closely
match those of the rigid airfoil. This is expected, because this means that both FSI cases deform into the rigid shape that
was found to be optimal in the RIG step. To see this, Figure 10 compares the final shapes of the flexible airfoils with
those obtained using XFOIL, and further plots the initial undeformed shapes from FSI-1-DL and FSI-2-DL in parts (a)
and (b), respectively. We see that the initial, undeformed shapes have significant camber, which is more pronounced
Figure 10b due to the lower torsional stiffness value in FSI-2. When loaded, the final deformed shapes obtained by the
DL and XFOIL models are indeed practically indistinguishable and match well with the optimal rigid shape (not shown
in the Figure). Consequently, the final lift and drag coefficients and the objective function J are practically identical
across all cases in Table 1.
The small discrepancy between the optimal design parameters between the XFOIL and DL based approaches can

be analyzed further. The optimal values for 𝐶𝐿 and 𝐶𝐷 reported in Table 1 are evaluated using the XFOIL model
for the XF cases, and using the DL model for the DL cases. However, when taking the optimal design parameters of
the DL cases, and using XFOIL to evaluate the lift and drag coefficients associated with those design points, we find
that the DL model errors largely account for the discrepancies. For instance, for the optimal FSI-1-DL parameters the
DL model finds 𝐶𝐿 = 0.78 and 𝐶𝐷 = 0.57 × 10−2, whereas for those same parameters XFOIL finds 𝐶𝐿 = 0.75 and
𝐶𝐷 = 0.53 × 10−2. The DL objective function is J = 0.144 whereas using XFOIL to evaluate lift and drag would give
an objective function of J = 0.137 for the same parameters. This value of the objective function is very close to the
objective function value associated with the optimum design parameters for the XF-based cases in Table 1, implying
that the small differences in parameter values (𝛼inc and 𝛾1,0) between the DL-based and XFOIL-based inverse design
approaches are practically inconsequential for the final airfoil performance. We thus conclude that, for the approach
considered here, the DL-based optimization approach leads to structural design parameters that are practically similar to
those found through the XFOIL-based optimization approach, but that the DL-based prediction of the associated lift and
drag coefficients is off by about 5%.
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Fig. 9 Evolution of aerodynamic loads and objective function as a function of the design iteration, for the FSI-1
(a) and FSI-2 (b) inverse structural validation problems.

VI. Application to flexible airfoil optimization
Here we wish to demonstrate the utility of the DL-based surrogate model developed and validated above for a

complex aerodynamic optimization problem, without having to perform additional expensive flow simulations. The
optimization problem is chosen to identify the structural design of a 𝑁 = 4 segment airfoil that shows, across four
different incident angles, the smallest deviation of the lift coefficient from a target value, while also minimizing overall
drag. Mathematically, we pose this problem using a scalarized multi-objective function:

minimize
�̃�𝑖 ,𝛾𝑖,0∈D

J =

4∑︁
𝑘=1

(
1.0 −

𝐶𝐿 (𝛼 (𝑘)
inc )

𝐶𝐿,target

)2
+ 𝜆

𝐶𝐷 (𝛼 (𝑘)
inc )

𝐶𝐿,target
, (5)

where the target lift coefficient is 𝐶𝐿,target = 0.7, the weight 𝜆 = 10, and the four angles over which we measure the
lift and drag are (𝛼 (1)

inc , 𝛼
(2)
inc , 𝛼

(3)
inc , 𝛼

(4)
inc ) = (0◦, 3◦, 6◦, 9◦). For simplicity, we remove the global twisting deformation

from the parameters (�̃� → ∞) so that Θ = 0 throughout. The optimization then considers the optimization of the three
rest hinge angles 𝛾𝑖,0, which we bound to the region −40◦ ≤ 𝛾𝑖,0 ≤ 10◦, and the three torsional spring stiffnesses �̃�𝑖
bound to the region 0.1 ≤ �̃�𝑖 ≤ 2. The maximum number of design iterations for the MADS optimizer is 500, and the
minimum Δ𝑝 is set to 10−4.
Figure 11 shows the results for the multi-objective FSI optimization. In Figure 11a, the objective function reduces

significantly at the initial steps of the optimization as it finds the route to the global optima, and later on, it changes slightly
to tune weighting between different objective functions. In this case, the optimizer terminates after 74 design iterations,
with a total number of DL evaluations of fevals = 42, 000, lasting about 38 mins on a standard laptop. In Figure 11b, the
drag coefficients across the different incident angles increase early on as the terms involving the lift coefficient carry
a relative higher weight in the objective function. After about 30 iterations the drag coefficients stabilize and only
minor alterations to the aerodynamic coefficients and objective function are observed. Ultimately the objective function
converges to J = 0.647, associated with optimal rest hinge angles of (𝛾1,0, 𝛾2,0, 𝛾3,0) = (−2.40◦,−2.44◦,−11.57◦) and
optimal non-dimensional hinge stiffnesses of ( �̃�1, �̃�2, �̃�3) = (0.10, 1.04, 1.84).
For reference, we repeated the optimization for a rigid airfoil with the same objective function as Eq.(5. In this case

we set all torsional-spring stiffnesses �̃�𝑖 → ∞ to have a rigid airfoil, and optimize only over the three instantaneous
hinge angles 𝛾𝑖 , using the same bounds as for the rest hinge angles above. Since this optimization does not need any FSI
iterations for each objective function evaluation, it only uses fevals = 280 DL evaluations for 69 optimization design
iterations, taking slightly under three minutes to complete. The final objective function value is J = 1.036, indicating
that exploiting airfoil flexibility can significantly improve performance on this objective function.
The difference between the optimal flexible and optimal rigid airfoil is clearly demonstrated when plotting the lift

and drag coefficients as a function of incident angle (Figure 12). For reference, we also include the results from an
undeformed, rigid NACA 0012 airfoil. We observe that the flexible airfoil has a much reduced sensitivity to incident
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Fig. 10 The initial (undeformed) and final (deformed) shapes of the airfoil for the cases FSI-1-DL and FSI-2-DL,
and corresponding XFOIL-based shapes, all at their optimal design parameters.
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Fig. 11 The optimization progress for the multi-objective FSI optimization of section VI.

angle compared to both rigid airfoils, and a smaller drag throughout compared with the optimal rigid airfoil. The zero-lift
angle for NACA 0012 is 𝛼 (0)

inc = 0
◦, while these angles for the optimized rigid and flexible airfoils are approximately

𝛼
(0)
inc = −3◦ and 𝛼 (0)

inc = −8◦, respectively.
Figure 13 shows the shape of the optimized flexible airfoil before deformation (left panel, in gray) and after

deformation (in red) at incident angles of 0◦, 6◦, and 9◦. Furthermore, the shape of the optimized rigid airfoil (in blue)
is added for comparison. As shown, the optimized flexible and rigid airfoils have a similar shape at 𝛼inc = 6◦, where the
lift curves coincide around 𝐶𝐿,target = 0.7. However, in two other incident angles, we see considerable differences in the
deformed shape of the optimized flexible and optimized rigid airfoils that improve this cost function for the flexible
airfoil.

VII. Conclusion
In this work, we demonstrate a surrogate-model approach for analyzing and optimizing complex FSI problems for

morphing airfoils under steady-state flow conditions. After training the surrogate model to predict aerodynamic loading
as a function of a given deformed shape and incident angle, the model can be used to compute equilibrium shapes and

12



−5 0 5 10 15
αinc

−0.5

0.0

0.5

1.0

1.5
C
L

CL (NACA 0012)

CL (Optimized rigid)

CL (Optimized flexible)

CL,target = 0.7

(a) Lift coefficient.

−5 0 5 10 15
αinc

0.00

0.02

0.04

0.06

0.08

0.10

C
D

CD (NACA 0012)

CD (Optimized rigid)

CD (Optimized flexible)

(b) Drag coefficient.

Fig. 12 The lift and drag coefficient curves for the NACA 0012, optimized rigid, and optimized flexible airfoils.
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Fig. 13 Shape of the optimized flexible airfoil before and after deformation at different incident angles. Note
that the frame of reference is chosen so that in each panel the inflow is aligned with the 𝑥-axis.

associated aerodynamic performance for any given structural design parameters. Consequently, large-scale optimizations
within high-dimensional design spaces become feasible without additional overhead of expensive coupled flow-structure
simulations. Our final demonstration showed that using a surrogate model trained with only 400 flow simulations around
rigid, specified shapes, one can effectively tackle complex, multi-objective structural optimization problems that would
otherwise require orders of magnitude more flow simulations. The results implied that the optimized flexible airfoil
significantly improved in the form of lower drag, less sensitivity of the lift curve to the incident angles, and delays in
stall compared to the optimized rigid airfoil.
Several immediate extensions of this approach can be envisioned. First, the extensions to three-dimensional problems

and continuously flexible airfoils are of interest. In both cases, the current segmented airfoil approach would be replaced
by more complex parametrizations of the shape. Future work in this direction can directly build upon airfoil shape
optimization techniques, e.g. [22]. On the other side, the surrogate model predictions would now involve continuous
spatially varying aerodynamic load distributions. To reduce the dimensionality of that space, a projection onto a
suitable basis would be desired, with a basis choice that can effectively retain the most important dimensions of these
distributions.
Second, the extension of this technique to transient problems is of significant interest to incorporate the stability of

flexible airfoils in steady flows, as well as their response to unsteady flow conditions into the optimization process. This
is significantly harder to the point that generic parametric approach are unlikely to be realistic [23]. Instead, approaches
for different types of instabilities and classes of structures would need to be devised, for example along the lines of the
approach presented in [24].
Finally, handling more complex problems translates directly into increasing the dimensionality of the input and
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output parameters of the surrogate model, which calls for more data and more complex network architectures. The latter
would require further work into the DL network architecture, and what the most beneficial alterations are when the
dimensionality of the input and output parameters governing this problem increase. However, given that ultimately
the surrogate model aims to replace expensive CFD simulations, generating sufficient data points will be the primary
bottleneck for extending the proposed approach towards more complex problems. Though this trend is ultimately
inescapable, one can likely significantly improve upon our presented approach for generating and sampling training data,
by choosing training points through more careful sampling techniques [25], exploiting multi-fidelity flow simulations
[26], and using active learning approaches [27, 28]. Lastly, one can consider numerical approaches that reduce the cost
of CFD simulations themselves, such as higher-order boundary discretizations [29] or multiresolution mesh adaptation
techniques [30], so that more training data can be generated within a given computational budget.

Appendix
MADS is a new version of the Generalized Pattern Search (GPS) class of algorithms [19] with features of the

Coope and Price frame-based methods [20]. At each design iteration, MADS generates trial points with different design
parameters, then tries to find the best performance among the evaluated trial points. All these trial points lie on a mesh
constructed by a finite set of 𝑛𝐷 directions, defined by the mesh size parameter, Δ( 𝑗)

𝑚 . Also, we define D as a matrix of
directions that is a positive spanning set, and a non-negative integer combination of the directions [21, 31]. The mesh
pointsM( 𝑗) are defined by

M( 𝑗) =
⋃

S ( 𝑗) ∈D

{
S ( 𝑗) + Δ

( 𝑗)
𝑚 D𝑧 : 𝑧 ∈ N𝑛𝐷

}
, (6)

where S ( 𝑗) is the current optimal point at 𝑗 𝑡ℎ design iteration. The trial points P( 𝑗) in the design space D are also
defined by

P( 𝑗) =
{
S ( 𝑗) + Δ

( 𝑗)
𝑚 𝑑 : 𝑑 ∈ D( 𝑗)

}
⊂ M( 𝑗) . (7)

Figure 14 shows the MADS two strategic steps in the optimization process. These two steps are called the search and

Design iteration

(a) Search step.

Design iteration

(b) Poll step.

Fig. 14 Schematic of the search and poll steps in the MADS algorithm.

poll steps. In the search step, after function evaluation at trial points P( 𝑗) , if there is a new optimum among the case
considered in P( 𝑗) , then the MADS increases the mesh and poll size parameters (Figure 14a). However, if no optimum is
found among the trial points in the poll step, then the MADS reduces the mesh and poll size parameters simultaneously
to reduce the searching zone (Figure 14b). In this study, we set the maximum frame parameter at 𝑗 𝑡ℎ design iteration to
Δ
( 𝑗)
𝑚 = Δ

( 𝑗)
𝑝 = 1. Then, the possible mesh size parameter for the next design iteration, 𝑗 + 1, is defined by

Δ
( 𝑗+1)
𝑚 =


Δ
( 𝑗)
𝑚

4 for unsuccessful step at 𝑗 𝑡ℎ,
4Δ( 𝑗)

𝑚 for successful step at 𝑗 𝑡ℎ,
Δ
( 𝑗)
𝑚 for successful step at 𝑗 𝑡ℎ with Δ( 𝑗)

𝑚 = 1,
(8)
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and the poll size parameter is

Δ
( 𝑗)
𝑝 =


𝑛𝑠

√︃
Δ
( 𝑗)
𝑚 ≥ Δ

( 𝑗)
𝑚 if minimal mode,√︃

Δ
( 𝑗)
𝑚 ≥ Δ

( 𝑗)
𝑚 if maximal mode.

(9)

where 𝑛𝑠 is the number of design parameters in design space D. The maximal and minimal modes represent the 2𝑛𝑠
and 𝑛𝑠 + 1 number of trial points in P selected at each optimization step.
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