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Abstract

A key issue if we want to resolve some of the unanswered questions related
to the plasme physics properties of magnetic {usion concepts is: what is the
minimum sczle of 2n experiment to test those properties. A gener
method has been developed ‘o znswer this question. It can be 2pplied to zny
particular toroidal concept and is based on the fact that we can consider small
sczle experiments 2s models of Jarger experiments by applying the method of
similarities. A minimum sczle for the experimen

2l step by step

t zrise then from 2 combination
of three factors: constrzints on the parzmeter space in which one or more
of the dimensionless parameters can be cropped so as to be zble to obtzin a
sczled experiment; constraints resulting from factors that zre not included in
the similarity scaling; and constrzints on the possibility of actually obtzining
the pzrameters (geometricel, plasma physics znd technological) mandated by
similarity considerations. Those three sets of constrzints have been investigated.

Applying the constrzints to the design of 2 helicz] zxis stellarator we find
2 limit on the combinztion of toroidzl field, current density znd major radius
—EL o < 0.,
VX100 agmZA T

IS

ne zbility to obtain the plasma
physics perameters dicteted by similarity considerztions. This depends on the
heating method used. A minimum scale experiment with 2 periods and no
linkage of the toroidal and poloidal coils, would have = mejor radius of 1.2m, a
toroidel field of 3.5T and 2MW of ECRH power (for 8 =1%, v = 10).

Another mzjor constraint for this concept is

+
v
)

Thesis Supervisor: Dr. D.B. Montgomery

Title: Associzte Director for Engineering Systems, Plasm
Thesis Reader: Prof. L.M. Lidsky

Title: Professor of Nuclezr Engineering

z Fusion Center




... znd they shall beat their swords into plowshares,

and their spears into pruning hooks;

nation shall not lift up sword acainst nation,
neither shall they learn war any more.

Iszizh 2, 4
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1. Introduction.

1.1. Gozl of the thesis

The startiﬁg point of this thesis was 2 question asked during z discussion
zbout the the design of magnetic {usion experiments. “Why can’t we build 2 1
Gauss 'nachlne " And zs some epparently simple questions usuelly do, it posed
2n important problemn. What in fact zre the constraints that'set 2 minimum
sczle for an experiment ? The znswer to this question depends strongly on
the experimental objective (what we want to achieve). It is thus important
a2t first to more clearly delineate the task. Since the answer zlso depends on
the experimente] format (how we wznt to achieve it) we have concentrated on

-

entifving general constrzints znd developing 2 step by svep method to find the

0.
°

-

minimum scale so thzt the method czn be applied to any particular toroidal
experiment. This is the primary gozl of this thesis. The secondary gozl is then
to zpply the method to the design of 2 vpecific type of helical axis stellarator,

thus identifying the constrzints znd minimum size for this Particular vzriation.

1.2. Definition of the problem

The constrzints on the sczle of zn experiment depend in part on the goz! for the

experiment. A mackine buill to investicate single perticle cont nment, and to
} c

ige on




trace out magnetic surfaces, as was the case for CLASP [1] resulted in 2 small
(R =130cm, a = 11.5¢m, B = 1T) high shear stellarator. This simple machine
was sub_)ected to quite different design constraints than a machine like ZEPHYR
[2] designed to investigate o particle heating and ignition physics. A machine

built to test radio-frequency hezting may be quite different from a machine used

to test refueling by pellet injection.

The question that was the starting point of this thesis, as zlluded to 'm. the
previous section, namely the question of the constrzints on the scale of 2 fusion
experiment, was asked specifically in the context of the zbility to test the plasma
physics properties of a particuler concept. We will thus restrict ourselves to
~addressing the issues of constraints for experiments with 2 specific goal : the

experimental investigation of plesma physics properties of a particuler concept.’

This restriction not only more clearly delineates the task, but is 2lso justified

on the following grounds.

The gozl of investigating the plesma physics properties of a concept in itself
1s & very importani and timely problem. Present experiments are meinly in
tne tokemazk/mirror line. Their success is squeezing out the investigation of
alternztive concepts that may result in 2 better end product. While both the
tokamek and the mirror have obtzined results, that in terms of temperature
and n7 zre closer to the Lawson criterion than zny other concepts, they have
significant drewbacks (low power density, large recirculating power {raction)

)

thzt could mezke them unattractive as power producing reactors. The successes
of the tokamak and mirrer lines in terms of plas & physics parameters have
been rewazrded with funds for increasingly larger machines, at the expense of
other, possibly more reactor-friendly concepts still in the earlier stages of their
development. This policy could prove to be diszstrous in the long term, when

fusion research will be fzced with the rezlities of commercizlization.

At thet point fusion research and development could encounter 2 fzte similar to
many projects that fzil not so much because of scientific or technical problems,

but beczuse the end product wes neither wanted or needed. Fusion research

20




should keep in mind that in the end it should provide humanity with a source

of energy that is more zttractive than the energy sources it intends to replace.

While 2 number of zlternative concepts have potential advantages that could
make them better commercial reactors, their weak point is often that little is
known zbout their plasma physics properties. It is thus iinportant to fill this
g2p in our knowledge, and to do it now, before we zre definitively engaged in

the path that will only give us the choice between the tokamak and the mirror.

The investigztion of the plasma physics properties of a concept is not only
important znd timely, but the question of constraints on the minimum scale is
perticularly relevant for those experiments. Indeed, building the machine znd

performing the experiments is in this case the only way to go.

Less ambitious experiments, which were justifizble in the past, have either already
been done or could now be performed by other mezns. Since fast computers
have become availzble, and because the equations governing the phenomena
ere well known and tracteble, zn experiment 2s CLASP io investizate single
perticle contzinment znd to map out megnetic surfaces, could now more easily
end with confidence be done on 2 computer. Thus there is no need to build 2

machine.

More zmbitious experiments related to c-particle heating and ignition physies,
as well 2s experiments testing heazting methods or refueling for exzmple can .
be considered as more or less concept independent. Those extremely important
aspects couid thus be tested on whatever concept or scheme that makes it
easiest. Testing refueling By pellet injection in Alcztor C is an extremely
veluzble experiment end the results zre independent of the {act that Alcztor C
is 2 tokamek. Some of those experiments could thu s be performed in existing
machines, while others require z very specific znd rather well-known {Lzwson

criterion) set of constraints. The question of identifying the constraints that set

vi G

& minimum sczle is thus Jess pertinent for those experiments.
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We have thus restricted ourselves to looking at the constraints for experiments
with the goal : experimental investigation of the plasma physics properties of a
concépt. We have then to ask ourselves whether the plasma physics properties
of 2 concept can be investigated in an experiment smaller than the full scale
reactor size. Only if this question can be znswered positively and if we find
2 method to obtzin on a small experiment results that have relevance to the

full scale reactor, is it even remotely significant to address the issue of the

constraints that set 2 minimum scale.

1.3. The use of similarity and the resulting constraints

Two approzches to investigate the plasma physics properties of a concept are
possible:

The first one is to rely on experiments only. We czn the try to model the plasma
physics processes that occur in & rezctor size experiment in 2 sczle version. The
issue of relevance of the results of 'sczled experiments is then znswered in the
same way that is used in other fields like hydrzulics and aerodynzmics : by the
use of similerity. This method is widely applied in those felds to obtzin from
sceled versiens (smzll models) results that can then be translzted into results
of significance for the full scale object. The relevance of the sczled experiment
is justified based on the fact that, under some conditions, it models the same
processes zs in the large version, and thus zllows us to obtzin informztion on
them. Sometimes the requirements are so stringent thzt no smell experiments
could be build.

A second zpproach is then to rely partly on theory. Small experiments may
be used to check certain aspects of 2 theory. If this results in less stringent
constraints for the experiment than the first zpproach, it may be a first,
confidence building, step towerds 2 second, larger experiment that then would
mode] the plasmz physics processes of z reactor. For this second epproach too,
when we look 2t the minimum size, we have to compare machines that fulfill

the gozl to the same extend. This zgain czn be done by usine the method of
24 { & g
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similarity.

The difference in applying the method of similarity for the first and second
appréacb is only in the following: the ‘zmily of machines, among which we
choose the one which, within constraints, is the minimum scale member contzins
also the reactor, if we use the frst approach. Using the second a2pproach, we
choose the minimum scale member among a family which does not contain the
reactor. Each member of the | amily however, is similar in that it will test theory

to the same extend. Let us briefiy discuss the method and how it automatically

results in the constraints that set 2 minimum scale for a model.

The use of similerity [3) requires thet 2 constant sczle factor exists between
the geometry of the different members of the family. and the model. It further
requires that a certzin number of dimensionless perameters be kept constznt
between them. Three 2dditiona) steps bave to be tzken znd those sieps give the
constraints that result in 2 minimum scale.

First zpplying similarity considerztions must be possible i.e. the degrees of
ireedom znd the number of dimensionless perameters that have to be kept
consiznt must be indeed such that there is some freedom left in making 2 sczled
experiment. This sometimes entzils not keeping one or more dimensionless
parameters constznt, in cases where it would give us additionz) freedom without
interfering with the results of zn experiment. An exzmple in hydraulics is
neglecting to keep the Mach number constznt in cases where the fuid can be
assumed incompressible. It increases our degrees of freedom in making & sczled

experiment, but restricts us i0 Jook zt Incompressible fuids only.

The second step is to consider effects that have not, or could not, be included

in similzrity considerations. Agzin a typicel example in hydraulics is that, when
one mzkes 2 sczled version of 2 simple pipe, the relative roughness of the inside
of the pipe should stey constzat. This would mean that if we scale down a
large pipe with normel &rish on the inside, the sczled version heeds & highly
polished surfzce. If we can not zchieve thic highly polished surface, we have to

ciscuss under wheat conditions it ic Jusiifizble to neglect the infuence of this, or
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alternztively we have to find some clever ways of obtaining something similar
to it.

The third step is to investigate whether the model, 2s obtained from similarity
considerations can actuzlly be built, and whether the new values of the variables

derived from similarity conditions can be achieved.

In the case of plesma phi’sics experiments, the geometry that has to be to ;sca]e
as required by the similerity considerations, is the magnetic geometry. There
must thus be a constant scale factor on 2l linear dimensions between the full
scele system and the model (to keep the relative direction of the magnetic field),
and 2 constant scale factor on 2l the currents (scale factor on the magnitude
of the magnetic field). We can then identifv whzt the dimensionless parameters
are that should be kept constant. The totz] number of dimensionless parameters
to be kept constant, however, equals the degrees of freedom 2nd thus, strictly

speaking, no sczled model could be built.

We therefore investigaté in e first step, how we can gain more [reedom by
dropping one or more of the dimensionless parameters. Relying on theoretical
models znd experiments we set conditions under which we can actually justify
dropping some of those parameters. It is zlso shown that the chojce of the

parameters we drop, depends on what we want to investigate.

The second step is to investigzte eflects thai were not included in the similarity
considerations for plasme physics, in particular the neutrals and the impurities.
For both we address specifically the mechanisms for their presence in the plasma,
and we evzluate their level and obtzin the conditions under which we can neglect
their icfluence. We elso qualitatively discuss what factors afect their level and

importance, and how some zpproprizte methods can be used o control them.

The third step, investigzting whether the new vzlues of the veriable, obtzined
v simnilarity conditions, cen in practice be achieved, has to be addressed on two

{ronts.
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One front is whether the plasma physics parameters thus derived can indeed
be obtained. It is discussed in terms of plasma production and heating. The
other front is the engineering pzrameters. This discussion is rather extensive
because there is such a wide variety of choices, but at the same time some of
the limits are rather stringent. Two meajor constraints are current density limits
and stress limits. Both are critically reviewed. They wilL together with the
specifics of a particular geometry, set constrzints on 2 combination of magnetic
field and size. Another constraint, less stringent in absolute terms, is however,
extremely important : the cost of the experiment. It is 2 function of the size,
mass, engineering choices, pulse length of the experiment, stored energy etc..
but also in part, on what is already zvailzble zt a particular site. To approach
the problem in suScient generzlity we concentrate op developing some relations
betweer stored erergy, pulse length 2nd mass of the system in order to be able
to translate the current censity and stress limits, as well as the evailability of
energy znd funds, into limits on the size 2nd feld of the machine. The discussion
of the method of similarity znd the resuiting constraints zre addressed in chapter
2, except for the constreints r resulting from encineerine considerzations, which

-5

are cdiscussed in chapter 3.

The constrzints that can -zrise because of the specific geometry of 2 particular
concept are not addressed in generzl, but they zre discussed later for 2 particuler

cheice of concept : the stellzrztor with helical mzgnetic axis.

The use of similzrily, and the zdditionzl steps that automatically result in the
ceastrzinte znd limits that set z minimum scale jor the experiment, clearly
suggest 2 method to find this minimum scale. For 2 particular choice of concept
and geometry we can identi{y vzlues of dimensionless pzrameters that would
yield relevant experiments. For & choice of vzlues for £ and v for example,
we can tnen plot in 2 diagram of size versus meagnetic ﬁeld, the corresponding
nlzsme density and temperature. In this lizgrem the constraints 2nd limits can
be crawn, yielding 2 desicn window. Within the Lmite & chcice cen then be

mzde zccording to minimum size, minimum cost, minimum heating power, or




other considerations.

1.4. Application to the design of a stellarator with helical magnetic 2xis

To illustrate the method and address more specifically some of the concept

dependent constraints, we apply the method to the design of 2 stellarator with

belical magnetic axis. This is done in chapter 4.

The stellarator with helical magnetic axis being z somewhat unfamiliar concept,
is briefly introduced -its main properties, possible variztions znd the rezsons for

this choice. The method of similerity does not say anything in particular zbout

geometry and as this veries markedly from one concept to another, it was not-

discussed in the general case. It is, however, 2 very important aspect because it
czn have an impact both on the dimensionless parameters thzt can be achieved

2nd on the constraints znd limits.

The geometry is thus discussed in detazil for this particular concept. We identify
the parameters that define the geometry and sepzarate them into hard pzrameters
(number of periods, aspect ratio) and soft parzmeters (current in the ring, vertical
field). The infiuence of the soft parameters is discussed. The choice for the hard
pzrameters is made and justified, based on some gecmetricza! constraints znd on

the interaction of the geometry with the dimensionless parameters.

Besed on theoreticzlly achieveble values and on values one would like to achieve
in terms of relevance of the experiment, & choice is made for the dimensionless
variables. Using the “three steps” constraints developed earlier, we identify
the pzrameter space in & size versus magnetic fleld dizsram where relevant
experiments can be performed. Within this design window further constraints
and/or choices, result in an unique configuration of size and megnetic field that

can be the reference case jor 2 more detziled design.
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1.5. Organization of the thesis and miajor contributions

This report is organized as follows. Chapter 2 groups the constraints and
limits resulting from plasma physics considerations. There we discuss the
method of similarity and address the first two steps and the first part of the
third: whether we can drop one or more of the dimensionless parameters; the
factors that zre not included in the similarity scaling; and the issue pertaining
to the possibility of achieving the plasma physics parameters mandated by
similerity considerations. Chzpter 3 addresses in more detzil the engineering
and technological considerations (second part of the third step). Chapter 4

zpplies the method developed in the previous chapters to the design of 2 helical

¥

is stellzrator. Chepter 5 summarizes the results.

The major. originz! contribution of this thesis is the global 2pprozch to the
J g PP

problem thzt provides a structured, Jjustifizble method for the design of 2 smeall

experiment. Within this framework the gcel cen be choser, znd limits 2nd

consirzints identified that set 2 minimum scale for the experiment.

The most important original contributions in ezch of the three chepters (plasma
pLysics, engineering, znd the helicz] axis stellzrator) are :

- development of 2 quelitziive mode] fo- plasma-wall interaction that explains
2 lzrge number of different experimentz) resulis releted to recycling at the wall
znd impurity production; while guantitative models exist that are applicable to
peruicular machines, this mode) gives 2 qualitative explanation of the different,

~
-

nc seemingly unrelzted behzviors observed on different machines.

n

- development of a method to enzlyze circular toroidal coils; it takes into
account both in-plzne reactions as provided, for example by 2 central supporting
column and the reactions restliing from the 6ut—o;’-piane structure; the method
confirmed that circuler toroidz! coils need not necesserily be dominated by
moments é.:d highlighted the importzrnce of proper distribution of the net
rezction force between externzl znd internz) rezclion forces 1o obtzin this result.

- development of z simple model that explains the variation of position 2nd
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winding law of the magnetic axis of 2 helical axis stellarator in terms of vertical
field and poloidal ring current; the mode] results in some simple analytical
expressions and provides a2 method to obtzin effciently and accurately the

variation of the major parameters associated with the helical magnetic axis.
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2. Plasma Physics and DimensionlessParameters

2.1. Introduction

Nothing but 2 full scale operzting reactor can prove the scientific 2nd engineering
feasibility of & fusion rezctor in z definitive fashion. However, s building such a
reactor requires z large investment, it is imperztive tc gather as much information
zs possible on smeller znd less costly experiments. Can useful informetion indeed
be gathered on smell experiments zbout the behavior of large experiment? Under
certzin conditions this is indeed the case. From the method of similarity [3] we
know that if certzin dimensionless constznts zre the same in 2 small experiment
es mn a full sczle system, then the phenomenz described will be similar 2nd
results obtzined on the experiment can be relzted to the behzvior of the full

sczle system.

In plesmez physics znd fusion research, zlthouvgh the method is known, there

scem to be 2 tendency to build experiments more to cbtzin absolute values close

to z reactor rether than combinzations of pzrameters such thzt the dimensionless
f

paremeters heve the same value zs for 2 reactor.

rom arguments based cn ignilion temperature, power deasity, and constraints
releted to the need for tritium brecding we can szv thzt the plasma physics

.

peremeters et which a2 D-T reactor will operate zre rzther well known. However,



crucial information on energy confinement time, and £ limits is stil] unavailable.
While it is laudable to try to obtzin parameters as close 2s possible to reactor'
values in terms of n, T, n7 it is of vital impoftance to obtain scaling laws and
relationships for the energy confinement time and the £ limits. Relationships
obtained in machines that do not achieve record temperature, density or nr
product may be more relevant to a reactor if the dimeﬁsion]ess parameters
have the proper value than relationships obtained on machines that shoot for
reactor relevant temperature and densities. To put it even more bluntly, the
scientific progress and understanding of plasma physics achieved on machines
whose pzrameters do not show up on the famous ﬁ'r, T diagram may bear more
relevance to reactor regimes thzn the experiments performed to achieve records

and to approach the ignition curve.

The use of dimensionless parameters is also called for when we wznt to find
the minimum scale machine to test certzin 2spects of 2 theory. Indeed, when
looking for the minimum sczle, we should compare machines that test the
theory to the same extend. In this chapter we intend to discuss the method of
similarity and derive the dimension]ess parameters appliczble to plasma physics
experiments. We will then investigate the plasma physics constraints that result
from the three additional steps we have to take 2s mentioned in the introduction.
We will investigate the applicebility of the method znd the implication of not
keeping constznt one or more of the dimensionless parameters. This will restrict
the parzmeter space in which mezningful experimenis can be performed. The
presence of neutrzis and impurities can spoil the similarity between 2 model
and the original. Therefore we investigate separetely under what conditions
their influence 2s 1o the application of similarity scaling laws can be neglected.
From this we will obtain 2 pzrameter space where usefu) experiments can be
performed. Whether experiments can actuelly be performed in this parameter
space will depend on 2 number of constraints making areas of the parzmeter space
inaccessible. Some of these constraints, releted to plasme physics pzrameters,

will be discussed here, while others, more technically relzted, are the focus of
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the next chapter.

2.2. Similarity Scaling Laws

The zpplication of similerity, 2nd similerity scaling laws is routinely used in
fields a¢ hydraulics z2nd aerodynzmics to obtain from scaled models mformatlon

that is more generally zpplicable.

The central point of the method is thzt if certain dimensionless combinations
of parameters Lave the szme vzlue for the difierent members of & family of
devices, the phencmenz will be governed by identical relations. The results of

en experiment on one member of the ‘2mily, czn then be related to results for

any other member.

Two methods czn be zpplied to derive the dimensionless combinztions that

govern & certzin phenomenon.

The first method is to count the number of independent perameters 2nd
the number of dimensions. The theorem of Buckingham [3] then zrgues that
the pumber of dimensionless parzmeters equals the number of independent
perameters, minus the number of dimensions. Once the number of dimensionless
parameters is known it is easy to construct them. This £rst method to derive
the dimensionless parameters is zppliczble even if no explicit knowledge is
zvzileble on the eguztions governing the phenomena, but Tequires some czre
and proper judgment in the selection of the parzmeters. An excellent work on
dimensionel anzlvsis, znd its zpplicetion to model experiments weas written by
P.W. Bridgman [4).

A second method to obizin the cimersionless perzmeters is availeble if we

kaow the underlying equet

o
t

2s. By writing down the equztions znd investigating
urnder which transformeticns those equetions are invariant one czn identify
the dimensionless combinations that have to be constzant in order for the

equations to model the same phenomenz. This second method zllows one to
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derive dimensionless parameters without having to know emphmtly which are

dependent and which zre independent varizbles.

We will now present 2 simple example from hydraulies to clarify both methods,

their advahtages and limitations.
2.2.1. A Simple Example

Suppose a centrifugal pump needs to pump 2 certzin volume of wzter. We want
to know what the power rating should be for the motor driving the pump. The
problem can be solved by building 2 mode] 2nd measuring the power needed
to drive the model. How should we choose the perazmeters so that from the

power measured cn the model, the power needed on the full scale pump can be

calculated.

To apply the first method we identify the independent parameters. They are
the type of fiuid used (4 znd p), some linear dimension (D), the fow to be
pumped (@) znd the rotationzl speed of the pﬁmp (w). For 2 given fluid, pump,
and rotatiopal speed, we can still vary the flow rzte by using 2 throttle valve.
Rether than using the fiow to be pumped (@) as zn independent parameter, we
could use the pressure drop (Ap) over the pump. But the pressure drop is not
zn additional independent varizble. Or instead of the rotational speed (w) one
could use (£p). A thought experiment however (what can we vary independently)
cen convince us that for en incompressible Buid, there are only five independent

parameters. The five we heve chosen hzve the following dimensions

o= 2
[ﬂ]=%
[D] =m
Q="
o) ==

There are thus three dimensions (kg, m, s). The number of dimensionless

constants is 5 — 3 = 2. The construction of the dimensionless parameters is
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then simple. We take the general form
I = p®pPD1Qu"

znd request that IT be dimensionless, i.e. the total exponent for each dimension

must be zero. This results in three equations (one per dimension)

—a—=3f+7+3=0
—a—6—e=0

We czn solve this set of equations for £, ~ znd € 25 2 function of a and 6.

Two independent solutions of this set of equztions zre then found by choosing

o= —1,¢=12and o =0, £ = 1. This resulis in the two Independent

perameters
Hl = Eg = Re
D
and
-2
2T LDt

Other choices for o and § would have beeq possible, but they would not zfect
what Jollows. From similarity we know thzt i we build & mode‘ and keep the
seme value for those two dimension)ess pzrameters 25 in the full sczle model
we can celcuiate the power on the full sczle machine from the power needed
to drive the model. Building = mode] ‘o 1/5 scale, while usin= the szame fluid
(water, same p 2nd p) we need to set the fow in the model (to keep II; constant)
to 1/5 the vzlue we need in the large pu ump znd the speed at 5? the rotztional

speed of the large pump (to keep IT, constant).
If we had chosen the pressure crop (&p) rether then the rotztional speed (w) as
&0 independent pzrarmeter, then the dimensionless perameter

ApD?

Iz =
LQ

[} ]
w
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would be used instead of Ils.

The way to calculate the power P needed for the full scale machine from the
experiment is based on the fact thet, if normalized (made dimensionless) the
- vaiue of the dependent parameters too is identical in both machines. Thus
:;%3—5 1s identical in both machines, so that the full scale machine will need
1/5 the power the model needed. Note that parameter scans (how for example
the power varies when varying the flow) can be made on the scaled model,. the

functionzl dependeace
F__ F(Re, i)

wipQD? wD?

being independent of the scale of the machine.

Let us now solve the szame problem by using the second method. The equations
governing the phenomena are the Nevier-Stokes equztion, and the continuity
equation. For steady stete (£ = 0), and incompressible fiuids (p = coﬁstant)
theose equations are
pT -V =F—7p—pvzz‘)
V-9=0

We can now find the independent linear transformation p — k,p, D — kpD,
% — k0, F — kpF, p — kyp, p — k,u, that keep the equztions invariant. By
substituting those transformations into the equations and requesting theat the

equztions do not change we obtain

koks ke kyk
P == kF == ——P— = ”2 v
kD kD kD
This czan 2lso be written as )
kpk _ kuk,
kp kY
k, k?
Pty — kF
kp
kp  kuky
kp kY




and thus three dimensjonless parameters can be constructed.

pvD
I

H1f =

2
P
IIot = ——
= FD
D
ity
The Navier-Stokes equation, using those dimension)ess Parameters, can be written

in dimensicnless form, znd result in a relationship between the dimensionless

parameters. Two of them czn thus be taken as independent (for example II,/

end [1y/), the third one is then & cependent dimension]ess parameter IT3/. There

zre three independent trensformations

o
<
I
2]
|
-

-
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I
R
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The power then transforms as (since P ~ D3Fv)
P — o~ lp4P.

Taking a linear scale @ = { znd the other scales f = v =1, we immediately
see that the power increases by a factor 5 in the model. It is easy to show that

the three dimensionless parameters are independent of the transformation.

1y = A7 )u(Be=")D(e) _ pvD

K(87) o
_ vz(a‘zﬁ )p(B%) _ vPp
= T a0 D

My = _Pe"71D(@) _ pD

B v(e™18)
The first two dimensionless parzmeters are related to the two independent
paremeters we derived using the first method. Indeed, using @ ~ D%y, and

F ~ pw?D we have

pQ
Mil==-==1]
1 u D 1
Q \? 2
= (o5s) = @
The third dimensionless parzameter also czn be relzted to I3, using Q@ ~ D?v,
we obtain . ;
D D D
T s wDW . uQ
Note that if we had not assumed p = constant, 2nd tzken the more

complete equztion, we would have one more equztion between the k’s and
one less independent transformztion. We could have constructed an 2dditional
dimensionless perameter: the Mach number (rztio of fiuid velocity to sound
ve]dcity) This additional dimensionless parameter could also have been obtained
from the first method had we included the ges constant R and the temperature
of the fiuid T as independent parameters. The totz] number of independent

parameters would then have been 7 with 4 dimensions (kg,m,s,® C), giving




indeed one additional dimensionless parameter. Neglecting the Mach number as

2 dimensionless parameter that one has to keep constant, corresponds thus to

assuming the fluid to be incompressible.

With this simple example we have illustrated the two methods to obtain
dimensionless parameters. We will use both when we address the issue for plasma
physics. The first method is easiest to derive the dimensionless parzmeters, while

the second allows us to trace back what the underlying assumptions are if we

drop a given parameter.

2.2.2. Dimensionless Parameters for Plasma Physics

In this section we intend to derive the dimensionless parameters appliczble to

plasma physics experiments.

B. Kademtsev was the first to point to the possibility of epplying dimensional
- - . ~ .r- b - 3 4 h s N ~ . + .

anzlysis to tokameks [3]. He p; Oposec to use cimensional znalysis to guide
the design of larger experiments by basing them on information developed on
smeller ones. While we would rzther use It to identify the vzlue needed for smell
plesme physics experiments, from target velues for rezctor (which we argue zre
pretty well known) the methodology is basiczlly the szme. Kadomtsey zpplied it

specifically to tokamaks it is, however, 2ppliczble to other confinement schemes.

First, as for any sczling experiment, the geometry must be to sczle. For plasma

physics experiments this mezns essentizlly the magnetic geometry.

For 2 tokemak type machine it recuires the as ect ratio £ znd the profle of
B d c X

tbe rotztional transform ¢(r) = ;—:%; to be the szme. Note that for 2 family of

geometricelly similer devices we have stil] two degrees of freedom Jeft nzmely a

geometricz] length (szy R or c¢) and z value for the magnetic field (B).

trict similerity of geometry for stellzrztors requires, in addition to aspect ratio
znd ¢ profile, the same number of periods {1 and m number of the windings),
znd the szme winding Jaw of the helicz) wincings. That for cxample the winding

jaw czn have zn infuence on the trensport of the particles because of jts impact
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- on the Jocztion of the ripple and the superbanana Josses wes clearly pointed out

in 2 numerical study done by Mynick [6]. But even in the case of stellarators 2
family of geometrically similar machines has two 2nd only two free parameters,

a geometrical length and the magnitude of the magnetic feld.

It is not possiBle to go here in detail on the influence the geometry can have
on plasma physics quantities, for all possible concepts znd geometries. The
differences due to the geometry, thus from one family of devices to another,
is 2 separzte issue. While it 1s very important (the § limit in 2 tokamak for
example may be linked to the aspect ratio) it is not addressed here. It is rather
our aim here to show that experiments on oze (smell) member of the family may
yield information on many similar devices, and thus test certzin theories (for
example precisely this link between 2spect rztio and g limit). We will address-
the influence of the geomeiry on the plasma physics parameters specifically
for one device, the helical axis stellarator in chapter 4. There the number of
perzmeters defining this particular geometry will be identified, their influence on

the magrnetic geometry pinpointed znd theories releting this magnetic geometry

We tzke here the general zpproach that, for 2 given geometry there zre two free
parameters, 2 dimension ¢ and 2 magnetic feld B, characterizing 2 member of
the {zmily of similar devices. In addition to those two parzmeters (¢ and B)

there are 2 number of parameters related to the plasma.

Let us assume & pure, fully ionized single jon species plasme 2t rest and in steady
stete, with walls infnitely f‘ar awey. Assumption of 2 pure single ion species
plasmea implies the presence only of electrons 2nd single ion species ions with the
exclusion of zny other component. Assumption of 2 fully jonized plasma rules
out the presence of neutrals, and zny quantum efflects relzted to ionizztion and
rediztion. Assuming the plasmz to be at rest rules out meacroscopic motions.
Assumption of steady sizte rules out the dependence on initizl parameters. We
hzve then only electrons and icns, whose motion is governed by classical laws

of motions znd by the Maxwell's equations for the electromagnetic feld. We
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will of course not try to model the behavior of each electron and ion separately,
but are interested in the overzll behavior. This czn be thought of as taking‘
the éverage 2s usuzl in plasma kinetic theory. It is further assumed that each
particle distribution function can be, for the given geometry, completely defined
by a single independent parameter, the temperature. P0551b1e loss cones are
identical for devices with similar geometry. The 1ndependent parameters are
then n, and n; the electron 2nd jon density, T, and T, the electron and ion

temperature (in units of energy), e and Ze the electron and jon charge, m and

M the mass of the electron and j lon, €, and p, the permitivity and permeazbility

{ free space.

The inclusion of €,, 1, may seem strange 2t first. A simple reason is that, if we
do not include them, we could not mzke some combination of the parameters
dimensionless. A more complete justification, with numerous examples, is given
in the work by P.W. Bridgmen [¢], mentioned earlier. He shows there in
generzal that, when listing the barameters, one has to include what he calls the
dimensionzl constants of proportionzlity corresponding to the varizbles used.
Note thzt we did not include k, the Boltzman constant, since we measure the
temperzture in energy. That we obtain the correct number of dimensionless
parzmeters this way can be confirmed by tzking the equations governing the
phenomenz (the Boltzman equation znd Maxwell's equations) and applying the
second method. This is shown in Appendix G, where we zlso address the special

czse of externzlly imposed currents, 2s in tokamazks.

From those twelve quzntities with four besic dimen sions (kg, m, A, s) we can

construct eight dimensionless parzmeters. They are :

1. v the collisionality, defined as the ratio between = ¢ connection length and the
electron mezn free path. Its specific definition czn take on difierent forms, and
even be normalized so 25 to oblzin 2 specific value. It s standard for example
o deflne the collisionelity v- in tokamezks such that pe — 1 &t the transition

between plzteau and banana regime for neoclassical diffusion. The definition in



this case becomes

with

2. i—’ the ratio larmor radius to the size of the machine. Except for an electron
temperzture much higher than the ion temperzature the ion larmor radius is
much larger than the electron larmor radius. It is 2lso more relevant to take the
larmor radius in the poloidal feld rather than in the toroidal field because of

toroical effects [7). Thus

3. B the ratio of plesma pressure (teking into account electrons znd ions) to
megnetic pressure. It is given by

_ Tl(T, —:Tx)
p= B?/24,

ot

4. N, the number of particles per Debye sphere. This fourth parameter takes

the form 3/2
w 47 §/2

.7\7\,‘ = 4—77.()\D)3 = —(E—o) T‘—

3 3 \e? nl/2

5,6. Two pzrameters related to the choice of the jon species, namely £¢ and .

Choosing hydrogen (or deuterium) fixes those parameters.

- n . ¢ -
7,8. The last two pzrameters zre # and 3-1 The ratio :— 1s zlways very close

to 1, even for plasmas where charge neutrzlity is slightly violated. The ratio &

will be close to 1 for reactors zs presently enviszged, it should thus 2lso be close

to 1 for a2ny experiment.

This in fact leaves us with {our dimensionless pzarameters. Since we have only

four degrees of freecdom (size, magnetic feld, plasme density and temperature),
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we have no freedom left in meking a scaled experiment. The machine is then

completely defined by choosing B, v, K, and Njy. Indeed as

nT
B
na
T?

Kk~ YT

B~

TS
M~yVT

This czn be written as
e~ y=EK =853 N8
T~y iK—2gN—2
o ~ VKB N
B~ y—tK—4g3/2N—5
Which is anecther way of seying that by choosing v, K, B, N, for 2 given

geometry the parzameters of the machine zre completely defined.

- It is interesting to note that the product
aB ~ v TNl

is a more sluggish function of the dimension]ess Darameters than n, T, ¢ or B
sepzrately and is thus usefu) Lo classify 2 lerge range of different machines. The

\ . 2 . .
stored energy, proportional to ¢®B?, fzlls too into this category.

fB? ~ VKiN?

Any paremeter is 2 function of those four dimensionless parzmeters only. For

exzmple, the cnergy confinement time 7, wIitten in dimensionless form is, for a

given geometry, function only of 8, v, K, N
m3 = Fl(rg:U:K:!\r)
[
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Similarly the power needed for maintaining a plasma at 2 certain temperature,

if expressed in dimensionless form, is 2 function only of S, v, K, N.

P
nled

T

— Fy(8,v, K, N)

The functions F are unknowsn, and, if we have to keep zll four parameters in
the same range as for 2 reactor we have no degree of freedom left and are
thus unable to identify the function on z scaled version. By meaking zppropriate
assumptions, and disregarding one or more of the dimensionless parameters, it
is possible to obtzin information on the function by making experiments on a
sczled model. In the next section we will describe the assumptions that go into
this and show how z sczled experiment can yield relevant information on rezctor

relevant plasmas.

2.3. Increasing the degrees of frcedom by not keeping constant one or more of

the dimensionless parameters

By not keeping constznt one or more of the dimensionless parameters it is
possible to gzin more freedom in designing & sczled experiment. Connor znd
Tzylor, [8-10] have derived the dimensionless perameters using the second
method described earlier. They have used for the plasmea severa) different sets of
equations (rznging {rom the Boltzmzn equaticns with Maxwells eguztions to a
resistive MHD model) and derived for each set the dimensionless perameters. The
different set of equations result in different numbers of dimensionless pzrameters.
It is thus possible, when we neglect to keep constant one or more of the four
dimensionless parameters derived ezrlier, to trace back what the underlying

model is and thus whet zdditionzl assumptions have to be made.

Keeping 2ll four dimensionless parzameters corresponds to z plasma governed by
the Boltzmen equation anc the four Maxwell equations (and assuming T, = T}).
In this model electric feids znd magnetic fields zre self-censistent solutions of

N

the equations. Collisions well as effects due to the finite larmor racius of the

W
wn
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particles, are taken into account. As mentjoped earlier, this leaves us no degree

of freedom to make a scaled experiment.

Let us now Jook 2t the possibility of not keeping constant some parameters. We
will investigate how it increases our freedom in making sczled models, but also

investigate what additional assumptions are necessary and what the resulting

constraints are.
2.3.1. Dropping N,

If we choose not to keep Ny the number of particles per Debye sphere constant,
we have one degree of freedom for which we czn tzke B. This gives us 2 scaling

as
a ~ B4

n ~ B8/
T ~ B2/5
This means that if we want 1o decrezse the size with respect to 2 reactor, we
Py b

have to increzse the magnetic feld, increase the density end temperzture.

Let us show how 2 sczled model could give information cn how the power
needed to hezt 2 reactorscale plasma varies with n or T. Take as typical value
for 2 reactor ¢ = 1.5m, B = 5T 2nd assume we want to identify the veriztion
of the power needed 2s z funciion of density znd temperzture in the range
10¥m™3 < n < 10%°m~3 and 1keV < T < 10keV. [t we build 2 model of
the reactor with B = 14T we would need ¢ = 1.5m X (35—‘-)_"/5 = 0.65m
The range variztion for n would change from 10%m—3 < n < 100m=3 4
52X 10¥m™% < n, < 5.2 X 102°m—2. The temperature would have to be
sczled from 1keV < T < 10keV to 1.5keV < T, < 15keV. In the model the
power needed for the reactor could be sczled from the power needed on the

model by

P aTc®B (B 3"5_052
P, nTe®B, \B,)

Note thet the model would need zlmost twice the power the full sczle system

needs. This simple example shows frst that if we only drop one parameter thus
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Figure 2.1 N,, Number of particles per Debye sphere as 2 function of

temperature and density.

little freedom is gzined. We will lzter investizate how we can gzin more freedom

by dropping 2 second dimensionless parameter.

What are the underlying assumptions if we drop Ny as perameter, and what
are the resulting constraints ? By using the second method it can be shown
[8-10) that we only obtzin three parameters f, v, % (thus we can neglect
keeping M corstznt), if we stert from 2 set of equations including the Boltzman
equations and the Maxwell equations, but where the adcitional assumption of
charge neutrality is made. Drooping Ns thus corresponds to neglecting effects
associated with electrical fields set up by the plesmaz. We have now to look
at the conditions under which we czn indeed mazke this assumption and thus

neglect keeping Ny constant.

We hzve

T 4T 3 rd 2 Tt 3/2 Tle _1/2
J’\‘)\ = ?TI‘)\D = 1.73 X 10 (?) (10—20)
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This number is large for a reactor, and thus should be large for any relevant

experiment, even if we do not keep it constant.

Within what range can we change Ny without too much affecting the processes
related to charge neutrality. For Debye shielding to be z valid concept there
must be sufficient particles in the Debye sphere. A quantitative value can be
found by noting that the factor In A, in the formula for collision frequencies
gives the dominance of smzl] zngle collisions over large angle collisions. The
value of A is 9 times the number of particles per Debye sphere [11). Setting a
minimum of ln A = 10, so that smal] angle collisions are at Jeast 10 times more
frequent than Jarge angle defections, we obtzin Ny > 2500. This result in 2

limit in the n, T dizgram shown in Figure 2.1.

In some cases it is not Ny itself on which there is a limit but rather some
cembination of Ny with znother dimensionless pzrameter. An example [12] was
given by Ioffe. In an vnstzbilised mirror, ]oss_es were reduced by 2 large factor
when the Debye sphere of the ions was comparable to the size of the machine.
This is a completely different, and for z reactor, irrelevant regime. If the Debye

]

sphere is jarger then the size of the machine, the particles behzve zs independent

single particles znd collective effects zre suppressed. In general we need thus
22 & 1 with

TN\Y? n, =112 [T 72 5
= 7.45% il 3 _ ~ —_—— e [ —
Ao 2 X110 (e) (1020) Va n \ T3

Ap 1

— N —

c v Ny,

we have

Thus we will have some limit on the procduct of v and Ny. For a particular

choice of v it would trznslzte into 2 minimum value for Ny, Alternatively we

_ Y : - .
can put the requirement =2 & 1 with q as perameter in the n, T diagram.

(TP m, =121
743 X 1077 == — t
o X0 (e) (1020) s €1

As can be seen {rom Figure 2.2 this reguirement is not very stringent.
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Figure 2.2 Limits corresp‘bnding toApKaande>1

Experiments on multipoles; 2t very low density and temperzture have shown that
under sorne conditions transport can be completely dominated by convective
diffusion [13-15). Similer connective cells were found in low dernsity stellarators
[16, 17). While viscosity damp the convective cells [16] znd the shear may reduce
their size [18], reactor re!eva.nt regimes meay still be infuenced by convective

cells. The important pzrameter is 15, 18]

2 )2
w,_- w

! w2_ w?

c: ce

which for rezctor regimes fulfllls € 3> 1. This corresponds to regime where 2t

least the ion larmor radius is Jarger than the radius of the Debye sphere. As for

large €, € ~ Fﬂf ~ #TK’ this can again be expressed 2s some minimum value
for Ny for 2 particular choice of v and K. Equivelently we can put some limits

on n, with B as parameter on the n, T diagram. The limit is then given by (Fig.

2.2)
n \2 X 10%
(1gm) 5 >
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This limit has to be fulfilled if we want to investigate transport processes in the
plasma. To look at A limits it may be of less importance. If, in addition to not
}:eeping Ny constant, we also drop a second dimension]ess parameter it is clear

that the limits we have set for Ny will still be applicable.
2.3.2. Dropping N, and B

Dropping 2 second dimension]ess parameter gives us zn second degree of freedom

for which we can tzke a. If we drop S the scaling becomes

n ~ a3B*

. T ~ ¢?B?
Agzin epplying this to our example, and scaling from o = 1.5m, B = 57 to
¢ = 0.15m and B = 14T we obtzin that properties related to transport (if
dominzated by collisiona) efects) would be sirilzr in the sczaled machine to the
properties of plasmz in 2 reactor il the censity in the scaled machine varies
as 6 X 1017m—3 < 7ns < 6X10%m=3 The ‘temperatu.re range in the model

should be
80eV < T < 800eV

Of course limits related to £ will be drastically diferent, Indeed, B would be a

factor a*B* Jower in the scaled version compared to the reactor.

Dropping N, and 8 =s dimensionless parameters corresponds to a plesma
described by the Boltzman equetion, assuming charge neutrality and fixed
magnetic feld (the magnetic field B s the imposed vacuum meagnetic feld 2nd
no longer seli-consistently determined from Maxwell’s equations). Under what

conditions is this justified znd what zre the resulting constraints?

I one keeps v, but does not keep 2 constzant, the emphasis is usually to Jook at
wrensport. However, Lhere zre sirong indicetions that the F value may seriously
influence transport. Beczuse most torcidal sysiems rely on charge neutralisation
Sy moticn of the clectrons zlong the ficld lines, vransport may be zfected if this

process becomes ineffective.
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According to [19] this happens when

Thus when
fe > 1

Experimental evidence of the influence of Sy on transport has been found
recently. While some experiments invoke a strong temperature dependence of
transport as the transport enbancing mechanism [20], others explzin the effect
by MHD instabilities [21] or resistive bzllooning modes [22, 23]. The point we
mezke here is that the value of f may definitely aFect the transport mechanisms,
znd thet to obtain relevant informetion on trznsport it is important to measure

it 2t the appropriate § value.
2.3.3. Dropping Ny and v

If we choose to kee znc K constznt the sczline becomes
(-

ne~ag?

T ~ ¢?B?

The emphasis would then be on zn investigztion of the £ limits. Applying it 2gain
to the previous example, we cen argue that the properties related to B limits
ere similer for 2 reactor al ¢ = 1.5m 2nd B = 5T eas for z scaled experiment
et @ = 0.15m and B = 147, jor densities 1 X 10%'m~—3% < n, <1X10%2m—8
and temperztures 80eV < T, < 800eV, if we warnit to model the behzavior
in a2 reactor {or densities varying between 10¥m~—3 <« g < 10°9m—3 and
temperztures between 1keV < T < 10keV. The collisionality in this czse scales

zs a~4B™* znd will go up drasticzlly, in the sczled version.

Dropping v and Ny corresponds {0 & plesme described by the Vlesov equation
{ccllision operator = 0), end zssuming charge neutrality. The meagnetic feld is

derived self-consistently from Mexwell’s equations. It seems that f limits are
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little influenced by v. While it may only seem so because £ limits are often
investigated theoretically using ideal MHD models that do not allow explicit
inclusion of collisionality, there has been little experimental evidence that B
limits may be influenced by the collisionality. Non ideal MHD modes would be
different in the full scale machine and in the model if the collisionality is not
kept constant between both. -

2.3.4. Dropping Ny and %

A third possibility to obtain two degrees of freedom is by keeping f and v

constant, while neglecting the influence of § and Ny. The scaling then s
n o~ a—1/334/3

T ~ ‘61/332/3

For the same exzmple we obtain

85X 10¥m™% < n, < 85 x 100,32

and

There is however no theoretical Justiication (based on the equation modeling

the phenorﬁena) to keep those two varizbles constznt and neglecting the others.
The closest one can get is the resistive MHD model whose equation under
transformetion zre inveriant if f znd K% i kept constznt. This would be
anoiher possible choice. The sceling of n and T would then be T ~ a7
n ~ B%gl/2,

Il we attempt to keep B znd v constant 2t the szme time, we may model

trensport more eppropriztely than by keeping v and g constant, because as

we dzve seen, there zre strong indicztions that F does influence the transport.

. . ... ) £ )
Under whzt concitions can we neglect the eSect of ¢z 7 In a reactorscele plasma

e . v p . .
z 't 2 smell velue. An upper limit on z for experiments js usually set by the
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heating method used. If the magnetic field is too low, 5 may become so Jarge
for energetic particles that a large fraction of the injecteci power is lost. The
value of % should also be such that stabilizing influence due to finite larmor
radius eflects are present in the model to the same extent as they are in the
full scale version. This depends very much on the magnetic geometry and the
important parameter in this respect would be the ratio of .p to the scale length
for gradients (which may be much smaller than @ , 2and independent of the size
of the machine). Scaling with 5 can be easily performed by varying @ and B on

& given machine, so that indications of the influence of this parameter could be

gathered separately.

In this section, we have shown how we can increase our degrees of freedom by
dropping one or more of the dimensionless parameters. We have zlso jdentifed
the constrzints resulting from this first step. We have delineated the area in
paremeter space within which Ny can be dropped 2s a parameter. In order to
test 5 sceling, we could drop v 2s 2 second parameter. For transport teste

Ui-,

dropping £ meay not be the zppropriate choice. It is more justifizble to keep v

L}

znd f and drop 2 2s & seconc parameter.

Let us now discuss what constrzints czn arise from the second step : effects that

were not included in similarity considerations : the neutrzls and impurities.

2.4. Llects not included in the Similarity Scaling Laws

A widely zccepted view is thzt the minimum size of zn experiment is set by
the requirement that 2 plasmz be not dominated by plasma wzll interaction.
We want to investigate here in more detzil whether these effects indeed set =

minimum size.

Presence of neutrzls and impurities in the plasme zre interconnected because,
zt least {or present machines, the mechanism of refucling, namely recveline at
P ) c: B =)

the wall/limiter involves interaction with wall/limiter just 2¢ much as impurity
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production does. For the discussion we will try to separate both effects and
rely on theoretical and experimental results to see what the constraints are. For
both the neutrals and the impurities we will discuss their source (how they get
into the plasma), what an acceptable level is (when can we neglect their efect

on similarity scaling laws) and discuss some experimental results to find any

zdditional constraints. )
2.4.1. Neutrals

One of the mechanisms by which the idealized plasma we have used in our
similerity scaling differs from 2 rea plasmz is by the presence of neutrals.
The presence of neutrzls in the plasme is 2 well known subject and we can
rely on theoretical results to calculzte their level. First the mechanism for the
presence of neutrals in the plasme are reviewed. We then investigate what Jevel
1s acceptzble and constrzints on temperzature, density and size are derived to
fulall those conditions. Finzlly we discuss some experimental results related to

recycling and refueling.
2.4.1.1. Source of Neutrals in the Plasma

In this section we will first calculzte the level of neutrals in 2 plasme in complete
thermodynamic equilibrium. We will then calculzte this level for 2 plasma in
coronzl equilibrium. Next we will consider the penetration of neutrzls from the

edge, 2nd finzlly the need for refueling.

Even in z plasme of infinite extent, 2nd in thermal equilibrium, neutrals are
present. This level can be derived from methods of stztistical mechanics. The

degree of jonizztion in & ges in thermal equilibrium czn be celculated to be [24]

i 1 (Qfmz‘T)s/z(Qnch)an(27mf,T)‘3/2 (—-eV-.')
= ezp

Tir, e\ h? R? h? T
or
ni 3% 107 (T)3/"’ =%
pun— i € *:
Np 7, e

This is the well known Szhz eguztion 2nd is shown in Fig. 2.3.
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However a lzboratery p]asma is not in thermal equilibrium, its dimensions
being too small for equilibrium with the radiation fields. In corona] equilibrium,
the neutral density is 2 result of 2 balance between radiative recombination
of electrons and ions, and ionization by electron and ion impact. The level
of neutrals can be calculated from the stezdy state solution of the equations
provided by Johnson and Hinnov [25), using their tabulated value of effective
rate coefficients for ionizztion and recombination, and energy levels given by
[26). We will use here 2 simpler method and assume, as Goldston did [27] that

the scale length for diffusion of the recombined neutrals is short under the

conditions when we zre led to consider recombinztion.

The Jocal equilibrium density is then given as (we use rec as an index for
recombinztion, 74 for ion impact ionization, ei: for electron impact jonization)

NNy < OV Doy

Ne K OV D +n; < OV Dy

For < cv >,e we cen use, if T, < 400eV the formula given by [28]

3/2
1.27 X 1079 136« 3
K OV >yp= 13.6c (L:T-K) e (21)
T - 0.59 s
and for T, > 400eV, an analytical At to their calculation
' T \—1365 3
<OV Drpe= 10_20(?) m_ (22)
83e s

The values from < ov >, and € ov > were calculated from formulas given

in [29]. In Fig. 2.4 the values of < ou > zre plotted for different processes.

. n, .
Celculeting now = we obtain

nﬂ — < av >TCC
T, <oV >+ < 0v D>y

This is function of temperature only 2nd plotted in Fig. 2.5,

Combining Fig. 2.3. (Szhe) and Fig. 2.5. (Coronel) we can plot Fig. 2.6., giving
the minimum Jevel (neglecting transport znd boundearies) of neutralsin 2 plasma,

zs & functicn of temperature znd density.
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Figure 2.3 Neutrz] density from Szha equilibrium
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There is however zn additionz] mechzaism for the presence of neutrals in the
plesma nzmely their penetration from the edge. High levels of neutrals at the
edge zrise from several factors : the need to refuel the plasma, neutrzlisation
of ions &t the wall or simply because of the higher recombinztion rate at lower

termperature.

Verious zuthors have made extensive caleulztions of penetration depth neutrals
into the plasme, either analytically [30-34] or numerically [35-37). Numerical
methods zre based on Monte-Czrlo algorithms or on neutron transport codes
i38]. For 2 suScient large plasma size- end density f»hq level of neutrals at the
center is no longer infuenced by the neutrzls from the edge, the minimum then
being the level czlculzted earlier (recombination). The penetration from neutrals

from the edge, under the assumption A, spe. Amspii Where

\ __<v>

foeg = 23

i N (2.3)
is the mean free peth for charge exchange znd
<v>

Afo = (2.4)

Me SOV S 1 < 0V Dy
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is the mean [ree path for impact ionization, can be treated a2s a diffusive process,

governed by the equation [27]

A i
_fp z Vznn —_ fin =0 (2.5)
3 Amfpii -

Taking a simple exponential variation for the density n, = e¢—2/L (in slab
geometry) we obtain that the thickness of the layer influenced by the neutral

density at the edge is given by [27)

3 (2.6)

1/2
(xmfpc:xmjpii) /
If the size of the plasma (minor radius @) is smaller then this scale neutrals
will penetrate to the center. For L < ¢ one can zssume the minimum level of

neutrzls 2t the center to be set by recombination.

To calculzate the level of neutrzls at the center, in the cases where ¢ < L,
we cou]d use the numericzal codes mentioned earlier. Their accuracy however is
somewhat artificizl. They are mostly used to interpret the measurements of the
chaerge exchange fux. The neutral density at the edge is then not more than
& parameter used to match the measured curve of charge exchange measured
with the theoretical curve. Measurements of the neutral density at the edge is

difficult 2nd seldom performed.

Thet the accuracy mey be somewhat artificizl is further highlighted by the fact
thzt for machines where the central density is set by recombinztion (and thus
the “free” parameter zt the edge is no longer useful), the codes are often not
zble to match the mezsured charge exchenge flux. To calculate the level of
neutrels 2t the center we will use a simple znzlyticz] formula. With the sczle
length L given in equztion (2.6) we obtain the level 2t the center from = simple
exponentizl decay [27]

—%

7n(0) = n.(a)e

(2.7)
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To calculate L we have used the cross sections as given in Figure 2.3 2nd equations

(2.1) and (2.2). Aneven simpler analytical formula, which immediately identifies
the importance of the product na is given by Gordeey [28]

1.23 6 X 10~ 184
na(0) = nn(0) ~Zezp(—

Vi Vi

We have however chosen to take the valye defined by equation (2.7). Using this

formula it is straightforward to czlculate i:he neutral density in the plasmz, from
the neutral density at the edge. Let us assume first that the particle confinement
time is inﬁnité, so that there is no need for the presence of neutrals at the edge
of the plasmz for refueling. Neutrals will then stil) be present there because of
the higher recombination rate 2t Jower temperzture. Those edge neutrals will
penetrzte into the plasma through successive charge exchange, giving a level at

the center, depending oo size, dersity and temperature.

Let us take the neutrz density zt the edge to be the one erising from
recombination assuming the Plesme density at the edge to be 1/10 the plasma
density zt the center znd the edge temperzture to be 3¢V, The result for the
neutrzl density is then shown for a = 0.2m in Fig. 2.7 . Higher values of neutral
density zt the edge znd thus at the center could result from the need to refuel

the plasma.

We can estimate the impact of the need to refuel the plasma by the following
simple model from Podestz 2nd Engelmann [39) . Teking Fy to be the flux of
ions leaving the plasme, F), the Sux of hot neutral particles leaving and F. the
fux of returning cold neutral perticles, we can write down, for steady state, 2

bzlance of particle flux zt the edge (see Figure 2.8)

Fi+F=F

zs each pariicie Jost (be it ion or fast neutrals) neecs to be replaced by 2 cold
P , P Y

neutral.

(3]]
-~
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Figure 2.8 Simple model to calculate the infuence of cold neutrals [39]. Fy is
the dux of jons leaving the plesme, F), the flux of fest hot neutral particles,
znd F, the fux of cold neutral particles. In B, 2 fraction F,; of the cold neutral
perticles undergo ionization, while in A4, 2 fraction of the ions undergo charge

exchange with the fraction Fis of the cold particles.

Of the incoming cold neutrals 2 fraction F; will be ionized, while 2 fraction F.s

will undergo charge exchange with ions.

<oV >y
Fo= ) ; ¢
Cov>e:+ <0V >y
F¢2= <oV >,

1 (4
Cov e+ <ov>y
The process of charge exchange of the cold neutrzls F,, with the ions in A, does
not change the number of ions so that F; = F,;. The number of hot neutrals

corresponds to the number of cold neutrals that undergo charge exchange, giving

Fr = F2. From those cquztions we can calculate
<ov >, .
Fr= i
<ov >y

The confinement time for charged perticle is proportional to ;,l— , 2nd the “energy

confinement time” due to charge exchange is proportionzl to }%

T e T




We obtain for their ratio

which is given in Fig. 2.9 2s 2 function of the temperature. The inverse of this

velue can be considered 2s an enhancement factor that increases the energy

losses due to particle loss.

The particle confinement time must be, for temperature between 30eV and
10%eV, at least an order of magnitude larger than the energy confinement time,

for us to be zble to neglect charge exchange losses. The density of cold neutrals

czn then be estimzted from

1 1
<Cezv > Tz <OV D> T

3
Il

=
3
(o)

The values of 77 for which this yields a level of neutral density higher than our

previously czlculated velues are shown in Fig. 2.10 for a = 0.2m.

In this section we have czlculzted the minimum level of neutrzls resulting from
Szha ecuztion znd coronel equilibrium. We have zlso shown how the level of
neutrzls can be higher than this minimum level in ceses where ¢ < L. The level
of neutrals et the center will then be infiuenced by the neutrzl density at the
edge. For this neutrz] density 2t the edge we have tzken the level corresponding
to the equilibrium recombinztion density for a temperature of 3¢V znd a plasma
density 1/10 the central plesmme density. The leve] of neutrals is then shown for
¢ = 0.2m as zn example, 1o Figure 2.7. Even higher levels mzy result from the

need to refuel the plasme.

2.4.1.2. Acceptable level

Setting an zccepizble Jevel of neutrzls in the plasma for an experiment is a
complicated question. The finz] configuration of the reactor with respect to

5.

fueling, presence of limiter or civertor, cold plasme blanket, neutral density at
the edge, first wall cesigo ete.. is not yet known. Thus we can not turn to a
reactor Gesign znd decuce from it the level we could accept for an experiment,

2s we could do for velues of B, v, K, Ny. One point that can be derived in
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Figure 2.9 Reatio of energy losses (charged particles/ charge exchange)
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Ficure 2.10 Vzlues of 7y the perticle confinement time below which the need

for refueling becomes zn important effect for the Jeve] of neutrals in the plasma
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Figure 2.11 Constrzint on na for ¢ > L as z function of ternperature.

this way is that 2 reactor plasme is i:nperme_able (in terms of L < ¢ ) to the
neutrals from the edge. The neutral density zt the ceater is thus set by radiative

recombinztion.

If we view 2 reactor plesmaz 25 2 core where neutrals do not pley 2 significznt
role, an intermediate region (of size L) where the presence of neutrals may be
an important effect and 2 scrzape-off layer, and if we set the conditions that
an experiment should mode] eppropriately the diSerent layers then we have
the stringent condition that z minimum size 0D 2n experimental plasmaz is set
by ¢ > L . This rather stringent constrazint can be translated In terms of 2
minimul ne value as 2 function of temperzture znd is shown in Figure 2.11.
It could be added, with a 2s 2 parameter to our previous constraints. For

temperature between 30eV and 10keV 2 good znalytical fit is given by

ne =16 X 1017\/§m‘2

Ore 2lso sees that below zbout 20eV the ne limit zczin increases drastically, so

P
ja i
n
pS
-
o
=1

2o experiment there is little reason to work below 30eV..
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One of the design constraints used for ASDEX-U [40] was very precisely
this condition. This impermeability constraint is rather well defined and

experimentally proven [41].

Is it still possible to perform mezningful experiments in plasmas that do not
ulfill this condition ? In order to answer this question we will have to look at
the influence neutrals can have on an experiment, and obtain from this, limits
on their levels so that their influence is minimized. The rest of this section looks

specifically 2zt plasmas in which the impermeability condition is not fulfilled.

Lehnert [42, 43] argues that fora plasme in the permezble regime, but approaching
the critical limit above which it would become impermezble undergoes marked
changes in pressure and density gradients. Those gradients would favor the
development of ballooning instzbilities, which would enhznce transport 2nd put
en artificiel limit of B, = 1. This ballooning instebility limit would not occus for
impermezble plasmas beczuse of the much fiztter density proile. Experimental
evidence is scant. Alcator A 2nd C hzve operated from the permeable into the
impermezble regime without effect (except for the large decrease of neutral flux
coming from the center [41] ) but then again f is rather low in the machine.
A sherp transition with 1mproveme1t In energy confinement and Battening of
the density profile has been observed in the so-called H- dlSCth""ES of Asdex.
This transition is accompanied with m:.r}'ec changes in the scrape-oﬁ' layer and
neutral density at the edge znd neutral density in the divertor region. This
seems to indicate that effect due to neutrzls mey indeed influence a discharge. If
it were to be confirmed thzt such an importent effect were due to the mechanism
proposed by Lehnert, then indeed any future experiment related to B limits and
transport near those limits should defnitely be performed in the impermeable

regime.

Transport of particles and energy can be zFected by neutrals in multiple ways,

'n addition the possible efTects relzted to A limits.

Neutrzls czn have z large impact on energy losses through charge exchange
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losses. We have already shown that the particle confinement time must be much
larger than the energy confinement time in order to be able to neglect Josses due
to charge exchange. It is in principle possible to take these losses into account
by including the presence of neutrals when znalyzing transport losses with a
computer code. This is however ofien difficult to implement because the losses
due to the cold neutrals depends very much on the edge neutral density and
edge plasma temperature, neither of which are well known [44). For a permeable
plasma the best of all possible worlds with respect to levels of neutrals is when
we have perfectly 2bsorbing walls znd 2 perfect vacuum at the edge. But then
of course, unless the particle confinement time is infinite, the plasma density
will decay 2nd no steady stzte can be zchieved. Ope could envisage using pellet

refueling 2t the center to mzintzin the density even with 2 vacuum at the edge.

Another eflect of neutrals is that they can enhance losses by radiation from

mpurities [45-47]. By charge exchange between neutrzls znd impurities the
cherge stzte of the impurities is Jowered resuliing iz increased radiztion losses.
This is especizlly true in the case of h igh power neutrz] bezm heating, but recent
czlculztions have zlso stressed the importance of this effect for reguler discharges
[48]. Compoarison of the rzte coeScients for charge exchenge recombination of
ionized impurities with the ionizztion rates of those impurities can give values
of the ratio of neutral density to plasme density zbove which this process can
bave 20 infivence. Figure 2.12 shows the dependence of Jadzated power on the
2tio of neutrals to plasma density 2nd the temperzture [49]. The acceptable
infiuence of neutrzls in this czse would depend on the impurity level, and the

power evailable.

Eigh ncutral levels in the center of the plasmea should 2lso be zvoided because
cherge exchange with energetic jons provide z source of hot neutrzls which
bombard the wzll. Those can eventually produce sputtering znd cause Impurities

“0 come into the plasma [50].

In addition to zfecting transport by the mechanism of charge exchange znd
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Figure 2.12 Enhanced radiation cue to the reduced ionization degree of the

impurities ['49].

enhenced radiztion losses, the presence of neutrzls can 2lso infuence transport
directly if their density is so high thzt particles collide more often with neutrals

than with the charged particles.

To czlculate the collision time of electron with neutrals we only include electron
impact ionjzation [29]) . In fact, below zbout 3eV elastic scattering [51, 52)
starts to dominate. The ratio of neutral density ‘o plasme density for which the
electron-ion collision time 7¢; equals 2 fraction f of the electron-neutrz] collision
time 7., 1s shown in Figure 2.13. Similzrly we can calculate the ion-neutral
collision time and compere it to the ion-ion collision time. To celculate the
jon-neutral collision tirme we hzve included chzroe exchznge znd ion impact
ionization. The elastic collision cross section for protons with ztomic hydrogen
ere much smeller [33], than the charge exchange cross section [29]. At high
temperzture (> 10keV) jon impact jonizztion dominztes, Figure 2.13 shows the
retio of nevtral density to plasma density for which 7,; = f7in. Using the more

stringent of the two conditions, end f = 0.1 we have delineated in Figure 2.14
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the acceptable parameter space in the assumption that the only neutrals zre

those zarising from recom nbinztion at the edge.

In this section we have shown that for the plasma to be impermeable to neutrals
from the edge, there is a rather strict condition on the product of density
and size. In the case of permeable plasmes we have to tzke multiple effects
into account. Neutrals czn have effects on £ limits through influencing density
profiles and will increase Josses through charge exchange znd enhanced radiation
of impurities. Those efiects could in principle be tzken into account in large
computer codes. In terms of epplicebility of similz ity sceling we czan request
that the plasma behavior should mot be dominzted by cellisions with neutral

particles, this sets 2 meximum operzting temperzture.
2.4.1.3. Recycling and refueling

It is clear thzt in the regime of permezble plesmz recycling znd refueling zt
the well are important eJects. Some experimental results are reviewed here | n
order to investigate how this efect could be minimized. We zlso present 2 mode]
thet cen explain some of the seemingly different behaviers between different
machines and provides z helpful qualitztive guide to minimize efects of the

plasma wall interaction.

Severzl experiments hzve conSrmed that recvcling is the mzjor way by which the
plasme density is maintzined. Hydrogen ions end neuvtrals that strike the walls
zre reflected or rep ebsorbed hycrocer ztoms. Aq ecuilibrium is zttained

1

where the number of pa**1c1es gzinec is equz! to the number of perticles lost.
Isotopic exchange experiments [54] in Dite, show thet afer numerous discharges
in bydrogen, and z switch to D as flling gas, H is still present in the plasma
in the first few discharzes. While this recycling mechanism is useful in that
the density is mazintzined, without the need of = large neutral density at the
plzsme edge, it has the cisadvantage that controliing the density in the plasma

Is less easy. Or;e could compare the situztion with the method thet was used

to provide the eguilibrium of the plasmz in the ezrly cays of the tokamak. The
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copper shell provided automatically equilibrium, but it was not unti] feedback

methods were developed that the plasma could be better controlled.

An extreme]y enlightening series of experiments was performed on T-3 in 1971
[55). Some conclusions are still va alid, while reinterpreting 2 number of ﬁndmgs
in view of recent information provides a better unoerstandmg T-3 is particular
[56] in that the chamber can be heated to 500 — 600°C. At this temperature
all H is thermally desorbed [57). Thus it can be assumed that no H is present
on the walls of T-3. Another particuler festure is the rather large plasma-wall
distance because the radius of the limiter is comperzatively smell compared to
the minor radius of the chamber. The series of experiments involved monitoring
the Hz radiztion at severa) locations, correspondizg to ionizaticn near the wall,
near the limiter 2nd near z pulsed gas injection port. Their conclusion, with
respect to recycling is that the fiow of neutrals from the limiter is 2pproximately
10 to 20% of the totz] fiow, znd is proportional to the density of the plasma. An
experiment using He injection confirmed that this Sow from the limiter is due
to neutrzlisztion of the hydrogen ions reaching the limiter 2nd desorption of
the ztoms formed 2nd not of desorption by ion bombardment c;f H that would
be presert in the limiter. The remainder of the Sow comes from the liner and
consists of two parts. One pert, dependent on the pressure of the working gas
admitted to the chamber prior to the discharge, znd only slightly dependent on
the plasma’parameters. A second part is associzted with bombardment of the
walls by plasme present in the shadow of the limiter, Distance between column

boundary end wal} chenges the repeariition of the fiow.

Experiments oax the elfect of plasma wall disiance hzve been performed on
TFR l:>8] In spite of i increasing quantities of gas injected, the density decreased
for increasing plasma wall distence from 7.4 X 107¥m3 for ¢ = 19cm to
4.8 X 107¥m3 for a = 12.5em (racdius well ry, = 21.5¢m ), confirming the role

plzyed by the wall in terms of recycling.

Experiments on other machines (TFR, Dite, Alcator) have shown similar or

different behavior. Models hzve been set up based on one reservoir of particles
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Figure 2.15 Two reservoirs model

in the wall, with uxes of ions, hot or cold neutrals [58, 60]. One model has
even be extended to include limiter interzction, 2 plasmz transport model to

celculzte the Guxes 2nd z wall diffusion model [60].

Those models zre useful when trying to obtzin the evolution of the density
under particular conditiors. Numerous constznis within equations have to be
estimated for the specific machine. It is then possible to get zgreement between
the model and the results. Our purpose here is to try to find the mzjor factors
zffecting recycling znd refueling and find the optimum conditions in terms of

plasma behavior.

We have devised 2 simple model that explains quzlitetively the behavior of
wal] interaction and especizlly the variation from one meachine to znother. We
assume that there zre in the wall two reservoirs of particles §; and S,, that
behave differently under different conditions, see Figure 2.15. Attention was
dréwn to fast processes in zdcition to slow processes by [61], the presence of two
reservoirs is further confirmed by thermal desorption experiments conducted by

Wilson |62] and by isotope exchange experiments by Blewer 63].
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Assume the first “fast” reservoir S1 to be filled by interaction with the plasma
Ji1, while it can be emptied 2long three pzths. One is a flux fop1 proportional
to fi1, when S is full, the second path is thermal desorption, the third js
by “slow” transfer to.S;. The second reservoir S, is filled from reservoir S
and by more energetic jon znd neutrals coming from the Plasma. It desorbs
by thermal effects. This mode] cap be used both for the wall and the limiter.
Difierent materials, at different temperature will behzave differently, and this can

be explzined in terms of relative size of the reservoirs ) and S3, and of the size
of the fluxes f.

The reletive contribution of limiter and wall is very much affected by the
distznce between plasmz 2nd well. Other factors that zfect recycling and vary
from one machine to znother zre the choice of material for limiﬁer and wall and
prior conditioning of the wall, the number of limiters, znd the temperature of

the wezll.

Recycling on the wall being due in part to the plesma iz the shadow of the
limiter, it will be zfected by the pumber of limiters and errors in the magnetic
Seld [64]. If 3eld lines do not siey al 2 constent distance from the wzll, a field
line which is just pot intercepted by z limiter 2y cerry pizsma zlong field lines
quite far into the shadow of the limiter, and thus provide 2 mechanism for 2

high density plasme near the wall,

The usuzl choice for 2 wall has been stzinless steel. Other choices hzve been
quariz, gold plated stzinless steel with plelinum diffusion barrier (Ormak),
zluminz (Petulz), carbon (TM:-G-Tokemak) and inconel (TFR, Textor). Stainless
stee] is the best documented. The saturztion Jevel of the sur{zce increases with

increasing energy of the impinging ions [63) znd depends on microdamage of the

steel [62]. Larger fiuses zre needed 4o saturate the steel 24 Jower temperature [65).
At low temperature ion incuced relezse is the mechaziem that detraps bydrogen.
At rocm temperature, diSusion also plays z role.Toiz) release cross sections at
room temperature anc 2t 77K [66] are 2bout the szme which confirms 2 reduction

iz the induced detrzpping cross section et higher temperature. Clausing also



[65] found that recycling at higher temperature is greatly enhanced by thermal

processes, while at 80K it is dominated by plasme induced proc.esses‘. '

Oxygen contamination of the surfaces was discussed in [61, 65). It increases
the amount of hydrogen retained on the surface and, while it does not affect

the rapid recycling rate, it does increase the 2mount and the speed with which

hydrogen is released over a longer time scale.

If we now translate this information into our model we have that at‘low
temperature the flow fy; is shut off and only S takes part in the process. The
reservoir is la-rge, which explains why the first Alcator discharges, without gas
pufing have a large density drop [67). It also explzins why only 2 small number
of discharges are necessary in Alcator to observe z complete switch over of the
gas when performing on isotopic exchange experiments. While Sy is large at low
temperature, the chenge over is rapid and easy. At higher temperature the size
of S; increzses with respect to Sy, at the szme time the Suxes fi2 increases, as
well 2s for1 and fo:p. The smaller reservoir S; is filled more rapidly, giving a
lower density drop. For isotopic exchznge experiments, when S, sté:ts coming
into play, more discharges are necessary to change the gas because the processes
zre slower. The T—3 result czn be understood in the following terms. Because
of the elevated wzll temperatures there is good communication between S; and
Sy, while the size of Sp is relatively large compared to S;. Ionization of the
flling gas znd poor confinement in the initizl stege of the discharges fills S,
znd spills over in S;. The first part of the fux identiGed in the experiment
is the flow fc:p, from S; proportionzl to the pressure of the filling gas. The
second part, proportionzl to the plasma density is the flow Jep1 which involves
S1. The model can zlso explzin why, in expériments on ISX with neutra] beam
hezting, the density drops. This is because fuxes to the well zre more energetic
and thus penetrzte to the reservoir Sy, from which the relezse is slower. The
edect of oxygen on the walls 2t room temperature is to increzse reservoir S; and
increasing the 8ux /1. It is thus similer to operating 2t higher temperzture. No

informeation is zvailzble on the infiuence of oxygen on trapping and detrapping
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at low temperature but in terms of our model, results of Alcator seem to concur
with the assumption that 2t low temperature only one “fast” Teservoir exists.
The use of T7 gettering is equivalent to having only 2 large and fast reservoir

Sy. It is this in this respect completely similar to working with walls at liquid
nitrogen temperature.

The two reservoir model can zlso be used on limiters. Because limiters operate
at high temperatures, communication between S1 and S; is very good. At high
temperature S, is much larger than Sy, so that a large fraction of neutrals
coming from the limiter come from Sz. For 2 graphite limiter Sz is very large,
which explains the Cificulty of rising the density even with large gas pufiing
on Alcator C with a grzphite limiter. It has even been shown [68] that even at

room temperzture 100% trapping is observed for fluxes up to lolsat,oms/cm"’.

The existence of two reservoirs, and their cifferent behavior, could possibly
be explzined by the presence of two diﬁerenpmechanisms. The first reservoir
would be licked to physica) wrzpping of the atoms, while the second may involve
chemical processes. The experimental results, together with the qualitative
model we heve developed suggest that operation with wells at liquid nitrogen
temperzture or with loaded titznium gettered walls result in rapid recycling of
large quantities of H =zt the edge. This maintains the density of the plasma
without the need of large neutral density 2t the edge. The rapid recycling cools
the plasma edge, which is beneficial in terms of Impurity production, but it zlso

as efecis on temperziure and density gradients.

[ g

2.4.2. Impurities

In this scction we intend to discuss the infuence of impurities on the use of

similarity scaling laws. We will follow the same patiern zs for our discussion of

¢]

the neutrals, zlthough with siightly cifferent emphasis. First we will discuss how
impurities can get into the plasma. Contrary to the case of neutrzls we can not
czleulate from theoreticzl grounds whzt their density is. We wil]l therefore have

to rely on the third part where we review some experimental results to obtzin
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more information. In the second part we discuss, as we did for neutrals, what

an acceptable level is of impurities in order to be able to use similarity scaling

laws.

2.4.2.1. Source of Impurities

In most cases impurities arise from the presence of a wall, and 2 limiter. Arcing,
sputtering by ions and hot neutrals, evaporation are all possible mecha.msms for
dislodging some of the wall material or lumter or of impurities absorbed on the
wall/limiter. Distinguishing between interaction with wall and interaction with
limiter is complicated by the fact that wall 2nd limiter operate in quite different
regimes. The large wall surface hes 2 lower heat load than the limiter 2nd is
thus usually at lower temperature. While in some czses limiter and wall material
are made of different material, which should allow us to pinpoint the source
of impurities in the plasme, this is too optimistic beczuse sputtered limiter
material will cover the well with 2 thin lzyer, meking experiments inconclusive.
Tonized particles can inter&ct with the limiter by fiowing down the field lines,
while diffusion across the magnetic feld is necessary to interzct with the wall.
Other sources of impurities can be the originzl gzs composition in the chamber
prior to ﬁlling, impurities introduced by the plasma formation scheme (plasma

gun) or through the neutral beams used to heat the plasma.

No successful attémpt has ever been made to czlculete quantitatively the
impurity level to be expected in & plasmez based on the before mentioned

influences. Even qualitatively the understanding is far from comp]eue. We will

thus have to rely more on experimentel date.
2.4.2.2. Acceptable Level

The level from impurities {rom the point of view of zpplication of similarity
sceling laws is very small. Indeed, transport in 2 plasma is 2ltered because ions
(or electrons) will collide with impurities as well 2s with the other ions. Beczuse
the collision frequency of ions with impurities is proportional to n;n,Z? where

n, is the density of impurities, while the collision frecuency of jons a2roon
z I ) ] g
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themselves is proportionzl the niny, it is ¢lear that in order to have collisions

between ions to be the dominant effect there is 2 rather stringent condition on
2

the ratlo .‘z

Using the definition of Zess (ne Zejy = Zn2? ¢), charge neutrality (n, = Zn;Z;)

and the respective collision times, we can calculate the ratio ;—' as 2 function

of Z.s;, for different values of Z (shown in Figure 2.16). In general we have

iz Z(Zeff — 1)
Vi Z—Zegy

and
n: _ Zejp—1

n 2(Z — Zeys)
Let us teke Oxygen 2s the dominant impurity assume it to be completelvy
ionized (Z==R), znd further tzke 2s limit of applicability of the similarity laws

; %
Z2 < 3. Even with this marginal constraint (we would rather set X%t 2 < &) we

Tz

obtzin the stringent condition Zesr <141, £ < 08X 1072,

The fact thet theoretical scaling laws for £ based on similzrity considerations did
not agree with scaling laws derived by Hugill 2nd Shefield [69] from experiments
was mentioned by Connor znd Teylor |8]. The reason they give is the fact that

radiztion plays z dominzat role znd is not excluded from the calculation of 7z.

Even though the dztz base used by Pfeiffer and Waltz [70) included only 14
out of 118 points where Z,5; < 1.4 (11 from Alcator, 2 from ATC, 1 for ST)
they conclude it is possible ‘o obtzin sceling laws thzt are compatible with
similarity sceling lews. Recently Zempaglione [71] found that the scaling laws
for 7g from mechines with Z,;; = 1 2gree with the theoretica] constraints based

on 2 collisionzl high § model.

In eddition to infuencing the transport, impurities can have other efects. A
mejor one of course is rzdiztion. It can mask or meke very difficult to measure
transport losses. Because of the large energy Josses it restricts the parameter

space avalle.b]e to perform experiments. Gibson [72] has peinted to Impurities as
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Figure 2.18 The operating space of tokamaks is reduced 2s Zejy increases

z possible cause of the density limits. The dizgram of Figure 2.18 summerizes
the experimental results of numerous tokameks [73) and shows how Z.j4 reduces

their operzting space.

o Figure 2.19 and 2.20 we show the results of calculztions for power losses
. ’ R . . .
in (-:;'g), due to impurities for oxygen and iron, we have assumed coronal

equilibrium [74], and an impurity density of 1% for oxygen 2nd of 0.1% for
iron.

Severz! cavezts have to accempeny those results.

A plasma may not be in coronal equilibrium, inward diffusion of impurities
czusing then to be in a lower charge state than one would expect from coronal
equilibrium, thus possibly increasing the power radizted. Another mechznism
already mentioned is the recuction in charge state of impurities due 1o charge
exchange with the neutrals present in the plasmez. The usefulness however of
his simple approach is to rezdily icentify regions of n, T parameter space that

zre certzinly inzccessible. Comparing the power lost through radiation, with
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Figure 2.19 Radiation losses due to 1% oxygen impurity.
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the power that can be deposited through ohmic heating would define the space
within which tokzmaks can certzinly not operate. Machines in which a large
major fraction of the energy is deposited by Ohmijc healing are particularly
sensitive to the presence of impurities. As the resistivity is proportional to Zss
it can give localized increzse in power deposited, and this changes the profiles.
Similarly, large radiation levels have been responsible for inverteg temperature
profiles (lower at the center thap at the edge). In view again of the temperature

dependence of the resistivity it afects the current profile .

Only very low level of impurities are thus acceptable in a plasma if similarity
sczling laws zre to be epplied. Additiona] consirzints may arise from the large
power losses and the sensitivity of current profiles to the Presence of impurities.

Let us now look 2t some experimental results to see whether size or magnetic

field affect the impurity level.

2.4.2.3. Impurity Control

We have seen that, based on the applicability of similerity sczling laws, only
very small amounts of impurities zre allowed. The constrzints &re more stringent
for heavy impurities than for light impurities. As the production mechanism
and behevior in the discharge of heavy and light impurities is different, we will
discuss them separately.

Heavy impurities are produced by arcing, evaporztion and sputtering. Arcing
has been shown to be more frequent on unclean surfaces, while it also shows 2
clear correlztion with the edge temperature [75,76]. A low temperature at the
edge is necessary to zvoid arcing. Runaway electrons, or large thermal Joads
procuce impurities by evaporation of Jocal hot spots, usuzlly 2t the limiter,
Proper control of the discharge znd z sufficient number of limiters are helpful
to cure this problem. Sputtering is czused by the jons or neutrals colliding
with and knocking out some of the ztoms from the wal) or limiter. There is a
mInimum energy necesszry, depending on the mass of the sputtering particle

end the materiz] of the wal] (77}. In this respect energetic neutrals, coming from
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the center, because the plasma is not impermezable, are particularly damaging.
High temperatures at the edge too result in efficient sputtering by ions because
the ions may be accelerated by the sheath potential ( of the order of three times
the electron temperature ). The process of selfsputtering, where the heavy ions
of charge Z gzin an energy ZT, was shown to result in catastrophic increases
of the impurity levels in the plesma [78]. Once again ]ow’temperatures at the
edge .are necessary in order to mitigate this problem. Heavy impurities. will
radiate strongly even at rather high temperzture because they are incompletely
stripped. Their behavlor in the discharge is still not completely understood and
it is still not clear whether t.hey will accumulate in the plasma or not. Recent
experiments on Aleator C [79, 80] have shown no accumulation in the center. An
interesting difference was zlso revealed in the time behavior of hezvy 2nd light
impurities, the reason being ascribed 4o the fact that light impurities (usually

gases) zre recycled at the wal) while heavy impurities are not.

Light impurities are usuzlly present zs surface or bulk contaminants of the wall.
Their introduction in the plesma zrises from thermal desorption or particle
induced desorption. The presence of oxygen on the wall influences the recycling
of the hydrogen. It zlso e_ﬁ'ects the discharge in other ways. Efective radiation
by oxygen 2t the edge lowe*s the edge temperature and results in 2 reduction of
the sputtering of hezvy impurities. The achievement of lower q values in T-10
compared to T-11 is attributec to the fact that the wall of T-10 are less clean
than those of T-11. Better cooling of the edge, through oxygen radiation results
in less heavy impurities, zllowing fztter current pr rofles znd thus lower q. The
same eflect was obtained by using Ne as radiztor. In the case of oxygen however
there may be 2n zdditional explanztion. Experiments in which stzinless steel
was bombarded with 2 keV H hzve shown z stro ng dependence of the sputtering
yield on the amount of oxygen on the surface [81). Oxygen plays 2 peculiar
role too in terms of the temperature of the wzll. The oxygen/water cycle was
reviewed in [82]. Mzrmar has shown that there is z distinctly different behzvior

for temperztures of the wall zbove or below the ireezing point of water [67).
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In terms of level of impurities is there zp impact resulting from the size versus
the magnetic field of 2 machine ? Accuracy of the magnet.ic field is important
because errors can bring hot plasma, flowing 2long field lines nearer to the wall
than would normally be expected. The absolute value of the magnetic feld
would only put constraints on the size in the case of very low magnetic fields,
where we would have to request that the larmor radius of the impurity ion be
small compared to a. In most cases the ratio (V/mess/charge) of the impurity
ion is smeller than this rztio for 2 hydrogen ion so that the constraint on §
1s more stringent for the hydrogen ions than for the impurities. If we want to
avoid sput‘oering by fast neutrals the product na has to be sufiiciently high
for the plasma to operate in the impermezble regime. The presence of oxygen
contzamination may be helpful both directly and indirectly (by reducing the edge

termperature) in reducing the sputtering of heavy impurities.

The amount of impurities in the plasma seems to bezr little correlation with size
or magnetic feld. It does seem infiuenced by temperature 2t the edge, plasma
well distance, prior conditioning of the walls and by the vacuum system in
general. That size and magnetic field hzve further little infuence is confirmed by
the fact that both Toscz and Alcztor operate 2t Z,;; = 1. The well preparation
hes 2 much larger impact : Alcator operates with walls at liquid nitrogen
temperature. This seems to be an excellent method. The rapid recycling of
2 large reservoir of H on the wall keeps the edge temperzture low. Possible
cxygen conteminztion on the wzlls reduces the sputtering, while most of the
oxygen ihat would be desorbed combines into Hy0 that becomes fxed on the
well. Toscz uvses gettering. This is an 2)ternative method thzt however has the

drawback of possible contamination with Ti.

2.5. Achicving the plasma parameters dictated by similarity

To achieve the plasma paremeters obtzined {rom similarity scaling laws we have
o be zble tc produce the plzsmz and bring it to the required densities and

temperatures. The constraints that can result from this zre discussed here.
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2.5.1. Plasma production methods

Several methods can be used for plasma production. The most widely used of
course is breakdown by a strong DC electric field. This can easily be achieved
when Ohmic heating is used, since the same coils are used. Other methods are

microwave startup near electron cyclotron and upper hybrid resonances [83],
and ICRF (84, 85).

Injection of plasma by washer-guns has often been applied to stellzrators 17,
86), but can lead to 2 formation of convective cells. A more recent method has
been the in-situ illumination with laser light of frozen pellets [87). Sufficient
flexibility exist in the choice of the stertup method since little power is needed.

More important constrzints result from the methods that will be used to heat

the plasma.

2.5.2. Plasma heating

Constreints can erise from the limitations or the methods thai are used to
heat the plasma. Our intention here is to review for each of the mzjor heating
methods some relations that mey put censtraints on size, megnetic field, density

and temperzture, thus restricting the parameter space in which one can operate.
2.5.2.1. Ohmic Heating

The use of ohmic heating sets 2 lower limit on a combinition of density and

temperature. The critical energy for runaway electrons is given by [88]

muv?, _ e?nln A 2.8)
2¢ 47elE _ (2-

The maximum power per unit volume that czn be deposited is given by

EZ
P=nJl==
n
Tzking the resistivity to be
(m)?Ze*ln A
77 =

312 12me2rd/?
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. 2 3 .
and the critical energy T2 equal to the electron temperature T, we obtain

n? InA ¢7/233/2 —01x10-%_" n? lnA
(Z)p/2 Z 4re2ml/z (L)1 'z

Pma: =

This restriction could be alleviated by the use of turbulent heating [89).

For specific concepts there wil] also be a constraint resulting from MHD stability.
In a tokamak for example, the requirement that g on axis can not be much
smaller than 1, results in a meximum current density.,

1 234, 23¢

<
g poRR HoR

The maximum power that can be deposited then is

nJ? =

(ne)!/2Ze?In A[ 2B, \?
2 KogR

2
184 X 105;(5)
(i \eF

Other concept may not be limited by this. It is not 2 constraint for a reverse

(2.9)

-

fielc mcH tor exzmple. Concepts that have 2 rotztiona transiorm provided by
externel means can have 2 current density larger than given in formula (2.9)
since the original rotztional trensform can be in the opposite direction as the
one provided by the curreat. The need for coils providing the flux swing can
put some constrzints on the geometry znd the method itselfl zlso results in =

limited pulse length.

2.5.2.2. Electron cyclotron resonance heating

-y

Electron cyclotron resonznce heating will set constraints on Gensity and magnetic

field. The constrzints zre different de pendine on the hezting mode considered [90].

Define u.'c, the electron cycloiren ’requcncy, wpe the electron plasma irequency

&l



and o the square of their ratio

,w“=—

R
|
|
I
|
|

The constraints resulting from accessibility requirements are then [91]

a < 1for ordinar}lf wave heating at w = we,

a < 2 for ez-{traordinary wave heating at w = w,,, wave lzaunched from high
field region.

e < 2 for extraordinary wave hezting 2t w = 2uice

a < 4 for the ordinary wave at w = 2w,,.

In addition to accessibility we zlso have t;o consider whether the wave is being
ebsorbed. The fraction of the wave zbsorbed in one pass through the cyc]otrbn

lzyer is given by

A=1—¢T
The value of T is given by [90]
7 To
P;o = -2—mC2 &kRo

for the extraordinary wave 2t the fundamental frequency.
3 _ q 3

7 T,
Tix = &
o 2 mc?

1
cos? 6;[2 + o1 — 2))’kR,

for extraordinary wave 2t the fundamental frequency.

To

mc?

N

for the extrzordinary wave 2t the second hzrmonic.

And
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for the ordinary wave at the secong harmonie, In those formulas R, is the major
radius of the device (for 2 tokamak; in general it js 2 measure of the Sradient

in the B ﬁeJd), k is the wave number zt the Tesorance ang T, is the centra]
temperatyre.

Note that the damping increases with the density (@) éxcept for the extraordinary
wave at the fundamepta] for which it js higher at lower density. The dampipg

also increases with temperatyre and is rather small at Jow temperature for the

The hezting by lower Eybrid wayes 1s stil]l not completely understood. The reasop
1s that important efects resy]t from non linear Processes which are difficult to
treat tbeoretical]y. We summarize here the constraintg Dentioned by Brambillz

[92]. The lower hybrig frequency is of the order of the ion plasma frequency

There is 2 Jow density cyt oF ior slow waves. It is givep by w = Wpe O

2
= 1.24 X Iols/ma(iG\{;{z—) (211)

. . . . Ckg
For the resonance to be accessible the pzaralle] index Nip= 2t has to be Jarger

then 2 certain Value given by

.2 . “";:
Tes

Mode conversion and jon heating occurs for

A 2o
Ny T a; L T Wiy (2.13)
"V Tooos i,

while electron Lenday czamping occurs for
—_—

] T
f\if\/

T 2.14
1000e = @2 (214)
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Figure 2.21 Constraints on density and temperature for Jower hybrid heating
[94]

Electron damping will be the prevailing mechanism when

w? 02/?{ )
— > 1+ 2/ 15
; > al\T (2.15)

YLH
In 2 more recent paper [93] Brambilla gives ¢; = 6.7 2nd @2 = 6.4. Combining
the equations (2.13) with the accessibility conditions (2.12) will result in 2
meximum .on the combinztion of density znd temperziure. Combination of
equation (2.12) with the condition (2.14) result in 2 similzr limit. Those limits
zre snown in Figure 2.21 {94) for the particular combination B, = 2.5T,
/= 1.3GH=z and Dj ges. For Jower hybrid heating we hzve thus 2 low density
limit and 2 maximum on the combinatisn of n and T. That this picture is far
from complete is confirmed by the fact that on the ATC tokamak a threshold
for the power was found, threshold which depended on the density [95]. For an
averzge density of 1.8 X 10””/7713 the power threshold for heating was zbout
10kW, while for zn averzge density of 0.9 X 1018 /m3, the power threshold was
lerger then 120kW. This could be the result of poorly understood non-linezr
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2.5.2.4. Ton eyclotron resonance heating

Different methods czp be used to heat the plasma in the jon cyclotron range of

frequencies. Heating 2t the secong barmonic can only be eficient ip high density,
high temperature plasmas. Heating of 2 minority species at the fundamenta) with

subsequent transfer of energy to the bulk through collisions provides absorption

of the power in 2 single pass, but results in the production of ap energetic tail

which has to be confined. For 2 com arable concentration of two jop species
P

mode conversion occurs et the ion-ion bybrid resonance layer. The wave energy

is then damped through electron landau damping.

A common conditiop needed for Propagztion of the fast wave Is given by

107/ M we.
2 = o
e () (5)

Confinement of the fast Particles requires 2 minimum op “y Constraint on the

size of an experiment can also result from the limited power density (about

500W/cm3) of the weve launching structures.

2.5.2.5. Heating by neutral beams

The use of meutrz) bezms to hezt the Plasma result in 2 set of rather siringent

ot
constrzints. A minimum for the product of density and size is set by the need to

lonize 2 major fractjon of the beam before it €merges again out of the plasma.
An estimate is given by [94]

e — 1018( E )
T Tkev
jor D tangentia) injection 2ad
ng — 2X 101 B )
 m? \They

for H tangential injection.

On the other heznd the energetic particles have to be confined. Detajls will

depend on the geometry and injection method (counter or co-injection). As in
. . ) . p .

the case of ICRH there wil] be la€ requirement that T be smzller than a certain

velue.
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2.6. Summary

In this chapter we have discussed the method of similarity, which argues
that informztion obtained on models zre appliczble to full scale machines if
some dimensionless parameters are kept constant. We have briefly reviewed
two methods to derive the dimensionless parzmeters, each method having its
particular advantages and drawbacks. Application of the method to plasma
physics yielded the appropriate dimensionless parzmeters. In order to gain
sufficient freedom in the choice of the parameters in the scaled version, we
had to drop-one or more of the dimensionless parameters. We have delineated
under what conditions we can justify this. Departure of the model on which
the similarity is based arises from the presence of neutrals in the plasma and
{rom the presence of impurities. We have set limits on the level of neutrals
and impurities that can be accepted in order to be zble to continue to use the
model. A mezjor constraint arises if we request that the plasmaz be impermeab]e
to neutrals. Level of impurities have little correlation with size or magnetic feld.
In a lest section we have discussed the constraints we can encounter when we

ry to obtain the parzmeters dictzted by similerity considerations.
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3. Technical Constraints

-3.1. Introduction

In this chapter we plan to investigate the technologicz] constraints that may
meke some zreas in the parameter space inaccessible. We will concentrate on
obizining relaticnships between the weight of the system (or a measure of its
cost), its stored energy and energy requiremeants with size znd magnetic feld.
Those two perzmeters were oup possible degrees of {reedom for the similarity

scaling.

The weight of the coils depends on the size and the magnetic fleld, but also
on current density limits and structura) constrzints. Those limits are different
depencing on the choices made for the coils. We thus iavestigate current density
limits for wzier cooled, liquid nitrogen cooled znd superconducting coils. For
the structural constrzints, we looked both zt D shap.ed and circular coils. Using
these constrzints z generzal formulza is set up that gives the mass of the system

in terms of the size and the magnetic feld.

Since the stored energy is zlso z funciion of size 2nd meagnetic field, we investigzte

.

vhether there is 2 relaticn between stored energy and the mass of the coils

A sometimes stringent constrzint, when going to smell size and high magnetic

n

feid is access to the plasma for dizgnostic z2ad hezting purposes. This aspect is

=]

87

P

N



mentioned but depends strongly on the geometry. It is discussed in a later chapter
specifically for the stellarator with helical magnetic axis. Power requirements
can further restrict the choices one can make with respect to the design of an
experiment. We show those requirements czn be related to the stored energy,

the pulse length and the mass of the experiment.

Let us pow first turn to the investigation of current density limits.

3.2. Current Density Limits

3.2.1. I_ntrodu.ction

It is easy to see that current density limitations play an important role in the
totz] weight of conductor that will be needed for an experiment. Indeed, take
W = Alv where W is the weight, A is some characteristic cross section, [ is the

totzl length of the conductor znd « the density.

The cross section can be related to the current I znd the current density J
through A = -J[

The weight of the current carrying conductor is then W = fl-)'. Thus for 2 given

size and magnetic field, the total weight of the conductor will go down, inversely

~proportionel to the current density pointing to the rezson why it is, from that

point of view, necessery to go a¢ hich 2 current density as possible.

Limitetions on the current density differ accorcing to the type of conductor.
Water cooled copper conductors have 2 maximum current density based primarily
on the meximum allowzble temperature rise znd heat removal capacity of
the cooling water. This is zlso the case for cryogenicelly cooled conductors.
Superconducting coils have a current density limit beczuse of szfetly and stability
considerations. We will discuss each type of conductor separately. Since the
current density in pulsed coils is related to the pulse length of the system, let

us first zccdress this issue.
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3.2.2. The Equivalent Pulse Length

The pulse length of 2 system not only includes the experimental flat top time,
but 2lso a time related to the time it takes to ramp up znd ramp down the

Belds, because resistive Josses are 2lso incurred during those times.

Let us, under some simplifying assumptions obtzin an estimate for those losses.
We will assume that the resistivity does not chznge (only true for water cooled
coils, for IN; cooled coils the résistivity change is & very important effect and
this will be considered when we czlculate the current density) and that during
each of the three phases (ramp up, fat top, znd ramp down of the fields), the
voltage is kept constant. During ramp up it is necesszry to use a voltage higher
than needed to sustzin the Hat top current. This reduces the time it tekes to
reach the nominal current znd thus reduces the losses. In the same way, to
decrease the current after the fiat top reversing the voltage wil) bring down the

current faster, reducing the energy deposited in the magnet.

If I is the nomiznal current, then we czn define 2 “forcing constant” Cy for the

voltage during ramp up as
Vi
R

The time to rezch nominal current is then

(=
w=TIn Cj——l

with 7 = & the time constant of the coils. The Josses golng up are then

=CyI

1 1
Ez.u = P..]QT[—C'?: ln(l - C_f)— Cj —_ 5}

We czn define zn equivzlent time for T2IP UP 7,y as
E, = RI?*;
iy — ey

giving

&$
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If we take the time for ramp up equal to the tine for ramp down, then we need

the reversed voltage to be

—

/q

2 = —I(Cy —1)

The losses going down will be
Bu= Ri'r{( 1= 0 - )=+ 2
Cy 2
Similarly, an equivalent time for ramp down is then
Eiy= RI’7y4

with

1 3
Ted = T.(—(l —_— Cj)2 ]D(l —_ C—f) —_ Cf + 5)

The total energy depesited in the coils, during ramp up znd ramp down is then

given by
E/=E,+Ey

C
= R.ﬂr[(cf, +(C;—1))ln = ! - —2C; + 1]

J [}

This formula can be approximated by
B =Rl 1D
K

This is 2lso what one would obtain assuming the current to ramp up and ramp

down linearly.

The energy deposited in the coils is thus

This now defines z2n equivalent pulse length 7, corresponding to a square pulse

of length 7, 2t the nominal current J. The vzlue of 7, is then
2 (Y
=T -7lD
3 C;—1
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with 7 = ﬁ, the time constant of the coils, 7, the flat top time ang Cy the
voltage forcing constant during ramp up 2nd remp down. For experiment with

very short fiat top pulses 7,, the equivalent time cen be completely dominated

by %'r‘].n C;EI—T
3.2.3. Current Density in Water Cooled Copper Magnets

We have set up 2 model to caleulzte the maximum allowed current density based

on the heat removzl capacity of water cooling, both under steady state and

pulsed conditjons.

The model, the detailed calculations and more complete results zre given in
Appendix A. We found thzt the pulse length of zn experiment puts it, from
the point of view of current density /hezt removal czpacity in the conductors,
rether unambiguously in one of two clesses: pulsed mode or stezdy state. For
2 coolant velocity of 1m/s and =2 pulse length smaller than zbout 10 s, it is
best to work in pulsed mode (i.e provide as much copper as possible to increase
the thermal inertiz of the system, while dimensioning the cooling passages for
hez removal between pulses ). The maximum current density is then given
by J = \/:’7? AT being J = 10 kA/cm? \/’.:‘ maximum for AT = 50°C and
p=1.72 X 10"80m. In this formulz 7e is the equivalent pulse length as defined
in the previous section. For 2 pulse length lzrger then zbout 10 5, the steady
stete current density can be J ~ 2 kA /em?. The vzlue of 10¢ depends on the
coolant velocity through 2 0.8 power. At hicher cooiant velocity, the dividing
line between pulsed znd steady stzte system occurs at a lower value of the
equivalent pulse lehgth (for v = 2m/s, dividing line ~ 5s) with corresponding

increase (~ v*4) in steady stzte current density.

3.2.4. Cryogenically Cooled Coils

The mezin purpose of using cryogenicelly cooled coils is to reduce the resistance
I th T concuctor, allewizg 2 Jonger 8zt too for the sz rgy dissipated
Of the copper concuctor, zllowizg 2 Jonger 82 Cplor the same energy dissipate

2s with room-temperaturé coils.
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The limit on average current density is again the result of a limit on the allowable
temperature rise. The transition of liquid nitrogen from nuclezte boiling to film
boiling at a2 temperature difference of about 13°C [96, 97) results in a drastic
drop in heat transfer rate and thus much larger cooling times. See Table 3.1. At
higher temperature, the initial advantage of lower resistivity is lost, so that little
is gained for too high a temperature rise. Bitter type coils have a Very uneven
current density distribution, giving 2 local hot spot temperzture rise much
higher than the average. This local hot spot temperature increase, which can be
up to 160°C, for an average increase of only 6°C |96), has to be limited in order
to avoid appfoaching the ann.ealing temperature of the copper (zbout 350°C).
Cryogenically cooled coils only use copper hardened by cold drawing, eventually
interleaved with steel for strength because copper allovs do not achieve the large
reduction in resistznce at cryogenic temperature. BeCu for example has a room
temperzature resistivity twice that of copper, and its resistivity only drops by 2
factor two 2t IV, temperzature. Yield strength is 8Skg/mm2(850MPa). ZrCu has

a2 room temperzture resistivity 10% higher thzn copper 2t room temperature and

AT(°K) Q/A wiem?
Film Boiling

300 55

250 ' 3.5
200 320
150 20
100 1.5
60 0.9

Nucleate Boiling

13 19
10 13
6 35

4 . 14

2 0.25

Teble 3.1. Heat Trznsfer Rate for Liquid Nitrogen [96).
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it decreases by a factor 4 at IN,. Yield strength is 45kg/mm? (450M Pa). Using
copper interleaved with steel, lower resistivity values are obtained at the same
strength (essuming infinite resistivity for the steel and plastic precompression
of the copper as in Alcator C) : the gain in going to i N, for copper interleaved
with steel, achieving a strength of 85kg/mm? is a fzctor 5 compared to pure

room temperature copper and about a factor 6.5 for & strength of 45kg/mm?
[06].

We derive briefly the formula for mzximum current density based on maximum
average temperature rise. Since the temperzture changes over the pulse length,
and both the resistivity and hezt capacity are 2 strong function of temperature,

we tzke this explicitly into account. Assuming zn adizbatic temperature rise we

have

p(T)J?et = e, (T)eT

where p(T) is the eleciriczl resistznce of the copper, being given by |98

p(T) =1.57067 X 107F +0.545491 X 10~0T — 0.165573 x 10~127?
— 0.449632 X 107573

in 0m for —200°C < T < 36°C and
¢p(T) = 379.87 + 0.21414T + 1.0255 X 107°T? & 2.419 X 10~573

in kou! for —253°C < T < 25°C 2nd ~ is the density of the copper, taken to
a'

be 8.88 X 103’%"7 The equztion can be used to determine the temperature rise
AT

0

dT
e T

Putting the left hend side equai to J7r, using an equivelent square wave pulse

c*
:'3
(¢ ]

1t is possible Lo plot the tem ipereture rise AT as 2 function of this parameter.

The resuli is shown in Figure 3.1.
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Figure 3.1 Temperature rise AT, 25 2 function of equivalent square wave

Limiting AT to 15°C one obtzins

J?r =10 x 10854
mes

giving for 2 1 s equivalent square pulse 2 current density of 105-4. or 104,
- m 320}

In Figure 3.2 we have 2lso plotied the rztio of the resistznce at the end of the

pulse compared to the resistznce at 77K.

We mazy zlso mention here thzt there is litte advantzge to use [N, cooled coils in

teady state. Indeed, even though the beat deposited in the copper at 77K is 2

wm
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factor 7 Jower than at room temperature, the power needed to remove this heat
at TTK is about 7.5 times the power deposited (carnot efficiency 0.35, assumed
mechanical efficiency 0.4). The total power needed would thus be 1—"'75 = 1.2

the power needed for a room temperature system.

3.2.5. Superconducting Coils

Requirement of stabilization and protection set z limit both on the current
density and the mazximum current per conductor for large superconducting

coils. We summarize here the results of reference [99]. Stability requires that
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=] gl = [al g -~ ar -
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Figure 3.2 Resistznce Ratio, as & function of eguivelent square wave
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if part of a superconductor goes normal, the disturbance will not spread, and
the conductor will return to its superconducting state. This can be achieved
if sufficient copper is providcd around the superconductor. The current then
will temporarily bypass the supercond.uct,or. If the heat dissipated in the copper
is smaller than the critical heat flux, the conductor can cool down again and

recover. Stability thus requires

12
”7 < QP

The wetted perimeter per unit length, P can be related to the area A using a

dimensionless constant C in the following way
P=CVA

The current density then is limited to

2/3
J<(Q;C) I3 (3.1)

Even though the superconductor may be fully stable it is always possible that
2 failure may drive the whole coil normal. An external dump resistor is used to
discharge the coil current in this case. To save the coil one has to limit both the
amount of heat deposited to avoid overheating, and limit the voltage to avoid
breakdown. Choosing R, the resistance of the external dump resistor, such that
the initial voltage at discharge is the maximum allowed voltage will discharge

the superconducting coil the fastest. Thus
Vm = IR

Restricting the temperature rise in the coil during the discharge gives

oo Tem Cp
2 — J—
I (t)dt_/To v dT

The left hand side can be written as J27 where J is the initial current density and

T = % is the time constant for the decay. The integral on the right hand side
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depends on the stzbilizers properties and the meximum allowed temperature

rise. Let - 1o e
m P
o= (5 e

Values of f(Ty,) are given in figure 2 of reference [99] for various metals. Using
further E = 1LI? we obtain

J < (I(L;""I)% (3.2)

Equation (3.1) gives a2 maximum current density decreasing with the conductor
current, ecuation (3.2) 2 maximum current density increasing with current.

Combining both, we czn obtzin 2 optlimum current density 2nd current given

by

‘_ } 2
f(Tm)Vm)b(o.cc)
Jopt = 3.3
opt ( E P ( )
g ¢
TV N3 (Q.C
I — J( iy m) (—C ) 34
= {0 ) 5.4)
For typical values of the parameters, namely
2
Th)=15x 109'4;4 et Trn = 300K
cm
0 =03
cm
Vi =20 kV

C=2
p=23X10"E0cm

we obizin

| L X075S X 20 X 10V Lay
P E 3 X 10—8Qcm
kA[ E 1=1/5
— 1054 _]
cmz[IOBJ.

[z this section we have investigzted ‘he current density limits for various types

r

ol conductors in pulsed and stezdy stzte.
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3.3. Structural Constraints

3.3.1. Introduction

Most toroidal concepts incorporate the use of toroidal coils. Those coils are
usually the most stressed component of the experiment 2nd account for a major

fraction of its cost. We have therefore concentrated on constraints associated

with the toroidal coils.

/

Often the current carrying conductor is not sufficiently strong by itself to carry
the magnetic load, and reinforcing material is needed to support the load. The
loads czn essentially be subdivided into loads due to normal operating conditions
and loads due to fzult conditions, the latter being usually much larger than
the former. Still we will restrict ourselves to the znzlysis of normal operating
conditions because the magnitude of loads zarising from fault conditions czn
depend z lot on the type of protection devised to detect the fzults and to take
appropriate steps to zvoid the consequences. It is 2lso more diffcult to get
generzl guidelines zs the type of damage one could zllow czn very widely from
no dameage at all to acceptance of the destruction of the faufty coil. We will
thus restrict ourselves to calculating stresses in‘magnets due to magnetic loads
in normal operating conditions. In addition we will only look zt the interaction
of the current with the sell generated magnetic field thereby neglecting possible
interactions like the load arising from other fields, 25 for example interaction of

the vertica) field with the current in toroida! field coils in ‘okzmaks.

In order to be zble to investigate several types of coils from 2 rather general
viewpoint, end to obtzin z formula sufficiently simple and versatile to be
included later on in our weight and cost estimate, we show first that in the most
generzl case of 2 coil subjected to forces in 2 plane and composed of copper
and structural material, we can define 2n equi\;a]ent tangential force that will

incorporate the regular tangential force end the bending moments and write 2

formule of the type,
T
Acail

(£ =

=0




Where T is the “equivalent” tangential force, that gives the same maximum
stress or strain as the tanventch force and moments together. In 2 pext step we

show that this “equivalent” tangentxa] force can be written as
poNI?

T =
an 9o

where g, is 2 dimensionless constant depending only on geometrical factors. we
further derive this geometrical factor for & number of coil geometries, namely a

very long solenoid, D shzped coils and circular coils. Finally in this section we

briefly discuss the limits on stresses and strains.
3.3.2. The Equivalent Tangential Force

Here we will prove that zn equivalent tangential force can be defined, that gives
the same maximum stress or strain 2s the sum of & regular tangential force and

bending moments in a cross section composed of copper 2nd steel.
bp

First looking zt the tangentiz] force (we have used N, to avoid confusion with

, the number of turns) :

For the ential force, 2 fraction is tzken up by the copper, = fraction by the
steel, so that
Nl = N, T Ns
=0.A.+

eNENAcoil = N
if we define
ENAcoil = EcAc -+ EsA.s
Similarly, for the moment

h
€ME Ml = ME

tyl

1-4]:0-.'1 = Ec-lc _:' E.‘Is
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Figure 3.3 Two extreme possibilities for the distribution of Lthe steel

Summing the strains we obtain

1ol Mkh .
En(en + €r) = ﬁ(l + ? Acoil EN)

Aol Nt Lo By
- N; 6M E
Ene= —(1 - _.___N
Acail Nth EM
Using the definitions of Ejn 2nd E s we can czlculate the ratio %EL Taking
M
A
= = fs
Acoil
and
A =1—f,
Acoil
the ratio 22 is equal to 1 if the steel is concentrzted zs in Fig. 3.3a.
LM

If the steel is concentrated as in Fig. 3.3b then

I __7\3
Iccn’l N (1 fS)
Iy (1 £33
fcm'l =1 (1 jS)
and
Ex _ 21— f)+ 1
Ev  EU—LP+0—01—1)F
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for 0 < fs <1 we have 0.83 < %“— < 1 and we neglect the smal] variation of
this ratio with f;.

We obtain
Thus yielding

where

I have thus shown how 2n equivalent tzangential force czn be defined, yielding a
general znd simple formulz. We wil] calculzate this equivalent tangentizl force in

. NTT2 .. . . .
terms of £ 2pa ¢ the dimensionless eometricz] quantity.
3T 1

As z simple example, let us frst Jook at 2 very long solenoid of length L (Fig.
3.4). We have




The average pressure is given by

The tension T on the current carrying conductor is

T = 22- X £ Xr
200 N
po NI
2L
poNI? r27r
- 47 (T)
_ poNI?

47

I

Xr

c

where g, = %<

We will now see what g, is for constant tension coils or circular éoi]s.
3.3.3. Stresses in D shaped Toroidal Coils

The formulz for tension in D shzped toroidzl coils is easily cast in the form

_ NI
T 47

T Gc

Indeed according to [100] the tension czn be zpproximated by

2
7 = #eNI 31:1(&)

47 2 Rl

This gives

3.3.4. Stresses in Circular Coils

For circular coils we have moments and tangentiz] forces. The formula will thus

have the general form

EFe = T
Acm’l
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with M
6
T=Ng1+L =
t( i Nzh)
poINI?
4T .
The complete anzlysis is given in appendix B. The results are summarized here.

We find that the formula czn be writien as -

772
=t 50+ (80
i7 R r/oh

with the values for (), given in Fig. B.18 and B.19. They depend on the aspect

ratio, the stiffness of the structure and the way ‘the reaction is taken up. For

9c

our purposes here we can use

h 3%
(5),= c
with € varying between 3 znd 20, depending on the stifness of the structure

znd the way the reacticn is taken up.

3.3.5. Limits on Stresses and Strains

Limits on stresses in conducting materials have been summarized in [101). Tensile
strength of full hard copper is in the range of 340 to 380 MPa. Reinforcing
material (steel) can have meximum stresses up to 1500 MPz &t room temperature,
and 2300 MPz at liquid nitrogen temperature [102). More commonly used design
limits are 400 to 600 MPa [103].

The stresses in the concducting mzterizl zre importent limits when no reinforce-
ment mezterial is used. When reinforcement mazteriz] is used the limit is usually

the stress in the reinforcing mzteriel, or the strain (for superconductors).

A particuler case is the Alcator type design where the yield of the copper under
its initial loading cycle is used to prestress it. Assuming identical strains in the

copper znd the steel we can derive the following formula :

€ = Ceme:=|(1 — f5) = fs%]
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If ones allows the copper to yield, then the limit is set by the ultimate strength
of the steel.

c =>Ucmaz(1‘— fs) -+ Usma:(fs)

For

f S Oemaz
s

E
Osmaz — 2‘5:'0:111.4: + Oemaz

2 more stringent condition (lower o) follows from the requirement not to allow

the copper to yieldn in compression. The limit is then

o= 2‘7cmaz((1 — fs) -+ fs%)

For superconducting materials 2 maximum limit of 0.2% is set for the strain

beczuse of degradation of critical current zbove this point.

3.4. Weight of the Toroidal coil system

In order to get a generz] idea of the cost of 2n experiment it is important to
be zble to estimate the total weight. If one can get this weight as a function of

size and magnetic field, it is even possible to explore the parameter space as a

function of the cost.

F.C. Moon [104] investigated the sczling of the weight of toroidal coils systems
2s z function of stored energy. He obtzins one general scaling, both for

superconducting znd resistive water cooled magnets.

Within the range

10MJ < E(stored energy) < 2 X 10°MJ

and

5 X 10%kg < M(mass) < 10%kg
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he obtains 2 simple scaling law, function of stored energy only. This scaling Jaw

is
0.761
M\ _ 1,37(i)
103kg 1MJT

A similar scaling Jaw was obtained by Raeder et al., for the conductor mass of

superconducting coils [94]. -

Several reasons have prompted us to Investigate this in more detail.
1. constraints for resistive and superconducting magnets are different.
2. 1t is interesting to be zble to separate copper (or current carrying) mass and

steel (or supporting structure). The time constant of the coils system indeed is

closely related to the copper mass.

2 ¢

S the velidity of the weight estimates of some reactor studies has been questioned
[103].

4. the justification given by F.C. Moon for the 2 power sczling law is not very

convincing.

I plen to first obtain zn expression for the mess 25 = function of size and
magnetic field. In the next section the stored energy will be calculated and we
will then be zble to compare mass with stored energy, to see whether a simple

law, relating mess to stored energy is justified.
T bave looked both at circular and pure tension coils.

The toizl mess is tzken 2s the sum of the current carrying mass and the load
supporting meass. Both zre calculzted 2¢ 2 materiz! density times a cross sectional

zrez times a length.

The material density is teken to be y, = Qd—f-:g for copper and «, = 7-;7"5 for steel
The cross section for copper is besed on constrzinte related to current density
(beat removal capacity, temperature increase, stebilization). The limits on
current density have been investigated in more detzil for water cooled coils, for

cryogenic coils znd superconducting coils.
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The section for steel is assumed to enclose the copper and its dimensions
are constrained by mechanical considerations (maximum stress, and for

superconductors maximum strain).

Let us now first calculate the length of the coils, and then turn to the calculation

of the cross section of copper and steel needed.

3.41. Length

The perimeter of one coil is easily calculated for the circular case,
le=27a

where

@ = average radius of the coil
For D shaped coils thev length [100] is equal to

where k = {1In é—f and R, = /R, R; ( see Fie. 3.5). Formulas for D shaped coils
can be simplified if one relates some geometriczl parameters to the dimensions
of a circular coil, with mejor radius R and minor radius a, inscribed in the D

shaped coil (Fig. 3.5). We have that

B
0 0] 9
+
Q

Bl

B

oy

wle |

I

2]

R
_.I_
—
ol e
—
+

I

I
..l_
/N

The length can be then zpproximated by

le = 27a(1 +

N
Ul e
~—
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Figure 3.5 Relationship between the parameters of D shaped coil 2nd inscribed

circular coil.

Thus in general we can write the length as

where g; = 1 for circular coils and g; = (1~ 1 £) for D sheped coils.

3.4.2. Cross Section of Copper and Steel

The analysis is based in part on the czleulation by Czin and Gray for the
fracti [ structurel reinf t ded [108) in conste i ils. Th
iTacuion o: siructurel reiniorcement needed | IR constent tension coils. e
celculation is carried further here to get zn expression for the total weight.
The general expression set up for stresses in coils zlso zllows us 10 extend this

derivation to circular coils.

Defining the stee] cross section (Fig. 3.6) as

As= fshw = fsAm

The cross section of cepper, is A, while the section for copper, cooling passages

and insulation is given by (1 — f)hw.
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Figure 3.6 Cross section of a coil

Define the strazin €, using an average modulus of elasticity and the generalized

tangential force T

T
€= —

Acoil

2
with T = %’i—f-ga.
Amperes law relztes the current in the coil to the magnetic field with

__ HoNI

B .

where I is defined 2s lo = £ J Bdl. This gives us

With the average modulus of elasticity given by

FAcm'l = E A, + EAs

We obtain
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Bl, 47 ¢ ¢ Bl

agtel _ LBlos o AdteN

Using again

we can transform this into

A E'/J-oN iBlaga _ E.A.

Bi, 47 € I

or

Je being an average current density in the copper.

. _ Bl
HoNEsA o

1 Blog, EcJ (3 5)

e Je
This is 2 slizhtly mere generz) expression of the formulz cbizined by Czin and
Gray for the fraction of reinforcement needed. They have used their formula
to derive maximum obtainzble mezgnetic fields in toroids, subject to strzin
limitztions. Indeed, for some combinzticas of B, ¢ 2nd 5., f, can exceed
100% lezving no room for copper. We will use our formulz to derive the mass

of copper and steel components.

Teking ; es zn average current censity for the coil, cooling holes znd insulation,

we can write

(1= f) A = § (3.6)

Combining (3.5) and (3.6) it is possible to solve for fs 2nd A,;. We obtain

Bl.[1  E | 1B
Aoy = —2 |2 = o 1 Blago

N |7 Ege ' 4r Ese
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We can now calculate the total volume of the materia) a.nd using the densities

of copper and steel calculate the total weight.

The volume can be ca]culated 2s length X N X Ace. The totz] mass equals

M=I X N XAcoiI[fs(7s)+(1_fs)7c] |

This in fact will slightly overestimate the weight of the copper as it assumes

Tinsulation = Tholes = Tcopper

1.BI( 1 Bl E. 1
M=]2-=2 (— Jo e .)7&-3‘] (3.7)

We obtzin

Ho [ 47 eE; Es e
The terms of this formula can be readily identified. The term with 4, is the
structural mazterial and gives the reinforcement. Note thzt some {raction of the

force is also teken up by the copper. Indeed, if

iBl"g" < El
47 €E; Es 7.

or
¢E,
Blegs

Je T < 4w

then the copper will be enough to tzke up the load and no structura] material

is needed.

The term with ~ is the contribution due to the copper because of the need to
carry current. Using the value for I, the length of the coil, for I, the length of
the coil axis, and the velues ¢c, €, 7. 2nd J es derived in previous sections it is

possible to calculate the total mass of the system.
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3.5. Stored Energy

In this section we will briefly mention the formulas for stored energy in the two
different types of coils | investigate, but 2lso show that sufficient accurate results

can be obtained by calculating the stored energy from 42%2- X Volume

3.5.1. Circular Coils

Taking first 2 system of circular coils, as for a tokamak the formula for stored

energy is given by [100]

1
E=-LI*
S LI

3.8
= %N’R(l - \/1 — (%)2 I 58

t is however easier, znd more general to estimate the energy as a product of
everage energy per unit volume times a volume.
B? '
= — X 7e? X 27R | (3.9)
20

where B is czlculzted on the axis.

For 0 < £ < 0.6 the error mzde by using (3.9) gives values that are 2t most

10% lower thzn those obtzined from (3.8).

Note that the formule, as (3.8) is for filamentary conductors. This overestimates
the energy compared to the zctual value when the thickness of the coil is tzken
into account [100]. Our estimate, which gives smzller values than the formula

(3.8) is thus sometimes closer to the rezlity than we would by using the formula

for filamentary conductors (3.8).

3.5.2. D shaped Coils

An exect formule zlso exists for the siored energy of filamentary coils of the
Princeton D shape [100).
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E=iLp

2
| (3.10)
— %#-iR‘;sz[I,,(k) + 213 (k) + L(k))1? |

1 R,
k=-ln| = -
-2 n(R1)
R, = \VRiR;

Again we can estimate the stored energy instead, by using an average energy

where

per unit volume times a volume. Calculating the B field at R, and the volume

to be the area times 27 R, we obtain
E = B? X 2nR2k[I;(2k) — e~ * L1 (k)]27 R, (3.11)

By using (311) instead of (3.10) we are overestimating the storéd energy by
at most 5%. However, eXcept for the fact that it confirms the accuracy of the
calculation method Volume X Average Energy Density the formula (3.11) is
not much simpler than (3.10).

The area of the D coil (Ap) can be written as a function of the area of the

inscribed circuler coil (A.) as

Ap = A1+ K) == A1 + )

Rather than vsing the magnetic field at R, as the average magnetic field we use

the magnetic field at the center R of the circular coil. Calculating the volume

then as

2 a
7a‘(l 4+ —=)27R
we can estimate the stored magnetic energy to be

32 2 a
= —T7 1 - — 2LR
E 2#0 a ( —rR) 7'

This gives, for 0 < k < 0.6 an error smaller than 15%.
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3.5.3. Generalization -
We can thus generalize the stored ENergy as

; 2
= —B-2,|R-ra g9F
2po

with - . R
9 =1 {or circular coils

-+ %) for D shaped coils

3.6. Energy Requirements

The energy required for zn experiment with pulse length 7, is the sum of the
stored energy E = %LI2 the losses Rlzrp during the pulse length 7, and the.
losses RI%r,,, where 7., is the equivalent time during Temp up of the feld.
When we looked 2zt the equivalent time to get an expression for the tota] energy
deposited in the coil, we bad to include Josses during famp up endramp down of
the fields. The losses during ramp down zre not to be included in the calculztion
of the total energy needed, beczuse those losses zre in fact 2 fractlon of the

energy stored in the felds. The totzl energy required is thus

P= LI+ RI’;, L RI*,

[\ N ]

Writing this as 2 function of the stored energy we obtain
. . ]
P=E(1—:—2—+2£)
: T
where 7 = £ is the time constznt of the coils.,

We found in 2 previous section the equivzlent time during famp up of the fields

to be 7oy == 17, where 7, is the actuz) time it tzkes to reach the nominal current,

o=
,u—,nﬁ !

and is given by




I will now derive an expression for the time constant 7 of the coils. We can write

O e oy —

with the length given by

le =27acg

the stored energy

znd the magnetic field

this can be written in the form

Ho lcAce 9_.5‘

T

"~ 4wpy, 27R g?
(3.12)
LI Ogs(Lmsig) 9_3(1.92 X 10‘39m)
s (8) o p

The accuracy of this simple formula czn be judged by comparison with actual

numbers.
For circular coils we tzke as exemple TFTR [107] with

R =28m

k
W = 12800—L X 20coils

cot
we obtain
12.8 X 20 1
7=0093 X —— X [=) = 8.
X T X \12) 8.6s
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The value is 7 = J% = T7.5s

Calculating it for the D-shaped coils of JET [108] we obtain with
R = 3.05m

a = 1.93m

W = 120009 % 32coils
coils

wea have

12 X 32 14 0.6327
X X

7=0.093 X =2
305 7 (141 x0.6327)

= 11.0s :
The quoted value calculzted from L = 0.66H and R = 61mQ is r = 10.8s.

Summearizing we can write the total energy needed for an experiment as

P=FE(142

where 7 is the pulse length of the experiment, 7 the time constant ‘15 and

o= ()

For short pulse experiments the frst znd second term will dominate, both zre
independent of 7, for longer pulse experiment the second term becomes more
important, pointing to the need to have 2 system with long time constant for

long pulse experiment.

3.7. Reclationship between Mass and Stored Epergy

Having set up & formula thet gives the mass 25 & function of the dimensions
and the magnetic ficid as well as 2 formulz for the stored cnergy in terms of the
seme parameters, we can now turn to the guestion of the relzlionship between

the mass of the experiment znd the stored energy.
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It will be shown that different scalings of mass with stored energy are appllcab]e

depending on the conditions. Recalling formula (3. 7) we have

1 Bl,g, E. 1 Te |,
(47r eEs Es J'¢)7s + -]—

The structural mass is given by

l.B
Ho

M=I

ll,Bf{ 1 Bl E. 1 -
’ Ko (477 eEs 9o E, ].C)'k (3'13)

the mass of the conductor by

ll.B1 : -
M, = = =Y . (3.14)
Ko J

If no structural material is needed, that is if e < ﬁ’{-%, then the mass will

sczle as the mass of the conductor only. The mass of the conductor depends on

the current density.

For steady stzte operztion (7 > 10s) we had

2PA
= m?
giving 2 copper mass
lleB m? :
N — cta . —~ RB
T T, 2xi04 ¢

thus not sczling as the stored energy.

For pul-sed operation we had for the current density

G~ 10kA/cm?
VT

Let us write this as

255 |
.7 = Jss\ = (3.15)
‘e
with Jgs 2 . The eculvalent pulse length 7, was given by
2 Cy
Te=Tp+ =71
e p+3 an—-l (3.16)
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where 7 is the time ccastznt of the coils. The time constant r itself depends
on the weight of the coils through the formula (3.12). Using then the formulas

(3.12), (3.14), (3.15) 2nd (3.16) we can obtzin a quadratic equation for the
conductor mass.

The limiting cases are the most interesting. For short pulse length, short being

defined as
Ba | A Cf ’
Tp << (‘—g——' ].D )
Jssv/25sp Cr—1

or

27 )
-—<<82(B°)12_C_f 02\’ (2 X 1074\ 11 99 x 10-%qm)?
Tm Cr—1\ g Jss P

the mass will scale 2s the stored energy

2
) oszs( £ )m Cr [2X1074\ 11 65 % 10-80m )2
10%g ) WMT) T =1\ U -

p

If the pulse length, together with a time relzted to ramp up and ramp down of |

the fields is sufficiently long, i.e. if
7, C 92 -8 2 X 107 4,
Z+ 0.875(&)9—5 o —(L32 X 107 HIm = 1> 25
s Tm/)g- Cj—1 p Jss

the concuctor cen be assumed in steady stzte. This mezns that even for
extrernely short pulse length, if ( )ln 3701-—1 > 28, so much hezat is deposited
in the coils during ramp up znd ramp down of the felds that the experiment

can be assumed steady state and the conducior mess will then sczle as aRB.

If now structural material is needed then the scaling for the structural material
will differ {rom the sczling of the conductor mass. Neglecting the term

E. 1l

E, J
in formula (3.7), we have thet the structurzl mass scales as

112B?q,  aR%B?g,

¢E, €
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With g, constant, this scales as aR?2B? ~ stored energy. We have discussed in

Appendlx B that in some cases (by changing g,), the scahng can go as B rather
than B2.

The conductor mass scales 2s

lleB  aRB )

~

] ]

The combination of the structural mass scaling as aR?B? and the conductor

meass scaling 2s e RB can indeed give under certain limited condltzons a scaling

law as proposed by Moon, namely (a 21‘-':.’32)3/‘1

The ratio of structural mass to conductor mass scales as

11Bgo5s _ RBj
4 €E; A, €

so that 2s we go to larger systems with higher magnetic feld the structural mass
term starts to dominate and we obtein 2 sczling as c¢R2B?, which for constant

aspect ratio will be similer to 2 scaling with stored energy.

This increzsed dominance of the structurzl mzteriz] for larger machines is

somewhat slowed down for superconducting coils. Indeed for those coils we had

that
.1\
i~(z)

M, ~ i. ~ (5)0.430-430-5
M '(GQRBQ)O a -

so that

For 2 pulsed system (liquid nitrogen cooled or water cooled) the dominance of
the structural materizl can be enhanced, because the short pulse allows a higher
current density in the copper znd thus Jess conducting material. As in this case

J ~ \/;, where 7 is the equivalent pulse length, we obtain

structurz]l mass RB

~

conductor mass Ve
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3.8. Access and ripple

Lower limits on the size of an experiment are set by the need for access. That

this is especially the case for the small high field experiments can be seen from
the Alcator machines.

If we knew the depth of the coils, h, then it would be possible to calculate the
available open zrea as

lolch

However, the choice of 4 can depend on a Jot of factors,-2s for example structural

Vi . and st
5 — (1 __ Volume copper and eel)lclc

constraints. It is also not necesszrily true that a large h providing for a large
open surface is optimum. Indeed, it mey very much hinder the possibility of
tzngential injection. Access and ripple are very much interrelzted and further
depend on the particular geormetry, the number of coils, the choice of the hezting
method etc... This issue has been addressed_in more detail for the particular
cese of the helical axis stellarator. We should however keep in mind that it is 2

possible constraint on size and magnetic field of 2n experimentz) system.

3.9. Summary

In this chzpter we hzve concentrzted on investigati;g the technological
constraints. We have zlso derived some usefu] scaling relationships (mass, stored
energy, required energy) with size znd magnetic feld (the two free parzmeters
we bad from our similarity considerations). While it is usually straight forward
to design an experiment once the generzal parameters as size, magnetic fleld, ete.
are set, —computer programs have been written to do it [109, 110]— trade offs
between size, magnetic field, pulse length, stored €nergy are seldom investigated
i detail. More ofen thzn not they arevpicked as being 2 reasonable combination,

without much justification.

In this chzpter we hzve obtzined for those parameters some general] tendencies

znd interrelztions providing z sounder beasis for some basic choices.
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Applicationof the methodology to the identification of the minimum
scale for a stellarator with helical magnetic axis. |

3.1. Introduction

3.1.1. Objectives

In this chapter we show how the methodology developed earlier can be applied.
We will investigate the constraints specifically for the design of a stellarator
with helical magnetic axis, and then find what the minimum scale is for this
particular éxperiment. Consequently the emphasis is on two aspects: first we will
investigate the geometry in detzil to find the specific constrainte resulting from
the particular configuration, aﬁd then show how those constraints, together with
the more general ones identified in the previous chzpters (resulting from the

three step method) can be 2pplied to ind 2 minimum sczle for this machine.

Further in this introduction we briefly review the methodology described in
the first chzpter. In the rest of the chapter we will first give some background
information on the stellerator with helicel magnetic axis. We will then address
the issue of the constrzints resulting from the choice of experimental formeat,

and use the materizl developed in the previous chepters to identify a design
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window for a particular experimental objective. Within the design window the

final choice can then be made, based on other considerations.

Because the methodology and theAsupporting work of chapter 2 and 3 1s very
general, not all of it will be used. On the other hand, since some constraints
result from the peculiarities of the configurztion chosen, and since those were not
discussed in general, a large portion of this chapter is devoted to the identification
and explanation of the constrzints specific to this particular configuration. .For
a ﬁxed geometry and a chosen experimental objeﬁtive the constraints can be
appliedv and within the design window 2 minimum scale can be found. Some
choices have to be made a]ong the way. Other choices could have been made,
even resulting in a different end product. This however, does not zfect our main

pﬁrpose to show how the method is to be applied.
3.1.2. Methodology

In this section we wil] briefly review the methodo]ogy and show how we are
plenning to zpply it to the stellzrator with helical magnetic axis, For a given
- geomelry, we have to cecide, based on our experimenta) objectives, which
cimeasionless parameters we want to keep constant in our mode). In chapter 2
we have discussed the important dimensionless parameters. We have shown that
an obvious parameter, th;t we zre zllowed not to keep constant (within some
limits) is N,. In order to test ideal MHD g limits, we could 'drop v as second
perameter. Non ideal modes would be aSected by v. In transpert tests, dropping
B, may not be the approprizte choice. Is is thus more justifizble, to keep £ and
v, and drop § 2s a second ﬁarameter. I we want two decrees of freedom (the
size and the magnetic field), we can only fix two dimensionless parameters. For
the particular geometry, 2nd the valye for the fixed dimension)ess parameters,
we cen draw the constraints in z size versus magnetic field dizgram. A special

set of constrzints is those that result from the particular geometry chosen.

P

More general constraints are these that were discussed in the previous chapters

‘]

)

ere the result of the three steps described in the introduction. The first

r.d
step is to exzmine under which conditions we can crop the other dimensionless
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parameters. The second step is to investigate under which conditions we can
neglect effects related to neutrals and impurities. We will in this context applj’
the na limit. The presence of impurities, even within acceptable limits, may still
bave an effect on the power needed to heat the plasma. This is linked to the
third step, the possibility of achieving the plasma physics_parametersbdictated
by the similarity considfarations. This last step requires us essentially to look
a2t copstraints resulting from heating methods and technological constraints.
Constrzints on ¢ and B will result, forv fixed B and v+, from the choice of
the heating method (for example due to accessibility of the electron cyclotron
resonance layer). Techno]ogical-constraints, related to stresses and current
density limits, can 2lso reduce the design window in a ¢ and B diagram. Having
identified 2ll the constraints, we can in this dizagrem mazke 2 choice based on

other considerztions, as for example cost, access, ete..

The method does not give guidance with respect to the choice of the concept
to be investigated. Nor about the particular. Eonﬁguration chosen to embody
the concept. External considerztions usually fix those choices, and we were no
exception. The choice of the helical zxis stellarator, and some specifics of its
configuration are merely the result of particular interests 2zt the time a concrete
example was needed to illustrate how one can go about ﬁnding 2 minimum
sczle. We Lave, however, investiczted some variztions on the geometry and we

will justify the resulting choices that have been made.

3.1.3. Subdivision of the chapter

The chapter is subdivided as follows :
In section 2 we explzin what a steliarator with helical magnetic axis is, give

some possible variztion of this type of concept, and present the particular

conﬁguratién used here to 2pply the method.

In section 3 we discuss the geombetry in more detzail, present which variztions we
have considered, and how we went 2bout making some choices.

The fourth section investigates the specific constraints resulting from the

geomelry zt the same time using those constraints to finalize the geometry.
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In section 5 we discuss in more detai] the topic relzted to equilibrium, stability
and to transport and collisionality. This is needed to make appropriate choices for
the fixed dimensionless parameters, f and v=, but also to provide the necessary:
information in order to lzter make an estimate of the power requirements. |
In section 6 we then apply the constraints resulting from the three steps described
earlier, and also take into account the particular constraints resulting from the

geometry.

The seventh and last section shows how, within the design window =2 final choice

can be made.

3.2. The Stellarator with Helical Magnetic Axis

In this section we give some background information on the stellarator with

belical magnetic axis. We frst discuss the concept, and how it fits into the larger

set ol toroical configurztions. We then briefiy discuss a number of particular
=

configurations thet czn be classified under the nzme of helica) magnetic axis

stellzrator. Finally we describe which particular one was chosen for this thesis.
3.2.1. Concept

A stellaretor with helical magnetic zxis is 2 particulzr type of toroidal

configuratien. Toroidal configurations have the advantage over open configurations
3 g gu

17
that there is theoreticzlly no .oss of pzrticles and energy zlong the Seld lines.
They bave & drawback, however : they are toroidal, which autematically implies
that no zbsolute minimum B geometry can be constructed znd that some way
must be found to avoid possible charge separation resulting from drifts associated

with the toroidal inhomogeneity of the magnetic field.

The lerge spectrum of concepts in toroidal geometry result in part from the

different zpproaches that are used to zvoid this cherge separation.

-

The charge separzting drifts can be canceled by modeling the magnetic geometr

-.'c -,

such that the drifis occur in the poloidal direction, 25 in 2n Elmo Bumpy Terus.
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Radial electric fields can achieve the same result. A more standard method is

to give the field lines a rotational transform, thus allowing charge cancellation

by particles lowing along the field l1nes
There are three ways of producing a rotational transform.

A rotational transform can be provided by 2 current along the magnetic axis as is
the case in 2 tokamak. A second way is by making non circular magnetic surfaces
and rotating them. This can be done by using helical windings as in a torsztron.
The third way, and historically the first [111]) by giving the magnetic axis a
torsion. Figure 4.1 schematically shows how 2 torsion can produce rotational

transform of the field lines [112].

The three ways can be combined 2nd the tota] rotational transform on axis is

then given by Mercier’s formula [113]

L= 1 co‘:;ne +d'(s)— _(2—5)) (‘.1'1)
where
L is the rotztionel transform, measured from the normal,
7 - 1s a measure of the ellipticity of the surfaces, defined as

¢ = e”(s) with a, b being the lzrge z2nd small axis of the
elliptical surface near the axis (Fig. 4.2).
In terms of the excentricity ¢ defined as ¢ — 22_‘!_52
We can write —3&— = \/—
A is defined as 5 = “—‘b%ﬁ,
Jso being the current density on axis,

and By, the magnetic field there,

d(s) measures the rotation of the ellipse with respect to the normal,

7(s) is the radius of torsion.

In this formula the zngle ¢ is measured from the normal. For concepts with
2 plane axis this fact is not crucial zs the normal js always directed towards

the axis of symmetry of the device. Measuring the angle with respect to the
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]

Figure 4.1 Rotztionz] transform arising from torsion.

d(s)

=1
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normal or to some fixed frame then does not make a difference. For the case
of a non planar axis it is important to keep the difference in mind. Méasuring
the rotational transform from the normal is the most usefu] definition. Indeed, -
what matters is not the zbsolute motion of 2 field line, but its motion relative
to the normal of the axis. It is the motion of the field line with respect to the

normal that makes it sample regions of lower and higher magnetic feld, and

thus results in compensating drifts.

A stellarator with-helical magnetic axis relies essentially on the third method to

provide the rotational transform.

3.2.2. Different variations

A stellarator with helical magnetic 2xis can be built using helical coils, or using

only circular coils .

A number of variations rely on helical coils to achieve their goal. A torsatron
with | = 1 is such 2 configuration. Another possibility is 2 combination of a |
single, planar poloidal coil with helical coils: the Vintotron [114, 115). Still
another is the combination of helical conductors and toroidal coils forming a
solenoid with helical magnetic zxis, but plane-geometric axis (this is zchieved
by tilting the coils) [116).

The configurztion can 2lso be constructed using only circular coils. The frst
and most obvious choice is to p]aée the (toroidal) coils perpendicular to the
magnetic axis one would like to generate. Figure 4.3 shows some theoretically
possible configurations from [117), 2t the szme time defining n and m numbers.
Figure 4.4 shows in more detzil an m = 1, n = 3 system. Another proposal
[118] keeps the center of the toroidal coil on 2 circular Joop but gives the coils
2 tilt (Fig. 4.5). A third way is to combine 2 poloidal ring with toroidal coils.
The toroidal coils zre centered on 2 helica] axis, but kept in ¢ = constant
 plenes. A schematic verticzl projection‘ is shown in Fig. 4.6, while Fig. 4.7 gives
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Figure 4.3 Possible configurations for stellarztor with helical magnetic axis

2 perspective drawing {119). The coils can either link the poloidal ring or can be

completely outside of it.

This last scheme is structurally especizlly simple, and zllows sop;)e experimenta]
fiexibility because parameters associzted with the mzgnetic zxis can be changed
by chenging only the current in coils. This particular configurations, with no
topological link between the toroida] coils znd the poloidal ring was chosen as

the configutation for further investigation znd zpplication of the method.

3.2.3. Definition of the parameters

Here we describe in more detzil the perticular choice and we identily the
peremeters that define the magnetic geometry. The basic components are shown

in Figure 4.8,

A circular poloidal coil, of radius Rz carries 2 current Ir. The radius of its cross

section is 7. A pair of Helmholtz coils provide a vertical field B,.

The toroidal cojls, in ¢ = constent planes, heve 2 radivs a. 2and are centered on

2 nelice] line with mejor radius R, 2nd minor rzdius re. While it is possible to
P
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Figure 4.4 - Stellarator with helical magnetic 2xis, obtzined by placing the coils
perpendicular to this magnetic axis. The figure is a vertical projection showing

the coils and the circular loop (compare with Fig. 4.3).

B B\]U/Zﬂ/@@ T

Figure 4.5 Stellarator with helical mzgnetic axis obtained by tilting the coils,
straight version. The geometric center of the coils is 2 plenar curve, but the tilt

of the coils produces a spztial magnetic axis.
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Figure 4.6 Helical stellzrator obtained with coils in ¢ =constant plane, vertical

projection showing the coils 2nd the circular loopm=1n=23.

Figure 4.7 Stellerztor with helical magnetic axis m = 1, n=3[119].
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take R.=£ Rz, and even to vary the radjus Tc, S0 that the centerline of the coils

would not lie on a torus with circular cross section (but rather, for example,
on a torus with elliptical cross section), we have limited ourselves to the case
where Rp = R, 2nd r, = constant. This particular choice was made because
it results in toroidal coils, located at a2 constant distance of the toroidal ring,
with obvious advantages in terms of standardization of the components and

simplicity of construction.

The cross sectional dimension of the coils zre we X he where w, is the width
(measured in-the ¢ direction) and h, the height. Their number is N and they

carry 2 current I,. The winding law of the helical line on which the coils are

centered is defined as

poloida) ring

\
\
\

' 2 L/ )
toroidal coil \iv%_
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n
—¢ =10, + a.sinf, (4'2)
m

Those parameters are sufficient to uniquely define the magnctic geometry,
including the position of the magnetic axis, shepe of the surfaces etc... Let

us, for the purpose of the discussion of the relzation between the parameters

introduce some additional definitions. : -

The magnetic axis is 2 helical line with mzjor radius R, minor radius 7o and 2
vinding law of the form

n .
—¢ =0, + agsinéb, (4.3)
™m

Tt is not obvious that the magnetic axis czn be rerresented as 2 helical line with
constant Rg,7c 2nd only z single hzrmonic for its modulation, but we will be
chow later that this is the case. The center for measuring the angle 6. is the
center of the ring (R = R, = Rg), while the center fer measuring the angle &,
is R = R,. |

The zngle o, cen be viewed as the zngle 3 — 6. 2t ¢ = § (quarter period).
Similarly, ae can be viewed as the angle § — 6 2t £¢ = 5. Define further ag
to be the zngle of the megnetic zxis 2t

(R = Rg).

Z ¢ = % measured from the ring center

Let us 2lso define 2 dimensionless pzrameter ¢ through b, = ér., where b is
(=] 4 [} c

the bore of the coil.

We hzve throuchout used the index a to refer to properties related to the axis,
the incex ¢ for properties related to the tcroidal coils and za index R for

properties relzted to the poloical ring.

\We hzve chosen here to define the geometry through dimensions, currents and
megnetic Gelds. Alternatively one could use the more theoretical approach and
define the magnetic geometry in terms of the pesition of the magnetic axis, shape
of the surfzces, veriation of the rotztional trensform etc... Different choices for
the coil conficuration could result in the saime megnetic geometry. One could,

for example, obtain the seme megnetic gecmetry with heliczal coils. The rezson




for first choosing the coil configuration, and investigating the geometry, is that
it is easier to derive the theoretical parameters from real coil data than to infer
actual coils from theoretical ﬁarameters. Other coil configurations, however, will
result in other geometrical constraints, and those may even be less stringent
For example, in order to obtain a helical axis stellerator with a large number

of periods, the use of helical coils may be easier, at least for an experimental

machine.

3.3. Geometry

3.3.1. Introduction

Having made 2 decision about the concept (stellarztor with helical magnetic
axis), and the perticular coil configuration (toroidal coils, one poloidal ring,
no topological link), we will want to address the constrazints that zrise from

the particuler geometry. From the start we have pointed out the importance

of the magnetic geometry in perjorming sczling experimeants, both in terms of -

its possibie impact on the plasma parameters, and beczuse of the existen.ce
of constraints specifically related to the geometry. However, as the geometry
is different for each concept and as each concept needs 2 different number of
parameters to be completely defined, we have not adcdressed the issue in general,
but chosen to postpone the discussion znd limit it to the particular concept and
the perticular configuration we used as an example. It is now time to tackle this

aspect for the helical axis stellarztor in the particuler variztion we have chosen.

It should be noted that while we have chosen 2 conficuration for the helical axis
stellarator consisting of toroidal coils, & poloidal ring with no linkage of the two
sets of coils, we have not yet completely defined the geometry. To do this we

could use two possible approaches.

The first zpproach would be o szy that we want to model the geometry

of 2 reactor exactiy. One would have to rely on z rezcior design to obtain




information on its geometry. Scaling it according to our parameters a and B,
for fixed values of the dimensionless parameters B and v., which we would also

obtain from the reactor design, would give us the minimum scale experiment,
after applying the constraints. This approach would be straightforward, if it
were not for two problems. First there is no recent, well documented reactor
design for a stellarator with helical magnetic axis (the adjective recent is added
beczuse, in fact, the first reactor designkever made, was a helical axis stellarator:
the D-ste]larator). Secondly, when we make a cursory calculation of what the
geometry of such z reactor might look like, we note the need for a large number
of periods in order to achijeve large 8 values (the relationship between the number
of periods znd the £ vzlue will be discussed later). Unfortunately, however, the
geometrical constraints, which will zlso be derived later, become more stringent
when the number of periods increzses. The resulling minimum scale experiment,
beczuse of this stringent geometrica] consiraint, together with high values,
would be very large. Those two problems essentizlly preclude the straightforward

choice that the geometry be the reactor geometry.

We czn then envisage 2 second approach. It is to keep our op.tions open, and
zt first oot compléte]y fix the gecmetry. We cap then investigate what the
geometrical constrzints are, for various geometries. The constrzints resulting
from the geometry zre somewhat less stringent for particular choices of the
geometry, gnd we might opt for 2 particular geometry where the constraints are
the least stringent. This zlternztive zpproach ‘o £xine the geometry is the one

that was chesen here,

Any reactor design carried out today, would be based ip part on the presently
accepled, but untested relationship between the number of periods and the
maximum achievable 8. If we can test this theory under easier conditions (for
example 2t z smezller number of periods), we could gain some confidence in the

theory, anc then, perheps as the nexs step, build 2 model with reactor geometry.

Using this second approzch for our particuler case - ie. choosine the gecometr
= k ! L ) ©

such that the geometrical conditions zre the least stringent - we can not




choose the dimensionless parameters just by fixing them to the corresponding
value in a reactor. Remembgr that the choice of the geometrical parameters
has an influence on the achievable plasma parameters (for example there is a
connection between f and the number of periods). The choice of the dimensionless
parameters is now rather based upon the theory we want to test. The whole
methodology however, namely 1) fixing dimensionless par-amet,ers,_ 2) taking o
and B as the vafiables, 3) applying the constraints, and 4) choosing the final
design within the design window, is still .completely applicable. Indeed, the
only difference is the following: if we had used the first approach (geometry
=reactor geometry), the family of machines among which we choose the one
which, within constraints, is the minimum sczle member, contained zlso the
reactor. Each member of the family (varying ¢ and B) was similar to 2 reé.ctor.
Now we will choose the minimum scale member zmong a {amily which does not
contain the rezctor. Each member of the family however, is similar in that it
will test the theory to the same extent. For 2 choice of f and v-, we will still
Lave to apply the constrzints resulting from the neglect of the other parametérs
(the members of the family must be truly similar), the constraints resulting
from neutré.ls and impurities, znd the constrzints resulting from the 2bility to
obtein the pzrameters required (constrzints resulting from heating methods and
technological constraints).' Within the design window we can then choose the

machine with the minimum sczle, bzsed on cost, access, etc...

3.3.2. How do we fix the gcometry and find the resulting constraints ?

We have explained in the previous section how we zre planning to fix the
geometry: essentizlly by looking for the particular combination where the
geometrica] constraints are the least stringent. This will define the geometry

znd also identily the constraints specificelly relzted to the geometry.

How do we find cur way in this very large parameter space ? We vill subdivide the
perameters in “soft” parameters and “hard” parameters. The soff paremeters

zre the ezsily changeable parameters, such as the current in the coils. The hard
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parzimeters are the more permanent ones, those that are fixed once the machine

is built. An example of a hard Parameter is the number of periods.

Both the hard parameters and the soft ones zflect the magnetic geometry. For
example, it is clear that the shape of the megnetic zxis depends on the number
of periods. The position of the magnetic axis, within the toroidal coils also

depends on the current in the toroidal ring.

Therefore we will first derive some relationship between those soft parameters
(the current in the coils) and the magnetic geometry. Since the constraints we
waﬁt to derive depend on the hard parameters znd on the soft parameters,
we then use the relationships that were developed (between soft parameters
and magnetic geometiry) and 2 particular chojce of the geometry to make the

constraints function of the hard parzmeters alone.

This then allows us to discuse the influence of the hazrd parameters on the
constraints znd choose them such zs to make those constraints the Jeast stringent.

This finzlizes the geometry znd identifes the geometrical constraints.

Throughout this section we use dimensions, magnetic felds. It should be
understood however, that in this section their absolute value is not fixed, since

we will use R and B as scaling variables.

3.3.3. Discussion of the soft parameters

In this confguration a large number of parzmeters, associzted with the magnetic
geomeiry, can be changed by chénging what we czl] sof engineering varizbles,
the current /p in the ring and the verticz! feld B,. The modulation angle o, of
the winding law of the coils czn be considered “semi-sofi”, 25 one could envisage
the possibility to reposition those coils without too many problems. For those
parameters it is necessary to have design values end suiTicient freedom should
still be meaintained in order to be zble to investigzte easily the influence of their
varietion znd the resuliing veriztion of the wwell depth, rotationz] transform

tic.., on plasme propertics. Let vs now discuse the infiuence of the soft variables




(the vertical field and the ring current) on the geometry. In Appendix C we give
some basic information on spatial curves. We urge the reader to go through it

cerefully as an understanding of it is the basis of much of the further discussion
in this chapter.

Extensive numerical ca]culat.ions were performed by P.A. Politzer [120] in order .
to investigate ﬁhe vacuum magnetic surfaces and the parameters associated with
the magnetic axis, with variations of the vertical field, B,, the ring current Ig
znd the winding law of the solenoid .. As there is no published record of them
we briefly summearize the results here. A §eld line follower was used to trace
out magnetic surfzces (puncture plots) and to czlculzte the magnetic properties.
Coils were modeled by filamentary conductors. The calculations were performed

for several combinations of I and B,, for the particular case of n = 3.

We summerize here the results obtzined for Rg = 2m,a. = 0.4m,r, = 0.4m
2nd o = ap (modulation angle for the winding law of the geometric center

of the coils equal to the angle of the magnetic axis, 2s measured from the ring

center).

1. The minor radius of the magnetic axis r, depends on the ring current only,
the dependence on the verticel field is extremely small (see Fig. 4.9).

2. The mezjor radius R, depends both on the ring current /p and the vertical
feld B, (Fig. 4.10).

3. While 7, and R, vary when ‘the angle of the solenoid is veried, the angle
ag varies little when the winding law of the solenoid is varied from a. =0 to
a. = cp (in order to center the coils on the magnetic axis), as can be seen in
Fig. 4.11.

4. The rotétiona] transform depends only on /5 znd decreases with increasing
Ir (Fig. 4.12).

5. No magnetic surfaces are obtzined from some combinations of B, and Ip.
Results pertaining to the well depth zre shown in Fig. 4.13, 2nd Fig. 4.14 shows

an cxample of the shzpe of the flux surfaces.
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To obtain al] the information (magnetic surfaces, well depth, etc...) on the final
magnetic geometry there is no way around doing field line following. However
in order to make choices with Tespect to the number of periods, major radius,
minor radius (the hard parameters), it is important to be able to have some
analytical or semi-analvtical tools to narrow the parameter space that will be

looked at numerically, and obtain relationships between the magnetic geometry

and the soft parameters:

We have developed an simple analytical model which explains the parametric
variations. A further refined numerical-analyticzl method obtzins very easily
and efficiently r,, R,, the angles ., ap and the rotational transform and
is in excellent quantitative agreement with the detaziled numerica) results.
Approximate formulas zre also provided for the ring current Ir needed to
position the magnetic axis for 2 given minor radius, zad for the vertical field

B, to obtzin R, = Ry. This is detailed in Appendix D.
3.3.4. Discussion of the hard parameters

In contrast Lo currents in coils, other engineering parameters zre Bxed or less
easily changeable once the machine is built. They zre the number of periods
(n,m number); the ring radius (RR), its cross section (= r%); the number (N) of
the toroidal coils, their radjus (cc), the bore of the coils (bc), the displacement
(re), and cross section (h, X w:). The modulation zngle (@) was considered

semi-sofi. Let us discuss how we can go zbout choosing those pzrameters.

The magnetic geometry znd the geomeirice] constrzints depend both on the
choice of the soft pazrzameters, znd on the choice of the hard parameters. In
order to make it a function of the hard parameters only, we will assume that
the relationships developed in #ppendix D are used to obtzin the values of the
soit parameters for each choice of the hard parameters. More explicitly, for each
choice of the hard parameters, we will tzke for the ring current the value that
vill give for the mzgnetic axis z minor radius Te = 7c. This particular v lue of

ring current will further be czlled the desizn value of the ring current. Using the
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vertical field, the magnetic axis can then be centered in the toroidal coils, giving
also Ry = Rp. This then makes the geometry, and the constraints resulting

from it, 2 funclion of the hard parameters only.

We will now show how we can reduce the number of hard parameters, so that
we can concentrate on only five of them: n, the number of periods; r, the

displacement of the coil; Rg, the major radius of the ring; b, the bore of the

coil; and N the number of the coils.

Going back to Figure 4.3 where 2 configuration with m=£1 is shown, will easily
convince us to take m = 1. A more solidly based argument is that taking m=£1

would increase the effects due to toroidality, compared to-a machine with the

same  and m = 1.

In view of the fact that this is to be an experimental machine, one zppealing
property of which is that the magnetic 2xis can be easily moved by changing
currents in the coils, it is important to keep this fiexibility and thus important
not to tzke any steps that would, without rezson, reduce the radjus of the
coil. Using the perameter A as defined in Figure 4.15, we can write in general
Qe = T, — %ﬂ — 7r — A.'The coil radius g, will be largest when A = 0, and
we thus opt for this choice. The result is 2lso that the coils can be attached to
the circular ring, with no additional stand oﬁ piece in between. We tzke thus
2lways
he

Q= 7T, — ? — TR (4.4)

We further have thet there is, for 2 given configuration 2 relationship between the
current in the toroidal coils, and the current in the ring. This is the relationship

mentioned ezrlier and discussed in Appendix D.

Let
I
£ = (4.5)
[4
This czn zlso be written as )
: JrR7TR
= A 4.6
Jewch, (4.6)
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Figure 4.15 Position of the toroidal coils with respect to the ring

Requirements that the coils do not interfere in the center (see Fig. 4.17 for the

definition of the varizables) results in

R.Ad = w, (4.7).
With
27
A= —
- (48)
and
Ri=Rp—r.—ac (4-9)

the equation (4.7) can be written as

27(Rp —rc —a.) = Nu, (4.10)

.

We can further write a, very simply in terms of b, and h.. Indced, we have

he
e, = b +

i "2- (4.11)




The four equations (4.4), (4.6), (4.10), (4.11) can be used to express four variables
2s 2 function of the others. For example, we can express rp, a., h, and w, as a

function of the other parameters.

Having thus eliminated a., rg, h, and w, we are left with: n the number of
periods, Rg the ring radius, 7, the displacement of the coils, b, the bore of the

coil, and NV, their number ( 2nd a, the modulation angle of the winding law).

Remember that we still have the scale factor for the dimensions so that we can
reduce the number of parameters by one by taking the ratio of the dimensions.
The paremeters zre then n, ;‘-, 7, IV and a.. Note thzat we have taken the
rztio 7. with respect to the ring radius Rp, and the ratio of the bore be to the
displacement of the coils 7. |

’

There are some qualitative indications on the choice of n, r"f‘;, f—:, N. Those
quzlitative indicztions zre given here only to give the reader some feeling for
possible directions. We will address the issues quantitatively later on. A small
velue of n results in 2 simpler machine (see 2gzin Figure 4.3), but on the other
hznd helical symmetry is improved for 2 large number of periods. For the choice
of Z&, one expects that increasing this value will give larger values of £ (for
constant ) and thus possibly 2 larger plasma for the same overall size. A value
of ; = 1 gives the maximum coil radius for 2 given displacement of the coil. It
is however 2 theoreticel mzximum as for § = f—: = 1 the ring has zero radius
and the toroidal coils zero height (both zre filements). For a given size, the
aumber of coils should be as small as acceptable, In order to increase access.
The minimum will then be set by ripple requirements. The choice of a. is not
so crucial since it is & semi-soft parameter. In order to be zble to investigate
winding laws of the magnetic axis with both positive and negative winding
angle, the choice of a, = 0 would give maximum flexibility. The choice of .

could zlso be made such as to center the magnetic surfaces optimally in the

coils {a. = az). In & first configuration we would teke a, = 0.



3.3.5. Summary

In this section we have introduced and defined the major parameters associated
with the magnetic geometry of a stellarator with helical magnetic axis. We
have divided the parameters in “hard” and “soft” parameters, and explained

how we would go zbout inalizing the geometry znd obtaining the geometrical

constraints.

Results of numerical czlculations were reported showing how parameters
2ssociated with the magnetic geometry can be changed by changing only the

“soft” parzmeters, namel y the vertical feld and the ring current. A mode] was
devised thezt gives the geometric date reizted to the magnetic zxis and provides
some simple 2nalytical expressions ~elat ting the sof parzmeters to the geometry.
This allows us to make the geometiry function of the hard parameters only. We
have further shown how we could reduce the number of hard parameters and
briefly discussed qualitatively the choice of the remzining ones. Let us now turn _

to the quantitative discussion of those pzrameters.

3.4. Choice of the geomnetry and investigation of the rclated constraints

We will now discuss the issues more quantitetively. The choices will be dictated
in part by geometric considerations (properties of the magnetic zxis as a
spatial _Curve, space constraints, ripple) and in part by required relations
between ring current, coil current, number of periods and displacement of the
coils. Optimization and trade-ofis between plzsmz size znd magnetic deld, and
properties related to MHD and transport also play a role in the choice of the

parameters.

We have in the previous sectisn explzined how we tzke into account the
cependence of the geometry on the sof paramcters, and how we reduced the
number of hard parameters to z mznzageable number. In what further follows

ve will often use 2 dizgram of the number of periods n versus %, in which for




convenience n is treated as a continuous varizble. It should however be clear

that only integer values are of actual significance.

3.4.1. Constraints for the magnetic axis

The magnetic axis is 2 spatial curve whose position (Rg,7,) 2nd winding law
(a,) are only slightly inﬂuenced_by the details of how the toroidal coils are
built. The only importznt parameters are then the number of periods n-, the
displacement of the coil % and the winding law a.. Tzaking here for the purpose
of discussion here r; = r., R, ='R¢ and oo = o, we can derive 2 constraint,

purely {rom geometrical consideration, on n, }1?“- and ..

The constraint result from the fact that the normal to the magnetic axis can
bave two distinctly difierent behaviors. The minor radius curvature can always
be dominant (with the normal thus always pointing towards the ring) or, 2t some
points on the inside of the torus, the major radius can start to dominate (with
the normal then pointing towards the center of the machine). If the major radius
curvature starts to dominate on the inside of the torus, there is 2 discontinuity
in the vzlue of the ro..c.uonal transform, because of the discontinuity in the
behavior of the normal. I_ndeed, if the normeal points towards the ring, it makes a
27 rotation per period. In the case the major radius starts to dominate, the net
rotation after a period will be zero. Since the rotationa] transform is measured
from the normal, there is 2 discontinuous change of 27 per period in the value
of the ro‘*tiov‘ transform when the behzvior of the normzl changes (see also
[121]). This discontinuous switch delineates thus two regions, one where we
cen truly speek of 2 steilarztor with heliczl magnetic axis, and one where the
minor radius curvature is no longer dominzant. In this second region, the total
rotetionel transform becomes zero in the limit of very small %, so that the
charge separeting drifts are no longer canceled. It is thus best to avoid this

.

second region.

It is shown in appendix C that for the minor radius curvature to dominate we

need
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Figure 4.16 Regions in parameter space where the mezjor radius curvature

dominates.

n : 1— ’{?‘: V| 2
(;) > ———T'.,“‘ (l'T'aa) (4'12)

4be

Lines of constent o, zre showr in Figure 4.16. The allowzble parameter space
depends on a,, but is in the direction of larger n, and larger %. For illustrative
p H (-] ? o

purposes we have hatched in the drawing the forbidden space for @z = 0.

3.4.92. Constraints from non-interference of the coil.

We hzve briefy used earlier the requirement that coils should not interfere on
the inside, to obtain one relation that zllowed us to eliminate 2 parameter. Here
we will develop it in more detail because it also results in 2 maximum achievable

value for %.. The geometry is shown in Fig. 4.17.

The ring current Iz results, for 2 given current density, in & minimum radius

rg for the ring.

7r&Jr = IR (4.13)
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Definition of some coil dimensions.
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Similarly the toroidal coils need a minimum area we X h

for a given density.

w‘hcjc = Ic (4-14)

In order for the toroida] coils not to interfere at the inside (2ssuming the coj] to
be wedged) we request that

-R:'A¢ > w,
where
27 :
A¢ = N (4.15)
R,' =RR_rc—a: . (416)

In principle w could get arbitrari] thin, the necessary are2 being provided
p p < g ) o © p

by increasing A,. However, increasing he decreases the bore of the coils. This

trade-off wil] be considered Jater. To avoid the fact that the bore b, would

. - b . _
become too small, let us fix the T2lo = = ¢ to some valye 6 = 0.5,

The value of the Ting current depends on the size, the number of periods,
the winding law etc. This has been discussed ezrlier 2ad in Appendix D. To
eliminate this dependence on the soft parameters we will use what we have
previously called the design value of the current (this corresponds to the current,
for 2 magnetic axis centered zt r, = re). The ring current is then given to 2

good 2pproximation by

Let us further take 25 2 first 2pproximation for the current in the toroidal coils
2 r
‘= u NI : 4.18
m R) (4.18)

. n ~ } be i 2 2 .
vhere B is zn average magnetic field, znd 47.’?\, 11— (; s) 1s the length of
the helical line in <he center of the coils under the 2ssumption of 2 strzight

helix.



From the set of equations (4.13 - 4.15) we can solve for 7‘?—_5:

We obtain the quadratic equation

By /1 ' (nr¢)2
RL\ "\mR

! 4.19
1|38 11 2B n Wil o | 2Bé nlr (#19)
Fo Rl 2 - 2\ uoRJpm \poRJRmR—

Choosing values for
§=0.5

Je=2 X 10" A/m?

Jr=12X10"4/m?
We can solve this equation for £ in terms of & and %. The result is shown in
Fig. 4.18.

The lines in Fig. 4.18 delineate for a particular choice of % the regions where
the coils will not interfere. For small % values we have wide coils, of small
height, but for large ¥, 2s the coils increase in size, and thus crowd more and
more the center, the width has to be reduced (with = corresponding increase in
height). Figure 4.19 shows the veriztion of % with I for fixed n = 3, 25 well as
the relztive distribution of the space between ring radius TR, height of the coil

and bore of the coil.

It is clear {rom Figure 4.18 that interference of the coils will put arather stringent
constrzint on the valve of £. Figure 4.18 was drewn for Je = Jg = 2kA/cm?
and 6 = 0.5. Changing the value of J,, Jg or 6 will change the value of ﬁ but
does not change the location of the maxima. In fact if we take Jr = J., Figure
4.18 can be normalized with respect to current density. The lines would then be

lines of constant —%.

Since it is easier to relate to £ than to &, we will, for the purpose of obtaining
numbers, continve to use Jg = Jo = 2kA/em?. One should keep in mind .

however, thet the geometricz] constrzint is on f-s rather than on %.
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Figure 4.18 Maximum value of % because of coil interference. We have assumed

Jr=Jc =2 X 10"A/m? and 6 = 0.5. For smzl] % the value of £ decreases
beczuse below a certzin point further decrease of ¥ and thus of -",’-1; can no longer
be compens.ated by an increase in ¥. For fixed current density the current in
the coil and the ring must decrease thus decreasing E For large 3 there is also
& decrease in % due to the fzct that 25 the inner part of the coil gets closer to

the center its width w, decrezses more rzpidly than its height can increase.

Notice thzt combining Figure 4.18 (interference of coils), with Figure 4.16
(behavior of the magnetic axis) zlready gives us clear indication zbout the

constraints on n and % (for fixed values of €), shown in Fig. 4.20.

We have in this section fixed the vazlue of £. In the next section we will discuss

1

how things change when we allow 6 to vary. Figure 4.20 will then change slightly
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2 X 107A/m? (top figure). Also shown is the relztive fraction taken up by the

. - 1 L . v .
ring and the toroidel coil as % varies (bottom figure). We have assumed 6 = 0.5.
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Figure 4. 20 Combination of Figure 4.16 giving the regions where the minor

lus cury '“‘Lre dominztes with Fig. 4.18 giving the regions where the coils

would interfere.

.

-3

-

when we zllow ¢ to change.

3.4.3. Effect of changing §

In the previous constrzints we have not zddressed the ; issue 01' plasme size. By
choosing the bore of the coil to be 2 certzin fraction of the coll displacement
(6=0. 5) we had 2ssumed to hazve some room left for the plasma. When we
2llow 6 to change we zre faced however with 2 complicated trade-off. Increasing
¢ increzses the bore of the coils 2nd 2llows thus more space for the plasma, but

will reduce the achieveble magnetic field.

Infuence on the magnetic ficld

.

Indeed, as € increases, we have to decrezse the height (h.) of the coils. As the
width w, of the coils is set by interfcrence near the center, the current in the

toroidal coils has to go down if we fx the current density. The ring current,
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Figure 421 Effect of changing £ = % on the distribution of the space between

TR and A..

znd thus the ring radius ¢zn then go down in the szme proportion (Fig. 4.21).
This also will influence the space available for the height of the coils. The exact
distribution of the space (r. — b.) between the coil (hc) and the ring (rg) is
discussed in Appendix E. The net result, is that 2t constant current density and

overall size, if we decrezse &, the magnetic field has to go down.

Influence on the plasma size

The actual increase of the plasma size when the bore of the coil increases can
only be found exactly by running a computer code that gives the magnetic
surfaces (puncture plots). It is however useful to identify the mechanisms that
have an influence on the plasmz size, and to obtain 2n approximate result.
; S , + Al = : ; 3 . &
This will l.-.llovv us to make a choice in the large parameter space n, T-f?:’

c
Te!
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