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Abstract
Purpose Predictions are complex, multisensory, and dynamic processes involving real-time adjustments based on envi-
ronmental inputs. Disruptions to prediction abilities have been proposed to underlie characteristics associated with autism. 
While there is substantial empirical literature related to prediction, the field lacks a self-assessment measure of prediction 
skills related to daily tasks. Such a measure would be useful to better understand the nature of day-to-day prediction-related 
activities and characterize these abilities in individuals who struggle with prediction.
Methods An interdisciplinary mixed-methods approach was utilized to develop and validate a self-report questionnaire of 
prediction skills for adults, the Prediction-Related Experiences Questionnaire (PRE-Q). Two rounds of online field testing 
were completed in samples of autistic and neurotypical (NT) adults. Qualitative feedback from a subset of these participants 
regarding question content and quality was integrated and Rasch modeling of the item responses was applied.
Results The final PRE-Q includes 19 items across 3 domains (Sensory, Motor, Social), with evidence supporting the validity 
of the measure’s 4-point response categories, internal structure, and relationship to other outcome measures associated with 
prediction. Consistent with models of prediction challenges in autism, autistic participants indicated more prediction-related 
difficulties than the NT group.
Conclusions This study provides evidence for the validity of a novel self-report questionnaire designed to measure the 
day-to-day prediction skills of autistic and non-autistic adults. Future research should focus on characterizing the relation-
ship between the PRE-Q and lab-based measures of prediction, and understanding how the PRE-Q may be used to identify 
potential areas for clinical supports for individuals with prediction-related challenges.
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The ability to make, utilize, and learn from predictions 
broadly impacts our engagement with the world. Colloqui-
ally, the term prediction is used to describe expectations of 
what will happen next. People make and use predictions 
every day, often with little conscious effort. For example, 
when catching a ball, we predict the ball’s trajectory and 
adjust the position of our hands to anticipate its arrival. Pre-
dictions are more than simple estimates about the future; 
they reflect complex, multisensory, and dynamic processes, 
which are continually adjusted in real time to reflect new 
information and occur throughout one’s daily life. Pellicano 
and Burr (2012) first proposed that prediction-related chal-
lenges may underlie characteristics associated with autism. 
Since then, additional researchers have put forth similar 
frameworks (Lawson et al., 2014; Sinha et al., 2014; van de 
Cruys et al., 2014). However, no studies to date have char-
acterized self-reported difficulties with prediction in autistic 
or non-autistic adults.

Defining Prediction

Researchers have attempted to operationalize and study 
the construct of prediction through the development and 
refinement of the predictive coding framework. The predic-
tive coding framework posits that a primary function of the 
brain is to integrate prior knowledge and current context to 
continuously generate predictions in order to efficiently pro-
cess streams of incoming information (Friston, 2005, 2010; 
Huang & Rao, 2011; Rao & Ballard, 1999; Spratling, 2017). 
This framework has been put forth as a unifying theory of 
brain function, and it provides a theoretical lens through 
which to investigate and understand the computational and 
neural mechanisms underlying various cognitive processes. 
Indeed, behavioral and imaging studies in the general adult 
population have provided supporting evidence for the pre-
dictive coding framework across many domains, including 
motor, vision, and language (Rauss et al., 2011; Schrimf et 
al., 2021; Shipp et al., 2013).

The operational definition of prediction and predictive 
coding varies across the literature on predictive processing. 
Generally, within the predictive coding framework, predic-
tion is conceptualized as the use of one’s mental models (i.e., 
internal representations of causal relationships) to generate 
expectations of incoming sensory stimuli based on running 
estimates of hidden states and processes in the world. Dif-
ferences between one’s expected outcome and the actual 
outcome lead to errors that are used to update one’s mental 
model and modify future predictions. In the current study, 
the operationalization of prediction put forth by Cannon and 
colleagues (2021) was adopted, as it aimed to integrate mul-
tiple proposed definitions of predictive processing. Figure 

S1 in the Supplemental Materials illustrates the definition 
of prediction (Cannon et al., 2021) as a process that (a) is 
based on a known association between an antecedent and 
consequence (mental model), (b) is generated in response 
to a given antecedent, context, and/or event (inference), (c) 
directly affects an individual’s neural or behavioral response 
in preparation of or upon the arrival of the consequence, 
or in future occurrences of the antecedent (deploy predic-
tion), (d) may lead to surprise if the prediction is not aligned 
with the actual sensory-motor input (surprise), and (e) can 
lead to updates of the mental model, particularly following 
prediction errors or changes to the antecedent-consequence 
relationship over time (dynamic update).

Atypical Prediction

Beyond prediction-related models of brain function in non-
clinical populations, theoretical accounts have hypothesized 
that atypical prediction may underlie traits associated with 
autism as well as other clinical conditions such as schizo-
phrenia and dementia. In the study of autism, multiple inter-
secting theories posit that atypical prediction may underlie 
key characteristics of the condition in children and adults 
(e.g., Lawson et al., 2014; Sinha et al., 2014; van de Cruys 
et al., 2014). Empirical evidence for prediction-related dif-
ficulties in autistic individuals1 is mixed and nuanced, with 
greatest support for prediction-related differences shown 
via reduced habituation and repetition suppression, reduced 
spontaneous predictive movement, reduced predictive eye 
gaze, difficulty with social predictions, and potential dif-
ferences in the learning of predictive relationships (for 
two reviews, see Angeletos et al., 2023; Cannon et al., 
2021). In autistic adults, the most consistent evidence for 
prediction-related differences included reduced habitua-
tion of brain response to repeating stimuli, particularly for 
faces (D’Mello et al., 2023; Ewbank et al., 2017; Tam et 
al., 2017), reduced anticipatory saccades in response to pre-
dictable visual stimuli (Schuwerk et al., 2016), and differ-
ent trajectories of predictive relationships (Lawson et al., 
2017). Similar theories of prediction-related difficulties 
have emerged for individuals with schizophrenia (Sterzer 
et al., 2019) and dementia (Kocagoncu et al., 2021). Fur-
ther research is warranted to better understand the presence, 
extent, specificity, and impact of potential prediction-related 
differences within and across clinical populations.

1  Many, but not all, autistic individuals prefer the use of identity-
first language (“autistic adult”) over person-first language (“adult with 
autism”; Taboas et al., 2023). These preferences guide the authors’ 
language choices in the present article, consistent with American Psy-
chological Association style guidelines related to the use of bias-free, 
inclusive language (American Psychological Association, 2022).
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Existing Measures of Prediction in Autism

Substantial investigation of typical and atypical predic-
tion and predictive coding has been conducted, with both 
children and adults, using a wide range of empirical mea-
sures, including both neuroimaging and behavioral (e.g., 
psychophysical) techniques. Here, existing measures within 
the autism adult literature are highlighted given their rel-
evance to the current study, although many of the measures 
described have also been implemented with autistic children. 
Neuroimaging has elucidated several underlying differences 
in the neural correlates of prediction. Researchers have used 
electroencephalography (EEG) and functional magnetic 
resonance imaging (fMRI) to study how individuals habitu-
ate and adapt to predictable visual or auditory sequences 
(D’Mello et al., 2023; Ewbank et al., 2017; Ruiz-Martinez 
et al., 2020); EEG to understand surprise responses to unex-
pected deviations in auditory (including linguistic) or visual 
stimuli (Barzy et al., 2020; Goris et al., 2018); EEG to 
understand brain-based ramping activity preceding predict-
able targets (Thillay et al., 2016); and fMRI to localize and 
quantify prediction-related brain activation (Balsters et al., 
2017). Beyond neuroimaging approaches, researchers have 
used eye tracking to study how individuals visually antici-
pate upcoming actions (Ganglmayer et al., 2020). Pupillom-
etry (i.e., pupil dilation measurement) has also been used as 
a physiological measure of surprise in response to expected 
and unexpected consequences (Lawson et al., 2017). Behav-
iorally, researchers have employed statistical learning tasks 
to assess association learning between basic and complex 
antecedents and consequents. These tasks have been used 
to understand processes in autistic adults such as how indi-
viduals utilize context to make predictions (Rybicki et al., 
2021; Treves et al., 2023, as well how individuals use pre-
dictive information to respond more quickly to predictable 
targets (Cannon et al., 2023). Finally, some investigations 
utilize self-report measures that ask participants whether a 
given outcome was expected or not, thus obtaining a report 
of surprise related to prediction (Balsters et al., 2017; Shep-
pard et al., 2016).

The wide range of existing experimental measures for 
characterizing prediction have several limitations. First, 
measures of prediction typically investigate a single predic-
tive process, domain, or phenomenon (e.g., visual, motor, 
auditory). Indeed, reviews of prediction-related tasks in the 
field of autism (Cannon et al., 2021; Merchie & Gomot, 
2023) show a trend of testing a single behavioral or neural 
measure, as opposed to multiple measures that together may 
better reflect the multifaceted phenomenon of prediction. 
There are currently few behavioral and no self-report mea-
sures that incorporate the multiple modalities that make up 
the complex phenomenon of prediction. Second, research 

and experimental measures (e.g., neuroimaging techniques) 
typically require an in-person visit to a research laboratory, 
which can limit the number and diversity of individuals who 
participate in such studies. Finally, the tools available to 
measure typical and atypical prediction and predictive pro-
cessing lack a connection to individuals’ daily experiences. 
Thus, it is often unclear what level (if any) of functional 
impact is experienced by individuals who demonstrate dif-
ficulty with isolated prediction-related empirical tasks.

Need for a Self-Report Measure of Prediction

In clinical and non-clinical adult populations alike, a self-
report measure of prediction skills and challenges would 
improve these individuals’ understanding of daily experi-
ences and difficulties in relation to predictive processing 
frameworks. Such a measure could quantify to what extent 
and in which contexts people experience prediction-related 
difficulties across multiple domains (e.g., motor, social, sen-
sory) that make up the complex phenomenon of prediction. 
Implementation of such a measure of prediction-related 
daily living skills could also advance novel translational 
understanding of quality of life and independence. This type 
of self-report measure could be correlated and validated 
with empirical prediction tasks (e.g., eye-tracking, brain-
based, and behavioral), to better understand the relationship 
between these tasks and daily challenges, guide further nat-
uralistic experimental design, and potentially influence the 
development of more effective clinical supports and inter-
ventions. A validated self-report measure can be admin-
istered remotely, reducing time and effort for individuals 
being assessed and increasing inclusion of participants who 
may be unable to attend in-person visits (e.g., due to trans-
portation limitations, employment, familial responsibili-
ties), or when in-person laboratory visits are prohibited, as 
was the case during the COVID-19 pandemic.

A self-report measure that has been validated with both 
neurotypical (NT) and autistic adults (versus validated in 
NT adults or autistic adults alone) would prove useful in 
fully capturing a wide range of prediction skills, given the 
proposed prediction challenges in autism specifically. The 
results from this measure could improve identification of 
daily challenges and potentially lead to enhanced support, 
treatment targets, and environmental modifications for 
autistic individuals.
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Relationship to Other Variables

4. Did NT and autistic adults significantly differ in their 
PRE-Q logit scores?

5. Was there a significant correlation between PRE-Q logit 
scores and behavioral scores on prediction-related tasks 
for a sub-sample of NT and autistic adults?

Methods

Two methodological frameworks guided the instrument 
development in this study. Luyt’s (2012) iterative frame-
work for measurement development, validation, and revi-
sion was used in implementing a design-based approach. 
This framework consisted of three cyclical, interconnected 
steps of instrument development and validation (Fig. 1). 
Step 1 was measurement development, which involved 
defining the construct and developing indicators (i.e., items) 
that operationalized the construct. Step 2 was measurement 
validation, which involved evaluating to what extent the 
quantitative scores and/or qualitative data collected sup-
ported meaningful interpretation of the construct. Step 3 
was measurement revision whereby quantitative and quali-
tative data were used to inform decisions related to instru-
ment revisions. This study was not preregistered.

Additionally, the Standards for Educational and Psycho-
logical Assessment (AERA et al., 2014) was used as a frame-
work for collecting data and evaluating validity evidence of 
the PRE-Q. Through the Standards, instrument developers 
are encouraged to employ a mixed methods approach to 
instrument construction and collect multiple types of valid-
ity evidence to provide more robust support for inferences 

Study Aim

The purpose of this study was to expand understanding of 
predictive processing through the development of a sur-
vey instrument called The Prediction-Related Experiences 
Questionnaire (PRE-Q; Bungert et al., 2024) designed to 
align with Cannon et al.’s (2021) model of predictive pro-
cessing. An intended aim of the PRE-Q is to assess NT and 
autistic adults’ self-perceptions of their prediction skills in 
activities of daily life to identify strengths and challenges 
in predictive processing. Five research questions were 
addressed in the validation process using the Rasch mea-
surement model (1960/1980) and traditional inferential sta-
tistics to achieve a parsimonious instrument and inform the 
validity evidences for response process, internal structure, 
and relationship to other variables (American Educational 
Research Association [AERA] et al., 2014).

Response Process Validity Evidence

1. How are the properties of the 4-point response category 
functioning for the PRE-Q?

Internal Structure Validity Evidence

2. To what extent is the PRE-Q unidimensional (item fit, 
internal consistency)?

3. What measurement redundancies exist in the initial 
PRE-Q that can be removed to form a more parsimoni-
ous measure of self-reported predictive processing?

Fig. 1 Visualization of the three iterative stages of the PRE-Q Development. Note: NT = Neurotypical. The light gray boxes indicate the people 
who were involved during each stage of PRE-Q development
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prediction and second, based on how well each item aligned 
with the phases of prediction (Inference, Deployment, Sur-
prise, or Dynamic Update). Panel members also provided 
qualitative feedback on the clarity of item wording at this 
stage. Based on the ratings of alignment with construct, 37 
items (42.05%) were removed. Based on the ratings of align-
ment with prediction phases, seven items were removed. 
Following the removal of these items, an additional 13 
items were created related to the phase of Surprise and the 
Sensory domain to balance the distribution of items across 
phases and domains. Additional information about the rat-
ing processes is included in the Supplemental Methods.

Participant Feedback

Participant feedback informed response process validity 
evidence in two ways. Participants who provided feedback 
were recruited as described in “Quantitative Sampling Pro-
cedures and Participants” below. First, when participants 
completed the self-report prediction items, they were asked 
to indicate if they “did not understand” any of the existing 
items and were allowed to write a short description of what 
was confusing about the item. Second, a separate group 
of 15 autistic adults (who had not been asked to complete 
the self-report items) were recruited to complete an online 
survey consisting of seven open-ended questions related to 
prediction-related challenges they might have encountered. 
Two questions asked what predictions these autistic individ-
uals make when “listening to or watching something” and 
when “tasting or smelling something.” An example response 
was, “I might make predictions before I taste or something 
and this would be whether I expect to like it or not.” The 
next four items asked to describe when these individuals are 
surprised during daily life, social situations, while sensing 
(listening, watching, touching, tasting, or smelling) some-
thing, and participating in a physical activity. An example 
response was, “If an appliance breaks when I’m about to use 
it when it was fine the day before.” A final item asked what 
things are hardest to predict. An example response was, 
“People’s behaviors/reactions, especially if they are more 
acquaintances to me than friends.”

The open-ended question feedback was used to guide 
construction of additional items targeting the Sensory 
domain and the Surprise phase to improve content valid-
ity. Two members of the panel met to convert autistic 
adults’ responses into new prediction items. For example, 
the response “I sometimes make predictions as to what will 
happen next if I am watching a movie or TV show,” was 
converted into the item “When watching television or a 
movie, I can easily tell what a character will say next.” A 
total of 24 items were developed based on the responses to 
yield an 81-item PRE-Q for quantitative field-testing.

drawn from the measure (Luyt, 2012; Koskey et al., 2018; 
Onwuegbuzie et al., 2010). Five forms of validity evidence 
are described in the Standards: content (item alignment 
with construct); response process (participant understand-
ing of instrument as researchers intended); consequences of 
testing (potential negative impact on participants or bias); 
internal structure (unidimensional and reliable measures); 
and relationship to other variables (alignment of instrument 
outcomes with other hypothesized variables).

The measurement development process is outlined 
below, including the initial item pool informed by Cannon 
and colleagues’ (2021) definition of prediction, an expert 
panel, and feedback from a group of autistic adults. Follow-
ing the initial item pool development, the quantitative field-
testing procedure is outlined including two rounds of data 
collection. Measurement revisions based on qualitative and 
quantitative field-testing findings are described throughout 
this iterative process.

Initial Measurement Development

Expert Panel Item Construction

A panel of ten experts comprising researchers and clini-
cians was formed to construct the initial item pool. The item 
development panel team consisted of researchers collabo-
rating on a project related to prediction, and included nine 
members from the same location and one collaborator from 
a different institution in the same city. Table S1 in the Sup-
plemental Materials lists the panel members’ relevant exper-
tise. All panel members were actively involved in research 
projects related to prediction and autism at the time of their 
involvement in the PRE-Q’s development. Additionally, two 
consultants from another institution and city provided guid-
ance on the survey development methodology and analy-
ses, but did not directly participate in the item construction 
panel. Items were constructed to align with Cannon et al.’s 
(2021) definition of predictive processing to inform content 
validity evidence. Panel members were instructed to write 
items that: (a) were appropriate for the intended population 
of autistic and NT adults; (b) targeted behaviors, thoughts, 
or feelings representing prediction-related sensory, social, 
motor, and daily living experiences across the four phases 
of predictive processing; and (c) included easier to harder 
predictions to reflect a range of difficulty levels. A total of 
88 items were constructed.

Expert Rating of Alignment With Prediction Construct and 
Prediction Phases

Panel members rated each of the 88 items in two steps: First, 
based on how well each item aligned with the construct of 
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Cannon et al.’s (2021) proposed model of predictive pro-
cessing: Inference (27 items), Deployment (27 items), Sur-
prise (17 items), and Dynamic Updating (10 items). Across 
these four phases, items presented predictive processing 
contexts related to the four domains of Motor (19 items), 
Sensory (14 items), Social (32 items), and Daily Living (16 
items). Items were rated on a 4-point scale (0 = “Not at all 
like me,” 1 = “Not like me,” 2 = “Like me,” and 3 = “Just 
like me”). Higher ratings indicated a higher level of predic-
tion skills for 63 items and lower prediction skills for 18 
items that were reverse coded for scores to be interpreted 
in the same direction. An example reverse coded item was, 
“If I pop a balloon, I am startled by the noise.” The Flesch-
Kincaid grade level score for the 81-item PRE-Q was 5.8, 
at the targeted fifth-grade level (Good Calculators, 2023).

A refined, parsimonious 19-item PRE-Q for quantita-
tive field-testing consisted of items representing the four 
domains of the theoretical model of predictive process-
ing: Inference (4 items), Deployment (8 items), Surprise 
(8 items), and Dynamic Updating (2 items). Across these 
four phases, items presented predictive processing contexts 
related to Motor (7 items), Sensory (6 items), and Social/
Daily Living (6 items). Social and Daily Living were col-
lapsed when the expert panel determined that the remaining 
Daily Living items were all related to social interactions. 
Items were rated on the same 4-point scale as the initial 
instrument. Higher ratings indicated a higher level of pre-
dictive processing for 15 items and lower predictive pro-
cessing for 4 items that were reverse scored for scores to 
be interpreted in the same direction. Flesch-Kincaid grade 
level score for the 19-item PRE-Q was 5.9, at the targeted 
fifth-grade level. This final instrument is available online for 
use by researchers and clinicians (Bungert et al., 2024) and 
items are detailed in the Supplement (Table S2).

Predictive Processing Behavioral Tasks

Two prediction-related online tasks were used as criteria 
to correlate with the sub-sample of participants’ PRE-Q 
scores. In the first task, participants listened to 110 short 
metronomes consisting of 5, 6, or 7 beeps with a 700ms 
inter-beep interval in which the last interval was perturbed in 
time (-150ms, -100ms, -60ms, -30ms, -15ms, 0ms, + 15ms, 
+ 30ms, + 60ms, + 100ms, + 150ms; negative numbers rep-
resent early beeps and positive numbers indicate late beeps). 
Metronomes were presented in a pseudorandom order. Par-
ticipants were instructed to judge whether the last tone in 
each sequence was early or late. Their fraction of early/late 
responses as a function of shift size was fit with a logistic 
function, and the slope parameter was used as a measure 
of timing sensitivity. We interpreted the slope of percep-
tion following perturbations as a measure of ability to make 

Quantitative Sampling Procedures and Participants

To address research questions 1−4, participants were 
recruited through online platforms to complete the PRE-Q 
(initial 81-item or refined 19-item versions), as well as addi-
tional phenotypic characterization measures. To address 
research question 5, a subset of autistic and NT individuals 
completed a behavioral auditory motor synchronization task 
of predictive processing, (part of a larger online study) in 
addition to the refined 19-item PRE-Q.

Participants

Autistic participants were recruited through “SPARK” 
(Simons Powering Autism Research), a national database 
of individuals who have an existing clinical diagnosis of 
autism with a high degree of diagnostic validity (Fombonne 
et al., 2022; SPARK Consortium, 2018). NT participants 
were recruited through Prolific (Prolific.org), an online 
scientific research study adult recruitment tool. The initial 
81-item PRE-Q was completed by a total of 193 partici-
pants, including 40.93% autistic (n = 79; 42 females; Mage 
=27.5 yrs. ± 5.2 yrs.) and 59.07% NT (n = 114; 42 females; 
Mage =30.1 yrs. ± 7.2 yrs.) individuals.

The refined 19-item PRE-Q was completed by 141 non-
overlapping participants including 50.35% autistic (n = 71; 
26 females; Mage = 29.6 yrs. ± 8.7 yrs.) and 49.65% NT 
(n = 70; 35 females; Mage = 29.7 yrs. ± 7.2 yrs.) individu-
als. Race and ethnicity data were not collected. A subset of 
participants completed the auditory motor synchronization 
task. Forty-three of these participants were eligible to be 
included in task-specific behavioral performance analyses 
using data quality inclusion criteria established by Can-
non et al. (2023). This sub-sample was comprised of 35% 
autistic (n = 17; 11 female) and 64% (n = 26; 13 female) NT 
individuals. In addition to sex assigned at birth (reported 
above), gender identity was also collected for this sub-sam-
ple of participants (Autistic participants’ gender identities: 6 
female, 7 male; 2 nonbinary; NT participants’ gender identi-
ties: 12 female, 13 male; 1 nonbinary).

Measures

PRE-Q

The PRE-Q was intended to measure an individual’s per-
ception of their predictive processing aligned to the Cannon 
et al. (2021) theoretical model. It was designed for adult 
populations including autistic and NT individuals who can 
read and respond independently to simple one-sentence 
statements. An initial 81-item PRE-Q for quantitative field-
testing consisted of items representing the four phases of 
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for monotonicity of the scale and explained in greater detail 
below. Third, because Rasch is a probabilistic model, it 
can handle missing data by estimating missing responses. 
With CTT, each survey item is assumed to possess the same 
amount of the trait being measured regardless of how chal-
lenging to endorse. Thus, if two participants strongly agreed 
with seven different items on a 10-item survey while leaving 
the remaining 3-items unanswered, they would receive the 
same score under a CTT model. Rasch measurement can, 
however, differentiate between these two individuals who 
endorsed a similar number of items with varying difficulty 
levels by giving the participant who endorsed more chal-
lenging items a higher measure compared to the individual 
endorsing easier items. Winsteps version 4.8.0 (Linacre, 
2021) software was utilized for all Rasch analyses in this 
research. Additional details regarding Rasch measurement 
are included in the Supplemental Methods.

Response Process Validity Evidence

Linacre (2002a) established guidelines for optimizing rating 
scales to ensure strong measure stability, measure accuracy 
(fit), description of the sample, and inferences for the next 
sample. While all guidelines are not required in all situa-
tions (Linacre, 2002a), some are essential and appropriate 
for this study. As such, four key optimization guidelines 
were investigated to inform whether respondents were using 
the scale categories as researchers intended.

1) A minimum of 10 observations in each category is 
essential for measuring stability and helpful for measur-
ing accuracy (fit) and inference for next sample. Low 
frequency of observations in any category can result in 
poorly estimated or unstable step calibrations.

2) Observed average person measures advance with cat-
egories is essential for measure accuracy (fit), descrip-
tion of the sample, and inference for next sample. It is 
also helpful for measuring stability. When this guide-
line is met, it demonstrates that higher categories indeed 
reflect higher measures.

3) Outfit mean-squares (MNSQ) < 2.00 is essential for 
measure accuracy (fit) and helpful for measure stabil-
ity, description of the sample, and inference for the next 
sample. When a category’s MNSQ is > 2.00 more unex-
pected randomness is present than the amount expected 
(1.00).

4) Step calibrations advance is helpful for inferences 
related to the next sample. When step calibrations do 
not advance, it suggests that categories are disordered 
and as one advances along the variable a category may 
not be observed or necessary.

precise auditory predictions based on rhythmic context 
(Stage 2 discussed in “Defining Prediction” above).

In the second task, participants heard nine sequences 
of beeps based on a steady metronome with 700ms inter-
beep interval, with occasional timing perturbations (-50ms, 
-25ms, + 25ms, + 50ms; negative numbers represent early 
beeps and positive numbers indicate late beeps). Participants 
were instructed to tap along to the beeps on their laptop out-
side of the trackpad and keyboard area. From this task, we 
extracted two measures related to prediction (the dependent 
variables): tapping imprecision and tapping correction. Tap-
ping imprecision refers to the timing difference between the 
participant’s response and the target sound. Tapping correc-
tion refers to the change in tap response timing after the 
participant hears a temporal deviation a in the regular beep 
sequence. For the timing tapping imprecision, we calculated 
the log of the standard deviation of the signed delay between 
tap and beep. We interpreted the magnitude of the standard 
deviation as a measure of ability to deploy and update pre-
dictive models (Stage 3 and Stage 4 discussed in “Defin-
ing Prediction” above). For the tapping correction measure 
(Phase Correction Responses), we calculated the magnitude 
of the correction of tap timing following perturbations (see 
Supplemental Information for details), and interpreted it as 
a measure of ability to dynamically update predictive mod-
els (Stage 4 discussed in “Defining Prediction” above). This 
task and its derived measures have been used previously to 
quantify temporal prediction-related abilities in autistic and 
NT adults (Cannon et al., 2023; Edey et al., 2019; Morimoto 
et al., 2018; Repp & Su, 2013; Vishne et al., 2021). Tapping 
was recorded and reviewed for quality (see Supplemental 
Information for details).

Data Analysis

Rasch (1960/1980) measurement was employed in the 
quantitative field-testing component of this study as its 
effectiveness has been demonstrated in survey develop-
ment, refinement, and validation research (see Bond & Fox, 
2015; Boone et al., 2011; Koskey & Stewart, 2014; Liu, 
2010; Wright, 1996). Numerous advantages are commonly 
cited for use of the Rasch model (1960/1980) over Classi-
cal Test Theory (CTT) approaches for instrument construc-
tion; Three are highlighted here (for additional advantages, 
see Andrich, 2011 and Bond & Fox, 2015). First, an overall 
person ability score is computed and transformed into log-
odd units (i.e., logits) along the linear measure with item 
mean set at 0 logits. Placing persons and items on a com-
mon scale provides for more meaningful interpretation of 
person ability along the latent construct. Second, a more 
robust evaluation of the rating scale properties is facili-
tated through rating scale functioning analysis examining 
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(reliability < 0.70; separation < 1.50), acceptable (reliabil-
ity = 0.70–0.79; separation = 1.50–1.99), good (reliabil-
ity = 0.80–0.89; separation = 2.00–2.99), and excellent 
(reliability ≥ 0.90; separation ≥ 3.00).

Item Redundancy

One purpose of this study was to reduce a larger item pool 
of predictive processing items on the PRE-Q to a more par-
simonious data-informed set of items that maintained strong 
psychometrics. To empirically do this, a Wright map (or 
variable map) was examined along with item logit-measure 
difficulties and corresponding standard errors to determine 
statistical similarity. A Wright map presents person abilities 
on one side of a logit ruler and item difficulties on the other. 
Item hierarchy on a Wright map is established by participant 
responses with easier to endorse items at the bottom and 
more challenging to endorse items at the top (Bond & Fox, 
2015). When statistical redundancy in item logit-measure 
was identified, the item writing team further inspected item 
content to determine which items should be retained and 
which should be removed.

Relationship to Other Variables

Final PRE-Q 19-item person logit-measures were used to 
look for differences in self-reported prediction-related skills 
between NT and autistic adults. It was anticipated that there 
would be a significant difference in prediction skills by 
group, with autistic adults scoring significantly lower than 
NT adults. An independent samples t-test was implemented 
to address this hypothesis. Additionally, it was hypothesized 
that a significant relationship between final PRE-Q 19-item 
person logit-measures and outcome measures from the two 
behavioral tasks of prediction yielding three outcome mea-
sures (timing sensitivity, tapping imprecision, and tapping 
correction) would exist for a sub-sample of autistic and NT 
adults. To test this hypothesis, a Pearson correlation was 
conducted between participants’ PRE-Q logit scores and 
these outcome measures, for the full sample and for each 
diagnostic group separately, with the Bonferroni correction 
for multiple comparisons. Materials and code are available 
by emailing the corresponding author.

Results

Response Process Validity Evidence

Findings related to Rasch rating scale analysis for both 
the initial field-testing (81 items) and final field-testing 
(19 items) instruments were strong, as shown in Table 1. 

Internal Structure Validity Evidence

While unidimensionality of a construct is a measurement 
specification regardless of model used, concrete criteria for 
assessing dimensionality do not exist and thus it cannot be 
determined in an either-or fashion (Smith, 2002). Rather, 
dimensionality is necessarily evaluated on a continuum of 
more to less unidimensional based on a holistic interpreta-
tion of findings from multiple psychometric indices. Rasch 
psychometric indices used in this study to examine unidi-
mensionality of predictive processing as measured by the 
PRE-Q were: item fit statistics (infit, outfit, point-biserial 
correlation), measure consistency statistics (item and per-
son reliability and separation), and item redundancy (logit-
measures with SEM and variable map).

Item Fit Statistics

Rasch item infit, outfit, and point-biserial correlation indices 
provide information about unexpected patterns of responses 
and how well the data fit the measurement model. Item 
infit is related to patterns of item responses with difficul-
ties closer to a person’s measure, while outfit is based on 
response patterns for items with difficulty measures further 
away from a person’s logit-score (missing easier items or 
correctly answering more difficult items) (Linacre, 2002b). 
According to Linacre (2002b) infit and outfit item mean-
square (MNSQ) statistics between 0.50 and 1.50 suggest 
an item is functioning well and offering information that is 
productive for measurement. An item infit or outfit MNSQ 
below 0.50 or between 1.51 and 2.00 indicates an item is 
less productive for measurement but does not degrade the 
measure. However, an MNSQ above 2.00 is thought to dis-
tort the measure and should likely be removed.

An item’s point-biserial correlation is a representation 
of the item’s positive contribution to the overall measure. 
Items with a positive point-biserial are contributing posi-
tively to the measure, and items with a negative point-bise-
rial are functioning in opposition to the construct (Wright, 
1992). Thus, items with a negative point-biserial should be 
removed as they do not fit well with the measure’s meaning.

Measure Consistency Statistics

Rasch reliability for items and persons are used to inves-
tigate internal consistency of measures. Rasch separation 
statistics report the number of statistically different items 
or person groups that can be detected with a latent variable. 
Higher reliability and separation values represent stronger 
constructs capable of measuring wider ranges of the trait 
being studied. Duncan and colleagues (2003) have estab-
lished Rasch reliability and separation criteria: unacceptable 
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All outfit mean squares were very close to the benchmark of 
1.00 and none came close to exceeding 2.00, which implies 
an appropriate amount of randomness exists in the responses 
across rating scale categories and field-testing trials. Step 
calibrations advance monotonically from lowest scale cat-
egory to highest indicating there is no redundancy in catego-
ries. Figure S2 in the supplemental materials demonstrates 
this graphically, as distinct hills were produced for the cat-
egories in each field-testing trial with the hills being even 
more pronounced in the final field-testing run compared to 
initial field-testing. Collectively, these findings imply the 
rating scale is working effectively to produce strong mea-
sure stability, measure accuracy (fit), provide appropriate 
description of the sample, and generate inferences for the 
next sample (Linacre, 2002a).

Internal Structure Validity Evidence

Overall, various psychometric indices related to unidimen-
sionality of the PRE-Q demonstrated the construct of pre-
dictive processing was being measured reasonably well with 
the initial 81-item survey and considerably better with the 
more parsimonious 19-item survey (see Table 2). In sum-
mary, person and item reliability remained somewhat simi-
lar between survey distributions with person reliability in a 
good range and item reliability being excellent. Item separa-
tion was similar across field-testing trials with nearly three 
distinct groups of people being measured. Further, item 
separation increased substantially with the shorter 19-item 
version (measuring seven distinct groups) compared to 
the longer 81-item survey (measuring approximately four 
distinct groups). Two items had negative point-biserial 
correlations from the 81-item initial field-testing trial, sug-
gesting their removal was necessary as they did not fit in the 

Regardless of field-testing trial, the rating scale performed 
well and in alignment with Linacre’s (2002a) criterial for 
optimizing rating scales. To summarize, more than 10 
observations were noted for each scale category in initial 
(range 706–4,674 responses per category) and final (range 
240–791 responses per category) field-testing trials. Aver-
age person logit measures progressed from lowest category 
(“Not at all like me”) to highest (“Just like me”), suggest-
ing that participants with more of the latent trait were using 
higher scale categories compared to those with lower levels. 

Table 1 PRE-Q rasch rating scale findings for initial and final field-
testing trials
Guideline
Scale Category

Initial Field-Testing
(81 Items, 193 
Participants)

Final 
Field-Testing
(19 Items, 141 
Participants)

10 + Observations Frequency of Responses
 Not at all like me
 Not like me
 Like me
 Just like me

706
1,997
4,674
2,997

240
636
791
667

Measures Advancement Average Person Measures in Logits
 Not at all like me
 Not like me
 Like me
 Just like me

−0.70
0.21
0.67
1.25

−0.88
−0.15
0.73
1.79

Outfit MNSQ < 2.0 Mean Square
 Not at all like me
 Not like me
 Like me
 Just like me

1.12
0.96
0.93
0.97

1.09
0.97
0.96
0.98

Step Calibration 
Advancement

Step Difficulty Measures in Logits

 Not at all like me
 Not like me
 Like me
 Just like me

None
−1.01
−0.38
1.39

None
−1.52
0.10
1.42

Table 2 Psychometric properties of PRE-Q in each field-testing iteration
Field-Testing Iteration
Initial Final

Criteria and Guidelines1 81 Items / 193 Participants 19 Items / 141 Participants
Reliability (< 0.70 = Poor; 0.70 = Acceptable; 0.80 = Good; 0.90 = Excellent)
 Person 0.89 0.87
 Item 0.93 0.98
Separation (< 1.5 = Poor; 1.5 = Acceptable; 2.0 = Good; 3.0 = Excellent)
 Person 2.82 2.59
 Item 3.77 7.00
Point-Biserial (Positive pt-bis required)
 Items with negative pt-bis 2 SE, 2 SO None
Fit (MNSQ > 2.0 = Degrades measure; <0.5 or > 1.5 = Less productive, not degrading; 0.5 to 1.5 = Productive)
 Items with less productive infit
 Items with less productive outfit
 Items with infit degrades measure
 Items with outfit degrades measure

3 SE, 4 SO
1 SE, 5 SO, 1 D
None
1 SE

1 SE

Note. D = Daily Living, SO = Social, SE = Sensory, M = Motor
1Reliability and separation criteria and guidelines (Duncan et al., 2003); Item fit criteria and guidelines (Linacre, 2002b)
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difficulty logit measure. A detailed description of the item 
hierarchy is provided in the Discussion section.

Item Redundancy

Figure 2 displays two Wright maps side-by-side, illustrating 
the initial and final item-person ordering along the contin-
uum of predictive processing. On the left is the initial 81-item 
PRE-Q Wright map and to the right is the final 19-item ver-
sion. In each Wright map, participants are denoted on the 
left of their dashed line with either an A (Autistic) or N 
(Neurotypical) while items are on the right of their map’s 

construct. No items had a negative point-biserial correlation 
in the final 19-item survey, indicating all items were con-
tributing positively to the measure. In the initial field-testing 
trial of 81-items, five items had an MNSQ infit or outfit that 
was less productive but not degrading, and one item had 
an outfit at a level that degraded the measure and required 
removal. Only one item had minor misfit (less productive, 
not degrading) among the 19-items from the final field-
testing. Table S3 in the Supplemental Materials reports item 
statistics (logit-measure and SEM, infit and outfit MNSQ, 
point-biserial correlation) for the final 19-items sorted by 

Fig. 2 Initial and Final PRE-Q 
Item-Person Ordering Along 
the Continuum of Predictive 
Processing. Note: A = Autistic 
adult. N = Neurotypical adult. 
*M = mean person ability or item 
difficulty. Superscript indicates 
number of participants yield-
ing that person measure (e.g., 
A9 = nine autistic participants)
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p = 0.13), meaning that autistic adults with higher levels of 
self-reported prediction skills showed greater perceptual 
sensitivity, as expected. In contrast, the NT group unexpect-
edly had a negative correlation between timing sensitivity 
and PRE-Q logit scores (r (24) = -0.407, p < 0.05), meaning 
that NT adults who were less sensitive to perceptual shifts 
had a higher level of self-reported prediction skills.

For the tapping imprecision measure (Task 2), there was 
a statistically significant moderate negative relationship 
between imprecision and the PRE-Q logit score; r (41) = 
-0.368, p < 0.05, indicating that a greater precision in reg-
ular tapping was associated with higher prediction skills 
as measured by the PRE-Q (Figure S2 in the Supplemen-
tal Materials). The effect size was medium (r2 = 0.135), 
with 13.5% of variance in PRE-Q logit scores attributed 
to tapping imprecision. When the participant groups were 
examined separately, there was a significantly negative rela-
tionship between imprecision and the PRE-Q logit score for 
the autistic adults (r (15) = -0.624, p < 0.01), but not the 
NT adults (r (24) = -0.139, p = 0.50), suggesting that the 
relationship between tapping imprecision and PRE-Q logit 
scores was more related to differences in the autism group.

For the tapping correction measure (Task 2), the sta-
tistically significant moderate relationship was positive; 
r (41) = 0.398, p < 0.01, indicating that higher prediction 
skills as indicated by the PRE-Q logit scores was associ-
ated with better adaptation to a perturbed rhythm (Figure 
S2 in the Supplemental Materials). For this result, the effect 
size was also medium (r2 = 0.158) with 15.8% of PRE-Q 
logit score variance attributed to tapping correction. When 
the participant groups were examined separately, both the 
autistic and NT participants had similar positive correla-
tion values between tapping correction and PRE-Q logit 
score (autistic: (r (15) = 0.398, p = 0.14; NT: (r (24) = 0.351, 
p = 0.08), suggesting that this outcome measure was related 
to self-reported prediction abilities for all participants.

Discussion

Evaluation of the PRE-Q Measure’s Performance

Overall, converging validity evidence suggests that the 
final 19-item PRE-Q has an effective rating scale, serves 
as a unidimensional and parsimonious measure of predic-
tion-related daily experiences, and aligns with proposals of 
prediction-related challenges in autism. First, the 4-point 
rating scale effectively results in strong measure stabil-
ity, accuracy, description of the sample, and inferences for 
the next sample (Linacre, 2002a). Second, the Rasch psy-
chometric indices (infit, outfit, point-biserial correlation), 
measure consistency statistics (item and person reliability 

dashed line (D = Daily Living, SO = Social, SE = Sensory, 
M = Motor). Items towards the top have higher difficulty 
logit-measures (more challenging to endorse) with partici-
pants self-reporting higher levels of predictive processing. 
Less difficult items to endorse are at the bottom of the maps 
along with participants who self-reported lower levels of 
predictive processing. For both maps, the mean (designated 
with an *M) of participants is above the item mean indi-
cating that the average person finds most of the predictive 
processing items generally easy to endorse. In both variable 
maps, all domains of prediction have easier and more chal-
lenging items to endorse, as was intended. Clearly shown, 
in the initial 81-item PRE-Q Wright map, is the consider-
able item logit-measure redundancy in the middle of the 
map (between +/- 0.50 logits). Redundant items (i.e., items 
with similar difficulty within equivalent predictive process-
ing domains) were identified, and then item statistics and 
interpretation of item meaning by the panel members were 
used to select items for removal. After numerous iterations 
of item removal, the final parsimonious 19-item PRE-Q was 
established.

Relationship to Other Variables

PRE-Q Differences by Diagnosis

Independent samples t-test findings revealed statistically 
significant differences in PRE-Q logit scores depending on 
whether the participant was neurotypical (n = 66, M = 1.07 
logits, SD = 0.68 logits) or autistic (n = 59, M = 0.13 logits, 
SD = 0.93 logits); t(123) = 6.43, p < 0.001. The effect size 
was large (η2 = 0.252) with 25.2% in the PRE-Q logit score 
variance attributed to participant autistic diagnosis affilia-
tion. These findings align with what was hypothesized.

Correlation between PRE-Q and Behavioral Task 
Performance Scores

Pearson correlation findings showed statistically significant 
moderate relationships between PRE-Q logit scores and 
two of the three behavioral task outcome measures (tap-
ping imprecision and tapping correction (Task 2), but not 
timing sensitivity (Task 1)), among the full subsample of 
survey participants who completed the behavioral measures 
(N = 43: NT = 26, Autistic = 17). For the timing sensitiv-
ity measure (Task 1), there was no significant relationship 
between the outcome measure and the PRE-Q logit score; 
r (41) = 0.034, p = 0.83 (Figure S2 in the Supplemental 
Materials). When timing sensitivity of the two participant 
groups were examined separately, opposing effects were 
found. The autism group had a positive correlation between 
timing sensitivity and PRE-Q logit scores (r (15) = 0.384, 
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auditory-motor prediction for autistic adults. Given this rel-
evance, the domain-based content of the PRE-Q may guide 
clinicians in developing novel treatment approaches to bet-
ter support and empower autistic individuals. Importantly, 
however, the PRE-Q is not currently validated for sensitivity 
to changes over time or for the use of domain-specific sub-
scores independently from the composite score. If clinicians 
use the PRE-Q, they should also consider the potential over-
lap of scores on the PRE-Q with other cognitive processes 
including executive functioning. Additional investigation 
of the relationship between the PRE-Q and other measures 
of autism-related characteristics (e.g., The Comprehensive 
Autistic Trait Inventory (English et al., 2021), would pro-
vide insight into the relationship between these constructs.

Related to the domains of prediction, the item hierarchy 
revealed that items in the Social domain were generally more 
challenging for participants to endorse, while the items in 
the Motor and Sensory domains tended to fall in the middle 
and lower end of the difficulty range. Socially relevant items 
may be more difficult due to their highly dynamic nature. 
Additionally, given the particular relevance of the Social 
domain to characteristics of autism (American Psychiatric 
Association, 2013), the autism group may have influenced 
the overall distribution of these items towards the higher dif-
ficulty end by indicating greater challenges with the items in 
the Social domain. The domain-specific difficulty hierarchy 
revealed by autistic and NT participants may inform future 
conceptualization of prediction challenges and guide empir-
ical research design (e.g., not assuming an equal level of dif-
ficulty across all domains). These results are consistent with 
studies in which autistic participants demonstrate domain-
specific prediction differences with social stimuli (D’Mello 
et al., 2023). Clinicians who administer the PRE-Q should 
consider the distribution of items along the difficulty con-
tinuum when interpreting individual results.

Limitations

The construct of prediction overlaps with other cogni-
tive, social, attentional, and sensorimotor processes; these 
domains may therefore influence responses to items on the 
PRE-Q. For example, prediction may be closely related to 
executive functioning, working memory, or other constructs 
that were not measured in conjunction with the prediction 
questionnaire and whose relationship with prediction are 
not yet well established in the literature. Due to a lack of 
previously developed self-report or standardized behavioral 
measure of prediction, concurrent construct validity of the 
PRE-Q measure could not be analyzed in relation to any 
existing standardized data or measures.

Additionally, bias may have been introduced into the 
instrument at multiple stages of the development process. 

and separation), and item redundancy (logit-measures with 
SEM and variable map) indicated that the PRE-Q measures 
a unidimensional construct. Variable mapping revealed that 
the person and the item mean were similar, suggesting that 
the measure includes items that range across a hierarchy 
of difficulty. Third, the removal of redundant items of the 
questionnaire led to a parsimonious 19-item PRE-Q. Fourth, 
consistent with theoretical accounts of prediction-related 
challenges in autism, variable mapping revealed that the 
autistic participants tended to be clustered on the lower end 
of the distribution, PRE-Q logit scores differed significantly 
by diagnosis, and there were moderate correlations between 
the PRE-Q logit scores and two out of three behavioral 
measures of prediction (tapping imprecision, tapping cor-
rection) for the groups combined, and between the PRE-Q 
logit scores and all three behavioral measures for the autism 
group separately. Both the autistic and NT groups had simi-
lar correlation values between tapping correction and PRE-
Q logit scores, indicating that the self-reported prediction 
skills were relevant to this prediction-relevant performance 
broadly across populations. Taken together, scores on the 
PRE-Q can be used as a composite measure of an individ-
ual’s self-reported prediction-related abilities. These results 
represent the first evidence showing a relationship between 
self-report and direct measurements of prediction-related 
auditory-motor tasks.

Importantly, the methods used for survey development 
incorporated both qualitative and quantitative information. 
The inclusion of comprehension and experience-relevance 
response options (i.e., “Did not understand the question” 
and “Did not have this experience”) allowed for incorpora-
tion of this qualitative information into the item develop-
ment process. At each phase of data collection, items were 
re-worded to improve comprehensibility and to consider 
the reported universality of experiences of each item. Dur-
ing the evaluation process, ideas for new items from autis-
tic individuals were solicited and incorporated, consistent 
with a participatory approach (Pickard et al., 2022). These 
responses were collected via optional online open-text ques-
tions; structured interviews may have yielded more nuanced 
information.

Implications for Autism

Overall, the results from the PRE-Q align with the pro-
posed frameworks of reduced prediction abilities of autistic 
individuals (Lawson et al., 2014; Pellicano & Burr, 2012; 
Sinha et al., 2014; van de Cruys et al., 2014). The signifi-
cant correlations between the PRE-Q scores in the autism 
group and all three prediction-related behavioral measures 
(timing perception, tapping imprecision, tapping correction) 
provide additional evidence that the measure is relevant to 
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can enrich the scientific understanding of the role of pre-
diction in autism and may help to better characterize and 
reduce prediction-related challenges experienced by autistic 
adults.
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While the development team aimed to objectively repre-
sent the diversity and nuance of the prediction construct, 
there may be unaddressed bias in selection of items and 
content that align with their own proposed framework. As 
stated in the methods, the item development panel included 
a majority of individuals (9/10) from the same institution, 
including three individuals who were authors of a paper pro-
posing prediction challenges in ASD (Sinha et al., 2014). 
The knowledge contributed by these subject matter experts 
enriched the development of a precise yet comprehensive 
construct definition, however, their presence on the measure 
development team may also pose a potential limitation in 
objectivity given the team’s investment in prediction as a 
valid and measurable construct as defined in several previ-
ously authored manuscripts. Notably, the author team also 
included two researchers who were affiliated with a separate 
institution and not involved with any work on the prediction 
framework prior to this project; their participation provided 
additional objectivity in the survey development process.

Bias may also have been introduced at the stage of field 
testing. Social Desirability Bias (Fisher & Katz, 2000), cul-
tural values, and other factors such as self-awareness may 
have impacted how accurately individuals responded to 
items. In particular, autistic adults may demonstrate differ-
ences in self-awareness when compared to NT peers (Huang 
et al., 2017; Mazefsky et al., 2011). Lastly, there may be bias 
in who is represented in the sample. Because participants’ 
race and ethnicity data were not obtained, we are unable 
to determine whether the PRE-Q’s validity and relevance 
generalizes to the wider overall population. Future studies 
should include well-characterized, representative samples 
that report race, gender, educational attainment, and socio-
economic status to ensure generalizability.

Conclusions and Future Directions

The present study provides converging evidence that the 
PRE-Q measures the day-to-day prediction skills of autis-
tic and non-autistic adults. Consistent with theoretical 
accounts, autistic adults self-reported greater challenges 
with prediction-related tasks, and self-report of these dif-
ficulties was correlated with behavioral measures of audi-
tory-motor prediction. Future research should validate the 
relationship between PRE-Q scores and additional empiri-
cal measures of prediction (e.g., across various domains 
and sensory modalities), evaluate its relevance to other 
populations for which prediction challenges have been pro-
posed (e.g., schizophrenia, dementia), and investigate the 
relevance of the domain-specific sub-scores independent 
from the composite score. Building upon the initial validity 
evidence of the PRE-Q across research and clinical contexts 
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