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Abstract

Essay One develops a dynamic programming approach to the
theory of optimal social insurance with variable retirement.
Moral hazard problem is caused by the inability on the part
of government to distinguish between those unable to work and
those who choose not to work. Discontinuity is inherent in
the optimization problem with this type of moral hazard
problem. With "Piecewise Regularity, a new concept introduced
to deal with the discontinuity problem, the optimal structure
of wage and benefit is studied. In addition, a comparative
analysis concerning the effect upon the planned retirement
date of an increase in the government subsidy to the retire-

ment insurance fund is presented.

In Essay Two similar questions are considered about
unemployment insurance, using the same method. The moral
hazard problem, however, becomes more complicated since, in
this case, workers make multiple participation decisibns and
are allowed to re-enter the labor market. The analysis shows
that net wage should be nondecreasing overtime during each
spell of employment and that the unemployment benefit should

be nonincreasing during each spell of unemployment.
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Essay One

Moral Hazard and Optimal Retirement Insurance



I. Introduction

In employment related social insurances, such as unem-
ployment insurance or retirement insurance, it is frequently
impossible or prohibitively costly for government to distin-
guish between those who happen to be out of work, being un-
favorabl& affected by nature, and those who choose not to
wprk. In these circumstances, government usually lessens the
cost of this moral hazard problem by making its insurance
payoffs depend upon the employment‘histories of the insured.
The purpose of this essay is to analyse the optimal features
of retirement insurance when government can make insurance
benefits depend upon work histories.

In each period, workers are assumed to face uncertainty
about their abilities to work. Disability is permanent and,
therefore, even those capable are not allowed to re-enter
the labor market once they retire. There is no saving, and
the only variable controlled by a worker is the date of plan-
ned retirement., On the aésumption that workers are identical,
we consider three questions about the optimal features of
retirement insurance : how consumption should be made to
vary with age when working, how the initial retirement bene-
fit should depend upon the age of retirement, and what is

the effect upon the optimal date of planned retirement of



an‘increase in the,goVerﬁmegf subsidy to the retirement in-
surance fund.

The first two questions were studied by Diamond and
Mirrlees in [1] and [2] under the assumption that moral haz-
ard problem is always effective.'The optimal features of re-
tirement insurance were characterized by them as follows :
optimal consumption and the initial retirement benefit should
increase with age when working such that, in each period,
workers are made just indifferent'to continued work.

The primary purpose of the present essay is to show that
this optimal feature of consumption over time is robust. Un-
der very general assumptions, whether the moral hazard pro-
blem is actually effective or not, optimal consumption should
be made nondecreasing with age. The actual effectiveness of
moral hazard problem only makes this monotonic feature of
optimal consumption strict. However, the optimal feature of
the initial retirement benefit will be studied under the same
assumptions as those of_Diamond and Mirrlees' model.

The second purpose of this essaj is to present an analy-
sis of the effect upon the optimal date of planned retire-
ment of an increase in the government subsidy to the retire-
ment insurance fund. Under the same assumptions as those of
Diamond and Mirrlees' model, we will show that an increase

in the government subsidy to the retirement insurance fund
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tends to induce earlier retirement.



IT. The Model

Let instantaneous utilities be specified by the follow-

ing utility functions,

ul(c) utility of consumption ¢ when working
uz(c) utility when able to work but not working
u3(c) | utility when unable to work.

We assume that, at the start of period t, workers (not
yet disabled) face permanent disability with probability Pyis
and that workers are not‘allowed to re-enter the labor mar-
ket once they retire. Any able worker has a marginal product
equal to one.

Remaining lifetime expected utilities are specified as

follows,

Ul(xt;t) remaining lifetime expected utility at period
t of a worker who works in that period, which
is the maximum expected utility attainable
(by government social welfare maximization)
over the remaining n-t+1 periods with initial

resource Xy (including period t output)

Uz(bt....,bn:t) remaining lifetime expected utility at

period t of a2 worker who, though capable, does




not work in that period (and therefore in all
remaining periods) and consumes bt""’bn over

the remaining n-t+1 periods

Uj(bt""'bn‘t) remaining lifetime expected utility at
period t of a worker who is disable at the
start of that period and consumes bt”"'bn

over the remaining n-t+l1 periods.
U3(bt....,bn:t) is simply expressed as
U3(bt,...,bn;t) = u3(bt) + .. + u3(bn). (1)
Uz(bt.....bn:t) is recursively defined as

Uz(b bn;t)

t.n.a'

+ Dyyg Ug(Dyygreeesbyit+l). (2)

For U, and u3 concave and differentiable, U2 and U3 are con-
cave and differentiable.

Ul(xt;t), on the other hand, depends upon whether a
worker should continue to work in period t+1 if able, as part
of social welfare maximization. Let vA(xt;t) denote the re-
maining lifetiﬁe expected utility at period t of a worker

who works in both period t and t+1. It is the maximum ex-



pected utility of the following constrained maximization pro-

blem,
VA(xt;t) =
max ul(ct) + (1 - pt+1) Ui(xt+1;t+1)
subject to
(i) ct + (1 - pt+1)(xt+1 . 1)
FPpyg(Ppyg *+ e + 1)) < Xy (4)

(33) Ug(xg,g3t+1) 2 Up(by j0eeesb st+l), (5)

The maximum is taken over Cir Xypq9 and bt+1 po e ey bn' The
first constraint is the resource constraint and the second
is the moral hazard constraint. Similarly, let vB(xt;t) de-
note the remaining lifetime expected utility at period t of
a worker who retires in period t+l. It is the maximum ex-

pected utility of the following constrained maximization pro-

blem,
VB(xtit) =
max ul(ct) + (1 - pt+1) Uz(bt+1,...,bn;t+1)

+ pt+1 U3(bt+1.o.o.bn:t+1) (6)



A

subject to cy * Dy * eee b = X. (7)

The maximum is taken over Cy and bt+1 yosay bn. Ui(xt;t) is

then defined as the maximum of vA(xt;t) and vB(xt:t).
Uy (xg3t) = max { v, (x.3t), vplxgat) } . (8)

For t = n, Ul(xn:n) is equal to ul(xn).
When the government's initial resource is Y and when we
assume that a worker should work at least one period, the

n-period retirement insurance model is given by

maximize (1 - P;) Up(xy31) + py Us(byseensb i) (9)
subject to
(i) (1 -py)xqy - 1) +py(by + .eu +D) SY (10)
(ii) Uy(xq31) 2 Uy(byseeayb 31), (11)

Before we are engaged in the analysis of the recursive
system defined above, we should here note the equivalence
between the recursive model and the non-recursive model for-
mulated by Diamond and Mirrlees.

First, an optimal retirement insurance scheme for the
recursive model, with the date ofiplanned retirement R+1, is

specified by a series of optimal solutions,

(c%v x%.‘,ll b%+1(t+1) yeesy b;(t"'l))o



to the constrained maximization problems defined by (3), (4),

and (5) for t = 1,...,R-1, and an optimal solution,
(Cﬁ- b§+1(R+1) yeo ey b;(R+1)).

to the constrained maximization problem defined by (6) and (7)
for t = R. The numbers in the parentheses refer to the date

of (voluntary or involuntary) retirement.

x‘{ b‘]':(l)' b’é(l) es s 000 s 000 ' b;(l)
ct XE bg(Z) esseaoces e s s b;(Z)
Cﬁ_i X§ eos 0 e 0 0s 0 bﬁ(R)' b§+1(R) [} bg(R)
C§ seees 08000 bﬁ+1(R+1) L) b;(R"'l)

The first row is an optimal solution to the constrained maxi-
mization problem defined by (9), (10), and (11). The pair of
these optimal solutions for any consecutive two periods are
interrelated by the condition that the initial resource Xy
in the constra2ined maximization problem of period t is given
at the level x% which is a component of the optimal vector
to the constréined maximization problem of period t-1.
Now let's consider the non-recursive system. Let VS+1

denote the lifetime expected utility of a worker who plans



to retire in period s+l.

vs+1 -
S { t
;Eo Qi 41 réa uy(c,) + U3(bt+1(t+1)....,bn(t+1);t+1)}
_ S S .
+ (1 - éEo Qypq) {551 uy(e) + Uz(bs+i(s+1),....bn(s+1);s+1)}
where
q-t+1 = (1 - pl)(l - pz) L] (1 - Pt) Pt_,_l .

An optimal retirement insurance scheme for the non-

recursive system, with the date of planned retirement R+1,
R+1

is then maximizing V subject to the resource constraint
I ( I F oo (t+1) )
L q , ¢ -t + b_(t+1
t=0 *1 T ps1 T r=t+l T
(1- £ q)( L E o (re1) )
+ (1 - 1L q c. -R + b (R+1
f=0 t*170 pop T - r=R+1 ¥

Y

A

and the moral hazard constraints

VR+1 .-Z VS+1 fOI‘ S = 0 poesoey R-ln
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We start from a given optimal retirement insurance scheme

for the non-recursive system

bf*(l)' bg*(l) R EEEEEEENER b;*(l)
0'1*:* bg*(z) R R R R R A} b;*(Z)
’Jﬁfl .‘ll.l.'l!.l bﬁ*(R)' bﬁil(R) es o b;*(R)
Cﬁ* : seessesesse . bﬁ:i(R"'l) e as b;*(R""l)

From this optimal insurance scheme, we recursively define

auxiliary variables xI* gacey xﬁ* as follows.

| n
xE¥® = c#* + Z b**(R+1)
R R r=R+1 T
n
xpr o= ofr 4 (1 - b))ty - D)+ pey B vpr(E).

We prove that the given optimal insurance scheme for the
non-recursive system, together with the auxiliary variables,
constitutes a feasible insurance scheme for the recursive

system. Using the equality

s t _ s ]
qt+1 g (C;* - 1) = t§1 (C%* - 1) rét qr+1 []

t=0 r=1
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we can transferm the resource constraint into

R t-1 n .
+ 5 (1- ) ¢q Y(c** - 1 +p X bEx(t+1) )
£=1 p=o TTL77T LT T

R n
+ (- X a.) L

b**(R+1)
r=0 r=R+1 r

n
Py r§1 bX*(1) + (1 - py)(xp* - 1)

£ v.

The equality was derived from the definition of x%*'s and the
relationship

t-1
L - gE% Qneq = (1 -p)(2 -py) oo (1 -py) .

The given optimal insurance scheme is maximizing the
lifetime expected utility of a worker who plans to retire in
period R+1 subject to the resource constraint and the R moral
hazard constraints. The variables in the first row of this
cptimal insurance scheme (bI*(l) pe sy b;*(l)) appear on the

left-hand side of the moral hazard constraint
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vR* >yl

in the form
Py Uy (0f*(1)0. 0 DA (1)11)
and on the right-hand side in the form
Py U’B(b*{*(i).....b;*(l)s'i) + (1 -py) Uz(b*{*u)....,bg*(im).

However, in the remaining R-1 moral hazard constraints

L)

VR+1 2 VS+1 for s =1 ,..., R-1

they appear on boih sides of each constraint exactly in the
same term. Therefore, they are cancelled out. The remaining
R rows of the optimal insurance matrix, on the other hand,
appear only on the left-hand side of the first moral hazard
constraint, and on both sides of each of the rehaining‘R—l
moral hazard constraints. This implies that the variables in
these remaining R rows must be maximizing the lifetime ex-

pected utility yR+1 subject to the resource constraint

E oo e, -1 Fob_(t+1) )
1 - - + b (t+1
1 - F ) & b.(R+1) S ( )
r=0 Ir+1 r=R+1 T - P1 1 )

and the R-1 moral hazard constraints
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VR+1 2 VS+1 fOI‘ S = 1 p oo oy R-ll

This maximum value of the lifetime expected utility is equal

to
(1 - py) Uy (xf*s1) + by Uy (b3*(1),0s,bE*(1)51)

of (9) in its economic sense, although we have not proved
the equivalence between the mathematical expressions of these
two terms yet.

Now the variables (c{*, bg*(z) yeesy b;*(Z)) in the
second row of the optimal insurance matrix appear only in

the moral hazard constraint

VR+1. z vz.

The remaining_R%l rows of this matrix appear only on the
left-hand side of the above moral hazard constraint and on
both sides of each of the remaining R-2 moral hazard con-
sfraints. We can therefore repeat the same argument. In this
way, we can show that the given optimal_retirement insurance
scheme for the non-recursive system, together with the auxi-
liary variables, constitutes a feasible insurance scheme for
the recursive system. The equivalence of the mathematical
expressions which we have left unsettled is automatically
established once we reach the end of this repetition. Since

an optimal retirement insurance scheme for the recursive sys-
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tem is always feasible for the non-recursive system, we have

thus established the equivalence of these two systems.
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ITI. Remaining Lifetime Expected Utility

The optimal structure of retirement insurance depends
upon the nature of remaining lifetime expected utility
Ul(xt:t). In this section, we inquire of properties of that

function. The following concept has the primary importance.

Definition (Piecewise Regularity) A real-valued function
f(x), defined on an interval (-d,0e) for a nonnegative num-
ber d, is called piecewise regular if f(x) has the following

properties,

(i) Monotonicity : f(x) is strictly increasing
(ii) Continuity : f(x) is continuous
(iii) Left- and Right-Hand Derivatives : the right-hand

derivative, f+(x), is at least as great as the left-hand

derivative, £ (x)

(iv) End-Point Properties
lim f(x) = -o0 lim f'(x) = o
x 9+ -d X » -d
lim f(x) =o°0 .,
X » 00

A piecewise regular function which is not differentiable
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is not concave by property (iii). A differentiable piecewise
regular function is called regular. A regular function is not
necessarily concave. In this section, we assume regularity
and concavity for instantaneous utility functions, and, by

induction, derive piecewise regularity for Ul(xt;t).
Assumption R : Ugs Uy, and u3 are regular and concave.

We also derive important relationships among instanta-
neous utilities and remaining lifetime expected utilities in
equilibrium. For convenience, we assume 0 < Py < 1 for any

t. In the follbwing lemmas, we use the notations

uj(cy) = dul(ct)/'dct

U7 (x,1t) and U;(x,1t) are the left- and right-hand
derivatives of Ul(xt;t) with respect. to Xy If Ul(xt;t)
is differentiable at xgr Uj(xgit) = dUl(xt;t)/dxt A

Uij(bt+1....,bn:t+1) is the partial derivative of
Ui(bt+1,....bn:t+1) with respect %o bj (i = 2 and 3,

and j = t+1 ,..., n).

Lemma 1 Let Ul(xt+1}t+1) be a piecewise regular function.
Under Assumption R, U1(xt;t) can be expressed in one of the

following three forms (labelled Ai, Aii, and B).
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(A) When, for a given Xy» a worker should work both in

period t and t+1,

Ug(xp3t) = vp(xyit)

uy(eX) + (1 = py,g) Uy (xE,,5t41)
* Py U3(b%+1,....b;;t+1) (1?)
where |
(1) if the moral hazard constraint (5) is binding,
Uj(xg,13t+1) < ujled) < Ugs(bf,q0e..Dkit+1)
for j =1t+1 ,..., n (13)

and (c%, X% 10 b%+1 g ooy b;) are obtained by solving the

following n-t+2 equations

Ui Pyag Ugy * (1 -pyyy) Upy
u; Pisg U7 + (1 - piyy) Upj

for j = 1t+1 ,..., n (14)
Uy (x,5t41) = Uy(b¥ 4,00 c,D¥5t+1) (15)

et + (1 - peyg)(xtyy - 1) + Py (PE gy + ovn +D2)

Xy (16)
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( Note that, in general, it is not the case that U33 is

constant over j. Note also that this statement implies
that Ul(xt+1't+1) is differentiable at x¥ .4 ).

(ii) if the moral hazard constraint is not binding,

(c%. x$,q9r ¥4 1+00s b¥) are obtained by solving the
following n-t+l equations together with the resource con-
straint (16).

Ui(x%+1;t+1) = ui(g%) = U3j(b§+1....,bagt+1)

for j = t+1 ,..., n (17)

(B) ~When, for a given X,s @ worker should retire in period

t+1,

Uy(xyst) = vB(xtst)

ui(cz) + (1 - pt"’l) Uz(b%.l_l'on-,b;it"'l)
+ pt+1 Uj(b%+1"..’b;;t+1) (18)
where (c%, bEyg veeen bg) are derived by solving the fol-
lowing n-t+1 eguations
ui(c%) = (1 - pt+1) Uzj(b%+1....,b;;t+1)

for j = t+1 ,.;., n (19)
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(20)

Proof

Uy (x,it) is defined as the expected utility of an opti-
mal solution, (c%, x§+1. b§+1 yooes b;), to the constrained
maximization problem defined by (3), (4), and (5), or that
of an optimal solution, (c%, b%+1 yoeay b;), to the con-
strained maximization problem defined by (6) and (7). The
only complication in the proof of the lemma is the differ-
entiability of Ul(xt+1;tf1) in case A. We first derive the
equilibrium relationships among c% and b%+1 pecey b; for case
A (bdth (i) and (ii)), keeping Xt41 fixed at an optimal level.
We can then apply the Kuhn-Tucker theorem. The first-order

conditions are given.by'
uj =r ' (21)
Ujj =r + (s/pt+1) U2j for j =1t+1 ,..., n (22)

where r and s are the Iagrange multipliers corresponding to
the resource constraint (4) and the moral hazard constraint
(5) respectively.

We shall now consider the effect upon the total expected
utility (3) of an increase in Xip1? keeping the resource con-

straint and the moral hazard constraint. When the moral haz-
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ard constraint is binding at (c%. x§+1. b§+1 se ey b;), the
deviations in (ct, bt+1 peoay bn) compensating an increase

in Xy 41 must satisfy the equations

dey + (1 - pt+1) dxt+1 + Pt+1(dbt+1 + o0 + dbn) =0 (23)
+ ’
The effect upon the total expected utility is given by
, +
av = ug dct + (1 - pt+1) U, dxt+1

Multiplying the left-hand side of {23) by r, using (21) and
(22), and subtracting the resulting expression from (25),

n

+
dav = (1 - U, - r) dx + U,. - db.
(1 - Pyyg)(Ug - 1) dxpyy + Pry j;§L1 (Ugj - r) dby
(1 )(U; - r) r (8)
= - D U, - r) dx + s U,. db. 2
t+17'71 t+1 jot+1 23 77

By (24) and (26), dV is then expressed as

qv

+ +
(1 - pt+1)(U1 = r) dxt+1 + s U1 dxt+1

((1 - Dyyq) +8) Up dxpyy = (1 - Pyyy) Tdxg,y  (27)

This must be nonpositive and, therefore,
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+ < 1—p-t:+1
(1 = pt+1) + S

(28)

since dxt+1 is positive.
When x4 is reduced from x¥. 4 by dx, ., < 0, the cor-
responding effect upon the total expected utility (3) is ob-

tained by simply replacing UI in (27) by Ui .

dv = ((1 - pt+1) + S) U1 dxt+1 - (1 - pt+1) r dxt+1-

A

Since dxt+1 is negative, dV = O implies

1 - Piua
(1 - Pgyq) *8

(29)

v
"

Uy

Combining (28) with (29) and the piecewise regularity of
Ul(xt+1;t+1). Ul(xt+1;t+1) becomes differentiable at x¥,
and

1 -p
Uy = t+l r. (30)

(1 - pt+1) + s

This equation holds whether s is positive or zero. When s
is positive, we obtain, from (21) , (22), and (30), the in-

equalities

Uy < u; < Uéj ; ~for j =t+1 ,..4, n

Solving (30) for s,
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(1 - )(r - Uy)
s = pt+1 - 1 . (31)

Ui

Substituting r and s into (22),

1 - Py (uf -U7) Uy

U,. = uy +
3] 1 :
Pis1 Ug
or
Uy Pgyr Uy 1 - pt+1) UZj

When the moral hazard constraint is not binding at

(c%v x%+1v b%+1 pes ey b;)o (21), (22), and (30) imply

Ui = ui = U3j .

Phis completes the analysis of case A. There is no compli-
cation in analysing case B since Ul(xt+1:t+1) does not enter

the expression for Ul(xt;t) in (18).

In order to apply Lemma 1 for t =1 ,..., n-1, we derive
the piecewise regularity of Ul(xt;t) by induction.

Ul(xn;n) = ul(xn) is piecewise regular by the regularity
of uy. A function f(x) = max (g(x). h(x)} is piecewise reg-
ular if g(x) and h(x) ére both piecewise regular. In (8),

VB(xt’t) is a regular function since it is the optimum value
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of the ordinafy constrained maximization problem, (6) and (7).

It remains to show the piecewise regularity of vA(xt;t).

Lemma 2 If Ul(xt+1't+1) is a piecewise regular function,
the optimum expected utility, VA(xt’t)’ of the constrained
maximization problem defined by (3), (4)., and (5) is also a

Piecewise regular function of Xyo In addition,

v;(kt;t) min {ui(c%)l (c%,x%+1,b%+1,...,b;) (2 EA(xtat)}

vx(xt;t) max {ui(c%)l (c%,x§+1.b¥+1.....b;) € EA(xt;t)]

(32)

where EA(xt;t) is the set of optimal solutions to the con-
strained maximization problem. v;(xt;t) and vz(xt;t) denote

the left- and right-hand derivatives of vA(xt;t).

Remark : The relevance of the conditions in (32) is ex-
plained as follows. If we can derive the piecewise regular-
ity of Ul(xt:t). for t =1 ,..., n, by induction, we obtain,
by Lemma 1, a series of optimal conditions (13) or (17) or
(19) for optimal retirement insurance. But the pair of these
optimal conditions of any consecutive two periods cannot be
linked togethgr. ﬁnless ui(c%) in (13), (17), and (19) and
Ui(xt;t) are interrelated to each other. (32) provides us
with this interrelation. It can be interpreted as a kind of

"~ the envelope théorem.
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Proof :

Before we derive the four conditions of the piecewise
regularity, we must show that there always exists an optimal

solution to the constrained maximization problem.

Non-emptiness of EA(xt;t) : Let us suppose (-4,00),

d > 0, to be the domain of Uy(xyq1t+l). Let F(x,:t) be the

feasible set of the constrained maximization problem. F(xt;t)
is the set of vectors (ct.rxt+1, bt+1 g oe sy bn) which satisfy
the resource constraint, the mora]fhazard constraint, and

the boundary constraints

2 d, b, 20 (j = t+1 ,..., n)

;O' J

Xt+1

F(xt;t) is not empty since we can construct a feasible solu-

tion (Et, it+1' Bt+1 s ooy Bn) as follows. Let x 4 be an

t+
arbitrary number in the interval (-4, X, * (1 - pt+1)). We

then choose (b geeey Sn) sufficiently small so that the

t+1
moral hazard constraint and the inequality

(1 - pt+1) xt+1 + pt+1(bt+1 + a0 + bn) <: xt + (1 - pt+1)

are both satisfied. Finally we set Et as

Ct = xt - (1 f pt+1)(xt+1 - 1) - pt+1(bt+1 + [N} + bn)u

and define K(xt;t) as the set of feasible solutions

Let U be the expected utility of (Et. x
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(ct. xt+1, bt+1 po ey bn) SuCh that

ul(ct) + (1 - pt+1) Ul(xt+1't+1) * Pist Uj(bt+1""'bn't+1)

v

U .
K(xtat) is a compact set and does not contain any boundary
point. Therefore, ul(ct). Ul(xt+1;t+1), and U3(bt+1.....bn|t+1)

are all continucus in'K(xt;t), and there must be an optimal

solution.

We shall now derive the four conditions of the piecewise

regularity.

Monotonicity of vA(xt;t) : This is obvious from the

nature of the constrained maximization problem.

Continuity : Since vA(xt;t) is the maximum of a conti-
nuous function over a well-behaved constraint set, it is

clearly continuous.

Left- and Right-Hand Derivatives : Let G and u be defined

as

(<]
n

nﬁm1{ui(c%)| (c%rx%+1,b%+1....,bg) ﬁ,EA(xt;t)}

e
|

_ : | A
max {uj(ct) | (ct,xg, D q0eeniol) EE (xt) ]

We first prove that
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VA(xt + h;t) - VA(xtst)

lim inf
k +0 0<&h{1/k

s
[}

h

vA(xt + hit) - vA(xtst)

lim sup

k +00 0<h<1/k h

The following properties are derived from the definition

of the dptimum expected utility vA(xt:t).

1° For any X, if (c%. x%+1. b§+1 yo ooy b;) § EA(xt;t).
then (c% + h, x{+1. b%+1 yesey bg) is feasible for x  + h.

Therefore, when | h |-is sufficiently small,
vy(x, +hit) - vp(xgit) 2 ujled) b+ o(h) (33)
where o(h) is a term such that o(h)/h » 0 as h » 0. In

addition, dividing both sides of (33) by h,

vA(xt + h;yt) - vA(xt:t)

" 2 u]'.(c%) + o(h)/n (h > 0)
(34)
and
(x, + hsf) - vplx st
AT a0 o Ler) som (< 0)

h

(35)
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2° Let EA(xt + hklt) be the set of optimal solutions to

the constrained maximization problem corresponding to x, + h

t k'

and (c{®), x{K) p{) . p(K))g pA(x . hy1t). Then the

sequence of vectors

RN N S I

contains a convergent subsequence whose limit vector
(c%, x%+1. b%+1 yeeny b;) is contained in EA(xt;t).

In 2°. the existence of a convergent subsequence is
shown by the compactness of K(xt;t), which we constructed in
the proof of the non-emptiness of EA(xt;t),'and the monoton-
icity of vA(xt + hk;t) with respect to hy. It is easily shown
that the limit vec-ior of a sequence of optimal vectors cor-
responding to x, + h, is optimal for'xt.

From Property 1°, we can immediately derive the inequal-
ity

vy(x, + hit) - v, (x,:t)
;s lim inf At ATt

k »00 0<hcgl/k

(36)

cu

h

We shall now prove the inequality

vy(x, + h3t) - v, (x,3t)
lim sup At At (37)
k »00 O0Ch<1/k h

cn
v
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Let us suppose the contrary. Then there must exist a

sequence of positive numbers {hk} + 0 such that

h

(38)

[ ]
+
m

v

k

for a positive constant a. We can choose {'hk}' such that,

for each k, there exists an optimal vector corresponding to

+ hy, (cék), x(k) b(k) yoeas bék)). which satisfies the

Xt t+1' Pt+1

inequality
uj(elk)) 2 G +a. o (39)

If we can choose such a sequence, then, by Property 2°, we
can construct a convergent subsequence of these optimal vec-
tors whose limit (c%. x%+1, b%+1 yo ey b;) is contained in

EA(xt:t). But this contradicts the definition of Q1 since
ug (c¥) _.?._. u + a,

It remains to show that we can actually choose a sequence
'{hk} » 0 which has the required properties. Let hk be a
positive number for which (38) is satisfied but (39) is not.

That is
ui(c%) < u+a

for any (c%, x%,4s DE 4eeey DX) € EM(xy + hyit)
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Then, by Prope}ty 1°,

;Zﬁ(xt + hit) - vA(xt + hk;t)

' (c* h-h, )/(h-h
— < ujle) + o(h-h)/(h-hy)
< 40 +a+ o(h-h,)/(h-h,)
for h < b (40)

Let us consider the graph of vA(xt + hyt) in fig.1.

v Y ldealh=A") + V°

A (hy. V(o +hrit))

Yem Uyl(Lp+A;T)

A

fig. L
We take (xt. vA(xt;t)) as the origin, and draw the curve
v = vA(xt + h;t) in h - v coordinates. Inequality (40) then
says that, if we draw a straight line passing through point
A with a slope equal to a + a, there is a point on the curve
v = vA(xt + h;t) between A and the origin which lies above
that straight line. Since the curve v = VA(xt + hit) is con-

tinuous, we can choose point (n°, v®) on the curve such that
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the straight line passing through (h®, v°)
v=2(a+a)h - 1n°) ++°

supports the curve at (h°, v°) over the interval (0, hk)°

In other words,
valxy + hit) € (@ +a)(h - 1°) +v° (41)

for any h such that 0 £ h £ h,. Dividing both sides of (41)

k
by h - h? < 0, we obtain

vA(xt + h;t) - VA(xt + h%;t) (42)

v
cn
+
)

h - n°
On the other hand, by Property 1°,

o
VA(x_t + h;t) - VA(xt + h ;t)
h - n°

ug (c%) + o(h-h° )/(h-—ho)

HA

(43)

for any (c%. X¥iq0 DEiq reees b;) € EA(xt + h®;t). Combining
(42) with (43), we obtain the desired inequality
uj(c¥) 2 u +a

for (cf, xt,q» bX,q s.ees B2) € E(x, + 1°it). Therefore, if
we redefine hk by n°, hk satisfies the required condition.

We have shown the existence of the right-hand derivative,
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vz(xtat). and the equality
+ =
vA(xt;t) = u,
The existence of the left-hand derivative, vx(xt;t).
can similarly be shown. First, Property 1° implies

hjt) - t
i 1 sup valxy + hyt) - vp(x.it) )

k #0600  -1/k<¢h<0 h

The inequality

v,(x, + h;t) - v,(x ;t)

ﬁ;s 1lim inf

k + 00 -1/k<h<0 h

must also be satisfied. Otherwise we can construct a conver-
gent sequence §f optimal vectors whose limit violateslthe
definition of u. (44) and (45) then imply the existence of
the left-hand derivative, which is equal to u.

The third requirement of the piecewise regularity that
the right-hand derivative is not less than the left-hand

derivative then follows from the definition of U and u.

End-Point Properties : This condition is also obvious
from the nature of the éonstrained'maximization problem.
When Ul(xt+1;t+1) is defined upon (-d, €@), the domain of

Ul(xt:t) is derived from the resource constraint by substi-
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tuting cy = bt+1 = cee = bn = 0 and Xpgpg = -d. The lower end

of the domain of Ul(xt't) is Xy = - (1 - pt+1)(d + 1),

Q. E. D.
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IV. The Structure of Optimal Consumption

In this section, we consider the implications of Lemma
1 and 2 of the previous sect}on for the structure of optimal
consumpticn, (c{. c% seeen CR 4 cﬁ). over time. In the next
aection, we study the same problem under the assumption that
the moral hazard problem actually exists. The relationship
between the initial retirement benefit and the age of retire-
ment will be discussed in Section YI. In the final section,
we will analyse the effect upon the optimal date of planned
retirement of an increase in the government subsidy to the
retirement insurance fund, Y. We will also consider the op-
timal relationship between x%+1 and the sum of b§+1(t+l),

es e b;(t"‘i)-

Theorem 1 If instantaneous utility functions are regular

and concave, under optimal retirement insurance,

(i) consumption should be made nondecreasing with age

when working, and, in addition,

(ii) workers are just indifferent to continued work while
consumption is increasing, and consumption is constant
during the periods when workers prefer to continue work

if able.
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Proof

By Lemma 1, (c¥_;, x%, b¥(t) ,..., b¥(t)) and
(c%. x¥i10 b%+1(t+1) se sy b;(t+1)) must satisfy either (13)
or (17).c .

Uj(x$st) S ujlet_y) (46)
Uj(xd, it+1) S uj(ed). (47)

In this'pair of inequalities, Ui(x;;t) in (46) and ui(c%) in

(47) are interrelated by the condifions
Ul(xgat) = max {VA(X%;t), vB(x%:t)}
and

valxtit) < ujled) £ vilxtit). (48)

The second inequality is obtained from (32) of Lemma 2.
When a worker is working (t < R), VA(X%;t) is at least
as great as VB(X%:t). If VA(xggt) is strictly greater than

;VB(xtit)o
UT(xE1t) = vy(x2st) and UI(ngst) = vZ(x;;;t).

But Ui(xt't) is differentiable at x%; Therefore



If vA(xggt) and vB(xgst) are equal,

UT(x#1t) = min { v(x%:t), v3(x%st)}

U.I(xg;t) max { vZ(xggt), vé(x%;t)}

since vB(xt;t) is always differentiable. Therefore, the

differentiability of Ul(xt't) at x} again implies

Uj(x$1t) = va(x$it) = vi(x¥it) = uj(c¥). (50)

Now substituting Ui(x%;t) = ui(c%) into (46), we obtain the

desired inequality
uj (c¥) < uj(c_4).

That is c¥ 2 c¥ .

If consumption is increasing with age (i.e., c¥ is
greater than c%-l)' only (13) is relevant instead of (46).
This is the case when the moral hazard constraint is binding,

that is
Ul(x%fh) = Uz(b%(t)n . -lb;(t)it)o

A worker is just indifferent to continued work.

Similarly, if a worker prefers to continue work when
able, only (17) is relevant instead of (46). In this case,
(49) or (50) implies that ui(c%) = ui(c%_l).
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V. Moral Hazard Condition

We have shown in Theorem 1 that workers are just in-
different to continued work while consumption is increasing.
In their studies of social insurance with variable retire-
ment, Diamond and Mirrlees characterized the optimal struc-
ture of consumption that consumption should increase with
age wheh working if the moral hazard problem is actually ef-
fective. They then proposed a sufficient condition for the
moral hazard problem to be effective, which they called moral

hazard condition.

Definition (Moral Hazard Condition) Uys Uo, and uq are

said t- satisfy moral hazard condition when
ui(cl) = ué(cz) implies ul(cl) < uz(cz) (51)

In our terminology, moral hazard problem exiéts when
the moral hazard constraint (5) is binding. If the moral
hazard constraint is binding, the corresponding lagrange
multiplier s is positive and, therefore, the optimal solution
must satisfy (13). From the analysis in the previous section,
this implies that c%_l < c¥. The only difference between
this statement and that of Theorem 1 is that indifference to
continued work does not necessarily Qean the existence of

moral hazard problem.



In this section, we prove that consumption should act-
ually be made to increase with age when working if the moral

hazard problem is effective.

Assumption M : Instantaneous utility functions satisfy the

moral hazard condition (51).

The moral hazard condition (51) is a special case of

the following condition for t = n.
+ .
Ul(xt;t) = Ujj(b,...,b;t) (3 =t 4000y n)

For convenience, we state as a lemma an immediate implication
of this condition for an optimal solution to the constrained

maximization problem defined by (3), (4), and (5).

Iemma 3 When Ui(xt+1;t+1), U2(bt+1,...,bn;t+1) and
Uj(bt+1""'bh‘t+1) satisfy condition (52), the moral hazard
constraint (5) is binding and, therefore, an optimal solution

must satisfy (13).

It remains to derive moral hazard condition (52) for re-
maining lifetime expected utility functions by induction from

the moral hazard condition of instantaneous utility functions.



For this purpose, we need an additional assumption.
Assumption U : uz'(c) é u3'(c) for any c .

This assumption is satisfied, for instance, if the disutility

of disability can be expressed in monetary term as
u3(c) = uz(c - 1)

where 1 is the monetary cost of disability.

Now we prove the following lemma.

Lemma 4 Let Uy(Xy,q3t+1), Up(by qsees,b st+1), and
U3(bt+1,....bn;t+1) satisfy the moral hazard condition (52),
and u, and uq Assumption U. Then Ul(xt:t). Uz(bt""'bn't)'

and UB(bt....,bn;t) also satisfy the moral hazard condition.
Proof :
Let us suppose Xy and b to satisfy
U5 (xyit) = Ups(breaisbit) (5= % 4eery n) (53)

From (32) of Lemma 2, there exists an optimal solution

(c%, x§+1, b%+1 peos oy b;) which satisfies the equality
+
Ug(xgst) = ug (c¥). (54)

or, if vA(xt;t) < vB(xt;t). there exists an optimal solution
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(c%, b%+1 pes ey b;) which satisfié§ (s54).,

In the first case, |
Ui(xt;t) e ul(c%) + (1 - pt+1) Ul(x%+1;t+1)
+ pt+1 Uj(b%_l_l'oco.b;:t"'l)
where, by Lemma 3,
Ui(x%ﬂ;tﬂ) < ui(cfl‘_") < Uaj(b%_,_l,...,b;;tﬂ)
for j=1t+1 ,..., n
Then from (53) and (54)
ui(c%) = U3t(b,....b;t) = ué(b).
and from (53), (54), and (56)
UBj(b%‘l'l'...'b;:t.'.i) > UBJ-(b.-an.bﬁt)
for j =1t+1 ,..., n
By Assumption M, (57) implies
ul(c%) < u2(b).
On the other hand, (58) implies

b1 < for § = t+1 ..., n.

(55)

(56)

(57)

(58)

(59)



Therefore, combining these results together with (55), we

obtain

Uz(b|.lo'b=t) uz(b) + (1 - pt+1) Uz(b,.oo'b=t+1)
D> ug(ef) + (1 - pyq) Up(b¥ iheee,DXit4l)

+ pt+1 U3(b%+1’|n|’b;3t+1)

ul(c%) + (1 - pt+1) Ul(x§+13t+1)

+

pt+1 U3(b%+1.-oo'b;3t+1)

Ul(xt;t).
In the second case,
Ul(xt;t) = ul(c%) + (1 - pt+1) U2(b%+1,...,b;;t+1)
* Py Uj(b%ﬂ.....b;;tﬂ) (60)
where
uj(ed) = (1 - pyyy) Ups(bfgs... bRit+l)
+ pt+1 U33(b%+1gonl'b;'t+1)

fqr' j=1t+¥1 ,..., n (61)

Since Uzj(b%+1,...,b;;t+1) is a weighted average of ué(bg)
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and ué(bg), (61) implies, by Assumption U,
uj(ct) £ Ugs(Pdyqre e ibRit+l) = uj(ot), (62)
Combining (53), (54), and (62), we obtain the inequalities
bg ;5 b for j = t+1 ,..., n.

Therefore, from (60) and (59),
Ul(xt;t) = ul(c%) + (1 - pt+1) Uz(b%+1,...,bﬁgt+1)
,”+ Piiq U3(b%+1,...,b;;t+1)
< uy(b) + (1 i Py,q1) Up(byone bitsl)
+ Dyyg Uglbyoes,Ditl)
= Ué(b.....b;t).

Q. E. D,

Combining Lemma 3 and 4, we have shown

Theorem 2 If instantaneous utility functions satisfy
Assumption R, M, and U, then consumption should be made to
increase with age when working under optimal retirement in-

surance.
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VI. The Structure of Optimal Retirement Benefit

In the rest of this essay, we analyse the special case
where the difference between instantaneous utilities when a
worker is unable to work and when capable but not working is

constant and independent of consumption.
Assumption U' ué(c) =.ué(c) for any c .

In fhis case, the retirement benefit for a worker who
retires in period t, bg(t), is constant over j but the level
bg(t) = b*(t) depends upon the age of retirement t. The ques-
tion is how the retirement benefit should depend upon the
age of retirement. In this section, we consider this question
under Assumption R, M, and U"'.

For convenience, let us introduce two notations for con-

stant terms

z(t) = (n-t+1) uy (b) - Uy(byene,bit) (63)

2(t) = Uy(b,...,0;t) - (n-t+1) u3(b) (64)

(n-t+1) uz(b) and (n-t+1) u?(b) are the maximum and minimum
remaining lifetime utilities of a worker who retires in peri-
od t and receives retirement benefit b over the remaining

(n-t+1) periods. z(t) is the difference between this maximum
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utility and the remaining lifetime expected utility of a
worker who is capable but retires in period t. Similarly,

z(t) is the difference between the remaining lifetime expected
utility and the minimum lifetime utility. z(t) and z(t) are
both independent of retirement benefit b. z(t) and z(t) have

the following relationship
z(t) = z(t+1) + Py 1 z(t+1). (65)

This is derived from the definition of U2(b,...,b;t) as fol-

lows

i(t) (n-t+1) uz(b) - Uz(b.....‘b:t)

(n-t+1) uy(0) - {up(d) + (1 = py,y) Uplb,unn,bitl)

* Piy U3(b,...,b;t+1) }

(n-t) uz(b) - Uz(b.....b;t+1) * Piyq z(t+1)

z{(t+l) + Pi4q z(t+l),

Since the moral hazard constraint is binding for
t=1,..., R, 2 worker is just indifferent to continued

work.

Ul(x‘t:t) Uz(b*(t)l-“*lb*(t)lt)

(n-t+1) u, (b*(t)) - Z(t). (66)
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For t =1,..., R-1, Ul(xggt) is written as

Ul(x%‘t) ul(c%) + (1 - p't'l'l) Ul(x%_,,lit"'l)
* Piyg Ug(0*(t+1), .00, 0% (t41) ;5 141)

ug(ed) *+ (1 - pyyy) { (%) wy(ox(t41)) - F(41) }

* Piya { (n-t) u, (b*(t+1)) - z(t+1) - §(t+1)}
The last equality was derived from the definition
Ua(b'noa'b‘t+1) = (n-t) u3(b).
together with (63) and (64). Therefore, using (65),
Uy (x23t) = uy(ed) + (n-t) u,(b*(t+1)) - Z(t). (67)

Similarly, Uy(x¥;t) is written for t = R as

Uy (xXsR) = uy(c¥) + (1 - Pp,q) U (b*(R+1),...,b%(R+1);R+1)

+ PRyg U(D*(R41)y ... b*(R41)jR¥1)

ul(cﬁ) + (n-R) uz(b*(R+1)) - z2(R)

which is expressed as a special case of (67).
If we compare (66) with (67), it will immediately be
recognized that

ugled) - uy(0%(8)) = (n-t) {uy (0*(8)) - uy(o*(2+1)) ) (68)
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Y
This is a direct implication of the equality between the re-
maining lifetime expected utilities of a worker when he re-
tires in period t and when he continues work. That is, if a
worker is just indifferent to continued work but the instan-
taneous utility is less when working than when he retires,
then he must expect to receive a higher retirement benefit
by postponing his retirement.

We shall now prove

Lemma 5 Under Assumption R, M, and U', an optimal solu-

tion (cI veeer CFy XF 4.l XX, b*(1) ,..., b*¥(R+1)) satisfy

Uy (x¥5t) > (n-t+1) uy(c¥) - z(t) : (69)
Uy (b*(t), 000 b*(2)5t) = (n-t+1) u,(b*(t)) - z(t) (70)
Remark : The equality between Ul(xg;t) and Uz(b*(t),...,b*(t);t).

together with (69) and (70), then implies

uy (e2) < uy(b*(t)). (71)

Proof :

(70) is the definition of z(t) itself, and we need only

to prove (69). For t = R, (cﬁ, b*(R+1)) must satisfy (19).

ui(cﬁ) = (1 - pR+1) Uzj(b*(R+1),...,b*(R+1);R+1)
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+ PR+1 U3j (b*(R+1)"'°'b*(R+1);R+1)
= ué(b*(R+1))_
By the moral hazard condition, this implies
ul(cﬁ) < uz(b*(R+1)).

Then (69) follows from (67) for t = R.
Let us assume that (69) holds for t+1. Then (71) also
holds for t+l. Therefore, from (67), (?1), and the relation-

ship between c% and c§+1, we obtain

Uy (x23t) = uy(c#) + (n-t) u,(b*(t+1)) - Z(t)
> uy(ct) + (n-t) uy(c¥, ) - z(t)
> (n-t+1) uy(e¥) - z(t).
Thus we have proved

Theorem 3 Under Assumption R, M, and U', the retirement

benefit should increase with the age of retirement.
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VII. Optimal Date of Planned Retirement and Government

Subsidy

In this section, we analyse thé effect upon the optimal
date of planned retirement of an increase in the government
subsidy to the retiremént insurance fund, Y. We consider this
question in the special case which we discussed in the pre-
vious section,

For convenience, we change the order of maximization
in the definition of Ul(xt;t). Let xt+1(y) and bt+1(y) be

the unique solution to the pair of equations
Uy (xp4q3t+1) = (n-t) u,(b) - z(t+1) (72)
(1 - piq)(xiyy - 1) * Py (n-t) b = y. (73)

We must note that we changed the meaning of the subscript of
bt+1(y). From now on, the subscript of bt+1(y) refers to the
date of retirement by which the level of the retirement be-
nefit is determined. Previously we used the subscript of
bt+1 to refer to the date of consumption. The remaining sub-
scripts do not change their meaning.

(72) and (73) are the moral hazard conétraint and the
resource constraint, respectively, with y = Xy = Cy being

fixed. Since
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(1 - Pyyq) Uplxg,qit+l) + Dpyy Ug(dyene,bitel)
= Ul(xt+1;t+1) - DPigq 2(t+l) (74)

whenn the moral hazard constraint is binding, the remaining
lifetime expected utility of a worker who works both in peri-

od t and t+1 can be written as

VA(X%:t) = ul(c%) + Ul(x%+1;t+1) - Pi41 z(t+1)

ul(c%) * U1[xt+1(x% - C%)’t+1J = Pg4q z(t+1)

max ul(c) + U1[xt+1(x§ - c);t+1]
c

- p't+1 E(t"'l)- (75)

Similarly, from (63), (64), and (65),

(1 - pt+1) Uz(b...n.b=t+1) + pt+1 U3(b,..-.b;t+1)

(n-t) uy(b) - Z(t). (76)

Therefore the remaining lifetime expected utility of a worker

who retires in period t+1 can be written as

vg(x%1t) = uj(c) + (n-t) uy(b*(t+1)) - Z(t)

ck
ug(c2) + (n-t) uy( ——%) - 3(t)
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= max uy(c) + (n-t) uy(——u) - Z(t) (77)
c

Let us define

V(y;t+l) = max [Ulfxt+1(y);t+1], (n-t) uz( ) - E(t+1)}

n-t

| (78)

Then, changing the order of maximization and using (65),

Ui(xggt) can be written as

max {VA(X%;t), VB(X%;t)}

Uy (x25t)

max ul(c) + V(x% - c;t+l) - Pi4q z(t+1)
c

Rewriting Ul(xggt) in this way, we can now analyse the
effect upon the optimal date éf planngd retirement of an in-
crease in the government subsidy to the retirement insurance
fund. When the optimal date of planned retirement is R+1,
the corresponding optimal insurance scheme (cf yeeey C¥,

Xf seeey x%, b*(1) ,..., b*(R+1)) must satisfy

V(x% c%;t+1)

x'l'_c*

max[ul[xm(xg - ep)itt]s (n-t) up( ——
n-

= Uy [xpq (x% - c®)it+1]

L Ty | Z(t+1)

)
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= Ui(x%+1=t+1) fOI‘ t = 1 peascy R—l (?9)
and

V(xﬁ - °ﬁ3R+1)

*
max | U, [xg,q (x% - c®)iR+1], (n-R) uy( R E(R+1)]

n-R
- ... ' * %
= (n-R) u2( u) - z(R+1)
n-R
= (n-R) uz(b*(R+1)) - z(R+1) (80)

It should be noted that an optimal insurance scheme for
a given date of optimal planned retirement is unique. This

is because function x (y) uniquely determines the value of

t+1

* i * _ % * 3
x¥i for the given value of x¥ ci and c} must satisfy the

inequality

UI(x%;t) :; ui(cg)

A

+
Ul(x%;t).

Since Ul(xt;t) is differentiable at.x%, c% must be unique
for the given value of x%. The initial value of x% for t = 1
is determined by x§ = xl(Y) where Y is the government subsidy
to the retirement insurance fund.
The importance of (79) and (80) is that work-retirement
decision depends upon the relative values of
x% - c*

Uy fxp,q (x2 - c#)st41]  and  (n-t) u,( =St ) - Z(1+1)

n-t
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Our first two propositions concern the critical value x* - c*

of this work-retirement decision. i ’
Lemma 6

Ui[xt+1(y);t+1] > (n-%:) u, ( — ) - z(t+1) (81)
if and only if

Uy (14y35t+2) 2 (n-t) uy( ) - Z(t+1) (82)

n-t
Proof

We defined xt+1(y) and bt+1(y) as the unique solution
to the pair of equations (72) and (73). (1+y, y/(n-t)) is
also feasible for the resource constraint (73), and, there-
fore, xt+1(y) S 1+y if and only if bt+1(y) P4 y/(n-t).
Comparing (81) with (72), (81) holds if and only if bt+1(y)_
is at least as great as y/(n-t). Comparing (82) with (72),
(82) is satisfied if and only if xt+1(y) is not greater than
1+y. Therefore (81) is eguivalent to (82).

Lemma 7 There exists at most one value of y which satis-

fies the equality

Uy (14y35t41) = (n-t) uy( ) - 2(t+1) (83)

n-t

In addition, if Y141 15 the value which satisfies this equal-
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ity, then
Uy (1+y3t+1) > (n-t) u, ( ) - z(t+1)
n-t
and
Uy (14y5t+1) < (n-t) uy( ) - z(t+1)
n-t

Proof

for y < §t+1

for ¥y 2 ¥Viy

This is a direct implication ef the moral hazard condi-

tion of remaining lifetime expected utilities. Under Assump-

tion U', the moral hazard condition is simplified to

+ 1
Uy (xg4qt#2) = u3 (o)
implies
Ul(xt+1't+1) < (n-t) uz(b) - zlt+1),
Since u, is concave, this is equivalent to
Ul(xt+1;t+1) = (n-t) u2(b) - z(t+1)
implies

UI(xt+1;t+1) < us(b).

(84)

(85)

The first derivative of the expression on the right-hand side

of (83) with respect to y is ué(y/(nnt)). Therefore, this

e
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equivalent fofp@gﬁ the moral hazard condition says that the

curve.u = Ul(liy;t41) intersects the curve

u = (n-t) u2( ) - z(t+1) _ (86)

n-t

at most once and always cuts from above.

§£+1 is the critical value of x% - c¥ which determines
whether a worker should work or retire in period t+1. From
Lemma 6 and 7, a worker should work if x¥ - c¥ :; §t+1 and
retire if x¥ - c¥ > §t+1 .

Let us consider this problem in a diagram. In fig. 2,
the determination of x%+1 and b*(t+1) are portrayed. The
straight line (73) is the resource constraint line, and the
curve (72) is the moral hazard constraint curve. Above this
curve, the remaining lifetime expected utility of a worker
is higher when he retires in period t+1. The straight line
b= (xg,q - 1)/(n-t) is the locus of points where transfer
incomes for those who retire in period t+l1, (n-t) b, and for
those who continue work, Xpgp1 ~ 1, are equal. On this straight
line, there is no transfer of income from those who continue
work to thoselwho retire, and any worker is unconditionally

subsidized the amount equal to the initial resource at the

start of this period.
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The critical value y, , is given at point E where the
moral hazard constraint curve intersects the equal transfer
income line. It is the value of initial resource which, if
given unconditionally to any worker, leaves workers just in-
different to continued work. B is the point of intersection
of the resource constraint line and the equal transfer income
line. The vertical coordinate of this point therefore gives
a (n-t) th of the initial resource, x% - c% . Lemma 7 says
that point B lies below the moral @azard constraint curve if
and only if B is below point E on the equal transfer income
line.

Point A is the point of intersection of the resource
constraint line and the moral hazard constraint curve. Work-
retirement decision depends upon the position of'A ra2lative
to that of B, since their vertical coordinates indicate the
remaining lifetime expected utilities for those who continue
work and those who retire. Lemma 6 says that point A lies
above point B on the resource constraint line, if and only
if B is below the moral hazard constréint curve.

Combining Lemma 6 and 7, work-retirement decision de-
pends upon the position of the resource constraint line re-
lative to point E. The situation for period t+1 (t £ R-1)
is portrayed in fig.2, and that for period R+l is portrayed

in fig.3.
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If, therefore, the initial resource at the start of
period t+1 (t £ R-1), x§ - c%, is significantly raised as
a result of an increase in the government subsidy to the re-
tirement insurance fund, it is likely to induce workers to
retire before period R+1. More formally, let us define R+1
and R'+1 as the optimai dates of planned retirement before

and after the increase in the government subsidy. The cor-

responding optimal insurance schemes are denoted by
(CI 'Iooo’ C§' x‘f poe o) x&, b*(l) pevey b*(R+1))
(Oi’* goesey Cﬁfp x** .0'00' x** b**(l) peeooy b**(R""l))

1 Rl'

If

N

x% - c% 4 x%* - c%* for t & R (87)

then R' must not be greater than R. This is so because, if

R' 2 R, the analysis of the diagrams shows that workers
certainly retire in period R+1 even after the increase in

the government subsidy. Since §t+1 may not exist for t £ R-1
and the increase in the government subsidy may not be large
enough, (87) does not necessarily imply an earlier retirement.
But at least the direction of the impact upén the optimal date
of planned retirement is unambiguous. In the rest of this

essay, we prove the proposition in (87).
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When the government subsidy is increased from Y to Y°',

the analysis of the diagram shows that

x} = xl(Y) < xl(Y') = x¥*. (88)
Similarly,

xt - ct < XE* - ci*
implies.

X341 T Xper (xF - oF) < xp g (xF* - cf*) = x3Y (89)

b*(t+1) = bt+1(x% - c%) < bt+1(x§* - c%*) = b**(t+1l) (90)
Therefore, it remains to show that
x% < x%* implies x% -c* < x%* - c%* (91)
Let ct(xt) be defined by

ul(ct(xt)) + v(xt - ct(xt);‘t+1) - E(1--""1)

max ul(c) + V(xt - cpt+l) - z(t+1)
c

Uy (x 0t). (92)

When there exist multiple solutions, we choose the optimal
solution that maximizes ui(ct) among them. With this notation,

c% and c%* are written as
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c% = ct(xg) and c%* = ct(xz*).
We shall prove

Lemma 8 Let us assume that ul(c) is regular and concave,
and that V(y;t+1) is a piecewise regular function of y which
is differentiable except for at most finite number of points

and, when differentiable, has negative second derivative
(i.e., concave on each piece). Then
(i) Xy - ct(xt) is increasing in Xy, and

(ii) Ul(xt‘t) is also differentiable except for at most
finite number of points and, when differentiable, has

negative second derivative.

Proof :

First, we have to find the optimality condition for the
maximization problem defined by (92). Since a deviation from
the optimal solution ct(xt) in either direction would reduce

or leave unchanged the value of the objective function,
TS -V - <
ul(ct(xt)) \'s (xt ct(xt);t+1) S o0

- uleg(xy)) + Vi(xy - cy(x)ite1) £ 0

As before, V° and V+ denote the left- and right-hand deriva-

tives. Since V is piecewise regular, these two inequalities
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imply
ujle(xy)) = vilx, - ep(x.)it+l), (93)

where V' denotes the first derivative of V with respect to y.

Now we consider the behavior of ct(xt) as we increase
x, continuously from x% to x}*. When ct(xt) is the unique
solution to the maximization problem for Xy = xg. we can
analyse the behavior of ct(xt) in some small neighborhood of
x: by simply differentiating the optimality condition. This
is possible since V is differentiable except for at most
finite number of points ahd, therefore, always differentiable
in a small neighborhood of a differentiable point. Totally
differentiating the optimality.condition (93),

d ct(xg) V"

= | (9%)
uy + v '

dxt

where V" is the second derivative of V. Therefore, ct(xt)
s (4} .
and Xy - ct(xt) are both increasing in xt at Xy In this

case,

O [[] (1]
d Ul(xt't) uy v

dx uy + v

t

and Ul(xt't) has negative second derivative at xg.

When ct(xz) is not a unique solution corresponding to
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o
t.

neighborhood of x

x we cannot analyse the behavior of Ct(xt) in a small

(o]

% in this way. However, we have already

known that

uTx9st) € ujle (x9)) € Ui (xit).

This indicates that ui(ct(xt)) is very close to UI(xg;t) for

Xy slightly below xz and very close to UI(xzst) for Xy

o [e] N . - o + 0
slightly 2bove Xy That is, if Ul(xt;t) '4 Ul(xt;t). then
ui(ct(xt)) jumps at xg as x, increases. Since this means that
(o] . (o]

ct(xt) drops at Xps Xy - ct(xt) must jump at X4 correspond-
ingly.

Summing up, Xy - ct(xt) is always increasing in x . It
remains to show that Ul(xt;t) is differentiable except for

at most finite number of points. Ul(xt;t) is not differenti-

(o)
t

. , . o
Since ul(ct(xt)) then jumps at Xgo V(xt - ct(xt);t+1) must

able at point x, when ct(xt) drops at xg as X, increases.

jump onto a new piece. Otherwise, the equality (93) cannot

be kept, since V'(xt - ct(xt);t+1) drops if V(xt - ct(xt);t+1)
remains on the same oid piece. Therefore, the number of
points where Ul(xt’t) is not differentiable cannot exceed

the number of pieces of V(y;t+l). This completes the proof.

We shall now derive piecewise regularity for V(y;t+l)

by induction and complete the arguments of this section.
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Lemma 9 Let Ul(xt+1;t+1) be a piecewise regular function
which is differentiable except for at most finite number of
points and, when differentiable, has negative second deriva-
tive. Then V(y;t+l), wrich was defined by (78), is also a
piecewise regular function of y which is differentiable except
for at most finite number of points and, when differentiable,

has negative second derivative.

Proof

Since uz(b) is regular and concave and the curve

) - z(t+1)

u = (n-t) u2(
n-t
intersects the curve u = Ul[xt+1(y);t+1] at most once by the
moral hazard condition, we need only to show that Ul[xt+1(y);t+1J
is a piecewise regular function of y which is differentiable
except for at most finite number of points and, when differ-
entiable, has negative second derivative. Let us consider
the case when Ul(xt+1;t+1) in (72) is differentiable at xt+1(y).
In this case, xt+1(y) and bt+1(y) are twice continuously
differentiable by the Implicit Function Theorem. Totally
differentiating (72) and (73)

Ut [xy g ) 5t41) - (n-t) ' (o (D] [ axy,q (v)/ay 0

1-Peny Pyyq (n-t) dby,y (y)/dy 1
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Therefore
4 X V) u2 (95)
dy S Piyq Uf (1 - Piyg) ug
d by, (y) - Ui (96)
dy Piag Ui * (1 - Ppyy) U3

(95) corresponds to the expression on the right-hand side of

(14). From (95)

e Y

dy Pyeg U * (1 - Pyyg) 3

(97)

and

a® Uy [x, g () 5841]

dy2

_ {peagUf (l'pt+1)ué}{U{ué(dxt+1/dy) + Ujug (dby ,4/dy)}

{pt+1Ui ¥ (1—pt+i)ué}-2

U up { Py (dxy ,/dy) + (1-Pyq Jus (db, ,,/ay) |

{Peali * (opgyglup}®

(1-py,q )05 (uz)2(dx,,1/dy) + Pyys (U %ug(db, 4 /dy)

' '] 4
{ PyatVi * (pgdwg ]




= (1-py U5 (dx,, /dy)7 + p,  us(db, . /dy)3.

We have thus shown that Ul[xt+1(y);t+1] has negative second
derivative whenever it is differentiable.

Ul[xt+1(y);t+1] is not differentiable with respect to
y only when Ul(xt+1gt+1) is not differentiable at xt+1(y).
Therefore Ul[xt+1(y);t+1] is differentiable except for at
most finite number of points.

It remains to derive piecewise regularity for
Ul[xt+1(y);t+1] as a function of y. We need only to prove
the property about the left- and right-hand derivatives. The
remaining three conditions are not difficult to prove. Since
xt+1(y) and bt+1(y) are increasing functions of y, the left-
and right-hand derivatives of Ul[kt+1(y);t+11 with respect
toy

(a/ay)” U [x,,q (v)1t+1] and  (a/ay)* U [x,,, (v)it+1]
are given by (97) as
Uy up
Piyg Up * (1 - piyy) ug

(a/ay)” Uylxy g (v)st+1]

+ ]
Uy ug

(@/a3)* 0y 01501 : ,
. pt"'l U1 + (1 - pt+1) uz

Since the expression
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AB

Pyag A+ (1 - Pyyy) B

as a function of A is increasing, the left-hand derivative
of Ul[kt+1(y);t+1] with respect to y is less than the right-

hand derivative when Ul[%t+1(y);t+1] is not differentiable.

Concluding the arguments of this section, we state the

results we obtained as a theorem.

Theorem 4 Under Assumption R, M, and U', an increase in
the government subsidy to the retirement insurance fund tends
to induce earlier retirement and uniformly raises the retire-

ment benefits.
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Essay Two

Payroll-Tax Financed Unemployment Insurance

with Human Capital



I. Introduction

The purpose of this essay is to analyse the optimal
structure of payroll-tax financed unemployment insurance
where government cannot distinguish between those who actual-
ly participate in the labor market but fail to get a job and
those who choose not to work. Payroll-tax financed unemplo-
ment inéurance is different from general-revenue financed
unemployment insurance, such as the unemployment insurance
model considered by Shavell and Weiss, in the sense that
government resource constraint depends upon choices on the
part of workers and not only the unemployment benefits but
also net wages are determined by the government.

The dependence of the government resource constraint
upon workers' choices apparently makes the government's pro-
blem very complicated, especially when workers are allowed
to choose in each period whether to participate in the labor
market. However, if participation decisions have no ensuing
effect upon prospects and marginal products, moral hazard
problems of different periods are not interwoven and we can
reduce the apparently complicated unemployment insurance
model into a simple recursive system. To emphasize this point,
we present a payroll-tax financed unemployment insurance

model where prospects and marginal products depend upon work
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history but are independent of participation history.

We show that, under optimal unemployment insurance, con-
sumption should be made nondecreasing ovér time when working.
In addition, when marginal utility of those not working is
independent of whether they actually participate in the labor
market or merely choose not to work, the unemployment benefit

should be made nonincreasing over time while out of work.
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IT. The Model

At the start of each period, a worker, whether he worked
in the previous period or not, makes a decision whether to
participate in the labor market. If he chooses to take part
in the labor market (tﬁis represents his search effort), his
employment is determined by a lottery. The lottery for a
worker depends upon his work history. That is, the probabi-
lity that a worker fails to get a job in the current period,
Py deprends upon his work history up to the previous period
which is indicated by subscript h. When employed, a worker
has a marginal product equal to m which also depends upon
his work history. Work expefience thus has two human capital
effects, upon prospects and upon marginal products.

The government is assumed to be unable to distinguish
between those unemployed who actually fail to get a job and
those who merely choose not to work. However, the government
can use experience rating. That is, a worker whose work his-
tory is h receives net wage Cy when working and the unemploy-
ment benefit bh when not working.

Since we are interested in the comparison of unemploy-
ment benefits and net wéges of successive two periods, we
need notations to indicate positions and branching out in

the tree of work history. Let e denote the eligibility for
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unemployment 5enefit in the t th period, ey being equal to

0 when not working and 1 when working. Work history index h

is an n dimensional vector consisting of a number of et's

and a number of D's, the latter being a dummy parameter that
fills the positions in the vector corresponding to the periods
for which h does not report a history. For instance, if h
reports a history for the first t-1 periods, it is expressed

as
h=(e1’ 62 [N ) et"l’ D’D'..l' D) (1)

Let H be the totality of work history indices. We define
correspondences e(h) and e(h) from H into H such that, if h

is expressed as (1),
e(h) = (e;y ey yevey € 45 1, D yeeey D)

e(h)

(el' ez peeey et-l' 0, D,..., D). (3)

That is, e(t) is the work history index which is obtained by
replacing the t th element of h, D, with 1. If h reports a
complete history up to the n th period, we define that
e(h) = h and e(h) = h.

The work history index does not explicitly indicate the
pPeriods for which it reports a history although it contains
that information. We cannot recognize, for instance, the

period to which the probability of unemployment Py refers
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without explicitly writing h as (1). This is not a problem
for our mathematical formulation, but it is convenient, for
exposition, to have some term to indicate the t th period
when h reports a history up to the t-1 st period. We use the
‘current' period for this purpose.

Let instantaneous utilities be specified by the follow-

ing utility functions.

ul(c) utility of consumption ¢ when working

uz(c) utility when not partiéipating in the labor
market '

u3(c) utility when participating in the labor market

but unable to get a job

Remaining lifetime expected utility of a worker whose
work history is h is denoted by U(xh.h). which is the maxi-
mum expected utility attainable (by government social welfare
maximization) over the remaining periods with initial re-
source x . If h reports a history up to the t-1 st period,
U(xh,h) is the lifetime expected utility at the start of the
t th (current) period over the remaining n-t+1 periods.

When h reports a history up to the n th period, we set
U(xh,h) = 0. When h reports a history up to the n-1 st period,
U(xh,h) is the optimum expected‘utility of the following

one-period constrained maximization problem.
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UCxyn) = max (1 - 2,) {(1 - ) upley) + by uy(o)])
+ 2, uy (b, ) ()

subject to

(1) (1 - z){( - py) ugley) + py uy(o) ) + 2 uy(op)

max { (1 - p) wiley) + by uglv)s uy(o) )
(5)
(i) (1 - z) {1 - p ey - m) +p b} +a by

(6)

A

xh.

The first constraint is the moral hazard constraint and de-
termines the value of participation variable Zp The expres-
sion of this constraint indicates the sequence of moves be-
tween individual and nature. In case of retirement insurance,
a WOrker decides whether to work or not after he knows his
health. But, in the present case, a worker must make a deci-
sion whether to participate in the labor market without being
ensured beforehand to get a job.

The second constraint is the resource constraint. When
unemployment insurance is financed'by payroll-tax, the govern-
ment resource constraint depends upon workers' participation

decisions. This is the main difference between payroll-tax
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financed unemployment insurance and general-revenue financed
unemployment insurance such as the one considered by Shavell
and Weiss in [1] .

An apparent difficulty in the payroll-tax financed un-
employment insurance model involving multiple participation
variables is that moral hazard constraints of different peri-
ods are interwoven and, therefore, the multi-period model
becomes a very complicated maximization problem. The diffi-
culty arises partly from the possibility that those workers
among whom the government cannot differentiate in the current
period (although they choose differently) may respond differ-
entlj to the same insurance policy of the later periods, and
partly from the possibility that the participation decisions
of the current period affect the feasibility of an insurance
policy of the later periods differently. The first possibility
occurs when prospects depend upon participation history, an&
the second possibility occurs when marginal products depend
upon participation history.

We look for a sufficient condition for the interwoven
multi-period moral hazard problems to be decomposed into a
series of simple moral hazard problems, so that the multi-
period model of payroll-tax financed unemployment insurance
is reduced to a recursive system of simple insurance problems.

A sufficient condition which is general enough for the pre-
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sent purpose is given as follows : the participation deci-
sions made for the current period by those workers among
whom the government cannot differentiate have no ensuing
effects upon their prospects and marginai products of the
later periods which would induce different responses to the
same insurance policy for the later periods or which would
affect the feasibility of an insurance policy of the later
periods differently. In other words, prospects and marginal
products do not depend upon partic}pation history although
they do depend on work history.

We consider two kinds of activities, productive labor
and search effort. Workers are classified into three types
according to the combinations of these two activities :
search-work, search-no-work, and no-search-no-work. The
government cannot differentiate between those who search and
are unemployed and those who do not search. If productive
labor has human capital effects whereas search effort has no
human capital effect, then those who participate in the labor
market of the current period but cannét get a job and those
who choose not to work will have the same prospects and margi-
nal products in the later periods and respond similarly to the
same insurance policy of the remaining periods. They respond
- similarly even though their responses are different from that

of those who work in the current period.
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Let us consider the role of the search decision on the
possibility of decomposing in the two-period model. In order
to keep the continuity of our arguments and for notational
convenience, however, we define this two-period example as
the government's problem of determining wages and benefits
for the n-1 st and n th periods when the work history up to
the n-2 nd period is given by h and when the initial resource
at the start of the n-1 st period is Xy We ignore the moral
hazard problems of the preceding periods for a while. The
government's problem is to determine the values of the n-1
st period wage and benefit, cy and b, , and the n th period
wages and benefits, ce(h)' be(h)’ cé(h)’ and bé(h)' so as to

maximize the expected utility
U= (1-z){- ph)[ul(ch) +Ugpy ]+ Puug(oy) + Usm) ] }

t 2y {uZ(bh) * Ué(h)} | (7)

where Ue(h) denotes the expected utility of the n th period

when working in the n-1 st period, i.e.,

Ue(n) = (1 - 2¢(n)’ { (4= pe(ny) vilegm)) * Pen) uj(be(h))}
* 2g(n) Y2(bg(p)) | | (8)

and similarly

Usm) = (1 - 25(n)) {1 - p5ny) uilez(ny) * Pan) “3‘ba(n))}



';' zé(h) u2(b§(h)) (9)

Zp, s ze(h)' and Zé(h) are the participation variables
which should be chosen by a worker. Here we have already
incorporated the condition that those who participate in the
labor market of the n-1 st period but cannot get a job and
those who choose not to work respond similarly (that is,
choose zé(h)) to the same insurance policy for the n th peri-
od, cé(h) and bé(h)' This is the optimum strategy from the
worker's point of view since he simply tries to maximize the
overall expected utility.

The nature of this worker's concern leads to the first
group'of constraints to the government's maximization pro-
blem, that is the moral hazard constraints. Participation
variables Zp Ze(h)" and Zé(h) must satisfy the following

three conditions

Ue(ny = max { (1 = Pen)) U1 (Ceqn)) * Po(n) U3(beny)s up(be(y) }

(10)

Us(n) = max {(1 - Pan)) %1(%an)) * Pa(n) “3Pam))r Ye(baqm)) }

(11)

and
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U = max {(1 - pp)[ugley) + Ue(h)] + pp[ug(ey) + U5y ]

| up (by) + Uz } (12)
In this specification, it is implied that Ze(h) and zé(h)
can be chosen independently of the value of Zy although the
latter depends upon the values of ze(h) and Zé(h)' This is

an implication of the nature of the worker's concern.

Next, the government's maximization problem is also

subject to the resource constraint

(1 = zh) { (1 = Ph)(ch + xe(h) - mh) + ph(bh + xé(h))}
: - <
* 2y (bh * xe(h)) = *p (13)
where xe(h) denotes the initial resource at the start of the
n th period when working in the n-1 st period, i.e.,

Xen) = (1= Zem)) 1 (1 - Pe(n))Ce(n) ~ Pen)) * Pe(n) Pen) }

+ Ze(h) be(h) (1“’)

and similarly
) = (- 25m)) L - Pan))(Cam) - ") * Pam) Paem) |
* 23(n) Pa(n) (13)

The governm 's problem is therefore to choose (ch, bh

Ce(h)* be(h)' cé(h)’ bé ) so as to maximize the overall
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expected utility (7) subject to the moral hazard constraints
(10), (11), and (12) and the resource constraint (13).

Now we define the recursive system for this two-period
model. Let U(xe(h).e(h)) and U(xé(h),e(h)) be the maximum
expected utilities attainable by government social welfare
maximization at the start of the n th pericd with initial
resources xe(h) and xé(h) respectively. They are the optimum
expected utilities of the problem defined by (4), (5), and (6)
when h and X, are replaced with e(h) and Xe (h)* and e(h) and
X3 (h)® respectively. In other words, U(ge(h),e(h)) is obtained
by maximizing Ue(h) of (8) subject to (10) and (14). Similarly,

- o - - . . - 3 - P 3
U(xe(h).e(n)) is obtained by maximizing Ue(h) of (9) subject
to (11) and (15).

The government's problem in the recursive form is then

to choose Cp bh' Xe (h)* and Xz (n) SO @s to maximize
U= (1 -z { (- ) fugley) * Ulxgyeen))]
+ 2y [y (o) + UGz )80 ] ]
+ 2 {up (o) + Ulxg (0800 (16)

subject to the moral hazard constraint (12) with Ue(h) and
Ué(h) there being replaced with U(xe(h),e(h)) and U(xé(h),e(h))
and the resource constraint (13).

We shall now prove that the recursive system is equiva-
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lent to the original two-period model. Let

* 3 #* 3* * ¥
(cfs DF+ c(n)r PE(n) &(n)’ P&(n)’

be a given optimum insurance policy for the criginal two-
period model. With this optimum insurance policy, we define
the n th period expected vtilities Ug(h) and Ug(h) by (8)
and (9). Similarly, we define the initial resources at the
start of the n th period, x;(h) and xg(h), by (14) and (15)
with this optimum policy. We need to show that

Uy = U(x¥pyse(n)) and U,y = U(xEy.e(h)) (17)

That is, the n th period wage and benefit of an insurance
policy which is optimal from the point ~f view at the start
of the n-1 st period is also optimal from the point of view
at the start nf the n th period, whether a worker works in
the n-1 st period or not.

The value of the participation variable for the current

period, Zp is determined by comparing the expected utility

(1 - ph){ul(cﬁ) + U;(h)} + ph{uB(bﬁ) + Ug(h)] (18)
with
u, (bg) + Uy (19)

* * * ¥ )
On the other hand, chs b¥, xe(h)' and xe(h) satisfy the

resource constraint
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(1 - 2) {1 - B (eg * xEy) = my) + P (of “g(h))}

+ 2y (bﬁ + xg(h)) g Xy, » (20)

Therefore, if (17) holds, (cf, b}"{,; X%(p) X%(p)) is feasible
for the recursive system and the given optimum policy cannot
be preferred to the insurance policy which is obtained from
an optimum solution to the recursive system. Since the insur-
ance policy obtained from an optimum policy to the recursive
system is always feasible for the original two-period model,
(17) implies the equivalence of these two formulations.

Let us first suppose

In this case, we can increase the overall expected utility
(7) by reallocating resources to attain U(xg(h),e(h)) for
the n th period when working in the n-1 st period. This does
not viclate the moral hazard constraint of the n-1 st period,
since the expected utility (18) must originally be at least
as great as (19). Otherwise, c;(h) and bg(h)' and therefore
Ug(h)' would have been indeterminate. This reallocation also
leaves the resource constraint (20) intact. Therefore, the
given insurance policy cannot become optimum from the point
of view at the start of the n-1 st period.

Next, let us suppose
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U:(h) < U(xg(h) |é(h)) .

There are two cases. When the expected utility (18) is origin-
ally at least as great as (19), we may not be able to re-
allocate resources to attain U(xg(h),é(h)) for the n th peri-
od because it may violate the moral hazard constraint of the
n-1 st period. In this case, however, we can spare some re-
sources from xg(h) without reducing the expected utility when
not working in the n-1 st period from the original level
Ug(h) and reallocate them to increase the expected utility
when working in the n-1 st period. This is then reduced to
the first case.

When the expected utility (18) is originally less than
(19), we can simply reallocate resources to attain U(xg(h),é(h))
without violating the moral hazard constraint of the n-1 st
period. Therefore, in each case, we can show that the given
insurance policy cannot become optimal from the point of view
at the start of the n-1 st period.

We have shown that the two-period model of payroll-tax
financed unemployment insurance can be reduced to a recursive
system. We now leave the two-period world and return to the
n-period model. However, the arguments for the two-period
case can be applied to the n-period model without any essen-

tial change.
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We start from a given optimum insurance policy to the
non-recursive system which is optimal from the point of view
at the start of the first period. For the first period,

h=(D,D,..., D). Let us denote this given insurance policy

by

(ct, BF) «es 1st period
(Cg(h)- b;(h)) (Cg(h)- bg(h)) «es 2nd period

(cZ(e(n))* P2(e(n))) (°E(e(n))’ PE(e(n))’ _
ees 3rd period
(c&(z(n))’ P&(a(n))) (c&(a(n))’ P&(&(n))’

. # % < qs
We define Ue(h) and xe(h) as the expected utility and the
initial resource at the start of the second period corres-

ponding to the subprogram of this insurance policy
* * :
(Ce(h)' be(h)) +so« 2nd period

(P;;(e(h))' bg(e(h))) (cg(e(h))' bé(e(h))) «es 3rd period

-Slml}arly, Ug(h) and xg(h) are defined as the expected utility
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and the initial resource at the start of the second period

corresponding to the subprogram

(cg(h)’ bg(h)) «es 2nd period

(c2(5(n)) PEain))) (X(a(n))® PE(z(n)))  +++ 3rd period

The value of the participation variable for the first
period, Zy 0 is determined by comparing (18) with (19), and
* * * % i 3
Chy bh' xe(h)' and xe(h) satisfy the resource constraint (20).
Therefore, we can use the same arguments as before. (17) must

* ¥* = M
hold, where U(xe(h),e(h)) and U(xe(h),e(h)) are defined as
the maximum expected utilities attainable by government so-
cial welfare maximization over the remaining n-1 periods with
- - ] * * ' [
initial resources X& (h) and X& (h) respectively. (17) shows
that the two subprograms are optimal for the remaining n-1
. . e eas ® " .

periods, with initial resources xe(h) and xe(h) respectively,
from the point of view at the start of the second period.

Since ihe given subprograms are 6ptimal from the point
of view at the start of the second period, we can repeat the
same arguments again. The first period variables and the
first period moral hazard constraint do not enter the argu-
ments for the remaining periods any more. Using the same

arguments repeatedly, therefore, we can decompose the origin-

al n-period non-recursive model into a recursive system.
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Since we have shown that the multi-period model of pay-
roll-tax financed unemployment insurance can be reduced to
a recursive system, we shall now give the formal recursive
definition of U(xh,h). Let vA(xh.h) be the remaining lifetime
expected utility at the start of the current period of a
worker whose Wwork histdry is h when he should participate in
the  current labor market. It is the maximum expected utility

of the following constrained maximization problem.
valxpn) = mak (1 - p) fuy(ep) + Ulxy gy ren)) ]
v oy {ug() + UGz i) ] (21)
subject to
(1) kl " Ppd(ep * Xe(n) - ) (B * xz())

< Xy : (22)
(11) (1 - pp) {lugley) + Ulxg(pyoe(®) ]

+ By {45 (By) + Ulxg ()05 (n)) )

2 uy(by) + Ulxgep)s&(n) (23)

The maximum is taken over ch, bh' Xe(h)' and xé(h)'
Similarly, let VB(xh,h) be the remaining lifetime ex-
pected utility at the start of the current period of a worker

whose work histpry is h when he should not participate in the
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current labor ‘market. It is the optimum value of the follow-

ing constrained maximization problem.

vp(xy,h) = max {u, (b)) + Ulxgye8h)) | by + x50y S %, }

(24)
U(xh,h) is then defined as the maximum of vA(xh,h) and
vB(xh,h). |
U(xy,h) = max { v, (x,h), vy(x,.n)} (25)

When the government's initial resource is Y and when the
equilibrium unemployment rate is P, the government's overall

problem is to maximize the social welfare

subject to
(1 -P) %e(hy) * P %3 (hy) <Y (27)

where hD = (D, D ,¢¢., D).
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III. Remaining Lifetime Expected Utility

In this section, we analyse the nature of remaining
lifetime expected utility U(x,,h) and derive“impdffﬁﬁ# re-
lationships among instantaneous utilities énd lifetimé ex-
pected utilities. The properties with which we will endow
the reméining lifetime expected utility are summarized by

the following four conditions.

Definition (Piecewise Regularity). A real valued function
f(x), defined on an interval (-d,o0) for a nonnegative number
d, is called piecewise regular if f(x) has the following

propérties,

(i) Monotonicity : f(x) is strictly increasing
(ii) Continuity : f£(x) is continuous
(iii) Left- and Right-Hand Derivatives : the right-

hand derivative, f+(x), is at least as great as the

left-hand derivative, f (x).

(iv) End-Point Properties :
lim f(x) = - oo lim  f£'(x) = o0
X » -d X +» -d
lim f(x) = 00

X » 00
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A piecewise regular function which is twice continuously
differentiable is called regular. In this section, we assume
regularity and concavity for instantaneous utility functions,

and derive, by induction, the piecewise regularity of U(xh,h)
Assumption R Ugs YUy, and u3 are regular and concave.
In the following lemmas, we use the notations

uj(c) = duj(c)/dc (j =1, 2, and 3)

U-(xh,h) and U+(xh,h) are the left- and right-hand
derivatives of U(xh,h)'with respect to X, + When U(xh.h)
is differentiable at X, » we denote U'(xh,h) = dU(xh.h)/dxh.

Lemma 1 Let 0 < Py, < 1 and let us assume that
U(xe(h).e(h)) and U(xé(h).e(h)) are plégew1se regular func-
tions. Under Assumption R, U(xh,h) can be expressed in one

of the following three forms.

(A) When, for a given X 2 worker should participate in

the liabor market of the current period,

U(x, s h) = va(x,,h)

(1 - o) {ug () + UGz eemn }

+ oy { uy (o) + U(xE),5(0)) ) (28)
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where

(1) if the moral hazard constraint (23) is binding, ch.

. * * 1 3 3 -
b y X e(h)’ and xe(h) are obtained by solving the two con

straints and the following equilibrium conditions

(C*) = U’ (x*(h)'e(h)) (29)
U’ (X*(h).e(h)) - uz'(bﬁ) (30)
uy (c}) uj(ef) + ug(bf) - ué(bg)

and they satisfy the inequalities
uy(df) > ujlep) = U'(xgyie(n)) < U'(xE).8(h)  (31)
uj(ex) +uz(op) - uz(of) > o, (32)

(ii)  if the moral hazard constraint is not binding, cf,
* * * s . )
bk, X2 (h)" and X% (n) 2re obtained by solving the resource

constraint and the following equilibrium conditions
ujlep) = uj(bp) = U'(xk .y y,ie(h)) = U (xxy,8(h)). (33)

(B) When, for a given Xy 0 a worker should not participate

in the market of of the current period,

U(xh.h) = vB(xh,h)

uy () + U(x2 (3 ,E(h)) (34)
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where b¥* and x*

n e(h) satisfy the equilibrium condition

uz'(b'r*l) = U'(xg(h),é(h)). (35)

Proof :

We first consider case A. In this case, U(x,,h) is equal
to the expected utility, VA(xh,h), of an optimal solution
(cﬁ, bg, x;(h), xg(h)) to the constrained maximization pro-
blem defined by (21), (22), and (23).

Any deviations in h and bh from these optimum values
which keep the resource constraint change the total expected

utility by
av = (1 - ph)(ui - ué) dey .
Therefore, if ui - ué is positive, an increase in ch must

violate the moral hazard constraint. That is

1 - ph

(1 - p,)(uj - uy) + u < 0.

Py
But this is impossible when uj - ué > 0. This implies
uj - u3' __<_ 0. (36)
When (36) holds with strict inequality, any decrease in

ch must also violate the moral hazard constraint. Therefore
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Pp(uj - u3) +uy > o. (37)

Since (37) also holds when uj - ué = 0, (36) and (37) must
always be satisfied for case A.

Since any deviations in ch and xe(h) from the optimum
values which keep the resource constraint should not increase

the expécted utility,

A
o

uj - U'(xg(h).e(h)) (38)

and

A

- uf + UM (xtyee(n)) S0, | (39)

These inequalities, together with the piecewise regularity of
U(xe(h),e(h)), imply the differentiability of U(xe(h).e(h))

at xg(h) and
u; = U'(xg(h),e(h)). (4o)

We shall now consider the effect upon the total expected
utility of an increase in X3 (n) and the corresponding devia-
tions in ch and bh to keep the resource constraint and the

and b, must

moral hazard constraint. The deviations in ch h

satisfy the equations

(1 - puj - (uy - ppui) ][ de/axg gy (1 - p)U"(x% (1 )18(n))

1 - ph ph dbh/dxé(_h) = ph
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That is
dCh } ph (1 - ph) U (X*(h)ve(h)) - (u - hui)
dXZ (h) 1-p Ppuy * U3 - Py
db, (1 -p) U (x*(h).e(h)) * Py
de(h) Ph i + u?_ = phué
Therefore

(1 - ph) uy dch + Dy u'! d»

3 h

po{ (1 - p)(u) - up vt M) - ujuy}

dx-
Ppuj * U3 - Ppuj stn)

and the effect upon the total expected utility dV can be ex-

pressed as

av = (1 - ph) ug dch * Py ué db, + py U (x*(h).e(h)) dx—(h)
i ph-{(ui + ué - ug ') U (x*(h),e(h)) - uluz}- i
Ppui * Uz - Ppu3 sn)
(41)

Since dV must be

nonpositive and the denominator is positive

by (37), (41) implies
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u! + ul - ! 1
1 2 3 (42)

IA

uj ug U+(xg(h),é(h))

ror dxé(h) < 0, the corresponding effect upon the total
expected utiiity is obtained by simply replacing U+(xg(h),é(h))
in (41) with U'(xg(h),é(h)).
p, { () +uy - uy) U (xk )08 (h)) - uiuz'}

av = - dx-(h)

phui +u; - phué

Since dX3 (p) is negative, dv £ 0 implies

ui + ué - ui 1

\Y)

(43)

.ui ué U (K*(h)ve(h))

Combining (42) with (43), %together with the piecewise regular-
ity of U(xé(h).é(h)), U(xé(h).é(h)) becomes differentiable.

Therefore,
uj +ug - u > 0

and

uj 9
U’ (x*(h),e(h)) = : - . (44 )
uj +uy - uj
When uy -vué = 0, (44) implies
uj = uy = UC(xE gy ee(h) = U (xE (). (45)
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In this case, any infinitesimal deviations in Cpy bh’ Xe(n)?
and xé(h) from the optimum values which keep the resource
constraint have no effect vpon the total expected utility
and the moral hazard constraint is not binding. Therefore,
when %the moral hazard constraint is effective, ui - ué must
be strictly negative.

This completes the analysis of case A. In case B, U(xh.h)
is equal to the expected utility, vB(xh.h), of an optimal
solution (b¥*, xg(h)) to the constr%ined maximization problem
(24k). Therefore, the desired equilibrium condition follows

from the inequalities exactly similar to (38) and (39).

QI E. D.

For Lemma 1 to be applicatle for any h, we must derive
the piecewise regularity of U(xh,h) by induction.

For work history index h which reports a history up to
the n-1 st period, U(xh.h) is the maximum of VA(xh'h) and
VB(xh.h) where

vpalx,h) = max (1 - py) uy(ey) + py ug(by)

subject to

(i) (1 - Ph)(ch - mh) + Ph bh é xh
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and vB(xh.h) = uz(xh). The graph of vA(xh,h) is depicted in
fig. i. The curve (1) is the graph of the.expected utility of
first-best insurance policy. The curve (2) depicts the graph
of the expected utility of the pair which satisfy the moral
hazard constraint with equality (besides the resource con-
straint). The graph ofva(xh.h) is obtained by imposing upon
curve (2) the segments of curve (1) which satisfy the moral
hazard constraint. When the first-best pair (ch, bh) corres-
ponding to point E satisfy the moral hazard constraint, the
whole segment CD of curve (1) has the corresponding first-
best pair which also satisfy the moral hazard constraint.
Therefore, vA(xh.h) is piecewise regular.

Since the maximum of two piecewise regular functions is
also piecewise regular, U(xh,h) is a piecewise regular func-

tion.

1)
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It remaiﬁs to show the piecewise regularity of U(xh.h)
when h reports a history for the first t-1 periods where t
is less than n. Since U(xh.h) is the maximum of vA(xh.h) and
vB(xh.h), we must derive piecewise regularity for both vA(xh,h)

and vB(xh,h).

Lemma ? If U(xe(h),e(h)) and U(xé(h).e(h)) are both piece-
wise regular, the optimum expected utility, VA(xh,h). of the
constrained maximization problem defined by (21), (22), and

(23) is also a piecewise regular function. In addition,

va(x,h)

= i ui u2'

= min [ phui + u2' - phué (Cﬁ- bﬁ, Xg(h)v Xg(h)) £ EA(xh,h) }
vy (x,00)

= uy u, A

= maX{ phU.i + uz' - phué (c}*i' bk, Xg(h)p Xg(h)) £ E (xhih)

(46)

where EA(xh.h) is the set of optimal solutions to the con-
strained maximization problem. vx(xh,h) and vz(xh,h) are, as

before, the left- and right-hand derivatives of vA(xh,h).



(46) is a kind of the envelope theorem for the constrained
maximization problem which has multiple solutions. The lemma
can be proved by the same argument as that we applied to
prove the Lemma 2 of the first essay. Property 1° in that

argument must be replaced with the inequality

VA(xh + bxh,h) - vA(xh.h)

v

6xh + o(bxh) (47)
phui + ué - phu§

where o($§x,) is a term such that o(dx,)/6x, = 0 as 6xh + 0.

(47) can be derived from the Taylor s expansion of the moral
hazard constraint. When the 1n1t1al resource is changed from
X, to X, + 6xh, by the Taylor's expansion of the moral hazard

constraint, the partial responses in ch and bh which keep

the constraint must satisfy

(o
1]

(1 - p) {uylep +8c,) - u ()} + by {uy(0p + b)) - uz(op)

- (oatog + 5,0 - 0}

(1 - ph) ug 6ch + P, ué 6bh - uy 6bh + o(Sch) + o(6bh)
- From the resource constraint,

(1 - p,) 8¢, + pp th = 6xh.
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Combining these two equations, we can easily show that

1 ul - p uj
- 2 h™3
be, = — &x,

+ o(5xh)
1 =P, Ppuj * Uy - Ppug

u, :
6%= 1 6%+OM%L
Ppuy * Uy - Ppug

Since the effect upon the expected utility of these partial

responses must not exceed the difference
VA(xh +6xh.h) - VA(xh-!h)!
(47) must be satisfied.
Lemma 3 If U(xe(h),e(h)) and U(xé(h),e(h)) are both piece-
wise regular, the optimum expected utility, vB(xh.h), of the

constrained maximization problem (24) is also a piecewise

regular function. In addition,

vg(xon) = min {ug (o) | (o, xx 1) € B (xum)

(48)

v;(xh.h) max {ué(bﬁ) l (bﬁ. x:(h)) [ EB(xh,h)}

where EB(xh.h) is the set of optimal solutions to the con-
strained maximization problem. vg(xh,h) and vg(xh.h) are the

left- and right-hand derivatives of vB(xh.h).
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The proof of this lemma is similar to that of Lemma 2.
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Iv. Optimal Structure of Unemployment Insurance

In this section, we stucy the implications of Lemma 1,

2, and 3 for the structure of optimal unemployment insurance

over time.

Theorem 1 If instantaneous utility functions are regular

and concave, under optimal unemployment insurance,

(i) net wage should be made nongecreasing over time when

working, and, in addition,

(ii) workers are just indifferent to continued participa-
. tion in the labor market while net wage is increasing -
and net wage is constant during the periods when workers

prefer to continue participaticn.

Proof :

When the pair of remaining lifetime expected utilities,
U(xh.h) and U(xe(h),e(h)), for any consecutive two periods
are interrelated by the condition that Xe (h) is equal to
xg(h) which is a component of an optimal vector to the con-
.strained maximization problem defined by (21), (22), and (23),

U(x ),e(h)) is differentiable at xg(h) according to Lemma 1,

e(h
Since U(xe(h).e(h)) is the maximum of vA(xe(h),e(h)) and
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vB(xe(h),e(h)), the differentiability of U(xe(h),e(h)) at

xg(h) implies
U (x5 () re (1) = Vilxg(yyee ()
if vA(xg(h).e(h)) 2 vB(xg(h).e(h))
and
U'(x%yse(n)) = vg(xZ .y yse(h))
if vA(x;(h).e(h)) < vh(xg(h),e(h))

When a worker should participate in the labor market in both
periods, Lemma 1 and 2, therefore, imply the following equi-

librium relationship

uj(ct) U'(xg(h),g(h))

] * L ¥*
Pe(n)¥1(CE(n)) * W3 (PF(n)) - Pe(n)*3(P&(n)’
The first proposition of the theorem immediately follows from
. , o (hE . .y . .
(49) since ul(cg(h)) uj(be(h)) is nonpositive in equili
brium. The second proposition follows from the condition that
the moral hazard constraint is binding when ui(cz(h)) is

strictly less than ué(b;(h)).
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The counterpart of Theorem 1 with regard to the relation-
ship between b; and b:(h) does not generally hold. From the
differentiability of U(xé(h),e(h)) at xg(h) where xg(h) is
a component of an optimal vector to the constrained maximi-

zation problem defined by (21), (22), and (23),
U'(xg(h),é(h)) = VA(Xg(h)pé(h))

when vA(xg(h).e(h)) is not less than vB(xg(h).e(h)). There-
fore, when a worker should participate in the labor market

in both periods, Lemma 1 and 2 imply

ui(cﬁ) ué(bﬁ)

- = U'(x% ., y.e(h))
ui(cﬁ) + ué(bg) - ué(bﬁ) *e(n)** '

_ ui(cg(h)) ué(bg(h)) (50)
Pg(n)¥1(C&(n)) * ¥2(%(n)) - Pa(n)¥3(°%(n)’ -

¢ #* v ' * Y
We cannot compare u3(bh) with u3(be(h)’ from (50) alone.
However, if we can assume that ué(c) = ué(c) for any ¢, then

(50) is reduced to

uj(cy,y)
Pg(n)%1(c&m)) * (1 - Pan))u3(0%(n))

ué(b;) = ué(bg(h))

Therefore we obtain
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Theorem 2 If instantaneous utility functions are regular
and concave, and if ué(c) = ué(c) for any ¢, then, under

optimal unemployment insurance,

(i) the unemployment benefit should be made nonincreasing

over time when out of work, and, in addition,

(ii) workers are just indifferent to continued participa-
tion in the labor market while the unemployment benefit
is decreasing and it is constant during the periods

when workers prefer to continue participation.

The first proposition is also true when workers prefer
not to participate in the labor market in either period.

It seems to me that the necessity of the additional
qualification in Theorem 2 is another instance of a general
property of optimal structure of the employment-related
insurance. In the previous essay, we had to assume the same
qualification to derive the optimal feature of the retirement
benefit with respect to the age of retirement, although the
optimal structure of consumption over time could be deduced
without such qualification. In their model of optimal un-
employment insurance, Shavell and Weiss also assumed that
instantaneous utility functions are separable with regard to
consumption and search effort. The indeterminacy in the opti-

mal structure of the insurance benefit over time is probably
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caused by the inability on the part of the government to
distinguish between those who happen to be out of work, being
unfavorabliy affected by nature, and those who choose not to
work. When the marginal utility of the unemployed is inde-
pendent of whether they actually participate in the labor
market, the inability of the government to monitor does not
cause any trouble for it to determine the distribution of a
given inéome for the unemployed between current unemployment
benefit and future consumption. This is because any distri-
bution of income y between bh and xé(h)'which maximizes the

sum of utilities

ug(by) + Ulxg(pys8(h))
always maximizes

uy (by) + Uxg(p)eE(0)).

The moral hazard constraint of the current period is ineffec-
tive in the determination of.the distribution of income y
between the current benefit bh and the future consumption
xé(h)' It is effective only for the determination of the
distribution of income between those working and those un-

employed.
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