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ABSTRACT

This dissertation contains three empirical essays on manufacturers'
backlogs and inventories of finished goods.

The first essay (chapter II) examines the smoothness qualities
inherent in the Holt, et al. (1961) linear-quadratic inventory model. It
ie shown that a central property of the model is that a certain weighted
sum of variances and covariances of production, sales and inventories must
be nonnegative. The weights are the basic structural parameters of the
model. The model may be tested by seeing whether this sum in fact is
nonnegative. This test has three advantages over the tests of
cross-equation restrictions commonly used in recent studies of this model:
it is computationally simpler, more robust, and, most important,
economically more informative. When the +test is applied to some
non-drrables data aggregated +to the two-digit SIC code level, it almost
always rejects the model, even thought the model does well by traditional
criteria.

One possible reason for the rejection is that the mecdel's formulation
of backlog costs is inadequate. The second essay (chapter III) formulates
and tests an inventory model for production to stock industries with
special attention to backlog costs. Although backlogs (queues of orders
yet to be filled) are small in these industries, the estimates from this
chapter suggest that the backlogs are economically important. The
estimates of the parameter reflecting the cost to the firm of putting a
unit on the backlog are wusually statistically significant, and
significantly larger than the cost of putting an extra unit into
inventory.

The third essay (chapter IV) formulates and tests an inventory model
for production to order industries. It is hypothesized that backlogs have
two effects. First, they shift demand in, since higher backlogs mean
longer delivery legs. (Symmetrically. inventories are hypothesized to
shift demand out.) Second, backlogs, since they facilitate grouping the
production of similar items, allow production costs to be cut. Empirical
results are generally supportive of both hypotheses.

Thesis Supervisor: Dr. Stanley Fischer

Title: Professor of Economics
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CHAPTER I:

INTRODUCTION




The linear-quadratic inventory model was first introduced by
Holt et al. (1961) and has since been the source of much theoretical
and empirical work on inventories (e.g., Belsley (1969),
Blanchard(1982)). 1In its purest form (Blinder (1982), the model
argues that finished goods inventories are held solely to cut
(quadratic) production costs, subject to the constraint that randomly
varying sales are met. Inventories should be built up when sales are
low and drawn down when sales are high, with the exact pattern
determined by the relative costs of production and of holding
inventories. This intuitively plausible notion has received
empirical support from regression estimates of equations derived from
the model (Belsley (1969), Blanchard (1982)).

However, production smoothing cannot be +the sole motive for
holding inventories, if, as appears generally to be true
(Blinder(1981b), chapter II of +this +thesis), production is more
volatile than sales.! That such volatility contradicts the model was
noted informally by Blinder (1981b) and Blanchard (1982). Chapter II
develops the argument rigorously. The basic idea is simply this: if
production is more volatile than sales, firms could cut their
production costs simply by setting production equal to sales and

setting inventories equal to zero each period. Formally, this Dbasic



idea can be expressed as an inequality stating that a certain
weighted sum of variances and covariances of production, sales and
inventories must be nonnegative. The weights are +the Dbasic
structural parameters of the model. The model may be tested by
seeing whether this sum in fact is nonnegative. This test has three
advantages over the tests of cross-equation restrictions commonly
used in recent studies of this model: it is computationally simpler,
more robust, and, most important, economically more informative.
Chapter II also tests statistically whether some non-durables data
aggregated to the two digit SIC code level satisfy the inequality.
In general, they do not, -even though the model does well by
traditional criteria.

One possible explanation for the excess volatility is that
inventories can not only affect costs in the hypothesized fashion,
but can as well affect revenue, in the following way. Firms that
have a low stockpile of inventories may run out when demand is'high,
and may then be forced to place some orders on a backlog. These
backlogs may impose costs on producers, perhaps in the from of lost
future sales. Manufacturers will then tend to build up inventories
when expected sales are high, but will find smaller stockpiles
satisfactory when expected sales are low. As is explained in chapter
II1, this tendency of inventories to track sales can make production
more volatile than sales.

The notion thet backlog costs of this sort can be important
forms the basis of the bulk of this thesis--chapters III, IV and part

of chapter II. In chapter II, the production smoothing model is



extended in a fashion suggested by its originators (Holt et al.
(1961)) and others (e.g., Blanchard (1982)) to include a certain
quadratic term intended to capture backlog costs. This extended
model does not perform noticeably better than the basic model. The
extra parameter reflecting backlog costs is rarely significant, and a
variance inequality derived for +the extended model is rarely
satisfied by the data.

One possible explanation for the poor performance of the
extended model is that the particular form of backlog costs chosen is
inadequate. The next two chapters (chapters III and IV) therefore
develop and estimate production smoothing models with more
sophisticated (non-linear quadratic) formulations of backlog costs.

Chapter III does so for what are called production to stock
industries. Firms in these industries ordinarily produce in advance
of receipt of orders, store the output in a stock of finished goods
inventories, and sell to their customers directly from this
pre-existing stock. Examples are petroleum and rubber. Backlogs are
small and transitory (Abramowitz (1951), Belsley (1969)). and this
has led some investigators (e.g., Belsley (1969)) to conclude that
backlog costs are unimportant in these industries. The estimates
from chapter III suggest otherwise. The estimates of the parameter
reflecting the cost to the firm of putting a unit on the backlog are
usually statistically significant, and significantly larger than the
cost of putting an extra unit into inventory.

Chapter IV formulates and estimates a production smoothing model

with backlog costs for production to order industries. Firms in
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these industries tend to produce output that is more or less tailored
to the individual customer and/or is costly to store. These firms
ordinarily wait for customer orders to be placed before completing
production, working off a Dbacklog of customer orders already
received. Examples are airplanes and mainframe computers. Both
backlogs and inventory stocks are substantial, and some investigators
studying production to order industries have indeed integrated
backlogs into their inventory models (e.g., Belsley (1969)). Chapter
IV also develops such an integrated model, departing from previous
approaches in two significant ways. First, the hypothesized effect
that inventories and backlogs have on revenue is captured directly in
the demand curve, rather than indirectly as an opportunity cost to
the firm. Second, the production cost effects of backlogs and
inventories are sharply distinguished: a large backlog allows firms
to cut production costs by grouping the production of similar
products, a large inventory stock does not. Results suggest that
both of these departures are warranted. Demand is shifted by
backlogs and inventories in the hypothesized fashion (a higher
backlog shifts demand out, a higher inventory stock shifts in in,

ceteris paribus). And backlogs do appear to allow production costs

to be cut.

The two remaining parts to the thesis are a final chapter
(chapter V) containing summarizing conclusions and an Appendix
discussing the use of constant dollar inventory data in regressions.

Before turning to chapter II a word on its approach *to

estimation is appropriate. That chapter, as well as chapters III and
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Iv, uses a maximizing model to derive estimable first order
conditions. Instrumental variable methods are then used to estimate
parameters in these first order conditions wunder the rational
expectations assumption that agents use information to make forecasts
efficiently. Thus the equations estimated are gtructural rather than
reduced form, and the parameters retrieved characterize tastes and
technology. They are therefore likely to be relatively stable across
changes in the environment, at 1least as compared to parameters

derived from reduced form regressions.2
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FOOTNOTES
1.Volatility is measured by variance around trend, see chapter II.

2.Since the models are only approximations, the estimated parameters
are not strictly structural and thus not totally invariant to changes
in the environment. This has been emphasized to me by S. Fischer
and pointed out in Blanchard (1982,p8).
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CHAPTER II:

A VARIANCE BOUNDS TEST OF THE LINEAR QUADRATIC

INVENTORY MODEL
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The linear quadratic inventory model, originated by Holt et al.
(1961), has been the source of some recent empirical work on inventories
of finished goods (Blanchard (1982), Eichenbaum (1982)). These studies
have been interpreted as being generally supportive of the model: while
tests of overidentifying restrictions did tend to reject, estimates of
the model's key parameters were almost always right-signed and
significant. Results were considered reliable enough for wuse in
answering questions on the dynamic interaction of inventories with sales
and production that are central to understanding business cycles.

The approaches of both Blanchard (1982) and Eichenbaum (1982),
however, while different in many respects, share three major
shortcomings. First, estimation is computationally cumbersome. Both
impose highly nonlinear cross-equation constraints that can make
estimation numerically difficult (Blanchard (1982, pp33,43). Second,
some strong assumptions about stochastic environment and market
structure are required. Blanchard (1982,p38) assumed that inventories
do not Granger-cause sales, an assumption apparently rejected by the
data. Eichenbaum (1982,pp5-8) assumed a perfect competitor and that
demand had a particularly simple structure. The third, and most

important, the formulation and application of their test procedures
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contribute only a limited amount to our understanding of the model. For
example, these procedures provide 1little guidance to the range of
parameter estimates that are sensible, other than sign. This is
illustrated in Blanchard (1982,p36). in which the estimates of a key
parameter, one that determines a target inventory to sales ratio, vary
over ten data sets from a low of about one to a high of about seventeen.
All of these apparently are equally acceptable.

This paper suggests an alternative method of estimating and testing
a linear quadratic inventory model, and then applies it to some
non-durables data aggregated to the two digit SIC code 1eve1.1 The
metho? is computationally simpler, more robust, and economically more
informative than the approaches of Blanchard (%982) and Eichenbaum
(1982). The estimates are obtained in standard feshion from an Euler
equation. They are then examined to see whether the firm could have
expected to have been better off with the static policy of simply
letting inventories increase from period to period at their trend rate
of growth. This is done by comparing expected cocsts under the static
policy and the policy that is optimal according to the model. The
difference between the two, which should be nonnegetive if the model is
correct, may be expressed as a simple weighted sum of certain variances
and covariances of inventories, sales and production. The weights are
the basic structural parameters of the model, obtainable from the Euler
equation. Even if all the estimates of parameters are right signed and
significant, the estimate of this difference in principle may be
insignificantly positive, or even negative. If it is, it seems unlikely

that inventories truly are chosen in accordance with the supposedly
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optimal policy and therefore unlikely that the model is correct.

And in fact, for the non-durables data studied here, despite
parameter estimates comparable to Eichenbaum (1982) and Blanchard
(1982), it is found that the difference in expected costs is almost
always negative--that is, the allegedly optimal policy could almost
always have been expected to increase costs relative to the static,
no-feedback one. The increase is statistically significant about half
the time. Moreover, it is economically large, with expected deviations
of costs from trend that are up to 16 percent higher than under the
static policy. This would seem to provide strong evidence that the
model is inconsistent with this data.

This inconsistency is especially evident since the test requires
relatively few assumptions about stochastic environment and market
structure. In particular, it is consistent with but does not require
the assumptions of Blanchard (1982) and Eichenbaum (1982) mentioned
above. Also, it is computationally straightforward, requiring only
linear estimation. In fact, in some cases it could be concluded that
the static inventory policy would be expected to cost less even without
calculating any of the model's parameters. All that was required was
the calculation of certain variances and covariances. Since the test
easily extends to cover other linear quadratic models, and perhaps some
non-linear models as well, it may be of general interest.

This is especially so since, in the present case at least, the
difference in expected costs is theoretically important, quite apart
from its usefulness for empirical work. Under the null hypothesis that

the model is correct, the difference is zero only if there are no shocks

- -
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to forcing variables. The difference thus summarizes the dynamic
interactions between production, sales and inventories as these
variables are optimally adjusted in response to shocks. And these
interactions are precisely what the model is intended to explain.

The paper is organized as follows. Part II develops the test, part

I11I contains empirical results, and part IV contains conclusions.
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II.THE TEST

This section first describes the model and then derives an
inequality that is central to the test.

A.The Model

The model wunder consideration is intended for finished goods
inventories in so-called "production to stock" industries (Abramowitz
(1951), Rowley and Trevedi (1975)). 1Its precise formulation varies from
author to author, and this paper's empirical work tests two versions.
Both may be derived from the following general model. Firms producing a

single homogeneous good maximize expected discounted real profits:

t 2 2 2
- d3lag(80,)% 8,05 ey (Hi-a55,,1)7] )
8.t Qu=Sy+Hy-Hy
where

Ey mathematical expectations, conditional on
information available at time O

dy  fixed real discount rate, 0<d;<i

d2 fixed rate of technological progress, 0<d,y<!
Py real price in period t

S; units sold in period t

Qt units produced in period t

Ht units of finished goods inventories at end of
period t

a, strictly positive parameters:

Three general comments on (1) will be made, before the individual

terms of the equation are briefly discussed. First, the firm's choice
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variables have intentionally been left unspecified. The estimation here
is consistent with any of the standard ones: output only (Belsley
(1969)) or inventories only (Blanchard (1982)) in models in which sales
are exogenous; output, inventories and sales in models in which the
firm is a perfect competitor (Blanchard and Melino (1981), Eichenbaum
(1982))2; output, price and inventories in models in which the firm is
a monopolist (Blinder (1980)). The firm's information set has been left
unspecified for the same reason.

Second, cost shocks, present in recent studies using the model,
have 'ﬁeen suppressed for simplicity. Strictly speaking, the errors in
the regressions are purely expectational. Parameter estimates were,
however, made robust to the presence of these shocks.3

Third, for the present, all variables should be assumed to be
deviations from trend (where trend should be understood to encompass all
deterministic components, seasonal as well as secular). This assumption
is purely for expositional convenience and will be relaxed shortly.
What we wish to derive are some restrictions that are implied for
arbitrary trend, and the algebra is less cluttered when trend terms are
set to zero.

The first term in brackets in equation (1) is revenue, the second
is costs. Although the revenue function will play no role in the bulk
of this paper, it is worth pointing out some of the implications of its
presence at this initial stage to emphasize the generality of the tests
performed here. The market may be perfect (Eichenbaum (1982)) or
imperfect (Blinder (1982)). Price specﬁlation on the supply side

(Eichenbaum (1982)) or perhaps even on the demand side may be present.



20

Pricing and production decisions may be made simultaneously (Eichenbaum
(1982), Blinder (1982)) or separately (Holt, et al., (1961)). In short,
Summers (1981) criticisms of inventory models that ignore interactions
between firms and their customers are not relevant here.

The second term in brackets is costs. These are the focus of the
model, and, here as elsewhere, are central. Total per period costs are
the sum of three terms.

The first is the cost of changing production, which is quadratic in
the period to period change in the number of wunits produced. This
represents, for example, hiring and firing costs.

The second is the cost of production, which is quadratic in the
number of units produced. This apprcximates an arbitrary concave cost
function that results as usual from a decreasing returns to scale
technology.

The third and final term embodies inventory and backlog costs, and
is quadratic in how far inventories are from a target level. It is
discussed at length in the next chapter; a brief explanation of 1its
rationale will suffice here. Inventory holding costs (e.g., storage and
handling charges) are reflected in a,. The parameter as is the
inventory to expected sales ratio that would be set in the absence of
both types of production costs (ay=a;=0). Not all authors agree that
this ratio should be anything but zero, and the two major variations in
(1) accommodated in the tests here turn on whether 85 is allowed to be
non-zero. Those who do so (Blanchard (1982), Eichenbaum (1962), Holt,
et al., (1961)) argue that sales sometimes exceed inventories on hand,

forcing firms to backlog orders. Firms face costs when such a backlog
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develops, perhaps because of 1loss of future sales. Thus, ceteris
paribus, when expected sales are higher, inventories should be higher as
well. The target level for inventories, aBEtSt+1' trades off Dbacklog

and inventory costs. In this model with a target level, inventories can

serve two functions. They can buffer production, allowing it to be
smoothed in the presence of fluctuating demand. And they can cut
backlog costs. Optimal inventories balance production, holding and
backlog costs.

Some other authors, however, insist +that in the absence of
production costs, the target 1level for inventories would be zero
(Auerbach and Green (1980), Belsley (1969), Blinder (1982)). They
impose 83=0. Inventories are then held purely to smooth production. 1In

this model without a target level, optimal inventories balance savings

in production costs against the costs of carrying inventories.
The tests performed here will thus accommodate equation (1) both
with and without a target level for inventories.

B.An Inequality

We now derive an inequality by calculating the effect inventories
have on expected costs.4 (The algebra carries along az. The effect in
models without a target level is obtained simply by setting a3=o in the
manipulations that follow.) According to the model, firms solve (1),
subject to tranaveréality and market equilibrium conditions to select
optimal H: and/qr Q: (and, as noted above, possibly p: and S: as well)
(Eichenbaum (19832), Hansen and Sargent (1980), Sargent (1981)). In this
optimal closed loop policy, the endogenous control variables typically

are set by a feedback rule, with their optimal period t values a
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function of their own past values and past and present values of forcing
variables.
* * * )

Let us assume that the sequences (Ht) (Qt)’ and (St) are covariance
stationary. Methods for calculating +this stationary sclution in
particular cases may be found in Eichenbaum (1982), Holt, et al., (1961)
and Blanchard (1982). Let Eov; be the expectation at time t of the

value of the objective function that results from this policy:

«© t ®*_*

- aflag(aQ})?+ay (ap)%+ay(hy-ass,.1)%) )

Let Eové be the expectation at time t of the value of the objective
function that would result from the alternative policy of setting H%=O
in every period, QA'SA DPrice p%=p: wiil in general still be
consistent with buyers demanding S%=S:.5 The vealue of the objective

function under this alternative policy is then

(3) By Eoab( [p}5})

2, *,2 *,\2
= dZLaO(ASt) a1(St) +32(-833t+1) ] )

This alternative decision rule clearly is feasiblefs By assumption,
then, since V; is optimal, Eovoonvg. Now, Eov; and Eovg are random
with respect to unconditional information and Eovg-Eovg is a
well-defined random variable with respect to this information set.
Since it is nonnegative it has a nonnegative expectation. Thus

E(EOVS-EOVS)ZP- By the law of iterated expectations, then

* EVA
(4) EV2EV]
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- T b [pst
> B yRoai( [ngs,]
* * *
- aflag(Q})%vay (@) 2+ ay(;-a584,1)%] )

>

T .t * _*
B Joar( [pyS,]

* * *
- dg[ao(Ast)2+a1(st)2+a2(-a3st+1)2] )

Let var(Q*)=E(Q:)2 denote the variance of production and
cov(Q,Q_1)=E(Q:Qt_T) its first autocovariance, with analogous notation
for other variables. (No time subscripts are necessary by the
assumption of covariance stationarity.) Also define d=d1d2. With this

notation {(4) becomes

F .t *_%
(5)  Zoa¥ Elp;S,]
x * * * *
t,’_:odt [(aovar(AQ )+B1var(Q )*azvar(H '338+1)]
>
] t * _®
thodr ELp;S;]

® » * *
téodt [(aovar(AS )*81var(S )+52var(-a3s+1)]

. * *
Using Q,=S.+H,-H;_y where convenient, expanding var(H '83S+1)
var(H*)-2a3cov(H‘,S+:)+a§var(5*), moving all terms to the left hand side
of the inequality, and then applying the standard formula for a

geometric sum transforms (5) into

(6) 0 < (1-5)-1 [&o(var(AS*)-Var( AQ.))+&1(var(S*)"Var(Q*))

- azvar(H.) +'282a3cov(H*.S+7)]

It is the two versions of this inequality--with and without a
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target level--that will be tested:’

(7.1) 0 < (1-a)"" [&O(var(AS)-var(AQ)) + ay(var(s)-var(Q))
- azvar(H)]
(7.2) 0 < (1-a)"" [ag(var(ss)-var(M)) *+ aj(var(s)-var(Q))

- azvar(H) + 2 a2a3cov(H,S+1)]

The "*" superscripts have been dropped in accordance with the null
hypothesis that observed H, S and Q accord with the optimal solution to
(1.

(7.1) and (7.2) have been derived assuming that all variables have
zero unconditional expectations. These inequalities still hold even
when such expectations are non-zero and firms account for them when
maximizing expected discounted profits. For let the variables in (1)
include deterministic components--constant, time trends, seasonal
dummies, etc.--and add linear terms such as a1O(AQt) to the cost
function in equation (1). It is then easily verified (see the Appendix
to this chapter) that if the alternative policy is the no-feedback, open

loop one that sets inventories equal to their unconditional expectation

*
t

in (7) still result.’ For the remainder of the paper, (7.1) and (7.2)

each period (HQ=EH , pﬁ=p:, S%=S:, Q:=SI+E(H:-Ht_:)), the inequalities
will be understood to apply to just such a model with deterministic
terms. It should be noted again that for expositional convenience all
such terms will be referred to as "trend," even though the word "“trend"
is perhaps somewhat misleading if deterministic seasonal fluctuations
are present or if secular growth is not.

In this light, let us interpret (7.1) and (7.2). The right-hand
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sides of these two equations describe the cost savings that could be
(unconditionally) expected to result from setting inventories optimally
rather than without feedback. The first two terms express differences
of production costs, the third that of inventory costs, and the fourth,
in (7.2), that of costs of inventories that deviate from their target
level. The expected difference in inventory holding costs, ‘agvar(Ht),
is always negative. Therefore, according to the model, these expected
cost increases are more than offset by savings elsewhere (otherwise the
optimal policy would not be optimal). Inequality (7.1), applicable when
there is no target level, says that the firm must expect to save either
on costs of changing production (var(AQ) < var(AS)), or on costs of
production (var(Q)<var(S)), or both, and the expected savings must be
large enough that overall expected costs are lower, i.e., (7.1) holds.
Similarly, (7.2), applicable when there is a target level, says that the
optimal policy must be expected to more than offset increases in
expected inventory holding costs with expected savings in production
and/or target level costs.

Thus it would seem to be a minimal economic requirement that (7.1)
and (7.2) be satisfied by data that are to be explained by the model.
The inequalities merely ask that the optimal policy be expected to cost
less than the static one. The static policy is the one that would be
optimal in the absence of all shocks to forcing variables. The
inequalities therefore summarize how production, sales and inventories
are expected to interact as they are dynamicaliy adjusted in response to
shocks. And this is precisely what the model purports to explain. It

is perhaps reasonable, therefore, to ask that the data not only satisfy
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(7.1) and (7.2), but do so to an extent that is significant in economic
or statistical terms.

The next section sees how well some aggregat; nondurables data
satisfy these inequalities. Given that (7.1) and (7.2) have been
derived for a single firm, however, it is appropriate to make a remark
on aggregation before examining these empirical results. The
inequalities do still hold at an aggregate level, provided that all the
parameters representing technology (e.g., the ai's) and the stochastic
characteristics of forcing variables (i.e., their ARMA parameters) are
the same for each individual firm. As is explained in detail in the
Appendix, under these sufficient though perhaﬁs not necessary conditions
each firm's behavior is summarized by a set of linear regresions with
identical coefficients on the regressors. As usual, therefore, the
model aggregates exactly, and aggregate behavior is characterized by the
same set of regressions. It is no surprise, then, that aggregate
production, sales and inventories satisfy (7.1) and (7.2), for arbitrary

correlation of production, sales and inventories across firms.
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I1I.Empirical results

Data and estimation are decribed briefly before empirical results

are presented.

A.Data

The data were real (1972 dollars) and monthly. Both seasonally
adjusted and unadjusted data were used. Seasonally adjusted data were
available for 1959 to 1980 for aggregate non-durables and four two-digit
non-durables industries (chemicals (SIC 28), rubber (SIC 30), petroleum
(sIc 29), and food (SIC 20)). Seasonally unadjusted data were available
for aggregate non-durables and three two digit industries (chemicals,
petroleum and rubber). (Again, durable goods industries were excluded
because the model is intended to apply only to industries that produce
to stock, and durable goods industries generally produce to order.)

Sales were obtained by using the appropriate wholesale price index
(Citibank Economic Database files PWDMND, PWCH, PWRUB, PWFUEL, PWFOSA,
PWPA) to deflate the Bureau of the Census nominal figures for sales
(files MNS, MNSCH2, MNSCH5, MNSCH4, MNSFO, and MNSPR2 for the seasonally
adjusted figures, and the Bureau of the Census (1978,1982)

Manufacturer's Shipments, Inventories and Orders for the unadjusted

figures). The seasonally adjusted inventory figures were obtained by
converting the Bureau's recently calculated constant dollar seasonally
adjusted inventory series (Hinrichs and Eckman (1981)) from "cost" to
"market"” so that one doller of inventories represented the same physical

units as one dollar of sales (see the Appendix "A Note on the
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Econometric Use of Constant Dollar Inventory Series" for a definition of
"cost" and “"market" and an explanation of why a conversion was
necessary). As in Reagan and Sheehan (1982) the seasonally unadjusted
constant dollar inventory figures were obtained by multiplying the
adjusted figures by the corresponding unadjusted to adjusted ratio for
book value (nominal) inventories. (This procedure was adopted since no
unad justed constant dollar data appear to be available. It makes the
plausible assumption that the "seasonal deflator" is the same for book
value and constant dollar inventories.)? Production was obtained from
the identity Qt=st+Ht‘Ht-1°

B.Estimation

The sample period covered 1959:5 +to 1980:10, with 1980:11 and
1980:12 used for leads and 1959:2 to 1959:4 used for lags. All data
were first regressed on a constant and time trend, and, for seasonally
unad justed data, on seasonal dummies as well. The resulting residuals
were used in all subsequent regressions. Note that in the linear
estimation performed here, parameter estimates resulting from the
regressions using the detrended variables are identical to those that
would have resulted from regressions using the original variables
including trend. Also, it should be noted that in Reagan and Sheehan
(1982) time series study of precisely the unadjusted data used here, it
was found that seasonal dummies alone successfully accounted for the
seasonal variation in inventories. There appeared to be no need to
allow for indeterministic seasonal components.

Three specific aspects of estimation wi)Jl be briefly discussed.

These are estimation of the a;, of the second moments of inventories,
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sales and production, and, finally, of the standard error of (7).

(Throughout this section, references to "(7)" should be understood to be
shorthand for "(7.1) and (7.2)"). Additional details will be found in

the Appendix.

The 8i's in the model with a target level were obtained as follows.
(The same procedure was applied to the model without a target 1level,
except that az=0 was imposed.) A necessary first order condition to
solve (1) at time t>ty is obtained by differentiating (1) with respect

to Ht and setting the result equal to zero: 10
2 2
(8) E, 2[d"agH,,, - (2d°8y+2dag+day )Hy,y
+ (d2ao+4dao+a_o+da1 +a1 +32)Ht
- (2ag+2dag+ag )iy g * agHyo
2 2
* 4%85S44p - (878p*2dag*dag*tazaz)Sy.y

+ (2dagrag*ay)Sy - apSyq ] = O

After defini.> lower case q, = dQ4-Q4_q and dividing this first order

condition by two, the Euler equation (9) results:

(9) B[ apdqysp-(ag+ag(1+d))ageq*aga*tagty-azasSysy 1= O

Now normalize a,+(1+d)ag=1 and write (9) as

(10) q441= ag(dqyep*ay) + apHy - apasSieq *+ uty

where u;, is an MA(2) error. With monthly d=.995 imposed (corresponding
annual discount rate is about six per cent) (10) can be estimated by

instrumental variables.ll The six instruments used were three lags each
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of inventories and sales. The estimation required two steps, as
described in Hansen and Singleton (1982). The first step calculated the
variance-covariance matrix of the U, and the second obtained the
optimal instrumental variables estimator. See the Appendix to this
chapter for further details. Since the equation is overidentified--the
model without a target level has two right-hand side variables and that
with has three--Hansen's (1982) test of overidentifying restrictions was
calculated.

Variances and covariances were calculated from a bivariate

(inventories,sales) autoregression of order three:12

(1) Hy = 0 uHy g+ 9oH, o+ oty 5+ % 4S. 1+ 955, 0t HeSi_ztuny
Sy = $oqHy_q+P ool ot 33“1:-3* 24St-1""’255t-2+ ¢26St-3+u3t

The Yule-Walker equation wusing the estimated dij was then used in the
standard way (Anderson (1971,p 182)) to obtain the needed =zecond moments
of sales and inventories. The second moments of production were derived
from the identity Qt=st+Ht‘Ht-1' e.g.
var(Q)=var(S)+2cov(S,H)-2cov(S,H_1)+2var(H)-2cov(H,H_1).

Finally, the standard error of the statistic (7) was derived as
follows. Let 6 be the (1 x 24) parameter vector needed to calculate
(7). @ defined precisely in the Appendix to this chapter, consists of
the coefficients on the 21 right-hand side variables in three equation
system consisting of (10) and (11) and the three elements of the
covariance matrix of the error terms in (11). The estimated 6 is
asymptoticaily normal with a covariance matrix V defined in the

Appendix. The statistic (7) is a function of 6, say, g(6), and thus is
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asymptotically normal with covariance matrix (dg/d®)v(dg/dB)'. The

standard error of (7) is the square root of (dg/d6)v(dg/df)'. The

derivatives dg/d® were calculated numerically.

C.Results

We will shortly present estimates of the size and the standard
errors of the right hand sides of (7.1) and (7.2) for the data described
above. This will require estimates not only of the appropriate

variances and covariances of inventories, sales and production, but of

the a; parameters as well. First, however, let us consider whether
these data are qualitatively consistent with the inequalities, by
examining the approriate second moments. Tables I and II have these,
for seasonally adjusted and unadjusted data respectively.

It follows immediately from the trivial calculations underlying the
entries in Tables I and II that for both seasonally adjusted and
unadjusted data, the model without a target level violates (7.1) for
almost all industries! (The only possible exception is chemicals.)
Columns (5)-(7) indicate that for all but the chemical industry,
Var(ASt)-var(AQt)<0, var(S,)-var(Q,)<0, and, of course, var(H,)>0.
Since the a, are known a priori to be positive it follows that for all
but chemicals, 0>ag(var(8s)-var(4Q)) + aq(var(s)-var(Q)) - apvar(H). In
other words, according to the model itself, the static, no-feedback
policy of 1letting inventories grow at their tren& rate would have been
expected to be preferable to the optimal policy that the model claims

actually was followed: lower costs of changing production, lower costs

of production, and lower inventory costs. From these simple
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Aggregate

non-durables

Chemicals
(sic 28)

Rubber
(sICc %0)

Petroleum
(sic 29)

Food
(sic 20)

Hotes:

Units are millions of 1972 dollars squared.

(1)
var(AS)

124 428

8 5417

2 474

3 003

39 789

(2)
var(&Q)
170 406

9 404

3 687

5 189

51 744

TABLE I

BASIC VARIANCES AND COVARIANCES
(SEASONALLY ADJUSTED DATA)

(3)
var(S)

1 288 760

85 259

22 188

21 159

46 800

(4)
var(Q)
1 %11 910

84 T92

23 186

22 358

50 628

(5)
(1)-(2)
-45 978.2

-856.9

la Namom

-2 185.9

l.-a wm&.od

(6)
(3)-(4)
=23 240.0

967.7

-998.5

-838.9

-3827.5

Data and calculation described in text.

(7)
var(H) -

1 326 370

T1 597

26 960

11 601

97 178

(8)

oo<A=.m+,v

T15 325
16 129
14 512

i 123

21 828
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Aggregate
non-durables
Chemicals

Rubber

Petroleun

Notes:

(1)
var( 8S)

218 562

20 T3

4 249

3 480

(2)

var(Q)

335 187

18 850

5 291

5 956

TABLE IT

BASIC VARIANCES AND COVARIANCES
(SEASONALLY UNADJUSTED DATA)

(3) (4)
var(s) var(Q)

1 213 660 1 283 900

103 899 100 926
19 088 20 331
21 188 22 502

Units are millicas of 1972 dollars squared. Data and calculation

(5) (6) (7)
(1)-(2) (33-(4) var(H)
-117 225 -70 241.8 1 142 410
1 863 2 973.7 69 000
-1 042 -1 243.2 16 45
-2 476 -1 314.3 11 315

described in text.

(8)
oo<A=.m+ﬂv

733 007
23 588
7 801

-6 379
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calculations we can conclude that with the possible exception of the
chemical industry, the data studied here are inconsistent with the model
without a target 1level. This suggests that backlog costs, whose
existence are used to rationalize a non-zero target level, are of
crucial importance to this model.

It also follows from Tables I and II that even the model with a
target 1level is inconsistent with the seasonally unadjusted behavior of
the petroleum industry, since inventories here covary negatively with
next period's sales. Relative to the static policy, the optimal policy
that supposedly was followed would have been expected to increase all
the costs just noted, and the cost of being away from a target level as
well. Thus, this data set is 1incompatible with the model, with or
without a target level. For the remaining industries, (7.1) and (7.2)
cannot be signed without the a.'s. Let us therefore turn to precise
calculation of the inequalities.

In Tables III and IV are the a,'s for the models with and without a
target level, respectively. Almost all of the parameter estimates are
indeed positive. Consider the model without a target level first. With
seasonally adjusted data 7 of 10 free signs on the a, are correct, and
with unadjusted the figure is 5 of 8. (The number of free signs is 10
and 8 rather than 15 and 12 because the normalization rule a,+(1+d)ag=1
constrains either a, or a; to be positive in each equation.) The
comparable figures for the model with a target level are 13 of 15 and 9
of 12. Only two of the wrong-signed coefficients are significant at the
.05 level (80 in the model with a target level, for both =seasonally

~adjusted rubber and seasonally unadjusted aggregate non-durables). In
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TABLE III

STRUCTURAL PARAMETERS, MODEL WITHOUT A TARGET LEVEL

ao 81 82 J
Seasonally adjusted
Aggregate «2430 .5150 .0130 12.74
non-durables (.0450) (.0o898) (.0188)
Chemicals .4054 1913 .0160 12.92

(.0624) (.1245)  (.0172)

Rubber -.0499 1.0995 -.0083 7.91
(.1144) (.2282) (.0354)

Petroleum .1392 7222 .0418 7.42
(.0822) (.1640) (.0235)

Food 3361 «3295 -.00002 6.61
(.0582) (.1161) (.0175)

Seasonally unadjusted

Aggregate -.1069 1.2132 -.0047 20.03
non-durables (.0929) (.1854) (.0276)
Chemicals .3439 .3139 .0228 14.60

(.0845) (.1686)  (.0202)

Rubber .3873 .2274 -.0128 4.19
(.1074) (.2143)  (.0270)

Petroleum .3256 . 3504 .0387 4.81
(.0554) (.1105) (.0127)

Notes: v

1.Variables defined in text.

2.J distributed as chi-squared with four degrees of freedom,
critical levels: 9.48 at .05, 13.28 at .01, 14.86 at .005.
3.Asymptotic standard errors in parentheses;

standard error on a,=1-(1+d)ag=1-1.9954,

calculated as 1.995 times the standard error on ag.
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TABLE 1V

STRUCTURAL PARAMETERS, MODEL WITH A TARGET LEVEL

Bo a4 a, a3 J

Seasonally adjusted

Aggregate .1748 .6514 .0228 1.1240 11.50

non-durables (.1110) (.1326) (.0232) (1.2216)

Chemicals .3970 .2081 0171 .3256 12.8%
(.0667) (.1331) (.0177) (.9832)

Rubber -.2444 1.4878 .0199 4.5217 1.79
(.1184) (.2362) (.0494) (10.6568)

Petroleum .0772 .8461 L0367 1.1048 3.50
(.0903) (.1801) (.0263) (1.0979)

Food -.0782 1.1562 .0839 6.4670 7.84
(.2900) (.5786) (.0868) (3.4104)

Seasonally unadjusted

Aggregate -.2427 1.4842 .0618 2.0831 11.40

non-durables (.1014) (.2023) (.0470) (1.2243)

Chemicals .1886 .6238 .0391 L9111 13.43
(.1389) (.27171  (.0287) (.8223)

Rubber .2519 .4974  -.0098 -3.4508 4.07
(.1711) (.3413) (.0343) (13.7254)

Petroleum .2232 .5547 .0256 .8141 3.58
(.1018) (.2031) (.0206) (1.2732)

Notes:

1.See Notes to Table III.
2.J distributed as chi~squared with three degrees of freedom,
critical levels: 7.81 at .05, 11.34 at .01, 12.84 at .005.



37

most equations the production cost a, and the cost of changing
production 8y are significant. Somewhat puzzling is the imprecision of
the estimates of the inventory holding cost a, and the target level
parameter a;, which are rarely significant at the .05 level. They are,
however, almost always positive and stand here in about the same ratio
to the other a, and to each other as they did in Blanchard's (1982)
estimates for the automobile industry.

However, these parameters, though positive and often significant,
are not enough to make the model plausible. Results of the variance
bbunds test for the model without a target level are shown in Table V,
and for +the model with a target level in Table VI. It was noted above
what would result for all data sets except possibly chemicals for the
model without a target 1level, and for the seasonally unadjusted
petroleum industry in the model with a target level. Thus it 1is no
surprise that Tables V and VI indicate that (7.1) and (7.2) were
violated fer all of these. However, the inequality for the model
without a target level was violated for chemicals as well, both
seasonally adjusted and unadjusted, as was the inequality for the model
with a target level for most of the data sets. Thus, the inequalities
were violated in fourteen out of eighteen instances, and five of these
were significant at the .05 level. The four data sets that did satisfy
(7.2) did so insignificantly, with standard errors uniformly larger than
the sizes of the inequality. Also, two of these four produced the only
significantly wrong-signed parameter (ao for adjusted rubber and
unad justed aggregate non-durables). It therefore appears that the model
does not well explain any of the data studied here.

Moreover, the increase in deviations of costs from trend
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TABLE V

TEST STATISTICS, MODEL WITHOUT A TARGET LEVEL

(1) (2) (3)
100 x
Eq'n (7.1) Eq'n (12) (1)/(2)
Seasonally adjusted

Aggregate - 8 069 470 146 843 000 -5.50
non-durables (6 667 880)

Chemicals -261 532 4 216 060 -6.20
(291 782)

Rubber -162 262 5 016 600 -3.23
(162 038)

Petroleum =279 009 3 470 090 -8.04
(130 681)

Food -1 055 240 6 814 090 -15.49
(492 792)

Seasonally unadjusted

Aggregate =13 459 700 303 283 000 ~-4.44
non-durables (7 388 180)
Chemicals =40 T 947 400 -0.00
(291 1782)
Rubber - 94 261 1 291 370 -7.30
(99 273)
Petroleum =340 868 2 052 380 -16.61
(115 259)
Notes:

Unite are billions of "normalized" 1972 dollars,
obtained after normalizing one 1972 dollar to one unit of
production and ay+aq(1+d)=one dollar.



TEST STATISTICS,

1)
Eq'n (
Seasonally adjusted

Aggregate -3 348
non-durables (6 922
Chemicals - 237
(286
Rubber 169
(427
Petroleum =242
(125
Food 2 398
(3 028

Seasonally unadjusted
Aggregate 8 476
non-durables (17 958
Chemicals 237
(704
Rubber - 37
(145
Petroleum ~367
(124

Notes:
See Notes in Table V.

7.2)

200
430)

244
447)

912
473)

555
596)

570
000)

740
000)

991
357)

183
869)

652
072)

39

TABLE VI

(2)

Eq'n (12)

183 009

4 494

8 113

4 123

40 639

406 318

14 179

1 702

2 945

000

560

910

110

000

300

580

460

MODEL WITH A TARGET LEVEL

(3)
100 x

(1)/(2)

-1.83

-5.28

-5 -88

5.90

2.08

1.68

-2018

-12-48
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attributable to the optimal policy would appear to be economicelly
as well as statistically noticeable. Column (2) in Tables V and VI
contain total deviations of costs from trend (again, in "normalized"

dollars, 31+(1+d)ao-1):1a

(12) (1-a)7! [agvar(aQ)+ayvar(Q)+a var(H)

- 2aza3cov(H,S+1)+32a;V8r(S)]

When (7.1) or (7.2) is divided by (12) (possibly with &5=0 imposed in
(12)) the result is a dimensionless measure of the extent %o which the
optimal policy increases or decreases deviations of costs from trend
relative to the static policy. This is shown in column 3 of Tables V
and VI. The optimal policy increases expected cost deviations by up to
15 percent. If this increase were to be believed it would mean that
deviations of profit margins from trend, and therefore presumably profit
margins themselves, are substantially reduced.

It is of some interest to compare the results of the inequality
tests with those of a common test of specification, the Hansen (1982)
test of overidentifying restrictions that is reported in the columns
labelled J. This was accepted at the .05 level for half the data sets
(rubber, petroleum, food) and was rejected at the .05 but accepted at
the .005 1level for the three other data sets. This compares favorably
with the tests of the overidentifying restrictions in the remaining
chapters of this thesis, as well as in other recent studies (Blanchard
(1982), Eichenbaum (1982)). Thus it is perhaps fair to say that this
traditional test is supportive of the model. It would appear, then,
that the variance bounds test was an essential element in assessing the

reasonableness of this model for these dats.
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IV.CONCLUSIONS

This summarizes the basic conclusions of this chapter.

First, if the results of the previous section prove robust to,
e.g., choice of sample period, it would seem that the linear quadratic
model does a poor job of rationalizing these inventory data. In effect,
a contradiction results when it is assumed that the actual inventory
path chosen is the one that is optimal according to the model. The
allegedly optimal path is dominated by a naive alternative path.

In the model without a target level for inventories, this follows
simply because production is more variable than sales. Inventories
therefore cannot be chosen simply to perform their putative function,

smoothing production.l4

For the model with a target level, the matter is
slightly more complicated. Inventories do usually track their target
level (except in the petroleum industry). But this makes production and
inventories so variable that inventories cannot ©be chosen as
hypothesized, to minimize quadratic inventory, production and
target-level costs.

This suggests two things. First inventories appear to serve some
role other than production smoothing. Second, if this role results from
backlog costs, it is inadequate to handle this by adding to a production
smoothing model a simple cost of having inventories deviate from a
target level.15

The remainder of this thesis attempts to model backlog costs in a

more sophisticated fashion. The next chapter does so for the production

to s8tock industries studied here, and chapter after that does so for



some production to order industries.
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FOOTNOTES

1.The four two digit industries were chemicals (SIC 28), rubber (SIC
30), and petroluem (SIC 29), both seasonally adjusted and unadjusted,
and food (SIC 20) seasonally ad justed. These were the only
non-durables industries for which data were readily available. The
test was also applied to aggregate non-durables, both seasonally
adjusted and unad justed. Durables industries were excluded because
of the "production to order" nature of their business, see chapter 4
and Abramowitz (1951) or Rowley and Trevedi (1975).

2.Eichenbaum's (1982) model does not fit precisely into this
framework, even in its simplified version (1982, pp24-25). He
includes the term "a4wt+th+ " in the cost function, where wy4j is
the wage and a, another posigive parameter. As will become apparent,
the inequality to be derived here is apporximately correct if

84(cov(w,Q)-cov(w,S)) is small compared to the other terms in the
inequality.

3.This was done by by suitable adjustment for moving average errors
and choice of instruments. This also allowed for the possibility
that production is decided before sales are known, with sales
expectational errors resulting in unintended inventory investment
Thus all individual elements in the inequalities to be derived are
consistently estimated if these shocks are present or if sales
information arrives with a lag. But the inequalities omit any direct
contribution to expected costs of either of these.

4.1 thank both R. Shiller and L. Summers for (independently)
suggesting to me the basic argument of this section.

5. Except if the firm has some market power and demand depends on
actual or expected production or inventories. As far as I know, this
assumption has never bteen made in this class of models.

6. Strictly speaking the alternative policy is not feasible if
production takes place with a lag and inventories absorb sales
expectational errors as in Blinder (1982). But even here the
inequality about to be developed may be considered approximately
correct if these errors are small relative to the size of the
inventory stock, as seems plausible. See footnote 3.

7.This shows that if we ignore unintended investment (see footnote
3), Blinder (1987a) is incorrect in his hunch that var(Q)>var(s) is
possible in his (1982) model under certain circumstances. This model

was as in (1) except that 8p=a3=0.  Thus from (7.1) wvar(Q)<var(s)
unambiguously.

8.To prevent confusion, it should be stressed that this alternative
policy entails varying inventories from period to period if
inventories display a time trend and/or deterministic seasonal
variation. See Bertsekas (1976, ppl191-2) for a definition of an
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"open locp" policy. Strictly speaking, setting HA=H: is the open
loop policy only if inventories are the only control.

9.An alternative method for calculating unad justed constant dollar
inventories would be to deflate book value inventories by the
appropriate wholesale price index. Given the massive switch from
FIFO to LIFO accounting in the 1970s, and cyclical differences in
output price versus input cost (see Foss, et al. (n.d.)), this is
likely to lead to estimates substantially inferior than those derived
as described in the text.

10.This assumes APy, 5844 5/dH4=0. This is consistent with any linear
quadratic inventory model that I am aware of, including not only

those in which sales are exogenous (e.g. (Belsley (1969)) but also

those in which they are Jjointly endogenous with inventories
(Eichenbaum (1981), Blinder (1982)).

11-“1t is MA(1) if it comes from purely expectational errors and
production and sales decisions are made simultanecusly. But if

unobserved shocks are present, or if production is decided before
sales are known, the errors are MA(2). It thus seemed desirable to
adopt a procedure that was consistent even in the presence of these
errors. In addition, it should be noted that monthly d=.999 and
d=.995 were also tried, with results virtually identical to those
reported in the Tables for d=.995 (e.g., the estimated a8,'s were
identical to the first two decimal places).

12.This is not to say that the model (1) implies that inventories and
sales follow such an autoregression. In general, however, it does
imply that they follow a bivariate ARMA process of some order {Hansen
and Sargent (1981)). The order of the ARMA process cannot be tied
down without making auxiliary assumptions that we have been at pains
to avoid making. The AR process assumed in the text should be
considered an approximation to this ARMA process.

13.5. Fischer has pointed out to me that if another first order
condition which contained P; were available, the dollar value of the

84 could be determined. But this would probably require that an
assumption be made about market structure, so that (1) could be

differentiated with respect to Py and/or St‘ This seems
undesireable.

'4.This has been conjectured by Blinder (1981b) and Blanchard (1982).

15.For a criticism of the use of this simple cost in a completely
different inventory model, see Carlson and Wehrs (1974) and Feldstein
and Auerbach (1976).
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APPENDIX

This discusses:

1.The derivation of inequalities (7.1) and (7.2) when +trend is
present.

2.Verification that under suitable conditions (7.1) and (7.2) hold
at the aggregate industry level if they hold for individual firms.

3.Estimation of the variances and covariances from the Yule-Walker
equation.

4.The structure of the variance-covariance matrix of the
three-equation system consisting of (10) and (11).

1.Trend

This will derive (7.2), the inequality when a target 1level is
present. Inequality (7.1) follows by setting a3=o below.
When trend is present, expected costs are:
(A1) max B, £a1( [p,s,
= dg[ao(AQt)2+a1Q%+a2(ut_a3st+1)2
- [ afaygor 5aogmy) o
+ aflagyor lagy mo0Q,
+ ak(ag o+ %?812jmj)(Ht'a3St+1) ]
- [azotAQt + az1tQté+ a22t(Ht-a3St+1)]
- [Foy + Byy + F2t\j‘
The aij’ i=10,11,12, j=0,....11, represent traditional linear costs and

the M;'s are seasonal dummies (M;=1 in month j for seasonally unadjusted

data, HJ-O in all months for seasonally adjusted data); the dj,
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i=3,4,5, technological progress (O<dii1), the a;, i=20,21,22, trends

induced by technological progress and/or secular growth in exogenous
variables, and the F. ., fixed costs associated with each of the three
types of costs.
»

We wish to establish that EVO-Evg is as on the right hand side of

(7.2), where Evz is (A1) evaluated at the optimum and EVA is (A1)
*

evaluated at the alternative policy H%=EH:, pﬁ=p:, SA=S b QA-S EAHt.
*
t

*g¥* EQA=ES EAH =gqQ"*.

It immediately follows that EH%=EH:. EPASA Ep,S
Thus, for both policies, revenue and the elements of costs contained in

the last five lines of (A1) are the same, so
* A =
(A2) EVO-EVO
oa® [ ap(e(ab)?-E(M )2)+a1(E(QA)2-E(Q )2)
A 2_ %2
(Recall that d=d;d,.) By definition, for any random variable X,
EX§=(EXt)2+var(Xt), var(xt)=E(xt-Ext)2‘ Thus, since the unconditional
expectations of production, sales and inventories are the same for both
policies, we have
* oA o
(A3) EVEVY
® * *
tgodt[ao(var(AQ%)-VBr(AQt)+&1(var(Qt)-Var(Qt))

*a,((var(u}-azs,, )-var(Hi-ass,,7)) ]

Finally, var(/A) = E[s™Ey® - p(s*+en®)]2 - B[ss]-essT]?
t t t 1 t t t
L ] *
var( S:), and, similarly, var(Q%)=var(St), var(HQ-a3st+¢)=var(-a3st+1).
Inequality (7.2) then follows directly.

2.Aggregation over firms

This section presents sufficient conditions for and (7.2) to hold

for aggregate production, sales and inventories in an industry, given
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that it holds for each of the firms in the industry. (The argument for
(7.1) follows by setting a3=0 below.) These conditions are that the
structural parameters representing the linear stochastic characteristics
of forcing variables and technology are the same for all firms. As will
become apparant, this will not restrict interfirm correlations of
production, sales and inventories. These are arbitrary.

Let there be K firms, indexed by %k, k=1,...,K. Thus Hkt is
inventories of the kt® firm in period t, Skt its sales, etc. Let th be
the (n x 1) vector of forcing variables facing the firm, with Wold
representation th=B(L)ekt; B{L) = jgijLj' each B:j a{(n x n) matrix
and L the 1lag operator. (Example: n=1 and th=skt (Holt, et al.
(1961)). Even in this case, n>1 is perhaps appropriate if variables
other than past sales help predict future sales.) The e, 4 may be
arbitrarily correlated across firms (Eektejt arbitrary), but are
uncorrelated across time periods (Eektejs=o for t#s, all j,k). It
should be pointed out that this allows perfect correlation (ekt=ejt) as
will happen if, say, X, consists exclusively of common prices facing
all firms. Note that the structural parameters B(L) are assumed to be
fhe same for all firms.

Each firm chooses its endogenous variables by solving a set of
first order conditions, subject to the law of motion of its forcing
variables, X ,=B(L)e, ;. One of these is the Euler equation (9):

(9) Byl apdgyrp-(aq+an(1+d)) qpee1*a0as*aotxs-a2838k s 1= O

Note that the structural parameters d and the ai'g are assumed to

bte the same across all firms. Similarly, we assume that parameters

comparable to d and the a.'s are the same for all firms in other first
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order conditions needed to solve (1) (e.g., in a first order condition
derived by differentiating (1) with respect to sales Skt)‘
The firm solves these first-order conditions to get its optimal

feedback rules

gkt:g1(L)§kt=A1(L)B(L)ekt=B1(L)ekt
(A2.1) QEE= (5, (1)¥b1-1)B, (L))o, ,=Bs(L)e
£=B3(L)ey
2§ktf(%'L)BZ(L)ekth4(L56kt
xt=(1-L)B3(L)ey =B (L)ey

(o 2] .
where, e.g., B1(L)=iEOB‘iL1' and degenerate cases such as X S

kt = Pkt
are covered by allowing Bz(L)eB(L). Note that the Bi(L) are not
subscripted by k. Given that the structural parameters of the problem
are the same for all firms, this fact easily follows by examining the
constructive solution techniques described in Hansen and Sargent (1980,
1981), Eichenbaum (1982), or a standard dynamic programming text such as

Bertsekas (1976, ch. 3.1).

Now, it was shown in the paper that

(A2.2) 0 < (1-da)~" x
[ao(var( Sk)-var(AQ )) + a1(var(Sk)-var(Qk)) - a2var(Hk)
- 8azcov(Hy, Spe1)

Let vk=Eetketk" Equation (A2.2) may be written in terms of the
Bij' i=1,...,5 as
(A2.3) 0 < (1-a)"" «x

Lag (584 sVicBa 5" 5B 5VicBs3") *+ a1 (3BagVicBy  -5B330cBs ")

- a2(§h1ijB1j') + 2a2a3(§f1ijB23+1') ]

Note that the argument in the text has shown that (A2.2) hclds for
arbitrary positive definite V,. That is, nowhere did that argument
constrain the elements of V, relative to one another or to any of the

structural paresmeters.
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Finally, let variables without subscripts denote market aggregates,

K
€.g., et=k£1 et Also let V=Eetet', Then we have from (A2.1) that

H.=B,(L)e

S:=B;(L)e:
Q;=B5(L)ey
88 <%, (L)%,

(1-)7" [ay(var(8s)-var(4Q)) + a;(var(s)-var(Q))

- 8yver(H) + 2 ajascov(Hy,S44q)]

- "1 v 1 ' '
(1-4) [30(3B4J-VB4J~ -ngjVst ) + ay (gBZjVB2j —EBBJVB3J- )
- 82(LBy VB 5') + 2apa3(ByVByjuq') ]
J J

> 0
The last inequality holds because, as noted, we have proved that

(A2.3) holds for an arbitrary variance-covariance matrix Vk, In
particular, it holds for Vk= .

3.Variances and Covariances

Variances and covariances were calculated by solving the
Yule-Walker equations in the iterative manner suggested by Anderson
(1971, p177). The pair of equations (11) may be written in quasi-first
order form as Xt=th_1+Ut, where X, and U; are (6 x1),
xt=(Ht'Ht-1'Ht-2'st’st"1'st"2).’ Ut=(U2t,O'O'U3t,0,0)l, and the (6 X 6)

matrix B is

Mobiz fi3 da s e

MLLIP 0
0o 1 0 0 0 o
$51 $op & $or ¢
Jo1 S22 o3 1%3 25 b6

0 0 0 0 1 0

Let C=EX;X;', D=EU4U;'. It follows then (Anderson, (1971), p182) that

C=BCB'+D. After the paramesters in B were obtained as described in the
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next section, the elements of C were found numerically. An initial
guess of C=D was made and C was updated iteratively by Cj=BCj_1B'+D
until the change in each of the elements of C was acceptably small. All
of the second moments needed for (7) may be calculated from the elements
of C, e.g., var(Q)=var(S)+2cov(S,H)-2cov(S,H_1)+2var(H)—2cov(H,H_1) =
c(3,4)+2c(1,4)-2c(2,4)+2c(1,1)-2c(1,2).

4.Variance-covariance matrix of parameter estimates

The reader is warned that the notation here does not precisely
match that in the text.

We have a trivariate system

Yiger = Kqpa by + Uq t41
(1 x1) (1 xn)(nx1) (1 x 1)
Yoy = 2y by + upy,

(1 x1) (1 x k)(k x 1) (1 x1)
V3¢ = Zy b3 ¥ uzg

(1 x1) (M xk)(k x 1) (1 x1)

The first equation is the Euler equation (10), and n=4 or 5 depending on
vhether or not a target level is allowed. The second and third are the

~

bivariate (H,S) autoregression (11), and k=8. ;1t+1 is MA(2), uyis

(Qpe1-ByGper) - 208(dpup-Bydpup) *+ 2pa3(Syuq-BySpe) - ap(Hy-EBgly) +
period t cost shocks. (The last two terms may be present as described
in on page 5 and footnote 3.) ;1t+1 thus contains expectational errors
and/or cost shecks occuring in periods t+2, t+1 and t, and so is
correlated with all the right hand side variables in (10). Uy, and usy

are iid, but are correlated with Ujiers Uy and uqge_q.

The Euler equation is led one period relative to the autoregression
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equations to make the right-hand side variables in the latter legitimate
instruments in the former. That is, Ht—1 and S;_4 are elements of Z,,
and are correlated with u,, since part of uy; reflects period t-1

expectational errors and/or cost shocks; they are not, however,

correlated with u1t+1.

~

Let ¥94=y1¢+1» X14=Xq44+q, 8nd uqi=u q44q. Stack the three
equations as

}'1 = X b1 + U.1
(Px1) (Pxn)(nx1) (P x1)

y Z b
(T x21) (P x k)(k x21) +(T :21)

y X b
(T 321) (T x K)(k 221) (T 1)

(Strictly speaking these matrices should be subscripted by the number of
observations T. This additional subscript is omitted here and in

subsequent definitions to keep the notation uncluttered.) Let

V1j=Eu1uj', j=1,2,3, with estimate V 135 calculated from residuals from
25LS. The V1j are (T x T) matrices with zeroes everywhere except on the
diagonal and first two off-diagonal bands. Let A=plim
(T'1X'Z)(T'1Z'V11z)'1 = Hansen's (1982) (n x k) optimal weighting matrix
for 2SLS solution of the Euler equation, with estimate R=X'Z(Z'G11Z)'1;
let K=2k+n = number of regression coefficients; and let 622=Eu2%.
Op3=Eup4usy, 033-Eu3%' The estimate of the ((K+3) x 1) parameter vector
o = (%1',;2',53',;22,;23,;33) was calculated by solving the

orthogonality conditions
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| -1 - |A
TR (g Ky By)

I
"1 tA :

(A4) T7EZ, (y4-24 ' bp) I
-1 '. I
T T2y (y34-24 b3) i
5 E
|

|

{

|

i

|

[}

= "1 " = - l“ 2
O T Eht(e ) 622-'1' 12 (th-Zt b2)

Op3-1" 2 (¥p4-24' bp) (y34-2b3)

——— o —— oy e e G

~ ‘1 |A 2
--f33-T Z(y3t-zt b3) !

| 1A 2 (y,-xby) |
Y -
772" (¥,-2b,)

2" (y5-2b5)
032-1""2(724-2,"b,)?
055-112(554-2, ") (33424 D 3)
833'T-1Z(y3t‘zt';’3)2

(In this section all summations run from 1 to T unless otherwise noted.)
Thus b,=(A z'%)" A 2'y, as in Hansen and Singleton (1982), b, and bz

are OLS estimates, and the Gij are solved from sample moments. These

orthogonality conditions were chosen in part because they force sample
moments to asymptotically equal population moments. That is, for each
t, Eht(g)}g* = 0, where 9' is the true but unknown 6. Hansen
(1982, pp1038ff) establishes that /2(¢ - &%) therefore is

asymptotically normal with covariance matrix V = (plim il the)'1S(Plim

7! the')-1' where h,.o is the ((K+3) by (K+3)) matrix of derivatives of
o 2
h, with respect to @ and S=j-§wEhtht_j' = 3512 Ehihy_ ;' (the summation

stops at 2 because Ehyhy_ ;'=0 for {3i>2). We will first derive hyg and

then S.
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Differentiating (A4) to obtain h.g gives T"1zhte =

E -r~1az'x 0 0 } 00 0|
i |
i 0 -r-1z'z 0 ' 0 0 0

|
] |
i 0 0 Ay ' 00 0!
| i
VT T
{ -1 ' '
| 0 217 12, (yp4-24bo) 0 i 1 0 0 ;
| ] !

-1 -1

P 0 ST EZy(ys4-Zebs) T FZylyag-Zybp) O 1 O
| | |
i 0 0 21722y (y5p-24b5) | 0 O 1 |

Since the 2, gre instruments, the (3 x K) lower left hand block plims to

. -1 -1 2
zero and thus (plim T Lhy)™' =

P-(r-taz'x)-1 o 0 l

| Vi1 |

: 0 -(r'z2'z)" 0 I 0
| ' 1I

; 0 0 -(r'z2'2)" i

1 |

|

plim

(o
T

Partition S as

{ K LK) (K 1°3) g
| ]
I S [ S |
L %) (3 83) |

Consider first S;;. From (A4) and the definition of S, the (n x n)

A =

2
block in the upper left hand cormer of S,y jg I EAztu1tu1t-jZ%—J
a2

b
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2

) [] —_ . '1 . [ . "‘1 L]
jE_ZEAZtZt_jA Eu1tu1t—j = plim T AZ'V,,ZA' = plim T AZ X (the last

equality follows from the dzfinition of A). Similar algebra applied to

the other elements of S,, yields

| ' ' [
i AZ'X AZ V122 AZ V132

511 = plim T‘-1

[ RS ———

I
|
05022 0232'2 |
:
|

To evaluate S;,, assume that random variables assumed to be
uncorrelated are independent as well. Specifically, assume that the Zt

are independent of us for j<O, i=1,2,3, and that Upgo 3 and uzy_ 4 are

t-3
independent of w,, for J>O. (Recall that since wuji=uqi4q, by
agsumptions made above Ut and uzy_4 are correlated with uy, only for

j=0,-1,-2.) We will show that it then follows that S,,=0. Now, Sy, is

— s . 5
AZpupp(opp-up_3)  AZyupg(op3-upe_juzs_5)  AZgugg(633-u34)
2 2 2
2 : 2
Ztust(°é2'“2t-j) Ztu3t(°23'u2t-ju3t-j) Zt“3t(°33‘“3t-j)
Consider the matrix in  the upper left-hand corner.
2 _ 2 _ 2
AEzt'l.l‘| t( 0'22-112t_j) = A0'22EZtEu1 t - AEZtu1 tu2 t-j = - AEZtU1 t“2t-j . For

J<0 Z, is independent of u1tugt-j’ 80 EZtu1tugt_j = EZtEu1tu§t_j = 0 «x

Eu1tu§t-j = 0. (Recall that the Z; have zero mean by construction.)

For j»0, u,, is independent of Upg.j and 2, and so0 Eztu1t“§t—j

Eu 0 x Eztugt-j = 0. A similar argument shows that the

2
1£B2492¢.
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remaining matrices in 812 are zero.
Finally, let us consider S22. It is the sum from j=-2 to 2 of the

expectation of the following matrix:

pcmen

w2 2 2 2 2 2
2tU2t- 37922 UptUpg_ U3¢ 37022023  UptUzt. 37022033

2 2 2
UptUzglpg_ 37022023  UpgUztlpg_jUzy 37023  Up¢U34usz_ 57033023

W2 2 2 2 2 2
34U2¢- 5022023 UztUps_ U3¢ 37023033  U3{U34. 57033

L—

These expectations were calculated from sample moments from the

residuals, with the fact that they are zero for j#O imposed. Thus, the

element in the upper left corner, for example, was calculated as T_1Zugt

- (T'1zu§t)2. The other elements were calculated analagously.

Thus, the asymptotic variance of € is

- —
LV 0
]

| 0

|
!
S22 1

yhere 322 j8 defined above and the wupper triangle of the symmetric

matrix V11 is

F- 1
Vi 3112 Vigs
114 3115
116
where

v111 = plim (T_1AZ'X)—1

Vigo = plim [(771a2'X)"1(17"82'V, 520 ) (77"2"2) ]
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A -1 . -1 -1 [ [ =1,
Vigz = plin (17 AZ'K)T(T7AZ'V, 57" ) (17 '2'2)
=-1510\-1
o1

. ~1515y-1
Vi1e = 033(plim T 'Z z)
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CHAPTER III:

BACKLOG COSTS IN PRODUCTION TO STOCK INDUSTRIES:

SOME EMPIRICAL ESTIMATES
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The distinction between "production to stock™ and "production to
order" industries was first noted by Abramowitz (1951), and has been
central to much theoretical and empirical work on manufacturing behavior
(e.g., Belsley (1969), Maccini (1973)). Production to stock industries
tend to be those whose output is homogeneous and easily stored. Firms
in these industries ordinarily produce in advance of receipt of orders,
store the output in a stock of finished goods inventories, and sell to
their cﬁ;tomers directly from this pre-existing stock. Examples are
petroleum and rubber. Production to order industries, by contrast, tend
to be those whose output is more or less tailored to the individual
customer and/or is costly to store. Firms in these industries
ordinarily wait for customer orders to be placed before completing
production, working off a backlog of customer orders already received.
Examples are airplanes and mainframe computers.1

Backlogs (i.e., unfilled orders, or orders received for items yet
to be produced or shipped) therefore presumably tend to be small in
production to stock industries, although date apparently are not
available. The Department of Commerce, for example, does not even
publish data on backlogs in industries that produce primarily to stock.2
But the conventional wisdom, presumably correct, that backlogs are

empirically small, has led many investigators to conclude that these
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have no significant role in explaining production and inventory
behavior.

Some recent theoretical and empirical work, generalizing and
extending the production smoothing model originated by Holt et al.
(1961), provides an example (Belsley (1969), Blinder (1982), Eichenbaum
(1982)).7 In one recent theoretical exposition of the model (Blinder
(1982)), it is argued that finished goods inventories are held solely to
cut the costs of adjusting production to meet randomly varying sales.
They should be built wup in periods when sales are low and drawn down
when sales are high, with the exact pattern determined by the relative
costs of production and of holding inventories. Backlogs are mentioned
in passing as negative inventories, and basic questions such as why
inventories in production to stock industries are positive on average
are not answered. Moreover, production smoothing appears not to be the
sole motive for holding inventories, since, as shown in the previous
chapter, production is more volatile than sales.

The question, then, is what is making production more volatile than
sales. Using the identity production = sales + change in finished goods
inventories, the variance of production can be broken down as var
(production) = var (sales) + var (change in inventories) + 2 x
cov(sales, change in inventories). A model that allows a positive
covariance between sales and inventory investment thus is compatible
with production being more volatile than sales. As noted in the
previous chapter, the production smoothing model has been extended to
allow just such a covariance. Some authors have replaced the inventory

cost, azni. with a cost of having inventories deviate from a target

level, 82(Ht-a3st+1)2, where H, is period t finished goocds inventories,
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Styq is period t+1 sales, az>0, and azSi,y is the target level (Holt et
al. (1961), Blanchard (1982), Eichenbaum (1982)).4 This quite directly
makes the model predict that inventories and sales will move together,
but its underlying economic rationale is unclear. Eichenbaum (1982,p8),
for example, says he includes this term to "“capture...the view that
inventories are held for reasons... which are related to expected
sales” but otherwise leaves the term unexplained. Often the term is
assumed to reflect both inventory carrying costs on the one hand and
stockout or backlog costs on the other (e.g., Blanchard (1982,p21)).

The only thoroughly worked out rationale for the notion that the
cost of deviating from a target level captures these two costs appears
to be in Holt et al. (1961, ch. 11). They argue that the cost of
deviating is an approximation to the sum of two distinct underlying
costs, a backlog cost and an inventory cost, and formally derive the
relationship between the cost of being away from a target level and the
two underlying costs. The former cost, however, in general is time
varying, even if the underlying costs are fixed, and is a complicated
function of, among other things, the cumulative distribution function of
sales. The parameters appearing in the simple time invariant cost of
being away from a target 1level should therefore not be considered
structural, as has been noted by Blanchard (1982,p21).

In addition, since the relationship between the underlying
inventory and backlog costs on the one hand and the time invariant cost
of being away from a target level on the other are unspecified, it 1is
difficult to decide what are reasonable values of estimated parameters.

For example, as noted in the previous chapter, in Blanchard (1982, p41),

the key parameter a; determining the target level varies from a low of
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about one to a high of about seventeen over his ten data sets. Still
worse, it appears that the estimated parameters cannot be used to deduce
even approximately the underlying inventory and backlog costs; this
would at least indirectly put a bound on what values of the target level
are reasonable. This extended production smoothing model thus seems
consistent with any explanation for why inventories in production to
stock industries track sales, not just backlog costs.5

It is clear, however, that backlog costs themselves have the
potential to explain the tendency of these inventories to track sales
(although the work of Abel (1982) points out that this tendency follows
only if the backlog or stockout costs are properly specified). Backlogs
in production to stock industries indicate a temporary inability of the
supplying firm to meet existing demand (Belsley (1969), Holt et al.
(1961)). Insofar as it is standard industry practice to sell out of
stock, without forcing customers to wait for delivery, an individual
firm's backlog may cause it bad customer relations or lost futﬁre sales,
and hence impose costs. Manufacturers will then tend to build up
inventories when expected sales are high and will find smaller
stockpiles satisfactory when expected sales are 1low, at least if
production is decided before sales are known. This tendency of
inventories to track sales may cause production to be more volatile than
sales.

The present paper explores the idea that backlog costs may be
important in production to stock industries. It formulates a rational
expectations version of a production smoothing model that includes not
only production and inventory costs, but an estimable backlog cost as

well. It estimates and tests the model using data aggregated to the two
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digit SIC code level, as in the previous chapter. The method of
estimation makes possible both recovery of structural parameters and
testing of the model's overidentifying restriction. It is to be
emphasized that a structural backlog cost is estimable, in contrast to
the backlog or stockout cost sometimes argued/to underlie the target
level for inventories. Thus, it may be checked for plausiblity,
allowing confirmation of the notion that it is the backlog costs and not
some forces that are causing production to be volatile.

And the results are in fact encouraging. The implied values of
structural parameters are plausible. They indicate that a given number
of units backlogged costs the representative firm about one-tenth +to
one-half of what the same number of units produced costs and abcut two
to eight times what the same number held in inventory for a month costs.
Coefficients are usually significant. In particular, the backlog cost
is almost always significantly greater than the inventory cost. This
suggests that even in production to stock industries, in which backlogs
are empirically small, backlog costs may be an important determinant of
production and inventory behavior. Estimates derived from models that
ignore these costs (e.g., Belsley (1969)) therefore may be seriously
deficient.

However, tests of this paper's overidentifying restrictions almost
. always reject at decisive significance levels. For this reason, the
estimates here should be interpreted cautiously.

The paper is organized as follows. Part II sets out the model,
part III discusses estimation and empirical results, and part IV

conteins conclusions.
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I1.The Model

This section begins by explaining how production and sales are
coordinated and what determines whether an order is backlogged or not.
The formal model then follows. This section owes most to Holt et al.
(1961).

The general environment is assumed to be as follows. N identical
firms produce a single homogeneous good with a lag. At the beginning of
each period, each firm initiates =a production process that will not
yield output Q. until the end of the period. Throughout the period
sales S, arrive randomly. These may be exogenous in toto, a&s in Holt et
al. (1961) or Blanchard (1982), or they may be beyond the firms control
only with respect to a random shock, as in Blinder (1982).

The sales S, streaming in are satisfied if possible from the
beginning of period t stock of inventories Ht-1' and are backlogged if
not. At the end of the period the firm gets its output Qt and satisfies
its backlog S;-Hy_4, if in fact sales were larger than inventories and
the firm backlogged some orders. The residual output Ht=Qt+Ht-1'St'
assumed positive, constitutes the stock of inventories at the beginning
of the next period. See Figure I for a two period illustration of the
case in which the firm has a backlog in period t+1 but not in period t.

Several clarifying comments are in order, before we turn to the
model. First, the dating of variables may be confusing and deserves a
word. The stock of inventories that exists on the borderline between
period t and period t+! is usually (e.g., in Chapter II ) arbitrarily
dated period t. To conform to the existing literature , this convention
is followed here. In the present model, however, Ht is best understood

as beginning of period t+1 inventories and thus is described as such.
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This is to be contrasted with the end of period t+1 inventories
Ht'st+1' the stock that remains after sales Si,q but before
production Q,,, have arrives. Of course if H;-5.,4<0 and the firm
backlogged some orders, end of period t+1 inventories are zero.
Also, to conform to standard notation, when expectations are
introduced below, "information available at time t" will be defined
as information available when Qt is selected. However, since the
firm does not at this time know S,  and therefore does not know Hy,
this information set does not include St and H,. Thus E;S, # St,
EiHy, # Hy (Ey = expectations conditional on information available
at time t).

Second, production is a choice variable, inventories are not.
The firm can choose an expected but not an exact beginning or end
of period stock, since sales are not known when production is
decided. Actual inventories incorporate the negative of
expectational errors in sales, increasing by one unit for each unit
of an overestimate of sales. This is done to be consistent with
the stylized fact that inventory accumulation or decumulation is
often involuntary.

Third, the assumption that period t sales stream in
continuously in advance of period t production is made to accord
with the apparent fact that for many goods output and orders arrive
asynchronously, with the output resulting from a given period's
production decision indeed not available until after that period's
orders have arrived (Holt et al. (1961, ch 11)).

Finally, it is assumed that the backlog is never carried from

. period to period, and the firm never simultaneously maintains a
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backlog and a stock of inventories. With considerable
complication, these two could probably be weakened, and comparable
statements about the firm's environment derived rather than
asserted. There appears to be little doubt that they are accurate
for production to stock industries: backlogs do appear, but do not
persist for long (Abramowitz (1951, ch11), Belsley (1969, ch. 2),
Holt et al. (1961, ch11)). It thus seems advisable for simplicity
to Jjust make these assumptions. Note that the implied sales-new
order equality makes the recorded sales figures we see the only
ones relevant to the firm's decision process.

Formally, the firm's problem is as follows. The firm
maximizes the expected present discounted value of its real cash

flow:

w t . t
(1) max E0 tgo dy ( PySy - 4y Ct )

s.t. Qt=st+Ht‘Ht-1
where

EO mathematical expectations, conditional on
information available at time O

d, fixed real discount rate, 0<dq <1

d2 fixed rate of technological progress, 0<dx<1
Py real price in period t

Sy units sold in period t

Cy real costs in period t (detailed below)

Q units produced in period t

H, units in inventory in period t

Revenue p,S, will play no role in the bulk of this paper. It

is present at this initial stage to emphasize the robustness of the
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model with respect to the revenue side of cash flow. The only
restriction placed on revenue is that there be some forcing
variables, beyond the firm's control, that make period t sales
uncertain when period t production is decided. As noted above,
sales may be exogenous in toto, or they may be dependent up to a
shock on the firm's price (or perhaps it price relative to the
average market price or to its competitors' prices). Beyond this,
as in the previous chapter the model is consistent with a variety
of market structures, choice variables and demand structures, so
that as in the previous chapter, Summers (1981) criticisms of
inventory models that ignore interactions between firms and their
customers are not relevant here.

Costs C, are the focus of the model. Per period costs have
three quadratic components:

1)An inventory holding cost, representing, e.g., storage and
handling charges. The period t+1 cost is assumed for simplicity to
be a function of just the beginning of period t+1 stock, which is
H., and the end of period t+1 stock, which is H,-S,,, if H>Si.y, O
if H.,<Si4q. (These two sample points are used to give a measure of
average inventory costs over the period.) Let ex-post inventory
costs be C4o times the inventory level plus co/2 times its square.

Period t+1 inventory costs Cit+q expected as of time t are thus

QitHy g
(2) EyCqgaq = cqoBHy * eqg 0 S (QueHy 4 -Sp-S44q)aFL(S4*Syey)

+ (cp/2)E4H2
Qt*Hyy



68

where dF, (S5.+S;,q) is the density of S;+Sy,q conditional on
information known at time t. (The expression for EtC(1t+i) for
arbitrary i>1 generalizes (1) in the obvious fashion. Since it is
messy, and is not needed to derive a first order condition for the
firm, it is omitted. For the same reason, a general expression for
E,Cp44+; Will be omitted below. Note that due to the production
lag, production in period t first affects inventory costs in period
t+1, not period t.)

2)A backlog cost, representing, e.g., charges incurred by bad
customer relations. The period t+1 cost is assumed for simplicity
to be a function of the end of period t+1 backlog, which is st+1’Ht
if Hi<Sy,q, O if H <S4 Let ex-post backlog costs be cqq times the
size of the backlog and c,/2 times its square. Period t+1 backlog

costs C,,,, expected as of period t are thus

(3) EyCopay = cq S ﬁst*st+1'ot'Ht—1)dFt(St+st+1)
i1

© 2
+ (eq/2) J(S¢+S44q-Qy-Hyo1) F(S¢+S44q)
t*He-1

3)A standard period t production cost C3t‘

(4) Byesy = (a1/2)(Qpre1(£))7 * £19(£)Qy

where f,(t) and fy;(t) are linear deterministic functions. In the
empirical work, they are assumed to depend on a constant, linear
time trend, and, in the case of seasonally unadjusted data, on

seasonal dummies as well.



Total expected per period costs are Etct = EtC1t+EtC2t+Et03t‘
The firm chooses Q, and appropriate variables on the revenue side
(see above) to maximize (1). It is assumed that in this model as
in the 1linear one, a transversality condition and stationarity of
forcing variables around a time trend ensure that the equilibrium
vales of Qt' S; and Hy are also stationary around a time trend (see
Hansen and Sargent (1980,1981)). This complicated equilibrium
solution, however, is not needed here. A compact first order
condition sufficient for understanding inventory behavior may be
derived by noting that at the optimal production level Q:, a unit
increase in production this period offset by a unit decrease in

production next period cannot decrease expected costs]

This
marginal change in the production plan affects expected costs only
via expected production costs in periods t and t+1, inventory costs
in period t+1, and backlog costs in period t+1. Period t inventory
and backlog costs are already foregone when Qt is selected, and
this change leaves all other expected costs unchanged as well.
More specifically, this implies
Qp*H
(5) 0= By [ e * er0 / Fy(S4+Spay)

Qp+Hy_y e
Coly, + (cp/2) of'(Qt*Ht-1'St'5t+1)dFt(St+St+1)

+

C1q  JAPy(S4¥S4eq)
t*He-1

(cq/2) [7(Sy+Spaq-Qy-Hyg)dFy(S¢+S44q)
t*H 1

= 484Quyq + a1Q¢ + (1-d)agfq(t) + (1-d)fy4(t) J
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The first two lines represent the expected change in inventory
costs, the third, backlog éosts, and the fourth, production costs.
Each is obtained by differentiating the appropriate terms in the
cost function. It has been implicitly assumed that it is possible
to  parameterize the problem so that the density of sales
dFt(St+St+1) does not change with production.

Define 9, = dQu-Q¢_q, £(t) = (1-dlajry(t) + (1-d)fyy(t) +

2010. Note that

Qp*Hp-g .
10 O-f dF, (54+S441) = c10 - 10 ffgt(st+st+1)
t*Hg-1
and
Q*Hey .
0 01- (QutHy_1-54-S44q)aF(S4*Sp0y) =

CoBy(Qq+Hy_1-S4-Sg4q)
= 0 S (QurHy 4-S4-S44q) P (Sy*Sey)
Qu+Hy_y )

= CoE(Hy-544q)

* 00 S (84#844q-Q-Hy 1) dF(S4+Se4q)
QUHyg

Using the equalities just noted, (5) may be written

(6) 0= By { -(eqorery)  JdPy(S4#Sguq)  + co(2Hy-Sgay)
t*Hg
*legmeq) S (84+Saq-Qq-Hy.1)dFy(Se+Seiy)

AL
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This is the equation that will be estimated. To wunderstand
it, it will be helpful to consider some special cases in which some
of the parameters are zero.

7"ase 1 Consider first the case of no production costs,
a,=f(t¢)=0. and only linear inventory and backlog costs, cp=cy=0.
Then [~ dFt(St+St+1) = 2cy9/(c1p*cyy)- Qq is chosen so that the

Q. +H
pritct
probab111¥y that S,,,+5,>Qy+Hy_4 = probability that Siyq > Hy =

+

probability of a backlog = (2 x inventory cost) / (inventory
backlog cost). This condition makes sense only if Cyq42¢40-" i.e.,
only if the backlog cost is at least as large as the inventory
cost. If ¢,,<cyy, & corner and not an interior solution to the
maximization problem occurs and the optimal policy is to set
inventories to zero to guarantee a Dbacklog. In 1line with the
assumption that backlogs are not carried from period to period (see
above), it is henceforth assumed that Cy192¢109- It may then be seen
from the above equation that the larger the backlog cost c,,
relative to the inventory cost C1g, the lower the probability that
the firm will backlog an order, and conversely. (The factor of two
enters because at the margin an extra unit of inventories held for
the entire period costs the firm twice: once because it is there
at the beginning and once because it 1is there at the end.
Backlogs, on the other hand, are assumed to never be carried
through an entire period, and only cost the firm at the end.
Agein, this is intended to capture the fact that in production to
stock industries, an item may stay in inventory for a considerable

period of time, whereas backlogs usually are quickly cleared up-)
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Case 2 Now consider the case of no production costs,
a1=f(t)=0, and only quadratic inventory and backlog costs,

C1O=C1 1=0. Then

(7) 0= E,

{ 2cqHy - cpSpeq + (cp-cy) f?gt+st+1’Qt"Ht-1)dFt(St+St+1)] }
s*Hyo1

If the inventory cost ¢y equals the backlog cost cq, expected
inventories equal half of expected sales. If backlog costs ¢y are
larger than inventory costs c;, then expected inventories are set
greater than half of next period's sales, and conversely if the
backlog cost is lower?

Finally, consider the case of no inventory or backlog costs,
Co=cs=cyp=cq1=0, and only quadratic production costs,
f,0(t)=f11(£)=0. Then using Qu,q = d(Hy, 1+S,q-Hy) - (Hy#Se-Hy 4),

(6) becomes

(8) 0= aE{ (1-L)(d-L)H ,q + (d-L)S;,q ]

where L is the lag operator, LXK, ,=X,. Canceling the common lag
factors and the non-zero scalar a, gives E, [(1.1_,)}-[t+1 + St+1] = 0.
Thus, on average, Ht+1'Ht = -5t¢+1. Unsurprisingly, with no backlog
or inventory costs, the optimal policy is to allow inventories to
passively absorb sales, driving inventories monotonically

downwards.

In general, of course, inventories evolve according to a
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complicated interaction of these three special cases. It is to be
emphasized that the full model, with its attention to backlog costs
and its assumption that production is decided before sales are
known, does indeed suggest a tendency for inventories and sales tc
move together, and thus for production to be more volatile than
sales. This follows immediately from the first two special cases
above, in which inventories vary directly with sales. Thus, this
model, in contrast to the pure production smoothing model (Blinder
(1982)) is compatible with production being more volatile than
sales.

We now turn to empirical results.
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III.Empirical results

Estimation is described briefly before empirical results are
presented. The data are described in the "Data" subsection of the
previous chapter. The sample period is also the same as in the previous
chapter, covering 1959:5 to 1980:10, with 1980:11 wused for 1leads and
1959:2 to 1959:4 used for lags.

A.Estimation

After normalizing a,=1 and imposing a monthly discount rate of .995
(corresponding annual figure is about 6 per cent), (6) may be written in

regression format

£(t) - (cqg*erq) T dF(S4+S4eq)
t*Hgg

(9) g

+

CoE4(2Hy=Sg4q)

+

(Co-cq) [ (54+S44q-Qy-Hy1)dFg(S4*844q) *+ uy
t* -1

where u, = Q4,q - E4Quyq is an MA (1) error. This subsection discusses
estimation of the coefficients on the integrals, a non-trivial issue
since the integrals are unobserved variables. Two different methods
were used. The first requires that the industry act as one firm, or,
equivalently, that sales across all firms are perfectly correlated. The
second does not, and is likely to be less sensitive to aggregation over
firms and over time. Two variants of the second were tried, resulting
in three sets of estimates for each data set. An explanation of the two

methods is introduced with a brief discussion of the related and
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familiar  technique used to estimate c,, the coefficient on the
unobserved variable E;(2H;-S4,4). The reader uninterested in details
may skip to the "Results" section below.

Estimation of c, is easily handled by McCallum's (1976) and Hansen
and Singleton's (1982) instrumental variables procedures. The expected
value was replaced by the actual ex-post value, 2Ht'st+1v and then
instrumented by variables known at time t or earlier and correlated with
the ex-post value (instruments used included in particular suitably
lagged values of H and S). Using the ex-post values as regressors add
to the regression error the expectational error -co[2Ht_st+1 -
Et(ZHt'St+1)]' However, under rational expectations, this expectational
error is orthogonal to anything known in period t or earlier, has
unconditional expectation zero, is correlated with at most one of its
own lags, and under suitable conditions is homoscedastic. (The error is
correlated with itself lagged once since st+1‘EtSt+1 is a function of
sales innovations in both period t (St'EtSt) and period t+1
(St+1'Et+1st+1)') An instrumental variables procedure, with the
appropriate adjustment to the covariance matrix to account for the MA(1)
nature of the errors, delivers consistent parameter and covariance
estimates.

The first method of handling the coefficients on the integrals is
similar. This will be explained in detail for fg%t(st+st+1); the
argument for the other integral is analogous. Defin;Htiﬁe dichotomous
random  variable Biits Bpsq=0  if  QutHy_4>S44q+S;,  Bypyy=1  if
Qt+Ht-15§t+1+St' Thus By,, is one if the firm backlogged some orders in

period t+1, zero if it did not. Note that

E¢Bsq =



E{Bisq =

1 x (probability using period t information that
QrHiq < Sg*Sgaq)
+ 0 x (probability using period t information that
Qg 17S441+5¢)

=1 x T ar(sy+sg.y)
Qu+Hy

Equation (6) +thus is equivalent to a regression in which the
regressor multiplied by ¢y is EyBi,1. Again we can replace E{B;,q by
the actual cx-post value of B, and instrument it (suitably lagged
values of Bt are legitimate here). And again this adds an

expectational error +(c;q+cyq)(Bysq-E4By4q) to the regression error

which again is orthogonal to anything known in period t or earlier,
has unconditional expectation zero, and is correlated with only one
lag of itself. This time, however, the expectational errofs in
general are conditionally heteroscedastic:
(1) By(Byuq-ByBye)® =

(1-EtBt+1)2 x (prob using period t information that Bt+1=1)

+ (0-EtBt+1)2 x (prob using period t information that Bt+1=o)

(1-EyByr1)® ¥ EyByay + (-ByBay)® x (1-Eipyyy)
(1-E

£Bt+1)E¢Bt+1,

the usual formula for the variance of a binomial random varialle.
Conditional heteroscedasticity results if EtBt+1 is time varying.
Empirically, it does appear to be time varying, since it is
(positively) serially correlated. And theoretically, it perhaps can

be expected to be 80.9 The conditionel heteroscedasticity is handled
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with the heteroscedasticity consistent covariance matrix of White

(1982) and Hansen and Singleton (1982).

The equation to be estimated by this first method thus is

(92) ay = £(t) - (crgrey)Byey + coB4(2Hy-Spay)

* (°0‘°1)(St+st+1'°t'Ht-1)Bt+1 t vy

Vi = uy + expectational errrors, vy"MA(1), By, defined in (10).

Two further problems with this estimation technique should be
noted. First, these expectational errors may be unconditionally
heteroscedastic as well, and thus there is a question as +to the
correctness of the standard formulas for the covariance matrix of the

estimated parameters.1o

Second, if Bt=1 or B,=0O over the entire sample period, the
matrix of right hand side variable in (9a) will not be of full rank
and estimation will not be viable. (And even if B, does vary, but
only a 1little, so that there are relatively few ones or zeros, for
numerical reasons multicollinearity may still se a problem.)
According to the model, Bt=1 (i.e., St*Sgeq Qt+Ht—1) in all time
periods implies that the endogenous probability of a backlog is so
high that we need more time periods than we have yet observed to
obtain B,=0 in the sample even once (and conversely if B,=0 in all
time periods). Alternatively, it may mean that the decision period
on production is less than the observation period (e.g., decisions
are made more than once a month); if this were the case period t+1

production may be used to satisfy period t+1 sales and St+st+1 >

Qt*“t-1 need not imply backlogs. This suggests that it is desirable
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to use an alternative measure of demand pressure, not as sensitive to
discrepancies between the decision and observation periods. In any
case, an alternative meaasure was needed to obtain estimates from the

food industry, since Bi=1 in all time periods for it.

-]
In this second estimator, QJ'gFt(st+st+1) is proxied by E Ry;.q
g1

or EtRot+1, and H(54+8441-Qg-Hy 1 )aF(84+54.q) by
Q+Hi-

(Qt+Ht—1)(1-EtR1t+1) or (Qt+Ht—1)(1_EtR2t+1)’ where

(12) R1t+1 = (St"'Stq.‘l) / (st+st+1+Qt+Ht—1)

R

2t+1 = (Sg*Sgaq) / (Sy*Spaq*QetHy 1+Qpe)-

R2t+1 allows for the possibility that period t+1 production is wused
in part to satisfy sales within period t+1. Aggregate monthly
production may then in part be used to satisfy aggregate monthly
sales.

The basic justifications for using EtR1t+1 and E4Ro44+q to proxy

[~ =]
det(St+St+1) are that they move in the same direction as the
Q +H,
ra%io ol sales to the stock of goods available to satisfy sales, and
thus seem well suited as a proxy for the type of demand pressure that
leads to backlogs. In addition, they fall between zero and one and
are based in information known at period t (as probabilities should).

The other regressor, (Qt+Ht-1)(1'EtRit+1)-i=1'2’ was suggested

o
by the following reasoning. f(St*st+1‘Qt‘Ht-1)dFt(St*St+1)
t+H-1

Eg(Sg*SpaqiSg*S4e12Qp#Hyq) = (Qg#Hyg) x prob(Sy+Seyy>QyHy y)

| v

Q

£+Hy 1 x [1_prob(st+st+1>qt+ut_1)], approximately (Qi+Hi_¢) x
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(1-EtRit+1)' The inequality in the preceding sentence suggests that
the regressor is 1likely to be too low when EtR1t+1 is used. This
bias is perhaps offset when EtR2t+1ZEtR1t+1 is used.

The coefficients on EtRit+1 and Qt+Ht_1(1- EtRit+1) again were
estimated by replacing the regressors with their ex-post values and

instrumenting. The equations estimated by this second method then,

were:

(99) ap = £(¢) - (c10*c11)Rrget + coB(2Hy-Star)
* (CO'C1)(Qt+Ht_1)(1-R1t+1) vy
(9¢) q = £(+) - (erp*ert)Roger + coBg(2Hy-Sp4q)

+ (eg-c1)(Qg+H1) (1-Roge1) *+  vg

Vi = u; + expectational errors, v MA(1), Ryi4q and Roy,q defined in
(12).

Let X, = By, Ry44q Or Ryyyq. For all data sets but food, the
ten instruments used were three lags apiece of inventories and sales,
one lag of X, , one lag of the regressor multiplied by cg-c4, and
deterministic terms (constant, time trend, and, for seasonally
unad justed data, seasonal dummies). Numerical problems were
encountered when using this instrument list to estimate parameters
from the food industry. (The optimal weighting matrix, defined in
Hansen (1982), was not positive definite.) This problem disappeared
when estimates from the food industry were obtained with a six
element instrument 1ist, consisting of two lags each of sales and
inventories, and deterministic terms.

B.Results



(1)

C10*cis

Seasonally adjusted

Aggregate -128
non-durables (261
Chemicals -3
(56

Rubber 41
(71

Petroleum ~75
(108

.6
.6)

.0
.9)

.1

.1)

.0
.0)

Seasonally unadjusted

Aggregate -490
non-durables (1556.
Chemicals -51

(147
Rubber 64

(140
Petroleum ~%26.

(490
Notes:

.7
6)
.7
.3)
.5
.5)

3
.0)
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TABLE 1

PARAMETER ESTIMATES, EQUATION 9.A

(2)
o

-.0559
(.05%4)

-.0214
(.0235)

-.0444
(.0534)

-.1049
(.0996)

-.0757
(.0889)

-.0052
(.0480)

-.0965
(.0971)

-.1718
(.1713)

1.Variables defined in text.
2.J distributed as chi-squared with five degrees of freedom,
critical levels: 11.07 at .05, 15.08 at .01, 16.75 at .005.
3.Asymptotic standard errors in parentheses; standard error

on column (3) = column (2) - col
var(co)+var(co—c1)-2cov(c0,c1)

1

(3)

€1

.0761

(.0634)

(

(

1256
.1844)

' 1634
.4617)

.0883
.0558)

. 2500
.3744)

.268%
.3432)

.2402
.8215)

.0759
.1009)

4.Estimates for food not available, see text.

(4)

Co-¢1

_31321

.0487)

- 1470

.1887)

.1189
-4435)

-.1932

.0558)

-.3257
(.4334)

-.2735
(.3407)

-.3367
(.8330)

-.2478
(.2571)

7gn (4) calculated as

(5)
J

8.71

.86

3.42
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Table I contains the results for the first method of estimation,
Tables ITA and IIB those for each of the two variants of the second
method of estimation. Coefficients on deterministic terms are not
reported, although all regressions run included constant and trend
terms, and, for seasonally unadjusted data, seasonal dummies as well.
Also some preliminary experimentation was done to see if the results
were sensitive to the sample period, and they appeared not to be.
Thus only the results over the entire sample are reported. The
column labelled "J" contains Hansen's (1982) test of overidentifying
restrictions. For all data sets except food, it is distributed as
chi-squared with five degrees of freedom. (Five equals the number of
instruments minus number of regressors, ten minus five for seasonally
adjusted data and twenty one minus sixteen for unadjusted data). TFor
food, it is distributed as chi-squared with one degree of freedom.

As may be seen from colmns (2) and (3) in Table I, in the first
method only 7 out of 16 signs on the quadratic inventory and backlog
cost parameters Cy and cq are correct.11 The seven all occurred on
the quadratic backlog cost parameters c, yhile all eight of the
quadratic inventory cost parameters ¢y were negative. None of these
sixteen were significantly different from zero at the five per cent
level. The backlog cost, however, was always larger than the
inventory cost, though rarely signficantly so. The sum of the linear
inventory and backlog cost, cyy+cqy, is generally wrong-signed and
insignificant.

As noted, this first estimation method seems 1likely to be
sensitive to aggregation. Let us therefore turn to the second

method, which will be the focus of the rest of the discussion. Here,



(1)

C10*c1

Seasonally adjusted

Aggregate -23 637
non-durables (49 502)
Chemicals -3 343
(2 623)

Rubber -104
(763)

Petroleum -2 896
(1 425)

Food 135 352
(125 311)

Seasonally unadjusted

Aggregate 93 223
non-durables (66 243)
Chemicals -3 651
(2 840)
Rubber -2 276
(8 891)
Petroleum -1 138
(1 585)

1.See Notes to Table I.
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TABLE 114

PARAMETER ESTIMATES, EQUATION 9.B

(2)
€0

.1081
.1689)

.0828
.0593)

.0370
.0490)

.0991
.0420)

.8254
.0585)

-.2833

.2314)

.1252
.063%)

.1962
.0578)

.0481
.0405)

(3) (4)
C1 00-01
.2510 -.143%0
(.3053) (.1381)
.2240 -.1410
(.1280) (.0722)
1622 -.1252
(.1006) (.0577)
. 3034 -.2043%
(.0796) (.0493)
~-.2739 -.5514

(1.33%01) (.3047)

-.4213 .1380
(.4819) (.189%)
.3202 -.1950
(.1350) (.0754)
.5126 -.3163
(.1172) (.0658)
.3610 -.3129
(.0705) (.0559)

2."J" for food distributed as chi-squared with one degree
of freedom, critical levels: 3.84 at .05, 6.63 at .01,

7.88 at .005.

See text.

For all others J distributed as chi-squared with
five degrees of freedom, critical levels as listed in Table I.

(5)

38.6

15.1

6.8

58.1

46.2

12.7

92.2
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TABLE 1IB

PARAMETER ESTIMATES, EQUATION 9.C

(1) (2) (3) (4)

©10*c11 o €1 €0=C1

Seasonally adjusted

Aggregate 386 527 -.7650 .4783 -1.2433
non-durables (228 442) (.4671)  (.3215) (.7881)
Chemicals -5 436 .0747 .1866 -.1120
(4 551) (.0605) (.1202) (.0630)
Rubber -850 .0514 .0514 -.1148
(1 178) (.0459) (.0459) (.0458)
Petroleum -3 276 .0609 2077 -.1469
(2 329) (.0404) (.0728) (.0421)
Food -259 048 2.0830 4.1825 -2.0995

(150 991) (1.0518) (1.8791) (.8359)

Seasonally unadjusted

Aggregate 104 163 -.1833 .2391 .0558
non-durables (55 756) (.1154) (.1984) (.0847)
Chemicals -16 001 .2420 .4976 -.285%4
(6 318) (.0842) (.1394) (.0868)
Rubber -4 913 .2241 .5154 -.2913
(1 735) (.0688) (.1272) (.0651)
Petroleum 2 807 .0400 .2954 -.2554
(2 500) (.0391)  (.0487) (.0487)

See Notes to Tables I and IIA.

(5)

95.8

80.8

35.6

98.6

7.2
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by contrast, 30 of 36 signs on the quadratic inventory and backlog
costs were correct, as indicated by columns (2) and (3) in Tables IIA
and IIB. (Five of the six wrong signs were for aggregate
non-durables, suggesting that aggregation is still a problem for this
method). About half of these were significant at the five percent
level. The backlog cost is significantly larger than the inventory
cost fully three-fourths of the time (see column (4) in Tables IIA
and IIB). This strongly suggests that the two costs should not be
used interchangeably, with backlogs considered negative inventories,
as they occasionally are (Belsley (1969), Blinder (1982)).

There were, however, some puzzling aspects to the second
method's results. The sum of the linear backlog and inventory costs
C4p+cyq is wrong-signed about two-thirds of the time, although never
significantly so (column (1) in Tables IIA and IIB). Also the
overidentifying restrictions almost always reject at decisive
significance levels (column (5) in Tables IIA and IIB), as seems
common in rational expectations inventory models (Blanchard (1982),
Eichenbaum (1982)).

The results on balance, however, do suggest an important role
for backlog costs as a determinant of inventory behavior. The
quadratic backlog cost in Tables IIA and IIB ranged from about .2 to
.5, with the comparable figures for the inventory cost about .05 to
.25. These are to be compared with the production cost, normalized
at one. Since these parameters are the quadratic terms in the cost
function, they dominate total costs when the units backlogged, held
in inventory, or produced are large enough. Thus, for a large enough

number of units, total costs of a given number of units backlogged
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are about oﬁe-fifth to one-half that of the same number of units
produced, and &dout two to eight times that of the same number of
units held in inventory.

This seems consistent with the role for backlogs hypothesized
here, although I have been unable to locate any studies by economists
that contain estimates that may usefully be compared to these.
However, the examples in Holt et al. (1961) and Killeen (1969) use
values for similar parameters that are intended to be realistic
though apparently not calculated from any real world firm data. Holt
et al. (1961,p235) have a backlog cost to inventory cost ratio of
twelve to one and a backlog cost to production cost ratio of one to
two. Killeen (1969, p53) has a backlog to inventory cost ratio of
about twenty to one and a backlog to production cost ratio of 5 to 3.

The values estimated here thus are comparable.
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IV.CONCLUSIONS

This suggests steps to be taken in future research.

The estimates here indicate that Dbacklog costs are indeed
significant in production to stock industries. Substantiation of these
results on different data and with different models is of course highly
desirable. In this connection, two directions are especially worth
mentioning. First, the use of raw individual firm data appears to be
very appropriate. The model did markedly better on the two digit SIC
codes than on the aggregate, and slightly better on seasonally
unadjusted than on adjusted data. This implies that data that are
disaggregated and unprocessed are more appropriate to the model than
those that are not.

Second, it would seem very useful to obtain estimates of backlog
costs from production to stock firms or industries in which data on both
backlogs end finished goods inventories are available. (The model used
in this paper would of course not be directly applicable.) This once
again suggests using individual firm data, since, as noted above,
Department of Commerce data on backlogs in production to stock
industries are not available.

They are available, however, in production to order industries.
While production to order industries differ from production to stock
industries in some fundamental ways, it appears plausible that for both
industries the larger the backlog and the smaller the inventory stock
(both suitably normalized) the higher are the opportunity costs of lost
sales. With direct backlog data available, it 1is possible to put
parameterize these costs naturally and to allow demand to be shifted Dby

backlogs and inventories.



87

This is studied in the following chapter.
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FOOTNOTES

1.Detailed evidence on what differentiates production to order from
production to stock industries may be found in Zarnowitz (1973).

2.The two digit SIC codes for which they do publish data are
industries that produce mainly to order, see the next chapter or
Belsley (1969).

3.The original work on the model (Holt et al. (1961)), however, does
not: the authors were careful to point out the importance of
backlogs in production to stock industries.

4.This term is perhaps most familiar from work based on Lovell's
flexible accelerator inventory model (Lovell (1964).

5.See Rowley and Trevedi (1975, p52) for justifications other than
backlog costs for the target level.

6.A cost of changing production, ao(q 'Qt-1)2’ sometimes present in a
production smoothing model (see the previous chapter) is suppressed
because it did not perform well in the regressions.

7.1 thank Julio Rotemberg for suggesting this argument.

8.This may be verified by using the implicit function theorem to show

that [dHt/d(c1/co)]>O along (7). This comparative statics argument

of course requires that c; and cq not appear in other first order
conditions (if any). It is tgus not valid if +they appear in the

first order condition for price, so that expected sales shifts along
with ¢4 /co-

9.0r at least it can be if one special case (c10=c11=o, co=cy is
representative, 8o that the model becomes linear quadratic and the
techniques of Hansen and Sargent (1980) can be used to solve the
model explicitly. In this case it may be shown that EtBt+1 is time
varying.

10.An implausible but simple example in which the errors are
unconditionally heteroscedastic is: Q_4y -1-S-St41 =t + e, e

1
white noise. In this cases the conditional and unconditiona

dis?ri?utions of B, are the same, with the variance time varying as
in (10).

11.Again, food was not estimated by this method since for this data
set, Bi=1 in all time periods.
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CHAPTER IV:

BACKLOG COSTS IN PRODUCTION TO ORDER INDUSTRIES:

SOME EMPIRICAL ESTIMATES
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Production to order industries are those that ordinarily wait for
customer orders to come in befove completing production. Backlogs, or
queues of orders yet to be filled, therefore tend to be substantiel. In
particular, in these industries the value of orders in the backlog is
several times larger than the value of finished goods inventories. For
the data studied in this chapter, this may be seen in lines one and two
of Table I. The magnitudes of the backlogs alone suggest that insofar
as they are economically linked to inventories, it may be no small
omission to ignore them altogether when studying dursable goods
inventories, as is often done (e.g., Feldstr n and Auerbach (1976)).

This last point has been noted before, and some authors have
integrated backlogs into inventory models. Perhaps the most prominent
example of this type of model is that first introduced by Holt et al.
(1961) 8nd extended by, among others, Belsley (1969) and Childs (1967).
cited in Rowley and Trevedi (1975). It is a straightforward adaptation
of the production smoothing model in chapter 2. Let Nt be new orders
net of cancellations, B, the number of units on the backlog at the end
of period t, and, as Dbefore St = period t sales, Qt = period t
production, and H, = finished goods inventories at the end of period t.
By definition, then, N, = S;+B;-By 4 and Qg = Sy+Hi-Hy 4y, so Q¢ =

Ny+(Hy-By)-(Hy_q-By_q). If backlogs are treated simply as negative



(1)Backlogs

(2)Finished
goods .
inventories

(3)Shipments

(4)Production

(5)New orders

Notes:
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TABLE 1

MEANS / STANDARD DEVIATIONS OF BASIC VARIABLES

Aggregate
Durables

81257 / 11300
22431 / 686
25826 / '1952
25922 / 1972

26000 / 2568

(1959-1980)

Electrical
Machinery

16045 / 1678

3050 / 159

4010 / 311

4028 / 324

4068 / 42*

Metals

22068 / 3601
6?23 / 34
8429 / 809
8448 / 805

8475 / 1017

1.Data are monthly, seasonally adjusted, 1959:2 to 1980:12.

Sources described in section III.

Note that the aggregate

durables figure is net of non-electrical machinery (sIC 35).
The standard deviation is

the standard error of a regression of the relevant variable on

2.The mean is a simple sample mean.

a constant and a time trend, i.e.,
of the variable around a time trend.
3.Units are millions of 1972 dollars.

the standard deviation
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inventories (see Holt et al. (1961) and Belsley (1969) for
justifications), "net" inventories H,-B, may be considered to be a
choice variable for the firm. Some authors have done this
(Belsley(1969), Childs(1967) cited in Rowley and Trevedi (1975)). By
analogy to the production smoothing model described in chapter 2, one
could assume that firms minimize costs, with per period costs
(1) 8y(Qy-Qy_1)2 * 2,Q2 * 8,[-(H,-By) - agQy])°

Clearly the model has implications for the variance of production,
as did the model in chapter 2. It is worth digressing for a moment to
comment on this. It may be shown by an argument similar to that of

Chapter 2! that equation (1) implies that

agvar(Qy-Qy.q) + (a1+a4a§)var(Qt)
* 284agcov(Hy-By,Qq) * agvar(Hy-By) <

aovar(Nt—Nt_1) + (a1+a4a§)var(ﬂt)

From lines (4) and (5) in Table I, var(Q) < var(N) for all three data
sets. It is also true (although not reported in Table I) that for all
three Var(Qt-Qt_1) < var(N4-Ny_4) and 2a2a3cov(Ht—Bt,Qt) < 0. Thus, in
contrast to the production to stock industries studied in chapter 2, the
variance inequality for this Holt et al. (1961) model holds.®
Nevertheless, the model seems inadequate for other reasons, and its
shortcomings turn on the term multiplied by a,. This is intended to
capture two distinct effects of backlogs: on demand and on production
costs.’? The first effect, on demand, is familiar from the previous
chapter: large backlogs or long delivery lags discourage customers and

hence impose costs, perhaps in the form of lost sales.
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The second effect of backlogs, on production costs, may be found
only in order and not in stock industries. Since production to order
firms tend to produce a heterogeneous product, often tailored
differently for different customers, a large backlog makes it likelier
that the firm will be able to group production of similar items. This
batch processing (discussed in slightly more detail in the next section)
will cut machine set-up time and hence costs.

Backlogs undoubtedly do have both these aspects, and this paper's
model allows for both. But the a4(,) term in equation (1) seems
unsatisfactory for either. Insofar as a 1large net backlog Bt'Ht
adversely affects demand, it would seem desirable to parameterize these
effects directly in the demand curve if possible.4 And proxies for
delivery 1lags can easily be constructed using backlog, inventory and
other data (e.g., as in Zarnowitz (1973), Trevedi (1970)). This paper
also constructs such a proxy, and then puts it directly into the demand
curve to be estimated.? In contrast to previous chapters, then, this one
will specify a demand curve and make an assumption about market
structure. This would seem to be the price that has to be paid to model
in this natural way the demand-side effects of backlogs and inventories.

The a4(.) term also seems inadequate to capture the second effect
of Dbacklogs, on production costs. The validity of the term depends
crucially on backlogs being considered negative inventories. 1In certain
respects they are--perhaps in their effects on demand (as indicated by
the empirical results below) or in the qualitative sense that both allow
production smoothing (i.e., both allow firms to produce at a relatively

low level when demand is relatively high and conversely). But backlogs
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manifestly are not Jjust negative inventories in production to order
industries, in that inventories cannot permit the batch processing
described above. In addition, empirically, as seen in lines (1) and (2)
of Table I, inventories and backlogs do not behave as "equal and
opposites” even superficially. Backlogs are not only larger, but also
much more volatile. Their coefficient of variation (i.e, standard
deviation divided by mean, not reported in Table I) is several times
larger than that of inventories, for each of the three data sets. For
both theoretical and empirical reasons, then, backlogs and inventories
should not bYe considered equal and opposite.6 And equally incorrect is
the argument that since inventories are so much smaller than backlogs
the "net backlog” B,-H, is "almost" like the backlog By itself (Belsley
(1969, p54)). For even if the average values of inventories are small
relative to those of backlogs the values on the margin of Bt“Ht and By
might be quite different.

This paper, then, estimates a version of the production smoothing
model that attempts to capture the revenue effects of the net backlog
directly in the demand curve, and sharply distinguishes between the cost
effects of backlogs and inventories. It is indeed found that the
net backlog shifts demand, &and that the backlog has the hypothesized
effects on costs. A one percent increase in the net backlog/shipment
ratio causes demand to fall by about one percent; the backlog causes
the extra increase in marginal cost (i.e., second derivative of cost
function with respect to production) to fall by about eighty per cent.'
The parameters used to calculate these elasticities usuelly are

statistically significant. However, these results should be interpreted
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with caution, since tests of overidentifying restrictions generally
rejected, and a certain cost parameter was always wrong-signed.

The paper is organized as follows. Part II sets out the model,
part III discusses the data, estimation and empirical results, and part

IV contains conclusions.
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I1.The Model.

The general environment is as follows. A monopolist in a
production to order industry supplies customers whose order quantity
depends not only on the monopolist's price but on their estimates of its
delivery lag as well. That is, when customers decide on the quantity of
new orders they observe an explicitly quoted price, and estimate the
delivery lag from past industry levels of backorders, inventories,
production and shipments. The monopolist unilaterally decides not only

price, but production and shipments as well. Inventories are decided

according to production = shipments + change in inventories, and
backorders according to new orders = shipments * change in unfilled
orders.

Several comments on this are appropriate, before turning to the
formal model. First, there 1is a single prevailing market price and
delivery lag for all new orders in a given period. This rules out, for
example, simultaneous existence of a higher priced production to stock
and lower priced production to order market. These do occasionally
exist (e.g., in steel (de Vany and Frey (1982)). But such spot markets
apparently are of secondary importance, at least if Zarnowitz (1973)
was correct in virtually ignoring them in his exhaustive treatment of
production to order industries.

Second, the new orders are considered irrevocable commitments,
i.e., cancellations are ruled out. This appears to be a relatively
harmless assumption, since cancellations per p?riod typically are less
than five percent of gross new orders (Zarnowitz (1973, pp26-27)). In

any case it is necessary since the only new orders data available are
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net of cancellations.

Third, in contrast to the production to stock firm described in the
previous chapter, the firm does simultaneously maintain a stock of
finished goods inventories and backorders. This again matches the fact
that both stocks are substantial in production to order industries.
Formally, this follows since inventories and backorders affect costs
differently (see below).

The model is as follows. As in previous chapters, the firm

maximizes the expected present discounted value of its real cash flow:

S .t t
(2)  max By (Zoay(Ry - a3Cy)

s.t. Qt=st+Ht-Ht-1 » Nt=St+Bt-Bt_1

Wwhere
EO mathematical expectations, conditional on
information available at time O
d, fixed real discount rate, 0<d4<1
d2 fixed rate of technological progress, 0<d2<1
R, real revenue in period t (detailed below)
Cy real costs in period t (detailed below)
Q, units produced in period t
Sy units shipped in period t
Ht units of finished goods inventory at
end of period ¢t
N, units newly ordered in period t
B, units on backorder at end of period t

As in previous chapters, the information set is 1left unspecified

since estimation here is consistent as long as the firm's set includes
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at a minimum previous levels of backorders, inventories and shipments,
and certain functions of these defined below.

In contrast to previous chapters, not only costs but demand and
revenue will Dbe Specified precisely. Following are discussions of
revenue, demand, costs, and of the first order conditions of the
monopolist. Constant and linear trend terms analagous to those listed
in the Appendix to chapter 2 should be assumed to be present in the
equations to follow, although in general they have been suppressed for
notational simplicity.

Demand

It is assumed that demand (new orders) may be written

(3) Ny = (1/ey) [ -py - ep(Byg-Hy4) /Sy

+ 93YDt + Ut ]

The €; are positive parameters. A term epptepst should be understood to

be present inside the brackets. The variables in the demand curve are
explained in turn.

The first is real price p,, that is, the price of the firm's good
relative to the prevailing price level.

The second variable, (Bt-1-Ht—1)/St—1' is assumed to capture the
effects of delivery lags on demand. The net backlog B, ,-H,_4 is the
number of orders received but not yet produced. The higher 1is this
relative to the shipment rate S, ,, the longer the buyer is likely to
have to wait for delivery and, thus, the 1lower is demand. Here, as
elsewhere (Trevedi (1970), Zarnowitz (1973, pp278ff)) a simpi: ratio is

used to roughly approximate the number of periods the buyer will
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have to wait to receive shipment of his order.8

The assumption that a single previous period's net backlog to
shipments ;atio alone suffices to capture the effects of delivery lags
on demand is a simplifying one. More complicated dynamic behavior is
certainly possible, but it is hoped that this simple ratio provides a
useful first approximation.9

The next element, YD,, is a variable that shifts demand. Ideally
this would be income of the buyers, or, insofar as the purchasers are
manufacturers themselves, the demand for the product that the purchasers
produce. Such an ideal variable did not appear to be available. It was
proxied in the empirical work with real disposable income.

The final variable in (3), u,, is a white noise shock.

Revenue

In a production to order market, revenue may be derived from demand
in two different ways. Both variants were used in the empirical work.
In one, the price paid for a good is the price prevailing at the time of
shipment, so that revenue is R, equals pyS;. This is appropriate when
escalator clauses are built into orders contracts. This has Dbeen
becoming increasinély more common since 1973, and even been standard in
at least one (steel) long before that (Foss et al., (n.d., pp!55-156)).

However, for most industries over most of the sample period, the
price paid for the good was the price prevailing at the time the order
was placed (Zarnowitz (1973, p25)), Foss et al. (n.d, pp155-56).
Revenue from this period's new orders 1is thus P.N,. However, with

delivery lags, the present discounted value of the revenue is less than

PiN;, since payment presumably usually is not made until the shipment is
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received by the customer.10 For simplicity, however, this discounting is
ignored in the empirical work and the second method of handling revenue
set Rt'ptNt‘

For estimation it was convenient to write the demand curve in

inverse form. The two versions of revenue estimated, then, were

(4) [ ‘91Nt - eZ(Bt—1-Ht—1)/St—1 + e3IDt + uyg ]St

(5) [ -eqNy - ep(By_y-Hy 1)/Sq_q + exfDy + uy N,

Costs Costs have two components.11

1)Costs relating to production and backlogs:
- -1
(6) (a,/2)Q5l1-2,B,(By+ay) "] + 81004 [1-840B,(By+ay) ™"

The a; are all positive.

The term is intended to capture the idea that in the range of
production and backlogs typically observed, an increase in the size of
the backlog lessens production costs for a given rate of production.
But it does so at a decreasing rate with the marginal benefit of an
increase in the backlog approaches =zero for any fixed rate of
production.

Thus, the ratio B /(B4+Q) is concave in By. With B4=0, (6)
degenerates to two of the terms included in the previous two chapters'
cost functionms, (&1/2)Q$ * 840Q4- With no backlog, therefore, this term
reflects increasing costs associated with decreasing returns to scale
technology, as in previous chapters. And as Bt grows, costs fall, but

do eo at a decreasing rate.

=
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The economic forces underlying this term are in part similar to
those identified by Holt et al. (1961) and others, see the
introduction to this chapter. For typical rates of capacity
utilization, if the firm increases its backlog while maintaining its
existing rate of production, it increases the possibility that
similar orders may be grouped and then produced. This production
bunching can cut costs by allowing longer run times and fewer setups.
Thus the larger backlog both increases the time that machines are
productively available and decreases 1labor costs associated with
setups. Such a backlog also lessens the probability that specialized
machines will have to sit idle. For a more extended discussion, see
Belsley (1969, p48) and Holt et al. (1961, pp316-317).

(3) A standard inventory cost:

() (ap/2)(hy)?

This reflects storage and carrying costs.

First order conditions

It will be convenient here to write these without substituting
out the constraints Qtzst+nt-ut_1 and N =S,+B,-B, 4. (When the
system was actually estimated, as discussed in the next section, the
constraints were of course substituted out.) Define the product of
the discount rate and the rate of technological progress as d-d1d2.

The first order conditions will be written out for the case revenue

Ri=pySts the case Ry=p,N, is similar.

The problem to be solved is (2) with
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(®) Ry -cp= [ -eqly - ep(By g-Hy g)/Spq + e5fDy + vy ISy
=1
- (a,/2)02[1-2,8,(B,+q,) )

- a10Qt[1_a4OBt(Bt+Qt)_1] = (82/2)(}{1:)2

Let My be the Lagrangian associated with Qy=Sg+Hy-H¢_4, mpy that with
Nt=st+Bt‘Bt-1' The first order conditions (again, with deterministic

terms suppressed) then are

==
=

(9a)

(90) B: By | mpy - (3134/2)Q2(Qt+3t)_2 } (310340)Qi(qt+3t)_2

¢ Umyy * apHy - dyep(Syq/S) = dmyyyy |

* dyep(Sger/Sy) = dmppey |}
(9¢) Qi By { ayqy - (anay/2)(2048% * Q5B,)(ay+B,)

_ 2 2
a1oa4oBt(Bt*Qt) } Mt

(94) 5: B, { py + dyepl (By-Hy)Sta1)1/(52)
=Myt ompg
(9e) N: B, { ey5; = my, }

(9a) says that the value of an extra unit of inventories this
period equals its expected shadow value next period. The marginal value
of an extra unit of inventories this period has a rising component due
to carrying costs as in Blinder (1982) and, here, a falling one due to
its expected effects on next period's demand (see Blanchard and Melino
(1982,p8)). Thus, this extra unit increases both costs and expected
revenues.

Similarly, (9b) says that the marginal value of an extra unit on
the backlog this period equals its expected shadow value next period.

An extra unit increases the customers’' estimate of the delivery lag and
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thus decreases expected revenue. This is offset in that the unit also
decreases production costs. (9c¢) says as in Blinder (1982) to produce
until the marginal cost of production equals the shadow value of
inventories; the marginal cost falls with the 1level of the backlog.
(9d) says ship until the marginal value of a shipment equals the sum of
the shadow values of backorders and inventories. The value of a
shipment depends not only on its direct effect on marginal revenue Py
but also on its effects on delivery lags. Finally (9e) says accept new
orders until the marginal value of one equals the shadow value of an

extra unit on the backlog.12
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Empirical Results

Data and estimation are described briefly before empirical results
are presented.

A.Data

The data were real (1972 dollars), monthly and seasonally adjusted,
'959-1980. Data were available for aggregate durables exclusive of
non-electrical machinery (i.e., net of SIC 35), electrical machinery
(SIC 36) and metals (sum of primary metals SIC 33 and fabricated metals
SIC 34). Nominal backlog and shipment data were obtained from Citibank
Economic Database (files MDU, MDS, MDSMAC, MDUMAC, MDSMA4, MDSMU4,
MDSM2, MDUM2, MSDM4, MDUM4). These were deflated by the appropriate
wholesale price index (files PWDMD, PWME, PW117, PWMET). The constant
dollar inventory figures were obtained as in previous chapters by
converting the Bureau of Economic Analysis's recently calculated
constant dollar inventory series (Hinrichs and Eckman (1981)) from cost
to market so that a dollar of inventories represented the same physical
units as a dollar of sales. (See the Appendix "A Note on ihe
Econometric Use of Constant Dollar Inventory Series" for a definition of
"cost" and "market” and an explanation of why the conversion was
necessary.) Real disposable income was obtained from Citibank file
GMYD72. Production was obtained from the identity Qt=St+Ht'Ht-1’ new
orders from Nt=st+Bt‘Bt—1'

Estimation

The sample period covered 1959:5 to 1980:10, with 1980:11 used for
leads, and 1959:2 to 1959:4 for 1lags. All regressions included

constants and time trends, although these coefficients are suppressed
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from the equations that follow. The trivariate system associated with
revenue Rt=PtSt is discussed first in some detail, and then the
trivariate system associated with P{N, is presented.

After substituting out the Lagrangians, using the demand curve to
substitute out for price Py, and again letting d=dyd, denote the product
of the discount rate and the rate of technological progress, the system

(9) becomes

(10) By | (ayay/2)(dQB2,,1-QB2;) + a40a,0(dQB14,1-QB1,) - as(dy,q-Qy)
toaxHy - d162<st+1/5t) } =0 \
Ey | (aga4/2)QB4y + a10ag0@B3y + eq(dSys1-Sy)
- dyep(Sgeq/Sy) F =0
By { (2124/2)QB2; + a1gag0QBly - a1Qq - es(Sy+Ny) -

= €)(BSSy4q-HSSy4q) + e3¥Dy + uy } = O

where QBl,  QB2,, QB3y, QB4;, BSSy,q and HSS,,q are

2 -2
(11) aB1, = BE(Q,+B,)
241 A2 -2
QB2 = (2q,B%*B.Q7)(Q,+B,)
QBBt = Q%(Qt"‘Bt)-z

QB4, = Q7(Q,+p,)"2
BSSyy = (BgSyeq)/(53) = (By_y/s; )

HSS (HtSt+1)/(S§) - (Ht—1/st-1)

t+1

and, again, YD, is disposable income.
As in previous chapters, a normalization is needed to identify
parameters. Since aja, appears in every equation, it is a natural

choice for normalization: with 8ya4=2 in each equation, all parameters
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are identified up to the same scale factor and thus can be compared
across equations. Let lower case Xy = dX4-X4_q, Xy = By, Qp, QB2y or

QB Also replace expected values of regressors with their observed

t.
ex-post values. Set the monthly rate of technological progress d2=.997
(corresponding annual rate is about 3.5 per cent) and the discount rate

d,=.998 (annual rate 2.5 percent); their product d is then .995 (annual

rate 6 per cent). With these conventions, (10) becomes

(12.8) qb2,,, = ajqqsq - apHy + dren(Sya1/Sy) - a10ag0ablgeq * Vig
QB4y = - e9(d1S449-Sy) + d1ep(Sys1/Sy) - a10agoQB3y + voy
QB2¢ = a4Qq + eq(Sy*Ny) - ep(BSSyyq - HSSguq) -

= e3YDt - 810340QB1t + V3t

The estimation allowed the residuals v{t and Vi to be MA(1) and vzy  to
be MA(2). This permits the perio& t demand shock u, and period t
disposable income YDt to be unobserved when the firm makes its period t
decisions. For example, v,, = -a;(qu41 - Eyqeeq) - dep[(S44q/84) -
B (S441/8¢)] * ay0a40(abl yq-Byablyyq) *+ (qb2,4y - Eiqb2;,q), and is
MA(1) if not only Uy,q and YDy,y but uy or YD, as well are not part of
the period t information set. A similar argument applies to V2t and

13

Vs,

An unconstrained version of the system (12.8) was estimated by
two-step, three stage least squares, as described in Hansen (1982) and
Hansen and Singleton (1982). That is, the equations in (12.8) were
stacked in the usual way (e.g., Theil (1972,p523)) to get a 3T x 1
vector of residuals y-Xb,; X is (3T x 19), b, is (19 x 1). (The seven

parameters aiove and beyond the twelve written out on the right hand



107

sides of (12.s) are the constant and trend terms in the three equations,
and separate coefficients on BSSt+1 and HSS4,4 in the third equation in
(12.38). These 1last regressors were entered separately to facilitate
testing of the hypothesis that backlogs and inventories have equal and
opposite effects on demand. See below.) Let Q be the (3T x 3T)
weighting matrix which given the instruments optimally accounts for the
MA nature of the errors, as defined in Hansen (1982) or Hansen and
Singleton (1982). The thirteen instruments used were: constant, time
trend, two lags each of sales, inventories, backlogs and disposable
income, and one lag each of S, ,/s,, BSS;,q and HSS,,,. The parameter
vector b, was chosen to minimize (y-Xby)'Q(y-Xby) ==> by = (X'QX)-1X'Qy,
with V, = ()('Q){)"1 the variance of b,

A parameter vector b, that satisfies the cross-equation constraints
implicit in (12.s8) was obtained from b, as follows. Write the
constraints that connect the parameters across the equations in (12.3)
(e.g., that the coefficient on 4444 in the first equation equals that on
Qt in the last equation) as Rby=0. R is a 7 x 19 matrix. Finally, let
b2 be an estimate of the (19 x 1) parameter vector that minimizes the
same objective function (y-sz)'Q(y-sz) subject to the constraint Rb, =
0. Let V2 be its covariance matrix. Only twelve of the elements of by
are distinct (a,, a,, 810840, €1, ©p, €3, and the six deterministic
terms) and V, is singular. Then the constrained system may be

calculated from the unconstrained one by (see Theil (1971, p 288))14 by

(13) b, = [1 - V4B'(RV4R") " 'R]b,
v, = [1I - V1R'(RV1R')-1R]V1

The increase in the objective function, (y-sz)'Q(y_sz) -
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(Y-Xb1)'Q(y-Xb1) may be used to test the null hypothesis that the
cross-equation constraints are valid. It is asymptotically distributed
as chi-squared with seven degrees of freedom under the null
hypothesis.15

To test whether inventories and backlogs had equal and opposite
effects on demand, the constraint that BSSt+1 and HSS,,, have equal and
opposite signs was dropped. (The constraint that the coefficient on
St+1/st in the first equation be .998 tmes that of HSSt+1 in the third
equation was still imposed, and similarly for St+1/st in the second
equation and BSS,,, in the third.) The system was then estimated
subject to the remaining six constraints, by the two-step procedure just
described. Let the resulting coefficient vector be b3, Under the null
hypothesis that backlogs and inventories have equal and opposite effects
on demand, the difference in distance functions (y—sz)‘Q(y-sz) -
(Y-XbB)'Q(y-Xb3) is asymptotically distributed as chi-squared with one
degree of freedom.

With revenue p.N,, the system that was estimated was

(12.n) qb2t+1 = 81Q441 -~ 32Ht + d162(Nt+1/St)

T 210840001 44 * Vig
QB4, = a,B, - 2e4(d4Ny,q-Ny) - ey(BNS1,,y - HNS1;,y)

* e5(dy¥Dyyq-YDy) - a40840QB3y + vy

QB2, = a1Qq + 2eqNy - ep(BNS24,q - HNS24,4)

ct
|

- e3fD t - 310340QB1t + V3t

where

BNS1, = (dyBy_4-N4)/Sp_q - (Bi_o/St_p)
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HNSTy = dyHy 4/S¢q - (Hy_p/Syop)
2
BNS2¢= dyBy_4Ny/(S3_q) - (By_n/5¢ 5)

_ 2 -
HNS2 = dyHy (Ny/(S5_q) - (Hi_ /5, )

The thirteen instruments used were: constant, time trend, two lags
each of sales, inventories, backlogs and disposable income, and one lag
each of W, ,.,/Si, BNSl,,y and HNS1,,,. The constrained system and the
statistic testing whether inventories and backlogs have equal and
opposite effects on demand were estimated analagously to those for
revenue p,5,. The number of constraints this time was nine and the
number of parameters in the unconstrained system 21. The two extra
constraints and parameters come from the presence of (d1rDt+1_YDt) and
and HNS*, in the second equation of (12.n).

Results

Table II has the results for revenue Rt=ptst' Table III for
Rt=PtNt° Coefficients for deterministic terms are not reported, since
they are considered to be of secondary interest.

Of the 21 parameters in Table II, 14 have the correct sign. The
mediocre performance basically reflects the production-backlog cost
840840€0 in all three data sets and the overall poor performance of the
electrical machinery equation. The parameter estimates for the latter,
in column (2), suggest that demand slopes up (e1<0 in row (5)). The
coefficient e, on the net backlog-shipment ratio is also wrong-signed
(row(6)). (Note, however, that the incorrect signs on e, and e; combine
to put the right sign on the coefficient e2/e1 in the demand equation.

See equation (3) above.) The other two data sets (aggregate ex
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TABLE II

PARAMETER ESTIMATES, EQUATION 2.8

(1) (2) (3)
Aggregate Electrical Metals
Durables Machinery
(1) a, 1.3347 1.4722 1.2159
(.0377) (.0283) (.0518)
(2) a, .0097 -.0096 .0101
(.0065) (.0043) (.0078)
(3) a, 1.4984 1.3584 .6448
(.0424) (.0262) (.0700)
(4) aipayq 41644 -6193 -10820
(823) (144) (864)
(5) e, .0090 -.0044 L0133
(.0212) (.0151) (.0282)
(6) e, 841.8 -46.70 '88.6
(658.4) (67.23) (301.9)
(7) es 2.5718 1.0594 -2.2481
(2.3326) (.2514) (1.4340)
(8) J, 63.9 71.1 44.7
(9) J, 123.3 46.1 88.7
(10) J3 5.3 10.0 3.3
(11) ) .3 .01 1.1
Notes:

1.Variables defined in text; a, calculated as 2 7.
2.Asymptotic standard errors in parentheses.

3.The J. are chi-squared distributed with the indicated
degrees of freedom. Critical levels:

Jy 20 d4.f., critical levels: 31.4 at .95, 40.0 at .995
J5 7 d.f., critical levels: 14.1 at .95, 20.3 at .995
Jz 5 d.f., critical levels: 11.1 at .95, 16.7 at .995
J2 1 d.f., critical levels: 3.8 at .95, 7.9 at .995
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non-electrical machinery and metals) have attractive parameter
estimates, save for the significantly negative linear production-backlog
cost a10a40‘ For both of these data sets, both inventory costs a, and
the net-backlog shipment ratio parameter €, are positive, although
disappointingly insignificant. In addition, the inventory cost 85 is
perhaps smaller than might have been expected, given results from
previous chapters.16 But for all three data sets,the quadratic
production-backlog cost parameters 4, and a, were highly significant.

Table III has results for revenue Rt=ptNt' This performs somewhat
better, with 15 of 21 parameters correctly signed. The exceptions were
again the estimates of the linear production-backlog cost 210840
(significantly wrong-signed in all three equations) along with two of
the three estimates of the inventory cost a,, and one estimate of the
parameter €z capturing the effects of dispcsable income on demand. Once
again, the quadratic production-backlog cost a, and a, were highly
significant. In addition, the net backlog-shipment ratio strongly
affects demand (32 significant at the 1 per cent level of electrical
machinery and metals, significant at the five per cent 1level for
aggregate) . Finally, the demand curve coefficient on price, ey, is
gsignificant at the five'per cent level for both electrical machinery and
backlogs.

The last four rows of Tables II and III report tests of several
hypo theses. Bow (8), 1gbeled Jy, is Hansen's (1982) test of
overidentifying restrictions, and row (9) is the test of cross-equation
restrictions described in the previous subsection. Both rejected at the

.5 per cent level for all data sets. One experiment was performed in an
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TABLE III

PARAMETER ESTIMATES, EQUATION 12.N

(1) (2) (3)
Aggregate Electrical Metals
Durables Machinery
(1) a, 1.3267 1.4019 1.1983
' (.0377) (.0283) (.0518)
(2) a, -.0026 ~.0069 .0024
(.0065) (.0034) (.0049)
(3) a, 1.5075 1.4260 1.6690
(.0258) (.0170) (.0204)
(4) aygas9 -42294 -5641 -10125
(866) (165) (372)
(5) e, .0103 .0270 .0515
(.0111) (.0076) (.0126)
(6) e, 385.2 67.17 197.2
(179.2) (17.09) (48.3)
(7) ey .0414 L5371 -.4279
(2.0197) (.2346) (1.225%)
(8) J, 53.0 87.0 78.8
(90 9, 104.3 77.8 110.5
(10) I3 11.1 40.3 25.0
(11) Iy 3.6 .01 .9
Notes:

1.See notes to Table II.

2The J. are chi-squared distributed with
degrees of freedom.

J

I5:

Jz: 1 d.f., critical levels:

Critical levels:

4: 18 d.f., critical levels: 28.9 at
Jy: 9 d.f., critical levels: 16.9 at
7 d.f., critical levels: 14.1 at

3.8 at .95,

the indicated

.95, 37.2 at .995
.95, 23.6 at .995
.95, 20.3 at .995

7.9 at .995
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attempt to narrow down the source of the latter (row (9)) rejection.
The significantly wrong-sign on 240240 suggested that it might be a
source of trouble. Thus the cross equation restrictions that it be the
same in all equations was relaxed, and the resulting chi-square
statistic with five (system 12.s) or seven (system 12.n) degrees of
freedom was calculated. This is reported on line (10).'7 It accepted at
the five per cent significance level for all three data sets using
(12.8), and for aggregate durables using (12.n) as well. It appears,
then, that the linear term a1OQt[1'a4OBt(Bt+Qt)-1] is a major source of
unsatisfactory aspects of the results of the estimation.

The last row of Tables II and III, row (11), contains the results
of the test that inventories and Dbacklogs have equal and opposite
effects on demand. This test was accepted quite comfortably for all
three data sets for both (12.s) and (12.n). This lends support to the
Holt et al. (1961) hypothesis that backlogs may be considered negative
inventories with respect to their effect on demand.18

The mixed results on tests of overidentifying restrictions and the
significantly negative estimates of the linear production-backlog cost
810840 suggest problems with the specification of the model. A ‘likely
source of troubleiqﬁquatibﬁ (6), specifying production-backlog costs.
The question of how backlogs affect production costs in production to
order industries clearly is one that needs further study.

The results do, however, suggest that the net backlog strongly
affects demand, and that backlogs strongly affect production costs. The
implied demand elasticities suggest that the net backlog-shipment ratio

is economically as well as statistically significant. As indicated in

IR L
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Table IV, a one per cent increase in the net backlog-shipment ratio
causes new orders to fall by roughly one per’cent.

The economic effect of backlogs on costs is indicated in Table V.
As in previous chapters, the second derivative of the cost function is

identifiable. It is:
3 -3 2 -3
(14) 2y - a7aB7(Bi+Qy) ™7 * 2408085 (B+qy)

This is contained in row (2) of Table V, evaluated at the mean levels of
backlogs B, and production Qi. Without backlogs, the second derivative
would of course Jjust be 84. In row (3) of Table V is tue percentage
fall in this second derivative attributable to backlogs: 100 «x
[1'(14)/81]. Thus, at the sample means, the increase in the marginal
cost of production was twenty percent of what it would have been without
backlogs. While this figure perhaps overstates the impact of backlogs
on production costs in that it uses the significantly wrong-signed
estimates of 210240, it does suggest that backlogs strongly affect

production costs.
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T ABLE IV

DEMAND ELAST ICITIES WITH RESPECT CO THE
NET BACKLOG-SHIPMENT RAT IO

Aggregate Electrical Metals
Eq'n (12.39) 8.19 .85 .31
Eq'n (12.n) 3.28 .20 .08

Notes:

1.All elasticities calculated at sample means.

2.Elasticities calculated as (e,/eq)/{N/[(B-H)/S]},

where new orders N, backlogs B, inventories H and shipments S were
all evaluated at their sample means.

TABLE V
EFFECTS OF BACKLOGS ON SECOND DERIVAT IVE OF PRODUCT ION COST'S

Aggregate Electrical Metals
Durables Machinery

(12.8):
a, 1.33 1.47 1.22
Eq'n (14) .24 .25 .27
[1-(14)/a,]%100 82 83 78
(12.n):
a, 1.33 1.40 1.15
Eq'n (14) .22 .20 .22

[1-(14)/a,]*100 83 86 81
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IV.CONCLUSIONS

This suggests steps for future research. Generalization
and substantiation of two aspects of the model seem particularly
important.

This first concerns the interaction between backlogs and
production costs. While results were generally favorable to the
hypothesis that backlogs help cut producticn costs , they were
by no means unambiguously so. Thus, substantiation using other
models or data or both appears especially desirable . This seem
especially so since to my knowledge this chapter contains the
first estimates of structural parameters summarizing this
production-backlog interaction, even though the interaction is
often said to be important (e.g., Belsley (1969), Holt et al.
(1961), Maccini (1973)).'2

The second aspect requiring generalization is more central
to the basic argument of this thesis, that backlogs and
inventories affect demand as well as costs. The assumption that
the industry acts as a monopolist appeared to be required by the
aggregate data. Such data seems to make it impossible to
identify such plausible effects as a given firm's demand
depending on its net backlog-shipment ratio relative to its
competitors' ratios. Thus the use of individual firm data

appears appropriate.
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FOOTNOTES

1.Specifically, compare expected costs under the optimal policy with
these under an alternative policy that sets Qt=Nt' H,-B,=0. The left
hand side of the inequality is expected per period cos%s under the
optimal policy, the right hand side expected per period costs under the
alternative policy.

2.Equation (1) has no implications for the variance of production
relative to the variance of shipments, since the model does not
determine inventories Thus the fact that production is more
volatile than shipments %or aggregate durables and electrical equipment,
as indicated by 1lines (3) and (4) in Table 1, neither contradicts nor
supports the model.

3.See Belsley (1969,pp46-53%), or Holt et al. (1961, pp314-317) for
details of the discussion to follow.

4.This has has been noted by Maccini(1973,1976).

5.With adequate backlog data this approach, of putting backlogs in the
demand curve, is possibly applicable to production to steck industries
as well, see footnote 8.

6.For a detailed exposition on the empirical aspect of this point, see
Reagan and Shechan (1982).

7-} All figures were calculated using sample means. Details are in part
III.

8.It can sensibly be interpreted as such an approximation only if the
backlog By , is larger than the inventory stock H._,, as is the case in
all perlods or all the data studied here. Since this is presumably not
the case for production to stock industries, these ratios perhaps are
not arppropriate for use in stock industries, even if backlog data were
available. Also, not all authors would enter these two ratios
separately to capture the effects of delivery lags. For example
Zarnowitz (1973,pp279ff) assumes the backlog-shipment ratio alone
captures these effects.

9.0ne simple generalization is to enter B /s and 1/S¢-1
separately, to allow the effects of the two ratlos to be d1 ferent

This was tried, but the coefficients on the two ratios were
insignificantly different. See section III.

10.An exception to this rule is certain products manufactured for the
government, see Foss et al. (n.d., ch. 11).

11.Linear terms suppressed for notational convenience from the cost
function as written in the text should be understood to include some
terms in addition to those corresponding to the quadratic terms For
generality, 1linear and trend terms coresponding to all basic variables
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in the model should be understood to be present. For example, CyBy or
CoNg, with c and cp positive parameters, might be present to reflect
overhead associated with backlogs and new orders. Note that individual
deterministic terms are not identified.

12.For a more thorough analysis of a set of first order conditions for a
production to order firm in a non stochastic but otherwise more general
environment, see Maccini (1973).

13.The higher order MA component may also result from cost shocks as in
Blanchard (1982), although these have been suppressed for simplicity.

14.Theil actually shows this only for GLS on seemingly unrelated
regressions. But his proof readily extends to 3SLS with moving average
errors.

15.See Gallant and Jorgenson (1981) for a proof that this difference may
be used in the case of iid errors. That it may be used as well when
there are MA errors, and the model and the constraints are linear, is
easily shown. The proof mimics that of the standard linear model that
the Wald test is identical to the difference between the constrained and
unconstrained objective functions (Theil, (1972), ppl43-44)).

16.The fact that estimates of the inventory-production cost ratio a2/a1
are small relative to previous previous chapters' estimates is
particularly troublesome in +that production to order industries
suppcesedly are charaterized by especially large inventory carrying
costs. See the introduction to the previous chapter.

17.Most of the estimates of (12.s) and (12.n) subject to this subset of
the cross-equation constraints were similar to those obtained by
imposing the entire set of constraints, and thus are not reported. The
only exceptions were the estimates of a,~a;n. These were all
significantly negative, but sometimes had values markedly different fro
those reported in. the tables. For example, for aggregate durables,
system (12.s), the values of a 0840 from the three eqautions (asymptotic
standard errors in parentheses}: were: -35517 (3120), -24276 (2187),
-43123 (915).

18.This is not to suggest that backlogs and inventories are equal and
opposite in all respects, as argued in various places in this chapter.

19.Belsley's (1969) model appears to allow him to use his regression
coefficients to obtain such structural parameters, but he does not
attempt to do so.
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CHAPTER V:

CONCLUSIONS
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This concluding section summarizes the results of chapters III
and IV, and suggests directions for future research.

The results of these two chapters have in general been
supportive of the hypothesis that inventories and backlogs affect
revenues as well as costs. Chapter III studied production to stock
industries, in which backlogs are sometimes thought to be unimportant
since they are numerically small (e.g., Auerbach and Green
(1980,pp1-2)). The revenue effects of inventories and backlogs were
formulated as an opportunity cost to holding a backlog. The backlog
cost in general was statistically significant, significantly greater
than the inventory cost, and, since it was estimated to be as much as
half the production cost, economically significant as well. Thus it
appears that backlog costs are important in these industries.

Chapter IV studied production to order industries, in which,
although backlogs are sometimes (but not always) thought to be
important, they are rarely allowed to affect demand directly, or to
affect production costs differently than do inventories (e.g.,
Belsley (1969)). Chapter IV allowed for both of these affects. The
revenue effects of inventories and backlogs were modeled by allowing
these two variables (suitably normalized) to shift demend. Empirical
results suggest that the two do shift demand, with implied

elasticities of about one. Also, backlogs do turn out to
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significantly affect production costs, in a fashion that inventories
do not. Typical 1levels of backlogs cause the increase in the
marginal cost of the typical level of production to fall by about
eighty per cent.

These results are of course not definitive, and some suggestions
for generalizing and extending the results seem appropriate. These
seem especially important since the results were not uniformly
favorable: tests of overidentifying restrictions almost always
rejected, and not all certain parameters were persistently
wrong-signed.

One possible extension has been suggested in the concluding
sections to chapters III and IV. It is possibly true that individual
firm data are more appropriate than the aggregate data used here. It
would therefore be desirable to test the models in these two chapters
on disaggregated data, perhaps modifying them in the fashion
suggested in those concluding sections.

At least two more substantial extensions seem particularly worth
investigating. The first would allow for a richer specification of
demand. In chapter III demand was left unspecified (although some
assumptions are implicit in the specific form of opportunity costs
used to model the revenuz effects of inventories). Leaving demand
unspecified undoubtedly leads to more robust estimates than those
resulting when demand is precisely specified as in chapter IV, but
also leads to estimﬁtes that are less efficient than those resulting
when demand is correctly specified. The extra efficiency that

results from specifying demand as well as supply could be marked,
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since the demand curve is the natural place to model the revenue
effects of inventories and backlogs. Chapter IV does indeed specify
a demanéd curve, but the curve was basically static and backward
looking. Thus there appears to be a wide range of plausible demand
side behavior yet to be explored.

The second extension would specify production costs more richly.
In this thesis real production cost were allowed to vary only in
certain limited ways. Now, production costs are of course of central
importance, as indicated by the statistical significance of estimates
of production cost parameters. Since these costs plausibly vary with
real wages, material prices and interest rates, it would seem
desirable to model them as so varying. Thus there appears to be much
unexplored scope for modeling production costs.

In sum, the basic hypothesis that inventories and backlogs
affect revenues as well as costs appears to have received sufficient
support in this thesis to warrant further investigation using

different models and different data.
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APPENDIX:

A NOTE ON THE ECONOMETRIC USE OF CONSTANT DOLLAR
INVENTORY SERIES
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Economic models of production, sales and finished goods
inventories are usually formulated in terms of physical units, with
costs and revenues assumed to be functions of the number of physical
units produced or sold (e.g., Belsley (1969), Blinder' (1982),
Eichenbaum (1982)). In empirical estimation of these models, it is
assumed that in the data one dollar of finished goods inventories
represents the same amount of goods as one dollar of sales.
Unfortunately, this 1is not the case when the standard macroeconomic
data sources are used, Department of Commerce constant dollar
inventory series on the one hand and constant dollar shipments
(calculated by deflating Department of Commerce nominal shipments by
the appropriate wholesale price index) on the other. The problem is
that the inventory figures are evaluated at what accountants call
"cost," while the sales figures are evaluated at what accountants
call "market."’

A simple example will illustrate the problem. In the first line
of Table I is a two period sequence of production of physical units
Qt, sales S; and end of period inventories Hy; the variables of
course obey the identity Qt=st+Ht-Ht_1. Sales in current dollars in

the second 1line of the table is calculated simply by multiplying

units sold by the market price P. The current dollar (book) value of
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H

TABLE I

H

H, CGS

0 1 Py §p HyCeSy Q, PI, UC, F, S, BH,CGs,
physical 100 90 110 100 120 90
units
current 90 100 1.0 2.0 180 109 81 110 1.1 2.1 an 99 120
dollars .
constant 100 180 110 240 90
(period one)
dollars

Q=production, PI=purchases of inventoriable goods, labor and overhead,

UC=unit cost=PI1/Q, P=market price, S=sales, H=inventories,
CGS=cost of goods sold = PI-AH
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inventories on this line is derived as follows. Firat, the firm's
purchases of inventoriable goods, labor and overhead are summed to

get the variable called PI in the table. Exactly what expenditures

2

constitute PI depend on the firm's accounting policy“ and is not

important in the present context; but it is worth noting that for a
firm with positive accounting profits, PI in general is less than
current dollar sales. PI may be divided by the total number of units
produced to get a unit cost UC. Bnok value of inventories equals the
sum of the unit costs of all goods in inventory. If the unit cost of
all 100 units of period zero inventories is $.90, and the firm uses
FIFO accounting, then the book value of inventories is as indicated
on line 2 of the table (e.g., $10G % (10 x $.90) + (100 x $1)). Cost
of goods sold CGS is defined as PI-AH.

As may be seen, the ratio of nominal sales to boock value of
inventories overstates the ratio of units sold to units in inventory.
This is because market prices will in general be above unit cost when
the firm is making an accounting profit. And this overstatement
remains even if sales and inventory figures are deflated to period
one dollars, as may be seer in line 3 of the table. The Department
of Commerce computes constant dollar inventory series in effect by
calculating what the firm would have evaluated its inventories at if
there were no inflation in the prices paid for purchases of
inventoriatle goods, labor and overhead. Since market price will in
general be higher than unit cost, an overstatement remains.

It is obvious that if a dollar of inventories is to represent

the same amount of goods as a dollar of sales, the constant dollar
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inventory figures should be multiplied in all periods by the base
period ratio of market price to unit cost (equivalently, the constant
dollar sales figure should be divided by this ratio). This ra%io may
be approximated from an individual firm's annual report as the ratio
of S/CGS. (In the example, S1/CGS1=2.2 and thus overstates the
correct conversion factor of 2.0. The calculated figure is off
because the firm uses book value and not constant dollar inventories
in its computation of‘CGS. The example is misleading in that in real
data from manufacturing the bias this induces is likely to bé ;ery
small.3) In aggregate data this same ratio may be computed from the
Internal Revenue Service data on revenues and expenses which is
available annually at the.two digit SIC code level in its publication

Statistics of Income-- Corporate Income Tax Returns. As suggested in

Foss et al. (n.d. , p47n) the ratio of (business receipts) / (cost
of sales and operations + rent + 'repairs + depreciation + taxes)
approximates the ratio of (shipments)/(cost of goods sold).4 Table II
contains these rétios for aggregate manufacturing at the two digit
SIC code level for 1972 (1972 was chosen because it is the base year
for the 1latest Department of Commerce constant dollar inventory
series). As may be seen, it is substantial, implying that in general
a dollar's worth of finished goods inventories represents about
twenty five per cent more physical goods than a dollar's worth of
sales.

We close by noting the effect on regression estimates in 1linear
models of adjusting the constant dollar figures. Suppose we are

studying aggregate manufacturing finished goods inventories with a

'
-

1
L)
L]
—
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TABLE II

Estimates of ratio of shipments/cost of goods sold

(SIC codes in parentheses)

(20) Food 1.1973 (24) Lumber 1,2243
(21) Tobacco 1.3997 (25) Furniture 1.2899
(22) Textiles 11,1779 (32) Stone 1.2842
(23) Apparel 11,2407 (33) Primary Metals 1.1632
(26) Paper 1,2548 (34) Fabr, Metals 1,2636
(27) Printing 1.4149 (35) Machinery 1.3646
(28) Chemicals 1.4064 (36) Electrical 1,3218
(29) Petroleum 1.2081 (37) Motor vehicles 1,2057
(30) Rubber 1.3079 (37) Transportation 1,1819
(31) Leather 1.2325 (38) Instruments 1.4823

(39) Other 1.3615
All non-durables 1.2582 All durables 1,2629

All manufacturing 1,2605

Source: calculated as described in the text from Table 2 in IRS (1976)
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regression equation that has inventories on the left hand side and
lagged inventories and lagged and current sales on the right hand
side. The coefficient estimates on the sales variables that result
when these are divided by the 1.2605 ratio from Table II will be
1.2605 times as large as the ones that result if sales are not
properly adjusted. By not adjusting, then, we would underestimate
how repsonsive the level of inventories is to sales by 26 per cent.
This suggests, for example, that inventories are not quite as
implausibly unresponsive to sales as some economists (Carlson and
Wehrs (1974), Feldstein and Auerbach (1976)) have claimed, since
their arguments have rested on comparison of the values plausibly
predicted by their models with estimates produced by precisely this

regression.
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FOOTNOTES

1.Foss et al. (n.d., pp10,48) and the IRS (1981, pi06) state that
manufacturing inventories are generally evalv=ted by the firm at cost
or the lower of cost or market. For finished goods inventoriea this
in effect means inventories are evaluated at cost. That Department
of Commerce constant dollar inventory series still evaluate
inventories at cost is implicit in the discussion of how it deflates
inventori- in Foss et al. ((n.d)., chapters 5 and '3), Herman et
al. (19 pp20-22), Hinrichs and Eckman (1981) and was stated
explicitly by Mr. John Hinrichs of the Bureau of Economics Analysis
in telephone conversations with me. The problem noted here is more
serious for finished goods than for other stages of inventories,
because (1) the spread between cost and market is likely to be
largest here, and (2) it is here that economic models generally
insist that inventories and sales be expressed in equivalent physical
units. However, since for inventories at all stages of fabrication
the Department of Commerce constant dollar inventory series evaluate
inventories at cost, the series for other stages may be
unsatisfactory for the same reason.

2.At a minimum PI must include all variable costs such as wages of
production workers, purchases of materials used in production,
expenditures on heat and light and rent; taxes and the amortized
value of fixed costs such as depreciation may be included at the
option of the firm, provided IRS regulations are met (Foss et al.
(n.d.), chapters 2 and 10)).

3.This is because for manufacturing firms the mean absolute value of
Ht-H -1 1is very small compared to sales or production (see Feldstein
and xuerbach (1976)). Thus the bias from using the book value of

Hi-H;_4 is likely to be small.

4.Foss et al. presumably suggest adding rent and repairs to
compensate for direct costs not accounted for in the IRS figure for
cost of sales and operations (see IRS (1976, p159)), depreciation and
taxes to account for "full cost absorption" (Foss et al. (n.d.),
chapter 10)). The IRS data unsuprisingly does not yield the ratio
desired for other reasons as well: it covers tax returns filed over
the course of a twelve month period centered on December of 1972 and
thus reflects neither all nor only economic activity in 1972; its
SIC code definitions apparently do not precisely match the Department
of Commerce's (IRS (1976, p')).

I thank John Hinrichs for suggesting I use the IRS Statistics to
calculate the desired ratio.
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