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Learning-based Adaptive Control using Contraction Theory

Hiroyasu Tsukamoto*, Soon-Jo Chung*, and Jean-Jacques Slotine’

Abstract—Adaptive control is subject to stability and per-
formance issues when a learned model is used to enhance
its performance. This paper thus presents a deep learning-
based adaptive control framework for nonlinear systems with
multiplicatively-separable parametrization, called adaptive Neu-
ral Contraction Metric (aNCM). The aNCM approximates real-
time optimization for computing a differential Lyapunov function
and a corresponding stabilizing adaptive control law by using a
Deep Neural Network (DNN). The use of DNNs permits real-time
implementation of the control law and broad applicability to a
variety of nonlinear systems with parametric and nonparametric
uncertainties. We show using contraction theory that the aNCM
ensures exponential boundedness of the distance between the
target and controlled trajectories in the presence of parametric
uncertainties of the model, learning errors caused by aNCM
approximation, and external disturbances. Its superiority to the
existing robust and adaptive control methods is demonstrated
using a cart-pole balancing model.

I. INTRODUCTION

Future aerospace and robotic exploration missions require
that autonomous agents perform complex control tasks in
challenging unknown environments while ensuring stability
and optimality even for poorly-modeled dynamical systems.
Especially when the uncertainties are too large to be treated
robustly as external disturbances, real-time implementable
adaptive control schemes with provable stability certificates
would enhance the autonomous capabilities of these agents.

In this work, we derive a method of adaptive Neural Con-
traction Metric (aNCM), which establishes a deep learning-
based adaptive controller for nonlinear systems with paramet-
ric uncertainty. We consider multiplicatively-separable systems
in terms of its state x and unknown parameter 6, i.e., f(x,0) =
Y (x)"Z(8), which holds for many types of systems including
robotics systems [1], high-fidelity spacecraft dynamics [2],
and systems modeled by basis function approximation or
neural networks [3], [4]. The major advantage of aNCM
is its real-time implementability, equipped with contraction-
based [5] stability and robustness guarantees even under the
presence of such parametric uncertainty, external disturbances,
and aNCM learning errors. It also avoids the computation of
minimizing geodesics in constructing the adaptive control law,
as compared to [6], [7]. Our contributions of presenting the
aNCM framework (see Fig. 1) are summarized as follows.

This paper builds upon our prior work on Neural Contrac-
tion Metrics (NCMs) [8]-[10] for learning-based control and
estimation of nonlinear systems. The NCM approximates real-
time optimization by utilizing a Deep Neural Network (DNN)
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to model optimal contraction metrics, the existence of which
guarantees exponential boundedness of system trajectories
robustly against external disturbances, but without parametric
uncertainty. In this study, we newly derive its stability and
robustness guarantees explicitly considering the learning error
of the NCM, thereby synthesizing a stabilizing real-time
adaptive controller for systems with a matched uncertainty
condition. Its adaptation law exploits the generalized State-
Dependent Coefficient (SDC) parameterization (A(x,x;) s.t.
A(x,xg)(x —xg) = f(x) = f(xq)) [11], [12] to provide an ex-
ponential bound on the distance between a target trajectory x,
and closed-loop trajectories, while simplifying the differential
formulation proposed in [6], [7] that requires the computation
of minimizing geodesics. We further generalize this approach
to multiplicatively separable systems f(x,0) = Y (x)"Z(8)
with an unknown constant parameter vector 6, using aNCM to
model optimal parameter-dependent contraction metrics along
with a novel adaptation law inspired by [1] and extending [7].
This renders it applicable also to provably stable adaptive
control of systems modeled by neural networks and basis
function approximation [3], [4].

The optimality of aNCM follows from the CV-STEM
method [13] that minimizes a steady-state upper bound of the
tracking error perturbed by stochastic and deterministic distur-
bances by using convex optimization. The NCM method [8]—
[11] samples optimal contraction metrics from CV-STEM
to be modeled by a DNN, and is further improved in this
paper to incorporate the NCM learning error. In simulation
results of the cart-pole balancing task (Fig. 2), the proposed
frameworks are shown to outperform existing adaptive and
robust control techniques. Furthermore, the concept of implicit
regularization-based adaptation [14] can also be incorporated
to shape parameter distribution in low excitation or over-
parameterized contexts.

Related Work: There exist well-known adaptive stabiliza-
tion techniques for nonlinear systems equipped with some
special structures in their dynamics, e.g., [1], [15]-[17]. They
typically construct adaptive control schemes on top of a known
Lyapunov function often found based on physical intuition [1,
p. 392]. However, finding a Lyapunov function analytically
without any prior knowledge of the systems of interest is
challenging in general.

Developing numerical schemes for constructing a Lyapunov
function has thus been an active field of research [18]—[22].
Contraction theory [5] uses a quadratic Lyapunov function of
a differential state 8x (i.e. V = 8x' M (x)8x) to yield a global
and exponential stability result, and convex optimization can
be used to construct a contraction metric M (x) [6], [13], [23]-
[25]. In [7], the computed metric is used to estimate unknown
system parameters adaptively with rigorous asymptotic sta-
bility guarantees, but one drawback is that its problem size
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grows exponentially with the number of variables and basis
functions [26] while requiring the real-time computation of
minimizing geodesics [6].

We could also utilize over-parameterized mathematical
models to approximate the true model and control laws with
sampled data [8]-[11], [18], [19]. This includes [27], where a
spectrally-normalized DNN is used to model unknown residual
dynamics. When the modeling errors are sufficiently small,
these techniques yield promising control performance even
for general cases with no prior knowledge of the underlying
dynamical system. However, poorly-modeled systems with
insufficient training data result in conservative stability and
robustness certificates [27], [28], unlike the aforementioned
adaptive control techniques. Our proposed aNCM integrates
the provably stable adaptive control schemes via contraction
theory, with the emerging learning-based techniques for real-
time applicability [8]-[11].

Notation: For x € R" and A € R™"™, we let ||x||, 0x, and
||A]| denote the Euclidean norm, infinitesimal variation of x,
and induced 2-norm, respectively. We use the notation A > 0,
A>0,A =<0, and A <0 for positive definite, positive semi-
definite, negative definite, and negative semi-definite matrices,
respectively, and sym(A) = (A+A")/2. Also, I, € R™" de-
notes the identity matrix.

II. NCM FOR TRAJECTORY TRACKING CONTROL

The Neural Contraction Metric (NCM) is a recently-
developed learning-based framework for provably stable and
robust feedback control of perturbed nonlinear systems [8]—
[10]. In this paper, we explicitly consider the modeling error
of the NCM, and present the modified version for tracking
control concerning a given target trajectory (xz,u,), governed
by the following dynamical system with a controller u € R™:

X = f(x)+Bx)u+d(x), xg = f(xq) +B(xa)ua(xq) 1)

where x,x; : R>o — R”, uy : R" = R"*, 4 : R" — R" with d=
sup, ||d(x)|| < +oo is the unknown bounded disturbance, and
f:R"—R" and B : R" — R"™ are known smooth functions.
Lemma 1 is useful for using (xz,uy) in the NCM.

Lemma 1: For f and B defined in (1), JA(x,x4) s.t. f(x)+
B(x)ug(xq) — f(xq) — B(xg)ug(xq) = AQx,xq)(x — xg), Vx,x4,
and one such A is given as A(x,x;) = fol felex+ (1 —=c)xg)de,
where f(q) = f(q) +B(q)uq(xy) and f, = df/dx. We call A
an SDC matrix, and A is non-unique when n > 2.

Proof: See [11]. [ |
We consider the following control law in this section:
u=ug(xq) — R(x,xq) " 'B(x) " A (x,x4) (x — x4) (2)

where R(x,x;) = 0 is a weight matrix on the input u and .#
is a Deep Neural Network (DNN), called an NCM, learned to
satisfy

[ (x,xq) — M (x,x3)|| < &, Vx,x5 € .7, T&y € [0,00) 3)

for a compact set ./ C R” and a contraction metric M to
be defined in (4). Let us emphasize that there are two major
benefits in using the NCM for robust and adaptive control of
nonlinear systems:

Adaptive NCM M, . \ew adaptation v
1. Thm. 1or4 toget M

(M: contraction metrics) ? (See Thm.2&4) x—x4
2. Thm.2or4togetu t

xt|

Reference Model +——

True Dynamical
System xt

Target Trajectory
Generation Xa

| xa

Fig. 1. Tlustration of aNCM (M: aNCM; f: estimated parameter; Y: error
signal, see (19); x(¢) and x4(¢): actual and target state; u: control input.

1) Any approximation method could be used to model M
as in (3) for its real-time implementability, unlike [23].
2) u of (2) given with .# guarantees stability and robust-
ness even without computing geodesics, unlike [6], [7].

Theorem 1 presents the modified version of the robust NCM
in [8]-[10], which explicitly considers its modeling error &
and target trajectory (xz,uy).

Theorem 1: Suppose that the contraction metric of (3),
M(x,x4) = W(x,x;)~! = 0 is given by the following convex
optimization problem for a given value of a € (0,):

Joy = min  (dy/oancm) st (5) and (6) 4
v>0,xeR,W>0
with the convex constraints (5) and (6) given as

—W +2sym(AW) —2vBR™'BT < —2aW, Vx,x, (5)
In j W j xlna vxaxd (6)

where @, @ € (0,), ¥y = ®/w, W = vW, v = 1/®, and
ancm = o — pb*e;\/%. The arguments for W, A, B, and R
are omitted for notational simplicity, while B = B(x) and
A =A(x,x4) are SDCs of (1) given by Lemma 1. Suppose also
3b,p € [0,00) s.t. ||B(x)|| < b and ||[R™!(x,x4)|| <P, Vx,xg4.

If the NCM modeling error & of (3) is sufficiently small to
satisfy ancm > 0, then the Euclidean distance between x and
X4 1s exponentially bounded as long as (1) is controlled by (2).
Furthermore, M minimizes its steady-state upper bound given
as dy /anem-

Proof: The virtual system of (1) which has x and x,
as its particular solutions is given as ¢ = %z + (A(x,xg) —
B(x)R(x,x4) 'B(x)" A (x,x4))(q —x4) +dg, where d, verifies
dy(x) = d(x) and dy(xs) = 0. Thus for a Lyapunov function
V= f;; 8q"M§8q, we have using (3) and (5) that

X
V< —2aV+2 / 8q"'M8d,+28q" MR™'B" (M — .#)8q
Xd

as in Theorem 2 of [11]. Since the third term is bounded
by 2;31_7285\/7(% this gives # < *&NCM%‘Fd_/\/@ for # =
j;‘d |©8g|| with M = ®"®. The rest follows from the compar-
ison lemma [29, pp.102] as in the proof of Corollary 1 in [8],
as long as & is small enough to have oncm > 0. [ |

III. ADAPTIVE NEURAL CONTRACTION METRICS

This section elucidates the NCM-based framework for de-
signing real-time adaptive control with formal stability and
robustness guarantees of Theorem 1, as depicted in Fig. 1.
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A. Affine Parametric Uncertainty

We first consider the following dynamical systems:

=f(x)+B(x)u—A(x)" 0 +d(x) 7
xq =f(Xa) + B(xa)ua(xa) — Alxq) " 6 8)

where 6 € R? is the unknown parameter, A : R" — RP*"
is a known matrix function, and the other variables are as
defined in (1). For these systems with the matched uncertainty
condition [7], the NCM in Theorem 1 can be utilized to design
its adaptive counterpart.

Theorem 2: Suppose M(x,x4) of (4) is constructed with
an additional convex constraint dj, (W + dj,(, )W = 0, where
Oy W = Xi(0W /dg;)v; and B(x) = [b1(x),- -+ ,bw(x)] [6], [7].
for the nominal system (i.e. (7) and (8) with A(x,xy) =
0,Vx,x4), and let .# (x,x;) be an NCM of (3) in Theorem 1
with such M. Suppose also that the matched uncertainty
condition [7] holds, i.e. (A(x) —A(x4))" 8 € span(B(x)), and
that (7) is controlled by the following adaptive control law:

u=ug(xg) — R(x,xq) ' B(x)" A (x —x4) + @(x,x4)" O )

0 = —T(9(x,x4)B(x) " A (x—x4) + ) (10)

where (A(x) —A(xg)) "8 = B(x)o(x,x5) "0, T =0, o € [0,00),
and the arguments of M are omitted for notational simplicity.
If 3y,7,b[> $.6 € (0,00) s.t. yI, XT 27, ||B(x,0)| <b,
IR~ (x,xa0)|| <P, ||@(x,x4)|| < 0,V¥x,x4,0, and ||8] < 8, and
if I" and o of (10) are selected to satisfy the following relation
for the learning error & of (3):
0
1y

—20aneMm/®  Pbgy B /@
QSZ_)EZ —20 =20 0
for 3o, € (0,00), where ancm, ®, and @ are given in Theo-
rem 1, we have the following bound:
le(®)]| < VBV (0)e™ % + o dy(1 — e %))
where e =x—x;, 6 =0—0, V(1) =e M(x,x;)e+0'T'6,
and d, = 0/¥0 +d/ /@ for d = sup, ||d(x)]| in (7).
Proof: Let Ay = A(x,x4) — B(x)R(x,x4) ' B(x) ". . Since
the dynamics ~of e with u of (9) is given as é = Aye +
B(x)o(x,x;) "8 +d(x) by the relation (A(x) —A(xg)) 6 =
B(x)@(x,x4)" 8, the condition O, ()W + O, (x,) W =0, or equiv-
alently, Jp, (oM + I, )M =0 [6] ylelds

(1)

(12)

V/2< —anxcme Me+e' (M—.#)Bo'6—c6"0+e' Md

for V in (12) as in the proof of Theorem 1, where the adap-
tation law (10) is used for & = 8. Applying (3) and (11) with
the inequalities ® ', <M < @ 'I, and —60"0 +e Md <
—0|0||> +d,\/V for d, defined in (12), we get

V/2 <~ (oncm/®)|el* + dbelle]|[|B]| — 0|6 +du V'V
—og([le*/@+|68]1*/y) + daVV < —0V +dVV

which results in dv/V/dt < —o,\/V 4+ d,. The comparison

lemma [29, pp.102] with |[e|| < V@V gives (12). [ |

Asymptotic stability using Barbalat’s lemma as in standard
adaptive control is also obtainable when & = 0.

Corollary 1: The NCM adaptive control (9) with the adap-
tation (10) guarantees lim,_,. ||e(?)|| =0 for e = x —x; when
g =0, d(x)=0, and 6 =0 in (3), (7), and (10).

Proof: For V in (12), we have V/2 < —ae'Me +
e"MBp'0+4+ 6T = —ae"Me by (10) with 6 = 0. The
application of Barbalat’s lemma [29, pp. 323] as in the proof
of Theorem 2 in [7] gives lim;_,« ||e(¢)] = 0. [ |

Remark 1: The steady-state error of (12) could be used as
the objective function of (4), regarding I" and ¢ as decision
variables, to get M optimal in a sense different from Theo-
rem 1. Smaller & would lead to a weaker condition on them
in (11). Also, the size of ||@] < 6 in (12) can be adjusted
simply by rescaling it (e.g., 6 — 6/8).

B. NCM for Lagrangian-type Nonlinear Systems

We have thus far examined the case where f(x) is affine in
its parameter. This section considers the following dynamical
system with an uncertain parameter 6 and a control input 7:

H(s)$+h(s)+A(s)0 =1+d(s) (13)

where se R, 1eR", H:R"— R"™" h:R"—R", A:R" —
R"™P, d : R" — R" with dy = sup, ||d(s)|| < =, and H(s) is non-
singular for all s. We often encounter the problem of designing
T guaranteeing exponential boundedness of s, one example of
which is the tracking control of Lagrangian systems [1]. The
NCM is also applicable to such problems.

Theorem 3: Let .#(s) be an NCM for the system § =
—H(s)"'h(s)+H(s)"'t+H(s)~'d given by Theorem 1 with
an additional convex constraint Bbi(S>W =0 [6], [7] for B(s) =
H(s)~' = [bi(s),---,bn(s)]. Suppose 7 is designed as

T=—R'H ".#s+AD, 6=-T(ATH ".#s+0s) (14

where I - 0, ¢ € [0,), R(s) > 0 is a given weight matrix
on 7, and the arguments are suppressed for notational conve-
nience. If 35,p,6 € (0,00) s.t. ||B(s)|| < b, |[R™'(s)|| < p, and
|A(s)|| < §8,Vs, and if o and T of (10) are selected to satisfy
(11) with ¢ = 5, then we have the exponential bound (12)
with e =s, d =bdy, and V =s"M(s)s+0'T'6.

Proof: Using dy, W =0 and (14), we get V/2 <
—onemS Ms+sT (M — #)H'A6 — 6876 +s"MH'd as
in Theorem 2. Thus, we have dv/V/dt < —a,/V +d, for
d, = 6+/76 +bd;/ /@ due to (11), resulting in (12). m

Remark 2: When & =0, d(x) =0, and 0 =0, (14) reduces
to asymptotic stabilization of (13) as in Corollary 1.

C. Multiplicatively-Separable Parametric Uncertainty
Next, let us consider the following nonlinear system with
an uncertain parameter 0 € R? in (1):
x=f(x,0)+B(x,0)u+d(x)
Xa =[(x4,0) + B(xq,0)uq(xa).
In this section, we assume the following.
Assumption 1: The dynamical systems (15) and (16) are

multiplicatively-separable in terms of x and 6, i.e., 3 Y, :R" —
R™ 4z, Y, : R — R"™% Vi, and Z: R” = R% s.t.

Yy (x)Z(6) = f(x,0), Y, (x)Z(0) = bi(x,0), Vx,0

15)
(16)

a7
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where B(x,0) = [b;(x,0), - ,bu(x,0)].

Remark 3: When (17) holds, we could redefine 6 as
[07,2(6)"]" to get Y¢(q)0 = f(q,0) and Yy, (q)0 = bi(q,0).
Since such 0 can be regularized as in [14] (see Sec. IV-B2),
we denote [87,Z(0) "] as 6 in the subsequent discussion.

Under Assumption 1 with 6 augmented as [87,Z(6)7]"
the dynamics for e = x —x; is expressed as follows:

& =A(x,x5;0)e +B(x;0)(u—uq(xy)) — ¥ (0 —0)+d(x) (18)
Y=Y — Yy = (Yp(x) + Yy (x,u)) = (Yr(xa) + Yo (xa,ua))  (19)
where Y, (x,u) = f"zleiA(q)u,-, ug = ug(xg), A is the SDC

matrix in Lemma 1, and 0 is the estimate of 8. We design the
adaptive control law for (15) as follows:

u=uy(xy) —R(x,xd)_lB(x,é)T///(x—xd) (20)
O =T((Y T dtle+Y] dtlo, +7 T M )(x—x4) — 56) Q1)
where d.#, = [(0.# |dq1)e, - , (0.4 |Iqn)e]" /2,T=0,0 €
[0,00), Y, Yy, and ¥ are given in (19), R(x,x) = 0 is a weight

matrix on u, and A4 = ,//l(x,xd,é) is a DNN, called an
adaptive NCM (aNCM), learned to satisfy

Hd‘%q(xaxd7é) _dMq(x7-xd7é)|| S &
(| (x,%4,0) — M(x,x4,0)|| < &, Vx,xs €., 8 € .S

bl

(22)
(23)

both for ¢ = x and x4, where . C R"” and . C R" are some
compact sets and M is a contraction metric M to be defined
in (24). Theorem 4 derives a stability guarantee of (20).
Theorem 4: Suppose that Assumption 1 holds and let B =
B(x;0) and A = A(x,x;;0) in (18) for notational simplicity.
Suppose also M (x,xz,0) =W (x,x4,0)~" = 0 of (23) is given
by the following convex optimization for given o € (0,):

v= min_ (dy/oncm) st (25) and (26). (24)
v>0,xeR,W>0
with the convex constraints (25) and (26) given as
— (d/dt)|gW +2sym(AW) —2vBR 'B" < —2aW (25)
L =W < xl,, Vx,x4,0 (26)

where ®, @, x, W, and v are given in (4), (d/dt)[W is
the time derivative of W computed along (15) and (16) with
0 =0, and anem = @ 7131_728[\/7( is constructed with & of
(23) and (22) to satisfy oncm > 0. Note that the arguments
for W and R are also omitted for simplicity. If 3b,p,7 € (0,0)
st [|B(x,0)[| < b, IR (x,xq)[| <p, Y]] <7, [[¥al| <7, and
IY]] <3, Vx,x4,0 in (20) and (21), and if I" and © of (21) are
selected to satisfy the following for & of (23) and (22):

5 ey

Y& —20
for Ja, € (0,0), then we have the exponential bound (12) as
long as (15) is controlled by the aNCM control of (20).

Proof: Since we have Y! (dM/dq;i)gie = 2d.#,q for
g =x and g = x4, computing Me along (15) and (16) yields

. oM & oM & .
Me:<8t+z(9éi9i>e+2 Z dM,4(t;0)

i=1 q=x,xq
=((d/dr)[gM)e~2 ) dMy(q(1:0)—4(1:6))

q=X.Xq

where ¢(t;9) is ¢ computed with 8 = ¢ in (15) and (16),
and (d/dt)|aM is the time derivative of M computed along
(15) and (16) with @ = 6. Thus, (17) of Assumption 1
gives Me = ((d/dt)|gM)e —2(dM,'Y +dM, Y;)0, resulting
in V/2 < —oneme ' Me — e (dM[Y +dM,| Y, + MY)6 +
6'T6 +e"Md as in the proof of Theorem 2, due to the
relations (18), (20), and (25). The adaptation law (21) and
the conditions (23) and (22) applied to this relation yield

V/2 <- (XNCMeTMe +)784||6H||9H —c6'6 —l—eTMd
< — (onem/@)||e]|* + verl|e]| 6] — o16]* + duVV

for d,, in (12), which implies dv/V /dt < —0,\/V +d, by (27).
The rest follows from Theorem 2. [ ]

The aNCM control of Theorem 4 also has the following
asymptotic stability property as in Corollary 1.

Corollary 2: The aNCM control (20) with the adaptation
(21) guarantees lim,_, ||e(¢)|| = 0 for e = x—x; when & =0,
d(x) =0, and 0 =0 in (15), (21), (23), and (22).

Proof: We have V < —2ancme ' Me in this case by the
proof of Theorem 4. The rest follows from Corollary 1. H

Remark 4: As discussed in Remark 1, the steady-state error
of (12) can also be used in (24) for optimal disturbance
attenuation in an adaptive sense. The dependence on u and
in (d/dt)|4M can be removed by using dy,(xyM + I, (x,\M =0
and using adaptation rate scaling introduced in [30].

IV. PRACTICAL APPLICATION OF ANCM CONTROL

This section derives one way to use the aNCM control
with function approximators and proposes practical numerical
algorithms to construct it using Theorems 2—4.

A. Systems Modeled by Function Approximators

Utilization of function approximators, neural networks, in
particular, has gained great popularity in system identification
due to their high representational power, and provably-stable
techniques for using these approximators in closed-loop have
been derived in [4]. The aNCM adaptive control frameworks
are applicable also in this context.

Suppose f(g) and B(q) = [bi(q),--,bm(q)] of (1) are
modeled with the basis functions ¢(g) = [¢1(q), - ,‘i)p(‘i)]T
and (pi(q) = [(pi,l(('I)a"' a(pi,q(q)]-r7 i=1,---,mfor g =xx4:

§=f(g) + Blqhu=Fo(q) + Y Bii(q)ui +du(q)
i=1

(28)

where dy(q) with sup, ||du(q)|| = du/2 < e is the modeling
error, F € R"*P, and B; € R"*4. Note that F and B; are the
ideal weights with small enough dj, but let us consider the
case where we only have access to their estimates, F and B;
due to, e.g., insufficient amount of training data. Theorem 5
introduces the aNCM-based adaptation law to update F and
B, for exponential boundedness of the system trajectories.
Theorem 5: Let A (x,x4, IA:7 Ig) be the aNCM of Theorem 4,
where F and B are the estimates of F and B in (28). Also,
let W denote the weights F and B;, and define { and {; as
{=0¢(x) and §; = ¢(xy) for W=F, and { = ¢;(x)u; and
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Ca = ¢i(xq)uq; for W = B;. Suppose that (28) is controlled by
u of (20) with the following adaptation law:

W=T"s(dstel  +dt el] +.#eLT — W) (29)

where G € [0,00), { = ¢ — ¢, : is defined as (A:B);j =
Y k¢ AijxeBer, and I represents the fourth order tensor given
with ¥||S||% < S:T:S < 7]|S||%, VS € R? for 7,7 € (0,0) and the
Frobenius norm ||S||z = S:5 < [|S]|. If 3¢ €(0,00) s.t. €] < ¢,
&l < &, and ||C|| < ¢, Vx,x4, and if T and o are selected
to satisfy the following for & of (23) and (22):

—%aNCM/E 5821;,:+1 < 20 1/@ 0
Cgllerl *261m+1 - ¢ 0 (I/Y)Ierl

] (30)

where o, € (0,00) and 1; = [1,---,1]T € R%, then e = x — x4
of (28) is exponentially bounded as in (12). When & = 0,
dy =0, and o =0 in (23), (22), (28), and (29), the system
(28) controlled by (20) is asymptotically stable.

Proof: Let us define V as V = Vo + Yyy—r g, W:I'~1:W for
M in Theorem 4, where V, = e Me and W =W —W. Since
M is given by (25), we have as in the proof of Theorem 4 that
V., < —2ancme ' Me —2e’ Yw=rpg, (dM;WC + dM;;WCd +
MW{). Using the relation a"Cb = C:(ab ") fora € R", b € R?,
and C € R"™?, we get

V/2< —onemVe +Cedlle] Y W[ — oW : W +e Mdy
W=F,B;

for dy = dy(x) — dy(xgq) with ||dy|| < dy. The rest follows
from the proof of Theorem 4 and Corollary 2 along with the
condition (30) and W:W = |W||Z > ||W||?, where | -|| denotes
the induced 2-norm. ]

Remark 5: For systems modeled by DNNs, we can utilize
the same technique in Theorem 5 to adaptively update the
weights of its last layer. Such over-parameterized systems
can always be implicitly regularized using the Bregman di-
vergence [14] (see Sec. IV-B2).

B. Additional Remarks in aNCM Implementation

We propose several useful implementation techniques for
the application of the provably stable and robust adaptive
control frameworks in Theorems 2-5.

1) Constraints as Loss Functions: Instead of solving (4)
and (24) for W to sample training data {(x,xd,M)}?’: 1> we
could directly solve them for the DNN weights, regarding
the constraints as loss functions for the network training as
described in [31]. This still gives the exponential bound of
(12), as long as we can get sufficiently small & of (3) which
satisfies the conditions of Theorems 2 and 4.

2) Implicit Regularization: Over-parametrized systems can
be implicitly regularized using the Bregman divergence as
mentioned in Remarks 3 and 5. In particular, it enables satis-
fying 6% = argmingey W(¥), where 8% = lim, .. 0, A is the
set containing only parameters that interpolate the dynamics
along the entire trajectory, and y can be any strictly convex
function [14]. For example, we could use (%) = |9,
leading to various regularization properties depending on the
choice of p (e.g. sparsity when p = 1).

Fig. 2. Cart-pole balancing task.

3) aNCMs for Control Lyapunov Functions: The aNCM
can also be utilized as a Control Lyapunov Function
(CLF) [32]. In particular, we consider a controller u = uy(x)+
K*(x,x4)e in (15), where K*(x,x4) is given by

(K*,p*) = arg
st (d/dr)

which is convex when (x,x,) is given at time ?.

Proposition 1: The convex optimization (31) is always
feasible due to the relaxation variable p. Theorem 4 still holds
if 204 ~ p*l, for p* = sup, , p*. Note that convex input
constraints can be incorporated in the same way.

Proof: See [32]. |

4) Pseudocode for aNCM Construction: We finally note
that the aNCM can be constructed with the pseudocodes
provided in [8], [11], using (4) and (24) of Theorems 1 and 4
as their sampling methodology in this case.

min 31

KeRm=n peR
oM +2sym(MA+ MK) < 204 + pl,

|Ke|]*+ p?

V. SIMULATION

We demonstrate the aNCM framework in the cart-pole
balancing problem [33] (https://github.com/astrohiro/ancm),
where CVXPY [34] is used to solve convex optimization.
The task is selected to drive the state x = [p,0,p,8]" in
Fig. 2 to O controlling the under-actuated dynamics given as
(me+m)jp+mlcos 06 =ml6?sin O — u.p+u, and mlcos 0 j+
(4/3)mi*6 = migsin — 1,0, where g =9.8, m. = 1.0, m =
0.1, u. = 0.5, u, =0.002, and / = 0.5. Note that the systems
in this section are perturbed by the disturbance d(x) with
sup, ||d(x)|| = 0.15.

1) Neural Network Training: We use a DNN of .# with 3
layers and 100 neurons. The DNN is trained using stochastic
gradient descent with training data sampled by (4) and (24)
of Theorems 1 and 4 (10000 training samples), and the loss
function is defined as in [8].

2) Cart-Pole Balancing with Unknown Drags: Let us first
consider the case where [, and U, are unknown, which satis-
fies Assumption 1 to apply the aNCM in Theorem 4. Although
the matching condition in Theorem 2 does not hold, (9) is
also implemented using the pseudo-inverse of B(x) in (7). The
adaptive robot trajectory control [1, pp. 403] is not applicable
as the dynamics is under-actuated, and thus we use it for
partial feedback linearization as in (68) of [13]. We compare
their performance with the iterative LQR (iLQR) [35] and
robust NCM in Theorem 1 without any adaptation. The initial
conditions are selected as x(0) = [0.83,—0.32,0.39,0.45] T,
f1:(0) =4, and f1,(0) = 0.0016.

As can be seen from Fig. 3, the aNCM control law of
Theorems 2 and 4 achieve stabilization, while the other three
baselines in [1, pp. 403], [8], and [35] fail to balance the pole.
Also, the aNCM of Theorem 4 has a better transient behavior
than that of Theorem 2 as the matched uncertainty condition
does not hold in this case.
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'cart-pole modeld by neural net (Sec. V-2)

cart-pole with unknown drags (Sec. V-1)
1T

= T TRl =

33 I ‘U H (IR T3

. AN Q 4

S e ] 4,

g —— Feedback linear, g —— iLQR

o | aNCM (Thm 2) | aNCM (Thm 5)
£ —— aNCM (Thm 4) £ —— NCM (Thm 1)
g —— NCM (Thm 1) g

=0 10 20 =0% 10 20

time [s] time [s]
Fig. 3. Simulation results for cart-pole balancing task with unknown drags
(LHS) and unknown dynamical system (RHS).

3) Cart-Pole Balancing with Unknown Dynamical System:
We next consider the case where the structure of the cart-pole
dynamics is unknown and modeled by a DNN with 3 layers
and 5 neurons, assuming we have 10000 training samples
generated by the true dynamics. Its modeling error is set to
a relatively large value, 0.5, so we can see how the proposed
adaptive control achieves stabilization even for such poorly
modeled dynamics. The performance of the aNCM control
in Theorem 5 is compared with that of the iLQR [35] and
baseline robust NCM control in Theorem 1 constructed for
the nominal DNN dynamical system model.

As shown in the right-hand side of Fig. 3, the proposed
aNCM control indeed achieves stabilization even though the
underlying dynamical system is unknown, while the trajecto-
ries of the iLQR and robust NCM computed for the nominal
DNN dynamical system diverge.

VI. CONCLUSION

This work presents the method of aNCM, which uses a
DNN-based differential Lyapunov function to provide formal
stability and robustness guarantees for nonlinear adaptive con-
trol, even in the presence of parametric uncertainties, external
disturbances, and aNCM learning errors. It is applicable to
a wide range of systems including those modeled by neural
networks and demonstrated to outperform existing robust and
adaptive control in Sec. V. Using it with [11], [32] would also
enable adaptive motion planning under stochastic perturbation.
By using a DNN, the aNCM framework presents a promising
direction for obtaining formal stability guarantees of adaptive
controllers without resorting to real-time numerical computa-
tion of a Lyapunov function.
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