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ABSTRACT

Distillation is the most widely used (yet highly energy-intensive) industrial separation

method and one of the most well-studied chemical engineering processes. However, engi-

neers still often encounter distillation simulation errors while using state-of-the-art process

software such as Aspen Plus and HYSYS. These errors preclude one from converging flow-

sheets with recycle streams and from successfully utilizing rigorous process optimization

methods, which are both essential tasks in designing more energy-efficient and economi-

cally viable processes. In this thesis we address these challenges by developing nonsmooth

(i.e., non-differentiable) distillation models and equation-solving methods that are robust

to a wide range of convergence errors. As demonstrated by our results, nonsmooth func-

tions are a powerful tool due to their ability to automatically switch between different

terms, which allows us to describe and adapt to different modes of behavior of a system

using a single model.

To investigate the “dry column” errors often encountered in Aspen Plus we devel-

oped a nonsmooth version of the MESH model, which can be solved with Newton-type

methods using exact generalized derivatives obtained with automatic differentiation tech-

niques. This model allows us to simulate distillation columns in which one or more stages

operate with a single phase, either superheated vapor or subcooled liquid. By develop-

ing continuation methods to simulate the nonsmooth MESH model, we discovered a new

class of degenerate bifurcations in distillation columns which are generally observed re-

gardless of the mixture or parameter being varied. These bifurcations are characterized

by infinitely-many, multiple steady states with dry/vaporless stages, and happen at the

so-called critical parameter value associated with the first flow rate in the column reaching

zero.

In order to describe the topological structure of these bifurcation curves in a rigorous

fashion, we proved a piecewise-differentiable (PCr) Rank Theorem that allows us to char-

acterize nonsmooth curves and surfaces as PCr manifolds, according to the theoretical
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framework introduced in this thesis. We also generalized a previous Lipschitz Rank The-

orem and applied it to define Lipschitz embedded submanifolds. Further, we developed

sufficient and practically verifiable conditions, in terms of the B-subdifferential general-

ized derivative, that can be applied to the PCr MESH model function to theoretically

predict the geometric behavior of its level sets that we observed numerically.

The nonsmooth MESH model overcomes dry column errors for specifications that lead

to a feasible state with dry/vaporless stages. To address convergence failure due to col-

umn specifications being infeasible, which in general is unpredictable prior to simulation,

we developed a second class of nonsmooth, adaptive distillation models. Our modeling

strategies return a feasible solution even when one or two specifications are infeasible, by

automatically resetting the latter to ensure that all flow rates are within their imposed

lower and upper bounds. Additionally, we developed a nonsmooth version of the inside-out

algorithm to converge these nonsmooth models reliably from an ab initio starting point,

even for highly non-ideal mixtures. With a series of test cases, we demonstrate that our

distillation modeling methods outperform Aspen Plus due to their ability to converge

both individual columns and flowsheets with recycle under infeasible or near-infeasible

specifications, non-ideal thermodynamics, and poor initial guesses.

Thesis Supervisor: Paul I. Barton

Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

1.1. Convergence errors in distillation simulation

Distillation is the most widely used industrial separation method. However, it is

very-energy intensive, being responsible for as much as 30 % of the total energy use in

the industry [38] and for 90-95 % of separation energy [1]. In order to develop more

energy-efficient distillation processes, we need an accurate model that can be solved reli-

ably under all the varying input conditions encountered during flowsheet convergence and

optimization. This is crucial in complex, integrated and energy-intensive processes such

as oxycombustion [77], in which cryogenic air distillation supplies nearly-pure oxygen

to a power plant so as to facilitate CO2 purification post-combustion. However, exist-

ing process models, simulation and optimization methods are still not realistic, reliable

and versatile enough to ensure optimal plant design, which is a necessary step towards

economical viability of cleaner energy initiatives.

In the context of distillation, commercial software such as Aspen Plus have well-known

failure issues related to dry and vaporless stages, because they are restricted to the smooth

MESH model which assumes both liquid and vapor are always present in every stage.

Unfortunately, dry column errors are not the only way in which distillation simulation
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software fails to converge to a physically valid solution. Aspen Plus does not provide any

insight on the origin of the more generic convergence errors commonly encountered within

distillation simulation, or on how the input specifications might be changed to allow the

model to converge. In general, selecting a set of feasible column inputs is not an obvious

task; that is especially evident for product purity specifications, which might exhibit a

quite narrow (and unpredictable) range of allowed values.

Now we temporarily take a step back from distillation simulation to ask a much broader

question: why does process simulation software fail to converge? Before attempting to

answer that, we need to clarify a few key concepts. When dealing with steady-state

processes, simulation entails choosing a set of input specifications and then predicting

what steady state the process should attain, if any, for that set of specifications. To make

this prediction without conducting experiments, first we have to come up with physical

laws (e.g., mass and energy balances, thermodynamic laws, reaction kinetics) to describe

the process. Then we try to find a steady state, described in terms of a vector of values

xs ∈ Rn for the process variables, that satisfies these laws. Moreover, the variable values

xs should be physically realizable. If such an xs exists for a set of specifications, then

we say that the latter are feasible. Our choice of physical laws might have considerable

impact on the applicability of our model in predicting the steady state reached by real

process equipment. However, experimental validation of a given modeling paradigm is

outside of the scope of this thesis and as such will have no bearing on our concept of

feasibility.

The next question is, how do we determine if a given set of specifications is feasible or

infeasible? First we must translate the process physical laws, to the best of our ability,

into a system of nonlinear algebraic equations f(x) = 0, where in general f : Rn → Rn

describes the same number of equations as the number of variables. We then employ

equation-solving methods in an attempt to find a mathematical solution x∗ of f(x) = 0

that also corresponds to a physically valid steady-state xs. If we succeed in doing so,
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we say that our simulation converged to a solution and we conclude the specifications

are feasible. Unfortunately, that is not always the outcome of trying to solve a model

f(x) = 0; we may find a mathematical model solution x∗ in which process variables

assume non-physical values, or no solution at all. However, being unable to find a valid

model solution does not guarantee that no physically valid steady state xs exists.

Unless the specification values themselves are out of their own physical bounds (e.g.,

specifying a temperature of -10 K in a flash vessel or a negative reflux ratio in a distillation

column), determining if a set of specifications is infeasible is a hard task which cannot be

achieved without (repeatedly) simulating the process. The best we can do is formulate

our model f(x) = 0 thoroughly enough so that it enforces the necessary physical laws

under all possible modes of behavior of the process. Nonsmooth (i.e., non-differentiable)

functions are particularly well-suited for such a task, given their ability to automatically

switch between different terms. Once we have a suitable model we can gradually vary the

specification values, in a process called parametric continuation, and compute the model

solutions until we eventually arrive at a specification value for which these solutions

cease to exist. In that case, if our model is thorough enough we can conclude that any

specification values beyond the said value are infeasible.

In summary, our simulation might fail to converge to a valid steady state xs for a

given set of specifications due to three possible scenarios:

� (Scenario 1) A physically valid solution xs exists but it is not a mathematical

solution of the model, and as such cannot be found by any equation-solving methods.

� (Scenario 2) No physically valid solution xs exists, in which case the specifications

are referred to as infeasible.

� (Scenario 3) A physically valid solution xs exists and it is also a mathematical

solution of the model, but the equation-solving methods employed are unable to

find it.
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With this general framework in mind, we are now ready to give an overview of the main

mechanisms behind convergence errors in distillation simulation, and how the models and

algorithms developed in this thesis can overcome these errors.

First, we address the well-known “dry column” convergence errors within distillation

simulation. The standard MESH model, which is employed in Aspen Plus’ RadFrac unit

model, does not encompass solutions where one or more stages are dry/vaporless and

operating outside of equilibrium (i.e., with superheated vapor or subcooled liquid). On

the other hand, our nonsmooth MESH model developed in Chapter 3 overcomes this

limitation due to its ability to enforce different equations depending on the mode of

operation of the system. Our model allows us to demonstrate that some specification

values, despite leading to dry column errors in Aspen Plus, are actually feasible and

generate valid solutions with dry/vaporless stages outside of equilibrium. As such, we

can overcome dry column errors that happen within the context of Scenario 1. With our

modeling strategy we have also been able to discover novel bifurcations in dry/vaporless

columns, which exhibit an infinite number of multiple steady states.

By developing special continuation methods for our nonsmooth MESH model, we

have verified that a significant range of specification values, though seemingly feasible at

first glance, can be infeasible due to liquid and/or vapor flow rates tending to become

negative. As could be expected, Aspen Plus exhibits the same dry column errors for these

infeasible specification values. Unfortunately, the nonsmooth MESH model cannot avoid

these Scenario 2 convergence errors either.

Surprisingly, Chapter 4 demonstrates that nonsmooth functions allow us to avoid con-

vergence errors and still obtain a useful simulation output even for infeasible specifications,

without having any prior knowledge about the latter. Our nonsmooth adaptive models

are capable of overcoming dry column errors and also of automatically resetting one or

more specifications if they happen to be infeasible, due to the flow rates becoming either

negative or unbounded above. This way, we address a broad class of convergence errors
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within distillation simulation which are due to Scenario 2.

Simultaneous convergence of the standard MESH equations can be unreliable and

highly dependent on a good initial guess, especially with complex non-ideal systems.

To prevent numerical convergence failure due to Scenario 3 as well as dry column and

infeasibility errors, we develop a nonsmooth version of the inside-out algorithm [14] in

Chapter 5 to converge our nonsmooth adaptive model equations. The model employs

the standard outer loop structure of the inside-out algorithm, while the inner loop (in

the format proposed by Russell [75]) was restructured to employ new iteration variables,

which allow convergence to MESH solutions with dry and vaporless stages and do not

require heuristic scaling factors. Moreover, the new inner loop converges the specification

equations from the nonsmooth adaptive modeling strategy of choice.

1.2. The topology of level sets of nonsmooth func-

tions

Nonsmooth systems of equations f(x) = c are a powerful modeling tool to describe

complex systems with multiple physical modes of behavior. For instance, piecewise-

differentiable (PCr) functions (see Section 2.1.2) have been employed to model multi-

stream heat exchangers with phase change [86] with a single equation solving task, which

cannot be achieved with other modeling approaches in the literature. Moreover, Chapters

3, 4 and 5 demonstrate the usefulness of using nonsmooth distillation models both to

obtain new types of feasible solutions and to automatically reset parameters that may

turn out to be infeasible.

In this thesis, we are interested in characterizing the local structure of each level set

f−1(c) ⊂ Rn of a nonsmooth function f : Rn → Rm, that is, the set of all solutions

x to the system of equations f(x) = c. By nonsmooth we mean either locally Lipschitz

continuous or PCr. Our main motivation for researching this topic stems from the unusual
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behavior of the bifurcations of our nonsmooth MESH distillation model, as described in

Chapter 3. In general, the topological structure of the level sets f−1(c) of a nonsmooth

model determines the existence, uniqueness and behavior of the model solutions under

variation of one or more parameters. As another example application, the feasible set of

Mathematical Programs with Complementarity Constraints (MPCCs) of the form

min f(x) (1.1)

s.t. F1(x)
TF2(x) = 0, F1(x),F2(x) ≥ 0,

where f : Rn → R and F1,F2 : Rn → Rm are C1, corresponds to the zero-level set of the

PC1 function

g(x) = min (F1(x),F2(x)) , g : Rn → Rm. (1.2)

The stability of the feasible set under perturbation of the functions F1,F2 is described in

terms of the topological structure of g−1(0) (e.g., see [43]).

The case m ≤ n is usually analyzed in terms of Implicit Function Theorems. If

the generalized derivatives of f at x0 are “non-degenerate” (in some specific sense) with

respect to the first m variables xi, then we obtain Lipschitz and PCr Implicit Function

Theorems by applying the corresponding Inverse Function Theorems (see Section 6.2.1)

to the function

h : Rn → Rn, h(x) = (f(x), xm+1, . . . , xn) (1.3)

at x0. In turn, this allows us to conclude f−1(c) is locally the graph of a nonsmooth

function y : Rn−m → Rm. Of course, requiring the non-degenerate variables to be exactly

the first ones is too restrictive, so the next idea is to allow for a reordering or permutation

of the coordinates xi before applying the Implicit Function Theorem. This approach

always works in the smooth Cr case, in the sense that whenever f−1(c) ⊂ Rn is a smooth

manifold it corresponds, within coordinate permutation, to the graph of an implicit Cr

function. However, this permutation strategy fails even with extremely simple nonsmooth
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functions.

Consider the zero level set of the piecewise-linear function f(x1, x2) = min(x1, x2)

around x0 = 0, depicted in Figure 1.1(a). It behaves as a 1-dimensional manifold that

is nonsmooth, yet neither coordinate xi corresponds to an implicit function of the other

around the origin. Nevertheless, f−1(0) can be transformed into the graph of the absolute

value function, depicted in Figure 1.1(b), by a simple rotation of the axes. This leads

us towards the more general concept of nonsmooth submersions (Definition 6.3.3), i.e.,

functions whose level sets are graphs only after being transformed by a homeomorphism

g1 of the same type as f . Even though this idea allows us to characterize level sets of

a wider range of functions, we must turn to Rank Theorems to assess the most general

case with arbirtrary m,n. In this context, two homeomorphisms g1,g2 might be needed

to transform both the coordinates xi and the function components fj, respectively.

Figure 1.1: (a) Zero level set of f(x1, x2) = min(x1, x2), (b) graph of x2 = |x1|.

The (smooth) Rank Theorem, a traditional result in differential topology, is based on

the Inverse Function Theorem. In Chapter 6 we will present a Lipschitz Rank Theorem

that generalizes a previous result [6], and the first Rank Theorem for PCr functions.

When the appropriate conditions are satisfied by the (generalized) derivative(s) of f to

characterize the latter as a constant rank function, Rank Theorems allow us to express

a given level set f−1(c) ⊂ Rn locally as the graph of an “implicit” function, within a

homeomorphic transformation of the same class as f .
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Despite the relevance of nonsmooth level sets to many applications, there is a lack

of precise topological notions to describe them. Moreover, one could wish to analyze

the topology of abstract level sets or high-dimensional surfaces, which are not subsets

of Euclidean space Rn. For these purposes, we need to go beyond Rank Theorems and

consider the concept of abstract manifolds, which are sets locally homeomorphic to some

Euclidean space of dimension k. Smooth manifolds are a standard concept in differential

topology (e.g., see [54]). Abstract Lipschitz manifolds have been previously defined in the

literature [74, 58, 67] according to the standard differential topology framework. However,

to the best of our knowledge, our definition of PCr manifolds presented in Chapter 7 is

the first well-defined concept for piecewise-differentiable manifolds. This is likely due to

the fact that the usual definition of a “piecewise-differentiable” function used in the field

of topology [89] involves being able to subdivide the domain into simplexes where the

function is smooth. Such functions are not closed under composition, thus they do not

constitute a pseudogroup that could generate a valid manifold definition, as opposed to

PCr functions.

Based on the Rank Theorems we develop in Chapter 6, in Chapter 7 we are able

to state Level Set Theorems for functions between manifolds, which show that the level

sets of constant rank PCr and Lipschitz functions are embedded submanifolds of the

domain manifold. While these results provide the most general conditions under which

we can characterize the topological structure of abstract nonsmooth level sets, they can

also be applied to our nonsmooth MESH model. As such, in Chapter 7 we are able to

theoretically validate which properties of this distillation model give rise to the observed

geometric behavior of its bifurcation curves.
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Chapter 2

Background

2.1. Nonsmooth Analysis

The directional derivative dfx0 : Rn → Rm of a function f : Rn → Rm at x0 ∈ Rn is

defined as

dfx0(d) = f ′(x0;d) = lim
α→0+

f(x0 + αd)− f(x0)

α
(2.1)

if the limit exists ∀d ∈ Rn. The Jacobian matrix of f at x0, if defined, is denoted Jf(x0).

2.1.1. Locally Lipschitz continuous functions

Let U ⊂ Rn be open. A function f : U → Rm is said to be Lipschitz continuous on

U ′ ⊂ U if ∃L ∈ R such that

||f(x2)− f(x1)|| ≤ L||x2 − x1||, ∀ x1,x2 ∈ U ′. (2.2)

f is said to be: a) locally Lipschitz continuous at x ∈ U if there exists a δ-neighborhood

Nδ(x) on which f is Lipschitz continuous; b) a locally Lipschitz function if it is locally

Lipschitz continuous at every point of its domain U . For example, the function f(x) = x2

is locally Lipschitz at every x ∈ R but not Lipschitz on R.
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According to Rademacher’s Theorem, a locally Lipschitz function is differentiable

almost everywhere in the Lebesgue measure sense [22]. The two main types of set-valued

generalized derivatives of locally Lipschitz functions are the B-subdifferential and the

Clarke Jacobian, where the latter is the convex hull of the former. We can also define

projections of these sets with respect to only a subset of the variables, as presented in

Definition 2.1.1.

Definition 2.1.1 (B-subdifferential and Clarke Jacobian). Let U ⊂ Rn be open,

f : U → Rm be a locally Lipschitz function at x0 ∈ U , and Ωf ⊂ U be the measure-zero

set where f is not differentiable. The B-subdifferential of f at x0 is defined as

∂Bf(x0) =
{
lim
i→∞

Jf(xi) : lim
i→∞

xi = x0 and xi ∈ U \ Ωf

}
(2.3)

and the Clarke Jacobian of f at x0 is defined as

∂f(x0) = conv
{
∂Bf(x0)

}
= conv

{
lim
i→∞

Jf(xi) : lim
i→∞

xi = x0 and xi ∈ U \ S
}
, (2.4)

where S ⊂ U is any measure zero set containing Ωf (see Theorem 4 in [83]).

Given k ≤ n, the projections of ∂Bf(x0) with respect to the first k variables and to

the last n− k variables at x0 are defined respectively as

πB
k f(x0) =

{
M ∈ Rm×k :

[
M N

]
∈ ∂Bf(x0) for some N ∈ Rm×n−k

}
, (2.5)

ρB
n−kf(x0) =

{
N ∈ Rm×(n−k) :

[
M N

]
∈ ∂Bf(x0) for some M ∈ Rm×k

}
. (2.6)

The projections πkf(x0) and ρn−kf(x0) of ∂f(x0) are defined analogously.

Therefore, ∂Bf(x0) can be seen as the set of all “limiting Jacobian matrices” that f

might exhibit as we approach x0. For instance, the B-subdifferential for the absolute value

function at the origin contains two elements, -1 and 1.
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The concept of Clarke regularity plays a role in Clarke’s Inverse Function Theorem

(see Section 2.2).

Definition 2.1.2 (Clarke regularity). Let U ⊂ Rn be open, f : U → Rm be a Lipschitz

function at x0 ∈ U , and m ≤ n. We say f is Clarke regular with respect to the first m

variables at x0 if all matrices in πmf(x0) are invertible. If m = n, we simply say f is

Clarke regular at x0.

In general the Clarke Jacobian of a composition of locally Lipschitz functions does not

satisfy the chain rule. However, the following proposition provides a special case in which

the latter is satisfied, which will be useful within Chapter 6.

Proposition 2.1.3. Let U ⊂ Rn be open, f : U → Rm be locally Lipschitz, and g1 :

Rn → Rn, g1(x) = P1x and g2 : Rm → Rm, g2(x) = P2x be linear homeomorphisms.

Define the Lipschitz function F = g2 ◦ f ◦ g1 : V → Rm, where V = g1
−1(U) ⊂ Rn is

open. Then

∂F(x) = P2∂f(g1(x))P1, ∀x ∈ V. (2.7)

Proof. Let ΩF ⊂ V and Ωf ⊂ U be the measure zero sets where F and f are not differen-

tiable. Since g1,g2 are invertible, f = g2
−1 ◦ F ◦ g1

−1 : U → Rm. Therefore, xi ∈ V \ ΩF

if and only if yi = g1(xi) ∈ U \Ωf . We can apply the Chain Rule to F at xi ∈ V \ΩF to

yield JF(xi) = P2Jf(g1(xi))P1. Moreover, from continuity of both g1 and g1
−1, xi → x

if and only if yi = g1(xi)→ g1(x). Then, given x ∈ V ,

∂BF(x) =
{
lim
i→∞

JF(xi) : xi → x, xi ∈ V \ ΩF

}
(2.8)

=
{
lim
i→∞

P2Jf(yi)P1 : yi → g1(x), yi ∈ U \ Ωf

}
= P2∂

Bf(g1(x))P1, (2.9)
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and

∂F(x) =

{∑
i

λiMi : Mi ∈ ∂BF(x), λi ≥ 0,
∑
i

λi = 1

}
(2.10)

=

{
P2

(∑
i

λiNi

)
P1 : Ni ∈ ∂Bf(g1(x)), λi ≥ 0,

∑
i

λi = 1

}
= P2∂f(g1(x))P1.

2.1.2. Piecewise-differentiable (PCr) functions

Nonsmooth models for most chemical engineering processes, including distillation sys-

tems as analyzed in this thesis and multistream heat exchangers [85], can be formu-

lated in terms of piecewise-smooth (PC∞) functions. In this section we define piecewise-

differentiable (PCr) functions as established by Scholtes in [78], and summarize the main

properties that will be relevant to prove the PCr Rank Theorem in Chapter 6.

Definition 2.1.4 (PCr functions). Let U0 ⊂ Rn be open and r ∈ {1, 2, . . . ,∞}. A

function f : U0 → Rm is said to be PCr at x0 ∈ U0 if there exist a neighborhood U ⊂ U0

of x0 and finitely many Cr selection functions f(1), . . . , f(k) : U → Rm such that f is

continuous on U and f(x) ∈
{
f(1)(x), . . . , f(k)(x)

}
for every x ∈ U . f is said to be a PCr

function if it is PCr at every point of U0. Moreover, if the Cr selection functions are

linear [affine], we say f is piecewise-linear [piecewise-affine].

As illustrated in Figure 2.1, conceptually the domain of f around x0 can be subdivided

into regions where f is equal to a Cr selection function f(i).

Piecewise-differentiable (PCr) functions are locally Lipschitz (Corollary 4.1.1 in [78]),

while the converse is not true in general. For instance, the Euclidean norm is locally

Lipschitz but can only be expressed at the origin using infinitely many selection functions

and is thus not PCr. Examples of PCr functions include max, min, abs, and Cr functions.

PCr functions are semismooth (see [27] for a definition of the latter). As locally Lipschitz
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functions, PCr functions can only fail to have a well-defined derivative on a “small” set

Ωf (i.e., with Lebesgue measure zero). In Figure 2.1, Ωf could correspond, at most, to

the boundaries between regions.

Figure 2.1: A possible representation of the domain of a PCr function f .

Given a set of selection functions f(1), . . . , f(k), we can find a subset of indices Ief (x0) ⊂

{1, . . . , k} such that x0 ∈ cl(int(Ui)) for every i ∈ Ief (x0), where Ui = {x ∈ U : f(x) =

f(i)(x)}. The functions {f(i) : i ∈ Ief (x0)} are said to be essentially active at x0, and

they form a set of selection functions for f on a potentially smaller neighborhood of x0

(see proof of Proposition 4.1.1 in [78]). Moreover, they can be used to characterize the

B-subdifferential and directional derivative of f (see [78]):

∂Bf(x0) =
{
Jf (i)(x0) : i ∈ Ief (x0)

}
, (2.11)

dfx0(d) ∈
{
Jf (i)(x0)d : i ∈ Ief (x0)

}
=
{
Md : M ∈ ∂Bf(x0)

}
, (2.12)

where dfx0 : Rn → Rn is a piecewise-linear function whose B-subdifferential at any d ∈ Rn

is a subset of ∂Bf(x0).

As the next proposition demonstrates, PCr functions are closed under composition,

unlike piecewise-differentiable functions in the sense of Whitehead [89].

Proposition 2.1.5 (Composition of PCr functions). Let U ⊂ Rn, V ⊂ Rm be open

sets. If f : U → Rm is PCr at x0 ∈ U and g : V → Rp is PCr at f(x0) ∈ V , then g ◦ f is
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PCr at x0 and

∂B(g ◦ f)(x0) ⊂
{
M1M2 : M1 ∈ ∂Bg(f(x0)), M2 ∈ ∂Bf(x0)

}
. (2.13)

Proof.

If {f(i) : U ′ → Rm : i ∈ {1, . . . , k}} and {g(j) : V
′ → Rp : j ∈ {1, . . . , q}} are selection

functions for f at x0 and for g at f(x0), then we can shrink the neighborhoods U ′, V ′ such

that
{
f(i) : U

′ → Rm : i ∈ Ief (x0)
}
and

{
g(j) : V

′ → Rp : j ∈ Ieg(f(x0)
}
are selection

functions for f and g. Then g ◦ f is continuous by composition and it admits the Cr

selection functions
{
g(j) ◦ f(i) : i ∈ Ief (x0), j ∈ Ieg(f(x0))

}
. Applying the Chain Rule to

each g(j) ◦ f(i),

∂B(g ◦ f)(x0) ⊂
{
Jg(j)(f(x0))Jf (i)(x0) : i ∈ Ief (x0), j ∈ Ieg(f(x0))

}
. (2.14)

The following concepts relate to the PCr Inverse Function Theorem (see Section 2.2).

Definition 2.1.6 (Coherent and complete coherent orientation). Let U ⊂ Rn be

open, f : U → Rm be a PCr function at x0 ∈ U , and m ≤ n. We say f is coherently

oriented with respect to the first m variables at x0 if all matrices in πB
mf(x0) have the

same non-zero determinant sign. We say f is completely coherently oriented with respect

to the first m variables at x0 if all matrices in the set

{
M ∈ Rm×m : each i-th row of M equals the i-th row of some N ∈ πB

mf(x0)
}

(2.15)

(i.e., the set of row-by-row permutations of πB
mf(x0)) have the same non-zero determinant

sign. If m = n, we simply say f is (completely) coherently oriented at x0.
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2.1.3. Automatic LD-differentiation

Lexicographically smooth (L-smooth) functions [64] are a subclass of locally Lipschitz

functions for which high-order directional derivatives are well defined. More precisely,

f is L-smooth at x0 ∈ X if the following sequence of functions is well-defined for any

directions matrix M := [m1 ... mk] ∈ Rn×k, k ∈ N:

f
(0)

x0,M : Rn → Rm : d 7→ f ′(x0,d), f
(1)

x0,M : Rn → Rm : d 7→ [f
(0)

x0,M]′(m1,d), . . . ,

f
(k)

x0,M : Rn → Rm : d 7→ [f
(k−1)

x0,M ]′(mk,d).

The class of L-smooth functions is closed under composition and includes Cr, PCr and

convex functions such as the Euclidean norm.

The lexicographic directional derivative (LD-derivative), recently introduced by Khan

and Barton [45, 46], is a computationally relevant generalized derivative for L-smooth

functions. The LD-derivative of f at x0 in the directions M ∈ Rn×k is uniquely defined as

f ′(x0;M) :=
[
f
(0)

x0,M(m1) f
(1)

x0,M(m2) . . . f
(k−1)

x0,M (mk)
]
. (2.16)

As demonstrated in [46, 8], analytical expressions for the LD-derivative of elementary

L-smooth functions (such as abs, max, min, norms) can be derived. For instance, for

f(x) = abs(x), the directions matrix is a vector m ∈ R1×k, and

f ′(x;m) = fsign(x,mT) ·m, (2.17)

where fsign(x,mT) returns the sign (1 or -1) of the first non-zero element of the concate-

nated vector (x,mT) or zero if the latter is the zero vector.

When the chosen directions matrixM is square and invertible (e.g., the identity matrix

In), the LD-derivative can be used to obtain an element of the plenary Jacobian of f at
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x0, denoted here by A [45]:

f ′(x0;M) = A ·M. (2.18)

By definition, an element A of the plenary Jacobian is indistinguishable from an

element of the Clarke Jacobian in any matrix-vector product, which is usually all that

is required within equation solving methods (see Section 2.3); if f is scalar-valued, A ∈

∂f(x). Additionally, if f is PCr, which is the case for the distillation models presented in

this thesis, A is specifically an element of the B-subdifferential [46].

For directionally differentiable nonsmooth functions (such as the PCr class), one might

naively think that the LD-derivative in the coordinate directions (i.e., using M = In)

would yield the same result as simply concatenating the directional derivatives in the

coordinate directions. However, that is not necessarily the case, i.e., in general,

f ′(x0; In) ̸=
[
f ′(x0; e1) . . . f

′(x0; en)
]
, (2.19)

unless f is differentiable at x0. Additionally, the set of non-differentiable points Zf , where

the two constructions potentially differ, is reachable within finite-precision arithmetic.

This was demonstrated numerically by case studies in [85, 8].

The distinctive feature of the LD-derivative is that a strict chain rule applies, with M

not necessarily invertible or square, which allows for the use of automatic differentiation

(AD) to compute exact LD-derivatives of L-smooth factorable (L-factorable) functions.

Conventional AD [32] associates with each elemental smooth function (such as +, -,

cos(x)) not only its evaluation but also the simultaneous computation of its analytical

derivative, which can be implemented via operator overloading (e.g., see [63]). Application

of the chain rule allows the computation of exact derivatives for differentiable factorable

functions, i.e., functions that can be computed from a finite number of operations, fixed a

priori, with elemental smooth functions on a computer – this excludes “if-else” statements

and “while” loops. By including the LD-differentiation rules for elemental L-smooth
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operators, Khan and Barton [46] extended AD to include L-factorable functions. In

particular, this is the first method that can be used to obtain exact B-subdifferential

elements for PCr functions.

2.2. Inverse Function Theorems

Since PCr functions are closed under composition and include the identity, the set

of open subsets of Rn together with the set of PCr functions defines the PCr category.

The next definition characterizes homeomorphisms in terms of a given generic category or

“class” of functions G; in this thesis we will be considering G = Cr, PCr, locally Lipschitz.

Definition 2.2.1 (G homeomorphisms). Let G represent a category of functions defined

on open subsets of Rn. A function f : U → V between open sets U, V ⊂ Rn is said to be

a G homeomorphism if it is a homeomorphism and both f and f−1 are G functions. We

say f is a local G homeomorphism at x0 ∈ U if there exist (open) neighborhoods A ⊂ U

of x0 and B ⊂ V of f(x0) such that f |A : A→ B is a G homeomorphism.

Inverse Function Theorems are used as a basis to prove the Implicit Function and the

Rank Theorems. The Inverse Function Theorem “version” that we decide to use, with its

particular conditions, will indirectly give rise to the conditions of these other “offspring”

theorems. It is thus preferable to use an “if and only if” (iff) Inverse Function Theorem,

which states necessary and sufficient conditions for the existence of a local homeomor-

phism, instead of an “if” theorem stating only sufficient conditions. As presented below,

iff Inverse Theorems exist for all the function classes we are interested in: Cr, PCr, and

locally Lipschitz continuous functions.

Most commonly, the Cr Inverse Function Theorem is presented as an “if” theorem

only. However, its converse is essentially immediate, so we present it in its “iff” version

below.
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Theorem 2.2.2 (Cr “iff” Inverse Function Theorem). Let f : Rn → Rn be a Cr

function. f is a local Cr homeomorphism at x0 ∈ Rn if and only if Jf(x0) ∈ Rn×n is

invertible.

The “iff” version of the Inverse Theorem for locally Lipschitz continuous functions,

which is stated in terms of the generalized Thibault derivative

∆f(x0;d) =

{
z ∈ Rm : z = lim

k→∞

f(xk + λkd)− f(xk)

λk
, {xk} → x0, {λk} → 0+

}
,

(2.20)

was introduced in Theorem 1.1 of [52].

Theorem 2.2.3 (Kummer’s Lipschitz “iff” Inverse Function Theorem). Let f :

Rn → Rn be a locally Lipschitz function. f is a local Lipschitz homeomorphism at x0 ∈ Rn

if and only if 0 /∈ ∆f(x0;d) for every non-zero d ∈ Rn.

However, the set ∆f(x0;d) is more abstract and much less used than the Clarke

Jacobian ∂f(x0) for Lipschitz functions. We can use the latter generalized derivative set

to express Clarke’s Inverse Function Theorem for Lipschitz functions (Theorem 7.1.1 in

[22]), at the cost of it being an “if” theorem only. Indeed, Clarke’s condition is not

necessary even in the case of piecewise-linear functions, as demonstrated in Example 2.2

of [52].

Theorem 2.2.4 (Clarke’s Lipschitz “if” Inverse Function Theorem). Let f : Rn →

Rn be a locally Lipschitz function. f is a local Lipschitz homeomorphism at x0 ∈ Rn if f

is Clarke regular at x0 (i.e., all matrices in ∂f(x0) are invertible).

The PCr “iff” Inverse Function Theorem was first presented in Theorem 5 of [72],

with three equivalent sets of necessary and sufficient conditions. We present this theorem

below with the most relevant and concrete set of conditions.
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Theorem 2.2.5. (PCr “iff” Inverse Function Theorem) Let f : Rn → Rn be a PCr

function. f is a local PCr homeomorphism at x0 ∈ Rn if and only if f is coherently

oriented at x0 and dfx0 : Rn → Rn is invertible.

The above theorem transforms the task of judging local invertibility of the PCr func-

tion f at x0 into that of judging global invertibility of the piecewise-linear (PL) function

dfx0 . However, the latter is still a hard task for which no “iff” theorem exists. According

to Corollary 19 from [72], a piecewise-affine (PA) function f : Rn → Rn is a (global) PA

homeomorphism if it is (everywhere) completely coherently oriented (see Definition 2.1.6).

Given that ∂B(dfx0)(d) ⊂ ∂Bf(x0) for every d ∈ Rn (see Proposition 4.1.3 in [78]), if f

is completely coherently oriented at x0 then dfx0 is completely coherently oriented every-

where and is thus invertible. This result gives rise to the following “if” Inverse Theorem

for PCr functions.

Theorem 2.2.6. (PCr “if” Inverse Function Theorem) Let f : Rn → Rn be a PCr

function. f is a local PCr homeomorphism at x0 ∈ Rn if f is completely coherently

oriented at x0.

Since a PCr function is a local PCr homeomorphism at x0 if and only if it is a local

Lipschitz homeomorphism at x0 (Proposition 4.2.1 in [78]), for PCr functions the neces-

sary and sufficient PCr conditions are equivalent to Kummer’s condition. The advantage

of the former is that they utilize the B-subdifferential, a finite set with a concrete repre-

sentation for PCr functions in terms of essentially active Cr functions. As with Lipschitz

functions, Clarke regularity is a sufficient but not necessary condition.

Though not directly related to Inverse Function Theorems, the concept of “slices” of

open subsets of Rn (e.g., see [54]) will be used to formulate parts (b) and (c) of the Rank

Theorem 6.4.2.
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Definition 2.2.7 (Slices of open sets). Let U ⊂ Rn be open and 1 ≤ k ≤ n be an

integer. A k-dimensional slice, or k-slice, of U is any subset of the form

U ′ =
{
(x1, . . . , xn) ∈ U : xi1 = c1, xi2 = c2, . . . , xin−k

= cn−k

}
, (2.21)

where c = (c1, . . . , cn−k) ∈ Rn−k is a constant, and i1, . . . , in−k ∈ {1, . . . , n} are increasing

indices.

Note that the k-slice of U described above is the intersection of U with the k-

dimensional hyperplane defined by fixing the n − k coordinates i1, . . . , in−k in Rn at the

constant values c1, . . . , cn−k.

Proposition 2.2.8 (Properties of k-slices). Let U ⊂ Rn be open, 1 ≤ k ≤ n be an

integer, and U ′ ⊂ Rn be a k-slice of U represented without loss of generality as

U ′ = {(x1, . . . , xn) ∈ U : xk+1 = c1, . . . , xn = cn−k} . (2.22)

Then:

1) The projection of U ′ onto the first k coordinates, ρn
k(U

′), is an open subset of Rk.

2) U ′ is homeomorphic to ρn
k(U

′).

3) ρn
k |U ′ : U ′ → ρn

k(U
′) is an extended linear homeomorphism.

Proof. 1) Let x ∈ ρn
k(U

′). Then (x, c) = (x, c1, . . . , cn−k) ∈ U . Since U ⊂ Rn is open,

there exists an open cube C1 × C2 ⊂ U containing (x, c), where C1 ⊂ Rk, C2 ⊂ Rn−k are

open cubes. Then C1 ⊂ ρn
k(U

′) is an open set in Rk containing x. Since x was arbitrary,

we conclude ρn
k(U

′) ⊂ Rk is open.

2) The projection ρn
k : Rn → Rk is a continuous and linear function, therefore its

restriction to the open subset U ′ ⊂ Rk, ρn
k |U ′ : U ′ → ρn

k(U
′), is also continuous and linear.

Define the inclusion ikn : Rk → Rn as

ikn(x1, . . . , xk) = (x1, . . . , xk, c1, . . . , cn−k), (2.23)
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which is clearly continuous and linear. Then we can see that its restriction ikn|ρn
k (U

′) :

ρn
k(U

′)→ U ′, which remains continuous, is the inverse of ρn
k |U ′ : U ′ → ρn

k(U
′).

3) ρn
k |U ′ : U ′ → ρn

k(U
′) is linear, and its inverse has the global linear extension ikn :

Rk → Rn.

In other words, every k-slice of an open subset of Rn is linearly homeomorphic to an

open subset of Rk, namely, its projection onto the k non-fixed coordinates. The slice

U ′ ⊂ Rn is not open, but ρn
k(U

′) ⊂ Rk is.

The following projection and inclusion mappings will be relevant to express and prove

the Rank Theorems in Chapter 6.

Definition 2.2.9. Let n,m be integers greater than or equal to 1 with n ≥ m.

Define ρn
m : Rn → Rm as the projection from Rn onto the first m coordinates,

ρn
m(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm), (2.24)

πn
n−m : Rn → Rn−m, as the projection from Rn onto the last n−m coordinates,

πn
n−m(x1, . . . , xm, xm+1, . . . , xn) = (xm+1, . . . , xn), (2.25)

and ιmn : Rm → Rn as the inclusion of Rm as the first coordinates of Rn,

ιmn (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0). (2.26)

2.3. Nonlinear equation solving methods

The standard format for a system of nonlinear equations is

f(x) = 0, (2.27)
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where f : Rn → Rm and the number of equations m is not necessarily equal to number of

variables n. We say that the system (2.27) is square if n = m, and non-square otherwise.

2.3.1. The Newton method

The standard Newton method can be used to solve Equation 2.27 for a smooth function

f with n = m. We start from a current solution estimate xk and generate the next iterate

xk+1 by solving the linear system

Jf(xk)(xk+1 − xk) = −f(xk). (2.28)

If
∥∥f(xk+1)

∥∥ is smaller than a desired tolerance ϵ > 0, we take xk+1 as an approximate

solution of Equation 2.27. Otherwise, we set k ← k+1 and repeat this process. The New-

ton method has Q-quadratic convergence in a neighborhood of a solution x∗ of Equation

2.27 if f is a C2 function, provided Jf(x∗) is invertible (e.g., see Theorem 8.6.5 in [9]).

2.3.2. The semismooth Newton method

The semismooth Newton method [69] naturally extends the Newton method to lo-

cally Lipschitz functions by using an element of the Clarke Jacobian instead of Jf(xk) in

Equation 2.28:

G(xk)(xk+1 − xk) = −f(xk), G(xk) ∈ ∂f(xk). (2.29)

If ∂f(x∗) contains no singular matrices at a solution x∗ of Equation 2.27 and f is

semismooth (strongly semismooth), then the semismooth Newton Method exhibits Q-

superlinear (Q-quadratic) convergence in a neighborhood of x∗. More importantly for

the nonsmooth models considered in this thesis, convergence is Q-quadratic if f is PCr

and G(xk) ∈ ∂Bf(xk), provided that ∂Bf(x∗) contains no singular matrices [48]. Since

the B-subdifferential of a PCr function contains the finitely many “limiting” Jacobians

of the Cr essentially active selection functions, the non-singularity condition on ∂Bf(x∗)
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is much looser and more easily verifiable than that on ∂f(x∗). A simple example of that

is the absolute function f(x) = |x|, for which ∂Bf(0) = {−1, 1} does not contain zero

while ∂f(0) = [−1, 1] does. B-subdifferential elements of PCr functions can be computed

exactly using the algorithm of Khan and Barton [46].

However, neither the standard nor the semismooth Newton methods can be applied if

m ̸= n, or if m = n but Jf(xk) or G(xk) is singular (or very ill-conditioned) at any given

iteration k.

2.3.3. The linear programming Newton method

The linear programming Newton (LP-Newton) method [28] can be used to solve con-

strained and potentially non-square equation systems of the form

f(x) = 0 (2.30)

s.t. x ∈ X,

where f is locally Lipschitz continuous and X is closed and given by a set of polyhedral

bounds. Starting from a point xk, the next iterate xk+1 is obtained as the x part of the

solution of the following linear program:

min
x,γ

γ (2.31)

s.t.
∥∥f(xk) +G(xk)(x− xk)

∥∥
∞ ≤ γ

∥∥f(xk)
∥∥2
∞ ,∥∥x− xk

∥∥
∞ ≤ γ

∥∥f(xk)
∥∥
∞ ,

x ∈ X,

where G(xk) is a suitable substitute for Jf(xk) when f is nonsmooth, e.g., G(xk) ∈ ∂f(xk)

orG(xk) ∈ ∂Bf(xk). In constrast to the semismooth Newton method, the LP-Newton step

remains well-defined whenG(xk) is singular or non-square. In [28], Facchinei et al. showed
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that the method exhibits Q-quadratic convergence in the neighborhood of a solution x∗

of Equation 2.30 under certain conditions, which are not easily verifiable in general. In

particular, Q-quadratic convergence holds when we use G(xk) ∈ ∂Bf(xk) in (2.31) if all

matrices in ∂Bf(x∗) have full column rank n and an additional condition (Condition 2

in [28]) is satisfied (see Corollary 2 in [28]). The conditions under which Q-quadratic

convergence is guaranteed may be satisfied for some systems with non-isolated solutions,

as illustrated in [28] for a KKT system example.

The LP-Newton method can also be equipped with a backtracking line search to ensure

global convergence under certain assumptions [30]. To implement the latter with chosen

constants θ, σ ∈ (0, 1), at each iteration k we compute the LP-Newton step dk = xk+1−xk

by solving (2.31) and then we evaluate

∆(xk) = −
∥∥f(xk)

∥∥ (1− γk ∥∥f(xk)
∥∥) .

Starting with α = 1 we recursively reset α← θα, if needed, until the expression

∥∥f(xk + αdk)
∥∥ ≤ ∥∥f(xk)

∥∥+ σα∆(xk)

is satisfied. Then, the next iterate is computed as xk+1 = xk + αdk.

In our simulations we have used θ = 0.6 and σ = 0.1.

2.3.4. The pseudoinverse Newton method

The Newton method step for smooth functions (Equation 2.28) is only well defined

when n = m and Jf(xk) is invertible; therefore, it is equivalent to

xk+1 := xk − Jf(xk)−1 f(xk). (2.32)

If Jf(xk) is singular or if m ̸= n we can use the pseudoinverse (i.e., Moore-Penrose
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inverse) of the Jacobian matrix in place of its inverse:

xk+1 := xk − Jf(xk)† f(xk). (2.33)

This defines what we refer to as the pseudoinverse Newton method. The pseudoinverse

of a matrix A ∈ Rm×n is the unique matrix A† ∈ Rn×m that satisfies the following four

relationships:

A†AA† = A, (2.34)

AA†A = A†, (2.35)

(A†A)∗ = A†A, (2.36)

(AA†)∗ = AA†, (2.37)

where A∗ is the conjugate transpose of A. If A is invertible then A† = A−1. A matrix

X ∈ Rn×m is said to be an outer inverse of A if Equation 2.34 is satisfied; outer inverses

are not unique in general. We refer the reader to [12] for a detailed treatment of the

pseudoinverse, outer inverse, and other types of generalized inverses.

Among the many properties of the pseudoinverse, a particularly useful one is the fact

that x∗ = A†b provides the “best (potentially) approximate solution” of the linear system

Ax = b [68]. That is, x gives a least squares solution of minimum norm:

A†b ∈ argmin
x

{
∥x∥ : x ∈ argmin

x
∥Ax− b∥

}
. (2.38)

Therefore, in the pseudoinverse Newton method step (Equation 2.33), xk+1 is a

minimum-norm point that minimizes the squared norm of the local linearization of f at

xk, that is, of h(x) = f(xk) + Jf(xk)(x − xk). In [57] Levin and Ben-Israel developed
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conditions under which this method converges Q-quadratically to a point x̄ that satisfies

Jf(x̄)† f(x̄) = 0; (2.39)

this is equivalent to x̄ being a stationary point of g(x) = ∥f(x)∥2, given that the null

spaces of A† and AT coincide for every matrix A (note also that A and A† have the

same rank) [12]. We can guarantee that x̄ is a solution of f(x) = 0 if Jf(x̄) has full row

rank m. The conditions for Q-quadratic convergence involve f being C1, its Jacobian

matrix Jf(x) being locally Lipschitz continuous, and the pseudoinverse matrix of Jf(x)

remaining bounded (in a specific sense) around x̄. We point out that the convergence

theorem stated in [56] considers, first and foremost, the more general method in which

we use an outer inverse of Jf(xk) instead of its pseudoinverse.

2.3.5. The pseudoinverse semismooth Newton method

Within the semismooth Newton method for solving a locally Lipschitz system f(x) =

0, we can use a generalized inverse of the generalized derivative element instead of the

latter. When we choose to use the pseudoinverse, this constitutes what we hereby refer to

as the pseudoinverse semismooth Newton method, whose algorithmic map is defined as

xk+1 := xk −G(xk)† f(xk), G(xk) ∈ ∂f(xk). (2.40)

Convergence theorems for the semismooth Newton method using generalized inverses

are limited. In [23], Dorsch et al. denote the pseudoinverse semismooth Newton method

for the case when G(xk) is full rank as the nonsmooth projection method (NPM). The

latter is employed in [23] to solve for Fritz-John points of generalized Nash equilibrium

problems, which can be described by an underdetermined system of nonsmooth equations.

As reported by Herrich [35], Dorsch et al. claim that the method can exhibit Q-quadratic

convergence for this specific type of problem; however, the cited proof to back this claim,
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presented in [20], demonstrates linear convergence only.

In [21], Chen et al. consider the more general method in which we use an outer inverse

Vk of G(xk) ∈ ∂Bf(xk) in Equation 2.40 instead of G(xk)†, where f is locally Lipschitz.

In their Theorem 4.3, the authors show that the method converges to a solution x̄ of

Γf(x) = 0, where Γ is some n × m matrix, if we are able to guarantee that the null

space of every outer inverse Vk that we use coincides with that of Γ, and that the Vk

satisfy two boundedness conditions. Since the pseudoinverse is an outer inverse, with this

result we can conclude that if G(xk) ∈ ∂Bf(xk) is always full row rank and if G(xk)†

satisfies the local boundedness conditions, then G(xk)† is always full column rank and

the pseudoinverse semismooth Newton method converges to a solution of f(x) = 0. If f is

semismooth, then the convergence rate is superlinear under the assumptions of Theorem

4.3 in [21]. When G(xk) is not guaranteed to be full row rank, the null space condition

on the outer inverse is quite restrictive and not practically verifiable in general, except

perhaps for certain piecewise-affine functions (see Example 2 in [21]).

To the best of our knowledge, there are no convergence rate theorems for the pseu-

doinverse Newton method (or its outer inverse version) using G(xk) ∈ ∂Bf(xk) that are

specific to PCr functions. Due to the special properties of the latter, one could conjecture

that quadratic convergence might hold under suitable conditions.

2.3.6. Fixed-point methods

Systems of nonlinear equations of the form

f(x) = x, f : Rn → Rn, (2.41)

are referred to as fixed-point problems, given that a solution x of the equation system

above is called a fixed point of the function f .

We can choose to state the fixed-point problem above in standard format F(x) =
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f(x) − x = 0, and then employ the equation solving methods presented in the previous

sections. However, in general it is advantageous to employ specific methods that can

explore the special structure of fixed-point problems. Moreover, most fixed-point methods

do not rely on derivative information, which can be a great advantage when dealing with

nonsmooth systems whose generalized derivatives require implicit function calculations.

The algorithmic map of a generic fixed-point method can be represented as

xk+1 := g
(
xk,xk−1, ..., fk, fk−1, ...

)
, (2.42)

where fk = f(xk).

Direct substitution

The simplest fixed-point method is direct substitution, in which we update our initial

guess x0 iteratively through the algorithmic map

xk+1 := f(xk). (2.43)

However, this method is prone to oscillations and can only be shown to achieve a linear

convergence rate [65].

Wegstein’s method

Perhaps the second most famous fixed-point method within process simulation is that

of Wegstein. For a real-valued function of a single variable f : R→ R, its update formula

is

xk+1 := (1− qk) f(xk) + qk x
k, (2.44)

where

qk =
ak

ak − 1
, ak =

f(xk)− f(xk−1)

xk − xk−1
. (2.45)

In the single-variable case, Wegstein’s method can be shown to achieve an almost quadratic
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(i.e., 1.6) convergence rate, and it may induce convergence in problems for which direct

substitution diverges [34]. In the multivariable case f : Rn → Rn, the coefficients qk

are determined for each variable xi independently. Therefore, in this case the method

does not retain the same convergence properties as the single-variable case. According

to Aspen Plus’ user guide [4], Wegstein’s method is considered the quickest and most

reliable method for converging tear streams in process flowsheets, though admittedly it

can fail when variables are strongly coupled. However, [87] demonstrated in Watson et al.

that Anderson acceleration, though not traditionally used in process systems engineering,

exhibits superior convergence performance than Wegstein’s method for single-stage flash

calculations.

Anderson acceleration

Starting from x0, the Anderson acceleration update step has the general format

xk+1 := α0 f(x
k−mk) + α1 f(x

k−mk+1) + . . .+ αmk
f(xk), (2.46)

where mk = min(m, k) and m is the memory parameter. The weights αj must be updated

at each iteration k, and the procedure for computing them determines the type of An-

derson acceleration algorithm. In the original algorithm [3], which is denoted Anderson

acceleration Type II in [91], the weights αj correspond to the solution of the following

constrained least squares problem:

min
αj

∥∥∥∥∥
mk∑
j=0

αj g(x
k−mk+j)

∥∥∥∥∥
2

2

(2.47)

s.t.

mk∑
j=0

αk = 1,

where g(x) = x − f(x). That is, the αj minimize a linear combination of the errors of

the previous mk + 1 iterations. In [91], the authors show this method can be considered

to perform a Broyden Type II update of the inverse Hk of an approximate Jacobian of g.
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That is, the Anderson acceleration Type I step can be expressed as

xk+1 := xk −Hkg(xk), Hk = I+ (Sk −Yk)((Yk)TYk)−1(Yk)T (2.48)

when Yk has full column rank, where Sk = [sk−mk , . . . , sk−1], Yk = [yk−mk , . . . ,yk−1],

sj = xj+1 − xj, and yj = gj+1 − gj.

On the other hand, the so-called Anderson acceleration Type I algorithm [29] is based

on a Broyden Type I update of an approximate Jacobian of g. The method’s step is given

by

xk+1 := xk − (Bk)−1g(xk), Bk = I+ (Yk − Sk)((Sk)TSk)−1(Sk)T (2.49)

when Sk has full column rank.

In [91], Zhang et al. develop a stabilized version of the Anderson acceleration Type I

method by including Powell regularization, restart checking, and safeguarding steps. The

algorithm is shown to be globally convergent without any assumptions on f : Rn → Rn

other than it being non-expansive, i.e., ∥f(x)− f(y)∥2 ≤ ∥x− y∥2 for all x,y, and the

solution set of f(x) = x being non-empty. Therefore, the method is also applicable to

nonsmooth functions.

In Chapter 5 we make use of the MATLAB implementation of the Anderson ac-

celeration algorithm of Zhang et al. [91], which was made available by the authors at

https://github.com/cvxgrp/nonexp global aa1 under the option “aa1-safe”. However, we

have had to modify their implementation within our simulations in Chapter 5. Specifi-

cally, we had to rewrite a right matrix division operation using the pseudoinverse to avoid

the algorithm running into errors under singular matrices. We chose to use the same set

of hyperparameters employed in [91], i.e., θ̄ = 0.01, τ = 0.001, D = 106, ϵ = 10−6, and

memory m = 5.
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Chapter 3

A nonsmooth modeling strategy to

simulate dry and vaporless

distillation columns

Many process systems, such as distillation columns and other equipment with

phase change, exhibit multiple modes of physical behavior that can be described by

non-differentiable (i.e., nonsmooth) models. In this chapter, we introduce a nonsmooth

model for steady-state multistage distillation that can describe columns with dry and/or

vaporless stages reliably. The model consists of a system of nonsmooth MESH and

specification equations, without inequality or complementarity constraints, that can be

directly solved with the semismooth Newton method using automatically computed

generalized derivatives. With a modified version of pseudo-arclength continuation, we

have been able to observe several novel types of bifurcations in dry and/or vaporless

distillation column models. Many of these bifurcations exhibit degenerate behavior

with an infinite number of steady states for certain critical input specifications, and

occur in general multistage distillation systems regardless of the mixture components or

thermodynamic models chosen. We present case studies drawn from the literature and
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analyze the occurrence and behavior of the bifurcations with respect to several types

of column configurations, involving ideal stages, stage efficiencies, pressure gradients,

tray heat transfer, multiple feeds, and side products. The associated bifurcation curves

are inherently nonsmooth and can be described mathematically by the concept of

piecewise-differentiable manifolds introduced in Chapter 7.

3.1. Introduction

Trayed columns are still prevalent in unit operations for two-phase contact, such as ab-

sorption, stripping and distillation [79], whereas packed column simulation also commonly

employs an equivalent number of stages. Though the rate-based modeling approach [51]

describes the complex transport phenomena in multistage columns much more realistically

than the efficiency/equilibrium stage approach, the former relies on empirical correlations

for hydrodynamic, heat and mass transfer parameters, which depend on tray geometry

and column configuration [80]. Therefore, equilibrium stage models are still invaluable

for the preliminary stages of process design, when detailed column specifications are not

established yet. This simpler modeling approach is also widely used in industrial practice

because it requires less computational effort, and condenses all deviations from ideal mass

transfer behavior into a single parameter, the stage efficiency.

The efficiency/equilibrium stage approach to steady-state simulation of multistage sep-

arations employs the MESH (Mass balance, Equilibrium, Summation and energy balance,

where H stands for enthalpy) equations, which assume vapor-liquid equilibrium exists at

the conditions of each stage. In the rate-based approach, vapor-liquid equilibrium is also

enforced at the phase interface between the bulk vapor and liquid phases. However, certain

process specifications can lead to a steady state in which the exiting liquid or vapor phase

is absent from one or more stages. In a dry/vaporless stage, the remaining vapor/liquid

outlet stream can be superheated/subcooled; under these conditions, vapor-liquid equilib-

rium no longer exists and consequently both the MESH-equation and rate-based models
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are no longer valid. This gives rise to the often-experienced “dry column” simulation er-

rors in commercial process software, such as Aspen Plus’ [2] RadFrac multistage column

model. For these “problematic” process specifications, it is widely known that RadFrac’s

equilibrium-stage model aborts all calculations and exhibits a severe error message stating

that stages “dried up” of liquid and/or vapor. In addition, we have found that RadFrac’s

rate-based model (previously called RateFrac) also fails to converge and prompts a general

error message, without detailing its cause.

One might argue that the absence of a valid model to simulate distillation columns

with dry/vaporless stages is irrelevant, since such steady-state solutions correspond to

extreme and undesirable operating conditions. However, given a certain set of process

specifications, we cannot predict a priori which phases will be present within each stage in

the column. When current distillation software is unable to find a vapor-liquid equilibrium

solution, the user is left with the complicated task of changing specifications by trial-and-

error until the model can converge, which is especially challenging within a flowsheet with

several interconnected equipment and recycles. Additionally, process specifications are

iteratively changed outside user control in sequential-modular simulation of flowsheets

with recycle streams, design specifications, and in process optimization; therefore, the

solution algorithms might stray into dry/vaporless conditions and fail to converge.

Without a suitable model, we cannot answer a very fundamental question: what

is the steady-state behavior of columns with dry/vaporless stages? In order to obtain

these steady states, we must change the model equations that describe each stage to

reflect which phases (vapor-liquid, vapor only, or liquid only) are present at the solution;

however, we have no knowledge of the latter prior to simulation. It is possible to create a

single model that automatically “switches” between describing equations and selects the

correct ones, at the cost of introducing nonsmooth (i.e., non-differentiable) behavior and

requiring more advanced mathematical tools not present in commercial software.

Previous work on steady-state simulation of dry/vaporless distillation columns, us-
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ing MESH-based models, dates back to the 1990s and is limited to two other papers

[16, 31]. In the first paper [16], the equilibrium relationship for each stage is relaxed in

dry/vaporless regimes by introducing inequalities in terms of a slack variable. In order

to address the inequalities, the original task of simulating the process is transformed into

the optimization problem of minimizing the slack variable. In subsequent work [31], the

KKT conditions for a similar optimization formulation are used to create a model with

complementarity constraints. The latter are rewritten as nonsmooth equations in terms

of the max operator, and the model must be solved iteratively as a series of smooth-

approximation problems. However, in both papers, only limited simulation results with

dry/vaporless columns are reported, corresponding to very few sets of column specifica-

tions. As demonstrated in this chapter, these do not give the full picture of how the

vapor/liquid “drying” process occurs within the column.

To this date, all other subsequent papers that address modeling of dry/vaporless dis-

tillation regimes [53, 70, 71, 25, 26, 93] have considered flowsheet optimization only – the

type of problem where complementarities are ostensibly easier to handle mathematically.

However, all the aforementioned approaches rely either on a series of equation-solving

problems or on optimization algorithms even when only a single simulation is needed.

This increases computational effort, and introduces nonphysical variables and parameters

that need to be heuristically tuned for each process flowsheet.

On the other hand, recent advances in the automatic evaluation of generalized deriva-

tives [46] have opened up the possibility of creating explicitly-nonsmooth algebraic models

that can be directly solved with Newton-like methods. By introducing a single nonsmooth

equation in terms of the mid function, which returns the median of its three arguments,

Watson et al. [85, 87] have successfully reformulated the phase equilibrium problem for a

single stage, in order to perform flash calculations and model multistream heat exchangers

with phase change. With an analogous approach, Sahlodin et al. [76] proposed a nons-

mooth dynamic model for multistage distillation columns, formulated in terms of liquid
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and vapor molar holdups.

In this work, we extend the explicitly-nonsmooth modeling strategy to steady-state

distillation simulation by proposing a nonsmooth MESH model, which remains valid re-

gardless of the phases present in each stage. Using this compact equation-based modeling

strategy, and by developing a nonsmooth version of the pseudo-arclength continuation

method [44], we have been able to observe infinitely many steady states with dry/vaporless

stages in distillation column models. This degenerate behavior occurs for certain criti-

cal input specifications independently of the particular mixture being separated or the

thermodynamic models used, and persists even when different column configurations are

specified.

Bifurcations, or changes in the number of steady-state solutions, have been previously

observed in multistage distillation column simulation with smooth models [59, 10, 55, 42,

18, 49] and also confirmed experimentally [47, 61]. Most cases analyzed involve homoge-

neous azeotropic distillation systems with at least three components [59, 10, 55], although

bifurcations have also been observed in binary distillation [42] and Petlyuk columns [18].

In the majority of cases, the curve of steady-state solutions contains 2 turning points form-

ing a hysteresis curve, and therefore a total number of 3 steady states exist for parameter

values in between the turning points. An extended hysteresis curve, with 4 turning points

yielding up to 5 steady states, has also been reported within azeotropic distillation [49]. In

addition, hysteresis behavior is often responsible for the more familiar occurrence of multi-

ple steady states in exothermic chemical reactors. On the other hand, a Hopf bifurcation,

with the corresponding appearance of a limit cycle, has also been observed in association

with a hysteresis curve for a ternary azeotropic column [55]. However, the occurrence of

multiple steady states in distillation simulation might depend, in some instances, on the

thermodynamic model used [59, 11].

Interestingly, Bekiaris et al. [10] presented the theoretical possibility of infinitely many

steady states for homogeneous azeotropic distillation with a simplified analysis, which
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considered infinite reflux, infinitely many trays and constant molar overflow. However,

to the best of our knowledge, this degeneracy of steady states has not been observed

in distillation or other process systems described by more realistic models. Moreover, a

distinctive feature of the degenerate bifurcations introduced in this chapter is that they

involve nonsmooth behavior.

In the following sections of this chapter, we first discuss the conceptual challenges in

describing dry and vaporless equilibrium stages, and present existing nonsmooth modeling

strategies and simulation methods. We then describe our nonsmooth MESH model and

the numerical continuation strategy developed to trace the curves of infinitely many steady

states, in view of the mathematical concept of piecewise-differentiable extrinsic manifolds

introduced in Chapter 7. Next, we conduct detailed parameter continuations in two

case studies from the literature [16, 31] and vary several types of column specifications,

in order to describe and analyze the degenerate and non-degenerate bifurcations that

occur in dry/vaporless distillation columns. Finally, we present a summary of the novel,

nonsmooth bifurcations and conclude this chapter with remarks on our contributions and

future lines of work.

3.2. The issues with dry and vaporless stages

Consider an equilibrium stage at steady state depicted in Figure 3.1, which could

represent either a flash vessel or, in a simplified analysis, one of the stages within a

column. Let F , L and V be the total inlet, outlet liquid, and outlet vapor molar flow

rates, respectively, and z, x and y the vectors with mole fractions of the Nc components

for each respective stream. The system of MESH equations that models the stage, which
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assumes that outlet liquid and vapor are in equilibrium, is:

F = L+ V, (3.1)

Fzi = Lxi + V yi, i = 1, . . . , Nc, (3.2)

FhF +Q = LhL + V hV , (3.3)

yi = Ki xi, i = 1, . . . , Nc, (3.4)∑Nc

i=1 yi −
∑Nc

i=1 xi = 0, (3.5)

where i is the index for a specific component, hj is the molar enthalpy of stream j, T

and P are the stage temperature and pressure, Q is the heat transfer rate to the stage,

and Ki ≡ Ki(T, P,x,y) is the equilibrium ratio for component i. Note that the single

summation equation in Equation 3.5 indirectly enforces both the liquid and vapor phase

mole fractions to sum to one, since the mole balances for all the components are included

together with the overall mole balance.

Figure 3.1: A single-stage flash vessel.

3.2.1. Dry and vaporless phase regimes

We define a stage at steady state to be dry if its total outlet liquid flow rate is equal to

zero (L = 0). Analogously, a stage without a vapor outlet stream is said to be vaporless

(V = 0). This way, we can characterize the following possible phase regimes for each

stage:
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� Phase Regime I: a stage with vapor and liquid outlets in equilibrium with each

other;

� Phase Regime II: (a) a dry stage with a dew-point vapor outlet, (b) a vaporless

stage with a bubble-point liquid outlet;

� Phase Regime III: (a) a dry stage with a superheated vapor outlet, (b) a vaporless

stage with a subcooled liquid outlet.

Each set of feasible input parameters, in the correct number to fix the necessary degrees

of freedom, may yield a steady state in a certain phase regime. For instance, consider a

PT-flash vessel for which all feed conditions are specified. Figure 3.2 presents a schematic

view of the input parameter space in terms of the specified temperature T and pressure P ,

with the resulting phase regimes at steady state. Note that Phase Regimes II correspond

to the nonlinear boundaries between the regions for Phase Regimes I and III.

Figure 3.2: Phase regimes at the solution for each temperature-pressure pair in a PT-flash.

3.2.2. The MESH equations are not valid in Phase Regimes III

A robust model must encompass all possible modes of behavior of the system, and

yield the correct steady state for any set of feasible input specifications. This means
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that variables characterizing the state of every possible stream in a process, such as

compositions and temperatures, must always be included and solved for within the model

variables. The mole fractions of an absent liquid or vapor stream are examples of fictitious

variables; they bear no physical meaning but can still be computed using the model

equations, Equations 3.1-3.5, as long as the correlations used to evaluate Ki and the

phase enthalpies remain well-defined.

However, suppose that a given set of input specifications leads to a steady state in

which the stage operates in Phase Regimes IIIa or IIIb. It can be shown from the KKT

conditions for minimization of the Gibbs free energy [76] that, in such a steady state,

fictitious mole fractions computed with Equation 3.4 sum to less than one. For instance,

for a vaporless steady state with subcooled liquid,
∑Nc

i=1 yi =
∑Nc

i=1Kixi < 1. Since the

MESH Equations 3.1-3.5 always enforce the mole fractions of both phases to sum to one,

they cannot yield the correct steady-state solution. Instead, we obtain a unique but non-

physical MESH solution in which the flow rate of the absent phase is negative; in the

previous example, V < 0. Therefore, the MESH equations are a valid model to describe

Phase Regimes I and II, but not Phase Regimes III.

3.2.3. Valid equations for the dry and vaporless phase regimes

We can propose modified systems of equations to model dry or vaporless stages, both

in Phase Regimes II and III, depending on how we formulate and compute the fictitious

mole fractions. However, these models are not valid in Phase Regime I (vapor-liquid

equilibrium). Any fictitious mole fraction formulation yields the same solutions in terms

of physical variables, but the convergence properties of the equation system can be affected

by the formulation chosen.
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3.2.3.1. Formulation 1:

In this strategy, fictitious mole fractions are computed from the unchanged equilibrium

relationship and are not required to sum to one. The system of model equations for a dry

stage (Phase Regimes IIa and IIIa) consists of Equations 3.1-3.4 and

L = 0, (3.6)

which intuitively replaces the summation equation, Equation 3.5. Analogously, the model

equations for a vaporless stage (Phase Regimes IIb and IIIb) consist of Equations 3.1-3.4

and

V = 0. (3.7)

3.2.3.2. Formulation 2:

In this approach, Equations 3.1-3.3 and the summation Equation 3.5 are maintained,

while the equilibrium relationship in Equation 3.4 is relaxed for all components by intro-

ducing a non-physical variable β for each stage:

yi = βKi xi, i = 1, . . . , Nc. (3.8)

This allows the fictitious mole fractions to sum to one but requires an additional model

equation to be included: Equation 3.6 for a dry stage, Equation 3.7 for a vaporless stage,

and β = 1 for a stage with vapor-liquid equilibrium. Note that, from the previously

mentioned result for minimization of the Gibbs free energy, we must have β ≤ 1 for a dry

stage, and β ≥ 1 for a vaporless stage.
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3.2.4. The phase regime cannot be predicted prior to simulation

Since predicting the exact distribution of regimes within parameter space is a complex

task, the mode of behavior corresponding to a given set of input parameters is usually

not known before simulating the system. On the other hand, we must choose an equation

system and its associated mode of behavior to simulate the process. A naive way to ap-

proach this conundrum is by trial-and-error, attempting each system of model equations

until one of them converges to a valid solution. While this seems feasible in the case of a

single-stage flash, for which only 3 such models exist, it is not practical for a multistage

column. In the latter case, each stage has 3 possible sets of describing equations. The

overall number of possible model equations for the column is equal to 3N , scaling expo-

nentially with the number of stages N . Process simulation software such as Aspen Plus

and HYSYS consider only the MESH distillation model, in which all stages are assumed

to be in Phase Regime I (vapor-liquid); no dry or vaporless models are included.

Instead, it is possible to create a single model that remains valid in all possible phase

regimes, automatically switching between the equations for each stage and enforcing the

correct ones without prior knowledge of the regime at the solution. However, this can only

be achieved by introducing nonsmooth or non-differentiable behavior (e.g., the comple-

mentarity constraint and explicitly nonsmooth strategies described below) or even discrete

variables (e.g., generalized disjunctive programming [33]).

3.3. Nonsmooth modeling approaches

3.3.1. Complementarity constraints

Modeling of equilibrium stages with complementarity constraints is due to Biegler

and collaborators [31]. In their strategy, Formulation 2 is chosen to define fictitious mole

fractions. In order to encompass both the dry and vaporless equation systems, other two
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non-physical slack variables, sV and sL, must be added for each stage, aside from β. The

overall model consists of Equations 3.1-3.3, 3.5, 3.8, and the additional relationships

β = 1− sL + sV , (3.9)

0 ≤ L ⊥ sL ≥ 0, (3.10)

0 ≤ V ⊥ sV ≥ 0. (3.11)

A complementarity constraint 0 ≤ a ⊥ b ≥ 0 forces at least one of the variables a, b to

be zero and both to be non-negative; it can be expressed by the smooth equation ab = 0

together with the inequalities a, b ≥ 0. Equivalently, a complementarity constraint can

be reformulated as a single nonsmooth equation that is non-differentiable (at least) at

the origin, such as min(a, b) = 0, a = max(0, a − b), or the Fischer-Burmeister equation
√
a2 + b2 − (a+ b) = 0.

In order to avoid handling inequality constraints within equation solving, Gopal and

Biegler [31] implement distillation simulation with dry and vaporless stages by solving

a series of smoothing approximations to the max reformulation a = max(0, a − b). In

subsequent work, Biegler and collaborators [53, 70, 25] incorporate the complementarity

constraints into nonlinear programs for distillation optimization. The current strategy [26,

93] is to include these constraints in the form of exact penalty terms ρaTb in the objective

function, with the parameter ρ needing to be tuned for each problem at hand. In both

simulation and optimization settings, the complementarity constraint approach introduces

artificial variables and parameters that need to be tuned, initialized and updated, and does

not allow for simulation with direct equation solving, creating the need to solve a series

of problems in addition to the original one. Moreover, the infinitely many steady states

described in this chapter have never been obtained or presented within this modeling

strategy, perhaps due to difficulties in performing the necessary continuation methods

when complementarity constraints are present.
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3.3.2. Explicitly nonsmooth equations

Non-differentiable functions, such as the absolute value, min and max, can be explic-

itly used to create a single system of nonsmooth algebraic equations, without inequality

constraints, that is a valid model for all system behaviors. This concise approach neither

introduces non-physical variables nor increases problem size. As detailed below, recent

developments enable us to compute generalized derivatives for these models and to use

direct nonsmooth equation-solving methods for process simulation.

In the explicitly nonsmooth model proposed by Watson and Barton [85], Formulation

1 is used to define the fictitious mole fractions. Equation 3.5 is replaced with

mid

(
V

F
,

Nc∑
i=1

xi −
Nc∑
i=1

yi ,
V

F
− 1

)
= 0, (3.12)

where the piecewise-smooth function mid returns the median of its three arguments.

Equivalently, the third argument can be substituted by −L
F
. The denominator F in the

first and third arguments acts simply as a scaling factor so that all three arguments have

a similar order of magnitude, and can therefore be substituted by any other positive

constant. With the mid function, we can include 3 different model equations, respectively

Equations 3.7, 3.5 and 3.6, in a single one. The correct expression is automatically satisfied

(i.e., becomes the median) according to the phase regime: vaporless
(
V
F
= 0
)
, vapor-

liquid
(∑Nc

i=1 xi −
∑Nc

i=1 yi = 0
)
, and dry

(
V
F
− 1 = −L

F
= 0
)
. Equation 3.12 is potentially

nondifferentiable at points where two of the arguments are equal. For instance, in Phase

Regimes II, one of the flow rates is zero and the summation relationship in Equation

3.5 is still satisfied. The explicitly nonsmooth approach has been successfully applied to

perform flowsheet flash calculations [87], and model multi-stream heat exchangers with

[85] and without [86] phase change.

The explicitly nonsmooth strategy can also accommodate Formulation 2 with a clear

advantage over the complementarity constraint approach, since no slack variables or in-
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equality constraints are introduced. In this case, the system of piecewise-smooth equations

consists of Equations 3.1-3.3, 3.5, 3.8 and the additional relationship

mid

(
V

F
, β − 1 ,

V

F
− 1

)
= 0. (3.13)

Alternatively, this extra equation associated with the extra variable β in Formulation

2 can be further eliminated by making use of the identity β ≡
∑Nc

i=1 yi∑Nc

i=1Kixi
. One way to do

so, as presented by Watson et al. [88], is to maintain Equations 3.1-3.3, 3.5 and replace

the Nc equilibrium relationships in Equation 3.4 with

yi
∑Nc

i=1Kixi = Ki · xi
∑Nc

i=1 yi, i = 2, . . . , Nc, (3.14)

mid

(
V

F
,
∑Nc

i=1 yi −
∑Nc

i=1Kixi ;
V

F
− 1

)
= 0. (3.15)

Watson et al. [88] recommend choosing the most volatile component to be left out from

Equations 3.14 in order to improve numerical conditioning, although any choice of com-

ponent i = 1 is valid.

3.4. The proposed nonsmooth MESH model

Consider a steady state-distillation column with N stages, numbered from top to

bottom, separating a mixture with Nc components. For each generic stage j, as depicted

in Figure 3.3, we propose a modified system of nonsmooth MESH equations:

Lj−1 + Vj+1 + Fj − (Lj +WL,j)− (Vj +WV,j) = 0, (3.16)

xi,j−1Lj−1 + yi,j+1Vj+1 + zi,jFj − xi,j(Lj +WL,j)− yi,j(Vj +WV,j) = 0, i = 1, . . . , Nc,

(3.17)

hLj−1Lj−1 + hVj+1Vj+1 + hFj Fj − hLj (Lj +WL,j)− hVj (Vj +WV,j) +Qj = 0, (3.18)
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yi,j −Ki,jxi,j = 0, i = 1, . . . , Nc, (3.19)

mid

(
Vj +WV,j

Fs

,
Nc∑
i=1

xi,j −
Nc∑
i=1

yi,j ,
−(Lj +WL,j)

Fs

)
= 0, (3.20)

where Vj and Lj are the liquid and vapor molar flow rates leaving stage j, with the

respective mole fractions yi,j, xi,j of component i; Fj and zi,j are the molar flow rate and

mole fractions of the feed stream to stage j; WV,j and WL,j are the flow rates of vapor and

liquid side products withdrawn from the stage; hVj and hLj are the molar enthalpies of the

outlet vapor and liquid phases, Ki,j is the equilibrium ratio for component i, Qj is the

heat transfer rate to the stage, and Fs is the sum of the feed flow rates to all stages. As

illustrated in Figure 3.3, some of the streams are absent in the first and last stages. As

opposed to Chapters 4 and 5, in which we potentially reset or relax one or more column

specifications in case they happen to be infeasible, in this chapter we (attempt to) enforce

all user-chosen column specifications strictly.

Figure 3.3: An intermediate stage j (left), the condenser (center), and the reboiler (right) in a
distillation column.

3.4.1. The mid equation

Two modifications are introduced into the first and third arguments of the original

mid equation (Equation 3.12) for a single-stage flash. Firstly, the numerators of these

two arguments, which represent the overall vapor and liquid outlets of the stage, now
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include the side product stream flow rates WV,j and WL,j, respectively. Secondly, instead

of the overall inlet flow rate Lj−1 + Vj+1 + Fj particular to each stage j, Fs is used in the

denominators as a constant scaling factor for all stages.

Here, we note that the mid equation not only relaxes the summation equation in

Phase Regimes III, but also automatically bounds the total outlet flow rates (Vj +WV,j)

and (Lj +WL,j) to be non-negative. To see why that is, consider a vaporless stage: in

case (Vj +WV,j) assumes a negative value, both the first and third arguments of the mid

function are strictly negative and therefore the median cannot equal zero to satisfy the

equation. However, unlike the single-stage flash case, the individual flow rates Lj or Vj

are not guaranteed to be non-negative at the solution if a liquid or vapor side product is

present, respectively.

The above equations employ Formulation 1 to define the fictitious mole fractions, but

the other two forms of Formulation 2 can equivalently be used by making the necessary

modifications previously described. When using Equation 3.13, one extra variable βj must

be included for each stage.

3.4.2. The condenser

The total distillate flow rate D is given by

D = WL,1 + V1, (3.21)

and the reflux ratio is defined as R = L1/D. The vapor distillate fraction θ = V1/(WL,1+

V1) for the condenser, ranging from 0 to 1, must be specified with an additional equation.

For a partial condenser (0 < θ ≤ 1), the mid equation (Equation 3.20) is maintained.

For a total condenser (θ = 0), since V1 = 0 is constant, the mid equation is replaced with

Nc∑
i=1

xi,1 − yi,1 = 0 (3.22)
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to ensure a bubble-point outlet liquid stream.

3.4.3. Stage efficiencies

Equations 3.16-3.20 define an ideal stage in which vapor-liquid mass transfer happens

to its full extent, with outlet vapor and liquid mole fractions related through the equilib-

rium relationship in Equation 3.19. Instead, less-than-ideal mass transfer in a real stage j

can be approximately described by introducing stage efficiencies ηi,j for each component

i. If ηMi,j represents the Murphree vapor phase efficiency, Equation 3.19 is replaced with

(yi,j − yi,j+1)− ηMi,j(Ki,j xi,j − yi,j+1) = 0. (3.23)

If the vaporization efficiency ηVi,j is specified instead, Equation 3.19 is replaced with

yi,j − ηVi,jKi,jxi,j = 0. (3.24)

3.4.4. Side products

Aside from the main top and bottom products with flow rates D and LN , respectively,

vapor and/or liquid side products can also be withdrawn from intermediate stages (2 ≤

j ≤ N − 1). Most formulations of the MESH equations in the literature are defined in

terms of withdrawal ratios, such asWL,j/Lj or 1+WL,j/Lj. However, these ratios become

undefined for dry or vaporless stages, and therefore it is essential to choose the withdrawal

flow rates WV,j, WL,j as the variables in our model.

For stages without side products,WL,j andWV,j are set to zero. When a vapor or liquid

side product is present at an intermediate stage, a corresponding specification equation

must be included, usually in terms of either the withdrawal ratio or the side product flow

rate.
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3.4.5. Withdrawal ratio specification

In a non-dry stage, a desired value for the withdrawal ratio RLj
= WL,j/Lj can be

enforced by adding a specification equation in the form

WL,j −RLj
Lj = 0. (3.25)

This way, WL,j is enforced to zero for a dry stage despite the withdrawal ratio itself

becoming undefined, which reflects the physical behavior of a splitter valve. An analogous

equation is included for a desired vapor withdrawal ratio RVj
= WV,j/Vj.

3.4.6. Flow rate specification

In order to enforce a desired value WL,j,spec for the liquid side product flow rate in

stage j, the following nonsmooth specification is included:

min (Lj, −|WL,j −WL,j,spec| ) = 0. (3.26)

This equation enforces the specified value for WL,j and simultaneously bounds Lj to be

≥ 0. An analogous equation is included for a desired vapor side product flow rateWV,j,spec,

bounding Vj to be ≥ 0.

3.4.7. Specifying the degrees of freedom

When we specify the numberN of stages, all feed stream conditions, all stage pressures,

the heat duties for intermediate stages (commonly set to 0), and all side product ratios or

flow rates for intermediate stages, two degrees of freedom remain for a distillation column.

In the standard MESH model, these are fixed directly by two specification equations. For

instance, desired values Rspec and Dspec for the reflux ratio and distillate flow rate are
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specified, respectively, by the equations

R−Rspec = 0, (3.27)

D −Dspec = 0. (3.28)

However, if 0 ≤ θ < 1, a nonzero liquid distillate flow rate WL,1 is present and the

condenser equations presented so far cannot guarantee a non-negative reflux flow rate

L1. To correct that, we must modify one of these two specification equations and create a

formulation analogous to Equation 3.26. For instance, the distillate flow rate specification

becomes

min (L1, −|D −Dspec| ) = 0. (3.29)

3.4.8. Model simulation and parameter continuation

Our nonsmooth MESH model is valid for all possible combinations of liquid-only,

vapor-only and liquid-vapor phase regimes in each stage. Moreover, the mathematical

behavior of the model reflects the physical behavior of the system: all flow rates are

automatically enforced to be greater than or equal to zero, and therefore any solution

obtained with our model is physically valid in that regard. Another distinctive feature is

that infeasible input parameter values are also mathematically infeasible, and in this case

the model has no solution.

The total set of n model equations is represented by the nonsmooth nonlinear system

f(x, λ) = 0, (3.30)

where x ∈ Rn represents the n model variables that are solved for, λ ∈ R represents a

single input parameter while all other degrees of freedom remain fixed, and f : Rn+1 → Rn

is piecewise-smooth (PC∞).

In this work, we wish to analyze how the steady-state solutions x change as we vary the
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parameter λ. Specifically, we say that a bifurcation occurs at a parameter value λ∗ when

there is a change in the number of solutions x for each λ. Many concepts from bifurcation

theory for dynamical systems can be applied to analyze this problem; the only caveat is

that no dynamic or stability considerations can be made if x′(t) ̸= f(x, λ), which is the

case for the nonsmooth steady-state MESH model. In a differential-algebraic dynamic

model for a distillation column, the differential equations express the time derivatives

of the molar and enthalpy holdups of each stage, which are not present as variables in

steady-state MESH models.

Bifurcations can be identified with continuation methods, which are responsible for

the numerical approximation of the solution set

M = {(x, λ) ∈ Rn+1 : f(x, λ) = 0}. (3.31)

If the limiting partial Jacobians of f with respect to x (represented by Jxf (i)(x, λ)) remain

invertible, we can perform a simple parameter continuation, in which we fix λ and solve

for x using the semismooth Newton method (see Section 2.3.2). The limiting partial

Jacobians, used to compute the Newton step according to Equation 2.28, are obtained

exactly with the automatic differentiation algorithm of Khan and Barton [46].

However, if the limiting partial Jacobians with respect to x become singular, a bifur-

cation is likely to be present and Newton-type methods fail in solving for x directly. In

such cases, as introduced in this chapter, we can employ a nonsmooth version of pseudo-

arclength continuation to trace solution points (x, λ), as long as the solution set remains

a 1-dimensional PCr manifold.

3.5. PCr manifolds

Definition 3.5.1 below, which is a specific instance of Definition 7.5.1, gives the precise

notion of a piecewise-differentiable (PCr) manifold as introduced in Chapter 7.
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(a) (b)

Figure 3.4: (a) A 1-dimensional PCr manifold; (b) a 1-dimensional PCr manifold with 2
boundary points.

Definition 3.5.1 (Extrinsic PCr manifold). An extrinsic PCr manifold (with bound-

ary) is a setM ⊂ Rn endowed with the subspace topology such that for every point x ∈M

there exists a neighborhood U ⊂ M of x, an open subset V ⊂ Rk [V ⊂ Hk] for some

k ≤ n which is called the dimension of M at x, and an extended PCr homeomorphism

ϕ : U → V (see Definition 7.2.1 in Chapter 7).

Now, suppose the solution set M ⊂ Rn+1 to f(x, λ) = 0 is a 1-dimensional PCr

manifold (Figure 3.4a). This means that, on an open neighborhood U ⊂ M of every

solution point (xk, λk) ∈ M , points in the solution set can be expressed as a function of

a single parameter v ∈ R,

(x, λ) = ϕ−1(v), (3.32)

where ϕ−1 : I → U is a PCr homeomorphism and I ⊂ R is an open interval. The PCr

functions ϕ−1 and ϕ are called a local parametrization and a local coordinate map, respec-

tively. On the other hand, if M is a 1-dimensional PCr manifold with boundary (Figure

3.4b), then I might also be a half-closed interval, and any point (x, λ) corresponding to

the closed endpoint of such an interval I is called a boundary point.
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3.6. Pseudo-arclength continuation methods

3.6.1. Smooth systems

The pseudo-arclength continuation method, developed by Keller [44] for smooth func-

tions, can be used to trace the solution set M ⊂ Rn+1 to f(x, λ) = 0 when f : Rn+1 → Rn

is a C2 function that satisfies the regularity condition, i.e., its Jacobian matrix Jf(x, λ) ∈

Rn×(n+1) is full row rank at every solution point (x, λ). When this assumption holds, the

solution set M is a 1-dimensional C2 manifold and constitutes a single solution branch.

Examples of such behavior include a turning point (Figure 3.5a), two turning points

forming a hysteresis curve (Figure 3.5b) and a hysteresis or cusp point (Figure 3.5c), at

which Jxf(x, λ) is singular but Jf(x, λ) remains full row rank. In contrast, Jf(x, λ) is

rank deficient at a pitchfork bifurcation point (Figure 3.5d), where two solution branches

intersect.

Figure 3.5: (a) Turning point; (b) Hysteresis curve (2 turning points); (c) Hysteresis point; (d)
Pitchfork bifurcation point.

Starting from a known solution (xk, λk) of Equation 3.30, the next point (xk+1, λk+1)

on the solution branch is obtained in three steps, as schematically illustrated in Figure

3.6.
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Figure 3.6: The pseudo-arclength continuation method.

3.6.1.1. Step 1: Obtain the unit tangent direction

A unit tangent vector (
.
xk,

.
λk) to the solution branch at (xk, λk) is obtained from the

1-dimensional null space of Jf(xk, λk). Its direction is chosen such that the continuation

process moves in the same direction along the solution branch, which, according to Keller

[44], can be done by enforcing a positive inner dot product between the current and

previous tangent vectors:

(
.
xk)

T.xk−1 +
.
λk
.
λk−1 > 0. (3.33)

3.6.1.2. Step 2: Take a predictive step along the tangent direction

While arc length corresponds to the distance between any two points along the actual

solution branch, pseudo-arclength is locally defined with respect to each point (xk, λk)

and corresponds to the distance traveled in the tangent direction determined by (
.
xk,

.
λk).

Starting from the current point (xk, λk), we take a pseudo-arclength step of size σ to

generate the point

(x̄k, λ̄k) = (xk, λk) + σ(
.
xk,

.
λk), (3.34)

which is an initial guess (or an Euler predictor) for the next point on the solution branch.
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3.6.1.3. Step 3: Make an orthogonal correction

The next point (xk+1, λk+1) on the solution branch corresponds to the solution of the

following augmented nonlinear system:

h(x, λ) =

 f(x, λ)

(
.
xk)

T · (x− xk) +
.
λk · (λ− λk)− σ

 = 0. (3.35)

This system can readily be solved with Newton’s method, since its Jacobian matrix

Jh(x, λ) =

Jf(x, λ)

.
xk

.
λk

 (3.36)

is guaranteed to remain invertible for σ > 0 small enough, and the predictor point (x̄k, λ̄k)

is used as the initial guess. The first n equations in Equation 3.35 ensure that the next

point lies on the solution manifold within numerical precision, and thus no integration

errors are incurred. On the one hand, this allows for an adaptive step size strategy,

in which σ can be increased by a suitable percentage whenever the Newton correction

converges, and decreased otherwise until convergence is reestablished. On the other hand,

in this work we chose instead to trace the solution branch in terms of its actual arc

length; this can be achieved by keeping σ small enough so that the distance between

consecutive solution points becomes numerically indistinguishable, within a 0.1% relative

tolerance, from their pseudo-arclength distance. Finally, the last equation in Equation

3.35 geometrically enforces the next point to belong to a plane that is orthogonal to

the tangent direction, and situated at an orthogonal distance σ from the current point

(xk, λk).
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(a) Detecting a nonsmooth boundary. (b) Updating the unit vector and orthogonal
correction step.

Figure 3.7: PCr pseudo-arclength continuation.

3.6.2. Nonsmooth PCr systems

In this work, we extend the pseudo-arclength continuation method to PCr functions

f : Rn+1 → Rn for which the solution set to f(x, λ) = 0 is a 1-dimensional PCr manifold.

This means that the solution branch can only fail to be differentiable at isolated points,

for which two distinct limiting tangent directions exist. We further assume that only

two distinct limiting Jacobians Jf (i)(x, λ) can exist at the non-differentiable points; this

assumption is satisfied by the nonsmooth MESH model. The modifications introduced

into each of the three steps of the smooth pseudo-arclength method are described below

and depicted in Figure 3.7.

3.6.2.1. Step 1: Obtain a limiting unit tangent direction

A limiting Jacobian matrix at the current point, Jf (i)(xk, λk), is computed exactly

with the method of Khan and Barton [46], and its 1-dimensional null space yields a

limiting unit tangent vector (
.
x(i),k,

.
λ(i),k) to the PCr solution branch at (xk, λk). We have

found that requiring a positive dot product between subsequent limiting tangent vectors

(Equation 3.33) is not a valid strategy in general to ensure the correct direction, since
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these pairs of vectors are often orthogonal. Instead, we have resorted to problem-specific

information; for instance, for a drying column, the direction is chosen so as to decrease

the liquid flow rates in the column.

3.6.2.2. Step 2: Take a predictive step, detect nonsmooth boundaries and

update the direction

An Euler predictor step is taken with Equation 3.34 using (
.
x(i),k,

.
λ(i),k), and the active

selection function for the PCr equation system is monitored. If the latter function changes,

we know that the method has crossed a nonsmooth boundary in the domain of f . We have

found that convergence of Step 3 is unlikely in this case, since the orthogonal hyperplane

corresponding to the limiting tangent direction on one side of the boundary might not

intersect the solution branch on the other side. To address this problem in our case studies

with the nosmooth MESH model, we compute a limiting Jacobian matrix Jf (j)(x̄k, λ̄k) at

the predictor point. Its null space yields an updated unit vector (
.̄
xk,

.̄
λk) (Figure 3.7a)

that substitutes (
.
x(i),k,

.
λ(i),k) and provides a different orthogonal hyperplane, which we

have found to be more likely to intercept the solution manifold. The Euler predictor step

is recomputed and we proceed to Step 3 with the updated unit vector (
.̄
xk,

.̄
λk) (Figure

3.7b).

3.6.2.3. Step 3: Make a nonsmooth orthogonal correction

The augmented nonlinear system in Equation 3.35, which is now PCr, is solved with

the semismooth Newton method to generate the next point (xk+1, λk+1).

3.7. Bifurcations in dry/vaporless distillation columns

In this section, we present detailed parameter continuations for the two case studies

previously considered in the relevant literature [16, 31] and describe new types of bifur-

cations observed in dry and/or vaporless multistage distillation columns, in light of the
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concept of PCr manifolds proposed in Chapter 7. Several of these nonsmooth bifurcations

exhibit degenerate behavior, with the occurrence of infinitely many steady-state solutions

at certain input parameter values.

3.7.1. Case study 1: ideal binary mixture

A bubble-point liquid stream with 70% benzene, 30% toluene (% mol) is fed to Stage

6 of a column with N = 27 ideal stages, and the vapor and liquid phases are described by

ideal thermodynamics (Raoult’s Law). The intermediate stages are adiabatic and a linear

pressure profile is specified, ranging from the total condenser (Stage 1) at 1.05 bar to the

reboiler (Stage N) at 1.2 bar. The distillate-to-feed ratio is fixed at D/F = 0.5, and the

feed flow rate is chosen as F = 100 mol/s. The only change made to the original case

study [16, 31] is that we have switched the feed from Stage 20 to 6 to create clearer plots

and illustrations of the drying process. For all case studies in this chapter, parameters

for the K value and phase enthalpy correlations are retrieved from the Aspen Plus V10

database [2]. The nonsmooth model equations, and the nonsmooth equation-solving and

pseudo-arclength continuation methods previously described were implemented in Matlab.

We fix the remaining degree of freedom in this system by specifying the reflux ratio

R, which represents a single parameter λ on which the nonsmooth MESH model equa-

tions (represented by Equation 3.30) depend. Figure 3.8 illustrates how the steady-state

solutions of the model vary as functions of R, in terms of the liquid flow rates coming out

of the stages above the feed. When the value of R is high enough, all stages operate with

vapor-liquid equilibrium (Phase Regime I); therefore, the original and nonsmooth MESH

models have the same unique solution, which varies smoothly with respect to R.

In general, decreasing the reflux ratio causes the vapor and liquid flow rates throughout

the column to diminish. The value of R at which one or more flow rates first become zero

is denoted here as the critical reflux ratio Rcr. Similarly, we can define the critical value

λcr for a general parameter λ. We avoid the “minimum reflux ratio” nomenclature used
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Figure 3.8: Above-feed liquid flow rates as functions of the reflux ratio R.

by Bullard and Biegler [16] because, as evidenced by Figure 3.8, it might be possible for

the column to operate below Rcr while still satisfying all process specifications. Moreover,

this phenomenon is not to be confused with the Underwood concept of the minimum

reflux ratio to perform a separation, which corresponds to infinitely many stages.

For this particular case study, it is the liquid flow rate L5 directly above the feed

stage that disappears as we approach the critical reflux ratio Rcr ≈ 0.0024 from above.

We call the system state corresponding to R → R+
cr the upper critical solution. In this

state, Stage 5 is the only dry stage but it still operates in Phase Regime IIa, and thus the

standard MESH equations are still satisfied. However, the MESH model yields a unique

but non-physical solution for R < Rcr, with the above-feed liquid flow rates assuming

negative values. On the other hand, the nonsmooth MESH model remains physically

valid and reveals an unexpected behavior at Rcr, where a continuum of infinitely many

steady states exist instead of a unique solution. This is evidenced by the vertical lines

in the graphs of L2, L3 and L4 at Rcr in Figure 3.8. For this reason, the overall model

solution is discontinuous with respect to the reflux ratio at Rcr: the lower critical solution

corresponding to R→ R−
cr is different from the upper critical solution (R→ R+

cr).
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The non-uniqueness of solutions at Rcr gives rise to singular limiting partial Jacobians

of the model equations f(x, R) = 0 with respect to x, and therefore the semismooth

Newton method fails at or near Rcr. In order to obtain these infinitely many steady

states, which range from the lower to the upper critical solutions, we had to develop the

previously described nonsmooth version of the pseudo-arclength continuation method. By

taking small enough continuation steps, we can trace the solutions in terms of arc length

as a substitute parameter, which corresponds to the distance traveled along the solution

curve in (x, R) space. Geometrically, arc length acts as an extra coordinate that allows

us to “move” perpendicularly to the paper at the vertical line R = Rcr. Moreover, since

a unique steady-state solution exists at each value of arc length, the latter constitutes a

more adequate parameter than R to describe the overall set of solutions.

Figure 3.9 portrays the complete curve of solutions in terms of its arc length starting

from R = 0, with the corresponding values of reflux ratio represented by the juxtaposed

R axis. The vertical line R = Rcr from Figure 3.8 is expanded horizontally in terms

of arc length in Figure 3.9 to reveal an overall solution curve that is continuous, but

non-differentiable at several points between (and including) the upper and lower critical

solutions. The state of the distillation column is schematically represented in Figure 3.9

for all the nonsmooth points, which correspond to when each stage first becomes dry.

Exactly at the upper critical solution (R → R+
cr), Stage 5 is dry in Phase Regime

IIa and V5 is a dew-point vapor. As we continue tracing the solutions towards smaller

values of arc length, L4 starts decreasing in the same amount that V5 increases, keeping

Stage 5 in mass balance. Concurrently, T5 increases and makes the vapor V5 progressively

more superheated, putting Stage 5 into Phase Regime IIIa. This is a completely local

process, in which only the variables directly associated with Stage 5 change. When L4

finally reaches zero, we arrive at the next nonsmooth point represented in Figure 3.9, and

further decreasing of arc length initiates this same local process around Stage 4. This

way, as we traverse the solutions from R → R+
cr to R → R−

cr, the above-feed stages 2-5
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Figure 3.9: Above-feed liquid flow rates as functions of the arc length of the solution curve,
with schematic representations of the column at non-differentiable points.

become dry one at a time, sequentially from bottom to top. For R < Rcr, decreasing the

reflux ratio leads to smaller values of L1, until the latter reaches zero at R = 0. However,

the condenser does not become dry because of the specified liquid distillate output WL,1.
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Darker shades of red in Figure 3.9 represent the degree of “superheating” of the vapor

streams, which increases as we go up the column due to the pressure drop in each stage.

For negative values of the reflux ratio (R < 0), the standard MESH model continues

to have a unique mathematical solution, which is nevertheless not physically valid because

L1 = RD and several other liquid flow rates become negative. On the other hand, the

nonsmooth MESH model has no mathematical solution for R < 0, since its equations

bound L1 to be non-negative, and therefore reflects the behavior of the physical system.

3.7.1.1. The bifurcations at R = Rcr and R = 0

Recall the representation in Equation 3.30 of the nonsmooth MESH model equations

as depending on a single parameter λ, which here corresponds to R. We can say that a

1 - ∞ - 1 bifurcation exists at Rcr, since the number of model solutions for each value of

R change from 1 for R < Rcr, to infinitely many at R = Rcr, and back to 1 for R > Rcr.

Similarly, we observe a 0 - 1 - 1 bifurcation at R = 0, where the solution branch ends

abruptly. We can represent the essential aspects of both of these bifurcations in Figure

3.10 by plotting just the liquid flow rate L4 against R. However, the behavior of the

overall solution set cannot be represented by every one of the variables; for instance, the

graph of L5 does not reveal the occurrence of the bifurcation at Rcr. Moreover, note that

the intermediate nonsmooth points between the upper and lower critical solutions cannot

be observed in terms of L4 only in Figure 3.10.

We can also observe a bifurcation of type 1 -∞ - 1 in very simple smooth systems. For

instance, for f(x, λ) = λx = 0, there is a unique solution x = 0 for λ ̸= 0 but the whole

real line x = R of solutions at λ∗ = 0. What makes the bifurcation at R = Rcr unique

and novel is that the overall solution set remains a 1-dimensional and connected PCr

manifold, as illustrated in Figure 3.10. Moreover, the set of infinitely many solutions at

Rcr is bounded, and in this case consists of a 1-dimensional and connected PCr manifold

with two boundary points, the upper and lower critical solutions. Intuitively, this type of
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Figure 3.10: The 0 - 1 - 1 and 1 - ∞ - 1 bifurcations at R = 0 and R = Rcr, respectively, in
terms of L4.

bifurcation can be thought of as a hysteresis region: a hysteresis point (Figure 3.5c) that

has been “stretched” vertically into a whole segment of constant R = Rcr. Note how this

differs from the smooth hysteresis curve (Figure 3.5b) observed in most other distillation

systems with bifurcations, which are modeled with the (smooth) MESH equations.

Mathematically, for each of the infinitely many solutions at R = Rcr, at least one

of the limiting partial Jacobian matrices Jxf (i)(x, Rcr) with respect to the variables x

is singular, with a rank 1 deficiency. For the nonsmooth MESH model of a distillation

column, these singularities arise from complex interactions between the model equations

of types M, E, S and H of several stages. Intuitively, the singularities are associated with

an extra degree of freedom for the model equations, which appears only at Rcr and makes

the system momentarily underdetermined.

On the other hand, the limiting partial Jacobian matrices Jxf (i)(x, R) at R = 0 remain

invertible despite the occurrence of a bifurcation, and therefore the semismooth Newton

method can be used to solve for x directly at or around R = 0. In this case, singular

matrices are only present in the Clarke Jacobian set of f , which corresponds to the set of

all convex combinations of the limiting Jacobian matrices Jxf (i)(x, 0).
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3.7.1.2. The choice of parameter and the bifurcation at B = Bcr

We can analyze how the solutions of the nonsmooth MESH model change with respect

to any other parameter λ. If we choose to specify and vary the boilup ratio B = VN/LN

instead of R, we also arrive at a critical boilup ratio Bcr at which the first flow rate in the

column becomes zero. Figure 3.11 presents the above-feed liquid flow rates for Case Study

1 in terms of B, with Bcr ≈ 1.0108. Even though the overall solution set remains the

same, its representation in terms of B gives rise to a different bifurcation at Bcr of type

0 - /∞ - 1; here, /∞ indicates that the set of infinitely many solutions at the bifurcation

parameter Bcr is bounded and ends abruptly on one end. The upper critical solution

solution (R → R+
cr) now corresponds to B → B+

cr, and the solution for R = 0 would

correspond to approaching Bcr from below. The essential aspects of this bifurcation can

be described by the graph of L4 versus B in Figure 3.12; the solution set at Bcr is bounded

and consists of a 1-dimensional PCr manifold with two boundary points.

Figure 3.11: Above-feed liquid flow rates as functions of the boilup ratio B.

Since no solutions exist below the critical boilup ratio, Bcr represents a positive lower

bound for the parameter that cannot be predicted prior to simulation. This happens
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Figure 3.12: The 0 - /∞ - 1 bifurcation at Bcr in terms of L4.

because, once L5 becomes zero at the upper critical solution, the distillation column is

split into two halves (Stages 1-4 and Stages 5-27). Changes in the upper half, such as

decreases in the value of R, can no longer impact the lower half, whose describing variables

(including B = Bcr) remain the same for 0 ≤ R ≤ Rcr.

3.7.1.3. Vapor feed

Now, consider the same specifications in Case Study 1 except that the feed stream is a

dew-point vapor, directly introduced into Stage 6. Figure 3.13 presents some of the vapor

flow rates in the below-feed column section as functions of either R or B. In this case, it

is the vapor phase that disappears, but only in the stages below the feed. We can observe

a behavior that is mostly analogous to the dry column case, except that the roles of R

and B are switched; the critical points for this system are Rcr ≈ 1.054 and Bcr ≈ 0.0195.

The below-feed stages become sequentially vaporless from top to bottom, starting with

V7 = 0 at B → B+
cr, then V26 = 0 at B → B−

cr, and finally with the reboiler “turning

off” and becoming vaporless (V27 = 0) at B → 0+. However, the solution curve behavior

at B = 0 for a vaporless column is qualitatively different than that of a dry column at

R = 0.

No solutions exist for B < 0, since the mid equation (Equation 3.20) for the reboiler
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Figure 3.13: Below-feed vapor flow rates as functions of (a) the reflux ratio R; (b) the boilup
ratio B.

ensures LN > 0. However, at B = 0, the reboiler is vaporless and thus the liquid bottoms

product LN is mathematically allowed to become subcooled. This generates infinitely

many solutions associated with a negative reboiler heat duty QN , and gives rise to a 0 -

∞ - 1 bifurcation both at B = 0 and at R = Rcr. This type of bifurcation differs from the

0 - /∞ - 1 bifurcation depicted in Figure 3.12 because the solution set is now unbounded

at the bifurcation parameter, and consists of a connected 1-dimensional PCr manifold

with a single boundary point (the upper critical solution). The essential aspects of the 0

-∞ - 1 bifurcations at B = 0 and at R = Rcr can only be represented in terms of some of

the reboiler variables, such as the graph of the reboiler temperature TN versus the boilup

ratio B at B = 0 in Figure 3.14.

Note that a negative reboiler heat duty is physically realizable in terms of heat ex-

change. However, we can choose to eliminate these infinitely many solutions mathemati-

cally by bounding QN to be positive, which can be attained by employing a nonsmooth

equation analogous to Equation 3.29.
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Figure 3.14: Reboiler temperature TN as a function of the boilup ratio B.

3.7.2. Case Study 2: 5-component non-ideal mixture

A bubble-point liquid stream composed of 15% methanol, 40% acetone, 5% methyl

acetate, 20% benzene and 20% chloroform (% mol) is fed to Stage 7 of a column with

N = 19 ideal stages. The UNIQUAC activity model is used for the liquid phase, and

the Hayden-O’Connell correlation is used to compute the second virial coefficients that

model the vapor phase fugacity. The feed-to-distillate ratio is fixed at D/F = 0.3, the

intermediate stages are adiabatic, and the linear pressure profile ranges from 1.1 bar at

the reboiler to 1.015 bar at the total condenser. This system was also considered in the

same papers previously mentioned [16, 31].

Due to its low feed concentration, methyl acetate reaches very small vapor phase mole

fractions in the above-feed stages, to the point that its fictitious liquid mole fractions de-

fined via Formulation 1 (Equations 3.19, 3.20) would have to be negative in the dry stages.

This precludes convergence of the model equations, since the K value correlations contain

logarithmic terms that would become undefined. Instead, Formulation 2 can be used to

trace all model solutions, with the variable β present either explicitly through Equation

3.13 (Formulation 2a) or implicitly through Equations 3.14 and 3.15 (Formulation 2b).

In both cases, it is β that changes to reflect deviations from liquid-vapor equilibrium,
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with the fictitious liquid mole fractions remaining approximately constant. We note that

convergence with Formulation 2a is much more robust, which comes at the price of adding

an extra βj variable to each stage j. Formulation 2b can become numerically unstable

depending on the component chosen as i = 1 in Equation 3.14, including when the most

volatile component (acetone) is chosen, and thus smaller continuation steps must be used.

Using either form of Formulation 2, we can observe the same qualitative behavior in

this 5-component system as seen in the binary Case Study 1, with stages becoming dry

(for a liquid feed) or vaporless (for a vapor feed) through the same previously detailed

bifurcations. Therefore, for the sake of brevity, we omit the plots and report only the

critical parameter values: Rcr ≈ 0.0013 and Bcr ≈ 0.4382 when the feed is a bubble-point

liquid, and Rcr ≈ 2.2976 and Bcr ≈ 0.0068 when the feed is a dew-point vapor.

3.8. Analysis of the bifurcations

The bifurcations that occur at the critical parameter values represent the transition

of some of the column stages from Phase Regime I (vapor-liquid) into Phase Regimes

III (superheated vapor or subcooled liquid), and are intrinsic to cascades of equilibrium

stages. In this section, we use the original Case Study 1 (with a liquid feed) as a basis for

comparison and introduce several modifications into the column configuration and types

of specifications, in order to analyze which factors can influence and give rise to these

bifurcations.

3.8.1. Type of modeling approach

Any modeling approach capable of enforcing the necessary MESH-based physical laws,

with equilibrium relationships only between the phases that are actually present, will in-

variably lead to the same steady-state solutions and bifurcations described in this chapter.

In this sense, all three different formulations using the explicitly nonsmooth, PC∞ func-
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tion mid that we have employed (Equations 3.12, 3.13, and 3.14-3.15) are equally valid.

Equivalently, we could have used the complementarity constraint modeling approach rep-

resented by Equations 3.9-3.11, by first rewriting them with explicitly nonsmooth equa-

tions (e.g. the Fischer-Burmeister formulation) and then employing our pseudo-arclength

continuation method to yield the same steady-state solutions. However, this approach

would be more costly, given that it includes the additional variables sV , sL and β for each

stage.

3.8.2. The critical parameter value

The critical parameter value λcr is particular to each system and cannot be predicted

or computed with the MESH equations in general, since the location of the first flow

rate(s) to equal zero cannot be predicted. However, λcr and the upper critical solution

can be readily computed by replacing the specification equation for the parameter in the

standard MESH model,

λ− λuser = 0, (3.37)

with the explicitly nonsmooth equation

min
(
min
j
Lj,min

j
Vj

)
= 0. (3.38)

3.8.3. Mixture components and thermodynamic models

Our numerical experiments have shown that all bifurcations presented in this chapter

are independent of the number and identity of components, and of the thermodynamic

model used, which was also illustrated by Case Study 2. For instance, employing the Peng-

Robinson equation of state in the original Case Study 1 maintains the same bifurcation

behaviors, while the critical parameter values change slightly (Rcr ≈ 0.00230, Bcr ≈

1.007). The only issue to consider, as discussed in Case Study 2, is that certain fictitious
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mole fraction formulations might preclude convergence of the model equations at or below

the critical parameter value, depending on the mixture.

3.8.4. Pressure gradients and tray heat loss

Mathematically, the degenerate bifurcations at the critical parameter values will only

occur if “external driving forces” are included in the column specifications, in the form of

a pressure gradient and/or external heat transfer in the trays (i.e., intermediate stages).

Without at least one of these imposing forces, the vapor and liquid streams cannot drive

themselves out of saturation and thus the column stages cannot reach Phase Regimes III.

In such cases, there’s a unique solution at the critical parameter value, corresponding to

when one or more stages first become dry/vaporless but remain in Phase Regimes II.

To demonstrate that, consider Case Study 1, now with a uniform column pressure

of 1 bar. As Figure 3.15 illustrates, the stages above the feed can only become dry

simultaneously, with a unique critical solution at R = Rcr = 0. In terms of the boilup

ratio, this unique solution corresponds to Bcr ≈ 0.986. Further decreasing of either R

or B would necessarily lead to negative liquid flow rates, which is not allowed by the

nonsmooth MESH model; as a result, we have a 0 - 1 - 1 bifurcation both at Rcr and Bcr.

On the other hand, we can specify a uniform column pressure and still observe the

same 1 -∞ - 1 and 0 - /∞ - 1 bifurcations at Rcr and Bcr, respectively, by including non-

zero tray heat duties Qj. If we impose a uniform column pressure of 1 bar and include

a heat gain Qj ≈ 9.6 · 102 J/s in all trays (2 ≤ j ≤ N − 1) in Case Study 1, we are

able to reproduce essentially the same solutions and corresponding bifurcations of the

original case study, with the same Rcr, Bcr values. In the case of a vapor feed, the original

bifurcations with vaporless stages are recovered by imposing an external heat loss in the

trays.

In a real distillation column, a significant fraction of the tray pressure drop is due

to vapor flow through tray perforations. Therefore, we can expect a pressure gradient
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to be present in dry stages, creating the mathematical conditions for the occurrence of

infinitely many steady states with superheated vapor streams at the critical parameter

values. Additionally, tray columns are not perfectly insulated and heat exchange with

the environment occurs at every stage. In above-ambient-temperature processes, tray

heat losses could allow the liquid in vaporless stages to become subcooled, providing the

necessary conditions for infinitely many vaporless states to be observed.

Figure 3.15: Liquid flow rates L1 and L5 versus R for Case Study 1 with a uniform column
pressure of 1 bar.

3.8.5. Stage efficiencies

All numerical examples presented thus far involve ideal stages. If, instead, we spec-

ify a vaporization efficiency of 30% in all intermediate stages in Case Study 1, we still

observe the same bifurcations previously presented, only at different critical parameter

values (Rcr ≈ 0.00308, Bcr ≈ 2.000). On the other hand, if we specify vapor-phase Mur-

phree tray efficiencies of 30%, we obtain the slightly different behavior depicted in Figure

3.16. In this case, mathematically there exists a unique solution for each value of R and

therefore no bifurcation is present at Rcr ≈ 0.0024. However, the limiting partial Jaco-

bian matrices Jxf (i)(x, R) become extremely ill-conditioned, despite being non-singular,

and the resulting behavior in Figure 3.16 remains essentially the same. We observe an
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extremely abrupt change in steady-states at Rcr, with graphs that still appear to be ver-

tical. Finally, we note that the numerical values chosen for the tray efficiencies (either of

the vaporization or Murphree types) do not change the types of behaviors observed. The

difference in results depending on the type of efficiency chosen suggests that the functional

form of the equilibrium relationship (Equation 3.19), maintained when using vaporization

efficiencies, is necessary for the mathematical existence of infinitely many solutions.

Figure 3.16: Above-feed liquid flow rates versus R for Case Study 1 with vapor-phase
Murphree efficiencies of 30%.

Notwithstanding, we must take into account that stage efficiencies are only simplified

descriptions of non-ideal vapor-liquid mass transfer in real stages, with shortcomings

that become more pronounced in multicomponent, non-ideal mixtures [79]. Moreover,

Murphree stage efficiencies are known to become undefined and/or physically incorrect in

several instances, while vaporization efficiencies can be shown to, at least, always remain

well-defined [37]. For these reasons, column simulation in distillation design is customarily

performed with ideal stages, with stage efficiencies being estimated and included post-

simulation only to yield an updated number of trays. In contrast, the non-equilibrium

or rate-based modeling strategy is much better suited to describe mass transfer effects in

88



real stages, and thus a nonsmooth version thereof could be more reliable in predicting the

steady-state behavior of dry/vaporless columns.

However, the rate-based approach relies on correlations for mass and heat transfer,

interfacial areas and other parameters, which depend on knowledge of column and tray

design details [80], and are expected to be valid only when both vapor and liquid phases

are present. On the other hand, in general the efficiency/equilibrium stage approach still

remains quite accurate to describe binary, close-boiling ideal mixtures [79], such as the

benzene-toluene system from Case Study 1. As demonstrated in this section, the fact

that the infinitely many steady-state solutions of the nonsmooth MESH model persist

under different types of column specifications, stage efficiencies, mixture components and

thermodynamic models at least supports the hypothesis that some type of degenerate or

near-degenerate behavior could be observed experimentally.

3.8.6. The feed state

It is the state of the feed stream(s) that determines which phase(s) can disappear in

the column. We illustrate this for the original Case Study 1 in Figure 3.17, which shows

how Rcr changes as we vary the feed temperature, and the corresponding phase regimes

at, above or below the critical reflux curve. A change in regimes occurs at the feed

temperature T ∗
f = 366.07K, which is between the bubble and dew-point temperatures

Tbubble = 362.0K and Tdew = 367.9K of the feed mixture. For feed temperatures below

T ∗
f , the column goes dry above the feed stage for R ≤ Rcr, starting with L5 = 0, in the

same fashion depicted in Figure 3.8. For higher feed temperatures, the column becomes

vaporless below the feed stage at R = Rcr in the same fashion of Figure 3.13, starting

with V7 = 0, and smaller reflux ratios R < Rcr are infeasible.

However, exactly at the transitional feed temperature T ∗
f , the column becomes simul-

taneously dry above the feed and vaporless below the feed for R ≤ Rcr, starting with

L5 = V7 = 0. In this case, any of the infinitely many vaporless states of the below-feed
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Figure 3.17: Critical reflux ratio Rcr versus feed temperature Tf for Case Study 1, with phase
regimes for each (Tf , R) pair.

part of the column can occur simultaneously with any dry state of the above-feed section

corresponding to 0 < R ≤ Rcr. As a result, we arrive at another type of nonsmooth

bifurcation with a higher degree of degeneracy. The main aspects of this complex behav-

ior can be illustrated by Figure 3.18, where L4 (representing above-feed states) and V8

(representing below-feed states) are plotted against R at Tf = T ∗
f . At R = Rcr, the solu-

tion set is a 2-dimensional PCr manifold of steady states instead of a 1-dimensional PCr

manifold. For each individual reflux ratio 0 ≤ R < Rcr there are infinitely many vaporless

steady states forming a 1-dimensional PCr manifold, whereas the overall solution set for

0 ≤ R ≤ Rcr is a 2-dimensional PCr manifold containing dry and vaporless steady states.

While all other bifurcations presented in this chapter have codimension 1 and thus

require only a single parameter to be varied, the bifurcation at R = Rcr, Tf = T ∗
f is of

codimension 2: two parameters are involved simultaneously, the reflux ratio and the feed

temperature. Therefore, it is much less likely to be observed in practice during simulation

of the nonsmooth MESH model.

Figure 3.19 presents the phase regimes in terms of the boilup ratio versus Tf for the
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Figure 3.18: The codimension-2 bifurcation at Tf = T ∗
f , in terms of L4 and V8 versus R.

same system, and we see a qualitatively analogous behavior. We can also conclude from

Figures 3.17 and 3.19 that the magnitude of the critical parameter value is not necessarily

small and depends on several factors. As a result, engineers or solution algorithms could

inadvertently choose input parameters close to or below their critical values during column

simulation and optimization, leading to failure of any current MESH-based software.

Figure 3.19: Critical boilup ratio Bcr versus feed temperature Tf for Case Study 1, with phase
regimes for each (Tf , B) pair.
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3.8.7. Multiple feeds

When multiple feeds are present, the location and phase (vapor/liquid) of the first

vanishing stream is not obvious and cannot be predicted prior to simulation, but is usually

directly above or below one of the feed stages since flow rates tend to vary monotonically

in each column section.

To exemplify the different types of behavior that can be observed, consider the original

Case Study 1 with a bubble-point liquid fed into Stage 6. If we introduce a second liquid

feed stream into a stage above, say, Stage 4, then the same type of bifurcation from Figure

3.8 now happens above this second feed only, with Stages 2-3 becoming dry. If instead

we introduce a second vapor feed below Stage 6, say, at Stage 8, the type of bifurcation

observed at Rcr might change according to the behavior in Figure 3.17, with the horizontal

axis now representing the vapor feed flow rate F8. That is, for large enough values of F8,

the column is vaporless below Stage 8 at R = Rcr, and for small enough F8 values, it

remains dry above Stage 6 for R ≤ Rcr. At a transitional vapor feed flow rate F ∗
8 , the

column is simultaneously dry above Stage 6 and vaporless below Stage 8 for R ≤ Rcr.

3.8.8. The type of condenser and the bifurcation at R = 0

The nonsmooth bifurcation that occurs at R = 0 in a column with dry stages depends

on the type of condenser specified. As long as the vapor distillate fraction θ is smaller

than 1, a non-zero amount of liquid distillateWL1 is present and the condenser never goes

dry. As a result, the solution curve stops at R = 0 and we observe the same 0 - 1 - 1

bifurcation described in the original Case Study 1.

However, if θ = 1, the condenser becomes dry at R = 0 and the outlet vapor V1 can

become superheated, which is associated with a positive condenser heat duty Q1. The

solution curve is allowed to continue varying at R = 0, as the condenser temperature T1

progressively increases, and we observe a 0 - ∞ - 1 bifurcation, depicted in Figure 3.20
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for Case Study 1. This bifurcation is analogous to that observed at B = 0 for the reboiler

in a vaporless column, which was illustrated in Figure 3.14.

Figure 3.20: Condenser temperature T1 versus R for Case Study 1 with θ = 1.

3.8.9. Side products

The type of bifurcations occurring at the critical parameter values might change

when we withdraw side products from intermediate stages, depending on their phase

(vapor/liquid) and location relative to the feed streams. We illustrate the possible behav-

iors with Case Study 1, in which a liquid feed is introduced into Stage 6. If a vapor side

product is included anywhere in the column or if a liquid side product is withdrawn from

a stage below the feed, the types of bifurcations previously presented remain the same.

However, the system behavior changes if we include a liquid side product above the feed,

depending on the type of specification chosen and stage location.

3.8.9.1. Withdrawal ratio specification

If we specify a liquid withdrawal ratio RL,j for an intermediate stage j above the

feed, the stage’s drying process can proceed normally due to Equation 3.25 but is no

longer degenerate, as illustrated in Figure 3.21a for Stage 3 with RL,3 = 0.5. At the new
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critical reflux ratio value Rcr ≈ 0.0030, we observe infinitely many solutions due solely

to the drying process of Stage 4. The drying process of Stage 3 happens with a unique

solution for each R, until we reach a second reflux ratio value R∗ = 0.0024 with infinitely

many solutions corresponding to the drying process for Stage 2. Therefore, two 1 - ∞ - 1

bifurcations happen in series, at Rcr and R
∗. Taking a step further, if we specify the same

liquid withdrawal ratio RL,j = 0.5 for Stages 2, 3 and 4, we can eliminate the occurrence

of infinitely many solutions and the corresponding bifurcations altogether, as shown in

Figure 3.21b.

Figure 3.21: Above-feed liquid flow rates versus R for Case Study 1 with (a) RL,3 = 0.5, (b)
RL,j = 0.5, j = 2, 3, 4.

3.8.9.2. Flow rate specification

When we specify a liquid side product flow rateWL,j in stage j above the feed, the stage

can never become dry. If the stage’s liquid outlet Lj reaches zero, its corresponding mid

equation (Equation 3.20) does not switch between its arguments and remains enforcing

the summation relationship. Once Lj = 0 in the continuation process, the only way to

continue tracing solutions would be with Lj < 0, which is not allowed by the specification

Equation 3.26. Therefore, the nonsmooth MESH model ceases to have a solution, which

is illustrated in Figure 3.22a for Case Study 1 with WL,5 = 0.1 mol/s. Stage 5, directly
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above the feed, goes dry at Rcr ≈ 0.00446 and the solution curve cannot proceed any

further, with a 0 - 1 - 1 bifurcation observed at Rcr. On the other hand, if we specify a

liquid side product flow rate WL,2 = 0.1 mol/s in Stage 2, the drying process of Stages 3

and 4 below is allowed to happen in the original degenerate fashion, as depicted in Figure

3.22b. This originates infinitely many solutions at Rcr = 0.00445; however, the solution

curve stops once the outlet liquid L2 reaches zero, and we obtain a 0 - /∞ - 1 bifurcation

at Rcr.

Figure 3.22: Above-feed liquid flow rates versus R for Case Study 1 with (a) WL,5 = 0.1 mol/s,
(b) WL,2 = 0.1 mol/s.

3.9. Summary of bifurcations

Table 3.1 presents all codimension-1 bifurcations introduced in this chapter in their

simplest or normal form, which corresponds to the bifurcation at λ = 0 of a simple

single-equation, single-variable system f(x, λ) = 0 with the same essential behavior. In

all instances, the overall solution set is a connected 1-dimensional PCr manifold, with

or without boundary; moreover, the three first bifurcations depicted in Table 3.1 are

degenerate. Finally, we draw attention to the possibility that other combinations of

column specifications not considered in this chapter could give rise to other types of
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novel, nonsmooth bifurcations in dry/vaporless distillation columns.

Table 3.1: Summary of codimension-1 bifurcations.

Bifurcation 1 - ∞ - 1 0 - ∞ - 1 0 - /∞ - 1 0 - 1 - 1

Normal
form
f(x, λ) = 0

mid(x+ 1,−λ, x− 1) = 0 max(x− 1,−λ) = 0 min(x+1,−|max(x−1,−λ)|) = 0 min(λ,−|x− 1|) = 0

Solution set
around
λ = 0

1-dimensional PCr

manifold
1-dimensional PCr

manifold

1-dimensional PCr

manifold w/ 1 boundary
point

1-dimensional PCr

manifold w/ 1 boundary
point

Solution set
at λ = 0

1-dimensional PCr

manifold w/ 2 boundary
points

1-dimensional PCr

manifold w/ 1 boundary
point

1-dimensional PCr

manifold w/ 2 boundary
points

A single point
(0-dimensional PCr

manifold)

Examples

- Figures 3.8, 3.10 at
R = Rcr;
- Figure 3.13b at B = Bcr;
- Figure 3.21a at R = Rcr

and R = R∗.

- Figure 3.14 at B = 0;
- Figure 3.20 at R = 0.

- Figures 3.11, 3.12 at
B = Bcr;
- Figure 3.22b at R = Rcr.

- Figures 3.8, 3.10 at
R = 0;
- Figure 3.22a at R = Rcr.

3.10. Conclusions

We have presented a MESH-based steady-state model for multistage distillation, con-

sisting of a system of nonsmooth equations, that can simulate columns operating with

dry and/or vaporless stages. This task cannot be achieved with commercial software such

as Aspen Plus, which have well-known dry column simulation failures, since the describ-

ing equations for each stage need to be automatically switched according to the phases

present at the solution. The only other competing modeling strategy in the literature

relies on complementarity constraints, which require several equation solving tasks or the

use of optimization algorithms. On the other hand, our model can be solved in a sin-

gle equation-solving task using automatically-computed generalized derivatives, and can

bound flow rates and other variables to be non-negative. Moreover, the algebraic nature

of our model has allowed us to develop the necessary continuation methods to reveal, for
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the first time, the occurrence of an infinite number of steady states in distillation columns

with dry and/or vaporless stages.

In two case studies involving dry/vaporless distillation columns from the pertinent

literature, we have observed four novel types of codimension-1 bifurcations, classified

according to the change in the number of steady states with respect to a single input pa-

rameter: 1 -∞ - 1, 0 -∞ - 1 and 0 - /∞ - 1 (degenerate), and 0 - 1 - 1 (non-degenerate).

By further analyzing several types of column configurations, we demonstrate that degen-

erate bifurcations occur at critical input parameter values in a general context, regardless

of the mixture and thermodynamic models, as long as there is either a pressure gradient

in the column or imposed heat transfer in the trays. The degeneracy persists even when

non-ideal stage efficiencies of different types are specified and when multiple feed streams

and side products are included. We have also found that a codimension-2 bifurcation with

a higher degree of degeneracy can occur when two input parameters are varied simultane-

ously. All presented bifurcations exhibit nonsmooth behavior, mathematically described

by the proposed concept of piecewise-smooth manifolds.

Our findings further demonstrate that the input parameter values leading to

dry/vaporless stages in a distillation column are not necessarily small, cannot be

predicted prior to simulation, and often give rise to an infinite number of steady states.

This degeneracy is associated with singular generalized derivatives; therefore, it requires

special continuation methods that are not currently implemented in general process

flowsheeting software. Moreover, in some cases no feasible solutions exist below the

critical parameter values. In Chapter 4 we will focus on developing alternative nonsmooth

formulations to address both the singularity and infeasibility limitations, in order to

create a distillation model that is robust to the issues associated with dry/vaporless

stages and applicable for flowsheet simulation in industrial practice.
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Chapter 4

Nonsmooth distillation models

robust to dry column errors and

infeasible specifications

In this chapter we overcome convergence errors in distillation simulation related both

to dry stages and to infeasible specifications with our so-called nonsmooth adaptive mod-

els, which can be of two main types: “single-soft” and “double-soft”. With the single-soft

adaptive model we reset one user-chosen specification, if it happens to be infeasible, by

bringing one of the liquid or vapor flow rates Lj, Vj within the column to one of its im-

posed lower or upper bounds. This is achieved by enforcing the original MESH equations

together with a single nonsmooth specification, in a single equation-solving task.

However, we may encounter input conditions in which two specifications are infeasible

simultaneously. For such cases we have developed the double-soft adaptive model, which

relaxes two specifications and replaces them with nonsmooth equations that enforce upper

and lower bounds on the flow rates, though not necessarily in a strict sense. Despite the

fact that the obtained solution is not guaranteed to be the “nearest” feasible one, this

second modeling strategy can effectively allow us to proceed through infeasible flowsheet
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iterations and ensure the overall convergence of processes involving distillation columns.

4.1. Introduction

As discussed in Chapter 3, the standard MESH model can only converge to a physically

valid solution when the column specifications lead to a steady state with vapor-liquid

equilibrium conditions in all stages. That is, according to the nomenclature introduced in

Section 3.2.1, all column stages must be operating in either Phase Regime I (vapor and

liquid) or Phase Regimes II (dew-point vapor or bubble-point liquid). In Figure 4.1a we

illustrate this behavior by plotting the type of MESH model solution observed for each

pair of reflux ratio and feed temperature specifications for the benzene-toluene column

previously studied in Section 3.7.1 (Column 1 in Table 4.2). Figure 4.1b shows how select

liquid flow rates in the column change when we vary only the reflux ratio, keeping the

feed temperature fixed at its bubble-point. For specifications in the interior of the vapor-

liquid region in Figure 4.1a, all stages operate in Phase Regime I. At the boundary of the

vapor-liquid region, at least one stage is dry/vaporless but still operates in Phase Regime

II. Specifications on the exterior of the vapor-liquid region are infeasible because they lead

to a mathematical solution in which one or more flow rates are negative. We continue to

observe these non-physical MESH solutions as we move our specifications further away

from the vapor-liquid region, until eventually the mole fractions may reach such aberrant

values that the thermodynamic equilibrium equations might cease to be well-defined.

Due to its ability to switch between different equations depending on the phase regime

of each stage, the nonsmooth MESH model developed in Chapter 3, whose behavior is

illustrated in Figure 4.2, can describe distillation columns more thoroughly than the

standard MESH model. The two models agree with each other only within the interior of

the vapor-liquid region of Figure 4.2a. In the exterior of said region the nonsmooth MESH

model has either a feasible solution where one or more stages are dry and in Phase Regime

III (i.e., superheated vapor) or no mathematical solution, in which case we conclude that
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Figure 4.1: (a) Type of MESH solution for each reflux ratio and feed temperature; (b) liquid
flow rates versus reflux ratio for the bubble-point feed temperature.

the specifications are truly infeasible. This conclusion is warranted based on the detailed

parametric continuations performed in Chapter 3 and the nonsmooth MESH model’s

ability to bound flow rates to be non-negative. At the boundaries between regions in

Figure 4.2a the model exhibits infinitely many solutions with dry and/or vaporless stages

in Phase Regimes III, as illustrated by the bifurcation with degenerate vertical segments

in Figure 4.2b.

With the nonsmooth MESH model we have demonstrated that dry/vaporless solutions

in Phase Regimes III can indeed satisfy all the physical laws behind the MESH paradigm,

thus revealing a wider range of feasible specification values in Figure 4.2a compared to

Figure 4.1a. On the other hand, the nonsmooth MESH model cannot avoid dry column

convergence errors for infeasible specifications. Another limitation is that, for specifica-

tions at the boundaries between regions in Figure 4.2, it is not clear which of the infinitely

many solutions should be chosen as the column simulation output. Further, the model’s

generalized derivatives are singular at said boundaries, which hinders the performance of

standard Newton-type equation solving methods.
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Figure 4.2: (a) Type of nonsmooth MESH model solution for each reflux ratio and feed
temperature; (b) liquid flow rates versus reflux ratio for the bubble-point feed temperature.

4.1.1. Aspen Plus’ RadFrac model

Column specifications

The RadFrac model in Aspen Plus for rigorous distillation simulation with equilibrium

stages employs the MESH equations, albeit the standard algorithm used to converge them

is based on the inside-out method of Boston and Sullivan Jr [14] [15] (see Chapter 5 for a

more detailed discussion). The exact structure of the latter as currently implemented in

RadFrac is not described in the literature. As reported by Russell [75], a main modification

from the formulation in [14] was the addition of a middle loop together with the original

outer and inner loops.

To fix the two main degrees of freedom within the “Setup” section in RadFrac, we

are only allowed to choose values for two of the following “directly-specifiable” variables:

reflux ratio, reflux rate, boilup ratio, boilup rate, distillate rate, distillate-to-feed ratio,

bottoms rate, bottoms-to-feed ratio, condenser duty and reboiler duty. This restriction is

due to the specific (and efficient) structure of the inner loop of Boston and Sullivan Jr,

as opposed to the inner loop of Russell [75] which can enforce any specification directly.

In RadFrac, more “complicated” specifications such as product purities must be enforced
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indirectly through the “Design Specifications” section. The middle loop is responsible

for converging these by varying the directly-specifiable variables that are used within the

inner loop.

Dry column errors

With RadFrac we cannot obtain negative-flow-rate MESH solutions such as the ones

illustrated in Figure 4.1 because the software throws a “dry column” severe error message

when either

(a) a flow rate Lj, Vj reaches or goes below a threshold value of 10−5Fs, where Fs is the

sum of all feed flow rates to the column, or

(b) a ratio Vj/Lj or Lj/Vj reaches or goes below a threshold value of 10−5.

This error message causes the software to abort the simulation even within intermedi-

ate calculations, before the MESH equations could be potentially converged to a negative-

flow-rate solution. The counterpart of Figure 4.1 for the RadFrac model is presented in

Figure 4.3. Given the positive lower bound on flow rate values imposed by Aspen Plus,

with RadFrac we cannot reach the dry/vaporless MESH solutions on the boundaries of

Figure 4.1a, nor the vapor-liquid solutions directly above said boundary. Moreover, by

comparing Figures 4.2 and 4.3, we can see that we obtain the same dry column error

message in Aspen Plus both when there exists a feasible dry/vaporless solution in Phase

Regimes III as well as when the specifications are truly infeasible.

General convergence errors

Dry column error messages in Aspen Plus provide the user with at least some insight

into the mechanism behind RadFrac’s failure to converge. However, that is not the case for

the other types of generic convergence error messages that are even more often encountered

when using RadFrac. These messages include:

(a) Severe error: Fortran divide by zero encountered;

102



Figure 4.3: (a) Type of RadFrac solution for each reflux ratio and feed temperature; (b) liquid
flow rates versus reflux ratio for the bubble-point feed temperature.

(b) Error: RadFrac not converged in 25 outside loop iterations;

(c) Error: (RadFrac) Block is not in mass balance.

(d) Severe error: Column not in mass balance. Check feeds, products, and column

specifications.

Another possible error message when working with design specifications in RadFrac

is:

(e) Warning: outside loop tolerance was satisfied but design spec iteration (middle)

loop failed to converge. Reached an optimum value.

From the error message above, we assume that the termination criterion employed for

RadFrac’s middle loop is based on the sensitivity of the design specifications with respect

to the directly specifiable variables reaching a near-zero value.

Both with the dry column and the more generic convergence error messages, Aspen

Plus provides no explanation as to whether failure is due to numerical convergence diffi-

culty or to infeasibility of the user-chosen specifications.
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4.2. The proposed nonsmooth adaptive models

To overcome convergence errors related to dry stages and to infeasible specifications

in a more general setting, we propose so-called nonsmooth adaptive models, which can

be of two main types: “single-soft” and “double-soft”. Both of these models enforce the

standard MESH equations, which are smooth, for each stage j:

Lj−1 + Vj+1 + Fj − (Lj +WL,j)− (Vj +WV,j) = 0, (4.1)

xi,j−1Lj−1 + yi,j+1Vj+1 + zi,jFj − xi,j(Lj +WL,j)− yi,j(Vj +WV,j) = 0, i = 1, . . . , Nc,

(4.2)

hLj−1Lj−1 + hVj+1Vj+1 + hFj Fj − hLj (Lj +WL,j)− hVj (Vj +WV,j) +Qj = 0, (4.3)

yi,j −Ki,jxi,j = 0, i = 1, . . . , Nc, (4.4)

Nc∑
i=1

xi,j −
Nc∑
i=1

yi,j = 0, (4.5)

where N is the number of stages, numbered from top to bottom, Nc is the number of

components, Vj and Lj are the liquid and vapor molar flow rates leaving stage j, with the

respective mole fractions yi,j, xi,j of component i; Fj and zi,j are the molar flow rate and

mole fractions of the feed stream to stage j; WV,j and WL,j are the flow rates of vapor and

liquid side products withdrawn from the stage; hVj and hLj are the molar enthalpies of the

outlet vapor and liquid phases, Ki,j is the equilibrium ratio for component i, Qj is the heat

transfer rate to the stage, and Fs is the sum of all feed flow rates to the column. Some of

the streams are absent in the first and last stages, as previously illustrated in Figure 3.3.

The total distillate flow rate D is defined as D = WL,1+V1, the reflux ratio as R = L1/D,

and the boilup ratio as B = VN/LN . The vapor distillate fraction θ = V1/(WL,1 + V1),

ranging from 0 to 1, is specified with an additional equation.

Equations 4.1-4.5 differ from the nonsmooth MESH model Equations 3.16-3.20 only

in the summation Equation 4.5, which is no longer the median of three arguments. With
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this modification the adaptive models can still reach solutions with dry and vaporless

stages operating in Phase Regimes II, but not in Phase Regimes III.

After specifying the feed stream conditions, stage pressures, heat duties Qj and side

product ratios WL,j/Lj,WV,j/Vj or flow rates WL,j,WV,j for intermediate stages 2 ≤ j ≤

N−1, we still need to fix two degrees of freedom. Traditionally we would enforce specified

values for two chosen column variables λ1, λ2 using the equations λ1 − λ1,spec = 0 and

λ2 − λ2,spec = 0. The single-soft and double-soft models differ only in how they replace

one or both of these two specification equations.

4.2.1. The single-soft adaptive model

The single-soft model replaces one “hard” specification equation λ − λspec = 0 for a

user-chosen variable λ with the following “soft” nonsmooth specification equation:

mid

(
−minj {Lj, Vj}

Fs

, α (λ− λspec) ,
1

β

(
1− maxj {Lj, Vj}

rmaxFs

))
= 0. (4.6)

Here,

� The first argument of the mid function is responsible for setting a lower bound for

the flow rate values. The minimum is taken over the terms L1, . . . , LN−1, V2, . . . , VN

(the internal flow rates); over any side product flow rates; and over the terms

WL,1 − rminFs, LN − rminFs, and V1 − rminFs if θ ̸= 0, unless one of these flow

rates is being fixed by the user with a “hard” specification. If that is the case, we

do not include the term corresponding to the specified flow rate in order to avoid

structural singularity in the (generalized) derivative matrix of the model equations.

Here, 0 ≤ rmin < 1 is an arbitrarily chosen minimum ratio that can establish a

positive lower bound rminFs for the external flow rates WL,1, LN , and also for V1

when the condenser is partial; all other flow rates are bounded below by zero.

A value of rmin > 0 is desirable within flowsheet simulation to ensure that any
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equipment downstream of distillation columns has a non-zero feed. In our flowsheet

simulations in Section 5.6 we have used rmin = 0.05, while in the single-column case

studies of this chapter we set rmin = 0.

� α = ±1 is determined from the column input conditions and reflects in which

direction λ affects the flow rate values inside the column, as further explained below.

� In the second argument of the mid function, it might be necessary to include a scaling

factor to ensure values remain approximately between 0 and 1. For example, for

λ = L1 or VN we should include Fs in the denominator of the second argument.

� β = 15 is a scaling factor that we found to be adequate for our set of test cases.

Although equation scaling does not have any influence on the Newton step for

a smooth system, differences in scaling between the arguments of a nonsmooth

function can change which argument is active and thus alter the semismooth Newton

step. While the first argument in Equation 4.6 is designed to have magnitude

between 0 and 1, we found that the third argument can reach much more elevated

magnitudes during iterations and preclude convergence without an adequate value

of β.

� The third argument of the mid function is responsible for setting the upper bound

rmaxFs on flow rate values, where rmax > 1 is an arbitrarily chosen maximum ratio;

in our simulations we have used rmax = 5. The maximum only needs to be taken over

the internal flow rates L1, . . . , LN−1, V2, . . . , VN and not over the external product

flow rates WL,1, LN and V1. This is the case because only the former can grow

unbounded near an infinite flow rate discontinuity when using the standard MESH

model, as discussed in Section 4.5.

Equation 4.6 is suitable for specified variables λ that (tend to) have a monotonic

relationship with Lj, Vj values, such as the reflux ratio R, boilup ratio B, and product
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purities x1,i, xN,i. We might need to use different formats for the nonsmooth specification

equation when using other types of soft specified variables λ, which will be outside of the

scope of this thesis.

The need for imposing a lower bound on Lj, Vj is clear from our previous discussion

on dry column errors, and 0 is the natural value to choose (at least for the internal

flow rates). On the other hand, we must impose an upper bound due to the infinite

asymptoptic discontinuity in flow rate values that MESH solutions exhibit at azeotrope

pinch points and also when N < Nmin for the desired separation, as will be presented in

Section 4.5. In this case there is no natural upper bound value to choose, so we must

select an arbitrary finite value rmaxFs.

We define λrmin
as the value of λ that leads to the “minimum flow rate” (MESH)

solution in which the first argument of the mid function in Equation 4.6 is equal to zero.

That corresponds to the minimum flow rate in the column reaching its imposed lower

bound, i.e., either an internal flow rate Lj, Vj or side-product flow rate WL,j,WV,j is equal

to zero, or an external product flow rate WL,1, LN (or V1 if θ ̸= 0) is equal to rminFs.

Similarly, λrmax is the λ value that corresponds to the “maximum flow rate” (MESH)

solution for which the third argument of the mid function is equal to zero. That is,

the maximum internal flow rate Lj, Vj is equal to its upper bound rmaxFs. For a given

distillation column and choice of λ, neither λrmin
nor λrmax can be predicted prior to

simulation.

In Equation 4.6, the specification λ − λspec = 0 is only enforced if λspec gives rise to

a MESH solution that satisfies both the upper and lower constraints on all flow rates.

Otherwise, λ is automatically reset to either λrmin
or λrmax , depending on our choice of

α = ±1, to yield either the maximum or lower flow rate MESH solution:

� For α = 1, the single-soft model returns the maximum flow rate solution λ = λrmax

when λspec ≤ λrmax , and the minimum flow rate solution λ = λrmin
when λspec ≥ λrmin

.

� For α = −1, the single-soft model returns the minimum flow rate solution λ = λrmin
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when λspec ≤ λrmin
, and the maximum flow rate solution λ = λrmax when λspec ≥

λrmax .

In general, we should use α = −1 if higher values of λ tend to increase Lj, Vj values

(e.g., for λ = R), since in this case we expect to have λrmax > λrmin
. Conversely, α = 1

is the most adequate choice if higher values of λ tend to decrease flow rate values, given

that we should have λrmax > λrmin
. Table 4.1 presents the strategies for determining α

from the column input conditions that we have used in the case studies of this chapter

and of Chapter 5. We note that, since our single-soft model is designed to work even with

extremely unreasonable soft specification values (e.g., negative compositions), we refrain

from using the latter to determine α. However, we do make use of the hard specification

value chosen by the user when both specifications are product purities.

Table 4.1: α values for each soft specified variable λ.

Specified variable λ α value

Reflux ratio,
R = L1/D

-1

Boilup ratio,
B = VN/LN

-1

Distillate purity, x1,i

1, if i is heavy (xj,i increases with j);

-1, if i is light (xj,i decreases with j).

When xN , i is the hard specification, we can
use α = sign (xN,i,spec − zc,i).

Bottoms purity, xN,i

-1, if i is heavy (xj,i increases with j);

1, if i is light (xj,i decreases with j).

When x1, i is the hard specification, we can
use α = sign (x1,i,spec − zc,i).

The single-soft adaptive model directly enforces a specification equation for any vari-

able λ (including in its inside-out formulation that will be presented in Chapter 5), while

RadFrac can only specify “complicated” variables indirectly through its middle loop, as
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discussed in Section 4.1.1. Further, the single-soft model’s strategy to arrive at a sub-

stitute value of λ when λspec is infeasible stands in contrast to RadFrac’s middle-loop

optimality criterion. The latter is based on the sensitivity of the actual specification λ

(e.g., product purity) with respect to the variable that is enforced in the inner loop (e.g.,

R). On the other hand, when λ leads or tends to lead to a solution in which one or more

flow rates are outside of their imposed bounds, our model returns the “nearest best” λ

value by bringing the furthest-deviating flow rate in the column back to its corresponding

bound.

4.2.2. The double-soft adaptive model

In the double-soft model we relax the two “hard” specification equations λ1−λ1,spec = 0

and λ2 − λ2,spec = 0 and replace them with

min

(
0,

minj {Lj, Vj}
Fs

)
= 0, (4.7)

min

(
0, 1− maxj {Lj, Vj}

rmaxFs

)
= 0, (4.8)

where the minimum and the maximum terms are taken in the same way as in Equation

4.6.

The above equations ensure 0 (or rminFs) ≤ Lj, Vj ≤ rmaxFs without necessarily en-

forcing either of the bounds strictly, in contrast to the single-soft model. Because of that,

the double-soft adaptive model can also potentially avoid other types of convergence er-

rors unrelated to the flow rate values going out of bounds. Due to the identically zero

terms, Equations 4.7 and 4.8 may exhibit inherently singular generalized derivatives. Nev-

ertheless, we have found that the double-soft model can be solved successfully by using

the pseudo-inverse of the generalized derivatives within the semismooth Newton method

(see Section 4.4), a strategy that had not been attempted before in nonsmooth process

modeling.
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Every solution that the double-soft model converges to is MESH feasible, given that

all first-principles physical laws are still enforced within the model equations. However,

since any specification equations λ1−λ1,spec = 0 and λ2−λ2,spec = 0 we might wish to try

to enforce are not included in the model, in general we do not obtain λ1 = λ1,spec and/or

λ2 = λ2,spec even when both specified values are feasible or when only a single one of them

is infeasible. In the latter cases, if we construct our initial guess based on λ1,spec, λ2,spec we

might still converge to a solution for which λ1 ≈ λ1,spec and/or λ2 ≈ λ2,spec. Despite its

“looseness”, we have found that this modeling strategy can effectively allow us to proceed

through infeasible iterations of flowsheets with distillation columns, as demonstrated in

the case studies of Chapter 5.

4.3. Initialization procedures

Column initialization depends on which variables are specified to fix the two main

degrees of freedom, and the standard strategy is to use the user-chosen values for the latter

to compute the other column variables. The best case scenario is when these allow us to

estimate all Lj, Vj values directly, which is the case for D or LN and R or B specifications.

When at least one of the specifications is a product purity, for example, we must instead

guess values for D,LN or R,B. Since for our adaptive models we cannot assume that

user-chosen specifications will lead to a feasible initial guess or even be physically valid

themselves, we then correct the initialized variables to make sure they are within their

physical bounds. Further, for a top or bottom product purity soft specification, we have

found it advantageous to screen for the appearance of an azeotrope at Stage 2 or Stage

N , respectively, in order to get better initial estimates for compositions and flow rates

(see Section 4.3.4).

Our procedures to generate an initial guess for the column variables, considering each

type of pair of specifications used in our case studies, are presented below. Flashing the

composite feed stream in Procedure 4.3.1 is standard for initializing temperatures and
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compositions (e.g., see Chapter 10 in [79]); the main difference is that we used one extra

flash calculation at the top and bottom stages. In Procedure 4.3.2, assuming constant

molar overflow for initializing flow rates is also standard. However, we specifically reset

Lj, Vj values to reflect the imposed upper and lower bounds in our adaptive models.

4.3.1. D or LN and R or B specifications

1. Initialize T,x,y values according to Procedure 4.3.1.

2. Initialize L,V values according to Procedure 4.3.2 with the user-specified values for

D or LN , and R or B.

4.3.2. x1,i and xN,i specifications for a binary mixture

The procedure below applies to the single-soft model, i.e., when either x1,i or xN,i is a

soft specification.

1. Set x1,i, xN,i equal to their specified values. If the soft composition is greater than

1 or smaller than 0, reset it to 0.99 or 0.01, respectively.

2. Screen for an azeotrope at the top or bottom of the column according to Section 4.3.4

for the soft composition x1,i or xN,i, respectively. If an azeotrope of composition

xazeo is found that does not correspond to a pure component, check if the soft

specification value goes beyond xazeo,i when compared to zc,i, the composite feed

mole fraction of i. If so, reset the soft composition value (but not its specified

value) to be approximately equal to xazeo,i, within a safety distance of 0.02.

3. If zc,i does not lie in the interval between x1,i and xN,i, reset the soft purity so that

zc,i belongs to said interval within a safety distance of 0.05.
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4. Compute D from the total mass balance

D = Fs
zc,i − xN,i

x1,i − xN,i

. (4.9)

5. Estimate R = 0.1 if the soft purity specification was reset in Step 3, otherwise guess

R = 1.

6. Initialize L,V values according to Procedure 4.3.2 using the D,R estimates.

7. If the soft specification x1,i or xN,i was reset in Step 2, we expect the adaptive

model to converge to a near infinite-flow-rate solution. Therefore, in this case reset

the internal flow rate Lj, Vj of maximum magnitude to a near-maximum value of

0.8 rmaxFs and increment all other internal flow rates in the same amount.

8. Set values for x1,k and xN,k for k ̸= i so that
∑

k x1,k =
∑

k xN,k = 1.

9. Obtain values for y1 and T1 by performing a bubble-point flash at P = P1 using

z = x1.

10. Obtain values for yN and TN by performing a dew-point flash at P = PN using

z = xN .

11. Calculate remaining T,x,y values with linear interpolation between Stages 1 and

N .

4.3.3. Other specifications

For other pairs of specifications, and for purity specifications within the double-soft

model, we can perform the following generic initialization:

1. Initialize T,x,y values according to Procedure 4.3.1.
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2. Initialize L,V values according to Procedure 4.3.2 with D = 0.5Fs (if D not speci-

fied) and R = 1 (if R not specified).

Procedure 4.3.1 (Initialization of T,x,y values).

Given compositions and flow rates of feed streams, and stage pressures:

1. Combine all column feed streams to form a composite feed with composition zc and

flow rate Fs.

2. Set T1 and TN as the bubble-point and dew-point temperatures of the composite

feed, respectively, at pressure Pm = (P1 + PN)/2.

3. Perform a PT -flash of the composite feed at P = Pm and T = (T1 + TN)/2 and

obtain liquid and vapor mole fractions xf ,yf .

4. Perform a bubble-point flash at P = P2 using z = yf and set y2 equal to the

resulting bubble-point vapor composition.

5. For simplicity, assume a total condenser and set x1 = y2. To guess y1, perform a

bubble-point flash at P = P1 using z = x1.

6. Perform a dew-point flash at P = PN−1 using z = xf and set xN equal to the

resulting dew-point liquid composition.

7. To guess yN , perform a dew-point flash at P = PN using z = xN .

8. Obtain the remaining T,x,y values via via linear interpolation.

Procedure 4.3.2 (Initialization of L, V values).

Given values for D or LN , and R or B:

1. Reset the given D or LN value so that rminFs ≤ D,LN ≤ (1− rmin)Fs, then use the

relationship Fs = D + LN to obtain LN or D.
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2. Set V1 = θD and WL,1 = D − V1.

3. Initialize any side product flow rates WL,j,WV,j at their specified values. If with-

drawal ratios are specified instead, initialize WL,j,WV,j values at zero for simplicity.

4. If R is specified, set L1 = RspecD and V2 = L1 + D, then perform constant molar

overflow (CMO) calculations down the column to obtain values for L2, . . . , LN−1 and

V2, . . . , VN . If B is specified instead, set VN = BspecLN and LN−1 = VN +LN − FN ,

then perform CMO calculations up the column to obtain values for LN−2, . . . , L1

and VN−1, . . . , V2.

5. If the internal Lj, Vj flow rate of smallest value is smaller than rminFs, reset it to

that value. Then, increase all other internal flow rates in the same amount so that

CMO is still satisfied.

6. If the internal Lj, Vj flow rate of maximum value is larger than 0.8rmaxFs, reset it

to that value. Then, decrease all other internal flow rates in the same amount so

that CMO is still satisfied.

4.3.4. Screening for an azeotrope

To screen for a non-trivial azeotrope at the top of the column, for example, the naive

approach would be to solve the following system of equations for x and T at the top tray

pressure P2:

xi = Ki(T, P2,x,x), i = 1, . . . , Nc, (4.10)

Nc∑
i=1

xi = 1. (4.11)

However, this system of equations has at least Nc trivial solutions corresponding to the

pure components. As with any nonlinear system with multiple solutions, we are not

guaranteed to converge to the desired one without performing continuation procedures.
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Instead, our approach to screen for an azeotrope at the top of the column is to solve

a fixed-point problem w = f(w), where f(w) is the vapor composition that results from

solving a bubble-point flash at P = P2 using w as the flash feed composition. Solving

w = f(w) with direct substitution using w = zc as the initial guess corresponds to passing

the composite feed through a sequence of (infinitely many) bubble-point flashes, where

the bubble-point vapor composition output of each flash is fed as input to the next one. In

the limit of the sequence of flashes, both the vapor and liquid outputs of the bubble-point

flash have the same composition as the flash feed. This series of flash vessels mimics an

infinite sequence of distillation trays in the upper column section, and in this case it must

asymptotically reach the “nearest” azeotrope that is lighter than zc, albeit that might be

a pure component. However, this is not always guaranteed to be the same azeotrope that

will tend to be formed at the top of the column for the chosen process conditions.

To screen for an azeotrope at the bottom of the column we perform an analogous

procedure, except that f(w) is now the liquid composition that results from solving a

dew-point flash at P = PN using w as the flash feed composition.

4.4. The proposed equation-solving method

We solve our single-soft and double-soft adaptive models f(X) = 0, which are systems

of piecewise-smooth (PC∞) equations, with a modified version of the semismooth Newton

method [69]. The two main modifications involve using the pseudoinverse semismooth

Newton step (see Section 2.3.5) conditionally, in a “try/catch” approach, and performing

a model-specific “forward tracking” line search. The algorithmic structure of the method

for a generic iteration k is presented in Algorithm 1.

To generate the next iterate Xk+1 from Xk, first we obtain a B-subdifferential element

G(Xk) ∈ ∂Bf(Xk) exactly with the automatic differentiation algorithm of Khan and

Barton [46] (see Section 2.1.3). To obtain the direction dk, first we attempt to compute
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Algorithm 1: k-th iteration of the equation solving method.

Input : Xk, f(Xk), θ > 1, αmin function.
Output: Xk+1.

1 Obtain G(Xk) ∈ ∂Bf(Xk) using the algorithm of Khan and Barton [46]
2 try:
3 Solve G(Xk)d = −f(Xk) for d
4 dk ← d

5 catch G(Xk) singular or ill-conditioned :
6 dk ← −G(Xk)† f(Xk)
7 end
8 α← αmin(d

k)
9 Xk+1 ← Xk + αXk

10 if
∥∥f(Xk+1)

∥∥ < ∥∥f(Xk)
∥∥ and α < 0.9 and Xk+1 within physical bounds then

11 ncurrent ←
∥∥f(Xk)

∥∥
12 while

∥∥f(Xk+1)
∥∥ < ncurrent and α ≤ 1 and Xk+1 within physical bounds do

13 ncurrent ←
∥∥f(Xk+1)

∥∥
14 α← θα
15 Xk+1 ← Xk + αdk

16 end
17 α← α/θ
18 Xk+1 ← Xk + αdk

19 end
20 return Xk+1

the standard semismooth Newton step, i.e., we try to solve

G(Xk)d = −f(Xk) (4.12)

for d (see Section 2.3.2). If this fails due to G(Xk) being singular or ill-conditioned, then

we compute the so-called pseudoinverse semismooth Newton step dk = −G(Xk)† f(Xk)

(see Section 2.3.5). This failure is expected in most iterations for the double-soft adaptive

model, given the structurally singular nature of some of its selection functions, but it can

also sometimes happen in intermediate iterations with the single-soft model.

Finally, we select a step size α in the direction dk. Traditionally, one would start with

a generic and reasonably large step size α = α0 and then progressively decrease it through
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a backtracking line search, so as to approximately minimize
∥∥f(Xk + αdk)

∥∥. However, in
the case of our adaptive models, there is no such generic “safe” step size α0 that we could

start from. The model function f can become very ill-conditioned during intermediate

iterations, especially when the model solution is near an infinite flow rate pinch point

(see Section 4.5). A high condition number G(Xk) causes one or more components of

the direction dk to have extremely large magnitude, particularly the ones corresponding

to column flow rates, such that an unwise step size might preclude convergence or lead

f to become undefined. Therefore, our models require a so-called forward tracking type

of line search, in which we start from a small enough step size and attempt to increase

it to approximately minimize
∥∥f(Xk + αdk)

∥∥. However, once again there is no generic,

constant α0 that is guaranteed to be small enough for ill-conditioned directions.

In our approach we compute the initial step size through a model-specific function of

the direction, αmin(d
k), which limits how much the column variables are allowed to change

in the direction dk. We impose “maximum” values ∆F and ∆y for the magnitude in vari-

ation of flow rate values and mole fractions, respectively, such that αmin(d
k) corresponds

to the maximum step size that satisfies these limitations. We then set α← αmin(d
k). As

a result, the magnitude change of at least one variable corresponds to its threshold ∆F

or ∆y when going from Xk to Xk + αdk. In our case studies, we have found the values

∆F = 0.3Fs and ∆y = 0.1 to be adequate.

If
∥∥f(Xk + αdk)

∥∥ < ∥∥f(Xk)
∥∥ we progressively increase the step size α ← θα, where

θ > 1, until the norm of f stops decreasing, and as long as α ≤ 1 and all flow rate and

mole fractions variables in Xk + αdk stay within their imposed physical bounds. In our

simulations we have used θ = 1.4. At last, we set Xk+1 = Xk + αdk and repeat the

procedure described in this section for iteration k + 1.

Both our single-soft and double-soft models consist of a square system of equations

f(X) = 0; thus, any rank deficiency of the generalized derivative matrix G(Xk) precludes

it from being full column or row rank. Therefore, the conditions for the convergence
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theorems of the pseudoinverse semismooth Newton method presented in Section 2.3.5

(and also of the LP-Newton method presented in Section 2.3.3) cannot be verified to hold.

Moreover, we can expect the double-soft model to have a 2-dimensional set of non-isolated

solutions, since its equation system has two unspecified degrees of freedom. Nevertheless,

we have found that both types of adaptive models can be successfully converged with the

equation solving method described in this section.

4.5. Examples

Table 4.2 presents the distillation column examples that we will analyze in this chapter

and/or in Chapter 5. Columns 1 and 7 correspond to Case Studies 1 and 2 of Chapter 3,

respectively, and Column 2 is a slight modification of Column 1. We extracted Columns

3 and 4 from the ethanol-benzene pressure-swing distillation flowsheet of Example 11.5 in

[79], which is schematized in Figure 5.10; this mixture forms a minimum-boiling azeotrope.

Columns 5 and 6 are taken from the pressure-swing distillation flowsheet from Figure 3a of

[92], as presented in Figure 5.17, which separates the maximum-boiling azeotropic system

diethylamine-methanol. Both of these flowsheets will be simulated in full in Section 5.6

of Chapter 5.

We implemented our models and equation solving algorithms in MATLAB. Param-

eter values for all thermodynamic property correlations were obtained from the Aspen

Plus V10 database. To validate our distillation model implementation, we compared our

simulation results with those of Aspen Plus’ Radfrac model using parameter values for

which the latter converges without errors. Unless otherwise noted, we used rmax = 5 and

rmin = 0 for all examples in this section. We simulate the single-soft model in Examples 1

through 5 with our (pseudoinverse) semismooth Newton method from Section 4.4, using

standard and/or pseudo-arclength continuation procedures, when required, to plot the bi-

furcation diagrams. We will analyze convergence robustness of the single-soft model when

using our “blind” initialization procedures from Section 4.3 in Chapter 5. In Example 6
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we employ both the pseudoinverse semismooth Newton and the LP-Newton methods to

simulate the double-soft model. In all examples, we imposed a maximum error tolerance

of ϵ = 10−7 on the infinity norm of the residual of the single/double-soft model equations.

Table 4.2: Parameters and specifications for each example column.

Column 1 Column 2 Column 3

Components
Benzene (i = 1)

Toluene

Benzene (i = 1)

Toluene

Ethanol (i = 1)

Benzene

Liquid phase
model Ideal Ideal NRTL

Vapor phase model Ideal Ideal Ideal

Number of stages N = 27 N = 5 N = 9

Pressure profile
Linear between
P1 = 1.05 bar and
PN = 1.2 bar

Linear between
P1 = 1.05 bar and
PN = 1.2 bar

P1 = 0.26 bar, linear
between P2 = 0.3 bar
and PN = 0.4 bar

Feed stream

z = (0.7, 0.3)

Stage 6

PF = 1.013 bar

bubble-point

z = (0.7, 0.3)

Stage 3

PF = 1.013 bar

bubble-point

z = (2/3, 1/3)

Stage 6

PF = 1.013 bar

bubble-point

Hard specification D = 0.5Fs xN,1 = 0.3 xN,1 = 0.99

Soft specification R x1,1 x1,1

Relevant azeotrope None None xazeo =
(0.3585, 0.6415)
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Table 4.2: Parameters and specifications for each example column (continued).
.

Column 4 Column 5 Column 6 Column 7

Components
Ethanol (i = 1)

Benzene

Diethylamine (i = 1)

Methanol

Diethylamine (i = 1)

Methanol

Methanol (i = 1)

Acetone (i = 2)

Methyl acetate

Benzene

Chloroform

Liquid phase
model NRTL UNIQUAC UNIQUAC UNIQUAC

Vapor phase
model Ideal Ideal Ideal Hayden O’Connell

Number of
stages N = 5 N = 39 N = 39 N = 19

Pressure
profile

P1 = 1.013 bar, linear
between P2 = 1.06

bar and PN = 1.2 bar

Linear between
P1 = 0.8 atm and
PN = 1.1 atm

Linear between
P1 = 10 atm and
PN = 10.3 atm

Linear between
P1 = 1.015 bar and

PN = 1.1 bar

Feed stream

z = (0.37, 0.63)

Stage 2

PF = 0.26 bar

bubble-point

z = (0.5, 0.5)

Stage 16

PF = 1.013 bar

TF = 320 K

z = (0.3, 0.7)

Stage 19

PF = 1.1 atm

bubble-point

z = (0.15, 0.4,
0.05, 0.2, 0.2)

Stage 7

PF = 1.013 bar

dew-point

Hard
specification xN,1 = 0.01 x1,1 = 0.996 x1,1 = 0.004 D = 0.3Fs

Soft
specification x1,1 xN,1 xN,1 R or x1,1

Relevant
azeotrope xazeo = (0.449, 0.551) xazeo = (0.285, 0.715) xazeo = (0.579, 0.421)

xazeo = (0.272, 0.550,
0.156, 0.022, 0.00062)

4.5.1. Example 1: benzene-toluene, soft R specification

In this section we consider Column 1 from Table 4.2, for which D = 0.5Fs is a hard

specification, λ = R is the soft specification, and thus α = −1 in Equation 4.6. The

single-soft nonsmooth adaptive model yields the results in Figure 4.4, which stands in

contrast to Figures 4.1, 4.2 and 4.3.

First we recall some key nomenclature from Section 3.7.1. As we decrease the reflux

ratio R while keeping all other specifications constant, we eventually reach a critical value

Rcr at which the first flow rate in the column becomes equal to zero. In Figure 4.2a, each

feed temperature value corresponds to its own Rcr value. For each feed temperature the

nonsmooth MESH model exhibits a continuum of solutions at Rcr, as seen in Figure 4.2b,
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Figure 4.4: (a) Type of solution for each R and feed temperature using the single-soft adaptive
model to reset R; (b) liquid flow rates versus R for the bubble-point feed temperature.

which range from the upper critical solution (corresponding to R → R+
cr) to the lower

critical solution (corresponding to R → R−
cr). Among the whole set of solutions at Rcr,

the upper critical solution is the only one that is MESH-feasible.

Using the nomenclature we just introduced in Section 4.2.1, Rcr corresponds to Rrmin

and the upper critical solution corresponds to the minimum flow rate solution. Therefore,

if Rspec ≤ Rcr = Rrmin
the single-soft adaptive model automatically resets R = Rrmin

instead of enforcing R = Rspec (hence the upward vertical arrows in Figure 4.4a), and

returns the upper critical solution, as evidenced in Figure 4.4b. As a result, the degenerate

bifurcation at Rcr is removed and the single-soft model exhibits a unique solution for each

value of R. The model behaves in the same way when applied to all other case studies

from Section 3.7, regardless of column configuration.

Figure 4.4b only addresses the behavior of the single-soft model for small values of R.

On the other hand, Figure 4.5 shows how the normalized flow rate L5/Fs (which is the

flow rate that reaches zero at the upper critical solution) varies with both low and high

values of R for a bubble-point liquid feed. We can see that the behavior of the single-soft

model with respect to the soft specification is analogous to the phenomenon of sensor

saturation. That is, the model output flatlines at the minimum flow rate solution if the
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input Rspec goes below the Rrmin
≈ 0.0024 value, and it flatlines at the maximum flow

rate solution if Rspec > Rrmax ≈ 8. At the latter solution, L5 stabilizes at a maximum

value of 4Fs, while the maximum flow rate in the column (which happens to be L20 in

this example) is set to exactly rmaxFs = 5Fs.

We can also conclude that the model exhibits three different modes of behavior with

respect to R. This is precisely the desired outcome when using the mid function to create

nonsmooth models; e.g., we can describe three different physical regimes for each stage

of a distillation column by using the mid function within the nonsmooth MESH model of

Chapter 3.

Figure 4.5: L5/Fs versus Rspec for Example 1 using α = −1 in Equation 4.6.

The specification λ = R (and also λ = B) increases any internal flow rate in a

monotonic, linear fashion, and thus α = −1 is the correct sign for the second argument

in Equation 4.6. Figure 4.6 shows the same plot from Figure 4.5 when we use α = 1

instead of α = −1. As explained in Section 4.2.1, reversing the α sign switches which

solution the model returns when Rspec ≤ Rrmin
and when Rspec ≥ Rrmax , and in this case
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the specification-resetting strategy no longer makes intuitive sense. Further, though the

intermediate feasible MESH solutions are preserved in the bifurcation diagram, we end up

artificially introducing multiple steady states for feasible R values in Figure 4.6. As such,

our ability to reach the intermediate feasible solutions numerically would be compromised.

Figure 4.6: L5/Fs versus Rspec for Example 1 using α = 1 in Equation 4.6.

As will be further illustrated in Examples 2 through 5, we choose to impose an upper

bound on flow rates values with the single-soft model mainly due to the infinite discon-

tinuities observed when λ is a product purity specification. On the other hand, such

behavior is not possible when λ = R or B. In fact, due to the linear relationship depicted

in Figure 4.5, we do not observe an infinite asymptote even as R,B → ∞ and thus the

system remains numerically well-conditioned. Therefore, for λ = R or B we might choose

not to bound the column flow rates above by substituting Equation 4.6 with

min

(
minj {Lj, Vj}

Fs

, −α (λ− λspec)
)

= 0, (4.13)

which only enforces the lower bound on flow rate values.
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4.5.2. Example 2: benzene-toluene, soft x1,1 specification

We now consider the benzene-toluene Column 2 from Table 4.2, which is the same

as Column 1 except that we set N = 5 and introduce the feed stream into Stage 3.

Moreover, we use xN,1 = 0.3 as the hard specification, λ = x1,1 as the soft specification, and

α = sign (xN,1,spec − z1) = −1 according to Table 4.1. Figure 4.7 presents the normalized

flow rate L2/Fs as a function of x1,1,spec for both the MESH and the single-soft adaptive

models.

Figure 4.7: L2/Fs versus x1,1,spec for Example 2.

When λ is a product purity specification, we have discovered that there is, in general,

a narrow range of MESH-feasible λ values between the first flow rate reaching its lower

bound at λrmin
and an infinite asymptotic discontinuity in flow rate values at some λ =

λasym. This discontinuity is observed regardless of the mixture being non-ideal or forming

azeotropes. In Figure 4.7, we have λrmin
≈ 0.8 and λasym ≈ 0.94. As expected, the

curve of MESH solutions continues beyond λ < λrmin
to form an infeasible branch with

negative flow rates. At λasym ≈ 0.94 we observe a two-sided asymptotic discontinuity that
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is characteristic of rational functions, with an infeasible branch in which internal flow

rate values Lj, Vj approach −∞. It seems that this type of bifurcation diagram has not

been explored before in the distillation literature. That could be due to the numerical

difficulty in reaching the negative asymptote branch, as well as to the fact that internal

safeguards in Aspen Plus prevent RadFrac from converging to any mathematical MESH

solution with zero or negative flow rates. Further, we can draw a parallel between this

type of asymptotic discontinuity of the MESH model and the degenerate bifurcations of

the nonsmooth MESH model observed at λcr. Both are associated with (near) vertical

slopes and (nearly) singular sensitivity matrices.

While there is usually no room for the user to influence the value of λrmin
(unless the

minimum flow rate is WL,1, LN or V1, in which case λrmin
depends on rmin), the value

of λrmax can be a strong function of the chosen rmax depending on the steepness of the

asymptote. Figure 4.7 was plotted using rmax = 5. In this example, choosing rmax values

of 5, 10 and 20 lead to λrmax values of 0.932, 0.933 and 0.938, respectively. Evidently,

as rmax → +∞ we have λrmax → λasym. The choice of rmax needs to be a compromise,

since higher values allow us to reach solutions closer to the asymptote but might make

the model equations ill-conditioned and hard to converge near λ = λrmax .

The single-soft adaptive model flatlines at the minimum flow rate solution (L2 = 0)

for λ ≤ λrmin
, and at the maximum flow rate solution for λ ≥ λrmax . As with Example 1,

in Figure 4.7 we have L2 < rmaxFs = 5Fs at the maximum flow rate solution due to the

fact that L2 is not the maximum flow rate in the column. With the single-soft adaptive

model we can effectively “chop off” the undesirable MESH solutions and obtain a more

well-behaved curve in Figure 4.7.

By comparing the behavior of the MESH model solutions depicted in Figures 4.5

and 4.7, we can visualize why specifying R and D (or LN) is a much easier task than

specifying one or more product purities. This difficulty is what leads Aspen Plus’ RadFrac

model not to accept any product purity specifications directly, requiring instead a design
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specification procedure that manipulates more well-behaved variables such as R and D.

With the single-soft adaptive model, we remove the ill-conditioned infinite discontinuities

and can therefore specify product purities directly.

Figure 4.8 presents the type of MESH model solution for each pair of specified λ = x1,1

and xN,1 values, in an analogous fashion to Figure 4.1a. For each value of the hard spec-

ification xN,1 we have particular values for λrmin
and λrasym which describe the boundary

curves in red and in black, respectively, in Figure 4.8. Specification values in the interior

of the region described by both types of boundary curves are MESH-feasible, leading to

the existence of vapor and liquid phases at every stage. Specifications outside of said

region lead to infeasible MESH solutions in which one or more flow rates are negative.

For these infeasible specifications, in RadFrac we obtain either dry column errors or the

more generic convergence failure messages presented in Section 4.1.1. At each point of the

black boundary curve in Figure 4.8 the MESH model exhibits an infinite asymptotic dis-

continuity in flow rate values, and each point of the red curves corresponds to a minimum

flow rate solution.

Figure 4.8: Type of MESH model solution for each pair of x1,1 and xN,1 values in Example 2.
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In contrast, Figure 4.9 presents the type of solution of the single-soft model for each

pair of x1,1,spec, xN,1,spec values when using λ = x1,1 as the soft specification. In this figure,

the red boundary curves corresponding to λ = λrmin
are the same as in Figure 4.8. On the

other hand, the black boundary curve now corresponds to λ = λrmax for rmax = 5 instead

of λ = λrasym , and is therefore (only) slightly different than in Figure 4.8. Analogously to

Figure 4.4b, the vertical arrows illustrate that the single-soft model automatically resets

MESH-infeasible values of λ to the boundary of the vapor-liquid region, i.e., either to

λrmin
or λrmax . However, that is only possible for xN,1,spec values that vertically intersect

the vapor-liquid region, in this case, for 0.075 ≤ xN,1,spec ≤ 0.7. For all other xN,1,spec

values it is not possible to reset only x1,1 to obtain a feasible MESH solution, and thus

the single-soft model exhibits no solution. In such cases both x1,1,spec and xN,1,spec are

infeasible, therefore we must relax both specifications by using the double-soft adaptive

model.

Figure 4.9: Type of single-soft adaptive model solution for each pair of x1,1,spec and xN,1,spec

values in Example 2.

Figure 4.10 depicts how the diagram from Figure 4.8 changes as we increase the number
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of stages N from 5 to 7 (Figure 4.10a) and to 10 (Figure 4.10b). The positive flow rate

branch of the asymptotic discontinuity at λasym corresponds to infinite reflux (R→ +∞)

operation. For azeotropic non-ideal systems, this scenario can arise from specifying a

product purity beyond the relevant azeotrope composition. For ideal systems such as the

benzene-toluene Column 2, the R → +∞ situation can only present itself if the number

of stages N is insufficient to promote the specified top/bottom product separation. This

can happen for any value of N as long as our product purity specification is close enough

to that of a pure mixture, e.g., x1,1,spec ≈ 1. As we decrease N , we start to encounter

the R → +∞ discontinuity at less stringent purity specifications, e.g., at x1,1 ≈ 0.94 in

Figure 4.7 for N = 5. As expected, in Figure 4.10 we can see that the black boundary

curve moves closer to the pure component compositions as we increase N .

Figure 4.10: Type of MESH model solution for each pair of x1,1 and xN,1 values in Example 2,
using (a) N = 7 and (b) N = 10 instead of N = 5.

Finally, Figures 4.11 and 4.12 present the same types of feasibility plots as Figures

4.8 and 4.9, respectively, except that we vary the benzene feed composition z1 instead

of xN,1. We observe the same general behavior of both the MESH and the single-soft

adaptive models as previously discussed for Figures 4.8 and 4.9. Analyzing how column

feasibility varies with respect to the feed composition is particularly relevant within flow-
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sheet simulation, as we might inadvertently encounter two infeasible specifications during

intermediate flowsheet passes while feed stream compositions are still being adjusted.

Figure 4.11: Type of MESH model solution for each pair of x1,1 and z1 values in Example 2.

Figure 4.12: Type of single-soft adaptive model solution for each pair of x1,1 and z1 values in
Example 2.
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4.5.3. Example 3: ethanol-benzene, soft x1,1 specification

In this example we study the ethanol-benzene Column 3, which is the first column

of the pressure-swing distillation flowsheet from Example 11.5 of [79] (see Figure 5.10).

The original specifications are x1,1 = 0.37 and xN,1 = 0.99. Since this binary mixture

tends to form a minimum-boiling azeotrope at the top of the column, we choose λ =

x1,1 as the soft specification and keep xN,1 = 0.99 as the hard specification. We use

α = sign (xN,1,spec − z1) = 1 according to Table 4.1. Figure 4.13 illustrates how the

normalized flow rate L5/Fs changes with respect to x1,1,spec for both the MESH and

single-soft adaptive models.

Figure 4.13: L5/Fs versus x1,1,spec for Example 3.

In Figure 4.13 we observe the same general behavior as in Figure 4.7 for the ideal

benzene-toluene Column 2. However, for Column we have λrmax < λrmin
. Moreover, in

this case λasym ≈ 0.3585 corresponds to the composition of a non-trivial azeotrope, instead

of the near-pure component composition λasym ≈ 0.94 from Example 2. As expected, we

observe an infinite flow rate discontinuity corresponding to infinite reflux operation as x1,1
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approaches the azeotropic composition. Given the steepness of the asymptote, rmax = 5

yields a value of λrmax ≈ 0.359 that is quite close to λasym.

Interestingly, the MESH model for Example 3 exhibits several other branches of in-

feasible solutions with negative flow rates not shown in Figure 4.13, some of which are

presented in Figure 4.14. The points where two of the branches seem to stop abruptly

in Figure 4.14 (x1,1 ≈ 0.4 and x1,1 ≈ 0.54) correspond to asymptotic discontinuities in

flow rates other than L5, which tend to −∞. These branches contain extremely infeasible

solutions, with some mole fraction values in the order of 200.

In Figure 4.15 we state the type of MESH solution for each pair of specified x1,1, xN,1

values, which is analogous to Figure 4.8 for Example 2.

Figure 4.14: Negative flow rate branches in the L5/Fs versus x1,1 plot for Example 3 using the
MESH model.
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Figure 4.15: Type of MESH model solution for each pair of x1,1 and xN,1 values in Example 3.

4.5.4. Example 4: diethylamine-methanol, soft xN,1 specification

We now analyze the diethylamine-methanol Column 5, which is the first column of the

pressure-swing distillation flowsheet from Figure 3a of [92] (see Figure 5.17). This system

tends to form a maximum-boiling azeotrope at the bottom of the column, thus we choose

λ = xN,1 as the soft specification and keep x1,1 = 0.996 as the hard specification. Table

4.1 gives α = sign (xN,1,spec − z1) = 1. Figures 4.16 and 4.17 present LN−1/Fs = L39/Fs

and WL,1/Fs versus xN,1,spec, respectively, for the MESH and single-soft adaptive models.

In Figure 4.16 we observe the same behavior as in Figure 4.13 for the azeotropic ethanol-

benzene Column 3, also with quite steep asymptotes.

In this example, for which we used rmin = 0, the minimum flow rate solution corre-

sponds to the upper section of the column (above the feed stage) having all vapor and

liquid flow rates equal to zero. Since WL,1 = 0 in this case, as seen in Figure 4.17, the

bottoms product is identical to the feed stream except for its temperature, which is higher.

However, if we use rmin > 0, the external product flow rate WL,1 becomes the first and
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unique flow rate to achieve its lower bound of rminFs, and λrmin
becomes a function of the

chosen rmin value. We will use rmin = 0.05 in Section 5.6.2 to simulate Columns 5 and 6,

since WL,1 is the first flow rate to become dry in both of them. Finally, we note that the

MESH model also exhibits additional negative flow rate branches which we do not plot

in Figure 4.16.

Figure 4.16: L38/Fs versus xN,1,spec for Example 4.
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Figure 4.17: WL,1/Fs versus xN,1,spec for Example 4.

4.5.5. Example 5: five-component mixture, soft x1,1 specification

In this last example using the single-soft adaptive model we analyze Column 7, which

is the five-component system of Case Study 2 from Section 3.7.1 with a dew-point vapor

feed. This highly non-ideal mixture forms several azeotropes. We keep D = 0.3Fs as

a hard specification and choose λ = x1,1 as the soft specification. Figures 4.18 and

4.19 present the bifurcation diagrams of the normalized flow rate V8/Fs with respect to

x1,1,spec using either α = 1 or α = −1 in Equation 4.6, respectively. In this example we

used a higher value of rmax = 10 because the infinite flow rate asymptote at x1,1 → 0.272

(corresponding to the azeotrope composition presented in Table 4.2) is approached at a

particularly slow rate.

The standard MESH model exhibits multiple feasible steady states with respect to x1,1

due to a turning point bifurcation at x1,1 ≈ 0.382. The feasible values of x1,1 range from

≈ 0.272 at the infinite flow rate asymptote up to ≈ 0.382 at the turning point, and then

back down to ≈ 0.336 when the value of V8 reaches zero. The curve of MESH solutions,
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Figure 4.18: V8/Fs versus x1,1,spec for Example 5 using α = 1 in Equation 4.6.

Figure 4.19: V8/Fs versus x1,1,spec for Example 5 using α = −1 in Equation 4.6.

now with infeasible negative flow rates, continues to vary in the negative direction until

another turning point bifurcation happens at x1,1 ≈ 0.3, after which x1,1 increases once
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again.

Methanol (component i = 1) is a light component within this mixture. The general

strategy stated in Table 4.2 would lead us to use α = −1, since in this case we would

expect flow rates to increase with x1,1. However, the relationship between x1,1 and Lj, Vj

values is not monotonic in this example and λrmax ≈ 0.317 ends up being lower than

λrmin
≈ 0.336. Therefore, as seen by comparing Figures 4.18 and 4.19, using α = 1 yields

the most intuitive parameter-resetting behavior for the single-soft model. This example

illustrates the fact that determining the most appropriate value of α to use in Equation 4.6

is not necessarily an obvious task. Nevertheless, we could perhaps argue that choosing the

“wrong” value α = −1 in this example would still allow the single-soft model to achieve

its main goal, given the narrow difference between λrmin
and λrmax .

In Section 5.4 of Chapter 5 we will analyze the numerical convergence of the single-soft

model when using both α = 1 and α = −1 for this example, and we will also compare

the results with those of Aspen Plus’ RadFrac model.

4.5.6. Example 6: diethylamine-methanol, double-soft model

In this example we simulate Column 5 using the double-soft adaptive model; that is,

we do not specify values for x1,1 nor xN,1 within the model equations, and instead simply

enforce the flow rate bounds 0 ≤ Lj, Vj ≤ rmaxFs through Equations 4.7, 4.8.

First we vary the diethylamine feed composition z1 from 0.5 to 0.95 in 0.05 increments,

and for each z1 we simulate the double-soft model with the pseudoinverse semismooth

Newton method of Section 4.4 starting from the same initial guess, which is either

(a) the point Xinit obtained according to the generic initialization procedure from Sec-

tion 4.3.3 with z1 = 0.5, which is not biased towards any specific x1,1,spec or xN,1,spec

values, or

(b) the point Xguess obtained by setting all internal flow rates equal to 0.2Fs, D =

LN = 0.5Fs, and imposing constant mole fraction and temperature values xj =
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xf = (0.461, 0.539), yj = yf = (0.575, 0.425), and Tj = Tm = 337.5 K for all stages

j, where xf ,yf , Tm are computed from Procedure 4.3.1 using z1 = 0.5.

Figures 4.20a and b present the x1,1 and xN,1 values, and the internal flow rates Lj, Vj

of minimum and maximum magnitude, respectively, at the solution obtained for each z1

using Xinit as the initial guess. Figures 4.21a and b show the same variables obtained

when using Xguess as the initial guess.

Figure 4.20: Solutions obtained for each z1 value with the pseudoinverse semismooth Newton
method starting from Xinit: (a) x1,1, xN,1 values, (b) Maximum and minimum internal flow

rates.

Given that two degrees of freedom are relaxed in the double-soft model, we have a two-

dimensional continuum of infinitely-many, non-isolated solutions for each set of simulation

specifications. That stands in contrast to systems with multiple (yet finitely many) steady

states such as the five-component Column 7 from Example 5. As expected, by comparing

Figures 4.20 and 4.21 we see that the solution we converge to depends on the initial guess.

Though any point of the two-dimensional set of solutions can technically be reached, we

often observe a preference towards certain points. In both x1,1, xN,1 plots we can observe

a general bias of the model in converging to “low-separation” solutions, in which the

top and bottom compositions gravitate around the feed composition itself. Moreover, we
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Figure 4.21: Solutions obtained for each z1 value with the pseudoinverse semismooth Newton
method starting from Xguess: (a) x1,1, xN,1 values, (b) Maximum and minimum internal flow

rates.

see that the solutions reached with both initial guesses are similar in general for most

z1 values. Unlike with the single-soft model, the flow rate bounds may or may not be

strictly enforced at the solution we converge to. In Figures 4.20b and 4.21b we see that

the minimum internal flow rate Lj, Vj achieves the lower bound of zero at the solution

when we start from Xguess, while no bounds are reached when we start from Xinit.

In general, the generalized Jacobian matrices of the double-soft model are singular at

every solution reached and essentially at every iterate. As discussed in Section 2.3.5, in

such cases there are currently no known theoretical conditions under which quadratic con-

verge, or even convergence itself, is guaranteed for the pseudoinverse semismooth Newton

method. Nevertheless, in our test cases we have observed that this method is able to con-

vergence the double-soft model fastly and reliably. Moreover, as illustrated in Figure 4.22

for Xinit as the initial guess, the typical convergence rate of our algorithm is quadratic.

We then performed the same set of simulations using the LP-Newton method to con-

verge the double-soft model equations. Figure 4.23 presents the results obtained when

using Xinit as the starting point. The LP-Newton method failed to converge for all tested

z1 values when starting from Xguess; specifically, the algorithm got stuck at the zero lower
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bound constraint for almost all mole fractions and flow rates.

Figure 4.22: Convergence rate of the pseudoinverse semismooth Newton method when using
Xinit as the initial guess.

Figure 4.23: Solutions obtained for each z1 value with the LP-Newton method starting from
Xinit: (a) x1,1, xN,1 values, (b) Maximum and minimum internal flow rates.

We have observed that the LP-Newton method fails to approach a solution often

enough to render it unsuitable for solving the double-soft model in general, despite its
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theoretical ability to reach non-isolated solutions (see Section 2.3.3). Further, in our

MATLAB implementation the LP-Newton step becomes undefined when the method does

get near a solution due to the linear program from Equation 2.31 being deemed infeasible

by the linprog solver. Therefore, we had to increase the tolerance on the norm residual

to 10−6 or lower to converge the LP-Newton method. Given that we did not observe this

unexpected issue in any of our single-soft model test cases, we can speculate that it may

be related to the structural singularity of the generalized Jacobians of the double-soft

model.

For z1 values for which the LP-Newton method does converge in Figure 4.23, it reaches

essentially the same solution as the pseudoinverse semismooth Newton method does when

starting from the same initial guess Xinit. This indicates that the double-soft model bias

towards certain solutions is not algorithm-specific. When successful, the convergence

speed of the LP-Newton method is considerably lower than that of the pseudoinverse

semismooth Newton method, as illustrated in Figure 4.24. In said figure we observe a

linear behavior for most of the iteration span, with a quadratic slope only being observed

much nearer the solution when compared to Figure 4.22.

In a second case study for Column 5, we fix z1 = 0.5 and attempt to steer the double-

soft model towards converging to the solution X∗ that corresponds to x1,1 = x1,1,spec = 0.9

and xN,1 = xN,1,spec = 0.3, which are the MESH-feasible specifications originally used in

[79]. We change the initial guess X0 according to a homotopy transformation

X0 = γX∗ + (1− γ)Xguess (4.14)

from Xguess into the solution X∗. Figure 4.25 presents the x1,1 and xN,1 values at the

obtained solution using the pseudoinverse semismooth Newton method for each value

of γ, which we varied from 0 to 1 in 0.05 increments. As shown in Figure 4.26, the

algorithm’s convergence rate remains quadratic throughout the continuation procedure,

with less iterations needed as γ approaches 1.
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Figure 4.24: Convergence rate of the LP-Newton method when using Xinit as the initial guess.

Figure 4.25: x1,1 and xN,1 values at the solution obtained with the pseudoinverse semismooth
Newton method using the initial guess given by Equation 4.14.
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Figure 4.26: Convergence rate of the pseudoinverse semismooth Newton method for z1 = 0.5
when using the initial guess from Equation 4.14.

The double-soft model has a general tendency not to deviate too much from the ini-

tial guess, since the first iterate that satisfies all the first-principles model equations will

be taken as the final solution. As expected, in Figure 4.25 the double-soft solution we

converge to approaches the MESH feasible point X∗ as γ approaches 1. In general, we

cannot realistically expect the initial guess to be near a desirable MESH-feasible point

for single-column simulation with the double-soft model. However, we do encounter this

scenario when converging flowsheets with recycle streams, since we use solutions from the

previous flowsheet pass as the initial guess for each equipment. As will be exemplified in

Section 5.6.2, this property of the double-soft model may allow us to converge to a flow-

sheet solution in which at least one of the relaxed column specifications λ is approximately

equal to its desired value λspec, even when the latter is infeasible.

We performed the same homotopy procedure with the LP-Newton method; interest-

ingly, as illustrated in Figure 4.27, the method only (slowly) converges when starting

extremely near the point X∗ with values of γ ≥ 0.95.
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Figure 4.27: Convergence rate of the LP-Newton method for z1 = 0.5 when using the initial
guess from Equation 4.14.

4.6. Conclusions

In this chapter we presented two types of nonsmooth adaptive models for distillation

that can be used to provide an alternative MESH-feasible solution even when one or

more specifications are infeasible. The single-soft adaptive model automatically resets a

user-chosen soft specification if it happens to be infeasible due to flow rates Lj, Vj go-

ing out of bounds, and returns the “nearest” MESH solution in which either the upper

or lower bound is strictly enforced. Consequently, the single-soft model eliminates the

negative flow rate solutions exhibited by the MESH model, as well as the infinite asymp-

totic discontinuities in flow rate values observed when specifying product purities. This

new modeling strategy also removes the degenerate bifurcations of the nonsmooth MESH

model associated with dry/vaporless solutions. The double-soft model can be used to

converge to a MESH-feasible solution even when both column specifications are infea-

sible. This model exhibits a two dimensional set of non-isolated solutions, which can
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nevertheless be reached through the pseudoinverse semismooth Newton method with a

typical quadratic convergence rate.
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Chapter 5

Nonsmooth inside-out algorithms for

robust distillation simulation with

non-ideal mixtures

5.1. Introduction

Simultaneous convergence of the MESH equations in their original or primitive form

can be unreliable and highly dependent on a good initial guess, especially with complex

non-ideal multicomponent systems. To overcome this problem Boston and Sullivan Jr [14]

introduced the inside-out method, an algorithmic strategy that creates 2 nested “inner”

and “outer” loops to improve reliability of convergence and reduce the cost of repeated

thermodynamic property evaluations. In the outer loop, the rigorous property models

for the equilibrium K-values and vapor and liquid phase enthalpy departures are used

to generate simple linearized models. The inner loop employs the latter to converge a

rearrangement of the MESH equations, for which only the energy balances and column

specifications need to be converged iteratively with equation-solving methods.

The inner loop of Boston and Sullivan Jr relies on the product flow rates and the reflux
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ratio being specified by the user; this allows the inner loop to be formulated as a fixed-

point problem. Broyden’s method is then used with the identity as the initial Jacobian

matrix, thus finite differencing need not be performed even once and the inner loop can

be converged at very low cost. Later on Boston added a third “middle” loop, which

adjusts the product flow rates and reflux ratio values used within the inner loop with

optimization methods, to be able to enforce more general specifications. However, the

exact structure of the middle loop was only presented by Boston at an AIChE conference

in 1979, as reported by Russell (see Reference 12 in [75]), and was not made available in

the literature. In 1983, Russell [75] proposed a modified inner loop that converges the

set of energy balances and general specifications simultaneously, without the need for an

extra middle loop. An approximation to the Jacobian matrix is computed with finite

differences and subsequently updated with Broyden’s formula. Several other versions of

the inside-out method have been proposed, such as adaptations to reactive distillation

systems [82]; in particular, RadFrac in Aspen Plus uses a proprietary modification of the

Boston and Sullivan Jr method which includes the middle loop (see Section 4.1.1).

After the inside-out algorithm for multistage columns was presented, Boston and Britt

[13] introduced another version of the method tailored to the single-stage flash problem.

The general outer loop structure remained essentially the same, while the flash inner loop

variable corresponds to a “weighted” vapor fraction instead of the so-called stripping fac-

tors used in distillation (see Section 5.2.4). In [87], Watson et al. developed a nonsmooth

version of the flash inside-out algorithm which can reliably converge to solutions in any

phase regime (i.e., Phase Regimes I, II or III, as defined in Section 3.2.1). The modified

inner loop involves two variables, and two equations: the energy balance residual and the

nonsmooth Equation 3.12.

In this chapter we present a nonsmooth inside-out algorithm to converge both the

single-soft and the double-soft adaptive models for distillation from Chapter 4. The al-

gorithm employs the outer loop structure of the standard inside-out algorithm, which
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allows for reliable and low-cost convergence under non-ideal thermodynamics, and in-

troduces a modified nonsmooth inner loop. The latter can be solved with nonsmooth

equation-solving methods using automatically-computed generalized derivative elements.

Distillation simulation with our nonsmooth inside-out algorithms is robust to dry column

errors and to infeasible specifications, and reliably converges to a feasible MESH solution

even when highly nonlinear, non-ideal thermodynamic property models are used.

5.2. The multistage inside-out algorithm

In this section we will describe the inside-out algorithm according to the general struc-

ture of Russell’s method [75]. However, we also include the possibility of modeling the

activity coefficient as a separate factor within the K-values as proposed by Boston in [15].

The algorithm described here is the basis method that we will modify in Section 5.3.

We denote the set of physical or so-called “primitive” column variables as

X = (x,y,L,V,T,WL,WV ), (5.1)

where L,V,T ∈ RN , x,y ∈ RN×Nc , WL ∈ RnWL (which includes the liquid distillate

stream with flow rate WL1) and WV ∈ RnWV are vectors or matrices containing the flow

rates, temperatures and mole fractions for each stage as defined in Chapter 3. Here, nWL

and nWV
are the numbers of liquid and vapor side-product streams, respectively. In order

to describe the inner loop we also define lj,i as the liquid flow rate for each individual

component i at stage j, and l ∈ RN×Nc as the matrix containing all lj,i values.

In describing the inside-out algorithm in the following sections, we assume that the

vapor distillate fraction θ, the feed stream conditions, stage pressures, heat duties Qj

and side product ratios WL,j/Lj,WV,j/Vj or flow rates WL,j,WV,j for intermediate stages

2 ≤ j ≤ N − 1, and the two main degrees of freedom λ1 − λ1,spec = 0 and λ2 − λ2,spec = 0

have been specified by the user.
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5.2.1. Initialization

An initial guess X0 for the primitive variables must be specified through some ini-

tialization procedure. In [14], Boston and Sullivan Jr propose the following sequence of

calculations:

Procedure 5.2.1 (Column initialization from [14]).

Given compositions and flow rates of feed streams, stage pressures, and specified reflux

ratio and product flow rates:

1. Combine all column feed streams to form a composite feed with composition zc and

flow rate Fs.

2. Set T1 and TN as the bubble-point and dew-point temperatures of the composite

feed, respectively, at pressure Pm = (P1 + PN)/2. Obtain the remaining T values

via linear interpolation.

3. Perform a PT -flash of the composite feed at P = Pm and T = (T1 + TN)/2 and

obtain liquid and vapor mole fractions xf ,yf . Set xj = xf , yj = yf for each stage

j.

4. Obtain L and V values from constant molar overflow calculations, using the reflux

ratio and the product flow rates.

5. Solve the MES equations from the inner loop using Kb,j = 1 and then update the

X values (see Section 5.2.5).

In [75], Russell reports that one can simply set internal column temperatures and flow

rates to be of the same magnitude as those of the feed stream(s) to obtain a loose estimate

X0. Then, the Sb,j scaling factors defined in Section 5.2.4 are heuristically adjusted in

the first outer loop iteration so that some chosen flow rate in the column is as specified

or estimated; however, this procedure is not described further by the author.
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5.2.2. Thermodynamic properties

In its basic format, the inside-out method expresses K-values as a product of two

terms:

Kj,i = αj,iKb,j, (5.2)

where αj,i ≡ Kj,i/Kb,j is a relative volatility with respect to a “weighted average” K-value

defined as

lnKb,j ≡
∑

i tj,i lnKj,i∑
i tj,i

, tj,i ≡ yj,i
∂ lnKj,i

∂(1/Tj)
. (5.3)

For considerably non-ideal mixtures, we can choose to express K-values using the

activity coefficient as a separate, third factor:

Kj,i = αj,iKb,jγj,i. (5.4)

In this case, the definition of Kb,j remains the same while the “pseudo” relative volatil-

ity is redefined as αj,i ≡ Kj,i/(Kb,jγj,i).

The molar vapor and liquid phase enthalpies HV
j , H

L
j are expressed using molar en-

thalpy departures ∆HV
j ,∆H

L
j from ideal gas mixture state, defined as

∆HV
j = HV

j −
∑
i

yj,iH
ig
i (Tj), (5.5)

∆HL
j = HL

j −
∑
i

xj,iH
ig
i (Tj), (5.6)

where the ideal gas molar enthalpy for pure component i, H ig
i , is usually given as a

polynomial-like function of temperature.

5.2.3. Simplified thermodynamic property models

The outer loop creates simplified models for the thermodynamic properties

Kb,j,∆H
V
j ,∆H

L
j and optionally also for γj,i, expressing them as local linear functions of

149



temperature and/or composition. According to the general approach of Russell’s version

of the inside-out method, the simplified models are

lnKb,j = Aj +
Bj

Tj
, (5.7)

∆HV
j∑

i yj,iMMi

= Cj +Dj(Tj − T ∗
j ), (5.8)

∆HL
j∑

i xj,iMMi

= Ej + Fj(Tj − T ∗
j ), (5.9)

where MMi stands for the molar mass of component i, and T ∗
j is a constant reference

temperature for stage j; the latter can be defined based on the initial guess for the

temperature values Tj. We divide the enthalpy departures ∆H by the molar mass of the

vapor or liquid phase because, according to Boston [15], this ensures that the C,D,E, F

coefficients remain relatively insensitive to both temperature and composition.

In case the activity coefficient is included as a separate factor in Equation 5.4, then

Boston [15] treats it as a pseudo-binary function of composition according to the following

simplified model:

ln γj,i = aj,i + bj,ixj,i. (5.10)

5.2.4. Algorithmic structure

The inside-out algorithm does not manipulate the primitive variables X directly. In-

stead, the high-level task of this method is to converge the outer loop, which is the

fixed-point problem

fouter(vouter) = vouter. (5.11)

The outer loop iteration variables correspond to the parameters of the simplified thermo-

dynamic property models:

vouter = (α,A,B,C,D,E,F, a,b), (5.12)
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where A,B,C,D,E,F ∈ RN and α ∈ RN×Nc ; the parameters a,b ∈ RN×Nc are only

included if the activity coefficient is modeled as a separate factor in Equation 5.4.

The outer loop residual function fouter will be described in Section 5.2.6. Direct substi-

tution is the the main fixed-point method to converge the outer loop in Russell’s approach

[75], except that a damping factor is employed for the volatilities αj,i in non-ideal systems.

Moreover, the “slope” coefficients Bj, Dj, Fj are only conditionally updated if tempera-

ture variations are large enough. The outer loop is converged when the simplified model

parameters stop changing, i.e., when ||fouter(vouter) − vouter||∞ < ϵouter, where ϵouter > 0

is some chosen tolerance. We can use the initial guess X0 for the primitive variables to

initialize v0
outer according to Section 5.2.6.

Each evaluation of the outer loop residual function fouter requires converging the inner

loop, which is a fixed-point problem in the original Boston and Sullivan Jr method and

the following nonlinear system of equations in Russell’s method:

finner(vinner,vouter) = 0, (5.13)

where vouter is treated as a fixed parameter and vinner must be solved for. The inner

loop iteration variables vinner are defined as ln(Sj/Sb,j) for each stage 1 ≤ j ≤ N , and

ln(1 +RL,j) and ln(1 +RV,j) for stages where liquid and vapor side products are present,

respectively, where

Sj =
Kb,jVj
Lj

(5.14)

are so-called stripping factors, Kb,j values are defined in Equation 5.3, RL,j = WL,j/Lj

and RV,j = WV,j/Vj. According to Russell, the Sb,j values are scaling factors that are

heuristically adjusted in the first outer loop iteration. The logarithm is taken to prevent

liquid and vapor flow rates from becoming near zero or negative within intermediate

iterations.

The inner loop residual function finner will be defined in Section 5.2.5. The inner loop
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is converged for a given vouter when ∥finner(vinner,vouter)∥∞ < ϵinner, where ϵinner > 0 is

some chosen tolerance. In iteration k = 0 of the outer loop, the initial guess for vinner

can be computed from X0 using the definitions of the inner loop variables Sj, RL,j, RV,j.

For each subsequent outer loop iteration k > 0, we use the previously converged value of

vinner in iteration k − 1 as the initial guess.

5.2.5. The inner loop residual function

For a given pair of vectors vinner,vouter, the inner loop residual function

finner(vinner,vouter) is evaluated as follows. First, we solve the following system for

the component liquid flow rates lj,i:

[
1 +RL,1 + α∗

1,iS1

]
l1,i −

[
α∗
2,iS2

]
l2,i = f1,i, (5.15)

−lj−1,i +
[
1 +RL,j + α∗

j,iSj(1 +RV,j)
]
lj,i −

[
α∗
j+1,iSj+1

]
lj+1,i = fj,i, 2 ≤ j ≤ N − 1,

(5.16)

−lN−1,i +
[
α∗
N,iSN(1 +RV,N)

]
lN,i = fN,i. (5.17)

where

α∗
j,i =


αj,i, if Equation 5.2 is used;

αj,i exp
(
aj,i + bj,i

lj,i∑
k lj,k

)
, if Equation 5.4 is used,

(5.18)

and fj,i is the individual flow rate of component i in the feed stream (if any) to stage j.

This system combines the MES (Mass balance, Equilibrium, and mole fraction Sum-

mation) equations. When the activity coefficient is not modeled as a separate factor in

the K-value expression, i.e., when Equation 5.2 is used instead of Equation 5.4, then the

above equations constitute a linear tridiagonal system that can be solved explicitly with

the Thomas algorithm. If Equation 5.4 is used, then the MES system is nonlinear and

must be solved iteratively.

With the component liquid flow rates l and with vinner and vouter we are able to compute
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all primitive variables X explicitly according to the following sequence of equations:

Lj =
∑
i

lj,i, (5.19)

xj,i =
lj,i
Lj

, (5.20)

α∗
j,i =


αj,i, if Equation 5.2 is used;

αj,i exp (aj,i + bj,ixj,i) , if Equation 5.4 is used,

(5.21)

Kb,j =
1∑

i α
∗
j,ixj,i

, (5.22)

Vj =
SjLj

Kb,j

, (5.23)

yj,i = α∗
j,iKb,jxj,i, (5.24)

Tj =
Bj

lnKb,j − Aj

, (5.25)

WLj
= RLj

Lj, (5.26)

WVj
= RVj

Vj. (5.27)

Note that Equation 5.22 for computing Kb,j derives from the “bubble point equation”∑
iKj,ixj,i = 1.

With the updated primitive variables X we can evaluate finner(vinner,vouter), which

corresponds to the residuals of the energy balances (i.e., H equations), of the two main

column specifications, and of any side product specifications. The H equations follow

the standard MESH model, except that the vapor and liquid phase molar enthalpies are

expressed using the simplified models:

hLj−1Lj−1 + hVj+1Vj+1 + hFj Fj − hLj (Lj +WL,j)− hVj (Vj +WV,j) +Qj = 0, (5.28)

hVj =
∑
i

yj,iH
ig
i (Tj) +

(∑
i

yj,iMMi

)(
Cj +Dj(Tj − T ∗

j )
)
, (5.29)
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hLj =
∑
i

xj,iH
ig
i (Tj) +

(∑
i

xj,iMMi

)(
Ej + Fj(Tj − T ∗

j )
)
. (5.30)

In general the H equations are only enforced for stages j = 2, . . . , N − 1 and the energy

balances for stages j = 1, N are substituted with the two main column specifications

λ1 − λ1,spec = 0 and λ2 − λ2,spec = 0, unless the latter involve the condenser and/or

reboiler heat duties. Together, these give N residuals that match up the N inner loop

variables Sj. Since we consider the condenser (Stage 1) to have a liquid side product of

flow rate WL1 , RL,1 is always also present as an inner loop variable and thus we include

the residual of the equation

θ − V1
V1 +WL,1

= 0. (5.31)

Finally, if any side products are present at intermediate stages we have the correspond-

ing RL,j, RV,j as inner loop variables, and thus we must include the same number of

specification equations for the latter within finner(vinner,vouter). For example, we would

include the residual of the equation RL,j − RL,j,spec = 0 to specify a withdrawal ratio

RL,j,spec for the liquid side product of stage j. This way, the resulting inner loop system

finner(vinner,vouter) = 0 is square.

5.2.6. The outer loop function

For a given vector vouter, the outer loop function value fouter(vouter) is computed as

follows. First, we solve the inner loop finner(vinner,vouter) = 0 for vinner. We can compute

the set of primitive variables X from the converged vinner values through Equations 5.15

to 5.27, as described in Section 5.2.5. Given X, we obtain new values for the simplified

model parameters A to F, a,b together with the relative volatilities α according to the

following procedure for each stage j:

1. Evaluate ∆HV
j , ∆H

L
j and the Kj,i values with rigorous thermodynamic models at

the current (Tj, Pj,xj,yj) values and also at (Tj + ϵ, Pj,xj,yj), where ϵ > 0 is a
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small temperature perturbation. Use the pairs of values for the two temperatures

to update the coefficients Aj, Bj, Cj, Dj, Ej, Fj according to Equations 5.7 to 5.9.

2. Update the tj,i coefficients using finite differencing:

tj,i = yj,i

(
lnKj,i(Tj + ϵ)− lnKj,i(Tj + ϵ)− lnKi(Tj)

1/(Tj + ϵ)− 1/Tj

)
. (5.32)

3. Compute lnKb,j(Tj) and lnKb,j(Tj + ϵ) using Equation 5.3 with the updated tj,i.

4. If the activity coefficient is modeled as a separate factor, evaluate γj,i rigorously

at the current (Tj, Pj,xj,yj) values, then perturb only the mole fraction xj,i and

reevaluate γj,i for each i. Use the pairs of γj,i values to update aj,i, bj,i according to

Equation 5.10.

5. Update the αj,i values using Equation 5.2 or 5.4.

The outer loop function value corresponds to the updated parameters:

fouter(vouter) = (α,A,B,C,D,E,F, a,b). (5.33)

5.3. The proposed nonsmooth inside-out algorithm

In this section we propose a nonsmooth version of the inside-out algorithm that can be

used to successfully converge both our single-soft and double-soft adaptive models from

Chapter 4. The algorithm retains the same structure described in Section 5.2 except for

the modifications that we now present. Moreover, we use the initialization procedures

from Section 4.3 to obtain X0.
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5.3.1. Inner loop modifications

Inner loop variables

Even though dry/vaporless solutions in Phase Regimes II are feasible within the stan-

dard MESH model, the inside-out algorithms of both Boston and Sullivan Jr and Russell

cannot converge to these solutions due to their choice of inner loop variables. Firstly, from

Equation 5.14 we see that the stripping factor Sj is undefined for a dry stage j. More-

over, since the inner loop manipulates the variables ln(Sj/Sb,j), the algorithm does not

allow for vaporless solutions either (Sj = 0). Another issue is that the inner loop variable

RL,1 = WL1/L1 is undefined when the reflux rate (or ratio) is equal to zero, which is a

situation often encountered when using our adaptive models from Chapter 4.

Therefore, in our inner loop we replace the stripping factors with the “weighted” vapor

fractions

ϕj =
Kb,jVj

Kb,jVj +K0,jLj

, 2 ≤ j ≤ N, (5.34)

which become our main inner loop variables. These are analogous to the inner loop

variables for the single-stage flash inside-out algorithm of Boston and Britt [13]. In the

above equation, K0,j is a constant scaling factor that we set to be equal to our initial

guess for Kb,j when starting the calculations. Moreover, we eliminate RL,1 = WL1/L1 as

an inner loop variable and remove the corresponding Equation 5.31 from the inner loop

residual by incorporating it into the MES equation for a partial condenser (see Equation

5.37). As a result, the inner loop variable ϕ1 for Stage 1 is defined as follows:

ϕ1 =


WL1

WL1 + L1

, θ = 0;

Kb,1V1
Kb,1V1 +K0,1L1

, 0 < θ ≤ 1.

(5.35)

With these changes to the inner loop variables, our algorithm can handle zero and neg-

ative flow rates in intermediate iterations without taking logarithms, and it can converge
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to dry/vaporless solutions in Phase Regime II as required by our adaptive models.

When side products at intermediate stages are present, we must retain the correspond-

ing RL,j = WL,j/Lj and RV,j = WV,j/Vj as inner loop variables to preserve the structure

of the inner loop. As a result, side product flow rate specifications WL,j = WL,j,spec or

WV,j = WV,j,spec cannot be enforced by the algorithm for dry/vaporless stages, though

withdrawal ratio specifications RL,j = RL,j,spec or RV,j = RV,j,spec can still be used. The

latter are only enforced at the solution if the stage j is not dry neither vaporless; otherwise,

we obtain WL,j = 0 or WV,j = 0 (see Equations 5.51 and 5.52).

To be able to specify side product flow rates, we can alternatively use a “hybrid”

strategy between the inside-out algorithm and simultaneous convergence of the adaptive

model equations. That is, we retain the outer loop and modify the inner loop so that

the latter consists of the full set of model equations written in terms of the simplified

thermodynamic property models. This same type of strategy is used in [82] for reactive

distillation simulation, since in that case the original inner loop structure cannot be

maintained either.

MES equations

The component liquid flow rates lj,i are all equal to zero for a dry stage j. In this

case, the liquid mole fractions xj,i cannot be computed using Equation 5.20 within the

inner loop. Therefore, we formulate our MES equation system in terms of the variables

pj,i, which are defined through the relationship

lj,i = (1− ϕj) pj,i, (5.36)

instead of the component liquid flow rates lj,i. This way, for a dry stage j (for which

ϕj = 1) we may have pj,i ̸= 0 despite the fact that lj,i = 0. The modified MES equations

for each stage in terms of the p variables are as follows:
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� Stage j = 1 (condenser):


p1,i −

[
α∗
2,iK0,2ϕ2

]
p2,i = f1,i θ = 0;[

1− ϕ1 +
(
α∗
1,i +

1−θ
θKb,1

)
K0,1ϕ1

]
p1,i −

[
α∗
2,iK0,2ϕ2

]
p2,i = f1,i, 0 < θ ≤ 1.

(5.37)

� Intermediary stages (2 ≤ j ≤ N − 1):

[
ϕj−1 − 1

]
pj−1,i +

[
(1− ϕj)(1 +RL,j) + α∗

j,iK0,jϕj(1 +RV,j)
]
pj,i

−
[
α∗
j+1,iK0,j+1ϕj+1

]
pj+1,i = fj,i (5.38)

� Stage j = N (reboiler):

[
ϕN−1 − 1

]
pN−1,i +

[
1− ϕN + α∗

N,iK0,NϕN(1 +RV,N)
]
pN,i = fN,i. (5.39)

Here,

α∗
j,i =


αj,i, if Equation 5.2 is used;

αj,i exp
(
aj,i + bj,i

pj,i∑
k pj,k

)
, if Equation 5.4 is used.

(5.40)

For a partial condenser (0 < θ ≤ 1), we see from Equation 5.37 that the MES equation

for Stage 1 depends on Kb,1. Since the MES equations can only be formulated in terms of

vinner, vouter and p, in this case we include Kb,1 as an extra outer loop variable. We treat

it as a constant and simply update it at each outer loop iteration.

As detailed later on in this section, to solve our nonsmooth inner loop we must be able

to compute directional derivatives of finner with respect to vinner. When we choose to treat

γj,i as a separate factor through Equation 5.4, the MES equations are a smooth nonlinear

system which we solve with fsolve within our implementation. In this case, since p

is solved for iteratively, we cannot apply automatic differentation techniques directly to
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obtain the directional derivatives of p with respect to vinner. Instead, we compute the

latter analytically using the smooth Implicit Function Theorem; that is, in terms of partial

Jacobian matrices and in simplified notation,

Jvinner
p = − (JpfMES)

−1 (Jvinner
fMES) , (5.41)

where fMES is the residual function for the MES equations, and the individual Jacobian

matrices on the right-hand side can be obtained with automatic differentiation. Another

point to consider is that the nonlinear MES equation system can be hard to converge

for highly non-ideal systems without a good initial guess for p. To improve speed and

reliability of convergence, we supply the converged p values from the previous inner loop

iteration as an initial guess.

To compute the primitive variablesX from the converged p values, we use the following

sequence of equations instead of Equations 5.19 to 5.27:

Lj =
∑
i

lj,i = (1− ϕj)
∑
i

pj,i (5.42)

xj,i =
lj,i
Lj

=
pj,i∑
i pj,i

(5.43)

α∗
j,i =


αj,i, if Equation 5.2 is used;

αj,i exp (aj,i + bj,ixj,i) , if Equation 5.4 is used,

(5.44)

Kb,j =
1∑

i α
∗
j,ixj,i

(5.45)

Tj =
Bj

lnKb,j − Aj

(5.46)

V1 =


0, θ = 0;

K0,1ϕ1

Kb,1

∑
i

p1,i, 0 < θ ≤ 1
(5.47)

Vj =
K0,jϕj

Kb,j

∑
i

pj,i, 2 ≤ j ≤ N (5.48)
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yj,i = α∗
j,iKb,jxj,i (5.49)

WL1 =


ϕ1

∑
i p1,i, θ = 0;

1− θ
θ

V1, 0 < θ ≤ 1.

(5.50)

WLj
= RLj

Lj, j ̸= 1 (5.51)

WVj
= RVj

Vj (5.52)

Nonsmooth specification equations

We replace one or both of the two main column specifications λ1 − λ1,spec = 0, λ2 −

λ2,spec = 0 within finner with the nonsmooth specification equation(s) presented in Chapter

4 for the single-soft and double-soft adaptive models, respectively.

Equation solving methods

Despite its smaller size compared to the full-size adaptive models from Chapter 4,

the inner loop system finner(vinner) = 0 is nonsmooth (in particular, PC∞) in the same

way as the latter, given that it contains the same nonsmooth specification equations(s).

Therefore, we solve the inner loop using the same method described in Section 4.4, which

employs the (pseudoinverse) semismooth Newton step together with a forward tracking

line search. The only difference is in the function αmin, which now imposes a threshold of

∆ϕ = 0.05 for the magnitude of variation in the ϕj inner loop variables.

5.3.2. Outer loop modifications

Activity coefficient simplified model

The simplified model for each activity coefficient γj,i presented in Equation 5.10, as

proposed by Boston [15], models ln(γj,i) as an affine function only of xj,i. That is, the

effects of varying the mole fractions of components other than i are not taken into account.

We have found that this strategy precludes the outer loop from converging for some non-
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ideal systems, including the diethylamine-methanol and the five-component azeotropic

systems from Chapter 4 that we will revisit in this chapter. This is the case, in particular,

for solutions that are near an infinite flow rate pinch point.

Therefore, for highly non-ideal systems we propose a simplified activity model of the

form

ln γj,i = aj,i + bj,ixj,i + cj,ixj,k + . . . (5.53)

That is, to model the activity coefficient γj,i of component i we include linear terms not

only for xj,i but also for mole fractions xj,k of all other components k ̸= i. This way, the

activity coefficient model accounts for Nc + 1 parameter matrices a,b, c,d, . . . ∈ RN×Nc

among the outer loop variables instead of only two matrices a,b. In the specific case

of a binary mixture, however, we can avoid including an extra parameter matrix c by

perturbing both xj,1 and xj,2 simultaneously, in opposite amounts, when updating the

coefficients a and b (see Section 5.2.6).

Equation solving methods

Once vk+1
outer is computed using a chosen fixed-point method at a given outer loop

iteration k, it might not be possible to evaluate fouter(v
k+1
outer) due to convergence failure of

the inner loop. We have observed this type of problem even when applying pure direct

substitution to especially non-ideal liquid mixtures, such as the diethylamine-methanol

azeotropic system, near an infinite flow rate pinch point. Moreover, solving the inner loop

within the outer loop function evaluation is a nonsmooth equation-solving task in our

method, and thus fouter is implicitly nonsmooth.

Therefore, we use the Anderson acceleration algorithm of Zhang et al. [91] (see Section

2.3.6) for nonsmooth fixed-point problems to converge our outer loop, together with a “try-

catch” approach to promote some measure of step-size control. Here, we will temporarily

denote the outer loop fixed-point problem as f(x) = x for simplicity of notation. For

choosing a step size, one could initially consider a standard line search procedure in the

direction dk = xk+1 − xk and thus select a value for α ∈ (0, 1) that minimizes the error
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∥∥f(xk + αdk)− (xk + αdk)
∥∥ and that also allows for f to be evaluated. However, each

evaluation of the outer loop function is quite costly because it requires convergence of the

inner loop. Instead, we opt for a “try-catch” approach: we reduce the step size from α = 1

to some α∗ ∈ (0, 1) only in case we fail to evaluate f(xk+1). Moreover, we continue to use

the reduced step size α∗ until we are able to successfully evaluate f(xk+1) and reduce the

error value for 3 consecutive outer loop iterations, as summarized in Algorithm 2. The

value α∗ = 0.3 was found to be suitable for our test cases.

Additionally, we found that we can predict with fair certainty if the inner loop will

fail to converge based on the initial value of the inner loop residual. Specifically, if the

initial inner loop residual for the outer iteration k is sufficiently larger than that of the

previous outer loop iteration k− 1, then we conclude the outer loop step size is too large

for the inner loop to converge. This way, we can avoid unnecessary extra computations.

With particularly non-ideal liquid mixtures, for which we must treat γj,i as a separate

factor through Equation 5.4, we might fail to converge the inner loop while trying to

evaluate fouter at the initial guess v0
outer. In such cases, first we converge the inner loop

without the separate γj,i factor (i.e., using Equation 5.2). Then, we use the converged

vinner value to obtain an updated guess for v0
outer following the procedure in Section 5.2.6

and reattempt to evaluate fouter(v
0
outer) with the full γj,i model. This strategy proved to be

quite effective in converging our most problematic test cases involving azeotropic systems.

Lastly, as done in [87] for the nonsmooth flash inside-out algorithm, we choose to

update the “slope” coefficients Bj, Dj, Fj at each outer loop iteration.
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Algorithm 2: Outer loop x = f(x) of the nonsmooth inside-out distillation
method.
Input : x0, ϵouter, kmax, f , α

∗.
Input : g (update function of the chosen fixed-point method).
Output: xk

1 f0 ← f(x0)
2 k ← 0
3 flag ← 0
4 counter ← 0

5 while k < kmax and
∥∥fk − xk

∥∥ > ϵouter do
6 xk+1 ← g(xk,xk−1, . . . , fk, fk−1, . . . )
7 if flag = 1 then
8 xk+1 ← α∗xk+1 + (1− α∗)xk

9 end

10 try:
11 fk+1 ← f(xk+1)

12 if flag = 1 and
∥∥fk+1 − xk+1

∥∥ < ∥∥fk − xk
∥∥ then

13 counter ← counter + 1
14 if counter = 3 then
15 flag ← 0
16 end

17 end

18 catch Failure in computing f(xk+1):
19 xk+1 ← α∗xk+1 + (1− α∗)xk

20 try:
21 fk+1 ← f(xk+1)
22 counter ← 0
23 flag ← 1

24 catch Failure in computing f(xk+1):
25 return x0

26 end

27 end

28 k ← k + 1

29 end
30 return xk
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5.4. Single-column simulation test cases

We now compare the performance of three different simulation methods for single-

column simulation (i.e., all feed streams are fully specified and the column is not part of

an overarching flowsheet):

� Method 1: the single-soft adaptive model converged with the so-called simul-

taneous algorithm (i.e., we solve the model equations described in Section 4.2.1

simultaneously);

� Method 2: the single-soft adaptive model converged with the nonsmooth inside-out

algorithm developed in Section 5.3;

� Method 3: the RadFrac model in Aspen Plus converged with its standard algo-

rithm, which is based on Boston and Sullivan Jr’s [14] inside-out method.

5.4.1. Simultaneous versus inside-out algorithms for the single-

soft adaptive model

In this section we will compare Methods 1 and 2 using several test cases based on

the seven columns of Table 4.2 from Chapter 4. We use the same tolerance value of

ϵinner = 10−7 for the infinity norm of the inner loop residual and of the full single-soft

adaptive model residual, and ϵouter = 10−3 for the infinity norm of the outer loop residual.

The simultaneous algorithm and the inner loop of the inside-out algorithm are solved

with the same equation-solving method from Section 4.4. The outer loop is converged

with Anderson acceleration according to Section 5.3.2. In each test case we use the initial

guess X0 obtained according to Section 4.3 for both algorithms, i.e., a “blind” initial guess

that does not rely on results of other simulations. We terminate both the simultaneous

algorithm and the inner loop after a maximum of 45 iterations, and the outer loop after

a maximum of 25 iterations (which is the same default limit in RadFrac).

164



Our models and equation solving algorithms were coded in MATLAB. We retrieved

parameter values for all thermodynamic property correlations from the Aspen Plus V10

database. We used rmax = 5 and rmin = 0.05 for all test cases except for those involving

Column 7, for which we used rmax = 10 (see discussion in Section 4.5.5). The fact that

the chosen rmin value is greater than zero only affects the test cases of Columns 5 and 6,

since WL,1 is the first flow rate to become zero in both systems instead of an internal flow

rate (see Section 4.5.4).

We will use two main metrics of performance: convergence reliability (i.e., the ability to

converge to the correct/expected solution from a “blind” initial guess within the imposed

iteration limit), and convergence speed (i.e., total running time until convergence). Our

MATLAB implementation of the simultaneous and inside-out algorithms has not been

optimized for speed, as that would have been outside of the scope of this thesis. Therefore,

to compare convergence speed we report only the ratio of running times between the

inside-out and the simultaneous algorithms.

Figures 5.1, 5.2, 5.3 and 5.4 present the results of 584 test case simulations involving

Columns 1 through 7 from Table 4.2, using both the simultaneous and inside-out algo-

rithms to converge the single-soft model. In Figures 5.1 and 5.2 we vary the soft reflux

ratio specification from -2 to 10 in 0.5 increments for Columns 1 and 7, each of which is

given either a bubble-point or a dew-point feed stream. In Figures 5.3 and 5.4 we vary the

soft product purity specification (which is either x1,1 or xN,1, depending on the column)

from 0 to 1 in 0.1 increments for Columns 2 through 6, using several different feed com-

positions for each of the columns. The chosen hard specification for each column is stated

in Table 4.2. Figures 5.1 and 5.3 depict the test cases in which each algorithm converges,

and present the ratio of simulation times for the inside-out/simultaneous algorithms for

those test cases in which both of them converge. Figures 5.2 and 5.4 show the value of

the soft specification variable λ (either R or a product purity) obtained at the single-soft

model solution for each λspec value, highlighting the corresponding maximum (λ = λrmax)
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and minimum (λ = λrmin
) flow rate solutions (see Section 4.2.1).

Figure 5.1: Ratio of simulation times for the inside-out/simultaneous algorithms for each test
case with a soft R specification.
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Figure 5.2: Value of R at the single-soft model solution for each test case with a soft R
specification.
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Figure 5.3: Ratio of simulation times for the inside-out/simultaneous algorithms for each test
case with a soft purity specification.
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Figure 5.4: Value of the purity specification λ at the single-soft model solution for each test
case with a soft λ specification.
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Convergence reliability

First we analyze the convergence reliability of each method. The simultaneous and

inside-out algorithms each fail to converge in 128/584 (22%) and 1/584 (0.17%) test cases,

respectively. However, both methods converge for all test cases in Figure 5.1 using λ = R.

This is compatible with our general expectations, since this type of column specification

(R together with D) is the most numerically well-behaved one (see discussion in Section

4.5.3), even for highly non-ideal systems such as Column 7.

In Figure 5.3 we can distinguish two main patterns of convergence failure for the

simultaneous algorithm. Firstly, these failures tend to concentrate at/around purity spec-

ification values λspec that lead the single-soft model to reset λ to the maximum flow

rate solution λrmax . For instance, we observe this in the test cases of Columns 5 and 6

with λspec < λrmax = 0.284 and λspec > λrmax = 0.578, respectively. This same type of

convergence failure also happens for the benzene-toluene Column 2 (λrmax = 0.93) with a

bubble-point feed, z1 = 0.35 or 0.45, and λspec = 0.9 or 1. Numerical difficulties near λrmax

are to be expected given the infinite discontinuity in flow rates that happens at near-pure

or near-azeotrope product purity specifications (see Sections 4.5.2 and 4.5.3). Though the

single-soft adaptive model eliminates the actual discontinuity, the model equations can

still become ill-conditioned around λrmax (see the steep slope in Figures 4.13 and 4.16).

Nevertheless, with the inside-out algorithm we can reliably obtain solutions that are ex-

tremely close to an azeotrope pinch point. For example, for Column 3 (λ = x1,1) we

successfully converge to the λrmax = 0.359 solution whereas the azeotropic composition of

component 1 is 0.3585. Moreover, the inside-out algorithm can handle quite unreasonable

user-specified values of λspec (even mole fractions < 0 or > 1, though not shown in Figures

5.2 and 5.4), and still return a “nearest best” MESH-feasible solution.

The second pattern in which the simultaneous algorithm may fail to converge is as-

sociated with the scenario of two specifications being simultaneously infeasible. The

single-soft adaptive model is only capable of resetting a single specification if it happens
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to be infeasible due to flow rates going out of bounds. However, as illustrated in Sections

4.5.2 and 4.5.3, there are sets of column specifications in which two variables are infeasible

simultaneously; in such cases, the single-soft model cannot reach an alternative, feasible

solution. In particular, as exemplified in Figure 4.12, the feed composition must lie in

between the hard purity specification and the range of possible values for the soft purity

specification in order for the single-soft model to have a solution. The last row of test

cases for Columns 2 (dew-point feed), 4 and 6 corresponds to a z1 feed composition that

is close to the feasibility limit imposed by the relevant azeotrope or near-pure component

composition in each column. Though z1 is not technically infeasible in these test cases,

the proximity to a scenario with two infeasible specifications is enough to prevent the

simultaneous (yet not the inside-out) algorithm from converging.

Interestingly, the simultaneous algorithm can sometimes fail to converge even for an

extremely ideal mixture such as the benzene-toluene Column 2 due to either of the two

mechanisms discussed above, while our inside-out algorithm remains reliable. The inside-

out algorithm was originally developed by Boston and Sullivan Jr to handle the numerical

difficulties associated with non-ideal mixture thermodynamics. The greater convergence

reliability of our inside-out algorithm even for ideal systems indicates that this method can

also be useful in overcoming other types of numerical difficulties, such as ill-conditioning

issues near an infinite discontinuity.

The only test case in both Figures 5.1 and 5.3 for which the inside-out (but not the

simultaneous) algorithm failed to converge corresponds to the diethylamine-methanol Col-

umn 6 with z1 = 0.2 and λspec = xN,1,spec = 0.5. However, we were able to converge this

test case by using successive substitution to solve the outer loop instead of Anderson

acceleration, and reducing the α∗ value in Algorithm 2 from 0.3 to 0.2. This example

illustrates the importance of step size control for the outer loop when converging particu-

larly non-ideal systems. In such cases, acceleration techniques during the first outer loop

iterations might preclude convergence of the inner loop when evaluating the outer loop
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function.

Convergence speed

Next, we compare algorithm speed. On average, for the test cases in Figures 5.1

and 5.3 in which both algorithms converge, the inside-out method is 2 times slower than

the simultaneous method, with a standard deviation of approximately 1. The inside-out

algorithm is slower for almost every test case of Columns 2 through 6, while it is faster

in 90% of the test cases for Column 7. For systems without side products, the full set of

model equations has size 2NNc + 3N + 1, while the inner loop of the inside-out method

has size N . However, the latter must be repeatedly solved within the outer loop, for

usually no more than about 8 outer loop iterations in our experience. Therefore, we can

expect to have a break-even point between the running times of both algorithms as we

increase the number of components Nc. When dealing with a binary mixture (Nc = 2),

which is the case for Columns 2 through 6, the full set of equations is 7 times bigger than

the inner loop. On the other hand, for Column 7 the former is already 13 times larger

than the latter, which leads to the inside-out method algorithm being the fastest one.

Convergence under multiple steady states

In a second series of test cases we now revisit Example 5 from Section 4.5.5, which

consists of Column 7 as specified in Table 4.2 using D = 0.3Fs as the hard specification,

λ = x1,1 as the soft specification, and rmax = 10. As seen in Figure 4.18, the MESH

model exhibits multiple steady states for most of the narrow range 0.272 < x1,1 ≤ 0.382

of feasible x1,1 values: two feasible states and a third, infeasible one with negative flow

rates. As discussed in Section 4.5.5, the most adequate (though not obvious) value of α

for Equation 4.6 in this example is equal to 1. Using said value, the single-soft adaptive

model retains a very similar bifurcation curve to that of the MESH model except that

the third state, if present, is feasible and corresponds to the minimum flow rate solution

λ = λrmin
. Therefore, in this example we can compare not only the convergence reliability
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and speed of Methods 1 and 2 but also which of the multiple solutions each method

converges to.

Figures 5.5 and 5.6 present the normalized flow rate V8/Fs at the solutions that the

simultaneous and inside-out algorithms converge to, respectively, when using α = −1 for

Column 7. Figures 5.7 and 5.8 present the same results using α = 1 for each method. In

each of the four figures, we vary x1,1,spec from 0.25 to 0.45 in 0.005 increments. Finally,

Figure 5.9 presents the running time ratio of the inside-out/simultaneous algorithms at

x1,1,spec values for which both methods converge, for α = 1 and α = −1.

In this example we could expect numerical issues not only due to the multiplicity of

MESH solutions but also due to the narrow window between λrmin
≈ 0.336 and λrmax ≈

0.317. For α = 1, we see in Figures 5.5 and 5.6 that the inside-out algorithm converges

for all test cases, while the simultaneous algorithm fails at 2/41 test cases. Moreover, the

inside-out algorithm is able to reach an “intermediate” MESH solution when two of them

exist, while the simultaneous algorithm is biased towards reaching the λrmin
solution. The

latter constitutes an artificially introduced third feasible steady state in this example.

In Figures 5.7 and 5.8 we can analyze how the convergence properties of the single-soft

model change by choosing a less adequate value of α. As discussed in Section 4.5.5, we

would choose α = −1 for Column 7 based on the general strategy of Table 4.1. However,

this yields a set of solutions that is counter-intuitive regarding the direction in which

the method resets infeasible λ = x1,1 values. This alternative α value compromises the

convergence reliability of both the simultaneous and inside-out methods, although the

latter still outperforms the former both in the fraction of successfully converged test

points and in being able to reach intermediate feasible solutions. In Figure 5.9 we see

that the inside-out method still remains faster than the simultaneous one for most test

cases in this multicomponent (Nc = 5) column with either α = 1 and α = −1.
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Figure 5.5: Converged solutions in terms of V8/Fs versus x1,1,spec for Column 7 using the
simultaneous algorithm and α = 1 in Equation 4.6.

Figure 5.6: Converged solutions in terms of V8/Fs versus x1,1,spec for Column 7 using the
inside-out algorithm and α = 1 in Equation 4.6.
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Figure 5.7: Converged solutions in terms of V8/Fs versus x1,1,spec for Column 7 using the
simultaneous algorithm and α = −1 in Equation 4.6.

Figure 5.8: Converged solutions in terms of V8/Fs versus x1,1,spec for Column 7 using the
inside-out algorithm and α = −1 in Equation 4.6.
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Figure 5.9: Ratio of simulation times for the inside-out/simultaneous algorithms versus
specified x1,1 using α = ±1 in Equation 4.6.

5.4.2. RadFrac versus the single-soft adaptive model

In this section we compare the performance of the single-soft inside-out algorithm

(Method 2) to that of Aspen Plus’ RadFrac. In all test cases we keep all convergence

options and algorithms in RadFrac at their default values, and always purge any previous

results before simulating each test case so as to not override the internal initialization

procedure of RadFrac. We refer the reader to Section 4.1.1 of Chapter 4 for a description

of RadFrac’s standard algorithm and commonly encountered convergence error messages.

As an interpreted language, MATLAB is considerably slower than Fortran, which is

the compiled language used by Aspen Plus. Moreover, as previously stated, our MATLAB

implementation was not optimized for speed. Therefore, we refrain from comparing the

absolute running times of our algorithms with Aspen Plus’ RadFrac and instead compare

only convergence reliability. Another limitation in comparing model performance is that,

unlike our single-soft adaptive model, RadFrac cannot possibly return a feasible solution
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when any of the column specifications are infeasible. That fact already stands in favor of

the single-soft model. Therefore, in this section we focus on investigating test cases with

feasible column specifications for which RadFrac nonetheless fails to converge.

We now describe the test cases performed for Columns 3 and 7 from Table 4.2 and

report the results obtained, which we will discuss afterwards.

Column 3

For this column, the range of MESH feasible λ = x1,1 values is 0.3585 < x1,1 ≤ 0.530 =

λrmin
, where the lower bound corresponds to a minimum-boiling azeotrope. When using

rmax = 5 we have λrmax = 0.359, therefore in this case the achievable range of values

with the single-soft model is 0.359 ≤ x1,1 ≤ 0.530. We simulated both RadFrac and the

single-soft inside-out algorithm with λ = x1,1 by varying x1,1,spec from 0.35 to 0.55 in 0.005

increments. In RadFrac, we specify D = 0.3Fs in the standard Setup tab and create a

design specification to enforce x1,1,spec values by varying R. RadFrac converges only for

0.37 ≤ x1,1,spec ≤ 0.52, while our Method 2 converges successfully for all test cases.

Column 7

First, we simulate Column 7 in RadFrac by specifying D = 0.3Fs and a range of R

values greater than zero, corresponding to the same type of test cases performed for our

adaptive model in the last column of Figure 5.1. RadFrac converges successfully for all

test cases with R ≥ 2.29, even as far as R = 100, 000; R ≤ 2.285 values lead to a dry

column error message. We can approach the minimum allowed value R ≈ 2.287 quite

closely without needing to supply a specific initial guess.

In a second series of tests, we kept D = 0.3Fs and specified x1,1 values ranging from 0.3

to 0.38 in 0.01 increments, using R as the manipulated variable. RadFrac only converged

to a solution in 1/21 test cases, for x1,1,spec = 0.34. We obtained a dry column error

for x1,1,spec < 0.31 and the “RadFrac not converged in 25 outside loop iterations” error

message for all other specifications. This stands in contrast to the excellent performance

of our Method 2 in Figure 5.6 and even to its sub-optimal outcomes in Figure 5.8.
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The RadFrac model can enforce R,D specifications very rapidly and effectively, re-

gardless of mixture non-ideality. This is understandable given that RadFrac’s inside-out

algorithm structure is optimized for R,D specifications, and that flow rate values do not

exhibit infinite discontinuities with respect to R. The only type of issue we may encounter

in general with R,D specifications in RadFrac consists of dry column errors. However,

the latter do not seem to stem from failure in converging the model equations, but simply

from the built-in internal safeguard in RadFrac that shuts down intermediate calculations

when any Lj, Vj < 10−5Fs. On the other hand, in our algorithms we allow for flow rates

to assume any values during iterations, including negative ones. Further, our adaptive

models always enforce Lj, Vj ≥ 0 for all internal flow rates at the solution, and are able

to converge to minimal flow rate solutions in which some Lj, Vj = 0.

Aside from dry column errors, the other main type of failure we can encounter during

single-column simulation in Aspen Plus is related to product purity specifications near

an azeotrope pinch point. In the test cases of Column 3, RadFrac fails for x1,1,spec <

0.37 despite the problem remaining feasible as we approach the azeotropic composition

xazeo,1 ≈ 0.3585 from above. In this scenario we usually encounter the generic “RadFrac

not converged in 25 outside loop iterations” error message, which does not provide any

insight to the user about the nature of the issue. In contrast, with our Method 2 we can

converge to maximum flow rate solutions for which λrmax is much closer to the azeotropic

composition. Interestingly, RadFrac also performs poorly in the Column 7 test cases with

an x1,1 specification even when we are not close to an azeotrope.

We could speculate that RadFrac’s sometimes poor performance with purity specifi-

cations might be related to its inside-out algorithm structure. In the latter, this type of

specification must be numerically enforced indirectly through a third, middle loop, given

that the inner loop is designed to accept R,D specifications. This indirectness might jeop-

ardize RadFrac’s ability to converge near an azeotrope, or when multiple steady states in

terms of Lj, Vj values exist with respect to a product purity but not to an R specification.
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The latter holds for our Column 7 example, whose bifurcation diagram with respect to R

is analogous to Figure 4.5.

5.5. Robust distillation simulation for flowsheet cal-

culations

When converging a flowsheet with recycle streams, the standard procedure is to use

the solution from the previous flowsheet pass as the initial guess for each equipment in the

current flowsheet iteration. Therefore, we can expect to have a reasonably good initial

guess in most flowsheet passes, except the very first one, to simulate any distillation

columns that might be present. The single-column simulation test cases from Section

5.4.1 demonstrate that the inside-out algorithm is considerably more reliable to converge

the single-soft adaptive model than the simultaneous algorithm, which is mostly useful

in the absence of a good initial guess. However, the former method is slower than the

latter for systems with few components. Therefore, it would make sense, in terms of

computational efficiency, to resort to the inside-out algorithm only in case of failure of

the simultaneous algorithm, which is more likely to occur during the first flowsheet pass.

Another point to consider is that, as the compositions of the column feed streams are

varied during intermediate flowsheet iterations, we may encounter conditions in which

both column specifications are infeasible. In this case, to obtain an alternative MESH-

feasible solution we must resort to the double-soft adaptive model (see Sections 4.5.2 and

4.5.6). The latter can also be converged with either the simultaneous or the inside-out

algorithms.

In this section we propose a four-tier distillation modeling strategy for converging

flowsheets with recycle streams. To simulate each distillation column we make use of up

to four different simulation methods in the follow hierarchical order:

1. The single-soft adaptive model converged with the simultaneous algorithm;
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2. The single-soft adaptive model converged with the inside-out algorithm;

3. The double-soft adaptive model converged with the simultaneous algorithm;

4. The double-soft adaptive model converged with the inside-out algorithm.

That is, we move on to the next simulation method if the current one fails to converge.

We will refer to Methods 2 through 4 as advanced simulation methods, given that they

are only required when the single-soft simultaneous algorithm fails.

5.6. Flowsheet simulation test cases

We now test the four-tier distillation modeling strategy from Section 5.5 to simulate

two flowsheets for performing pressure-swing distillation: one for ethanol-benzene (Flow-

sheet 1) and the second one for diethylamine-methanol purification (Flowsheet 2). In

this type of process, two distillation columns operating with distinct pressures are used

to circumvent an azeotrope and obtain two high-purity products from a binary mixture.

One of the outputs of the second column is recycled as a feed stream to the first column,

hence we must converge the flowsheet by iteratively adjusting the variables of the recycle

tear stream.

We use the same tolerance values and equation solving methods from Section 5.4.1

for the simultaneous and inside-out algorithms, whether they are being applied to the

single-soft or double-soft models. In the first flowsheet pass we use the initial guess X0

obtained according to Section 4.3, while subsequent passes use the converged solution of

the preceding flowsheet iteration. The termination criteria for each of the four simulation

methods influences the computational efficiency of the four-tier strategy. We terminate

both the simultaneous algorithm and the inner loop after a maximum of 45 iterations,

and the outer loop after a maximum of 25 iterations. We also terminate each equation-

solving task early if the norm residual grows beyond a certain threshold, if oscillations or

stagnation are detected, or if the iterate or function residual becomes undefined or cannot
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be evaluated. As another strategy to improve computational efficiency, we start from the

double-soft model with the simultaneous algorithm for a given column if a double-soft

model had to be used for 3 or more previous flowsheet passes in that respective column.

To simulate both flowsheet examples, we used a tolerance value of ϵ = 10−3 for the

infinity norm of the tear (i.e., recycle) stream residual, which includes discrepancies in flow

rate and mole fraction values. Since the pressure and vapor fraction of the tear stream are

known constants in both flowsheets, we did not include the tear stream temperature as a

convergence variable. For all test cases in each flowsheet, we initialized the tear stream

with the fresh feed composition (z = (2/3, 1/3) for ethanol-benzene and z = (0.5, 0.5) for

diethylamine-methanol) and a flow rate of zero.

We converge the flowsheet tear stream using the Anderson acceleration algorithm of

Zhang et al. [91]. Our four-tier distillation model is not only nonsmooth in general, but

also potentially discontinuous since we might switch from the single-soft to the double-

soft model during an intermediate flowsheet iteration. In turn, that makes the flowsheet

residual function also potentially discontinuous. However, the convergence theorem for

the Zhang et al. algorithm (Theorem 4.1 in [91]) requires the function to be non-expansive,

which implies continuity. Regardless of the applicability of said convergence theorem to

our flowsheet residual function, we have nonetheless been able to converge our test cases

successfully with this algorithm.

We also simulate test cases for both flowsheets in Aspen Plus V10 using fully feasible

specifications for each column. As in Section 5.4.2, we keep the default convergence op-

tions and algorithms in RadFrac, and always purge any previous results before simulating

each flowsheet test case.

5.6.1. Flowsheet 1: ethanol-benzene pressure-swing distillation

We consider the ethanol-benzene pressure-swing distillation flowsheet from Example

11.5 of the textbook [79], which is schematized in Figure 5.10 and henceforth referred to as
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Flowsheet 1. The first and second columns in the flowsheet, which we refer to as Columns

A and B, correspond to Columns 3 (without the recycle stream) and 4 in Table 4.2,

respectively. The bifurcation diagram of Column A with respect to x1,1,spec was analyzed

in Section 4.5.3. We describe the liquid phase with the NRTL model and the vapor phase

is treated as ideal. The thermodynamic models used by the authors in [79] were not

disclosed. We take ethanol to be component i = 1. The mixture tends to form a minimum-

boiling azeotrope at the top of both columns, with composition zazeo = (0.3585, 0.6415)

at Column A’s top tray pressure of 0.3 bar, and composition zazeo = (0.449, 0.551) at

Column B’s top tray pressure of 1.06 bar.

Figure 5.10: The ethanol-benzene pressure-swing distillation flowsheet from Example 11.5 of
[79] (Flowsheet 1).

In [79], the two main specifications are x1,1 = 0.37, xN,1 = 0.99 for Column A, and

x1,1 = 0.44, xN,1 = 0.01 for Column B. Using x1,1 soft specifications, our flowsheet

simulation method converges to a fully feasible solution that agrees with that of [79]
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(e.g., we obtain a recycle stream flow rate value of 152.7 mol/s compared to 152.9 mol/s

in [79]). The only advanced distillation simulation method required is the single-soft

inside-out method, which is used in the first flowsheet pass for Column A.

To explore a wider parameter space range and analyze the robustness of our simulation

method to infeasible specifications, we set λ = x1,1 as a soft specification and vary x1,1,spec

from 0 to 1 in 0.1 increments for each column, making up a total of 121 test cases. Figures

5.11 and 5.12 present the x1,1 values at the obtained flowsheet solutions for Columns A

and B, respectively, for each combination of x1,1,spec values. Figure 5.13 presents the total

number of flowsheet iterations needed to converge each test case, and Figure 5.14 presents

the number of flowsheet passes in which an advanced distillation method was needed to

converge Column B. No advanced method was required for Column A. For all test cases,

the hard specifications xN,1 = 0.99 for Column A and xN,1 = 0.01 for Column B were

satisfied at the final flowsheet solution.

Figure 5.11: x1,1 value at the solution for Column A in Flowsheet 1.
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Figure 5.12: x1,1 value at the solution for Column B in Flowsheet 1.

Figure 5.13: Total number of iterations to converge Flowsheet 1.

In Figures 5.11 and 5.12 we only see 4 mainly distinct flowsheet solutions, in which each

column operates at either its maximum or minimum flow rate solution. In both columns

the latter corresponds to an internal flow rate being equal to zero, and therefore the

positive rmin = 0.05 value used does not impact λrmin
. We can conclude that every tested

value of x1,1,spec is infeasible for both columns, though we are able to specify the hard
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Figure 5.14: Number of flowsheet iterations in which each advanced distillation model was
needed for Column B in Flowsheet 1.

xN,1,spec values at every solution. Despite that, with the single-soft model we are able to

obtain a MESH-feasible flowsheet solution in all test cases. Further, we observe extremely

narrow ranges of feasible x1,1 values for both columns: 0.3585 < x1,1 ≤ 0.376 and 0.431 ≤

x1,1 < 0.449 using the azeotropic compositions for Columns A and B, respectively. With

our single-soft adaptive model using rmax = 5, the reachable values are 0.359 ≤ x1,1 ≤

0.376 for Column A and 0.431 ≤ x1,1 ≤ 0.441 for Column B.

Though the purity limits corresponding to the azeotropic compositions are fixed for a

given pressure, the λrmin
value is a function of other column specifications (e.g., see Figure

4.15). At first glance we could assume that the feasible ranges of x1,1 values are narrow due

to the small number of stages in each column (NA = 9 and NB = 5); however, we observe

the opposite trend. For example, if we set NA = 15, NB = 12, introduce the fresh and

recycle streams to Column A at Stages 10 and 6, and keep the feed stream to Column B at

Stage 2, we obtain slightly narrower feasible ranges of 0.3585 ≤ x1,1 ≤ 0.374 for Column A

and 0.438 ≤ x1,1 ≤ 0.449 for Column B. In general, the λrmin
and λrmax values grow closer
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as the feed composition approaches a near-pure component or azeotropic composition

until they eventually coincide (e.g., see Figure 4.11 for the ideal benzene-toluene Column

2). We observe this behavior in Figures 5.15 and 5.16, which present the type of MESH

solution for Columns A (without the recycle stream) and B for each pair of x1,1, z1 values,

keeping the hard specification xN,1,spec constant for each column.

Figure 5.15: Type of MESH model solution for each pair of x1,1 and z1 values for Column A
without the recycle stream (i.e., Column 3 in Table 4.2).

As discussed in Section 4.5.2, the composite feed composition must lie between the

top and bottom product purities in order to be feasible. In Figures 5.15 and 5.16, the

two feasibility limits for the composite z1 correspond to the azeotropic composition xazeo,1

and the hard specification xN,1,spec. In Figure 5.15 we see that the fresh feed composition

zfresh,1 = 2/3 already determines a somewhat narrow range for x1,1 in Column A. The

composition x1,1 of Column B’s distillate, which is the second feed to Column A, is

necessarily < 0.45. The composite feed of Column A in the converged flowsheet tends

to be much closer to the latter and thus determines an even narrower feasible range of

purities for its distillate. Any achievable x1,1 value for Column A, which corresponds to z1
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Figure 5.16: Type of MESH model solution for each pair of x1,1 and z1 values for Column B.

for Column B, also determines an extremely narrow feasible range for x1,1 in Column B as

seen in Figure 5.16. Therefore, in order to obtain wider feasible x1,1 ranges in Flowsheet 1

we could increase the fresh feed composition zfresh,1, and/or increase the pressure difference

between the two columns so as to introduce a wider separation between the azeotropes.

In general we may need to use one or more of the advanced distillation simulation

methods to converge more challenging sets of flowsheet specifications, especially during

the first flowsheet iteration(s) and in the absence of a good initial guess for the tear stream.

In Figure 5.14 we see that we have to utilize a double-soft model once for Column B, in

this case during the first flowsheet pass, whenever we specify x1,1,spec ≥ 0.5 in Column A.

Given our initial guess of zero for the tear stream flow rate, the feasibility range for Column

A in the first flowsheet pass corresponds to Figure 5.15 with z1 = 2/3. In this figure we

see that x1,1,spec ≥ 0.5 in Column A leads to a composition value of 0.5 ≤ x1,1 ≤ 0.52 for

the Column B feed, which is infeasible as seen in Figure 5.16. Therefore, to solve Column

B in the first flowsheet pass we must resort to the double-soft model. In all subsequent

iterations the tear stream has a non-zero flow rate, which in this example is enough to
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make the feed to Column B feasible. Therefore, we can conclude that the double-soft

model can act as a buffer against poor initial guesses for the tear stream, while the inside-

out algorithm provides robustness against poor initial guesses for the state of each column

in the first flowsheet iteration.

Test cases in Aspen Plus

First, we use Aspen Plus to converge Flowsheet 1 with the fully-feasible specification

values from [79], i.e., x1,1 = 0.37, xN,1 = 0.99 for Column A and x1,1 = 0.44, xN,1 = 0.01

for Column B. If we do not provide any initialization for the tear stream variables, which

corresponds to guessing a tear stream flow rate Ftear = 0, we obtain a “Column not

in mass balance” convergence error message for both Columns A and B. As previously

stated, our simulation method converges this set of specifications successfully even when

guessing Ftear = 0.

In our Aspen Plus test cases we have observed that Ftear is the pivotal variable when

providing an initial guess for the tear stream. This way, to determine how good of an

initial guess Aspen Plus requires to converge this and other test cases in this chapter, we

initialize the tear stream with the correct final values for all its variables (composition,

temperature, pressure) except Ftear, whose value we increase starting from zero. With

this strategy, we are only able to converge to the final solution Ftear = 152.7 mol/s if we

provide an initial guess with Ftear ≥ 167 mol/s. Interestingly, initializing the flowsheet

with the correct final state of the tear stream does not allow Aspen Plus to converge.

If we change the top product specification of Column A to x1,1 = 0.36, Aspen Plus

is unable to converge the flowsheet regardless of the initial guess provided for the tear

stream (including its correct state). Further, the simulation also fails if we first initialize

the whole flowsheet with the converged values corresponding to x1,1 = 0.37. In contrast,

our simulation method is able to converge to solutions in which the top product of Column

A is even closer to the azeotrope, e.g., to the minimum flow rate solution with x1,1 = 0.359,

starting from Ftear = 0.
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5.6.2. Flowsheet 2: diethylamine-methanol pressure-swing dis-

tillation

In this section we study the pressure-swing distillation flowsheet from Figure 3a of

[92] (Flowsheet 2) for the binary system diethylamine-methanol, which forms a pressure-

sensitive maximum-boiling azeotrope. The flowsheet configuration and specified param-

eters are presented in Figure 5.17. The first and second columns (Columns A and B)

correspond to Columns 5 and 6 in Table 4.2, respectively. We take diethylamine as

component i = 1. Section 4.5.4 presented the bifurcation diagram of Column A with

respect to xN,1,spec. As in [92], the UNIQUAC activity model is used to describe the

liquid phase, while the vapor phase is treated as ideal. We impose a total pressure drop

of 0.3 atm for each of the columns as suggested by Iqbal et al. in [40] for the same flow-

sheet, since the pressure drop was not reported by Zhang et al. in [92]. The mixture

tends to form a maximum-boiling azeotrope at the bottom of each column, with compo-

sition zazeo = (0.285, 0.715) at Column A’s reboiler pressure of 1.1 atm, and composition

zazeo = (0.579, 0.421) at Column B’s reboiler pressure of 10.3 atm.

In [92] the authors report only the final flowsheet solution without disclosing which

two main specifications were set for each column. Since we are interested in converging

product purity specifications, we use their solution values of x1,1 = 0.996, xN,1 = 0.3

for Column A and x1,1 = 0.004, xN,1 = 0.54 for Column B as our specifications. With

the latter our method converges in 2 flowsheet iterations, without requiring advanced

distillation simulation methods, to a solution for which R = 3.903 and R = 1.275 for

Columns A and B, and Ftear = 61.7 kmol/h. The corresponding solution values reported

in [92] are R = 3.608, R = 1.316, and Ftear = 65.07 kmol/h.

Next, we set λ = xN,1 as a soft specification in both columns and simulate 121 test

cases with our modeling strategy by varying xN,1,spec from 0 to 1 in 0.1 increments for each

column. Figures 5.18 and 5.19 present the xN,1 values at the obtained flowsheet solutions
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Figure 5.17: The diethylamine-methanol pressure-swing distillation flowsheet from Figure 3a of
[92] (Flowsheet 2).

for Columns A and B, respectively. While the hard specification x1,1 = 0.004 for Column

B was satisfied at all test cases, Figure 5.20 shows the final x1,1 values for Column A,

which were not equal to 0.996 for 12/121 of the test cases. Figure 5.21 shows the total

number of flowsheet iterations needed to converge each test case. Finally, Figures 5.22

and 5.23 present the number of times an advanced distillation method was required for

Columns A and B, respectively.

In Figures 5.18 and 5.19 we see a wider range of feasible xN,1 values compared to

Figures 5.11 and 5.12 for Flowsheet 1. Though each column exhibits a constant λrmax

value, we observe distinct λrmin
values depending on the test case. As previously discussed,

λrmin
can be a strong function of the feed composition, thus the state of Column A at

the flowsheet solution influences the λrmin
value for Column B and vice versa. Though

the combined region of feasible xN,1 values for both columns is not exactly rectangular,
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Figure 5.18: xN,1 value at the solution for Column A in Flowsheet 2.

Figure 5.19: xN,1 value at the solution for Column B in Flowsheet 2.

these range from 0.284 to 0.496 in Column A and from 0.298 to 0.578 in Column B. In

Figures 5.18 and 5.19 we see essentially three types of flowsheet solutions with respect to
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Figure 5.20: x1,1 value at the solution for Column A in Flowsheet 2.

Figure 5.21: Total number of iterations to converge Flowsheet 2.

the model that is enforced for each of the columns: feasible/feasible, single-soft/feasible,

and single-soft/double-soft. Column A exhibits two types of minimum flow rate solutions:

one for which WL,1 = rminFs = 0.05Fs and one in which the internal flow rate V21 is equal

to zero, while Column B exhibits only the former type.

The test cases with 0 ≤ xN,1,spec ≤ 0.2 for Column A and 0 ≤ xN,1,spec ≤ 0.3 for

Column B lead to a double-soft solution for Column A, in which x1,1,spec = 0.996 is not

enforced, and to a single-soft λrmin
solution for Column B. However, in Figure 5.20 we see

that the x1,1 values at these double-soft solutions are still somewhat close to the specified
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Figure 5.22: Number of flowsheet iterations in which each advanced distillation model was
needed for Column A in Flowsheet 2.

Figure 5.23: Number of flowsheet iterations in which each advanced distillation model was
needed for Column B in Flowsheet 2.

value of 0.996. As discussed in Section 4.5.6, the double-soft model has a two-dimensional

continuum of solutions due to the removal of two specification equations. The model

might converge to any of these solutions depending on the initial guess and its closeness

to a MESH-feasible state. In the context of converging a flowsheet we simulate each

column with a sequence of progressively more accurate initial guesses, which allows us
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to steer the double-soft model in the direction of approximately enforcing desired values

for one or more specifications. At each of the double-soft solutions, Column A is neither

at the minimum nor the maximum flow rate solutions, though for some test cases it is

close to the former or to both of them simultaneously. This last scenario (λrmax ≈ λrmin
)

corresponds to the composite feed composition of Column A being close to its feasibility

limit determined by the relevant azeotrope.

The fact that we obtained flowsheet solutions in which the double-soft model ended

up being enforced for Column A does not necessarily mean that no flowsheet solution

exists in which the single-soft model is enforced instead. As previously mentioned, with

our four-tier strategy the flowsheet pass function becomes discontinuous once we switch

from the single to the double-soft models in any of the columns. Also, the final double-

soft solution obtained depends on the path described by the flowsheet iterations. Since

low values of xN,1,spec tend to lead to maximum and minimum flow rate solutions in

Columns A and B, respectively, we could expect to be able to obtain a single-soft/single-

soft solution with xN,1 ≈ 0.284 in Column A and xN,1 ≈ 0.3 in Column B instead of the

double-soft/single-soft solutions.

To investigate these double-soft test cases further, we attempted to re-simulate them

by setting rmin = 0 for both columns; however, that resulted in the four-tier modeling

strategy failing to converge Column B in an intermediate flowsheet iteration. If instead

we decrease rmin = 0 only for Column A and keep rmin = 0.05 for Column B, we are able

to successfully converge to different flowsheet solutions. By specifying 0 ≤ xN,1,spec ≤ 0.2

in both Columns A and B we obtain the same single-soft/single-soft solution in which

xN,1 = 0.284 = λrmax and WL,1 = 0.048Fs for Column A, and xN,1 = 0.298 = λrmin

for Column B. Since WL,1 = 0.048Fs < 0.05Fs at the Column A solution, we can be

confident that no single-soft/single-soft solution exists for the original test cases, in which

we enforce WL,1 ≥ 0.05Fs for both columns. If we specify 0 ≤ xN,1,spec ≤ 0.2 in Column

A and xN,1,spec = 0.3 in Column B, we obtain a single-soft/feasible solution, in which
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xN,1 = 0.284 = λrmax and WL,1 = 0.053Fs for Column A and xN,1 = 0.3 for Column

B. This solution would satisfy the WL,1 ≥ 0.05Fs requirement in the original test cases,

therefore it would be the most adequate one for the latter instead of the double-soft/single-

soft solutions obtained in Figures 5.22 and 5.23. These examples illustrate that there is

a compromise in choosing a value of rmin. On the one hand, a zero or near-zero value

might preclude model convergence and allow external product flow rates WL,1, LN to be

zero or near-zero, which is undesirable whether these streams are final products or inputs

to other equipment. On the other hand, higher rmin values might change λrmin
enough so

that double-soft solutions end up being obtained instead of single-soft ones.

In Figures 5.22 and 5.23 we see that, for most test cases, the (single-soft) inside-out

algorithm was required to converge at least one of the columns in one (in most cases, the

first) flowsheet iteration. This is expected given that the columns are converged starting

from a “blind” initial guess in the first flowsheet pass. Subsequent passes start from the

previously converged solutions and thus the columns can be succcessfully and rapidly

solved with the simultaneous algorithm. In Flowsheet 1 we observed test cases in which

the double-soft model was required only in the first flowsheet iteration due to a feed

composition being temporarily infeasible. On the other hand, for the Flowsheet 2 test

cases in which the double-soft model was required for Column A, this same model had

to be utilized in almost all flowsheet iterations up to the last one, yielding a double-soft

final solution for Column A. For these same test cases we observe an elevated number of

flowsheet iterations in Figure 5.21. This makes sense due to “looseness” of the double-

soft model, which allows the column state to vary in between flowsheet iterations much

more than the single-soft model does. Consequently, more flowsheet passes are needed to

stabilize the state of Column A.

Test cases in Aspen Plus

With the original specifications x1,1 = 0.996, xN,1 = 0.3 for Column A and x1,1 = 0.004,

xN,1 = 0.54 for Column B, Aspen Plus converges Flowsheet 2 without any provided initial
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guess for the tear stream, i.e., with an initial guess of Ftear = 0 . If we change only the

bottom product specification for Column B to xN,1 = 0.577, we are no longer able to

converge Flowsheet 2 without an initial guess and we get a “RadFrac not converged in

25 outer loop iterations” error message for Column B. Next, as done for Flowsheet 1, we

initialize the tear stream with the correct values for all variables except Ftear. We are only

able to converge the flowsheet to the correct solution, for which Ftear = 53.4 kmol/h, if

we provide an initial guess with 45 ≤ Ftear ≤ 52 kmol/h or 60 ≤ Ftear ≤ 65 kmol/h. Note

that providing the actual solution value for all tear stream variables as an initial guess

results in convergence failure.

We are able to converge the flowsheet for xN,1 = 0.578 with our modeling strategy

by setting rmax = 7 for Column B. During the flowsheet computations we only need to

use the single-soft inside-out method once, for Column B. Conversely, Aspen Plus does

not converge the flowsheet in this case regardless of the initial guess for the tear stream

state, including if we provide all the correct final values as determined with our model.

We are also unable to converge the flowsheet in Aspen Plus even if we slowly increase

xN,1 from 0.577 to 0.578 in 0.0001 increments while retaining previous simulation results

to initialize the flowsheet.

5.7. Conclusions

In this chapter we have presented a nonsmooth version of the inside-out method to

simulate distillation columns, which is suitable for converging both the single-soft and

double-soft adaptive models from Chapter 4. As illustrated with several test cases for the

single-soft model, the inside-out algorithm is significantly more reliable to converge the

model equations from an ab initio starting point compared to the simultaneous method

of solving the whole set of equations at once. However, the former algorithm is slower

than the latter for mixtures with few components. We have also developed a four-tier

modeling strategy to simulate distillation columns when converging flowsheets with recy-
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cle streams. This strategy makes use of a sequence of up to four distillation simulation

methods, combining the single-soft and double-soft models and the inside-out and si-

multaneous algorithms in order of increasing reliability and decreasing speed. We have

demonstrated that this flowsheeting strategy is reliable in converging two pressure-swing

distillation processes even under infeasible (and unreasonable) column specifications and

using a poor initial guess for the tear stream state (i.e., zero flow rate). In particular,

the double-soft model allows us to proceed with flowsheet calculations even when two

column specifications are infeasible during intermediate iterations. Additionally, we pre-

sented both single-column and flowsheet test cases in which our distillation simulation

methods outperform Aspen Plus’ Radfrac model, despite the process specifications being

fully feasible.
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Chapter 6

Lipschitz and

Piecewise-differentiable Rank

Theorems

In this chapter we present a piecewise-differentiable (PCr) Rank Theorem and extend

a previously stated Lipschitz Rank Theorem, with the goal of characterizing the level sets

of nonsmooth functions f : Rn → Rm. When the appropriate conditions are satisfied by

the generalized derivatives of f , the Rank Theorems allow us to express a given level set

f−1(c) ⊂ Rn locally as the graph of a nonsmooth function, within a homeomorphic trans-

formation of the same class as f . We define PCr and Lipschitz submersions, immersions

and maps of constant rank in terms of the most general conditions under which the corre-

sponding Rank Theorems are applicable. Moreover, we develop sufficient conditions that

are more easily verifiable for practical applications and relate them to existing full-rank

conditions from the literature.
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6.1. Introduction

The present chapter together with Chapter 7 aim to characterize the local structure

of the level sets f−1(c) ⊂ Rn of locally Lipschitz continuous (Lipschitz for short) or

piecewise-differentiable (PCr) functions f : Rn → Rm. In Chapter 7 we will use the Rank

Theorems developed in the present chapter to characterize these level sets as nonsmooth

manifolds, according to the definitions thereof that we will introduce, and provide example

applications.

The (smooth) Rank Theorem, a traditional result in differential topology, is based on

the Inverse Function Theorem and guarantees that the level set of a constant rank function

between manifolds is itself an embedded submanifold of the domain. In this chapter we

will present Lipschitz and PCr Rank Theorems (Theorem 6.4.2) whose results and proof

structure are analogous to the “Euclidean version” of the smooth Rank Theorem. In

Chapter 7 we will extend these theorems to the case of functions between nonsmooth

manifolds.

A Euclidean Lipschitz Rank Theorem has been presented before in the literature [5]

and there was an attempt to generalize it in [17]; Clarke’s Inverse Function Theorem was

used as a basis in both instances. Ours is the first PCr Rank Theorem to the best of our

knowledge, and it relies on the PCr Inverse Function Theorem from [66, 72]. Unlike the

smooth case, there isn’t a single clear choice of how to define a Lipschitz or PCr function

of “constant rank”. Our Definition 6.3.2 is phrased with general and fairly abstract

conditions, relying on the existence of homeomorphisms that can transform the function

into the format required within the Rank Theorem proof. This choice of definition can be

justified by the fact that equivalent or even sufficient rank conditions involving only the

generalized derivatives of the function don’t seem to exist. In particular, we discuss this

in detail for the Lipschitz case in order to clarify a mistake in [17]. Nevertheless, more

concrete sufficient conditions can be stated for Lipschitz functions under specific cases.
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We will also present concrete and verifiable sufficient rank conditions for a special class

of PCr functions, which can be applied to the nonsmooth distillation model from [19] as

detailed in Chapter 7.

Given that every PCr function is locally Lipschitz continuous, Lipschitz Rank The-

orems are also applicable to PCr functions. However, the PCr Rank Theorem is useful

in its own right because the Lipschitz assumptions are both too restrictive and likely

impractical to verify for PCr functions. Further, as discussed in Chapter 7, the Lipschitz

Rank Theorem applied to a PCr function will only allow us to conclude that its level set

is a Lipschitz manifold, not necessarily a PCr manifold.

6.2. Background concepts and notation

We use brackets [ ] to include text that can replace its previous counterpart, according

to the relevant context, and parentheses ( ) to include text that can be added to the

sentence. Neighborhoods are taken to be open sets in the relevant topology. We defined

the projections πn
m : Rn → Rm, ρn

n−m : Rn → Rn−m and the inclusion ιmn : Rm → Rn in

Definition 2.2.9. The range and null space of a matrix A ∈ Rm×n are denoted R(A) and

N (A), respectively. The orthogonal complement of a subspace V ⊂ W of a vector space

W is denoted V ⊥. The identity map on a set A is denoted idA. Slices of open subsets of

Rn were presented in Definition 2.2.7. We refer the reader to Chapter 2 for definitions of

all the other background concepts used in this chapter.

For ease of notation, in this chapter and in Chapter 7 we will call a function f : Rn →

Rm simply “Lipschitz” or Lipschitz at x0 ∈ Rn if it is locally Lipschitz continuous [at x0]

in the standard sense, and we will call it “globally Lipschitz” on a set U ⊂ Rn if it is

Lipschitz continuous on U in the standard sense.

In this chapter and in Chapter 7, G stands for a generic category or “class” of functions;

in this thesis we will be considering G = Cr, PCr, Lipschitz.
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6.2.1. Homeomorphisms and Inverse Function Theorems

The concept of local G homeomorphisms and the existing Cr, PCr and Lipschitz

Inverse Function Theorems were described in Section 2.2. We now summarize the main

results of that section which will be relevant within this chapter.

We can state conditions for f : Rn → Rn to be a local G homeomorphism at x0 ∈ Rn

using an appropriately chosen G Inverse Function Theorem. For G = Cr, invertibility of

Jf(x0) is a necessary and sufficient condition. For G = Lipschitz, Clarke regularity at x0

is a sufficient condition, while Kummer’s necessary and sufficient conditions are stated

in terms of the generalized “Thibault” derivative. Clarke’s condition, though much more

commonly used in the literature, is not a necessary condition even in the case of piecewise-

linear functions. Nevertheless, in this chapter we have chosen to use Clarke’s rather than

Kummer’s Inverse Function Theorem within the Lipschitz Rank Theorem proof. This

allows us to state rank conditions in terms of the more standard and less abstract Clarke

generalized derivatives, at the cost of these conditions being less general to some extent.

For G = PCr, a necessary and sufficient condition is that f be coherently oriented at

x0 and dfx0 : Rn → Rn be invertible, while a sufficient condition is that f be completely

coherently oriented at x0. For PC
r functions the necessary and sufficient PCr conditions

are equivalent to Kummer’s condition. The advantage of the former is that it utilizes the

B-subdifferential, a finite set with a concrete representation for PCr functions in terms

of essentially active Cr functions. As with Lipschitz functions, Clarke regularity is a

sufficient but not necessary condition.

201



6.3. Submersions, immersions, and maps of constant

rank

We start by recalling the usual Cr constant rank, submersion and immersion definitions

to provide the rationale behind our corresponding Lipschitz and PCr definitions. We say

the Cr function f : Rn → Rm is a Cr map of constant rank k ≤ m,n around x0 ∈ Rn

if there exists a neighborhood U ⊂ Rn of x0 such that Jf(x) ∈ Rm×n has rank k for all

x ∈ U . We say f is a Cr submersion [immersion] at x0 if Jf(x0) ∈ Rm×n is full-row rank

and m ≤ n [full-column rank and m ≥ n].

To prove the Cr Rank Theorem, first we must transform f such that the same k × k

submatrix of the Jacobian matrix stays invertible. To this end, we can use the following

proposition.

Proposition 6.3.1. f is a Cr map of constant rank k around x0 if and only if there exist

permutation linear homeomorphisms g1 : Rn → Rn, g2 : Rm → Rm such that the leading

k×k submatrix of J(g2 ◦ f ◦g1)(x) ∈ Rm×n is invertible for every x on some neighborhood

V1 ⊂ Rn of x̃0 = g1
−1(x0). Moreover, a Cr submersion [immersion] at x0 is a Cr map of

constant rank k = m [k = n] around x0.

Proof. The results follow from the lower semicontinuity of the rank, the fact f is at least

C1, and the invertibility of the Jacobians of g1,g2.

Given this equivalence, we do not need to assume the existence of the homeomorphisms

g1,g2 to prove the Cr Rank Theorem. Instead, we use the far more concrete condition

in terms of the rank of Jf(x). However, in the Lipschitz and PCr cases we do not have

such equivalent and concrete conditions solely in terms of the generalized derivatives of

f . For this reason, our nonsmooth constant rank definitions rely on the existence of

homeomorphisms g1,g2 that can transform f into the required format within the Rank

Theorem proof. Later in this section, we discuss several more concrete conditions that
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are sufficient (but not necessary) for a Lischitz or PCr function to have constant rank in

this sense.

In the following three definitions, let f : Rn → Rm be a PCr [Lipschitz] function at

x0 ∈ Rn.

Definition 6.3.2 (PCr / Lipschitz constant rank map). We say f is a PCr [Lip-

schitz] map of constant rank k ≤ m,n around x0 with respect to the PCr [Lipschitz]

homeomorphisms g1 : Rn → Rn, g2 : Rm → Rm if there exists a neighborhood V ⊂ Rn of

x̃0 = g1
−1(x0) such that the following holds for the function F = g2 ◦ f ◦ g1:

PCr case: (1) every matrix in ∂BF(x) has rank k for every x ∈ V ,

(2) πm
k ◦ F is coherently oriented with respect to the first k variables at x̃0,

(3) d(πm
k ◦ F)x̃0(·,v) : Rk → Rk is invertible ∀v ∈ Rn−k.

Lipschitz case: every matrix in ∂F(x) has rank k and its leading k × k submatrix is

invertible for every x ∈ V .

Definition 6.3.3 (PCr / Lipschitz submersion). We say f is a PCr [Lipschitz] sub-

mersion at x0 with respect to the PCr [Lipschitz] homeomorphism g1 : Rn → Rn if m ≤ n

and the following holds for the function F = f ◦ g1, where x̃0 = g1
−1(x0):

PCr case: F is coherently oriented with respect to the first m variables at x̃0, and

dFx̃0(·,v) : Rm → Rm is invertible ∀v ∈ Rn−m.

Lipschitz case: F is Clarke regular with respect to the first m variables at x̃0.

Definition 6.3.4 (PCr / Lipschitz immersion). We say f is a PCr [Lipschitz] immer-

sion at x0 with respect to the PCr [Lipschitz] homeomorphism g2 : Rm → Rm if m ≥ n

and the following holds for the function F = g2 ◦ f :

PCr case: πm
n ◦F is coherently oriented at x0 and d(π

m
n ◦F)x0 : Rn → Rn is invertible.

Lipschitz case: πm
n ◦ F is Clarke regular at x0.
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We say f is a G map of constant rank k [G immersion] [G submersion] if it is so around

[at] every x0 ∈ Rn.

Remark 6.3.5. In the previous three definitions, the homeomorphisms g1,g2 need only

be local; that is, they may be of the form g1 : V1 → W1 and g2 : V2 → W2, with

V1,W1 ∈ Rn and V2,W2 ∈ Rm open, and x0 ∈ W1, f(x0) ∈ V2.

Proposition 6.3.6 shows how the constant rank conditions become equivalent to the

submersion/immersion definitions in the full rank case. Therefore, for our purposes we

can focus on nonsmooth Rank Theorems without having to consider Submersion and

Immersion Theorems separately.

Proposition 6.3.6. Let f : Rn → Rm be a PCr/Lipschitz function. f is a PCr/Lipschitz

submersion [immersion] at x0 w.r.t. g1 [g2] if and only if f is a PCr/Lipschitz map of

constant rank m [n] around x0 w.r.t. g1, idRm [idRn ,g2].

Proof. The converse statements follow immediately from the definitions, so we consider

only the direct statements. Let k = m [k = n] and F be the function described in

Definition 6.3.3 [Definition 6.3.4]. In the immersion case, for convenience of notation let

x̃0 = x0.

PCr case: Let {F(i) : V → Rm : i ∈ I} be a set of essentially active selection functions

for F at x̃0 , where V ⊂ V1 is a neighborhood of x̃0. From the coherent orientation

assumption, every matrix in ∂BF(x̃0) has full rank k, thus each JF(i)(x̃0) ∈ ∂BF(x̃0)

is full rank. By lower-semicontinuity of the rank and continuous differentiability of the

finitely many F(i), we can shrink the neighborhood V such that JF(i)(x) stays full rank

∀x ∈ V and ∀i ∈ I. Since {F(i) : i ∈ I} is a valid set of selection functions ∀x ∈ V ,

∂BF(x) ⊂
{
JF(i)(x) : i ∈ I

}
and thus every matrix in ∂BF(x) has full rank k ∀x ∈ V .

Lipschitz case: By assumption every matrix in ∂F(x̃0) has full rank k. Since the

Clarke Jacobian of a Lipschitz function is upper semicontinuous (Proposition 2.6.2 c) in

[22]) and given the lower semicontinuity of the rank, we can find a neighborhood V ⊂ V1

of x̃0 such that every matrix in ∂F(x) has full rank k for every x ∈ V .
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Both cases: Letting g2 = idRm [g1 = idRn ], we satisfy Definition 6.3.2 with F = g2 ◦F

[F = F ◦ g1] and k = m [k = n].

Proposition 6.3.7 addresses the relationship between the PCr and Lipschitz rank con-

ditions in the case of a PCr function. The converse of this result is not true, e.g., if

all matrices in the B-subdifferential have positive determinants then one of their convex

combinations might have determinant equal to zero. Therefore, the PCr rank conditions

are more general than the Lipschitz ones for PCr functions.

Proposition 6.3.7. Let f : Rn → Rm be a PCr function. If f is a Lipschitz map

of constant rank k [submersion] [immersion] around [at] x0 ∈ Rn with respect to PCr

homeomorphisms, then f is a PCr map of constant rank k [submersion] [immersion]

around [at] x0 with respect to the same homeomorphisms.

Proof. Let f have constant rank k according to the Lipschitz Definition 6.3.2, where

g1,g2 are PCr. Condition (1) of the PCr definition holds since ∂BF(x) ⊂ ∂F(x). The

fact that all leading k × k submatrices in ∂(πm
k ◦ F)(x̃0) are invertible is sufficient for

invertibility of the Lipschitz function d(πm
k ◦ F)x̃0(·,v) and thus condition (3) holds (see

proof of Proposition 6.3.18). Finally, suppose M1,M2 are leading k × k submatrices in

∂B(πm
k ◦F)(x̃0) such that det(M1) det(M2) < 0. By continuity of the determinant, there

must exist λ ∈ (0, 1) such that M = λM1 + (1 − λ)M2 is a leading k × k submatrix in

∂(πm
k ◦F)(x̃0) and det(M) = 0, a contradiction. Therefore, condition (2) of the constant

rank PCr definition holds with the same F. The result for a submersion/immersion then

follows from Proposition 6.3.6.

6.3.1. Sufficient rank conditions for Lipschitz functions

In order to introduce sufficient conditions for a Lipschitz function to have constant

rank, first we consider the following definitions from [24] which relate to our Lipschitz
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submersion definition. Note that analogous definitions could also be stated for the full

column rank case, relating to Lipschitz immersions.

Definition 6.3.8 (FRA and SFRA). Let f : Rn → Rm be Lipschitz at x0 ∈ Rn and

m ≤ n. The full rank assumption (FRA) is said to hold at x0 if every matrix in ∂f(x0)

has full row rank m. The strong full rank assumption (SFRA) is said to hold at x0 if

there exists an m-dimensional subspace E ⊂ Rn such that

N (A) ∩ E = {0}, ∀A ∈ ∂f(x0). (6.1)

Remark 6.3.9. The SFRA implies the FRA, given that the dimension of each N (A) is

at least n−m from the fact m ≤ n and at most n−m from Equation 6.1. However, we

know the converse is not true from the following counterexample presented by Izmailov

in [41]:

A = conv


1 0 0

0 1 0

 ,
−0.2 0.8 0.2

0 −0.5 0.4

 ,
 0.7 −0.7 −0.6

−0.8 0.1 0.6

 . (6.2)

The set A satisfies FRA but not SFRA (see Appendix A for a detailed demonstration),

and it must correspond to the Clarke Jacobian of some Lipschitz function according to

[7]. In [24] the authors hypothesize the equivalence of FRA and SFRA for PC1 functions

(“full-rank conjecture”), but prove the result only for min-type functions f : Rn → Rm

(i.e., each component fi is the minimum of two C1 functions) with m ≤ 3.

Now we introduce the following definitions as natural extensions of the FRA and SFRA

for non-full row rank cases.

Definition 6.3.10 (CRA and SCRA). Let f : Rn → Rm be Lipschitz at x0 ∈ Rn and

k ≤ m,n. The constant rank assumption (CRA) is said to hold at x0 with rank k if

there exists a neighborhood U ⊂ Rn of x0 such that every matrix in ∂f(x) has rank k for

every x ∈ U . The strong constant rank assumption (SCRA) is said to hold at x0 with
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rank k if, additionally, there exist k-dimensional subspaces E ⊂ Rn and H ⊂ Rm and a

neighborhood U ⊂ Rn of x0 such that

N (A) ∩ E = {0} and N (AT) ∩H = {0}, ∀A ∈ ∂f(x), x ∈ U. (6.3)

Remark 6.3.11. Due to Lemma 6.3.12, the SCRA is equivalent to the existence of an

(n− k)-dimensional subspace E⊥ ⊂ Rn and an (m− k)-dimensional subspace H⊥ ⊂ Rm

such that

R(AT) ∩ E⊥ = {0} and R(A) ∩H⊥ = {0}, ∀A ∈ ∂f(x), x ∈ U. (6.4)

Lemma 6.3.12. Let V,W ⊂ Rn be subspaces such that dim(V ) + dim(W ) = n.

V ∩W = {0} if and only if V ⊥ ∩W⊥ = {0}.

Proof. Let v ∈ V ⊥ ∩W⊥ and Z = span{v} ⊂ Rn. Since every vector in V and in W

is orthogonal to v and Z has at most dimension 1, then V,W ⊂ Z⊥ ⊂ Rn. Given that

dim(V )+dim(W ) = n and V ∩W = {0}, we must have dim(Z⊥) ≥ n, therefore Z⊥ = Rn

and v = 0.

The next proposition establishes that the CRA/SCRA indeed generalize the

FRA/SFRA in the full row rank case.

Proposition 6.3.13. Let f : Rn → Rm be Lipschitz at x0 ∈ Rn and m ≤ n.

FRA [SFRA] holds at x0 if and only if CRA [SCRA] holds at x0 with full row rank m.

Proof. The CRA⇒FRA and SCRA⇒SFRA statements follow directly from the defini-

tions; in the latter, SCRA must hold with H = Rn given that CRA holds with full row

rank. FRA⇒CRA follows from upper semicontinuity of the Clarke Jacobian and lower

semicontinuity of the rank.

From SFRA (see Remark 6.3.11) there exists an m-dimensional subspace E ⊂ Rn such

that R(AT) ∩ E⊥ = {0} for every A ∈ ∂f(x0). Given A ∈ ∂f(x0), the minimal angle
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θ ∈ [0, π/2] between R(AT) and E⊥ is a continuous function of A because its cosine

corresponds to the 2-norm of the matrix PR(AT)PE⊥ , where PV denotes the orthogonal

projection matrix onto the subspace V ⊂ Rn (see [39]). Moreover, θ > 0 if and only if

R(AT) ∩ E⊥ = {0}. Then, given the upper semicontinuity of the Clarke Jacobian, we

can find a neighborhood U ⊂ Rn of x0 where Equation 6.4 holds with H = Rm and thus

the SCRA applies with k = m.

Propositions 6.3.16 and 6.3.17 show that the SCRA [SFRA] is equivalent to the func-

tion being a Lipschitz map of constant rank [submersion] in the specific case where the

homeomorphisms are linear and orthogonal. On the other hand, our Lipschitz constant

rank and submersion definitions allow for the homeomorphisms to be only Lipschitz.

Lemma 6.3.14. Let A ∈ Rm×n, k ≤ m,n, and v1, . . . ,vk ∈ Rn be a basis of the subspace

E ⊂ Rn. N (A) ∩ E = {0} if and only if the vectors Av1, . . . ,Avk ∈ Rm are linearly

independent.

Proof. Considering the direct statement, let αi ∈ R such that

k∑
i=1

αiAvi = A

(
k∑

i=1

αivi

)
= 0.

Then v =
∑k

i=1 αivi belongs to N (A) ∩ E, therefore v = 0. From linear independence

of the vi it follows that all αi = 0. Now for the converse statement, let v ∈ N (A) ∩ E.

There exist α1, . . . , αk ∈ R such that v =
∑k

i=1 αivi and Av =
∑k

i=1 αiAvi = 0. From

linear independence of the Avi it follows that all αi = 0 and v = 0.

Lemma 6.3.15. Let A ∈ Rm×n, k ≤ n, and P ∈ Rm×m be invertible. The first k

columns of A are linearly independent if and only if the first k columns of PA are linearly

independent.
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Proof. Let ai ∈ Rm denote the i-th column of A and c1, . . . , ck ∈ R. The result follows

from ∑k
i=1 ci(Pai) = 0 ⇐⇒ P

(∑k
i=1 ciai

)
= 0 ⇐⇒

∑k
i=1 ciai = 0. (6.5)

Proposition 6.3.16. Let f : Rn → Rm be Lipschitz at x0 ∈ Rn. SCRA holds at x0

with rank k ≤ m,n if and only if f is a Lipschitz map of constant rank k around x0 with

respect to orthogonal linear homeomorphisms g1 : Rn → Rn, g2 : Rm → Rm.

Proof. Let SCRA hold according to Definition 6.3.10. Let v1, . . . ,vk ∈ Rn and

vk+1, . . . ,vn ∈ Rn be orthonormal bases for E and E⊥, respectively, and y1, . . . ,yk ∈ Rm

and yk+1, . . . ,ym ∈ Rm be orthonormal bases for H and H⊥, respectively. Further, let

P1 ∈ Rn×n be the matrix whose j-th column is vj ∈ Rn, and P2 ∈ Rm×m be the matrix

whose i-th row is yi ∈ Rm. Define the orthogonal linear homeomorphisms g1 : Rn → Rn,

g1(x) = P1x, and g2 : Rm → Rm, g2(x) = P2x, and let F = g2 ◦ f ◦ g1.

Letting x ∈ U and A ∈ ∂f(x), we can apply Lemma 6.3.14 to show that the first

k columns of AP1 ∈ Rm×n are linearly independent. Because P1 ∈ Rn×n is invertible,

R(AP1) = R(A), thus N ((AP1)
T) = N (AT). Then N ((AP1)

T) ∩ H = {0} and we

can apply Lemma 6.3.14 to see that the first k rows of P2AP1 ∈ Rm×n are linearly

independent. From Lemma 6.3.15 we can conclude P2AP1 has rank k with invertible

leading k × k submatrix for every A ∈ ∂f(x) and every x ∈ U . Given that P1,P2 are

invertible we have that ∂F(x) = P2∂f(g1(x))P1 for every x ∈ V , where V = g1
−1(U) ⊂

Rn is a neighborhood of x̃0 = g1
−1(x0) (see Proposition 2.1.3). Then f is a Lipschitz map

of constant rank k around x0 with respect to g1,g2.

For the converse, let f and F be according to Definition 6.3.2 and g1(x) = M1x,

g2(x) = M2x, where vj ∈ Rn denotes the j-th column of M1 and yi ∈ Rm denotes the

i-th row ofM2. Further, let U = g1(V ), E = span{v1, . . . ,vk} andH = span{y1, . . . ,yk}.

Letting x ∈ U and A ∈ ∂f(x), we have that M2AM1 ∈ ∂F(g1
−1(x)) has rank k

with leading k× k submatrix invertible. Then CRA follows from invertibility of M1,M2.
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Lemma 6.3.15 gives thatAv1, . . . ,Avk (the first k columns ofAM1) andAT
1 y1, . . . ,A

T
k yk

(the first k rows of M2A) are linearly independent. Then Lemma 6.3.14 shows that

Equation 6.3 holds.

Proposition 6.3.17. Let f : Rn → Rm be Lipschitz at x0 ∈ Rn and m ≤ n. SFRA holds

at x0 if and only if f is a Lipschitz submersion at x0 with respect to an orthogonal linear

homeomorphism g1 : Rn → Rn.

Proof. From Proposition 6.3.13 we know that SFRA holds at x0 if and only if SCRA

holds at x0 with H = Rn. From Proposition 6.3.16 the latter is equivalent to f being a

Lipschitz map of constant rank m around x0 w.r.t. g1 and g2 = idRm , where g1 is a linear

orthogonal homeomorphism. Finally, this is equivalent to f being a Lipschitz submersion

at x0 w.r.t. g1 from Proposition 6.3.6.

6.3.2. Sufficient rank conditions for PCr functions

The following proposition provides a sufficient condition for f to be a PCr map of

constant rank k, an immersion (k = n), or a submersion (k = m), in terms of complete

coherent orientation of the transformed function F = g2 ◦ f ◦g1. As with the PCr Inverse

Function Theorem, complete coherent orientation implies both coherent orientation and

invertibility of the relevant piecewise-affine map.

Proposition 6.3.18. Let V1 ⊂ Rn be open, F : V1 → Rm be a PCr function, and

k ≤ m,n. If πm
k ◦F is completely coherently oriented with respect to the first k variables

at x̃0 ∈ V1, then d(πm
k ◦ F)x̃0(·,v) : Rk → Rk is invertible for every v ∈ Rn−k.

Proof. Let v ∈ Rn−k and hv = d(πm
k ◦ F)x̃0(·,v). For every u ∈ Rk we have

hv(u) = d(πm
k ◦ F)x̃0(u,v) ∈

M

u
v

 : M ∈ ∂B(πm
k ◦ F)(x̃0)

 (6.6)

⊂
{
M1u+M2v : M1 ∈ πB

k (π
m
k ◦ F)(x̃0), M2 ∈ ρB

n−k(π
m
k ◦ F)(x̃0)

}
.

(6.7)
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Therefore, hv is continuous and piecewise-affine, and ∂Bhv(u) is a subset of πB
k (π

m
k ◦

F)(x̃0) for every u ∈ Rk. Then hv is completely coherently oriented everywhere and thus

invertible (Corollary 19 in [72]).

Theorem 6.3.19 gives concrete and more easily verifiable sufficient conditions for cer-

tain PCr functions, with at most two essentially active functions, to be PCr submersions

or maps of constant rank. This result can be applied to the distillation model from [19],

as will be detailed in Chapter 7.

Theorem 6.3.19 (PCr maps with 2 selection functions). Suppose the PCr function

f : Rn → Rm has a selection set at x0 ∈ Rn composed of two Cr functions f(1), f(2) : U →

Rm, where U ⊂ Rn is a neighborhood of x0. Moreover, suppose Jf (1)(x0)− Jf (2)(x0) has

rank 1.

(a) Let m = n − 1. If both Jf (1)(x0) and Jf (2)(x0) have full row rank and their null

spaces do not coincide, then f is a PCr submersion at x0 with respect to an orthogonal

linear homeomorphism.

(b) Let m = n and suppose the Cr functions f(1), f(2) have constant rank n − 1 on

U . If the 1-dimensional null spaces of Jf (1)(x0) and Jf (2)(x0) do not coincide, and the

1-dimensional left null spaces of Jf (1)(x0) and Jf (2)(x0) do not coincide, then f is a PCr

map of constant rank n−1 around x0 with respect to orthogonal linear homeomorphisms.

Proof. Both cases: Let M = Jf (1)(x0) − Jf (2)(x0). For matrices A,B of the same

dimensions such that N (A) ∩N (B) = {0} it holds that

x ∈ N (A), x ̸= 0⇒ Ax = 0, Bx ̸= 0⇒ x /∈ N (A−B), (6.8)

therefore

N (Jf (i)(x0)) ∩ N (M) = {0}, i = 1, 2. (6.9)

Let v1, . . . ,vn−1 ∈ Rn be an orthonormal basis of N (M) and vn ∈ Rn be an or-

thonormal basis of R(MT), and P1 ∈ Rn×n be the matrix whose j-th column is vj. Then
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we apply Lemma 6.3.14 and conclude the first n − 1 columns of Jf (i)(x0)P1 are linearly

independent for i = 1, 2. Define the orthogonal linear homeomorphism g1 : Rn → Rn,

g1(x) = P1x, and let V = g1
−1(U) and x̃0 = g1

−1(x0).

Case (a): By composition, F = f ◦ g1 is a PCr function with selection set

{
fi ◦ g1 : V → Rn−1, i = 1, 2

}
(6.10)

at x̃0. Applying the Chain Rule to each fi ◦ g1 at x̃0,

∂BF(x̃0) ⊂
{
Jf (1)(x0)P1, Jf (2)(x0)P1

}
. (6.11)

Since M
[
v1, . . . ,vn−1

]
= 0, the first n− 1 columns of Jf (1)(x0)P1 and Jf (2)(x0)P1 coin-

cide. Then F is completely coherently oriented w.r.t. the first n− 1 variables at x̃0, and

by Proposition 6.3.18 f is a PCr submersion at x0 w.r.t. g1.

Case (b): Since P1 is invertible, the column spaces and therefore also the left null

spaces of Jf (i)(x0) and Jf (i)(x0)P1 coincide, thus

N ((Jf (i)(x0)P1)
T) ∩ N (MT) = {0}, i = 1, 2. (6.12)

Let y1, . . . ,yn−1 ∈ Rn be an orthonormal basis of N (MT) and yn ∈ Rn be an or-

thonormal basis of R(M), and P2 ∈ Rm×m be the matrix whose i-th row is yj. Then

we apply Lemma 6.3.14 using A = (Jf (i)(x0)P1)
T to see that the first n − 1 rows of

P2Jf (i)(x0)P1 are linearly independent for i = 1, 2. Applying Lemma 6.3.15 we conclude

that the leading (n − 1) × (n − 1) submatrix of P2Jf (i)(x0)P1 is invertible for i = 1, 2.

Since M
[
v1, . . . ,vn−1

]
= 0 and

[
y1, . . . ,yn−1

]T
M = 0T, the leading (n − 1) × (n − 1)
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submatrices of P2Jf (1)(x0)P1 and P2Jf (2)(x0)P1 coincide:

[
y1, . . . ,yn−1

]T
Jf (1)(x0)

[
v1, . . . ,vn−1

]
=
[
y1, . . . ,yn−1

]T
Jf (2)(x0)

[
v1, . . . ,vn−1.

]
(6.13)

Define the orthogonal linear homeomorphism g2 : Rn → Rn, g2(x) = P2x. By

composition, the function F = g2 ◦ f ◦ g1 : V → Rn is PCr with selection set

{g2 ◦ fi ◦ g1 : V → Rn, i = 1, 2} (6.14)

at x̃0. Applying the Chain Rule to each g2 ◦ fi ◦ g1 at every x ∈ V gives

∂BF(x) ⊂
{
P2Jf (1)(g1(x))P1, P2Jf (2)(g1(x))P1

}
, x ∈ V. (6.15)

Then, by Equation 6.13, πn
n−1 ◦ F : V → Rn−1 is completely coherently oriented with

respect to the first n − 1 variables at x̃0. Further, every matrix in
{
∂BF(x) : x ∈ V

}
has rank n− 1, given that P1,P2 are invertible and f(1), f(2) have constant rank n− 1 on

U = g1(V ). By Proposition 6.3.18 we conclude f is a PCr map of constant rank n − 1

around x0 with respect to g1,g2.

6.4. Nonsmooth Rank Theorems

In this section we present a unified and detailed proof of the Cr, Lipschitz, and PCr

Rank Theorems to highlight their common general outline and clarify their distinctions,

although only the PCr proof is truly novel.

The standard Cr Rank Theorem result corresponds only to part (a) of Theorem 6.4.2

and can be found, for instance, in [54]. Parts (b) and (c) are consequences of intermediary

results within the proof of (a), and therefore are best presented as separate results to be

used in Chapter 7. Moreover, part (b) provides a way to prove the Implicit Function
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Theorem directly from the Rank Theorem. Parts (b) and (c) have not been presented for

nonsmooth functions in the more general context of transformed graphs; in [5] they were

presented for Lipschitz functions that do not require any transformation (i.e., the leading

k × k submatrices in the Clarke Jacobian of the original function are invertible).

In [17] Butler et al. presented a Lipschitz Rank Theorem which stated, using the no-

tation from this chapter, that the CRA (Definition 6.3.10) guarantees Theorem 6.4.2(a)

holds for Lipschitz functions. This theorem relied on their Proposition 2.1, which corre-

sponds to the statement CRA⇒ SCRA for compact convex subsets of matrices. However,

this result is incorrect. The counterexample in Remark 6.3.9 shows that FRA ̸⇒ SFRA

for compact convex subsets of matrices, therefore CRA ̸⇒ SCRA (see Proposition 6.3.13).

We present a corrected Lipschitz Rank Theorem based on the more general concept

of a Lipschitz map of constant rank stated in Definition 6.3.2. Our proof also makes

use of the fact that the Clarke Jacobian can be taken w.r.t. any measure zero set that

includes the non-differentiability set (Equation 2.4). Otherwise, our Lipschitz proof is

mostly analogous to the one in [17].

First, we define the concept of G charts for Rn. Here, G stands for Cr, PCr, or

Lipschitz.

Definition 6.4.1 (G chart for Rn). We say (U, ϕ) is a G chart for Rn around x0 if

U, ϕ(U) ⊂ Rn are open sets, x0 ∈ U , and ϕ : U → ϕ(U) is a G homeomorphism.

Theorem 6.4.2 (Cr/Lipschitz/PCr Rank Theorem). Let f : Rn → Rm be a G

function, x0 ∈ Rn and f(x0) = c. Suppose that f is a G map of constant rank k around

x0 with respect to the G homeomorphisms g1 : Rn → Rn and g2 : Rm → Rm, where

k ≤ m,n.

Then there exist G charts (U,ϕ) for Rn around x0 and (V,ψ) for Rm around f(x0),
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with f(U) ⊂ V , such that:

(a) ψ ◦ f ◦ ϕ−1 = ιkm ◦ ρn
k : ϕ(U)→ Rm, (6.16)

(x1, . . . , xk, xk+1, . . . , xn) 7→ (x1, . . . , xk, 0, . . . , 0).

(b) ϕ(U ∩ f−1(c)) is an (n − k)-slice of ϕ(U) ⊂ Rn, and there exists a G function

y : V ′ → Rk, V ′ ⊂ Rn−k open, such that g1
−1(U ∩ f−1(c)) ⊂ Rn is (within permutation)

the graph of y.

(c) ψ(f(U)) is a k-slice of ψ(V ) ⊂ Rm, and there exists a G function z : U ′ → Rm−k,

U ′ ⊂ Rk open, such that g2(f(U)) ⊂ Rm is the graph of z.

Proof. (a) Let F = g2 ◦ f ◦g1 : V1 → Rm be the G function described in Proposition 6.3.1

for G = Cr and in Definition 6.3.2 for G = PCr or Lipschitz, with x̃0 = g1
−1(x0). Next,

define the G function h : V1 → Rn as

h(x) =
(
πm

k ◦ F(x), xk+1, . . . , xn
)
. (6.17)

h is differentiable at x ∈ V1 if and only if πm
k ◦ F is differentiable at x ∈ V1, in which

case

Jh(x) =

 A(x) B(x)

0(n−k)×k In−k

 , J(πm
k ◦ F)(x) =

[
A(x) B(x)

]
, (6.18)

where A(x) is the leading k × k submatrix of J(πm
k ◦ F)(x), and thus det(Jh(x)) =

det(A(x)).

Cr case: By the assumptions on F, A(x) and thus Jh(x) is invertible ∀x ∈ V1.
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PCr case: For any (u,v), (w, z) ∈ Rk × Rn−k we have

dhx̃0(u,v) =

d(πm
k ◦ F)x̃0(u,v)

v

 , (6.19)

dhx̃0(u,v) = (w, z) ⇐⇒ d(πm
k ◦ F)x̃0(u,v) = w and v = z. (6.20)

For every z ∈ Rn−k, the function rz = d(πm
k ◦ F)x̃0(·, z) : Rk → Rk is invertible by

assumption. Therefore dhx̃0 : Rn → Rn is invertible and (dhx̃0)
−1(w, z) = (r−1

z (w), z).

In view of Equation 6.18 and the definition of the B-subdifferential, we must have

∂Bh(x̃0) =


 M N

0(n−k)×k In−k

 , [
M N

]
∈ ∂B(πm

k ◦ F)(x̃0)

 . (6.21)

By assumption πm
k ◦ F is coherently oriented w.r.t. the first k variables at x̃0, therefore

h is coherently oriented at x̃0.

Lipschitz case: In view of Equation 6.21 and given that every leading k×k submatrix

in ∂F(x̃0) is invertible by assumption,

∂h(x̃0) =


 M N

0(n−k)×k In−k

 , [
M N

]
∈ ∂(πm

k ◦ F)(x̃0)

 (6.22)

must contain only invertible matrices, which makes h Clarke regular at x̃0.

All cases: Thus we can apply the Cr/PCr/Clarke Inverse Function Theorem to h at

x̃0 and get neighborhoods A ⊂ V1 of x̃0 and B ⊂ Rn of h(x̃0) such that h : A→ B is a G

homeomorphism.

By the definition of h, πn
k ◦ h = πm

k ◦F on A. Then πm
k ◦F ◦ h−1 = πn

k on B and the

composite G function F ◦ h−1 : B → Rm is of the form

F ◦ h−1(x) =
(
x1, . . . , xk, G(x)

)
, (6.23)
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where G : B → Rm−k is a G function. F ◦ h−1 is differentiable at x ∈ B if and only if G

is differentiable, in which case

J(F ◦ h−1)(x) =

 Ik 0k×(n−k)

C(x) D(x)

 , JG(x) =
[
C(x) D(x)

]
, D(x) ∈ R(m−k)×(n−k).

(6.24)

Cr case: Since h−1 : B → A is a Cr homeomorphism, by the (converse) C1 Inverse

Function Theorem we know Jh−1(x) is invertible ∀x ∈ B. In addition, since h−1(B) =

A ⊂ V1, then J(F ◦ h−1)(x) = JF(h−1(x)) Jh−1(x) must have rank k for all x ∈ B.

By inspecting Equation 6.24, the only way this can happen is if D(x) = 0 and thus

ρn−kG(x) = {D(x)} = {0} for all x ∈ B.

PCr case: In view of Equation 6.24, for every x ∈ B we have

∂B(F ◦ h−1)(x) =


Ik 0k×(n−k)

M N

 :
[
M N

]
∈ ∂BG(x)

 . (6.25)

Let x ∈ B. Since h−1 : B → A is a PCr homeomorphism, by the converse of

the PCr Inverse Function Theorem every matrix in ∂Bh−1(x) has full rank n. Since

h−1(B) = A ⊂ V1, all matrices in ∂BF(h−1(x)) have rank k for all x ∈ B. Then,

according to Proposition 2.1.5, every matrix in

∂B(F ◦ h−1)(x) ⊂
{
M1M2 : M1 ∈ ∂BF(h−1(x)), M2 ∈ ∂Bh−1(x)

}
, (6.26)

must have rank k. By inspecting Equation 6.25, the only way this can happen is if

ρB
n−kG(x) = {0} and thus ρn−kG(x) = {0} for every x ∈ B.

Lipschitz case: h is differentiable if and only if πm
k ◦F is differentiable at x ∈ A ⊂ V1,

and by Proposition 2.2.2 in [22] we have [A(x) B(x)] = J(πm
k ◦ F)(x) ∈ ∂(πm

k ◦ F)(x).

Therefore, in this case A(x) and thus Jh(x) must be invertible. Since h : A → B is

a Lipschitz bijection, h−1 is differentiable at x ∈ B if and only if h is differentiable at
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h−1(x) ∈ A, and in that case Jh−1(x) =
(
Jh(h−1(x))

)−1
is also invertible.

Let ΩF◦h−1 ⊂ B and Ωh−1 ⊂ B be the measure zero sets where F ◦ h−1 and h−1 fail

to be differentiable. Letting x ∈ B \ (ΩF◦h−1 ∪ Ωh−1), we can see that h−1 and F ◦ h−1

are differentiable at x, h is differentiable at h−1(x) ∈ A, Jh−1(x) is invertible, and by

the Chain Rule F = (F ◦ h−1) ◦ h is differentiable at h−1(x). From the constant rank

assumption, JF(h−1(x)) ∈ ∂F(h−1(x)) must have rank k since h−1(x) ∈ V1. Moreover,

by the Chain Rule

J(F ◦ h−1)(x) = JF(h−1(x)) Jh−1(x) =

 Ik 0k×(n−k)

C(x) D(x)

 (6.27)

must have rank k, which is only possible if D(x) = 0 for every x ∈ B \ (ΩF◦h−1 ∪ Ωh−1).

Given that ΩF◦h−1 = ΩG and in view of Equation 2.4, we conclude that ρn−kG(x) = {0}

for every x ∈ B.

All cases: We can shrink B ⊂ Rn such that it is a convex neighborhood of x̃0

where G is globally Lipschitz, in which case we shrink A = h−1(B) accordingly. Given

(u,v), (u,v′) ∈ B ⊂ Rk×Rn−k, we can apply the Lipschitz Mean Value Theorem (Propo-

sition 2.6.5 in [22]) to G and conclude there exist (c1, c2) ∈ L, M ∈ πkG(c1, c2) and

N ∈ ρn−kG(c1, c2) such that

G(u,v′)−G(u,v) = M(u− u) +N(v′ − v) = N(v′ − v), (6.28)

where L ⊂ B is the line segment between (u,v), (u,v′). Since (c1, c2) ∈ B we must have

N = 0, thus G(u,v) = G(u,v′) and we conclude G is not a function of the last n − k

variables on B.

Let U ′ = πn
k (B) ⊂ Rk, which is an open set, and pick any v′ ∈ ρn

n−k(B) to create the

G function z : U ′ → Rm−k, z(u) = G(u,v′). Then F ◦ h−1(u,v) = (u, z(u)) for every

(u,v) ∈ B. Now let W = U ′×Rm−k, which is a neighborhood of F(x̃0) = F ◦h−1(h(x̃0))
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in Rm, and define the G function q : W → Rm as q(u,v) = (u,v − z(u)). We can easily

check that q : W → W is a G homeomorphism with inverse q−1(u,v) = (u,v + z(u)).

Moreover, for (u,v) ∈ B,

q ◦ F ◦ h−1(u,v) = q(u, z(u)) =
(
u,0m−k

)
= ιkm ◦ πn

k (u,v). (6.29)

Let U = g1(A) ⊂ Rn, which is a neighborhood of x0, and define ϕ = h◦g1
−1 : U → B,

which is a G homeomorphism between open subsets of Rn by composition; note ϕ(U) = B.

Let V = g2
−1(W ) ⊂ Rm, which is a neighborhood of f(x0) = g2

−1 ◦ F(x̃0), and let

ψ = q◦g2 : V → W , which is a G homeomorphism by composition. Since F◦h−1(B) ⊂ W ,

then f(U) = f ◦ g1 ◦ h−1(B) ⊂ g2
−1(W ) = V , and we conclude

ψ ◦ f ◦ ϕ−1 = q ◦ g2 ◦ f ◦ g1 ◦ h−1 = q ◦ F ◦ h−1 = ιkm ◦ πn
k : ϕ(U)→ Rm. (6.30)

Proof. (b) Let S = f−1(c), and note that ψ(c) = ψ ◦ f ◦ ϕ−1(ϕ(x0)) = ιkm ◦ πn
k (ϕ(x0))

must be of the form ψ(c) = (d,0), where d ∈ Rk. For x ∈ ϕ(U), we have that

(x1, . . . , xk) = d⇔ ιkm ◦ πn
k (x) = ψ ◦ f ◦ ϕ−1(x) = ψ(c)⇔ x ∈ ϕ(S), (6.31)

therefore ϕ(U ∩ S) is the following (n− k) slice of ϕ(U) ⊂ Rn:

ϕ(U ∩ S) = {(x1, . . . , xn) ∈ ϕ(U) : (x1, . . . , xk) = d} . (6.32)

Since U = g1(A), then h−1(ϕ(U ∩S)) = g1
−1(U ∩S) ⊂ A. From the definition of h in

Equation 6.17, the G function h−1 : B → A must be of the form h−1(u,v) = (s(u,v),v),

where s : B → Rk is a G function. The set V ′ = ρn
n−k(ϕ(U ∩ S)) ⊂ Rn−k is open from

Proposition 2.2.8, and v ∈ V ′ if and only if (d,v) ∈ ϕ(U ∩S) ⊂ B. Define the G function
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y : V ′ → Rk such that y(v) = s(d,v). Then

g1
−1(U ∩ S) = h−1(ϕ(U ∩ S)) = {(u,v) ∈ Rk × V ′ : u = y(v)}. (6.33)

Proof. (c) Noting that U ′ = πn
k (ϕ(U)) ⊂ Rk is open, we have that f(U) ⊂ V and

ψ ◦ f(U) = ψ ◦ f ◦ ϕ−1(ϕ(U)) = ιkm ◦ πn
k (ϕ(U)) =

{
(u,0) ∈ Rk × Rm−k : u ∈ U ′}.

(6.34)

Then

g2 ◦ f(U) = q−1 ◦ψ ◦ f(U) =
{
(u, z(u)) ∈ Rk × Rm−k : u ∈ U ′}. (6.35)

Moreover, since ψ(f(U)) = U ′ × {0m−k} is a k-slice of W = U ′ × Rm−k and ψ(f(U)) ⊂

ψ(V ) = W ,

ψ(f(U)) = {x ∈ ψ(V ) : xk+1 = · · · = xm = 0} . (6.36)

Remark 6.4.3. For a Cr map of constant rank, g1,g2 can always be chosen as per-

mutation linear homeomorphisms, therefore we can say that U ∩ f−1(c) and f(U) are

directly graphs (within permutation) of Cr functions. In the Lipschitz and PCr cases,

in general we can only say that these two sets can be transformed into graphs by the

homeomorphisms g1
−1 and g2, respectively.

Remark 6.4.4. For G submersions [immersions], one can prove separately a stronger

version of Theorem 6.4.2 (a) where only a single G chart, g1 [g2], is needed. The results

follow from Theorem 6.4.2(a) and Proposition 6.3.6.
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Chapter 7

Lipschitz and

Piecewise-differentiable manifolds

This chapter introduces piecewise-differentiable (PCr) manifolds according to a uni-

fied general framework that also applies to nonsmooth Lipschitz manifolds and smooth

manifolds. We present definitions of nonsmooth manifolds and embedded submanifolds for

abstract sets as well as for subsets of Rn, and explore the relationships between them. The

PCr and Lipschitz Rank Theorems from Chapter 6, in terms of the Clarke Jacobian and

B-subdifferential generalized derivative sets, are used to characterize level sets of functions

between nonsmooth manifolds as embedded submanifolds. We illustrate how the Level

Set Theorems developed in this chapter can be applied to functions on Euclidean space,

including the piecewise-differentiable process model for distillation columns presented in

Chapter 3.

7.1. Introduction

Despite the prevalence of nonsmooth “manifold-like” objects in many applications,

including the level sets of the nonsmooth MESH model from Chapter 3, there is a lack

of precise topological notions to describe these sets in terms of their specific nonsmooth
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properties. Abstract Lipschitz manifolds have been previously defined in the literature

[74, 58, 67] according to the standard differential topology framework presented in Defini-

tion 7.2.3. However, Lipschitz Rank Theorems (Theorem 6.4.2 in Chapter 6) have not yet

been employed to define Lipschitz embeddings and embedded submanifolds (Definitions

7.4.1, 7.4.2) nor to develop a Level Set Theorem (Theorem 7.6.1) for Lipschitz functions.

Using the PCr Rank Theorem likewise developed in Chapter 6, in this chapter we also

define PCr embedded submanifolds and obtain Level Set Theorems. We follow a unified

exposition approach where the symbol G, representing a category on open sets of Rn,

can be replaced by Cr, PCr and (locally) Lipschitz. As demonstrated in Theorem 7.4.3,

our definitions of Lipschitz and PCr embedded submanifolds are equivalent to geomet-

ric descriptions in terms of k-slices of open sets and of local nonsmooth homeomorphic

transformations into graphs.

To the best of our knowledge, a well-defined concept for piecewise-differentiable man-

ifolds has not been proposed in the literature. In the field of differential topology, the

concept of ”piecewise-differentiable” (PD) functions arises in the context of triangula-

tions of smooth manifolds. In [89], Whitehead showed that every smoothly embedded

submanifold M ⊂ Rn admits a so-called PD homeomorphism h : K → M , where K is a

simplicial complex, and the restriction of h to each simplex in K is a smooth map with

full column rank (i.e., an immersion). This definition naturally extends to that of PD

homeomorphisms between open subsets of Rn, since the latter admit triangulations as well

as a smooth structure. However, in general PD homeomorphisms cannot be composed or

inverted and thus do not lead to the concept of a PD manifold.

In contrast, piecewise-differentiable (PCr) functions as established in [78] by Scholtes

(see Section 2.1.2) induce a well-defined category on open subsets of Rn. Intuitively, the

“pieces” where a PCr function is Cr are not restricted to have any particular geometric

structure, which ultimately allows these functions to be closed under composition. Tak-

ing that into account, we define PCr manifolds in Section 7.2 using the same standard
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framework from differential topology. Since PCr functions are locally Lipschitz continu-

ous, PCr manifolds are a subset of Lipschitz manifolds whose special properties should be

taken advantage of in future research. One of the advantages of working with the former

is that the B-subdifferential of a PCr function is a finite set, which can be expressed in

terms of the derivatives of the Cr pieces.

In addition to the most general “intrinsic” or abstract way to define manifolds, more

concrete definitions for subsets of Rn are also traditionally employed. In this chapter we

generalize the so-called “extrinsic” smooth manifold definition (e.g., see [60]), which is

based on the concept of “extended” homeomorphisms, to PCr and Lipschitz manifolds in

Rn. The definition of Lipschitz manifolds in Rn by Rockafellar [73], which describes sets

that can be transformed into the graph of a Lipschitz function by a C1 homeomorphism,

is a special instance of an extrinsic Lipschitz manifold.

Theorems 7.5.2 and 7.5.3 show that every G ∈ {Cr, PCr,Lipschitz} embedded sub-

manifold of Rn is an extrinsic G manifold, while the converse holds for G = Cr but may or

may not hold for G ∈ {PCr,Lipschitz}. In other words, given the equivalence in Theorem

7.4.3, the following remains an open research question: can every G ∈ {PCr,Lipschitz}

extrinsic manifold be locally transformed into the graph of a G function by a G homeomor-

phism? In case the answer turns out to be negative, the extrinsic G manifold definition

would constitute the most general decription of topologically “well-behaved” nonsmooth

sets in Rn. In Example 2 of [62] the authors present a 1-dimensional extrinsic Lipschitz

manifold in R2 which cannot be transformed into a Lipschitz graph by any linear orthog-

onal homeomorphism g : R2 → R2. However, there might be a Lipschitz homeomorphism

that can achieve this transformation, in which case the set would be an embedded Lips-

chitz submanifold of R2 by Theorem 7.4.3.
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7.2. Piecewise-differentiable (PCr) manifolds

We refer the reader to Chapter 2 and to Section 6.2 of Chapter 6 for notation and

definitions that will be used throughout the present chapter.

First we recall that a topological manifold is a Hausdorff and second countable topo-

logical space M such that every p ∈ M has an associated chart (U, ϕ) around p, where

U ⊂ M is a neighborhood of p, ϕ : U → ϕ(U) is a homeomorphism, ϕ(U) ⊂ Rn is

open, and n is called the dimension of M at p. An atlas for M is a collection of charts

A = {(Ui, ϕi)}i∈I such that M =
⋃

i∈I Ui. We say M is n-dimensional if it has dimension

n at all p ∈M . Henceforth we will consider manifolds with a single overall dimension out

of convenience, which is not restrictive since each connected subset of a topological man-

ifold must have a unique dimension. A topological manifold with boundary is defined in

the same way, except that in this case ϕ(U) ⊂ Hn is an open subset of the n-dimensional

upper half space, Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

Piecewise-differentiable (PCr) functions, as previously characterized in Section 2.1.2,

are closed under composition and thus define the PCr category on open subsets of Rn. In

order to provide a unified exposition, the symbol G representing a generic category may

be replaced with Cr, PCr, or Lipschitz unless otherwise stated. Note that Cr ⊂ PCr ⊂

Lipschitz.

An important concept is that of “extended” G homeomorphisms between arbitrary

subsets of Rn, which generalizes Definition 2.2.1 of G homeomorphisms. One can easily

verify that extended G functions and homeomorphisms, as presented in Definition 7.2.1,

are closed under composition. Moreover, an extended G homeomorphism between open

subsets of Rn is a G homeomorphism in the standard sense.

Definition 7.2.1 (Extended G homeomorphisms). Let G represent a category of

functions defined on open subsets of Rn. A function f : U → V between arbitrary sets

U ⊂ Rn, V ⊂ Rm is said to be an extended G function if for every x ∈ U there exists an
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open setW ⊂ Rn containing x and a G function F : W → Rm such that f |U∩W = F|U∩W . f

is said to be an extended G homeomorphism if it is a homeomorphism and both f : U → V

and f−1 : V → U are extended G functions.

Remark 7.2.2. Every Lipschitz homeomorphism between arbitrary sets is also an ex-

tended Lipschitz homeomorphism, given that Lipschitz functions always admit an exten-

sion to an open superset [36].

PCr homeomorphisms between open subsets of Rn form a pseudogroup on Rn (see

Definition 3.1.1 in [81]). For this reason we can use the following standard G manifold

definition, which is traditionally applied to G = Cr, Lipschitz, analytic, etc (see [54, 58,

81]), to propose the concept of G = PCr manifolds.

Definition 7.2.3 (G manifold). Let G be a category that generates a pseudogroup on

Rn. A G atlas for a topological manifold (with boundary) is an atlas A containing only

G-compatible charts; i.e., given (Ui, ϕi), (Uj, ϕj) ∈ A with Ui∩Uj ̸= ∅, the transition map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is a G homeomorphism (potentially in the extended

sense). We say A is a maximal G atlas if it is not contained in any other G atlas. A G

manifold (M,A) (with boundary) is a topological manifold (with boundary) M together

with a maximal G atlas A, called a G structure for M .

Given the common definition framework, G manifolds share several properties and

definitions with smooth manifolds. For instance, we can define a G structure A|N for any

open subset N ⊂ M by restricting the domains of the charts in A to N . The standard

G structure for Rn is the (unique) maximal G atlas AG
Rn containing the identity chart

(Rn, idRn). Therefore, (U,ϕ) ∈ AG
Rn if and only if ϕ : U → ϕ(U) is a G homeomorphism

between open subsets of Rn. According to Definition 6.4.1, we will also call (U,ϕ) ∈ AG
Rn

a G chart for Rn. Finally, we present the following short proposition for completeness.

Proposition 7.2.4. Let (M,AM) be an n-dimensional G manifold, (U, ϕ) ∈ AM , and

(V,g) ∈ AG
Rn with ϕ(U) ⊂ V . Then (U,g ◦ ϕ) ∈ AM .
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Proof. Let (W,ψ) ∈ AM be any chart with U∩W ̸= ∅. Since ϕ◦ψ−1 : ψ(U∩W )→ ϕ(U∩

W ) is a G homeomorphism, so is the composition g◦ϕ◦ψ−1 : ψ(U∩W )→ g◦ϕ(U∩W ).

7.3. Rank Theorems for functions between manifolds

In Section 6.3 we defined G submersions, immersions, and constant rank maps f : Rn →

Rm in terms of the existence of G homeomorphisms g1 : Rn → Rn and/or g2 : Rm → Rm,

such that the generalized derivatives of the so-called chart representative f ◦ g1, g2 ◦ f or

g2 ◦ f ◦ g1, respectively, satisfy the required rank conditions. Definition 7.3.1 establishes

G functions between G manifolds, and extends the concepts of submersions, immersions

and constant rank maps based on the corresponding Euclidean chart representatives. In

particular, by applying Proposition 6.3.6 to the chart representatives we have that a G

submersion [immersion] f : M → N at p ∈ M is also a G map of constant rank m [n]

around p, where n,m are the dimensions of M,N respectively.

Definition 7.3.1. Let (M,AM), (N,AN) be G manifolds. A map f : M → N is said

to be a G function/ submersion/ immersion at p ∈ M [map of constant rank k around

p ∈ M ] if there exist charts (U, ϕ) ∈ AM around p and (V, ψ) ∈ AN around f(p), with

f(U) ⊂ V , such that the chart representative ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is a G function/

submersion/ immersion at ϕ(p) [map of constant rank k around ϕ(p)] in the Euclidean

sense.

Remark 7.3.2. In the G = Cr case, f :M → N is traditionally defined as a submersion/

immersion/ map of constant rank based on the rank of the differential dfp : TpM → Tf(p)N ,

which is a linear map between tangent spaces. This is equivalent to the above definition

because any choice of charts (U, ϕ) ∈ AM , (V, ψ) ∈ AN provides bases for TpM,Tf(p)N

such that the matrix of dfp corresponds to the Jacobian of ψ ◦ f ◦ ϕ−1 at ϕ(p) (see [54] p.

63). On the other hand, in the Lipschitz and PCr cases we must necessarily create these

definitions in terms of chart representatives. It is possible that the conditions might be
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satisfied with some but not all choices of charts.

The following Rank Theorem for functions between manifolds, which is a standard

result in smooth manifold theory [e.g., [54]], is novel in the G = PCr and Lipschitz cases.

Slices of open subsets of Rn, and the projection and inclusion ιkm,π
n
k functions were defined

in Chapter 2.

Our nonsmooth Rank Theorems, both in their Euclidean (Theorem 6.4.2) and abstract

manifold (Theorem 7.3.3) versions, provide conditions to conclude when a level set can

be homeomorphically transformed into a graph around a given point. Theorem 7.4.3 will

then show this is equivalent to the level set being an embedded submanifold of the domain

manifold.

Theorem 7.3.3 (Manifold G Rank Theorem). Let (M,AM) and (N,AN) be n-

dimensional and m-dimensional G manifolds, f : M → N be a function, p ∈ M and

f(p) = c. Suppose that f is a G map of constant rank k around p, where k ≤ m,n.

Then there exist charts (U, ϕ) ∈ AM around p and (V, ψ) ∈ AN around f(p), with

f(U) ⊂ V , such that:

(a) ψ ◦ f ◦ ϕ−1 = ιkm ◦ πn
k : ϕ(U)→ Rm, (7.1)

(x1, . . . , xk, xk+1, . . . , xn) 7→ (x1, . . . , xk, 0, . . . , 0).

(b) ϕ(U ∩ f−1(c)) is an (n− k)-slice of ϕ(U) ⊂ Rn.

(c) ψ(f(U)) is a k-slice of ψ(V ) ⊂ Rm.

Proof. (a) By Definition 7.3.1 there exist charts (U1, ϕ1) ∈ AM around p and (V1, ψ1) ∈

AN around f(p) such that F = ψ1 ◦ f ◦ (ϕ1)
−1 : ϕ1(U1)→ Rm is a G map of constant rank

around ϕ1(p) in the Euclidean sense. Applying the Euclidean Rank Theorem 6.4.2(a) to

F at ϕ1(p), we can get charts (U2,ϕ2) ∈ AG
Rn around ϕ1(p) and (V2,ψ2) ∈ AG

Rm around

ψ1(f(p)), with U2 ⊂ ϕ1(U1) and V2 ⊂ ψ1(V1), such that ψ2 ◦ F ◦ (ϕ2)
−1 = ιkm ◦ πn

k on

ϕ2(U2). Then let U = (ϕ1)
−1(U2), ϕ = ϕ2 ◦ ϕ1, V = (ψ1)

−1(V2), ψ = ψ2 ◦ ψ1, and shrink
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U if necessary (replacing U2 = ϕ1(U) accordingly) to ensure f(U) ⊂ V , which is possible

since f is continuous. We know (U, ϕ) ∈ AM is a chart around p and (V, ψ) ∈ AN is a

chart around f(p) from Proposition 7.2.4, and

ψ ◦ f ◦ ϕ−1 = ψ2 ◦ f ◦ (ϕ2)
−1 = ιkm ◦ πn

k on ϕ(U) = ϕ2(U2). (7.2)

Proof. (b) Letting c′ = F(ϕ1(p)) = ψ1(c), and given that ψ1 is a homeomorphism and

U2 = ϕ1(U),

U2 ∩ F−1(c′) =
{
x ∈ U2 : F(x) = ψ1 ◦ f ◦ (ϕ1)

−1(x) = ψ1(c)
}
=
{
x ∈ U2 : f ◦ (ϕ1)

−1(x) = c
}

= {ϕ1(y) : y ∈ U, f(y) = c} = ϕ1(U ∩ f−1(c)). (7.3)

Theorem 6.4.2(b) applied to F gives that ϕ2(U2 ∩ F−1(c′)) = ϕ2 ◦ ϕ1(U ∩ f−1(c)) =

ϕ(U ∩ f−1(c)) is an (n− k)-slice of ϕ2(U2) = ϕ(U) ⊂ Rn.

Proof. (c) Theorem 6.4.2(c) applied to F gives that

ψ2(F(U2)) = ψ2 ◦ ψ1 ◦ f ◦ (ϕ1)
−1(U2) = ψ2 ◦ ψ1 ◦ f(U) = ψ(f(U)) (7.4)

is a k-slice of ψ2(V2) = ψ2 ◦ ψ1(V ) = ψ(f(U)) ⊂ Rm.

7.4. Embedded submanifolds

Our immersion, submersion and constant rank definitions were designed so that the

same Rank Theorem results and the same definitions of embeddings and submanifolds

from differential topology could be extended to Lipschitz and PCr manifolds, as presented

in Definitions 7.4.1 and 7.4.2 below. Theorem 7.4.3 establishes that sets which can be

locally G-homeomorphically transformed into the graph of a G function of k variables are
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equivalent to k-dimensional embedded G submanifolds. Moreover, it shows these sets can

also be equivalently characterized in terms of local k-slices. We note that the key aspect

in obtaining the equivalence between the k-slice and graph representations is the usage

of a G homeomorphism to transform the manifold locally into a graph. In the case of

Lipschitz manifolds in Rn, this is in contrast to Definition 2.6 of [62] and to Rockafellar’s

Definition 7.5.4, which require the homeomorphism to be linear and orthogonal or C1,

respectively, instead of merely Lipschitz.

In the G = Lipschitz case the local slice characterization in Statement 1) of Theorem

7.4.3 corresponds to the Lipschitz submanifold Definition 2 from [67] and to Definition

2.3 in [62]. The standard smooth versions of Definitions 7.4.1, 7.4.2 and Theorem 7.4.3

can be found in standard textbooks such as [54].

Definition 7.4.1 (G Embedding). Let (M,AM), (N,AN) be G manifolds. A map

f : M → N is said to be a G embedding if it is a G immersion and a topological

embedding, i.e., f : M → f(M) is a homeomorphism using the subspace topology for

f(M) ⊂ N .

Definition 7.4.2 (Embedded G submanifold). Let (M,A) be a G manifold. We say

S ⊂ M is an embedded G submanifold of (M,A) if it is a topological manifold with

the subspace topology, and if it admits a G structure AS such that the inclusion map

ι : S →M is a G embedding.

Theorem 7.4.3. Let (M,AM) be an n-dimensional G manifold, k ≤ n and S ⊂M . Then

the following statements are equivalent:

1) For every p ∈ S there exists a chart (U, ϕ) ∈ AM such that p ∈ U and ϕ(U ∩ S) is

a k-slice of ϕ(U) ⊂ Rn;

2) For every p ∈ S there exists a chart (U ′, ϕ′) ∈ AM with p ∈ U ′ and a G function

y : V ′ → Rn−k, V ′ ⊂ Rk open, such that ϕ′(U ′ ∩ S) is the graph of y;

3) S ⊂M is a k-dimensional embedded G submanifold of (M,AM).
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Proof. (1 ⇒ 2, 3) Since M is a topological manifold, with the subset topology S ⊂ M is

automatically Hausdorff and second countable. Let p ∈ S and (U, ϕ) ∈ AM be a chart

according to 1). Let ϕ(U ∩ S) be according to Equation 7.5 and let V = U ∩ S, which is

a neighborhood of p in S in the subspace topology. Since coordinate permutations are G

homeomorphisms, without loss of generality we can assume

ϕ(U ∩ S) =
{
x ∈ ϕ(U) ⊂ Rn : (xk+1, . . . , xn) = c

}
, c ∈ Rn−k. (7.5)

The projection V ′ = πn
k (ϕ(V )) ⊂ Rk is open according to Proposition 2.2.8. Then

Statement 2) holds with (U ′, ϕ′) = (U, ϕ) for the constant (thus G) function y : V ′ → Rn−k,

y(x) = c.

Further, πn
k |ϕ(V ) : ϕ(V ) → V ′ is an extended linear (thus G) homeomorphism with

inverse

ikn|V ′ : V ′ → ϕ(V ), ikn(u1, . . . , uk) = (u1, . . . , uk, c). (7.6)

The restriction ϕ|V : V → ϕ(V ) is a homeomorphism using the subspace topology for

V ⊂ S because S ⊂M has the subspace topology. By composition, ψ = πn
k ◦ ϕ : V → V ′

is a homeomorphism from a neighborhood V ⊂ S of p onto an open subset V ′ ⊂ Rk,

therefore S is a k-dimensional topological manifold.

Let A =
{
(Vp, ψp) : p ∈ S

}
be the thus constructed atlas and (Vα, ψα), (Vβ, ψβ) ∈ A

with Vα ∩ Vβ ̸= ∅. Then there exist charts (Ui, ϕi) ∈ AM such that ψi = πn
k ◦ ϕi and

Vi = Ui ∩ S for i = α, β, and Uα ∩ Uβ ̸= ∅. From G compatibility of ϕα, ϕβ and the fact

that extended G homeomorphisms are closed under composition, the transition map

ψα ◦ ψβ
−1 = πn

k ◦ ϕα ◦ (ϕβ)
−1 ◦ (πn

k )
−1 (7.7)

is an extended G homeomorphism from ψβ(Vα ∩ Vβ) onto ψα(Vα ∩ Vβ). Since these are

open sets in Rk, ψα ◦ψβ
−1 is a G homeomorphism. Then A is a G atlas and we let AS be

its corresponding G maximal atlas.
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Let p ∈ S and take charts (V, ψ) ∈ AS, (U, ϕ) ∈ A such that p ∈ V = U ∩ S and

ψ = πn
k ◦ ϕ : V → V ′. The corresponding chart representative of the inclusion map

ι : S →M at p,

ϕ ◦ ι ◦ ψ−1 = ϕ|V ◦ ψ−1 = (πn
k |ϕ(V ))

−1 = ikn|V ′ : V ′ → ϕ(V ), (7.8)

is a linear and injective function between Euclidean subsets, which makes ι : S → M a

G immersion for G = Cr, PCr, and Lipschitz. ι : S → M is also clearly a topological

embedding because ι(S) = S ⊂M has the subspace topology, which makes the inclusion

map a G embedding.

Proof. (3 ⇒ 1) Let p ∈ S. Since ι : S → M is a G immersion, it is a map of constant

rank k, and Theorem 7.3.3(c) gives charts (U, ϕ) ∈ AS, (V, ψ) ∈ AM around p = ι(p) with

ι(U) = U ⊂ V such that ψ(ι(U)) = ψ(U) is a k-slice of ψ(V ) ⊂ Rn. Since U ⊂ S is open

in the subset topology of S ⊂M , there exists W ⊂M open such that U = W ∩ S. Then

U = (W∩V )∩S and the slice condition 1) holds with the chart (W∩V, ψ|W∩V ) ∈ AM .

Proof. (2 ⇒ 1) Starting from Statement 2) for any p ∈ S, we have that ϕ′(U ′ ∩ S) =

{(u,y(u)) : u ∈ V ′}. LetW = V ′×Rn−k and define the G function g(u,v) = (u,v−y(u))

on W . We can easily check that g : W → W is a G homeomorphism with inverse

g−1(u,v) = (u,v+y(u)). Next we let U = (ϕ′)−1(W ∩ϕ′(U ′)) and define ϕ = g◦ϕ′ on U .

We have that U ∩S = U ′ ∩S and the set ϕ(U ∩S) = g ◦ ϕ′(U ′ ∩S) = {(u,0) : u ∈ V ′} is

a k-slice of W , therefore it is also a k-slice of the set ϕ(U) = g(W ∩ϕ′(U ′)) ⊂ W . Finally,

by Proposition 7.2.4 we have that (U, ϕ) ∈ AM .

7.5. Manifolds in Rn

Now we consider a more concrete “extrinsic” definition of nonsmooth manifolds specif-

ically tailored to subsets of Rn, which is analogous to the smooth manifold definition used
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in [60]. We previously stated Definition 7.5.1 with G = PCr in [19]. Definition 7.5.1

for an extrinsic Lipschitz manifold (with boundary) is equivalent to Definition 2.8 in [62]

[Definition 3.1 in [58]].

Definition 7.5.1 (Extrinsic G manifold). An extrinsic G manifold (with boundary) is

a setM ⊂ Rn endowed with the subspace topology such that for every point x ∈M there

exists a neighborhood U ⊂ M of x, an open subset V ⊂ Rk [V ⊂ Hk] for some k ≤ n

which is called the dimension of M at x, and an extended G homeomorphism ϕ : U → V .

The next two theorems establish the relationship between extrinsic G manifolds in Rn

and embedded G submanifolds of Rn. In the G = Cr case there is a 1-1 correspondence

between the two objects. For G ∈ {PCr,Lipschitz}, however, it is not known if the same

equivalence holds. That is, even though every extrinsic G manifold admits a G structure, it

might not be possible to find a structure that makes it an embedded G submanifold of Rn.

In the G = Lipschitz case, this was presented as an open problem in [62]. Nevertheless,

the “partial equivalence” demonstrated below is sufficient for our purposes in this chapter.

Theorem 7.5.2. Every extrinsic G manifold M ⊂ Rn admits a G structure AM . More-

over, if G = Cr, then AM can be chosen such that M is an embedded Cr submanifold of(
Rn,ACr

Rn

)
.

Proof. As a subset of Euclidean space, M ⊂ Rn is Hausdorff and second-countable. The

extended G homeomorphisms {ϕi : Ui → Vi}i∈I within Definition 7.5.1 coverM , therefore

M is a topological manifold with atlas A = {(Ui,ϕi)}i∈I . Now let (Ui,ϕi), (Uj,ϕj) ∈ A

with Ui ∩ Uj ̸= ∅. The transition map

ϕi ◦ ϕj
−1 : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj), (7.9)

is an extended G homeomorphism by composition, thus it is also a G homeomorphism

since ϕi(Ui ∩ Uj),ϕj(Ui ∩ Uj) ⊂ Rk are open, for some k ≤ n. Therefore A is a G atlas

for M , and it is contained in a unique maximal G atlas AM .
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Now suppose G = Cr, and let x ∈ M and ι : M → Rn be the inclusion map. There

exists a chart (U,ϕ) ∈ AM with x ∈ U ; further, let (V,ψ) = (Rn, idRn) ∈ ACr

Rn . Then the

inclusion map has the chart representative ψ ◦ ι ◦ϕ−1 = ϕ−1 : ϕ(U)→ Rn at x. Because

the latter is injective and Cr on the open set ϕ(U), its Jacobian is full column rank at x.

Therefore ι :M → Rn (as a map between manifolds) is a Cr immersion, and a topological

embedding since ι(M) =M ⊂ Rn has the subspace topology.

Theorem 7.5.3. Let M ⊂ Rn have the subspace topology. If M is a k-dimensional

embedded G submanifold of
(
Rn,AG

Rn

)
, then M ⊂ Rn is a k-dimensional extrinsic G

manifold.

Proof. From Theorem 7.4.3, for every x ∈M there exists a G chart (V,ψ) ∈ AG
Rn such that

x ∈ V and ψ(V ∩M) is a k-slice of ψ(V ) ⊂ Rn. The set U = V ∩M is a neighborhood of

x in M according to the subspace topology. Since coordinate permutations are G homeo-

morphisms, without loss of generality we can assume U ′ = πn
k (ψ(U)) ⊂ Rk is open from

Proposition 2.2.8. Given πn
k : ψ(U)→ U ′ is an extended linear (thus G) homeomorphism,

by composition ϕ = πn
k ◦ψ|U : U → U ′ is an extended G homeomorphism.

Lastly, we present the definition of a Lipschitz manifold in Rn that was used by

Rockafellar in [73]. As Proposition 7.5.5 shows together with Theorem 7.5.3, a Lipschitz

manifold in the Rockafellar sense is a special case of an extrinsic Lipschitz manifold.

Definition 7.5.4. A k-dimensional Lipschitz manifold in the Rockafellar sense is a set

M ⊂ Rn such that for every point x0 ∈ M there exists a C1 chart (U,ϕ) for Rn around

x0 such that ϕ(U ∩M) ⊂ Rn is the graph of a Lipschitz function y : V → Rn−k, V ⊂ Rk

open.

Proposition 7.5.5. A k-dimensional Lipschitz manifoldM ⊂ Rn in the Rockafellar sense

is a k-dimensional Lipschitz embedded submanifold of
(
Rn,ALip.

Rn

)
.

Proof. In Definition 7.5.4 the C1 chart (W,ϕ) belongs to ALip.
Rn , therefore Statement 2) in

Theorem 7.4.3 holds for S =M and thus Statement 3) also holds.
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7.6. Level Set and Image Theorems

In this section we conclude our main goal of characterizing level sets of nonsmooth

functions as PCr and Lipschitz manifolds. Theorem 7.6.1 establishes level sets of functions

between abstract G manifolds as embedded submanifolds of the domain manifold, while

Theorem 7.6.2 allows us to characterize local images as embedded submanifolds of the

target set (i.e., codomain) manifold. If we extend the smooth notion of a regular level

set f−1(c) to a set on which f is a G submersion, Theorem 7.6.1 gives the same standard

result that regular level sets are embedded G submanifolds.

Theorem 7.6.1 (G Level Set Theorem). Let (M,AM) and (N,AN) be n-dimensional

and m-dimensional G manifolds and p ∈ M with f(p) = c. If f : M → N is a G map

of constant rank k ≤ m,n around p [G submersion at p], then p has a neighborhood

U ⊂M such that U ∩ f−1(c) is an (n− k)-dimensional [(n−m)-dimensional] embedded

G submanifold of (M,AM).

Moreover, if f is a G map of constant rank k ≤ m,n around every p ∈ f−1(c) [G

submersion on f−1(c)], then f−1(c) ⊂M is an (n− k)-dimensional [(n−m)-dimensional]

embedded G submanifold of (M,AM).

Proof. Since f is a G map of constant rank k [m] around p, by Theorem 7.3.3 (b) there

exists a chart (U,ϕ) ∈ AM around p such that ϕ(U ∩ f−1(c)) is an (n− k)-slice [(n−m)-

slice] of ϕ(U) ⊂ Rn. Then Statement 1) of Theorem 7.4.3 holds with S = U ∩ f−1(c). If

f has constant rank k [m] around every p ∈ f−1(c), then Statement 1) of Theorem 7.4.3

holds with S = f−1(c).

Theorem 7.6.2 (G Image Theorem). Let (M,AM) and (N,AN) be n-dimensional and

m-dimensional G manifolds. If f :M → N is a G map of constant rank k ≤ m,n around

p ∈ M [G immersion at p ∈ M ], then p has a neighborhood U ⊂ M such that f(U) is a

k-dimensional [n-dimensional] embedded G submanifold of (N,AN).
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Proof. From Theorem 7.3.3 (c) there exist charts (U, ϕ) ∈ AM around p and (V, ψ) ∈ AN

with f(U) ⊂ V such that ψ(f(U)) = ψ(V ∩ f(U)) is a k-slice of ψ(V ) ⊂ Rm. Then

Statement 1) of Theorem 7.4.3 holds with S = f(U) ⊂ N .

Remark 7.6.3. As in the smooth case, the above result does not imply that the image

f(U0) ⊂ N of an open set U0 ⊂ M where f has constant rank k is a k-dimensional

embedded G submanifold of the codomain (e.g., see Example 4.19 in [54]).

Now we specialize Theorem 7.6.1 to functions between Euclidean spaces, which is the

case for practical applications. Theorem 6.4.2(b) allowed us to conclude that if f : Rn →

Rm is a G map of constant rank k around x0 ∈ Rn with respect to homeomorphisms

g1 : Rn → Rn, g2 : Rm → Rm and f(x0) = c, then g1
−1(f−1(c)) is locally the graph

of a G function y : Rn−k → Rk around x0. In other words, locally f−1(c) can be G-

homeomorphically transformed into a G graph. As formalized in Theorem 7.6.4 below,

now we can further say that f−1(c) ⊂ Rn is an (n− k)-dimensional extrinsic G manifold

around x0.

Theorem 7.6.4 (Euclidean G Level Set Theorem). Let f : Rn → Rm be a G function,

x0 ∈ Rn and f(x0) = c. If f is a G map of constant rank k ≤ m,n around x0 [G submersion

at x0], then x0 has a neighborhood U ⊂ Rn such that U ∩ f−1(c) ⊂ Rn is an (n − k)-

dimensional [(n −m)-dimensional] embedded G submanifold of
(
Rn,AG

Rn

)
and extrinsic

G manifold.

Moreover, if f is a G map of constant rank k ≤ m,n around every p ∈ f−1(c) [G

submersion on f−1(c)], then f−1(c) ⊂ Rn is an (n− k)-dimensional [(n−m)-dimensional]

embedded G submanifold of
(
Rn,AG

Rn

)
and extrinsic G manifold.

Proof. As a map from
(
Rn,AG

Rn

)
into

(
Rm,AG

Rm

)
, f = ψ ◦ f ◦ ϕ−1acts as its own chart

representative with ψ = idRm and ϕ = idRn . Then f is a map of constant rank k [m] in the

manifold sense, and we can apply Theorems 7.6.1 and 7.5.3 to get the desired results.

Similarly, an Euclidean version of the G Image Theorem 7.6.2 could also be written.
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Finally, we will state a specialized Level Set Theorem for Lipschitz functions f : Rn →

Rm based on the sufficient rank conditions SCRA and SFRA from Section 6.3.1. In [24],

the authors show that if SFRA holds at x0 such that f(x0) = c , then f−1(c) is locally

an (n −m)-dimensional Lipschitz manifold around x0 in the Rockafellar sense. We now

extend this result to the non-full rank SCRA case in Theorem 7.6.5.

Theorem 7.6.5 (Lipschitz Level Set Theorem). Let f : Rn → Rm be a Lipschitz

function, x0 ∈ Rn and f(x0) = c. If the SCRA holds at x0 with rank k ≤ m,n [SFRA

holds at x0], then x0 has a neighborhood U ⊂ Rn such that U ∩ f−1(c) ⊂ Rn is an

(n− k)-dimensional [(n−m)-dimensional] Lipschitz manifold in the Rockafellar sense.

Proof. By Propositions 6.3.13 and 6.3.16, f is a Lipschitz map of constant rank k [m]

around x0 with respect to orthogonal homeomorphisms g1 : Rn → Rn, g2 : Rm → Rm.

By Theorem 6.4.2(b), x0 has a neighborhood U ⊂ Rn such that g1
−1(U ∩ f−1(c)) is the

graph of a Lipschitz function y : V → Rn−k, V ⊂ Rk open. Since (Rn,g1
−1) ∈ AC1

Rn , by

Definition 7.5.4 it follows that U ∩ f−1(c) is a k-dimensional [m-dimensional] Lipschitz

manifold in the Rockafellar sense.

7.7. Examples

In this section we illustrate how the Rank and Level Set Theorem results from both this

chapter and Chapter 6 can be applied to functions on Euclidean space. First we present

two prototypical examples, involving a PCr submersion and a PCr map of constant rank,

for which we verify both Lipschitz and PCr sufficient rank conditions that were presented

in Section 6.3. Then we close with a higher-dimensional example taken from a case study

in nonsmooth distillation column modeling, where both PCr submersion and constant

rank results are applied.
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7.7.1. Example 1: PCr submersion

Consider the function f : R3 → R2,

f(x) =

 min (x1, x2)

min (−x2 + x3, x3)

 , (7.10)

whose level set f−1(0) ⊂ R3 is represented in Figure 7.1(a). This function was cited in

[24, 43] as an example for which a simple permutation homeomorphism is not enough to

transform its level sets into graphs. We have that f is piecewise-linear (thus also PC∞),

and the four linear functions

f(1)(x) =

x1
x3

 , f(2)(x) =

 x1

−x2 + x3

 , f(3)(x) =

 x2

−x2 + x3

 , f(4)(x) =

x2
x3


(7.11)

form an essentially active selection set for f at x0 = 0. Therefore (see Section 2.1.2),

∂f(0) = conv


1 0 0

0 0 1

 ,
1 0 0

0 −1 1

 ,
0 1 0

0 −1 1

 ,
0 1 0

0 0 1

 (7.12)

=


α1 + α2 α3 + α4 0

0 −(α2 + α3) 1

 : αi ≥ 0,
4∑

i=1

αi = 1

 . (7.13)

Since α1+α2 and α3+α4 cannot both be equal to zero, every matrix in ∂f(0) has full row

rank 2. However, no 2× 2 submatrix remains invertible for all elements of ∂f(0), thus we

cannot rearrange the coordinates x1, x2, x3 to apply Clarke’s Implicit Function Theorem.

The FRA does hold at x0 = 0 (see Definition 6.3.8) but that might not necessarily imply

that f is a Lipschitz submersion at x0 (see Remark 6.3.9). To show that the SFRA holds
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at the origin we must find a 2-dimensional subspace E ⊂ R3 such that

N (A) ∩ E = {0}, ∀A ∈ ∂f(x0), (7.14)

or equivalently (Remark 6.3.11)

R(AT) ∩ E⊥ = {0}, ∀A ∈ ∂f(x0). (7.15)

For a vector v3 = (a, b, c) to be a basis of E⊥, it cannot belong to the row space of any

matrix in ∂f(0). That is, we must have

det


α1 + α2 α3 + α4 0

0 −(α2 + α3) 1

a b c

 = a− (α1 + α3) [a+ b+ c(α2 + α3)] ̸= 0, ∀αi ≥ 0 s.t.
4∑

i=1

αi = 1,

(7.16)

which happens to be satisfied by the vector v3 =
1
2

(
−
√
2, 1, 1

)
. Therefore, SFRA holds at

x0 with E = (span(v3))
⊥. Following the approach within the proof of Proposition 6.3.16,

we create the orthogonal linear homeomorphism g1(x) = Px where the first 2 columns

of P are an orthonormal basis of E and the third column, v3, is an orthonormal basis of

E⊥:

P =
1

2


√
2 0 −

√
2

1
√
2 1

1 −
√
2 1

 (7.17)

The homeomorphism g1 is a change of basis from the standard unit vectors to the columns

of the matrix P. By Proposition 6.3.17 we can say f is a Lipschitz submersion at x0 with

respect to g1, and since the latter is a linear homeomorphism, by Proposition 6.3.7 f is

also a PC∞ submersion at x0 = 0 with respect to g1. By Proposition 6.3.6, f is a PC∞

map of constant rank 2 around x0 with respect to g1, idR2 .
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Theorem 6.4.2(b) gives that g1
−1(f−1(0)) = P−1f−1(0), represented in Figure 7.1(b),

is locally the graph of a PC∞ function y : R→ R2 around x0. In this case, this function

happens to be (x̃1, x̃2) = (|x̃3|, 0) = y(x̃3). Theorem 7.6.5 shows that f−1(0) ⊂ Rn

is locally a 1-dimensional Lipschitz manifold in the Rockafellar sense around x0, which

implies that this statement also holds in the extrinsic and embedded submanifold senses.

Furthermore, we can apply Theorem 7.6.4 with G = PC∞ to show that f−1(0) is a PC∞ 1-

dimensional manifold around x0, both in the extrinsic and embedded submanifold senses.

Figure 7.1: (a) Original level set f−1(0), (b) Transformed level set g1
−1(f−1(0)).

7.7.2. Example 2: PCr map of constant rank

Now we add a third component to the function f from the previous example to create

h : R3 → R3,

h(x) =

 f(x)

h3(x)

 =


min (x1, x2)

min (−x2 + x3, x3)

max (0,min (x1, x2))

 . (7.18)

We must have h−1(0) = f−1(0) because the equation h3(x) = 0 enforces either 0 = 0

or f1(x) = 0. Now we will show how the PCr Rank and Level Set Theorems can be

applied to h to predict the behavior of its level set based on its generalized derivatives.
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Since h1(x), h2(x) have two pieces and h3(x) has three pieces, one might be tempted

to assume that h must have up to 2 · 2 · 3 = 12 pieces. However, the PC∞ function h has

the following set of five essentially active selection functions at x0 = 0:

h(1)(x) =


x1

x3

0

 , h(2)(x) =


x1

−x2 + x3

0

 , h(3)(x) =


x2

−x2 + x3

x2

 ,

h(4)(x) =


x2

x3

0

 , h(5)(x) =


x1

−x2 + x3

x1

 . (7.19)

The regions where each piece h(i) is active, which are independent of x3, are represented

in Figure 7.2 in x2-x1 space.

Figure 7.2: The five essentially active selection functions for h at x0 = 0 in x2-x1 space.

We will transform h into F = h◦g1 using the same orthogonal linear homeomorphism

g1(x) = Px from the previous example, where P was given in Equation 7.17. The five
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functions h(i) from Equation 7.19 are a valid set of selection functions for h at every

x ∈ R3, therefore ∂Bh(x) ⊂ ∂Bh(0) for every x ∈ R3 and

∂BF(x) ⊂ ∂Bh(0)P =


1

2


√
2 0 −

√
2

1 −
√
2 1

0 0 0

 , 1

2


√
2 0 −

√
2

0 −2
√
2 0

0 0 0

 , 1

2


1
√
2 1

0 −2
√
2 0

1
√
2 1

 ,

1

2


1
√
2 1

1 −
√
2 1

0 0 0

 , 1

2


√
2 0 −

√
2

0 −2
√
2 0

√
2 0 −

√
2




(7.20)

for every x ∈ R3. Every matrix in ∂BF(x) has rank 2 and all leading 2 × 2 submatrices

in ∂BF(x) have determinant < 0, for every x ∈ R3. Moreover, the set of leading 2 ×

2 submatrices in ∂BF(x) already contains all possible row-by-row permutations of its

elements (see 2.1.6). Therefore, π3
2 ◦ F is completely coherently oriented with respect to

the first 2 variables at x̃0 = 0.

Considering Proposition 6.3.18 and Definition 6.3.2, we conclude h : R3 → R3 is

a PC∞ map of constant rank 2 around x0 w.r.t. g1, idR3 , which are orthogonal linear

homeomorphisms. Theorem 7.6.4 then gives that h−1(0) ⊂ R3 is a 1-dimensional PC∞

manifold around x0 = 0 in the embedded submanifold and in the extrinsic senses. Note

that the SCRA would have been considerably more cumbersome to attempt to verify in

this simple example compared to the sufficient PCr conditions demonstrated above.

Remark 7.7.1. The level set of a function f : Rn → Rm might be an (n−k)-dimensional

G manifold around a point x0 without f being a G map of constant rank k around x0. We

can see this behavior even for simple Cr functions such as

f(x1, x2) =

x2 − x1
x22 − x21

 . (7.21)
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The level set f−1(0) ⊂ R2 is a 1-dimensional smooth manifold corresponding to the line

x2 = x1. Nevertheless, f is not a map of constant rank 1 around any x0 ∈ f−1(0) because

Jf(x1, x2) =

 −1 1

−2x1 2x2

 (7.22)

has rank 2 everywhere except on f−1(0) where its rank is 1.

7.7.3. Example 3: PCr distillation model

Distillation is the most traditional and widely used industrial method for separat-

ing chemical mixtures. In [19] we developed a distillation model, with PC∞ equations

represented as

f(x, λ) = 0, f : Rn × R→ Rn, (7.23)

that can generate solutions x with dry (or vaporless) stages for certain parameter values

λ. The level set f−1(0) ⊂ Rn+1 is a connected 1-dimensional PC∞ manifold, illustrated in

Figure 7.3 for Case Study 1 from [19] where n = 190. The first plot shows how five liquid

flow rates (a subset of the variables in x ∈ Rn) reach zero within the distillation column

as functions of the reflux ratio λ. The second plot represents the corresponding behavior

of x ∈ Rn schematically. The restriction of f−1(0) to the hyperplane λ = λcr, i.e., the

level set g−1(0) ⊂ Rn of g(x) = f(x, λcr), is a connected 1-dimensional PC∞ manifold

with two boundary points.

In our distillation model example, f is a C∞ submersion at points (x, λ) ∈ f−1(0) where

f is smooth, since Jf(x, λ) has full row rank n−1. We know f is a PC∞ submersion at the

nonsmooth points (x, λcr) ∈ f−1(0) because we can verify that the sufficient conditions of

Theorem 6.3.19(a) are satisfied. Similarly, g is a C∞ map of constant rank n− 1 around

points x ∈ g−1(0) where g is smooth. Theorem 6.3.19(b) can be applied to show that g

is a PC∞ map of constant rank n − 1 around the nonsmooth points x ∈ g−1(0) which
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Figure 7.3: 1-dimensional PC∞ manifold consisting of distillation model solutions from Case
Study 1 in [19].

are not boundary points.

Therefore, the Level Set Theorem 7.6.4 can be used to predict the numerically observed

behavior of the solutions to the nonsmooth distillation model. That is, f−1(0) ⊂ Rn+1

and the interior of g−1(0) ⊂ Rn are locally 1-dimensional G submanifolds both in the

embedded and extrinsic senses, where G = C∞ around the smooth points and G = PC∞

around the nonsmooth points. On the other hand, Theorem 6.3.19 would have to be

extended in order to be applicable to the boundary points of g−1(0).
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Chapter 8

Conclusions and future lines of

research

The work developed in this thesis encompasses both applied and theoretical compo-

nents. Chapters 3, 4 and 5 presented nonsmooth models and equation-solving methods

that can simulate distillation columns more accurately and more robustly than current

state-of-the-art methods and software, including Aspen Plus. Chapters 6 and 7 presented

a theoretical framework for characterizing the topology of nonsmooth sets, including level

sets of nonsmooth functions, in terms of Lipschitz and piecewise-differentiable (PCr)

manifolds.

In Chapter 3 we developed a nonsmooth version of the MESH model to obtain steady

states in which one or more distillation stages are dry/vaporless. This model, together

with our equation-solving methods, allowed us to discover bifurcations consisting of a

continuum of infinitely-many, multiple steady states occurring at a single set of param-

eter specifications. A natural extension would involve developing a dynamic version of

said model, consisting of nonsmooth differential-algebraic equations, and performing dy-

namic distillation case studies to investigate if and how these degenerate steady states

could be approached. Moreover, a dynamic model could allow us to perform a more rig-
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orous stability analysis of these multiple steady states in terms of the model’s generalized

derivatives.

Another interesting ramification of this thesis would be attempting to validate the

results of Chapter 3 experimentally. We showed that steady states with vaporless/dry

stages are feasible from the viewpoint of the MESH paradigm, but bringing an experi-

mental column to stabilize at such conditions could perhaps prove challenging or even

impossible. In terms of the bifurcations, observing multiple steady states could be un-

likely given their occurrence at a very specific set of specifications. However, we might be

able to observe at least an apparent discontinuity in steady states around a certain set of

operating conditions.

We also note that our steady-state nonsmooth MESH model and continuation strate-

gies could be extended to analyze phase regime transitions in vapor-liquid-liquid systems.

Previous computational and experimental results on heterogeneous azeotropic distillation

[50, 90] seem to indicate a discontinuity in steady states associated with the appearance of

a second liquid phase in several stages. This finding suggests the occurrence of degenerate

bifurcations analogous to the ones we presented in Chapter 3.

In Chapter 4 we presented nonsmooth adaptive models consisting of the standard

MESH equations with one or two nonsmooth specification equations. The single-soft

adaptive model automatically resets one user-chosen “soft” specification if enforcing it

would bring one or more flow rates outside of their physical bounds, which are also chosen

by the user. In this case the model returns a “nearest best” MESH-feasible solution in

which the impacted flow rates are brought to their minimum or maximum allowed values.

As a result, the single-soft model does not exhibit MESH solutions with negative flow

rates, nor the infinite discontinuities in flow rates with respect to purity specifications

that we described in Chapter 4.

On the other hand, one must resort to our double-soft adaptive model when two spec-

ifications are infeasible simultaneously. Though inherently singular, we demonstrated
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that this model can be effectively solved using the pseudo-inverse of the model’s B-

subdifferential elements within the semismooth Newton method. However, as discussed

in Section 2.3.5, there are currently no convergence theorems for this algorithm that could

be applicable to singular generalized derivatives, or that consider the specific case of us-

ing B-subdifferential elements for a PCr function. Therefore, developing such theorems

would constitute a possible line of future research. Further, the modeling framework

behind our single-soft and double-soft adaptive models is not inherently specific to distil-

lation columns, and could thus be extended to other chemical engineering processes and

to systems in other application fields.

In Chapter 5 we developed a nonsmooth version of the inside-out algorithm that can

converge our adaptive models reliably starting from a “blind” initial guess, as demon-

strated with several single-column test cases. Though our model outperformed Aspen

Plus’ RadFrac in its convergence reliability near infeasible specifications, our MATLAB

implementation was not optimized for speed and numerical efficiency and therefore can-

not compete with Aspen Plus in this aspect, which is coded in Fortran. Future efforts in

this direction would involve implementing our simulation models in a compiled language

such as C++, coding the Jacobian matrix of the inner loop analytically for its N − 2

smooth equations, and using sparse matrix representation for the simultaneous algorithm

to speed up the linear solve within the semismooth Newton step. The latter is not viable

for the inner loop given that its generalized derivative matrices are dense. Additionally,

the reliability of our inside-out algorithm could be further tested and improved upon by

considering a wider range of non-ideal systems and column configurations.

In Chapter 5 we also developed a four-tier modeling strategy to simulate distillation

columns within flowsheets with recycle, which combines the single and double-soft mod-

els with the simultaneous and inside-out algorithms to increase computational efficiency.

With test cases involving two pressure-swing distillation flowsheets, we showed that our

method can successfully converge to a feasible solution under highly infeasible specifi-
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cations, which is not possible in Aspen Plus. Moreover, our method also outperformed

Aspen Plus in feasible flowsheet test cases due to its ability to proceed through nearly

or fully infeasible intermediate flowsheet iterations, and to converge without any initial

guess for the tear stream (i.e., zero flow rate). In the future, it would be interesting to

test and further develop our method to converge more complex flowsheets, e.g., including

multistream heat exchangers modeled according to [85], more recycle streams, and design

specifications. To enforce the latter, it might be necessary to use a Newton-type method

to converge the flowsheet instead of a fixed-point method, as done in [88] for natural gas

liquefaction processes.

The next research step in this path would involve employing our flowsheet simula-

tion method to optimize highly-intensive and integrated processes involving distillation

columns and multistream heat exchangers, e.g., an air separation unit for oxycombustion.

If successful, this strategy would represent an important step towards fully rigorous opti-

mization of complex processes, since eliminating or greatly reducing convergence errors in

each flowsheet pass would allow optimization algorithms to explore a much wider range

of process conditions. Though the corresponding process model equations are nonsmooth

and our flowsheet pass function potentially discontinuous, one could at least begin to test

this approach by using the smooth constrained optimization solver IPOPT and supplying

generalized derivatives to the latter, as done in [84]. The output of the single-soft model

flatlines beyond the two limiting values of the soft specified variable associated with the

lower and upper bounds on flow rate values. Therefore, it remains to be determined if

this type of behavior would allow for optimization algorithms to converge effectively.

In Chapter 6 we presented general constant rank conditions to develop PCr and Lips-

chitz Rank Theorems, which allow us to characterize level sets of nonsmooth functions in

Euclidean space as being homeomorphic to the graph of a nonsmooth function of the same

class. We also developed sufficient PCr rank conditions directly applicable to the residual

function of the nonsmooth MESH model, which exhibits at most two essentially active
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selection functions at any given point. Future avenues of research could include proving

sufficient rank conditions for more general subclasses of PCr functions, which could be

practically motivated by studying the level sets of other nonsmooth process models under

parametric continuation.

In Chapter 7 we introduced the concept of PCr manifolds, which can be used to char-

acterize the topology of abstract sets, and utilized our Rank Theorems to define PCr and

Lipschitz embedded submanifolds. We also defined extrinsic nonsmooth manifolds for

subsets of Euclidean space, and demonstrated how our constant rank conditions can be

applied to conclude that the level set of a nonsmooth function is a correspondingly nons-

mooth manifold. An important research question that could be explored is the potential

equivalence between PCr or Lipschitz extrinsic and embedded submanifolds, as discussed

in Section 6.1. Further, the elementary theoretical framework for PCr manifolds from

Chapter 7 could be greatly expanded to include several other concepts and results. For

example, it might be viable to define and establish the properties of a limiting “tangent”

space for PCr manifolds based on the properties of the B-derivative of PCr functions.
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Appendix A

Izmailov’s counterexample

Let

M =

1 0 0

0 1 0

 , (A.1)

B1 =

−0.2 0.8 0.2

0 −0.5 0.4

 , B2 =

 0.7 −0.7 −0.6

−0.8 0.1 0.6

 . (A.2)

The set A = conv{M,B1,B2}, which was presented and described in [41], is a coun-

terexample to Proposition 2.1 in [17]; in turn, this also invalidates the proof of Theorem

3.1 in [17]. That is, A is a compact, convex set of m × n matrices of rank k, where

m = k = 2 and n = 3, for which there exists no (n − k)-dimensional subspace H ⊂ Rn

satisfying

R(AT) ∩H = {0} ∀A ∈ A. (A.3)

The fact that the convex hull of finitely many matrices is a compact and convex set is

a well-known fact.

First we demonstrate that all matrices in A have rank 2, following a different approach
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than the one presented in [41]. Note that

A = {xB1 + yB2 + zM : x, y, z ≥ 0, x+ y + z = 1} . (A.4)

Substituing z = 1− x− y yields

A =


1− 1.2x− 0.3y 0.8x− 0.7y 0.2x− 0.6y

−0.8y 1− 1.5x− 0.9y 0.4x+ 0.6y

 : x, y ≥ 0, x+ y ≤ 1

 .

(A.5)

If we fix y = 0 then the corresponding matrices in A have the form

1− 1.2x 0.8x 0.2x

0 1− 1.5x 0.4x

 , x ∈ [0, 1]. (A.6)

There is no x ∈ R that makes either of the rows equal to the zero vector. Therefore, the

only way such a matrix could have rank < 2 is if the rows are non-zero multiples of each

other, and a necessary condition for that is 1− 1.2x = 0, that is, x = 10/12 ∈ [0, 1]. The

only matrix which satisfies this condition has rank 2:

0 8/12 2/12

0 −3/12 4/12

 . (A.7)

Therefore, we can restrict our analysis to the case y ̸= 0. The only way that one of

the corresponding matrices in A may have rank < 2 is if performing Gaussian elimination

creates a row of zeroes. Using −0.8y as the pivot to eliminate the first row of the matrices

in Equation A.5, we can express this condition in terms of the following nonlinear system:

0.8y(0.8x− 0.7y) + (1− 1.2x− 0.3y)(1− 1.5x− 0.9y) = 0, (A.8)

0.8y(0.2x− 0.6y) + (1− 1.2x− 0.3y)(0.4x+ 0.6y) = 0. (A.9)
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The solutions, which correspond to the intersections of the two conic sections expressed

by the equations above, are shown in Figure A.1 and stated approximately below:

(x, y) = (0.833, 0), (−0.336, 0.957), (0.590, 0.507), (0.595,−0.206). (A.10)

Figure A.1: Solutions of Equations A.8, A.9.

None of these solutions satisfy the conditions x ≥ 0, y > 0, x + y ≤ 1, therefore we

conclude that all matrices in A have rank 2.

Next, we demonstrate that no 1-dimensional subspace H ⊂ R3 satisfies Equation A.3,

following the approach from [41]. Let

Bj = {tBj + (1− t)M : t ∈ [0, 1]} , j = 1, 2, (A.11)

and

Vj =
{
v ∈ R3 \ 0 : R(BT) ∩ span(v) = {0} ∀B ∈ Bj

}
, j = 1, 2. (A.12)
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In other words, the spans of all elements of Vj correspond to all the 1-dimensional sub-

spaces H ⊂ R3 that would satisfy Equation A.3 for the set Bj individually. Given that

B1,B2 ⊂ A, it suffices to show V1 ∩ V2 = ∅ to demonstrate our desired result.

For j = 1, 2 the set Vj consists of all v ∈ R3 \ 0 such that

det

tBj + (1− t)M

vT

 ̸= 0, ∀t ∈ [0, 1]. (A.13)

Expressing Equation A.13 for j = 1 yields

(0.62v1 + 0.48v2 + 1.8v3) t
2 + (−0.2v1 − 0.4v2 − 2.7v3) t+ v3 ̸= 0, ∀t ∈ [0, 1]. (A.14)

and for j = 2 we have

(−0.96v1 + 0.66v2 − 0.29v3) t
2 + (0.6v1 − 0.6v2 − 1.2v3) t+ v3 ̸= 0, ∀t ∈ [0, 1]. (A.15)

If we choose v1 = 0 then for any v2, v3 ∈ R we have that t = 10/12 ∈ [0, 1] is a root of

Equation A.14, since in this case

det

tB1 + (1− t)M

(0, v2, v3)

 = v2(0.48t
2− 0.4t)+ v3(1.8t

2− 2.7t) = v2(0)+ v3(0) = 0. (A.16)

Therefore, any vector of the form (0, v2, v3) does not belong to V1 and thus neither to

V1 ∩ V2. Then we can limit our analysis to the case v1 ̸= 0 and it suffices to show that

V ′
1 ∩ V ′

2 = ∅, where

V ′
j =

{
(v2, v3) ∈ R2 : (1, v2, v3) ∈ Vj

}
, j = 1, 2. (A.17)
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The sets

V ′
1 =

{
(v2, v3) ∈ R2 : (0.62 + 0.48v2 + 1.8v3) t

2 + (−0.2− 0.4v2 − 2.7v3) t+ v3 ̸= 0,

∀t ∈ [0, 1]
}
,

(A.18)

V ′
2 =

{
(v2, v3) ∈ R2 : (−0.96 + 0.66v2 − 0.29v3) t

2 + (0.6− 0.6v2 − 1.2v3) t+ v3 ̸= 0,

∀t ∈ [0, 1]
}

(A.19)

were plotted using Mathematica by expressing all possible scenarios involving the two

quadratic roots of each equation (i.e., both roots > 1, both roots < 0, one root > 1 and

the other < 0, or no real roots). The result is shown in Figure A.2, where we can see that

V ′
1 ∩ V ′

2 = ∅.
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Figure A.2: The sets V ′
1 , V

′
2 .
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