
Randomized Data Structures: New Perspectives and

Hidden Surprises

by
William Kuszmaul

B.S., Stanford University (2018)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2023

© 2023 William Kuszmaul. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: William Kuszmaul
Department of Electrical Engineering and Computer Science
August 30, 2023

Certified by: Charles E. Leiserson
Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Randomized Data Structures: New Perspectives and Hidden
Surprises

by
William Kuszmaul

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis revisits some of the oldest and most basic questions in the theory of
randomized data structures—questions such as: How efficient is a linear probing
hash table? How fast can you maintain a sorted array of numbers? How big does a
pointer have to be? With the help of new techniques, along with a willingness to look
beyond conventional wisdom, we are able to achieve much stronger bounds for each
of these questions than were previously thought to be possible.

Our results also come with a powerful set of tools that span a wide range of prob-
lems and settings. Perhaps the most surprising of these tools is a new paradigm for
designing efficient dynamic data structures, in which, by ‘tying our hands behind our
back ’ (i.e., by artificially restricting ourselves to a special class of privacy-preserving
data structures), we are able to circumvent decades-old barriers in time/space effi-
ciency. This technique appears three (completely separate) times in the thesis.

Combined, our results overturn a 60-year-old myth on linear-probing hash tables;
refute a 30-year-old conjecture and solve a 40-year-old open problem on dynamic
sorting; resolve a 20-year-old open problem on dynamic load balancing; settle some
of the most basic and fundamental questions from the theory of space-efficient data
structures; and answer a 20-year-old question on memory allocation that was left as
the central open problem in the first paper on history independence.

Part I. Linear Probing Revisited: Overturning the Oldest Myth in Data
Structures. First introduced in 1954, the linear-probing hash table is among the
most influential data structures in computer science. Thanks to its unrivaled data
locality, it remains one of the fastest and most widely used hash tables today.

But linear probing also comes with a major drawback: as elements are inserted
into the hash table, they have a tendency to cluster together into long runs. This
clustering effect—which was first discovered by Donald Knuth in 1963—causes the
time per insertion to explode as the hash table fills up.

For nearly six decades, Knuth’s clustering result has shaped how researchers and
practitioners think about linear probing. Many courses and textbooks even teach
Knuth’s exact formula: that for a hash table at (1− 1/𝑥) full, the expected number

3

of probes per insertion is ≈ (𝑥2 + 1)/2. This simple formula has caused generations
of hash-table designers to avoid linear probing for space-sensitive applications.

In Part I we consider a simple question: what if we could somehow reduce clus-
tering? What we discover is much more surprising: the classical linear-probing hash
table already exhibits far less clustering than the classical analysis suggests.

We prove that, as insertions and deletions are performed over time, the structure
of the hash table stabilizes in a way that reduces clustering. If certain design decisions
are made correctly, then the amortized expected time per operation drops all the way
to �̃�(𝑥). Taking these ideas further, we also introduce a new version of linear probing,
called graveyard hashing, that avoids clustering entirely. At 1 − 1/𝑥 full, graveyard
hashing achieves 𝑂(𝑥) expected time for every operation.

Part II. Dynamic Sorting Revisited: The Power of History Independence.
The dynamic sorting problem (a.k.a. the list-labeling problem or the packed-memory
array problem) considers the following basic question: can you store 𝑛 elements in
sorted order in an array of size 𝑂(𝑛), while supporting insertions/deletions cheaply.

A priori, the answer might seem to be no—a single insertion/deletion could force
many elements in the array to be moved. However, a famous result by Itai et al. in
1981 shows that this intuition is false: the dynamic sorting problem can actually be
solved in 𝑂(log2 𝑛) amortized time per insertion/deletion.

Despite a great deal of additional work, by both theoreticians and practitioners,
the 𝑂(log2 𝑛) bound remained the state of the art for more than 40 years. In the
1990s, it was conjectured that the bound should be optimal—and over the course of
three decades, researchers obtained lower bounds applying to larger and larger classes
of data structures. However, an all-encompassing lower bound has remained elusive.

We present a randomized data structure that performs dynamic sorting in
𝑂(log1.5 𝑛) expected time per insertion/deletion. This represents the first asymp-
totic improvement to dynamic sorting since it was first studied in 1981, and disproves
a 30-year-old conjecture as to the optimality of the 𝑂(log2 𝑛) bound.

Part III. Balls and Bins: When Greedy Allocation Fails and How to Fix
It. Next, we turn our attention to a technical phenomenon known as the power of
two choices, which in recent decades has been applied not just to data structures, but
more broadly to problems in scheduling, distributed computing, etc.

The power-of-two-choices result considers the following basic setting. Consider a
set of 𝑚 balls that are placed into 𝑛 bins, one after another. Each ball 𝑥 must choose
between two random bins ℎ1(𝑥) and ℎ2(𝑥). The goal is to end in a state where the
bins have almost exactly equal loads of ≈ 𝑚/𝑛.

In one of its most general forms, what the classical power-of-two-choices result
states is that: if each ball greedily selects the emptier of its two bin options, then
the outcome will be remarkably balanced. Each bin will contain almost exactly 𝑚/𝑛
balls, up to ±𝑂(log𝑚), with high probability in 𝑚.

4

The power-of-two-choices result has had tremendous impact on how both theo-
reticians and practitioners think about load-balancing. But the result comes with a
significant weakness: it is restricted to the arrival-only setting.

For more than two decades, it remained an open question whether the same result
holds in the dynamic setting, where balls arrive and depart over time with up to 𝑚
balls present at once. It was widely believed that the same result should hold, but it
was only known for special cases—where 𝑚 = 𝑛 or where departures are stochastic.

In Part III, we give a surprising resolution to this problem: the reason that the
dynamic case has been so hard to analyze is because the result is false. Greedily
picking the less empty of two random bins actually does poorly, allowing for some
bins to become significantly overloaded over time. But an alternative approach does
do well : the key is to be strategically (and randomly) non-greedy in one’s decisions.
By using randomization not just to select the two bins, but also to choose between
them, one can once again achieve strong bounds.

We present variations of these results that can be applied both to scheduling
and to data-structural settings. Indeed, the data-structural variation serves as a key
technical ingredient for several of the space-efficient data structures later in the thesis.

Part IV. Hashing it Out: Some Barriers Are Fundamental and Others Are
Not. In Part IV we revisit three widely studied problems from the field of hashing.
Each of these problems comes with a well-known barrier that has prevented progress.
But it has remained open whether these barriers are fundamental.

Our first result resolves a 60-year-old question on the optimal space efficiency of
hash tables. For more than two decades, the state of the art has been a hash table
that, when compared to the information-theoretic optimum, uses 𝑂(log log 𝑛) extra
bits of space per key. In recent decades, the 𝑂(log log 𝑛) bound has been shown to be
optimal for several restricted versions of the problem, but it has remained unknown
whether the bound is optimal in general. We show that, perhaps surprisingly, it is
not: we reduce the extra bits per key to

𝑂(log(𝑘) 𝑛) = 𝑂

⎛⎝log log · · · log⏟ ⏞
𝑘

𝑛

⎞⎠
for any 𝑘 = 𝑂(1). More generally, for 𝑘 = 𝜔(1), the same bound can be achieved with
an insertion time of Θ(𝑘). It was subsequently shown by Li, Liang, Yu, and Zhou
that our space/time tradeoff is the optimal one for any dynamic data structure.

Our second result resolves an open question on hash-table failure probabilities:
how small of a failure probability can a hash table, storing Θ(log 𝑛)-bit keys, offer?
Past work on this question has encountered a surprising bottleneck: If we assume
access to fully random hash functions, then it is possible to achieve very strong prob-
abilistic guarantees, but if the same hash tables are implemented using the known
families of hash functions, it is unknown how to achieve a failure probability better
than 1/2polylog𝑛. To get around these obstacles, we show how to construct a random-

5

ized data structure that has the same guarantees as a hash table, but that avoids
the direct use of hash functions. This allows us to achieve failure probability 1/𝑛𝑛

1−𝜀 ,
which represents a nearly exponential improvement over the previous state of the art.

Our third result is a tight lower bound for the problem of monotone minimal
perfect hashing. Simply stated, this problem captures the task of constructing a
static data structure that can be used to query, for some set 𝑆 ⊆ [𝑈] of 𝑛 elements,
the rank |{𝑦 ∈ 𝑆 | 𝑦 ≤ 𝑥}| of each element 𝑥 ∈ 𝑆. Belazzougui, Boldi, Pagh, and
Vigna showed in 2009 that this problem can be solved with space 𝑂(𝑛 log log log 𝑢)
bits. It has remained open whether this somewhat unusual bound can be improved.
We show that, somewhat surprisingly, the bound is optimal, not just for time-efficient
data structures but for any information-theoretic solution to the problem.

Part V. How Many Bits Does It Take to Write Down a Pointer? One type of
data structure that is typically not viewed as space efficient, is any data structure that
makes heavy use of pointers. Examples include chained hash tables, binary search
trees, stable dictionaries, internal-memory stashes, etc. In these data structures, the
pointers between elements consume a significant fraction of the total space.

We introduce a new data-structural object called the tiny pointer that, using
randomization, allows us to compress log 𝑛-bit pointers in many applications to be
𝑜(log 𝑛) bits. Interestingly, the key to constructing optimal tiny pointers is to carefully
make use of our balls-and-bins techniques from Part III.

We apply tiny pointers to five classical problems in data structures, obtaining
significant improvements in dynamic data retrieval, space-efficient search trees, stable
dictionaries, key-value stores with variable-size values, and external-memory stashes.

Our pointer-compression techniques have also been applied to computer hardware
design. Here, tiny pointers are used to obtain a new, more effective, design for
hardware TLBs—this result won Distinguished Paper at ASPLOS’23.

Part VI. A Strong Theory of Strong History Independence. An impor-
tant technical theme in several parts of this thesis is the surprising role of history-
independence as a mechanism for bypassing classical data-structural bottlenecks. At
the same time, basic questions about history independence have remained open for
decades—questions involving memory allocation/reallocation, space-efficient hashing,
and worker-task assignment.

Part VI gives nearly optimal solutions to each of these problems. Our results on
memory reallocation resolve the central open question posed by Naor and Teague in
their 2001 paper on history independence. The result gives a new state of the art not
just for history-independent solutions, but even for non-history-independent ones.

Our algorithms come with nearly matching lower bounds—these are the first
super-constant lower bounds to be achieved for any of the aforementioned problems.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

6

Acknowledgments

I was first introduced to research as a high-school freshman, when Pavel Etingof and
David Jordan offered me, along with Surya Bhupatiraju and Jason Li, a research
project as part of the MIT PRIMES program. It is impossible for me to overstate
the significance that MIT PRIMES had in my development as a researcher. It was
where, under the guidance of Darij Grinberg and Sergei Bernstein, I discovered my
love for combinatorics. And far more importantly, it was where I learned how to
identify a good research problem, and how to persist until I could solve it. I am
deeply grateful to Pavel Etingof, David Jordan, Darij Grinberg, and Sergei Bernstein
for their mentoring.

Later, during my undergraduate years, I continued to be blessed with extraordi-
nary mentors. I am incredibly grateful to Joe Gallian, who mentored me during the
summer after freshman year, and to Moses Charikar, Ofir Geri, and Michael P. Kim,
who met with me weekly during my Junior and Senior years and taught me how to
be an algorithms researcher.

Several of my undergraduate instructors had profound effects on my interests,
and ultimately on this thesis. These include John Ousterhout, Gregory Valient, Vir-
ginia V. Williams, and Julie Zelenski. I am especially indebted to Virginia Williams,
whose incredible course on graph algorithms convinced me that I wanted to be an
algorithmist in my freshman year, to Keith Schwartz, whose brilliant course on data
structures permanently changed the trajectory of my research, and to Yufei Zhao who
generously met with me on-one-one to teach me the probabilistic method during my
study abroad at Oxford.

During the summer before my PhD, I began my first collaboration with Michael
A. Bender and Martín Farach-Colon, both of whom would go on to become among
my most frequent collaborators. I am also grateful to my many other collaborators,
including Kunal Agrawal, Sepehr Assadi, Nikhil Bansal, Aaron Berger, Abhishek
Bhattacharjee, Moses Charikar, Rezaul A Chowdhury, Alex Conway, Rathish Das,
Daniel DeLayo, Martín Farach-Colton, Krishnan Gosakan, Jayneel Gandhi, Ofir Geri,
Jaehyun Han, Rob Johnson, Timothy G. Kaler, Sudarsun Kannan, Michael P. Kim,
Hanna Komlós, Tsvi Kopelowitz, Bradley C. Kuszmaul, John Kuszmaul, Charles E.
Leiserson, Andrea Lincoln, Mingmou Liu, Quanquan C Liu, Jayson Lynch, Tao B.
Schardl, Clifford Stein, Ibrahim N. Mubarek, Nirjhar Mukherjee, Shyam Narayanan,
Enoch Peserico, Prashant Pandey, Seth Pettie, Adam Polak, Ely Porat, Donald E.
Porter, Michele Scquizzato, Karthik Sriram, Guido Tagliabini, Jonathan Tidor, Nicole
Wein, Evan West, Alek Westover, David P. Woodruff, Zoe Xi, Helen Xu, and Lin F.
Yang; and to the many fantastic high-school, undergraduate, and masters students
that I got work with during my PhD, including Kevin Chang, Michael Ma, Alek
Westover, Zoe Xi, Qi Qi, Emily Liu, and Wanlin Li.

I spent the final four years of my PhD living in F Entry of MacGregor House,
where I had the pleasure of serving as the residential advisor for an amazing group
of undergraduates. I’m grateful to Terry and Larry Sass, to Charlie McBurney, and

7

to the amazing residents of F Entry for making my stay there so special.
The most important moment of my PhD was the winter evening when I met

my (now) partner Rose Silver at Toscanini’s Ice Cream. Rose has been my greatest
cheerleader, advisor, and friend for the past three and a half years.

I am unendingly grateful to my family: My parents Dana Henry-Kuszmaul and
Bradley Kuszmaul; my siblings Anne Sullivan, Elizabeth Kuszmaul, John Kuszmaul,
and Margaret Kuszmaul; my grandmother Alena Hadju; my siblings-in-law Stephanie
Frankian and Ty Sullivan; and my teeny-tiny niece Suzie Sullivan.

Most significantly, I am grateful to my advisor Charles E. Leiserson for offering
me advice and mentoring at every point in my PhD, and for always letting me try
things my way even when they were a bad idea. I could not have asked for a better
advisor-advisee relationship. I am also grateful to the other members of my thesis
committee, Michael A. Bender and Virginia V. Williams.

Additionally, I would like to thank the John and Fannie Hertz Foundation for
their support during my PhD, and for giving me (and Charles) financial freedom
in my pursuits. Additionally, I would like to think the NSF GRFP program for
their fellowship support and to acknowledge the support that I received from NSF
grants CCF 1314547 and CCF 1533644; as well as grants from the United States
Air Force Research Laboratory and the United States Air Force Artificial Intelligence
Accelerator1.

1Parts of this thesis were accomplished under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air
Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.

8

To my family, Bradley, Dana, Anne, Elizabeth, John, Margaret, and Alena

To my partner Rose

9

10

Contents

1 Introduction 17
1.1 Randomized Data Structures: Past and Present 17
1.2 Contributions and Outline . 18
1.3 Bibliographics . 30

I Linear Probing Revisited: Overturning the Oldest Myth
in Data Structures 36

2 Introduction 37
2.1 Notation and Conventions . 46

3 The Surprisingly Strong Anti-Clustering Effects of Tombstones 49
3.1 Technical Overview . 50

3.1.1 Understanding the Classic Bounds: A Tale of Standard Deviations 51
3.1.2 Analyzing Primary Anti-Clustering with Small Rebuild Windows 52
3.1.3 Stronger Primary Anti-Clustering with Larger Rebuild Windows 57

3.2 Some Basic Balls-and-Bins Lemmas 59
3.3 Bounds on Insertion Surplus . 63

3.3.1 Proof of Proposition 9 . 65
3.3.2 Proof of Proposition 10 . 67

3.4 Relating Insertion Surplus to Crossing Numbers 70
3.5 Relating Crossing Numbers to Running Times 78

4 Graveyard Hashing, an Ideal Linear-Probing Hash Table 85

II Dynamic Sorting Revisited: The Power of History Inde-
pendence 90

5 Introduction 91

11

5.1 Preliminaries and Technical Background 94
5.1.1 The Classical Solution and its History-Independent Analogue . 95

5.2 Related work . 97

6 Breaking the 𝑂(log2 𝑛) Barrier 101
6.1 Technical Overview . 101
6.2 Zeno’s Random Walk . 103
6.3 The Zeno Embedding: a Data Structure for 𝑚 ≥ (1 + 𝜀)𝑛 105

6.3.1 The Static Zeno Embedding 106
6.3.2 Dynamizing the Zeno Embedding 109
6.3.3 Achieving a Bound on Arbitrary Insertions/Deletions. 112

6.4 Upper Bound For Sparse Arrays . 115

7 A Lower Bound for History-Independent Solutions 119
7.1 Proof of Proposition 61 . 121
7.2 Proof of Proposition 63 . 124

III Balls and Bins:
When Greedy Allocation Fails
and How to Fix It 128

8 Introduction 129
8.1 Chapter 9. The Scheduling Perspective 131
8.2 Chapter 10. The Data-Structural Perspective 133
8.3 Preliminaries . 134
8.4 Other Related Work . 135

9 The Scheduling Perspective 137
9.1 A Lower Bound for Greedy with Deletions 138

9.1.1 A Simpler Ω(𝑚1/4) Bound . 138
9.1.2 The Stronger Ω(𝑚1/2) Lower Bound 140

9.2 ModulatedGreedy: Handling poly(𝑚) Insertions/Deletions 144
9.2.1 The Algorithm . 145
9.2.2 Analysis . 146
9.2.3 Tightness of the Bound . 149

9.3 Generalizations of ModulatedGreedy 150
9.3.1 The Algorithm and Overview 150
9.3.2 Algorithm Analysis . 152

12

9.3.3 Extensions . 156

Appendices 159
9.A Proof of Lemma 74 . 159
9.B Proof of Lemma 100 . 160

10 The Data-Structural Perspective 163
10.1 An Impossibility Result For The Deletions with Reinsertions 164

10.1.1 The Marble-Splitting Game 164
10.1.2 Proof of Theorem 97 . 167

10.2 An Upper Bound for the Moderately-Loaded Regime 171
10.3 A Strong Backyarding Lemma . 171

10.3.1 The Iceberg 3-Choice Strategy 173

IV Hashing it Out:
Some Barriers Are Fundamental
and Others Are Not 175

11 Introduction 177

12 The Optimal Space-Time Tradeoff Curve for Hash Tables 179
12.1 Introduction . 180
12.2 Overview of Results and Techniques 181

12.2.1 Hash Tables and Balls-To-Slots Schemes 182
12.2.2 Transforming a 𝑘-Kick Tree into a 𝑘-Kick Hash Table 184
12.2.3 An Application to Optimal Dynamic Filters 186
12.2.4 Preliminaries . 187

12.3 The Probe-Complexity Problem . 189
12.3.1 A Balls-to-Slots Scheme with Small Average Probe Complexity 190
12.3.2 A Lower Bound on Switching Cost vs. Probe Complexity . . . 195

12.4 Encoding Metadata in an Augmented Open-Addressed Hash Table . . 209
12.4.1 Preliminaries: The Lookup-Table Technique 210
12.4.2 Storing a Mini-Array of Variable-Size Values 211
12.4.3 Query Routers . 212

12.5 An Optimal Augmented Open-Addressed Hash Table 214
12.5.1 Turning the 𝑘-Kick Tree into a Hash Table 215
12.5.2 Supporting Dynamic Resizing 218
12.5.3 Succinctness Through Quotienting 222

13

12.6 Large Keys, Small Keys, and Filters 226
12.6.1 Supporting Large Keys/Values 226
12.6.2 Optimizing for Very Small Keys 231
12.6.3 Constructing Optimal Filters 237

13 A Hash Table Without Hash Functions 241
13.1 Introduction . 242
13.2 Preliminaries and Conventions (for Non-Succinct Dictionaries) 245
13.3 A Warmup Data Structure: The Rotated Trie. 246
13.4 The Amplified Rotated Trie . 249
13.5 The Budget Rotated Trie . 252
13.6 Achieving Succinctness . 256

13.6.1 Reduction to the Many-Sets Problem 257
13.6.2 Proof of Theorem 148 . 260

Appendices 267
13.A Universe Reduction Using 𝑂(log 𝑛) Random Bits 268

14 Tight Bounds for Monotone Minimal Perfect Hashing 271
14.1 Introduction . 272
14.2 Preliminaries . 275

14.2.1 Problem Definition and Model of Computation 275
14.2.2 Fractional Colorings . 275

14.3 A Lower Bound for MMPHF via Fractional Colorings 276
14.3.1 Conflict Graph and its Fractional Chromatic Number 277
14.3.2 Extending the MMPHF Lower Bound to Small Universes . . . 279

14.4 Fractional Chromatic Number of Conflict Graphs 280
14.4.1 A High-Level Overview of the Proof 281
14.4.2 The Hard Input Distribution in Lemma 166 282
14.4.3 Analysis of the Hard Distribution (and Proof of Lemma 166) . 285

Appendices 297
14.A Proofs of Standard Results in Fractional Coloring 298
14.B Covering The Full Range of the Universe Size 300

V How Many Bits Does It Take to Write Down a Pointer?302

15 Introduction 303

14

16 From Balls and Bins to Tiny Pointers 307
16.1 Preliminaries . 308
16.2 Upper Bound for Fixed-Size Pointers 310
16.3 Upper Bounds for Variable-Sized Pointers 314
16.4 Lower Bounds . 321

17 Five Applications to Data Structures 325
17.1 Some General-Purpose Techniques for Using Tiny Pointers 329
17.2 Overcoming the Ω(log log 𝑛)-Bit Lower Bound for Data Retrieval . . . 332
17.3 Succinct Binary Search Trees . 335
17.4 Space-Efficient Stable Dictionaries . 336
17.5 Space-Efficient Dictionaries with Variable-Size Values 337
17.6 An Optimal Internal-Memory Stash 340

VI A Strong Theory of Strong History Independence 344

18 Introduction 345
18.1 Conventions . 349

19 Strong Upper Bounds for Stateless Allocation 351
19.1 Achieving 𝑂(1 + log 𝜀−1) Expected Overhead 354

19.1.1 Achieving 𝑂(1 + log 𝜀−1) Overhead with Power-of-Two Sizes . 354
19.1.2 Supporting Dynamic Resizing 356
19.1.3 Allocating Items with Sizes in [1, 2) 360
19.1.4 Allocating Objects of Arbitrary Sizes 362

19.2 Achieving polylog 𝑛 Worst-Case Overhead for Worker-Task Assignment 364
19.2.1 Achieving Switching Cost 𝑂(log𝑤 log(𝑤𝑡)) 365
19.2.2 Derandomizing the Construction 372

20 Strong Lower Bounds for Stateless Allocation 375
20.1 Proof of Theorem 223 . 375

21 Efficient Data-Structural Implementations 385
21.1 An Efficient Allocator for Small Objects 386
21.2 An Efficient Allocator for Large Objects 392
21.3 Putting the Pieces Together . 395

15

16

Chapter 1

Introduction

1.1 Randomized Data Structures: Past and Present

In 1952, IBM completed the design for the IBM 701, their first commercial scientific
computing machine. Almost immediately, it became clear that the efficiency of the
machine would depend not just on its hardware but on the algorithms and data struc-
tures implemented within it. In the following two years, the concept of a hash table
was invented not once, but twice (independently !), by researchers at IBM [226]. First,
by Hans Peter Luhn in 1953, who invented the chained hash table, and then again by
Gene Amdahl, Elaine Boehme, and Arthur Samuel, who invented the linear-probing
hash table while developing an assembly program for the IBM 701 [226]. The almost
instantaneous invention of hash tables is remarkable when compared to the evolution
of other ideas in algorithms and data structures. Hans Peter Luhn’s implementation
of chained hashing appears to also be the earliest recorded computational use of a
linked list [226]. The modern notion of a binary search tree wouldn’t be described
until 1959 [164,226], and the balanced binary search tree would remain undiscovered
until 1962 [41, 226]. But hash tables were discovered immediately—efficient comput-
ing would have been almost impossible without them.

A few years later, in 1963, a young mathematician named Donald Knuth wrote
a paper that changed the course of computing. Knuth used what (even by today’s
standards) was a relatively sophisticated probabilistic analysis [224] in order to show
that linear-probing hash tables behave very differently from how engineers in the
1950s had theorized [309].1 The phenomenon that Knuth had discovered, now known
as primary clustering, continues to be taught to undergraduates today [131,165,201,
230, 241, 253, 257, 323, 324, 332, 343, 353]. (And, in fact, showing how to eliminate
primary clustering will be the first part of this thesis.)

Knuth took an almost bashful tone in his note, explaining why he (a reputable
mathematician) was writing about a simple problem having to do with storing data.
Nonetheless, the note marked a central point in Knuth’s career—it was while writing

1Knuth’s result [224] was never formally published and was subsequently rediscovered by Konheim
and Weiss in 1966 [228].

17

it that he decided to pivot to the study of algorithms as a field [225]. Today he is
widely regarded as the father of modern algorithms.

In the half-century since Knuth’s paper, randomization has become an essential
tool in any algorithm designer’s toolbox. Nonetheless, several of the most basic and
fundamental questions concerning randomized algorithms, and specifically random-
ized data structures, have remained either unanswered or (as we shall see) answered
with incorrect folklore. This is the problem that we seek to rectify in this thesis.

This Thesis: New Perspectives and Hidden Surprises. In this thesis, we use
modern perspectives on randomization to revisit core questions in the field of data
structures—questions such as: How efficient is a linear probing hash table? How fast
can you maintain a sorted array of numbers? How big does a pointer have to be?

In many cases, these are problems that were thought to have hit fundamental
barriers decades ago. We will see, however, that even for these problems, there are
often still hidden surprises waiting to be discovered. To unlock these surprises, we
will need two things: a willingness to disregard classical conventional wisdom, and a
new suite of algorithmic/probabilistic techniques.

As we shall see, our results come with strong technical strands that tie problems
and solutions together across a wide range of settings. Perhaps the most surprising of
these is a new paradigm for designing efficient dynamic data structures, in which by
‘tying our hands behind our back’ (i.e., by artificially restricting ourselves to a special
class of privacy-preserving data structures), we are repeatedly able to circumvent
decades-old barriers in time/space efficiency. This technique shows up independently
in three different parts of the thesis.

1.2 Contributions and Outline

The thesis consists of six parts. Each part revisits a core problem (or, in some cases,
a collection of closely related problems) in data structures. What we will see in each
case is that, by really understanding the randomized processes that underlie these
problems, and by adopting new perspectives, we can establish results that go far
beyond what was previously known.

Combined, our results overturn a 60-year-old myth on linear-probing hash tables
(Part I); refute a 30-year-old conjecture and solve a 40-year-old open problem on
dynamic sorting (Part II); resolve a 20-year-old open question on dynamic load bal-
ancing (Part III); settle some of the most basic and fundamental questions from the
theory of space-efficient data structures (Parts IV and V); and answer a 20-year-old
question on memory allocation that was left as the central open problem in the first
paper on history independence (Part VI).

Although our focus is primarily theoretical, many of the techniques and ideas from
this thesis are also beginning to appear in practical settings, including in my work
on high-performance hash tables [11] and on improved designs of hardware TLBs [10]

18

(Distinguished Paper at ASPLOS’23).
The thesis contains only a portion of the work from my PhD, but many of the

themes and techniques in the thesis also appear in my other work [10–33]. Examples
include my work on randomized buffer flushing [15,18,20,22,27,28,30], network con-
tention resolution [26], parallel scheduling [14,21], compiler instrumentation [29], etc.
The papers that I have written during my PhD have won several awards, including
Distinguished Paper at ASPLOS’23, Best Student Paper at ESA’22, Best Paper Fi-
nalist at SPAA’22, Best Paper at FUN’20, and Best Paper Finalist at APOCS’20. I
have also had the fantastic experience of advising many brilliant students, including
four high-school students whose projects won national awards.2

Part I. Linear Probing Revisited: Overturning the Oldest Myth
in Data Structures

First introduced in 1954 [226], the linear-probing hash table is among the oldest data
structures in computer science, and thanks to its unrivaled data locality, linear probing
continues to be one of the fastest hash tables in practice. It is widely believed and
taught, however, that linear probing should never be used at high load factors3; this
is because of an effect known as primary clustering which causes insertions at a load
factor of 1− 1/𝑥 to take expected time Θ(𝑥2) (rather than the intuitive running time
of Θ(𝑥)). The dangers of primary clustering, first discovered by Knuth in 1963 [224],
have now been taught to generations of computer scientists, and have influenced the
design of some of the most widely used hash tables in production [38,173].

Chapter 3. The Surprisingly Strong Anti-Clustering Effect of Tombstones.
In Chapter 3, we show that primary clustering is not the foregone conclusion that
it is reputed to be. We demonstrate that seemingly small design decisions in how
deletions are implemented have dramatic effects on the asymptotic performance of
insertions: if these design decisions are made correctly, then even if a hash table
operates continuously at a load factor of 1−Θ(1/𝑥), the expected amortized cost per
insertion/deletion is �̃�(𝑥).

The key insight that makes our result possible is that the tombstones left behind
by deletions actually cause an anti-clustering effect that combats primary clustering.
What’s remarkable is just how strong the anti-clustering effect ends up being. Even
if insertions and deletions are one-for-one, the anti-clustering effect of the deletions
ends up overpowering the clustering effect of insertions. In fact, the clustering effects
of insertions are almost completely eliminated, yielding an amortized expected �̃�(𝑥)
time bound per operation.

2These include Kevin Chang who won the Regeneron STS Semifinalist Award; Michael Ma who
won the $25,000 Regeneron STS Finalist Award; Alek Westover who won the $70,000 Regeneron
STS 7-th place award; and Zoe Xi who won the $25,000 Regeneron STS Finalist award, along with
the ESA’22 Best-Student-Paper award.

3Load factor is a term used to refer to how full a hash table is: a load factor of 𝛼 means that an
𝛼-fraction of slots in the hash table are occupied.

19

What the �̃� notation means is that the true upper bound is of the form 𝑂(𝑥𝑓(𝑥))
for some 𝑓(𝑥) ≤ polylog(𝑥). Perhaps surprisingly, we show that this low-order
term is real—even for a basic hovering workload, which alternates between inser-
tions/deletions, the amortized time complexity per operation is 𝜔(𝑥). This raises a
natural question: can linear probing be modified to achieve the ideal bound of 𝑂(𝑥)?

Chapter 4. Graveyard Hashing, an Ideal Linear-Probing Hash Table. In
Chapter 4, we present a new version of linear probing, which we call graveyard hashing,
that completely eliminates primary clustering on any sequence of operations: if, when
an operation is performed, the current load factor is 1 − 1/𝑥 for some 𝑥, then the
expected cost of the operation is 𝑂(𝑥). This bound holds even for insertion-only
workloads, and even in hash tables that are frequently dynamically resized in order
to keep their load factors high.

Graveyard hashing draws on the basic lesson from the previous chapter—that
tombstones are an unexpected force for good. Taking this lesson one step further,
graveyard hashing artificially injects tombstones into the hash table, without waiting
for them to be caused by deletions. Doing this in the right way, we can get the full
anti-clustering effects of tombstones on every operation, no matter the workload.

Our results overturn one of the most widely-taught conventional wisdoms in the
field of data structures, and in doing so, yield the first asymptotic improvement to
linear probing since its insertion time was first analyzed in 1963. The results also act
as a roadmap for practitioners, giving insight into which engineering decisions affect
the asymptotics of linear probing.

Part II. Dynamic Sorting Revisited: The Power of History In-
dependence

The dynamic sorting problem (a.k.a. the list-labeling problem or the packed-memory
array problem) considers the following basic question: can you store 𝑛 elements in
sorted order in an array of size 𝑂(𝑛), while supporting insertions/deletions cheaply?

A priori, the answer might seem to be no—a single insertion/deletion in the tree
could force many elements in the array to be moved. However, a famous result due to
Itai et al. in 1981 [214] shows that this intuition is false: the dynamic sorting problem
can be solved in 𝑂(log2 𝑛) amortized time per insertion.

Despite a great deal of additional work, by both theoreticians and practitioners,
the 𝑂(log2 𝑛) bound remained the state of the art for more than 40 years. In the
1990s, it was conjectured [150–152] that the bound should be optimal—and over the
course of three decades, researchers obtained lower bounds applying to larger and
larger classes of data structures [120, 150–152]. However, an all-encompassing lower
bound remained elusive.

Chapter 6. Breaking the 𝑂(log2 𝑛) Barrier. In Chapter 6, we present a ran-
domized data structure that performs dynamic sorting in 𝑂(log1.5 𝑛) expected time

20

per insertion/deletion. This represents the first asymptotic improvement to dynamic
sorting since it was first studied in 1981, and disproves a 30-year-old conjecture as to
the optimality of the 𝑂(log2 𝑛) bound [150–152].

Our solution draws on a connection to a seemingly unrelated area of secu-
rity/privacy research. By designing our data structure to achieve a type of privacy
known as history independence, we are able to guard against workloads that might
try to force worst-case behavior on the data structure.

This leads to an intriguing lesson. Past work on history independence has focused
on bounding the cost of history independence for various data-structural problems—
that is, how much slower must the data structure become if we wish to achieve
history independence? Our results suggest a different perspective—that history inde-
pendence should actually be viewed as an algorithmic tool that can be used to arrive
at faster/better data structures. This perspective will prove to be remarkably useful,
not just in the context of dynamic sorting, but also for several other well-studied
problems.

Chapter 7. A Matching Lower Bound for History-Independent Solutions.
A priori, an 𝑂(log1.5 𝑛) bound may seem a bit unnatural. Nonetheless, in Chapter 4,
we prove that this bound is tight for any history-independent data structure. Thus,
if there is to exist a data structure that does better, it will need to make use of
fundamentally different techniques than the ones developed here.

Part III. Balls and Bins: When Greedy Allocation Fails and
How to Fix It

In Part III, we turn our attention to a technical phenomenon known as the power
of two choices. In the past two decades, this phenomenon has been widely applied
not just to data structures, but more broadly to problems in scheduling, distributed
computing, etc.

The power-of-two-choices result considers the following basic setting. Consider a
set of 𝑚 balls that are placed into 𝑛 bins, one after another. Each ball 𝑥 must choose
between two random bins ℎ1(𝑥) and ℎ2(𝑥). The goal is to end in a state where the
bins have almost exactly equal loads of ≈ 𝑚/𝑛.

In one of its most general forms [98], what the classical power-of-two-choices result
states is that: if each ball greedily selects the emptier of its two bin options, then the
outcome will be remarkably balanced. Each bin will contain almost exactly 𝑚/𝑛
balls, up to ±𝑂(log𝑚), with high probability in 𝑚.

The power-of-two-choices result has had tremendous impact on how both theo-
reticians and practitioners think about load-balancing. But the result comes with a
significant weakness: it is restricted to the arrival-only setting.

For more than two decades, it remained an open question whether the same result
holds in the dynamic setting [98, 128], where balls arrive/depart over time, and 𝑚 is
an upper bound on the number of tasks present at any given moment. It was widely

21

believed that the same result should hold in this setting, that is, that each bin should
contain at most 𝑚/𝑛 + 𝑂(log𝑚) balls, with high probability in 𝑚. But it was only
known how to prove this in certain special cases—where either 𝑚 = 𝑛 [98], or where
arrivals/departures are stochastic.

Before continuing, it is worth taking a moment to understand why we should
care about the dynamic setting. From the perspective of scheduling applications,
we should think of the balls as tasks and the bins as machines to which they are
assigned. The dynamic setting represents the case where each task has arrival and
departure times, and where the only constraint on these times is that the maximum
load of the system should never exceed 𝑚. What’s remarkable is that, for this very
simple scheduling problem, it has remained an open question of whether strong load-
balancing guarantees can be achieved.

On the other hand, the dynamic setting also matters from the perspective of
data-structural applications. Here the balls represent elements, and the bins repre-
sent components of the data structure that are constrained by space. We should
think of each element 𝑥 as having two hash functions ℎ1(𝑥) and ℎ2(𝑥) that determine
where it can go. This actually leads to a slightly different model than we had in the
scheduling case: since elements can be inserted, deleted, and later reinserted, any
load-balancing scheme must be able to handle the reuse of randomness that occurs
during reinsertions. To distinguish between these, we will refer to the dynamic set-
ting without reinsertions as the scheduling perspective and to the dynamic setting
with reinsertions as the data-structural perspective.

Chapter 9. Dynamic Balls and Bins: The Scheduling Perspective. In Chap-
ter 9, we consider the dynamic balls-and-bins problem from the scheduling perspective
(i.e., without reinsertions after deletion). Here we uncover a surprising phenomenon:
The classical power-of-two-choices result actually fails in this setting. With 𝑚 balls
and 𝑛 bins, there exists an oblivious sequence of insertions and deletions after which,
with probability Ω(1), some bin contains Ω(

√
𝑚/ poly(𝑛)) more balls than it is sup-

posed to. When 𝑛 = 𝑂(1), this means that some bin contains an overload of Ω(
√
𝑚)

balls, the same overload bound that is achieved if we simply throw each ball into a
random bin without any power-of-two-choices!

A critical insight, however, is that this lower bound is specific to the greedy
strategy—i.e., the strategy in which each ball greedily selects the emptier of two
random bins. We show that an alternative non-greedy strategy can actually achieve
strong bounds: every bin is guaranteed to have an overload of at most 𝑂(log𝑚) balls,
with high probability in 𝑚.

Our non-greedy strategy is itself a randomized strategy. Now, not only is ran-
domness used to select the two bins (ℎ1(𝑥) and ℎ2(𝑥)), but it is also used to choose
between them.

Interestingly, the theme of history independence as an algorithmic tool (which we
saw in Part II), reappears here. The actual assignment of balls to bins is not history
independent, but the histogram of how many balls are in each bin is. This history

22

independence is what allows us to avoid the types of feedback loops that caused the
greedy strategy to perform so poorly.

Chapter 10. Dynamic Balls and Bins: The Data-Structural Perspective. In
Chapter 10, we consider the dynamic balls-and-bins problem from the data-structural
perspective (i.e., with reinsertions after deletions). Here we uncover a surprising
separation: not only does the classical power-of-two-choices result fail, but so do
almost all of its possible generalizations. We consider any ID-oblivious strategy—that
is, any strategy that makes its decisions purely based on the bin choices that each ball
has, rather than on the history of that specific ball’s insertions/deletions/reinsertions.
We show that, for any such strategy, there exists a worst-case workload on 4 bins
that causes an overload of poly(𝑚) balls at some point within the first poly(𝑚)
operations. Interestingly, the worst-case workload that we construct is universal—
the same workload is simultaneously worst-case for all ID-oblivious strategies.

Here, again, there is reason for optimism, however. Our lower bound applies
only to the very heavily loaded case (the number of balls is much larger than the
number of bins). However, in most data-structural settings we actually care about
a different parameter regime in which 𝑚 = 𝑛𝑘 for some 𝑘 ∈ [𝜔(log log 𝑛), 𝑂(log 𝑛)].
Interestingly, this is also the regime that we historically have known the least about—
it has remained an open question whether it is possible to achieve a bound even of
the form (1 + 𝑜(1))𝑘 on the maximum load.

We answer this question in the affirmative with a 3-choice scheme that guaran-
tees, with high probability in 𝑛, that every bin contains at most 𝑘 + 𝑂(

√
𝑘 log 𝑘) +

𝑂(log log 𝑛) balls. This scheme, which we refer to as Iceberg, also reappears later
in the thesis as a valuable tool for designing space-efficient data structures.

Part IV. Let’s Hash it Out: Some Barriers Are Fundamental
And Others Are Not

In Part IV, we revisit three well-studied theoretical problems concerning hash func-
tions and hash tables. Each of these problems comes with a well-known barrier that
has prevented progress. For each problem we seek to answer a simple question: Is
this barrier fundamental?

Chapter 12. The Optimal Space-Time Tradeoff Curve for Hash Tables.
For nearly six decades, the central question in theoretical work on hash tables has
been to determine the optimal achievable tradeoff curve between time and space.
State-of-the-art theoretical hash tables offer the following guarantee: If keys/values
are 𝑘 = Θ(log 𝑛) bits each, then it is possible to achieve constant-time operations
while using space

log

(︂
2𝑘

𝑛

)︂
+𝑂(𝑛 log log 𝑛)

bits. The first term is the information-theoretic space complexity of a hash table. The

23

second represents the wasted bits, compared to the information-theoretic optimum.
The bound of 𝑂(𝑛 log log 𝑛) wasted bits has stood as the state of the art for

more than two decades [313]. There are several reasons to believe that this bound
should be optimal. Indeed, the same bound is optimal for closely related problems
involving resizable filters [301] and dynamic retrieval [146, 273]. And, perhaps more
importantly, for the hash-table problem itself, the bound is known to be optimal for
any hash table satisfying a certain natural property known as stability [75, 146]. It
has remained an open question, however, whether the bound is optimal for all hash
tables.

Chapter 12 shows that there is actually no fundamental barrier at 𝑂(𝑛 log log 𝑛)
wasted bits. In fact, for any 𝑘 ∈ [log* 𝑛], it is possible to achieve 𝑂(𝑘)-time inser-
tions/deletions, 𝑂(1)-time queries, and

𝑂(𝑛 log(𝑘) 𝑛) = 𝑂

⎛⎝𝑛 log log · · · log⏟ ⏞
𝑘

𝑛

⎞⎠
wasted bits (all with high probability in 𝑛). This means that, each time we increase
insertion/deletion time by an additive constant, we reduce the wasted bits per key
exponentially.

In recent follow-up work, Li, Liang, Yu, and Zhou [243] proved our space/time
tradeoff is optimal across all dynamic data structures. Combined, our data structure
along with their lower bound close off one of the longest-standing research directions
in the field of data structures.

We emphasize that our results hold not just for fixed-capacity hash tables, but
also for hash tables that are dynamically resized (this is a fundamental departure
from what is possible for filters [301]); and for hash tables that store very large
keys/values, each of which can be up to 𝑛𝑜(1) bits (this breaks with the conventional
wisdom that larger keys/values should lead to more wasted bits per key [52, 313]).
For very small keys/values, we are able to tighten our bounds to 𝑜(1) wasted bits
per key, even when 𝑘 = 𝑂(1). Building on this, we obtain a constant-time dynamic
filter that uses 𝑛 ⌈log 𝜀−1⌉ + 𝑛 log 𝑒 + 𝑜(𝑛) bits of space for a wide choice of false-
positive rates 𝜀, resolving a long-standing open problem on the design of dynamic
filters [52, 82,93,122,245,249,294].

Chapter 13. A Hash Table Without Hash Functions. Chapter 13 considers
the basic question of how strong of a probabilistic guarantee can a hash table storing
(1+Θ(1)) log 𝑛-bit key/value pairs offer? Past work on this question has encountered
a surprising bottleneck: If we assume access to fully random hash functions, then
it is possible to achieve very strong probabilistic guarantees [75, 198, 199], but if the
same hash tables are implemented using the known families of hash functions, it is
unknown how to achieve a failure probability better than 1/2polylog𝑛.

Thus, somewhat surprisingly, the barrier for this problem would appear to be
one about hash functions rather than hash tables. The techniques that we have for

24

simulating fully random hash functions introduce additional failure probabilities that
become the bottleneck.

We show that, once again, the barrier is not fundamental. Our solution is to
construct a data structure that has the same guarantees as a hash table, and that
is still randomized, but that avoids the use of hash functions. The resulting data
structure achieves a failure probability of 1/𝑛𝑛1−𝜀 for an arbitrary positive constant
𝜀. This bound is close to the best that one could hope for: If the failure probability
could be improved to 1/𝑛Ω(𝑛) (i.e., the 𝜀 could be removed), then this would imply the
(non-constructive) existence of a deterministic hash table, which is widely believed
to be impossible [341].

Our failure probability of 1/𝑛𝑛
1−𝜀 represents a nearly exponential improvement

over the previous state of the art of 1/2polylog𝑛, and resolves an open problem posed
by Goodrich, Hirschberg, Mitzenmacher, and Thaler [198,199].

Chapter 14. Tight Bounds For Minimal Monotone Perfect Hashing. The
monotone minimal perfect hash function (MMPHF) problem is the following indexing
problem. Given a set 𝑆 = {𝑠1, . . . , 𝑠𝑛} of 𝑛 distinct keys from a universe 𝑈 of size 𝑢,
create a data structure D that answers the following query:

Rank(𝑞) =

{︃
rank of 𝑞 in 𝑆 𝑞 ∈ 𝑆

arbitrary answer otherwise.

The name of the problem comes from interpreting the data structure D as a hash
function: given a sorted array 𝐴 = [𝑎1, . . . , 𝑎𝑛], D is a function mapping each 𝑎𝑖 to its
position 𝑖. Such a hash function is minimal, meaning that it maps 𝑛 items to 𝑛 distinct
positions, and monotone, meaning that whenever 𝑎𝑖 < 𝑎𝑗 we have D(𝑎𝑖) < D(𝑎𝑗),
and vice versa.

It may seem strange at first glance that D is permitted to return arbitrary an-
swers on negative queries. A key insight, however, is that this relaxation allows
for asymptotic improvements in space efficiency: whereas the set 𝒮 would require
Ω(𝑛 log(𝑢/𝑛)) bits to encode, Belazzougui, Boldi, Pagh, and Vigna [64] show that
it is possible to construct an MMPHF using as few as 𝑂(𝑛 log log log 𝑢) bits, while
supporting 𝑂(log log 𝑢)-time queries.

Since its introduction in 2009, MMPHF has found a variety of practical ap-
plications (e.g., in security [110], key-value stores [244] and information retrieval
[280]). A high-performance implementation can be found in the Sux4J library
[63, 108]. MMPHF has also been widely used in the theory community for
the design of space-efficient combinatorial pattern-matching algorithms (see, e.g.,
[62, 65–68,127,191,203]).

Despite the widespread use of MMPHF, it has remained an open question
[64, 109, 154] to determine the optimal bounds for solving this problem. Even dis-
regarding applications (and the running time to answer queries), the information-
theoretic question has been posed as a problem of independent combinatorial inter-

25

est [154].
Whereas in the previous two chapters, the apparent barriers were based on limita-

tions of known techniques, here the 𝑂(𝑛 log log log 𝑢) barrier would seem to be much
more arbitrary. Although it is unknown how to do better, there is also no clear reason
why this somewhat unusual bound should be tight.

Nonetheless, in Chapter 14, we show that there actually is a fundamental barrier
at 𝑂(𝑛 log log log 𝑢) bits. In fact, our lower bound of Ω(𝑛 log log log 𝑢) is information-
theoretic, meaning that it holds for any data structure regardless of its time efficiency.
At a technical level, our lower bound is achieved by constructing a graph whose
fractional chromatic number reveals the optimal answer to the question at hand.
We believe that this fractional-chromatic-number approach will likely prove to be
generally useful for establishing lower bounds on related data-structural problems in
the future.

Part V. How Many Bits Does It Take to Write Down a Pointer?

One type of data structure that is typically not viewed as space efficient, is any data
structure that makes heavy use of pointers. Examples include chained hash tables,
binary search trees, stable dictionaries, internal-memory stashes, etc. In each of these
data structures, the pointers between elements consume a significant fraction of the
total space used by the data structure.

Chapter 16: From Balls and Bins to Tiny Pointers. In Chapter 16, we intro-
duce a new data-structural object that we call the tiny pointer. In many applications,
traditional log 𝑛-bit pointers can be replaced with 𝑜(log 𝑛)-bit tiny pointers at the cost
of only a constant-factor time overhead. We develop a comprehensive theory of tiny
pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings
in which all of the tiny pointers must be the same size) and variable-size tiny pointers
(i.e., settings in which the average tiny-pointer size must be small, but some tiny
pointers can be larger). If a tiny pointer references an element in an array filled to
load factor 1− 1/𝑘, then the optimal tiny-pointer size is Θ(log log log 𝑛 + log 𝑘) bits
in the fixed-size case, and Θ(log 𝑘) expected bits in the variable-size case.

Interestingly, what makes tiny pointers possible are the balls-to-bins techniques
that we developed in Part III. Indeed, the main algorithmic primitive on which our
constructions are based is the Iceberg scheme developed in Chapter 6.

Chapter 17: Five Applications to Data Structures. Using tiny pointers, we
revisit five classic data-structure problems. We show that:

• A data structure storing 𝑛 𝑣-bit values for 𝑛 keys with constant-time modifica-
tions/queries can be implemented to take space 𝑛𝑣 +𝑂(𝑛 log(𝑟) 𝑛) bits, for any
constant 𝑟 > 0, as long as the user stores a tiny pointer of expected size 𝑂(1)
with each key—here, log(𝑟) 𝑛 is the 𝑟-th iterated logarithm.

• Any comparison-based binary search tree can be made succinct with constant-

26

factor time overhead, and can even be made to be within 𝑂(𝑛) bits of optimal
if we allow for 𝑂(log* 𝑛)-time modifications—this holds even for rotation-based
trees such as the splay tree and the red-black tree.

• Any fixed-capacity key-value dictionary can be made stable (i.e., items do not
move once inserted) with constant-time overhead and 1 + 𝑜(1) space overhead.

• Any key-value dictionary that requires uniform-size values can be made to sup-
port arbitrary-size values with constant-time overhead and with an additional
space consumption of log(𝑟) 𝑛 + 𝑂(log 𝑗) bits per 𝑗-bit value for an arbitrary
constant 𝑟 > 0 of our choice.

• Given an external-memory array 𝐴 of size (1 + 𝜀)𝑛 in which we must store a
dynamic set of up to 𝑛 key-value pairs, it is possible to maintain an internal-
memory stash of size 𝑂(𝑛 log 𝜀−1) bits so that the location of any key-value pair
in 𝐴 can be computed in constant time (and with no IOs).

These are all well-studied and classic problems, and in each case, tiny pointers allow
us to take a natural space-inefficient solution that uses pointers and make it space-
efficient for free.

In several of the applications above, we are actually making use of not just tiny
pointers, but also the super-space efficient hash tables from Chapter 10. These tools
turn out to be remarkably symbiotic, allowing us to bring the same (extremely strong)
space-efficiency bounds that we achieved in Chapter 12 to other problems that would
seem to a priori to be fundamentally different.

We remark that our pointer-compression techniques have also found practical ap-
plications in the design of computer hardware. Here, tiny pointers act not just as
a theoretical technique, but as an avenue for obtaining real-world performance im-
provements. Indeed, concurrently with our theoretical work on the topic, we engaged
in a multi-year collaboration between systems researchers, computer architects, and
theoreticians, where we used tiny pointers to redesign a piece of hardware known as
the translation look-aside buffer (TLB), in order to increase its coverage while miti-
gating a problem known as fragmentation. The results of this collaboration appeared
at ASPLOS’23 where they won the Distinguished Paper Award [10].

Part VI. A Strong Theory of Strong History Independence

In several parts of the thesis, history independence has appeared as a technical hero.
By using it as an algorithmic/analytical technique, we were able to break through
long-standing barriers for both dynamic sorting (Part II) and dynamic power-of-
two choices (Part III). However, history-independent data structures have also been
studied extensively as a subfield on their own. And several of the most basic questions
that one can ask—concerning the closely related problems of memory allocation [279],
hashing [104, 124, 279], and worker-task assignment [334, 335]—have remained open.
In this chapter, we give nearly tight answers to these questions.

Somewhat unintentionally, the results in this chapter constitute yet another ex-
ample where history independence allows us to obtain a new state of the art for a

27

(non-history-independent) problem—indeed, our history-independent algorithm for
the variable-size memory (re)-allocation is the first algorithm (history independent or
not) to beat the folklore bound for the problem [81].

Before continuing, we remark that two types of history independence have been
studied in the literature, strong and weak history independence. All of the algorithmic
results in this part are for strong history independence (although in some cases they
resolve questions that were open for weak history independence too). As background,
a data structure ALG is said to be strongly history independent (or uniquely
representable) if its state is fully determined by its current set of elements. That
is, given the current set 𝑆 of elements that the data structure stores, and given the
random bits 𝑅 that the data structure uses, one can reconstruct the data structure
ALG(𝑆,𝑅). Critically, such a data structure cannot depend on the order in which
elements were inserted, or on the history of what other elements were present in the
past.

Chapter 19. Strong Upper Bounds for Stateless Allocation. One of the most
basic data-structural questions is memory allocation: given a set 𝑆 of items 𝑥 whose
sizes 𝜋(𝑥) add up to (1−𝜀)𝑛+1, one wishes to partition an array 𝐴 of size 𝑛 amongst
the items, so that each item 𝑥 ∈ 𝑆 gets a disjoint sub-array of size at least 𝜋(𝑥).

An allocation algorithm is said to incur an expected overhead at most 𝐿 if,
whenever two input sets 𝑆1 and 𝑆2 = 𝑆1∪{𝑥} differ by the insertion of an element 𝑥,
the resulting allocations 𝜑1 and 𝜑2 satisfy the following guarantee: the elements Δ =
{𝑦 ∈ 𝑆1 | 𝜑1(𝑦) ̸= 𝜑2(𝑦)} have cumulative expected size E[

∑︀
𝑦∈Δ size(𝑦)] ≤ 𝐿 · size(𝑥).

The problem of constructing a strongly history-independent allocation algorithm
that achieves small overhead has remained one of the central open questions in the
field since it was first posed by Naor and Teague [279] in their seminal 2001 paper
on history independence. For more than two decades, the only positive result has
been for the case of 𝜀 = 1/2, where Naor and Teague constructed a weakly history-
independent result with overhead 𝑂(log 𝑛) [279].

We show that in the same parameter regime (𝜀 = 1/2), it is possible to construct an
strongly history-independent algorithm that achieves an expected overhead of 𝑂(1).
Moreover, for arbitrary 𝜀, we show how to achieve an expected overhead of 𝑂(1 +
log 𝜀−1), so long as each element 𝑥 ∈ 𝑆 has size at most 𝜋(𝑥) ≤ 𝑛 poly 𝜀.

Our bound of 𝑂(1+log 𝜀−1) represents a new state-of-the-art even for non-history-
independent algorithms. Indeed, in this setting, the best previous bound was an
overhead of 𝑂(𝜀−1) [81]. Once again, we have an example where history independence
allows us to bypass seemingly natural barriers.

In fact, the bound of 𝑂(1+ log 𝜀−1) is so strong that it represents a new strongly-
history-independent state of the art even in the fixed-size case, where every element
𝑥 ∈ 𝑆 has size 𝜋(𝑥) = 1. Here, we are considering the most basic possible allocation
problem: place a set of up to (1−𝜀)𝑛+1 elements into an array of size 𝑛. Past strongly
history-independent solutions [104,124,279], have all had expected overheads Ω(𝜀−1).
Our bound of 𝑂(1 + log 𝜀−1) is an exponential improvement.

28

The fixed-size case is of special interest to the distributed-computing community,
where the setting of 𝜀 = 𝑛−1 (i.e., the array is fully saturated) corresponds to the
so-called distributed memoryless worker-task assignment problem [334, 335]. Here,
there is a special focus on achieving worst-case guarantees. Intuitively, this would
seem to be much harder (how can we have strong history independence without
randomization?), and indeed no past solution has beaten the trivial bound of 𝑂(𝑛)
overhead.

Our final result of the chapter is a solution to the distributed memoryless worker-
task assignment problem that achieves a worst-case overhead of 𝑂(log2 𝑛) on sets
𝑆 ⊆ [poly(𝑛)]. Our solution is achieved via the probabilistic method, so that the
analysis makes use of randomization, but the final algorithm is deterministic. To
the best of our knowledge, this is the first example of a deterministic data structure
solving a (nontrivial) dynamic problem while offering strong history independence.

Chapter 20. Strong Lower Bounds for Stateless Allocation. In Chapter 20,
we prove that our results from the previous chapter are tight up to doubly logarithmic
factors: we give an Ω(log 𝜀−1/ log log 𝜀−1) lower bound on the expected overhead
incurred by any strongly history-independent allocation algorithm.

Perhaps surprisingly, this lower bound applies even in the fixed-size case, where
elements 𝑥 ∈ 𝑆 all have sizes 𝜋(𝑥) = 1. Prior to our work, the state-of-the-art lower
bounds were of the form Ω(1) [334, 335] (and even this required quite sophisticated
arguments [335]!). Moreover, these lower bounds held only for worst-case overhead,
in the setting where 𝜀−1 = 𝑛, and where the elements came from a universe of size
≥ tow(𝑛). In contrast, our lower bound of Ω(log 𝜀−1/ log log 𝜀−1) applies to expected
overhead, supports any value of 𝜀, and can be implemented using a universe of size
𝑂(𝑛).

Combined, our upper and lower bounds give nearly tight answers for both the
fixed-size and variable-size allocation problems. Once more, the bounds reveal an
unexpected plot point—that the optimal bounds for the two problems are essentially
the same. There is no cost to having variable-size objects.

Chapter 21. Efficient Data-Structural Implementations. Finally, in Chapter
21, we show how to adapt our results in the previous chapters to obtain nearly optimal
solutions to a closely related problem: that of constructing an optimal strongly-
history-independent hash-table problem.

A hash table is, in essence, a time-efficient memory-allocation scheme that also
supports fast queries. Thus the schemes in Chapter 19 immediately imply approaches
for constructing strongly history-independent hash tables. However, even though
these approaches achieve low overhead, they would a priori seem to be difficult to
implement time efficiently.

The main contribution of Chapter 21 is that, using techniques from the theory of
succinct data structures, our allocation algorithms can be made time efficient as well.
This leads to near-optimal constructions for strongly history-independent hash-table

29

constructions and closes (up to doubly logarithmic factors) a line of work initiated
by Naor and Teague [279] and Blelloch and Golovin [104].

1.3 Bibliographics

This thesis comprises some of my favorite papers and collaborations from my PhD.
Part I is based on joint work with Bender and Kuszmaul [1] at FOCS’21. Part II is
based on joint work with Bender, Conway, Farach-Colton, Komlós, and Wein [2] at
FOCS’22. Part III is based on joint work with Bansal [3] at FOCS’22 and on joint
work with Bender, Conway, Farach-Colton, and Tagliavini [7] at SODA’23. Part IV is
based on joint work with Bender, Farach-Colton, Kuszmaul, and Liu [4] at STOC’22,
as well as a solo-authored paper [5] at FOCS’22, and joint work with Assadi and
Farach-Colton [6] at SODA’23. Part V is based on joint work with Bender, Conway,
Farach-Colton, and Tagliavini [7] at SODA’23. And Part VI is based on joint work
with Berger, Polak, Tidor, and Wein [9] at ICALP’22 as well as on an upcoming
solo-authored paper [8] at FOCS’23.

The results in this thesis are part of a larger body of work from my PhD [10–33].
Although it was not possible to include all of my work in this thesis, I have included a
select bibliography consisting of the papers that contributed the most to the themes,
techniques, and perspectives in this thesis.

30

Papers Contained in this Thesis
(Ordered by appearance)

[1] Michael A Bender, Bradley C Kuszmaul, and William Kuszmaul. Linear probing
revisited: Tombstones mark the demise of primary clustering. In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 1171–
1182. 2021.

[2] Michael A Bender, Alex Conway, Martín Farach-Colton, Hanna Komlós, William
Kuszmaul, and Nicole Wein. Online list labeling: Breaking the log2 𝑛 barrier.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 980–990. 2022.

[3] Nikhil Bansal and William Kuszmaul. Balanced allocations: The heavily loaded
case with deletions. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 801–812. 2022.

[4] Michael A Bender, Martín Farach-Colton, John Kuszmaul, William Kuszmaul,
and Mingmou Liu. On the optimal time/space tradeoff for hash tables. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1284–1297. 2022.

[5] William Kuszmaul. A hash table without hash functions, and how to get the most
out of your random bits. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 991–1001. 2022.

[6] Sepehr Assadi, Martín Farach-Colton, and William Kuszmaul. Tight bounds for
monotone minimal perfect hashing. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 456–476. 2023.

[7] Michael A Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul, and
Guido Tagliavini. Tiny pointers. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 477–508. 2023.

[8] William Kuszmaul. Strongly History-Independent Storage Allocation: New Upper
and Lower Bounds. In 2023 IEEE 64rd Annual Symposium on Foundations of
Computer Science (FOCS), to appear. 2023.

31

[9] Aaron Berger, William Kuszmaul, Adam Polak, Jonathan Tidor, and Nicole Wein.
Memoryless worker-task assignment with polylogarithmic switching cost. In 49th
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 229, page 19. 2022.

32

Select Other Papers From my PhD
(Ordered by publication date)

[10] Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek, Nir-
jhar Mukherjee, Karthik Sriram, Guido Tagliabini, Evan West, Michael A. Bender,
Abhishek Bhattacharjee, Alex Conway, Martín Farach-Colton, Jayneel Gandhi,
Rob Johnson, Sudarsun Kannan, and Donald E. Porter Mosaic Pages: Big TLB
Reach with Small Pages. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), volume 3, pages 433–448. 2023. (Distinguished Paper)

[11] Prashant Pandey, Michael A. Bender, Alex Conway, Martín Farach-Colton,
William Kuszmaul, Guido Tagliavini, and Rob Johnson. IcebergHT: High-
Performance PMEM Hash Tables Through Stability and Low Associativity. In
Proceedings of the ACM on Management of Data (SIGMOD), volume 1(1), pages
1–26. 2023.

[12] Michael A. Bender, Daniel DeLayo, Bradley C. Kuszmaul, William Kuszmaul,
Evan West. Analyzing Every Cache, Everywhere, All the Time. In Proceed-
ings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 129–139. 2023.

[13] William Kuszmaul and Zoe Xi. Approximating Dynamic Time Warping Distance
Between Run-Length Encoded Strings. In Proceedings of 30th Annual European
Symposium on Algorithms (ESA). 2022. (Best Student Paper)

[14] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Parallel Paging with Optimal Makespan. In
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA), pages 205–216. 2022. (Best-Paper Finalist)

[15] William Kuszmaul and Shyam Narayanan. Optimal Time-Backlog Tradeoffs
for the Variable-Processor Cup Game. In 49th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), volume 229, page 85. 2022.

[16] Michael A. Bender, Martín Farach-Colton, and William Kuszmaul. What Does
Dynamic Optimality Mean in External Memory? In Proceedings of the 13th
Innovations in Theoretical Computer Science (ITCS) Conference. 2022.

33

[17] Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, Ely Porat, Clifford
Stein. Incremental Edge Orientation in Forests. In Proceedings of 29th Annual
European Symposium on Algorithms (ESA), volume 204, page 12. 2021.

[18] William Kuszmaul. How Asymmetry Helps Buffer Management: Achieving Op-
timal Tail Size in Multi-Processor Cup Games. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 1248–1261.
2021.

[19] William Kuszmaul and Charles E. Leiserson. Floors and Ceilings in Divide-
and-Conquer Recurrences. In Proceedings of SIAM Symposium on Simplicity in
Algorithms (SOSA), pages 133-141. 2021.

[20] Michael A. Bender and William Kuszmaul. Randomized Cup Game Algorithms
Against Strong Adversaries. In Proceedings of the 2021 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2059–2077. 2021.

[21] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Tight Bounds for Parallel Paging and Green
Paging. In Proceedings of the 2021 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3022–3041. 2021.

[22] William Kuszmaul and Alek Westover. The Variable-Processor Cup Game. In
Proceedings of the 12th Innovations in Theoretical Computer Science (ITCS) Con-
ference. 2021.

[23] Krishnan Gosakan, Jaehyun Han, William Kuszmaul, Ibrahim N. Mubarek, Nir-
jhar Mukherjee, Karthik Sriram, Guido Tagliabini, Evan West, Michael A. Bender,
Abhishek Bhattacharjee, Alex Conway, Martín Farach-Colton, Jayneel Gandhi,
Rob Johnson, Sudarsun Kannan, and Donald E. Porter. Paging and the Address-
Translation Problem. In Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 105–117. 2021.

[24] William Kuszmaul. Train Tracks with Gaps. In Proceedings of the 10th Inter-
national Conference on Fun with Algorithms (FUN). 2020. Extended Version in
Special Issue of Theoretical Computer Science. 2022. (Best Paper)

[25] Michael A Bender, Rezaul A Chowdhury, Rathish Das, Rob Johnson, William
Kuszmaul, Andrea Lincoln, Quanquan C Liu, Jayson Lynch, and Helen Xu. Clos-
ing the Gap Between Cache-oblivious and Cache-adaptive Analysis. In Proceed-
ings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 63–73. 2020.

[26] Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. Con-
tention Resolution without Collision Detection. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 1284–1297.
2020.

34

[27] Michael A. Bender, Rathish Das, Martín Farach-Colton, Rob Johnson, and
William Kuszmaul. Flushing Without Cascades. In Proceedings of the 2020 An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 650–659.
2020.

[28] William Kuszmaul. Achieving Optimal Backlog in the Vanilla Multi-Processor
Cup Game. In Proceedings of the 2020 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1558–1577. 2020.

[29] Tim Kaler, William Kuszmaul, Tao B. Schardl, and Daniele Vettorel. Cilkmem:
Algorithms for Analyzing the Memory High-Water Mark of Fork-Join Parallel
Programs. In Proceedings of Symposium on Algorithmic Principles of Computer
Systems (APOCS), pp. 162-176. 2020. (Best Paper Finalist)

[30] Michael A. Bender, Martín Farach-Colton, and William Kuszmaul. Achieving
Optimal Backlog in Multi-Processor Cup Games. In Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1148–
1157 2019.

[31] Vladimir Braverman, Moses Charikar, William Kuszmaul, David P. Woodruff,
and Lin F. Yang. The One-Way Communication Complexity of Dynamic Time
Warping Distance. In Proceedings of the 35th International Symposium on Com-
putational Geometry (SoCG). 2019. Extended Version in Invited Issue of Journal
of Computational Geometry, 11(2), 62-93. 2021.

[32] William Kuszmaul. Dynamic Time Warping in Strongly Subquadratic Time:
Algorithms for the Low-Distance Regime and Approximate Evaluation. In 46th
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 132, page 80. 2019.

[33] William Kuszmaul. Efficiently Approximating Edit Distance Between Pseudo-
random Strings. In Proceedings of the 2019 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1165–1180. 2019.

35

Part I

Linear Probing Revisited:
Overturning the Oldest Myth in Data

Structures

36

Chapter 2

Introduction

The linear probing hash table [131, 165, 201, 230, 241, 253, 257, 323, 324, 332, 343, 353]
is among the most fundamental data structures to computer science. The hash table
takes the form of an array of some size 𝑛, where each slot of the array either contains
an element or is empty (i.e., is a free slot). To insert a new element 𝑢, the data
structure computes a hash ℎ(𝑢) ∈ [𝑛], and places 𝑢 into the first free slot out of the
sequence ℎ(𝑢), ℎ(𝑢) + 1, ℎ(𝑢) + 2, . . . (modulo 𝑛). Likewise, a query for 𝑢 simply
scans through the slots, terminating when it finds either 𝑢 or a free slot.

There are two ways to implement deletions: immediate compactions and tomb-
stones. An immediate compaction rearranges the neighborhood of elements around a
deletion to make it as though the element was never there [217,226]. Tombstones, the
approach we will default to, replaces the deleted element with a tombstone [226,309].
Tombstones interact asymmetrically with queries and insertions: queries treat a tomb-
stone as being a value that does not match the query, whereas insertions treat the
tombstone as a free slot. In order to prevent slowdown from an accumulation of
tombstones, the table is occasionally rebuilt in order to clear them out.

The appeal of linear probing. Linear probing was discovered in 1954 by IBM
researchers Gene Amdahl, Elaine McGraw, and Arthur Samuel, who developed the
hash table design while writing an assembly program for the IBM 701 (see discussion
in [224, 226]). The discovery came just a year after fellow IBM researcher Hans
Peter Luhn introduced chained hashing (also while working on the IBM 701) [226].1
Linear probing shared the relative simplicity of chaining, while offering improved
space utilization by avoiding the use of pointers.

The key property that makes linear probing appealing, however, is its data locality:
each operation only needs to access one localized region of memory. In 1954, this
meant that queries could often be completed at the cost of accessing only a single drum
track [224,309]. In modern systems, it means that queries can often be completed in

1Interestingly, Luhn’s discussion of chaining may be the first known use of linked lists [226,227].
Linked lists are often misattributed [360] as having been invented by Newell, Shaw, and Simon [286,
287] during the RAND Corporation’s development of the IPL-2 programming language in 1956 (see
discussion in [227]).

37

just a single cache miss [316].2 The result is that, over the decades, even as computer
architectures have changed and as the study of hash tables has evolved into one of
the richest and most studied areas of algorithms, linear probing has persisted as one
of the best-performing hash tables in practice [316].

The drawback: primary clustering. Unfortunately, the data locality of linear
probing comes with a major drawback known as primary clustering [224, 228].
Consider the setting in which one fills a linear-probing hash table up to a load factor
of 1− 1/𝑥 (i.e., there are (1− 1/𝑥)𝑛 elements) and then performs one more insertion.
Intuitively, one might expect the insertion to take time Θ(𝑥), since one in every 𝑥
slots are free. As Knuth [224] discovered in 19633, however, the insertion actually
runs much slower, taking expected time Θ(𝑥2).

The reason for these slow insertions is that elements in the hash table have a
tendency to cluster together into long runs; this is known as primary clustering.
Primary clustering is often described as a “winner keeps winning” phenomenon, in
which the longer a run gets, the more likely it is to accrue additional elements; see
e.g., [131,165,230,241,271,330,343,361]. As Knuth discusses in [226], however, winner-
keeps-winning is not the main cause of primary clustering.4 The true culprit is the
globbing together of runs: a single insertion can connect together two already long
runs into a new run that is substantially longer.

Interestingly, primary clustering is an asymmetric phenomenon, affecting inser-
tions but not queries. Knuth showed that if a query is performed on a random
element in the table, then the expected time taken is Θ(𝑥) [224]. This can be made
true for all queries (including negative queries) by implementing a simple additional
optimization: rather than placing elements at the end of a run on each insertion,
order the elements within each run by their hashes. This technique, known as or-
dered linear probing [45,125], allows a query to terminate as soon as it reaches an
element whose hash is sufficiently large.5 Whereas insertions must traverse the entire
run, queries need not.

Knuth’s result predates the widespread use of asymptotic notation in algorithm
analysis. Thus Knuth derives not only the asymptotic formula of Θ(𝑥2) for expected

2Moreover, even when multiple cache misses occur, since those misses are on adjacent cache lines,
hardware prefetching can mitigate the cost of the subsequent misses. Both the Masstree [254] and
the Abseil B-tree [39] treat the effective cache-line size as 256 bytes even though the hardware cache
lines are 64 bytes.

3Knuth’s result [224] was never formally published, and was subsequently rediscovered by Kon-
heim and Weiss in 1966 [228].

4This can be easily seen by the following thought experiment. Consider the length ℓ of the run
at a given position in the hash table, and then consider a sequence of (1−1/𝑥)𝑛 insertions where we
model each insertion as having probability (1 + ℓ)/𝑛 of increasing the length of the run by 1 (here ℓ
is the length of the run at the time of the insertion). The expected length ℓ of the run at the end of
the insertions won’t be Θ(𝑥2). In fact, rather than being an asymptotic function of 𝑥, it will simply
be Θ(1).

5Contemporary works sometimes also refer to this as Robin hood hashing, but as noted in [125],
Robin hood hashing is actually a generalization of ordered linear probing to other open-addressing
schemes such as double hashing, uniform probing, etc.

38

insertion time, but also a formula of

1

2

(︀
1 + 𝑥2

)︀
, (2.1)

which is exact up to low order terms. There has also been a great deal of follow-up
work determining detailed tail bounds and other generalizations of Knuth’s result;
see e.g., [180,215,228,262,345–347].

The practical and cultural effects of primary clustering. Primary clustering is
taught extensively in both theoretical and practical courses [60,143,145,147,171,179,
202, 221, 264, 274, 322, 336]. Many textbooks not only teach primary clustering [131,
165,201,230,241,253,257,323,324,332,343,353], but also teach the full formula (2.1)
for insertion time [165, 230, 241, 253, 323, 324, 332, 343, 353].6 (For a more detailed
summary of how courses and textbooks teach linear probing and primary clustering,
see Figure 2.)

Because (2.1) is exact, it is viewed as representing the full picture of how linear
probing behaves at high load factors. One consequence is that there has been little
empirical work on analyzing the asymptotics of real-world linear probing at high load
factors. (And for good reason, what would be the point of verifying what is already
known?) As Sedgewick observed in 1990 [324], it is not even clear that the classic
formula has been empirically verified at high load factors.

A common recommendation [60,131,143,165,179,202,221,336,353,359] is that, in
order to avoid primary clustering, one should use quadratic probing [211, 255,362]
instead. Whereas linear probing places each element 𝑥 in the first available position
out of the sequence ℎ(𝑥), ℎ(𝑥) + 1, ℎ(𝑥) + 2, ℎ(𝑥) + 3, . . ., quadratic probing uses the
first available position out of a quadratic sequence such as ℎ(𝑥), ℎ(𝑥) + 1, ℎ(𝑥) +
4, ℎ(𝑥) + 9, . . . , ℎ(𝑥) + 𝑘2, . . . or ℎ(𝑥), ℎ(𝑥) + 1, ℎ(𝑥) + 3, . . . , ℎ(𝑥) + 𝑘(𝑘 − 1)/2,
By using a more spread out sequence of probes, quadratic probing seems to eliminate
primary clustering in practice. In doing so, quadratic probing also compromises the
most attractive trait of linear probing, its data locality. This tradeoff is typically
viewed as unfortunate but necessary.

The dangers of primary clustering (and the advice of using quadratic probing as
a solution) have been taught to generations of computer scientists over roughly six
decades. The folklore advice has shaped some of the most widely used hash tables in
production, including the high-performance hash tables authored by both Google [39]
and Facebook [117]. The consequence is that primary clustering—along with the
design compromises made to avoid it—has a first-order impact on the performance
of hash tables used by millions of users every day.

Our contribution: How to get rid of primary clustering. In this part of
the thesis, we demonstrate that primary clustering is not the fixed and universal

6Some books also go through worked examples or tables of (2.1) to give intuition for how badly
linear probing scales, e.g., [241,324,332,343].

39

Textbooks’ Stances on Linear Probing
Source Teaches Teaches Recommends

primary Knuth’s (QP=quadratic probing)
clustering formulae (DH=double hashing)

Cormen, Leiserson, Rivest, and Stein [131] yes no QP or DH
Dasgupta, Papadimitriou, and Vazirani [141] no no not applicable
Drozdek and Simon [165] yes yes QP or DH
Goodrich and Tamassia [201] yes no ≤ 50% load factor
Kleinberg and Tardos [223] no no not applicable
Kruse [230] yes yes chaining
Lewis and Denenberg [241] yes yes DH with ordered probing
Main and Savitch [253] yes yes DH
McMillan [257] yes no chaining
Sedgewick [323,324] yes yes chaining or DH
Standish [332] yes yes not prescriptive
Tremblay and Sorenson [343] yes DH
Weiss [353] yes yes QP
Wengrow [354] no no ≤ 70% load factor
Wikipedia [359] yes yes QP or DH
Wirth [367,368] yes partly search trees

Some Course Notes’ Stances on Linear Probing
Source Teaches Teaches Recommends

primary Knuth’s
clustering formulae

CMU Systems [221] yes no QP or DH
CalPoly Fundamentals of CS [179] yes no QP or DH
Columbia Data Structs in Java [60] yes no QP or DH
Cornell Prog. and Data Structs [202] partly partly QP
Harvard Intro. to CS [336] yes no QP or DH
MIT Advanced Data Structs [145] yes no low load factor
MIT Intro. to Algorithms [147] yes no DH
Stanford Data Structs [322] yes yes chaining or low load factor
UIUC Algorithms [171] yes no binary probing
UMD Data Structs [274] yes yes DH
UT Software Design [264] yes no ≤ 2/3 load factor
UW Data Structs and Algorithms [143] yes yes QP or DH

40

phenomenon that it is reputed to be. When implementing linear probing, there
is a small set of design decisions that are typically treated as implementation-level
engineering choices. We show that these decisions actually have a remarkable effect on
performance: even if a workload operates continuously at a load factor of 1−Θ(1/𝑥), if
the design decisions are made correctly, then the expected amortized cost per insertion
can be decreased all the way to �̃�(𝑥). Our results come with actionable lessons
for practitioners, indicating that implementation-level decisions can have unintuitive
asymptotic consequences on performance.7

We also present a new variant of linear probing, which we call graveyard hashing,
that completely eliminates primary clustering on any sequence of operations: if, when
an operation is performed, the current load factor is 1 − 1/𝑥 for some 𝑥, then the
expected cost of the operation is 𝑂(𝑥).

Thus we achieve the data locality of traditional linear probing without any of the
disadvantages of primary clustering. One corollary is that, in the external-memory
model with data blocks of size 𝐵, graveyard hashing offers the following remarkably
strong guarantee: at any load factor 1− 1/𝑥 satisfying 𝑥 = 𝑜(𝐵), graveyard hashing
achieves 1 + 𝑜(1) expected block transfers per operation. In contrast, past external-
memory hash tables have only been able to offer a 1+ 𝑜(1) guarantee when the block
size 𝐵 is at least Ω(𝑥2) [216].

What the classical analysis misses. Classically, the analysis of linear probing
considers the costs of insertions in an insertion-only workload. Of course, the fact that
the final insertion takes expected time Θ(𝑥2) doesn’t mean that all of the insertions
do; most of the insertions are performed at much lower load factors, and the average
cost is only Θ(𝑥).

The more pressing concern is what happens for workloads that operate continu-
ously at high load factors, for example, the workload in which a user first fills the
table to a load factor of 1−1/𝑥, and then alternates between insertions and deletions
indefinitely. Now almost all of the insertions are performed at a high load factor.
Conventional wisdom has it that these insertions must therefore all incur the wrath
of primary clustering.

This conventional wisdom misses an important point, however, which is that the
tombstones created by deletions actually substantially change the combinatorial struc-
ture of the hash table. Whereas insertions add elements at the ends of runs, deletions
tend to place tombstones in the middles of runs. If implemented correctly, then the
anti-clustering effects of deletions actually outpace the clustering effects of insertions.

We call this new phenomenon primary anti-clustering. The effect is so powerful
that, as we shall see, it is even worthwhile to simulate deletions in insertion-only
workloads by prophylactically adding tombstones.

Our results flip the narrative surrounding deletions in hash tables: whereas past
work on analyzing tombstones [55, 217] has focused on showing that tombstones do
not degrade performance in various open-addressing-based hash tables, we argue that

7The right thing to do may even be the opposite of what the literature recommends [55,217].

41

tombstones actually help performance. By harnessing the power of tombstones in the
right way, we can rewrite the asymptotic landscape of linear probing.

Chapter 3. The Surprisingly Strong Anti-Clustering
Effects of Tombstones

We begin by giving nearly tight bounds on the amortized performance of ordered
linear probing.

There are two design decisions that affect performance: (1) the use of tombstones
(which we assume by default) and (2) the frequency with which the hash table is
rebuilt and the tombstones are cleared out. Thus, in addition to the size parameter 𝑛
and the load-factor parameter 𝑥, our analysis uses a rebuild window size parameter
𝑅, which is the number of insertions that occur between rebuilds.

The parameter 𝑅 is classically set to be 𝑛/(2𝑥), since this means that the num-
ber of tombstones cannot affect the asymptotic load factor. Each rebuild can be
implemented in time Θ(𝑛), so the rebuilds only contribute amortized Θ(𝑥) time per
insertion, which is a low-order term.

A subquadratic analysis of linear-probing insertions. Our first result consid-
ers the classical setting 𝑅 = 𝑛/(2𝑥) and analyzes a hovering workload, i.e., an
alternating sequence of inserts/deletes at a load factor of 1− 1/𝑥.

We prove that the expected amortized cost of each insertion is �̃�(𝑥1.5). This
is tight, which we establish with a lower bound of Ω(𝑥1.5

√
log log 𝑥). A surprising

takeaway is that the answer is both �̃�(𝑥1.5) and 𝜔(𝑥1.5).
This first result is already substantially faster than the classical Θ(𝑥2) bound, but

it still has several weaknesses. The first (and most obvious) weakness is that we are
still not achieving the ideal bound of �̃�(𝑥). The second weakness is that, although
the result applies to hovering workloads, it doesn’t generalize to arbitrary workloads,
as can be seen with the following pathological example: consider a workload in which
every rebuild window consists of 𝑅− 1 insertions followed by 𝑅 deletions followed by
1 insertion. The first 𝑅 − 1 insertions in each rebuild window cannot benefit at all
from tombstones and thus necessarily incur Θ(𝑥2) expected time each.

It turns out that both of these weaknesses can be removed if we simply use a
larger rebuild window size 𝑅. Intuitively, the larger the 𝑅, the more time there is for
tombstones to accumulate and the better the insertions perform. On the other hand,
tombstone accumulation is precisely the reason that 𝑅 is classically set to be small,
since it breaks the classical analysis and potentially tanks the performance of queries.

We show that the sweet spot is to set 𝑅 = 𝑛/ polylog(𝑥). Here, the expected
amortized cost per insertion drops all the way to �̃�(𝑥), while queries continue to take
expected time 𝑂(𝑥). Once again, and somewhat surprisingly, the low-order factors
are an artifact of reality rather than merely the analysis: no matter the value of 𝑅
used, either the average insertion cost or the average query cost must be 𝜔(𝑥).

42

Fill to 98% full Alternate insertions/deletions

Anti-clustering effect

kicks in almost

immediately!
probes per insert

1250

190

Figure 2-1: A graph of insertion time in a linear-probing hash table (without rebuilds)
as (1) the hash table is filled from empty to 98% full, and then (2) an alternating
sequence of random insertions/deletions is performed. Note that, if we were to include
rebuilds, then after each rebuild, the insertion time would once again begin at the
top of the spike.

The bound of Θ̃(𝑥) holds not only for hovering workloads, but also for any workload
that maintains a load factor of at most 1 − 1/𝑥. Note that here we are analyzing a
table in which the capacity 𝑛 is fixed, and the load factor is permitted to vary over
time. It’s interesting to think about how the pathological case described above is
avoided here. Because the rebuild window is so large, the only way there can be a
long series of insertions without deletions is if most of them are performed at low load
factors, meaning that they are not slow after all.

It is illustrative to see what our Θ̃(𝑥) result looks like in an actual linear-probing
hash table. Figure 2-1 graphs the average time per insertion as (1) the hash table
is filled from empty to 98% full, and then (2) an alternating sequence of random
insertions/deletions is performed. As the hash table is filled up, the insertion time
grows exactly as the classical analysis predicts. But, as soon as the hovering workload
begins, the insertion time drops back down, bringing the amortized cost to �̃�(𝑥).
What’s interesting about the hovering workload is that the insertions and deletions
are one-for-one, so although the deletions have an anti-clustering effect, the insertions
also have a clustering effect. Intuitively, one might expect the two effects to cancel,
so that the insertion time would plateau at Θ(𝑥2). What our results reveal is that
this is not the case: the combinatorial interactions between insertions and deletions
actually leads to a strong net anti-clustering effect.

43

A surprising lesson: linear probing is already faster than we thought. The
core lesson of our results is that linear probing is far less affected by primary clustering
than the classical analysis would seem to suggest. Although the classic Θ(𝑥2) bound
is mathematically correct, it does not accurately represent the amortized cost of
insertions at high load factors. This suggests that the conclusions that are taught in
courses and textbooks, namely that linear probing scales poorly to high load factors,
and that alternatives with less data locality such as quadratic probing should be used
in its place, stem in part from an incomplete understanding of linear probing and
warrant revisiting.

The second lesson is that small implementation decisions can substantially change
performance. From a software engineering perspective, our results suggest two simple
optimizations (the use of tombstones and the use of large rebuild windows) that
should be considered in any implementation of linear probing.

Interestingly, tombstones (and even relatively large rebuild windows) are already
present in some hash tables. Thus, one interpretation of primary anti-clustering is
as a phenomenon that, to some degree, already occurs around us, but that until now
has gone apparently unnoticed.

Chapter 4. Graveyard hashing, an Ideal Linear-
Probing Hash Table

Our final result is a new version of linear probing, which we call graveyard hashing,
that fully eliminates primary clustering on any sequence of operations. The key insight
is that, by artificially inserting extra tombstones (that are not created by deletions),
we can ensure that every insertion has good expected behavior.

Insertions, deletions, and queries are performed in exactly the same way as for
standard ordered linear probing. The difference is in how we implement rebuilds. In
addition to cleaning out tombstones, rebuilds are now also responsible for inserting
Θ(𝑛/𝑥) new tombstones evenly spread across the key space.

Graveyard hashing adapts dynamically to the current load factor of the table,
performing a rebuild every time that 𝑥 changes by a constant factor. The running
time of each operation is a function of whatever the load factor is at the time of the
operation. If a query/insert/delete occurs at a load factor of 1 − 1/𝑥, then it takes
expected time 𝑂(𝑥) (even in insertion-only workloads). Graveyard hashing can also
be implemented to resize dynamically, so that it is always at some target load factor
of 1−Θ(1/𝑥).

We remark that there is an important sense in which our results on ordered linear
probing are orthogonal to our results on graveyard hashing. One set of results revisits
the question of how classical versions of linear probing behave, while the other answers
the question as to whether it is possible to design new versions of linear probing that
do even better.

44

Coming full circle: improved external-memory hashing. As we mentioned at
the outset, one of the big advantages of linear probing is its data locality (e.g., good
cache or I/O performance).

Data locality is formalized via the external-memory model, first introduced by
Aggarwal and Vitter in 1988 [42]: a two-level memory hierarchy is comprised of a
small, fast internal memory and a large, slow external memory ; blocks can only
be read and modified when they are in internal memory, and the act of copying a
block from external memory into internal memory is referred to as a block transfer.
The model has two parameters, the number 𝐵 of records that fit into each block and
the number 𝑀 of records that fit in internal memory. Performance is measured by
the number of block transfers that a given algorithm or data structure incurs. This
model can be used to capture an algorithm’s I/O performance (internal memory is
RAM, external memory is disk, and block transfers are I/Os) or cache performance
(internal memory is cache, external memory is RAM, and block transfers are cache
misses).

Ideally, a hash table incurs only amortized expected 1 + 𝑜(1) block transfers per
operation, even when supporting a high load factor 1− 1/𝑥.8 We call the problem of
achieving these guarantees the space-efficient external-memory hashing prob-
lem. Standard linear probing is a solution when either 𝑥 is a (small) constant, or the
block size 𝐵 is very large (𝐵 = 𝜔(𝑥2)), but otherwise, due to primary clustering, it is
not [302].

For 𝐵 ̸= 𝜔(𝑥2), the state of the art for space-efficient external-memory hashing is
due to Jensen and Pagh [216]. They give an elegant construction showing that, if the
block size 𝐵 is Θ(𝑥2), then it is possible to achieve amortized expected 1 + 𝑂(1/𝑥)
block transfers per operation, while maintaining a load factor of 1 − 𝑂(1/𝑥). (In
contrast, standard linear probing requires 𝐵 = Ω(𝑥3) to achieve the same 1+𝑂(1/𝑥)
result.) However, if 𝐵 = 𝑜(𝑥2), then no solutions to the problem are known.

Graveyard hashing enables linear probing to be used directly as a solution to
the space-efficient external-memory hashing problem, matching Jensen and Pagh’s
bound for 𝐵 = Θ(𝑥2), and offering an analogous guarantee for arbitrary block sizes
𝐵 > 𝜔(𝑥). If 𝐵 = Θ(𝑥𝑘) for some 𝑘 > 1, then the amortized expected cost of each
operation is 1 + 𝑂(1/𝑘) block transfers. This means that, even if the block size 𝐵
is only slightly larger than the load factor parameter 𝑥, we still get 1 + 𝑜(1) block
transfers per operation.

Additionally, graveyard hashing is cache oblivious [189, 302], meaning that the
block size 𝐵 need not be known by the data structure. Consequently, if a system has
a multi-level hierarchy of caches, each of which may have a different set of parameters
𝐵 and 𝑀 , then the guarantee above applies to every level of cache hierarchy.

8Many hash tables that are otherwise very appealing perform poorly on this front. For example,
if one uses cuckoo hashing, then negative queries require ≥ 2 block transfers, and insertions at high
load factor require 𝜔(1) block transfers [161,182].

45

2.1 Notation and Conventions

We say that an event occurs with probability 1 − 1/ poly(𝑗) for some parameter
𝑗 if, for any positive constant 𝑐, the event occurs with probability 1 − 𝑂(1/𝑗𝑐).9
Throughout, we use standard interval notation, where [𝑚] means {1, 2, . . . ,𝑚}, [𝑖, 𝑗]
means {𝑖, 𝑖+ 1, . . . , 𝑗}, (𝑖, 𝑗] means {𝑖+ 1, 𝑖+ 2, . . . , 𝑗}, etc.

When discussing an ordered linear probing hash table, we use 𝑛 to denote the
number of slots (i.e., positions). We use 1− 1/𝑥 to refer to the load factor (i.e.,
the fraction of slots that are taken by elements), and𝑅 to refer to the rebuild-window
size (i.e., the number of insertions that must occur before a rebuild is performed).
We use 𝑆 to denote the sequence of operations being performed, and we refer 𝑆 as
the workload.

The operations on the hash table make use of a hash function ℎ : 𝑈 → [𝑛], where
𝑈 is the universe of possible keys (also known as records or elements). We shall
assume that ℎ is uniform and fully independent, but as we discuss in later sections,
our results also hold for natural families of hash functions such as tabulation hashing
(and, for the analysis of graveyard hash tables, also 5-independent hashing). We can
also refer to the hash ℎ(𝑢) of either a tombstone 𝑢 (i.e., the hash of the element
whose deletion created 𝑢) or of an operation 𝑢 (i.e., the hash of the key that the
operation is inserting/deleting/querying).

Each slot in the hash table can either contain a key, be empty (i.e., a free slot), or
contain a tombstone. Any maximal contiguous sequence of non-empty slots forms a
run. With ordered linear probing, the keys/tombstones in each run are always stored
in order of their hash.

Our analysis will often discuss sub-intervals 𝐼 = [𝑖, 𝑗] ⊆ [𝑛] of the slots in the
hash table. We say that an element 𝑢 hashes to 𝐼 if ℎ(𝑢) ∈ 𝐼 (but this does not
necessarily mean that 𝑢 resides in one of the slots 𝐼). We say that an interval 𝐼 is
saturated if it is a subset of a run.

Formally, operations in an ordered linear probing hash table are implemented as
follows. A query for a key 𝑢 examines positions ℎ(𝑢), ℎ(𝑢) + 1, . . . until it either
finds 𝑢 (in which case the query returns true), finds an element with hash greater
than ℎ(𝑢) (in which case the query returns false), or finds a free slot (in which case
the query also returns false). A deletion of a key 𝑢 simply performs a query to find
the key, and then replaces it with a tombstone. Finally, an insertion of a key 𝑢
examines positions ℎ(𝑢), ℎ(𝑢) + 1, . . . until it finds the position 𝑗 where 𝑢 belongs
in the run; it then inserts 𝑢 into that position, and shifts the elements in positions
𝑗, 𝑗 + 1, 𝑗 + 2, . . . each to the right by one until finding either a tombstone or a free
slot. We say that the insertion makes use of that tombstone/free slot. Finally,
rebuilds are performed every 𝑅 insertions, and a rebuild simply restructures the table
to remove all tombstones. Throughout, 𝑛 is fixed and does not get changed during
rebuilds, although when we describe graveyard hashing (Chapter 4), we also give a
version that dynamically resizes 𝑛.

9The constants used to define the event may depend on 𝑐.

46

There are two ways to handle overflow off the end of the hash table. One option
is to wrap around, meaning that we treat 1 as being the position that comes after
𝑛; the other is to extend the table by 𝑜(𝑛) (i.e., it ends in slot 𝑛 + 𝑜(𝑛)), so that
operations never fall off the end of the table. Both solutions are compatible with all
of our results. For concreteness, we assume that the wrap-around solution is used, but
to simplify discussion, we treat the slots that we are analyzing as being sufficiently
towards the middle of the table that we can use the <-operator to compare slots.

47

48

Chapter 3

The Surprisingly Strong
Anti-Clustering Effects of Tombstones

In this chapter, we demonstrate the anti-clustering effects of tombstones. We will
prove two main theorems. The first considers a hovering workload, that alternates
between insertions and deletions. We obtain nearly tight bounds on the expected
amortized time per operation as a function of the rebuild window size 𝑅. In the
classical setting of 𝑅 = Θ(𝑛/𝑥), we find that the amortized insertion time becomes
�̃�(𝑥1.5) ∩ Ω(𝑥1.5

√
log log 𝑥).

Theorem 1. Consider an ordered linear probing hash table that uses tombstones for
deletions, and that performs rebuilds every 𝑅 insertions. Suppose that the table is
initialized to have capacity 𝑛 and load factor 1− 1/𝑥, where 𝑅 = Ω(𝑛/𝑥) and 𝑅 ≤ 𝑛.
Finally, consider a sequence 𝑆 of operations that alternates between insertions and
deletions (and contains arbitrarily many queries).

Then the expected amortized time 𝐼 spent per insertion satisfies

𝐼 ≤ �̃�

(︂
𝑥

√︂
𝑛

𝑅

)︂
(3.1)

and, if all insertions/deletions in each rebuild window are on distinct keys, then

𝐼 ≥ Ω

(︂
𝑥

√︂
𝑛

𝑅
log log 𝑥

)︂
. (3.2)

Moreover, the expected time 𝑄 of a given query/deletion satisfies

𝑄 ≤ 𝑂(𝑥) + �̃�

(︃
𝑥

√︂
𝑅

𝑛

)︃
(3.3)

and, if all operations in each rebuild window are on distinct keys, then for any negative

49

query at the end of a rebuild window, we have

𝑄 ≥ Ω

(︃
𝑥+ 𝑥

√︂
𝑅

𝑛
log log 𝑥

)︃
. (3.4)

One consequence of Theorem 1 is that, for any choice of 𝑅, there is a workload that
forces an amortized expected time of 𝜔(𝑥). At the same time, we can get remarkably
close to 𝑂(𝑥): if we set 𝑅 = 𝑛/ polylog(𝑥), then the average insertion time becomes
�̃�(𝑥), while the query time remains 𝑂(𝑥).

In this optimal parameter regime (i.e., 𝑅 = 𝑛/ polylog(𝑥)), we can extend our
results to apply not just to hovering workloads, but to any sequence of inser-
tions/deletions in which the load factor never exceeds 1 − 1/𝑥. This leads to the
second theorem of the chapter:
Theorem 2. Let 𝑐 be a sufficiently large positive constant. Consider an ordered lin-
ear probing hash table that uses tombstones for deletions, and that performs rebuilds
every 𝑅 = 𝑛/ log𝑐 𝑥 insertions. Finally, consider a sequence of operations 𝑆 that never
brings the load factor above 1− 1/𝑥.

Then the expected amortized cost of each insertion is �̃�(𝑥) and the expected cost
of each query/deletion is 𝑂(𝑥).

Combined, Theorems 1 and 2 tell a remarkable story: tombstones, which his-
torically have been viewed as a minor implementation detail, completely change the
asymptotic behavior of the linear-probing hash table. Of course, what we will see in
Chapter 4 is that we can go even further—by strategically adding additional tomb-
stones into the hash table, we will be able to achieve 𝑂(𝑥) expected time per insertion
for any workload (including insertion-only ones).

In the rest of the chapter, we prove Theorems 1 and 2. The proofs will require a
great deal of technical machinery. Thus, we begin with a technical overview of the
entire analysis in Section 3.1

3.1 Technical Overview

In this section, we give a technical overview of our analysis of ordered linear probing.
We begin by describing the intuition behind Knuth’s classic Θ(𝑥2) bound. We then
turn our attention to sequences of operations that contain deletions, and show that
the tombstones left behind by those deletions have a primary-anti-clustering effect,
that is, they have a tendency to speed up future insertions. One of the interesting
components of the analysis is that we perform a series of problem transformations,
taking us from the question of how to analyze ordered linear probing to a seemingly
very different question involving the combinatorics of monotone paths on a grid. By
applying geometric arguments to the latter, we end up being able to achieve nearly
tight bounds for the former.

50

3.1.1 Understanding the Classic Bounds: A Tale of Standard
Deviations

Suppose we fill an ordered linear-probing hash table from empty up to a load factor of
1− 1/𝑥. Knuth [224] famously showed that the final insertion in this procedure takes
expected time Θ(𝑥2). As discussed in the introduction, the fact that the insertion
takes time 𝜔(𝑥) can be attributed to primary clustering.

But why does the running time end up being Θ(𝑥2) specifically? This turns out to
be a result of how standard deviations work. Consider an interval 𝐼 of 𝑥2 slots in the
hash table. The expected number of items that hash into 𝐼 is (1− 1/𝑥)𝑥2 = |𝐼| − 𝑥.
On the other hand, the standard deviation for the number of such items is Θ(𝑥). It
follows that, with probability Ω(1), the number of items that hash into 𝐼 is Ω(𝑥)
greater than |𝐼|. If we then consider the interval 𝐼 ′ consisting of the 𝑥2 slots that
follow 𝐼, then this interval 𝐼 ′ must handle not only the items that hash into it, but
also the overflow elements from 𝐼. The result is that, with probability Ω(1), the
interval 𝐼 ′ is fully saturated and forms a run of length 𝑥2.

The above argument stops working if we consider intervals of size 𝜔(𝑥2), because
the standard deviation on the number of items that hash into 𝐼 stops being large
enough to overflow the interval. The result is that runs of length Θ(𝑥2) are relatively
common, but that longer runs are not. This is why the expected running time of the
insertion performed at load factor 1− 1/𝑥 is Θ(𝑥2).

Now suppose that, after reaching a load factor of 1 − 1/𝑥, we perform a query
in our ordered linear-probing hash table. Unlike an insertion, which takes expected
time Θ(𝑥2), the query takes expected time Θ(𝑥). We can again see this by looking at
standard deviations.

If the query hashes to some position 𝑗 and takes time 𝑡, then there must be at
least 𝑡 elements 𝑢 that have hashes ℎ(𝑢) ≤ 𝑗 but that reside in positions 𝑗 or larger.
Hence, there is some sub-interval 𝐼 = [𝑗0, 𝑗] of the hash table (ending in position 𝑗)
that has overflowed by at least 𝑡 − 1 elements, that is, the number of elements that
hash to 𝐼 is at least |𝐼| + 𝑡 − 1. As before, the interval that matters most ends up
being the one of size Θ(𝑥2), and the amount by which it overflows in expectation is
proportional to the standard deviation Θ(𝑥) of the number of items that hash into
the interval.

Thus, the running times of both insertions and queries are consequences of the
same two facts: that (a) for any interval 𝐼 of size 𝑥2, there is probability Ω(1) that
the interval overflows by Θ(𝑥) elements; and that (b) a given interval of size 𝜔(𝑥2)
most likely doesn’t overflow at all. The only difference is that the running time of
an insertion is proportional to the size of the interval that overflows (i.e., Θ(𝑥2)),
but the running time of a query is proportional to the amount by which the interval
overflows (i.e., Θ(𝑥)).

51

3.1.2 Analyzing Primary Anti-Clustering with Small Rebuild
Windows

In this subsection, we consider a hovering workload, that is, a sequence of operations
that alternates between insertions and deletions on a table with load factor 1− 1/𝑥,
and we set the size of the rebuild window to be 𝑅 = 𝑛/(2𝑥) (i.e., the value that it is
classically set to). Our task is to consider a sequence of 𝑅 = 𝑛/(2𝑥) insertion/deletion
pairs between two rebuilds, and to analyze the amortized running times.

Analyzing displacement instead of running time. Define the peak 𝑝𝑢 of an
insertion 𝑢 to be either the hash of the tombstone that the insertion uses (if the
insertion makes use of a tombstone) or the position of the free slot that the insertion
uses (if the insertion makes use of a free slot). Define the displacement 𝑑𝑢 of an
insertion to be 𝑑𝑢 = 𝑝𝑢 − ℎ(𝑢).

One of the subtleties of how displacement is defined is that, if an insertion 𝑢 uses
a tombstone 𝑣, then the displacement measures the difference between ℎ(𝑢) and the
hash ℎ(𝑣), rather than the difference between ℎ(𝑢) and the position of 𝑣. This ends
up being important for how displacement is used in the analysis1, but it also means
that the displacement of an insertion can potentially be substantially smaller than
the running time. For example, if the insertion hashes to position 7 and makes use of
a tombstone with hash 13 that resides in position 54, then the displacement is only
13− 7 = 6 but the running time is proportional to 54− 7 = 47.

Although we skip the proof for now (see Lemma 33), it turns out that one can
bound the expected difference between displacement and running time by 𝑂(𝑥). Thus,
even though displacement is not always the same as running time, any bound on
average displacement also results in a bound on average running time.

Relating displacement to crossing number. Rather than analyzing the dis-
placement of each individual insertion, we bound the average displacement over all
𝑅 insertions in the rebuild window by relating the displacements to another set of
quantities that we call the crossing numbers {𝑐𝑗}𝑗∈[𝑛]. The crossing number 𝑐𝑗
counts the number of insertions 𝑢 in the rebuild window that have a hash ℎ(𝑢) < 𝑗
but that have a peak 𝑝𝑢 ≥ 𝑗 (we consider even the insertions that are subsequently
deleted). Each insertion 𝑢 increments 𝑑𝑢 different crossing numbers 𝑐𝑗. Thus∑︁

𝑢

𝑑𝑢 =
∑︁
𝑗∈[𝑛]

𝑐𝑗.

Because we are analyzing the insertions in a rebuild window of size 𝑅, the summation

1The reason for this is actually very simple. Whenever a deletion 𝑣 is performed, the value of
ℎ(𝑣) is fixed (it depends only on the hash function) but the position of 𝑣 is not (it depends on the
other elements in the table, and will change over time). Thus, it is cleaner to measure the deletion’s
effect on future insertions in terms of ℎ(𝑣) (the thing that is fixed) rather than 𝑣’s position (the
thing that is not).

52

on the left side has 𝑅 = Θ(𝑛/𝑥) terms, while the summation on the right side has 𝑛
terms. Thus, if we consider a random insertion 𝑢 and a random position 𝑗, then

E[𝑑𝑢] = Θ(𝑥E[𝑐𝑗]).

If our goal is to establish that the average insertion takes time 𝑜(𝑥2), then it suffices
instead to show that the average crossing number 𝑐𝑗 is 𝑜(𝑥).

Notice that the ratio between E[𝑑𝑢] and E[𝑐𝑗] is a function of the rebuild window
size 𝑅; this will come into play later when we consider larger rebuild windows.

Capturing the dependencies between past insertions/deletions. What makes
the analysis of a given crossing number 𝑐𝑗 interesting is the way in which insertions
and deletions interact over time. If an insertion 𝑢 has hash ℎ(𝑢) < 𝑗, and there is
a tombstone 𝑣 with hash ℎ(𝑣) ∈ [ℎ(𝑢), 𝑗), then 𝑢 can make use of the tombstone
and avoid contributing to 𝑐𝑗. But, in order to determine whether a given tombstone
𝑣 is present during the insertion 𝑢, we must know whether any past insertions have
already used 𝑣. That, in turn, depends on which tombstones were present during past
insertions, resulting in a chain of dependencies between operations over time.

A key insight is that the interactions between insertions and deletions over time
can be reinterpreted as an elegant combinatorial problem about paths on a two-
dimensional grid. We now give the transformation.

The geometry of crossing numbers. For the sake of analysis, define 𝑍 to be the
state that our table would be in if we performed only the insertions in the rebuild
window and not the deletions.

Since 𝑅 = 𝑛/(2𝑥), the load factor of 𝑍 is at most 1 − 1/𝑥 + 𝑅/𝑛 = 1 − 1/(2𝑥),
which by the classic analysis of linear probing means that the expected distance from
any position to the next (and previous) free slot is 𝑂(𝑥2).

Now consider some crossing number 𝑐𝑗. Let 𝑗′ be the position of the closest free
slot to the left of 𝑗 in 𝑍, that is, the largest 𝑗′ < 𝑗 such that position 𝑗′ is a free slot
in 𝑍. Then the only insertions/deletions that we need to consider when analyzing 𝑐𝑗
are those that hash into the interval 𝐼 = [𝑗′ + 1, 𝑗).

We know from our analysis of 𝑍 that E[|𝐼|] = 𝑂(𝑥2). Although |𝐼| is a random
variable with mean Θ(𝑥2), to simplify our discussion in this section, we shall treat
|𝐼| as simply deterministically equaling 𝑥2. We also treat 𝐼 as containing no free
slots (even at the beginning of the time window being considered). In particular, we
know from the classical analysis of linear probing that any interval 𝐼 of size 𝑥2 has
probability Ω(1) of containing no free slots, so there is no point in trying to make use
of potential free slots in 𝐼 for our analysis.

We can visualize the insertions and deletions that hash into 𝐼 by plotting them in
a two-dimensional grid, as in Figure 3-1a. The vertical axis represents time flowing
up from 1 to 2𝑅, and the horizontal axis represents the hash locations in the interval
𝐼. We draw a blue dot in position (𝑖, 𝑡) if the 𝑡-th operation is an insertion with hash

53

𝑖 ∈ 𝐼, and we draw a red dot in position (𝑖, 𝑡) if the 𝑡-th operation is a deletion with
hash 𝑖 ∈ 𝐼. (Note that most operations do not hash to 𝐼 and thus do not result in
any dot.)

In order for a given insertion 𝑢 to be able to make use of a given deletion 𝑣’s
tombstone, it must be that (a) ℎ(𝑢) ≤ ℎ(𝑣);2 that (b) 𝑢 occurs temporally after 𝑣;
and that (c) 𝑣’s tombstone is not used by any other insertion temporally before 𝑢.
The first two criteria (a) and (b) tell us that for a given insertion (i.e., blue dot) in
the grid, the insertion can only make use of tombstones from deletions (i.e., red dots)
that are below it and to its right.

Define the set of monotone paths through the grid to be the set of paths that
go from the bottom left to the top right of the grid, and that never travel downward
or leftward. Define the blue-red deviation of such a path to be the number of blue
dots below the path minus the number of red dots below the path (see Figure 3-1a
for an example).

What do these monotone paths have to do with the crossing number 𝑐𝑗? Monotone
paths with large blue-red deviations serve as witnesses for the crossing number 𝑐𝑗 also
being large. Suppose that there is a monotone path 𝛾 with blue-red deviation 𝑟 > 0.
Since we assume that 𝐼 is initially saturated, each of the insertions (i.e., blue dots)
below 𝛾 must either make use of the tombstone for a deletion (i.e., red dot) that is
also below 𝛾 or contribute 1 to 𝑐𝑗. Since there are 𝑟 more blue dots than red dots
below 𝛾, it follows that 𝑐𝑗 ≥ 𝑟.

In fact, this relationship goes in both directions (although the other direction
requires a bit more work; see Lemma 17). If the crossing number 𝑐𝑗 takes some value
𝑟, then there must also exist some monotone path with blue-red deviation at least
𝑟. The result is that, if we wish to prove either upper or lower bounds on E[𝑐𝑗], it
suffices to instead prove bounds on the largest blue-red deviation of any monotone
path through the grid.

Formalizing the blue-red deviation problem. Let us take a moment to digest
the combinatorial problem that we have reached, since on the face of things it is quite
different from the problem that we started at.

The expected number of blue dots (and also of red dots) in our grid is 𝑅 · |𝐼|/𝑛 =
Θ(𝑥). If we break the grid into

√
𝑥 rows and

√
𝑥 columns (see Figure 3-1b for an

example), then each cell of the broken-down grid expects to contain Θ(1) blue and red
dots. To simplify our discussion here, think of each cell as independently containing a
Poisson random variable Pois(1) number of blue dots and a Poisson random variable
Pois(1) number of red dots.3

Furthermore, rather than considering all monotone paths through the grid, we can
2Recall that ordered linear probing only ever moves elements to the right over time, meaning

that a given insertion 𝑢 will only use a tombstone if that tombstone has hash at least ℎ(𝑢).
3This allows for us to ignore two minor issues in our discussion here: (1) the fact that a single key

can potentially be inserted, deleted, and reinserted, resulting in blue and red dots whose horizontal
coordinates are deterministically equal; and (2) the fact that the numbers of blue/red dots in each
cell are actually very slightly negatively correlated.

54

restrict ourselves exclusively to the paths that stay on the row and column lines that
we have drawn (for an example, see Figure 3-1b). With high probability in 𝑥, this
restriction changes the maximum blue-red deviation of any path by at most �̃�(

√
𝑥).

In summary, we have a
√
𝑥 ×

√
𝑥 grid where each cell of the grid contains a

Poisson random variable Pois(1) number of blue points (resp. red points). Whereas
our original grid was much taller than it was wide (its height was 2𝑅 and its width
was 𝑥2), our new grid is a

√
𝑥×

√
𝑥 square. There are

(︀
2
√
𝑥√
𝑥

)︀
= exp(Ω(𝑥)) monotone

paths 𝛾 through the grid, and we wish to prove bounds on the maximum blue-red
deviation 𝐷 achieved by any such path.

Gaining intuition: how blue-red deviations behave. To gain intuition, let
us start by considering the trivial path 𝛾 that contains the entire grid beneath it.
The expected number of blue dots (as well as red dots) beneath 𝛾 is Θ(𝑥), and the
standard deviation on the number of blue dots (as well as red dots) is thus Θ(

√
𝑥).

With probability Ω(1), there are Ω(
√
𝑥) more blue dots in the grid than red dots,

which results in a blue-red deviation of Ω(
√
𝑥) for 𝛾.

Of course, that’s just the blue-red deviation of a single fixed path. What should
we expect the maximum blue-red deviation 𝐷 over all paths to be? On one hand,
there are exponentially many paths that we must consider, but on the other hand,
the blue-red deviations of the paths are closely correlated to one another. The result,
it turns out, is that 𝐷 ends up being an 𝑥𝑜(1) factor larger than

√
𝑥.

We will show that, with probability 1 − 𝑜(1), the maximum blue-red deviation
𝐷 is between Ω(

√
𝑥 log log 𝑥) and �̃�(

√
𝑥). If we backtrack to our original problem

(i.e., we relate the blue-red deviations to the crossing numbers, the crossing numbers
to the displacements, and the displacements to the running times), we get that the
amortized cost of insertions is between Ω(𝑥1.5

√
log log 𝑥) and �̃�(𝑥1.5).

An upper bound of �̃�(
√
𝑥) on the maximum blue-red deviation 𝐷. The first

step in bounding 𝐷 is to prove a general result about decompositions of monotone
paths. Let 𝑘 = 4

√
𝑥 be the perimeter of the grid. We claim that for any monotone

path 𝛾 through the grid, it is always possible to decompose the area under 𝛾 into
disjoint rectangles 𝑅1, 𝑅2, . . . such that the sum of the perimeters of the rectangles is
at most 𝑘 log 𝑘.

Such a decomposition can be constructed recursively as follows: (1) find the point
𝑞 halfway along the path, and drop a rectangle from 𝑞 to the bottom-right-most point
in the grid; (2) then recursively construct a rectangular decomposition for the portion
of the path prior to 𝑞, and recursively construct a rectangular decomposition for the
portion of the path after 𝑞. (See Figure 3-1c for an example.)

The recursive decomposition is designed so that, in the 𝑖-th level of recursion,
each recursive subproblem takes place on a grid with perimeter exactly 𝑘/2𝑖. Since
there are at most 2𝑖 subproblems in each level of recursion, each of which contributes
a rectangle with perimeter at most 𝑘/2𝑖, the sum of all the rectangle perimeters over
all levels of recursion is at most 𝑘 log 𝑘.

55

The next step in the analysis is to consider the maximum amount that any given
rectangle can contribute to the blue-red deviation of a path. If a given rectangle has
area 𝑎, then the expected number of blue/red dots in the rectangle is Θ(𝑎), and with
high probability in 𝑥, the rectangle as a whole has blue-red deviation 𝑂(

√
𝑎 log 𝑥).

This, in turn, means that if a rectangle has perimeter 𝑝, then with high probability
in 𝑥, it has blue-red deviation at most 𝑂(𝑝 log 𝑥). Finally, since there are only 𝑂(𝑥2)
possible rectangles in the entire grid, and this property holds for each of them with
probability 1−1/ poly(𝑥), the property also holds simultaneously for all of them with
probability 1− 1/ poly(𝑥).

Putting the pieces together, we know that every path 𝛾 has a rectangular decom-
position such that the sum of the rectangle perimeters is 𝑂(

√
𝑥 log 𝑥). We further

know that, if a rectangle in the decomposition has perimeter 𝑝, then it contributes
at most 𝑂(𝑝 log 𝑥) to the blue-red deviation of 𝛾. It follows that the total blue-red
deviation of any path 𝛾 is at most 𝑂(

√
𝑥 log2 𝑥).

A lower bound of Ω(
√
𝑥 log log 𝑥) on the maximum blue-red deviation 𝐷.

Now we turn our attention to proving a lower bound on 𝐷. We wish to find a
monotone path 𝛾 whose blue-red deviation is Ω(𝑥1.5

√
log log 𝑥).

Call a 𝑗× 𝑗 square within the grid high-value if it has blue-red deviation at least
Ω(𝑗

√
log log 𝑥). The definition is designed so that every square has probability at

least 1/
√
log 𝑥 of being high-value.

We construct a monotone path 𝛾 recursively as follows. First break the grid
into quadrants, and check whether the top left quadrant is a high-value square. If
so, then return the trivial path that contains the entire grid below it. Otherwise,
recursively construct a path through the bottom-left quadrant, recursively construct
a path through the top-right quadrant, and set 𝛾 to be the concatenation of the two
paths.4 (For an example, see Figure 3-1d.)

There are two types of base cases in the recursion. The first type is when a
subproblem finds a high-value square; we call this a successful base case. The
second type is when a subproblem terminates because it is on a 1 × 1 grid; we call
this a failed base case.

If a successful base case takes place on a sub-grid of width 𝑤, then the high-value
square that it discovers contributes Ω(𝑤

√
log log 𝑥) to the total blue-red deviation of

𝛾. In order to establish a lower bound of Ω(
√
𝑥 log log 𝑥) on the blue-red deviation,

it therefore suffices to show that the sum of the widths of the successful base cases is
Ω(

√
𝑥).5

By construction, the sum of the widths of both the successful base cases and the
failed base cases is exactly

√
𝑥. Moreover, each failed base case has width exactly 1.

4When we recurse, we do not change the threshold Ω(𝑗
√
log log 𝑥) that dictates whether a given

𝑗 × 𝑗 square is special; that is, 𝑥 acts as a global variable setting this threshold.
5There is also a large portion of the area underneath 𝛾 that is not contained in any of the high-

value squares of the subproblems. Technically, we must also ensure that the blue/red dots in this
unaccounted-for area do not substantially change the blue-red deviation, but this follows from a
straightforward Chernoff bound.

56

Thus our task reduces to bounding the number of failed base cases by 𝑜(
√
𝑥) with

probability 1− 𝑜(1).
In order for a given failed base case to occur, there is a recursion path of Θ(log 𝑥)

sub-problems that must all fail to find a high-value square. Each of these failures
occurs with probability at most 1−1/

√
log 𝑥, so the probability of all of them occurring

is (︁
1− 1/

√︀
log 𝑥

)︁ Θ(log 𝑥)

= 𝑜(1).

Since the probability of any given failed base case occurring is 𝑜(1), the expected
number of failed base cases that occur is 𝑜(

√
𝑥). By Markov’s inequality, the number

of failed base cases is 𝑜(
√
𝑥) with probability 1− 𝑜(1), as desired.

3.1.3 Stronger Primary Anti-Clustering with Larger Rebuild
Windows

In this section, we consider what happens if a larger rebuild window size 𝑅 =
𝑛/ polylog(𝑥) is used. As discussed in the introduction, this allows for us to im-
prove our amortized insertion time from Θ̃(𝑥1.5) to Θ̃(𝑥), while still achieving average
query time Θ(𝑥).

Remarkably, these bounds hold not just for hovering workloads, but also for ar-
bitrary workloads that stay below a load factor of 1− 1/𝑥. To simplify discussion in
this section, however, we continue to focus on the hovering case.

There are two main technical challenges that our analysis must overcome. The first
challenge is obvious: we must quantify the degree to which tombstones left behind
by deletions improve the performance of subsequent insertions. The second challenge
is a bit more subtle: in order to support large rebuild-window sizes 𝑅, our analysis
must be robust to the fact that tombstones can accumulate over time, increasing the
effective load factor of the hash table. This latter challenge is further exacerbated by
the fact that the choice of which tombstones are in the table at any given moment
is a function not only of the sequence of operations being performed, but also of the
randomness in the hash table. This means that, even if the cumulative load factor
from the elements and tombstones can be bounded (e.g., by 1 − Θ(1/𝑥)), we still
cannot analyze the tombstones as though they were normal elements; a consequence
of this is that we cannot even apply the classic analysis to deduce an 𝑂(𝑥2)-time
bound for insertions or an 𝑂(𝑥)-time bound for queries.

Using crossing numbers to rescue the queries. Let us consider the time that it
takes to query an element whose hash is 𝑗. The time is proportional to the number of
elements and tombstones that have hashes smaller than 𝑗 but that reside in positions 𝑗
or larger.6 Call the slots containing these elements 𝑗-crossed. Right after a rebuild is
performed, the number 𝑠 of 𝑗-crossed slots has expected value 𝑂(𝑥). Over the course

6Technically, we must also consider elements that hash to exactly 𝑗 but the expected number of
such elements is 𝑂(1).

57

of the time window between consecutive rebuilds, however, the quantity 𝑠 gradually
increases.

Fortunately, the amount by which 𝑠 increases is precisely the crossing number 𝑐𝑗.
Indeed, 𝑐𝑗 gets incremented exactly whenever a formerly non-𝑗-crossed slot becomes
𝑗-crossed.

Thus, if we can bound 𝑐𝑗 to be small then we hit two birds with one stone: we
are able to bound the running times of both queries and insertions.

But how do we rescue the crossing numbers? Large rebuild windows also break
the analysis of crossing numbers, however. In the original analysis, we argued that
there is most likely some position 𝑗′ < 𝑗 satisfying 𝑗 − 𝑗′ = 𝑂(𝑥2) such that position
𝑗′ remains an empty slot throughout the entire rebuild window. This meant that,
when considering 𝑐𝑗, we only had to analyze insertions and deletions that hash into
the interval 𝐼 = [𝑗′ + 1, 𝑗) of size Θ(𝑥2).

We can no longer argue that such a 𝑗′ necessarily exists, however, since the accu-
mulation of tombstones over time might eliminate all of the free slots near position
𝑗. Thus we must extend our analysis to consider intervals 𝐼 of size 𝜔(𝑥2).

Fortunately, if we consider any interval 𝐼 of size at least 𝑥2 polylog 𝑥, then we
can argue that the interval most likely initially contains Ω(|𝐼|/𝑥) free slots. Define
the insertion surplus of an interval 𝐼 to be the maximum blue-red deviation of
any monotone path through the grid representing 𝐼, minus the number of free slots
initially in 𝐼. We prove that the crossing number 𝑐𝑗 is exactly equal to the maximum
insertion surplus of any interval 𝐼 of the form [𝑗′ + 1, 𝑗). Since large intervals 𝐼 have
a Θ(1/𝑥)-fraction of their slots initially empty, it is very unlikely that they end up
determining the crossing number 𝑐𝑗. The result is that we can again focus primarily
on intervals of size 𝑂(𝑥2), and perform the analysis of 𝑐𝑗 as before.

Putting the pieces together for 𝑅 = 𝑛/ polylog(𝑥). We now analyze the case
of 𝑅 = 𝑛/ polylog(𝑥). As before, we use the displacement 𝑑𝑢 for an insertion as a
proxy for insertion time (although bounding the difference between the two requires
a more nuanced argument than before, see Lemmas 25 and 26). We can then relate
the displacements to the crossing numbers by∑︁

𝑢

𝑑𝑢 =
∑︁
𝑗∈[𝑛]

𝑐𝑗.

Now, however, both sums consist of between 𝑛/ polylog 𝑥 and 𝑛 terms. This means
that for a random insertion 𝑢 and a random 𝑗 ∈ [𝑛],

E[𝑑𝑢] ≤ E[𝑐𝑗 polylog(𝑥)].

As before, we can transform the problem of bounding 𝑐𝑗 into the problem of bounding
the maximum blue-red deviation of any monotone path in a certain grid. The expected
number of blue/red dots in the grid is now 𝑥2/ polylog(𝑥) (rather than Θ(𝑥)). Thus

58

our bound on blue-red deviation comes out as �̃�(𝑥/ polylog(𝑥)) = 𝑂(𝑥) (rather than
�̃�(

√
𝑥)). This means that E[𝑐𝑗] = 𝑂(𝑥), which implies that the expected time taken

by any query is also 𝑂(𝑥) and that the average time taken by each insertion is �̃�(𝑥).
We can now also see why 𝑛/ polylog(𝑥) is the right rebuild window size to use. In

particular, if we make 𝑅 smaller than 𝑛/ poly(𝑥), then insertion times suffer, but if
we let 𝑅 get too close to 𝑛 (or exceed 𝑛) then the crossing numbers 𝑐𝑗 become 𝜔(𝑥)
(thanks to our lower bound construction on blue-red deviations), and thus queries take
time 𝜔(𝑥). Thus it is impossible to select a value for 𝑅 that achieves expected time
𝑂(𝑥) for all operations, and if we want 𝑂(𝑥)-time queries, we must make 𝑅 = 𝑜(𝑛).

Analyzing arbitrary workloads. Finally, we generalize these results to any se-
quence of operations that stays below a load factor of 1− 1/𝑥. We argue that, within
any rebuild window, it is possible to re-organize the operations in such a way that
(a) none of the crossing numbers decrease, and (b) the operations consist of a series of
insertions, followed by a series of alternating insertions/deletions, followed by a series
of deletions (see Proposition 24). The alternating insertions/deletions can be analyzed
as above, and because 𝑅 is large, the crossing-number cost of the initial insertions
can be amortized away. The fact that the re-organization of operations does not de-
crease any crossing numbers ends up being easy to prove using our characterization
of crossing numbers in terms of insertion surpluses of intervals.

3.2 Some Basic Balls-and-Bins Lemmas

We begin by proving several basic lemmas having to do with balls and bins. What
makes these lemmas different from standard balls-and-bins bounds is that they con-
sider all prefixes of a sequence of bins, bounding the probability of any prefix behaving
abnormally. In order to demonstrate how these lemmas relate to linear probing, we
will also use them to reprove the classic bounds on the performance of insertions and
queries for ordered linear probing.

Throughout the rest of the section, consider the setting in which we place 𝑚 =
Θ(𝑛) balls randomly into 𝑛 bins. Let 𝜇 = 𝑛/𝑚 be the expected number of balls in
each bin.
Lemma 3. Let 𝑥 > 1 and 𝑘 ≥ 1. With probability 1− 2−Ω(𝑘), for every 𝑖 ≥ 𝑥2𝑘, the
number of balls in the first 𝑖 bins is between (1− 1/𝑥)𝑖𝜇 and (1 + 1/𝑥)𝑖𝜇.

Proof. Let ℓ = 𝑥2𝑘. We wish to show that, with probability at least 1− 2−Ω(𝑘), there
is no 𝑖 ≥ ℓ such that the first 𝑖 bins contain either fewer than (1 − 1/𝑥)𝑖𝜇 balls or
more than (1 + 1/𝑥)𝑖𝜇 balls. We will focus on the more-than-(1 + 1/𝑥)𝑖𝜇 case, since
the fewer-than-(1− 1/𝑥)𝑖𝜇 case follows by a symmetric argument.

Let 𝑋𝑖 be the indicator random variable for the event that the first 𝑖 bins contain
at least (1 + 1/𝑥)𝑖𝜇 balls. By a Chernoff bound,

Pr[𝑋ℓ] ≤ 2−Ω(𝑘).

59

(a) A sample graphic of in-
sertions/deletions in 𝐼 =
[𝑗′ + 1, 𝑗) over time. Blue
dots are insertions and red
dots are deletions. (To sim-
plify, we plot each point in
one of eight 𝑦-coordinates,
but in reality, each 𝑦-
coordinate would be dis-
tinct.) A monotone path,
with blue-red deviation 6−
4 = 2, is also given.

(b) To simplify the prob-
lem, we draw a

√
𝑥 ×√

𝑥 grid, and consider only
paths that go along the
drawn grid lines. Here 𝑥 =
16.

(c) An example of a re-
cursively constructed rect-
angular decomposition for a
path. The point 𝑞 used in
the top level of recursion is
also labeled.

(d) An example of the construction for a path with high blue-red de-
viation. For each recursive subproblem whose top-left quadrant is not
high-value, we place a red X through the quadrant; for each recursive sub-
problem whose top-left quadrant is high-value, we place a blue X through
the quadrant; the only subproblems not to have an X drawn in them are
the failed base cases, each of which takes place on a 1× 1 grid. There are
four base cases, two of which are failed.

Figure 3-1

60

It is tempting to apply a similar Chernoff bound to every 𝑖 ≥ ℓ, and then to
take a union bound; but this would yield a bound of Pr[𝑋𝑖 for some 𝑖 ≥ ℓ] ≤ ℓ2−Ω(𝑘)

rather than the desired bound of Pr[𝑋𝑖 for some 𝑖 ≥ ℓ] ≤ 2−Ω(𝑘). Thus a slightly
more delicate approach is needed.

To complete the proof, we prove directly that

Pr[𝑋𝑖 for some 𝑖 ≥ ℓ] ≤ 𝑂(Pr[𝑋ℓ]), (3.5)

which we have already shown to be 2−Ω(𝑘).

Suppose that 𝑋𝑖 holds for some 𝑖 ≥ ℓ and let 𝑗 be the largest such 𝑖. The number
𝐵 of balls in the first 𝑗 bins must satisfy 𝐵 ≥ (1 + 1/𝑥)𝑗𝜇. Conditioning on 𝑗 and
on 𝐵, each of the 𝐵 balls independently has probability ℓ/𝑗 of being in one of the
first ℓ bins. Thus (still conditioning on 𝑗 and 𝐵), the number of balls in the first ℓ
bins is a binomial random variable with expected value at least (1 + 1/𝑥)ℓ𝜇. With
probability Ω(1) (and using the fact that (1 + 1/𝑥)ℓ𝜇 = Ω(1)), this binomial random
variable takes a value greater than or equal to its mean (1 + 1/𝑥)ℓ𝜇, which implies
that 𝑋ℓ occurs. Having established (3.5), the proof is complete.

Corollary 4. Consider the largest 𝑖 such that the first 𝑖 bins contain at least (1 +
1/𝑥)𝑖𝜇 balls. Then E[𝑖] ≤ 𝑂(𝑥2).
Lemma 5. Let 𝑥 > 1 and 𝑘 ≥ 1. With probability 1 − 2−Ω(𝑘), there does not exist
any 𝑖 such that the first 𝑖 bins contain at least (1 + 1/𝑥)𝑖𝜇+ 𝑘𝑥 balls.

Proof. Let 𝑌𝑖 be the indicator random variable for the event that the first 𝑖 bins
contain at least (1 + 1/𝑥)𝑖𝜇+ 𝑘𝑥 balls. Let 𝑟 = 𝑥2𝑘. By Lemma 3,

Pr[𝑌𝑖 for some 𝑖 ≥ 𝑟] ≤ 2−Ω(𝑘).

Thus it suffices to argue that

Pr[𝑌𝑖 for some 𝑖 ≤ 𝑟] ≤ 2−Ω(𝑘).

As in the previous proof, taking a Chernoff bound and then summing over 𝑖 will not
give the result that we are aiming for. Thus a more refined approach is again needed.

Suppose that 𝑌𝑖 occurs for some 𝑖 ≤ 𝑟, and let 𝑗 be the largest such 𝑖. Let 𝐵
satisfying 𝐵 ≥ 𝑗𝜇 + 𝑘𝑥 be the number of balls in the first 𝑗 bins, and let 2𝑞 be the
largest power of two satisfying 2𝑞 ≤ 𝑗. Each of the 𝐵 balls in the first 𝑗 bins has
probability 2𝑞/𝑗 of being in the first 2𝑞 bins. Conditioning on a given value of 𝐵, we
therefore have that the number of balls that land in the first 2𝑞 bins is a binomial
random variable with expected value at least 2𝑞𝜇+𝑘𝑥/2. With probability Ω(1), this
random variable takes a value at least as large as its mean. That is, if we condition
on 𝑌𝑖 occurring for some 𝑖 ≤ 𝑟, then with constant probability there is some power of
two 2𝑞 ≤ 𝑟 such that at least 2𝑞𝜇+ 𝑘𝑥/2 balls land in the first 2𝑞 bins.

For 𝑞 ∈ {0, 1, . . . , log 𝑟}, let 𝑍𝑞 denote the indicator random variable for the event

61

that at least 2𝑞𝜇+ 𝑘𝑥/2 balls land in the first 2𝑞 bins. So far, we have shown that

Pr[𝑌𝑖 for some 𝑖 ≤ 𝑟] = 𝑂(Pr[𝑍𝑞 for some 𝑞 ≤ log 𝑟]).

By a Chernoff bound, if we consider a given 𝑍𝑞, and we define 𝑠 such that 2𝑞+𝑠 = 𝑘𝑥,
then

Pr[𝑍𝑞] ≤

{︃
2−Ω(𝑠𝑘𝑥) if 𝑠 > 0,

2−Ω(𝑘2𝑥2/2𝑞) if 𝑠 ≤ 0.

Recalling that 𝑟 = 𝑥2𝑘, it follows that

Pr[𝑍𝑞 for some 𝑞 ≤ log 𝑟] ≤
∑︁
𝑠>0

2−Ω(𝑠𝑘𝑥) +

log(𝑘𝑥2)∑︁
𝑞=log(𝑘𝑥)

2−Ω(𝑘2𝑥2/2𝑞).

The first sum is a geometric series summing to 2−Ω(𝑘𝑥). The second sum is dominated
by its final term which is 2−Ω(𝑘). Thus the lemma is proven.

To demonstrate how these results relate to linear probing, we now use them to re-
create the classic upper bounds on insertion performance (Proposition 6) and query
performance (Proposition 7) for ordered linear probing.
Proposition 6. Starting with an empty linear-probing hash table of 𝑛 slots, suppose
that we perform (1 − 1/𝑥)𝑛 insertions. The running time 𝑇 of the final insertion
satisfies

Pr[𝑇 ≥ 𝑘𝑥2] ≤ 2−Ω(𝑘).

Proof. If the final insertion hashes to some position 𝑝, and takes time 𝑇 ≥ 𝑘𝑥2, then
the insertion must have been inserted into a run of elements going from position
𝑝 − 𝑖 to position 𝑝 + 𝑇 − 1 ≥ 𝑃 + 𝑘𝑥2 − 1 for some 𝑖. Consequently, the number
of elements 𝑢 that satisfy ℎ(𝑢) ∈ [𝑝 − 𝑖, 𝑝 + 𝑘𝑥2 − 1] must be at least 𝑖 + 𝑘𝑥2, even
though the expected number of such elements is (1− 1/𝑥)(𝑖+ 𝑘𝑥2). By treating the
positions 𝑝+ 𝑘𝑥2 − 1, 𝑝+ 𝑘𝑥2 − 2, . . . as bins, we can apply Lemma 3 to deduce that
the probability of such an 𝑖 existing is at most 2−Ω(𝑘).

Proposition 7. Consider an ordered-linear-probing hash table with 𝑛 slots that
contains (1 − 1/𝑥)𝑛 elements and no tombstones, and suppose we perform a query.
The running time 𝑇 of the query satisfies

Pr[𝑇 ≥ 𝑘𝑥] ≤ 2−Ω(𝑘).

Proof. Notice that we do not have to distinguish between positive and negative
queries, since even for a negative query we only need to perform a linear scan until
we find a key with a larger hash than the one we are querying.

62

If the key that we are querying hashes to some position 𝑝, and takes time 𝑇 ≥ 𝑘𝑥,
then all of the elements in positions 𝑝, . . . , 𝑝+ 𝑇 − 2 ≥ 𝑝+ 𝑘𝑥− 2 must have hashes
at most 𝑝. Consider the largest 𝑖 such that all of positions 𝑝 − 𝑖, . . . , 𝑝 + 𝑘𝑥 − 2
contain elements. All of the elements in positions 𝑝 − 𝑖, . . . , 𝑝 + 𝑘𝑥 − 2 must have
hashes between 𝑝− 𝑖 and 𝑝. Thus the total number of elements that hash to positions
[𝑝−𝑖, 𝑝] must be at least 𝑖+𝑘𝑥−1, even though the expected number of elements that
hash to those positions is (1− 1/𝑥)(𝑖+1). By treating the positions 𝑝, 𝑝− 1, 𝑝− 2, . . .
as bins, we can apply Lemma 5 to deduce that the probability of any such 𝑖 existing
is at most 2−Ω(𝑘).

The proof of Proposition 7 comes with a corollary that will be useful to reference
later.
Corollary 8. Consider an ordered-linear-probing hash table with 𝑛 slots that con-
tains (1 − 1/𝑥)𝑛 elements and no tombstones. Consider a position 𝑖, and let 𝑇 be
the number of elements 𝑢 that reside in positions 𝑖 or greater, but that have hashes
ℎ(𝑢) < 𝑖. Then

Pr[𝑇 ≥ 𝑘𝑥] ≤ 2−Ω(𝑘).

3.3 Bounds on Insertion Surplus

In this section, we introduce two core technical propositions that will be used in
subsequent sections for our analysis of ordered linear probing.

Consider a sequence 𝑆 of operations which alternate between insertions and dele-
tions. (Think of 𝑆 as the operations between two rebuilds.) Let 𝑛 be the number of
slots in the hash table. Let 𝑃 be a sub-interval of [𝑛] and let 𝑆𝑃 denote the subset
{𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ 𝑃}.

We say that a subset 𝑆 ′ ⊆ 𝑆𝑃 is downward-closed (with respect to 𝑆𝑃) if it
satisfies the following property: for every insertion or deletion 𝑢 ∈ 𝑆 ′, every 𝑣 ∈ 𝑆𝑃
that occurs temporally before 𝑢 and satisfies ℎ(𝑣) ≥ ℎ(𝑢) is also in 𝑆 ′. Define the
insertion surplus of a downward-closed set 𝑆 ′ to be the number of insertions in 𝑆 ′

minus the number of deletions in 𝑆 ′, if there are more insertions than deletions in 𝑆 ′,
and 0 otherwise.

The purpose of this section is to prove upper and lower bounds on the maximum
insertion surplus of any downward-closed subset 𝑆 ′ ⊆ 𝑆𝑃 . We will parameterize these
bounds by 𝜇 := E[|𝑆𝑃 |]/2, which is the expected number of insertions (and also the
expected number of deletions) in 𝑆𝑃 .

Notice that 𝑆𝑃 itself is downward-closed. If we assume that all of the operations
in 𝑆𝑃 are on distinct keys, then the expected insertion surplus of 𝑆𝑃 will be Ω(

√
𝜇)

(since the number of insertions and the number of deletions in 𝑆𝑃 both have standard
deviation Θ(

√
𝜇)). A natural question is whether there exists any downward-closed

subset 𝑆 ′ ⊆ 𝑆𝑃 with a significantly larger insertion surplus.

63

This section proves two propositions.
Proposition 9. Suppose that |𝑃 | ≥ √

𝜇. With probability 1 − 1/ poly(𝜇), every
downward-closed subset 𝑆 ′ ⊆ 𝑆𝑃 has insertion surplus �̃�(√𝜇).
Proposition 10. Suppose that the insertions/deletions in 𝑆𝑃 are all on different
keys. Suppose that |𝑆| ≤ 𝑛, that 𝑛 is sufficiently large as a function of 𝜇 and |𝑃 |,
and that |𝑃 | ≥ √

𝜇. Then with probability 1− 𝑜(1), there exists a downward-closed
subset 𝑆 ′ ⊆ 𝑆𝑃 with insertion surplus Ω(

√
𝜇 log log 𝜇).

Whereas Proposition 9 tells us that no downward-closed subset 𝑆 ′ has significantly
larger insertion surplus then the expected insertion surplus of 𝑆𝑃 , Proposition 10 tells
us that there most likely is some downward-closed subset 𝑆 ′ whose insertion surplus
is (at least slightly) asymptotically larger than the expected insertion surplus of 𝑆𝑃 .
Note that the 𝑜(1) term in the probability bound given by Proposition 10 is in terms
of 𝜇.

Reinterpreting insertion surplus in terms of paths on a grid. Before proving
the propositions, we first reinterpret the propositions in terms of paths on a grid.
Consider a grid 𝐺 with height |𝑆| and width |𝑃 |. Define 𝑟 so that 𝑟 + 1 is the
beginning of interval 𝑃 . Color the cell (𝑖, 𝑗) in the grid 𝐺 blue if the 𝑖-th operation in
𝑆 is an insertion whose hash is 𝑟+ 𝑗; and color the cell (𝑖, 𝑗) red if the 𝑖-th operation
in 𝑆 is a deletion whose hash is 𝑟+ 𝑗. (Many cells will be neither red nor blue.) The
blue and red cells in the grid 𝐺 correspond to the insertions and deletions in 𝑆𝑃 .

Now consider the set of monotone paths through 𝐺, that is, the set of paths
that begin in the bottom left corner, and then walk along grid lines to the top right
corner, only ever moving up or to the right. Define the blue-red differential of a
path to be the number of blue cells that reside below the path minus the number of
red cells that reside below the path (we say that the path covers these cells).

A subset 𝑆 ′ ⊆ 𝑆 is downward-closed if and only if there is a monotone path
𝛾 through 𝐺 such that the blue and red cells covered by 𝛾 in 𝐺 are precisely the
insertions and deletions in 𝑆 ′. Thus, rather than considering downward-closed subsets
𝑆 ′ of 𝑆𝑃 , we can consider monotone paths 𝛾 through 𝐺, and rather than considering
the insertion surplus of each subset 𝑆 ′, we can consider the blue-red differential of
each monotone path 𝛾. Although this distinction may at first seem superficial, we
shall see later that the geometry of monotone paths makes them amenable to clean
combinatorial analysis.

Considering a more coarse-grained grid 𝐺′. One aspect of 𝐺 that makes it
potentially unwieldy is that it will likely be sparse, meaning that the vast majority
of cells are neither red nor blue. Thus, in our proofs, it will also be useful to define
a more coarse-grained grid 𝐺′ that is laid on top of 𝐺. The grid 𝐺′ has width and
height √

𝜇, meaning that each cell in 𝐺′ corresponds to a sub-grid of 𝐺 with width
|𝑃 |/√𝜇 and height |𝑆|/√𝜇. To avoid confusion, we will refer to the blue/red cells in
𝐺 as blue/red dots in 𝐺′.

Note that, since 𝐺′ is a √
𝜇 × √

𝜇 grid, we are implicitly assuming that √
𝜇 is

64

a positive integer; this assumption is w.l.o.g.. To simplify our discussion (so that
we can treat all of the cells of 𝐺′ as having uniform widths and heights), we will
further assume that |𝑃 | and |𝑆| are divisible by √

𝜇. These assumptions can easily
be removed by rounding all of the quantities to powers of four, and performing the
analysis using the rounded quantities.7

The grid 𝐺′ is parameterized so that the expected number of blue dots (resp. red
dots) in each cell is exactly 1. As terminology, we say that for each cell in 𝐺′, the
insertions and deletions that pertain that cell are the ones that have blue/red dots
in that cell; and the keys that pertain to the cell are the keys that have at least one
insertion/deletion pertaining to the cell. The expected number of distinct keys that
pertain to a given cell in 𝐺′ is at most 1. Moreover, by a Chernoff bound, and with
probability 1− 1/ poly(𝜇), each cell has at most 𝑂(log 𝜇) keys that pertain to it.

3.3.1 Proof of Proposition 9

We wish to show that, with probability 1−1/ poly(𝜇), every monotone path 𝛾 through
𝐺 has blue-red differential at most �̃�(√𝜇). The next lemma establishes that, rather
than considering monotone paths in 𝐺, it suffices to instead consider monotone paths
in 𝐺′.
Lemma 11. With probability 1−1/ poly(𝜇), the following holds. For every monotone
path 𝛼 with blue-red differential 𝑎 in 𝐺, there is a monotone path 𝛽 with blue-red
differential 𝑏 in 𝐺′ such that 𝑎− 𝑏 = 𝑂(

√
𝜇 log 𝜇).

Proof. Define 𝛽 to be the same as 𝛼, except that the path is rounded to the grid lines
of 𝐺′ as follows: for any cell in 𝐺′ that the path 𝛼 goes through the interior of, we
round the path so that 𝛽 does not cover any of the points from that cell.

Every cell in 𝐺′ that is entirely covered by 𝛼 is also entirely covered by 𝛽; similarly,
every cell in 𝐺′ that is entirely not covered by 𝛼 is also entirely not covered by 𝛽.
Thus the only difference between 𝛼 and 𝛽 is that there are 𝑂(√𝜇) cells in 𝐺′ that are
partially covered by 𝛼 but that are not covered by 𝛽.

For each cell in 𝐺′, define the risk potential of that cell to be the maximum
blue-red differential of any monotone path in 𝐺 from the bottom left corner of that
cell to the top right corner of that cell. To complete the proof, it suffices to show that
every cell in 𝐺′ has risk potential at most 𝑂(log 𝜇). Notice, however, that the risk
potential of each cell is at most as large as the number of distinct keys that pertain
to the cell. Thus the risk potentials of the cells are all 𝑂(log 𝜇) with probability
1− 1/ poly(𝜇).

To complete the proof of Proposition 9, it suffices to show that, with probability
1 − 1/ poly(𝜇), every monotone path through 𝐺′ has blue-red differential at most
�̃�(

√
𝜇).

7Importantly, both propositions assume |𝑃 | ≥ √
𝜇, so if we round both |𝑃 | and 𝜇 to powers of 4,

then the rounded value for |𝑃 | will be a multiple of the rounded value for 𝜇 (and 𝜇 will be a square
number).

65

The rest of the proof is completed in two pieces. The first piece is to show that
for every monotone path 𝛾, it is possible to decompose the area under the path
into rectangles where the sum of the perimeters of the rectangles is 𝑂(𝜇 log 𝜇). The
second piece is to show that, for each rectangle in 𝐺′, the blue-red differential of that
rectangle is at most the perimeter of the rectangle times 𝑂(log 𝜇). Combining these
two facts, we get a bound on the blue-red differential of any monotone path 𝛾.
Lemma 12. Consider any monotone path 𝛾 through an 𝑎× 𝑏 grid, where ℓ = 𝑎+ 𝑏 is
a power of two. The area under the path can be decomposed into disjoint rectangles
such that the sum of the perimeters of the rectangles is 𝑂(ℓ log ℓ).

Proof. We construct the rectangular decomposition through the following recursive
process. Break the path 𝛾 into two pieces of length ℓ/2 which we call 𝛾1 and 𝛾2,
and let 𝑞 be the point at which the two pieces meet. Let 𝑅 be the rectangle whose
top left corner is 𝑞, and whose bottom right corner is the bottom right point of the
grid. Then we define our rectangular decomposition to consist of the rectangle 𝑅,
along with a recursively constructed rectangular decomposition for the path 𝛾1, and a
recursively constructed rectangular decomposition for the path 𝛾2. The two recursive
decompositions take place in the grids containing 𝛾1 and 𝛾2, and the base case of the
recursion is when we get to path that is either entirely vertical or entirely horizontal
(meaning that there is no area to decompose into rectangles).

By design, the 𝑖-th level of recursion takes place on a grid with perimeter 𝑂(ℓ/2𝑖).
It follows that the rectangles added in the 𝑖-th level of recursion each have perimeters
𝑂(ℓ/2𝑖). On the other hand, the 𝑖-th level of recursion has at most 2𝑖 recursive
subproblems, so the total perimeter of the rectangles added in those subproblems
is at most 𝑂(ℓ). There are at most 𝑂(log ℓ) levels of recursion, so the sum of the
perimeters of all of the rectangles in the decomposition is at most 𝑂(ℓ log ℓ).

Lemma 13. Consider any rectangle 𝑋 in grid 𝐺′. If 𝑋 has perimeter 𝑘, then with
probability 1− 1/ poly(𝜇), the number of blue dots minus the number of red dots in
𝑋 is 𝑂(𝑘 log 𝜇).

Proof. Let 𝑇 be the time window that 𝑋 covers on its vertical axis. The total number
of insertions that occur in 𝑇 is the same as the number of deletions that occur in 𝑇 ,
up to ±1. Call an insertion in 𝑇 serious if the key being inserted has not previously
been deleted in the same time window, and call a deletion in 𝑇 serious if the key
being deleted is not subsequently reinserted in the same time window. Notice that
the number of blue dots from non-serious insertions in 𝑋 is the same as the number
of red dots from non-serious deletions in 𝑋, so we can ignore both. Since the number
of non-serious insertions equals the number of non-serious deletions, the number of
serious insertions in 𝑇 is the same (up to ±1) as the number of serious deletions in
𝑇 .

Since 𝑋 has perimeter 𝑘, it can contain at most 𝑘2 cells in 𝐺′. Thus the expected
number of distinct keys that pertain to the cells in 𝑋 is 𝑂(𝑘2). It follows that the
expected number of serious insertions (and similarly, the expected number of serious
deletions) of keys that pertain to 𝑋 is 𝑂(𝑘2). In order for the number of blue dots

66

minus the number of red dots in 𝑋 to exceed 𝐷 = Ω(𝑘 log 𝜇), we would need that
either (a) the number of serious insertions pertaining to 𝑋 is at least 𝐷/2 greater
than its mean; or (b) the number of serious deletions pertaining to 𝑋 is at least 𝐷/2
smaller than its mean. By a Chernoff bound, the probability of either (a) or (b)
occurring is that most 1/ poly(𝜇).8

Proof of Proposition 9. By Lemma 11, it suffices to show with probability 1 −
1/ poly(𝜇) that every monotone path 𝛾 through 𝐺′ has blue-red differential �̃�(√𝜇).
By Lemma 12, every such path has a rectangular decomposition where the sum of the
perimeters of the rectangles is �̃�(√𝜇). By Lemma 13, with probability 1−1/ poly(𝜇),
the contribution of each of the rectangles to the blue-red differential of 𝛾 is that most
𝑂(log 𝜇) times the perimeter of the rectangle. Thus, with probability 1− 1/ poly(𝜇),
every monotone path 𝛾 through 𝐺′ has blue-red differential 𝑂(√𝜇 log2 𝜇).

3.3.2 Proof of Proposition 10

We wish to construct a monotone path through 𝐺′ that has blue-red deviation
Ω(

√
𝜇 log log 𝜇).

Let 𝑎𝑖,𝑗 be the number of insertions that pertain to cell (𝑖, 𝑗) and let 𝑏𝑖,𝑗 the number
of deletions that pertain to cell (𝑖, 𝑗) in 𝐺′. Each 𝑎𝑖,𝑗 and each 𝑏𝑖,𝑗 is a binomial random
variable with mean 1. However, the random variables are not completely independent
(they are slightly negatively correlated), which makes them a bit unwieldy to work
with. To handle this, the following lemma Poissonizes the random variables in order
to show that they are 𝑜(1)-close to being independent.
Lemma 14. Let 𝐴 be the random variable ⟨𝑎𝑖,𝑗, 𝑏𝑖,𝑗 | 𝑖, 𝑗 ∈ [

√
𝜇]⟩ and let 𝐴 be a

random variable ⟨𝑎𝑖,𝑗, 𝑏𝑖,𝑗 | 𝑖, 𝑗 ∈ [
√
𝜇]⟩, where each 𝑎𝑖,𝑗 and each 𝑏𝑖,𝑗 is an independent

Poisson random variable with mean 1. Then it is possible to couple the random
variables 𝐴 and 𝐴 such that they are equal with probability 1− 𝑜(1).

Proof. Recall that, by assumption in Proposition 23, all of the operations in 𝑆 are
on different keys. We can think of each insertion/deletion as being performed on a
random hash in [𝑛] (rather than being performed on any specific key). As part of
our construction of 𝐴, we will end up modifying 𝑆 (i.e., adding and removing some
operations) to get a new operation sequence 𝑆. When adding new operations to 𝑆,
we will need not bother associating the new operations with actual keys, and will
instead think of the new operations is simply each being associated with a random
hash.

We now describe our construction of 𝐴. Let 𝑇1, 𝑇2, . . . , 𝑇√𝜇 be the time windows
that correspond to the rows of 𝐺′. Let 𝑦1, 𝑦2, . . . , 𝑦√𝜇, 𝑧1, 𝑧2, . . . , 𝑧√𝜇 be independent
Poisson random variables with mean |𝑆|/(2√𝜇). Define 𝑆 to be 𝑆, except that the
operations in each time window 𝑇𝑖 are modified so that the number of insertions is
𝑦𝑖 and the number of deletions is 𝑧𝑖; note that this may require us to either add or

8Note that all of the serious insertions (resp. serious deletions) are on distinct keys, meaning that
their hashes are independent, hence the Chernoff bound.

67

remove operations to the time window. Then define 𝐴 in exactly the same way as 𝐴,
except using 𝑆 in place of 𝑆. That is, we let 𝑎𝑖,𝑗 be the number of insertions in 𝑆 that
pertain to cell (𝑖, 𝑗) in 𝐺′ and we let 𝑏𝑖,𝑗 the number of deletions in 𝑆 that pertain to
cell (𝑖, 𝑗) in 𝐺′.

To understand the distribution of 𝐴, we make use of an important fact about
Poisson random variables: if 𝐽 balls are placed at random into 𝐾 bins, and 𝐽 is a
Poisson random variable with mean 𝜑, then for each bin the number of balls in the bin
is an independent Poisson random variable with mean 𝜑/𝐾 (see Chapter 5.4 of [269]).
This implies that the 𝑎𝑖,𝑗’s and 𝑏𝑖,𝑗’s are independent Poisson random variables each
of which has mean 1.

To complete the proof, we must establish that Pr[𝐴 ̸= 𝐴] = 𝑜(1). For each time
window 𝑇𝑖, the expected number of operations that are in one of 𝑆 or 𝑆 but not the
other is

𝑂(
√︀

|𝑇𝑖|) = 𝑂

(︂√︁
|𝑆|/√𝜇

)︂
= 𝑂

(︂√︁
𝑛/

√
𝜇

)︂
= 𝑂(

√
𝑛).

In total over all √𝜇 time windows 𝑇𝑖, the expected number of operations that are in
one of 𝑆 or 𝑆 but not the other is therefore 𝑂(√𝑛𝜇). The probability that any of
these operations are on keys that hash to 𝑃 is

𝑂

(︂
|𝑃 |
𝑛

· √𝑛𝜇
)︂

= 𝑂(|𝑃 |
√︀
𝜇/𝑛),

which by the assumptions of Proposition 23 is 𝑜(1).

Throughout the rest of the proof, we will treat the 𝑎𝑖,𝑗s and 𝑏𝑖,𝑗s as independent
Poisson random variables each of which has mean 1. Our proof will make use of the
fact that for any Poisson random variable 𝐽 with mean 𝜑 ≥ 1,

Pr[𝐽 > 𝜑+
√︀
𝜑𝑡] ≥ exp(−Ω(𝑡2)). (3.6)

For a derivation of (3.6), see Theorem 1.2 of [307]. Set 𝐷 =
√
log log 𝜇/𝑐, where 𝑐 is a

sufficiently large constant. We will be making use of (3.6) in the case where 𝑡 = 2𝐷,
that is,

Pr[𝐽 > 𝜑+ 2
√︀
𝜑𝐷] ≥ exp(−Ω((

√︀
log log 𝜇/𝑐)2))

= exp(−Ω(log log 𝜇/𝑐2))

≥ 1/
√︀

log 𝜇. (3.7)

We now construct a monotone path 𝛾 through the grid 𝐺′, and show that 𝛾 has
blue-red deviation Ω(

√
𝜇 log log 𝜇) with probability 1 − 𝑜(1). The construction of 𝛾

is recursive, with different levels of recursion operating on squares grids of different
sizes. To avoid ambiguity, we will use 𝑘 to refer to the height (or width) of the grid
in the current recursive sub-problem, and we will use √

𝜇 to refer to the height (or
width) of the grid in the top-level sub-problem.

68

The construction of 𝛾 in a 𝑘 × 𝑘 subproblem is performed as follows. Break the
𝑘×𝑘 grid into four 𝑘/2×𝑘/2 quadrants. If the top left quadrant has blue-red deviation
at least 𝑘𝐷 (that is, it contains at least 𝑘𝐷 more blue dots than red dots) then we
say that the subproblem successfully terminates, and we set 𝛾 to be the path that
consists of 𝑘 vertical steps followed by 𝑘 horizontal steps. Otherwise, we construct
𝛾 by concatenating together a path recursively constructed through the bottom left
quadrant and a path recursively constructed through the top right quadrant. If a
recursive subproblem is on a 1 × 1 grid, then we return the path consisting of a
vertical step followed by a horizontal step, and we call the subproblem a failed leaf.
Lemma 15. Each subproblem with 𝑘 > 1 has probability at least Ω(1/

√
log 𝜇) of

successfully terminating.

Proof. The number of blue dots and the number of red dots in the top left quadrant
of the subproblem are both Poisson random variables with means 𝑘2/4. It follows by
(3.7) that the number of blue dots has probability at least 1/

√
log 𝜇 of exceeding its

mean by 𝑘𝐷. Since the number of red dots has probability at least Ω(1) of being less
than or equal to its mean, it follows that the blue-red deviation of the quadrant is at
least 𝑘𝐷 with probability at least Ω(1/

√
log 𝜇).

Lemma 16. With probability 1−𝑜(1), the number of failed leaves is less than √
𝜇/2.

Proof. We will prove that the expected number of failed leaves is 𝑜(√𝜇), after which
the lemma follows by Markov’s inequality.

There are √
𝜇 potential failed leaves in the recursion tree, so it suffices to show

that each of them has 𝑜(1) probability of occurring. In order for a given failed leaf to
occur, the recursion path of depth of log√𝜇 that must occur. By Lemma 15, each of
the subproblems in the recursion path (except for the leaf) independently has at least
a Ω(1/

√
log 𝜇) probability of successfully terminating. Thus each potential failed leaf

in the recursion tree has probability at most(︁
1− Ω(1/

√︀
log 𝜇)

)︁log√𝜇−1

≤ 𝑜(1)

of occurring.

We can now analyze the blue-red deviation of 𝛾 to prove Proposition 10.

Proof of Proposition 10. By Lemma 16, we may assume that the number of failed
leaves is less than √

𝜇/2.
Say that the width of a subproblem is width of the grid in which it takes place.

The sum of the widths of the leaf subproblems is √
𝜇. Each failed leaf has width 1,

so if the number of failed leaves is less than √
𝜇/2, then the sum of the widths of the

leaves that successfully terminate must be at least √
𝜇/2.

For each leaf subproblem with width 𝑘 that successfully terminates, its top left
quadrant contributes Ω(𝑘

√
log log 𝜇) to the blue-red deviation of 𝛾. Summing over

69

the leaf subproblems that successfully terminate, the top left quadrants of all of them
contribute at least Ω(

√
𝜇 log log 𝜇) to the blue-red deviation.

Additionally, we must consider the effect of the blue and red dots below 𝛾 that are
not contained in any of these aforementioned top-left quadrants. Once the path 𝛾 is
determined, the number 𝑋 of such blue dots and the number 𝑌 of such red dots are
independent Poisson random variables satisfying E[𝑋] = E[𝑌] ≤ 𝜇. By a Chernoff
bound, we have that with probability 1− 𝑜(1),

𝑌 −𝑋 ≤
√︀
𝜇 log log log 𝜇.

Thus, with probability 1− 𝑜(1), the blue-red deviation of 𝛾 is at least

Ω(
√︀
𝜇 log log 𝜇)−

√︀
𝜇 log log log 𝜇 = Ω(

√︀
𝜇 log log 𝜇).

3.4 Relating Insertion Surplus to Crossing Numbers

In this section we use our insertion-surplus bounds from Section 3.3 to obtain bounds
on a different set of quantities {𝑐𝑗}𝑗∈[𝑛] that we call the crossing numbers; later, in
Section 3.5, our bounds on crossing numbers will allow for us to analyze the amortized
costs of insertions/deletions/queries in ordered linear probing.

Consider an ordered linear probing hash table with 𝑛 slots, and suppose that the
hash table is initialized to have load factor 1−1/𝑥 or smaller. Consider a sequence of
insertion and deletion operations 𝑆 such that the load factor never exceeds 1− 1/𝑥.
(Note that, unlike in Section 3.3, the lemmas in this section will not all require that
𝑆 alternates between insertions and deletions.)

Based on the initial state of the hash table and on the sequence 𝑆 of operations,
define the crossing numbers 𝑐1, 𝑐2, . . . , 𝑐𝑛 so that 𝑐𝑖 is the number of times that an
insertion with a hash smaller than 𝑖 either (a) uses a tombstone left by a key that
had hash at least 𝑖; or (b) uses a free slot in a position greater than or equal to 𝑖.

The purpose of this section is to prove nearly tight bounds on E[𝑐𝑖]. Subsequent
sections will then show how to use these bounds in order to analyze the performance
of linear probing.

We will need the following additional definitions. Define the insertion surplus
of a subinterval 𝑃 ⊆ [𝑛] to be the maximum insertion surplus of any downward-closed
subset of {𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ 𝑃}, minus the number of free slots that are initially in
the range 𝑃 . Define the peak 𝑝𝑢 of an insertion 𝑢 to be the hash of the tombstone
that the insertion uses (if it uses a tombstone) or the position of the free slot that the
insertion uses (if it uses a free slot).

The following lemmas characterize the crossing numbers in terms of the insertion
surpluses of intervals.
Lemma 17. For each 𝑠 ∈ [𝑛], there exists an interval 𝑃 = [𝑟, 𝑠− 1] whose insertion

70

surplus is at least 𝑐𝑠.

Proof. Call an insertion 𝑢 with hash smaller than 𝑠 special if it satisfies the following
recursive property: either (a) 𝑝𝑢 ≥ 𝑠; or (b) there is another special insertion 𝑣 that
occurs temporally after 𝑢 such that 𝑝𝑢 ≥ ℎ(𝑣). Call a deletion 𝑣 special if ℎ(𝑣) < 𝑠
and there exists a special insertion 𝑢 that occurs temporally after 𝑣 and satisfies
ℎ(𝑢) ≤ ℎ(𝑣).

Let 𝑟 be the smallest hash of any special insertion/deletion, and define 𝑃 =
[𝑟, 𝑠 − 1]. We will prove that the insertion surplus of 𝑃 is at least 𝑐𝑠. Towards this
end, define 𝐴 to be the number of special insertions, define 𝐵 to be the number of
special deletions, and define 𝐶 to be the number of free slots initially in 𝑃 . The
set of special operations is downward-closed by design, and its insertion surplus is
𝐴−𝐵 − 𝐶. Thus we wish to show that

𝐴−𝐵 − 𝐶 ≥ 𝑐𝑠.

In order for an insertion 𝑢 to contribute to the crossing number 𝑐𝑠, the insertion
must have peak 𝑝𝑢 ≥ 𝑠 and thus must also be special. To complete the proof, we will
show that there are at least 𝐵 + 𝐶 special insertions with peaks 𝑝𝑢 < 𝑠 (and thus at
most 𝐴 − 𝐵 − 𝐶 special insertions have 𝑝𝑢 ≥ 𝑠). That is, we will show that every
tombstone created by a special deletion and every free slot initially in 𝑃 is used by
some special insertion.

Consider a tombstone that is created by a special deletion 𝑣. Since 𝑣 is special,
there must exist a special insertion 𝑢 that occurs after 𝑣 and satisfies ℎ(𝑢) ≤ ℎ(𝑣). Let
𝑢 be the last such insertion. We must have that 𝑝𝑢 > ℎ(𝑣), since otherwise, we could
arrive at a contradiction as follows: in order so that 𝑢 could be special, there would
have to be a subsequent special insertion 𝑧 with ℎ(𝑧) ≤ 𝑝𝑢; but this would imply
that ℎ(𝑧) ≤ ℎ(𝑣), which would contradict the fact that 𝑢 is the final special insertion
satisfying ℎ(𝑢) ≤ ℎ(𝑣). Since 𝑝𝑢 > ℎ(𝑣), it must be that the tombstone created by
the deletion 𝑣 has already been used by the time that insertion 𝑢 is performed. The
insertion 𝑤 that used the tombstone must have occurred before the insertion 𝑢 and
must have had peak 𝑝𝑤 = ℎ(𝑣) ≥ ℎ(𝑢). This means that 𝑤 is itself a special insertion.
Thus the tombstone created by 𝑣 is used by a special insertion, as desired.

Now consider a free slot 𝑗 that is initially present in 𝑃 . By the definition of
𝑃 , there must exist a special insertion 𝑢 that satisfies ℎ(𝑢) ≤ 𝑗. Let 𝑢 be the last
such insertion. We must have that 𝑝𝑢 > 𝑗, since otherwise, we could arrive at a
contradiction as follows: in order so that 𝑢 could be special, there would have to be
a subsequent special insertion 𝑧 with ℎ(𝑧) ≤ 𝑝𝑢; but this would imply that ℎ(𝑧) ≤ 𝑗,
which would contradict the fact that 𝑢 is the final special insertion satisfying ℎ(𝑢) ≤ 𝑗.
Since 𝑝𝑢 > 𝑗, it must be that the free slot 𝑗 has already been used by the time that
insertion 𝑢 is performed. The insertion 𝑤 that used slot 𝑗 must have occurred before
the insertion 𝑢 and must have had peak 𝑝𝑤 = 𝑗 ≥ ℎ(𝑢). This means that 𝑤 is itself
a special insertion. Thus the free slot is used by a special insertion, as desired.

The converse of the previous lemma is also true.

71

Lemma 18. If there exists an interval 𝑃 = [𝑟, 𝑠 − 1] with insertion surplus 𝑞, then
𝑐𝑠 ≥ 𝑞.

Proof. Let 𝑆 ′ be the downward-closed subset of {𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ 𝑃} with the largest
insertion surplus. Every insertion in 𝑆 ′ must either (a) use a tombstone created by a
deletion in 𝑆 ′, (b) use a free slot initially present in 𝑃 , or (c) have peak at least 𝑠. It
follows that if 𝐴 is the number of insertions in 𝑆 ′, 𝐵 is the number of deletions in 𝑆 ′,
and 𝐶 is the number of free slots initially in 𝑃 , then we must have that

𝑐𝑠 ≥ 𝐴−𝐵 − 𝐶.

Since the quantity on the right side is exactly the insertion surplus of 𝑃 , the proof is
complete.

The previous lemmas tells us that, in order to understand the crossing numbers
𝑐𝑠, it suffices to understand the insertion surplus of each interval 𝑃 . This insertion
surplus, in turn, depends on two quantities: the maximum insertion surplus of any
downward-closed subset of {𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ 𝑃}; and the number of free slots initially
in 𝑃 . We have already achieved a good understanding of the first quantity in the
previous section. The next two lemmas analyze the second quantity.
Lemma 19. Suppose that the hash table initially has load factor 1− 1/𝑥. Consider
any interval 𝑃 ⊆ [𝑛] of size at least 𝑐 𝑥2 log 𝑥, where 𝑐 is taken to be a sufficiently
large constant. With probability 1 − 1/ poly |𝑃 |, the interval 𝑃 initially contains at
least Ω(|𝑃 |/𝑥) free slots.

Proof. The expected number of elements that hash into 𝑃 initially is (1 − 1/𝑥)|𝑃 |,
which since |𝑃 | ≥ 𝑐 𝑥2 log 𝑥, is at most |𝑃 | −

√︀
|𝑃 |𝑐 log |𝑃 |. It follows by a Chernoff

bound that, with probability 1 − 1/ poly(|𝑃 |), the number of elements that initially
hash into 𝑃 is at most |𝑃 | − 1

2

√︀
|𝑃 |𝑐 log |𝑃 |. On the other hand, by Corollary 8, and

with probability 1 − 1/ poly(|𝑃 |), the number of elements that reside in 𝑃 but hash
to a position prior to 𝑃 is at most 𝑂(𝑥 log𝑃) ≤ 1

4

√︀
|𝑃 |𝑐 log |𝑃 |. The total number of

elements that reside in 𝑃 is therefore at most |𝑃 | − 1
4

√︀
|𝑃 |𝑐 log |𝑃 |, which completes

the proof.

Lemma 20. Suppose that the hash table initially has load factor 1− 1/𝑥. Consider
any interval 𝑃 = [𝑎, 𝑏] ⊆ [𝑛] of size 𝑥2/𝑐, where 𝑐 is taken to be a sufficiently large
constant. With probability Ω(1), there are initially no free slots in 𝑃 .

Proof. Consider the state of the hash table initially, and let 𝑟 be the length of the run
of non-free slots beginning at position 𝑎. Knuth in [224] established that E[𝑟] = Θ(𝑥2).
On the other hand, Proposition 6 tells us that Pr[𝑟 > 𝑘𝑥2] ≤ 1/ poly(𝑘) for all 𝑘. The
only way that these two facts can be consistent is if 𝑟 = Ω(𝑥2) with probability Ω(1).
Thus the lemma is established.

We are now in a position to upper bound the crossing number 𝑐𝑗.

72

Proposition 21. Suppose that the hash table initially has load factor 1− 1/𝑥, sup-
pose that |𝑆| = Ω(𝑛/𝑥) and |𝑆| ≤ 𝑛, and suppose that 𝑆 alternates between insertions
and deletions.

There exists a positive constant 𝑑 such that for any 𝑗 ∈ [𝑛] and any

𝑟 ≥
√︂

|𝑆|
𝑛
𝑥2 log𝑑 𝑥,

we have 𝑐𝑗 < 𝑟 with probability 1− 1/ poly(𝑟).

Proof. Define
𝜇𝑖 = |𝑆| · 𝑖/𝑛

to be the expected number of operations in 𝑆 that hash into the [𝑗 − 𝑖, 𝑗 − 1]. Define

𝜆𝑖 =
√
𝜇𝑖 polylog 𝜇𝑖

where the polylogarithmic factor is selected so that Proposition 9 offers the following
guarantee: with probability 1 − 1/ poly(𝜇𝑖), every downward-closed subset of {𝑢 ∈
𝑆 | ℎ(𝑢) ∈ [𝑗 − 𝑖, 𝑗 − 1]} has insertion surplus less than 𝜆𝑖. Let

𝐾 = 𝑥2 log𝑐 𝑥

for some sufficiently large positive constant 𝑐. This results in

𝜆𝐾 =

√︂
|𝑆|
𝑛
𝑥2 log𝑐 𝑥 polylog

(︂
|𝑆|
𝑛
𝑥2 log𝑐 𝑥

)︂
=

√︂
|𝑆|
𝑛
𝑥2 polylog 𝑥.

Thus, if we select the constant 𝑑 in the proposition statement appropriately, then the

requirement that 𝑟 ≥
√︁

|𝑆|
𝑛
𝑥2 log𝑑 𝑥 implies that 𝑟 ≥ 𝜆𝐾 , and thus that 𝑟 = 𝜆𝑅 for

some 𝑅 ≥ 𝐾. To prove the proposition, it suffices to establish that for every 𝑅 ≥ 𝐾,
we have

Pr[𝑐𝑗 ≥ 𝜆𝑅] ≤ 1/ poly(𝜆𝑅). (3.8)

Note that in the parameter regime 𝑅 ≥ 𝐾, we have that poly(𝜆𝑅) = poly(𝜇𝑅) =
poly(𝑅) (here we are using that Ω(𝑛/𝑥) ≤ |𝑆| ≤ 𝑂(𝑛)), so we will treat the three as
interchangeable throughout the rest of the proof.

Define 𝑃𝑖 = [𝑗 − 𝑖, 𝑗 − 1] and define 𝑠(𝑃𝑖) to be the insertion surplus of 𝑃𝑖. By
Lemma 17,

Pr[𝑐𝑗 ≥ 𝜆𝑅] ≤ Pr[𝑠(𝑃𝑖) ≥ 𝜆𝑅 for some 𝑖]

≤ Pr[𝑠(𝑃𝑖) ≥ 𝜆𝑅 for some 𝑖 < 𝑅] +
∑︁
𝑖≥𝑅

Pr[𝑠(𝑃𝑖) > 0].

73

To prove (3.8), we begin by bounding Pr[𝑠(𝑃𝑖) ≥ 𝜆𝑅 for some 𝑖 < 𝑅]. If 𝑠(𝑃𝑖) ≥
𝜆𝑅 for some 𝑖 < 𝑅, then there must be a downward-closed subset 𝑆 ′ of {𝑢 ∈ 𝑆 |
ℎ(𝑢) ∈ [𝑗 − (𝑅 − 1), 𝑗 − 1]} such that the insertion surplus of 𝑆 ′ is at least 𝜆𝑅.
But by Proposition 9 and by the definition of 𝜆𝑅−1, we know that with probability
1 − 1/ poly(𝜇𝑅−1) (and thus also in 𝜆𝑅−1), every such 𝑆 ′ has insertion surplus at
most 𝜆𝑅−1 < 𝜆𝑅. Thus the probability that 𝑠(𝑃𝑖) ≥ 𝜆𝑅 for any 𝑖 < 𝑅 is at most
1/ poly(𝜆𝑅).

To complete the proof, it remains to show that∑︁
𝑖≥𝑅

Pr[𝑠(𝑃𝑖) > 0] ≤ 1

poly(𝜆𝑅)
.

We will establish a stronger statement, namely that for every 𝑖 ≥ 𝐾,

Pr[𝑠(𝑃𝑖) > 0] ≤ 1

poly(𝑖)
.

Since 𝑖 > 𝐾, we can apply Lemma 19 to deduce that, with probability 1 −
1/ poly(𝑖), the interval 𝑃𝑖 initially contains at least Ω(𝑖/𝑥) free slots. We further have
that, by Proposition 9, and with probability 1 − 1/ poly(𝜇𝑖) = 1 − 1/ poly(𝑖), every
downward-closed subset of {𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ [𝑗 − 𝑖, 𝑗 − 1]} has insertion surplus less
than 𝜆𝑖. It follows that 𝑠(𝑃𝑖) is that most

max(0, 𝜆𝑖 − Ω(𝑖/𝑥)).

In order to establish that 𝑠(𝑃𝑖) is zero, it suffices to show that

𝜆𝑖 = 𝑜(𝑖/𝑥).

74

This is simply a matter of calculation:

𝜆𝑖 =
√
𝜇𝑖 polylog 𝜇𝑖 (by definition of 𝜆𝑖)

=

√︂
|𝑆|𝑖
𝑛

polylog

(︂
|𝑆|𝑖
𝑛

)︂
(by definition of 𝜇𝑖)

≤
√
𝑖 polylog 𝑖 (since |𝑆| ≤ 𝑛)

≤ 𝑂

(︃
𝑖 polylog 𝑖√︀
𝐾 lg𝑐(𝑖/𝐾)

)︃
(since 𝑖 > 𝐾)

= 𝑂

(︃
𝑖 polylog 𝑖√︀

𝑥2 log𝑐 𝑥 lg𝑐(𝑖/𝐾)

)︃
(since 𝐾 = 𝑥2 lg𝑐 𝑥)

= 𝑂

(︃
𝑖 polylog 𝑖√︀

𝑥2 log𝑐𝐾 lg𝑐(𝑖/𝐾)

)︃
(since 𝐾 = 𝑥2 lg𝑐 𝑥)

= 𝑂

(︃
𝑖 polylog 𝑖√︀
𝑥2 log𝑐 𝑖

)︃
(since lg 𝑎 lg 𝑏 ≥ Ω(lg(𝑎𝑏)))

=
𝑖/𝑥 polylog 𝑖√︀

log𝑐 𝑖

= 𝑜(𝑖/𝑥) (since 𝑐 is a sufficiently large constant).

Corollary 22. Suppose that the hash table initially has load factor 1−1/𝑥, suppose
that |𝑆| = Ω(𝑛/𝑥) and |𝑆| ≤ 𝑛, and suppose that 𝑆 alternates between insertions and
deletions.

For each 𝑗 ∈ [𝑛],

E[𝑐𝑗] ≤
√︂

|𝑆|
𝑛
𝑥2 polylog 𝑥.

We can also obtain a nearly matching lower bound for E[𝑐𝑗].
Proposition 23. Suppose that the hash table initially has load factor 1− 1/𝑥, sup-
pose that |𝑆| = Ω(𝑛/𝑥) and |𝑆| ≤ 𝑛, and suppose that 𝑆 alternates between insertions
and deletions.

Further suppose that each operation in 𝑆 applies to a different key. Then for each
𝑗 ∈ [𝑛],

E[𝑐𝑗] = Ω

(︃√︂
|𝑆|
𝑛
𝑥2 log log 𝑥

)︃
.

Proof. By Lemma 18, it suffices to show that there is some interval 𝑃𝑖 = [𝑗− 𝑖, 𝑗− 1]

75

with insertion surplus

Ω

(︃√︂
|𝑆|
𝑛
𝑥2 log log 𝑥

)︃
.

By Lemma 20, there exists a positive constant 𝑐 such that, with probability Ω(1),
the interval 𝑃𝑐𝑥2 in the hash table initially (i.e., at the beginning of the operations
𝑆) contains no free slots. Furthermore, Proposition 10 tells us that with probability
1−𝑜(1), there exists a downward-closed subset of {𝑢 ∈ 𝑆 | ℎ(𝑢) ∈ 𝑃𝑐𝑥2} with insertion
surplus at least

Ω

(︃√︃
|𝑆|
𝑛
𝑥2 log log

(︂
|𝑆|
𝑛
𝑥2
)︂)︃

= Ω

(︃√︂
|𝑆|
𝑛
𝑥2 log log 𝑥

)︃
.

With probability Ω(1), both of the preceding events occur simultaneously. Thus the
proposition is proven.

The previous two propositions both focus on the case in which the workload 𝑆
alternates between insertions and deletions. We conclude this section by consider-
ing the case where 𝑆 is allowed to perform an arbitrary sequence of insertions and
deletions, subject only to the constraint that the load factor never exceeds 1− 1/𝑥.
Proposition 24. Suppose that the hash table begins at a load factor of at most
1 − 1/𝑥, and that the sequence of operations 𝑆 keeps the load factor at or below
1− 1/𝑥. Finally, suppose that |𝑆| ≤ 𝑛/ polylog(𝑥). Then for each 𝑗 ∈ [𝑛],

E[𝑐𝑗] = 𝑂(𝑥).

Proof. We begin by constructing an alternative sequence of insertions/deletions 𝑆
such that the crossing numbers with respect to 𝑆 are guaranteed to be at least as
large as the crossing numbers with respect to 𝑆. We will then complete the proof by
analyzing the crossing numbers of 𝑆.

Suppose that the hash table initially contains (1 − 1/𝑥)𝑛 − 𝑤 elements for some
𝑤. We construct 𝑆 through two steps:

• Call an insertion novel if the key being inserted has not been inserted in the
past and was not originally present in the hash table. The first step is to
take each of the first 𝑤 novel insertions, and to move them to the front of the
operation sequence.9

9We can assume without loss of generality that there are at least 𝑤 such novel insertions, since
if there are not, we can artificially add additional insertions to the end of 𝑆 and then perform the
rest of the proof without modification.

76

• Call a triple of three consecutive operations unbalanced if the triple consists of
two deletions followed by an insertion. At least one of the two deletions in such a
triple must act on a different key than the insertion acts on. We can balance the
triple by changing the order of operations so that the aforementioned deletion
occurs last. The second step in constructing 𝑆 is to repeatedly find and balance
any unbalanced triples until there are no such triples left.

Observe that the sequence 𝑆 is a valid sequence of operations, since the transfor-
mation from 𝑆 to 𝑆 never swaps the order of any two operations that act on the same
key.

We claim that the crossing numbers with respect to 𝑆 are at least as large as the
crossing numbers with respect to 𝑆. The transformation from 𝑆 to 𝑆 moves certain
insertions to occur earlier than they would have otherwise, and certain deletions to
occur later than they would have otherwise. Importantly, these types of moves cannot
decrease the insertion surplus of any interval 𝑃 in the hash table. By Lemmas 17 and
18, the crossing numbers are completely determined by the insertion surpluses of the
intervals 𝑃 ⊆ [𝑛]. Since the insertion surpluses for 𝑆 are at least as large as those for
𝑆, it follows that the crossing numbers for 𝑆 are also at least as large as those for 𝑆.

Our next claim is that 𝑆 never causes the load factor to exceed 1−1/𝑥. This can be
seen by analyzing each of the two steps of the construction separately. The first step
modifies only the window of time in which the first 𝑤 novel insertions are performed;
no rearrangement of the operations in this window of time can possibly cause the load
factor to exceed 1− 1/𝑥. The second step repeatedly performs balancing operations
on unbalanced triples; such a balancing operation does not change the maximum load
factor that is achieved during the triple, however, since that load factor is achieved
prior to the first operation of the triple. Combining the analyses of the two steps, we
see that the load factor never exceeds 1− 1/𝑥.

Now let us reason about the structure of 𝑆. By design, 𝑆 begins with 𝑤 insertions,
bringing the load factor up to exactly 1 − 1/𝑥. Since the load factor never exceeds
1− 1/𝑥, and since there are never two deletions in a row followed by an insertion, it
must be that the remaining insertions in 𝑆 are each preceded by exactly one deletion.
In other words, 𝑆 must consist of three parts 𝑆1, 𝑆2, 𝑆3 where 𝑆1 consists only of
insertions, 𝑆2 alternates between deletions and insertions, and 𝑆3 consists only of
deletions.

Since 𝑆3 consists only of deletions, it does not contribute anything to the crossing
numbers. By Corollary 22, the expected contribution of the operations in 𝑆2 to each
crossing number 𝑐𝑗 is at most 𝑂(𝑥).

It remains to bound the contribution of 𝑆1 to the crossing numbers. If an insertion
takes time 𝑡, then it can contribute at most 𝑡 to the sum

∑︀
𝑗 𝑐𝑗. Knuth showed in [224]

that the total time needed to fill an empty table up to a load factor of 1−1/𝑥 is 𝑂(𝑛𝑥)
in expectation. Thus the expected contribution of 𝑆1 to

∑︀
𝑗 𝑐𝑗 is 𝑂(𝑛𝑥), completing

the proof.

77

3.5 Relating Crossing Numbers to Running Times

In this section, we give nearly tight bounds on the performance of ordered linear
probing. Notably, we find that, if the size 𝑅 of each rebuild window is chosen correctly,
then the amortized time per insertion is guaranteed to be �̃�(𝑥). The key technical
component to the section will be a series of arguments transforming our bounds on
crossing numbers (in Section 3.4) into bounds on running times.

Consider an ordered linear probing hash table that uses tombstones for deletions.
Recall that there are three parameters: the number 𝑛 of slots in the table, the number
𝑅 of insertions in each time window between rebuilds, and the maximum load factor
1 − 1/𝑥 that the hash table ever achieves. Based on these parameters, we wish to
analyze the average running time of the operations being performed on the hash table.

We will be focusing exclusively on the regime in which 𝑅 = Ω(𝑛/𝑥) and 𝑅 ≤ 𝑛.
Since each rebuild can be implemented in linear time 𝑂(𝑛), the average time spent
performing rebuilds per operation is 𝑂(𝑛/𝑅) = 𝑂(𝑥) (which for our purposes will
be negligible). Thus the focus of our analysis will be on analyzing the costs of the
operations that occur between consecutive rebuilds.

Before diving into the details, we remark that there are two main technical chal-
lenges that our analysis must overcome. The first challenge is obvious: we must
quantify the degree to which tombstones left behind by deletions improve the perfor-
mance of subsequent insertions. The second challenge is a bit more subtle: in order
to support large rebuild-window sizes 𝑅, our analysis must be robust to the fact that
tombstones can accumulate over time, increasing the effective load factor of the hash
table. This latter challenge is exacerbated by the fact that the choice of which tomb-
stones are in the table at any given moment is a function not only of the sequence
of operations being performed, but also of the randomness in the hash table. This
means that, even if the cumulative load factor from the elements and tombstones can
be bounded (e.g., by 1 − 1/(2𝑥)), we still cannot apply the classic analysis at that
load factor in order to bound the expected time of queries.

One of the interesting features of our analysis is that we completely circumvent the
issue of how fast tombstones accumulate over time. Rather than focusing on what
the effective load factor of the hash table is at each moment in time, the analysis
instead analyzes the state of the hash table at the beginning of the rebuild window,
and then analyzes the dynamics of how the local structure of the hash table changes
over time.

In the following lemmas, we will focus on a single window 𝑊 of time between two
rebuilds. We begin by defining three quantities that we will be able to express the
running times of operations in terms of.

For a given position 𝑖 ∈ [𝑛], define the positional offset 𝑜𝑖 to be the quantity
𝑗 − 𝑖 where 𝑗 ≥ 𝑖 is the largest position such that, at the end of the time window
𝑊 , all of the positions [𝑖, 𝑗 − 1] contain elements and tombstones whose hashes are
smaller than 𝑖. Note that, although the positional offset is defined at the end of the
time window 𝑊 , if we were to define the same quantity at any other point during the

78

time window, it would be at most 𝑜𝑖 (that is, the positional offset only increases over
time).

For a given position 𝑖 ∈ [𝑛], define the spillover 𝑠𝑖 to be the largest 𝑘 ≥ 0 such
that if we consider all keys that are either initially present or inserted at some point
during 𝑊 , at least 4𝑘 of them have hashes in the range [𝑖, 𝑖+ 𝑘).

For each insertion 𝑢, define the displacement 𝑑𝑢 of the insertion to be 𝑝𝑢−ℎ(𝑢),
where 𝑝𝑢 is the peak of the insertion as defined in Section 3.4.
Lemma 25. If an insertion 𝑢 hashes to a position 𝑖, then the insertion takes time at
most

𝑂(𝑜𝑖 + 𝑠𝑖 + 𝑑𝑢 + 1).

Similarly, if a query/deletion 𝑢 hashes to a position 𝑖, then the operation takes time
at most

𝑂(𝑜𝑖 + 𝑠𝑖 + 1).

Proof. Consider an insertion 𝑢 that hashes to a position 𝑖. If 𝑢 uses a free slot in
some position 𝑖 + 𝑟, then the time to perform the insertion is 𝑟 = 𝑑𝑢 + 1. Suppose,
on the other hand, that 𝑢 uses a tombstone with some hash 𝑖+ 𝑡, and the tombstone
is in some position 𝑖+ 𝑟. Then the running time of the insertion is 𝑟, and we wish to
show that

𝑟 = 𝑂(𝑜𝑖 + 𝑠𝑖 + 𝑡+ 1). (3.9)

If 𝑟 − 𝑜𝑖 = 𝑂(𝑡), then (3.9) trivially holds and we are done. Otherwise, we may
assume that 𝑟 − 𝑜𝑖 ≥ 4(𝑡 + 1). By the definition of the positional offset 𝑜𝑖, all of the
elements/tombstones in positions [𝑖+ 𝑜𝑖, 𝑖+ 𝑟] must have hashes in the range [𝑖, 𝑖+ 𝑡].
Combining this with the fact that 𝑟 − 𝑜𝑖 ≥ 4(𝑡 + 1), it follows that the spillover 𝑠𝑖
satisfies 𝑠𝑖 ≥ ⌊(𝑟 − 𝑜𝑖)/4⌋, hence (3.9).

Next consider a query/deletion 𝑢 that hashes to a position 𝑖. The operation takes
time at most 𝑂(𝑜𝑖 + 𝑇) where 𝑇 is the total number of elements with hash 𝑖 that
are either present at the beginning of 𝑊 or inserted at some point during 𝑊 . By
the definition of 𝑠𝑖, we have that 𝑇 ≤ 4𝑠𝑖 + 𝑂(1). Thus the operation takes time
𝑂(𝑜𝑖 + 𝑠𝑖 + 1).

Our next lemma relates 𝑜𝑖, 𝑠𝑖, and 𝑑𝑢 to the crossing numbers 𝑐𝑖 defined in the
previous section.
Lemma 26. For each 𝑖 ∈ [𝑛], the positional offset 𝑜𝑖 satisfies 𝑜𝑖 ≥ 𝑐𝑖 and

E[𝑜𝑖] = 𝑂(𝑥) + E[𝑐𝑖], (3.10)

and the spillover 𝑠𝑖 satisfies
E[𝑠𝑖] = 𝑂(1). (3.11)

Finally, if we consider a random insertion 𝑢 in the time window 𝑊 , then

E[𝑑𝑢] =
𝑛

𝑅
E[𝑐𝑖]. (3.12)

79

Proof. Although the positional offset 𝑜𝑖 is only defined at the end of the time window
𝑊 , let us slightly abuse notation and think about how the quantity evolves over time
(that is, what would happen if we defined the quantity at each point in time in the
time window). By Corollary 8, the initial positional offset (at the beginning of 𝑊) has
expected value 𝑂(𝑥). During the time window, the positional offset increases by one
each time that an insertion whose hash is less than 𝑖 has a peak that is at least 𝑖. The
number of such insertions is precisely 𝑐𝑖. Since these insertions are the only operations
that can change the positional offset, it follows that 𝑜𝑖 ≥ 𝑐𝑖 and E[𝑜𝑖] = 𝑂(𝑥) +E[𝑐𝑖].

Next we consider the spillover 𝑠𝑖. Let 𝑉 be the set of all elements that are present
at some point during 𝑊 . Then |𝑉 | ≤ 2𝑛, and the expected number of elements
in 𝑉 that hash to a given position 𝑗 is at most 2. It follows by Lemma 3 that
Pr[𝑠𝑖 > 𝑘] ≤ exp(−Ω(𝑘)) for all 𝑘. This implies (3.11).

Finally we establish (3.12). Observe that, if an insertion 𝑢 has displacement 𝑑𝑢,
then the insertion contributes to exactly 𝑑𝑢 crossing numbers 𝑐𝑖. It follows that∑︁

𝑢

𝑑𝑢 =
∑︁
𝑖∈[𝑛]

𝑐𝑖.

If we select a random insertion 𝑢 out of the 𝑅 insertions that occur in 𝑊 , then

𝑅 · E[𝑑𝑢] =
∑︁
𝑖∈[𝑛]

𝑐𝑖.

Since the 𝑐𝑖’s all of the same expected values, it follows that for a given 𝑖,

𝑅 · E[𝑑𝑢] = 𝑛 · E[𝑐𝑖].

This implies (3.12).

We are now prepared to prove the main results of the section. We begin by
considering a hovering workload, that is a workload in which queries can be performed
at arbitrary times, but insertions and deletions must alternate.
Theorem 1. Consider an ordered linear probing hash table that uses tombstones for
deletions, and that performs rebuilds every 𝑅 insertions. Suppose that the table is
initialized to have capacity 𝑛 and load factor 1− 1/𝑥, where 𝑅 = Ω(𝑛/𝑥) and 𝑅 ≤ 𝑛.
Finally, consider a sequence 𝑆 of operations that alternates between insertions and
deletions (and contains arbitrarily many queries).

Then the expected amortized time 𝐼 spent per insertion satisfies

𝐼 ≤ �̃�

(︂
𝑥

√︂
𝑛

𝑅

)︂
(3.1)

80

and, if all insertions/deletions in each rebuild window are on distinct keys, then

𝐼 ≥ Ω

(︂
𝑥

√︂
𝑛

𝑅
log log 𝑥

)︂
. (3.2)

Moreover, the expected time 𝑄 of a given query/deletion satisfies

𝑄 ≤ 𝑂(𝑥) + �̃�

(︃
𝑥

√︂
𝑅

𝑛

)︃
(3.3)

and, if all operations in each rebuild window are on distinct keys, then for any negative
query at the end of a rebuild window, we have

𝑄 ≥ Ω

(︃
𝑥+ 𝑥

√︂
𝑅

𝑛
log log 𝑥

)︃
. (3.4)

Proof. Consider a random insertion 𝑢 with some hash 𝑖. By Lemma 25, we have that
𝑢 takes time at most 𝑂(𝑜𝑖+ 𝑠𝑖+ 𝑑𝑢+1). By Lemma 26, this has expectation at most

𝑂
(︁
𝑥+ E[𝑐𝑖] +

𝑛

𝑅
E[𝑐𝑖] + 1

)︁
= 𝑂

(︁
𝑥+

𝑛

𝑅
E[𝑐𝑖]

)︁
.

By Corollary 22, this is that most10

�̃�

(︃
𝑥+

𝑛

𝑅

√︂
𝑅

𝑛
𝑥2

)︃
= �̃�

(︂
𝑥

√︂
𝑛

𝑅

)︂
.

On the other hand, the insertion time is necessarily at least 𝑑𝑢, which by Lemma
26, has expectation

𝑛

𝑅− 1
E[𝑐𝑗]

for each 𝑗 ∈ [𝑛]. If we assume that every insertion/deletion in the rebuild window
is on a different key, then we can further apply Proposition 23 to conclude that the
insertion time has expected value at least

Ω

(︃
𝑛

𝑅

√︂
𝑅

𝑛
𝑥2 log log 𝑥

)︃
= Ω

(︂
𝑥

√︂
𝑛

𝑅
log log 𝑥

)︂
.

Now instead consider a query/deletion 𝑢 that hashes to some position 𝑖. By
Lemma 25, we have that 𝑢 takes time at most 𝑂(𝑜𝑖 + 𝑠𝑖 + 1). By Lemma 26, the

10There is one technicality that we must be slightly careful about here: the hash 𝑖 = ℎ(𝑢) is
independent of where every key 𝑣 ̸= 𝑢 hashes to, but is (trivially) not independent of where key 𝑢
hashes to. However, since 𝑢 is only one key, it can easily be factored out of the analysis so that we
can treat 𝑖 as being a random slot (independent of the hash function ℎ).

81

expected time that 𝑢 takes is therefore at most

𝑂 (𝑥+ E[𝑐𝑖] + 1) .

By Corollary 22, this is that most

�̃�

(︃
𝑥+

√︂
𝑅

𝑛
𝑥2

)︃
= �̃�

(︃
𝑥+ 𝑥

√︂
𝑅

𝑛

)︃
.

If we assume that the query is a negative query, performed at the end of a rebuild
window whose insert/delete operations are all on different keys, then the query time
is necessarily at least 𝑜𝑖, which by Lemma 26 is at least 𝑐𝑖. It follows by Proposition
23 that the expected query time is at least

Ω

(︃
𝑥

√︂
𝑅

𝑛
log log 𝑥

)︃
.

The expected query time is also Ω(𝑥) trivially, by the standard analysis of linear
probing [224].

Theorem 1 has several important corollaries. Our first corollary considers the
setting in which rebuilds are performed every Θ(𝑛/𝑥) insertions.
Corollary 27. Suppose 𝑅 = Θ(𝑛/𝑥). Then

𝐼 ≤ �̃�(𝑥1.5),

and, if all insertions/deletions in each rebuild window are on distinct keys, then

𝐼 ≥ Ω(𝑥1.5
√︀
log log 𝑥).

Moreover, 𝑄 = Θ(𝑥).

Our next corollary considers the setting in which rebuilds are performed every
𝑛/ polylog(𝑥) insertions. In this case, the hash table achieves nearly optimal scaling.

Corollary 28. If 𝑅 = 𝑛/ log𝑐 𝑥 for a sufficiently large positive constant 𝑐, then

𝐼 = Θ̃(𝑥).

Moreover, 𝑄 = Θ(𝑥).

Our final corollary considers the question of whether it is possible to select a value
of 𝑅 that allows for both 𝐼 and 𝑄 to be 𝑂(𝑥). The corollary establishes that no such
𝑅 exists.
Corollary 29. For every choice of 𝑅, there exists 𝑆 such that either 𝐼 = 𝜔(𝑥) or
𝑄 = 𝜔(𝑥).

82

Proof. If 𝑛/𝑅 = 𝜔(1), then (3.2) tells us that there exists a sequence of operations
for which 𝐼 is 𝜔(𝑥). On the other hand, if 𝑛/𝑅 = 𝑜(lg lg 𝑥), then (3.4) tells us that
there exists a sequence of operations for which 𝑄 is 𝜔(𝑥).

Up until now, we have been focusing on a hovering workload. Our final result
considers an arbitrary workload of operations, where the only constraint is that the
load factor never exceeds 1− 1/𝑥. Notice that if 𝑅 is small (i.e., 𝑅 = Θ(𝑛/𝑥)), then
ordered linear probing can potentially perform very poorly in the setting, since an
entire rebuild window can potentially consist of only insertions, none of which are
able to make use of tombstones, but all of which are performed at a load factor of
1−Θ(1/𝑥). Our next theorem establishes, however, that if 𝑅 is selected appropriately,
then the amortized performance of ordered linear probing is near the optimal 𝑂(𝑥)
that one could hope to achieve.
Theorem 2. Let 𝑐 be a sufficiently large positive constant. Consider an ordered lin-
ear probing hash table that uses tombstones for deletions, and that performs rebuilds
every 𝑅 = 𝑛/ log𝑐 𝑥 insertions. Finally, consider a sequence of operations 𝑆 that never
brings the load factor above 1− 1/𝑥.

Then the expected amortized cost of each insertion is �̃�(𝑥) and the expected cost
of each query/deletion is 𝑂(𝑥).

Proof. This follows from the same proof as Theorem 1, except using Proposition 24
instead of Corollary 22.

Remark 30. The proofs of Theorems 1 and 2 assume a fully random hash func-
tion, but it turns out this assumption is not needed. In particular, one can instead
use tabulation hashing, and modify the proofs in the preceding sections as follows:
analogues of Lemmas 3 and 5 follow directly from Theorem 8 of [305], and then all
of the Chernoff bounds throughout our proofs can be re-created using Theorem 1
of [305]. Note that each application of Theorem 8 and Theorem 1 of [305] introduces
a 1/ poly(𝑛) failure probability, but this is easily absorbed into the analysis.

83

84

Chapter 4

Graveyard Hashing, an Ideal
Linear-Probing Hash Table

In this chapter, we describe and analyze a new variant of linear probing, which we call
graveyard hashing. Graveyard hashing takes advantage of the key insight from the
previous chapter, which is that tombstones have the ability to significantly improve
insertion performance.

Description of graveyard hashing. Graveyard hashing uses different rebuild win-
dow sizes, depending on the load factor. If a rebuild is performed at a load factor of
1− 1/𝑥, then the next rebuild will be performed 𝑛/(4𝑥) operations later.1

Whenever the hash table is rebuilt, Graveyard hashing first removes all of the
tombstones that are currently present. It then spreads new tombstones uniformly
across the table. If the current load factor is 1 − 1/𝑥, then 𝑛/(2𝑥) tombstones are
created, with one tombstone assigned to each of the hashes {2𝑖𝑥 | 𝑖 ∈ [𝑛/(2𝑥)]}. The
purpose of these tombstones is to help all of the up to 𝑛/(4𝑥) insertions that occur
between the current rebuild and the next rebuild.

The insertion of tombstones during rebuilds is the only difference between grave-
yard hashing and standard ordered linear probing. Thus insertions, queries, and
deletions are implemented exactly as in a traditional ordered linear probing hash
table.

If desired, one can implement graveyard hashing so that each rebuild also dy-
namically resizes the table, ensuring that the load factor is always 1 − Θ(1/𝑥) for
some fixed parameter 𝑥. Note that, when resizing the table, the elements of the
table will need to be assigned to new hashes, and thus will need to be permuted.
In the RAM model, this can easily be done in linear time (and in place) using an
in-place radix sort. In the external-memory model, resizing can be implemented in
𝑂(𝑛/𝐵) block transfers (where 𝐵 is the external memory block size) using Larson’s
block-transfer efficient scheme for performing partial expansions/contractions on a

1Note that graveyard hashing counts both insertions and deletions as part of the length of a
rebuild window.

85

hash table [233] (this technique has also been used in past work on external-memory
hashing, see [216,302]).

Analysis of graveyard hashing. To perform the analysis, we will need one last
balls-and-bins lemma:
Lemma 31. Suppose that 𝜇𝑛 balls are placed into 𝑛 bins at random. Let 𝑥 > 1,
𝑘 ≥ 1, and 𝑗 ∈ [𝑛]. With probability 1 − 2−Ω(𝑘), for every interval 𝐼 ⊆ [𝑛] that
contains 𝑗, the number of balls in the bins 𝐼 is at most (1 + 1/𝑥)|𝐼|𝜇+ 𝑥𝑘.

Proof. Suppose there is some interval 𝐼 satisfying 𝑖 ∈ 𝐼 such that the number of balls
in the interval 𝐼 is greater than (1+ 1/𝑥)|𝐼|𝜇+ 𝑥𝑘. If 𝐼 = [𝑗0, 𝑗1] for some 𝑗0, 𝑗1, then
we can break 𝐼 into two sub-intervals 𝐼1 = [𝑗0, 𝑗] and 𝐼2 = (𝑗, 𝑗1]. Since 𝐼 contains at
least (1 + 1/𝑥)|𝐼|𝜇+ 𝑥𝑘 balls, at least one of the two subintervals 𝐼𝑞 ∈ {𝐼1, 𝐼2} must
contain at least

(1 + 1/𝑥)|𝐼𝑞|𝜇+ 𝑥𝑘/2

balls. However, by Lemma 5, the probability of any such subinterval 𝐼𝑞 existing is at
most 2−Ω(𝑘).

Corollary 32. Suppose that 𝜇𝑛 balls are placed into 𝑛 bins at random. Let 𝑥 > 1,
𝑘 ≥ 1, and 𝑗 ∈ [𝑛]. With probability 1−2−Ω(𝑘), for every interval 𝐼 ⊆ [𝑛] that contains
𝑗 and has size |𝐼| ≥ 𝑥2𝑘, the number of balls in the bins 𝐼 is at most (1 + 1/𝑥)|𝐼|𝜇.

Proof. This follows by applying Lemma 31 with 𝑥′ = 𝑥/2 and 𝑘′ = 𝑘𝑥/2.

We now turn our attention to analyzing graveyard hashing. As in the previous
sections, it will be easier to analyze the displacement of an insertion rather than
directly analyzing the running time of each insertion. Recall that the displacement
𝑑𝑢 of an insertion 𝑢 is 𝑖− ℎ(𝑢) where 𝑖 is the hash of the tombstone that 𝑢 uses, if 𝑢
uses a tombstone, and 𝑖 the position of the free slot that 𝑢 uses, if 𝑢 uses a free slot.

The next lemma bounds the difference between displacement and running time.
The fact that the rebuild windows for graveyard hashing are so small (only 𝑛/(4𝑥)
operations) ends up allowing for an especially simple argument.
Lemma 33. Consider the insertion of an element 𝑢. Let 𝑑 denote the displacement
of the insertion, and 𝑡 denote the running time. Then, for any 𝑟 ≥ 1,

Pr[𝑡− 𝑑− 1 ≥ 𝑟𝑥] ≤ exp(−Ω(𝑟)).

Proof. We can assume without loss of generality that 𝑢 makes use of some tombstone
𝑣 (rather than a free slot), since otherwise the lemma is trivial. The displacement
of 𝑢 is therefore given by 𝑑 = ℎ(𝑣) − ℎ(𝑢) and the running time of 𝑢 is given by
𝑡 = 𝑘 − ℎ(𝑢) + 1, where 𝑘 is the position in which 𝑣 resides. Thus

Pr[𝑡− 𝑑− 1 ≥ 𝑟𝑥] = Pr[𝑘 − ℎ(𝑣) ≥ 𝑟𝑥],

86

which means that we want to show that

Pr[𝑘 − ℎ(𝑣) ≥ 𝑟𝑥] ≤ exp(−Ω(𝑟)).

For each element/tombstone 𝑣′ in the run containing position ℎ(𝑢), define the
placement-error 𝑒𝑣′ to be 𝑘′ − ℎ(𝑣′), where 𝑘′ is the position in which 𝑣′ resides (at
the moment of time prior to the insertion 𝑢).

We wish to show that 𝑒𝑣 < 𝑟𝑥, but we must be careful about the fact that 𝑣 is
partially a function of the randomness of the hash table. In order to bound 𝑒𝑣, we
assume that 𝑣 is selected adversarially, and instead bound the quantity

𝛽 = max{𝑒𝑣′ | 𝑣′ is in the same run as 𝑢, and ℎ(𝑣′) ≥ ℎ(𝑢)}.

We cannot afford to simply union bound over the different options for 𝑣′ here; instead
we must make use of the fact that the values of 𝑒𝑣′ are closely correlated for different
keys 𝑣′ in the same run.

Let 𝑣′ be the element for which 𝛽 = 𝑒𝑣′ . Let 𝑝 be the position of the left-
most element in 𝑢’s run. All of the elements/tombstones that reside in positions
𝑝, . . . , ℎ(𝑣′) + 𝑒𝑣′ must have hashes in [𝑝, ℎ(𝑣′)]. The number of elements/tombstones
(at the time prior to 𝑢’s insertion) that hash to the interval 𝐼 = [𝑝, ℎ(𝑣′)] must there-
fore be at least |𝐼| + 𝑒𝑣′ . In contrast, the expected number of elements/tombstones
that hash into the interval 𝐼 is that most |𝐼|. Thus there are at least 𝑒𝑣′ more ele-
ment/tombstones that hash into 𝐼 then are expected. By Lemma 31, it follows that
Pr[𝑒𝑣′ ≥ 𝑟𝑥] ≤ exp(−Ω(𝑟)).

Graveyard hashing is designed so that there are always copious tombstones for
insertions to make use of. Note, in particular, that each rebuild window begins with
𝑛/(2𝑥) tombstones but only contains at most 𝑛/(4𝑥) insertions. This allows for the
following bound on displacement.
Lemma 34. Consider an insertion 𝑢. The displacement 𝑑 of 𝑢 satisfies

Pr[𝑑 ≥ 𝑟𝑥] ≤ exp(−Ω(𝑟))

for all 𝑟 > 1.

Proof. Call a tombstone primitive if it was inserted during the rebuild prior to the
current rebuild window. Let 𝑇 be the set of primitive tombstones present when 𝑢 is
inserted. Let

𝑗0 = max{ℎ(𝑣) | 𝑣 ∈ 𝑇, ℎ(𝑣) < ℎ(𝑢)}

and
𝑗1 = min{ℎ(𝑣) | 𝑣 ∈ 𝑇, ℎ(𝑣) ≥ ℎ(𝑢)}.

The displacement 𝑑 is at most 𝑗1 − ℎ(𝑢) ≤ 𝑗1 − 𝑗0. To complete the proof, we will
bound the probability that 𝑗1 − 𝑗0 ≥ 𝑟𝑥.

At the beginning of the rebuild window, there were 𝑗1−𝑗0
2𝑥

−1 primitive tombstones

87

with hashes in the range 𝐼 = (𝑗0, 𝑗1); denote the set of these tombstones by 𝐿. By
the time 𝑢 is inserted, all of the tombstones 𝐿 have been used by insertions (this is
by the definition of 𝑗0 and 𝑗1). Since there is still a primitive tombstone with hash 𝑗0,
the insertions that used up 𝐿 must have all had hashes at least 𝑗0 + 1. Thus, during
the current rebuild window, there have been at least |𝐿| = 𝑗1−𝑗0

2𝑥
− 1 insertions that

hashed into the interval 𝐼 = (𝑗0, 𝑗1).
Recall, however, that each rebuild window consists of only 𝑛/(4𝑥) operations. The

expected number of insertions that hash into 𝐼 is therefore a most 𝑗1−𝑗0
4𝑥

.
In summary, the only way have 𝑗1−𝑗0 ≥ 𝑟𝑥 is if (1) there is an interval 𝐼 containing

ℎ(𝑢) that satisfies |𝐼| ≥ 𝑟𝑥−2, and (2) the number 𝑞 of insertions (during the current
rebuild window) that hash into 𝐼 is a constant factor larger than the expected number
E[𝑞] of such insertions. To bound the probability of such an 𝐼 existing, we partition
the slots of the hash table into “bins” of size 𝑥, and treat keys inserted during the
rebuild window as balls that each hash to a bin. In order for 𝐼 to exist, there must be
a contiguous subsequence of Θ(𝑟) bins such that the interval of hashes covered by the
bins contains ℎ(𝑢), and such that the bins contain a constant factor more balls than
expected. By Corollary 32, the probability of such a subsequence of bins existing is
that most exp(−Ω(𝑟)).

Combining the previous lemmas, we can analyze the running time of graveyard
hashing.
Theorem 35. Consider a graveyard hash table. For each insertion/query/deletion,
if the operation is performed at some load factor of 1− 1/𝑥 then the operation takes
expected time 𝑂(𝑥), and incurs amortized time 𝑂(𝑥) for rebuilds.

Proof. Since graveyard hashing uses small rebuild windows (i.e., of size 𝑛/(4𝑥)), we
can analyze queries by ignoring the deletions in the rebuild window, and applying
the classic 𝑂(𝑥) bound for query time in an insertion-only table (Proposition 7).
Deletions of keys 𝑢 take the same amount of time that a query for that key would
have, so deletions also take expected time 𝑂(𝑥). To analyze insertions, we can apply
Lemmas 33 and 34, which together bound the expected time by 𝑂(𝑥).

Finally, we analyze the amortized cost of rebuilds per operation. If a rebuild
window starts at a load factor of 1 − 1/𝑥, then the next rebuild is performed after
Θ(𝑛/𝑥) operations, and all of those operations are performed at load factors 1 −
Θ(1/𝑥). The rebuild can be performed in time Θ(𝑛) and thus the amortized cost per
operation is Θ(𝑥).

Remark 36. The proof of Theorem 35 assumes a fully random hash function, but
this assumption is not necessary. The theorem continues to hold if we use either
tabulation hashing or 5-independent hashing. In particular, one can use Equation
(23) from [305] as a substitute for Lemma 31, and then re-create all of the proofs
above without modification.

We conclude the section by analyzing graveyard hashing in the external-memory
model [42].

88

Theorem 37. Consider the external memory model with 𝐵 = 𝑟𝑥 for some 𝑟 ≥ 1 and
𝑀 = Ω(𝐵). Graveyard hashing can be implemented to offer the following guarantee
on any sequence of operations. The load factor of the table is maintained to be
1− 1/Θ(𝑥) at all times, and each operation incurs

1 +𝑂(1/𝑟)

block transfers in expectation. Furthermore, the amortized block-transfer cost (per
operation) of rebuilds is 𝑂(1/𝑟).

Proof. By Theorem 35, the expected time taken by a given operation is 𝑂(𝑥). It
follows that the expected number of block boundaries that are crossed by the oper-
ation is 𝑂(𝑥/𝐵) = 𝑂(1/𝑟). Thus the expected number of block transfers incurred is
𝑂(1/𝑟).

Next we analyze the cost of rebuilds. Each rebuild window contains Θ(𝑛/𝑥)
operations at a load factor of 1−Θ(1/𝑥), and, as discussed earlier, the rebuild at the
end of the window can be implemented with 𝑂(𝑛/𝐵) block transfers. This implies
the desired bound of 𝑂(1/𝑟) on amortized rebuild cost.

Corollary 38. If 𝑥 = 𝑜(𝐵), then the amortized expected number of block transfers
per operation is 1 + 𝑜(1).

89

Part II

Dynamic Sorting Revisited: The
Power of History Independence

90

Chapter 5

Introduction

The online dynamic sorting problem, which in the theoretical literature is more
widely referred to as the list-labeling problem, is one of the most basic and
well-studied algorithmic primitives in data structures, with an extensive litera-
ture spanning upper bounds [47, 58, 73, 79, 88–90, 193, 213, 214, 219, 364–366], lower
bounds [120, 150–152, 319, 372], variants [46, 47, 70, 90, 148, 149, 193, 314], and open-
problem surveys [192, 319]. The problem has been independently re-discovered
in many different contexts [46, 193, 314, 363], and it has found extensive applica-
tions to areas such as ordered maintenance [72, 73, 88, 149], cache-oblivious data
structures [79, 80, 84, 89, 114], dense file maintenance [363–366], applied graph al-
gorithms [238, 240, 303, 355–357], etc. (For a detailed discussion of related work and
applications, see Section 5.2.)

The list-labeling problem was originally formulated [214] as follows. An algorithm
must store a set of 𝑛 elements (where 𝑛 changes over time) in sorted order in an array
of 𝑚 ≥ 𝑛 slots. Elements are inserted and deleted over time, with each insertion
specifying the new element’s rank 𝑟 ∈ {1, 2, . . . , 𝑛 + 1} among the other elements
that are present (e.g., inserting at rank 1 means that the inserted element is the new
smallest element). To keep the elements in sorted order in the array, the algorithm
must sometimes move elements around. The cost of an algorithm is the number of
elements moved during the insertions/deletions.1

The list-labeling problem is well understood in the regime where 𝑚 ≫ 𝑛. In
the pseudo-exponential regime, when 𝑚

𝑛
= 2𝑛

Ω(1) , it is possible to achieve 𝑂(1)
amortized cost per operation [58]. In the polynomial regime, when 𝑚

𝑛
= 𝑛Θ(1), the

amortized cost becomes 𝑂(log 𝑛) [46, 193, 229]. These bounds are known to be tight
for both deterministic and randomized algorithms [57,58,121].

It has remained an open problem, however, what happens in the linear regime,
where 𝑚 = (1 + 𝜀)𝑛 for some 𝜀 = Θ(1). In 1981, Itai, Konheim, and Rodeh [214]
showed how to achieve amortized cost 𝑂(log2 𝑛), and posed as an open question

1To accommodate the many ways in which list labeling is used, some works describe the problem
in a more abstract (but equivalent) way: the list-labeling algorithm must dynamically assign each
element 𝑥 a label ℓ(𝑥) ∈ {1, 2, . . . ,𝑚} such that 𝑥 ≺ 𝑦 ⇐⇒ ℓ(𝑥) < ℓ(𝑦), and the goal is to minimize
the number of elements that are relabeled per insertion/deletion—hence the name of the problem.

91

whether any algorithm could do better. Despite a great deal of subsequent work
on alternative solutions (including deterministic, randomized, and deamortized algo-
rithms) for the same problem [70,73,88,90,213,219,364–366], the bound of 𝑂(log2 𝑛)
has remained unimproved for four decades.

Starting in 1990, there has been a long line of work towards establishing a matching
Ω(log2 𝑛) lower bound [120,121,150–152]. It is known that any deterministic algorithm
requires Ω(log2 𝑛) amortized cost per insertion [120]. And the same lower bound
holds for smooth algorithms, where the relabelings are restricted to evenly rebalance
elements across a contiguous subarray [152]. This second lower bound is surprisingly
strong: it applies even to randomized algorithms and even to the offline problem,
where the entire sequence of operations is known a priori. However, the best general
lower bound remains Ω(log 𝑛) [121].

These lower bounds tell us that, if an algorithm is to beat the 𝑂(log2 𝑛) bound,
then the algorithm must be both randomized and non-smooth. Whether or not any
such algorithm is possible has remained the central open question [120, 121, 150–
152, 214] in this research area (see also discussion of the problem in open-problem
surveys and textbooks [192, 259, 319]). Several sources [150–152] have conjectured
that Θ(log2 𝑛) cost is optimal in general.

Chapter 6. Breaking the log2 𝑛 Barrier

We present a randomized list-labeling algorithm that achieves expected cost
𝑂(log3/2 𝑛) per insertion/deletion in the linear regime (Corollary 53). In breaking
through the log2 𝑛 barrier, we establish that there is a fundamental gap between de-
terministic and randomized algorithms for online list labeling. Our result is the first
asymptotic improvement in the linear regime in the 40-year history of the problem.

The original 𝑂(log2 𝑛) upper bound by Itai et al. [214] also extends to the dense
regime of 𝜀 = 𝑜(1), where the bound on amortized cost becomes 𝑂(𝜀−1 log2 𝑛) [47,
103, 372]. Extending our algorithm to the same regime, we achieve expected cost
𝑂(𝜀−1 log3/2 𝑛) (Theorem 40).

Applying our result to the insertion-only setting, the array can be filled from
empty to full (i.e., 𝑛 = 𝑚) in total expected time 𝑂(𝑛 log2.5 𝑛) (Corollary 54). This
improves over the previous state of the art of 𝑂(𝑛 log3 𝑛), which was known to be
optimal for deterministic algorithms [120]—again we have a separation between what
can be achieved with deterministic and randomized algorithms.

A surprising aspect of our results is how they contrast with the polynomial regime
𝑚 = 𝑛1+Θ(1), where randomized and deterministic algorithms are asymptotically
equivalent [57,58,121]. Our final upper-bound result considers a continuum between
these regimes, where 𝑚 = 𝜔(𝑛) ∩ 𝑛𝑜(1). In this sparse regime there is a folklore
bound [46, 193, 229] of 𝑂

(︁
log2 𝑛

log(𝑚/𝑛)

)︁
, which continuously deforms between 𝑂(log2 𝑛)

for the linear regime and 𝑂(log 𝑛) for the polynomial regime. Using our techniques

92

(Theorem 57), we achieve expected cost

𝑂

(︃
log3/2 𝑛√︀
log(𝑚/𝑛)

)︃
.

Thus we achieve asymptotic improvements for list labeling for all 𝑚 = 𝑛1+𝑜(1).

An unexpected tool: history independence. One research area that our al-
gorithms build directly upon is the study of history-independent data structures: a
data structure is said to be history independent [263,279] if its current state reveals
nothing about the history of the past operations beyond the current set of elements
that are present.

History independence is typically viewed as a security guarantee, with the in-
tent being to minimize the risk incurred by a security breach. Research on history-
independent data structures [104,118,195,196,208,263,278,279] (as well as on history-
independent list labeling [70] specifically) has focused on history independence as an
end goal, with the question being whether history independence can be achieved with-
out any increase in running time.

We find that, in the context of list labeling, history independence is actually a
valuable algorithmic tool for building faster randomized data structures. History
independence allows for us to have a data structure with vulnerabilities (i.e., certain
spots where an insertion would be expensive) while (1) keeping those vulnerabilities
hidden from the adversary; and (2) preventing the adversary from having any control
over where those vulnerabilities appear. This simple paradigm plays an important
role in allowing our randomized data structures to bypass the log2 𝑛 barrier.

Chapter 7. A Matching Lower Bound for History-
Independent Solutions

Finally, we show that our bounds in the dense regime are asymptotically optimal
for any history-independent data structure: there exists a positive constant 𝑐 such
that, for all 1/𝑛1/3 ≤ 𝜀 ≤ 1/𝑐, the expected insertion/deletion cost when 𝑚 = (1 +
𝜀)𝑛 is necessarily at least Ω(𝜀−1 log3/2 𝑛) for any history-independent data structure
(Theorem 60).

This means that, if there exists a randomized data structure that achieves better
bounds, then the data structure must fundamentally be adaptive in how it responds
to the history of the operations being performed. Of course, by being adaptive, such a
data structure would also implicitly surrender the structural anonymity that history
independence offers, revealing information about where the “hotspots” are within the
data structure. We conjecture that, in general, our bounds are optimal—proving or
disproving this conjecture remains an enticing open problem.

93

The rest of the introduction is split into two parts. First, we present preliminaries
and technical background in Section 5.1. Then, in Section 5.2, we give an expanded
overview of past work.

5.1 Preliminaries and Technical Background

In this section, we (1) formally define the list-labeling problem, (2) define history
independence, (3) outline the classical 𝑂(log2 𝑛) solution [214], and (4) outline a
more recent history-independent variation on that solution [70].

The list-labeling problem. A list-labeling data structure stores a dynamically
changing set of size 𝑛 ≤ 𝑚 in an array of 𝑚 slots. It supports two operations:

• Insert(𝑟), 𝑟 ∈ {1, 2, . . . , 𝑛 + 1}: This operation adds an element whose rank
is 𝑟. This increments 𝑛 and also increments the ranks of each of the elements
whose ranks were formerly in {𝑟, . . . , 𝑛}.

• Delete(𝑟), 𝑟 ∈ {1, 2, . . . , 𝑛}: This operation removes the element whose rank
is 𝑟. This decrements 𝑛 and also decrements the ranks of each of the elements
whose ranks were formally in {𝑟 + 1, . . . , 𝑛}.

The list-labeling algorithm must maintain the invariant that the elements appear in
sorted order (by rank) within the array. The cost of an insertion/deletion is the
number of elements that are moved within the array during the insertion/deletion
(including the element being inserted/deleted). In the case where 𝑛 = Ω(𝑚), we will
further guarantee (for our upper bounds) that the maximum gap between any two
consecutive elements in the array is at most 𝑂(1) positions—this extra guarantee
is often required for applications of list labeling in which algorithms perform range
queries within the array, e.g., [79, 80,303,356,357].

We will typically use an additional parameter 𝜀 such that either 𝑛 ≤ (1− 𝜀)𝑚 or
𝑚 ≥ (1+𝜀)𝑛 (the specific convention that we follow will differ from section to section
to optimize for simplifying the algebraic manipulation in each section).

From the perspective of the list-labeling data structure, the elements that it stores
are black boxes—the only information that the data structure knows about its ele-
ments is their sorted order. This allows for list labeling to be used in applications
where the elements are from arbitrary universes.

Finally, it is important to emphasize that the insertions/deletions are performed
by an oblivious adversary, who does not get to see the random decisions made by
the list-labeling data structure. If the adversary were to be adaptive, then, trivially,
no randomized list-labeling data structure could incur expected cost any better than
the worst-case cost of the best deterministic list-labeling data structure.

History independence. A data structure is said to be history independent
[70,104,118,195,196,208,263,278,279] if, given access to the current state of the data

94

structure, the only information that an adversary can deduce is the current set of
elements; that is, the adversary gains no information about the history of operations
performed. In the list-labeling data structure the current set of elements is specified
only by their relative ranks, so the only information that an adversary can deduce is
the number of elements.

History independence plays an important supporting role in our results. Indeed,
although history independence does not on its own improve the asymptotics of list
labeling, it does create a natural abstraction for how to separate the behavior of the
data structure that we are designing from the actions of the user.

There are several basic mathematical properties of history independence that will
be useful in both our upper and lower bounds. Define the array configuration of
a list-labeling data structure to be the boolean vector in {0, 1}𝑚 indicating which
𝑛 positions of the array contain elements. We have the following properties of a
history-independent data structure for list labeling:
Property 39.

(a) Whenever the array contains 𝑛 elements, its array configuration 𝐴 satisfies
𝐴 ∼ 𝒞𝑛,𝑚, where 𝒞𝑛,𝑚 is some probability distribution over array configurations.

(b) Whenever an insertion is performed at rank 𝑟 ∈ {1, 2, . . . , 𝑛+1} in an array with
𝑛 elements, the array configurations 𝐴0 and 𝐴1 before and after the insertion
satisfy (𝐴0, 𝐴1) ∼ ℐ𝑛,𝑚,𝑟, where ℐ𝑛,𝑚,𝑟 is a joint distribution between 𝒞𝑛,𝑚 and
𝒞𝑛+1,𝑚.2

(c) Whenever a deletion is performed at rank 𝑟 ∈ {1, 2, . . . , 𝑛+1} in an array with
𝑛+1 elements, the array configurations 𝐴1 and 𝐴0 before and after the deletion
satisfy (𝐴0, 𝐴1) ∼ 𝒟𝑛,𝑚,𝑟, where 𝒟𝑛,𝑚,𝑟 is a joint distribution between 𝒞𝑛,𝑚 and
𝒞𝑛+1,𝑚.

These properties imply that the (probability distribution on the) behavior of the
algorithm on any given operation is fully determined by 𝑛, 𝑚, the operation (insertion
or deletion), and the rank 𝑟 of the element being inserted/deleted. In our upper
bounds, we will further have that 𝒟𝑛,𝑚,𝑟 = ℐ𝑛,𝑚,𝑟; we call any list-labeling data
structure with this property insertion/deletion symmetric.

5.1.1 The Classical Solution and its History-Independent Ana-
logue

List labeling with weight-balanced trees. The original solution to list label-
ing [214], due to Itai et al. [214] in 1981, can be described in terms of weight-balanced
trees [193, 288, 289]. For brevity, we will describe the solution here for the linear
regime, where 𝑚 = (1 + Θ(1))𝑛, but the same solution directly generalizes to all
regimes from dense (𝑛 = (1− 𝜀)𝑚) to polynomial (𝑚 = 𝑛1+Θ(1)).

2A probability distribution 𝒳 is a joint distribution between distributions 𝒜 and ℬ if (𝐴,𝐵) ∼
𝒳 =⇒ 𝐴 ∼ 𝒜, 𝐵 ∼ ℬ.

95

Consider an array of size 𝑚, and impose a tree structure on it, where the root node
represents the entire array, the nodes in the 𝑖-th level of the tree represent disjoint
sub-arrays of size 𝑚/2𝑖−1, and the leaf nodes represent sub-arrays of size Θ(log 𝑛).
We keep the tree tightly weight balanced, meaning that, for any pair of sibling nodes
𝑥 and 𝑦, their densities are always within a 1 ± 𝑂(1/ log 𝑛) factor of each other. In
particular, whenever an insertion or deletion breaks this invariant for some pair of
siblings 𝑥 and 𝑦, we take the elements in the sub-array 𝑥 ∪ 𝑦 and rearrange them to
be distributed evenly across that sub-array.3

This tight weight balancing ensures that all of the nodes in the tree have densities
that are within a factor of (1 +𝑂(1/ log 𝑛))𝑂(log𝑛) = 𝑂(1) of each other. By selecting
the constants in the algorithm appropriately, one can ensure that every leaf has more
slots than it has elements, which guarantees the correctness of the data structure. On
the other hand, in order to maintain such tight weight balancing, one must rebuild
nodes a factor of 𝑂(log 𝑛) more often than in a standard weight-balanced binary
search tree [193,288,289], leading to an amortized cost of 𝑂(log2 𝑛).

Intuitively, the above data structure would seem to be the asymptotically optimal
approach to maintaining tightly-balanced densities within an array—the known lower
bounds for list labeling [120,150–152] confirm that this is the case for both determin-
istic and smooth data structures. The results, however, reveal that it is not the case
for randomized data structures. Randomization fundamentally reduces the cost to
maintain a tightly weight-balanced tree.

History-independent list labeling. To understand how history independence can
be achieved in the context of list labeling, it is helpful to first understand it in the
context of balanced binary search trees. The classic example of a balanced binary tree
with a history-independent topology is the randomized binary search tree [49,325]
(or, similarly, the treap [49,325]), which maintains as an invariant that, at any given
moment, the structure of the tree is random (i.e., that within each subtree, the
root of that subtree is a random element). This can be achieved with reservoir
sampling [49, 70, 242, 325, 348]—in particular, whenever a new item is added to a
subtree of (former) size 𝑟, the element becomes the new root with probability 1/(𝑟+1)
(in which case the subtree is rebuilt from scratch). This simple approach yields an
expected time of 𝑂(log 𝑛) per operation.

As shown by Bender et al. [70], the same basic approach can be used to achieve
history-independent list labeling. Now, the tree is random across all tightly balanced
trees—that is, within each subtree 𝑇 containing elements 𝑥1 < 𝑥2 < · · · < 𝑥𝑘, the
root is a random element 𝑥𝑖 of those satisfying |𝑖 − 𝑘/2| ∈ 𝑂(𝑘/ log 𝑛). As before,
this structure can be maintained using reservoir sampling. However, the restriction
that the tree must be tightly balanced increases the frequency with which subtrees
are rebuilt, so that the expected cost per operation becomes 𝑂(log2 𝑛), just as for the
standard solution to list labeling.

3This approach is both deterministic and smooth, and thus consistent with the assumptions made
by lower bounds [57,150–152].

96

5.2 Related work

Formulations and reformulations. The list-labeling problem has been indepen-
dently formulated several times and under various names. It was first studied by
Itai, Konheim and Rodeh [214] as a sparse table scheme for implementing priority
queues. Willard [363] considered the file-maintenance problem, where records are in-
serted and deleted in a sequentially ordered file. Dietz [149] formulated the similar
order-maintenance problem of maintaining order in a linked list with efficient inser-
tions. Andersson [46] and Andersson and Lai [47] studied a version of the problem
in the context of balanced binary search trees, which Galperin and Rivest [193] inde-
pendently studied under the name scapegoat trees. Raman [314] posited an analogous
problem related to building locality preserving dictionaries.

This problem has mainly been studied in four regimes for the size 𝑚 of the label
array: dense (𝑚 = (1+ 𝑜(1))𝑛), linear (𝑚 = (1+Θ(1))𝑛), polynomial (𝑚 = 𝑛1+Θ(1)),
and superpolynomial (𝑚 = 𝑛𝜔(1)).

Upper and lower bounds in the linear regime. In the linear regime, Itai,
Konheim and Rodeh [214], first proved that items can be inserted with 𝑂(log2 𝑛)
amortized cost. Various subsequent works have made improvements or simplifications
to the algorithms achieving this cost, but the upper bound has remained unchanged.
Willard [364–366] deamortized this result to a 𝑂(log2 𝑛) worst-case cost. Bender,
Cole, Demaine, Farach-Colton and Zito [73], Bender, Fineman, Gilbert, Kopelowitz
and Montes [88] and Katriel [219] provided simplified algorithms for this result for
the order-maintenance problem. Itai and Katriel [213] additionally simplified the
algorithm for the amortized upper bound.

The list-labeling problem where 𝑚 = (1 + 𝜀)𝑛, and where the gap between any
two inserted items is 𝑂(1) is often called the packed-memory array problem, for which
bounds of 𝑂(𝜀−1 log2 𝑛) are known [78, 79, 89]. Bender and Hu [90] provided an
adaptive packed-memory array algorithm, that is, it matches the 𝑂(log2 𝑛) worst
case insertion cost in the linear regime while achieving cost of 𝑂(log 𝑛) on certain
common classes of instances. Bender, Berry, Johnson, Kroeger, McCauley, Phillips,
Simon, Singh and Zage [70] presented a history-independent packed-memory array
which again matches the existing upper bound in the linear regime.

Dietz and Zhang [152] proved a lower bound on insertion costs of Ω(log2 𝑛) amor-
tized per insertion in the linear regime for the natural class of smooth algorithms,
where the relabelings are restricted to evenly rebalance elements across a contigu-
ous subarray. Bulánek, Koucký and Saks. [120] showed a Ω(log2 𝑛) lower bound for
deterministic algorithms in the linear regime, and thus proved that the best known
upper bounds were tight for deterministic algorithms. The best general lower bound
is Ω(log 𝑛) in the linear regime [121].

Other upper bounds. In the dense setting, Andersson and Lai [47], Zhang [372],

97

and Bird and Sadnicki [103] showed an 𝑂(𝑛 log3 𝑛) upper bound for filling an array
from empty to full for 𝑚 = 𝑛. For arrays of polynomial size, it was known as
a folklore algorithm that an amortized 𝑂(log 𝑛) insertion cost can be achieved by
modifying the techniques in [214]. Kopelowitz [229] extended this to a worst case
upper bound. This bound was also matched in the balanced search tree setting [46,
193]. In the superpolynomial array regime, Babka, Bulánek, Cunát, Koucký and
Saks [58] showed an algorithm with amortized 𝑂(log 𝑛/ log log𝑚) cost when 𝑚 =

Ω(2log
𝑘 𝑛), which implies constant amortized cost in the pseudo-exponential regime of

𝑚 = 2𝑛
Ω(1) . Devanny, Fineman, Goodrich and Kopelowitz [148] studied the online

house numbering problem, which is similar to the list-labeling problem, except with
the objective to minimize the maximum number of times an element is relabeled.

Other lower bounds. Dietz and Zhang [152] proved a lower bound of Ω(log 𝑛)
per insertion in the polynomial regime for smooth algorithms. Bulánek, Koucký and
Saks [120] showed an Ω(𝑛 log3 𝑛) lower bound for 𝑛 insertions into an initially empty
array of size 𝑚 = 𝑛 + 𝑛1−𝜀. Dietz, Seiferas and Zhang [151] proved a lower bound
of Ω(log 𝑛) in the polynomial regime for general deterministic algorithms, with a
simplification by Babka, Bulánek, Cunát, Koucký, and Saks [57]. Bulanek, Koucký
and Saks [121] also proved that the Ω(log 𝑛) lower bound for the polynomial regime
extends to randomized algorithms. In the superpolynomial regime, Babka, Bulánek,
Cunát, Koucký and Saks [58] showed a lower bound of Ω

(︁
log𝑛

log log𝑚−log log𝑛

)︁
for 𝑚 from

𝑛1+𝐶 to 2𝑛, which reduces to a bound of Ω(log 𝑛) for 𝑚 = 𝑛1+𝐶 .

Theoretical Applications. Applications of list labeling include the diverse motivat-
ing problems under which it was first studied, such as priority queue implementation,
ordered file maintenance, etc. Hofri and Konheim [210] studied a similar array struc-
ture for use in a control density array, a sparse table that supports search, insert and
deletion by keys. Fagerberg, Hammer and Meyer [174] used upper bounds from [214]
for their rebalancing scheme, which maintains optimal height in a balanced B-tree.

Bender, Demaine and Farach-Colton [79] used the packed-memory array in their
cache-oblivious B-tree algorithm, so our result directly implies an improvement in that
scheme. Specifically, insertions into their B-tree take 𝑂(log𝐵 𝑁 + (log2𝑁)/𝐵) I/Os,
and using our list-labeling algorithm, this is improved to 𝑂(log𝐵 𝑁 + (log3/2𝑁)/𝐵)
I/Os. Brodal, Fagerberg and Jacob [114] and Bender, Duan, Iacono and Wu [80] inde-
pendently simplified the cache-oblivious B-tree algorithm. Bender, Fineman, Gilbert
and Kuszmaul [89] presented concurrent cache-oblivious B-trees for the distributed
setting. Bender, Farach-Colton and Kuszmaul [84] described cache-oblivious string
B-trees for improved performance on variable length keys, compressed keys, and range
queries. All of these cache-oblivious algorithms use packed-memory arrays.

In their results on the controller problem for managing global resource consump-
tion in a distributed network, Emek and Korman [169] reduced the list-labeling prob-
lem to prove their lower bounds. Bender, Cole, Demaine, Farach-Colton and Zito [73]
also applied list labeling lower bounds to the problem of maintaining a dynamic

98

ordered set which supports traversals in the cache-oblivious and sequential-access
models. Kopelowitz [229] studied the predecessor search on dynamic subsets of an or-
dered dynamic list problem, which combines the order-maintenance problem with the
predecessor problem of maintaining dynamic sets which support predecessor queries.
Nekrich used techniques for linear list labeling from [214] in data structures support-
ing various problems related to querying points in planar space, such as orthogonal
range reporting [282, 283], the stabbing-max problem [285], and the related problem
of searching a dynamic catalog on a tree [284]. Mortensen [272] similarly considered
applications to the orthogonal range and dynamic line segment intersection reporting
problems.

Practical Applications. Additionally, a variety of practical applications use the
packed-memory array as an algorithmic component. Durand, Raffin and Faure [168]
proposed using a packed-memory array to maintain sorted order during particle move-
ment simulations for efficient searching. Khayyat, Lucia, Singh, Ouzzani, Papotti,
Quiané-Ruiz, Tang and Kalnis [222] applied it to handle dynamic database updates
in their inequality join algorithms. Toss, Pahins, Raffin and Comba [342] presented
a packed-memory quadtree, which supports large streaming spatiotemporal datasets.
De Leo and Boncz [239] presented the rewired memory array, an implementation
of a packed-memory array which improves on its practical performance. Several
works [238, 240, 303, 355–357] implemented parallel packed-memory arrays for the
purpose of storing dynamic graphs with fast updates and range queries. Assessing
whether our results can be used to obtain practical speedups for these applications
remains an interesting direction for future work.

Related work on history independence. History independence has been studied
for data structures in both internal and external memory models [70,104,118,195,196,
208,263,278,279]. Even prior to the formalization of history independence [263,279]
in the late 1990s, there were several notable early works on hashing and search trees
that implicitly achieved history-independent topologies [45, 48, 49, 310–312, 331, 338].
The notion of history independence studied in is sometimes referred to as weak history
independence—although if we extend our problem statement in order to give items
distinct ids, then our solutions become strongly history independent as well. For a
survey of history independence, see recent work [200] by Goodrich, Kornaropoulos,
Mitzenmacher and Tamassia.

History independence is typically treated as a security property: the goal is to
minimize the amount of information that is leaked if an adversary sees the internals
of the data structure. To the best of our knowledge, the results in Chapter 6 are the
first to use techniques from history independence in order to achieve faster algorithms
than were previously possible. We will see in subsequent parts of the thesis that this
is not a fluke—indeed, the same design pattern will allow for us to make problem on
several other seemingly unrelated and well-studied problems.

99

100

Chapter 6

Breaking the 𝑂(log2 𝑛) Barrier

In this chapter, we present a randomized list-labeling solution that, in the regime
of 𝑚 = 𝑂(𝑛), achieves 𝑂(log1.5 𝑛) expected cost per insertion/deletion. We begin
with Section 6.1, which gives an intuitive overview of our technical approach. A key
technical idea will be to control the local density of the array via a random process that
we call a Zeno random walk—we describe and analyze this random walk in Section
6.2. Section 6.3 then gives our (history-independent) list-labeling data structure and
uses the bounds on Zeno random walks to analyze it. This leads to the following
theorem:
Theorem 40. Let 𝜀 ∈ (0, 1), and suppose 𝑚 ≥ (1 + 𝜀)𝑛, where 𝑚 is a static value
while 𝑛 changes dynamically. The shifted Zeno embedding on an array of size 𝑚 with
𝑛 elements incurs expected cost 𝑂(𝜀−1 log3/2 𝑛) per insertion/deletion.

Finally, Section 6.4 gives a black-box reduction for transforming dense list-labeling
solutions into sparse list-labeling solutions. Thus our results in the dense/linear
regime also imply new results in the sparse regime.

6.1 Technical Overview

In this section, we present an intuitive overview of our upper bound and proof tech-
niques. Comprehensive technical details can be found in Sections 6.2 and 6.3. For
simplicity, we shall assume in this section that 𝑚 = 2𝑛.

Intuitively, our starting point is the history-independent list labeling solution by
Bender, et al. [70]. As described in Section 5.1, in [70], the root of any subtree of size
𝑘 is a random element of the middle 𝑂(𝑘/ log 𝑛) elements of the subtree. We call this
middle set of elements the candidate set.

A natural idea for decreasing the cost of this algorithm is to increase the size
of the candidate set to 𝛿𝑘 for some 𝛿 = 𝜔(1/ log 𝑛). This way, the root would be
resampled less often, resulting in fewer total rebalances. However, there is a problem
with this approach: the subarrays representing the nodes in the 𝑖-th level of the tree
have densities bounded between 1

2
(1 − 𝛿)𝑖 and 1

2
(1 + 𝛿)𝑖, but this means that nodes

101

in the Θ(log 𝑛)-th level can overflow with a density of 1
2
(1 + 𝛿)Θ(log𝑛) = 𝜔(1). Thus,

having 𝛿 = 𝜔(1/ log 𝑛) violates the correctness of the algorithm.
Notice, however, that most nodes in the 𝑖-th level of the tree avoid a density of

the form 1
2
(1 + 𝛿)𝑖. Indeed, if we were to perform a random walk down the tree, then

the node that we encountered on our 𝑖-th step would likely have a density bounded
above by 1

2
(1 + 𝛿)𝑂(

√
𝑖). This means that, if we only wanted most nodes to behave

well, then we could set 𝛿 close to 1√
log𝑛

.

In order to obtain the benefits of 𝛿 ≈ 1/
√
log 𝑛 while maintaining the correctness

of 𝛿 ≈ 1/ log 𝑛, we smoothly adjust the candidate set size for each subtree as a
function of the subtree’s density. We show that almost all subtrees are sparse enough
to support a “large” candidate set (𝛿 ≈ 1/

√
log 𝑛), while only a small fraction of

subtrees require “smaller” candidate sets (with 𝛿 closer to 1/ log 𝑛). This means that
most parts of the array support fast insertions/deletions, while only a small portion
of the array is slow to insert/delete to.

While we have made progress by ensuring that most of the array can support fast
updates, this is not sufficient to prove the final bound. Specifically, if the adversary
knows which parts of the array are slow to update, they could simply focus all of their
insertions/deletions on these slow parts of the array, causing the total cost to be large.
Instead, we would like to hide the slow parts of the array from the adversary. More
precisely, we are concerned about two distinct problems: the adversary could create
dense regions through their insertion sequence (e.g., by concentrating insertions in
one location), or, the adversary could detect dense regions created by the algorithm
(e.g., through prior knowledge of the algorithm’s distribution of states.)

History independence comes into play in guarding against these problems. By def-
inition, the first problem cannot happen with a history-independent algorithm, since
the configuration of the array does not depend on the adversary’s specific sequence of
insertions. For the second problem, we add an additional layer of randomness called
a random shift. At the start of the algorithm, we insert random number 𝑘 ∈ [𝑚] of
dummy elements at the front of the array, and 𝑚 − 𝑘 at the end. This converts a
potentially adversarial insertion at rank 𝑗 to a uniformly random insertion of rank
between 𝑗 and 𝑗 +𝑚. Together with history independence, the random shift ensures
that the adversary cannot target specific regions of the array.

To analyze our algorithm, we introduce the notion of a Zeno random walk, which
is a special type of bounded random walk where the step size decreases as the distance
to a boundary decreases. The Zeno walk captures the way in which the densities of
subproblems evolve if we perform a random walk down our tree. Our analysis of
this random walk (Proposition 43) allows us to bound the cost of a random insertion
(Lemma 51). Finally, we extend this analysis for a random insertion to an arbitrary
insertion using the ideas outlined above of history independence and a random shift,
achieving an expected 𝑂(log3/2 𝑛) cost for any insertion/deletion.

102

6.2 Zeno’s Random Walk

This section describes and analyzes a simple but somewhat unusual type of random
walk that we will refer to as a Zeno walk—this random walk will play an important
algorithmic role in later sections.

Let 𝛿 ∈ (0, 1/2]. A Zeno walk 𝑍0, 𝑍1, 𝑍2, . . . starts at 𝑍0 = 0 and deterministically
satisfies 𝑍𝑖 ∈ (−1, 1) for all 𝑖. We define 𝛼𝑖 = 1− |𝑍𝑖| to be the distance between 𝑍𝑖
and the nearest boundary 1 or −1. We determine 𝑍𝑖+1 from 𝑍𝑖 as follows:

• An adaptive adversary selects a quantity 𝛿𝑖 ≤ 𝛿, possibly as a function of
𝑍0, 𝑍1, . . . , 𝑍𝑖.

• 𝑍𝑖+1 is then set to be one of 𝑍𝑖 + 𝛼𝑖𝛿𝑖 or 𝑍𝑖 − 𝛼𝑖𝛿𝑖, each with equal probability.

What makes the Zeno walk unusual is that, the closer it gets to −1 or 1, the
smaller its steps become (since the 𝑖-th step has its size multiplied by 𝛼𝑖). The result
is that (as in Zeno’s paradox), the walk can get arbitrarily close to ±1 but can never
reach ±1.

We will be interested in Zeno walks 𝑍1, . . . , 𝑍ℓ where the relationship between 𝛿
and the length ℓ of the walk is 𝛿 = 𝑂(1/

√
ℓ). To gain some intuition here, consider

the case where 𝛿𝑖 = 𝛿 = 1/
√
ℓ for all 𝑖, and let us compare the Zeno walk 𝑍1, . . . , 𝑍ℓ

to a standard unbiased random walk 𝑋1, . . . , 𝑋ℓ that changes by ±1/
√
ℓ on each

step. After ℓ steps, the random walk 𝑋1, . . . , 𝑋ℓ deviates from the origin by 𝑂(1) in
expectation (but could deviate by much more) and has the property that each step
is deterministically the same size. The Zeno walk does the complement of this: it
deviates from the origin by at most 1 deterministically, but to do this it decreases
the size of the 𝑖-th step by a factor of 1/𝛼𝑖. The key property that we will prove
(Proposition 42) is that, although the multiplier 1/𝛼𝑖 can potentially be large, the
expected value satisfies 𝑂(1/𝛼𝑖) = 𝑂(1) for 𝑖 ∈ [ℓ]. With this intuition in mind, we
can now begin the analysis.

Define 𝑌𝑖 := ln(1/(1−𝑍𝑖)). Rather than analyze the 𝑍𝑖’s directly, we will instead
analyze the 𝑌𝑖’s. We will see that the sequence 𝑌1, 𝑌2, . . . behaves similarly to the
standard random walk𝑋1, 𝑋2, . . . that we described in the previous paragraph (except
that (1) 𝑌𝑖 is slightly biased and (2) 𝑌𝑖 can never go below ln 0.5). To make this more
precise, the next lemma shows that the random walk 𝑌1, 𝑌2, . . . takes steps of size at
most 𝑂(𝛿) and has bias at most 𝑂(𝛿2) per step.
Lemma 41. For 𝑖 ≥ 0, we have that

|𝑌𝑖+1 − 𝑌𝑖| = 𝑂(𝛿) (6.1)

deterministically, and that⃒⃒⃒
E[𝑌𝑖+1 − 𝑌𝑖 | 𝑌1, . . . , 𝑌𝑖, 𝛿𝑖]

⃒⃒⃒
= 𝑂(𝛿2). (6.2)

103

Proof. Define

𝛾𝑖 =
𝛼𝑖𝛿𝑖

1− 𝑍𝑖
.

Note that, if 𝑍𝑖 ≥ 0, then 𝛾𝑖 = 𝛿𝑖, and otherwise 𝛾𝑖 < 𝛿𝑖. Since 𝑍𝑖+1 = 𝑍𝑖± (1−𝑍𝑖)𝛾𝑖,
we have that

𝑌𝑖+1 = ln

(︂
1

1− 𝑍𝑖 ± (1− 𝑍𝑖)𝛾𝑖

)︂
= ln

(︂
1

1− 𝑍𝑖
· 1

1± 𝛾𝑖

)︂
= ln

(︂
1

1− 𝑍𝑖

)︂
+ ln

(︂
1

1± 𝛾𝑖

)︂
= 𝑌𝑖 + ln

(︂
1

1± 𝛾𝑖

)︂
.

By a Taylor approximation, we know that ln
(︁

1
1±𝛾𝑖

)︁
is within 𝑂(𝛾2𝑖) of ±𝛾𝑖. That

is, 𝑌𝑖+1 can be computed from 𝑌𝑖 by first adding ±𝛾𝑖 at random to 𝑌𝑖, and then
adding/subtracting an additional 𝑂(𝛾2𝑖). We therefore have that

|𝑌𝑖+1 − 𝑌𝑖| ≤ 𝛾𝑖 +𝑂(𝛾2𝑖) ≤ 𝛿𝑖 +𝑂(𝛿2𝑖) ≤ 𝑂(𝛿)

and that ⃒⃒⃒
E[𝑌𝑖+1 − 𝑌𝑖 | 𝑌1, . . . , 𝑌𝑖, 𝛾𝑖]

⃒⃒⃒
≤ 𝑂(𝛾2𝑖) ≤ 𝑂(𝛿2𝑖) ≤ 𝑂(𝛿2).

Using Lemma 41, we can now bound E[1/𝛼ℓ] for the ℓ = 𝑂(1/𝛿2)-th step of a
Zeno walk:
Proposition 42. For ℓ = 𝑂(1/𝛿2), we have E[1/𝛼ℓ] = 𝑂(1).

Proof. By symmetry, it suffices to show that

E[1/𝛼ℓ · I𝑍ℓ≥0] = 𝑂(1),

where I𝑍ℓ≥0 is 0-1 indicator random variable for the event 𝑍ℓ ≥ 0. Note that

E[1/𝛼ℓ · I𝑍ℓ≥0] = 𝐸[1/(1− 𝑍ℓ) · I𝑍ℓ≥0]

≤ 𝐸[1/(1− 𝑍ℓ)],

so we can complete the proof by showing that

E[1/(1− 𝑍ℓ)] = 𝑂(1). (6.3)

Let 𝑐 be a sufficiently large positive constant and define the sequence 𝑋1, 𝑋2, . . .,
where

𝑋𝑖 = 𝑌𝑖 − 𝑖 · 𝑐𝛿2.

104

This means that 𝑋𝑖+1 − 𝑋𝑖 = 𝑌𝑖+1 − 𝑌𝑖 − 𝑐𝛿2, so we can think of the 𝑋𝑖’s as being
a modification of the 𝑌𝑖’s that eliminates any upward bias that the 𝑌𝑖’s might have
(recall by Lemma 41 that the 𝑌𝑖’s have bias at most 𝑂(𝛿2)).

Formally, one can apply Lemma 41 to deduce that the 𝑋𝑖’s are a supermartingale
with bounded differences of 𝑂(𝛿). That is, by (6.2) we have E[𝑋𝑖+1 | 𝑋1, . . . , 𝑋𝑖] ≤ 𝑋𝑖

(so the 𝑋𝑖’s form a supermartingale) and by (6.1) we have |𝑋𝑖+1 − 𝑋𝑖| ≤ 𝑂(𝛿) (so
the martingale has bounded differences of 𝑂(𝛿)).

We can apply Azuma’s inequality for supermartingales with bounded differences
to deduce the following tail bound. For 𝑘 ≥ 1, we have

Pr[𝑋𝑖 ≥ 𝛿𝑘
√
𝑖] ≤ 𝑒−Ω(𝑘2).

Unrolling the definition of 𝑋𝑖, we get that

Pr[ln(1/(1− 𝑍𝑖)) ≥ 𝛿𝑘
√
𝑖+ 𝑖𝑐𝛿2] ≤ 𝑒−Ω(𝑘2).

Plugging in 𝑖 = ℓ = 𝑂(1/𝛿2), we conclude that

Pr[ln(1/(1− 𝑍ℓ)) ≥ Ω(𝑘)] ≤ 𝑒−Ω(𝑘2).

This further simplifies to

Pr
[︀
1/(1− 𝑍ℓ) ≥ 𝑒Ω(𝑘)

]︀
≤ 𝑒−Ω(𝑘2),

which implies (6.3), and completes the proof.

We conclude the section by generalizing Zeno walks to take place in an arbitrary
interval (𝜆− 𝜀, 𝜆+ 𝜀). This works exactly as before, except that now the Zeno walk
begins at 𝑍0 = 𝜆; it deterministically stays in the interval (𝜆 − 𝜀, 𝜆 + 𝜀); it sets
𝛼𝑖 = 𝜀− |𝑍𝑖 − 𝜆| to be the distance from 𝑍𝑖 to the nearest boundary 𝜆− 𝜀 or 𝜆+ 𝜀;
and then 𝑍𝑖+1 = 𝑍𝑖 ± 𝛼𝑖𝛿𝑖 where 𝛿𝑖 ≤ 𝛿 is selected by an adversary. Equivalently, a
sequence {𝑍𝑖} is a Zeno walk in the interval (𝜆 − 𝜀, 𝜆 + 𝜀) if {(𝑍𝑖 − 𝜆)/𝜀} is a Zeno
walk in (−1, 1) (and the two Zeno walks have the same parameter 𝛿 as each other).
Thus we get the following generalization of Proposition 42.
Proposition 43. Consider a Zeno walk in (𝜆− 𝜀, 𝜆 + 𝜀). For ℓ = 𝑂(1/𝛿2), we have
E[1/𝛼ℓ] ≤ 𝑂(𝜀−1).

6.3 The Zeno Embedding: a Data Structure for 𝑚 ≥
(1 + 𝜀)𝑛

In this section, we give a list-labeling solution for 𝑚 ≥ (1+𝜀)𝑛 that achieves expected
cost 𝑂(𝜀−1 log3/2 𝑛) per insertion and deletion. We will treat 𝑚 ∈ N and 𝜀 ∈ (0, 1)
as being fixed, and we will allow the number 𝑛 of elements to vary subject to the
constraint that 𝑚 ≥ (1 + 𝜀)𝑛. We will also assume without loss of generality that 𝑛

105

is at least a sufficiently large positive constant.
We construct and analyze the data structure in three phases. First, we describe

a certain type of static construction, which we call the Zeno embedding, for how
to embed 𝑛 elements into 𝑚 slots. Then we show how to dynamize the Zeno em-
bedding in order to efficiently implement random insertions/deletions. Finally, we
present one last modification to the Zeno embedding in order to implement arbitrary
insertions/deletions efficiently.

6.3.1 The Static Zeno Embedding

The Zeno embedding treats the array as having a simple recursive structure: the
level-0 subproblem consists of the entire array; and the level-𝑖 subproblems each
consist of either ⌊𝑚/2𝑖⌋ or ⌈𝑚/2𝑖⌉ contiguous slots in the array.

Each level-𝑖 subproblem 𝑆 is either a base case (meaning it does not have child
subproblems) or has two recursive children. If 𝑆 has 𝑞 ∈ {⌊𝑚/2𝑖⌋, ⌈𝑚/2𝑖⌉} slots,
then the children of 𝑆 have ⌊𝑞/2⌋ and ⌈𝑞/2⌉ slots, respectively. Here we are taking
advantage of the basic mathematical fact that

{⌊⌊𝑚/2𝑖⌋/2⌋, ⌊⌈𝑚/2𝑖⌉/2⌋, ⌈⌊𝑚/2𝑖⌋/2⌉, ⌈⌈𝑚/2𝑖⌉/2⌉} ⊆ {⌊𝑚/2𝑖+1⌋, ⌈𝑚/2𝑖+1⌉}.

For each level-𝑖 subproblem 𝑆, define |𝑆| to be the number of elements stored in
that subproblem, and define the density 𝜇𝑆 of the subproblem to be

𝜇𝑆 =
|𝑆|
𝑛/2𝑖

.

Note that in the definition of 𝜇𝑆, the denominator is the average number of ele-
ments per level-𝑖 subproblem, which means that 𝜇𝑆 can be greater than 1. In fact,
we will guarantee deterministically that 𝜇𝑆 ∈ [1 − 𝜀/2, 1 + 𝜀/2]. The upper bound
will ensure correctness (i.e., that no subproblem overflows), and the lower bound will
ensure that every pair of consecutive elements are within 𝑂(1) slots of each other.

We can now describe how to implement a given level-𝑖 subproblem 𝑆. Define

𝛼𝑆 = 𝜀/2− |1− 𝜇𝑠|

to be the distance between 𝜇𝑆 and the nearest boundary {1 − 𝜀/2, 1 + 𝜀/2}. Let
𝑥1, . . . , 𝑥|𝑆| denote the elements of 𝑆 in sorted order. Define the pivot candidate
set for 𝑆 to be

𝐶𝑆 =

{︂
𝑥𝑖

⃒⃒⃒ |𝑆|
2

− 𝑛

2𝑖
· 𝛼𝑆√

log 𝑛
≤ 𝑖 ≤ |𝑆|

2
+
𝑛

2𝑖
· 𝛼𝑆√

log 𝑛

}︂
.

Roughly speaking, 𝐶𝑆 consists of the elements representing the middle Θ(𝛼𝑆/
√
log 𝑛)-

fraction of the subproblem.
If |𝐶𝑆| ≤ 4, we declare 𝑆 to be a base case, and we spread the elements of 𝑆

106

evenly across its slots. Otherwise, we define the pivot 𝑝𝑆 for 𝑆 to be an element of
𝐶𝑆 chosen uniformly at random. The elements 𝑥𝑖 ≤ 𝑝𝑆 are recursively placed in 𝑆’s
left child, and the elements 𝑥𝑖 > 𝑝𝑆 are recursively placed in 𝑆’s right child.

Later on, when we discuss the dynamic Zeno embedding, we will see several ways
that one can implement the random choice of 𝑝𝑆. For concreteness, we will men-
tion one natural approach here: define ℎ0, ℎ1, ℎ2, . . . , ℎ𝑂(log𝑛) to be an independent
sequence of hash functions1 where each ℎ𝑖 maps each element to a uniformly random
real number in [0, 1], and set

𝑝𝑆 = argmin𝑥∈𝐶𝑆
ℎ𝑖(𝑥).

The key property of the Zeno embedding is that if we perform a random walk down
the recursive tree, then the densities 𝜇𝑆 that we encounter form an 𝑂(log 𝑛)-step Zeno
walk in the interval [1− 𝜀/2, 1 + 𝜀/2]:
Lemma 44. Fix any outcomes for the hash functions ℎ0, ℎ1, ℎ2, Consider a ran-
dom walk 𝑆0, 𝑆1, 𝑆2, . . . , 𝑆ℓ down the recursion tree, where each 𝑆𝑖+1 is a random child
of 𝑆𝑖, and 𝑆ℓ is a base-case subproblem. Then the sequence {𝜇𝑆𝑖

}ℓ𝑖=1 is a Zeno walk
on [1− 𝜀/2, 1 + 𝜀/2] with 𝛿 = 𝑂(1/

√
log 𝑛).

Proof. Recall that a Zeno walk on [1− 𝜀/2, 1+ 𝜀/2] is any walk 𝑍0, 𝑍1, . . . that starts
at 1 and takes the following form: each step 𝑍𝑖+1 − 𝑍𝑖 is randomly ±𝛼𝑖𝛿𝑖 for some
𝛿𝑖 ≤ 𝛿 (that may be chosen by an adversary) and where 𝛼𝑖 = 𝜀/2 − |1 − 𝑍𝑖|. Or,
equivalently, each step 𝑍𝑖+1 − 𝑍𝑖 is randomly ±𝛽𝑖 for some 𝛽𝑖 ≤ 𝛿 (𝜀/2− |1− 𝑍𝑖|).

Consider a non-base-case subproblem 𝑆𝑖, and let 𝐴 and 𝐵 be the child subproblems
of 𝑆𝑖. By construction,

⃒⃒
|𝐴| − |𝐵|

⃒⃒
= 𝑂

(︂
𝑛

2𝑖
· 𝛼𝑆√

log 𝑛

)︂
.

Since |𝐴|+ |𝐵| = |𝑆𝑖|, we have that 𝜇𝐴 + 𝜇𝐵 = 2𝜇𝑆𝑖
and

|𝜇𝐴 − 𝜇𝐵| =
⃒⃒
|𝐴| − |𝐵|

⃒⃒
𝑛/2𝑖+1

= 𝑂

(︂
𝛼𝑆𝑖√
log 𝑛

)︂
.

Thus, since 𝑆𝑖+1 is randomly one of 𝐴 or 𝐵, we have that 𝜇𝑆𝑖+1
is randomly one of

𝜇𝑆𝑖
+ 𝛽𝑖 or 𝜇𝑆𝑖

− 𝛽𝑖,

where
𝛽𝑖 = |𝜇𝐴 − 𝜇𝐵|/2 = 𝑂

(︂
𝛼𝑆𝑖√
log 𝑛

)︂
= 𝑂 (𝛿 (𝜀/2− |1− 𝜇𝑠|)) .

Thus the sequence {𝜇𝑠} is a Zeno walk on [1− 𝜀/2, 1 + 𝜀/2] with 𝛿 = 𝑂(1/
√
log 𝑛).

1Technically, our data structure does not necessarily have access to the internal values of elements,
so it cannot compute a hash ℎ𝑖(𝑥) of any given element. However, we can simulate a hash function
ℎ𝑖 by assigning each element 𝑥 a random value ℎ𝑖(𝑥) when the element is inserted.

107

For clarity, we remark that the definition of the Zeno walk includes an adaptive
adversary who chooses 𝛿𝑖 < 𝛿. The adversary for the Zeno walk in this lemma simply
chooses a pivot uniformly at random from the pivot candidate set, which determines
𝛿𝑖.

The reason that Lemma 44 is important is that it allows for us to bound the
quantities 𝛼−1

𝑆 . Indeed, we use Proposition 43 to prove the following inequality.
Lemma 45. Let 𝒮𝑖 be the set of level-𝑖 subproblems. Then

1

2𝑖

∑︁
𝑆∈𝒮𝑖

𝛼−1
𝑆 = 𝑂(𝜀−1).

Proof. Fix any outcomes for the hash functions ℎ0, ℎ1, ℎ2, Consider a random
walk 𝑆0, 𝑆1, 𝑆2, . . . , 𝑆ℓ down the recursion tree, where each 𝑆𝑖+1 is a random child of
𝑆𝑖, and 𝑆ℓ is a base-case subproblem. Lemma 44 tells us that {𝜇𝑆𝑖

}ℓ𝑖=1 is a Zeno walk
on [1− 𝜀/2, 1 + 𝜀/2] with 𝛿 = 𝑂(1/

√
log 𝑛) (and, moreover, 𝛼𝑆𝑖

corresponds to 𝛼𝑖 in
the Zeno walk).

For 𝑖 ∈ [0, log𝑚], define 𝛼𝑖 to be 𝛼𝑆𝑖
if 𝑆𝑖 exists and 0 otherwise (i.e., if 𝑖 > ℓ).

Proposition 43 tells us that, for each 𝑖 ∈ [0, log𝑚],

E[1/𝛼𝑖] = 𝑂(𝜀−1). (6.4)

On the other hand, each level-𝑖 subproblem has probability exactly 1/2𝑖 of being 𝑆𝑖.
Thus

E[1/𝛼𝑖] =
1

2𝑖

∑︁
𝑆∈𝒮𝑖

𝛼−1
𝑆 . (6.5)

Combined, (6.4) and (6.5) imply the lemma.

It is interesting to note that, whereas Lemma 44 is a statement about random
walks, Lemma 45 is a deterministic bound on the 𝛼−1

𝑆 s, even though it uses a proba-
bilistic argument to derive the bound.

Lastly, we also need to explicitly show that no subproblem ever overflows:
Lemma 46. Each level-𝑖 subproblem 𝑆 satisfies |𝑆| ≤ ⌊𝑚/2𝑖⌋.

This lemma is a technicality that is essentially immediate from the fact that each
subproblem 𝑆 has density 𝜇𝑆 ≤ 1 + 𝜀/2. The only difficulty in the proof comes from
the necessity to carefully handle floors/ceilings. Nonetheless, for completeness, we
include the proof below.

Proof. By construction, each level-𝑖 subproblem 𝑆 has

|𝐶𝑆| ≤ 2𝛼𝑆 ·
𝑛

2𝑖
≤ 𝜀 · 𝑛

2𝑖
.

108

Thus, if |𝐶𝑆| > 4 (i.e., 𝑆 is a non-base-case subproblem), we must have 𝜀𝑛/2𝑖 ≥ 4.
Since every base-case subproblem is the child of a non-base-case subproblem, we have
that for base-case subproblems 𝜀𝑛/2𝑖−1 ≥ 4. This means that every subproblem 𝑆 is
in a level 𝑖 satisfying

𝜀𝑛

2𝑖
≥ 2. (6.6)

We wish to show that ⌊𝑚
2𝑖
⌋ − |𝑆| ≥ 0. We know that⌊︁𝑚

2𝑖

⌋︁
− |𝑆| =

⌊︁𝑚
2𝑖

⌋︁
− 𝜇𝑆

𝑛

2𝑖
≥ 𝑚

2𝑖
− 𝜇𝑆

𝑛

2𝑖
− 1 ≥ (1 + 𝜀)𝑛− 𝜇𝑆𝑛

2𝑖
− 1.

Since 𝜇𝑆 ≤ 1 + 𝜀/2, it follows that⌊︁𝑚
2𝑖

⌋︁
− |𝑆| ≥ 𝜀𝑛/2

2𝑖
− 1.

By (6.6), we can conclude that ⌊𝑚
2𝑖
⌋ − |𝑆| ≥ 0, as desired.

6.3.2 Dynamizing the Zeno Embedding

We now describe a dynamic version of the Zeno embedding; we will treat 𝑚 and 𝜀 as
fixed, and allow 𝑛 to vary subject to the constraint that 𝑛 ≥ (1 + 𝜀)𝑚.

We note that, in this section we will focus on analyzing random inser-
tions/deletions, that is, an insertion/deletion that is performed at a random rank
(in an array with arbitrary contents). Our solution will be history independent, and
we will see in the next subsection that this allows the random-rank assumption to be
removed.

Implementing insertions and deletions. To implement an insertion/deletion in
the Zeno embedding, we simply update the embedding to account for the element
being added/removed. More concretely, we can implement an insertion/deletion of
an element 𝑥 as follows. We will describe the process recursively, focusing on how
to insert/delete 𝑥 into a given level-𝑖 recursive subproblem 𝑆. The insertion/deletion
of 𝑥 may change the values of 𝜇𝑆, 𝛼𝑆, 𝐶𝑆, and 𝑝𝑆. Note that the values of 𝐶𝑠 and
𝑝𝑆 can change regardless of whether the insertion/deletion of 𝑥 takes place in the
candidate set. If it changes the pivot 𝑝𝑆, or if 𝑆 is a base-case, then we implement
the insertion/deletion by rebuilding the entire subproblem from scratch, incurring a
cost of 𝑂(𝑛/2𝑖). Otherwise, we recursively insert/delete 𝑥 into either the left child
(if 𝑥 ≤ 𝑝𝑆) or the right child (if 𝑥 > 𝑝𝑆). Once the insertion/deletion is complete,
the Zeno embedding will be the same as if it were constructed from scratch on the
current set of elements.

As described in the static Zeno embedding, there are multiple ways to implement
randomly choosing a pivot. One way is to use the hash functions ℎ𝑖 described in the
previous subsection. This means that a level-𝑖 subproblem 𝑆 being inserted/deleted
into gets rebuilt if argmin𝑖{ℎ𝑖(𝑥) | 𝑥 ∈ 𝐶𝑆} is changed by the insertion/deletion. We

109

note that, in this construction, the hash functions are fixed at the very beginning and
are never resampled (even when subproblems are rebuilt).

Another way to implement the random choice of pivot is to use reservoir sampling
[49, 70, 242, 325, 348]. This means that, when a subproblem is first built (or rebuilt),
it picks a random 𝑥 ∈ 𝐶𝑆 to be the pivot; whenever an element 𝑥 is added to 𝐶𝑆,
it has probability 1/|𝐶𝑆 ∪ {𝑥}| of becoming the pivot; and whenever an element 𝑥 is
removed from 𝐶𝑆, if 𝑥 was the pivot, then a random element in 𝐶𝑆 ∖ {𝑥} is chosen as
the new pivot. Like the hashing method, reservoir sampling maintains as an invariant
that each candidate in 𝐶𝑆 is equally likely to be the pivot.

Each of the two methods (hashing and reservoir sampling) have their own benefits:
reservoir sampling can be used to immediately obtain an algorithm in the RAM-model
that has the same asymptotic running time as its list-labeling cost, while hashing,
on the other hand, ensures that the embedding is deterministic after fixing the hash
functions. In our formal arguments, we use the hash function method, but this can
easily be replaced with reservoir sampling.

Analyzing a random insertion/deletion. To begin analyzing the dynamic Zeno
embedding, we observe that, by construction, the dynamic Zeno embedding is inser-
tion/deletion symmetric and history independent.
Observation 47. The dynamic Zeno embedding is insertion/deletion symmetric and
history independent.

Due to the insertion/deletion symmetry, the expected cost of a random insertion
on an array with 𝑛 elements is the same as the expected cost of a random deletion
on an array with 𝑛 + 1 elements. Thus we need only analyze the expected cost of a
random deletion.

We will analyze the probability that the deletion of an element 𝑥 causes the rebuild
of a subproblem. More precisely, we say that a subproblem 𝑆 is rebuilt if the pivot
of 𝑆 changes, while the pivots of all of the ancestors of 𝑆 do not change.

Next, we will prove that, if we delete an element 𝑥, and 𝑆 is the level-𝑖 subproblem
that contains 𝑥, then the probability that 𝑆 is rebuilt is 𝑂(|𝐶𝑆|−1).
Lemma 48. If an element 𝑥 is deleted from a subproblem 𝑆, then 𝑆 is rebuilt with
probability

𝑂
(︀
|𝐶𝑆|−1

)︀
.

Proof. If 𝑆 is a base-case subproblem, either before or after the deletion, then |𝐶𝑆| =
𝑂(1), and the lemma is trivial. Now, suppose 𝑆 is not a base-case subproblem.

Let 𝐶𝑆 denote the pivot candidate set prior to the deletion of 𝑥, and let 𝐶𝑆 denote
the pivot candidate set after the deletion. Each time that we add/remove an element
to/from 𝐶𝑆, the probability that 𝑝𝑆 = argmin𝑥∈𝐶𝑆

ℎ𝑖(𝑥) changes is Θ(1/|𝐶𝑆|). It
therefore suffices to show that 𝐶𝑆 and 𝐶𝑆 have a symmetric difference of at most
𝑂(1) elements.

110

We can think of the transformation of 𝐶𝑆 into 𝐶𝑆 as taking place in three steps.
First we update

𝛼𝑆 = 𝜀/2−
⃒⃒⃒⃒
1− |𝑆|

𝑛/2𝑖

⃒⃒⃒⃒
to become

𝛼𝑆 = 𝜀/2−
⃒⃒⃒⃒
1− |𝑆| − 1

𝑛/2𝑖

⃒⃒⃒⃒
.

This changes 𝛼𝑆 by at most ± 1
𝑛/2𝑖

, which changes the set

𝐶𝑆 =

{︂
𝑥𝑖

⃒⃒⃒ |𝑆|
2

− 𝑛

2𝑖
· 𝛼𝑆√

log 𝑛
≤ 𝑖 ≤ |𝑆|

2
+
𝑛

2𝑖
· 𝛼𝑆√

log 𝑛

}︂
(6.7)

by at most 𝑂(1) elements. Second, we replace |𝑆| in (6.7) with |𝑆| − 1. This again
changes the set 𝐶𝑆 by at most 𝑂(1) elements. Third, we remove the element 𝑥; if
𝑥 = 𝑥𝑗 for some 𝑗, then the removal of 𝑥 has the effect of decrementing the index of
each 𝑥𝑖 with 𝑖 ≥ 𝑗. This again changes 𝐶𝑆 by at most 𝑂(1) elements.

Combined, the three steps complete the transformation of 𝐶𝑆 into 𝐶𝑆, meaning
that 𝐶𝑆 and 𝐶𝑆 have a symmetric difference of 𝑂(1) elements, as desired.

Lemma 48 immediately implies a bound on the expected cost incurred from re-
building 𝑆.
Lemma 49. If an element 𝑥 is deleted from a level-𝑖 subproblem 𝑆, the expected
cost incurred from possibly rebuilding 𝑆 is

𝑂

(︂
𝑛/2𝑖

|𝐶𝑆|

)︂
.

Proof. A rebuild of 𝑆 costs Θ(𝑛/2𝑖). Thus the lemma follows from Lemma 48.

Observe that, by design,

𝑛/2𝑖

|𝐶𝑆|
= 𝑂(𝛼−1

𝑆

√︀
log 𝑛).

This is where Lemma 45 comes into play: it tells us that even though 𝑛/2𝑖

|𝐶𝑆 |
may be

large for some subproblems 𝑆, it cannot be consistently large across all subproblems.
Using this, we can analyze the expected cost to delete a random element.
Lemma 50. The expected cost to delete a random element 𝑥 from the Zeno embed-
ding is 𝑂(𝜀−1 log3/2 𝑛).

Proof. Let 𝒮𝑖 denote the set of level-𝑖 subproblems (prior to the deletion). Each

111

𝑆 ∈ 𝒮𝑖 contains Θ(𝑛/2𝑖) elements, so

Pr[𝑥 ∈ 𝑆] = Θ

(︂
1

2𝑖

)︂
.

If 𝑥 ∈ 𝑆, then we have by Lemma 49 that 𝑆 incurs expected rebuild cost

𝑂

(︂
𝑛/2𝑖

|𝐶𝑆|

)︂
= 𝑂(𝛼−1

𝑆

√︀
log 𝑛).

The expected cost from rebuilds in the 𝑖-th level of recursion is therefore at most

𝑂

(︃∑︁
𝑆∈𝒮𝑖

1

2𝑖
· 𝛼−1

𝑆

√︀
log 𝑛

)︃
,

which by Lemma 45 is at most

𝑂
(︁
𝜀−1
√︀

log 𝑛
)︁
.

Summing over the 𝑂(log 𝑛) levels of recursion, the total expected cost of the deletion
is 𝑂(𝜀−1 log3/2 𝑛).

Due to the previously described symmetry between insertions and deletions, the
same lemma is true for insertions.
Lemma 51. The expected cost to insert an element 𝑥 with a random rank in
{1, 2, . . . , 𝑛+ 1} into the Zeno embedding is 𝑂(𝜀−1 log3/2 𝑛).

6.3.3 Achieving a Bound on Arbitrary Insertions/Deletions.

So far, we have only analyzed random insertions/deletions. At first glance, this may
seem like an insignificant accomplishment. (Indeed, it is already known that random
insertions/deletions can be supported in 𝑂(𝜀−1) amortized time per operation [87].)

What makes the Zeno embedding special is that it is history independent. We will
now show how to reduce the list-labeling problem (with arbitrary insertions/deletions)
to the problem of constructing an insertion/deletion-symmetric history-independent
embedding that supports efficient random insertions/deletions.

Within any history-independent data structure, the expected cost to perform a
deletion at rank 𝑟 on an array of size 𝑚 containing 𝑛 elements can be expressed by
a cost function 𝑇 (𝑚,𝑛, 𝑟) only dependent on 𝑚, 𝑛 and 𝑟. Moreover, if the data
structure is insertion/deletion symmetric, then the same cost function 𝑇 expresses the
expected cost for an insertion; specifically, the expected cost to perform an insertion
at rank 𝑟 on an array of size 𝑚 containing 𝑛 elements is 𝑇 (𝑚,𝑛− 1, 𝑟).

To reduce from the arbitrary insertion/deletion case to the random inser-
tion/deletion case, we will show that given any (insertion/deletion-symmetric)

112

history-independent algorithm 𝒜 with cost function 𝑇 (𝑚,𝑛, 𝑟), we can construct a
history-independent algorithm ℬ with cost function 𝑇 ′(𝑚,𝑛, 𝑟) such that for each
individual rank 𝑟, the cost 𝑇 ′(𝑚,𝑛, 𝑟) is upper bounded by the average of the costs
𝑇 (𝑚,𝑛, 𝑟) across all ranks (up to constant factors).
Lemma 52. Suppose there is an insertion/deletion-symmetric history-independent
algorithm 𝒜 whose cost is determined by a function 𝑇 (𝑚,𝑛, 𝑟). Then we can con-
struct a new insertion/deletion-symmetric history-independent algorithm ℬ with cost
function 𝑇 ′(𝑚,𝑛, 𝑟) satisfying

𝑇 ′(𝑚,𝑛, 𝑟) = 𝑂

(︃
1

𝑚+ 1

2𝑚∑︁
𝑗=1

𝑇 (2𝑚,𝑚+ 𝑛, 𝑗)

)︃

for all 𝑟.

Proof. Fix a history-independent algorithm 𝒜. We will construct a history-
independent algorithm ℬ. We will describe the behavior of the algorithm ℬ on an
array of size 𝑚 with an arbitrary sequence 𝒮 of insertions/deletions.

To do so, we will construct from 𝒮 an input to 𝒜. The input to 𝒜 is an array of size
2𝑚 with the following insertion/deletion sequence. First we insert 𝑚 dummy elements
as follows. Let 𝑞 be a uniformly random integer in [0,𝑚]. Insert 𝑞 dummy elements
that are treated as taking infinitely small values (i.e., −∞), and insert 𝑚− 𝑞 dummy
elements that are treated as taking infinitely large values (i.e., ∞). Now, execute the
sequence 𝒮.

Now, define ℬ as the algorithm that behaves identically to 𝒜 on 𝒜’s subarray
[𝑞, 𝑞 +𝑚] (that is, 𝒜’s subarray from the 𝑞𝑡ℎ slot to the 𝑞 +𝑚𝑡ℎ slot), ignoring the
dummy elements. That is, for all 𝑖, after the 𝑖𝑡ℎ insertion from 𝒮, the subarray
[𝑞, 𝑞 +𝑚] of 𝒜’s array with the dummy elements removed, is identical to ℬ’s array.

We note that ℬ is well defined in the sense that all elements of 𝒮 always appear
in 𝒜’s subarray [𝑞, 𝑞+𝑚]. This is simply due to the existence of the dummy elements
in 𝒜’s array.

Now let us bound the expected cost 𝑇 ′(𝑚,𝑛, 𝑟) for ℬ to perform a deletion at rank
𝑟. This corresponds to a deletion at rank 𝑟+𝑞 in 𝒜, which has cost 𝑇 (2𝑚,𝑚+𝑛, 𝑟+𝑞).
Notice, however, that 𝑟 + 𝑞 is a random element in {𝑟, 𝑟 + 1, . . . , 𝑟 +𝑚}. Thus,

𝑇 ′(𝑚,𝑛, 𝑟) =
1

𝑚+ 1

𝑟+𝑚∑︁
𝑗=𝑟

𝑇 (2𝑚,𝑚+ 𝑛, 𝑗),

which in turn is at most

𝑂

(︃
1

𝑚+ 1

2𝑚∑︁
𝑗=1

𝑇 (2𝑚,𝑚+ 𝑛, 𝑗)

)︃
.

113

In the case where 𝒜 is the Zeno embedding, we refer to ℬ as the shifted Zeno
embedding. Now, we are ready to put everything together and prove our main
theorem, that the shifted Zeno embedding incurs expected cost 𝑂(𝜀−1 log3/2 𝑛) per
insertion/deletion.
Theorem 40. Let 𝜀 ∈ (0, 1), and suppose 𝑚 ≥ (1 + 𝜀)𝑛, where 𝑚 is a static value
while 𝑛 changes dynamically. The shifted Zeno embedding on an array of size 𝑚 with
𝑛 elements incurs expected cost 𝑂(𝜀−1 log3/2 𝑛) per insertion/deletion.

Proof. Let 𝑇 (𝑚,𝑛, 𝑟) be the cost function associated with the Zeno embedding, and
let 𝑇 ′(𝑚,𝑛, 𝑟) be the cost function associated with the shifted Zeno embedding. From
Lemma 52, we know that

𝑇 ′(𝑚,𝑛, 𝑟) = 𝑂

(︃
1

𝑚+ 1

2𝑚∑︁
𝑗=1

𝑇 (2𝑚,𝑚+ 𝑛, 𝑗)

)︃
. (6.8)

The right side of Equation 6.3.3 is within a constant factor of the average value of
𝑇 (2𝑚,𝑚+ 𝑛, 𝑗) over all ranks 𝑗. Thus, it is within a constant factor of the expected
value of 𝑇 (2𝑚,𝑚+𝑛, 𝑗) where 𝑗 is chosen uniformly at random over all ranks, which we
know from Lemmas 50 and 51, is 𝑂(𝜀−1 log3/2 𝑛). Thus, 𝑇 ′(𝑚,𝑛, 𝑟) = 𝑂(𝜀−1 log3/2 𝑛),
as desired.

The following corollary follows immediately by applying Theorem 40 to an 𝑛(1+𝜀)
sized subarray of a linearly sized array for any 𝜀 < 1.
Corollary 53. There exists a list-labeling algorithm for an array of size 𝑚 = 𝑛(1 +
Θ(1)) with expected cost 𝑂(log3/2 𝑛) per insertion/deletion.

We can also use the theorem to bound the total cost to insert into every slot in
an array.
Corollary 54. There exists a list-labeling algorithm to fill an array of size 𝑚 from
empty to full with expected total cost 𝑂(𝑚 log2.5𝑚).

Proof. We will apply a shifted Zeno embedding in Θ(log𝑚) phases, using an 𝜀𝑖,
defined below, for phase 𝑖 and rebuilding the array between phases. The first phase
consists of the first 𝑚/2 insertions, and each phase inserts half as many elements as
the preceding phase. This continues until 𝑛 > 𝑚 − log𝑚, at which point the final
phase consists of inserting the remaining at most log𝑚 elements.

More precisely, let 𝑘 = ⌈log𝑚− log log𝑚⌉, and define

𝑛𝑖 =
𝑚(2𝑖 − 1)

2𝑖
for 𝑖 = 0, 1, . . . , 𝑘,

and 𝑛𝑘+1 = 𝑚.
Items are inserted by ranks, specified by 𝑟1, . . . , 𝑟𝑚, so that for example, since the

first insertion is into an empty array, 𝑟1 = 1. Phase 𝑃𝑖 is defined by the insertions 𝑟𝑗
with 𝑗 ∈ (𝑛𝑖−1, 𝑛𝑖]. We define 𝜀𝑖 = (2𝑖 − 1)−1 for 𝑖 > 1, and 𝜀1 = 𝑚−1

𝑚
.

114

Let 𝐶(𝑃𝑖) denote the expected total cost of the insertions in phase 𝑃𝑖. For 𝑖 > 1
and for all 𝑗 ∈ (𝑛𝑖−1, 𝑛𝑖],

(1 + 𝜀𝑖)𝑗 ≤ (1 + 𝜀𝑖)𝑛𝑖 =

(︂
1 +

1

2𝑖 − 1

)︂(︂
𝑚(2𝑖 − 1)

2𝑖

)︂
= 𝑚.

Similarly, in phase 𝑃1, we have

(1 + 𝜀𝑖)𝑗 ≤
(︂
1 +

𝑚− 1

𝑚

)︂
· 𝑚
2

≤ 𝑚.

Therefore, we can apply Theorem 40 to say that for all 𝑖, an insertion during phase
𝑃𝑖 incurs expected cost

𝑂(𝜀−1
𝑖 log3/2 𝑛) = 𝑂(2𝑖 log3/2𝑚),

and
𝐶(𝑃𝑖) = 𝑂

(︁
2𝑖 · 𝑚

2𝑖
· log3/2𝑚

)︁
= 𝑂(𝑚 log3/2𝑚).

Summing over the first 𝑘 = 𝑂(log𝑚) phases, this gives expected total insertion cost
𝑂(𝑚 log2.5𝑚).

By construction, the final phase has at most log𝑚 insertions, and thus has total
expected cost 𝑂(𝑚 log𝑚). Finally, since the total number of elements in the array is
bounded by 𝑚, the rebuilds between phases incur total cost 𝑂(𝑚 log𝑚), completing
the proof.

We conclude the section with a remark.
Remark 55. Many applications of list labeling require that, if 𝑚 = Θ(𝑛), then the
number of empty slots between any two consecutive elements is at most 𝑂(1). The
Zeno embedding satisfies this property by design, since each subproblem has density
at least 1−𝜀/2. The shifted Zeno embedding therefore also satisfies the same property.

6.4 Upper Bound For Sparse Arrays

Define the 𝜏-sparse list-labeling problem to be the list-labeling problem in the
regime of 𝑛 ≤ 𝑚/𝜏 . Previously in this chapter, we studied the setting where 𝜏 = 𝑂(1).
In this section, we extend our upper bounds to apply to the sparse regime where
𝑚 = 𝜏𝑛 for some 16 ≤ 𝜏 ≤ 𝑛𝑜(1). We do this via a simple general-purpose reduction
from the sparse setting to the linear setting.

We will prove the following proposition:
Proposition 56. Let 𝑇 be a non-negative convex function satisfying 𝑇 (Θ(𝑖)) =
Θ(𝑇 (𝑖)) for all 𝑖 and satisfying 𝑇 (0) = 0. Let 16 ≤ 𝜏 ≤ 𝑛𝑜(1). If there exists a
2-sparse list-labeling solution whose expected amortized cost is upper bounded by
𝑇 (log 𝑛), then there exists a 𝜏 -sparse list-labeling solution whose expected amortized

115

cost is upper bounded by

𝑂

(︂
𝑇

(︂
log 𝑛

log 𝜏

)︂
· log 𝜏

)︂
.

Combining Proposition 56 and Corollary 53, we obtain the following upper bound
for the sparse regime:
Theorem 57. For 16 ≤ 𝜏 ≤ 𝑛𝑜(1), there exists a solution to the 𝜏 -sparse list-labeling
problem with expected amortized cost upper bounded by

𝑂

(︃
log3/2 𝑛√
log 𝜏

)︃
.

To prove Proposition 56, we introduce an intermediate problem that we call the
bucketed list-labeling problem. In this problem, there are 𝑚 buckets and up to
𝑁 = Ω(𝑚) elements at a time, with elements being inserted and deleted as in the
classical list-labeling problem. Elements must be assigned to buckets so that, if two
elements 𝑎 and 𝑏 are assigned to buckets 𝑢 ̸= 𝑣, then 𝑎 < 𝑏 ⇐⇒ 𝑢 < 𝑣. The
cost of adding/removing an element to/from a bucket is 0 when that element is
inserted/deleted, but the cost of rearranging items is equal to the sum of the sizes
of the buckets containing those items. (So even moving one item from a bucket 𝑢 to
a bucket 𝑣 costs |𝑢| + |𝑣|). Finally, each bucket has a maximum capacity of 8𝑁/𝑚
elements.

Our next lemma reduces bucketed list labeling to 2-sparse list labeling.
Lemma 58. Let 𝑇 be a non-negative convex function. If there exists a 2-sparse
list-labeling solution whose expected amortized cost is upper bounded by 𝑇 (log 𝑛),
then there exists a bucketed list-labeling solution whose expected amortized cost is
upper bounded by

𝑂 (𝑇 (log𝑚)) .

Proof. An important component of our bucketed list-labeling solution is to partition
the elements into up to 𝑚/2 disjoint blocks, where each block contains up to 8𝑁/𝑚
consecutive elements. We maintain these blocks using hysteresis: every time that a
block’s size falls below 2𝑁/𝑚 (due to deletions), we merge it with an adjacent block
(unless there is only one block in the system); and every time that a block’s size
exceeds 8𝑁/𝑚 (due to insertions or merges), we split that block into two blocks of
equal size. Note that a block’s size can never exceed 10𝑁/𝑚 because a block of size
≤ 8𝑁/𝑚 can be merged with a block of size < 2𝑁/𝑚, and there is no way to create a
larger block. Thus, after a split, the size of each resulting block is between 4𝑁/𝑚 and
5𝑁/𝑚. Starting from an empty array, during a sequence of 𝑘 insertions/deletions,
the number of block splits/merges will be at most 𝑂(𝑘𝑚/𝑁).

To construct a bucketed list-labeling solution, we treat the 𝑚 buckets as slots

116

in an array of size 𝑚, and we treat the up-to-𝑚/2 blocks as elements that reside
in that array. This allows for us to treat the bucketed list-labeling problem as a
2-sparse list-labeling problem: block splits corresponded to element insertions in the
2-sparse list-labeling problem; and block merges correspond to element deletions in
the 2-sparse list-labeling problem.

If an operation incurs cost 𝑆 in the 2-sparse list-labeling problem, then it incurs
cost 𝑂(𝑆 · 𝑁/𝑚) in the bucketed list-labeling problem (since each element in the
former problem corresponds to a block of 𝑂(𝑁/𝑚) elements in the latter problem).
On the other hand, starting from an empty array, if 𝑘 insertions/deletions are per-
formed in the bucketed list-labeling problem, the number of insertions/deletions in
the 2-sparse list-labeling problem will only be 𝑂(𝑘𝑚/𝑁). Combining these with the
assumption that the 2-sparse list-labeling problem incurs cost 𝑇 (log 𝑛), we have that
the total cost of the bucketed list-labeling problem is 𝑂(𝑇 (log(𝑚/2))·𝑁/𝑚·𝑘·𝑚/𝑁) =
𝑂(𝑘𝑇 (log𝑚)), thus the amortized cost of the bucketed list-labeling problem is
𝑂(𝑇 (log𝑚)).

Next we reduce sparse list labeling to bucketed list labeling.
Lemma 59. Let 𝑇 be a non-negative convex function satisfying 𝑇 (Θ(𝑖)) = Θ(𝑇 (𝑖))
for all 𝑖 and satisfying 𝑇 (0) = 0. Let 16 ≤ 𝜏 ≤ 𝑛𝑜(1). If there exists a bucketed
list-labeling solution whose expected amortized cost is upper bounded by 𝑇 (log𝑚),
then there exists a 𝜏 -sparse list-labeling solution whose expected amortized cost is
upper bounded by

𝑂

(︂
𝑇

(︂
log 𝑛

log 𝜏

)︂
· log 𝜏

)︂
.

Proof. We may assume without loss of generality that 𝜏 is a natural number. We
prove the result by induction on 𝜏 . The base case of 16 ≤ 𝜏 ≤ 𝑂(1) is trivial, since
we can break the array into Θ(𝑛) chunks of size Θ(1) and treat each chunk as a bucket
in the bucketed list-labeling problem.

Now suppose that 𝜔(1) ≤ 𝜏 ≤ 𝑛𝑜(1). Let 𝑐 be a large positive constant (to be
selected later), and partition the array into 𝑛𝑐/ log 𝜏 chunks of size 𝑚′ = ⌊𝑚/𝑛𝑐/ log 𝜏⌋
slots each (possibly orphaning 𝑂(𝑛𝑐/ log 𝜏) slots due to rounding errors). Treat each
of the 𝑛𝑐/ log 𝜏 chunks as a bucket, and assign elements to chunks using bucketed list
labeling. By assumption, bucketed list labeling has expected amortized cost 𝑇 (log𝑚)
where 𝑚 is the number of buckets, and plugging in the value 𝑛𝑐/ log 𝜏 for 𝑚 we get
that the expected amortized cost of the bucketed list labeling instance is:

𝑇 (log 𝑛𝑐/ log 𝜏) = 𝑇

(︂
𝑐 log 𝑛

log 𝜏

)︂
per operation. Since 𝑇 (Θ(𝑖)) = Θ(𝑇 (𝑖)), we can further bound the above cost to be
at most

𝑐′ · 𝑇
(︂
log 𝑛

log 𝜏

)︂
, (6.9)

117

where 𝑐′ is a constant determined by 𝑐.
By design, each chunk contains at most 𝑛′ = 8𝑛/𝑛𝑐/ log 𝜏 elements, so

𝑚′

𝑛′ ≥ ⌊𝑚/𝑛𝑐/ log 𝜏⌋
8𝑛/𝑛𝑐/ log 𝜏

≥ 𝑚

16𝑛
≥ 𝜏/16.

Thus we can recursively implement each chunk as an instance of 𝜏
16

-sparse list labeling.
By our inductive hypothesis for 𝜏 ′ = 𝜏

16
, we have that for every sufficiently large

positive constant 𝑄, the expected amortized cost of performing an insertion/deletion
in a given chunk is at most

𝑄 · 𝑇
(︂
log 𝑛′

log 𝜏 ′

)︂
· log 𝜏 ′

= 𝑄 · 𝑇
(︂
(1− 𝑐/ log 𝜏 + 3/ log 𝑛) log 𝑛

(1− 4/ log 𝜏) log 𝜏

)︂
· (1− 4/ log 𝜏) log 𝜏

≤ 𝑄 · 𝑇
(︂
(1− 1/ log 𝜏) log 𝑛

log 𝜏

)︂
· log 𝜏 (since 𝑐 ≥ 8)

≤ 𝑄 · (1− 1/ log 𝜏) · 𝑇
(︂
log 𝑛

log 𝜏

)︂
· log 𝜏 (since 𝑇 is convex and 𝑇 (0) = 0)

≤ 𝑄 · 𝑇
(︂
log 𝑛

log 𝜏

)︂
· log 𝜏 −𝑄 · 𝑇

(︂
log 𝑛

log 𝜏

)︂
.

Combining this with (6.9), the total expected amortized cost of an insertion/deletion
is at most

𝑐′ · 𝑇
(︂
log 𝑛

log 𝜏

)︂
+𝑄 · 𝑇

(︂
log 𝑛

log 𝜏

)︂
· log 𝜏 −𝑄 · 𝑇

(︂
log 𝑛

log 𝜏

)︂
.

Choosing 𝑄 to be at least 𝑐′, this is at most

𝑄 · 𝑇
(︂
log 𝑛

log 𝜏

)︂
· log 𝜏,

which completes the proof by induction.

Lemmas 58 and 59 directly imply Proposition 56, completing the section.

118

Chapter 7

A Lower Bound for
History-Independent Solutions

The shifted Zeno embedding (Theorem 40) has the property that it is history in-
dependent, meaning that the state of the data structure does not reveal any infor-
mation about the history of insertions/deletions. In this chapter, we prove that the
𝜀−1 log3/2 𝑛 bound achieved by the shifted Zeno embedding is, in fact, optimal for
history-independent data structures.

The main result will be the following lower bound:
Theorem 60. Consider any history-independent list-labeling data structure. Let 𝑚
be the size of the array and let 𝑛 = (1− 𝜀)𝑚, where 𝜀 is at most some small positive
constant and is at least 𝑚−1/3. The expected cost to insert an element with a random
rank in {1, 2, . . . , 𝑛+1} and then delete the element with rank 𝑛+1 is Ω(𝜀−1 log3/2 𝑛).

Throughout the chapter, let 𝑐 be a large constant, and assume that𝑚 is sufficiently
large as a function of 𝑐. Let 𝑚−1/3 ≤ 𝜀 ≤ 1/𝑐, and set 𝑛 = (1−𝜀)𝑚. We shall consider
sequences of insertions/deletions, where each insertion is into an array of 𝑛 elements
and each deletion is from an array of 𝑛+ 1 elements.

To aid in the proof of Theorem 60, let us take a moment to establish several
definitions and conventions. Let 𝐽 = {2, 4, 8, . . . , 2⌊log𝑚⌋−2}. For each 𝑗 ∈ [𝑚], define
a 𝑗-block to be a block of 𝑗 consecutive slots in the array, allowing for wrap-around
(so there are 𝑚 possible 𝑗-blocks).

Define the density of a 𝑗-block to be 𝑘/𝑗, where 𝑘 is the number of elements in
the 𝑗-block. Call a 𝑗-block live if it has density at least 1− 𝑐𝜀, and dead otherwise.
Note that this definition of density is slightly different from that used for recursive
subproblems in the upper-bound section (Section 6.3) in that we define the density
to be between 0 and 1—this difference will make the algebraic manipulation cleaner
in several places.

For each 𝑗 ∈ 𝐽 , define the imbalance of a 𝑗-block to be |𝜇1−𝜇2|, where 𝜇1 is the
density of the first 𝑗/2 slots in the block, and 𝜇2 is the density of the final 𝑗/2 slots
in the block. Define the adjusted imbalance Δ(𝑥) of a 𝑗-block 𝑥 to be the block’s

119

imbalance if the block is live, and 0 if the block is dead. Finally, define the boundary
set 𝐵(𝑥) to be the set of up to three elements in positions {1, 𝑗/2, 𝑗} of 𝑥.

For a given array configuration 𝐴, define Δ𝑗(𝐴) to be the average adjusted imbal-
ance across all 𝑗-blocks. Finally, define Δ𝑗 = E𝐴∼𝒞𝑛,𝑚 [Δ𝑗(𝐴)].

We will split the proof of Theorem 60 into two key components. Section 7.1
proves the following combinatorial bound, which holds deterministically for any array
configuration.
Proposition 61. For any array-configuration 𝐴 with 𝑛 = (1− 𝜀)𝑚 elements,∑︁

𝑗∈𝐽

(Δ𝑗(𝐴))
2 = 𝑂(𝜀2).

Section 7.1 also uses Cauchy-Schwarz to arrive at the following corollary.
Corollary 62. For any array-configuration 𝐴 with 𝑛 = (1− 𝜀)𝑚 elements,

1

|𝐽 |
∑︁
𝑗∈𝐽

Δ𝑗(𝐴) = 𝑂(𝜀/
√︀
log 𝑛).

Section 7.2 then gives a lower bound in terms of the Δ𝑖’s on the expected cost
that any history-independent data structure must incur.
Proposition 63. Suppose 𝑛 = (1 − 𝜀)𝑚, where 𝑚−1/3 ≤ 𝜀 ≤ 1/𝑐 and 𝑐 is some
sufficiently large positive constant. Suppose we perform an insertion at a random
rank 𝑟 ∈ {0, . . . , 𝑛 + 1} and then delete the element with rank 𝑛 + 1. The expected
total cost of the insertion/deletion is at least

Ω

(︃∑︁
𝑗∈𝐽

1

Δ𝑗 + 1/𝑗

)︃
.

Note that the expected cost in Proposition 63 is with respect to the randomness
introduced by both the random rank 𝑟 and the randomness in the history-independent
data structure.

Intuitively, the above results tell us that any optimal history-independent data
structure must behave a lot like the Zeno embedding. Indeed, Corollary 62 tells us
that, no matter how we configure our array 𝐴, it is impossible to achieve imbalances
that are consistently 𝜔(𝜀/

√
log 𝑛)—so, if our goal is to maximize the imbalances in

our array, we can’t hope to do any better than the Zeno embedding already does.
Proposition 63 then tells us that small imbalances are necessarily expensive to main-
tain (and, in fact, the asymptotic relationship between cost and imbalance is the same
as the one achieved by the Zeno embedding). Combining the propositions, we can
prove the theorem as follows.

120

Proof of Theorem 60. By Corollary 62, we have

1

|𝐽 |
∑︁
𝑗∈𝐽

Δ𝑗 = E𝐴∼𝒞𝑛,𝑚

[︃
1

|𝐽 |
∑︁
𝑗∈𝐽

Δ𝑗(𝐴)

]︃
≤ 𝑂

(︁
𝜀/
√︀
log 𝑛

)︁
. (7.1)

By Proposition 63, the the expected cost of the insertion/deletion is at least

Ω

(︃∑︁
𝑗∈𝐽

1

Δ𝑗 + 1/𝑗

)︃
. (7.2)

If Δ𝑗 ≤ 1/
√
𝑛 for any 𝑗 ≥

√
𝑛, then (7.2) becomes Ω(

√
𝑛) ≥ Ω(𝜀−1 log3/2 𝑛) (since

𝜀 ≥ Ω(𝑛−1/3)), and we are done. On the other hand, if Δ𝑗 ≥ 1/
√
𝑛 for all 𝑗 ≥

√
𝑛,

then (7.2) is at least

Ω

⎛⎝ ∑︁
𝑗∈𝐽,𝑗≥

√
𝑛

1

Δ𝑗

⎞⎠ . (7.3)

By (7.1), we know that at least half of the Δ𝑗’s in the above sum satisfy Δ𝑗 =
𝑂(𝜀/

√
log 𝑛). Thus the expected cost comes out to at least

Ω(𝜀−1 log3/2 𝑛).

7.1 Proof of Proposition 61

Although Proposition 61 is a deterministic statement, we will prove it with a proba-
bilistic argument.

For 𝑗 ∈ 𝐽 , define the children of a 𝑗-block to be the 𝑗/2-blocks consisting of
the first and last 𝑗/2 slots of the block, respectively. Also, let 𝑗* = 2⌊log𝑚⌋−2 be the
largest element of 𝐽 .

For a 𝑗-block 𝑥 with density 𝜇, define the potential 𝜑(𝑥) to be

𝜑(𝑥) =

{︃
0 if 𝑥 is dead
(𝜇− (1− 𝑐𝜀))2 otherwise.

For a random 𝑗-block 𝑥, one should think of 𝜑(𝑥) as measuring something similar
to (but not quite equal to) the variance of 𝜇. The key differences between what 𝜑
and variance measure is that (1) 𝜑 evaluates directly to 0 on any 𝑗-block 𝑥 that is
dead (i.e., has density less than 1− 𝑐𝜀), and (2) 𝜑 examines the square of the distance
between 𝜇 and the death-threshold 1−𝑐𝜀, rather than the square of the distance from
𝜇 to E[𝜇] = 1− 𝜀.

Note that 0 ≤ 𝜑(𝑥) ≤ 𝑂(𝜀2) deterministically. On the other hand, we will now

121

see how to relate the expected potential 𝜑(𝑥) of a random 1-block to the quantity∑︀
𝑗∈𝐽(Δ𝑗(𝐴))

2.
Lemma 64. Let 𝑥 be a random 1-block. Then

E[𝜑(𝑥)] = Ω

(︃∑︁
𝑗∈𝐽

(Δ𝑗(𝐴))
2

)︃
.

Proof. Let 𝑥0 be a random 𝑗*-block, and for 𝑖 ∈ [log 𝑗*], let 𝑥𝑖 be a random child of
𝑥𝑖−1. This means that each 𝑥𝑖 is itself a random 2log 𝑗

−𝑖-block, and that 𝑥 := 𝑥log 𝑗
is a random 1-block. Define 𝜇𝑖 to be the density of 𝑥𝑖.

We will argue that

E[𝜑(𝑥𝑖)− 𝜑(𝑥𝑖−1)] = Ω
(︀
(Δ𝑗*/2𝑖(𝐴))

2
)︀
. (7.4)

This would imply that

E[𝜑(𝑥)] = E[𝜑(𝑥0)] +
∑︁
𝑖

E[𝜑(𝑥𝑖)− 𝜑(𝑥𝑖−1)] = Ω

(︃∑︁
𝑗∈𝐽

(Δ𝑗(𝐴))
2

)︃
,

as desired.
For the rest of the proof, consider some 𝜑𝑖 and set 𝑗 = 𝑗*/2𝑖. We claim that with

probability at least 1 − 1/𝑐 ≥ 0.9, 𝑥𝑖−1 is live. Indeed, in expectation at most an 𝜀
fraction of the slots in 𝑥𝑖−1 are free, so by Markov’s inequality the probability that
more than a 𝑐𝜀 fraction of the slots in 𝑥𝑖−1 are free is at most 1/𝑐 ≤ 0.1.

If we condition that 𝑥𝑖−1 is live, then its imbalance Δ satisfies E[Δ] =
Θ(Δ𝑗*/2𝑖−1(𝐴)). Furthermore, if 𝑥𝑖−1 is live, then we have that 𝜑(𝑥𝑖) is randomly
one of

(
√︀
𝜑(𝑥𝑖−1) + Δ/2)2

or
(max{0,

√︀
𝜑(𝑥𝑖−1)−Δ/2})2.

Note that the average of these is

0.5(
√︀
𝜑(𝑥𝑖−1) + Δ/2)2 + 0.5(max{0,

√︀
𝜑(𝑥𝑖−1)−Δ/2})2.

If 0 <
√︀
𝜑(𝑥𝑖−1)−Δ/2, this average is

𝜑(𝑥𝑖−1) + Δ2/4.

On the other hand, if 0 ≥
√︀
𝜑(𝑥𝑖−1)−Δ/2, this average is

0.5 · 𝜑(𝑥𝑖−1) + Δ
√︀
𝜑(𝑥𝑖−1)/2 + Δ2/8

≥ 1.5 · 𝜑(𝑥𝑖−1) + Δ2/8.

122

Thus, in either case, this average is

≥ 𝜑(𝑥𝑖−1) + Δ2/8.

It follows that

E[𝜑(𝑥𝑖) | 𝑥𝑖−1 live] ≥ E[𝜑(𝑥𝑖−1) | 𝑥𝑖−1 live] + ·E[Δ2 | 𝑥𝑖−1 live]/8
≥ E[𝜑(𝑥𝑖−1) | 𝑥𝑖−1 live] + ·E[Δ | 𝑥𝑖−1 live]2/8
≥ E[𝜑(𝑥𝑖−1) | 𝑥𝑖−1 live] + Ω(Δ𝑗*/2𝑖−1(𝐴)2).

On the other hand,

E[𝜑(𝑥𝑖) | 𝑥𝑖−1 not live] ≥ 0

= E[𝜑(𝑥𝑖−1) | 𝑥𝑖−1 not live].

So we can conclude that

E[𝜑(𝑥𝑖)] ≥ E[𝜑(𝑥𝑖−1)] + Pr[𝑥𝑖−1 live] · Ω(Δ𝑗*/2𝑖(𝐴)
2)

≥ E[𝜑(𝑥𝑖−1)] + 0.9 · Ω(Δ𝑗*/2𝑖−1(𝐴)2),

hence (7.4).

We can now prove Proposition 61.

Proof of Proposition 61. Let 𝑥 be a random 1-block. Then by Lemma 64,

E[𝜑(𝑥)] = Ω

(︃∑︁
𝑗∈𝐽

Δ2
𝑗(𝐴)

)︃
.

On the other hand, 𝜑(𝑥) = 𝑂(𝜀2) deterministically. Combined, these imply∑︁
𝑗∈𝐽

Δ𝑗(𝐴)
2 = 𝑂(𝜀2).

Proof of Corollary 62. Cauchy-Schwarz implies

∑︁
𝑗∈𝐽

Δ𝑗(𝐴)
2 ≥

(︃∑︁
𝑗∈𝐽

Δ𝑗(𝐴)

)︃2

/|𝐽 | =

(︃∑︁
𝑗∈𝐽

Δ𝑗(𝐴)

)︃2

/𝑂(log 𝑛).

Thus we have ∑︁
𝑗∈𝐽

Δ𝑗(𝐴) ≤ 𝑂(
√︀

log 𝑛)

√︃∑︁
𝑗∈𝐽

Δ𝑗(𝐴)2 ≤ 𝑂
(︁
𝜀
√︀

log 𝑛
)︁
,

123

where the final inequality uses Proposition 61. Dividing by |𝐽 | = Θ(log 𝑛), we have

1

|𝐽 |
∑︁
𝑗∈𝐽

Δ𝑗(𝐴) = 𝑂(𝜀/
√︀
log 𝑛).

7.2 Proof of Proposition 63

In this section, we prove Proposition 63. All of the lemmas in this section assume an
array of size 𝑚 that initially contains 𝑛 elements, where 𝑛 = (1− 𝜀)𝑚.

We begin by establishing that, if we consider an element with random rank 𝑡 ∈
[𝑛/2], and we examine the 𝑗-block beginning at that element, then there are several
basic properties that hold with probability at least 0.9.
Lemma 65. Let 𝑗 ∈ 𝐽 and consider a random 𝑡 ∈ [𝑛/2]. Define 𝑥 to be the 𝑗-block
whose first position contains the current rank-𝑡 element. With probability at least
0.9, the following all hold:

• 𝑥 is live;

• |𝐵(𝑥)| = 3;

• Δ(𝑥) < 𝑐Δ𝑗,

Proof. It suffices to show that each individual property holds with probability at
least 0.97. Observe that 𝑥 is chosen at random from one of 𝑛/2 ≥ 𝑚/3 𝑗-blocks. It
therefore suffices to show that, if we define 𝑥′ to be a uniformly random 𝑗-block, then
each property holds with probability at least 0.99 for 𝑥′.

Note that 𝑥′ contains at most 𝜀𝑗 free slots in expectation, so by Markov’s inequality
the probability that 𝑥′ contains ≥ 𝑐𝜀𝑗 free slots is at most 1/𝑐 ≤ 0.01. Thus 𝑥′ is live
with probability at least 0.99.

We claim that E[3−|𝐵(𝑥′)|] = 3𝜀. This is because the probability that a given slot
is occupied is 1−𝜀, so E[|𝐵(𝑥′)|] = 3(1−𝜀) = 3−3𝜀. Thus, E[3−|𝐵(𝑥′)|] = 3𝜀 ≤ 3/𝑐.
Thus, by Markov’s inequality we have Pr[3 − |𝐵(𝑥′)| ≥ 1] = 3/𝑐 ≤ 0.01. Thus
|𝐵(𝑥′)| = 3 with probability at least 0.99.

Finally, observe that E[Δ(𝑥′)] = Δ𝑗, so by Markov’s inequality we have Pr[Δ(𝑥′) ≥
𝑐Δ𝑗] ≤ 1/𝑐 ≤ 0.01. Thus Δ(𝑥′) < 𝑐Δ𝑗 with probability at least 0.99.

Call an insertion/deletion critical to a 𝑗-block 𝑥 if: 𝑥 is live when the operation
is performed; and the operation leads to at least one of the elements in 𝐵(𝑥) being
rearranged. The next lemma argues that, if we perform enough insertions/deletions
inside a random 𝑗-block, then at least one of them will likely be critical.

124

Lemma 66. Let 𝑗 ∈ 𝐽 , let 𝑠 ∈ [𝑗/6, 𝑗/3], and consider a random 𝑡 ∈ [𝑛/4−𝑠, 𝑛/2−𝑠].
Define 𝑥 to be the 𝑗-block whose first position contains the element with rank 𝑡.
Suppose we perform ⌊𝑐𝑗Δ𝑗⌋+ 1 insertion/deletion pairs, where each insertion adds a
new element with rank 𝑡 + 𝑠 and each deletion removes the highest-ranked element
(i.e., the element with rank 𝑛+ 1). With probability at least 0.6, at least one of the
insertions/deletions is critical to 𝑥.

Proof. We know that, with probability at least 0.6, the properties in Lemma 65
hold for 𝑥 both before the insertions/deletions are performed and after the inser-
tions/deletions are performed. Suppose for contradiction that none of the inser-
tions/deletions are critical to 𝑥.

Thus, we know that none of the operations rearrange any of the elements in 𝐵(𝑥).
We additionally claim that none of the elements in 𝐵(𝑥) are deleted. This follows
from the fact that we always delete the element of rank 𝑛+1, while the highest-ranked
element in 𝑥 is has rank less than 𝑛 + 1 for the following reason. The first element
of 𝑥 is at rank at most 𝑛/2, and 𝑥 contains at most 𝑗* = 2⌊log𝑚⌋−2 ≤ 𝑛

4(1−𝜀) elements.
So the last element of 𝑥 has rank at most 𝑛

2
+ 𝑛

4(1−𝜀) , which is less than 𝑛 + 1 since
𝜀 < 1/2.

Additionally, we claim that all of the insertions go into the first 𝑗/2 slots of 𝑥.
This is because otherwise there would be at most 𝑠 ≤ 𝑗/3 elements in the first 𝑗/2
slots, which means that there would be least 𝑗/6 empty slots, which contradicts the
fact that 𝑥 is live.

Thus, during the course of the insertions/deletions, the first 𝑗/2 slots in 𝑥 gain
⌊𝑐𝑗Δ𝑗⌋+1 elements, while the second 𝑗/2 slots of 𝑥 remain stable in their number of
elements. We know that Δ(𝑥) < 𝑐Δ𝑗 both before and after the insertions/deletions
are performed. So, over the course of the insertions/deletions, the density of the first
𝑗/2 slots in 𝑥 changes by less than 2𝑐Δ𝑗. This means that the number of elements in
the first 𝑗/2 slots of 𝑥 changes by at most 𝑗/2 · 2𝑐Δ𝑗 = 𝑐𝑗Δ𝑗, which contradictions
the fact that the first 𝑗/2 slots in 𝑥 gain ⌊𝑐𝑗Δ𝑗⌋+ 1 elements.

Using symmetry, we can reinterpret the previous lemma as a statement about a
single insertion/deletion pair.
Lemma 67. Let 𝑗 ∈ 𝐽 , let 𝑠 ∈ [𝑗/6, 𝑗/3], and consider a random 𝑡 ∈ [𝑛/4−𝑠, 𝑛/2−𝑠].
Define 𝑥 to be the 𝑗-block whose first position contains the element with rank 𝑡.
Suppose we perform a single insertion/deletion pair, where the insertion adds a new
element with rank 𝑡+ 𝑠 and the deletion removes the current highest-ranked element
(i.e., the element with rank 𝑛+ 1). With probability Ω

(︁
1

⌊𝑗Δ𝑗⌋+1

)︁
, at least one of the

insertion/deletion is critical to 𝑥.

Proof. By history independence, the probability distribution of array configurations
is only dependent upon 𝑛, 𝑚, and 𝑟, and these quantities are the same after each
insertion/deletion pair in Lemma 66. Thus, Lemma 66 immediately extends to each
individual insertion/deletion pair.

125

The previous lemma analyzes for a specific block 𝑥 the probability that a specific
insertion/deletion pair is critical to 𝑥. Notice, however, that a given insertion/deletion
pair can be critical to many 𝑗-blocks simultaneously. Indeed, by applying Lemma 66
simultaneously for multiple different values of 𝑠, we can deduce a lower bound on the
expected number of elements that are rearranged at distance Θ(𝑗) (in rank) from the
element currently being inserted.
Lemma 68. Let 𝑗 ∈ 𝐽 . Suppose we perform an insertion at a random rank 𝑟 ∈
[𝑛/4, 𝑛/2] and then we delete the highest-ranked element (i.e., the element with rank
𝑛+1). Let 𝑞𝑗 be the number of elements that are rearranged by the insertion/deletion,
and that have ranks 𝑟′ satisfying |𝑟 − 𝑟′| = Θ(𝑗) after the insertion. Then

E[𝑞𝑗] = Ω

(︂
1

Δ𝑗 + 1/𝑗

)︂
.

Proof. For 𝑠 ∈ [𝑗/6, 𝑗/3], define 𝑥𝑠 to be the 𝑗-block beginning with the element
whose rank is 𝑟 − 𝑠. Note that the sets 𝐵(𝑥𝑠) are disjoint across 𝑠 ∈ [𝑗/6, 𝑗/3]. Let
𝐵𝑠 be the number of elements in 𝐵(𝑥𝑠) that are rearranged by the insertion/deletion;
and let 𝐸𝑠 be the event that both 𝐵𝑠 ≥ 1 and that 𝑥𝑠 is live.

If 𝑥𝑠 is live then the elements of 𝐵𝑠 have ranks 𝑟′ satisfying |𝑟− 𝑟′| = Θ(𝑗). Since
the 𝐵𝑠’s are disjoint, it follows that

E[𝑞𝑗] ≥
∑︁

𝑠∈[𝑗/6,𝑗/3]

Pr[𝐸𝑠].

For each 𝑠 ∈ [𝑗/6, 𝑗/3], we have by Lemma 67 that

Pr[𝐸𝑠] = Ω

(︂
1

⌊𝑗Δ𝑗⌋+ 1

)︂
.

Thus
E[𝑞𝑗] = Ω

(︂
𝑗

⌊𝑗Δ𝑗⌋+ 1

)︂
= Ω

(︂
1

Δ𝑗 + 1/𝑗

)︂
,

as desired.

Finally, we can deduce a lower bound on the total number of elements that are
rearranged by a random insertion/deletion.
Lemma 69. Suppose we perform an insertion at a random rank 𝑟 ∈ [𝑛/4, 𝑛/2] and
then we delete the highest-ranked element. The expected total cost of the inser-
tion/deletion is at least

Ω

(︃∑︁
𝑗∈𝐽

1

Δ𝑗 + 1/𝑗

)︃
.

Proof. Let 𝑞 be the number of elements that are rearranged by the insertion/deletion.

126

For each 𝑗 ∈ 𝐽 , define 𝑞𝑗 as in Lemma 68. Each element that is rearranged by the
insertion/deletion has a rank 𝑟′ satisfying |𝑟′ − 𝑟| = Θ(𝑗) for at most a constant
number of 𝑗 ∈ 𝐽 . That is, each rearrangement is counted by at most 𝑂(1) of the 𝑞𝑗’s.
Thus

𝑞 = Ω

(︃∑︁
𝑗

𝑞𝑗

)︃
.

By Lemma 68, it follows that

E[𝑞] = Ω

(︃∑︁
𝑗∈𝐽

1

Δ𝑗 + 1/𝑗

)︃
.

Lemma 69 considers an insertion with a random rank 𝑟 ∈ [𝑛/4, 𝑛/2], but this
trivially implies the same claim for a random rank 𝑟 ∈ {0, . . . , 𝑛} (i.e., Proposition
63). Thus the section is complete.

127

Part III

Balls and Bins:
When Greedy Allocation Fails

and How to Fix It

128

Chapter 8

Introduction

Randomized balls-into-bins processes [268,358] serve as a useful abstraction for study-
ing load-balancing problems, with applications such as scheduling, distributed sys-
tems, and data structures. The goal is to assign balls (e.g., tasks) to bins (e.g.,
machines) such that the balls are balanced as evenly as possible across the bins,
where each individual ball may have only a few available random options for bins
that it can be placed in.

It is well known that, if 𝑛 balls are placed into 𝑛 bins using the classical Single-
Choice rule, where each ball is placed independently in a uniformly random bin,
then the maximum load is Θ(log 𝑛/ log log 𝑛) with probability 1− 1/ poly(𝑛).

The power of 2-choices. In a seminal 1994 paper, Azar, Broder, Karlin and
Upfal [56] showed that under a seemingly minor modification, where for each ball two
bins are chosen independently and uniformly at random, and the ball is placed greedily
in the least loaded of the two bins, the maximum load reduces to log log 𝑛 + 𝑂(1)
with high probability in 𝑛. In the decades since, this power of 2-choices paradigm
has been extremely influential, with both theoretical (e.g., [111, 178, 187, 206, 298])
and empirical (e.g., [115, 144, 290, 292, 371]) applications, and with a large literature
on generalizations; see e.g., [268,358] for some excellent surveys.

The heavily-loaded case. Azar et al.’s result [56] prompted researchers to consider
the heavily-loaded case, where 𝑚 ≫ 𝑛 balls are inserted into 𝑛 bins. The early
techniques that were developed for the lightly-loaded setting (i.e., layered induction
[56], witness trees [128,350], and differential-equation approaches [266,267]) struggled
to deliver strong bounds in the heavily-loaded setting, and for several years the best
known bound stood at 𝑚/𝑛+log log 𝑛+𝑂(𝑚/𝑛) [128,350]. If we define the overload
to be the amount by which the maximum load exceeds 𝑚/𝑛, then this bound allows
for an overload as large as log log 𝑛+𝑂(𝑚/𝑛)—such a bound is useful if 𝑚 ≈ 𝑛, but
when 𝑚 ≫ 𝑛 log 𝑛, the bound becomes worse even than the standard bound offered
by SingleChoice (i.e., an overload of 𝑂(

√︀
(𝑚/𝑛) log 𝑛)).

In a breakthrough result, Berenbrink, Czumaj, Steger and Vöcking [98] showed

129

how to use Markov-chain techniques to obtain a much stronger bound of log log 𝑛 +
𝑂(1) on the overload, with probability 1 − 1/ poly(𝑛). Thus, somewhat remarkably,
the gap between the maximum and average loads in the heavily-loaded case is the
same as in the lightly-loaded case, with high probability in 𝑛.

When 𝑚 ≫ 𝑛, the 𝑂(log log 𝑛) overload bound does not, in general, extend to
hold with probability 1 − 1/ poly(𝑚) (i.e., w.h.p. in the number of balls). However,
the known techniques can be used to achieve a quite strong (and, when 𝑛 = 𝑂(1),
optimal) bound of 𝑂(log𝑚) on the overload in this case.

The dynamic setting. In typical load-balancing and data-structures applications,
however, the items can be both inserted and deleted dynamically over time. This can
be captured by allowing for balls to also be inserted/deleted over time.

Whereas in the insertion-only setting, 𝑚 is set to be the total number of insertions,
in the dynamic setting, 𝑚 is set to be an upper bound on the number of balls that
are present at any given moment (and the sequence of insertions/deletions may be
infinite). The objective is to minimize the overload, which is now defined as the
amount by which the maximum load exceeds 𝑚/𝑛 at any given moment.1

Azar et al. [56] considered the insertion/deletion model with 𝑚 = 𝑛 and with
random deletions : that is, 𝑛 balls are inserted initially, and then there is an infinite
sequence of alternating insertions/deletions, where each deletion removes a random
ball. They showed that, at any given moment, the Greedy strategy achieves a
maximum load of log log 𝑛+𝑂(1), with high probability in 𝑛.

Subsequent work has considered the more general setting where the inser-
tions/deletions are determined by an oblivious-adversary (i.e., an adversary that
does not know the random choices of the algorithm), and where the only constraint
on the adversary is that the number of balls in the system can never exceed 𝑚. Using
the witness tree technique, first introduced by [129], Cole et al. [128] analyzed the
reinsertion/deletion model with 𝑚 = 𝑛, and established that the Greedy strategy
guarantees a maximum load of 𝑂(log log 𝑛) with high probability in 𝑛. Later, Vöck-
ing [350] improved this to log log 𝑛+ 𝑂(1), which remarkably, matches the bound in
the non-dynamic (insertion-only) case up to an additive 𝑂(1) term.

What about the dynamic heavily-loaded case? For more than two decades,
it has remained an open question what the optimal bounds are in the heavily-loaded
case if we wish to support both insertions and deletions performed by an oblivious
adversary. Besides obvious theoretical interest, the question also arises naturally in
practice, both in scheduling and data-structural applications.

1It is tempting to define the overload to be the amount by which the maximum load exceeds
𝑚(𝑡)/𝑛, where 𝑚(𝑡) is the number of balls present at time 𝑡. However, the following (folklore)
example demonstrates the flaw with such a definition: Suppose we insert 𝑚 balls (using an arbitrary
insertion strategy), and then we delete a random 𝑚/2 of those balls. Since the 𝑚/2 deletions are
random, even if the system was perfectly balanced after the initial 𝑚 insertions, the bin loads will
typically be 𝑚/2𝑛±

√︀
𝑚/2𝑛, and the maximum load will be 𝑚(𝑡)/𝑛+Θ̃(

√︀
𝑚/𝑛), which is no better

than the bound trivially achieved by SingleChoice.

130

Past works by Cole et al. [128] and then by Vöcking [350,351] showed that Greedy
has overload log log 𝑛+𝑂(𝑚/𝑛) with high probability in 𝑛.2 But this bound is already
worse for 𝑚≫ 𝑛 log 𝑛 than the 𝑂(

√︀
(𝑚/𝑛) log 𝑛) overload bound for SingleChoice

(which also holds in the dynamic setting).
However, it is widely believed that Greedy should also achieve similar bounds

in the dynamic heavily-loaded case as in the non-dynamic heavily-loaded case (i.e.,
an overload of 𝑂(log log 𝑛) and 𝑂(log𝑚), w.h.p. in 𝑛 and 𝑚, respectively). The
current limitation would seem to be a technical one: the witness-tree techniques
that allow for us to analyze dynamic games with oblivious adversaries [128, 351] are
incompatible with the techniques (i.e., Markov-chain [98] and potential-function [248,
308,340] arguments) that achieve strong bounds in the heavily-loaded case.

As we shall, see, the above intuition is actually wrong. The reason that researchers
have been unable to analyze Greedy allocation is that the bounds that one might
hope for fail. Nonetheless, with the help of new non-greedy strategies, it will be
possible to salvage the situation.

Two perspectives: scheduling vs. data structures. It will be helpful to split
the dynamic case into two models. The first model is the insertion/deletion model
in which each insertion involves a new ball with independent random bin choices.
This model is natural from the perspective of scheduling problems, where insertions
represent the addition of new jobs to the system. The second model is the reinser-
tion/deletion model in which a ball can be reinserted after being deleted, and has
the same two random bin choices each time it is reinserted. This model is natural
from the perspective of data-structural problems, where the balls represent elements
of a data structure, and the same element can be inserted/deleted/reinserted many
times.

These two models may seem quite similar at first glance, and indeed in past work,
the results for the two models have always been the same. One of the surprising
takeaways of our results, however, will be that, in the heavily-loaded regime, the two
models actually lead to remarkably different conclusions and require very different
techniques from one another.

8.1 Chapter 9. The Scheduling Perspective

We begin by considering the insertion/deletion model, that is, an oblivious adversary
performs an arbitrary sequence of insertions/deletions subject only to the constraint
that no more than 𝑚 balls are present at a time.

A lower bound for Greedy. We show that the Greedy strategy does not offer
strong bounds in the dynamic heavily-loaded setting. In particular, already for 𝑛 = 4
bins, there exists an oblivious sequence of insertions/deletions after which there is a

2Credit should also be given to Woelfel [369] for fixing an error in the original arguments.

131

maximum load of
𝑚/𝑛+ Ω(

√
𝑚)

with probability Ω(1). In other words, the Greedy strategy is no better than Sin-
gleChoice in this setting!

Our result represents a remarkable departure from the lightly-loaded 𝑚 = 𝑛
case, where Greedy achieves an optimal bound of 𝑂(log log 𝑛) (even in the
reinsertion/deletion model). The result also offers an explanation for why all pre-
vious attempts [128,351] to analyze Greedy for large 𝑚 have yielded only relatively
weak bounds.

The high-level intuition behind our lower bound is as follows. Using Greedy, if
some bin 𝑖 contains far fewer balls than the other bins, then there will be a contiguous
time window during which all of the insertions are maximally biased towards bin 𝑖.
But this means that, later on, the adversary can perform a sequence of deletions in
which the balls being deleted exhibit a strong bias towards being from bin 𝑖. In other
words, the biases that Greedy exhibits during insertions can be thrown back at it
by future deletions.

The ModulatedGreedy algorithm. Of course, the above phenomenon is not
isolated to the Greedy strategy. Any strategy that exhibits biases between bins is
at risk of having those biases thrown back at it via future deletions. This raises a
natural question: is it possible for any 2-choice allocation strategy to beat the bounds
trivially achieved in the single-choice model?

Our second result is a new algorithm called ModulatedGreedy, in the in-
sertion/deletion model, that at any time, with high probability in 𝑚, achieves a
maximum load of

𝑚/𝑛+𝑂(log𝑚).

This bound is optimal for any strategy that achieves high-probability bounds in 𝑚 .
Given the choice between two bins 𝑖 and 𝑗, the ModulatedGreedy algorithm

chooses between the bins probabilistically, based on how their loads compare. It
carefully modulates its biases between bins so that the adversary is unable to find
any non-trivial correlations between how balls are inserted.

A returning hero: history independence. The analysis of ModulatedGreedy
draws a surprising connection to the techniques that we developed in Part II for the
dynamic sorting problem. The analysis couples ModulatedGreedy to a history-
independent process that we call the stone game. The history-independence of the
stone game makes the game trivial to analyze, no matter what sequence of inser-
tions/deletions are performed. The fact that ModulatedGreedy can be coupled
to the game then allows for us to (with almost no work!) recover tight bounds for
ModulatedGreedy.

In fact, what is really going on here is that, although the assignment of balls to
bins in ModulatedGreedy is not history independent, the actual histogram of how

132

many balls are in each bin is (with high probability). This is in stark contrast to what
happens for Greedy, where the state of the system is a complicated function of the
past insertion/deletion history.

It is worth emphasizing that the role of history independence here is not just
analytical (although it certainly makes the analysis much simpler). The introduction
of history independence into ModulatedGreedy’s algorithmic structure is precisely
what allows for us to bypass the lower bound that holds for Greedy. In other words,
history independence is again serving as an algorithmic tool for obtaining better
algorithms.

Generalizations. Our analysis of ModulatedGreedy extends to support a num-
ber of generalizations and applications. This includes a tight bound of 𝑚/𝑛 +
𝑂(𝛽−1 log𝑚) for the (1+𝛽)-choice version of the game [308], where a (1−𝛽)-fraction
of the balls are inserted using SingleChoice and only a 𝛽-fraction of the balls get
two choices; a bound of 𝑚/𝑛+ polylog𝑚 for the dynamic balls-and-bins game on an
undirected well-connected regular graphs [59, 220]; and a bound of 𝑚/𝑛 + 𝑂(log𝑀)
for the setting in which 𝑚 is permitted to increase over time, subject only to the
constraint that 𝑚 ≤ 𝑀 . In all of these settings, the previous states of the art were
restricted to the insertion-only model.

8.2 Chapter 10. The Data-Structural Perspective

Next, we turn our attention to the reinsertion/deletion model. That is, the adversary
can perform an arbitrary sequence of insertions, deletions, and reinsertions (as long
as the ball being reinserted is not currently present) subject only to the constraint
that no more than 𝑚 balls are present at a time.

A (much) stronger lower bound. We begin by establishing a strong impossibility
result. Consider any 2-choice bin-allocation strategy that is oblivious to the specific
identities of balls (i.e., when a ball is inserted, all that the strategy gets to see is
the pair 𝑖, 𝑗 of bins that the ball is assigned to). We show that, against any such
strategy, it is possible for an oblivious adversary on 𝑛 = 4 bins to force a maximum
load of 𝑚/4 + poly(𝑚) at some point in the first poly(𝑚) insertions/deletions, with
high probability in 𝑚.

This result reveals a fundamental (and perhaps unexpected) gap between the inser-
tion/deletion model and the reinsertion/deletion model. In particular, in the lightly-
loaded setting with deletions where 𝑚 ≤ 𝑛, both models yield the same 𝑂(log log 𝑛)
bounds even for infinite sequences of reinsertions/deletions [128, 351]. But, in the
heavily-loaded setting, the cyclic dependencies that are introduced by reinsertions
(i.e., a ball 𝑥 being reinserted is being placed into a system whose state has already
been affected by 𝑥’s bin choices in the past) end up being lethal to any ID-oblivious
allocation strategy.

133

Iceberg hashing: a strategy for the medium-loaded case. In most data-
structural settings, it is the very heavy case that we are interested in, but rather
the parameter regime where the number 𝑚 of balls satisfies 𝑚 = ℎ𝑛 for some ℎ ∈
𝜔(𝑛) ∩ 𝑜(𝑛 log 𝑛). Here, SingleChoice offers a bound of ℎ + Θ(

√
ℎ
√
log 𝑛) on the

maximum load (with high probability in 𝑛). However, since log 𝑛≫ ℎ, this bound is
actually 𝜔(ℎ)! We can get a slightly stronger bound of 𝑂(ℎ+log log 𝑛) using Greedy
with two choices [350,351,369], but this bound is still giving up a constant factor on
the ℎ term. It has remained an open question whether, using 𝑂(1) choices, one can
achieve a bound of (1 + 𝑜(1))ℎ+𝑂(log log 𝑛) on the maximum load.

We answer this question in the affirmative with a new 3-choice scheme. Our
scheme, which we call Iceberg, achieves a maximum load of

ℎ+𝑂(
√︀
ℎ log ℎ) + log log 𝑛+𝑂(1)

with high probability in 𝑛, in the reinsertion/deletion model.
Unlike our results for the non-reinsertion case, which are probably tight, it re-

mains an open question whether the bounds achieved by Iceberg hashing are optimal.
Nonetheless, as we shall see in Part V, the bounds achieved by Iceberg hashing are
already strong enough for many data-structural applications, enabling a new type of
data-structural abstraction that we call the tiny pointer.

The rest of the chapter proceeds in two sections. Section 8.3 presents preliminaries
and definitions. Then, Section 8.4 gives a more in-depth discussion of related work.

8.3 Preliminaries

In the dynamic 2-choice allocation problem, an oblivious adversary performs a
sequence of ball insertions and deletions subject to the constraint that the number of
balls in the system can never exceed 𝑚. Whenever a ball 𝑥 is inserted, a uniformly
random pair ℎ(𝑥) = (ℎ1(𝑥), ℎ2(𝑥)) ∈ [𝑛] × [𝑛] of distinct bins is selected, and the
insertion strategy must choose which of the bins ℎ1(𝑥) or ℎ2(𝑥) the ball will be
placed in. The pair ℎ(𝑥) is sometimes referred to as the hash of the ball 𝑥.

There are two models that we will consider for insertions and deletions. In the
insertion/deletion model, each insertion Insert(𝑥) places a new ball 𝑥 into the
system that has never been present before. In the reinsertion/deletion model, each
insertion Insert(𝑥) places a ball 𝑥 into the system that is not currently present, but
that may have been present in the past (each time 𝑥 is inserted, its bin pair ℎ(𝑥)
stays the same). In both models, the Delete(𝑥) operation selects a ball 𝑥 that is
currently present and removes it.

We are interested in bounding the maximum load (i.e., the number of balls) of
any bin. Our algorithms will offer guarantees with high probability (w.h.p.) in 𝑚,
meaning that the failure probability is 1/ poly(𝑚) for a polynomial of our choice. Two
basic insertion strategies that we will discuss frequently are Greedy, which always

134

selects the least full of the bins ℎ1(𝑥), ℎ2(𝑥), and SingleChoice, which always selects
bin ℎ1(𝑥).

In our lower bound for the reinsertion/deletion model (Section 10.1), we will study
the class of ID-oblivious insertion strategies—such a strategy makes each insertion
decision based on the hash ℎ(𝑥) of the ball being inserted, rather than based on the
specific identity 𝑥 of the ball. Formally, an ID-oblivious strategy is one that can be
implemented with operations Insert(ℎ1(𝑥), ℎ2(𝑥)) (indicating the pair of bins for the
ball being inserted) and Delete(𝑟) (indicating a deletion of the 𝑟-th-most-recently-
inserted ball of those present).

Finally, although ℎ(𝑥) = (ℎ1(𝑥), ℎ2(𝑥)) is a uniformly random pair of distinct
bins, any strategy in the insertion/deletion model can choose to view ℎ(𝑥) as a pair
of independent bins by artificially resetting ℎ2(𝑥) = ℎ1(𝑥) with probability 1/𝑛. The
strategies that we design will assume (without loss of generality) that they are given
a uniformly random pair of (not necessarily distinct) bins for each insertion.

8.4 Other Related Work

Beyond research on the heavily-loaded and dynamic settings, there has been a large
body of work on other ways to extend the 2-choice allocation framework—because
the literature on this subject is so extensive, we give only a brief overview here. These
extensions have included work on restricted classes of insertion strategies (e.g., (1 +
𝛽)-choice strategies [308], thinning strategies [177, 246–248], strategies with limited
information [247], etc.), on balls with nonuniform sizes [99, 308, 339, 340], on parallel
settings in which balls arrive in batches [97,100,101,237,333], on settings in which bins
correspond to vertices on a graph [59, 220], on settings where balls can be relocated
after insertion [37, 85], etc. Another notable extension is Vöcking’s asymmetric 𝑑-
choice paradigm [351] which, in the lightly-loaded setting, chooses between 𝑑 bins on
each insertion to achieve a maximum load of 𝑂((log log 𝑛)/𝑑).

Another line of work, related to the current work on the dynamic setting, is on
queuing models [112, 113, 172, 251, 252, 267, 275, 352], where insertions and deletions
are stochastic. Many of these focus on the so-called supermarket model, introduced
by [267, 352], in which customers (i.e., balls) arrive in a Poisson stream of rate 𝜆𝑛,
𝜆 < 1, and are processed within each queue (i.e., bin) in FIFO order, where each
customer requires processing time that is exponentially distributed with mean 1. In
the case where 𝜆 is allowed to go to 1 (see, e.g., [113, 172]), the number of balls in
the system can become 𝜔(𝑛) (this is analogous to the heavy case in standard balls
and bins). However, because insertions/deletions are assumed to be stochastic, the
analyses (and the flavors of the results) take a very different form than those here
(where deletions are performed by an oblivious adversary, and the number of balls in
the system is deterministically bounded by a parameter 𝑚).

Finally, there are a number of works [77, 86, 91, 140, 231, 232, 246, 265] that study
load-balancing problems in which slightly non-greedy behavior can out-perform more
greedy approaches (either because the less-greedy approach relies less on stale infor-

135

mation [140, 246, 265], or because the less-greedy approach benefits from randomiza-
tion [77, 86, 91, 231, 232]). Our work reveals that this same theme appears somewhat
unexpectedly even in the classical setting of power-of-two-choice with deletions (but,
of course, for different reasons).

136

Chapter 9

The Scheduling Perspective

In this chapter, we consider the insertion/deletion model. We show that the Greedy
strategy does not, in general, achieve strong bounds, but that an alternative strategy
(which we call ModulatedGreedy) does.

A lower bound for greedy with deletions. Recall that the trivial SingleChoice
strategy achieves an overload of 𝑂(

√︀
(𝑚/𝑛) log 𝑛) (w.h.p. in 𝑚). A natural question

is whether Greedy does any better. In Section 9.1, we show that, at least in some
parameter regimes, it does not:
Theorem 70. Consider the insertion/deletion model on 𝑛 = 4 bins, with the restric-
tion that at most 𝑚 balls can be present at any time, and suppose that insertions
are implemented using Greedy. There exists an oblivious sequence of poly(𝑚) in-
sertions/deletions such that, after the sequence is complete, we have with probability
Ω(1) that some bin contains 𝑚/4 + Ω(

√
𝑚) balls.

For ease of exposition, and to keep the main ideas as clear as possible, we focus
our lower bound on 𝑛 = 4 bins. For general 𝑛 and 𝑚, the same construction naturally
extends to give an 𝑚/𝑛+ Ω(

√
𝑚/poly(𝑛)) lower bound on the maximum load.

A tight upper bound via ModulatedGreedy. Next we introduce the
ModulatedGreedy strategy, a two-choice strategy that significantly outperforms
Greedy in the dynamic setting. To describe the main ideas as clearly as possible,
break the presentation of the algorithm into two parts. In Section 9.2 we consider a
simpler version of ModulatedGreedy that guarantees the 𝑚/𝑛+𝑂(log𝑚) bound
for insertion/deletion sequences of poly(𝑚) length:
Theorem 71. Let 𝑚 ≥ 𝑛. Consider the insertion/deletion model with 𝑛 bins and an
upper bound of at most 𝑚 balls present at a time. Consider a sequence of poly(𝑚)
insertions/deletions, where insertions are implemented using ModulatedGreedy.
With high probability in 𝑚, ModulatedGreedy does not halt during any of the
insertions/deletions, and no bin ever has load more than 𝑚/𝑛+𝑂(log𝑚).

Then, in Section 9.3, we extend the algorithm to support unbounded request
sequences and to allow 𝑚 to increase over time. Finally, in the same section, we

137

show that the same techniques can be applied to the (1+𝛽)-choice and the graphical
2-choice processes in order to obtain dynamic results in those settings.

9.1 A Lower Bound for Greedy with Deletions

In this section, we prove Theorem 70. To motivate our techniques, we being in
Subsection 9.1.1 by proving a simpler (but already surprising) lower bound of 𝑚/4+
Ω(𝑚1/4). Then, in Section 9.1.2, we build on these ideas to prove Theorem 70.

9.1.1 A Simpler Ω(𝑚1/4) Bound

We begin by describing a construction with the property that, if we ever reach a
state where one of the bins (say, bin 1) contains significantly fewer balls (say, 𝑘 fewer
balls) than the other bins, then we can subsequently reach a state in which (with
probability Ω(1)) some bin contains at least 𝑚/4+Ω(

√
𝑘) balls. As we shall see later

in the subsection, this can be used to directly obtain the 𝑚/4 + Ω(𝑚1/4) bound.
Proposition 72 (Gap to overload). Consider the Greedy algorithm on 4 bins, on
instances where at most 𝑚 balls can be present at a time. Suppose we begin in a state
that contains at most 𝑚−𝑘 balls, and where bin 1 contains 𝑘+1 fewer balls than each
of bins 2, 3, 4. Then there is an oblivious sequence of 𝑂(𝑚) insertions/deletions such
that, after the sequence is complete, we have the following property with probability
Ω(1): some bin contains 𝑚/4 + Ω(

√
𝑘) balls.

Proof. Let 𝑋0 denote the initial state of the game. Consider the sequence with the
following three steps.

1. Insert 𝑘 balls 𝑥1, 𝑥2, . . . , 𝑥𝑘 to get to a state 𝑋1.

2. Then insert 𝑚− 𝑗 balls 𝑦1, 𝑦2, . . . , 𝑦𝑚−𝑗, where 𝑗 is the number of balls in state
𝑋1—this brings us to a state 𝑋2 with 𝑚 balls in total.

3. Finally, delete the balls 𝑥1, 𝑥2, . . . , 𝑥𝑘, and insert new balls 𝑧1, 𝑧2, . . . , 𝑧𝑘 to reach
a state 𝑋3.

We claim that, for at least one of the two states 𝑋2 and 𝑋3, we have with probability
Ω(1) that some bin contains 𝑚/4 + Ω(

√
𝑘) balls. (This means that, if we terminate

the sequence of operations randomly at one of 𝑋2 or 𝑋3, then after the sequence is
complete, we have with probability Ω(1) that some bin contains 𝑚/4+Ω(

√
𝑘) balls.)

During the insertions of 𝑥1, 𝑥2, . . . , 𝑥𝑘, we are always in a state where bin 1 contains
fewer balls than bins 2, 3, 4. Thus, each insertion 𝑥𝑖 will go into bin 1 if and only
if 1 ∈ {ℎ1(𝑥𝑖), ℎ2(𝑥𝑖)} (this is where we are exploiting that the Greedy algorithm
is too aggressive). The number 𝐴 of balls 𝑥1, 𝑥2, . . . , 𝑥𝑘 that are placed in bin 1 is
therefore given by

𝐴 = |{𝑖 | 1 ∈ {ℎ1(𝑥𝑖), ℎ2(𝑥𝑖)}}|.

138

Let 𝜇 = E[𝐴]. As 𝐴 is a binomial random variable with mean 𝜇 = Θ(𝑘), with
probability Ω(1) we have

𝐴 ≥ 𝜇+ Ω(
√
𝑘).

Now consider the number 𝐵 of balls 𝑧1, 𝑧2, . . . , 𝑧𝑘 that are placed into bin 1. We
deterministically have that

𝐵 ≤ |{𝑖 | 1 ∈ {ℎ1(𝑧𝑖), ℎ2(𝑧𝑖)}}|. (9.1)

Since the right side of (9.1) is a binomial random variable with mean 𝜇, we have with
probability Ω(1) that

𝐵 ≤ 𝜇.

Moreover, since 𝐴 and 𝐵 are independent, the above bounds on 𝐴 and 𝐵 hold simul-
taneously with probability Ω(1).

Finally, let us consider the number of balls in bins 2, 3, 4 once we reach state 𝑋3.
Assume that state 𝑋2 has maximum load 𝑚/4 + 𝑜(

√
𝑘), otherwise we are already

done. Then, since 𝑋2 contains 𝑚 balls in total, bins 2, 3, 4 must contain a total of at
least 3𝑚/4 − 𝑜(

√
𝑘) balls. By step 3 of the input sequence above, it follows that, in

state 𝑋3, the total number of balls in bins 2, 3, 4 is at least

3𝑚/4− 𝑜(
√
𝑘)− (𝑘 − 𝐴) + (𝑘 −𝐵).

Conditioning on the event above, and plugging in our bounds for 𝐴 and 𝐵, we see
that (with probability Ω(1)) this is at least 3𝑚/4+Ω(

√
𝑘). Thus, at least one of bins

2, 3, 4 must contain 𝑚/4 + Ω(
√
𝑘) balls, as desired.

The lower bound. Using Proposition 72, the claimed lower bound follows quite
easily. Consider the following input sequence, starting from an empty system. (1)
Insert 𝑚 balls into the system; (2) delete each ball independently and randomly with
probability 1/2; and (3) apply the sequence in Proposition 72 with 𝑘 =

√
𝑚.

As the deletions are random in step (2), the precondition for Proposition 72
(i.e., the least loaded bin contain at least 𝑘 =

√
𝑚 fewer balls than every other bins)

holds with probability Ω(1). So by Proposition 72, we can achieve 𝑚/4 + Ω(
√
𝑘) =

𝑚/4 + Ω(𝑚1/4) balls in some bin, with probability Ω(1).

General 𝑛. For 𝑛 bins, where 𝑛 is arbitrary, the same approach gives a lower bound
of

𝑚/𝑛+ Ω(𝑚1/4/
√︀
𝑛3 log 𝑛). (9.2)

with probability Ω(1).
In particular, Proposition 72 can be directly modified, in this setting, to achieve

an overload of Ω(𝑘1/2/𝑛): instead of using 𝑘 balls in each of steps 1 and 3, use 𝑘𝑛/100
balls; then by the same argument as in the lemma, we have 𝐴 − 𝐵 = Ω(𝑘1/2) with
constant probability; this means that bin 1 is under-loaded by at least Ω(𝑘1/2), and

139

thus that some other bin is over-loaded by at least Ω(𝑘1/2/𝑛).
To achieve (9.2) using the modified Proposition 72, we just need to cause the

smallest load to be 𝑘 = Θ(
√︀
𝑚/(𝑛 log 𝑛)) smaller than the other loads—this can

again be achieved again by performing 𝑚 insertions and then deleting each ball inde-
pendently with probability 1/2. After the 𝑚 insertions, every bin will have essentially
the same load (±𝑂(log 𝑛) w.h.p. in 𝑛). Conditioning on the loads, the number of balls
deleted from each bin is a Gaussian with standard deviation 𝜎 = Θ(

√︀
𝑚/𝑛) (and the

Gaussians are independent between bins). By standard estimates on order statistics,
the difference in loads between the least loaded and the second least loaded bins is
roughly the difference between the 1/𝑛-th and 2/𝑛-th percentile of the distribution,
see e.g., [317], which in expectation is Θ(𝜎/

√
log 𝑛) for the Gaussian 𝑁(0, 𝜎2)—hence

an imbalance of 𝑘 = Θ(
√︀
𝑚/(𝑛 log 𝑛)).

9.1.2 The Stronger Ω(𝑚1/2) Lower Bound

We now show how to achieve the stronger bound of 𝑚/4+Ω(
√
𝑚) balls in some bin.

Given Proposition 72, to prove Theorem 70 it suffices to show how to achieve a gap
of 𝑘 = Ω(𝑚) between bin 1 and bins 2, 3, 4. This is accomplished in the following
proposition.
Proposition 73. Consider the Greedy algorithm on 4 bins, with the restriction
that at most 𝑚 balls can be present at a time. There exists an oblivious sequence of
poly(𝑚) insertions/deletions such that, after the sequence is complete, we have the
following property with probability Ω(1): Bin 1 contains Ω(𝑚) fewer balls than each
of bins 2, 3, 4.

The rest of the section is focused on the proof of Proposition 73.
Let 0 < 𝜀1, 𝜀2, 𝜀3 < 1 be constants, where 𝜀2 is sufficiently small as a function of

𝜀1, and let 𝜀3 is sufficiently small as a function of 𝜀2. Sometimes we will write 𝜀1, 𝜀2, 𝜀3
inside the 𝑂(·) notation, to make the dependence on them explicit, while hiding fixed
constants that do not depend on 𝜀1, 𝜀2, 𝜀3.

Some basic gadgets

We begin with a basic technical lemma establishing that Greedy has a tendency
of eliminating imbalances over time. For brevity (and since the proof follows from
standard arguments), we defer the proof of Lemma 74 to Appendix 9.A.
Lemma 74. Consider the Greedy algorithm on 4 bins, and fix an arbitrary initial
state in which the bins have loads within 𝜀2𝑚 of each other. If 𝜀1𝑚 insertions are
performed, then after the sequence is complete, all of the bins have loads within
𝑂(log𝑚) of each other with high probability in𝑚. Furthermore, with high probability
in 𝑚, there is a point in time prior to the final insertion at which all of the bins have
equal loads.

Using Lemma 74, we now construct a simple strategy for forcing Greedy to add

140

a ball to a uniformly random bin.
Lemma 75 (Uniform ball placement gadget). Consider the Greedy algorithm on 4
bins, and fix an arbitrary initial state in which the bins have loads within 𝜀2𝑚 of each
other. Suppose we insert balls 𝑥1, . . . , 𝑥𝜀1𝑚, and then we delete balls 𝑥1, . . . , 𝑥𝜀1𝑚−1

(all except the last insertion). With high probability in 𝑚, this is equivalent to placing
the ball 𝑥𝜀1𝑚 uniformly at random into one of the bins 1, 2, 3, 4.

Proof. We have by Lemma 74 that, with high probability in 𝑚, there is some insertion
𝑥𝑖, 𝑖 ∈ [𝜀1𝑚 − 1], after which the bins have equal loads. It follows that, from the
perspectives of insertions 𝑥𝑖+1, . . . , 𝑥𝜀1𝑚, the four bins are symmetric. Thus the last
insertion 𝑥𝜀1𝑚 is equally likely to be placed into each of the bins, which establishes
the lemma.

Lemma 75 allows for us to place a ball into a random bin, but we can only do
this 𝑂(𝑚) times before there are too many balls (> 𝑚) in the system. But for the
purposes of Proposition 73, we will need to do this Ω(𝑚2) times. Our next lemma
provides a mechanism for reducing the number of balls that are present while having
only a small effect on the relative loads of the bins.
Lemma 76 (Almost equal load reduction gadget). Consider the Greedy algorithm
on 4 bins, and fix an arbitrary initial state in which the bins 1, 2, 3, 4 have loads
ℓ1, ℓ2, ℓ3, ℓ4 within 𝜀2𝑚 of each other. We can construct an oblivous sequence of
𝑂(𝜀1𝑚) insertions/deletions such that, after this sequence, the total number of balls
in the system is at most 𝜀1𝑚; and such that, with high probability in 𝑚, the new bin
loads ℓ′𝑖 for 𝑖 ∈ [4] satisfy

ℓ′𝑖 = ℓ𝑖 − 𝑟 + 𝑌 (𝑖), (9.3)

where 𝑟 ∈ N, |𝑌 (𝑖)| ≤ 𝑂(log𝑚), and E[𝑌 (𝑖)] = 0.

Proof. Let us begin by describing a sequence of 𝑂(𝜀1𝑚) insertions/deletions after
which (1) the total number of balls in the system is at most 𝜀1𝑚; and (2) the new
loads ℓ′𝑖 of the bins satisfy (w.h.p. in 𝑚)

ℓ′𝑖 = 𝑟 − ℓ𝑖 + 𝑌 (𝑖), (9.4)

where 𝑟 ∈ N, |𝑌 (𝑖)| ≤ 𝑂(log𝑚), and E[𝑌 (𝑖)] = 0. (Note that (9.4) is the same as (9.3)
but with 𝑟 and ℓ𝑖 flipped).

The lemma will then follow by applying the above construction twice. That is, first
we obtain ℓ′1, ℓ

′
2, ℓ

′
3, ℓ4 satisfying (9.4), and then apply it again to obtain ℓ′′1, ℓ

′′
2, ℓ

′′
3, ℓ

′′
4

satisfying
ℓ𝑖

′′ = 𝑟′ − ℓ′𝑖 + 𝑌 ′(𝑖), (9.5)

where 𝑟′ ∈ N, |𝑌 ′(𝑖)| ≤ 𝑂(log𝑚), and E[𝑌 ′(𝑖)] = 0. Chaining together (9.4) and (9.5),
we get relationship between ℓ1, ℓ2, ℓ3, ℓ3 and ℓ′′1, ℓ′′2, ℓ′′3, ℓ′′4 as desired by (9.3).

Our construction for achieving (9.4) is very simple: we perform 𝜀1𝑚 insertions
𝑥1, 𝑥2, . . . , 𝑥𝜀1𝑚, and then we delete all of the other elements besides 𝑥1, 𝑥2, . . . , 𝑥𝜀1𝑚.
Let ℓ𝑖 be the load of bin 𝑖 before these insertions/deletions, let 𝑞𝑖 be the load of bin 𝑖

141

after the insertions are completed (but the deletions have not yet begun), and let ℓ′𝑖
be the load of bin 𝑖 after the deletions have completed.

By Lemma 76, the quantities 𝑞1, 𝑞2, 𝑞3, 𝑞4 are within 𝑂(log𝑚) of each other
(w.h.p. in 𝑚). Moreover, w.h.p. in 𝑚, there is some point during the insertions
at which all of the bins have equal loads—if we condition on this, then we have
E[𝑞1] = E[𝑞2] = E[𝑞3] = E[𝑞4] by symmetry. Defining 𝑌 (𝑖) = 𝑞𝑖 − E[𝑞𝑖], we have
|𝑌 (𝑖)| ≤ 𝑂(log𝑚), and E[𝑌 (𝑖)] = 0.

As ℓ′𝑖 = 𝑞𝑖 − ℓ𝑖, we have ℓ′𝑖 = E[𝑞𝑖] + 𝑌 (𝑖) − ℓ𝑖. Setting 𝑟 = E[𝑞𝑖], it follows that
(9.4) holds w.h.p. in 𝑚.

Applying the gadgets

We say that an application of Lemma 75 or of Lemma 76 fails if either: the precondi-
tion of ℓ1, ℓ2, ℓ2, ℓ4 being within 𝜀2𝑚 of each other fails (this is a precondition failure);
or the high-probability guarantee offered by the lemma fails (this is a probabilistic
failure).

We now describe the sequence of insertions/deletions that we use to achieve Propo-
sition 73. We perform 𝜀3𝑚 phases, where phase 𝑎 ∈ [𝜀3𝑚] proceeds as follows:

• Apply Lemma 75 𝑚 times, one after another. For 𝑏 ∈ [𝑚], use 𝑍𝑚·(𝑎−1)+𝑏 to
denote the bin that the 𝑏-th application of the lemma adds a ball to. If the
lemma fails, then for the sake of analysis, we redefine 𝑍𝑚·(𝑎−1)+𝑏 to be uniformly
random in [4]. This ensures that, regardless of whether the lemma fails, the
𝑍𝑖’s are independently and uniformly random in [4].

• Apply Lemma 76 once to reduce the loads almost equally. Let
𝑌

(1)
𝑎 , 𝑌

(2)
𝑎 , 𝑌

(3)
𝑎 , 𝑌

(4)
𝑎 denote the outcomes of 𝑌 (1), 𝑌 (2), 𝑌 (3), 𝑌 (4) in that applica-

tion of the lemma. If the lemma fails, then for the sake of analysis, we redefine
𝑌

(1)
𝑎 , 𝑌

(2)
𝑎 , 𝑌

(3)
𝑎 , 𝑌

(4)
𝑎 to be 0.

To analyze the sequence of insertions/deletions, we first argue that the 𝑌 (𝑠)
𝑖 s have

a negligible effect on the loads of the bins at any given moment.
Lemma 77. Let 𝑠 ∈ [4] and 𝑘 ∈ [𝜀3𝑚]. Then w.h.p. in 𝑚, it holds that for each 𝑘,
|
∑︀𝑘

𝑎=1 𝑌
(𝑠)
𝑎 | ≤ �̃�(

√
𝑚), where �̃�(·) hides polylogarithmic factors in 𝑚.

Proof. The sequence of partial sums 𝑃𝑟 =
∑︀𝑟

𝑎=1 𝑌
(𝑠)
𝑎 for 𝑟 = 0, . . . , 𝑘 forms a martin-

gale satisfying |𝑃𝑟 − 𝑃𝑟−1| = 𝑂(log𝑚) deterministically for each 𝑟 ∈ [𝑘]. The lemma
follows from Azuma’s inequality.

Next we consider the effect of the 𝜀3𝑚2 insertions 𝑍𝑖 over the 𝜀𝑚 phases, and show
that with probability at least 1− 𝜀2, there is no point in time at which the 𝑍𝑖’s cause
an imbalance of more 𝜀2𝑚/2.

For 𝑘 ∈ [𝜀3𝑚
2] and 𝑠 ∈ [4], let

𝑆(𝑘, 𝑠) = |{𝑖 ∈ [𝑘] | 𝑍𝑖 = 𝑠}|

142

denote the number insertions in bin 𝑠 during the first 𝑘 applications of Lemma 75.
Lemma 78. Let 𝑠 ∈ [4] and 𝜀2 = (2𝜀3)

1/3. With probability at least 1− 𝜀2, it holds
(simultaneously) for all 𝑘 ∈ [𝜀3𝑚

2] that

|𝑆(𝑘, 𝑠)− 𝑘/4| ≤ 𝜀2𝑚/2.

Proof. As 𝑍𝑖 is equal to 𝑠 independently with probability 1/4, the sequence 𝑆(𝑘, 𝑠)−
𝑘/4 for 𝑘 = 0, 1, . . . , 𝜀3𝑚

2 forms a martingale with increments {−1/4, 3/4} (and hence
variance at most 1). By the maximal inequality for martingales, for any 𝜆 > 0,

Pr
[︁

max
𝑘∈[𝜀3𝑚2]

|𝑆(𝑘, 𝑠)| > 𝜆
]︁
≤ 2

Var[𝑆(𝜀3𝑚
2, 𝑠)]

𝜆2
≤ 2

𝜀3𝑚
2

𝜆2
.

Setting 𝜆 = 𝑚(2𝜀3/𝜀2)
1/2 so that the right hand side above is 𝜀2, and choosing 𝜀32 ≤ 2𝜀3

so that 𝜆 ≥ 𝜀2𝑚 gives the claimed result.

Combining Lemmas 77 and 78, we can bound the probability of any failures oc-
curring during our construction.
Lemma 79. With probability at least 1 − 𝜀2 − 1/ poly(𝑚), no failures (either pre-
condition failures or probabilistic failures) occur during the construction.

Proof. Probabilistic failures occur with probability only 1/ poly(𝑚) per application
of Lemma 75 or Lemma 76. Across the 𝑂(𝑚2) applications of the lemmas, the prob-
ability of a probabilistic failure ever occurring is at most 1/ poly(𝑚). For the rest of
the proof, we condition on no probabilistic failures occurring.

We now bound the probability of any precondition failure. Before any partic-
ular application of Lemma 75 or Lemma 76 (during the input sequence of inser-
tions/deletions), for bin 𝑠 ∈ [4], the amount by which its load differs from the mean
can be expressed as ⃒⃒⃒ 𝑘1∑︁

𝑖=1

𝑌
(𝑠)
𝑖 + 𝑆(𝑘2, 𝑠)− 𝑘2/4

⃒⃒⃒
for some 𝑘1, 𝑘2. By Lemmas 77 and 78, the probability that this quantity ever exceeds
𝜀2𝑚 (and hence any precondition failure occurring) is at most 𝜀2+1/ poly(𝑚), which
completes the proof.

Finally, we argue that with probability at least 𝜀1, the 𝑍𝑖’s do cause an imbalance
of Ω(𝑚) at the end of the construction. In particular, bin 1 contains Ω(𝑚) fewer balls
than bins 2, 3, 4.
Lemma 80. With probability at least 𝜀1, we have that

|𝑆(𝜀3𝑚2, 1)}| < max
𝑠∈{2,3,4}

|𝑆(𝜀3𝑚2, 𝑠)| − Ω(
√
𝜀3𝑚).

Proof. Let 𝑋𝑠 denote the number of such balls inserted in bin 𝑠. Then 𝑋1 is a
binomial random variable with mean 𝜇 = Θ(𝜀3𝑚

2). Thus, with probability at least

143

2𝜀1, we have that, 𝑋1 ≤ 𝜇 − 10
√
𝜇. On the other hand, if we condition on some

value ≤ 𝜇 − 10
√
𝜇 for 𝑋1, then the variables 𝑋2, 𝑋2, 𝑋4 become binomial random

variables with means 𝜇′ > 𝜇. Each 𝑋𝑖 has probability at least 0.9 of satisfying
𝑋𝑖 > 𝜇′ − 5

√
𝜇′ ≥ 𝜇 − 5

√
𝜇. Thus, if we condition on 𝑋1 ≤ 𝜇 − 10

√
𝜇, then the

probability at least 0.7, we have 𝑋2, 𝑋3, 𝑋4 > 𝜇− 5
√
𝜇. Putting these together, the

probability that max{𝑋2, 𝑋3, 𝑋4} −𝑋1 > 5
√
𝜇 is at least

Pr[𝑋1 ≤ 𝜇− 10
√
𝜇] ·Pr[𝑋2, 𝑋3, 𝑋4 > 𝜇− 5

√
𝜇 | 𝑋1 ≤ 𝜇− 10

√
𝜇] ≥ 2𝜀1 · 0.7 > 𝜀1.

We can now complete the proof of Proposition 73.

Proof of Proposition 73. We prove the proposition using the construction described
in this section. Note that, by design, there are never more than 𝑚 balls present at
a time, as Lemma 76 brings the number of balls back down to 𝜀1𝑚 every 𝑂(𝜀1𝑚)
operations.

By Lemma 79, with probability at least 1 − 𝜀2 − 1/ poly(𝑛), all of the applica-
tions of Lemma 75 and Lemma 76 succeed. Conditioned on this, at the end of the
construction, the gap of each bin 𝑠 ∈ [4] can be expressed as

𝜀3𝑚∑︁
𝑖=1

𝑌
(𝑠)
𝑖 + 𝑆(𝜀3𝑚

2, 𝑠)− 𝜀3𝑚
2/4.

By Lemma 77, we have
⃒⃒⃒∑︀𝜀3𝑚

𝑖=1 𝑌
(𝑠)
𝑖

⃒⃒⃒
≤ �̃�(

√
𝑚) with high probability in 𝑚. On the

other hand, by Lemma 80,

|𝑆(𝜀3𝑚2, 1)| < max
𝑠∈{2,3,4}

|𝑆(𝜀3𝑚2, 𝑠)| − Ω(
√
𝜀3𝑚)

with probability at least 𝜀1. It follows that, with probability at least 𝜀1 − 𝜀2 −
1/ poly(𝑛), the load of bin 1 at the end of the construction is Ω(

√
𝜀3𝑚) smaller than

the loads of bins 2, 3, 4.

9.2 ModulatedGreedy: Handling poly(𝑚) Inser-
tions/Deletions

In this section, we consider the insertion/deletion model, with 𝑛 bins and up to 𝑚
balls present at a time, and we describe an insertion strategy, called Modulated-
Greedy, that achieves a strong bound on maximum load. Here, we describe the
simplest possible version of the strategy, which supports any sequence of poly(𝑚) in-
sertions/deletions while guaranteeing a maximum load of 𝑚/𝑛+𝑂(log𝑚) with high
probability in 𝑚. Later, in Section 9.3, we will extend ModulatedGreedy in vari-
ous ways, such as supporting an infinite sequence of insertions/deletions, allowing 𝑚
to increase over time, etc.

144

The main result of the section is the following:
Theorem 71. Let 𝑚 ≥ 𝑛. Consider the insertion/deletion model with 𝑛 bins and an
upper bound of at most 𝑚 balls present at a time. Consider a sequence of poly(𝑚)
insertions/deletions, where insertions are implemented using ModulatedGreedy.
With high probability in 𝑚, ModulatedGreedy does not halt during any of the
insertions/deletions, and no bin ever has load more than 𝑚/𝑛+𝑂(log𝑚).

It’s worth taking a moment to understand what aspect of the Greedy strategy
led to the lower bound in Section 9.1: the main problem with Greedy is that it is
too aggressive. Given the choice between two bins 𝑖, 𝑗, as Greedy always chooses the
less loaded of the two—this creates correlations between balls that can be exploited to
construct a bad sequence of insertions/deletions. In contrast, ModulatedGreedy
will try to be as unaggressive as possible, while still guaranteeing an upper gap of
𝑂(log𝑚). In particular, it carefully modulates its behavior and only exhibits a strong
bias between two bins 𝑖 and 𝑗 if (1) the two bins 𝑖 and 𝑗 have significantly different
loads; and (2) the system is nearly saturated (i.e., there are nearly 𝑚 balls present).

As we shall see, this modulated behavior also allows for a simple (but clever) com-
binatorial analysis, marking a departure from the (typically quite involved) potential-
function and Markov-chain arguments used in past analyses of the heavily-loaded
case.

9.2.1 The Algorithm

The ModulatedGreedy algorithm for allocating a bin to a ball is given below. We
assume without loss of generality that 𝑚 is a multiple of 𝑛.

Algorithm 1 The ModulatedGreedy insertion strategy. Here, ℓ𝑘 is the number
of balls in bin 𝑘 prior to the insertion, and 𝑐 is a large positive constant.

procedure ModulatedGreedy
Select two bins 𝑖, 𝑗 ∈ [𝑛] independently and uniformly at random.
Set 𝑇 = 𝑚/𝑛+ 𝑐 log𝑚−

∑︀
𝑟 ℓ𝑟/𝑛.

if (max𝑘 ℓ𝑘)− (min𝑘 ℓ𝑘) ≤ 𝑇 then
Assign the ball to bin 𝑖 with probability 1/2+

ℓ𝑗−ℓ𝑖
2𝑇

, and otherwise assign it
to bin 𝑗.

else
Halt.

For 𝑘 ∈ [𝑛], let ℓ𝑘 denote the load on bin 𝑘 prior to the insertion, let ℓ =
∑︀

𝑘 ℓ𝑘/𝑛
be the average bin load, and 𝑐 be a (sufficiently large) fixed constant. When choosing
between two bins 𝑖, 𝑗, the algorithm exhibits bias

(ℓ𝑗 − ℓ𝑖)/2𝑇

towards bin 𝑖, where
𝑇 = 𝑚/𝑛+ 𝑐 log𝑚− ℓ.

145

Note that the algorithm is well-defined as long as |ℓ𝑗 − ℓ𝑖| ≤ 𝑇 for all 𝑖, 𝑗 ∈ [𝑛]. One
should think of 𝑇 as representing the average amount of leftover space that each bin
would have if each bin had a total capacity of 𝑚/𝑛 + 𝑐 log𝑚 balls. This means that
the bias is proportional to the difference ℓ𝑗 − ℓ𝑖 between the loads of the bins, and is
inversely proportional to the average amount 𝑇 of space left in each bin.

The following lemma gives a closed-form solution for the probability of a given
bin 𝑘 being selected by ModulatedGreedy.
Lemma 81. Suppose that |ℓ𝑖 − ℓ𝑗| ≤ 𝑇 for all bins 𝑖, 𝑗. Consider a bin 𝑘, and set
𝑇𝑘 = 𝑚/𝑛 + 𝑐 log𝑚 − ℓ𝑘. Upon an insertion, a bin 𝑘 is selected with probability
𝑇𝑘/(𝑛𝑇) = 𝑇𝑘/(

∑︀
𝑖 𝑇𝑖).

Proof. Let 𝑖, 𝑗 denote the random bin choices for the ball being inserted. The prob-
ability that a given bin 𝑘 is selected is given by

Pr[𝑖 = 𝑘, 𝑗 = 𝑘] +
∑︁
𝑠 ̸=𝑘

Pr[𝑖 = 𝑘, 𝑗 = 𝑠]

(︂
1

2
+
ℓ𝑠 − ℓ𝑘
2𝑇

)︂
+

∑︁
𝑠 ̸=𝑘

Pr[𝑖 = 𝑠, 𝑗 = 𝑘]

(︂
1

2
+
ℓ𝑠 − ℓ𝑘
2𝑇

)︂

=
1

𝑛2
+

2

𝑛2

∑︁
𝑠 ̸=𝑘

(︂
1

2
+
ℓ𝑠 − ℓ𝑘
2𝑇

)︂
=

2

𝑛2

𝑛∑︁
𝑠=1

(︂
1

2
+
ℓ𝑠 − ℓ𝑘
2𝑇

)︂

=
2

𝑛

(︂
1

2
+
ℓ− ℓ𝑘
2𝑇

)︂
=
𝑇 + ℓ− ℓ𝑘

𝑛𝑇
=

𝑇𝑘
𝑛𝑇

.

Finally we note that
∑︀𝑛

𝑖=1 𝑇𝑖 =
∑︀𝑛

𝑖=1(𝑚/𝑛+ 𝑐 log𝑚− ℓ𝑖) = 𝑚+ 𝑛𝑐 log𝑚− 𝑛ℓ = 𝑛𝑇 .

9.2.2 Analysis

To analyze ModulatedGreedy, we begin by describing a seemingly different pro-
cess (which we call the stone game) that, by design, yields to a simple combinatorial
analysis. We then show that the ModulatedGreedy algorithm and the stone game
can be coupled together so that bounds on the behavior of the stone game directly
imply bounds on the behavior of ModulatedGreedy.

Stone Game. In the (𝑄, 𝑛)-stone game, parameterized by 𝑄 and 𝑛, there are 𝑄𝑛
stones which are distributed among two bags; an inactive bag and an active bag.
Initially the active bag is empty, and all the stones are in the inactive bag.

The game supports two types of operations: the Activate() operation moves
a random stone from the inactive bag to the active bag; and the Deactivate(𝑟)
operation examines the stones in the active bag, selects the stone that was added the
𝑟-th most recently, and moves it back to the inactive bag. (Activate() can only be
called if the inactive bag is non-empty, and Deactivate(𝑟) can only be called if the

146

active bag contains 𝑟 or more balls). The sequence of operations is generated by an
oblivious adversary, independent of the random bits used by the game.

The stones are labeled 𝑥𝑘,𝑞 for 𝑘 ∈ [𝑛], 𝑞 ∈ [𝑄]. We call 𝑘 the color of the stone,
so that there are 𝑄 stones of each color. However, the labels of the stone should be
thought of as hidden, since the behaviors of Activate() and Deactivate(𝑟) do not
depend on the labels of the stones.

We will now prove some lemmas establishing that the stone game is, by design,
very well behaved. Our first lemma shows that, even though the adversary gets to
perform activations/deactivations, it has no control over which specific stones are in
the active bag.
Lemma 82. At any given moment, if the active/inactive bag contains 𝑠 stones, then
these stones are a uniformly random subset of size 𝑠 of the stones {𝑥𝑘,𝑞}𝑘∈[𝑛],𝑞∈[𝑄].

Proof. The point is that the activation/deactivation operations do not depend on the
labels of the balls.

Formally, fix any sequence of activations/deactivations and the random choices of
the Activate() operations, and let 𝑆 be set of stones currently in the inactive bag
(the argument for the active bag is identical). Then for any run of the game with a
random permutation 𝜋 applied to the 𝑄𝑛 labels {𝑥𝑘,𝑞}𝑘∈[𝑛],𝑞∈[𝑄], the set stones in the
active bag will be 𝜋(𝑆). Thus, if the inactive bag contains 𝑠 stones, every 𝑠-element
subset of the 𝑛𝑄 stones is equally likely.

This implies that as long as the inactive bag contains a reasonably large number
of stones (namely, Ω(𝑛 log(𝑛𝑄))), each color is guaranteed to have roughly equal
representation in the bag.
Lemma 83. Suppose at some given moment, the inactive bag contains 𝑠 ≥
𝑐𝑛 log(𝑛𝑄) stones, for some large enough constant 𝑐. Let 𝑠𝑘 be the number of these
stones with color 𝑘. Then 𝑠𝑘 ∈ [𝑠/2𝑛, 3𝑠/2𝑛] for each 𝑘 ∈ [𝑛], with probability at
least 1− 1/(𝑄𝑛)Ω(𝑐).

Proof. By Lemma 82, the balls 𝑆 in the inactive bag are a random subset of size
𝑠 of the 𝑄𝑛 balls {𝑥𝑘,𝑞}. Let 𝑋𝑘 = {𝑥𝑘,1, . . . , 𝑥𝑘,𝑄} be the set of all color-𝑘 balls.
Then 𝑠𝑘 = |𝑋𝑘 ∩ 𝑆|, the number 𝑠𝑘 of balls of color 𝑘 in 𝑆, has the hypergeometric
distribution 𝐻(𝑄𝑛,𝑄, 𝑠).

As the standard tail bounds on sampling without replacement at least as sharp as
those given by Chernoff bounds for sampling with replacement [188] (Section 23.5),
and as E[𝑠𝑖] = 𝑠/𝑛, we get that

Pr[|𝑠𝑘 − 𝑠/𝑛| ≥ 𝜀𝑠/𝑛] ≤ 2 exp(−𝜀2𝑠/3𝑛). (9.6)

Setting 𝜀 = 1/2, and taking a union bound over the 𝑛 colors, gives that 𝑠𝑘 ∈
[𝑠/2𝑛, 3𝑠/2𝑛] for each 𝑘 ∈ [𝑛] with probability 1 − 2𝑛 exp(−Ω(𝑐 log𝑄𝑛)) which is
1− 1/(𝑄𝑛)Ω(𝑐) for large enough 𝑐.

147

Relating the stone game to the balls-and-bins game

One can think of the stones in the stone game as being similar to balls in the balls-and-
bins game—the active bag represents the set of balls that are present, the color of a
stone dictates which “bin” a given ball is in, and activations/deactivations correspond
to insertions/deletions.

However, there are several significant differences between the games. Notably, the
whole point of the balls-and-bins game is to ensure that no single bin contains too
many balls, but in the stone game, the active bag trivially (and deterministically) has
at most 𝑄 stones of any given color. Nonetheless, we shall now see how to couple the
two games together in such a way that our analysis of the stone game yields a bound
for the balls-and-bins game.

Mapping between instances. We first give a mapping between the sequence of in-
sertions/deletions for balls-and-bins game and the input sequence for the stone game.
For any sequence 𝒮 of insertions/deletions in balls-and-bins game, define 𝜑(𝒮) to be
a corresponding sequence of activations/deactivations, where each Insert operation
is replaced with an Allocate operation, and where each Delete(𝑥) operation on
a ball 𝑥 is replaced with a Deactivate(𝑟) operation, where 𝑟 − 1 is the number of
balls in the system that were inserted after 𝑥.

The following key lemma shows that the random choices in the two games can be
coupled.
Lemma 84 (Coupling). Let 𝑛 ≤ 𝑚 and let Δ = 𝑐 log𝑚, where 𝑐 is the positive con-
stant used by ModulatedGreedy. Consider a sequence 𝒮 of insertions/deletions
in a balls-and-bins game on 𝑛 bins, where there are never more than 𝑚 balls present
at a time. Let 𝐺1 be a balls-and-bins game with operation-sequence 𝒮 and let 𝐺2 be
(𝑄, 𝑛)-stone game with 𝑄 = 𝑚/𝑛+Δ with operation sequence 𝜑(𝒮).

If 𝐺1 is implemented using ModulatedGreedy, then there exists a coupling
between 𝐺1 and 𝐺2 with the following property: Up until ModulatedGreedy
halts, the number of balls in a given bin 𝑘 (in the balls-and-bins game) always equals
the number of stones in the active bag with color 𝑘 (in the stone game).

Proof. Let ℓ1, ℓ2, . . . , ℓ𝑛 denote the loads of the bins at any given moment. By Lemma
81, we know that, on any given insertion in which ModulatedGreedy does not
halt, each bin 𝑘 is selected with probability

𝑇𝑘
𝑛𝑇

=
𝑇𝑘∑︀𝑛
𝑖=1 𝑇𝑖

. (9.7)

Now suppose that, for each color 𝑘 there are ℓ𝑘 stones with color 𝑘 in the active
bag (and hence 𝑄 − ℓ𝑘 such stones in the inactive bag) of the stone game. Then on
any given activation, the probability of a ball with color 𝑘 being moved into the active
bag is

𝑄− ℓ𝑘
𝑛𝑄−

∑︀𝑛
𝑖=1 ℓ𝑖

=
𝑚/𝑛+Δ− ℓ𝑘
𝑚+ 𝑛Δ−

∑︀
𝑖 ℓ𝑖

=
𝑇𝑘∑︀𝑛
𝑖=1 𝑇𝑖

, (9.8)

148

where the first equality uses that 𝑄 = 𝑚/𝑛 + Δ. The two probabilities (9.7) and
(9.8) are precisely equal. Thus, we can couple the games so that the bin selected by
the insertion in the balls-and-bins game is the same as the stone color selected by the
activation in the stone game.

If we implement the insertions/activations in this way, then the dele-
tions/deactivations also become coupled: whenever a ball is deleted from a bin 𝑘,
a stone with color 𝑘 is removed from the active bag (in particular, the ball and
stone were assigned to have the same bin/color when they were inserted/activated
previously). Thus the proof of the lemma is complete.

Proof of Theorem 71. Finally, we can use the coupling in Lemma 84 to bound the
probability of ModulatedGreedy halting and prove Theorem 71.

Proof. (Theorem 71) Observe that, if ModulatedGreedy does not halt, then de-
terministically there are at most 𝑚/𝑛 + 𝑂(log𝑚) balls in any given bin. In partic-
ular, the condition max𝑘 ℓ𝑘 − min𝑘 ℓ𝑘 ≤ 𝑇 implies that max𝑘 ℓ𝑘 − ℓ ≤ 𝑇 . Plugging
𝑇 = 𝑚/𝑛+ 𝑐 log𝑚− ℓ, this gives that max𝑘 ℓ𝑘 ≤ 𝑚/𝑛+ 𝑐 log𝑚.

Thus, it suffices to analyze the probability of halting.
By Lemma 84, up until ModulatedGreedy halts, it can be coupled to a stone

game on 𝑛𝑄 = 𝑚+ 𝑛𝑐 log𝑚 balls, where the number of balls in the active bag never
exceeds 𝑚. Under this coupling, the number of balls ℓ𝑘 in bin 𝑘 satisfies ℓ𝑘 = 𝑄− 𝑠𝑘,
where 𝑠𝑘 is the number of color-𝑘 stones in the inactive bag.

The ModulatedGreedy algorithm halts only if

|ℓ𝑖 − ℓ𝑗| > 𝑇 = 𝑚/𝑛+ 𝑐 log𝑚− ℓ = 𝑄− ℓ (9.9)

for some pair 𝑖, 𝑗 of bins. For the stone game, denoting 𝑠 =
∑︀

𝑘 𝑠𝑘 =
∑︀

𝑘(𝑄 − ℓ𝑘) =
𝑛(𝑄− ℓ), and as |𝑠𝑖 − 𝑠𝑗| = |ℓ𝑖 − ℓ𝑗|, condition (9.9) is equivalent to

|𝑠𝑖 − 𝑠𝑗| > 𝑠/𝑛.

But we know by Lemma 83 that, w.h.p. in 𝑚, we have |𝑠𝑖 − 𝑠𝑗| ≤ 𝑠/𝑛 at all times
during the stone game (since the number of balls in the inactive bag is always at least
𝑛𝑐 log𝑚). Thus, we have w.h.p. in 𝑚 that ModulatedGreedy never halts.

9.2.3 Tightness of the Bound

Clearly, the bound of 𝑚/𝑛+𝑂(log𝑚) is not optimal for all parameter regimes, since it
is known that Greedy achieves maximum load 𝑂(log log 𝑛) in the regime of 𝑛 = 𝑚.
We remark, however, that for parameter regimes where 𝑚 is much larger than 𝑛, or
when 𝑛 is fixed, this bound is essentially optimal.
Proposition 85. Consider 𝑚 insertions into 4 bins using any sequential 2-choice
insertion strategy. With probability at least 1/ poly(𝑚), some bin contains at least
𝑚/4 + Ω(log𝑚) balls.

149

Proof. Let us consider the final log𝑚 insertions 𝑥1, . . . , 𝑥log𝑚. Suppose, without loss
of generality, that prior to those insertions being performed, bins 1, 2 contain at least
as many total balls as bins 3, 4. With probability 1/ poly(𝑚), all of the insertions
𝑥1, . . . , 𝑥log𝑚 are forced to choose between bins 1 and 2. No matter how they are
assigned, this forces at least one of bins 1, 2 to have load 𝑚/4+Ω(log𝑚) balls at the
end of the insertions.

By repeatedly applying Proposition 85 poly(𝑚) times, we can amplify the lower
bound to apply with high probability.
Corollary 86. Let 𝑐 be a sufficiently large positive constant. Consider 4 bins using
any sequential 2-choice insertion strategy, and consider a sequence of 𝑚𝑐 batches of
operations, where each batch consists of 𝑚 insertions followed by 𝑚 deletions. With
high probability in 𝑚, there is some point in time at which some bin contains at least
𝑚/4 + Ω(log𝑚) balls.

9.3 Generalizations of ModulatedGreedy

We now generalize the ModulatedGreedy algorithm from Section 9.2 in several
interesting ways:

1. We give guarantees over an infinite time horizon, instead of poly(𝑚) steps.
2. We allow 𝑚 (the maximum number of balls present in the system) to increase

with time, and only require an a-priori bound 𝑀 on 𝑚.
3. We consider the more general (1+𝛽)-choice and the graphical 2-choice settings

(defined in Section 9.3.3) and extend the previous results for these settings
(which were insertion-only) to also handle deletions.

These generalizations require extending both the algorithm and the analysis tech-
niques. We begin in Subsection 9.3.1 by describing the algorithm and giving an
overview of the key ideas; we then present the analysis and applications in Subsec-
tions 9.3.2 and 9.3.3.

9.3.1 The Algorithm and Overview

The algorithm, which we call GeneralizedModulatedGreedy, is described as
Algorithm 2 below. Its key properties are summarized in the following theorem.
Theorem 87. Consider the insertion/deletion model with 𝑛 bins, and an arbitrarily
long sequence of insertions/deletions, with no more than 𝑀 balls present at a time.
Suppose the parameters 𝑛,𝑀, 𝜀 are known to the algorithm. Then the General-
izedModulatedGreedy algorithm satisfies the following guarantees:

• Bounded Load: At any given moment, every bin has load at most 𝑚/𝑛 +
𝑂(𝜀−1 log𝑀) with high probability in 𝑀 , where 𝑚 is the largest number of
balls that were ever present so far.

150

• Bounded Bias: For any given insertion, if 𝑖 and 𝑗 are the two bins being chosen
between, then each bin is selected with a probability in the range [1/2−𝜀, 1/2+
𝜀].

Algorithm 2 The GeneralizedModulatedGreedy algorithm. The algorithm
has parameters 𝑀 (an upperbound on the number of balls that will ever be present)
and 𝜀, and makes use of a sufficiently large constant 𝑐 > 0. The algorithm outputs a
bin and a color for the ball being inserted.

procedure GeneralizedModulatedGreedy
For 𝑘 ∈ [𝑛], let ℓ𝑘 denote # balls with color 𝑘. Let ℓ = 1

𝑛

∑︀
𝑘 ℓ𝑘.

Let 𝑚 be the largest number of balls that have been present in the system at
once thus far.

Let Δ = 𝑐𝜀−2 log𝑀 .
Set 𝑇 = ⌈𝑚/𝑛⌉+Δ− ℓ.
Select two bins 𝑖, 𝑗 ∈ [𝑛] independently and uniformly at random.
if (max𝑘 ℓ𝑘)− (min𝑘 ℓ𝑘) ≤ 𝜀𝑇 then

With probability 1/2 +
ℓ𝑗−ℓ𝑖
2𝑇

, assign the ball to bin 𝑖 and assign it color 𝑖.
Otherwise, assign the ball to bin 𝑗 and assign it color 𝑗.

else
Declare the ball to be corrupted .
Select 𝜌 ∈ [𝑛] such that, for each 𝑘 ∈ [𝑛],

Pr[𝜌 = 𝑘] =
⌈𝑚/𝑛⌉+Δ− ℓ𝑘

𝑛 · 𝑇
.

Assign the ball uniformly at random in {𝑖, 𝑗} and assign it color 𝜌.

Notice that the algorithm assigns a ball both a bin and a color. Typically, the
color is the same as the bin to which the ball is assigned, but occasionally a ball will
get corrupted, in which case the bin and color may differ. Moreover, at any time, the
maximum load is bounded with respect to 𝑚/𝑛 (instead of 𝑀/𝑛).

Before giving the detailed analysis, we briefly describe the new ideas we need over
those in Section 9.2.

Infinite time horizon. A key feature of the algorithm is that it offers guarantees
on an infinite time horizon. To achieve this we explicitly incorporate the coupling
with the stone game into the design of the algorithm. In particular, whenever there
is an insertion that ModulatedGreedy would have been at risk of halting on,
GeneralizedModulatedGreedy instead declares that ball to be corrupted. The
algorithm then “fudges” its bookkeeping: it treats the corrupted ball as being placed
into whichever bin is necessary to maintain the coupling with the stone game.

More concretely, we assign each ball both to a bin (where it truly resides) and to
a color (which, if the ball is corrupted, may differ from the ball’s bin). The algorithm
makes all of its decisions based on ball colors (and ignores the actual bins that balls

151

reside in). This allows for the algorithm to maintain a coupling forever between the
colors of its balls and the colors of the balls in the stone game.

Increasing 𝑚. Another interesting feature is that the algorithm allows for 𝑚 to
grow over time, subject only to the constraint 𝑚 ≤ 𝑀 . To handle this, Gener-
alizedModulatedGreedy bases its allocation decisions on the largest value of 𝑚
that it has witnessed so far. At first glance, this seems to significantly break the re-
lationship between the balls-and-bins game and the stone game, and indeed Lemma
82 no longer holds—however, as we shall see, the stone game and its analysis can be
modified to also handle the incremental growth in 𝑚 over time.

Bias, (1 + 𝛽)-choice and graphical process. Finally, a third feature of the
algorithm is that it introduces a new variable 𝜀 that constrains the amount of bias
that the algorithm is permitted to exhibit. We will see at the end of the section
that this seemingly minor modification allows us to extend the algorithm to the
(1 + 𝛽)-choice and the graphical 2-choice process, both of which are generalizations
of the classical 2-choice process. Moreover, the guarantees of the resulting algorithms
matches the previous known results for the insertion-only case for these settings.

9.3.2 Algorithm Analysis

We now turn to proving Theorem 87. We begin by defining the generalized stone
game, which extends the stone game in Section 9.2. Then we show how this game
is closely related to the balls and bins game and use this relationship to analyze
GeneralizedModulatedGreedy.

The generalized stone game

The Δ-generalized stone game has an inactive bag and an active bag. The
inactive bag is initialized to contain Δ · 𝑛 stones 𝑥𝑘,𝑗 for 𝑘 ∈ [𝑛] and 𝑞 ∈ [Δ], and
the active bag is initialized to be empty. We say that the ball 𝑥𝑘,𝑞 has color 𝑘 ∈ [𝑛].
The game supports two operations that are performed by an oblivious adversary:
Activate() and Deactivate(𝑟).

The Activate() operation (described formally in Algorithm 3) takes two steps:
First, the operation moves a random stone from the inactive bag to the active bag.
Second, if there are fewer than Δ · 𝑛 stones in the inactive bag, then it computes the
number 𝑄 ·𝑛 of stones currently in the system (active and inactive bags), and it adds
𝑛 new stones {𝑥𝑘,𝑄+1}𝑘∈[𝑛], one of each color, to the inactive bag. This second step
is different from the standard stone game in Section 9.2, and in particular, the total
number of stones now can increase over time (in increments of 𝑛).

The Deactivate(𝑟) operation works exactly as before—it takes whichever stone
was added to the active bag 𝑟-th most recently, and moves that stone back to the
inactive bag.

152

Algorithm 3 The Activate method for the generalized stone game. The algorithm
has parameter Δ. The moves a random stone from the inactive bag to the active bag,
and then (possibly) adds additional stones to the inactive bag.

procedure Activate
Move a random stone from the inactive bag to the active bag.
if Inactive bag contains fewer than Δ · 𝑛 balls then

Let 𝑄 · 𝑛 be # stones currently in the system
Add a batch 𝐵𝑄+1 = {𝑥𝑘,𝑄+1}𝑘∈[𝑛] of 𝑛 new balls to the inactive bag.

We begin by proving a basic fact about the generalized stone game.
Lemma 88. Let 𝑐 > 0 be a sufficiently large constant, and let 𝜀,𝑀 be parameters.
Fix any time in the (𝑐𝜀−2 log𝑀)-generalized stone game, and for 𝑘 ∈ [𝑛], let 𝑠𝑘 denote
the number of stones with color 𝑘 in the inactive bag. With probability 𝑀−Ω(𝑐), for
each 𝑘 ∈ [𝑛], we have that

(1− 𝜀/2)E[𝑠𝑘] ≤ 𝑠𝑘 ≤ (1 + 𝜀/2)E[𝑠𝑘].

Proof. Let 𝑄 · 𝑛 be the number of stones currently in the system. For each 𝑞 ∈
{1, 2, . . . , 𝑄}, define 𝐵𝑞 = {𝑥𝑘,𝑞}𝑘∈[𝑛]. The 𝑛 stones in 𝐵𝑞 are all inserted into the
system in the same instant and are indistinguishable from one another in terms of
how they interact with the sequence of operations being performed. If there are 𝑎𝑘
balls from 𝐵𝑘 in the inactive set, then the probability that any of them have color 𝑖
is simply 𝑎𝑘/𝑛.

Thus, if we fix some outcome for the values of the 𝑎𝑘’s, then we can write 𝑠𝑘 =∑︀𝑄
𝑞=1𝐴𝑘, where 𝐴𝑘 are independent indicator random variables with Pr[𝐴𝑞 = 1] =

𝑎𝑞/𝑛. Using 𝐼 to denote the set of balls in the inactive set, the expected value of 𝑠𝑘
evaluates to

E[𝑠𝑘] =
𝑄∑︁
𝑞=1

𝑎𝑞/𝑛 = |𝐼|/𝑛.

By design, however, the inactive set always at least |𝐼| ≥ Δ · 𝑛 = 𝑐𝜀−2𝑛 log𝑀
balls, so that E[𝑠𝑘] ≥ Ω(𝑐𝜀−2 log𝑀). Applying a Chernoff bound (and as 𝑐 is a large
constant), for each 𝑘 ∈ [𝑛], 𝑠𝑘 lies between (1 − 𝜀/2)E[𝑠𝑘] and (1 + 𝜀/2)E[𝑠𝑘] with
probability 𝑀−Ω(𝑐).

Coupling with GeneralizedModulatedGreedy

Next we establish the connection between the generalized stone game and the Gen-
eralizedModulatedGreedy algorithm.

First, as in Section 9.2, the oblivious sequences of insertion/deletions for the balls-
and-bins game maps to an input sequence of the Δ-generalized stone game as fol-
lows: each insertion in the balls-and-bins game causes an activation in the stone
game, and each deletion Delete(𝑥) in the balls-and-bins game causes a deactivation

153

Deactivate(𝑟), where 𝑟−1 is the number of balls present in the balls-and-bins game
that were inserted after 𝑥.

The following key lemma shows that the random choices in the two games can be
coupled.
Lemma 89 (Coupling). Consider a sequence 𝒮 of insertions/deletions in a balls-
and-bins game on 𝑛 bins, with no more than 𝑀 balls present at a time. Let 𝐺1 be
a balls-and-bins game with operation-sequence 𝒮, let Δ = 𝑐𝜀−2 log𝑀 , and let 𝐺2 be
Δ-generalized stone game with operation sequence 𝜑(𝒮).

If 𝐺1 is implemented using the GeneralizedModulatedGreedy algorithm
with parameters 𝑀, 𝑐 and 𝜀, then there exists a coupling between 𝐺1 and 𝐺2 such
that: (1) the number of balls with a given color 𝑘 ∈ [𝑛] in 𝐺1 always equals the
number of active-bag stones with color 𝑘 in 𝐺2; and (2) the total number 𝑛 · 𝑄 of
stones in 𝐺2 always satisfies 𝑄 = ⌈𝑚/𝑛⌉+Δ, where 𝑚 is the largest number of balls
ever present at once so far in the balls-and-bins game.

Proof. Let ℓ𝑘 denote the number of balls with color 𝑘 at any given moment and let ℓ =∑︀
𝑘 ℓ𝑘/𝑛. By Lemma 81 (modified so that 𝑇 = ⌈𝑚/𝑛⌉+Δ−ℓ and 𝑇𝑘 = ⌈𝑚

𝑛
⌉+Δ−ℓ𝑘),

we know that, on any given insertion in which GeneralizedModulatedGreedy
does not create a corrupted ball, each color 𝑘 is selected with probability

𝑇𝑘
𝑛 · 𝑇

=
⌈𝑚
𝑛
⌉+Δ− ℓ𝑘

𝑛 · 𝑇
. (9.10)

On the other hand, on insertions that do create corrupted balls, we have by design
that (9.10) is still the probability of color 𝑘 being selected. Thus, (9.10) is always the
probability of any given color 𝑘 being selected on any given insertion.

Next we turn our attention to the generalized stone game. By design, the number
𝑛 · 𝑄 of stones in the generalized stone game at any given moment satisfies 𝑄 =
⌈𝑚/𝑛⌉ + Δ, where 𝑚 is the largest number of balls that have ever been present at
once in the balls-and-bins game. Suppose that, for each color 𝑘 there are ℓ𝑘 stones
with color 𝑘 in the active set of the stone game. Then on any given activation, the
probability of a ball with color 𝑘 being moved into the active set is

𝑄− ℓ𝑘
𝑛 ·𝑄−

∑︀
𝑖 ℓ𝑖

=
⌈𝑚
𝑛
⌉+Δ− ℓ𝑘

𝑛 · (⌈𝑚
𝑛
⌉+Δ− ℓ)

=
⌈𝑚
𝑛
⌉+Δ− ℓ𝑘

𝑛 · 𝑇
. (9.11)

The two probabilities (9.10) and (9.11) are precisely equal. Thus, we can couple
the games so that the color selected by the insertion in the balls-and-bins game is the
same as the stone color selected by the activation in the stone game.

If we implement the insertions/activations in this way, then the dele-
tions/deactivations also become coupled: whenever a ball is deleted with a color 𝑘, a
stone with color 𝑘 is removed from the active bag (in particular, the ball and stone
were assigned to have the same color when they were inserted/activated previously).
Thus the proof of the lemma is complete.

154

Combining Lemmas 89 and 88, we can bound the probability that a given ball is
corrupted.
Lemma 90 (Corruption probability). Consider a sequence of insertions/deletions in
a balls-and-bins game on 𝑛 bins with no more than 𝑀 balls ever present at a time,
and suppose that insertions are implemented using the GeneralizedModulated-
Greedy algorithm with parameters𝑀 and 𝜀. For any given insertion, the probability
that the ball being inserted is corrupted is at most 1/ poly(𝑀).

Proof. For 𝑘 ∈ [𝑛], let ℓ𝑘 denote the number of balls with color 𝑘. Let ℓ =
∑︀

𝑘 ℓ𝑘/𝑛
and let Δ = 𝑐𝜀−2 log𝑀 , where 𝑐 is the constant used by GeneralizedModulat-
edGreedy. In order for the inserted ball to be corrupted, we would need(︁

max
𝑘
ℓ𝑘

)︁
−
(︁
min
𝑘
ℓ𝑘

)︁
> 𝜀𝑇 = 𝜀(⌈𝑚/𝑛⌉+Δ− ℓ). (9.12)

If we couple the process to a Δ-generalized stone game as in Lemma 88, then we have
(1) that the number of balls with each color 𝑘 in the active bag of the generalized
stone game is ℓ𝑘; and (2) that the total number of stones in the generalized stone
game is 𝑛(⌈𝑚/𝑛⌉+Δ). It follows by Lemma 93 that, w.h.p. in 𝑀 ,

(1− 𝜀/2)E[𝑠𝑘] ≤ 𝑠𝑘 ≤ (1 + 𝜀/2)E[𝑠𝑘],

where 𝑠𝑘 = ⌈𝑚/𝑛⌉+Δ− ℓ𝑘 and E[𝑠𝑘] = ⌈𝑚/𝑛⌉+Δ− ℓ. That is, each 𝑠𝑘 deviates by
at most 1

2
𝜀(⌈𝑚/𝑛⌉+Δ− ℓ) from its mean. The same holds for each ℓ𝑘 (as ℓ𝑘 + 𝑠𝑘 is

fixed), which implies that (9.12) does not occur.

Finally, we can prove Theorem 87.

Proof of Theorem 87. It suffices to prove the Bounded Load guarantee, since the
Bounded Bias guarantee is hardcoded into the GeneralizedModulatedGreedy
algorithm by design. In particular, given the bin choices 𝑖, 𝑗, if the ball is not corrupted
then |ℓ𝑖 − ℓ𝑗| ≤ 𝜀𝑇 and it is assigned to bin 𝑖 with probability 1/2 + (ℓ𝑗 − ℓ𝑖)/2𝑇 ≤
1/2 + 𝜀/2. On the other hand if it is corrupted, then it is assigned uniformly.

Let Δ = 𝑐𝜀−2 log𝑀 . Couple the balls-and-bins game to the Δ-generalized stone
game as in Lemma 89, and consider the state of both systems at some fixed point in
time.

By Lemma 90 (applied with a union bound to each of the balls that are present at
any given moment), we have with high probability in 𝑀 that there are no corrupted
balls in the balls-and-bins game. Thus the number of balls in any given bin 𝑘 (in
the balls-and-bins game) is equal to the number of active-bag stones with color 𝑘 (in
the generalized stone game). Moreover, if 𝑚 is the most balls that were ever present
in the balls-and-bins game, the number of stones in the generalized stone game is
⌈𝑚/𝑛⌉+Δ.

Using ℓ𝑘 to be the number of active-bag stones with color 𝑘, and 𝑠𝑘 to be the
number of inactive-bag stones with color 𝑘, by Lemma 93 we have that 𝑠𝑘 > (1 −

155

𝜀)E[𝑠𝑘] ≥ (1− 𝜀)Δ, which gives the desired bound

ℓ𝑘 = ⌈𝑚/𝑛⌉+Δ− 𝑠𝑘 ≤ ⌈𝑚/𝑛⌉+ 𝜀Δ = 𝑚/𝑛+𝑂(𝜀−1 log𝑀).

9.3.3 Extensions

We conclude the section with applications of GeneralizedModulatedGreedy to
several more general settings.

(1 + 𝛽)-choice process. The (1 + 𝛽)-choice setting was proposed by Peres, Tal-
war, and Wieder [308] as a useful generalization of the 2-choice process, where each
insertion selects a random bin with probability (1 − 𝛽), and gets to choose between
two random bins 𝑖, 𝑗 with probability 𝛽. For any fixed 0 < 𝛽 < 1 − Θ(1), they
showed that in the insertion-only case, the Greedy algorithm achieves maximum load
𝑚/𝑛+Θ(𝛽−1 log 𝑛) with high probability in 𝑛; this load becomes 𝑚/𝑛+Θ(𝛽−1 log𝑚)
if one wishes for a high-probability guarantee in 𝑚. They further proved that these
bounds are optimal for any (1 + 𝛽)-choice insertion strategy.

We can directly use GeneralizedModulatedGreedy to construct an optimal
(1 + 𝛽)-choice insertion strategy for the insertion/deletion model.
Theorem 91. Consider a balls-and-bins game with 𝑛 bins and with no more than 𝑚
balls present at a time. In the insertion/deletion model, there exists a (1 + 𝛽)-choice
algorithm that at any given moment, with probability in 𝑚, has maximum load

𝑚/𝑛+𝑂(𝛽−1 log𝑚).

Proof. If we set 𝜀 = 𝛽/2, then GeneralizedModulatedGreedy selects between
bins 𝑖, 𝑗 with a probabilities in the range 1/2 ± 𝜀; this is equivalent to selecting a
random bin (i.e., a random one of 𝑖, 𝑗) with probability 1 − 2𝜀 = 1 − 𝛽, and then
selecting between bins 𝑖, 𝑗 with a probabilities in the range [0, 1].

Graphical-Allocation. Graphical allocation is another generalization of the 2-
choice model, introduced by Kenthapadi and Panigrahy [220]. Here we are given
an arbitrary fixed 𝑑-regular graph 𝐺 on 𝑛 vertices (i.e., bins). To assign a ball to a
bin, we select a uniformly random edge 𝑒 = (𝑣1, 𝑣2) choose one of bins 𝑣1, 𝑣2. The
classic 2-choice process corresponds to the complete graph 𝐺 = 𝐾𝑛.

Bansal and Feldheim [59] showed that, in the insertion-only case, it is possible to
guarantee a maximum load of 𝑚/𝑛 + 𝑂((𝑑/𝑘) log4 𝑛 log log 𝑛) w.h.p. in 𝑛, where 𝑘
is the edge-connectivity of 𝐺. The linear dependence on (𝑑/𝑘) is necessary and the
bound becomes 𝑚/𝑛+𝑂((𝑑/𝑘) log𝑚 log3 𝑛 log log 𝑛) if one requires the bound to be
w.h.p. in 𝑚.

Their algorithm reduces the problem, in a black-box manner, to that of construct-
ing a (1+𝛽)-choice strategy on two bins (in particular, where the two “bins” represent
sibling sets in a binary hierarchical decomposition of the vertices of 𝐺, and the differ-

156

ent sibling pairs use different choices for 𝛽, see [59]). In the insertion-only case [59],
they use the Greedy (1 + 𝛽)-choice strategy—to extend this to handle deletions,
we can simply use GeneralizedModulatedGreedy instead (as in Theorem 91).
Together with the framework developed in [59], this gives the following result.
Theorem 92. Consider a graphical process where, given a 𝑘-edge-connected 𝑑-
regular graph 𝐺 on 𝑛 vertices (i.e., bins), the two bin choices for each ball are given by
the endpoints of a uniformly random edge 𝑒 = (𝑣1, 𝑣2) of 𝐺. Consider any sequence of
insertions/deletions where the number of balls in the system never exceeds 𝑚. Then
it is possible to guarantee a maximum load of 𝑚/𝑛 + 𝑂((𝑑/𝑘) log𝑚 log3 𝑛 log log 𝑛)
w.h.p. in 𝑚, at any given moment.

157

158

Appendices

9.A Proof of Lemma 74

We prove Lemma 74, reformulated here to use a constant 𝑐 in place of constants 𝜀1, 𝜀2,
and to use a variable 𝑘 in place of 𝜀2𝑚:
Lemma 93 (Lemma 74 reformulated). Let 𝑐 > 0 be a sufficiently large constant.
Consider the Greedy algorithm on 4 bins, and fix an arbitrary initial state in which
the bins have loads within 𝑘 of each other. If 𝑐𝑘 insertions are performed, then after
the sequence is complete, all of the bins have loads within 𝑂(log 𝑘) of each other
with high probability in 𝑘. Furthermore, with high probability in 𝑘, there is some
intermediate point in time during which all of the bins have equal loads.

We break the proof of this lemma into a few simple claims.
Claim 94. Given an arbitrary initial state with bin loads within 𝑘 of each other, if
𝑗 ≥ 𝑐𝑘 insertions are performed, then at end of the sequence, the bin loads will be
within 𝑂(log 𝑘) of each other, w.h.p. in 𝑘.

Proof. Let 𝐷𝑖,𝑗 be the difference between the loads of the 𝑖-th and 𝑗-th bins (where
𝑖 ̸= 𝑗). It suffices to show that, after the insertions are complete, 𝐷𝑖,𝑗 ≤ 𝑂(log 𝑘)
with high probability in 𝑘.

Notice that whenever 𝐷𝑖,𝑗 ̸= 0 and we insert a ball, 𝐷𝑖,𝑗 has a random increment
with Ω(1) bias towards 0 (it surely decreases by 1 when 𝑖, 𝑗 are the two choices, which
has Ω(1) probability as 𝑛 = 4, and has zero bias otherwise). So starting at |𝐷𝑖,𝑗| ≤ 𝑘,
w.h.p. in 𝑘 that the random walk thus reaches 0 within 𝑂(𝑘) ≤ 𝑐𝑘 steps. Moreover,
each time that the random walk hits 0, w.h.p. in 𝑘 it will hit 0 again within 𝑂(log 𝑘)
steps. Thus, after the 𝑐𝑘 insertions are performed, we have |𝐷𝑖,𝑗| = 𝑂(log 𝑘) w.h.p.
in 𝑘.

Next we show that, during the insertions, the loads become equal at some point
with probability Ω(1).
Claim 95. Given any arbitrary initial state the bin loads within 𝑘 of each other, if
2𝑐𝑘 insertions are performed, then with probability at least Ω(1) there is some time
at which all the 4 bins have equal loads.

Proof. This follows by iterated applications of Claim 94. After 𝑐𝑘 insertions, all the 4
the bins have loads within 𝑇1 = 𝑂(log 𝑘) of each other, w.h.p. in 𝑘. After 𝑐𝑇1 further

159

insertions, the bins have loads within 𝑇2 = 𝑂(log 𝑇1) of each other, w.h.p. in 𝑇1.
After 𝑐𝑇2 further insertions, the bins have loads within 𝑇3 = 𝑂(log 𝑇2) of each other,
w.h.p. in 𝑇2. Continuing like this, after 𝑐(𝑘 + 𝑇1 + 𝑇2 + · · ·+ 𝑇𝑂(log* 𝑛)) = (𝑐+ 𝑜(1))𝑘
insertions, we reach a state where all bin loads are within 𝑂(1) of each other with
probability Ω(1). Once this occurs, we have with probability Ω(1) that during the
next 𝑂(1) insertions after that, there is a point at which the 4 bins have equal loads.

Finally, we amplify Claim 95 in order to achieve a high-probability bound.
Claim 96. Given an arbitrary initial state with bin loads within 𝑘 of each other, if
𝑐𝑘 insertions are performed, then w.hp. in 𝑘 there is some time when all the bins
have equal loads.

Proof. By Claim 94, w.h.p. in 𝑘) the loads are within 𝑇 = 𝑂(log 𝑘) of each other
during each of the final 𝑐𝑘/2 insertions. Break these insertions into Ω(𝑘/ log 𝑘) chunks
of size 2𝑐𝑇 . Within each chunk, we have by Claim 95 that the loads equalize (at
some point) with probability at least Ω(1). Thus, the probability that the loads stay
unequal during all Ω(𝑘/ log 𝑘) chunks is exp(−Ω(𝑘/ log 𝑘)).

Combined, Claims 94 and 96 imply Lemma 93.

9.B Proof of Lemma 100

For (𝑖, 𝑗) ∈ 𝑄, define 𝐴𝑖,𝑗 (resp. 𝐵𝑖,𝑗) to be the set of balls in 𝐴 (resp. 𝐵) that hash
to the bin pair (𝑖, 𝑗). Let 𝑎𝑖,𝑗 = |𝐴𝑖,𝑗| and 𝑏𝑖,𝑗 = |𝐵𝑖,𝑗|. Let

𝑝𝑖,𝑗 =
𝑣 (𝐴𝑖,𝑗 ∪𝐵𝑖,𝑗)

|𝐴𝑖,𝑗 ∪𝐵𝑖,𝑗|

denote the (random) fraction of balls in 𝐴𝑖,𝑗 ∪𝐵𝑖,𝑗 that are placed into bins 1, 2.
We remark that there are two sources of randomness in this lemma: the first,

which we denote by ℛ1, is the outcome of the hashes of the balls in 𝐴 and 𝐵 (i.e., the
random bits that determine {𝑎𝑖,𝑗} and {𝑏𝑖,𝑗}); the second, which we denote by ℛ2, is
the random order in which the balls 𝐴 ∪𝐵 are inserted into the system.

Note that, from the perspective of the ID-oblivious insertion strategy, the balls
𝐴𝑖,𝑗 are indistinguishable from the balls 𝐵𝑖,𝑗 (this is due to the randomness from ℛ2).
Thus we have that, for any fixed outcome of ℛ1,

E [𝑣(𝐴𝑖,𝑗)− 𝑣(𝐵𝑖,𝑗) | ℛ1] = E[𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℛ1].

Summing over (𝑖, 𝑗) ∈ 𝑄, we have that (again for any fixed outcome of ℛ1)

E[𝑣(𝐴)− 𝑣(𝐵) | ℛ1] =
∑︁

(𝑖,𝑗)∈𝑄

E [𝑣(𝐴𝑖,𝑗)− 𝑣(𝐵𝑖,𝑗) | ℛ1] =
∑︁

(𝑖,𝑗)∈𝑄

E[𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℛ1].

160

Considering all outcomes for ℛ1 that satisfy ℰ , it follows that

E[𝑣(𝐴)− 𝑣(𝐵) | ℰ] =
∑︁

(𝑖,𝑗)∈𝑄

E[𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℰ].

Thus, to prove the lemma, it suffices to show that

E

⎡⎣ ∑︁
(𝑖,𝑗)∈𝑄

𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℰ

⎤⎦ ≥ 𝑡−𝑂(
√
𝑘).

Note that 𝑝(1,2) = 1 and 𝑝(3,4) = 0 deterministically. Moreover,

E[𝑎1,2−𝑏1,2 | ℰ] ≥ E[𝑘/12+𝑡−𝑂(
√
𝑘)−𝑏1,2] = 𝑡−𝑂(

√
𝑘)−E[𝑏1,2−𝑘/12] = 𝑡−𝑂(

√
𝑘).

Thus

E

⎡⎣ ∑︁
(𝑖,𝑗)∈𝑄

𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℰ

⎤⎦
= E[𝑎1,2 − 𝑏1,2 | ℰ] + E

⎡⎣ ∑︁
(𝑖,𝑗)∈𝑄∖{(1,2),(3,4)}

𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℰ

⎤⎦
= 𝑡−𝑂(

√
𝑘) + E

⎡⎣ ∑︁
(𝑖,𝑗)∈𝑄∖{(1,2),(3,4)}

𝑝𝑖,𝑗(𝑎𝑖,𝑗 − 𝑏𝑖,𝑗) | ℰ

⎤⎦
≥ 𝑡−𝑂(

√
𝑘)−

∑︁
(𝑖,𝑗)∈𝑄∖{(1,2),(3,4)}

E[|𝑎𝑖,𝑗 − 𝑏𝑖,𝑗| | ℰ].

To complete the proof, it suffices to show that for each (𝑖, 𝑗) ∈ 𝑄 ∖ {(1, 2), (3, 4)}, we
have

E[|𝑎𝑖,𝑗 − 𝑏𝑖,𝑗| | ℰ] ≤ 𝑂(
√
𝑘).

Let 𝛼𝑖,𝑗 = E[𝑎𝑖,𝑗 | ℰ] and 𝛽𝑖,𝑗 = E[𝑏𝑖,𝑗 | ℰ]. By Chernoff bounds, we know that
E[|𝑎𝑖,𝑗 − 𝛼𝑖,𝑗| | ℰ] ≤ 𝑂(

√
𝑘) and E[|𝑏𝑖,𝑗 − 𝛽𝑖,𝑗| | ℰ] ≤ 𝑂(

√
𝑘). Thus, it suffices to show

that
|𝛼𝑖,𝑗 − 𝛽𝑖,𝑗| = 𝑂(

√
𝑘).

For each ball 𝑥 ∈ 𝐴 with ℎ(𝑥) /∈ {(1, 2), (3, 4)}, we have that ℎ(𝑥) is random among
the |𝑄|−2 = 10 pairs in 𝑄∖{(1, 2), (3, 4)}; and for each ball 𝑥 ∈ 𝐵, we have that ℎ(𝑥)
is random among the |𝑄| = 12 pairs in 𝑄. Thus 𝛼𝑖,𝑗 = E[1

10
(𝑘 − 𝑎1,2 − 𝑎3,4) | 𝐸] and

𝛽𝑖,𝑗 = 𝑘/12. Finally, as 𝑎1,2+𝑎3,4 = 𝑘/6±𝑂(
√
𝑘) (conditioned on event ℰ occurring),

161

we get

𝛼𝑖,𝑗 − 𝛽𝑖,𝑗

= E
[︂
1

10
(𝑘 − 𝑎1,2 − 𝑎3,4) | ℰ

]︂
− 𝑘/12

=
1

10
(𝑘 − 𝑘/6)− 𝑘/12±𝑂(

√
𝑘)

= ±𝑂(
√
𝑘),

which completes the proof.

162

Chapter 10

The Data-Structural Perspective

In this chapter, we consider the reinsertion/deletion model. Here, we show that not
only does the Greedy strategy do poorly, but more generally any ID-oblivious strat-
egy also does poorly. In the parameter regime that most matters to data structures,
however, we show that it is still possible to achieve a nontrivial improvement over the
known results—the new strategy that we present, called Iceberg will be useful as
an algorithmic tool for data-structural applications later in the thesis.

An impossibility result for deletions with reinsertions. In Section 10.1, we
show that no ID-oblivious insertion strategy can guarantee sub-polynomial overload.
Theorem 97. Consider the reinsertion/deletion model with 4 bins, and with a limit
of up to 𝑚 balls present at a time. Against any ID-oblivious insertion strategy, it is
possible for an oblivious adversary to force a maximum load of 𝑚/4 +𝑚Ω(1) at some
point in the first poly(𝑚) operations, with high probability in 𝑚.

Unlike our lower bound in the previous chapter, this lower bound does not easily
extend to 𝑛 > 4. It remains an open question whether one can prove a strong lower
bound, for example, in the setting where 𝑚 = poly(𝑛) for some large polynomial.

A better algorithm for the moderately-loaded regime In Section 10.2, we
present a 3-choice allocation rule called Iceberg that achieves an overload of
𝑜(𝑚/𝑛) +𝑂(log log 𝑛):
Theorem 98. Suppose 1 ≤ ℎ ≤ 𝑛𝑜(1). Suppose balls are inserted/deleted/reinserted
into 𝑛 bins over time (by an oblivious adversary) according to the Iceberg rule,
where each ball has three random choices for where it can go, and where there are
never more than ℎ𝑛 balls present at a time. Then, w.h.p. in 𝑛, at any given moment,
the number of balls in the fullest bin is ℎ+𝑂(

√
ℎ log ℎ) + log log 𝑛+𝑂(1).

This theorem is of special interest in the regime where ℎ = 𝑜(log 𝑛), since in
this regime it was previously unknown how to achieve an overload of 𝑜(log 𝑛). The
Iceberg rule will also have numerous applications later in the thesis when we apply
balls-and-bins to dynamic data-structural applications.

163

The name Iceberg stems from the visual structure of the strategy: almost all
balls are inserted via SingleChoice, and these balls all rest at height at most
ℎ + 𝑂(

√
ℎ log ℎ) (think of these balls as the large portion of an iceberg that rests

below water). The small number of balls that exceed this height are then allocated
using Greedy (think of these as the small part of an iceberg that sticks out above
water). Critically, Greedy is being applied to a set of at most 𝑂(𝑛) balls here,
which is the one parameter regime where it is known to do very well even with inser-
tions/deletions/reinsertions [350, 351, 369]. The name is in reference to the fact that
most icebergs are much larger than they look, because only a small fraction of the
iceberg sticks out above water.

10.1 An Impossibility Result For The Deletions with
Reinsertions

In this section, we prove an impossibility result for the reinsertion/deletion model,
namely, that no ID-oblivious insertion strategy can guarantee sub-polynomial over-
load.
Theorem 97. Consider the reinsertion/deletion model with 4 bins, and with a limit
of up to 𝑚 balls present at a time. Against any ID-oblivious insertion strategy, it is
possible for an oblivious adversary to force a maximum load of 𝑚/4 +𝑚Ω(1) at some
point in the first poly(𝑚) operations, with high probability in 𝑚.

The section splits the proof of Theorem 97 into two parts. First, in Subsection
10.1.1, we introduce and analyze the so-called marble-splitting game ; then, in
Subsection 10.1.2 we show how to perform a sequence of insertions/deletions that
simulates an instance of the marble-splitting game and forces some bin to contain
load 𝑚/4 +𝑚Ω(1) with non-negligible probability.

10.1.1 The Marble-Splitting Game

In this section we present and analyze a simple game, which we call the marble-
splitting game—the game plays an important role in our lower bound for balls-and-
bins games with reinsertions.

In the marble-splitting game, there are two players Alice and Bob. The player
Alice has two types of moves: she can perform an Insert operation, which adds a
new marble into the game, or she can perform a Split(𝑥, 𝑦) operation, which takes
two marbles 𝑥 and 𝑦 and replaces them with new marbles 𝑥′ and 𝑦′. Alice must decide
her moves at the beginning of time (so she is an oblivious adversary).

The second player Bob gets to assign a value 𝑣𝑥 to each marble 𝑥, according
to the following rule: whenever Alice performs an Insert, Bob can assign the new
marble an arbitrary real-numbered value in the range [−1, 1]; and whenever Alice

164

performs a Split(𝑥, 𝑦) operation, Bob assigns 𝑥′ and 𝑦′ values 𝑣𝑥′ and 𝑣𝑦′ satisfying

𝑣𝑥′ + 𝑣𝑦′ = 𝑣𝑥 + 𝑣𝑦 ± 𝑜(𝑅−2), and 𝑣𝑥′ − 𝑣𝑦′ ≥ 2/𝑅. (10.1)

Equivalently, 𝑣𝑥′ = (𝑣𝑥 + 𝑣𝑦)/2 +Δ± 𝑜(𝑅−2) and 𝑣𝑦′ = (𝑣𝑥 + 𝑣𝑦)/2−Δ± 𝑜(𝑅−2) for
some Δ ≥ 1/𝑅.

Alice’s goal is to force some marble (she need not know which one) to have a
value greater than 1 at some point within the first 𝑂(𝑅3) steps of the game. Her
disadvantage is that she does not know the precise values of marbles. Intuitively, she
would like to perform split operations on marbles 𝑥 and 𝑦 that satisfy |𝑣(𝑥)− 𝑣(𝑦)| =
𝑜(1/𝑅). But she might, for example, accidentally split two marbles 𝑥 and 𝑦 whose
values differ considerably—this would result in 𝑥′ and 𝑦′ having values that are closer
together than 𝑥 and 𝑦 had, which is intuitively counterproductive for Alice. We shall
see that, nonetheless, Alice can deterministically force a win within 𝑂(𝑅3) steps.

In constructing Alice’s strategy, we will find it helpful for accounting purposes to
artificially place the following additional constraints on Alice. We think of there as
being bags 0, 1, 2, . . ., each of which is capable of holding arbitrarily many marbles.
Whenever a marble is inserted, we place it in bag 1. Whenever a split Split(𝑥, 𝑦)
operation is performed, we require that the marbles 𝑥 and 𝑦 are currently in the
same bag 𝑖 ≥ 1 as each another, and after the split, we place the new marbles 𝑥′ and
𝑦′ into bags 𝑖 + 1 and 𝑖 − 1, respectively. This restriction somewhat limits Alice’s
possible strategies, but, as we shall see, it also simplifies the task of analyzing Alice’s
“progress” over time.

The key result of this section is the following.
Proposition 99. Alice can deterministically force some marble to have a value
greater than 1 at some point within the first 𝑂(𝑅3) steps of the game. Moreover,
the strategy performs only 𝑂(𝑅2) insertions.

Proof. We begin by describing Alice’s strategy. Let 𝑐 be a large positive constant. She
initially performs one insertion into bag 1. She then proceeds in 𝑐𝑅 phases, where at
the beginning of phase 𝑖 ∈ {1, 2, . . . , 𝑐𝑅}, the state of the system is as follows: bag 0
contains some arbitrary number of marbles; bags 1, 2, . . . , 𝑖 each contain one marble;
and bags 𝑖+ 1, 𝑖+ 2, . . . are empty.

The 𝑖-th phase consists of (𝑖 + 1) sub-phases, where at the beginning of each
subphase 𝑗 ∈ {1, 2, . . . , 𝑖 + 1}, the state of the system is as follows: bag 0 contains
some arbitrary number of marbles; and, with the exception of bag 𝑖− 𝑗 + 2, which is
empty, all of bags 2, 3, 4, . . . , 𝑖+ 1 contain one marble (so bags 1, 2, 3, 4, . . . , 𝑖− 𝑗 + 1
each contain one marble; bag 𝑖 − 𝑗 + 2 is empty; and bags 𝑖 − 𝑗 + 3, . . . , 𝑖 + 1 each
contain one marble).

The (𝑖 + 1)-th subphase is special in that, all Alice does is perform one more
insertion in order to reach the starting state for phase 𝑖+1 (i.e., all of bags 1, 2, . . . , 𝑖+1
contain 1 marble).

For 𝑗 < 𝑖 + 1, the 𝑗-th subphase of phase 𝑖 is implemented as follows. Alice
inserts one marble into bag 1. She then performs splits, one after another, on bags

165

1, 2, 3, . . . , 𝑖 − 𝑗 + 1. For each 𝑡 ∈ {1, 2, . . . , 𝑖 − 𝑗} (i.e., for every split but the final
split), after she performs a split on bag 𝑡, the state of the system is that: bags
1, 2, . . . , 𝑡− 1 contain one marble each; bag 𝑡 is empty; bag 𝑡+ 1 contains 2 marbles;
and bags 𝑡+ 2, 𝑡+ 3, . . . are as they were at the beginning of the subphase. The final
split that Alice performs (i.e., the split in 𝑖− 𝑗+1) has the effect of placing a marble
into the previously empty bags 𝑖− 𝑗 and 𝑖− 𝑗 + 2, and leaving bag 𝑖− 𝑗 + 1 as the
solitary empty bag out of bags 0, 1, 2, . . . , 𝑖+ 1. Thus we reach the starting state for
the (𝑗 + 1)-th subphase.

Analysis of the strategy. The analysis will need only the following basic facts
about Alice’s strategy: (1) it performs a total of 𝑂(𝑐2𝑅2) Insert operations and
Ω(𝑐3𝑅3) Split operations; (2) it only places marbles in bags 𝑖 ≤ 𝑐𝑅 + 1; and (3) at
the end of the game, there is at most 1 marble in each bag 𝑖 for 𝑖 > 0.

Let 𝐵𝑖 denote the marbles in bag 𝑖 at any given moment, and define the potential
function

𝜑 =
∞∑︁
𝑖=0

𝑖 ·
∑︁
𝑥∈𝐵𝑖

𝑣𝑥.

We will prove the proposition by analyzing how 𝜑 evolves over time.
Each time that an Insert is performed, 𝜑 may decrease by up to 1, as 𝑣𝑥 ∈ [−1, 1]

and the marble is inserted in bag 1. During the entire game, this leads to a decrease
of at most 𝑂(𝑐2𝑅2).

Each time that a Split is performed, two marbles 𝑥 and 𝑦 in some bag 𝑖 are
replaced by 𝑥′ and 𝑦′ with values given by (10.1). Removing 𝑥 and 𝑦 decreases 𝜑 by
𝑖 · (𝑣𝑥 + 𝑣𝑦) and inserting 𝑥′ and 𝑦′ increases 𝜑 by

(𝑖+ 1)𝑣𝑥′ + (𝑖− 1)𝑣𝑦′ = 𝑖 · (𝑣𝑥 + 𝑣𝑦) + (𝑣𝑥′ − 𝑣𝑦′)± 𝑜(𝑖𝑅−2) ≥ 𝑖 · (𝑣𝑥 + 𝑣𝑦) + 1/𝑅.

The net effect of a split is therefore to increase 𝜑 by at least 1/𝑅. As there are
Ω(𝑐3𝑅3) split operations across the entire game, this increases 𝜑 by Ω(𝑐3𝑅2).

Combining the bounds for Insert and Split operations, we have that, at the end
of the game,

𝜑 ≥ Ω(𝑐3𝑅2)−𝑂(𝑐2𝑅2) = Ω(𝑐3𝑅2).

But this means that some bin 𝑖 ≤ 𝑐𝑅+1 must satisfy 𝑖 ·
∑︀

𝑥∈𝐵𝑖
𝑣𝑥 > Ω(𝑐2𝑅), and thus

that
∑︀

𝑥∈𝐵𝑖
𝑣𝑥 > Ω(𝑐). As |𝐵𝑖| ≤ 1, this implies that there is a ball 𝑥 with 𝑣𝑥 > 1.

Remark. It is worth noting that, in the strategy in Proposition 99, we could have
alternatively performed all of the insertions into bag 1 up front (i.e., at the beginning
of the game), and then applied the appropriate Split operations without performing
any further insertions—each marble would simply remain in bag 1 until it was used
for the Split operations involving it. This perspective will be convenient in our
application of marble splitting.

166

10.1.2 Proof of Theorem 97

We will now derive a sequence of insertions/deletions that can be used to establish
Theorem 97.

As notation, let𝑄 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ [4], 𝑖 ̸= 𝑗}, and let ℎ be a fully independent hash
function mapping each ball 𝑥 to a uniformly random pair ℎ(𝑥) = (ℎ1(𝑥), ℎ2(𝑥)) ∈ 𝑄.
Notice that |𝑄| = 12.

insertion

|{𝑥 ∈ 𝐴 | ℎ(𝑥) = (1, 2)}| = 𝑘/12 + 𝑡±𝑂(
√
𝑘) (10.2)

and |{𝑥 ∈ 𝐴 | ℎ(𝑥) = (3, 4)}| = 𝑘/12− 𝑡±𝑂(
√
𝑘). (10.3)

Note that ℰ only depends on the hash values for balls in 𝐴.
We will show that, if we condition on ℰ occurring, and if 𝑡 is moderately large

(i.e., 𝑐
√
𝑘 for some sufficiently large positive constant 𝑐), then we can perform a

sequence of insertions/deletions that make use of the sets 𝐴 and 𝐵 in order to defeat
any ID-oblivious insertion strategy. While ℰ only has a small constant probability of
occurring, this can be amplified by repeating the strategy multiple times.

As a final but crucial piece of notation, for any set 𝑆 of balls present in the
system, define the value 𝑣(𝑆) to be the number of balls 𝑥 ∈ 𝑆 that reside in bins
1, 2. The ultimate structure of our analysis will be to show that, if an ID-oblivious
algorithm guarantees a maximum load of 𝑚/4 +𝑚𝑜(1) (with high probability), then
we can construct a set 𝑆 for which we can derive the clearly false assertion that
E[𝑣(𝑆)] > |𝑆|.

Some basic gadgets

We will now prove a series of lemmas showing how to construct a malicious sequence
of insertions/deletions using the sets 𝐴 and 𝐵 (and conditioned on ℰ). We begin by
observing what happens if we simply insert the elements 𝐴 ∪𝐵 in a random order.
Lemma 100. Consider a balls-and-bins game with 4 bins, starting from an arbitrary
state. Suppose balls are allocated to bins using an arbitrary ID-oblivious insertion
strategy that has already been shown the sets 𝐴,𝐵 (i.e., the algorithm can depend
on the multisets {ℎ(𝑥) | 𝑥 ∈ 𝐴} and {ℎ(𝑥) | 𝑥 ∈ 𝐵}). Condition on event ℰ , and
suppose that we insert the balls 𝐴 ∪𝐵 in a random order. Then, after the insertions
are completed, we have

E[𝑣(𝐴)− 𝑣(𝐵)] ≥ 𝑡−𝑂(
√
𝑘).

The intuition behind Lemma 100 is quite simple. For (𝑖, 𝑗) ∈ 𝑄, define 𝐴𝑖,𝑗 (resp.
𝐵𝑖,𝑗) to be the set of balls in 𝐴 (resp. 𝐵) that hash to the bin pair (𝑖, 𝑗). Due to event
ℰ , we have that E[|𝐴1,2| − |𝐵1,2|] ≥ 𝑡−𝑂(

√
𝑘), so this immediately gives 𝐴 an extra

𝑡−𝑂(
√
𝑘) balls (in expectation) in bins 1, 2 that 𝐵 doesn’t get. On the other hand,

for each (𝑖, 𝑗) ∈ 𝑄 ∖ {(1, 2), (3, 4)}, we expect the number of balls from 𝐴𝑖,𝑗 that are

167

in bins 1, 2 to be roughly the same as the number of balls from 𝐵𝑖,𝑗 that are in bins
1, 2, hence the conclusion of the lemma. Formalizing this argument requires some
care as the algorithm can try to distinguish the balls in 𝐴 from those in 𝐵 based on
the differences between |𝐴𝑖,𝑗| and |𝐵𝑖,𝑗|, for (𝑖, 𝑗) ∈ 𝑄. Thus we defer the full proof
of the lemma to Appendix 9.B.

Our next lemma makes a simple observation about what happens when we remove
a set 𝑋 of balls and replace it with a set 𝑋 ′ of balls, in a balls-and-bins game that is
at capacity (i.e., contains 𝑚 balls).
Lemma 101. Consider a balls-and-bins game with 4 bins, starting with 𝑚 balls in
the system. Let 𝑋 be a set of 𝑟 balls that are present. Suppose that we delete the
balls 𝑋, and then insert new balls 𝑋 ′, where |𝑋 ′| = 𝑟. Then one of the following
events must occur:

• there is some point in time at which some bin contains 𝑚/4 + 𝜔(
√
𝑘) balls;

• or, |𝑣(𝑋)− 𝑣(𝑋 ′)| = 𝑂(
√
𝑘).

Proof. Suppose that they are never more than 𝑚/4 + Ω(
√
𝑘) balls in any given bin.

This means that, whenever there are 𝑚 balls in the system, the number of balls in
bins 1, 2 must be within 𝑂(

√
𝑘) of 𝑚/2.

When we remove balls 𝑋, we decrease the number of balls in bins 1, 2 by 𝑣(𝑋).
When we insert balls 𝑋 ′, we increase the number of balls and bins 1, 2 by 𝑣(𝑋 ′). In
total, we must change the load of bins 1, 2 by 𝑂(

√
𝑘), meaning that |𝑣(𝑋)− 𝑣(𝑋 ′)| =

𝑂(
√
𝑘).

Gadget for splitting. By combining the previous two lemmas in the right way, we
can construct a sequence for splitting a set 𝑋 of size poly(𝑘) into two sets 𝑌 and 𝑍
such that 𝑣(𝑌) + 𝑣(𝑍) = (1± 𝑜(𝑘−1))𝑣(𝑋) and E[𝑣(𝑌)− 𝑣(𝑍)] ≥ Ω(|𝑋|/

√
𝑘).

Lemma 102 (Splitting gadget). Consider a balls-and-bins game with 4 bins, starting
from an arbitrary state with 𝑚 balls, and where balls are allocated to bins using an
ID-oblivious insertion strategy that, as in Lemma 100, has already been shown the
sets 𝐴,𝐵, and that keeps the load of each bin below 𝑚/4 + 𝑂(

√
𝑘) w.h.p. in 𝑚.

Finally, condition on event ℰ with 𝑡 = 𝑐
√
𝑘 for some sufficiently large constant 𝑐 > 0.

Let 𝑋 be a set of 𝑞 = 𝑘1.5 log 𝑘 balls that are currently present in the system.
There exists a sequence of poly(𝑘) insertions/deletions that (without ever placing
more than 𝑚 balls in the system at a time) replaces 𝑋 with 𝑞/2-element sets 𝑌, 𝑍
satisfying

E[𝑣(𝑌)− 𝑣(𝑍)] ≥ 𝑘 log 𝑘, (10.4)

and satisfying
E[𝑣(𝑌) + 𝑣(𝑍)] = 𝑣(𝑋)±𝑂(

√
𝑘). (10.5)

Proof. Roughly speaking, the goal is to transfer the imbalance between the sets 𝐴 and
𝐵 (in how they allocate balls to bins 1,2 vs. 3,4) to the set 𝑋, so that the resulting

168

sets 𝑌 and 𝑍 have similar relative imbalance to what 𝐴 and 𝐵 have. Of course, 𝐴
and 𝐵 have size 𝑘 each, while 𝑋 has size 𝑞 = 𝑘1.5 log 𝑘, so the imbalance between 𝐴
and 𝐵 needs to be amplified in order to get the same relative imbalance between 𝑌
and 𝑍. As we shall see, this is where we crucially make use of the ability to delete
and reinsert 𝐴 ∪𝐵 multiple times.1

Let us partition 𝑋 into sets 𝑋1, 𝑋2, . . . , 𝑋𝑞/𝑘 of size 𝑘 each. For each 𝑖 ∈ [𝑞/2𝑘],
we will replace 𝑋2𝑖−1 by a new set 𝑌𝑖 and 𝑋2𝑖 by a new set 𝑍𝑖, in such a way that
the relative imbalance between 𝑌𝑖 and 𝑍𝑖 is similar to that between 𝐴 and 𝐵. This
is accomplished by performing the following sequence of insertions and deletions:

1. Delete the balls 𝑋2𝑖−1 ∪𝑋2𝑖.

2. Insert the balls 𝐴 ∪𝐵 in a random order.

3. Delete the balls of 𝐴, and replace them with a set 𝑌𝑖 of 𝑘 elements.

4. Delete the balls of 𝐵, and replace them with a set 𝑍𝑖 of 𝑘 elements.

By Lemma 100, we have after Step (2) that

E[𝑣(𝐴)− 𝑣(𝐵)] ≥ 𝑡−𝑂(
√
𝑘).

By Lemma 101 (and since the insertion strategy keeps bin loads of 𝑚/4+𝑂(
√
𝑘) with

high probability in 𝑚), we then have that E[𝑣(𝑌𝑖)] and E[𝑣(𝑍𝑖)] are within 𝑂(
√
𝑘) of

E[𝑣(𝐴)] and E[𝑣(𝐵)], respectively. Thus

E[𝑣(𝑌𝑖)− 𝑣(𝑍𝑖)] ≥ 𝑡−𝑂(
√
𝑘) ≥ 2

√
𝑘,

where the final inequality uses the fact that 𝑡 = 𝑐
√
𝑘 for a sufficiently large positive

constant 𝑐.
Summing over 𝑖 ∈ {1, 2, . . . , 𝑞/(2𝑘)}, and denoting 𝑌 = ∪𝑖𝑌𝑖 and 𝑍 = ∪𝑖𝑍𝑖, we

get the claimed bound

E[𝑣(𝑌)− 𝑣(𝑍)] =
∑︁
𝑖

E[𝑣(𝑌𝑖)− 𝑣(𝑍𝑖)] ≥ 𝑘 log 𝑘.

Next, applying Lemma 101 with 𝑋 ′ = 𝑌 ∪ 𝑍, we have that either

𝑣(𝑌) + 𝑣(𝑍) = 𝑣(𝑋)±𝑂(
√
𝑘),

or that there is some point in time at which a bin has load 𝑚/4 + 𝜔(
√
𝑘). Since the

latter event is assumed to occur with probability at most 1/ poly(𝑚), this completes
the proof of the lemma.

1The other place where we make use of reinsertions is that, ultimately, we will apply Lemma 102
multiple times, and we will continue to reuse 𝐴 and 𝐵 across those multiple applications.

169

Connection to marble-splitting

We are now ready to prove Theorem 97. We begin by proving a slightly weaker
version of the theorem, namely that no ID-oblivious insertion strategy can offer a
high-probability guarantee of achieving overload 𝑚𝑜(1).
Proposition 103. Consider the reinsertion/deletion model with 4 bins, and with
a limit of up to 𝑚 balls present at a time. Suppose there is an ID-oblivious bin-
allocation algorithm that, for the first poly(𝑚) steps, bounds the load of each bin by
𝑚/4 + 𝑓(𝑚) with high probability in 𝑚. Then 𝑓(𝑚) = 𝑚Ω(1).

Proof. Set 𝑘 = 𝑚𝜀 for a positive constant 𝜀 to be selected later in the proof, and
suppose for contradiction that 𝑓(𝑚) = 𝑂(

√
𝑘).

Let 𝐴 and 𝐵 be disjoint sets of 𝑘 balls each. Let 𝑐 be a sufficiently large positive
constant, and set 𝑡 = 𝑐

√
𝑘. Finally, let ℰ be the event that (10.2) and (10.3) hold.

Note that ℰ occurs with probability Ω(1); for the rest of the proof, condition on ℰ .
Let 𝑋1, 𝑋2, . . . , 𝑋𝑐𝑘 be disjoint sets of (𝑘1.5 log 𝑘)/2 balls each. To begin, in-

sert 𝑚 balls into the system, where those balls include 𝑋1, 𝑋2, . . . , 𝑋𝑐𝑘. The sets
𝑋1, 𝑋2, . . . , 𝑋𝑐𝑘 will act as marbles in a marble-splitting game. There are two types
of operations that we will perform in this game: an Insert operation, which adds one
of the sets𝑋1, 𝑋2, . . . , 𝑋𝑐𝑘 as a new marble in the game; and a Split(𝑋, 𝑌) operation,
which takes two sets 𝑋 and 𝑌 of size (𝑘1.5 log 𝑘)/2 balls each, and applies Lemma 102
to replace them with sets 𝑋 ′, 𝑌 ′ (also of (𝑘1.5 log 𝑘)/2 balls each) satisfying

E[𝑣(𝑋 ′)]

|𝑋 ′|
− E[𝑣(𝑌 ′)]

|𝑌 ′|
≥ 2/

√
𝑘, (by (10.4))

E[𝑣(𝑋)]

|𝑋|
+

E[𝑣(𝑌)]

|𝑌 |
=

E[𝑣(𝑋 ′)]

|𝑋 ′|
+

E[𝑣(𝑌 ′)]

|𝑌 ′|
± 𝑜(1/𝑘). (by (10.5))

If we define 𝑣𝑋 := E[𝑣(𝑋)]
|𝑋| for each set 𝑋 of 𝑘1.5/2 balls, it follows that we are

playing a marble-splitting game with 𝑅 =
√
𝑘, and where marbles correspond to sets

of (𝑘1.5 log 𝑘)/2 balls. By Proposition 99, there is an 𝑂(𝑅3) = 𝑂(𝑘1.5)-step strategy
that results in some marble 𝑋 satisfying 𝑣𝑋 > 1. This is a contradiction, since 𝑣𝑋
must deterministically be in the range [0, 1].

Note that the marble-splitting game requires 𝑂(𝑅2) = 𝑂(𝑘) marbles at a time,
each of which consists of 𝑂(𝑘1.5 log 𝑘) balls. Thus, the entire game uses 𝑂(𝑘2.5 log 𝑘)
balls, meaning that we can set 𝑘 = 𝑚1/2.5−𝑜(1). We can therefore conclude that 𝑓(𝑚)
must be at least 𝑚1/5−𝑜(1).

Finally, we prove Theorem 97 by applying a basic amplification argument to
Proposition 103.

Proof of Theorem 97. By Proposition 103, there exists a parameter 𝑠 ∈ poly(𝑚) such
that, within poly(𝑚) operations, an oblivious adversary can achieve maximum load
𝑚/4 + 𝑚Ω(1) with probability 1/𝑠. By independently repeating this construction

170

Θ(𝑠 log 𝑛) = poly(𝑚) times, the probability of achieving a load of 𝑚/4 + 𝑚Ω(1) at
some point during the sequence becomes

1− (1− 1/𝑠)Θ(𝑠 log𝑛) = 1− 1/ poly(𝑛),

as desired.

10.2 An Upper Bound for the Moderately-Loaded
Regime

In this section, we present the Iceberg strategy, a bin-selection rule with 3 hash
functions that achieves maximum load

ℎ+𝑂(
√︀
ℎ log ℎ) + log log 𝑛+𝑂(1). (10.6)

We begin in Subsection 10.3 by proving a useful technical lemma. Then, in Sub-
section 10.3.1, we present and analyze Iceberg.

10.3 A Strong Backyarding Lemma

Consider a dynamic balls-and-bins game with 𝑛 bins and at most 𝑚 = ℎ𝑛 balls at all
times, that are placed with the SingleChoice rule. Whenever a ball is thrown into
a bin, if the bin contains ℎ + 𝜏 or more balls, then the ball is labeled as 𝜏-exposed
(and the label persists until the ball is next deleted).
Lemma 104. Suppose 1 ≤ 𝜏 ≤ ℎ. At any fixed point in time, the number of
𝜏 -exposed balls is poly(ℎ) · 𝑛𝑒−𝜏2/(3ℎ) with probability 1− exp(−Ω(𝑚𝑒−𝜏

2/(3ℎ))).

We remark that Lemma 104 has a somewhat complicated history. Special cases
of the lemma, but with weaker probabilistic bounds, have appeared several times
in the data structures literature, first in a paper by Demaine et al. [146], and then
in subsequent work by Bercea and Even [96],2 and then again in subsequent work
by a group of authors including myself [75] (with probabilistic guarantees that were
stronger than those in the prior works but weaker than those here). Finally, the
current version of the lemma was presented by the same group of authors in our
follow-up work on tiny pointers [76] (which appears in Part V of this thesis), which
included the balls-and-bins results that we will be proving in the next section. The
lemma as stated is actually much stronger than we will need for our balls-and-bins
result, but the strong probabilistic guarantees achieved by the lemma will end up
being quite important for our data-structural applications (which use balls-and-bins
as an algorithmic subroutine) later in the thesis (see Part V).

2As noted by [75], however, the proof in [96] contained a subtle but serious bug.

171

Our proof of the lemma will make use of a variant of Talagrand’s inequality [270,
Chapter 12]:
Theorem 105 (Talagrand’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random
variables from an arbitrary domain. Let 𝐹 be a function of 𝑋1, . . . , 𝑋𝑛, not identically
0. Suppose that for some 𝑐, 𝑟 > 0, 𝐹 is 𝑐-Lipschitz and 𝑟-certifiable, defined as follows:

• 𝐹 is 𝑐-Lipschitz if changing the outcome of any single 𝑋𝑖 changes 𝐹 by at most
𝑐.

• 𝐹 is 𝑟-certifiable if, for any 𝑠, if 𝐹 (𝑋1, . . . , 𝑋𝑛) ≥ 𝑠, then there is a certifying
set of at most 𝑟𝑠 𝑋𝑖’s whose outcomes serve as a witness that 𝐹 ≥ 𝑠, that is,
𝐹 ≥ 𝑠 no matter the outcome of the other 𝑋𝑗 not in the certifying set.

Then, for any 0 ≤ 𝑡 ≤ E [𝐹],

Pr
(︁
|𝐹 − E [𝐹] | > 𝑡+ 60𝑐

√︀
𝑟E [𝐹]

)︁
≤ 4 exp

(︂
− 𝑡2

8𝑐2𝑟E [𝐹]

)︂
.

The proof of the lemma proceeds by bounding the expected number of exposed
balls, then using Talagrand’s inequality to achieve a concentration bound.

In what follows, we refer to the balls which are present at the end as 𝑎1, . . . , 𝑎𝑘
and we refer to the remaining balls in the universe as 𝑎𝑘+1, . . . , 𝑎ℓ. We denote by
𝛼𝑖 the bin choice for 𝑎𝑖. For 𝑖 ∈ [𝑘], we define 𝑡𝑖 to be the last time at which 𝑎𝑖 is
inserted, we define 𝑋𝑖 to be the random variable indicating if 𝑎𝑖 is an exposed ball at
the end of the game, and we define 𝑋 =

∑︀𝑘
𝑖=1𝑋𝑖 to be the total number of exposed

balls.
Claim 106. The expected number of exposed balls satisfies E [𝑋] = 𝑂(𝑚𝑒−𝜏

2/(3ℎ)).

Proof. Recall that 𝑋 =
∑︀

𝑖𝑋𝑖 where 𝑋𝑖 indicates whether 𝑎𝑖 is exposed. By linearity
of expectation, it suffices to show that E [𝑋𝑖] = 𝑂(𝑒−𝜏

2/(3ℎ)) for each 𝑖 ∈ [𝑘].
Fix 𝑖 ∈ [𝑘]. Consider the final time 𝑡𝑖 at which ball 𝑎𝑖 is inserted. The ball 𝑎𝑖 is

exposed if and only if the number of balls in bin 𝛼𝑖 is at least ℎ+ 𝜏 . If we set 𝑌 to be
the number of balls in bin 𝛼𝑖, and we set 𝜀 = 𝜏/ℎ, then we can bound the probability
of 𝑌 ≥ ℎ+ 𝜏 using a Chernoff bound:

Pr (𝑌 ≥ ℎ+ 𝜏) = Pr (𝑌 ≥ (1 + 𝜀)ℎ) ≤ 𝑒−𝜀
2ℎ/3 = 𝑒−𝜏

2/(3ℎ).

Thus Pr (𝑋𝑖) = 𝑒−𝜏
2/(3ℎ).

Claim 107. The random variable 𝑋 is (ℎ+𝜏+1)-Lipschitz and (ℎ+𝜏+1)-certifiable
as a function of {𝛼𝑖}ℓ𝑖=1.

Proof. Changing the value of a single 𝛼𝑖 to 𝛼′
𝑖 can only affect the number of exposed

balls in bin 𝛼𝑖 (which may decrease) and in bin 𝛼′
𝑖 (which may increase). The number

of unexposed balls in a bin is deterministically at most ℎ+𝜏 . This means that moving
ball 𝑎𝑖 out of bin 𝛼𝑖 can increase the number of unexposed balls in the bin by at most

172

ℎ+ 𝜏 , and thus can decrease the number of exposed balls by at most ℎ+ 𝜏 +1 (where
the +1 accounts for the removal of 𝑎𝑖 itself). Similarly, moving ball 𝑎𝑖 into bin 𝛼′

𝑖 can
decrease the number of unexposed balls in the bin by at most ℎ + 𝜏 , and thus can
increase the number of exposed balls by at most ℎ + 𝜏 + 1. This establishes that 𝑋
is (ℎ+ 𝜏 + 1)-Lipschitz.

To certify that 𝑋 ≥ 𝑠, let 𝐽 with |𝐽 | = 𝑠 be a set of values 𝑗 ∈ [𝑘] such that 𝑎𝑗 is
exposed at the end of the game. For each 𝑗 ∈ 𝐽 , let 𝑅𝑗 be a selection of ℎ + 𝜏 balls
𝑖 such that ball 𝑎𝑖 was present at the last time 𝑡𝑗 that 𝑎𝑗 was inserted and such that
𝛼𝑖 = 𝛼𝑗. The set of random variables {𝛼𝑖 | 𝑖 ∈ 𝑅𝑗} ∪ {𝛼𝑗} acts as a certificate that
𝑎𝑗 is exposed. Thus the set ⋃︁

𝑗∈𝐽

{𝛼𝑖 | 𝑖 ∈ 𝑅𝑗} ∪ {𝛼𝑗}

acts as a certificate that 𝑋 ≥ 𝑠. This certificate consists of 𝑠(ℎ + 𝜏 + 1) random
variables, hence 𝑋 is (ℎ+ 𝜏 + 1)-certifiable.

Proof of Lemma 104. Set 𝑄 = 𝑚 exp (−𝜏 2/(3ℎ)). By Claim 106, we know that
E [𝑋] ≤ 𝑄. By Claim 107, we can apply Talagrand’s inequality (Theorem 105) to 𝑋
with 𝑐 = 𝑟 = ℎ+ 𝜏 + 1 = 𝑂(ℎ). Applying Talagrand’s inequality with 𝑡 = Θ(𝑐

√
𝑟𝑄),

and using 𝑄 as an upper bound on E[𝑋], we can deduce that

𝑋 = 𝑂(𝑐
√
𝑟𝑄)

with probability at least
1− exp(−Ω(𝑄)).

It follows that 𝑋 ≤ poly(ℎ) ·𝑂(𝑛𝑒−𝜏2/(3ℎ)) with probability 1− exp(−Ω(𝑚𝑒−𝜏
2/(3ℎ))).

10.3.1 The Iceberg 3-Choice Strategy

We now present the Iceberg balls insertion strategy, which uses three bin choices
for each ball in order to achieve an overload of 𝑜(𝑚/𝑛) +𝑂(log log 𝑛).

Let 𝑛 be the number of bins, and let 𝑚 = ℎ𝑛 be the maximum number of balls
allowed to be present at any given moment. Let 𝑔, ℎ1, ℎ2 be hash functions mapping
balls to uniformly random bins.

We shall have three types of balls: level-one balls, level-two balls, and level-three
balls. Each level-one ball 𝑥 will reside in bin 𝑔(𝑥), each level-two ball 𝑥 will reside
in one of bins ℎ1(𝑥), ℎ2(𝑥), and each level-three ball 𝑥 will reside in an arbitrary bin
(but, at any given moment, the number of level-three balls will be zero w.h.p.).

Set 𝜏 = 𝑐
√
ℎ log ℎ for some sufficiently large positive constant 𝑐. We shall also

keep track of a variable 𝑞 counting the number of level-two balls present at any given
moment.

173

The procedure for inserting a ball 𝑥 is as follows. If bin 𝑔(𝑥) contains ℎ+ 𝜏 level-
one balls or fewer, then we place 𝑥 in bin 𝑔(𝑥), and we classify 𝑥 as a level-one ball.
Otherwise, we check whether 𝑞 < 𝑛. If 𝑞 < 𝑛, then we examine bins ℎ1(𝑥), ℎ2(𝑥), and
we place 𝑥 as a level-two ball into whichever bin ℎ𝑖(𝑥) contains the fewest level-two
balls (breaking ties arbitrarily). Finally, if 𝑞 ≥ 𝑛, then we place 𝑥 as a level-three ball
into an arbitrary bin.
Theorem 98. Suppose 1 ≤ ℎ ≤ 𝑛𝑜(1). Suppose balls are inserted/deleted/reinserted
into 𝑛 bins over time (by an oblivious adversary) according to the Iceberg rule,
where each ball has three random choices for where it can go, and where there are
never more than ℎ𝑛 balls present at a time. Then, w.h.p. in 𝑛, at any given moment,
the number of balls in the fullest bin is ℎ+𝑂(

√
ℎ log ℎ) + log log 𝑛+𝑂(1).

Proof. Each bin deterministically contains at most ℎ+ 𝜏 = ℎ+𝑂(
√
ℎ log ℎ) level-one

balls. Thus, it suffices to bound the number of level-two and level-three balls in each
bin by log log 𝑛+𝑂(1).

The number 𝑞 of level-two balls in the entire system is deterministically at most
𝑛 at any given moment. In other words, the level-two balls are placed according to
Greedy two-choice strategy with up to 𝑛 balls at a time. This implies [350,351,369]
that the number of such balls in any given bin is at most log log 𝑛 + 𝑂(1) with high
probability in 𝑛.

We complete the proof by showing that, w.h.p., The number of level-three bins is
zero. By Lemma 104, the number 𝑞 of level-two balls satisfies 𝑞 < 𝑛 (at any given
moment) with probability at least 1 − exp(−𝑛/ poly(ℎ)), which by the assumption
ℎ ≤ 𝑛𝑜(1) is at least 1− 1/ poly(𝑛). It follows that each individual ball insertion has
probability at most 1/ poly(𝑛) of being level-three. Taking a union bound over all of
the balls in the system, the probability that any of them are level-three is at most
1/ poly(𝑛), as desired.

174

Part IV

Hashing it Out:
Some Barriers Are Fundamental

and Others Are Not

175

176

Chapter 11

Introduction

In this part of the thesis, we revisit three well-studied problems from the areas of
hash tables and hashing:

• Chapter 12: The optimal tradeoff curve between time- and space-efficiency in
a hash table.

• Chapter 13: The strongest probabilistic guarantees that a hash table can offer.

• Chapter 14: The optimal space efficiency of a monotone minimal perfect hash
function.

Past research on these problems has hit what would seem to be natural barriers.
However, it has remained unclear whether these barriers are fundamental, or whether
they are simply limitations of the currently known techniques. This is the question
that we seek to answer in the next three chapters.

What we will see in Chapters 12 and 13 is that, without new algorithmic tech-
niques, we are able to achieve significantly stronger guarantees than were previously
known to be possible.

Our hash table in Chapter 12 establishes a very strong tradeoff between time and
space—with 𝑂(1)-time queries and 𝑂(𝑘)-time insertions/deletions, one can get within

𝑂(𝑛 log(𝑘) 𝑛) = 𝑂

⎛⎝𝑛 log log · · · log⏟ ⏞
𝑘

𝑛

⎞⎠
bits of the information-theoretic space requirement that any hash table must satisfy.
This bypasses a barrier of 𝑂(𝑛 log log 𝑛) bits that had previously stood as the state of
the art for close to two decades [313], and that was known to be optimal for any stable
hash table [75,146]. The result reveals that, perhaps surprisingly, unstable hash tables
(i.e., hash tables that strategically rearrange elements on each insertion/deletion) can
achieve fundamentally stronger guarantees than their stable counterparts.

Our hash table in Chapter 13 stores Θ(log 𝑛)-bit key/value pairs while guarantee-
ing worst-case 𝑂(1)-time operations with an extremely high probability of 1−1/2𝑛

1−𝜀 .

177

The previous states of the art [75, 198, 199] had gotten stuck at 1 − 1/2polylog𝑛 and
had identified what seemed to be a serious bottleneck: no matter how well designed
the hash table itself was, the known techniques for simulating random hash functions
were themselves dominating the failure probability. What makes our approach in
Chapter 13 interesting is that it bypasses this barrier entirely—rather than relying
on the traditional hash-function framework, our hash table uses randomization in
a more explicit (and unusual) way in order to directly obtain strong probabilistic
guarantees.

In Chapter 14, on the other hand, we find that there actually is a fundamental
barrier. We show that monotone minimal perfect hash functions necessarily require
Ω(𝑛 log log log 𝑢) bits to encode, where 𝑛 is the number of items being hashed and 𝑢
is the universe size. This matches an upperbound given by Belazzougui, Boldi, Pagh
and Vigna [64] in 2009, and establishes that the triple-logarithmic dependence on 𝑢 is
actually information-theoretic, rather than being an artifact of the known techniques.

Because these three problems each represent a different line of research, we will
defer more detailed descriptions of the results to the individual chapters. Moreover,
in order to accommodate readers who may have targeted interests, we have written
each chapter to be completely self-contained.

178

Chapter 12

The Optimal Space-Time Tradeoff
Curve for Hash Tables

179

12.1 Introduction

Formally, a hash table [226] (sometimes called a dictionary) is a data structure
that stores a set of keys from some key-universe 𝑈 and that supports three operations
on that set: insertions, deletions, and queries. Some hash tables are also capable of
storing a value 𝑣 ∈ 𝑉 associated with each key. In this case, a query on a key 𝑘
returns both whether key 𝑘 is present and what the associated value 𝑣 is, if 𝑘 is
present.

Since hash tables were introduced in 1953, there has been a vast literature on the
question of how to design space- and time-efficient hash tables [50,52,75,146,153,156,
156,181,185,224,226,245,296,300,304,313,370]. Whereas early hash tables [224,226]
required 𝜔(1) time per operation in order to support a load factor of 1−𝑜(1), modern
hash tables [52, 75, 245] offer a much stronger guarantee. Not only are these hash
tables constant time (with high probability), and not only do they support a load
factor of 1−𝑜(1), but they have even converged towards the information-theoretically
optimal number of bits of space, given by

ℬ(𝑈, 𝑉, 𝑛) = log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛 log |𝑉 |.

A hash table that uses ℬ(𝑈, 𝑉, 𝑛) + 𝑟𝑛 bits of space is said to incur 𝑟 wasted
bits per key. When log |𝑈 | + log |𝑉 | = 𝑐 log 𝑛 for some constant 𝑐 > 1, the state
of the art for 𝑟 is 𝑂(log log 𝑛), which was first achieved in 2003 by Raman and Rao
[313] with constant expected-time operations, and which after a long line of work
[52, 75, 146, 245] has now also been achieved [75] with (high-probability) worst-case
constant-time operations.

Besides having remained the state of the art for nearly two decades, there are
several more fundamental reasons to believe that 𝑟 = 𝑂(log log 𝑛) might be optimal.
It is known that Θ(log log 𝑛) wasted bits per key is optimal for the closely related
problems of dynamic value retrieval1 [146, 157, 273] and fully-dynamic approximate
set membership2 [122,245,301]. And it is known that stable hash tables [75,146] (i.e.,
hash tables in which each key/value pair is assigned a fixed and unchanging position
upon arrival) have an optimal value of 𝑟 = Θ(log log 𝑛).

Nonetheless, it is not known whether 𝑟 = 𝑂(log log 𝑛) wasted bit per key is optimal
for dynamic constant-time hash tables. More generally, it is an open question what
the optimal tradeoff is between time and space (e.g., can slightly super-constant-time

1A dynamic data-retrieval data structure is a hash table with the added restriction that queries
must be for keys/value pairs that are present. If keys are from a universe of size poly(𝑛) and 𝑣 is
the size of each value in bits, then static value-retrieval requires 𝑛𝑣 + 𝑜(𝑛) bits [157], and dynamic
value-retrieval requires 𝑛𝑣 +Θ(𝑛 log log 𝑛) bits [146,273].

2Fully-dynamic approximate set membership data structures, also known as dynamically-resizable
filters, are analogous to dynamically-resizable hash tables, but with some 𝜀 probability of queries
returning false-positives. Whereas an optimal static filter requires 𝑛 log 𝜀−1 bits [122], an optimal
resizable filter requires 𝑛 log 𝜀−1 + Ω(𝑛 log log 𝑛) space [301], which is known to be optimal for
𝜀−1 ≤ polylog 𝑛 [245,301].

180

operations yield major space savings?).

The optimal tradeoff curve between time and space. In this chapter, we
present a data structure that achieves a much stronger time/space tradeoff. We also
give a matching lower bound that holds across a large class of data structures. In fact,
subsequent work by Li, Liang, Yu, and Zhou [243] has shown that our tradeoff curve is
optimal across all dynamic data structures. This closes off one of the longest-standing
directions of research in the field of data structures.

For any parameter 𝑘 ∈ [log* 𝑛], we construct a hash table that supports constant-
time queries, that supports 𝑂(𝑘)-time insertions/deletions, and that incurs

𝑂(log(𝑘) 𝑛) = 𝑂

⎛⎝log log · · · log⏟ ⏞
𝑘

𝑛

⎞⎠
wasted bits per key, where the guarantees on time and space are worst-case with high
probability in 𝑛. Our result holds not just for fixed-capacity hash tables, but also
for dynamically-resizable hash tables, as well as for hash tables storing very large
keys/values (up to 𝑛𝑜(1) bits each).

Our result implies a remarkably steep tradeoff: each time that we increase inser-
tion/deletion time by an additive constant, we are able to exponentially reduce the
number of wasted bits per key. In particular, we obtain a hash table that supports
𝑂(1)-time insertions/deletions/queries with 𝑂(log(𝑐) 𝑛) wasted bits per key, for any
positive constant 𝑐 of our choice; and we obtain a hash table that supports 𝑂(log* 𝑛)-
time insertions/deletions with 𝑂(1) wasted bits per key and constant-time queries.

Finally, in the special case where keys/values are small, meaning that each key-
value pair consists of log 𝑛+𝑜(log 𝑛/ log(𝑘) 𝑛) bits (but keys are still from a universe of
size 𝜔(𝑛)), we are able to further tighten our bounds to obtain 𝑜(1) wasted bits per key.
Building on this, we obtain a dynamic constant-time approximate set-membership
data structure (i.e., a filter) that achieves space

𝑛 log 𝜀−1 + 𝑛 log 𝑒+ 𝑜(𝑛)

bits, for a wide choice of false-positive rates 𝜀, resolving a long-standing open problem
as to whether 𝑂(1) wasted bits per key is achievable by dynamic filters. In fact,
not only is log 𝑒 + 𝑜(1) constant, but it is the provably optimal number of wasted
bits per key for any filter that is constructed by storing fingerprints in a hash table
[82,93,122,245,294].

12.2 Overview of Results and Techniques

This section presents an overview of the main results and techniques in the chapter.

181

12.2.1 Hash Tables and Balls-To-Slots Schemes

An implicit theme in the design and analysis of hash tables is that the problem of
constructing a space-efficient hash table is closely related to the problem of placing
balls into slots of an array. We now formalize this relationship by defining the class
of augmented open-addressed hash tables (which includes all known succinct
constant-time hash tables [52,75,82,93,245,313]), and by formally defining the balls-
to-slots problem that any augmented open-addressed hash table must solve (we will
call this problem the probe-complexity problem). Later, in Section 12.3, we will
give tight upper and lower bounds for the probe-complexity problem, which will then
allow for us to construct optimal augmented open-addressed hash tables.

Augmented open addressing. Augmented open-addressed hash tables are hash
tables that abide by the following basic framework: elements are stored in an array
of some size 𝑚 = (1 + 𝜀)𝑛, and each element 𝑥 ∈ 𝑈 is assigned a probe sequence
ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥), . . . ∈ [𝑚] of array slots where it can be stored; queries are then
implemented using a secondary query-routing data structure which, for each key 𝑥,
stores the index 𝑖 of the position ℎ𝑖(𝑥) containing the key.3 If a hash table is to be
succinct, it must simultaneously achieve 𝜀 = 𝑜(1) (we call the quantity 1− 𝜀 the load
factor), while also ensuring that the quantities stored by the query-routing data
structure don’t take up too many bits (i.e., keys are in positions ℎ𝑖(𝑥) for relatively
small values of 𝑖).

The use of a probe sequence to determine where a key can reside is analogous
to classical open addressing [226]. An important difference is that the query-routing
data structure allows for queries to be performed in constant time, without needing
to scan through the positions ℎ1(𝑥), ℎ2(𝑥),

Of course, there is flexibility in terms of what granularity augmented open ad-
dressing is used at. For example, in order to support dynamic resizing [75, 245, 313],
a hash table might use augmented open addressing on bins of size polylog 𝑛, and
then use a different set of techniques to determine which bin each key should go into.
Nonetheless, all known succinct constant-time hash tables [52,75,82,93,245,313] rely
on some form of augmented open-addressing as the highest-granularity abstraction
layer in which elements are stored.

The probe complexity problem. We can formalize the balls-to-slots problem
that any augmented open-addressed hash table must solve as follows. Each key
𝑥 is thought of as a “ball” that is associated with some probe sequence ℎ(𝑥) =
⟨ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑚(𝑥)⟩ where without loss of generality the sequence is a permuta-
tion of ⟨1, 2, . . . ,𝑚⟩. A balls-to-slots scheme must support an (online) sequence of ball
insertions/deletions so that, at any given moment, the up to 𝑛 balls that are present
are each assigned distinct positions in an array of 𝑚 = (1+𝜀) slots. The balls-to-slots
scheme is measured by two objectives: the average probe complexity of the balls,

3Additionally, a technique known as “quotienting” is used to shave log 𝑛 bits off of each key—this
is what bridges the gap between using ℬ(𝑈, 𝑉, 𝑛)+𝑛𝑟 space instead of 𝑛 log |𝑈 |+𝑛 log |𝑉 |+𝑛𝑟 space.

182

which for a ball 𝑥 in slot ℎ𝑖(𝑥) is given by (1 + log 𝑖); and the switching cost of
the balls-to-slots scheme, which is the number of balls that the scheme rearranges on
each insertion/deletion (including the ball being inserted/deleted).

The probe complexity of each ball 𝑥 can be viewed as the minimum number of
bits (asymptotically) that must be stored in the query router in order for the position
of the ball to be recovered by queries. The switching cost, on the other hand, can be
viewed as (a lower bound on) the amount of time that it takes to implement a ball
insertion/deletion. Thus lower bounds on the relationship between probe complexity
and switching cost in the probe-complexity problem directly translate to lower bounds
on the relationship between space and insertion-time in augmented open-addressed
hash tables.

Intuitively, there are three challenges to designing an augmented open-addressed
hash table: one must construct a balls-to-slots scheme with low probe complexity, low
switching cost, and high load factor; one must efficiently implement that balls-to-slots
scheme so that insertions/deletions can (ideally) be performed in time proportional
to the switching cost; and one must implement a query-routing data structure that
maps each key 𝑥 to the slot ℎ𝑖(𝑥) where it resides (ideally, this should use space
proportional to the probe complexity of 𝑥). Thus the problem of determining the
optimal tradeoff between average probe complexity and switching cost is central to
the problem of designing an optimal augmented open-addressed hash table.

The two approaches to designing balls-to-slots schemes. One way to design
a balls-to-slots scheme is to base it on a traditional open-addressed hash table such a
linear probing [226], double hashing [226], or Cuckoo hashing [300]. Cuckoo hashing
[300] (and its variants [50, 160, 181]) is especially appealing because it bounds probe
complexity deterministically. Standard Cuckoo hashing achieves a probe complexity
of 𝑂(1), but is only able to support a load factor of 1 − 𝜀 < 1/2. Generalizations
of Cuckoo hashing (i.e., 𝑑-ary Cuckoo hashing [181] and Cuckoo hashing with 𝑑-slot
bins [160]) are able to support higher load factors 1− 𝜀, but at the cost of incurring a
super-constant switching cost of at least Ω(log 𝜀−1). Thus Cuckoo hashing cannot be
used on its own to obtain a succinct constant-time hash table (although it has been
used in past work as an essential building block [52]).

To achieve small probe complexity and switching cost, while also supporting 𝜀 =
𝑜(1), past work has used balls-to-slots schemes that are based on standard balls-to-
bins techniques. One simple approach is to set 𝑚 = (1 + 1/ log 𝑛)𝑛; to partition
the array of size 𝑚 into bins of size ℓ = polylog 𝑛; and finally to hash each key to a
random bin 𝑔(𝑥) ∈ {0, 1, 2, . . . ,𝑚/ℓ − 1} and set ℎ𝑖(𝑥) = 𝑔(𝑥) · ℓ + 𝑖 for all 𝑖. With
high probability in 𝑛, every key will find a free position in the bin that it hashes
to, meaning that each key is assigned to one of its first ℓ = polylog 𝑛 choices. This
scheme achieves load factor 1 − 1/ log 𝑛, worst-case probe complexity 𝑂(log log 𝑛),
and worst-case switching cost 1 (with high probability in 𝑛).

It’s natural to hope that an even better probe complexity could be achieved by
making use of more sophisticated balls-to-bins schemes (e.g., power of two choices
[267]). This turns out not to be possible, as one can prove a lower bound of Ω(log log 𝑛)

183

average probe complexity for any balls-to-slots scheme with switching cost 1 and load
factor 1−1/ log 𝑛; in fact, this is a special case of a more general lower bound [146,273]
which says that stable hash tables (i.e., hash tables in which elements are assigned
permanent positions when they are inserted) must incur Ω(log log 𝑛) wasted bits per
key.

The central bottleneck to designing augmented open-addressed hash tables that
make use of this simple balls-to-slots scheme has been the issue of achieving constant-
time operations while preserving space efficiency [52,75,82,93,245,313]. Raman and
Rao [313] gave an elegant solution with constant expected time in which the query-
routing data structure is itself a collection of small hash tables that store finger-
prints of keys. The bottleneck to achieving the same guarantee with worst-case time
bounds has been, until recently, the difficulty of constructing efficient query-routing
data structures for bins of polylog 𝑛 elements—this led researchers to develop more
sophisticated balls-to-slots schemes that make use of smaller bins [52, 82, 93, 245],
which allowed for them to overcome the query-routing bottleneck, but resulted in a
worse space utilization. Recently, [75] resolved this issue by showing how to perform
query-routing on bins of size polylog 𝑛 while incurring only 𝑂(log log 𝑛) extra wasted
bits per key.

In summary, it is known how to use the balls-to-bins framework for the probe-
complexity problem in order to achieve 𝑂(log log 𝑛) wasted bits per key, and this
results in an optimal stable hash table. It has not been known whether the ability to
move keys around during insertions opens the door to even higher space efficiency.

An optimal solution to the probe-complexity problem. An essential technical
insight in this chapter is that one can achieve an extremely small average probe
complexity by moving around just a few balls on each insertion. We present a balls-
to-slots scheme, called the 𝑘-kick tree, that achieves average probe complexity log(𝑘) 𝑛
while achieving a worst-case switching cost of 𝑂(𝑘). Moreover, this result holds even
when the number 𝑛 of balls equals the number 𝑚 of slots, so the load factor is 1.

We prove that this tradeoff between switching cost and probe complexity is asymp-
totically optimal (as long as the load factor 1− 𝜀 is at least, say, 1− 1/ log log 𝑛). In
particular, if a balls-to-slots scheme achieves average probe complexity 𝑂(log(𝑘) 𝑛), it
must move an average of Ω(𝑘) items per insertion/deletion.

Interpreting our lower bound as a statement about augmented open-addressed
hash tables, we can conclude that the hash tables constructed in this chapter are
optimal in the class of augmented open-addressed hash tables. In fact, subsequent
work has shown an even stronger claim [243]: that our hash table is optimal across
all dynamic data structures.

12.2.2 Transforming a 𝑘-Kick Tree into a 𝑘-Kick Hash Table

The 𝑘-kick tree serves as the balls-to-slots scheme for all of the hash tables that we
construct in this chapter, but existing techniques for constructing the other parts of

184

an augmented open-addressed hash table, (e.g. the query router, how to dynamically
resize, etc.) are not themselves space and time efficient enough to fully take advantage
of the efficiency of 𝑘-kick trees. Next, we summarize the main technical obstacles that
we overcome in order to use 𝑘-kick trees time and space efficiently in our hash tables.

An improved query router (Section 12.4). We show how to build general-
purpose query-routing data structures with strong space and time guarantees. Even
if different keys have very different probe complexities from one another, our query-
routing data structure uses space within a constant factor of optimal and supports
constant-time queries/updates. The building blocks that we use to construct the
query-router will likely also be useful in future work on related problems.

Supporting dynamic resizing (Section 12.5.2). Past approaches [75, 245, 313]
have performed resizing at a granularity of 1+1/ polylog 𝑛 factors.4 This has required
the data to be partitioned into polylog 𝑛 chunks, and for the query-router to store an
additional Θ(log log 𝑛) bits associated with each key in order to identify its chunk. In
other words, dynamic resizing introduces yet another source of Θ(log log 𝑛) wasted
bits per key. We give a general-purpose technique for avoiding this type of overhead—
surprisingly, the technique results in the same tradeoff curve that we encounter for
probe-complexity: at the cost of 𝑂(𝑘) time per insertion/deletion, we can reduce the
space overhead of resizing to 𝑂(log(𝑘) 𝑛) bits per key.

Handling large keys/values (Section 12.6.1). Now consider the setting where
the keys and values are 𝑢 and 𝑣 bits long, respectively, for some potentially large
𝑢, 𝑣 satisfying 𝑢 + 𝑣 ≤ 𝑛𝑜(1). Past techniques have encountered several major obsta-
cles in this case, resulting in the wasted space per key growing substantially as the
key size 𝑢 becomes super-logarithmic [52, 245, 313]. The only known succinct hash
table that scales gracefully in the regime of 𝑢+ 𝑣 = 𝜔(log 𝑛) is the hash table of Ra-
man and Rao [313], which achieves 𝑂(log(𝑢 + 𝑣)) wasted bits per key with constant
expected-time insertions—subsequent work [52,245] on worst-case insertion times has
encountered much larger space blowups due to technical difficulties surrounding the
use of quotienting and the use of lookup-tables in hash tables with large keys.

Our approach to handling large keys and values is to give a general-purpose re-
duction from the setting where 𝑢 ≥ 𝜔(log 𝑛) to the setting where 𝑢 = 𝑂(log 𝑛).
In essence, our reduction allows for us to move bits from the key length 𝑢 to the
value-length 𝑣.

We then show how to adapt our hash tables to support arbitrarily large values
with no additional space wastage. Here, we exploit a special property of the 𝑘-kick
tree, namely that it is capable of supporting a load factor of 1, which ends up allowing
for us to construct a dynamically-resized hash table in which there are no empty slots.

Combining these techniques, we conclude that the tradeoff curve in this chapter

4The specific ways in which resizing has been implemented have differed, with some papers
[245,313] performing resizing at a per-bin level, and others [75] performing it globally.

185

is agnostic to key/value size: with 𝑂(𝑘)-time per insertion/deletion, we can achieve
𝑂(log(𝑘) 𝑛) wasted bits per key.

Handling small keys/values (Section 12.6.2). In addition to considering large
keys, past work [50,146,245,313] has also focused in on the small case, where 𝑢+ 𝑣 =
log 𝑛+ 𝑡 for some 𝑡 = 𝑜(log 𝑛) (and where the universe 𝑈 = [2𝑢] of keys may have an
arbitrarily small size satisfying |𝑈 | = 𝜔(𝑛)). In this setting, we show that if 𝑡 is even
slightly sublogarithmic, that is,

𝑡 = 𝑂(log 𝑛/ log(𝑘) 𝑛)

for some positive constant 𝑘, then it is possible to support constant-time inser-
tions/deletions/queries while achieving 𝑜(1) wasted bits per key. Prior to our work,
this type of guarantee was only known to be possible in the much smaller regime of
𝑡 = �̃�((log 𝑛)1/3) [52, 313]. What makes our expanded range for 𝑡 interesting is that,
as we shall see shortly, it enables us to design optimal dynamic filters for a large
range of false-positive rates (in fact, for all false-positive rates except for those that
are nearly polynomially small).

Our small-key result again follows from a general-purpose reduction, which in
this case reduces the setting of small keys/values to the setting of larger keys/values.
Interestingly, this reduction relies heavily on the ability to efficiently support dynamic-
resizing and on the steep tradeoff curve between time/space for standard-sized
keys/values.

12.2.3 An Application to Optimal Dynamic Filters

Finally, in Section 12.6.3, we apply our small-keys result to the widely studied problem
of maintaining space-efficient approximate-membership data structures, also known
as filters. A (dynamic) filter is a data structure that supports inserts/queries/deletes
on a set of keys but that is permitted to return a false positive on a query with some
probability 𝜀. Information theoretically, a filter must use at least ℱ(𝑛, 𝜀) = 𝑛 log 𝜀−1

bits [122].
It remains an open question what the optimal achievable wasted-bits-per-key is,

that is, what is the smallest value of 𝑟 such that it is possible to construct a time-
efficient dynamic filter using ℱ(𝑛, 𝜀)+𝑛𝑟 bits. We remark that, here, 𝑛 is taken to be
a fixed upper bound on the number of keys—if 𝑛 is permitted to change dynamically,
then it is known that the optimal 𝑟 satisfies 𝑟 = Ω(log log 𝑛) [301].

Filters tend to be used in applications where space efficiency is a central concern;
the result is that most applications select 𝜀 such that log−1 𝜀 is very small (for a prac-
tical discussion of filters, see, e.g., [83, 163, 175]). This leads to the close relationship
between the filter problem and the hash-table problem with small keys.

Perhaps the most famous filter is the so-called Bloom filter [107], which supports
𝑂(𝜀−1)-time insertions and achieves 𝑟 = 𝑂(log 𝜀−1) (the Bloom filter does not support
deletions). After a long line of work [82, 93, 107, 122, 245, 294], contemporary filters

186

are able to achieve much stronger bounds than this. Indeed, there are now a number
of filters [82,93,294] that and that achieve

𝑟 = 𝑜(log 𝜀−1)

wasted bits per key for all 𝜀 satisfying

log 𝜀−1 ∈ [𝜔(1), 𝑂(log 𝑛)],

while supporting constant-time insertions/deletions/queries either in expectation
[294] or in the worst case [75,93] (with high probability).

The central open question in the study of filters is whether it is possible to achieve
𝑟 = 𝑂(1) wasted-bits-per-key for all 𝜀. It is known that Ω(1) wasted-bits-per-key are
necessary, at least for some values of 𝜀 [249] (namely, 𝜀 = Θ(1)), but it is not known
whether 𝑂(1) wasted-bits-per-key is achievable.

We show that, for any positive constant 𝑘, it is possible to achieve a filter that
uses space

𝑟 = log 𝑒+ 𝑜(1) = 𝑂(1) (12.1)

wasted bits per key for all inverse-power-of-two 𝜀 satisfying

log 𝜀−1 ∈ [𝜔(1), log 𝑛/ log(𝑘) 𝑛],

while supporting worst-case constant-time insertions/deletions/queries (with high
probability). The total space used by the data structure is therefore

𝑛 log 𝜀−1 + 𝑛 log 𝑒+ 𝑜(𝑛)

bits. This resolves the question of whether 𝑟 = 𝑂(1) is achievable in all cases except
for when log−1 𝜀 is very close to log 𝑛. Finally, we show that for any value of log−1 𝜀
(including log1 𝜀 = Θ(log 𝑛)), the same time/space tradeoff curve that we achieve for
hash tables, in which 𝑂(𝑘)-time insertions/deletions yield 𝑂(log(𝑘) 𝑛) wasted bits per
key, is achievable for dynamic filters.

We remark that the specific constant log 𝑒 that we achieve in Equation (12.1) is
information-theoretically optimal for any filter that is constructed by storing finger-
prints in a hash table. (This includes all modern dynamic filters [82,93,122,245,294].)
Thus, improving upon this constant would require a fundamentally new approach to
building constant-time filters. We conjecture that no such improvements are possible
(even for non-constant-time dynamic filters)—proving a lower bound for this claim is
an appealing direction for future work.

12.2.4 Preliminaries

We conclude the section by formalizing several preliminaries that we will need
throughout the chapter.

187

Notation. We use [𝑖, 𝑗] to denote the range {𝑖, . . . , 𝑗}, we use [𝑖] to denote [1, 𝑖],
and we use log(𝑖) 𝑛 to denote the function given by log(0) 𝑛 = 𝑛 and log(𝑖) 𝑛 =
max(log log(𝑖) 𝑛, 1) for all 𝑖 ≥ 0. Note that, as a matter of convention, we do not
allow log(𝑖) 𝑛 to become sub-constant.

High-probability guarantees. We say that an event occurs with high probability
(w.h.p.) in 𝑛 if it occurs with probability 1− 1/ poly(𝑛). Our hash tables will offer a
deterministic guarantee on the running times of queries, a high-probability guarantee
on the running time of any given insertion/deletion, and a high-probability guarantee
on the space consumption at any given point in time. To simplify discussion, we will
allow for our hash tables to have alternative failure modes (e.g., some bin overflows),
with the implicit assumption that whenever a low-probability failure event occurs
during an insertion/deletion, the hash table is then be rebuilt from scratch using new
randomness—this means that failure events cause the hash table to violate time/space
guarantees, but not correctness guarantees.

Simulating fully random hash functions. Whereas early work on hash tables
[153, 156, 185] was bottlenecked by the known families of hash functions, there are
now well-established techniques [50,75,162,291,326] for simulating fully random hash
functions in hash tables. Notably, Siegel [326] showed that for some positive 𝜀 > 0,
there is a family of constant-time hash functions that can be constructed in time 𝑜(𝑛)
and that is 𝑛𝜀-independent.5 In the context of hash tables, this can be amplified to
simulate poly(𝑛)-independence [50, 75] with the following “sharding” technique: use
a hash function ℎ1 to partition the elements into buckets with sizes in the range
[𝑛𝛿, 𝑛𝛿 + 𝑛2𝛿/3]; then implement each bucket as its own hash table, where the all of
the buckets share access to a single 𝑛𝜀-independent family ℋ of hash functions—if
a given bucket has size 𝑚 = Θ(𝑛𝛿), then ℋ is poly(𝑚)-independent. Thus we can
assume without loss of generality that we have access to poly(𝑛)-independent hash
functions.

In Section 12.5.3, in order to perform quotienting, we will also want access to ran-
dom permutation hash functions, that is, hash functions ℎ that are bijective on some
universe 𝑈 of keys. As long as |𝑈 | ≤ poly(𝑛), then there are again well-established
techniques for simulating full randomness. Naor and Reingold (Corollary 8.1 of [277]),
building on seminal work by Luby and Rackoff [250], showed how to construct in time
𝑜(𝑛) an 𝑛𝜀-wise 1/𝑛𝛿-dependent family of permutations with constant-time evaluation.
Subsequent work showed how to amplify this to 𝑛𝜀-wise 1/ poly(𝑛)-dependence, which
allows for the simulation of 𝑛𝜀-wise independence with probability 1−1/ poly(𝑛). Fi-
nally, using a similar sharding technique as described above (but with ℎ1 implemented
using a single-round Feistel permutation, as in [50]), one can use such a family of hash
functions to simulate poly(𝑛)-independence in a hash table (see Section 7 of [75] for
an in-depth discussion). Thus, as long as |𝑈 | ≤ poly(𝑛), then we can assume with-

5Siegel’s construction requires that the universe 𝑈 of keys has at most polynomial size—but it
can also be used with a larger universe by first performing dimension reduction to a poly(𝑛)-size
universe using a pairwise independent hash function.

188

out loss of generality that we have access to poly(𝑛)-independent permutation hash
functions.

Machine model. Our analyses will be in the standard RAM model. If keys/value
pairs are each 𝑤 bits long, then we shall assume a machine word of size at least
𝑤. To analyze space consumption, we will assume that algorithms have the abil-
ity to allocate/free memory with 𝑂(log 𝑛)-bit pointers. We remark, however, that
all of our algorithms have highly predictable allocation patterns, and are therefore
straightforward to implement using a small number of large memory slabs (e.g., when
keys/values are Θ(log 𝑛) bits, we need only to allocate polylog(𝑛) slabs of memory at
a time).

12.3 The Probe-Complexity Problem

Recall that the probe-complexity problem can be defined formally as follows. Let 𝑈
be a universe of balls, and let 𝑛 ∈ N be the number of slots6, and let 𝜀 ∈ [0, 1) be a
load-factor parameter. A balls-to-slots scheme assigns to every ball 𝑥 ∈ 𝑈 a fixed
probe sequence ℎ(𝑥) = ⟨ℎ1(𝑥), ℎ2(𝑥), . . .⟩, each ℎ𝑖(𝑥) ∈ [𝑛].

We define the probe-complexity problem as follows. There are 𝑛 slots each
with capacity 1. An oblivious adversary (who does not know ℎ) selects a sequence of
ball insertions/deletions such that at most (1 − 𝜀)𝑛 + 1 balls are present at a time.
A balls-to-slots scheme must maintain an assignment of balls to slots such that each
ball 𝑥 (that is present) is assigned to slot ℎ𝑖(𝑥) for some 𝑖. If a ball 𝑥 is in slot 𝑟, then
we say that 𝑥 has probe complexity Θ(1 + log 𝑖) where 𝑖 = argmin𝑗{ℎ𝑗(𝑥) = 𝑟}.

To simplify discussion, we shall also give the balls-to-slots scheme 𝑛 extra special
slots. Any ball that is stored in a special slot automatically has probe complexity
log 𝑛. Whenever a ball insertion occurs, the ball is first placed into a special slot.
The balls-to-slots scheme can then move that ball (and other balls) around in order
to reduce the average probe complexity of the balls that are present.

The balls-to-slots scheme is measured by two objectives: the average probe com-
plexity of the balls that are present; and the switching cost, which is the number
of balls that the balls-to-slots scheme moves around on any given insertion/deletion.
When a balls-to-slots scheme is used in an augmented open-addressed hash table, the
switching cost is (a lower bound on) the time spent on a given insertion/deletion, and
the probe complexity of a key 𝑥 is (a lower bound on) the number of metadata bits
that must be stored to support constant-time queries for 𝑥.

In this section, we give an optimal solution to the probe-complexity problem
(Subsection 12.3.1), achieving probe-complexity 𝑂(log(𝑘) 𝑛) with switching cost 𝑂(𝑘).
This holds even when 𝜀 = 1/𝑛, meaning that there are up to 𝑛 balls present at a time

6Whereas the hash table literature typically uses 𝑛 to be the number of keys/values, the balls-
to-bins literature typically uses 𝑛 to be the number of slots (or bins). In this section, we follow the
balls-to-bins convention, and in the rest of the chapter we follow the hash-table convention.

189

(and there are up to 𝑛− 1 balls present prior to any given insertion).
We then also prove a matching lower bound in Subsection 12.3.2: any balls-to-

slots scheme that supports 𝜀 ≤ 1/ log(𝑂(1))(𝑛) with expected average probe complexity
𝑂(log(𝑘) 𝑛) must incur average switching cost Ω(𝑘). Note that, whereas our upper
bound supports 𝜀 = 1/𝑛 (i.e., the slots are completely full), our lower bound allows
for 𝜀 to be as large as 1/ log(𝑂(1)) 𝑛, without changing the answer for what the optimal
tradeoff curve between probe complexity and switching cost is.

12.3.1 A Balls-to-Slots Scheme with Small Average Probe
Complexity

In this section, we fix 𝜀 = 1/𝑛, and we construct a balls-to-slots scheme that achieves
switching cost 𝑘 + 1 (1 for inserting a ball, and 𝑘 for moving around balls already
in the system) while also achieving expected average probe complexity Θ(log(𝑘+1) 𝑛).
At the end of the section, we also show how to transform the bound on average probe
complexity into a high-probability result.

Defining each ball’s probe sequence. Define 𝑠0 = 𝑛 and define 𝑠𝑖 = Θ((log(𝑖) 𝑛)6)
to be a power of two for each 𝑖 ∈ [1, 𝑘]. We shall assume for simplicity that 𝑛 is
divisible by 𝑠𝑖 for each 𝑖 > 0, but the same arguments easily extend to arbitrary 𝑛.

We shall consider 𝑘 + 1 different ways of partitioning the 𝑛 slots into bins: for
𝑖 ∈ [0, 𝑘], the depth-𝑖 partition breaks the slots into contiguous bins of size 𝑠𝑖. For
each depth-𝑖 bin 𝑏, with 𝑖 > 0, the parent bin 𝑏′ of 𝑏 is the depth-(𝑖 − 1) bin that
contains 𝑏. (And 𝑏 is a child of 𝑏′.) So the partitions are arranged in a tree, where
the depth-𝑖 components are children of the depth-(𝑖− 1) components, and where the
branching factor of the tree decreases roughly exponentially between levels. We call
this tree the 𝑘-kick tree.

Before defining ℎ, we define an auxiliary function 𝑔. Each ball 𝑥 randomly selects
a leaf of the tree (i.e, some depth-𝑘 bin 𝑏) and defines 𝑔𝑖(𝑥) to be the depth-𝑖 ancestor
of 𝑏. In other words, each 𝑔𝑖(𝑥) is a uniformly random depth-𝑖 bin, and the sequence
𝑔0(𝑥), 𝑔1(𝑥), . . . , 𝑔𝑘(𝑥) forms a root-to-leaf path through the kick tree.

The function ℎ𝑖(𝑥) first cycles through the slots of 𝑔𝑘(𝑥), then the slots of 𝑔𝑘−1(𝑥),
then the slots of 𝑔𝑘−2(𝑥), etc. Formally, this means that for each depth 𝑖 and for each
𝑗 ∈ [𝑠𝑖], ℎ(𝑘+1−𝑖)𝑠𝑖+𝑗(𝑥) is the 𝑗-th position in bin 𝑔𝑖(𝑥). Since the bin 𝑔0(𝑥) contains
all slots in [𝑛], the sequence {ℎ𝑖(𝑥)}𝑖∈[(𝑘+1)𝑛+1,(𝑘+2)𝑛] hits every slot, so we do not need
to define ℎ𝑖 for 𝑖 > (𝑘 + 2)𝑛.

Whenever a ball 𝑥 is inserted, it ends up at some depth 𝑖, and within that depth
it is assigned to some position 𝑗 ∈ [𝑠𝑖] of bin 𝑔𝑖(𝑥). The ball’s probe complexity is
then

𝑂(1 + log(𝑘 + 1− 𝑖) + log 𝑠𝑖).

Since 𝑘 + 1− 𝑖 = 𝑂(log* 𝑠𝑖), the probe complexity reduces to

𝑂(log 𝑠𝑖).

190

Throughout the rest of the section, we will think of each ball 𝑥’s position as being
determined by a pair (𝑖, 𝑗), where 𝑖 is a depth and 𝑗 is a position in 𝑔𝑖(𝑥), rather
than being determined directly by the probe sequence ℎ. If a ball 𝑥 is associated with
depth 𝑖, we will treat it as having probe complexity Θ(𝑠𝑖).

The structure of a ball insertion. Call a depth-𝑖 bin saturated if the bin contains
no free slots and if all of the balls in the bin are associated with depths 𝑖 or greater.
Note that, when we are performing an insertion, 𝑔0(𝑥) cannot be saturated, but 𝑔𝑖(𝑥)
for 𝑖 > 0 may be.

Whenever a ball 𝑥 is inserted, we select a depth 𝑖 such that none of the bins
𝑔0(𝑥), 𝑔1(𝑥), . . . , 𝑔𝑖(𝑥) are saturated. (We will describe the process for selecting 𝑖
later.) We assign 𝑥 to bin 𝑔𝑖(𝑥) with depth 𝑖. If there is a free slot in 𝑔𝑖(𝑥), then we
use it; otherwise, since 𝑔𝑖(𝑥) is not saturated, the bin must contain a ball 𝑥′ associated
with some depth 𝑖′ < 𝑖. We assign 𝑥 to the slot that 𝑥′ is in, and we reassign 𝑥′ to
a new slot as follows. If there is a free slot in 𝑔𝑖′(𝑥′), then we use it; otherwise, since
𝑔𝑖′(𝑥

′) = 𝑔𝑖′(𝑥) is not saturated, the bin must contain a ball 𝑥′′ associated with some
depth 𝑖′′ < 𝑖′. We assign 𝑥′ to the slot that 𝑥′′ is in, and we reassign 𝑥′′ to a new slot,
etc., where 𝑥′′ may displace some ball 𝑥′′′ at a depth 𝑖′′′ < 𝑖′′, and so on. In effect, we
treat the depths as priorities, so that whenever a ball 𝑦 is moved, it is permitted to
displace any other ball 𝑦′ that is of a lower priority.

Each insertion has switching cost at most 𝑘 + 1, since it places the ball that is
being inserted and then rearranges at most one ball in each depth {0, 1, . . . , 𝑘 − 1}.
Moreover, whenever a ball is moved, the depth that it is in stays the same, and thus
the 𝑂(log 𝑠𝑖)-bound on the probe complexity for that ball also stays the same. In
order to achieve 𝑂(log(𝑘+1) 𝑛) average probe complexity (in expectation), it therefore
suffices to ensure that, whenever a ball is inserted, the expected probe complexity for
the new ball is 𝑂(log 𝑠𝑘) = 𝑂(log(𝑘+1) 𝑛).

Choosing which depth to use. The final piece of the algorithm that we must
specify is how to choose the depth 𝑖 that a given ball insertion will use.

The most natural approach is to be greedy: select the largest 𝑖 such that none of
bins 𝑔0(𝑥), 𝑔1(𝑥), . . . , 𝑔𝑖(𝑥) are saturated. This optimizes the probe complexity of the
current insertion but comes with a downside. We are not doing anything to control
which bins are saturated, so even though we are selecting 𝑖 greedily, we cannot argue
that 𝑖 will actually be large for any given insertion (for example, what if 𝑔1(𝑥) is
saturated?).

Our solution is to take an almost greedy approach. Each ball 𝑥 is assigned an
independent hash 𝑠(𝑥) ∈ [0, 𝑘] satisfying

Pr[𝑠(𝑥) < 𝑖] = 1/(log(𝑖) 𝑛)2

for each 𝑖 ∈ [1, 𝑘]. The hash 𝑠(𝑥) dictates the maximum possible depth that ball 𝑥 is
permitted to be in. Each insertion 𝑥 uses depth min(𝑗, 𝑠(𝑥)), where 𝑗 is the largest
value such that none of the bins 𝑔0(𝑥), 𝑔1(𝑥), . . . , 𝑔𝑗(𝑥) are saturated.

191

Analyzing a given insertion. We now analyze the expected probe complexity of
a given ball.
Lemma 108. Consider the insertion of some ball 𝑥 into a 𝑘-kick tree with 𝑛 slots.
The expected probe complexity of 𝑥 is 𝑂(log(𝑘+1) 𝑛).

Proof. Let 𝑗 be the largest value such that none of the bins 𝑔0(𝑥), 𝑔1(𝑥), . . . , 𝑔𝑗(𝑥) are
saturated. Then the probe complexity of 𝑥, after being inserted, is

𝑂(logmax(𝑠𝑠(𝑥), 𝑠𝑗)) = 𝑂(log 𝑠𝑠(𝑥)) +𝑂(log 𝑠𝑗).

We can bound the expected value of the first quantity by

E[log 𝑠𝑠(𝑥)] = log 𝑠𝑘 +
∑︁
𝑖∈[0,𝑘)

Pr[𝑠(𝑥) = 𝑖] · log 𝑠𝑖

≤ 𝑂(log(𝑘+1) 𝑛) +
∑︁
𝑖∈[0,𝑘)

Pr[𝑠(𝑥) < 𝑖+ 1] · log 𝑠𝑖

= 𝑂(log(𝑘+1) 𝑛) +
∑︁
𝑖∈[0,𝑘)

1

(log(𝑖+1) 𝑛)2
· log 𝑠𝑖

= 𝑂(log(𝑘+1) 𝑛) +
∑︁
𝑖∈[0,𝑘)

1

(log(𝑖+1) 𝑛)2
· log(log(𝑖) 𝑛)6

= 𝑂

⎛⎝log(𝑘+1) 𝑛+
∑︁
𝑖∈[0,𝑘)

1

(log(𝑖+1) 𝑛)2
· log(𝑖+1) 𝑛

⎞⎠
= 𝑂

⎛⎝log(𝑘+1) 𝑛+
∑︁
𝑖∈[0,𝑘)

1

log(𝑖+1) 𝑛

⎞⎠
= 𝑂(log(𝑘+1) 𝑛).

We can bound the expected value of the second quantity by

E[log 𝑠𝑗] ≤ log 𝑠𝑘 +
∑︁
𝑖∈[0,𝑘)

Pr[𝑔𝑖+1(𝑥) saturated] · log 𝑠𝑖. (12.2)

In order for 𝑔𝑖+1(𝑥) to be saturated (prior to 𝑥’s insertion), there must be 𝑠𝑖+1 balls

192

𝑦 present that satisfy 𝑔𝑖+1(𝑦) = 𝑔𝑖+1(𝑥) and 𝑠(𝑦) ≥ 𝑖+ 1. For a given 𝑦 ̸= 𝑥,

Pr[𝑔𝑖+1(𝑦) = 𝑔𝑖+1(𝑥) and 𝑠(𝑦) ≥ 𝑖+ 1]

= Pr[𝑔𝑖+1(𝑦) = 𝑔𝑖+1(𝑥)] · Pr[𝑠(𝑦) ≥ 𝑖+ 1]

=
1

𝑛/𝑠𝑖+1

· (1− Pr[𝑠(𝑦) < 𝑖+ 1])

=
1

𝑛/𝑠𝑖+1

·
(︁
1− 1/(log(𝑖+1) 𝑛)2

)︁
.

The number 𝑌 of such 𝑦 therefore satisfies

E[𝑌] ≤ 𝑛 · 1

𝑛/𝑠𝑖+1

·
(︁
1− 1/(log(𝑖+1) 𝑛)2

)︁
= 𝑠𝑖+1 ·

(︁
1− 1/(log(𝑖+1) 𝑛)2

)︁
= (log(𝑖+1) 𝑛)6 − (log(𝑖+1) 𝑛)4.

Since 𝑌 is a sum of independent indicator random variables, we can apply a Chernoff
bound to deduce that

Pr[𝑌 ≥ (log(𝑖+1) 𝑛)6] ≤ 𝑒−Ω(log(𝑖+1) 𝑛)2

≤ 𝑂

(︂
1

(log(𝑖) 𝑛)2

)︂
.

This is an upper bound on the probability that 𝑔(𝑖+1)(𝑥) is saturated. Thus, by (12.2),

E[log 𝑠𝑗] ≤ log 𝑠𝑘 +
∑︁
𝑖∈[0,𝑘)

1

(log(𝑖) 𝑛)2
· log 𝑠𝑖

= 𝑂

⎛⎝log(𝑘+1) 𝑛+
∑︁
𝑖∈[0,𝑘)

1

(log(𝑖) 𝑛)2
· log(𝑖+1) 𝑛

⎞⎠
= 𝑂(log(𝑘+1) 𝑛).

This completes the proof of the lemma.

It’s worth taking a moment to understand the bottlenecks in the Lemma 108.
For convenience, let us focus on the setting where we are aiming for average probe
complexity 𝑂(1), so 𝑘 = Θ(log* 𝑛); and further assume that, if a ball is placed in
a depth-𝑑 bin, then the ball has probe complexity Θ(log 𝑠𝑑). Consider some bin
𝑏 with depth 𝑖 > 0, meaning that the bin has size 𝑠𝑖. If we want to ensure that
the probability of 𝑏 being saturated is 𝑜(1), then we must ensure that the expected

193

number of elements in 𝑏 is 𝑠𝑖−𝜔(
√
𝑠𝑖) (because the standard deviation of the number

of elements in the bin is Θ(
√
𝑠𝑖)). This means that the hash function 𝑠(𝑥) must satisfy

Pr[𝑠(𝑥) < 𝑖] = 𝜔(1/
√
𝑠𝑖).

However, whenever 𝑠(𝑥) < 𝑖, the probe complexity of 𝑥 is forced to be at least log 𝑠𝑖−1.
Thus the expected probe complexity of each ball 𝑥 must be at least

𝜔

(︂
log 𝑠𝑖−1√

𝑠𝑖

)︂
.

Since we want average probe complexity 𝑂(1), it follows that log 𝑠𝑖−1√
𝑠𝑖

≤ 1, or equiva-
lently,

𝑠𝑖−1 ≤ 2
√
𝑠𝑖 .

This is the inequality that fundamentally limits the rate at which the 𝑠𝑖’s can shrink
and that forces us to have Ω(log* 𝑛) depths in order to achieve average probe com-
plexity 𝑂(1). In fact, we’ll see in Section 12.3.2 that this relationship between probe
complexity and switching cost is fundamental—no balls-to-slots scheme can do better
than the 𝑘-kick tree does.

An immediate consequence of Lemma 108 is:
Theorem 109. For any 𝑘 ∈ [log* 𝑛 − 1], the 𝑘-kick tree is a balls-to-slots scheme
with 𝜀 = 1/𝑛 that achieves worst-case switching cost 𝑘 + 1 and expected average
probe complexity 𝑂(log(𝑘+1) 𝑛).

We conclude the section by transforming our bound on expected average probe
complexity into a high-probability bound.
Theorem 110. For any 𝑘 ∈ [log* 𝑛 − 1], there is a balls-to-slots scheme with
𝜀 = 1/𝑛 that achieves worst-case switching cost 𝑘 + 1 and average probe complexity
𝑂(log(𝑘+1) 𝑛), with probability 1− 1/2𝑛

Ω(1) at any given moment.

Proof. Let 𝜌 : 𝑈 → [log 𝑛] be a fully independent and uniformly random hash func-
tion. Whenever a ball 𝑥 is inserted, if 𝜌(𝑥) = 1, then place 𝑥 into a special slot.7 With
probability 1 − 1/2𝑛/ log𝑛, the number of balls in special slots is 𝑂(𝑛/ log 𝑛) at any
given moment, meaning that they contribute 𝑂(1) to the average probe complexity.

We hash the remaining balls 𝑥 (i.e., balls 𝑥 satisfying 𝜌(𝑥) > 1) randomly to
subarrays of size

√
𝑛. The expected number of balls in a given sub-array is at most√

𝑛(1 − 1/ log 𝑛), so with probability 1 − 1/2𝑛
Ω(1) each of the subarrays receives at

most
√
𝑛− 1 balls at any given moment. In the rare case that a sub-array overflows,

we can simply put the ball 𝑥 being inserted into a special slot.
Finally, we implement each subarray using a 𝑘-kick tree. By Theorem 109, each

insertion incurs switching cost 𝑘+1 and each subarray independently incurs expected

7Alternatively we could place 𝑥 into whatever slot 𝑠 is free and then move 𝑥 to a different free
slot whenever that slot 𝑠 needs to be used by a different ball. This would increase the switching cost
by at most 1 per operation and avoid the use of special slots.

194

average probe complexity 𝑂(log(𝑘+1) 𝑛).
If we define𝑋1, 𝑋2, . . . , 𝑋√

𝑛 to be the average probe complexities of the subarrays,
then {𝑋𝑖} are independent random variables satisfying 𝑋𝑖 ≤ 𝑂(log 𝑛) and E[𝑋𝑖] =

𝑂(log(𝑘+1) 𝑛). By a Chernoff bound, we have with probability 1 − 1/2𝑛
Ω(1) that the

average probe complexity across the entire balls-to-slots scheme is 𝑂(log(𝑘+1) 𝑛), as
desired.

12.3.2 A Lower Bound on Switching Cost vs. Probe Complex-
ity

In this section we will construct a sequence of insertions/deletions such that, in order
for an online balls-to-slots scheme to achieve small average probe complexity, they
must incur a large average switching cost. Since we are constructing a lower bound,
we shall refer to the balls-to-slots scheme that we are analyzing as our adversary.

Let 𝑈 be the universe of balls, let ℎ be the function mapping each ball 𝑥 to a
probe sequence {ℎ𝑖(𝑥)}, and let 𝑛 be the number of slots. For 𝑖 ∈ N, 𝑗 ∈ [𝑛], define

𝑞(ℎ, 𝑖, 𝑗) = 𝑛 Pr
𝑥∈𝑈

[ℎ𝑘(𝑥) = 𝑗 for some 𝑘 ≤ 𝑖].

Intuitively, if there are 𝑛 random balls present, then 𝑞(ℎ, 𝑖, 𝑗) represents the expected
number of balls that are capable of residing in slot 𝑗 with probe complexity at most
1 + log 𝑖.

If the ℎ𝑖(𝑥)’s are selected uniformly and independently in [𝑛], then we will have
𝑞(ℎ, 𝑖, 𝑗) = Θ(𝑖) for each 𝑖 ∈ [𝑛]. Call ℎ nearly uniform if 𝑞(ℎ, 𝑖, 𝑗) < poly(𝑖) for
all 𝑖, 𝑗. As a minor technical convention, we will also allow for ℎ𝑖(𝑥) to be null, in
which case it does not contribute to any 𝑞(ℎ, 𝑖, 𝑗) (and ℎ𝑖(𝑥) cannot be used by any
ball assignment).

We shall begin by proving a lower bound that holds assuming a nearly uniform
ℎ. We shall also initially assume that 𝜀 = 1/𝑛 and that the average probe complex-
ity being achieved by the balls-to-slots scheme is 𝑂(1). We will then remove these
assumptions at the end of the section.
Theorem 111. Suppose the universe 𝑈 has sufficiently large polynomial size. Con-
sider any balls-to-slots scheme that uses nearly-uniform probe sequences, that achieves
expected average probe complexity 𝑂(1) (across all balls in the system at any given
moment), and that supports 𝜀 = 1/𝑛. The expected amortized switching cost per
insertion/deletion must be Ω(log* 𝑛).

Throughout the rest of the section, we shall consider an input sequence that
begins right after 𝑛 − 1 random balls have just been inserted, and then proceeds to
perform 𝑀 = poly(𝑛) insertions and the same number of deletions. The insertions
and deletions alternate; each insertion inserts a random ball (which with probability
1−1/ poly(𝑛) has never been inserted in the past); and each deletion deletes a random
ball out of those present.

195

Define 𝐿 = ⌈(log* 𝑛)/2⌉. Define tow(0) = 1 and tow(𝑖) = 2tow(𝑖−1) for all integer
𝑖 > 0. Say that a ball 𝑥 is in level 0 if it has been assigned to a slot ℎ𝑖(𝑥) for some
𝑖 ≤ tow(𝐿), and say that a ball 𝑥 is in level 𝑗 ∈ {1, 2, . . . , 𝐿} if it has been assigned
to a slot ℎ𝑖(𝑥) for some 𝑖 ∈ (tow(𝐿+ 𝑗 − 1), tow(𝐿+ 𝑗)]. If a ball is in a special slot,
or if it has been assigned to a slot ℎ𝑖(𝑥) with 𝑖 ≥ 𝑛, then the ball is said to be in level
𝐿.

Say that a move by the adversary has impact 𝑟 if it decreases the level of some
ball by 𝑟. Positive impact means that the ball’s level decreased, and negative impact
means that the ball’s level increased.
Lemma 112. For 𝑖 ∈ [𝑀], define 𝛼𝑖 to be the sum of the impacts of the moves
that the adversary performs during the 𝑖-th insertion, and define 𝛽𝑖 to be the sum
of the impacts of the moves that the adversary performs during the 𝑖-th deletion.
Finally, define 𝜓 =

∑︀
𝑖∈[𝑀](𝛼𝑖+ 𝛽𝑖) to be the total impact by the adversary across all

insertions/deletions. Then
E[𝜓] = Θ(𝑀𝐿).

Proof. Recall that 𝑀 is the number of insertions (resp. deletions) performed, and
that 𝐿 is the number of levels. Define a dynamically-changing quantity 𝐽 to be the
sum of the levels of the balls in the system at any given moment.

Each insertion places a ball into a special slot, thereby increasing 𝐽 by 𝐿. On
the other hand, we claim that each deletion decreases 𝐽 by 𝑂(1) in expectation.
To see this, observe that the deletion decreases 𝐽 by 𝑠 where 𝑠 is the level of the
element being deleted. Since the adversary guarantees an expected average probe
complexity of 𝑂(1), we have that E[𝑠] = 𝑂(1), which means that 𝐽 decreases by 𝑂(1)
in expectation.

By the definitions of 𝛼𝑖 and 𝛽𝑖, we have that during the 𝑖-th insertion (resp. 𝑖-th
deletion), the adversary’s moves decrease 𝐽 by 𝛼𝑖 (resp. 𝛽𝑖). Across all operations,
the total effect of the adversary’s moves on 𝐽 is to decrease it by 𝜓. If 𝐽0 is the value
of 𝐽 prior to the first of the 2𝑀 operations and 𝐽* is the value of 𝐽 after the final
operation, then

E[𝐽*] = E[𝐽0] + 𝐿𝑀 −Θ(𝑀)− E[𝜓] = E[𝐽0] + Θ(𝐿𝑀)− E[𝜓],

where the 𝐿𝑀 term accounts for insertions, the 𝑀 term accounts for deletions, and
the 𝜓 term accounts for moves by the adversary. On the other hand, 𝐽0 and 𝐽* are
both deterministically in the range [0, 𝑂(𝑛 log* 𝑛)], so we must have

Θ(𝐿𝑀)− E[𝜓] ≤ 𝑂(𝑛 log* 𝑛).

Since 𝑀 is a large polynomial, it follows that E[𝜓] = Θ(𝐿𝑀), as desired.

The main technical ingredient to complete the proof of Theorem 111 will be to
construct a potential function 𝜑 with the following properties:

196

• Property 1: Each insertion/deletion increases 𝜑 by at most 𝑂(1) in expecta-
tion.

• Property 2: If a move by the adversary has impact 𝑟 ∈ Z, it decreases 𝜑 by
𝑟 ±𝑂(1).

• Property 3: 𝜑 always satisfies 0 ≤ 𝜑 ≤ 𝑛𝐿.

Before we construct 𝜑, let us assume the existence of such a 𝜑 and use it to
complete the proof. At any given moment, define 𝜓 to be the sum of the impacts of
the moves that the adversary has made so far. We will examine how the quantity
𝜓 + 𝜑 evolves over time.

By Property 3, the quantity 𝜓 + 𝜑 is initially at most 𝑛𝐿. By Property 1, each
insertion/deletion increases 𝜓 + 𝜑 by 0 + 𝑂(1) = 𝑂(1) in expectation. By Property
2, each move by the adversary increases 𝜓 + 𝜑 by at most 𝑟 − (𝑟 − 𝑂(1)) = 𝑂(1)
(deterministically). Thus, after 𝑀 insertions/deletions have been performed, if 𝑘 is
the total number of moves that the adversary makes, then

E[𝜓 + 𝜑] ≤ 𝑛𝐿+𝑂(𝑀) +𝑂(E[𝑘]) = 𝑂(𝑀) +𝑂(E[𝑘]).

On the other hand, by Property 3, E[𝜓] ≤ E[𝜓 + 𝜑], so

E[𝜓] ≤ 𝑂(𝑀) +𝑂(E[𝑘]).

Lemma 112 tells us that E[𝜓] = Θ(𝑀𝐿). Thus

𝑀𝐿 ≤ 𝑂(𝑀) +𝑂(E[𝑘]),

which means that E[𝑘] = Ω(𝑀𝐿) = Ω(𝑀 log* 𝑛), hence Theorem 111. The main
challenge is therefore to construct a potential function 𝜑 with the three desired prop-
erties.

Constructing the potential function 𝜑. The basic idea behind 𝜑 is that it should
approximate the amount of impact that the adversary could hope to achieve with a
small number of moves. One way to do this would be as follows. We could define 𝒮
to be the set of all possible move sequences that the adversary could make; for each
𝑆 ∈ 𝒮, we could define 𝐼(𝑆) to be the total impact of 𝑆 and |𝑆| to be the number of
moves in 𝑆; and we could define

𝜑 = max
𝑆∈𝒮

(𝐼(𝑆)− 𝑐|𝑆|)

for some large positive constant 𝑐. This potential function would exactly capture
the adversary’s ability to achieve large impact with a small number of moves, but
it comes with the drawback that it can behave somewhat erratically with respect to
insertions, deletions, and adversary-moves.

A key idea in this section is to construct 𝜑 in a more intricate way, still upper-

197

bounding the amount of impact that the adversary can achieve cheaply, but while also
intentionally designing 𝜑 to behave nicely. In order to give the technical definition
of 𝜑, we must first define the notion of an 𝑖-stanza, which intuitively corresponds to
a sequence of moves in which the adversary is able to reduce the level of some ball
𝑏 from ≥ 𝑖 to ≤ 𝑖 − 3 while preserving for every other ball 𝑏′ how the level ℓ′ of 𝑏′
compares to the quantities 𝑖− 2, 𝑖− 1, 𝑖.

Define the level of a slot 𝑠 to be the level of the ball in the slot, if there is such a
ball, and to be 𝐿 otherwise. For 𝑖 ∈ [𝐿], define an 𝑖-stanza to be a sequence of slots
𝑠1, . . . , 𝑠𝑗 such that slots 𝑠1 and 𝑠𝑗 have levels at least 𝑖; such that slots 𝑠2, . . . , 𝑠𝑗−1

have levels at most 𝑖 − 3; such that each slot 𝑠𝑘, 𝑘 ∈ [𝑗 − 1], contains a ball 𝑥 that
can be placed into 𝑠𝑘+1 with a new level of at most 𝑖− 3; and such that 𝑠2, . . . , 𝑠𝑗−1

are distinct. Note that, by design, 𝑠2, . . . , 𝑠𝑗 cannot be special slots (since they must
be capable of containing a ball with level ≤ 𝑖− 3), but 𝑠1 can be.

Importantly, the final slot 𝑠𝑗 in a stanza does not have to be an empty slot in
order for the stanza to be valid. With that said, if the final slot 𝑠𝑗 were empty, then
the stanza would have a very intuitive interpretation: one could think of the stanza
is representing a possible chain of ball moves, where the first ball move (from slot 𝑠1
to slot 𝑠2) decreases the level of some ball from ≥ 𝑖 to ≤ 𝑖−3, where each subsequent
ball move (from slot 𝑠𝑘 to slot 𝑠𝑘+1 for some 𝑘 > 0) maintains the level of some ball
to be at most 𝑖− 3, and where the final move places a ball into an empty slot.

We say that an 𝑖-stanza 𝑠1, . . . , 𝑠𝑗 has size 𝑗 and has potential 1− (𝑗−1)/𝐿. We
refer to 𝑠1 as the starting slot of the stanza, to 𝑠2, . . . , 𝑠𝑗−1 as the internal slots
of the stanza, and to 𝑠𝑗 as the final slot of the stanza. We say that a collection of
𝑖-stanzas are disjoint if each slot with level ≥ 𝑖 is used at most once as a starting
slot and at most once as a final slot, and if each slot with level ≤ 𝑖 − 3 is used at
most once as an internal slot. (The only overlap allowed is that the starting slot of
one stanza may be the ending slot of another.) The potential of a disjoint collection
of 𝑖-stanzas is the sum of the potentials of the individual stanzas.

For 𝑖 ∈ [𝐿], define 𝜑𝑖 to be the maximum potential of any disjoint collection of
𝑖-stanzas. Finally, define the potential function 𝜑 by

𝜑 =
𝐿∑︁
𝑖=3

𝜑𝑖.

The intuition behind 𝜑. Before analyzing 𝜑, let us give a bit more intuition
for why 𝜑 acts as a natural upper-bound for how much impact the adversary can
achieve cheaply (i.e., with only a small number of moves relative to the impact being
achieved).

Consider any sequence of moves that the adversary could perform, and define a
realized stanza to be a sequence of slots 𝑠1, . . . , 𝑠𝑗 such that 𝑠𝑗 is an empty slot
and, for each 𝑘 ∈ [𝑗 − 1], the ball from slot 𝑠𝑘 gets moved to the next slot 𝑠𝑘+1

in the sequence. One can think of a realized stanza as a sequence of moves, where

198

balls 𝑥1, . . . , 𝑥𝑗−1 are in slots 𝑠1, . . . , 𝑠𝑗−1 and are being moved to positions 𝑠2, . . . , 𝑠𝑗,
respectively. Each ball 𝑥𝑘 is moved from some initial level 𝑏𝑘 to some potentially
different level 𝑒𝑘. (As an edge case,since there is no ball initially in 𝑠𝑗, define 𝑏𝑗 = 𝐿,
and leave 𝑒𝑗 undefined.)

For a given move, from some level 𝑏𝑘 to some level 𝑒𝑘, there are three cases for the
adversary. If 𝑒𝑘 ∈ {𝑏𝑘 − 2, 𝑏𝑘 − 1}, then we think of the move as having been neither
good nor bad for the adversary—the move created Θ(1) impact, but at the cost of
1 move. If 𝑒𝑘 ≤ 𝑏𝑘 − 3, then we think of the move as being good for the adversary,
and we say that the adversary has stolen 𝑏𝑘 − 𝑒𝑘 − 2 levels 𝑏𝑘, 𝑏𝑘 − 1, . . . , 𝑒𝑘 + 3.
Finally, if 𝑒𝑘 ≥ 𝑏𝑘, then we think of the move as being bad for the adversary, and we
say that the adversary has paid for 𝑒𝑘 − 𝑏𝑘 + 1 levels 𝑏𝑘 + 1, . . . , 𝑒𝑘 + 2. Whenever
the adversary pays for a level 𝑖, that cancels out the previous time that the adversary
stole that level 𝑖. In order for the adversary to steal a level 𝑖 without subsequently
paying for it, there must be a sequence (𝑏𝑘, 𝑒𝑘), . . . , (𝑏𝑘′ , 𝑒𝑘′) such that 𝑏𝑘 ≥ 𝑖, such
that 𝑒𝑘, 𝑏𝑘+1, 𝑒𝑘+1, 𝑏𝑘+2, . . . , 𝑒𝑘′−1 ≤ 𝑖− 3, and such that 𝑏𝑘′ > 𝑖. This sequence of ball
moves corresponds exactly to an 𝑖-stanza. In other words, each 𝑖-stanza represents
a possible opportunity for the adversary to steal level 𝑖 without subsequently paying
for it.

In order for a realized stanza to be worthwhile to the adversary, however, the
adversary must perform an average of 𝜔(1) steals per move. This means that, on
average, each level of the 𝐿 levels 𝑖 > 0 must be stolen 𝜔(1) times for every 𝐿
moves that are performed. In other words, whenever the adversary steals level 𝑖,
but then fails to steal level 𝑖 again for 𝐿 moves, then that first steal wasn’t actually
worthwhile. The value of a given steal can be modeled as 1 − 𝑞/𝐿, where 𝑞 is the
number of subsequent moves until the next steal of the same level. This is why we
define the potential of an 𝑖-stanza in the way that we do: the longer that a 𝑖-stanza
is, the less worthwhile of an opportunity that it represents for the adversary.

In summary, each 𝑖-stanza represents an opportunity for the adversary to steal
level 𝑖 without subsequently paying for it; and the 𝑖-stanza’s potential upper-bounds
how valuable that steal would be to the adversary. An important aspect of how
we define 𝜑 is that we analyze each of the levels 𝑖 separately, so that the 𝑖-stanzas
do not have to care about ball moves (𝑠𝑘, 𝑒𝑘) satisfying 𝑠𝑘, 𝑒𝑘 ≥ 𝑖 + 1 or satisfying
𝑠𝑘, 𝑒𝑘 ≤ 𝑖 − 3. As we shall see, this decouples the analyses of the levels from one
another in several critical ways.

Analyzing the properties of 𝜑. At any given moment, let 𝐴1 denote the set of
balls that are present, and, for the sake of analysis, let 𝐴2 denote a set of 𝑛 random
balls that are not present, one of which is the ball that will next be inserted. Define
𝐴 = 𝐴1 ∪ 𝐴2. Define 𝐵 = [𝑛] to be the set of all non-special slots.

Define a bipartite graph 𝐺𝑖 = (𝐴,𝐵), where for each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 we draw
an edge (𝑎, 𝑏) if ball 𝑎 is capable of residing in slot 𝑏 with level at most 𝑖. That is,
there is an edge from 𝑎 to 𝑏 if 𝑏 ∈ {ℎ1(𝑎), . . . , ℎtow(𝐿+𝑖)(𝑎)}. Note that balls 𝑎 ∈ 𝐴 all
deterministically have degrees at most tow(𝐿 + 𝑖). For each slot 𝑏, let 𝑑𝑖(𝑏) denote
the degree of 𝑏 in 𝐺𝑖, and call 𝑏 high-degree in 𝐺𝑖 if 𝑑𝑖(𝑏) ≥ (tow(𝐿+ 𝑖))𝑐 for some

199

sufficiently large constant 𝑐. We call all other nodes in 𝐺𝑖 (including all 𝑎 ∈ 𝐴)
low-degree in 𝐺𝑖.

We now argue that most nodes in 𝐺𝑖 are far away from any high-degree nodes.
Lemma 113. Let 𝑎1 be a random ball in 𝐴1 and let 𝑎2 be a random ball in 𝐴2.
With probability 1 − 1/ poly(𝐿), neither 𝑎1 nor 𝑎2 is within distance 𝑂(𝐿) of any
high-degree vertex in 𝐺𝑖.

Proof. Since the balls 𝑎 ∈ 𝐴 are independent and randomly selected, the degree 𝑑𝑖(𝑏)
is a sum of independent indicator random variables. Moreover, by the near-uniformity
of ℎ, we know that each 𝑏 ∈ 𝐵 satisfies

E[𝑑𝑖(𝑏)] = 2 · 𝑛 Pr
𝑥∈𝑈

[ℎ𝑘(𝑥) = 𝑏 for some 𝑘 ≤ tow(𝐿+ 𝑖)]

= 2 · 𝑞(ℎ, tow(𝐿+ 𝑖), 𝑏)

≤ 2 · poly(tow(𝐿+ 𝑖))

≤ (tow(𝐿+ 𝑖))𝑐/2.

Applying a Chernoff bound, it follows that for all 𝐷 ≥ (tow(𝐿+ 𝑖))𝑐, we have

Pr[𝑑𝑖(𝑏) ≥ 𝐷] ≤ 1

2Ω(𝐷)
.

Thus
E[𝑑𝑖(𝑏) · I𝑑𝑖(𝑏)≥(tow(𝐿+𝑖))𝑐] ≤

1

2Ω((tow(𝐿+𝑖))𝑐)
=

1

2poly(tow(𝐿+𝑖))
.

This means that the expected sum 𝑆 of the degrees of the high-degree slots in 𝐺𝑖

satisfies
E[𝑆] ≤ 𝑛/2poly(tow(𝐿+𝑖)).

One can also think of 𝑆 as an upper bound on the number of low-degree nodes in 𝐺𝑖

that are adjacent to high-degree nodes in 𝐺𝑖. Every low-degree node in 𝐺𝑖 has degree
at most poly(tow(𝐿+ 𝑖)). It follows that the number 𝜆 of nodes in 𝐺𝑖 that are within
distance 𝑂(𝐿) of a high-degree node satisfies

E[𝜆] ≤ 𝑆 · poly(tow(𝐿+ 𝑖))𝑂(𝐿),

where the first factor 𝑆 counts the number of nodes 𝑠 in 𝐺𝑖 that are within distance
1 of a high-degree node, and the second factor counts the number of 𝑂(𝐿)-long paths
starting at a such a node 𝑠 and then using only low-degree nodes. Using our bound
on 𝑆, we get that

E[𝜆] ≤ 𝑛

2poly(tow(𝐿+𝑖))
· poly(tow(𝐿+ 𝑖))𝑂(𝐿).

The above quantity is dominated by its first factor, so

E[𝜆] ≤ 𝑛

2poly(tow(𝐿+𝑖))
.

200

Applying Markov’s inequality, we have that with probability 1 − 1/2poly(tow(𝐿+𝑖)) ≥
1− 1/ poly(𝐿),

𝜆 ≤ 𝑛

2poly(tow(𝐿+𝑖))
.

Let 𝑎1 be a random ball in 𝐴1 and 𝑎2 be a random ball in 𝐴2. The probability that
either 𝑎1 or 𝑎2 is within distance 𝑂(𝐿) of a high-degree vertex in 𝐺𝑖 is at most

Pr
[︁
𝜆 >

𝑛

2poly(tow(𝐿+𝑖))

]︁
+

𝑛
2poly(tow(𝐿+𝑖))

Θ(𝑛)
=

1

poly(𝐿)
+

1

2poly(tow(𝐿+𝑖))
≤ 1

poly(𝐿)
.

This completes the proof of the lemma.

The next lemma argues that, if we remove the high-degree nodes from 𝐺𝑖, then
most of the remaining nodes are far away from any nodes with levels ≥ 𝑖+ 3.
Lemma 114. Define 𝐺′

𝑖 to be the graph 𝐺𝑖, but with all high-degree nodes removed.
Let 𝑋 be the set of balls and non-special empty slots that are currently at a level at
least 𝑖 + 3. For random balls 𝑎1, 𝑎2 in 𝐴1, 𝐴2, respectively, the probability of either
𝑎1 or 𝑎2 being within distance 𝑂(𝐿) of 𝑋 in 𝐺′

𝑖 is at most 1/ poly(𝐿).

Proof. Note that 𝑋 is determined by the balls-to-slots scheme, so we will think of 𝑋
as being selected by an adversary who has full knowledge of 𝐴1 and 𝐴2 but who has
no control over the contents of 𝐴1 and 𝐴2. Since 𝜀 = 1/𝑛, the number of slots in 𝑋
is at most 1 greater than the number of balls in 𝑋, so to bound |𝑋|, we can focus on
the number of balls with levels ≥ 𝑖+ 3.

Each ball 𝑥 ∈ 𝑋 has a level of 𝑖+3 or greater, so it has probe complexity at least
log tow(𝐿+ 𝑖+ 2) = tow(𝐿+ 𝑖+ 1). This means that, at any given moment,

E[|𝑋|] ≤ 𝑂(𝑛)

tow(𝐿+ 𝑖+ 1)
, (12.3)

where the randomness here comes from the fact that the balls-to-slots scheme guaran-
tees an expected average probe complexity of 𝑂(1) at any given moment. By Markov’s
inequality,

|𝑋| ≤ 𝑛 poly(𝐿)

tow(𝐿+ 𝑖+ 1)

with probability 1−1/ poly(𝐿). The number of nodes 𝑦 that are within distance 𝑂(𝐿)
of 𝑋 in 𝐺′

𝑖 is therefore at most

𝑛 poly(𝐿)

tow(𝐿+ 𝑖+ 1)
tow(𝐿+ 𝑖)𝑂(𝐿) ≪ 𝑛

poly(𝐿)
. (12.4)

It follows that, for random balls 𝑎1, 𝑎2 in 𝐴1, 𝐴2, respectively, the probability of either
𝑎1 or 𝑎2 being within distance 𝑂(𝐿) of 𝑋 in 𝐺′

𝑖 is at most 1/ poly(𝐿).

We can now argue that each insertion/deletion increases 𝜑 by 𝑂(1) (actually 𝑜(1))
in expectation. Intuitively, this means that insertions/deletions do not, on average,

201

introduce opportunities for the adversary to cheaply achieve a large amount of impact.

Lemma 115 (Establishing Property 1 for 𝜑). Each insertion/deletion increases 𝜑 by
at most 1/ poly(𝐿) in expectation.

Proof. Consider an insertion of a random ball 𝑎 ∈ 𝐴2. Let us consider the effect of
the insertion on 𝜑𝑖+3 for some 𝑖. Notice that, when 𝑎 is inserted (i.e., placed into a
special slot), 𝜑𝑖+3 either stays the same or increases by ≤ 1, where the increase comes
from the fact that 𝑎 may be part of some (𝑖 + 3)-stanza that has positive potential
and did not exist before. On the other hand, the only way that 𝑎 can be part of an
(𝑖+3)-stanza that has positive potential is if, in 𝐺𝑖, 𝑎 is within distance 𝐿 of some slot
whose level is ≥ 𝑖 + 3—the probability of this occurring is therefore an upperbound
on the expected increase to 𝜑𝑖+3 due to the insertion.

By Lemma 113, we have with probability 1 − 1/ poly(𝐿) that the set of nodes
𝑦 ∈ 𝐺𝑖 that are within distance 𝑂(𝐿) of 𝑎 is the same as the set of nodes 𝑦 ∈ 𝐺′

𝑖

that are within distance 𝑂(𝐿) of 𝑎. By Lemma 114, we have that with probability
1− 1/ poly(𝐿), that within the graph 𝐺′

𝑖, 𝑎 is not within distance 𝑂(𝐿) of any node
with level ≥ 𝑖 + 3 (besides 𝑎 itself). Thus, with probability 1 − 1/ poly(𝐿), we have
that in 𝐺𝑖, 𝑎 is not within distance 𝑂(𝐿) of any node with level ≥ 𝑖 + 3 (besides 𝑎
itself). This establishes that, with probability 1 − 1/ poly(𝐿), 𝑎 is not the starting
node for any (𝑖+3)-stanza that has positive potential; and thus the expected increase
to 𝜑𝑖 due to the insertion is 𝑂(1/ poly(𝐿)).

Now consider the deletion of a random ball 𝑎 ∈ 𝐴1. By the same reasoning as in
the preceding paragraph, with probability 1− 1/ poly(𝐿), we have that in the graph
𝐺𝑖, 𝑎 is not within distance 𝑂(𝐿) of any node with level ≥ 𝑖 + 3 (besides possibly
𝑎 itself). Thus, once 𝑎 is deleted, we have with probability 1 − 1/ poly(𝐿) that the
slot which contained 𝑎 is not the final slot for any (𝑖 + 3)-stanza that has positive
potential. Hence the expected increase to 𝜑𝑖 due to the deletion is 1/ poly(𝐿).

In either case, the expected increase to

𝜑 =
𝐿∑︁
𝑖=3

𝜑𝑖

is at most
∑︀𝐿

𝑖=3 1/ poly(𝐿) = 1/ poly(𝐿). Thus the lemma is proven.

Next we analyze the effect that a given move by the adversary has on 𝜑.
Lemma 116 (Establishing Property 2 for 𝜑). If a move by the adversary has impact
𝑟, it decreases 𝜑 by 𝑟 ±𝑂(1).

Proof. We can assume without loss of generality that the only moves that the adver-
sary ever makes are either (a) to move a ball from a non-special slot into a special
slot or (b) to move a ball from a special slot to a non-special slot. Indeed, any move
that takes a ball from a non-special slot to another non-special slot can be replaced
by a move of type (a) followed by a move of type (b). Also recall that, when a ball

202

is inserted, it initially resides in a special slot, and the adversary can then move it to
a non-special slot if desired.

Since moves of type (a) are the reverse of moves of type (b), it suffices to analyze
only moves of type (b), and to show that 𝜑 decreases by 𝑟 ±𝑂(1).

Suppose the adversary moves ball 𝑥 from a special slot 𝑠1 to a non-special slot 𝑠2,
where it has level 𝑗. Let Σ denote the state of the system before the move, and Σ′

denote the state of the system after the move. Let 𝜑 be the potential of Σ and 𝜑′ be
the potential of Σ′.

To complete the proof, we will argue that for each 𝑖 ∈ [𝐿]:

• If 𝑖 ≤ 𝑗, then 𝜑′
𝑖 = 𝜑𝑖.

• If 𝑖 ∈ {𝑗 + 1, 𝑗 + 2}, then 𝜑𝑖 − 2 ≤ 𝜑′
𝑖 ≤ 𝜑𝑖.

• If 𝑖 ≥ 𝑗 + 3, then 𝜑𝑖 − 1 ≤ 𝜑′
𝑖 ≤ 𝜑𝑖 − 1 + 1/𝐿.

Case 1: The first case is immediate, since changes to the positions/levels of
balls with levels ≥ 𝑖 do not affect which sequences of ball moves correspond to valid
𝑖-stanzas.

Case 2: Any valid 𝑖-stanza in Σ′ is also a valid stanza in Σ (hence 𝜑′
𝑖 ≤ 𝜑𝑖), but

there may be some 𝑖-stanzas in Σ that are not valid in Σ′ (specifically, any 𝑖-stanza
in Σ that makes use of either ball 𝑥 to start a stanza, or slot 𝑠2 to finish a stanza).
For any set of disjoint 𝑖-stanzas in Σ, up to two of those 𝑖-stanzas might be invalid in
Σ′ (but no more than two!). Thus 𝜑′

𝑖 ≥ 𝜑𝑖 − 2.
Case 3: In the rest of the proof, we focus on the third case, where 𝑖 ≥ 𝑗 + 3.

Let 𝐶 be a set of disjoint 𝑖-stanzas in Σ that maximizes the sum of the potentials of
the 𝑖-stanzas. Let 𝑠1 ∘ 𝑐1 (where 𝑠1 is the slot defined earlier in the proof and 𝑐1 is a
sequence of slots) be the 𝑖-stanza in 𝐶 that uses 𝑥 as its first ball (if such a stanza
exists), and let 𝑐2 ∘ 𝑠2 (where 𝑐2 is a sequence of slots and 𝑠2 is the slot defined earlier
in the proof) be the 𝑖-stanza in 𝐶 that uses slot 𝑠2 as its final slot (if such a stanza
exists).

We begin by claiming that 𝑐1 and 𝑐2 exist without loss of generality. If 𝑐1 does not
exist, then we can modify 𝐶 by removing any stanza that uses slot 𝑠2, and inserting
the stanza ⟨𝑠1, 𝑠2⟩ instead (this replacement either keeps the total potential of 𝐶 the
same or increases it). So 𝑐1 exists without loss of generality. If 𝑐2 does not exist,
then we can modify 𝐶 by removing any stanza that uses 𝑠1, and inserting the stanza
⟨𝑠1, 𝑠2⟩ instead (again, this cannot decrease the total potential of 𝐶). Thus 𝑐2 also
exists without loss of generality. We can further observe that, if 𝑠1 ∘ 𝑐1 and 𝑐2 ∘ 𝑠2
happen to be the same stanzas as one another, then that stanza is simply ⟨𝑠1, 𝑠2⟩
(indeed, if that stanza were not ⟨𝑠1, 𝑠2⟩, then we could replace it with ⟨𝑠1, 𝑠2⟩ in order
to increase the potential of 𝐶, which would be a contradiction).

We will now argue that 𝜑′ ≥ 𝜑 − 1. If 𝐶 contains the stanza ⟨𝑠1, 𝑠2⟩, then
𝐶 ∖{⟨𝑠1, 𝑠2⟩} is a set of disjoint 𝑖-stanzas in Σ′ with potential exactly 1− 1/𝐿 smaller
than that of 𝐶; thus 𝜑′ ≥ 𝜑 − (1 − 1/𝐿) ≥ 𝜑 − 1. On the other hand, if 𝐶 does

203

not contain the stanza ⟨𝑠1, 𝑠2⟩, then the stanzas 𝑠1 ∘ 𝑐1 and 𝑐2 ∘ 𝑠2 must be distinct.
In this case, we claim that 𝑐3 = 𝑐2 ∘ 𝑠2 ∘ 𝑐1 is a valid 𝑖-stanza in Σ′. Indeed, slot
𝑠2 in Σ′ contains ball 𝑥 at level 𝑗 ≤ 𝑖 − 3, so slot 𝑠2 is allowed to be an internal
slot in an 𝑖-stanza; and since, in Σ, the 𝑖-stanzas 𝑠1 · 𝑐1 (which begins with the slot
containing ball 𝑥) and 𝑐2 ∘ 𝑠2 (which ends in slot 𝑠2) are valid, it follows that, in Σ′,
the 𝑖-stanza 𝑐3 = 𝑐2 ∘ 𝑠2 ∘ 𝑐1 is valid. Since 𝑐3 is a valid 𝑖-stanza in Σ′, we have that
𝐶 ′ = 𝐶 ∖ {𝑠1 ∘ 𝑐1, 𝑐2 ∘ 𝑠2} ∪ {𝑐3} is a set of disjoint 𝑖-stanzas in Σ′. The potential of
𝐶 ′ is exactly 1 smaller than that of 𝐶. So 𝜑′ ≥ 𝜑− 1.

To complete the proof, we must also establish that 𝜑 ≥ 𝜑′ + 1 − 1/𝐿. Let 𝐶 ′

be a set of disjoint 𝑖-stanzas in Σ′ that maximizes the sum of the potentials of the
𝑖-stanzas. If there is no stanza in 𝐶 ′ that makes use of slot 𝑠2, then 𝐶 ′∪{⟨𝑠1, 𝑠2⟩} is a
valid set of disjoint 𝑖-stanzas in Σ, which would mean that 𝜑 ≥ 𝜑′+1−1/𝐿. Suppose,
on the other hand that there is some 𝑖-stanza of the form 𝑐1 ∘ 𝑠2 ∘ 𝑐2 in 𝐶 ′. Then the
stanzas 𝑐1 ∘ 𝑠2 and 𝑠1 ∘ 𝑐2 are valid in Σ, and thus 𝐶 ′ ∖ {𝑐1 ∘ 𝑠2 ∘ 𝑐2} ∪ {𝑐1 ∘ 𝑠2, 𝑠1 ∘ 𝑐2}
is a valid set of disjoint 𝑖-stanzas in Σ. This means that 𝜑 ≥ 𝜑′ + 1 ≥ 𝜑′ + 1 − 1/𝐿,
completing the proof.

The previous two lemmas establish Properties 1 and 2 for 𝜑. Finally, the third
property, which states that 0 ≤ 𝜑 ≤ 𝐿𝑛 is trivially true, since 𝜑𝑖 ∈ [0, 𝑛] for all 𝑖 ∈ [𝐿].
Thus Theorem 111 is proven.

Generalizing to other values of load factor and of probe complexity. So far
we have assumed for simplicity that 𝜀 = 1/𝑛 and that the balls-to-slots scheme being
analyzed achieves expected average probe complexity 𝑂(1). We now generalize our
lower bound to consider 𝜀 ≥ 1/𝑛 and probe complexity 𝜔(1).
Theorem 117. Consider a universe 𝑈 of sufficiently large polynomial size. Consider
any balls-to-slots scheme that uses nearly uniform probe sequences, that achieves
expected average probe complexity 𝑂(tow(𝑎)) (across all balls in the system at any
given moment), and that supports some 𝜀 = 1/ log(𝑏) 𝑛 where 𝑏 ≤ (log* 𝑛)/4.8 The
expected amortized switching cost per insertion/deletion must be at least

Ω(log* 𝑛− 𝑎− 𝑏).

Note that, when 𝑎 = 𝑂(1) and 𝑏 = 0, Theorem 117 becomes Theorem 111, which
we have already proven. And as we shall now see, the proof of Theorem 117 requires
only a slight modification to the proof of Theorem 111.

Proof. Let us begin by considering 𝑎 > 0 and 𝑏 = 0, so average probe complexity
may be 𝜔(1) but 𝜀 = 1/𝑛.

The only substantive modification to the proof is that, if 𝑎 − 𝐿 ≥ 0, then we
redefine any balls in levels less than 𝑎− 𝐿 to now be in level 𝑎− 𝐿 (so we eliminate
levels 0, 1, . . . , 𝑎−𝐿−1). Intuitively, this is because, since the balls-to-slots scheme is

8In this notation, if 𝑏 = 0, then 𝜀 = 1/𝑛.

204

allowed to have average probe complexity 𝑂(tow(𝑎)), it is without loss of generality
the case that every ball is in level 𝑎− 𝐿 or above.

Formally, the reason that we need to restrict to levels 𝑖 ≥ 𝑎 − 𝐿 is to preserve
Lemma 114. The bound (12.3) on the expected number of balls with probe complexity
at least tow(𝐿+ 𝑖+ 1) now becomes

𝑂

(︂
𝑛 tow(𝑎)

tow(𝐿+ 𝑖+ 1)

)︂
, (12.5)

instead of 𝑂(𝑛/ tow(𝐿+𝑖+1)). In order for the tow(𝑎) term not to become significant
in the proof of Lemma 114, we need tow(𝑎) ≤ tow(𝐿 + 𝑖) (that way, in (12.4), the
newly introduced tow(𝑎) term can be absorbed into the tow(𝐿 + 𝑖)𝑂(𝐿) term). Since
we restrict ourselves to levels 𝑖 satisfying 𝑖 ≥ 𝑎 − 𝐿, Lemma 114 continues to be
correct for every valid level 𝑖.

We must also modify Lemma 112 to accommodate the fact that each deletion
now removes a ball with expected level max(0, 𝑎 − 𝐿) + 𝑜(1) (rather than expected
level 𝑂(1)). This changes our final lower bound on expected average switching cost
to Ω(𝐿− (𝑎− 𝐿)) = Ω(log* 𝑛− 𝑎).

Now suppose we also allow 𝑏 > 0. To handle this, we again modify how we define
the levels: we define ℓ* = 𝐿− 𝑏− 1, and we declare any ball or slot (including special
slots) that was previously in some level ℓ′ > ℓ* to now be in level ℓ*. The intuition for
why we do this is that, once we get to level ℓ*, many of the slots that are in that level
or above are actually empty slots, so it makes sense to treat that as the top level.

Formally, the reason that we need to restrict to levels 𝑖 ≤ ℓ* is to again preserve
(12.3) in Lemma 114. In particular, (12.3) must count not just the balls that have
probe complexity tow(𝐿 + 𝑖 + 1) but also any (non-special) empty slots (since such
slots represent maximum-level nodes in 𝐺′

𝑖 and therefore contribute to |𝑋|). There
may be up to 𝑂(𝑛/ log(𝑏) 𝑛) such slots (in expectation), each of which is in the top
level; to preserve (12.3), we therefore need that

𝑂(𝑛/ log(𝑏) 𝑛) ≤ 𝑂(𝑛 tow(𝑎))

tow(𝐿+ 𝑖+ 1)
. (12.6)

Recall, however, that we have limited ourselves to levels 𝑖 satisfying 𝑖 ≤ 𝑙*, which
implies 𝑖 ≤ (log* 𝑛)/2− 𝑏− 1, and thus that 𝐿+ 𝑖+1 ≤ log* 𝑛− 𝑏, and therefore that

log(𝑏) 𝑛 = tow(log* 𝑛− 𝑏) ≥ tow(𝐿+ 𝑖+ 1).

Hence, as long as 𝑖 is a valid level, then (12.5) still holds, which preserves the cor-
rectness of Lemma 114.

Since we restrict ourselves to 𝐿− 𝑏− 1 levels, we must also modify Lemma 112 to
accommodate the fact that each insertion now increases the sum of the levels of the
balls 𝐽 by only 𝐿− 𝑏− 1 (instead of by 𝐿). In the case where max(0, 𝑎−𝐿) ≤ 𝐿, this
reduces the final lower-bound that we achieve on expected average switching cost to
Ω(𝐿 − 𝑏 − 1) = Ω(𝐿) (here we are using that 𝑏 ≤ (log* 𝑛)/4), and in the case where

205

max(0, 𝑎−𝐿) > 𝐿, this reduces the final lower bound to Ω(log* 𝑛−𝑎− 𝑏). Both lower
bounds are equivalent to Ω(log* 𝑛− 𝑎− 𝑏).

We remark that the restriction 𝑏 ≤ (log* 𝑛)/4 can easily be reduced by defining 𝐿
to be much smaller than (log* 𝑛)/2. Such values of 𝑏 are not relevant to hash-table
design, however, since any augmented open-addressing hash table with load factor of
at least, say, 1− 1/𝑂(log log 𝑛) must use a balls-to-slots scheme that supports 𝑏 ≤ 2.

Non-nearly-uniform probe sequences. Finally, we extend our lower bound to
non-nearly-uniform probe sequences. To do this, we formally reduce the non-nearly-
uniform case to the nearly-uniform case.

For any assignment 𝐴 mapping some set of up to 𝑛 balls to slots, and for any func-
tion ℎ determining the probe sequences ℎ1(𝑥), ℎ2(𝑥), . . . for each ball, define 𝑐(𝐴, ℎ)
to be the total probe complexity needed to implement assignment 𝐴 using ℎ.
Lemma 118. Consider any universe 𝑈 and consider any function ℎ assigning a probe
sequence to each ball 𝑥 ∈ 𝑈 . Then there exists a nearly uniform ℎ′ that has the follow-
ing guarantee. For any assignment 𝐴 of Θ(𝑛) balls to slots, 𝑐(𝐴, ℎ′) ≤ 𝑂(𝑐(𝐴, ℎ)+𝑛).

Proof. For each ball 𝑥 ∈ 𝑈 and each 𝑗 ∈ [𝑛], let 𝑠(𝑥, 𝑗) = argmin𝑘{ℎ𝑘(𝑥) = 𝑗} and let
𝑠′(𝑥, 𝑗) = argmin𝑘{ℎ′𝑘(𝑥) = 𝑗} (we can assume without loss of generality that these
quantities exist).

We now describe how to construct ℎ′. Rather than specifying ℎ′𝑖(𝑥) for all 𝑖, 𝑥, it
suffices to specify 𝑠′(𝑥, 𝑗) for all 𝑥, 𝑗. Note that, in order for 𝑠′(𝑥, 𝑗) to be well defined,
the only restriction is that the quantities 𝑠(𝑥, 1), 𝑠(𝑥, 2), . . . , 𝑠(𝑥, 𝑛) must be distinct
natural numbers.

Define 𝑡 : N × N → N to be an injective function satisfying log 𝑡(𝑎, 𝑏) ≤ 𝑂(1 +
log 𝑎+ log 𝑏) for all (𝑎, 𝑏) ∈ N×N and satisfying 𝑡(𝑎, 𝑏) ≥ max(𝑎, 𝑏) for all (𝑎, 𝑏) ∈ N.
Recall that, for a probe sequence function ℎ′, if we have 𝑛 random balls, then 𝑞(ℎ′, 𝑖, 𝑗)
is the expected number of balls 𝑥 that are capable of residing in position 𝑗 using one
of the first 𝑖 probe values ℎ′1(𝑥), . . . , ℎ′𝑖(𝑥). We set

𝑠′(𝑥, 𝑗) = 𝑡(𝑠(𝑥, 𝑗), ⌈𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗)⌉). (12.7)

We claim that 𝑠′(𝑥, 𝑗) is well defined. Indeed, if 𝑠′(𝑥, 𝑗1) = 𝑠′(𝑥, 𝑗2) for some 𝑗1 ̸= 𝑗2,
then we must also have that 𝑠(𝑥, 𝑗1) = 𝑠(𝑥, 𝑗2), which would be a contradiction.
We also observe that ℎ′ (constructed using 𝑠′) has strictly larger probe complexities
than does ℎ—if a ball 𝑥 is in a position 𝑗, then its probe complexity using ℎ would
be Θ(1 + log 𝑠(𝑥, 𝑗)) but its probe complexity using ℎ′ would be Θ(1 + log 𝑠(𝑥, 𝑗) +
log⌈𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗)⌉). It may seem strange that we are defining ℎ′ to be worse than ℎ,
but as we shall now prove, this allows for us to guarantee that ℎ′ is nearly uniform.
Once we establish this, then our only remaining task will be to bound how much
worse ℎ′ is than ℎ, in the worst case.

We now argue that ℎ′ is nearly uniform, meaning that 𝑞(ℎ′, 𝑖, 𝑗) ≤ poly(𝑖) for all

206

𝑖. Observe that

𝑞(ℎ′, 𝑖, 𝑗) = 𝑛 · Pr
𝑥∈𝑈

[ℎ′𝑘(𝑥) = 𝑗 for some 𝑘 ≤ 𝑖]

≤ 𝑛 · |{𝑥 ∈ 𝑈 | 𝑠(𝑥, 𝑗) ≤ 𝑖 and 𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗) ≤ 𝑖}|
|𝑈 |

,

since in order to have ℎ′𝑘(𝑥) = 𝑗 for some 𝑘 ≤ 𝑖, we must have that
𝑡(𝑠(𝑥, 𝑗), ⌈𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗)⌉)) ≤ 𝑖 and thus that 𝑠(𝑥, 𝑗) ≤ 𝑖 and 𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗) ≤ 𝑖.
By expanding out the definition of 𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗), we get that 𝑞(ℎ′, 𝑖, 𝑗) is at most

𝑛 · |{𝑥 ∈ 𝑈 | 𝑠(𝑥, 𝑗) ≤ 𝑖 and Pr𝑦∈𝑈 [ℎ𝑟(𝑦) = 𝑗 for some 𝑟 ≤ 𝑠(𝑥, 𝑗)] ≤ 𝑖/𝑛}|
|𝑈 |

≤
𝑛 · |{𝑥 ∈ 𝑈 | 𝑠(𝑥, 𝑗) ≤ 𝑖 and Pr𝑦∈𝑈 [ℎ𝑠(𝑥,𝑗)(𝑦) = 𝑗] ≤ 𝑖/𝑛}|

|𝑈 |

≤ 𝑛 · |{𝑥 ∈ 𝑈 | ∃ 𝑠 ∈ [𝑖] s.t. ℎ𝑠(𝑥) = 𝑗 and Pr𝑦∈𝑈 [ℎ𝑠(𝑦) = 𝑗] ≤ 𝑖/𝑛}|
|𝑈 |

≤ 𝑛

|𝑈 |
∑︁

𝑠∈[𝑖] such thatPr𝑦∈𝑈 [ℎ𝑠(𝑦)=𝑗]≤𝑖/𝑛

|{𝑥 ∈ 𝑈 | ℎ𝑠(𝑥) = 𝑗}|

=
𝑛

|𝑈 |
∑︁

𝑠∈[𝑖] such thatPr𝑦∈𝑈 [ℎ𝑠(𝑦)=𝑗]≤𝑖/𝑛

|𝑈 | Pr
𝑦∈𝑈

[ℎ𝑠(𝑦) = 𝑗]

≤ 𝑛

|𝑈 |
∑︁

𝑠∈[𝑖] such thatPr𝑦∈𝑈 [ℎ𝑠(𝑦)=𝑗]≤𝑖/𝑛

𝑖|𝑈 |
𝑛

≤ 𝑛

|𝑈 |
·
∑︁
𝑠∈[𝑖]

𝑖|𝑈 |
𝑛

= 𝑖2.

This establishes the near-uniformity of ℎ′.
To complete the proof, we must argue that 𝑐(𝐴, ℎ′) ≤ 𝑂(𝑐(𝐴, ℎ) + 𝑛). Con-

sider a ball 𝑥 that 𝐴 assigns to some position 𝑗. The probe complexity of 𝑥 using
ℎ is 1 + log 𝑠(𝑥, 𝑗), and the probe complexity of 𝑥 using ℎ′ is 𝑂(1 + log 𝑠(𝑥, 𝑗) +
log 𝑞(ℎ, 𝑠(𝑥, 𝑗), 𝑗)). Thus, if 𝐴 assigns addresses 𝑗1, 𝑗2, . . . , 𝑗𝑚 to balls 𝑥1, 𝑥2, . . . , 𝑥𝑚,
respectively, for some 𝑚 = Θ(𝑛), then our goal is to show that

𝑚∑︁
𝑖=1

log 𝑞(ℎ, 𝑠(𝑥𝑖, 𝑗𝑖), 𝑗𝑖) ≤ 𝑂

(︃
𝑛+

𝑚∑︁
𝑖=1

log 𝑠(𝑥𝑖, 𝑗𝑖)

)︃
.

The cases where 𝑞(ℎ, 𝑠(𝑥𝑖, 𝑗𝑖), 𝑗𝑖) ≤ poly(𝑠(𝑥𝑖, 𝑗𝑖)) trivially satisfy
log 𝑞(ℎ, 𝑠(𝑥𝑖, 𝑗𝑖), 𝑗𝑖) ≤ 𝑂(log 𝑠(𝑥𝑖, 𝑗𝑖)), so it suffices to show

𝑚∑︁
𝑖=1

I𝑞(ℎ,𝑠(𝑥𝑖,𝑗𝑖),𝑗𝑖)>poly(𝑠(𝑥𝑖,𝑗𝑖)) log 𝑞(ℎ, 𝑠(𝑥𝑖, 𝑗𝑖), 𝑗𝑖) ≤ 𝑂(𝑛).

207

Each 𝑗 ∈ [𝑛] appears as a 𝑗𝑖 at most once in the above sum. Thus

𝑚∑︁
𝑖=1

I𝑞(ℎ,𝑠(𝑥𝑖,𝑗𝑖),𝑗𝑖)>poly(𝑠(𝑥𝑖,𝑗𝑖)) log 𝑞(ℎ, 𝑠(𝑥𝑖, 𝑗𝑖), 𝑗𝑖) ≤
∞∑︁
𝑠=1

𝑛∑︁
𝑗=1

I𝑞(ℎ,𝑠,𝑗)>poly(𝑠) log 𝑞(ℎ, 𝑠, 𝑗).

We can therefore complete the proof by showing that

∞∑︁
𝑠=1

𝑛∑︁
𝑗=1

I𝑞(ℎ,𝑠,𝑗)>poly(𝑠) log 𝑞(ℎ, 𝑠, 𝑗) ≤ 𝑂(𝑛).

Let 𝑄𝑠 be the set of 𝑗 for which 𝑞(ℎ, 𝑠, 𝑗) > poly(𝑠). Then,

∞∑︁
𝑠=1

𝑛∑︁
𝑗=1

I𝑞(ℎ,𝑠,𝑗)>poly(𝑠) log 𝑞(ℎ, 𝑠, 𝑗) =
∞∑︁
𝑠=1

∑︁
𝑗∈𝑄𝑠

log 𝑞(ℎ, 𝑠, 𝑗).

For any fixed 𝑠, we have that

𝑛∑︁
𝑗=1

𝑞(ℎ, 𝑠, 𝑗) =
𝑠∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛 Pr
𝑥∈𝑈

[ℎ𝑖(𝑥) = 𝑗]

= 𝑛
𝑠∑︁
𝑖=1

𝑛∑︁
𝑗=1

Pr
𝑥∈𝑈

[ℎ𝑖(𝑥) = 𝑗]

= 𝑛
𝑠∑︁
𝑖=1

Pr
𝑥∈𝑈

[ℎ𝑖(𝑥) = 𝑗 for some 𝑗 ∈ [𝑛]]

≤ 𝑛𝑠.

Thus
∑︀

𝑗∈𝑄𝑠
𝑞(ℎ, 𝑠, 𝑗) is also at most 𝑠𝑛 and has at most 𝑠𝑛/ poly(𝑠) = 𝑛/ poly(𝑠)

terms. By Jensen’s inequality, this implies that∑︁
𝑗∈𝑄𝑠

log 𝑞(ℎ, 𝑠, 𝑗) ≤ 𝑛

poly(𝑠)
log

𝑠𝑛

𝑛/ poly(𝑠)
=

𝑛

poly(𝑠)
.

Summing over all 𝑠,

∞∑︁
𝑠=1

∑︁
𝑗∈𝑄𝑠

log 𝑞(ℎ, 𝑠, 𝑗) ≤
∞∑︁
𝑠=1

𝑛

poly(𝑠)
= 𝑂(𝑛).

This completes the proof.

By the preceding lemma, the assumption in Theorem 117 that ℎ is nearly uniform
is true without loss of generality, since we can substitute any non-nearly-uniform ℎ
with a nearly-uniform ℎ′ while having an asymptotically negligible effect on the probe
complexity of any balls-to-slots assignment. Thus we arrive at the main theorem of
the section:

208

Theorem 119. Suppose the universe 𝑈 has sufficiently large polynomial size. Con-
sider any balls-to-slots scheme that achieves expected average probe complexity
𝑂(tow(𝑎)) (across all balls in the system at any given moment) and supports some
𝜀 = 1/ log(𝑏) 𝑛 where 𝑏 ≤ (log* 𝑛)/4. The expected amortized switching cost per
insertion/deletion must be at least

Ω(log* 𝑛− 𝑎− 𝑏).

Corollary 120. Suppose the universe 𝑈 has sufficiently large polynomial size. Con-
sider any balls-to-slots scheme that achieves expected average probe complexity 𝑂(1)
(across all balls in the system at any given moment) and supports 𝜀 = 1/𝑛. The
expected amortized switching cost per insertion/deletion must be Ω(log* 𝑛).

To conclude the section, we reinterpret our result as a lower bound on augmented
open-addressing.
Corollary 121. Any augmented open-addressed hash table that stores quotiented
(1 + Θ(1)) log 𝑛-bit elements in an array and incurs 𝑂(log(𝑘) 𝑛) expected wasted bits
per key must have average insertion/deletion time Ω(𝑘).

Proof. We can assume without loss of generality that 𝑘 ≥ 2. In order for the wasted
bits per key to have expected value 𝑂(log(𝑘) 𝑛) ≤ 𝑂(log log 𝑛), the load factor 1 − 𝜀
of the array must satisfy 1− 𝜀 ≥ 1− log log𝑛

log𝑛
. That is, the balls-to-slots scheme used

by the hash table must support 𝜀 ≤ log log𝑛
log𝑛

. In the language of Theorem 119, this
means that 𝑏 < 2.

The bound of 𝑂(log(𝑘) 𝑛) wasted bits per key also implies that the (expected)
average probe complexity of the balls-to-slots scheme is 𝑂(log(𝑘) 𝑛). In the language
of Theorem 119, this means that 𝑎 ≥ (log* 𝑛)− 𝑘.

Applying Theorem 119, we get that the average switching cost of the balls-to-slots
scheme is at least Ω(log* 𝑛− 𝑎− 𝑏) = Ω(𝑘). Thus the average insertion/deletion time
of the hash table is Ω(𝑘).

12.4 Encoding Metadata in an Augmented Open-
Addressed Hash Table

So far, we have computed tight bounds on the probe complexity of any balls-to-slots
scheme. If the balls-to-slots scheme used by an augmented open-addressing hash
table has total probe complexity ℓ, then the hash table must store at least Ω(ℓ) bits
of metadata. In this section, we present general machinery for how to implement the
metadata of the hash table to use exactly 𝑂(ℓ) bits, while also allowing for constant-
time modifications to the metadata. The key difficulties here are that ℓ may differ for
between elements (i.e., it is nonuniform) and that ℓ may be, on average, very small,
meaning that we cannot afford a high space overhead per element.

209

To address these issues, we develop two fundamental building blocks: the first is
a data structure that we call the mini-array, which compactly stores a polylog 𝑛-
element dynamic array of items that are between 1 and 𝑂(log 𝑛) bits each so that array
entries can be queried and modified in constant time; the second is a data structure
that we call the local query router, which compactly stores routing information
(i.e., information about where some element 𝑥 can be found in the hash table) for up
to 𝑂((log 𝑛)/ log log 𝑛) elements at a time, while supporting queries/updates to the
routing information in constant time.

As foreshadowing, and to give some additional context, let us comment on how
these building blocks will be used later. Ultimately, our approach to storing metadata
in a hash table will be the following: we will hash keys to buckets of some expected
size 𝐾 = polylog 𝑛; then, within each bucket, we will hash keys to 𝐾 smaller buckets
of expected size 𝑂(1); for each of these smaller buckets, we will use a local query
router to store the metadata for the elements in that bucket; and for each of the
larger buckets, we will use a mini-array to store the 𝐾 local query routers for its 𝐾
smaller buckets. In this section, however, our goal is simply to construct mini-arrays
and local query routers.

12.4.1 Preliminaries: The Lookup-Table Technique

Several of the data structures in this section will make use of the lookup-table tech-
nique (sometimes also called the Method of Four Russians). This allows for us
to implement potentially complicated operations on (log 𝑛)/2-bit inputs in constant
time.

More formally, call such a function 𝑓(𝑥1, . . . , 𝑥𝑗) lookup-table-compatible if: the
input tuple (𝑥1, . . . , 𝑥𝑗) takes less than (log 𝑛)/2 bits; the output takes 𝑂(log 𝑛) bits;
and 𝑓 can be evaluated in time 𝑂(𝑛1/4).

If 𝑓 is lookup-table-compatible, then, when we initialize a hash table of size 𝑛, we
can pre-construct a lookup table 𝐿 of size

√
𝑛 such that 𝐿[𝑥1, . . . , 𝑥𝑗] = 𝑓(𝑥1, . . . , 𝑥𝑗)

for each of the up to
√
𝑛 input tuples (𝑥1, . . . , 𝑥𝑗). The lookup table allows for

us to evaluate 𝑓 in constant time during hash-table operations. The lookup table
𝐿 consumes at most �̃�(

√
𝑛) bits of space and can be constructed in time at most

𝑂(𝑛3/4).
We can also rebuild the lookup table (in a deamortized fashion) whenever the

parameter 𝑛 changes by more than a constant factor, so the restriction that each
input tuple (𝑥1, . . . , 𝑥𝑗) takes less than (log 𝑛)/2 bits is always a function of the
current 𝑛.

Finally, suppose that we have a function 𝑓 for which the input tuple (𝑥1, . . . , 𝑥𝑗)
takes Θ(log 𝑛) bits, rather than (log 𝑛)/2 bits. We say that 𝑓 is lookup-table-
friendly if for some positive constant 𝑐, there exist lookup-table-compatible functions
𝑓1, . . . , 𝑓𝑐 such that: the input tuple (𝑥1, . . . , 𝑥𝑗) can be decomposed into (log 𝑛)/2-bit
(or smaller) pieces 𝑃1, . . . , 𝑃𝑐, and 𝑓(𝑥1, . . . , 𝑥𝑗) can be computed in constant time
given 𝑓1(𝑃1), . . . , 𝑓𝑐(𝑃𝑐). To implement 𝑓 in constant time, we can implement each 𝑓𝑖

210

using the lookup-table technique. So lookup-table-friendly functions can be evaluated
in constant time without loss of generality.

12.4.2 Storing a Mini-Array of Variable-Size Values

Consider the following basic data-structural problem, which we call the mini-array
problem. Let 𝑐 be a sufficiently large positive constant, and let 𝐾 = log𝑐 𝑛. We wish
to store a 𝐾-element mini-array 𝐴[1], . . . , 𝐴[𝐾], where each element 𝐴[𝑖] has some
size 𝑠𝑖 ∈ [0, 𝑂(log 𝑛)] bits. We wish to support queries (i.e., tell me 𝐴[𝑖]) and updates
(i.e., set 𝐴[𝑖] to a new value) in constant time, and we wish to use space 𝑂(𝐾+

∑︀
𝑖 𝑠𝑖)

bits. In our setting, we will have a large collection of mini-arrays, each a part of a
larger data structure whose total size is Ω(𝑛). So we will allow for our solution to use
lookup tables that are shared among all of the mini-arrays.

How should we implement a mini-array? The problem is that the sizes 𝑠𝑖 of
the elements in the array are non-uniform and change over time. So we cannot
implement 𝐴 as a standard array. Instead, we take inspiration from the external-
memory model [349], and we implement 𝐴 as a B-tree [61] 𝑇 . The basic idea is that,
since we can implement (most) operations on Θ(log 𝑛)-bit machine words in constant
time using the lookup-table approach, we can think of machine words as representing
data blocks in the external-memory model.

The tree 𝑇 consists of polylog 𝑛 nodes, each of which is Θ(log 𝑛) bits (the only
exception is the root node, which may contain fewer bits). Because the tree consists
of only polylog 𝑛 nodes, pointers within the tree need only be Θ(log log 𝑛) bits each.9

Each internal node of 𝑇 stores Θ(log 𝑛/ log log 𝑛) pointers to children (although,
again, the root may contain fewer), and for each child the node stores two pivots
𝑝1, 𝑝2 ∈ [𝐾] indicating the range of indices that the child covers. Each leaf of 𝑇 stores
Θ(log 𝑛) bits of array entries (i.e., 𝐴[𝑖], . . . , 𝐴[𝑗] for some 𝑖, 𝑗 such that

∑︀𝑗
ℓ=𝑖(𝑠ℓ+1) =

Θ(log 𝑛)). We call these the array bits. Each leaf also stores a Θ(log 𝑛)-bit bitmap
indicating where each 𝐴[ℓ] begins within the array bits.

Nodes are merged and split as in a standard B-tree: there is some positive constant
𝑑 such that, whenever a node exceeds 𝑑 log 𝑛 bits, the node is split into two nodes,
and whenever a node’s size falls below 𝑑(log 𝑛)/2 bits, the node is merged with one
of its neighbors (and then the new merged node may also need to be split). The only
way that the height of the tree can increase is if the root splits into two nodes 𝑎 and 𝑏
(in which case a new root is created with 𝑎 and 𝑏 as children), and the only way that

9For the applications in this chapter, the amount of memory needed to implement 𝑇 will always
be known (up to constant factors) up front, so we can preallocate the memory in a single contigu-
ous array. Even if the size of 𝑇 is not known up front, however, it is still possible to implement
pointers within the tree using Θ(log log 𝑛) bits per pointer. Indeed, we can assign the nodes distinct
Θ(log log 𝑛)-bit identifiers, and then we can maintain a dynamic fusion tree [306] mapping identifiers
to true Θ(log 𝑛)-bit pointers—the fusion tree allows us to perform address translation in order to
go from an identifier to the corresponding actual node. Note that the fusion tree introduces only
a constant-factor space overhead overall, and introduces only on additive constant time overhead
for each operation; so we can feel free to ignore the fusion tree, and treat pointers as each using
Θ(log log 𝑛) bits.

211

the height of the tree can decrease is if the root has only a single child, in which case
the root is eliminated. Every node except the root has the property that it always
uses Θ(log 𝑛) bits, but the root may be smaller (since it has no neighbors that it can
merge with). Since the tree has fanout Θ((log 𝑛)/ log log 𝑛) (for all internal nodes
except for the root), and since the tree consists of 𝑂(𝐾) ≤ polylog 𝑛 nodes, the depth
is 𝑂(1).

Using the lookup-table approach, we can implement both queries and updates in
constant time. In particular, the tasks of navigating down the tree, finding where a
given 𝐴[𝑖] resides in some leaf, modifying some 𝐴𝑖 in some leaf, and modifying internal
nodes are all directly implementable using lookup-table-friendly functions.

This concludes the description of how to implement a mini-array. Each operation
is deterministically constant time. And, up to constant factors, the space-usage of
the tree is dominated by the leaves, which in aggregate use 𝑂(𝐾 +

∑︀
𝑖 𝑠𝑖) space, as

desired. The lookup tables used to implement the mini-array take a total of �̃�(
√
𝑛)

space, but since these lookup tables can be shared across all instances of mini-arrays,
that space is negligible.

12.4.3 Query Routers

We now describe a second data-structural problem, which we call the query-router
problem. To understand the query-router problem, it is helpful to understand how
we will use local query routers in our hash tables. We will hash Θ(𝑛) keys to Θ(𝑛)
different local query routers, and each local query router will be responsible for storing
the probe-indices corresponding to those keys—that is, if a local query router stores
a key 𝑥 that resides in slots ℎ𝑖(𝑥) of the hash table, a query searching for key 𝑥 must
be able to recover the value 𝑖 from the local query router. The way in which the local
query router is used results in several interesting properties that we will make exploit
in its construction: with high probability in 𝑛, each local query router will be storing
information for at most 𝑂(log 𝑛/ log log 𝑛) keys; additionally, if a local query router
wishes to access one of the keys 𝑥 for which it is storing information, it can do so in
constant time (without having to actually store 𝑥).

With these properties in mind, we now formally define the query-routing problem:
Consider a set 𝑆 of distinct keys, and a function 𝑓 : 𝑆 → N that maps keys to distinct
values. We wish to support modifications to 𝑆 and 𝑓 (i.e., delete 𝑠 from 𝑆, or insert
𝑠 into 𝑆 with 𝑓(𝑠) := 𝑢) and 𝑓 -evaluation queries (i.e., what is 𝑓(𝑠) for some specific
𝑠 ∈ 𝑆?) in constant time (with high probability in 𝑛). We are guaranteed that
|𝑆| never exceeds 𝑂((log 𝑛)/ log log 𝑛) and that 𝑓(𝑠) always takes 𝑂(log log 𝑛) bits.
Setting 𝑟 = |𝑆| +

∑︀
𝑠∈𝑆 log 𝑓(𝑠) to be the sum of the sizes of the 𝑓(𝑠)’s, we wish to

have a data structure of expected size 𝑂(𝑟) bits, at any given moment, and of worst-
case size 𝑂(log 𝑛) bits, at any given moment with high probability in 𝑛. Our data
structure also has access to a constant-time oracle for the function 𝑔 = 𝑓−1. That is,
if 𝑓(𝑠) = 𝑢 for some 𝑠, then the oracle function satisfies 𝑔(𝑢) = 𝑠. (If 𝑓(𝑠) ̸= 𝑢 for
all 𝑠 ∈ 𝑆, then 𝑔(𝑢) is not defined, and could return an arbitrary value.) The oracle
makes it so that our data structure does not have to store keys—it can recover each

212

key based on the corresponding 𝑓 -value.
We now describe a data structure, which we call a local query router, that

solves the above problem. Although the precise specifications are slightly different,
the design for the local query router is very similar to the querying mechanism used
in past work on adaptive filters [82] (as well as by other subsequent work on succinct
filters [245]).

Before we continue, let us make some simplifications to the requirements of a
local query router, and argue that these simplifications are without loss of gen-
erality. First, we may assume that the local query router has a lifespan of only
𝑂(log 𝑛/ log log 𝑛) operations, since we can rebuild the local query router from scratch
once every 𝑂(log 𝑛/ log log 𝑛) operations (and in a deamortized fashion). Second, it
suffices to construct a local query router with failure probability 1 − 1/𝑛𝜀 on any
given insertion/deletion, since we can amplify this failure probability to 1/ poly(𝑛)
by storing 𝑂(1) independent local query routers, and keeping track of which one(s)
haven’t yet failed—in any sequence of 𝑂(log 𝑛/ log log 𝑛) operations, the probability
of all 𝑂(1) local query routers failing is 1 − 1/ poly(𝑛). We call a local query router
that makes the above simplifications a simplified local query router.

To construct a simplified local query router, we will need the following basic lemma
about binary tries.
Lemma 122. Let 𝑘 = 𝑂(log 𝑛/ log log 𝑛) and let 𝑟1, . . . , 𝑟𝑘 be random binary strings.
Let 𝑇 be the binary trie storing the smallest unique prefix of each 𝑟𝑖 (i.e., if the smallest
unique prefix of 𝑟1 is 01101, then there is a path corresponding to 01101 in the trie).
Then 𝑇 has expected size 𝑂(𝑘), and for any constant 𝑐 > 1 there exists a constant
𝜀 > 0 such that with probability 1− 1/𝑛𝜀, 𝑇 has size that most log 𝑛/𝑐 bits.

Proof. Imagine constructing 𝑇 by inserting each of 𝑟1, . . . , 𝑟𝑘 into the trie one after
another. Inserting a new element into 𝑇 corresponds to performing a random walk
down the tree 𝑇 to some leaf ℓ, and then appending a path of some length 𝑋 below
that leaf, and then adding two new leaves at the end of that path. Note that the
random variable 𝑋 is independent between insertions and satisfies

Pr[𝑋 ≥ 𝑖] = 1/2𝑖.

Thus, once all of the 𝑘 insertions are performed, the size of 𝑇 is simply a sum of inde-
pendent geometric random variables. By a Chernoff bound for sums of independent
geometric random variables, the lemma follows.

We can now construct a simplified local query router. We hash of the elements of
𝑆 to random binary strings, and we place those binary strings in a trie 𝑇 . For each
leaf of 𝑇 corresponding to some 𝑠 ∈ 𝑆, we also store the value 𝑓(𝑠) at that leaf.

In more detail, we can encode the tree, along with the 𝑓 -value for each of the
leaves as follows. Perform a depth-first traversal through the tree, and write down
the sequence of moves that the traversal performs (i.e., moves of the form "go to left
child", "go to right child", "go up"); call this portion of the encoding 𝐸1, and observe

213

that |𝐸1| is Θ(|𝑇 |) bits. Then write down the 𝑓 -values for the leaves in the same
order that they appear in the depth-first traversal of the tree (it is straightforward
to encode the value in such a way that it can easily be determined where one value
begins and another finishes); call this portion of the encoding 𝐸2, and observe that
|𝐸2| is Θ(|𝑆|+

∑︀
𝑠∈𝑆 log 𝑓(𝑠)) bits.

The total number of bits in the encoding is |𝐸1|+|𝐸2| = 𝑂(|𝑇 |+|𝑆|
∑︀

𝑠∈𝑆 log 𝑓(𝑠))
which, by Lemma 122, has expected value 𝑂(|𝑆|+

∑︀
𝑠∈𝑆 log 𝑓(𝑠)). Lemma 122 further

tells us that, for any positive constant 𝑐, there exists a positive constant 𝜀 such that
|𝐸1| ≤ (log 𝑛)/𝑐 with probability 1 − 1/𝑛𝜀. Since, by assumption, we have that
|𝐸2| = 𝑂(log 𝑛), it follows that the total encoding takes 𝑂(log 𝑛) bits. Finally, since
|𝐸1| ≤ (log 𝑛)/𝑐, and since 𝐸2 can be broken into 𝑂(1) lists of 𝑓 -values that are
(log 𝑛)/𝑐 bits each, we can implement insertions/deletions/queries on the encoding
in constant time using lookup-table-friendly functions. (Note that, when we insert a
new element into the trie, we need to know the random string corresponding to the
leaf that the insertion ends up splitting—this is where our data structure makes use
of the oracle 𝑔, which allows for us to recover the key corresponding to any leaf of the
trie in constant time.)

In the preceding paragraphs, we have constructed a constant-time simplified local
query router, and since the reduction from a full local query router to a simplified local
query router is without loss of generality, we have also completed the construction
and analysis for the full local query router.

12.5 An Optimal Augmented Open-Addressed Hash
Table

Using the techniques developed in the previous sections, we can now construct a
dynamically-resized augmented open-addressed hash table that stores Θ(log 𝑛)-bit
key-value pairs, that supports insertions/deletions in time 𝑂(𝑘), that supports queries
in time 𝑂(1), and that achieves 𝑂(log(𝑘) 𝑛) wasted bits per key. (The running-time
and space guarantees are with high probability in 𝑛). By Corollary 121, our data
structure achieves the best possible tradeoff curve between time and space that any
augmented open-addressed hash table can achieve.

We break the section into three parts:

• Subsection 12.5.1 constructs a fixed-capacity hash table that uses 𝑛𝑤 +
𝑂(𝑛 log(𝑘) 𝑛) bits of space to store 𝑛 𝑤-bit keys-value pairs.

• Subsection 12.5.2 shows how to make the hash table dynamically-resizable.

• And Subsection 12.5.3 reduces the space consumption to be within 𝑂(𝑛 log(𝑘) 𝑛)
bits of the information-theoretic optimum.

214

12.5.1 Turning the 𝑘-Kick Tree into a Hash Table

In this section, we construct a fixed-capacity hash table that uses 𝑛𝑤 +𝑂(𝑛 log(𝑘) 𝑛)
bits of space to store 𝑛 𝑤-bit keys-value pairs.

The layout. Let 𝐾 = polylog 𝑛 be a parameter. We hash keys to (1+1/𝐾1/3)(𝑛/𝐾)
bins, each of which we refer to as a cubby. With high probability in 𝑛, each cubby
receives at most 𝐾 keys at any particular time.

Each cubby maintains a storage array capable of storing up to 𝐾 keys/values.
Keys are assigned a position in the storage array using the 𝑘-kick tree from Theorem
109 for some parameter 𝑘. (We will discuss how to do this time-efficiently later.) The
parameter 𝑘 will determine the tradeoff between time and space efficiency in our data
structure.

Recall that the 𝑘-kick tree associates each key 𝑥 with a random sequence of hash
functions 𝑔0(𝑥), . . . , 𝑔𝑘(𝑥), where each 𝑔𝑖+1(𝑥) is a child bin of 𝑔𝑖(𝑥). Of course, 𝑔𝑘(𝑥)
determines all of 𝑔1, . . . , 𝑔𝑘−1(𝑥), and one way to pick 𝑔𝑘(𝑥) is to select a random
𝑔(𝑥) ∈ [𝐾], and set 𝑔𝑘(𝑥) to be the depth-𝑘 bin that contains position 𝑔(𝑥). We will
refer to 𝑔(𝑥) as 𝑥’s preferred slot (within the cubby).

For each cubby, and for each 𝑖 ∈ [𝐾], we maintain a local query router that stores
metadata for the keys who have preferred slot 𝑔(𝑥) = 𝑖. For each such key 𝑥, the
local query router stores the index 𝑗 such that 𝑥 is in position ℎ𝑗(𝑥) of the cubby—if
𝑥 is stored at depth 𝑖 by the 𝑘-kick tree, then we can store 𝑗 using 𝑂(log(𝑖+1)𝐾) =
𝑂(log(𝑖+2) 𝑛) bits. As a slight abuse of notation, to simplify discussion throughout
the rest of the chapter, we shall redefine the probe complexity of 𝑥 to be exactly
Θ(log(𝑖+1)𝐾), even though technically the true probe complexity may be smaller.

We store the 𝐾 local query routers in a mini-array 𝐴. The result is that any key
𝑥 in the data structure can be recovered by (a) hashing to the appropriate cubby;
(b) finding the 𝑔(𝑥)-th local query router in the mini-array; and (c) using that local
query router to determine which slot of the storage array the key resides in. Note
that the array 𝐴 is local to each individual cubby.

Implementing insertions/deletions/queries in constant time. We have al-
ready seen how to implement queries in constant time using the mini-array 𝐴 of
local query routers. Deletions can also be implemented in constant time by simply
removing the key/value pair.

Insertions are slightly more tricky, however. Recall that the balls-to-slots scheme
has 𝑘 + 1 classes of bin sizes, where the sizes are denoted 𝑠0, . . . , 𝑠𝑘. Note that, in
this setting, 𝑠0 = 𝐾 = polylog 𝑛 and 𝑠𝑖 = poly(log(𝑖+1) 𝑛) for each 𝑖 ∈ [𝑘].

Let us start by ignoring depth 0 and discuss how to implement depths 1, . . . , 𝑘.
We maintain a second mini-array 𝑀 storing metadata for each of the 𝐾/𝑠1 depth-1
bins. For each such bin, the metadata that we store is the information of which slots
are free in that bin, and for each slot that is not free in that bin, what the depth is for
the element in that slot. In aggregate, this information comprises poly(log log 𝑛) bits.

215

Using this metadata, along with the mini-array 𝐴, we can use lookup-table-friendly
functions to implement the portions of an insertion that occur in depths 1, . . . , 𝑘 in
time 𝑂(𝑘) (i.e., we can perform the entire insertion, except possibly the final step in
which we must find a free slot to place some depth-0 element in).

The only task that remains is to locate a free slot in depth-0 (i.e., in the entire
cubby). For this, we can simply maintain a loglog𝑛𝐾 = 𝑂(1)-depth tree with uniform
fanout log 𝑛, in which each internal node stores a log 𝑛-bit bitmap indicating which
of its children contain at least one free slot, and each leaf stores a log 𝑛-bit bitmap
indicating which of the log 𝑛 slots corresponding to that leaf are free. We refer to this
as the free-slot tree. The free-slot tree supports constant-time modifications and
queries (where a query finds a free slot).

Proving correctness. We now establish the correctness of our data structure.
Lemma 123. The above data structure correctly implements inser-
tions/deletions/queries, ensures that insertions/deletions take time 𝑂(𝑘) with
high probability in 𝑛, and ensures that queries take time 𝑂(1) deterministically.

Proof. By a Chernoff bound, each cubby has at most 𝐾 keys at any specific time, so
each insertion has a high probability of hashing to a cubby that has room for it. This
means that the 𝑘-kick tree can operate correctly without overflowing.

We next verify that each of the local query routers operates correctly: each local
query router requires that it store metadata for at most 𝑂(log / log log 𝑛) keys, and
that each key has at most 𝑂(log log 𝑛) bits of metadata. The first requirement follows
by a Chernoff bound on the number of keys that hash to a given cubby and have a
given value of 𝑔(𝑥). (The number of such keys has expected value 1, and is at most
𝑂(log 𝑛/ log log 𝑛) with high probability in 𝑛.) The second requirement follows from
the fact that each key has probe complexity 𝑂(log𝐾) = 𝑂(log log 𝑛) bits in the
balls-to-slots scheme.

Next we verify that each mini-array operates correctly: each mini-array requires
that its entries are each 𝑂(log 𝑛) bits. This is immediate for 𝑀 , and for 𝐴 it follows
from the fact that each local query router takes 𝑂(log 𝑛) bits (with high probability).

Since the requirements for correctness have been met for each mini-array and
query-router, all of them will support constant-time operations with high probability
in 𝑛. It follows that insertions and deletions are correct and take 𝑂(𝑘) time (with
high probability)10, and that queries are correct and take 𝑂(1) time deterministically.

Finally, we analyze the space consumed by our data structure. We shall assume
that the number 𝑤 of bits taken by each key/value pair satisfies 𝑤 = Θ(log 𝑛).
Lemma 124. With high probability in 𝑛, the size of the data structure is 𝑛𝑤 +
𝑂(𝑛 log(𝑘) 𝑛) bits.

10In the low-probability event that an insertion fails to be implementable, either because a cubby
overflows, or because a query-router overflows, we simply rebuild the entire data structure from
scratch.

216

Proof. We start by bounding the space consumed by storage arrays. There are (1 +
1/𝐾1/3)𝑛/𝐾 cubbies each of which has a storage array of size 𝐾𝑤 bits. This reduces
to

(1 + 1/𝐾1/3)𝑛𝑤 = 𝑛𝑤 + 𝑜(𝑛)

bits.
Next we bound the expected space consumed by the mini-arrays 𝐴 and 𝑀 in a

cubby. If a cubby has 𝑗 ≤ 𝐾 keys and their probe complexities are 𝑎1, . . . , 𝑎𝑗, then the
expected space consumed by 𝐴 and 𝑀 is 𝑂(𝐾 +

∑︀
𝑖 𝑎𝑖) bits (this is expected rather

than worst-case because the local query routers may add more bits in the worst case).
On the other hand, by Theorem 109,

E

[︃
𝐾 +

∑︁
𝑖

𝑎𝑖

]︃
= 𝑂(𝐾 log(𝑘+2) 𝑛) = 𝑂(𝐾 log(𝑘) 𝑛).

Thus the expected amount of space used by the mini-arrays in a given cubby is
𝑂(𝐾 log(𝑘) 𝑛). Summing over the cubbies, the total amount of space used by mini-
arrays in the data structure is

𝑂(𝑛 log(𝑘) 𝑛)

bits in expectation.
We can turn this into a high-probability bound as follows. Define

𝑟1, . . . , 𝑟(1+1/𝐾1/3)𝑛/𝐾 so that 𝑟𝑖 is the number of bits consumed by the mini-arrays
in the 𝑖-th cubby. Note that each 𝑟𝑖 is deterministically at most 𝑂(𝐾 log 𝑛), since the
data structure is rebuilt whenever either (1) more than 𝐾 elements simultaneously
hash to some cubby, or (2) 𝜔(log 𝑛) bits are needed for some local query router in
some cubby. Moreover, regardless of the outcomes of {𝑟𝑗 | 𝑗 ̸= 𝑖}, we have that
E[𝑟𝑖] = 𝑂(𝐾 log(𝑘) 𝑛). Thus we can apply a Chernoff bound to deduce that

∑︀
𝑖 𝑟𝑖

is tightly concentrated around its mean, so the total space used by mini-arrays is
𝑂(𝑛 log(𝑘) 𝑛) bits with high probability in 𝑛.

Putting the pieces together, we have the following theorem:
Theorem 125. Let 𝑤 = Θ(log 𝑛) and 𝑘 ∈ [log* 𝑛]. One can construct a dictionary
that stores up to 𝑛 𝑤-bit key/value pairs, while supporting insertions/deletions in
time 𝑂(𝑘), supporting queries in time 𝑂(1), and using total space 𝑤𝑛+𝑂(𝑛 log(𝑘) 𝑛)
bits, with high probability in 𝑛.

The preceding theorem has several limitations that we will remove in the coming
sections. The first limitation is that our hash table does not yet support dynamic
resizing (i.e., it has a fixed capacity). The second limitation is that our hash table
stores each key/value pair in its entirety, even though information-theoretically, only
𝑤 − log 𝑛 + 𝑂(1) bits are needed per key/value pair. Each of the next two sections
will remove one of these constraints.

We conclude the section by proving a simple technical lemma about cubbies that
will be useful later. The lemma says that, even though modifying a cubby takes time
𝑂(𝑘), we can build a cubby from scratch in linear time 𝑂(𝐾).

217

Lemma 126. Let 𝑆 be a set of at most 𝐾 key/value pairs. We can construct a
cubby storing 𝑆 in time 𝑂(𝐾) with high probability in 𝑛

Proof. Recall that keys are stored in one of 𝑘 + 1 depths. Inserting a key into depth
𝑖 takes up to 𝑂(𝑖) time, since we may have to relocate one key in each of depths
𝑖 − 1, . . . , 0. To get around this issue, we build the cubby as follows: we first try to
place each key into depth 𝑘, and if a key cannot be placed in depth 𝑘 (either because
there is no room, or because the key has hash 𝑠(𝑥) < 𝑘, then we do not insert the
key); we then try to place the remaining keys into depth 𝑘 − 1, and again if a key
cannot be placed into depth 𝑘 − 1, then we do not insert the key; we continue like
this for each of depths 𝑘 − 2, 𝑘 − 3, . . . , 0 one after another.

For each key 𝑥, define 𝑗𝑥 so that 𝑘− 𝑗𝑥+1 is the depth at which 𝑥 ends up being
inserted. The total time to build the cubby is 𝑂(

∑︀
𝑥 𝑗𝑥). Define 𝑟𝑥 to be the probe

complexity of 𝑥. Then 𝑗𝑥 ≤ 𝑂(1) + 𝑟𝑥/ log
(𝑘) 𝑛. Thus the total time to build the

cubby is
𝑂(𝐾) +𝑂(

∑︁
𝑥

𝑟𝑥/ log
(𝑘) 𝑛).

We know from the analysis in Theorem 109 that E[
∑︀

𝑥 𝑟𝑥] ≤ 𝑂(𝐾 log(𝑘) 𝑛), so the
expected time to build the cubby is 𝑂(𝐾).

To turn this into a high-probability bound, we must obtain a high-probability
bound on

∑︀
𝑥 𝑗𝑥. For this, we can perform a similar analysis as in Theorem 110. Break

the cubby into
√
𝐾 parts. Since there are at most 𝐾 = polylog 𝑛 elements total, the

number of elements that hash to any given part is at most
√
𝐾(1+1/ polylog 𝑛) with

high probability in 𝑛. If a part receives more than
√
𝐾 keys, then call the remaining

𝐾/ polylog 𝑛 keys that it receives extra keys. Modify the construction of the cubby
so that we first find places for all of the non-extra keys, and then we insert the extra
keys—since there are so few extra keys, they add a negligible total amount to the
running time. Define 𝐽1, . . . , 𝐽√𝐾 so that 𝐽𝑖 is the sum of the depths of the up to 𝐾
non-extra keys that map to the 𝑖-th part. By the same analysis as above, we have that
E[𝐽𝑖] = 𝑂(

√
𝐾) for each 𝑖, regardless of the outcomes of the outcomes of {𝐽𝑟 | 𝑟 ̸= 𝑖}.

We also have that 𝐽𝑖 ≤ 𝑂(𝑘
√
𝐾) deterministically. Thus we can apply a Chernoff

bound to 𝐽 =
∑︀√

𝐾
𝑖=1 𝐽𝑖 to determine that 𝐽 = 𝑂(𝐾) with high probability in 𝑛. This

implies that the total construction time for the cubby is 𝑂(𝐾), as desired.

12.5.2 Supporting Dynamic Resizing

In this section, we adapt the hash table from the previous section in order to support
dynamic resizing: the amount of space that the hash table consumes will now be a
function of the current number 𝑛 of elements in the table, rather than some maximum
capacity 𝑛.

To begin, we will focus on supporting 𝑛 in a fixed range [𝑁, 2𝑁], and we shall
assume that the size of a key-value pair is 𝑤 = Θ(log𝑁) bits. At the end of the
section, we will generalize to allow for 𝑛 to vary over a polynomial range (i.e., it is

218

subject only to the constraint that log 𝑛 = Θ(𝑤)). (And, in fact, later in Section
12.6.1, we will show how fully generalize for arbitrary values of 𝑛.)

The basic layout. Let 𝐾 = polylog𝑁 and let 𝑘 ∈ [log*𝐾] be a parameter. Our
hash table will consist of 𝑁/𝐾 facilities, where each facility contains Θ(𝐾) elements.
When an element is inserted, it is hashed to a random facility.

Each facility is composed of many cubbies (implemented as in the previous section)
of different sizes. More specifically, at any given moment, we will always maintain a
distribution invariant, which guarantees that for each facility there are:

• Θ((log(𝑘) 𝑛)2) cubbies of capacity 𝐾/(log(𝑘) 𝑛)2;

• and Θ
(︁

(log(𝑗) 𝑛)2

(log(𝑗+1) 𝑛)2

)︁
cubbies of size 𝐾/(log(𝑗) 𝑛)2, for each 𝑗 ∈ [𝑘 − 1].

We say that an cubby is 𝑗-tiered if its size is 𝐾/(log(𝑗) 𝑛)2. The way to think about
the distribution of cubby sizes is that, for each 𝑗 < 𝑘, the total size of the 𝑗-tiered
cubbies is asymptotically equal to the size of a single 𝑗 +1-tiered cubby. That is, for
𝑗 < 𝑘, there are at most 𝑂(𝐾/(log(𝑗+1) 𝑛)2) elements in 𝑗-tiered cubbies at a time.

At any given moment, one of the 1-tiered cubbies is designated as the tail. The
second invariant that we will maintain is that, at any given moment, all of the cubbies
except for the tail are completely full. We call this the saturation invariant.

We will describe how to efficiently maintain the distribution and saturation invari-
ants shortly, but first we finish describing the layout of a facility. Each facility must
always store the following: (a) pointers to all of the cubbies stored in the facility; and
(b) metadata allowing for queries to determine which cubby the key they are looking
for is in. Since each cubby has size polylog 𝑛, the pointers to cubbies take negligible
space. The metadata for queries can be stored as follows: we maintain a mini-array
𝐷 with 𝐾 entries; we hash each key 𝑥 to one of the entries of the mini-array, and
each entry stores a local query router that maps each key 𝑥 to the appropriate cubby.
Note that, if a key 𝑥 is in a 𝑘-tiered cubby, then we can can indicate which 𝑘-tiered
cubby it is in using

𝑂(log(log(𝑘) 𝑛)2) = 𝑂(log(𝑘+1) 𝑛)

bits; and if a key 𝑥 is in a 𝑗-tiered cubby for some 𝑗 < 𝑘, then we can indicate which
cubby 𝑥 is in using

𝑂

(︃
log(𝑘 − 𝑗) + log

(log(𝑗) 𝑛)2

(log(𝑗+1) 𝑛)2

)︃
= 𝑂

(︁
log(𝑘 − 𝑗) + log(𝑗+1) 𝑛

)︁
bits. Since 𝑘 − 𝑗 ≤ log*𝑁 − 𝑗 = Θ(log* log(𝑗) 𝑛) = 𝑂(log(𝑗+1) 𝑛), the number of bits
needed to indicate which cubby 𝑥 is in can be upper-bounded by

𝑂(log(𝑗+1) 𝑛).

In general, keys that are in lower-tiered cubbies require more bits of metadata than

219

those that are in higher tiers; but since there aren’t very many low-tier keys, the
total amount of metadata will remain small. (We’ll see the full analysis of space
consumption later in the section.)

Enforcing the invariants. We enforce the saturation invariant as follows. When-
ever a deletion occurs in some non-tail cubby 𝑠, we move one of the elements from the
tail to that cubby 𝑠. Whenever an insertion occurs in the facility, we place the new
element into the tail. Whenever the tail fills up, we create a new tail, and whenever
the tail empties out, we eliminate that cubby, and declare another one of the 1-tiered
cubbies to be the new tail.

For each 𝑗 ∈ [𝑘 − 1], define 𝑡𝑗 = (log(𝑗) 𝑛)2

(log(𝑗+1) 𝑛)2
to be the target number of 𝑗-tiered

cubbies. This means that 𝑡𝑗 is also the number of 𝑗-tiered cubbies whose aggregate
size equals one 𝑗 + 1-tiered cubby. Let 𝑟𝑗 = 𝐾/(log(𝑗) 𝑛)2 be the size of a 𝑗-tiered
cubby.

To enforce the distribution invariant, we must accommodate for the fact that
new 1-tiered cubbies are being added and removed over time. In general, for each
𝑗 ∈ [𝑘 − 1], whenever the number of 𝑗-tiered cubbies falls below 𝑡𝑗/2, we take one of
the 𝑗 + 1-tiered cubbies and rebuild it as 𝑡𝑗 cubbies with tier 𝑗 (this is a 𝑗-creation
rebuild). And whenever the number of 𝑗-tiered cubbies rises above 3𝑡𝑗, we take
𝑡𝑗 cubbies with tier 𝑗 and rebuild them as a single 𝑗 + 1-tiered cubby (this is a
𝑗-destruction rebuild).

We will describe how to deamortize these rebuilds (without compromising time or
space efficiency) shortly. For now, let us simply observe that we only need to perform
at most one 𝑗-creation rebuild for every Θ(𝑟𝑗+1) insertions that occur and we only
need to perform at most one 𝑗-destruction rebuild for every Θ(𝑟𝑗+1) deletions that
occur. By Lemma 126, each 𝑗-creation rebuild and each 𝑗-destruction rebuild can be
performed in time Θ(𝑟𝑗+1), with high probability in 𝑛. It follows that, for each 𝑗, the
amortized time cost of the 𝑗-rebuilds is 𝑂(1) per insertion/deletion. Since there are
𝑘 levels, the amortized time cost of all rebuilds is 𝑂(𝑘) per operation.

When enforcing the saturation and distribution invariants, there is one technical
subtlety that we must be careful about. Whenever we move an element from the
tail cubby to another cubby, we should always choose that element at random11; and
whenever we perform a 𝑗-destruction rebuild, we should partition the elements in
the 𝑗 + 1-tiered cubby randomly across the 𝑡𝑗 new 𝑗-tiered cubbies being created.
Call the random bits used to perform these choices the non-hash randomness.
Importantly, our use of non-hash randomness ensures that that for any given key 𝑥,
the choice of which cubby it is currently in (within the facility that it hashes to) is

11Note the it takes constant time to choose a random key in the tail cubby, since the tail cubby
consists of only a 𝑂(1/ log 𝑛)-fraction of the keys in the facility, so we can afford to use an extra
log 𝑛 bits per key in the tail in order to maintain an auxiliary random-choice data structure that
lets us select random keys. In fact, at any given moment, we should maintain a random-choice data
structure for both the tail and Θ(1) other cubbies in the same tier; this ensures that when one tail
gets eliminated, another is ready to use. The constructions of the random-choice data structures are
straightforward to deamortize to take 𝑂(1) time per insertion/deletion.

220

always a function exclusively of the sequence of operations that has been performed
and of non-hash randomness, and it is not a function of the hash functions used to
perform insertions/deletions in cubbies.

Finally, we must describe how to deamortize the 𝑗-creation and 𝑗-destruction
rebuilds for all 𝑗 ∈ [𝑘 − 1]. A critical observation here is that all of the facilities
have almost exactly the same sizes as each other at any given moment. Indeed,
assuming that 𝐾 is sufficiently large in polylog 𝑛, then a Chernoff bound tells us
that all of the facilities have the same number of elements as each other up to a
factor of 1 ± 1/ polylog 𝑛. Thus, we can synchronize the rebuilds for the facilities,
so that whenever we perform a 𝑗-creation or 𝑗-destruction rebuild, we are actually
performing a rebuild on all of the facilities at once over the course of Θ(𝑟𝑗+1𝑁/𝐾)
operations. When this happens, we perform the rebuild on one facility at a time
(so it doesn’t matter whether we perform the rebuild space efficiently); when we
are performing a rebuild on a facility, some insertions/deletions on that facility may
occur concurrently, but with high probability in 𝑛 those operations will affect a total
of 𝑂(1) distinct keys, and thus can easily be incorporated into the rebuild. Each
𝑗-creation and 𝑗-destruction takes total time Θ(𝑟𝑗+1𝑁/𝐾) across all facilities, and
we only have to perform such a 𝑗-creation or 𝑗-destruction once every Θ(𝑟𝑗+1𝑁/𝐾)
insertion/deletions on the hash table. Thus, for each 𝑗, we can spread out the work of
performing 𝑗-creations/destructions to be 𝑂(1) time per insertion/deletion. Summing
over 𝑗 ∈ [𝑘 − 1], this amounts to 𝑂(𝑘) work per insertion/deletion.

This concludes the discussion of how to correctly enforce the two invariants with-
out affecting space efficiency, and with only 𝑂(𝑘) extra time being spent per inser-
tion/deletion.

Analyzing space efficiency. We first analyze the total space consumed by cubbies,
and then we analyze the total space consumed by the mini-arrays 𝐷 in each facility.

Within a given facility, all of the cubbies are completely full except for the tail.
The tail cubby takes total space at most 𝑂(𝐾/ log 𝑛) machine words, which equals
𝑂(𝐾) bits; thus the total space consumed by tails adds only 𝑂(1) bits per key in
the hash table. The cubbies that are full can be analyzed exactly as in Lemma 124,
allowing us to conclude that their total space consumption is 𝑛𝑤+𝑂(𝑛 log(𝑘) 𝑛) bits.

Now let us analyze the space consumption of the mini-array 𝐷 within a given
facility. For each key 𝑥 we store which cubby it is in. As discussed earlier in the
section, if the key is in a 𝑗-tiered cubby for some 𝑗, then it takes only Θ(log(𝑗+1) 𝑛)
bits to encode which cubby the key is in (note that this is always at most (log log 𝑛)
bits, which means that it can be encoded as an 𝑓 -value in a local query router). On
the other hand, for each 𝑗 ∈ [𝑘 − 1], the fraction of keys that are in a 𝑗-tiered cubby
is 𝑂(1/(log(𝑗+1) 𝑛)2). Thus the average size of the metadata in 𝐷 that we are storing

221

for each key 𝑥 is

𝑂(log(𝑘+1) 𝑛) +
∑︁
𝑗<𝑘

𝑂

(︃
log(𝑗+1) 𝑛

(log(𝑗+1) 𝑛)2

)︃
= 𝑂(log(𝑘+1) 𝑛) +𝑂(1)

= 𝑂(log(𝑘) 𝑛)

bits. By the same argument as in Lemma 124 (for bounding the total amount of
space used by local query routers in cubbies), we can deduce that, across the entire
data structure, the total space used by mini-arrays 𝐷 is 𝑂(𝑛 log(𝑘) 𝑛) bits, with high
probability in 𝑛.

Thus, across the entire data structure, the total space consumption is

𝑛𝑤 +𝑂(𝑛 log(𝑘) 𝑛)

bits, as desired.

Supporting large changes in size. So far we have focused exclusively on the case
where the average size of each cubby stays within the range [𝐾, 2𝐾].

We can generalize this to support a larger range of sizes with the following ap-
proach. Every time that the hash table’s size changes by a constant factor, we move
all of the elements from the current hash table 𝐻1 into a new hash table 𝐻2 whose
capacity is twice as large (resp. small) as that of 𝐻1. This means that each facility
(resp. pair of adjacent facilities) in 𝐻1 becomes a pair of adjacent facilities (resp. sin-
gle facility) in 𝐻2. The transformation from 𝐻1 to 𝐻2 takes 𝑂(𝑛𝑘) time, and can be
spread across Θ(𝑛) insertions/deletions to take 𝑂(𝑘) time each. The transformation
can also be performed space efficiently, by transforming one facility (resp. one pair
of facilities) at a time, so that each key/value pair only takes up space in one of the
two hash tables.

Putting the pieces together, we arrive at the following theorem:
Theorem 127. One can construct a dictionary storing 𝑤-bit key/value pairs so that
if 𝑛 is the current number of keys and 𝑘 ∈ [log* 𝑛], insertions/deletions take time
𝑂(𝑘), queries take time 𝑂(1), and, if log 𝑛 = Θ(𝑤), the total space consumption
is 𝑤𝑛 + 𝑂(𝑛 log(𝑘) 𝑛) bits. The running-time and space guarantees are with high
probability in 𝑛.

12.5.3 Succinctness Through Quotienting

In this section, we modify our hash table so that it can store 𝑛 keys from a polynomial-
size universe 𝑈 in total space

log

(︂
|𝑈 |
𝑛

)︂
+Θ

(︁
𝑛 log(𝑘) 𝑛

)︁
= 𝑛 log

(︂
|𝑈 |
𝑛

)︂
+Θ

(︁
𝑛 log(𝑘) 𝑛

)︁
222

bits, where log
(︀|𝑈 |
𝑛

)︀
is the information-theoretical lower bound on the number of bits

needed to store 𝑛 elements from a universe of size |𝑈 |. If we are also storing 𝜆-bit
values for some 𝜆 = 𝑂(log 𝑛), then our total space consumption becomes

𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝜆+Θ

(︁
𝑛 log(𝑘)

)︁
bits.

A recap: the current structure of our hash table. Before we begin, let us
briefly recap the structure of our hash table, and give names to the components and
hash functions that are used. At any given moment, use 𝑁 to denote the power-of-two
range [𝑁, 2𝑁] that the current table-size 𝑛 is in.

The layout of our hash table is as follows: for some parameter 𝐾 = polylog𝑁 ,
there are 𝑁/𝐾 facilities, each of which contains a metadata mini-array 𝐷 of size 𝐾.
Call the metadata array in the 𝑖-th facility 𝐷𝑖, and think of the 𝐷𝑖s as partitioning a
larger array 𝐷* with 𝑁 entries. Each key 𝑥 hashes to a random facility 𝑖, and then
to a random slot in that facility’s array 𝐷𝑖—equivalently, this means that each key 𝑥
hashes to a random slot 𝑔*(𝑥) in the array 𝐷*.

Once a key 𝑥 selects a facility, the key 𝑥 is then assigned to one of the cubbies in
the 𝑖-th facility (and the local query router 𝐷*[𝑔*(𝑥)] stores which cubby 𝑥 is assigned
to).

Each cubby 𝐼, capable of storing |𝐼| keys, has the following layout. The cubby
maintains two metadata mini-arrays 𝐴𝐼 and 𝑀𝐼 and a storage array 𝑆𝐼 of size |𝐼|; the
mini-array 𝐴𝐼 stores local query routers, the mini-array 𝑀𝐼 stores metadata used to
implement insertions/deletions in constant time, and the array 𝑆𝐼 stores the actual
key/value pairs. Each key 𝑥 stored in the cubby hashes to some target position
𝑔𝐼(𝑥) ∈ [|𝐼|], and this target position is used both to determine (a) which query-
router in 𝐴𝐼 handles key 𝑥, and (b) what 𝑥’s target position is in the 𝑘-kick tree used
to determine where keys go in 𝑆𝐼 .

It turns out that, in this section, it will be important that the hash function 𝑔𝐼
reuses the random bits from 𝑔*, so 𝑔𝐼(𝑥) is the lowest-order log |𝐼| bits of 𝑔*(𝑥). As
a convention, when discussing the bits of a number 𝑎, we will use 𝑎[𝑖, 𝑗] to refer to
bits ranging from the 𝑖-th least significant bit to the 𝑗 least significant bit, for 𝑖 ≤ 𝑗.
Thus 𝑔𝐼(𝑥) = 𝑔*(𝑥)[1, log |𝐼|]. Also, using the same notation, if 𝑟 is the facility that
a key 𝑥 is in, then 𝑟 = 𝑔*(𝑥)[log𝐾 + 1, log𝑁].

Modifying the data structure to use quotienting. We can make our data
structure more space efficient by using the quotienting technique [226]. Let 𝜋 be a
random permutation hash function on the universe 𝑈 .12 By applying 𝜋 to each key
that we are storing, we can assume that the keys being stored form a random subset
of 𝑈 .

12Recall that in Section 12.2.4, we discussed how to simulate permutation hash functions that are
poly(𝑛)-independent.

223

Since the keys 𝑥 are random, we can define 𝑔*(𝑥) to simply be the first log𝑁 bits of
𝑥, that is, 𝑔*(𝑥) = 𝑥[1, log𝑁]. We then make two modifications to our data structure:
first, we modify each cubby so that its storage array stores only the final log𝑈− log𝑁
bits 𝑥[log𝑁 +1, log |𝑈 |] of each key 𝑥 (as well as the 𝜆-bit value stored with the key);
second we add additional metadata (which we will describe in a moment) so that, for
each key 𝑥, we can recover the first log𝑁 bits of 𝑥 despite the fact that we are not
explicitly storing them.

The metadata that we add is the following. For each cubby 𝐼, we add a new
mini-array 𝐵𝐼 of size |𝐼|. If 𝑆𝐼 [𝑖] is empty (there is no key stored there), then 𝐵𝐼 [𝑖]
stores nothing. Otherwise, if 𝑥 is the key being stored in 𝑆𝐼 [𝑖], then 𝐵[𝑖] stores
the following two quantities: (a) the difference 𝑔𝐼(𝑥) − 𝑖 and (b) the log(𝐾/|𝐼|) bits
𝑥[log |𝐼|+1, log𝐾] of 𝑔*(𝑥). The first quantity can be added to 𝑖 to reconstruct 𝑔𝐼(𝑥) =
𝑥[1, log |𝐼|]. The second quantity can be appended to 𝑔𝐼(𝑥) to obtain 𝑔(𝑥)[1, log𝐾] =
𝑥[1, log𝐾]. And finally, the facility number can be used to recover the final log𝑁 −
log𝐾 bits of 𝑔*(𝑥) (i.e., if we are in facility 𝑟 then 𝑥[log𝐾+1, log𝑁] = 𝑔*(𝑥)[log𝐾+
1, log𝑁] = 𝑟). This means that we can reconstruct the entire quantity 𝑔*(𝑥) =
𝑥[1, log𝑁], which are the bits of 𝑥 that we do not explicitly store.

To analyze our new data structure, there are two tasks that we must complete.
The first is to analyze the amount of space used by the 𝐵𝐼 ’s. The second is to handle
the fact that the hash function 𝑔*(𝑥) is no longer a fully independent hash function,
and instead contains small negative correlations between keys (by virtue of being a
permutation hash function).

Analyzing space consumption. Let 𝑅 be the total number of bits used to store
the metadata mini-arrays 𝐵𝐼 for each cubby 𝐼. Then the total space consumed by
our data structure is

𝑛(log𝑁 − log𝑈 + 𝜆) +𝑂(𝑅 + 𝑛 log(𝑘) 𝑛) = 𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝜆+𝑂

(︁
𝑅 + 𝑛 log(𝑘) 𝑛

)︁
.

Thus, we wish to show that 𝑅 ≤ 𝑂(𝑛 log(𝑘) 𝑛). To prove this, we will show that the
metadata stored by the 𝐵𝐼 ’s takes at most as much total space as the metadata stored
in other mini-arrays in the data structure. Since we have already bounded the space
consumption of those other mini-arrays by 𝑂(𝑛 log(𝑘) 𝑛) bits (with high probability),
it follows that the same bound applies to the 𝐵𝐼 ’s.

For each key 𝑥 in some position 𝑖, 𝐵𝐼 stores the quantity 𝑔𝐼(𝑥)−𝑖. Notice, however,
that the number of bits needed to store this quantity is simply the probe complexity
of 𝑥 in the cubby. The same number of bits are already stored in 𝐴𝐼 in order to route
queries.

The second quantity that 𝐵𝐼 stores for 𝑥 is log(𝐾/|𝐼|) bits of 𝑔*(𝑥). If |𝐼| has size
𝐾/ log(𝑗) 𝑛, then this quantity is Θ(log(𝑗+1) 𝑛) bits. But that’s the same number of
bits that are already being stored for 𝑥 in the metadata mini-array 𝐷*.

224

Thus the total space consumed by our hash table is

𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝜆+𝑂

(︁
𝑛 log(𝑘) 𝑛

)︁
bits.

Proving correctness in the face of negative dependencies. Our final task is
to handle the fact that the hash function 𝑔* is not a fully independent hash function.
Recall that we generate 𝑔* by first performing a random permutation 𝜋 on the universe
(so each 𝑥 ∈ 𝑈 is mapped to 𝜋(𝑥)), and then setting 𝑔*(𝑥) to be 𝜋(𝑥) mod 𝑁 . The
problem is that the 𝜋(𝑥)’s form a random subset of 𝑈 without replacement. This
means that the quantities 𝜋(𝑥) are necessarily unique, which prevents them from
being totally independent from one another.

There are three places in our analysis where we must be careful:

• For the 𝑘-kick tree analysis from Theorem 109 to apply to each cubby, we need
to be able to apply a Chernoff bound to the number of keys 𝑥 in the cubby that
have 𝑔𝐼(𝑥) in any given sub-interval 𝐽 ⊆ [|𝐼|].

• In order so that each local query router in 𝐷* (and each local query router in
each 𝐴𝐼) stores metadata for at most 𝑂(log 𝑛/ log log 𝑛) keys, we need to be
able to apply a Chernoff bound to the number of keys that hash to a given local
query router.

• So that the facilities can all be resized simultaneously, we need each facility to
contain at most (1 + 1/ polylog 𝑛)𝐾/𝑛 keys, at any given moment, with high
probability in 𝑛. In other words, we need to be able to apply Chernoff bounced
the number of keys 𝑥 that hash to a given facility.

In summary, for any subset 𝑄 ⊆ [𝑁], we need to be able to apply a Chernoff
bound to the number of keys 𝑥 satisfying 𝑔*(𝑥) ∈ 𝑄. Or, more generally, for any
subset 𝑄 ⊆ 𝑈 , we need to be able to apply a Chernoff bound to the number of keys
𝑥 that satisfy 𝜋(𝑥) ∈ 𝑄.13

Fortunately, the indicator random variables 𝑄𝑥 indicating whether 𝜋(𝑥) ∈ 𝑄 are
negatively correlated. That is, for any subset 𝑅 ⊆ [𝑈] we have

Pr

[︃∏︁
𝑥∈𝑅

𝑄𝑥 = 1

]︃
≤
∏︁
𝑥∈𝑅

Pr[𝑄𝑥 = 1] =

(︂
|𝑄|
|𝑈 |

)︂|𝑅|

.

13Technically, we also want to be able add conditions to this as follows: we want to be able to
apply a Chernoff bound to the number of keys 𝜋(𝑥) ∈ 𝑄, having already conditioned on which keys
𝑥 ∈ 𝑈 satisfy 𝜋(𝑥) ∈ 𝑄′ for some 𝑄′ ⊃ 𝑄. (This lets us split each cubby into polylog 𝑛 chunks that
are analyzed independently.) These conditioned Chernoff bounds can be achieved in the same way
as the condition-free Chernoff bounds.

225

Chernoff bound are known to hold for indicator random variables satisfying this type
of negative correlation (see, e.g., Section 1.3.1 of [212]). Thus, our high-probability
analysis from the previous sections continues to hold without modification.

Putting the pieces together, we arrive at the following theorem:
Theorem 128. Suppose we wish to store key/value pairs where keys are from a
universe 𝑈 , and values are 𝜆 ≤ 𝑂(log |𝑈 |) bits. Assume a machine-word size of
Ω(log |𝑈 |) bits and let 𝑘 ≥ 0.

One can construct a dictionary that supports insertions/deletions in time 𝑂(𝑘),
that supports queries in time 𝑂(1), and that offers the following guarantee on space:
if the current number of keys is 𝑛, and log |𝑈 | = Θ(log 𝑛), then the total space
consumption is

𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝜆+𝑂

(︁
𝑛 log(𝑘) 𝑛

)︁
bits. The running-time and space guarantees are with high probability in 𝑛.

12.6 Large Keys, Small Keys, and Filters

In this section, we give three extensions of Theorem 128. In Subsection 12.6.1, we
consider the setting in which key/value pairs are 𝑤 = 𝜔(log 𝑛) bits, and we show that
the guarantee of 𝑂(log(𝑘) 𝑛) wasted bits per key can be extended to any 𝑤 ∈ 𝑛𝑜(1).
In Subsection 12.6.2, we consider the setting in which key/value pairs are very small,
taking a total of log 𝑛+𝑠 bits for some 𝑠 = 𝑜(log 𝑛). We show that, if 𝑠 is even slightly
sublogarithmic, then it is possible to reduce the number of wasted bits per key all
the way to 𝑜(1). Finally, in Subsection 12.6.3, we apply our results to the problem of
constructing space-efficient dynamic filters.

Our results on very-large and very-small keys both hinge on novel reductions
that transform the the very-large/very-small case into the standard Θ(log 𝑛)-bit case.
These reductions may be independently useful in future work.

12.6.1 Supporting Large Keys/Values

So far we have restricted ourselves to the case where keys/values are 𝑂(log 𝑛) bits
each. We prove the following theorem:
Theorem 129. Suppose we wish to store key/value pairs where keys are from a
universe 𝑈 = [2𝑎] and values are 𝑏 bits. Assume a machine-word size of Ω(𝑎+ 𝑏) bits
and let 𝑘 ≥ 0.

One can construct a dictionary that supports insertions/deletions in time 𝑂(𝑘),
that supports queries in time 𝑂(1), and that offers the following guarantee on space:
if the current number of keys is 𝑛, and 𝑎+𝑏 ≤ 𝑛𝑜(1), then the total space consumption
is

𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝑏+𝑂

(︁
𝑛 log(𝑘) 𝑛

)︁
226

bits. The running-time and space guarantees are with high probability in 𝑛.

Historically, the task of supporting universes 𝑈 of superpolynomial size has proven
to be quite difficult. Indeed, the best known guarantees for worst-case constant-time
hash tables [52,245] use

log

(︂
|𝑈 |
𝑛

)︂
+ Ω(min(|𝑈 |Ω(1), 𝑛 log 𝑛))

bits of space,14 and the best known guarantee for constant expected-time hash tables
[313] uses

log

(︂
|𝑈 |
𝑛

)︂
+ Ω(𝑛 log(𝑎+ 𝑏))

bits of space. In contrast, Theorem 129 says that, as the size of the universe grows,
the number of wasted bits per key does not—it remains 𝑂(log(𝑘) 𝑛) bits per key even
for very large keys/values.

There are several reasons that large universes are difficult to handle. One difficulty
is that it is not known how to efficiently perform quotienting on keys from large
universes. For any universe 𝑈 , it is known how to construct an efficient family of 𝑛𝜀-
wise (1/ poly(𝑛))-dependent permutations [218, 250, 277]—but each member 𝜋 ∈ Π
requires |𝑈 |Ω(1) bits to store, so if |𝑈 | is super-polynomial, then we cannot store 𝜋 in
polynomial space. This has prevented past work [52, 75, 245] from using quotienting
on large universes. Another difficulty [52,75,245] with large universes is that we can
no longer afford to store lookup tables of size |𝑈 |Ω(1)—this is a serious bottleneck for
any hash table that uses the Method of Four Russians (including the hash tables in
this chapter) as a path to worst-case constant-time operations. Finally, even if both
of these issues were eliminated, the known techniques [52, 245, 313] for constructing
succinct hash tables would still incur an asymptotic blow-up in wasted-bits-per-key
as the universe size grows.

In this section, we present a new approach for handling large universes that lets
us get around all of the above issues at once. Define an (𝑎, 𝑏)-dictionary to be
a dictionary that stores 𝑎-bit keys with 𝑏-bit values. We prove that there is an
efficient (high probability) reduction from the problem of constructing a succinct
(𝑎, 𝑏)-dictionary to the problem of constructing a succinct (Θ(log 𝑛), 𝑎+𝑏−Θ(log 𝑛))-
bit dictionary. This means that we can always assume that keys are Θ(log 𝑛) bits.
Once we have proven this reduction, our only challenge will be to handle large values,
which it turns out will be relatively straightforward using the techniques we have
already developed.

The reduction is captured in the following theorem.

14The result of Liu et al. [245] uses log
(︀|𝑈 |

𝑛

)︀
+ |𝑈 |Ω(1) bits of space and the result of Arbitman et

al. [52] uses log
(︀|𝑈 |

𝑛

)︀
+Ω(𝑛 log 𝑛) bits of space. The solution that Arbitman et al. use is to just hash

elements to a polynomial-size universe—if one is willing to allow for query-correctness to be violated
a 1/ poly 𝑛 fraction of the time, then it suffices to store only these hashes, but otherwise one must
also store the entire original element.

227

Theorem 130. Let 𝑎, 𝑏,𝑁, 𝛾 ∈ N be parameters, and let 𝛾 > 0 be a sufficiently
large constant. Suppose that 𝑎 ≥ 𝛾 log𝑁 , and suppose that the machine-word size 𝑤
satisfies 𝑤 ≥ Ω(𝑎+ 𝑏). Finally let 𝑓𝑁(𝑛) be a non-negative non-decreasing function.

Suppose we have a dynamically resizable (𝛾 log𝑁, 𝑎+ 𝑏− 𝛾 log𝑁 + 1)-dictionary
𝑆 that is capable of storing 𝑛 key-value pairs in space 𝑛(𝑎 + 𝑏 − log 𝑛) + 𝑓𝑁(𝑛) bits
for any 𝑛 ∈ [𝑁], while offering running-time guarantees that are high-probability in
𝑁 . Then we can construct a dynamically resizable (𝑎, 𝑏)-dictionary 𝐿 that is capable
of storing 𝑛 key-value pairs in space 𝑛(𝑎 + 𝑏 − log 𝑛) + 𝑓(𝑛) + 𝑂(

√
𝑁) bits, for any

𝑛 ∈ [𝑁], and that, with high probability in 𝑁 , takes at most 𝑂(1) more time per
operation than does 𝑆.

Proof. To capture the fact that 𝛾 is at least a sufficiently large positive constant, we
shall treat 𝛾 as an asymptotic variable. We implement 𝐿 with three data structures:

• The first data structure is the (𝛾 log𝑁, 𝑎+ 𝑏− 𝛾 log𝑁 + 1)-dictionary 𝑆;

• The second data structure is a dynamically resizable (
√
𝛾 log𝑁, log𝑁)-

dictionary 𝐷1 that can store 𝑟 keys/value pairs in 𝑂(𝑟
√
𝛾 log𝑁 +

√
𝑁) bits

of space for any 𝑟 ≤ 𝑁 , and that supports constant-time operations with high
probability in 𝑁 ;

• The third data structure is a (
√
𝛾 log𝑁, 𝑎+ 𝑏− 𝛾 log𝑁 +

√
𝛾 log𝑁)-dictionary

𝐷2 that can store 𝑟 key/value pairs in Θ(𝑟
√
𝛾 log𝑁 +

√
𝑁)+𝑟(𝑎+ 𝑏−𝛾 log𝑁 +√

𝛾 log𝑁) bits of space for any 𝑟 ≤ 𝑁 , and that supports constant-time opera-
tions with high probability in 𝑁 .

Let us briefly comment on how to implement 𝐷1 and 𝐷2. Notice that 𝐷1 does not
need to be succinct (or even compact)—it can be implemented using any standard
constant-time dictionary that supports load factor Ω(1). To implement 𝐷2, we store
values with a layer of indirection, meaning that the dictionary allocates separate
(𝑎+𝑏−𝛾 log𝑁+

√
𝛾 log𝑁)-bit chunks of memory for each individual value, and stores

a Θ(log𝑁)-bit pointer to that value. The (
√
𝛾 log𝑁,𝑂(log𝑁))-dictionary that stores

the keys and the pointers can again be implemented with any standard constant-time
dictionary that supports load factor Ω(1).15

For any key 𝑥 ∈ [2𝑎], define the core 𝜑(𝑥) to be the first 𝛾 log𝑁 bits of 𝑥, and
define 𝜓(𝑥) to be the final |𝑥| − 𝛾 log𝑁 bits of 𝑥. So 𝜑(𝑥) ∘ 𝜓(𝑥) = 𝑥.

We will use 𝑆 to store key/value pairs of the form (𝜑(𝑥), 𝜓(𝑥) ∘ 𝑦 ∘ ℓ) where
ℓ ∈ {0, 1} is an extra bit of information that we call the abundance bit. If there is
exactly one key 𝑥 ∈ 𝐿 with a given core 𝜑(𝑥), then 𝑆 stores (𝜑(𝑥), 𝜓(𝑥)∘𝑦∘0). If there
is more than one key 𝑥 with a given core 𝑗 = 𝜑(𝑥), then 𝑆 stores (𝜑(𝑥), 𝜓(𝑥) ∘ 𝑦 ∘ 1)
for one such key/value pair (𝑥, 𝑦). The fact that the abundance bit is set to 1 in
this latter case indicates that there are also other key/value pairs (𝑥′, 𝑦′) satisfying

15We remark that the
√
𝑁 term in the space-usage for 𝐷1 and 𝐷2 stems from the fact that, in

order for the probabilistic guarantees of 𝐷1 and 𝐷2 to be high-probability in 𝑁 , we need 𝐷1 and
𝐷2 to be size at least poly𝑁 .

228

𝜑(𝑥′) = 𝜑(𝑥). In this case, we say that the core 𝜑(𝑥) is rabid, and any key 𝑥′ ̸= 𝑥
that has core 𝜑(𝑥′) = 𝜑(𝑥) is also said to be a rabid key (regardless of whether 𝑥′ is
a member of the dictionary 𝐿 that we are constructing).

Rabid keys 𝑧 ∈ 𝐿 (and their corresponding values 𝑤) are stored as follows. Let
ℎ(𝜑(𝑧)) ∈ [

√
𝛾 log𝑁] be a pairwise-independent hash, and let 𝑔(𝑧) ∈ [

√
𝛾 log𝑁] also

be a pairwise-independent hash. We store the pair (𝑔(𝑧), ℎ(𝜑(𝑧)) ∘ 𝜓(𝑧) ∘ 𝑤) in 𝐷2.
If we ever attempt to insert a key 𝑔(𝑧) into 𝐷2 that is already there (i.e., we have a
collision), then we rebuild the entire data structure with new random bits (this only
occurs with probability 1/ poly𝑁 per insertion). Finally, for each rabid core 𝜑(𝑧), we
store the pair (ℎ(𝜑(𝑧)), 𝑞) in 𝐷1, where 𝑞 is a reference counter keeping track of the
number of rabid keys in 𝐿 have that core.

The data structure 𝐷1 has two purposes. The first (and less important) purpose is
to maintain the reference counter 𝑞 so that, on deletions, we know when there are no
longer any rabid elements with a given core 𝜑(𝑧), at which point we can both remove
ℎ(𝜑(𝑧)) from 𝐷1 and we can set the abundance bit for 𝜑(𝑧) in 𝑆 to be 0.

The more important purpose of𝐷1, however, is to detect collisions between ℎ(𝜑(𝑧))
and ℎ(𝜑(𝑧′)) for rabid keys 𝑧, 𝑧′ satisfying 𝜑(𝑧) ̸= 𝜑(𝑧′). Whenever we insert some
rabid key 𝑧, we can tell based on the abundance bit for 𝜑(𝑧) (prior to the insertion)
whether this is the first rabid key in 𝐿 to have core 𝜑(𝑧); if it is the first such rabid
key, but there is already a pair of the form (ℎ(𝜑(𝑧)), 𝑞) in 𝐷1, then that means a
collision on ℎ has occurred, and we rebuild the entire data structure from scratch.
Such collisions occur with probability only 1/ poly𝑁 per insertion.

What 𝐷1 ensures is that ℎ is injective on the set of rabid cores—that is, if 𝜑(𝑧)
and 𝜑(𝑧′) are two different rabid cores, then ℎ(𝜑(𝑧)) ̸= ℎ(𝜑(𝑧′)). It follows that there
is a bijection between rabid keys 𝑧 ∈ 𝑈 and pairs (ℎ(𝜑(𝑧)), 𝜓(𝑧)). Thus 𝐷2 can be
used to perform queries on rabid keys 𝑧 as follows: check if there is a key-value pair
of the form (𝑔(𝑧), ℎ(𝜑(𝑧)) ∘ 𝜓(𝑧) ∘ 𝑤); if there is, then return value 𝑤, and otherwise
declare that 𝑧 is not present.

It is straightforward to perform insertion/deletion/queries using 𝑆,𝐷1, 𝐷2. Note
that, if a non-rabid key 𝑥 is deleted from 𝐿, but there is a rabid key 𝑥′ in 𝐿 that has
the same core 𝜑(𝑥′) = 𝜑(𝑥), then we must move one such rabid key 𝑥′ out of (𝐷1, 𝐷2)
and into 𝑆 (so that 𝑥′ is no longer rabid).

Our final task is to analyze the space consumption of our data structure 𝐿. We
will use 𝑟 to denote the number of rabid keys in 𝐿, and we will use 𝑘 to denote the
number of non-rabid keys in 𝐿 (so 𝑛 = 𝑘+ 𝑟). Since 𝛾 is a sufficiently large constant,
the data structures 𝐷1 and 𝐷2 collectively use

𝑂(
√
𝑁) +𝑂(𝑟

√
𝛾 log𝑁) + 𝑟(𝑎+ 𝑏− 𝛾 log𝑁 +

√
𝛾 log𝑁)

bits of space, where the final term accounts for the space consumed by the values of
𝐷2, and the first two terms account for the space consumed by the rest of 𝐷1, 𝐷2.
Using the fact that 𝛾 is a sufficiently large positive constant, it follows that 𝐷1 and
𝐷2 collectively use

𝑂(
√
𝑁) + 𝑟(𝑎+ 𝑏− log 𝑛)

229

bits. The data structure 𝑆, on the other hand, uses

𝑘(𝑎+ 𝑏− log 𝑛) + 𝑓(𝑘) ≤ 𝑘(𝑎+ 𝑏− log 𝑛) + 𝑓(𝑛)

bits. The total number of bits used is therefore

𝑛(𝑎+ 𝑏− log 𝑛) + 𝑓(𝑛) +𝑂(
√
𝑁).

The result of Theorem 130 is that we can always assume without loss of generality
that our keys are size 𝑂(log 𝑛) bits. Thus, in order to prove Theorem 129, it suffices
to construct an (𝑂(log 𝑛), 𝑏)-dictionary, where the only constraint on 𝑏 is 𝑏 ≤ 𝑛𝑜(1)

(and where the machine-word size 𝑤 satisfies 𝑤 ≥ Ω(log 𝑛+ 𝑏)).

Storing large values space efficiently. To store large values, we exploit an in-
teresting feature of the dynamically resizable dictionary that we constructed for the
proof of Theorem 128: in each facility, all of the cubbies except for the tail are com-
pletely full. Thus, for each cubby 𝐼 (except for the tail), we can allocate 𝑏𝐼 bits of
space 𝑉𝐼 to store values—the key stored in the 𝑗-th position of 𝐼 has its value stored
in bits (𝑗 − 1)𝑏 + 1, . . . , 𝑗𝑏 of 𝑉𝐼 . Importantly, 𝑉𝐼 is fully saturated, so it wastes no
space.

To handle the keys/values in the tail, recall that the tail consists of less than an
𝑂(1

log𝑛
)-fraction of the keys in the cubby. Thus, we can individually allocate space

for each value in the tail, and we can store a Θ(log 𝑛)-bit pointer to that value. The
Θ(log 𝑛)-bit pointers contribute only 𝑂(1) amortized bits of space overhead per key
in the data structure.

One technical detail that we must be careful about is that, whenever an cubby
toggles between being/not-being the tail, we must change how the values are stored
in that cubby. This is straightforward to do in a deamortized fashion using the same
deamortized-rebuilding techniques as in Section 12.5.2.

In summary, we have the following lemma:
Lemma 131. Suppose we wish to store key/value pairs where keys are from a uni-
verse 𝑈 = [2𝑎], values are 𝑏 bits. Suppose 𝑎 = 𝑂(log 𝑛) and 𝑏 ≤ 𝑛𝑜(1). Assume a
machine-word size of Ω(𝑎+ 𝑏) bits. Finally, let 𝑘 ≥ 0.

One can construct a dictionary that supports insertions/deletions in time 𝑂(𝑘),
that supports queries in time 𝑂(1), and that offers the following guarantee on space:
if the current number of keys is 𝑛, then the total space consumption is

𝑛 log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝑏+𝑂

(︁
𝑛 log(𝑘) 𝑛

)︁
bits. The running-time and space guarantees are with high probability in 𝑛.

Combined, Theorem 130 and Lemma 131 imply Theorem 129.

230

12.6.2 Optimizing for Very Small Keys

In this section we consider the case of very small keys, that is keys of size log 𝑛 +
𝑜(log 𝑛) bits. For most of the section we shall focus exclusively on dictionaries that
store keys without values, but at the end of the section we will also generalize to the
case where the dictionary also stores very small values.

We begin with the fixed-capacity case. We show that, if keys are of size log 𝑛+ 𝑠
for some 𝑠 ≤ log 𝑛/ log log · · · log 𝑛 (where there are a constant number of logarithms),
then it is possible to construct a constant-time dictionary with 𝑜(1) wasted bits per
key.
Theorem 132. Let 𝑘, 𝑛 be parameters, where 𝑘 ∈ [log* 𝑛]. Let 𝜑 = Θ(log(𝑘) 𝑛).
Let 𝑈 = [2log𝑛+𝑠] for some 𝑠 satisfying 𝑠 ∈ 𝜔(1) ∩ 𝑜(log 𝑛) and suppose that 𝑠 ≤
𝑂(log 𝑛/𝜑).

There exists a fixed-capacity dictionary that stores up to 𝑛 keys from 𝑈 at a time,
that supports insertions/deletions in time 𝑂(𝑘) (with high probability in 𝑛), that
supports queries in time 𝑂(1), and that uses a total of

log

(︂
|𝑈 |
𝑛

)︂
+ 𝑜(𝑛)

bits of space (with high probability in 𝑛).

We will assume without loss of generality that 𝜑 ≤ log log 𝑛 and that 𝜑 is rounded
to the nearest power of two. We will also assume without 𝜑 = 𝜔(1), since the fact
that 𝑠 = 𝑜(log 𝑛) ensures that the theorem requirements hold for some 𝜑 = 𝜔(1).
And finally, we will assume without loss of generality that 𝑠 ≤ 𝑜(log 𝑛/𝜑), since we
otherwise can replace 𝜑 with 𝜑′ = Θ(log(𝑘+1) 𝑛) and prove the theorem for the new
𝜑′.

We begin by describing the data structure. First, we assume that the keys form
a random subset of 𝑈 ; as noted in Section 12.2.4, it is known how to construct
permutation hash functions that simulate this assumption while preserving time and
space guarantees.

We use the first log(𝑛/𝜑) bits of each key to assign it to a random one of 𝑛/𝜑
bins 𝑅1, . . . , 𝑅𝑛/𝜑. We maintain an array 𝐴 of 𝑛/𝜑 𝑂(log 𝜑)-bit counters 𝐴1, . . . , 𝐴𝑛/𝜑,
where each 𝐴𝑖 is always in the range [0, 100𝜑]. Whenever we insert an element 𝑥 that
maps to some bin 𝑅𝑖, we examine the counter 𝐴𝑖. If 𝐴𝑖 < 100𝜑, then we declare 𝑥 to
be standard and we increment 𝐴𝑖; otherwise, we declare 𝑥 to be non-standard, and
we leave 𝐴𝑖 unchanged. Similarly, we decrement 𝐴𝑖 whenever we delete a standard
element 𝑥 that belongs to bin 𝑅𝑖, but we do not decrement 𝐴𝑖 when we delete a
non-standard element.

We take different approaches to storing standard versus non-standard elements.
Non-standard elements are stored in a secondary backyard hash table 𝐵, con-
structed via Theorem 128 to incur 𝑂(log(𝑘+1) 𝑛) wasted bits per key. The large num-
ber of wasted bits per key is okay because only a small number of elements will reside

231

in 𝐵.
Standard elements, on the other hand, are stored as follows. For any given bin

𝑅𝑖, we encode the set of standard elements that reside in that bin using a single
𝑜(log 𝑛)-bit integer 𝐸𝑖 (we will describe how to construct 𝐸𝑖 later). Importantly, the
number of bits used for 𝐸𝑖 is a strict function of the number 𝐴𝑖 of elements being
encoded.

Since different 𝐸𝑖s have different sizes, we cannot store them contiguously in an
array. Instead, we again make use of Theorem 128. We maintain 100𝜑 dynamically-
resized hash tables𝐻1, . . . , 𝐻100𝜑, each of which is parameterized to incur𝑂(log(𝑘+1) 𝑛)
wasted bits per key. For each bin 𝑅𝑖, we store the key-value pair (𝑖, 𝐸𝑖) in hash-table
𝐻𝐴𝑖

. Notice that this construction ensures that each hash table 𝐻𝑖 storing fixed-size
keys and values. Also notice that, even though the 𝐻𝑖s incur a relatively large number
of wasted bits per key, there are only 𝑂(𝑛/𝜑) total elements in the 𝐻𝑖s, one for each
of the 𝑛/𝜑 bins.

To complete the description of the data structure, we show that it is possible to
encode each 𝐸𝑖 space efficiently.
Lemma 133. For any bin 𝑅𝑖, the set of standard keys in that bin can be encoded us-
ing log

(︀
𝜑2𝑠

𝐴𝑖

)︀
+𝑂(1) = 𝑜(log 𝑛) bits. Moreover, the encodings can be updated/queried

in constant time using 𝑂(
√
𝑛) bits of metadata.

Proof. Recall that keys are log 𝑛 + 𝑠 bits. All of the keys in 𝑅𝑖 agree on their first
log(𝑛/𝜑) bits, so they differ in only their final 𝑠+log 𝜑 bits. The number of possibilities
for the 𝐴𝑖 keys encoded by 𝐸𝑖 is (︂

𝜑2𝑠

𝐴𝑖

)︂
.

If we can show that this is 2𝑜(log𝑛), then the lemma follows from the Method of
Four Russians (see discussion in Section 12.4). To complete the proof, observe that(︂

𝜑2𝑠

𝐴𝑖

)︂
≤
(︂
(log log 𝑛)2𝑜((log𝑛/𝜑))

𝑂(𝜑)

)︂
≤ log

(︀
(log log 𝑛)2𝑜(log𝑛/𝜑)

)︀𝑂(𝜑)

≤ (log log 𝑛)𝑂(log log𝑛)2𝑜(log𝑛)

≤ log 2𝑜(log𝑛).

We now proceed to bound the space consumption of the hash table. We begin
with a simple approximation for binomial coefficients.
Lemma 134. For all 𝑎 = 𝜔(𝑏), we have

log

(︂
𝑎

𝑏

)︂
= 𝑏 log 𝑎− 𝑏 log 𝑏+ 𝑏 log 𝑒± 𝑜(𝑏),

232

and for all 𝑎 ≥ 𝑏, we have

log

(︂
𝑎

𝑏

)︂
≤ 𝑏 log 𝑎− 𝑏 log 𝑏+ 𝑏 log 𝑒+ 𝑜(𝑏).

Proof. If 𝑎 = 𝜔(𝑏), then

log

(︂
𝑎

𝑏

)︂
= log

(︂
𝑎 · (𝑎− 1) · · · (𝑎− 𝑏+ 1)

𝑏!

)︂
= log

(︂
𝑎𝑏

𝑏!

)︂
± 𝑜(𝑏)

= 𝑏 log 𝑎− log(𝑏!)± 𝑜(𝑏)

= 𝑏 log 𝑎− 𝑏 log 𝑏+ 𝑏 log 𝑒± 𝑜(𝑏),

where the final step follows from Stirling’s inequality. By a similar sequence of argu-
ments, if 𝑎 ≥ 𝑏, then

log

(︂
𝑎

𝑏

)︂
= log

(︂
𝑎 · (𝑎− 1) · · · (𝑎− 𝑏+ 1)

𝑏!

)︂
≤ log

(︂
𝑎𝑏

𝑏!

)︂
= 𝑏 log 𝑎− log(𝑏!)± 𝑜(𝑏)

= 𝑏 log 𝑎− 𝑏 log 𝑏+ 𝑏 log 𝑒± 𝑜(𝑏).

Next we bound the number of elements in the backyard, at any given moment.
Lemma 135. With high probability in 𝑛, the number of non-standard elements is
𝑂(𝑛/2𝜑) at any given moment.

Proof. Break the bins 𝑅1, 𝑅2, . . . , 𝑅𝑛/𝜑 into 𝑚 = (𝑛/𝜑)/ polylog 𝑛 collections
𝐶1, . . . , 𝐶𝑚, each consisting of some number ℓ = polylog 𝑛 of bins. The assignments of
keys to bins are negatively correlated, so we can use a Chernoff bound for negatively
correlated random variables [212] to deduce that, with high probability in 𝑛, the
number of keys assigned to any given collection is at most 2ℓ𝜑 at any given moment.

Let 𝑎1, . . . , 𝑎𝑞 be the set of keys currently present. By a union bound, we have
that with high probability in 𝑛, every chunk 𝐶𝑖 had at most 2ℓ𝜑 keys assigned to it
during each of the time steps in which 𝑎1, . . . , 𝑎𝑞 were inserted. Condition on this
being the case, and further condition on which specific keys hash to which 𝐶𝑖s.

Define 𝑐1, . . . , 𝑐𝑚 so that 𝑐𝑖 is the number of non-standard keys currently in 𝐶𝑖.
Having conditioned on which keys hash to which collections, the 𝑐𝑖s are independent.
We will show that E[𝑐𝑖] = 𝑂(ℓ𝜑/2𝜑), meaning that E[

∑︀
𝑖 𝑐𝑖] = 𝑂(𝑛/2𝜑). Since each 𝑐𝑖

is guaranteed to be at most 2ℓ𝜑 = polylog 𝑛, we can apply a Chernoff bound to the

233

sum
∑︀

𝑖 𝑐𝑖 to deduce that the total number of non-standard elements is 𝑂(𝑛/2𝜑) with
high probability.

We conclude the proof by establishing that E[𝑐𝑖] = 𝑂(ℓ/2𝜑). By linearity of
expectation, it suffices to show that any given key 𝑥 has a 𝑂(1/2𝜑) probability of
being non-standard. This follows by applying a Chernoff bound (again for negatively
correlated random variables) to the number of keys that hash to 𝑥’s bin. When
𝑥 is inserted, there are at most 2ℓ𝜑 keys in 𝑥’s collection, each of which has a 1/ℓ
probability of hashing to 𝑥’s bin, so by a Chernoff bound we have that the probability
of there being already 100𝜑 − 1 keys in 𝑥’s bin is at most 1/2𝜑. This completes the
proof.

We can now bound the total space consumed by the hash table.
Lemma 136. The total space consumed by the hash table is log

(︀
𝑛2𝑟

𝑛

)︀
+ 𝑜(𝑛) bits,

with high probability in 𝑛.

Proof. The array 𝐴 of counters uses 𝑂((𝑛/𝜑) log 𝜑) = 𝑜(𝑛) bits. Let 𝐽0 be the number
of items in the backyard. Then the backyard uses space

log

(︂
𝑛2𝑠

𝐽0

)︂
+𝑂(𝐽0 log

(𝑘+1) 𝐽0)

bits. By Lemma 135, we have 𝐽0 ≤ 𝑂(𝑛/2𝜑) = 𝑜(𝑛/ log(𝑘+1) 𝑛), so the total space
consumed by the backyard is at most

log

(︂
𝑛2𝑠

𝐽0

)︂
+ 𝑜(𝑛)

bits.
For 𝑖 ∈ [𝑛], let 𝐽𝑖 be the number of elements in each 𝐻𝑖. Notice that

∑︀𝑛
𝑖=1 𝐽𝑖 =

𝑛/𝜑. Since 𝐻𝑖 stores log 𝑛-bit keys, stores log
(︀
𝜑2𝑠

𝐴𝑖

)︀
+ 𝑂(1)-bit values ,and wastes

𝑂(log(𝑘+1) 𝑛) bits per key, the total space taken by a given 𝐻𝑖 is

𝑂(𝐽𝑖 log
(𝑘+1) 𝑛) + log

(︂
𝑛

𝐽𝑖

)︂
+ 𝐽𝑖 log

(︂
𝜑2𝑠

𝐴𝑖

)︂
bits.16

Putting the pieces together, the total space consumed by the hash table is

100𝜑∑︁
𝑖=1

𝑂(𝐽𝑖 log
(𝑘+1) 𝑛) +

100𝜑∑︁
𝑖=1

log

(︂
𝑛

𝐽𝑖

)︂
+

𝑛/𝜑∑︁
𝑖=1

log

(︂
𝜑2𝑠

𝐴𝑖

)︂
+ log

(︂
𝑛2𝑠

𝐽0

)︂
+ 𝑜(𝑛).

16Here we ignore the 𝑛1−Ω(1) total bits used for Method of Four Russians and for storing hash
functions.

234

Since
∑︀

𝑖 𝐽𝑖 = 𝑛/𝜑 = 𝑜(𝑛/ log(𝑘+1) 𝑛), this is at most

100𝜑∑︁
𝑖=1

log

(︂
𝑛

𝐽𝑖

)︂
+

𝑛/𝜑∑︁
𝑖=1

log

(︂
𝜑2𝑠

𝐴𝑖

)︂
+ log

(︂
𝑛2𝑠

𝐽0

)︂
+ 𝑜(𝑛).

Applying Lemma 134, the space is at most

100𝜑∑︁
𝑖=1

𝐽𝑖(log 𝑛− log 𝐽𝑖 +𝑂(1)) +

𝑛/𝜑∑︁
𝑖=1

𝐴𝑖 (log(𝜑2
𝑠)− log𝐴𝑖 + log 𝑒+ 𝑜(1))

+ 𝐽0 (log(𝑛2
𝑠)− log 𝐽0 +𝑂(1)) + 𝑜(𝑛)

=

100𝜑∑︁
𝑖=1

𝐽𝑖(log 𝑛− log 𝐽𝑖) +

𝑛/𝜑∑︁
𝑖=1

𝐴𝑖 (log(𝜑2
𝑠)− log𝐴𝑖 + log 𝑒)

+ 𝐽0 (log(𝑛2
𝑠)− log 𝐽0) + 𝑜(𝑛)

=

100𝜑∑︁
𝑖=1

𝐽𝑖(log 𝑛− log 𝐽𝑖) +

𝑛/𝜑∑︁
𝑖=1

𝐴𝑖 (log(𝜑2
𝑠)− log𝐴𝑖)

+ 𝐽0 (log(𝑛2
𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛).

By Jensen’s inequality, the above quantity is maximized by setting 𝐽1, . . . , 𝐽𝜑s to
be equal (so 𝐽𝑖 ≥ 𝑛

2𝜑2
for all 𝑖) and by setting 𝐴1, . . . , 𝐴𝑛/𝜑 to be equal (so 𝐴𝑖 =

235

(𝑛− 𝐽0)/(𝑛/𝜑) for all 𝑖). Thus the number of bits used by the hash table is at most(︃∑︁
𝑖

𝐽𝑖

)︃
·
(︂
log 𝑛− log

𝑛

2𝜑2

)︂
+

(︃∑︁
𝑖

𝐴𝑖

)︃
·
(︂
log(𝜑2𝑠)− log

𝑛− 𝐽0
𝑛/𝜑

)︂

+ 𝐽0 (log(𝑛2
𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

=
𝑛

𝜑
·
(︂
log 𝑛− log

𝑛

2𝜑2

)︂
+ (𝑛− 𝐽0) ·

(︂
log(𝜑2𝑠)− log

𝑛− 𝐽0
𝑛/𝜑

)︂
+ 𝐽0 (log(𝑛2

𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

=
𝑛

𝜑
·Θ(log 𝜑) + (𝑛− 𝐽0) ·

(︂
log(𝜑2𝑠)− log

𝑛− 𝐽0
𝑛/𝜑

)︂
+ 𝐽0 (log(𝑛2

𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

= (𝑛− 𝐽0) ·
(︂
log(𝜑2𝑠)− log

𝑛− 𝐽0
𝑛/𝜑

)︂
+ 𝐽0 (log(𝑛2

𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

= (𝑛− 𝐽0) (log(𝜑2
𝑠)− log 𝜑) + 𝐽0 (log(𝑛2

𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

= (𝑛− 𝐽0)𝑠+ 𝐽0 (log(𝑛2
𝑠)− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛)

= 𝑛𝑠+ 𝐽0 (log 𝑛− log 𝐽0) + 𝑛 log 𝑒+ 𝑜(𝑛).

Since 𝐽0 = 𝑜(𝑛), this is
𝑛𝑠+ 𝑛 log 𝑒+ 𝑜(𝑛),

which by Lemma 134 is

log

(︂
𝑛2𝑠

𝑛

)︂
+ 𝑜(𝑛).

Since insertions/deletions take time 𝑂(𝑘) and queries take time 𝑂(1), the preced-
ing lemma implies Theorem 132.

We conclude the section with several simple corollaries. The first corollary extends
the theorem to store key-value pairs.
Corollary 137. Let 𝑘, 𝑛 be parameters. Let 𝜑 = Θ(log(𝑘) 𝑛). Let 𝑈 = [2log𝑛+𝑠1] and
𝑉 = [2𝑠2] for some 𝑠1, 𝑠2 satisfying 𝑠1 ≥ 𝜔(1) and 𝑠1 + 𝑠2 ≤ 𝑜(log 𝑛) ∩𝑂(log 𝑛/𝜑).

There exists a fixed-capacity dictionary that stores up to 𝑛 keys from 𝑈 at a time,
each of which is associated with a value in 𝑉 ; that supports insertions/deletions in
time 𝑂(𝑘) (with high probability in 𝑛); that supports queries in time 𝑂(1); and that
uses a total of

log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝑠2 + 𝑜(𝑛)

236

bits of space (with high probability in 𝑛).

Proof. This follows from the same sequence of arguments as before, but now we
associate values with keys as well.

The second corollary extends the theorem to support dynamic resizing. Note that,
since we are interested in keys whose lengths are very close to 𝑛, it does not make
sense to talk about 𝑛 changing by a large factor (indeed, this would take us out of
the small-key regime). Thus, we focus on 𝑛 in a range [𝑁/2, 𝑁] for some 𝑁 .
Corollary 138. Let 𝑘,𝑁 be parameters. Let 𝜑 = Θ(log(𝑘)𝑁). Let 𝑈 = [2log𝑁+𝑠1]
and 𝑉 = [2𝑠2] for some 𝑠1, 𝑠2 satisfying 𝑠1 ≥ 𝜔(1) and 𝑠1 + 𝑠2 ≤ 𝑜(log𝑁) ∩
𝑂((log𝑁)/𝜑).

There exists a fixed-capacity dictionary that stores up to 𝑁 keys from 𝑈 at a time,
each of which is associated with a value in 𝑉 ; that supports insertions/deletions in
time 𝑂(𝑘) (with high probability in 𝑁); that supports queries in time 𝑂(1); and that
(with high probability in 𝑁) uses a total of

log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝑠2 + 𝑜(𝑛)

bits of space if 𝑛 ∈ [𝑁/2, 𝑁] is the number of keys currently present.

Proof. This guarantee is already true of our current data structure. Indeed, every
component of the data structure except for the array 𝐴 of counters is a dynamically-
resizable hash table. The array 𝐴 of counters takes 𝑜(𝑛) space, so we only need to
worry about the total space consumed by the dynamically-resizable hash tables. The
proof of Theorem 132 immediately extends to arbitrary 𝑛 ∈ [𝑁/2, 𝑁] to bound the
total space by

log

(︂
𝑢2𝑠1

𝑛

)︂
+ 𝑛𝑠2 + 𝑜(𝑛)

bits.

12.6.3 Constructing Optimal Filters

In this section, we apply our results to the problem of constructing space-efficient
filters. A filter has three parameters: a maximum capacity 𝑛, and a false positive
rate 𝜀 (which we will assume is an inverse power of two), and a universe 𝑈 of keys.
A filter must support insertions/deletions/queries on a dynamic set 𝑆 ⊆ 𝑈 of up to
𝑛 keys. Unlike a dictionary, however, a filter is permitted to sometimes return false
positives on queries: if a key 𝑥 ̸∈ 𝑆 is queried, the filter must correctly return that
𝑥 ̸∈ 𝑆 with probability 1−𝜀, but it is permitted to incorrectly return that 𝑥 ∈ 𝑆 with
probability 𝜀.

Information theoretically, a static filter (i.e., a filter that supports only queries)
must use at least 𝑛 log 𝜀−1 bits. It is known [249] that there exist values of 𝜀 for

237

which a dynamic filter must use at least 𝑛 log 𝜀−1+Ω(𝑛) bits, but it remains an open
question whether there exists a dynamic filter that uses at most 𝑛 log 𝜀−1 +𝑂(𝑛) bits
for all 𝜀. We now establish that, as long as log 𝜀−1 is slightly sublogarithmic in 𝑛,
then such a dynamic filter does, in fact, exist. We also give extremely succinct filters
for the setting where 𝜀−1 = Θ(log 𝑛), bringing the number of wasted bits per key to
be the same as what we have achieved for the dictionary problem.

Reducing the filter problem to the dictionary problem. We begin by reviewing
the standard technique for constructing a filter using a dictionary (see, e.g., [52, 82,
93, 122, 245, 294]). We hash keys 𝑥 ∈ 𝑈 to (log 𝑛+ log 𝜀−1)-bit fingerprints 𝑓(𝑥). We
store the fingerprints {𝑓(𝑥) | 𝑥 ∈ 𝑆} in a hash table, and to answer a query for a key
𝑥, we simply check whether 𝑓(𝑥) is in the hash table. If a key 𝑥 ̸∈ 𝑆 is queried, then
the probability of a false positive is at most∑︁

𝑦∈𝑆

Pr[𝑓(𝑥) = 𝑓(𝑦)] = 𝑛 · 𝜀
𝑛
= 𝜀.

Notice, however, that the fingerprints {𝑓(𝑥) | 𝑥 ∈ 𝑆} form a multi-set, rather than
a set, so we cannot actually store them directly in a hash table. Our solution is to
store one copy of each fingerprint in a hash table 𝒜, and then to store any duplicate
fingerprints in a secondary hash table ℬ that is capable of supporting multi-sets.
Whenever we insert a new key 𝑥, we first try to place 𝑓(𝑥) in 𝒜, and if it is already
there, we place it in ℬ; whenever we delete a key 𝑥, we first try to delete (one copy
of) 𝑓(𝑥) from ℬ, and if it is not there, we delete it from 𝒜; and whenever we query
a key 𝑥, we can just check whether 𝑓(𝑥) ∈ 𝒜.

The hash table ℬ will be significantly smaller than 𝒜, meaning that it does not
have to be highly space efficient. Thus we are able to use of past work on multi-set
dictionaries to implement ℬ:
Lemma 139 (Theorem 1 of [93]). Let 𝜀−1 ∈ [𝜔(1), 𝑂(log 𝑛)]. There exists a high-
probability constant-time hash table that stores an arbitrary multi-set of 𝑚 keys in
(1 + 𝑜(1))𝑚 log 𝜀−1 bits.

In fact, Lemma 139 is stronger than what we need—it would suffice for us to
have a multi-set dictionary using 𝑜(𝑚𝜀−1) bits. Indeed, we can bound 𝑚 = |ℬ| by
𝑂(𝜀𝑛+ log 𝑛) with high probability:
Lemma 140. At any given moment 𝐷 = |{𝑥 ∈ 𝑆 | 𝑓(𝑥) = 𝑓(𝑦) for some 𝑦 ∈
𝑆 ∖ {𝑥}}| satisfies 𝐷 = 𝑂(𝜀𝑛+ log 𝑛) with high probability in 𝑛.

Proof. Let 𝑥1, . . . , 𝑥𝑛 denote the keys in 𝑆, and let 𝑌𝑖 be the 0-1 random variable
indicating whether 𝑓(𝑥𝑖) = 𝑓(𝑥𝑗) for some 𝑗 < 𝑖. Notice that 𝐷 ≤ 2

∑︀
𝑖 𝑌𝑖.

The 𝑌𝑖s are independent, and each 𝑌𝑖 satisfies Pr[𝑌𝑖 = 1] ≤ 𝜀. Therefore we can
apply a Chernoff bound to deduce that 𝐷 = 𝑂(𝜀𝑛 + log 𝑛) with high probability in
𝑛.

By Lemma 140, if 𝜀 = 𝑜(1), then the total number of bits used by ℬ is 𝑜(𝑛) with

238

high probability in 𝑛. On the other hand, if 𝒜 is implemented using a hash table that
wastes 𝑟 bits per key, then it uses a total of at most

log

(︂
𝑛𝜀−1

𝑛

)︂
+ 𝑛𝑟

bits. If we again assume that 𝜀 = 𝑜(1), then by Lemma 134, this is equal to

𝑛 log 𝜀−1 + 𝑛𝑟 + 𝑛 log 𝑒

bits.
Applying Theorems 129 and 132 to construct 𝒜, we arrive at the following result:

Theorem 141. Let 𝜀−1 ∈ [𝜔(1), 𝑂(log 𝑛)] be an inverse power of two, and let 𝑘 ∈
[log* 𝑛] be a parameter. One can construct a filter that has false-positive rate at most
𝜀, that supports queries in constant time, that supports insertions/deletions in time
𝑂(𝑘), and that uses space at most{︃

𝑛 log 𝜀−1 + 𝑛 log 𝑒+ 𝑜(𝑛) if 𝜀−1 ≤ log𝑛

log(𝑘) 𝑛
and log(𝑘) 𝑛 = 𝜔(1)

𝑛 log 𝜀−1 +𝑂(𝑛) +𝑂(𝑛 log(𝑘) 𝑛) otherwise

bits. The time and space guarantees hold for each operation with high probability in
𝑛.

We remark that the size |𝑈 | of the universe does not matter, since we can use hash
function with 𝑂(log 𝑛) description bits (see, e.g., Theorem 14 of [297]) to map |𝑈 | to
a universe of size poly(𝑛), while avoiding collisions with probability 1 − 1/ poly(𝑛).
The 1/ poly(𝑛) collision probability can then easily be absorbed into 𝜀.17

17Notice that the same approach is not legal for hash tables, since the failure probability for a
hash table must be with respect to running time, rather than with respect to correctness. That is,
hash tables are never allowed to return false positives.

239

240

Chapter 13

A Hash Table Without Hash
Functions

241

13.1 Introduction

A dictionary is any data structure that supports insertions, deletions, and queries
on a set 𝑆 of up to 𝑛 keys ; dictionaries often also allow for a user to store a value as-
sociated with each key, which can then be retrieved during queries. Unless stated oth-
erwise, we will assume a machine word of Θ(log 𝑛) bits, which means that keys/values
are also 𝑂(log 𝑛) bits. We will also require implicitly that a dictionary should take at
most linear space (i.e., 𝑂(𝑛 log 𝑛) bits) and that a dictionary should be explicit (i.e.,
it can be initialized in time 𝑂(𝑛)). In fact, the dictionaries in this chapter have the
stronger property that they can be initialized in constant time.

Randomized dictionaries are often also referred to as hash tables.1 A hash table
is said to have failure probability 𝜀 if each operation takes constant time with
probability at least 1 − 𝜀, and is said to succeed with high probability if 𝜀 ≤
1/ poly 𝑛.

A central open question is whether there exists a deterministic constant-time
dictionary. A remarkable success in this direction is Pǎtraşcu and Thorup’s dynamic
fusion node [306], which builds on older work by Fredman and Willard [186] in order
to construct a deterministic constant-time dictionary for very small sets of keys—that
is, sets 𝑆 of at most polylog 𝑛 keys that are Θ(log 𝑛) bits each. For sets of Θ(𝑛) keys,
it is widely believed that (even non-explicit) deterministic constant-time dictionaries
are impossible [341], but we are still very far from having lower bounds to establish
this (see [153,207,295,318,337] for other related work on this question).

In this chapter, we consider a natural relaxation of this question: What is the
smallest failure probability that a hash table can offer [75, 198, 199]? We present the
first hash table to achieve a significantly sub-polynomial failure probability. And we
show that such a hash table can even be made succinct, meaning that it uses space
within a (1 + 𝑜(1)) factor of the information-theoretic optimum.

Past work on super-high-probability guarantees. The study of probabilistic
guarantees for hash tables has, up until now, been intimately tied to the study of
hash-function families [123, 156, 162, 218, 250, 260, 277, 291, 293, 305, 326, 327]. If one
has access to fully-random hash functions, then it is known [75, 198, 199] how to
achieve substantially sub-polynomial failure probabilities. However, as observed by
Goodrich, Hirschberg, Mitzenmacher, and Thaler [199], the known techniques for
simulating constant-time hash functions with high independence [162, 293, 327] are
themselves randomized constructions that introduce an additional 1/ poly(𝑛) proba-
bility of failure. Efforts at reducing these failure probabilities [199] have only been
able to do so at the cost of 𝜔(1) evaluation times.

Of the known families of constant-time hash functions, the only one that has been

1Hash tables are sometimes also informally defined as any solution to the dictionary problem
that makes use of hash functions. We intentionally take a more open-ended perspective as to the
definition of a hash table, so that we include data structures that accomplish the same goal as
traditionally accomplished by hash tables, but using different means.

242

successfully used to obtain a hash table with sub-polynomial failure probabilities
is tabulation hashing [305]. Although the standard analyses of tabulation hashing
include a 1/ poly(𝑛) failure probability, it has been noted by [305] that, in some
parameter regimes, the true failure probability is actually sub-polynomial. Indeed,
one can extend the techniques of [305] to show that tabulation hash functions are
load-balancing with probability 1 − 1/2polylog𝑛, thereby allowing one to construct a
hash table that has a failure probability of 1/2polylog𝑛. To the best of our knowledge,
this remains the smallest failure probability to be achieved by any hash table.

This chapter: hash tables with nearly optimal failure probabilities. We
introduce a simple data structure, which we call the amplified rotated trie, that
offers a failure probability of 1/𝑛𝑛1−𝜀 for an arbitrarily small positive constant 𝜀 of
our choice. Barring a deterministic constant-time dictionary, this is the close to the
strongest guarantee that one could hope for: if there were to exist a hash table with
failure probability 1/𝑛𝜀𝑛, for some positive constant 𝜀 > 0, then that would imply
the existence of a (non-explicit) deterministic constant-time dictionary. Our result
improves significantly over the previous state-of-the-art of 1/2polylog𝑛.

Our second result is that, with a few small modifications, the same data structure
can be used to obtain a very different guarantee. The resulting hash table, which we
call the budget rotated trie, uses �̃�(log 𝑛) random bits to support constant-time
operations with high probability in 𝑛. This guarantee, which has also been achieved
using more classical hashing-based techniques in previous work by Dietzfelbinger et
al. [155], serves as a natural dual to the one above — rather than trying to minimize
failure probability, while using up to 𝑂(𝑛) random bits, one tries to minimize random
bits while maintaining a standard 1/ poly(𝑛) failure probability.

An interesting feature of budget rotated tries is that they are able to make use of
so-called “gradually-increasing-independence hash functions” [123, 260]. These hash
functions, introduced originally by Celis, Reingold, Segev, and Wieder [123] (and
subsequently made more efficient by Meka, Reingold, Rothblum, and Rothblum [260])
can be used to distribute 𝑛 balls roughly evenly across 𝑛 bins using only 𝑂(𝑛 log log 𝑛)
random bits, but come with the seemingly significant drawback that they require
Θ((log log 𝑛)2) time to evaluate. As a consequence, past work on applying these hash
functions to classical hash tables [315] has incurred 𝜔(1) time per operation. Our
approach suggests that such gradually-increasing-independence may be more broadly
applicable to than was previously thought, and can be used in the design of constant-
time data structures.

Achieving succinctness. Finally, we turn our attention to space efficiency. There
has also been a great deal of work on how to construct a succinct hash table (see,
e.g., [75, 85, 245, 313]), that is, a hash table that stores 𝑛 key/values pairs from a
universe 𝑈 in space

(1 + 𝑜(1))ℬ(|𝑈 |, 𝑛)

bits, where ℬ(|𝑈 |, 𝑛) = log
(︀|𝑈 |
𝑛

)︀
is the information-theoretic lower bound on the size

243

of any hash table.
In Section 13.6, we show that the data structures in this chapter can also be made

succinct, in the parameter regime where keys/values are (1 + Θ(1)) log 𝑛 bits. More
generally, we give a black-box transformation that can be applied to any dictionary
in order to obtain a succinct dictionary whose probabilistic guarantees are nearly the
same as the original’s. The new dictionary uses ℬ(|𝑈 |, 𝑛)+𝑂(𝑛(log 𝑛)/ log log 𝑛) bits.

Interestingly, the transformation itself makes use of our (non-succinct) budget
rotated trie as a critical algorithmic component. The transformation also makes
use of a reduction due to Raman and Rao [313], and can be seen as a constant-
time and randomness-efficient version of the succinct dictionary given in [313] (which
guaranteed only constant expected-time operations).

Applying our transformation, we obtain two data structures: we get a succinct
hash table that uses 𝑂(log 𝑛(log log 𝑛)3) = �̃�(log 𝑛) random bits, while supporting
constant-time operations with high probability; and a succinct hash table with a
failure probability of 1/𝑛𝑛1−𝜀 , where 𝜀 is an arbitrarily small positive constant of our
choice.

Circumventing the hash-function bottleneck. At the core of our results is
a simple but powerful observation: that it is possible to construct a hash table that
does not use hash functions, and that is consequently free of the limitations that
hamper known hash-function constructions. In particular, we begin our exposition
by constructing a simple randomized dictionary that we call a rotated radix trie.
Like standard hash tables, the rotated radix trie uses linear space and is constant-time
(with high probability). But unlike standard hash tables, which rely on randomness
supplied by hash functions, the rotated radix trie uses randomness directly embedded
into the data structure. The rotated radix trie then serves as the basis for both the
amplified rotated trie and the budget rotated trie.

Outline. The rest of the chapter proceeds as follows. Section 13.2 presents basic pre-
liminaries and conventions—these are specialized for the setting of non-succinct dic-
tionaries, and slightly different conventions are established later on in Section 13.6 for
discussing succinct dictionaries. Section 13.3 presents and analyzes the rotated radix
trie. Building on this, Section 13.4 gives a hash table that achieves failure probability
1/𝑛𝑛

1−𝜀 and Section 13.5 gives a high-probability hash table using 𝑂(log 𝑛 log log 𝑛)
random bits; in Appendix 13.A, we show that the latter guarantee can also be ex-
tended to the case where machine words are 𝜔(log 𝑛) bits. Finally, in Section 13.6, we
show how to transform any linear-space hash table into a succinct hash table, while
nearly preserving the randomization guarantees of the data structure.

244

13.2 Preliminaries and Conventions (for Non-
Succinct Dictionaries)

We now present several preliminary definitions and conventions for discussing (non-
succinct) dictionaries. These conventions are used throughout the chapter, except in
Section 13.6 where we consider succinct dictionaries. We end up using slightly differ-
ent conventions when discussing non-succinct versus succinct dictionaries because, in
the non-succinct setting, there are a number of standard simplifications that one can
make without loss of generality (but which do not hold in the succinct setting).

Keys, values, and dictionaries. Let 𝑈 = [poly(𝑛)] be the set of all possible
Θ(log 𝑛)-bit keys, and let 𝑉 = [poly(𝑛)] be the set of all possible Θ(log 𝑛)-bit values.
A dictionary is a data structure that stores a set of keys from 𝑈 , and that associates
each key 𝑥 with a value 𝑦 ∈ 𝑉 . Dictionaries support three operations: Insert(𝑥, 𝑦)
adds key 𝑥 to the set, if it is not already there, and sets the corresponding value to
𝑦; Delete(𝑥) removes 𝑥; and Query(𝑥) reports whether key 𝑥 is present, returning the
corresponding value if so.

When discussing non-succinct dictionaries, we focuses (without loss of generality)
on fixed-capacity dictionaries, that is, dictionaries that are permitted to have up to 𝑛
keys at a time. Such dictionaries can be used to implement dynamically-resized dic-
tionaries by simply rebuilding the dictionary (in a deamortized fashion) whenever its
size changes by a constant factor. Unless stated otherwise, we shall require implicitly
that dictionaries must use at most linear space (i.e., 𝑂(𝑛 log 𝑛) bits) and have 𝑂(1)
initialization time.

Standard techniques for simplifying dictionaries. There are several standard
reductions that can be used to simplify the problem of maintaining a linear-space
dictionary.

We can assume without loss of generality that the lifespan of a dictionary is only
𝑂(𝑛) operations. Indeed, longer sequences of operations can be broken into phases of
size 𝑂(𝑛), and the dictionary can be rebuilt from scratch during each phase (i.e., all
of the elements are gradually moved from one instance of the dictionary to another
new instance of the dictionary). The rebuild cost can be spread across the phase so
that the asymptotic running times of operations are preserved.2

Since the lifespan of each phase is only 𝑂(𝑛) operations, we can implement dele-
tions with the following trivial approach: simply mark elements as deleted, and defer
the actual removal of those elements until the next rebuild. As a consequence, when
designing the dictionary that will be used to implement each phase, we can assume
without loss of generality that the only operations performed are insertions/queries.

We will therefore assume throughout the chapter that, whenever we are discussing

2For our purposes, rebuilds do not sample new random bits. Once a dictionary’s random bits are
chosen, they are fixed forever.

245

a non-succinct dictionary, the sequence of operations being performed has length 𝑂(𝑛)
and consists exclusively of inserts/queries.

Randomization. Randomized dictionaries are given access to a stream of random
bits—the dictionary can access the next Θ(log 𝑛) bits of the stream in time 𝑂(1).
When analyzing a randomized dictionary, the goal is to bound the failure prob-
ability for any given operation. We emphasize that, in this context, failure does
not refer to lack of correctness, but instead to lack of timeliness. A dictionary fails
whenever an operation takes super-constant time. (Later, in Section 13.6, when we
consider succinct dictionaries, we will also allow for failures with respect to space
consumption.)

All of our dictionaries share the property that, once a failure occurs, all of the rest
of the operations (in the current phase of 𝑂(𝑛) inserts/queries) also fail. We will not
bother to explicitly specify the dictionary’s behavior when a failure occurs, since at
that point it is okay for each of the remaining operations in the phase to take linear
time.

We remark that randomized data structures are analyzed against oblivious ad-
versaries, meaning that the sequence of insertions/deletions/queries being performed
is determined independently of the random bits that the dictionary uses. We also
remark that the failure probability of a dictionary is determined on a per-operation
basis. For example, if a dictionary has failure-probability 𝑝 and is used for 1/𝑝 oper-
ations, then it is reasonable that some failures should occur.3

13.3 A Warmup Data Structure: The Rotated Trie.

In this section, we present a simple randomized constant-time dictionary, called the
rotated radix trie, that serves as the basis for the data structures in later sections.

The starting place: an 𝑛-ary radix trie. The starting place for our data structure
will be the classic 𝑛-ary radix trie. Each internal node of the trie can be viewed
as an array of size 𝑛, where the 𝑗-th entry of the array stores either a pointer to
child 𝑗, if such a child exists, or a null character otherwise. The leaves of the trie
correspond to the keys in the data structure (and are where we store values). In
general, there is a leaf with root-to-leaf path 𝑗1, 𝑗2, 𝑗3, . . . , 𝑗𝑑 if and only if the key
𝑗1 ∘ 𝑗2 ∘ 𝑗3 ∘ · · · ∘ 𝑗𝑑 ∈ [𝑛𝑑] = [𝑈] is present.

What makes the 𝑛-ary radix trie an interesting starting place is that the trie
deterministically supports constant-time operations. What it does not support is
space efficiency: there may be as many as Θ(𝑛) internal nodes, each of which is an
array of size 𝑛, and which collectively require space Ω(𝑛2) to implement.

3Moreover, failures may be correlated between steps (and between phases). For example, if we
are using 𝑟 random bits, and an adversary guesses them, then they can force failures all the time
with probability 1/2𝑟.

246

Using randomness to save space: the rotated radix trie. We now add ran-
domness to our data structure in a very simple way. Label the internal nodes of the
trie by 1, 2, . . . ,𝑚 for some 𝑚 ∈ 𝑂(𝑛), and refer to the array used to implement
each internal node 𝑖 ∈ [𝑚] as 𝐴𝑖. When the data structure is initialized, we assign
to each internal node 𝑖 a random rotation 𝑟𝑖 selected uniformly at random from
{0, 1, . . . , 𝑛− 1}. The rotation 𝑟𝑖 is stored as part of the node 𝑖.

The purpose of 𝑟𝑖 is to apply a random cyclic rotation to the array 𝐴𝑖. That is,
if a pointer would have been stored in position 𝑗 of 𝐴𝑖, it is now stored in position
((𝑗 + 𝑟𝑖) mod 𝑛) of 𝐴𝑖 instead.

Finally, having rotated each of the arrays 𝐴𝑖 by 𝑟𝑖, we now overlay the arrays
𝐴1, 𝐴2, . . . , 𝐴𝑚 on top of one another, and we store the contents of all of them in a
single array 𝐴 of size 𝑛. Of course, the 𝑗-th position of 𝐴 may be responsible for
storing elements from multiple 𝐴𝑖s. As long as the number of elements stored in
each entry is relatively small, then this is fine: we simply implement each entry of 𝐴
as a dynamic fusion node [306], which is a deterministic constant-time linear-space
dictionary capable of storing up to ℓ = polylog 𝑛 key/value pairs at a time.

If, prior to collapsing the arrays into a single array 𝐴, the the 𝑗-th position of
rotated array 𝐴𝑖 stored a pointer to array 𝐴𝑖′ , then afterwards the dynamic fusion
node 𝐴[𝑗] stores the key-value pair (𝑖, (𝑖′, 𝑟𝑖′)). In this setting, we refer to the pair
(𝑖′, 𝑟𝑖′) as a pointer to 𝐴𝑖′ , since it dictates which array 𝐴𝑖′ we are pointing at and
where to find the entries of 𝐴𝑖′ . Similarly, if prior to collapsing the arrays, the 𝑗-th
position of the rotated array 𝐴𝑖 stored a pointer 𝑝 directly to a value (rather than to
another array 𝐴𝑖′), then the dynamic fusion node 𝐴[𝑗] stores the key-value pair (𝑖, 𝑝).

Analyzing the rotated radix trie. To analyze the rotated radix trie, we must show
that, with high probability in 𝑛, each entry of 𝐴 is responsible for storing entries from
at most ℓ = polylog 𝑛 different 𝐴𝑖s.

Let us first establish some conventions that will be useful throughout the rest of
the chapter. When discussing a radix trie, we will refer to the arrays 𝐴1, 𝐴2, . . . , 𝐴𝑚
as the nodes (or sometimes as the internal nodes), and we will refer to the non-null
entries of each 𝐴𝑖 (i.e., the entries containing pointers) as balls.

In total, there are 𝑂(𝑛) balls in the trie. Each ball 𝑏 is specified by a pair (𝑠, 𝑐) ∈
[𝑚] × [𝑛], where 𝑠 ∈ [𝑚] is the source node for the ball (i.e., the node containing
the ball), and 𝑐 ∈ [𝑛] is the child index of the ball (i.e., the index in 𝐴𝑖 where 𝑏 is
logically stored). The effect of randomly rotating the arrays 𝐴𝑖 and then overlaying
them to obtain a single array 𝐴 is that each ball 𝑏 = (𝑠, 𝑐) gets mapped to position
𝜑(𝑠, 𝑐) := 𝑐+ 𝑟𝑠 in 𝐴. We refer to the entries of 𝐴 as bins, so each ball 𝑏 gets mapped
to bin 𝜑(𝑏). The dynamic fusion node for a each bin 𝑗 ∈ [𝑛] stores the set of key-value
pairs (𝑏, 𝑝) where 𝑏 ranges over the balls satisfying 𝜑(𝑏) = 𝑗, and 𝑝 is the pointer
corresponding to the ball 𝑏.

For 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛], let 𝑋𝑖,𝑗 be the 0-1 random variable indicating whether
node 𝑖 places a ball into bin 𝑗. The 𝑋𝑖,𝑗s are not independent across the bins 𝑗, but
they are independent across the nodes 𝑖, since each 𝑋𝑖,𝑗 is a function of the random

247

bits 𝑟𝑖. Therefore, the number 𝑌𝑗 of balls in bin 𝑗, which is given by 𝑌𝑗 =
∑︀𝑚

𝑖=1𝑋𝑖,𝑗,
is a sum of independent indicator random variables.

Each of the 𝑂(𝑛) balls has probability 1/𝑛 of being in bin 𝑗, so E[𝑌𝑗] = 𝑂(1).
Thus, by a Chernoff bound, we have that 𝑌𝑗 ≤ polylog 𝑛 with high probability in 𝑛.
The Chernoff bound actually tells us that 𝑌𝑗 ≤ polylog 𝑛 with probability 1/𝑛polylog𝑛,
so we have even achieved a slightly sub-polynomial probability of failure.

Putting the pieces together. If we implement deletions as in Section 13.2, then
we obtain the following result:
Proposition 142. The rotated radix trie is a randomized linear-space dictionary
that can store up to 𝑛 Θ(log 𝑛)-bit keys/values at a time, and that supports each
operation in constant time with probability 1− 1/𝑛polylog𝑛.

It’s worth taking a moment to remark on how to initialize our data structure. The
random rotations 𝑟𝑖 can be initialized lazily, so that 𝑟𝑖 is generated the first time that
the node 𝑖 is used. Additionally, we do not have to actually pay the cost of initializing
any arrays, since we can use standard techniques to simulate zero-initialized arrays
in constant time (see [43] or Problem 9 of Section 1.6 of [92]). Thus our rotated radix
trie can be initialized in constant time.

Taking stock of our situation. The rotated radix trie does not, on its own,
make any significant progress on either of the problems that we care about: (1)
achieving super-high probability guarantees, and (2) using a near-logarithmic number
of random bits. We have achieved a slightly sub-polynomial failure probability, but
we are nowhere near our goal of 1/𝑛𝑛1−𝜀 .

What makes the rotated radix trie useful, however, is that the role of randomness
in the data structure is remarkably simple. The only sources of randomness are the
rotational offsets 𝑟1, 𝑟2, . . . , 𝑟𝑚. In this sense, the rotated radix trie deviates from
the standard mold for how to design a constant-time dictionary. The randomness in
the data structure isn’t used to hash elements, but is instead used to apply random
rotations to sparse arrays.

Since the role of randomness will be important in later sections, we conclude the
current section by discussing an important subtlety in how the randomness is re-
purposed over time. Consider how the data structure evolves over a large period of
time containing many insertions/deletions. As the shape of the trie changes, each
array 𝐴𝑖 will be repurposed to represent different parts of the trie. This means that
the way in which the random rotation 𝑟𝑖 interacts with the key space also changes over
time, with the same 𝑟𝑖 applying to a different node in the trie (and thus a different
part of the key space) at different times. The re-purposing of 𝑟𝑖s has an interesting
consequence: even if two points in time 𝑡1 and 𝑡2 store the exact same set 𝑆 of
key/value pairs as one-another, the shape of the rotated trie may differ considerably
between the two times.

248

13.4 The Amplified Rotated Trie

In this section, we modify the rotated radix trie to reduce its probability of failure
(i.e., the probability that a given operation takes super-constant time) to 1/𝑛𝑛

1−𝜀 , for
a positive constant 𝜀 of our choice. We will refer to this new data structure as the
amplified rotated radix trie.

Storing overflow balls in a (non-rotated) trie. Whenever a ball 𝑏 is inserted
into a bin 𝑗 that already contains ℓ = polylog 𝑛 other balls, the ball 𝑏 is regarded
as an overflow ball. Since each bin is a dynamic fusion node with capacity ℓ, we
cannot store the overflow balls in the bins.

We instead store the overflow balls in a secondary data structure 𝑄 that is imple-
mented as a 𝑛𝛿-ary trie, for some positive constant 𝛿 > 0.

The secondary data structure 𝑄 supports inserts/queries on overflow balls in con-
stant time. On the other hand, 𝑄 is not space efficient. If there are 𝑞 overflow balls,
then 𝑄 may use as much as 𝑞𝑛𝛿 space. To establish that our dictionary uses linear
space, we must show that

Pr[𝑞 ≥ 𝑛1−𝛿] ≤ 𝑂
(︁
1/𝑛𝑛

1−𝜀
)︁
. (13.1)

The problem: dependencies between balls with shared source nodes. Our
current data structure does not yet satisfy (13.1), however. This is because, whenever
multiple balls share the same source node, their assignments become closely linked.
Suppose, for example, that the rotated trie 𝑅 has only 2ℓ internal nodes, and that
each internal node 𝑖 ∈ {1, 2, . . . , 2ℓ} contains Θ(𝑛/ℓ) balls (𝑖, 1), (𝑖, 2), . . . , (𝑖,Θ(𝑛/ℓ)).
With probability 1/𝑛2ℓ = 1/2polylog𝑛, each internal node 𝑖 ∈ {1, 2, . . . , 2ℓ} has random
rotation 𝑟𝑖 = 0. This results in bins 1, 2, . . . ,Θ(𝑛/ℓ) each containing 2ℓ balls—in other
words, half of the balls in the system are overflow balls. This means that

Pr[𝑞 ≥ Ω(𝑛)] ≥ 1/2polylog𝑛.

That is, our failure probability using 𝑄 the store overflow balls is no better than the
failure probability that we achieved in Section 13.3 without 𝑄.

Reducing the dependencies. What makes the above pathological example possible
is that it is possible to have only a small number of internal nodes in our rotated trie.
This makes it so that there are only a small number of random bits that affect
the rotated trie’s structure, preventing us from achieving any super-high probability
guarantees.

To fix this problem, we reduce the fanout of our rotated radix trie from 𝑛 to 𝑛𝛿.
Now each internal node can contain at most 𝑛𝛿 balls, so there are guaranteed to be
at least 𝑛1−𝛿 internal nodes. This ensures that there are always at least 𝑛1−𝛿 log 𝑛

249

random bits affecting the trie’s structure.
We remark that, since the fanout of the rotated trie is now 𝑛𝛿, each ball is deter-

mined by a pair (𝑠, 𝑐) where 𝑠 ∈ [𝑚] is a source node and 𝑐 ∈ [𝑛𝛿] is a child index.
Nonetheless, the mapping 𝜑 from balls to bins works exactly as before: we map ball
(𝑠, 𝑐) to bin 𝜑(𝑠, 𝑐) = ((𝑟𝑠 + 𝑐) mod 𝑛) where 𝑟𝑠 ∈ [𝑛] is selected at random.

Bounding the number of overflow balls. Of course, there are still dependencies
between the number 𝑞𝑗 of overflow balls in different bins 𝑗 ∈ [𝑛]. To handle these
dependencies, we make use of a tool from probabilistic combinatorics.

Call a function 𝑓 : [0, 1)𝑚 → R 𝐿-Lipschitz if for every pair of inputs of the form
�⃗� = (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑚) and 𝑥′ = (𝑥1, . . . 𝑥

′
𝑖, . . . , 𝑥𝑚), we have |𝑓(�⃗�) − 𝑓(𝑥′)| ≤ 𝐿.

McDiarmid’s inequality [256] tells us that if 𝑓 is 𝐿-Lipschitz and 𝑋1, 𝑋2, . . . , 𝑋𝑚 ∈
[0, 1) are independent random variables, then for any 𝑡 ≥ 0,

Pr[|𝑓(𝑋1, . . . , 𝑋𝑚)− E[𝑓(𝑋1, . . . , 𝑋𝑚)]| ≥ 𝑡] ≤ 2𝑒−2𝑡2/(𝑚𝐿2).

To apply McDiarmid’s inequality to our situation, define 𝑓(𝑟1, . . . , 𝑟𝑚) := 𝑞 to
be the number of overflow balls. Observe that 𝑓 is 𝑛𝛿-Lipschitz, since each 𝑟𝑖 can
determine the outcome of at most 𝑛𝛿 different balls. Since E[𝑞] = 1

poly𝑛
, it follows by

McDiarmid’s inequality that

Pr[𝑓(𝑟1, . . . , 𝑟𝑚) ≥ 𝑛1−𝛿] ≤ 𝑒−Ω(𝑛2−2𝛿/(𝑚𝑛2𝛿))

= 𝑒−Ω(𝑛2−2𝛿/𝑛1+2𝛿)

= 𝑒−Ω(𝑛1−4𝛿).

For any 0 < 𝜀 ≤ 1, we can set 𝛿 = 𝜀/5 so that

Pr[𝑞 ≥ 𝑛1−𝛿] ≤ 𝑒−Ω(𝑛1−4𝛿)

≤ 𝑂
(︁
𝑛−𝑛1−𝜀

)︁
.

This establishes (13.1). If we implement deletions as in Section 13.2, then we
arrive at the following theorem.
Theorem 143. The 𝑛𝜀/5-ary amplified rotated radix trie is a randomized linear-
space dictionary that can store up to 𝑛 Θ(log 𝑛)-bit keys/values at a time, and that
supports each operation in constant time with probability 1−𝑂

(︁
1/𝑛𝑛

1−𝜀
)︁
.

We remark that there is a strong sense in which the amplified rotated radix trie
is nearly optimal. In particular, for any constant 𝜀 > 0, if there were to exist a
randomized linear-space dictionary with failure probability of 1/𝑛𝜀𝑛, that would im-
ply the existence of a deterministic (though non-explicit) linear-space constant-time
dictionary.

250

Lemma 144. Let 𝜀 > 0 be any positive constant and assume a machine word of
size 𝑤 = Θ(log 𝑛) bits. Suppose there exists randomized linear-space dictionary that
stores up to 𝑛 Θ(log 𝑛)-bit keys/values at a time and has failure probability 1/𝑛𝜀𝑛.
Then there also exists a deterministic (not-necessarily explicit) dictionary with the
same guarantees.

Proof. To distinguish the randomized dictionary from the deterministic dictionary
that we are constructing, we will refer to the former as a hash table and the latter as
a dictionary.

As noted in Section 13.2, by rebuilding our dictionary once every 𝑂(𝑛) operations,
we can assume without loss of generality that the lifespan of the dictionary is at most
𝑂(𝑛) operations. We will implement the dictionary using a hash table with capacity
𝑛′ = 𝑐𝑛 for some large positive constant 𝑐 to be determined later. This means that
the hash table has failure probability

1/𝑛𝜀𝑛
′
= 1/𝑛𝜀𝑐𝑛.

Each operation takes place on a Θ(log 𝑛)-bit key/value pair, so there are at most
𝑛𝑂(1) options for what a given operation could be. The total number of 𝑂(𝑛)-long
operation sequences is therefore at most 𝑛𝑂(𝑛). Since our hash table has failure prob-
ability 1/𝑛𝜀𝑐𝑛, its total failure probability on any given sequence of 𝑂(𝑛) operations
is at most 𝑂(𝑛)/𝑛𝜀𝑐𝑛 ≤ 1/𝑛𝜀𝑐𝑛/2 The probability that there exists any sequence of
operations on which our hash table fails to be constant-time is therefore at most

𝑛𝑂(1)

𝑛𝜀𝑐𝑛/2
,

which if 𝑐 is taken to be a sufficiently large constant, is at most 1/2. Thus there
exists some choice of random bits for which our hash table is constant-time on every
sequence of operations. By hard-coding in this choice of random bits, we arrive at a
deterministic constant-time dictionary.

Note that, since the hash table spends total time 𝑂(𝑛) on the 𝑂(𝑛) operations,
the number of random bits that it can use is at most 𝑂(𝑛𝑤) = 𝑂(𝑛 log 𝑛) bits—thus
the deterministic dictionary can hard-code the random bits in linear space.

Although one typically assumes a machine-word size of Θ(log 𝑛) bits, it is also an
interesting question what the strongest achievable probabilistic guarantees are in the
setting where machine words (as well as keys/values) are of some size 𝑤 = 𝜔(log 𝑛)
bits. On one hand, the larger key size makes it so that Lemma 144 no longer applies,
so in principle, one might be able to achieve a failure probability of 1/𝑛𝜔(𝑛). On the
other hand, from an upper-bound perspective, it is not even known how to achieve
a sub-polynomial failure probability in this setting [75, 198, 199, 305]. Here, the main
obstacle appears to be unavoidably about hash functions: can one construct a family
of hash functions from [2𝑤] to [poly(𝑛)] such that for any given 𝑛-element set 𝑆 ⊆ [2𝑤],
we have that max𝑥∈𝑆 |{𝑦 ∈ 𝑆 | ℎ(𝑥) = ℎ(𝑦)}| ≤ polylog 𝑛 with probability 1/𝑛𝜔(1)? If

251

such a family were to exist, then it could be directly combined with Theorem 143 to
construct a dictionary that achieves sub-polynomial failure probability for any key-
size 𝑤. We conjecture that no such family of hash functions exists, and moreover,
that a sub-polynomial failure probability is not possible for word sizes 𝑤 = 𝜔(log 𝑛)
bits.

13.5 The Budget Rotated Trie

In this section, we present a dictionary that uses only 𝑂(log 𝑛 log log 𝑛) random bits,
while guaranteeing that each operation takes constant time with probability 1 −
1/ poly(𝑛) (i.e., with high probability in 𝑛). We will refer to the data structure as the
budget rotated trie. In Appendix 13.A, we further extend the budget rotated trie
to support keys that are 𝜔(log 𝑛) bits, while still using only 𝑂(log 𝑛 log log 𝑛) bits of
randomness.

We remark that the guarantee achieved by the budget rotated trie is not novel—in
fact, a previous approach by Dietzfelbinger, Gil, Matias, and Pippenger [155] can be
used to achieve 𝑂(log 𝑛) random bits for the setting of Θ(log 𝑛)-bit keys that we are
considering. Nonetheless, we believe that the construction for the budget rotated
tries is interesting in its own right, both because of its relationship to the amplified
rotated trie, and also because of the surprising way in which it is able to make use of
gradually-increasing-independence hash functions. Additionally, the specific structure
of the budget rotated trie will prove useful in our quest for succinctness in Section
13.6.

Our starting place is again the rotated trie, and as in Section 13.4, we will take
the fanout of the trie to be 𝑛𝛿 for some constant 𝛿; in fact, it will suffice to simply
use 𝛿 = 1/4.

Reducing the number of random bits to 𝑂(𝑛/ polylog𝑛). To transform the
𝑛𝛿-ary rotated trie into a budget rotated trie, our first modification will be to reduce
the number of random bits from 𝑂(𝑛 log 𝑛) to 𝑂(𝑛/ polylog 𝑛). Of course, this may
not seem like much progress, but we shall see later that the distinction is important.

Recall that, in a rotated trie, each ball 𝑏 (i.e., each non-null entry in an internal
node) contains a pointer to either a leaf (i.e., an actual key/value pair) or another
internal node (i.e., a child). We now add a third option: if the ball should be pointing
at another internal node 𝑥, but if the subtree rooted at 𝑥 contains fewer than ℓ =
polylog 𝑛 total keys, then we store that subtree as a dynamic fusion node 𝑧. If the
size of the subtree rooted at 𝑥 subsequently surpasses ℓ, then we create an actual
internal node for 𝑥—in this case, any elements stored in the fusion node 𝑧 remain in
𝑧, and the ball 𝑏 now stores two pointers, one to 𝑥 and one to 𝑧. In other words,
there are now three possible states for a ball: it can contain a pointer to a leaf; it can
contain a pointer to a dynamic fusion node; or it can contain two pointers, one to a
dynamic fusion node and one to another internal node of the trie.

252

The point of this modification is that we only create an internal node 𝑥 if the sub-
tree rooted at 𝑥 contains at least ℓ = polylog 𝑛 elements. Importantly, this means that
the total number of internal nodes 𝑚 is at most 𝑂(𝑛/ℓ) = 𝑛/ polylog 𝑛. The number
of random bits needed for the rotations 𝑟1, 𝑟2, . . . , 𝑟𝑚 is therefore also 𝑛/ polylog 𝑛.

Changing the balls-to-bins mapping. Our next modification is to change how
we map the balls to bins. Recall that each ball 𝑏 is specified by a pair (𝑠, 𝑐), where
𝑠 ∈ [𝑚] is the source node of the ball and 𝑐 ∈ [𝑛𝛿] is the child index. In the standard
rotated trie, we map balls to bins using the function

𝜑(𝑠, 𝑐) = (𝑐+ 𝑟𝑠) mod 𝑛.

We will now instead map balls to bins using the function

𝜓(𝑠, 𝑐) = (𝑐+ 𝑎𝑠(mod𝑛𝛿)) · 𝑛1−𝛿 + 𝑏𝑠,

where 𝑎𝑠 is selected at random from [𝑛𝛿] and 𝑏𝑠 is selected at random from [𝑛1−𝛿].
When can think about 𝜓 as follows. We break the bins into groups 𝐺1, . . . , 𝐺𝑛𝛿

of size 𝑛1−𝛿, and we use the random value 𝑎𝑠 ∈ [𝑛𝛿] to assign the ball to a random
group. Once the ball is assigned to a group 𝐺𝑖, it is then assigned to the 𝑏𝑠-th bin
in that group. Importantly, the assignments are designed so that each source node 𝑠
assigns at most one of its balls to any given group 𝐺𝑖. There will never be two balls
𝑏1, 𝑏2 in group 𝐺𝑖 that both obtain their assignments 𝑏𝑠 from the same source node.

Since the number 𝑚 of internal nodes may be as large as 𝑛/ polylog 𝑛, we cannot
afford to generate 𝑎1, 𝑎2, . . . , 𝑎𝑚 ∈ [𝑛𝛿] and 𝑏1, 𝑏2, . . . , 𝑏𝑚 ∈ [𝑛1−𝛿] truly at random.
Fortunately, as we shall now see, the roles of the 𝑎𝑖s and 𝑏𝑖s have been carefully
designed so that both sequences can be generated using a small number of “seed”
random bits.

Generating the 𝑎𝑖s with 𝑂(1)-independent hash functions. Let 𝑘 be a suf-
ficiently large positive constant, and select a random hash function 𝑔 : [𝑛] → [𝑛𝛿]
from a family of 𝑘-independent hash functions. Since 𝑘 = 𝑂(1), the function 𝑔 can be
specified using 𝑂(log 𝑛) random bits, and can be evaluated in time 𝑂(1). We compute
the 𝑎𝑖s by

𝑎𝑖 := 𝑔(𝑖).

To analyze the number of balls in each group 𝐺𝑖, we use a well-known tail bound
for 𝑘-independent random variables (see, e.g., [69] or [166]).
Lemma 145 (Lemma 2.2 of [69]). Let 𝑘 ≥ 4 be an even integer. Suppose 𝑋1, . . . , 𝑋𝑚

are 𝑘-wise independent 0-1 random variables. Let 𝑋 =
∑︀

𝑖𝑋𝑖. Then, for any 𝑡 ≥ 0,

Pr[|𝑋 − E[𝑋]| ≥ 𝑡] ≤ 2

(︂
𝑛𝑘

𝑡2

)︂𝑘/2
.

253

Define 𝑋𝑗 to be the event that source-node 𝑗 sends a ball to group 𝐺𝑖. The 𝑋𝑗s
are 𝑘-independent, so we have by Lemma 145 that

Pr[|𝐺𝑖| − E[|𝐺𝑖|] ≥ 𝑛0.75] ≤ 2

(︂
𝑘𝑛

𝑛1.5

)︂𝑘/2
≤ 𝑛−Ω(𝑘) = 1/ poly(𝑛).

Since 𝛿 = 0.25, it follows that

Pr[|𝐺𝑖| − E[|𝐺𝑖|] ≥ 𝑛1−𝛿] ≤ 1/ poly(𝑛).

Since each of the 𝑂(𝑛) balls is equally likely to be in any group, we have that E[|𝐺𝑖|] =
𝑂(𝑛1−𝛿). Thus

Pr[|𝐺𝑖| ≤ 𝑂(𝑛1−𝛿)] ≥ 1− 1/ poly(𝑛).

That is, each group 𝐺𝑖 contains at most 𝑂(𝑛1−𝛿) balls with high probability in 𝑛.

Generating the 𝑏𝑖s with increasing-independence hash functions. To gen-
erate the 𝑏𝑖s without using a large number of random bits, we make use of a
more sophisticated family of hash functions. Call a family ℋ(𝑡) of hash functions
ℎ : [poly(𝑡)] → [𝑡] load-balancing if it can be used to map 𝑡 balls to 𝑡 bins with
maximum load polylog 𝑡; that is, for any fixed set 𝑆 ⊆ poly(𝑡) of size 𝑡, and for any
fixed 𝑖 ∈ [𝑡], if we select a random ℎ ∈ ℋ, then

|{𝑠 ∈ 𝑆 | ℎ(𝑠) = 𝑖}| ≤ polylog 𝑡

with probability 1− 1/ poly(𝑡).
Celis, Reingold, Segev, and Wieder [123] showed how to construct a load-

balancing family ℋ(𝑡) of hash functions such that each ℎ ∈ ℋ can be described
with 𝑂(log 𝑡 log log 𝑡) random bits and can be evaluated in time 𝑂(log 𝑡 log log 𝑡). The
family ℋ is referred to as having “gradually-increasing-indepenence” because each
ℎ ∈ ℋ is actually the composition of Θ(log log 𝑡) hash functions ℎ1, . . . , ℎΘ(log log 𝑡)

with different levels of independence: each ℎ𝑖 determines Θ((3/4)𝑖 log 𝑡) bits of ℎ, and
each ℎ𝑖 is (1/ poly 𝑡)-close to being Θ((4/3)𝑖)-independent.

The family ℋ comes with a tradeoff. It is able to achieve a maximum load
of polylog 𝑡 (in fact, it even achieves maximum load 𝑂(log 𝑡/ log log 𝑡)) using on
𝑂(log 𝑡 log log 𝑡) bits, but it requires super-constant time to evaluate. Subsequent
work [260] has improved the evaluation time from 𝑂(log 𝑡 log log 𝑡) to 𝑂((log log 𝑡)2).
It seems unlikely that the evaluation time can be improved to 𝑂(1), however, since
Ω(log log 𝑡) time is needed just to read the random bits used to evaluate the hash
function.

The super-constant evaluation time makes it so that hash functions with gradually-
increasing independence are not suitable for direct use in constant-time hash tables
[315]. We get around this problem by using ℎ not as a hash function but as a pseudo-
random number generator. Specifically, we select a random ℎ : [𝑚] → [𝑛1−𝛿] from

254

ℋ(𝑛1−𝛿), and we use ℎ to initialize the 𝑏𝑖s as

𝑏𝑖 := ℎ(𝑖).

Since ℎ takes time 𝑂((log log 𝑛)2) to evaluate, each 𝑏𝑖 now takes time
𝑂((log log 𝑛)2) to initialize. Recall, however, that we only create a new internal node
𝑥 in our rotated trie once there are more than ℓ = polylog 𝑛 records that want to
reside in that node’s subtree; the first ℓ = polylog 𝑛 insertions that wish to use 𝑥 are
instead placed into a dynamic fusion node that acts as a proxy for 𝑥. As a result, we
can afford to spend up to ℓ time initializing the node 𝑥, and we can spread that time
across the ℓ insertions that trigger 𝑥’s initialization. Since ℓ = 𝜔((log log 𝑛)2), we can
initialize 𝑏𝑖 = ℎ(𝑖) without any problem.

Analyzing the maximum load. Recall that, with probability 1− 1/ poly(𝑛), each
group 𝐺𝑖 contains at most 𝑂(𝑛1−𝛿) balls. Furthermore, each of the balls have different
source nodes than one another. If a ball has source-node 𝑠, then it is placed in the
𝑏𝑠-th bin of 𝐺𝑖.

Let 𝑆𝑖 ⊆ [𝑚] be the set of source nodes that assign balls to 𝐺𝑖. Then for each
𝑟 ∈ [𝑛1−𝛿], the number 𝑔𝑖,𝑟 of balls in the 𝑟-th bin of 𝐺𝑖 is given by

𝑔𝑖,𝑟 = |{𝑠 ∈ 𝑆𝑖 | ℎ(𝑠) = 𝑟}|.

Since ℎ : poly(𝑛) → [𝑛1−𝛿] is from a load-balancing family of hash functions, we are
guaranteed to have

𝑔𝑖,𝑟 ≤ polylog 𝑛1−𝛿 ≤ polylog 𝑛

with high probability in 𝑛.

Putting the pieces together. The fact that each bin contains at most polylog 𝑛
balls (with high probability) means that, as in the standard rotated trie, each bin can
be implemented with a dynamic fusion node. Operations on our dictionary therefore
take time 𝑂(1) with high probability in 𝑛. If we implement deletions as in Section
13.2, then we arrive at the following theorem.
Theorem 146. The budget rotated trie is a randomized linear-space dictionary that
can store up to 𝑛 Θ(log 𝑛)-bit keys/values at a time, that uses 𝑂(log 𝑛 log log 𝑛)
random bits, and that supports each operation in constant time with probability
1− 1/ poly(𝑛).

We conclude the section by observing that there is a strong sense in which the
guarantee achieved by the budget rotated trie is optimal. In particular, if there were
to exist a hash table failure probability 1/𝑛𝑐 but that used fewer than 𝑐 log 𝑛 random
bits, then there would also necessarily exist a deterministic linear-space constant-time
dictionary.
Lemma 147. Suppose there exists a randomized linear-space dictionary that can
store up to 𝑛 Θ(log 𝑛)-bit keys/values at a time, that uses 𝑐 log 𝑛 random bits, but

255

that has a failure probability smaller than 1/𝑛𝑐. Then there exists a deterministic
dictionary with the same guarantees.

Proof. To distinguish the randomized dictionary from the deterministic dictionary
that we are constructing, we will refer to the former as a hash table. Let 𝑅 denote
the 𝑐 log 𝑛 random bits used by the hash table. Define 𝒟 to be the deterministic
dictionary obtained by setting 𝑅 = 0. Suppose for contradiction that 𝐷 is not
constant time. Then there exists some sequence of operations such that the final
operation on 𝐷 takes super-constant time. This means that, with probability at least
1/𝑛𝑐, that same operation would have taken super-constant time in our hash table.
But the hash table has failure probability smaller than 1/𝑛𝑐, a contradiction.

13.6 Achieving Succinctness

In this section, we turn our attention to space efficiency. Throughout the section, we
will use 𝑐1 log 𝑛 to denote the size in bits of each key, we will use 𝑐2 log 𝑛 to denote
the size in bits of each value, and will assume that 𝑐 = 𝑐1 + 𝑐2 is a positive constant
larger than 1. Here, unlike in previous sections, we use 𝑛 to denote the current size,
at any given moment, and we allow 𝑛 to change dynamically over time, so long as the
key/value length remains Θ(log 𝑛) bits at all times after initialization—this means
that the constants 𝑐1, 𝑐2, 𝑐 also change dynamically.4

The dictionaries that we have described in previous sections are already optimal
up to constant factors, using a total of Θ(𝑛 log 𝑛) bits to store 𝑛 key/value pairs. We
shall now strive to achieve optimal space consumption up to low-order terms, that is,
to use a total of

(1 + 𝑜(1)) log

(︂
2𝑐 log𝑛

𝑛

)︂
= 𝑐𝑛 log 𝑛− 𝑛 log 𝑛+ 𝑜(𝑛 log 𝑛) (13.2)

bits. Such a dictionary is referred to as succinct [313].
In fact, we will prove a much more general result: that any constant-time dic-

tionary can be transformed into a succinct constant-time dictionary, while (nearly)
preserving the random-bit usage and failure probability of the original dictionary.

Define an (𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛))-dictionary to be any constant-time dictionary that
uses 𝑂(𝑟(𝑛)) random bits, achieves failure probability 𝑂(𝑝(𝑛)) per operation, and
uses space 𝑐𝑛 log 𝑛 − 𝑛 log 𝑛 + 𝑂(𝑠(𝑛)) bits. Since we are interested in dictionaries
that automatically resize as the number of keys change, one should think of 𝑟(𝑛),
𝑝(𝑛), and 𝑠(𝑛) as functions rather than fixed values. Note that, in the context of
space-efficient time-efficient dictionaries, a failure event could be in terms of either
time (an operation takes 𝜔(1) time) or space (the dictionary fails to fit in 𝑐𝑛 log 𝑛−

4Note that keys trivially must have length at least log 𝑛 bits, so the key/value size is necessarily
Ω(log 𝑛). If we assume that values are asymptotically no larger than keys, then one can enforce the
bound of keys/values having length 𝑂(log 𝑛) by treating the dictionary as containing an extra 2𝜀𝑤

dummy elements, where 𝑤 is the key/value length and 𝜀 is a small positive constant.

256

𝑛 log 𝑛 + 𝑂(𝑠(𝑛)) bits)—and a failure probability of 𝑝(𝑛) means that, at any given
moment, the probability of a failure occurring should be at most 𝑂(𝑝(𝑛)).

The main result of the section can be stated as follows.
Theorem 148. Let 𝜀 be a small positive constant. Suppose that 𝑟(𝑛) and
𝑝(𝑛) are nondecreasing functions satisfying 𝑟(𝑛) ≤ 𝑂(𝑛) and exp(−𝑛1−𝜀) ≤
𝑝(𝑛) ≤ 1/ polylog(𝑛). Given an (𝑟(𝑛), 𝑝(𝑛), 𝑛 log 𝑛)-dictionary, one can construct
a (𝑟′(𝑛), 𝑝′(𝑛), 𝑠′(𝑛))-dictionary with

𝑟′(𝑛) = 𝑟(𝑛) + (log 𝑝(𝑛)−1) · (log log 𝑛)3,

𝑝′(𝑛) = 𝑝(𝑛/ log log 𝑛),

and
𝑠′(𝑛) =

𝑛 log 𝑛

log log 𝑛
.

Applying Theorem 148 to Theorems 143 and 146, we get the following succinct
versions of the theorems.
Corollary 149. Let 0 < 𝜀 < 1 be a positive constant. There exists a
(𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛))-dictionary that uses 𝑟(𝑛) = 𝑂(𝑛) random bits, that incurs a fail-
ure probability 𝑝(𝑛) = exp(−𝑛1−𝜀), and that incurs an additive space overhead of
𝑠(𝑛) = 𝑂

(︁
𝑛 log𝑛
log log𝑛

)︁
bits compared to the information-theoretical optimum.

Corollary 150. There exists a (𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛))-dictionary that uses 𝑟(𝑛) =
𝑂(log 𝑛(log log 𝑛)3) = �̃�(log 𝑛) random bits, that incurs a failure probability 𝑝(𝑛) =
1/ poly(𝑛), and that incurs an additive space overhead of 𝑠(𝑛) = 𝑂

(︁
𝑛 log𝑛
log log𝑛

)︁
bits

compared to the information-theoretical optimum.

The rest of the section will be spent proving Theorem 148. We begin in Subsection
13.6.1 by presenting a reduction due to Raman and Rao [313], which transforms the
problem of constructing a succinct dictionary into a different problem, which we call
the many-sets problem. Then, in Subsection 13.6.2, we show how to solve the
many-sets problem using an (𝑟(𝑛), 𝑝(𝑛), 𝑂(𝑛 log 𝑛))-dictionary, while approximately
preserving the randomness guarantees of the dictionary—an interesting feature of
our solution is that it makes extensive use of the budget rotated trie constructed in
Section 13.5.

13.6.1 Reduction to the Many-Sets Problem

An important tool in our proof of Theorem 148 will be a reduction due to Raman and
Rao [313]. This reduction transforms the problem of constructing a succinct dynamic
dictionary into a different problem that we call the many-sets problem.

Let 𝛿 > 0 be a small positive constant of our choice. The many-sets problem,
with parameter 𝛿, is defined as follows. Let 𝑆1, 𝑆2, . . . , 𝑆𝑚 be (dynamically changing)
sets of 𝑂(log 𝑛)-bit key/value pairs, satisfying

∑︀
𝑖 |𝑆𝑖| = 𝑛, 𝑚 ≤ 𝑛/ polylog(𝑛), and

257

|𝑆𝑖| ≤ 𝑛𝛿 for all 𝑖 ∈ [𝑚], where 𝑛 and 𝑚 are permitted to evolve dynamically over
time. We will use 𝛾𝑖 = 𝑂(log 𝑛) to denote the size of each key/value pair in 𝑆𝑖 (so
different 𝑆𝑖s may have differently sized key/value pairs).

Any solution to the many-sets problem must support the following operations
in constant time:

• Insert(𝑖, 𝑥, 𝑦), which inserts key/value pair (𝑥, 𝑦) into 𝑆𝑖;

• Delete(𝑖, 𝑥), which deletes 𝑥 (and its corresponding value) from 𝑆𝑖;

• and Query(𝑖, 𝑥), which returns the value associated with 𝑥 in 𝑆𝑖, or declares
that 𝑥 ̸∈ 𝑆𝑖.

A many-sets solution is said to be an (𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛))-solution if it uses 𝑟(𝑛) random
bits, has failure probability 𝑝(𝑛) per insertion, and uses total space∑︁

𝑖

|𝑆𝑖| · (𝛾𝑖 +𝑂(log |𝑆𝑖|)) + 𝑠(𝑛)

bits.
The following reduction is given (implicitly) in Section 3 of [313]:

Theorem 151. The problem of constructing a (𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛) + 𝑛 log 𝑛/ log log 𝑛)-
dictionary reduces deterministically to the problem of constructing an
(𝑟(𝑛), 𝑝(𝑛), 𝑠(𝑛))-solution to the many-sets problem, where the parameter 𝛿 is
a positive constant of our choice.

Understanding the reduction. Although we defer the full proof of Theorem 151
to [313], we take a moment to briefly describe the high-level structure here. The key
insight is to make use of tries in a clever way (that differs substantially from how they
are used elsewhere in this chapter). Different nodes of the trie have different fanouts:
if a node has 𝑟 > polylog 𝑛 keys in it and has depth 𝑂(1) in the trie, then it has
fanout 𝑟/ polylog 𝑛. If a node has either 𝑟 ≤ polylog 𝑛 keys in it, or has sufficiently
large constant depth in the trie, then the node is a leaf, and the elements of the node
correspond to a set 𝑆𝑖 in the many-sets problem.

Unlike for the data structures in this chapter, the internal nodes of this trie are
implemented using straightforward arrays: if a node has fanout 𝑓 , it is implemented
using an array of size 𝑓 . Fortunately, by choosing the fanout 𝑓 to be 𝑟/ polylog 𝑛,
where 𝑟 is the number of elements stored by the node, one ensures that the arrays
used to implement internal nodes have cumulative size 𝑛/ polylog 𝑛.

A key insight is that the trie allows for us to shave bits off of keys: if a node 𝑥 has
fanout 𝑓 , then we can remove the high-order log 𝑓 bits from each of the keys stored
in 𝑥’s children (these bits are now stored implicitly in the trie path). Raman and
Rao [313] show that, if a leaf has size |𝑆𝑖|, then the length 𝛾𝑖 of each of the key/value
pairs in 𝑆𝑖 will satisfy 𝛾𝑖 ≤ 𝑐 log 𝑛− log 𝑛− 𝑞 log |𝑆𝑖|+𝑂(log log 𝑛) bits for a positive
constant 𝑞 of our choice (depending on the maximum depth of the trie). This is why,

258

for the many-sets problem, it is okay to use (amortized) space 𝛾𝑖 + 𝑂(log |𝑆𝑖|) bits
per key in 𝑆𝑖.

We remark that, in [313], Theorem 151 was proved with amortized constant-
time operations. The amortization came from the fact that, whenever a node 𝑥’s
size changes substantially in the trie, it must be rebuilt; however, by spreading the
rebuild across Θ(|𝑆𝑖|) operations (that each modify the node 𝑥), the rebuild can
trivially be deamortized to take 𝑂(1) time per operation (and without compromising
space efficiency, since each element is in only one version of the node at a time).

Before continuing, it is worth taking a moment to understand where the bounds
𝑚 ≤ 𝑛/ polylog(𝑛) and |𝑆𝑖| ≤ 𝑛𝛿 (which are assumed in the many-sets problem) come
from. The bound 𝑚 ≤ 𝑛/ polylog(𝑛) comes from the fact that each internal node of
the trie has fanout 𝑟/ polylog(𝑛), where 𝑟 is its size; since the trie has depth 𝑂(1),
this means that the total number of leaves (and thus the number of 𝑆𝑖s) is at most
𝑂(𝑛/ polylog 𝑛). The bound |𝑆𝑖| ≤ 𝑛𝛿 comes from the fact that, if a given 𝑆𝑖 were
to have size > 𝑛𝛿, then at each node on its root-to-leaf path, each element in the
set would have 𝛿 log 𝑛 − 𝑂(log log 𝑛) bits shaved off; but assuming that the trie has
sufficiently large constant depth, this means that all of the bits are shaved off from
the elements of 𝑆𝑖, which is a contradiction.

A starting place: Raman and Rao’s solution to the many-sets problem.
Raman and Rao [313] give a simple solution to the many-sets problem that incurs
constant expected time per operation, and which will serve also as the starting point
for our construction. At a high level, each 𝑆𝑖 is stored in a two-part structure,
consisting of a skeleton 𝐴𝑖 and a storage array 𝐵𝑖.5

The storage array 𝐵𝑖 is logically implemented as a dynamically-resized array that
stores the elements of 𝑆𝑖 (both the keys and values) contiguously. The dynamic
resizing of the {𝐵𝑖}s can be implemented (and deamortized) to take 𝑂(1) time per
operation while ensuring that, in aggregate, the 𝐵𝑖 arrays use space within a factor
of 1+1/ polylog(𝑛) of optimal [313] (see, also, [116], for a more detailed treatment of
succinct dynamic arrays).

The skeleton 𝐴𝑖 allows for queries to 𝑆𝑖 to find the appropriate key/value in 𝐵𝑖.
In particular, the skeleton is a dictionary that maps the Θ(log |𝑆𝑖|)-bit hash ℎ(𝑥) for
each key 𝑥 ∈ 𝑆𝑖 to the index 𝑗 ∈ 𝐵𝑖 at which 𝑥 appears.6

The good news is that, within the skeleton 𝐴𝑖, both the keys (i.e., hashes ℎ(𝑥))
and the values (i.e., indices in 𝐵𝑖) are only 𝑂(log |𝑆𝑖|) bits—this means that 𝐴𝑖 can
be implemented using any standard linear-space dictionary, without worrying about
succinctness. The bad news is that there are two ways in which an insertion into 𝐴𝑖
could fail: (1) the hash ℎ(𝑥) of the element being inserted satisfies ℎ(𝑥) = ℎ(𝑥′) for

5The names skeleton and storage array are conventions that we are establishing here for ease of
discussion, and were not used in the original paper [313].

6As noted by by [313], there is a subtle issue that one must be careful about for deletions.
Whenever a deletion occurs, a gap is created in some position 𝑗 of 𝐵𝑖. To remove this gap, one must
move the final element 𝑥 in 𝐵𝑖 to position 𝑗. This means that we must also update the index that
is stored for element 𝑥 in 𝐴𝑖 to be 𝑗.

259

some other 𝑥′ ∈ 𝑆𝑖; or (2) the dictionary used to implement 𝐴𝑖 fails.
Assuming that 𝐴𝑖 is implemented to have a 1/ poly(|𝑆𝑖|) failure probability (i.e.,

to be a w.h.p. dictionary), the probability of any given insertion into 𝑆𝑖 failing is
1/ poly(|𝑆𝑖|). Of course, each |𝑆𝑖| can be arbitrarily small, which is why the data
structure given in [313] offered constant expected-time operations, rather than a high-
probability guarantee.

13.6.2 Proof of Theorem 148

By the reduction in the previous subsection (Theorem 151), it suffices for us to prove
the following proposition:
Proposition 152. Let 𝜀 be a small positive constant. Suppose that 𝑟(𝑛) and
𝑝(𝑛) are nondecreasing functions satisfying 𝑟(𝑛) ≤ 𝑂(𝑛) and exp(−𝑛1−𝜀) ≤
𝑝(𝑛) ≤ 1/ polylog(𝑛). Given an (𝑟(𝑛), 𝑝(𝑛), 𝑛 log 𝑛)-dictionary, one can construct
a (𝑟′(𝑛), 𝑝′(𝑛), 𝑠′(𝑛))-solution to the many-sets problem, with parameter 𝛿 = 2𝜀, and
with

𝑟′(𝑛) = 𝑟(𝑛) + (log 𝑝(𝑛)−1) · (log log 𝑛)3,

𝑝′(𝑛) = 𝑝(𝑛/ log log 𝑛),

and
𝑠′(𝑛) =

𝑛 log 𝑛

log log 𝑛
.

We will prove Proposition 152 by adapting the skeleton/storage-array approach
outlined in the previous section. The basic idea will be to implement each 𝐴𝑖 as
a budget rotated trie, and then to share random bits between 𝐴𝑖s in just the right
way so that (1) the total number of random bits used a small; but (2) with good
probability, only an 𝑂(1/ log log 𝑛) fraction of the elements present at any given mo-
ment will have experienced a failure when they were inserted. We then store the
elements that experience failures in a backyard data structure implemented using the
(𝑟(𝑛), 𝑝(𝑛), 𝑂(𝑛 log 𝑛))-dictionary that we are given.

Preliminaries on how to discuss the 𝐴𝑖s. Since the size of a given skeleton 𝐴𝑖
may fluctuate over time, the skeleton 𝐴𝑖 will need to be rebuilt every time that its size
changes by a constant factor. These rebuilds can be deamortized to take constant
time per operation (and since the dictionary 𝐴𝑖 is permitted to use 𝑂(|𝑆𝑖| log |𝑆𝑖|)
bits, it is acceptable for the rebuilds to add a constant-factor space overhead to 𝐴𝑖).

At any given moment, define the skeletal size 𝑎𝑖 of 𝑆𝑖 to be the size that 𝑆𝑖
was the most recent time that 𝐴𝑖 was (logically) rebuilt. The skeletal size satisfies
𝑎𝑖 = Θ(|𝑆𝑖|) at all times, but has the convenient property that it only changes when a
rebuild occurs. The skeletal size 𝑎𝑖 will also be used to determine how we implement𝐴𝑖
(sets with different skeletal sizes may be implemented differently from one another)—
this means that, each time 𝐴𝑖 is rebuilt (and 𝑎𝑖 changes), the implementation of 𝐴𝑖

260

may also change.

Defining a backyard structure. An important component of the data struc-
ture will be a backyard dictionary 𝑇 , which is used to store a small number
of keys/values space inefficiently. We implement 𝑇 using the (𝑟(𝑛), 𝑝(𝑛), 𝑛 log 𝑛)-
dictionary that we are given, and we assume without loss of generality that |𝑇 | ≥
𝑛/ log log 𝑛 at all times (if |𝑇 | < 𝑛/ log log 𝑛, then we can pad it with dummy elements
to bring the size up). This means that, at any given moment, 𝑇 uses at most 𝑂(𝑟(𝑛))
random bits, has failure probability at most 𝑂(𝑝(𝑛/ log log 𝑛)), and uses space at most

𝑂 ((|𝑇 |+ 𝑛/ log log 𝑛) · log 𝑛)

bits. In order for 𝑇 to meet the constraints of Proposition 152 we will need to establish
that, with probability 1−𝑂(𝑝′(𝑛)), we have

|𝑇 | ≤ 𝑂(𝑛/ log log 𝑛) (13.3)

at any given moment.
It is worth taking a moment to describe precisely what information 𝑇 stores for

each key/value pair (𝑥, 𝑦) that it stores belonging to a given skeleton 𝐴𝑖: it stores
the pair (𝑖, 𝑥) as a key and it stores 𝑦 as a value. Since different 𝐴𝑖s have different
key/value sizes (all of which are Θ(log 𝑛)), we pad the sizes of the keys/values to all
be a fixed length Θ(log 𝑛) in the backyard.7

Storing small 𝐴𝑖s in the backyard automatically. Let 𝑐 be a sufficiently large
positive constant. We handle the 𝐴𝑖s satisfying 𝑎𝑖 ≤ log𝑐 𝑛 by simply placing all of
their elements in the backyard 𝑇 . The number of such 𝐴𝑖s is trivially at most𝑚, which
by the definition of the many-sets problem, is at most 𝑛/ polylog 𝑛 ≤ 𝑂(𝑛/ log2𝑐 𝑛).
The number of elements that these 𝐴𝑖s contribute to the backyard is therefore at
most 𝑂(log𝑐 𝑛 · 𝑛/ log2𝑐 𝑛) = 𝑜(𝑛/ log𝑐 𝑛). Throughout the rest of the section, we will
focus exclusively on 𝐴𝑖s satisfying 𝑎𝑖 > log𝑐 𝑛.

Partitioning the remaining 𝐴𝑖s into groups 𝐺𝑗,𝑘. We say that each 𝐴𝑖 is in
category 𝑗 = ⌊log 𝑎𝑖⌋. Within each category 𝑗, we partition the 𝐴𝑖s (satisfying
𝑎𝑖 > log𝑐 𝑛) into

𝑡𝑗 =
(log log 𝑛)2 log 𝑝(𝑛)−1

𝑗
(13.4)

7As an additional subtlety, whenever an element is stored in the backyard, it should also be stored
in the appropriate storage array 𝐵𝑖, that way whenever 𝐴𝑖 is rebuilt, it can determine which of its
elements are currently in the backyard, it can remove those elements from the backyard, and it can
include those elements in the rebuild of 𝐴𝑖.

261

groups, 𝐺𝑗,1, 𝐺𝑗,2, . . . , 𝐺𝑗,𝑡𝑗 such that, for each group 𝑘 ∈ [𝑡𝑗],∑︁
𝐴𝑖∈𝐺𝑗,𝑘

𝑎𝑖 ≤ 𝑂(𝑛/𝑡𝑗).

Note that such a partition is feasible only if and only if we can guarantee that 𝑎𝑖 ≤
𝑂(𝑛/𝑡𝑗) for each 𝑖—fortunately, this follows from

𝑎𝑖 ≤ 𝑛𝛿 ≤ 𝑂

(︂
𝑛 · (log log 𝑛)

2

𝑗𝑛1−𝜀

)︂
(since 𝜀 = 𝛿/2)

≤ 𝑂

(︂
𝑛 · (log log 𝑛)

2 log 𝑝(𝑛)−1

𝑗

)︂
(since exp(−𝑛1−𝜀) ≤ 𝑝(𝑛))

= 𝑂(𝑛/𝑡𝑗).

For any given category 𝑗, the only difference between how we implement each of the
groups 𝐺𝑗,1, 𝐺𝑗,2, . . . , 𝐺𝑗,𝑡𝑗 is that each group 𝐺𝑗,𝑘 is implemented using a different
sequence 𝑅𝑗,𝑘 of Θ(𝑗 log 𝑗) random bits.

Implementing each 𝐴𝑖. We now describe how to implement a given skeleton
𝐴𝑖 ∈ 𝐺𝑗,𝑘 using the Θ(𝑗 log 𝑗) = Θ(log 𝑎𝑗 log log 𝑎𝑗) = Θ(log |𝐴𝑗| log log |𝐴𝑗|) random
bits 𝑅𝑗,𝑘. Recall that we store the 𝐴𝑖s satisfying 𝑎𝑖 ≤ log𝑐 𝑛 in the backyard, so we
need only focus here on 𝐴𝑖s satisfying 𝑎𝑖 > log𝑐 𝑛.

Define a hash function ℎ𝑗,𝑘 mapping the elements 𝑥 ∈ 𝐴𝑖 to Θ(log |𝐴𝑖|)-bit string
ℎ(𝑥). The hash function is implemented using the family of hash functions given
in Lemma 154 of Appendix 13.A, meaning that the hash function uses Θ(log |𝐴𝑗|)
random bits, and avoids collisions on 𝐴𝑖 with probability 1−1/ poly(|𝐴𝑖|) (note that,
since 𝑎𝑖 > log𝑐 𝑛, the precondition for the lemma is met). The skeleton 𝐴𝑖 will map
hashes ℎ𝑗,𝑘(𝑥), for 𝑥 ∈ 𝐴𝑖, to indices in 𝐵𝑖.

We implement the dictionary 𝐴𝑖 using a budget rotated trie (Theorem 146)—this
uses Θ(log |𝐴𝑗| log log |𝐴𝑗|) random bits and has failure probability 1/ poly(|𝐴𝑗|) per
insertion. We remark that, in addition to making use of the probabilistic guarantees
offered by the budget rotated trie, we will also be making use of the especially simple
way in which the data structure experiences failures: the only possible failure mode
is that one of the bins in the trie overflows. This will allow for us to gracefully handle
when the 𝐴𝑗s fail: we store the element that experienced failure in a backup data
structure, and we allow the 𝐴𝑗 that caused the failure to continue as though that
insertion never happened.

In more detail, there are two reasons that an insertion into 𝐴𝑖 might fail: (1) the
hash ℎ𝑗,𝑘(𝑥) of the element being inserted satisfies ℎ𝑗,𝑘(𝑥) = ℎ𝑗,𝑘(𝑥

′) for some other
𝑥′ ∈ 𝑆𝑖; or (2) the budget rotated trie used to implement 𝐴𝑖 fails (i.e., the insertion
would cause one of the bins in the trie to overflow). The probability of either of these
events occurring at any given insertion is 1/ poly(|𝐴𝑖|) = 1/ poly(2𝑗). Whenever an
insertion into 𝐴𝑖 fails, we store the key/value pair in the backyard data structure 𝑇
instead. This means that our full data structure has two possible failure modes: the

262

case where 𝑇 itself fails, and the case where 𝑇 becomes too large, violating (13.3).

Analyzing the probability of a failure. The backyard data structure 𝑇 has
failure probability at most 𝑂(𝑝(𝑛/ log log 𝑛)), by design. Thus, our task is to bound
the probability that (13.3) fails.
Lemma 153. With probability 1 − poly(𝑝(𝑛)), the category 𝑗 contributes at most
𝑂(𝑛/(log log 𝑛)2) elements to 𝑇 , at any given moment.

Proof. We have already established that the 𝐴𝑖s satisfying 𝑎𝑖 ≤ log𝑐 𝑛 determinis-
tically contribute at most 𝑂(𝑛/(log log 𝑛)2) elements to 𝑇 (because they determin-
istically have at most 𝑂(𝑛/(log log 𝑛)2) elements). Thus we focus here on the 𝐴𝑖s
satisfying 𝑎𝑖 > log𝑐 𝑛 (note that these are all in categories 𝑗 satisfying 𝑗 > Ω(log log 𝑛).

Now consider a category 𝑗 satisfying 𝑗 = Ω(log log 𝑛). As shorthand, we will use
𝑡 to denote 𝑡𝑗 and 𝐺𝑘 to denote 𝐺𝑗,𝑘. For each group 𝐺𝑘, 𝑘 ∈ [𝑡], define 𝑋𝑘 to be
the number of elements that skeletons in 𝐺𝑘 contribute to the backyard. We have
that 𝑋𝑘 ≤ 𝑂(𝑛/𝑡) deterministically; and, since each element 𝑥 in each 𝐴𝑖 ∈ 𝐺𝑘 has a
1/ poly(2𝑗) probability of failure, we have that

E[𝑋𝑘] =
𝑛

𝑡 poly(2𝑗)
. (13.5)

Finally, since each of the groups 𝐺1, 𝐺2, . . . , 𝐺𝑡 use different random-bit sequences,
the 𝑋𝑘s are independent. Defining 𝑋 ′

𝑘 = 𝑋𝑘/Θ(𝑛/𝑡), the number of elements that
𝐺𝑘 contributes to the backyard can be expressed as Θ(𝑛

𝑡
· 𝑌), where

𝑌 =
𝑡∑︁

𝑘=1

𝑋 ′
𝑘.

The 𝑋 ′
𝑘’s are independent random variables in the range [0, 1] and, by (13.5),

E[𝑌] =
𝑡∑︁

𝑘=1

E[𝑋 ′
𝑘] =

𝑡∑︁
𝑘=1

Θ(𝑡/𝑛)E[𝑋𝑘] = 𝑡/ poly(2𝑗). (13.6)

Applying a Chernoff bound to 𝑌 , we get

Pr[𝑌 > (1 +𝐷)E[𝑌]] ≤
(︂

𝑒𝐷

(1 +𝐷)1+𝐷

)︂E[𝑌]

,

which for 𝐷 ≥ Ω(1) implies

Pr[𝑌𝑗 > 𝐷E[𝑌]] ≤ 𝐷−Ω(𝐷·E[𝑌]).

263

Set

𝐷 =
𝑡

(log log 𝑛)2E[𝑌]

=
poly(2𝑗)

(log log 𝑛)2
(by (13.6))

≥ 2𝛼𝑗 (since 𝑗 ≥ Ω(log log 𝑛)),

where 𝛼 is a positive constant of our choice. Then we have

Pr
[︂
𝑌𝑗 >

𝑡

(log log 𝑛)2

]︂
≤ 𝐷−Ω(𝐷·E[𝑌])

= exp (−𝛼𝑗 · Ω(𝐷 · E[𝑌])) (since 𝐷 ≥ 2𝛼𝑗)
= exp

(︀
−𝛼𝑗 · Ω(𝑡/(log log 𝑛)2)

)︀
= exp

(︀
−𝛼𝑗 · Ω(log 𝑝(𝑛)−1/𝑗)

)︀
(by (13.4))

= exp
(︀
−𝛼 · Ω(log 𝑝(𝑛)−1)

)︀
= poly(𝑝(𝑛)).

Thus, we have with probability 1− poly(𝑝(𝑛)) that

𝑌 ≤ 𝑡

(log log 𝑛)2
.

The number of elements that category 𝑗 contributes to the backyard is therefore at
most

𝑂
(︁𝑛
𝑡
· 𝑌
)︁
≤ 𝑂(𝑛/(log log 𝑛)2),

as desired.

Putting the pieces together, the total size of 𝑇 is 𝑂(𝑛/ log log 𝑛) with probability

1−𝑂(𝑝(𝑛/ log log 𝑛))− (log log 𝑛) · poly(𝑝(𝑛)) = 1−𝑂(𝑝(𝑛/ log log 𝑛)).

Bounding the number of random bits. Finally, we count the number of random
bits used by the data structure. The backyard uses 𝑂(𝑟(𝑛)) random bits, so it suffices
to bound the number of random bits used by the skeletons in each category. Note
that different categories can use the same random bits as one another (since we do
not require independence between categories), so it suffices to bound the number of
random bits used by any given category of skeletons. In category 𝑗, there are 𝑡𝑗
groups, each of which uses Θ(𝑗 log 𝑗) = 𝑂(𝑗 log log 𝑛) random bits. The total number
of random bits used by the category is therefore

𝑂(𝑗(log log 𝑛)𝑡𝑗) = 𝑂

(︂
𝑗 log log 𝑛 · (log log 𝑛)

2 log 𝑝(𝑛)−1

𝑗

)︂
= 𝑂

(︀
(log log 𝑛)3 log 𝑝(𝑛)−1

)︀
.

264

In total, the number of random bits used by the data structure is

𝑂(𝑟(𝑛)) +𝑂
(︀
(log log 𝑛)3 log 𝑝(𝑛)−1

)︀
.

This completes the proof of Proposition 152, and thus also the proof of Theorem 148.

265

266

Appendices

267

13.A Universe Reduction Using 𝑂(log 𝑛) Random
Bits

In this section, we extend the budget rotated trie to support keys from a universe 𝑈
of super-polynomial size. Throughout the section, we set 𝑈 = [2𝑢] for some 𝑢 = 𝑛𝑜(1),
and we assume that machine words are Θ(𝑢) bits.

To support large keys, the natural approach is to first hash elements from 𝑈 to a
smaller universe 𝑈 ′ of polynomial size, an then to store the Θ(log 𝑛)-bit keys in a hash
table along with pointers to the full keys/values. Past work on load-balancing hash
functions [123] has used a pair-wise independent hash function ℎ : [2𝑢] → [poly(𝑛)]
to perform this reduction. This requires the use of Θ(𝑢) random bits, which when 𝑢
is large, is significantly larger than log 𝑛 log log 𝑛.

An appealing alternative to using pairwise-independent hash functions would be to
instead use Pagh’s construction [297] (which, in turn, is based on an earlier construc-
tion by Fredman, Komlós, and Semerédi [185]) of (1 + 𝑜(1))-universal hash functions
that require only 𝑂(log 𝑛+ log log 𝑢) random bits. The only minor problem with this
construction is that it is not fully explicit. The construction requires access to a ran-
dom prime number 𝑝 ∈ [poly(𝑛)], but the only known time-efficient high-probability
approaches to constructing such a prime number require 𝜔(log 𝑛 log log 𝑛) random
bits (see discussion in [183]).

Fortunately, this issue is relatively straightforward to solve. For completeness, we
now give a construction for a simple family of hash functions that can be initialized
in time 𝑜(𝑛) and used for universe reduction.
Lemma 154. Let 𝑛 > 𝑢𝑐 for a sufficiently large positive constant 𝑐 and let 𝑆 ⊆ [2𝑢]
be a set of size 𝑛. Let 𝒫 be the set of prime numbers in the range [𝑛2/𝑐]. Select
𝑝1, 𝑝2, . . . , 𝑝𝑐2 independently and uniformly at random from 𝒫 , and define the function
ℎ : [2𝑢] → [𝑛2𝑐] by

ℎ(𝑥) = (𝑥 mod 𝑝1𝑝2 · · · 𝑝𝑐2).

With probability 1− 1/ poly(𝑛), ℎ is injective on 𝑆.

Proof. The probability that |ℎ(𝑆)| ≠ 𝑆 satisfies

Pr[|ℎ(𝑆)| ≠ 𝑆] ≤
∑︁

𝑠1,𝑠2∈𝑆

Pr[|𝑠1 − 𝑠2| divisible by all of 𝑝1, 𝑝2, . . . , 𝑝𝑐2],

where 𝑠1 and 𝑠2 are implicitly taken to be distinct. Since the 𝑝𝑖s are independent,
this is ∑︁

𝑠1,𝑠2∈𝑆

(Pr[|𝑠1 − 𝑠2| divisible by 𝑝1])
𝑐2 .

The quantity |𝑠1− 𝑠2| is an element of 𝑈 = [2𝑢], and can thus have at most 𝑢 distinct

268

prime factors. Therefore,

Pr[|ℎ(𝑆)| ≠ 𝑆] ≤
∑︁

𝑠1,𝑠2∈𝑆

(︂
𝑢

|𝒫|

)︂𝑐2

≤
∑︁

𝑠1,𝑠2∈𝑆

(︂
𝑛1/𝑐

|𝒫|

)︂𝑐2
.

By the Prime Number Theorem, the set 𝒫 of primes in the range [𝑛2/𝑐] has size
Ω(𝑛2/𝑐/ log 𝑛). Therefore,

Pr[|ℎ(𝑆)| ≠ 𝑆] ≤
∑︁

𝑠1,𝑠2∈𝑆

𝑂

(︂
𝑛1/𝑐

𝑛2/𝑐/ log 𝑛

)︂𝑐2

≤ 𝑂

(︃ ∑︁
𝑠1,𝑠2∈𝑆

(︂
log 𝑛

𝑛1/𝑐

)︂𝑐2)︃

≤ 𝑂

(︃ ∑︁
𝑠1,𝑠2∈𝑆

log𝑐
2

𝑛

𝑛𝑐

)︃

≤ 𝑂

(︃
𝑛2 log𝑐

2

𝑛

𝑛𝑐

)︃
≤ 1/ poly(𝑛).

Since all of the prime numbers in [𝑛𝜀] can be enumerated in time 𝑂(𝑛2𝜀), we get
the following corollary:
Corollary 155. Let 𝑢 = 𝑛𝑜(1). For any constant 𝛿 > 0, there exists an explicit
family ℋ of constant-time hash functions ℎ : [2𝑢] → [poly(𝑛)] such that (a) a random
function ℎ ∈ ℋ can be constructed in time 𝑂(𝑛𝛿) using 𝑂(log 𝑛) random bits; and (b)
for any fixed set 𝑆 ⊆ 𝑈 of size 𝑛, and for a random ℎ ∈ ℋ, we have that |ℎ(𝑈)| = |𝑈 |
with probability 1− 1/ poly(𝑛).

We can use Corollary 155 to construct a version of the budget rotated trie that
supports large universes.
Theorem 156. Let 𝑢 = 𝑛𝑜(1), suppose that keys/values are 𝑢 bits, and assume a ma-
chine word of size at least Ω(𝑢) bits. The budget rotated trie uses 𝑂(log 𝑛 log log 𝑛)
random bits, it uses 𝑂(𝑛𝑢) bits of space, and it supports insert/delete/query opera-
tions on up to 𝑛 keys/values at a time. The data structure can be initialized in time
𝑂(𝑛𝜀), for a positive constant 𝜀 of our choice, and each insert/delete/query operation
takes constant time with probability 1− 1/ poly(𝑛).

To eliminate the 𝑂(𝑛𝜀) initialization cost, we can also construct a dynamic version

269

of the same data structure, where there is some upper bound𝑁 on the data structure’s
size, but where the true size 𝑛 changes over time. Every time that the data structure’s
size changes by a constant factor, we rebuild it based on the new value of 𝑛. Each
rebuild takes time 𝑂(𝑛) (with high probability in 𝑛), but the cost of a rebuild can
be spread across Θ(𝑛) operations. The properties of this new data structure can be
summarized with the following corollary.
Corollary 157. Let 𝑢 = 𝑁 𝑜(1), suppose that keys/values are 𝑢 bits, and assume
a machine word of size at least Ω(𝑢) bits. The dynamic budget rotated trie uses
𝑂(log𝑁 log log𝑁) random bits and supports insert/delete/query operations on up to
𝑁 keys/values at a time. If it is storing 𝑛 key/value pairs, then it uses 𝑂(𝑛𝑢) bits of
space, and each insert/delete/query operation takes constant time with probability
1− 1/ poly(𝑛).

270

Chapter 14

Tight Bounds for Monotone Minimal
Perfect Hashing

271

14.1 Introduction

The monotone minimal perfect hash function (MMPHF) problem is the follow-
ing indexing problem. Given a set 𝑆 = {𝑠1, . . . , 𝑠𝑛} of 𝑛 distinct keys from a universe
𝑈 of size 𝑢, create a data structure D that answers the following query:

Rank(𝑞) =

{︃
rank of 𝑞 in 𝑆 𝑞 ∈ 𝑆

arbitrary answer otherwise.

The name of the problem comes from interpreting the data structure D as a hash
function: given a sorted array 𝐴 = [𝑎1, . . . , 𝑎𝑛], D is a function mapping each 𝑎𝑖 to its
position 𝑖. Such a hash function is minimal, meaning that it maps 𝑛 items to 𝑛 distinct
positions, and monotone, meaning that whenever 𝑎𝑖 < 𝑎𝑗 we have D(𝑎𝑖) < D(𝑎𝑗),
and vice versa.

It may seem strange at first glance that D is permitted to return arbitrary an-
swers on negative queries. A key insight, however, is that this relaxation allows
for asymptotic improvements in space efficiency: whereas the set 𝒮 would require
Ω(𝑛 log(𝑢/𝑛)) bits to encode, Belazzougui, Boldi, Pagh and Vigna [64] show that it
is possible to construct an MMPHF D using as few as 𝑂(𝑛 log log log 𝑢) bits, while
supporting 𝑂(log log 𝑢)-time queries.

The remarkable space efficiency of MMPHF makes it useful for a variety of prac-
tical applications (e.g., in security [110], key-value stores [244] and information re-
trieval [280]). A high-performance implementation can be found in the Sux4J li-
brary [63, 108]. MMPHF has also been widely used in the theory community for
the design of space-efficient combinatorial pattern-matching algorithms (see, e.g.,
[62, 65–68,127,191,203]).

Despite the widespread use of MMPHF, it remains an open question [64,109,154]
to determine the optimal bounds for solving this problem. The best lower bound
achieved so far [63,154] is Ω(𝑛) bits (which follows immediately from the same lower
bound for minimal perfect hashing [258]). Even disregarding applications (and the
running time to answer queries), the information-theoretic question as to how many
bits a MMPHF requires has been posed as a problem of independent combinatorial
interest [154].

Our result. We fully settle this question by establishing the following result:
Result 158 (Formalized in Theorem 162). Any data structure (deterministic or ran-
domized) for monotone minimal perfect hashing of any collection of 𝑛 elements from
a universe of size 𝑢 requires Ω(𝑛 log log log 𝑢) expected bits to answer every query
correctly. The lower bound holds whenever 𝑢 is at least 𝑛1+1/

√
log𝑛 and at most

exp (exp(poly(𝑛))).

Thus, somewhat surprisingly, the 𝑂(𝑛 log log log 𝑢) bound achieved by [63] is
asymptotically optimal. We also note that the boundary conditions on 𝑢 in Re-
sult 158 are natural in the following sense. There are two trivial solutions for the

272

MMPHF. One encodes the entire input set 𝑆 in 𝑂(𝑢) bits and the other builds a
perfect hash table mapping from elements of 𝑆 to their rank using 𝑂(𝑛 log 𝑛) ex-
pected space. Thus, when 𝑢 is very small, for example 𝑢 = 𝑂(𝑛), the first solution
achieves 𝑂(𝑢) = 𝑜(𝑛 log log log 𝑢) bits. On the other hand, when 𝑢 is very large, that
is when 𝑢 is even beyond exp(exp(poly(𝑛))), then the 𝑂(𝑛 log 𝑛)-bit solution uses
𝑜(𝑛 log log log 𝑢) bits. Our lower bound in Result 158 covers almost the entire range
in between.

The lower bound achieved by Result 158 is remarkably general: it applies indepen-
dently of the running time of the data structure; and it applies even to randomized
data structures that are permitted to store their random bits for free.

Our techniques. The most intuitive approach toward proving a lower bound of 𝑑
bits on the size of an MMPHF is to encode a 𝑑-bit string into the state of the data
structure. This approach is already hindered by the fact that MMPHFs only support
positive queries, however. If the user already knows which elements are in the input,
then the MMPHF encodes no interesting information — but if the user only has
partial information about the input, then the user can only get useful information
from a small portion of possible MMPHF queries. The previous Ω(𝑛) lower bound
of [63, 154, 258] addresses this as follows: consider any bit-string 𝑥 ∈ {0, 1}𝑑 and
define:

𝑆(𝑥) := {3, 6, . . . , 3𝑑} ∪ {3𝑖+ 1 | 𝑖 ∈ [𝑑], 𝑥𝑖 = 1} ∪ {3𝑖− 1 | 𝑖 ∈ [𝑑], 𝑥𝑖 = 0}.

For every 𝑖 ∈ [𝑑], firstly, 3𝑖 belongs to 𝑆(𝑥) and thus is a positive query, and secondly,
Rank(3𝑖) = 2 · (𝑖− 1) + 𝑥𝑖. This allows us to recover 𝑥 from any MMPHF for 𝑆(𝑥),
proving a lower bound of 𝑑 = Ω(𝑛) bits for MMPHF on size-𝑛 subsets of universe
[3𝑛+1]. This approach, however, seems to be stuck at proving any 𝜔(𝑛) lower bound
as these “direct encodings” ignore the delicate interaction between different elements
in the input set1.

To get around these obstacles, we take a fundamentally different approach to
proving Result 158. We construct a “conflict graph” 𝐺 whose vertices are all the
possible inputs to an MMPHF problem for a fixed 𝑛 and 𝑢. Two vertices are adjacent
in 𝐺 if they cannot have the same MMPHF representation, that is, if the vertices
share an element but with a different rank. Any MMPHF induces a proper coloring
of this graph, where the color of a vertex corresponds to its MMPHF representation.
As a result, the chromatic number of the conflict graph is a lower bound on how many
different MMPHF representations we must have, which implies that some input must
have a representation of size at least log𝜒(𝐺) bits. This reduces our task to the
combinatorial problem of lower bounding 𝜒(𝐺).2

1Any lower bound of 𝑑 bits for a data structure immediately implies an encoding of 𝑑-bit strings
in the state of the data structure by just assigning one bit-string to each state. This means that
there is never a formal proof that one cannot encode a bit-string in a data structure and still prove
a lower bound.

2Slightly more care must be taken when bounding the expected size of a MMPHF that is permitted
to take different sizes on different inputs.

273

The problem of bounding chromatic number of graphs defined over these types
of set-systems has a rich history in the discrete math literature; see, e.g. [167, 170,
190, 328]. For instance, Erdős and Hajnal [170] study shift-graphs that have vertices
corresponding to 𝑛-element subsets of [𝑢] and edges between vertices (𝑎1, 𝑎2, . . . , 𝑎𝑛)
and (𝑎2, . . . , 𝑎𝑛, 𝑎𝑛+1) for all 𝑎1 < 𝑎2 < . . . < 𝑎𝑛+1. They prove that the chromatic
number of the shift-graph is (1 + 𝑜(1)) · log(𝑛−1)(𝑢), namely, the (𝑛 − 1)-th iterated
logarithm of 𝑢. The shift-graph is a subgraph of our conflict graph. Thus, by taking
𝑢 = 2 ⇈ (𝑛 + 1), i.e., the tower of twos of height 𝑛 + 1, we can have 𝜒(𝐺) = 2𝜔(𝑛),
and thus prove an 𝜔(𝑛) lower bound for MMPHF on 𝑛-subsets of (extremely large)
universes of size 𝑢 = 2 ⇈ (𝑛 + 1). This is the starting point of our approach. We
now need to dramatically decrease the size of the universe, while also dramatically
increasing the bound on the chromatic number by considering the conflict graph itself,
and not only its shift-subgraph.

To lower bound the chromatic number of the conflict graph, we consider the
relaxation of this problem via fractional colorings (see Section 14.2.2). Given that
this latter problem can be formulated as a linear program (LP), a natural way for
proving a lower bound on its value is to exhibit a feasible dual solution instead3.
This corresponds to the following problem: exhibit a distribution on vertices of the
graph so that for any independent set, the probability that a vertex sampled from
the distribution belongs to the independent set is bounded by 𝑝; this then implies
that the fractional chromatic number (and in turn the chromatic number) are lower
bounded by 1/𝑝. The main technical novelty of our work lies in the introduction of a
highly non-trivial such distribution and the analysis of this probability bound for each
independent set (we postpone the overview of this part to Section 14.4.1 after we setup
the required background). This allows us to lower bound the (fractional) chromatic
number of the conflict-graph by Ω(𝑛 log 𝑛) when the universe is of size 𝑢 = 22

poly(𝑛)

which gives an Ω(𝑛 log log log 𝑢) lower bound for MMPHF on such universes.
Working with fractional colorings, beside being an immensely helpful analytical

tool, has several additional benefits for us. Firstly, unlike standard (integral) color-
ings, fractional colorings admit a natural direct product property over a certain union
of graphs; this allows us to extend the lower bound for MMPHF from universes of
size doubly exponential in 𝑛 (which are admittedly not the most interesting setting
of parameters), all the way down to universes of size 𝑛1+𝑜(1). Secondly, unlike the
(integral) chromatic number, which yields a lower bound only on the space of deter-
ministic MMPHFs, we show that lower bounding the fractional chromatic number
allows us to prove a lower bound even for randomized MMPHFs that have access to
their randomness for free. We believe this technique, namely, defining a proper con-
flict graph and bounding its fractional coloring by exhibiting a feasible dual solution,
may be applicable to many other data structure problems and is therefore interesting
in its own right.

3This is an inherently different technique than the one used in [170] for the shift-graph, as it is
known that the fractional chromatic number of the shift-graph is 𝑂(1) (see, e.g. [328]).

274

14.2 Preliminaries

Notation. For any integer 𝑡 ≥ 𝑠 ≥ 1, we let [𝑡] := {1, . . . , 𝑡} and let [𝑠, 𝑡] =
{𝑠, . . . , 𝑡}. For a tuple (𝑋1, . . . , 𝑋𝑡), we further define 𝑋<𝑖 := (𝑋1, . . . , 𝑋𝑖−1) and
𝑋−𝑖 := (𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑡).

14.2.1 Problem Definition and Model of Computation

For any integer 𝑛, 𝑢 ≥ 1, we let D(𝑛, 𝑢) be an MMPHF indexing algorithm for size-𝑛
subsets of [𝑢]. That is, if 𝒮𝑛,𝑢 = {𝑆 ⊆ [𝑢] s.t. |𝑆| = 𝑛} then for all 𝑆 ∈ 𝒮𝑚,𝑢, D(𝑆) is
the MMPHF index for 𝑆.

For any fixed choice of random bits 𝑟, we use D𝑟 to denote the resulting MMPHF
with random bits 𝑟. Note that for any fixed choice of 𝑟, D𝑟 is deterministic. For any
𝑆 ∈ 𝒮𝑛,𝑢 and randomness 𝑟, define 𝑑𝑟(𝑆) as the size in bits of the MMPHF index
D𝑟(𝑆). Define:

𝑑(𝑛, 𝑢) := max
𝑆∈𝒮𝑛,𝑢

E
𝑟
[𝑑𝑟(𝑆)] .

When 𝑛 and 𝑢 are clear, we drop them and refer simply to D and 𝑑.
In this definition of size, we are giving the MMPHF a big advantage: we are not

charging the algorithm for storing its randomness. In other words, the algorithm has
access to a tape of random bits chosen independent of the input that it can use for
both creating the index as well as answering the queries. Furthermore, we also allow
the algorithm unbounded computation time. Thus, the only measure of interest for
us is the size of the index. Finally, any deterministic MMPHF in this model is simply
a randomized MMPHF that ignores its random bits and thus we will only focus on
randomized MMPHFs from now on.

14.2.2 Fractional Colorings

A key tool that we use in establishing our lower bound is the notion of a fractional
coloring of a graph. We now review the basics of fractional colorings, which we need
in our proofs.

Let 𝐺 = (𝑉,𝐸) be any undirected graph. A proper coloring of 𝐺 is any assignment
of colors to vertices of 𝐺 so that no edge is monochromatic. The chromatic number
𝜒(𝐺) is the minimum number of colors in any proper coloring of 𝐺. The fractional
relaxation of chromatic number can then be defined as follows.

Let ℐ(𝐺) ⊆ 2𝑉 denote the set of all independent sets in 𝐺, and for any vertex
𝑣 ∈ 𝑉 , define ℐ(𝐺, 𝑣) as the set of all independent sets that contain the vertex 𝑣. A
fractional coloring of 𝐺 is any assignment of 𝑥 = (𝑥1, . . . , 𝑥ℐ(𝐺)), 0 ≤ 𝑥𝑖 ≤ 1, to the

275

independent sets of 𝐺 satisfying the following constraint:

for every vertex 𝑣 ∈ 𝑉 :
∑︁

𝐼∈ℐ(𝐺,𝑣)

𝑥𝐼 ≥ 1.

The value |𝑥| of a fractional coloring 𝑥 is given by
∑︀

𝐼∈ℐ(𝐺,𝑣) 𝑥𝐼 .
The fractional chromatic number 𝜒𝑓 (𝐺) is the minimum value of any frac-

tional coloring of 𝐺. This quantity can be formalized as a linear program (LP):

𝜒𝑓 (𝐺) := min
𝑥∈Rℐ(𝐺)

≥0

∑︁
𝐼∈ℐ(𝐺)

𝑥𝐼 subject to
∑︁

𝑣∈ℐ(𝐺,𝑣)

𝑥𝐼 ≥ 1 ∀𝑣 ∈ 𝑉. (14.1)

Any proper coloring of 𝐺 with 𝑘 colors induces a solution 𝑥 of value 𝑘 to this LP,
where 𝑥𝐼 is set to 1 for the independent sets 𝐼 that correspond to color classes in the
coloring. Thus the LP given by Equation (14.1) is indeed a relaxation of the original
coloring problem.
Fact 159. For any graph 𝐺, 𝜒𝑓 (𝐺) ≤ 𝜒(𝐺).

It is worth mentioning that at the same time 𝜒(𝐺) = 𝑂(log |𝑉 (𝐺)|) · 𝜒𝑓 (𝐺) using
the standard randomized rounding argument (we do not use this direction explicitly
in this chapter).

A primal-dual analysis of the fractional-chromatic-number LP implies the follow-
ing results. These results are standard but we provide proofs in Section 14.A for
completeness.
Proposition 160. Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be arbitrary graphs. Define
𝐺1 ∨ 𝐺2 as a graph on vertices 𝑉1 × 𝑉2 and define an edge between vertices (𝑣1, 𝑣2)
and (𝑤1, 𝑤2) whenever (𝑣1, 𝑤1) is an edge in 𝐺1 or (𝑣2, 𝑤2) is an edge in 𝐺2. Then,
𝜒𝑓 (𝐺1 ∨𝐺2) = 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2).

Proposition 160 allows us to determine 𝜒𝑓 of a product of several graphs by fo-
cusing on each individual graph separately.
Proposition 161. For any graph 𝐺 = (𝑉,𝐸),

𝜒𝑓 (𝐺) = max
distribution 𝜇 on 𝑉

min
𝐼∈ℐ(𝐺)

(︁
Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼)
)︁−1

.

Proposition 161 provides us with a tool to lower bound 𝜒𝑓 by finding a suitable
distribution on the vertices so that no independent set has a significant probability
of being by the distribution.

14.3 A Lower Bound for MMPHF via Fractional
Colorings

We can now formally state the main theorem of this chapter.

276

Theorem 162 (Formalization of Result 158). For any 𝑛, 𝑢 ∈ N+ such that 𝑛·2
√
log𝑛 ≤

𝑢 ≤ 2𝑛
𝑛2+𝑛 , and for any MMPHF algorithm D(𝑛, 𝑢),

𝑑(𝑛, 𝑢) = Ω(𝑛 log log log 𝑢).

The rest of the chapter presents the proof of Theorem 162. We spend the rest
of the section reframing the theorem in terms of the fractional chromatic number of
a certain graph associated with MMPHF problem—we will then show how to lower
bound the fractional chromatic number in the next section.

14.3.1 Conflict Graph and its Fractional Chromatic Number

Let 𝑚 ≥ 1 be an integer and define 𝑀 := 2𝑚
𝑚2+𝑚 . Define the graph 𝐺(𝑚) :=

(𝑉 (𝑚), 𝐸(𝑚)) as:

• The vertex set is 𝑉 (𝑚) = 𝒮𝑚,𝑀 , that is, the size-𝑚 subsets of [𝑀]. We denote
each vertex 𝑣 ∈ 𝑉 (𝑀) by the 𝑚-tuple 𝑣 := (𝑣1, . . . , 𝑣𝑚) where 0 < 𝑣1 < 𝑣2 <
· · · < 𝑣𝑚 ≤𝑀 .

• The edge set 𝐸(𝑚) is defined as follows. Let 𝑣 = (𝑣1, . . . , 𝑣𝑚) and 𝑤 =
(𝑤1, . . . , 𝑤𝑚) be any two vertices in 𝑉 (𝑀). Then, there is an edge (𝑣, 𝑤) ∈ 𝐺(𝑚)
iff there exists some pair of indexes 𝑖 ̸= 𝑗 ∈ [𝑚] such that 𝑣𝑖 = 𝑤𝑗.

We refer to 𝐺(𝑚) as the conflict graph of 𝑚. The following lemma clarifies our
interest in this graph by showing that fractional chromatic number of 𝐺(𝑚) can be
used to lower bound size of any MMPHF (for certain parameters of input).

Lemma 163. Let 𝑚 ≥ 1 be an integer and let 𝑀 = 2𝑚
𝑚2+𝑚 . Consider any MMPHF

D(𝑚,𝑀). Then
𝑑(𝑚,𝑀) ≥ (log𝜒𝑓 (𝐺(𝑚))− 2)/2.

Proof. Consider any two vertices 𝑣, 𝑤 ∈ 𝐺(𝑚). If there is an edge between 𝑣 and
𝑤, then there exists an element 𝑧 = 𝑣𝑖 = 𝑤𝑗, 𝑖 ̸= 𝑗. Therefore for every choice of
randomness 𝑟, D𝑟(𝑣) ̸= D𝑟(𝑤), because query 𝑧 must return 𝑖 on D𝑟(𝑣) and 𝑗 on
D𝑟(𝑤). This implies that for every 𝑟, the set of vertices 𝑣 with the same D𝑟(𝑣) form
an independent set in 𝐺(𝑚) (and the collection of these sets is a coloring of 𝐺(𝑚)).
We use ℐ𝑟 to denote these independent sets in 𝐺(𝑚) for this choice of 𝑟.

On the other hand, by Proposition 161, there exists a distribution 𝜇 on 𝑉 (𝑚) such
that

𝜒𝑓 (𝐺(𝑚)) = min
𝐼∈ℐ(𝐺(𝑚))

(︁
Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼)
)︁−1

. (14.2)

Let us fix that distribution. Under this distribution, by the definition of 𝑑,

𝑑 = 𝑑(𝑚,𝑀) = max
𝑣∈𝑉 (𝑚)

E
𝑟
[𝑑𝑟(𝑣)] ≥ E

𝑣∼𝜇
E
𝑟
[𝑑𝑟(𝑣)] = E

𝑟
E
𝑣∼𝜇

[𝑑𝑟(𝑣)] .

277

An averaging argument now implies that there exists a choice 𝑟* of random bits such
that

E
𝑣∼𝜇

[︀
𝑑𝑟

*
(𝑣)
]︀
≤ 𝑑.

By Markov’s inequality, with probability at least 1/2, for 𝑣 ∼ 𝜇, we have that 𝑑𝑟*(𝑣) ≤
2𝑑.

Recall that D𝑟*(𝑣) corresponds to an independent set in ℐ𝑟* . Moreover, there can
be at most 22𝑑+1 − 2 independent sets 𝐼 in ℐ𝑟* such that for all 𝑣 ∈ 𝐼, 𝑑𝑟*(𝑣) ≤ 2𝑑;
this is because there are at most 22𝑑+1 − 2 choices for D𝑟*(𝑣) across all 𝑣 ∈ 𝑉 (𝑚)
that can use up to 2𝑑 bits in their index (as the number of non-empty binary strings
of length at most 2𝑑 is 22𝑑+1 − 2). Since a random 𝑣 ∼ 𝜇 belongs to one of these
22𝑑+1 − 2 independent sets with probability at least half, we necessarily have some
independent set 𝐼 ∈ ℐ𝑟* where

Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼) ≥ 1

2 · (22𝑑+1 − 2)
≥ 1

22𝑑+2
.

Plugging in this bound in Equation (14.2), we have,

𝜒𝑓 (𝐺(𝑚)) ≤ 22𝑑+2,

which implies that 𝑑 ≥ (log𝜒𝑓 (𝐺(𝑚)− 2)/2, concluding the proof.

Lemma 163 reduces our task of proving Theorem 162 to establishing a lower bound
on 𝜒(𝐺(𝑚)). This will be accomplished by the following lemma, which we prove in
Section 14.4.
Lemma 164. There is an absolute constant 𝜂 > 0 such that for every sufficiently
large 𝑚 ≥ 1,

𝜒𝑓 (𝐺(𝑚)) ≥ 𝑚𝜂·𝑚.

By plugging in the lower bound of 𝜒𝑓 (𝐺(𝑚)) from Lemma 164 inside Lemma 163,
we get that for any sufficiently large 𝑛 ≥ 1 and universe size 𝑢 = 2𝑚

𝑚2+𝑚 , the
lower bound on the MMPHF problem is Ω(𝑛 log 𝑛) = Ω(𝑛 log log log 𝑢) as log 𝑛 =
Θ(log log log 𝑢) here.

Thus Lemmas 164 and 163 can be combined to prove Theorem 162 modulo a
serious caveat: the lower bound only holds for instances of the problem wherein the
universe size is larger than doubly exponential in 𝑛, which is admittedly not the most
interesting setting of the parameters. In the next subsection, we use a simple graph
product argument (plus Proposition 160) to extend this lower bound to the whole
range of parameters 𝑢 considered by Theorem 162.

278

14.3.2 Extending the MMPHF Lower Bound to Small Uni-
verses

For every pair of integers 𝑚, ℓ ≥ 1, define 𝐺(𝑚, ℓ) = (𝑉 (𝑚, ℓ), 𝐸(𝑚, ℓ)) as the ℓ-
offset conflict graph where the vertex set 𝑉 (𝑚, ℓ) is the set of all size-𝑚 subsets of
[ℓ+1,𝑀 + ℓ], and the edge set 𝐸(𝑚, ℓ) is defined as in normal conflict graphs. (Thus
𝐺(𝑚, 0) = 𝐺(𝑚).)

Furthermore, for every integer 𝑚, 𝑘 ≥ 1, we define the 𝑘-fold conflict graph,
denoted by 𝐺⊕𝑘(𝑚), as the graph:

𝐺⊕𝑘(𝑚) = (𝑉 ⊕𝑘(𝑚), 𝐸⊕𝑘(𝑚)) := 𝐺(𝑚, 0)∨𝐺(𝑚,𝑀)∨𝐺(𝑚, 2𝑀)∨· · ·∨𝐺(𝑚, (𝑘−1)𝑀),

where ‘∨’ denotes the graph product in Proposition 160. The direct interpretation
of the nodes of 𝑉 ⊕𝑘(𝑚) is a product of tuples from disjoint ranges, but we can also
interpret it as a single tuple of length 𝑘 · 𝑚. This way, 𝐺⊕𝑘(𝑚) is a subset of the
conflict graph on 𝑘𝑚-size subsets of [𝑘 ·𝑀] and it makes sense to compute D(𝑣) for
any 𝑣 ∈ 𝑉 ⊕𝑘(𝑚).

Therefore, by Lemma 163, we again have a lower bound of Ω(log𝜒𝑓 (𝐺⊕𝑘(𝑚))) for
MMPHF on tuples of length 𝑛 = 𝑘𝑚 from a universe of size 𝑢 = 𝑘𝑀 .

By Proposition 160, combined with Lemma 164, we have,

log𝜒𝑓 (𝐺
⊕𝑘(𝑚)) = 𝑘 · log𝜒𝑓 (𝐺(𝑚)) ≥ Ω(𝑘 ·𝑚 · log𝑚) = Ω(𝑛 log𝑚).

Consider a choice of

𝑚 = (log log 𝑛)1/6 and 𝑘 = 𝑛/(log log 𝑛)1/6,

which in turn gives us

𝑢 = 𝑘 · 2𝑚𝑚2+𝑚 ≪ 𝑘 · 22𝑚
3

=
𝑛

(log log 𝑛)1/6
· 22

√
log log𝑛 ≪ 𝑛 · 2

√
log𝑛.

By the above equation, we have a lower bound of Ω(𝑛 log log log 𝑢) for MMPHF given
that in this case, log𝑚 = Θ(log log log 𝑢). Thus, so far, we have proven Theorem 162
on both its boundary cases, namely, when 𝑢 = 𝑛 · 2

√
log𝑛 and when 𝑢 = 2𝑛

𝑛2+𝑛 .
The proof can now be extended to the full range of the parameters in the middle by
re-parameterizing 𝑘 appropriately; see Section 14.B for the complete argument.

We conclude that in order to finish the proof of Theorem 162, we need only
establish Lemma 164.

279

14.4 Fractional Chromatic Number of Conflict
Graphs

In this section, we establish a lower bound on the fractional chromatic number of the
conflict graph 𝐺(𝑚) for any (large enough) 𝑚 ≥ 1, and we thereby prove Lemma 164.

Proposition 161 gives us a clear path for proving the lower bound on 𝜒𝑓 (𝐺(𝑚))
given by Lemma 164: we can design a distribution 𝜇 on vertices of 𝑉 (𝑚) and then,
for every independent set 𝐼 ∈ ℐ(𝐺(𝑚)), we can upper bound the probability that 𝑣
sampled from 𝜇 belongs to 𝐼. As 𝜒𝑓 in Proposition 161 is maximum over all possible
distributions, our distribution provides a lower bound for 𝜒𝑓 (𝐺(𝑚)).

To continue, we need the following simple interpretation of the (maximal) inde-
pendent sets in 𝐺(𝑚).
Observation 165. Any maximal independent set 𝐼 in 𝐺(𝑚) can be identified by a
function 𝑓𝐼 : [𝑀] → [𝑚] such that for every vertex 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝐼, 𝑓𝐼(𝑣𝑖) = 𝑖.

Proof. Consider any two vertices 𝑣, 𝑤 ∈ 𝐼. Since there is no edge between 𝑣 =
(𝑣1, . . . , 𝑣𝑚) and 𝑤 = (𝑤1, . . . , 𝑤𝑚) in 𝐺(𝑚), whenever 𝑣𝑖 = 𝑤𝑗, we necessarily have
that 𝑖 = 𝑗. Thus, any element of 𝑒 ∈ [𝑀] can only appear in a single index 𝑖𝑒 ∈ [𝑚]
throughout all vertices 𝑣 ∈ 𝐼 (or does not appear at all in 𝑣). We can thus define
𝑓𝐼(𝑒) to be 𝑖𝑒, giving us a functino 𝑓𝐼 with the desired property.

To complete the proof, we show that 𝑓𝐼 uniquely identifies 𝐼. If we define 𝐼 ′ to
be the set of vertices 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝐼 satisfying 𝑓𝐼(𝑣𝑖) = 𝑖 for all 𝑖, then 𝐼 ′ is an
independent set satisfying 𝐼 ⊆ 𝐼 ′. Since 𝐼 is assumed to be maximal, it follows that
𝐼 = 𝐼 ′, meaning that we can recover 𝐼 from 𝑓𝐼 .

Observation 165 allows us to reduce Lemma 164 to the following lemma about 𝑚-
tuples of increasing integers. Proving Lemma 166 is the main technical contribution
of our work.
Lemma 166. There is an absolute constant 𝜂 > 0 such that for any sufficiently
large 𝑚 ≥ 1 and 𝑀 = 2𝑚

𝑚2+𝑚 , the following is true. There exists a distribution on
𝑚-tuples of increasing numbers 𝑋1 < · · · < 𝑋𝑚 from [𝑀] such that for any function
𝑓 : [𝑀] → [𝑚],

Pr
(𝑋1,...,𝑋𝑚)

(∀𝑖 ∈ [𝑚] : 𝑓(𝑋𝑖) = 𝑖) ≤ 𝑚−𝜂·𝑚.

Before proving Lemma 166, we show how it implies Lemma 164.

Proof of Lemma 164 (assuming Lemma 166). Any choice of (𝑋1, . . . , 𝑋𝑚)
in Lemma 166 can be mapped to a unique vertex 𝑣 ∈ 𝐺(𝑚) and vice versa.
Thus, (𝑋1, . . . , 𝑋𝑚) induces a distribution 𝜇 on vertices 𝑉 (𝑚): sample (𝑋1, . . . , 𝑋𝑚)
and return the vertex 𝑣 = (𝑣1, . . . , 𝑣𝑚) where 𝑣𝑖 = 𝑋𝑖 for all 𝑖 ∈ [𝑚]. Moreover, for
any maximal independent set 𝐼 ∈ ℐ(𝐺), by Observation 165, the vertex corresponding

280

to (𝑋1, . . . , 𝑋𝑚) belongs to 𝐼 iff 𝑓𝐼(𝑋𝑖) = 𝑖 for all 𝑖 ∈ [𝑚]. Thus,

Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼) = Pr
(𝑋1,...,𝑋𝑚)

(∀𝑖 ∈ [𝑚] : 𝑓(𝑋𝑖) = 𝑖) ≤ 𝑚−𝜂·𝑚.

As every independent set of 𝐺(𝑚) is a subset of some maximal independent set, the
upper bound continues to hold for every independent set in 𝐺(𝑚).

By Proposition 161,

𝜒𝑓 (𝐺(𝑚)) ≥ min
𝐼∈ℐ(𝐺(𝑚))

(︁
Pr (𝑣 ∈ 𝐼)

)︁−1

≥ 𝑚𝜂·𝑚,

concluding the proof.

The rest of the section proves Lemma 166. We start with a high-level overview
in Section 14.4.1. We then define the distribution that we will use for the proof
of Lemma 166 (Section 14.4) and analyze it to establish Lemma 166 (Section 14.4.3).
The probability distribution that we construct in these sections should be viewed
intuitively as a “hard” input distribution on inputs to the MMPHF problem (in the
spirit of Yao’s minimax principle).

14.4.1 A High-Level Overview of the Proof

The proof of Lemma 166 is quite dense and requires both a highly delicate probability
distribution and several intricate technical arguments. Thus, before getting into the
details of this proof, we provide a (very) high-level overview of the logic behind it.
In order to convey the intuition, we omit many details from this subsection, instead
limiting ourselves to an informal discussion.

The distribution in Lemma 166 is roughly as follows: we start with a “window”
Win1 which is the interval [1 : 𝑀], and then sample 𝑋1 uniformly at random from
Win1. We then pick window Win2 to be [𝑋1 + 1 : 𝑋1 + 𝑤2] for an integer 𝑤2 > 1
chosen randomly from a carefully designed distribution. Similarly to before, 𝑋2 will
be chosen uniformly from Win2. We continue like this by picking a new window
Win𝑖 = [𝑋𝑖−1+1 : 𝑋𝑖−1+𝑤𝑖] for each 𝑖 ∈ [𝑚] by sampling each 𝑤𝑖 from a distribution
that is constructed based on (𝑤1, . . . , 𝑤𝑖−1), and then sampling 𝑋𝑖 from Win𝑖. Note
that, by design, we will satisfy 𝑋1 < 𝑋2 < . . . < 𝑋𝑚.

The key property that this distribution achieves can be explained informally as
follows. For any index 𝑖 ∈ [𝑚], there is a recursive partitioning of the window Win𝑖
into “dense” and “sparse” intervals, where an interval 𝐼 ⊆ Win𝑖 is dense (with respect
to the function 𝑓 and the index 𝑖) if at least an Ω(1/𝑚) fraction of entries 𝑗 ∈ 𝐼
satisfy 𝑓(𝑗) = 𝑖, and otherwise 𝐼 is sparse. The central property that our distribution
ensures is that, if the random choice of 𝑋𝑖 places it in a dense interval, then (with
very high probability) the final window Win𝑚 will itself end up being dense (i.e., for
at least a 2/𝑚 fraction of 𝑗 ∈ Win𝑚, 𝑓(𝑗) = 𝑖).

Establishing this property is quite challenging and involves defining the distribu-

281

tion of 𝑤𝑖’s in a highly non-uniform manner (in terms of their values); this is also the
source of the doubly exponential dependence of range 𝑀 on the number of indices
𝑚. We postpone the details on how this property can be achieved to the actual proof
and focus on why it is a useful property for us.

The analysis of the distribution now uses the property in a potential-function style
argument. For each 𝑋𝑖, it is either sampled from a sparse interval or a dense one.
If 𝑋𝑖 is sampled from a sparse interval 𝐼, then no matter the past iterations, the
probability that 𝑓(𝑋𝑖) = 𝑖 is at most (2/𝑚), since at most (2/𝑚) fraction of 𝐼 can
have value 𝑓(𝑗) = 𝑖 by the definition of it being sparse. On the other hand, if 𝑋𝑖 is
chosen from a dense interval, then at least a (2/𝑚) fraction of entries of Win𝑚 should
be mapped to 𝑖 by 𝑓 as well (by our property). Seeing Win𝑚 as a potential function
now, we have that this latter step can only happen for (𝑚/2) iterations 𝑖 ∈ [𝑚]—
indeed, each time that this happens for some 𝑖, we commit some (2/𝑚) fraction of
indices 𝑗 ∈ Win𝑚 to having 𝑓(𝑗) = 𝑖, and these sets indices must be disjoint. As a
result, we have that only at least (𝑚/2) iterations 𝑖 ∈ [𝑚] sample 𝑋𝑖 from a sparse
interval. Thus,

Pr(𝑓(𝑋1) = 1, . . . , 𝑓(𝑋𝑚) = 𝑚) ≤
∏︁

𝑖: 𝑋𝑖 chosen from
a sparse interval

Pr (𝑓(𝑋𝑖) = 𝑖 | 𝑓(𝑋1) = 1, . . . , 𝑓(𝑋𝑖−1) = (𝑖− 1))

≤ 𝑂

(︂
1

𝑚

)︂𝑚/2
= 𝑚−Ω(𝑚),

as desired for the proof of Lemma 166.
The main challenge in formalizing the above argument is the design and analysis

of the distribution so that the property discussed above holds. Note also that the
property cannot hold deterministically—another challenge is to show that it holds
with such high probability that the risk of the property ever failing (across the entire
construction) can be ignored.

14.4.2 The Hard Input Distribution in Lemma 166

The distribution is defined as follows.

The distribution in Lemma 166:

(𝑖) Let 𝑘 = 𝑚𝑚, 𝑆0 = 𝑘𝑚+1, and 𝑋0 = 0.

(𝑖𝑖) For 𝑖 = 1 to 𝑚:

(a) Sample two random numbers 𝑌𝑖 from [2𝑆𝑖−1] and 𝑍𝑖 from [𝑘−1] uniformly
at random.

282

(b) Define the random variables of iteration 𝑖 as:

𝑋𝑖 = 𝑋𝑖−1 + 𝑌𝑖 and 𝑆𝑖 = 𝑆𝑖−1 − 𝑘𝑚−𝑖+1 · 𝑍𝑖.

(𝑖𝑖𝑖) Return (𝑋1, . . . , 𝑋𝑚) as the resulting random variables.

To avoid ambiguity, we use lower case letters (𝑠𝑖, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to denote realizations
of random variables (𝑆𝑖, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖) for 𝑖 ∈ [𝑚].

We have the following basic observation on the range of numbers created in this
distribution.
Observation 167. Every choice of (𝑋1, . . . , 𝑋𝑚) and (𝑆1, . . . , 𝑆𝑚) satisfy the follow-
ing properties:

(𝑖) Monotonicity: for all 𝑖 ∈ [𝑚], 𝑋𝑖 > 𝑋𝑖−1 and 𝑆𝑖 ≤ 𝑆𝑖−1 −𝑚𝑚 (and 𝑆𝑖, 𝑋𝑖 are
integers).

(𝑖𝑖) Boundedness: for every 𝑖 ∈ [𝑚], 𝑋𝑚 ≤ 𝑋𝑖+(𝑚−𝑖) ·2𝑆𝑖 and 𝑆𝑚 ≥ 𝑆𝑖−𝑘𝑚−𝑖+1 ≥
0.

Proof. Monotonicity of 𝑋𝑖’s holds as 𝑌𝑖’s are positive. Monotonicity for 𝑆𝑖’s holds
because 𝑍𝑖’s are positive and 𝑘𝑚−𝑖+1 ≥ 𝑘𝑚−𝑚+1 ≥ 𝑘 = 𝑚𝑚, meaning that we always
have 𝑆𝑖 ≤ 𝑆𝑖−1 −𝑚𝑚.
For part (𝑖𝑖), we have,

𝑋𝑚 = 𝑋𝑖 +
𝑚∑︁

𝑗=𝑖+1

𝑌𝑗 ≤ 𝑋𝑖 +
𝑚∑︁

𝑗=𝑖+1

2𝑆𝑗−1 ≤ 𝑋𝑖 + (𝑚− 𝑖) · 2𝑆𝑖 ,

which proves the boundedness of 𝑋𝑖’s. For 𝑆𝑖’s,

𝑆𝑚 = 𝑆𝑖 −
𝑚∑︁

𝑗=𝑖+1

𝑘𝑚−𝑗+1 · 𝑍𝑗 ≥ 𝑆𝑖 − 𝑘𝑚 · (𝑘 − 1) ·
𝑚−1∑︁
𝑗=𝑖

𝑘−𝑗 ≥ 𝑆𝑖 − 𝑘𝑚−𝑖+1.

(as
∑︀𝑚−1

𝑗=𝑖 𝑘
−𝑗 ≤

∑︀∞
𝑗=𝑖 𝑘

−𝑗 = 𝑘−𝑖+1 · (𝑘 − 1)−1)

Finally, by this bound, we have 𝑆𝑚 ≥ 𝑆0 − 𝑘𝑚+1 ≥ 0 as 𝑆0 = 𝑘𝑚+1.

When discussing (𝑋1, . . . , 𝑋𝑚), we will also need some further definitions:

• For any realization (𝑠<𝑖, 𝑥<𝑖), we define the window of iteration 𝑖 ∈ [𝑚], Win𝑖 :=
Win𝑖(𝑠<𝑖, 𝑥<𝑖), as the support of the random variable 𝑋𝑖 conditioned on (𝑠<𝑖, 𝑥<𝑖),
i.e.,

Win𝑖 := Win𝑖(𝑠<𝑖, 𝑥<𝑖) = [𝑥𝑖−1 + 1 : 𝑥𝑖−1 + 2𝑠𝑖−1].

Notice that |Win𝑖(𝑠<𝑖, 𝑥<𝑖)| = 2𝑠𝑖−1 and Win𝑖 is determined by (𝑠<𝑖, 𝑥<𝑖).

283

• Similarly, for any fixed choice of (𝑠<𝑖, 𝑥<𝑖), consider the following numbers:

𝑤𝑖,𝑗 := 2𝑠𝑖−1−𝑗·𝑘(𝑚−𝑖+1)

for all 𝑗 ∈ {0, . . . , 𝑘}. (14.3)

This way, |Win𝑖+1(𝑠<𝑖, 𝑥<𝑖)| is chosen uniformly at random from {𝑤𝑖,1, . . . , 𝑤𝑖,𝑘−1}
(depending solely on the choice of 𝑍𝑖 ∈ [𝑘−1] which also determines 𝑆𝑖). Moreover,
the ratio of 𝑤𝑖,𝑗 and 𝑤𝑖,𝑗+1 is fixed for any 𝑗 ∈ {0, . . . , 𝑘 − 1} and we define this
quantity as

𝑟𝑖 := 2𝑘
𝑚−𝑖+1

=
𝑤𝑖,𝑗
𝑤𝑖,𝑗+1

for any 𝑗 ∈ {0, . . . , 𝑘 − 1}. (14.4)

Observation 168. For any fixed (𝑠<𝑖, 𝑥<𝑖), the random variables |Win𝑖+1| , . . . , |Win𝑚|
will be supported on the interval [2𝑚𝑚 · 𝑤𝑖,𝑍𝑖+1, 𝑤𝑖,𝑍𝑖

].

Proof. By definition,

|Win𝑖+1| = 2𝑆𝑖 = 2𝑆𝑖−1−𝑘𝑚−𝑖+1·𝑍𝑖 = 𝑤𝑖,𝑍𝑖
.

Moreover, by Observation 167, for any 𝑗 ∈ {𝑖+ 1, . . . ,𝑚}, we have |Win𝑗| ≤ |Win𝑖+1|.
Thus each of these windows can have length at most 𝑤𝑖,𝑍𝑖

, proving the upper bound
side.

For the lower bound, for any 𝑗 ∈ {𝑖+ 1, . . . ,𝑚}, we have,

|Win𝑗| ≥ |Win𝑚| = 2𝑆𝑚−1 ≥ 2𝑆𝑖−𝑘𝑚−𝑖+1+𝑚𝑚

(by part (𝑖𝑖) of Observation 167)

= 2𝑚
𝑚 · 2𝑆𝑖 · 2−𝑘𝑚−𝑖+1

= 2𝑚
𝑚 · 𝑤𝑖,𝑍𝑖

· 𝑟−1
𝑖 = 2𝑚

𝑚 · 𝑤𝑖,𝑍𝑖+1.

This concludes the proof.

We need one final definition for now:

• For the function 𝑓 : [𝑀] → [𝑚], we define the density of index 𝑖 ∈ [𝑚] in 𝑓 over
a window Win, denoted by density𝑓 (Win, 𝑖), as

density𝑓 (Win, 𝑖) :=
|{𝑗 ∈ Win : 𝑓(𝑗) = 𝑖}|

|Win|
,

namely, the fraction of entries of the window that are equal to 𝑖.

Observation 169. For any choice of (𝑠<𝑖, 𝑥<𝑖), we have,

Pr (𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖) = density𝑓 (Win𝑖(𝑠<𝑖, 𝑥<𝑖), 𝑖).

Proof. Conditioned on (𝑠<𝑖, 𝑥<𝑖), 𝑋𝑖 is chosen uniformly at random from
Win𝑖(𝑠<𝑖, 𝑥<𝑖). The observation therefore follows from the definition of
density𝑓 (Win𝑖(𝑠<𝑖, 𝑥<𝑖), 𝑖).

284

14.4.3 Analysis of the Hard Distribution (and Proof
of Lemma 166)

We prove Lemma 166 by individually considering each iteration in the distribution.
Lemma 170. For any iteration 𝑖 ∈ [𝑚] and conditioned on any choice of (𝑠<𝑖, 𝑥<𝑖),
at least one of the following two conditions is true:

(𝑖) Pr (𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖) ≤
101

𝑚
or

(𝑖𝑖) Pr
(︂
density𝑓 (Win𝑚, 𝑖) <

2

𝑚
| 𝑠<𝑖, 𝑥<𝑖

)︂
<

1

𝑘1/3
.

The main bulk of this section is to prove Lemma 170. We then show at the end
of the section that this lemma easily implies Lemma 166. To continue, we need some
definitions.
Definition 171. The window-tree of iteration 𝑖 ∈ [𝑚] for (𝑠<𝑖, 𝑥<𝑖), denoted by
𝒯𝑖 := 𝒯 (𝑠<𝑖, 𝑥<𝑖), is the following rooted tree with 𝑘+1 levels (the root is at level 0):

(𝑖) Every non-leaf node 𝛼 of the tree has 𝑟𝑖 many child-nodes.

(𝑖𝑖) Every node 𝛼 at a level ℓ ∈ {0, . . . , 𝑘} is associated with a window Win(𝛼) of
length 𝑤𝑖,ℓ.

(𝑖𝑖𝑖) The root 𝛼𝑟 is associated with the window Win(𝛼𝑟) := Win𝑖(𝑠<𝑖, 𝑥<𝑖). The
windows associated with child-nodes of a node 𝛼 at level ℓ partition Win(𝛼)
of length 𝑤𝑖,ℓ into equal-size windows of length 𝑤𝑖,ℓ+1 (recall that 𝛼 has 𝑟𝑖 =
𝑤𝑖,ℓ/𝑤𝑖,ℓ+1 child-nodes). Moreover, the left most child-node receives the window
in the partition with the smallest starting point, the next child-node on the right
receives the next window with smallest part, and so on.

(𝑖𝑣) The density of a node 𝛼 with respect to any function 𝑓 : [𝑀] → [𝑚] is defined
as

density𝑓 (𝛼) := density𝑓 (Win(𝛼), 𝑖).

One way we use the window-tree in our analysis is to consider the process of
sampling 𝑋𝑖 (which is uniform over Win𝑖(𝑠<𝑖, 𝑥<𝑖) at this stage) as traversing the
window-tree via a root-to-leaf path. This is formalized in the following observation.
Observation 172. The distribution of 𝑋𝑖 conditioned on (𝑠<𝑖, 𝑥<𝑖) can be alterna-
tively seen as: (𝑖) Sample a root-to-leaf path 𝛼0, 𝛼1, . . . , 𝛼𝑘 where 𝛼0 is the root of 𝒯𝑖
and where each 𝛼ℓ+1 is a child-node of 𝛼ℓ chosen uniformly at random; then, (𝑖𝑖) sam-
ple 𝑋𝑖 uniformly at random from Win(𝛼𝑘). We refer to 𝛼0, . . . , 𝛼𝑘 as the sampling
path of 𝑋𝑖.

Proof. 𝑋𝑖 is distributed uniformly over Win𝑖 and leaf-nodes of 𝒯𝑖 form an equipartition
of Win𝑖.

285

In addition, we define a pruning procedure for any window-tree 𝒯 as follows.
Definition 173. Fix a function 𝑓 : [𝑀] → [𝑚] and a window-tree 𝒯𝑖 for some 𝑖 ∈ [𝑚].
We say that a node 𝛼 ∈ 𝒯𝑖 is sparse iff

density𝑓 (𝛼) ≤
100

𝑚
.

We have the following procedure for pruning 𝒯𝑖: Start from the root down to the leaf-
nodes and prune any sparse node of the tree, as well as all of that node’s sub-tree.
We refer to a sparse node that was pruned on its own (i.e., any node that is sparse
and has no sparse ancestors) as a directly pruned node and to other pruned nodes
(i.e., nodes with sparse ancestors) as indirectly pruned.

Finally, for ℓ ∈ {0, . . . , 𝑘}, define 𝑝ℓ as the fraction of directly pruned nodes at
level ℓ of the tree over all level-ℓ nodes that are not indirectly pruned.

It is worth noting that pruning is deterministic conditioned on (𝑠<𝑖, 𝑥<𝑖).
With these definitions, we can now start proving Lemma 170. This will be done

by considering some different cases handled by the following claims. The first (and
easiest) case is when most nodes of the window-tree are pruned, in which case we
achieve property (𝑖) of Lemma 170.
Claim 174 (Case I: “Many Directly Pruned Nodes”). Suppose

𝑘∏︁
ℓ=0

(1− 𝑝ℓ) ≤
1

𝑚
.

Then, for any choice of (𝑠<𝑖, 𝑥<𝑖),

Pr
𝑋𝑖

(𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖) ≤
101

𝑚
.

Proof. Let 𝑊rem denote the subset of Win𝑖 that remains after removing windows of
all pruned leaf-nodes from Win𝑖. We have that

|𝑊rem| =
leaf-nodes of 𝒯𝑖 that are not pruned

leaf-nodes of 𝒯𝑖
·|Win𝑖| =

𝑘∏︁
ℓ=0

(1−𝑝ℓ)·|Win𝑖| ≤
|Win𝑖|
𝑚

,

where the second equality is because at each level ℓ of the tree, the number of not
pruned nodes drops by a factor of (1− 𝑝ℓ) by the definition of 𝑝ℓ.

Let 𝐷𝑃 denote the set of all nodes in the tree 𝒯𝑖 that were directly pruned.
Note that the windows Win(𝛼) for 𝛼 ∈ 𝐷𝑃 partition Win𝑖 ∖𝑊rem. This implies that

286

density𝑓 (Win𝑖, 𝑖) equals

1

|Win𝑖|
·

(︃
|𝑊rem| · density𝑓 (𝑊rem, 𝑖) +

∑︁
𝛼∈𝐷𝑃

density𝑓 (𝛼) · |Win(𝛼)|

)︃
(by the definition of density𝑓 (·) function)

≤ 1

|Win𝑖|
·

(︃
|𝑊rem|+

∑︁
𝛼∈𝐷𝑃

100

𝑚
· |Win(𝛼)|

)︃
(as density𝑓 (𝛼) ≤ 100/𝑚 by the definition of sparsity, and density𝑓 (𝑊rem, 𝑖) ≤ 1)

≤ 1

𝑚
+

100

𝑚
=

101

𝑚
.

(as |𝑊rem| / |Win𝑖| ≤ 1/𝑚 as established above, and
∑︀

𝛼∈𝐷𝑃 |Win(𝛼)| ≤ |Win𝑖|)

By Observation 169, we have,

Pr
𝑋𝑖

(𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖) = density𝑓 (Win𝑖, 𝑖) ≤
101

𝑚
,

concluding the proof.

We now consider the complementary case, while also taking the randomness of
𝑍𝑖 into account. Recall that 𝑍𝑖 is uniform over [𝑘 − 1] and that |Win𝑖+1| = 𝑤𝑖,𝑍𝑖

.
For any fixed realization 𝑧𝑖 of 𝑍𝑖, recall the sampling-path-based process of sampling
𝑋𝑖 outlined in Observation 172. Consider the first 𝑧𝑖 vertices in this path, namely,
𝛼0, . . . , 𝛼𝑧𝑖−1 that start from the root and end at a level 𝑧𝑖 − 1 node of 𝒯𝑖.

Define Event ℰ(𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, 𝑋𝑖) to be the event that none of the nodes in
𝛼0, . . . , 𝛼𝑧𝑖−1 are pruned. Event ℰ(𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, 𝑋𝑖) depends only on the choice of 𝑋𝑖

(to traverse the root-to-leaf path), and is conditioned on 𝑠<𝑖, 𝑥<𝑖 (which determine
the window-tree 𝒯𝑖) and 𝑧𝑖 (which determines the level of the tree that we focus on).
To avoid clutter, when it is clear from the context, we refer to this event simply by
ℰ𝑖.

We partition the remaining cases based on whether or not the event ℰ𝑖 happens.
Claim 175 (Case II: “A Pruned Node on the Sampling Path”). Fix any choice of 𝑧𝑖
and (𝑠<𝑖, 𝑥<𝑖). In the case that the event ℰ𝑖 does not happen, we have,

Pr
𝑋𝑖

(𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ(𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, 𝑋𝑖)) ≤
100

𝑚
.

Proof. After conditioning on (𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖), the event ℰ𝑖 is only a function of the sam-
pling process of 𝑋𝑖 outlined in Observation 172. Assuming ℰ𝑖 does not happen, we
know that there exists a unique node 𝛼𝑗 on the path 𝛼0, . . . , 𝛼𝑧𝑖−1 such that 𝛼𝑗 is
sparse and is directly pruned. By additionally conditioning on the subpath 𝛼0, . . . , 𝛼𝑗,
we have that 𝑋𝑖 is chosen uniformly at random from Win(𝛼𝑗) at this point. Thus, if

287

we define 𝒮 to be the event that (𝛼1, . . . , 𝛼𝑗) is on the sampling path, we have that

Pr
𝑋𝑖

(𝑓(𝑋𝑖) = 𝑖 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖)

=

𝑧𝑖−1∑︁
𝑗=0

∑︁
(𝛼1,...,𝛼𝑗):

𝛼𝑗 is directly pruned

Pr
𝑋𝑖

(𝑓(𝑋𝑖) = 𝑖 ∧ 𝒮 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖)

(as these subpaths partition all possible choices for ℰ𝑖 to not happen)

=

𝑧𝑖−1∑︁
𝑗=0

∑︁
(𝛼1,...,𝛼𝑗):

𝛼𝑗 is directly pruned

Pr
𝑋𝑖

(𝒮 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖) ·
|{𝑡 ∈ Win(𝛼𝑗) : 𝑓(𝑡) = 𝑖}|

|Win(𝛼𝑗)|

(as 𝑋𝑖 is chosen uniformly from Win(𝛼𝑗) under these conditions)

=

𝑧𝑖−1∑︁
𝑗=0

∑︁
(𝛼1,...,𝛼𝑗):

𝛼𝑗 is directly pruned

Pr
𝑋𝑖

(𝒮 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖) · density𝑓 (Win(𝛼𝑗), 𝑖)

(by the definition of density𝑓)

≤
𝑧𝑖−1∑︁
𝑗=0

∑︁
(𝛼1,...,𝛼𝑗):

𝛼𝑗 is directly pruned

Pr
𝑋𝑖

(𝒮 | 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖) ·
100

𝑚
.

(as 𝛼𝑗 needs to be sparse to be directly pruned)

This can now be further upper bounded by 100/𝑚 as the probability terms are sum-
ming over all disjoint events that can lead to ℰ𝑖 (conditioned on this event) and thus
add up to one.

Finally, we have the following case which handles the situation when ℰ𝑖 happens.
The following claim is the heart of the proof.
Claim 176 (Case III: “No Pruned Nodes on the Sampling Path”). Fix any choice of
𝑧𝑖 and (𝑠<𝑖, 𝑥<𝑖). In the case that the event ℰ𝑖 happens, we have,

Pr
𝑋𝑖

(︂
density𝑓 (Win𝑚, 𝑖) <

2

𝑚
| 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ(𝑧𝑖, 𝑋𝑖)

)︂
< 4 ·

(︂
𝑝𝑧𝑖 + 𝑝𝑧𝑖+1 +

𝑚

𝑟𝑖

)︂
.

Proof. Throughout this proof, we always condition on 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ(𝑧𝑖, 𝑋𝑖) and thus
may not mention this explicitly in the probability terms. Let us first list the infor-
mation we have so far:

• The node 𝛼𝑧𝑖−1 on the sampling path is not pruned as we conditioned on the
event ℰ(𝑧𝑖, 𝑋𝑖) (we emphasize that 𝛼𝑧𝑖−1 is a random variable and is not fixed
yet just by these conditions).

• Window Win𝑚 is going to have size at least 2𝑚
𝑚 · 𝑤𝑖,𝑧𝑖+1 and at most 𝑤𝑖,𝑧𝑖

by Observation 168.

288

• By Observation 167,

𝑋𝑚 ≤ 𝑋𝑖+(𝑚− 𝑖) · 2𝑆𝑖 = 𝑋𝑖+(𝑚− 𝑖) ·𝑤𝑖,𝑧𝑖 . (by the definition of 𝑤𝑖,𝑧𝑖 = 2𝑆𝑖)

• Win𝑚 starts at 𝑋𝑚 and ends at 𝑋𝑚 + |Win𝑚|. We can think of the process of
sampling Win𝑚 as first sampling its length |Win𝑚|, then sampling the offset
𝑂𝑖,𝑚 := 𝑋𝑚 − 𝑋𝑖 =

∑︀𝑚
𝑗=𝑖+1 𝑌𝑗 conditioned on |Win𝑚|, and then sampling 𝑋𝑖

conditioned on 𝑂𝑖,𝑚, and |Win𝑚|.

• We further have that 𝑋𝑖 conditioned on 𝑂𝑖,𝑚 and |Win𝑚| is still uniform over
Win(𝛼𝑧𝑖−1). This is because |Win𝑚| is only a function of 𝑍𝑖+1, . . . , 𝑍𝑚, and
𝑋𝑚 − 𝑋𝑖 is only a function of 𝑌𝑖+1, . . . , 𝑌𝑚, while 𝑋𝑖 is only a function of
𝑌𝑖; finally, 𝑌𝑖 is independent of 𝑌𝑖+1, . . . , 𝑌𝑚 and 𝑍𝑖+1, . . . , 𝑍𝑚 and is chosen
uniformly from [2𝑠𝑖−1].

In the following, we condition on any fixed choice of offset 𝑜𝑖,𝑚 for 𝑂𝑖,𝑚 and on |Win𝑚|.
We have already established that

2𝑚
𝑚 · 𝑤𝑖,𝑧𝑖+1 ≤ |Win𝑚| ≤ 𝑤𝑖,𝑧𝑖 and 𝑜𝑖,𝑚 ≤ (𝑚− 𝑖) · 𝑤𝑖,𝑧𝑖 . (14.5)

Moreover, the distribution of Win𝑚 conditioned on 𝑜𝑖,𝑚, |Win𝑚| (and 𝑠<𝑖, 𝑥<𝑖, 𝑧𝑖, ℰ𝑖
that we always condition on in this proof), is 𝑋𝑖 + 𝑜𝑖,𝑚 for 𝑋𝑖 chosen randomly from
Win(𝛼𝑧𝑖−1). Moreover, given that 𝑜𝑖,𝑚 ≤ (𝑚− 𝑖) · 𝑤𝑖,𝑧𝑖 while |Win(𝛼𝑧𝑖−1)| = 𝑤𝑖,𝑧𝑖−1 =

𝑟𝑖 ·𝑤𝑖,𝑧𝑖 and 𝑟𝑖 = 2𝑘
𝑚−𝑖+1 ≥ 2𝑘 as 𝑖 ≤ 𝑚, the distribution of 𝑋𝑖 and 𝑋𝑖+ 𝑜𝑖,𝑚 are quite

close to each other modulo a negligible factor. Thus, for intuition, we can think of 𝑋𝑖

itself as the distribution of starting point for Win𝑚 in this context (although we will
of course take this difference into account explicitly in the proof). We now use this
information to prove the claim. To simplify the exposition, we are going to separate
the analysis based on level 𝑧𝑖 and level 𝑧𝑖+1 of the window-tree.

Analysis on level 𝑧𝑖 of the window-tree. Firstly, since |Win𝑚| ≤ 𝑤𝑖,𝑧𝑖 , and each
node at level 𝑧𝑖 of the window-tree 𝒯𝑖 has a window of length 𝑤𝑖,𝑧𝑖 , we get that Win𝑚
intersects with windows of at most two consecutive nodes at level 𝑧𝑖 of 𝒯𝑖, which are
solely determined by the choice of 𝑋𝑖. We use 𝛽1(𝑋𝑖) and 𝛽2(𝑋𝑖) to denote these two
nodes with 𝛽1 being the one where the starting point of Win𝑚, namely, 𝑋𝑖+ 𝑜𝑖,𝑚, lies
in, and 𝛽2(𝑋𝑖) being the one containing the endpoint 𝑋𝑖+ 𝑜𝑖,𝑚+ |Win𝑚| (note that it
is possible that 𝛽2 = 𝛽1).

We prove that with high probability, neither of these nodes are pruned. Let us
focus on 𝛽1(𝑋𝑖) first (the analysis is almost identical for 𝛽2(𝑋𝑖) and we can then
apply the union bound). For any ℓ ∈ {0, . . . , 𝑘 − 1}, let 𝑃 (ℓ) (resp. 𝐷𝑃 (ℓ)) denote
the set of pruned (resp. directly pruned) nodes at level ℓ of 𝒯𝑖; similarly, for a node
𝛼 ∈ 𝒯𝑖, let 𝑃 (𝛼) (resp. 𝐷𝑃 (𝛼)) denote the set of child-nodes of 𝛼 that are pruned

289

(resp. directly pruned). For any fixed choice of 𝛼𝑧𝑖−1 on the sampling path of 𝑋𝑖,

Pr
𝑋𝑖

(𝛽1(𝑋𝑖) is pruned | 𝛼𝑧𝑖−1) (14.6)

=
∑︁

𝛽∈𝑃 (𝑧𝑖)

Pr
𝑋𝑖

(︀
𝛽1(𝑋𝑖) = 𝛽 | 𝛼𝑧𝑖−1

)︀
(as 𝛽1 is in level 𝑧𝑖 and 𝑃 (𝑧𝑖) is the set of all pruned nodes of this level)

=
∑︁

𝛽∈𝑃 (𝛼𝑧𝑖−1)

Pr
𝑋𝑖

(︀
𝛽1(𝑋𝑖) = 𝛽 | 𝛼𝑧𝑖−1

)︀
+

∑︁
𝛽∈

𝑃 (𝑧𝑖)∖𝑃 (𝛼𝑧𝑖−1)

Pr
𝑋𝑖

(︀
𝛽1(𝑋𝑖) = 𝛽 | 𝛼𝑧𝑖−1

)︀
(14.7)

≤ |𝑃 (𝛼𝑧𝑖−1)| ·
1

𝑟𝑖
+ (𝑚− 𝑖) · 1

𝑟𝑖
, (14.8)

where the last inequality holds because of the following reasoning. Firstly, the prob-
ability that 𝛽1(𝑋𝑖) is equal to any fixed node 𝛽 at level 𝑧𝑖 is at most 1/𝑟𝑖. This is
because

Pr
(︀
𝛽1(𝑋𝑖) = 𝛽 | 𝛼𝑧𝑖−1

)︀
= Pr (𝑋𝑖 + 𝑜𝑖,𝑚 ∈ Win(𝛽) | 𝛼𝑧𝑖−1) ≤

|Win(𝛽)|
|Win(𝛼𝑧𝑖−1)|

=
1

𝑟𝑖
,

because 𝑋𝑖 is chosen uniformly from Win(𝛼𝑧𝑖−1), and |Win(𝛽)| = |Win(𝛼𝑧𝑖−1)| /𝑟𝑖 as 𝛽
is at level 𝑧𝑖. This immediately implies the first term in the RHS of Equation (14.8).
For the second term, for 𝛽1(𝑋) to intersect with a node 𝛽 not in the subtree of
𝛼𝑧𝑖−1, we need to have 𝑋𝑖 + 𝑜𝑖,𝑚 /∈ Win(𝛼𝑧𝑖−1), while we know 𝑋𝑖 ∈ Win(𝛼𝑧𝑖−1). As
𝑜𝑖,𝑚 ≤ (𝑚 − 𝑖) · 𝑤𝑖,𝑧𝑖 by Equation (14.5), and any node at level 𝑧𝑖 has a window of
length 𝑤𝑖,𝑧𝑖 , we get that there are most (𝑚 − 𝑖) choices of 𝛽 outside child-nodes of
𝛼𝑧𝑖−1 that can also become 𝛽1(𝑋𝑖). The second part of RHS in Equation (14.8) now
follows from this and the upper bound of 1/𝑟𝑖 on the probability of each node.

Finally, by taking the expectation over the choice of 𝛼𝑧𝑖−1,

Pr
𝑋𝑖

(𝛽1(𝑋𝑖) is pruned) = E
𝛼𝑧𝑖−1

[︂
Pr
𝑋𝑖

(𝛽1(𝑋𝑖) is pruned | 𝛼𝑧𝑖−1)

]︂
(by the law of total probability, over the choice of 𝛼𝑧𝑖−1 in the sampling path)

≤ E
𝛼𝑧𝑖−1

[︂
|𝑃 (𝛼𝑧𝑖−1)|

𝑟𝑖

]︂
+

(𝑚− 𝑖)

𝑟𝑖
(by Equation (14.8))

= 𝑝𝑧𝑖 +
(𝑚− 𝑖)

𝑟𝑖
,

where in the final equality, we used the fact that 𝛼𝑧𝑖−1 is chosen from non-pruned
nodes (by conditioning on ℰ𝑖), and thus |𝑃 (𝛼𝑧𝑖−1)| /𝑟𝑖 is the fraction of pruned nodes
over all not indirectly pruned at level 𝑧𝑖, which by definition is 𝑝𝑧𝑖 .

Doing the same exact analysis, we can bound the probability that 𝛽2(𝑋𝑖) is pruned
also as

Pr
𝑋𝑖

(𝛽2(𝑋𝑖) is pruned) ≤ 𝑝𝑧𝑖 +
(𝑚− 𝑖) + 1

𝑟𝑖
,

290

where the +1 term in the RHS compared to the one for 𝛽1 comes from the fact that
𝛽2(𝑋𝑖) can have (𝑚 − 𝑖 + 1) choices outside subtree of 𝛼𝑧𝑖−1 (because we are now
considering 𝑋𝑖+ 𝑜𝑖,𝑚+ |Win𝑚| ≤ 𝑋𝑖+(𝑚− 𝑖+1) ·𝑤𝑖,𝑧𝑖 instead). By the union bound
on the probabilities for 𝛽1(𝑋𝑖) and 𝛽2(𝑋𝑖),

Pr
𝑋𝑖

(either of 𝛽1(𝑋𝑖) or 𝛽2(𝑋𝑖) is pruned) ≤ 2 · 𝑝𝑧𝑖 + 2 · 𝑚
𝑟𝑖
. (14.9)

Analysis on level 𝑧𝑖 + 1 of the window-tree. For the next step, let
𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) denote the child-nodes of 𝛽1(𝑋𝑖) and 𝛽2(𝑋𝑖) such that Win(𝛾𝑗(𝑋𝑖))
is entirely contained in Win𝑚. Again, the choice of 𝛾1, . . . , 𝛾𝑡 is only a function of 𝑋𝑖.
Moreover, since |Win𝑚| ≥ 2𝑚

𝑚 · 𝑤𝑖,𝑧𝑖+1 by Equation (14.5), while the window of each
node at level 𝑧𝑖+1 is of size 𝑤𝑖,𝑧𝑖+1, we have that 𝑡 ≥ 2𝑚

𝑚 −2 always. We now bound
the probability that each 𝛾𝑗 is (directly) pruned, for 𝑗 ∈ [𝑡]. This part of the analysis
is quite similar to that of level 𝑧𝑖 with only minor changes.

For any choice of 𝛽1(𝑋𝑖) and 𝛽2(𝑋𝑖),

Pr
𝑋𝑖

(𝛾𝑗(𝑋𝑖) is directly pruned | 𝛽1, 𝛽2) =
∑︁
𝛾∈

𝐷𝑃 (𝛽1)∪𝐷𝑃 (𝛽2)

Pr
𝑋𝑖

(𝛾𝑗(𝑋𝑖) = 𝛾 | 𝛽1, 𝛽2)

(as Win𝑚 ⊆ Win(𝛽1) ∪ Win(𝛽2), so 𝛾𝑗 has must use child-nodes of 𝛽1 or 𝛽2)

≤
(︁
|𝐷𝑃 (𝛽1)|+ |𝐷𝑃 (𝛽2)|

)︁
· 1
𝑟𝑖
, (14.10)

where we are again going to argue that the probability that 𝛾𝑗(𝑋𝑖) is equal to any
fixed node 𝛾 is at most 1/𝑟𝑖 conditioned on the choice of 𝛽1 and 𝛽2. For 𝛾𝑗(𝑋𝑖) to
be equal to a node 𝛾 we need to have that 𝑋𝑖 + 𝑜𝑖,𝑚 + (𝑗 − 1) · 𝑤𝑖,𝑧𝑖+1 ∈ Win(𝛾);
this is because 𝛾𝑗(𝑋𝑖) appears after (𝑗 − 1) nodes of level 𝑧𝑖 + 1 that are fully inside
Win𝑚 and each such window has length 𝑤𝑖,𝑧𝑖+1 (note that this is a necessary but not
a sufficient condition). Thus,

Pr
𝑋𝑖

(𝛾𝑗(𝑋𝑖) = 𝛾 | 𝛽1, 𝛽2) ≤ Pr
𝑋𝑖

(𝑋𝑖 + 𝑜𝑖,𝑚 + (𝑗 − 1) · 𝑤𝑖,𝑧𝑖+1 ∈ Win(𝛾) | 𝛽1, 𝛽2)

≤ |Win(𝛾)|
𝑤𝑖,𝑧𝑖

=
1

𝑟𝑖
,

where the last inequality is because conditioned on Win𝑚 intersecting with 𝛽1, 𝛽2,
𝑋𝑖 is chosen uniformly at random from a window of length 𝑤𝑖,𝑧𝑖 (equal to length of
Win(𝛽1) and Win(𝛽2)); the final equality also uses that |Win(𝛾)| = 𝑤𝑖,𝑧𝑖+1 = 𝑤𝑖,𝑧𝑖/𝑟𝑖.
Hence (14.10).

291

We can now deduce that

E
𝑋𝑖

[# of 𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) that are directly pruned]

= E
𝛽1,𝛽2

E
𝑋𝑖

[# of 𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) that are directly pruned | 𝛽1, 𝛽2]

(by the law of total probability over the choices of 𝛽1, 𝛽2)

= E
𝛽1,𝛽2

[︂
|𝐷𝑃 (𝛽1)|+ |𝐷𝑃 (𝛽2)| ·

𝑡

𝑟𝑖

]︂
, (14.11)

where the last inequality is by Equation (14.10).
Let 𝑃 (𝑧𝑖) denote the set of not pruned nodes in level 𝑧𝑖 and let 𝑃 (𝑧𝑖) denote the

set of nodes in level 𝑧𝑖 whose parents are not pruned. Since we are conditioning on ℰ𝑖,
we know that 𝑋𝑖 is uniformly random from the interval ∪𝛽∈𝑃 (𝑧𝑖)

Win(𝛽). It follows that
𝑋𝑚 = 𝑋𝑖+𝑜𝑖,𝑚 is uniformly random in a range whose size is also ℓ =

∑︀
𝛽∈𝑃 (𝑧𝑖)

|Win(𝛽)|.
Thus, for any level-𝑧𝑖 node 𝛽, we have that

Pr[𝛽1 = 𝛽] = Pr[𝑋𝑚 ∈ Win(𝛽)] ≤ |Win(𝛽)|
ℓ

=
𝑤𝑖,𝑧𝑖
ℓ

=
1

|𝑃 (𝑧𝑖)|
.

Summing over the level-(𝑧𝑖 + 1) nodes that are directly pruned, we have that

E|𝐷𝑃 (𝛽1)| =
∑︁

𝛾∈𝐷𝑃 (𝑧𝑖+1)

Pr[𝛽1 is the parent of 𝛾] ≤ |𝐷𝑃 (𝑧𝑖 + 1)|
|𝑃 (𝑧𝑖)|

≤ |𝐷𝑃 (𝑧𝑖 + 1)|
|𝑃 (𝑧𝑖)|

,

using the upper bound established above on the probability that 𝛽1 is any fixed node.
Note that

𝑝𝑧𝑖+1 =
|𝐷𝑃 (𝑧𝑖 + 1)|
𝑟𝑖 · |𝑃 (𝑧𝑖)|

,

i.e., the number of directly pruned nodes in level 𝑧𝑖 + 1 divided by the number of
nodes with not pruned parents. Therefore, E |𝐷𝑃 (𝛽1)| ≤ 𝑟𝑖 · 𝑝𝑧𝑖+1. By the same
reasoning (but applied to 𝛽2, which contains the endpoint of 𝑋𝑚), we have that
E |𝐷𝑃 (𝛽2)| ≤ 𝑟𝑖 · 𝑝𝑧𝑖+1.

Thus, we can use Equation (14.11) to conclude that

E
𝑋𝑖

[# of 𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) that are directly pruned] ≤ 2𝑝𝑧𝑖+1 · 𝑡.

By Markov’s inequality,

Pr
𝑋𝑖

(more than 𝑡/2 of 𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) are directly pruned) ≤ 4 · 𝑝𝑧𝑖+1. (14.12)

Finally, by considering the possibility that at least one of 𝛽1 or 𝛽2 could be pruned

292

also we have,

Pr
𝑋𝑖

(more than 𝑡/2 of 𝛾1, . . . , 𝛾𝑡 are pruned)

≤ Pr
𝑋𝑖

(more than 𝑡/2 of 𝛾1(𝑋𝑖), . . . , 𝛾𝑡(𝑋𝑖) are directly pruned)

+ Pr(either of 𝛽1 or 𝛽2 are pruned)

≤ 4𝑝𝑧𝑖+1 + 2𝑝𝑧𝑖 +
2𝑚

𝑟𝑖
, (14.13)

by Equation (14.9) and Equation (14.12).

Concluding the proof. Let us now condition on the event that at least 𝑡/2 of nodes
𝛾1, . . . , 𝛾𝑡 are not pruned, namely, the complement of the event in Equation (14.13).
Given that Win𝑚 can have intersection with at most two other level-(𝑧𝑖 + 1) nodes
beside 𝛾1, . . . , 𝛾𝑡, conditioned on the above event, we have,

density𝑓 (Win𝑚, 𝑖) ≥
(𝑡/2) · 100/𝑚

𝑡+ 2
≥ 100

3𝑚
>

2

𝑚
,

as 𝑡 ≥ 2𝑚
𝑚 − 2 ≫ 1. Thus, by Equation (14.13), we have,

Pr
𝑋𝑖

(︂
density𝑓 (Win𝑚, 𝑖) ≤

2

𝑚

)︂
≤ 2𝑝𝑧𝑖 + 4 · 𝑝𝑧𝑖+1 +

2𝑚

𝑟𝑖
< 4

(︂
𝑝𝑧𝑖 + 𝑝𝑧𝑖+1 +

𝑚

𝑟𝑖

)︂
,

concluding the proof.

Claims 174, 175, and 176 now cover all possible cases and allow us to
prove Lemma 170.

Proof of Lemma 170. Fix the tree 𝒯𝑖 and consider its pruning process. If
∏︀𝑘

ℓ=0(1 −
𝑝ℓ) ≥ 1/𝑚, we achieve the first condition of the lemma by Claim 174 and are thus
done. Now consider the complement case. In this case, we have,

1

𝑚
<

𝑘∏︁
ℓ=0

(1− 𝑝ℓ) ≤ exp

(︃
−

𝑘∑︁
ℓ=0

𝑝ℓ

)︃
,

which implies that
∑︀𝑘

ℓ=0 𝑝ℓ ≤ ln𝑚. Recall that the choice of 𝑍𝑖 in the distribution is
uniform over [𝑘 − 1] regardless of conditioning on (𝑠<𝑖, 𝑥<𝑖). Thus, we have,

E
𝑍𝑖

[𝑝𝑍𝑖
+ 𝑝𝑍𝑖+1] ≤

1

𝑘 − 1
·
𝑘−1∑︁
ℓ=1

𝑝ℓ +
1

𝑘 − 1
·

𝑘∑︁
ℓ=2

𝑝ℓ ≤
2

𝑘 − 1

𝑘∑︁
ℓ=0

𝑝ℓ ≤
2 ln𝑚

(𝑘 − 1)
.

By Markov’s inequality, we have,

Pr
𝑍𝑖

(︂
𝑝𝑍𝑖

+ 𝑝𝑍𝑖+1 ≥
4 · ln𝑚
𝑘1/2

)︂
≪ 1

𝑘1/3
.

293

We can now condition on any choice 𝑧𝑖 of 𝑍𝑖 such that 𝑝𝑧𝑖 + 𝑝𝑧𝑖+1 ≤ (4 ln𝑚)/𝑘1/2. At
this point, either event ℰ(𝑧𝑖) does not happen, in which case, by Claim 175, we again
obtain condition (𝑖) of the lemma; or the event ℰ(𝑧𝑖) happens, which by Claim 176
and the choice of 𝑟𝑖 in Equation (14.4) implies

Pr
𝑋𝑖

(︂
density𝑓 (Win𝑚, 𝑖) ≤

2

𝑚
| 𝑠<𝑖, 𝑥<𝑖

)︂
≤ 4 ·

(︂
4 · ln𝑚
𝑘1/2

+
𝑚

2𝑘𝑚−𝑖

)︂
≪ 1

𝑘1/3
,

as 𝑖 ≤ 𝑚 − 1 and thus 𝑚/2𝑘𝑚−𝑖 ≤ 𝑚/2𝑘 ≪ 1/𝑘1/3, as 𝑘 = 𝑚𝑚. Taking the union
bound over the above two events, we also obtain condition (𝑖𝑖) of the lemma.

Finally, we use this lemma to conclude the proof of Lemma 166.

Proof of Lemma 166. Let 𝑇1, 𝑇2 ⊆ [𝑚] denote, respectively, the iterations in which
condition (𝑖) or condition (𝑖𝑖) of Lemma 170 happens. Note that 𝑇1 and 𝑇2 are
random variables over the randomness of 𝑆𝑖’s and 𝑋𝑖’s. We first claim that with high
probability |𝑇2| < 𝑚/2. This is because for any iteration 𝑖 ∈ 𝑇2 and any choice of
(𝑠<𝑖, 𝑥<𝑖) of prior iterations, by Lemma 170,

Pr
𝑋𝑖

(︂
density𝑓 (Win𝑚, 𝑖) ≤

2

𝑚
| 𝑠<𝑖, 𝑥<𝑖

)︂
≤ 1

𝑘1/3
.

A union bound on at most 𝑚 choices for indices on 𝑇2 then implies that with prob-
ability at least 1 −𝑚/𝑘1/3, we have density𝑓 (Win𝑚, 𝑖) >

2
𝑚

for all 𝑖 ∈ 𝑇2. But then
conditioned on this event, the size of 𝑇2 cannot be 𝑚/2 or larger as otherwise Win𝑚
contains 𝑚/2 disjoint sets each of which contains than a 2/𝑚 fraction of the window,
which is a contradiction. Thus,

Pr(|𝑇2| ≥ 𝑚/2) ≤ 𝑚

𝑘1/3
≪ 1

𝑘1/4
. (as 𝑘 = 𝑚𝑚)

We condition on the complement of this event in the following, namely, that
|𝑇2| < 𝑚/2. Let

{︀
𝑖1, . . . , 𝑖𝑚/2

}︀
denote the first 𝑚/2 indices of 𝑇1 which by the

conditioning on the size of 𝑇2 is well defined. We have,

Pr(for all 𝑗 ∈ [𝑚/2]: 𝑓(𝑋𝑖𝑗) = 𝑖𝑗)

=
∏︁

𝑗∈[𝑚/2]

Pr
(︀
𝑓(𝑋𝑖𝑗) = 𝑖𝑗 | 𝑓(𝑋𝑖1) = 𝑖1, . . . , 𝑓(𝑋𝑖𝑗−1

) = 𝑖𝑗−1

)︀
≤
(︂
101

𝑚

)︂𝑚/2
.

(since these are type (𝑖) iterations and we can apply condition (𝑖) of Lemma 170)

Putting these two together, combined with the value of 𝑘 = 𝑚𝑚, implies that,

Pr
(𝑋1,...,𝑋𝑚)

(∀𝑖 ∈ [𝑚] : 𝑓(𝑋𝑖) = 𝑖) ≤ 1

𝑘1/4
+

(︂
101

𝑚

)︂𝑚/2
≤ 𝑚−𝜂·𝑚,

294

for some constant 𝜂 > 0 (taking 𝜂 = 1/100 certainly suffices). This concludes the
proof.

295

296

Appendices

297

14.A Proofs of Standard Results in Fractional Col-
oring

We prove Propositions 160 and 161 here for completeness. These proofs are standard;
see, e.g. [321]. We start by presenting the dual view of fractional colorings that is the
key to these proofs.

The dual view of fractional colorings. Given that 𝜒𝑓 (𝐺) is defined as a solution
to an LP, we can use duality to also express 𝜒𝑓 (𝐺) via the following LP:

𝜒𝑓 (𝐺) := max
𝑦∈R𝑉 (𝐺)

≥0

∑︁
𝑣∈𝐺

𝑦𝑣 subject to
∑︁
𝑣∈𝐼

𝑦𝑣 ≤ 1 ∀𝐼 ∈ ℐ(𝐺). (14.14)

This LP is a fractional relaxation of the clique number of 𝐺, namely, the size of
the largest clique in 𝐺 (since, in any integral solution to this LP, the 𝑦-values that are
1 must be on the vertices of a clique). Interestingly, although the chromatic number
and clique size are not duals, their relaxations are.
Proposition (Restatement of Proposition 160). Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2)
be arbitrary graphs. Define 𝐺1∨𝐺2 as a graph on vertices 𝑉1×𝑉2 and define an edge
between vertices (𝑣1, 𝑣2) and (𝑤1, 𝑤2) whenever (𝑣1, 𝑤1) is an edge in 𝐺1 or (𝑣2, 𝑤2) is
an edge in 𝐺2. Then, 𝜒𝑓 (𝐺1 ∨𝐺2) = 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2).

Proof of Proposition 160. We first prove that

𝜒𝑓 (𝐺1 ∨𝐺2) ≥ 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2). (14.15)

Let 𝑦1 ∈ R𝑉1 and 𝑦2 ∈ R𝑉2 be optimal solutions to the dual LP given by Equa-
tion (14.14) for 𝐺1 and 𝐺2, respectively. Consider the assignment 𝑦 ∈ R𝑉1×𝑉2 where
𝑦𝑢1,𝑢2 = 𝑦1𝑢1 · 𝑦

2
𝑢2

. We clearly have that

∑︁
(𝑢1,𝑢2)∈𝑉1×𝑉2

𝑦𝑢1,𝑢2 =

(︃∑︁
𝑢1∈𝑉1

𝑦1𝑢1

)︃
·

(︃∑︁
𝑢2∈𝑉2

𝑦2𝑢2

)︃
= 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2).

We now argue that 𝑦 is also a valid solution to the dual LP given by Equation (14.14)
for 𝐺1∨𝐺2. Fix any independent set 𝐼 ∈ ℐ(𝐺1∧𝐺2). By the definition of the product,
we know that 𝐼 can be written as a product set, namely, 𝐼 = 𝐼1 × 𝐼2 for 𝐼1 ∈ ℐ(𝐺1)
and 𝐼2 ∈ ℐ(𝐺2). Thus,

∑︁
(𝑢1,𝑢2)∈𝐼

𝑦𝑢1,𝑢2 =

(︃∑︁
𝑢1∈𝐼1

𝑦1𝑢1

)︃
·

(︃∑︁
𝑢2∈𝐼2

𝑦2𝑢2

)︃
≤ 1 · 1 = 1,

where the inequality is by the constraint of dual LP for 𝑦1 and 𝑦2 each. Thus, 𝑦 is a

298

solution to the dual LP for 𝐺1 ∨𝐺2, proving Equation (14.15).
We now prove that

𝜒𝑓 (𝐺1 ∨𝐺2) ≤ 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2), (14.16)

using the primal LP instead. Let 𝑥1 ∈ Rℐ(𝐺1) and 𝑥2 ∈ Rℐ(𝐺2) be optimal solutions to
primal LP from Equation (14.1) for 𝐺1 and 𝐺2, respectively. Consider the assignment
𝑥 ∈ Rℐ(𝐺1∨𝐺2) where 𝑥𝐼 = 𝑥1𝐼1 ·𝑥

2
𝐼2

, using the fact from the previous part that 𝐼 = 𝐼1×𝐼2
for 𝐼1 ∈ ℐ(𝐺1) and 𝐼2 ∈ ℐ(𝐺2).

We again clearly have that

∑︁
(𝑢1,𝑢2)∈ℐ(𝐺1∨𝐺2)

𝑥𝐼 =

⎛⎝ ∑︁
𝐼1∈ℐ(𝐺1)

𝑥1𝐼1

⎞⎠ ·

⎛⎝ ∑︁
𝐼2∈ℐ(𝐺2)

𝑥2𝐼2

⎞⎠ = 𝜒𝑓 (𝐺1) · 𝜒𝑓 (𝐺2),

so it remains to prove that 𝑥 is a valid solution to the primal LP from Equation (14.1)
for 𝐺1∨𝐺2. Fix any vertex (𝑢1, 𝑢2) ∈ 𝑉1×𝑉2 and consider all independent sets 𝐼1 ⊆ 𝑉1
that contain 𝑢1 and 𝐼2 ⊆ 𝑉2 that contain 𝑢2. Then, 𝐼1 × 𝐼2 is also an independent set
in 𝐺1 ∨𝐺2 that contains (𝑢1, 𝑢2). Thus,

∑︁
𝐼∈ℐ(𝐺1∨𝐺2):(𝑢1,𝑢2)∈𝐼

𝑥𝐼 ≥

⎛⎝ ∑︁
𝐼1∈ℐ(𝐺1,𝑢1)

𝑥1𝐼1

⎞⎠ ·

⎛⎝ ∑︁
𝐼2∈ℐ(𝐺2,𝑢2)

𝑥2𝐼2

⎞⎠ ≥ 1 · 1 = 1,

where the inequality is by the constraint of primal LP from Equation (14.1) for 𝑥1
and 𝑥2 each. Thus, 𝑥 is a solution to the primal LP from Equation (14.1) for 𝐺1∨𝐺2,
proving Equation (14.16).

Proposition (Restatement of Proposition 161). For any graph 𝐺 = (𝑉,𝐸),

𝜒𝑓 (𝐺) = max
distribution 𝜇 on 𝑉

min
𝐼∈ℐ(𝐺)

(︁
Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼)
)︁−1

.

Proof of Proposition 161. Let 𝜇 be any distribution on 𝑉 (𝐺) and define 𝑏 :=
max𝐼∈ℐ(𝐺) Pr(𝑣 ∈ 𝐼)−1. Create 𝑦 ∈ R𝑉 (𝑚) such that 𝑦𝑣 = 𝑏 · 𝜇(𝑣) for every ver-
tex 𝑣 ∈ 𝑉 (𝑚) where 𝜇(𝑣) is the probability of vertex 𝑣 under the distribution 𝜇. We
claim that 𝑦 is a feasible dual solution in Equation (14.14).

For every independent set 𝐼 ∈ ℐ(𝐺),∑︁
𝑣∈𝐼

𝑦𝑣 = 𝑏 ·
∑︁
𝑣∈𝐼

𝜇(𝑣) = 𝑏 · Pr
𝑣∼𝜇

(𝑣 ∈ 𝐼) ≤ 1,

by the definition of 𝑏. Thus 𝑦 is a feasible dual solution. Moreover,∑︁
𝑣∈𝑉 (𝐺)

𝑦𝑣 = 𝑏 ·
∑︁

𝑣∈𝑉 (𝐺)

𝜇(𝑣) = 𝑏.

299

As the dual LP in Equation (14.14) is a maximization LP, we have that 𝜒𝑓 (𝐺) ≥ 𝑏 =
max𝐼∈ℐ(𝐺) Pr𝜇(𝑣 ∈ 𝐼)−1, for any distribution 𝜇 on the vertices.

Conversely, let 𝑦 be any optimal solution to the dual LP and let 𝑐 :=
∑︀

𝑣∈𝑉 𝑦𝑣.
Define a distribution 𝜇 on the vertices 𝑉 by setting 𝜇(𝑣) = 𝑦𝑣/𝑐. For any independent
set 𝐼 ∈ ℐ(𝐺), we have,

Pr
𝑣∈𝜇

(𝑣 ∈ 𝐼) =
∑︁
𝑣∈𝐼

𝜇(𝑣) =
∑︁
𝑣∈𝐼

𝑦𝑣/𝑐 ≤ 1/𝑐,

where the final inequality is because 𝑦 is a feasible dual solution. Thus, there exists
a distribution 𝜇 such that 𝜒𝑓 (𝐺) = 𝑐 ≤ max𝐼∈ℐ(𝐺) Pr𝜇(𝑣 ∈ 𝐼)−1.

Combining these two parts concludes the proof.

14.B Covering The Full Range of the Universe Size

We now generalize the proof of Theorem 162 to the full parameter range specified in
the theorem. Consider 𝑢 and 𝑛 satisfying

𝑛22
√
log log𝑛 ≤ 𝑢 ≤ 2𝑛

𝑛2+𝑛

.

Notice that, on the lower-bound side, we are actually covering a slightly larger range
(and therefore proving a slightly stronger result) than required to establish Theo-
rem 162.

Set
𝑚 = (log log 𝑢)1/6 and 𝑘 = 𝑛/𝑚 = 𝑛/(log log 𝑢)1/6.

Note that the setting of 𝑘 implicitly requires that (log log 𝑢)1/6 ≤ 𝑛, which follows
from the fact that (log log 𝑢)1/6 ≤ (𝑛2 + 𝑛)1/6 ≤

√
𝑛.

The 𝑘-fold conflict graph 𝐺⊕𝑘(𝑚) has log𝜒𝑓 (𝐺
⊕𝑘(𝑚)) = Ω(𝑛 log𝑚) =

Ω(𝑛 log log log 𝑢) as already argued in Section 14.3.2. To complete the proof, we
must establish that the graph 𝐺⊕𝑘(𝑚) has vertices that are subsets of a universe
whose size 𝑢′ satisfies 𝑢′ ≤ 𝑢. Solving for 𝑢′, we have that

𝑢′ = 𝑘𝑀 =
𝑛

(log log 𝑢)1/6
· 2𝑚𝑚2+𝑚 ≤ 𝑛 · 22𝑚

3/2 ≤ 𝑛 · 22
√
log log 𝑢/2

.

From here, we can consider two cases. Case 1 is that 𝑢 ≥ 𝑛2. In this case, we
have

𝑢 ≥ 𝑛2 ≥ 𝑛 · 22
√
log log𝑛 ≥ 𝑛 · 22

√
log log 𝑢/2 ≥ 𝑢′.

Case 2 is that 𝑢 < 𝑛2. In this case, we can use the fact that 22
√
log log 𝑢/2 ≤ 2log 𝑢/2 ≤

√
𝑢

to conclude that 𝑢′ ≤ 𝑛 · 22
√
log log 𝑢/2 ≤ 𝑛

√
𝑢 ≤ 𝑢, where the final inequality follows

300

from the case that we are in. In either case, we have that

𝑢

𝑢′
≥ 1,

which completes the proof of Theorem 162 for any choice of 𝑢 between 𝑛 · 22
√
log log𝑛

and 2𝑛
𝑛2+𝑛 .

Finally, we remark that the term 2𝑛
𝑛2+𝑛 in the upper bound is not tight and can

be replaced by any other 22
poly(𝑛) term; this is simply because for any 𝑢 = 22

poly(𝑛) ,
log log log 𝑢 = Θ(log 𝑛) and thus for any larger universe size 𝑢 also, we can simply
focus on the smallest 2𝑛𝑛2+𝑛 numbers in the universe and still obtain the same asymp-
totic lower bound. The lower bound term is also not tight and can be replaced with
𝑛 · 22(log log𝑛)𝜀 for any constant 𝜀 ∈ (0, 1/2) by the same argument.

301

Part V

How Many Bits Does It Take to
Write Down a Pointer?

302

Chapter 15

Introduction

How many bits does it take to store a pointer? If we know nothing about the pointer
except that it references an element in an array of size 𝑛, then there is a lower bound
of log 𝑛 bits.

For many (and perhaps even most) uses of pointers, however, this information-
theoretic lower bound does not apply. As we shall see in this part of the thesis, even
a small amount of prior information about a pointer (e.g., a node’s predecessor in a
linked list) can be used to defeat the log 𝑛 lower bound.

In this part of the thesis, we introduce a general-purpose tool, which we call the
tiny pointer, for compressing pointers. In settings where pointers are used, tiny
pointers can often be used instead to eliminate almost all of the space overhead of
pointers.

What is a tiny pointer? Suppose 𝑛 or more users (i.e., Alice, Bob, etc.) are sharing
an array 𝐴 of size 𝑛. A user can request a location in 𝐴 via a function Allocate(),
which returns a pointer 𝑝 to a location that is now reserved exclusively for that user,
if there is an available location; the user can later relinquish the memory location by
calling a function Free(𝑝). Each user promises only to allocate at most one memory
location at a time.1 For example, if Alice calls Allocate() to get a pointer 𝑝, she
must call Free(𝑝) before calling Allocate() again.

How large do the pointers 𝑝 need to be? The natural answer is that each pointer
uses log 𝑛 bits. However, the fact that each pointer has a distinct owner makes it
possible to compress the pointers to 𝑜(log 𝑛) bits. A critical insight is that the same
pointer 𝑝 can mean different things to different users, via the following scheme. A
user 𝑘 can call Allocate(𝑘) in order to get a tiny pointer 𝑝; they can dereference
the tiny pointer 𝑝 by computing a function Dereference(𝑘, 𝑝) whose value depends
only on 𝑘, 𝑝, and random bits; and they can free a tiny pointer 𝑝 by calling a function
Free(𝑘, 𝑝).

1A user 𝑘 can request more than one location by creating a unique label ℓ for each of their
allocations. In this case, we simply treat the “user” for the allocation as the concatenation 𝑘 ∘ ℓ, so
the user 𝑘 can have multiple allocations without violating the uniqueness requirement.

303

The reason that tiny pointers are not constrained by the information-theoretic
lower bound of log 𝑛 bits is that 𝑘 and 𝑝 together encode the allocated location, rather
than 𝑝 alone. Thus this scheme provides a mechanism for how to use information
already available about a pointer (namely, who “owns” the pointer) to compress the
pointer to size 𝑜(log 𝑛) bits.

We refer to the algorithms for the functions
Allocate(𝑘)/Dereference(𝑘, 𝑝)/Free(𝑘, 𝑝), along with the array 𝐴 and
any associated metadata 𝑀 , as a dereference table. We will often refer to the users
(i.e., the owners of tiny pointers) as keys and to the data stored at the allocated
locations pointed at by the tiny pointers as values. A dereference table that stores
𝑞-bit values in an array of 𝑛𝑞 bits (and using 𝑂(𝑛) bits of metadata) is said to
support load factor 1− 𝛿 if the table is capable of storing (1− 𝛿)𝑛 values at a time.

An ideal dereference table would simultaneously support a load factor with 𝛿 =
𝑜(1), tiny-pointer sizes of 𝑜(log 𝑛), and constant-time operations with high probability.
As we shall see, not only is such a guarantee possible, but there is a rich tradeoff curve
between the load factor and the tiny-pointer size.

Chapter 16: Optimal tiny-pointer constructions In Chapter 16, we first develop
a comprehensive theory of tiny pointers.

We consider both fixed-size tiny pointers (where all of the tiny pointers have
the same size in bits) and variable-size tiny pointers (where every tiny pointer is
of bounded expected size, but different tiny pointers may have different sizes).

For fixed-size tiny pointers, we show that for any load factor 1− 𝛿 ∈ Ω(1), there
is a lower bound of Ω(log log log 𝑛) on the tiny-pointer size 𝑠. On the other hand,
parameterizing by 𝛿, we show that it is possible to achieve a fixed tiny-pointer size
𝑠 = 𝑂(log log log 𝑛 + log 𝛿−1), and we give a lower bound showing that this tradeoff
curve is tight.

We show that the log log log 𝑛 barrier can be eliminated by instead using variable-
size tiny pointers. We prove that for any load factor 1 − 𝛿, it is possible to achieve
average tiny-pointer size 𝑠 = 𝑂(1 + log 𝛿−1), and again we prove that this tradeoff
curve is tight for all 𝛿.

For variable-size tiny pointers, our construction offers a remarkably strong concen-
tration bound on each tiny pointer’s size: if the expected size is 𝑘, then the probability
of any given allocation returning a tiny pointer of size greater than 𝑘+𝑗 for any 𝑗 > 0
is doubly exponentially small in 𝑗.

All of our dereference-table constructions guarantee constant-time operations with
high probability, that is, with probability 1 − 1/ poly 𝑛. Thus, tiny pointers can be
integrated into data structures while incurring only a constant-factor time overhead.

Chapter 17: Using tiny pointers to get tiny data structures. In addition
to constructing dereference tables with tiny pointers, we show that such dereference
tables can be used to obtain improved solutions for a number of classic problems:

304

• A data structure storing 𝑛 𝑣-bit values for 𝑛 keys with constant-time modifica-
tions and queries can be implemented to take space 𝑛𝑣 +𝑂(𝑛 log(𝑟) 𝑛) bits, for
any constant 𝑟 > 0, as long as the user stores a tiny pointer of expected size
𝑂(1) with each key—here, log(𝑟) 𝑛 is the 𝑟-th iterated logarithm.2

• Any binary search tree storing 𝑛 sortable keys in 𝑛 nodes can be made succinct
with constant time overhead, and can be made within 𝑂(𝑛) bits of optimal with
𝑂(log* 𝑛)-time modifications. This holds even for rotation-based trees such as
the splay tree, which is conjectured to be dynamically optimal.

• Any fixed-capacity key-value dictionary storing 𝑣-bit values can be made stable
(i.e., items do not move once inserted) with constant time overhead an additive
𝑂(log 𝑣)-bit space overhead per value.

• Any key-value dictionary that requires uniform-size values can be made to sup-
port arbitrary-size values with constant time overhead and with an additional
space consumption of log(𝑟) 𝑛+ 𝑂(log 𝑗) bits per 𝑗-bit value, where 𝑟 > 0 is an
arbitrary constant.

• Given an external-memory array 𝐴 of size (1 + 𝜀)𝑛 containing a dynamic set
of up to 𝑛 key-value pairs, it is possible to maintain an internal-memory stash
of size 𝑂(𝑛 log 𝜀−1) bits so that the location of any key-value pair in 𝐴 can be
computed in constant time (and with no IOs).

What unifies these problems is that each is easy to solve space-inefficiently with
pointers, and the difficulty in solving them space-efficiently stems from the challenge
of eliminating the pointer overhead.

A theme throughout our applications of tiny pointers is the importance of having
access to the full tradeoff curve of optimal tiny-pointer constructions. This is because
of the need to balance two types of space overheads: that of storing the tiny pointers
themselves, and that of storing the dereference table. The former is determined by
tiny-pointer size and the latter is determined by load factor.

Relationship to dynamic perfect hashing. In order to understand what makes
the tiny-pointer abstraction powerful, let us take a moment to consider the following
(more classical) approach to removing pointer overhead in the setting where each
value has a unique owner: construct a dynamic perfect hash function that maps
keys to slots in a densely packed array, and replace pointer dereferences with queries
to this hash function. Such an approach has a certain elegance because it removes
the pointers entirely. However, it also hits a fundamental bottleneck: any dynamic
perfect hash function mapping 𝑛 (1 + Θ(1)) log 𝑛-bit keys to (1 + 𝛿)𝑛 slots must use
Θ(𝑛 log log 𝑛+ 𝑛 log 𝛿−1) bits of metadata [44,146].

The 𝑛 log log 𝑛-bit term means that dynamic perfect hashing cannot be used to
simulate pointers of size any smaller than log log 𝑛 bits. What makes our results
on tiny pointers surprising is that, by reducing the lengths of pointers (rather than
attempting to eliminate them entirely), one can blast through the 𝑛 log log 𝑛 lower
bound, enabling both our bounds on tiny pointers and the data-structural applications

2That is, log(1) 𝑛 := log 𝑛 and log(𝑖+1) 𝑛 := log log(𝑖) 𝑛.

305

that we present.

Relationship to other work in this thesis. An interesting feature of the results in
this part of the thesis is that they make heavy use of the results/technique developed in
earlier parts. The balls-and-bins techniques from Chapter 10 (and especially Lemma
104) play a critical role in the tiny-pointer constructions in Chapter 16. Then, in
our applications of tiny pointers (Chapter 17) we find that the very space-efficient
hash table results (Chapter 12) come into play. Indeed, one of the main technical
insights in our applications is the remarkable symbiosis between tiny pointers and
very space-efficient hash tables, in which tiny pointers can be used to bring the very
strong space bounds from Chapter 12 to other seemingly quite different problems.

306

Chapter 16

From Balls and Bins to Tiny Pointers

In this chapter, we present optimal constructions for both fixed-size and variable-size
tiny pointers. All of our constructions support constant-time operations with high
probability, while determining a tradeoff curve between the load factor 1 − 𝛿 of the
dereference table and the size 𝑠 of each tiny pointer.

Theorems 177 and 178 combine to establish an optimal bound of 𝑠 =
Θ(log log log 𝑛+ log 𝛿−1) for the fixed size case.
Theorem 177. For every 𝛿 ∈ (0, 1) there is a dereference table that (i) succeeds
on each allocation w.h.p., (ii) has load factor at least 1 − 𝛿, (iii) has constant-time
updates w.h.p., and (iv) has tiny pointers of size 𝑂(log log log 𝑛+ log 𝛿−1).

Theorem 178. Consider a universe 𝒰 of keys, where 𝒰 is assumed to have a suffi-
ciently large polynomial size. If a dereference table supports fixed-sized tiny pointers
of size 𝑠 and load factor 1− 𝛿 = Ω(1), then 𝑠 = Ω(log log log 𝑛+ log 𝛿−1).

Theorems 179 and 180 then combine to establish an expected optimal bound of
𝑠 = Θ(log 𝛿−1) for the variable-size case.
Theorem 179. For every 𝛿 ∈ (0, 1), there exists a dereference table that (i) succeeds
on each allocation w.h.p., (ii) has load factor at least 1 − 𝛿, (iii) has constant-time
updates w.h.p., and (iv) has tiny pointer size 𝑂(𝑃 + log 𝛿−1), where 𝑃 is a random
variable such that Pr (𝑃 ≥ 𝑖) ≤ 2−2Ω(𝑖) for all 𝑖. In particular, the tiny pointer size is
𝑂(1 + log 𝛿−1) in expectation.

Theorem 180. Consider a universe 𝒰 of keys, where 𝒰 is assumed to have a suf-
ficiently large polynomial size. If a dereference table supports variable-sized tiny
pointers of expected size 𝑠 and load factor 1− 𝛿 = Ω(1), then 𝑠 = Ω(log 𝛿−1).

The structure of the chapter is as follows. We begin with preliminaries, including
a formal definition of the tiny-pointer abstraction (Section 16.1). We then present the
upper bounds for the fixed-size case (Section 16.2) and the variable-size case (Section
16.3), after which we prove both lower bounds (Section 16.4).

Relationship to balls and bins. An important strand of our story will be the
relationship between tiny-pointer/dereference-table constructions and the balls-and-

307

bins results from Chapter 10.
To see why this is the case, it may be helpful to consider the following very basic

dereference-table construction: Break the array into bins of size polylog(𝑛); assign
each element 𝑥 in the dereference table to a random bin via a hash function; and
within that bin, assign the element to an arbitrary vacant slot. Assuming the load
factor 1 − 𝛿 is at most 1 − 1/ log 𝑛, we can use simple Chernoff bounds to argue
that every element will map to a bin that has room for it. We can then construct
the tiny pointer for a given element to simply be the position where the element is
stored in its bin. Since each bin has size polylog 𝑛, this simple construction leads to
𝑂(log polylog 𝑛) = 𝑂(log log 𝑛)-bit tiny pointers (although a bit more work is needed
to make the construction time efficient).

Thus, even the basic SingleChoice strategy can be transformed into a nontrivial
tiny-pointer scheme! Given this relationship, it should come as no surprise that the
optimal construction for fixed-size tiny pointers will end up following almost imme-
diately from the Iceberg balls-and-bins scheme that we gave in Chapter 10. Our
construction for variable-size tiny pointers will then take the same set of techniques
and extend them further.

16.1 Preliminaries

Operations. A dereference table with 𝑞-bit-values is a data structure that supports
the following operations:

• Create(𝑛, 𝑞): The procedure creates a new dereference table, and returns a
pointer to an array with 𝑛 slots, each of size 𝑞 bits. We call this array the store.

• Allocate(𝑘): Given a key 𝑘, the procedure allocates a slot in the store to 𝑘,
and returns a bit string 𝑝, which we call a tiny pointer.

• Dereference(𝑘, 𝑝): Given a key 𝑘 and a tiny pointer 𝑝, the procedure returns
the index of the slot allocated to 𝑘 in the store. If 𝑝 is not a valid tiny pointer
for 𝑘 (i.e., 𝑝 was not returned by a call to Allocate(𝑘)), then the procedure
may return an arbitrary index in the store.

• Free(𝑘, 𝑝): Given a key 𝑘 and a tiny pointer 𝑝, the procedure deallocates slot
Dereference(𝑘, 𝑝) from 𝑘. The user is only permitted to call this function
on pairs (𝑘, 𝑝) where 𝑝 is a valid tiny pointer for 𝑘 (i.e., 𝑝 was returned by the
most recent call to Allocate(𝑘)).

We say a key 𝑘 is present if it has been allocated more recently than it has been
freed; in this case the tiny pointer 𝑝 returned by the most recent call to Allocate(𝑘)
is said to be 𝑘’s tiny pointer. The user is only permitted to allocate at most one tiny
pointer 𝑝 to each key 𝑘. That is, each time that Allocate(𝑘) is called to obtain
some tiny pointer 𝑝, the function Free(𝑘, 𝑝) must be called before Allocate(𝑘) can
be called again.

308

We say that slot 𝑖 in the store is occupied if there is a present key 𝑘 with tiny
pointer 𝑝 such that Dereference(𝑘, 𝑝) = 𝑖, and otherwise we say it is free. We
typically refer to the parameter 𝑛 (i.e., the number of slots in the store) as the table’s
size or capacity.

Guarantees. Dereference tables provide the following guarantees:

• For any two present keys 𝑘1 ̸= 𝑘2 with tiny pointers 𝑝1 and 𝑝2, respectively,
Dereference(𝑘1, 𝑝1) ̸= Dereference(𝑘2, 𝑝2).

• Dereference(𝑘, 𝑝) only depends on 𝑘, 𝑝, random bits, and the parameter 𝑛.

The second property ensures that the act of dereferencing a tiny pointer is similar
to the act of dereferencing a standard pointer; in both cases, one does not need to
access the data structure being pointed into in order to perform the dereference. This
ends up being important for several of our applications later. In particular, it ensures
that in external-memory applications, each dereference incurs only a single I/O; and
it ensures that in data-structure applications, the locations pointed at by tiny pointers
are stable (i.e., once a tiny pointer 𝑝 is allocated to a key 𝑘, the location that is being
pointed at does not change).

Metadata information. The dereference table may store metadata in order to
perform updates (allocations and frees) efficiently. Metadata can either be stored as
part of the store, or in an auxiliary data structure that is permitted to consume up
to 𝑂(𝑛) bits. In other words, the dereference table is allowed to use 𝑂(𝑛) bits (i.e.,
𝑂(1) bits of overhead per slot) of metadata for “free”, without that counting towards
the space consumption of the store, but any additional metadata must count towards
the space consumption of the store. Note that the dereference table is not allowed to
store metadata in any slot of the store that is currently allocated.

Failure probability. We will permit allocations to have a small failure probability.
That is, each allocation is permitted to fail with probability 1/ poly(𝑛), in which case
the allocation simply returns a failure message rather than a tiny pointer. In general,
if a random event occurs with probability 1− 1/ poly(𝑛), we say that it occurs with
high probability (w.h.p.).

We remark that, when analyzing dereference tables, we shall always assume that
the sequence of allocations, frees, and dereferences are determined by an oblivious
adversary (i.e., the sequence is determined ahead of time, rather than adapting to
the behavior of the dereference table). One consequence of this is that, if a given
allocation fails, the only effect on the operation sequence is that the corresponding
call to free is removed.

Load factor. Any implementation of a dereference table must also specify an addi-
tional parameter 𝛿 ∈ [0, 1] dictating how full the table is allowed to be. This means
that the dereference table can support up to (1−𝛿)𝑛 allocations at a time—the quan-
tity 1−𝛿 is referred to as the table’s load factor. If the Allocate function is called

309

when there are already (1 − 𝛿)𝑛 allocations performed, then the dereference table is
permitted to fail the allocation.1

Since dereference tables can use up to 𝑂(𝑛) space for metadata, the total amount
of space consumed by a dereference table may be as large as 𝑛𝑞+𝑂(𝑛) = (1− 𝛿)𝑛𝑞+
𝛿𝑛𝑞+𝑂(𝑛). The first term (1−𝛿)𝑛𝑞 is space that allocations can make use of, and the
other terms 𝛿𝑛𝑞 +𝑂(𝑛) are wasted space. Note that there is no point in considering
𝛿 ≪ 1/𝑞, since this just makes it so that they wasted space is dominated by metadata.
Thus, when constructing a reference table with some load factor 1−𝛿, we shall always
implicitly assume that 𝑞 ≥ Ω(𝛿−1).

Hashing and independence. Our dereference-table constructions will all make
use of hash functions. For simplicity, we shall treat hash functions as being uniform
and fully independent. This assumption is without loss of generality since there
are already known families of hash functions [162,293] that simulate 𝑛-independence
with constant-time evaluation and 𝑂(𝑛) random bits, and there are already well
understood techniques [52, 245] for applying these families to data structures that
require poly 𝑛-independence2. These known techniques can easily be applied directly
to all of our data structures; the only caveat is that the families of hash functions being
used [162,293] introduce their own additional 1/ poly(𝑛) failure probability to the data
structure. So, even if a data structure offers sub-polynomial failure probability under
the assumption of fully random hash functions, if we wish to use an explicit family
of hash functions, then we must allow for a 1/ poly(𝑛) failure probability.

16.2 Upper Bound for Fixed-Size Pointers

In this section, we give optimal constructions for fixed-size tiny pointers. We prove
the following theorem:
Theorem 177. For every 𝛿 ∈ (0, 1) there is a dereference table that (i) succeeds
on each allocation w.h.p., (ii) has load factor at least 1 − 𝛿, (iii) has constant-time
updates w.h.p., and (iv) has tiny pointers of size 𝑂(log log log 𝑛+ log 𝛿−1).

In particular, for 𝛿 = 1/ log log 𝑛, we get tiny pointers of size 𝑂(log log log 𝑛).
Thus, we can doubly-exponentially beat raw log 𝑛-bit pointers, while still supporting
a load factor of 1− 𝑜(1).

The proof is the simplest of our tiny-pointer constructions, and can be viewed
essentially as a reinterpretation of the Iceberg balls-to-bins scheme presented in
Chapter 10. Indeed, one way to think about the construction is that we will partition
our array into bins, we will place the elements into those bins using Iceberg with

1Note that, even though a dereference table only guarantees the ability to store up to (1 − 𝛿)𝑛
allocations at a time, we still use the terms “size” and “capacity” of a dereference table to refer to 𝑛,
rather than (1− 𝛿)𝑛, since 𝑛 represents the total number of 𝑞-bit entries in the store.

2The basic idea is to simply replace the data structure of capacity 𝑛 with 𝑛1−𝜀 data structures
of capacity 𝑛𝜀. Each element 𝑥 in the full data structure gets hashed at random to one of the 𝑛1−𝜀

data structures, each of which only requires poly(𝑛𝜀) = 𝑜(𝑛) independence.

310

three bin-choice hash functions ℎ1, ℎ2, ℎ3, and then we will define the tiny pointer for
a given element 𝑥 to be the pair (𝑖, 𝑗), 𝑖 ∈ [3], such that 𝑥 is in position 𝑗 of bin ℎ𝑖(𝑥).
The fact that Iceberg achieves strong load-balancing guarantees will allow for us to
ensure a high load factor in each bin, while keeping the bins small so that the tiny
pointers are also small.

Rather than state the fixed-size construction directly as an application of Ice-
berg, it will be helpful to describe it as the combination of two building blocks
(indeed, these same building blocks will then be useful for constructing variable-size
tiny pointers).

The first building block: load-balancing tables. A load-balancing table is a
simple type of dereference table that has a very specific internal representation, and
that, unlike normal dereference tables, is permitted to fail on calls to Allocate
with a non-negligible probability. Roughly speaking, if a load-balancing table has
load factor 1− 𝛿, then the load-balancing table is permitted to fail on a 𝛿-fraction of
allocations.

Load-balancing tables are implemented as follows. If the store is of some size 𝑚,
then we partition it into 𝑚/𝑏 buckets of size 𝑏 = Θ(𝛿−2 log 𝛿−1). To allocate a key 𝑘,
we hash 𝑘 into one of the buckets, using a hash function ℎ. If bucket ℎ(𝑘) contains a
free slot, then we allocate any free slot 𝑖 ∈ [𝑏] within that bucket, and we return 𝑖 as
the tiny pointer. Otherwise, all 𝑏 slots in the bucket are occupied, and the allocation
fails. The function Dereference(𝑘, 𝑝) can then be implemented to simply return
the 𝑝-th slot in bin ℎ(𝑘).

Load-balancing tables will serve as a building block in the dereference tables that
we construct. The basic idea is that we can use a load-balancing table to handle all
but a 𝛿-fraction of allocations, and the remaining allocations can be handled via some
other mechanism. Thus, we will need the following lemma which bounds the total
number of failed allocations at any given moment:
Lemma 181. Consider a load-balancing table with size 𝑚 and load factor 1 − 𝛿.
Consider a sequence of allocations and frees such that no more than (1− 𝛿)𝑚 alloca-
tions are made at any given moment. If an allocation fails, and the allocation would
have been freed at some time 𝑡, then we consider the allocation to be alive up until
that time 𝑡. At any given moment, the number of allocations that have failed and are
still alive is 𝑂(𝛿𝑚) with probability at least 1− exp(− poly(𝛿)𝑚).

We have already seen the proof of Lemma 181 earlier in the thesis. Indeed, it
follows directly from Lemma 104 in Chapter 10.

We remark that in all of our applications of Lemma 181, we will have w.l.o.g. that
log 𝛿−1 = 𝑜(log𝑚) (since, otherwise, we would have log 𝛿−1 = Ω(log𝑚) and so could
just use standard 𝑂(log𝑚)-bit pointers). Thus the probability bound offered by the
lemma will always be at least 1− exp(𝑚1−𝑜(1)) ≥ 1− 1/ poly(𝑚).

To conclude our discussion of load-balancing tables, we must describe how to
implement allocations and frees in constant time. Here, there are two cases, depending
on how 𝑏 compares to the size 𝑛 of the dereference table that the load-balancing table

311

is being used within.
If 𝑏 ≤ log 𝑛, then we can store a 𝑏-bit bitmap for each bucket indicating which

slots in the bucket are free; and we can use standard bit-manipulation on the bitmap
to implement the allocation and free functions in constant time.

We take a different approach if 𝑏 ≥ log 𝑛. In this case, we claim that without loss
of generality, 𝑞 = 𝜔(log 𝑏), where 𝑞 is the size in bits of the elements being stored (we
will prove this claim in a moment). This claim means that we can keep track of which
slots are free in each bucket of a load-balancing table as follows: we simply store a
free list in each bucket, that is, a linked list consisting of all the free slots, where each
free slot contains a pointer to the next free slot in the list. This is possible since each
free slot is 𝑞 bits and each pointer in the linked list needs only log 𝑏 = 𝑜(𝑞) bits. The
log 𝑏-bit base pointers of the 𝑚/𝑏 linked lists can be stored in an auxiliary metadata
array of size 𝑂((𝑚/𝑏) · log 𝑏) ≤ 𝑂(𝑚), where 𝑚 is the size of the load-balancing table.
The free lists allow for us to implement the allocation and free functions in constant
time.

To prove that this free-list approach works, it remains to show that 𝑞 = 𝜔(log 𝑏)
without loss of generality. Let 1 − 𝛿 be the load factor of the full dereference table
(that the load-balancing table is part of) and let 1 − 𝛿′ be the load factor of the
load-balancing table. Since 𝑏 ≥ log 𝑛, we must have 𝛿′−1 = Ω̃(

√
log 𝑛). In all of our

constructions of dereference tables, if we use a load-balancing table with load factor
1 − 𝛿′ satisfying 𝛿′−1 = Ω̃(

√
log 𝑛) (or even 𝛿′−1 = 𝜔(log log 𝑛)), we will always have

log 𝛿−1 ≥ Ω(log 𝛿′−1). Recall that, if a dereference table has load factor 1− 𝛿, then it
is assumed that the dereference table is storing objects of size 𝑞 ≥ Ω(𝛿−1) bits. Thus,
we have that 𝑞 = 𝜔(log 𝛿−1) = 𝜔(log 𝛿′−1) = 𝜔(log 𝑏), as desired.

The second building block: a power-of-two-choices dereference table. To
compensate for the high failure probability of load-balancing tables, we develop our
second building block: a simple dereference table that supports 𝑂(log log log 𝑛)-bit
tiny pointers and, unlike a load-balancing table, has low failure probability. The
downside of this second building block is that it only supports a very small load
factor.
Lemma 182. There exists a 𝛿 satisfying 1 − 𝛿 = Θ(1/ log log 𝑛), such that there is
a dereference table that (i) succeeds on each allocation w.h.p., (ii) has load factor at
least 1 − 𝛿, (iii) has constant-time updates w.h.p., and (iv) has tiny pointers of size
𝑂(log log log 𝑛).

Proof. We partition the store into buckets of size 𝑏 = Θ(log log 𝑛). When
allocate(𝑘) is called, the key 𝑘 is hashed to two buckets ℎ1(𝑘), ℎ2(𝑘) ∈ [1, 𝑛/𝑏].
The key 𝑘 is allocated a slot in whichever of the two buckets contains the most free
slots. The tiny pointer 𝑝 is 1 + log 𝑏 = 𝑂(log log log 𝑛) bits, and indicates which slot
in the two buckets was allocated.

We can think of the allocations as balls that are inserted into bins using
the power-of-two-choices rule [351, 369], with the same ball possibly being in-
serted/deleted/reinserted over time. Since the load factor is Θ(1/ log log 𝑛), the ex-

312

pected number of balls in each bin is 𝑂(1). In this setting, it is known that, w.h.p.,
the number of balls in the fullest bin is 𝑂(log log 𝑛) [369]. Thus allocations succeed
w.h.p.

Finally, to implement allocations and frees in constant time, we can just use a
bitmap to keep track of which slots in each bucket are free; since each bucket is only
𝑂(log log 𝑛) slots, the bitmaps are each only 𝑂(log log 𝑛) bits, and thus each bitmap
fits into a machine word. Using standard bit manipulation, the bitmaps can be used
to keep track of which slots are free in constant time per allocation/free (and to find
a free slot for a given allocation also in constant time). The bitmaps consume a total
of 𝑂(𝑛) bits of space.

Putting the pieces together. Of course, power-of-two-choices dereference tables
are not very useful on their own, because they only support 𝑜(1) load factors. We now
show how to combine them with load-balancing tables in order to prove Theorem 177.

Proof of Theorem 177. Since we are willing to have tiny pointers of size
Θ(log log log 𝑛+log 𝛿−1), we can assume without loss of generality that 𝛿 = 𝑜

(︁
1

log log𝑛

)︁
.

We store a 1 − 𝛿2 fraction of the allocations in a load-balancing table of size
𝑚 = (1 − 𝛿/2)𝑛 slots that supports load factor 1 − 𝛿2/𝑐 for some sufficiently large
positive constant 𝑐; we call this the primary table. Allocations that fail in the
primary table are stored in a secondary table implemented with Lemma 182 to have
size 𝑛′ := 𝛿𝑛/2 slots and support load factor 1−𝛿′ := Θ(1/ log log 𝑛′). If an allocation
fails in the secondary table, or if the load factor of the secondary table ever exceeds
Θ(1/ log log 𝑛′), then the allocation fails in the full dereference table as well. Note
that the total size (in terms of slots) of the primary and secondary tables is 𝑛. See
Figure 1 for a picture of the layouts of the two tables.

Since both the primary and secondary tables are constant time, so is the full
dereference table. Additionally, each allocation can return a tiny pointer that is either
in the primary table or in the secondary table (plus 1 bit of information indicating
which table it is being pointed into). Since the primary and secondary tables both
have tiny pointers of size 𝑂(log log log 𝑛+ log 𝛿−1), the claim about tiny-pointer size
is also proven.

Our final task is to bound the probability of a given allocation failing. Lemma
181 tells us that the number of allocations in the secondary table will be at most
𝛿2𝑛 at any given moment w.h.p. Since the secondary table has 𝑛′ = Θ(𝛿𝑛/2) slots,
and since 𝛿 = 𝑜

(︁
1

log log𝑛

)︁
, it follows that the number of allocations in the secondary

table at any given moment is 𝑜(𝑛′/ log log 𝑛) = 𝑜(𝑛′/ log log 𝑛′) with high probability.
We therefore get from Lemma 182 that the allocations in the secondary table each
succeed with high probability in 𝑛′. Without loss of generality, 𝑛′ ≥

√
𝑛 (since

otherwise 𝛿 ≤ 𝑂(1/
√
𝑛), and we can just use standard log 𝑛-bit pointers). Thus the

allocations in the secondary table each succeed with high probability in 𝑛.

313

b = Θ(1)

s = c log n̂

level 0 level 1 level 2 level 3

load-balancing tables

overflow tables
s = c log n̂

Figure 1: A pictoral representation of the layouts of the primary and secondary ta-
bles. The primary table is implemented to support load factor 1 − Θ(𝛿2), so that
only 𝛿2𝑛 allocations overflow to the secondary table at a time. The secondary table
is implemented to have size 𝑛′ = 𝛿𝑛/2 and to support a (much sparser) load factor
of Θ(1/ log log 𝑛′) = 𝜔(𝛿), so that it can successfully store all of the overflowed allo-
cations from the primary table.

16.3 Upper Bounds for Variable-Sized Pointers

In this section, we give optimal constructions for variable-size tiny pointers. We prove
the following theorem:
Theorem 179. For every 𝛿 ∈ (0, 1), there exists a dereference table that (i) succeeds
on each allocation w.h.p., (ii) has load factor at least 1 − 𝛿, (iii) has constant-time
updates w.h.p., and (iv) has tiny pointer size 𝑂(𝑃 + log 𝛿−1), where 𝑃 is a random
variable such that Pr (𝑃 ≥ 𝑖) ≤ 2−2Ω(𝑖) for all 𝑖. In particular, the tiny pointer size is
𝑂(1 + log 𝛿−1) in expectation.

We can assume without loss of generality that 1−𝛿 < 𝛼 for some sufficiently small
positive constant 𝛼 of our choice (if 1− 𝛿 > 𝛼, we can reset 𝛿 = 1−𝛼 = Θ(1) without
changing the guarantee of the theorem).

Observe that, using the same primary/secondary-table construction as in the proof
of Theorem 177, we can immediately reduce to the case where the load factor is a
positive constant of our choice. Indeed, suppose that we could implement a derefer-
ence table 𝑇 with load factor 𝛼 for some positive constant 𝛼 > 0 and average tiny
pointer size 𝑂(1). Then we can use 𝑇 as the secondary table in the construction: if
the entire dereference table supports load factor 1− 𝛿, then the requirement from the
secondary table is that it must be able to support 𝛿2𝑛 elements using 𝛿𝑛/2 slots. So
as long as 𝛿 < 𝛼/2 (which is without loss of generality) then 𝑇 suffices.

314

b = Θ(1)

s = c log n

level 0 level 1 level 2 level 3

load-balancing tables

overflow tables
s = c log n

Figure 2: A pictoral representation of the layout used to implement each container
of size Θ(log 𝑛). When an allocation fails in the 𝑖-th load-balancing table, it either
proceeds to the (𝑖 + 1)-th load-balancing table (if 𝐿𝑖+1 < 𝑠𝑖+1) or it proceeds to the
𝑖-th overflow array (which is deterministically guaranteed to have a free slot).

Thus our task of proving Theorem 179 reduces to the task of proving the following
proposition.
Proposition 183. There exists a dereference table that (i) succeeds w.h.p. (ii) has
load factor Ω(1), (iii) has constant-time updates w.h.p. in 𝑛, and (iv) has tiny pointer
size 𝑃 , where 𝑃 is a random variable satisfying Pr (𝑃 ≥ 𝑖) ≤ 2−2Ω(𝑖) for all 𝑖.

For ease of discussion, throughout the rest of the section, we use 𝑛 to denote the
maximum number of items that can be stored in the dereference table (rather than
the number of slots), and we aim to construct a dereference table with 𝑂(𝑛) slots.

Constructing the dereference table. We now describe our construction for the
dereference table that we use to prove Proposition 183. The dereference table initially
hashes every key into one of 𝑛/ log 𝑛 containers, so that, at all times, any container
has log 𝑛 items in expectation. We deterministically limit the number of elements
in each container to 𝑠 = 𝑐 log 𝑛 items, for some large enough constant 𝑐 > 1 to be
determined later. When a key is hashed into a container that already has 𝑐 log 𝑛
items, the allocation fails.

Each container is managed independently, and its allocations/frees are performed
using a scheme with log2 𝑠 levels, as follows. For every 0 ≤ 𝑖 < log2 𝑠, the 𝑖th level
is a load-balancing table with 𝑠𝑖 := 𝑠/2𝑖 buckets, each with 𝑏 slots, for some large
enough constant 𝑏 ≥ 2 to be determined.

The basic idea is that, when an allocation in level 𝑖 fails due to bucket fullness, we
recursively attempt the allocation in the next level 𝑖+ 1 (which uses a different hash
function than does level 𝑖). Intuitively, as long as 𝑏 is a sufficiently large constant,

315

then each level should succeed on at least 1/2 of its allocations, which is why the next
level 𝑖+ 1 can afford to be half the size of the previous one.

The problem with this basic construction is that if even just a few consecutive
levels behave badly, resulting in 𝜔(𝑠𝑖) elements being sent to some level 𝑖, then there
may not be room for those elements in all of the levels 𝑖, . . . , log2 𝑠 combined. On
the other hand, our construction must be able to handle such bad scenarios, because
most of the levels are so small that we cannot offer high-probability guarantees on
their behavior. Thus, we must modify the construction so that, when a level behaves
badly, the effects of that are isolated.

To do this, we add a fallback structure to each level, that we call overflow array,
to prevent excessive occupancy. The overflow array in each level 𝑖 has 𝑠𝑖 slots (the
same number of slots as the load-balancing table at that level). Let 𝐿𝑖 be the random
variable denoting the number of values currently stored in levels 𝑖 or larger, including
their overflow arrays. Whenever an allocation at some level 𝑖 fails (due to bucket
fullness), we recursively allocate in the next level only if 𝐿𝑖+1 < 𝑠𝑖+1, and otherwise,
we place the value in any available slot in the overflow array of level 𝑖. The result of
this is that we deterministically guarantee 𝐿𝑖 ≤ 𝑠𝑖 for every level 𝑖 (including level 0,
for which this is trivial, since 𝑠0 = 𝑠).

Importantly, no overflow array can ever run out of space: since 𝐿𝑖 ≤ 𝑠𝑖 (deter-
ministically), the total number of elements in the overflow array for level 𝑖 is also a
guaranteed to be a most 𝑠𝑖, which is precisely the capacity of the overflow array.

We are now ready to describe the full allocation algorithm. See Figure 2 for a
picture of the layout used to implement each container.

Allocate(𝑘):

1. Hash 𝑘 into one of the 𝑛/ log 𝑛 containers.

2. If the selected container is already at full capacity 𝑠, fail.

3. Else, allocate 𝑘 in the selected container:

(a) For each 𝑖 = 0, 1, . . . , log2 𝑠− 1:
i. Increment 𝐿𝑖.
ii. Try to allocate 𝑘 in the 𝑖th load-balancing table.
iii. If the allocation succeeds:

• Let 𝑗 be the chosen slot within the chosen bucket.
• Return (level 𝑖, load-balancing table, bucket slot 𝑗).

iv. If 𝐿𝑖+1 ≥ 𝑠𝑖+1:
• Pick any free slot in the 𝑖-th overflow array.
• Let 𝑗 be the chosen slot in the array.
• Return (level from the back log2 𝑠 − 1 − 𝑖, overflow
array, slot 𝑗).

316

Notice that, if an allocation ends up using a slot 𝑗 in some bucket in the 𝑖-th
level’s load-balancing table, then the tiny pointer encodes: the quantity 𝑖, which is
𝑂(log 𝑖) bits; the fact that the allocation used the load-balancing table rather than
the overflow array, which is 𝑂(1) bits; and the quantity 𝑗, which is 𝑂(log 𝑏) = 𝑂(1)
bits. The total length of the tiny pointer is 𝑂(log 𝑖) in this case.3

On the other hand, if an allocation ends up using the 𝑗-th slot in the 𝑖-th level’s
overflow array, then the tiny pointer encodes: the quantity log2 𝑠 − 1 − 𝑖, which
is 𝑂(log(log2 𝑠 − 1 − 𝑖)) bits; the fact that the allocation used the overflow array
rather than the load-balancing table, which is 𝑂(1) bits; and the quantity 𝑗, which
is 𝑂(log 𝑠𝑖) bits. Importantly, in this case, we elect to encode log2 𝑠 − 1 − 𝑖, rather
than the equivalent quantity 𝑖. This allows us to bound the total size of the tiny
pointer by 𝑂(log(log2 𝑠 − 1 − 𝑖)) + 𝑂(1) + 𝑂(log 𝑠𝑖) = 𝑂(log log(𝑠/2𝑖) + log 𝑠𝑖) =
𝑂(log log 𝑠𝑖 + log 𝑠𝑖) = 𝑂(log 𝑠𝑖). Thus, when an allocation uses the overflow array in
level 𝑖, we can bound the tiny-pointer size by 𝑂(log 𝑠𝑖).

Implementing operations in constant time. The information in the tiny pointers
allows for dereferences to easily be performed in time 𝑂(1). Performing allocations
and frees in time 𝑂(1) is slightly more difficult, however.

Let us start by considering the naïve approach to implementing allocations and see
why this is too slow. We must first identify which container to use (this just requires
us to evaluate a hash function, taking constant time). We must then determine which
level we will be using; if we end up using level 𝑖, then this takes time Θ(𝑖), which is
too slow when 𝑖 = 𝜔(1).

We solve this problem as follows. Let 𝑑 to be some sufficiently large positive
constant. We will implement levels 0, 1, . . . , 𝑑 − 1 using the naive approach, and
then we will implement the levels 𝑑, . . . , log2 𝑠 using the Method of Four Russians
(i.e., the “lookup-table approach”). Notice that the total number of slots in the lev-
els 𝑑, . . . , log2 𝑠 is at most 4𝑠𝑑/2

𝑑 ≤ (log 𝑛)/10. Thus the entire state of which slots
are free in those levels can be encoded in (log 𝑛)/10 bits; we store this quantity as
metadata for each container, totaling to 𝑂(𝑛) bits of metadata across all 𝑛/ log 𝑛
containers. Moreover, the hashes ℎ1(𝑘), ℎ2(𝑘), . . . , ℎlog2 𝑠(𝑘) that are used to select
a bucket in each level together represent only 𝑂((log log 𝑛)2) bits (and can be im-
plemented to just be the first 𝑂((log log 𝑛)2) bits of a single hash function). Thus,
the entire state of levels 𝑑, . . . , log2 𝑠, plus all of the information about the hashes
ℎ1(𝑘), ℎ2(𝑘), . . . , ℎlog2 𝑠(𝑘), can be encoded in an integer 𝜑 of (log 𝑛)/2 bits that can
be constructed in time 𝑂(1). This means that we can pre-construct a lookup table of
size 2(log𝑛)/2 =

√
𝑛 that we can use to determine, for any given value of 𝜑, which level

the allocation should use. The lookup table takes a negligible amount of metadata
space, allows for allocations to be performed in time 𝑂(1), and can be constructed in
time �̃�(

√
𝑛) during the dereference table’s creation.

Now that we have specified how to implement allocations, frees are simple to
implement, since they just update the metadata to reflect that the slot has been

3We follow the convention that log 𝑖 = Ω(1) for all 𝑖, so log 0 and log 1 are set to 1.

317

freed (this just flips a single bit in the metadata).
We have now fully specified the construction and implementation of our derefer-

ence table. It remains to analyze its properties, namely the probability of failure, the
load factor, and the tiny-pointer sizes.

Probability of failure. The only way that an allocation can fail is if there is no
room in the container that it hashes to, i.e., the container has 𝑐 log 𝑛 elements already.
Otherwise, if the container has fewer than 𝑐 log 𝑛 elements, then the allocation is
guaranteed to succeed (but, of course, it is not guaranteed to result in a small tiny
pointer).

On average, log 𝑛 items hash to any particular container, so by a Chernoff bound
the maximum size across all containers is at most 𝑐 log 𝑛 w.h.p. in 𝑛 for some positive
constant 𝑐. By the union bound, this holds for all of the 𝑛/ log 𝑛 containers simulta-
neously, w.h.p. in 𝑛. Thus, if we pick 𝑠 = 𝑐 log 𝑛 for some large enough constant 𝑐, at
any point in time, all containers will be below capacity w.h.p. in 𝑛.

Load factor. Next, we verify that the total number of slots is 𝑂(𝑛). The dereference
table for each container uses space 𝑂(

∑︀
𝑖 𝑠𝑖) = 𝑂(𝑠0) = 𝑂(𝑠) = 𝑂(log 𝑛) slots, and

there are 𝑛/ log 𝑛 containers. Hence, the total space is 𝑂(𝑛), so the load factor is
Ω(1), as desired.

Tiny pointer size. To conclude the proof of Proposition 183, we analyze the tiny
pointer size of a given allocation, conditioned on the event that the allocation doesn’t
fail. The size of the tiny pointer depends on where the key ends up allocated. Specif-
ically, it is:

• 𝑂(log 𝑖) if the key is allocated in the 𝑖th load-balancing table;

• 𝑂(log 𝑠𝑖) if the key is allocated in the 𝑖th overflow array.

Fix an arbitrary container to be the one where the allocation takes place, and
consider the following events:

• ℬ𝑖: the key is allocated in the 𝑖th load-balancing table;

• 𝒪𝑖: the key is allocated in the 𝑖th overflow array;

• ℒ𝑖: 𝐿𝑖 < 𝑠𝑖.

We will condition on two events: (i) that the element picks the container we fixed,
and (ii) that the container contains fewer than 𝑐 log 𝑛 elements (i.e., the allocation
doesn’t fail). We will drop the conditioning notation for clarity. Let 𝑃 be the size of
the output tiny pointer. Then, by the law of conditional expectation,

E [𝑃] ≤
∑︁
𝑖

Pr (ℬ𝑖) ·𝑂(log 𝑖) +
∑︁
𝑖

Pr (𝒪𝑖) ·𝑂(log 𝑠𝑖). (16.1)

318

We bound each term separately. On the one hand,

Pr (ℬ𝑖) ≤ Pr
(︀
ℬ0,ℒ1,ℬ1, . . . ,ℒ𝑖−1,ℬ𝑖−1

)︀
≤ Pr

(︀
ℬ0

)︀
· Pr

(︀
ℬ1 | ℬ0,ℒ1

)︀
· · ·Pr

(︀
ℬ𝑖−1 | ℬ0,ℒ1, . . . ,ℬ𝑖−2,ℒ𝑖−1

)︀
. (16.2)

For every 𝑗, the load factor of level 𝑗 is at most 1/𝑏, because there are 𝐿𝑗 < 𝑠𝑗 items,
𝑠𝑗 buckets, and each bucket has capacity 𝑏. This means that at most 1/𝑏 of the bins
are full, deterministically, so the probability that a full bucket is chosen at most 1/𝑏.
Hence, every term in Equation (16.2) is bounded by 1/𝑏, and

Pr (ℬ𝑖) ≤ 1/𝑏𝑖 ≤ 1/2𝑖.

On the other hand,
Pr[𝒪𝑖] ≤ Pr[ℒ𝑖+1].

We can bound the latter probability using Lemma 181. By construction, the load-
balancing table in level 𝑖 always has at most 𝑠𝑖 allocations made to it (including the
failed ones, since 𝐿𝑖 ≤ 𝑠𝑖 and 𝐿𝑖 counts both the elements in level 𝑖 and the elements
in levels 𝑖 + 1, 𝑖 + 2, . . .); moreover, the allocations and frees performed on the table
are independent of the randomness used in the table. Assuming that the bucket-size
𝑏 is a sufficiently large constant, it follows that we can apply Lemma 181 to deduce
that, with probability at least

1− exp(− poly(𝑏)𝑠𝑖) = 1− exp(−Ω(𝑠𝑖)),

the number of failed allocations at level 𝑖 at any given moment is at less than 𝑠𝑖/2 =
𝑠𝑖+1 (and hence ℒ𝑖+1 holds). Thus, we can conclude that

Pr[𝒪𝑖] ≤ 1/2Ω(𝑠𝑖).

Putting the pieces together,

E [𝑃] =
∑︁
𝑖

𝑂(log 𝑖)

2𝑖
+
∑︁
𝑖

𝑂(log 𝑠𝑖)

2Ω(𝑠𝑖)
= 𝑂(1).

Notice that these calculations show that a tiny pointer of size 𝑂(log ℓ) has proba-
bility 2−Ω(ℓ), or, equivalently, a tiny pointer of size 𝑂(ℓ) has probability 2−2Ω(ℓ) . This
suggests that the tiny pointer size decays at a doubly-exponential rate. We prove this

319

next. For any ℓ,

Pr (𝑃 ≥ ℓ) ≤
∑︁

𝑖:𝑂(log 𝑖)≥ℓ

Pr (ℬ𝑖) +
∑︁

𝑖:𝑂(log 𝑠𝑖)≥ℓ

Pr (𝒪𝑖)

=
∑︁
𝑖≥2Ω(ℓ)

Pr (ℬ𝑖) +
∑︁

𝑠𝑖≥2Ω(ℓ)

Pr (𝒪𝑖)

=
∑︁
𝑖≥2Ω(ℓ)

1

2𝑖
+

∑︁
𝑠𝑖≥2Ω(ℓ)

1

2Ω(𝑠𝑖)
.

Both sums are dominated by their first terms, and are thus 1/22
Ω(ℓ) . Therefore,

Pr (𝑃 ≥ ℓ) ≤ 1

22Ω(ℓ)
,

which completes the proof of Proposition 183. As discussed earlier, Proposition 183,
in turn, implies Theorem 179.

Bounding sums of tiny-pointer sizes. In our applications of tiny pointers, a
common way of using variable-size pointers will be to pack Θ

(︁
log𝑛

log 𝛿−1

)︁
of them into

Θ(log 𝑛) bits. Therefore, we conclude this section by proving a bound of the total
number of bits consumed by a set 𝑆 of 𝑂(log 𝑛/ log 𝛿−1) tiny pointers.
Proposition 184. Using the construction in Theorem 179, for any set 𝑆 of
𝑂
(︁

log𝑛
log 𝛿−1

)︁
tiny pointers, the sum of their sizes will be 𝑂(log 𝑛) bits w.h.p.

Proof. With high probability, all of the allocations for 𝑆 succeed. This means that
we can ignore the case where allocations fail, so when an allocation fails, we shall
treat it as contributing a tiny pointer of size 0.

Let 𝐾 be the set of keys corresponding to the tiny pointers in 𝑆. The easy case
is if every key 𝑘 ∈ 𝑆 hashes to a different container; in this case, we can analyze each
container separately to conclude that each tiny pointer Allocate(𝑘) independently
has length 𝑂(log 𝛿−1 + 𝑃𝑘) bits, where Pr[𝑃𝑘 > ℓ] ≤ 2−2Ω(ℓ) . Applying a Chernoff
bound for sums of independent geometric random variables, we can conclude that∑︀

𝑘∈𝐾 𝑃𝑘 ≤ 𝑂(log 𝑛) w.h.p., and thus that the total number of bits consumed by 𝑆
is 𝑂(log 𝑛).

What if some of the keys 𝑘 ∈ 𝐾 hash to the same container as others 𝑘′ ∈ 𝐾? Then
we can no longer analyze the lengths of the resulting tiny pointers independently. Let
𝑋 denote the set of such keys 𝑘. Since each tiny pointer is deterministically at most
𝑂(log 𝑛) bits, we can complete the proof by establishing that, with w.h.p., |𝑋| = 𝑂(1).

Let 𝑘1, 𝑘2, . . . denote the keys in 𝐾, and let 𝑋𝑖 be the indicator random variable
for the event that 𝑘𝑖 hashes to the same container as one of 𝑘1, 𝑘2, . . . , 𝑘𝑖−1. Then
|𝑋| ≤ 2

∑︀
𝑖𝑋𝑖. On the other hand, each 𝑋𝑖 independently satisfies Pr[𝑋𝑖] ≤ (𝑖 −

1)/𝑛 ≤ |𝑆|/𝑛 ≤ 𝑂(log 𝑛/𝑛). Thus
∑︀

𝑖𝑋𝑖 is a sum of independent indicator random
variables with total mean 𝑂(log2 𝑛/𝑛). Applying a Chernoff bound, we conclude that

320

∑︀
𝑖𝑋𝑖 = 𝑂(1) w.h.p./, which completes the proof.

16.4 Lower Bounds

In this section we prove that the bounds in Theorems 177 and 179 are tight. We
begin by proving a lower bound for variable-size tiny pointers, since it is then used
as part of the proof for the fixed size case.

What makes the lower bound for variably sized tiny pointer tricky is that any
single tiny pointer might be very small. For example, the dereference table could
have a single special slot that corresponds to the tiny pointer 0 (for every key), and
then if the dereference table ever wanted to make a single tiny pointer small, it could
allocate the special slot. Thus, our proof treats different types of slots differently: for
each slot 𝑗, we define a potential function 𝜑(𝑗) indicating how “useful” that slot is to
a random insertion. The idea is that insertions that use slots 𝑗 with small potentials
𝜑(𝑗) must, on average, have relatively large tiny pointers; but insertions that use
slots 𝑗 with large potentials 𝜑(𝑗) must be rare, since only a relatively small fraction
of the slots can have large potentials, and the number of insertions into them can be
bounded by the number of deletions out of them.
Theorem 180. Consider a universe 𝒰 of keys, where 𝒰 is assumed to have a suf-
ficiently large polynomial size. If a dereference table supports variable-sized tiny
pointers of expected size 𝑠 and load factor 1− 𝛿 = Ω(1), then 𝑠 = Ω(log 𝛿−1).

Proof. Let 𝒰 be a universe of size 𝑛𝑐 where 𝑐 is a sufficiently large constant. Let
𝛿 < 1/4. Let 𝑇 be a dereference table with 𝑛 slots and load factor 1 − 𝛿 (i.e., it
is capable of allocating up to (1 − 𝛿)𝑛 slots to keys from 𝒰 at a time). Moreover,
suppose that 𝑇 guarantees an expected tiny-pointer length of at most 𝜇. Then we
wish to show that

𝜇 ≥ Ω(log 𝛿−1).

To simplify our discussion, we shall think of a key 𝑘 ∈ 𝒰 as residing in the location
that is allocated to it. Thus allocations correspond to insertions, and frees correspond
to deletions.

Consider a workload in which the table is initialized to contain (1− 𝛿)𝑛 arbitrary
elements, and then we alternate between insertions and deletions for 𝑛𝑐/2 steps. Each
insertion selects a random element of 𝒰 (with high probability in 𝑛, we never insert
an element that is already present), and each deletion selects a random element out
of those present.

We treat tiny pointers as taking values in N. If the tiny pointer takes value 𝑖,
then it uses Ω(log 𝑖) bits. For each element 𝑥 ∈ 𝒰 , let ℎ𝑖(𝑥) denote the position where
𝑥 would reside in 𝑇 if 𝑥 had a tiny pointer with value 𝑖. Set ℓ = 𝛿−1/32. For each
position 𝑗 ∈ [𝑛] in the table, define the potential 𝜑(𝑗) to be

𝜑(𝑗) =
|{𝑢 ∈ 𝒰 , 𝑖 ∈ [ℓ] | ℎ𝑖(𝑢) = 𝑗}|

|𝒰|
.

321

Call an insertion safe if the element 𝑥 that is inserted is inserted into one of
positions ℎ1(𝑥), . . . , ℎℓ(𝑥). Call an insertion resource efficient if the element 𝑥 that
is inserted is inserted into a position 𝑗 satisfying 𝜑(𝑗) ≤ 4ℓ

𝑛
.

The probability that a given insertion is both safe and resource efficient is at most

∑︁
empty position 𝑗∈[𝑛]

𝜑(𝑗)≤ 4ℓ
𝑛

ℓ∑︁
𝑖=1

Pr
𝑥∈𝒰

[ℎ𝑖(𝑥) = 𝑗]

=
∑︁

empty position 𝑗∈[𝑛]
𝜑(𝑗)≤ 4ℓ

𝑛

ℓ∑︁
𝑖=1

1

|𝒰|
∑︁
𝑥∈𝒰

Iℎ𝑖(𝑥)=𝑗

=
∑︁

empty position 𝑗∈[𝑛]
𝜑(𝑗)≤ 4ℓ

𝑛

𝜑(𝑗)

≤
∑︁

empty position 𝑗∈[𝑛]

4ℓ

𝑛

= 𝛿𝑛
4ℓ

𝑛

=
1

8
.

It follows that the expected number of insertions that are safe and resource efficient
is at most 𝑛𝑐/2/8.

Next we bound the expected number of insertions 𝐴 that are safe but not resource
efficient. Rather than bound 𝐴 directly, we instead examine the number of deletions
𝐵 where the deleted element is deleted from a position 𝑗 satisfying 𝜑(𝑗) > 4ℓ

𝑛
. Note,

in particular, that
𝐴 ≤ 𝐵 + 𝑛.

By the definition of 𝜑(𝑗), we have that
∑︀𝑛

𝑗=1 𝜑(𝑗) = ℓ. It follows that |{𝑗 ∈
[𝑛] | 𝜑(𝑗) > 4ℓ

𝑛
}| ≤ 𝑛/8. Each random deletion therefore has probability at most

𝑛/8
(1−𝛿)𝑛 ≤ 1/4 of removing an element in a position 𝑗 satisfying 𝜑(𝑗) > 4ℓ

𝑛
. Thus

E[𝐵] ≤ 𝑛𝑐/2/4 which means that

E[𝐴] ≤ 𝑛𝑐/2/4 + 𝑛 ≤ 𝑛𝑐/2/2.

Since the expected number of insertions that are safe and resource efficient is
at most 𝑛𝑐/2/8 and the expected number of insertions that are safe and resource
inefficient is at most 𝑛𝑐/2/2, the expected number of insertions that are safe is at most
5
8
𝑛𝑐/2. The expected number of insertions that are not safe is therefore at least 3

8
𝑛𝑐/2.

Each unsafe insertion results in a tiny pointer of length at least Ω(log ℓ) = Ω(log 𝛿−1)
bits. Since a constant fraction of the insertions are expected to result in a tiny pointer
of length at least Ω(log 𝛿−1), we must have 𝜇 ≥ Ω(log 𝛿−1).

322

Next we prove a lower bound for fixed-sized tiny pointers, which shows that the
bound in Theorem 177 is tight.
Theorem 178. Consider a universe 𝒰 of keys, where 𝒰 is assumed to have a suffi-
ciently large polynomial size. If a dereference table supports fixed-sized tiny pointers
of size 𝑠 and load factor 1− 𝛿 = Ω(1), then 𝑠 = Ω(log log log 𝑛+ log 𝛿−1).

It suffices to prove that 𝑠 = Ω(log log log 𝑛), since we have already shown that
𝑠 = Ω(log 𝛿−1).

The proof re-purposes a classic balls-and-bins lower bound. Say that a ball-
placement rule is sequential if balls are placed sequentially, without knowledge of
future ball arrivals, and if balls are never moved after being placed.
Theorem 185 (Theorem 2 in [351]). Suppose that 𝑚 balls are placed sequentially
into 𝑚 bins using an arbitrary sequential ball placement rule choosing 𝑑 bins for each
ball at random according to an arbitrary probability distribution on [𝑚]𝑑. Then the
number of balls in the fullest bin is Ω((log log𝑚)/𝑑) w.h.p.

We now prove Theorem 178.

Proof of Theorem 178. Assume for contradiction that there exists a dereference table
with load factor 1 − 𝛿 = Ω(1) and that supports fixed-size tiny pointers of size
𝑠 = 𝑜(log log log 𝑛) bits. Let 𝑛 be the number of slots in the dereference table, and
let 𝑚 = (1 − 𝛿)𝑛 be the maximum number of allocations that the dereference table
can support at a time; assume without loss of generality that 1/(1− 𝛿) ∈ N, so 𝑛 is a
multiple of𝑚. Finally, let 𝑆 = 2𝑠, and observe that, by assumption, 𝑆 = 𝑜(log log 𝑛)—
and since 𝑚 = Θ(𝑛), 𝑆 = 𝑜(log log𝑚).

Recall that 𝒰 is the universe from which the keys are taken. For each
key 𝑥 ∈ 𝒰 , define the sequence ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑆(𝑥) ∈ [𝑚] so that ℎ𝑖(𝑥) =
⌊𝑚
𝑛
Dereference(𝑥, 𝑖)⌋. Note that, by the definition of the Dereference func-

tion, the sequence ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑆(𝑥) is a function of only on 𝑥, 𝑖, 𝑛, and the
random bits of the dereference table—therefore, the sequence is predetermined by
the coin flips, and is independent of the sequence of allocations/deallocations that
are performed. Let 𝑅 ∈ [𝑚]𝑆 be a random variable obtained by selecting 𝑥 ∈ 𝒰
at random and setting 𝑅 = ⟨ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑆(𝑥)⟩; and let ℛ be the probability
distribution for 𝑅.

We will now construct a sequential ball-placement rule for mapping 𝑚 balls
to 𝑚 bins. Our rule independently assigns each ball a random bin sequence
⟨ℎ1, ℎ2, . . . , ℎ𝑆⟩ ∼ ℛ of 𝑆 bins. Equivalently, we can think of the 𝑚 balls as be-
ing 𝑚 keys 𝑥1, 𝑥2, . . . , 𝑥𝑚, where each 𝑥𝑖 is selected uniformly and independently at
random from 𝒰 , and each 𝑥𝑖 has a bin sequence of ⟨ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑆(𝑥)⟩ ∈ [𝑚]𝑆.

Since |𝒰| ≥ poly(𝑛), we have that with high probability in 𝑛, the 𝑥𝑖’s are distinct.
Our ball placement rule uses our dereference table to decide where to place balls. To
place ball 𝑥𝑖 into a bin, we compute 𝑝𝑖 = Allocate(𝑥𝑖), and we place 𝑥𝑖 into the
𝑝𝑖-th bin in 𝑥𝑖’s bin sequence, which is given by bin

ℎ𝑝𝑖(𝑥𝑖) =
⌊︁𝑚
𝑛

Dereference(𝑥𝑖, 𝑝𝑖)
⌋︁
∈ [𝑚].

323

In summary, we have constructed a sequential ball placement rule that places 𝑚
balls sequentially into 𝑚 bins and that chooses a set of 𝑑 = 𝑆 bins for each ball
according to a probability distribution ℛ over [𝑚]𝑑. By Theorem 185, we can deduce
that the fullest bin contains at least

Ω ((log log𝑚)/𝑑) = Ω ((log log𝑚)/𝑆) = 𝜔(1)

balls with high probability in 𝑚.
On the other hand, the dereference table guarantees that Dereference(𝑥𝑖, 𝑝𝑖) ∈

[𝑛] is unique for each 𝑖 ∈ [𝑚]. The number of balls 𝑥𝑖 satisfying⌊︁𝑚
𝑛

Dereference(𝑥𝑖, 𝑝𝑖)
⌋︁
= 𝑗

for a given 𝑗 is therefore at most 𝑛
𝑚

= 𝑂(1). This means that the number of balls in
any given bin is also 𝑂(1). Since the dereference table succeeds with high probability
in 𝑛, we can deduce that there are 𝑂(1) balls in the fullest bin with high probability
in 𝑛. This contradicts the fact that the number of balls in the fullest bin is 𝜔(1),
thereby completing the proof by contradiction.

324

Chapter 17

Five Applications to Data Structures

In this chapter, we give five data-structural applications of tiny pointers. The first
application is to the classic data-structural problem of storing a dynamic set of values
associated with keys. The next three applications are each black-box transformations
in which we show how to remove space inefficiency from large classes of data struc-
tures. And the final application is a new data structure for a classic problem in
external-memory storage.

Overcoming the Ω(log log𝑛)-bit lower bound for the cost of data retrieval.
Our first application revisits the classic data-retrieval problem [44, 146, 157, 159],
in which a data structure must store a 𝑣-bit value for each of the 𝑘-bit keys in some
set 𝑆, and must answer queries that retrieve the value associated with a given key.1
In the static case, where the keys/values are given up front, it is possible to solve the
retrieval problem with 𝑂(1)-time queries using 𝑛𝑣 +𝑂(log 𝑛) bits of space [157,159];
but in the dynamic case where keys/values are inserted/deleted over time, and there
are up to 𝑛 keys/value pairs present at a time (with keys taken from some large
polynomial-size universe), it is known that any solution to the retrieval problem must
use a lower bound of 𝑛𝑣 + Ω(𝑛 log log 𝑛) bits of space, even if super-constant-time
operations are allowed [44, 146]. This means that the number of metadata bits per
value is Ω(log log 𝑛) on average, even if the values are of size 𝑣 = 𝑜(log log 𝑛).

We show that, by just slightly modifying the specification of the retrieval problem,
we can completely dissolve the Ω(log log 𝑛)-wasted-bits-per-item lower bound. Sup-
pose, in particular, that whenever the user inserts a key/value pair (𝑥, 𝑦), they are
given back a small hint ℎ that they are responsible for storing. (We will guarantee
that the hint has constant expected size.) In the future, when the user wishes to
recover the value 𝑦 for 𝑥, they present both the key 𝑥 and the hint ℎ to the retrieval
data structure. We call this the relaxed retrieval problem and we refer to the hints
as tiny retrievers.

The relaxed retrieval problem can also be viewed as a relaxation of the tiny-pointer

1Note that queries are required to be for a key 𝑥 ∈ 𝑆—the data structure is allowed to return an
arbitrary value if 𝑥 ̸∈ 𝑆.

325

problem: the tiny retriever ℎ is analogous to a tiny pointer, except that the pair (𝑥, ℎ)
does not have to fully encode the position of 𝑦—instead, the relaxed-retrieval data
structure can make use of not just 𝑥 and ℎ, but can also make use of a small auxiliary
data structure whose purpose is to help recover 𝑦.

Given that we have already stated tight bounds for tiny pointers, it is tempting to
assume that the same bounds should hold for tiny retrievers. We find that this is not
so. We show how to construct tiny retrievers of expected size 𝑂(1), while supporting
queries in constant time (with high probability), and allowing for the following tradeoff
curve: using time Θ(𝑟) for insertions/deletions, the size of the data structure becomes
𝑛𝑣+𝑂(𝑛(1+log(𝑟) 𝑛)) bits. So, with constant-time operations, we can achieve size, say,
𝑛𝑣+𝑂(𝑛 log log log log log 𝑛), and with 𝑂(log* 𝑛)-time operations, we can achieve size
𝑛𝑣+𝑂(𝑛). Moreover, in the special case where the value length 𝑣 is sub-logarithmic,
satisfying 𝑣 ≤ log𝑛

log(𝑟) 𝑛
, the space consumption reduces to 𝑛𝑣 + 𝑂(𝑛) bits, even for

constant 𝑟.
Remarkably, our construction for tiny retrievers is itself a direct application of tiny

pointers—in fact, tiny retrievers are simply variable-length tiny pointers of 𝑂(1) ex-
pected size. This is because the ability to construct 𝑂(1)-length tiny pointers into an
array with Θ(𝑛) entries ends up allowing for us to reduce the relaxed retrieval problem
to the dictionary problem, for which highly space-efficient solutions are known [85].

We remark that the distinction between tiny pointers and tiny retrievers ends up
being significant in several of our applications below. In some cases, tiny retrievers
offer a path to remarkable (and unexpected) space efficiency, while in other cases,
the smooth tradeoff curve and pointer-like behavior offered by tiny pointers makes
them a better fit. The advantage of tiny retrievers is that they offer a steep tradeoff
between time and space; the advantage of tiny pointers is that they offer indirection-
less reference to elements, as well as a flexible tradeoff between different types of space
consumption (pointer size and load factor).

Succinct rotation-based binary search trees. To describe our second applica-
tion, we first take a digression into the world of succinct binary trees. Since there are
at most 4𝑛 ordered binary trees on 𝑛 nodes, the pointer structure of a binary tree can
be encoded in 𝑂(𝑛) bits. This observation has led to a great deal of work on opti-
mal (and near-optimal) encodings of binary trees [130,142,176,184,276,281,304,313].
Apart from navigation, state-of-the-art trees also support a wide variety of query
operations (e.g., subtree size [130,176,276,281,313], depth [130,281], lowest-common
ancestor [130, 281], level ancestor [130, 281], etc.), while also supporting basic dy-
namism (e.g., inserting/removing leaves [130, 176, 276, 281, 313], inserting a node
in the middle of an edge [130, 176, 276, 281, 313], compacting a path of length
two [130,176,276,281,313], etc.).

One natural form of dynamic operation has proven elusive, however: the known
succinct binary trees do not efficiently support rotations. The lack of support for
rotations is especially important for binary search trees, which store a set of 𝑛 sortable
keys in 𝑛 nodes. Almost all dynamic balanced binary search trees (e.g., AVL trees [40],
red-black trees [204], splay trees [329], treaps [49, 325], etc.) rely on rotations when

326

modifying the tree. None of these tree structures can be encoded with the known
succinct-tree techniques.

We give a randomized black-box approach for transforming dynamic binary search
trees into succinct data structures. If there are 𝑛 keys in the succinct search tree, each
of which is 𝑘 bits long, then the size of the succinct search tree will be 𝑛𝑘+𝑂(𝑛 log(𝑟) 𝑛)
bits. The transformation induces only a constant-factor time overhead on query oper-
ations, and only an 𝑂(𝑟)-factor time overhead on tree modifications. So, for example,
if we set 𝑟 = 𝑂(log* 𝑛), then edge traversals take time 𝑂(1), edge insertions/deletions
take time 𝑂(log* 𝑛), and the tree structure is encoded using 𝑂(𝑛) bits. In contrast,
the previous state of the art [281] for implementing rotations in space-efficient binary
search trees also encoded the tree structure in 𝑂(𝑛) bits (actually, 2𝑛+𝑜(𝑛) bits) but
required Ω̃(log 𝑛) time to implement a single rotation.

When 𝑟 is set to be 𝑂(1), the fact that running times are preserved means that
other properties, such as dynamic optimality, are as well. For example, if the splay
tree [329] is dynamically optimal (as the widely believed Dynamic-Optimality Con-
jecture [329] posits), then so is the succinct splay tree.

Space-efficient stable dictionaries. Our third application is a black-box approach
for transforming any key-value dictionary that stores its values in a fixed-capacity
array into a stable dictionary with the same operation set and with only a constant-
factor time overhead. If the original dictionary stores 𝑣-bit values, then the new
stable dictionary also stores 𝑣-bit values, and uses 𝑂 (log 𝑣) extra bits of space per
value than does the original data structure.

Formally, a key-value dictionary (e.g., a binary search tree, hash table, etc.) is
stable if whenever a key-value pair is inserted, the position in which the value is stored
never changes. (This property is sometimes also referred to as referential integrity
[320] or value stability [75].) Stability ensures that users can maintain pointers into
a data structure without those pointers becoming invalidated by changes to the data
structure [205, 320]. Stability is a strict requirement in many library data structures
[132–139] (and it is a core reason why high-performance languages such as C++ use
chained hashing [132,133], which is stable, instead of more space-efficient alternatives,
such as linear probing [224,309] or cuckoo hashing [161,182,299]).

Empirical research on achieving stability in space-efficient hash tables dates back
to the 1980s [205,320] (see also discussion in Knuth’s Volume 3 [226]) and the resulting
techniques have been built into widely-used hash tables released by Google [38] and
Facebook [173]. On the theoretical side, if a data structure is storing 𝑘-bit keys and
𝑣-bit values, where 𝑘, 𝑣 = 𝑂(log 𝑛), it is known how to achieve stability at the cost
of an extra Θ(log log 𝑛) bits of space per value [146], but it is not known whether
Ω(log log 𝑛) bits per value are necessary.2 Our result shows that it is not—stability
can be achieved with 𝑂(log 𝑣) extra bits per value. This is especially noteworthy in

2Interestingly, there are several specific approaches for which Ω(log log 𝑛) bits per value are known
to be necessary, for example if stability is achieved via perfect hashing (see Theorem 2 of [146]).

327

cases where the value-size 𝑣 is small3. Our result applies to arbitrary fixed-capacity
dictionaries, including, for example, the succinct splay tree constructed above.

Space-efficient dictionaries with variable-size values. Our fourth application
is a black-box approach for transforming any key-value dictionary (designed to store
fixed-size values) into a dictionary that can store different-sized values for different
keys. The resulting data structure induces a constant-factor time overhead and offers
the following guarantee on space efficiency. Let log(𝑟) 𝑛 be the 𝑟-th iterated logarithm
and set 𝑟 to be a positive constant of our choice. The new data structure incurs an
additive space overhead of only𝑂(log(𝑟) 𝑛+log |𝑥|) bits for each value 𝑥. (Interestingly,
the iterated logarithm log(𝑟) 𝑛 in this application comes from an entirely different
source than in our previous applications.)

The ability to store variable-length values also yields a simple solution to the
multi-set problem, which is the problem of how to design a space-efficient constant-
time hash table that stores multi-sets of keys (rather than just sets). The multi-
set problem was first posed as an open question by Arbitman et al. [52], who gave
a succinct constant-time hash table capable of storing sets but not multi-sets. A
series of subsequent works gave solutions to the multi-set problem, first in the case
of random multi-sets [95], and then very recently for arbitrary multi-sets [96]. The
known solutions come with a drawback, however: the bound on space is the same for
duplicate keys as it is for non-duplicate keys. So, if there are 𝑚𝑖 copies of some key,
then they are permitted to take 𝑚𝑖 times as much space as a single copy would, even
though, in principle, 𝑚𝑖−1 of the copies could be encoded using an log𝑚𝑖-bit counter.
Our transformation gives a simple alternative solution that avoids this drawback and
that can even be applied directly to the original hash table of Arbitman et al. [51]:
by storing the multiplicity of each key as a (variable-length) value, one can support
arbitrary multisets at an additional space cost of only log(𝑟) 𝑛+log𝑚𝑖+𝑂(log log𝑚𝑖)
bits per key, where 𝑚𝑖 is the multiplicity of the key and 𝑟 is a positive constant of
our choice; this is remarkably space efficient considering the fact that log𝑚𝑖 bits are
needed just to store the multiplicity. A nice feature of our solution is that it also
applies directly to other dictionaries such as, for example, the succinct splay tree
discussed earlier in the section.

An optimal internal-memory stash. Our final application of tiny pointers re-
visits one of the oldest problems in external-memory data structures: the problem
of maintaining a small internal-memory stash that allows for one to directly locate
where elements reside in a large external-memory array.

In more detail, the problem can be described as follows [197]. We are given an
(initially blank) external-memory array with (1+ 𝜀)𝑛 slots, for some parameters 𝜀, 𝑛.
We must maintain a dynamically changing set 𝑆 of key-value pairs (where keys are

3One especially remarkable consequence is the following: if we wish to store 𝑂(1) control bits
associated with each key in a data structure, and we wish for the positions of those bits to be stable
so that a third party who does not have access to the data structure can still access/modify the
control bits, then we can accomplish this with only 𝑂(1) extra bits of space per item.

328

distinct) in the array, such that each time a key-value pair (𝑥, 𝑦) is inserted into 𝑆,
the pair (𝑥, 𝑦) is assigned some permanent position where it resides in the external-
memory array. We must then also maintain a small internal-memory data structure
𝑋, known as a stash, that can be used to recover, for each key 𝑥, precisely where its
key-value pair (𝑥, 𝑦) is stored in the external-memory array. A stash enables queries
to be performed in a single access to external memory.

Work on designing space-efficient and time-efficient stashes dates back to the late
1980s [197, 235, 236], and is also closely related to the problem of designing space-
efficient page tables in operating systems [35, 36, 71]. The best-known theoretical re-
sults are due to Gonnet and Larson [197], who give a stash that uses only 𝑂(𝑛 log 𝜀−1)
bits of space. A consequence is that, if 𝜀 = Θ(1), the stash uses only 𝑂(𝑛) bits.

Gonnet and Larson’s result comes with several drawbacks, however [197]. First,
the stash only offers provable guarantees in the setting where insertions/deletions
to 𝑆 are random; in the case where 𝑆 is modified by an arbitrary sequence of inser-
tions/deletions/queries, the problem of designing a space-efficient stash remains open.
Second, the internal-memory operations on the stash of [197] are not constant-time
in the RAM model (or even constant expected time, when 𝜀 = 𝑜(1)).

By combining tiny pointers with modern techniques for constructing space-efficient
filters, we show that it is possible to construct a stash of size 𝑂(𝑛 log 𝜀−1) bits
that supports constant-time operations in the RAM model (not just in expecta-
tion, but even with high probability) and that supports arbitrary sequences of in-
sertions/deletions/queries.

17.1 Some General-Purpose Techniques for Using
Tiny Pointers

Before diving into specific applications, we briefly discuss several preliminary defini-
tions and techniques that will be useful in multiple of the applications.

Key-value dictionaries. Several of our applications will perform black-box trans-
formations in order to add new features (namely, stability and variable-sized values)
to key-value dictionaries. Formally, a key-value dictionary (often just called a
dictionary) is any data structure that stores key-value pairs (e.g., a hash table or
a tree), where each key appears at most once. Typically, a key-value dictionary sup-
ports insertions, deletions, and queries, where queries, in particular, return the value
associated to some key. Depending on the data structure, additional operations may
also be supported, for example successor queries, which return the successor to some
key.

We say that a key-value dictionary uses a value array if it designates some con-
tiguous chunk of memory (that can be extended or shrunk over time) whose purpose
is to store the values corresponding to keys. If values are 𝑘 bits long, then the value
array can be viewed as a array of 𝑘-bit objects.

329

In our applications, we will restrict ourselves to dictionaries that store their values
in value arrays. For simplicity, we will assume that the dictionary uses a single value
array, although all of our results can also easily be applied to a dictionary that makes
use of many separately-allocated value arrays (as long as each individual value array
is at least Ω(log 𝑛) bits). The reason that we assume a single value array is because, to
the best of our knowledge, all of the known space-efficient key-value dictionaries can
easily be implemented in this format, so we choose to avoid introducing unnecessary
complication to the results.

How to store value arrays of tiny pointers. A theme in several of our appli-
cations will be to modify a value array so that, rather than storing values directly,
we instead store tiny pointers of some size 𝑘. Recall, however, that tiny pointers of
size 𝑘 = 𝑜(log log log 𝑛) bits are not fixed-size, meaning that some tiny pointers may
require more than 𝑘 bits. Nonetheless, if we are willing to use a value-array that is a
constant-factor larger, then there is a simple trick, which we call chunked pointer
storage, that lets us interact with these variable-length tiny pointers in the same
way that we would interact with fixed-length tiny pointers.

Break the value array into contiguous chunks of 𝑂(log 𝑛/𝑘) tiny pointers. By
Proposition 184, the total number of bits used by the tiny pointers in each chunk is
𝑂(log 𝑛) with high probability in 𝑛. Thus each chunk can be stored in 𝑂(log 𝑛) bits,
meaning that the entire value array can be stored in 𝑂(𝑛𝑘) bits.

There is, however, the remaining issue of how to efficiently access and modify
the 𝑗-th tiny pointer in a given chunk. For each chunk, we can store an additional
𝑂(log 𝑛)-bit bitmap where the bits that are set to 1 indicate the positions in the
chunk where tiny pointers begin and end. To efficiently find the 𝑗-th tiny pointer, it
suffices to find the 𝑗-th and 𝑗 + 1-th 1s in the bitmap. (The tiny pointer can then be
extracted, modified, and reinserted, in constant time using standard bit manipulation
on the bitmap and the chunk.) The problem of finding the 𝑗-th 1 in a 𝑂(log 𝑛)-bit
bitmap is easily solved with the method of four Russians [53]: simply store an auxiliary
lookup table of size

√
𝑛 that allows for such queries to be answered in a (log 𝑛)/2-bit

bitmap in a single lookup, and then perform 𝑂(1) lookups to perform such a query
in an 𝑂(log 𝑛)-bit bitmap.

How to dynamically resize a data structure using tiny pointers. Several
of our applications will also encounter the problem of using tiny pointers in a data
structure whose size dynamically changes over time. Of course, this means that
we must also dynamically resize dereference tables. Our applications will take the
following approach, which we call zone-aggregated resizing.

Consider a value array storing tiny pointers to 𝑘-bit items in a dereference table
(and assume 𝑘 bits fit in 𝑂(1) machine words). Suppose that we wish to maintain
the dereference table at a load factor of 1 − Θ(1/𝑘), that way the number of bits
wasted per item stored is 𝑂(1); note that this means that the tiny pointers in the
value array are Θ(log 𝑘) bits on average. Further suppose, however, that the value
array dynamically changes size over time (meaning that elements must be added and

330

removed from the dereference table). For our discussion here, we will assume that
the value array itself is dynamically resized to always be at a load factor of at least
Ω(1).

How can we update the dereference table to maintain a load factor of 1−Θ(1/𝑘)
while the number of items changes over time? Rather than just using a single deref-
erence table, we use 𝑘 dereference tables, and add Θ(log 𝑘) bits to each tiny pointer
in order to indicate which dereference table is being pointed into (this doesn’t change
the asymptotic size of the tiny pointers). We can grow and shrink the capacity (i.e.,
number of slots) of the dereference tables by either (a) rebuilding the smallest derefer-
ence table to double its size, or (b) rebuilding the largest dereference table to halve its
size. If we assume for the moment that rebuilding a dereference table takes time pro-
portional to the table’s size, then the rebuilds can be de-amortized to take time 𝑂(1)
per operation (i.e., per modification to the dereference tables), while maintaining the
desired load factor of 1−Θ(1/𝑘).

The problem with rebuilding a dereference table is that all of the tiny pointers
into that dereference table become invalidated. The actual construction of the new
dereference table can easily be performed in linear time, but how do we update the
tiny pointers in the value array? If the value array has size 𝑛, then the dereference
table being rebuilt consists of only Θ(𝑛/𝑘) items. We want to identify where the tiny
pointers to those items are in the value array in time Θ(𝑛/𝑘) rather than time Θ(𝑛).

The solution to this issue is very simple: break the value array into contiguous
zones each of which consists of 𝑘 values. Within each zone, maintain 𝑘 linked lists,
where the 𝑖-th linked list contains the tiny pointers that point into the 𝑖-th dereference
table. Importantly, because these linked lists are within a zone of size 𝑘, the pointers
within each linked list only require Θ(log 𝑘) bits each; thus the linked lists do not
asymptotically increase the size of the value array. On the other hand, in order to
find all of the tiny pointers for a given dereference table, one can simply look at one
linked list in each of the Θ(𝑛/𝑘) zones, allowing for all Θ(𝑛/𝑘) of the tiny pointers to
be identified in time Θ(𝑛/𝑘).

For reasons that we shall see later, one of our applications will also require us to
use larger zones of size poly(𝑘) rather than just of size 𝑘. For now, we simply remark
that using larger zones of size poly(𝑘) still allows for the linked-list overhead of each
tiny pointer to be bounded by Θ(log 𝑘) bits, and that the time needed to identify the
tiny pointers to a dereference table of size 𝑗 is only

𝑂(𝑗 + 𝑛/ poly(𝑘)), (17.1)

since the number of linked lists that must be examined is only 𝑂(𝑛/ poly(𝑘)).

331

17.2 Overcoming the Ω(log log 𝑛)-Bit Lower Bound for
Data Retrieval

Our first application revisits the classic retrieval problem [44,146,157,159], in which
a data structure must store a 𝑣-bit value for each of the 𝑘-bit keys in some set 𝑆,
and must answer queries that retrieve the value associated with a given key. Here, we
address the dynamic version of the problem, where the data structure must support
the functions Insert(𝑥, 𝑦) (which inserts a new 𝑥 ∈ [2𝑘] into 𝑆 and associates it with
value 𝑦 ∈ [2𝑣]), Delete(𝑥) (which removes some 𝑥 ∈ 𝑆 from 𝑆), and Query(𝑥)
(which returns the value 𝑦 corresponding to 𝑥 for some 𝑥 ∈ 𝑆), allowing for the set
𝑆 to grow up to some maximum size 𝑛. Note that, in the retrieval problem, it is the
user’s responsibility to ensure that every invocation of Insert is on a key 𝑥 ̸∈ 𝑆,
every invocation of Query is on a key 𝑥 ∈ 𝑆, and every invocation of Delete is on
a key 𝑥 ∈ 𝑆.

It is known that, if 𝑘 = (1 + Ω(1)) log 𝑛 bits, then any solution to the dynamic
retrieval problem must use at least 𝑛𝑣 + Ω(𝑛 log log 𝑛) bits of space [44], regardless
of the time complexity, and even if 𝑣 = 1. It is further known that, if 𝑘 = Θ(log 𝑛)
and 𝑣 = 𝑂(log 𝑛), then the 𝑛𝑣 + Θ(𝑛 log log 𝑛) space bound can be accomplished by
a randomized constant-time data structure [146].

We will now show that, by slightly relaxing the retrieval problem, we can use
tiny pointers to obtain significantly better space bounds. In the relaxed retrieval
problem, the insertion/deletion/query operations are modified to work as follows.
The operation Insert(𝑥, 𝑦) now returns a tiny retriever 𝑟 which the user must
remember. In the future, if the user wishes to query 𝑥 (and they have not yet deleted
𝑥), they call Query(𝑥, 𝑟) to obtain the value 𝑦. Finally, if the user ever wishes to
remove 𝑥 from the set 𝑆, then the user calls Delete(𝑥, 𝑟).

The role of the tiny retriever is similar to that of a tiny pointer—it acts as a hint
to assist the data structure. Unlike for tiny pointers, however, the pair (𝑥, 𝑟) does not
have to fully encode the position of 𝑦; instead, query operations Query(𝑥, 𝑟) can use
auxiliary metadata, beyond just 𝑥 and 𝑟, to determine the value 𝑦. We shall now see
that this distinction is very important, allowing for us to do better than both the lower
bound for the retrieval problem [44] and our lower bound for the tiny-pointer problem
(Theorem 180). At the same time (almost paradoxically), it is our construction for
variable-size tiny pointers that allows for us to get around both of these lower bounds.
Theorem 186. Consider the relaxed retrieval problem with 𝑘-bit keys, 𝑣-bit values,
and a maximum capacity of 𝑛 key/value pairs. Let 𝑟 ∈ [log* 𝑛] be a parameter. There
is a solution to the relaxed retrieval problem that uses tiny retrievers of expected size
𝑂(1), and that with high probability in 𝑛: takes constant time per query, takes 𝑂(𝑟)
time per insertion/deletion, and uses total space 𝑛𝑣 +𝑂(𝑛 log(𝑟) 𝑛) bits.

Furthermore, if log(𝑟) 𝑛 = 𝜔(1) and 𝑣 ≤ log𝑛

log(𝑟) 𝑛
, then the space consumption be-

comes 𝑛𝑣 +𝑂(𝑛) bits.

The above theorem comes with an interesting tradeoff curve: constant-time

332

insertions/deletions can achieve a space consumption of, for example, 𝑛𝑣 +
𝑂(𝑛 log log log log log 𝑛) bits, and 𝑂(log* 𝑛)-time insertion/deletions can achieve space
consumption 𝑛𝑣 + 𝑂(𝑛) bits. Moreover, if 𝑣 is slightly sub-logarithmic, then even
constant-time insertions/deletions can achieve 𝑛𝑣 +𝑂(𝑛) bits.

We remark that the tiny retrievers in Theorem 186 are, in fact, variable-size
tiny pointers as constructed in Theorem 179. They therefore satisfy the doubly-
exponential tail inequality given by Theorem 179, as well as the concentration in-
equality given by Proposition 184.

Proof. We shall make use of Theorem 179 to construct a dereference table 𝑇 with
2𝑛 slots. What makes our application of Theorem 179 unusual, however, is that we
will not store anything in the store (if fact, we need not even allocate space for it).
Instead, we will take advantage of the fact that Dereference(𝑥, 𝑝) is a (1+log 𝑛)-bit
number that has been uniquely allocated to 𝑥.

To implement the operation Insert(𝑥, 𝑦), we call Allocate(𝑥) to obtain a tiny
pointer 𝑝 of expected size 𝑂(1) (note that 𝑝 will also be our tiny retriever). Define 𝑠𝑥 =
Dereference(𝑥, 𝑝) to be the slot number in [2𝑛] allocated to 𝑥. The main property
that we will exploit is that 𝑠𝑥 ̸= 𝑠𝑥′ for all other 𝑥′ ∈ 𝑆. To complete the Insert
operation, we insert the key/value pair (𝑠𝑥, 𝑦) into a succinct hash table 𝐻 (whose
specifications we will describe later). Queries and deletes are then implemented as
follows: Query(𝑥, 𝑝) returns 𝐻[Dereference(𝑥, 𝑝)]; and Delete(𝑥, 𝑝) deletes key
Dereference(𝑥, 𝑝) from 𝐻 and calls Free(𝑥, 𝑝) on the dereference table 𝑇 .

The correctness of the data structure follows from the fact that, for each 𝑥 ∈ 𝑆
with tiny retriever 𝑝, Dereference(𝑥, 𝑝) is unique. The dereference table uses space
only 𝑂(𝑛) bits and supports constant-time operations (with high probability). Thus,
to prove the theorem, it remains to analyze the hash table 𝐻.

We construct 𝐻 using the most space-efficient known construction for a hash
table [85]. If 𝐻 is storing up to 𝑛 keys from a universe 𝑈 and values are 𝑣 bits, then
it supports the following guarantees with high probability: queries are constant-time,
insertions/deletions take time 𝑂(𝑟), and the total space consumption is

log

(︂
|𝑈 |
𝑛

)︂
+ 𝑛𝑣 +𝑂(𝑛 log(𝑟) 𝑛)

bits. If, in addition, log(𝑟) 𝑛 = 𝜔(1) and 𝑣 ≤ log𝑛

log(𝑟) 𝑛
, then the space becomes log

(︀|𝑈 |
𝑛

)︀
+

𝑛𝑣 +𝑂(𝑛) bits.
Our use of tiny pointers ensures that the keys in𝐻 are from the very small universe

𝑈 = [2𝑛]. So

log

(︂
|𝑈 |
𝑛

)︂
= log

(︂
2𝑛

𝑛

)︂
= 𝑂(𝑛)

by Stirling’s approximation. This completes the proof of the theorem.

A remark on resizing. In Subsection 17.3, we shall see an application of tiny

333

retrievers to the problem of constructing succinct binary search trees. In this appli-
cation, we will want to have two relaxed-retrieval data structures whose sizes sum to
at most 𝑛. Here, we can take advantage of the fact that the hash table 𝐻 used above
actually offers a dynamically-resizing guarantee: if, at any given moment, the hash
table has size 𝑚, then it uses space at most

√
𝑛+ log

(︂
2𝑛

𝑚

)︂
+𝑚𝑣 +𝑂(𝑚 log(𝑟) 𝑛),

with high probability in 𝑛. The full retrieval data structure (consisting of the hash
table 𝐻 and the dereference table 𝑇) therefore uses space at most

log

(︂
2𝑛

𝑚

)︂
+𝑚𝑣 +𝑂(𝑛+𝑚 log(𝑟) 𝑛).

By Stirling’s inequality, this is at most

𝑚 log 𝑛−𝑚 log𝑚+𝑚𝑣 +𝑂(𝑛+𝑚 log(𝑟) 𝑛).

Thus, if we have two relaxed-retrieval data structures, one of size 𝑚1 ≤ 𝑛 and one of
size 𝑚2 ≤ 𝑛, and 𝑚 = 𝑚1 +𝑚2 = Θ(𝑛), then their total space consumption will be
at most

(𝑚1 +𝑚2) log 𝑛−𝑚1 log𝑚1 −𝑚2 log𝑚2 + (𝑚1 +𝑚2)𝑣 +𝑂((𝑚1 +𝑚2) log
(𝑟) 𝑛)

=𝑚 log 𝑛−𝑚1 log𝑚1 −𝑚2 log𝑚2 +𝑚𝑣 +𝑂(𝑚 log(𝑟) 𝑛).

By Jensen’s inequality, 𝑚1 log𝑚1 + 𝑚2 log𝑚2 ≥ (𝑚1 + 𝑚2) log
𝑚1+𝑚2

2
= 𝑚 log 𝑚

2
=

𝑚 log 𝑛−𝑂(𝑛). Thus the total space is at most

𝑚 log 𝑛− (𝑚 log 𝑛−𝑂(𝑛)) +𝑚𝑣 +𝑂(𝑚 log(𝑟) 𝑛)

= 𝑚𝑣 +𝑂(𝑚 log(𝑟) 𝑛)

= 𝑚𝑣 +𝑂(𝑚 log(𝑟)𝑚)

This, of course, is the same bound that we get for a single relaxed-retriever data
structure of size 𝑚.

The reason that this matters is that it allows for a simple way to perform dynamic
resizing: every time that the size 𝑚 of a data structure changes by a factor of two,
we move all of the elements in the current relaxed-retrieval data structure 𝐷1 into a
new relaxed-retrieval data structure 𝐷2 (parameterized as having capacity 𝑛 = Θ(𝑚)
based on the new value of 𝑚). As we move elements from 𝐷1 to 𝐷2, the total space
consumption of 𝐷1 and 𝐷2 will continue to be 𝑚𝑣 + 𝑂(𝑚 log(𝑟)𝑚) bits. Note that,
to move an element from 𝐷1 to 𝐷2, we will need to generate a new tiny retriever for
that element (since we are deleting the element from 𝐷1 and inserting it into 𝐷2). In
our binary-search-tree application, this will be easy to do by simply running through

334

all of the elements and relocating them one by one. Furthermore, since the work of
constructing 𝐷2 can be spread across Θ(𝑛) operations, it can be achieved at a cost of
𝑂(𝑟) per insertion/deletion.

17.3 Succinct Binary Search Trees

Our second application is a black-box approach for transforming dynamic binary
search trees into succinct data structures. If there are 𝑛 elements in the succinct
search tree, each of which is 𝑘 bits long, then the size of the succinct search tree will
be at most 𝑛𝑘 + 𝑂(𝑛 + 𝑛 log(𝑟) 𝑛) bits, where 𝑟 > 0 is an arbitrary parameter. Path
traversals in the tree incur only a constant-factor overhead, and modifications to the
tree incur only an 𝑂(𝑟)-factor overhead.

An advantage of our approach is that it can be applied to rotation-based search
trees. This includes, for example, red-black trees [204], splay trees [329], etc. If the
dynamic-optimality conjecture [329] is true, meaning that the splay tree is dynami-
cally optimal, then our succinct splay tree is also dynamically optimal when 𝑟 = 𝑂(1).
Theorem 187. Consider any binary search tree storing 𝑎-bit keys and 𝑏-bit values,
where every node is associated with a distinct key, and where each node has pointers
to its children. For any 𝑟 > 0, the tree can be implemented to offer the following
guarantees with high probability in the tree size 𝑛: the tree takes space 𝑛𝑎+𝑛𝑏+𝑂(𝑛+
𝑛 log(𝑟) 𝑛) bits, traversals from parents to children take time 𝑂(1), and modifications
to the tree (i.e., adding or removing an edge) take time 𝑂(𝑟).

We remark that, information theoretically, the tree use consume 𝑛(𝑎 + 𝑏) bits of
space. And since the keys are distinct, 𝑛𝑎 = Ω(𝑛 log 𝑛). Thus, for any 𝑟 > 1, the
search tree above is succinct.

Proof. We will make use of our solution to the relaxed retrieval problem (Theorem
186). However, the key/value pairs (𝑥, 𝑦) that we will store in the relaxed-retrieval
data structure will be a bit unusual in that 𝑦 will take the following form: 𝑦 contains
𝑥’s 𝑏-bit value, along with two tiny retrievers 𝑟1 and 𝑟2. Since 𝑟1 and 𝑟2 are them-
selves variable-length tiny pointers of expected size 𝑂(1), this means that 𝑦 is also
variable-length. On the other hand, the relaxed-retrieval data structure is designed
for fixed-length values. Fortunately, we can store the tiny retrievers 𝑟1 and 𝑟2 with the
following method. Recall that, in our construction for the relaxed retrieval problem,
we create a dereference table with 2𝑛 slots, but we do not actually store anything in
the dereference table’s store. We now change this so that the store is a value array
with 2𝑛 slots that stores the tiny retrievers 𝑟1 and 𝑟2 for each item in the dereference
table (so, if 𝑝 is the tiny pointer for 𝑥, then 𝑟1, 𝑟2 are in the Dereference(𝑥, 𝑝)-th
position of the value array). Using the chunked pointer storage technique, we can
ensure that the total size of the value array is 𝑂(𝑛) bits, even though the pointers
that it stores are variable length.

We now describe our encoding of the binary search tree: Each node in the search
tree stores the key-value pair (𝑥, 𝑦) corresponding to that node along with two tiny

335

retrievers 𝑟1 and 𝑟2. The tiny retriever 𝑟1 is for the left child and uses 𝑥 ∘ 0 as its key
(so Query(𝑥 ∘ 0, 𝑟1) returns the left child of 𝑥), and the tiny retriever 𝑟2 is for the
right child and uses 𝑥 ∘ 1 as its key (so Query(𝑥 ∘ 1, 𝑟1) returns the right child of 𝑥).
Note that, if the left child (resp. right child) does not exist, then we simply set 𝑟1
(resp. 𝑟2) to null.

Let us begin by assuming that our binary search tree has a fixed capacity of 𝑛
keys/values, so we can use a relaxed-retrieval data structure with capacity 𝑛. Then
our relaxed-retrieval data structure uses 𝑛𝑎+ 𝑛𝑏+𝑂(𝑛+ 𝑛 log(𝑟) 𝑛) bits. Navigating
from a node to its child takes time 𝑂(1) (since it requires a single query to the relaxed-
retrieval data structure) and adding/removing an edge (𝑥, 𝑧) from a node 𝑥 to a child
𝑧 takes time 𝑂(𝑟), with high probability, since it requires only a single insert/delete to
the relaxed-retrieval data structure; importantly, if 𝑧 is the root of some subtree, the
act of setting 𝑧 to be 𝑥’s child does not require any nodes besides 𝑧 to inserted/deleted
in the relaxed-retrieval data structure.

Finally, let us modify our data structure so that it dynamically resizes as a function
of the current number 𝑛 of key/value pairs. For this, we can simply use the resizing
approach outlined in Section 17.2. Every time that 𝑛 changes by a constant factor, we
rebuild the relaxed-retrieval data structure to have capacity Θ(𝑛) for the new value
of 𝑛. (Note that this does not require us to rebuild the tree; it just requires us to
update the tiny retrievers used in each node.) For each relaxed retriever in the binary
search tree, we can store an extra bit indicating which of the two relaxed-retrieval
data structures it uses—this preserves correctness. As observed in Section 17.2 the
act of moving items from the old relaxed-retrieval data structure to the new one does
not violate our desired space guarantee: the total number of bits used by our search
tree remains 𝑛𝑎+ 𝑛𝑏+𝑂(𝑛+ 𝑛 log(𝑟) 𝑛) at all times. And, by spreading the work of
rebuilding the relaxed-retrieval data structure across Θ(𝑛) operations, we maintain
the property that each edge insertion/deletion takes time 𝑂(𝑟). Thus the theorem is
proven.

17.4 Space-Efficient Stable Dictionaries

Using tiny pointers, we give a black-box approach for transforming any fixed-capacity
key-value dictionary into a stable dictionary, meaning that the position in which a
value is stored never changes after the value is inserted. If the original dictionary
stored 𝑘-bit values, then the new dictionary also stores 𝑘-bit values, and uses at most
𝑂 (log 𝑘) extra bits of space per value than the original data structure.
Theorem 188. Consider a fixed-capacity key-value dictionary data structure 𝑇 that
stores its values in a value array of some size 𝑚. Let 𝑣 denote the size of each value
in bits.

It is possible to construct a new data structure 𝑇 ′ with the same operations and
asymptotics (with high probability) as 𝑇 , but with the additional property that 𝑇 ′ is
stable. Moreover, the total space consumed by 𝑇 ′ is guaranteed (with high probability
in 𝑚) to be at most 𝑂(𝑚 log 𝑣) more bits than 𝑇 .

336

Proof. To construct 𝑇 ′, we simply replace the value array for 𝑇 with an array of 𝑚
tiny pointers, each of size Θ(log 𝑣) bits. (If log 𝑣 < log log log 𝑛, then the chunked-
storage technique can be used to handle the fact that different tiny pointers have
different sizes.) The tiny pointers point into a dereference table of size (1 + 1/𝑣)𝑚
that stores the 𝑚 𝑣-bit values. (So the load factor is 1 − Θ(1/𝑣).) If a tiny pointer
points at the value 𝑦 corresponding to a key 𝑥, then the tiny pointer uses 𝑥 as its key.
This ensures stability, since even if the location in which the tiny pointer is stored
changes, the tiny pointer does not have to change (and the value 𝑦 does not have to
move).

The array of tiny pointers consumes 𝑂(𝑚 log 𝑣) space. Whereas the value array
in 𝑇 consumes 𝑚𝑣 bits, the dereference table in 𝑇 ′ consumes (1+1/𝑣)𝑚𝑣 bits, which
is only 𝑂(𝑚) more bits then used in 𝑇 . Thus the claim on space efficiency is proven.
Since tiny pointers only add constant time per access/modification of the value, the
asymptotics are (with high probability in 𝑚) the same for both 𝑇 and 𝑇 ′.

17.5 Space-Efficient Dictionaries with Variable-Size
Values

Our fourth application is a black-box approach for transforming any key-value dictio-
nary (designed to store fixed-size values) into a dictionary that can store different-sized
values for different keys. The resulting data structure offers the following remarkable
guarantee on space efficiency. Let log(𝑟) 𝑛 = log log · · · log 𝑛 denote the 𝑟-th iterated
logarithm of 𝑛. Let 𝑟 be a positive constant of our choice, and let 𝑚 be the number
of entries in the value array used by the original dictionary (at some given moment).
The new dictionary, which allows for values to be arbitrary lengths, replaces the value
array for 𝑇 with a data structure that consumes at most

𝑂(𝑚 log(𝑟)𝑚) +
𝑚∑︁
𝑖=1

(𝑣𝑖 +𝑂(log 𝑣𝑖))

bits, where 𝑣1, 𝑣2, . . . , 𝑣𝑚 denote the lengths in bits of the values being stored.
Theorem 189. Consider a key-value dictionary data structure 𝑇 that stores its
values in a value array, and that is designed to store fixed-length keys. Let 𝑟 be a
positive constant of our choice.

It is possible to construct a new data structure 𝑇 ′ with the same operations and
asymptotics (with high probability) as 𝑇 , but with the additional property that 𝑇 ′

can store values of arbitrary lengths (up to 𝑂(1) machine words).
At any given moment, if 𝑇 would have been using a value array of size 𝑚, and

the machine word size 𝑤 satisfies 𝑤 ≤ 𝑚𝑜(1), then the total space consumed by 𝑇 ′ to

337

implement the value array is guaranteed (with high probability in 𝑚) to be at most

𝑂(𝑚 log(𝑟)𝑚) +
𝑚∑︁
𝑖=1

(𝑣𝑖 +𝑂(log 𝑣𝑖)) (17.2)

bits, where 𝑣1, 𝑣2, . . . are the sizes of the values.

We remark that the limitation on value-size to be 𝑂(1) machine words is simply
so that each value can be written/read in constant time, that way it is easy to discuss
how the asymptotics of 𝑇 and 𝑇 ′ compare. The same techniques work for even larger
values without modification, as long as one is willing to spend the necessary time to
read/write values that are of super-constant size.

Proof of Theorem 17.2. Values in 𝑇 ′ are stored with up to 𝑟 levels of indirection. If a
value is 𝑘 bits, then it is pointed at by a tiny pointer 𝑝1 of size 𝑂(log 𝑘) bits. The tiny
pointer 𝑝1 is, in turn, pointed at by a tiny pointer 𝑝2 of size 𝑂(log log 𝑘) bits, and so
on, with pointers of size 𝑂(log log log 𝑘), 𝑂(log log log log 𝑘), . . . , 𝑂(log(𝑟) 𝑛). That is,
every value is stored at the end of a linked list of length 𝑂(1), where the base pointer
of the linked list is 𝑂(log(𝑟) 𝑛) bits, and each subsequent pointer is exponentially larger
than the previous one.

For each tiny pointer of some size 𝑗 in the data structure, we must also store 𝑂(𝑗)
extra bits of information indicating (a) whether the tiny pointer is pointing at another
tiny pointer or at a final value, and (b) what the size is of the tiny-pointer/value being
pointed at. Throughout the rest of the proof, we will count these 𝑂(𝑗) extra bits as
being part of the size of the tiny pointer.

Since there are both values and tiny pointers of many different sizes, we must
use a different dereference table for each size-class of tiny-pointer and the different
dereference table for each size-class of values being stored. (Note that the dereference
tables storing tiny pointers may need to use the chunked-storage technique to handle
variable-sized tiny pointers, so the same dereference table should not be used to store
both tiny pointers and values.)

The problem of dynamically resizing all of the dereference tables simultaneously
is slightly tricky. Consider a dereference table 𝐴 (to 𝐴 could also be the value array)
that stores 𝑗-bit tiny pointers for some 𝑗. There are 𝐾 = 2Θ(𝑗) different dereference
tables 𝐵1, 𝐵2, . . . , 𝐵𝑘 that these tiny pointers can point into (depending on the size
of the object being pointed at, and whether the object is a tiny pointer or a value).
Each 𝐵𝑖 must individually be dynamically resized. We will maintain what we call the
dynamic-sizing invariant, which guarantees that each 𝐵𝑖 is either (a) at a load
factor 1−𝑂(1/𝑗′), where 𝑗′ is the size of the objects stored in 𝐵𝑖, or (b) is at most a
𝑜(1/(𝐾𝑗))-fraction the size (in bits) of 𝐴.

To implement the dynamic-sizing invariant, we dynamically resize each 𝐵𝑖 using
zone-aggregated resizing (recall from Section 17.1 that this means 𝐵𝑖 is broken into
multiple components, and each component is occasionally rebuilt so that its size either
doubles or halves). To allow for components of each 𝐵𝑖 to be rebuilt efficiently, we
break 𝐴 into zones of size poly(𝐾), meaning by (17.1) from Section 17.1 that a given

338

component (of some 𝐵𝑖) consisting of 𝑠 entries can be rebuilt in time

|𝐴|/ poly(𝐾) + 𝑠,

where |𝐴| is the number of entries in 𝐴. We perform dynamic resizing on 𝐵𝑖 differently
depending on whether it is very small (its components contain fewer than |𝐴|/ poly(𝐾)
elements each) or not:

• If the components contain 𝑠 = Ω(|𝐴|/ poly(𝐾)) elements each, then we perform
zone-aggregated resizing (exactly as in Section 17.1) to keep 𝐵𝑖 at a load factor
1 − 𝑂(1/𝑗′), where 𝑗′ is the size of the objects stored in 𝐵𝑖. In this case, the
time needed to rebuild a component of size 𝑠 is Θ(𝑠), so the dynamic resizing
of 𝐵𝑖 can be deamortized to take 𝑂(1) time per operation (on 𝐵𝑖). Note that,
here, 𝐵𝑖 is in case (a) of the dynamic-resizing invariant.

• If the components contain fewer than |𝐴|/ poly(𝐾) elements each, then we per-
form zone-aggregated resizing to keep each component of 𝐵𝑖 at a capacity of
Θ(|𝐴|/ poly(𝐾)) (even as |𝐴| changes over time, and regardless of whether
the number of elements per component may be significantly smaller than
|𝐴|/ poly(𝐾)). Note that, here, 𝐵𝑖 is in case (b) of the dynamic-resizing in-
variant.
When 𝐵𝑖 is in this regime, we cannot amortize the work spent rebuilding 𝐵𝑖

to the operations that are performed on 𝐵𝑖. Instead, we spread out the work
spent rebuilding components of 𝐵𝑖 in the following way: for every Θ(𝐾) work
that is spent on 𝐴 we also spend 𝑂(1) time on resizing 𝐵𝑖. Since 𝐵𝑖 is more
than a factor of 𝐾 smaller than 𝐴, this is sufficient time to keep 𝐵𝑖 in a state
where each component has capacity Θ(|𝐴|/ poly(𝐾)).
From the perspective of 𝐴, every time that we spend constant time on in-
sertions/deletions/rebuilding 𝐴, we also may spend constant time performing
rebuild-work on one of the 𝐵𝑖s (which, in turn, may recursively lead us to spend
constant time on rebuilding one of the dereference tables pointed at by 𝐵𝑖, etc.).
Importantly, since chains of tiny pointers are at most 𝑟 ≤ 𝑂(1) long, the time
spent on rebuilds only introduces a constant-factor overhead on running time
per operation.

The resizing approach described above guarantees the dynamic-sizing invariant
while incurring only a constant-factor time overhead per operation. Next we use the
invariant to bound the space consumption of 𝑇 ′. The dereference tables 𝐵𝑖 in case (a)
are implemented space-efficiently enough that the empty slots in them take negligible
space compared to the actual objects stored in them (i.e., the empty slots add 𝑂(1)
bits per object), and the dereference tables 𝐵𝑖 in case (b) are small enough that they
take negligible space compared to the size of the parent dereference table 𝐴 (i.e., they
cumulatively add 𝑜(1) bits per slot in 𝐴). It follows that the total space consumed by
dereference tables will be at most the sum of the sizes of the objects being stored in
the dereference tables, plus 𝑂(1) bits per object; this, in turn, means that the space
used by 𝑇 ′ to store values/tiny pointers is given by (17.2).

339

Next, we bound the time-overhead of 𝑇 ′ when compared to 𝑇 . We have already
shown that the time-overhead of performing dynamic-resizing on dereference tables is
𝑂(1) per operation. Since values are stored with at most 𝑟 = 𝑂(1) levels of indirection,
the time needed to access/modify a value is also 𝑂(1). Thus 𝑇 ′ has the same time
asymptotics as 𝑇 .

Finally, we argue that the dereference tables used by 𝑇 ′ succeed at their allocations
with high probability.4 There are several approaches that we could take to doing this;
the simplest is to just add one more modification to how we perform dereference-
table resizing: whenever a dereference table gets down to size Θ(

√
𝑚), we do not ever

resize it to be any smaller.5 This means that some dereference tables could be very
sparse, containing

√
𝑚 slots, but containing far fewer elements. Since there are only

𝑂(𝑤) = 𝑚𝑜(1) different dereference tables (recall that 𝑤 is the machine-word size), the
net space consumption of the dereference tables of size Θ(

√
𝑚) is 𝑜(𝑚) bits. The fact

that every dereference table has size at least Ω(
√
𝑚) means that all of the dereference

tables offer high probability guarantees, as desired.

17.6 An Optimal Internal-Memory Stash

Our final application of tiny pointers revisits one of the oldest problems in external-
memory data structures: the problem of maintaining a small internal-memory stash
that allows for one to locate where elements reside in a large external-memory data
structure.

The problem can be formalized as follows. We must store a dynamically changing
set 𝑆 of up to 𝑛 key-value pairs, where each key-value pair can be stored in one
machine word, and where each key is unique. We are given an external memory
consisting of (1 + 𝜀)𝑛 machine words, where the key-value pairs 𝑆 are to be stored.
In addition to storing key-value pairs in external memory, we must maintain a small
internal-memory data structure 𝑋, which we will refer to as the stash, that supports
the following operations:

• Query(𝑘): Using only information in the stash data structure, returns the
position in external memory where the key 𝑘 and its corresponding value 𝑣 are
stored.

• Insert(𝑘, 𝑣): Inserts the key-value pair (𝑘, 𝑣), placing the pair somewhere in
external memory, and updating the stash.

• Delete(𝑘, 𝑣): Removes the key/value pair (𝑘, 𝑣) from the external-memory ar-
ray, and updates the stash.

4There are many different ways that one could handle allocation failures, including, for example,
performing batch-rebuilds of the data structure.

5However, since 𝑚 may dynamically change over time, we do need to spend constant time per
operation resizing dereference tables of size Θ(

√
𝑚) so that they stay size Θ(

√
𝑚) as 𝑚 changes.

340

The important feature of a stash is that queries can be completed with a single
access to external memory. On the other hand, in order for a stash to be useful,
several other objectives must be achieved:

• Compactness: The stash 𝑋 needs to be as small as possible, that way it can
fit into an internal memory with limited size.

• Efficient inserts and deletes: Although a stash prioritizes queries, insertions
and deletions should ideally also require only 𝑂(1) accesses/modifications to
external memory.

• RAM efficiency: Finally, so that computational overhead does not become a
bottleneck, the operations on a stash should be as efficient as possible in the
RAM model, ideally taking time 𝑂(1).

A concrete example of a stash that is used in real-world systems is the page
table [35, 36, 71], which is an operating-system-level dictionary that maps virtual
page addresses to where their corresponding physical pages reside in memory. The
page table is accessed for every address translation, so it is performance critical and
thus highly optimized. Additionally, it is important that the page table be space-
efficient, so that it may be effectively cached in the processor cache hierarchy. Note
that, although page tables get to select where physical pages reside in memory, they
do not get to move physical pages that have already been placed; thus any stash that
is used as a page table must also be stable. For this reason, past work [197,235,236]
has typically included stability as an additional criterion for a stash.

Work on designing space-efficient and time-efficient stashes dates back to the late
1980s [197, 235, 236]. The best-known theoretical results are due to Gonnet and
Larson [197], who give a stable stash that uses only 𝑂(𝑛 log 𝜀−1) bits. A remarkable
consequence of this is that, when 𝜀 = Θ(1), it is possible to construct a stash using
only 𝑂(𝑛) bits.

Gonnet and Larson’s result comes with several significant drawbacks, however
[197], which have proven difficult to fix. First, due to its reliance on stable uniform
probing [234] as a mechanism for determining where keys/values should reside, the
stash only offers provable guarantees in the setting where insertions/deletions are
performed randomly. Second, the data structure is not constant-time in the RAM
model, instead taking expected time Θ(𝜀−1).

Using tiny pointers, we show that modern techniques for constructing filters can
easily be adapted in order to construct a stable stash of size 𝑂(𝑛 log 𝜀−1) bits that
supports constant-time operations in the RAM model (with high probability) and
that supports arbitrary sequences of insertions/deletions/queries.
Theorem 190. It is possible to construct a stable stash that supports constant-time
operations in the RAM model, that stores up to 𝑚 keys/values in an external-memory
array of size (1+𝜀)𝑚, and that uses only 𝑂(𝑚 log 𝜀−1) bits of internal-memory space.
All of the guarantees for the stash hold with high probability in 𝑚.

341

Proof. The starting point for our design is the adaptive filter of Bender et al. [82]. Like
a stash, their filter is a space-efficient internal-memory data structure that summarizes
the state of an external-memory key-value dictionary. Unlike a stash, their filter does
not indicate where in external memory each key/value is stored. Instead, the filter
answers containment queries with the following guarantee: each positive query is
guaranteed to return true, and each negative query is guaranteed to return false with
probability at least 1− 𝜀 (for some parameter 𝜀). The size of their internal-memory
data structure is only (1+𝑜(1))𝑚 log 𝜀−1 = 𝑂(𝑚 log 𝜀−1) bits, where 𝑚 is the capacity
of the filter.6

The basic idea behind the adaptive filter of [82] is to store a fingerprint for each
key 𝑥, where each fingerprint is taken to be some prefix of the hash ℎ(𝑥). Different
keys have different-length fingerprints, and the invariant maintained by the filter is
that no fingerprint is a prefix of any other fingerprint. To maintain this invariant while
also keeping the fingerprints as small as possible, the filter will sometimes change the
lengths of 𝑂(1) different fingerprints during a given insertion/deletion; to change the
length of a fingerprint, the key corresponding to that fingerprint must first be fetched
from external memory, that way the hash ℎ(𝑥) of that key can be recomputed.7

The fingerprints in the filter are stored as follows. The first lg 𝑛 bits of each
fingerprint are called the quotient, and these bits are used to assign the key to one of
𝑛 bins; importantly, the fact that the bin-choice encodes the quotient of each of the
keys in the bin means that the data structure does not have to explicitly store the
quotients of the fingerprints. The next log 𝜀−1 bits of each fingerprint are called the
baseline bits, and these bits are included for every fingerprint in the data structure.
Finally, any subsequent bits in a fingerprint are called the adaptivity bits, and these
bits are added/removed in order to maintain the prefix-freeness invariant. A central
piece of [82]’s analysis is to show that there are only 𝑂(𝑚) adaptivity bits in total,
and that these bits can be stored efficiently.

We now describe how to modify the filter to be a stash. In addition to storing a
fingerprint for each key, we now also store a tiny pointer with expected size Θ(log 𝜀−1).
These tiny pointers are easy to store, since the filter has already made room for log 𝜀−1

baseline bits for each key. Of course, different tiny pointers may have different lengths,
but this issue can easily be resolved by either using the chunked-storage technique
described in Section 17.1 (or by adapting the techniques already used in [82] to handle
variable-length fingerprints).

One minor difficulty is that the filter assumes access to an external-memory dic-
tionary (rather than just a dereference table) that way it can lookup keys in order to
modify their fingerprints. In the case of our stash, however, these lookups can easily
be performed using the tiny pointers that are already stored, so one does not need a
full dictionary in external memory.

The fact that the tiny pointers have size Θ(log 𝜀−1) means that external memory
6In fact, their data structures also dynamically resizable, but for our application that will not be

necessary.
7The original data structure also sometimes updates the lengths of fingerprints during negative

queries, but such updates are not needed for the purposes of our data structure.

342

can be implemented as a dereference table with load factor 1− 𝜀. The fact that the
original adaptive filter supported constant-time operations (with high probability in
𝑚) translates to the stash also supporting constant-time operations. And the fact
that the original adaptive filter used space 𝑂(𝑚 log 𝜀−1) bits in internal memory also
translates the same guarantee for the stash. Thus the theorem is proven.

343

Part VI

A Strong Theory of Strong History
Independence

344

Chapter 18

Introduction

A data structure ALG is said to be strongly history independent (or uniquely
representable) if its state is fully determined by its current set of elements. That
is, given the current set 𝑆 of elements that the data structure stores, and given the
random bits 𝑅 that the data structure uses, one can reconstruct the data struc-
ture ALG(𝑆,𝑅). Critically, such a data structure cannot depend on the order
in which elements were inserted, or on the history of what other elements were
present in the past. This makes history independence an appealing security guar-
antee [70, 105, 106, 119, 194, 209, 263, 278, 279]. If an adversary obtains the states of
the data structure at some set of times {𝑡1, . . . , 𝑡𝑘}, then all that the adversary learns
about the history of the data structure is what the data structure contained at each
of those times. The adversary cannot deduce anything further about what sequences
of insertions/deletions occurred between the times.

Although this part of the thesis will be primarily about strong history indepen-
dence, it is worth also mentioning the closely related notion of weak history indepen-
dence [70, 74, 119, 209, 263, 279], which says that the current set 𝑆 of elements fully
determines the probability distribution 𝒜ℒ𝒢(𝑆) from which the current data struc-
ture state is drawn. Weak history independence ensures that, if an adversary obtains
the data structure at a single point in time, then all that they learn is which ele-
ments are present. However, if the adversary obtains the data structure at multiple
points 𝑡1 < 𝑡2 in time, then the relationship between the states of the data structure
at those points may leak additional information about what occurred in the time
interval [𝑡1, 𝑡2].

Variable-Size Stateless Allocation. One of the most basic algorithmic questions
surrounding strong history independence is that of Variable-Size Stateless Alloca-
tion [194,200,279], which can be viewed as the strongly history-independent analogue
of classical memory allocation. Given a set 𝑆 ⊆ [𝑈] and a size function 𝜋 : 𝑆 → N
satisfying

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ (1 − 𝜀)𝑛 + 1, one must construct an allocation 𝜑𝑆 mapping

the elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑𝑆(𝑥) ⊆ [0, 𝑛] of size |𝜑𝑆(𝑥)| = 𝜋𝑆(𝑥). We
can think of 𝜑𝑆 as a type of memory allocator, mapping each element 𝑥 a memory
chunk of size 𝜋(𝑥) in an array of size 𝑛.

345

The goal is to minimize the overhead of performing an insertion/deletion on 𝑆.
If an insertion, transforms input (𝑆, 𝜋) into input (𝑆 ′, 𝜋′), adding a new element 𝑥 of
some size 𝜋′(𝑥) = 𝑟, then the overhead of the insertion is given by

1 +
∑︁
𝑎∈𝑆

𝜑(𝑆,𝜋),𝑅(𝑎)̸=𝜑(𝑆′,𝜋′),𝑅(𝑎)

𝜋(𝑎)

𝑟
, (18.1)

i.e., 1/𝑟 times the sum of the sizes of the elements (including 𝑥) whose allocations
change due to the insertion. One should think of (18.1) as measuring the multiplica-
tive overhead of performing the insertion, when compared to the 𝑟 work that would
be needed to simply write an object of size 𝑟 into an array.

Note that the Variable-Size Stateless Allocation Problem comes with three pa-
rameters: the universe size 𝑈 , the total array size 𝑛, and a load-factor parameter 𝜀
dictating the maximum amount of space (1− 𝜀)𝑛+1 that can be allocated at a time.

The Variable-Size Stateless Allocation Problem has remained one of the most basic
open questions in the field of randomized data structures since it was first introduced
in STOC ’01 by Naor and Teague [279]. They presented a weakly history-independent
solution that achieved load factor 1 − 𝜀 = 1/2 and overhead 𝑂(log 𝑛) [279]. The
authors posed an open problem of whether any scheme could do better—for example,
achieving an overhead that is purely a function of 𝜀−1.

In fact, the authors of [279] put quite a bit of emphasis on this open problem. The
final sentence of their abstract states simply: “The main open problem we leave is
whether it is possible to implement a variable-size record scheme with low overhead.”
This problem has remained open for more than two decades, not just in the setting of
strong history independence, but even in the somewhat easier setting of weak history
independence.

It is worth noting that the same allocation problem is interesting even for non-
history-independent data structures. In this context, the problem is typically referred
to as the storage reallocation problem [81], and has a folklore solution that achieves
overhead 𝑂(𝜀−1). One of the major technical surprises from this thesis will be that
our algorithms for the strongly history-independent case will actually beat this folkore
bound. Thus we will see our third example in this thesis of a case where history-
independent algorithms are able to bypass the seemingly natural barriers that their
non-history-independent counterparts were previously stuck at.

Fixed-Size Stateless Allocation. The Variable-Size Stateless Allocation Problem
has also been studied extensively in the Fixed-Size case where every object 𝑥 ∈ 𝑆
has the same size 𝜋(𝑥) = 1. Here, the load-factor constraint becomes |𝑆| ≤ (1 −
𝜀)𝑛+ 1, and the allocation function 𝜑 simply maps each element 𝑥 ∈ 𝑆 to a distinct
position 𝜑(𝑥) ∈ {1, . . . , 𝑛}. The overhead of an insertion/deletion of some element
𝑥 is the number of elements (including the 𝑥) whose allocation changes due to the
insertion/deletion.

The Fixed-Size Stateless Allocation Problem is widely believed to be one of the

346

simplest examples of a setting in which there is a separation between strong and weak
history independence. Indeed, if all that one wishes for is weak history independence,
then one can use reservoir sampling [242,279] to achieve 𝑂(1) time (independent of 𝜀)
per insertion/deletion while preserving weak history independence (and, in particular,
while preserving the invariant that each element is in a random slot). On the other
hand, to achieve strong history independence, it is widely believed that the time
per insertion/deletion should be a function of 𝜀−1 [105, 124, 125, 194, 279]. However,
proving this has remained one of the most basic open problems in the area.

The Fixed-Size Stateless Allocation Problem naturally arises in a variety of differ-
ent settings, both directly in the context of history independence [105,278,279], and
also in earlier work on unique representations of hash tables [45, 124, 125], and more
recent work on distributed stateless worker-task assignment [334,335].1

In these settings, there has been a long line of work on solutions with expected
costs of the form Ω(𝜀−1) [45,105,124,125,278,279], and it would be natural to assume
that this bound should be optimal. However, establishing any nontrivial lower bounds
has proven to be remarkably challenging. For 𝜀 = 1/𝑛 (meaning that the array can be
completely full), Su, Su, Dornhaus, and Lynch established that the worst-case cost of
performing a combined insertion/deletion is at least 2 [334].2 Subsequently, in ICALP
’20, Su and Wein [335] improved this lower bound to 4, assuming a sufficiently large
universe size (roughly 𝑈 = Tower(𝑛)). All of these lower bounds apply only to the
worst-case cost of the allocation, and only to 𝜀 = 1/𝑛. It has remained open to prove
any nontrivial lower bound for the expected cost, or for 𝑈 = poly(𝑛).

Chapter 19. Strong Upper Bounds for Stateless Allocation

In Chapter 19, we give new upper bounds for both the Variable-Size and Fixed-Size
Stateless Allocation Problems.

Recall that, in the variable-size case, the prior state of the art was a weakly history-
independent solution that supported 𝜀 = 1/2 with overhead 𝑂(log 𝑛). In the same
parameter regime, where 𝜀 = 1/2, we give a strongly history-independent solution
that achieves 𝑂(1) expected overhead.

Assuming that the maximum size of any element is 𝑂(𝜀4𝑛), the solution extends
to support a load factor of 1−𝜀 with an expected overhead of 𝑂(1+ log 𝜀−1).3 To the
best of our knowledge, this is the first algorithm to beat the folklore 𝑂(𝜀−1) bound

1In the context of distributed worker-task assignment, strong history independence is of interest
not just as a security property but also as a type of fault recovery [335]. If some subset of the agents
(i.e., some subset of the numbers [𝑛]) suffer a fault in which they lose their memories, they can
reconstruct which tasks (i.e., which elements in 𝑆) they are assigned to, based only on what the
current set of tasks is.

2Note that in the model of [334], the set 𝑆 may actually be a multiset of size 𝑛 However, these
two problems are equivalent up to changes in the universe size 𝑈 . Indeed, as long as 𝑈 ≥ 𝑛 then the
multi-set version contains the non-multi-set version; and for any universe size 𝑈 , one can construct
a multi-set solution using a non-multi-set on a universe of size 𝑈 ′ = 𝑈𝑛.

3We remark that, if one wishes to remove the 𝑂(𝜀4𝑛) limitation on maximum object size, one
can trivially achieve this at the cost of increasing the expected overhead to 𝑂(𝜀−4).

347

for the non-history-independent version of the problem (see, e.g., discussion in [81]).
In the fixed-size case, the prior states of the art were strongly history-independent

solutions that incurred expected overhead Ω(𝜀−1) [45, 105, 124, 125, 278, 279]. Our
solution for the variable-size case extends immediately to this case: assuming |𝑆| ≥
Ω(𝜀−1), we are able to support a load factor of 1−Θ(𝜀) while achieving an expected
overhead of 𝑂(1 + log 𝜀−1).

In the distributed-computing community, researchers have had a great deal of
interest, in particular, in the fixed-size case where 𝜀 = 𝑛−1 (i.e., the array can be
fully saturated), and where the allocation must be fully deterministic [334,335]. This
is sometimes called the memoryless worker-task assignment problem, since it
captures the problem of assigning 𝑛 workers 𝑆 to tasks {1, 2, . . . , 𝑛} in a memoryless
fashion with deterministic worst-case bounds on the cost of workers leaving/entering
the set. This version of the problem would seem, a priori, to be significantly harder,
since we cannot use randomization to achieve strong history independence. At the
same time, efforts to prove lower bounds [334,335] have stalled at Ω(1).

Our final result in the chapter is a (deterministic) solution to the memory-
less worker-task assignment problem with worst-case overhead 𝑂(log2 𝑛) per inser-
tion/deletion (where the workers 𝑆 are assumed to come from a polynomial-size uni-
verse [𝑈]). Our solution is non-constructive, making use of the probabilistic method.
However, making use of techniques from the derandomization literature, we are also
able to give a constructive solution with polylog 𝑛 cost. To the best of our knowl-
edge, these constructions are the first instances of a dynamic data-structural problem
having a non-trivial deterministic strongly history-independent solution.

Chapter 20. Strong Lower Bounds for Stateless Allocation

The Fixed- and Variable- Size Stateless Allocation Problems have proven remarkably
resistant to lower bounds. Indeed, the only known bounds, achieved by [334,335], are
of the form Ω(1) and apply to the worst-case (rather than expected) overhead for the
fixed-size problem with 𝜀−1 = 𝑛.

In Chapter 20, we establish a nearly tight lower bound for the Fixed-Size State-
less Allocation Problem. We show that any Stateless Allocation scheme must incur
expected cost Ω(log 𝜀−1/ log log 𝜀−1). This matches our upper bound of 𝑂(1+log 𝜀−1)
up to an 𝑂(log log 𝜀−1) factor.

Of course, since the fixed-size case is a special instance of the variable-size case,
our lower bound for the former extends immediately to the latter. Thus our bounds
for the variable-size case are also tight up to a factor of 𝑂(log log 𝜀−1).

Our lower bound provides a concrete separation between the weak and strong
history independence for the Fixed-Size Stateless Allocation Problem. The proof
offers a natural framework for how to chain together indistinguishability arguments
in order to establish lower bounds for strong history independence—we expect that
similar ideas will likely be useful for establishing lower bounds for related problems
in subsequent work.

348

Chapter 21. Efficient Data-Structural Implementations

Up until now, we have focused on optimizing only the overhead of an allocator.
However, even if an allocator exhibits low expected overhead, it may still be difficult
to implement the allocator time efficiently. In Chapter 21, we show that for a large
range of 𝜀, it is possible to construct time-efficient allocators for both the fixed- and
variable- size cases.

Formally, we can capture this as a data-structural problem: We wish to construct a
strongly history-independent hash table that maps each element 𝑥 ∈ 𝑆 to a contiguous
sub-array of size 𝜋(𝑥). The hash table is said to achieve load factor 1 − 𝑂(𝜀) if the
hash table uses space (1 + 𝑂(𝜀))𝑚, where 𝑚 =

∑︀
𝑥∈𝑆 𝜋(𝑥). The hash table is said

to achieve (time) overhead 𝑂(𝐿) if the expected time to insert/delete of an item 𝑥 is
bounded by 𝑂(𝐿𝜋(𝑥)). Ideally, the hash table should not incur any query overhead,
i.e., the time to query an item 𝑥 should be 𝑂(1) (w.h.p.). We assume that 𝜋(𝑥) ≥ 1
for each 𝑥 ∈ 𝑆, and, in particular, that the element 𝑥 is stored explicitly at the
beginning of the sub-array allocated to it.

Even in the fixed-size case, even though Chapter 19 gives a solution with expected
cost 𝑂(1 + log 𝜀−1), it is unclear a priori whether this solution can be used in data-
structural settings. Indeed our solution can be viewed as a special case of open
addressing, which naively requires Ω(𝜀−1) time per insertion/deletion (even if 𝑜(𝜀−1)
rearrangements actually occur). Nonetheless, we show that one can overcome these
issues using data-structural techniques. We give a strongly history-independent hash
table that, at a load factor of 1− 𝜀 (where 𝜀−1 ≤ log1/10𝑚), supports insertions and
deletions in 𝑂(1 + log 𝜀−1) expected time and queries in constant time (w.h.p.).

Combining this with our aforementioned lower bound, we conclude that the opti-
mal insertion cost for any strongly history-independent hash table is Θ̃(log 𝜀−1). We
remark that, prior to our work, the previous state of the art, due to Blelloch and
Golovin in FOCS ’07 [105], achieved an expected insertion cost of Θ(𝜀−2).

Next, we turn our attention to the variable-size case, where we show that it is
possible to produce a time-efficient implementation of our 𝑂(𝜀−1)-overhead allocator.
That is, we give a strongly history-independent hash table (Theorem 243) that maps
each key 𝑥 ∈ 𝑆 to a contiguous subarray of size 𝜋(𝑥) and that, at any load factor
1− 𝜀 satisfying 𝜀−1 ≤ log1/10 𝑛, supports queries in time 𝑂(1) (w.h.p.), and supports
insertions/deletions for items of sizes up to 𝑂(𝜀4𝑛) with expected overhead 𝑂(1 +
log 𝜀−1). In the case where 𝜀−1 = 𝑂(1), this is the first known solution to achieve
𝑂(1) expected overhead [279].

18.1 Conventions

When discussing discrete intervals, we will use [𝑘] to denote {1, 2, . . . , 𝑘} and [𝑎, 𝑏]
to denote {𝑎, 𝑎+ 1, 𝑎+ 2, . . . , 𝑏}. When discussing real intervals, we will use [𝑎, 𝑏) to
denote the half-open interval from 𝑎 to 𝑏, and [𝑘] to denote [0, 𝑘).

We will typically use 𝑆 ⊆ [𝑈] to denote the set of keys being allocated and

349

𝜋 : 𝑆 → N to denote the size function being used. Note that, although each key
𝑥 ∈ 𝑆 is log𝑈 bits, when we refer to the size of 𝑥, we mean 𝜋(𝑥) (not log𝑈). In
the fixed-size version of the problem, we will omit discussion 𝜋, since each key 𝑥 ∈ 𝑆
implicitly has size 1.

We can think of a stateless allocation algorithm ALG as having four inputs: the
random bits 𝑅 that it should use, the set 𝑆 of keys that it must allocate, the size
function 𝜋, and the load-factor parameter 𝜀. In most cases, we will treat 𝑅 and 𝜀 as
global variables, and refer to the allocation produced by ALG as either ALG(𝑆) (for
the fixed-size version of the problem) or ALG(𝑆, 𝜋) (for the variable-size version of
the problem). When convenient, we will often simply use 𝜑 to denote the allocation
function produced by ALG.

The allocation ALG(𝑆, 𝜋) can be viewed as either mapping each key 𝑥 ∈ 𝑆 to
an interval [𝑎𝑥, 𝑏𝑥] ⊆ [𝑛] of size 𝑏𝑥 − 𝑎𝑥 = 𝜋(𝑥), or as assigning the key 𝑥 to the
sub-array 𝐴[𝑎𝑥, 𝑎𝑥 + 1, . . . , 𝑏𝑥] of an array 𝐴 of size 𝑛. In most contexts, we will take
the interval-assignment perspective (since, of course, stateless allocation can also be
applied to non-data-structural settings, e.g., [102,334,335]); but in some cases where it
is convenient, we will use the array/sub-array nomenclature instead. As a convention,
we will typically use 𝑚 to denote the sum

∑︀
𝑥∈𝑆 𝜋(𝑥) of the sizes of the elements in

𝑆 (or, in some cases, to denote an upper bound on the sum), and we will typically
use 𝑛 to denote the size of the array being used for the allocation problem. Although
in general, we will be interested in 𝑚 = (1 − 𝜀)𝑛 (i.e., the load factor is 𝜀), in some
of our upper-bound constructions it will be helpful to instead take the more relaxed
perspective of requiring only that 𝑚 = (1−Θ(𝜀))𝑛.

In some cases, we will allow for keys 𝑥 ∈ 𝑆 to have real-valued sizes 𝜋(𝑥) ≥ 1.
Of course, this means that each key 𝑥 ∈ 𝑆 will be assigned to an interval 𝜑(𝑥) with
real-valued endpoints (rather than integer endpoints). Note that, if each key 𝑥 ∈ 𝑆
has an integer size 𝜋(𝑥) ∈ N, then the endpoints of 𝜑(𝑥) can be trivially rounded
to integers (simply replace each endpoint 𝑞 with ⌊𝑞⌋), while preserving the fact that
different keys are assigned to disjoint intervals and that each key 𝑥 is assigned to an
interval of size 𝜋(𝑥).

Finally, as a convention, we say that an event 𝐸 occurs with high probability
(w.h.p.) in a variable 𝑘 if the event occurs with probability 1−1/𝑘𝑐 for an arbitrarily
large positive constant 𝑐 of our choice. Equivalently, one can say that 𝐸 occurs with
probability 1− 1/ poly(𝑘).

350

Chapter 19

Strong Upper Bounds for Stateless
Allocation

In this chapter, we give efficient solutions to both the Fixed-Size and Variable-Size
Stateless Allocation Problems.

Section 19.1. Achieving 𝑂(1+ log 𝜀−1) expected overhead. We begin by con-
structing an allocator that can handle objects with power-of-two sizes. The allocator
supports load factor 1− 𝜀 while achieving expected overhead 𝑂(1 + log 𝜀−1).
Theorem 191. Algorithm 4 is a solution to the Variable-Size Stateless Allocation
Problem in the setting where objects have power-of-two sizes that divide 𝑛. The
algorithm achieves load factor 1− 𝜀 with expected overhead Θ(1+ log 𝜀−1) per inser-
tion/deletion.

As a corollary, we immediately get a new bound for Fixed-Size Stateless Alloca-
tion. This is the first solution to achieve 𝑜(𝜀−1) expected overhead.
Corollary 192. Algorithm 4 is a solution to the Fixed-Size Stateless Allocation
Problem that, on input sets 𝑆 of size at least Ω(𝜀−1), achieves load factor 1 − 𝑂(𝜀)
with expected overhead Θ(1 + log 𝜀−1) per insertion/deletion.

Both of these results also extend to the setting where 𝑛 changes over time
based on

∑︀
𝑥∈𝑆 𝜋(𝑆), so that the total memory used at any given moment is

(1 +𝑂(𝜀))
∑︀

𝑥∈𝑆 𝜋(𝑥).
An intriguing aspect of our solution for power-of-two sizes is that the solution

can be viewed as a variation on uniform probing. In classical uniform probing, each
element 𝑥 has a random sequence ℎ1(𝑥), ℎ2(𝑥), . . . ∈ [𝑛] of positions where it could
go, and the element is placed in the first available position from that sequence. Of
course, uniform probing on its own is not strongly history independent, but there are
several well-studied variations [124,125,279] that are, including the 𝑂(𝜀−1)-overhead
fixed-size allocator given by Naor and Teague [279]. What is interesting about the
variation presented in Algorithm 4 is that it is able to (1) achieve sub-linear overhead
in 𝜀−1 and (2) handle different items having very different sizes without any asymptotic

351

blowup in overhead. The approach will likely also be of interest to the wider hashing
community.

Finally, we show that with additional techniques our results can be extended to
handle arbitrary (not-necessarily-power-of-two) size objects. This leads to the main
theorem of the section:
Theorem 193. Let 𝑈, 𝜀−1 be positive integers. Consider inputs (𝑆, 𝜋) where 𝑆 ⊆ [𝑈],
and where 𝜋(𝑥) ∈ [1, 𝜀4

∑︀
𝑥∈𝑆 𝜋(𝑥)] for all 𝑥 ∈ 𝑆. Then one can construct a stateless

allocator that uses space (1 + 𝑂(𝜀))
∑︀

𝑥∈𝑆 𝜋(𝑥) and that incurs expected overhead
𝑂(1 + log 𝜀−1) per insertion and deletion.

This result improves the state of the art even for non-history-independent solu-
tions, which previously stood at 𝑂(𝜀−1) [81], as well as for weakly history-independent
solutions, which previously stood at 𝑂(log 𝑛) for 𝜀 = 1/2 [279]. As we shall see in the
next chapter, the 𝑂(1 + log 𝜀−1) overhead bound is tight up to 𝑂(log log 𝜀−1) factors
for both the fixed-size and variable-size versions of the problem.

Section 19.2. Achieving polylog𝑛 worst-case overhead for worker-task
assignment

In the second part of the chapter, we turn our attention to a special case of the
Fixed-Size Stateless Allocation Problem that has received recent attention in the
distributed computing community. This version of the problem, known as mem-
oryless worker-task assignment, focuses on the case of 𝜀−1 = 𝑛 and considers
the worst-case overhead of an insertion/deletion. It is the worst-case nature of this
problem that makes it so interesting—intuitively it seems very difficult to construct
a strongly history-independent data structure that offers worst-case (and therefore
deterministic) guarantees.

In order to be consistent past works on the memoryless worker-task assignment
problem [334, 335], we adapt here the conventions that are normally used to discuss
the problem (as we shall see, these conventions end up being convenient for discussing
our solution, anyway).

Formally, the (memoryless) worker-task assignment problem is defined as follows.
There are 𝑤 workers 1, 2, . . . , 𝑤 and 𝑡 tasks 1, 2, . . . , 𝑡. A worker-task assignment
function 𝜑 is a function that takes as input a multiset 𝑇 of 𝑤 tasks, and produces an
assignment of workers to tasks such that the number of workers assigned to a given
task 𝜏 ∈ 𝑇 is equal to the multiplicity of 𝜏 in 𝑇 .

Two task multisets 𝑇1, 𝑇2 of size 𝑤 are said to be adjacent if they agree on exactly
𝑤 − 1 elements; that is, |𝑇1 ∖ 𝑇2| = |𝑇2 ∖ 𝑇1| = 1.1 The switching cost between two
adjacent task multisets 𝑇1, 𝑇2 of size 𝑤 is defined as the number of workers whose
assignment changes between 𝜑(𝑇1) and 𝜑(𝑇2). The switching cost of 𝜑 is defined to
be the maximum switching cost over all pairs of adjacent task multisets. The goal of

1Let 𝑚𝐴(𝑖) denote the number of times element 𝑖 appears in multiset 𝐴. Then, for any two
multisets 𝐴 and 𝐵, we define multisets 𝐴 ∖ 𝐵, 𝐴 ∪ 𝐵, and 𝐴 ∩ 𝐵 to be such that 𝑚𝐴∖𝐵(𝑖) =
max(0,𝑚𝐴(𝑖) − 𝑚𝐵(𝑖)), 𝑚𝐴∪𝐵(𝑖) = max(𝑚𝐴(𝑖),𝑚𝐵(𝑖)), and 𝑚𝐴∩𝐵(𝑖) = min(𝑚𝐴(𝑖),𝑚𝐵(𝑖)), for
every element 𝑖.

352

the worker-task assignment problem is to design a worker-task assignment function
with the minimum possible switching cost.

Su, Su, Dornhaus, and Lynch [334] initiated the study of the worker-task assign-
ment problem and observed that assigning the workers to tasks in numerical order
achieves a switching cost of min(𝑡 − 1, 𝑤). They also proved a lower bound of 2 on
switching cost, and showed a matching upper bound in the case where 𝑤 ≤ 6 and
𝑡 ≤ 4. Subsequent work by Su and Wein [335], in ICALP 2020, pushed further on
the lower-bound side of the problem. They proved that a switching cost of 2 is not
always possible in general. They show that, if 𝑡 ≥ 5 and 𝑤 ≥ 3, then any worker-task
assignment function must have switching cost at least 3; and if 𝑡 is sufficiently large
in terms of 𝑤 (i.e., it is a tower of height 𝑤 − 1), then the switching cost must be at
least 4. The bounds by [334] and [335] have until now remained state-of-the-art. It
remains unknown whether the optimal switching cost is small (it could be as small as
4) or large (it could be as large as min(𝑡− 1, 𝑤)). And even achieving a lower bound
of 4 on switching cost [335] has required a quite involved argument.

In Section 19.2, we establish that it is possible to construct a worker-task assign-
ment function with 𝑂(log𝑤 log(𝑤𝑡)) switching cost. This resolves the open question
as to whether memoryless worker can allocate themselves to tasks with strong worst-
case guarantees.
Theorem 194. There exists a worker-task assignment function that achieves switch-
ing cost 𝑂(log𝑤 log(𝑤𝑡)).

As a corollary, we restate this result in the context of the Fixed-Size Stateless
Allocation Problem.
Corollary 195. There exists a solution to the Fixed-Size Stateless Allocation Prob-
lem that handles sets 𝑆 ⊆ [poly 𝑛] of size up 𝑛, and produces an injection 𝜑 : 𝑆 → [𝑛]
with deterministic worst-case overhead 𝑂(log2 𝑛).

Theorem 194 is proven via the probabilistic method and is thus non-constructive.
By replacing random hash functions with strong dispersers, however, we show that
one can construct an explicit worker-task assignment function with polylogarithmic
switching cost.
Theorem 196. There is an explicit worker-task assignment function that achieves
switching cost 𝑂(polylog(𝑤𝑡)).

Both Theorems 194 and 196 continue to hold in the more general setting where
the size of 𝑇 changes over time. That is, 𝑇 is permitted to be any multiset of [𝑡] of
size 𝑤 or smaller. Two task multisets 𝑇1, 𝑇2 of different sizes are considered adjacent
if they satisfy

⃒⃒
|𝑇1| − |𝑇2|

⃒⃒
= 1 and |(𝑇1 ∪ 𝑇2) ∖ (𝑇1 ∩ 𝑇2)| = 1. If |𝑇 | < 𝑤, then our

worker-task assignment function assign workers 1, . . . , |𝑇 | to tasks, and leaves workers
|𝑇 |+ 1, . . . , 𝑤 unassigned.

353

19.1 Achieving 𝑂(1 + log 𝜀−1) Expected Overhead

In this section, we construct stateless allocators with 𝑂(1+log 𝜀−1), culminating with
the proof of Theorem 193.

19.1.1 Achieving 𝑂(1 + log 𝜀−1) Overhead with Power-of-Two
Sizes

We begin by showing that, for objects whose sizes are powers of two, one can achieve
load factor 1 − 𝜀 while incurring expected overhead 𝑂(1 + log 𝜀−1). Our approach,
which can be viewed as a (surprisingly simple) variation on classical uniform probing,
is presented in Algorithm 4.

Algorithm 4 Input is a set 𝑆 ⊆ [𝑈] and a size function 𝜋 : 𝑆 → {1, 2, 4, 8, . . .} such
that

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ (1 − 𝜀)𝑛 + 1. Allocates the elements 𝑥 ∈ 𝑆 to disjoint intervals

𝜑(𝑥) ⊆ [𝑛] satisfying |𝜑(𝑥)| = 𝜋(𝑥). Assumes that 𝜋(𝑥) divides 𝑛 for all 𝑥 ∈ 𝑆.
1: procedure PowersOfTwoAllocator(𝑆, 𝜋)
2: Sort elements of 𝑆 in decreasing order by size, and then within each size class

sort them by ID.
3: Call the sorted elements 𝑥1, . . . , 𝑥𝑘.
4: For each element 𝑥𝑖, let ℎ1(𝑥𝑖), ℎ2(𝑥𝑖), . . . be random integers in

{1, 2, . . . , 𝑛/𝜋(𝑥𝑖)}.
5: for 𝑖 ∈ {1, 2, . . . , 𝑘} do
6: for 𝑗 ∈ {1, 2, . . .} do
7: if Slots ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 1, . . . , ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 𝜋(𝑥𝑖) are all free then
8: Allocate 𝑥𝑖 to 𝜑(𝑥𝑖) := [ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 1, ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 𝜋(𝑥𝑖)].
9: Mark slots ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 1, . . . , ℎ𝑗(𝑥𝑖) · 𝜋(𝑥𝑖) + 𝜋(𝑥𝑖) as occupied.

10: Break out of for loop.
return 𝜑

Consider 𝑆 ⊆ [𝑈], and let 𝑆 ′ = 𝑆 ∪ {𝑥} for some 𝑥 ∈ [𝑈] ∖ 𝑆. Let 𝜋 be a function
mapping each 𝑠 ∈ 𝑆 to a size 𝜋(𝑠), and suppose that

∑︀
𝑠∈𝑆 𝜋(𝑠) ≤ (1− 𝜀)𝑛 + 1. Let

𝜑 and 𝜑′ be the allocations produced by Algorithm 4 on 𝑆 and 𝑆 ′, respectively, using
𝜋 as the size function.

Let 𝑥′1, 𝑥′2, . . . , 𝑥′𝑘+1 be the elements of 𝑆 ′ sorted in decreasing order of size, and
then sorted lexicographically (i.e., by name/ID) within each size class. Let 𝑞 be the
rank of 𝑥 in this sorted list, i.e., 𝑥′𝑞 = 𝑥. For 𝑖 ∈ {1, 2, . . . , 𝑘+1}, let𝐴𝑖 =

⋃︀
𝑡∈[𝑖]∖[𝑞] 𝜑(𝑥

′
𝑡)

denote the cumulative set of slots that 𝜑 allocates to {𝑥′1, . . . , 𝑥′𝑖} ∖ {𝑥}, and let
𝐴′
𝑖 =

⋃︀
𝑡∈[𝑖] 𝜑

′(𝑥′𝑡) denote the cumulative set of slots that 𝜑′ allocates to {𝑥′1, . . . , 𝑥′𝑖}.
We now establish one of the key properties achieved by Algorithm 4, namely that

|𝐴′
𝑖 ∖ 𝐴𝑖| = 𝜋(𝑥) for all 𝑖 ≥ 𝑞.

Lemma 197. For each 𝑖 ∈ [𝑞, 𝑘 + 1], 𝐴′
𝑖 = 𝐴𝑖 ∪ 𝐵𝑖 for some set 𝐵𝑖 ⊆ [𝑛] of size

𝜋(𝑥). Moreover, 𝐵𝑖 can be written as the union of aligned intervals of size 𝜋(𝑥′𝑖) (i.e.,

354

intervals of the form [ℓ𝜋(𝑥𝑖) + 1, ℓ𝜋(𝑥𝑖) + 𝜋(𝑥𝑖)] for some integer ℓ).

Proof. For all 𝑖 < 𝑞, 𝜑(𝑥𝑖) = 𝜑(𝑥′𝑖). Thus 𝐴′
𝑞 = 𝐴𝑞 ∪ 𝜑′(𝑥). That is, for 𝑖 = 𝑞, the

lemma holds with 𝐵𝑖 = 𝜑′(𝑥). Note that, by design, 𝐵𝑖 = 𝜑′(𝑥) is an aligned interval
of size 𝜋(𝑥′𝑞) (i.e., 𝜋(𝑥)).

Now consider 𝑖 > 𝑞, and suppose by induction that the lemma holds for 𝑖−1. When
Algorithm 4 is deciding 𝜑(𝑥′𝑖), the set of free slots is given by [𝑛] ∖ 𝐴𝑖−1. In contrast,
when Algorithm 4 is deciding 𝜑′(𝑥′𝑖), the set of free slots is given by [𝑛] ∖𝐴𝑖−1 ∪𝐵𝑖−1.
Because 𝜑(𝑥′𝑖) is an aligned interval of size 𝜋(𝑥′𝑖−1), we have either that 𝜑(𝑥′𝑖) ⊆ 𝐵𝑖−1

or that 𝜑(𝑥′𝑖) ∩ 𝐵𝑖−1 = ∅. If 𝜑(𝑥′𝑖) ∩ 𝐵𝑖−1 = ∅, then we will have 𝜑′(𝑥′𝑖) = 𝜑(𝑥′𝑖),
implying that 𝐴′

𝑖 = 𝐴𝑖 ∪ 𝐵𝑖−1 and therefore that the lemma holds with 𝐵𝑖 = 𝐵𝑖−1.
On the other hand, if 𝜑(𝑥′𝑖) ⊆ 𝐵𝑖−1, then we will have 𝐴𝑖 = 𝐴𝑖−1 ∪ 𝜑(𝑥′𝑖) and that
𝐴′
𝑖 = 𝐴′

𝑖−1 ∪ 𝜑′(𝑥′𝑖). This means that 𝐴′
𝑖 = 𝐴𝑖 ∪ (𝐵𝑖−1 ∖ 𝜑(𝑥′𝑖)) ∪ 𝜑′(𝑥′𝑖). That is,

𝐴′
𝑖 = 𝐴𝑖 ∪ 𝐵𝑖 where 𝐵𝑖 = (𝐵𝑖−1 ∖ 𝜑(𝑥′𝑖)) ∪ 𝜑′(𝑥′𝑖). Since 𝜑(𝑥′𝑖) and 𝜑′(𝑥′𝑖) are both

aligned intervals of size 𝜋(𝑥′𝑖), we have that |𝐵𝑖| = |𝐵𝑖−1| = |𝜋(𝑥)| and that 𝐵𝑖 is a
union of aligned intervals of size 𝜋(𝑥′𝑖).

Using Lemma 197 as a building block, we can now analyze the probability that
the allocations 𝜑(𝑥′𝑖) and 𝜑′(𝑥′𝑖) disagree for a given 𝑖 > 𝑞.
Lemma 198. For 𝑖 > 𝑞, we have that

Pr[𝜑(𝑥′𝑖) ̸= 𝜑′(𝑥′𝑖)] =
𝜋(𝑥)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)
.

Proof. By Lemma 197, we have that 𝐴′
𝑖−1 = 𝐴𝑖−1 ∪ 𝐵𝑖−1 for some set 𝐵𝑖−1 of size

exactly 𝜋(𝑥) that can be written as the union of aligned intervals of size 𝜋(𝑥′𝑖−1).
Since 𝜋(𝑥′𝑖−1) is divisible by 𝜋(𝑥′𝑖), 𝐵𝑖−1 can also be written as a union of aligned
intervals of size 𝜋(𝑥′𝑖). Call the set of these intervals 𝐵.

The event 𝜑(𝑥′𝑖) ̸= 𝜑′(𝑥′𝑖) occurs if and only if 𝜑(𝑥′𝑖) ∈ 𝐵. Let 𝐼 be the set of
aligned intervals of size 𝜋(𝑥′𝑖) in [𝑛]∖𝐴𝑖−1. Then 𝜑(𝑥′𝑖) is a uniformly random element
of 𝐼, where the randomness is determined by the hashes ℎ1(𝑥′𝑖), ℎ2(𝑥′𝑖), Critically
these hashes are independent of both 𝐼 and 𝐵 (which are determined by 𝑥′1, . . . , 𝑥′𝑖−1).
Thus, if we condition on any outcome for the random variables 𝐼 and 𝐵 ⊆ 𝐼, then
the probability that 𝜑(𝑥′𝑖) ∈ 𝐵 is exactly

|𝐵|
|𝐼|

=
𝜋(𝑥)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)
.

This completes the proof of the lemma.

Finally, we can analyze the expected overhead achieved by Algorithm 4.
Theorem 191. Algorithm 4 is a solution to the Variable-Size Stateless Allocation
Problem in the setting where objects have power-of-two sizes that divide 𝑛. The

355

algorithm achieves load factor 1− 𝜀 with expected overhead Θ(1+ log 𝜀−1) per inser-
tion/deletion.

Proof. The expected overhead of the algorithm is given by

1 +
∑︁

𝑖∈[𝑘+1]∖{𝑞}

𝜋(𝑥′𝑖)

𝜋(𝑥)
· Pr[𝜑(𝑥′𝑖) ̸= 𝜑′(𝑥′𝑖)].

For 𝑖 < 𝑞, we have deterministically that 𝜑(𝑥′𝑖) = 𝜑′(𝑥′𝑖). Thus the expected overhead
is given by

1 +
∑︁

𝑖∈(𝑞,𝑘+1]

𝜋(𝑥′𝑖)

𝜋(𝑥)
· Pr[𝜑(𝑥′𝑖) ̸= 𝜑′(𝑥′𝑖)],

which by Lemma 198 is

1 +
∑︁

𝑖∈(𝑞,𝑘+1]

𝜋(𝑥′𝑖)

𝜋(𝑥)
· 𝜋(𝑥)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)

= 1 +
∑︁

𝑖∈(𝑞,𝑘+1]

𝜋(𝑥′𝑖)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)

≤ 1 +
∑︁

𝑖∈(𝑞,𝑘+1]

𝜋(𝑥′𝑖)∑︁
ℓ=1

1

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)− ℓ+ 1

≤ 1 +

(1−𝜀)𝑛+1∑︁
𝑡=1

1

𝑛− 𝑡+ 1

= 1 +
𝑛∑︁

𝑡=𝜀𝑛

1

𝑡

= Θ(1 + log 𝜀−1).

19.1.2 Supporting Dynamic Resizing

Next, we extend Algorithm 4 to support dynamic resizing, i.e., so that 𝑛 changes over
time to always satisfy 𝑛 = (1 + Θ(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥). In addition to requiring that the

elements in 𝑆 have power-of-two sizes, we will also require that each 𝑠 ∈ 𝑆 satisfies

𝜋(𝑠) ≤ 0.5𝜀
∑︁
𝑥∈𝑆

𝜋(𝑥) (19.1)

for a sufficiently small positive constant 𝑐.
The key to supporting dynamic resizing is to make use of an old result from the

hashing literature: Larson introduced linear hashing [233] which allows for one to

356

dynamically increase/decrease the number of bins that a hash function ℎ maps to.
The key property that makes linear hashing useful is that, if there are 𝑘 bins, then we
can increase that number to 𝑘′ = 𝑘 +Θ(𝜀𝑘) while achieving the following guarantee:
each ℎ(𝑥) has probability at most 𝑂(𝜀) of changing; and if ℎ(𝑥) changes, then the
new value of ℎ(𝑥) is in the range (𝑘, 𝑘′]. (Moreover, the size of the increase 𝑘′ − 𝑘 is
guaranteed to be a power of two between 𝑘𝜀/2 and 𝑘𝜀, inclusive.)
Remark 199. Although this subsection is not concerned with time efficiency, it is
worth taking a moment to discuss the time efficiency of linear hashing in the RAM
model. Although Larson’s original scheme required logarithmic time to evaluate ℎ,
we subsequently showed in [75] that it is possible to design a variation on the scheme
(which we call waterfall addressing) that offers 𝑂(1)-time evaluation so long as
𝜀−1 ≤ polylog 𝑛. This will be useful later on, in Chapter 21, when we are designing
time-efficient data-structural implementations of our allocation schemes.

We can use linear hashing to compute each ℎ𝑖(𝑥𝑗). This allows us to perform a
resize operation in which we increase/decrease 𝑛 by Θ(𝜀𝑛). Consider, in particular,
a resize operation that increases 𝑛 to 𝑛′ = 𝑛 + Θ(𝜀𝑛). Let ℎ𝑖(𝑥𝑗) and ℎ′𝑖(𝑥𝑗) be the
values of ℎ𝑖(𝑥𝑗) before/after the resizing operation. What linear hashing guarantees
is that Pr[ℎ𝑖(𝑥𝑗) ̸= ℎ′𝑖(𝑥𝑗)] = 𝑂(𝜀) and that, if ℎ𝑖(𝑥𝑗) ̸= ℎ′𝑖(𝑥𝑗) then it is because
ℎ′𝑖(𝑥𝑗) ∈ (𝑛/𝜋(𝑥), 𝑛′/𝜋(𝑥)].

Let 𝜑 denote the allocation prior to the resize operation (using the original 𝑛) and
𝜑′ denote the allocation after the resize operation (using 𝑛′ = 𝑛 + Θ(𝜀𝑛)). Define
the cost of a resize operation to be

∑︀
𝑥∈𝑆 𝜋(𝑥) · I(𝜑(𝑥) ̸= 𝜑′(𝑥)). We will prove the

following proposition.
Proposition 200. Consider Algorithm 4 implemented with linear hashing. Consider
input sets 𝑆 consisting of items with power-of-two sizes. Consider a resize operation
in which 𝑛 is increased by Θ(𝜀𝑛) to become 𝑛′, and suppose that both 𝑛 and 𝑛′

are divisible by 𝜋(𝑥) for every 𝑥 ∈ 𝑆. The expected sum of sizes of items whose
allocations change due to the resize is 𝑂(𝜀𝑛(1 + log 𝜀−1)).

Before we give the proof of Proposition 200, it is worth taking a moment to see
how we can use it in order to obtain a dynamically-resizable version of Theorem 191.
Theorem 201. There is a solution to the Variable-Size Stateless Allocation Problem
in the setting where objects have power-of-two sizes that achieves the following guar-
antees. So long as every 𝑠 ∈ 𝑆 satisfies 𝜋(𝑠) ≤ 0.5𝜀

∑︀
𝑥∈𝑆 𝜋(𝑥), then the algorithm

performs allocations within the interval [0, (1+𝑂(𝜀))
∑︀

𝑥∈𝑆 𝜋(𝑥)] and incurs expected
overhead Θ(1 + log 𝜀−1) per insertion/deletion.

Proof. We will make use of Proposition 200 to perform resizes. One thing we must
be careful about is the divisibility constraint in Algorithm 4, which requires that the
value of 𝑛 we are currently using must always be divisible by 𝜋(𝑥) for every 𝑥 ∈ 𝑠.
Fortunately, linear hashing always changes 𝑛 by powers of two between 𝜀𝑛/2 and 𝜀𝑛.
Thus, if we start with a value of 𝑛 that satisfies the divisibility constraint, and if

357

whenever a resize operation is performed every 𝑠 ∈ 𝑆 satisfies

𝜋(𝑠) ≤ 0.5𝜀
∑︁
𝑥∈𝑆

𝜋(𝑥),

then the divisibility constraint will continue to hold after the resize. As this argument
handles the divisibility constraint, we will ignore the constraint for the rest of the
proof.

Although Proposition 200 bounds the cost of a resize operation, it does not tell us
when to perform resize operations. We must do this in a way that is strongly history
independent, and that offers the following probabilistic guarantee: if an element 𝑥
of size 𝜋(𝑥) is inserted, it triggers a resize with probability 𝑂(𝜋(𝑥)/(𝜀𝑛)), where 𝑛 is
the current value of 𝑛. This will then imply, by Proposition 200, that the expected
resizing cost from the insertion is

𝑂

(︂
𝜋(𝑥)

𝜀𝑛
𝜀𝑛(1 + log 𝜀−1)

)︂
= 𝑂(𝜋(𝑥)(1 + log 𝜀−1)).

In other words, the expected overhead is still 𝑂(1 + log 𝜀−1).
To determine when resize operations should occur, we use a standard resizing

trick for strongly history-independent data structures. Let 𝑛1 < 𝑛2 < 𝑛3 < · · ·
be all of the possible values that 𝑛 can take. Let 𝑟0 = 0 and let 𝑟𝑖, 𝑖 ≥ 1, be a
uniformly random value between 𝑛𝑖 and 𝑛𝑖+1. Let 𝑗 be the unique integer such that
𝑟𝑗−1 ≤

∑︀
𝑥∈𝑆 𝜋(𝑥) < 𝑟𝑗. Then we set 𝑛 = 𝑛𝑗+2.

This value of 𝑛 ensures, by design, that
∑︀

𝑥∈𝑆 𝜋(𝑥) = (1 − Θ(𝜀))𝑛 at any given
moment. Moreover, it is now easy to analyze the probability of a given insertion (of
some element 𝑥 with size 𝜋(𝑥)) causing a resize operation. The resize operation occurs
if there is some 𝑟𝑖 such that the insertion of 𝑥 causes

∑︀
𝑠∈𝑆 𝜋(𝑥) to toggle from being

< 𝑟𝑖 to ≤ 𝑟𝑖. The randomness of the 𝑟𝑖s ensures that this occurs with probability
𝑂(𝜋(𝑥)/(𝜀𝑛)) (because the up to two 𝑟𝑖s that

∑︀
𝑠∈𝑆 𝜋(𝑥) is at risk of crossing are each

drawn at random from an interval of size Θ(𝜀𝑛)). This is exactly the probability that
we needed to guarantee an expected overhead of 𝑂(1+log 𝜀−1), completing the proof.

In the rest of the subsection, we prove Proposition 200. In addition to using
𝜑, 𝜑′, ℎ, ℎ′, 𝑛, 𝑛′ as defined above, we will need a few additional notations.

Let 𝑥1, 𝑥2, . . . be the elements in 𝑆 in the sorted order used by Algorithm 4.
Call 𝑥𝑖 special if 𝜑 allocates 𝑥𝑖 using ℎ𝑗, but ℎ𝑗(𝑥𝑖) ̸= ℎ′𝑗(𝑥𝑖) (i.e., ℎ′𝑗(𝑥𝑖) is in
(𝑛/𝜋(𝑥𝑖), 𝑛

′/𝜋(𝑥𝑖)]). By the guarantees of linear hashing, we know that each 𝑥𝑖 has
probability 𝑂(𝜀) of being special. Let 𝑃𝑖 be the subset of 𝑥1, 𝑥2, . . . , 𝑥𝑖 that are special.

Let Δ𝑖 (resp. Δ′
𝑖) be the set of slots that, after the processing of 𝑥1, . . . , 𝑥𝑖, are

free in 𝜑 (resp. 𝜑′) but not free in 𝜑′ (resp. 𝜑). And Δ0 (resp. Δ′
0) to be the set of

slots that, at the beginning of the algorithm, are free in 𝜑 (resp. 𝜑′) but not free in
𝜑′ (resp. 𝜑). This means that |Δ0| = 0 and |Δ′

0| = |{𝑛+ 1, . . . , 𝑛′}| = 𝑂(𝜀𝑛).
We begin with a simple alignment observation, which follows by the same reason-

358

ing as Lemma 197.
Observation 202. Each of Δ𝑖−1 and Δ′

𝑖−1 can be written as the union of aligned
intervals of size 𝜋(𝑥𝑖). Furthermore, if 𝐹𝑖−1 is the set of slots that are free in both 𝜑
and 𝜑′ at the time that 𝑥𝑖 is being processed, then 𝐹𝑖−1 can also be written as the
union of aligned intervals of size 𝜋(𝑥𝑖).

As an immediate corollary, we also get the following observation:
Observation 203. Whenever an element 𝑥𝑖 is being processed by 𝜑 and 𝜑′, at least
one of the following must hold: 𝜑(𝑥𝑖) ⊆ Δ𝑖−1, 𝜑′(𝑥𝑖) ⊆ Δ′

𝑖−1, 𝑥𝑖 is special, or 𝜑(𝑥𝑖) =
𝜑′(𝑥𝑖).

In particular, if none of the first three options hold, then 𝜑 and 𝜑′ must use the
same hash function ℎ𝑗(𝑥𝑖) = ℎ′𝑗(𝑥𝑖) to assign 𝑥𝑖 to the same intervals as each other.

Building on these observations, we can now prove a more nontrivial fact, namely
a bound on the expected cumulative size of Δ𝑖 ∪Δ′

𝑖.
Lemma 204. E[|Δ𝑖|+ |Δ′

𝑖|] ≤ 𝑂(𝜀𝑛).

Proof. We begin by relating |Δ𝑖−1|+ |Δ′
𝑖−1| to |Δ𝑖|+ |Δ′

𝑖|.
No matter what, we have the trivial inequality |Δ𝑖|+|Δ′

𝑖| ≤ |Δ𝑖−1|+|Δ′
𝑖−1|+2𝜋(𝑥𝑖).

This is the inequality that we will use if 𝑥𝑖 is special.
On the other hand, if 𝑥𝑖 is not special, then by Observation 203 we can consider

three cases:

• Option 1: 𝜑(𝑥𝑖) ⊆ Δ𝑖−1. This means that |Δ𝑖| = |Δ𝑖−1| − 𝜋(𝑥𝑖). On the
other hand, we have trivially that |Δ′

𝑖| ≤ |Δ′
𝑖−1| + 𝜋(𝑥𝑖). Thus |Δ𝑖| + |Δ′

𝑖| ≤
|Δ𝑖−1|+ |Δ′

𝑖−1|.

• Option 2: 𝜑′(𝑥𝑖) ⊆ Δ′
𝑖−1. This means that |Δ′

𝑖| = |Δ′
𝑖−1| − 𝜋(𝑥𝑖). On the

other hand, we have trivially that |Δ𝑖| ≤ |Δ𝑖−1| + 𝜋(𝑥𝑖). Thus |Δ𝑖| + |Δ′
𝑖| ≤

|Δ𝑖−1|+ |Δ′
𝑖−1|.

• Option 3: 𝜑(𝑥𝑖) = 𝜑′(𝑥𝑖). In this case, |Δ𝑖|+ |Δ′
𝑖| = |Δ𝑖−1|+ |Δ′

𝑖−1|.

In all three cases, |Δ𝑖|+ |Δ′
𝑖| ≤ |Δ𝑖−1|+ |Δ′

𝑖−1|.
As the only case in which |Δ𝑖| + |Δ′

𝑖| increases over |Δ𝑖−1| + |Δ′
𝑖−1| is when 𝑥𝑖 is

special (and even in this case the increase is at most 2𝜋(𝑥𝑖)), we have that

E[|Δ𝑖|+ |Δ′
𝑖|] ≤ E[|Δ0|+ |Δ′

0|] + 2E

[︃∑︁
𝑥∈𝑃𝑖

𝜋(𝑥)

]︃
≤ 𝑂(𝜀𝑛).

We can now bound the probability that 𝜑 and 𝜑′ disagree on 𝑥𝑖.
Lemma 205.

Pr[𝜑(𝑥𝑖) ̸= 𝜑′(𝑥𝑖)] =
𝑂(𝜀𝑛)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)
.

359

Proof. The probability that 𝑥𝑖 is special is at most 𝑂(𝜀) ≤ 𝑂(𝜀𝑛)

𝑛−
∑︀𝑖−1

ℓ=1 𝜋(𝑥
′
ℓ)

. On the other
hand, if 𝑥𝑖 is not special, then Lemma 203 tells us that 𝑥𝑖 gets different allocations
in 𝜑 and 𝜑′ with probability

Pr[𝜑(𝑥𝑖) ⊆ Δ𝑖−1 or 𝜑′(𝑥𝑖) ⊆ Δ′
𝑖−1]

≤ Pr[𝜑(𝑥𝑖) ⊆ Δ𝑖−1] + Pr[𝜑′(𝑥𝑖) ⊆ Δ′
𝑖−1]

=
E[|Δ𝑖−1|]

𝑛−
∑︀𝑖−1

𝑗=1 𝜋(𝑥𝑗)
+

E[|Δ′
𝑖−1|]

𝑛′ −
∑︀𝑖−1

𝑗=1 𝜋(𝑥𝑗)

≤
E[|Δ𝑖−1|+ |Δ′

𝑖−1|]
𝑛−

∑︀𝑖−1
𝑗=1 𝜋(𝑥𝑗)

≤ 𝑂(𝜀𝑛)

𝑛−
∑︀𝑖−1

𝑗=1 𝜋(𝑥𝑗)
,

where the final inequality follows from Lemma 204.

Finally, proceeding as in Section 19.1.1, but with Lemma 205 in place of Lemma
198, we can conclude that the expected cost of a resize operation is 𝑂(𝜀𝑛 log 𝜀−1), as
desired.

19.1.3 Allocating Items with Sizes in [1, 2)

Our next step is to consider objects with sizes in the range [1, 2). In this subsection,
the objects that we consider will have real-valued sizes. Thus, we will allocate them
to disjoint intervals 𝜑(𝑥) whose sizes (and end points) are not necessarily integral.
Later on, in Section 19.1.4, we will apply these allocators to settings where objects
have integer sizes between two powers of two—in this case, the endpoints of each
allocated interval 𝜑(𝑥) = [𝑎, 𝑏) can also be made integral by replacing the continuous
interval [𝑎, 𝑏) with the discrete interval [⌊𝑎⌋, ⌊𝑏⌋].
Proposition 206. Let 𝜀−1, 𝑈 be positive integer parameters. Consider sets 𝑆 ⊆ [𝑈]
and size functions 𝜋 : [𝑈] → [1, 2) such that |𝑆| ≥ Ω(𝜀−3). Finally, let𝑚 =

∑︀
𝑠∈𝑆 𝜋(𝑠).

There exists a Stateless Allocation Algorithm that allocates the elements 𝑠 ∈ 𝑆 to
disjoint intervals 𝜑(𝑠) ⊆ [(1+𝑂(𝜀))𝑚] of size 𝜋(𝑠), and that incurs expected overhead
𝑂(1 + log 𝜀−1).

Note that Proposition 206, like Theorem 201, offers a space guarantee that changes
dynamically with

∑︀
𝑠∈𝑆 𝜋(𝑠).

Proof. Partition elements into size classes 𝐶1, 𝐶2, . . . , 𝐶1/𝜀 where 𝐶𝑖 contains elements
of sizes in [1+ (𝑖− 1)𝜀, 1+ 𝑖𝜀). We will treat the elements in 𝐶𝑖 as having size exactly
1 + 𝑖𝜀.

We will think of memory as broken into blocks of size 𝐵 = 𝜀−1. Let 𝑟 you
uniformly random real number in [0, 𝐵]. We will allocate blocks to size classes so

360

that, at any given moment, size class 𝐶𝑖 has at least⌈︁(1 + 𝜀)|𝐶𝑖|+ 𝑟

⌊𝐵/(1 + 𝑖𝜀)⌋

⌉︁
(19.2)

blocks allocated to it. The size class will treat each block as an array with ⌊𝐵/(1+𝑖𝜀)⌋
entries, each of which can store one item of size (1 + 𝑖𝜀). Combined, the blocks
allocated to the size class represent an array of size at least |𝐶𝑖|, which the size class
can use to perform to store its elements. We call this the block array for the size
class.

This algorithmic approach breaks our original allocation problem into two separate
allocation problems: (1) the problem of allocating blocks to size classes; and (2) the
problem of allocating the elements within each size class to entries of its block array.

We solve both allocation problems using Theorem 201 with a load factor of 1 −
Θ(𝜀). Note that, in order for us to be able to apply the theorem, we need that the
array size is at least Ω(𝜀−1) times the size of the item being allocated—for the first
allocation problem, this follows from the assumption that |𝑆| ≥ Ω(𝜀−2) ≥ Ω(𝐵𝜀−1),
and for the second allocation problem, this follows from the fact that 𝐵 ≥ Ω(𝜀−1).

Using Theorem 201, we can bound the allocations in each of the two allocation
problems as follows. For the first allocation problem, each allocation/deallocation
of a block incurs 𝑂(1 + log 𝜀−1) expected overhead relative to the block size,
and 𝑂(𝐵 log 𝜀−1) expected overhead relative to the sizes of the elements being in-
serted/deleted. By the randomness of 𝑟, each insertion/deletion has probability
𝑂(1/|𝐵|) of triggering a block allocation/deallocation. So the expected overhead from
allocating/deallocating blocks is 𝑂(1+log 𝜀−1) per insertion/deletion. For the second
allocation problem, we can simply directly apply Theorem 201 to get an overhead of
𝑂(1 + log 𝜀−1) overhead per insertion/deletion.

It remains to analyze the total space used by our allocation scheme. Note that,
by (19.2) (and since 𝐵 = 𝜀−1), each size class 𝐶𝑖 uses total space (1 + 𝑂(𝜀))|𝐶𝑖|(1 +
𝑖𝜀) +𝑂(𝜀−1) for its blocks. This, in turn, evaluates to

(1 +𝑂(𝜀))
∑︁
𝑥∈𝐶𝑖

𝜋(𝑥) +𝑂(𝜀−1).

Summing over the size classes, the total space used by all allocated blocks is a most

(1 +𝑂(𝜀))
∑︁
𝑥∈𝑆

𝜋(𝑥) +𝑂(𝐵𝜀−2).

Since the allocation of blocks to size classes is performed using an allocator with load

361

factor 1−Θ(𝜀), the total space used by the algorithm is

(1 +𝑂(𝜀)

(︃
(1 +𝑂(𝜀))

∑︁
𝑥∈𝑆

𝜋(𝑥) +𝑂(𝐵𝜀−2)

)︃
= (1 +𝑂(𝜀))

∑︁
𝑥∈𝑆

𝜋(𝑥) +𝑂(𝐵𝜀−2).

Finally, since
∑︀

𝑥∈𝑆 𝜋(𝑥) ≥ 𝜀−3 we can conclude that our allocator uses at most
(1 +𝑂(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥) space, as desired.

19.1.4 Allocating Objects of Arbitrary Sizes

Finally, we can construct an allocator that can handle objects with arbitrary sizes
(of up to 𝑂(𝜀4𝑚)). The basic idea will be (1) to partition the objects into groups
𝐶1, 𝐶2, . . ., where each group 𝐶𝑖 contains objects whose sizes are within a factor of two
of which other; (2) to construct an allocator 𝜑𝑖 for each group 𝐶𝑖 using Proposition
206; and (3) to implement each 𝜑𝑖 using slabs of memory that have power-of-two
sizes, and that are allocated to 𝜑𝑖 via Theorem 201.

Let 𝑚,𝑈 be positive integers, let 𝜀−1 be a power of two, and let 𝜌 > 0 be an upper
bound on object size. We shall restrict ourselves to inputs (𝑆, 𝜋) where

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤

𝑚, and where 𝜋(𝑥) ∈ [1, 𝜌] for all 𝑥 ∈ 𝑆. Subject to these constraints, we will
construct a stateless allocator that uses space (1+𝑂(𝜀))𝑚+𝑂(𝜀−3𝜌) and that incurs
expected overhead 𝑂(𝜀−1). Note that, if 𝜌 ≤ 𝑂(𝜀4𝑚), then this implies a space bound
of (1 +𝑂(𝜀−1))𝑚.

For 𝑖 ∈ {0, 1, 2, . . . , ⌊lg 𝜌⌋}, define the group 𝐶𝑖 = {𝑥 ∈ 𝑆 | 2𝑖 ≤ 𝜋(𝑥) < 2𝑖+1}. We
assume without loss of generality that |𝐶𝑖| ≥ 𝜀−3 for all 𝑖 ≤ lg 𝜌, as we can add 𝜀−3

dummy elements to each 𝐶𝑖 while increasing
∑︀

𝑥∈𝑆 𝜋(𝑥) by at most 𝑂(𝜀−3𝜌). Under
this minimum-group-size assumption, it suffices to show that our allocator uses
space (1 +𝑂(𝜀))𝑚.

Let 𝜑𝑖 be the allocation that Proposition 206 would produce for 𝐶𝑖 (note that
Proposition 206 requires |𝐶𝑖| ≥ Ω(𝜀−3), hence the need for the minimum-group-size
assumption).

Let ℓ𝑖 = 𝜀−12𝑖. We use Theorem 201 to allocate slabs 𝐿(𝑖)
1 , 𝐿

(𝑖)
2 , . . . of size ℓ𝑖 to the

group 𝐶𝑖. These slabs are used to implement 𝜑𝑖 as follows: if 𝜑𝑖 allocates an object
𝑥 ∈ 𝑆 to [𝑎𝑥, 𝑏𝑥], then the object is actually allocated to slab 𝐿

(𝑖)

⌊𝑎𝑥/(ℓ𝑖−2𝑖)⌋, occupying
the sub-interval [𝑡, 𝑡+ 𝜋(𝑥)] where 𝑡 = 𝑎𝑥 mod (ℓ𝑖 − 2𝑖).

It is straightforward to bound the space consumed by the slabs that implement
𝜑𝑖:
Lemma 207. Assume the minimum-group-size assumption. At any given moment,
the slabs allocated to 𝜑𝑖 will have cumulative size at most (1 +𝑂(𝜀))

∑︀
𝑥∈𝐶𝑖

𝜋(𝑥).

Proof. By construction, if 𝜑𝑖 were implemented in a contiguous array (instead of using
slabs), it would use space 𝑞 = (1+𝑂(𝜀))

∑︀
𝑥∈𝐶𝑖

𝜋(𝑥). On the other hand, the number

362

of slabs that 𝜑𝑖 uses is bounded by 𝑞/(ℓ𝑖 − 2𝑖). As each of the slabs has size ℓ𝑖, the
cumulative size of the slabs is

ℓ𝑖𝑞

ℓ𝑖 − 2𝑖
=

𝜀−12𝑖𝑞

𝜀−12𝑖 − 2𝑖
= (1 +𝑂(𝜀))𝑞.

Next we bound the frequency with which slabs are allocated and deallocated to a
given group.
Lemma 208. Assume the minimum-group-size assumption. Each insertion/deletion
in 𝐶𝑖 changes the number of slabs allocated to 𝜑𝑖 by 𝑂(𝜀) in expectation.

Proof. The number of slabs allocated to 𝜑𝑖 changes whenever 𝜑𝑖 performs a resizing-
related rebuild. Recall that, if

∑︀
𝑥∈𝐶𝑖

𝜋(𝑥) = 𝑚𝑖 for some 𝑚𝑖, then the probability
of a given insertion/deletion in 𝐶𝑖 triggering a resizing-related rebuild is 𝑂(1/(𝜀𝑚𝑖));
moreover, if such a rebuild occurs, then the memory usage of 𝜑𝑖 changes by 𝑂(𝜀𝑚𝑖),
so the number of slabs that must be added or removed is 𝑂(𝜀2𝑚𝑖). Thus, whenever
an insertion or deletion occurs in 𝐶𝑖, the expected number of slabs that must be
allocated or removed from 𝐶𝑖 (via Theorem 201) is 𝑂(𝜀).

We can now analyze our algorithm. Note that, once again, our space guarantee is
a function of

∑︀
𝑥∈𝑆 𝜋(𝑥), rather than a fixed 𝑚.

Theorem 209. Let 𝑈, 𝜀−1 be positive integers, and let 𝜌 > 0 be an upper bound on
object size. Consider inputs (𝑆, 𝜋) where 𝑆 ⊆ [𝑈], where 𝜋(𝑥) ∈ [1, 𝜌] for all 𝑥 ∈ 𝑆.
Finally, let 𝑚 denote

∑︀
𝑥∈𝑆 𝜋(𝑥). Then one can construct a stateless allocator that

uses space (1 +𝑂(𝜀))𝑚+𝑂(𝜀−3𝜌) and that incurs expected overhead 𝑂(1 + log 𝜀−1)
per insertion and deletion.

Proof. We assume without loss of generality that 𝜀−1 is a power of two. As dis-
cussed above, we can also make the minimum-group-size assumption without loss of
generality (this is the reason for the 𝑂(𝜀−3𝜌) term in the space bound). Under this
assumption, Lemma 207 tell us that the total space consumed by the slabs allocated
to groups {𝐶𝑖} is at most (1+𝑂(𝜀))𝑚. Since the slabs are allocated via Algorithm 4,
which itself has load factor 1−𝜀, the total space used by our algorithm is (1+𝑂(𝜀))𝑚.

Now consider an insertion into some group 𝐶𝑖. There are two sources of overhead:
(1) changes to the allocation 𝜑𝑖; and (2) the cost of allocating new slabs to 𝜑𝑖 via
Theorem 201. By Proposition 206, the changes to 𝜑𝑖 contribute 𝑂(1 + log 𝜀−1) to
expected overhead. By Lemma 208, the expected number of new slabs that must be
allocated by Algorithm 4 (as a result of the insertion) is 𝑂(𝜀). Each such slab has
size ℓ𝑖 = Θ(𝜀−1) and is allocated with expected overhead 𝑂(1+ log 𝜀−1) (by Theorem
191). So the expected overhead incurred per insertion/deletion to allocate/deallocate
new slabs is 𝑂(1 + log 𝜀−1). This completes the proof.

As an immediate corollary, we get:

363

Theorem 193. Let 𝑈, 𝜀−1 be positive integers. Consider inputs (𝑆, 𝜋) where 𝑆 ⊆ [𝑈],
and where 𝜋(𝑥) ∈ [1, 𝜀4

∑︀
𝑥∈𝑆 𝜋(𝑥)] for all 𝑥 ∈ 𝑆. Then one can construct a stateless

allocator that uses space (1 + 𝑂(𝜀))
∑︀

𝑥∈𝑆 𝜋(𝑥) and that incurs expected overhead
𝑂(1 + log 𝜀−1) per insertion and deletion.

19.2 Achieving polylog 𝑛 Worst-Case Overhead for
Worker-Task Assignment

In this section, we prove polylog 𝑛 worst-case bounds on the overhead (i.e., switching
cost) needed to solve the memoryless worker-task assignment problem. As discussed
in the introduction of the chapter, we will adapt for this section the conventions
that are typically used [334,335] to discuss the problem in the distributed-computing
literature.

We will prove two results. In Subsection 19.2.1, we give a non-constructive solution
with log-squared worst-case cost.
Theorem 194. There exists a worker-task assignment function that achieves switch-
ing cost 𝑂(log𝑤 log(𝑤𝑡)).

Then, in Subsection 19.2.2, we show how to use derandomization techniques in
order to obtain a constructive solution with polylogarithmic cost.
Theorem 196. There is an explicit worker-task assignment function that achieves
switching cost 𝑂(polylog(𝑤𝑡)).

Prior to these solutions, it remained an open question to achieve any bounds that
were sublinear in both 𝑤 and 𝑡 [334,335].

Review of problem statement. As review, before we continue into the section, we
take a moment to repeat the formal problem statement for memoryless worker-task
assignment.

There are 𝑤 workers 1, 2, . . . , 𝑤 and 𝑡 tasks 1, 2, . . . , 𝑡. A worker-task assign-
ment function 𝜑 is a function that takes as input a multiset 𝑇 of 𝑤 tasks, and
produces an assignment of workers to tasks such that the number of workers assigned
to a given task 𝜏 ∈ 𝑇 is equal to the multiplicity of 𝜏 in 𝑇 .

Two task multisets 𝑇1, 𝑇2 of size 𝑤 are said to be adjacent if they agree on exactly
𝑤 − 1 elements; that is, |𝑇1 ∖ 𝑇2| = |𝑇2 ∖ 𝑇1| = 1.2 The switching cost between two
adjacent task multisets 𝑇1, 𝑇2 of size 𝑤 is defined as the number of workers whose
assignment changes between 𝜑(𝑇1) and 𝜑(𝑇2). The switching cost of 𝜑 is defined to
be the maximum switching cost over all pairs of adjacent task multisets. The goal of
the worker-task assignment problem is to design a worker-task assignment function

2Let 𝑚𝐴(𝑖) denote the number of times element 𝑖 appears in multiset 𝐴. Then, for any two
multisets 𝐴 and 𝐵, we define multisets 𝐴 ∖ 𝐵, 𝐴 ∪ 𝐵, and 𝐴 ∩ 𝐵 to be such that 𝑚𝐴∖𝐵(𝑖) =
max(0,𝑚𝐴(𝑖) − 𝑚𝐵(𝑖)), 𝑚𝐴∪𝐵(𝑖) = max(𝑚𝐴(𝑖),𝑚𝐵(𝑖)), and 𝑚𝐴∩𝐵(𝑖) = min(𝑚𝐴(𝑖),𝑚𝐵(𝑖)), for
every element 𝑖.

364

with the minimum possible switching cost.
Of course, if we restrict ourselves to sets 𝑇1 and 𝑇2 (rather than multi-sets), and if

we consider the cost of a single insertion/deletion (rather than switching cost), then
this becomes the Fixed-Size Stateless Allocation Problem with 𝑛 = 𝑤, 𝑈 = 𝑡, and
𝜀−1 = 𝑛, and where our focus is on worst-case overhead. It is this worst-case nature of
the problem that makes memoryless worker-task assignment so interesting—we must
construct low-overhead strongly history-independent allocations, but they cannot be
randomized.

19.2.1 Achieving Switching Cost 𝑂(log𝑤 log(𝑤𝑡))

Recall that the task multiset 𝑇 is a multiset of elements from [𝑡]. When discussing
a multiset 𝑆, we use 𝑚𝑆(𝑥) to denote the multiplicity of each element 𝑥 in 𝑆. If 𝑆
consists of elements in the range [𝑗] for some 𝑗, then we say that 𝑆 ⊆ [𝑗] and we define
|𝑆| =

∑︀𝑗
𝑖=1𝑚𝑆(𝑖). As a convention, we say that a set of workers 𝐴 ⊆ [𝑤] is assigned

to a multiset of tasks 𝐵 ⊆ [𝑡] if for each 𝑗 ∈ [𝑡] the number of workers in 𝐴 that are
assigned to task 𝑗 is 𝑚𝐵(𝑗). We define union and setminus in the standard way for
multisets, that is, 𝑚𝐴∪𝐵(𝑥) = 𝑚𝐴(𝑥)+𝑚𝐵(𝑥) and𝑚𝐴∖𝐵(𝑥) = max(0,𝑚𝐴(𝑥)−𝑚𝐵(𝑥)).
Finally, we define a sub-multiset of a multiset 𝐴 to be any multiset 𝐵 such that
𝑚𝐵(𝑥) ≤ 𝑚𝐴(𝑥) for all 𝑥.

In this subsection, we prove the following theorem.
Theorem 194. There exists a worker-task assignment function that achieves switch-
ing cost 𝑂(log𝑤 log(𝑤𝑡)).

We demonstrate the existence of such a function via the probabilistic method,
showing that there is a randomized construction that produces a low-switching cost
worker-task assignment function with nonzero probability.

From multisets to sets. We begin by showing that, without loss of generality, we
can restrict our attention to task multisets 𝑇 that are sets (rather than multisets).
We reduce from the multiset version of the problem with 𝑤 workers and 𝑡 tasks to
the set version of the problem with 𝑤 workers and 𝑤𝑡 tasks.
Lemma 210. Define 𝑛 = 𝑤𝑡. Let 𝜑 be a worker-task assignment function that
assigns workers [𝑤] to task sets 𝑇 ⊆ [𝑛] (note that 𝜑 is defined only on task sets
𝑇 , and not on multisets). Let 𝑠 be the switching cost of 𝜑 (considering only pairs
of adjacent subsets of [𝑛], rather than adjacent sub-multisets). Then there exists a
worker-task assignment function 𝜑′ assigning workers [𝑤] to task multisets 𝑇 ⊆ [𝑡],
such that 𝜑′ also has switching cost 𝑠.

Proof. When discussing the assignment function 𝜑, we think of its input task-set 𝑇
as consisting of elements from [𝑡]× [𝑤] rather than elements of [𝑡𝑤].

With this in mind, we construct 𝜑′ as follows. Given a task multiset 𝑇 ⊆ [𝑡],
define the set S(𝑇) ⊆ [𝑡] × [𝑤] to be

⋃︀𝑡
𝑖=1

{︀
(𝑖, 1), . . . , (𝑖,𝑚𝑇 (𝑖))

}︀
, where 𝑚𝑇 (𝑖) is

the multiplicity of 𝑖 in 𝑇 . The worker-task assignment 𝜑 produces some bijection

365

𝜓S(𝑇) : [𝑤] → S(𝑇). Similarly, 𝜑′ should produce some bijection 𝜓′
𝑇 : [𝑤] → 𝑇 . This

bijection is defined naturally by projection: if 𝜓S(𝑇) assigns worker 𝑗 to task (𝑖, 𝑥),
let 𝜓′

𝑇 assign worker 𝑗 to task 𝑖.
We now compute the switching cost of 𝜑′. Let 𝑇 and 𝑇 ′ be two adjacent task

multisets, so 𝑇 ′ = 𝑇 ∪{𝑎}∖{𝑏} for some 𝑎, 𝑏 ∈ [𝑡]. Then S(𝑇 ′) = S(𝑇)∪{(𝑎,𝑚𝑇 (𝑎)+
1)} ∖ {(𝑏,𝑚𝑇 (𝑏))}, and so S(𝑇 ′) is adjacent to S(𝑇). Since 𝜑 has switching cost 𝑠,
𝜓S(𝑇) and 𝜓S(𝑇 ′) agree on 𝑤− 𝑠 workers. By construction, 𝜓′

𝑇 and 𝜓′
𝑇 ′ must agree on

these 𝑤 − 𝑠 workers as well, and so it too has switching cost at most 𝑠.

In the remainder of the section, we will make the assumption that 𝑇 is a subset
of [𝑛], and we will show how to design an assignment function with switching cost
𝑂(log𝑤 log 𝑛) on all pairs of adjacent subsets of [𝑛]. By Lemma 210, setting 𝑛 = 𝑤𝑡
then implies Theorem 194.

Designing an assignment function as an algorithm. It will be helpful to think
of the function we construct for assigning workers to tasks as an algorithm 𝒜, which
we call the multi-round balls-to-bins algorithm. The algorithm 𝒜 takes as input
a set 𝑇 ⊆ [𝑛] of tasks with |𝑇 | = 𝑤 and must produce a bijection from the workers
[𝑤] to 𝑇 .

The algorithm constructs this bijection in stages. Each stage is what we call a
partial assignment algorithm, which takes as input the current sets of workers and
tasks that have yet to be matched and assigns some subset of these workers to some
subset of the tasks. Formally, we define a partial assignment algorithm to be any
function 𝜓 which accepts as input any pair of sets 𝑇 ⊆ [𝑛],𝑊 ⊆ [𝑤] with |𝑇 | = |𝑊 |
and produces a matching between some subset of 𝑇 and some subset of 𝑊 . After
applying 𝜓 to (𝑇,𝑊), there may remain some unmatched elements 𝑇 ′ ⊆ 𝑇 , 𝑊 ′ ⊆ 𝑊 .
We call (𝑇,𝑊) the worker-task input to 𝜓 and (𝑇 ′,𝑊 ′) the worker-task output.
Since a matching must remove exactly as many elements from 𝑇 as it does from
𝑊 , we must also have |𝑊 ′| = |𝑇 ′|. Consequently, there is a natural notion of the
composition of two partial assignment algorithms: the composition 𝜓′ ∘𝜓 applies 𝜓
and then 𝜓′, letting the worker-task output of 𝜓 be the worker-task input to 𝜓′.

The algorithm. At a very high level, the algorithm 𝒜 can be summarized as follows.
For each 𝑖 from 1 to 𝑐 log𝑤, repeat the following hashing procedure 𝑐 log 𝑛many times.
Initialize a hash table consisting of 𝑤/(1.1)𝑖 bins and randomly hash each unassigned
worker and each unassigned task into this table. For each bin that contains at least
one worker and one task, assign the minimum worker in that bin to the minimum
task in that bin.

In more detail, our algorithm 𝒜 is the composition of log1.1𝑤 partial-assignment
algorithms,

𝒜 = 𝒜1 ∘ 𝒜2 ∘ · · · ∘ 𝒜log1.1 𝑤.

Let 𝑐 be a large positive constant. Each 𝒜𝑖 is itself the composition of 𝑐 log 𝑛 partial-

366

assignment algorithms,

𝒜𝑖 = 𝒜𝑖,1 ∘ 𝒜𝑖,2 ∘ · · · ∘ 𝒜𝑖,𝑐 log𝑛.

Designing the parts. Each 𝒜𝑖,𝑗 assigns workers to tasks using what we call a
𝑤/(1.1)𝑖-bin hash, which we define as follows.

For a given parameter 𝑘, a 𝑘-bin hash selects functions ℎ1 : [𝑤] → [𝑘] and
ℎ2 : [𝑛] → [𝑘] independently and uniformly at random. For each worker 𝜔 ∈ [𝑤],
we say that 𝜔 is assigned to bin ℎ1(𝜔). Similarly, for each 𝜏 ∈ [𝑛] we say 𝜏 is
assigned to ℎ2(𝜏). These functions are then used to construct a partial assignment.
Given a worker-task input (𝑊,𝑇), we restrict our attention to only the assignments
of workers in 𝑊 and tasks in 𝑇 . In each bin 𝜅 ∈ [𝑘] with at least one worker and one
task assigned, match the smallest such worker to the smallest such task. Importantly,
once ℎ1 and ℎ2 are fixed, the algorithm 𝒜𝑖,𝑗 uses this same pair of hash functions for
every worker-task input, which (as we will see later) is what allows it to make very
similar assignments for similar inputs and achieve low switching cost.

We set each 𝒜𝑖,𝑗 to be an independent random instance of the 𝑘-bin hash, where
𝑘 = 𝑤/(1.1)𝑖. Formally, this means that the algorithm 𝒜 = 𝒜1,1 ∘ · · · ∘ 𝒜log1.1 𝑤,𝑐 log𝑛

is a random variable whose value is a partial-assignment function. Our task is thus
to prove that, with non-zero probability, 𝒜 fully assigns all workers to tasks and has
small switching cost.

Analyzing the algorithm. In Section 19.2.1, we show that 𝒜 deterministically has
switching cost 𝑂(log𝑤 log 𝑛).

Although 𝒜 always has small switching cost, the algorithm is not always a legal
worker-task assignment function. This is because the algorithm may sometimes act as
a partial worker-task assignment function, leaving some workers and tasks unassigned.

In Section 19.2.1, we show that with probability greater than 0 (and, in fact, with
probability 1−1/ poly 𝑛), the algorithm 𝒜 succeeds at fully assigning workers to tasks
for all worker-task inputs (𝑊,𝑇). Theorem 194 follows by the probabilistic method.

Bounding the Probability of Failure

Call a partial-assignment algorithm 𝜓 fully-assigning if for every worker/task input
(𝑊,𝑇), 𝜓 assigns all of the workers in 𝑊 to tasks in 𝑇 . That is, 𝜓 never leaves workers
unassigned.
Proposition 211. The multi-round balls-to-bins algorithm 𝒜 is fully-assigning with
high probability in 𝑛. That is, for any polynomial 𝑝(𝑛), if the constant 𝑐 used to define
𝒜 is sufficiently large, then 𝒜 is fully-assigning with probability at least 1−𝑂(1/𝑝(𝑛)).

Proposition 211 tells us that with high probability in 𝑛, 𝒜 succeeds at assigning
all workers on all inputs. We remark that this is a much stronger statement than

367

saying that 𝒜 succeeds with high probability in 𝑛 on a given input (𝑊,𝑇).
The key to proving Proposition 211 is to show that each 𝒜𝑖 performs what we call

(𝑤/(1.1)𝑖)-halving. A partial-assignment function 𝜓 is said to perform 𝑘-halving
if for every worker/task input (𝑊,𝑇) of size at most 1.1𝑘, the worker-task output
(𝑊 ′, 𝑇 ′) for 𝜓(𝑊,𝑇) has size at most 𝑘.

If every 𝒜𝑖 performs 𝑤/(1.1)𝑖-halving, then it follows that

𝒜1 ∘ · · · ∘ 𝒜log1.1 𝑤

is a fully-assigning algorithm. Thus our task is to show that each 𝒜𝑖 performs
𝑤/(1.1)𝑖-halving with high probability in 𝑛.

We begin by analyzing the 𝑘-bin hash on a given worker/task input (𝑊,𝑇).
Lemma 212. Let 𝜓 a randomly selected 𝑘-bin hash. Let (𝑊,𝑇) be a worker/task
input satisfying |𝑊 | = |𝑇 | ≤ 1.1𝑘, and let (𝑊 ′, 𝑇 ′) be the worker/task output of
𝜓(𝑊,𝑇). The probability that (𝑊 ′, 𝑇 ′) has size 𝑘 or larger is 2−Ω(𝑘).

Proof. We may assume that |𝑊 | = |𝑇 | ≥ 𝑘, else the conclusion is trivially true. Let
𝑋 be the random variable denoting the number of worker/task assignments made by
𝜓(𝑊,𝑇). Equivalently, 𝑋 counts the number of bins to which at least one worker is
assigned and at least one task is assigned—call these the active bins. We will show
that Pr[𝑋 < 𝑘

8
] ≤ 2−Ω(𝑘). Since |𝑊 | = |𝑇 | ≤ 1.1𝑘, this immediately implies that

|𝑊 ′| = |𝑇 ′| ≤ 1.1𝑘 − 0.125𝑘 ≤ 𝑘 with probability 1− 2−Ω(𝑘), as desired.
We begin by computing E[𝑋]. For each bin 𝑗 ∈ [𝑘], the probability no workers

are assigned to bin 𝑗 is (1 − 1/𝑘)|𝑊 | ≤ (1 − 1/𝑘)𝑘 ≤ 1/𝑒. Similarly, the probability
that no tasks are assigned to bin 𝑗 is at most (1− 1/𝑘)|𝑇 | ≤ 1/𝑒. The probability of
bin 𝑗 being active is therefore at least 1 − 2/𝑒 ≥ 1/4. By linearity of expectation,
E[𝑋] ≥ 𝑘/4.

Next we show that the random variable 𝑋 is tightly concentrated around its mean.
Because the bins that are active are not independent of one-another, we cannot apply
a Chernoff bound. Instead, we employ McDiarmid’s inequality:
Theorem 213 (McDiarmid ’89 [256]). Let 𝐴1, . . . , 𝐴𝑚 be independent random vari-
ables over an arbitrary probability space. Let 𝐹 be a function mapping (𝐴1, . . . , 𝐴𝑚)
to R, and suppose 𝐹 satisfies,

sup
𝑎1,𝑎2,...,𝑎𝑚,𝑎𝑖

|𝐹 (𝑎1, 𝑎2, . . . , 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, . . . , 𝑎𝑚)−𝐹 (𝑎1, 𝑎2, . . . , 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, . . . , 𝑎𝑚)| ≤ 𝑅,

for all 1 ≤ 𝑖 ≤ 𝑚. That is, if 𝐴1, 𝐴2, . . . , 𝐴𝑖−1, 𝐴𝑖+1, . . . , 𝐴𝑚 are fixed, then the value
of 𝐴𝑖 can affect the value of 𝐹 (𝐴1, . . . , 𝐴𝑚) by at most 𝑅. Then for all 𝑆 > 0,

Pr[|𝐹 (𝐴1, . . . , 𝐴𝑚)− E[𝐹 (𝐴1, . . . , 𝐴𝑚)]| ≥ 𝑅 · 𝑆] ≤ 2𝑒−2𝑆2/𝑚.

The number of active bins 𝑋 is a function of at most 2.2 · 𝑘 independent random
variables (namely, the hashes ℎ1(𝜔) for each 𝜔 ∈ 𝑊 and the hashes ℎ2(𝜏) for each
𝜏 ∈ 𝑇). Each of these random variables can individually change the number of active

368

bins by at most one. It follows that we can apply McDiarmid’s inequality with 𝑅 = 1
and 𝑚 = 2.2𝑘. Taking 𝑆 = 𝑘/8, we obtain

Pr[|𝑋 − E[𝑋]| ≥ 𝑘/8] ≤ 𝑒−Ω(𝑘).

Since E[𝑋] ≥ 𝑘/4, we have that Pr[𝑋 < 𝑘/8] ≤ 𝑒−Ω(𝑘), which completes the proof of
the lemma.

Our next lemma shows that each 𝒜𝑖 is 𝑘-halving with high probability in 𝑛, where
𝑘 = 𝑤/(1.1)𝑖.
Lemma 214. Let 𝜓1, . . . , 𝜓𝑐 log𝑛 be independent random 𝑘-bin hashes, and let 𝜓 =
𝜓1 ∘ · · · ∘ 𝜓𝑐 log𝑛. With high probability in 𝑛, 𝜓 is 𝑘-halving. That is, every worker-
task input (𝑊,𝑇) with |𝑊 | = |𝑇 | ≤ 1.1𝑘 has a worker task output (𝑊 ′, 𝑇 ′) with
|𝑊 ′| = |𝑇 ′| ≤ 𝑘.

Proof. Fix an arbitrary worker-task input (𝑊,𝑇) with |𝑊 | = |𝑇 | ≤ 1.1𝑘. Let (𝑊𝑖, 𝑇𝑖)
denote the worker-task output after applying the first 𝑖 rounds, 𝜓1 ∘ · · · ∘ 𝜓𝑖. Let 𝑝𝑖
denote the probability that |𝑊𝑖| = |𝑇𝑖| > 𝑘.

First, we observe that 𝑝𝑖 ≤ 𝑒−Ω(𝑘)𝑝𝑖−1 for all 𝑖 > 1. Indeed, for |𝑊𝑖| = |𝑇𝑖| > 𝑘, we
must necessarily have |𝑊𝑖−1| = |𝑇𝑖−1| > 𝑘, which occurs with probability 𝑝𝑖−1, but in
this situation, the probability that 𝜓𝑖 produces a worker-task output of size greater
than 𝑘 is a further 𝑒−Ω(𝑘) by Lemma 212.

The probability that 𝜓 fails to reduce the size of (𝑊,𝑇) to 𝑘 or smaller is thus at
most

𝑝𝑐 log𝑛 ≤ 𝑒−Ω(𝑐𝑘 log𝑛) ≤ 𝑛−Ω(𝑐𝑘), (19.3)

where 𝑐 is treated as a parameter.
On the other hand, the number of possibilities for input pairs (𝑊,𝑇) satisfying

|𝑊 | = |𝑇 | ≤ 1.1𝑘 is

1.1𝑘∑︁
𝑗=0

(︂
𝑤

𝑗

)︂(︂
𝑛

𝑗

)︂
≤ 1.1𝑘 · 𝑤1.1𝑘𝑛1.1𝑘 ≤ 𝑛𝑂(𝑘). (19.4)

Combining (19.3) and (19.4), the probability that there exists any pair (𝑊,𝑇) of
size 1.1𝑘 or smaller which fails to have its size reduced to 𝑘 or smaller is at most
𝑛𝑂(𝑘)−𝑐Ω(𝑘). If 𝑐 is selected to be a sufficiently large constant, then it follows that 𝜓
performs 𝑘-halving with probability at least 1− 𝑛−Ω(𝑘).

We now prove Proposition 211.

Proof of Proposition 211. By Lemma 214, each algorithm 𝒜𝑖 is (𝑤/(1.1)𝑖)-halving
with high probability in 𝑛. By a union bound, it follows that all of 𝒜𝑖 ∈
{𝒜1, . . . ,𝒜log1.1 𝑤} are (𝑤/(1.1)𝑖)-halving with high probability in 𝑛. If this occurs,
then

𝒜 = 𝒜1 ∘ · · · ∘ 𝒜log1.1 𝑤

369

is fully-assigning, as desired.

Bounding the switching cost

Recall that two worker/task inputs (𝑊1, 𝑇1) and (𝑊2, 𝑇2) are said to be unit distance
if

𝑊1 ∖𝑊2|+ |𝑊2 ∖𝑊1|+ |𝑇1 ∖ 𝑇2|+ |𝑇2 ∖ 𝑇1| ≤ 2.

A partial-assignment algorithm 𝜓 is 𝑠-switching-cost bounded if for all unit-
distance pairs of worker/task inputs (𝑊1, 𝑇1) and (𝑊2, 𝑇2), the set of assignments
made by 𝜓(𝑊1, 𝑇1) deterministically differs from the set of assignments made by
𝜓(𝑊2, 𝑇2) by at most 𝑠.

In this section, we prove the following proposition.
Proposition 215. The multi-round balls-to-bins algorithm is 𝑂(log𝑤 log 𝑛)-
switching-cost bounded.

We begin by showing that each of the algorithms 𝒜𝑖,𝑗 are 𝑂(1)-switching-cost
bounded.
Lemma 216. For any 𝑘, the 𝑘-bin hash algorithm is 𝑂(1)-switching-cost bounded.

Proof. Let 𝜓 denote the 𝑘-bin hash algorithm. Consider unit-distance pairs of
worker/task inputs (𝑊1, 𝑇1) and (𝑊2, 𝑇2). Changing 𝑊1 to 𝑊2 can change the as-
signments made by 𝜓 for at most a constant number of bins. Similarly changing 𝑇1
to 𝑇2 can change the assignments made by 𝜓 for at most a constant number of bins.
Thus 𝜓(𝑊1, 𝑇1) differs from 𝜓(𝑊2, 𝑇2) by at most 𝑂(1) assignments.

Recall that 𝒜 is the composition of the 𝑂(log𝑤 log 𝑛) partial-assignment algo-
rithms 𝒜𝑖,𝑗’s. The fact that each 𝒜𝑖,𝑗 is 𝑂(1)-switching-cost bounded does not directly
imply that 𝒜 is 𝑂(log𝑤 log 𝑛)-switching-cost bounded, however, because switching
cost does not necessarily interact well with composition. In order to analyze 𝒜, we
show that each 𝒜𝑖,𝑗 satisfies an additional property that we call being composition-
friendly.

A partial-assignment algorithm 𝜓 is composition-friendly, if for all unit-
distance pairs of worker/task inputs (𝑊1, 𝑇1) and (𝑊2, 𝑇2), the corresponding
worker/task outputs (𝑊 ′

1, 𝑇
′
1) and (𝑊 ′

2, 𝑇
′
2) are also unit-distance.

Lemma 217 shows that each 𝒜𝑖,𝑗 is composition-friendly.
Lemma 217. For any 𝑘, the 𝑘-bin hash is composition-friendly.

Proof. Although the algorithm 𝜓 is formally only defined on input (𝑊,𝑇) for which
|𝑊 | = |𝑇 |, we will abuse notation here and consider 𝜓 even on worker/task input
(𝑊,𝑇) satisfying |𝑊 | ̸= |𝑇 |.3 Define the difference-score of a pair of worker/task

3Indeed, the definition of the 𝑘-bin hash does not require a worker-task input with |𝑊 | = |𝑇 |.
The only reason we require this equality in general is to simplify calculations, as in practice the
algorithm will only be run on worker-task inputs of equal size.

370

inputs 𝐼1 = (𝑊1, 𝑇1), 𝐼2 = (𝑊2, 𝑇2) to be the quantity

𝑑(𝐼1, 𝐼2) = |𝑊1 ∖𝑊2|+ |𝑊2 ∖𝑊1|+ |𝑇1 ∖ 𝑇2|+ |𝑇2 ∖ 𝑇1|.

We will show the stronger statement that the difference-score 𝑑(𝑂1, 𝑂2) of the
corresponding worker/task outputs 𝑂1 = (𝑊 ′

1, 𝑇
′
1), 𝑂2 = (𝑊 ′

2, 𝑇
′
2) satisfies

𝑑(𝑂1, 𝑂2) ≤ 𝑑(𝐼1, 𝐼2). (19.5)

It suffices to consider only two special cases: the case in which 𝑊2 = 𝑊1 ∪ {𝜔} for
some worker 𝜔 and 𝑇2 = 𝑇1; and the case in which 𝑇2 = 𝑇1 ∪ {𝜏} for some task 𝜏
and 𝑊2 = 𝑊1. Iteratively applying these two cases to transform 𝐼1 into 𝐼2 implies
inequality 19.5.

For this purpose, the roles of 𝑊 and 𝑇 are identical, so suppose without loss of
generality that 𝑊2 = 𝑊1 ∪ {𝜔} for some worker 𝜔 and 𝑇2 = 𝑇1. Recall that the
assignment of workers and tasks to buckets is determined by some hash functions
ℎ1, ℎ2 and in particular is the same whether we input 𝑊1 or 𝑊2. We first assign
(only) the elements of 𝑊1 and 𝑇1 to their respective buckets, and then look at how
including the assignment of 𝜔 changes the worker-task output. If ℎ1 assigns 𝜔 to
either a bin with no tasks or a bin which already has some lexicographically smaller
worker, then we will have 𝑊 ′

2 = 𝑊 ′
1 ∪ {𝑤} and 𝑇 ′

2 = 𝑇 ′
1. If ℎ1 assigns worker 𝜔 to

a bin with no other workers and at least one task, we let the smallest such task be
𝜏 and see 𝑊 ′

2 = 𝑊 ′
1 and 𝑇 ′

2 = 𝑇 ′
1 ∖ {𝜏}. Finally, if ℎ1 assigns 𝜔 to a bin with only

larger workers and at least one task, we let the minimal such worker be 𝛾, and we see
𝑊 ′

2 = 𝑊 ′
1 ∪ {𝛾} and 𝑇 ′

2 = 𝑇 ′
1. In all three cases, 𝑑(𝑂1, 𝑂2) = 1, as desired.

Next, we will show that composing composition-friendly algorithms has the effect
of summing switching costs.
Lemma 218. Suppose that partial-assignment algorithms 𝜓1, 𝜓2, . . . , 𝜓𝑘 are all
composition-friendly, and that each 𝜓𝑖 is 𝑠𝑖-switching-cost bounded. Then 𝜓1 ∘ 𝜓2 ∘
· · · ∘ 𝜓𝑘 is composition-friendly and is (

∑︀
𝑖 𝑠𝑖)-switching-cost-bounded.

Proof. By induction, it suffices to prove the lemma for 𝑘 = 2. Let 𝐼1 = (𝑊1, 𝑇1) and
𝐼2 = (𝑊2, 𝑇2) be unit-distance worker/task inputs.

For 𝑖 ∈ {1, 2}, let 𝐼 ′𝑖 = (𝑊 ′
𝑖 , 𝑇

′
𝑖) be the worker/task output for 𝜓1(𝑊𝑖, 𝑇𝑖), and let

𝐼 ′′𝑖 = (𝑊 ′′
𝑖 , 𝑇

′′
𝑖) be the worker/task output for 𝜓2(𝑊

′
𝑖 , 𝑇

′
𝑖).

Since 𝜓1 is composition friendly, its outputs 𝐼 ′1 and 𝐼 ′2 are unit distance. Since 𝐼 ′1
and 𝐼 ′2 are unit distance, and since 𝜓2 is composition friendly, the outputs 𝐼 ′′1 and 𝐼 ′′2
of 𝜓2 are also unit distance. Thus 𝜓1 ∘ 𝜓2 is composition friendly.

Since the inputs 𝐼1 and 𝐼2 to 𝜓1 are unit-distance, 𝜓1(𝐼1) and 𝜓1(𝐼2) differ in
at most 𝑠1 worker-task assignments. Since the inputs 𝐼 ′1 and 𝐼 ′2 to 𝜓2 are also unit
distance, 𝜓2(𝐼

′
1) and 𝜓2(𝐼

′
2) differ in at most 𝑠2 worker-task assignments. Thus the

composition 𝜓1 ∘ 𝜓2 is (𝑠1 + 𝑠2)-switching-cost bounded, as desired.

We can now prove Proposition 215.

371

Proof of Proposition 215. By Lemma 216, each 𝒜𝑖,𝑗 is 𝑂(1)-switching-cost bounded.
By Lemma 217, each 𝒜𝑖,𝑗 is composition friendly. Since 𝒜 is the composition of
the 𝑂(log𝑤 log 𝑛) different 𝒜𝑖,𝑗’s, it follows by Lemma 218 that 𝒜 is 𝑂(log𝑤 log 𝑛)-
switching-cost bounded.

19.2.2 Derandomizing the Construction

In this subsection, we derandomize the multi-round balls-to-bins algorithm to prove
the following theorem.
Theorem 196. There is an explicit worker-task assignment function that achieves
switching cost 𝑂(polylog(𝑤𝑡)).

To this end, we use pseudorandom objects called strong dispersers. Intuitively, a
disperser is a function such that the image of any not-too-small subset of its large
domain (e.g., workers or tasks) is a dense subset of its small co-domain (e.g., bins).
Since this requirement is hard to satisfy directly, dispersers are defined with a second
argument, called the seed. For a strong disperser, the density requirement is satisfied
only in expectation over the seed. The standard way to define strong dispersers
(Definition 219 below) is in the language of random variables. We follow with an
equivalent alternative Definition 220, more convenient for our purposes.
Definition 219 (Strong dispersers). For 𝑘 ∈ N, 𝜀 ∈ R+, a (𝑘, 𝜀)-strong disperser is
a function 𝐷𝑖𝑠𝑝 : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 such that for any random variable 𝑋
over {0, 1}𝑛 with min-entropy at least 𝑘 we have

| Supp((𝐷𝑖𝑠𝑝(𝑋,𝑈𝑑), 𝑈𝑑))| ≥ (1− 𝜀) · 2𝑚+𝑑.

Here Supp denotes the support of a random variable, 𝑈𝑑 denotes the uniform
distribution on {0, 1}𝑑, and the min-entropy of a random variable 𝑋 is defined as
min𝑥(− log2(Pr[𝑋 = 𝑥])). We will use a simple fact that any distribution which is
uniform on a 2𝑘-element subset of the universe and assigns zero probability elsewhere
(called flat 𝑘-source in pseudorandomness literature) has min-entropy 𝑘. Interest-
ingly, every distribution with min-entropy at least 𝑘 is a convex combination of such
distributions (see, e.g., Lemma 6.10 in [344], first proved in [126]), which makes the
following definition equivalent.
Definition 220 (Strong dispersers, alternative definition). For 𝑘 ∈ N, 𝜀 ∈ R+, a
(𝑘, 𝜀)-strong disperser is a function 𝐷𝑖𝑠𝑝 : [𝑁]× [𝐷] → [𝑀] such that for any subset
𝑆 ⊆ [𝑁] of size |𝑆| ≥ 2𝑘 we have

|{(𝐷𝑖𝑠𝑝(𝑠, 𝑑), 𝑑) : 𝑠 ∈ 𝑆, 𝑑 ∈ [𝐷]}| ≥ (1− 𝜀) ·𝑀 ·𝐷.

We use efficient explicit strong dispersers constructed by Meka, Reingold and
Zhou [261].
Theorem 221 (Theorem 6 in [261]). For all 𝑁 = 2𝑛, 𝑘 ∈ N, and 𝜀 ∈ R+, there
exists an explicit (𝑘, 𝜀)-strong disperser 𝐷𝑖𝑠𝑝 : [𝑁]× [𝐷] → [𝑀] with 𝐷 = 2𝑂(log𝑛) =

372

polylog𝑁 and 𝑀 = 2𝑘−3 log𝑛−𝑂(1) = 2𝑘 · Ω(1/ log3𝑁).

Designing the algorithm We begin with applying Lemma 210 in order to be able to
restrict our attention to task sets (rather than multisets), at the expense of increasing
the number of tasks from 𝑡 to 𝑤𝑡. For convenience, we round up the new number of
tasks to the closest power of two 𝑁 = 2⌈log𝑤𝑡⌉.

Our explicit algorithm ℰ has the same structure as the randomized algorithm 𝒜,
i.e. it is the composition of log𝑤 partial assignment algorithms

ℰ = ℰ1 ∘ ℰ2 ∘ · · · ∘ ℰlog𝑤.

Each ℰ𝑖 is responsible for bringing down the number of unassigned workers to the next
power of two, and is composed of a number of explicit sub-algorithms ℰ𝑖,𝑗’s. Contrary
to 𝒜𝑖,𝑗’s, sub-algorithms ℰ𝑖,𝑗’s are not identical copies for a fixed 𝑖. However, the
chain of distinct sub-algorithms has to be copied 𝑂(log3𝑁) times. We reflect this
introducing the ̂︀ℰ𝑖 notation:

ℰ𝑖 = ̂︀ℰ𝑖 ∘ ̂︀ℰ𝑖 ∘ · · · ∘ ̂︀ℰ𝑖⏟ ⏞
𝑂(log3𝑁) times

, where ̂︀ℰ𝑖 = ℰ𝑖,1 ∘ ℰ𝑖,2 ∘ · · · ∘ ℰ𝑖,polylog𝑁 .

The key difference between the randomized and explicit algorithm is that ℰ𝑖,𝑗’s,
instead of using random hash functions ℎ1, ℎ2, use explicit functions obtained from
strong dispersers. Another notable difference is that 𝒜𝑖,𝑗’s use 𝑘 bins to deal with
input sets of size in [𝑘, 1.1𝑘], while ℰ𝑖,𝑗’s have to use polylogarithmically less bins, lim-
iting the number of worker-task pairs that can be assigned by a single sub-algorithm
and, as a consequence, forcing us to compose a larger number of sub-algorithms.

Let us fix 𝑖 ∈ [log𝑤], and denote 𝑘𝑖 = ⌈log𝑤⌉ − 𝑖. Let 𝐷𝑖𝑠𝑝𝑖 : [𝑁]× [𝐷𝑖] → [𝑀𝑖]
be the (𝑘𝑖, 1/4)-strong disperser given by Theorem 221. Recall that 𝐷𝑖 = polylog𝑁 ,
𝑀𝑖 = 2𝑘𝑖 · Ω(1/ log3𝑁), and 𝑁 is large enough so that all workers and all tasks are
elements of [𝑁]. We will have ̂︀ℰ𝑖 = ℰ𝑖,1 ∘ ℰ𝑖,2 ∘ · · · ∘ ℰ𝑖,𝐷𝑖

. For each 𝑗 ∈ [𝐷𝑖], sub-
algorithm ℰ𝑖,𝑗 assigns workers and tasks to 𝑀𝑖 bins. Each worker 𝜔 ∈ 𝑊 is assigned
to bin 𝐷𝑖𝑠𝑝𝑖(𝜔, 𝑗), and each task 𝜏 ∈ 𝑇 is assigned to bin 𝐷𝑖𝑠𝑝𝑖(𝜔, 𝑗). Then, like in
the randomized strategy, for each active bin (i.e. one which was assigned nonempty
sets of workers and tasks) the smallest worker and the smallest task in that bin get
assigned to each other.

Analyzing switching cost In Section 19.2.1, where we analyze the switching cost
of randomized multi-round balls-to-bins algorithm, we do not exploit the fact that
the hash functions ℎ1, ℎ2 are random. Actually, as we already remark, our switching
cost bound is deterministic and thus works for any choice of functions ℎ1, ℎ2. There-
fore the same analysis works for the explicit algorithm. Namely, each sub-algorithm
ℰ𝑖,𝑗 is 𝑂(1)-switching cost bounded and composition-friendly (Lemmas 216 and 217
generalize trivially), thus the switching cost of ℰ depends only on the number of
sub-algorithms, which is polylog𝑁 = polylog𝑤𝑡, as desired.

373

Proving the algorithm is fully-assigning We begin by analyzing the number of
worker/task assignments made by ̂︀ℰ𝑖 = ℰ𝑖,1 ∘ · · · ∘ ℰ𝑖,𝐷𝑖

.
Lemma 222. Let (𝑊,𝑇) be a worker/task input satisfying |𝑊 | = |𝑇 | ≥ 2𝑘𝑖 . Then̂︀ℰ𝑖(𝑊,𝑇) makes at least 𝑀𝑖/4 worker/task assignments.

Proof. By the definition of dispersers, the two images

{(𝐷𝑖𝑠𝑝𝑖(𝜔, 𝑗), 𝑗) : 𝜔 ∈ 𝑊, 𝑗 ∈ [𝐷𝑖]}, and {(𝐷𝑖𝑠𝑝𝑖(𝜏, 𝑗), 𝑗) : 𝜏 ∈ 𝑇, 𝑗 ∈ [𝐷𝑖]}

have size at least (3/4) ·𝑀𝑖 · 𝐷𝑖. Since they are both subsets of [𝑀𝑖] × [𝐷𝑖], their
intersection has size at least (1/2) ·𝑀𝑖 ·𝐷𝑖. By the pigeonhole principle, there must
exist 𝑗 ∈ 𝐷𝑖 such that

|𝐷𝑖𝑠𝑝𝑖(𝑊, 𝑗) ∩𝐷𝑖𝑠𝑝𝑖(𝑇, 𝑗)| ≥𝑀𝑖/2. (19.6)

Let us fix such 𝑗, and look at the execution of ℰ𝑖,𝑗. For each bin 𝑏 ∈ 𝐷𝑖𝑠𝑝𝑖(𝑊, 𝑗) ∩
𝐷𝑖𝑠𝑝𝑖(𝑇, 𝑗), if 𝑏 is not active, then all workers {𝜔 ∈ 𝑊 | 𝐷𝑖𝑠𝑝𝑖(𝜔, 𝑗) = 𝑏} or all tasks
{𝜏 ∈ 𝑇 | 𝐷𝑖𝑠𝑝𝑖(𝜏, 𝑗) = 𝑏} must have been already assigned by (ℰ𝑖,1∘· · ·∘ℰ𝑖,𝑗−1)(𝑊,𝑇).
Thus, each bin in 𝐷𝑖𝑠𝑝𝑖(𝑊, 𝑗) ∩ 𝐷𝑖𝑠𝑝𝑖(𝑇, 𝑗) either is active – and contributes one
worker and one task to the assignment – or is inactive and testifies that at least
one worker or at least one task is assigned by earlier sub-algorithms. Let 𝑐𝑎 denote
the number of active bins, 𝑐𝑤 denote the number of inactive bins testifying for a
worker assigned by earlier sub-algorithms, and 𝑐𝑡 denote the number of inactive bins
testifying for a task. We have 𝑐𝑎 + 𝑐𝑤 + 𝑐𝑡 ≥ 𝑀𝑖/2, by Inequality (19.6). It follows
that the number of worker/task assignments made by (ℰ𝑖,1 ∘ · · ·∘ℰ𝑖,𝑗)(𝑊,𝑇) is at least
𝑐𝑎 +max(𝑐𝑤, 𝑐𝑡) ≥ 𝑐𝑎 +

1
2
(𝑐𝑤 + 𝑐𝑡) ≥𝑀𝑖/4, as desired.

Recall that 𝑀𝑖 = 2𝑘𝑖 · Ω(1/ log3𝑁). Thus, Lemma 222 implies that each ℰ𝑖 –
which is a composition of 𝑂(log3𝑁) copies of ̂︀ℰ𝑖 – when given a worker/task input of
size at most 2 · 2𝑘𝑖 returns a worker/task output of size at most 2𝑘𝑖 . It follows that
ℰ = ℰ1 ∘ ℰ2 ∘ · · · ∘ ℰlog𝑤 is fully-assigning, which concludes the proof of Theorem 196.

374

Chapter 20

Strong Lower Bounds for Stateless
Allocation

In this chapter, we prove a lower bound of Ω(log 𝜀−1/ log log 𝜀−1) on the expected cost
incurred by any fixed-size stateless allocation algorithm.
Theorem 223. Let 𝜀 ≥ 1/𝑛. Any fixed-size stateless allocation algorithm ALG must
incur Ω(log 𝜀−1/ log log 𝜀−1) expected cost per insertion/deletion.

Our lower bound matches the upper bounds achieved in Chapter 19, for both the
fixed-size and variable-size versions of the problem, up to 𝑂(log log 𝜀−1) factors. Prior
to our result, the best known lower bound stood at Ω(1) [334,335] for the worst-case
cost incurred by any fixed-size stateless allocation algorithm.

An immediate consequence of our lower bound is that there is a separation be-
tween what can be achieved by weakly history-independent strategies (which get 𝑂(1)
overhead for the fixed-size case) and strongly history-independent strategies (which
must incur Ω(1 + log 𝜀−1) expected overhead).

20.1 Proof of Theorem 223

Let 𝜀 ≥ 1/𝑛 and let 𝑚 = (1 − 𝜀)𝑛. For any set 𝑆 ⊆ [1, 2𝑚] satisfying |𝑆| ≤ 𝑚 + 1,
let ALG(𝑆) denote the allocation of elements 𝑆 to slots [1, 𝑛] produced by allocation
algorithm ALG (note that the random bits used by the algorithm are left implicit).
As a convention, we will use the terms slot and position interchangeably, and we will
refer to ALG(𝑆) as either an allocation (of elements to slots) or a state (referring to
the state of which elements are in which slots).

We will consider a sequence of insertions/deletions as follows: We will start with
𝑆0 = {𝑚 + 1, . . . , 2𝑚} and then we will perform a sequence of 𝑚 deletion/insertion
pairs where the 𝑖-th deletion deletes 𝑚 + 𝑖 and the 𝑖-th insertion inserts some 𝜋𝑖 ∈
[1,𝑚].

We will specify our sequence of operations by an input vector 𝜋 =
⟨𝜋1, 𝜋2, . . . , 𝜋𝑚⟩ defined to be any permutation of the numbers 1, . . . ,𝑚. For any input

375

vector 𝜋 and for any 𝑖 ∈ [0,𝑚], define 𝑆𝑖(𝜋) = {𝑚+ 𝑖+ 1, . . . , 2𝑚} ∪ {𝜋1, 𝜋2, . . . , 𝜋𝑖}.
That is, we can reach 𝑆𝑖 from 𝑆𝑖−1 by deleting 𝑚+ 𝑖 and inserting 𝜋𝑖.

For any input vector 𝜋 and any 𝑖 ∈ [1,𝑚] define the positions-touched set
𝑋𝑖(𝜋) ⊆ [1, 𝑛] to be the set of positions whose contents change between ALG(𝑆𝑖−1(𝜋))
and ALG(𝑆𝑖(𝜋)); and define the values-touched set 𝑌𝑖(𝜋) ⊆ [1, 2𝑚] to be the set
of elements whose position changes between ALG(𝑆𝑖−1(𝜋)) and ALG(𝑆𝑖(𝜋)) (this
includes the elements (𝑆𝑖(𝜋) ∖ 𝑆𝑖−1(𝜋))∪ (𝑆𝑖−1(𝜋) ∖ 𝑆𝑖(𝜋)) that are inserted/deleted).
Finally, define the kick-out chain 𝐾𝑖(𝜋) to be the sequence ⟨𝐾(1)

𝑖 , 𝐾
(2)
𝑖 , . . .⟩ given

by: 𝐾(0)
𝑖 = 𝜋𝑖; 𝐾

(1)
𝑖 = position of 𝐾(0)

𝑖 in ALG(𝑆𝑖(𝜋)); 𝐾
(2)
𝑖 = element that was in

position 𝐾
(1)
𝑖 in ALG(𝑆𝑖−1(𝜋)) (the chain ends if no such element exists); 𝐾(3)

𝑖 =

position of 𝐾(2)
𝑖 in ALG(𝑆𝑖(𝜋)) (the chain ends if no such position exists); 𝐾(4)

𝑖 =

element that was in position 𝐾(3)
𝑖 in ALG(𝑆𝑖−1(𝜋)) (the chain ends if no such element

exists); 𝐾(5)
𝑖 = position of 𝐾(4)

𝑖 in ALG(𝑆𝑖(𝜋)) (the chain ends if no such position
exists); etc.

That is, the kick-out chain keeps track of the chain of moves that 𝜋𝑖’s insertion
triggered between ALG(𝑆𝑖−1(𝜋)) and ALG(𝑆𝑖(𝜋)): the insertion of 𝐾(0)

𝑖 = 𝜋𝑖 into
position 𝐾(1)

𝑖 displaced an element 𝐾(2)
𝑖 that was then moved to position 𝐾(3)

𝑖 , which
displaced an element 𝐾(4)

𝑖 that was then moved to position 𝐾(5)
𝑖 , etc. The chain ends

when we either displace an element into a free slot (in which case that slot is the
final member of the chain) or when we displace the element that is deleted between
ALG(𝑆𝑖−1(𝜋)) and ALG(𝑆𝑖(𝜋))) (in which case that element is the final member of
the chain). Note that, for even 𝑗 we have 𝐾

(𝑗)
𝑖 ∈ 𝑌𝑖(𝜋) and for odd 𝑗 we have

𝐾
(𝑗)
𝑖 ∈ 𝑋𝑖(𝜋). However, not all elements of 𝑌𝑖(𝜋) and 𝑋𝑖(𝜋) necessarily appear as

elements of the kick-out chain, since ALG(𝑆𝑖−1(𝜋)) and ALG(𝑆𝑖(𝜋)) can differ from
each other beyond just the differences captured by the kick-out chain.

For each 𝑖 ∈ [𝑛], define slide(𝜋, 𝑖, 1), slide(𝜋, 𝑖, 2), . . . so that permutation
slide(𝜋, 𝑖, 𝑗) is obtained by sliding 𝜋𝑖 from position 𝑖 to position 𝑗 in 𝜋. That is,
if 𝑗 ≤ 𝑖, then,

slide(𝜋, 𝑖, 𝑗) = ⟨𝜋1, 𝜋2, . . . , 𝜋𝑗−1, 𝜋𝑖, 𝜋𝑗, 𝜋𝑗+1, . . . , 𝜋𝑖−1, 𝜋𝑖+1, 𝜋𝑖+2, . . . , 𝜋𝑛⟩

and if 𝑗 > 𝑖, then

slide(𝜋, 𝑖, 𝑗) = ⟨𝜋1, 𝜋2, . . . , 𝜋𝑖−1, 𝜋𝑖+1, 𝜋𝑖+2, . . . , 𝜋𝑗, 𝜋𝑖, 𝜋𝑗+1, 𝜋𝑗+2 . . . , 𝜋𝑛⟩.

Throughout the proofs, it will be helpful to make use of the following basic identity:
If 𝑖, 𝑞, 𝑟 ∈ [𝑚] such that either 𝑖 < 𝑞, 𝑟 or 𝑖 ≥ 𝑞, 𝑟, then

𝑆𝑖(𝜋) = 𝑆𝑖(slide(𝜋, 𝑞, 𝑟)). (20.1)

Finally, say that 𝜋𝑖 is (𝜋, 𝑗)-robust in a time window [𝑡0, 𝑡1] ⊆ [1,𝑚] if all of the
kick-out-chains {𝐾𝑡(slide(𝜋, 𝑖, 𝑡)) | 𝑡 ∈ [𝑡0, 𝑡1]} agree on their first 𝑗 entries (and have
length at least 𝑗). That is, if we slide 𝜋𝑖 to be inserted at any time 𝑡 ∈ [𝑡0, 𝑡1] (instead

376

of at time 𝑖), then the kick-out chain triggered by the insertion of 𝜋𝑖 has the same
first 𝑗 positions no matter which time 𝑡 we pick. As a formality, we say that for 𝑗 < 0,
all 𝜋𝑖s are (𝜋, 𝑗)-robust in all time windows.

To prove our lower bound, we will show that if ALG has low cost, then
E[|𝐾𝑚/2(𝜋)|] must be Ω(log 𝜀−1/ log log 𝜀−1). Rather than directly analyzing
|𝐾𝑚/2(𝜋)|, however, we will instead show that with probability at least 1/2, 𝜋𝑚/2
is (𝜋,Ω(log 𝜀−1/ log log 𝜀−1))-robust in some interval 𝑇 containing 𝑚/2. This offers
an indirect path by which we can obtain a lower bound on |𝐾𝑚/2(𝜋)|.

The main task in completing the proof will be to understand how the (𝜋, 𝑗)-
robustness property interacts with the stateless allocation algorithm ALG. We will
show that, if one considers time intervals 𝑇2 ⊆ 𝑇1 satisfying |𝑇1| ≫ |𝑇2| ≫ 𝜀𝑛, then
no matter what ALG does, the fraction of 𝜋𝑖 ∈ 𝑇2 that are (𝜋, 𝑗− 1)-robust in 𝑇2 will
be only slightly smaller (in expectation) than the fraction of 𝜋𝑖 ∈ 𝑇1 that are (𝜋, 𝑗)-
robust in 𝑇1. This allows us to perform induction on 𝑗 in order to lower bound the
probability of 𝜋𝑚/2 being (𝜋,Ω(log 𝜀−1/ log log 𝜀−1))-robust in the appropriate interval
𝑇 .

We begin with two lemmas (one for odd 𝑗 and one for even 𝑗) that characterize
the situations in which an element 𝜋𝑖 that is (𝜋, 𝑗 − 1)-robust in an interval 𝑇1 will
also be (𝜋, 𝑗)-robust in a smaller interval 𝑇2 (the specifics of 𝑇2 will differ slightly
between the lemmas). At a high level, these lemmas tell us that, if ALG is to prevent
𝜋𝑖 to from being (𝜋, 𝑗)-robust in 𝑇2, then ALG must touch 𝐾

(𝑗−1)
𝑖 (𝜋) during some

insertion/deletion in time-window 𝑇2.
Lemma 224. Let 𝜋 be an input vector, let [𝑡0, 𝑡1] ⊆ [1,𝑚] be a time window, and let
𝑗 > 0 be odd. Suppose that 𝜋𝑡0 is (𝜋, 𝑗− 1)-robust in [𝑡0, 𝑡1], suppose that 𝐾𝑡0(𝜋) has
length at least 𝑗, and let ⟨𝐾(1), 𝐾(2), . . . , 𝐾(𝑗)⟩ denote the first 𝑗 elements of 𝐾𝑡0(𝜋).
Then 𝜋𝑡0 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] iff𝐾(𝑗−1) ̸∈ 𝑌𝑡0+1(𝜋)∪𝑌𝑡0+2(𝜋)∪· · ·∪𝑌𝑡1(𝜋), meaning
that element 𝐾(𝑗−1) is not touched by any of the deletion/insertion pairs performed
in the time window [𝑡0 + 1, 𝑡1].

Proof. Begin by considering the case that 𝐾(𝑗−1) is deleted by some deletion in the
time-window [𝑡0, 𝑡1]. That is, there is some 𝑡 ∈ [𝑡0, 𝑡1] such that 𝐾(𝑗−1) ∈ 𝑆𝑡−1(𝜋)
but 𝐾(𝑗−1) ̸∈ 𝑆𝑡(𝜋). By the (𝜋, 𝑗 − 1)-robustness of 𝜋𝑡0 in [𝑡0, 𝑡1], we know that kick-
out chains 𝐾𝑡(slide(𝜋, 𝑡0, 𝑡)) = 𝐾𝑡(𝜋) and 𝐾𝑡0(𝜋) have the same first 𝑗 − 1 entries
𝐾(1), 𝐾(2), . . . , 𝐾(𝑗−1). Since 𝐾(𝑗−1) is deleted between 𝑆𝑡−1(𝜋) and 𝑆𝑡(𝜋), we can
conclude that 𝐾(𝑗−1) is the final element of 𝐾𝑡(slide(𝜋, 𝑡0, 𝑡)). Thus the lemma is
satisfied, since we have both that 𝐾(𝑗−1) ∈ 𝑌𝑡(𝜋) (since 𝐾(𝑗−1) is deleted between
𝑆𝑡−1(𝜋) and 𝑆𝑡(𝜋)) and that 𝜋𝑡0 is not (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] (since |𝐾𝑡(slide(𝜋, 𝑡0, 𝑡)| =
𝑗 − 1).

Suppose for the rest of the proof that 𝐾𝑗−1 is not deleted by any deletion in the
time window [𝑡0, 𝑡1]. Since 𝜋𝑡0 is already known to be (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡1], the
condition for it being (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] is that the 𝑗-th entries in the kick-out
chains

{𝐾𝑡(slide(𝜋, 𝑡0, 𝑡)) | 𝑡 ∈ [𝑡0, 𝑡]}

377

are all the same. These 𝑗-th entries correspond to the positions where 𝐾(𝑗−1) resides
in ALG(𝑆𝑡(slide(𝜋, 𝑡0, 𝑡)) for 𝑡 ∈ [𝑡0, 𝑡1] (and since 𝐾(𝑗−1) is not deleted in the time
window, we know that each of the kick-out chains has a 𝑗-th entry). Notice, however,
that ALG(𝑆𝑡(slide(𝜋, 𝑡0, 𝑡)) = ALG(𝑆𝑡(𝜋)) by (20.1), so the 𝑗-th entries in the kick-
out chains actually correspond to the positions in which 𝐾(𝑗−1) resides in ALG(𝑆𝑡(𝜋))
for 𝑡 ∈ [𝑡0, 𝑡1]. Therefore, 𝜋𝑡0 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] iff 𝐾(𝑗−1) resides in the same
position in all of ALG(𝑆𝑡0(𝜋)),ALG(𝑆𝑡0+1(𝜋)), . . . ,ALG(𝑆𝑡1(𝜋)). But this, in turn,
holds iff 𝐾(𝑗−1) is not in any of the values-touched sets 𝑌𝑡0+1(𝜋)∪𝑌𝑡0+2(𝜋)∪· · ·∪𝑌𝑡1(𝜋).

Lemma 225. Let 𝜋 be an input vector, let [𝑡0, 𝑡1] ⊆ [1,𝑚] be a time window, and let
𝑗 ≥ 0 be even. Suppose that 𝜋𝑡1 is (𝜋, 𝑗−1)-robust in [𝑡0, 𝑡1], suppose that 𝐾𝑡1(𝜋) has
length at least 𝑗, and let ⟨𝐾(1), 𝐾(2), . . . , 𝐾(𝑗)⟩ denote the first 𝑗 elements of 𝐾𝑡1(𝜋).
Then 𝜋𝑡1 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] iff 𝐾(𝑗−1) ̸∈ 𝑋𝑡0(𝜋) ∪ 𝑋𝑡0+1(𝜋) ∪ · · · ∪ 𝑋𝑡1−1(𝜋),
meaning that position 𝐾(𝑗−1) is not touched by any of the deletion/insertion pairs
performed in the time window [𝑡0, 𝑡1 − 1].

Proof. Begin by considering the case that position 𝐾(𝑗−1) is empty in at least one
of the states ALG(𝑆𝑡0−1(𝜋)), . . . ,ALG(𝑆𝑡1−1(𝜋)). We know that position 𝐾(𝑗−1) is
not empty in state ALG(𝑆𝑡1−1(𝜋)) (since the kick-out chain 𝐾𝑡1(𝜋) has length 𝑗 and
therefore displaces some item from position 𝐾(𝑗−1)). Therefore 𝐾(𝑗−1) must be in
one of the positions-touched sets 𝑋𝑡0 , . . . , 𝑋𝑡1−1. On the other hand, since 𝐾(𝑗−1)

is empty in some state ALG(𝑆𝑡−1(𝜋)) with 𝑡 ∈ [𝑡0, 𝑡1 − 1], we know that the kick-
out chain 𝐾𝑡(slide(𝜋, 𝑡1, 𝑡)) cannot displace any item from position 𝐾(𝑗−1). Thus
𝐾𝑡(slide(𝜋, 𝑡1, 𝑡)) = ⟨𝐾(1), . . . , 𝐾(𝑗−1)⟩ has length 𝑗−1, implying that 𝜋𝑡1 is not (𝜋, 𝑗)-
robust in [𝑡0, 𝑡1]. This is consistent with the lemma, since we have both that 𝐾(𝑗−1) ∈
𝑋𝑡0(𝜋) ∪𝑋𝑡0+1(𝜋) ∪ · · · ∪𝑋𝑡1−1(𝜋) and that 𝜋𝑡1 is not (𝜋, 𝑗)-robust in [𝑡0, 𝑡1].

Suppose for the rest of the proof that position 𝐾(𝑗−1) is not empty in any of
states
ALG(𝑆𝑡0−1(𝜋)),ALG(𝑆𝑡0(𝜋)), . . . ,ALG(𝑆𝑡1−1(𝜋)). By (20.1),
this is equivalent to 𝐾(𝑗−1) not being empty in any
of states ALG(𝑆𝑡0−1(slide(𝜋, 𝑡1, 𝑡0)),ALG(𝑆𝑡0(slide(𝜋, 𝑡1, 𝑡0 +
1)), . . . ,ALG(𝑆𝑡1−1(slide(𝜋, 𝑡1, 𝑡1)). This implies that each of the kick-out chains in

{𝐾𝑡(slide(𝜋, 𝑡1, 𝑡)) | 𝑡 ∈ [𝑡0, 𝑡1]}

contains a 𝑗-th entry. Namely, the 𝑗-th entry of 𝐾𝑡(slide(𝜋, 𝑡1, 𝑡)) is the element in
position 𝐾(𝑗−1) of ALG(𝑆𝑡−1(slide(𝜋, 𝑡1, 𝑡)), which by (20.1) is also the element in
position 𝐾(𝑗−1) of ALG(𝑆𝑡−1(𝜋)). Observe that 𝜋𝑡1 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] iff the
𝑗-th entries of these kick-out chains are all equal, that is, iff the element in position
𝐾(𝑗−1) is the same for all of ALG(𝑆𝑡−1(𝜋)) with 𝑡 ∈ [𝑡0, 𝑡1]. This, in turn, occurs iff
𝐾(𝑗−1) is not in any of the positions-touched sets 𝑋𝑡0(𝜋), . . . , 𝑋𝑡1−1(𝜋).

Next we show that, if two elements 𝜋𝑖 and 𝜋𝑘 are both (𝜋, 𝑗 − 1)-robust in some
time interval 𝑇 (where 𝑖, 𝑘 ∈ 𝑇), then 𝐾(𝑗−1)

𝑖 (𝜋) and 𝐾(𝑗−1)
𝑘 (𝜋) must be distinct.

378

Lemma 226. Let 𝜋 be an input vector, let [𝑡0, 𝑡1] ⊆ [1,𝑚] be a time window, and
let 𝑗 ≥ 0. Define 𝑄 to be the set of 𝜋𝑖 ∈ [𝑡0, 𝑡1] that are (𝜋, 𝑗)-robust in [𝑡0, 𝑡1]. Then
we have that 𝐾(𝑗)

𝑖 (𝜋) ̸= 𝐾
(𝑗)
𝑘 (𝜋) for every distinct 𝜋𝑖, 𝜋𝑘 ∈ 𝑄.

Proof. Suppose 𝜋𝑖, 𝜋𝑘 ∈ 𝑄, where 𝑖 < 𝑘. If 𝑗 is odd, then Lemma 224 says that
element 𝐾(𝑗−1)

𝑖 (𝜋) cannot be in 𝑌𝑖+1(𝜋), . . . , 𝑌𝑡1(𝜋). Since 𝐾(𝑗−1)
𝑖 (𝜋) resides in po-

sition 𝐾
(𝑗)
𝑖 (𝜋) of ALG(𝑆𝑖(𝜋)), it follows that 𝐾(𝑗)

𝑖 (𝜋) ̸∈ 𝑋𝑖+1(𝜋), . . . , 𝑋𝑡1(𝜋). Thus
𝐾

(𝑗)
𝑖 (𝜋) ̸∈ 𝑋𝑘(𝜋), meaning that 𝐾(𝑗)

𝑖 (𝜋) ̸= 𝐾
(𝑗)
𝑘 (𝜋), as desired. Similarly, if 𝑗 is even,

then Lemma 225 says that position𝐾(𝑗−1)
𝑘 (𝜋) cannot be in𝑋𝑡0(𝜋), . . . , 𝑋𝑘−1(𝜋). It fol-

lows that the element𝐾(𝑗)
𝑘 (𝜋) that resides in position𝐾(𝑗−1)

𝑘 (𝜋) in state ALG(𝑆𝑘−1(𝜋))

cannot be in any of 𝑌𝑡0(𝜋), . . . , 𝑌𝑘−1(𝜋). Thus 𝐾
(𝑗)
𝑘 (𝜋) ̸∈ 𝑌𝑖(𝜋), meaning that

𝐾
(𝑗)
𝑘 (𝜋) ̸= 𝐾

(𝑗)
𝑖 (𝜋).

Next, we make an indistinguishability argument: Given that an element 𝜋𝑖 is
(𝜋, 𝑗 − 1)-robust in an interval 𝑇1, the probability of it being (𝜋𝑖, 𝑗)-robust in some
𝑇2 ⊆ 𝑇1 is independent of 𝑖.
Lemma 227. Let 𝜋 be a random permutation of [1,𝑚], let 𝑗 > 0, let [𝑡0, 𝑡1] ⊆ [1,𝑚]
be a time window, and let [𝑡′0, 𝑡

′
1] ⊆ [𝑡0, 𝑡1] be a time window contained in [𝑡0, 𝑡1].

Define 𝐸𝜋(𝑖) to be the event that 𝜋𝑖 is (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡1] but is not (𝜋, 𝑗)-
robust in [𝑡′0, 𝑡

′
1]. Then,

Pr[𝐸𝜋(1)] = Pr[𝐸𝜋(2)] = · · · = Pr[𝐸𝜋(𝑚)].

Proof. Observe that event 𝐸𝜋(𝑖) is equivalent to event 𝐸𝜋′(1) for 𝜋′ = slide(𝜋, 𝑖, 1).
However, if 𝜋 is a random permutation then 𝜋′ is too. Thus Pr[𝐸𝜋′(1)] = Pr[𝐸𝜋(1)].
This implies that Pr[𝐸𝜋(𝑖)] = Pr[𝐸𝜋(𝑖)], as desired.

At this point, we have established the core properties of (𝜋, 𝑗)-robustness that will
allow us to complete the proof. Consider two time intervals 𝑇2 ⊆ 𝑇1, and say that
ALG (𝑗, 𝑇1, 𝑇2)-squashes an element 𝜋𝑖, 𝑖 ∈ 𝑇1, if 𝜋𝑖 is (𝜋, 𝑗 − 1)-robust in 𝑇1 but
is not (𝜋, 𝑗)-robust in 𝑇2. Lemmas 224 and 225 tell us that (if 𝑇1 and 𝑇2 are defined
appropriately), then the only way that ALG can (𝑗, 𝑇1, 𝑇2)-squash a given element 𝜋𝑖
is if ALG touches 𝐾(𝑗−1)

𝑖 (𝜋) during time window 𝑇2. Lemma 226 then tells us that, for
every 𝜋𝑖 that ALG (𝑗, 𝑇1, 𝑇2)-squashes, the value of 𝐾(𝑗−1)

𝑖 (𝜋) will be distinct. This
means that the only way for ALG to (𝑗, 𝑇1, 𝑇2)-squash a large number of elements is
if ALG touches a large number of elements/slots during 𝑇2 (which would force ALG
to incur a large cost during 𝑇2). Thus we can assume that ALG (𝑗, 𝑇1, 𝑇2)-squashes
only a small fraction of the elements 𝜋𝑖 ∈ {𝜋𝑖 | 𝑖 ∈ 𝑇1}. Finally, Lemma 227 tell us
that ALG has no systematic control over which elements 𝜋𝑖 ∈ {𝜋𝑖 | 𝑖 ∈ 𝑇1} progress
from being (𝜋, 𝑗 − 1)-robust in 𝑇1 to being (𝜋, 𝑗)-robust in 𝑇2. From this, we can
conclude that, for a given element 𝜋𝑖, 𝑖 ∈ 𝑇2, the probability of 𝜋𝑖 being (𝜋, 𝑗)-robust
in 𝑇2 is only slightly smaller than that of 𝜋𝑖 being (𝜋, 𝑗 − 1)-robust in 𝑇1. The full

379

argument requires some care (as well as some special handling of odd vs even 𝑗) and
is presented in the following two lemmas.
Lemma 228. Let 𝑠 be the expected cost per insertion/deletion of ALG. Let 𝜋 be a
random permutation of [1,𝑚], let 𝑗 > 0 be odd, let [𝑡0, 𝑡1] ⊆ [1,𝑚] be a time window,
and let [𝑡′0, 𝑡1] be a smaller time window also ending at 𝑡1. Define 𝐸(𝑖) to be the event
that 𝜋𝑖 is (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡1] but is not (𝜋, 𝑗)-robust in [𝑡′0, 𝑡1]. Then, for all
𝑖 ∈ [𝑚],

Pr[𝐸(𝑖)] ≤ 2𝑠(𝑡1 − 𝑡′0) + 1

𝑡′0 − 𝑡0 + 1
.

Proof. Let 𝑄 be the set of 𝑖 ∈ [𝑡0, 𝑡
′
0] for which 𝐸(𝑖) occurs. By Lemma 227, 𝑝 =

Pr[𝐸(𝑖)] is the same for all 𝑖. It follows that

E[|𝑄|] = E

⎡⎣ ∑︁
𝑖∈[𝑡0,𝑡′0]

I(𝐸(𝑖))

⎤⎦ = (𝑡′0 − 𝑡0 + 1)𝑝. (20.2)

For 𝑖 ∈ [𝑡0, 𝑡
′
0], if 𝐸(𝑖) occurs, then we must have that (1) 𝜋𝑖 is (𝜋, 𝑗 − 1)-robust in

[𝑡0, 𝑡1] and (2) 𝜋𝑖 is not (𝜋, 𝑗)-robust in [𝑡′0, 𝑡1]. By the (𝜋, 𝑗 − 1)-robustness of 𝜋𝑖 in
[𝑡0, 𝑡1], we know that the element 𝐾(𝑗−1)

𝑡 (slide(𝜋, 𝑖, 𝑡)) is the same for all 𝑡 ∈ [𝑡0, 𝑡1]—
call this element 𝑘𝑖. In order for 𝜋𝑖 to be non-(𝜋, 𝑗)-robust in [𝑡′0, 𝑡1], it must also
be non-(slide(𝜋, 𝑖, 𝑡′0), 𝑗)-robust in [𝑡′0, 𝑡1]. But Lemma 224 tells us that, in order for
this to occur, we need either (1) that |𝐾𝑡′0

(slide(𝜋, 𝑖, 𝑡′0))| = 𝑗 − 1, in which case
𝑘𝑖 = 𝐾

(𝑗−1)

𝑡′0
(slide(𝜋, 𝑖, 𝑡′0)) must be the element 𝑚 + 𝑡′0 that is deleted by the 𝑡′0-th

deletion; or (2) that 𝑘𝑖 = 𝐾
(𝑗−1)

𝑡′0
(slide(𝜋, 𝑖, 𝑡′0)) is contained in at least one of

𝑌𝑡′0+1(slide(𝜋, 𝑖, 𝑡
′
0)), 𝑌𝑡′0+2(slide(𝜋, 𝑖, 𝑡

′
0)), . . . , 𝑌𝑡1(slide(𝜋, 𝑖, 𝑡

′
0)). Combined, conditions

(1) and (2) can be rewritten as 𝑘𝑖 ∈ {𝑚 + 𝑡′0} ∪
⋃︀
𝑡∈[𝑡′0+1,𝑡1]

𝑌𝑡(slide(𝜋, 𝑖, 𝑡
′
0)). By

(20.1), this, in turn, is equivalent to 𝑘𝑖 ∈ {𝑚+ 𝑡′0}+
⋃︀
𝑡∈[𝑡′0+1,𝑡1]

𝑌𝑡(𝜋). Recalling that

𝑘𝑖 = 𝐾
(𝑗−1)
𝑖 (𝜋), we can conclude that: in order for 𝐸(𝑖) to occur, we must have both

that 𝜋𝑖 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1] and that 𝐾(𝑗−1)
𝑖 (𝜋) ∈ {𝑚+ 𝑡′0} ∪

⋃︀
𝑡∈[𝑡′0+1,𝑡1]

𝑌𝑡(𝜋).

Recall that 𝑄 is the set of 𝑖 ∈ [𝑡0, 𝑡
′
0] for which 𝐸(𝑖) occurs. Since every 𝜋𝑖 ∈ 𝑄

is (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡1], we have by Lemma 226 that each 𝜋𝑖 ∈ 𝑄 has a distinct
𝑘𝑖 = 𝐾

(𝑗−1)
𝑖 (𝜋). Thus each 𝜋𝑖 ∈ 𝑄 contributes a distinct element to {𝑚 + 𝑡′0} ∪⋃︀

𝑡∈[𝑡′0+1,𝑡1]
𝑌𝑡(𝜋). This means that

|𝑄| ≤ 1 +

⃒⃒⃒⃒
⃒⃒ ⋃︁
𝑡∈[𝑡′0+1,𝑡1]

𝑌𝑡(𝜋)

⃒⃒⃒⃒
⃒⃒ .

The right side can be bounded above by one plus the total cost that the algorithm
incurs in time interval [𝑡′0+1, 𝑡1], which in expectation is at most 2𝑠(𝑡1− 𝑡′0)+1. Thus

E[|𝑄|] ≤ 2𝑠(𝑡1 − 𝑡′0) + 1.

380

Combining this with (20.2), we have that

(𝑡′0 − 𝑡0 + 1)𝑝 ≤ 2𝑠(𝑡1 − 𝑡′0) + 1,

which completes the proof of the lemma.

Lemma 229. Let 𝑠 be the expected cost per insertion/deletion of ALG. Let 𝜋 be a
random permutation of [1,𝑚], let 𝑗 > 0 be even, let [𝑡0, 𝑡1] ⊆ [1,𝑚] be a time window,
and let [𝑡0, 𝑡

′
1] be a smaller time window also starting at 𝑡0. Define 𝐸(𝑖) to be the

event that 𝜋𝑖 is (𝜋, 𝑗− 1)-robust in [𝑡0, 𝑡1] but is not (𝜋, 𝑗)-robust in [𝑡0, 𝑡
′
1]. Then, for

all 𝑖 ∈ [𝑚],

Pr[𝐸(𝑖)] ≤ 2𝑠(𝑡′1 − 𝑡0) + 𝜀𝑛

𝑡1 − 𝑡′0 + 1
.

Proof. Let 𝑄 be the set of 𝑖 ∈ [𝑡′1, 𝑡1] for which 𝐸(𝑖) occurs. By Lemma 227, 𝑝 =
Pr[𝐸(𝑖)] is the same for all 𝑖. It follows that

E[|𝑄|] = E

⎡⎣ ∑︁
𝑖∈[𝑡′1,𝑡1]

I(𝐸(𝑖))

⎤⎦ = (𝑡′1 − 𝑡1 + 1)𝑝. (20.3)

For 𝑖 ∈ [𝑡′1, 𝑡1], if 𝐸(𝑖) occurs, then we must have that (1) 𝜋𝑖 is (𝜋, 𝑗 − 1)-robust
in [𝑡0, 𝑡1] and (2) 𝜋𝑖 is not (𝜋, 𝑗)-robust in [𝑡0, 𝑡

′
1]. By the (𝜋, 𝑗 − 1)-robustness

of 𝜋𝑖 in [𝑡0, 𝑡1], we know that the position 𝐾
(𝑗−1)
𝑡 (slide(𝜋, 𝑖, 𝑡)) is the same for all

𝑡 ∈ [𝑡0, 𝑡1]—call this position 𝑘𝑖. In order for 𝜋𝑖 to be non-(𝜋, 𝑗)-robust in [𝑡0, 𝑡
′
1], it

must also be non-(slide(𝜋, 𝑖, 𝑡′1), 𝑗)-robust in [𝑡0, 𝑡
′
1]. But Lemma 224 tells us that,

in order for this to occur, we need either (1) that |𝐾𝑡′1
(slide(𝜋, 𝑖, 𝑡′1))| = 𝑗 − 1,

in which case 𝑘𝑖 = 𝐾
(𝑗−1)

𝑡′1
(slide(𝜋, 𝑖, 𝑡′1)) must be one of the 𝜀𝑛 positions that are

empty in state ALG(𝑆𝑡′1−1(slide(𝜋, 𝑖, 𝑡
′
1))) = ALG(𝑆𝑡′1−1(𝜋)) (where the equality fol-

lows from (20.1)); or (2) that 𝑘𝑖 = 𝐾
(𝑗−1)

𝑡′1
(slide(𝜋, 𝑖, 𝑡′1)) is contained in at least one of

𝑋𝑡0(slide(𝜋, 𝑖, 𝑡
′
1)), 𝑋𝑡0+1(slide(𝜋, 𝑖, 𝑡

′
1)), . . . , 𝑋𝑡′1−1(slide(𝜋, 𝑖, 𝑡

′
1)). Defining 𝑅 to be the

𝜀𝑛 positions that are empty in state ALG(𝑆𝑡′1−1(𝜋)), conditions (1) and (2) can be
rewritten as 𝑘𝑖 ∈ 𝑅 ∪

⋃︀
𝑡∈[𝑡0,𝑡′1−1]𝑋𝑡(slide(𝜋, 𝑖, 𝑡

′
1)). By (20.1), this, in turn, is equiv-

alent to 𝑘𝑖 ∈ 𝑅 +
⋃︀
𝑡∈[𝑡0,𝑡′1−1]𝑋𝑡(𝜋). Recalling that 𝑘𝑖 = 𝐾

(𝑗−1)
𝑖 (𝜋), we can conclude

that: in order for 𝐸(𝑖) to occur, we must have both that 𝜋𝑖 is (𝜋, 𝑗)-robust in [𝑡0, 𝑡1]

and that 𝐾(𝑗−1)
𝑖 (𝜋) ∈ 𝑅 ∪

⋃︀
𝑡∈[𝑡0,𝑡′1−1]𝑋𝑡(𝜋).

Recall that 𝑄 is the set of 𝑖 ∈ [𝑡′1, 𝑡1] for which 𝐸(𝑖) occurs. Since every 𝜋𝑖 ∈ 𝑄 is
(𝜋, 𝑗−1)-robust in [𝑡0, 𝑡1], we have by Lemma 226 that each 𝜋𝑖 ∈ 𝑄 has a distinct 𝑘𝑖 =
𝐾

(𝑗−1)
𝑖 (𝜋). Thus each 𝜋𝑖 ∈ 𝑄 contributes a distinct element to 𝑅 ∪

⋃︀
𝑡∈[𝑡0,𝑡′1−1]𝑋𝑡(𝜋).

This means that

|𝑄| ≤ |𝑅|+

⃒⃒⃒⃒
⃒⃒ ⋃︁
𝑡∈[𝑡0,𝑡′1−1]

𝑋𝑡(𝜋)

⃒⃒⃒⃒
⃒⃒ = 𝜀𝑛+

⃒⃒⃒⃒
⃒⃒ ⋃︁
𝑡∈[𝑡0,𝑡′1−1]

𝑋𝑡(𝜋)

⃒⃒⃒⃒
⃒⃒ .

381

The right side can be bounded above by 𝜀𝑛 plus the total cost that the algorithm
incurs in the time interval [𝑡0, 𝑡′1−1], which in expectation is at most 2𝑠(𝑡′1− 𝑡0)+ 𝜀𝑛.
Thus

E[|𝑄|] ≤ 2𝑠(𝑡′1 − 𝑡0) + 𝜀𝑛.

Combining this with (20.3), we have that

(𝑡1 − 𝑡′1 + 1)𝑝 ≤ 2𝑠(𝑡′1 − 𝑡0) + 𝜀𝑛,

which completes the proof of the lemma.

The previous two lemmas considered odd and even 𝑗, respectively. We now com-
bine them to obtain a single lemma that holds for all 𝑗.
Lemma 230. Let 𝑐 be a sufficiently large positive constant. Let 𝑠 be the expected
cost per insertion/deletion of ALG and let 𝑠 > 𝑠. Let 𝜋 be a random permutation of
[1,𝑚], and let 𝑗 > 0. Consider a time window [𝑡0, 𝑡1] ⊆ [1,𝑚] of size 𝑟 = 𝑡1 − 𝑡0 + 1
satisfying 𝑟 > 𝑐𝑠𝜀𝑛. Furthermore, let [𝑡′0, 𝑡′1] = [𝑡0 + 𝑟/2− 𝑟/ (𝑐𝑠2) , 𝑡0 + 𝑟/2+ 𝑟/ (𝑐𝑠2)]
be the interval representing the middle 2/ (𝑐𝑠2)-fraction of [𝑡0, 𝑡1]. Let 𝐸 be the
event that 𝜋1 is (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡1] but 𝜋1 is not (𝜋, 𝑗)-robust in [𝑡′0, 𝑡

′
1]. Then

Pr[𝐸] ≤ 1/𝑠.

Proof. Suppose 𝑗 is odd. We have that

Pr[𝐸] ≤ Pr[𝜋1 is (𝜋, 𝑗 − 1)-robust in [𝑡0, 𝑡
′
1] but 𝜋1 is not (𝜋, 𝑗)-robust in [𝑡′0, 𝑡

′
1]],

which by Lemma 228 is at most

2𝑠(𝑡′1 − 𝑡′0) + 1

𝑡′0 − 𝑡0 + 1
.

By assumption, 𝑡′0 − 𝑡0 = Ω(𝑐𝑠2(𝑡′1 − 𝑡′0)). Thus

Pr[𝐸] ≤ 𝑂
(︁ 𝑠

𝑐𝑠2

)︁
.

Setting 𝑐 to be a sufficiently large positive constant, and using the fact that 𝑠 ≥ 𝑠,
we get Pr[𝐸] ≤ 1/𝑠.

Now suppose 𝑗 is even. We have that

Pr[𝐸] = Pr[𝜋1 is (𝜋, 𝑗 − 1)-robust in [𝑡′0, 𝑡1] but 𝜋1 is not (𝜋, 𝑗)-robust in [𝑡′0, 𝑡
′
1]],

which by Lemma 229 is at most

2𝑠(𝑡′1 − 𝑡′0) + 𝜀𝑛

𝑡1 − 𝑡′1 + 1
.

382

By assumption, 𝑡1 − 𝑡′1 = Ω(𝑐𝑠2(𝑡′1 − 𝑡′0)) and 𝑡1 − 𝑡′1 = Ω(𝑐𝑠𝜀𝑛), which means that

Pr[𝐸] = 𝑂

(︂
2𝑠(𝑡′1 − 𝑡′0) + 𝜀𝑛

𝑐𝑠2(𝑡′1 − 𝑡′0) + 𝑐𝑠𝜀𝑛

)︂
.

Setting 𝑐 to be a sufficiently large positive constant, and using the fact that 𝑠 ≥ 𝑠,
we get Pr[𝐸] ≤ 1/𝑠.

By applying Lemma 230 repeatedly, we can conclude that, with reasonably large
probability, 𝜋𝑚/2 will be (𝜋, 𝑗)-robust (for a reasonably large 𝑗) in some time interval
containing 𝑚/2. This allows us to indirectly obtain a lower bound on |𝐾𝑚/2(𝜋)|.
Lemma 231. Let 𝜋 be a random permutation of [1,𝑚], let 𝑗 > 0, and let 𝑐 be a suf-
ficiently large positive constant. Suppose ALG has cost 𝑠 ≤ 𝑠 per insertion/deletion,
and suppose that (︀

𝑐𝑠2
)︀𝑗+1 ≤ 𝜀−1. (20.4)

Then
Pr[|𝐾𝑚/2(𝜋)| ≥ 𝑗] ≥ 1− 𝑗/𝑠.

Proof. Define [𝑎0, 𝑏0] = [1,𝑚], and then recursively define

[𝑎ℓ, 𝑏ℓ] =

[︂
𝑎ℓ−1 + (𝑏ℓ−1 − 𝑎ℓ−1) ·

(︂
1/2− 1

𝑐𝑠2

)︂
, 𝑎ℓ−1 + (𝑏ℓ−1 − 𝑎ℓ−1) ·

(︂
1/2 +

1

𝑐𝑠2

)︂]︂
for ℓ ∈ [1, 𝑗]. From (20.4), we can deduce that for every ℓ ∈ [0, 𝑗],

|𝑏ℓ − 𝑎ℓ| > 𝑐𝑠𝜀𝑛,

which will allow us to apply Lemma 230 in a moment.
For ℓ ∈ [0, 𝑗], define

𝑝ℓ = Pr[𝜋1 is (𝜋, ℓ)-robust in [𝑎ℓ, 𝑏ℓ]].

Then 𝑝0 = 1, and for all ℓ ∈ [1, 𝑗] we have by Lemma 230 that 𝑝ℓ ≥ 𝑝ℓ−1 − 1/𝑠. Thus
𝑝𝑗 ≥ 1− 𝑗/𝑠. On the other hand, by Lemma 227, we know that

Pr[𝜋𝑚/2 is (𝜋, 𝑗)-robust in [𝑎𝑗, 𝑏𝑗]] = Pr[𝜋1 is (𝜋, ℓ)-robust in [𝑎ℓ, 𝑏ℓ]] = 𝑝𝑗 ≥ 1− 𝑗/𝑠.

But 𝜋𝑚/2 being (𝜋, 𝑗)-robust implies that |𝐾𝑚/2(𝜋)| ≥ 𝑗. Thus Pr[|𝐾𝑚/2(𝜋)| ≥ 𝑗] ≥
1− 𝑗/𝑠, as desired.

We can now prove our lower bound on the expected cost incurred by ALG.
Theorem 223. Let 𝜀 ≥ 1/𝑛. Any fixed-size stateless allocation algorithm ALG must
incur Ω(log 𝜀−1/ log log 𝜀−1) expected cost per insertion/deletion.

Proof. Let 𝑠 be the expected cost per insertion/deletion of ALG and suppose for
contradiction that 𝑠 = 𝑜(log 𝜀−1/ log log 𝜀−1). Let 𝑠 = log 𝜀−1, let 𝑐 be a sufficiently

383

large positive constant and let 𝑗 = log 𝜀−1/(𝑐 log log 𝜀−1). By design, we have(︀
𝑐𝑠2
)︀𝑗+1 ≤ 𝜀−1.

Consider a random permutation 𝜋 of [1,𝑚]. By Lemma 230, we have that

Pr[|𝐾𝑚/2(𝜋)| ≥ 𝑗] ≥ 1− 𝑗/𝑠 ≥ 1/2.

But that means that there is a deletion/insertion pair with an expected cost of at
least 𝑗/2. Thus 𝑠 ≥ 𝑗/2 = Ω(log 𝜀−1/ log log 𝜀−1), a contradiction.

384

Chapter 21

Efficient Data-Structural
Implementations

Until now, we have concerned ourselves only with the overhead of an allocator. An
upper bound of 𝐿 on the expected overhead means that, for an insertion/deletion of
an item 𝑥 with size 𝜋(𝑥), the cumulative sizes of the items that are rearranged will
be 𝑂(𝐿𝜋(𝑥)) in expectation. Notice, however, that actually determining which items
to move may be difficult do efficiently. Indeed, although our allocators in Chapter 19
achieve 𝑂(1 + log 𝜀−1) expected overhead, a naive implementation of these allocators
even in the fixed-size case would take time Ω(𝐿𝜋(𝑥) + 𝜀−1) per insertion/deletion.

In this chapter, we consider the data-structural version of the stateless alloca-
tion problem, in which our goal is to achieve expected time 𝑂(𝐿𝜋(𝑥)) for the inser-
tion/deletion of a given key 𝑥. Additionally, the data structures that we present will
support constant-time queries.

Formally, we wish to construct a strongly history-independent hash table that
maps each of its keys 𝑥 ∈ 𝑆 to a contiguous interval 𝜑(𝑥) of size 𝜋(𝑥), that supports
constant-time queries (determining 𝜑(𝑥) for a given key 𝑥), and that supports efficient
insertions/deletions. The overhead of such a hash table is said to be bounded by
a quantity 𝐿 if the insertion/deletion of a key 𝑥 of size 𝜋(𝑥) is guaranteed to take
expected time 𝑂(𝐿𝜋(𝑥)). The hash table is said to achieve load factor 1 − 𝑂(𝜀) if
it uses space at most (1 + 𝑂(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥). As a convention, we will assume that

𝜋(𝑥) ≥ 1 includes the space needed to store 𝑥—that, is the first machine word in
the interval 𝜑(𝑥) is used to store the key 𝑥 explicitly. We are interested both in the
fixed-size case, where 𝜋(𝑥) = 𝜋(𝑦) = Θ(1) for every 𝑥, 𝑦 ∈ 𝑆, and the variable-size
case, where different elements can have different sizes.

We will typically use 𝑚 to either denote
∑︀

𝑥∈𝑆 𝜋(𝑥) or denote an upper bound on∑︀
𝑥∈𝑆 𝜋(𝑥).

In the fixed-size case, we show that for any 𝜀−1 ≤ log1/10𝑚, one can construct a
strongly history independent hash table with load factor 1 − 𝜀 and overhead 𝑂(1 +
log 𝜀−1). By the lower bound given in Chapter 20, the overhead achieved by this
construction is optimal up to a factor of 𝑂(log log 𝜀−1).

385

Next, we turn our attention to the variable-size case. We show that, for any
𝜀−1 ≤ log1/10𝑚, if we assume that each item 𝑥 ∈ 𝑆 has size 𝜋(𝑥) ≤ 𝜀4𝑚, then we can
construct a strongly history independent hash table with load factor 1 − Θ(𝜀) and
overhead 𝑂(1 + log 𝜀−1). This gives a time-efficient realization of the bounds from
Chapter 19.

Throughout the chapter, except for when otherwise specified, we measure space
in machine words.

Chapter overview. We begin in Section 21.1 by constructing efficient strongly
history-independent hash tables both for fixed-size objects and for relatively small
objects (i.e., 𝜋(𝑥) ≤ log1/10𝑚). Here we are able to make use of several techniques
that have been popularized in the succinct data-structure literature in recent years,
namely the use of frontyard/backyard constructions [52, 75, 76, 82, 94, 146] and the
use of the Method of Four Russians [54, 75, 76, 82, 85, 105]. Then, in Section 21.2,
we give a solution that is efficient for large objects but not for small ones. Finally,
in Section 21.3, we show how to combine these results to get a single solution that,
for an object 𝑥 of size 𝜋(𝑥) ≤ 𝜀7𝑥, supports insertions/deletions in expected time
𝑂((1 + log 𝜀−1)𝜋(𝑥)), and queries in constant time (w.h.p.).

We remark that, throughout the chapter, we will assume access to fully random
hash functions. This assumption is without loss of generality in our setting, since one
can make use of (what are at this point a standard set of) known techniques [158,
162,291,326] for efficiently simulating fully-random hash functions in data-structural
applications—for a detailed discussion of how to apply these techniques, see, e.g.,
[85, 158].

21.1 An Efficient Allocator for Small Objects

Let 𝑚 be an upper bound on
∑︀

𝑥∈𝑆 𝜋(𝑥). In this section, we consider the special
case where objects are guaranteed to have sizes at most log1/10𝑚. In fact, we give a
general-purpose construction for how to take an arbitrary stateless allocator 𝒜 and
make it time efficient in this setting.

Let 𝜀,𝑚,𝑅, 𝑈 be parameters satisfying 𝜀−1 ≤ log1/10𝑚 and 𝑅 ≤ log2/10𝑚. We will
consider sets 𝑆 ⊆ [𝑈] of keys, and size functions 𝜋 : 𝑆 → N satisfying 𝜋(𝑥) ∈ [1, 𝑅] for
every 𝑥 ∈ 𝑋 and satisfying

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ 𝑚. Finally, let 𝒜 be a stateless allocation

algorithm that, given as input a set of items 𝑇 ⊆ [log4𝑚] and a size function 𝜋 : 𝑇 →
[1, 𝑅] satisfying

∑︀
𝑥∈𝑇 𝜋(𝑥) ≤ (1 + 𝜀) log9/10𝑚, produces an allocation mapping the

items in 𝑥 ∈ 𝑇 to disjoint intervals 𝜑(𝑥) ⊆ [0, (1 + 2𝜀) log9/10𝑚] of size 𝜋(𝑥).
We will show how to construct a strongly history independent hash table that

stores items with sizes in [1, 𝑅], and that incurs overhead matching that is achieved
by the black-box algorithm 𝒜. Plugging in the allocators from Chapter 19, we get
an 𝑂(1 + log 𝜀−1)-overhead hash table for fixed-size objects (Theorem 235) and an
𝑂(1 + log 𝜀−1)-overhead hash table for small variable-size objects (Theorem 236).

386

We remark that, for convenience, we assume that the capacity parameter 𝑚 is
fixed. However, at the end of the section, we will describe how to extend the data
structure to support dynamic resizing.

A frontyard/backyard construction. Partition the first (1 + 2𝜀)𝑚 slots of the
array into 𝑚/ log9/10𝑚 bins 𝐵1, 𝐵2, . . . , 𝐵𝑚/ log9/10𝑚 of size 𝑏 = (1+2𝜀) log9/10𝑚 each.
Let ℎ : [𝑈] → [𝑚/ log9/10𝑚] be a random hash function, and say that bin 𝐵𝑖 owns
keys

𝑂𝑖 = {𝑥 ∈ 𝑆 | ℎ(𝑥) = 𝑖}.

Let 𝑔 : [𝑈] → [12 log log𝑚] be a random pairwise independent hash function. Say
that bin 𝐵𝑖 contains a fingerprint collision if 𝑔(𝑥) = 𝑔(𝑦) for some pair of distinct
𝑥, 𝑦 ∈ 𝑂𝑖.

Say that a bin 𝐵𝑖 is overflowed if either
∑︀

𝑥∈𝑂𝑖
𝜋(𝑥) > (1 + 𝜀) log9/10𝑚 or if 𝐵𝑖

contains a fingerprint collision. At a high level, keys 𝑥 ∈ 𝑆 that map to overflowed
bins 𝐵ℎ(𝑥) will be stored in a backyard data structure, to be described in a moment.
Keys 𝑥 ∈ 𝑆 that map to non-overflowed bins 𝐵ℎ(𝑥) will be allocated space within their
bin; these keys are said to reside in the frontyard.

Implementing the frontyard. Consider the keys 𝑂𝑖 in some non-overflowed bin
𝐵𝑖. Recall that

∑︀
𝑥∈𝑂𝑖

𝜋(𝑥) ≤ (1 + 𝜀) log9/10𝑚 and that bin 𝐵𝑖 is a sub-array of size
(1 + 2𝜀) log9/10𝑚. We can therefore use 𝒜 to construct an allocation 𝜑𝑖 mapping the
fingerprint 𝑔(𝑥) of each key 𝑥 ∈ 𝑂𝑖 to a disjoint interval 𝜑𝑖(𝑔(𝑥)) in 𝐵𝑖.

There are two difficulties that we encounter here: (1) how do we efficiently imple-
ment 𝒜, so that if the algorithm incurs overhead ℓ on an allocation of size 𝑘, we take
time 𝑂(ℓ𝑘); and (2) how do we support queries allowing us to evaluate 𝜑𝑖 in constant
time?

We solve both of these difficulties with a lookup-table approach (a.k.a., the so-
called Method of Four Russians). Observe that, for each 𝑥 ∈ 𝑂𝑖, both the fingerprint
𝑔(𝑥) and the size 𝜋(𝑥) ∈ [1, 𝑅] can be written using 𝑂(log log 𝑛) bits. It follows that
the entire input to 𝜑𝑖 can be written using 𝑂(|𝑂𝑖| log log 𝑛) = 𝑂(log9/10 𝑛 log log 𝑛)
bits. As there are 𝑛𝑜(1) such inputs, we can construct a global lookup table (shared
across all of the bins) that tells us how to implement insertions, deletions, and queries.
Given an input 𝐼 and a new key 𝑦 with fingerprint 𝑔(𝑦) to be inserted, the lookup
table 𝐿(insert 𝑔(𝑦) into 𝐼) tells us what rearrangements need to be performed to get
the new allocation (post-insertion), and what the new input 𝐼 ′ is after the insertion
(and whether the insertion causes a fingerprint collision). Similarly, given an input 𝐼
and a key 𝑦 with fingerprint 𝑔(𝑦) to be deleted, the lookup table 𝐿(delete 𝑔(𝑦) from 𝐼)
tells us what rearrangements need to be performed to get the new allocation (post-
deletion), and what the new input 𝐼 ′ is after the deletion. And, given an input 𝐼 and
a key 𝑦 with fingerprint 𝑔(𝑦), the lookup table 𝐿(query 𝑔(𝑦) in 𝐼) evaluates 𝜑𝑖(𝑔(𝑦)).
(Note that negative queries can be detected using the fact that each key 𝑥 ∈ 𝑂𝑖 is
stored at the beginning of the interval 𝜑𝑖(𝑔(𝑥)) allocated to it.)

387

With this lookup table approach, we have the following guarantees: If the expected
overhead of 𝒜 is 𝐿, then the expected time to insert/delete a key 𝑥 of size 𝜋(𝑥) in
the frontyard is 𝑂(𝐿𝜋(𝑥)) (as the time is dominated by the cost of rearrangements);
and the time to query a key 𝑥 is 𝑂(1) (deterministically).

Implementing the backyard. Before describing how to implement the backyard,
we begin with two lemmas bounding the size of the backyard.
Lemma 232. The probability of a given item 𝑥 ∈ 𝑆 being in the backyard is at most
𝑜(1/ log10𝑚).

Proof. For 𝑥 ∈ 𝑆 to be in the backyard, we would need either that∑︁
𝑦∈𝑂ℎ(𝑥)

𝜋(𝑦) ≥ (1 + 𝜀) log9/10𝑚. (21.1)

or that
∃𝑦, 𝑧 ∈ 𝑆 s.t. ℎ(𝑥) = ℎ(𝑦) = ℎ(𝑧) and 𝑔(𝑦) = 𝑔(𝑧) and 𝑦 ̸= 𝑧. (21.2)

To bound the probability of (21.1), observe that 𝑍 :=
∑︀

𝑦∈𝑂ℎ(𝑥)∖{𝑥} 𝜋(𝑦)/𝑅 has
expected value at most (log9/10𝑚)/𝑅, and is a sum of independent random variables
that are each at most 1. As 𝜀 ≥ 1/ log1/10𝑚 and 𝑅 ≤ log2/10𝑚, we have that

Pr

⎡⎣ ∑︁
𝑦∈𝑂ℎ(𝑥)∖{𝑥}

𝜋(𝑦) ≥ (1 + 𝜀) log9/10𝑚−𝑅

⎤⎦
≤ Pr[𝑍 ≥ (1 + 𝜀)(log9/10𝑚)/𝑅− 1]

≤ Pr[𝑍 ≥ E[𝑍] +
√︀
E[𝑍] · logΩ(1)𝑚],

which by a Chernoff bound is 𝑜
(︁

1
log10𝑚

)︁
.

To bound the probability of (21.2), observe that there are at most
(︀
𝑚
2

)︀
≤ 𝑚2

options for 𝑦 and 𝑧, each of which has probability at most
(︁

log9/10𝑚
𝑚

)︁2
of satisfying

ℎ(𝑦) = 𝑦(𝑧) = ℎ(𝑥), and probability at most 1/ log12𝑚 of satisfying 𝑔(𝑦) = 𝑔(𝑧).
Thus the probability of (21.2) is at most

𝑚2 ·

(︃
log9/10𝑚

𝑚

)︃2

· 1

log12𝑚
= 𝑜

(︂
1

log10𝑚

)︂
.

Lemma 233. Let 𝑋 be the set of keys 𝑥 ∈ 𝑆 that map to overflowed bins 𝐵ℎ(𝑥).

388

With probability at least 1− 1/ poly(𝑚),

|𝑋| ≤ 𝑚/ log10𝑚.

Proof. By Lemma 232, E[|𝑋|] ≤ 𝑜(𝑚/ log10𝑚). For each 𝑥 ∈ 𝑆, we define 𝑃𝑥 =
(𝑔(𝑥), ℎ(𝑥)). Then 𝑋 is a determined by ≤ 𝑚 independent random variables {𝑃𝑥 | 𝑥 ∈
𝑆}, and changing the value of any given 𝑃𝑥 can change 𝑋 by at most 𝑏 = 𝑂(log9/10𝑚).
Thus, by McDiarmid’s inequality, we have for all 𝑡 ≥ 0 that Pr[𝑋 ≥ E[𝑋] + 𝑏𝑡

√
𝑚] ≤

𝑒𝑡
2/2. It follows that |𝑋| ≤ 𝑚/ log10𝑚 with probability 1− 1/ poly(𝑚).

Since the backyard is so small, we can implement the backyard as follows: par-
tition the keys into 𝑂(1

𝜀
log 𝑛) groups 𝐺1, 𝐺2, . . ., where each key 𝑥 in the backyard

goes to group ⌈log(1+𝜀) 𝜋(𝑥)⌉. Implement each group 𝐺𝑖 as a strongly history inde-
pendent hash table capable of storing up to 2𝑚/ log10𝑚 elements of size (1+𝜀)𝑖 each,
using Blelloch and Golovin’s construction [105]. Critically, each 𝐺𝑖 contains at most
𝑚/ log10𝑚 elements, so the hash table is at a load factor of at most 1/2, and there-
fore incurs 𝑂(1) expected overhead (and worst-case constant-time queries). Finally,
implement one more hash table 𝐽 , also with capacity 2𝑚/ log10𝑚, that maps each
key 𝑥 to its size 𝜋(𝑥) (so that queries can determine which hash table 𝐺𝑖 to find key
𝑥’s allocation in).

Assuming that the backyard contains at most 𝑚 log10𝑚 elements, the space
used to implement these hash tables will be at most 𝑂(𝜀−1 log𝑚 · 𝑚/ log10𝑚) ≤
𝑂(𝑚/ log8𝑚).

Finally, for each bin that is in the backyard, we maintain a linked list traversing
the bin’s elements (in the backyard) in sorted order (by key). This linked list ensures
that, if we ever need to bring the bin back to the frontyard (i.e., it is no longer
overflowed), we can recover its elements in time proportional to the size of the bin.
The linked lists consume 𝑂(1) extra space per backyard element1. Thus the space to
implement the backyard remains 𝑂(𝑚/ log8𝑚) with high probability in 𝑚.

In general, if an insertion/deletion of some key 𝑥 touches an overflowed bin 𝐵ℎ(𝑥)

(or if the insertion/deletion changes the overflow-state of the bin 𝐵ℎ(𝑥)), then the in-
sertion/deletion will take at most 𝑂(

∑︀
𝑦∈𝐵ℎ(𝑥)

𝜋(𝑦)) expected time. We can deduce by
a Chernoff bound that, even if we condition on 𝐵ℎ(𝑥) being overflowed,

∑︀
𝑦∈𝐵ℎ(𝑥)

𝜋(𝑦)

has expected value 𝑂(𝑏) = 𝑂(log9/10𝑚) (and is, in fact, bounded above by a geomet-
ric random variable with mean 𝑂(𝑏)). On the other hand, we have by Lemma 232
that each insertion/deletion has less than a 1/ log10𝑚 probability of touching an over-
flowed bin—thus the expected time per insertion/deletion spent handling overflowed
bins is 𝑂(1).

Putting the pieces together. We can now prove the following proposition.

1The base pointer for the linked list can be stored directly in the bin 𝐵𝑖.

389

Proposition 234. Let 𝜀,𝑚,𝑅, 𝑈 be parameters satisfying 𝜀−1 ≤ log1/10𝑚 and 𝑅 ≤
log1/10𝑚. Consider input sets 𝑆 ⊆ [𝑈] of keys, and size functions 𝜋 : 𝑆 → N
satisfying 𝜋(𝑥) ∈ [1, 𝑅] for every 𝑥 ∈ 𝑋 and satisfying

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ 𝑚. Let 𝒜 be

a stateless allocation algorithm that, given as input a set of items 𝑇 ⊆ [log4𝑚] and
a size function 𝜋 : 𝑇 → [1, 𝑅] satisfying

∑︀
𝑥∈𝑇 𝜋(𝑥) ≤ (1 + 𝜀) log9/10𝑚, produces an

allocation mapping the items in 𝑥 ∈ 𝑇 to disjoint intervals 𝜑(𝑥) ⊆ [0, (1+2𝜀) log9/10𝑚]
of size 𝜋(𝑥). Finally, let 𝐿 be the overhead achieved by 𝒜.

Then we can construct a strongly history-independent hash table that maps the
elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝜋(𝑥) in [0, (1 + 𝑂(𝜀))𝑚], that incurs
𝑂(𝐿) expected overhead per insertion/deletion, and that supports 𝑂(1)-time queries
(with probability 1− 1/ poly(𝑚)).

Proof. The frontyard bins consume (1 + 𝑂(𝜀))𝑚 total space, and the backyard
consumes 𝑂(𝑚/ log8𝑚) = 𝑂(𝜀𝑚) space. Thus the total space consumption is
(1 +𝑂(𝜀))𝑚.

To analyze overhead, observe that insertions/deletions in non-overflowed bins in-
cur 𝑂(𝐿) expected overhead, since they simulate 𝒜 time efficiently using lookup
tables. On the other hand, the expected amount of time spent by a given inser-
tion/deletion on overflowed bins is 𝑂(1). Finally queries in both the front and back-
yards take time 𝑂(1), completing the proof.

Two consequences. For the fixed-size case, if we implement 𝒜 as an allocator with
overhead 𝑂(1 + log 𝜀−1), then we arrive at the following theorem.
Theorem 235. Let 𝜀,𝑚,𝑅, 𝑈 be parameters satisfying 𝜀−1 ≤ log1/10𝑚 and 𝑅 =
𝑂(1). Consider input sets 𝑆 ⊆ [𝑈] and size functions 𝜋 : 𝑆 → N satisfying 𝜋(𝑥) = 𝑅
for all 𝑥 ∈ 𝑆 and satisfying

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ 𝑚.

Then we can construct a strongly history-independent hash table that maps the
elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝑅 in [0, (1 + 𝑂(𝜀))𝑚], that incurs
𝑂(1+log 𝜀−1) expected overhead per insertion/deletion, and that supports 𝑂(1)-time
queries (with probability 1− 1/ poly(𝑚)).

We remark that the choice of 1/10 in the constraint 𝜀−1 ≤ log1/10𝑚 is somewhat
arbitrary. One can easily replace this with a larger number, and with a more involved
construction, one could likely replace the constraint with 𝜀−1 ≤ log𝑚/ log log𝑚—we
leave this as a possible direction for future work

For the variable-size case, if we implement 𝒜 using Theorem 193, then we arrive
at the following theorem.
Theorem 236. Let 𝜀,𝑚,𝑅, 𝑈 be parameters satisfying 𝜀−1 ≤ log1/10𝑚 and 𝑅 ≤
log2/10𝑚. Consider input sets 𝑆 ⊆ [𝑈] and size functions 𝜋 : 𝑆 → N satisfying
𝜋(𝑥) ∈ [1, 𝑅] for all 𝑥 ∈ 𝑆 and satisfying

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ 𝑚.

Then we can construct a strongly history-independent hash table that maps the
elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝜋(𝑥) in [0, (1 + 𝑂(𝜀))𝑚], that incurs
𝑂(1 + 𝜀−1) expected overhead per insertion/deletion, and that supports 𝑂(1)-time

390

queries (with probability 1− 1/ poly(𝑚)).

Note that Theorem 236 can only handle relatively small keys—we will extend it
to handle larger keys later on in the section.

Using waterfall addressing [75] to supporting dynamic resizing. For con-
venience, we have focused in this section on a fixed-capacity hash table, that is, we
have assumed that

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ 𝑚 for some fixed parameter 𝑚. We now describe

how to add dynamic resizing (i.e., 𝑚 can change over time) while achieving the same
bounds. Here, we assume that the data structure resides on an infinite tape, and that
we wish to use only a prefix of the tape at any moment.

Recall the “standard” resizing trick for strongly history-independent data struc-
tures: For 𝑖 > 0, define 𝑟𝑖 to be a random number between (1+𝜀)𝑖−1 and (1+𝜀)𝑖; then,
at any given moment, we use (1 + 𝜀)min{𝑖|𝑟𝑖>

∑︀
𝑥∈𝑆 𝜋(𝑥)} as our value for the parameter

𝑚. Whenever this quantity changes, a resizing rebuild is required.
One way to implement a resizing rebuild (which will not work here) is to simply

rebuild the entire data structure in time 𝑂(
∑︀

𝑥∈𝑆 𝜋(𝑥)). Since the probability of a
given insertion/deletion triggering a resizing rebuild is 𝑂(𝜀

∑︀
𝑥∈𝑆 𝜋(𝑥))), this approach

adds 𝑂(𝜀−1) expected time per insertion/deletion.
This simplistic approach to implementing resizing rebuilds does not for our hash

tables, since we wish to achieve an overhead of 𝑂(1+log 𝜀−1). Note that the backyard
is not the problem here, since it has size much smaller than 𝜀𝑚—the difficulty is
implementing a resizing rebuild on the frontyard.

To implement resizing rebuilds more efficiently (without actually rebuilding the
entire frontyard), we can make use of a more heavyweight tool that my collaborators
and I developed in our work on succinct hashing: Waterfall addressing [75] (which
can be viewed as a time-efficient variation on linear hashing [233], allows for one to
dynamically increase/decrease the number of bins that a hash function ℎ maps to.
The key properties that make waterfall addressing useful here are that, if we increase
the number of bins by an 𝜀 ≥ Ω(log log 𝑛/ log 𝑛) fraction, then (1) each element has its
hash change with probability only 𝑂(𝜀); and (2) the hashes whose elements change can
be identified in expected time 𝑂(𝑚 log log 𝑛/ log 𝑛) using an auxiliary data structure
that consumes space 𝑂(log log 𝑛) bits per element (moreover, this data structure can
straightforwardly be implemented history independently); and (3) the hash function
can be evaluated in constant time. If we use waterfall addressing, then a rebuild that
increases/decreases 𝑚 by a (1+ 𝜀) factor can identify the elements that need to move
in time 𝑂(𝑚 log log 𝑛/ log 𝑛) = 𝑂(𝜀𝑚) time, and can then move them to their new
bins in expected time 𝑂(𝜀𝑚 log 𝜀−1) (since the sum of the sizes of the elements moved
is 𝑂(𝜀𝑚) in expectation, and inserting/deleting in a bin has overhead 𝑂(1+log 𝜀−1)).
This preserves the 𝑂(1 + log 𝜀−1) overhead bounds in our theorems while supporting
dynamic resizing:
Corollary 237. Let 𝜀, 𝑅, 𝑈 be parameters satisfying 𝑅 = 𝑂(1). Consider input sets
𝑆 ⊆ [𝑈] and size functions 𝜋 : 𝑆 → N satisfying 𝜋(𝑥) = 𝑅 for all 𝑥 ∈ 𝑆, and satisfying
𝜀−1 ≤ log1/10

∑︀
𝑥∈𝑆 𝜋(𝑥).

391

Then we can construct a strongly history-independent hash table that maps the
elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝑅 in [0, (1 + 𝑂(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥)], that

incurs 𝑂(1 + log 𝜀−1) expected overhead per insertion/deletion, and that supports
𝑂(1)-time queries (with probability 1− 1/ poly(

∑︀
𝑥∈𝑆 𝜋(𝑥))).

Corollary 238. Let 𝜀, 𝑅, 𝑈 be parameters. Consider input sets 𝑆 ⊆ [𝑈] and
size functions 𝜋 : 𝑆 → N satisfying 𝜋(𝑥) ∈ [1, 𝑅] for all 𝑥 ∈ 𝑆, satisfying
𝜀−1 ≤ log1/10

∑︀
𝑥∈𝑆 𝜋(𝑥) and 𝑅 ≤ log2/10

∑︀
𝑥∈𝑆 𝜋(𝑥).

Then we can construct a strongly history-independent hash table that maps the
elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝜋(𝑥) in [0, (1 + 𝑂(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥)],

that incurs 𝑂(1 + 𝜀−1) expected overhead per insertion/deletion, and that supports
𝑂(1)-time queries (with probability 1− 1/ poly(

∑︀
𝑥∈𝑆 𝜋(𝑥))).

21.2 An Efficient Allocator for Large Objects

Now we turn our attention to storing a set 𝑆 of large objects 𝑥 satisfying 𝜋(𝑥) ≥ 𝜀−2.
This case is much easier since we can amortize the time/space costs to the fact that
the items we are moving around are quite large.

Let us begin by considering Algorithm 4, which stores items with power-of-two
sizes and incurs expected overhead 𝑂(1 + log 𝜀−1). Since we are considering only
items with sizes ≥ 𝜀−2, we can think of space as being allocated at the granularity of
meta-slots of size 𝜀−2. We will assume that 𝜀−1 ≤ 𝑛1/4, meaning that there are at
least

√
𝑛 meta-slots.

Let 𝑥1, 𝑥2, . . . denote the elements of 𝑆 in the order that they are inserted by
Algorithm 4, and let 𝑛 be the size of the array used by the algorithm (so we are
guaranteed that

∑︀
𝑥∈𝑆 𝜋(𝑥) ≤ (1− 𝜀)𝑛+ 1).

Say that a key 𝑥 ∈ 𝑆 wishes for a meta-slot 𝑖 if, in Algorithm 4, 𝑥 would
have preferred being assigned to an interval beginning with meta-slot 𝑖, rather than
the interval that the key is currently assigned to. For each meta-slot 𝑖, we will
store a linked list 𝑄𝑖 consisting of the keys that wish for that meta-slot (sorted, say,
lexicographically).

We can perform space allocation for the linked lists𝑄𝑖 using Blelloch and Golovin’s
hash table [105] set to load factor 1/2. Additionally, we have a hash table of size
𝑂(𝜀2𝑛) for keeping track of where each item 𝑥 ∈ 𝑆 is currently allocated. The next
lemma tells us that, with high probability in 𝑛, the total space consumed by the 𝑄𝑖s
will be 𝑂(𝜀𝑛).2

Lemma 239. The total space consumed by the 𝑄𝑖s is 𝑂(𝜀𝑛) with probability 1 −
1/ poly(𝑛).

Proof. Define 𝑤𝑖 to be the number of meta-slots that 𝑥𝑖 wishes for. By design,
even if we condition on the outcomes of 𝑤1, 𝑤2, . . . , 𝑤𝑖−1, the random variable 𝑤𝑖 is

2In the low-probability event that this bound fails, we can give up on insertion/deletion/query
time and just use an arbitrary strongly history-independent allocator.

392

bounded above by a geometric random variable with mean 𝑂(𝜀−1) (as each iteration
of the inner for-loop for Algorithm 4 succeeds with probability at least 𝜀). Thus
E[
∑︀

𝑗 𝑤𝑗] = 𝑂(𝜀−1|𝑆|) = 𝑂(𝜀𝑛), where the final inequality uses the fact that each
element of 𝑆 has size at least 𝜀−2. By a Chernoff bound, we have that

∑︀
𝑗 𝑤𝑗 ≤ 𝑂(𝜀𝑛)

with probability 1− 1/ poly(𝑛).

We can also bound the expected size of each 𝑄𝑖. Note that this bound does not
follow directly from Lemma 239 because the 𝑄𝑖s are not symmetric (meta-slots 𝑖 that
are divisible by large powers of two will likely have a larger list 𝑄𝑖 than meta-slots 𝑖
that are not).
Lemma 240. Each 𝑄𝑖 has expected size 𝑂(𝜀−1).

Proof. Consider a meta-slot 𝑖 that is occupied by an element 𝑥𝑗. Now consider the
insertion of an element 𝑥𝑘, where 𝑘 ≥ 𝑗. When 𝑥𝑘 is inserted by Algorithm 4, there
are guaranteed to be at least 𝜀𝑛/𝜋(𝑥𝑘) (aligned) intervals of size 𝜋(𝑥𝑘) where 𝑥𝑘 could
go. Define 𝐻 to be the set of hashes corresponding to those intervals, and let 𝑤 be the
hash corresponding to the aligned interval of size 𝜋(𝑥𝑘) that begins with meta-slot
𝑖 (if such an interval exists). Then 𝑥𝑘 will wish for meta-slot 𝑖 if and only if the
sequence ℎ1(𝑥𝑘), ℎ2(𝑥𝑘), . . . contains 𝑤 before it contains any of the elements of 𝐻.
This happens with probability 1/(|𝐻| + 1) = 𝑂(𝜋(𝑥𝑘)/(𝜀𝑛)). It follows by linearity
of expectation that E[𝑄𝑖] ≤

∑︀
𝑘 𝑂(𝜋(𝑥𝑘)/(𝜀𝑛)) ≤ 𝑂(𝜀−1).

For a given input (𝑆, 𝜋), and a given 𝑥 ∈ 𝑆, let 𝜓(𝑆, 𝜋, 𝑥) be the index 𝑗 such
that Algorithm 4 on input (𝑆, 𝜋) assigns 𝑥 using ℎ𝑗(𝑥). If 𝑥 ̸∈ 𝑆, then we define
𝜓(𝑆, 𝜋, 𝑥) = 0. Define ℎ𝑗(𝑥) to be the set of meta-slots that appear in the interval
[(ℎ𝑗(𝑥)− 1) · 𝜋(𝑥) + 1, ℎ𝑗(𝑥)𝜋(𝑥)].

Let (𝑆, 𝜋) and (𝑆 ′, 𝜋) be inputs such that 𝑆 = 𝑆 ′ ∪ {𝑦} for some element 𝑦—we
will think of 𝑆 as being reached from 𝑆 ′ via the insertion of 𝑦. Let

𝑃 =
⋃︁
𝑥∈𝑆

⋃︁
𝜓(𝑆′,𝜋,𝑥)<𝑗≤𝜓(𝑆,𝜋,𝑥)

ℎ𝑗(𝑥).

One can think of 𝑃 as consisting of all of the meta-slots 𝑖 with the property that:
𝑆 allocates some element 𝑥 to an interval containing 𝑖, but 𝑆 ′ does not allocate the
same element 𝑥 to that interval.

Our next lemma tells us that, even though the set 𝑃 is determined by a randomized
process that interacts with the 𝑄𝑖s (and is therefore not independent of them), the
expected size of 𝑄𝑖s for 𝑖 ∈ 𝑃 is still small.
Lemma 241. We have that

E

[︃∑︁
𝑖∈𝑃

|𝑄𝑖|

]︃
≤ 𝑂(𝜋(𝑦) log 𝜀−1).

393

Proof. Consider some 𝑥𝑗 such that 𝜓(𝑆, 𝜋, 𝑥𝑗) ̸= 𝜓(𝑆 ′, 𝜋, 𝑥𝑗). Let 𝑎 = 𝜓(𝑆 ′, 𝜋, 𝑥𝑗).
On input (𝑆, 𝜋), when Algorithm 4 gets around to processing 𝑥𝑗, the inner for loop
will fail to allocate 𝑥𝑗 using any of ℎ1, . . . , ℎ𝑎. The inner for loop will then attempt to
use each of ℎ𝑎+1, ℎ𝑎+2, . . . until it finds a set ℎ𝑎+𝑘(𝑥𝑗) of meta-slots that are all free.
Critically, each of ℎ𝑎+1(𝑥𝑗), ℎ𝑎+2(𝑥𝑗), . . . are independent uniformly random elements
of [𝑛/𝜋(𝑥𝑗)]. For each 𝑘 > 𝑎 ∈ N, let

𝑞𝑘(𝑥𝑗) =

{︃
|𝑄ℎ𝑘(𝑥)| if 𝑘 ≤ 𝜓(𝑆, 𝜋, 𝑥𝑗)

0 otherwise.

By Lemma 240, E[𝑄ℎ𝑘(𝑥)] = 𝑂(𝜀−1). Since ℎ𝑘(𝑥)’s value is independent of the event
𝑘 ≤ 𝜓(𝑆, 𝜋, 𝑥𝑗), it follows that E[𝑞𝑘(𝑥𝑗)] ≤ 𝑂(𝜀−1) ·Pr[𝑘 ≤ 𝜓(𝑆, 𝜋, 𝑥𝑗)], which in turn
is at most 𝑂(𝜀−1) · (1− 𝜀)𝑘−𝑎−1. Summing of 𝑘 > 𝑎,

E

[︃∑︁
𝑘>𝑎

𝑞𝑘(𝑥𝑗)

]︃
≤ 𝑂(𝜀−2).

Thus we have

E[𝑃] ≤ E

⎡⎣ ∑︁
𝑗|𝜓(𝑆,𝜋,𝑥)̸=𝜓(𝑆′,𝜋,𝑥)

∑︁
𝑘>𝜓(𝑆′,𝜋,𝑥)

𝑞𝑘(𝑥𝑗)

⎤⎦
≤ 𝑂

⎛⎝E

⎡⎣ ∑︁
𝑗|𝜓(𝑆,𝜋,𝑥)̸=𝜓(𝑆′,𝜋,𝑥)

𝜀−2

⎤⎦⎞⎠ .

Recall that 𝑦 = 𝑆 ′∖𝑆 is the element inserted between 𝑆 and 𝑆 ′. As Algorithm 4 incurs
expected overhead 𝑂(1+log 𝜀−1), the expected sum of the sizes of the elements whose
intervals are reassigned because of the insertion is at most 𝑂(𝜋(𝑦) log 𝜀−1). Since each
element has size at least 𝜀−2, the expected number of elements that have their intervals
reassigned is at most 𝑂(𝜀2𝜋(𝑦) log 𝜀−1). It follows that

E

⎡⎣ ∑︁
𝑗|𝜓(𝑆,𝜋,𝑥)̸=𝜓(𝑆′,𝜋,𝑥)

𝑂(𝜀−2)

⎤⎦ ≤ 𝑂(𝜋(𝑦) log 𝜀−1),

which completes the proof.

We now describe how the 𝑄𝑖s can be used to efficiently implement Algorithm 4.
The main role of the linked list 𝑄𝑖 is as follows: Suppose an item 𝑥 is allocated to
some interval 𝐼, and that 𝑥 is then de-allocated from that interval (either because 𝑥 is
deleted, or because 𝑥 is reassigned to a different interval). We need to determine which
(if any) elements should be reassigned to reside in 𝐼. We can do this by considering
each meta-slot 𝑖 ∈ 𝐼, and examining the list 𝑄𝑖.

394

We must also be careful to also account for the cost of updating the 𝑄𝑖s. If,
during an insertion, an item 𝑥 is moved from its 𝑗-th-choice interval to its 𝑗′-th-choice
interval, then all of 𝑄ℎ𝑗(𝑥), 𝑄ℎ𝑗+1(𝑥), . . . , 𝑄ℎ𝑗′ (𝑥)

must be updated.
In total, the algorithm may spend up to 𝑂(|𝑄𝑖|) time on each 𝑄𝑖 with 𝑖 ∈ 𝑃 .

By Lemma 241, it follows that the time overhead incurred per insertion/deletion is
𝑂(1 + log 𝜀−1).

Putting the pieces together, we can implement Algorithm 4 to store items of size
𝜋(𝑥) ≥ 𝜀−2 at a load factor of 1− 𝑂(𝜀) while supporting an insertion/deletion of an
item 𝑥 in expected time 𝑂(𝜋(𝑥) log 𝜀−1), and while supporting queries in constant
time with probability 1− 1/ poly(𝑛).

Note that the same guarantee extends directly to the resizable version of Algo-
rithm 4 in Theorem 201 (as the resize operation can easily be implemented in time
𝑂(𝜀−1𝑛)), and can therefore also easily be achieved for the algorithm given by 206
(as it uses Theorem 201 as its main algorithmic building block). Finally, combining
these algorithms, we get a time-efficient implementation of Theorem 193:
Proposition 242. Let 𝑈, 𝜀−1 be positive integers and let 𝜌 > 0 be an upper bound
on object size. Consider inputs (𝑆, 𝜋) where 𝑆 ⊆ [𝑈], where 𝜀−4 ≤

∑︀
𝑥∈𝑆 𝜋(𝑥), where

𝜋(𝑥) ∈ [𝜀−2, 𝜌] for all 𝑥 ∈ 𝑆. Then one can construct a strongly history-independent
hash table that uses space (1 + 𝑂(𝜀))

∑︀
𝑥∈𝑆 𝜋(𝑥) + 𝑂(𝜀−3𝜌), that incurs expected

time overhead 𝑂(1+ log 𝜀−1) per insertion and deletion, and that supports queries in
constant time with probability 1− 1/ poly(

∑︀
𝑥∈𝑆 𝜋(𝑥)).

21.3 Putting the Pieces Together

Combining together Corollary 238 with Proposition 242, we can now construct a
general-purpose solution to the variable-size case, under the assumption that each
element 𝑥 ∈ 𝑆 has size at most 𝑂(𝜀4

∑︀
𝑥∈𝑆 𝜋(𝑥)).

Theorem 243. Let 𝜀, 𝑈 be parameters. Consider input sets 𝑆 ⊆ [𝑈] and size func-
tions 𝜋 : 𝑆 → N. Let 𝑚 denote

∑︀
𝑥 𝜋(𝑥), and assume that 𝜋(𝑥) ∈ [1, 𝜀4𝑚] for all

𝑥 ∈ 𝑆, and that 𝜀−1 ≤ log1/10𝑚.
Then we can construct a strongly history-independent hash table that maps the

elements 𝑥 ∈ 𝑆 to disjoint intervals 𝜑(𝑥) of size 𝜋(𝑥) in [0, (1 + 𝑂(𝜀))𝑚], that incurs
𝑂(1+log 𝜀−1) expected overhead per insertion/deletion, and that supports 𝑂(1)-time
queries (with probability 1− 1/ poly(𝑚)).

The construction is very simple: We store items 𝑥 ∈ 𝑆 with sizes between 1 and
𝜀−2 in a data structure 𝐴 implemented using Corollary 238; and we store items 𝑥 ∈ 𝑆
with sizes greater than 𝜀−2 in a data structure 𝐵 implemented using Proposition 242.

Note that each of 𝐴 and 𝐵 are dynamically resized based on the sum of the sizes of
the elements they contain—in order so that insertions/deletions offer high-probability
guarantees in terms of 𝑚 =

∑︀
𝑥∈𝑆 𝜋(𝑥), we add Θ(

√
𝑚) unit-size dummy elements to

𝐴 and Θ(
√
𝑚) 𝜀−2-sized dummy elements 𝐵, so that their sizes are guaranteed to be

at least Ω(
√
𝑚) (which means that they offer high-probability bounds as a function

395

of
√
𝑚 and thus also as a function of 𝑚).

Finally, we must be careful about how to place 𝐴 and 𝐵 in memory together,
given that each is dynamically resized. The solution is to allocate 𝐴’s memory using
𝐵, in chunks of size Θ(𝜀−2). Note that, whenever space is added/removed to 𝐴, it
is already assumed in the analysis of 𝐴 that we incur an 𝑂(1 + log 𝜀−1) overhead on
adding/removing that space, so we can afford to allocate/deallocate that space in 𝐵.

Define 𝑚1 (resp. 𝑚2) to be the sum of the sizes of the elements stored in 𝐴 (resp.
𝐵). By construction, 𝐴 uses space at most (1 + 𝑂(𝜀))𝑚1 and 𝐵 (which stores 𝐴
within it) uses space at most (1 + 𝑂(𝜀))(𝑚2 + |𝐴|) + 𝑂(𝜀−3𝜌), where 𝜌 = 𝜀4𝑚 is an
upper bound on the maximum object size. Thus the total space used is (1+𝑂(𝜀))𝑚.

Finally, since each of 𝐴 and 𝐵 supports constant-time queries with probability
1 − 1/ poly(𝑚), and incurs 𝑂(1 + log 𝜀−1) expected overhead per insertion/deletion,
the same is true for 𝐶. This completes the proof of Theorem 243.

396

Bibliography

[35] Amd64 architecture programmer’s manual volume 2: System programming.
https://www.amd.com/system/files/TechDocs/24593.pdf. Accessed:
07/04/2021.

[36] Intel®64 and ia-32 architectures software developer’s manual combined
volumes 3a, 3b, 3c, and 3d: System programming guide.
https://software.intel.com/content/www/us/en/develop/download/
intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-
and-3d-system-programming-guide.html. Accessed: 07/04/2021.

[37] Anders Aamand, Jakob Bæk Tejs Knudsen, and Mikkel Thorup. Load
balancing with dynamic set of balls and bins. In Symposium on Theory of
Computing (STOC), pages 1262–1275, 2021.

[38] Google’s Abseil C++ library. https://abseil.io/. Accessed: 2020-11-06.

[39] Abseil, 2017. Accessed: 2020-11-06.

[40] George M Adel’son-Vel’skii and Evgenii Mikhailovich Landis. An algorithm
for organization of information. In Doklady Akademii Nauk, volume 146, pages
263–266. Russian Academy of Sciences, 1962.

[41] Georgii Maksimovich Adelson-Velskii and Evgenii Mikhailovich Landis. An
algorithm for organization of information. In Doklady Akademii Nauk, volume
146, pages 263–266. Russian Academy of Sciences, 1962.

[42] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
September 1988.

[43] Alfred V Aho and John E Hopcroft. The design and analysis of computer
algorithms. Pearson Education India, 1974.

[44] Stephen Alstrup, Gerth Brodal, and Theis Rauhe. Optimal static range
reporting in one dimension. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing (STOC), pages 476–482, 2001.

[45] Ole Amble and Donald Ervin Knuth. Ordered hash tables. The Computer
Journal, 17(2):135–142, January 1974.

397

https://www.amd.com/system/files/TechDocs/24593.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://abseil.io/

[46] Arne Andersson. Improving partial rebuilding by using simple balance criteria.
In Proc. Workshop on Algorithms and Data Structures (WADS), volume 382
of Lecture Notes in Computer Science, pages 393–402. Springer, 1989.

[47] Arne Andersson and Tony W. Lai. Fast updating of well-balanced trees. In
John R. Gilbert and Rolf G. Karlsson, editors, Proc. 2nd Scandinavian
Workshop on Algorithm Theory (SWAT), volume 447 of Lecture Notes in
Computer Science, pages 111–121, July 1990.

[48] Arne Andersson and Thomas Ottmann. Faster uniquely represented
dictionaries. In Proc. 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 642–649, 1991.

[49] Cecilia R Aragon and Raimund G Seidel. Randomized search trees. In Proc.
30th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 540–545, 1989.

[50] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing:
Provable worst-case performance and experimental results. In Proceedings of
the 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 107–118, 2009.

[51] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hashing:
Provable worst-case performance and experimental results. In International
Colloquium on Automata, Languages and Programming (ICALP), pages
107–118, Berlin, Heidelberg, 2009.

[52] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science (FOCS), pages
787–796. IEEE, 2010.

[53] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and
IgorAleksandrovich Faradzhev. On economical construction of the transitive
closure of an oriented graph. In Doklady Akademii Nauk, volume 194, pages
487–488. Russian Academy of Sciences, 1970.

[54] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and
IgorAleksandrovich Faradzhev. On economical construction of the transitive
closure of an oriented graph. In Doklady Akademii Nauk, volume 194, pages
487–488. Russian Academy of Sciences, 1970.

[55] Attractive Chaos Blog. Deletion from hash tables without tombstones,
December 2019. Accessed 22-May-2021.

[56] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
allocations. In Symposium on theory of computing (STOC), pages 593–602,
1994.

398

[57] Martin Babka, Jan Bulánek, Vladimír Cunát, Michal Koucký, and Michael E.
Saks. On online labeling with polynomially many labels. In ESA, volume 7501
of Lecture Notes in Computer Science, pages 121–132. Springer, 2012.

[58] Martin Babka, Jan Bulánek, Vladimír Cunát, Michal Koucký, and Michael E.
Saks. On online labeling with large label set. SIAM J. Discret. Math.,
33(3):1175–1193, 2019.

[59] Nikhil Bansal and Ohad Feldheim. Well-balanced allocation on general
graphs. In Symposium on Theory of Computing (STOC), 2022.

[60] Daniel Bauer. Columbia COMS W3134: Data structures in Java — Lecture
12: Introduction to hashing, October 2015.

[61] Rudolf Bayer and Edward McCreight. Organization and maintenance of large
ordered indexes. In Software pioneers, pages 245–262. Springer, 2002.

[62] Djamal Belazzougui. Linear time construction of compressed text indices in
compact space. In Proceedings of the forty-sixth Annual ACM Symposium on
Theory of Computing, pages 148–193, 2014.

[63] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Theory and practice of monotone minimal perfect hashing. Journal of
Experimental Algorithmics (JEA), 16:3–1, 2008.

[64] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Monotone minimal perfect hashing: searching a sorted table with O(1)
accesses. In SODA, pages 785–794. SIAM, 2009.

[65] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen.
Linear-time string indexing and analysis in small space. ACM Transactions on
Algorithms (TALG), 16(2):1–54, 2020.

[66] Djamal Belazzougui, Travis Gagie, Veli Mäkinen, and Marco Previtali. Fully
dynamic de bruijn graphs. In International symposium on string processing
and information retrieval, pages 145–152. Springer, 2016.

[67] Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed
text indexing. ACM Transactions on Algorithms (TALG), 10(4):1–19, 2014.

[68] Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds
for representing sequences. ACM Transactions on Algorithms (TALG),
11(4):1–21, 2015.

[69] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In
Proceedings 35th Annual Symposium on Foundations of Computer Science
(FOCS), pages 276–287. IEEE, 1994.

399

[70] Michael A Bender, Jonathan W Berry, Rob Johnson, Thomas M Kroeger,
Samuel McCauley, Cynthia A Phillips, Bertrand Simon, Shikha Singh, and
David Zage. Anti-persistence on persistent storage: History-independent
sparse tables and dictionaries. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 289–302, 2016.

[71] Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martín
Farach-Colton, Rob Johnson, William Kuszmaul, Don Porter, Guido
Tagliavini, Janet Vorobyeva, and Evan West. Paging and the
address-translation problem. In Proc. 32nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), July 2021.

[72] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin
Farach-Colton. Scanning and traversing: Maintaining data for traversals in a
memory hierarchy. In Proc. 10th European Symposium on Algorithms (ESA),
volume 2461 of Lecture Notes in Computer Science, pages 139–151, 2002.

[73] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and
Jack Zito. Two simplified algorithms for maintaining order in a list. In Proc.
10th European Symposium on Algorithms (ESA), pages 152–164. Springer,
2002.

[74] Michael A Bender, Alex Conway, Martín Farach-Colton, Hanna Komlós,
William Kuszmaul, and Nicole Wein. Online list labeling: Breaking the log 2
n barrier. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 980–990. IEEE, 2022.

[75] Michael A Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul,
and Guido Tagliavini. All-purpose hashing. arXiv preprint arXiv:2109.04548,
2021.

[76] Michael A Bender, Alex Conway, Martín Farach-Colton, William Kuszmaul,
and Guido Tagliavini. Tiny pointers. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 477–508.
SIAM, 2023.

[77] Michael A Bender, Rathish Das, Martín Farach-Colton, Rob Johnson, and
William Kuszmaul. Flushing without cascades. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
650–669. SIAM, 2020.

[78] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton.
Cache-oblivious B-trees. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS 2000), pages 399–409, Redondo
Beach, California, 12–14 November 2000.

400

[79] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton.
Cache-oblivious B-trees. SIAM Journal on Computing, 35(2):341–358, 2005.

[80] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A
locality-preserving cache-oblivious dynamic dictionary. Journal of Algorithms,
53(2):115–136, November 2004.

[81] Michael A Bender, Martin Farach-Colton, Sándor P Fekete, Jeremy T
Fineman, and Seth Gilbert. Cost-oblivious storage reallocation. ACM
Transactions on Algorithms (TALG), 13(3):1–20, 2017.

[82] Michael A Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,
Samuel McCauley, and Shikha Singh. Bloom filters, adaptivity, and the
dictionary problem. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 182–193. IEEE, 2018.

[83] Michael A Bender, Martin Farach-Colton, Rob Johnson, Rus C Kraner, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane, and Erez
Zadok. Don’t thrash: how to cache your hash on flash. Proceedings of the
VLDB Endowment, 5(11):1627–1637, 2012.

[84] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.
Cache-oblivious string B-trees. In Proc. 25th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pages 233–242. ACM, 2006.

[85] Michael A Bender, Martín Farach-Colton, John Kuszmaul, William
Kuszmaul, and Mingmou Liu. On the optimal time/space tradeoff for hash
tables. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1284–1297, 2022.

[86] Michael A Bender, Martín Farach-Colton, and William Kuszmaul. Achieving
optimal backlog in multi-processor cup games. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages
1148–1157, 2019.

[87] Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro. Insertion
sort is 𝑂(𝑛 log 𝑛). Theory of Computing Systems, 39(3):391–397, 2006.

[88] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and
Pablo Montes. File maintenance: When in doubt, change the layout! In
Procedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2017), pages 1503–1522, Barcelona, Spain, 16–19 January 2017.

[89] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul. Concurrent cache-oblivious B-trees. In Proc. 17th Annual
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
228–237, 2005.

401

[90] Michael A. Bender and Haodong Hu. An adaptive packed-memory array.
ACM Trans. Database Syst., 32(4):26:1–26:43, November 2007.

[91] Michael A Bender and William Kuszmaul. Randomized cup game algorithms
against strong adversaries. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2059–2077. SIAM, 2021.

[92] Jon Bentley. Programming pearls. Addison-Wesley Professional, 2016.

[93] Ioana O Bercea and Guy Even. A dynamic space-efficient filter with constant
time operations. In 17th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[94] Ioana O Bercea and Guy Even. Dynamic dictionaries for multisets and
counting filters with constant time operations. Algorithmica, pages 1–19, 2022.

[95] Ioana Oriana Bercea and Guy Even. Fully-dynamic space-efficient dictionaries
and filters with constant number of memory accesses. CoRR, abs/1911.05060,
2019.

[96] Ioana Oriana Bercea and Guy Even. A space-efficient dynamic dictionary for
multisets with constant time operations. CoRR, abs/2005.02143, 2020.

[97] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars
Nagel. Multiple-choice balanced allocation in (almost) parallel. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 411–422. Springer, 2012.

[98] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking.
Balanced allocations: the heavily loaded case. In Symposium on Theory of
Computing (STOC), pages 745–754, 2000.

[99] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin. On
weighted balls-into-bins games. Theoretical Computer Science,
409(3):511–520, 2008.

[100] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn,
Lars Nagel, and Chris Wastell. Self-stabilizing balls and bins in batches.
Algorithmica, 80(12):3673–3703, 2018.

[101] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn,
Lars Nagel, and Christopher Wastell. Self-stabilizing balls & bins in batches:
The power of leaky bins. In Symposium on Principles of Distributed
Computing (PODC), pages 83–92, 2016.

[102] Aaron Berger, William Kuszmaul, Adam Polak, Jonathan Tidor, and Nicole
Wein. Memoryless worker-task assignment with polylogarithmic switching
cost. In 49th International Colloquium on Automata, Languages, and

402

Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[103] Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Inf. Process.
Lett., 101(1):41–45, 2007.

[104] Guy E. Blelloch and Daniel Golovin. Strongly history-independent hashing
with applications. In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2007), pages 272–282, Providence,
Rhode Island, USA, 21–23 October 2007.

[105] Guy E Blelloch and Daniel Golovin. Strongly history-independent hashing
with applications. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 272–282. IEEE, 2007.

[106] Guy E Blelloch, Daniel Golovin, and Virginia Vassilevska. Uniquely
represented data structures for computational geometry. In Algorithm
Theory–SWAT 2008: 11th Scandinavian Workshop on Algorithm Theory,
Gothenburg, Sweden, July 2-4, 2008. Proceedings 11, pages 17–28. Springer,
2008.

[107] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[108] P Boldi and S Vigna. Sux4j 1.0. 2008.

[109] Paolo Boldi. Minimal and monotone minimal perfect hash functions. In
Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors,
Mathematical Foundations of Computer Science 2015 - 40th International
Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part
I, volume 9234 of Lecture Notes in Computer Science, pages 3–17. Springer,
2015.

[110] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving
encryption revisited: Improved security analysis and alternative solutions. In
Annual Cryptology Conference, pages 578–595. Springer, 2011.

[111] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and
George Varghese. An improved construction for counting bloom filters. In
European Symposium on Algorithms (ESA), pages 684–695. Springer, 2006.

[112] Maury Bramson, Yi Lu, and Balaji Prabhakar. Randomized load balancing
with general service time distributions. ACM SIGMETRICS performance
evaluation review, 38(1):275–286, 2010.

[113] Graham Brightwell and Malwina Luczak. The supermarket model with arrival
rate tending to one. arXiv preprint arXiv:1201.5523, 2012.

403

[114] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious
search trees via binary trees of small height. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pages
39–48, San Francisco, California, USA, 6–8 January 2002.

[115] Andrei Broder and Michael Mitzenmacher. Using multiple hash functions to
improve ip lookups. In Conference on Computer Communications
(INFOCOM), volume 3, pages 1454–1463. IEEE, 2001.

[116] Andrej Brodnik, Svante Carlsson, Erik D Demaine, J Ian Ian Munro, and
Robert Sedgewick. Resizable arrays in optimal time and space. In Workshop
on Algorithms and Data Structures, pages 37–48. Springer, 1999.

[117] Nathan Bronson and Xiao Shi. Open-sourcing F14 for faster, more
memory-efficient hash tables, 25 April 2019. Accessed: 2020-11-06.

[118] Niv Buchbinder and Erez Petrank. Lower and upper bounds on obtaining
history independence. In Advances in Cryptology, pages 445–462, 2003.

[119] Niv Buchbinder and Erez Petrank. Lower and upper bounds on obtaining
history independence. Information and Computation, 204(2):291–337, 2006.

[120] Jan Bulánek, Michal Koucký, and Michael Saks. Tight lower bounds for the
online labeling problem. In Proceedings of the 44th ACM Symposium on
Theory of Computing (STOC’12), pages 1185–1198, New York, New York,
USA, 19–22 May 2012.

[121] Jan Bulánek, Michal Koucký, and Michael E. Saks. On randomized online
labeling with polynomially many labels. In Proc. International Colloquium on
Automata, Languages, and Programming (ICALP), volume 7965 of Lecture
Notes in Computer Science, pages 291–302. Springer, 2013.

[122] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark
Wegman. Exact and approximate membership testers. In Proceedings of the
tenth annual ACM Symposium on Theory of Computing (STOC), pages
59–65, 1978.

[123] L Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins:
Smaller hash families and faster evaluation. In Proceedings of the 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science (FOCS), pages
599–608, 2011.

[124] Pedro Celis. Robin hood hashing. University of Waterloo, 1986.

[125] Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin Hood hashing
(preliminary report). In 26th Annual Symposium on Foundations of Computer
Science (FOCS’85), pages 281–288, Portland, Oregon, USA, 21–23 October
1985.

404

[126] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages
429–442, 1985.

[127] Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana
Starikovskaya. Dictionary matching in a stream. In Algorithms-ESA 2015,
pages 361–372. Springer, 2015.

[128] Richard Cole, Alan Frieze, Bruce M. Maggs, Michael Mitzenmacher,
Andréa W Richa, Ramesh Sitaraman, and Eli Upfal. On balls and bins with
deletions. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 145–158. Springer, 1998.

[129] Richard Cole, Bruce M. Maggs, Friedhelm Meyer auf der Heide, Michael
Mitzenmacher, Andréa W. Richa, Klaus Schröder, Ramesh K. Sitaraman, and
Berthold Vöcking. Randomized protocols for low congestion circuit routing in
multistage interconnection networks. In Symposium on Theory of Computing
(STOC), pages 378–388. ACM, 1998.

[130] Joshimar Cordova and Gonzalo Navarro. Simple and efficient fully-functional
succinct trees. Theor. Comput. Sci., 656(PB):135–145, December 2016.

[131] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts,
USA, 3rd edition, 2009.

[132] cpppreference std::unordered_map.
https://en.cppreference.com/w/cpp/container/unordered_map.
Accessed: 2020-11-06.

[133] gcc-mirror/gcc libstdc++-v3 unordered_map.h.
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-
v3/include/bits/unordered_map.h. Accessed: 2020-11-06.

[134] cpppreference std::unordered_set.
https://en.cppreference.com/w/cpp/container/unordered_set.
Accessed: 2020-11-06.

[135] gcc-mirror/gcc libstdc++-v3 unordered_set.h.
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-
v3/include/bits/unordered_set.h. Accessed: 2020-11-06.

[136] cpppreference std::map.
https://en.cppreference.com/w/cpp/container/map. Accessed:
2020-11-06.

405

https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_map.h
https://en.cppreference.com/w/cpp/container/unordered_set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/unordered_set.h
https://en.cppreference.com/w/cpp/container/map

[137] gcc-mirror/gcc libstdc++-v3 stl_map.h. https://github.com/gcc-
mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h.
Accessed: 2020-11-06.

[138] cpppreference std::set.
https://en.cppreference.com/w/cpp/container/set. Accessed:
2020-11-06.

[139] gcc-mirror/gcc libstdc++-v3 stl_set.h. https://github.com/gcc-
mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h.
Accessed: 2020-11-06.

[140] Michael Dahlin. Interpreting stale load information. IEEE Transactions on
parallel and distributed systems, 11(10):1033–1047, 2000.

[141] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms.
McGraw-Hill Education, 2006.

[142] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct
representations of binary trees. Mathematics in Computer Science,
11:177–189, 2017.

[143] Lilian de Greef. UW CSE 373: Data structures and algorithims — Lecture 7:
Hash table collisions, Summer 2017.

[144] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of
the ACM, 56(2):74–80, 2013.

[145] Erik Demaine. MIT 6.897: Advanced data structures – Lecture 10, Spring
2012.

[146] Erik D Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai
Pǎtraşcu. De dictionariis dynamicis pauco spatio utentibus. In Latin
American Symposium on Theoretical Informatics (LATIN), pages 349–361.
Springer, 2006.

[147] Erik D. Demaine and Charles E. Leiserson. MIT 6.046J/18.401J: Introduction
to algorithms – Lecture 7: Hashing I, October 2005.

[148] William E Devanny, Jeremy T Fineman, Michael T Goodrich, and Tsvi
Kopelowitz. The online house numbering problem: Min-max online list
labeling. In Proc. 25th European Symposium on Algorithms (ESA). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[149] Paul F. Dietz. Maintaining order in a linked list. In Proc. 14th Annual ACM
Symposium on Theory of Computing (STOC), pages 122–127, New York, NY,
USA, 1982.

406

https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_map.h
https://en.cppreference.com/w/cpp/container/set
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/stl_set.h

[150] Paul F Dietz, Joel I Seiferas, and Ju Zhang. A tight lower bound for on-line
monotonic list labeling. In Scandinavian Workshop on Algorithm Theory,
pages 131–142. Springer, 1994.

[151] Paul F Dietz, Joel I Seiferas, and Ju Zhang. A tight lower bound for online
monotonic list labeling. SIAM Journal on Discrete Mathematics,
18(3):626–637, 2004.

[152] Paul F Dietz and Ju Zhang. Lower bounds for monotonic list labeling. In
Scandinavian Workshop on Algorithm Theory, pages 173–180. Springer, 1990.

[153] M Dietzfelbinger, A Karlin, K Mehlhorn, FM auf der Heide, H Rohnert, and
RE Tarjan. Dynamic perfect hashing: upper and lower bounds. In
[Proceedings 1988] 29th Annual Symposium on Foundations of Computer
Science (FOCS), pages 524–531. IEEE, 1988.

[154] Martin Dietzfelbinger et al. 4.3 space complexity of monotone minimal perfect
hashing. Dagstuhl Reports, Vol. 7, Issue 5 ISSN 2192-5283, page 19, 2018.

[155] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger.
Polynomial hash functions are reliable. In International Colloquium on
Automata, Languages, and Programming, pages 235–246. Springer, 1992.

[156] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal
class of hash functions and dynamic hashing in real time. In Proceedings of
the 17th International Colloquium on Automata, Languages and Programming
(ICALP), pages 6–19, 1990.

[157] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval
and approximate membership. In Proceedings of the 35th international
colloquium on Automata, Languages and Programming (ICALP), pages
385–396, 2008.

[158] Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick. In
Automata, Languages and Programming: 36th International Colloquium,
ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I 36, pages
354–365. Springer, 2009.

[159] Martin Dietzfelbinger and Stefan Walzer. Constant-time retrieval with o (log
m) extra bits. In 36th International Symposium on Theoretical Aspects of
Computer Science (STACS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[160] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and
dictionaries with tightly packed constant size bins. In Proceedings of the 32nd
international conference on Automata, Languages and Programming (ICALP),
pages 166–178, 2005.

407

[161] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and
dictionaries with tightly packed constant size bins. Theoretical Computer
Science, 380(1-2):47–68, June 2007.

[162] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with
simple hash functions. In Proceedings of the thirty-fifth Annual ACM
Symposium on Theory of Computing, pages 629–638, 2003.

[163] Peter C Dillinger and Stefan Walzer. Ribbon filter: practically smaller than
bloom and xor. arXiv preprint arXiv:2103.02515, 2021.

[164] Alexander S Douglas. Techniques for the recording of, and reference to data in
a computer. The Computer Journal, 2(1):1–9, 1959.

[165] Adam Drozdek and Donald L. Simon. Data Structures in C. PWS, Boston,
Massachusetts, USA, 1995.

[166] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for
the analysis of randomized algorithms. Cambridge University Press, 2009.

[167] Dwight Duffus, Hannon Lefmann, and Vojtěch Rödl. Shift graphs and lower
bounds on ramsey numbers rk (l; r). Discrete Mathematics, 137(1-3):177–187,
1995.

[168] Marie Durand, Bruno Raffin, and François Faure. A packed memory array to
keep moving particles sorted. In VRIPHYS, pages 69–77. Eurographics
Association, 2012.

[169] Yuval Emek and Amos Korman. New bounds for the controller problem.
Distributed Computing, 24(3-4):177–186, 2011.

[170] Paul Erdős and András Hajnal. On chromatic number of graphs and
set-systems. Acta Math. Acad. Sci. Hungar, 17(61-99):1, 1966.

[171] Jeff Erickson. UIUC CS473: Algorithms — Lecture 5: Hash tables, 2017.

[172] Patrick Eschenfeldt and David Gamarnik. Supermarket queueing system in
the heavy traffic regime. short queue dynamics. arXiv preprint
arXiv:1610.03522, 2016.

[173] Facebook’s F14 hash table.
https://engineering.fb.com/2019/04/25/developer-tools/f14/.
Accessed: 2020-11-06.

[174] Rolf Fagerberg, David Hammer, and Ulrich Meyer. On optimal balance in
B-trees: What does it cost to stay in perfect shape? In ISAAC, volume 149 of
LIPIcs, pages 35:1–35:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

408

https://engineering.fb.com/2019/04/25/developer-tools/f14/

[175] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and
Technologies, pages 75–88, 2014.

[176] Arash Farzan and J. Ian Munro. Succinct representation of dynamic trees.
Theoretical Computer Science, 412(24):2668 – 2678, 2011. Selected Papers
from 36th International Colloquium on Automata, Languages and
Programming (ICALP).

[177] Ohad N Feldheim and Ori Gurel-Gurevich. The power of thinning in balanced
allocation. Electronic Communications in Probability, 26:1–8, 2021.

[178] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan.
Online stochastic matching: Beating 1-1/e. In Symposium on Foundations of
Computer Science (FOCS), pages 117–126. IEEE, 2009.

[179] Gene Fisher. CalPoly CSC103: Fundamentals of computer science – hashing,
2001.

[180] Philippe Flajolet, Patricio Poblete, and Alfredo Viola. On the analysis of
linear probing hashing. Algorithmica, 22(4):490–515, December 1998.

[181] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G Spirakis. Space
efficient hash tables with worst case constant access time. In Proceedings of
the 20th Annual Symposium on Theoretical Aspects of Computer Science
(STOC), pages 271–282, 2003.

[182] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space
efficient hash tables with worst case constant access time. Theory of
Computing Systems, 38(2):229–248, December 2005.

[183] Pierre-Alain Fouque and Mehdi Tibouchi. Close to uniform prime number
generation with fewer random bits. In International Colloquium on Automata,
Languages, and Programming (ICALP), pages 991–1002. Springer, 2014.

[184] Gianni Franceschini and Roberto Grossi. Optimal worst-case operations for
implicit cache-oblivious search trees. In Workshop on Algorithms and Data
Structures (WADS), pages 114–126. Springer, 2003.

[185] Michael L. Fredman, Janos Komlos, and Endre Szemeredi. Storing a sparse
table with O(1) worst case access time. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), SFCS ’82, page
165–169. IEEE Computer Society, 1982.

[186] Michael L Fredman and Dan E Willard. Blasting through the information
theoretic barrier with fusion trees. In Proceedings of the twenty-second annual
ACM Symposium on Theory of Computing (STOC), pages 1–7, 1990.

409

[187] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–19. Springer, 2004.

[188] Alan Frieze and Michal Karonski. Introduction to Random Graphs.
Cambridge University Press, 2015.

[189] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In Proceedings of the 40th
Annual Symposium on Foundations of Computer Science (FOCS’99), pages
285–297, 17–19 October 1999.

[190] Zoltan Füredi, Péter Hajnal, Vojtech Rödl, and William T Trotter. Interval
orders and shift graphs. 1992.

[191] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix
trees and optimal text searching in bwt-runs bounded space. Journal of the
ACM (JACM), 67(1):1–54, 2020.

[192] Anna Gál, Meena Mahajan, Rahul Santhanam, and Till Tantau.
Computational complexity of discrete problems (dagstuhl seminar 21121). In
Dagstuhl Reports, volume 11. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[193] Igal Galperin and Ronald L. Rivest. Scapegoat trees. In Proc. 4th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 165–174.
ACM/SIAM, 1993.

[194] Daniel Golovin. Uniquely represented data structures with applications to
privacy. PhD thesis, Carnegie Mellon University, 2008.

[195] Daniel Golovin. B-treaps: A uniquely represented alternative to B-trees. In
Proc. 36th Annual International Colloquium on Automata, Languages, and
Programming (ICALP), pages 487–499. 2009.

[196] Daniel Golovin. The B-skip-list: A simpler uniquely represented alternative to
B-trees. arXiv preprint arXiv:1005.0662, 2010.

[197] Gaston H. Gonnet and Per-Åke Larson. External hashing with limited
internal storage. J. ACM, 35(1):161–184, 1988.

[198] Michael T Goodrich, Daniel S Hirschberg, Michael Mitzenmacher, and Justin
Thaler. Fully de-amortized cuckoo hashing for cache-oblivious dictionaries and
multimaps. arXiv preprint arXiv:1107.4378, 2011.

[199] Michael T Goodrich, Daniel S Hirschberg, Michael Mitzenmacher, and Justin
Thaler. Cache-oblivious dictionaries and multimaps with negligible failure
probability. In Mediterranean Conference on Algorithms, pages 203–218.
Springer, 2012.

410

[200] Michael T Goodrich, Evgenios M Kornaropoulos, Michael Mitzenmacher, and
Roberto Tamassia. Auditable data structures. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 285–300. IEEE, 2017.

[201] Michael T. Goodrich and Roberto Tamassia. Algorithm Design and
Applications. Wiley, Hoboken, New Jersey, USA, 2015.

[202] David Gries and Doug James. Cornell CS210: Object-oriented programming
and data structures — recitation week 8: Hashing, Fall 2014.

[203] Roberto Grossi, Alessio Orlandi, and Rajeev Raman. Optimal trade-offs for
succinct string indexes. In International Colloquium on Automata, Languages,
and Programming, pages 678–689. Springer, 2010.

[204] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for
balanced trees. In Proceedings of the 19th Annual Symposium on Foundations
of Computer Science (FOCS), pages 8–21, 1978.

[205] Takao Gunji and E Goto. Studies on hashing part-1: A comparison of hashing
algorithms with key deletion. J. Information Processing, 3(1):1–12, 1980.

[206] Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. Online
stochastic weighted matching: Improved approximation algorithms. In
International Workshop on Internet and Network Economics, pages 170–181.
Springer, 2011.

[207] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic
dictionaries. Journal of Algorithms, 41(1):69–85, October 2001.

[208] Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and
Emily C Rocke. Characterizing history independent data structures.
Algorithmica, 42(1):57–74, 2005.

[209] Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and
Emily C Rocke. Characterizing history independent data structures.
Algorithmica, 42:57–74, 2005.

[210] Micha Hofri and Alan G. Konheim. Padded lists revisited. SIAM Journal on
Computing, 16(6):1073–1114, 1987.

[211] F. R. A. Hopgood and J. Davenport. The quadratic hash method when the
table size is a power of 2. The Computer Journal, 15(4):314–315, 1972.

[212] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of
concentration bounds. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 617–631. Springer, 2010.

[213] Alon Itai and Irit Katriel. Canonical density control. Informatino Processing
Letters, 104(6):200–204, December 2007.

411

[214] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table
implementation of priority queues. In Proceedings 8th International
Colloquium on Automata, Languages, and Programming (ICALP 1981),
volume 115 of Lecture Notes in Computer Science, pages 417–431, Acre
(Akko), Israel, July 1981.

[215] Svante Janson and Alfredo Viola. A unified approach to linear probing
hashing with buckets. Algorithmica, 75(4):724–781, August 2016.

[216] Morten Skaarup Jensen and Rasmus Pagh. Optimality in external memory
hashing. Algorithmica, 52(3):403–411, November 2008.

[217] Rosa M. Jiménez and Conrado Martínez. On deletions in open addressing
hashing. In Proceedings of the Fifteenth Workshop on Analytic Algorithmics
and Combinatorics (ANALCO), pages 23–31, New Orleans, Louisana, USA,
8–9 January 2018. SIAM.

[218] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of
k-wise (almost) independent permutations. Algorithmica, 55(1):113–133, 2009.

[219] Irit Katriel. Implicit data structures based on local reorganizations. Master’s
thesis, Technion – Israel Inst. of Tech., Haifa, May 2002.

[220] Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on graphs.
In Symposium on Discrete Algorithms (SODA), volume 6, pages 434–443,
2006.

[221] Gregory Kesden. CMU 15-310: System-level software development — hashing
review, 2007. Accessed 31-May-2021.

[222] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo
Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. Fast and
scalable inequality joins. The VLDB Journal, 26(1):125–150, 2017.

[223] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Addison-Wesley,
Boston, Massachusetts, USA, 2006.

[224] Don Knuth. Notes on “open” addressing, 1963.

[225] Donald Knuth. personal communication, December 2022.

[226] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[227] Donald Ervin Knuth. The Art of Computer Programming, Volume I:
Fundamental Algorithms. Addison-Wesley, 3rd edition, 1997.

[228] Alan G. Konheim and Benjamin Weiss. An occupancy discipline and
applications. SIAM Journal on Applied Mathematics, 14(6):1266–1274,
November 1966.

412

[229] Tsvi Kopelowitz. On-line indexing for general alphabets via predecessor
queries on subsets of an ordered list. In Proc. 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 283–292, 2012.

[230] Robert L. Kruse. Data Structures and Program Design. Prentice-Hall Inc,
Englewood Cliffs, New Jersey, USA, 1984.

[231] William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor
cup game. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1558–1577. SIAM, 2020.

[232] William Kuszmaul. How asymmetry helps buffer management: achieving
optimal tail size in cup games. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 1248–1261, 2021.

[233] Per-Åke Larson. Performance analysis of linear hashing with partial
expansions. ACM Transactions on Database Systems, 7(4):566–687, December
1982.

[234] Per-Åke Larson. Analysis of uniform hashing. J. ACM, 30(4):805–819, 1983.

[235] Per-Åke Larson. Linear hashing with separators - A dynamic hashing scheme
achieving one-access retrieval. ACM Trans. Database Syst., 13(3):366–388,
1988.

[236] Per-Åke Larson and Ajay Kajla. File organization: Implementation of a
method guaranteeing retrieval in one access. Commun. ACM, 27(7):670–677,
1984.

[237] Christoph Lenzen, Merav Parter, and Eylon Yogev. Parallel balanced
allocations: The heavily loaded case. In Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 313–322, 2019.

[238] Dean De Leo and Peter A. Boncz. Fast concurrent reads and updates with
PMAs. In Proceedings of the 2nd Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data
Analytics (NDA), pages 8:1–8:8. ACM, 2019.

[239] Dean De Leo and Peter A. Boncz. Packed memory arrays - rewired. In 35th
IEEE International Conference on Data Engineering (ICDE), pages 830–841.
IEEE, 2019.

[240] Dean De Leo and Peter A. Boncz. Teseo and the analysis of structural
dynamic graphs. Proc. VLDB Endowment 14, 14(6):1053–1066, 2021.

[241] Harry R. Lewis and Larry Denenberg. Data Structures and Their Algorithms.
HarperCollins Publishers, New York, New York, USA, 1991.

413

[242] Kim-Hung Li. Reservoir-sampling algorithms of time complexity o (n (1+ log
(n/n))). ACM Transactions on Mathematical Software (TOMS),
20(4):481–493, 1994.

[243] Tianxiao Li, Jingxun Liang, Huacheng Yu, and Renfei Zhou. Tight cell-probe
lower bounds for dynamic succinct dictionaries. In 64th Annual Symposium on
Foundations of Computer Science (FOCS), 2023.

[244] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. Silt: A
memory-efficient, high-performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, pages 1–13,
2011.

[245] Mingmou Liu, Yitong Yin, and Huacheng Yu. Succinct filters for sets of
unknown sizes. In 47th International Colloquium on Automata, Languages,
and Programming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[246] Dimitrios Los and Thomas Sauerwald. Balanced allocations in batches:
Simplified and generalized. arXiv preprint arXiv:2203.13902, 2022.

[247] Dimitrios Los and Thomas Sauerwald. Balanced allocations with incomplete
information: The power of two queries. In Innovations in Theoretical
Computer Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[248] Dimitrios Los, Thomas Sauerwald, and John Sylvester. Balanced allocations:
Caching and packing, twinning and thinning. In Symposium on Discrete
Algorithms (SODA), pages 1847–1874. SIAM, 2022.

[249] Shachar Lovett and Ely Porat. A lower bound for dynamic approximate
membership data structures. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science (FOCS), pages 797–804. IEEE, 2010.

[250] Michael Luby and Charles Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. SIAM Journal on Computing,
17(2):373–386, 1988.

[251] Malwina J Luczak and Colin McDiarmid. On the maximum queue length in
the supermarket model. The Annals of Probability, 34(2):493–527, 2006.

[252] Malwina J Luczak and James Norris. Strong approximation for the
supermarket model. The Annals of Applied Probability, 15(3):2038–2061, 2005.

[253] Michael Main and Walter Savitch. Data Structures and Other Objects Using
C++. Addison-Wesley, Boston, Massachusetts, USA, 2001.

414

[254] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for
fast multicore key-value storage. In Proceedings of the 7th ACM European
conference on Computer Systems (EuroSys’12), pages 183–196, Bern,
Switzerland, 10–13 April 2012.

[255] W. D. Maurer. An improved hash code for scatter storage. Communications
of the ACM, 11(1):35–38, 1968.

[256] Colin McDiarmid. On the method of bounded differences. Surveys in
combinatorics, 141(1):148–188, 1989.

[257] Michael McMillan. Data Structures and Algorithms with JavaScript. O’Reilly,
Sebastopol, California, USA, 2014.

[258] Kurt Mehlhorn. On the program size of perfect and universal hash functions.
In 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982),
pages 170–175. IEEE, 1982.

[259] Kurt Mehlhorn, Peter Sanders, and Peter Sanders. Algorithms and data
structures: The basic toolbox, volume 55. Springer, 2008.

[260] Raghu Meka, Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Fast
pseudorandomness for independence and load balancing. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages
859–870. Springer, 2014.

[261] Raghu Meka, Omer Reingold, and Yuan Zhou. Deterministic Coupon
Collection and Better Strong Dispersers. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), volume 28 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 872–884, 2014.

[262] Haim Mendelson and Uri Yechiali. A new approach to the analysis of linear
probing schemes. Journal of the ACM, 27(3):474–483, July 1980.

[263] Daniele Micciancio. Oblivious data structures: applications to cryptography.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 456–464, 1997.

[264] Shyamal Mitra. UT CS 313E: Elements of software design — hashing, Spring
2021.

[265] Michael Mitzenmacher. How useful is old information (extended abstract)? In
Proceedings of the sixteenth annual ACM symposium on Principles of
distributed computing, pages 83–91, 1997.

[266] Michael Mitzenmacher. Studying balanced allocations with differential
equations. Combinatorics, Probability and Computing, 8(5):473–482, 1999.

415

[267] Michael Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems,
12(10):1094–1104, 2001.

[268] Michael Mitzenmacher, Andrea W. Richa, and Ramesh Sitaraman. The power
of two random choices: A survey of techniques and results. Combinatorial
Optimization, 9:255–304, 2001.

[269] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge University Press, 2nd edition, 2017.

[270] Michael Molloy and Bruce Reed. Graph coloring and the probabilistic
method. New York I Springer, 23:1329–356, 2002.

[271] Robert Morris. Scatter storage techniques. Communications of the ACM,
11(1):38–44, January 1968.

[272] Christian Worm Mortensen. Fully-dynamic two dimensional orthogonal range
and line segment intersection reporting in logarithmic time. In Proc. 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
618–627. ACM/SIAM, 2003.

[273] Christian Worm Mortensen, Rasmus Pagh, and Mihai Pǎtraçcu. On dynamic
range reporting in one dimension. In Proceedings of the thirty-seventh annual
ACM Symposium on Theory of Computing (STOC), pages 104–111, 2005.

[274] Dave Mount. UMD CMSC 420: Data structures — lecture 11: Hashing —
handling collisions, Spring 2019.

[275] Debankur Mukherjee, Sem C Borst, Johan SH Van Leeuwaarden, and
Philip A Whiting. Universality of power-of-d load balancing in many-server
systems. Stochastic Systems, 8(4):265–292, 2018.

[276] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dynamic
binary trees succinctly. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 529–536, USA, 2001.
Society for Industrial and Applied Mathematics.

[277] Moni Naor and Omer Reingold. On the construction of pseudorandom
permutations: Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66,
1999.

[278] Moni Naor, Gil Segev, and Udi Wieder. History-independent cuckoo hashing.
In Automata, Languages and Programming: 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35,
pages 631–642. Springer, 2008.

416

[279] Moni Naor and Vanessa Teague. Anti-persistence: History independent data
structures. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 492–501, 2001.

[280] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of
document retrieval on sequences. ACM Computing Surveys (CSUR),
46(4):1–47, 2014.

[281] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic
succinct trees. ACM Trans. Algorithms, 10(3), May 2014.

[282] Yakov Nekrich. Space efficient dynamic orthogonal range reporting.
Algorithmica, 49(2):94–108, 2007.

[283] Yakov Nekrich. Orthogonal range searching in linear and almost-linear space.
Computational Geometry, 42(4):342–351, 2009.

[284] Yakov Nekrich. Searching in dynamic catalogs on a tree. Computing Research
Repository (CoRR), abs/1007.3415, 2010.

[285] Yakov Nekrich. A dynamic stabbing-max data structure with sub-logarithmic
query time. Computing Research Repository (CoRR), abs/1109.3890, 2011.

[286] A. Newell and J. C. Shaw. Programming the Logic Theory Machine. In
Proceedings of the Western Joint Computer Conference: Techniques for
Reliability, Los Angeles, California, USA, 26–28 February 1957.

[287] Allen Newell and Herbert A. Simon. The logic theory machine—a complex
information processing system. IRE Transactions on Information Theory,
2(3):61–79, September 1956.

[288] Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded
balance. In Proc. 4th Annual ACM Symposium on Theory of Computing
(STOC), pages 137–142, 1972.

[289] Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded
balance. SIAM Journal on Computing, 2(1):33–43, 1973.

[290] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. Fast crash recovery in ramcloud. In Symposium on
Operating Systems Principles (SOSP), pages 29–41, 2011.

[291] Anna Ostlin and Rasmus Pagh. Uniform hashing in constant time and linear
space. In Proceedings of the thirty-fifth annual ACM Symposium on Theory of
Computing (STOC), pages 622–628, 2003.

[292] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow:
distributed, low latency scheduling. In Symposium on Operating Systems
Principles (SOSP), pages 69–84, 2013.

417

[293] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal
space. SIAM Journal on Computing, 38(1):85–96, 2008.

[294] Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. An optimal bloom filter
replacement. In Proceedings of the sixteenth annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 823–829, 2005.

[295] Rasmus Pagh. Faster deterministic dictionaries. In Proceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages
487–493, USA, February 2000.

[296] Rasmus Pagh. Low redundancy in static dictionaries with constant query
time. SIAM Journal on Computing, 31(2):353–363, 2001.

[297] Rasmus Pagh. Dispersing hash functions. Random Structures & Algorithms,
35(1):70–82, 2009.

[298] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proceedings of
the 9th European Symposium on Algorithms (ESA 2001), volume 2161 of
Lecture Notes in Computer Science, pages 121–133, University of Aaarhus,
Denmark, 28–31 August 2001. Springer.

[299] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European
Symposium on Algorithms (ESA), pages 121–133. Springer, 2001.

[300] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, May 2004.

[301] Rasmus Pagh, Gil Segev, and Udi Wieder. How to approximate a set without
knowing its size in advance. In 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science (FOCS), pages 80–89. IEEE, 2013.

[302] Rasmus Pagh, Zhewei Wei, Ke Yi, and Qin Zhang. Cache-oblivious hashing.
Algorithmica, 69(4):864–883, 2014.

[303] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluç. Terrace: A
hierarchical graph container for skewed dynamic graphs. In Proc. 2021 ACM
SIGMOD International Conference on Management of Data (SIGMOD),
pages 1372–1385, 2021.

[304] Mihai Patrascu. Succincter. In Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 305–313.
IEEE, 2008.

[305] Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing.
Journal of the ACM (JACM), 59(3):1–50, 2012.

418

[306] Mihai Patrascu and Mikkel Thorup. Dynamic integer sets with optimal rank,
select, and predecessor search. In Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science (FOCS), pages 166–175,
2014.

[307] Christos Pelekis. Lower bounds on binomial and Poisson tails: An approach
via tail conditional expectations. arXiv:1609.06651, September 2016.

[308] Yuval Peres, Kunal Talwar, and Udi Wieder. The (1+ 𝛽)-choice process and
weighted balls-into-bins. In Symposium on Discrete Algorithms (SODA),
pages 1613–1619. SIAM, 2010.

[309] W. W. Peterson. Addressing for random-access storage. IBM Journal of
Research and Development, 1(2):130–146, April 1957.

[310] William Pugh. Incremental computation and the incremental evaluation of
functional programs. PhD thesis, Cornell University, 1988.

[311] William Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[312] William Pugh and Tim Teitelbaum. Incremental computation via function
caching. In Proc. 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 315–328, 1989.

[313] Rajeev Raman and Satti Srinivasa Rao. Succinct dynamic dictionaries and
trees. In Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP), pages 357–368, 2003.

[314] Vijayshankar Raman. Locality preserving dictionaries: Theory and application
to clustering in databases. In Proc. 18th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages 337–345, 1999.

[315] Omer Reingold, Ron D Rothblum, and Udi Wieder. Pseudorandom graphs in
data structures. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 943–954. Springer, 2014.

[316] Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional
analysis of hashing methods and its implications on query processing. PVLDB
– Porceedings of the VLDB Endowment, 9(3):96–107, November 2015. The
42nd International Conference on Very Large Data Bases, New Delhi, India.

[317] J. P. Royston. Expected normal order statistics (exact and approximate).
Journal of the Royal Statistical Society, 31:161–165, 1982.

[318] Milan Ružić. Uniform deterministic dictionaries. ACM Transactions on
Algorithms, 4(1):1–23, March 2008.

419

https://arxiv.org/abs/1609.06651

[319] Michael Saks. Online labeling: Algorithms, lower bounds and open questions.
In International Computer Science Symposium in Russia (CSR), volume
10846, pages 23–28. Springer, 2018.

[320] Peter Sanders. Hashing with linear probing and referential integrity. arXiv
preprint arXiv:1808.04602, 2018.

[321] Edward R Scheinerman and Daniel H Ullman. Fractional graph theory: a
rational approach to the theory of graphs. Courier Corporation, 2011.

[322] Keith Schwarz. Stanford CS166: Data structures — linear probing, Spring
2021.

[323] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts,
USA, 1983.

[324] Robert Sedgewick. Algorithms in C. Addison-Wesley, Reading, Massachusetts,
USA, 1990.

[325] Raimund Seidel and Cecilia R Aragon. Randomized search trees.
Algorithmica, 16(4):464–497, 1996.

[326] A Siegel. On universal classes of fast high performance hash functions, their
time-space tradeoff, and their applications. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS), pages 20–25, 1989.

[327] Alan Siegel. On universal classes of extremely random constant-time hash
functions. SIAM Journal on Computing, 33(3):505–543, 2004.

[328] Gábor Simonyi and Gábor Tardos. On directed local chromatic number, shift
graphs, and borsuk-like graphs. Journal of Graph Theory, 66(1):65–82, 2011.

[329] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, 1985.

[330] Peter Smith. Applied Data Structures with C++. Jones & Bartlett Learning,
2004.

[331] Lawrence Snyder. On uniquely represented data structures. In Proc. 18th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 142–146, 1977.

[332] Thomas A. Standish. Data Structures, Algorithms, and Software Principles in
C. Addision-Wesley, Reading, Massachusetts, USA, 1995.

[333] Volker Stemann. Parallel balanced allocations. In Symposium on Parallel
algorithms and Architectures (SPAA), pages 261–269, 1996.

420

[334] Hsin-Hao Su, Lili Su, Anna Dornhaus, and Nancy Lynch. Ant-inspired
dynamic task allocation via gossiping. In Stabilization, Safety, and Security of
Distributed Systems: 19th International Symposium, SSS 2017, Boston, MA,
USA, November 5–8, 2017, Proceedings 19, pages 157–171. Springer, 2017.

[335] Hsin-Hao Su and Nicole Wein. Lower bounds for dynamic distributed task
allocation. In 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[336] David G. Sullivan. Harvard CS S-111: Intensive introduction to computer
science using Java — unit 9, part 4: Hash tables, Summer 2021.

[337] Rajamani Sundar. A lower bound for the dictionary problem under a hashing
model. In Proceedings 32nd Annual Symposium of Foundations of Computer
Science, pages 612–621, San Juan, Puerto Rico, USA, October 1991.

[338] Rajamani Sundar and Robert Endre Tarjan. Unique binary search tree
representations and equality-testing of sets and sequences. In Proc. 22nd
Annual ACM Symposium on Theory of Computing (STOC), pages 18–25,
1990.

[339] Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case. In
Symposium on Theory of Computing (STOC), pages 256–265, 2007.

[340] Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof for the
heavily loaded case. In International Colloquium on Automata, Languages,
and Programming (ICALP), pages 979–990. Springer, 2014.

[341] Mikkel Thorup. Mihai Pǎtraşcu: Obituary and open problems. Bulletin of
EATCS, 1(109), 2013.

[342] Julio Toss, Cicero Augusto de Lara Pahins, Bruno Raffin, and João Luiz Dihl
Comba. Packed-memory quadtree: A cache-oblivious data structure for visual
exploration of streaming spatiotemporal big data. Computers & Graphics,
76:117–128, 2018.

[343] Jean-Paul Tremblay and Paul G. Sorenson. An Introduction to Data
Structures with Applications. McGraw-Hill, 1984.

[344] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1–3):1–336, 2012.

[345] Alfredo Viola. Exact distribution of individual displacements in linear probing
hashing. ACM Transactions on Algorithms (TALG), 1(2):214–242, October
2005.

421

[346] Alfredo Viola. Distributional analysis of the parking problem and Robin Hood
linear probing hashing with buckets. Discrete Mathematics and Theoretical
Computer Science (DMTCS), 12(2), January 2010.

[347] Alfredo Viola and Patricio V. Poblete. The analysis of linear probing hashing
with buckets (extended abstract). In Algorithms — ESA ’96, Fourth Annual
European Symposium, volume 1136 of Lecture Notes in Computer Science,
pages 221–233. Springer, 1996.

[348] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11(1):37–57, 1985.

[349] Jeffrey Scott Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing surveys (CsUR), 33(2):209–271,
2001.

[350] Berthold Vöcking. How asymmetry helps load balancing. In Foundations of
Computer Science (FOCS), page 131, 1999.

[351] Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM
(JACM), 50(4):568–589, 2003.

[352] Nikita Dmitrievna Vvedenskaya, Roland L’vovich Dobrushin, and
Fridrikh Izrailevich Karpelevich. Queueing system with selection of the
shortest of two queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1):20–34, 1996.

[353] Mark Allen Weiss. Data Structures and Problem Solving using C++.
Addison-Wesley, Reading, Massachusetts, USA, 2000.

[354] Jay Wengrow. A Common-Sense Guide to Data Structures and Algorithms.
The Pragmatic Programmers, 2017.

[355] Brian Wheatman and Randal Burns. Streaming sparse graphs using efficient
dynamic sets. In IEEE BigData, pages 284–294. IEEE, 2021.

[356] Brian Wheatman and Helen Xu. Packed compressed sparse row: A dynamic
graph representation. In HPEC, pages 1–7. IEEE, 2018.

[357] Brian Wheatman and Helen Xu. A parallel packed memory array to store
dynamic graphs. In Proc. Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 31–45. SIAM, 2021.

[358] Udi Wieder et al. Hashing, load balancing and multiple choice. Foundations
and Trends® in Theoretical Computer Science, 12(3–4):275–379, 2017.

[359] Wikipedia contributors. Linear probing, 2021. Accessed 31-May-2021.

[360] Wikipedia contributors. Linked list, 2021. Accessed 22-May-2021.

422

[361] Wikipedia contributors. Primary clustering, 2021. Accessed 22-May-2021.

[362] Wikipedia contributors. Quadratic probing, 2021. Accessed 31-May-2021.

[363] Dan E. Willard. Inserting and deleting records in blocked sequential files.
Technical Report TM81-45193-5, Bell Labs Tech Reports, 1981.

[364] Dan E. Willard. Maintaining dense sequential files in a dynamic environment
(extended abstract). In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing (STOC’82), pages 114–121, San
Francisco, California, USA, May 1982.

[365] Dan E. Willard. Good worst-case algorithms for inserting and deleting records
in dense sequential files. In Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Data (SIGMOD’86), pages
251–260, Washington, DC, USA, May 1986.

[366] Dan E. Willard. A density control algorithm for doing insertions and deletions
in a sequentially ordered file in good worst-case time. Information and
Computation, 97(2):150–204, April 1992.

[367] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, USA, 1976.

[368] Niklaus Wirth. Algorithms and Data Structures. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, USA, 1986.

[369] Philipp Woelfel. Asymmetric balanced allocation with simple hash functions.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 424–433. ACM Press, 2006.

[370] Huacheng Yu. Nearly optimal static las vegas succinct dictionary. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1389–1401, 2020.

[371] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual
network embedding: Substrate support for path splitting and migration. ACM
SIGCOMM Computer Communication Review, 38(2):17–29, 2008.

[372] Ju Zhang. Density control and on-line labeling problems. PhD thesis,
University of Rochester, 1993.

423

	Introduction
	Randomized Data Structures: Past and Present
	Contributions and Outline
	Bibliographics

	I Linear Probing Revisited: Overturning the Oldest Myth in Data Structures
	Introduction
	Notation and Conventions

	The Surprisingly Strong Anti-Clustering Effects of Tombstones
	Technical Overview
	Understanding the Classic Bounds: A Tale of Standard Deviations
	Analyzing Primary Anti-Clustering with Small Rebuild Windows
	Stronger Primary Anti-Clustering with Larger Rebuild Windows

	Some Basic Balls-and-Bins Lemmas
	Bounds on Insertion Surplus
	Proof of Proposition 9
	Proof of Proposition 10

	Relating Insertion Surplus to Crossing Numbers
	Relating Crossing Numbers to Running Times

	Graveyard Hashing, an Ideal Linear-Probing Hash Table

	II Dynamic Sorting Revisited: The Power of History Independence
	Introduction
	Preliminaries and Technical Background
	The Classical Solution and its History-Independent Analogue

	Related work

	Breaking the O(2 n) Barrier
	Technical Overview
	Zeno's Random Walk
	The Zeno Embedding: a Data Structure for m (1 +) n
	The Static Zeno Embedding
	Dynamizing the Zeno Embedding
	Achieving a Bound on Arbitrary Insertions/Deletions.

	Upper Bound For Sparse Arrays

	A Lower Bound for History-Independent Solutions
	Proof of Proposition 61
	Proof of Proposition 63

	III Balls and Bins: When Greedy Allocation Fails and How to Fix It
	Introduction
	Chapter 9. The Scheduling Perspective
	Chapter 10. The Data-Structural Perspective
	Preliminaries
	Other Related Work

	The Scheduling Perspective
	A Lower Bound for Greedy with Deletions
	A Simpler (m1/4) Bound
	The Stronger (m1/2) Lower Bound

	ModulatedGreedy: Handling poly(m) Insertions/Deletions
	The Algorithm
	Analysis
	Tightness of the Bound

	Generalizations of ModulatedGreedy
	The Algorithm and Overview
	Algorithm Analysis
	Extensions

	Appendices
	Proof of Lemma 74
	Proof of Lemma 100

	The Data-Structural Perspective
	An Impossibility Result For The Deletions with Reinsertions
	The Marble-Splitting Game
	Proof of Theorem 97

	An Upper Bound for the Moderately-Loaded Regime
	A Strong Backyarding Lemma
	The Iceberg 3-Choice Strategy

	IV Hashing it Out: Some Barriers Are Fundamental and Others Are Not
	Introduction
	The Optimal Space-Time Tradeoff Curve for Hash Tables
	Introduction
	Overview of Results and Techniques
	Hash Tables and Balls-To-Slots Schemes
	Transforming a k-Kick Tree into a k-Kick Hash Table
	An Application to Optimal Dynamic Filters
	Preliminaries

	The Probe-Complexity Problem
	A Balls-to-Slots Scheme with Small Average Probe Complexity
	A Lower Bound on Switching Cost vs. Probe Complexity

	Encoding Metadata in an Augmented Open-Addressed Hash Table
	Preliminaries: The Lookup-Table Technique
	Storing a Mini-Array of Variable-Size Values
	Query Routers

	An Optimal Augmented Open-Addressed Hash Table
	Turning the k-Kick Tree into a Hash Table
	Supporting Dynamic Resizing
	Succinctness Through Quotienting

	Large Keys, Small Keys, and Filters
	Supporting Large Keys/Values
	Optimizing for Very Small Keys
	Constructing Optimal Filters

	A Hash Table Without Hash Functions
	Introduction
	Preliminaries and Conventions (for Non-Succinct Dictionaries)
	A Warmup Data Structure: The Rotated Trie.
	The Amplified Rotated Trie
	The Budget Rotated Trie
	Achieving Succinctness
	Reduction to the Many-Sets Problem
	Proof of Theorem 148

	Appendices
	Universe Reduction Using O (n) Random Bits

	Tight Bounds for Monotone Minimal Perfect Hashing
	Introduction
	Preliminaries
	Problem Definition and Model of Computation
	Fractional Colorings

	A Lower Bound for MMPHF via Fractional Colorings
	Conflict Graph and its Fractional Chromatic Number
	Extending the MMPHF Lower Bound to Small Universes

	Fractional Chromatic Number of Conflict Graphs
	A High-Level Overview of the Proof
	The Hard Input Distribution in monotonelem:main
	Analysis of the Hard Distribution (and Proof of monotonelem:main)

	Appendices
	Proofs of Standard Results in Fractional Coloring
	Covering The Full Range of the Universe Size

	V How Many Bits Does It Take to Write Down a Pointer?
	Introduction
	From Balls and Bins to Tiny Pointers
	Preliminaries
	Upper Bound for Fixed-Size Pointers
	Upper Bounds for Variable-Sized Pointers
	Lower Bounds

	Five Applications to Data Structures
	Some General-Purpose Techniques for Using Tiny Pointers
	Overcoming the (n)-Bit Lower Bound for Data Retrieval
	Succinct Binary Search Trees
	Space-Efficient Stable Dictionaries
	Space-Efficient Dictionaries with Variable-Size Values
	An Optimal Internal-Memory Stash

	VI A Strong Theory of Strong History Independence
	Introduction
	Conventions

	Strong Upper Bounds for Stateless Allocation
	Achieving O(1 + -1) Expected Overhead
	Achieving O(1 + -1) Overhead with Power-of-Two Sizes
	Supporting Dynamic Resizing
	Allocating Items with Sizes in [1, 2)
	Allocating Objects of Arbitrary Sizes

	Achieving polylogn Worst-Case Overhead for Worker-Task Assignment
	Achieving Switching Cost O(log w log (wt))
	Derandomizing the Construction

	Strong Lower Bounds for Stateless Allocation
	Proof of Theorem 223

	Efficient Data-Structural Implementations
	An Efficient Allocator for Small Objects
	An Efficient Allocator for Large Objects
	Putting the Pieces Together

