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1 Introduction

One of the most urgent questions in string theory is the existence of string backgrounds closer
to our four-dimensional real world, with no supersymmetry and small positive cosmological
constant in the infrared [1–3]. The main challenge in describing more realistic string vacua
with no or minimal supersymmetry is that theoretical tools to analyze, both perturbative and
non-perturbative, α′ and gs corrections to such string backgrounds are scarce. At the center
of this challenge, there lies a common feature of type II string compactifications: non-trivial
Ramond-Ramond (RR) profiles.1 The standard on-shell worldsheet approach based on the
Ramond-Neveu-Schwarz (RNS) formalism [12–16] is well-known for its limitations in describing
the RR profiles due to their half-integer picture numbers.2 Although there are alternative

1There are numerous intriguing string backgrounds with non-trivial RR fluxes. They notably include the
majority of scenarios related to holography and flux compactifications [4–11].

2For an attempt to describe the RR profiles within the RNS formalism, see for example, [17, 18].
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formalisms that may be useful in describing specific RR flux backgrounds,3 it is essential to
establish a more universal and systematic framework for the study of flux compactifications.

It is worth emphasizing that the question of vacuum structure is inherently a low-energy
problem. Hence, it is reasonable to expect that constructing solutions to the low-energy
approximation of string theory, the low-energy supergravity, is equivalent to constructing
string backgrounds, as long as the involved approximation is judiciously performed. And
this is why most of the attempts to construct more interesting string backgrounds usually
involve finding solutions to the low-energy supergravity equations of motion that can also
accommodate RR fluxes. However, the low-energy approximation necessarily comes with a
list of limitations. It is not clear how to compute α′ and gs corrections purely within the
low-energy supergravity, and physical quantities that are not geometrical or not protected
by supersymmetry are extremely difficult to access.4 Therefore, a first-principle worldsheet
description of string backgrounds with RR fluxes is necessary to systematically compute
observables of stringy nature.

It is rather surprising that there is such a contrast between the low-energy supergravity
and the string worldsheet theory when it comes to the description of a background. The main
difference is that the general covariance which makes Einstein field equation so universal and
powerful is not manifest in the current formulation of string worldsheet theories. Within
the RNS formalism, the closest to the Einstein field equations is provided by the string field
equations of motions (SFEOM). Just as solutions to the former describe a supergravity
background, those to the latter describe a superstring background. Nonetheless, as of today,
string field theory (SFT) necessitates an exact worldsheet theory as its starting point to
even formulate the SFEOM, which are then expressed in terms of the degrees of freedom of
that starting point. However, this leads us to an intriguing possibility: certain interesting
backgrounds, for which an exact worldsheet description is currently elusive, may be realized
as solutions to SFEOM formulated around an exact worldsheet theory. In such cases, SFT
offers a “worldsheet” description of these string backgrounds, in the sense that it facilitates
a systematic computation of genuinely string-theoretic physical observables.

The possibility that a background for which we do not know of an exact worldsheet CFT
description arises as a solution to SFEOM can be realized, for example, when the solution
has a different spacetime asymptotics than the starting point that was used to formulate
SFEOM. Another example, not necessarily independent of the first, involves a string field
solution featuring non-zero RR flux components while the starting point represents a pure
Neveu-Schwarz-Neveu-Schwarz (NSNS) background. Such a solution can be described in
SFT because RR fields are merely components of the string fields comprising the theory’s
field content. Therefore, there is no inherent impediment to working with nontrivial RR
field configurations in SFT. In such cases, the solution does not necessarily correspond
to a worldsheet CFT belonging to the CFT moduli space of the starting point. In fact,

3Such alternatives include the pure-spinor formalism and the hybrid formalism [19–28], where spacetime
supersymmetries are made manifest at the level of the worldsheet. Whether such an approach may still
apply for less supersymmetric backgrounds is an interesting question beyond the scope of this work. For an
interesting early attempt to understand flux compactifications in the hybrid formalism, see [29].

4Sometimes, special structures such as integrability provide access to more physical data about the theory.
See, e.g. [30] for a review in the context of holography.
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it is unclear if this solution can ever accommodate a local worldsheet CFT description in
the conventional sense.5

The aforementioned possibilities exemplify the conceptual innovation inherent in SFT.
Once a field theory description of strings is obtained from a given starting point, the original
worldsheet CFT can be set aside in favor of the field theory description. Solutions to the
field equations correspond to string backgrounds, and expanding the string field action
around these solutions establishes the Feynman rules needed to compute physical observables.
This field theory essentially serves as the “worldsheet” formulation of the string background
corresponding to the solutions. Of course, the limitation that such a field theory description
is given by the degrees of freedom of the starting point is still present. Moreover, since the
current formulation of any superstring field theories involving dynamical closed strings is
non-polynomial in the closed string fields, achieving a consistent expansion scheme that aligns
with the string coupling expansion is imperative for systematic computations of background
solutions and their associated physical observables.

In this work, we study a simple class of flux compactifications that arises as solutions
to SFEOM of type IIB superstring theory with D3-branes and O3-planes.6 To do so, we
shall make heavy use of the type IIB open-closed-unoriented SFT in RNS formalism for
which a consistent BV-formalism was recently completed [36–40]. At the level of low-energy
supergravity, these backgrounds describe non-compact four-dimensional spacetimes warped
by compact six-dimensional spaces (which we take to be a six-torus in this work) featuring
NSNS 3-form, RR 3-form, and RR 5-form fluxes alongside D3-branes and O3-planes.

As alluded to in previous paragraphs, to obtain SFEOM, we must start with a consistent
string background for which a worldsheet CFT description is available. Because the closest
string background is the toroidal compactifications without non-trivial fluxes, this implies
that the non-trivial fluxes shall be treated perturbatively, at best, at least within the current
formulation of string field theory. This idea was explored in [41] where pp-wave background
and AdS3 background with nontrivial RR fluxes were described as solutions to type IIB
SFEOM. These solutions were expressed as a perturbative expansion in the RR flux around
a pure NSNS background where an exact worldsheet description is available.7

One immediate worry follows. In the context of conventional holographic AdS back-
grounds, which can be attained as a near-horizon limit of D-branes, changing the Ramond-
Ramond flux quanta does not necessarily destabilize moduli per se. This is in part due to
the fact that near-horizon AdS solutions come in infinite families. So, treating the RR flux
quanta as a small parameter may not cause a severe problem. On the other hand, in the
context of flux compactifications, the stability of vacua sensitively depends on which flux

5A related concept in SFT is the background independence [31–35], which asserts that different SFTs
described by different string couplings or worldsheet CFTs sharing the moduli space are related to each other
by string field redefinitions. Solutions with RR fluxes suggest how such a notion may be generalized beyond
the worldsheet CFT moduli space.

6As long as the D7-brane tadpole is canceled locally, we don’t expect any obstruction to generalize our
construction to the backgrounds with D7-branes and O7-planes. But, we did not pursue this generalization in
this work.

7Since the quantization of the RR flux is a non-perturbative effect, such an expansion is still consistent as
long as string perturbation theory is concerned, even though the convergence of the expansion to the quantized
result was not addressed in detail.
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quanta one chooses, and it is not clear if it even makes sense to consider the RR flux as
a small parameter while ensuring that the NSNS flux is indeed quantized.8 This raises a
serious obstacle to studying the flux compactifications in string field theory.

As we will demonstrate in the main text, the situation proves more favorable for the
flux compactification under consideration in this work. In the F-term minima, the vacuum
expectation value of complex structure moduli is correlated with the vacuum expectation
value of the dilaton. Furthermore, the source terms that describe the fluxes depend not
only on the flux quanta but also on complex structure moduli. Essentially, this correlation
between the complex structure moduli and the dilaton will enable us to work with fully
quantized fluxes in SFT, with the only effective expansion parameter being g1/2

s , which can
be kept small in string perturbation theory. A recursive method to write down the string
field solution and physical quantities in such an expansion has been well-established in SFT
literature- see e.g. [39]. We will obtain the solution to order gs where all tadpoles in the SFT
action vanish when expanded around the solution.9 Even though our string field solution
will be a direct translation of a supergravity solution, the SFT action around this solution
provides a genuinely string-theoretic framework for computing physical observables that
transcend the scope of low-energy effective descriptions.

1.1 Summary of the draft

The main goal of this paper is to construct a class of perturbative background solutions in
string field theory that can be used for systematic investigations of flux compactifications
in type IIB string theory. As such, the results of this draft involve the ingredients from
string compactifications, string perturbation theory, and string field theory. This section
serves as both the summary and the reading guide.

In section 2, we review flux compactifications in type IIB string theory and provide a
simple explicit example of such. Section 2 is the only section where we will use the Einstein-
frame metric. In the rest of the draft, we shall use the string-frame metric. We start with
the low energy approximation of type IIB string theory. In section 2.1, we review type IIB
flux compactifications of Giddings-Kachru-Polchinski (GKP) [43]. In section 2.1, we shall
retain terms in the supergravity action up to O(gsα′2) compared to the leading order terms.
In particular, we shall ignore the O(α′3) corrections to the low energy supergravity. We
review how solving equations of motion up to O(gsα′2) leads to the imaginary-self-dual (ISD)
condition of the complexified threeform flux G3 := F3 − τH3

⋆6G3 = iG3 . (1.1)

In section 2.2, we review the four dimensional low energy effective theory of type IIB
flux compactifications. In section 2.2, we use the flux superpotential [44]∫

G3 ∧ Ω , (1.2)

8Note that the worldsheet description is sensitive to the quantization of the NSNS flux. Hence, it is
important to treat the NSNS flux quanta as O(1) quantities.

9In [42], a similar perturbative string field solution where the massless tadpoles are absent was obtained in
the context of SO(32) heterotic string theory on Calabi-Yau threefolds.
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and the string-tree-level Kähler potential to analyze the F-term potential in the 4d. We
review that up to O(gsα′2), the low energy supergravity enjoys the no-scale structure, which
is broken by the famous Becker-Becker-Haack-Louis correction at order O(α′3) [45]. We
review how the F-term conditions for complex structure moduli and the axio-dilaton lead to
the ISD condition for the complexified flux G3. We then explain that due to the no-scale
structure, even if the F-term condition for the Kähler moduli is not solved, the F-term
potential is still minimized. This implies that without considering further corrections, e.g.
the non-perturbative superpotential, supersymmetry is broken perturbatively for generic
choices of quantized fluxes. We then explain that to preserve supersymmetry, the complexified
flux G3 should be of (2, 1) Hodge type, which implies that the vacuum expectation value
of the flux superpotential should vanish.

For generic flux vacua, it is unclear if there can be a sensible perturbative expansion
scheme that is amenable to perturbative string field theory analysis, because string coupling
is not expected to be small in general [46]. Therefore we shall make a judicious choice of
candidate flux vacua to study. We then deploy a strategy to find supersymmetric flux vacua in
toroidal compactifications based on the idea of [47]. We explain that in the class of flux vacua
we study there is a linear relation between complex structure moduli ui and the axio-dilaton τ

ui = piτ , (1.3)

which is expected to be perturbatively exact. Furthermore, we shall explain that gs can be
essentially treated as a free parameter, because the following direction in the moduli space

(ui(λ), τ(λ)) = (piλ, λ) (1.4)

parametrized by λ remains massless, which makes the perfect candidate for the perturbative
analysis. In section 2.3, we provide an explicit example of toroidal supersymmetric flux
compactifications.

In section 3, we review the worldsheet CFT for the R1,9 and R1,3 × T 6 target spacetimes.
In section 3.1, we set up the worldsheet CFT convention for R1,9 target space. In section 3.1.1,
we collect vertex operators for the massless states, and compute three point functions involving
the massless states. In section 3.1.2, we review the boundary states and fix the conventions. In
section 3.2, we set up the worldsheet CFT convention for R1,3×T 6 target space. Furthermore,
we introduce vielbeins that will prove useful in section 4.

In section 4, we apply the type II open-closed-unoriented string field theory to obtain
perturbative background solutions in SFT that correspond to the flux vacua introduced in
section 2. In section 4.1, we give a brief review of type II open-closed-unoriented string
field theory. String field theory, as currently formulated, requires as a good starting point
a well defined worldsheet CFT. And at the same time, it is not known how to directly
construct the worldsheet CFT for flux vacua in the RNS formalism. Hence, we shall start
with a purely geometric string background that can be deformed into a string background
that corresponds to a flux vacuum. Because quantized fluxes are not small, it may naïvely
seem impossible to deform the background by quantized fluxes in a controlled manner. In
section 4.2, we point out that the vertex operator for the quantized fluxes not only depend on
the flux quanta but also on complex structure moduli. This allows us to set up an expansion
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scheme that we call the ϵ expansion. To do so, we introduce a small parameter ϵ, take a large
complex structure limit, and treat gs and Im u−1

i as small parameters of order O(ϵ). This
allows us to treat the deformation by fluxes in string field theory as small perturbations of
order O(ϵ1/2), which will then allow us to find string background order by order in ϵ. As ϵ
expansion scheme is based on the smallness of gs and Im u−1

i , and the moduli stabilization
will impose constraints on the vacuum expectation value of moduli, for the consistency of
the expansion scheme it is imperative to check that the scaling of moduli are respected by
moduli stabilization. We shall check this in section 4.4 by solving SFEOM. Beyond order
O(ϵ), the ϵ expansion can be treated as gs expansion.

In section 4.3 and section 4.4, we solve the equations of motion at order O(ϵ1/2) and O(ϵ)
respectively. One notable outcome of section 4.4 is that in SFT the tadpole due to localized
sources, such as D-branes, are smeared. We then discuss the subtlety in the absence of massless
tadpoles in SFT in section 4.5. Once correctly implemented, it leads to the ISD condition
and the integrated Bianchi identity, in agreement with the expectation from supergravity.

In section 5, we conclude with a list of interesting future directions. In section A, we
summarize the supergravity conventions for toroidal compactifications. In section B, we
summarize the spinor conventions for the toroidal compactifications.

2 Supergravity background

In this section, we give a supergravity description of the flux compactification background
studied in this work. It arises as a solution to the IIB supergravity with local sources
given by D3-branes and O3-planes. D7-branes and O7-planes may also be added, even
though we will focus on the cases without them. We shall mostly follow the conventions
of [48]. The ten-dimensional type IIB supergravity action in Einstein-frame for the bosonic
components is given by

S(E) = 1
2κ2

10

∫
d10X

√
−G(E)

(
R(E)

10 − ∂Aτ∂
Aτ̄

2(Imτ)2 −
G3 ·G3
2Imτ

− F̃ 2
5
4

)
+ 1
8iκ2

10

∫
C4∧G3∧G3

Imτ
+Sloc ,

(2.1)
where R10 is the Ricci scalar computed from G(E), τ is the axio-dilaton, G3 := F3 − τH3, and
F̃5 = F5 − 1

2C2 ∧H3 + 1
2B2 ∧ F3. The local action Sloc contains contributions from D-branes

and O-planes. Note that throughout this draft, we shall use the following conventions

F (2k+1) · F (2k+1) := 1
(2k + 1)!G

a1b1 . . . Ga2k+1b2k+1F (2k+1)
a1...a2k+1F

(2k+1)
b1...b2k+1

, (2.2)

and

|F (2k+1)|2 := (2k + 1)!F (2k+1) · F (2k+1) . (2.3)

The same action in string-frame is written as

S(st) = S
(st)
NS + S

(st)
R + SCS + S

(st)
loc , (2.4)

– 6 –
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where

S
(st)
NS = 1

2κ2
10

∫
d10X

√
−G(st)e−2Φ

(
R(st)

10 + 4∂µΦ∂µΦ− 1
2H3 ·H3

)
, (2.5)

S
(st)
R = − 1

4κ2
10

∫
d10X

√
−G(st)

(
F1 · F1 + F̃3 · F̃3 +

1
2 F̃5 · F̃5

)
, (2.6)

SCS = − 1
4κ2

10

∫
C4 ∧H3 ∧ F3 . (2.7)

The string-frame metric is related to the Einstein-frame metric via

G(E) = e−Φ/2G(st) . (2.8)

Note that we defined F̃3 := F3 − C0 ∧ H3. We remark that the RR fields are normalized
differently in supergravity than the NSNS fields.

Now, we shall consider Calabi-Yau orientifold compactifications in the presence of fluxes.
A few comments are in order. The orientifold compactification is consistent iff the Ramond-
Ramond tadpole is canceled. This inevitably induces warping, which mixes the compact and
the non-compact directions. In the limit where the warping is small, the topology of the
spacetime will be of R3,1 ×X/I, where X is a Calabi-Yau and I is the orientifold involution
I2 = I. But, at a finite warping, the topology of the spacetime should be understood as
a R3,1 fibration over X/I.

A cautionary remark should follow. In generic compactifications, in which the compact
manifold has a non-trivial Euler characteristic, it is expected that a non-trivial vacuum
expectation value of the flux superpotential will cause a perturbative runaway behavior [49].
This runaway behavior is induced by O(α′3) corrections to the effective action, which manifests
itself as the famous O(α′3) no-scale structure breaking correction to the Kähler potential
known as the BBHL correction [45]. As such a background cannot be regarded as a vacuum,
due to its time-dependent nature, one should be careful to study such backgrounds. The
common wisdom is that one shall find flux compactification in which the slow roll parameters
and the perturbative supersymmetry breaking scale are small, which allows one to treat
the background as an approximate vacuum [50]. Then, one can reliably approximate the
non-perturbative superpotential to balance the energy from the supersymmetry breaking flux
to find a stable AdS vacuum. In this work, however, we shall consider a simpler setting in
which the compact manifold is a simple toroidal orientifold, and the vacuum expectation
of the flux superpotential vanishes exactly. In toroidal orientifolds, we wouldn’t see such
a runaway behavior at the leading order in gs, but one should carefully treat the runaway
behavior in generic Calabi-Yau compactifications when adopting the worldsheet description
of flux compactifications.10

2.1 Ansatz and assumptions for the ten-dimensional supergravity

In this section, we shall review the ten-dimensional supergravity solutions of [43].
10This will require carefully including α′ corrections to the tree-level actions and equations of motions of

string field theory.
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We will take the following metric ansatz in Einstein-frame11

ds2 = GABdX
AdXB = e2A(y)gµν(x)dxµdxν + e−2A(y)gab(y)dyadyb , (2.9)

with x denoting coordinates in the four non-compact dimensions (µ = 0, 1, 2, 3) and y denoting
coordinates in the six compact dimensions (a = 4, 5, 6, 7, 8, 9). Moreover, we take the ansatz
for the RR 5-form flux as

F̃5 = (1 + ⋆10)
√
−g4dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.10)

which is manifestly self-dual. Note that ⋆10 is the ten-dimensional Hodge star operator.
The Ricci tensors can be written as

Rµν [G] = R4,µν [g]− e4Agµν∇2A , (2.11)

Rab[G] = R6,ab[g] +∇2Agab − 8∂aA∂bA , (2.12)

where R4[g] and R6[g] are the Ricci tensors of gµν and gab, respectively. We define the
D3-brane charge density as

ρD3 = ρlocD3 +
1

2µ3κ2
10
H ∧ F (ϵ∂y4 ∧ · · · ∧ ∂y9) , (2.13)

where ϵ = ±1 determines the orientation of the internal manifold and ρloc
D3 is the local D3-brane

charge density that is normalized for a spacetime filling D3-brane at yi0 as

ρlocD3(yi) = δ(6)(yi − yi0) . (2.14)

Note that we normalized the Dirac delta function such that∫
d6y

√
g6δ

(6)(y − y0) = 1 . (2.15)

Combining the Bianchi identity

dF̃5 = 2µ3κ
2
10ρD3dVolX/I = H ∧ F + 2µ3κ

2
10ρ

loc
D3dVolX/I , (2.16)

and the Einsteins equations, one can find the following equations [43]

∇2Φ−= e−4A∂aΦ−∂
aΦ−+

e8A

3!Imτ
|G3+i⋆6G3|2+2µ3κ

2
10e

8A(J loc−ρlocD3)+R4[g] , (2.17)

∇2Φ+ = e−4A∂aΦ+∂
aΦ++ e8A

3!Imτ
|G3−i⋆6G3|2+2µ3κ

2
10e

8A(J loc+ρlocD3)+R4[g] , (2.18)

where we defined

J loc := 1
4µ3

[
T locab G

ab − T locµν G
µν
]
, (2.19)

11From now on, we shall denote the Einstein-frame metric by G unless we are required to specify the frame
for clarity.
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for the localized energy-momentum tensor T locAB and

Φ± = e4A ± α . (2.20)

It is important to note that D3-branes and O3-planes satisfy12

J loc − ρlocD3 = 0 . (2.21)

We shall choose F3 and H3 such that they are integral elements of H3(X,Z), and we
shall furthermore assume that the following equality holds

G3 = −i ⋆6 G3 . (2.22)

The reason for imposing the aforementioned equality will be clear. We will call the condi-
tion (2.22) the Imaginary-Self-Dual (ISD) condition. To understand the consequence of (2.22),
let us examine the real and the imaginary parts of (2.22)

F3 − C0H3 = − 1
gs
⋆6 H3 , (2.23)

− 1
gs
H3 = − ⋆6 (F3 − C0H3) . (2.24)

If C0 = 0, we have an identity

F3 = − 1
gs
⋆6 H3 , (2.25)

therefore
F3 ∧ ⋆6F3 = 1

g2
s

H3 ∧ ⋆6H3. (2.26)

At the leading order in α′ expansion, the non-compact components of the Einstein equation
are solved by gµν = ηµν , as the Calabi-Yau manifold is Ricci flat. Then, equations (2.17)
and (2.18) become

∇2Φ− = e−4A∂aΦ−∂
aΦ− , (2.27)

∇2Φ+ = e−4A∂aΦ+∂
aΦ+ + e8A

3! Im τ
|G3 − i ⋆6 G3|2 + 4µ3κ

2
10e

8AρlocD3 , (2.28)

with the further condition (2.21). We introduce a bracket for a 6-form

−
[
dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dy5 ∧ dy6

]
= 1 . (2.29)

Furthermore, we shall assume

ρlocD3 =
∑
yD3

δ(6)(y − yD3)−
1
4
∑
yO3

δ(6)(y − yO3) . (2.30)

12When D7-branes and O7-planes are present, one can place 4 D7-branes on every O7-plane to cancel the
D7-brane tadpole locally. This will ensure that the axio-dilaton remains a modulus in string perturbation
theory. We will assume that D7-branes and O7-planes are absent in the main text as our explicit example
does not contain seven-branes.

– 9 –
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The equation (2.27) can be solved by the following ansatz

Φ− = 0 . (2.31)

Using the identity

e−4A = 2
Φ+ +Φ−

, (2.32)

we can rewrite (2.28) as

∇2(Φ+)−1 = 1
24 Im τ

|G3 − i ⋆6 G3|2 + µ3κ
2
10ρ

loc
D3 , (2.33)

whose solution is simply given as

(Φ+)−1 = µ3κ
2
10

∫
d6Y

√
gG(6)(Y − Y0)ρD3(Y0) , (2.34)

where G(6)(Y − Y0) is the six-dimensional Green’s function that implicitly depends on the
complex structure moduli of X which is defined as

∇2G(6)(Y − Y0) = δ(6)(Y − Y0)−
1

Vol(X/I) . (2.35)

To facilitate gs factor counting, let us convert our solution to that of the string-frame. In
the string-frame, the last two terms on the r.h.s. of (2.33) contain a factor of g3/2

s , while ∇2 on
the l.h.s. contains a factor of g1/2

s . Therefore, at the leading order, Φ+ should be of order gs,
and we can study the solutions systematically in the gs expansion. We thus take the expansion

A =
∑

n=1,2,...
gnsA

(n), α =
∑

n=1,2,...
gns α

(n), (2.36)

and correspondingly

Φ− =
∑

n=1,2,...
gnsΦ

(n)
− , Φ−1

+ =
∑

n=1,2,...
gns (Φ−1

+ )(n). (2.37)

Then, (2.27) implies

Φ(1)
− = 0 , (2.38)

while (2.28) at order gs becomes

gs∇2(Φ−1
+ )(1) = g

1/2
s

24 |G3 − i ⋆6 G3|2 + µ3κ
2
10(g−3/2

s ρloc
D3) . (2.39)

As a solution to the above equation, we find

Φ(1)
+ = µ3κ

2
10

∫
d6Y

√
g(st)G(6)(Y − Y0)(g−3/2

s ρD3(Y0)) . (2.40)

As one can see from the definition, G(6) is proportional to gs.
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A few remarks concerning the supergravity solution a lá GKP are in order. For a generic
flux choice, the ISD condition

G3 = −i ⋆6 G3 , (2.41)

is expected to stabilize all complex structure moduli and the axio-dilaton. In particular, it
is not guaranteed that at the point where moduli are stabilized, gs will be small enough to
ensure that the corrections in gs are subleading. For such backgrounds, the perturbative
worldsheet description won’t be available. Furthermore, as we will discuss in detail in
the next section, if the complexified threeform flux has a non-vanishing (0, 3) component,
supersymmetry will be broken perturbatively. And this broken supersymmetry can in general
cause a perturbative runaway behavior for generic Calabi-Yau orientifold compactifications.
Although the supersymmetry can be restored non-perturbatively via Euclidean D3-branes and
D7-brane gaugino condensations, studying the non-perturbative effects adds an extra layer of
technical complication for string field theoretic analysis. Hence, as we will explain in the next
section, in this work, we shall carefully choose a special class of flux vacua that allows us a
perturbative treatment of string worldsheet and retains supersymmetry even perturbatively.

2.2 Low energy 4d supergravity analysis

In this section, we shall discuss in detail the structure of the flux vacua that we will focus on.
Most of the discussions presented in this section can be recast in ten-dimensional supergravity.
However, the description of the flux vacua in four-dimensional compactification will be
more economical. Hence, in this section, we shall adopt the four-dimensional supergravity
description.

The two-derivative action of 4d N = 1 supergravity is determined by the Kähler potential
K(ϕ, ϕ̄), the superpotential W (ϕ), and the holomorphic gauge coupling f(ϕ). The effective
supergravity action involving the Kähler potential and the superpotential reads

S = −1
2

∫
d4x

[
R−Kϕϕ̄∂

µϕ∂µϕ̄− VF
]
, (2.42)

where we defined

Kϕϕ̄ := ∂ϕ∂̄ϕ̄K(ϕ, ϕ̄) , (2.43)

VF = eK
(
Kab̄DaWD̄b̄W − 3|W |2

)
, (2.44)

and
DaW = (∂a + ∂aK)W . (2.45)

At the leading order in gs, the perturbative Kähler potential is determined as [51]

K = −2 log
(
V − g3/2

s

ζ(3)χ
4(2π)3

)
− log (τ − τ̄)− log

(
i

∫
X
Ω ∧ Ω

)
, (2.46)

where V is Einstein-frame Calabi-Yau volume, and we included α′3 corrections to the Kähler
potential [45]. In principle, one can also take into account the non-perturbative corrections
to the Kähler potential by employing mirror symmetry [52], at the leading order in gs, see
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for example [53]. But, we will not need to consider the non-perturbative corrections to the
Kähler potential in this work.

The superpotential at the string tree-level is given as [44]

Wtree =
∫
X
(F3 − τH3) ∧ Ω(z) . (2.47)

An important feature of the superpotential is that due to the holomorphy and the axionic
shift symmetry, the flux superpotential is not renormalized perturbatively [54, 55]. As a
result, the tree-level superpotential is perturbatively exact

Wpert =Wtree , (2.48)

and the only corrections that can enter are of the non-perturbative nature.
In the later part of the draft, we shall study SFEOM and compare the SFEOM to

the effective potential of the low-energy supergravity descriptions. For this, it would be
useful to review how the F-term potential can be derived via dimensional reduction. To
simplify the discussion, we shall assume that the warping is extremely weak. The energy
density is stored in largely two parts of the ten-dimensional effective supergravity action:
the threeform field strength

− 1
4κ2

10

∫
R1,3×X

d10X
√
−G(E)G3 ·G3

Im τ
, (2.49)

and the DBI action of the spacetime filling D3-branes and O3-planes

−µ3

∫
R1,3×X

d10X
√
−G(E)ρlocD3 . (2.50)

One can rewrite G3 as

G3 = 1
2(G+ +G−) , (2.51)

where we define

G± := G3 ∓ i ⋆6 G3 . (2.52)

Then, we can rewrite (2.49) as

− 1
2κ2

10 Imτ

∫
R1,3×X

d10X
√
−G(E)G− ·G−−

1
2κ2

10 Imτ

∫
R1,3×X

dVolR1,3∧H∧F . (2.53)

Then, we collect (2.49) and (2.50) to wrtie the effective potential

Veff = V1 + V2 , (2.54)

where
V1 := 1

2κ2
10 Im τ

∫
X
d6X

√
G(E)G− ·G− , (2.55)

and
V2 := 1

2κ2
10

∫
X
H ∧ F + µ3

∫
X
d6X

√
G(E)ρlocD3 . (2.56)
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As was shown in [43],

VF = V1 . (2.57)

As a result, variation of the F-term potential with respect to a variation of the internal
manifold φ, e.g. Kahler moduli or complex structure moduli,

∂φVF δφ (2.58)

is equivalent to

1
2κ2

10 Imτ

∫
X
d6X

√
G(E)

(
−1
2(G−)abc(G−)defδGadGbeGcf+

δGabG
ab

2 G− ·G−

)
. (2.59)

This form of the variation of the effective potential is exactly the one we will find in the string
field theory analysis. Note in the literature, V2 is often omitted because the cancellation of
the RR tadpole automatically guarantees that V2 vanishes. In the string field theory analysis,
however, we shall find that V2 = 0 arises as an independent consistency condition.

We shall now briefly review the supersymmetry conditions given the superpotential
and the tree-level approximation of the Kähler potential. As the goal of this draft is to
understand the perturbative flux vacua, we shall ignore the non-perturbative terms in the
superpotential and focus on the perturbative superpotential. The supersymmetric minima
can be found by solving the F-term equations

DaWpert = 0 . (2.60)

The F-term conditions for complex structure and the axio-dilaton are, respectively,

DzaWpert =
∫
X
G3 ∧ χa = 0 , (2.61)

and
DτWpert = − 2i

Im τ

∫
X
G3 ∧ Ω = 0 , (2.62)

where χa is a (2, 1) form defined by

∂zaΩ = −KzaΩ+ χa . (2.63)

Therefore, to solve the F-term equations for the complex structure moduli and the axio-
dilaton, the moduli should be adjusted such that the complexified threeform is ISD, meaning
G3 is decomposed to (2, 1) ⊕ (0, 3) Hodge type.

Now let us study the effective potential when the F-term conditions for the complex
structure moduli and the axio-dilaton modulus are solved, without assuming that the F-term
conditions for the Kähler moduli are solved. Let us recall that the F-term potential is given by

VF = eK(Kab̄DaWpertDb̄W pert − 3|Wpert|2) . (2.64)

Because the F-terms for the complex structure moduli and the axio-dilaton modulus are
solved and the perturbative superpotential does not depend on the Kähler moduli, the
F-term potential reduces to

VF = eK(KTaT̄b̄KTaKT̄b
− 3)|Wpert|2 . (2.65)
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At the leading order in gs and α′, the F-term potential enjoys the no-scale structure

KTaT̄b̄KTaKT̄b
− 3 = 0 , (2.66)

and the F-term potential vanishes even if the F-term equations for the Kähler moduli are not
solved. Hence, at the leading order in α′ and gs, the F-term potential is minimized if the
F-term equations for the complex structure and the axio-dilaton are solved. Of course, in
general, even at the leading order in gs, there is the famous α′3 corrections to the Kähler
potential [45]. And, this α′3 corrections will cause the perturbative runaway if the F-term
equations for the Kähler moduli are not solved. Note, however, for the explicit example we
consider in this paper, such an α′3 correction is absent.

The F-term conditions for the Kähler moduli are given as

DTaWpert = KTaWpert = 0 . (2.67)

Therefore, to find perturbative supersymmetric vacua away from the infinite distance points,
one needs to choose the quantized fluxes F3 and H3 such that a point in the moduli space
at which the following equations can be solved

G3 ∧ Ω = G3 ∧ χa = G3 ∧ Ω = 0 , (2.68)

meaning that at the F-term minimum the complexified threeform flux must be of (2, 1)
Hodge type. Because the non-trivial F-term conditions away from the infinite distance limits
only depend on complex structure moduli and the axio-dilaton, there is precisely one more
equation to solve than the number of complex structure moduli and the axio-dilaton. As
such, generically, the F-term conditions do not have solutions. So, to find perturbative
supersymmetric vacua, we shall look for special choices of fluxes.

An important remark on the perturbative supersymmetric flux vacua (2.68) should
follow. Because the perturbative superpotential vanishes at the F-term minimum, the F-term
conditions can be rewritten as

∂aWpert =Wpert = 0 . (2.69)

Therefore, the F-term conditions do not depend on the Kähler potential. Because of this,
despite the fact that the Kähler potential is expected to be renormalized, the perturbative
corrections to the effective action cannot destabilize the vacuum because the tree-level
superpotential is perturbatively exact. As a result, the perturbative supersymmetric flux
vacua of (2.68) should furnish a good background for string perturbation theory.

Before we discuss the construction of supersymmetric vacua, we shall make a few remarks
about the non-perturbative corrections to the superpotential. Supersymmetry constrains
the classes of the non-perturbative corrections that can enter the superpotential. In total,
there are four different types of possible non-perturbative corrections: D3-brane gaugino
condensation, D7-brane gaugino condensation, D(-1)-instantons, and D3-instantons. The
D7-brane gaugino condensation and the D3-instanton contributions to the superpotential
take the following form [56]

Ae−2πcT , (2.70)
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where T is an Einstein-frame four-cycle volume. In general, A is expected to depend on all but
Kähler moduli. On the other hand, the D3-brane gaugino condensation and D(-1)-instanton
contributions take the following form

Ae−2πcτ . (2.71)

Of those, because we will work with the configurations in which D7-brane is absent, the
D7-brane gaugino condensation cannot happen. Similarly, as was shown in [57], the D(-1)-
instanton contribution to the superpotential is absent if the D7-brane tadpole is canceled
locally. Therefore, the D(-1)-instanton contribution is also absent in the examples we shall
consider. On the other hand, D3-instantons and D3-brane gaugino condensations can be,
in principle, generated.13

With this understanding, we shall proceed to the cases where the flux terms and the
local source terms on the r.h.s. of (2.17) and (2.18) can be systematically treated in string
perturbation theory. For this purpose, we will adopt a very special type of flux vacua recently
introduced in [47], which was studied in the attempt to realize small vacuum expectation
value (VEV) of the flux superpotential in Calabi-Yau orientifold compactifications. Because
the period integral of the toroidal compactification has an analogous structure to that of
large complex structure limits of the Calabi-Yau compactifications, we can borrow the
construction of [47] with a simple modification. The special structure employed in [47] will
allow us to identify the axio-dilaton VEV as an expansion parameter, and understanding this
structure will help us better understand the expansion scheme for the worldsheet theory in
flux compactifications. We will, therefore, quickly review the construction of [47].

We shall focus on a large complex structure limit of Calabi-Yau compactifications. In
the large complex structure limit, the period integral

∫
γ Ω for a three cycle γ ∈ H3(X,Z)

enjoys the following exact expansion∫
γ
Ω(z) = fpoly(γ, z) + fnp(γ, z) , (2.72)

where z is the flat coordinate for complex structure moduli, fpoly is a degree 3 polynomial in z

fpoly(γ, z) =
1
3!Aγ,i,j,kz

izjzk + 1
2Bγ,i,jz

izj + Cγ,iz
i +Dγ , (2.73)

and fnp(γ, z) is a collection of exponentially suppressed terms

fnp(γ, z) =
∑
d⃗

N
d⃗,γ
e2πid⃗·z⃗ , (2.74)

which vanishes in toroidal compactifications.
The central idea of [47] is that there is a choice of quantized fluxes H3 and F3 such that∫

F3
Ω(z) = 1

2BF3,i,jz
izj + fnp(F3, z) , (2.75)

13Because the D3-branes wrapped on four cycles in toroidal orbifolds, in general, have too many fermion
zero modes, to study the generation of the D3-instanton superpotential one must carefully take into account
the effects of the flux couplings [58–61].

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
7

∫
H3

Ω(z) = CH3,iz
i , (2.76)

and the flux superpotential is therefore given as

W =
∫
X
G3 ∧ Ω = 1

2BF3,i,jz
izj − CH3,iτz

i + fnp(F3, z) . (2.77)

Provided that BF3,i,j has a non-trivial determinant and

CH3,i(BF3,i,j)−1CH3,j = 0 , (2.78)

one can find a solution to the approximate F-term equation ignoring fnp

zi = CH3,j(BF3,i,j)−1τ = piτ , (2.79)

and the solution is valid as long as zi is in a Kähler cone of the mirror Calabi-Yau and
Im (zi) ≫ 1. By reinstating fnp(F3, z), one can then also stabilize τ at small gs and small
vacuum expectation value of W0 := ⟨

∫
G ∧ Ω⟩. To adopt the flux vacua of [47] to toroidal

compactifications, we must take into account that fnp vanishes exactly. As a result, the F-term
condition for complex structure moduli and the axio-dilaton (2.79) become perturbatively
exact, and the tree-level superpotential vanishes exactly. Therefore, the F-term condition for
Kähler moduli is also solved simultaneously. It is important to note that because there are no
exponentially suppressed terms in Wtree, there is a perturbative moduli space parametrized by
zi = piτ . This will allow us to tune the gs to a small value without going off-shell. Furthermore,
as previously emphasized, the F-term conditions for the perturbative supersymmetric flux
vacua are not sensitive to the Kähler potential. As a result, the class of flux vacua that will
be studied in this draft is resilient to the unknown perturbative gs and α′ corrections.

2.3 An explicit example

We now introduce a simple example that fits into the ansatz and assumptions discussed in
the previous subsection. We take X = T 6/Z2, and thus consider the toroidal orientifold,
where the orientifold action I acts on the complex coordinates of T 6 as14

I : (Z1, Z2, Z3) 7→ −(Z1, Z2, Z3) . (2.80)

Before the orientifolding, the type IIB compactification has N = 8 supersymmetry. The
orientifolding removes half of the supersymmetries, and in the fluxless cases, the target
space has N = 4 supersymmetry. Turning on quantized threeform fluxes will completely
break supersymmetry at generic points in the moduli space. In contrast, some of the
supersymmetries will be restored at special subloci of the moduli space.

We shall now find the orientifold planes. Orientifold planes are identified as fixed loci of the
orientifold actions. Noting that the complex coordinates are periodic under the translations

Zi ∼ Zi + 1 ∼ Zi + ui , (2.81)
14For the conventions for T 6, see section A.
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we find that there are, in total, 64 O3-planes at

1
2(m⃗ · I + n⃗ · u⃗) =

(
m1 + n1u1

2 ,
m2 + n2u2

2 ,
m3 + n3u3

2

)
, (2.82)

where mi and ni are integers. As a result, the D3-brane tadpole induced by the O3-planes is
−16. We shall choose the appropriate 3-form fluxes and place a proper number of D3-branes
to cancel the tadpole

1
2(2π)4α′2

∫
T 6
H3 ∧ F3 +ND3 = 16 . (2.83)

A simplifying feature of this orientifold is that there are no O7-planes and hence no D7-branes.
We will turn on the following quantized 3-form fluxes F3 and H3

1
(2π)2α′F3 = 4dY 2 ∧ dY 3 ∧ dY 5 − 2dY 1 ∧ dY 4 ∧ dY 5 − 2dY 1 ∧ dY 3 ∧ dY 6 , (2.84)

1
(2π)2α′H3 = 4dY 1 ∧ dY 4 ∧ dY 6 − 2dY 2 ∧ dY 3 ∧ dY 6 − 2dY 2 ∧ dY 4 ∧ dY 5 . (2.85)

This flux choice was found in [62]. The D3-brane tadpole stored in the fluxes is then

1
2(2π)4α′2

∫
T 6
H3 ∧ F3 = 12 . (2.86)

Therefore, to cancel the tadpole, we shall include four spacetime-filling D3-branes in the
compactification, located at Y = Y i

D3 for i = 1 , . . . , 4. As a result, we have

ρlocD3 =
4∑
i=1

δ(6)(Y − Y i
D3)−

1
4
∑
n,m

δ(6)
(
Y − 1

2(m⃗ · I + n⃗ · u⃗)
)
. (2.87)

We are now ready to compute the flux superpotential. We have

1
(2π)2α′

∫
T 6
F3 ∧ Ω = −4u2u3 + 2u1u3 + 2u1u2 , (2.88)

and
− 1
(2π)2α′

∫
T 6
τH3 ∧ Ω = −τ(4u1 − 2u2 − 2u3) . (2.89)

Therefore, we find

1
(2π)2α′

∫
T 6
G3 ∧ Ω = −4u2u3 + 2u1u3 + 2u1u2 − τ(4u1 − 2u2 − 2u3) . (2.90)

Note that the non-perturbative term fnp is absent in this specific example. The F-term
equations for the complex structure moduli and the axio-dilaton are given as

2u3+2u2−4τ =−4u3+2u1+2τ =−4u2+2u1+2τ =−4u1+2u2+2u3 =0 . (2.91)

Therefore, we find a solution to the F-term equation with one flat direction parametrized by τ

u1 = u2 = u3 = τ . (2.92)
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As advertised in the previous subsection, the VEVs of complex structure moduli are propor-
tional to that of τ . At the F-term minimum, we find that G3 = F3 − τH3 can be written as

G3 = i

Im τ

(
2dZ̄1 ∧ dZ2 ∧ dZ3 − dZ1 ∧ dZ̄2 ∧ dZ3 − dZ1 ∧ dZ2 ∧ dZ̄3

)
. (2.93)

Because G3 does not contain (0, 3) form, we find that at the F-term minimum, the perturbative
superpotential vanishes exactly 〈∫

T 6
G3 ∧ Ω

〉
= 0 , (2.94)

and the F-term equations for Kähler moduli are automatically solved as well. Note also that
3-form fluxes scale in terms of τ as |F3|2 ∼ τ , |H3|2 ∼ τ−1, and [H3 ∧ F3] ∼ τ0.

3 Worldsheet conventions

In this section, we collect relevant worldsheet conventions and check the BRST exactness of the
vertex operators for the NSNS field strength. In this section, we shall work in the string-frame.

3.1 R1,9

For the free field CFT with (N , N̄ ) = (1, 1) worldsheet supersymmetry, we write the matter
part of the action as

Smatter =
1
2π

∫
d2z

( 1
α′∂X

µ∂̄Xµ +
1
2ψ

µ∂̄ψµ +
1
2 ψ̃

µ∂ψ̃µ

)
. (3.1)

In the ghost system, we have the usual b, c, β, γ system, whose action is given as

Sghost =
1
2π

∫
d2z

[
b∂̄c+ b̄∂c̄+ β∂̄γ + β̄∂γ̄

]
(3.2)

To “bosonize” the β, γ system and introduce the scalar fields ϕ, ϕ̄ and fermionic fields
ξ, η, ξ̄, η̄

β = ∂ξe−ϕ , γ = ηeϕ , β̄ = ∂̄ξ̄e−ϕ̄ , γ̄ = η̄eϕ̄ . (3.3)

Note that e±ϕ and e±ϕ̄ behave as worldsheet fermions.
The OPEs of the aforementioned fields are written as

Xµ(z, z̄)Xν(0, 0) ∼ −α
′

2 η
µν ln |z|2 , ψµ(z)ψν(0) ∼ ηµν

z
,

c(z)b(0) ∼ 1
z
, ξ(z)η(0) ∼ 1

z
,

∂ϕ(z)∂ϕ(0) ∼ − 1
z2 , eq1ϕ(z)eq2ϕ(0) ∼ z−q1q2e(q1+q2)ϕ(0) . (3.4)
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We write the mode expansions of the worldsheet fields

∂Xµ(z) = −i

√
α′

2

∞∑
m=−∞

αµm
zm+1 , ∂̄Xµ = −i

√
α′

2

∞∑
m=−∞

ᾱµm
z̄m+1 , (3.5)

ψµ(z) =
∑

n∈Z+ν

ψµn

zn+ 1
2
, ψ̄µ(z̄) =

∑
n∈Z+ν

ψ̄µn

z̄n+ 1
2
, (3.6)

b(z) =
∞∑

m=−∞

bm
zm+2 , c(z) =

∞∑
m=−∞

cm
zm−1 , (3.7)

β(z) =
∑

n∈Z+ν

βn

zn+ 3
2
, γ(z) =

∑
n∈Z+ν

γn

zn−
1
2
, (3.8)

where ν is 0 in the Ramond sector and 1/2 in the Neveu-Schwarz sector.
Therefore, we have the following (anti) commutation relations

[αµm, ανn] = [ᾱµm, ᾱνn] = mηµνδm,−n , (3.9)

{ψµm, ψνn} = {ψ̄µm, ψ̄νn} = ηµνδm,−n , (3.10)

[γm, βn] = δm,−n , {bm, cn} = δm,−n . (3.11)

The matter stress energy tensor and its supersymmetric partner take the form

Tm = − 1
α′∂X

µ∂Xµ −
1
2ψµ∂ψ

µ , (3.12)

and
Gm = i

√
2
α′ψ

µ∂Xµ . (3.13)

The ghost stress energy tensor is given as

Tg = (∂b)c− 2∂(bc) + (∂β)γ − 3
2∂(βγ) , (3.14)

and its supersymmetric partner is written as

TF = −1
2(∂β)c+

3
2∂(βc)− 2bγ . (3.15)

We write the BRST current as

jB = c

(
Tm − 1

2(∂ϕ)
2 − ∂2ϕ− η∂ξ

)
+ ηeϕGm + bc∂c− η∂ηbe2ϕ , (3.16)

and the corresponding BRST charge as

QB = 1
2πi

∮
jB . (3.17)

The PCO is normalized as

χ := {QB, ξ} = c∂ξ + eϕGm − ∂ηbe2ϕ − ∂(ηbe2ϕ) . (3.18)
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Finally, let us turn to the spin fields. Our spin field convention will mostly follow that
of [63, 64]. We shall denote the 16-component spin fields in the holomorphic matter sector
by Σα and Σα, which carry opposite chirality. Similarly, in the anti-holomorphic sector, we
have Σ̄α and Σ̄α. We shall choose the convention such that e−ϕ/2Σα, e−3ϕ/2Σα, e−ϕ̄/2Σ̄α,
and e−3ϕ̄/2Σ̄α are GSO even. The reason for choosing the same chirality for the GSO even
spin fields in the holomorphic and the anti-holomorphic sectors is because, in type IIB string
theory, the holomorphic and the anti-holomorphic spacetime fermions carry the same chirality.
We write some important OPEs involving the spin fields

ψµ(z)e−ϕ/2Σα(w) = − 1√
2
(z − w)−1/2(Γµ)αβe−ϕ/2Σβ(w) + · · · , (3.19)

ψµ(z)e−ϕ/2Σα(w) = − 1√
2
(z − w)−1/2(Γµ)αβe−ϕ/2Σβ + · · · , (3.20)

e−3ϕ/2Σαe−ϕ/2Σβ = (z − w)−2δαβ e
−2ϕ(w) + · · · , (3.21)

e−ϕ/2Σα(z)e−ϕ/2Σβ(w) =
1√
2
(z − w)−1(Γµ)αβe−ϕψµ(w) + . . . . (3.22)

Note that the 16 × 16 gamma matrices Γµ satisfy the following identities

{Γµ,Γν} = 2ηµνI16 , (Γµ)αβ = (Γµ)βα , (Γµ)αβ = (Γµ)βα , (3.23)

(Γµ)αβ = (Γµ)αβ for µ ̸= 0 , (Γ0)αβ = δαβ , (Γ0)αβ = −δαβ . (3.24)

We define Γ10 as

(Γ10)αβ := (Γ0 · · ·Γ9)αβ = δαβ , (3.25)

and
(Γ10) βα := (Γ0 · · ·Γ9) βα = −δ β

α . (3.26)

We then have the usual identities

{Γµ,Γ10} = 0 , (3.27)

(Γ10)2 = I16 . (3.28)

3.1.1 Closed string states

We now collect vertex operators for the massless states. Let us start with the NS sectors
following the conventions of [65]. In the (0,0) picture, we have

V
(0,0)
NSNS(z, z̄)=−2gc

α′ ϵµν

(
i∂Xµ+α′

2 p·ψψ
µ
)(

i∂̄Xν+α′

2 p·ψ̄ψ̄
ν
)
eip·X +. . . , (3.29)

where . . . include terms with different ghost structures, and the polarization tensors ϵ(h), ϵ(B),
and ϵD for the graviton state, the antisymmetric two form, and the dilaton, respectively, satisfy

ϵ(h)
µν = ϵ(h)

νµ , ϵ(h)
µν η

µν = pµϵ(h)
µν = 0 , (3.30)

ϵ(B)
µν = −ϵ(B)

νµ , pµϵ(B)
µν = 0 , (3.31)

ϵ(D)
µν = 1√

8
(ηµν − pµp̄ν − p̄µpν) , pµϵ(D)

µν = 0 , (3.32)
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where p̄µ is an auxiliary vector that is defined as p̄µ := nµ/(n · p) , where n is a generic null
vector. We record the NSNS vertex operators in a few more pictures

V
(−1,0)
NSNS = gc

√
2
α′ ϵµνe

−ϕψµ
(
i∂̄Xν + α′

2 p · ψ̄ψ̄
ν
)
eip·X + . . . , (3.33)

V
(0,−1)
NSNS = gc

√
2
α′ ϵµν

(
i∂Xµ + α′

2 p · ψψ
µ
)
e−ϕ̄ψ̄νeip·X + . . . , (3.34)

V
(−1,−1)
NSNS = −gcϵµνe−ϕψµe−ϕ̄ψ̄νeip·X . (3.35)

Note that following [65], we identify κ = κ10e
Φ0 = 2πgc. The aforementioned vertex operators

correspond to the linearized fields hµν , aµν , and D defined as follows [66]

gµν = ηµν − 2κhµν −
2κ√
d− 2

ηµνD , (3.36)

Bµν = −2κaµν , (3.37)

Φ = Φ0 −
1
2κ

√
d− 2D , (3.38)

where d = 10. A few important remarks are in order. gµν as written above is metric in
string-frame. The corresponding spacetime action up to two derivatives in the string-frame
is then given as

S ⊃ 1
2κ2

10

∫
d10X

√
−ge−2Φ

[
R+ 4(∂Φ)2 − 1

12 |H3|2
]
, (3.39)

=
∫
d10X

√
−g12

(1
2h

µν□hµν − (∂D)2 − 1
2 |da|

2
)
+ gauge fixing terms + L3pt + . . . .

(3.40)

For convenience, we write the three-point interaction terms∫
d10XL3pt =

∫
d10Xκ10e

Φ0 [hµνhρσ∂µ∂νhρσ + 2∂σhµν∂µhνρhρσ − hµν∂µD∂νD]

− e−Φ0

6κ10

D√
8
|H3|2 −

1
4κ10

e−Φ0hµνHµabH
ab
ν . (3.41)

Now, we collect the conventions for the Ramond-Ramond sector. We first write the
vertex operator for the massless RR fields in (−1/2,−1/2) picture

V
(− 1

2 ,−
1
2)

RR = gc
√
α′

8
√
2κ10

Fαβcc̄e−ϕ/2Σαe−ϕ̄/2Σ̄βeip·X , (3.42)

where we define

Fαβ =
∑
k

i

(2k + 1)!F
(2k+1)
M1...M2k+1

(ΓM1...M2k+1)αβ , (3.43)

and
F

(2k+1)
M1...M2k+1

= ipM1C
(2k)
M2...M2k+1

+ permutations . (3.44)
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This normalization of the vertex operator corresponds to the action [66]

S = − 1
2κ2

10

∫
d10X

√
−g 1

2(2k + 1)!FM1...M2k+1F
M1...M2k+1 . (3.45)

By varying the NSNS fields (3.36), we obtain the following interaction vertices

S ⊃ − 1
2κ2

10

∫
d10X

[
κ

(2k)!h
µνFµM2...M2k+1F

M2...M2k+1
ν − κ

4− 2k
(2k + 1)!

√
8
D|F (2k+1)|2

]
.

(3.46)
We also record the vertex operators for the massless RR fields in (−1/2,−3/2) and (−3/2,−3/2)
pictures [63, 64, 67]

V
(−1/2,−3/2)

RR = gc

4
√
2κ10

[
Aαβ(/p)βγcc̄e−3ϕ/2Σαe−ϕ̄/2Σ̄γ−E β

α cc̄e−3ϕ/2Σαe−ϕ̄/2Σ̄β

+
√
α′Dα

β(/p)βγ(∂c+∂̄c̄)cc̄∂ξe−5ϕ/2Σαe
−ϕ̄/2Σ̄γ+Dα

βcc̄∂ξe
−5ϕ/2Σαη̄e

ϕ̄/2Σ̄β
]
eip·X ,

(3.47)

and

V
(−3/2,−3/2)
RR = gc

2
√
2κ10

[ 1√
α′
Aαβcc̄e

−3ϕ/2Σαe−3ϕ̄/2Σ̄β+E β
α (∂c+∂̄c̄)cc̄e−3ϕ/2Σα∂̄ξ̄e−5ϕ̄/2Σ̄β

+Dα
β(∂c+∂̄c̄)cc̄∂ξe−5ϕ/2Σαe−3ϕ̄/2Σ̄β

]
eip·X , (3.48)

where we identify

Fαβ =
(
/pA/p− /pE +D/p

)αβ
. (3.49)

The description in terms of A, E, and D is redundant due to the gauge symmetry

A 7→ A+ Λ , E 7→ E + Λ′
/p , D 7→ D + /p(Λ′ − Λ) . (3.50)

Following [63, 64], we choose a gauge in which A = 0. In this gauge, we have

E β
α = 1

2
∑
k

1
(2k)!C

(2k)
M1...M2k

(ΓM1...M2k) βα , Dα
β = −1

2
∑
k

1
(2k)!C

(2k)
M1...M2k

(ΓM1...M2k)αβ .

(3.51)
To check the numerical factors of the vertex operators, we will perform a few sample

calculations, which will prove useful later. Let us first compute a three-point function of
the NSNS vertex operators. We shall put one vertex operator in the (0,0) picture and the
other two in the (-1,-1) picture. We compute

ANS :=⟨V (0,0)
NSNS(p1, ϵ1)V (−1,−1)

NSNS (p2, ϵ2)V (−1,−1)
NSNS (p3, ϵ3)⟩S2 , (3.52)

= 2g3
c

α′

〈
ϵ1αβϵ

2
γδϵ

3
ϵη

(
i∂Xα+α′

2 p1 ·ψψα
)(

i∂̄Xβ+α′

2 p·ψ̄ψ̄
β
)
(z1)e−ϕψγe−ϕ̄ψ̄δ(z2)

×e−ϕψϵe−ϕ̄ψ̄η(z3)c(z1)c(z2)c(z3)c̄(z1)c̄(z2)c̄(z3)eip1·X(z1)eip2·X(z2)eip3·X(z3)
〉
S2
,

(3.53)

=−α′g3
cCS2

2 δ(10)(p1+p2+p3)ϵ1αβϵ2γδϵ3ϵη

×(pα3 ηγϵ+pϵ2ηαγ+p
γ
1η

ϵα)(pβ3ηδη+p
η
2η
βδ+pδ1ηηβ) . (3.54)
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By using the relation

CS2 = 8π
α′g2

c

, (3.55)

and taking the terms of order O(p2), one can check that we reproduce the action (3.39). Let
us compute an interaction between one NSNS vertex and two RR vertices. We will put the
NSNS vertex in the (-1,-1) picture and the RR vertices in the (-1/2,-1/2) picture. We compute

ARR :=⟨V (−1,−1)
NSNS (p1, ϵ1)V

(− 1
2 ,−

1
2)

RR (p2,F2)V
(− 1

2 ,−
1
2)

RR (p3,F3)⟩S2 , (3.56)

= α′g3
c

128κ2
10
ϵ1µνF

αβ
1 F γδ2

〈
e−ϕψµe−ϕ̄ψ̄ν(z1)e−ϕ/2Σαe−ϕ̄/2Σ̄β(z2)e−ϕ/2Sγe

−ϕ̄/2S̄δ(z3)

×c(z1)c(z2)c(z3)c̄(z1)c̄(z2)c̄(z3)eip1·X(z1)eip2·X(z2)eip3·X(z3)
〉
,

(3.57)

=α
′g3
cCS2

256κ2
10
δ(10)(p1+p2+p3)ϵ1µνF

αβ
1 F γδ2 (Γµ)αγ(Γν)βδ . (3.58)

By plugging in

Fαβ =
∑
k

i

(2k + 1)!F
(2k+1)
M1...M2k+1

(ΓM1...M2k+1)αβ , (3.59)

we compute

ARR =−α′g3
cCS2

256κ2
10
δ(10)(p1+p2+p3)ϵ1µν

∑
k,k′

F 1
M1...M2k+1

F 2
N1...N2k′+1

(2k+1)!(2k′+1)! Tr
(
ΓµΓM1...M2k+1ΓνΓN1...N2k′+1

)
.

(3.60)

For k = k′, we have

ARR

=− gs

4κ10
δ(10)(p1+p2+p3)ϵ1µν

∑
k

F 1
M1...M2k+1

F 2
N1...N2k+1

(2k+1)!(2k+1)!

×
[
−ηµνδM1...M2k+1,N1...N2k+1+2

(
ηµM1ηνN1δM2...M2k+1,N2...N2k+1+cyclic perm

)]
, (3.61)

=−δ(10)(p1+p2+p3)
gs

4κ10(2k)!

[
2ϵµν

1 F 1,M2...M2k+1
µ F 2

νM2...M2k+1
− ϵµν

1 ηµν

2k+1 F
1
M1...M2k+1

F 2,M1...M2k+1

]
(3.62)

3.1.2 Boundary states

We shall now collect the boundary states describing D-branes and O-planes [68–72]. Our
treatment will closely follow that of [72].

For pedagogy, we shall first start with the boundary states in bosonic string theory, and
then we will move on to the boundary states in superstring theories. In the parameterization

z = et+iσ , (3.63)
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we will take t = 0 or equivalently |z| = 1 as the boundary of the string worldsheet. We shall
assume that the string ends on a Dp-brane, which we shall assume to be static in the frame
we choose. We will denote the directions parallel to the Dp-brane by Xα, where α = 0, . . . , p,
and the directions transverse to the Dp-brane by Xi, where i = p + 1, . . . , d − 1. We will
assume that the Dp-brane is located at yi, for i = p + 1, . . . , d − 1. Then, we have the
following boundary conditions for the bosonic coordinates

∂τX
α|τ=0|BX⟩ = 0 , (3.64)

and
Xi|τ=0|BX⟩ = yi , (3.65)

where |BX⟩ is the boundary state for the matter CFT. In terms of the lowering and raising
operators, we have the following boundary conditions

(αµn + Sµνᾱ
ν
−n)|BX⟩ = 0 , ∀n ̸= 0 , (3.66)

pα|BX⟩ = 0 , (qi − yi)|BX⟩ = 0 , (3.67)

where
Sµν = (ηαβ ,−ηij) . (3.68)

The boundary |BX⟩ that satisfies the aforementioned boundary conditions is determined as

|BX⟩ = δ(d−p−1)(qi − yi) exp
( ∞∑
n=1

− 1
n
αµ−nSµνᾱ

ν
−n

)
|0⟩ , (3.69)

where |0⟩ is the SL(2;R) vacuum.
The full boundary state must also include the ghost boundary state

|B⟩ = N|BX⟩ ⊗ |Bgh⟩ , (3.70)

where N is a normalization constant. The BRST invariance will fix the ghost boundary
state for us, but before showing how the BRST invariance fixes |Bgh⟩, we shall first study
the boundary condition for the matter Virasoro generators. Let us first study the boundary
condition for L0

L
(m)
0 = α′p2

4 +
∞∑
n=1

αµ−nαµn . (3.71)

Let us act
∑∞
n=1 α

µ
−nαµn on the boundary state |BX⟩,

∞∑
n=1

αµ−nαµn|BX⟩ = −
∞∑
n=1

αµ−nSµνᾱ
ν
−n|BX⟩ = −

∞∑
n=1

Sµνᾱ
ν
−nα

µ
−n|BX⟩ =

∞∑
n=1

ᾱµ−nᾱµn|BX⟩ ,

(3.72)

where we used

SµνS
νρ = δρµ , (3.73)
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in the last step. As a result, we find

L
(m)
0 |BX⟩ = L̄

(m)
0 |BX⟩ . (3.74)

Similarly, one can also easily conclude

L(m)
n |BX⟩ = L̄

(m)
−n |BX⟩ , (3.75)

for all n.
Now we are ready to fix the ghost boundary state by imposing the BRST invariance

(QB + Q̄B)|B⟩ = 0 . (3.76)

The BRST invariance then requires the following boundary condition for the ghost sector

(cn + c̄−n)|Bgh⟩ = 0 , (bn − b̄−n)|Bgh⟩ = 0 . (3.77)

The solution to the boundary condition is given as

|Bgh⟩ = exp
( ∞∑
n=1

c−nb̄−n − b−nc̄−n

)
c0 + c̄0

2 c1c̄1|0⟩ . (3.78)

As a result, we obtain the Dp-brane boundary state in bosonic string theory

|B⟩=N δ(d−p−1)(qi−yi)exp
( ∞∑
n=1

(
− 1
n
αµ−nSµνᾱ

ν
−n

)
+

∞∑
n=1

(c−nb̄−n−b−nc̄−n)
)
c0+c̄0

2 c1c̄1|0⟩ .

(3.79)
One can determine the normalization constant N by requiring the factorization limit of open
string at one-loop is consistent with the closed string channel [68, 69]. But, we shall not
write the normalization constant for bosonic string theory here.

Let us now study a boundary state for an Op-plane. This will be represented by the
cross cap. Suppose that an orientifold action Ω acts on the target space coordinates as

Ω : Xα 7→ Xα , Ω : Xi 7→ −Xi . (3.80)

Then, the orientifold plane is located at the fixed locus Xi = yi, for all i. In the flat spacetime,
yi is simply the origin. To find the crosscap state, we impose the following boundary conditions

Xα(0, σ)|C⟩ = Xα(0, σ + π)|C⟩ , ∂τX(0, σ)|C⟩ = −∂τX(0, σ + π)|C⟩ , (3.81)

Xi(0, σ)|C⟩ = −Xi(0, σ + π)|C⟩ , ∂τX
i(0, σ)|C⟩ = ∂τX

i(0, σ + π)|C⟩ . (3.82)

The boundary conditions for the oscillators are then given as

(ααn + (−1)nᾱα−n)|C⟩ = 0 , pα|C⟩ = 0 , (3.83)

(αin − (−1)nᾱi−n|C⟩ = 0 , (Xi − yi)|C⟩ = 0 . (3.84)

We can combine the first column of the boundary conditions into

(αµn + Sµν(−1)nᾱν−n)|C⟩ = 0 . (3.85)
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We split the crosscap state into the matter part and the ghost part

|C⟩ = NC |CX⟩ ⊗ |Cgh⟩ , (3.86)

then we find

|CX⟩ = δ(d−p−1)(qi − yi) exp
( ∞∑
n=1

−(−1)n

n
αµ−nSµνᾱ

ν
−n

)
|0⟩ , (3.87)

and
|Cgh⟩ = exp

( ∞∑
n=1

(−1)n(c−nb̄−n − b−nc̄−n)
)
c0 + c̄0

2 c1c̄1|0⟩ . (3.88)

Note that the following identity holds

|CX⟩ ⊗ |Cgh⟩ = eiπL0 |BX⟩ ⊗ |Bgh⟩ . (3.89)

Now, we shall review the boundary states in superstring theories. In superstring theories,
the bosonic contributions and the b, c ghost part of the boundary states are the same
as the boundary states in bosonic string theory. The difference between superstring and
bosonic string theories originates from the worldsheet fermion fields and the β, γ ghosts.
We shall first study the boundary states for the worldsheet fermions and then the boundary
states for the β, γ system.

The boundary conditions for the worldsheet fermions are summarized as

(ψ(0, σ)µ − ηSµνψ̄
ν(0, σ))|Bψ, η⟩ = 0 , (3.90)

where η = ±1. In terms of the oscillators, we have

(ψµn − ηSµνψ̄
ν
−n)|Bψ, η⟩ = 0 . (3.91)

Note n ∈ Z in the Ramond sector and n ∈ Z + 1/2 in the Neveu-Schwarz sector. We
now consider the β, γ ghost system. Requiring the BRST invariance again constraints the
boundary states in the β, γ ghost system

(γn + ηγ̄−n)|Bsgh, η⟩ = 0 , (βn + ηβ̄−n)|Bsgh, η⟩ = 0 . (3.92)

The boundary state in the matter sector that satisfies the above boundary condition
in the NS sector is given as

|Bψ, η⟩NS = exp

 ∞∑
n=1/2

ηψµ−nSµνψ̄
ν
−n

 |0⟩ . (3.93)

Similarly, the boundary state in the ghost sector is given as

|Bsgh, η⟩NS = exp

η ∞∑
n=1/2

(γ−nβ̄−n − β−nγ̄−n)

 | − 1,−1⟩ , (3.94)

where we define

| − 1,−1⟩ := e−ϕ(0)e−ϕ̄(0)|0⟩ , (3.95)
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a vacuum with (−1,−1) picture. Note that the boundary state has picture number −2
and ghost number 3 as it should.

The boundary state in the Ramond sector is a little more complicated. Let us first
study the zero mode sector of the fermions in the Ramond sector. We shall make a gauge
choice such that the boundary state in the Ramond-Ramond sector is given as a linear
combination of (−1/2,−3/2) picture and (−3/2,−1/2) picture. The fermionic zero modes
satisfy the following boundary conditions

(ψµ0 − ηSµνψ̄
ν
0 )|Bψ, η⟩R = 0 , (3.96)

(γ0 + ηγ̄0)|Bsgh, η⟩R = 0 , (β0 + ηβ̄0)|Bsgh, η⟩R = 0 . (3.97)

To study the zero mode sector of the boundary state, we shall consider a linear combination
of the most zero mode state

|B0, η⟩R =exp
(
ηγ0β̄0

) (
Mα

βe
−ϕ/2Σαe−3ϕ̄/2Σ̄β + M̃ β

α e−ϕ/2Σαe−3ϕ̄/2Σ̄β
)
|0⟩

+ exp(−ηγ̄0β0)
(
N β
α e−3ϕ/2Σαe−ϕ̄/2Σβ + Ñα

βe
−3ϕ/2Σαe−ϕ̄/2Σβ

)
|0⟩ . (3.98)

Then, the boundary conditions are translated into(
Mα

βe
−ϕ/2(Γµ)αγΣγe−3ϕ̄/2Σ̄β − ηSµνM̃

β
α e−ϕ/2Σα(Γν)βδe−3ϕ̄/2Σ̄δ

)
|0⟩ = 0 , (3.99)(

−ηSµνMα
βe

−ϕ/2Σαe−3ϕ̄/2(Γν)βγΣγ + M̃ β
α e−ϕ/2(Γµ)αγΣγe−3ϕ̄/2Σβ

)
|0⟩ = 0 , (3.100)(

N β
α e−3ϕ/2(Γµ)αγΣγe−ϕ̄/2Σβ − ηSµνÑ

α
βe

−3ϕ/2Σαe−ϕ̄/2(Γν)βγΣγ
)
|0⟩ = 0 , (3.101)

and (
−ηSµνN β

α e−3ϕ/2Σαe−ϕ̄/2(Γν)βγΣ
γ + Ñα

βe
−3ϕ/2(Γµ)αγΣγe−ϕ̄/2Σβ

)
|0⟩ = 0 . (3.102)

As a result, we find

(Γµ)αγMγ
β = ηSµνM̃

γ
α (Γν)γβ , (3.103)

ηSµνM
α
γ(Γν)γβ = M̃ β

γ (Γµ)αγ , (3.104)

N β
γ (Γµ)αγ = ηSµνÑ

α
γ(Γν)γβ , (3.105)

and

ηSµνN
γ
α (Γν)γβ = Ñγ

β(Γ
µ)αγ . (3.106)

The solutions to the above equations are given as

Mα
β = (Γ0...p)αβ , M̃ β

α = η(Γ0...p) βα , (3.107)

N β
α = (Γ0...p) βα , Ñα

β = η(Γ0...p)αβ . (3.108)

Note that the overall signs of the M, M̃,N, Ñ are chosen in agreement with the GSO projection.
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Including the non-zero mode contributions, we find

|Bψ,sgh, η⟩R = exp
( ∞∑
n=1

ηψµ−nSµνψ̄
ν
−n +

∞∑
n=1

η(γ−nβ̄−n − β−nγ̄−n)
)
|B0, η⟩ . (3.109)

The boundary states we constructed for superstring theories contain GSO odd states. To
project out such unphysical modes, we shall GSO project the boundary states

|B⟩NS = 1
2 (|B,+⟩NS − |B,−⟩NS) , (3.110)

|B⟩R = 1
2 (|B,+⟩R + |B,−⟩R) . (3.111)

The crosscap state can be simply obtained by inserting appropriate phases eiπn

|Cψ, η⟩NS = exp

 ∞∑
n=1/2

eiπnηψµ−nSµνψ̄
ν
−n

 |0⟩ , (3.112)

|Csgh, η⟩NS = exp

η ∞∑
n=1/2

eiπn(γ−nβ̄−n − β−nγ̄−n)

 | − 1,−1⟩ , (3.113)

and

|Cψ,sgh, η⟩R = exp
( ∞∑
n=1

eiπnηψµ−nSµνψ̄
ν
−n +

∞∑
n=1

eiπnη(γ−nβ̄−n − β−nγ̄−n)
)
|B0, η⟩R .

(3.114)

Note that the zero mode sector of the boundary states is identical to both the cross cap
and the disk. Hence we recycled |B0, η⟩R for convenience.

We shall now fix the overall normalization of the boundary states by comparing various
one-point functions on the disk to the linearized DBI and CS actions. As the massless
vertex operator insertion is the simplest to consider, we will focus on the massless parts
of the boundary states.

In the NS sector, the boundary state has the following massless state contribution where
P stands for the projection to L0 + L̄0 = 0 sector

P|B⟩NS =NB(Pδ(d−p−1)(qi−yi))c0+c̄0
2 c1c̄1

(
ψµ−1/2Sµνψ̄

ν
−1/2+γ−1/2β̄−1/2−β−1/2γ̄−1/2

)
×e−ϕ(0)e−ϕ̄(0)|0⟩ (3.115)

=−NB(Pδ(d−p−1)(qi−yi))
[
∂c+∂̄c̄

2 cc̄
(
e−ϕψµSµνe

−ϕ̄ψ̄ν−(η∂̄ξ̄e−2ϕ̄−∂ξη̄e−2ϕ)
)]

|0⟩ .

(3.116)

Here, Pδ(d−p−1)(qi − yi)) = 1
Vol(Y ) is the inverse volume of the free bosons along which

Dirichlet boundary conditions are imposed. To fix the normalization of the boundary states,
we shall use the zero-momentum graviton trace operator and the 10d dilaton operator which
are written as, respectively,

Vgab := 1
4πcc̄

(
e−ϕψae−ϕ̄ψ̄b + ηab

2 (η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)
)
, (3.117)
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and
Vϕ = 1

8πcc̄
(
ηabe

−ϕψae−ϕ̄ψ̄b + (η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)
)
. (3.118)

Note that the graviton trace operator corresponds to the variation of the metric in Einstein-
frame [34]. Typically, the ghost term is omitted as the polarization of the graviton vertex
operator is taken to be traceless. But, for the polarization with a non-trivial trace, the
inclusion of the ghost term is necessary to ensure that the string coupling is not varying [34].
Also, the dilaton operator Vϕ corresponds to the dilaton gs = eϕ in Einstein-frame.

Let us recall an identity,

{dgh}D2 = g−1
s NB , (3.119)

for the ghost-dilaton operator

dgh := cc̄(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ) . (3.120)

We then compute

{Vgab}D2 = NB

8πgs
(Sab + ηab) , (3.121)

and
{Vϕ}D2 = NB

8πgs
(p− 3) . (3.122)

We shall fix the normalization NB by comparing to the DBI action and its variations
with respect to dilaton and metric in Einstein-frame. Let us start with the DBI action
in string-frame

SDBI = −Tp
∫
dp+1xe−ϕ

√
−G(st) . (3.123)

In Einstein-frame, we have

SDBI = −Tp
∫
dp+1xeϕ(p−3)/4

√
−G(E) . (3.124)

By varying the dilaton ϕ = ϕ0 + δϕ and the metric G(E) = η + h, we obtain

SDBI = −Tp
∫
dp+1xeϕ(p−3)/4√−η

(
1 + p− 3

4 δϕ+ 1
2h

µ
µ

)
, (3.125)

where µ ranges from 0 to p. The variation (3.125) is reproduced if we fix the normalization to be

NB = −2πTp . (3.126)

In the R sector, the boundary state has the following massless state contribution

P|B⟩R = N ′
B(Pδ(d−p−1)(qi − yi))c0 + c̄0

2 c1c̄1

×
[
cs(γ0β̄0)(Γ0...p)αβe−ϕ/2Σαe−3ϕ̄/2Σβ + sh(γ0β̄0)(Γ0...p) βα e−ϕ/2Σαe−3ϕ̄/2Σβ

+ cs(−γ̄0β0)(Γ0...p) βα e−3ϕ/2Σαe−ϕ̄/2Σβ − sh(γ̄0β0)(Γ0...p)αβe−3ϕ/2Σαe−ϕ̄/2Σβ
]
|0⟩ ,

(3.127)
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where we used the shorthand notations cs := cosh and sh := sinh. Note that the boundary
state above is in the mixed picture. Its contribution to the SFEOM to be discussed later
will be in the picture (−1/2,−1/2) as was prescribed in [40]. The prescription requires
the computation of the following

([]D)0 := 1
gs

PG̃P|B⟩R , (3.128)

where P is the projection operator onto (−1/2,−1/2) picture and

G̃ := 1
2(X0 + X̄0) . (3.129)

Going to the (−1/2,−1/2) picture will also make the appearance of the GSO even states
manifest.

We shall first apply X0 to the (-3/2,-1/2) picture boundary state

X0P|B⟩−
3
2 ,−

1
2

R =−i
√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0+c̄0

2 c1c̄1cs(γ̄0β0)(Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

+i
√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0+c̄0

2 c1c̄1sh(γ̄0β0)(Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

−N ′
B

2 (Pδ(d−p−1))η−1c1c̄1cs(γ̄0β0)(Γ0...p) βα eϕ/2Σαe−ϕ̄/2Σβ |0⟩

+N ′
B

2 (Pδ(d−p−1))η−1c1c̄1sh(γ̄0β0)(Γ0...p)αβeϕ/2Σαe−ϕ̄/2Σβ |0⟩ . (3.130)

The first two lines vanish since Pδ(d−p−1) is a constant, but we keep them for the formality
of the expression. By using the identities [39]

βne
pϕ|0⟩ = 0 for n ≥ −p− 1

2 , β̄ne
pϕ̄|0⟩ = 0 for n ≥ −p− 1

2 , (3.131)

we simplify (3.130) into

X0P|B⟩−
3
2 ,−

1
2 = − i

√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0 + c̄0

2 c1c̄1(Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

2 (Pδ(d−p−1))η−1c1c̄1(Γ0...p) βα eϕ/2Σαe−ϕ̄/2Σβ |0⟩ . (3.132)

Similarly, we find

X 0P|B⟩−
1
2 ,−

3
2

R = − i

√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0 + c̄0

2 c1c̄1(Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

2 (Pδ(d−p−1))η̄−1c1c̄1(Γ0...p)αβe−ϕ/2Σαeϕ̄/2Σβ |0⟩

(3.133)

As a result, we find

gs([]D)0 = − i

√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0 + c̄0

2 c1c̄1(Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

4 (Pδ(d−p−1))η−1c1c̄1(Γ0...p) βα eϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

4 (Pδ(d−p−1))η̄−1c1c̄1(Γ0...p)αβe−ϕ/2Σαeϕ̄/2Σβ |0⟩ . (3.134)
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For later use, we can insert factors of P 10
± := (1± Γ(10))/2 without affecting the answer

gs([]D)0 = − i

√
α′N ′

B

2 ∂qA(Pδ
(d−p−1))c0 + c̄0

2 c1c̄1(P 10
+ Γ0...pΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

4 (Pδ(d−p−1))η−1c1c̄1(P 10
− Γ0...p) βα eϕ/2Σαe−ϕ̄/2Σβ |0⟩

− N ′
B

4 (Pδ(d−p−1))η̄−1c1c̄1(P 10
+ Γ0...p)αβe−ϕ/2Σαeϕ̄/2Σβ |0⟩ . (3.135)

To fix the normalization, we shall compute the RR one-point function on the disk

{VRR}D := g−1
s ⟨V − 3

2 ,−
3
2

R,R c−0 PG̃P|B⟩R (3.136)

= −
∫
dp+1x

1
16

√
2π

N ′
B

∑
k

1
(2k)!C1...2kTr

(
Γ1...2kΓ0...p

)
, (3.137)

which gives, for p + 1 form field,

{VRR}D2 = − 1
π

∫
dp+1xN ′

BC0...p . (3.138)

As a result the normalization constant N ′
B is fixed to be

N ′
B = ±

√
2πTp , (3.139)

where different sign choices lead to D-branes or anti-D-branes.

3.2 Toroidal compactifications

In this section, we study the worldsheet CFT convention for the toroidal orientifold compacti-
fication we discussed in section 2.3. We will first study the original NSNS background around
which we will perturb by including fluxes. The original background can be, therefore, de-
scribed by the conventional RNS formalism. Because the toroidal manifold has no non-trivial
curvature, most of the worldsheet conventions for the flat spacetime carry over. There are
several important differences, however. First, the momentum along the compact directions is
quantized. Second, strings can wind, which gives rise to the winding states. Third, there
are moduli degrees of freedom, some of which will be correlated with the axio-dilaton. We
shall carefully deal with those issues in this section.

Even though we already laid out the conventions for the supergravity background, we
will reiterate a few important ingredients here. In the NSNS background, the targe spacetime
is R1,3 × T 6, whose metric is given as

ds2 = GABdX
AdXB = gµνdX

µdXν + gabdY
adY b , (3.140)

where the Greek indices range from 0 to 3, and the Latin indices range from 1 to 6. Y i

are the coordinates along the compact directions, whose fundamental domain is [0, 1]. We
choose the metric for the non-compact directions to be

gµν = ηµν = diag(−1, 1, 1, 1) . (3.141)
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As in the previous section, we decompose T 6 into T 2
1 × T 2

2 × T 2
3 , and denote the coordinates

of T 2
i by Y 2i−1 and Y 2i. We define the metric of T 2

i to be

ds2 = Im ti
Im ui

(
(dY 2i−1)2 + 2ReuidY 2i−1dY 2i + |ui|2(dY 2i)2

)
, (3.142)

and the complex coordinates

Zi = Y 2i−1 + uiY
2i . (3.143)

For simplicity, we shall restrict ui to ui = i Im ui, whenever needed. Note also that we
chose a somewhat unconventional orientation following the convention of [73], in which the
volume form is given as

dVolT 2
i
= − Im tidY

2i−1 ∧ dY 2i = Im ti
2i Im ui

dZi ∧ dZi . (3.144)

We write the matter part of the action of the worldsheet CFT in the flat background

Smatter =
1
2π

∫
d2zGAB

( 1
α′∂X

A∂̄XB + 1
2ψ

A∂̄ψB + 1
2 ψ̄

A∂ψ̄B
)
, (3.145)

and the ghost part of the action as

Sghost =
1
2π

∫
d2z[b∂̄c+ b̄∂c̄+ β∂̄γ + β̄∂γ̄] . (3.146)

For simplicity, we shall set the real part of the axio-dilaton, complex structure moduli ui,
and Kähler moduli ti to zero, and introduce an orthonormal frame

GABdX
AdXB = ηABdX̃

AdX̃B , (3.147)

where we defined the vielbein

X̃A := eABX
B , (3.148)

such that

GAB = ηCDe
C
Ae

D
B . (3.149)

Similarly, we introduce new worldsheet fermions in the orthonormal frame

λA := eABψ
B , λ̄A := eABψ̄

B . (3.150)

The OPEs of the matter fields are given as

XA(z, z̄)XB(0, 0) ∼ −α
′

2 G
AB ln |z|2 , ψA(z)ψB(0) ∼ GAB

z
, ψ̄A(z)ψ̄B(0) ≃ GAB

z̄
.

(3.151)

The OPEs involving the ghost fields are the same as that of the worldsheet theory, whose target
spacetime is R1,9. The OPEs involving the matter fields in the orthonormal frame are given as

X̃A(z, z̄)X̃B(0, 0) ∼ −α
′

2 η
AB ln |z|2 , λA(z)λB(0) ∼ ηAB

z
, λ̄A(z)λ̄B(0) ≃ ηAB

z̄
.

(3.152)
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We write the mode expansions of the matter fields

∂X̃A = −i

√
α′

2

∞∑
m=−∞

α̃A

zm+1 , ∂̄X̃A = −i

√
α′

2

∞∑
m=−∞

¯̃αA

z̄m+1 , (3.153)

λA =
∑

n∈Z+ν

λAn

zn+ 1
2
, λ̄A =

∑
n∈Z+ν

λ̄An

z̄n+ 1
2
. (3.154)

We then have the following (anti)-commutation relations

[α̃Am, α̃Bn ] = [ ¯̃αAm, ¯̃αBn ] = mηABδm,−n , (3.155)

{λAm, λBn } = {λ̄Am, λ̄Bn } = ηABδm,−n . (3.156)

Now, let us study the spin fields. Identical to the previous section, we denote the 16
component spinors by Σα(10) and Σα(10) . Note that the chirality of the 4d spinor determines the
chirality of the 6 dimensional spinor; we need not specify the chirality of the 6d spinor unless
necessary. We shall assume that e−ϕ/2Σα(10) and e−3ϕ/2Σα(10) and their anti-holomorphic
counterparts are GSO even. Upon decomposing the 10d spinor into the 4d spinor, we find

Σα10 = Sα ⊗ ηα(6) + Sα̇ ⊗ ηα(6) , (3.157)

and
Σα10 = Sα ⊗ ηα

(6) + Sα̇ ⊗ ηα
(6)
, (3.158)

where S is the 4d spinor, and η is the 6d spinor. For the details of the spinors, see section B.
We conclude this section with the conventions for the vertex operators corresponding

to unit quantized NSNS flux. To illustrate the convention, we choose

H = H123dY
1 ∧ dY 2 ∧ dY 3 . (3.159)

This NSNS threeform flux should be properly quantized, as required. The aforementioned
H field can be reproduced by the following B2 field

B2 = H123Y
1dY 2 ∧ dY 3 , (3.160)

or, equivalently, its fully anti-symmetrized form

B′
2 = 1

2BABdX
A ∧ dXB = 1

3H123
(
Y 1dY 2 ∧ dY 3 − Y 2dY 1 ∧ dY 3 + Y 3dY 1 ∧ dY 2

)
.

(3.161)
Note that B′

2 and B2 are related by a gauge transformation

B′
2 = B2 + dχ , (3.162)

where
χ = 1

3Y
1Y 3dY 2 − 1

3Y
1Y 2dY 3 . (3.163)
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The corresponding NSNS vertex operator in (−1,−1) picture is

ONSNS = 1
4πcc̄BABe

−ϕψAe−ϕ̄ψ̄B , (3.164)

= 1
4πcc̄H123Y

1e−ϕψ2e−ϕ̄ψ̄3 . (3.165)

Or, equivalently, one can use the fully anti-symmetrized version.
Note that (3.165) is written in the local chart of the torus with coordinates Y i and

B-field profile as written is not periodic under Y i → Y i + 1. We expect that effects of such
local charts to be absent when computing physical observables, which in particular implies
that only H123 will appear in the final results. For the physical quantities involving only the
momentum modes, this is evidenced by the fact that constant B-field shift does not affect
the momentum mode spectrum. Moreover, under Y i → Y i + 1, B-field shifts by an integer
amount which is one of the duality actions for torus CFTs in constant B-field background.
Therefore, even though SFT action may be subject to change, the resulting SFT action
should still produce the same physics as the original SFT action.

In any case, since Kähler moduli remain as moduli in our background, the use of local
chart Y i should pose no problem as we take the large volume limit.15 The computation
involving ONSNS is evidently simpler in the B2 gauge. ONSNS is even under the orientifold
action and thus survives as an operator of the orientifold theory.

4 String field theory for flux compactifications

In this section, we demonstrate how SFT provides a systematic framework to study the
explicit example discussed in section 2.3, where the only expansion parameter is effectively
gs. We begin by briefly reviewing the result of the recently constructed BV master action
for open-closed-unoriented super-SFT in [40].

4.1 Review of SFT

We will mostly follow [39, 40], where the full details of the discussion can be found. The main
idea of SFT is that the consideration of generic off-shell states (as opposed to considering the
usual QB-closed states only) allows one to write a gauge-invariant action from which off-shell
computations can be performed. The SFEOM is obtained by varying the action, and the
action can be expanded around a solution of SFEOM to provide the usual Feynman rules.

We start with a worldsheet BCFT for a pure NSNS IIB background in the context of
RNS formalism. In our specific example of toroidal orientifold, this will be the usual free
boson and fermion CFT (with proper orbifolding) together with bc and βγ ghosts. Typically,
in the on-shell worldsheet computations, only QB-closed states of the worldsheet BCFT
are of interest. In contrast, generic states of the worldsheet BCFT play important roles
in the construction of SFT.

15We thank Xi Yin for his comments on the local charts and the large volume limit. It will be interesting to
see how the computations involving winding states are (in)dependent on the local charts.
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We define Hm,n to be the set of GSO-even bulk CFT states |s⟩ of picture number
(m,n) satisfying16

b−0 |s⟩ = L−
0 |s⟩ = 0 , (4.1)

where
b±0 := b0 ± b̄0 , (4.2)

and
L±

0 := L0 ± L̄0 . (4.3)

Similarly, we define Hn to be the set of boundary CFT states with picture number n. The
subspaces of these Hilbert spaces required for the construction of a BV master action for
SFT are given by

Hc := H−1,−1 ⊕H−1/2,−1 ⊕H−1,−1/2 ⊕H−1/2,−1/2 , (4.4)

H̃c := H−1,−1 ⊕H−3/2,−1 ⊕H−1,−3/2 ⊕H−3/2,−3/2 , (4.5)

Ho := H−1 ⊕H−1/2 , (4.6)

H̃o := H−1 ⊕H−3/2 . (4.7)

We denote by Ψc, Ψ̃c,Ψo, and Ψ̃o general elements of Hc, H̃c, Ho, and H̃o respectively. Ψc

can be expanded in a basis of Hc with coefficients, and these coefficients are ‘string fields.’ For
example, if a basis of Hc is given by states |vci ⟩, then we have the expansion |Ψ⟩ =

∑
iw

i
c|vci ⟩,

where wic are string fields. They in particular include the gravi-dilaton and B− ‘field’ eµν(k)

Ψc ∼
∫
ddkeµν(k)cc̄e−ϕΨµe−ϕ̄Ψ̄νeik·X + . . . (4.8)

On-shell condition requires kµeµν(k) = kνeµν(k) = k2 = 0, but such a condition is not
required to be satisfied for generic string fields that are off-shell, and we consider general
eµν(k) for example.

Since the states carrying off-shell string fields still belong to the worldsheet BCFT Hilbert
space, we can compute their worldsheet correlators, which are then functionals of string fields
such as eµν(k). Unlike the on-shell correlators, though, such off-shell correlators are not in
general invariant under the change of local coordinate charts around the vertex operator
insertions and locations of PCOs. Nonetheless, it has been shown [74] that such off-shell effects
can be absorbed into string field redefinitions, and any on-shell observables are well-defined.

The off-shell correlators integrated over some part of the worldsheet moduli space (with a
specific choice of local charts and PCO locations) provide the Feynman vertices of the quantum
BV master action for SFT. The three choices here, which part of the worldsheet moduli space
is integrated, what the local chart choices are as a function of the worldsheet moduli, and
where the PCOs are placed as a function of the worldsheet moduli, are constrained by the
requirement of gauge invariance of the action. Consistent choices of such string vertices to all
orders in string perturbation theory have been explicitly found [75–81], while one can always
work with simpler choices of string vertices at low orders in string perturbation theory.

16We will be working in the small Hilbert space where states are annihilated by η0 and η̃0.
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For superstrings, PCO plays an essential role in the construction of a consistent SFT
action. We define G by

G|so⟩ =

|so⟩ if |so⟩ ∈ H−1
1
2(X0 + X 0)|so⟩ if |so⟩ ∈ H−3/2

, (4.9)

G|sc⟩ =



|sc⟩ if |sc⟩ ∈ H−1,−1

X0|sc⟩ if |sc⟩ ∈ H−3/2,−1

X 0|sc⟩ if |sc⟩ ∈ H−1,−3/2

X0X 0|sc⟩ if |sc⟩ ∈ H−3/2,−3/2

, (4.10)

where X0 and X 0 are zero modes of left-moving and right-moving PCOs.
We are ready to introduce the 1PI effective action of open-closed-unoriented SFT. In

a widely used convention [40], the action is given by

S1PI = :− 1
2g2
s

⟨Ψ̃c|c−0 QBG|Ψ̃c⟩+ 1
g2
s

⟨Ψ̃c|c−0 QB|Ψc⟩ − 1
2gs

⟨Ψ̃o|QBG|Ψ̃o⟩+ 1
gs
⟨Ψ̃o|QB|Ψo⟩

+ ZD2

gs
+ ZRP2

gs
+ {Ψ̃c}D + {Ψ̃c}RP2 +

∑
N≥0,M≥0

1
N !M !{(Ψ

c)N ; (Ψo)M} , (4.11)

where c−0 = (c0 − c̄0)/2. This convention is convenient for proving general results such
as gauge invariance of the action and the main identity. In this work, we shall instead
use the string field theory action in the following convention to make the comparison with
supergravity action more convenient

S1PI =
4α′

g2
c

[
−1
2⟨Ψ̃

c|c−0 QBG|Ψ̃c⟩+ ⟨Ψ̃c|c−0 QB|Ψc⟩
]
− 1

2gs
⟨Ψ̃o|QBG|Ψ̃o⟩+ 1

gs
⟨Ψ̃o|QB|Ψo⟩

+ ZD2

gs
+ ZRP2

gs
+ {Ψ̃c}D + {Ψ̃c}RP2 +

∑
N≥0,M≥0

1
N !M !{(Ψ

c)N ; (Ψo)M} , (4.12)

such that string field for a canonically normalized closed string state in the CFT has the
canonical kinetic term. For example, string field of the form

|Ψ⟩ = gc

∫
d10k

(2π)10hab(k)cc̄e
−ϕψae−ϕ̄ψ̄beik·X |0⟩ (4.13)

has the kinetic term

2α′

g2
c

⟨Ψ|c−0 QB|Ψ⟩ = −α
′

2

∫
d10k

(2π)10hab(−k)k
2hab(k) . (4.14)

The second line of (4.12) consists of disk and RP2 partition functions together with
the interactions, where we separated out the closed string 1-point vertices on the disk and
RP2. These are defined by

{Ãc}D := g−1
s ⟨Ãc|c−0 Ĝe

−β(L0+L̄0)|B⟩ , (4.15)

where Ĝ is 1 when acting on H−1,−1 and 1
2

(
X0 + X 0

)
when acting on H−3/2,−3/2, |B⟩ is the

matter-ghost boundary state of BCFT, and β is a positive number related to the choice
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of the local chart around the bulk operator insertion on the disk D. We similarly defined
{Ãc}RP2 . Note that when Ãc is the graviton or massless RR vertex operator, this definition
for {·}D agrees with the same notation we introduced in section 3.1.2.

Even though the disk and RP2 partition functions do not depend on the string fields and
thus contribute to the action only by constant terms, they are required by the background
independence of string field theory as explained for example in [82].

{(Ψc)N ; (Ψo)M} is obtained by summing over all 1PI Feynman diagrams with N closed
string fields and M open string fields. Again, disk and RP2 1-point closed string vertices
defined above are excluded in the definition of {Ψc; }. {(Ψc)N ; (Ψo)M}, in particular, includes
summing over all string vertices with N closed string fields and M open string fields of all
possible worldsheet topologies and also lower point string vertices connected together by
string field propagators or higher point string vertices connected to itself by propagators.
Such 1PI diagrams are well-defined even in the presence of tadpoles. At any fixed finite
order in string perturbation theory, only a finite number of 1PI diagrams will contribute to
{(Ψc)N ; (Ψo)M}. It can be shown that as long as the original choice of string vertices were
consistent in the sense of gauge invariance, S1PI satisfies the classical BV master equation.

In this work, the only relevant closed string interaction vertex at genus zero is the
sphere cubic vertex. We choose the normalization such that insertion of three closed string
states are computed in the usual convention of [83]. For generic string vertices, appropriate
normalizations should be introduced such that the factorization relations hold.17

As already emphasized, S1PI is a functional of string fields which are coefficient fields in
the expansion of Ψc, Ψ̃c,Ψo, and Ψ̃o into basis elements. There are gauge transformations
leaving S1PI invariant, which are often partially fixed using the Seigel gauge.

We are interested in SFEOM, which can be obtained by varying S1PI . Therefore, It
is natural to introduce ‘string brackets’ obtained by varying 1PI interaction terms in S1PI .
For the disk 1-point vertex, we introduce

[]D := g−1
s PĜe−β(L0+L̄0)|B⟩ , (4.16)

where P is a projection operator onto Hc. We similarly define the string bracket []RP2 for RP2.
For {(Ψc)N ; (Ψo)M}, we define the corresponding string brackets [Ac1 . . . AcN ;Ao1 . . . AoM ]c ∈

H̃c and [Ac1 . . . AcN ;Ao1 . . . AoM ]o ∈ H̃o via

⟨Ac0|c−0 |[Ac1 . . . AcN ;Ao1 . . . AoM ]c⟩ = {AcoAc1 . . . AcN ;Ao1 . . . AoM}, ∀|Ac0⟩ ∈ Hc, (4.17)

and

⟨Ao0|c−0 |[Ac1 . . . AcN ;Ao1 . . . AoM ]o⟩ = {Ac1 . . . AcN ;Ao0Ao1 . . . AoM}, ∀|Ao0⟩ ∈ Ho. (4.18)

By varying S1PI , we obtain SFEOM given by

4α′

g2
c

QB
(
|Ψc⟩ − G|Ψ̃c⟩

)
+ |[]D⟩+ |[]RP2⟩ = 0 , (4.19)

4α′

g2
c

QB|Ψ̃c⟩+
∞∑
N=1

∞∑
M=0

1
(N − 1)!M !

[
(Ψc)N−1; (Ψo)M

]c
= 0 , (4.20)

17We thank Ashoke Sen for explaining to us the importance of correct normalizations for string vertices.
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QB
(
|Ψo⟩ − G|Ψ̃o⟩

)
= 0 , (4.21)

QB|Ψ̃o⟩+ gs

∞∑
N=0

∞∑
M=0

1
N !(M − 1)!

[
(Ψc)N ; (Ψo)M−1

]o
= 0 . (4.22)

One can multiply G to the second and the fourth equations and combine them with the
first and the third equations to obtain

4α′

g2
c

QB|Ψc⟩+
∞∑
N=1

∞∑
M=0

1
(N − 1)!M !G

[
(Ψc)N−1; (Ψo)M

]c
+ |[]D⟩+ |[]RP2 = 0 , (4.23)

QB|Ψo⟩+ gs

∞∑
N=0

∞∑
M=1

1
N !(M − 1)!G

[
(Ψc)N ; (Ψo)M−1

]o
= 0 . (4.24)

The solution corresponding to the original background represented by a pure NSNS
worldsheet CFT is given by |Ψc⟩ = |Ψo⟩ = 0. The presence of tadpoles at subleading orders
in gs necessarily requires nontrivial string field configurations to be turned on. If one is
interested in obtaining a background that requires turning on nontrivial field configurations
from the original worldsheet CFT background, such field configurations should enter as string
fields in the above SFEOM and further solve it.

For the equations of motion (4.23) and (4.24) to have solutions, non-QB terms in (4.23)
and (4.24) must be BRST exact. Once the solution |Ψc⟩ and |Ψo⟩ is obtained, one can obtain
Ψ̃c and Ψ̃o accordingly. Note that there is a freedom to add any QB-closed term to Ψ̃c

and Ψ̃o, meaning that they represent free string fields that decouple from the interacting
string field degrees of freedom.

4.2 ϵ expansion

Now, we shall study the expansion scheme for the solution to SFEOM (4.23) and (4.24),
which corresponds to the example introduced in section 2.3. The pure NSNS background
which serves as the starting point for SFT is given by an exact worldsheet BCFT whose
matter part consists of four non-compact free bosons Xµ (µ = 0, 1, 2, 3), six compact free
bosons Y i (i = 1, 2, 3, 4, 5, 6) for toroidal orientifold T 6/Z2, and their fermionic partners ψµ

and ψi as discussed in section 3. We also have 4 D3-branes, which fill in the four non-compact
spacetime and 64 O3-planes as discussed in section 2.3. This worldsheet CFT provides the
Hilbert spaces Hc, H̃c, Ho, and H̃o which are building blocks of SFT, and SFEOM (4.23)
and (4.24) are written in terms of the coefficient string fields when states in Hc and Ho

are expanded in a basis.
To define a consistent expansion scheme, we shall introduce a small parameter ϵ. We

will then take a large complex structure limit such that the imaginary part of the complex
structure moduli will be treated as a large parameter

O( Im ui) = O(ϵ−1) . (4.25)

At the same time, we shall treat string coupling as a small parameter such that

O( Im τ) = O(ϵ−1). (4.26)

Therefore, we shall treat the complex structure moduli and the axio-dilaton modulus on
the same footing.
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Because the threeform fluxes F and H generate potential for the moduli, the moduli
vev will be severely constrained by the SFEOM. To make sure that the ϵ expansion scheme
is self-consistent, the scaling

O( Im ui) = O( Im τ) = O(ϵ−1) , (4.27)

shall be justified with the solutions to SFEOM. We shall do so in the next section, and
show that the ϵ expansion scheme is self-consistent as the tadpole cancellation of SFEOM
at order O(ϵ) will lead to

ui = piτ , (4.28)

in agreement with the low energy supergravity. Note, in particular, that due to the non-
renormalization theorem [54, 55], we expect the relation ui = puτ to hold up to all orders
in gs and hence ϵ perturbatively. Once the identification (4.28) is made at O(ϵ), we can
effectively trade ϵ with gs, thereby establishing g

1/2
s expansion scheme.

The scaling (4.27) inevitably introduces explicit factors of ϵ in the evaluation of OPE and
correlators of the CFT T 6/Z2. A systematic expansion in ϵ can be obtained by employing
the vielbein introduced in section 3. Then, OPE and correlators of fields in the orthonormal
frame do not involve explicit factors of ϵ, and the vielbein can be regarded as an expansion
parameter carrying specific powers of ϵ. We will use the shorthand notation Y := R1,3 × T 6

and Ỹ := R1,3 × T 6/Z2.
For example, the NSNS 3-form flux corresponds to the following vertex operator of

the worldsheet CFT:

ONSNS = 1
4πcc̄Bije

−ϕψie−ϕ̄ψ̄j , (4.29)

where locally, we have

dB = H3 , (4.30)

and
B = 1

3!HijkY
idY j ∧ dY k . (4.31)

As explained in (3.165), ONSNS is expressed in the local chart of the torus with coordinates
Y i. In order to discuss gs-dependence, we should discuss the picture-raised vertex operator,
which includes the unambiguous field strength H3 (as opposed to B)

X0ONSNS ∼ cc̄Hijkψ
iψje−ϕ̄ψ̄k + . . . (4.32)

Introducing the vielbeins,

cc̄Hijkψ
iψje−ϕ̄ψ̄k = cc̄

(
e−1

)i
i′

(
e−1

)j
j′

(
e−1

)k
k′
Hijkλ

i′λj
′
e−ϕ̄λ̄k

′
, (4.33)

where primed indices i′, j′, and k′ stand for the orthonormal frame. From the metric of T 6

which in particular depends on ui, it is straightforward to read off the scaling of vielbeins
in terms of ϵ

e2i′
2i ∼ ϵ−

1
2 δi

′
i , e2i′−1

2i−1 ∼ ϵ
1
2 δi

′
i , i = 1, 2, 3. (4.34)
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Each Hijk given in (2.85) are order 1 numbers, and Hijk ̸= 0 only when one of {i, j, k} is
odd and the other two are even. Therefore, we conclude that(

e−1
)i
i′

(
e−1

)j
j′

(
e−1

)k
k′
Hijk ∼ ϵ

1
2 . (4.35)

Therefore, the NSNS part of the string field solution Ψc to SFEOM (4.23) corresponding
to H3-flux term should start at order ϵ

1
2 .

The story is similar for the RR 3-form flux, except that there is an extra factor of gs
in the SFT convention where NSNS and RR string fields are normalized in the same way
unlike the supergravity convention [63, 64]. The vertex operator for the Ramond-Ramond
field in (−1/2,−1/2) picture is then given as

ORR = i

3!
gs
√
α′

16
√
2π
cc̄Fijke

−ϕ/2Σα(Γijk)αβe−ϕ̄/2Σ̄β . (4.36)

Each Fijk given in (2.84) are order 1 numbers, and Fijk ̸= 0 only when one of {i, j, k} is
even and the other two are odd. Therefore, we conclude that the RR part of the string field
solution Ψc to SFEOM (4.23) corresponding to F3-flux term should start at order ϵ

1
2 .

In contrast, the solution (2.34) implies that the corresponding string field solutions for
the metric and F5 start at order ϵ. We, therefore, take the following expansion scheme for
the string field solutions Ψc = Ψc

0 and Ψo = Ψo
0:

Ψc
0 =

∞∑
n=1

ϵn/2
(
V −1,−1
NS,n +V − 1

2 ,−
1
2

R,n

)
, V −1,−1

NS,n ∈H−1,−1, V
− 1

2 ,−
1
2

R,n ∈H−1/2,−1/2, (4.37)

Ψo
0 =

∞∑
n=1

ϵn/2v−1
NS,n, v−1

NS,n ∈H−1. (4.38)

Note here that we also introduce a nontrivial open string field profile given by v−1
NS,n. This

is because the change in the bulk geometry back-reacts to D-branes, which then requires
nontrivial open string field profiles. Since the closed string field solution only has NSNS and
RR field profiles, the back-reaction only induces NS open string fields. As disk diagrams are
suppressed by a factor of gs compared to sphere diagrams, we will not need to obtain Ψo

0
if we are only interested in closed string dynamics up to the second order in the expansion
parameter ϵ1/2.

Finally, we shall discuss the gauge we will impose on the solutions of SFEOM. We
introduce the projection operator P which projects to states on which L0 + L̄0 acts nilpotently.
We impose Siegel gauge condition on (1−P)Ψc

0: b+
0 (1−P)Ψc

0 = 0. For PΨc
0, we impose Siegel

gauge condition except for the subspace of states spanned by

(∂c+ ∂̄c̄)cc̄e−ϕψAe−2ϕ̄∂̄ξ̄ and (∂c+ ∂̄c̄)cc̄e−ϕ̄ψ̄Ae−2ϕ∂ξ, (4.39)

on which we impose

(∂c+ ∂̄c̄)cc̄
(
e−ϕψAe

−2ϕ̄∂̄ξ̄ − e−ϕ̄ψ̄Ae
−2ϕ∂ξ

)
= 0. (4.40)

Then, the states which survive the gauge condition in the subspace are

(∂c+ ∂̄c̄)cc̄
(
e−ϕψAe

−2ϕ̄∂̄ξ̄ + e−ϕ̄ψ̄Ae
−2ϕ∂ξ

)
. (4.41)
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These states are the auxiliary fields which have played an important role in establishing the
field redefinition between the massless string fields and the low energy gravity fields [84].

4.3 Background solution-order ϵ1/2

We are ready to study the background solution to the SFEOM at the first two orders in
ϵ1/2-expansion. At the leading order in ϵ1/2, the SFEOM (4.23) reduces to

QBV
−1,−1
NS,1 = 0, (4.42)

QBV
− 1

2 ,−
1
2

R,1 = 0. (4.43)

The solution of interest to us is given by the 3-form fluxes

ϵ1/2V −1,−1
NS,1 = ONSNS , ϵ1/2V

− 1
2 ,−

1
2

R,1 = ORR, (4.44)

which were discussed in (4.29) and (4.36). It is straightforward to check that ONSNS and
ORR are QB-closed.

4.4 Background solution-order ϵ

At the second order in ϵ1/2, the string field equations of motion are

4α′

g2
c

QBV
−1,−1
NS,2 + 1

2G
[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2

+ ϵ−1|[]D+RP2⟩NSNS = 0 ,

(4.45)
4α′

g2
c

QBV
− 1

2 ,−
1
2

R,2 + G
[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

+ ϵ−1|[]D+RP2⟩RR = 0 . (4.46)

Here, [. . .]cS2 is the string bracket obtained by varying the sphere string vertices, []D+RP2 =
[]D + []RP2 , and |[]D+RP2⟩NSNS and |[]D+RP2⟩RR are NSNS and RR sector projection of the
state |[]D+RP2⟩ respectively.

Note that the sphere amplitudes contain an overall normalization constant

CS2 = 8π
α′g2

c

= 25π3

α′κ2
10g

2
s

, (4.47)

and the boundary states contain g−1
s in the overall normalization. Therefore, all of the terms

in the second-order equations of motion are of the same order in ϵ as they should be.
Following [39, 41], to solve (4.45) and (4.46), we shall split the equations of motion into

two parts using the projection P introduced above. We split

V −1,−1
NS,2 =W

(2)
NS +X

(2)
NS , (4.48)

and
V

− 1
2 ,−

1
2

R,2 =W
(2)
R +X

(2)
R , (4.49)

such that X(2)
NS and X

(2)
R satisfy

PX(2)
NS = PX(2)

R = 0 , (4.50)
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and W
(2)
NS and W

(2)
R satisfy

PW (2)
NS =W

(2)
NS , PW (2)

R =W
(2)
R . (4.51)

Using {QB, b0} = L0 , we can solve X(2)
NS and X

(2)
R rather easily

4α′

g2
c

X
(2)
NS = − 1

2(L0 + L̄0)
(b0 + b̄0)(1− P)G

[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2

− ϵ−1

L0 + L̄0
(b0 + b̄0)(1− P)|[]D+RP2⟩NSNS , (4.52)

and
4α′

g2
c

X
(2)
R = − 1

(L0 + L̄0)
(b0 + b̄0)(1− P)G

[
V −1,−1
NS,1 V

− 1
2 ,−

1
2

R,1

]c
S2

− ϵ−1

L0 + L̄0
(b0 + b̄0)(1− P)|[]D+RP2⟩RR . (4.53)

P-parts of the equations of motion are more involved. We write

4α′

g2
c

QBW
(2)
NS + 1

2PG
[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2

+ ϵ−1P|[]D2+RP2⟩NSNS = 0 ,

(4.54)

and
4α′

g2
c

QBW
(2)
R + PG

[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

+ ϵ−1P|[]D+RP2⟩RR = 0 . (4.55)

To find the solutions W (2)
NS and W

(2)
R , we shall first compute the string brackets appearing

in the above.

4.4.1 Equations of motion of the L+
0 nilpotent NSNS fields

In this section, we shall study the following equation

4α′

g2
c

QBW
(2)
NS + 1

2PG
[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2

+ ϵ−1P|[]D2+RP2⟩NSNS = 0 .

(4.56)

First, we will compute the closed string source terms in (4.56) i.e. string brackets. In order
for the equation (4.56) to admit a solution to W (2)

NS , the source term must be BRST-exact.
To compute

1
2PG

[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2
, (4.57)

we can compute an overlap between a generic state ϕ satisfying Pϕ = ϕ with

V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1 , (4.58)

which will produce the sphere cubic string vertex

{ϕ, V −1,−1
NS,1 , V −1,−1

NS,1 }S2 + {ϕ, V − 1
2 ,−

1
2

R,1 , V
− 1

2 ,−
1
2

R,1 }S2 . (4.59)

– 42 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
7

Let us first study the contribution from V −1,−1
NS ⊗ V −1,−1

NS . The corresponding string
vertex {ϕ, V −1,−1

NS,1 , V −1,−1
NS,1 }S2 , which is nonzero only when ϕ is in the NSNS sector, is defined

not only by the choice of local charts around three punctures on the sphere but also by
the location of left- and right-moving PCOs. It is straightforward to see that this string
vertex can be nonzero only if ϕ takes the form

ϕ = cc̄e−ϕψie−ϕ̄ψjf(XA), (4.60)

where i and j are along the compact directions and f(XA) should lie in the L+
0 -nilpotent

space to survive the P projection. Since V −1,−1
NS,1 has no nontrivial free boson zero modes

along the non-compact direction, f(XA) cannot have nontrivial excitations along the compact
directions since it will not survive the P projection in that case. QBϕ is then proportional
to derivatives of f(XA) with respect to the non-compact free boson zero modes, meaning
that {ϕ, V −1,−1

NS,1 , V −1,−1
NS,1 }S2 is independent of the choice of PCO locations. Similarly, it is

independent of the choice of local charts since V −1,−1
NS,1 is on-shell, and local chart effects on ϕ

result in derivatives of f(XA) with respect to the non-compact free boson zero modes.18

We find
1
2P
[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1

]c
S2

= −CS2
ϵ−1

2(4π)2
α′

2 (∂c+ ∂̄c̄)cc̄HacdHbefG
ceGdfe−ϕψae−ϕ̄ψ̄b . (4.61)

Using CS2 = 25π3/(α′κ2
10g

2
s), we find

1
2P
[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1

]c
S2

= − πϵ−1

2κ2
10g

2
s

(∂c+ ∂̄c̄)cc̄HacdHbefG
ceGdfe−ϕψae−ϕ̄ψ̄b . (4.62)

Similarly, we find
1
2P
[
V

− 1
2 ,−

1
2

R,1 ⊗V − 1
2 ,−

1
2

R,1

]c
S2

=− π

2ϵκ2
10
(∂c+∂̄c̄)cc̄

(
FAcdFBefG

ceGdf−GAB
3! |F |2

)
e−ϕψAe−ϕ̄ψ̄B .

(4.63)
Finally, we have

1
ϵ
P|[]D2⟩NSNS =

∑
yD3

2πT3

gsϵ
(Pδ(6)(y−yD3))

[
∂c+∂̄c̄

2 cc̄
(
e−ϕψASABe

−ϕ̄ψ̄B−(η∂̄ξ̄e−2ϕ̄−∂ξη̄e−2ϕ)
)]

,

(4.64)

1
ϵ
P|[]RP2⟩NSNS =−

∑
yO3

πT3

2gsϵ
(Pδ(6)(y−yO3))

[
∂c+∂̄c̄

2 cc̄
(
e−ϕψASABe

−ϕ̄ψ̄B−(η∂̄ξ̄e−2ϕ̄−∂ξη̄e−2ϕ)
)]

.

(4.65)

A few comments concerning the normalizations are in order. The sphere diagram for
the orientifold compactification is normalized such that the following identity in for R1,9

target space

⟨k|c−1c̄−1c
−
0 c

+
0 c1c̄1|k′⟩ = −2(2π)10δ(10)(k + k′) (4.66)

18In case the sphere three-point vertex of interest involves more generic operator insertions, we should specify
the local charts and the PCO locations. One can place three NSNS vertex operator insertions at z = 0, 1,∞
on the sphere and place PCO at z = e±iπ/3, and average over cyclic permutations of the three NSNS vertex
operator insertions. This ensures that the sphere cubic vertex is symmetric under the permutation of string
fields [85].

– 43 –



J
H
E
P
0
5
(
2
0
2
4
)
2
4
7

with ten-dimensional momenta k and k′ is replaced with

⟨k|c−1c̄−1c
−
0 c

+
0 c1c̄1|k′⟩ = −2(2π)4δ(4)(k + k′)

∫
T 6/Z2

d6X , (4.67)

where k and k′ are now four-dimensional momenta. In the orientifolded theory, one must
include the following additional normaliztion factor in the string vertices to ensure that
amplitudes correctly factorizes [40]

2−g−(c+b)/2+M/4 , (4.68)

where g is genus, c is number of cross-caps, b is number of boundaries, and M is a number
of open string vertices. Hence, normalization of the closed string vertex operator in the
orientifolded theory is the same as that of the parent theory. Also, we normalized the
boundary states such that the one-loop diagrams correctly factorize to disk and RP2 diagrams
correctly [86]. This implies, for example, that the boundary state for a single D3-brane in
T 6 on an O-plane should be half of (4.64).

Now, we shall solve (4.56) by two steps. First, we will show that the matter parts of
the source terms in (4.56) cancel provided that moduli vevs are tuned to solve supergravity
equations of motion at O(ϵ). Second, with this simplification in hand, we will find an explicit
form of W (2)

NS that solves (4.56).
A few important remarks are in order. It should be and it is possible to directly solve

the equations of motion in string field theory without making any reference to the low-energy
supergravity. Hence, it may seem unnecessary to use the low-energy supergravity as an
input.19 We nevertheless proceed to use the low-energy supergravity as an input in this
section, as the input from the low-energy supergravity can be used to greatly simplify the
SFEOM. The reader may wonder if this simplification can be achieved by invoking the
tadpole cancellation in string field theory. As we will discuss in section 4.5, the tadpole
cancellation in SFT leads to the equivalent conclusions, but there exist subtleties that need
to be carefully studied. Therefore, to avoid technicalities, as promised, we shall use the
supergravity as an input, and revisit the issue of the tadpole cancellation in section 4.5.

The matter part of the source terms in (4.56) takes the following form

AAB(∂c+ ∂̄c̄)cc̄e−ϕψAe−ϕ̄ψ̄B . (4.69)

Therefore, by computing an overlap against a state generated by the following test vertex
operator

V −1,−1
test = ϵABcc̄e

−ϕψAe−ϕ̄ψ̄B , (4.70)

one can study if AAB vanishes at the F-term locus. In this section, we shall illustrate that
absence of ϵABAAB is guaranteed by the F-term conditions for all choices of the polarization
ϵAB. We shall refer ϵABAAB as ϵAB tadpole.

Let us first study the case where V −1,−1
test is the dilaton vertex operator at zero momentum

V −1,−1
D (k, n) = − gc√

8
cc̄
(
GAB − kAk̄B − kB k̄A

)
e−ϕψAe−ϕ̄ψ̄B , (4.71)

19Note furthermore that the non-trivial field redefinitions between supergravity fields and string fields may
obscure this ad-hoc procedure [84].
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where we used the primary form of the dilaton vertex operator. Note that k̄A is defined as

k̄A := nA
n · k

, (4.72)

where nA is chosen as a generic null vector [66], and kA is a vector that is chosen to be
transverse to the worldvolume of the spacetime filling D3-branes and O3-planes. Note
that kA shouldn’t be understood as the momentum of the dilaton state, as kA and k̄A are
auxiliary vectors. Furthermore, we shall average over different choices of kA so that there
is no preference over a particular direction, such that

V −1,−1
D = 1

6
∑
i

V −1,−1
D (ki, ni) , (4.73)

where ki is a unit vector along i-th direction, meaning k2
iG

ii = 1, where i is not summed
over, and ni is a null vector that is defined as

ni := n0 + ki , n0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) . (4.74)

One can check that the dilaton vertex operator has a vanishing one-point function on the
disk and RP2. Therefore, the dilaton correlation function receives only contributions from
the closed string sources. From the NSNS fluxes, we obtain

1
2{V

−1,−1
D , V −1,−1

NS,1 , V −1,−1
NS,1 }S2 = −1

ϵ

∫
Ỹ
d10X

gc√
8

π

3κ2
10g

2
s

HacdHbefG
abGceGdf . (4.75)

From the RR fluxes, we obtain
1
2{V

−1,−1
D , V

− 1
2 ,−

1
2

R,1 , V
− 1

2 ,−
1
2

R,1 }S2 = 1
ϵ

∫
Ỹ
d10X

gc√
8

π

3κ2
10
FacdFbefG

abGceGdf . (4.76)

Combining (4.75) and (4.76), we find that the overlap between the source term and the
dilaton state vanishes at the F-term locus

1
gsϵ

gc√
8
2π
κ2

10

∫
Ỹ
d10X

∂

∂ log gs

( 1
Im τ

G3 ·G3

)
= 1
gsϵ

πgc√
8

∫
R1,3

d4X
∂

∂ log gs
V1 = 0 , (4.77)

Note that the C0 contribution in G3 is neglected as we are working in the string
perturbation theory with C0 = 0 background. As a result, up to a numerical factor, we
find that the dilaton tadpole is exactly the derivative of the effective potential with respect
to the dilaton.20

Next, we shall choose the following test vertex operator

V −1,−1
test = V −1,−1

h := 1
4πhµνcc̄e

−ϕψµe−ϕ̄ψ̄ν , (4.78)

where hµν is a symmetric rank two tensor along the non-compact directions. We compute
1
2{V

−1,−1
h , V −1,−1

NS,1 , V −1,−1
NS,1 } = 0 , (4.79)

1
2{V

−1,−1
h , V

− 1
2 ,−

1
2

R,1 , V
− 1

2 ,−
1
2

R,1 }S2 = − 1
24κ2

10ϵ

∫
Ỹ
d10X

1
2h

µ
µ|F |2 , (4.80)

{V −1,−1
h }D2+RP2 = − 1

2gsϵ

∫
Ỹ
d10X

1
2h

µ
µµ3ρ

loc
D3 . (4.81)

20Similarly, the complex structure tadpole results in the analogous result. Because the constraints due to
the complex structure tadpole are redundant to that of the dilaton tadpole, we will not write them here.
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We combine (4.79), (4.80), and (4.81) to obtain the h tadpole

− 1
gsϵ

∫
Ỹ
d10X

1
2h

µ
µ

(
− gs
4κ2

10

1
3! |F3|2 −

1
2µ3ρ

loc
D3

)
. (4.82)

Using the fact that we have the ISD flux, we find that the above expression is proportional
to the tadpole cancellation condition we imposed∫

Ỹ
d10X

( 1
2κ2

10
[H3 ∧ F3] + µ3ρ

loc
D3

)
= 0 . (4.83)

Again, we found that the matter sector tadpole for this particular polarization vanishes.
Finally, we study the tadpole associated with the following vertex operator

V −1,−1
test = V −1,−1

δg = 1
4πcc̄δgabe

−ϕψae−ϕ̄ψ̄b , (4.84)

where δgab is a symmetric rank 2 tensor along compact directions. We compute the string
brackets

1
2{V

−1,−1
δg (ki, ni)⊗ V −1,−1

NS,1 ⊗ V −1,−1
NS,1 }S2 = − πgc

8πg2
sϵκ

2
10

∫
Ỹ
d10XδgabHaijH

ij
b . (4.85)

Similarly, we compute

1
2{V

−1,−1
δg (ki,ni)⊗V −1,−1

R,1 ⊗V −1,−1
R }S2 =− πgc

8πϵκ2
10

∫
Ỹ
d10X

[
δgabFaijF

ij
b − δgabGab

3! |F |2
]
,

(4.86)

{V −1,−1
δg }D2+RP2 = 1

2gsϵ

∫
Ỹ
d10X

1
2δg

a
aµ3ρ

loc
D3 . (4.87)

We can combine (4.85), (4.86), (4.87) and to find the combined tadpole

− πgc
8πg2

sϵκ
2
10

∫
Ỹ
d10X

[
(HiabH

iab + g2
sFiabF

iab − 1
3!
(
g2
s |F |2 + |H|2

)]
. (4.88)

Note that we used the Bianchi identity to rewrite the D3-brane charge in terms of the NSNS
3-form flux. As one can check, the above equation is equivalent to the variation of the effective
potential w.r.t. the internal graviton in Einstein-frame

− πgc
4πgsϵκ2

10

∫
Ỹ
d10Xδab

∂

∂Gab

(√
−G 1

Im τ
G3 ·G3

)
= 0 , (4.89)

which vanishes at the F-term locus. This concludes that the matter part of the source terms
in the NSNS sector of the SFEOM cancel at the F-term locus.

As a result, the choice of fluxes for the explicit example we consider here are such that the
NSNS source terms in (4.56) completely cancel each other except for the ghost-dilaton term:

4α′

g2
c

QBW
(2)
NS = −

∑
i

ρi
πT3
gsϵ

(
Pδ(6)(y − yi)

)
cc̄(∂c+ ∂̄c̄)(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ) , (4.90)
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where ρi = 1 for a D3-brane and ρi = −1/4 for an O3-plane. This equation can be solved by
4α′

g2
c

W
(2)
NS = − π

18κ2
10g

2
sϵ
cc̄

(
BabB

ab(η∂̄ξ̄e−2ϕ̄ − ∂ξη̄e−2ϕ)− 2BacBcbe−ϕψae−ϕ̄ψ̄b

− 2i

√
α′

2 BabH
abc(∂c+ ∂̄c̄)

(
e−ϕψce

−2ϕ̄∂̄ξ̄ + e−ϕ̄ψ̄ce
−2ϕ∂ξ

))
. (4.91)

The solution W (2)
NS presents nontrivial field profiles for the ghost-dilaton (the first term in the

first line), metric along T 6 (the second term in the first line), and the auxiliary field (the second
line). However, this does not necessarily imply that these fields carry nontrivial field profiles
in the supergravity frame, since string fields and supergravity fields at this order are related to
each other via nonlinear field redefinitions [84]. For example, a nontrivial supergravity B-field
at the first order induces a nontrivial ghost-dilaton string field at the second order proportional
to BABBAB, as in the above profile of W (2)

NS , meaning that a nonzero ghost-dilaton string
field profile may be equivalent to a zero ghost-dilaton supergravity field profile.

In terms of the mode expansion, the Dirac delta function can be written as

δ(6)(Y ) = 2
Im t1 Im t2 Im t3

∑
n⃗∈Z6

e2πin⃗·Y . (4.92)

Note that the volume of the orientifold is Im t1 Im t2 Im t3/2. As the P projection eliminates
a non-trivial mode, we find, therefore,

Pδ(6)(Y ) = 2
Im t1 Im t2 Im t3

= 1
VolT6/Z2

. (4.93)

This implies that the Green’s function G defined in (2.35) is trivial under the P projection

PG(X;Y ) = 0 . (4.94)

Therefore, we expect that W (2)
NS becomes trivial as we implement the field redefinition mapping

the string fields to the supergravity fields. Since on-shell physical observables are independent
of such field redefinitions, we will proceed with the solution (4.91).

In contrast, since the first order solution had nontrivial profile only for the P-projected
sector, we expect that (1−P) sector of the second order solution to agree with the supergravity
description for the momenta modes along the compact directions. It is useful to recall that
the mode expansion of the Green’s function reads

G(6)(X; 0) = −
∑
n⃗∈Z6

(1− δn⃗,0)
e2πin⃗·X

4π2|n|2VolT 6/Z2

= −
∑

n⃗∈Z6\0

α′

L0 + L̄0

e2πin⃗·X

VolT 6/Z2

. (4.95)

As a result, for the states projected out by P, the Green’s function acts as [39]

− 1
L0 + L̄0

(b0 + b̄0) . (4.96)

Note that (4.96) is precisely the information contained in X
(2)
NS we found in (4.52) previously

4α′

g2
c

X
(2)
NS =− 1

2(L0 + L̄0)
(b0 + b̄0)(1− P)G

[
V −1,−1
NS,1 ⊗ V −1,−1

NS,1 + V
− 1

2 ,−
1
2

R,1 ⊗ V
− 1

2 ,−
1
2

R,1

]c
S2

− ϵ−1

L0 + L̄0
(b0 + b̄0)(1− P)|[]D+RP2⟩NSNS , (4.97)

which agrees with the expectation from the supergravity description.
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4.4.2 Equations of motion of the L+
0 nilpotent RR fields

Now let us study the zero modes sector of the RR sector of the string field equations of motion

4α′

g2
c

QBW
(2)
R + PG

[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

+ 1
ϵ
P|[]D+RP2⟩RR = 0 . (4.98)

We first compute the following string bracket

PG
[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

= gs
ϵ
PX0X̄0

[ 1
4πcc̄Babe

−ϕψae−ϕ̄ψ̄b

⊗ i

3!

√
α′

16
√
2π
cc̄Fcdee

−ϕ/2Σα

(
1 + Γ10

2 Γcde
)αβ

e−ϕ̄/2Σ̄β

c
S2

.

(4.99)

Note here that we inserted

1 + Γ10

2 , (4.100)

without affecting the result. One is free to do so because Σα = Σβ(Γ10)βα. We can freely
pass P through X0 and X̄0 as they are of weight zero. We obtain

P
[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

= − i
gsCS2

3!ϵ

√
α′

64
√
2π2 (∂c+ ∂̄c̄)cc̄BabFcdee−3ϕ/2Σγe−3ϕ̄/2Σδ

× (Γa)γα

(
1 + Γ10

2 Γcde
)αβ

(Γb)βδ . (4.101)

Note that we inserted an additional factor of 2 to take into account the orientifolding. Using
the identity

CS2 = 25π3

α′κ2
10g

2
s

, (4.102)

we write

P
[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2

= − i

3!ϵ
π

2κ2
10gs

√
2α′

(∂c+ ∂̄c̄)cc̄BabFcdee−3ϕ/2Σγe−3ϕ̄/2Σδ

× (Γa)γα

(
1 + Γ10

2 Γcde
)αβ

(Γb)βδ . (4.103)

To compute

X0X̄0S
− 3

2 ,−
3
2

RR := GP
[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2
, (4.104)

we shall now act the zero mode of PCOs on (4.103). As a result, we obtain

gsX0S
− 3

2 ,−
3
2

RR = π

24
√
2ϵκ2

10
(∂c+ ∂̄c̄)cc̄∂aBbcFdefe−ϕ/2Σα(Γab)(P 10

+ Γdef )(Γc)e−3ϕ̄/2Σβ

+ πi

12ϵκ2
10
√
2α′

ηcc̄BabFcdee
ϕ/2Σγ(Γa)(P 10

+ Γcde)(Γb)e−3ϕ̄/2Σδ . (4.105)
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Note that we used the following identity

C := − 1
2πi

∮
dz

z

(
∂ηbe2ϕ(z) + ∂

(
ηbe2ϕ

)
(z)
)(∂c+ ∂̄c̄

2 cc̄e−3ϕ/2Σγ
)
(0) (4.106)

= − 1
2πi

∮
dz

z

1
2η(z)c(0)c̄(0)

(
eϕ/2Σγ

)
(0) + . . . (4.107)

= − 1
2ηcc̄e

ϕ/2Σγ . (4.108)

Also, we dropped the contribution from

T := − 1
2πi

∮
dz (z∂η(z)) eϕ/2(0) , (4.109)

because one can treat the above integral as

T = 1
2πi

∮
dz

z1/2

(
η(z)eϕ(z)

)
e−ϕ/2(0) (4.110)

= γ1 · e−ϕ/2 , (4.111)

which should vanish in the RR vacuum. We compute

gsX 0

X0S
−

3
2 ,−

3
2

RR


1

:=X 0

[
π

24
√

2ϵκ2
10
(∂c+∂̄c̄)cc̄∂aBbcFdefe

−ϕ/2Σα(Γab)(P 10
+ Γdef )(Γc)e−3ϕ̄/2Σβ

]
,

(4.112)
=− π

24
√

2ϵκ2
10
η̄cc̄∂aBbcFdefe

−ϕ/2Σα(P 10
+ Γab)(Γdef )(Γc)eϕ̄/2Σβ (4.113)

where we used the following identity

C := − 1
2πi

∮
dz̄

z̄
∂̄
(
η̄b̄e2ϕ̄

)
(z̄)

(
∂c+ ∂̄c̄

2 cc̄e−3ϕ̄/2Σδ
)
(0) (4.114)

= −1
2 η̄cc̄e

ϕ̄/2Σδ . (4.115)

Next, we compute

gsX 0

(
X0S

− 3
2 ,− 3

2
RR

)
2
:=X 0

[
πi

12ϵκ2
10
√
2α′

ηcc̄BabFcdee
ϕ/2Σγ(Γa)(P 10

+ Γcde)(Γb)e−3ϕ̄/2Σδ

]
(4.116)

=− π

48
√
2ϵκ2

10
ηcc̄∂aBbcFdefe

ϕ/2Σγ(Γb)(P 10
+ Γdef )(Γca)e−ϕ̄/2Σδ (4.117)

As a result, we find that the source term coming from the closed string vertex operators is

X0X 0S
− 3

2 ,−
3
2

RR = − π

24
√
2gsϵκ2

10
∂aBbcFdef

(
η̄cc̄e−ϕ/2Σα(Γab)(P 10

+ Γdef )(Γc)eϕ̄/2Σβ

+ ηcc̄eϕ/2Σα(Γa)(P 10
+ Γdef )(Γbc)e−ϕ̄/2Σβ

)
.

(4.118)

As we already saw, the ISD condition forces

H3 · F3 = 0 . (4.119)
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Furthermore, we have ∂aBab = 0. Therefore, we only need to consider the fully anti-
symmetrized Gamma matrices, which leads to

S− 1
2 ,−

1
2

RR = − π

4
√
2gsϵκ2

10

1
3!

1
3!HabcFdefcc̄

(
ηeϕ/2ΣαP 10

− ΓabcΓdefe−ϕ̄/2Σβ

− η̄e−ϕ/2ΣαP 10
+ ΓabcΓdefeϕ̄/2Σβ

)
, (4.120)

where
S− 1

2 ,−
1
2

RR := g2
sPG

[
V −1,−1
NS,1 ⊗ V

− 1
2 ,−

1
2

R,1

]c
S2
. (4.121)

Using the fact that the orientation of the internal manifold is chosen to be

−dY 1 ∧ dY 2 ∧ dY 3 ∧ dY 4 ∧ dY 5 ∧ dY 6 , (4.122)

21 and

−iP 10
± Γ̃ = ±P 10

± Γ0123 , (4.123)

we rewrite (4.120) as

S− 1
2 ,−

1
2

RR = − π

4
√
2gsϵκ2

10
[H3 ∧ F3]cc̄

(
ηeϕ/2Σα(P 10

− Γ0123) βα e−ϕ̄/2Σβ

+ η̄e−ϕ/2Σα(P 10
+ Γ0123)αβeϕ̄/2Σβ

)
. (4.124)

We also include the zero-mode contribution from the boundary states

1
ϵ
([]D2+RP2)0 =

πµ3√
2gsϵ

∑
i

ρi

[
i
√
α′∂qA(Pδ

(6)(qi−yi))
∂c+∂̄c̄

2 cc̄(P 10
+ Γ0...3ΓA)αβe−ϕ/2Σαe−ϕ̄/2Σβ

− 1
2(Pδ

(6)(qi−yi))ηcc̄(P 10
− Γ0...3) βα eϕ/2Σαe−ϕ̄/2Σβ |0⟩

− 1
2(Pδ

(6)(qi−yi))η̄cc̄(P 10
+ Γ0...3)αβe−ϕ/2Σαeϕ̄/2Σβ |0⟩

]
,

(4.125)

where ρi = 1 for D3-branes and ρi = −1/4 for O3-planes. Note that the first line is identically
zero due to P-projection.

It is straightforward to check that the source terms combine to give the P-projected
Bianchi identity. Therefore, for the explicit example we consider here, the sum of the source
terms in (4.98) identically vanish. We hence take the solution to be

W
(2)
R = 0 (4.126)

Similar to the case of NSNS sector solution, the non-trivial spacetime profile of the RR fields
are contained in the massive RR states X(2)

R , which in particular contains the Green’s function.
21This unconventional choice of the orientation is equivalent to the conventional choice of the conventional

orientation with the flipped sign for the Chern-Simons action.
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4.5 Massless tadpoles, ISD, and integrated Bianchi identity

In the previous sections, we obtained the solutions to SFEOM to the second order in ϵ1/2-
expansion. In doing so, we worked on the F-term locus for the explicit example under
consideration, which was essential in several cancellations among the source terms of the
SFEOM at the second order.

Now, in this section, we shall investigate if the solvability of SFEOM reproduces the ISD
condition and the integrated Bianchi identity that the r.h.s. of (2.16) integrates to zero.

To investigate this question, we shall proceed as follows. To construct open-closed-
unoriented string field theory, we choose a well defined worldsheet BCFT, for a purely
geometric background, e.g., a toroidal or a Calabi-Yau orientifold compactification. Crucially,
the defining data of the BCFT includes a D-brane configuration which we take to be a
certain number of D3-branes localized on the compact directions.22 We also place O3-planes
at the fixed planes of the orientifold action. With this open-closed-unoriented SFT, we
can now let the complex structure to be large of order g−1

s and turn on a generic choice
of quantized H3 and F3 fluxes. Within this set-up, we will now study the solvability of
SFEOM perturbatively in ϵ expansion.

Solvability of SFEOM such as (4.56) or (4.98) requires that non-QB terms add up to a
QB-exact expression. Typically in the SFT literature (e.g. [36, 39]), this condition is shown
to be equivalent to the requirement that there are no massless tadpoles. It is natural to
expect that such a requirement leads to the ISD condition and the integrated Bianchi identity,
resulting in constraints on the number of D3-branes and fluxes. However, there is a subtlety
in the relation between the solvability of SFEOM and the absence of massless tadpoles when
there are boundary terms, as we address now.

P-projected part of SFEOM takes the following general form

QBW = Ps, (4.127)

where s is a linear combination of appropriate string brackets. Upon taking the inner product
against a state ⟨v| which is QB-closed and in P sector, the r.h.s. gives the expression for
the massless tadpole

ϕ(v) = ⟨v|c−0 |s⟩, (4.128)

while the l.h.s. vanishes if the QB-contour can be deformed from W to v without introducing
the boundary term. Such a boundary term is typically dropped in SFT literature and
ϕ(v) = 0 is considered equivalent to the existence of the solution W . However, the boundary
contribution arises ubiquitously when the space of string fields includes nontrivial functions
of the target spacetime coordinates.

QB acts as the Laplacian ∇2 on the functions of spacetime coordinates. Therefore, the
inner product for the l.h.s. of (4.127) is proportional to

∫
dDXf(X)∇2w(X) where f(X)

is the wavefunction part of v satisfying ∇2f(X) = 0 and w(X) is the wavefunction part
22To construct SFT action, one does not necessarily need to start with a D-brane configuration that cancels

the Ramond-Ramond tadpole. The Ramond-Ramond tadpole cancelation will be enforced by the solvability
of SFEOM at a higher order.
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of W . Even though ∇2f(X) = 0, this does not imply that
∫
dDXf(X)∇2w(X) = 0 since

integration by parts may introduce total derivative terms which do not vanish generically.
In our example, the solution W

(2)
NS is quadratic in the torus coordinates Y a and∫

dDXf(X)∇2w(X) is clearly nonzero. Therefore, ϕ(v) does not necessarily need to vanish.
This is the reason why we were able to solve for W (2)

NS even when ϕ(v) for (4.90) is nonzero
with v being the zero-momentum ghost-dilaton state.23

Nonetheless, there are still QB-closed P-projected states v’s such that ϕ(v) = 0 is required
for the SFEOM to be solvable. The inner product for the l.h.s. of (4.127), in addition to
the overlap of the wavefunctions, is also proportional to the overlap of the oscillators of
v and c−0 QBW . Therefore, for v’s such that the oscillator overlap is zero, we should still
require that ϕ(v) = 0 for (4.127) to be solvable.

In general, to obtain massless tadpoles which are required to vanish, one should proceed
as follows. The form of the solution W should be assumed first, which in particular requires
which oscillators it may contain and which spacetime coordinates its wavefunctions depend
on. Then for any QB-closed P-projected v such that its oscillators does not have an overlap
with c−0 QBW , we require that ϕ(v) = 0. If this requirement cannot be satisfied, then the
solution W with the assumed properties does not exist.

For example, based on the expectation from supergravity and the four dimensional
Poincare invariance, we can propose an ansatz that W (2)

NS has no oscillators along the non-
compact directions and its wavefunction does not depend on the non-compact directions.
Then ϕ(v) = 0 for (4.54) is required for any QB-closed P-projected v whose oscillators are
entirely along the non-compact directions. We take v to be the zero momentum 4d graviton
state vg = cc̄e−ϕψµe

−ϕ̄ψ̄ν which leads to

ϕ(vg) ∼ ηµν

∫
Ỹ
d10X

(
|F |2 + 12κ2

10g
−1
s µ3ρ

loc
D3

)
= 0. (4.129)

For W (2)
R , similarly, we can propose an ansatz such that it does not have an overlap

with C4 field along the non-compact directions. Then this ansatz leads to the tadpole
cancellation condition for C4∫

Ỹ
d10X

( 1
2κ2

10
[H3 ∧ F3] + µ3ρ

loc
D3

)
= 0, (4.130)

which is exactly the integrated Bianchi constraint. By combining (4.129) and (4.130),
we obtain ∫

Ỹ
F3 ∧ (G3 + i ∗6 G3) = 0, (4.131)

which leads to the ISD condition. Therefore, the absence of appropriate massless tadpoles
lead to the constraints which we encountered in supergravity analysis.

4.6 Concluding remarks

It is worth noting that even though our choice of the fluxes imply that the F-term potential
is minimized, it does not imply that we have checked that the SFT background solution we

23Similar nonzero massless tadpole can be found in [41] for the pp-wave solution with 5-form flux in their
equation (3.3), where v = cc̃e−ϕe−ϕ̃ψ+ψ̃+ produces nonzero ϕ(v).
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obtained is supersymmetric. Because the four-dimensional low-energy supergravity analysis
predicts that the background must have at least N = 1 supersymmetry, it would be important
to check if the string field theory analysis indeed confirms that the background preserves
supersymmetry. There are several ways to study if the solution is supersymmetric. The most
straightforward way is to explicitly construct the supercharges. In SFT, (super-)isometries
correspond to gauge transformations which preserve the background solution. Among them,
supercharges in particular belong to the R-NS and NS-R sectors. It is well known how to
compute them order by order in gs in SFT literature (see e.g. [39, 42]), which is very similar
to solving for the string spectrum around a background solution.

Another important point worth emphasizing is that the tadpoles due to localized sources
in SFT are smeared. In SFT, we have formulated the tadpole as the obstruction to solving
SFEOM. As the components of SFEOM which are projected out by P can be solved always,
the only obstruction to solving SFEOM arises in the L+

0 -nilpotent sector of SFEOM i.e.
sector surviving the P-projection. Because, the P-projection picks out the “constant” mode
of the source terms in SFEOM, for example,

Pδ(6)(X − Y ) = 1
Vol , (4.132)

the localized sources enter the L+
0 -nilpotent components of SFEOM in smeared forms. Hence,

the relevant physical tadpole in SFT is the smeared tadpole.
Finally, we remark that the form of the solutions X(2)

NS , W (2)
NS , X(2)

R , and W
(2)
R are the

fully string theoretic version of the supergravity solutions (2.31) and (2.34), where the
massless string field profiles are expected to agree with the supergravity under nontrivial field
redefinitions [84]. We can also solve for Ψ̃c using (4.19), and we denote the corresponding
solution by Ψ̃c

0. We can now expand the 1PI effective action (4.12) around the order ϵ
background solution Ψc

0 and Ψ̃c
0 we obtained here by taking Ψc = Ψc

0 + φc, where φc now
stands for the dynamical string fields around the background given by Ψc

0:

S1PI [Ψc,Ψ̃c,Ψo,Ψ̃o] =S1PI [Ψc
0+φc,Ψ̃c

0+φ̃c,Ψo,Ψ̃o] =S′
1PI [φc, φ̃c,Ψc

0,Ψ̃c
0,Ψo,Ψ̃o]. (4.133)

The new 1PI effective action S′
1PI [φc, φ̃c,Ψc

0, Ψ̃c
0,Ψo, Ψ̃o] is now free from tadpoles of φc and

φ̃c to order ϵ. Discussion on the consistency of S′
1PI [φc, φ̃c,Ψc

0, Ψ̃c
0,Ψo, Ψ̃o] as a classical BV

master action can be found for example in [39]. Solutions to the linearized equations of motions
for S′

1PI correspond to the string spectrum to order ϵ. Furthermore, S′
1PI provides Feynman

rules for the background described by Ψc
0 and Ψ̃c

0 up to order ϵ, from which observables such as
string amplitudes may be obtained. We emphasize that S′

1PI is the “worldsheet” description
of the new background and produces genuinely stringy results. Explicit computation of such
physical quantities will be carried out in the future publications.

5 Conclusions

In summary, we have demonstrated that SFT provides a suitable framework for investigating
certain flux compactification backgrounds. In the context of our particular example, inverse
of complex structure moduli can be treated as expansion parameters equivalent to the string
coupling, and we detailed the systematic expansion process within SFT. The construction
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of the background solution order by order in string coupling highlights how SFT is not
much different from string perturbation theory in practice when a good expansion parameter
aligns with it.

This work points towards several promising directions for future research. First, it will
be important to obtain higher-order solutions in our specific example. The anticipation of an
SFT solution existing to all orders in string coupling is inherent, and its form is expected to
resemble that of the supergravity solution closely. The pursuit of this higher-order solution
becomes essential when aiming to compute physical observables at those orders. In parallel,
there arises the related task of computing the supercharges associated with the background
at these higher orders. The connection between the presence of supersymmetry and the
anticipation of a solution persisting to all orders in string coupling is an intriguing avenue to
explore. It will be interesting to investigate the consequences of imposing the requirement
that the background solution respects specific supersymmetries at all orders.24 Additionally,
it is worth noting that the open string field profile becomes nontrivial at higher orders,
offering insight into how D-branes back-react to the bulk geometry.

One of the most important tasks is the study of physical observables associated with the
flux compactification backgrounds. While we have described the background solution in this
work, we have not delved into its physical quantities, such as spectra and scattering processes.
SFT offers a rigorous and consistent platform for conducting such computations, unveiling
genuinely stringy effects that remain inaccessible through low-energy effective descriptions.

One notable physical observable that can be investigated using the background solution
presented in this study pertains to the order gs correction to the string spectrum. While all
massive modes are anticipated to decay owing to their interactions with massless modes, the
emergence of an imaginary part in the pole of the propagator, as a result of decay effects,
occurs at order g2

s . Consequently, it becomes meaningful to determine the order gs correction
to the masses of various excitations, which will also be needed to study decay rates at higher
orders. In practice, beyond the contributions from closed string background solution profiles,
additional contributions to the mass matrix arise from the disk and RP2, introducing a novel
facet specific to the flux compactification example under consideration here.

An intriguing and relatively straightforward class of excitations to explore involves the
leading Regge trajectory of the non-compact four dimensions. These excitations exhibit trivial
string brackets with both the first-order NSNS and RR 3-form fluxes, as well as the second-
order RR 5-form flux. Consequently, the analysis of the mass matrix becomes particularly
simple. Additionally, it will be interesting to study how specific linear combinations of
complex structure and axio-dilaton moduli are lifted, aligning with the insights from the
superpotential analysis.

Another significant aspect worth investigating is the scattering of massless modes. SFT
lets one compute corrections to the conventional Virasoro-Shapiro amplitude. For example,
the computation of the Virasoro-Shapiro amplitude involving moduli fields determines the
curvature of the moduli space, or equivalently, in N = 1 compactifications, the Kähler
potential of the moduli space. Despite the importance of the computation of the Kähler

24In [42], the problem on massless tadpoles and the supersymmetry restoration to the first few orders in gs

has been studied. An explicit example of SO(32) heterotic string theory on Calabi-Yau 3-folds was considered.
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potential at higher order in gs and α′, such computations were only carried out in fluxless
compactifications at the leading order in the backreaction caused by D-branes [87–95]. The
challenge to generalize such computations to non-trivial RR flux backgrounds can be overcome
with the machinery built in this paper. It would be very interesting to compute α′, gs, and
flux corrections to the Kähler potential of the moduli space in flux compactifications.25

We would also like to remark that the string field solution in this work was expressed in
a local chart of the torus. As far as we are aware, it has not been explored if SFT allows for
a systematic patch-by-patch description like general relativity. Nonetheless, we expect that
physical observables are independent of the choice of local charts of the target spacetime.
In the follow-up works, we plan to explicitly compute physical observables metioned above
and check this independence.

While our discussion in this work primarily focused on string perturbation theory, it is
important to note that SFT has demonstrated remarkable power in the recent exploration
of non-perturbative D-instanton effects [63, 64, 101–112]. The suitability of SFT for D-
instantons arises from its ability to systematically integrate out open string fields on the
D-instanton, resulting in the effective field theory for the dynamic closed string fields. This
process relies on crucial insights from field theory.

As an illustration of the potential of SFT in this context, in [108] the overall numerical
factor of the non-perturbative superpotential was fixed by regulating the IR divergence arising
from the zero modes of Euclidean D-branes appearing in fluxless orientifold compactifications.
Shortly after, the massive state contribution to the one-loop pfaffian was shown to be deter-
mined by open-unoriented topological string partition function at one-loop [113]. Extending
this line of inquiry to examine how Euclidean D-branes contribute to the superpotential in
non-trivial flux backgrounds holds the promise of shedding light on the intricate roles played
by non-perturbative effects in moduli stabilization.

We have investigated one of the simplest instances of flux compactification amenable to
the direct application of SFT. It is essential to highlight that there appear to be no immediate
obstructions to extending the same methodologies to other examples such as Calabi-Yau
orientifold compactifications. While it might be necessary to introduce additional expansion
parameters, such as α′, alongside the string coupling, this double expansion can also be
systematically explored within the framework of SFT. One may also introduce D7-branes and
O7-planes, provided their configurations are such that the dilaton profile does not develop
singularity. It is important to acknowledge that while SFT may not be universally applicable
to all cases of interest, it unquestionably opens up new perspectives for the examination of
flux compactifications and more general string backgrounds.

One additional speculative consideration pertains to the potential use of SFT in exploring
time-dependent backgrounds. In this context, one would primarily seek time-dependent
solutions to SFEOM. However, it becomes imperative to ensure that these solutions al-
low for a meaningful expansion in string coupling, which may itself be time-dependent.
Equally important is the determination of whether the relevant physical observables can be
unambiguously computed using the ingredients of SFT.

25To carry out such computations in string field theory, one may need string vertices for higher vertices and
genera. Interesting developments on the related issues happened recently, see, for example, [96–100].
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Notably, SFT has already demonstrated its efficacy in elucidating time-dependent back-
grounds in the case of open string rolling tachyons [114–120]. In this case, open-closed SFT
provides an explanation for how rigid gauge transformations of the closed string background
correspond to symmetry transformations on the open string fields, thus validating the energy
of the rolling tachyon solution originally proposed in [114]. Nevertheless, the applicability
of such success to other intriguing time-dependent closed string backgrounds remains a
subject of future investigation.
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A Toroidal compactifications

In this section, we present a simple toroidal compactification with the explicit complex
structure dependence of the metric. Let us consider type IIB compactification on T 6. Most
of the discussion here will also apply to toroidal orbifold compactifications. We shall focus on
a rather special sublocus of the moduli space such that one can treat T 6 as T 2 × T 2 × T 2 ,
with each of T 2 has a complex structure modulus and a Kähler modulus.

We shall take the coordinates of T 2
i to be Y 2i−1 and Y 2i and let Y j to take values in

[0, 1]. Having a fixed domain for the torus will make it easier to discuss moduli fields and their
associated vertex operators. We take the line element of a torus T 2

i to be, in the string-frame,

ds2 = Im ti
Im ui

(
(dY 2i−1)2 + 2ReuidY 2i−1dY 2i + |ui|2(dY 2i)2

)
, (A.1)

and we define the complex coordinate Zi as

dZi = dY 2i−1 + uidY
2i . (A.2)

We shall choose the orientation of the torus such that the volume form is written as

− Im tidY
2i−1 ∧ dY 2i . (A.3)

This choice of orientation is equivalent to the convention of [73]. We have the following relations

dY 2i = 1
2i Im ui

(dZi − dZ̄i) , (A.4)

dY 2i−1 = 1
2i Im ui

(
uidZ̄

i − ūidZ
i
)
, (A.5)
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where the index i is not summed over. Also, note that we have

dY 2i−1 ∧ dZi = − ui
2i Im ui

dZi ∧ dZi , (A.6)

and
dY 2i ∧ dZi = 1

2i Im ui
dZi ∧ dZi . (A.7)

Therefore, we can write the volume form as

dVolT 2
i
= − Im tidY

2i−1 ∧ dY 2i = Im ti
2i Im ui

dZi ∧ dZ̄i . (A.8)

Phrased differently, we define the Kähler form J i as

J i := Im ti
2i Im ui

dZi ∧ dZi . (A.9)

Similarly, we define the holomorphic threeform of the six torus as

Ω := dZ1 ∧ dZ2 ∧ dZ3 , (A.10)

which results in

− i

8

∫
T 6

Ω ∧ Ω = Im u1 Im u2 Im u3 . (A.11)

It is instructive to consider the inner product between differential forms. Let us consider
a one-form F = dY 2i−1. Then, its norm is

|F |2 = Im ui
Im ti

. (A.12)

Similarly, for a one-form H = dY 2i, the norm is

|H|2 = Im ui
|ui|2 Im ti

. (A.13)

So, we have∫
T 2

i

F ∧ ⋆2iF = Im ui ,

∫
T 2

i

F ∧H = 1 ,
∫
T 2

i

H ∧ ⋆2iH = Im ui
|ui|2

. (A.14)

B Spinor conventions for toroidal compactifications

In this section, shall set the conventions for the spinor fields and the gamma matrices. The
spinor group decomes into Spin(1, 3)× Spin(6), where Spin(6) ≡ SU(4). We shall decompose
the 16 components spinor into

16 = (2, 4)⊕ (2̄, 4̄) , (B.1)

where 2 is an irrep of Spin(1, 3) and 4 is an irrep of SU(4). For the four-dimensional spinor
indices, we shall use α and α̇ and for the 6 and 10 dimensional spinor indices we shall use
α(6) and α(10), respectively. We write a six-dimensional Gamma matrix

Γ̃i , (B.2)
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where i = 1, . . . , 6. We additionally define

Γ̃ = i
6∏
i=1

Γ̃i , (B.3)

which satisfies

Γ̃2 = I4 , {Γ̃, Γ̃i} = 0 , {Γ̃a, Γ̃b} = gabI4 , (B.4)

where I4 is an eight-dimensional identity matrix. We then now write the ten-dimensional
Gamma matrices

Γµ = γµ ⊗ Γ̃ , Γa = I2 ⊗ Γ̃a , (B.5)

where γµ is a four-dimensional Gamma matrix that satisfies

{γµ, γν} = ηµνI2 . (B.6)

We introduce auxiliary matrices Γi, which can be thought of as an 8 × 8 component
6d gamma matrix. We define Γi as

Γ1 = σ1 ⊗ σ3 ⊗ I2 , Γ2 = σ2 ⊗ σ3 ⊗ I2 , Γ3 = I2 ⊗ σ1 ⊗ σ3 , (B.7)

Γ4 = I2 ⊗ σ2 ⊗ σ3 , Γ5 = σ3 ⊗ I2 ⊗ σ1 , Γ6 = σ3 ⊗ I2 ⊗ σ2 , (B.8)

and

Γ := i
6∏
i=1

Γi = −σ3 ⊗ σ3 ⊗ σ3 , (B.9)

where σi are Pauli matrices. Then, we have

eji (Γ̃
i) β̇

(6)

α(6) = P+Γ
j
P− , eji (Γ̃

i) β
(6)

α̇(6) = P−Γ
j
P+ , (B.10)

P±Γ
i
P± = P±P∓Γ

i = 0 , (B.11)

where we defined

P± = I8 + Γ
2 . (B.12)

Similarly, we define Γ10 as

Γ10 := −iΓ0 . . .Γ3Γ , (B.13)

and P 10
± as

P 10
± := 1 + Γ10

2 . (B.14)

We also introduce complex Gamma matrices

Γ̃aC = Γ̃2a−1 + uaΓ̃2a , Γ̃āC = Γ̃2a−1 + ūaΓ̃2a . (B.15)
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Then,
Γ̃a+ :=

√
Im taΓ̃aC , (B.16)

and
Γ̃a− :=

√
Im taΓ̃āC , (B.17)

act as lowering and raising operators for the 6d spinors.
We can now construct irreps of the internal spinors. Because of the representation of the

gamma matrices we chose, it is convenient to consider a subgroup SU(3) × U(1) ⊂ SU(4),
and represent the irreducible representations of SU(4) as a linear combination of irreducible
representations of SU(3)×U(1). The representation under SU(3) will be classified how the
spinor transforms under the natural SU(3) rotation, and the U(1) charge of the fermion
will be given by

Q = 2
∑
a

(
Γ̃a+Γ̃a− − 1/2

)
. (B.18)

Let us start by constructing the lowest weight representation η− that satisfies

Γ̃a−η− = 0 , (B.19)

for all a. η− is 1−3 under SU(3)U(1). Acting one raising operator, we find

vaΓ̃a+η− , (B.20)

which is in 3−1 under SU(3)U(1). Acting the raising operators twice, we find

1
2!fabcΓ̃

b
+Γ̃c+η− , (B.21)

which is in 3̄1 under SU(3)U(1). Finally, we find

η+ := 1
3!ϵabcΓ̃

a
+Γ̃b+Γ̃c+η− , (B.22)

which is in 13 under SU(3)U(1). Then, we have

4 = 13 ⊕ 3−1 , 4̄ = 1−3 ⊕ 3̄1 . (B.23)

We then find

Ωabc = Im u1 Im u2 Im u3η+Γ̃a+Γ̃b+Γ̃c+η− , (B.24)

for the covariantly constant spinor

η±η± = 1 . (B.25)

Note that we defined

η± := η† . (B.26)
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