
MIT Open Access Articles

On Enhancing Data Integrity with Low-cost
Retention-Refillable Programming Scheme

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chiang, Kun-Chi, Li, Yung-Chun, Wang, Wei-Chen and Shih, Wei-Kuan. 2024. "On
Enhancing Data Integrity with Low-cost Retention-Refillable Programming Scheme."

As Published: 10.1145/3605098.3635905

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/155162

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155162

On Enhancing Data Integrity with Low-cost Retention-Refillable
Programming Scheme

Kun-Chi Chiang
National Tsing Hua University

Hsinchu, Taiwan
sailfish0814@gapp.nthu.edu.tw

Yung-Chun Li
monixs1112@gmail.com

Macronix international Co., LTD.
Hsinchu, Taiwan

Wei-Chen Wang
wweichen@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A.

Wei-Kuan Shih
wshih@cs.nthu.edu.tw

National Tsing Hua University
Hsinchu, Taiwan

ABSTRACT
The retention error has become one of the most challenging relia-
bility issues of flash memory due to the shrinking of the technology
nodes. To enhance data integrity by resolving the retention error
issues for 3D MLC flash memory devices (e.g., SSDs and SD cards),
many excellent works that exploited in-place reprogramming and
data refreshing concepts have been proposed in recent years. How-
ever, these approaches could result in additional issues, such as
programming disturbance and performance overhead (e.g., unavoid-
able data refreshing and a larger amount of program and verify
shots). This work is motivated by the need to explore a low-cost
solution for resolving retention error issues without incurring neg-
ative impacts caused by conventional refresh-based and in-place
reprogramming approaches. As a result, this work exploits the
characteristics of the cell’s 𝑉𝑡 distribution and proposes the novel
concept of “retention-refilling” to enhance data integrity. With such
an idea, a retention-refillable programming scheme is proposed to
improve flash reliability and mitigate performance overheads by
trading data refreshing with retention-refilling. The capability of
the proposed scheme is evaluated by a series of experiments, for
which we have very encouraging results.

KEYWORDS
Retention-refilling, retention error, data integrity, program distur-
bance.
ACM Reference Format:
Kun-Chi Chiang, Yung-Chun Li, Wei-Chen Wang, and Wei-Kuan Shih. 2024.
On Enhancing Data Integrity with Low-cost Retention-Refillable Program-
ming Scheme. In The 39th ACM/SIGAPP Symposium on Applied Computing
(SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3605098.3635905

1 INTRODUCTION
Flash memory has been widely adopted in recent years due to
the request for high-speed computation and mass storage. The
3D multi-level-cell flash memory, including MLC, TLC, and QLC,
is the favored choice for cost-effective and reliable data storage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0243-3/24/04. . . $15.00
https://doi.org/10.1145/3605098.3635905

Despite the dominance of 3D MLC flash chips, maintaining data
integrity remains a significant challenge. To enhance data integrity
and address reliability issues in flash devices, wear leveling is con-
sidered the primary method for evenly distributing erase operations
among flash memory blocks [4, 7, 27]. Flash memory faces three
major reliability concerns: endurance, retention, and disturbance.
All of these concerns can result in a significant number of bit er-
rors, especially as flash memory processes shrink or when used in
environments with elevated operating temperatures, such as data
centers or automotive electronics [23, 24]. The objective of wear
leveling is to prevent any flash memory cells from being erased too
many times before those flash memory cells can no longer store any
data reliably. However, it is reported that retention errors might
become the dominant errors in NAND flash memory [5, 33]. Un-
fortunately, wear leveling could not effectively resolve retention
errors and guarantee data integrity because an even distribution of
erases over blocks could not resolve the leaking of electrons from
a memory cell. Although many excellent works are proposed to
resolve the retention error issues with the in-place reprogramming
and data-relocation approaches, they might incur additional issues,
such as the programming disturbance issue and the large amount
of live-page copying overhead. There is still a lack of a promising
solution to simultaneously solve the reliability and performance
issues, and this observation motivates this work to explore a new
programming scheme that can efficiently resolve retention error
issues by refilling charges into storage layer with very limited costs.

A flash memory storage device typically comprises multiple
NAND flash memory chips. Each chip is divided into blocks, and
each block contains fixed pages. Pages consist of a data area (to store
user data) and a spare area (to store housekeeping data). Pages of a
block are usually written from the first one to the last one sequen-
tially. Due to the “write-once property”, data cannot be updated
unless their belonging blocks are erased. Therefore, an “out-of-place
update” policy is used for writing to-be-updated data to selected
free pages. As a result, up-to-date pages are called valid pages, while
out-of-date pages are invalid pages. A flash translation layer (FTL)
manages the mapping between logical block addresses (LBAs) and
physical block addresses (PBAs) and handles garbage collection
to reclaim space from invalid pages[1–3]. Since each block can
only endure a limited number of program/erase operations, wear
leveling evenly distributes erases to extend the flash memory chip
lifespan.

Many studies have shown that the Program/Erase(P/E) cycle of
flash memory could be significantly reduced by relaxing the reten-
tion time of pages [5, 19]. However, wear leveling could not directly
address the retention error problem. With the considerations of the

420

https://orcid.org/0000-0003-3696-5114
https://orcid.org/0000-0003-1994-9059
https://orcid.org/0000-0002-9435-6598
https://doi.org/10.1145/3605098.3635905
https://doi.org/10.1145/3605098.3635905

SAC ’24, April 8–12, 2024, Avila, Spain Kun-Chi Chiang et al.

lengthy erase time and also the reliability concerns, researchers
had proposed various garbage collection policies to reclaim the
space of invalid pages to minimize the impact of performance and
reduce the number of live-page copyings, e.g., [13, 17]. Thus, many
efforts have been made to explore efficient solutions for resolving
the retention error issues in recent years. They can be categorized
into four types. (1) Error correction code (ECC) approaches: since
the raw bit error rate (RBER) of NAND flash memories become
worse and worse while 3D stacking and multi-level cell technology
are adopted. The BCH and LDPC [20, 28] were widely adopted to
correct the error bits. However, the data is corrupted while error
bits exceed the correction ability. On the other hand, the data with
lower reliability might incur longer latency while resolving the
error bits [11, 25]. (2) Refresh-based approaches: some works ex-
plore efficient refresh-based solutions to resolve the retention error
issues [18, 22, 26]. However, the refresh-based solution can result in
significant live-page-copying overhead and waste the lifetime of the
flash block. (3) Read voltage adjustment approaches: the retention
issues induced by electronic leakage that leads to the left shift of
cells’ 𝑉𝑡 distribution. To read the correct data from the left-shifted
𝑉𝑡 distribution, some researchers proposed adjusting the read volt-
age dynamically to resolve retention error [12, 24]. However, these
schemes result in a great number of read and retry operations are
needed to find the optimized reference voltage, and thus generate
additional overheads. (4) Re-programming approaches: some re-
searchers propose to periodically correct retention error by in-place
reprogramming retention-erred cells [6, 31]. It adopts the full and
partial in-place self-programming (ISPP) procedure to push the
left-shift 𝑉𝑡 distribution back to their desired window. However,
the disturbance and electronic injection rate should be a concern
because the programming bias should be suitable for each data
state.

This work aims at resolving retention error issues of 3D MLC
flash memory [32]. Although lots of existing works had addressed
the retention issues on the 2D MLC flash memory, there is still a
lack of efficient way to guarantee data integrity with considering
the live-page-copy overheads and disturbance effects on the 3D
multi-level NAND flash memory cells. Therefore, we proposed a
retention-refillable programming scheme to enhance data integrity
and address retention errors. Our approach resolves reliability is-
sues by skillfully altering the 𝑉𝑡 distributions of retention-erred
cells and improves data integrity with minimal overhead. Unlike
previous work, we aim to significantly reduce the number of pro-
gram shots required in the ISPP and delay the need for refresh
operations to extend retention times for various data states. Our
scheme considers the properties of different cell 𝑉𝑡 states and var-
ious retention-error handling approaches to minimize negative
impacts. We conducted a series of experiments to assess the effec-
tiveness of our design. The results demonstrate that our retention-
refillable programming scheme can extend device lifetime by up
to 60% while it only incurs very limited performance overhead on
the total execution time by about 10% under the different cases,
compared to the in-place reprogramming approaches.

2 BACKGROUND AND MOTIVATION
2.1 Flash Basis and Retention Error
NAND flash memory functions by utilizing various threshold volt-
age (𝑉𝑡) levels to encode stored data, achieved through the control
of electrons trapped within the floating gate of flash memory cells.
To meet the continuously growing need for storage capacity, most
flash vendors have widely adopted the multi-level-cell (MLC) flash

memory technique. In an MLC×𝑁 flash memory cell, it stores 𝑁
bits of data and can be programmed to one of 2𝑁 threshold voltage
levels. A typical MLC flash memory chip is composed of multiple
MLC flash blocks, with each block containing 𝑁 word lines (MLC
flash pages), and each word line consisting of𝑀 memory cells. For
instance, the MLC flash cell stores 2 bits of data, represented by 4
different 𝑉𝑡 levels. Consequently, a MLC flash page contains data
from two pages: an upper page and a lower page, each with M bits
of data. To represent different data states in a MLC flash cell, the𝑉𝑡
distribution is adjusted to fit a specific 𝑉𝑡 window by altering the
number of electrons.

The narrowing of 𝑉𝑡 windows in MLC flash cells increases their
sensitivity to 𝑉𝑡 variations. This sensitivity exposes them to sev-
eral factors, including retention errors and read/write disturbances.
Read and write disturbances occur when neighboring cells are
repeatedly accessed or programmed, causing an overcharge of elec-
trons in the cell. This shift in the 𝑉𝑡 distribution of flash memory
cells skews it to the right. Conversely, retention errors happen as
charged electrons gradually leak from a cell over time, leading to a
leftward shift in the 𝑉𝑡 distribution. These shifted 𝑉𝑡 distributions
can result in incorrect data states during read operations, as de-
picted in Figure 1. While numerous effective error correction codes
(ECC), programming, and wear-leveling methods can handle read
or write disturbances, tackling retention errors remains challenging.
In fact, there are reports that retention errors might become the
predominant issue in NAND flash memory [5, 33].

#
 o

f
C

e
ll

s

1R
V

2R
V 3R

V
Pass
V

t
V

1 1 1 0 0 0 0 1

Retention errorReturn “11” Return “10” Return “00”

Figure 1: Fail on reading data stored on flash cell which ex-
pires its retention time.

2.2 Programming Methods
To program MLC flash memory cells into a limited 𝑉𝑡 window pre-
cisely, a widely adopted technique is the coarse-fine programming
scheme. Under the coarse-fine programming scheme, the program-
ming process for the upper and lower pages of the same word line
is divided into two stages, as depicted in Figure 2(a). The upper
page’s data is programmed into the selected word line in the first
stage. Flash cells storing “1” (from the upper page) remain in state
“1”, while cells storing “0” are programmed to a higher threshold
voltage state called “0”. In the second stage, the lower page’s data
is programmed into the word line, pushing cells’ 𝑉𝑡 distributions
into four different states, allowing each cell to represent two-bit
data, one from the upper page and the other from the lower page.
As shown in Figure 2(a), cells in state “1” are programmed to “10”
if they store “0” from the lower page; otherwise, they become “11”.
Similar operations are applied to cells in state “0”. Program verify
voltages𝑉𝑅1,𝑉𝑅2, and𝑉𝑅3 are used to determine the lower bound of
the𝑉𝑡 distribution for logical states “10”, “00”, and “01”, respectively.

Over the course of a long time, several major optimizations
were contributed for programming techniques to mitigate the chal-
lenges caused by the narrow 𝑉𝑡 window. One notable approach
used in NAND flash memory is incremental step pulse programming

421

SIG Proceedings Paper in LaTeX Format SAC ’24, April 8–12, 2024, Avila, Spain
#
 o

f
C

el
ls

0 X

#
 o

f
C

el
ls

VpassV

Vpass

Vt

Vt

1 X

pass

#
 o

f
C

el
ls

Vpass

0 0 0 1

VR3VR3
Vt

1 0

VR1VR1 VR2VR2

1 1

VR1VVR1R VR3VR3VR2VVVR2R2

Erase
State

(a) Programming sequencies.

(b) Incremental step pulse programming (ISPP) procedure.

Figure 2: Typical MLC programming method.

(ISPP) [15, 21]. The core concept involves repeatedly executing cy-
cles that consist of verify and program phases. During the verify
phase, cells that haven’t reached the target 𝑉𝑡 are identified. In the
subsequent program phase, the program voltage is incrementally
increased by a small, fixed amount called Δ𝑉 and used to program
the cells identified in the verify phase. This programming strategy
continues until all cells have achieved their desired states or the
number of cycles exceeds a predefined limit, as depicted in Fig-
ure 2(b). Numerous ISPP variants have been extensively researched
to balance performance and reliability. For instance, reducing Δ𝑉
can prevent over-programming and narrow the 𝑉𝑡 distribution, im-
proving MLC flash memory reliability. However, this approach may
increase programming latency due to more ISPP cycles.

2.3 Research Motivation
Although many excellent works have addressed the retention error
issues, there was a lack of solutions to simultaneously resolve the
disturbance issues caused by in-place reprogram-based methods,
system performance degradation by ECC decoding, and larger live-
page copying overheads caused by data-refresh-based approaches.
To take advantage of the efficiency of reprogram-based methods
and the robustness of data-refresh-based approaches, our goal is to
propose a new MLC programming scheme to avoid management
overheads, such that the cell’s retention capability can be effectively
refilled without the data refreshes. Unlike existing reprogram-based
methods that only adopt the ISPP method with a fixed program
voltage to reprogram flash cells, our goal is to refill the retention
capability of flash cells with the tailored program voltage accord-
ing to the shifted 𝑉𝑡 status of flash cells. To achieve this goal, the
technical issues fall on (1) how to find out the tailored program
voltage for flash cells with the different shifted𝑉𝑡 states to minimize
performance overhead, (2) how to minimize the negative effect of
program disturbance caused by the retention refill procedure, and

(3) how to effectively reduce the data refresh overheads1 caused by
the processes of handling the retention errors. This thus motivates
this work to explore a low-cost retention-refillable programming
scheme to not only efficiently extend the retention time of flash
cells but also eliminate the negative impacts caused by conventional
reprogram-based and data-refresh-based approaches.

3 LOW-COST RETENTION-REFILLABLE
PROGRAMMING SCHEME

3.1 Design Overview
This section presents an affordable retention-refillable program-
ming scheme with dual goals: enhancing data integrity by reducing
retention-induced error bits and optimizing management overhead
by minimizing the need for data refreshes. The key idea is to restore
left-shifted 𝑉𝑡 distributions in cells to replenish retention capabil-
ity and extend the observation period to identify hot/cold data,
reducing unnecessary data refreshes. This significantly reduces
the frequency of required data refreshes, improving management
overhead efficiency.

File Systems (e.g., NTFS and EXT4)

2D/3D MLC Flash Memories

Flash Translation Layer (FTL)

Address Translator Garbage Collector

Wear leveler Retention-Refilling Handler

Memory Technology Device (MTD)

Read Function

Write Function

Erase Function

Fast Retention-Refill
Function

Figure 3: Architecture of the proposed retention-refillable
program scheme.

To achieve this goal, we introduce a cost-effective retention-
refillable programming scheme that leverages our innovative fast
retention-refill program function. The corresponding system archi-
tecture can be seen in Figure 3. In the upcoming sections, we outline
our design concept, which involves modifying the left-shifted 𝑉𝑡
distributions of flash cells to restore retention capability (Section
3.2). We then delve into the design of the fast retention-refill program
function, which integrates retention refilling with the programming
procedure (Section 3.3). Finally, in Section 3.4, we present the design
of the retention-refilling handler, demonstrating how these schemes
seamlessly integrate into MLC flash memory management. For sim-
plicity, we assume the use of a basic page-level FTL and focus on
explaining the concepts and implementation details of the proposed
retention-refillable programming scheme in the following sections.

3.2 Design Concept of Retention-Refillable
Programming Scheme

As discussed in Section 2.1, NAND flash memory experiences reten-
tion errors over time due to the left-shifted 𝑉𝑡 distribution of cells.
1Hereafter, the “data refresh” refers to the procedure of rewriting data of a flash page
into another flash page to avoid the occurrence of retention errors on the corresponding
page.

422

SAC ’24, April 8–12, 2024, Avila, Spain Kun-Chi Chiang et al.

To effectively enhance the retention capability of cells that are at
risk of encountering retention errors in the near future, our main
idea is to refill the retention capability of these cells by strategically
altering their left-shifted 𝑉𝑡 states. In general, the ECC unit (such
as BCH and LDPC) [20, 25] in the flash device can detect error bit
locations and correct them within ECC’s specified capacity. The
guaranteed capability (i.e., the maximum correctable number of
error bits) varies according to the requirements of each flash device.
If the flash device incorporates the LDPC mechanism, we can apply
our design to refill retention-affected cells when the decoding over-
head increases, signifying a high number of iterations for hard/soft
decisions. For the sake of simplicity, we assume BCH as the de-
fault ECC scheme in the following sections, with the capability
to correct up to N bits of errors. Regardless of the ECC scheme
adopted, the proposed retention-refillable programming scheme is
invoked when the number of error bits exceeds a predefined thresh-
old. When the count of retention error bits surpasses a predefined
threshold of 𝜌 × 𝑁 , our proposal suggests refilling the retention
capability for these cells to address the retention error issues2. To
achieve this, cells with erroneous 𝑉𝑡 states must be reprogrammed
to restore their incorrect 𝑉𝑡 states to their original range. This ap-
proach aims to simultaneously correct the retention-affected bits,
extend retention capability, and reduce the substantial data refresh
overheads.

3.3 Fast Retention-Refill Function Design
The design of the proposed fast retention-refill function aims to
efficiently restore the left-shifted 𝑉𝑡 states of retention-affected
cells and replenish their retention capability. To achieve this goal, a
straightforward approach would involve applying the conventional
ISPP procedure to a page. This would allow the retention-affected
cells to be reprogrammed to their desired states through multiple
programming and verification iterations. However, this reprogram-
ming strategymay introduce disturbances to other cells on the same
wordline, whose 𝑉𝑡 states are already correct, potentially causing
their𝑉𝑡 states to shift to the right. To expedite the retention-refilling
process and reduce the risk of program disturbances, we adopt an
approach inspired by the methods outlined in [14]. In this approach,
we pre-select a specific program voltage (𝑉𝑝𝑔𝑚) for each left-shifted
𝑉𝑡 state and use this pre-selected program voltage to restore the re-
tention capability of the affected cells. To clarify, when applying the
proposed fast retention-refill function to a wordline for the recovery
and refilling of retention-affected cells, we exclusively employ the
pre-selected program voltage (𝑉𝑝𝑔𝑚) to reprogram these cells based
on their current and desired 𝑉𝑡 states. This approach streamlines the
programming process by eliminating the need to program a flash
page with multiple fixed step voltages, ensuring the efficiency of
retention refilling, and minimizing the risk of program disturbances
affecting other cells on the same wordline.

Some careful readers might question how to determine the pre-
selected𝑉𝑝𝑔𝑚 for replenishing the retention capability of cells with
various left-shifted𝑉𝑡 states. To gather this critical information, we
conducted a series of offline profiling experiments using our FPGA-
based flash memory evaluation platform, which allows precise ad-
justments of program voltages in engineering mode. We leveraged
this platform to apply different program voltages, i.e., 𝑉𝑝𝑔𝑚 , to all
cells within the retention-erred pages, establishing the relation-
ship between the shifted states and the applied 𝑉𝑝𝑔𝑚 for different

2In our experimental setups, we configure the encoding/decoding unit of the adopted
BCH ECC with 2K Bytes, 132 bits, and 80% for the maximum correctable error bits N
and 𝜌 , respectively.

VR1 VR2

16.01 V 16.02 V 16.03 V 16.04 V 16.05 V

Suitable Vpgm

Retention-erred

cell’s last state

Next state

V
t

Cells’ next state after

applying suitable Vpgm

Cells’ next state after

applying unsuitable Vpgm

Figure 4: Process on evaluating suitable 𝑉𝑝𝑔𝑚 for fast
retention-refilling program function.

retention-affected conditions. Let’s take, for instance, the retention-
affected cells initially intended to have a 𝑉𝑡 state within “10”, as
illustrated in Figure 4. We systematically applied various program
voltages (𝑉𝑝𝑔𝑚) within a specific range (e.g., ranging from 16.01V
to 16.05V in our example) for one-shot programming on these af-
fected cells and recorded the resulting 𝑉𝑡 states. Subsequently, we
analyzed the 𝑉𝑡 states after applying the one-shot programming to
identify the suitable 𝑉𝑝𝑔𝑚 values capable of correctly restoring the
right-shifted 𝑉𝑡 state of cells initially targeted for “10”. In Figure 4,
for instance, the appropriate 𝑉𝑝𝑔𝑚 values were found to be 16.01V,
16.02V, 16.03V, and 16.04V. By systematically exploring various
configurations, we accumulated a repository of appropriate 𝑉𝑝𝑔𝑚
values for cells under diverse retention-affected scenarios. This
data allowed us to construct a lookup table, which specifies the
necessary𝑉𝑝𝑔𝑚 settings. Consequently, our proposed fast retention-
refill function can promptly choose an appropriate 𝑉𝑝𝑔𝑚 to restore
and replenish the retention capability of retention-affected cells,
significantly reducing the number of required program cycles. It
is essential to note that this scheme is also applicable to 3D TLC
and QLC flash memories, offering substantial overhead reductions
compared to refresh-based and in-place reprogramming methods.
This is particularly beneficial as both 3D TLC and QLC flash memo-
ries necessitate a larger number of program cycles in conventional
ISPP procedures.

#
 o

f
C

el
ls

11 10

V
R1

V
R2

V
R3

V
PASS

00 01

Vt

After a period of

retention cycle

#
 o

f
C

el
ls V

R3

01 #
 o

f
C

el
ls V

R3

01#
 o

f
C

el
ls V

R3

01

After 1st retention-refill

program is applied

After 2nd retention-refill

program is applied

Applying with retention-refill function
Keep unchanged

00 0100 0100 0100 0100 0100 01

Figure 5: The retention-refillable programming method can
result in the morphing of cell’s 𝑉𝑡 distribution.

In summary, the proposed fast retention-refilling function can
refill the retention capability for flash cells. However, the number
of times that retention-erred cells can be applied with the proposed
fast retention-refill program function is limited. The retention-refill
process will fail to refill the retention capability for the retention-
erred cells while their refilling times exceed the guaranteed number.
This is because the proposed fast retention-refill program function is
only applied to the retention-erred cells on a wordline, and it cannot

423

SIG Proceedings Paper in LaTeX Format SAC ’24, April 8–12, 2024, Avila, Spain

push the left-shift 𝑉𝑡 states of all the cells on the same wordline
back to their target 𝑉𝑡 window perfectly without completing the
full ISPP procedure. This can be better explained with the example
shown in Figure 5.

3.4 Retention-Refilling Handler Design
As we discussed in Section 3.1, the FTL layer requires a retention-
refilling handler to monitor the status of flash pages and blocks,
utilizing the retention-refilling functions as needed in various situ-
ations. The responsibilities of this retention-refilling handler are
two-fold. Firstly, it must determine when to employ the proposed
fast retention-refilling function to replenish the retention capability
of cells. Secondly, it should minimize data refresh operations by
using the proposed fast retention-refill function. This extension
of retention time for less frequently accessed data helps reduce
unnecessary data-refresh overhead. It’s essential to mention that
NAND flash programming often incorporates the randomizer tech-
nique [28], efficiently mitigating issues like the “11” data pattern
and enhancing data reliability. In our approach, we select the first
valid page of each block and then assess its retention error status
using the ECC engine. If any page is found to have a retention error
exceeding 𝜌 × 𝑁 bits, all remaining valid pages within the same
block will undergo the retention-refilling management processes
as outlined in Algorithm 1.

Algorithm 1: Retention-Refilling Handler Design
1 while Block k occurred retention error do
2 if k.Fast_refill_count is MAX then
3 Apply data-refresh procedure to copy valid data into a new block n;
4 k.Fast_refill_count =: 0
5 else
6 Perform Fast Retention-Refill Program Function on block k;
7 k.Fast_refill_count++;

Algorithm 1 outlines themanagement procedure of our retention-
refilling handler (lines 1–7). To determine whether data inside a
block should be employed retention refilling correction, a prelimi-
nary read operation is conducted on the first page of each block.
Subsequently, we evaluate whether the number of error bits de-
coded by ECC reaches our predefined threshold. When the number
of retention-erred bits in the examined block exceeds the predefined
threshold, the retention-refilling handler evaluates the situation
based on the accumulated retention error bits. It then determines
whether to proceed with data refresh or retention refilling, forming
its decision accordingly (lines 1–2). This handler monitors whether
the fast retention-refilling function has been previously applied to
the current page. If the 𝐹𝑎𝑠𝑡_𝑟𝑒 𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for block k reaches the
user-defined maximum, it indicates that the fast retention-refilling
function has been used on this block multiple times. In such cases,
we execute the data-refresh procedure to copy the valid data into
a new block 𝑛, and then reset the counter (line 3–4). However, if
the 𝐹𝑎𝑠𝑡_𝑟𝑒 𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 did not reach the maximum, the retention-
refilling handler proceeds to apply the fast retention-refilling func-
tion to replenish the retention capability for retention-erred cells
on each valid page within the examined block (line 6). After the fast
retention-refilling function has been applied to the entire block, the
𝐹𝑎𝑠𝑡_𝑟𝑒 𝑓 𝑖𝑙𝑙_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 of the current block is incremented (line 7).
In our design, we utilize off-the-shelf hardware to implement the
refilling process, with the associated design overheads primarily
managed through software.

4 EXPERIMENT RESULTS
4.1 Experiment Setups
In this section, we conducted a series of device-level and system-
level experiments to evaluate the capability of our proposed fast
retention-refilling programming scheme. For the device-level eval-
uation, we implemented the fast retention-refill program function
design in 3D MLC flash chips [32] on an ALTERA Cyclone IV FPGA
platform [9, 10]. The 3D MLC flash chip used for evaluation was
placed on the FPGA-based platform, which allowed fine-grained
adjustments for each pin of the flash chip in an engineering mode.
We also integrated related schemes for reducing retention errors
into this platform, enabling measurement of their timing delay,
cells’ 𝑉𝑡 distribution, and bit error rate status.

For the system-level evaluation, a series of experiments were con-
ducted to assess the effectiveness of our proposed approach, along
with comparison to alternative methods, utilizing a flash-memory
simulator [8, 10]. We simulated a 16GB MLC flash-memory device
with block and page sizes set to 16MB and 16KB, respectively. To
evaluate the performance of our design under varying system loads,
we employed different initial data ratios within the simulated de-
vice, specifically 20%, 50%, and 80%. The proposed retention refilling
scheme was configured to allow a maximum of 3 refilling cycles. We
then used the results of these experiments to compare our approach
with three others: (1) The baseline approach, which does not em-
ploy any strategy to mitigate retention errors. (2) The refresh-based
approach, which implements a data-refresh policy to prevent reten-
tion errors. (3) The in-place reprogramming approach, utilizing the
complete ISPP procedure to refill cells’ retention capability once and
perform data refresh to mitigate disturbance-induced data errors.
These approaches are referred to asW/O Refresh, Data Relocation,
and In-Place ISPP, respectively.

The simulator configurations were based on device-level experi-
ments. In our setup, the three approaches, i.e.,W/O Refresh, Data
relocation, and In-place ISPP, utilized an equal number of program
and verify shots, following the traditional program policy. The tradi-
tional programming procedure adopted one programming voltage
with three verify voltage on target memory cell. This policy re-
sulted in longer program latency, requiring 60 program shots and
180 verify shots for a 3D MLC flash page. In contrast, the proposed
fast retention refilling only necessitated 3 program and 3 verify
shots for retention refilling. To evaluate various benchmarks, real
traces fromMicrosoft Research Cambridge, Postmark, and the SNIA
IOTTA Repository were employed [16, 29, 30].

#
 o

f
C

el
ls

Threshold Voltage (a.u.)

Retention-erred V

Optimized V

Over-refilled V

V
R2

V
R1

pgm

pgm

Figure 6: Examining process for the selection of optimized
𝑉𝑝𝑔𝑚 .

424

SAC ’24, April 8–12, 2024, Avila, Spain Kun-Chi Chiang et al.

4.2 Device Level Experiment Results
In Section 3.3, we explored the necessity of a lookup table to de-
termine the ideal 𝑉𝑝𝑔𝑚 for refilling cells’ retention capability in
different scenarios. Figure 6 illustrates how various pre-selected
𝑉𝑝𝑔𝑚 values affect retention-erred cells with a desired state of “10”
during the retention-refilling process. If the chosen program bias
is excessively high, it can result in over-programming and subse-
quent over-refilling errors when using the fast retention-refilling
function. To prevent these errors, the function selects an optimized
program 𝑉𝑝𝑔𝑚 for each state, ensuring that the refilled 𝑉𝑡 distri-
bution falls within the desired range. This fine-tuning enables the
fast retention-refilling function to efficiently restore and refill the
retention capacity of retention-erred cells on flash pages, as demon-
strated in Figure 7.

#
 o

f
C

el
ls

Threshold Voltage (a.u.)

Retention-erred V

After fast retention-refilling

State '10'State '11' State '00' State '01'

Figure 7: The corrected 𝑉𝑡 states of retention-erred cells.

To further analyze the capability of the fast retention-refilling
function, the corrected rate can be formulated with the following
equation:

C𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑒 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐵𝑖𝑡𝑠

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑒𝑑 𝐵𝑖𝑡𝑠
(1)

Referring to Equation 1, we present the corrected rates achieved
by the fast retention-refilling function for each data state, as de-
tailed in Table 1. To summarize, the corrected rates of the fast
retention-refilling function range from 76.98% to 83.33%. Notably,
the corrected rate for the state ’01’ is observed to be lower compared
to the others. This discrepancy can be attributed to the fact that
state ’01’ represents the highest 𝑉𝑡 state, requiring a more robust
electric field for electron refilling. However, the careful selection
of 𝑉𝑝𝑔𝑚 is pivotal in preventing excessive program disturbances in
other remaining cells.

Table 1: Fast retention-refilling corrected rate.

Memory State State ‘10’ State ‘00’ State ‘01’
Correct Rate 83.33% 83.11% 76.98%

4.3 System Level Experiment Results
4.3.1 Performance Results. In this section, a series of experiments
were conducted to assess the performance of the proposed scheme
at the system level. For the evaluated approaches, each page in
the flash device can be refilled using the proposed fast retention-
refilling function. Two crucial metrics, namely, the execution time

for read/write requests and the time spent on retention-error man-
agement (including retention-refilling, in-place ISPP, and data re-
location), are assessed and labeled as “R/W Execution” and “Data-
Refresh”, respectively. Figure 8 illustrates the performance results
across different initial data ratios within the evaluated flash devices
for all compared approaches under various benchmarks, with a
focus on total execution time. All results are normalized against
those of theW/O refresh approach, which takes no action to address
retention error issues. The W/O refresh approach relies solely on
natural data updates to refresh the retention capability, resulting
in increased read/write execution time due to additional latency
introduced by garbage collection. Conversely, the execution time
for Data relocation can be significantly reduced. This is because data
relocation consistently transfers retention-erred data to new data
pages. When free space is insufficient, the device performs garbage
collection to free up space. However, it’s noteworthy that the data-
refresh overhead of the Data relocation approach is notably high
due to the frequent initiation of the data-refresh procedure to pre-
vent data from succumbing to retention errors. On the other hand,
when compared to the In-place ISPP or Data relocation schemes, our
proposed retention refilling scheme effectively curtails data-refresh
overheads without imposing substantial overhead on read/write
execution times.

4.3.2 Overhead Analysis. To better understand the effectiveness
of the evaluated schemes, let’s delve into key metrics related to
management overhead, which includes the number of triggered
data refreshes, total block erase counts, and write amplification.
These metrics are benchmarked in various configurations with dif-
ferent initial data ratios. Figure 9 provides insights into the total
data refresh operations performed during retention error handling.
As previously mentioned in Section 4.3.1, theW/O refresh scheme
avoids triggering data-refresh procedures to prevent data retention
errors, resulting in zero data refresh across all cases. Notably, both
the Retention-Refilling and In-place ISPP schemes significantly re-
duce data-refresh instances when compared to the Data relocation
approach. This reduction is due to these three approaches employ-
ing fine-grained data-refresh techniques for addressing retention-
erred pages, eliminating the need for strategies involving a larger
number of live-page copies. Consequently, the number of data re-
freshes is reduced by 20% to 81% under both the Retention-Refilling
and In-place ISPP schemes when compared to the Data relocation
scheme. It’s worth highlighting that the Retention-Refilling scheme
particularly excels in scenarios with a higher volume of reads but
fewer writes, such as the Web+SQL trace, substantially reducing
data-refresh instances. These results in data-refresh frequencies also
impact another critical system overhead metric: write amplification,
as shown in Figure 10. The Retention-Refilling scheme outperforms
other approaches, with experimental results indicating write ampli-
fication ranging from 49% to 93% compared to alternative methods.
Meanwhile, we also present the total erase count for the evaluated
approaches across different benchmarks in Figure 11. Remarkably,
the Retention-Refilling scheme effectively delays the need for exe-
cuting data refreshing, limiting the total erase count to a maximum
of 86% compared to the W/O refresh scheme.

4.3.3 Lifetime. Figure 12 presents the lifetime results regarding
the first failure time, where lifetime is defined as the total execu-
tion time until any block in the simulated flash device wears out.
All the results are normalized to the baselineW/O refresh scheme.
Notably, the Data relocation scheme quickly depletes the limited
program/erase cycles due to its frequent data-refresh procedure

425

SIG Proceedings Paper in LaTeX Format SAC ’24, April 8–12, 2024, Avila, Spain

0.0

1.0

2.0

3.0

4.0

5.0

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

W
/O

 r
e
fr

es
h

D
a

ta
 r

el
o

ca
ti

o
n

In
-p

la
ce

 I
S

P
P

R
et

en
ti

o
n

 R
ef

il
li

n
g

Media Web+SQL Postmark Media Web+SQL Postmark Media Web+SQL Postmark

E
x

ec
u

ti
o

n
 T

im
e W/R Execution Data-Refresh

10.24

20% initial data 50% initial data 80% initial data

5.92

Figure 8: Execution time.

0

0.2

0.4

0.6

0.8

1

1.2

Media Web+SQL Postmark Media Web+SQL Postmark Media Web+SQL Postmark

N
u

m
b

e
r
 o

f
D

a
ta

 R
e
fr

e
s
h W/O refresh Data relocation In-place ISPP Retention Refilling

20% initial data 50% initial data 80% initial data

Figure 9: Number of data-refreshes.

to prevent retention errors. In contrast, the proposed Retention-
Refilling scheme significantly extends device lifetime by effectively
refilling the retention capability for cold data (as discussed in Sec-
tion 3.4), slowing down the rate of program/erase cycle exhaustion.
Compared to the W/O refresh scheme, the device lifetime can be
extended by up to 60% under the evaluated benchmarks.

5 CONCLUSION
This paper introduces an innovative retention-refilling scheme de-
signed to enhance data integrity by efficiently addressing the issue
of left-shifted 𝑉𝑡 distribution in retention-erred cells. We employ
a fast retention-refill program function to effectively restore the
retention capability of cells with such left-shifted𝑉𝑡 distribution. To
seamlessly integrate this retention-refillable programming scheme
into the existing Flash Translation Layer (FTL) with minimal over-
head, we present a comprehensive management design for the
retention-refilling module and block allocation/management poli-
cies. Extensive experiments confirm the effectiveness of our design,
demonstrating its ability to extend device lifetime by up to 75%.
Furthermore, our scheme generally incurs similar or lower per-
formance overhead in terms of total execution time compared to
in-place reprogramming in most scenarios.

REFERENCES
[1] 1998. Flash-memory Translation Layer for NAND flash (NFTL). M-Systems

(1998).
[2] G. Aayush, K. Youngjae, and U. Bhuvan. 2009. DFTL: A Flash Translation Layer

Employing Demand-based Selective Caching of Page-level Address Mappings.
SIGARCH Comput. Archit. News (March 2009).

[3] A. Ban. 1995. Flash File System. US Patent 5,404,485. In M-Systems.
[4] A. Ban. 2018. Wear Leveling of Static Areas in Flash Memory. US Patent 6,732,221.

M-systems (2018).
[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. 2012. Error patterns in MLC NAND

flash memory: Measurement, characterization, and analysis. In Proceedings of the
Conference on Design, Automation and Test in Europe.

[6] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai. 2012.
Flash correct-and-refresh: Retention-aware error management for increased flash
memory lifetime. In 2012 IEEE 30th International Conference on Computer Design
(ICCD).

[7] Y. H. Chang, J. W. Hsieh, and T. W. Kuo. 2010. Improving Flash Wear-Leveling
by Proactively Moving Static Data. Computers, IEEE Transactions on (Jan 2010).

[8] Y. M. Chang, Y. H. Chang, T. W. Kuo, H. P. Li, and Y. C. Li. 2013. A Disturb-
alleviation Scheme for 3D Flash Memory. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD ’13).

[9] Y. M. Chang, Y. C. Li, P. H. Lin, H. P. Li, and Y. H. Chang. 2016. Realizing Erase-free
SLC Flash Memory with Rewritable Programming Design. In 2016 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS).

[10] Tseng-Yi Chen, Yuan-Hao Chang, Yuan-Hung Kuan, and Yu-Ming Chang. 2017.
VirtualGC: Enabling erase-free garbage collection to upgrade the performance of
rewritable SLC NAND flash memory. In Proceedings of the 54th Annual Design
Automation Conference 2017. ACM.

[11] Yajuan Du, Qiao Li, Liang Shi, Deqing Zou, Hai Jin, and Chun Jason Xue. 2017.
Reducing LDPC soft sensing latency by lightweight data refresh for flash read
performance improvement. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC).

[12] Z. Fan, G. Cai, G. Han, W. Liu, and Y. Fang. 2019. Cell-State-Distribution-Assisted
Threshold Voltage Detector for NAND Flash Memory. IEEE Communications
Letters (April 2019).

[13] L. Han, Y. Ryu, and K. Yim. 2006. CATA: A Garbage Collection Scheme for Flash
Memory File Systems. In International Conference on Ubiquitous Intelligence and
Computing.

[14] C. C. Ho, Y. C. Li, Y. H. Chang, and Y. M. Chang. 2018. Achieving Defect-free
Multilevel 3D Flash Memories with One-shot Program Design. In Proceedings of
the 55th Annual Design Automation Conference (DAC ’18).

[15] C. C. Ho, Y. C. Li, P. H. Lin, W. C. Wang, and Y. H. Chang. 2018. A Stride-Away
Programming Scheme to Resolve Crash Recoverability and Data Readability

426

SAC ’24, April 8–12, 2024, Avila, Spain Kun-Chi Chiang et al.

0

5

10

15

20

25

Media Web+SQL Postmark Media Web+SQL Postmark Media Web+SQL Postmark

W
ri

te
 A

m
p

li
c
a
ti

o
n

W/O refresh Data relocation In-place ISPP Retention Refilling

20% initial data 50% initial data 80% initial data

35.3436.01 36.58

Figure 10: Write amplification.

0

5

10

15

Media Web+SQL Postmark Media Web+SQL Postmark Media Web+SQL Postmark

T
o
ta

l
E

r
a
s
e
 C

o
u

n
t

W/O refresh Data relocation In-place ISPP Retention Refilling

20% initial data 50% initial data 80% initial data

24.7425.21 25.61

Figure 11: Number of total erase count.

0

1

2

3

4

Media Web+SQL Postmark Media Web+SQL Postmark Media Web+SQL Postmark

N
o

r
m

a
li

z
e
d

 F
F

T

W/O refresh Data relocation In-place ISPP Retention Refilling

20% initial data 50% initial data 80% initial data

Figure 12: Lifetime.

Issues of Multi-Level-Cell Flash Memory.
[16] J. Katcher. 1997. Postmark: A new file system benchmark. (January 1997).
[17] A. Kawaguchi, S. Nishioka, and H. Motoda. 1995. A Flash-memory Based File

System. In Proceedings of the USENIX 1995 Technical Conference Proceedings
(TCON’95).

[18] P. Li, Y. Zhang, D. Yin, and P. Xie. 2021. An Efficient Refresh Strategy of Flash
Memory via High Delay Blocks in LDPC. In 2021 6th International Conference on
Integrated Circuits and Microsystems (ICICM).

[19] R. S. Liu, C. L. Yang, and W. Wu. 2012. Optimizing NAND flash-based SSDs via
retention relaxation. Target (2012).

[20] W. Liu, J. Rho, and W. Sung. 2006. Low-Power High-Throughput BCH Error
Correction VLSI Design for Multi-Level Cell NAND Flash Memories. In 2006 IEEE
Workshop on Signal Processing Systems Design and Implementation.

[21] H. T. Lue, T. H. Hsu, S. Y. Wang, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Y. Lu. 2008.
study of incremental step pulse programming (ISPP) and STI edge effect of BE-
SONOS NAND Flash. In 2008 IEEE International Reliability Physics Symposium.

[22] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu. 2015. WARM: Improving NAND
flash memory lifetime with write-hotness aware retention management. In 2015
31st Symposium on Mass Storage Systems and Technologies (MSST).

[23] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. 2018.
HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting
Self-Recovery and Temperature Awareness. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[24] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. 2018. Improving 3D
NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation. In Abstracts of the 2018 ACM International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS ’18).
[25] Y. Lv, S. Liang, L. Luo, C. Li, C. Xue, and H.-M. Sha. 2022. Tail Latency Optimiza-

tion for LDPC-Based High-Density and Low-Cost Flash Memory Devices. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).

[26] Y. Lv, L. Shi, Q. Li, C. Gao, C. J. Xue, and E. Sha. 2019. Optimizing Tail Latency
of LDPC based Flash Memory Storage Systems Via Smart Refresh. In 2019 IEEE
International Conference on Networking, Architecture and Storage (NAS).

[27] M. Murugan and D. H. C. Du. 2011. Rejuvenator: A Static Wear Leveling Algo-
rithm for NAND Flash Memory with Minimized Overhead. In MSST.

[28] H. Qin, Y. Zhao, D. Feng, J. Liu, and W. Tong. 2020. CeSR + Assisted LDPC: A
Holistic Strategy to Improve MLC NAND Flash Reliability. IEEE Access (April
2020).

[29] Exchange Trace. 2010. SNIA IOTTA Repository.
[30] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. 2008. A Nine Year Study of

File System and Storage Benchmarking. Trans. Storage (May 2008).
[31] W. Wang, T. Xie, A. Khoueir, and Y. Kim. 2015. Reducing MLC flash memory

retention errors through Programming Initial Step Only. In 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST).

[32] C. Wu, H. Lue, T. Hsu, C. Hsieh, W. Chen, P. Du, C. Chiu, and C. Lu. 2016.
Device Characteristics of Single-Gate Vertical Channel (SGVC) 3D NAND Flash
Architecture. In 2016 IEEE 8th International Memory Workshop (IMW).

[33] C. Yu, Y. Gulay, M. Onur, H. Erich F., C. Adrian, U. Osman S., and M. Ken. 2013.
ERROR ANALYSIS AND RETENTION-AWARE ERROR MANAGEMENT FOR
NAND FLASH MEMORY. Intel Technology Journal (2013).

427

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

