
MIT Open Access Articles

LLMR: Real-time Prompting of Interactive
Worlds using Large Language Models

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: De La Torre, Fernanda, Fang, Cathy Mengying, Huang, Han, Banburski-Fahey, Andrzej,
Amores Fernandez, Judith et al. 2024. "LLMR: Real-time Prompting of Interactive Worlds using
Large Language Models."

As Published: 10.1145/3613904.3642579

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/155184

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155184
https://creativecommons.org/licenses/by/4.0/

LLMR: Real-time Prompting of Interactive Worlds
using Large Language Models

Fernanda De La Torre∗ Cathy Mengying Fang∗ Han Huang∗
dlatorre@mit.edu catfang@media.mit.edu huangh14@rpi.edu

Massachusetts Institute of Technology MIT Media Lab Rensselaer Polytechnic Institute
USA USA USA

Andrzej Banburski-Fahey Judith Amores Fernandez Jaron Lanier
abanburski@microsoft.com judithamores@microsoft.com jalani@microsoft.com

Microsoft Microsoft Microsoft
USA USA USA

Figure 1: Examples of diverse use cases and functionalities enabled by the Large Language Model for Mixed Reality (LLMR)
framework. A: Creation of a detailed kitchen scene from scratch using Unity primitives. B: Prompting and drawing objects
into existence via multi-modal interactions. C: Integration with external plugins like loading objects from Sketchfab to create
high-fdelity scenes and special skills like generating animations. D: Prompting edits of existing VR scenes like changing the
color of the objects. E: Automated generation of instructional guides and Questioning and Answering about the scene. F: The
framework is compatible across platforms and supports the integration of external sensor data.

∗Authors contributed equally to this research and were afliated with Microsoft.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

ABSTRACT
We present Large Language Model for Mixed Reality (LLMR), a
framework for the real-time creation and modifcation of interac-
tive Mixed Reality experiences using LLMs. LLMR leverages novel
strategies to tackle difcult cases where ideal training data is scarce,

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642579

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642579

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

or where the design goal requires the synthesis of internal dynamics,
intuitive analysis, or advanced interactivity. Our framework relies
on text interaction and the Unity game engine. By incorporating
techniques for scene understanding, task planning, self-debugging,
and memory management, LLMR outperforms the standard GPT-4
by 4x in average error rate. We demonstrate LLMR’s cross-platform
interoperability with several example worlds, and evaluate it on
a variety of creation and modifcation tasks to show that it can
produce and edit diverse objects, tools, and scenes. Finally, we con-
ducted a usability study (N=11) with a diverse set that revealed
participants had positive experiences with the system and would
use it again.

CCS CONCEPTS
• Computing methodologies → Spatial and physical reason-
ing; Multi-agent systems.

KEYWORDS
large language model, mixed reality, spatial reasoning, artifcial
intelligence

ACM Reference Format:
Fernanda De La Torre, Cathy Mengying Fang, Han Huang, Andrzej Banburski-
Fahey, Judith Amores Fernandez, and Jaron Lanier. 2024. LLMR: Real-time
Prompting of Interactive Worlds using Large Language Models. In Proceed-
ings of the CHI Conference on Human Factors in Computing Systems (CHI ’24),
May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 22 pages.
https://doi.org/10.1145/3613904.3642579

1 INTRODUCTION
Creating 3D virtual worlds is a challenging task that requires both
artistic and technical skills. In addition, 3D content often becomes
deprecated and has limited interoperability due to platform and
device upgrades. Recently, generative AI models have made con-
siderable progress in producing meshes for objects and scenes
[17, 18, 22, 25, 26, 41, 43]. However, few works have ventured be-
yond visual appearances to bring e.g., interactive and behavioral
elements into the generated content. In addition, existing rendering-
based methods require substantial compute and time to generate
and render 3D objects, while the quality and resolution of these
generations are limited [11, 35].

On the other hand, the rapid advancement in Large Language
Models (LLM) like GPT has shown promise in code generation and
reasoning [1, 6, 14, 21, 33]. An integration of LLMs with a game
engine, like Unity [50], can enable faster 3D content development
and spontaneous user creation, a core element of mixed reality
since its inception. In addition, the 3D mixed reality worlds ofer
rich, spatial, multimodal information (most are post-symbolic or
beyond language) that can potentially help LLMs to better situate
their reasoning in the reality that humans live in.

This paper presents LLMR(Large Language Models for Mixed
Reality), a framework that enables real-time creation and modifca-
tion of interactive 3D scenes. LLMR can create objects that are rich
in both visual and behavioral aspects, or make spontaneous and
bespoke edits on an existing environment. For example, we lever-
age LLMR to spawn interactive tools that are self-contained units
designed to perform specifc functions in virtual and mixed-reality

environments. They can be combined to form more complex interac-
tive systems, extending the range and depth of user and AI-driven
experiences. These confgurations can be saved and transferred
across various environments, serving as the building blocks for
versatile interactive experiences.

LLMR is an orchestration of an ensemble of specialized GPTs.
At its center is the Builder GPT serving as an architect of C# Unity
code for crafting interactive scenes. However, the multitude of tasks
falling under virtual world creation renders a standalone coder in-
sufcient. For instance, the ability to meaningfully modify an exist-
ing virtual world necessitates a profound semantic understanding
of the scene. As humans, we have the ability to infer the properties
of objects in the world and can refer to objects in the environment
using demonstratives. To simulate the benefts of perceptual access,
we incorporated the Scene Analyzer GPT. It generates a comprehen-
sive summary of scene objects, ofering detailed information when
requested, including aspects like size, color, and the functionalities
of interactive tools previously generated by LLMR. We also imple-
mented the Skill Library GPT that determines the relevant skills
that are needed for the Builder to accomplish the user’s request. In
addition, we have observed that the code generated by the Builder
lacks robustness and frequently contains bugs. To remedy this, we
introduce the Inspector GPT, which evaluates the Builder’s code
against a predefned set of rules. This evaluation acts as a protective
measure against compilation and run-time errors before the code
is executed via the Compiler in the Unity Game Engine.

To illustrate the efcacy of our framework in the creation and
editing of virtual scenes, we tested LLMR on two sets of 150 prompts
encompassing a wide array of creation and modifcation tasks. Our
fndings demonstrate LLMR’s superior performance in contrast to
general-purpose LLMs while emphasizing the performance gain
achieved with the addition of each module in our pipeline. In par-
ticular, LLMR exhibits 4x reduction in code errors in both an empty
and an existing scene, when compared to of-the-shelf GPT-4 [34].
In the meantime, LLMR can successfully complete sequences of
tasks with varying complexities, while keeping the completion
time around a minute. These outcomes underscore LLMR’s capac-
ity to execute user instructions in real time with a higher degree of
robustness.

To evaluate if our framework can generate not only functional
code but also interactive worlds that meet users’ instructions, we
evaluated LLMR with 11 participants with varying Unity experi-
ences. At a high level, participants found LLMR to be intuitive and
easy to use, and they were able to iteratively achieve desired out-
puts without much manual scripting. While the framework has
limitations such as its unpredictability due to generative models’
stochastic nature, and thus is not applicable for all contexts (espe-
cially ones that require precise and specifc control), the output
generated by LLMR serves as a starting point for more complex
scene generation.

Our paper is organized as follows: we begin by describing prior
work and approaches to generating 3D objects and environments for
mixed reality in Section 2. In Section 3, we frst provide an overview
of LLMR followed by details of the function of each module of our
framework. We then discuss important extensions of our frame-
work, such as incorporating plugins, memory management, and
cross-platform compatibility, in Sections 4,5,6, respectively. We then

https://doi.org/10.1145/3613904.3642579

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

present a series of exemplar applications in Section 7 to illustrate
the wide range of creations enabled by LLMR. Section 8 Numeri-
cal Study includes a comprehensive evaluation of our framework
against our design goals: high completion rate, real-time execution,
robust against complex tasks, and iterative fne-tuning ability. We
follow the Numerical Study with Section 9 User study that evalu-
ates the quality of LLMR’s output and presents usability feedback.
Finally, in Section 10, we discuss the limitations and future work
for others to build upon.

In summary, our main contributions are the following:

(1) We introduced a versatile framework for real-time genera-
tion of interactive 3D objects and scenes using LLM modules,
designed for easy setup with an OpenAI API key and adapt-
able across various mixed reality tools, environments, and
devices.

(2) We carried out extensive evaluations, including a technical
ablation study to gauge the framework’s performance and re-
liability, and a user study to derive design recommendations
for optimizing the user experience.

(3) We showcased the expanded capabilities of GPT beyond text
inputs, illuminating the broader potential of LLM applica-
tions, and demonstrated the framework’s broad applicability
in domains such as remote training, creativity, and accessi-
bility.

(4) We advocate for the interoperability and longevity of mixed
reality applications enabled by AI, and thus we openly share
the installation package, code, and prompts used in our ap-
plication and evaluation so that future work can build on
top of our framework.

2 RELATED WORK
Our research on the creation and modifcation of interactive 3D
scenes using natural language is situated at the intersection of large
language models (LLMs) and 3D content generation. This section
provides an overview of the related work in these areas, highlight-
ing how our work builds upon and extends existing research.

2.1 Generative 3D Assets
The generation of 3D assets has been a signifcant focus in re-
cent research. The work of Li et al. with 3DDesigner [25], Jun and
Nichol with Shap·E [22], and Poole et al. with DreamFusion [35]
have demonstrated the potential of text guidance and generative
models in creating complex and diverse 3D objects. Lin et al. intro-
duce Magic3D [26], a high-resolution text-to-3D content creation
framework that addresses the limitations of slow optimization and
low-resolution output inherent in existing methods like Dream-
Fusion. Recently, Holodifusion by Karnewar et al. [23] furthered
the conversation by employing difusion models for 3D generative
modeling. The Instruct-NeRF2NeRF method [15] and advancements
like Pointclip v2 [65] as well as the work of Roberts et al. [39] have
explored the power of prompting techniques in 3D open-world
learning. A comprehensive review of Neural Radiance Field (NeRF)
models by Gao et al. [11] adds to our understanding of this rapidly
growing feld and aligns with our approach of enabling LLMs to in-
terpret non-linguistic or non-symbolic information. Our approach

extends beyond visual appearances to incorporate interactive and
behavioral elements into the generated content.

2.2 Generative Interactive 3D Environments
In addition to generating objects, the creation of interactive 3D
environments has been further explored, with contributions from
Wang et al. with Voyager [53], Singer et al. with MAV3D [41], and
Höllein, Lukas, et al. with Text2Room [17]. Volum et al. has shown
that LLMs can be used to guide NPC interactions with a virtual
environment [52]. Wang et al. also introduced Chat-3D [56], a sys-
tem that focuses on universal dialogues for 3D scenes, which is
further augmented by the work of Hong et al. with 3D-LLM [18].
New approaches like Oasis [43] and Procedurally Generated Vir-
tual Reality [44] add novel perspectives. Recent advancements such
as Interactive Example-Based Terrain Authoring with Conditional
Generative Adversarial Networks by Guérin et al. [13] add a layer
of complexity to how terrains can be generated from simple user
inputs. Research by Freiknecht and Efelsberg [10], Cao et al. [4],
and Song et al. [42] has focused on the balance between realism and
algorithmic performance. DeepSpace introduced a novel method of
mood-based texture generation from music [45], adding another
layer of complexity to asset generation. While these contributions
are signifcant in building interactive 3D spaces, the interplay be-
tween AI and mixed reality in these environments remains an open
question. Our work tackles this gap by bringing the capabilities of
LLMs to a real-time Unity editor for Mixed Reality applications.

2.3 Editor Support for Mixed Reality
Development

Mixed Reality (XR) development has been explored by Hirzle et
al. [16] and Fidalgo et al. [9], who provide comprehensive reviews
at the intersection of AI and XR. Lindlbauer et al. [27] and Cheng
et al. [5] focus on the automatic adaptation of MR interfaces, a
line of work that is relevant for multi-user XR experiences, as
shown by Mandi et al. with RoCo [30]. Thoravi Kumaravel et al.
[51] complement these eforts by focusing on bi-directional mixed-
reality telepresence. Compared with prior work, we allow users to
directly authorize the environment using natural language.

2.4 LLMs Interpreting Spatial, Non-Linguistic
Information

Lastly, many have pushed the boundary of LLMs by inputting non-
linguistic information (which was not in the training set), such
as for visual programming [64] or processing sensor data [28].
More related to our work is using LLM to interface with spatial,
embodied data. Work of Zhang et al. with MotionGPT [60], Wu et
al.’s work on Embodied Task Planning [57] as well as Richardson
et al. with TEXTure [38]. Dafara et al. [7] and Rana et al. [37]
further extended these concepts to include demonstrations and task
planning. Driess et al. with PaLM-E [8] has shown the potential
of LLMs in generating human motion, texturing 3D shapes, and
incorporating real-world sensor modalities, respectively. These
eforts are complemented by Xu et al. with XAIR [58], which focuses
on explainable AI in augmented reality. We hope LLMR contribute
to the improvement of LLM’s capability of spatial reasoning and
world understanding.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 2: Large Language Model for Mixed Reality (LLMR) architecture for real-time interactive 3D scene generation. Starting from
the left, a user prompt and the existing 3D scene (Ω) are fed into the Planner (P) and Scene Analyzer (SA) modules, respectively.
The Planner decomposes the user prompt into a sequence of sub-prompts, while the SA summarizes the current scene elements.
These are then integrated with a Skill Library (SL) to guide the Builder (B) module, which generates the appropriate code. The
Inspector (I) module iteratively checks the generated code for compilation and run-time errors. Upon receiving the green light
from the Inspector, the code is compiled using the Roslyn Compiler and executed in the Unity Engine to produce the desired
3D scene and functionalities as specifed by the user.

3 LLMR: A FRAMEWORK FOR GENERATING
REAL-TIME, INTERACTIVE 3D WORLDS
USING LARGE LANGUAGE MODELS

Large language models are capable code generators, and their ability
to synthesize programs has been extensively tested [1, 6, 14, 21, 33].
Scripting in a game engine, however, is especially challenging given
the multitude of tasks and the complexity of the development envi-
ronment. For a non-comprehensive list, generating a realistic 3D
world may involve object creation, texturing, behavior program-
ming, event scripting, animations, particle efects, lighting, and
user interface [3]. Prompting these elements in real time requires
a framework that understands the virtual scene, interprets user
intention, and generates high-quality code. To this end, we present
Large Language Model for Mixed Reality (LLMR), a framework that
enables real-time creation and modifcation of interactive 3D scenes
using natural language.

LLMR is an orchestration of language models, each contextual-
ized with a distinct metaprompt to outline its role, as illustrated
in Figure 2 and Algorithm 1. A metaprompt is a specially crafted
input sequence or context that guides an LLM’s behavior or out-
put, enabling more focused or nuanced responses than standard
prompts. We start with the Planner, which breaks down the user’s
request into a sequence of appropriately scoped instructions. These
instructions, along with a concise summary of the existing scene
from the Scene Analyzer and extra knowledge for specialized skills
from the Skill Library, are used as inputs to the central module
called Builder, which generates code to fulfll these instructions. In
addition, we use a separate Inspector module to check the Builder’s
generated code against potential compilation and run-time errors
before fnally executing the code.

The task of generating interactive 3D scenes boils down to gen-
erating and executing appropriate code snippets to accomplish the
user’s prompt. Formally, denote the user’s request by � and the
current 3D world by Ω (which may be empty), we wish to draw
sample � ∼ P(� |�, Ω), where P is the distribution of syntactically
valid, request-fulflling code. We then compile and execute � at
run-time under the Unity Engine [50], a development platform for
creating virtual scenes that suits our needs. Below, we detail each

module and explain the design choices that enable various aspects
of prompting a virtual world into existence.

Algorithm 1: LLMR

Input :�: user’s request; Ω: current scene
Require : A(� |�, Ω): Scene Analyzer;

P(�1, ..., �� |�, �): Planner;
L(ℎ |�): Skill Library;
B(� |�, �, ℎ): Builder;
I(�, � |�, �, �): Inspector.

� ∼ A(·|�, Ω);
(�1, ..., ��) ∼ P(·|�, �) /* Decomposes the request into

suitable instructions. */
Ω1 ← Ω;
for � = 1 : � do

�� ∼ A(·|�� , Ω�) /* Analyze the current scene. */
ℎ� ∼ L(·|��) /* Retrieve required skills. */
�� ← GenerateCodeWithInspection(�� , �� , ℎ�);
Ω�+1 ← CompileAndRun(�� , Ω�);

end

⊥

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 3: The Planner and its role in breaking down a user’s high-level request into a sequence of manageable subtasks
(�1, �2, . . . , ��). The Planner engages in a user-oriented conversation to determine the appropriate scope and granularity
of each subtask. Following this, the Builder executes the plan by generating code (�1, �2, . . . ��) for each subtask, efectively
carrying out the user’s initial request.

3.1 Planner
Prompting a world into existence can be a hefty task. "Create a
city and all its denizens" is a valid request, albeit one that is overly
ambitious to achieve in a single step. Following the common wisdom
"nothing is particularly hard if broken into small jobs", instead of
directly sampling from P(� |, �, Ω), we propose a Planner � : � ↦→
(�1, �2, ..., ��) to decompose each prompt into subtasks within an
appropriate scope, then use autoregressive sampling to carry out
these subtasks via a sequence of generated code (�1, �2, ..., ��):
P(�1, �2, ..., �� |�1, �2, ..., �� , Ω) = P(�1 |�1, �2, ..., �� , Ω) ×

�Ö−1

× P(��+1 |��, �1, �2, ..., �� , Ω)
�=1 (1)

�Ö−1

= P(�1 |�1, Ω) P(��+1 |��, ��+1, Ω)
�=1

where �� B (�1, ..., ��). The second quality follows by assuming
independence of code generations and requests at diferent steps,
�� ⊥ ��, ∀� ≠ �. An illustration for this procedure is provided
in Figure 3. However, sampling from P(��+1 |��, ��+1, Ω) may be
difcult for a language model, because it has to infer the efect

of (�1, ..., ��) on the initial world Ω before writing code ��+1. To
remove the guesswork, we leverage a runtime compiler � to execute
(�1, ...��) in order, each time getting a new world state Ω�+1 =
�(��+1, Ω�). We can then rewrite:

P(��+1 |��, ��+1, Ω) = P(��+1 |��, ��+1, Ω�), (2)

where we assume {�� }��=1 is Markovian when conditioned on
Ω� . That is, the current world state is rich enough to capture all
previous executions past the most recent one.

In principle, it is possible for the user to limit their prompts
within a certain difculty so that the decomposition is unnecessary.
However, the user may not know the appropriate task scope a priori
(if creating a city is too hard, how about a single house? Or a room in
the house?) As a result, having a properly confgured Planner makes
the framework robust to prompts of varying difculty. In addition,
the user may have diferent levels of details in their prompt. For
example, "Creating a car" is a valid request that nevertheless does
not specify its appearance or functionality. Here, the Planner serves
as a conversational assistant that interacts with the user to devise a
plan with an appropriate scope and granularity, which signifcantly
improves the user experience.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 4: Scene Analyzer module. The virtual scene, depicted in the bottom-left corner, is converted into a parsed scene hierarchy
in JSON format. This, along with the user request, serves as input to the Scene Analyzer. The output is a fltered, relevant
summary of the scene, which is then used for conditioning subsequent modules like the Builder. The process optimizes the
utilization of the language model’s fxed context window and enhances focus on objects relevant to the user prompt.

3.2 Scene Analyzer
There are many possible representations of a virtual world Ω that
may include visual, behavioral, and auditory elements. In this work,
we derive Ω from the Unity scene hierarchy, which contains all
existing game objects, their attached components, and their parent-
child relations. The hierarchy is parsed into a JSON string and can
then be used as input to language models. However, directly using
the raw JSON string as input proves to be infeasible in practice.
First, most prompts only require interactions with a small subset
of Ω, so it is unnecessary and even distracting to use its entirety as
input. Second, LLMs have a fxed context window � that serves
as its short-term memory, which has to contain its metaprompt,
few-shot examples, user prompt, and generative output [62]. For
example, GPT-4 supports either 8k or 32k tokens for maximum
number of token at a time[34], but even the 32k token limit can be
insufcient, particularly for intricate scenes containing numerous
objects, each consisting of multiple components.

To tackle these issues, we created a separate module termed
the Scene Analyzer, which is a properly prompted LLM A(� |�, Ω)
that outputs a succinct summary of Ω conditional on the user re-
quest. At a high level, one can think of the Scene Analyzer as a
means of perception that relays an abstraction of the environment
for downstream processing. An illustration of the module is pro-
vided in Figure 4. Concretely, the output �� ∼ A(·|�, Ω�) is used to
reparametrize the density at each sampling step:

P(��+1 |��, ��+1, ��) ∼ P(��+1 |��, ��+1, Ω�) (3)

3.3 Builder-Inspector
Central to LLMR is the Builder B(� |�, �), a module responsible for
generating code conditional on the user prompt. It serves as our
main apparatus for approximating P. In other words, we hope

B(� |��, ��+1, ��) ≈ P(��+1 |��, ��+1, ��), (4)

holds with a carefully crafted metaprompt and enough in-context
demonstrations. In practice, however, the complex nature of creat-
ing a virtual world makes the approximation unsatisfactory even
with as many examples as the context length allows. This is largely
because the Builder module is asked to accomplish the instructions
with some creativity while faithfully following an extensive list of
specifc guidelines that align the output, which causes to Builder to
have a "cognitive overload".

Algorithm 2: Generate Code With Inspection

Input :�: user’s request, �: scene summary, ℎ: additional
hint.

Require : B(� |�, �, ℎ): Builder;
I(�, � |�, �, �): Inspector;
T: maximum number of inspections.

� ← 0;
�0 ← ∅;
�0 ← False;
while � < � and �� is false do

�� ∼ B(·|�, �, ℎ, ��) /* Builder writes code �� */
(�� , ��) ∼ I(·|�, �) /* Inspector checks code,

outputs verdict �� and suggestion �� */
� ← � + 1;

end
return x

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Builder-Inspector paradigm in LLMR. The Builder module B(� |�, �) generates code based on user input and current
state. The generated code is then inspected by the Inspector module I(�, � |�, �) for compilation and run-time errors. If errors are
found, indicated by verdict � , the Inspector provides suggestions � for corrections. The process iterates until either the code
passes inspection or a maximum number of inspections � is reached. This feedback loop signifcantly enhances the quality of
the generated scripts.

To ameliorate this, we introduce another module, the Inspector
I(�, � |�, �), that checks the Builder’s generated code for compilation
and run-time errors. In the case of a failed inspection indicated by
verdict � , the Inspector outputs a suggestion � for potential fxes
and prompts the Builder to make another attempt. As a result, the
Builder and Inspector work in tandem to write and self-debug code,
forming a feedback system that signifcantly improves the quality
of the generated scripts. We outline this paradigm in Algorithm
2 and illustrate it in Figure 5. Interestingly, the Inspector excels
at catching errors even if the same guidelines in its metaprompt
are present in the Builder. One possibility is that this is due to
providing a more extensive list of negative and positive examples
to the Inspector. Still, when the Builder is provided with the same
examples, performance is not as high. Our intuition for this is that
verifying a snippet of code is easier than writing the said code, or
the two tasks bear diferent failure modes that can be efectively
hedged.

3.4 Compilation, Save and Reload
After the Builder-generated script passes the inspection, we follow
the approach in [39] to compile and execute the scripts at runtime
through the Roslyn C# compiler [49]. The inclusion of run-time
compilation elevates LLMR from an ofine development tool to a
real-time generative framework.

To enable iterative design, users can save their generations and
selectively reload the saved generations in the existing or new scene
without having to repeat the prompting process. The generated
output is saved as C# scripts and reattached to the Compiler to be

compiled at runtime. A one-sentence summary of each script’s func-
tion is saved, so alternatively, the output can also be regenerated
by the framework based on the summary.

3.5 Skill Library
The creation of the Skill Library Module is motivated by two pri-
mary challenges. The frst is the token size limitation imposed by
the GPT architecture on the context, or the "metaprompt," provided
to the Builder. Typically, the Builder is presented with a compre-
hensive list of various APIs and plug-ins that could be employed
to meet the user’s needs. As the range of available skills expands,
this list lengthens, eventually surpassing GPT’s token size limit for
public users. The second challenge lies in the Builder’s attention
capacity, which appears to be limited. Even when we attempt to
condense all the available skills into the Builder’s metaprompt, it
struggles to keep track of a specifc skill when the list becomes too
lengthy. This limitation is further exacerbated by the necessity to
include precise coding examples for each plugin to ensure their
efective utilization by GPT. To address these challenges, we cre-
ated the Skill Library module, denoted as L(ℎ |�), which serves as
a centralized repository for all available skills and as an attention
mechanism that retrieves only the skills relevant to a specifc user
prompt. We illustrate this module in Figure 6.

Formally, a specialized GPT is provided with a metaprompt con-
taining two essential pieces of information: 1) a high-level summary
of the available skills, and 2) the user’s prompt. The GPT model
is tasked with identifying either a single skill or a subset of skills
that are most pertinent to the user’s request. The Skill Library re-
mains efcient and small in token size because it only needs the
high-level descriptions of each skill, while the specifc usage details,

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 6: Skill Library module workflow. On the left, the module receives inputs from the Scene Analyzer and a user prompt
"create a whale and make it swim happily". A list of skills is provided to the SL GPT module in its metaprompt, which also
contains a high-level summary of available skills such as object retrieval and animation. The module then identifes and
outputs the most relevant skills (in this case, object retriever and animation) to the Builder, which subsequently utilizes these
tools for implementation.

as well as positive and negative examples, are stored separately.
Once the relevant skills are identifed, their detailed information
and usage examples are fetched and passed on to the Builder for
implementation.

ℎ� ∼ �(·|��) (Retrieve required skills, if any.) (5)

As an illustrative example, consider a skill we created for GPT’s
use, which leverages a combination of generative and contrastive
models along with the Sketchfab API to source and integrate 3D
models into a scene. We have also created skills that allow the
generation of animation of a rigged object in real-time [19]. While
we delve into the specifcs of a skill in the next section, it is worth
noting that the Skill Library only receives a high-level summary of
how this particular skill functions, along with similar descriptors
for other skills. The actual examples needed to use this skill are
then retrieved and supplied to the Builder for execution.

B(� |�, �, ℎ) : Builder; �ℎ���ℎ = retrieved skills from� (6)

This approach ensures that the Skill Library and the Builder work
in tandem to efciently and efectively generate code that fulflls
the user’s request while overcoming the token size and attention
capacity limitations of LLMs.

4 INCORPORATING EXISTING OPEN-SOURCE
3D ASSETS

The process of generating interactive 3D scenes often involves the
creation and placement of various objects. For instance, a request
to create an ofce space might be decomposed into the genera-
tion of a desk, a chair, a lamp, and a clock. While it is possible to
generate these objects using primitives, a method that works well
even for composite objects like a car or an entire room (depicted in
the car of Figure 8 and the kitchen of Figure 1), there is a need to
leverage the intricate objects created by artists and 3D developers
that exhibit high real-world fdelity. Previous work has utilized
objects from Sketchfab [39, 40] and used the priors of GPT to size
them accordingly to the real world. However, this approach en-
counters challenges when the user prompts an object, say a clock,
and Sketchfab ofers 50 diferent clocks, only three of which are
suitable for an ofce setting.

To address this issue, we introduce the Object Retriever, a skill
that employs other AI models to identify the 3D object that the user
most likely intended. The workfow of the Object Retriever can be
formalized as follows: given a user prompt �, the Object Retriever
identifes an object � contained in � and calls the Dall·E-2 [47] API
for the object � , generating a "target image" � . Concurrently, the
same object-prompt � is used to download � screenshots of 3D
objects freely available on Sketchfab, denoted as � = {�1, �2, ..., �� }.
We then employ CLIP [36] to map out similarity spaces in the
language domain � and the visual domain � . We select the top

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 7: Object Retriever pipeline for generating a 3D scene. The user provides a prompt for a scene containing a clock, a picture
frame, a chair, and an apple on a table. For each object (e.g., clock), the pipeline uses DALL-E 2 to create a target 3D image.
Concurrently, multiple screenshots of potential matches from open-source Sketchfab models are downloaded using the object
label as the query. CLIP is employed to generate embeddings for these images which includes the target image. The top 5
candidates in the language similarity space are selected. The fnal object is then chosen based on the highest visual similarity
to the target image. This sequence is repeated for each object in the prompt to assemble the complete 3D scene, as shown on
the far right.

5 images � ′ ⊂ � that are closest to the object-prompt � in the
language similarity space �, and from these, we select the image �∗

that is closest to the target image � in the visual similarity space � .
Formally, let �(�, ��) and � (�, ��) denote the language and visual
similarity between the object-prompt � and the screenshot �� , and
the target image � and the screenshot �� , respectively. The Object
Retriever operates as follows:

This process is repeated to generate entire scenes. Algorithm 3
and Figure 7 describe this pipeline. There is potential for further
exploration to improve this pipeline. For instance, selecting from the
visual similarity space before the language similarity space might
yield better results. Future work will involve human feedback to
identify the workfow that maximizes the likeness between the 3D
object loaded and the user’s intended object.

Algorithm 3: Retrieving 3D objects
Input :�: user’s prompt
Require :� : object in �;

� : target image;
�: screenshots;
�(�, ��): language similarity;
� (�, ��): visual similarity.

� ′ ← Top 5�� ∈ �with highest�(�, ��);
�∗ ← arg max�� ∈� ′ � (�, ��);
return � ∗

5 MEMORY MANAGEMENT
By default, language models generate new words based on all pre-
viously sampled tokens, a confguration that may not be ideal due
to their fnite context length. For instance, this may hinder the
model’s ability to engage in extended conversations. To mitigate
this, techniques such as dialogue summarization and distillation
can be employed [2, 20, 54]. Additional research has delved into
leveraging persistent memory and retrieving in-context examples
from databases to enhance few-shot performance [55, 63].

We sought to deploy a protocol that alters the contents within
the LLM’s context window while the framework is in continuous
use. We explored three memory modes for each module within
LLMR : full memory, limited memory, and memory-less. We docu-
ment the memory modes used for each module in Table 1. These
modes pertain to the retention of all, a few, or none of the historical
instructions and generated code within the model’s context. Defne
an episode of interaction as the input and output to the module for

Module Memory Mode
Planner Memory-less
Scene Analyzer Memory-less
Builder Limited-memory
Inspector Memory-less
Skill Library Memory-less

Table 1: Memory mode for each module. Note that no module
uses full memory, the default GPT paradigm.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 8: Cross-Platform and Cross-Scene Transferability made possible by LLMR. The left panel shows a car automatically
created by LLMR using Unity primitives, complete with color and composite features (e.g., wheels and headlights), controllable
via keyboard inputs. The middle panel displays the same car transferred to a diferent Unity scene featuring moon-like gravity
and terrain. The right panel showcases the framework’s adaptability across platforms by illustrating how the car can collide
with objects in the physical world and can be controlled using IMU data from a user’s mobile phone.

Figure 9: Sketching objects into existence with LLMR. In the left panel, a user requests a "magic paintbrush" to be attached to a
VR controller. The middle panel illustrates the automatic conversion of the line renderer into a paintbrush, where the user
is shown drawing a chair. The right panel demonstrates the 2D-to-3D transformation using 2D-3D ControlNet [59] and our
Dall·E-CLIP Sketchfab API. This enables the generation of multiple chair models that can then be transferred across diferent
platforms using LLMR for further interaction.

a single user prompt to LLMR. To implement a memory-limited
module, for example, we clear its context of all but the most recent
� episodes after every prompt, where � = 1 typically.

An efective memory management protocol ofers three distinct
advantages:

Token limit: Trimming old memory reduces token consumption
and enables prolonged usage of LLMR, a critical feature for grad-
ually constructing intricate scenes. Notably, the Scene Analyzer
benefts from having no memory of prior interactions, as it is sus-
ceptible to token constraints. As an example, the frst AI2-THOR
scene hierarchy measures around 7k GPT-4 tokens [24]. Hence, a
full memory Scene Analyzer with 8k tokens can only fulfll a single
instruction before its context is depleted, rendering the framework
essentially unusable outside of a memory-less setting.

Performance: Certain modules perform better with reduced mem-
ory, as they may be prone to be confused by earlier interactions. For

example, our empirical observations indicate that the Inspector mod-
ule exhibits increased leniency in repeated inspections, allowing
the proposed code to pass before all errors are rectifed.

Interpretability: A memory-limited framework provides clearer
error attribution. For instance, when a sequence of prompts is sent,
and the generation fails at the fnal step, maintaining all memory
makes it challenging to discern whether the last prompt posed a
unique challenge or if the framework became perplexed by aspects
of an earlier task. Improved transparency facilitates swift debugging
and iterating on our framework.

We believe the choice of memory mode is a crucial aspect of
any LLM orchestration pipeline, and our design choices may ofer
insights for the development of LLM systems beyond the task of
creating virtual worlds.

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 10: Accessible Interface Features in Action. A1 and A2 show how a user can prompt the system to adjust the color scheme
of a kitchen scene for red-green color-blind compatibility. B1 and B2 demonstrate the activation of a magnifer tool. C1 and C2
reveal the option to hide objects deemed not kid-friendly.

6 CROSS-PLATFORM COMPATIBILITY AND
INSTALLATION

We show that our framework can be deployed in various types of
platforms (e.g., Web, Mobile, AR, and VR) and on various devices
(e.g., Meta Quest, HoloLens 2). To keep the framework lightweight,
we deploy our framework’s run-time compiler on a PC that acts
as the server, and we build upon existing remoting protocols and
frameworks [32, 46] to stream the generated results to the client
device (e.g., holographic remoting for a HoloLens 2). Platform de-
pendencies, such as namespaces and other packages can be added
as a "Skill" to the framework’s Skill Library, which allows the user
to quickly enable interaction modalities such as pinch and input
modalities like speech and controller.

Interactive elements built within one scene can be saved as self-
contained units by storing the source code that created them. We
can then re-execute the cached code to load and adapt the prompted
objects into novel scenarios, which can be as simple as a diferent
scene with adjusted physics or a project with completely new APIs,
as depicted in Figure 8. Our experiments with LLMR suggest that
translating interactive elements between independent SDK plat-
forms is possible and suggests an application of adapting existing
pieces of software (perhaps ones written with obsolete, no-longer
working code) to newer SDKs. We leave this for future explorations.

6.1 Installation
Our framework can be easily added to any existing Unity scenes.
The framework consists of a unity package and a few additional
open-sourced packages (such as GLTF loader and OpenAI), and

the installation process takes only a few steps. This enables any-
one with an OpenAI API key to try our framework. We are strong
proponents of the adaptability of our framework, and so we have
open-sourced the foundational framework along with several ex-
amples on GitHub (https://llm4mr.github.io/). Readers who wish to
try our framework can try out the example playground scenes or
can easily add our Unity package to their existing Unity projects.
They would need to obtain an OpenAI API key, a copy of the Roslyn
compiler and optionally an account for Sketchfab if they wish to
automatically load existing assets. In the Appendix, we also provide
the metaprompts used for each LLMR’s modules for transparency.

7 EXAMPLE PROMPTED INTERACTIVE
WORLDS AND USES

In this section, we illustrate the wide range of objects, tools, and
scenes one can construct with LLMR. We highlight that our frame-
work is modular, real-time, adaptive, interactive, and multi-modal,
which diferentiates this approach from other generated 3D worlds
that primarily focus on visual appearance. For all of the examples
below, it is important to stress that all of the results are achieved
simply by prompting the system, without the need for manual
intervention.

https://llm4mr.github.io/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 11: Spontaneous Creation of Teaching Guides. A demonstration of creating a guide for operating a cofee machine in
which LLMR animates a hand model to point out the various steps of the operation. Our framework allows for the rapid
creation of such guides and furthermore allows users to ask questions that were not predicted by the instructor beforehand,
with appropriate motions being animated on the fy.

7.1 Game Design and Creativity
An immediate application of our framework is the creation of games,
in particular, scenes. A scene sets the context of a game, and it
usually involves numerous assets that are difcult and tedious to set
up manually. A game designer can use the Planner to create a draft
environment, and add interactive components like "players" and
"opponents" with responsive behaviors to mock up the gameplay
logic. In addition, game designers can expand gameplay in multiple
environments. For example, a toy car can be created and reloaded in
a moon simulation environment in VR (Figure 8 B) or be spawned in
the physical world and driven around with a mobile phone (Figure
8 C). Besides "prompting" objects into existence, we show that
our framework also allows users to "draw" things into existence.
Here the user wishes to design a chair (Figure 9). They can do so
by simply prompting "a magic paintbrush", which has functions
similar to that of TiltBrush [12], a popular 3D drawing application,
and then turn the drawing into a 3D model with the integration of

Dall-E 2, CLIP, and Sketchfab, through a similar process illustrated
in Figure 7.

7.2 Accessibility and Adaptive Interface
Similar to the accessibility feature in 2D documents, our framework
can also be prompted to make a 3D scene accessible and adaptive
to diferent user needs and preferences. Figure 10 shows three
examples of editing an existing virtual kitchen scene to diferent
requests. For example, one can request to make the scene to be
more friendly to red-green color-blind users. For someone who is
near-sighted, they can prompt a magnifer tool that zooms into a
particular part of the room. An architect can use our framework
to fgure out if the space is friendly for wheelchair users or make
sure objects in the room are child-proof. These examples show
how our framework leverages LLMs’ prior knowledge and puts the
knowledge into the context of a spatial world at a human scale.

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 12: Simulated Rescue Plan. The HoloLens 2 displays the automated generation of a simulation of a rescue plan using our
framework. The guide shows an interactable 3D terrain, helicopter, and simulated wind, allowing rescue workers to visualize
the fight path under diferent weather conditions.

7.3 Remote Assistance and Planning
In a remote training scenario, typically, creating such a 3D interac-
tive training guide requires custom creation, from rigging a gesture
to placing a UI element. An instructor can use our framework to
automate the generation of a training guide from a list of instruc-
tions. (Figure 11). The trainee can then, for example, use an AR
device that overlays information on the machine. As the trainee
advances through the steps, they can ask questions directly to the
guide where answers can be generated in the context of the trainee’s
learning progress. In another scenario of remote rescue planning,
helicopter operators can prompt a simulation of the fight path
given several target locations and see how the fight path might be
afected by diferent wind conditions (Figure 12).

8 NUMERICAL STUDY
As an orchestrated pipeline, LLMR augments an LLM coder with
multiple modules to enhance its reliability. To empirically justify the
inclusion of each module in our framework, we quantitatively eval-
uate LLMR’s generative performance against a variety of prompts
and baselines. In addition to success in compiling the generated
code, we evaluate how our framework meets our design goals:
real-timeness, complexity of interaction, and iterative fne-tuning
ability.

This section is organized as follows: we begin by evaluating
LLMR on single prompts in an empty and existing scene, highlight-
ing the impact of each module and overall performance compared
to standard LLMs. We also discuss the framework’s performance
at completing tasks with diferent complexity. Then, we conduct
a similar experiment on sequential prompts to illustrate LLMR’s
capacity for iterative designs. Lastly, we present an analysis of the
real-time aspect of our framework.

8.1 Error Rate
8.1.1 Experiment Setup. We start by investigating LLMR’s ability
to carry out single, independent requests in either an empty or
existing scene. To this end, we created two datasets each with 150
prompts. The frst set is used as inputs in an empty scene and is
mainly creative in nature as there is nothing to modify or interact
with in the world. An example is "creating a cat and mouse out of
primitives. The cat should chase the mouse, who fees in an erratic
pattern." The second set is used as inputs in an existing scene shown
in Figure 13. The scene was downloaded from Sketchfab [48] and
was chosen as it is sufciently complex (around 35 objects). A few
example prompts are shown in Figure 13, which involve visual and
semantic alteration of the space. To promote fairness and diversity
in our test prompts, we use a separate, properly prompted GPT to
generate two evaluation datasets. The authors created 15 prompts as
demonstrations for the prompting GPT. The full evaluation datasets
can be found in Appendix.

To assess the efcacy of LLMR, a proper metric is required. Given
the subjective nature of tasks such as "make the room more uplift-
ing," it is difcult to systematically determine if a prompt has been
met successfully. However, the presence of run-time or compilation
errors in the generated code can be considered a clear indicator
of failure. Therefore, we have selected the ’error rate’ – the pro-
portion of outputs with bugs – as the criterion for assessing the
framework’s performance.

To evaluate the efcacy of each module of LLMR, we created
three model conditions, each with adding one additional GPT mod-
ule, besides GPT-4 zero shot and GPT-4 few shot as our baselines.
This makes a total of 5 model conditions. We conducted 5 runs of 150
prompts with each model condition and for each scene condition
(empty scene and existing scene).

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 13: An illustration of our experimental setup. We provide the bathroom scene (left) and a subset of the 150 prompts
(right) used in this space for the evaluation provided in Figure 14.

8.1.2 Results and Discussion. We provide a summary of error rates
for our model and various baselines in Figure 14. To underscore the
beneft of each LLMR module, we add each component incremen-
tally to tease out its marginal impact. Starting with the of-the-shelf
GPT-4, we see that standard in-context learning techniques increase
performance in both settings, yet only to the extent that roughly
half of the requests fail. From here, we augment the standard GPT-4
with components developed in this work, starting with the Scene
Analyzer, then the Skill Library, and fnally the Inspector. As a result,
the generated errors drop substantially to only 20.5% and 25.2% of
the error rate observed in the original GPT-4 for the empty and
existing scene, respectively, which attests to the efectiveness of our
pipeline over standard, of-the-shelf LLMs for the task of generating
interactive scenes.

We now discuss the impact of each LLMR module in detail. As
explained in Section 3.2,the Scene Analyzer allows LLMR to parse
and understand the virtual scene and is thus indispensable for
meaningful manipulations of existing environments. Consequently,
enhancing GPT-4 with the Scene Analyzer results in a signifcant
performance enhancement in the Bathroom scene. Secondly, the
Inspector module enables LLMR to perform self-debugging and
efectively prevents the generation of erroneous code, further re-
ducing the error rate in both scenarios. Although we integrated the
Inspector at the fnal stage, it is compatible with any combination of
modules and will consistently reduce the output error rate. As an
example, we added Inspector to GPT-4 with few-shot prompting in
the empty scene and observed the average error drops from 45.0%
to 13.1%. We also observe the Skill Library has a marginal impact on
the error rates. This is expected, since the Skill Library is designed
to handle more specialized tasks, which we discuss in more detail in
the following subsections. Lastly, the Planner is not included as it al-
ters the input prompt with step-by-step decomposition, making the
results incommensurable. We include in the Appendix an example
where the Planner is used to build a virtual kitchen, underscoring
the beneft of decomposing difcult tasks into incremental steps.

8.2 Error Rate by Levels of Difculty
8.2.1 Methodology. To explore the relationship between the com-
plexity of prompts and the completion rate of LLMR, we performed
an ad-hoc analysis of the results from the previous section. We
classifed our prompts for single prompt task into levels of difculty
from 1 to 10. To achieve this, we utilized a non-contextualized LLM
devoid of any meta-prompting, asking it to assign a difculty level to
each prompt. This process was repeated ten times for each prompt,
and the average difculty level was then calculated (one which had
a small standard deviation). The aggregated results, categorized by
difculty level, are illustrated in Figure 15. The prompt given to
this LLM (GPT-4) was "The above are prompts that are given to a
system that can code and execute commands inside of Unity. We want
to measure how good this system is at coding in C# for Unity purposes.
Given your knowledge of Unity, please rate all of the prompts above
on a level of difculty from 1 to 10". The rationale behind employing
a non-contextualized LLM (without any meta-prompting) lies in the
subjective nature of assessing difculty levels. Being the developers
of the system, our judgment might be inherently biased, infuenced
by our understanding of the system’s capabilities and limitations.
Furthermore, engaging Unity experts to determine the difculty
levels presents its challenges. The variability in the expertise and
experience levels among Unity developers could lead to inconsis-
tent evaluations and difculty in standardizing the experience of
the evaluators without a comprehensive and uniform examination
framework.

8.2.2 Results and Discussion. In this section, we analyze the per-
formance of various architectures in executing Unity tasks, difer-
entiated by difculty levels that range from Easy to Hard. These
levels were determined based on a 1-10 scale assigned by GPT-4.
Figure 15 shows the error rate of the diferent architectures on two
panels. On the left, we have the results for the empty scene and on
the right for a scene with a bathroom containing various objects.

Across all levels and scenes, LLMR (orange line) consistently
outperforms other architectures, underscoring its robustness. In

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 14: Comparison for average compilation and run-time error rate. SA stands for the Scene Analyzer, SL stands for the
Skill Library, and I stands for the Inspector. Overall, in both creating from scratch, as well as editing existing scenes, LLMR
outperforms GPT-4 by 3x in the case with few-shot prompting, and gives over 4x improvement compared to the performance
of zero-shot GPT-4.

the empty scene on the left, a noticeable trend is that the error
rate generally increases with the task difculty. This trend aligns
with expectations, except in the case of GPT-4 Zero Shot. A notable
point here is that the Easy category only contains a single prompt,
which is a basic "Hello World" console display. The simplicity of
this task explains its solitary placement in this category. For the
bathroom scene, the error rates for Medium and Somewhat Hard
tasks show minimal variation, suggesting a plateau in difculty
perception. An interesting observation is the drop in error rates
from Easy to Somewhat Easy tasks, although this is not consistent
across all models. The integration of the Skill Library shows mixed
efects (dark blue line). In some instances, it enhances performance,
while in others it seems to hinder it.

Estimating the difculty of tasks, especially in scenarios involv-
ing modifcations to an existing scene rather than building from
scratch, presents challenges. This is exemplifed in the bathroom
scene, where adding new objects (difculty levels 3-4) did not re-
quire scene understanding, contrary to the tasks in the Easy cate-
gory, which involved moving objects and thus relied more on scene
comprehension. Our analysis of the prompts indicates that the na-
ture of the scene signifcantly infuences the perceived difculty.
For instance, in the bathroom scene, certain tasks categorized as
Easy in theory turned out to be more challenging in practice. The
Appendix ofers a more comprehensive analysis, including vari-
ations in architecture, such as the combination of Scene Analyzer
(SA) and Inspector modules.

In conclusion, LLMR demonstrates superior performance across
various scenarios, underscoring its efectiveness in handling tasks
of varying complexity in Unity environments. This analysis also
highlights the intricate relationship between task difculty, scene
context, and architectural components, paving the way for further
exploration in optimizing task-specifc architectures.

8.3 Task Complexity
Complexity can manifest through diferent aspects. To supplement
the ad-hoc analysis above, we now provide a more comprehensive
discussion by breaking down the concept of complexity through
the following aspects and share fndings that emerged throughout
our experimentation:

Specifc Skill Requirement – Certain tasks are inherently more
difcult. For example, deforming the mesh of an object is much
more complicated than adding an object to the scene. A human
developer may need to look up examples and documentation to
achieve a complex task; LLMR can reduce the complexity of the task
by starting a templated script. However, LLMR is not error-proof. As
shown in the previous section, LLMR’s error rate increases (but not
above 40%) as a task becomes more difcult. The error rate can be
further brought down by adding relevant skills to the Skill Library
by an experienced developer to help LLMR achieve a higher success
rate and reduce possible rounds of iteration between the Builder
and Inspector. LLMR can save the time of experienced developers
by generalizing beyond the examples provided in the Skill Library.

Token Requirement – The amount of tokens required grows as
the scene or the object becomes more complex. For example, if the
existing scene has a tree object with many leaves, where each leaf
is considered a child game object, the scene summary could easily
exceed the maximum token allowed (at the time of writing, the
maximum number of tokens was 8k, though this has now grown
signifcantly). In anticipation of this, our Scene Analyzer module
only fetches the top-level game object name to flter out the relevant
game object based on user query and task. This allows our frame-
work to handle a scene as complex as the Kitchen scene (example
in Figure 10) and the Bathroom scene (used in Numerical Study,
Figure 13). Besides the complexity of objects and scenes, a task itself
can also require a lot of tokens. One such example is generating an
animation [19] (with the help of a skill written for the Skill Library)
that involves generating time-series of numerous joint positions

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 15: Performance Improvement of LLMR Modules Organized by Difculty Level of Prompts. Comparing Error Rates of
GPT-4 with Incremental LLMR Module Integration. The error rates for most methods increase with difculty, and the LLMR
method (in orange) still maintains a consistently lower error rate compared to others.

and rotations. An optimization could involve developing a simple
way to represent the time-series information.

Memory Requirement – When a task requires prior knowledge
of previous prompts (e.g., behaviors created by previous prompts),
this requires previous prompts to have been successfully compiled
and to be robust enough. We described approaches to managing the
memory of the diferent modules in Section 5 to both conserve total
memory consumed while preserving the necessary information for
the framework to carry out complex tasks.

Quality Requirement – A user may request diferent levels of
fdelity of the output. For example, the user could create a complex
scene out of primitives only with the help of the Planner module
(e.g., a full kitchen, Figure 1) instead of out of higher fdelity 3D
models (see examples of participants’ creations in the video fg-
ure). The fexibility to create visually simple yet functional and
interactive scenes is akin to creating a lo-f mockup that allows
users to quickly prototype and iterate without waiting for the full
generation of 3D scenes that are visually complex but cost a lot of
compute and time and are not easy to modify.

8.4 Iterative, Incremental Design
8.4.1 Experimental Setup. In practice, creating content-rich virtual
worlds requires incremental steps. Therefore, it is important to
assess how LLMR performs in iterative scenarios, where requests
are made and fulflled one after another to gradually build and
alter a virtual scene. We tested LLMR with 80 sequential prompts,
each averaging 5 single prompts. These sequential prompts consist

of a set of instructions aimed at completing a complex task. For
instance, a sequential prompt for constructing a bedroom might
include steps like "create an empty room with walls; add a bed with
a lamp next to it; add a window on the wall."

We use three metrics to evaluate performance in an iterative
setting. First, the error rate on all individual prompts is considered
and is the same as in single tasks. Second, we calculate the average
degree of completion, measured as the number of completed single
prompts over the sequence length for each sequential prompt. As
the sequential prompts have varying lengths, accessing the comple-
tion average prevents "long and simple" sequences from fooding
the error rate. Lastly, we defne fulflled prompts to be sequential
prompts that are completed from start to fnish and compute their
percentage over the total number of prompts. This is a demanding
metric that validates whether the model can manage extended use
sessions gracefully. In extreme cases, a model excelling only in
short sequences can have a reasonable error rate yet zero perfectly
fulflled prompts.

8.4.2 Results and Discussion. The numerical results, presented in
Table 2, show that GPT-4’s performance in sequential tasks im-
proves signifcantly with the addition of each LLMR module. When
all modules are integrated, LLMR surpasses the standard GPT-4 by
approximately 2.5 times across all metrics, aligning with results
from single prompt tests. Furthermore, LLMR’s memory-efcient
design maintains a constant context usage for arbitrary prompt se-
quences and thus removes token size limitations during prolonged
sessions. As such, LLMR demonstrates promising performance in

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Model Error rate (↓) Avg. prompt completion (↑) % of fulflled prompts (↑)
GPT-4 0.745 0.339 0.288
GPT-4, few-shot 0.452 0.624 0.500
GPT-4, few-shot with SA 0.374 0.691 0.575
LLMR 0.245 0.824 0.775

Table 2: Numerical results for sequential prompts. The arrows next to the metrics point to its favored direction. For example,
the down arrow next to error rate means a lower error rate should be preferred.

Model Single prompts,
empty [sec]

Single prompts,
bathroom [sec]

Sequential
prompts [sec]

GPT-4 35.24 20.60 77.10
GPT-4, few-shot 37.82 21.28 112.50
GPT-4, few-shot with SA 33.90 20.58 69.40
GPT-4, few-shot with SA, SL 34.46 21.64 74.60
LLMR 90.98 49.16 170.90

Table 3: Average time taken in seconds to generate and compile each prompt. SA stands for the Scene Analyzer, and SL stands
for the Skill Library. LLMR is equivalent to GPT-4 augmented with the Analyzer, the Skill Library, and the Inspector.

the progressive creation and modifcation of virtual scenes, a sce-
nario that resonates more closely with practical use cases. Lastly,
we discuss in section 9 how the users subjectively rate the iteration
process working with our framework.

In general, sequential prompts are much more challenging than
single prompts because they require the model to maintain and
manage long-range dependencies, a task known to be challenging
in sequence modeling [61]. To use the provided example, adding
a window on the wall requires knowledge of the wall that was
created a few prompts prior. From this perspective, the Scene Ana-
lyzer serves as an efective summarization [54] that helps the model
redirect its attention to the part of the scene most relevant to the
request, thereby reducing potential errors. In addition, the Inspec-
tor receives scene parsing from the Scene Analyzer and can thus
efectively shield the generated code against potential errors in a
sequential setting.

8.5 Real-time
8.5.1 Methodology. Last but not least, an important strength and
design goal of our framework is the real-time creation and modifca-
tion of objects and scenes, which is crucial to ensure the practicality
of use. To evaluate the framework’s real-timeness, we measured the
time taken for task completion (from generation to compilation)
with diferent combinations of modules. Once again, the results
were from 5 runs of 150 prompts with each model condition. Note
that we ran the experiment from August 2023 until December 2023,
where the performance and latency of OpenAI’s GPT-4 model var-
ied slightly but the diference was marginal. The experiments were
run on a PC with 32GB of RAM and an Nvidia RTX 3080 GPU.

8.5.2 Results and Discussion. Table 3 shows the average comple-
tion time (i.e., including generation and compilation time) for each
model and condition. The of-the-shelf GPT-4 takes around half a
minute to complete a single prompt, and the full LLMR framework
on average takes a little over a minute – a timeframe we consider
acceptable given the task complexity (Figure 15) and improved task
completion rate (Figure 14 and Table 2). To put things into context,
completing these complex tasks manually takes much longer even
for someone reasonably familiar with Unity if we account for the
time spent on looking up documentation and debugging.

There are a couple of factors that contribute to the additional op-
eration time. First, the complexity of certain tasks, such as retrieving
3D assets from Sketchfab, requires extra time to download assets
from third-party sites. The time needed to fnish retrieving a 3D
model varies a lot and depends on the size of the model, and thus we
did not include this in our evaluation. In this case, our framework
anticipates this by caching the previously saved model for faster
reloading. Second, to ensure the success rate of our framework,
the Inspector nearly doubles the code generation time (see the last
two rows of Table 3). This is an inherent tradeof, and the Inspector
module can be turned of for simple tasks. Finally, back-and-forth
interactions between LLMR and the user as well as iteration over
the generated results contribute to the overall development time.
It is worth noting that during our user study (Section 9), none of
the participants mentioned or complained about generation time.
Participants who are novice Unity users appreciated that LLMR
saved them time from the steep learning curve. In addition, our
"saving and reloading" capability (Section 3.4) allows users to iterate
faster by reusing prior creations, which takes less than 10 seconds
to recompile.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

Figure 16: Results of the user study for both experienced and beginner users of Unity. Overall, the users found LLMR satisfactory
and would recommend others to use it too.

9 USABILITY STUDY
The ablation test focused on only the compilation and run-time
errors in the code generated by our framework. We also wanted to
evaluate the quality of the generated output with human users. In
addition, we also wanted to understand how users with diferent
levels of familiarity with Unity would use our framework.

9.1 Procedure
We recruited twelve users (1 pilot, 11 participants) with diferent
levels of experience using Unity (5 participants had more than one
year of Unity experience). The participants’ backgrounds were soft-
ware engineers, product managers, or researchers. Each session
took around 2 hours, and each participant had at least 1.5 hours to
experiment with the framework. We provided a unity package that
includes basic features (Scene Analyzer and Skill Library, Builder,
and Inspector). Before the study, each participant downloaded the
package to an empty or existing Unity scene and followed the in-
structions to set it up. Each participant went through a few rounds
of interaction with the framework. A round of interaction could
look like the following. The participant types: “Create a tool that
changes the color of the car.” The framework processed the prompt
and generated scripts that were then automatically compiled at run-
time. The participant looked at the generated output and decided
on the next prompt. The investigator might suggest diferent things
to try or remind the participant of the capabilities of the framework.

They were asked to think out loud throughout the study. At the
end, the investigators conducted a semi-structured interview with
the participant (see Appendix for the full list of questions). After
the study, each participant flled out a seven-question question-
naire on a seven-point Likert-scale about their experience using
the framework.

9.2 Results and Design Recommendation
Participants were able to generate various outputs using our frame-
work, such as cities and Asteroids-like games. Some even recreated
their professional work, such as rigging camera angles and gener-
ating animations.

We used a mixed-methods approach to analyze the user study;
We took into account the quantitative insights from the question-
naire response, and we thematically grouped participants’ think-
aloud and semi-structured interview responses to identify patterns.
These fndings were then utilized to generate a set of design sug-
gestions, which we will discuss in detail.

Questionnaire results revealed that participants generally had
positive experiences with our framework in terms of achieving their
goals, intuitiveness, and iterative use. However, there is room for
improvement in reducing frustration and further enhancing user
satisfaction (Figure 16). We also compared the responses between
beginners and experienced Unity users. Beginners rate their expe-
rience with our framework more positively across most categories,
as we will detail in the following sections.

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

9.2.1 Approach to Prompting and Instruction Strategies. We asked
participants to describe their approach to prompting when using
our framework. Participants emphasized the importance of ensur-
ing that their prompts were easy for GPT to understand (P1, P2).
Some participants treated the interaction with the framework as an
experimental playground, experimenting with diferent prompts
and refning them over time through trial-and-error (P0, P6). Many
participants stressed the need to be highly specifc in their instruc-
tions. This involved specifying object names, exact changes, and
detailed parameters to achieve desired results and avoid unpre-
dictability (P3, P4, P5, P9, P11). Many took the approach of breaking
down tasks into smaller, more manageable steps. This included
starting with simple components and gradually adding complexity
(P4, P5, P6, P7, P8, P10). When creating environments or settings,
participants often prioritized static elements before motion-centric
ones and ensured that interactive elements responded to the envi-
ronment (P7).

9.2.2 Comparison with Prior Approach to 3D World Creation. When
asked to compare our framework to their prior experience of cre-
ating 3D worlds, several participants appreciated the ease of de-
scribing their ideas directly to the model, eliminating the need for
extensive manual scripting or documentation reference (P1, P3, P5,
P6). Participants appreciated our framework’s integration capabili-
ties and its ability to automate certain aspects of 3D world creation,
such as selecting and loading objects from 3D model repositories
like Sketchfab and determining model placement (P4, P7). Some par-
ticipants mentioned that our framework reduced the learning curve
for newcomers, making it easier to get started with 3D world cre-
ation (P3). Participants appreciated the ability to directly intervene
and manually adjust the 3D world generated by our framework,
which they considered a powerful feature compared to other uses
of generative models, which do not allow the user to adjust the
fnal output (P9, P11).

9.2.3 Considerations and Challenges. Participants noted that our
framework’s output was often unpredictable compared to tradi-
tional methods, and there was uncertainty about whether the model
would understand the desired structure (P0). Some participants
pointed out that the choice between traditional methods and our
generative method of creating 3D worlds might depend on the artis-
tic nature of the project and the need for creative input (P5, P7, P11).
Other participants recognized that for projects requiring precise,
structured, or rigid control, traditional tools might be preferred
over our framework (P4, P8). Lastly, they also mentioned that for
more complex tasks or as projects grew in size, manual code editing
might still be necessary, as it could be faster than creating detailed
descriptions of edits for the model (P1, P4, P8).

9.2.4 User Expectations and Surprises. We also probed participants’
expectations and what they were surprised by during the user study.
Many were surprised by our framework’s ability to generate code
efectively, helping them automate complex scripting tasks (P1, P4,
P6, P8, P10). Specifcally, P4 was impressed by the model’s ability to
handle complex structures like trees, despite token limits. P10 also
highlighted the framework’s ability to understand the hierarchy
of game objects and utilize this information as input, especially
in large and complex projects. Participants were impressed by the

integration capabilities of our framework with Dall-E 2 and Sketch-
fab, which allowed for the creation of complex structures and the
addition of 3D objects (P4, P6, P8, P10). It was surprising for par-
ticipants to discover that our framework allowed for subjective
queries and descriptions, accommodating plain language and eu-
phemisms rather than strictly technical terms (P5). P1 was also
amazed that the framework exhibited fexibility in understanding
their Unity scripts and could even help resolve errors. Similarly,
some were pleasantly surprised that, when prompted correctly, our
framework could produce unconventional or unexpected results,
such as unique player movement (P0, P3).

10 ETHICAL CONSIDERATIONS
While LLMR and other LLM tools can be transformative to many
industries and applications, there exist risks with any AI-enabled
systems. Firstly, the concern of developers and creators being re-
placed has been on the surface of discussion. However, these tools
have not been proven to achieve end-to-end development. Partici-
pants of our user study commented that our framework is better
at integrating human intervention and involvement, and thus our
framework helps improve productivity and facilitate brainstorm-
ing, rather than completely automating the creation process. A
more serious concern is the potential for individuals to generate
harmful and inappropriate content with our framework. Despite
the safeguards put in by Sketchfab and OpenAI through content
moderation and model alignment, it is still possible to creatively
circumvent these safeguards [29]. While the Roslyn compiler can
automatically check for unsafe code, the need for research on how
to moderate 3D content is merited.

11 LIMITATIONS AND FUTURE WORK
Limitation in scene understanding – Currently, our framework re-
quires access to a "scene graph" with descriptions and the hierarchy
of the game objects. The scene graph provides the spatial relation-
ship of game objects and it assumes that the names of the game
objects (and their children game object components) are correct and
unique. However, 3D models from repositories like Sketchfab often
have random, non-descriptive component names. At the moment,
the framework manipulates objects by fnding the game objects
with the exact name, which is not always reliable.

In addition, the scene hierarchy does not contain meta infor-
mation about the objects, such as afordance and functions. Fur-
thermore, a scene graph would not be readily available when the
scene is a physical environment with augmented virtual objects.
The natural next step is the incorporation of Large Vision Models
(LVM) [18] to achieve tasks that require visual knowledge and se-
mantic understanding of objects and environments. Our framework
can beneft from the enhanced feedback and semantic information
from these models, and our framework can enable more interactive
editing of and interactions with a given 3D environment.

Incorporating world feedback and direct user feedback – Similar to
how the Builder-Inspector loop reduces code compilation error, the
framework’s understanding of the world could be further improved
by incorporating feedback from the virtual world and from the user.
For example, if a 3D model is loaded from Sketchfab, the framework
is ignorant of the model’s (and their subcomponents’) orientation

CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al.

and center of pivot, and thus does not consistently produce the
desired output when asked to rotate the 3D model.

Limitation in Memory and Traceability – Another limitation of
the framework is the token size. As mentioned in Section 5, we
have optimized access to historical conversation and generation to
reduce token usage. There is an inherent tradeof, where the user
instruction might refer to something in a previous prompt exchange
that is not exposed to the next exchange. For example, the Scene
Analyzer has access to the name of the script, the summary of the
script, and the public felds of the script, but if the user just wants
to change a specifc part of a previous script generated two prompts
prior, the framework would not know what to do.

Correspondingly, showing the generated code gives traceability
and transparency to the results of our framework. At the moment,
code written by our framework is stored locally in a cached folder
and can be viewed within the Unity editor window. In addition to
providing feedback via a follow-up prompt, the option to directly
edit the code generated by our framework would give users more
agency and achieve more complex, precise tasks (as mentioned in
Section 9.2.3).

Automatic Skill Generation – At the moment, skills in the Skill
Library are created by human users. For example, we incorporated
the skill of loading assets from Sketchfab as well as the skill of
making objects "grabbable" using MRTK’s [31] namespaces. The
ability to automatically generate new skills [53] based on a couple
of examples would allow our framework to achieve more complex
tasks (such as generating animations) and to be compatible with
diferent platforms (such as Quest and ARKit).

Interoptability – We built upon the Unity engine for its robustness
and the large amount of existing examples of C# code that our LLMs
have likely seen during training. Our work is independent of Unity
and its closed-beta AI tools 1, although our tool can be an add-on to
Unity. We want to highlight that our framework can be adapted to
any environment that supports run-time compilation. Unity is the
baseline requirement for using our framework, and a web-based
approach would further make prompt-based interactive 3D worlds
easy to share and collaborate within. In fact, some of our user study
participants work on web-based mixed reality development, and
they commented that our framework can be easily adapted to their
coding environment.

12 CONCLUSION
In this paper, we have introduced a novel framework that addresses
certain difculties in applying LLMs to generate interactive 3D expe-
riences. This framework leverages the abilities of multiple distinct
and specialized LLM modules, orchestrated in a way that enhances
their individual and collective performance on both coding and
reasoning. Additionally, we have presented certain engineering
aids, such as a skill that utilizes other AI models to add content into
scenes, further expanding the capabilities of our framework.

Our research has demonstrated the benefts of each LLM-based
module, providing a clear rationale for the inclusion of each module
in our framework. By combining somewhat specialized components,
our overall system became more robust and is signifcantly better
than of-the-shelf LLMs. Through a user study, we have tested the

1Link to Unity’s closed-beta AI tools: https://unity.com/ai

quality and usability of our framework, allowing participants to
challenge our framework with unprecedented prompts, thereby
pushing the boundaries of the examples provided to LLMs.

The signifcance of this work lies in its potential to improve
the generation of virtual world content with internal degrees of
freedom and interactivity, and to improve the likelihood that such
content will make sense intuitively to humans in a human-scale
world. In turn, this shows a path to making LLMs more reliable
in the domain of human-scale activity. The LLM is not merely
incorporating what has been said about the world, but tests results
in a simulation of the world. The described framework operates
across various devices and platforms; the present implementation
does assume Unity.

We propose that this framework ofers an opportunity for the
HCI community studying LLMs. By providing virtual- or real-world
data and the ability to act via code in such a world, our framework
can serve as a platform to test and improve the limits of LLM
reasoning capabilities when placed in 3D environments.

In conclusion, our work presents a signifcant step forward in
the integration of LLMs with virtual world content and experience
generation, ofering a powerful tool for both developers and re-
searchers. We look forward to seeing how this framework will be
utilized and expanded upon by the wider community.

ACKNOWLEDGMENTS
We would like to thank various collaborators who gave very useful
comments and suggestions, in particular Jennifer Marsman, Jason
Carter, Sebastien Vandenberghe, Haiyan Zhang, Nebojsa Jojic, Andy
Wilson, Gavin Jancke, Grace Huang, Lily Cheng, Octavio Martinez,
Pavan Davuluri, Robin Seiler, Ruben Caballero, Anuj Gosalia, David
Wolf, Marc Pollefeys, Miguel Susfalich, Allan Naim, Darren Bennett,
Doug Berrett, Gilles Zunino, Jay Watts, Tucker Burns, Preet Mangat.
Additionally, we would like to thank all the study participants.

REFERENCES
[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program Synthesis With Large Language Models. ArXiv Preprint
ArXiv:2108.07732 (2021). https://arxiv.org/pdf/2108.07732

[2] Sanghwan Bae, Donghyun Kwak, Soyoung Kang, Min Young Lee, Sungdong Kim,
Yuin Jeong, Hyeri Kim, Sang-Woo Lee, Woomyoung Park, and Nako Sung. 2022.
Keep Me Updated! Memory Management in Long-Term Conversations. ArXiv
Preprint ArXiv:2210.08750 (2022). https://arxiv.org/pdf/2402.11975

[3] Erik Bethke. 2003. Game Development and Production. Wordware Publishing,
Inc.

[4] Ang Cao and Justin Johnson. 2023. Hexplane: A Fast Representation for Dynamic
Scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 130–141. https://doi.org/10.1109/CVPR52729.2023.00021

[5] Yifei Cheng, Yukang Yan, Xin Yi, Yuanchun Shi, and David Lindlbauer. 2021.
Semanticadapt: Optimization-Based Adaptation of Mixed Reality Layouts Lever-
aging Virtual-Physical Semantic Connections. In The 34th Annual ACM Sympo-
sium on User Interface Software and Technology. 282–297. https://doi.org/10.1145/
3472749.3474750

[6] Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yin-
peng Guo, Zhongqi Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. 2022. Pangu-
Coder: Program Synthesis With Function-Level Language Modeling. ArXiv
Preprint ArXiv:2207.11280 (2022). https://arxiv.org/pdf/2207.11280

[7] Stephanie Claudino Dafara, Federico Saldarini, Balasaravanan Thoravi Kumar-
avel, and Bjørn Hartmann. 2020. AuthorIVE: Authoring Interactions for Virtual
Environments Through Disambiguating Demonstrations. (2020).

[8] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-E: An Embodied Multimodal Language Model. ArXiv Preprint
ArXiv:2303.03378 (2023). https://arxiv.org/pdf/2303.03378.

https://unity.com/ai
https://arxiv.org/pdf/2108.07732
https://arxiv.org/pdf/2402.11975
https://doi.org/10.1109/CVPR52729.2023.00021
https://doi.org/10.1145/3472749.3474750
https://doi.org/10.1145/3472749.3474750
https://arxiv.org/pdf/2207.11280
https://arxiv.org/pdf/2303.03378.

LLMR: Real-time Prompting of Interactive Worlds using Large Language Models CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[9] Catarina G Fidalgo, Yukang Yan, Hyunsung Cho, Mauricio Sousa, David Lindl-
bauer, and Joaquim Jorge. 2023. A Survey on Remote Assistance and Training in
Mixed Reality Environments. IEEE Transactions on Visualization and Computer
Graphics 29, 5 (2023), 2291–2303. https://doi.org/10.1145/3533376

[10] Jonas Freiknecht and Wolfgang Efelsberg. 2017. A Survey on the Procedural
Generation of Virtual Worlds. Multimodal Technologies and Interaction 1, 4 (2017),
27. https://doi.org/10.1111/cgf.12276

[11] Kyle Gao, Yina Gao, Hongjie He, Denning Lu, Linlin Xu, and Jonathan Li. 2022.
Nerf: Neural Radiance Field in 3d Vision, a Comprehensive Review. ArXiv Preprint
ArXiv:2210.00379 (2022). https://arxiv.org/pdf/2210.00379

[12] Google. 2016. Tilt Brush. https://www.tiltbrush.com/
[13] Eric Guerin, Julie Digne, Eric Galin, Adrien Peytavie, Christian Wolf, Bedrich

Benes, and Benoit Martinez. 2017. Interactive Example-Based Terrain Authoring
With Conditional Generative Adversarial Networks. ACM Trans. Graph 36, 6
(2017), 228–1. https://doi.org/10.1145/3130800.3130804

[14] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo,
Douglas Eck, and Aleksandra Faust. 2023. A Real-World Webagent With Plan-
ning, Long Context Understanding, and Program Synthesis. ArXiv Preprint
ArXiv:2307.12856 (2023).

[15] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-Nerf2nerf: Editing 3d Scenes With Instructions. ArXiv
Preprint ArXiv:2303.12789 (2023).

[16] Teresa Hirzle, Florian Muller, Fiona Draxler, Martin Schmitz, Pascal Knierim, and
Kasper Hornbaek. 2023. When XR and AI Meet-A Scoping Review on Extended
Reality and Artifcial Intelligence. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1–45. https://doi.org/10.1145/3544548.
3581072

[17] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner.
2023. Text2room: Extracting Textured 3d Meshes From 2d Text-to-Image Models.
ArXiv Preprint ArXiv:2303.11989 (2023).

[18] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang
Chen, and Chuang Gan. 2023. 3D-LLM: Injecting the 3D World Into Large
Language Models. ArXiv Preprint ArXiv:2307.12981 (2023).

[19] Han Huang, Fernanda De La Torre, Cathy Mengying Fang, Andrzej Banburski-
Fahey, Judith Amores, and Jaron Lanier. 2023. Real-time Animation Generation
and Control on Rigged Models via Large Language Models. arXiv preprint
arXiv:2310.17838 (2023).

[20] Ziheng Huang, Sebastian Gutierrez, Hemanth Kamana, and Stephen MacNeil.
2023. Memory Sandbox: Transparent and Interactive Memory Management for
Conversational Agents. ArXiv Preprint ArXiv:2308.01542 (2023). https://arxiv.
org/pdf/2308.01542

[21] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large Language
Models Meet Program Synthesis. In Proceedings of the 44th International Confer-
ence on Software Engineering. 1219–1231. https://doi.org/10.1145/3510003.3510203

[22] Heewoo Jun and Alex Nichol. 2023. Shap-E: Generating Conditional 3d Implicit
Functions. ArXiv Preprint ArXiv:2305.02463 (2023). https://arxiv.org/pdf/2305.
02463

[23] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J Mitra. 2023.
Holodifusion: Training a 3D Difusion Model Using 2D Images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18423–
18433.

[24] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Al-
varo Herrasti, Matt Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al.
2017. Ai2-Thor: An Interactive 3d Environment for Visual Ai. ArXiv Preprint
ArXiv:1712.05474 (2017). https://arxiv.org/pdf/1712.05474

[25] Gang Li, Heliang Zheng, Chaoyue Wang, Chang Li, Changwen Zheng, and
Dacheng Tao. 2022. 3ddesigner: Towards Photorealistic 3d Object Generation
and Editing With Text-Guided Difusion Models. ArXiv Preprint ArXiv:2211.14108
(2022).

[26] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3d:
High-Resolution Text-to-3d Content Creation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 300–309. https://doi.org/
10.1109/CVPR52729.2023.00037

[27] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-Aware
Online Adaptation of Mixed Reality Interfaces. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. 147–160. https:
//doi.org/10.1145/3332165.3347945

[28] Xin Liu, Daniel McDuf, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening
Zhan, Ming-Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. 2023. Large
Language Models are Few-Shot Health Learners. arXiv preprint arXiv:2305.15525
(2023).

[29] Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida
Zhao, Tianwei Zhang, and Yang Liu. 2023. Jailbreaking Chatgpt via Prompt
Engineering: An Empirical Study. ArXiv Preprint ArXiv:2305.13860 (2023). https:
//arxiv.org/pdf/2305.13860

[30] Zhao Mandi, Shreeya Jain, and Shuran Song. 2023. RoCo: Dialectic Multi-Robot
Collaboration With Large Language Models. ArXiv Preprint ArXiv:2307.04738
(2023). https://arxiv.org/pdf/2307.04738

[31] Microsoft. 2017. Mixed Reality Toolkit. https://github.com/microsoft/
MixedRealityToolkit-Unity

[32] Microsoft. 2023. Mixed Reality Mobile Remoting. https://github.com/microsoft/
Mixed-Reality-Remoting-Unity

[33] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An Open Large Language Model
for Code With Multi-Turn Program Synthesis. ArXiv Preprint ArXiv:2203.13474
(2022). https://arxiv.org/pdf/2203.13474

[34] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023). https:
//arxiv.org/pdf/2303.08774.

[35] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d Using 2d Difusion. ArXiv Preprint ArXiv:2209.14988 (2022). https:
//arxiv.org/pdf/2209.14988

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. https://doi.org/10.1109/CVPR52688.2022.
00101 arXiv:2103.00020 [cs.CV]

[37] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and
Niko Suenderhauf. 2023. SayPlan: Grounding Large Language Models Using 3D
Scene Graphs for Scalable Task Planning. ArXiv Preprint ArXiv:2307.06135 (2023).
https://arxiv.org/pdf/2307.06135

[38] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-
Or. 2023. Texture: Text-Guided Texturing of 3d Shapes. ArXiv Preprint
ArXiv:2302.01721 (2023). https://arxiv.org/pdf/2302.01721

[39] Jasmine Roberts, Andrzej Banburski-Fahey, and Jaron Lanier. 2022. Steps Towards
Prompt-Based Creation of Virtual Worlds. ArXiv Preprint ArXiv:2211.05875 (2022).
https://arxiv.org/pdf/2211.05875

[40] Jasmine Roberts, Andrzej Banburski-Fahey, and Jaron Lanier. 2022. Surreal VR
Pong: LLM Approach to Game Design. In 36th Conference on Neural Information
Processing Systems (NeurIPS 2022). https://www.microsoft.com/en-us/research/
publication/surreal-vr-pong-llm-approach-to-game-design/

[41] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos
Kokkinos, Naman Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, et al. 2023.
Text-to-4d Dynamic Scene Generation. ArXiv Preprint ArXiv:2301.11280 (2023).

[42] Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang,
Soo Ye Kim, and Daniel Aliaga. 2023. ObjectStitch: Object Compositing With
Difusion Model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 18310–18319. https://doi.org/10.1109/CVPR52729.2023.
00582

[43] Misha Sra, Sergio Garrido-Jurado, and Pattie Maes. 2017. Oasis: Procedurally
Generated Social Virtual Spaces From 3d Scanned Real Spaces. IEEE Transactions
on Visualization and Computer Graphics 24, 12 (2017), 3174–3187. https://doi.
org/10.1007/978

[44] Misha Sra, Sergio Garrido-Jurado, Chris Schmandt, and Pattie Maes. 2016. Pro-
cedurally Generated Virtual Reality From 3D Reconstructed Physical Space. In
Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology.
191–200. https://doi.org/10.1145/2993369.2993372

[45] Misha Sra, Prashanth Vijayaraghavan, Pattie Maes, Deb Roy, et al. 2017.
Deepspace: Mood-Based Image Texture Generation for Virtual Reality From
Music. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 41–50.

[46] Unity Technologies. 2019. Unity Render Streaming. https://docs.unity3d.com/
Packages/com.unity.renderstreaming@2.0/manual/index.html

[47] OpenAI. 2022. DALL·E 2. https://openai.com/dall-e-2
[48] Sketchfab, Inc. 2023. Sketchfab. https://sketchfab.com/
[49] Trivial Interactive. 2019. Roslyn C# - Runtime C# Compiler. https://forum.unity.

com/threads/released-roslyn-c-runtime-c-compiler.651505/
[50] Unity Technologies. 2005. Unity Game Engine. https://unity.com/
[51] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjoern

Hartmann, and Tovi Grossman. 2019. Loki: Facilitating Remote Instruction of
Physical Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
161–174. https://doi.org/10.1145/3332165.3347872

[52] Ryan Volum, Sudha Rao, Michael Xu, Gabriel A DesGarennes, Chris Brockett,
Benjamin Van Durme, Olivia Deng, Akanksha Malhotra, and Bill Dolan. 2022.
Craft an Iron Sword: Dynamically Generating Interactive Game Characters by
Prompting Large Language Models Tuned on Code. In The Third Wordplay:
When Language Meets Games Workshop. https://openreview.net/forum?id=
I9glM3N6iAa

[53] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu,
Linxi Fan, and Anima Anandkumar. 2023. Voyager: An Open-Ended Embodied
Agent With Large Language Models. ArXiv Preprint ArXiv:2305.16291 (2023).
https://arxiv.org/pdf/2305.16291

https://doi.org/10.1145/3533376
https://doi.org/10.1111/cgf.12276
https://arxiv.org/pdf/2210.00379
https://www.tiltbrush.com/
https://doi.org/10.1145/3130800.3130804
https://doi.org/10.1145/3544548.3581072
https://doi.org/10.1145/3544548.3581072
https://arxiv.org/pdf/2308.01542
https://arxiv.org/pdf/2308.01542
https://doi.org/10.1145/3510003.3510203
https://arxiv.org/pdf/2305.02463
https://arxiv.org/pdf/2305.02463
https://arxiv.org/pdf/1712.05474
https://doi.org/10.1109/CVPR52729.2023.00037
https://doi.org/10.1109/CVPR52729.2023.00037
https://doi.org/10.1145/3332165.3347945
https://doi.org/10.1145/3332165.3347945
https://arxiv.org/pdf/2305.13860
https://arxiv.org/pdf/2305.13860
https://arxiv.org/pdf/2307.04738
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/Mixed-Reality-Remoting-Unity
https://github.com/microsoft/Mixed-Reality-Remoting-Unity
https://arxiv.org/pdf/2203.13474
https://arxiv.org/pdf/2303.08774.
https://arxiv.org/pdf/2303.08774.
https://arxiv.org/pdf/2209.14988
https://arxiv.org/pdf/2209.14988
https://doi.org/10.1109/CVPR52688.2022.00101
https://doi.org/10.1109/CVPR52688.2022.00101
https://arxiv.org/abs/2103.00020
https://arxiv.org/pdf/2307.06135
https://arxiv.org/pdf/2302.01721
https://arxiv.org/pdf/2211.05875
https://www.microsoft.com/en-us/research/publication/surreal-vr-pong-llm-approach-to-game-design/
https://www.microsoft.com/en-us/research/publication/surreal-vr-pong-llm-approach-to-game-design/
https://doi.org/10.1109/CVPR52729.2023.00582
https://doi.org/10.1109/CVPR52729.2023.00582
https://doi.org/10.1007/978
https://doi.org/10.1007/978
https://doi.org/10.1145/2993369.2993372
https://docs.unity3d.com/Packages/com.unity.renderstreaming@2.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.renderstreaming@2.0/manual/index.html
https://openai.com/dall-e-2
https://sketchfab.com/
https://forum.unity.com/threads/released-roslyn-c-runtime-c-compiler.651505/
https://forum.unity.com/threads/released-roslyn-c-runtime-c-compiler.651505/
https://unity.com/
https://doi.org/10.1145/3332165.3347872
https://openreview.net/forum?id=I9glM3N6iAa
https://openreview.net/forum?id=I9glM3N6iAa
https://arxiv.org/pdf/2305.16291

CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[54] Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian, Shi Wang, Dacheng
Tao, and Li Guo. 2023. Recursively Summarizing Enables Long-Term Dialogue
Memory in Large Language Models. ArXiv Preprint ArXiv:2308.15022 (2023).
https://arxiv.org/pdf/2308.15022

[55] Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and
Furu Wei. 2023. Augmenting Language Models With Long-Term Memory. ArXiv
Preprint ArXiv:2306.07174 (2023).

[56] Zehan Wang, Haifeng Huang, Yang Zhao, Ziang Zhang, and Zhou Zhao. 2023.
Chat-3D: Data-Efciently Tuning Large Language Model for Universal Dialogue
of 3D Scenes. ArXiv Preprint ArXiv:2308.08769 (2023). https://arxiv.org/pdf/2308.
08769

[57] Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. 2023. Embodied
Task Planning With Large Language Models. ArXiv Preprint ArXiv:2307.01848
(2023). https://arxiv.org/pdf/2307.01848

[58] Xuhai Xu, Anna Yu, Tanya R Jonker, Kashyap Todi, Feiyu Lu, Xun Qian,
João Marcelo Evangelista Belo, Tianyi Wang, Michelle Li, Aran Mun, et al.
2023. XAIR: A Framework of Explainable AI in Augmented Reality. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–30. https://doi.org/10.1145/3544548.3581500

[59] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding Conditional
Control to Text-to-Image Difusion Models. arXiv:2302.05543 [cs.CV]

De La Torre, Fang, and Huang et al.

[60] Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu Chen, Lei Bai, Qi
Chu, Nenghai Yu, and Wanli Ouyang. 2023. MotionGPT: Finetuned LLMs Are
General-Purpose Motion Generators. ArXiv Preprint ArXiv:2306.10900 (2023).

[61] Jingyu Zhao, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and
Guangjian Tian. 2020. Do RNN and LSTM Have Long Memory?. In International
Conference on Machine Learning. PMLR, PMLR, 11365–11375. https://doi.org/10.
5555/3524938.3525992

[62] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A Survey
of Large Language Models. ArXiv Preprint ArXiv:2303.18223 (2023). https:
//arxiv.org/pdf/2303.18223.

[63] Wanjun Zhong, Lianghong Guo, Qiqi Gao, and Yanlin Wang. 2023. MemoryBank:
Enhancing Large Language Models With Long-Term Memory. ArXiv Preprint
ArXiv:2305.10250 (2023). https://arxiv.org/pdf/2305.10250

[64] Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu Yuan, Jun Jiang, Xun Qian,
Jingtao Zhou, Yiyi Huang, Zheng Xu, Yinda Zhang, et al. 2023. InstructPipe:
Building Visual Programming Pipelines with Human Instructions. arXiv preprint
arXiv:2312.09672 (2023).

[65] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin,
Shanghang Zhang, and Peng Gao. 2023. Pointclip V2: Prompting Clip and Gpt
for Powerful 3d Open-World Learning. In ICCV, Vol. 2. 5. https://doi.org/10.1109/
ICCV51070.2023.00249

https://arxiv.org/pdf/2308.15022
https://arxiv.org/pdf/2308.08769
https://arxiv.org/pdf/2308.08769
https://arxiv.org/pdf/2307.01848
https://doi.org/10.1145/3544548.3581500
https://arxiv.org/abs/2302.05543
https://doi.org/10.5555/3524938.3525992
https://doi.org/10.5555/3524938.3525992
https://arxiv.org/pdf/2303.18223.
https://arxiv.org/pdf/2303.18223.
https://arxiv.org/pdf/2305.10250
https://doi.org/10.1109/ICCV51070.2023.00249
https://doi.org/10.1109/ICCV51070.2023.00249

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative 3D Assets
	2.2 Generative Interactive 3D Environments
	2.3 Editor Support for Mixed Reality Development
	2.4 LLMs Interpreting Spatial, Non-Linguistic Information

	3 LLMR: a framework for generating real-time, interactive 3D worlds using large language models
	3.1 Planner
	3.2 Scene Analyzer
	3.3 Builder-Inspector
	3.4 Compilation, Save and Reload
	3.5 Skill Library

	4 Incorporating Existing Open-Source 3D Assets
	5 Memory Management
	6 Cross-Platform Compatibility and Installation
	6.1 Installation

	7 Example Prompted Interactive Worlds and Uses
	7.1 Game Design and Creativity
	7.2 Accessibility and Adaptive Interface
	7.3 Remote Assistance and Planning

	8 Numerical Study
	8.1 Error Rate
	8.2 Error Rate by Levels of Difficulty
	8.3 Task Complexity
	8.4 Iterative, Incremental Design
	8.5 Real-time

	9 Usability Study
	9.1 Procedure
	9.2 Results and Design Recommendation

	10 Ethical Considerations
	11 Limitations and Future Work
	12 Conclusion
	Acknowledgments
	References

