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Figure 1: Examples of diverse use cases and functionalities enabled by the Large Language Model for Mixed Reality (LLMR) 
framework. A: Creation of a detailed kitchen scene from scratch using Unity primitives. B: Prompting and drawing objects 
into existence via multi-modal interactions. C: Integration with external plugins like loading objects from Sketchfab to create 
high-fdelity scenes and special skills like generating animations. D: Prompting edits of existing VR scenes like changing the 
color of the objects. E: Automated generation of instructional guides and Questioning and Answering about the scene. F: The 
framework is compatible across platforms and supports the integration of external sensor data. 
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ABSTRACT 
We present Large Language Model for Mixed Reality (LLMR), a 
framework for the real-time creation and modifcation of interac-
tive Mixed Reality experiences using LLMs. LLMR leverages novel 
strategies to tackle difcult cases where ideal training data is scarce, 
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or where the design goal requires the synthesis of internal dynamics, 
intuitive analysis, or advanced interactivity. Our framework relies 
on text interaction and the Unity game engine. By incorporating 
techniques for scene understanding, task planning, self-debugging, 
and memory management, LLMR outperforms the standard GPT-4 
by 4x in average error rate. We demonstrate LLMR’s cross-platform 
interoperability with several example worlds, and evaluate it on 
a variety of creation and modifcation tasks to show that it can 
produce and edit diverse objects, tools, and scenes. Finally, we con-
ducted a usability study (N=11) with a diverse set that revealed 
participants had positive experiences with the system and would 
use it again. 

CCS CONCEPTS 
• Computing methodologies → Spatial and physical reason-
ing; Multi-agent systems. 
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large language model, mixed reality, spatial reasoning, artifcial 
intelligence 
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1 INTRODUCTION 
Creating 3D virtual worlds is a challenging task that requires both 
artistic and technical skills. In addition, 3D content often becomes 
deprecated and has limited interoperability due to platform and 
device upgrades. Recently, generative AI models have made con-
siderable progress in producing meshes for objects and scenes 
[17, 18, 22, 25, 26, 41, 43]. However, few works have ventured be-
yond visual appearances to bring e.g., interactive and behavioral 
elements into the generated content. In addition, existing rendering-
based methods require substantial compute and time to generate 
and render 3D objects, while the quality and resolution of these 
generations are limited [11, 35]. 

On the other hand, the rapid advancement in Large Language 
Models (LLM) like GPT has shown promise in code generation and 
reasoning [1, 6, 14, 21, 33]. An integration of LLMs with a game 
engine, like Unity [50], can enable faster 3D content development 
and spontaneous user creation, a core element of mixed reality 
since its inception. In addition, the 3D mixed reality worlds ofer 
rich, spatial, multimodal information (most are post-symbolic or 
beyond language) that can potentially help LLMs to better situate 
their reasoning in the reality that humans live in. 

This paper presents LLMR(Large Language Models for Mixed 
Reality), a framework that enables real-time creation and modifca-
tion of interactive 3D scenes. LLMR can create objects that are rich 
in both visual and behavioral aspects, or make spontaneous and 
bespoke edits on an existing environment. For example, we lever-
age LLMR to spawn interactive tools that are self-contained units 
designed to perform specifc functions in virtual and mixed-reality 

environments. They can be combined to form more complex interac-
tive systems, extending the range and depth of user and AI-driven 
experiences. These confgurations can be saved and transferred 
across various environments, serving as the building blocks for 
versatile interactive experiences. 

LLMR is an orchestration of an ensemble of specialized GPTs. 
At its center is the Builder GPT serving as an architect of C# Unity 
code for crafting interactive scenes. However, the multitude of tasks 
falling under virtual world creation renders a standalone coder in-
sufcient. For instance, the ability to meaningfully modify an exist-
ing virtual world necessitates a profound semantic understanding 
of the scene. As humans, we have the ability to infer the properties 
of objects in the world and can refer to objects in the environment 
using demonstratives. To simulate the benefts of perceptual access, 
we incorporated the Scene Analyzer GPT. It generates a comprehen-
sive summary of scene objects, ofering detailed information when 
requested, including aspects like size, color, and the functionalities 
of interactive tools previously generated by LLMR. We also imple-
mented the Skill Library GPT that determines the relevant skills 
that are needed for the Builder to accomplish the user’s request. In 
addition, we have observed that the code generated by the Builder 
lacks robustness and frequently contains bugs. To remedy this, we 
introduce the Inspector GPT, which evaluates the Builder’s code 
against a predefned set of rules. This evaluation acts as a protective 
measure against compilation and run-time errors before the code 
is executed via the Compiler in the Unity Game Engine. 

To illustrate the efcacy of our framework in the creation and 
editing of virtual scenes, we tested LLMR on two sets of 150 prompts 
encompassing a wide array of creation and modifcation tasks. Our 
fndings demonstrate LLMR’s superior performance in contrast to 
general-purpose LLMs while emphasizing the performance gain 
achieved with the addition of each module in our pipeline. In par-
ticular, LLMR exhibits 4x reduction in code errors in both an empty 
and an existing scene, when compared to of-the-shelf GPT-4 [34]. 
In the meantime, LLMR can successfully complete sequences of 
tasks with varying complexities, while keeping the completion 
time around a minute. These outcomes underscore LLMR’s capac-
ity to execute user instructions in real time with a higher degree of 
robustness. 

To evaluate if our framework can generate not only functional 
code but also interactive worlds that meet users’ instructions, we 
evaluated LLMR with 11 participants with varying Unity experi-
ences. At a high level, participants found LLMR to be intuitive and 
easy to use, and they were able to iteratively achieve desired out-
puts without much manual scripting. While the framework has 
limitations such as its unpredictability due to generative models’ 
stochastic nature, and thus is not applicable for all contexts (espe-
cially ones that require precise and specifc control), the output 
generated by LLMR serves as a starting point for more complex 
scene generation. 

Our paper is organized as follows: we begin by describing prior 
work and approaches to generating 3D objects and environments for 
mixed reality in Section 2. In Section 3, we frst provide an overview 
of LLMR followed by details of the function of each module of our 
framework. We then discuss important extensions of our frame-
work, such as incorporating plugins, memory management, and 
cross-platform compatibility, in Sections 4,5,6, respectively. We then 
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present a series of exemplar applications in Section 7 to illustrate 
the wide range of creations enabled by LLMR. Section 8 Numeri-
cal Study includes a comprehensive evaluation of our framework 
against our design goals: high completion rate, real-time execution, 
robust against complex tasks, and iterative fne-tuning ability. We 
follow the Numerical Study with Section 9 User study that evalu-
ates the quality of LLMR’s output and presents usability feedback. 
Finally, in Section 10, we discuss the limitations and future work 
for others to build upon. 

In summary, our main contributions are the following: 

(1) We introduced a versatile framework for real-time genera-
tion of interactive 3D objects and scenes using LLM modules, 
designed for easy setup with an OpenAI API key and adapt-
able across various mixed reality tools, environments, and 
devices. 

(2) We carried out extensive evaluations, including a technical 
ablation study to gauge the framework’s performance and re-
liability, and a user study to derive design recommendations 
for optimizing the user experience. 

(3) We showcased the expanded capabilities of GPT beyond text 
inputs, illuminating the broader potential of LLM applica-
tions, and demonstrated the framework’s broad applicability 
in domains such as remote training, creativity, and accessi-
bility. 

(4) We advocate for the interoperability and longevity of mixed 
reality applications enabled by AI, and thus we openly share 
the installation package, code, and prompts used in our ap-
plication and evaluation so that future work can build on 
top of our framework. 

2 RELATED WORK 
Our research on the creation and modifcation of interactive 3D 
scenes using natural language is situated at the intersection of large 
language models (LLMs) and 3D content generation. This section 
provides an overview of the related work in these areas, highlight-
ing how our work builds upon and extends existing research. 

2.1 Generative 3D Assets 
The generation of 3D assets has been a signifcant focus in re-
cent research. The work of Li et al. with 3DDesigner [25], Jun and 
Nichol with Shap·E [22], and Poole et al. with DreamFusion [35] 
have demonstrated the potential of text guidance and generative 
models in creating complex and diverse 3D objects. Lin et al. intro-
duce Magic3D [26], a high-resolution text-to-3D content creation 
framework that addresses the limitations of slow optimization and 
low-resolution output inherent in existing methods like Dream-
Fusion. Recently, Holodifusion by Karnewar et al. [23] furthered 
the conversation by employing difusion models for 3D generative 
modeling. The Instruct-NeRF2NeRF method [15] and advancements 
like Pointclip v2 [65] as well as the work of Roberts et al. [39] have 
explored the power of prompting techniques in 3D open-world 
learning. A comprehensive review of Neural Radiance Field (NeRF) 
models by Gao et al. [11] adds to our understanding of this rapidly 
growing feld and aligns with our approach of enabling LLMs to in-
terpret non-linguistic or non-symbolic information. Our approach 

extends beyond visual appearances to incorporate interactive and 
behavioral elements into the generated content. 

2.2 Generative Interactive 3D Environments 
In addition to generating objects, the creation of interactive 3D 
environments has been further explored, with contributions from 
Wang et al. with Voyager [53], Singer et al. with MAV3D [41], and 
Höllein, Lukas, et al. with Text2Room [17]. Volum et al. has shown 
that LLMs can be used to guide NPC interactions with a virtual 
environment [52]. Wang et al. also introduced Chat-3D [56], a sys-
tem that focuses on universal dialogues for 3D scenes, which is 
further augmented by the work of Hong et al. with 3D-LLM [18]. 
New approaches like Oasis [43] and Procedurally Generated Vir-
tual Reality [44] add novel perspectives. Recent advancements such 
as Interactive Example-Based Terrain Authoring with Conditional 
Generative Adversarial Networks by Guérin et al. [13] add a layer 
of complexity to how terrains can be generated from simple user 
inputs. Research by Freiknecht and Efelsberg [10], Cao et al. [4], 
and Song et al. [42] has focused on the balance between realism and 
algorithmic performance. DeepSpace introduced a novel method of 
mood-based texture generation from music [45], adding another 
layer of complexity to asset generation. While these contributions 
are signifcant in building interactive 3D spaces, the interplay be-
tween AI and mixed reality in these environments remains an open 
question. Our work tackles this gap by bringing the capabilities of 
LLMs to a real-time Unity editor for Mixed Reality applications. 

2.3 Editor Support for Mixed Reality 
Development 

Mixed Reality (XR) development has been explored by Hirzle et 
al. [16] and Fidalgo et al. [9], who provide comprehensive reviews 
at the intersection of AI and XR. Lindlbauer et al. [27] and Cheng 
et al. [5] focus on the automatic adaptation of MR interfaces, a 
line of work that is relevant for multi-user XR experiences, as 
shown by Mandi et al. with RoCo [30]. Thoravi Kumaravel et al. 
[51] complement these eforts by focusing on bi-directional mixed-
reality telepresence. Compared with prior work, we allow users to 
directly authorize the environment using natural language. 

2.4 LLMs Interpreting Spatial, Non-Linguistic 
Information 

Lastly, many have pushed the boundary of LLMs by inputting non-
linguistic information (which was not in the training set), such 
as for visual programming [64] or processing sensor data [28]. 
More related to our work is using LLM to interface with spatial, 
embodied data. Work of Zhang et al. with MotionGPT [60], Wu et 
al.’s work on Embodied Task Planning [57] as well as Richardson 
et al. with TEXTure [38]. Dafara et al. [7] and Rana et al. [37] 
further extended these concepts to include demonstrations and task 
planning. Driess et al. with PaLM-E [8] has shown the potential 
of LLMs in generating human motion, texturing 3D shapes, and 
incorporating real-world sensor modalities, respectively. These 
eforts are complemented by Xu et al. with XAIR [58], which focuses 
on explainable AI in augmented reality. We hope LLMR contribute 
to the improvement of LLM’s capability of spatial reasoning and 
world understanding. 
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Figure 2: Large Language Model for Mixed Reality (LLMR) architecture for real-time interactive 3D scene generation. Starting from 
the left, a user prompt and the existing 3D scene (Ω) are fed into the Planner (P) and Scene Analyzer (SA) modules, respectively. 
The Planner decomposes the user prompt into a sequence of sub-prompts, while the SA summarizes the current scene elements. 
These are then integrated with a Skill Library (SL) to guide the Builder (B) module, which generates the appropriate code. The 
Inspector (I) module iteratively checks the generated code for compilation and run-time errors. Upon receiving the green light 
from the Inspector, the code is compiled using the Roslyn Compiler and executed in the Unity Engine to produce the desired 
3D scene and functionalities as specifed by the user. 

3 LLMR: A FRAMEWORK FOR GENERATING 
REAL-TIME, INTERACTIVE 3D WORLDS 
USING LARGE LANGUAGE MODELS 

Large language models are capable code generators, and their ability 
to synthesize programs has been extensively tested [1, 6, 14, 21, 33]. 
Scripting in a game engine, however, is especially challenging given 
the multitude of tasks and the complexity of the development envi-
ronment. For a non-comprehensive list, generating a realistic 3D 
world may involve object creation, texturing, behavior program-
ming, event scripting, animations, particle efects, lighting, and 
user interface [3]. Prompting these elements in real time requires 
a framework that understands the virtual scene, interprets user 
intention, and generates high-quality code. To this end, we present 
Large Language Model for Mixed Reality (LLMR), a framework that 
enables real-time creation and modifcation of interactive 3D scenes 
using natural language. 

LLMR is an orchestration of language models, each contextual-
ized with a distinct metaprompt to outline its role, as illustrated 
in Figure 2 and Algorithm 1. A metaprompt is a specially crafted 
input sequence or context that guides an LLM’s behavior or out-
put, enabling more focused or nuanced responses than standard 
prompts. We start with the Planner, which breaks down the user’s 
request into a sequence of appropriately scoped instructions. These 
instructions, along with a concise summary of the existing scene 
from the Scene Analyzer and extra knowledge for specialized skills 
from the Skill Library, are used as inputs to the central module 
called Builder, which generates code to fulfll these instructions. In 
addition, we use a separate Inspector module to check the Builder’s 
generated code against potential compilation and run-time errors 
before fnally executing the code. 

The task of generating interactive 3D scenes boils down to gen-
erating and executing appropriate code snippets to accomplish the 
user’s prompt. Formally, denote the user’s request by � and the 
current 3D world by Ω (which may be empty), we wish to draw 
sample � ∼ P(� |�, Ω), where P is the distribution of syntactically 
valid, request-fulflling code. We then compile and execute � at 
run-time under the Unity Engine [50], a development platform for 
creating virtual scenes that suits our needs. Below, we detail each 

module and explain the design choices that enable various aspects 
of prompting a virtual world into existence. 

Algorithm 1: LLMR 

Input :�: user’s request; Ω: current scene 
Require : A(� |�, Ω): Scene Analyzer; 

P(�1, ..., �� |�, �): Planner; 
L(ℎ |�): Skill Library; 
B(� |�, �, ℎ): Builder; 
I(�, � |�, �, �): Inspector. 

� ∼ A(·|�, Ω); 
(�1, ..., �� ) ∼ P(·|�, �) /* Decomposes the request into 

suitable instructions. */ 
Ω1 ← Ω; 
for � = 1 : � do 

�� ∼ A(·|�� , Ω� ) /* Analyze the current scene. */ 
ℎ� ∼ L(·|�� ) /* Retrieve required skills. */ 
�� ← GenerateCodeWithInspection(�� , �� , ℎ� ); 
Ω�+1 ← CompileAndRun(�� , Ω� ); 

end 
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Figure 3: The Planner and its role in breaking down a user’s high-level request into a sequence of manageable subtasks 
(�1, �2, . . . , �� ). The Planner engages in a user-oriented conversation to determine the appropriate scope and granularity 
of each subtask. Following this, the Builder executes the plan by generating code (�1, �2, . . . �� ) for each subtask, efectively 
carrying out the user’s initial request. 

3.1 Planner 
Prompting a world into existence can be a hefty task. "Create a 
city and all its denizens" is a valid request, albeit one that is overly 
ambitious to achieve in a single step. Following the common wisdom 
"nothing is particularly hard if broken into small jobs", instead of 
directly sampling from P(� |, �, Ω), we propose a Planner � : � ↦→ 
(�1, �2, ..., �� ) to decompose each prompt into subtasks within an 
appropriate scope, then use autoregressive sampling to carry out 
these subtasks via a sequence of generated code (�1, �2, ..., �� ): 
P(�1, �2, ..., �� |�1, �2, ..., �� , Ω) = P(�1 |�1, �2, ..., �� , Ω) × 

�Ö−1 

× P(��+1 |��, �1, �2, ..., �� , Ω)
�=1 (1) 

�Ö−1 

= P(�1 |�1, Ω) P(��+1 |��, ��+1, Ω)
�=1 

where �� B (�1, ..., �� ). The second quality follows by assuming 
independence of code generations and requests at diferent steps, 
�� ⊥ ��, ∀� ≠ �. An illustration for this procedure is provided 
in Figure 3. However, sampling from P(��+1 |��, ��+1, Ω) may be 
difcult for a language model, because it has to infer the efect 

of (�1, ..., �� ) on the initial world Ω before writing code ��+1. To 
remove the guesswork, we leverage a runtime compiler � to execute 
(�1, ...�� ) in order, each time getting a new world state Ω�+1 = 
�(��+1, Ω� ). We can then rewrite: 

P(��+1 |��, ��+1, Ω) = P(��+1 |��, ��+1, Ω� ), (2) 

where we assume {�� }��=1 is Markovian when conditioned on 
Ω� . That is, the current world state is rich enough to capture all 
previous executions past the most recent one. 

In principle, it is possible for the user to limit their prompts 
within a certain difculty so that the decomposition is unnecessary. 
However, the user may not know the appropriate task scope a priori 
(if creating a city is too hard, how about a single house? Or a room in 
the house?) As a result, having a properly confgured Planner makes 
the framework robust to prompts of varying difculty. In addition, 
the user may have diferent levels of details in their prompt. For 
example, "Creating a car" is a valid request that nevertheless does 
not specify its appearance or functionality. Here, the Planner serves 
as a conversational assistant that interacts with the user to devise a 
plan with an appropriate scope and granularity, which signifcantly 
improves the user experience. 
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Figure 4: Scene Analyzer module. The virtual scene, depicted in the bottom-left corner, is converted into a parsed scene hierarchy 
in JSON format. This, along with the user request, serves as input to the Scene Analyzer. The output is a fltered, relevant 
summary of the scene, which is then used for conditioning subsequent modules like the Builder. The process optimizes the 
utilization of the language model’s fxed context window and enhances focus on objects relevant to the user prompt. 

3.2 Scene Analyzer 
There are many possible representations of a virtual world Ω that 
may include visual, behavioral, and auditory elements. In this work, 
we derive Ω from the Unity scene hierarchy, which contains all 
existing game objects, their attached components, and their parent-
child relations. The hierarchy is parsed into a JSON string and can 
then be used as input to language models. However, directly using 
the raw JSON string as input proves to be infeasible in practice. 
First, most prompts only require interactions with a small subset 
of Ω, so it is unnecessary and even distracting to use its entirety as 
input. Second, LLMs have a fxed context window � that serves 
as its short-term memory, which has to contain its metaprompt, 
few-shot examples, user prompt, and generative output [62]. For 
example, GPT-4 supports either 8k or 32k tokens for maximum 
number of token at a time[34], but even the 32k token limit can be 
insufcient, particularly for intricate scenes containing numerous 
objects, each consisting of multiple components. 

To tackle these issues, we created a separate module termed 
the Scene Analyzer, which is a properly prompted LLM A(� |�, Ω)
that outputs a succinct summary of Ω conditional on the user re-
quest. At a high level, one can think of the Scene Analyzer as a 
means of perception that relays an abstraction of the environment 
for downstream processing. An illustration of the module is pro-
vided in Figure 4. Concretely, the output �� ∼ A(·|�, Ω� ) is used to 
reparametrize the density at each sampling step: 

P(��+1 |��, ��+1, �� ) ∼ P(��+1 |��, ��+1, Ω� ) (3) 

3.3 Builder-Inspector 
Central to LLMR is the Builder B(� |�, �), a module responsible for 
generating code conditional on the user prompt. It serves as our 
main apparatus for approximating P. In other words, we hope 

B(� |��, ��+1, �� ) ≈ P(��+1 |��, ��+1, �� ), (4) 

holds with a carefully crafted metaprompt and enough in-context 
demonstrations. In practice, however, the complex nature of creat-
ing a virtual world makes the approximation unsatisfactory even 
with as many examples as the context length allows. This is largely 
because the Builder module is asked to accomplish the instructions 
with some creativity while faithfully following an extensive list of 
specifc guidelines that align the output, which causes to Builder to 
have a "cognitive overload". 

Algorithm 2: Generate Code With Inspection 

Input :�: user’s request, �: scene summary, ℎ: additional 
hint. 

Require : B(� |�, �, ℎ): Builder; 
I(�, � |�, �, �): Inspector; 
T: maximum number of inspections. 

� ← 0; 
�0 ← ∅; 
�0 ← False; 
while � < � and �� is false do 

�� ∼ B(·|�, �, ℎ, �� ) /* Builder writes code �� */ 
(�� , �� ) ∼ I(·|�, �) /* Inspector checks code, 

outputs verdict �� and suggestion �� */ 
� ← � + 1; 

end 
return x 
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Figure 5: Builder-Inspector paradigm in LLMR. The Builder module B(� |�, �) generates code based on user input and current 
state. The generated code is then inspected by the Inspector module I(�, � |�, �) for compilation and run-time errors. If errors are 
found, indicated by verdict � , the Inspector provides suggestions � for corrections. The process iterates until either the code 
passes inspection or a maximum number of inspections � is reached. This feedback loop signifcantly enhances the quality of 
the generated scripts. 

To ameliorate this, we introduce another module, the Inspector 
I(�, � |�, �), that checks the Builder’s generated code for compilation 
and run-time errors. In the case of a failed inspection indicated by 
verdict � , the Inspector outputs a suggestion � for potential fxes 
and prompts the Builder to make another attempt. As a result, the 
Builder and Inspector work in tandem to write and self-debug code, 
forming a feedback system that signifcantly improves the quality 
of the generated scripts. We outline this paradigm in Algorithm 
2 and illustrate it in Figure 5. Interestingly, the Inspector excels 
at catching errors even if the same guidelines in its metaprompt 
are present in the Builder. One possibility is that this is due to 
providing a more extensive list of negative and positive examples 
to the Inspector. Still, when the Builder is provided with the same 
examples, performance is not as high. Our intuition for this is that 
verifying a snippet of code is easier than writing the said code, or 
the two tasks bear diferent failure modes that can be efectively 
hedged. 

3.4 Compilation, Save and Reload 
After the Builder-generated script passes the inspection, we follow 
the approach in [39] to compile and execute the scripts at runtime 
through the Roslyn C# compiler [49]. The inclusion of run-time 
compilation elevates LLMR from an ofine development tool to a 
real-time generative framework. 

To enable iterative design, users can save their generations and 
selectively reload the saved generations in the existing or new scene 
without having to repeat the prompting process. The generated 
output is saved as C# scripts and reattached to the Compiler to be 

compiled at runtime. A one-sentence summary of each script’s func-
tion is saved, so alternatively, the output can also be regenerated 
by the framework based on the summary. 

3.5 Skill Library 
The creation of the Skill Library Module is motivated by two pri-
mary challenges. The frst is the token size limitation imposed by 
the GPT architecture on the context, or the "metaprompt," provided 
to the Builder. Typically, the Builder is presented with a compre-
hensive list of various APIs and plug-ins that could be employed 
to meet the user’s needs. As the range of available skills expands, 
this list lengthens, eventually surpassing GPT’s token size limit for 
public users. The second challenge lies in the Builder’s attention 
capacity, which appears to be limited. Even when we attempt to 
condense all the available skills into the Builder’s metaprompt, it 
struggles to keep track of a specifc skill when the list becomes too 
lengthy. This limitation is further exacerbated by the necessity to 
include precise coding examples for each plugin to ensure their 
efective utilization by GPT. To address these challenges, we cre-
ated the Skill Library module, denoted as L(ℎ |�), which serves as 
a centralized repository for all available skills and as an attention 
mechanism that retrieves only the skills relevant to a specifc user 
prompt. We illustrate this module in Figure 6. 

Formally, a specialized GPT is provided with a metaprompt con-
taining two essential pieces of information: 1) a high-level summary 
of the available skills, and 2) the user’s prompt. The GPT model 
is tasked with identifying either a single skill or a subset of skills 
that are most pertinent to the user’s request. The Skill Library re-
mains efcient and small in token size because it only needs the 
high-level descriptions of each skill, while the specifc usage details, 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al. 

Figure 6: Skill Library module workflow. On the left, the module receives inputs from the Scene Analyzer and a user prompt 
"create a whale and make it swim happily". A list of skills is provided to the SL GPT module in its metaprompt, which also 
contains a high-level summary of available skills such as object retrieval and animation. The module then identifes and 
outputs the most relevant skills (in this case, object retriever and animation) to the Builder, which subsequently utilizes these 
tools for implementation. 

as well as positive and negative examples, are stored separately. 
Once the relevant skills are identifed, their detailed information 
and usage examples are fetched and passed on to the Builder for 
implementation. 

ℎ� ∼ �(·|�� ) (Retrieve required skills, if any.) (5) 

As an illustrative example, consider a skill we created for GPT’s 
use, which leverages a combination of generative and contrastive 
models along with the Sketchfab API to source and integrate 3D 
models into a scene. We have also created skills that allow the 
generation of animation of a rigged object in real-time [19]. While 
we delve into the specifcs of a skill in the next section, it is worth 
noting that the Skill Library only receives a high-level summary of 
how this particular skill functions, along with similar descriptors 
for other skills. The actual examples needed to use this skill are 
then retrieved and supplied to the Builder for execution. 

B(� |�, �, ℎ) : Builder; �ℎ���ℎ = retrieved skills from� (6) 

This approach ensures that the Skill Library and the Builder work 
in tandem to efciently and efectively generate code that fulflls 
the user’s request while overcoming the token size and attention 
capacity limitations of LLMs. 

4 INCORPORATING EXISTING OPEN-SOURCE 
3D ASSETS 

The process of generating interactive 3D scenes often involves the 
creation and placement of various objects. For instance, a request 
to create an ofce space might be decomposed into the genera-
tion of a desk, a chair, a lamp, and a clock. While it is possible to 
generate these objects using primitives, a method that works well 
even for composite objects like a car or an entire room (depicted in 
the car of Figure 8 and the kitchen of Figure 1), there is a need to 
leverage the intricate objects created by artists and 3D developers 
that exhibit high real-world fdelity. Previous work has utilized 
objects from Sketchfab [39, 40] and used the priors of GPT to size 
them accordingly to the real world. However, this approach en-
counters challenges when the user prompts an object, say a clock, 
and Sketchfab ofers 50 diferent clocks, only three of which are 
suitable for an ofce setting. 

To address this issue, we introduce the Object Retriever, a skill 
that employs other AI models to identify the 3D object that the user 
most likely intended. The workfow of the Object Retriever can be 
formalized as follows: given a user prompt �, the Object Retriever 
identifes an object � contained in � and calls the Dall·E-2 [47] API 
for the object � , generating a "target image" � . Concurrently, the 
same object-prompt � is used to download � screenshots of 3D 
objects freely available on Sketchfab, denoted as � = {�1, �2, ..., �� }. 
We then employ CLIP [36] to map out similarity spaces in the 
language domain � and the visual domain � . We select the top 
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Figure 7: Object Retriever pipeline for generating a 3D scene. The user provides a prompt for a scene containing a clock, a picture 
frame, a chair, and an apple on a table. For each object (e.g., clock), the pipeline uses DALL-E 2 to create a target 3D image. 
Concurrently, multiple screenshots of potential matches from open-source Sketchfab models are downloaded using the object 
label as the query. CLIP is employed to generate embeddings for these images which includes the target image. The top 5 
candidates in the language similarity space are selected. The fnal object is then chosen based on the highest visual similarity 
to the target image. This sequence is repeated for each object in the prompt to assemble the complete 3D scene, as shown on 
the far right. 

5 images � ′ ⊂ � that are closest to the object-prompt � in the 
language similarity space �, and from these, we select the image �∗ 

that is closest to the target image � in the visual similarity space � . 
Formally, let �(�, �� ) and � (�, �� ) denote the language and visual 
similarity between the object-prompt � and the screenshot �� , and 
the target image � and the screenshot �� , respectively. The Object 
Retriever operates as follows: 

This process is repeated to generate entire scenes. Algorithm 3 
and Figure 7 describe this pipeline. There is potential for further 
exploration to improve this pipeline. For instance, selecting from the 
visual similarity space before the language similarity space might 
yield better results. Future work will involve human feedback to 
identify the workfow that maximizes the likeness between the 3D 
object loaded and the user’s intended object. 

Algorithm 3: Retrieving 3D objects 
Input :�: user’s prompt 
Require :� : object in �; 

� : target image; 
�: screenshots; 
�(�, �� ): language similarity; 
� (�, �� ): visual similarity. 

� ′ ← Top 5�� ∈ �with highest�(�, �� ); 
�∗ ← arg max�� ∈� ′ � (�, �� ); 
return � ∗ 

5 MEMORY MANAGEMENT 
By default, language models generate new words based on all pre-
viously sampled tokens, a confguration that may not be ideal due 
to their fnite context length. For instance, this may hinder the 
model’s ability to engage in extended conversations. To mitigate 
this, techniques such as dialogue summarization and distillation 
can be employed [2, 20, 54]. Additional research has delved into 
leveraging persistent memory and retrieving in-context examples 
from databases to enhance few-shot performance [55, 63]. 

We sought to deploy a protocol that alters the contents within 
the LLM’s context window while the framework is in continuous 
use. We explored three memory modes for each module within 
LLMR : full memory, limited memory, and memory-less. We docu-
ment the memory modes used for each module in Table 1. These 
modes pertain to the retention of all, a few, or none of the historical 
instructions and generated code within the model’s context. Defne 
an episode of interaction as the input and output to the module for 

Module Memory Mode 
Planner Memory-less 
Scene Analyzer Memory-less 
Builder Limited-memory 
Inspector Memory-less 
Skill Library Memory-less 

Table 1: Memory mode for each module. Note that no module 
uses full memory, the default GPT paradigm. 
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Figure 8: Cross-Platform and Cross-Scene Transferability made possible by LLMR. The left panel shows a car automatically 
created by LLMR using Unity primitives, complete with color and composite features (e.g., wheels and headlights), controllable 
via keyboard inputs. The middle panel displays the same car transferred to a diferent Unity scene featuring moon-like gravity 
and terrain. The right panel showcases the framework’s adaptability across platforms by illustrating how the car can collide 
with objects in the physical world and can be controlled using IMU data from a user’s mobile phone. 

Figure 9: Sketching objects into existence with LLMR. In the left panel, a user requests a "magic paintbrush" to be attached to a 
VR controller. The middle panel illustrates the automatic conversion of the line renderer into a paintbrush, where the user 
is shown drawing a chair. The right panel demonstrates the 2D-to-3D transformation using 2D-3D ControlNet [59] and our 
Dall·E-CLIP Sketchfab API. This enables the generation of multiple chair models that can then be transferred across diferent 
platforms using LLMR for further interaction. 

a single user prompt to LLMR. To implement a memory-limited 
module, for example, we clear its context of all but the most recent 
� episodes after every prompt, where � = 1 typically. 

An efective memory management protocol ofers three distinct 
advantages: 

Token limit: Trimming old memory reduces token consumption 
and enables prolonged usage of LLMR, a critical feature for grad-
ually constructing intricate scenes. Notably, the Scene Analyzer 
benefts from having no memory of prior interactions, as it is sus-
ceptible to token constraints. As an example, the frst AI2-THOR 
scene hierarchy measures around 7k GPT-4 tokens [24]. Hence, a 
full memory Scene Analyzer with 8k tokens can only fulfll a single 
instruction before its context is depleted, rendering the framework 
essentially unusable outside of a memory-less setting. 

Performance: Certain modules perform better with reduced mem-
ory, as they may be prone to be confused by earlier interactions. For 

example, our empirical observations indicate that the Inspector mod-
ule exhibits increased leniency in repeated inspections, allowing 
the proposed code to pass before all errors are rectifed. 

Interpretability: A memory-limited framework provides clearer 
error attribution. For instance, when a sequence of prompts is sent, 
and the generation fails at the fnal step, maintaining all memory 
makes it challenging to discern whether the last prompt posed a 
unique challenge or if the framework became perplexed by aspects 
of an earlier task. Improved transparency facilitates swift debugging 
and iterating on our framework. 

We believe the choice of memory mode is a crucial aspect of 
any LLM orchestration pipeline, and our design choices may ofer 
insights for the development of LLM systems beyond the task of 
creating virtual worlds. 
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Figure 10: Accessible Interface Features in Action. A1 and A2 show how a user can prompt the system to adjust the color scheme 
of a kitchen scene for red-green color-blind compatibility. B1 and B2 demonstrate the activation of a magnifer tool. C1 and C2 
reveal the option to hide objects deemed not kid-friendly. 

6 CROSS-PLATFORM COMPATIBILITY AND 
INSTALLATION 

We show that our framework can be deployed in various types of 
platforms (e.g., Web, Mobile, AR, and VR) and on various devices 
(e.g., Meta Quest, HoloLens 2). To keep the framework lightweight, 
we deploy our framework’s run-time compiler on a PC that acts 
as the server, and we build upon existing remoting protocols and 
frameworks [32, 46] to stream the generated results to the client 
device (e.g., holographic remoting for a HoloLens 2). Platform de-
pendencies, such as namespaces and other packages can be added 
as a "Skill" to the framework’s Skill Library, which allows the user 
to quickly enable interaction modalities such as pinch and input 
modalities like speech and controller. 

Interactive elements built within one scene can be saved as self-
contained units by storing the source code that created them. We 
can then re-execute the cached code to load and adapt the prompted 
objects into novel scenarios, which can be as simple as a diferent 
scene with adjusted physics or a project with completely new APIs, 
as depicted in Figure 8. Our experiments with LLMR suggest that 
translating interactive elements between independent SDK plat-
forms is possible and suggests an application of adapting existing 
pieces of software (perhaps ones written with obsolete, no-longer 
working code) to newer SDKs. We leave this for future explorations. 

6.1 Installation 
Our framework can be easily added to any existing Unity scenes. 
The framework consists of a unity package and a few additional 
open-sourced packages (such as GLTF loader and OpenAI), and 

the installation process takes only a few steps. This enables any-
one with an OpenAI API key to try our framework. We are strong 
proponents of the adaptability of our framework, and so we have 
open-sourced the foundational framework along with several ex-
amples on GitHub (https://llm4mr.github.io/). Readers who wish to 
try our framework can try out the example playground scenes or 
can easily add our Unity package to their existing Unity projects. 
They would need to obtain an OpenAI API key, a copy of the Roslyn 
compiler and optionally an account for Sketchfab if they wish to 
automatically load existing assets. In the Appendix, we also provide 
the metaprompts used for each LLMR’s modules for transparency. 

7 EXAMPLE PROMPTED INTERACTIVE 
WORLDS AND USES 

In this section, we illustrate the wide range of objects, tools, and 
scenes one can construct with LLMR. We highlight that our frame-
work is modular, real-time, adaptive, interactive, and multi-modal, 
which diferentiates this approach from other generated 3D worlds 
that primarily focus on visual appearance. For all of the examples 
below, it is important to stress that all of the results are achieved 
simply by prompting the system, without the need for manual 
intervention. 

https://llm4mr.github.io/
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Figure 11: Spontaneous Creation of Teaching Guides. A demonstration of creating a guide for operating a cofee machine in 
which LLMR animates a hand model to point out the various steps of the operation. Our framework allows for the rapid 
creation of such guides and furthermore allows users to ask questions that were not predicted by the instructor beforehand, 
with appropriate motions being animated on the fy. 

7.1 Game Design and Creativity 
An immediate application of our framework is the creation of games, 
in particular, scenes. A scene sets the context of a game, and it 
usually involves numerous assets that are difcult and tedious to set 
up manually. A game designer can use the Planner to create a draft 
environment, and add interactive components like "players" and 
"opponents" with responsive behaviors to mock up the gameplay 
logic. In addition, game designers can expand gameplay in multiple 
environments. For example, a toy car can be created and reloaded in 
a moon simulation environment in VR (Figure 8 B) or be spawned in 
the physical world and driven around with a mobile phone (Figure 
8 C). Besides "prompting" objects into existence, we show that 
our framework also allows users to "draw" things into existence. 
Here the user wishes to design a chair (Figure 9). They can do so 
by simply prompting "a magic paintbrush", which has functions 
similar to that of TiltBrush [12], a popular 3D drawing application, 
and then turn the drawing into a 3D model with the integration of 

Dall-E 2, CLIP, and Sketchfab, through a similar process illustrated 
in Figure 7. 

7.2 Accessibility and Adaptive Interface 
Similar to the accessibility feature in 2D documents, our framework 
can also be prompted to make a 3D scene accessible and adaptive 
to diferent user needs and preferences. Figure 10 shows three 
examples of editing an existing virtual kitchen scene to diferent 
requests. For example, one can request to make the scene to be 
more friendly to red-green color-blind users. For someone who is 
near-sighted, they can prompt a magnifer tool that zooms into a 
particular part of the room. An architect can use our framework 
to fgure out if the space is friendly for wheelchair users or make 
sure objects in the room are child-proof. These examples show 
how our framework leverages LLMs’ prior knowledge and puts the 
knowledge into the context of a spatial world at a human scale. 
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Figure 12: Simulated Rescue Plan. The HoloLens 2 displays the automated generation of a simulation of a rescue plan using our 
framework. The guide shows an interactable 3D terrain, helicopter, and simulated wind, allowing rescue workers to visualize 
the fight path under diferent weather conditions. 

7.3 Remote Assistance and Planning 
In a remote training scenario, typically, creating such a 3D interac-
tive training guide requires custom creation, from rigging a gesture 
to placing a UI element. An instructor can use our framework to 
automate the generation of a training guide from a list of instruc-
tions. (Figure 11). The trainee can then, for example, use an AR 
device that overlays information on the machine. As the trainee 
advances through the steps, they can ask questions directly to the 
guide where answers can be generated in the context of the trainee’s 
learning progress. In another scenario of remote rescue planning, 
helicopter operators can prompt a simulation of the fight path 
given several target locations and see how the fight path might be 
afected by diferent wind conditions (Figure 12). 

8 NUMERICAL STUDY 
As an orchestrated pipeline, LLMR augments an LLM coder with 
multiple modules to enhance its reliability. To empirically justify the 
inclusion of each module in our framework, we quantitatively eval-
uate LLMR’s generative performance against a variety of prompts 
and baselines. In addition to success in compiling the generated 
code, we evaluate how our framework meets our design goals: 
real-timeness, complexity of interaction, and iterative fne-tuning 
ability. 

This section is organized as follows: we begin by evaluating 
LLMR on single prompts in an empty and existing scene, highlight-
ing the impact of each module and overall performance compared 
to standard LLMs. We also discuss the framework’s performance 
at completing tasks with diferent complexity. Then, we conduct 
a similar experiment on sequential prompts to illustrate LLMR’s 
capacity for iterative designs. Lastly, we present an analysis of the 
real-time aspect of our framework. 

8.1 Error Rate 
8.1.1 Experiment Setup. We start by investigating LLMR’s ability 
to carry out single, independent requests in either an empty or 
existing scene. To this end, we created two datasets each with 150 
prompts. The frst set is used as inputs in an empty scene and is 
mainly creative in nature as there is nothing to modify or interact 
with in the world. An example is "creating a cat and mouse out of 
primitives. The cat should chase the mouse, who fees in an erratic 
pattern." The second set is used as inputs in an existing scene shown 
in Figure 13. The scene was downloaded from Sketchfab [48] and 
was chosen as it is sufciently complex (around 35 objects). A few 
example prompts are shown in Figure 13, which involve visual and 
semantic alteration of the space. To promote fairness and diversity 
in our test prompts, we use a separate, properly prompted GPT to 
generate two evaluation datasets. The authors created 15 prompts as 
demonstrations for the prompting GPT. The full evaluation datasets 
can be found in Appendix. 

To assess the efcacy of LLMR, a proper metric is required. Given 
the subjective nature of tasks such as "make the room more uplift-
ing," it is difcult to systematically determine if a prompt has been 
met successfully. However, the presence of run-time or compilation 
errors in the generated code can be considered a clear indicator 
of failure. Therefore, we have selected the ’error rate’ – the pro-
portion of outputs with bugs – as the criterion for assessing the 
framework’s performance. 

To evaluate the efcacy of each module of LLMR, we created 
three model conditions, each with adding one additional GPT mod-
ule, besides GPT-4 zero shot and GPT-4 few shot as our baselines. 
This makes a total of 5 model conditions. We conducted 5 runs of 150 
prompts with each model condition and for each scene condition 
(empty scene and existing scene). 
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Figure 13: An illustration of our experimental setup. We provide the bathroom scene (left) and a subset of the 150 prompts 
(right) used in this space for the evaluation provided in Figure 14. 

8.1.2 Results and Discussion. We provide a summary of error rates 
for our model and various baselines in Figure 14. To underscore the 
beneft of each LLMR module, we add each component incremen-
tally to tease out its marginal impact. Starting with the of-the-shelf 
GPT-4, we see that standard in-context learning techniques increase 
performance in both settings, yet only to the extent that roughly 
half of the requests fail. From here, we augment the standard GPT-4 
with components developed in this work, starting with the Scene 
Analyzer, then the Skill Library, and fnally the Inspector. As a result, 
the generated errors drop substantially to only 20.5% and 25.2% of 
the error rate observed in the original GPT-4 for the empty and 
existing scene, respectively, which attests to the efectiveness of our 
pipeline over standard, of-the-shelf LLMs for the task of generating 
interactive scenes. 

We now discuss the impact of each LLMR module in detail. As 
explained in Section 3.2,the Scene Analyzer allows LLMR to parse 
and understand the virtual scene and is thus indispensable for 
meaningful manipulations of existing environments. Consequently, 
enhancing GPT-4 with the Scene Analyzer results in a signifcant 
performance enhancement in the Bathroom scene. Secondly, the 
Inspector module enables LLMR to perform self-debugging and 
efectively prevents the generation of erroneous code, further re-
ducing the error rate in both scenarios. Although we integrated the 
Inspector at the fnal stage, it is compatible with any combination of 
modules and will consistently reduce the output error rate. As an 
example, we added Inspector to GPT-4 with few-shot prompting in 
the empty scene and observed the average error drops from 45.0% 
to 13.1%. We also observe the Skill Library has a marginal impact on 
the error rates. This is expected, since the Skill Library is designed 
to handle more specialized tasks, which we discuss in more detail in 
the following subsections. Lastly, the Planner is not included as it al-
ters the input prompt with step-by-step decomposition, making the 
results incommensurable. We include in the Appendix an example 
where the Planner is used to build a virtual kitchen, underscoring 
the beneft of decomposing difcult tasks into incremental steps. 

8.2 Error Rate by Levels of Difculty 
8.2.1 Methodology. To explore the relationship between the com-
plexity of prompts and the completion rate of LLMR, we performed 
an ad-hoc analysis of the results from the previous section. We 
classifed our prompts for single prompt task into levels of difculty 
from 1 to 10. To achieve this, we utilized a non-contextualized LLM 
devoid of any meta-prompting, asking it to assign a difculty level to 
each prompt. This process was repeated ten times for each prompt, 
and the average difculty level was then calculated (one which had 
a small standard deviation). The aggregated results, categorized by 
difculty level, are illustrated in Figure 15. The prompt given to 
this LLM (GPT-4) was "The above are prompts that are given to a 
system that can code and execute commands inside of Unity. We want 
to measure how good this system is at coding in C# for Unity purposes. 
Given your knowledge of Unity, please rate all of the prompts above 
on a level of difculty from 1 to 10". The rationale behind employing 
a non-contextualized LLM (without any meta-prompting) lies in the 
subjective nature of assessing difculty levels. Being the developers 
of the system, our judgment might be inherently biased, infuenced 
by our understanding of the system’s capabilities and limitations. 
Furthermore, engaging Unity experts to determine the difculty 
levels presents its challenges. The variability in the expertise and 
experience levels among Unity developers could lead to inconsis-
tent evaluations and difculty in standardizing the experience of 
the evaluators without a comprehensive and uniform examination 
framework. 

8.2.2 Results and Discussion. In this section, we analyze the per-
formance of various architectures in executing Unity tasks, difer-
entiated by difculty levels that range from Easy to Hard. These 
levels were determined based on a 1-10 scale assigned by GPT-4. 
Figure 15 shows the error rate of the diferent architectures on two 
panels. On the left, we have the results for the empty scene and on 
the right for a scene with a bathroom containing various objects. 

Across all levels and scenes, LLMR (orange line) consistently 
outperforms other architectures, underscoring its robustness. In 
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Figure 14: Comparison for average compilation and run-time error rate. SA stands for the Scene Analyzer, SL stands for the 
Skill Library, and I stands for the Inspector. Overall, in both creating from scratch, as well as editing existing scenes, LLMR 
outperforms GPT-4 by 3x in the case with few-shot prompting, and gives over 4x improvement compared to the performance 
of zero-shot GPT-4. 

the empty scene on the left, a noticeable trend is that the error 
rate generally increases with the task difculty. This trend aligns 
with expectations, except in the case of GPT-4 Zero Shot. A notable 
point here is that the Easy category only contains a single prompt, 
which is a basic "Hello World" console display. The simplicity of 
this task explains its solitary placement in this category. For the 
bathroom scene, the error rates for Medium and Somewhat Hard 
tasks show minimal variation, suggesting a plateau in difculty 
perception. An interesting observation is the drop in error rates 
from Easy to Somewhat Easy tasks, although this is not consistent 
across all models. The integration of the Skill Library shows mixed 
efects (dark blue line). In some instances, it enhances performance, 
while in others it seems to hinder it. 

Estimating the difculty of tasks, especially in scenarios involv-
ing modifcations to an existing scene rather than building from 
scratch, presents challenges. This is exemplifed in the bathroom 
scene, where adding new objects (difculty levels 3-4) did not re-
quire scene understanding, contrary to the tasks in the Easy cate-
gory, which involved moving objects and thus relied more on scene 
comprehension. Our analysis of the prompts indicates that the na-
ture of the scene signifcantly infuences the perceived difculty. 
For instance, in the bathroom scene, certain tasks categorized as 
Easy in theory turned out to be more challenging in practice. The 
Appendix ofers a more comprehensive analysis, including vari-
ations in architecture, such as the combination of Scene Analyzer 
(SA) and Inspector modules. 

In conclusion, LLMR demonstrates superior performance across 
various scenarios, underscoring its efectiveness in handling tasks 
of varying complexity in Unity environments. This analysis also 
highlights the intricate relationship between task difculty, scene 
context, and architectural components, paving the way for further 
exploration in optimizing task-specifc architectures. 

8.3 Task Complexity 
Complexity can manifest through diferent aspects. To supplement 
the ad-hoc analysis above, we now provide a more comprehensive 
discussion by breaking down the concept of complexity through 
the following aspects and share fndings that emerged throughout 
our experimentation: 

Specifc Skill Requirement – Certain tasks are inherently more 
difcult. For example, deforming the mesh of an object is much 
more complicated than adding an object to the scene. A human 
developer may need to look up examples and documentation to 
achieve a complex task; LLMR can reduce the complexity of the task 
by starting a templated script. However, LLMR is not error-proof. As 
shown in the previous section, LLMR’s error rate increases (but not 
above 40%) as a task becomes more difcult. The error rate can be 
further brought down by adding relevant skills to the Skill Library 
by an experienced developer to help LLMR achieve a higher success 
rate and reduce possible rounds of iteration between the Builder 
and Inspector. LLMR can save the time of experienced developers 
by generalizing beyond the examples provided in the Skill Library. 

Token Requirement – The amount of tokens required grows as 
the scene or the object becomes more complex. For example, if the 
existing scene has a tree object with many leaves, where each leaf 
is considered a child game object, the scene summary could easily 
exceed the maximum token allowed (at the time of writing, the 
maximum number of tokens was 8k, though this has now grown 
signifcantly). In anticipation of this, our Scene Analyzer module 
only fetches the top-level game object name to flter out the relevant 
game object based on user query and task. This allows our frame-
work to handle a scene as complex as the Kitchen scene (example 
in Figure 10) and the Bathroom scene (used in Numerical Study, 
Figure 13). Besides the complexity of objects and scenes, a task itself 
can also require a lot of tokens. One such example is generating an 
animation [19] (with the help of a skill written for the Skill Library) 
that involves generating time-series of numerous joint positions 
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Figure 15: Performance Improvement of LLMR Modules Organized by Difculty Level of Prompts. Comparing Error Rates of 
GPT-4 with Incremental LLMR Module Integration. The error rates for most methods increase with difculty, and the LLMR 
method (in orange) still maintains a consistently lower error rate compared to others. 

and rotations. An optimization could involve developing a simple 
way to represent the time-series information. 

Memory Requirement – When a task requires prior knowledge 
of previous prompts (e.g., behaviors created by previous prompts), 
this requires previous prompts to have been successfully compiled 
and to be robust enough. We described approaches to managing the 
memory of the diferent modules in Section 5 to both conserve total 
memory consumed while preserving the necessary information for 
the framework to carry out complex tasks. 

Quality Requirement – A user may request diferent levels of 
fdelity of the output. For example, the user could create a complex 
scene out of primitives only with the help of the Planner module 
(e.g., a full kitchen, Figure 1) instead of out of higher fdelity 3D 
models (see examples of participants’ creations in the video fg-
ure). The fexibility to create visually simple yet functional and 
interactive scenes is akin to creating a lo-f mockup that allows 
users to quickly prototype and iterate without waiting for the full 
generation of 3D scenes that are visually complex but cost a lot of 
compute and time and are not easy to modify. 

8.4 Iterative, Incremental Design 
8.4.1 Experimental Setup. In practice, creating content-rich virtual 
worlds requires incremental steps. Therefore, it is important to 
assess how LLMR performs in iterative scenarios, where requests 
are made and fulflled one after another to gradually build and 
alter a virtual scene. We tested LLMR with 80 sequential prompts, 
each averaging 5 single prompts. These sequential prompts consist 

of a set of instructions aimed at completing a complex task. For 
instance, a sequential prompt for constructing a bedroom might 
include steps like "create an empty room with walls; add a bed with 
a lamp next to it; add a window on the wall." 

We use three metrics to evaluate performance in an iterative 
setting. First, the error rate on all individual prompts is considered 
and is the same as in single tasks. Second, we calculate the average 
degree of completion, measured as the number of completed single 
prompts over the sequence length for each sequential prompt. As 
the sequential prompts have varying lengths, accessing the comple-
tion average prevents "long and simple" sequences from fooding 
the error rate. Lastly, we defne fulflled prompts to be sequential 
prompts that are completed from start to fnish and compute their 
percentage over the total number of prompts. This is a demanding 
metric that validates whether the model can manage extended use 
sessions gracefully. In extreme cases, a model excelling only in 
short sequences can have a reasonable error rate yet zero perfectly 
fulflled prompts. 

8.4.2 Results and Discussion. The numerical results, presented in 
Table 2, show that GPT-4’s performance in sequential tasks im-
proves signifcantly with the addition of each LLMR module. When 
all modules are integrated, LLMR surpasses the standard GPT-4 by 
approximately 2.5 times across all metrics, aligning with results 
from single prompt tests. Furthermore, LLMR’s memory-efcient 
design maintains a constant context usage for arbitrary prompt se-
quences and thus removes token size limitations during prolonged 
sessions. As such, LLMR demonstrates promising performance in 
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Model Error rate (↓) Avg. prompt completion (↑) % of fulflled prompts (↑) 
GPT-4 0.745 0.339 0.288 
GPT-4, few-shot 0.452 0.624 0.500 
GPT-4, few-shot with SA 0.374 0.691 0.575 
LLMR 0.245 0.824 0.775 

Table 2: Numerical results for sequential prompts. The arrows next to the metrics point to its favored direction. For example, 
the down arrow next to error rate means a lower error rate should be preferred. 

Model Single prompts, 
empty [sec] 

Single prompts, 
bathroom [sec] 

Sequential 
prompts [sec] 

GPT-4 35.24 20.60 77.10 
GPT-4, few-shot 37.82 21.28 112.50 
GPT-4, few-shot with SA 33.90 20.58 69.40 
GPT-4, few-shot with SA, SL 34.46 21.64 74.60 
LLMR 90.98 49.16 170.90 

Table 3: Average time taken in seconds to generate and compile each prompt. SA stands for the Scene Analyzer, and SL stands 
for the Skill Library. LLMR is equivalent to GPT-4 augmented with the Analyzer, the Skill Library, and the Inspector. 

the progressive creation and modifcation of virtual scenes, a sce-
nario that resonates more closely with practical use cases. Lastly, 
we discuss in section 9 how the users subjectively rate the iteration 
process working with our framework. 

In general, sequential prompts are much more challenging than 
single prompts because they require the model to maintain and 
manage long-range dependencies, a task known to be challenging 
in sequence modeling [61]. To use the provided example, adding 
a window on the wall requires knowledge of the wall that was 
created a few prompts prior. From this perspective, the Scene Ana-
lyzer serves as an efective summarization [54] that helps the model 
redirect its attention to the part of the scene most relevant to the 
request, thereby reducing potential errors. In addition, the Inspec-
tor receives scene parsing from the Scene Analyzer and can thus 
efectively shield the generated code against potential errors in a 
sequential setting. 

8.5 Real-time 
8.5.1 Methodology. Last but not least, an important strength and 
design goal of our framework is the real-time creation and modifca-
tion of objects and scenes, which is crucial to ensure the practicality 
of use. To evaluate the framework’s real-timeness, we measured the 
time taken for task completion (from generation to compilation) 
with diferent combinations of modules. Once again, the results 
were from 5 runs of 150 prompts with each model condition. Note 
that we ran the experiment from August 2023 until December 2023, 
where the performance and latency of OpenAI’s GPT-4 model var-
ied slightly but the diference was marginal. The experiments were 
run on a PC with 32GB of RAM and an Nvidia RTX 3080 GPU. 

8.5.2 Results and Discussion. Table 3 shows the average comple-
tion time (i.e., including generation and compilation time) for each 
model and condition. The of-the-shelf GPT-4 takes around half a 
minute to complete a single prompt, and the full LLMR framework 
on average takes a little over a minute – a timeframe we consider 
acceptable given the task complexity (Figure 15) and improved task 
completion rate (Figure 14 and Table 2). To put things into context, 
completing these complex tasks manually takes much longer even 
for someone reasonably familiar with Unity if we account for the 
time spent on looking up documentation and debugging. 

There are a couple of factors that contribute to the additional op-
eration time. First, the complexity of certain tasks, such as retrieving 
3D assets from Sketchfab, requires extra time to download assets 
from third-party sites. The time needed to fnish retrieving a 3D 
model varies a lot and depends on the size of the model, and thus we 
did not include this in our evaluation. In this case, our framework 
anticipates this by caching the previously saved model for faster 
reloading. Second, to ensure the success rate of our framework, 
the Inspector nearly doubles the code generation time (see the last 
two rows of Table 3). This is an inherent tradeof, and the Inspector 
module can be turned of for simple tasks. Finally, back-and-forth 
interactions between LLMR and the user as well as iteration over 
the generated results contribute to the overall development time. 
It is worth noting that during our user study (Section 9), none of 
the participants mentioned or complained about generation time. 
Participants who are novice Unity users appreciated that LLMR 
saved them time from the steep learning curve. In addition, our 
"saving and reloading" capability (Section 3.4) allows users to iterate 
faster by reusing prior creations, which takes less than 10 seconds 
to recompile. 
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Figure 16: Results of the user study for both experienced and beginner users of Unity. Overall, the users found LLMR satisfactory 
and would recommend others to use it too. 

9 USABILITY STUDY 
The ablation test focused on only the compilation and run-time 
errors in the code generated by our framework. We also wanted to 
evaluate the quality of the generated output with human users. In 
addition, we also wanted to understand how users with diferent 
levels of familiarity with Unity would use our framework. 

9.1 Procedure 
We recruited twelve users (1 pilot, 11 participants) with diferent 
levels of experience using Unity (5 participants had more than one 
year of Unity experience). The participants’ backgrounds were soft-
ware engineers, product managers, or researchers. Each session 
took around 2 hours, and each participant had at least 1.5 hours to 
experiment with the framework. We provided a unity package that 
includes basic features (Scene Analyzer and Skill Library, Builder, 
and Inspector). Before the study, each participant downloaded the 
package to an empty or existing Unity scene and followed the in-
structions to set it up. Each participant went through a few rounds 
of interaction with the framework. A round of interaction could 
look like the following. The participant types: “Create a tool that 
changes the color of the car.” The framework processed the prompt 
and generated scripts that were then automatically compiled at run-
time. The participant looked at the generated output and decided 
on the next prompt. The investigator might suggest diferent things 
to try or remind the participant of the capabilities of the framework. 

They were asked to think out loud throughout the study. At the 
end, the investigators conducted a semi-structured interview with 
the participant (see Appendix for the full list of questions). After 
the study, each participant flled out a seven-question question-
naire on a seven-point Likert-scale about their experience using 
the framework. 

9.2 Results and Design Recommendation 
Participants were able to generate various outputs using our frame-
work, such as cities and Asteroids-like games. Some even recreated 
their professional work, such as rigging camera angles and gener-
ating animations. 

We used a mixed-methods approach to analyze the user study; 
We took into account the quantitative insights from the question-
naire response, and we thematically grouped participants’ think-
aloud and semi-structured interview responses to identify patterns. 
These fndings were then utilized to generate a set of design sug-
gestions, which we will discuss in detail. 

Questionnaire results revealed that participants generally had 
positive experiences with our framework in terms of achieving their 
goals, intuitiveness, and iterative use. However, there is room for 
improvement in reducing frustration and further enhancing user 
satisfaction (Figure 16). We also compared the responses between 
beginners and experienced Unity users. Beginners rate their expe-
rience with our framework more positively across most categories, 
as we will detail in the following sections. 
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9.2.1 Approach to Prompting and Instruction Strategies. We asked 
participants to describe their approach to prompting when using 
our framework. Participants emphasized the importance of ensur-
ing that their prompts were easy for GPT to understand (P1, P2). 
Some participants treated the interaction with the framework as an 
experimental playground, experimenting with diferent prompts 
and refning them over time through trial-and-error (P0, P6). Many 
participants stressed the need to be highly specifc in their instruc-
tions. This involved specifying object names, exact changes, and 
detailed parameters to achieve desired results and avoid unpre-
dictability (P3, P4, P5, P9, P11). Many took the approach of breaking 
down tasks into smaller, more manageable steps. This included 
starting with simple components and gradually adding complexity 
(P4, P5, P6, P7, P8, P10). When creating environments or settings, 
participants often prioritized static elements before motion-centric 
ones and ensured that interactive elements responded to the envi-
ronment (P7). 

9.2.2 Comparison with Prior Approach to 3D World Creation. When 
asked to compare our framework to their prior experience of cre-
ating 3D worlds, several participants appreciated the ease of de-
scribing their ideas directly to the model, eliminating the need for 
extensive manual scripting or documentation reference (P1, P3, P5, 
P6). Participants appreciated our framework’s integration capabili-
ties and its ability to automate certain aspects of 3D world creation, 
such as selecting and loading objects from 3D model repositories 
like Sketchfab and determining model placement (P4, P7). Some par-
ticipants mentioned that our framework reduced the learning curve 
for newcomers, making it easier to get started with 3D world cre-
ation (P3). Participants appreciated the ability to directly intervene 
and manually adjust the 3D world generated by our framework, 
which they considered a powerful feature compared to other uses 
of generative models, which do not allow the user to adjust the 
fnal output (P9, P11). 

9.2.3 Considerations and Challenges. Participants noted that our 
framework’s output was often unpredictable compared to tradi-
tional methods, and there was uncertainty about whether the model 
would understand the desired structure (P0). Some participants 
pointed out that the choice between traditional methods and our 
generative method of creating 3D worlds might depend on the artis-
tic nature of the project and the need for creative input (P5, P7, P11). 
Other participants recognized that for projects requiring precise, 
structured, or rigid control, traditional tools might be preferred 
over our framework (P4, P8). Lastly, they also mentioned that for 
more complex tasks or as projects grew in size, manual code editing 
might still be necessary, as it could be faster than creating detailed 
descriptions of edits for the model (P1, P4, P8). 

9.2.4 User Expectations and Surprises. We also probed participants’ 
expectations and what they were surprised by during the user study. 
Many were surprised by our framework’s ability to generate code 
efectively, helping them automate complex scripting tasks (P1, P4, 
P6, P8, P10). Specifcally, P4 was impressed by the model’s ability to 
handle complex structures like trees, despite token limits. P10 also 
highlighted the framework’s ability to understand the hierarchy 
of game objects and utilize this information as input, especially 
in large and complex projects. Participants were impressed by the 

integration capabilities of our framework with Dall-E 2 and Sketch-
fab, which allowed for the creation of complex structures and the 
addition of 3D objects (P4, P6, P8, P10). It was surprising for par-
ticipants to discover that our framework allowed for subjective 
queries and descriptions, accommodating plain language and eu-
phemisms rather than strictly technical terms (P5). P1 was also 
amazed that the framework exhibited fexibility in understanding 
their Unity scripts and could even help resolve errors. Similarly, 
some were pleasantly surprised that, when prompted correctly, our 
framework could produce unconventional or unexpected results, 
such as unique player movement (P0, P3). 

10 ETHICAL CONSIDERATIONS 
While LLMR and other LLM tools can be transformative to many 
industries and applications, there exist risks with any AI-enabled 
systems. Firstly, the concern of developers and creators being re-
placed has been on the surface of discussion. However, these tools 
have not been proven to achieve end-to-end development. Partici-
pants of our user study commented that our framework is better 
at integrating human intervention and involvement, and thus our 
framework helps improve productivity and facilitate brainstorm-
ing, rather than completely automating the creation process. A 
more serious concern is the potential for individuals to generate 
harmful and inappropriate content with our framework. Despite 
the safeguards put in by Sketchfab and OpenAI through content 
moderation and model alignment, it is still possible to creatively 
circumvent these safeguards [29]. While the Roslyn compiler can 
automatically check for unsafe code, the need for research on how 
to moderate 3D content is merited. 

11 LIMITATIONS AND FUTURE WORK 
Limitation in scene understanding – Currently, our framework re-
quires access to a "scene graph" with descriptions and the hierarchy 
of the game objects. The scene graph provides the spatial relation-
ship of game objects and it assumes that the names of the game 
objects (and their children game object components) are correct and 
unique. However, 3D models from repositories like Sketchfab often 
have random, non-descriptive component names. At the moment, 
the framework manipulates objects by fnding the game objects 
with the exact name, which is not always reliable. 

In addition, the scene hierarchy does not contain meta infor-
mation about the objects, such as afordance and functions. Fur-
thermore, a scene graph would not be readily available when the 
scene is a physical environment with augmented virtual objects. 
The natural next step is the incorporation of Large Vision Models 
(LVM) [18] to achieve tasks that require visual knowledge and se-
mantic understanding of objects and environments. Our framework 
can beneft from the enhanced feedback and semantic information 
from these models, and our framework can enable more interactive 
editing of and interactions with a given 3D environment. 

Incorporating world feedback and direct user feedback – Similar to 
how the Builder-Inspector loop reduces code compilation error, the 
framework’s understanding of the world could be further improved 
by incorporating feedback from the virtual world and from the user. 
For example, if a 3D model is loaded from Sketchfab, the framework 
is ignorant of the model’s (and their subcomponents’) orientation 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA De La Torre, Fang, and Huang et al. 

and center of pivot, and thus does not consistently produce the 
desired output when asked to rotate the 3D model. 

Limitation in Memory and Traceability – Another limitation of 
the framework is the token size. As mentioned in Section 5, we 
have optimized access to historical conversation and generation to 
reduce token usage. There is an inherent tradeof, where the user 
instruction might refer to something in a previous prompt exchange 
that is not exposed to the next exchange. For example, the Scene 
Analyzer has access to the name of the script, the summary of the 
script, and the public felds of the script, but if the user just wants 
to change a specifc part of a previous script generated two prompts 
prior, the framework would not know what to do. 

Correspondingly, showing the generated code gives traceability 
and transparency to the results of our framework. At the moment, 
code written by our framework is stored locally in a cached folder 
and can be viewed within the Unity editor window. In addition to 
providing feedback via a follow-up prompt, the option to directly 
edit the code generated by our framework would give users more 
agency and achieve more complex, precise tasks (as mentioned in 
Section 9.2.3). 

Automatic Skill Generation – At the moment, skills in the Skill 
Library are created by human users. For example, we incorporated 
the skill of loading assets from Sketchfab as well as the skill of 
making objects "grabbable" using MRTK’s [31] namespaces. The 
ability to automatically generate new skills [53] based on a couple 
of examples would allow our framework to achieve more complex 
tasks (such as generating animations) and to be compatible with 
diferent platforms (such as Quest and ARKit). 

Interoptability – We built upon the Unity engine for its robustness 
and the large amount of existing examples of C# code that our LLMs 
have likely seen during training. Our work is independent of Unity 
and its closed-beta AI tools 1, although our tool can be an add-on to 
Unity. We want to highlight that our framework can be adapted to 
any environment that supports run-time compilation. Unity is the 
baseline requirement for using our framework, and a web-based 
approach would further make prompt-based interactive 3D worlds 
easy to share and collaborate within. In fact, some of our user study 
participants work on web-based mixed reality development, and 
they commented that our framework can be easily adapted to their 
coding environment. 

12 CONCLUSION 
In this paper, we have introduced a novel framework that addresses 
certain difculties in applying LLMs to generate interactive 3D expe-
riences. This framework leverages the abilities of multiple distinct 
and specialized LLM modules, orchestrated in a way that enhances 
their individual and collective performance on both coding and 
reasoning. Additionally, we have presented certain engineering 
aids, such as a skill that utilizes other AI models to add content into 
scenes, further expanding the capabilities of our framework. 

Our research has demonstrated the benefts of each LLM-based 
module, providing a clear rationale for the inclusion of each module 
in our framework. By combining somewhat specialized components, 
our overall system became more robust and is signifcantly better 
than of-the-shelf LLMs. Through a user study, we have tested the 

1Link to Unity’s closed-beta AI tools: https://unity.com/ai 

quality and usability of our framework, allowing participants to 
challenge our framework with unprecedented prompts, thereby 
pushing the boundaries of the examples provided to LLMs. 

The signifcance of this work lies in its potential to improve 
the generation of virtual world content with internal degrees of 
freedom and interactivity, and to improve the likelihood that such 
content will make sense intuitively to humans in a human-scale 
world. In turn, this shows a path to making LLMs more reliable 
in the domain of human-scale activity. The LLM is not merely 
incorporating what has been said about the world, but tests results 
in a simulation of the world. The described framework operates 
across various devices and platforms; the present implementation 
does assume Unity. 

We propose that this framework ofers an opportunity for the 
HCI community studying LLMs. By providing virtual- or real-world 
data and the ability to act via code in such a world, our framework 
can serve as a platform to test and improve the limits of LLM 
reasoning capabilities when placed in 3D environments. 

In conclusion, our work presents a signifcant step forward in 
the integration of LLMs with virtual world content and experience 
generation, ofering a powerful tool for both developers and re-
searchers. We look forward to seeing how this framework will be 
utilized and expanded upon by the wider community. 
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