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ABSTRACT
This paper bridges the gap in Human-Computer Interaction (HCI)
research by comparatively assessing the effects of interpretability
and outcome feedback on user trust and collaborative performance
with AI. Through novel pre-registered experiments (N=1,511 to-
tal participants) using an interactive prediction task, we analyzed
how interpretability and outcome feedback influence users’ task
performance and trust in AI. The results counter the widespread
belief that interpretability drives trust, showing that interpretability
led to no robust improvements in trust and that outcome feedback
had a significantly greater and more reliable effect. However, both
factors had modest effects on participants’ task performance. These
findings suggest that (1) interpretability may be less effective at
increasing trust than factors like outcome feedback, and (2) aug-
menting human performance via AI systems may not be a simple
matter of increasing trust in AI, as increased trust is not always
associated with equally sizable performance improvements. Our
exploratory analyses further delve into the mechanisms underlying
this trust-performance paradox. These findings present an oppor-
tunity for research to focus not only on methods for generating
interpretations but also on techniques that ensure interpretations
impact trust and performance in practice.
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1 INTRODUCTION
One of the most important trends in recent years has been the
growth of predictive analytics. With advances in machine learn-
ing (ML), ML-based artificial intelligence (AI) systems often ex-
ceed human-level performance in a variety of domains [69, 85, 92].
Despite the high performance of these systems, users have not
readily adopted them [12, 15, 63]. Such reluctance to incorporate
algorithms into decision-making has been demonstrated for many
years. In a meta-analysis of 136 studies that compared algorithmic
and human predictions of health-related phenomena, algorithms
outperformed human clinicians in 64 studies (about 47% of the
time) and demonstrated roughly equal performance in 64 studies.
Human clinicians outperformed algorithms in only eight studies—
that is, about 6% of the time [38]. Nevertheless, Grove and Meehl
[38] found that algorithms were not widely used in making health-
related decisions. Similarly, other studies show that AI has not been
widely adopted in medical settings [63], in clinical psychology [93],
in firms [83], by professional forecasters across various industries
[30], or in a variety of tasks typically performed by humans [12, 15].

To address the issue of algorithm aversion, two primary research
streams have emerged within HCI communities: interpretability
and performance of ML algorithms. With regard to interpretabil-
ity, some studies suggest that a lack of interpretability—the abil-
ity to explain or present how a model arrives at results in terms
understandable to humans—may hinder the adoption of ML algo-
rithms. This is because users may be hesitant to trust a system
whose decision-making process they do not understand [7, 46, 73].
Despite this widespread belief, empirical support is relatively lim-
ited. Some recent studies have attempted to quantify the impact
of interpretability on user trust, but their findings have been in-
conclusive. The inconsistency in results arises either from small
sample sizes, as noted in Panigutti et al. [76], or from conflicting
findings. For example, Bansal et al. [5] suggest that interpretability
enhances user trust, while Poursabzi-Sangdeh et al. [79] argue the
opposite. Adding another layer of complexity, Wang & Yin [96]
indicate that interpretability affects trust positively only under cer-
tain conditions, varying based on the format of presentations and
the expertise level of users. It’s also worth noting that while some
studies point to interpretability as a factor leading to overreliance
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on algorithms [18, 52], overreliance should not be conflated with
trust, as they are separate albeit related concepts.

In terms of the performance of ML algorithms, existing research
suggests that providing information about model accuracy can en-
hance user trust in algorithmic decision support. For instance, Yin
et al. [102] demonstrate that both stated and observed accuracy
levels of ML algorithms influence user trust. Similarly, Rechkem-
mer and Yin [81] compared multiple performance indicators and
found that both the stated and observed accuracy had a more sig-
nificant impact on user trust than the level of model confidence did,
although all these indicators positively influenced trust. Addition-
ally, Dietvorst et al. [23] found that users tend to avoid relying on
algorithmic decision support after witnessing errors made by these
algorithms.

Our paper aims to bridge the gap at the intersection of these two
research streams. First, although prior studies have attempted to
unveil how either interpretability or performance of ML algorithms
influences user trust and human-AI collaborative performance—
also referred to as task performance—few have examined these
factors in a comparative manner. Thus, there is limited informa-
tion on which factor has a more substantial impact and whether
an interaction exists between these indicators when presented si-
multaneously. Second, while previous studies have investigated
how individual factors like interpretability affect user trust and
task performance [5, 23, 76, 79, 81, 96, 102], the relationship be-
tween these two outcome measures remains underexplored. Specif-
ically, it remains unclear how increased trust is associated with
improved task performance and what mechanisms underlie this
relationship. Third, ”trust calibration” is frequently employed to
measure user trust in algorithmic support [67, 96, 98, 101]. This
metric is a composite of user trust and AI performance; for example,
user acceptance of an AI suggestion is classified as proper trust if
the AI prediction is correct, and as overtrust if the AI prediction is
incorrect. While this entangled metric is valuable for assessing com-
plementary performance between humans and algorithms [75, 98],
it fails to disentangle the unique impacts of trust from those of
model accuracy. This limitation exists because the calibration of
user trust—whether manifest as overtrust, undertrust, or proper
trust—is not solely determined by the user’s intention or behavioral
choices, but also depends on the AI’s performance.

To fill this gap, our study seeks to understand the influence
of interpretability and outcome feedback on users’ trust and task
performance. Outcome feedback is defined as the post-hoc pro-
vision of the actual outcome, intended to confirm the prediction
accuracy of both humans and AI for a given event—also known
as observed accuracy in the literature [81, 102]. In particular, we
assess how interpretability and outcome feedback affect participant
trust and performance in a prediction task in order to understand
whether these factors increase trust in AI and, if so, which factor
has more subtle impact and whether the increased trust is asso-
ciated with greater human accuracy in the task. We study two
levels of interpretability described in the literature, global and local
interpretability. Global interpretability clarifies which variables are
important to the model’s decision-making in aggregate, while local
interpretability clarifies which variables are important for a specific
decision [73]. Instead of using trust calibration, we employ the
weight of advice (WoA) as a measure of behavioral trust to quantify

the extent to which users adjust their initial decisions based on AI
advice. WoA provides advantages over trust calibration by allowing
us to capture varying degree of trust, overtrust, and undertrust,
based on users’ behavioral choices, while separating out the influ-
ence of model accuracy. For additional details on WoA, please refer
to the section “Behavioral Trust Measure” and “Choosing The Right
Metric: Behavioral Trust vs. Trust Calibration.”

In a series of web-based experiments, we investigated how in-
terpretability and outcome feedback affect interactions between
humans and AI algorithms. We chose a real-life environment (i.e.,
interactions with AI advisors) in which lay users can naturally
make decisions without any specific training [32]. Our chosen task
is also one for which modern AI performs better than humans; if
an AI advisor performs worse or equally well compared to humans,
there is little benefit to using AI. The main task for our experiments
is predicting the outcome of speed dating events with help from a
pre-trained ML model [81]. We used a dataset compiled by Fisman
et al. [31], which has been used in many related studies [64, 81, 102]
to investigate factors affecting trust in ML systems.

Our findings counter the idea that interpretability is a key dri-
ver of human trust in AI systems. Specifically, we discovered that
neither global nor local interpretability led to robust improvements
in trust. In contrast, outcome feedback had a significantly more
reliable and greater impact on trust. However, both interpretability
and outcome feedback had only minimal effects on task perfor-
mance. Intriguingly, we observed a paradox: an increase in trust
in AI due to outcome feedback did not correspond to proportional
improvements in task performance. Through exploratory analyses,
we probed the mechanisms underpinning this trust-performance
paradox associated with outcome feedback. We found that out-
come feedback induced users to both overtrust (i.e., overshooting,
where users made decisions that exceeded the AI’s suggested level
of advice) and undertrust (i.e., contradicting, where users chose
to go against the AI’s advice), thereby compromising human-AI
collaborative performance1. Our time-dependent analyses further
showed that if individuals initially trust an AI system (i.e., adopt its
advice in a specific task) but later find that this trust is misplaced
(i.e., the AI performs worse than the human’s initial prediction
in the same task), their trust in the AI significantly diminishes in
subsequent tasks. This often leads them to make choices contrary
to the AI’s advice, further undermining collaborative performance.

Our contributions to the HCI field are outlined below:
• Our study comparatively assessed both the interpretability

and performance of ML algorithms, two central themes in
HCI related to user trust and collaboration with AI. We found
that while interpretability does not substantially enhance
trust, outcome feedback significantly and reliably does.

• We scrutinized the relationship between user trust and task
performance. To do so, we disentangled user trust from

1In this paper, the terms ’overtrust’ and ’undertrust’ are used differently than in
trust calibration contexts. Within the WoA framework, ’overtrust’ typically refers to
overshooting (i.e., WoA > 1), while ’undertrust’ signifies contradicting (i.e., WoA < 0).
Conversely, in the trust calibration context, these terms are intertwined with both user
adoption of AI advice and the AI’s predictive performance on a specific task. Here,
’overtrust’ indicates scenarios where users accept incorrect AI advice, and ’undertrust’
denotes situations where users do not follow correct AI advice. More details on these
two metrics and our rationale for choosing WoA over trust calibration are discussed
in Section 6.2.
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model accuracy by employing a behavioral trust measure,
weight of advice. Our findings revealed a trust-performance
paradox influenced by outcome feedback, where increased
trust does not result in equivalent gains in task performance.

• Our study shed light on the mechanisms underlying this
trust-performance paradox. Specifically, our exploratory
analyses discovered that outcome feedback induces users to
both overtrust (i.e., overshoot) and undertrust (i.e., contra-
dict) AI, thereby undermining task performance. Addition-
ally, our time-dependent analyses additionally pinpointed
when users tend to contradict AI advice, and how this ad-
versely impacts task performance. This result confirms that
reliance on AI is not isolated to a single task but is shaped
across tasks in a sequential manner.

2 RELATED WORK
To address the issue of AI adoption, prior research has delved deeply
into understanding factors that affect user behavior and trust in
modern AI systems [11, 16, 18, 25, 44, 57, 67, 87, 91, 97, 101, 105].
This stream assessed a broad range of factors, such as human control
over algorithmic decisions [24], whose and what type of decision-
making is replaced by algorithmic decisions [62, 99], inherent uncer-
tainty in the decision-making domain [22], algorithm transparency
[36, 47, 54, 72], and varying levels of information complexity within
the model [58].

Within this broader context, two particular areas have received
significant focus within HCI research communities: interpretability
and performance of ML algorithms. In terms of interpretability,
several pioneering studies have attempted to quantify its impact on
user trust, but the findings have been inconclusive. For example,
Poursabzi-Sangdeh et al. [79] suggested that greater interpretabil-
ity doesn’t necessarily encourage users to rely more on AI pre-
dictions compared to black-box models. In contrast, Bansal et al.
[5] demonstrated that interpretability enhances the likelihood of
users accepting AI advice. Similarly, Panigutti et al. [76] observed
that users are more inclined to follow AI recommendations when
interpretability features are included in clinical decision support
systems. Further complicating the matter, Wang & Yin [96] found
that in domains where participants had low expertise, none of the
explanation formats improved trust calibration. However, when
participants had more domain-specific knowledge, two out of the
four explanation formats led to a modest increase in appropriate
trust levels.

Regarding the performance of ML algorithms, several studies
have highlighted different dimensions that influence user trust. Yin
et al. [102] discovered that trust is affected by both the stated and
observed accuracy of a model. In a similar vein, Fügener et al. [32]
explored how outcome feedback influences users’ willingness to
delegate tasks to AI systems. Similarly, Dietvorst et al. [23] found
that users often refrain from relying on algorithmic decision sup-
port if they have witnessed errors committed by the algorithm,
underscoring the critical role of performance in shaping user trust.
Furthering this understanding, Yu et al. [103] noted that system
failures impact trust more significantly than system successes. Ex-
panding on this, Rechkemmer and Yin [81] demonstrated that the
model’s expressed confidence level does have a significant bearing

on user trust, although stated and observed accuracy tend to have a
greater impact. Lu & Yin [64] further found that when performance
feedback is limited, people often resort to their level of agreement
with the model’s predictions on specific cases as a heuristic for
gauging the model’s overall reliability. More recently, He et al. [42]
assessed different presentations of stated accuracy (i.e., analogies vs.
non-analogies) in relation to trust calibration, finding that analogies
alone are not sufficient for achieving appropriate reliance.

Our research diverges from previous studies in three key ways:
1) We distinctively compare both interpretability and performance
of ML algorithms to assess their impact on trust in AI and task
performance. 2) We disentangle user trust from model accuracy
by incorporating a behavioral trust measure, weight of advice, and
further investigate the relationship and underlying mechanisms
between a user’s behavioral trust and task performance. 3) We
examine the dynamics of reliance on AI systems, focusing on the
sequential interactions between human and AI. From the perspec-
tive of product design, it would be useful to understand whether
the effects of interpretability differ depending on the presence of
feedback about a model’s accuracy. Additional clarity on this issue
could help connect the two existing streams of research and provide
insight into what changes could be made to otherwise capable ML
systems in order to improve user trust and adoption.

3 EXPERIMENT DESIGN
We ran two web-based experiments, both of which used the same
experimental design and prediction tasks and were implemented
using the Empirica virtual laboratory platform [2]. However, the
user interface differed between the two experiments (see SI Figures
S1, S2, S3, S4, and S5) and participants were recruited from different
online recruiting panels (Experiment 1: Amazon Mechanical Turk;
Experiment 2: Prolific), which allowed us to ensure that the results
held across panels and regardless of the specific task presentation.
We notably found no significant difference in results between the
two different panels and presentation settings.

In our experiments, participants (n= 800 in Experiment 1; n=
711 in Experiment 2) made predictions about the outcomes of speed
dating events, first without and then with AI predictions. To assess
the impact of model interpretability and outcome feedback on user
trust and prediction accuracy, participants were randomized to one
of six conditions in a between-subjects experiment design.

3.1 Prediction Task
The task, consisting of two phases, asked participants to predict
whether couples who had previously met through speed dating
would want to pursue a second date.

3.1.1 Phase One. The first phase involved 12 task instances (the
same instances were used for both experiments). The first two in-
stances were for practice purposes, and participants were informed
that the results would not be used in data analysis. These two prac-
tice task instances appeared in consistent order for all participants,
but the next ten (the results of which were used for data analysis)
were randomized. Each task instance presented information about
one couple that met through speed dating and asked participants
to predict the likelihood that the couple would want a second date.
The provided information included (1) demographics (age and race
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Figure 1: Experimental Design Diagram

of the man and woman), (2) ratings (the man’s and woman’s rat-
ings of each other across six attributes: attractiveness, sincerity,
intelligence, shared interests, fun, and ambition), and (3) interest
correlation (a score representing the similarity between the man’s
and woman’s stated individual interests). Participants made predic-
tions on a slider scale ranging from 0% (extremely unlikely to want
a second date) to 100% (extremely likely to want a second date).

3.1.2 Phase Two. The second phase involved the same 12 task
instances. In each of these, participants had an opportunity to
revise their prior prediction from phase one after receiving the AI
advisor’s prediction for that couple. The AI advisor’s prediction
ranged on a scale from 0% (extremely unlikely towant a second date)
to 100% (extremely likely to want a second date). Similar to phase
one, participants were informed that the first two task instances
were for practice purposes and that only the revised predictions
from the remaining ten task instances of phase two would count
towards their final score. The task instances in phase two appeared
in the same order as they did in phase one.

We chose this prediction task because it is relatable for partici-
pants and realistic to how AI is used in the real world (i.e., online
dating applications frequently incorporate predictive analytics).

3.2 Procedures
All participants received the same information in phase one and
the same AI predictions in phase two. However, in phase two, par-
ticipants received varying levels of interpretability and/or outcome
feedback, depending on the condition into which they were random-
ized. There were three interpretability levels (no interpretability,
global interpretability, and local interpretability) combined with

two outcome feedback levels (no-feedback and with feedback) for
a total of six conditions.

When interpretability was provided, it was delivered alongside
the AI prediction so that participants could consider both before
making their final prediction in a given task instance. When out-
come feedback was provided, it was furnished after participants
made their final prediction for a given task instance because the
feedback revealed the actual outcome (i.e., whether the couple went
on a second date). Nonetheless, because outcome feedback was
provided instance by instance, participants could take outcome
feedback from prior task instances into account before making fu-
ture predictions. This format is analogous to common real-world AI
interactions with agents such as Amazon Alexa, Google Home, and
Apple’s Siri. In such interactions, users can observe the accuracy
of the agent’s understanding of their questions—and oftentimes the
accuracy of the agent’s response, depending on the kind of question
asked (e.g., “What is the weather going to be like today?”)—prior
to future interactions with the agent.

An illustrative diagram of the experimental design can be found
in Figure 1. As described in section 3.1, the experiment consisted
of two phases. Phase one involved participants making initial pre-
dictions without AI in 12 task instances, with each instance being
composed of two steps. In step one, participants viewed informa-
tion about one couple, and in step two, participants predicted the
likelihood that the couple would want a second date. Phase two
involved participants revising their initial predictions from phase
one after receiving the predictions of an AI system. Phase two also
had 12 task instances (each instance corresponded to an instance
from phase one), but the steps in each task instance depended on
the condition to which a participant was randomized. As described
above, there were six conditions that varied in the levels of inter-
pretability and outcome feedback they provided. For all conditions,
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step one involved viewing the information about the couple, re-
peated from phase one, and the AI prediction. For conditions that
included interpretability, the AI prediction was accompanied by
either a global or local interpretation. For all conditions, step two
involved revising the initial prediction the user made in phase one.
For conditions that included outcome feedback, there was a third
step that involved viewing the actual outcome (i.e., whether or not
the couple went on a second date).

3.3 Description of the Model’s Interpretations
The interpretations in this experiment explained what led the AI
system to make its predictions, either in aggregate (i.e., global in-
terpretability) or for a specific prediction (i.e., local interpretability)
[73]. Global interpretations were extracted using SHAP [65], and
local interpretations were extracted using LIME [82]2. The interpre-
tations were provided as bar charts, a common way of presenting
model interpretations. Furthermore, to confirm that participants
understood the provided interpretations, they were asked in an
exit survey to report the ease with which they understood the
information they were given. None of the participants in any of
the conditions indicated that they had difficulty understanding the
AI system. For additional details regarding the interpretations,
see SI Figures S3 and S4. For details regarding the participants’
self-reported ease of understanding, see SI section “Self-Report
Measures.”

3.4 Trust and Performance Measures
3.4.1 Behavioral Trust Measure. Our measure of behavioral trust is
weight of advice (WoA), a measure frequently used in the literature
on trust (e.g., trust in AI) and in the literature on advice taking
[3, 35, 49, 76, 79, 86]. The WoA measure quantifies the degree to
which participants update their response (e.g., predictions made
prior to seeing AI predictions) towards provided advice (i.e., the AI
prediction). In our experiments, WoA is defined as

,>� =
(8=8C80; ?A4382C8>= − 5 8=0; ?A4382C8>=)
(8=8C80; ?A4382C8>= −�� ?A4382C8>=)

� 5 |�� ?A4382C8>= − 8=8C80; ?A4382C8>= | < 0.15, ,>� = #�

The numerator indicates how much the participant’s final and
initial predictions differ. The denominator takes into account where
the participants initially fall relative to the AI prediction. If the
WoA equals 1, the final prediction matches the AI prediction; if it
equals 0.5, the final prediction is the average of the initial and AI
predictions; and if it equals 0, the final and initial predictions are
the same. If the WoA is less than 0, the participant moved further
away from the AI in their final prediction (“contradicting” the AI);
likewise, if theWoA is greater than 1, the participant moved beyond
the AI (“overshooting” the AI). A higherWoA indicates greater trust
in AI, while a lower WoA indicates less trust.
2To ascertain that the results were consistent across different presentations of local
interpretability, we selected LIME for its ability to provide range conditions for feature
attributions, unlike SHAP, which only offers feature attributions. However, our find-
ings indicated that there were no significant differences between experiments utilizing
range conditions (Experiment 1) and those that did not (Experiment 2). Additionally,
since there is limited research demonstrating the divergent impacts of SHAP and LIME
on user trust in existing literature, we have chosen not to additionally test SHAP for
local interpretability.

As noted, we dropped WoA scores when |AI prediction - initial
prediction| < 0.15. Because participants could only make selections
in increments of 0.05 on the slider scale, it was difficult tomake small
revisions to match the AI (e.g., if the distance between the initial
prediction and AI prediction was 0.1, this revision was difficult to
make). Therefore, we interpreted predictions within 0.15 of the AI
system as being equivalent to the AI prediction. The 0.15 threshold
constitutes a deviation from our pre-registration, so we also tested
and confirmed that there were no qualitative changes to the results
with thresholds of 0.05 (our pre-registered threshold), 0.1, and 0.2
(see SI section “Robustness Checks”).

3.4.2 Performance Measure. Our measure of performance is the
absolute error of the participant’s final prediction, which constitutes
a deviation from our pre-registration plan. In the context of our
experiments, absolute error is calculated as follows:

�1B>;DC4 �AA>A = |02CD0; E0;D4 − 5 8=0; ?A4382C8>= |
,ℎ4A48= 02CD0; E0;D4 = 1 8 5 Cℎ4 2>D?;4 F4=C >= 0 B42>=3 30C4

0 8 5 Cℎ4 2>D?;4 383 =>C .

Absolute error can range from 0 to 1. An absolute error of 1 indi-
cates that the participant’s final prediction was the exact opposite
of the actual dating outcome (0 when the actual outcome was 1 or
vice versa). An absolute error of 0 indicates that the participant’s
final prediction was exactly the same as the actual outcome. Thus,
an absolute error closer to 0 indicates greater accuracy while an
absolute error closer to 1 indicates less accuracy. We also mea-
sured performance using square root error and squared error (see
SI section “Robustness Checks”).

3.5 Hypotheses
We predicted that (1) global interpretability, local interpretability,
and outcome feedback would all increase trust in AI, (2) there
would be an interaction wherein feedback would be most effective
in the absence of interpretability, and (3) global interpretability,
local interpretability, and outcome feedback would all increase
the accuracy of participants’ predictions, owing to the increased
trust in AI (per our first hypothesis) and to the fact that AI is
on average more accurate in our task than human predictors are.
All hypotheses were pre-registered (see SI section “Pre-registered
Hypotheses”).

3.6 Statistical Methods
3.6.1 Training Process for the AI System. We used the ensemble
tree model XGBoost (eXtreme Gradient Boosting) to determine the
AI predictions. This model is known for its superior performance
in handling structured data and is popular in the literature [17,
21]. Training the model involved first correcting a class imbalance
problem inherent in our dataset. Specifically, our dataset had two
classes (“match,” meaning the couple went on a second date, and “no
match,” meaning the couple did not go on a second date). The ratio
of “match” to “no match” cases was about 1:4.63 (total observations
of 1040 and 4822, respectively). Because there were a significantly
higher number of “no match” cases to “match” cases, models would
tend to classify the prediction results into the majority class (the
“no match” class). Down sampling was used to ensure an equal
number of cases in each class (specifically, we randomly sampled
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1040 of the 4822 “no match” cases to ensure a 1:1 ratio of “match”
to “no match” cases). The model was then trained using 5-folds
cross validation. Input data included demographics of each man
and each woman, their ratings of the partners they met while speed
dating, and each couple’s interest correlation score. The task was
binary classification, with output data of 1 (match) or 0 (no match).
The model’s out-of-sample accuracy was about 79%.

3.6.2 Statistical Analysis. In our prediction task, each participant
was required to complete 12 instances of the task. The initial two
instances served as practice, while the remaining 10 instances were
utilized for data analysis. We conducted tests for differences across
conditions at the task level. To prevent the violation of the i.i.d.
assumption, all statistical analyses at the task level were based
on linear mixed models that included random effects to account
for the nested structure of the data [3, 8]. Linear mixed models
are beneficial in situations where data exhibit a clustered pattern,
which is evident in our study where individual task responses are
nested within each participant (with each participant responding
to 10 task cases). All statistical tests were two-tailed.

3.6.3 Standardized Coefficients. To enable meaningful compar-
isons of effect sizes across different condition groups while control-
ling the effects of various levels of difficulty among task instances,
we standardized outcome metrics (e.g., trust, performance) within
each task instance. The standardized value of measurement X,
measured for task instance i, is defined as

-8,BC0=30A38I43 =
-8 − `-

f-

wherein `- is defined as the mean of X across all instances of the
task (for all condition groups) and f- is the standard deviation.
These standardizations not only control the effects of varying lev-
els of difficulty among task instances but also enable meaningful
comparisons of effect sizes across tasks of different conditions (e.g.,
interpretability, outcome feedback).

3.7 Participant Recruitment and Compensation
We conducted two experiments, which were conceptual replications
of each other, involving different participant groups. The design of
both experiments was identical, with participants engaging in the
same prediction task (described in the above sections “Experiment
Design”). However, the user-interface differed significantly in the
two experiments and participants were recruited from different
online recruiting panels (Experiment 1: Amazon Mechanical Turk;
Experiment 2: Prolific), allowing us to assess whether our results
held true with different sets of participants and regardless of the
presentation of the task. All participants in both experiments pro-
vided explicit consent to participate, and the Institutional Review
Board (IRB) and Human Research Protections Program at the uni-
versity where one of the authors is affiliated approved the consent
procedures. Details about participant recruitment for each of the
two experiments are described below.

Experiment 1. 800 participants were recruited across 4 days
from Amazon Mechanical Turk by posting a HIT for the experi-
ment, entitled “Predict the speed-dating outcomes and get up to
$6 (takes less than 20 min)”. Participants were required to be at
least 18 years of age. To ensure adequate attention on the part of

participants, basic attention checks were conducted that were not
related to the content of the experiment. Participants that did not
pass these attention check questions were not allowed to proceed
to the experiment.

Experiment 2. 711 participants were recruited across 4 days
on Prolific by posting a study entitled “Predict the speed-dating
outcomes and get up to $6 (takes less than 20 min).” Participants
were required to be at least 18 years of age. Instead of the basic
attention check questions used in Experiment 1, this experiment’s
attention checks involved substantive questions related to the in-
structions of the task in order to ensure adequate comprehension of
the task itself. These attention check questions were presented in a
multiple-choice format, and participants who answered a question
incorrectly were told which question was incorrect and were asked
to try again until all questions were answered correctly.

In both Experiment 1 and Experiment 2, the payment participants
received was dependent on their performance in the task. This
approach was designed to encourage active participation, following
the methodology outlined by Almaatouq et al. [1]. In Experiment
1, participants received $1 in base pay plus up to $5 of performance-
based bonuses. In Experiment 2, participants received $2 in base
pay plus up to $5 of performance-based bonuses. The higher base
pay in Experiment 2 was due to a base pay requirement of Prolific.
The formula used to calculate participant pay was the same for both
experiments and is detailed below:

10B4 ?0~<4=C + 0.5 ×
#∑
�=1

1 − (02CD0; E0;D4 − A4E8B43 ?A4382C8>=)2

Where:
base payment = $1 in Experiment 1 and $2 in Experiment 2
N = number of prediction rounds
actual value = 1 if the couple went on a second date &

0 if the couple didn’t go on a second date

MTurk Worker IDs and Prolific IDs were automatically collected,
and participant data was linked to the IDs for the purposes of
participant compensation. Because our study required an interac-
tive experiment system and an incentive compatible system, and
because it is currently not possible to create an incentive compati-
ble interactive experiment entirely through MTurk or Prolific, we
created our own experiment system that works with MTurk and
Prolific. As such, our system needed to collect MTurk Worker IDs
and Prolific IDs and link these IDs with participant data in order to
calculate compensation for each participant, as compensation was
tied to performance in the task. IDs were only used for payment
purposes, were deleted after payments were successfully delivered,
and were not used in data analysis. The need to collect Mturk
Worker IDs/Prolific IDs and link them to participant data was dis-
closed to and approved by the Institutional Review Board at the
university where one of the authors is affiliated.
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Figure 2: The Effect of Outcome Feedback and Interpretabil-
ity on Behavioral Trust

4 RESULTS
4.1 Study 1: Impact of Feedback and

Interpretability on Behavioral Trust in AI
This experiment sought to assess the impact of outcome feedback
and interpretability on behavioral trust in AI. Figure 2 compares
the standardized (i.e., z-scored within each task instance) effect of
outcome feedback, interpretability, and the interaction of these two
factors on behavioral trust. Behavioral trust was assessed using the
WoA metric, as described in the “Trust and Performance Measures”
section.

As shown in Figure 2, outcome feedback led to the greatest and
most reliable increase in behavioral trust (Experiment 1: P < 0.001;
95% CI = [0.163, 0.443]; Experiment 2: P < 0.003; 95% CI = [0.103,
0.439]). However, global and local interpretability were not ob-
served to have a robust effect on trust (Experiment 1: global: P <
0.038; 95% CI = [0.009, 0.289]; local: P < 0.059; 95% CI = [−0.004,
0.273]; Experiment 2: global: P < 0.298; 95% CI = [−0.078, 0.257];
local: P < 0.109; 95% CI = [−0.030, 0.304]). Furthermore, the effect
of interpretability on trust was modest relative to the effect of out-
come feedback and not robust to different choices of |AI prediction
– initial prediction| thresholds in our definition of WoA (see SI sec-
tion “Robustness Checks”). Additionally, there was no difference
between global and local interpretability in terms of impact on trust
(Experiment 1: P < 0.838; 95% CI = [−0.154, 0.125]; Experiment 2:
P < 0.575 ; 95% CI = [−0.118, 0.214]). Contrary to our hypothesis,
there was no observed interaction between outcome feedback and
interpretability, meaning that feedback and interpretability did not
appear to complement (or substitute) each other when provided
together (Experiment 1: feedback × global: P < 0.703; 95% CI =
[−0.237, 0.159]; feedback× local: P < 0.757; 95% CI = [−0.166, 0.229];
Experiment 2: feedback× global: P < 0.684; 95% CI = [−0.286, 0.188];
feedback × local: P < 0.197; 95% CI = [−0.392, 0.080]).

The finding that outcome feedback resulted in the greatest and
most reliable increase in trust is not only counter to our hypothesis
but also counter to the current focus on interpretability as a central
driver of trust in AI systems.

Figure 3: The Effect of Outcome Feedback and Interpretabil-
ity on Performance

4.2 Impact of Feedback and Interpretability on
Performance Accuracy

This experiment also sought to assess the impact of outcome feed-
back and interpretability on participants’ performance in the pre-
diction task. Performance was assessed using the absolute error
metric, as described in the “Trust and Performance Measures” sec-
tion. Decreased absolute error indicates improved performance
accuracy while increased absolute error reflects the opposite.

Figure 3 compares the standardized effect of outcome feedback,
interpretability, and the interaction of these two factors on perfor-
mance to assess what impact, if any, these factors had on participant
performance, beyond the effect that was attributable to the AI pre-
dictions themselves.

As shown in Figure 3, outcome feedback led to a further im-
provement in performance (i.e., decrease in absolute error) beyond
that which was attributable to the AI predictions, although this
effect was slightly smaller and not significant in Experiment 2 (Ex-
periment 1: P < 0.003; 95% CI = [−0.265, −0.058]; Experiment 2:
P < 0.369; 95% CI = [−0.169, 0.063]). The performance improve-
ment resulting from outcome feedback was consistent with our
predictions.

However, contrary to our expectations, neither global nor local
interpretability were found to impact performance (Experiment 1:
global: P < 0.224; 95% CI = [−0.167, 0.039]; local: P < 0.369; 95% CI
= [−0.148, 0.055]; Experiment 2: global: P < 0.954; 95% CI = [−0.112,
0.119]; local: P < 0.910; 95% CI = [−0.108, 0.122]). Furthermore, the
interaction between feedback and interpretability was not found to
impact performance (Experiment 1: feedback × global: P < 0.784;
95% CI = [−0.125, 0.166]; feedback × local: P < 0.913; 95% CI =
[−0.153, 0.137]; Experiment 2: feedback × global: P < 0.203; 95%
CI = [−0.269, 0.057]; feedback × local: P < 0.716; 95% CI = [−0.193,
0.133]).

The finding that outcome feedback improved participant per-
formance in the prediction task, while interpretability was not
observed to improve performance, is in line with the previously
discussed finding that outcome feedback had a more significant



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Daehwan Ahn et al.

Figure 4: The Effect of Outcome Feedback on Behavioral Trust Patterns

effect on trust in AI than interpretability had. However, it is critical
to note that while outcome feedback led to improved performance,
the size of that performance increase was relatively small compared
to feedback’s increase in behavioral trust. Similarly, interpretability
was not observed to have an impact on performance in the pre-
diction task, though it was found to increase trust in AI to some
extent. This suggests that the relationship between trust in AI
and performance in the prediction task may not be as direct as
initially assumed. In particular, these findings challenge the as-
sumption that increased trust in AI directly leads to improvements
in performance. Instead, this experiment found that improved trust
in AI is not always associated with equally sizable performance
improvements.

5 EXPLORATORY ANALYSES
Through exploratory analyses, we sought to answer why the in-
creased trust from outcome feedback is not associated with equally
sizable improvements in performance. In particular, we address
this paradox from the perspective of users’ overtrust and under-
trust in AI—factors that have been shown to undermine human-AI
collaborative performance [4, 10, 48, 75, 89]. Building upon this,
we further investigated whether, when, and how outcome feedback
makes users overtrust and undertrust AI and if it further harms
human-AI collaborative performance.

In particular, we first show that outcome feedback induces users
not only to trust AI more but also to overtrust and undertrust
AI more. Then we show that increased overtrust and undertrust
undermine human-AI collaborative performance. Additionally, we
demonstrate that users contradict AI after their trust in AI backfires,
which significantly harms performance in regard to users’ time-
dependent behavioral trends.

5.1 Why is the Increased Trust from Outcome
Feedback Not Associated with Equally
Sizable Improvements in Performance?

5.1.1 Outcome feedback simultaneously induces users to overtrust
and undertrust AI. Our next analysis sought to assess why the

increased trust from outcome feedback is not associated with
equally sizable improvements in performance. Figure 4 compares
the empirical cumulative distribution function (ECDF) regarding
trust in AI according to the presence or absence of feedback. The
x-axis refers to participants’ behavioral trust patterns (i.e., WoA)
at a task instance-level, and the y-axis represents the cumulative
proportion of observations.

As shown in Figure 4, outcome feedback simultaneously induced
users to overtrust (i.e., overshooting whereWoA > 1) and undertrust
(i.e., contradicting whereWoA < 0) the AI system’s advice. In partic-
ular, outcome feedback resulted in a near tripling of overshooting
(i.e., from 8.48% to 21.34%) and a near doubling of contradiction
(i.e., from 3.17% to 6.57%), relative to the condition when outcome
feedback was not given. Also, the feedback group has fewer ob-
servations in the range where WoA is between 0 and 1. Taken
together, our results show that outcome feedback induced users to
make extreme behavioral trust choices (i.e., more extreme WoAs
toward both positive and negative directions), resulting in higher
variance in WoA distribution.

We statistically tested our findings through the two-sample
Anderson-Darling test, which is widely used to compare cumu-
lative distributions while detecting differences at the tail ends of
distributions more reliably; in our case, contradiction and over-
shooting correspond to the tail ends [27]. We confirmed that the
feedback and no-feedback groups have different proportions in
distributions (i.e., the distribution of the feedback group has higher
variance), and this is statistically significant (P < 0.001).

5.1.2 Overtrust and undertrust undermine human-AI collaborative
performance. This analysis sought to assess whether overtrusting
and undertrusting hurt human-AI collaborative performance. Re-
duction in error was used as a measure of human-AI collaborative
performance: a positive value means performance improved (i.e.,
error decreased) after being exposed to AI advice, when compared
to a participant’s initial prediction. Figure 5 shows how the benefit
of AI advice changes according to the different degrees of WoA. On
the x-axis, we group task instances according to theirWoA values in
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increments of 1. The y-axis indicates the average reduction in error
per group. As shown in Figure 5, reduction in error (i.e., perfor-
mance improvement) is concave in WoA: increased WoA produced
improvements in decision performance initially (i.e., 0 <= WoA <
2), but beyond a point (i.e., WoA >= 2), the benefits dropped and a
further increase in WoA only had a negative effect on performance.
Similarly, as WoA goes below zero (i.e., participants contradicted AI
advice), the further decrease in WoA only hurt human-AI collabora-
tive performance. Notably, as WoA moves toward either extreme in
the positive or negative direction, it harms the benefit of AI advice
by a larger margin.

Figure 5: The Effect of WoA on Human-AI Collaborative
Performance

Table 1: A Concave Relation between WoA and Reduction in
Error

Independent Variables Coef. 95% CI

Feedback 0.081*** [0.042, 0.120]
WoA 0.799 *** [0.749, 0.848]
WoA2 -0.193 *** [-0.220, -0.165]
Constant -0.358 *** [-0.390, -0.326]

Note: * p<0.05; ** p<0.01; *** p<0.001.

This result is also supported by our statistical test. Table S1
shows the result of a regression model that tests the relationship
between WoA and reduction in error. As shown in Table S1, WoA
has a statistically significant quadratic relationship with reduction
in error and the coefficient is negative—a concave relation.

This finding was also directly associated with overall perfor-
mance. Figure 6 compares the ECDF of the final performance
according to different feedback conditions. The x-axis represents
the absolute error, and a lower value means participants had better
performance after human-AI collaboration. The y-axis refers to the
cumulative proportion of observations.

As shown in Figure 6, the feedback group has more cases with
small errors compared to the no-feedback group. This is what we
expect given the increase inWoA. However, despite this benefit, the
feedback group also has a greater number of “failures” (i.e., cases
having large errors). This double-edge effect may help explain why

Figure 6: The Effect of Outcome Feedback on Human-AI
Collaborative Performance

the increased trust from outcome feedback is not associated with
equally sizable improvements in performance. When feedback is
given, the increased number of failures (i.e., large errors) offsets
the benefit from the increased number of successes (i.e., reduction
in error).

Taken together, these exploratory analyses suggest that outcome
feedback induces users to both overtrust AI decision support and
to undertrust it. While overtrusting is consistent with a higher
trust (increase in WoA), it does not necessarily drive improved
performance (reduction in errors). This is in line with the results
of prior works that explain the noisy nature of the relationship
between trust in AI and performance by grouping “trust calibration”
into overtrust (i.e., following the AI system’s advice when it is
incorrect), appropriate trust (i.e., following its advice when it is
correct), and undertrust (i.e., not following its advice when it is
correct) [75, 89]. However, we differ from prior research because
we disentangle trust from performance, whereas trust calibration is
a composite measure of the two. We further explore the mechanism
of overtrust and undertrust in the following sections.

5.2 When Does Outcome Feedback Induce Users
to Overtrust and Undertrust AI?

Our next analysis sought to assess when outcome feedback in-
duces users to undertrust AI decision support more (compared
to when feedback is not given), particularly in regard to users’
time-dependent behavioral trends. Participants had sequential in-
teractions with an AI advisor, meaning that they received AI-based
predictions in addition to interpretability and/or outcome feedback
following each task instance. This raises the question of whether
a time-dependent trend exists in terms of how these factors affect
trust in AI and performance in the prediction task. Exploratory
analysis suggests that outcome feedback appears to impact trust
and performance over time. Specifically, trust and performance
appear to depend on the kinds of experiences a participant had
with the AI system in prior task instances.

To start off, we investigate participants’ time-dependent trends
specific to behavioral trust. Participants’ initial predictions were,
on average, less accurate than the AI predictions, meaning that
participants would have improved their performance if they had
trusted the AI. However, there were also instances where a partici-
pant’s initial prediction was more accurate than the AI prediction; if
participants had trusted AI in those cases, their performance would
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Figure 7: Time-Dependent Trends Specific to Behavioral
Trust

have declined. Because outcome feedback was provided after each
task instance, participants knew whether following AI in prior task
instances helped or hurt their performance before proceeding to
subsequent task instances.

Figure 7 compares the standardized effect of three aspects of a
given task instance (at time t) on behavioral trust in a subsequent
task instance (at time t+1). The first factor (4AA>A��C − 4AA>AℎC )
represents the initial difference in performance between an AI
system and a user in a given task instance. A positive value indicates
that the human’s initial prediction outperformed that of the AI. The
second factor (,>�C ) represents the user’s behavioral trust in a
given task instance. The third factor [,>�C ×(4AA>A��C −4AA>AℎC )] is
the interaction of the first two factors. One scenario this interaction
captures is where a participant’s initial prediction is more accurate
than the AI prediction, but the participant revises their prediction
towards the AI prediction, thereby reducing their accuracy (e.g.,
the AI system’s advice “harmed” the participant’s performance).
For each factor,,>�C+1 was compared for the feedback group (all
cases in which participants received outcome feedback, combined
across both experiments) and the no-feedback group (all cases in
which participants did not receive outcome feedback, combined
across both experiments).

As shown in Figure 7, WoA was greater at time t+1 as com-
pared to time t for the feedback group (Feedback Group: P < 0.001;
95% CI = [0.061, 0.172]; No-Feedback Group: P < 0.268; 95% CI
= [−0.022, 0.080]). This suggests that, overall, feedback increases
trust over time, as seeing feedback for one task instance (time t)
tends to increase behavioral trust in the AI advisor in the subse-
quent instance (time t+1). However, a markedly different, though
still time-dependent, effect was observed in cases where following
the AI advice “harmed” the participant [reflected in the interac-
tion term,>�C × (4AA>A��C − 4AA>AℎC )]. In these cases,,>�C+1
was significantly reduced relative to,>�C for the outcome feed-
back group (Feedback Group: P < 0.001; 95% CI = [−0.298, −0.086];
No-Feedback Group: P < 0.592; 95% CI = [−0.069, 0.120]). This
suggests that the experience of trusting an AI advisor and having
one’s performance decrease as a result leads to a loss of trust in that
system’s advice in the subsequent instance. This proposed trend is

Figure 8: Time-Dependent Trends Specific to Performance

in accordance with prior research that users do not trust algorithms
after observing them fail [23].

These observations that outcome feedback tends to increase
trust over time in aggregate but decrease trust after a particular
negative experience are consistent with the theory that outcome
feedback impacts behavioral trust over time. These trends were
only observed for the feedback group, which was expected given
that the no-feedback group did not receive information about actual
outcomes and thus could not knowwhether following the AI advice
was helping or hurting their performance over time.

Next, we explore participants’ time-dependent trends specific
to performance accuracy. Similar time-dependent trends were ob-
served regarding the impact of outcome feedback on performance.
The factors assessed in Figure 7 are again evaluated in Figure 8,
with Figure 8 comparing the standardized effect of these factors on
performance (i.e., absolute error) at time t+1.

As shown in Figure 8, there are two observations regarding
absolute error at time t+1 that can be analyzed in conjunction with
those displayed in Figure 7.

Figure 8 suggests that |�AA>AC+1 | was reduced for,>�C for both
the outcome feedback and no-feedback groups, although the effect
is very small and not significant for the no-feedback group (Feed-
back Group: P < 0.001; 95% CI = [−0.272, −0.152]; No-Feedback
Group: P < 0.036; 95% CI = [−0.124, −0.005]). Thus, it appears that
when participants trusted AI in one task instance, they tended to
have smaller errors (i.e., improved performance) in the next in-
stance, an effect that was stronger when feedback was provided.
When analyzed in conjunction with Figure 7, this suggests that
when participants in the feedback group trusted AI in one task
instance, trust increased even further in the next instance (Figure
7), and this increase in trust was associated with a performance
improvement (Figure 8).

Figure 8 also suggests that for the outcome feedback group,
|�AA>AC+1 | increased for the interaction term,>�C × (4AA>A��C −
4AA>AℎC ) (Feedback Group: P < 0.001; 95% CI = [0.266, 0.494]; No-
Feedback Group: P < 0.053; 95% CI = [−0.001, 0.222]). Thus, it
appears that if trusting AI “harms” a user in one task instance, their
error increases in the next task instance. Taken together, Figures 7
and 8 suggest that after an AI system “harms” a user, trust decreases
in the next instance (Figure 7), and this loss of trust is associated
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with reduced future performance (Figure 8). These observations
are robust to other operationalizations and performance measures
(see SI section “Robustness Checks”).

These exploratory analyses suggest that outcome feedback has
two time-dependent effects: it generally increases trust and perfor-
mance over time but can sometimes reduce trust and performance.
Specifically, trust in an AI system increases over time when users
observe that system performs accurately over time. Nevertheless,
AI can at times be more erroneous than the human decision-maker
even though it outperforms humans on average. We observe that
when humans trust AI but that trust backfires (i.e., AI performs
worse than the human in a particular instance), then trust in that
AI system drops in subsequent task instances. This drop in trust
hurts the human’s future performance and limits users from fully
extracting the potential value of AI decision support. Research
that specifically studies these time-dependent effects and research
that seeks to understand the relationship between trust in AI and
performance in prediction tasks will be important extensions of the
literature.

6 DISCUSSION AND DIRECTIONS OF FUTURE
RESEARCH

6.1 A Step toward Understanding and Fostering
Appropriate Trust in AI Systems

Fostering appropriate trust in AI systems is challenging, primarily
due to their inherent complexity. To gain a deeper understand-
ing of reliance on AI systems, it is crucial to consider multiple
facets simultaneously. These encompass algorithm-related factors
such as model accuracy [42, 64, 102], explainability [5, 18, 76, 79],
controllability [24], uncertainty [22], and information complexity
[58]. Equally important are user-side aspects, which include hu-
man cognition, subjective and psychological perspectives of users
[18, 20, 39, 59, 94, 96, 104, 106], as well as diverse levels of expertise
and literacy in both AI and the relevant tasks [26, 55, 90]. Ad-
ditionally, the unique characteristics of interactions between the
algorithm and users should also be considered. This includes fac-
tors such as the consistency between algorithm and user decisions
[70], and the sequential interactions between them [74, 88]. Lastly,
socio-contextual factors and task characteristics surrounding the
AI system, including economic motivations [28, 29], organizational
contexts [78], and consumer perspectives [99], could significantly
contribute to this dynamic.

Considering the inherent complexity of the subject, our study
aligns with the ongoing efforts to expand research dimensions.
We have shifted our focus from the time-invariant impact of sin-
gle factors to a more dynamic examination of the time-dependent
and comparative impacts between multiple factors, which include
different types of interpretability and outcome feedback.

Our time-dependent analysis revealed that reliance on AI is not
isolated to a single task but is shaped across tasks in a sequential
manner. This aligns with recent studies, highlighting significant
insights that human-AI interaction evolves over time. For example,
recent research has demonstrated that the development of trust in
AI systems progresses over multiple sessions, with the initial im-
pression of AI performance playing a crucial role in shaping users’

perceptions of these systems [74, 88]. While numerous experimen-
tal studies on AI reliance have been conducted in settings with
sequential tasks, they often focus on the aggregated level impacts
of factors in human-AI interaction. In contrast, our study identifies
specific instances where humans contradict AI advice and examines
the effects on human-AI collaborative performance. By extending
our analysis to include time-dependent interactions between hu-
mans and AI, we provide valuable insights that can significantly
enhance the development of appropriate trust in human-AI collab-
oration.

The literature identifies two broad categories of factors influenc-
ing trust in AI: performance-based (such as overall accuracy and
outcome feedback) and model-based (such as interpretability and
transparency). Our paper specifically focuses on a comparative
examination of interpretability and outcome feedback, assessing
their impacts on trust in AI and performance. The rationale for
this comparative study design is twofold. Firstly, from a practical
implications perspective, such studies can provide guidelines for
the design and selection of factors in scenarios where both elements
coexist, especially in the context of limited resources. Practition-
ers can selectively choose factors for AI system design, depending
on the objectives of the service, while considering the relative
impact size and ease of incorporation. Secondly, a comparative
study allows for an examination of interactions among different
factors. Although our study did not observe interactions between
the presence of interpretability and outcome feedback, recent re-
search has revealed meaningful interactions among factors in AI
reliance. For example, Kahr et al. [51] found that a specific type of
explanation (i.e., human-like explanations) did not independently
affect user trust in AI systems, but it did have an interaction effect
with model accuracy—human-like explanations boosted trust in
high-accuracy models. Future research could conduct extensive
comparisons (’horse races’) between various factors hypothesized
to influence trust, along with their interactions, across many differ-
ent tasks or situations.

6.2 Choosing The Right Metric: Behavioral
Trust vs. Trust Calibration

The choice of metric acts as a lens through which phenomena are
examined, shaping the structure and details of the study. Selecting
the most appropriate metric, with careful consideration of the re-
search question and objective, is a critical step in study design. In
research on trust and reliance in AI systems, two primary types of
metrics are commonly used: behavioral trust (e.g., WoA) and trust
calibration (e.g., appropriate reliance). These metrics are grounded
in different philosophies and possess their own unique advantages
and disadvantages. Our study chose the behavioral trust metric
(specifically WoA) over trust calibration as the primary metric. This
decision was based on the following rationale.

Firstly, as outlined in the introduction, one of our key objec-
tives is to explore the relationship between user trust and task
performance in human-AI collaboration. Trust calibration, while
insightful, is a complex metric that intertwines user trust with the
task performance of the model. To address this complexity, we em-
ployed WoA, a behavioral trust measure, to disentangle user trust
from model accuracy. This strategic choice enabled us to identify a
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trust-performance paradox influenced by outcome feedback within
a two-stage setting. The first stage involved examining the impact
of interpretability and outcome feedback on behavioral trust. The
second stage focused on the relationship between improved trust
and task performance, as well as the underlying rationale behind
this correlation.

Secondly, WoA provides the concepts of overshooting and con-
tradiction, which are pivotal in elucidating our key findings and
the mechanisms underlying them. These concepts specifically ad-
dress users’ unpredictable behaviors in response to AI support,
setting them apart from the notions of overtrust and undertrust
found in trust calibration. Overtrust and undertrust in the context
of trust calibration are entangled metrics, intricately combining
user decision-making and model performance. In contrast, over-
shooting and contradiction as defined within WoA, provide a more
nuanced understanding of how users interact with AI. They go be-
yond the simple binary of trust and distrust seen in trust calibration,
capturing complexities, such as the degree of AI advice adoption,
and sometimes paradoxical nature, exemplified by overshooting
and contradiction, of user responses to AI recommendations. This
distinction is crucial as it allows for a deeper exploration of user
behavior patterns that are not readily apparent in the trust calibra-
tion model. By leveraging these unique concepts, our adoption of
WoA provides a more comprehensive and detailed perspective for
viewing and interpreting the dynamics of human-AI interaction.

Thirdly, trust calibration operates on the assumption of comple-
mentary performance in human-AI collaboration. For appropriate
reliance, it is essential that humans are able to discern when to
trust and when to distrust AI. This means selectively adhering to
AI decisions when they are likely to be correct, and disregarding
them when they are likely to be erroneous [18]. However, a major
challenge in predictive analytics is the difficulty in determining
when AI predictions are right or wrong. For instance, even an AI
model with 90% accuracy fails in 10% of cases, but predicting which
cases will fall into this 10% is challenging. Despite efforts to address
this, such as through uncertainty modeling, the issue of uncertainty
in predictive analytics remains somewhat inherent [33, 34, 68]. In
this context, numerous empirical studies have not observed this
complementary performance in real-world scenarios due to the
difficulty humans face in accurately determining when AI is right
or wrong [6, 13, 18, 37, 56, 61, 66, 79, 95, 100, 107]. Furthermore,
AI is being increasingly deployed in complex tasks that surpass
human cognitive capabilities, suggesting scenarios where AI may
outperform both human-only and human-AI collaborative efforts.
Given these reasons, the notion of having users completely trust
and follow AI decisions is gaining importance. From this practical
standpoint, since WoA does not assume the necessity of human-AI
complementary performance, it offers additional insights beyond
what trust calibration can provide. WoA is particularly relevant
in scenarios where complete reliance on AI might be imperative,
especially in situations where AI’s capabilities significantly surpass
those of humans.

Lastly, the use of a disentangled metric facilitates the develop-
ment of more effective strategies due to its simplicity and better
controllability. In the case of trust calibration, the aim to foster
appropriate reliance in AI is dual-faceted: it involves not only per-
suading users to trust and follow AI decisions, but also ensuring

that the AI provides accurate predictions. However, controlling AI
performance on an individual case basis (i.e., discerning when AI is
right or wrong for each case) is challenging. In contrast, influencing
user trust is more feasible. Thus, WoA provides an avenue to initiate
discussions from themore manageable user perspective, and then to
incrementally broaden the scope to more comprehensive solutions.
For instance, our study highlighted that users’ overshooting and
contradiction in AI negatively impacts their collaborative perfor-
mance, elucidating the specifics of when and how this overshooting
and contradiction occurs. These insights are invaluable for future
research aimed at exploring methods to mitigate overshooting and
contradiction, ultimately enhancing human-AI collaboration. This
nuanced approach is not achievable with trust calibration, including
more granular versions like Relative Positive AI Reliance (RAIR)
and Relative Positive Self-Reliance (RSR), as these metrics still re-
main closely tied to task performance of model [84]. In this light,
the concept of appropriate reliance in trust calibration is viewed
as a consequentialist goal, focusing more on the ideal end-state
of human-AI collaboration rather than on the gradual process of
problem-solving itself.

We selected WoA over trust calibration not because WoA is
inherently superior, but because it more closely aligns with the
specific research questions and objectives of our study. Each metric
has its distinct advantages: trust calibration excels at granularly
defining the ideal state of human-AI collaboration (e.g., appropriate
reliance, RAIR, RSR), while WoA offers a deeper exploration of
human behaviors, encompassing even those that are unreasonable
or paradoxical. We strongly advocate for future studies to integrate
both behavioral trust and trust calibration metrics, as this combined
approach has the potential to yield synergistic insights and foster
a more comprehensive understanding of human-AI interactions.
Additionally, trust calibration can be further highlighted through
research that focuses on the mechanisms of 1) how and why certain
factors enhance a user’s task-related knowledge, and 2) how this im-
proved knowledge leads to more effective filtering of AI advice for
appropriate reliance, consequently aiding in achieving complemen-
tary performance between humans and AI systems. For instance,
Chen et al. [18] implemented a think-aloud, mixed-methods study
to investigate the human intuitions in the decision-making process
when adopting AI advice. Their findings provided valuable insights,
clarifying why feature-based explanations lead to overreliance on
AI, while example-based explanations are particularly effective in
fostering complementary human-AI performance.

6.3 Why Does Outcome Feedback Affect Trust
More Than Explanations Do?

We found that interpretability does not significantly improve trust,
while outcome feedback has a more reliable and positive impact
on it. Our interpretation draws on two streams of prior research.
Firstly, Hidalgo et al. [45] suggested that while humans judge
each other based on intentions, they assess machines by their out-
comes. Though interpretability and intention are not identical—
interpretability simply explains what factors led an AI system to
reach its predictions—Hidalgo et al.’s finding aligns with our obser-
vation. Specifically, trust in AI systems (i.e., machines) seems to
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hingemore on feedback regarding the accuracy of AI outcomes than
on information about the underlying rationale for those predictions.

Secondly, our findings correspond with Human-centered Ex-
plainable AI (HCXAI) research. While some studies advocate in-
terpretability as a means to increase user trust and performance
in AI systems [73], others have pointed out its limitations. Ja-
cobs et al. [48] demonstrated that interpretability doesn’t resolve
issues such as biased AI recommendations and overreliance on
flawed ML algorithms. Krishna et al. [55] further showed that
AI-generated explanations often conflict with human knowledge,
and even state-of-the-art interpretability methods frequently dis-
agree among themselves. These limitations imply that users might
find it challenging to learn from or utilize interpretable AI systems
effectively.

However, some scholars argue that the limitations are not in-
herent to interpretability but arise from current techno-centric
perspectives [26, 55, 90]. They propose that adopting a sociotechni-
cal perspective or pursuing human-centered approaches [26, 90]
could make interpretability a valuable tool for enhancing trust in AI
systems. For example, Park et al. [78] contend that well-designed
explanations can boost trust within specific contexts like human
resource management, given that various organizational and so-
cial factors are considered. Further, studies like that of Chen et al.
[18] indicate that considering human cognitive mechanisms in the
design of interpretability can also be beneficial.

Future research should concentrate not only on creating more
informative explanations but also on devising strategies that ensure
these explanations cultivate appropriate trust, considering both
behavioral trust and trust calibration perspectives, thereby improve
performance. Additionally, identifying algorithmic, social, or hu-
man elements that can more directly influence user trust could
serve to compensate for the limitations in current interpretability
frameworks. Promising areas for future research include designs
aimed at improving human-AI collaboration [32, 53], enhancing
the controllability of AI systems [24], refining interpretability pre-
sentations and interaction methods based on human cognition and
contextual needs [18, 20, 39, 41, 43, 59, 71, 71, 94, 96, 104, 106], and
bolstering both procedural and social transparency [25, 77, 78].

6.4 Trust-Performance Paradox in Outcome
Feedback

An important finding from our experiment is that increased trust in
AI does not always lead to equally significant improvements in hu-
man performance. This observation aligns with existing literature,
where previous studies have attempted to explain this phenome-
non from a broader perspective, examining the distinctions among
trusting beliefs, trusting intentions, and trust-related behaviors [40].
Closely related to our findings, several studies have addressed the
trust-performance paradox using more specific concepts: overtrust
and undertrust. For example, Jacobs et al. [48] have pointed out the
risk of overreliance hampering the performance of AI recommenda-
tions. Similarly, some studies have explored this trust-performance
paradox through trust calibration, which classifies humans’ adop-
tion of AI into overtrust, appropriate trust, and undertrust [75, 89].
We have extended this line of work by disentangling user trust from

the model accuracy within the WoA framework. This approach al-
lows us to clarify when and how humans overtrust (i.e., overshoot)
or undertrust (i.e., contradict) AI decisions, particularly in relation
to outcome feedback and time-dependent behavioral trends.

Additional research regarding how to prevent users from
overtrusting and undertrusting AI would be a key future research
topic. For example, Fügener et al. [32] have investigated a del-
egation design that increases benefit to human-AI collaboration
compared to either humans or ML algorithms individually. Addi-
tionally, any research, even outside the context of interpretability or
outcome feedback, that can shed light on the relationship between
trust in AI and human performance in a prediction task would be
highly significant. Greater clarity regarding when and how trust
improvements translate into performance improvements will sup-
port not only greater adoption of AI systems but also greater impact
from these systems.

6.5 Differences between Experts and Lay Users
Any discussion of interpretability should differentiate between ex-
perts and lay users, as interpretability is inherently human-centric.
These groups vary in their AI literacy and decision-making ex-
pertise, which in turn affects their interaction with AI systems
[26, 55, 90]. For example, a study focused on data scientists and
machine learning practitioners found that these experts tended
to overtrust and misuse interpretability tools [52]. Similarly, an-
other study showed that interpretability alone could not improve
decision-making accuracy among clinicians, failing tomitigate over-
reliance on flawed AI suggestions [48]. In contrast, our research,
which focuses on lay users, found no significant increase in trust
due to interpretability, even though participants reported a strong
understanding of both the AI recommendations and the associated
explanations (see SI section “Self-Report Measures”). As Wang and
Yin [96] suggested, a lack of expertise or AI literacy may be respon-
sible for this finding. Future research that focuses on the roles of
AI literacy and expertise could yield valuable insights.

7 LIMITATION
Our experiment focuses on a specific context—speed dating
predictions—where the decision subjects (i.e., speed dating cou-
ples) are distinct from the decision-makers (i.e., participants). This
setup parallels many real-world applications of expert AI systems,
such as loan officers using AI for loan approvals, doctors using
AI for diagnoses, and judges employing AI for sentencing. How-
ever, another noteworthy context exists where the subjects of the
decisions also have agency in deciding whether to use AI. Exam-
ples include individuals deciding AI-generated recommendations
tailored specifically for them. The impact of interpretability and
outcome feedback on trust may vary between these two contexts.
Given this potential variation, future research should evaluate the
significance of interpretability and outcome feedback in settings
where the subjects of AI predictions also possess decision-making
power. Exploring this angle could illuminate how context-specific
factors influence the degree of trust placed in AI systems.

Additionally, while our experiment evaluates the presentation
variations in UI design, local interpretability (i.e., with or without
range condition), and outcome feedback, it explores only a limited
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range of forms. Specifically, the interpretations in our experiment
were presented as lists of factors deemed important by the AI system
in making its decision, along with the magnitude of their impor-
tance. For local interpretability, we also included information on
whether the factor positively or negatively affected the AI system’s
prediction of a couple’s likelihood of a second date. However, there
are alternative ways to present interpretability. For example, one
could present only the most crucial factors, focus on explanations
that are unusual for the decision, or highlight ’what would need
to change in the input for the ML prediction/decision to change,’
known as ’contrastive’ or ’counterfactual’ explanations [14]. These
and other methods, described by Carvalho et al. [14] and based on
research by Breiman [9], Kahneman and Tversky [50], and Lipton
[60], warrant further exploration. This area of research regarding
how to present interpretations so that they are most beneficial de-
serves additional attention [18–20, 39, 41, 43, 59, 71, 71, 104]. We
believe that the literature needs to focus as much on how to design
AI interfaces and present interpretations as it has on techniques for
generating interpretations.

8 CONCLUSION
Although AI systems excel in various domains, their adoption often
faces resistance due to a lack of human trust. Researchers in HCI
and social sciences have sought to understand the factors that in-
fluence this trust, while computer scientists have grappled with the
lack of interpretability in high-performance AI techniques. Despite
the prevailing belief that a lack of interpretability may hinder AI
adoption, there is insufficient empirical evidence to support this
claim. To address this gap, we designed an interactive experiment
to examine how interpretability and outcome feedback influence hu-
man trust in AI and performance in AI-assisted tasks. Contrary to
the prevailing focus on interpretability as a key factor, our findings
suggest that outcome feedback may be more effective at fostering
trust. Furthermore, our experiment indicates that improving human
performance through AI is not solely a matter of increasing trust;
higher levels of trust do not necessarily translate into improved
human performance.

The literature has delineated two primary categories of factors
that influence trust in AI: performance-based factors like model
accuracy and outcome feedback, and model-based factors such as
interpretability and transparency. Our study is unique in that it
directly compares these two categories, focusing specifically on
their impact on human trust in AI and, consequently, on user perfor-
mance. Future research could potentially conduct a comprehensive
comparison of all hypothesized factors affecting trust, examining
their interplay across various tasks and scenarios. While ambitious,
such a study could provide invaluable insights into enhancing trust
in AI systems.
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A SUPPLEMENTARY INFORMATION
A.1 Examples of Phase 1 and Phase 2 Task Instances for Both Experiments 1 and 2

Figure S1: Phase 1 task instance. Examples of a task instance in phase 1 for experiments 1 and 2.
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Figure S2: Phase 2 task instance. Examples of a task instance in phase 2 (shown with global interpretability) for experiments 1
and 2.
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A.2 Examples of Global Interpretability, Local Interpretability, and Outcome Feedback for Both
Experiments 1 and 2

Figure S3: Global Interpretability. Examples of global interpretability for experiments 1 and 2.

Figure S4: Local Interpretability. Examples of Local interpretability for experiments 1 and 2.
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Figure S5: Outcome Feedback. Examples of outcome feedback, shown for experiments 1 and 2 for the “match” outcome where
the couple did go on a second date.

A.3 Robustness Checks
Robustness checks for the results presented in the main text are described below, under the following sections “Behavioral Trust,” “Perfor-
mance,” and “Time-Dependent Trends.”

Behavioral Trust. As described previously, our primary behavioral trust measure (WoA) involved dropping WoA scores when |AI
prediction - initial prediction| < 0.15. In addition to the threshold of 0.15, three other thresholds (0.05, 0.1, and 0.2) were used as robustness
checks. The results of these robustness checks are displayed in Figure S6 and Table 2 below. As shown in Figure S6 and Table 2, the findings
from these robustness checks are consistent with our main findings that outcome feedback led to the greatest and most reliable increase in
behavioral trust, while interpretability did not lead to a robust increase in trust. There were also no differences between global and local
interpretability, and no interaction between outcome feedback and interpretability, in terms of their impacts on trust.

Figure S6: Robustness checks regarding the impact of outcome feedback and interpretability on behavioral trust. In order to
assess the robustness of our primary result, Weight of Advice was calculated using three additional thresholds (0.05, 0.10, and
0.20). The results of these robustness checks are consistent with our main findings.
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Table S1: Statistics for the robustness checks regarding the impact of outcome feedback and interpretability on behavioral trust.
In order to assess the robustness of our primary result, Weight of Advice was calculated using three additional thresholds
(0.05, 0.10, and 0.20). For each threshold, the p-values and confidence intervals for each factor are listed. The results of these
robustness checks are consistent with our main findings.

Y Exp Factors Threshold = 0.05 Threshold = 0.10 Threshold = 0.20

P-value CI Lo CI Hi P-value CI Lo CI Hi P-value CI Lo CI Hi
WoA 1 Feedback 0.000 0.127 0.327 0.000 0.110 0.357 0.000 0.161 0.468

Global 0.268 -0.043 0.156 0.122 -0.026 0.220 0.084 -0.018 0.289
Local 0.092 -0.014 0.185 0.158 -0.034 0.211 0.110 -0.028 0.276

Feedback×Global 0.711 -0.114 0.168 0.780 -0.149 0.199 1.000 -0.217 0.217
Feedback×Local 0.489 -0.191 0.091 0.581 -0.125 0.224 0.749 -0.181 0.251

2 Feedback 0.012 0.034 0.276 0.003 0.083 0.397 0.002 0.107 0.466
Global 0.454 -0.074 0.166 0.586 -0.113 0.200 0.280 -0.080 0.277
Local 0.292 -0.055 0.184 0.392 -0.088 0.223 0.053 -0.002 0.353

Feedback×Global 0.627 -0.212 0.128 0.429 -0.310 0.132 0.823 -0.281 0.224
Feedback×Local 0.154 -0.292 0.046 0.473 -0.301 0.139 0.195 -0.417 0.085

1+2 Feedback 0.000 0.120 0.267 0.000 0.138 0.335 0.000 0.185 0.419
Global 0.158 -0.020 0.126 0.149 -0.026 0.170 0.048 0.001 0.235
Local 0.041 0.003 0.149 0.114 -0.019 0.176 0.013 0.032 0.264

Feedback×Global 0.904 -0.110 0.097 0.687 -0.167 0.110 0.870 -0.179 0.152
Feedback×Local 0.106 -0.188 0.018 0.866 -0.151 0.127 0.480 -0.224 0.105

Abs
Error

1 Feedback 0.001 -0.236 -0.060 0.004 -0.232 -0.043 0.005 -0.278 -0.050
Global 0.757 -0.101 0.073 0.447 -0.130 0.057 0.398 -0.163 0.065
Local 0.815 -0.097 0.076 0.673 -0.113 0.073 0.365 -0.164 0.060

Feedback×Global 0.812 -0.138 0.108 0.763 -0.153 0.112 0.837 -0.178 0.144
Feedback×Local 0.777 -0.106 0.141 0.800 -0.150 0.115 0.803 -0.180 0.139

2 Feedback 0.013 -0.228 -0.026 0.110 -0.216 0.022 0.613 -0.164 0.097
Global 0.602 -0.128 0.074 0.885 -0.128 0.110 0.714 -0.154 0.105
Local 0.939 -0.104 0.097 0.932 -0.123 0.113 0.434 -0.180 0.077

Feedback×Global 0.605 -0.179 0.104 0.446 -0.233 0.102 0.216 -0.298 0.067
Feedback×Local 0.796 -0.123 0.160 0.868 -0.153 0.181 0.569 -0.235 0.129

1+2 Feedback 0.000 -0.205 -0.072 0.001 -0.186 -0.049 0.011 -0.183 -0.024
Global 0.552 -0.086 0.046 0.493 -0.092 0.044 0.315 -0.120 0.039
Local 0.833 -0.073 0.059 0.714 -0.080 0.055 0.213 -0.128 0.028

Feedback×Global 0.592 -0.119 0.068 0.399 -0.138 0.055 0.307 -0.170 0.054
Feedback×Local 0.709 -0.075 0.111 0.949 -0.099 0.093 0.522 -0.147 0.075

Performance. In addition to the primary performance measure of absolute error, three additional measures were used as robustness checks,
including squared error, square root error, and the area under the ROC curve. In our experiments, these three measures were calculated in
the following way:

Squared Error = (02CD0; E0;D4 − A4E8B43 ?A4382C8>=)2

Square Root Error =
√
(02CD0; E0;D4 − A4E8B43 ?A4382C8>=)

ROC AUC measures the two-dimensional area underneath the ROC curve. The ROC curve is a graph representing the performance of a
classification model at all thresholds. This curve plots two parameters: True Positive Rate (TPR) on the y-axis and False Positive Rate (FPR)
on the x-axis. TRP can be computed as {(True Positive) / (True Positive + False Negative)}. FPR is computed as {(False Positive) / (False
Positive + True Negative)}. True and false indicate the real value in the classification task. For example, in our experiment, true and false
mean ‘match’ and ‘no match’, respectively. Positive and negative are related to the participant’s prediction (when the participant predicts
“match” it is positive, and when the participant predicts “no match” it is negative). In addition to the primary performance measure of
absolute error, three additional measures were used as robustness checks, including squared error, square root error, and the area under the
ROC curve.

Results for these robustness checks are displayed in Figure S7 and Table 3 below. As shown in Figure S7 and Table 3, the results for
squared error and square root error are directionally consistent with our main findings that feedback increases performance (in experiment 1
and in the combined dataset), though neither interpretability nor the interaction between feedback and interpretability impact performance.
While the results for squared error and square root error are directionally consistent with these findings, the size of the impact is smaller for
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squared error and larger for square root error due to the way these measures are calculated. Specifically, squared error tends to amplify the
effect of large errors, while square root error minimizes the effect of large errors. Results from our experiment suggest that outcome feedback
increased participants’ tendency to make large errors (by leading participants to make more extreme predictions, sometimes “contradicting”
and sometimes “overshooting” the AI advice), which has resulted in a smaller increase in performance seen in the squared error measurement
and a larger increase in performance seen in the square root error measurement (as compared to the primary measure of absolute error).

With regards to the ROC AUC measure, it is important to note that ROC AUC does not measure performance by measuring error, meaning
that the direction of the ROC AUC measure is reverse to the error measures (higher ROC AUC indicates improved performance, whereas
higher error indicates decreased performance). Furthermore, a critical difference between ROC AUC and measures of error is that ROC
AUC is calculated at the level of participants, as opposed to at the level of individual task instances. As a result, ROC AUC is an unstable
measure of performance in this experiment, as shown in Figure S7 and Table 10. This is due to the relatively small number of task instances
in our experiment. Because there were only ten task instances for each participant (the first two of the twelve total task instances were for
practice purposes), measuring performance at the participant level was not particularly stable or meaningful. Getting an accurate measure of
performance at the participant level would have required a significantly greater number of task instances per participant. As such, despite
pre-registering ROC AUC as our performance measure, we instead used absolute error as the primary performance measure (with squared
error and square root error as the main robustness checks).

Figure S7: Robustness checks regarding the impact of outcome feedback and interpretability on performance. Squared error,
square root error, and ROC AUC were used to assess the robustness of our primary result (calculated using absolute error).
The results for squared error and square root error are directionally consistent with our main findings, though the size of the
impact is smaller for squared error and larger for square root error due to the way these measures are calculated. The results
for ROC AUC were unstable. ROC AUC measures performance at the participant level instead of at the task instance level, and
this turned out to be an unstable way to measure performance in this experiment given the relatively small number of task
instances in our experiment.
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Table S2: Statistics for the robustness checks regarding the impact of outcome feedback and interpretability on performance.
Squared error, square root error, and ROC AUC were used to assess the robustness of our primary result (calculated using
absolute error). For each measure the p-values and confidence intervals for each factor are listed. The results for squared error
and square root error are directionally consistent with our main findings, while the results for ROC AUC are unstable as ROC
AUC measures performance at the participant level, not at the task instance level.

Exp Factors Squared Error Square Root Error ROC AUC

P-value CI Lo CI Hi P-value CI Lo CI Hi P-value CI Lo CI Hi
1 Feedback 0.277 -0.187 0.054 0.000 -0.322 -0.117 0.030 0.026 0.509

Global 0.371 -0.175 0.065 0.292 -0.157 0.047 0.079 -0.025 0.455
Local 0.813 -0.134 0.105 0.254 -0.160 0.042 0.209 -0.087 0.395

Feedback×Global 0.862 -0.185 0.155 0.554 -0.101 0.189 0.631 -0.424 0.257
Feedback×Local 0.517 -0.226 0.113 0.611 -0.107 0.182 0.528 -0.451 0.231

2 Feedback 0.294 -0.058 0.191 0.020 -0.275 -0.024 0.110 -0.468 0.048
Global 0.982 -0.123 0.125 0.807 -0.109 0.140 0.249 -0.409 0.106
Local 0.863 -0.134 0.113 0.593 -0.091 0.158 0.152 -0.441 0.069

Feedback×Global 0.478 -0.239 0.112 0.055 -0.350 0.003 0.167 -0.108 0.619
Feedback×Local 0.846 -0.192 0.158 0.553 -0.230 0.123 0.409 -0.209 0.513

1+2 Feedback 0.922 -0.087 0.078 0.000 -0.268 -0.108 0.614 -0.131 0.222
Global 0.472 -0.112 0.052 0.577 -0.103 0.057 0.611 -0.130 0.222
Local 0.801 -0.092 0.071 0.696 -0.095 0.064 0.964 -0.180 0.172

Feedback×Global 0.533 -0.153 0.079 0.327 -0.170 0.057 0.568 -0.177 0.322
Feedback×Local 0.481 -0.158 0.074 0.937 -0.117 0.108 0.933 -0.238 0.259

Time-Dependent Trend. In addition to the primary measure of absolute error that was used in the analysis of the time-dependent trend
regarding performance, two additional measures (squared error and square root error) were also used as robustness checks. The results
for these robustness checks were directionally consistent with our main finding that providing outcome feedback generally increases
performance over time, but can reduce it after cases in which AI “harmed” the participant.

Figure S8: The robustness checks regarding the time-dependent trends on performance. Squared error and square root error
were used to assess the robustness of our time-dependent trend of performance. The results for squared error and square root
error are directionally consistent with our main finding, as providing feedback generally increases performance over time, but
can reduce it when AI “harmed” the participant.

A.4 Self-report Measure
After completing the experiment, all participants in all conditions were asked about the ease with which they could understand the
information provided by the AI system. Specifically, participants were asked, “Having experienced the AI system, was it easy to understand?”
and they responded on a 5-point likert scale (where 1 = extremely difficult, 2 = somewhat difficult, 3 = neither easy nor difficult, 4 =

somewhat easy, and 5 = extremely easy). Results from this question for each of the two experiments are shown in Figure S8. The average is
above 4 (between “somewhat easy” and “extremely easy”) for all conditions in both experiments, except for the outcome feedback + local
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interpretability condition in the first experiment, where the average is slightly below 4 (between “neither easy nor difficult” and “somewhat
easy”). As such, participants did not indicate that they had difficulty understanding the AI system regardless of condition.

Figure S9: The self-reported ease with which participants could understand the information provided by the A.I. system.
Participants were asked, “Having experienced the A.I. system, was it easy to understand?” and they responded on a 5-point
likert scale (where 1 = extremely difficult, 2 = somewhat difficult, 3 = neither easy nor difficult, 4 = somewhat easy, and 5 =

extremely easy). The average scores are shown for each condition in each of the two experiments, with experiment 1 depicted
in blue dots and experiment 2 depicted in orange squares. The average scores were between “somewhat easy” and “extremely
easy,” for all conditions across both experiments except the feedback + local interpretability condition in experiment 1, for
which the average score was between “neither easy nor difficult” and “somewhat easy.”
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A.5 Pre-registered Hypotheses


	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 EXPERIMENT DESIGN
	3.1 Prediction Task
	3.2 Procedures
	3.3 Description of the Model's Interpretations
	3.4 Trust and Performance Measures
	3.5 Hypotheses
	3.6 Statistical Methods
	3.7 Participant Recruitment and Compensation

	4 RESULTS
	4.1 Study 1: Impact of Feedback and Interpretability on Behavioral Trust in AI
	4.2 Impact of Feedback and Interpretability on Performance Accuracy

	5 EXPLORATORY ANALYSES
	5.1 Why is the Increased Trust from Outcome Feedback Not Associated with Equally Sizable Improvements in Performance?
	5.2 When Does Outcome Feedback Induce Users to Overtrust and Undertrust AI?

	6 DISCUSSION AND DIRECTIONS OF FUTURE RESEARCH
	6.1 A Step toward Understanding and Fostering Appropriate Trust in AI Systems
	6.2 Choosing The Right Metric: Behavioral Trust vs. Trust Calibration
	6.3 Why Does Outcome Feedback Affect Trust More Than Explanations Do?
	6.4 Trust-Performance Paradox in Outcome Feedback
	6.5 Differences between Experts and Lay Users

	7 LIMITATION
	8 CONCLUSION
	References
	A Supplementary Information
	A.1 Examples of Phase 1 and Phase 2 Task Instances for Both Experiments 1 and 2
	A.2 Examples of Global Interpretability, Local Interpretability, and Outcome Feedback for Both Experiments 1 and 2
	A.3 Robustness Checks
	A.4 Self-report Measure
	A.5 Pre-registered Hypotheses


