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Abstract
With rising average temperatures and extreme heat events becoming more frequent, under-
standing the ramifications for cognitive performance is essential. I estimate the effect of 
outside air temperature on performance in mental arithmetic training games. Using data 
from 31,000 individuals and 1.15 million games played, I analyze frequent engagement 
in a cognitively challenging task in a non-stressful and familiar environment. I find that, 
above a threshold of 16.5 ◦ C, a 1 ◦ C increase in outside air temperature leads to a perfor-
mance reduction of 0.13%. The effect is mostly driven by individuals living in relatively 
cold areas, who are less adapted to hot temperatures.

Keywords  Air temperature · Cognitive performance · Climate change

JEL Classification  Q54 · J24

1  Introduction

Climate change entails vast economic and social consequences. An extensive body of 
research has identified adverse effects of rising temperatures on economic growth and 
production, agricultural output, labor productivity, mortality, conflict, migration, and 
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others.1 Under the prospect of rising average temperatures and more frequent extreme 
weather events in most places of the world, this literature naturally predicts an intensifi-
cation of these effects.

A critical component of any human activity is cognitive performance. It determines 
labor productivity and serves as a prerequisite for human capital accumulation. As lab-
oratory experiments in neurological research document the detrimental effect of heat on 
human physiology and brain functioning,2 understanding how temperature affects cogni-
tive performance in the real world and, ultimately, what climate change means for this rela-
tionship is essential.

In this paper, I estimate the effect of outside air temperature on cognitive performance. I 
use data from an online mental arithmetic training game called Raindrops from the Lumos-
ity platform, with over 31,000 individuals and 1.15 million games played in 748 three-digit 
U.S. ZIP Codes between 2015 and 2019. The data include only paying subscribers who 
regularly train their mental arithmetic skills. This context provides a unique opportunity to 
investigate how temperature affects people in a non-stressful, recurring, and familiar set-
ting, a context currently not covered in the literature.

I find that hot temperatures significantly reduce mental arithmetic performance. Using 
piecewise-linear regressions allowing for different slopes in two distinct temperature 
ranges, above a threshold value of 16.5  ◦ C, a 1  ◦ C increase in the average air tempera-
ture during the 24 h preceding a play lowers the score by 0.084 correct answers or 0.13%. 
Below the threshold, the corresponding coefficient is insignificant and close to zero. 3  ◦
C-bins regressions confirm these findings. They indicate that people attain significantly 
lower scores when playing in the bins above 21 ◦ C, compared to the bin with the highest 
average performance (15–18 ◦C). The scores decrease by 0.484 (21–24 ◦C), 0.588 (24–27 ◦
C), and 0.954 ( ≥27 ◦ C) correct answers. These figures amount to a drop of 0.73%, 0.90%, 
and 1.46%, respectively. Similar to the linear regressions, I do not find consistent evidence 
for adverse effects of cold temperatures.

The results exhibit important heterogeneity, implying potential adaptive behavior. Indi-
viduals from relatively cold ZIP Codes (below-median 2015–2019 average temperatures) 
experience a larger performance drop than individuals from relatively hot ZIP Codes 
(above-median 2015–2019 average temperatures). The estimate from the piecewise-linear 
regressions for the above-threshold range is −0.142 for cold ZIP Codes ( −0.21%) but only 
−0.042 for hot ZIP Codes ( −0.07%) and is not statistically significant. The results from 
the bin regressions corroborate these findings. I discuss the possible interpretations of this 
heterogeneity.

Since subscribers choose when to use the software, this raises concerns about bias 
from two types of potential selection mechanisms, at the extensive and the intensive 
margin. First, people might be less likely to play when temperatures are high. This will 
only be an issue if more temperature-sensitive individuals (those who experience a 
larger performance drop due to extreme temperatures) are less likely to play than others 
during such temperature extremes. In this case, the coefficients will be biased toward 
zero. While I cannot directly test this, I show that individuals do not engage less on 
hot days. However, they do use the software more often when it is cold. Due to this 

2  See (Hancock and Vasmatzidis 2003; Wang et al. 2021) for reviews.

1  E.g., Schlenker and Roberts (2009); Deschênes and Greenstone (2011); Lobell et  al. (2011); Barreca 
(2012); Dell et al. (2012); Hsiang et al. (2013); Graff Zivin and Neidell (2014); Burke et al. (2015); Mis-
sirian and Schlenker (2017); Mullins and White (2020); Heutel et  al. (2021); Somanathan et  al. (2021); 
Carleton et al. (2022). See Carleton and Hsiang (2016) for an overview.
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potential selection issue at the lower end of temperatures, I focus on the results for hot 
temperatures.

Second, people might play fewer times on particularly hot or cold days. Since they 
improve their performance with the number of plays on a given day, the average score from 
a very hot or very cold day will be lower than from a mild day if they actually play fewer 
times due to extreme temperatures. This potential issue is independent of the selection of 
people who are affected. It would bias the coefficients downwards, i.e., my results would 
overestimate the true adverse effect. However, I show that neither hot nor cold tempera-
tures seem to impact the intensive margin substantially.

I identify five main contributions this paper makes. First, key components of the 
setting I analyze make this paper arguably more representative of people’s everyday 
work lives than previous papers. The individuals in this study engage in a non-stressful 
but cognitively challenging task. They presumably take it seriously, nonetheless, as 
they pay a monthly subscription fee of USD 15. Further, many of the observed indi-
viduals use the software very frequently. The previous literature (discussed in Sect. 2) 
investigates individuals’ response to temperature either in stressful, non-everyday situ-
ations with potentially long-lasting effects on their career path or in unfamiliar settings 
in which they play a more passive role. Most studies observe their population only 
infrequently.

Second, by investigating mental arithmetic, I focus on numeracy skills, an essential 
measure of cognitive performance. Using data from the Program for the International 
Assessment of Adult Competencies (PIAAC), Hanushek et al. (2015) find that a one-stand-
ard-deviation increase in numeracy skills is associated with a 28 percent wage increase 
among prime-age workers in the U.S. Thus, I analyze a component of cognitive perfor-
mance that determines productivity and wages.

Third, as I observe the individuals’ number of wrong answers per game, I add to our 
understanding of the temperature-cognition relationship by differentiating between prob-
lem-solving speed and the error rate. This is an important distinction, as speed decline 
and error proneness have distinct ramifications. In many settings, errors are arguably more 
costly than speed, e.g., in medical procedures, air traffic control, or the assembly of con-
sumer goods. If a higher error rate is the main driver of a lower cognitive performance, 
protecting people from heat exposure in settings where mistakes are costly seems critical. 
This paper is the first to make this distinction.

Fourth, my analysis covers a large age range from 18 to 80 years from all over the con-
tiguous U.S. The previous literature almost exclusively focuses on adolescents. Therefore, 
the average effects I estimate in this paper are arguably more indicative of how temperature 
affects the general population. The broad age range also allows me to look into effect het-
erogeneity between younger and older people.

Fifth, the individuals observed in this analysis play during a wide range of temperature 
realizations. The lowest percentile of the temperature distribution is −11.1 ◦ C and the high-
est percentile is 31.5 ◦ C. This enables me to investigate both hot and cold temperatures in 
the same context. Most previous studies analyze only one end of temperature extremes, 
predominantly heat.
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2 � Previous Literature

This study contributes to the recent literature on the effect of outside temperature on per-
formance in cognitive tests. With one exception, thus far, all of these papers have investi-
gated the temperature-cognition relationship either in survey tests or in academic exams.

This literature uses performance data from individuals completing their tasks indoors 
while temperature is measured outdoors. Equivalent to the concentration-response vs. 
exposure-response function in pollution contexts (Graff Zivin and Neidell 2013), estimates 
from these papers amount to a combination of the physiological effect of temperature on 
performance and the impact of short-term adaptive behavior, like air conditioning, intended 
to avert the consequences of the physiological effect. While the two components cannot be 
separated, such reduced-form estimates are highly relevant, as they give insight into the 
real-world temperature-performance relationship. They investigate whether the physiologi-
cal effect materializes despite defense investments, and they represent a lower bound of the 
societal costs of extreme temperatures, excluding the costs of adaptive behavior. Although 
observing both outdoor and indoor temperatures would be valuable, non-experimental 
studies usually lack information on indoor temperatures.

In contrast, experimental studies use controlled settings to improve our understanding of 
the dynamics behind the physiological effect. Hancock and Vasmatzidis (2003) and Wang 
et al. (2021) summarize major contributions showing, e.g., that temperature-induced per-
formance impacts depend on task complexity, task type, and their requirement of different 
cognitive functions, such as memory and attention. Despite providing important insight, 
this strand of literature falls short of indicating whether the reported physiological effects 
actually materialize in the real world. Air conditioning has been shown to prevent the nega-
tive consequences of heat (Park 2022). Furthermore, Cook and Heyes (2020) find that cold 
temperatures negatively affect university students’ exam results despite constant indoor 
temperatures. These results underpin the necessity for outdoor temperature-indoor perfor-
mance studies.

I identify three papers analyzing survey tests. Graff  Zivin et  al. (2018) estimate the 
effect of temperature on mathematics and reading assessments from the U.S. National 
Longitudinal Survey of Youth (NLSY) based on 8003 children interviewed in their homes 
between 1988 and 2006. The authors find a decline in math performance for contempo-
raneous temperatures above 21 ◦ C (significant above 26 ◦ C) but not for reading, and they 
identify smaller, imprecisely estimated effects for temperature realizations between tests. 
Garg et al. (2020) use math and reading test results from the Annual Status of Education 
Report (ASER), a repeated cross-section dataset at the district level of 4.5 million tests 
across every rural district in India over the period of 2006 to 2014, and the Young Lives 
Survey (YLS), a panel from the state of Andhra Pradesh with tri-annual household visits 
between 2002 and 2011. They report 10 extra days with an average daily temperature above 
29 ◦ C, compared to 15–17 ◦ C, to reduce math and reading test performance by 0.03 and 
0.02 standard deviations in ASER, and they find qualitatively similar effects in YLS. Yi 
et  al. (2021) employ verbal and math test scores from 5404 individuals above 40 years 
old from the China Health and Retirement Longitudinal Study (CHARLS), covering two 
rounds in 2013 and 2015. They find a 2.4 ◦ C increase in interview day heat stress, a meas-
ure for temperature over 25 ◦ C, to lower math scores by 2.2% and verbal scores by 2.4%. 
Further, the authors examine cumulative effects, showing that not only the current-day 
temperature matters but also the accumulation of heat over time.
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Investigating survey data, Graff  Zivin et  al. (2018), Garg et  al. (2020), and Yi et  al. 
(2021) concentrate on tasks participants perform rarely. NLSY and CHARLS are bi-annual 
surveys, YLS is tri-annual, and ASER is a repeated cross-section dataset. Thus, the tasks 
in ASER are most likely entirely unfamiliar to participants. As beginners, they do not 
solve tasks at their personal performance limits. Graff Zivin et al. (2020) show that heat 
has stronger effects on the more proficient, a finding that is consistent with the impacts of 
another environmental stressor, air pollution (Graff  Zivin et  al. 2020; Krebs and Luech-
inger 2024). Further, participants in surveys take a passive role. While they can decline to 
take part, they do not actively decide to perform these tasks. Presumably, people are less 
engaged in these tasks and take them less seriously than tasks they perform, e.g., on their 
job. Similar to practice and proficiency, the effect of temperature on performance might 
depend on people’s engagement.

In contrast, this study focuses on a task people are familiar with. Many individuals 
use the software day to day and accumulate hundreds of completed games. This frequent 
engagement makes this data more representative of everyday duties since most tasks we do 
are repeated. Furthermore, since users pay a USD 15 monthly subscription fee, presum-
ably, they aim to train and improve their skills and take the task seriously. As susceptibil-
ity to environmental stressors is likely to depend on proficiency and engagement, studying 
performance in this context represents a valuable complement.

Eight studies investigate the effect of temperature on college admission or other aca-
demic exams. Cho (2017) estimate the effect of summer heat on school-level scores of 1.3 
million Korean college entrance exams taken in November in the years 2009 to 2013. They 
find an additional day above 34 ◦ C daily maximum temperature to lower math and Eng-
lish scores by 0.0042 and 0.0064 standard deviations, respectively, relative to the 28–30 ◦ C 
range. Graff Zivin et  al. (2020) analyze overall test scores from 14 million administered 
exams at the National College Entrance Examination (NCEE) in China between 2005 
and 2011. They report a linear effect of 0.68% lower scores from a 2 ◦ C increase in exam 
period temperature. Cook and Heyes (2020) investigate results from 67,000 students taking 
over 600,000 exams at the University of Ottawa between 2007 and 2015. Unlike the other 
papers, they concentrate on cold temperatures and find a 10  ◦ C colder outdoor tempera-
ture to cause a reduction in performance of 8% of a standard deviation. Park et al. (2020) 
use Preliminary Scholastic Aptitude Test (PSAT) test scores of 10 million American high 
school students who took the test at least twice between 2001 and 2014. Controlling for 
test-day weather, the authors find a 1% reduction of an average student’s learning gain over 
a school year from a 1  ◦ F hotter school year. The effect is non-linear, with hotter years 
having higher impacts. They also provide evidence for air conditioning to alleviate these 
effects. Park et al. (2021) employ Programme for International Student Assessment (PISA) 
test scores from 58 developed and developing countries between 2000 and 2015 and dis-
trict-level annual mathematics and English test scores from the Stanford Educational Data 
Archive (SEDA) for over 12,000 U.S. school districts. They report an additional day above 
26.7 ◦ C in the three years before the exam to reduce scores by 0.18% standard deviations in 
PISA and an additional day above 26.7 ◦ C to lower achievement by 0.04% standard devia-
tions in the SEDA data. Melo and Suzuki (2023) analyze natural sciences, social sciences, 
Portuguese, and mathematics exam scores from 8 million Brazilian high-school seniors 
in about 1,800 municipalities. They find a one-standard-deviation temperature increase to 
decrease exam scores by 0.036 standard deviations. Roach and Whitney (2021) use SEDA 
math and English scores from 2008 to 2015 and find non-linear negative effects on achieve-
ment. Park (2022) use individual exam-level information from over 4.5 million exam 
records for almost 1 million students taking the Regents Exams in New York City between 
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1999 and 2011. They report a one-standard-deviation increase in exam-time temperature 
(6.2  ◦ F) to decrease performance by 5.5% of a standard deviation. Further, they provide 
evidence for persistent impacts on educational attainment, showing that on-time graduation 
likelihood decreases by three percentage points for every one-standard-deviation increase 
in average exam-time temperature (4.4 ◦F).

These eight studies generate a holistic picture of how temperature affects children’s and 
adolescents’ exam performance and learning. Test-taking students find themselves in a 
particularly stressful, non-everyday situation with potentially long-lasting effects on their 
career path. While understanding the role of environmental factors in this context is highly 
relevant, individuals might be more sensitive to these factors when writing a test than they 
usually are. From pollution contexts, we know that environmental stressors have a stronger 
effect the higher the stakes (Künn et al. 2023). Thus, the external validity for less stressful 
situations people encounter daily might be limited.

To my knowledge, the only paper that does not use survey or academic test data is Bao 
and Fan (2020), who use Chinese data from an online role-playing game called Dragon 
Nest from March 1 to March 31, 2011, and find a performance drop for temperatures below 
5 ◦C.

A core feature of almost all papers investigating outdoor temperature and indoor cog-
nitive performance is, with the exception of Yi et al. (2021), they investigate children or 
adolescents. Thus, the samples are highly selective on a younger population. My sample 
includes individuals between 18 and 80 years old, although, with a median of 56 years, 
the sample represents an older population than the U.S., with a median of 39 years.3 This 
allows me to investigate heterogeneity across age groups. Additionally, none of the men-
tioned papers investigates both cold and hot temperatures, as most focus on heat only. I 
observe individuals at both ends of the temperature distribution.

While this study fills some central gaps in the literature, it naturally has shortcomings. 
The most prominent drawback is sample selection. In contrast to representative surveys, 
Lumosity users are most likely not a random draw from the overall population. Disclosed 
characteristics in my data reveal a higher median age and female proportion (61%) than the 
U.S. The monthly subscription fee suggests relatively wealthy users. Other socioeconomic 
features might differ as well. This needs to be kept in mind when interpreting the results. 
Another drawback is the representativeness of mental arithmetic for cognitive challenges 
people face in their everyday lives. Some tasks may be related quite closely, others not at 
all. This concern remains despite the somewhat alleviating evidence that numeracy skills 
are determinants of productivity and wages. Despite these shortcomings, this paper departs 
from the previous literature in key aspects, thereby contributing crucially to our under-
standing of the temperature-cognition relationship.

3 � Data

3.1 � Cognitive Performance

To measure cognitive performance, I use data from Lumosity’s online mental arithmetic 
training game called Raindrops. Individuals have to solve arithmetic problems that fall 
down in raindrops before they hit the water at the bottom of the screen (see Fig. 4). The 

3  https://​www.​census.​gov/​newsr​oom/​press-​relea​ses/​2023/​popul​ation-​estim​ates-​chara​cteri​stics.​html, 
accessed February 14, 2024.

https://www.census.gov/newsroom/press-releases/2023/population-estimates-characteristics.html
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problems disappear when solved correctly. After the third raindrop hits the water, the game 
is over. The problems get more difficult, and the raindrops fall faster over time.

The data only include individuals who have used the software at least five times. Con-
sistent with the data delivery agreement, I drop the first four plays of every individual 
because users see a tutorial before the first play but not before any other plays. The data 
only cover web plays (no mobile apps). The spatial resolution is three-digit ZIP Codes, of 
which there are 748 included in the data.4 I end up with a dataset that includes 31,029 play-
ers and 1,151,059 plays from 2015 to 2019.

The main outcome variable is the number of correct answers. In an extension, I also use 
the error rate, measured as the number of correct entries divided by the total number of 
entries. As people’s performance heavily depends on their play behavior (e.g., how many 
times they have played, how long ago they last played), I include the following three con-
trol variables: the log number of plays an individual has played so far, the log number of 
plays ( +1 ) an individual has played since taking a break of at least one hour, and the log 
number of hours ( +1 ) since the last play. Further, I interact each of the three variables with 
three age range indicators (50–64, 65–74, and 75 and older).

3.2 � Air temperature and weather covariates

To generate the outside air temperature variable and weather covariates, I use data from the 
NOAA National Centers for Environmental Information (NCEI) Global Hourly Integrated 
Surface Database for the years 2015–2019.5 I only consider weather monitoring stations 
that were operational throughout the whole period, and I include air temperature, air dew 
point temperature, wind speed, atmospheric pressure, and precipitation. To generate ZIP 
Code averages, I perform the following three steps: First, I drop all variables with more 
than 25% missing observations for each station. Second, I interpolate missing values of all 
available variables at the station level with an inverse distance-weighted average of all sta-
tions within a radius of 50 kms and a power parameter of 2. And third, I generate the ZIP 
Code average from all stations within a ZIP Code. In case there is no station within a ZIP 
Code, I use the inverse distance-weighted average of all stations within 50 kms of the ZIP 
Code centroid, again with a power parameter of 2, to attribute the hourly weather variables. 
I then drop ZIP Codes with more than 25% missing values for any variable.

The main explanatory variable is the average air temperature during the 24 h preceding 
a play. In a robustness check, I use the average air temperature during the 48 h preceding 
a play and the average heat index during the 24  h preceding a play as exogenous vari-
ables. The covariates are the 24-hour averages of relative air humidity, wind speed, atmos-
pheric pressure, and precipitation and the quadratic function of each of those variables. 
The 24-hour averages include the current hour when the game was played. If less than 18 h 
(75%) are non-missing values, I code the observation as missing. I calculate the relative 

4  The average three-digit ZIP code is about 8497 km2 (92 × 92 km), or the size of Idaho County. (There 
are 902 three-digit ZIP codes in the contiguous U.S. [https://​en.​wikip​edia.​org/​wiki/​List_​of_​ZIP_​Code_​prefi​
xes], and the total land area of the contiguous U.S. is 7,663,941 km2 [https://​en.​wikip​edia.​org/​wiki/​Conti​
guous_​United_​States].) Temperature variation and the resulting measurement error could potentially bias 
estimates towards zero. However, most observations come from densely populated and, thus, smaller three-
digit ZIP codes, diminishing this concern.
5  https://​www.​ncei.​noaa.​gov/​data/​global-​hourly/​archi​ve/

https://en.wikipedia.org/wiki/List_of_ZIP_Code_prefixes
https://en.wikipedia.org/wiki/List_of_ZIP_Code_prefixes
https://en.wikipedia.org/wiki/Contiguous_United_States
https://en.wikipedia.org/wiki/Contiguous_United_States
https://www.ncei.noaa.gov/data/global-hourly/archive/
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humidity from a function of air temperature and dew point temperature,6 and the average 
heat index according to the National Weather Service.7

3.3 � Summary statistics

Table  1 shows the means and standard deviations of the main two dependent variables 
(number of correct answers and the error rate), the variables used to construct the play 
covariates (Nth play, N th play since one-hour break, hours since last play), the main inde-
pendent variable (average air temperature during the 24 h preceding a play), two alternative 
explanatory variables used in robustness checks (average air temperature during the 48 h 

Table 1   Summary statistics

Means and standard deviations (in parentheses) of the two main cognitive outcome variables, the varia-
bles used to construct the play covariates, the temperature variables, and the variables used to construct the 
weather variables in the main regression, separately for the full sample and the cold- and hot-ZIP Codes 
sample

Variable All ZIP codes Cold ZIP codes Hot ZIP codes

Number of correct answers 65.417 68.446 63.228
(37.441) (39.804) (35.476)

Error rate 0.095 0.092 0.097
(0.071) (0.070) (0.072)

Nth play 254.766 397.220 151.842
(995.460) (1472.048) (340.635)

Nth play since one-hour break 2.921 2.978 2.880
(6.814) (7.242) (6.486)

Hours since last play 193.754 190.326 196.231
(795.622) (782.582) (804.904)

Average air temperature past 24 h in ◦C 14.076 9.748 17.204
(9.940) (10.109) (8.545)

Average air temperature past 48 h in ◦C 14.083 9.757 17.209
(9.812) (9.956) (8.422)

Average heat index past 24 h in ◦C 13.429 8.614 16.907
(11.105) (11.155) (9.679)

Average relative humidity past 24 h in % 67.362 69.173 66.053
(17.068) (15.632) (17.921)

Average wind speed in m/s 3.033 3.317 2.828
(1.583) (1.641) (1.506)

Average atmospheric pressure past 24 h in hPa 1016.755 1016.908 1016.645
(6.642) (7.460) (5.979)

Total precipitation past 24 h in mm 0.091 0.090 0.092
(0.263) (0.230) (0.284)

Observations 1,151,059 482,812 668,247

7  https://​www.​wpc.​ncep.​noaa.​gov/​html/​heati​ndex_​equat​ion.​shtml

6  https://​bmcno​ldy.​rsmas.​miami.​edu/​Humid​ity.​html

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
https://bmcnoldy.rsmas.miami.edu/Humidity.html
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and heat index during the 24 h preceding a play), and the variables used to construct the 
weather controls (average relative humidity, average wind speed, average atmospheric pres-
sure, and total precipitation during the 24 h preceding a play). The table has separate col-
umns for the whole sample, the cold-ZIP Codes sample (below-median 2015–2019 average 
temperatures), and the hot-ZIP Codes sample (above-median 2015–2019 average tempera-
tures). Figure 5 displays a map of the contiguous United States with different colors for 
cold and hot ZIP Codes.

The overall average number of correct answers is 65.4. People living in cold ZIP Codes 
score roughly 5 points higher than those living in hot ZIP Codes, which amounts to 8.3% 
more correct answers. The difference in the error rate is 5.4% (9.7% erroneous entries in 
hot ZIP Codes vs. 9.2% in cold ZIP Codes). Both these differences are statistically signifi-
cant at the 99% level. The average temperature is 14.1 ◦ C. The difference between hot and 
cold ZIP Codes is 7.5 ◦ C. The heat index variable is slightly lower, mainly due to the cold 
ZIP Codes sample, which indicates a higher relative humidity in hot ZIP Codes.

4 � Identification

I use two different approaches to estimate the effect of outside air temperature on perfor-
mance in the mental arithmetic game. Equation 1 represents the piecewise-linear regres-
sion model.

Pizt is performance (number of correct answers and error rate) of individual i in ZIP Code 
z at time t. Tjt is the average air temperature during the 24 h preceding the play in ◦ C. Ajt 
is an indicator equal to 1 if the air temperature during the past 24 h was above a certain 
threshold value. W′

zt is a vector of weather variables described in Sect. 3.2. G′

izt is a vec-
tor of play covariates described in Sect. 3.1. �i absorbs the individual effects to control for 
any time-invariant differences between individuals, such as innate ability. � t absorbs year, 
month-of-year, day-of-week, hour-of-day effects. These fixed effects flexibly control for 
time trends, seasonal patterns, and differences across the timing of a play between week-
days and the hours of a day. Finally, �izt is the error term.

The two coefficients of interest are � and � . � represents the effect of temperature on 
performance below the threshold value. To investigate the effect of temperature on perfor-
mance above the threshold value, I run a linear combination test for � + � ≠ 0 and report 
the results in the regression tables. The threshold value is 16.5 ◦ C and is determined as the 
arithmetic mean of the temperature bin with the highest performance from the indicator 
regression (Eq. 2 below).

A major advantage of Eq.  (1) is that the coefficients report average marginal effects 
over the full temperature range above and below the threshold value. However, the model 
hinges on the linearity assumption. Therefore, I also estimate the temperature bin regres-
sion model presented in Eq. (2).

T′

jt is a vector of temperature bin indicators. Temperature is, as in Eq. (1), the average air 
temperature during the 24 h preceding the play in ◦ C. The bins are 3 ◦ C temperature steps 
from 0 to 27  ◦ C, plus one for temperatures below 0  ◦ C and one for temperatures above 

(1)Pizt = �Tjt + �Ajt + �(Tjt × Ajt) +W
′

zt� + G
′

izt� + �i + � t + �izt

(2)Pizt = T
′

jt� +W
′

zt� + G
′

izt� + �i + � t + �izt
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27 ◦ C. The bottom bin corresponds to the rounded 10th percentile of the temperature dis-
tribution (with the exact value being 0.47 ◦C). Likewise, 27 ◦ C is the closest rounded num-
ber to the 90th percentile that is dividable by 3 (with the exact value being 26.1 ◦C). The 
bin with the highest average performance serves as the reference (15–18 ◦C).

The model in Eq.  (2) flexibly allows for non-linearity in the effect of temperature on 
performance. It is, therefore, a suited complement to Eq. (1) to test the linearity assump-
tion. A potential concern is that the highest bin might be significantly different from other 
bins by chance, which would make it seem like people perform worse in all other bins. As 
the linear decline with higher temperatures in Sect. 5.1 does not support this concern, I 
refer to Eq. (1) as my main results.

5 � Results

5.1 � Performance

Table  2 shows the coefficients from the piecewise-linear regression model outlined in 
Eq. (1). The coefficients in the first row (“Air temperature”) correspond to �.8 The linear 
combination test in the second row (“Air temp. + air temp. × above threshold”) reports the 
effect of air temperature on performance when temperature is above 16.5 ◦ C. This corre-
sponds to a test of � + � ≠ 0 from Eq. (1). I do not report the coefficient from the air tem-
perature × above threshold interaction, � , as it is simply equal to the coefficient reported in 
the linear combination test minus �.

When focusing on all ZIP Codes included in my dataset (column 1), cold temperatures 
do not seem to affect people’s performance in the Raindrops game. The coefficient of air 
temperature below the threshold value is positive but very close to zero (0.010) and sta-
tistically insignificant. Above the threshold, temperatures negatively affect performance. 
An increase of 1 ◦ C decreases the number of correct answers by 0.084, which amounts to 
0.13%.

To evaluate potential adaptation effects, I run separate regressions for relatively cold 
and relatively hot ZIP Codes.9 Columns 2 and 3 of Table 2 report the respective results. 
They show that the cold ZIP Codes drive the overall result. In the cold-ZIP Codes sample, 
a temperature increase of 1 ◦ C lowers the number of correct answers by 0.142, which is 
0.21%. The effect for hot ZIP Codes is −0.042 (0.066%) and statistically insignificant.

The baseline result implies that, with rising temperatures and no adaptation, people will 
perform below their capacity more often. Running separate analyses for cold and hot ZIP 
Codes gives insight into how adaptation to climate change might mitigate these adverse 
effects (Dell et al. 2014; Auffhammer 2018). This result suggests that hot ZIP Codes are 
better equipped to cope with high temperatures. As temperatures rise, adaptation invest-
ments in colder regions will potentially reduce this gap. People living in colder regions 
might, therefore, respond less to hot temperatures in the future, similar to people currently 
living in hotter regions. However, as climate change will also result in more extreme tem-
peratures, realizations that are currently rare will occur more frequently. Thus, even the 
better-adapted, hotter regions might experience larger performance drops. As these two 

9  I differentiate based on the ZIP Code mean temperature from 2015 to 2019. I define cold (hot) ZIP Codes 
as the ones that had a below-median (above-median) average temperature during these years.

8  Note that air temperature is measured in ◦ C and, if not indicated otherwise, is calculated as the average 
air temperature during the 24 h preceding the play.
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Table 2   Air temperature and 
number of correct answers: 
piecewise-linear regressions

Results from piecewise-linear regressions of the number of correct 
answers on the average air temperature during the 24 h preceding the 
play and an interaction with the above-threshold indicator as outlined 
in Eq.  (1). The standard errors (in parentheses) are clustered on ZIP 
Codes. “Air temperature” denotes the coefficient below 16.5  ◦ C, and 
the linear combination test amounts to the slope above 16.5 ◦ C. Col-
umn 1 includes all observations. Columns 2 and 3 show results from 
separate regressions for the cold- and hot-ZIP Codes samples. The 
control variables include individual effects, time effects, play controls, 
weather controls, and an indicator for above threshold temperature 
(see Sect. 4). The significance levels are: *p≤.1; **p≤.05; ***p≤.01

Dependent 
variable: No. of 
correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temperature 0.010 0.010 0.012
(0.021) (0.017) (0.017)

Linear combina-
tion test:

Air temp. + air 
temp. × above 
threshold

−0.084** −0.142*** −0.042
(0.038) (0.048) (0.030)

Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374

Coefficient

-3

-2

-1

0

1

< 0 3 6 9 12 15 18 21 24 27<

No. of observations

Hot

Cold

0

75K

150K

< 0 3 6 9 12 15 18 21 24 27<

Panel A. All ZIP Codes Panel B. Hot vs. cold ZIP Codes

Fig. 1   Air temperature and number of correct answers: 3 ◦C-bins regressions. Notes: Coefficients with 95% 
confidence intervals (left y-axis) and number of observations (right y-axis) from regressions of the number 
of correct answers on 3 ◦ C bins of the average air temperature during the 24 h preceding the play (x-axis) as 
outlined in Eq. (2), equivalent to Table 3. The standard errors are clustered on ZIP Codes. The reference bin 
is 15–18 ◦ C. The regression in Panel A includes all observations. Panel B shows the results from separate 
regressions for the cold- and hot-ZIP Codes samples. The control variables include individual effects, time 
effects, play controls, and weather controls (see Sect. 4)
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effects run in opposite directions, predictions about how climate change affects our cogni-
tive performance hinge on central assumptions about the degree of potential adaptation.

The temperature bin regressions broadly confirm the results from the piecewise-linear 
regressions. Panel A of Fig.  1 (equivalent to column 1 of Table 3) shows that the coef-
ficients for the temperature bins below the reference of 15–18  ◦ C are mostly small and 
insignificant, with two of them being significant at the 90% level. The coefficient from the 
18–21 bin is almost zero. Above that, there is a close-to-linear trend with the coefficients 
and t-values becoming larger in absolute terms. These results support the linearity assump-
tion made in Eq. (1).

Panel B of Fig. 1 (equivalent to columns 2 and 3 of Table 3) confirms the findings from 
the cold-hot differential piecewise-linear regressions. There are no significant effects for 
below-reference temperatures, except for one outlier (6–9  ◦ C) for cold ZIP Codes. This 
outlier does not withstand the robustness checks I present in Sect. 5.3. All bins above 21 ◦ C 
are statistically significant at the 95% level or higher for cold ZIP Codes. They are roughly 
twice the size as the coefficients from all ZIP Codes and also seem to follow a linear trend. 
The results from the hot-ZIP Codes regressions are not significant, except for the top bin, 
which is significant at the 90% level. While there is a slight downward trend above 19.5 ◦ C, 
it seems likely that the 18–21 ◦ C bin is an upward outlier.

How do these results compare to the results from the literature? Table 4 summarizes 
the main results from the relevant papers. I include all papers discussed in Sect.  2 that 
investigate short-term effects and use a linear approach. The table shows the temperature 
variable, the outcome variable, the temperature cutoff, the mean of the outcome variable, 
and the estimated coefficient. From the latter two, I calculate the percentage change of the 
outcome variable for a 1 ◦ C increase in temperature (last column) to make a comparison 
across papers more convenient.

The five papers that meet the mentioned requirements all estimate larger effects than my 
main result by a magnitude of 3 to 13. What might be a possible explanation for this? In 
contrast to previous studies using academic tests, the stakes in this setting are low. As dis-
cussed in Sect. 2, people might be less affected by heat in non-stressful, everyday settings. 
Another potential explanation is age. Most of the discussed studies focus on adolescents, 
while the median age in this study is 56 years and ranges from 18 to 80 years. As my data-
set includes only relatively few adolescents, I lack the power to test for differential effects 
between narrow age groups. Yet, in an extension in Sect. 5.3, I estimate effect heterogene-
ity across two age groups (below and above the median age of 56 years) and find no evi-
dence for differences between those groups.

I see two limiting factors concerning the interpretations of why I estimate smaller effects 
than the previous literature. First, all studies differ in a multitude of dimensions. E.g., the 
choice of temperature cutoff might affect the estimated slope. Second, some of the previous 
studies focus on a relatively constrained location. These locations might be better or worse 
adapted to heat compared to the average effect across the contiguous U.S., I estimate in this 
paper.

5.2 � Selection

One central difference to the previous literature is that individuals using the training soft-
ware choose when to play. In contrast, college admission exams have predetermined dates, 
while surveys usually allow for some participant discretion. In this section, I provide two 
selection tests mentioned in Sect. 1.
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The first test concerns the extensive margin. I construct a dataset that includes an obser-
vation for every hour from each individual’s first to last play in the data. The observa-
tions contain the respective ZIP Code’s weather variables and the individual’s play covari-
ates. The main outcome variable is an indicator equal to 1 if an individual played during 
a specific hour and 0 otherwise. Table 5 shows the summary statistics for this dataset. As 
mentioned, I am not able to test whether susceptible individuals are more or less likely to 
refrain from playing than others on a particularly hot or cold day. Instead, I test whether 
people are, on average, more (or less) likely to play depending on the temperature.

Table 6 shows the results from the bin regressions similar to the main result. I multiply 
the outcome variable by 100 to make the coefficients more readable. As the bin regressions 
imply a different underlying functional form compared to the main results, I do not esti-
mate a linear model. The results in column 1 for the whole sample suggest that tempera-
tures do not affect the probability of playing, except for the coldest bins. The coefficient 
of 0.0107 for temperatures below 0 ◦ C means that people have a 3.06% higher probability 
of playing (0.0107 / 100 / 0.0035) compared to the reference bin (15–18 ◦C). Separating 
between cold and hot ZIP Codes, I find no effects for hot temperatures either. The positive 
effect of cold temperatures seems to kick in earlier in cold ZIP Codes.

These findings suggest that there is no extensive margin selection for hot temperatures. 
However, people are more likely to play when it is cold. This could potentially bias the 
results if, e.g., it is primarily non-susceptible people who are more likely to play during 
cold weather. In that case, a potential negative effect of cold temperatures would be biased 
toward zero. Therefore, I only cautiously interpret the null result from Sect. 5.1.

To address intensive margin selection, I construct a dataset with an observation for 
every hour an individual uses the software. As the dependent variable, I use the log num-
ber of plays for each of these observations. Thus, a coefficient of 0.01 corresponds to a 1% 
increase in the number of plays. This allows me to test whether people play more (or less) 
often, conditional on playing at all when temperatures are extreme. The summary statistics 
for this dataset are in Table 7.

Table 8 shows the 3 ◦C-bins regression results. Similar to the extensive margin, I do not 
estimate the linear model, as the bin regressions do not support a corresponding functional 
form. The results do not provide consistent evidence for a change in the number of plays 
for hot temperatures. While the coefficient for the 18–21 ◦ C bin is significantly negative, 
purely driven by the hot ZIP Codes, there is no trend, and the pattern indicates that this is 
likely an outlier. People in cold ZIP Codes play somewhat more during cold weather, but 
the extent is small. All in all, I find little evidence for selection at the intensive margin.

5.3 � Robustness

To test the robustness of my estimates, I run three alternations of my baseline results: First, 
instead of averaging temperature over 24  h, I take the average during the 48  h preced-
ing each play. The degree to which past temperatures affect people’s performance has an 
underlying function that is ex-ante unknown. A 24-hour cutoff is random and neglects that 
temperatures from longer ago might still affect people’s performance. If temperatures in 
the 24-to-48-hour range do not affect performance, the coefficients should be closer to zero 
than in the main results regression due to attenuation bias.

The results are robust to using the 48-hour average. Table 9 shows the linear regres-
sion results, and Table  10 the coefficients from the bin regressions. The coefficients for 
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the linear combination test are somewhat larger in absolute terms for the whole sample ( −
0.093 vs. −0.084) as well as for the cold-ZIP Codes sample ( −0.177 vs. −0.142). This sug-
gests that temperatures in the 24-to-48-hour range are indeed relevant.

In the second robustness check, I use a heat index instead of air temperature. The effect 
of hot temperatures on the human body varies with relative humidity.10 The heat index, 
a function of temperature and relative humidity, takes that into account directly. Again, 
the results stay qualitatively unchanged. I present the piecewise-linear regression results in 
Table 11 and the bin regression results in Table 12. The coefficient from the cold-ZIP Code 
sample is somewhat smaller ( −0.117 vs. −0.142), while the coefficient from the hot-ZIP 
Code sample is slightly larger ( −0.050 vs. −0.042), both in absolute terms.

Finally, I use the natural logarithm of 1 plus the number of correct answers as the 
dependent variable. As temperature effects on the number of correct answers might depend 
on individuals’ baseline performance or average score, this specification would be a more 
suited functional form. Again, there are no qualitative changes to the results. The coeffi-
cients for the linear combination test in Table 13 can be interpreted as percentage changes 
for a 1 ◦ C change in temperature above the threshold of 16.5 ◦ C. The figures are smaller 
than in Sect. 5.1 ( −0.08% vs. 0.13% for the whole sample, −0.11% vs. −0.21% for the cold-
ZIP Codes sample, and −0.06% vs. 0.07% for the hot-ZIP Codes sample). While the cold-
ZIP Codes sample coefficient is less precisely estimated, the precision of the hot-ZIP Codes 
sample coefficient increases. The bin regression results in Table 14 also look fairly similar.

5.4 � Extensions

The main finding of this paper raises the question about the underlying mechanism. Do 
people simply solve the arithmetic problems more slowly and, thus, achieve fewer points, 
or do they make more mistakes and, thereby, lose time to find the right answer?

One way to investigate these mechanisms is to look at the error rate, i.e., the number 
of erroneous entries per total number of entries. Figure 2 (equivalent to Table 16) reports 
the bin regressions results. None of the estimated bin indicators returns a significant coef-
ficient, and there seems to be no trend, neither for cold nor hot temperatures. This is con-
firmed in the linear regression results in Table 15. These results provide suggestive evi-
dence that hot temperatures affect the solving speed rather than the error rate.

Another central aspect is how cumulative heat exposure affects cognitive performance. 
Specifically, is ongoing heat for multiple days worse than a single heat day alone? Fig. 3 
(equivalent to Table  17) summarizes the results of different heat period lengths. I run 
regressions similar to Eq. (2), except I use only one dummy variable equal to 1 if the aver-
age air temperature during the 24 h preceding a play is greater than 21 ◦ C (baseline). This 
is the lower end of the bin with a negative coefficient at the 90% level in the main results. 
The coefficients for this dummy are −0.489 (all ZIP Codes), −0.666 (cold ZIP Codes), and 
−0.263 (hot ZIP Codes), all significant at the 95% level. These numbers correspond to a 
performance reduction of 0.75%, 0.97%, and 0.42%, respectively.

To disentangle, I calculate the average temperature of seven different time periods: 
period 1 is hours 0 to 23 preceding a play (the same as above and throughout the paper), 
period 2 is hours 24 to 47 preceding a play, etc. Accordingly, period 7 is hours 144 to 167. 
I then generate three indicator variables based on the average temperature of these seven 

10  https://​www.​weath​er.​gov/​ama/​heati​ndex

https://www.weather.gov/ama/heatindex
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periods. The first indicator is equal to 1 if the average temperature in period 1 but not 2 or 
in periods 1 and 2 but not 3 was greater than 21 ◦ C. This indicator refers to hot tempera-
tures for one or two days, but not longer (“1-2 days...” in Fig. 3). The second indicator is 
equal to 1 if the average temperature in periods 1 to 3 but not 4, or in periods 1 to 4 but not 
5, or in periods 1 to 6 but not 7 was greater than 21 ◦ C. This indicator refers to hot tem-
peratures for at least three but not more than six days (“3-6 days...” in Fig. 3). Finally, the 
third indicator is equal to 1 if the average temperature in all seven periods was greater than 
21 ◦ C. This indicator refers to hot temperatures for at least seven consecutive days. I then 
run similar regressions to the baseline but with these three heat period length indicators 
instead of just one indicator. The reference is a day with an average temperature below or 
exactly 21 ◦C.

The estimated coefficient strictly increases with the length of the heat period, from −
0.220 ( −0.34%) for 1 or 2 days to −0.568 ( −0.87%) for 3 to 6 days and −0.789 ( −1.21%) for 
7 or more days with average temperatures above 21 ◦ C. This pattern is consistent for both 
cold and hot ZIP Codes. The performance drop is −0.413 ( −0.60%), −0.857 ( −1.25%), and 
−1.075 ( −1.57%) for cold ZIP Codes, and −0.014 ( −0.02%), −0.27 ( −0.43%), and −0.479 
( −0.76%) for hot ZIP Codes, respectively. While these coefficients are not statistically dif-
ferent from each other, all coefficients increase with the length of the heat period.

Analyzing the channels for this potential increase in the effect of heat on performance 
is beyond the scope of this paper. At least two mechanisms could be at play: First, a 
recent paper shows that people sleep less when temperatures are high (Minor et al. 2022). 
The observed pattern would be what to expect if the lack of sleep is a principal reason 
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Panel A. All ZIP codes Panel B. Hot vs. cold ZIP Codes

Fig. 2   Air temperature and error rate: 3 ◦C-bins regressions. Notes: Coefficients with 95% confidence inter-
vals (left y-axis) and number of observations (right y-axis) from regressions of the error rate (number of 
incorrect answers / total answers) on 3  ◦ C bins of the average air temperature during the 24 h preceding 
the play (x-axis) as outlined in Eq.  (2), equivalent to Table 15. The standard errors are clustered on ZIP 
Codes. The reference bin is 15–18 ◦ C. The regression in Panel A includes all observations. Panel B shows 
the results from separate regressions for the cold- and hot-ZIP Codes samples. The control variables include 
individual effects, time effects, play controls, and weather controls (see Sect. 4)
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for reduced cognitive performance and continuing sleep deprivation makes it worse. The 
second channel is more mechanical: Buildings have temperature inertia. Without air con-
ditioning, homes will usually be hotter after more days of heat. Hence, the effect might 
worsen with consecutive hot days.

The final extension I provide is on effect heterogeneity across age. I estimate separate 
regressions for people who are below, or exactly, 56 years old, and people who are above 
56 years old, as 56 is the median age. Table  18 shows the piecewise-linear results and 
Table 19 show the temperature bins results, respectively. While the coefficients from the 
piecewise-linear regressions reveal a slightly larger effect for older people, the bins regres-
sions coefficients are somewhat higher (in absolute terms) for younger people. The differ-
ences are generally very small, and the coefficients are close to the baseline results for both 
age groups. They are, however, less precisely estimated. These results do not provide any 
evidence for effect heterogeneity.

6 � Conclusion

I estimate the effect of outside air temperature on cognitive performance for a large sam-
ple in the U.S. using a rich dataset on mental arithmetic training. Hot temperatures reduce 
people’s performance, with larger effects in colder, less adapted regions. The driver for the 
lower performance seems to be slower problem-solving rather than higher error proneness. 
Consecutive hot days worsen the effect. I do not find any significant effects of cold tem-
peratures. The results for the cold temperature range should be taken with a grain of salt 
due to potential selection issues.

Coefficient

Observations

0

200K

400K-2

-1

0

1

Baseline 1-2 days... 3-6 days... 7 or more days...

All ZIP codes
Cold ZIP codes
Hot ZIP codes

Fig. 3   Effect accumulation. Notes: Coefficients with 95% confidence intervals (left y-axis) and number of 
observations (right y-axis) from regressions of the number of correct answers on and indicator = 1 if the 
average temperature was above 21 ◦ C during different temporal periods before a play (x-axis), equivalent to 
Table 17. The standard errors are clustered on ZIP Codes. The baseline is 24 h preceding a play. The refer-
ence is a day with an average temperature below or exactly 21 ◦ C. I run separate regressions for all obser-
vations and the cold- and the hot-ZIP Codes sample. The control variables include individual effects, time 
effects, play controls, and weather controls (see Sect. 4)
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This paper fills a gap in the literature by focusing on non-stressful, familiar, and 
repeated tasks, a context arguably more representative of everyday life situations than 
academic exams and survey tests. The estimated coefficients are small compared to the 
previous literature. Using the estimates from Hanushek et  al. (2015), they translate to 
0.11% lower wages for every 1 ◦ C increase in temperature in colder areas.11 However, 
these estimates ignore the cost of adaptive behavior and the psychological costs of adap-
tation. Further, the representativeness of mental arithmetic for tasks people perform on 
their jobs and in their everyday lives is limited. Therefore, more research is needed to 
better understand the drivers behind temperature sensitivity in cognitively demanding 
settings and, ideally, to consider behavioral and psychological costs.

This paper raises the question of climate change adaptation potential. Heat affects indi-
viduals’ cognitive performance in colder areas more than in hotter areas, implying a policy 
focusing on currently under-adapted, colder regions to reduce temperature vulnerability 
through air conditioning, building insulation, and cultivating urban vegetation. However, as 
hotter regions will experience temperature realizations that are currently not observed, this 
paper and the relevant literature underestimate the potential costs of future climate change 
for these regions. Therefore, to address climate change adaptation policies solely towards 
colder regions would be myopic. While providing important insight into how heat affects 
individuals today, discussing optimal policy is beyond the scope of this paper.

Appendix. Figures

See Figs. 4, 5.

11  This is, of course, a very crude approach assuming similar short- and long-term effects.
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Fig. 4   The Raindrops game.  Source: https://​www.​youtu​be.​com/​watch?v=​M8mAS​g4KOS0, accessed June 
3, 2021, as used in Krebs and Luechinger (2024)

Fig. 5   Hot and cold three-digit ZIP Codes. Notes: Map of three-digit ZIP Codes of the contiguous United 
States with the cold-ZIP Codes sample (below-median 2015–2019 average temperatures) in blue and 
the hot-ZIP Codes sample (above-median 2015–2019 average temperatures) in red. Gray areas are ZIP 
Codes without a play observation. The average temperature of each ZIP Code is based on the NOAA data 
described in Sect. 3.2

https://www.youtube.com/watch?v=M8mASg4KOS0


Temperature and Cognitive Performance: Evidence from Mental…

1 3

Appendix. Tables

See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.

Table 3   Air temperature and 
number of correct answers: 3 ◦
C-bins regressions

Results from regressions of the number of correct answers on 3  ◦ C 
bins of the average air temperature during the 24  h preceding the 
play as outlined in Eq. (2) and depicted in Fig. 1. The standard errors 
(in parentheses) are clustered on ZIP Codes. The reference bin is 
15–18 ◦ C. The regression in column 1 includes all observations. Col-
umns 2 and 3 show the results from separate regressions for the cold- 
and hot-ZIP Codes samples. The control variables include individual 
effects, time effects, play controls, and weather controls (see Sect. 4). 
The significance levels are: * p≤.1; **p≤.05; ***p≤.01

Dependent variable:
No. of correct answers

All ZIP
codes

Cold ZIP
codes

Hot ZIP
codes

Air temp. < 0
◦C −0.428 −0.614 −0.699

(0.500) (0.625) (0.459)
Air temp. 0–3 ◦C −0.506 −0.872 −0.130

(0.458) (0.667) (0.308)
Air temp. 3–6 ◦C −0.376 −0.736 0.037

(0.367) (0.555) (0.311)
Air temp. 6–9 ◦C −0.388* −0.670** −0.119

(0.205) (0.309) (0.308)
Air temp. 9–12 ◦C −0.121 −0.045 −0.171

(0.146) (0.216) (0.180)
Air temp. 12–15 ◦C −0.270* −0.256 −0.253

(0.154) (0.226) (0.224)
Air temp. 18–21 ◦C −0.046 −0.518 0.208

(0.209) (0.321) (0.227)
Air temp. 21–24 ◦C −0.484* −0.913** −0.171

(0.270) (0.437) (0.178)
Air temp. 24–27 ◦C −0.588** −0.995** −0.212

(0.293) (0.412) (0.162)
Air temp. ≥ 27

◦C −0.954** −1.817*** −0.452*
(0.425) (0.551) (0.244)

Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374
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Table 5   Summary statistics of 
extensive margin selection

Means and standard deviations (in parentheses) of the extensive mar-
gin selection variable (indicator variable = 1 if an individual played 
during a specific hour), and the average air temperature during the 
24 h preceding a play in ◦ C. See Sect. 5.2 for a sample construction 
description

Variable All ZIP codes Cold ZIP codes Hot ZIP codes

Played 0.0035 0.0036 0.0034
(0.0589) (0.0596) (0.0583)

Temperature 
past 24 h 
in ◦C

14.5942 10.3918 17.5256
(9.7932) (10.1184) (8.3951)

Observations 226,926,601 93,249,007 133,677,594

Table 6   Air temperature and probability of playing: 3 ◦C-bins regressions

Results from regressions of play (indicator variable = 100 if an individual played during a specific hour) 
on 3 ◦ C bins of the average air temperature during the 24 h preceding the play as outlined in Eq. (2). The 
standard errors (in parentheses) are clustered on ZIP Codes. The reference bin is 15–18 ◦ C. The regression 
in column 1 includes all observations. Columns 2 and 3 show the results from separate regressions for the 
cold- and hot-ZIP Codes samples. The control variables include individual effects, time effects, play con-
trols, and weather controls (see Sect. 4). The significance levels are: *p≤.1; **p≤.05; ***p≤.01

Dependent variable: play All ZIP codes Cold ZIP codes Hot ZIP codes

Air temp. < 0
◦C 0.0107*** 0.0120*** 0.0130**

(0.0035) (0.0043) (0.0055)
Air temp. 0–3 ◦C 0.0069** 0.0081** 0.0085*

(0.0031) (0.0040) (0.0048)
Air temp. 3–6 ◦C 0.0058** 0.0093** 0.0032

(0.0028) (0.0039) (0.0039)
Air temp. 6–9 ◦C 0.0005 0.0054 −0.0034

(0.0027) (0.0039) (0.0036)
Air temp. 9–12 ◦C −0.0001 0.0086*** −0.0059*

(0.0025) (0.0032) (0.0032)
Air temp. 12–15 ◦C 0.0008 0.0069* −0.0024

(0.0021) (0.0037) (0.0026)
Air temp. 18–21 ◦C −0.0025 −0.0022 −0.0024

(0.0017) (0.0028) (0.0022)
Air temp. 21–24 ◦C −0.0024 −0.0008 −0.0034

(0.0022) (0.0036) (0.0028)
Air temp. 24–27 ◦C −0.0008 −0.0008 −0.0015

(0.0025) (0.0041) (0.0029)
Air temp. ≥ 27

◦C −0.0007 0.0049 −0.0030
(0.0032) (0.0057) (0.0034)

Observations 226,926,601 93,249,007 133,677,594
Individuals 30,081 12,344 17,737
ZIPs 745 373 372
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Table 7   Summary statistics of intensive margin selection

Notes: Means and standard deviations (in parentheses) of the intensive margin selection variable (the num-
ber of plays an individual engaged in during an hour in which the individual played), and the average air 
temperature during the 24 h preceding a play in ◦ C. See Sect. 5.2 for a sample construction description

Variable All ZIP codes Cold ZIP codes Hot ZIP codes

Number of plays 1.4541 1.4475 1.4590
(1.5234) (1.5149) (1.5295)

Temperature past 24 h in ◦C 14.0711 9.7705 17.2051
(9.9291) (10.1390) (8.4982)

Observations 789,305 332,720 456,585

Table 8   Air temperature and frequency of playing: 3 ◦C-bins regressions

Results from regressions of the log number of plays (the log number of plays an individual engaged in 
during the current hour) on 3 ◦ C bins of the average air temperature during the 24 h preceding the play as 
outlined in Eq. (2). The standard errors (in parentheses) are clustered on ZIP Codes. The reference bin is 
15–18  ◦ C. The regression in column 1 includes all observations. Columns 2 and 3 show the results from 
separate regressions for the cold- and hot-ZIP Codes samples. The control variables include individual 
effects, time effects, play controls, and weather controls (see Sect. 4). The significance levels are: *p≤.1; ** 
p≤.05; *** p≤.01

Dependent variable:
Log no. of plays

All ZIP Codes Cold ZIP Codes Hot ZIP Codes

Air temp. < 0
◦C −0.0010 0.0052 −0.0070

(0.0032) (0.0047) (0.0052)
Air temp. 0–3 ◦C 0.0073** 0.0127*** 0.0040

(0.0030) (0.0047) (0.0045)
Air temp. 3–6 ◦C 0.0023 0.0062 0.0013

(0.0028) (0.0045) (0.0040)
Air temp. 6–9 ◦C 0.0007 0.0063* −0.0028

(0.0024) (0.0038) (0.0037)
Air temp. 9–12 ◦C 0.0026 0.0042 0.0025

(0.0021) (0.0034) (0.0031)
Air temp. 12–15 ◦C −0.0015 −0.0038 0.0004

(0.0019) (0.0032) (0.0025)
Air temp. 18-21 ◦C −0.0051** −0.0037 −0.0065**

(0.0021) (0.0034) (0.0027)
Air temp. 21–24 ◦C −0.0022 −0.0051 −0.0010

(0.0021) (0.0035) (0.0027)
Air temp. 24–27 ◦C −0.0013 0.0006 −0.0013

(0.0029) (0.0049) (0.0034)
Air temp. ≥ 27

◦C −0.0038 −0.0042 −0.0021
(0.0034) (0.0075) (0.0038)

Observations 789,305 332,720 456,585
Individuals 30,081 12,344 17,737
ZIPs 745 373 372
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Table 9   Air temperature past 48 h and number of correct answers: piecewise-linear regressions

Results from piecewise-linear regressions of the number of correct answers on the average air temperature dur-
ing the 48 h preceding the play (in ◦ C) and an interaction with the above-threshold indicator as outlined in 
Eq. (1). The standard errors (in parentheses) are clustered on ZIP Codes. “Air temperature” denotes the coeffi-
cient below 16.5 ◦ C, and the linear combination test amounts to the slope above 16.5 ◦ C. Column 1 includes all 
observations. Columns 2 and 3 show results from separate regressions for the cold- and hot-ZIP Codes samples. 
The control variables include individual effects, time effects, play controls, weather controls, and an indicator 
for above threshold temperature (see Sect. 4). The significance levels are: *p≤.1; **p≤.05; ***p≤.01

Dependent variable:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temperature 0.013 0.016 0.013
(0.023) (0.019) (0.018)

Linear combination test −0.093** −0.177*** −0.045
Air temp. + air temp. × above threshold (0.041) (0.054) (0.030)
Observations 1,150,343 482,500 667,843
Individuals 31,027 12,706 18,321
ZIPs 748 374 374

Table 10   Air temperature past 48 h and number of correct answers: 3 ◦C-bins regressions

Results from regressions of the number of correct answers on 3 ◦ C bins of the average air temperature dur-
ing the 48 h preceding the play as outlined in Eq. (2). The standard errors (in parentheses) are clustered on 
ZIP Codes. The reference bin is 15–18 ◦ C. The regression in column 1 includes all observations. Columns 
2 and 3 show the results from separate regressions for the cold- and hot-ZIP Codes samples. The control 
variables include individual effects, time effects, play controls, and weather controls (see Sect. 4). The sig-
nificance levels are: * p ≤.1; **p≤.05; ***p≤.01

Dependent variable:
No. of correct answers

All ZIP Codes Cold ZIP Codes Hot ZIP Codes

Air temp. < 0
◦C −0.327 −0.519 −0.688

(0.468) (0.512) (0.550)

Air temp. 0–3 ◦C −0.330 −0.784 0.328
(0.533) (0.659) (0.299)

Air temp. 3–6 ◦C −0.364 −0.616 −0.087
(0.328) (0.439) (0.308)

Air temp. 6–9 ◦C −0.264 −0.487** −0.051
(0.176) (0.215) (0.295)

Air temp. 9–12 ◦C −0.009 0.034 −0.011
(0.161) (0.202) (0.191)

Air temp. 12–15 ◦C −0.074 0.024 −0.091
(0.111) (0.150) (0.157)

Air temp. 18–21 ◦C 0.158 −0.282 0.372
(0.213) (0.212) (0.299)

Air temp. 21–24 ◦C −0.477* −1.124** −0.048
(0.288) (0.446) (0.190)

Air temp. 24–27 ◦C −0.553** −0.925*** −0.204
(0.246) (0.349) (0.178)

Air temp. ≥ 27
◦C −0.945** −1.855*** −0.466*

(0.390) (0.571) (0.262)
Observations 1,150,343 482,500 667,843
Individuals 31,027 12,706 18,321
ZIPs 748 374 374
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Table 11   Heat index and cognitive performance: piecewise-linear regressions

Results from piecewise−linear regressions of the number of correct answers on the average heat index dur-
ing the 24 h preceding the play (in ◦ C) and an interaction with the above-threshold indicator as outlined in 
Eq. (1). The standard errors (in parentheses) are clustered on ZIP Codes. “Air temperature” denotes the coef-
ficient below 16.5 ◦ C, and the linear combination test amounts to the slope above 16.5 ◦ C. Column 1 includes 
all observations. Columns 2 and 3 show results from separate regressions for the cold- and hot-ZIP Codes 
samples. The control variables include individual effects, time effects, play controls, weather controls, and an 
indicator for above threshold temperature (see Sect. 4). The significance levels are: *p≤.1; **p≤.05; ***p≤.01

Dependent variable:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Heat index 0.011 0.012 0.012
(0.020) (0.016) (0.015)

Linear combination test −0.081*** −0.117*** −0.050*
Air temp. + air temp. × above threshold (0.031) (0.043) (0.026)
Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374

Table 12   Heat index and cognitive performance: 3 ◦C-bins regressions

Results from regressions of the number of correct answers on 3 ◦ C bins of the average heat index during 
the 24 h preceding the play as outlined in Eq. (2). The standard errors (in parentheses) are clustered on ZIP 
Codes. The reference bin is 15–18 ◦ C. The regression in column 1 includes all observations. Columns 2 and 
3 show the results from separate regressions for the cold- and hot-ZIP Codes samples. The control variables 
include individual effects, time effects, play controls, and weather controls (see Sect. 4). The significance 
levels are: *p≤.1; **p≤.05; ***p≤.01

Dependent variable:
No. of correct answers

All ZIP Codes Cold ZIP Codes Hot ZIP Codes

Heat index < 0
◦C −0.573 −0.641 −0.582*

(0.506) (0.590) (0.330)

Heat index 0–3 ◦C −0.516 −0.722 −0.066
(0.432) (0.543) (0.322)

Heat index 3–6 ◦C −0.386 −0.384 −0.284
(0.267) (0.300) (0.450)

Heat index 6–9 ◦C −0.570*** −0.624* −0.389
(0.211) (0.323) (0.243)

Heat index 9–12 ◦C −0.141 0.099 −0.253
(0.124) (0.193) (0.172)

Heat index 12–15 ◦C −0.404* −0.308 −0.393
(0.215) (0.218) (0.318)

Heat index 18–21 ◦C −0.122 −0.495 0.085
(0.178) (0.335) (0.151)

Heat index 21–24 ◦C −0.574** −0.913** −0.314*
(0.257) (0.435) (0.166)

Heat index 24–27 ◦C −0.617** −1.082*** −0.229
(0.281) (0.397) (0.184)

Heat index ≥ 27
◦C −0.914** −1.159** −0.520**

(0.378) (0.544) (0.237)
Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374
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Table 13   Air temperature and log cognitive performance: piecewise-linear regressions

Results from piecewise-linear regressions of log(number of correct answers + 1) on the average air temperature 
during the 24 h preceding the play (in ◦ C) and an interaction with the above-threshold indicator as outlined in 
Eq. (1). The standard errors (in parentheses) are clustered on ZIP Codes. “Air temperature” denotes the coeffi-
cient below 16.5 ◦ C, and the linear combination test amounts to the slope above 16.5 ◦ C. Column 1 includes all 
observations. Columns 2 and 3 show results from separate regressions for the cold- and hot-ZIP Codes samples. 
The control variables include individual effects, time effects, play controls, weather controls, and an indicator 
for above threshold temperature (see Sect. 4). The significance levels are: * p≤.1; ** p≤.05; *** p≤.01

Dependent variable:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temperature −0.003 0.008 −0.010
(0.016) (0.016) (0.018)

Linear combination test −0.079** −0.113** −0.057*
Air temp. + air temp. × above threshold (0.031) (0.049) (0.030)
Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374

Table 14   Air temperature and log cognitive performance: 3 ◦C-bins regressions

Results from regressions of log(number of correct answers + 1) on 3 ◦ C bins of the average air temperature 
during the 24 h preceding the play as outlined in Eq. (2). The standard errors (in parentheses) are clustered 
on ZIP Codes. The reference bin is 15–18 ◦ C. The regression in column 1 includes all observations. Col-
umns 2 and 3 show the results from separate regressions for the cold- and hot-ZIP Codes samples. The con-
trol variables include individual effects, time effects, play controls, and weather controls (see Sect. 4). The 
significance levels are: * p ≤.1; ** p≤.05; *** p≤.01

Dependent variable:
Log (no. of correct answers + 1)

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temp. < 0
◦C −0.054 −0.285 −0.082

(0.389) (0.522) (0.427)

Air temp. 0–3 ◦C −0.327 −0.596 −0.131
(0.356) (0.527) (0.378)

Air temp. 3–6 ◦C 0.046 −0.224 0.366
(0.301) (0.467) (0.343)

Air temp. 6–9 ◦C −0.187 −0.381 0.026
(0.227) (0.323) (0.353)

Air temp. 9–12 ◦C −0.002 0.297 −0.189
(0.181) (0.256) (0.232)

Air temp. 12–15 ◦C −0.182 −0.054 −0.223
(0.182) (0.235) (0.253)

Air temp. 18–21 ◦C −0.038 −0.526** 0.220
(0.185) (0.257) (0.228)

Air temp. 21–24 ◦C −0.585** −0.780** −0.427*
(0.247) (0.383) (0.248)

Air temp. 24–27 ◦C −0.575** −0.898** −0.307
(0.255) (0.399) (0.234)

Air temp. ≥ 27
◦C −0.820** −1.332** −0.504

(0.349) (0.573) (0.306)
Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374
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Table 15   Air temperature and error rate: piecewise-linear regressions

Results from piecewise-linear regressions of the error rate (number of incorrect answers / total answers) on 
the average air temperature during the 24 h preceding the play (in ◦ C) and an interaction with the above-
threshold indicator as outlined in Eq. (1). The standard errors (in parentheses) are clustered on ZIP Codes. 
“Air temperature” denotes the coefficient below 16.5  ◦ C, and the linear combination test amounts to the 
slope above 16.5  ◦ C. Column 1 includes all observations. Columns 2 and 3 show results from separate 
regressions for the cold- and hot-ZIP Codes samples. The control variables include individual effects, time 
effects, play controls, weather controls, and an indicator for above threshold temperature (see Sect. 4). The 
significance levels are: * p≤.1; ** p≤.05; *** p≤.01

Dependent variable:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temperature 0.000 −0.001 0.002
(0.002) (0.002) (0.004)

Linear combination test 0.001 0.004 −0.002
Air temp. + air temp. × above threshold (0.004) (0.006) (0.004)
Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374

Table 16   Air temperature and error rate: 3 ◦C-bins regressions

Results from regressions of the error rate (number of incorrect answers / total answers) on 3  ◦ C bins of 
the average air temperature during the 24 h preceding the play as outlined in Eq. (2). The standard errors 
(in parentheses) are clustered on ZIP Codes. The reference bin is 15–18  ◦ C. The regression in column 1 
includes all observations. Columns 2 and 3 show the results from separate regressions for the cold- and hot-
ZIP Codes samples. The control variables include individual effects, time effects, play controls, and weather 
controls (see Sect. 4). The significance levels are: * p≤.1; ** p≤.05; *** p≤.01

Dependent variable: Error rate All ZIP Codes Cold ZIP Codes Hot ZIP Codes

Air temp. < 0
◦C −0.016 0.004 −0.074

(0.046) (0.055) (0.078)

Air temp. 0–3 ◦C 0.006 −0.019 0.061
(0.044) (0.054) (0.067)

Air temp. 3–6 ◦C −0.015 −0.013 −0.042
(0.040) (0.055) (0.053)

Air temp. 6–9 ◦C 0.003 −0.000 −0.019
(0.036) (0.051) (0.052)

Air temp. 9–12 ◦C −0.014 −0.065 0.005
(0.029) (0.044) (0.038)

Air temp. 12– 15 ◦C 0.006 −0.018 0.010
(0.028) (0.041) (0.037)

Air temp. 18– 21 ◦C −0.027 0.014 −0.048
(0.028) (0.036) (0.037)

Air temp. 21– 24 ◦C −0.040 −0.015 −0.058
(0.033) (0.045) (0.042)

Air temp. 24– 27 ◦C −0.005 0.060 −0.045
(0.038) (0.051) (0.047)

Air temp. > 27 ◦C −0.034 −0.015 −0.068
(0.047) (0.092) (0.051)

Observations 1,151,059 482,812 668,247
Individuals 31,029 12,708 18,321
ZIPs 748 374 374
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Table 17   Effect accumulation

Results from regressions of the number of correct answers on and indicator = 1 if the average temperature 
was above 21 ◦ C during different temporal periods before a play as presented in Fig. 3. The standard errors 
are clustered on ZIP Codes. The reference is a day with an average temperature below or exactly 21 ◦ C. I 
run separate regressions for all observations and the cold- and hot-ZIP Codes. The control variables include 
individual effects, time effects, play controls, and weather controls (see Sect. 4). The significance levels are: 
* p≤.1; ** p≤.05; *** p≤.01

Dep. var.:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Av. air temp. past 24 h 
> 21

◦ C (baseline)
−0.4894** −0.6657** −0.2630**
(0.2270) (0.2579) (0.1290)

Av. air temp. > 21
◦ C for 1 or 

2 days
−0.2206 −0.4130* −0.0139
(0.1934) (0.2345) (0.1806)

Av. air temp. > 21
◦ C for 3 to 

6 days
−0.5682** −0.8578*** −0.2696**
(0.2288) (0.2899) (0.1364)

Av. air temp. > 21
◦ C for 7 

days or more
−0.7886** −1.0750** −0.4790**
(0.3446) (0.5032) (0.2086)

Observations 1,142,089 1,142,089 478,616 478,616 663,473 663,473
Individuals 31,006 31,006 12,702 12,702 18,304 18,304
ZIPs 747 747 374 374 373 373

Table 18   Air temperature and 
number of correct answers by 
age: piecewise-linear regressions

Results from piecewise-linear regressions of the number of correct 
answers on the average air temperature during the 24  h preceding 
the play (in ◦ C) and an interaction with the above-threshold indicator 
as outlined in Eq.  (1). The standard errors (in parentheses) are clus-
tered on ZIP Codes. “Air temperature” denotes the coefficient below 
16.5  ◦ C, and the linear combination test amounts to the slope above 
16.5 ◦ C. Columns 1 and 2 show the results from separate regressions 
for individuals below or 56 years old and individuals above 56 years 
old. The control variables include individual effects, time effects, play 
controls, weather controls, and an indicator for above threshold tem-
perature (see Sect.  4). The significance levels are: * p≤.1; ** p≤.05; 
*** p≤.01

Dependent variable:
No. of correct answers

Below or 56 
years old

Above 56 years old

Air temperature −0.012 0.024
(0.021) (0.030)

Linear combination test −0.068 −0.091*
Air temp. + air temp. × above 

threshold
(0.049) (0.049)

Observations 431,871 719,188
Individuals 15,758 15,271
ZIPs 722 728
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Table 19   Air temperature and 
number of correct answers by 
age: 3 ◦C-bins regressions

Results from regressions of the number of correct answers on 3  ◦ C 
bins of the average air temperature during the 24 h preceding the play 
as outlined in Eq.  (2). The standard errors (in parentheses) are clus-
tered on ZIP Codes. The reference bin is 15–18 ◦ C. The regression in 
column 1 includes all observations. Columns 1 and 2 show the results 
from separate regressions for individuals below or 56 years old and 
individuals above 56 years old. The control variables include indi-
vidual effects, time effects, play controls, and weather controls (see 
Sect. 4). The significance levels are: * p≤.1; ** p≤.05; *** p≤.01

Dependent variable: 
No. of correct answers

Below or 56 years old Above 56 years old

Air temp. < 0
◦C 0.155 −0.794

(0.468) (0.715)
Air temp. 0–3 ◦C −0.183 −0.724

(0.472) (0.671)
Air temp. 3–6 ◦C −0.032 −0.584

(0.472) (0.501)
Air temp. 6–9 ◦C −0.379 −0.396*

(0.380) (0.231)
Air temp. 9–12 ◦C −0.107 −0.130

(0.297) (0.159)
Air temp. 12–15 ◦C −0.102 −0.366*

(0.251) (0.194)
Air temp. 18–21 ◦C −0.162 0.015

(0.280) (0.281)
Air temp. 21–24 ◦C −0.491 −0.472

(0.351) (0.369)
Air temp. 24–27 ◦C −0.627* −0.564

(0.363) (0.412)
Air temp. ≥ 27

◦C −1.057** −0.890
(0.513) (0.586)

Observations 431,871 719,188
Individuals 15,758 15,271
ZIPs 722 728
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Appendix. Additional results

A further interesting question is whether temperature has a higher effect at the workplace 
vs. in people’s homes.12 Unfortunately, since the data only includes information on the 
three-digit ZIP code fixed at the individual level, I cannot discern between users’ home and 
work locations. However, I run the main analysis for people under 65 and interact Tjt , Ajt , 
and the interaction of these two variables with an indicator equal to 1 for plays during the 
hours of 9 am to 5 pm on weekdays. Table 20 presents the results. I find that heat affects 
people in colder ZIP codes somewhat less during work hours ( −0.162 vs. −0.134).

Of course, these results have several limitations. First, as mentioned, it is unclear where 
people actually are. Second, I have no information about the HVAC system, neither at peo-
ple’s homes nor at their work locations. Most likely, for some, climate control is better at 
work, and for others, it is worse at work, especially for people working outdoors. Third, 
even if we had information about people’s indoor temperature at home and at work, it is 
unclear to what extent a potentially differential effect at work is attributable to exposure at 
work vs. exposure during the commute.

Table 20   Air temperature and number of correct answers by work hours: piecewise-linear regressions

Notes: Results from piecewise-linear regressions of the number of correct answers on Tjt , Ajt , and their 
interaction, as outlined in Eq.  (1), further interacted with an indicator for work hours (9 am to 5 pm on 
weekdays). The standard errors (in parentheses) are clustered on ZIP Codes. “Air temperature” denotes the 
coefficient below 16.5  ◦ C during non-work hours, and “air temperature × work hours” refers to the coef-
ficient below 16.5 ◦ C during work hours. Similarly, the first linear combination test shows the effect above 
16.5 ◦ C during non-work hours, while the second linear combination test shows the effect above 16.5  ◦ C 
during work hours. Column 1 includes all observations. Columns 2 and 3 show results from separate 
regressions for the cold- and hot-ZIP Codes samples. The control variables include individual effects, time 
effects, play controls, weather controls, and an indicator for above threshold temperature (see Sect. 4). The 
significance levels are: * p≤.1; ** p≤.05; *** p≤.01

Dependent variable:
No. of correct answers

All ZIP codes Cold ZIP codes Hot ZIP codes

Air temperature −0.009 0.011 0.013
(0.018) (0.021) (0.029)

Air temperature × work hours −0.002 −0.024 0.024
(0.015) (0.017) (0.028)

Linear combination test −0.076** −0.162** −0.064
Air temp. + air temp. × above threshold (0.037) (0.068) (0.047)
Linear combination test:
Air temp. + air temp. × above theshold + air 

temp. × work hours
+ air temp. × above threshold × work hours

−0.065* −0.134** −0.056
(0.037) (0.068) (0.048)

Observations 705,629 298,399 407,230
Individuals 21,956 9,075 12,881
ZIPs 738 370 368

12  I thank an anonymous reviewer for this suggestion.
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