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Thin-film composite (TFC) membranes, the backbone of modern reverse osmosis and
nanofiltration, combine the high separation performance of a thin selective layer with
the robust mechanical support. Previous studies have shown that heat released during
interfacial polymerization (IP) can have a significant impact on the physical and chem-
ical structure of the selective layer. In this study, we develop a multilayer transient
heat conduction model to analyze how the thermal properties of the materials used in
TFC fabrication impact interfacial temperature, focusing on support-free (SFIP), con-
ventional (CIP), and interlayer-modulated IP (IMIP). Using a combination of analytic
solutions and computational models, we demonstrate that the thermal effusivities of
fluid and material layers can have a significant effect on the temporal evolution of
interfacial temperature during IP. In CIP, we show that the presence of a polymeric
support adjacent to the reaction interface yields a 20% to 60% increase in interfacial
temperature rise, lasting for ∼ 0.1 s. Furthermore, we demonstrate that inorganic or
metallic interlayers, which have high thermal effusivities, can lead to short-lived order-
of-magnitude reductions in interfacial temperature rise. Finally, we provide analytical
approximations for transient heat conduction through multilayered systems, enabling
rapid evaluation of the thermal impact of novel membrane support and interlayer ma-
terials and structures on interfacial temperature during TFC fabrication. Quantifying
how the thermal properties of solvents, support layers, and interlayers affect interfacial
temperature during IP is critical for the rational design of new TFC membranes.
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1 Introduction
Thin-film composite (TFC) membranes comprise a thin selective layer (< 10−7 m) coupled with a thicker
porous layer (∼ 10−4 m), which provides mechanical support for pressure-driven separations including re-
verse osmosis (RO) and nanofiltration (NF). Combining a thin selective layer with a highly porous and
mechanically robust support enables membrane permeance and mechanical strength to be optimized simul-
taneously. Over the last fifty years, the increased permeance and selectivity of polyamide-based TFCs has
drastically improved the performance of desalination membranes, driving significant reductions in energy
consumption and salt passage [1–3]. New TFC membrane and support layer chemistries and structures are
being designed for a wide range of applications, including ion selectivity for resource recovery using NF [4–
10], chlorine resistance for biofouling-tolerant RO and NF modules [11–16], and high mechanical strength
for efficient brine concentration using high-pressure or low-salt rejection RO [17, 18]. TFC membranes are
also being developed for nonaqueous applications requiring angstrom- and nanoscale selectivity, including
gas separation [19–21] and organic solvent RO and NF [22–26].

The selective layer in current RO and NF TFC membranes is a polyamide film formed by the exother-
mic interfacial polymerization (IP) of a bifunctional amine dissolved in water and a trifunctional acid chlo-
ride dissolved in an organic solvent. The reaction begins when the aqueous and organic solutions come
in contact, allowing the amine to partition into the organic solvent, where it reacts rapidly with the acid
chloride [27, 28]. Heat from the polycondensation reaction is then transferred into and through fluid layers,
support layers, or interlayers adjacent to the reaction interface. Consequently, the thermal properties of the
adjacent fluid layers, support layers, and interlayers have a large impact on interfacial temperature during
the IP process.

Recent studies have shown that temperature increase driven by heat released during polymerization
can have a significant impact on the structure and morphology of the selective layer, influencing key transport
parameters, such as permeability and selectivity, and other membrane performance metrics, such as fouling
and scaling resistance [29–35]. Heat released during selective layer formation has been shown to promote in-
terfacial destabilization [31, 33–35] and drive solution degassing and nanobubble formation [36–40], while
reducing interfacial tension and fluid viscosity, producing rougher membrane morphologies. Experimental
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efforts have also demonstrated that selective layer performance can be tuned using novel membrane fabrica-
tion techniques, including support-free [29, 30] and interlayer-modulated IP [41–45]. Both the absence of a
polymeric support layer and the presence of an inorganic or metallic interlayer in the vicinity of the reaction
interface can affect heat transfer away from the interface, altering the physical and chemical structure of the
incipient selective layer.

Understanding how the thermal properties of fluid layers, support layers, and interlayers affect in-
terfacial temperature during IP is essential to guide the development of new high-performance RO and NF
membranes for a range of emerging applications. Ascertaining how solvents, support layers, and interlayers
might promote or restrict transient heat transfer during membrane fabrication enables the effects of elevated
interfacial temperatures to be isolated from the plethora of complex phenomena that affect selective layer
formation.

This study builds an analytical framework that explains how the thermal properties of solvent layers,
support layers, and interlayers control interfacial temperature during selective layer formation for RO and
NF membranes. First, a transient heat conduction model is developed for a time-dependent planar heat
release in a multilayered system that comprises a reaction interface sandwiched between two semi-infinite
fluid layers, one of which may include either a porous support layer or both an interlayer and a support layer
(Figure 1). The thermal properties of typical support layer and interlayer materials (including conductivity,
volumetric heat capacity, diffusivity, and effusivity) are then surveyed and bounded as a function of layer
porosity and structure. The governing equations are solved in the Laplace domain for an arbitrary planar
source intensity across two-, three-, and four-layer systems, representing support-free, conventional, and
interlayer-modulated IP, respectively. For a diffusion-limited interfacial model, which gives an upper bound
on planar heat release, Laplace-domain solutions are inverted analytically, where possible, and numerically
to obtain the interfacial temperature as a function of time and the thermal properties. Finally, we develop
a closed-form analytical approximation for interfacial temperature in conventional IP and examine how
temperature profiles away from the reaction interface evolve over time. The computational code developed
can be used to rapidly analyze heat transfer and temperature rise through multilayered systems with arbitrary,
time-dependent, planar heat source intensities.

2 Heat Transfer Model
2.1 Model Assumptions
A one-dimensional planar model is developed to understand how solvent, support layer, and interlayer prop-
erties impact interfacial temperature. The model, which assumes a planar heat source at the reaction inter-
face with one-dimensional heat conduction perpendicular to the interface, is based on two approximations.
First, the interfacial reaction can be treated as a planar heat source because the thickness of the reaction
zone (lrxn ∼ 10−7 m) is three orders of magnitude smaller than the characteristic length scale for heat con-
duction (lcond =

√
αeffτrxn ∼ 10−4 m) given the effective thermal diffusivity of most solvents and polymers

(αeff ∼ 10−7 m2 s−1) and experimentally observed reaction timescales (τrxn ∼ 10−1 s) [46–49]. Support lay-
ers and interlayers are porous structures that typically have three-dimensional heterogeneity with anisotropic
thermal properties. The characteristic length scale for variations in thermal properties parallel to the plane
of the reaction interface (x-y plane) scales with the size of the largest support layer and interlayer pores
(lx-y < 10−7 m). This corresponds to a transient heat transfer timescale of τx-y = l2

xy/αeff ∼ 10−7 s, six orders
of magnitude smaller than the reaction timescale (τrxn ∼ 10−1 s). Consequently, temperature gradients par-
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allel to the plane of the reaction interface will dissipate rapidly, and heat conduction need only be considered
in the direction perpendicular to the reaction interface (z-direction).

Figure 1 is a schematic illustration of heat transfer during thin-film composite (TFC) membrane
selective layer fabrication via interfacial polymerization (IP) for three cases: (a) support-free IP (SFIP), (b)
conventional IP (CIP), and (c) interlayer-modulated IP (IMIP). In SFIP [29], which can also be achieved
by dual-slot coating [30], the selective layer is formed in the absence of a support layer, with heat gener-
ated during the reaction being conducted into semi-infinite organic and aqueous solutions (layers 1 and 2,
respectively). In CIP [50], heat generated during IP is initially transferred into the semi-infinite organic
solution (layer 1) and a finite thickness (d2) support layer (layer 2), which typically comprises a porous
polymer containing the aqueous solution. Over time heat is conducted through the support layer and into the
semi-infinite aqueous solution (layer 3). In IMIP [51], heat released at the reaction interface is first trans-
ferred into the semi-infinite organic solution (layer 1) and a finite interlayer (layer 2, thickness d2). Heat is
then conducted through the interlayer into a finite support layer (layer 3, thickness d3), and finally into the
semi-infinite aqueous solution (layer 4). SFIP, CIP, and IMIP correspond to two-, three-, and four-layer heat
transfer systems, respectively. The location of the planar heat source at the interface between layers 1 and 2
(z = 0) in SFIP, CIP, and IMIP, is fixed throughout. Similarly, the interfaces between layers 2 and 3 in CIP
and IMIP (z = d2) and layers 3 and 4 in IMIP (z = d2 +d3) are fixed during the reaction.

2.2 Transient Heat Conduction Equations
In the absence of convection, the transient temperature field (expressed as the deviation from the initial or
reference temperature, ui = Ti −Tref) in each layer i of an n-layer heat transfer system is governed by the
heat conduction equations [52]:

∂ui

∂ t
= αi

∂ 2ui

∂ z2 (1)

where Ti is the temperature, Tref is the reference temperature, and αi = ki/ρicP,i is the thermal diffusivity of
layer i. Neglecting contact resistances, temperature and heat flux boundary conditions (t > 0) are

u1(0, t)= u2(0, t)

−k1
∂u1

∂ z
(0, t)+q(t)=−k2

∂u2

∂ z
(0, t) (2)

ui(zi, t)= ui+1(zi, t) ∀ i ∈ 2, ...,n−1

−ki
∂ui

∂ z
(zi, t)=−ki+1

∂ui+1

∂ z
(zi, t) ∀ i ∈ 2, ...,n−1 (3)

u1(z →−∞, t)→ 0

un(z → ∞, t)→ 0 (4)

where q is the transient planar heat flux at z = 0 and zi = ∑
j=i
j=2 d j is the location of the interface between

layers i and i+ 1. Initial conditions are u1(z < 0, t) = 0, un(zn−1 < z, t) = 0, and ui(zi−1 < z < zi, t) = 0
∀ i ∈ 2, ...,n− 1. Defining Ui(z,s)= L {ui(z, t)} as the Laplace transform of the temperature field in each
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Figure 1: Schematic illustration of heat transfer in
an n-layer system during interfacial polymeriza-
tion (IP) for the fabrication of thin-film composite
(TFC) membrane selective layers via (a) support-
free or dual slot coating IP (SFIP, n = 2), (b) con-
ventional IP (CIP, n= 3) with a support layer (gray),
and (c) interlayer-modulated IP (IMIP, n = 4) with
a support layer and an interlayer (green), which can
be permanent or sacrificial. Heat released during
the exothermic interfacial reaction can be treated as
a planar heat source at the interface between lay-
ers 1 and 2 (z = 0) as the reaction zone is thin
(∼ 10−7 m) compared to the characteristic length
scale for heat transfer (∼ 10−4 m at 0.1 s). The heat
released is simultaneously transferred into layer 1
(z < 0) and (a) layer 2 (z > 0); (b) layer 2 (sup-
port layer, 0 < z < d2) and then layer 3 (z > d2);
and (c) layer 2 (interlayer, 0 < z < d2), then layer 3
(support layer, d2 < z < d2+d3), and finally layer 4
(z > d2 +d3). Fluid layers 1 and n represent the or-
ganic solution, containing a trifunctional acid chlo-
ride, and the aqueous solution, containing a bifunc-
tional amine. Layer 2 in CIP and layer 3 in IMIP
is a porous support layer, while layer 2 in IMIP is
an interlayer, which can be permanent or removed
after fabrication. Both layers 2 and 3 are impreg-
nated with the aqueous diamine solution before the
reaction begins.

layer, the governing heat transfer equations can be written as

d2Ui

dz2 − sUi

αi
= 0 (5)

where s is the complex Laplace domain variable. The boundary conditions in the Laplace domain are given
by

U1(0,s)=U2(0,s)

−k1
dU1

dz
(0,s)+Q(s)=−k2

dU2

dz
(0,s) (6)

Ui(zi, t)=Ui+1(zi, t) ∀ i ∈ 2, ...,n−1

−ki
dUi

dz
(zi, t)=−ki+1

dUi+1

dz
(zi, t) ∀ i ∈ 2, ...,n−1 (7)

U1(z →−∞,s)→ 0

Un(z → ∞,s)→ 0 (8)
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where Q(s) =L {q(t)}. Integrating Equation 5, the Laplace-domain temperature increase (Ui) and heat flux
(−ki(dUi/dz)) in layer i can be expressed as

Ui = Ai exp
(

z
√

s
αi

)
+Bi exp

(
−z
√

s
αi

)
(9)

−ki
dUi

dz
=−κi

√
s
[

Ai exp
(

z
√

s
αi

)
−Bi exp

(
−z
√

s
αi

)]
(10)

where Ai and Bi are integration constants for layer i, and κi = ki/
√

αi =
√

kiρicPi is the thermal effusivity
of layer i (units W s

1
2 m−2 K−1). Integration constants Ai and Bi are a function of the thermal diffusivity

of each layer (α1, ...,αn), the thermal effusivity of each layer (κ1, ...,κn), the thickness of each finite layer
(d2, ...,dn−1), the Laplace transform of the rate of interfacial heat release (Q), and the Laplace-domain
variable (s).

2.3 Bounding Interfacial Heat Release
The fabrication of RO and NF membrane selective layers by IP is a rapid multistage process in which half the
film is formed in ∼ 2 s for most TFC chemistries [46–49]. When the organic-phase reactant (trifunctional
acid chloride) is in stoichiometric excess, studies have shown that IP generally proceeds through three
stages [46, 48, 49, 53–58]. Initially, rapid incipient film formation is limited by the reaction rate and the
diffusion of the aqueous-phase reactant (bifunctional amine) into the thin (< 10−7 m) reaction zone on the
organic side of the liquid-liquid interface. This is followed by film growth limited by bifunctional amine
diffusion through the aqueous phase to the reaction interface. Finally, after a contiguous polymer film forms
and precipitates, the reaction is limited by amine diffusion through the dense film.

The rate of planar heat release at the reaction interface during IP is given by the rate of polymer-
ization multiplied by the enthalpy change of reaction. Modeling precise time-dependent polycondensa-
tion reaction rates during TFC selective layer fabrication is highly challenging, given the complexity of
the IP process and the multitude of phenomena involved from oligomer formation and acid production to
reactant hydrolysis and polymer precipitation. Several detailed microkinetic and macrokinetic reaction-
diffusion models have been developed that accurately capture the dynamics of multistage IP as a function of
monomer chemistry, initial monomer concentrations, and reaction conditions [46, 49, 53–58]. These studies
have shown that after the rapid initial reaction stage, selective layer growth is limited by the diffusion of
the rate-limiting monomer (aqueous bifunctional amine in RO and NF membrane fabrication) to the reac-
tion interface. In this regime, selective layer growth and IP reaction rate are inversely proportional to the
square root of reaction time. In this study, a semi-empirical model based on the diffusion-limited supply
of the rate-limiting monomer (rdl) is used as an upper bound for the planar reaction rate as a function of
reaction time (t). In the diffusion-limited reaction model, the planar reaction rate is rdl = r0

√
t0/t, where r0

(units kmol m−2 s−1) and t0 (units s) are reaction-specific constants, with r0 defined as the diffusion-limited
flux of the rate-limiting monomer to the reaction interface at time t0. The planar heat source intensity re-
sulting from a diffusion-limited interfacial reaction (qdl = rdl∆rH) and its Laplace transform (Qdl) can be
expressed as

qdl(t)= q0

√
t0
t
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Qdl(s)= q0

√
πt0
s

(11)

where q0 = r0∆rH (units W m−2) is a reaction-specific constant, defined as the heat flux at time t0 and ∆rH
(units J kmol−1) is the enthalpy change of reaction per mole of rate-limiting monomer. Semi-empirical
constants r0 and t0 can be estimated through the regression of experimental reaction rate data. Both param-
eters are a function of initial monomer concentrations, monomer transport properties, and reaction condi-
tions. For the IP of benzene-1,3-diamine (meta-phenylenediamine) and 1,3,5-benzenetricarbonyl trichloride
(trimesoyl chloride), which is used to fabricate high-performance TFCs for RO and tight NF applications,
Nowbahar et al. 2018 measure r0 ≈ 5×10−7 kmol m−2 s−1 at t0 ≈ 5×10−1 s [47].

The diffusion-limited reaction assumption in Equation 11 neglects the complex polycondensation
reaction kinetics that are captured in more advanced models and control the IP rate at small time [46, 49,
53–58]. However, the IP rate cannot exceed the rate of monomer transport to the reaction interface at any
time during the reaction. Consequently, the expression for qdl presented in Equation 11 represents a robust
upper bound for the release of interfacial heat. Furthermore, while the expression for diffusion-limited
interfacial heat release is unbounded as reaction time tends to zero, interfacial temperature is finite in this
limit (Section 4). The subsequent analysis focuses on qdl as a rigorous upper bound for interfacial heat
release, however, the computational code provided can compute interfacial temperature for any planar heat
release time form, provided its Laplace transform exists.

3 Solvent, Support Layer, and Interlayer Thermal Properties
3.1 Thermal Diffusivity and Effusivity of Solvents and Materials
The increase in temperature during membrane fabrication is a function of the thermal properties and thick-
ness of each fluid layer (SFIP, CIP, and IMIP), support layer (CIP and IMIP), and interlayer (IMIP) present.
At the reaction interface, where the selective layer is formed, temperature increase is governed by the ther-
mal effusivity of each layer (κ1, ...,κn) and the characteristic timescale for heat transfer through each finite
layer (τ2, ...,τn−1 where τi = d2

i /αi).
Thin-film selective layer fabrication can use a wide range of organic solvents, polymers, metals, and

inorganic materials. In SFIP, CIP, and IMIP, layer 1 is a semi-infinite organic solution that is immiscible
with water, while layer n is either a semi-infinite aqueous solution or a thick and highly porous woven fabric
impregnated with the aqueous solution. Support layers (layer 2 in CIP and layer 3 in IMIP) for membranes
used in spiral-wound and flat-sheet membrane modules are often polymeric, although inorganic and metallic
materials have also been developed [59, 60]. Interlayers or gutter layers (layer 2 in IMIP), which can be
temporary or permanent, can be made of a wide range of polymers, metals, or inorganic materials and their
composites [41, 42, 61].

Figure 2 shows the thermal diffusivity (α = k/ρcP) and thermal effusivity (κ = k/
√

α =
√

kρcP) of
water together with selected organic solvents, polymers, metals, and inorganic materials (see Table E1 for
data) [52, 62–68]. Organic solvents that are immiscible or only partially miscible with water span a narrow
range of thermal effusivities, approximately 0.35 to 0.55 kW s

1
2 m−2 K−1. The thermal effusivities of poly-

mers, in nonporous form, are slightly higher, ranging from 0.30 to 0.80 kW s
1
2 m−2 K−1, although still two-

to four-times less than that of water. The thermal effusivities of most inorganic materials are an order of mag-
nitude greater than that of typical organic solvents and polymers, ranging from 1.0 to 10 kW s

1
2 m−2 K−1.
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√
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√
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packages [67, 68] (see Table E1 for
data).

Nonporous metals have the highest thermal effusivities ranging from below 10.0 kW s
1
2 m−2 K−1 for some

alloys to above 100 kW s
1
2 m−2 K−1 for good conductors, such as aluminum and copper. Although the

thermal effusivities of nonporous metals and inorganic materials are significantly higher than those of water
and organic solvents, the support layers and interlayers are typically highly porous and impregnated with
water prior to initiating the IP process. Consequently, it is essential to quantify the thermal properties of
water-filled composites comprising porous polymers, metals, and inorganic materials [69].

3.2 Support Layer and Interlayer Porosity and Structure
Membrane support layers and interlayers are often highly porous, with spatial variations in structure and
chemistry designed to minimize transmembrane transport resistance while providing sufficient mechanical
support for the active layer during filtration. The composite thermal properties of water-impregnated sup-
port layers and interlayers layers, including thermal conductivity (k) and volumetric heat capacity (ρcP), are
porosity and structure specific [70, 71]. In this study, we neglect contact resistances and bound the thermal
conductivity of composite layers using porosity-weighted arithmetic (kam) and harmonic (khm) means of the
thermal conductivities of each component material. Porosity-weighted arithmetic and harmonic mean ther-
mal conductivities, which correspond to the combined conductance of conductors in parallel and in series,
respectively, represent the widest possible limits on the composite thermal conductivity [70]. Neglecting
any excess volume of mixing, the volumetric heat capacity of the composite material is estimated using the
arithmetic mean of each constituent material, (ρcP)

am:

kam = εkaq +(1− ε)kmat (12)
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khm =

(
ε

kaq
+

1− ε

kmat

)−1

(13)

(ρcP)
am = ε(ρcP)aq +(1− ε)(ρcP)mat (14)

where the superscripts am and hm denote the arithmetic and harmonic means, respectively, and the subscripts
aq and mat denote water and the solid-phase support layer or interlayer material. Combining the porosity-
weighted arithmetic and harmonic mean bounds on thermal conductivity with the porosity-weighted arith-
metic volumetric heat capacity, the thermal diffusivity and thermal effusivity of a porous support layer or
interlayer are bounded by [70]

khm

(ρcP)
am ⩽α ⩽

kam

(ρcP)
am (15)√

khm(ρcP)
am ⩽κ ⩽

√
kam(ρcP)

am (16)

Figure 3 shows the upper and lower bounds of the thermal diffusivity (α = k/ρcP) and thermal
effusivity (κ = k/

√
α =

√
kρcP) of composites comprising selected porous (a) polymers and (b) inorganic

materials filled with water as a function of layer porosity calculated using both the arithmetic and harmonic
thermal conductivity bounds. Porosity (ε) increases from 0.0 (filled markers, light line segments) through
0.5 (unfilled markers) to 1.0 (filled marker for water, dark line segments). Upper and lower bounds for α

and κ are calculated as a function of porosity using Equations 15 and 16, respectively.
Compared to water, the thermal conductivities and volumetric heat capacities of most polymers

are between two- to four-times smaller (kmat < kaq and (ρcP)mat < (ρcP)aq, respectively). Consequently,
increasing porosity leads to a monotonic increase in composite thermal effusivity for both the porosity-
weighted arithmetic and harmonic mean thermal conductivity bounds. For a porosity of 0.50, most polymer-
water composites have a thermal effusivity of around 1.0 kW s

1
2 m−2 K−1, approximately double the thermal

effusivity of the solid polymer. The lower bound of composite thermal diffusivity, khm/(ρcP)
am, which

combines the porosity-weighted harmonic mean thermal conductivity with the arithmetic mean volumetric
heat capacity, can decrease as porosity increases if (ρcP)

am increases faster than khm.
Many inorganic materials; including titanium dioxide, silicon nitride, and aluminum oxide; have

thermal conductivities that are significantly higher than that of water, while having volumetric heat capaci-
ties that are two- to four-times smaller than water (kmat > kaq and (ρcP)mat < (ρcP)aq, respectively). Conse-
quently, for highly conductive inorganic materials, the upper bound of thermal effusivity,

√
kam(ρcP)am, is

not a monotonic function of layer porosity. Compared to polymer-water composites, the thermal diffusivity
and thermal effusivity of inorganic material-water composites is highly dependent on layer porosity and
structure due to the large differences in thermal conductivity. Similarly, the thermal properties of composite
layers incorporating metals, which have thermal conductivity values that are orders of magnitude higher than
that of water but volumetric heat capacity values that are similar to water (kmat ≫ kaq and (ρcP)mat ≈ (ρcP)aq,
respectively), are also highly dependent on both the porosity and structure of the layer.

4 Temperature Increase during Interfacial Heat Release
The transient heat transfer model developed in Section 2 is solved to analyze how the thermal properties
of different materials, outlined in Section 3, impact interfacial temperature during TFC membrane fabrica-
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Figure 3: Thermal diffusivity (α = k/ρcP) and thermal effusivity (κ = k/
√

α =
√

kρcP) bounds for (a) ten
polymers and (b) nine inorganic materials impregnated with water as a function of layer porosity. Porosity
increases from 0.0 (filled circular marker, light line segments), through 0.5 (unfilled marker), to 1.0 (filled
marker, dark segments). The thermal effusivity and diffusivity of the porous matrix is bounded by using the
arithmetic and harmonic mean values of the thermal conductivities of the material and water, combined with
the arithmetic mean of the volumetric heat capacity. In order of increasing thermal effusivity, the polymers
plotted are: (1) polyvinyl chloride, (2) polystyrene, (3) polyvinylidene fluoride, (4) polypropylene, (5) poly-
methyl methacrylate, (6) polysulfone, (7) polycarbonate, (8) polyimide, (9) polytetrafluoroethylene, and
(10) low-density polyethylene; and the inorganic materials plotted are: (1) sulfur, (2) graphite fiber epoxy
(perpendicular), (3) boron fiber epoxy (perpendicular), (4) silicon dioxide, (5) pyrolytic graphite (perpen-
dicular), (6) silicon dioxide (perpendicular), (7) titanium dioxide, (8) silicon nitride, and (9) polycrystalline
aluminum oxide [62, 66].

tion. Laplace- and, where possible, time-domain solutions for the increase in interfacial temperature are
derived for support-free (SFIP), conventional (CIP), and interlayer-modulated (IMIP) interfacial polymer-
ization, which correspond to two-, three-, and four-layer heat transfer systems, respectively. Temperature
increase (u = T −Tref) is normalized by the reaction-specific diffusion-limited interfacial heat release con-
stant (q0

√
t0, units W s

1
2 m−2), which is described in Section 2.3, giving ū = u/(q0

√
t0). The temperature

parameter ū is a function of reaction time, distance from the reaction interface, and the thermal properties of
each layer. Laplace- and time-domain expressions are analyzed to bound the transient behavior of interfacial
temperature as a function of fluid and material properties across a range of solvents, support layers, and in-
terlayers for diffusion-limited interfacial heat release (see Appendices A and B for derivations, respectively).
Laplace- and time-domain expressions for the transient heat fluxes away from the reaction interface are also
determined (Appendix C). Furthermore, the complete Laplace-domain solutions to the transient heat transfer
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model developed are numerically inverted to illustrate the temporal evolution of spatial temperature profiles
(Section 4.4 and Appendix A).

4.1 Interfacial Temperature during Support-Free Interfacial Polymerization (Two-Layer
Heat Transfer)

In SFIP, heat released at the reaction interface is simultaneously transferred into two semi-infinite fluid
layers. Layer 1 (z < 0) is an organic solution that is immiscible with water, while layer 2 (z > 0) is an
aqueous solution. The Laplace transform of the temperature increase in layers 1 and 2 for a two-layer
heat transfer system (U2L

1 (z,s) and U2L
2 (z,s), respectively) can be determined by incorporating boundary

conditions at z →−∞, z = 0, and z →+∞ into the general solution for each layer (Equation 9). For a two-
layer heat transfer system, the Laplace- and time-domain expressions for interfacial temperature rise during
diffusion-limited interfacial heat release (Ū2L,dl

int and ū2L,dl
int , respectively) are (Appendix A.1)

Ū2L,dl
int (s)=

√
π

s(κ1 +κ2)

ū2L,dl
int (t)=

√
π

κ1 +κ2
(17)

Equation 17 shows that interfacial temperature during diffusion-limited planar interfacial heat release into
two semi-infinite fluid layers is constant and inversely proportional to the sum of the thermal effusivities
of layers 1 and 2. Figure 4 shows the maximum normalized increase in interfacial temperature (ū2L,dl

int =

u2L,dl
int /(q0

√
t0)) as a function of the (a) thermal effusivity (κ1 =

√
k1ρcP,1), (b) thermal conductivity (k1),

and (c) thermal diffusivity (α1 = k1/(ρ1cP,1)) of various organic solvents (orange triangles) in a two-layer
heat transfer system representing SFIP. Layer 2 is an aqueous solution that is modeled using the thermal
properties of water. Increasing the thermal effusivity of the organic solvent used in SFIP increases the rate
of heat transfer into the organic solution, driving a reduction in interfacial temperature increase for given
interfacial reaction properties.

The thermal effusivities of most organic solvents that are immiscible or only partially miscible with
water are relatively similar. Therefore, changing the organic solvent does not have a large impact on the
interfacial temperature increase. Increasing κ1 from 377 to 544 kW s

1
2 m−2 K−1 (2,2,4-trimethylpentane

and ethyl formate, respectively) leads to a small reduction in ū2L,dl
int from 0.901 to 0.831 K kW−1 s−

1
2 m2,

for a given set of diffusion-limited reaction parameters. Beyond affecting heat transfer outward from the
reaction interface, organic solvent choice can impact reaction rate and exothermicity, leading to a change
in absolute interfacial temperature. For example, selecting an organic solvent that promotes the partitioning
and transport of the aqueous-phase reactant, or increases the exothermicity of the reaction, will lead to an
increase in the diffusion-limited interfacial heat release constant (q0

√
t0), resulting in a greater absolute

increase in interfacial temperature (u2L,dl
int ). Figures 4b and 4c show that interfacial temperature correlates

well with the thermal conductivity of the organic solvent (k1), but correlates quite poorly with its thermal
diffusivity (α1). Note that thermal conductivity, diffusivity, and effusivity are not independent (κ = k/

√
α).

4.2 Interfacial Temperature during Conventional Interfacial Polymerization (Three-Layer
Heat Transfer)

In CIP, heat released at the reaction interface is initially transferred into layers 1 and 2, and then through
layer 2 into layer 3. Layer 1 (z < 0) is a semi-infinite organic solution, while finite layer 2 (0 < z < d2) repre-
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Figure 4: Maximum in-
terfacial temperature in-
crease for diffusion-limited
heat release in a two-
layer heat transfer system
(ū2L,dl

int = u2L,dl
int /(q0

√
t0)) as a

function of layer 1 (a) thermal
effusivity (κ1 =

√
k1ρcP,1),

(b) thermal conductivity (k1),
and (c) thermal diffusivity
(α1 = k1/(ρ1cP,1)) for 50
organic solvents (orange
triangles) that are immiscible
or only partially miscible
with water (Table E1). Inter-
facial temperature increase
ū2L,dl

int as a function of κ1
(black curve) is calculated
assuming that Layer 2 is an
aqueous solution with the
thermal properties of water
(κ2 = 1.59 kW s

1
2 m−2 K−1).

sents a porous support layer, comprising a solid support material filled with an aqueous solution, and layer 3
(z > d2) is the semi-infinite bulk aqueous solution. As before, the Laplace transform of the temperature
increase in layers 1, 2, and 3 for a three-layer heat transfer system (U3L

1 (z,s), U3L
2 (z,s), and U3L

3 (z,s), re-
spectively) can be determined by incorporating boundary conditions at z →−∞, z = 0, z = d2, and z →+∞

into the general solution for each layer (Equation 9). For a three-layer heat transfer system, the Laplace
transform of interfacial temperature with diffusion-limited interfacial heat release (Ū3L,dl

int ) is given by (Ap-
pendix A.2)

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(18)

where τ2 = d2
2/α2 is the characteristic timescale for heat conduction through layer 2, which is defined in

terms of its thickness (d2) and thermal diffusivity (α2), and γi, j = (κi −κ j)/(κi +κ j) are thermal effusivity
difference-to-sum ratios, noting that |γi, j|< 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n.

Taking the inverse Laplace transform of a series expansion of Equation 18, the time-domain interfa-
cial temperature rise for a three-layer heat transfer system with diffusion-limited interfacial heat release can
be expressed as (Appendix B.2)

ū3L,dl
int (t)=

√
π

κ1 +κ2

{
1− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j erfc
(

j
√

τ2

t

)]}
(19)
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The time-domain series solution for ū3L,dl
int in Equation 19 converges for any combination of materials and

structures given that |γi, j|< 1 ∀ i, j ∈ 1, ...,n. Initial and final interfacial temperatures can be calculated by ap-
plying the initial and final value theorems for Laplace transforms to Ū3L,dl

int giving ū3L,dl
int,t→0+ =

√
π/(κ1 +κ2)

and ū3L,dl
int,t→∞

=
√

π/(κ1 +κ3), respectively, noting that τ2 > 0 and that all poles of sŪ3L,dl
int are in the left

complex half-plane.
Figure 5 shows how the maximum normalized interfacial temperature increase in a three-layer heat

transfer system (ū3L,dl
int = u3L,dl

int /(q0
√

t0)) varies as a function of: (a) the thermal effusivity of layer 2 (sup-
port layer) in the small time limit (t → 0+) for ten selected polymers; and (b) the time from the start of the
interfacial reaction (t). Layer 1 is the organic solution (κ1 = κorg), modeled using the thermal properties
of n-hexane, throughout. Layer 3 is the aqueous solution (solid curves, κ3 = κaq), modeled as water, and a
fabric channel spacer (dashed, κ3 = κfab), modeled as polyethylene terephthalate with a porosity of 0.5 filled
with water. The interfacial temperature increase as a function of polymer porosity is calculated assuming
volume-averaged arithmetic mean thermal conductivity and volumetric heat capacity values using the ther-
mal properties of the polymer and water. Layer 2 porosity increases from 0.0 (green triangles, green curve
segments) through 0.5 (empty circles) to 1.0 (black curve segments). Figure 5c shows the characteristic
timescale for heat transfer by conduction τ2 = d2

2/α2 as a function of layer 2 thickness for the ten selected
polymers across typical membrane support layer thicknesses of up to 300 µm.

Figure 5 demonstrates that the presence of a polymeric support layer reduces the initial rate of heat
conduction away from the reaction interface, leading to a higher interfacial temperature. For a given set
of diffusion-limited reaction parameters, the initial increase in interfacial temperature (ū3L,dl

int,t→0 =
√

π/(κ1 +

κ2)) at small times (t ≪ τ2) depends on the thermal effusivity of the organic solvent (layer 1) and the porous
polymeric support layer (layer 2). Most materials used in polymeric support layers, and all polymers shown,
have a thermal effusivity that is lower than that of water. Consequently, increasing polymer porosity leads
to a reduction in the initial temperature rise.

As reaction time increases, relative to the heat conduction timescale for layer 2 (τ2), interfacial
temperature begins to decrease with heat being transferred into layer 3 (aqueous solution or porous fabric
channel spacer), which has a higher thermal effusivity than the water-filled polymeric support layer. For
diffusion-limited interfacial heat release, at large times (t ≫ τ2), the thermal properties of layer 2 (support
layer) cease to impact interfacial temperature (ū3L,dl

int,t→∞
=

√
π/(κ1 + κ3)) as heat transfer is dominated by

conduction away from the reaction interface in layers 1 and 3. Increasing the thickness of the support layer
(d2) leads to a quadratic increase in the characteristic timescale for heat transfer through layer 2 (τ2), thus
extending the duration over which interfacial temperatures remain elevated.

Polymer choice can have a notable impact on both the magnitude of the increase in interfacial tem-
perature and the duration over which it is sustained, particularly if support layer porosity is low. For example,
polyvinylidene fluoride (PVDF), which has a thermal effusivity of 0.553 kW s

1
2 m−2 K−1 yields a interfacial

temperature increase of 1.82 K kW−1 s−
1
2 m2, 21% greater than the corresponding temperature increase for

polytetrafluoroethylene (PTFE, κ = 0.760 kW s
1
2 m−2 K−1). For highly porous support layers, the thermal

effusivity of layer 2 rapidly tends towards that of water (Figure 3a), lowering initial interfacial temper-
ature rise. For a polysulfone (PSF, κ = 0.637 kW s

1
2 m−2 K−1) support layer, increasing porosity from

0.25 to 0.75 yields a 27% reduction in the initial interfacial temperature rise from 1.37 kW s
1
2 m−2 K−1 to

0.999 kW s
1
2 m−2 K−1.

The timescale for heat transfer through typical polymeric support layers, which are approximately
100 µm thick, is similar to the timescale for selective layer formation (∼ 10−1 s) in TFC membrane fabri-
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Figure 5: Maximum interfacial temperature increase for diffusion-limited heat release in a three-layer heat
transfer system (ū3L,dl

int = u3L,dl
int /(q0

√
t0)) for ten polymers (green triangles) assuming a 100 µm thick sup-

port layer as a function of: (a) layer 2 (support) thermal effusivity; and (b) reaction time. (a) Layer 2
porosity increases from 0.0 (triangular markers, green part of vertical lines), through 0.5 (circular markers),
to 1.0 (black). The interfacial temperature increase as a function of polymer porosity is calculated assum-
ing volume-averaged arithmetic mean thermal conductivity and volumetric heat capacity values using the
thermal properties of the polymer and water. (b) Transient interfacial temperature increase where layer 3 is
an aqueous solution (solid curves) or a porous fabric channel spacer fabric comprising polyethylene tereph-
thalate with a porosity of 0.5 filled with water (dashed). (c) Characteristic timescale for heat conduction
through layer 2 as a function of layer thickness for ten polymers. Layer 1 is an organic solution, modeled
using the thermal properties of n-hexane, throughout. In order of increasing thermal effusivity, the polymers
plotted are: (1) polyvinyl chloride, (2) polystyrene, (3) polyvinylidene fluoride, (4) polypropylene, (5) poly-
methyl methacrylate, (6) polysulfone, (7) polycarbonate, (8) polyimide, (9) polytetrafluoroethylene, and
(10) low-density polyethylene (Table E1). Interfacial temperature increase ū3L,dl

int as a function of t for each
polymer (green curves) is calculated by numerically evaluating the series solution in Equation 19. Black
curve indicates the limit for ū3L,dl

int,t→0+ as a function of κ2.

cation [46–49]. Consequently, understanding the temporal dynamics of interfacial temperature in a three-
layer heat transfer system is essential to develop a comprehensive understanding of selective layer for-
mation during CIP. Normalizing the change in interfacial temperature for a three-layer heat transfer sys-
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tem with diffusion-limited heat release relative to the initial and final limiting temperatures gives θ
3L,dl
int =

(u3L,dl
int −u3L,dl

int,t→∞
)/(u3L,dl

int,t→0+ −u3L,dl
int,t→∞

), where t → 0+ =⇒ θ
3L,dl
int → 1 and t → ∞ =⇒ θ

3L,dl
int → 0. For

diffusion-limited interfacial heat release, u3L,dl
int,t→0+ and u3L,dl

int,t→∞
are independent of time. Consequently, the

Laplace-domain expression for the normalized interfacial temperature change with diffusion-limited inter-
facial heat release can be written as (Appendix A.3)

Θ
3L,dl
int (s)=

1
s

[
1− exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(20)

where γi, j = (κi −κ j)/(κi +κ j), noting that |γi, j| < 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n. Using
an infinite series expansion for the denominator in Equation 20, a time-domain convergent series expansion
for θ

3L,dl
int can be derived (Appendix B.3):

θ
3L,dl
int (t)= erf

(√
τ2

t

)
+

∞

∑
j=1

[
(−γ1,2γ2,3)

j
{

erf
[
( j+1)

√
τ2

t

]
− erf

(
j
√

τ2

t

)}]
(21)

Figure 6a shows the normalized interfacial temperature change for a three-layer heat transfer system
with diffusion-limited interfacial heat release (θ 3L,dl

int ) as a function of normalized reaction time (t/τ2) for
9350 combinations of thermal effusivity spanning 50 organic solvents (layer 1) and 17 water-filled porous
polymers (layer 2) with 11 equally spaced porosity values (ε2) ranging from 0.0 (light green curves) to
1.0 (dark blue). In each case, layer 3 is an aqueous solution modeled using the thermal properties of wa-
ter. The first term in Equation 21, θ

3L,dl
int,O(γ0)

= erf(
√

τ2/t), which is zeroth order in γ , is shown (solid
black curve) along with variations of ±10% in normalized reaction time (dashed). Figure 6b shows the
magnitude of the thermal effusivity difference-to-sum ratios γ1,2 (left triangles) and γ2,3 (right triangles)
as a function of the arithmetic mean thermal effusivity for each combination of adjacent layers relative
to the thermal effusivity of water, with ε2 increasing from 0.0 (light triangles) to 1.0 (dark blue). Fig-
ure 6c shows the deviation between the sum of first two terms in the expansion of θ

3L,dl
int (Equation 21),

θ
3L,dl
int,O(γ2)

= erf(
√

τ2/t)− γ1,2γ2,3[erf(2
√

τ2/t)− erf(
√

τ2/t)], which is second order in γ , and the full solu-
tion as a function of normalized reaction time.

In typical TFC membrane fabrication using CIP, where layer 2 (support layer) is a porous polymer,
the magnitude of the product of the thermal effusivity difference-to-sum ratios (|γ1,2γ2,3|) is small, as the
thermal effusivity of layer 2 is similar to that of layer 1 or layer 3 (Figure 6b). For example, in a three-
layer heat transfer system comprising a n-hexane solution (κ1 = 0.422 kW s

1
2 m−2 K−1), a water-filled

polysulfone support layer (κ2 = 1.11 kW s
1
2 m−2 K−1 with ε2 = 0.50 assuming arithmetic mean thermal

properties), and a bulk aqueous solution (κ3 = 1.59 kW s
1
2 m−2 K−1), the product of the thermal effusivity

difference-to-sum ratios (γ1,2γ2,3) is 0.08. For |γ1,2γ2,3| ≪ 1, normalized interfacial temperature change is
broadly approximated by the first term in Equation 21, θ

3L,dl
int,O(γ0)

= erf(
√

τ2/t), which is independent of
γ1,2 and γ2,3 (Figure 6a). Across the 9350 combinations of typical layer 1, 2, and 3 thermal effusivities,
64% are within a normalized reaction time of ±10% of the zeroth-order approximation for θ

3L,dl
int,O(γ0)

for
1 < t/τ2 < 10.

Figure 6c highlights the effectiveness of the second-order expression θ
3L,dl
int,O(γ2)

= erf(
√

τ2/t)−
γ1,2γ2,3[erf(2

√
τ2/t)− erf(

√
τ2/t)] in capturing temporal heat transfer dynamics in CIP accurately for a

wide range of potential support materials and over several decades in normalized reaction time. The nor-
malized interfacial temperature change for more than 97% of the 9350 layer 1, 2, and 3 material combina-
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Figure 6: (a) Normalized interfacial temperature change, θ
3L,dl
int = (u3L,dl

int − u3L,dl
int,t→∞

)/(u3L,dl
int,t→0+ − u3L,dl

int,t→∞
),

as a function of normalized reaction time (t/τ2) for a combination of 50 organic solvents (layer 1) and 17
polymers (layer 2), with polymer porosity ranging from 0.0 (light green curves) to 1.0 (dark blue) in incre-
ments of 0.1 in each case (Table E1). The first term in the expansion of θ

3L,dl
int (Equation 21) in γ1,2γ2,3 is

shown (solid black curve) along with variations of ±10% in normalized reaction time (dashed). Normal-
ized interfacial temperature change θ

3L,dl
int as a function of t/τ2 for each organic solvent-polymer-porosity

combination (green to blue curves) is calculated by numerically evaluating the time-domain series solution
(Equation 21). (b) Magnitude of thermal effusivity difference-to-sum ratios γ1,2 (left triangles) and γ2,3

(right triangles) for each organic solvent-polymer-porosity combination. (c) Difference between θ
3L,dl
int and

the sum of the first two terms in its expansion (θ 3L,dl
int,O(γ2)

) as a function of normalized reaction time.

tions are within a normalized reaction time of ±1% of θ
3L,dl
int,O(γ2)

for 1 < t/τ2 < 10. Figure 6c shows that

θ
3L,dl
int,O(γ2)

provides a highly accurate, yet relatively simple, approximation of interfacial temperature dynam-

ics, with a maximum deviation (∆θ
3L,dl
int,O(γ2)

= θ
3L,dl
int −θ

3L,dl
int,O(γ2)

) of 4.0×10−3 compared to the full solution.
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For all combinations of materials, θ
3L,dl
int,O(γ2)

yields an underestimate of θ
3L,dl
int as the largest neglected term

(θ 3L,dl
int,O(γ4)

−θ
3L,dl
int,O(γ2)

= γ2
1,2γ2

2,3[erf(3
√

τ2/t)− erf(2
√

τ2/t)]), the third term in Equation 21, is positive re-
gardless of the thermal effusivities of layers 1, 2, and 3 (Appendix B.3).

4.3 Interfacial Temperature during Interlayer-Modulated Interfacial Polymerization
(Four-Layer Heat Transfer)

In IMIP, heat released at the reaction interface is initially transferred into layers 1 and 2, through layer 2 into
layer 3, and ultimately through layers 2 and 3 into layer 4. Layer 1 (z < 0) is a semi-infinite organic solution;
while finite layers 2 (0 < z < d2) and 3 (d2 < z < d2+d3) represent a porous interlayer and a porous support
layer, respectively; and layer 4 (z > d2 + d3) is the semi-infinite bulk aqueous solution. As before, the
Laplace transform of the temperature increase in layers 1, 2, 3, and 4 for a four-layer heat transfer system
(U4L

1 (z,s), U4L
2 (z,s), U4L

3 (z,s), and U4L
4 (z,s), respectively) can be determined by incorporating boundary

conditions at z → −∞, z = 0, z = d2, z = d2 + d3, and z → +∞ into the general solution for each layer
(Equation 9). For a four-layer heat transfer system, the Laplace transform of temperature at the reaction
interface with diffusion-limited interfacial heat release (Ū4L,dl

int ) is (Appendix A.4)

Ū4L,dl
int (s)=

√
π

s(κ1 +κ2)

{
1+ γ2,3 exp(−2

√
τ2s)+ γ2,3γ3,4 exp(−2

√
τ3s)+ γ3,4 exp[−2(

√
τ2s+

√
τ3s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)+ γ2,3γ3,4 exp(−2
√

τ3s)+ γ1,2γ3,4 exp[−2(
√

τ2s+
√

τ3s)]

}
(22)

where γi, j = (κi−κ j)/(κi+κ j), noting that |γi, j|< 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n. Initial and
final interfacial temperatures can be calculated by applying the initial and final value theorems for Laplace
transforms to Ū4L,dl

int , giving ū4L,dl
int,t→0+ =

√
π/(κ1 +κ2) and ū4L,dl

int,t→∞
=
√

π/(κ1 +κ4), respectively, noting that

τ2 > 0, τ3 > 0, and that all poles of sŪ4L,dl
int are in the left complex half-plane. In IMIP, an intermediate time

(τ2 ≪ t ≪ τ3) limit for interfacial temperature increase exists provided that τ2 ≪ τ3. Simultaneous applying
final (t/τ2 → ∞) and initial (t/τ3 → 0+) time limits gives ū4L,dl

int,τ3≪t≪τ3
=
√

π/(κ1 +κ3) (Appendix A.4).
Figure 7 shows the maximum normalized interfacial temperature increase for diffusion-limited heat

release in a four-layer heat transfer system as a function of (a) layer 2 (interlayer) thermal effusivity for
ten inorganic materials (pink left triangles) and ten metals (blue right) and (b) reaction time. In each case,
layer 2 is 100 nm thick, layer 1 is an organic solution (n-hexane, κ1 = 0.422 kW s

1
2 m−2 K−1), layer 3 is

a 100 µm thick polymeric support layer (polysulfone, κ3 = 0.637 kW s
1
2 m−2 K−1, τ3 = 6.06× 10−2 s),

and layer 4 is an aqueous solution (water, κ3 = 1.59 kW s
1
2 m−2 K−1). Figure 7c shows the characteristic

timescale for heat transfer by conduction τ2 = d2
2/α2 as a function of layer 2 thickness for the ten selected

inorganic materials and metals across typical membrane interlayer thicknesses from 1 nm to 1 µm.
Figure 7a demonstrates that many commonly used interlayer materials, particularly metals, can

drastically reduce initial interfacial temperatures in IMIP due to their high thermal effusivities. For ma-
terials with high κ values, initial temperature is a strong function of interlayer porosity and structure
due to the large difference between many commonly used inorganic materials or metals and water (Fig-
ure 3b). For example, for an interlayer composed of aligned copper nanostrands with a porosity of 0.75,
κam

2 = 20.0 kW s
1
2 m−2 K−1 (conductors-in-parallel approximation for nanomaterials aligned perpendicular

to the reaction interface), while κhm
2 = 1.80 kW s

1
2 m−2 K−1 (conductors-in-series approximation for nano-

materials aligned parallel to the interface). This 11-fold reduction in thermal effusivity as the interlayer
structure changes from perpendicular- to planar-aligned nanostrands yields a 9-fold increase in initial inter-
facial temperature increase (ū4L,dl

int,t→0+) from 0.0866 to 0.799 K kW−1 s−
1
2 m2 for a given diffusion-limited

interfacial heat release constant. In the case where the conductors-in-parallel approximation applies, incor-
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Figure 7: Maximum interfacial temperature increase for diffusion-limited heat release in a four-layer heat
transfer system (ū4L,dl

int = u4L,dl
int /(q0

√
t0)) as a function of (a) layer 2 (interlayer) thermal effusivity for ten

inorganic materials (pink left triangles) and ten metals (blue right) and (b) reaction time, assuming that inter-
layer and polysulfone support layer are 100 nm and 100 µm thick, respectively. (c) Characteristic timescale
for heat conduction through layer 2 as a function of layer thickness for a range of inorganic materials (pink
lines) and metals (blue). In order of increasing thermal effusivity (left to right), the inorganic materials
plotted are: (1) sulfur, (2) graphite fiber epoxy (perpendicular), (3) boron fiber epoxy (perpendicular), (4)
silicon dioxide, (5) pyrolytic graphite (perpendicular), (6) silicon dioxide (perpendicular), (7) titanium diox-
ide, (8) silicon nitride, (9) polycrystalline aluminum oxide, and (10) silicon carbide; and the metals plotted
are (1) zirconium, (2) titanium, (3) stainless steel, (4) magnesium, (5) iron, (6) zinc, (7) molybedenum,
(8) aluminum, (9) silver, and (10) copper (Table E1). Interfacial temperature increase ū4L,dl

int as a function
of t for each inorganic material (pink curves) and metal (blue) is calculated by numerically inverting the
Laplace-domain solution in Equation 22. Black curve indicates the limit for ū4L,dl

int,t→0+ as a function of κ2.

porating a copper nanostrand interlayer with a porosity of 0.75, results in a 95% reduction in ū4L,dl
int,t→0+ from

1.67 to 0.0866 K kW−1 s−
1
2 m2 during IMIP compared to CIP with a polysulfone support layer.

Figure 7b shows that interfacial temperatures increases rapidly with reaction time as heat is trans-
ferred through the interlayer (layer 2) and into the support layer (layer 3), because polymeric support layers
have significantly lower thermal effusivities than most inorganic or metallic interlayer materials (κ2 ≫ κ3 for
inorganic materials 5–10 and all metals shown). For intermediate reaction times (τ2 ≪ t ≪ τ3) between the
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characteristic timescale for heat transfer through the interlayer (τ2) and support layer (τ3), interfacial tem-
perature is controlled by the thermal properties of the membrane support layer. Ultimately, as time increases
beyond τ3, heat is transferred through both the interlayer and support layer into the semi-infinite aque-
ous fluid layer, causing the normalized interfacial temperature to approach its large time asymptotic value
(ū4L,dl

int,t→∞
=
√

π/(κ1+κ4)). In IMIP, layer 3 (support layer) typically has a lower thermal effusivity than both
layer 2 (interlayer) and layer 4 (aqueous solution) and a significantly higher characteristic heat conduction
timescale than layer 2 (κ3 < κ2, κ3 < κ4, and τ3 ≫ τ2). Consequently, the normalized interfacial temperature
increase (ū4L,dl

int ) initially rises from
√

π/(κ1+κ2) when t > τ2, reaching a maximum value of
√

π/(κ1+κ3)

before decreasing to
√

π/(κ1 + κ4) as reaction time increases beyond τ3. The porosity and structure of
interlayer materials also have a significant impact on the thermal diffusivity and therefore the characteristic
heat transfer timescale for conduction through the interlayer (Figure 3b). For example, for aligned copper
nanostrands filled with water with a porosity of 0.75, αam

2 = 25.3 mm2 s−1, while αhm
2 = 0.203 mm2 s−1.

This yields a 125-fold increase in the characteristic heat transfer timescale when the conductors-in-series
approximation applies compared to the conductors-in-parallel structure.

Although inorganic materials and metals can have a large impact on initial temperature, membrane
interlayers are typically thin (< 100 nm), which combined with the high thermal diffusivities of these mate-
rials (Figure 2) leads to small characteristic heat transfer timescales (τ2 < 10−6 s). Consequently, the impact
of thin membrane interlayers with higher thermal diffusivities on interfacial temperature is confined to the
very early stages of the IP reaction. At longer reaction times t ≫ τ2, the rate of conduction through the
interlayer is limited by heat transfer in subsequent adjacent layers, including the support layer (layer 3) and,
ultimately, the aqueous solution (layer 4). For small times, the rate of interfacial heat release is dominated
by reaction kinetics, and monomer diffusion limitations are minimal [47]. However, the diffusion-limited
dynamics presented here, which assume instantaneous reaction kinetics, continue to provide a robust upper
bound for interfacial temperature at small time.

4.4 Spatial Temperature Increase during Interfacial Heat Release
As heat released during SFIP, CIP, and IMIP is conducted away from the reaction interface, temperatures
rise in both fluid layers and any support layers (CIP and IMIP) or interlayers (IMIP) present. Solving the
transient heat transfer model developed in Section 2 allows spatial variations in temperature increase to be
captured as a function of both position (z, with z = 0 at the reaction interface) and time (t).

For diffusion-limited interfacial heat release in a three-layer heat transfer system, the Laplace trans-
form of temperature as a function of distance from the reaction interface in layers 1, 2, and 3 (Ū3L,dl

1 (z,s),
Ū3L,dl

2 (z,s), and Ū3L,dl
3 (z,s), respectively) is given by (Appendix A.2)

Ū3L,dl
1 (z,s)=

√
π

sX3L,den [κ2 +κ3 +(κ2 −κ3)exp(−2
√

τ2s)]exp
(

z
√

s
α1

)
(23)

Ū3L,dl
2 (z,s)=

√
π

sX3L,den

[
(κ2 −κ3)exp

(
−2

√
τ2s+ z

√
s

α2

)
+(κ2 +κ3)exp

(
−z
√

s
α2

)]
(24)

Ū3L,dl
3 (z,s)=

√
π

sX3L,den

{
2κ2 exp

[
−
(

1−
√

α2

α3

)
√

τ2s− z
√

s
α3

]}
(25)

X3L,den =(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s) (26)

where τ2 = d2
2/α2 is the characteristic timescale for heat conduction through layer 2 (support layer) and
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Figure 8: Maximum temperature increase (ū3L,dl = u3L,dl/(q0
√

t0)) as a function of (a) distance from the
reaction interface and (b) reaction time for diffusion-limited heat release in a three-layer heat transfer sys-
tem comprising an organic solution (layer 1, n-hexane, yellow shading), a 100 µm thick support layer with
porosity 0.25 (layer 2, polysulfone, gray), and an aqueous solution (layer 3, water, blue). (a) Heat is con-
ducted into layers 1 and 2 and then through layer 2 into layer 3 as reaction time increases from 10−4 s (dark
purple lines) to 102 s (light green). (b) Maximum temperature increase with increasing distance from the
reaction interface from 0 µm (dark purple lines) to 200 µm (light green) towards the aqueous fluid. Tem-
perature increase at the reaction interface (ū3L,dl

int ) decreases from
√

π/(κ1 +κ2) for t ≪ τ2 (upper dashed
line) to

√
π/(κ1 + κ3) for t ≫ τ2 (lower dashed line). Temperature increase is calculated by numerically

inverting the Laplace-domain solutions for Ū3L,dl
1 , Ū3L,dl

2 , and Ū3L,dl
3 in the regions z < 0, 0 < z < d2, and

z > d2 using Equations 23, 24, and 25, respectively.

X3L,den is a common denominator for a three-layer heat transfer system.
Figure 8 shows the maximum normalized temperature increase (ū3L,dl = u3L,dl/(q0

√
t0)) as a func-

tion of (a) distance from the reaction interface (z) and (b) reaction time (t) for diffusion-limited heat release
in a three-layer heat transfer system comprising a semi-infinite organic layer (layer 1, n-hexane, yellow
shading), a 100 µm thick support layer with a porosity of 0.25 (layer 2, polysulfone, gray), and a semi-
infinite aqueous (layer 3, water, blue). (a) The temporal evolution of spatial temperature profiles is plotted
as heat is conducted into layers 1 and 2 and then through layer 2 into layer 3 as reaction time increases
from 10−4 s (dark purple lines) to 102 s (light green). (b) Temperature decreases with increasing distance
from the reaction interface from 0 µm (dark purple lines) through 100 µm (blue, edge of the support layer)
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to 200 µm (light green) towards the aqueous fluid. Interfacial temperature increase (ū3L,dl) decreases from√
π/(κ1 +κ2) for t ≪ τ2 to

√
π/(κ1 +κ3) for t ≫ τ2.

Figure 8a highlights temporal evolution of spatial temperature profile in a three-layer heat transfer
system representing CIP. For purely diffusion-limited interfacial heat release, there is an instantaneous in-
crease in interfacial temperature that is inversely proportional to the sum of the thermal effusivities of the
organic solution and the polymeric support layer (

√
π/(κ1 +κ2)) as the reaction begins (t → 0+). Initially,

the temperature increase in the aqueous solution (layer 3, z > d2) is negligible. As time elapses, heat is
conducted through the support layer, which has a characteristic heat transfer timescale of 6.6×10−2 s, and
into the aqueous fluid. The discontinuity of the temperature gradient at the interface between the polymeric
support layer and the aqueous solution (z = d2) arises due to the unequal thermal effusivities of layers 2 and
3 (1.01 kW s

1
2 m−2 K−1 and 1.59 kW s

1
2 m−2 K−1, respectively) with the reduction in temperature gradient

corresponding to an increase in the thermal effusivity of the layer. As reaction time increases (t ≫ τ2) the
rate of interfacial heat release continues to decrease and the temperature gradient at the reaction interface
dissipates.

Figure 8b shows how temperature decreases monotonically moving away from the reaction interface.
The temperature increase is initially zero everywhere except the reaction interface (ū3L,dl

z̸=0,t→0+ = 0). As heat
is released from the diffusion-limited interfacial reaction, temperature increases rapidly in the immediate
vicinity of the reaction interface (

√
α1t < z <

√
α2t). As the rate of interfacial heat release decreases and

temperature gradients in the support layer dissipate, the temperature increase near the reaction interface
approaches its long time limit

√
π/(κ1+κ3). As discussed in Section 4.2, at long times (t ≫ τ2, temperature

gradients in the support layer are negligible and the temperature in the vicinity of the reaction interface is
governed by conduction in the semi-infinite organic and aqueous solutions (layers 1 and 3, respectively).

4.5 Implications of Elevated Interfacial Temperature during Membrane Fabrication
Elevated interfacial temperatures can alter the chemical structure and physical morphology of the polymeric
selective layer central to TFC membranes. In most cases, higher temperatures reduce interfacial stability
by lowering fluid viscosity and the interfacial tension between the aqueous and organic phases near the
reaction zone [32, 33]. Increased interfacial temperature can also promote the diffusion of monomers to the
reaction interface while increasing the diffusion of polymerization byproducts, such as acids, away from the
reaction zone. Lower fluid viscosities and interfacial tension coupled with higher temperature or chemical
gradients can promote thermocapillary and solutocapillary instabilities. Increased interfacial temperatures
can also accelerate the degassing of aqueous and organic solutions near the reaction interface, leading to the
formation of nanobubbles [36, 37]. In addtition, elevated temperatures can reduce the flexural modulus of
the incipient polymer film, increasing its crumpling propensity.

Experimental studies have shown that higher interfacial temperatures generally lead to rougher and
more heterogeneous membrane morphologies [31]. Increasing the roughness of polymeric selective lay-
ers can have both positive and negative impacts on TFC membrane performance. For example, rougher
membranes may exhibit an increased effective mass transfer area [72] and promote fouling and mineral
scaling [73], while the resulting broad pore size distribution and heterogeneous selective layer thickness can
impact water permeance [74] and lower water-salt selectivity [75].

The impact of membrane support layer and interlayer materials on interfacial temperature during
IP extends beyond their thermal properties analyzed here. Solvent, support layer, and interlayer choice can
promote or retard the partitioning and diffusion of monomers to the reaction interface, altering the IP reaction

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 20

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

rate and reaction exothermicity. The hydrophilicity or hydrophobicity of support layers and interlayers can
also affect the extent of aqueous solution adsorption, impacting effective monomer concentrations near the
reaction zone and effective layer porosity, which affects its thermal effusivity (Section 3.2). In the preceding
analysis, higher monomer concentrations, more exothermic IP chemistries, and faster reactant transport
or reaction rates would drive an increase in the diffusion-limited interfacial heat release constant (q0

√
t0),

leading to higher interfacial temperatures.

5 Conclusions
Thin-film composite (TFC) membranes have revolutionized desalination and water treatment, dramatically
increasing the energy efficiency and selectivity of reverse osmosis (RO). Currently, extensive research efforts
are focused on developing TFCs for a vast array of new applications, from high-pressure RO membranes for
brine volume reduction and nanofiltration (NF) membranes for critical metals extraction from brines to gas
separation membranes for energy-efficient carbon capture and hydrogen production. TFC membranes com-
prise a thin selective layer formed by interfacial polymerization (IP) on a porous support layer. Interlayers
deposited on the support layer prior to IP are also used to modulate the physical and chemical structure of
the selective layer. The preceding analysis develops a transient heat conduction model to understand how
the thermal properties of the aqueous and organic solvent layers, polymeric support layers, and inorganic or
metallic interlayers impact interfacial temperature during the fabrication of TFC selective layers.

By combining analytical and numerical models, we examine the evolution of temperature over
time during interfacial heat release in support-free (SFIP), conventional (CIP), and interlayer-modulated
IP (IMIP), which are represented by two-, three-, and four-layer heat transfer systems, respectively. Using
diffusion-limited interfacial heat release as an upper bound for planar heat source intensity, we demonstrate
that interfacial temperature is a function of the thermal effusivity, rather than thermal conductivity or ther-
mal diffusivity, of each fluid layer and any support layer or interlayer that is present during IP. Initially,
interfacial temperature is inversely proportional to the sum of the thermal effusivities of the two materials
on either side of the reaction interface—the organic fluid and the aqueous fluid (SFIP), support layer (CIP),
or interlayer (IMIP). In SFIP, solvent choice has a relatively minor impact on heat transfer since the ther-
mal effusivities of most organic solvents that are immiscible with water are relatively similar. In CIP, the
introduction of a polymeric support layer leads to an increase of 20% to 60% in temperature rise at the
reaction interface, compared to SFIP, depending on the polymer and its porosity. As time from the start of
the IP reaction increases, heat is conducted through the porous support layer and into the aqueous fluid. This
leads to a reduction in interfacial temperature over time in CIP because the thermal effusivity of water is
more than double that of most polymeric support layer materials. Furthermore, our analysis demonstrates
that incorporating inorganic or metallic interlayer materials with thermal effusivities substantially higher
than that of water can lead to a drastic reduction (> 90%) in initial interfacial temperature rise during IMIP.
However, interlayer heat conduction timescales are small (< 10−6 s), because most membrane interlayers
are thin (< 1 µm), limiting their thermal impact on the formation of the incipient selective layer.

The analysis presented in this work highlights the thermal impact of solvent and material choice on
selective layer formation during TFC membrane fabrication. The upper bounds on temperature increase de-
rived here enable the effects of elevated interfacial temperatures on membrane formation to be delineated and
isolated from the myriad of other complex phenomena, from IP reaction kinetics to polymer precipitation.
By understanding how support layer or interlayer thickness, porosity, and structure impact the magnitude
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and duration of changes in interfacial temperature, the present analysis can inform improved composite
membrane design for the vast array of emerging separations challenges. The analytical and computational
models developed enable the rapid evaluation of how new membrane support and interlayer materials and
structures will influence heat transfer during selective layer formation, accelerating the development of new
membrane chemistries and architectures.
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Appendix

A Laplace-Domain Temperature Field
The governing equation for heat transfer in layer i in the Laplace domain is

d2Ui

dz2 − sUi

αi
= 0 (A1)

where s is the complex Laplace domain variable and αi = ki/(ρicPi) is the thermal diffusivity of layer i. The
boundary conditions in the Laplace domain for an n-layer heat transfer system, where layers 1 and n are
semi-infinite, are

U1(0,s)=U2(0,s)

−k1
dU1

dz
(0,s)+Q(s)=−k2

dU2

dz
(0,s) (A2)

Ui(zi, t)=Ui+1(zi, t) ∀ i ∈ 2, ...,n−1

−ki
dUi

dz
(zi, t)=−ki+1

dUi+1

dz
(zi, t) ∀ i ∈ 2, ...,n−1 (A3)

U1(z →−∞,s)→ 0

Un(z → ∞,s)→ 0 (A4)

where Q(s) = L {q(t)} is the Laplace transform of the rate of interfacial heat release. Integrating Equa-
tion A1, the Laplace-domain temperature increase (Ui) and heat flux (−ki(dUi/dz)) in layer i can be written
as

Ui = Ai exp
(

z
√

s
αi

)
+Bi exp

(
−z
√

s
αi

)
(A5)

−ki
dUi

dz
=−κi

√
s
[

Ai exp
(

z
√

s
αi

)
−Bi exp

(
−z
√

s
αi

)]
(A6)

where Ai and Bi are integration constants for layer i, and κi = ki/
√

αi =
√

kiρicPi is the thermal effusivity
of layer i (units W s

1
2 m−2 K−1). Integration constants Ai and Bi are a function of the thermal diffusivity

of each layer (α1, ...,αn), the thermal effusivity of each layer (κ1, ...,κn), the thickness of each finite layer
(d2, ...,dn−1), the Laplace transform of the rate of interfacial heat release (Q), and the Laplace-domain
variable (s). Time- and Laplace-domain solutions were derived both manually and using the sympy symbolic
mathematics library in Python [78].

A.1 Two-Layer Heat Transfer System
For a two-layer heat transfer system (e.g., support-free interfacial polymerization) the boundary conditions
are

U2L
1 (0,s)=U2L

2 (0,s)

−k1
dU2L

1
dz

(0,s)+Q(s)=−k2
dU2L

2
dz

(0,s) (A7)
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U2L
1 (z →−∞,s)→ 0

U2L
2 (z → ∞,s)→ 0 (A8)

where Q(s)= L {q(t)} is the Laplace transform of the planar heat flux at z = 0. The boundary conditions at
z = 0, z → ∞, and z →−∞ give

A2L
1 +B2L

1 = A2L
2 +B2L

2 (A9)

κ1
(
A2L

1 −B2L
1
)
−κ2

(
A2L

2 −B2L
2
)
=

Q√
s

(A10)

B2L
1 = 0 (A11)

A2L
2 = 0 (A12)

where κi = ki/
√

αi =
√

kiρicPi is the thermal effusivity of layer i, which has units W s
1
2 m−2 K−1. Boundary

condition equations can be solved for unknown integration constants (A2L
1 and B2L

2 ) giving

A2L
1 =

Q
(κ1 +κ2)

√
s

(A13)

B2L
2 =

Q
(κ1 +κ2)

√
s

(A14)

The temperature profiles in layers 1 and 2 as a function of distance from the reaction interface (z), the
complex Laplace domain variable (s), and the Laplace transform of the rate of interfacial heat release (Q)
are given by

U2L
1 (z,s)=

Q
(κ1 +κ2)

√
s

exp
(

z
√

s
α1

)
(A15)

U2L
2 (z,s)=

Q
(κ1 +κ2)

√
s

exp
(
−z
√

s
α2

)
(A16)

The temperature at the reaction interface is given by:

U2L
int (s)=

Q√
s(κ1 +κ2)

(A17)

For diffusion-limited interfacial heat release (Qdl = q0
√

πt0/s) the interfacial temperature rise is

Ū2L,dl
int (s)=

√
π

s(κ1 +κ2)
(A18)

A.2 Three-Layer Heat Transfer System
For a three-layer heat transfer system (e.g., conventional interfacial polymerization) the boundary conditions
are

U3L
1 (0,s)=U3L

2 (0,s)

−k1
dU3L

1
dz

(0,s)+Q(s)=−k2
dU3L

2
dz

(0,s) (A19)
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U3L
2 (d2,s)=U3L

3 (d2,s)

−k2
dU3L

2
dz

(d2,s)=−k3
dU3L

3
dz

(d2,s) (A20)

U3L
1 (z →−∞,s)→ 0

U3L
3 (z → ∞,s)→ 0 (A21)

where Q(s)= L {q(t)} is the Laplace transform of the planar heat flux at z = 0. The boundary conditions at
z = 0, z = d2, z → ∞, and z →−∞ give

A3L
1 +B3L

1 = A3L
2 +B3L

2 (A22)

κ1
(
A3L

1 −B3L
1
)
−κ2

(
A3L

2 −B3L
2
)
=

Q√
s

(A23)

A3L
2 exp

(
d2

√
s

α2

)
+B3L

2 exp
(
−d2

√
s

α2

)
= A3L

3 exp
(

d2

√
s

α3

)
+B3L

3 exp
(
−d2

√
s

α3

)
(A24)

κ2

[
A3L

2 exp
(

d2

√
s

α2

)
−B3L

2 exp
(
−d2

√
s

α2

)]
= κ3

[
A3L

3 exp
(

d2

√
s

α3

)
−B3L

3 exp
(
−d2

√
s

α3

)]
(A25)

B3L
1 = 0 (A26)

A3L
3 = 0 (A27)

Boundary condition equations can be solved for unknown integration constants (A3L
1 , A3L

2 , B3L
2 , and B3L

3 )
giving

A3L
1 =

Q√
s

 κ2 +κ3 +(κ2 −κ3)exp
(
−2d2

√
s

α2

)
(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp

(
−2d2

√
s

α2

)
 (A28)

A3L
2 =

Q√
s

 (κ2 −κ3)exp
(
−2d2

√
s

α2

)
(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp

(
−2d2

√
s

α2

)
 (A29)

B3L
2 =

Q√
s

 κ2 +κ3

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp
(
−2d2

√
s

α2

)
 (A30)

B3L
3 =

Q√
s


2κ2 exp

[
−d2

(
1

√
α2

− 1
√

α3

)
√

s
]

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp
(
−2d2

√
s

α2

)
 (A31)

Integration constants (A3L
1 , A3L

2 , B3L
2 , and B3L

3 ) can also be expressed in of the characteristic timescale for
heat conduction (τi = d2

i /αi) though finite layer i, giving

A3L
1 =

Q√
s

[
κ2 +κ3 +(κ2 −κ3)exp(−2

√
τ2s)

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s)

]
(A32)
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A3L
2 =

Q√
s

[
(κ2 −κ3)exp(−2

√
τ2s)

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s)

]
(A33)

B3L
2 =

Q√
s

[
κ2 +κ3

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s)

]
(A34)

B3L
3 =

Q√
s


2κ2 exp

[
−
(

1−
√

α2

α3

)
√

τ2s
]

(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s)

 (A35)

Laplace transform of temperature fields in layers 1, 2, and 3 are given by

U3L
1 (z,s)=

Q√
sX3L,den [κ2 +κ3 +(κ2 −κ3)exp(−2

√
τ2s)]exp

(
z
√

s
α1

)
(A36)

U3L
2 (z,s)=

Q√
sX3L,den

[
(κ2 −κ3)exp

(
−2

√
τ2s+ z

√
s

α2

)
+(κ2 +κ3)exp

(
−z
√

s
α2

)]
(A37)

U3L
3 (z,s)=

Q√
sX3L,den

{
2κ2 exp

[
−
(

1−
√

α2

α3

)
√

τ2s− z
√

s
α3

]}
(A38)

X3L,den =(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp(−2
√

τ2s) (A39)

where X3L,den is a common denominator for a three-layer heat transfer system. The temperature at the
reaction interface (z = 0) is given by

U3L
int (s)=

Q√
s

 κ2 +κ3 +(κ2 −κ3)exp
(
−2d2

√
s

α2

)
(κ1 +κ2)(κ2 +κ3)+(κ1 −κ2)(κ2 −κ3)exp

(
−2d2

√
s

α2

)
 (A40)

U3L
int (s)=

Q√
s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(A41)

where γi, j = (κi − κ j)/(κi + κ j), noting that |γi, j| < 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n. For
diffusion-limited interfacial heat release (Qdl = q0

√
πt0/s) the interfacial temperature rise is

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(A42)

Initial (t → 0+) and final (t → ∞) interfacial temperatures can be calculated by applying the initial
and final value theorems for Laplace transforms to the expression for Ū3L,dl

int (Equation A42) giving

ū3L,dl
int,t→0+ = lim

s→∞
sŪ3L,dl

int (s)=
√

π

κ1 +κ2
(A43)

ū3L,dl
int,t→∞

= lim
s→0

sŪ3L,dl
int (s)=

√
π

κ1 +κ2

(
1+ γ2,3

1+ γ1,2γ2,3

)
=

√
π

κ1 +κ3
(A44)

noting that τ2 > 0 and that all poles of sU3L,dl
int are in the left complex half-plane.
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A.3 Normalized Interfacial Temperature Change in a Three-Layer Heat Transfer System
Normalizing the interfacial temperature for a three-layer heat transfer system with diffusion-limited heat
release relative to the initial and final limiting temperatures (θ 3L,dl

int ) gives

θ
3L,dl
int =

u3L,dl
int −u3L,dl

int,t→∞

u3L,dl
int,t→0+ −u3L,dl

int,t→∞

(A45)

u3L,dl
int,t→0+ −u3L,dl

int,t→∞
=

1
κ1 +κ2

− 1
κ1 +κ3

(A46)

For diffusion-limited interfacial heat release u3L,dl
int,t→0+ and u3L,dl

int,t→∞
are constants, independent of time. Con-

sequently, the Laplace transform of the normalized interfacial temperature with diffusion-limited interfacial
heat release in a three-layer heat transfer system (Θ3L,dl

int ) can be expressed as

Θ
3L,dl
int (s)=

[
L
{

u3L,dl
int

}
−L

{
u3L,dl

int,t→∞

}]( 1
κ1 +κ2

− 1
κ1 +κ3

)−1

(A47)

Θ
3L,dl
int (s)=

[
L
{

u3L,dl
int

}
− 1

s(κ1 +κ3)

](
1

κ1 +κ2
− 1

κ1 +κ3

)−1

(A48)

Substituting the expression for U3L,dl
int = L {u3L,dl

int } (Equation 18) gives

Θ
3L,dl
int (s)=

1
s

[
1+ γ2,3 exp(−2

√
τ2s)

(κ1 +κ2)[1+ γ1,2γ2,3 exp(−2
√

τ2s)]
− 1

κ1 +κ3

](
1

κ1 +κ2
− 1

κ1 +κ3

)−1

(A49)

Θ
3L,dl
int (s)=

1
s

{
1

κ1 +κ3
− 1+ γ2,3 exp(−2

√
τ2s)

(κ1 +κ2)[1+ γ1,2γ2,3 exp(−2
√

τ2s)]

}[
(κ1 +κ2)(κ1 +κ3)

κ2 −κ3

]
(A50)

Θ
3L,dl
int (s)=

1
s


κ1 +κ2

κ2 −κ3
−

(
κ1 +κ3

κ2 −κ3

)
[1+ γ2,3 exp(−2

√
τ2s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)

 (A51)

Θ
3L,dl
int (s)=

1
s


1+
[(

κ1 +κ2

κ2 −κ3

)
γ1,2γ2,3 −

κ1 +κ3

κ2 +κ3

]
exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

 (A52)

Θ
3L,dl
int (s)=

1
s

[
1− exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(A53)

Θ
3L,dl
int (s)=

1
γ1,2γ2,3s

[
1+ γ1,2γ2,3

1+ γ1,2γ2,3 exp(−2
√

τ2s)
−1
]

(A54)

where γi, j = (κi −κ j)/(κi +κ j), noting that |γi, j|< 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n.

A.4 Four-Layer Heat Transfer System
For a four-layer heat transfer system (e.g., interlayer-modulated interfacial polymerization) the boundary
conditions are

U4L
1 (0,s)=U4L

2 (0,s)
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−k1
dU4L

1
dz

(0,s)+Q(s)=−k2
dU4L

2
dz

(0,s) (A55)

U4L
2 (d2,s)=U4L

3 (d2,s)

−k2
dU4L

2
dz

(d2,s)=−k3
dU4L

3
dz

(d2,s) (A56)

U4L
3 (d2 +d3,s)=U4L

4 (d2 +d3,s)

−k3
dU4L

3
dz

(d2 +d3,s)=−k4
dU4L

4
dz

(d2 +d3,s) (A57)

U4L
1 (z →−∞,s)→ 0

U4L
4 (z → ∞,s)→ 0 (A58)

where Q(s)= L {q(t)} is the Laplace transform of the planar heat flux at z = 0. The boundary conditions at
z = 0, z = d2, z = d2 +d3, z → ∞, and z →−∞ give

A4L
1 +B4L

1 = A4L
2 +B4L

2 (A59)

κ1
(
A4L

1 −B4L
1
)
−κ2

(
A4L

2 −B4L
2
)
=

Q√
s

(A60)

A4L
2 exp

(
d2

√
s

α2

)
+B4L

2 exp
(
−d2

√
s

α2

)
=

A4L
3 exp

(
d2

√
s

α3

)
+B4L

3 exp
(
−d2

√
s

α3

)
(A61)

κ2

[
A4L

2 exp
(

d2

√
s

α2

)
−B4L

2 exp
(
−d2

√
s

α2

)]
=

κ3

[
A4L

3 exp
(

d2

√
s

α3

)
−B4L

3 exp
(
−d2

√
s

α3

)]
(A62)

A4L
3 exp

[
(d2 +d3)

√
s

α3

]
+B4L

3 exp
[
−(d2 +d3)

√
s

α3

]
=

A4L
4 exp

[
(d2 +d3)

√
s

α4

]
+B4L

4 exp
[
−(d2 +d3)

√
s

α4

]
(A63)

κ3

{
A4L

3 exp
[
(d2 +d3)

√
s

α3

]
−B4L

3 exp
[
−(d2 +d3)

√
s

α3

]}
=

κ4

{
A4L

4 exp
[
(d2 +d3)

√
s

α4

]
−B4L

4 exp
[
−(d2 +d3)

√
s

α4

]}
(A64)

B4L
1 = 0 (A65)

A4L
4 = 0 (A66)

Boundary condition equations can be solved for unknown integration constants (A4L
1 , A4L

2 , B4L
2 , A4L

3 , B4L
3 ,

and B4L
4 ). For convenience, we define X4L

i = (Q/
√

s)(X4L,num
i /X4L,den), where X4L,num

i is the numerator for
constant X4L

i and X4L,den is a common denominator for all the constants in a four-layer heat transfer system,
giving

A4L,num
1 =(κ2 +κ3)(κ3 +κ4)+(κ2 −κ3)(κ3 +κ4)exp

(
−2d2

√
s

α2

)
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+(κ2 −κ3)(κ3 −κ4)exp
(
−2d3

√
s

α3

)
+(κ2 +κ3)(κ3 −κ4)exp

[
−2
(

d2√
α2

+
d3√
α3

)√
s
]
(A67)

A4L,num
2 =(κ2 −κ3)(κ3 +κ4)exp

(
−2d2

√
s

α2

)
+(κ2 +κ3)(κ3 −κ4)exp

[
−2
(

d2√
α2

+
d3√
α3

)√
s
]

(A68)

B4L,num
2 =(κ2 +κ3)(κ3 +κ4)+(κ2 −κ3)(κ3 −κ4)exp

(
−2d3

√
s

α3

)
(A69)

A4L,num
3 = 2κ2(κ3 −κ4)exp

[
−
(

d2√
α2

+
d2 +2d3√

α3

)√
s
]

(A70)

B4L,num
3 = 2κ2(κ3 −κ4)exp

[
−
(

d2√
α2

− d2√
α3

)√
s
]

(A71)

B4L,num
4 = 4κ2κ3 exp

[(
− d2√

α2
− d3√

α3
+

d2 +d3√
α4

)√
s
]

(A72)

X4L,den =(κ1 +κ2)(κ2 +κ3)(κ3 +κ4)+(κ1 −κ2)(κ2 −κ3)(κ3 +κ4)exp
(
−2d2

√
s

α2

)
+(κ1 +κ2)(κ2 −κ3)(κ3 −κ4)exp

(
−2d3

√
s

α3

)
+(κ1 −κ2)(κ2 +κ3)(κ3 −κ4)exp

[
−2
(

d2√
α2

+
d3√
α3

)√
s
]

(A73)

The numerators and denominator of integration constants (A4L
1 , A4L

2 , B4L
2 , A4L

3 , B4L
3 , and B4L

4 ) can also be
expressed in of the characteristic timescale for heat conduction (τi = d2

i /αi) though finite layer i, giving

A4L,num
1 =(κ2 +κ3)(κ3 +κ4)+(κ2 −κ3)(κ3 +κ4)exp(−2

√
τ2s)

+(κ2 −κ3)(κ3 −κ4)exp(−2
√

τ3s)+(κ2 +κ3)(κ3 −κ4)exp[−2(
√

τ2s+
√

τ3s)] (A74)

A4L,num
2 =(κ2 −κ3)(κ3 +κ4)exp(−2

√
τ2s)+(κ2 +κ3)(κ3 −κ4)exp[−2(

√
τ2s+

√
τ3s)] (A75)

B4L,num
2 =(κ2 +κ3)(κ3 +κ4)+(κ2 −κ3)(κ3 −κ4)exp(−2

√
τ3s) (A76)

A4L,num
3 = 2κ2(κ3 −κ4)exp

[
−
(

1+
√

α2

α3

)
√

τ2s−2
√

τ3s
]

(A77)

B4L,num
3 = 2κ2(κ3 −κ4)exp

[
−
(

1−
√

α2

α3

)
√

τ2s
]

(A78)

B4L,num
4 = 4κ2κ3 exp

[
−
(

1−
√

α2

α4

)
√

τ2s−
(

1−
√

α3

α4

)
√

τ3s
]

(A79)

X4L,den =(κ1 +κ2)(κ2 +κ3)(κ3 +κ4)+(κ1 −κ2)(κ2 −κ3)(κ3 +κ4)exp(−2
√

τ2s)

+(κ1 +κ2)(κ2 −κ3)(κ3 −κ4)exp(−2
√

τ3s)

+(κ1 −κ2)(κ2 +κ3)(κ3 −κ4)exp[−2(
√

τ2s+
√

τ3s)] (A80)

The temperature at the reaction interface is

U4L
int (s)=

Q√
s

(
A4L,num

1
X4L,den

)
(A81)
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U4L
int (s)=

Q√
s(κ1 +κ2)

{
1+ γ2,3 exp(−2

√
τ2s)+ γ2,3γ3,4 exp(−2

√
τ3s)+ γ3,4 exp[−2(

√
τ2s+

√
τ3s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)+ γ2,3γ3,4 exp(−2
√

τ3s)+ γ1,2γ3,4 exp[−2(
√

τ2s+
√

τ3s)]

}
(A82)

where γi, j = (κi − κ j)/(κi + κ j), noting that |γi, j| < 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n. For
diffusion-limited interfacial heat release (Qdl = q0

√
πt0/s) the interfacial temperature rise is

Ū4L,dl
int (s)=

√
π

s(κ1 +κ2)

{
1+ γ2,3 exp(−2

√
τ2s)+ γ2,3γ3,4 exp(−2

√
τ3s)+ γ3,4 exp[−2(

√
τ2s+

√
τ3s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)+ γ2,3γ3,4 exp(−2
√

τ3s)+ γ1,2γ3,4 exp[−2(
√

τ2s+
√

τ3s)]

}
(A83)

Initial (t → 0+) and final (t → ∞) interfacial temperatures can be calculated by applying the initial
and final value theorems for Laplace transforms to the expression for Ū4L,dl

int (Equation A83) giving

ū4L,dl
int,t→0+ = lim

s→∞
sŪ4L,dl

int (s)=
√

π

κ1 +κ2
(A84)

ū4L,dl
int,t→∞

= lim
s→0

sŪ4L,dl
int (s)=

√
π

κ1 +κ2

(
1+ γ2,3 + γ2,3γ3,4 + γ3,4

1+ γ1,2γ2,3 + γ2,3γ3,4 + γ1,2γ3,4

)
=

√
π

κ1 +κ4
(A85)

noting that τ2 > 0, τ3 > 0, and that all poles of sŪ4L,dl
int are in the left complex half-plane. In a four-

layer heat transfer system, an intermediate time (τ2 ≪ t ≪ τ3) limit for interfacial temperature can be
evaluated, provided that the characteristic timescale for heat conduction through finite layer 2 is signifi-
cantly smaller than that of finite layer 3 (τ2 ≪ τ3). Using the time-scaling property of Laplace transforms
where L { f (at)}= (1/a)F(s/a) for L { f (t)}= F(s) along with simultaneous final (t/τ2 → ∞) and initial
(t/τ3 → 0+) time limits gives

ū4L,dl
int,τ2≪t≪τ3

= lim
t/τ2→∞

t/τ3→0+

ū4L,dl
int (t)= lim

τ2s→0
τ3s→∞

sŪ4L,dl
int (s)=

√
π

κ1 +κ2

(
1+ γ2,3

1+ γ1,2γ2,3

)
=

√
π

κ1 +κ3
(A86)

B Time-Domain Interfacial Temperature
B.1 Two-Layer Heat Transfer System with Diffusion-Limited Interfacial Heat Release
For diffusion-limited interfacial heat release into a two-layer heat transfer system interfacial temperature is
constant and given by

Ū2L,dl
int (s)=

√
π

s(κ1 +κ2)
(B87)

ū2L,dl
int (t)=

√
π

κ1 +κ2
(B88)

B.2 Three-Layer Heat Transfer System with Diffusion-Limited Interfacial Heat Release
The Laplace-domain expression for interfacial temperature with diffusion-limited interfacial heat release in
a three-layer heat transfer system (Ū3L,dl

int , Equation 18) can be expanded in series by applying the binomial
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theorem to the denominator [79]

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(B89)

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)
[1+ γ2,3 exp(−2

√
τ2s)]

∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]

(B90)

noting that |γ1,2γ2,3|< 1 given that κi > 0 ∀ i ∈ 1, ...,n. Rearranging gives

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

{
∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]
+ γ2,3

∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2( j+1)
√

τ2s)
]}
(B91)

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

{
∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]
− 1

γ1,2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]}

(B92)

Ū3L,dl
int (s)=

√
π

s(κ1 +κ2)

{
1+
[

1− 1
γ1,2

]
∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]}

(B93)

Ū3L,dl
int (s)=

√
π

κ1 +κ2

{
1
s
− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
s

]}
(B94)

Using Bateman 1954, Section 5.6, Number 3 [80], the Laplace-domain series expansion for Ū3L,dl
int can be

inverted to give a time-domain series expansion for ū3L,dl
int

ū3L,dl
int (t)=

√
π

κ1 +κ2

{
1− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j erfc
(

j
√

τ2

t

)]}
(B95)

where the infinite series in Equation B95 converges for |γ1,2γ2,3|< 1. The limit of ū3L,dl
int as t → 0+ is given

by

t → 0+ =⇒ erfc
(

j
√

τ2

t

)
→ 0 (B96)

ū3L,dl
int,t→0+ →

√
π

κ1 +κ2
(B97)

Using the infinite sum ∑
∞
j=1(−γ1,2γ2,3)

j = −γ1,2γ2,3/(1+ γ1,2γ2,3) for |γ1,2γ2,3| < 1, the limit of u3L,dl
int as

t → ∞ is given by

t → ∞ =⇒ erfc
(

j
√

τ2

t

)
→ 1 (B98)

ū3L,dl
int,t→∞

(t)→
√

π

κ1 +κ2

{
1− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j
]}

(B99)

ū3L,dl
int,t→∞

(t)→
√

π

κ1 +κ2

{
1+

2κ2

κ1 −κ2

(
γ1,2γ2,3

1+ γ1,2γ2,3

)}
(B100)
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ū3L,dl
int,t→∞

(t)→
√

π

κ1 +κ2

{
1+

2κ2

κ1 −κ2

[
(κ1 −κ2)(κ2 −κ3)

2κ2(κ1 +κ3)

]}
(B101)

ū3L,dl
int,t→∞

(t)→
√

π

κ1 +κ3
(B102)

B.3 Normalized Interfacial Temperature Change in a Three-Layer Heat Transfer System
The Laplace-domain expression for normalized interfacial temperature change during diffusion-limited in-
terfacial heat release in a three-layer heat transfer system (Θ3L,dl

int , Equation A54) can be expanded in series
by applying the binomial theorem to the denominator [79]

Θ
3L,dl
int (s)=

1
γ1,2γ2,3s

{
(1+ γ1,2γ2,3)

∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]
−1

}
(B103)

Θ
3L,dl
int (s)=

1
s

{
1+(1+ γ1,2γ2,3)

∞

∑
j=1

[
(−1) j(γ1,2γ2,3)

j−1 exp(−2 j
√

τ2s)
]}

(B104)

Again using Bateman 1954, Section 5.6, Number 3 [80], the Laplace-domain series expansion for Θ
3L,dl
int can

be inverted to give a time-domain series expansion for θ
3L,dl
int

θ
3L,dl
int (t)= 1+(1+ γ1,2γ2,3)

∞

∑
j=1

[
(−1) j(γ1,2γ2,3)

j−1 erfc
(

j
√

τ2

t

)]
(B105)

θ
3L,dl
int (t)= 1+(1+ γ1,2γ2,3)

∞

∑
j=1

[
(−1) j(γ1,2γ2,3)

j−1
]
−(1+ γ1,2γ2,3)

∞

∑
j=1

[
(−1) j(γ1,2γ2,3)

j−1 erf
(

j
√

τ2

t

)]
(B106)

θ
3L,dl
int (t)=(1+ γ1,2γ2,3)

∞

∑
j=0

{
(−γ1,2γ2,3)

j erf
[
( j+1)

√
τ2

t

]}
(B107)

noting that ∑
∞
j=0(−γ1,2γ2,3)

j = 1/(1+ γ1,2γ2,3) for |γ1,2γ2,3| < 1. Equation B107 can be expressed as an
expansion in the thermal effusivity difference-to-sum ratios γ1,2 and γ2,3 giving

θ
3L,dl
int (t)= erf

(√
τ2

t

)
+

∞

∑
j=1

[
(−γ1,2γ2,3)

j
{

erf
[
( j+1)

√
τ2

t

]
− erf

(
j
√

τ2

t

)}]
(B108)

For γ1,2γ2,3 ≪ 1, zeroth- and second-order approximations in γ for normalized interfacial temperature change
(θ 3L,dl

int,O(γ0)
and θ

3L,dl
int,O(γ2)

, respectively) are

θ
3L,dl
int,O(γ0)

(t)= erf
(√

τ2

t

)
(B109)

θ
3L,dl
int,O(γ2)

(t)= erf
(√

τ2

t

)
− γ1,2γ2,3

[
erf
(

2
√

τ2

t

)
− erf

(√
τ2

t

)]
(B110)
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C Heat Fluxes at the Reaction Interface
The heat fluxes away from the reaction interface into layer 1 (q1,int defined as positive in the negative z
direction) and layer 2 (q2,int defined as positive in the positive z direction) for an arbitrary planar source
intensity can be defined as

q1,int(0, t)= k1
∂u1

∂ z
(0, t) (C111)

q2,int(0, t)=−k2
∂u2

∂ z
(0, t) (C112)

The sum of the heat fluxes into layers 1 and 2 is equal to the total rate of interfacial heat release q1,int(t)+
q2,int(t) = q(t), in accordance with the heat flux boundary condition at z = 0 (Section 2.2).

C.1 Laplace-Domain Heat Flux Expressions
Laplace transforms of the heat fluxes at the reaction interface into layer 1 (Q1,int) and layer 2 (Q2,int) for an
arbitrary planar source intensity can be defined as

Q1,int(s)= k1
dU1

dz
(0,s) (C113)

Q2,int(s)=−k2
dU2

dz
(0,s) (C114)

noting that Q1,int is defined as positive toward z → −∞ and Q2,int defined as positive toward z → +∞.
Expressions for Q1,int and Q2,int in terms of the thermal properties of each fluid or material layer can be
derived by solving the heat transfer model to determine the Laplace transform of the temperature gradient
in each layer as a function of position (Equation 10).

For a two-layer heat transfer system (e.g., support-free interfacial polymerization) with diffusion-
limited interfacial heat release, the Laplace transforms of the normalized heat fluxes away from the reaction
interface into layers 1 and 2 (Q̄2L,dl

1,int and Q̄2L,dl
2,int , respectively) are

Q̄2L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

(C115)

Q̄2L,dl
2,int (s)=

κ2
√

π√
s(κ1 +κ2)

(C116)

where heat fluxes have been normalized by the reaction-specific diffusion-limited interfacial heat release
constant (q0

√
t0, units W s

1
2 m−2) where Q̄nL,dl

i,int = QnL,dl
i,int /(q0

√
t0) and Q̄dl = Qdl/(q0

√
t0) =

√
π/s.

Similarly, for a three-layer heat transfer system (e.g., conventional interfacial polymerization) with
diffusion-limited interfacial heat release, the Laplace transforms of the normalized heat fluxes away from
the reaction interface into layers 1 and 2 (Q̄3L,dl

1,int and Q̄3L,dl
2,int , respectively) are

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(C117)

Q̄3L,dl
2,int (s)=

κ2
√

π√
s(κ1 +κ2)

[
1− γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(C118)
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where γi, j = (κi − κ j)/(κi + κ j), noting that |γi, j| < 1 ∀ i, j ∈ 1, ...,n given that κi > 0 ∀ i ∈ 1, ...,n, and
τi = d2

i /αi is characteristic timescale for heat conduction though finite layer i.
Similarly, for a four-layer heat transfer system (e.g., interlayer-modulated interfacial polymerization)

with diffusion-limited interfacial heat release, the Laplace transforms of the normalized heat fluxes away
from the reaction interface into layers 1 and 2 (Q̄4L,dl

1,int and Q̄4L,dl
2,int , respectively) are

Q̄4L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

{
1+ γ2,3 exp(−2

√
τ2s)+ γ2,3γ3,4 exp(−2

√
τ3s)+ γ3,4 exp[−2(

√
τ2s+

√
τ3s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)+ γ2,3γ3,4 exp(−2
√

τ3s)+ γ1,2γ3,4 exp[−2(
√

τ2s+
√

τ3s)]

}
(C119)

Q̄4L,dl
2,int (s)=

κ2
√

π√
s(κ1 +κ2)

{
1− γ2,3 exp(−2

√
τ2s)+ γ2,3γ3,4 exp(−2

√
τ3s)− γ3,4 exp[−2(

√
τ2s+

√
τ3s)]

1+ γ1,2γ2,3 exp(−2
√

τ2s)+ γ2,3γ3,4 exp(−2
√

τ3s)+ γ1,2γ3,4 exp[−2(
√

τ2s+
√

τ3s)]

}
(C120)

Figure C1 shows the normalized heat flux into layers 1 (q̄nL,dl
1,int = qnL,dl

1,int /(q0
√

t0), orange curves) and 2

(q̄nL,dl
2,int = qnL,dl

2,int /(q0
√

t0), blue curves) at the reaction interface as a function of reaction time for (a) two-, (b)
three-, and (c) four-layer heat transfer systems with diffusion-limited interfacial heat release. The fraction of
heat conducted into layer 1 (q̄nL,dl

1,int /q̄dl, yellow shading) from the planar heat source at the reaction interface
(z = 0) is also shown for (d) two-, (e) three-, and (f) four-layer heat transfer systems. The remainder of
the heat is conducted into layer 2 (q̄nL,dl

2,int /q̄dl) comprising the infinite aqueous fluid (two-layer system, blue
shading), finite support layer (three-layer system, green shading), or the finite interlayer (four-layer system,
pink shading). In each case, the support layer and the interlayer are 100 µm thick polysulfone (layer 2 in
b and e, layer 3 in c and f) and 100 nm thick pyrolytic graphite in a perpendicular orientation (layer 2 in c
and f), respectively (Table E1). Characteristic timescales for heat conduction through finite (τ2 in b and e)
layer 2 and (τ2 and τ3 in c and f) layers 2 and 3 are indicated (vertical dashed lines).

In a two-layer heat transfer system (Figure C1d) with diffusion-limited interfacial heat release, the
fraction of heat conducted into layer 2 (q̄2L,dl

2int /q̄dl = 1− (q̄2L,dl
1,int /q̄dl)) is constant with respect to reaction

time, having a value of (i) κ2/(κ1 + κ2). In a three-layer system (Figure C1e), q̄3L,dl
2int /q̄dl decreases from

(ii) κ2/(κ1 + κ2) for t ≪ τ2 to (iii) κ3/(κ1 + κ3) when t ≫ τ2 as heat transfer in the positive z direction
is initially governed by heat conduction through finite layer 2 before conduction through infinite layer 3
dominates. Similarly, in a four-layer system (Figure C1f), q̄4L,dl

2int /q̄dl changes from (iv) κ2/(κ1 + κ2) for
t ≪ τ2 to (v) κ3/(κ1 +κ3) for τ2 ≪ t ≪ τ3 and finally (vi) κ4/(κ1 +κ4) for t ≫ τ3, provided that τ2 ≪ τ3.

C.2 Time-Domain Heat Flux Expressions

The Laplace-domain expressions for interfacial heat flux into layers 1 (Q̄2L,dl
1,int ) and 2 (Q̄2L,dl

2,int ) in a two-layer
heat transfer system with diffusion-limited interfacial heat release can be inverted using Bateman 1954,
Section 5.3, Number 21 [80] to give time-domain expressions:

q̄2L,dl
1,int (s)=

κ1√
t(κ1 +κ2)

(C121)

q̄2L,dl
2,int (s)=

κ2√
t(κ1 +κ2)

(C122)

The Laplace-domain expression for interfacial heat flux into layer 1 (Q̄3L,dl
1,int ) in a three-layer heat

transfer system with diffusion-limited interfacial heat release can be expanded in series by applying the
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q̄dl =
qdl

q0
√
t0

=
1√
t

q̄2L;dl
1;int
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2;int
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Figure C1: (a–c) Interfacial heat fluxes into layers 1 (q̄nL,dl
1,int = qnL,dl

1,int /(q0
√

t0), orange curves) and 2 (q̄nL,dl
2,int ,

blue) at the reaction interface (z= 0) during diffusion-limited heat release (q̄dl = qdl/(q0
√

t0) = 1/
√

t, black)
in (a) two-, (b) three-, and (c) four-layer heat transfer systems as a function of reaction time (t). (d–f)
Fraction of interfacial heat flux conducted into layer 1 (q̄nL,dl

1,int /q̄dl, yellow shading) during diffusion-limited
heat release (q̄dl = 1/

√
t) in (d) two-, (e) three-, and (f) four-layer heat transfer systems. Interfacial heat

fluxes into layers 1 and 2 are calculated using time-domain solutions (a) Equations C121 and C122 and (b)
Equations C129 and C131 or by numerically inverting Laplace-domain expressions (c) Equations C119 and
C120. The support layer and the interlayer are 100 µm thick polysulfone (layer 2 in b and e, layer 3 in c
and f) and 100 nm thick pyrolytic graphite in a perpendicular orientation (layer 2 in e and f), respectively
(Table E1).

binomial theorem to the denominator:

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

[
1+ γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(C123)

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

[1+ γ2,3 exp(−2
√

τ2s)]
∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]

(C124)
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noting that |γ1,2γ2,3|< 1 given that κi > 0 ∀ i ∈ 1, ...,n. Rearranging gives

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

{
∞

∑
j=0

[
(−γ2,3)

j exp(−2 j
√

τ2s)
]
+ γ2,3

∞

∑
j=0

[
(−γ1,2γ2,3)

j exp(−2( j+1)
√

τ2s)
]}
(C125)

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

{
∞

∑
j=0

[
(−γ2,3)

j exp(−2 j
√

τ2s)
]
− 1

γ1,2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]}

(C126)

Q̄3L,dl
1,int (s)=

κ1
√

π√
s(κ1 +κ2)

{
1+
[

1− 1
γ1,2

]
∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)
]}

(C127)

Q̄3L,dl
1,int (s)=

κ1
√

π

κ1 +κ2

{
1√
s
− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp(−2 j
√

τ2s)√
s

]}
(C128)

The Laplace-domain series expansion for Q̄3L,dl
1,int can be inverted using Bateman 1954, Section 5.3, Number

21 and Section 5.6, Number 6 [80] to give a time-domain series expansion:

q̄3L,dl
1,int (s)=

κ1√
t(κ1 +κ2)

{
1− 2κ2

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp
(
− j2τ2

t

)]}
(C129)

Similarly, the Laplace-domain expression for interfacial heat flux into layer 2 (Q̄3L,dl
2,int ) in a three-layer heat

transfer system with diffusion-limited interfacial heat release can be inverted to give a time-domain series
expansion:

Q̄3L,dl
2,int (s)=

κ2
√

π√
s(κ1 +κ2)

[
1− γ2,3 exp(−2

√
τ2s)

1+ γ1,2γ2,3 exp(−2
√

τ2s)

]
(C130)

q̄3L,dl
2,int (s)=

κ2√
t(κ1 +κ2)

{
1+

2κ1

κ1 −κ2

∞

∑
j=1

[
(−γ1,2γ2,3)

j exp
(
− j2τ2

t

)]}
(C131)

noting that the sum of the heat fluxes into layer 1 and 2 is equal to the total rate of diffusion-limited heat
release in the time- and Laplace-domains where q̄3L,dl

1,int (t) + q̄3L,dl
2,int (t) = 1/

√
t and Q̄3L,dl

1,int (s) + Q̄3L,dl
2,int (s) =√

π/s, respectively.

D Numerical Function and Inverse Laplace Transform Evaluation
Infinite series summations, which appear in expressions for ū3L,dl

int (t), θ
3L,dl
int (t), q̄3L,dl

1,int (t), and q̄3L,dl
2,int (t), were

evaluated using Richardson extrapolation through the nsum function implemented in the mpmath library
in Python with 25-digit precision [81–83]. The Laplace-domain expressions for Ū4L,dl

int (s), Ū3L,dl
1 (z,s),

Ū3L,dl
2 (z,s), Ū3L,dl

3 (z,s), Ū4L,dl
1 (z,s), Ū4L,dl

2 (z,s), Ū4L,dl
3 (z,s), and Ū4L,dl

4 (z,s) derived in Appendix A and
Q̄4L,dl

1,int (s) and Q̄4L,dl
2,int (s) derived in Appendix C.2 were inverted numerically using Talbot’s method to inte-

grate the Bromwich contour through the invertlaplace function implemented in the mpmath library in
Python with 25-digit precision [81, 84].

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 36

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

E Thermal Diffusivity and Thermal Effusivity Data

Table E1: Thermal diffusivity and thermal effusivity of solvents, polymers, metals, and inorganic materials.
Data is from Suryanarayana 1995 [62], Lienhard and Lienhard 2019 [52], Wu 2018 [65], the Thermtest
Materials Thermal Properties Database [66], the Chemicals library [67], and the CoolProp library [68].

Material
Thermal
Diffusivity
( m2 s−1)

Thermal
Effusivity
( W s

1
2 m−2 K−1)

Data
Source

Solvents
Water 1.45×10−7 1.59×103 [68]
n-Hexane 8.03×10−8 4.22×102 [67]
n-Heptane 8.16×10−8 4.36×102 [67]
n-Octane 8.15×10−8 4.47×102 [67]
n-Nonane 8.20×10−8 4.55×102 [67]
n-Decane 8.19×10−8 4.60×102 [67]
n-Hexadecane 8.35×10−8 4.92×102 [67]
2,3-Dimethylbutane 7.24×10−8 3.89×102 [67]
1,2,3-Trimethylbenzene 8.11×10−8 4.57×102 [67]
1,2,4-Trimethylbenzene 8.29×10−8 4.49×102 [67]
2,3,3-Trimethylpentane 6.89×10−8 4.07×102 [67]
2,2,4-Trimethylpentane 6.80×10−8 3.77×102 [67]
Cyclopentane 9.27×10−8 4.15×102 [67]
Cyclopentene 9.80×10−8 4.31×102 [67]
Cyclohexane 8.68×10−8 4.19×102 [67]
Cyclohexene 9.04×10−8 4.38×102 [67]
Methylcyclohexane 7.69×10−8 4.00×102 [67]
Ethylcyclohexane 7.87×10−8 4.15×102 [67]
1,1-Dimethylcyclohexane 8.00×10−8 4.09×102 [67]
cis-1,2-Dimethylcyclohexane 7.96×10−8 4.19×102 [67]
trans-1,2-Dimethylcyclohexane 7.97×10−8 4.07×102 [67]
Benzene 9.43×10−8 4.67×102 [67]
Toluene 8.97×10−8 4.42×102 [67]
o-Xylene 8.55×10−8 4.49×102 [67]
m-Xylene 8.78×10−8 4.39×102 [67]
p-Xylene 8.86×10−8 4.36×102 [67]
Ethylbenzene 8.65×10−8 4.38×102 [67]
Propylbenzene 8.34×10−8 4.43×102 [67]
Butylbenzene 8.19×10−8 4.45×102 [67]
Cumene 8.18×10−8 4.31×102 [67]
1-Hexene 8.27×10−8 4.19×102 [67]
1-Heptene 8.32×10−8 4.32×102 [67]
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1-Octene 8.16×10−8 4.37×102 [67]
1-Decene 8.23×10−8 4.54×102 [67]
Styrene 8.68×10−8 4.63×102 [67]
Methyl acetate 8.63×10−8 5.22×102 [67]
Ethyl acetate 8.31×10−8 4.99×102 [67]
Propyl acetate 8.31×10−8 4.89×102 [67]
Butyl acetate 8.03×10−8 4.87×102 [67]
Ethyl formate 8.69×10−8 5.44×102 [67]
Ethyl mercaptan 8.75×10−8 4.68×102 [67]
Diethyl ether 7.78×10−8 4.60×102 [67]
Dibutyl ether 7.83×10−8 4.57×102 [67]
Methyl tert-butyl ether 7.96×10−8 4.42×102 [67]
Dimethyl sulfide 8.78×10−8 4.75×102 [67]
Diethyl sulfide 8.38×10−8 4.58×102 [67]
Hexanal 8.04×10−8 4.82×102 [67]
Heptanal 8.38×10−8 4.75×102 [67]
o-Dichlorobenzene 8.43×10−8 4.17×102 [67]
Chloroform 8.28×10−8 4.08×102 [67]
Chlorobenzene 8.65×10−8 4.32×102 [67]

Polymers
Polysulfone 1.651×10−7 6.374×102 [66]
Polyoxymethylene 1.547×10−7 8.211×102 [66]
Polyamide (nylon 6-6) 1.518×10−7 6.416×102 [66]
Polyamide (nylon 6-12) 1.235×10−7 6.259×102 [66]
Polycarbonate 1.933×10−7 6.595×102 [62]
Polyethylene (high-density) 1.521×10−7 8.461×102 [66]
Polyethylene (low-density) 1.708×10−7 7.985×102 [66]
Polyimide 2.166×10−7 7.520×102 [66]
Polypropylene 1.076×10−7 5.640×102 [62]
Polystyrene 9.259×10−8 4.272×102 [66]
Polytetrafluoroethylene 1.082×10−7 7.599×102 [62]
Polyvinyl chloride 8.098×10−8 3.514×102 [62]
Polymethyl methacrylate 1.210×10−7 6.009×102 [66]
Polyvinyl alcohol 1.785×10−7 6.628×102 [65]
Polyvinylidene fluoride 5.184×10−8 5.534×102 [66]
Polyvinylidene chloride 5.535×10−8 5.355×102 [66]
Polyethylene terephthalate 9.290×10−8 4.750×102 [63, 64]

Metals
Aluminium 9.713×10−5 2.405×104 [62]
Aluminium alloy (2024-T6) 7.303×10−5 2.071×104 [62]
Brass 3.322×10−5 1.891×104 [52]
Beryllium 5.924×10−5 2.599×104 [62]
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Bronze (90% Cu, 10% Al) 1.407×10−5 1.386×104 [62]
Bronze (89% Cu, 11% Sn) 1.732×10−5 1.297×104 [62]
Bronze (70% Cu, 30% Zn) 3.394×10−5 1.888×104 [62]
Cadmium 4.844×10−5 1.391×104 [62]
Chromium 2.915×10−5 1.736×104 [62]
Cobalt 2.659×10−5 1.924×104 [62]
Copper 1.166×10−4 3.714×104 [62]
Constantan (55% Cu, 45% Ni) 6.715×10−6 8.876×103 [62]
Duralumin (95.5% Cu, 4.0% Cu, 0.5% Ni) 2.009×104 2.461×106 [52]
Germanium 3.471×10−5 1.017×104 [62]
Gold 1.273×10−4 2.809×104 [62]
Iridium 5.026×10−5 2.074×104 [62]
Iron 2.280×10−5 1.680×104 [62]
Iron (99.75% pure) 2.067×10−5 1.599×104 [62]
Iron (cast, 4% C) 1.703×10−5 1.260×104 [62]
Carbon Steel (AISI 1010) 1.775×10−5 1.436×104 [62]
Carbon Steel (Carbon-Silicon) 1.489×10−5 1.345×104 [62]
Carbon Steel (Carbon-Manganese-Silicon) 1.162×10−5 1.203×104 [62]
Chromium Steel (0.18% C, 0.65% Cr, 0.23% Mo,
0.60% Si)

1.086×10−5 1.144×104 [62]

Chromium Steel (0.16% C, 1.00% Cr, 0.54% Mo) 1.218×10−5 1.212×104 [62]
Chromium Steel (0.20% C, 1.02% Cr, 0.15% V) 1.409×10−5 1.303×104 [62]
Silver 1.719×10−4 3.257×104 [52]
Stainless Steel (AISI 302) 3.905×10−6 7.641×103 [62]
Stainless Steel (AISI 304) 3.954×10−6 7.493×103 [62]
Stainless Steel (AISI 316) 3.476×10−6 7.188×103 [62]
Stainless Steel (AISI 347) 3.708×10−6 7.374×103 [62]
Lead 2.413×10−5 7.186×103 [62]
Magnesium 8.755×10−5 1.667×104 [62]
Molybdenum 5.369×10−5 1.883×104 [62]
Nickel 2.295×10−5 1.893×104 [62]
Nichrome (80% Ni, 20% Cr) 3.401×10−6 6.507×103 [62]
Palladium 2.448×10−5 1.451×104 [62]
Platinum 2.510×10−5 1.429×104 [62]
Platinum alloy (60% Pt, 40% Rh) 1.745×10−5 1.125×104 [62]
Rhodium 4.958×10−5 2.130×104 [62]
Silicon 8.921×10−5 1.567×104 [62]
Silver 1.739×10−4 3.254×104 [62]
Tantalum 2.474×10−5 1.156×104 [62]
Thorium 3.911×10−5 8.634×103 [62]
Tin 4.014×10−5 1.051×104 [62]
Titanium 9.323×10−6 7.172×103 [62]
Tungsten 6.830×10−5 2.105×104 [62]
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Uranium 1.248×10−5 7.814×103 [62]
Vanadium 1.029×10−5 9.569×103 [62]
Zinc 4.176×10−5 1.795×104 [62]
Zirconium 1.243×10−5 6.439×103 [62]

Inorganic Materials
Aluminum oxide (sapphire) 1.515×10−5 1.182×104 [62]
Aluminum oxide (polycrystalline) 1.185×10−5 1.046×104 [62]
Boron 9.991×10−6 8.732×103 [62]
Boron fiber epoxy (parallel) 9.812×10−7 2.312×103 [62]
Boron fiber epoxy (perpendicular) 2.528×10−7 1.173×103 [62]
Graphite pyrolytic (perpendicular) 3.638×10−6 2.989×103 [62]
Graphite fiber epoxy (parallel) 8.480×10−6 3.812×103 [62]
Graphite fiber epoxy (perpendicular) 6.646×10−7 1.067×103 [62]
Pyroceram 1.895×10−6 2.892×103 [62]
Silicon carbide 2.846×10−6 4.979×103 [62]
Silicon dioxide (parallel) 5.268×10−6 4.531×103 [62]
Silicon dioxide (perpendicular) 3.145×10−6 3.501×103 [62]
Silicon dioxide (fused silica) 8.344×10−7 1.511×103 [62]
Silicon nitride 9.648×10−6 5.151×103 [62]
Sulfur 1.433×10−7 5.548×102 [62]
Thorium dioxide 6.072×10−6 5.276×103 [62]
Titanium dioxide 2.846×10−6 4.979×103 [62]
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Nomenclature

Ai K Temperature field integration constant for layer i
Bi K Temperature field integration constant for layer i
cP,i J kg−1 K−1 Isobaric specific heat capacity of layer i
di m Thickness of finite layer i (support layer or interlayer)
∆rH J kmol−1 Enthalpy change of reaction per mole of rate-limiting monomer
i Layer index
j Summation index
ki W m−1 K−1 Thermal conductivity of layer i
l m Length scale for heat transfer
n Number of layers
q W m−2 Heat flux
q0 W m−2 Semi-empirical reaction-specific constant representing the planar heat source in-

tensity at time t0, defined as q0 = r0∆rH
q0
√

t0 W s
1
2 m−2 Reaction-specific diffusion-limited interfacial heat release constant

r kmol m−2 s−1 Molar flux of rate-limiting monomer
r0 kmol m−2 s−1 Semi-empirical reaction-specific constant representing the molar flux of rate-

limiting monomer at time t0
s s−1 Complex Laplace domain variable
t s Time elapsed since initiation of membrane formation
t0 s Semi-empirical reaction-specific constant
T K Temperature
u K Temperature deviation from environmental temperature reference state
ū K W−1 s−

1
2 m2 Temperature deviation from environmental temperature reference state divided

by diffusion-limited interfacial heat release constant: ū = u/q0
√

t0
U K Laplace transform of temperature deviation from environmental temperature ref-

erence state
Ū K W−1 s−

1
2 m2 Laplace transform of temperature deviation from environmental temperature ref-

erence state divided by diffusion-limited interfacial heat release constant: Ū =

U/q0
√

t0
z m Distance coordinate perpendicular to the reaction interface (positive towards

layer n)

Greek Letters:
αi m2 s−1 Thermal diffusivity of layer i
γi, j Thermal effusivity difference-to-sum ratio for layers i and j: γi, j = (κi −

κ j)/(κi +κ j)

εi Porosity of finite layer i
θ Transient temperature normalized by initial (t → 0+) and final (t → ∞) tempera-

ture values: θ = (u−ut→∞)/(ut→0+ −ut→∞)

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 41

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

Θ Laplace transform of the transient temperature normalized by initial (t → 0+) and
final (t → ∞) temperature values: Θ = (U −Ut→∞)/(ut→0+ −ut→∞)

κi W s
1
2 m−2 K−1 Thermal effusivity of layer i

ρi kg m−3 Mass density of layer i
τi s Timescale for heat conduction through finite layer i

Superscripts and Subscripts:
0 Constant in the diffusion-limited interfacial heat release model
am Arithmetic mean
aq Aqueous solution
den Denominator for integration constant expressions
dl Diffusion-limited interfacial heat release model
hm Harmonic mean
int Reaction interface (z = 0)
num Numerator for integration constant expressions
org Organic solution
nL Temperature or constant in an n-layer system
ref Reference state

Abbreviations:
CIP Conventional interfacial polymerization
IMIP Interlayer-modulated interfacial polymerization
IP Interfacial polymerization
SFIP Support-free interfacial polymerization

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 42

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

References
(1) M. Elimelech and W. A. Phillip, “The future of seawater desalination: Energy, technology, and the

environment”, Science, 2011, 333, 712–717.

(2) J. E. Cadotte, R. J. Petersen, R. E. Larson and E. E. Erickson, “A new thin-film composite seawater
reverse osmosis membrane”, Desalination, 1980, 32, 25–31.

(3) J. E. Cadotte, R. S. King, R. J. Majerle and R. J. Petersen, “Interfacial Synthesis in the Preparation of
Reverse Osmosis Membranes”, Journal of Macromolecular Science: Part A - Chemistry, 1981, 15,
727–755.

(4) M. Paul and S. D. Jons, “Chemistry and fabrication of polymeric nanofiltration membranes: A re-
view”, Polymer, 2016, 103, 417–456.

(5) M. F. Jimenez-Solomon, Q. Song, K. E. Jelfs, M. Munoz-Ibanez and A. G. Livingston, “Polymer
nanofilms with enhanced microporosity by interfacial polymerization”, Nature Materials, 2016, 15,
760–767.

(6) R. M. DuChanois, M. Heiranian, J. Yang, C. J. Porter, Q. Li, X. Zhang, R. Verduzco and M. Elimelech,
“Designing polymeric membranes with coordination chemistry for high-precision ion separations”,
Science Advances, 2022, 8, eabm9436.

(7) O. Labban, C. Liu, T. H. Chong and J. H. Lienhard, “Relating transport modeling to nanofiltra-
tion membrane fabrication: Navigating the permeability-selectivity trade-off in desalination pretreat-
ment”, Journal of Membrane Science, 2018, 554, 26–38.

(8) Z. Ali, B. S. Ghanem, Y. Wang, F. Pacheco, W. Ogieglo, H. Vovusha, G. Genduso, U. Schwingen-
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(25) S. Hermans, E. Dom, H. Mariën, G. Koeckelberghs and I. F. J. Vankelecom, “Efficient synthesis
of interfacially polymerized membranes for solvent resistant nanofiltration”, Journal of Membrane
Science, 2015, 476, 356–363.

(26) K. Guan et al., “Thin film composite membrane with improved permeance for reverse osmosis and
organic solvent reverse osmosis”, Journal of Membrane Science, 2023, 122104.

(27) M. J. Raaijmakers and N. E. Benes, “Current trends in interfacial polymerization chemistry”, Progress
in Polymer Science, 2016, 63, 86–142.

(28) F. Zhang, J. bing Fan and S. Wang, “Interfacial Polymerization: From Chemistry to Functional Ma-
terials”, Angewandte Chemie - International Edition, 2020, 59, 21840–21856.

(29) S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J. S. Suk and J.-H. Lee, “Fabrication of polyamide thin
film composite reverse osmosis membranes via support-free interfacial polymerization”, Journal of
Membrane Science, 2017, 526, 52–59.

(30) S.-J. Park, W.-G. Ahn, W. Choi, S.-H. Park, J. S. Lee, H. W. Jung and J.-H. Lee, “A facile and scalable
fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating”,
Journal of Materials Chemistry A, 2017, 5, 6648–6655.

(31) B. Ukrainsky and G. Z. Ramon, “Temperature measurement of the reaction zone during polyamide
film formation by interfacial polymerization”, Journal of Membrane Science, 2018, 566, 329–335.

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 44

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

(32) V. Freger and G. Z. Ramon, “Polyamide Desalination Membranes: Formation, Structure, and Proper-
ties”, Progress in Polymer Science, 2021, 122, 101451.

(33) I. Nulens, A. Ben Zvi, I. F. Vankelecom and G. Ramon, “Re-Thinking Polyamide Thin Film For-
mation: How Does Interfacial Destabilization Dictate Film Morphology?”, Journal of Membrane
Science, 2022, 656, 120593.

(34) I. Nulens, R. Peters, R. Verbeke, D. M. Davenport, C. Van Goethem, B. De Ketelaere, P. Goos,
K. V. Agrawal and I. F. Vankelecom, “MPD and TMC supply as parameters to describe synthesis-
morphology-performance relationships of polyamide thin film composite membranes”, Journal of
Membrane Science, 2023, 667, 121155.

(35) S.-J. Park, M.-S. Lee, M. E. Kilic, J. Ryu, H. Park, Y. I. Park, H. Kim, K.-R. Lee and J.-H. Lee,
“Autonomous Interfacial Assembly of Polymer Nanofilms via Surfactant-Regulated Marangoni In-
stability”, Nano Letters, 2023, 23, 4822–4829.

(36) X. H. Ma, Z. K. Yao, Z. Yang, H. Guo, Z. L. Xu, C. Y. Tang and M. Elimelech, “Nanofoaming of
Polyamide Desalination Membranes to Tune Permeability and Selectivity”, Environmental Science
and Technology Letters, 2018, 5, 123–130.

(37) X. Song, B. Gan, Z. Yang, C. Y. Tang and C. Gao, “Confined nanobubbles shape the surface roughness
structures of thin film composite polyamide desalination membranes”, Journal of Membrane Science,
2019, 582, 342–349.

(38) L. E. Peng, Z. Yao, Z. Yang, H. Guo and C. Y. Tang, “Dissecting the Role of Substrate on the Morphol-
ogy and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing”,
Environmental Science and Technology, 2020, 54, 6978–6986.

(39) L. E. Peng, Y. Jiang, L. Wen, H. Guo, Z. Yang and C. Y. Tang, “Does interfacial vaporization of
organic solvent affect the structure and separation properties of polyamide RO membranes ?”, Journal
of Membrane Science, 2021, 625, 119173.

(40) L. E. Peng, Z. Yang, L. Long, S. Zhou, H. Guo and C. Y. Tang, “A critical review on porous sub-
strates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspec-
tives”, Journal of Membrane Science, 2021, 641, 119871.

(41) S. Karan, Q. Wang, S. Samitsu, Y. Fujii and I. Ichinose, “Ultrathin free-standing membranes from
metal hydroxide nanostrands”, Journal of Membrane Science, 2013, 448, 270–291.

(42) S. Karan, Z. Jiang and A. G. Livingston, “Sub-10 nm polyamide nanofilms with ultrafast solvent
transport for molecular separation”, Science, 2015, 348, 1347–1351.

(43) Z. Yang, P. F. Sun, X. Li, B. Gan, L. Wang, X. Song, H. D. Park and C. Y. Tang, “A Critical Review
on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Develop-
ments, and Environmental Applications”, Environmental Science and Technology, 2020, 54, 15563–
15583.

(44) C. Yang, S. Li, X. Lv, H. Li, L. Han and B. Su, “Effectively regulating interfacial polymerization pro-
cess via in-situ constructed 2D COFs interlayer for fabricating organic solvent nanofiltration mem-
branes”, Journal of Membrane Science, 2021, 637, 104743.

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 45

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

(45) S. Cao, A. Deshmukh, L. Wang, Q. Han, Y. Shu, H. Y. Ng, Z. Wang and J. H. Lienhard, “Enhanc-
ing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS2 Nanosheets via
Precise Thickness Control”, Environmental Science & Technology, 2022, 56, 8807–8818.

(46) T. D. Matthews, H. Yan, D. G. Cahill, O. Coronell and B. J. Marinas, “Growth dynamics of interfa-
cially polymerized polyamide layers by diffuse reflectance spectroscopy and Rutherford backscatter-
ing spectrometry”, Journal of Membrane Science, 2013, 429, 71–80.

(47) A. Nowbahar, V. Mansard, J. M. Mecca, M. Paul, T. Arrowood and T. M. Squires, “Measuring Interfa-
cial Polymerization Kinetics Using Microfluidic Interferometry”, Journal of the American Chemical
Society, 2018, 140, 3173–3176.

(48) J. Mansouri, S. Huang, A. Agostino, R. P. Kuchel, G. Leslie, C. Y. Tang and A. G. Fane, “Kinet-
ics of support-free interfacial polymerization polyamide films by in-situ absorbance spectroscopy”,
Desalination, 2023, 549, 116349.

(49) I. Nulens, R. Verbeke, T. Opsomer, J. Huang, Y. Wang, S. Caspers, A. Kubarev, A. H. McMillan, W.
Dehaen and I. F. J. Vankelecom, “Real-time monitoring of interfacial polymerization using fluorescent
dyes”, Journal of Membrane Science, 2023, 686, 121998.

(50) X. Lu and M. Elimelech, “Fabrication of desalination membranes by interfacial polymerization: his-
tory, current efforts, and future directions”, Chemical Society Reviews, 2021, 50, 6290–6307.

(51) X. Li, Z. Wang, X. Han, Y. Liu, C. Wang, F. Yan and J. Wang, “Regulating the interfacial polymeriza-
tion process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltra-
tion membranes: A review”, Journal of Membrane Science, 2021, 640, 119765.

(52) J. H. Lienhard, IV and J. H. Lienhard, A Heat Transfer Textbook, Dover Publications, Mineola, NY,
5th ed, 2019.

(53) P. W. Morgan and S. L. Kwolek, “Interfacial polycondensation. II. Fundamentals of polymer forma-
tion at liquid interfaces”, Journal of Polymer Science, 1959, 40, 299–327.

(54) S. K. Karode, S. S. Kulkarni, A. K. Suresh and R. A. Mashelkar, “New insights into kinetics and ther-
modynamics of interfacial polymerization”, Chemical Engineering Science, 1998, 53, 2649–2663.

(55) V. Freger, “Kinetics of film formation by interfacial polycondensation”, Langmuir, 2005, 21, 1884–
1894.

(56) A. V. Berezkin and A. R. Khokhlov, “Mathematical modeling of interfacial polycondensation”, Jour-
nal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2698–2724.

(57) R. Nadler and S. Srebnik, “Molecular simulation of polyamide synthesis by interfacial polymeriza-
tion”, Journal of Membrane Science, 2008, 315, 100–105.

(58) P. Jha and A. K. Suresh, “A modelling study of interfacial polyamidation”, Applied Surface Science,
2023, 613, 155889.

(59) Y. Zhang, P. Xu, X. Chen, M. Qiu and Y. Fan, “Preparation of high permeance thin-film composite
nanofiltration membrane on macroporous ceramic support”, Journal of Membrane Science, 2022,
663, 121076.

(60) E. Maaskant, P. de Wit and N. E. Benes, “Direct interfacial polymerization onto thin ceramic hollow
fibers”, Journal of Membrane Science, 2018, 550, 296–301.

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 46

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

(61) R. Dai, J. Li and Z. Wang, “Constructing interlayer to tailor structure and performance of thin-film
composite polyamide membranes: A review”, Advances in Colloid and Interface Science, 2020, 282,
102204.

(62) N. V. Suryanarayana, Engineering Heat Transfer, West Publishing Company, New York, 1995.

(63) R. C. Steere, “Thermal Properties of Thin-Film Polymers by Transient Heating”, Journal of Applied
Physics, 1966, 37, 3338–3344.

(64) C. W. Smith and M. Dole, “Specific heat of synthetic high polymers. VII. Polyethylene terephthalate”,
Journal of Polymer Science, 1956, 20, 37–56.

(65) Y. Wu, K. Ye, Z. Liu, M. Wang, K. W. A. Chee, C.-T. Lin, N. Jiang and J. Yu, “Effective thermal
transport highway construction within dielectric polymer composites via a vacuum-assisted infiltra-
tion method”, Journal of Materials Chemistry C, 2018, 6, 6494–6501.

(66) Thermtest, Materials Database - Thermal Properties - Thermtest Inc. https://thermtest.com/thermal-
resources/materials-database.

(67) C. Bell, Y. R. Cortes-Pena and Contributors, Chemicals: Chemical Properties Component of Chemi-
cal Engineering Design Library (ChEDL), https://github.com/CalebBell/chemicals.

(68) I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, “Pure and Pseudo-pure Fluid Thermophysical Prop-
erty Evaluation and the Open-Source Thermophysical Property Library CoolProp”, Industrial and
Engineering Chemistry Research, 2014, 53, 2498–2508.

(69) L. R. Glicksman and J. H. Lienhard, Modeling and Approximation in Heat Transfer, Cambridge
University Press, 1st edn., 2016.

(70) J. K. Carson, S. J. Lovatt, D. J. Tanner and A. C. Cleland, “Thermal conductivity bounds for isotropic,
porous materials”, International Journal of Heat and Mass Transfer, 2005, 48, 2150–2158.

(71) R. C. Progelhof, J. L. Throne and R. R. Ruetsch, “Methods for predicting the thermal conductivity of
composite systems: A review”, Polymer Engineering & Science, 1976, 16, 615–625.

(72) C. E. Goodyer and A. L. Bunge, “Mass transfer through membranes with surface roughness”, Journal
of Membrane Science, 2012, 409–410, 127–136.

(73) J. Rolf, T. Cao, X. Huang, C. Boo, Q. Li and M. Elimelech, “Inorganic Scaling in Membrane Desali-
nation: Models, Mechanisms, and Characterization Methods”, Environmental Science & Technology,
2022, 56, 7484–7511.

(74) L. Wang, J. He, M. Heiranian, H. Fan, L. Song, Y. Li and M. Elimelech, “Water transport in re-
verse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism”, Science
Advances, 2023, 9, eadf8488.

(75) R. Z. Waldman, F. Gao, W. A. Phillip and S. B. Darling, “Maximizing selectivity : An analysis of
isoporous membranes”, Journal of Membrane Science, 2021, 633, 119389.

(76) J. D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering, 2007,
9, 90–95.

(77) M. L. Waskom, “seaborn: statistical data visualization”, Journal of Open Source Software, 2021, 6,
3021.

(78) A. Meurer et al., “SymPy: symbolic computing in Python”, PeerJ Computer Science, 2017, 3, e103.

Accepted author manuscript published in Journal of Membrane Science (2024), 696, 122493 47

https://doi.org/10.1016/j.memsci.2024.122493


A. Deshmukh, J. H. Lienhard, & M. Elimelech https://doi.org/10.1016/j.memsci.2024.122493

(79) H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1959.

(80) H. Bateman, Tables of Integral Transforms, ed. A. Erdélyi, McGraw-Hill Book Company, New York,
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