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Abstract

Conventional continuum models for ion transport across polyamide membranes require solving partial differential equations (PDEs).

These models typically introduce a host of assumptions and simplifications to improve the computational tractability of existing

solvers. As a consequence of these constraints, conventional models struggle to generalize predictive performance to new unseen

conditions. Deep learning has recently shown promise in alleviating many of these concerns, making it a promising avenue for

surrogate models that can replace conventional PDE-based approaches. In this work, we develop a physics-informed deep learning

model to predict ion transport across diverse membrane types. The proposed architecture leverages neural differential equations

in conjunction with classical closure models as inductive biases directly encoded into the neural framework. The neural methods

are pre-trained on simulated data from continuum models and fine-tuned on independent experiments to learn multi-ionic rejection

behaviour. We also harness the attention mechanism, commonly observed in language modelling, to learn and infer paired transport

relationships. Gaussian noise augmentations from experimental uncertainty estimates are also introduced into the measured data to

improve robustness and generalization. We study the neural framework’s performance relative to conventional PDE-based methods,

and also compare the use of hard/soft inductive bias constraints on prediction accuracy. Lastly, we compare our approach to other

competitive deep learning architectures and illustrate strong agreement with experimental measurements across all studied datasets.
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1. Introduction and Background1

Highly-selective membranes are ubiquitously used across the2

separations industry, where they play an essential role in the recovery3

and concentration of valuable metals like lithium and cobalt [1–3].4

With the advent of the rapidly growing electric vehicle industry, the5

demand for these critical metals is expected to increase, necessitating6

robust solutions that perform well at these immense scales [4, 5]. To7

meet this burgeoning demand, further optimization of the selectivity8

and energy efficiency of membrane-based systems across diverse9

sourcewaters holds substantial industrial interest [6, 7]. However,10

since building and testing all possible permutations and combinations11

of these systems is cost-prohibitive, computational models are fre-12

quently used to estimate and optimize the performance of larger-scale13

systems [8–10].14

15

For critical metals recovery, one membrane-based approach of16

emerging interest is nanofiltration (NF) [5, 11–13]. NF relies on a17

combination of steric, dielectric, and Donnan exclusion mechanisms18

to induce separation and metal ion recovery [14]. These mechanisms19

enable the technology to achieve both size- and charge- based separa-20

tion of ions across diverse mixtures [15]. NF also typically operates at21

relatively low pressures, enabling systems to achieve competitive ion22

selectivities with reduced energy requirements [16]. To optimize NF23

performance, models that accurately predict and generalize rejection24

behaviour are essential [17–19].25

26

The first models for NF were derived from irreversible thermo-27

dynamics [20, 21]. These frameworks treated membranes like a28

black-box, which intrinsically neglected the coupled relationship29

between ion selectivity and membrane properties. Years later, to30

address this issue, the Donnan–Steric Pore Model (DSPM) was31

proposed by Bowen and Mukhtar, which leveraged a combination of32

the Nernst–Planck partial differential equations (PDEs) and hindered33

transport theory to model transport [22, 23]. The model showed34

moderate agreement with experiments; a large part of this was because35

the approach inherently neglected one of the fundamental selectivity36

mechanisms: dielectric exclusion. To address this, the Donnan–Steric37

Pore Model with Dielectric Exclusion (DSPM–DE) was proposed in38

2002, which introduced the Born model to quantify the effects of ion39

solvation into nanoporous membranes [24].40

41

Since the development of DSPM–DE, it has become one of the42

most frequently used models for NF. It has also seen many iterations,43

most with the objective of addressing its many simplifying assump-44

tions [18]. For example, Bowen and Welfoot considered integrating45

the effects of pore size distributions into the framework to be more46

representative of typical membrane morphologies [25]. Yaroshchuk47

studied the effects of fictitious image forces to improve the predictions48

associated with dielectric exclusion [26]. Silva et al. investigated the49

variation of the membrane charge density streamwise of the membrane50

pores to better approximate the dependence of the charge density on51

solution composition [27]. However, despite these improvements,52

DSPM–DE, as well as other continuum-based approaches, have been53

seen to struggle with generalization performance across different54

sourcewaters [28]. In other words, membrane parameters regressed55

from experimental data for a given membrane interpolate well, but56

often extrapolate poorly to new compositions [18]. Given the rapid57

growth and versatility of deep learning-based methods across the58

natural sciences [29–31], these approaches may offer a promising59

avenue to bridge the aforementioned gaps and alleviate many of the60

issues that plague continuum models today.61

62

Machine learning (ML)-based methods are being increasingly63

used for many green chemistry and ion separations technologies64

[32–34]. For NF specifically, interest is rapidly growing in deep65

learning techniques for the characterization of ion transport [35, 36].66

Bowen et al. attempted to model rejection behaviour across NF67

membranes with feedforward neural networks using a combination68

of literature data and in-house measurements [37]. Their studies69

prioritized the design of a neural approach capable of interpolating70

well. Although successful as used, the method is unable to generalize71

performance to unseen compositions. Yangali–Quintanilla et al. also72

considered feedforward neural networks to model transport across73

polyamide membranes for NF and reverse osmosis (RO) [38]. Their74

work centered around predicting the rejection of organic contaminants75

across a wide range of membrane types; the studies also adopted76

structure-activity relationships to perform dimensionality reduction77

on experimental data to facilitate the identification of a pertinent set78

of parameters governing transport [38]. Jeong et al. investigated the79

use of SHAP values − a game theory-derived explainability technique80

− to elucidate the role of learned features from neural models on ion81

separation in polyamide membranes [39]. Their results suggested82

that neural models are able to learn size- and charge- based exclusion83

characteristics.84

85

Despite the ongoing interest in deep learning approaches to model86

transport, the development of a generalizable machine learning-based87

surrogate model for transport across selective membranes remains88

elusive. The primary impediment lies in gaining access to large89

amounts of data for training models [18]. Consequently, to develop90

neural methods in data-constrained settings, alternative strategies are91

needed. In these scenarios, hybrid deep learning methods that combine92

mechanistic methods with ML models and/or transfer learning ap-93

proaches may hold the potential to unlock such approaches. One such94

instance is presented by Rall et al., who harnessed feedforward neural95

networks to investigate the interplay between layer-by-layer mem-96

brane fabrication conditions and ion separation [40, 41]. Their studies97

integrate transport models into neural methods by predicting ion98

rejection from learned charge densities and pore radii. The framework99

effectively guides neural approaches towards viable solutions, but the100

method still assumes mechanistic models can be used as ground truths.101

102

In the present work, we mitigate the aforementioned concerns103

with a generalizable physics-informed deep learning model that104

captures multi-ionic transport across selective membranes. The105

neural architecture is more expressive than conventional feedforward106

neural networks because it leverages neural differential equations [42]107

in conjunction with the attention mechanism [43] to learn smooth108

rejection profiles as a function of composition and water flux for109

diverse mixtures. In addition, we integrate charge conservation laws110

into the model using orthogonal projection-based inductive biases111

to improve predictions in data-limited settings. We also leverage112

a transfer learning strategy by conducting large-scale pre-training113

on DSPM–DE to improve the quality of intermediate embeddings114

(these offer better starting rejection estimates in data-constrained115

settings) [44]. Subsequently, we use experimental data comprising116

800 rejection measurements to perform model fine-tuning. We117

illustrate the model’s ability to achieve predictions within ±10% of all118

data in the test set outperforming conventional continuum models (ex-119

plicitly shown for DuPont’s NF270). We also elucidate the attention120

mechanism’s role in identifying key paired ion transport relationships.121

Finally, we benchmark our approach against other alternative deep122

learning methods and mechanistic models: DSPM–DE, extended123
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DSPM–DE [5], and the solution-friction model [45]. Through this124

work, we demonstrate the promise of deep learning-based surrogates125

over conventional models across a diverse range of input conditions.126

2. Deep Learning Model127

2.1. Neural Differential Equations128

The continuous dynamics of the hidden layers, h(·), capture the129

change in ion-specific concentrations across the membrane as a func-130

tion of permeate flux, Jv. As a consequence of the smooth rejection131

profiles predicted, the hidden layer dynamics are well-suited to being132

parameterized by a first-order ordinary differential equation (ODE):133

dh(Jv)

dJv
= ODENetθ (h(Jv),Jv;θ) (1)

for Jv = {0 . . .Jv}, and h ∈ Rd , where dimension d denotes the134

maximum number of ionic species present across all experimental135

datasets1. For the studies conducted in this work, d = 8. Additionally,136

ODENetθ : [0,Jv]×Rd → Rd . To account for mixtures with different137

ions in the training, validation, and test datasets, masking is applied138

prior to being passed into the neural model. Additionally, θ ∈ Θ,139

where Θ represents some finite-dimensional, learnable parameter140

space [42]. By learning the derivative of the hidden layer output,141

rejection profiles are uniformly Lipschitz continuous in h(Jv) and con-142

tinuous in Jv, enabling facile pre-training on conventional mechanistic143

models [46, 47].144

145

In addition to masking, polynomial positional encodings are146

used. The embeddings are concatenated to the masked concentration147

vector prior to being passed into the neural model2. To integrate over148

the neural ODE, we adopt the Tsitouras 5(4) numerical method with a149

fixed step size of ∆ = 0.1 [48]. Backpropagating through the solver is150

performed using the continuous adjoint method, originally described151

by Chen et al. [42].152

153

The network is comprised of five linear layers and tanh(·) non-154

linearities applied to each output (as presented in Fig. 1). Following155

the last linear layer, no point-wise activations are used (ODENet156

performance can often be detrimentally impacted through non-linear157

activations after the final hidden layer). The network is trained158

using Adam with a batch size of eight and an initial learning rate159

of 10−3 [49]. The learning rate is halved every 100 epochs during160

both pre-training and fine-tuning processes (additional details are161

provided in Section 2.4). For all experiments conducted, we evaluate162

the hidden state dynamics and their derivatives on the GPU using163

PyTorch [50, 51] for a total of 500 epochs. All studies are performed164

using NVIDIA M4000 GPUs.165

2.2. Attention Mechanism166

Transformer networks, typically used for modelling natural lan-167

guage, adopt the concept of attention to provide machine learning168

models with a mechanism to interpret semantic context in sentences169

[43]. The attention mechanism has subsequently been translated to170

1Since the magnitude of typical permeate fluxes is on the order of 10−5-
10−6 m/s, this can lead to numerical stability issues. Consequently, we nor-
malize the flux by the largest observed water flux from the training, validation,
and test set, ensuring the model only sees fluxes bounded between 0 and 1.

2Although not essential for the proposed method to succeed, it was empiri-
cally observed that the positional encodings improved predictive performance.
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Figure 1: Proposed physics-informed neural differential equation architecture.
Initial ion concentrations are masked and combined with positional encodings
from the corresponding permeate flux measurements. These values are fed as
input into the neural model, which predicts output concentrations. The Tsi-
touras 5(4) is used to integrate over ODENetθ . The orthogonality projector
subsequently converts permeate concentrations into electroneutral output pre-
dictions, which are used to evaluate the ion-specific model rejection, Rmod

j (Jv).

other disciplines to enable deep learning methods to better understand171

context-dependent pairing relationships; these have been demonstrated172

in molecular models with graph attention networks [52], all the way173

to attention-guided molecular generative models like the transformer-174

based variational autoencoder (VAE) [53, 54]. In this work, we intro-175

duce an attention head to equip the model with a mechanism to learn176

paired ion transport relationships (also what we refer to as ionic con-177

text). We use a slightly modified form of multiplicative (dot-product)178

attention, in line with the approach presented by Vaswani et al. [43]:179

Attention(Q,K,V )≜ softmax

(
QK

⊥

√
dk

)
V (2)

where, Q, K, and V are the query, key, and value matrices, obtained180

from W

⊥

Q ∈ Rdk , W

⊥

K ∈ Rdk , and W

⊥

V ∈ Rdk , respectively. In the re-181

ported work, we set dk = 8. dk corresponds to the dimension of the key182

matrix, which serves to normalize the attention computation, provid-183

ing better empirical performance [43, 55]. This is also done to reduce184

the possibility of overflow, which can lead to undesirable vanishing185

gradients.186

2.3. Conservation Laws as Hard Inductive Biases187

Electroneutrality is a conservation law commonly prescribed in188

classical mechanistic models for nanofiltration. Electroneutrality re-189

quires that a solution’s net charge remain zero under equilibrium con-190

ditions [2]. Within polyamide membranes, local electroneutrality can191
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break down [56]; however, in the bulk solution, ∀Jv, the constraint is192

expected to hold [14]. The conservation law, also shown in dot-product193

form, can be expressed as follows:194

d

∑
j=1

z jh j(Jv) = z

⊥

h = 0 (3)

where z ∈ Zd is a vector comprised of ion valences. To encode elec-195

troneutrality into the neural model as a hard constraint, we seek the or-196

thogonal projection/component of the hidden layer output as follows:197

z

⊥

h⊥ = z

⊥

h− z

⊥

h∥, h⊥ = h− ⟨z,h⟩
⟨z,z⟩ z (4)

By using h⊥ instead of appending the inductive bias to the loss as a198

soft constraint, the model guarantees inter-ionic coupling between ions199

from electroneutrality irrespective of the inputs, substantially improv-200

ing generalization performance. Here, h∥ is evaluated using the pro-201

jection operator: h∥ = projz(h). During ablation studies, we test both202

hard and soft constraints to illustrate the improvement in generaliza-203

tion performance. The soft loss formulation is detailed in Appendix A.204

2.4. Transfer Learning Approach and Training Regimes205

To improve predictive performance in the data-constrained regime206

(in which we are operating), we propose the use of transfer learn-207

ing [57]. Here, we decompose the training process into two dis-208

tinct stages: (1) pre-training on conventional PDE-based models; and209

(2) fine-tuning on experimental data from independent measurements210

comprising over 800 rejection data points. The reason behind doing so211

is twofold. Firstly, although 800 data points appears to be a significant212

amount of data, the distribution of ions across datasets is quite het-213

erogenous, and the likelihood that the model sees out-of-distribution214

compositions at test time is high [58]; as a result, despite what ap-215

pears to be a substantial amount of data, on its own is insufficient (we216

demonstrate this clearly in Section 3.2). Secondly, by using synthetic217

data from these simulations, we can substantially improve the quality218

of the model’s learned embeddings. In other words, by using con-219

ventional PDE-based models to expose the neural approach to com-220

positions likely to be seen during test, we can substantially improve221

predictive performance by narrowing the scope of feasible solutions.222

Consequently, we propose combining numerical and experimental ef-223

forts by freezing the weights of the first three layers and only updat-224

ing the last two during fine-tuning. In doing so, we can leverage the225

moderate-quality embeddings learned from pre-training to yield strong226

starting estimates for learning in the low-data regime [59].227

2.4.1. Pre-training on Synthetic Data from Continuum Models228

To pre-train the neural method, we use simulated data generated229

from the well-established Donnan–Steric Pore Model with Dielectric230

Exclusion (DSPM–DE). In this model, multi-ionic transport through231

the polyamide membrane is expressed using the extended Nernst–232

Planck partial differential equations [60]:233

J j =−D jK j,d∂xC j +K j,cC jJv −
K j,dD jC jz jF

RT
∂xψ, x ∈ [0,∆xe] (5)

Here, J is the flux, with indices j and v used to denote ionic species234

j and water, respectively. D, F , R, and T are the diffusion coeffi-235

cient, Faraday’s constant, the universal gas constant, and absolute236

temperature, respectively. The dependent variables are C, the ion237

concentration, and ψ , the electric potential. The hindered form of238

the PDE is valid between x = 0 and x = ∆xe, where the latter term239

corresponds to the effective membrane thickness (the ratio of the240

membrane’s thickness to its porosity). Lastly, K j,c and K j,d are the241

convective and diffusive hindrance factors for species j, respectively,242

both of which are evaluated using the correlations originally derived243

by Dechadilok and Deen [61]. Complete model details are provided244

in Appendix B.245

246

In DSPM–DE, four latent variables are typically used to param-247

eterize the membrane: Zℓ ∈ {rp,∆xe,ζp,χd} [62]. These variables248

correspond to the membrane pore radius, effective thickness, dielectric249

constant in the pores, and volumetric charge density, respectively.250

Multiple regressions to novel sets of experimental data are most251

often performed to ascertain values of these parameters. To solve252

the extended Nernst–Planck equations, an iterative, under-relaxed253

numerical scheme is used (implementation details of the numerical254

approach are rigorously outlined in previous work by Geraldes and255

Brites Alves [60]).256

257

The objective function used to ascertain the values of the mem-258

brane parameters is provided below:259

Z∗
ℓ = argmin

rp,∆xe,ζp,χd

1
kd

k

∑
i=1

d

∑
j=1

(
Rmod

i j (rp,∆xe,ζp,χd)−R
exp
i j

σi j

)2

(6)

where σi j corresponds to the experimental uncertainty of each rejec-260

tion measurement, and k is the total number of flux measurements261

taken per species. Using this formulation, less weight is attributed to262

experimental measurements that have a larger variance; conversely,263

the optimization focuses on minimizing the loss associated with264

points that we are more confident in. Additionally, i cycles through265

all experimental flux measurements, while j cycles through all ions in266

solution. Lastly, the asterisks, ‘∗’, denotes globally optimal parameter267

estimates, and the mean values used for pre-training are provided in268

Table 1 (as well as their 95% confidence intervals):

Table 1: DSPM–DE parameters and their 95% confidence intervals. The mean
values were used for pre-training the physics-informed neural solver.

r∗p [nm] ∆x∗e [µm] ζ ∗
p [-] χ∗

d [mol/m3]

0.51 ± 0.04 1.27 ± 0.21 43.56 ± 4.15 −51.23 ± 11.54

269

270

To generate data for pre-training, we sample a d-dimensional271

initial concentration vector from the pre-training bounds reported in272

Fig. C.6 using low-discrepancy Sobol sequences and project them273

to log-space [63]. This was done to improve model predictions at274

lower concentrations [5]. A total of 42,183 points were generated.275

The process, although parallelized over GPUs to expedite data276

generation, still took just under four days to produce the full set of277

pre-training data used. The mean squared error (MSE) minimized278

during pre-training is expressed below:279

Lcm(h,hcm) =
1

kd

k

∑
i=1

d

∑
j=1

[
h j(Jv,i)−hcm

j (Jv,i)
]2

(7)

where k ∈ Sℓ is the total number of flux measurements prescribed per280

species. Additionally, Sℓ = {4,5,6,7}, and k ∼U(Sℓ), given that most281

training data typically had between 4-7 flux measurements. Subscripts282

i and j cycle through all flux measurements and ionic species, respec-283

tively. Selected pre-training ranges are detailed in Appendix C.284
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2.4.2. Fine-tuning on Experimental Measurements285

Across all solutions in the studied datasets, ions included were:286

Sexp = {Na+, K+, Li+, Ca2+, Mg2+, Cl−, NO−
3 , SO2−

4 }. Follow-287

ing pre-training, the network was fine-tuned on experimental data288

comprising 800 ion concentration measurements. The collected data289

spans studies conducted by numerous authors as well as in-house290

experiments [3, 19, 64–67]. All datasets analyzed the same polyamide291

membrane (DuPont’s FilmTec™ NF270) for ion separation. The292

salinities considered were all at or below that of seawater, given that293

beyond these concentrations, DSPM–DE may not offer reasonable294

rejection predictions (DSPM–DE does not consider ion complexation,295

which has been seen to occur at elevated salinities; details of DSPM–296

DE’s assumptions and simplifications are rigorously discussed in prior297

work by Wang and Lin [18]). Lastly, a training, validation, and test298

split of 600, 100, and 100 rejection measurements was prescribed.299

300

To improve generalization performance, we also use measured301

uncertainties across the training data to fit Gaussian statistics to302

individual data points (µ,σ2). To evaluate the loss function, values303

of output concentration were sampled from this distribution3. This304

type of data augmentation technique is commonly used in image305

settings, where small amounts of noise are added to each image to306

improve model robustness at inference time [70]. By adopting this307

approach, we can simulate the presence of ‘more’ data, improving308

generalization performance in data-constrained settings. The loss on309

the measurement data can be expressed as:310

Lexp(h,hexp) =
1

n f d

n f

∑
i=1

d

∑
j=1

[
h j(Jv,i)−hexp

j (Jv,i)
]2

,

hexp
j (Jv,i)∼N (µi j,σ

2
i j) ∀i, j (8)

Here, n f is the total number of flux measurements taken, and serves the311

same purposes as k. In this case, n f depends on the individual dataset312

used, as opposed to being a sampled quantity.313

2.5. Benchmarking against Alternative Deep Learning Models314

To benchmark the performance of our physics-informed ODENet315

relative to alternative deep learning architectures, we study Convolu-316

tional Neural Networks (CNNs) [71], Residual Networks (ResNets)317

[72], U-Nets [73], and conventional feedforward neural networks318

(FFNN). Hyperparameter tuning details are provided in Appendix D.319

The number of parameters used in each architecture was maintained320

relatively constant to ensure a fair comparison between methods, with321

methodological details summarized in Appendix E.322

3. Results and Discussion323

3.1. Deep Learning Predictions and Data Requirements324

To evaluate the predictive performance of the proposed neural325

framework, we compare rejection predictions against conventional326

DSPM–DE on two samples from the test set (illustrated in Fig. 2A327

and Fig. 2B). During training, since Gaussian error estimates are328

fitted to experimental points to reflect measurement uncertainty, we329

are able to learn different models due to the intrinsic stochasticity330

3Hinge loss terms based on the Hofmeister series were originally included
in the loss function but provided mixed results [68]. Given that ion rejection
has been seen to diverge from the Hofmeister series under certain conditions,
it was removed entirely from the loss [69].

of the sampling process [74]. Different learned models, as well331

as the one that minimizes validation error, are exemplified by the332

translucent shaded regions, and solid lines, respectively. In both333

Fig. 2A and Fig. 2B, we observe that the neural model outperforms334

DSPM–DE when a fixed set of membrane parameters is used4.335

This test illustrates generalization performance when new unseen336

data is presented to both the PDE-based model and neural approach337

(without having to perform new computationally-expensive, and338

experimentally-demanding regressions). In this case, the neural model339

is able to provide strong performance benefits relative to conventional340

continuum modelling approaches, which are known to struggle with341

generalizing performance to unseen conditions [14].342

343

Although we use a fixed set of membrane parameters for the previous344

comparison, more commonly, a new set of DSPM–DE parameters345

is regressed from new batches of experimental data, with the model346

then used for interpolation purposes; however, even under these347

conditions, the assumptions and simplifications built into the model348

often prevent it from: (1) learning physically-representative mem-349

brane parameters (regressed pore radii can often be unreasonably350

small/large, or the effective membrane thicknesses can substantially351

underestimate/overestimate the true membrane thickness); or (2)352

regressing membrane parameters that are able to yield reasonable fits353

to the measured experiments [62]. As a result, we elucidate the neural354

model’s superior predictive capabilities across solutions in the test set,355

even when conventional DSPM–DE is regressed to individual sets of356

data, as shown in the parity plot in Fig. 2C. Here, we observe that even357

when the continuum model is fitted to each set of data, it frequently358

fails to provide reasonable predictions for rejection, whereas the359

neural model has accuracy within ±10% of all measurements in the360

test set (despite never having seen the data a priori; the confidence361

bound is illustrated by the shaded envelope). In recent work by Jeong362

et al. on deep learning methods for ion transport across polyamide363

membranes, they note that despite operating in data-constrained364

settings, machine learning models can learn the importance of size-365

and charge-based exclusion [39]. Although their study demonstrates366

these findings through SHAP values, we show that we can draw the367

same conclusions by accurately predicting ion rejection behaviour368

across diverse mixtures.369

370

In the inset of Fig. 2C, we present the training and validation371

losses across hyperparameter sweeps (we apply Bayesian optimiza-372

tion for hyperparameter tuning; details are provided in Appendix D).373

The descent curves presented only correspond to those obtained374

from the experimental fine-tuning step. In addition, we experimented375

with different amounts of pre-training and noted that typically more376

pre-training led to higher quality embeddings and improved predictive377

performance, albeit at the cost of increased computation runtime5.378

Conversely, with the experimental data, we noted that the model379

began to overfit to the rejection measurements after ∼220 epochs380

(labelled by the dotted vertical line), beyond which the validation381

loss curves are seen to steadily increase in agreement with expectation.382

4The chosen set of values was quantified by regressing DSPM–DE to mea-
surement data from over 15 experimental studies on DuPont’s NF270 mem-
brane, all at pH 7 (experimental tests had a wide range of ions present, typically
ranging from 2-8, all with salinities at or below that of seawater). Our previous
approach, which harnesses hybrid global-local optimization with maximum
likelihood estimation (MLE), was employed to quantify the latent membrane
parameters across measurement data [62].

5There is a point beyond which model pre-training should overfit to the syn-
thetic training data, however, we did not observe this limit during our training
procedure given the high-dimensional solution space of DSPM–DE [75].
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Figure 2: A) and B) Rejection against normalized flux (normalized by the largest flux measurement present in the test set) for a ternary-component and quaternary-
component mixture with the physics-informed ODENet contrasted against conventional DSPM–DE, respectively. C) Performance of the proposed model bench-
marked against data-tailored DSPM–DE across all mixtures in the test set illustrating the neural model’s predictive capabilities. The inset includes the descent
curves of the loss obtained on both training and validation sets. Overfitting to the training data occurs beyond ∼220 epochs, as observed by the increasing validation
error. At this point model training is stopped. D) The change in the MSE on the test set as a function of the amount of experimental data used; here, we illustrate
our method’s ability to outperform conventional modelling approaches after ∼500 data points, in contrast to the feedforward neural network, which never achieves
superior performance to DSPM–DE irrespective of the amount of data used.

383

Lastly, in Fig. 2D, we illustrate the amount of data needed to384

outperform tailored DSPM–DE using our proposed physics-informed385

neural solver and an optimized feedforward neural network. Here,386

we note that the error uncertainties stem from the sampling process,387

similarly to earlier simulations. We also observe that the proposed388

neural framework eventually outperforms DSPM–DE on the test data389

after ∼500 experimental rejection measurements. The descent slopes390

also appear to align with those arising from probably-approximately391

correct (PAC) learnability estimates [76–78] (these methods expect392

test error to decrease with 1/n, where n is the amount of data used).393

Similar behaviour is noted with the feedforward network; however,394

we see that the conventional feedforward network is never able to395

outperform DSPM–DE irrespective of the number of experimental396

points used during fine-tuning. These simulations speak to the397

promise of our proposed neural framework in serving as an alternative398

to conventional continuum modelling approaches for ion transport399

across selective membranes.400
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3.2. Implications of Attention, Pre-training, and Inductive bias401

The attention mechanism, most frequently used for modelling402

natural language in transformer networks [43], serves as a means for403

understanding the semantic context of words in a sentence. Here,404

we leverage the attention mechanism to learn the relative importance405

of ions in complex mixtures prior to being passed into the neural406

model, similarly to the way graph attention networks (GATs) leverage407

attention to model inter-molecular interactions [52]. In Fig. 3A, we408

benchmark the MSE achieved across a series of competitive deep409

learning models with and without its use. Our approach outperforms410

other ML-based alternatives with U-Nets achieving the closest MSE.411

This is largely attributed to the smooth profiles generated by ODENet412

(since the network learns rejection gradients rather than standalone413

rejection) for unseen fluxes that closely mirror experimental obser-414

vation; other methods are unable to capture this continuity leading415

to inferior performance on the test data [42]. For all conducted416

tests, we maintained a similar number of model parameters across417

benchmarks to ensure a fair comparison (details of these architectures418

are in Appendix E). In all cases, we note that the inclusion of the419

attention layer improves predictive performance, with the reduction420

in predictive performance ranging between 5-20%, depending on the421

architecture tested.422

423

Next, in Fig. 3B, we illustrate an example of the learned attention424

matrix for our set of studied ions. Here, we note that the attention425

mechanism clearly identifies the importance of valence and ionic426

coupling on transport. For example, we see that the attention given427

to both Cl− and NO−
3 by Na+ is high; this makes physical sense428

as SO2−
4 is often too large and immobile to be transported through429

the membrane meaning that Cl− and NO−
3 are the primary anions430

carried across the membrane to conserve electroneutrality [79]. This431

is also clearly validated by the fact that the attention given to SO2−
4432

appears low relative to the other monovalent anions6. This is similarly433

observed in Fig. 2B, where the model correctly predicts negative434

rejection values for NO−
3 at low fluxes, given that as the only anion435

in solution, its transport must be expedited through the membrane436

to ensure electroneutral permeate concentrations. These findings437

clearly illustrate the value of the attention mechanism in learning and438

characterizing ion transport across selective membranes.439

440

Another observation in Fig. 3B is that Li+ and Mg2+ are given441

substantial amounts of attention by ODENet. In other words, when442

both lithium and magnesium are present in the sourcewater, the443

model prescribes substantial weight to their relative quantities prior to444

predicting rejection behaviour. This also makes physical sense given445

that Li+ and Mg2+ are challenging to separate given their similar446

solubility products and ionic radii [80, 81]. As a result, additional447

emphasis on their relative compositions is propagated through the448

model to ensure accurate predictions of Li+ and Mg2+ rejection. This449

also aligns with uncertainty quantification studies using DSPM–DE450

that clearly highlight the elevated sensitivity of Li+/Mg2+ selectivity451

towards changing feedwater composition and membrane parameters452

shown in our prior work [14].453

454

Next, in Fig. 3C, we investigate the importance of pre-training455

on PDE-based models (PT) and including electroneutrality as a hard456

(HIB) vs. soft (SIB) constraint across competitive deep learning archi-457

tectures. We note that by foregoing pre-training (NPT), the resultant458

6SO2−
4 typically has a limiting rejection above 90% when using DuPont’s

FilmTec™ NF270 at pH 7 [16].

MSE is at least 70% higher than when it is included. This trend459

is in agreement with expectation given that these models are being460

trained in highly data-limited regimes, where there is an insufficient461

amount of data to generalize well; as a result, transferring knowledge462

from continuum models to the neural architecture substantially boosts463

performance when the models experience new unseen compositions.464

Furthermore, we note that by neglecting pre-training on PDE-based465

models, it appears not to be possible to outperform conventional466

DSPM–DE irrespective of the architecture used. Consequently, it is467

essential to recognize that despite the shortcomings that PDE-based468

solution methods impose [18], using them to improve the quality of469

embeddings for deep learning-based alternatives is a critical step in470

achieving superior generalization performance.471

472

In the case where pre-training is not performed (i.e., the data-473

limited setting), we found that the model has difficulty learning the474

importance of electroneutrality. In this case, although soft inductive475

biases encourage electroneutral outputs, they do not guarantee them476

[82, 83]. As a result, we see a trade-off emerge, where additional477

training on the experimental data can lead to the model becoming478

more likely to predict electroneutral permeate concentrations, yet at479

the cost of becoming increasingly likely to overfit to the training data,480

adversely impacting generalization performance. Consequently, when481

we enforce electroneutral outputs through the orthogonal projection482

(hard constraint), the improvement in performance is notable (a483

drop in MSE of at least 20% is seen across deep learning methods).484

Overall, however, despite the hard inductive bias, the result still485

fails to outperform conventional DSPM–DE in predicting rejection,486

necessitating an alternative solution.487

488

Lastly, in Fig. 3C, we note that although there is a difference in489

predictive performance when using hard projection constraints rela-490

tive to soft regularization terms (with pre-training), the differential491

error may not be as high as we may expect (as was the case when492

pre-training was foregone). The primary reason behind this is that the493

predictions from the continuum model are already electroneutral; as494

a result, by conducting judicious pre-training on DSPM–DE, we are495

already exposing the model to large quantities of training data that496

is already conditioned on electroneutral outputs. Consequently, even497

through the use of the soft regularization loss, we do a reasonable job498

at encouraging the model to prioritize electroneutral predictions. Sim-499

ilar to the previous case, however, using soft regularization terms does500

not guarantee electroneutral predictions for new unseen compositions;501

as a result, the optimal performance is observed when hard inductive502

biases are imposed. Overall, we observe the best performance using503

our proposed physics-informed ODENet with pre-training and hard504

inductive biases integrated into the architecture.505

3.3. Benchmarking Performance against PDE-based Models506

In this section, we conduct a more detailed assessment between507

the neural model and conventional PDE-based methods. Specifically,508

we study the neural method relative to three different continuum509

modelling approaches: (1) conventional DSPM–DE with the optimal510

set of regressed parameters for the given solution composition (termed511

DSPM–DE); (2) a modified version of DSPM–DE, where in addition512

to the four typical membrane parameters, we also regress ion-specific513

convective and diffusive hindrance factors (amounting to a total of514

2n+ 4 regression parameters for a solution composition with n ions;515

termed extended DSPM–DE); and lastly, (3) the solution-friction516

model, in which the Nernst–Planck PDEs are also used to model517

ion transport, except that the hindrance factors are mapped into a518
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Figure 3: A) illustrates the performance benefits that arise from the attention mechanism across a series of competitive deep learning-based methods. Results suggest
that including attention layers is beneficial across all studied ML approaches. B) provides an example of the attention matrix for a given solution composition
illustrating the model’s ability to learn the importance of both valence and solute size in predicting ion rejection. Heightened values of attention are attributed to
ion pairs that can significantly contribute to one anothers’ rejection predictions, as seen with charge conservation in Na+ and Cl−, for example. C) illustrates the
performance benefits from pre-training on synthetic data and treating electroneutrality as a hard vs. soft constraint across the studied deep learning alternatives. D)
A schematic drawing illustrating the transfer learning approach taken to improve the quality of learned embeddings using neural methods in the data-limited regime.

series of known friction factors. In solution-friction, these coefficients519

are frequently known for given ion species [84]. In addition to this520

modification, the Born and steric exclusion terms are combined into521

a size-dependent partition coefficient that is regressed for each ionic522

species j (this means that the dielectric constant in the membrane523

pores is no longer regressed, yielding a total of n + 3 learnable524

parameters for solutions with n ions) [45]7. Solution-friction model525

details are in Appendix G.526

527

In Fig. 4A and Fig. 4B, we illustrate the residual error between528

conventional DSPM–DE, extended DSPM–DE, and the neural model529

for the two worst performing ions in a given composition from the530

test set8; for this example, these errors correspond to Na+ (left) and531

Cl− (right). The errors are defined as the difference in predictions532

between the method of interest and an exponential-fit curve. In533

this case, we note that conventional DSPM–DE provides the least534

7In the conventional DSPM–DE model, hindrance factor expressions de-
rived by Higdon and Muldowney [85], as well as, Mavrovouniotis and Brenner
[86] are used. Additional details are provided in Appendix F.

8Note, to avoid overcrowding the figure, we exclude residual error predic-
tions from the solution-friction model given that the results were nearly identi-
cal to those obtained from extended DSPM–DE.

optimal performance for both ions. More specifically, with Na+, the535

initial errors are substantially larger than those from both extended536

DSPM–DE and the neural approach. In addition, as we transition to537

higher fluxes, we note that the residuals appear to plateau steadily at538

0.04, indicating that the model clearly overpredicts sodium rejection539

across higher fluxes. The neural approach also overpredicts the data540

at lower fluxes, but then provides competitive predictive performance541

near the experimental data points. These findings elucidate the542

promise of neural methods for predicting ion rejection performance,543

despite having never seen the experimental data before. Lastly, we544

see the best-fit performance with extended DSPM–DE; however, it is545

important to note that by using 2n+ 4 parameters to fit the rejection546

curves, the model results are likely an overfit, substantially impeding547

generalization performance. In other words, although the error can548

be minimized quite significantly on the regressed measurements, the549

model very likely overfits to the experimental data suggesting that550

the same set of learned parameters for other solutions may yield551

misleading findings (we prove these findings clearly in Fig. 4D).552

553

In Fig. 4B, we note similar, but even more exaggerated findings554

with Cl−. In this case, conventional DSPM–DE exhibits substan-555

tial deviations from the experimental data with prediction errors556

worsening with increasing flux. Similar to the case with Na+, the557
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Figure 4: A) and B) illustrate the differences between the predicted rejection (using both continuum modelling approaches and the proposed neural method) and
an exponential fit curve for the two worst performing ions (Na+ and Cl−). The predictions indicate that the neural model outperforms conventional DSPM–DE,
while not meeting the prediction accuracies attained by extended DSPM–DE. The inset includes the convective and diffusive hindrance factor expressions used in
DSPM–DE as a function of λ , the ratio of solutes’ Stokes radius to the membrane pore radius. C) High-accuracy fits obtained from extended DSPM–DE, which
are largely attributed to overfitting the model to experimental measurement data using the 2n+ 4 fitting parameters present in the regression formulations. D)
Generalization performance comparisons between extended DSPM–DE, the solution-friction model, and the neural solver using two datasets from the test set.

neural approach and the extended DSPM–DE model achieve strong558

performance. The over-parameterized argument previously applied559

to Na+ also translates to Cl−, given that with extended DSPM–DE,560

the solute flux is an entirely constrained function. More specifically,561

by learning the convective and diffusive hindrance factors, the model562

has complete control of the solute flux expression in the extended563

Nernst-Planck PDE. Furthermore, given that the solute flux and564

permeate flux are decoupled in the mathematical formulation, the565

model has substantial numerical freedom to predict ion rejection,566

with the only required constraint being charge conservation from567

electroneutrality. As a result, the likelihood that extended DSPM–DE568

overfits to the measurement data is relatively high. To illustrate the569

accuracy of the regression using extended DSPM–DE, we present570

rejection predictions for a six ion mixture in Fig. 4C. The regressed571

membrane parameters and hindrance factors are summarized for the572

analyzed sample composition in Appendix H.573

574

Finally, in Fig. 4D, we elucidate the effects of over-parameterization575

and overfitting that can occur in conventional continuum models.576

Specifically, we can see that the agreement between extended DSPM–577
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DE and experimental data from dataset 1 to be near perfect (nearly578

all points lie on the parity line, in agreement with the observations579

from Fig. 4C); however, if we hold the regressed parameters fixed and580

run inference on dataset 2, we observe substantial deviation between581

predictions from the model and experiments. These are annotated in582

the figure with the label ‘drastically overfit’. As stated previously,583

these findings are largely attributed to the fact that mathematically584

regressing hindrance factors gives the model significant dexterity,585

which can work effectively on a given dataset, but fail to generalize586

well to new concentrations and compositions.587

588

When we consider the solution-friction model, we find similar589

performance on dataset 1, whereby the model does an excellent590

job at predicting ion rejections (points lie extremely close to the591

parity line, signifying excellent prediction accuracy). In this case,592

when we constrain the regressed parameters and run inference on593

dataset 2, we find that the model does not overfit to the same degree594

as extended DSPM–DE. We annotate points that lie outside our595

±10% bounds, with a label stating ‘marginally overfit’ (since the596

deviations are nowhere near as significant as those obtained from597

extended DSPM–DE). As a result, we see that the solution-friction598

model generalizes more effectively than extended DSPM–DE. We599

also observe that the performance of the neural solver consistently600

achieves rejection predictions that are within ±10% for both dataset 1601

and dataset 2. These studies elucidate the neural approach’s efficacy602

in generalizing rejection predictions to new unseen concentrations603

and compositions, demonstrating the value of neural methods as604

alternatives to conventional PDE-based modelling approaches.605

4. Implications and Summary606

In this work, we present a physics-informed, attention-enhanced607

neural differential equation model pre-trained on synthetic data from608

conventional PDE-based models and fine-tuned on measurement data609

from across the literature and in-house experiments. We find that:610

1. The neural approach outperforms conventional DSPM–DE611

across solutions in the test set, achieving accuracies within612

±10% across the set of studied ions.613

2. Attention layers, similar to those used in modelling natural lan-614

guage, play an important role in improving rejection predic-615

tions. Our studies suggest that including the attention mecha-616

nism consistently improves the model’s ability to generalize: on617

average, we see that excluding the attention layer increases the618

MSE by nearly 20% across deep learning methods studied.619

3. The learned attention matrices are also capable of identifying620

key paired transport relationships that govern ion transport phe-621

nomena across polyamide membranes. This is illustrated for a622

given solution composition in the test set.623

4. In cases where pre-training is foregone, none of the deep624

learning-based methods are able to outperform conventional625

DSPM–DE. We attribute this to the data-limited regime in626

which we operate, where improving the scope of feasible solu-627

tions through transfer learning approaches ends up substantially628

improving predictive performance on the test set.629

5. Including charge conservation-based inductive biases into630

the neural model consistently improves rejection predictions,631

whereby hard orthogonal projector constraints outperform soft632

regularization terms. In data-constrained regimes, the hard con-633

straints offer substantial performance benefits to guarantee elec-634

troneutral predictions, in line with expectations.635

6. When we contrast the neural approach to three different con-636

tinuum models: DSPM–DE, extended DSPM–DE, and the637

solution-friction model, the neural approach achieves lower638

residual errors compared to conventional PDE-based models639

when hindrance factors are not regressed. In the event that con-640

vective and diffusive hindrance factors are fitted as well, the641

deep learning approach fails to yield a lower MSE. We observe642

that this is due to the over-parameterization of the extended643

DSPM–DE and solution-friction models; in other words, using644

the same set of regressed parameters for different mixtures can645

be seen to impede generalization performance.646

Through this work, we illustrate the ability of neural methods to ac-647

curately predict ion separation across NF membranes at new unseen648

compositions and salinities. These findings open up the potential for649

further exploration of deep learning methods for ion transport across650

membranes. In particular, it would be interesting to see whether the651

proposed method pre-trained on alternative mechanistic models, could652

be useful in capturing ion transport across other selective separation653

systems, like selective electrodialysis (SED), or membrane capaci-654

tive deionization (SCDI). Alternatively, we would be curious to study655

whether the model trained on one membrane could translate its perfor-656

mance to a new membrane (with appropriate modifications introduced657

to account for membrane parameterization). Another potential avenue658

could be investigating the model’s ability to predict ion transport at dif-659

ferent temperatures, or at high salinity. By continuing to explore the660

emerging capabilities of machine learning methods for ion transport,661

there may be hope that deep learning-based solutions have the potential662

to entirely replace their PDE-based counterparts in modelling transport663

phenomena for diverse separations.664
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Nomenclature

Greek Symbols
χd Volumetric Membrane Charge Density
∆ψD Donnan Potential
∆xe Effective Membrane Thickness
∆ Step Size in Tsitouras Method
γ j Activity Coefficient of Solute j
λ j Ratio of Solute j’s Stokes Radius to Pore Radius
λE Lagrange Multiplier for Soft Loss Constraint
µi j Experimental Rejection Mean for Flux i and Solute j
φ j,Di Dielectric Exclusion Partition Coefficient of Solute j
φ j,Do Donnan Exclusion Partition Coefficient of Solute j
φ j,F Solution-Friction Partition Coefficient of Solute j
φ j,S Steric Exclusion Partition Coefficient of Solute j
ψ Electric Potential
σ2

i j Experimental Rejection Variance for Flux i and Solute j
Θ Finite Dimensional Learnable Parameter Space
θ Learnable Parameters in ODENet
ξ Linearized Electric Potential Gradient
ζb Dielectric Constant of Water in the Bulk Solution
ζp Dielectric Constant in the Membrane Pores

Roman Symbols
0+ Membrane Side at Solution-Membrane Interface (Feed)
0− Solution Side at Solution-Membrane Interface (Feed)
a Activity
C j Molar Concentration of Solute j
d Dimension of Hidden Layer Input/Output
D j Diffusion Coefficient of Solute j
dk Dimension of Key Matrix in Attention
FFNN Feed-forward Neural Network
F Faraday’s Constant
h Hidden Layer Output
HIB Hard Inductive Biases Used
H j,c Integrated Convective Hindrance Coefficient of Solute j
H j,d Integrated Diffusive Hindrance Coefficient of Solute j
J̄v Normalized Permeate Flux Across Dataset
J j Molar Flux of Solute j
Jv Permeate Water Flux
K Key Matrix in Attention Calculation
k Number of Flux Measurements during Pre-training
k̄c, j Modified Mass Transfer Coefficient of Solute j
kB Boltzmann’s Constant
K j,c Convective Hindrance Coefficient of Solute j
K j,d Diffusive Hindrance Coefficient of Solute j
K j, f Friction Coefficient of Solute j

L Loss Function
MSE Mean Squared Error Loss
n Number of Solutes in Solution
N Normal Distribution
NPT No Pre-training Conducted
n f Number of Flux Measurements during Fine-tuning
NA Avogadro’s Constant
Pe j Péclet Number of Solute j
projv(u) Projection Operation of u onto v
PT Pre-training Conducted
Q Query Matrix in Attention Calculation
q Fundamental Electronic Charge
R Universal Gas Constant
r j Stokes Radius of Solute j
rp Pore Radius of Membrane
Sℓ Set of Total Number of Possible Measurements Taken
SIB Soft Inductive Biases Used
T Absolute Temperature
V Value Matrix in Attention Calculation
x Spatial Coordinate Orthogonal to Membrane
Zℓ Set of All Latent Membrane Parameters
z j Valence of Solute j

Superscripts
cm Continuum Model
exp Experimental Measurement
mod Model Prediction
SF Solution-Friction Model

Subscripts
a,X Anion
b Bulk Solution
c,M Cation
f Feed Stream
j Species Index
m Solution-Membrane Interface
p Permeate Stream
∥ Parallel Component of Concentration Vector
⊥ Orthogonal Component of Concentration Vector

Fraktur Symbols
R

exp
j Experimental Rejection of Solute j

Rlim
j Limiting Rejection of Solute j

Rmod
j Model Rejection Prediction of Solute j
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Appendix A. Soft Loss with Lagrange Multipliers673

When evaluating the loss during pre-training or fine-tuning, hard674

inductive biases were used given their superior generalization perfor-675

mance (as reported and discussed in Section 3.2). Since soft loss con-676

straints have also shown promise in many physics-informed neural net-677

works [29], albeit typically in data-rich settings [87], we also bench-678

mark against them. The loss function used during fine-tuning, which679

reframes the problem using the method of Lagrange multipliers [88],680

is shown below:681

Lcm(h,hcm) =
1

kd

k

∑
i=1

d

∑
j=1

[
h j(Jv,i)−hcm

j (Jv,i)
]2

+λE
k

∑
i=1

||z

⊥

h(Jv,i)||22 (A.1)

where λE is the Lagrange mulitplier used to weight the importance of682

electroneutrality relative to minimizing the ℓ2 empirical risk term. We683

experimented with λE ∈ {0.01,0.1,1,2.5,5}, where optimal general-684

ization performance was observed for λE = 1.685

Appendix B. Donnan–Steric Pore Model with Dielectric686

Exclusion (DSPM–DE)687

The Donnan–Steric Pore Model with Dielectric Exclusion688

(DSPM–DE) was originally proposed by Bowen and Welfoot, and has689

become one of the most frequently used transport models for NF [24].690

The model adopts the extended Nernst–Planck equations to quantify691

ion transport across NF membranes. The hindered formulation of the692

equation, which accounts for restricted transport through nanoporous693

membranes is expressed in one-dimension in Eq. (B.1) below:694

J j =−D jK j,d
dC j

dx
+K j,cC jJv −

K j,dD jC jz jF

RT
dψ

dx
(B.1)

In the above equation, J is the flux, where subscripts j and v denote695

species j and water, respectively. D is the ion’s bulk diffusion coeffi-696

cient in water, and K j,d and K j,c account for the reduced ion mobilities697

inside the membrane pores [23]. These two terms correspond to698

diffusive and convective hindrance factors for species j, respectively.699

In addition, the two dependent variables used for modelling purposes700

are C and ψ , which correspond to the molar concentration and electric701

potential, respectively. Here, x ∈ [0,∆xe], is the direction orthogonal702

to the solution-membrane interface and spans the effective membrane703

thickness, ∆xe. Lastly, the remaining variables are F, z, R, and T ,704

which are Faraday’s constant, ion valence, the universal gas constant,705

and absolute temperature, respectively.706

707

The unhindered version of the extended Nernst–Planck PDE is708

linearized and used to account for ion transport in the feed-side709

boundary layer [60]. A mass transfer coefficient, k̄c, j is also intro-710

duced to account for boundary layer effects that arise from the spacers711

present in conventional NF systems [16]. The linearized equation is:712

J j =−k̄c, j
[
C j, f ,m −C j, f ,b

]
+ JvC j, f ,m − z jC j, f ,mD j

Fξ

RT
(B.2)

Here, subscripts f and p denote the feed and permeate streams, re-713

spectively. Additionally, as a result of the linearization, ξ serves as the714

linearized electric potential gradient. Depending on the system config-715

uration, various mass transfer correlations are imposed to quantify the716

mass transfer coefficient [60]. For all the reported work, we use the717

following mass transfer correction:718

k̄c, j = kc, j

[
ωw +

(
1+0.26ω

1.4
w

)]−1.7
(B.3)

where ωw ≜ Jv/kc, j. The modifications presented in the above719

equation account for the membrane suction effect [89].720

721

In the permeate stream, the common assumption is that the solution722

is dilute enough to not have sufficient concentration polarization to723

necessitate a separate PDE. As a result, only convective transport is724

assumed in the permeate stream, whereby the solute flux is a product725

of the permeate concentration, C j,p and the water flux, Jv.726

727

Since the differential equations governing transport across the728

membrane have been completely defined, we now require boundary729

conditions and electroneutrality constraints to fully close the system of730

equations [62]. The boundary conditions in the feed bulk correspond731

to those from the feed composition. At the solution-membrane732

interface on the feed side, steric, dielectric, and Donnan exclusion733

partition coefficients are introduced [90]. The product of these734

partition coefficients quantifies the discontinuous concentrations at735

the interface:736

γ j(0−)C j, f ,m(0−)
γ j(0+)C j, f ,m(0+)

= φ j,Sφ j,Diφ j,Do (B.4)

Here, 0− and 0+ correspond to the solution side and membrane side,737

respectively. A reciprocating expression is present on the permeate738

side. φ is a partition coefficient, with subscripts S, Di, and Do, relating739

to steric, dielectric, and Donnan exclusion, respectively. The complete740

formulation of the partition coefficients is described in previous work741

[14]. γ are the activity coefficients used to quantify the non-ideality742

of the mixture. Although the Davies model is typically used in743

DSPM–DE, we adopt the Pitzer–Kim model given its increased744

accuracy at elevated salinities [91, 92].745

746

Finally, the electroneutrality terms are prescribed in the feed747

boundary layer, membrane, and permeate [93]. Inside the membrane,748

the equation takes the following form:749

χd +
d

∑
j=1

z jC j = 0 (B.5)

where χd is the volumetric membrane charge density. The summation750

iterates from j = 1,2, . . . ,d, where the d corresponds to the total751

number of solutes in solution.752

753

At pH 7, zeta potential measurements of NF270 indicate that754

the membrane is negatively charged, meaning that χd takes on755

values below zero [94]. As the pH is reduced, making the surround-756

ing solution more acidic, the membrane goes past its iso-electric757

point, transitioning from a negatively-charged state to neutral to758

positively-charged. This is often performed as a pretreatment step759

to improve cation selectivities for metals recovery applications [14].760

The electroneutrality relations used in the feed stream and permeate761

stream are equivalent (barring the values of the concentrations used)762

and presented below:763

d

∑
j=1

z jC j = 0 (B.6)

We illustrate the discretized form of the membrane in Fig. B.5.764
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Figure B.5: Discretization of the membrane by δx in DSPM–DE. The bound-
ary layer forms on the feed side and is absent in the permeate. The concen-
tration discontinuity arising from a continuous chemical potential gradient is
evident in both feed and permeate streams. The x direction is also shown.

Appendix C. Salinity Distribution and Pre-training Ranges765

In Fig. C.6, we illustrate the distribution of ion concentrations766

present in the training, validation, and test datasets. The salinity767

ranges studied spanned 2–35 g/L with varying compositions in be-768

tween (studying concentrations above those of seawater could lead to769

low quality rejection predictions from the continuum model, and were770

hence not performed). We also report the concentration ranges over771

which pre-training was performed (denoted by solid lines in Fig. C.6).772
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Figure C.6: The distribution of ion concentrations present in the training, val-
idation, and test data (shaded regions), as well as the pre-training ranges used
(solid lines).

773

We explicitly selected our pre-training ranges to coincide with the774

measured data to prevent the model from having to significantly775

extrapolate at inference time. This approach can also be applied in776

other transfer learning settings, where the model can be pre-trained777

on moderate-accuracy continuum models based on the expected778

operating ranges [95]. Subsequently, the neural model can then be779

fine-tuned on limited data after moderate-quality embeddings are780

obtained from the pre-training stage [96].781

782

In the studies performed, larger pre-training ranges could have783

been used; however, we observed that majority of the computation784

time was consumed during the pre-training stage (the pre-training step785

took just under a week to conduct using our computational setup) i.e.,786

to improve the quality of the learned embeddings, minor increases in787

the pre-training range substantially exacerbated training runtime.788

Appendix D. Bayesian Optimization for Hyperparameter789

Tuning and Selection790

To determine an optimal set of hyperparameters, ensuring efficient791

learning and a set of feasible solutions, we use Bayesian optimization792

with BoTorch [97]. Hyperparameters considered were number of793

layers, hidden layer dimension, batch size, non-linear activation794

functions, optimizer choice, and learning rate [98].795

796

For the number of hidden layers, we experimented with ranges797

between 3–7. Despite the additional expressive power of deeper798

networks [99], rejection predictions worsened with larger models.799

With the hidden layer dimension, we noticed that a layer dimension of800

12 consistently provided stable performance. As a result, it was fixed801

during the fine-tuning process.802

803

When considering the batch size and learning rate, we observed804

that the model appeared to be quite sensitive to these parameters.805

Stable performance was noted for a batch size of eight and a learning806

rate scheduler was adopted to improve stability during fine-tuning807

[100]. Without the scheduler, obtaining stable convergence was a808

challenge. The scheduler halved the learning rate every 100 epochs809

starting with a learning rate of 1×10−3.810

811

For the non-linear activations, we chose tanh(·) non-linearities812

to ensure that concentrations were appropriately normalized prior813

to passage into the subsequent layer. This also prevented estimates814

from growing unboundedly and engendering vanishing gradients. The815

Adam optimizer was used across performed tests, with instabilities816

arising when stochastic gradient descent (SGD) was applied. The final817

set of converged hyperparameters is provided in Table D.2 below:

Table D.2: Finalized hyperparameters for training our proposed ODENet.

num. layers layer dim. batch. activation optim. lr (init.)

5 12 8 tanh(·) Adam 1×10−3

818

Appendix E. Deep Learning Architecture Details819

We adopt CNNs, ResNets, and U-Nets, for model benchmarking.820

Architecture details are summarized in Table E.3. Hyperparameter op-821

timization following Appendix D was also performed. Batch normal-822

ization was used in all models, with no padding and a stride of 1 for all823

convolutional layers. The tuple in the layer dimensions corresponds to824

the convolutional filters and fully-connected layers, respectively.

Table E.3: Deep learning architecture details. ‘fc’ is a fully-connected layer.

model num. layers layer dim. activation optim. lr (init.)

CNN 3 conv. 2 fc. 3, 12 tanh(·) Adam 1×10−3

ResNet 5 fc. 12 tanh(·) Adam 1×10−3

U-Net 2 conv. 3 fc. 3, 12 tanh(·) Adam 1×10−3

825
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Appendix F. Restricted Transport with Hindrance Factors826

In hindered transport theory, solute molecules are most frequently827

treated as particles, while the solvent is modelled like a continuum828

[61]. In addition, given the small length and velocity scales present,829

the Reynolds number is sufficiently small to render Stokes’ equation830

applicable [61]. Under these conditions, solute–solute interactions are831

assumed negligible and long-range interactions can also be ignored.832

833

Under the assumption that these conditions hold, restricted transport834

inside the membrane pores can be characterized using hindrance835

terms, often referred to as enhanced drag coefficients (drag coeffi-836

cients relative to those in an unbounded fluid). There exist hindrance837

coefficients for both convection and diffusion, K j,c and K j,d , respec-838

tively, which capture the reduced transport of solute j inside the839

membrane. The key quantity used to parameterize these coefficients is840

λ j, which corresponds to the ratio of species j’s hydrodynamic radius841

to the membrane pore radius, rp. In cylindrical pores, as the solute842

size decreases relative to the pore size, diffusion can be treated as843

if it were in the bulk solution i.e. K j,d → 1 for λ j → 0. Conversely,844

as the solute becomes of comparable size to the membrane pore,845

diffusive effects are seen to vanish i.e. K j,d → 0 for λ j → 1. In the846

convective case, although K j,c → 1 for λ j → 0, K j,c only tends to 0847

for λ j → 1 when the pores are cylindrical [61]. The convective hin-848

drance coefficient is also not necessarily a monotonic function of λ j849

due to the dominant effects of steric exclusion near the membrane wall.850

851

From studies conducted by Higdon and Muldowney (which852

characterize solute transport through porous membranes853

for 0 ≤ λ j ≤ 0.95), the following expression can be854

used to evaluate the diffusive hindrance coefficient [85]:855

856

K j,d ≜ Kd(λ j) =
1+(9/8)λ j lnλ j −1.56034λ j +0.528155λ 2

j +1.91521λ 3
j −2.81903λ 4

j +0.270788λ 5
j +1.10115λ 6

j −0.435933λ 7
j

(1−λ j)2
(F.1)

For larger solutes, where λ j > 0.95, Mavrovouniotis and Brenner ap-857

plied asymptotic matching to evaluate the diffusive hindrance coeffi-858

cient in the limit of λ j → 1 [86]. In this case, the diffusive hindrance859

coefficient takes the following form:860

Kd(λ j) = 0.984
(

1−λ j

λ j

)5/2
(F.2)

In the convective case, Ennis et al. used a Padé approximation in con-861

junction with lubrication results obtained from Bungay and Brenner862

to obtain the following expression for the convective hindrance coeffi-863

cient for all λ j ∈ [0,1] [101, 102]:864

K j,c ≜ Kc(λ j) =
1+3.867λ j −1.907λ 2

j −0.834λ 3
j

1+1.867λ j −0.741λ 2
j

(F.3)

Appendix G. Solution-Friction Model865

The solution-friction model was originally posed by Wang et al.866

as a means for capturing salt and water transport across RO and NF867

membranes [45]. Similarly to DSPM–DE, the model also adopts868

the extended Nernst–Planck equations to model ion transport across869

polyamide membranes; however, instead of using the convective and870

diffusive hindrance factors derived from perturbation theory, the model871

adopts one friction factor or hindrance function, K j, f per ionic species872

[84]. The modified version of the extended Nernst–Planck equations873

in its one-dimensional form is:874

J j =−D jK j, f
dC j

dx
+K j, f C jJv −

K j, f D jC jz jF

RT
dψ

dx
(G.1)

The friction function, K j, f , is a function of the interactions between875

the ion and fluid, as well as the ion and membrane [45]. Since these876

interactions have been quantified in prior work, K j, f is known quantity877

in the solution-friction model [103].878

879

In addition to the ion-solution and ion-membrane friction terms,880

there is also a regressed friction term between the fluid and membrane,881

f f ,m; however, this term only shows up in the pressure gradient882

evaluation, which we do not use in the proposed model. As a result, it883

does not contribute to the number of latent variables to be regressed.884

885

In addition to the modifications made to the governing differen-886

tial equation, the solution-friction model also alters the partitioning887

relationships at the solution-membrane interface [45]. Instead of888

treating the steric and Born exclusion mechanisms separately, the889

model prescribes a new partition coefficient, φ j,F, which characterizes890

their combined effect [84]. The new coefficient is motivated by the891

fact that steric and dielectric exclusion are coupled (yet without an892

understanding of what the parametric form between them looks like)893

[104, 105]. As a result, φ j,F replaces the product of the steric and894

Born partition coefficients used in DSPM–DE as shown below:895

φ j,Sφ j,Diφ j,Do
SF
= φ j,Fφ j,Do (G.2)

Furthermore, since it is challenging to measure information about896

the size (or state) of the ions inside the membrane after partial897

dehydration, the authors treat φ j,F as a latent variable to be regressed898

[45]. Consequently, for new membranes, ∆xe, χd , and rp, as well899

as φ j,F for each ion species j, are regressed. This yields a total of900

n + 3 learned parameters, for a solution comprising n ions (when901

the fluid-membrane term is neglected; if it is included, this would902

constitute n+4 parameters in total) [84]. We also note that in certain903

cases when ∆xe, χd , and rp have been previously regressed for a given904

membrane, they can be re-used, leaving n parameters to be regressed905

for new compositions on the same membrane. This was consistent906

with the approach taken by Wang et al. [45].907

908

The original solution-friction model also neglects the activity909

coefficients present in the concentration discontinuity at the solution-910

membrane interface [45, 84]. In the reported work, we include activity911

coefficients to be more accurate, while ensuring a fair comparison912

between DSPM–DE, extended DSPM–DE, and the solution-friction913

approach. As a result, on the feed side, the boundary condition takes914

the following form (with a similar expression present on the permeate915
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side):916

γ j(0−)C j, f ,m(0−)
γ j(0+)C j, f ,m(0+)

= φ j,Fφ j,Do (G.3)

The remaining details of the model are mostly in agreement with those917

in DSPM–DE (in some implementations, the handling of the feed side918

boundary layer, and/or the mass transfer correlations used, may vary).919

In the reported work, to maintain consistency between the two models,920

we adopt the same mass transfer correlations, and how the feed stream921

boundary layer is modelled [106].922

Appendix H. Learned Parameters and Hindrance Factors923

from Extended DSPM–DE924

In this section, we summarize the set of regressed parameters ob-925

tained when calibrating the extended DSPM–DE model on the salinity926

and composition studied in Section 3.3. The regression methodology927

used was in alignment with the approach detailed in our previous work928

[62]. In this framework, we apply simulated annealing for global op-929

timization in conjunction with the Nelder–Mead local search option to930

determine our set of regressed parameters. The membrane parameter931

values obtained are provided in Table H.4 below:

Table H.4: The set of regressed membrane parameters when using the extended
DSPM–DE model on the composition studied in Section 3.3.

rp [nm] ∆xe [µm] ζp [-] χd [mol·m−3]

0.37 2.38 80.82 −100.29

932

When using the extended DSPM–DE model, we also regress ion-933

specific convective and diffusive hindrance factors, as stated a priori.934

The values regressed are summarized in Table H.5 below:

Table H.5: The set of regressed convective and diffusive hindrance parameters
when calibrating the extended DSPM–DE model on the composition studied
in Section 3.3.

Na+ [-] Ca2+ [-] Mg2+ [-] Cl− [-] NO−
3 [-] SO2−

4 [-]

Kc 0.26 0.61 0.77 0.66 1.10 0.28
Kd 0.21 0.23 0.02 0.45 0.30 1.10

935
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Lottes, Qing Wang, Yi fan Chen, John R. Anderson, and Fei Sha. Neural1155

ideal large eddy simulation: Modeling turbulence with neural stochastic1156

differential equations, 2023. URL https://arxiv.org/abs/2306.1157

01174.1158

[48] Charalampos Tsitouras. Runge–Kutta pairs of order 5(4) satisfying1159

only the first column simplifying assumption. Computers & Mathemat-1160

ics with Applications, 62(2):770–775, 2011. ISSN 0898-1221. URL1161

https://doi.org/10.1016/j.camwa.2011.06.002.1162

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic1163

optimization, 2014. URL https://arxiv.org/abs/1412.6980.1164

[50] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,1165

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-1166
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