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Abstract
We study probability measures on partitions based on symmetric Grothendieck poly-
nomials. These deformations of Schur polynomials introduced in the K-theory of
Grassmannians share many common properties. Our Grothendieck measures are
analogs of the Schur measures on partitions introduced by Okounkov (Sel Math
7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability
weights of Schur andGrothendieckmeasures, we demonstrate that Grothendieckmea-
sures are not determinantal point processes. This question is related to the principal
minor assignment problem in algebraic geometry, and we employ a determinantal test
first obtained by Nanson in 1897 for the 4× 4 problem. We also propose a procedure
for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which
appear new for n ≥ 5. By placing the Grothendieck measures into a new framework
of tilted biorthogonal ensembles generalizing a rich class of determinantal processes
introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck
random partitions as a cross-section of a Schur process, a determinantal process in two
dimensions. This identification expresses the correlation functions of Grothendieck
measures through sums of Fredholm determinants, which are not immediately suit-
able for asymptotic analysis. A more direct approach allows us to obtain a limit shape
result for the Grothendieck random partitions. The limit shape curve is not particularly
explicit as it arises as a cross-section of the limit shape surface for the Schur process.
The gradient of this surface is expressed through the argument of a complex root of a
cubic equation.
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1 Introduction

1.1 Random partitions from symmetric functions

The study of random integer partitions involving probability weights expressed
through symmetric polynomials has been a long-standing topic in integrable probabil-
ity and related fields [13, 22]. Asymptotic analysis of various measures on partitions
produced law of large numbers and asymptotic fluctuation results in many stochastic
models describing complex real-world phenomena, including longest increasing sub-
sequences [9, 57, 83], interacting particle systems [46], random growth models [10],
random polymer models [30, 67, 75], random matrices [12], and geometry [69, 72].

One of the earliest studied ensembles of random partitions based on symmetric
functions is the Schur measure introduced in [70]. The Schur measure probability
weights have the form

Prob(λ) := 1

Z

det[xλi+N−i
j ]Ni, j=1

∏
1≤i< j≤N (xi − x j )

︸ ︷︷ ︸
sλ(x1,...,xN )

det[yλi+N−i
j ]Ni, j=1

∏
1≤i< j≤N (yi − y j )

︸ ︷︷ ︸
sλ(y1,...,yN )

. (1.1)

Here λ = (λ1 ≥ · · · ≥ λN ≥ 0) are integer partitions which we think of as our
random objects, xi , y j ≥ 0 with xi y j < 1 are parameters of the measure. The quanti-
ties sλ(x1, . . . , xN ) and sλ(y1, . . . , yN ) in (1.1) are the well-known Schur symmetric
polynomials in the variables x1, . . . , xN and y1, . . . , yN , respectively, indexed by the
same partition λ. The probability normalizing constant Z =∏N

i, j=1(1 − xi y j )−1 has
a product form thanks to the Cauchy summation identity for Schur polynomials.

The Schur measures are particularly tractable thanks to their determinantal struc-
ture, which allows expressing correlation functions

ρ(a1, . . . , am) := Prob

(

the random set

{λi + N − i} ⊂ Z≥0 contains each a1, . . . , am

)

(1.2)

of an arbitrary orderm asm×m determinants det[K (ai , a j )]mi, j=1 of a fixed correlation
kernel K (a, b), where a, b ∈ Z≥0. The kernel has a double contour integral form,
readily amenable to asymptotic analysis by steepest descent.
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Over the past two decades, Schur measures have been generalized to other families
of symmetric polynomials, including Macdonald polynomials [7] and their degenera-
tions such as Jack [12], Hall–Littlewood [15, 23], and q-Whittaker polynomials [22,
62]. More recently, these efforts have extended to symmetric rational functions (like
spin q-Whittaker and spin Hall–Littlewood functions) arising as partition functions
of integrable (in the sense of the Yang–Baxter equation) vertex models [3, 20, 24,
28]. The vertex model approach also naturally included distinguished nonsymmetric
polynomials powering the structure of multispecies stochastic systems [4, 29].

While these more general symmetric polynomials and rational functions share
many properties with the Schur polynomials, the technique of determinantal point pro-
cesses does not straightforwardly extend. This has led to several interesting alternative
approaches, including eigenoperators [7] and duality [8], which brought multiple con-
tour integral formulas for expectations of observables. Recently [44] presented a direct
mapping between q-Whittaker and cylindric Schur measures [17] preserving specific
observables. Since the latter measures are determinantal, this allows for employing
determinantal process methods for the asymptotic analysis of these observables.

1.2 Grothendieckmeasures on partitions

Our primary focus is on Grothendieck measures on partitions whose probability
weights are expressed through the Grothendieck symmetric polynomials:

Prob(λ) := 1

Z ′
det
[
x

λ j+N− j
i (1 − βxi ) j−1

]N
i, j=1

∏
1≤i< j≤n(xi − x j )

︸ ︷︷ ︸
Gλ(x1,...,xN )

det
[
y
λ j+N− j
i (1 − β y−1

i )N− j
]N
i, j=1

∏
1≤i< j≤n(yi − y j )

︸ ︷︷ ︸
Gλ(y1,...,yN )

.

(1.3)

Here xi , y j , and β are parameters such that xi , y j ≥ 0, xi y j < 1, and
β ≤ min1≤i≤N (x−1

i , yi ). The latter condition implies that the probability weights
are nonnegative. The Grothendieck symmetric polynomials Gλ(x1, . . . , xN ) and
Gλ(y1, . . . , yN ) are one-parameter deformations of the Schur polynomials appear-
ing in the K-theory of Grassmannians. The normalizing constant is Z ′ = ∏N

i=1(1 −
xiβ)N−1∏N

i, j=1(1− xi y j )−1. When β = 0, the Grothendieck measure (1.3) reduces
to the Schur measure (1.1). We refer to [27, 31, 35, 58, 84], and [41] for details,
properties, and various multiparameter generalizations of Grothendieck polynomials.
All methods of the present paper apply in a setting when there are multiple β j ’s (see
the polynomials Gλ and Gλ in (3.3) in the text). However, in the Introduction and
asymptotic analysis, we restrict to the case of the homogeneous β j ’s.

In this paper, we obtain two main results for the Grothendieck measures:

• We show that despite the determinant representation of their probability weights,
Grothendieck measures do not possess a determinantal structure of correlations.
This observation may appear unexpected given the similarity of Grothendieck
probability weights compared to the Schur measures.
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• We establish a link between Grothendieck random partitions and Schur processes,
the latter being determinantal point processes on a two-dimensional lattice. We
perform this connection within an extended framework of tilted biorthogonal
ensembles, which we introduce. This connection provides an essential structure
for the Grothendieck measures. It enables us to derive formulas expressing their
correlations through sums of Fredholm determinants and prove limit shape results.

We formulate these results in the remainder of the Introduction.

Remark 1.1 It was observed in [20, Sections 8.3 and 8.4] that the q = 0 specialization
of spin Hall–Littlewood polynomials produces determinantal partition functions of
vertex models which resemble the Grothendieck polynomials Gλ in (1.3). Most of
the machinery for computing expectations of observables of the form qheight breaks
down for q = 0, so it is not immediately clear whether vertex models are applicable
in the analysis of Grothendieck measures. Moreover, limit shape results are not yet
established for random partitions with spin Hall–Littlewood weights or their q = 0
degenerations (see, however, [5] for limit shapes of Macdonald random partitions in
another regime, as q, t → 1).

1.3 Absence of determinantal structure

Theorem 1.2 For certain fixed N and values of parameters xi , y j , and β, the cor-
relations (1.2) of the Grothendieck measures do not possess a determinantal form.
That is, there does not exist a function K : Z

2≥0 → C for which ρ(a1, . . . , am) =
det[K (ai , a j )]mi, j=1 for all m and all pairwise distinct a1, . . . , am ∈ Z≥0.

We show the nonexistence of a correlation kernel K by constructing an explicit
polynomial in the correlation functions ρ(a1, . . . , am), which vanishes identically
if the correlation functions have a determinantal form (we call such polynomials
determinantal tests). We then show that for a specific choice of parameters, N =
2, xi = y j = 1/2, β = −1, the determinantal test does not vanish. While for
Theorem 1.2, we only need a specific choice of parameters, we expect the absence of
determinantal structure to hold for generic parameters in the Grothendieck measures.

The problem of finding a kernel representing all correlations ρ(a1, . . . , am) in a
determinantal form is the same as thewell-known principal minor assignment problem
in algebraic geometry. This problem seeks an n × n matrix whose all principal (diag-
onal) minors are given, but such an underlying matrix does not exist for all choices of
(prospective) principal minors. Therefore, one has to find relations between principal
minors. These relations are polynomial, and each may be used as a determinantal test.
The variety of n × n principal minors becomes complicated already for n = 4 (it is
minimally generated by 65 polynomials of degree 12), but for Theorem 1.2, it suffices
to show that one generating polynomial does not vanish. In fact, the determinantal test
we employ in our proof was written down by Nanson in 1897 for 4× 4 matrices [66].
In Sect. 4.2, we discuss the rich history of the principal minor assignment problem and
several instances of its rediscovery within the study of determinantal point processes.
In Sects. 4.3 and 4.4, we present a self-contained derivation of the Nanson’s determi-
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nantal test and suggest a generalization of the Nanson’s test to matrices of arbitrary
size. This generalization appears new.

1.4 Tilted biorthogonal ensembles

To connect Grothendieck measures to Schur processes, which are determinantal pro-
cesses on the two-dimensional integer lattice, we consider a more general framework
of tilted biorthogonal ensembles, which is inspired by a talk of Kenyon [48]. The
ordinary biorthogonal ensembles introduced in [21] are measures on partitions with
probability weights of the form

Prob(λ) = 1

Z
det
[
�i (� j )

]N
i, j=1 det

[
�i (� j )

]N
i, j=1, � j := λ j + N − j, (1.4)

where �i , � j are given functions, and Z is the normalizing constant. Biorthogonal
ensembles are determinantal processes onZ≥0 in the same sense as theSchurmeasures.
Moreover, when �i (k) = xki , � j (k) = ykj , the weights (1.4) coincide with (1.1).

We “tilt” the biorthogonal ensemble (1.4) by inserting j-dependent difference oper-
ators into the determinants.1 When �i (k) = xki , � j (k) = ykj , the action of these

operators results in the factors (1 − βxi ) j−1 and (1 − β y−1
i )N− j in (1.3). In general,

we apply the operator (D) j−1 to �i (� j ), where Df (k) = f (k) − β f (k + 1), and
(D†)N− j to �i (� j ), where D† f (k) = f (k) − β f (k − 1)1k≥1. Here and throughout
the paper, 1A stands for the indicator of an event or a condition A. We arrive at the
following measure on partitions:

Prob(λ) = 1

Z ′ det
[
(D) j−1�i (� j )

]N
i, j=1 det

[
(D†)N− j�i (� j )

]N
i, j=1,

� j = λ j + N − j . (1.5)

For details, we refer to Sect. 2.1 in the text.
The action of D is the same as the multiplication by the matrix Tβ(k, l) := 1l=k −

β 1l=k−1, and D† is the multiplication by Tβ on the opposite side. Using this, we
identify (Theorem 2.3) the joint distribution of (�1 > · · · > �N ) under the tilted
biorthogonal ensemblewith that of the points (x11 > · · · > xNN ) in the two-dimensional
ensemble {xmj : 1 ≤ m, j ≤ N } which has probability weights proportional to

det
[
�i (x

1
j )
]N

i, j=1

(N−1∏

m=1

det
[
Tβ(xmi , xm+1

j )
]N

i, j=1

)

det
[
�i (x

N
j )
]N

i, j=1
. (1.6)

The two-dimensional process has probability weights given by products of determi-
nants. Thus, it is determinantal thanks to the well-known Eynard–Mehta theorem [26,
34], see also [18, Theorem 4.2].

1 Recall that in the Introduction, we only deal with the homogeneous beta parameters β j ≡ β, see Sect. 2.1
for the general case.
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The above identification allows us to write down certain Fredholm determinantal
formulas for marginal distributions and correlation functions of tilted biorthogonal
ensembles; see Sect. 2.5 and Proposition 2.7 in particular.

When �i (k) = xki and � j (k) = ykj for all i, j , the two-dimensional determinantal
process (1.6) becomes the Schur processwhose correlation kernel has a double contour
integral form [73]. The particular specializations of the Schur process parameters are
given in Sect. 3.3 in the text. Our Schur process has nonnegative probability weights
only for β < 0, and this is the case we restrict to in our asymptotic analysis (see
Sect. 1.5). The case β = 0 is covered by standard results on Schur measures. It is
plausible that our results on the Grothendieck limit shape still apply to values of
β > 0, even if probabilities in the two-dimensional process are negative, as long as
the Grothendieck probability weights (1.3) remain nonnegative. See Conjecture 5.10
for details.

Remark 1.3 (Application to the five-vertex model) In [48], Kenyon expressed certain
distributions arising in the five-vertex model (see also [32]) as tilted biorthogonal
ensembles. It would be very interesting to apply our results to the asymptotic analysis
of the five-vertex model, but there are three clear obstacles. First, the two-dimensional
process for the five-vertex model is not the Schur process but rather a multiparameter
analog of the more complicated model of lozenge tilings of the hexagon (see, e.g.,
[37, 77] for the determinantal structure of the original tilings of the hexagon). One
does not have as elegant expressions for the correlation kernel in the case of multi-
ple parameters. Second, the probability weights in the two-dimensional process are
complex-valued. This makes probabilistic identification of limit shapes problematic;
see also the discussion in Sect. 5.4.4. Third, for the five-vertex model, the multiple
parameters xi , y j are solutions to the Bethe equations. This makes a potential asymp-
totic analysis even more intricate (see, however, [78] and [14] for a related analysis of
TASEP on the ring).

1.5 Limit shape

Consider Grothendieck random partitions (1.3) with homogeneous parameters xi ≡
x > 0, y j ≡ y > 0, such that xy < 1 and β < 0. Let us draw Young diagrams of
our Grothendieck random partitions in the (u, v) coordinate system rotated by 45◦,
see Fig. 1, left. Each partition is encoded by a piecewise linear function v = WN (u)

with derivatives±1 and integer maxima and minima. Since our partitions have at most
N parts, we almost surely have WN (u) ≥ |u| for all u, WN (u) = |u| if |u| is large
enough, and WN (u) ≤ u + 2N if u ≥ −N .

Theorem 1.4 Fix the parameters x, y, β as above. There exists a continuous, piecewise
differentiable, 1-Lipschitz function W(u) = W(u | x, y, β) with W(u) ≥ |u| and
W(u) = |u| if |u| is large enough, such that

lim
N→+∞

WN (uN )

N
= W(u), u ∈ R,

where the convergence is pointwise in probability. See Fig.1, right, for an illustration.
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Fig. 1 Left: The Young diagram for λ = (6, 6, 5, 3, 1, 1) in the coordinate system rotated by 45◦. The
diagonal line v = u + 2N represents the upper boundary of the shape of λ. Right: An example of a limit
shape W(u) of the Grothendieck random partition for x = 1/3, y = 1/5, and β = −25. We added a
horizontal line to highlight the staircase frozen facet where the limit shape W(u) is horizontal. An exact
sample of a random partition corresponding to the limit shape on the right is given in Fig. 9, right (see also
Sect. 5.5 for a discussion of how to sample Grothendieck random partitions)

The first limit shape result for random partitions (with Plancherel measure, which is
a particular case of Schur measures) was obtained by Logan–Shepp [57] and Vershik–
Kerov [83]. We do not have an analytic formula for our shapesW(u) in contrast to this
classical VKLS shape. Let us briefly describe howW(u) is related to the limit surface
of the Schur process. We used this connection to numerically plot all our examples;
see Sect. 5.4 for details and more discussion.

Let {xmj : 1 ≤ m, j ≤ N } be distributed according to the Schur process as in
(1.6). Define the height function HN (a, t) := #{ j : xtj ≥ a}, where (a, t) ∈ Z≥0 ×
{1, . . . , N }. Using the standard steepest descent analysis of the correlation kernel of the
Schur process (dating back to [73], see also [71, Section 3]), one can show that HN has
a limit shape H(ξ, τ ) = lim

N→∞ N−1 HN (�ξN�, �τN�), where (ξ, τ ) ∈ R≥0 × [0, 1].
The gradient of H is expressed through arguments of the complex root zc = zc(ξ, τ )

of a certain cubic equation depending on (ξ, τ ) and our parameters (x, y, β), see (5.7)
and (5.9) for the formulas.

The identification between Grothendieck random partitions and the slice (x11 >

· · · > xNN ) of the Schur process (see Sect. 1.4) helps to express the Grothendieck limit
shapeW(u) through H(ξ, τ ). Namely, let L(τ ) be an auxiliary function defined from
the implicit equation

H (L(τ ), τ ) = τ for all τ ∈ [0, 1]. (1.7)

In otherwords, the three-dimensional parametric curve (L(τ ), τ, τ ) is the cross-section
of the Schur process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η) coordinates
by the plane η = τ . From the Schur process limit shape result, we have L(τ ) =
1 − τ + lim

N→∞ N−1λ�Nτ� (the shift by 1 − τ comes from � j = λ j + N − j , see

(1.5)). Then the Grothendieck limit shape curve (u,W(u)) as in Fig. 1, right, has the
following parametrization through L(τ ):

u = L(τ ) − 1, W = L(τ ) − 1 + 2τ.
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The functions L(τ ) and W(u) satisfy differential equations involving the root
zc(ξ, τ ), see (5.17)–(5.18). However, the implicit equation (1.7) turns out to be more
convenient for plotting the shapes.

The flat, “frozen”, facets of the Schur limit shape surface (where the gradient is at a
vertex of its allowed triangle, see (5.5)) lead to the three possible flat facets ofW(u),
where W′(u) is equal to −1, 0, or 1, respectively. The derivatives ±1 occur when
W(u) = |u| outside of the curved part of the limit shape. The facetW′(u) = 0 always
arises for sufficiently negative β (Lemma 5.6). In this facet, the random partition
develops the deterministic frozen staircase behavior, that is, λi = λi+1 + 1 for all i in
some interval of order N . See the horizontal part of the limit shape in Fig. 1, right.

Besides limit shapes, the study of random partitions often involves fluctuations in
various regimes (at the edge, in the bulk, and global Gaussian fluctuations). It would
be interesting to obtain fluctuation results for Grothendieck random partitions in these
regimes and compare them to the classical case of the Plancherel random partitions [9,
16, 45, 47]. The tilted nature of the cross-section leading to Grothendieck measures
seems to be affecting all Grothendieck fluctuations except the edge ones. Indeed, for
any fixed k, (λ1, . . . , λk) have the same joint distribution as (μ1

1, . . . , μ
k
k), where the

partitions μ1, . . . , μk for a Schur process. Moreover, we have |μ j
j − μ1

j | ≤ j for
all j (see Sect. 5.3.3 for details). Therefore, we expect that the joint distribution of
(λ j − cN )/(σN 1/3), j = 1, . . . , k, should converge to the Airy2 point process, just
like for the Plancherel measure. We also expect that the bulk fluctuations are not given
by the same discrete sine process as in the Plancherel case. It would be interesting to
compute the correlations of the Gaussian limit, and compare them to the Plancherel
case.

1.6 Outline

In Sect. 2, we introduce the framework of tilted biorthogonal ensembles and show that
they are cross-sections of two-dimensional determinantal processes. The correlation
kernel of the latter is given by the Eynard–Mehta theorem. In Sect. 3, we specialize
tilted biorthogonal ensembles to Grothendieck measures on partitions and write down
the correlation kernel of the corresponding two-dimensional Schur process in a double
contour integral form (specializing the results of [73]). In Sect. 4, we prove Theorem
1.2 that Grothendieck measures are not determinantal point processes. Section4.2
provides a brief historical account of the relation between the determinantal struc-
ture of probability measures and the principal minor assignment problem. Finally, in
Sect. 5, we establish limit shape results for Schur processes and Grothendieck random
partitions and illustrate these results by several plots and exact sampling simulations.

2 Tilted biorthogonal ensembles

In this section, we present the main framework for measures on particle configurations
in Z≥0 given by a certain product of determinants, and discuss their characteristics.
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2.1 Definition of the ensemble

Fix N , and let �k , �k , k = 1, . . . , N , be arbitrary complex-valued functions on Z≥0.
Fix additional complex parameters β1, β2, . . . , βN−1. Let us define the following
operators acting on finitely supported functions on Z≥0:

D(r)
k f (k) := f (k) − βr f (k + 1), D(r)†

k f (k) := f (k) − βr f (k − 1)1k≥1,

(2.1)

where r = 1, . . . , N − 1. These operators are conjugate to each other with respect to
the bilinear form

∑∞
k=0 f (k)g(k) on finitely supported functions on Z≥0. Denote

D[a,b)
� := D(a)

� D(a+1)
� . . . D(b−1)

� , (2.2)

and similarly for other types of segments and the conjugate operators D[a,b)†
� . Clearly,

D[1,1)
� is the identity operator.
Assign the following weights to N -point configurations on Z≥0:

W 
β(X) := det
[
D[1, j)

� j
�i (� j )

]N
i, j=1 det

[
D[ j,N )†

� j
�i (� j )

]N
i, j=1, (2.3)

where X = (�1 > �2 > · · · > �N ≥ 0). If the number of points in X is not N , then set
W 
β(X) = 0. Assume that the series for the partition function for the weights (2.3),

Z 
β :=
∑

X=(�1>�2>···>�N≥0)

W 
β(X)

converges and is nonzero.2

Definition 2.1 The normalized weights

M 
β(X) = W 
β(X)/Z 
β (2.4)

define a probabilitymeasure on N -particle configurations onZ≥0.We call thismeasure
the 
β-tilted N -point biorthogonal ensemble.

The term “probability measure” here refers to the fact that the sum of the normal-
ized weights is equal to 1. The weights are generally complex-valued but become
nonnegative real numbers in the specializations we discuss later.

Whenβ j ≡ 0, the operators (2.1) become identity operators, and the tilted biorthog-
onal ensemble turns into the usual biorthogonal ensemble with probability weights
proportional to

det
[
�i (� j )

]N
i, j=1 det

[
�i (� j )

]N
i, j=1. (2.5)

2 Throughout this section (which discusses abstract ensembles) we assume that all similar infinite series
converge.
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Biorthogonal ensembles were introduced and studied in [21], see also [18, Section 4]
for a summary of formulas.

2.2 Normalization

Let us compute the normalizing constant Z 
β :

Proposition 2.2 We have

Z 
β = det
[
Gi j ( 
β)

]N
i, j=1, (2.6)

where

Gi j ( 
β) :=
∞∑

k=0

� j (k)D
[1,N )
k �i (k). (2.7)

Proof Observe that for any 0 ≤ a ≤ b, we have the following summation by parts:

b∑

k=a

f (k)D(r)†
k g(k) −

b∑

k=a

g(k)D(r)
k f (k) = βr g(b) f (b + 1) − βr f (a)g(a − 1)1a≥1.

(2.8)

We have

Z 
β =
∑

�1>�2>···>�N≥0

(
D[1,1)

�1
. . . D[1,N )

�N
det
[
�i (� j )

]N
i, j=1

)

(
D[N ,N )†

�N
. . . D[1,N )†

�1
det
[
�i (� j )

]N
i, j=1

)

=
∑

�1>�2>···>�N≥0

det
[
�i (� j )

]N
i, j=1 D

[1,N )
�1

D[1,N )
�2

. . . D[1,N )
�N

det
[
�i (� j )

]N
i, j=1,

where we moved each of the operators D[ j,N )†
� j

to the other function and observed that
the presence of the determinants eliminates the boundary terms arising from (2.8).
Writing

D[1,N )
�1

D[1,N )
�2

. . . D[1,N )
�N

det
[
�i (� j )

]N
i, j=1 = det

[
D[1,N )
k �i (k)

∣
∣
∣
k=� j

]N

i, j=1
,

we can use the Cauchy–Binet summation to replace the sum of products of two deter-
minants over �1 > �2 > · · · > �N ≥ 0 by the determinant of single sums. ��
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2.3 Two-dimensional process

We will show in Sect. 4 that a 
β-tilted N -point biorthogonal ensemble on Z≥0 is not
necessarily a determinantal point process, even though its probability weights are
products of determinants.

On the other hand, each 
β-tilted biorthogonal ensemble can be embedded into a
two-dimensional determinantal point process on X := Z≥0 × {1, . . . , N }. A similar
construction for TASEP first appeared in [11] (and was later exploited to construct the
KPZ fixed point [63]). The embedding which we describe below in this subsection is
suggested in the talk by Kenyon [48].

This process lives on particle configurations X2d = {xmj : 1 ≤ m, j ≤ N } satisfy-
ing

xmN < xmN−1 < · · · < xm2 < xm1 , 1 ≤ m ≤ N . (2.9)

Denote |xm | := xm1 + · · · + xmN . Let

Tβ(x, y) := 1y=x − β 1y=x−1, x, y ∈ Z≥0.

One readily sees that

det[Tβ(xmi , xm+1
j )]Ni, j=1 = (−β)|xm |−|xm+1|

N∏

j=1

1xmj −xm+1
j =0 or 1. (2.10)

Using the given notation, assign (possibly complex) weights to configurations X2d :

W2d

β (X2d) := det

[
�i (x

1
j )
]N

i, j=1

(N−1∏

m=1

det
[
Tβm (xmi , xm+1

j )
]N

i, j=1

)

det
[
�i (x

N
j )
]N

i, j=1
.

(2.11)

In the proof of the next statement and throughout the rest of the section, we
use the notation “∗” for discrete convolution of functions on Z≥0, and assume that
all series thus arising converge absolutely. For example, we write ( f ∗ h)(x) =∑∞

y=0 f (x, y)h(y) for functions f (x, y) and h(x). See also [18, Section 4] for further
examples of this notation.

Theorem 2.3 The normalizing constant of the two-dimensional distribution

Z2d

β :=

∑

X2d

W2d

β (X2d)

is equal to the one-dimensional normalizing constant Z 
β given by (2.6)–(2.7). More-

over, under the normalized two-dimensional probability distribution M2d

β (X2d) :=
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W2d

β (X2d)/Z 
β , the marginal distribution of x11 > x22 > · · · > xNN coincides with that

of �1 > �2 > · · · �N under M 
β .

For complex-valued probabilities, the coincidence of marginal distributions means
that for any finitely supported function f in N variables, we have

∑

X2d={xmj }
f (x11 , . . . , x

N
N )M2d


β (X2d) =
∑

X=(�1>···>�N≥0)

f (�1, . . . , �N )M 
β(X).

(2.12)

Proof of Theorem 2.3 By the Cauchy–Binet summation, we have

Z2d

β = det

[
�i ∗ Tβ1 ∗ . . . ∗ TβN−1 ∗ � j

]N
i, j=1.

Next, for any function h(y) on Z≥0 we have (h ∗ Tβr )(y) = h(y) − βr h(y + 1) =
D(r)

y h(y). By (2.7), this implies the first claim about the normalizing constant.
The second claim essentially follows from the LGV (Lindstrom–Gessel–Viennot)

lemma, which expresses the partition function of nonintersecting path collections in
a determinantal form [40, 54]. By the first claim, it suffices to prove (2.12) for unnor-
malized weightsW2d


β andW 
β . Next, the weightsW
2d

β (X2d) (2.11) andW 
β(X) (2.3)

are multilinear in (�1, . . . , �N ;�1, . . . , �N ), so it suffices to prove the summation
identity in the case of delta functions

�i (x) = 1x=ki , �i (x) = 1x=k′
i
, i = 1, . . . , N ,

where k1 > · · · > kN ≥ 0 and k′
1 > · · · > k′

N ≥ 0 are arbitrary but fixed. With
this choice of �i , �i , the distribution of X2d is the same as the distribution of the
nonintersecting path ensemble on the graph shown in Fig. 2, where the paths connect
k1, . . . , kN to k′

1, . . . , k
′
N .

Then the marginal distribution of �1, . . . , �N can be expressed through the prod-
uct of two determinants: One for the nonintersecting paths connecting k1, . . . , kN
to �1, . . . , �N , and the other one for the nonintersecting paths from �1, . . . , �N to
k′
1, . . . , k

′
N . These determinants are immediately identified with the two determinants

in (2.3), and so we are done. ��

2.4 Determinantal kernel

The two-dimensional ensemble X2d defined in Sect. 2.3 is a determinantal point
process. This means that for any p ≥ 1 and pairwise distinct points (yi , ti ) ∈
Z≥0 × {1, . . . , N }, i = 1, . . . , p, we have

∑

X2d : X2d cointains each
(yi ,ti ), i=1,...,p

M2d

β (X2d) = det

[
K 2d


β (yi , ti ; y j , t j )
]p
i, j=1. (2.13)
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Fig. 2 The directed graph with
vertices Z≥0 × {1, . . . , N } and
edges which can be vertical
(with weight 1) or diagonal
(with weight −βm ,
m = 1, . . . , N ). We consider an
ensemble of N nonintersecting
paths connecting k1, . . . , kN to
k′
1, . . . , k

′
N . The particles x

m
j

encode the intersections of the
paths with the m-th horizontal
line, m = 1, . . . , N

Here K 2d

β (x, t; y, s) is a function called the correlation kernel. Both the determinantal

structure and an expression for the correlation kernel follow from the well-known
Eynard–Mehta theorem [26, 34], see also [18, Theorem 4.2].

Proposition 2.4 The correlation kernel (2.13) for the point process X2d has the form

K 2d

β (x, t; y, s) = −1t>s

(
Tβs ∗ . . . ∗ Tβt−1

)
(y, x)

+
N∑

i, j=1

G−1
j i ( 
β) · D[1,t)

x �i (x) · D[s,N )†
y � j (y). (2.14)

Proof By [18, Theorem 4.2], the correlation kernel has the form

K 2d

β (x, t; y, s) = −1t>s

(
Tβs ∗ Tβs+1 ∗ . . . ∗ Tβt−1

)
(y, x)

+
N∑

i, j=1

G−1
j i ( 
β) · (�i ∗ Tβ1 ∗ . . . ∗ Tβt−1

)
(x) ·

(
Tβs ∗ . . . ∗ TβN−1 ∗ � j

)
(y).

As in the proof of Theorem 2.3, we can rewrite the convolutions with the Tβ ’s as
applications of the difference operators (2.1):

(
�i ∗ Tβ1 ∗ . . . ∗ Tβt−1

)
(x) = D[1,t)

x �i (x);
(
Tβs ∗ . . . ∗ TβN−1 ∗ � j

)
(y) = D[s,N )†

y � j (y).

This completes the proof. ��
Note that the variables t, s ∈ {1, . . . , N } in the correlation kernel (2.14) correspond

to the vertical coordinates in Fig. 2 which increases from top to bottom. We use this
convention throughout the rest of the paper.
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Remark 2.5 From the fact that x j
j = � j , j = 1, . . . , N , as joint distributions (where the

x j
j ’s come fromM2d


β and the � j ’s come fromM 
β ), one may think that the probabilities

M 
β are expressed through the correlation kernel K 2d

β as

M 
β(�1, . . . , �N ) = det
[
K 2d


β (�i , i; � j , j)
]N
i, j=1, �1 > · · · > �N . (2.15)

However, identity (2.15) is generally false when �i+1 = �i + 1 for some i . Indeed,
this is because the correlation event in the right-hand side of (2.15) includes more
configurations of nonintersecting paths (as in Fig. 2) than just the ones with x j

j = � j

for all j = 1, . . . , N . One can check that if � j − � j+1 ≥ 2 for all j = 1, . . . , N , then
identity (2.15) holds.

2.5 Marginals and correlations of the tilted biorthogonal ensemble

Fix k ≥ 1 and I = {i1 < · · · < ik} ⊂ {1, . . . , N }. Let aI = (ai1 > · · · > aik ≥ 0)
be a fixed integer vector, and also let XI = (�i1 > · · · > �ik ≥ 0) be a random
vector, which is a marginal of the 
β-tilted biorthogonal ensemble M 
β(X) defined by
(2.3)–(2.4). Using Theorem 2.3 and Proposition 2.4, we can express the probability
M 
β(XI = aI) through the correlation kernel K 2d


β in a polynomial way.

We use the following statement adapted to our space X = Z≥0 × {1, . . . , N }:
Lemma 2.6 ([79, Theorem 2]) Fix a finite number of disjoint subsets of X and denote
them by B1, . . . , Bp. Let B = B1 ∪ · · · ∪ Bp. For a determinantal point process on X
with kernel K , let #Bi be the random number of points of the process which belong to
Bi . Then we have the following identity of generating functions in z1, . . . , z p:

E
(
z
#B1
1 . . . z

#Bp
p
) = det

(
1 − χB

p∑

i=1

(1 − zi ) · K · χBi

)
, (2.16)

where 1 is the identity operator, in the right-hand side there is a Fredholm determinant,
and χB , χBi

are the indicator functions of these subsets.

In our applications, the sets Bi will be finite, and thus the Fredholm determinants in
(2.16) are simply finite-dimensional determinants of the corresponding blockmatrices.
In general, the right-hand side of (2.16) is an infinite series, see, for example, [79,
Remark 3].

To illustrate the general formula of Proposition 2.7, let us first look at the case
k = 1. For fixed a and i , the event �i = a is equivalent to #Bi (a) = N − i , #Ci (a) = 1,
where

Bi (a) := {0, 1, . . . , a − 1} × {i} , Ci (a) := {a} × {i} ,

Fi (a) := Bi (a) ∪ Ci (a).

(2.17)
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Indeed, for �i = xii = a, we need to have exactly N − i points of the configuration
X2d to the left of a, and exactly one point at a. Thus, we can write by Lemma 2.6:

M 
β(�i = a) = [zN−iw] det
(
1 − (1 − z)χFi (a)

K 2d

β χBi (a)

− (1 − w)χFi (a)
K 2d


β χCi (a)

)
,

(2.18)

where [zN−iw] is the operator of taking the coefficient of a polynomial by zN−iw.
The matrix in the right-hand side (2.18) has dimensions (a + 1) × (a + 1) and looks
as

⎡

⎢
⎢
⎢
⎢
⎣

1 + (z − 1)K (0; 0) (z − 1)K (0; 1) . . . (w − 1)K (0; a)

(z − 1)K (1; 0) 1 + (z − 1)K (1; 1) . . . (w − 1)K (1; a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(z − 1)K (a − 1; 0) (z − 1)K (a − 1; 1) . . . (w − 1)K (a − 1; a)

(z − 1)K (a; 0) (z − 1)K (a; 1) . . . 1 + (w − 1)K (a; a)

⎤

⎥
⎥
⎥
⎥
⎦

,

where we abbreviated K (x; y) = K 2d

β (x, i; y, i).

Finally, to get the correlation function, we simply have to sum (2.18) over all
i = 1, . . . , N :

M 
β(X contains a) =
N∑

i=1

[zN−iw] det
(
1 − (1 − z)χFi (a)

K 2d

β χBi (a)

+(1 − w)χFi (a)
K 2d


β χCi (a)

)
. (2.19)

Notice that this is a polynomial in the entries K 2d

β (x, t; y, s) of the correlation kernel

(2.14).
The next statement for general k follows from an argument for several points which

is analogous to the above computations:

Proposition 2.7 For arbitrary k ≥ 1 and I = {i1 < · · · < ik}, the marginal distribu-
tion of XI under M 
β has the form

M 
β(XI = aI) = [zN−i1
1 . . . zN−ik

k w1 . . . wk] det
(

1 − χFI(aI)

k∑

p=1

(1 − z p)K
2d

β χBi p (ai p )

+χFI(aI)

k∑

p=1

(1 − wp)K
2d

β χCi p (ai p )

)

. (2.20)

Here the square matrix has dimensions
∑k

p=1(aip + 1), the union of all the sets is

denoted by FI(aI) :=⋃k
p=1

(
Bip (aip ) ∪ Cip (aip )

)
, and the determinant is a polyno-

mial in the entries of the correlation kernel K 2d

β .
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The correlation functions ofM 
β are finite sums of determinants of the form (2.20).
Namely, for any k and any pairwise distinct a1, . . . , ak ∈ Z≥0, we have

M 
β(X contains a1, . . . , ak) =
∑

I={1≤i1<···<ik≤N }
M 
β (XI = {a1, . . . , ak}) .

3 Grothendieck random partitions

Here, we specialize the setup of 
β-tilted biorthogonal ensembles developed in Sect. 2
to Grothendieck random partitions. A crucial feature in this special case is that the
corresponding two-dimensional ensemble X2d becomes thewell-knownSchur process
introduced in [73].

3.1 Specialization of tilted biorthogonal ensemble

Fix N ≥ 1 and parameters x1, . . . , xN , y1, . . . , yN such that |xi y j | < 1 for all i, j ,
and specialize

�i (k) = xki , � j (k) = ykj , k ∈ Z≥0. (3.1)

Then the operators (2.1) act as

D(r)
k �i (k) = xki (1 − βr xi ), D(r)†

k � j (k) = ykj (1 − βr y
−1
j 1k≥1). (3.2)

For a configuration X = (�1 > · · · > �N ≥ 0), denote λ j := � j + j − N , j =
1, . . . , N , so � j = λ j + N − j . Clearly, we have λ = (λ1 ≥ · · · ≥ λN ≥ 0), and
λ is an integer partition with at most N parts. The 
β-tilted biorthogonal weight (2.3)
specializes to

W 
β;Gr(λ) = det
[
x

λ j+N− j
i (1 − β1xi ) . . . (1 − β j−1xi )

]N
i, j=1

× det
[
y
λ j+N− j
i (1 − β j y

−1
i ) . . . (1 − βN−1y

−1
i )
]N
i, j=1.

Observe that in the second determinant, the operators D[ j,N )†
� j

are applied in

�1, . . . , �N−1, which are strictly positive. Therefore, the special case k = 0 in D(r)†
k

in (3.2) does not occur.
The normalizing constant in Proposition 2.2 becomes

Z 
β;Gr = det
[ (1 − β1xi ) . . . (1 − βN−1xi )

1 − xi y j

]N

i, j=1

=
∏N

i=1
∏N−1

r=1 (1 − xiβr )
∏N

i, j=1(1 − xi y j )

∏

1≤i< j≤N

(xi − x j )(yi − y j ),
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where the matrix elements are geometric sums, see (2.7), and the well-known Cauchy
determinant is evaluated in a product form.

Let us denote

Gλ(x1, . . . , xN ) :=
det
[
x

λ j+N− j
i (1 − β1xi ) . . . (1 − β j−1xi )

]N
i, j=1

∏
1≤i< j≤N (xi − x j )

;

Gλ(y1, . . . , yN ) :=
det
[
y
λ j+N− j
i (1 − β j y

−1
i ) . . . (1 − βN−1y

−1
i )
]N
i, j=1

∏
1≤i< j≤N (yi − y j )

. (3.3)

Since λ j + N − j ≥ N − j and in the matrix elements in Gλ there are N − j factors
of the form (1−βr y

−1
i ), we see that both Gλ and Gλ are symmetric polynomials in N

variables. We thus see that the 
β-tilted biorthogonal ensemble with the specialization
(3.1) has the form

M 
β;Gr(λ) =
∏N

i, j=1(1 − xi y j )
∏N

i=1
∏N−1

r=1 (1 − xiβr )
Gλ(x1, . . . , xN )Gλ(y1, . . . , yN ). (3.4)

We call (3.4) the (multiparameter) Grothendieck measure on partitions. This distribu-
tion is analogous to the Schur measure introduced in [70] which is a particular case
of M 
β;Gr for βr ≡ 0.

Note that the probability weights (3.4) may be complex-valued. In Sect. 3.2 we
discuss conditions on the parameters xi , y j , βr which make the weights nonnegative
real.

3.2 Grothendieck polynomials and positivity

Here,we comment on the relations between the polynomialsGλ,Gλ andGrothendieck
polynomials appearing in the literature. We also discuss the nonnegativity of the mea-
sureM 
β;Gr (3.4) on partitions.

Grothendieck polynomials are well-known in algebraic combinatorics and geome-
try, going back to at least [58], see also [27]. Their one-parameter β-deformations
appeared in [35]. The recent paper [41] introduced and studied the most general
(to date) deformations called refined canonical stable Grothendieck polynomials
Gλ(x1, . . . , xN ; 
α, 
β). These objects generalize most known Grothendieck-like poly-
nomials in the literature, in particular, the ones in [27, 35], as well as more recent
extensions in, e.g., [31, 84]. The refined canonical stable Grothendieck polynomials
Gλ(x1, . . . , xN ; 
α, 
β) depend on two sequences of parameters 
α = (α1, α2, . . .) and
β = (β1, β2, . . .), and are defined as

Gλ(x1, . . . , xN ; 
α, 
β) :=
det

[

x
λ j+N− j
i

(1 − β1xi ) . . . (1 − β j−1xi )

(1 − α1xi ) . . . (1 − αλ j xi )

]N

i, j=1
∏

1≤i< j≤N (xi − x j )
. (3.5)
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Note that for nonzero α j ’s, Gλ(x1, . . . , xN ; 
α, 
β) are not polynomials but rather are
generating series in the x j ’s.When α j = 0 for all j (which drops the word “canonical”
from the terminology), expressions (3.5) become polynomials and reduce to our Gλ’s
from (3.3). The polynomials Gλ in (3.3) are expressed through the Gλ’s as follows.
Denote βrev

r := βN−r , r = 1, . . . , N − 1, and λrev := (0 ≥ −λN ≥ −λN−1 ≥ · · · ≥
−λ1). Then, one readily sees that

Gλ(x1, . . . , xN | 
β) = Gλrev (x
−1
1 , . . . , x−1

N | 
βrev), (3.6)

where we explicitly indicated the dependence on the parameters βr . Moreover,
since Gλ satisfies the index shift property Gλ+(1,...,1)(x1, . . . , xN ) = x1 . . . xN ·
Gλ(x1, . . . , xN ), one can shift the negative coordinates λrev to obtain a nonnegative
partition.

The sum to one property of the Grothendieck measureM 
β;Gr (3.4) is equivalent to
the following Cauchy-type summation identity for the polynomials (3.3):

∑

λ=(λ1≥···≥λN≥0)

Gλ(x1, . . . , xN )Gλ(y1, . . . , yN ) =
∏N

i=1
∏N−1

r=1 (1 − xiβr )
∏N

i, j=1(1 − xi y j )
,

|xi y j | < 1. (3.7)

It is instructive to compare this identity to Cauchy identities for Grothendieck symmet-
ric functions, for example, see [84, (36)] or [41, Corollary 3.6]. The latter identities
involve sums of products in the form Gλgλ, where gλ are the dual Grothendieck
symmetric functions. The products in the right-hand side of these summation identi-
ties have the form

∏∞
i, j=1(1 − xi y j )−1, and a possible analogue in our case would

be
∏∞

i, j=1
1−xiβ j
1−xi y j

. However, in this paper, we will not explore a symmetric function
extension of the identity (3.7).

Let us now discuss the nonnegativity of the probability weightsM 
β;Gr (3.4). Using
the tableau formula for Gλ (for example, [41, Corollary 4.5]) and the relation (3.6)
between Gλ and Gλ, we see that the probability weights M 
β;Gr(λ) are nonnegative
for all λ when the parameters satisfy

xi ≥ 0, y j ≥ 0, βr ≤ 0; |xi y j | < 1; 1 ≤ i, j ≤ N , 1 ≤ r ≤ N − 1.(3.8)

Indeed, under (3.8) we have nonnegativity (and even Schur-nonnegativity, cf. [41,
Theorem 4.3]) of Gλ and Gλ, as well as the convergence of the series (3.7).

Furthermore, we can extend the nonnegativity range of the Grothendieck measures
to certain positive values of βr :

Proposition 3.1 Let xi , y j ≥ 0 and βr ≤ x−1
i , βr ≤ y j for all i, j, r . Then the

Grothendieck polynomials Gλ(x1, . . . , xN ) and Gλ(y1, . . . , yN ) defined by (3.3) are
nonnegative.
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Proof Weconsider only the caseGλ, asGλ is completely analogous. For a nonnegative
function f on Z≥0 we have under our conditions:

D(r)
k f (k) = f (k) − βr f (k + 1) ≥ f (k) − x−1

r f (k + 1).

Therefore, replacing βr by x−1
r in the application of D(r)

k can only decrease the result.
The Grothendieck polynomial Gλ(x1, . . . , xN ) is obtained by applying the opera-

tors D(r)
k to the Schur polynomial sλ(x1, . . . , xN ):

Gλ(x1, . . . , xN ) =
det
[
D[1, j)

� j
x

� j
i

]N

i, j=1
∏

1≤i< j≤N (xi − x j )
= D[1,1)

�1
. . . D[1,N )

�N
sλ(x1, . . . , xN ).

It follows that Gλ(x1, . . . , xN ) ≥ Gλ(x1, . . . , xN )
∣
∣
βr=x−1

r for all r . On the other hand,

when βr = x−1
r for all r , the matrix in the numerator in Gλ (3.3) becomes triangular,

and we have

det
[
x

� j
i (1 − xi/x1) . . . (1 − xi/x j−1)

]N
i, j=1 = x�1

1 . . . x�N
N

∏

1≤i< j≤N

(
1 − x j

xi

)
.

Cancelling the product over i, j with the denominator in Gλ, we see that after the
substitution, the resulting expression Gλ(x1, . . . , xN )

∣
∣
βr=x−1

r for all r is clearly non-
negative. This completes the proof. ��

Proposition 3.1 implies that the Grothendieck probability weights M 
β;Gr(λ) are
nonnegative for all λ when the parameters satisfy the extended conditions

xi ≥ 0, y j ≥ 0, βr ≤ x−1
i , βr ≤ y j ; |xi y j | < 1; 1 ≤ i, j ≤ N ,

1 ≤ r ≤ N − 1. (3.9)

3.3 Two-dimensional Schur process and its correlation kernel

By Theorem 2.3, the Grothendieck measure is embedded into the two-dimensional
ensemble X2d (2.9). Our specialization (3.1) implies that X2d is distributed as the
Schur process. Schur processes are a vast family of determinantal point processes on
the two-dimensional lattice introduced and studied in [73].

Assume that the parameters satisfy (3.8), and define μm
i := xmi + i − N , i,m =

1, . . . , N , where the particles xmi come from the two-dimensional ensemble X2d .
Clearly, each μm = (μm

1 ≥ · · · ≥ μm
N ≥ 0) is a partition with at most N parts.

From (2.10)–(2.11) we conclude that the probability weight of the tuple of partitions
(μ1, . . . , μN ) is

M2d

β;Gr(μ

1, . . . , μN ) ∝ sμ1(x1, . . . , xN )

×s(μ1)′/(μ2)′(−β1) . . . s(μN−1)′/(μN )′(−βN−1)sμN (y1, . . . , yN ). (3.10)
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Here (μm)′/(μm+1)′ denote skew transposed partitions, and we used a basic property
of skew Schur functions evaluated at a single variable (for example, see [60, Chapter
I.5]):

det
[
Tβm (xmi , xm+1

j )
]N

i, j=1
= s(μm )′/(μm+1)′(−βm).

From Theorem 2.3 we immediately get:

Proposition 3.2 The Grothendieck measure M 
β;Gr(λ) (3.4) is embedded into the
Schur process (3.10) in the sense that the joint distributions of the integer N-tuples
{λi }i=1,...,N and {μi

i }i=1,...,N coincide.

Remark 3.3 While the Schur process (3.10) is not a nonnegative measure for βr > 0,
the Grothendieck measures (3.4) are still nonnegative probability measures under the
more relaxed conditions (3.9). Consequently, wewill primarily focus on the case when
the parameters satisfy the more restrictive conditions (3.8). However, in Sect. 5.4 we
will also consider the question of limit shapes for Grothendieckmeasures with positive
βr ’s (which do not correspond to nonnegative Schur processes).

As shown in [73], the correlation kernel of the Schur process (3.10) has a double
contour integral form. The alternative proof of this result given in [26, Theorem 2.2]
proceeds from the general kernel K 2d


β (2.14) and involves an explicit inverse matrix

G−1( 
β)which is available thanks to the Cauchy determinant. Let us record this double
contour integral kernel:

Proposition 3.4 The correlation kernel for the Schur process X2d = {xmi : 1 ≤ m, i ≤
N } containing the Grothendieck measure M 
β;Gr (3.4) has the form

K 2d

β;Gr(a, t; b, s) = 1

(2π i)2

‹
dz dw

z − w

wb−N

za−N+1

Ft (z)

Fs(w)
, (3.11)

where a, b ∈ Z≥0, t, s ∈ {1, . . . , N },

Ft (z) :=
N∏

i=1

1 − z−1yi
1 − zxi

N−1∏

r=t

1

1 − βr z−1 , (3.12)

and the integration contours in (3.11) are positively oriented simple closed curves
around 0 satisfying the following conditions:

(1) |z| > |w| for t ≤ s and |z| < |w| for t > s;
(2) On the contours it must be that |βr | < |z| < x−1

i and |w| > yi for all i and r.

The integration contours inProposition 3.4 exist only under certain conditions on the
parameters xi , y j , and βr , for example, it must be that |βr | < x−1

i for all i, r . When
these conditions on the parameters are violated, we should deform the integration
contours to take the same residues. In other words, we can analytically continue the
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Fig. 3 Graphical representation of the Schur process (3.10). Arrows indicate the diagram inclusion relations

kernel by declaring that the double contour integral in (3.11) is always equal to the
sum of the same residues: first take the sum of the residues in w at 0, all yi ’s, and at z
if t > s; then take the sum of the residues of the resulting expression in z at 0 and all
βr ’s.

Proof of Proposition 3.4 It is well-known that determinantal correlation kernels for the
Schurmeasures and processes have double contour integral form, see [70, 73].Namely,
the generating function for the Schur process kernel has the form

∑

a,b∈Z

K Schur process(a, t; b, s) zaw−b−1 = 1

z − w

�(t, z)

�(s, w)
, (3.13)

where �(t, z) are is a function which is read off from the specializations in the Schur
process, and the generating series in (3.13) is expanded differently depending on
whether t ≤ s or t > s. This difference in expansion is that we assume either |z| > |w|
or |z| < |w|, which can be ultimately traced back to the normal ordering of the
fermionic operatorsψ(z), ψ∗(w) in the notation of [73, Section 2.3.4]. Formula (3.13)
is the same as [73, Theorem 1], up to switching from half-integers to integers in the
indices a, b.

Let us remark that it is not immediate how to adapt the generating function (3.13)
to a particular specialization of the Schur process (that is, how to select the integration
contours to pick out the correct coefficients). In general, one could use the contour
integrals from [46] (see also [13, Remark 2 after Theorem 5.3]) or [26, Theorem 2.2],
but here for convenience let us briefly record a “user’s manual” for such an adaptation.
There are three principles:

• First, start with the Schur measures (t = s). By [70, Theorem 2], the contours
must satisfy |z| > |w| for t = s.

• Second, on the integration contours for all t, s, all denominators in the integrand
should expand as geometric series in a natural way as 1

1−ξ
=∑∞

n=0 ξn .
• The first two principles allow to select the integration contours for t = s, and it
only remains to determine their ordering (|z| > |w| or |z| < |w|) for t �= s. This is
done by inspecting how the specializations of the Schur measures at t = s change
with t .
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Let us implement these principles for our Schur process (3.10). Its graphical repre-
sentation is given in Fig. 3. Each μt distributed as the Schur measure with probability
weights

∝ sμt (x1, . . . , xN )sμt (−β̂t , . . . ,−β̂N−1; y1, . . . , yN ). (3.14)

Here the notation−β̂i means that these are “dual” parameters, that is, they correspond
to transpositions of the Young diagrams. Moreover, we unified a number of these
“dual” parameters with the usual parameters yi in the second Schur function (see, e.g.,
[13, Section 2] for details). The weights (3.14) follows from the weights (3.10) and
the skew Cauchy identity for Schur functions.

Now, from (3.14) and [70, Theorem 2], we see that the functions in the integrand
for t = s are given by

Ft (z) = H(x1,...,xN )(z)

H−β̂t ,...,−β̂N−1;y1,...,yN (z−1)
=

N∏

i=1

1 − z−1yi
1 − zxi

N−1∏

r=t

1

1 − βr z−1 , (3.15)

where Hρ(z) = ∑
n≥0 z

n s(n)(ρ) is the single-variable Cauchy kernel for a special-
ization ρ of Schur functions. The second equality in (3.15) follows from the Cauchy
identity, and is precisely the expression (3.12) for Ft (z). Thus, using the first two
principles above, we get all the conditions on the contours in our Proposition 3.4 for
t = s. In particular, the second condition |βr | < |z| < x−1

i , |w| > yi follows from
requiring the expansion of

Ft (z)

Fs(w)
=

N∏

i=1

1 − z−1yi
1 − zxi

N∏

i=1

1 − wxi
1 − w−1yi

∏N−1
r=s (1 − βrw

−1)
∏N−1

r=t (1 − βr z−1)

as geometric series. Observe that to get the integral (3.11), we also needed to shift the
indices (a, b) by N − 1

2 compared to formulas in [70, 73]. Indeed, in these references
the point configuration associated to a partition μ is

{
μi − i + 1

2

}
i∈Z≥1

, while we

work with {μi + N − i}Ni=1.
Extending our formula (3.11) to t �= s in a natural way leaves only the question of

the ordering of the integration contours (|z| > |w| or |z| < |w|) for t �= s. This can be
resolved by comparing (3.15) with [73, (20)]. We see that H−β̂t ,...,−β̂N−1;y1,...,yN (z−1)

should be matched to the product
∏

m<t φ
+[m](z−1). In the latter product, increasing

t will increase the number of factors, which is opposite to how the number of factors
depends on t in (3.15). Thus, we must choose |z| > |w| for t ≤ s, which is opposite
to [73, Theorem 1]. This completes the proof. ��

4 Absence of determinantal structure

The Grothendieck measureM 
β;Gr (3.4) has probability weights expressed as products
of two determinants. This structure is very similar to that of biorthogonal ensembles
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(2.5), which are well-known determinantal point processes. However, this section
shows that the Grothendieck measures are not determinantal point processes. This
question is deeply linked to the principal minor assignment problem from linear alge-
bra and algebraic geometry. We describe this problem in Sect. 4.1, and discuss its
long history in Sect. 4.2. Then in Sect. 4.3, we present a self-contained derivation of
a determinantal test for minors of a 4 × 4 matrix originally obtained by Nanson in
1897 [66], and in Sect. 4.4 we extend this test to matrices of arbitrary size. Finally, in
Sect. 4.5, we apply the original Nanson’s test to show that the Grothendieck measures
are not determinantal.

4.1 Principal minor assignment problem

Let A be an n × n complex matrix. To it, we associate 2n principal minors AI =
det[Aia ,ib ]|I |a,b=1, where I runs over all subsets of {1, . . . , n}, and |I | is the number

of elements in I . This includes the empty minor A∅ = 1. The map C
n2 → C

2n ,
A → (AI )I⊆{1,...,n}, is called the affine principal minor map. The (affine) principal
minor assignment problem [42, 56] aims to characterize the image under this map in
C
2n . Denote this image by An ⊂ C

2n . This complex algebraic variety is closed and
has dimension n2 − n + 1 [56, 81].

For n ≤ 3, the dimension ofAn is equal to 2n−1, (full available dimension because
A∅ = 1), but starting with n = 4, An becomes very complicated. Indeed, by [56,
Theorem 2], the prime ideal of the (13-dimensional) varietyA4 is minimally generated
by 65 polynomials of degree 12 in the AI ’s.

Let us translate the principal minor assignment problem into the language of point
processes. Let M be a point process on Z≥0, that is, a probability measure on point
configurations in Z≥0. This measure may have complex weights, but has to be nor-
malized to have total probability mass 1, and has to be bounded in absolute value by
a nonnegative probability measure on point configurations in Z≥0. The base space for
the point process may be arbitrary and is not necessarily finite, and here we take Z≥0
for an easier future application. For each finite subset I ⊂ Z≥0 consider the correlation
function

ρI = M (the random point configuration contains all points from I ) .

It is natural to ask whether the point processM is determinantal, that is, whether there
exists a kernel K (x, y), x, y ∈ Z≥0, such that for any finite I ⊂ Z≥0 we have ρI =
det[K (a, b)]a,b∈I . A clear necessary condition for the process to be determinantal is
as follows:

Proposition 4.1 If the processM is determinantal, then for any n ≥ 1 and any n-point
subset J ⊂ Z≥0, the vector (ρI : I ⊆ J) ∈ C

2n belongs to the image An under the
principal minor map.

Thus, if for some n and some n-point J ⊂ Z≥0 the vector (ρI : I ⊆ J) ∈ C
2n does

not belong to An , then the process M is not determinantal. Due to the complicated
nature of An for n ≥ 4, checking that a vector belongs to An is hard. However, to
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show that some vector (ρI ) does not belong to An , it suffices to find a polynomial in
the ideal ofAn that does not vanish on (ρI ). This leads us to the following definition:

Definition 4.2 Fix n ≥ 4. A determinantal test of order n is any element in the ideal of
An , that is, a polynomial in the indeterminates (AI : I ⊂ {1, . . . , n}) which vanishes
if the AI ’s are principal minors of some matrix A.

Thus, to show that the process M is not determinantal, it suffices to show that
there exists J ⊂ Z≥0 and a determinantal test which does not vanish on the vector
(ρI : I ⊂ J). Let us describe an example of such a test of order 4 which we call the
Nanson’s test as it first appeared in 1897 in [66]. First, we need another definition:

Definition 4.3 Let A = (ai j ) be a complex n × n matrix, and fix I ⊆ {1, . . . , n} with
|I | = k ≥ 2. For a k-cycle π ∈ Sn with support I (there are (k − 1)! such cycles),
define tπ (A) :=∏i : i �=π(i) ai,π(i). Let the cycle-sum [56] be

TI :=
∑

all k−cycles π with support I

tπ (A). (4.1)

The cycle-sums are the same as cluster functions in the terminology of [82], and
they can be expressed through the principal minors AI as follows:

TI =
∑

I=I1�···�Im
(−1)k+m(m − 1)! AI1 · · · AIm , (4.2)

where the sum is taken over all set partitions of I into exactly m nonempty parts. For
example,

T{1,2,3} = a12a23a31 + a13a21a32

= 2A{1}A{2}A{3} − (A{1}A{2,3} + A{2}A{1,3} + A{3}A{1,2}
)+ A{1,2,3}.

Definition 4.4 The Nanson’s determinantal test is a polynomial N4 of order 4 in the
indeterminates TI which has the form

N4 = 1

2
det

⎡

⎢
⎢
⎣

T123T14 T124T13 T134T12 2T12T13T14T234 + T123T124T134
T124T23 T123T24 T234T12 2T12T23T24T134 + T123T124T234
T134T23 T234T13 T123T34 2T13T23T34T124 + T123T134T234
T234T14 T134T24 T124T34 2T14T24T34T123 + T124T134T234

⎤

⎥
⎥
⎦ ,

(4.3)

where we abbreviated Ti j = T{i, j}, and so on. By (4.2),N4 is also a polynomial in the
indeterminates AI .

One readily verifies (for example, using computer algebra) that N4 is indeed a
determinantal test:
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Proposition 4.5 If for all I ⊆ {1, 2, 3, 4} we replace the indeterminates TI ’s in (4.3)
by the cycle-sums (4.1) coming from a 4 × 4 matrix A, then the polynomial N4 (4.3)
vanishes identically.

We apply Nanson’s testN4 to show that the Grothendieck measures are not deter-
minantal in Sect. 4.5.

4.2 On the history of the principal minor assignment problem

Let us briefly discuss the rich history and variants of the principal minor assignment
problem. Within this history, we can observe at least two instances where similar
questions were independently formulated and addressed in the context of algebra (on
the original principal minor assignment) and probability (concerning determinantal
processes). We hope that these two research avenues will become increasingly aware
of one another.

The problem itself dates to the late 19th centuryworkofMacMahon [59],with initial
results due toMuir [64, 65] andNanson [66]. In particular, Nanson has partially solved
the 4 × 4 principal minor assignment problem, and obtained the determinantal test
N4 (4.3). He also obtained four other tests algebraically independent fromN4 (which
enter the list of 65 polynomials in Lin–Sturmfels [56]). The question of relations on
principal minors is investigated by Stouffer [81], and in particular he showed that the
dimension of An is n2 − n + 1.

Another question related to the principal minor assignment problem, when it has a
solution, concerns the relationship between two n×n complex matrices A, B with the
same principal minors. Under various natural conditions, it has been shown that the
matrix A should be diagonally conjugate either to B, or to Btranspose. Here “diagonally
conjugate” means A = DBD−1, where D is a nondegenerate diagonal matrix. This
question was first addressed in the context of the principal minors assignment problem
by Loewy [55]. More recently, Stevens [80] andMantelos [61] investigated essentially
the same question within the context of determinantal processes, seemingly unaware
of Loewy’s work.

Griffin–Tsatsomeros [39] proposed algorithms for finding the solution of the prin-
cipal minor assignment problem (that is, the matrix A), which are computationally
fast for particular subclasses of matrices.While this does not yield explicit polynomial
determinantal tests, an algorithm can be used to (numerically) demonstrate that a point
process is not determinantal. In our application to Grothendieck measures in Sect. 4.5
we do not use an algorithm like in [39], but rather perform a symbolic computation
based on the Nanson’s testN4.

A particularly well-understood case of the principal minor assignment problem
assumes that the initial complex n × n matrix A is Hermitian symmetric. Holtz–
Sturmfels [43] and Oeding [68] use the additional hyperdeterminantal structure of the
variety formed by principal minors to solve the assignment problem set-theoretically.
More recently, Al Ahmadieh and Vinzant [1, 2] considered the principal minor assign-
ment problem over other rings and explored connections to stable polynomials. These
latter works represent the current state of the art of the principal minor assignment
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problem from an algebraic perspective. In particular, [2, Theorem 8.1] is a strong and
unexpected negative result.

Finally, let us mention that there are several natural generalizations of the princi-
pal minor assignment problem, as considered by Borodin–Rains [26, Section 4] and
independently by Lin–Sturmfels [56] (unaware at the time of the work by Borodin–
Rains). These variants allow more general conditional and/or Pfaffian structure of
the correlation functions ρI . A conditional determinantal process, by definition, has
correlation functions ρI = det [K (a, b)]a,b∈I∪S , where S = {n + 1, . . . , n + m},
and I ⊆ {1, . . . , n}. In other words, it is a usual determinantal process on
{1, . . . , n, n + 1, . . . , n + m} conditioned to have particles at each of the points
n + 1, . . . , n + m. In the terminology of [56], the conditional determinantal struc-
ture is the same as the projective principal minor assignment problem, a more natural
setting for algebraic geometry. The projective variety analog ofAn for n = 4 is more
complicated, with 718 generating polynomials. The Pfaffian and conditional Pfaffian
structures (considered in [26]; they are motivated, in particular, by real and quater-
nionic random matrix ensembles) are defined similarly to the determinantal ones, but
with determinants replaced by Pfaffians. The n = 4 conditional Pfaffian (projective)
variety analog ofAn is even more complicated than the determinantal one, and exper-
imentation suggests [26] that a corresponding test could have degree 1146.

It would be interesting to develop determinantal and Pfaffian tests for conditional
processes (aswell as for further generalizations involving, for example,α-determinants
and permanents), but we leave these directions for future work.

4.3 A self-contained derivation of Nanson’s determinantal test

Here we present a self-contained derivation of Nanson’s determinantal test polyno-
mial N4 (4.3). This argument differs slightly from Nanson’s original work [66] and
was obtained independently by the second author (unaware of the principal minor
assignment problem) over a decade ago [76]. Here we see another instance of the dis-
connect between the principal minor assignment problem and determinantal processes
(complementing the two cases discussed in Sect. 4.2). In Sect. 4.4, we discuss how our
derivation of N4 can be adapted to obtain Nanson-like higher-order determinantal
tests.

We aim to explain where the polynomial N4 (4.3) comes from. Checking that it
is indeed a determinantal test is a direct verification (Proposition 4.5), and we do not
focus on this here.

Assume that we are given the cluster functions TI (4.2), where I runs over subsets
of {1, 2, 3, 4} with ≥ 2 elements. The TI ’s are polynomials in the minors AI , but
working with the TI ’s is much more convenient. Let us use the TI ’s to try finding the
matrix elements ai j of the original matrix A.

Throughout the rest of this section, we will abbreviate expressions like T{1,2} as
T12. Note that all the TI ’s are symmetric in the indices. Assume that a1i �= 0 for
all i = 2, 3, 4, and conjugate the matrix by the diagonal matrix with the entries
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di = 1i=1+a1i1i �=1. Then we have for the conjugated matrix (denoted by Ã = (ãi j )):

ã1i = d1
di

a1i = 1, i = 2, 3, 4. (4.4)

With this notation, we have T1i = ãi1 and

Ti j = ãi j ã j i , T1i j = ãi j T1 j + ã j i T1i . (4.5)

The second identity in (4.5) is by the definition of the cluster function (4.1), simplified
thanks to (4.4). Equations (4.5) allow to find ãi j T1 j and ã j i T1i as two distinct roots of
a quadratic equation. We thus have

ãi j T1 j = T1i j + Ri j

2
, ã j i T1i = T1i j − Ri j

2
, (4.6)

where we denoted Ri j := ±
√
T 2
1i j − 4T1i T1 j Ti j . Observe that Ri j contains an

unknown sign that we cannot determine a priori (it may also depend on i and j),
but up to sign Ri j is symmetric in i, j .

Let us substitute (4.6) into the following identity (which is again an instance of
(4.1)):

T234 = ã23ã34ã42 + ã24ã43ã32.

As a result, we obtain the following identity involving three square roots R23, R34, R24
with unknown signs:

8T12T13T14T234 = (T123 + R23) (T124 + R24) (T134 + R34)

+ (T123 − R23) (T124 − R24) (T134 − R34) . (4.7)

Note that (4.7) does not contain the matrix elements ã. Thus, it is an algebraic (but not
yet polynomial) identity on the cluster functions TI . Simplifying (4.7), we see that

4T12T13T14T234 − T123T124T143 − T123R24R34 − T124R23R34 − T134R23R24 = 0.
(4.8)

The left-hand side contains three summands with irrationalities R24R34, R23R34, and
R23R24 with uncertain signs. By choosing all possible eight combinations of the signs
for R23, R34, R24, we see that there are only four possible combinations of signs in
(4.8). Thus, by multiplying together all these four expressions with different signs, we
can get rid of irrationality and obtain a polynomial in the TI ’s:

(
4T12T13T14T234 − T123T124T143 − T123R24R34 − T124R23R34 − T134R23R24

)

×(4T12T13T14T234 − T123T124T143 + T123R24R34 + T124R23R34 − T134R23R24
)

×(4T12T13T14T234 − T123T124T143 − T123R24R34 + T124R23R34 + T134R23R24
)
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×(4T12T13T14T234 − T123T124T143 + T123R24R34 − T124R23R34

+T134R23R24
) = 0. (4.9)

Clearly, expanding the left-hand side of (4.9) squares all the quantities Ri j . Thus, the
resulting identity is polynomial in the TI ’s, and, moreover, all unknown signs present
in the R’s disappear.

One can check (for example, using computer algebra) that the resulting polynomial
(4.9) in the TI ’s has 19 summands, and it is symmetric in the indices 1, 2, 3, 4. One
can also verify that this polynomial divided by the common factor 256T 2

12T
2
13T

2
14 is

exactly the same as the Nanson’s test N4 (4.3). This concludes our derivation of the
Nanson’s determinantal test of order four.

4.4 Procedure for higher-order Nanson tests

Adapting the derivation of the test N4 given in Sect. 4.3, one can produce concrete
determinantal tests Nn for minors of general n × n matrices, where n ≥ 4. Let us
explain the necessary steps for general n without going into full detail. We have from
(4.1):

T2,3,...,n =
∑

(n−1)−cycles σ on {2,...,n}
ãσ(2)σ (3) . . . ãσ(n−1)σ (n)ãσ(n)σ (2). (4.10)

For every i < j , let us substitute the solutions (4.6), so (4.10) becomes

2n−1T12 . . . T1nT2,...,n =
∑

σ

�n∏

i=2

(
T1σ(i)σ (i+1) + (−1)1σ(i)>σ(i+1) Rσ(i)σ (i+1)

)
.

(4.11)

Here the sum is also over (n − 1)-cycles σ on {2, . . . , n}, and “�” means that the
product is cyclic in the sense that n + 1 is identified with 2. We see that (4.11) is an
algebraic identity on the TI ’s which does not contain the matrix elements ãi j .

Opening up the parentheses in (4.11), one readily sees that all terms with an odd
number of the factors Ri j cancel out, while the terms with an even number of the
factors Ri j appear twice. Therefore, we can continue (4.11) as

2n−2T12 . . . T1nT2,...,n −
∑

non-oriented (n−1)−cycles
τ on {2,...,n}

�n∏

i=2

T1τ(i)τ (i+1) = RHS. (4.12)

Here RHS is a sum over non-oriented (n − 1) cycles τ on {2, . . . , n}, where the
summands are (n − 1)-fold cyclic products of the quantities T1i j and Ri j with a
nonzero even number of the R’s, and each such monomial has coefficient ±1. More
precisely, the sign is determined by the number of descents τ(i) > τ(i + 1) in τ for
which the monomial contains Rτ(i)τ (i+1) (and not T1τ(i)τ (i+1)).
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Next, in RHS there are
(n−1

2

)
possible elements Ri j , and each of them contains an

unknown sign in front of the square root. Let us take the product over those of the

2(
n−1
2 ) possible sign combinations which lead to the different RHS’s. Expanding this

product removes all irrationalities and unknown signs, and produces a polynomial
(denoted by Nn) in the cluster functions TI , where I runs over subsets of {1, . . . , n}
with ≥ 2 elements. We call Nn the Nanson-like determinantal test of order n.

For example, for n = 5 identity (4.12) has the form (recall that the quantities T1i j
and Ri j are symmetric in i, j):

8T12T13T14T15T2345 − T24T43T35T52 − T23T34T45T52 − T23T35T54T42
= R24R25R34R35 − R23R25R34R45 + R23R24R35R45

+ R34R45T123T125 + R24R35T125T134 + R23R45T125T134
+ R24R45T123T135 + R25R34T124T135 + R23R35T124T145
+ R23R34T125T145 − R23R25T134T145 − R23R24T135T145
− R35R45T123T124 − R34R35T124T125 − R25R45T123T134
− R25R35T124T134 − R23R45T124T135 − R24R34T125T135
− R24R25T134T135 − R25R34T123T145 − R24R35T123T145.

In the right-hand side, there are 2(
4
2) = 64 possible signs in the Ri j ’s, but they lead to

“only” 32 distinct identities.Multiplying all these 32 expressions similarly to (4.9) and
recalling the definition of the R’s leads to a polynomial in the TI ’s with no irrationality.
This produces the determinantal test N5.

4.5 Application to Grothendieckmeasures and proof of Theorem 1.2

In this subsection we employ the Nanson determinantal testN4 to prove Theorem 1.2
from Introduction. That is, we will show that the Grothendieck measure on partitions
M 
β;Gr(λ) (3.4) is not determinantal as a point process on Z≥0 with points � j =
λN + N − j , j = 1, . . . , N .

We focus on the case N = 2 and look at correlations ρGr
I of the random point

configuration {�1, �2} = {λ1 + 1, λ2} for all subsets I ⊆ {0, 1, 2, 3}. Moreover, we
will set β1 = β, x1 = x2 = x , and y1 = y2 = y. Clearly, ρGr

I = 0 if |I | = 3 or 4.
Moreover, we have ρGr

∅
= 1, and for two-point subsets we have (where i > j):

ρGr{i, j} = M 
β;Gr
(
(i − 1, j)

)

= (1 − xy)4

(1 − xβ)2
xi+ j−1yi+ j−2 (βx(i − j − 1) − i + j) (( j − i)(y − β) − β) ,

(4.13)

where we used (3.3)–(3.4), and took the limits as x2 → x1 = x and y2 → y1 = y.
To compute one-point correlations, we employ Proposition 2.7 and the correlation

kernel K 2d

β;Gr of the ambient Schur process (Proposition 3.4). We have by Proposition
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2.7 (specifically, by its particular case (2.19))

ρGr{i} = [z1w] det
(
1 − (1 − z)χ[0,i]K 2d


β;Gr(·, 1; ·, 1)χ[0,i)

+(1 − w)χ[0,i]K 2d

β;Gr(·, 1; ·, 1)χ{i}

)

+[z0w] det
(
1 − (1 − z)χ[0,i]K 2d


β;Gr(·, 2; ·, 2)χ[0,i)

+(1 − w)χ[0,i]K 2d

β;Gr(·, 2; ·, 2)χ{i}

)
. (4.14)

This yields formulas for ρGr{i} , i = 0, 1, 2, 3, namely,

ρGr{0} = 1 − x2y2;

ρGr{1} = x2y2(1 − x2y2) + (1 − xy)4

(1 − βx)2
;

ρGr{2} = x4y4(1 − x2y2) + x(1 − xy)4
(
β(βx − 2) + xy2 + y(4 − 2βx)

)

(1 − βx)2
;

ρGr{3} = x6y6(1 − x2y2)

+ x2y(1 − xy)4
(
x2y3 + y

(
β2x2 − 8βx + 9

)+ 2β(2βx − 3) − 2xy2(βx − 2)
)

(1 − βx)2
.

(4.15)

Remark 4.6 These one-point correlation functions ρGr{i} can be also computed without
using the finite-dimensional Fredholm-like determinants (4.14). Namely,

ρGr{i} =
i−1∑

j=0

M 
β;Gr
(
(i − 1, j)

)+
∞∑

j=i

M 
β;Gr
(
( j, i)

)
,

and the infinite sum is explicit because the summands have the form (4.13). However,
this simplification of correlation functions works only for small N and small order of
correlation functions. We will use the full two-dimensional determinantal kernel to
obtain asymptotics of Grothendieck random partitions in Sect. 3.

Plugging the correlation functions (4.13), (4.15) into the Nanson test (4.3) (with
the help of the representation of cluster functions via minors (4.2)), we find

N4 = β4x34y30(1 − xy)42(1 + xy)2P14(xy) + O
(
β5
)

, β → 0, (4.16)

where P14(xy) is a certain degree 14 polynomial in the single variable xy. We see that
N4 vanishes at β = 0, as it should be because then the Grothendieck measure reduces
to the Schur measure which is determinantal. On the other hand, for β �= 0 the test
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does not vanish in general. For example, at x = y = 1/2, we have

N4 = (β − 4)(β − 1)β4

(β − 2)32
Q3(β)Q5(β)Q7(β)Q9(β),

(β − 2)32

(β − 4)(β − 1)β4 N4

∣
∣
∣
x=y=1/2, β=−1

≈ 0.00005021 > 0,

where Q3, Q5, Q7, Q9 are certain polynomials in β of degrees 3, 5, 7, 9, respectively.
Since the Nanson determinantal test does not vanish for these values of x, y, β, this
implies Theorem 1.2 from Introduction.

5 Limit shape of Grothendieck random partitions

In this section we employ the standard steepest descent asymptotic analysis of the
correlation kernel of the Schur process (for example, explained in [71, Section 3]) to
derive the limit shape result for Grothendieck random partitions.

5.1 Limit shape of the Schur process

In this subsection we assume that all the parameters xi , y j , βr are homogeneous and
satisfy (3.8), that is, for all i, j, r we have

xi = x, y j = y, βr = β; x > 0, y > 0, xy < 1, β < 0. (5.1)

We require the parameters be nonzero, otherwise the measure degenerates and may
not produce asymptotic limit shapes.

Under conditions (5.1), the Schur processM2d

β;Gr (3.10) is awell-defined probability

measure on integer arrays X2d = {xmi : 1 ≤ m, i ≤ N }. With each such array, we
associate a height function on Z≥0 × {1, . . . , N } as follows:

HN (a, t) := #
{
j : xtj ≥ a

}
, a ∈ Z≥0, t = 1, . . . , N . (5.2)

In words, HN (a, t) is the number of particles of the configuration X2d at level t which
are to the right of a. In particular, we have

HN (xtt , t) = t, t = 1, . . . , N . (5.3)

The following limit shape result for the Schur process can be obtained in a standard
manner via the steepest descent analysis of the correlation kernel K 2d


β;Gr (3.11)–(3.12).
We refer to [10, 33, 53, 73, 74] for similar steepest descent arguments.
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Fig. 4 An example of the frozen boundary curve in the (ξ, τ ) coordinates, and an example of several up-
diagonal paths as in Fig. 2 serving as the level lines for the pre-limit height function HN (5.2). There are
no up-diagonal paths in the frozen zones Ia-b, so ∇H = (0, 0). In zone II, the paths go diagonally, so
∇H = (−1, −1). Finally, in zone III, the paths go vertically, so∇H = (−1, 0). These frozen zone gradients
correspond to the vertices of the triangle (5.5). In this example, we have x = 1/3, y = 1/5, β = −6. For
other values of parameters, zones Ib and II may be present. Zone III is always present, see Lemma 5.4

Theorem 5.1 (Limit shape for Schur processes) There exists a functionH(ξ, τ ) in ξ ∈
R≥0, τ ∈ [0, 1], depending on the parameters x, y, β (5.1) such that in probability,

lim
N→+∞

HN (�ξN�, �τN�)
N

= H(ξ, τ ). (5.4)

The functionH(ξ, τ ) is continuous, piecewise differentiable, weakly decreases in both
ξ and τ , and its gradient ∇H = (∂ξH, ∂τH) belongs to the triangle

− 1 ≤ ∂ξH ≤ 0, −1 ≤ ∂τH ≤ 0, ∂τH ≥ ∂ξH. (5.5)

See Fig.4 for an illustration.

Throughout the rest of this subsection we will give an idea of proof of Theorem 5.1
together with the necessary formulas for the gradient ∇H. The integrand in the kernel
K 2d


β;Gr (3.11) can be rewritten as

eN
(
S
(
z; aN ,

t
N

)
−S
(
w; bN ,

s
N

))

z − w
,

where

S(z; ξ, τ ) := −(ξ − 1) log z + log(1 − z−1y) − log(1 − zx) − (1 − τ) log(1 − βz−1).

(5.6)

The critical point equation ∂
∂z S(z; ξ, τ ) = 0 is equivalent to a cubic polynomial

equation on z:

ξ xz3 − (ξ + βx(ξ + τ − 1) + (ξ + 1)xy − 1)z2

+(β(ξ + τ + ξ xy + τ xy − 2) + ξ y)z − β y(ξ + τ − 1) = 0. (5.7)



Tilted biorthogonal ensembles, Grothendieck random partitions… Page 33 of 51    56 

The region in the (ξ, τ ) plane where (5.7) has two complex conjugate nonreal roots is
called the liquid region L. Inside it, the gradient ∇H(ξ, τ ) belongs to the interior of
the triangle (5.5). In Fig. 4, L is the region inside the frozen boundary curve which we
denote by ∂L. For (ξ, τ ) ∈ L, denote by zc = zc(ξ, τ ) the unique root of (5.7) in the
upper half complex plane. This is a critical point of the function S (5.6).

We forgot a standard steepest descent analysis of the kernel K 2d

β;Gr which would

constitute a detailed proof of Theorem 5.1. Instead, we briefly explain how to derive
explicit formulas for the gradient ∇H. We need only the a priori assumption (which
would follow from the steepest descent) that this gradient depends on the critical
point zc in a harmonic way when zc belongs to the upper half-plane. When the point
(ξ, τ ) approaches the boundary of the liquid region, the critical points zc and z̄c merge
and become a real double critical point which is a double root of the cubic equation
(5.7). Therefore, the frozen boundary curve ∂L can be obtained in parametric form by
solving the equations

∂

∂z
S(z; ξ, τ ) = ∂2

∂z2
S(z; ξ, τ ) = 0, (5.8)

in (ξ, τ ), and taking zc = z̄c ∈ R as a parameter. Equivalently, ∂L is the discriminant
curve of the cubic equation (5.7). See (5.20) for this parametrization of the frozen
boundary curve (we do not an explicit parametrization just yet).

We are only interested in the “physical” part of the frozen boundary which lives in
the half-infinite rectangle (ξ, τ ) ∈ [0,∞)×[0, 1], and so not all values of zc = z̄c ∈ R

correspond to points of the frozen boundary ∂L. Modulo this remark, we get the
following trichotomy of the frozen zones:

Proposition 5.2 (Frozen zone trichotomy) Depending on the location of the double
critical point, we have:

• If ∂L is adjacent to zones Ia or Ib, then zc = z̄c > 0.
• If ∂L is adjacent to zone II, then β < zc = z̄c < 0.
• If ∂L is adjacent to zone III, then z = z̄c < β.

Parts of ∂L bounding zones Ia-b are asymptotically formed by up-diagonal paths.
In particular, the slope of these parts of ∂L in the (ξ, τ ) coordinates cannot exceed 1.
One can check that in Fig. 4, the rightmost part of the frozen boundary ∂L is not linear
and has slope slightly less than 1. On the other hand, the boundaries of zones II and III
are not formed by our up-diagonal paths. Instead, one should use suitably chosen “dual
paths” defined through the complement of the particle configuration X2d = {xmj }.

Using Proposition 5.2, one can show that inside the liquid region, we have the
following expressions for the gradient of the limit shape in terms of the critical point
zc(ξ, τ ):

∂ξ H(ξ, τ ) = −Arg zc(ξ, τ )

π
, ∂τ H(ξ, τ ) = Arg

(
zc(ξ, τ ) − β

)− Arg zc(ξ, τ )

π
.

(5.9)
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Fig. 5 Triangle in the complex
plane with vertices 0, β, and zc .
When zc approaches the real
line at (0, +∞), (β, 0), and
(−∞, β), we have, respectively,
∇H = (0, 0), ∇H = (−1,−1),
and ∇H = (−1, 0)

That is, 1 + ∂ξ H and −∂τ H are the normalized angles of the triangle in the complex
plane with vertices 0, β, and zc, adjacent to 0 and zc, respectively (recall that both
partial derivatives are negative). See Fig. 5 for an illustration.

Remark 5.3 From the cubic equation ∂
∂z S(z; ξ, τ ) = 0, one can readily check that the

complex critical point zc(ξ, τ ) satisfies the following version of the complex Burgers
equation:

∂zc(ξ, τ )

∂ξ
=
(

1 − zc(ξ, τ )

β

)
∂zc(ξ, τ )

∂τ
. (5.10)

We refer to [52] for general details on how the complex Burgers equation arises for
limit shapes of planar dimer models.

5.2 From Schur to Grothendieck limit shapes

From the limit shape result for the Schur process (Theorem 5.1), we readily get the
limit shape ofGrothendieck randompartitions. Indeed, recall fromProposition 3.2 that
the shifted random variables �i = λi + N − i , i = 1, . . . , N , under the Grothendieck
measureM 
β;Gr (3.4) are equal in distribution to the particle coordinates x

i
i = μi

i+N−i

corresponding to the random partitions under the Schur process M2d

β;Gr (3.10). The

Schur process possesses a limit shape, so when i grows proportionally to N , the
random variables xii also scale proportionally to N . More precisely, Theorem 5.1 and
the observation (5.3) imply that for all τ ∈ [0, 1] we have

xii
N

→ L(τ ), i = �τN�, N → +∞, (5.11)

where the convergence is in probability. Here L(τ ) is a weakly decreasing function
satisfying the equation

H (L(τ ), τ ) = τ for all τ ∈ [0, 1], (5.12)

whereH(ξ, τ ) is the limit shape of the Schur process. In other words, the shapeL(τ ) is
the cross-section of the Schur process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η)

coordinates by the plane η = τ .

Lemma 5.4 The functionL(τ ), τ ∈ [0, 1], is continuous and is uniquely determined by
equation (5.12) and by continuity at the endpoints τ = 0, 1. In particular, L(1) = 0.
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Proof Observe that H(ξ, τ ) strictly decreases in ξ as long as H �= 0, 1. Indeed, H is
strictly monotone in the liquid region thanks to the first of the identities in (5.9). In
the frozen zones, we have ∂ξ H = 0 only in zones Ia-b, and there we have H = 0 in
Ia or H = 1 in Ib. Indeed, ∂ξH = 0 implies zc(ξ, τ ) ∈ R, see (5.9). Since we only
consider the “physical” part (ξ, τ ) ∈ [0,∞) × [0, 1], it follows that (ξ, τ ) must lie
on the frozen boundary. This implies that the function L(τ ) is determined by (5.12)
uniquely for τ �= 0, 1, and is continuous.

For τ = 0, is it natural to set L(0) = max{ξ : H(ξ, 0) = 0} by continuity. For
τ = 1, it suffices to show that (L(τ ), τ ) for τ close to 1 must belong to the frozen
zone III and not Ib. For τ = 1, the critical point equation (5.7) has a root z = β

independently of ξ . The discriminant of the remaining quadratic equation is negative
for

2

1 + √
xy

< 1 + ξ <
2

1 − √
xy

.

In particular, the discriminant is positive for ξ close to zero, so the point (ξ, τ ) = (0, 1)
lies in a frozen zone. By looking at the value of zc = z̄c at a point of the adjacent frozen
boundary, one can verify that the neighborhood of (ξ, τ ) = (0, 1) is always in zone
III. Thus, H(ξ, 1) is strictly monotone in ξ in this neighborhood. Setting L(1) = 0,
we get the continuity of L(τ ) at τ = 0, as desired. ��

We arrive at the following limit shape result for Grothendieck random partitions:

Theorem 5.5 Let λ = (λ1, . . . , λN ) be the Grothendieck random partition distributed
asM 
β;Gr (3.4)with parameters x, y, β as in (5.1) (in particular, β < 0). For any fixed
τ ∈ [0, 1] we have the convergence in probability:

λ�τN�
N

→ L(τ ) + τ − 1, N → +∞, (5.13)

where the function L(τ ) is defined before Lemma 5.4.

In particular, the shift by τ −1 in (5.13) comes from λi = �i + i−N , i = 1, . . . , N .
When we need to indicate the dependence of L(τ ) on the parameters, we will write
L(τ | x, y, β).

To help visualize the Grothendieck limit shape determined by the function L(τ ),
we employ the coordinate system rotated by 45◦ (for illustration, see Fig. 1, left, in the
Introduction). In this way, Young diagrams and their limit shapes become functions
W(u), u ∈ R, satisfying

|W(u) − W(v)| ≤ |u − v|, W(u) = |u| for all large enough |u|. (5.14)

Define the norm of a continuous Young diagram by

‖W‖ := 1

2

ˆ +∞

−∞
(W(u) − |u|) du. (5.15)
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Before the limit, the functionsWN (u) corresponding toYoung diagramsλwith atmost
N rows are piecewise linear with derivatives±1 and integermaxima andminima. Note
that ‖WN‖ = |λ| is the number of boxes in the Young diagram.

The space of all functions satisfying (5.14) is called the space of continuous Young
diagrams by Kerov, see [49, Chapter 4].3 Young diagrams in the coordinate system
rotated by 45◦ were first considered in connection with the Vershik–Kerov–Logan–
Shepp (VKLS) limit shape of Plancherel random partitions, see [57, 83].

Let the pre-limit continuousYoungdiagramsWN (u) correspond to theGrothendieck
random partitions with parameters (x, y, β). The convergence (5.13) in Theorem 5.5
implies the pointwise convergence in probability as N → +∞ of the rescaled func-
tions 1

N WN (uN ) to a limit shape. This limit shape is a continuous Young diagram
u �→ W(u) which has parametric form

u = L(τ ) − 1, W = L(τ ) − 1 + 2τ, τ ∈ [0, 1]. (5.16)

This parametric form follows from the change of coordinates from (τ,L(τ ) + τ − 1)
to (u,W(u)) under the 45◦ rotation. When we need to indicate the dependence of
W(u) on the parameters of the Grothendieck measure, we will write W(u | x, y, β).
Thus, we have established Theorem 1.4 from the Introduction.

In Sect. 5.4 we present graphs of the limit shapes (5.16) for several choices of
parameters (x, y, β) of the Grothendieck measure.

5.3 Properties of Grothendieck limit shapes

Here let us make several general observations in connection with the limit shape result
for Grothendieck random partitions (Theorem 5.5).

5.3.1 Differential equations

Differentiating (5.12) in τ , we see that L(τ ) satisfies the differential equation L′(τ ) =
1−∂τ H(L(τ ),τ )
∂ξ H(L(τ ),τ )

. In terms of the critical point, with the help of (5.9), this equation has
the form

L′(τ ) = −π − Arg
(
zc(L(τ ), τ ) − β

)+ Arg zc(L(τ ), τ )

Arg zc(L(τ ), τ )
. (5.17)

Here zc = zc(ξ, τ ) is the root of the cubic equation (5.7) in the upper half plane if
(ξ, τ ) belongs to the liquid region. When (ξ, τ ) is in a frozen zone, zc should be taken
real such that the arguments in (5.9) give the gradient∇H in this frozen zone. We refer
to the trichotomy in Proposition 5.2, see also Fig. 4 for an illustration.

3 Our continuous Young diagrams are centered at zero, while Kerov considered a slightly more general
framework. This difference is not essential for us here.
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Fig. 6 Frozen boundary curve in
the full space R

2 with x = 1/3,
y = 1/5, β = −25. As β decays
to −∞, the cusp point goes to
infinity along the main diagonal
in the first quadrant in the
coordinates (ξ, 1 − τ)

The limit shape continuous Young diagramW(u) (5.16) in the 45◦ rotated coordi-
nate system satisfies a more symmetric differential equation

W′(u) =
π − Arg

(
zc
(
u + 1, W(u)−u

2

)
− β
)− Arg zc

(
u + 1, W(u)−u

2

)

π − Arg
(
zc
(
u + 1, W(u)−u

2

)
− β
)+ Arg zc

(
u + 1, W(u)−u

2

) . (5.18)

We remark that the root zc(ξ, τ ) of the cubic equation (5.7) depends on (ξ, τ )

in a nonlinear and somewhat implicit manner. Therefore, it may be challenging to
extract useful information about the Grothendieck limit shape from the differential
equations (5.17)–(5.18). Even for producing the plots in Sect. 5.4 we relied not on
these differential equations, but rather on the original implicit equation (5.12).

5.3.2 Staircase frozen facet

Observe that when (ξ, τ ) is in the frozen zone II, we have ∇H = (−1,−1), which
corresponds to taking zc from (β, 0). Thus, in this frozen zone we have from (5.17)
and (5.18):

L′(τ ) = −1

2
, W′(u) = 0. (5.19)

Notice that for (5.19) to hold, the point (L(τ ), τ ) of the Grothendieck limit shape
must belong to the frozen zone II. In fact, this is possible for certain choices of the
parameters (x, y, β), namely, when β is sufficiently large in the absolute value:

Lemma 5.6 Let the parameters (x, y, β) satisfy (5.1). For any fixed x, y, there exists
β0 < 0 such that for all all β < β0, the frozen zone II extends through the whole
horizontal strip ξ > 0, 0 < τ < 1 in the (ξ, τ ) coordinates. See Fig.6 for an
illustration.
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Proof An explicit parametrization of the frozen boundary curve by z ∈ R is obtained
by solving the double critical point equations (5.8). This parametrization has the form

ξ = (1 − xy)
(
y
(
β + xz2 − 2z

)+ z2(1 − βx)
)

(1 − xz)2(y − z)2
,

τ = 1 + (z − β)2
(1 − xy)

(
y − xz2

)

(−β)(1 − xz)2(y − z)2
. (5.20)

One can check the following facts about the frozen boundary curve ∂L in the whole
space (ξ, τ ) ∈ R

2:

• ∂L is tangent to the horizontal coordinate line at a unique point (ξ, 1) with ξ > 0.
This point corresponds to z = β which is a double zero of τ − 1. Substituting
z = β into ξ produces a positive quantity.

• ∂L is tangent to the vertical coordinate line at a unique point (0, τ ) with τ < 1.
This point corresponds to z → ∞. Taking this limit in τ shows that the tangent
point has τ < 1.

• The slope of the curve ∂L in the coordinates (ξ, 1 − τ) (as in Fig. 4) is

−∂τ/∂z

∂ξ/∂z
= 1 − z

β
,

which changes sign only at z = β and z = ∞.
• For z = y and z = 1/x , the curve ∂L goes to infinity in two different asymptotic
directions. For z → y we have ξ, 1 − τ → −∞, and for z → 1/x we have
ξ, 1 − τ → +∞. Each of these asymptotic directions has degree 2, that is, there
are exactly two components of ∂L escaping to infinity in each of the first and the
third quadrants in the coordinates (ξ, 1 − τ).

Now let us look at the “cusp” point of ∂L, that is, where the third derivative of
S(z; ξ, τ ) vanishes along with the first two. In Fig. 4, the cusp is at the tip of the
frozen zone II. Let us show that the cusp point is always unique and exists in the
full space (ξ, τ ) ∈ R

2. Take ∂3

∂z3
S(z; ξ, τ ), and substitute into it ξ, τ as in (5.20). We

obtain a rational function in z and the parameters (x, y, β)whose numerator is a cubic
polynomial

P(z) = z3x(1 + xy − xβ) − 3z2xy + 3zxyβ + y(y − β − xyβ).

The discriminant of P(z) is−27x2y2(1− xβ)2(1− xy)2(y−β)2, which is manifestly
negative. Therefore, there is a unique real root z of P(z), and it corresponds to the cusp
point.

Let us look at the behavior of the cusp point for large negative β. We have

P(z) = P0(z)β + O(1), β → −∞, where P0(z) := −x2z3 + 3xyz − y(1 + xy).
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The polynomial P0(z) has a unique real root, denote it by z0. Clearly, the root of P(z)
becomes close to z0 as β → −∞. Next, for z = z0, we have

ξ = 1 − τ + O(1) = (1 − xy)
(
y − xz20

)

(1 − xz0)2(y − z0)2
β + O(1), β → −∞.

Since P0(−√
y/x) > 0 and the coefficient by z3 in P0 is negative, we see that y−xz20 >

0. This inequality implies that the cusp point of ∂L goes to infinity along the main
diagonal in the first quadrant in the coordinates (ξ, 1 − τ).

We conclude that for large β, four components of the frozen boundary escape as
ξ, 1 − τ → +∞, and two components escape as ξ, 1 − τ → −∞. Together with
the tangence properties observed at the beginning of the proof, this implies that each
horizontal line at height τ , τ ∈ [0, 1], intersects the frozen boundary precisely four
times. The frozen zone II is between the middle two intersections. This completes the
proof. ��

By Lemma 5.6, if |β| is sufficiently large and β < 0, the limit shape of the
Grothendieck random partition always has a part where the derivative satisfies (5.19).
In particular, the density of the particles �i is 1

2 . We call the part of the Grothendieck
limit shape where (5.19) holds the staircase frozen facet.

Let us discuss how the partition λ looks in the staircase facet. For the two-
dimensional Schur process, in zone II the up-diagonal paths are densely packed and
move diagonally. In terms of the particle configuration X2d = {xmi : 1 ≤ m, i ≤ N },
this means that

xm+1
i = xmi − 1, xmi+1 = xmi − 1.

Thus, for the coordinates λi and �i = λi +N−i of the Grothendieck random partition,
where �i = xii in distribution (Proposition 3.2), we have in the staircase facet:

�i+1 = �i − 2, λi+1 = λi − 1.

Thus, in this facet, the Young diagram λ locally looks like a staircase with no fluctua-
tions. This justifies the name “staircase frozen facet”. In the 45◦ rotated coordinates,
the limit shapeW(u | x, y, β) of λ is horizontal in this facet. We refer to Sect. 5.4 for
illustrations of staircase facets.

5.3.3 Reduction to Schur measures and Plancherel limit shapes

Observe that for all β ≤ 0, under the Schur process M2d

β;Gr (3.10), the marginal

distribution of the partition μN is simply the Schur measure with probability weights

(1 − xy)N
2
sμN (x, . . . , x

︸ ︷︷ ︸
N

)sμN (y, . . . , y
︸ ︷︷ ︸

N

). (5.21)
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When β = 0, the weights (−β) of the diagonal edges in the directed graph in Fig. 2
vanish. Thus, for β = 0, all up-diagonal paths must go vertically, and almost surely
μm = μN for all m = 1, . . . , N . This implies that for fixed x, y and as β ↗ 0, the
limit shapeW(u | x, y, β) of the Grothendieck random partition λi = μi

i converges to
that of the Schur measure (5.21). Denote the latter limit shape bySτ=1(u). It depends
on the parameters x, y only through their product, and is independent of β.

On the other hand, the marginal distribution of the partition μ1 is the following
Schur measure:

(1 − xy)N
2
(1 − xβ)−N (N−1)sμ1(x, . . . , x

︸ ︷︷ ︸
N

)sμ1(y, . . . , y
︸ ︷︷ ︸

N

;−β̂, . . . ,−β̂
︸ ︷︷ ︸

N−1

), (5.22)

where (−β̂, . . . ,−β̂) is the dual specialization (e.g., see [13, Section 2] for the def-
inition). Denote the limit shape of μ1 by Sτ=0(u). It depends on all our parameters
x, y, β.

Using, for example, the Robinson–Schensted–Knuth correspondence [36, 51], one
can show that the expected numbers of boxes in the partitions μN and μ1 are, respec-
tively,

E|μN | = N 2xy

1 − xy
, E|μ1| = N 2xy

1 − xy
− N (N − 1)β y.

Dividing by N 2 (which comes from rescaling both coordinate directions of the con-
tinuous Young diagram by N−1), we see that the norms (5.15) of the limit shapes
are

‖Sτ=1‖ = xy

1 − xy
, ‖Sτ=0‖ = xy

1 − xy
− β y.

When x, y are small, ‖Sτ=1‖ is of order xy, and the rescaled limit shape

1√
xy

Sτ=1
(
u
√
xy
)

converges to the celebrated Vershik–Kerov–Logan–Shepp (VKLS) curve

�(u) :=
{

2
π

(
u arcsin( u2 ) + √

4 − u2
)

, |u| ≤ 2;
|u|, |u| > 2.

(5.23)

Note that ‖�‖ = 1.
By Proposition 3.2 and Theorem 5.5, the Grothendieck random partition λ should

have a limit shape which is between those of μ1 and μN . When −β y � xy �
1, the limit shapes of μ1 and μN should be close to each other and to the VKLS
shape (5.23). Together with numerical experimentation in Sect. 5.4, this prompts the
following conjecture:
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Conjecture 5.7 Let x, y ↘ 0 and β = β(x) ↗ 0 such that −β(x) � x. Then the
rescaled Grothendieck limit shape 1√

xy W(u
√
xy | x, y, β(x)) converges to the VKLS

shape �(u).

Consider another regime when x, y ↘ 0 but β = β(y) → −∞ such that −β y is
fixed. This change in β does not affect μN , and the norm ofSτ=1 goes to zero. After
rescaling,Sτ=1 is close to VKLS shape. The limit shape of μ1 at τ = 0, on the other
hand, grows macroscopically, but one can show thatSτ=0 still contains a Plancherel-
like part at scale xy in the neighborhood of u = 1. In the two-dimensional Schur
process picture, for β → −∞ the up-diagonal paths strongly prefer to go diagonally.
Therefore, we expect that in this regime, the Grothendieck limit shape contains a
(shifted) Plancherel-like part. However, numerical experimentation Sect. 5.4 suggests
that this shape is not exactly the VKLS shape. Let us formulate a conjecture:

Conjecture 5.8 Let x, y ↘ 0 and β = β(y) = −K/y, where K > 0 is fixed. There
exists K0 > 0 such that for all K > K0, in the O(

√
xy)-neighborhood of u = 1, the

Grothendieck limit shape W(u | x, y, β(y)) is close to

u + 1

2
+

√
xy

2
�(K )

(
u − 1√

xy

)

, (5.24)

where �(K ) is a suitable K -dependent deformation of the VKLS shape �. We expect
that as K → −∞, the shapes �(K ) approach �.

We have formulated Conjectures 5.7 and 5.8 only for limit shapes, but similar
Plancherel-like behavior should arise for Grothendieck random partitions themselves.

5.4 Grothendieck limit shape plots

The limit shape surface H(ξ, τ ) of the two-dimensional Schur process has the normal
vector ∇H(ξ, τ ). This gradient is expressed through the solution zc(ξ, τ ) to the cubic
equation (5.7), see (5.9). However, H(ξ, τ ) itself is not explicit, making it necessary
to employ numerical integration to graph the surface. This is achieved by integrating
the gradient along the ξ direction, starting from +∞ and moving towards the point
(ξ, τ ).

Recall that the Grothendieck limit shape L(τ ) is the cross-section of the Schur
process limit shape surface η = H(ξ, τ ) in the (ξ, τ, η) coordinates, at the plane η = τ .
This cross-section is not explicit either. Therefore, we need to solve numerically the
implicit equation (5.12) to get the desired function L(τ ). After obtaining L(τ ), we
use it to graph the shape W(u) in the coordinate system rotated by 45◦ using the
parametric representation (5.16).

We remark that the differential equations (5.17) and (5.18) forL(τ )orW(u), respec-
tively, are not very useful for graphing directly, as they cannot be solved explicitly.
While a numerical solution of these differential equations is possible, it would require
specific convergence estimates, which we avoid with our more direct approach.

We implement a cubic equation solver in Python to find the roots zc(ξ, τ ) along
a regular grid of (ξ, τ ), utilizing the code from [50]. Then (also with Python) we
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Fig. 7 Graphs with x = 1/3, y = 1/5, β = −6. See Sect. 5.4 for description

perform direct numerical integration of the ξ -gradient of the height function (5.9).
After that we solve the implicit equation (5.12). This procedure yields the values of
W(u) along a non-regular grid in u, which is sufficient for graphing the limit shape
of Grothendieck random partitions. Our Python code is available at [38].

Remark 5.9 Herewe do not performprobabilistic simulations ofGrothendieck random
partitions, but rather focus on numerically graphing the Grothendieck limit shapes
which exist due to Theorem 5.5.

Next we descibe the resulting plots of Grothendieck limit shapes. The images are
located at the end of the paper.

5.4.1 Basic example (x = 1/3, y = 1/5, ˇ = −6)

First, we take the same parameters as in Fig. 4. In Fig. 7, the left pane displays the
limit shape surface H for the Schur process (red), the plane η = τ (blue), and the
curve (L(τ ), τ, τ ) in the cross-section. The top right pane shows the projection of
the cross-section onto the bottom coordinate plane (ξ, 1 − τ), and also includes the
frozen boundary curve. The frozen boundary is the same as in Fig. 4. The bottom right
pane presents the limit shape of Grothendieck random partitions in the coordinates
(u,W(u)). The limit shape W(u) always lies below the line u + 2, as the number of
nonzero parts in the Grothendieck random partition is limited to at most N .

5.4.2 Large negative beta (x = 1/3, y = 1/5, ˇ = −25)

Second, we consider the case of large negative β. In the top left pane in Fig. 8, we have
zoomed in around the flat section of the surface H (red). The blue plane corresponds
to η = τ , and the black meshed plane extends the zone II frozen facet of H which has
∇H = (−1,−1). We see that the intersection of the blue plane with the red surface is
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Fig. 8 Graphs with x = 1/3, y = 1/5, β = −25. See Sect. 5.4 for description

Fig. 9 Exact samples of the Grothendieck random partitions with N = 50 and parameters x = 1/3,
y = 1/5, and β = −6 (left plot) or β = −25 (right plot). See Sect. 5.5 for a discussion of the sampling
mechanism. We observe that the samples follow the limit shapes from Figs. 7 and 8, as it should be. In
particular, notice the staircase frozen facet on the right plot

a straight line in this neighborhood. The bottom left pane displays the projection of the
cross-section, similar to Fig. 7. By Lemma 5.6, the black curve must traverse through
zone II. On the right pane, we added a horizontal line to highlight the staircase frozen
facet where the limit shape W(u) is horizontal.

5.4.3 Plancherel-like behavior for small negative beta

In Figs. 10 and 11 we numerically support Conjecture 5.7 that the rescaled
Grothendieck limit shape converges to the VKLS shape �(u) (5.23) as x, y → 0
such that β � x . In Fig. 10 the parameters x = y = 1/40 are fixed. As β gets

close to zero (we chose three orders, (xy)
1
2 , (xy)

3
4 , and xy), we see that the plots of
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Fig. 10 Graphs ofW(u) with x = y = 1/40 and β = −1/40 (round), β = −1/250 (yellow squares), and
β = −1/1600 (green squares). We also added the scaled VKLS curve

√
xy �(u/

√
xy). See Sect. 5.4 for

more detail

Fig. 11 Graph of W(u) with x = y = 1/100 and β = −1/1000 and the scaled VKLS curve√
xy �(u/

√
xy). See Sect. 5.4 for more detail
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Fig. 12 Graphs with x = y = 1/40 and β = −120. On the right, we added the shifted and scaled VKLS
shape (given by (5.24) with �(K ) replaced by � (5.23)). The Grothendieck limit shape apparently is not
close to the shifted and scaled VKLS shape. See Sect. 5.4 for more detail

W(u) get closer to the VKLS shape. Moreover, Fig. 11 demonstrates that for smaller

x = y = 1/100, taking β = 1/1000 (order (xy)
3
4 ), makes the shape W(u) closer

than for x = y = 1/40. Indeed, we have for the uniform norms:

(xy)−
1
2 · ∥∥W(· | x, y, β) − √

xy �
(·/√xy

)∥
∥
C

∣
∣
∣
∣
x=y=1/40, β=1/250

≈ 0.10;

(xy)−
1
2 · ∥∥W(· | x, y, β) − √

xy �
(·/√xy

)∥
∥
C

∣
∣
∣
∣
x=y=1/100, β=1/1000

≈ 0.06;

(xy)−
1
2 · ∥∥W(· | x, y, β) − √

xy �
(·/√xy

)∥
∥
C

∣
∣
∣
∣
x=y=1/900, β=1/27000

≈ 0.044,

which suggests that these expressions should decay to zero.

5.4.4 Plancherel-like behavior for large negative beta

In Fig. 12, we consider the regime of Conjecture 5.8, and take x = y = 1/40, β =
−120, so −β y = 3. The Grothendieck limit shapeW(u) has a staircase frozen facet,
and to the right of it we observe a curved part of size O(

√
xy). Zooming in, we see

that this part ofW(u) does not seem to be close to the shifted and scaled VKLS shape,
see Fig. 12, right.

5.4.5 Positive beta (x = 1/3, y = 1/5, ˇ = 1/12)

By Proposition 3.1, the Grothendieck measure M 
β;Gr(λ) on partitions is also non-

negative for 0 ≤ β < min(x−1, y). Setting β > 0 makes the corresponding
two-dimensional Schur process (3.10) a signed probability measure. However, in this
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Fig. 13 Graphs with x = 1/3, y = 1/5, and β = 1/12. The two graphs on the right do not correspond to
a nonnegative probability measure on two-dimensional point configurations. However, we conjecture that
the Grothendieck measures still converge to the limit shapeW(u) on the right. See Sect. 5.4 and Conjecture
5.10 in particular for details

case we can still define the surfaceH(ξ, τ ) using the root zc(ξ, τ ) of the cubic equation
(5.7). Then we can define the curveL(τ ) as the solution of the implicit equation (5.12),
and finally obtain a shape W(u) via (5.16). This leads to the following conjecture:

Conjecture 5.10 The curve W(u) = W(u | x, y, β) is well-defined by the procedure
described above for all β < min(x−1, y). Moreover, this curve W(u) is the limit
shape of the random partitions distributed according to the Grothendieck measure
with homogeneous parameters (5.1) in the 45◦ rotated coordinate system.

In Fig. 13, we numerically support Conjecture 5.10 by considering parameters x =
1/3, y = 1/5, β = 1/12. We plot the surfaceH(ξ, τ ) in Fig. 13, top left. In the bottom
left pane we plot the curve L(τ ) together with the “frozen boundary”. An interesting
feature is that here L(τ ) is tangent to this “frozen boundary”. Finally, in Fig. 13,
right, we plot the conjectural limit shapeW(u | 1

3 ,
1
5 ,

1
12 ). From additional numerical

examples we also noticed that as β ↗ min(x−1, y), we have ‖W(· | x, y, β)‖ → 0.

5.5 Exact sampling Grothendieck random partitions by Schur dynamics

It is known that Schur processes can be exactly sampled using push-block type dynam-
ics or Robinson–Schensted–Knuth (RSK) correspondences. We refer to [10, 13, 19],
[62, Section 4], or [6] for various expositions of general sampling mechanisms for
Schur processes. An application to our Schur process M2d


β;Gr (3.10) is implemented

in Python [38, file RSK_code.py] and follows the RSK dynamics on interlacing
arrays as in [62]. We only work with homogeneous parameters, but a straightforward
modification would cover the fully inhomogeneous case. The results of the simulation
are given in Fig. 9.
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Let us briefly describe our sampling mechanism in terms of semistandard Young
tableaux (which are in a well-known bijection with interlacing arrays). Start from an
empty Young tableau T (0) = ∅.

In the first stage, insert into this tableau an N×N matrix A of independent geometric
random variables with distribution Prob(ξ = k) = (1 − xy) · (xy)k , k = 0, 1, 2, . . .
using the classical RSK correspondence [51]. This procedure is performed in N steps,
and in each t-th step we form the word 1At1 . . . N AtN , where Ai j ∈ Z≥0 are the
elements of the matrix A, and powers of letters mean repetition. This word is then
inserted into the Young tableau T (t − 1) using the usual RSK insertion. After these
N steps, the shape of our Young tableau T (N ) is distributed according to the Schur
measure (5.21) with specializations (x, x, . . . , x) and (y, y, . . . , y).

In the second stage, take an (N − 1) × N matrix of independent Bernoulli ran-
dom variables with distribution Prob(η = 1) = −βx/(1 − βx), and insert it into the
tableau T (N ) using the dual RSK correspondence. This procedure is performed in
N −1 steps, and in each s-th step we form the word 1Bs1 . . . N BsN (where Bi j ∈ {0, 1}
are the elements of B), and insert it into the Young tableau T (N + s − 1) using the
dual RSK insertion. An implementation of the dual RSK insertion for semistandard
Young tableaux (equivalently, interlacing arrays of integers) that we used is the algo-
rithm Q

q=0
row [−β̂] from [62, Section 4.3]. After these N − 1 steps, the shape of our

Young tableau T (2N − 1) is distributed according to the Schur measure (5.22) with
specializations (x, x, . . . , x) and (y, y, . . . , y;−β̂, . . . ,−β̂).

To obtain the Grothendieck random partition, one has to track different parts of the
shape of the evolving Young tableau T (N + s − 1). Namely, set

λN−s+1 = T (N + s − 1)N−s+1, s = 1, 2, . . . , N , (5.25)

where T (N + s − 1) j means the j-th part of the shape of the Young tableau.

Proposition 5.11 The distribution of the random Young diagram λ = (λ1, . . . , λN )

defined by (5.25) coincides with the Grothendieck measure (1.3) with homogeneous
parameters xi = x, y j = y, βr = β.

Proof The joint distribution of the shapes of the semistandard Young tableaux T (N +
s − 1), s = 1, . . . , N , is given by the Schur processM2d


β;Gr (3.10) (with homogeneous

parameters), where the shape of T (N + s − 1) is μN−s+1. Indeed, this statement
follows from the general Schur dynamics result [19, Theorem 10] (where instead of
the push-block dynamics one can use the Robinson–Schensted–Knuth one, cf. [25,
62]). With this identification, the desired claim follows from Proposition 3.2. ��
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