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Abstract
Survival regression models can achieve longer warning times at similar receiver operating characteristic performance than 
previously investigated models. Survival regression models are also shown to predict the time until a disruption will occur 
with lower error than other predictors. Time-to-event predictions from time-series data can be obtained with a survival 
analysis statistical framework, and there have been many tools developed for this task which we aim to apply to disruption 
prediction. Using the open-source Auton-Survival package we have implemented disruption predictors with the survival 
regression models Cox Proportional Hazards, Deep Cox Proportional Hazards, and Deep Survival Machines. To compare 
with previous work, we also include predictors using a Random Forest binary classifier, and a conditional Kaplan-Meier 
formalism. We benchmarked the performance of these five predictors using experimental data from the Alcator C-Mod and 
DIII-D tokamaks by simulating alarms on each individual shot. We find that developing machine-relevant metrics to evaluate 
models is an important area for future work. While this study finds cases where disruptive conditions are not predicted, there 
are instances where the desired outcome is produced. Giving the plasma control system the expected time-to-disruption will 
allow it to determine the optimal actuator response in real time to minimize risk of damage to the device.

Keywords  Tokamak plasma · Disruption prediction · Machine learning · Survival analysis

Introduction

The tokamak’s simple torus-shaped design and good 
confinement properties have made it the most constructed 
and studied magnetic confinement fusion concept in the 
world. From this successful history, understanding of 
the physics basis, and familiarity with the engineering 
requirements, there are presently several startup companies 
such as Commonwealth Fusion Systems [1], as well as 

the international collaboration on the ITER project [2] 
pursuing tokamaks as a pathway to the first fusion pilot 
plant. However, plasma confinement in tokamaks is prone to 
instabilities, which may lead to disruptions [3]. A disruption 
is the sudden and complete loss of plasma confinement, 
inflicting large thermal and structural loads on plasma 
facing components. In present day experimental devices, 
disruptions are relatively harmless, but in a future tokamak 
power plant the stored thermal and magnetic energy will be 
high enough to cause significant damage. Over the course 
of a discharge (shot), the plasma control system (PCS) must 
be able to predict disruption onset with sufficient warning 
time to take action for avoiding the disruption or minimizing 
damage.

The best choice of action to address an oncoming 
disruption depends on the associated risks of damage. 
Triggering disruption mitigation systems (DMS) such 
as massive gas injection can be done on short timescales 
(10’s of ms); however, this speed comes at a price. DMS 
essentially creates a disruption with reduced thermal and 
structural loads [4]. For example, the experimental tokamak 
SPARC [5] is designed to withstand the mechanical strains 
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from at least 300 unmitigated or 1800 mitigated disruptions 
[6]. Terminating the shot early with a safe ramp-down of 
the plasma current is less hazardous, but this requires a 
long warning time (100’s of ms). Ideally, the PCS should be 
able to make an informed decision on which action to take 
considering the length of warning time before a disruption 
occurs. Determining this warning time is challenging, as 
there are many potential causes of disruptions with a wide 
range of timescales. However, decades of experimental 
data from a diverse set of tokamaks in a variety of operating 
regimes provides a robust foundation for exploring a data-
driven approach to disruption prediction and avoidance [7].

A non-exhaustive list of data-driven approaches include 
those deployed on the ASDEX-Upgrade [8], DIII-D [9], 
JET [10], and EAST [11] tokamaks. There have also been 
studies using experimental data for cross-machine modeling 
[12]. The models used in these systems predict disruption 
onset with reasonable performance, and are typically 
able to correctly identify 90% of disruptive states (true 
positive rate–TPR) while only labeling 5% of stable states 
as disruptive (false positive rate–FPR). ITER expects to 
require a TPR of at least 95% [13], which would lead to 
a significantly higher FPR with the present models. This 
is unacceptable in situations where false positives come 
with a high risk of damage. Even if the damage caused by 
DMS is negligible, significant downtime due to continuous 
premature plasma termination would prove detrimental to 
the economics of a tokamak power plant [14].

These data-driven models also only give a binary output: 
whether or not a disruption will occur in the future. While 
some implementations such as the random forest described 
in [9] offer insight in a postmortem analysis, the information 
given to the PCS in real time is limited. The task of 
identifying the least hazardous actions to avoid disruptions 
is similar to the time-to-event predictions common in 
healthcare for selecting treatments based on mortality risk. 
This statistical framework is called survival analysis, and is 
well-established in healthcare and other fields [15, 16]. In 
the context of tokamak operation, survival analysis should 
allow the prediction of both if a disruption will occur in 
the future and the window of time when it is most likely to 
take place. Previous work has applied survival analysis to 
disruption prediction in tokamaks [17, 18]; however, these 
studies did not compare performance with other machine 
learning methods.

Using the open-source Auton-Survival package [19] 
along with data from the Alcator C-Mod [20] and DIII-D 
[21] tokamaks, we have benchmarked the performance of 
the binary classifier model Random Forest (RF) [9, 22] 
against the conditional Kaplan-Meier formalism (KM) 
[17, 23], as well as the survival regression models Cox 
Proportional Hazards (CPH) [24], Deep Cox Proportional 
Hazards (DCPH) [15], and Deep Survival Machines (DSM) 

[25]. The remainder of this paper is organized as follows: 
The “Models” section describes the differences between the 
types of machine learning algorithms investigated in this 
study, and a full list of models and their acronyms is given in 
Table 1. The “Methods for Comparing Disruption Predictor 
Performance” section  covers the methodology used to 
compare model performance based on various metrics. The 
“Model Training and Bootstrap Results” section provides 
the calculated metrics for each model in various scenarios 
when applied to data from the Alcator C-Mod and DIII-D 
tokamaks, and discusses the importance of various 
diagnostics. The “Estimating Time-to-Disruption” section 
investigates using the models to estimate time-to-disruption 
in Alcator C-Mod and DIII-D, and provides calculated 
output for selected disruptive and non-disruptive shots on 
Alcator C-Mod. Lastly, the “Summary” section reviews the 
analysis and covers areas for future work.

Models

Binary Classifiers

The typical method for predicting disruption onset with 
machine learning is to use binary classification. There are 
many types of binary classifiers, and for this study we will 
employ a RF implementation as used in [9]. We assume there 
exists a transition from a stable plasma state to a disruptive 
plasma state at a point in time before the disruption takes 
place, and that this transition can be detected using plasma 
stability measurements of various parameters such as 
electron density, plasma current, shaping, etc. Over the 
course of a shot, real-time diagnostics sample at some finite 
temporal resolution. The signals from each shot are then a 
series of time slices.

To train a binary classifier, the time-series data are 
represented as a collection of N tuples {x⃗i, di}Ni=1 , where 
x⃗i is a vector of features (plasma measurements at a given 
time) and di is the label of the features so each time slice 
is either disruptive ( d = 1 ) or non-disruptive ( d = 0 ). For 
shots where no disruption is observed, all time slices are 
labeled as non-disruptive. For shots where a disruption is 
observed, time slices within a specified time window before 
the disruption are labeled as disruptive, while time slices 
outside this window are labeled as non-disruptive. This time 
window used for labeling is called the class time Δ�class , 
and can be determined using plasma physics intuition for 
certain disruptive instabilities. For example, on DIII-D the 
amplitudes of magnetic field perturbations are observed to 
start growing around 50 ms before locked mode disruptions 
take place [26]. Alternatively, precursors for disruptions 
caused by impurity buildup may be expected to evolve on 
the energy confinement timescale (100’s of ms). The class 
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time could also be left as a value included in hyperparameter 
tuning when optimizing for performance of a particular 
metric. A diagram of labeling data is shown in Fig. 1a. Once 
trained, the binary classifier takes as input a new feature 
vector x⃗ and outputs a value between 0 and 1, which is the 
classifier’s prediction that x⃗ should be labeled as disruptive. 
The output of a binary classifier can be interpreted as the 
probability that the present time slice is disruptive, or PD(x⃗) . 

Conditional Kaplan–Meier Formalism

An extension of a binary classifier using the survival 
analysis framework is the conditional Kaplan–Meier 
formalism (KM) disruption predictor as described in [17]. 
In this implementation, the outputs of a binary classifier 
are extrapolated and used to predict the risk of a disruption 
occurring at a future point in time.

First, a moving window of duration Δtfit is used to 
calculate the line of best fit for several previous predictions 
made by the binary classifier. One can then extrapolate from 
the present time slice x⃗ at time t the probability that a future 
time slice x⃗f  at time t + Δthorizon is in the disruptive class 
using the equation

(1)PD(x⃗f ) ≈ PD(x⃗) +
dPD

dt
Δthorizon

where PD(x⃗f ) is restricted to the interval [0, 1], dPD

dt
 is 

obtained from the line of best fit, and Δthorizon is how far 
into the future the prediction is being made [17]. Both Δtfit 

Fig. 1   Comparison between labeling of time-series data for a disruptive shot (left) and a non-disruptive shot (right) for binary classification (a) 
and survival regression (b)

Fig. 2   An illustration of the KM disruption predictor implemented in 
[17]. The output of a binary classifier (black dots) within the window 
Δtfit (green) is used to calculate a line of best fit (blue). The slope 
of this line is then extrapolated into the future (red) to determine 
the confidence that a time slice at t + Δthorizon should be labeled as 
disruptive
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and Δthorizon can be set manually or left to hyperparameter 
tuning. An illustration of this is shown in Fig. 2.

Censoring‑Informed Survival Regression Models

We will investigate three types of survival regression 
models: Cox Proportional Hazards (CPH), Deep Cox 
Proportional Hazards (DCPH), and Deep Survival 
Machines (DSM). These models are available in the open-
source Auton-Survival package [19]. The training data 
for a survival regression model is given as {(x⃗i, ti, 𝛿i)}Ni=1 
[25], where x⃗i is the feature vector, ti is time until the 
final measurement, and �i is whether or not an event was 
observed at the final measurement. A comparison between 
the labeling of disruptive and non-disruptive shots for the 
survival regression models is shown in Fig. 1b.

Once trained, the survival regression model takes as 
input a new feature vector x⃗ and a horizon time Δthorizon . The 
output is then the probability that an event will be observed 
within the time interval [t, t + Δthorizon ]. This framework has 
several advantages which make it more readily applicable to 
disruption prediction compared to a binary classifier. First, 
the survival regression models take into account censoring 
which may otherwise be absent from binary classifiers [25]. 
For instance, if a plasma is in a disruptive state but the shot 
ends before a disruption occurs, this would lead to incorrect 
labeling for the final time slices of the data and negatively 
impact the binary classifier’s training.

The output of the survival regression models is also more 
interpretable than a binary classifier. As stated previously, 
the class time in a binary classifier determines how the 
output must be interpreted. One would need to re-train a 
new RF with varying class times to be able to differentiate 
between various horizons. With the survival regression 
models, the input includes the features to be evaluated and 
a horizon time in the future. One can use multiple horizons 
to calculate the probability of an event happening within 
some arbitrary future time window using a single survival 
regression model.

Methods for Comparing Disruption 
Predictor Performance

Our goal is to compare the performance of the above 
models in a way that ensures the development of a risk-
aware framework for disruption handling relevant to 
tokamak operation. We will start by evaluating the survival 
analysis models as disruption predictors when trained and 
tested on the same device. This requires a large existing 
dataset, which may be infeasible to obtain for future 
tokamaks if disruptions cause significant damage. It has 
been shown that when simply using normalized signals 
for the input features, the predictive performance of data-
driven techniques suffers when being applied to a device 
whose data is not included in training [28]. There are 
methods that aim to solve this problem by using a large 
amount of data from existing devices combined with 
limited data from a new device. These approaches include 
augmenting training data by applying surrogate techniques 
to synthetically increase the number of disruptive shots 
[29], and dynamically adapting the training set to include 
the most relevant data as it becomes available [30, 31]. It 
has been demonstrated that these techniques can greatly 
improve the performance of machine learning models on 
new devices with limited data [12, 32]. Similar methods 
could be applied to survival analysis models, though 
this is an area for future work and we will not do so in 
this study. As such, any results presented here will be 
optimistic when compared to potential performance in 
a new tokamak. Despite this limitation, we will still be 
able to determine the efficacy of survival analysis models 
compared to previously investigated models when used in 
the same way, and illustrate the difficulties that arise when 
attempting to compare performance of different machine 
learning algorithms.

While binary classifiers and survival regression 
models may be trained to reduce misclassifications for 
each individual time slice of the dataset, this value is 
not immediately applicable to machine operation. What 
a tokamak operator requires is the model’s prediction 
performance on a shot-by-shot basis. To calculate this 
performance, we will use similar methodology as presented 
in [9]. We calculate the model’s output risk values over 
the course of a shot and find the first time when an alarm 

Table 1   Acronyms for models Acronym Model Training data labels Deep learning

RF Random forest [22] Binary classification No
KM Conditional Kaplan–Meier [23] Binary classification No
CPH Cox proportional hazards [24] Survival regression No
DCPH Deep cox proportional hazards [27] Survival regression Yes
DSM Deep survival machines [25] Survival regression Yes
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is triggered. For non-disruptive shots, if an alarm is ever 
triggered this is recorded as a false positive. For disruptive 
shots, an alarm is only recorded as a true positive if the 
warning time is long enough for the PCS to execute some 
response. Warning time is defined as the time before a 
disruption that an alarm is triggered, Δtwarn = tdisrupt − talarm 
(if no alarm is triggered, Δtwarn = 0 ). Then for some required 
warning time Δtreq we enforce the condition Δtwarn > Δtreq . 
A sketch of this is shown in Fig. 3. The exact value of Δtreq 
depends on the actuators in a future device. In ITER, it is 
anticipated that the response time of DMS will be around 
30 ms [33], while in SPARC it is expected to be 20 ms. In 
this study we will compare performance of each model with 
a required warning time of 10 ms, 50 ms, and 100 ms.

Performance Metrics

There are numerous metrics which can be used to evaluate 
the performance of a predictive model. The first we will 
consider is the Receiver Operating Characteristic (ROC) 
curve, which details the tradeoff between TPR and FPR. 
The area under this curve can be used as a metric of overall 
model performance (AUROC), where higher is better. A 
perfect AUROC score is 1, and in a situation with even 
class balance randomly guessing the labels yields an 
AUROC score of 0.5. While this metric is widely used, it is 
challenging to meaningfully interpret AUROC values in the 
context of disruption prediction and avoidance.

The primary drawback is AUROC assumes equal 
misclassification costs, in that false negatives and false 
positives have the same weighting. A predictive model 
deployed in a PCS should never be expected to operate 
in all regions of the ROC curve simultaneously. In future 
devices such as ITER or SPARC, alarm sensitivity must be 

optimized for the costs of false negatives, false positives, and 
disruption frequency in the scenario that an operator will run 
[33]. While all possible operating points are included in the 
ROC curve, the total area is irrelevant when determining 
a model’s performance at the optimal TPR/FPR point. We 
will still include AUROC results to compare with previous 
studies that reported this metric.

Another metric which is specifically used in the context 
of evaluating survival analysis models is the Activity 
Monitoring Operating Characteristic (AMOC) curve [34], 
which describes the tradeoff between time to detect that 
a particular condition is met and FPR. For the purposes 
of disruption prediction where we are instead looking at 
time before an event, we will look at a curve describing 

Fig. 3   Illustration of how alarms, true positives, false positives, and 
warning times are defined in our benchmarking methodology. If the 
predicted risk value (black) exceeds some threshold (purple dashed) 
an alarm is triggered. For disruptive shots (left), the warning time 
Δtwarn (red) is compared to the required warning time Δtreq (blue). 

If Δtwarn > Δtreq the alarm is recorded as a true positive (upper left). 
Otherwise, the alarm is recorded as a false negative (lower left). For 
non-disruptive shots (right), if an alarm is ever triggered it is recorded 
as a false positive (upper right). Otherwise it is recorded as a true 
negative (lower right)

Fig. 4   Depiction of a warning time characteristic (WTC) curve. 
Obtained by sweeping through many alarm configurations and 
finding the interquartile mean (IQM) of warning times corresponding 
to each unique FPR. Area under this curve (AUWTC) is only counted 
for the FPRs under 5%, shaded in green
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the tradeoff between typical warning time and FPR, or a 
Warning Time Characteristic (WTC) curve.

Similar to an ROC curve, the area under this WTC curve 
(AUWTC) yields a metric on how well the model performs, 
where higher is better. Unlike an ROC curve, we are unable 
to include the entire area of the curve in this calculation, 
since long warning times could easily be achieved with high 
FPR. This is not a meaningful result, so we will limit this 
area calculation to only include FPRs below some cutoff 
value. For this study we arbitrarily chose a FPR of 5%, but 
this could easily be varied within the presented framework. 
A plot of this metric is shown in Fig. 4. Note that this area 
has units of ms, and in the calculation the actual warning 
times are multiplied by small values from the FPR.

For AUROC and AUWTC, we must determine the 
relationship between FPR, TPR, and typical warning times 
for a model. The most straightforward approach is using a 
simple threshold alarm, as shown in Fig. 3. In this alarm 
type, a threshold value is set and once the model’s predicted 
risk value exceeds it an alarm is triggered. To obtain ROC 
and WTC curves with this alarm type, the FPR, TPR, and 
warning times are calculated for many threshold values 
[12]. In this study, the threshold values were determined 
by every unique risk calculated by a model over the entire 
dataset. This ensures each threshold has a unique FPR, TPR, 
and set of warning times, but there could be multiple TPRs 
and warning times corresponding to a single FPR and vice 
versa. This is due to the fact that the FPR is determined 
by the threshold values in the non-disruptive shots, which 
is independent from the TPR and warning times that are 
determined by the threshold values in the disruptive shots.

To resolve this, we chose to group TPRs and warning 
times by FPR. For each unique FPR, we found all the 
alarm thresholds which produced that FPR and then 
grouped the TPRs and warning times for those thresholds 
together. The reported TPR is then the mean of all the TPRs 
corresponding to a single FPR, while the reported warning 
time is the interquartile mean (IQM) of all the warning times 
corresponding to a single FPR. The IQM was chosen due 
to the distribution of warning times in the low FPR region. 
An example of this is shown in Fig. 5. The warning times 
tend to be heavily skewed right; thus, the arithmetic mean 
is impacted by outliers. The low FPR region also tends to 
have a low TPR, leading to the majority of the warning times 
being 0 and therefore having a median value of 0. The IQM 
is both resistant to outliers while yielding a nonzero value 
that can be used to compare the models’ performance.

Dataset Description

The datasets used in this study are composed of experimental 
data from the 2012–2016 campaigns of Alcator C-Mod and 
the 2014–2018 campaigns of DIII-D [12]. The 16 signals 
used are in Table 2. These signals were chosen because they 
are available for both C-Mod and DIII-D. In addition, all of 
these signals are expected to be available in real time to the 
PCS with sampling frequency of at least 200 Hz on future 
experimental devices like SPARC.

For this study, we are only considering disruptions during 
the steady state phase of the shot with the highest plasma 

Fig. 5   Distribution of warning times from a CPH predictor on 
Alcator C-Mod data at 4.95% FPR, plotted on semi-log scales. The 
mean (red) is heavily skewed by outliers, while the median (orange) 
is zero from the low TPR. The IQM (black) provides a nonzero value 
while being resistant to the influence of outliers

Table 2   Signals in Dataset

Signal Description Source

Ip Plasma current Magnetics
Ip − Ipprog Difference between plasma current and 

programmed plasma current
Magnetics

Vloop Loop voltage Magnetics
Bn=1∕Btor

Normalized magnitude of n = 1 mode Magnetics
Upper gap Distance between plasma and upper 

divertor
Magnetics

Lower gap Distance between plasma and lower 
divertor

Magnetics

�i Normalized internal inductance Equilibrium fit
� Plasma elongation Equilibrium fit
�p Poloidal beta Equilibrium fit
�N Normalized beta Equilibrium fit
q95 Safety factor at 95% normalized flux 

surface
Equilibrium fit

Wmhd Total stored energy Equilibrium fit
Prad Radiated power Bolometry
Prad∕Pin Radiated power/input power Bolometry
ne Electron density Interferometry
n∕nG Greenwald density fraction Interferometry
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current (flattop). Only data from this flattop region was 
included in this study. The flattop region was determined 
by intervals of time where the programmed plasma current 
had a magnitude of at least 100 kA and the time derivative 
had an absolute value less than 60 kA / s. Typical flattop 
durations for the shots in the dataset are 1 s for C-Mod and 
4 s for DIII-D. Shots with a flattop duration of less than 
150 ms, disrupted after the flattop phase, or encountered 
hardware failures were discarded. In both datasets there is 
a flag that indicates if a shot was intentionally disrupted by 
the operators; however, depending on the type of study being 
done this flag may not have been set. We discarded all shots 
that were labeled as intentionally disrupted, though there 
could be intentionally disruptive shots still included.

After filtering, the C-Mod dataset had 5682 shots, where 
5052 were stable and 630 were disruptive, while the DIII-D 
dataset had 7417 shots, where 6869 were stable and 548 
were disruptive. For model training, hyperparameter tuning, 
and calculating performance metrics, the datasets were split 
into training, validation, and testing categories in ratios of 
60%, 20%, 20% respectively, ensuring each category had 
the same ratio of stable and disruptive shots. The makeup 
of each dataset for C-Mod and DIII-D is shown in Table 3.

The signals were also put on a new timebase, since the 
original datasets had non-uniform sample rates between 
devices and had higher sampling rates in the region just 
before a disruption [35]. For C-Mod the original dataset had 
a sampling frequency of 50 Hz that increased to 1 kHz for 
the 20 ms before a disruption. For DIII-D the original dataset 
had a sampling frequency of 40 Hz that increased to 500 Hz 
for the 100 ms before a disruption. The authors note that 
this structure was chosen to reduce the size of the dataset 
while including fast dynamics close to a disruption [35]. For 
this study, all of the signals for both devices were linearly 
interpolated to a uniform 200 Hz, so each time slice has a 
duration of 5 ms. As mentioned previously, all signals used 
in this study should be available in real time at a temporal 
resolution of at least 200 Hz in future high performance 
tokamaks. There are some signals which could potentially 
be acquired with greater frequency, such as those measured 
with magnetic probes. The results shown may improve 
if the training data were provided with these signals at a 
higher temporal resolution. However, many of the included 
signals are global physical quantities that should be expected 
to evolve on resistive or energy confinement timescales 
considerably longer than this 5 ms time slice duration.

Before training, the signals were transformed using the 
preprocessing functions provided in Auton-Survival [19], 
where each measurement is normalized by subtracting 
the mean and dividing by standard deviation. The feature 
vectors were then created by concatenating 10 time slices of 
data together. That is, the feature vector for a given time is 
composed of the present and the previous 9 measurements, 
or x⃗i = {xi−9, xi−8, ..., xi−1, xi} . For the first several time slices 
where there are not enough previous measurements to make 
a full vector, the missing values are filled with zeroes. With 
a 5 ms time slice duration this means each feature vector 
contains 50 ms of temporal information, similar to [36]. 
Note that this treatment is strictly causal, as only past and 
present measurements are included.

Model Training and Bootstrap Results

To compare the performance of the models as disruption 
predictors in a variety of scenarios, AUROC and AUWTC 
metrics have been calculated for each dataset using several 
required warning times. One instance of each model was 
hyperparameter tuned to maximize AUROC evaluated 
at a particular required warning time, with an additional 
model tuned to maximize AUWTC. This was done because 
the required warning time may significantly impact the 
optimal hyperparameters for a model. In a future system 
where the required warning time is determined by the DMS 
hardware, the model should be hyperparameter tuned and 
have its performance evaluated on the same value of Δtreq . In 
addition, if a model was going to be selected by its AUWTC 
score, it should be hyperparameter tuned to maximize 
AUWTC. This leads to 40 models total that we investigated, 
one for each combination of model type (RF, KM, CPH, 
DCPH, DSM), evaluation metric (AUROC at 10 ms, 50 ms, 
100 ms, or AUWTC), and dataset (C-Mod, DIII-D).

The hyperparameter tuning was accomplished using 
the Optuna library [37] with a Bayesian inference search 
scheme. Models were trained using only data from the 
training set, and the metrics of interest calculated for the 
validation set on a shot-by-shot basis. Hyperparameter 
tuning is a very computationally intensive task, requiring 
re-training a model for dozens or hundreds of iterations. For 
this study where many unique models were investigated, we 
were not able to do a dense sweep of the entire parameter 
space for each model. Bayesian inference allows for an 

Table 3   Training, validation, 
and testing datasets

Training shots Validation shots Testing shots

 Device Stable Disruptive Stable Disruptive Stable Disruptive

C-Mod 3031 378 1011 126 1010 126
DIII-D 4122 328 1373 110 1374 110
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efficient search, but in the end each model was limited to 
300 or fewer hyperparameter tuning runs. It is possible that a 
better set of hyperparameters could have been found for each 
model, be it class time, horizon, learning rate, number of 
trees, etc. Despite this limitation, if a trend is seen to persist 
across several models we can reasonably determine that it 
was not due to inadequate hyperparameter tuning.

Bootstrap Results

Once the models were hyperparameter tuned, the metrics of 
interest were calculated for the test set using bootstrapping. 
Shots in the test set were randomly sampled with replacement 
for 50 iterations to obtain the median and interquartile range 
for the distribution of calculated metrics. This sampling 
was seeded so each model’s bootstrapped metrics were 
calculated on the same random selections of shots. Bootstrap 
results of the AUROC scores are shown in Fig. 6 and results 
for AUWTC scores are shown in Fig. 7. Note that while 
AUWTC is not impacted by required warning time, we still 
calculated AUROC for all three required warning times on 
the models hyperparameter tuned for AUWTC. A full set of 

ROC and WTC curves are in appendices A and B for C-Mod 
and DIII-D respectively.

The most significant trend is that AUROC typically 
decreases as Δtreq increases. This is an expected result, as 
it should be more difficult to anticipate a disruption further 
in the future. In Fig. 6 there is one particular case where the 
AUROC score actually reverses this trend and increases with 
larger Δtreq in the RF tuned for AUROC on DIII-D, though 
this could be from the 50 ms AUROC model getting a bad 
set of hyperparameters.

A result from both AUROC (Fig.  6) and AUWTC 
(Fig.  7) is that predicting disruptions is far easier on 
DIII-D than on Alcator C-Mod. This is in agreement 
with previous studies [36], and may be due to a variety 
of factors. 25% of disruptions on C-Mod are thought to 
have been caused by sudden injections of molybdenum 
into the plasma (UFOs) [38]. UFO disruptions can happen 
in under 5 ms, which does not allow enough time to deploy 
DMS and is much shorter than the required warning times 
investigated here. On DIII-D, UFO disruptions are less 
frequent because it experiences lower heat flux to plasma 
facing components and has graphite as a wall material, 
which radiates less energy when introduced to the plasma 

Fig. 6   Median and interquartile 
range of bootstrap AUROC 
metrics calculated on Alcator 
C-Mod (left) and DIII-D 
(right). Models are either 
hyperparameter tuned to 
maximize AUROC with 
Δtreq of 10 ms (red), 50 ms 
(orange), or 100 ms (yellow), 
or to maximize AUWTC (blue, 
purple, cyan). The AUROC 
metrics are then calculated for 
Δtreq of 10 ms (red, blue), 50 ms 
(orange, purple), or 100 ms 
(yellow, cyan)

Fig. 7   Median and interquartile 
range of bootstrap AUWTC 
metrics calculated on Alcator 
C-Mod (left) and DIII-D 
(right). Models are either 
hyperparameter tuned to 
maximize AUROC with Δtreq 
of 10 ms (red), 50 ms (orange), 
or 100 ms (yellow), or to 
maximize AUWTC (blue). 
The AUWTC metrics are then 
calculated for each model



Journal of Fusion Energy           (2024) 43:21 	 Page 9 of 19     21 

[7]. The difference in performance could also be due to 
the small size of C-Mod compared to DIII-D (0.7 m vs 
1.7 m major radius) leading to faster plasma dynamics, 
making predictions with longer required warning times 
challenging. This can be seen in the typically larger 
difference in AUROC score as Δtreq is increased on C-Mod 
compared to DIII-D (Fig. 6).

Comparing AUROC results between models, it can be 
seen that RF, KM, DCPH, and DSM typically have similar 
scores. CPH on the other hand is generally the lowest 
performing model for both devices and metrics, with the 
median AUROC dropping below 0.5 in Alcator C-Mod for 
the longer required warning times (Fig. 6).

Comparing AUWTC results on DIII-D, RF and KM have 
similar values, while DCPH and DSM are generally higher. 
The DSM model specifically tuned to maximize AUWTC 
is by far the best, doubling the IQM warning time of RF.

Further looking at the results on DIII-D, we can see the 
pivotal role of metrics in designing disruption prediction 
algorithms. The chosen metric to hyperparameter tune the 
models for can greatly impact how well the model performs 
on that metric. This is an expected outcome, and it reinforces 
the need to identify metrics which are relevant to tokamak 
operations. This is most evident with the DSM model, where 
the models tuned for AUROC greatly outperform those tuned 
for AUWTC (Fig. 6) and vice versa (Fig. 7). Additionally 
on DIII-D, DCPH does not follow exactly the same pattern, 
and the instance of this model tuned for AUWTC has similar 
AUROC scores as those tuned for AUROC. However, the 
DCPH model tuned for AUWTC achieves higher AUWTC 
scores.

For the AUWTC metric, an outlier is how much KM 
tuned for 10 ms Δtreq outperforms the other models on 
C-Mod, which is an especially interesting result given 
that KM tuned for 10 ms Δtreq performs the lowest of all 
models on DIII-D (Fig. 7). The reason for this discrepancy 
is unclear; however, given the AUWTC values on C-Mod are 
significantly lower than on DIII-D combined with the large 
error bars in this case, this could simply be due to random 
variation.

Another interesting result is that the CPH models have 
nearly identical performance for both AUROC and AUWTC 
metrics regardless of which goal they were being tuned 
for. This is likely due to the CPH models only have two 
hyperparameters, learning rate and Δthorizon , so a similar 
optimal combination was found for each model.

Diagnostic Importance

Ideally, the signals from many diagnostics should be 
included in the training of data-driven models, though this 
may not always be feasible due to cost or technological 
complexity. To prioritize installation of diagnostics we must 

determine which are most relevant to making a prediction. 
However calculating input feature importance from a model 
that is already trained can be challenging because the output 
of a neural network is nonlinear with respect to the inputs. 
Even with simple linear models, some signals may only be 
useful when combined with others. For instance, one would 
need to know both the plasma current and the electron 
density to obtain the proximity to the Greenwald density 
limit. As such, to determine importance of diagnostics we 
chose to look at a single model re-trained on datasets where 
only subsets of all the signals were included.

The signals and corresponding diagnostics included in 
this study are shown in Table 2. Of these, the signals from 
magnetic probes are likely to always be available in real time 
on future tokamaks as they serve important functionalities 
such as controlling the plasma current and providing 
feedback for maintaining vertical stability. In addition, 
low-n modes are among the most prevalent disruptive 
precursors [39] and their onset can be detected with an array 
of magnetic probes. Equilibrium fitting utilizes data entirely 
from magnetic probes so it is conceivable that any device 
which has magnetics could include these signals as well, 
though not all devices may have the capability to perform 
fitting and relay it to the PCS in real time.

With these considerations, we investigated five cases. 
First with only signals from magnetic probes, as this 
should be the bare minimum. Second, with the addition of 
equilibrium fitting. The third and fourth cases then included 
either bolometry or interferometry, as these are separate 
diagnostic systems. Finally, we compared performance to 
the original instance of having signals from all diagnostics. 
The results of re-training the DSM model on Alcator C-Mod 
with the signals available from various sets of real-time 
diagnostics are shown in Fig. 8.

The results show that signals from magnetic probes 
account for almost all of the AUROC performance at short 
timescales. For longer timescales, much of the remaining 
performance is recovered with signals from equilibrium 
fitting, as there is a significant increase in the AUROC 
score for 100 ms Δtreq . For short timescales, it appears that 
there is a minor increase in performance when including 
bolometry, which could indicate measuring radiated power 
is necessary to detect fast impurity injections in C-Mod. 
An interesting result is that including interferometry does 
not appear to noticeably increase performance. This could 
mean the relevant information is already encapsulated in 
other signals or not many disruptions on Alcator C-Mod 
were caused by exceeding a density limit.
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Estimating Time‑to‑Disruption

The above sections discuss the usage of machine learning 
models as simple disruption predictors. That is, an alarm 
is triggered whenever the risk exceeds some threshold. As 
such, they have been hyperparameter tuned to use a single 
class time and/or horizon time. While triggering alarms 
in this way is useful, it lacks the information required to 
determine the best action to take to minimize damage 
from a disruption. The value we are most interested in is 
the expected time-to-disruption. Rigorously calculating 
this value would require obtaining the risks for an infinite 
number of future times. However, we are not interested in 
exceedingly long horizons, just those long enough for the 
PCS to actuate a response. Therefore, we can estimate the 
expected time-to-disruption for any feature vector x⃗ using a 
restricted mean survival time (RMST) [40] calculation

where T is the maximum time horizon and S(t|x⃗) ∈ [0, 1] 
is the survival function, or probability that no disruption 
occurs until after time t given some observed feature x⃗ . 
This is essentially the expected value that no disruption 
will occur over the course of many time intervals in the 
domain t ∈ [0, T] seconds. As a consequence, the longest 
predicted time-to-disruption is T seconds. This ignores 
the long horizons of the distribution, but if T large enough 

(2)RMST(x⃗) =

T

∫
0

S(t|x⃗)dt

their contributions to the total expected value should be 
negligible. This maximum time is arbitrary and could be 
changed for future devices. In this study we chose T = 1 s 
since this is a very long timescale relative to PCS actions.

Calculating this survival function S(t|x⃗) depends on the 
type of model. Survival regression models include this 
function as a direct output where it may change nonlinearly 
in time. Binary classifiers and the conditional Kaplan-
Meier formalism require making some assumptions on the 
evolution of risk in time, which will be discussed below.

As mentioned previously, the output of a binary classifier 
can be interpreted as the probability that some feature vector 
x⃗ is within the time window Δ�class of a disruption. If we 
make the strong assumption that the distribution of 
disruptions is uniform within the class time, the probability 
of a disruption occurring over some arbitrary time interval 
Δt < Δ𝜏class is PD(x⃗)

Δt

Δ𝜏class
 , and similarly the probability that 

no disruption occurs over that same time interval is 
(1 − PD(x⃗)

Δt

Δ𝜏class
) . If we make another strong assumption that 

this survival function remains constant in time, we can take 
the product to find the probability that there is no disruption 
for n consecutive time steps. The survival function for an RF 
model is then

For the conditional Kaplan-Meier formalism, the RMST 
is calculated similarly [17]. The only difference being that 

(3)S(nΔt|x⃗) =
n∏

i=1

(
1 − PD(x⃗)

Δt

Δ𝜏class

)

Fig. 8   Median and interquartile 
range of bootstrap AUROC 
metrics calculated on Alcator 
C-Mod when including various 
sets of diagnostics: magnetics 
(MAGX), equilibrium fitting 
(EFIT), bolometry (BOLO), 
interferometry (INTF), 
and all signals. Models are 
hyperparameter tuned to 
maximize AUROC with Δtreq of 
10 ms (red), 50 ms (orange), or 
100 ms (yellow)
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instead of a constant value, the linear extrapolation allows 
the survival probability to change over time based on the 
calculated slope from the linear fit as shown in Eq. 1. The 
survival function for a KM model is then

where (PD(x⃗) +
dPD

dt
iΔt) is limited to the interval [0, 1].

(4)S(nΔt|x⃗) =
n∏

i=1

[
1 −

(
PD(x⃗) +

dPD

dt
iΔt

)
Δt

Δ𝜏class

]

The RMST calculated using five disruption predictor 
models for four shots of Alcator C-Mod is shown below. 
A line of ideal prediction is also shown, which for non-
disruptive shots is the maximum time T, and for disruptive 
shots is held at T until T seconds before a disruption takes 
place, at which point it decreases with a slope of −1 s/s. 
The particular models making these calculations have been 
hyperparameter tuned using a simplified metric which will 
be discussed shortly.

Fig. 9   RMST for two disruptive 
shots (a, c) and two stable 
shots (b, d) on Alcator C-Mod. 
An ideal output line is shown 
for reference (dotted black). 
The models shown are RF 
(blue), KM (yellow), CPH 
(green), DCPH (red) and 
DSM (purple) that have all 
been hyperparameter tuned to 
minimize the squared difference 
between calculated output and 
the ideal output for the last 1.5 s 
of flattop duration
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Encapsulating the quality of an RMST plot in a machine-
relevant metric that can be used to evaluate models is chal-
lenging. Using the models to calculate an RMST value is 
considerably more computationally expensive than using the 
models as disruption predictors, since the survival function 
must be evaluated at many time horizons instead of just one. 
Another consideration is that the RMST output by a model 
should be close to the ideal value while not changing too 
quickly, as rapid fluctuations in the output would greatly 
interfere with the PCS being able to plan actuator responses. 
This behavior is most obvious with the KM model, but it is 
also the case with CPH and DCPH shown in Fig. 9c.

For this study, we have defined a simplified metric 
where the squared difference between the ideal value and 
the output RMST is calculated for each time slice and 
integrated over the final 1.5 s of the shot. This time domain 
restriction was done to reduce the computation required to 
calculate the metric. Note that this metric does not penalize 

the output for changing rapidly; however, it is unclear what 
the tradeoff between line smoothness and closeness to the 
ideal value should be. Future work should aim to design a 
computationally tractable metric that describes the quality of 
these expected time-to-disruption plots that would be useful 
for a tokamak operator or real time in the PCS.

Bootstrapped results of this simple metric for disruptive 
and non-disruptive shots in the test set are shown in 
Fig. 10. Models were hyperparameter tuned to minimize 
the simplified metric output for only disruptive shots. This 
choice was again to reduce the computation required, as 
there are significantly fewer disruptive shots than non-
disruptive shots in both datasets.

For non-disruptive shots, the RMST calculated by all 
models typically matches the ideal value fairly well. While 
neglecting the non-disruptive shots appears to increase 
the error of the KM, DCPH, and DSM models on Alcator 
C-Mod as shown in Fig. 10b, the errors are very small 

Fig. 10   Median and interquartile range of bootstrap RMST difference 
integrals for Alcator C-Mod (a, b) and DIII-D (c, d) across all 
disruptive shots (a, c) and non-disruptive shots (b, d) of the test set. 
Models are either hyperparameter tuned to maximize AUROC with 

Δtreq of 10 ms (red), 50 ms (orange), or 100 ms (yellow), to maximize 
AUWTC (blue), or to minimize the squared difference between 
calculated output and the ideal output for the last 1.5  s of flattop 
duration (green)
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compared to the disruptive shots as shown in Fig. 10a. 
However, there are still instances like Fig. 9b where the 
model’s calculated RMST suggests a disruption is oncoming 
even when none eventually occurred.

For disruptive shots, the calculated RMST is at times 
almost perfect, as with the DSM shown in Fig. 9a. However, 
there are many instances where the RMST remains 
unchanged even up to the time of disruption. In addition, 
the RMST output may fluctuate wildly. This mismatch in 
predicted RMST versus ideal RMST for disruptive shots is 
also evident in the test set results shown in Fig. 10a and c. 
On C-Mod, the DCPH and DSM models trained to minimize 
RMST error have the best performance; however, in all cases 
this is worse than for non-disruptive shots. On DIII-D, the 
models also perform worse than on non-disruptive shots. 
Also on DIII-D, there is an interesting result where the 
RF hyperparameter tuned for 100 ms AUROC performed 
far better than the rest of the RF models. Otherwise, the 
DCPH and DSM models tuned for all metrics showed 
greater performance than RF, KM, and CPH, with DSM 
hyperparameter tuned to minimize RMST error performing 
the best.

Summary

We have evaluated the performance of several data-driven 
algorithms in their usage as disruption predictors on 
experimental data from Alcator C-Mod and DIII-D. Our 
methods require a large amount of existing data and do 
not take into account transferring models to new devices. 
This is an important consideration for future work, but in 
the present study we can compare performance between 
survival analysis and previously studied models. Our 
findings indicate that on Alcator C-Mod, the AUROC scores 
of RF, KM, DCPH, and DSM are similar, and CPH scores 
lower. A major component of the resulting AUROC scores 
for C-Mod is the required warning time, where making 
predictions further in the future is challenging. We find that 
the AUROC scores of all models on DIII-D are higher than 
on C-Mod, and there is little difference between the models 

trained for each required warning time investigated. Also on 
DIII-D, we show that DCPH and DSM have improved ability 
to predict disruptions with extended time horizons in the low 
FPR regime. While DCPH shows this behavior when being 
hyperparameter tuned for either metric, the AUROC score 
of DSM decreases when hyperparameter tuned for AUWTC. 
We determine that identifying machine-relevant metrics is a 
major component of designing disruption predictors.

We also attempted to predict the time-to-disruption using 
RMST, and provided the results of this calculation using a 
simple difference metric over the test sets for both devices, 
as well as an excerpt of the produced values for four shots on 
Alcator C-Mod. We demonstrate that while this calculation 
is generally close to ideal in non-disruptive shots, there are 
potentially rapid fluctuations in RMST output. In addition, 
there are many instances where the calculated RMST output 
is not a good indicator of disruptive conditions. Despite 
these challenges, there are cases where the desired RMST 
output is produced for disruptive shots. We determine that 
developing a metric which evaluates the quality of expected 
time-to-disruption predictions relevant to tokamak operation 
should be an essential goal of future work in this area.
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by an agency of the United States Government. Neither the 
United States Government nor any agency thereof, nor any 
of their employees, makes any warranty, express or implied, 
or assumes any legal liability or responsibility for the accu-
racy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.
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Appendix A Alcator C‑Mod Results

See Figs. 11 and 12.

Fig. 11   Alcator C-Mod bootstrapped WTC curves for models hyperparameter tuned to maximize AUROC with a particular required warning 
time (a, b, c), or to maximize AUWTC (d). The median and interquartile range are represented as a solid line and shaded region, respectively
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Fig. 12   Alcator C-Mod bootstrapped ROC curves for models 
hyperparameter tuned to maximize AUROC with a particular 
required warning time (a, c, e), or to maximize AUWTC (b, d, f). 

The median and interquartile range are represented as a solid line and 
shaded region, respectively
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Appendix B DIII‑D Results

See Figs. 13 and 14

Fig. 13   DIII-D bootstrapped WTC curves for models hyperparameter tuned to maximize AUROC with a particular required warning time (a, b, 
c), or to maximize AUWTC (d). The median and interquartile range are represented as a solid line and shaded region, respectively
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Fig. 14   DIII-D bootstrapped ROC curves for models hyperparameter tuned to maximize AUROC with a particular required warning time (a, c, 
e), or to maximize AUWTC (b, d, f). The median and interquartile range are represented as a solid line and shaded region, respectively
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