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ABSTRACT

The purpose of this project is to investigate
a class of difficult optimization problems: The
minimization of the energy consumption for the
determination of the trajectories of displacement for
industrial robots and the determination of their near
minimum time open-loop control.

It is a difficult problem because the equations
of motion of robots are highly nonlinear and the problem
is probably non convex. In addition, there are equality
and inequality constraints on both control and state
variables. Furthermore, the number of state variables is
large (at least three for each degree of freedom).

The issues to be included here are:
1 The dynamics of the robot.

The model includes the Coriolis and centrifugal
forces, the limitations on the capability of the motors,
their maximum peak current, their maximum average heat
power,

2 The optimization technique.

The preliminary work has been performed using
OHNO’s differential dynamic programming algorithm and
successful results have been achieved. The algorithm is
the only one of which we are aware that includes
equality and inequality constraints on both control and
state variables and for which a proof of convergence to
optimality is available.
3_The qualitative behavior.

Preliminary results indicate that the energy
consumption can often be reduced by more than 30%, and
sometimes more than 80Z on the minimum energy trajectory
compared to currently used trajectories such as
straight lines in cartesian or joint coordinates. The
time of displacement has also a significant effect on the
energy consumption.

Thesis Advisors : S.B. Gershwin
G.C. Verghese
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I _INTRODUCTION

In recent years, the problem of factory
productivity has become very important. A solution is
to modernize manufacturing facilities by means of
automation and in particular by the implementation of
robots. A close examination of the basic structures
and controls of robots reveals some limitations which
lead to unnatural specifications and inefficient task

operations.

Among many factors, the reduction of a robot
cycle time for a given repetitive task can contribute
to an increase of productivity. The reduction of the
energy consumption can also lead to a decrease of the
operating cost. More specifically, the rate at which a
production line can produce goods is the inverse of
the longest cycle time of any station in the line. The
long standing "line-balancing" problem is that of
minimizing the time of each task, and then allocating
the task to a set of robots so that their cycle time
are as nearly equal as possible. Once the tasks are
allocated, all stations except those with the longest
operations will have some 1dle time. The trajectories
can then be recalculated to equalize the operation

times and to minimize the energy consumption.
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For this thesis, a robot problem has always a
fixed initial point and a fixed terminal point. By
fixing the terminal time, one could think of
minimizing the the deviation from a planned path or
minimizing the energy of displacement. A real optimum
control problem would be an optimum path planning

followed by optimum path tracking.

1) Literature Survey

Iemenschot and Whitney (4) have proposed a
method to find optimal trajectories for mechanical
arms, by minimizing the integral of the kinetic energy
between the initial and final time. But their work is
based on the assumption that the trajectory can be
expanded in a series of simple functions of time.
Furthermore, the effect of gravity has been neglected.
In addition, no constraint conditions are available
for the state or the control variable. Kahn and Roth
(5), Takegaki and Arimoto (6) have attempted to
minimize the time or a quadratic performance index,
but because of the difficulty due to highly nonlinear
equations, either the Coriolis and centrifugal terms
or constraint conditions have been omitted. According

to Luh (3), there have been no results on trajectory
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optimization which included all the above conditions.

2) Purpose

The purpose of this thesis is to apply Ohno’'s
differential dynamic programming algorithm (1) to
solve the optimum path planning of mechanical
manipulators, by means of minimizing the energy
consumption, during a given time of displacement,
between fixed initial and final points. His algorithm
is well suited for this case, because it solves
discrete time optimal control problems with equality
and inequality constraints on both control and state
variables. In addition, a proof of convergence to
optimality 1s available. The minimum time open-loop
control can then, in principle, be found by computing

the minimum time for which a trajectory exists.

3) Brief Discussion of Chapters

In the next Chapter, a optimal control problem
with general constraints is described. A model of the
robot is presented in Chapter III. The state
transition function (Chapter IV), the cost function
(Chapter V) and the constraints (Chapter VI and VII)
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are shown to fit the form described in Chapter II.
Special attention is given to the cost function, to
emphasize the different possible models of electrical
and mechanical systems. Dynamic programming and Ohno’s
algorithm are described in Chapter VIII and IX. The
generation of the initial trajectory is proposed in
Chapter X and important remarks are discussed in
Chapter XI. Numerical results appear in Chapter XII
and the last Chapter concerns the summary and the

conclusion.
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IT CONTROL PROBLEM WITH GENERAL CONSTRAINTS

The dynamic control of an industrial robot
involves the determination of the inputs (voltages,
currents, pressures , etc...) for the actuators, so
that a set of desired values for the positions and thé
velocities is achieved. The robot is driven
electrically, hydraulically or pneumatically with
measurements for feedback control generally provided
by encoders and tachimeters connected to the motors

shafts.

The control problem solved in this thesis is the
computation of the trajectory and the corresponding
forces, which minimize the energy provided by the
source, for a given time between two fixed points. If
we suppose that the problem is convex, that is,_if the
algorithm converges effectively to the minimum energy
trajectory (not a local minimum), then the minimum
time problem can be solved by finding the minimum time

for which a minimum energy trajectory still exists.

Consider a general discrete time problem where x.
is a state a-vector and un is a control b-vector. We

define the state transition function fh(x“,un) where
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[1] xn+1-= fn(xn,un), n = l,o.o’N-l

dim(xy) = a
dim(upn) =0

The cost function is
N-1

(2] v = ré)Ln(xn,un) + Ly(xy)
and the constraints are

3]  gn(xppup) € O,
hp(xg,uy) = 0
dim(g,) = m,
dim(hp) = 1,

> n = 0,..-,N-1

The problem is to determine an optimal control ui

(n =0,...,N-1) that minimizes V subject to [1l] and
[3].
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IIT DESCRIPTION OF THE MANIPULATOR

Consider a P-degree of freedom manipulator
driven by P d.c. electric motors through appropriate
reduction systems. The energy 1is provided by an

electric source, and the power is transmitted to the
motors and regulated by amplifiers commanded by the

controller. This electric source can be regenerative
or non-regenerative. A source is called regenerative

if it can store absorbed power in a form that can be
later returned to the system. In a non-regenerative

source, the power is dissipated. Obviously, the type
of source has an important effect on the minimization

problem, and i1s directly related to the cost function.

Both types of source will be considered.

To describe the motion of the manipulator, let
q(t) be a P-dimensional vector representing the
displacement of the joints. The equations of motion
may be developed in a number of ways, using the direct
application of the classical mechanics (Newton-Euler,
Lagrange). In any case, the equations can be written

as follows:

[4] I(q) 4 =4 Q(q) q +D(q) q + G(q) + A u
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where
a and

I(q)
Q(q)

D(q)
G(q)

q

are P-dimensionnal vectors representing the
velocities and accelerations of the joints,
is a PxP inertia matrix,

1s a PxPxP tensor, refering to the Coriolis
and centrifugal terms,

is a PxP viscous friction matrix,

is a P vector defining the gravitational
forces .

is a PxP diagonal scaling matrix,

is a P vector of control input forces.

Let T = t¢ - to, the time of displacement

between the initial state x(t,) and the final state

x(tg). Because Ohno’s algorithm solves discrete time

control problems, it is necessary to discretize the

time during the motion of the robot.

(51

with

thyl = ty + &t, n =0,...,N-1
te = 0 and
tge =T =N At
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If we consider the first two terms in the Taylor

series for the position and the velocity, we obtain

(6] q(t + At) = q(t) + At &(t) and
q(t + At) = q(t) + At q(t)

We define, for n = 0,...,N,

(71 aq, = q(t)

t = n At
q, = a(t)

t = n At

and for n = 0,...,N-1

[8] i = 1i(t)

n

t = n At

where 1(t) is a P-dimensional vector representing the
current is the motors. It is to be noted that for a

d.c. electric motor, the torque (or the force, if the
motor is translational) is proportiomal to the current

in the armature.

This minimization problem is done for robots
working, for example, in an assembly line. Some have to

work without interuption and it is necessary to limit
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the average heat power in the electric circuit of the
motors. For the ﬁﬂn motor, the average heat power, when

the motion is completed, can be written

(9] P‘N'P ’T‘J 1 (t) dt

where RP is the resistance of the armature of motor p.

After discretisation we obtain

=1
R

If we define the variable w, by

Pn
[10] ZE: R

JoPPJ’

then the average heat power for each motor p is

|
[11] Povep=ﬁ WpN

From the equations [7], [8] and [10], we define

the state variable x, and the control variable upn by

[12] =x, = [ a, ], n=20,...,N
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[13] un = i > n = o,c-o,N-l
We have

dim(xn) = 3 P
dim(u,) = P
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IV_STATE TRANSITION FUNCTION

Denote
[14] d = At = T/N

From equation [6], [9] and [10] we deduce the

state transition function fn by

9n1 n +d an
[15]  £,.(xpun) = | Gneq |= a, + d T, (q,,9, e
LAY v + (diag R) in

where (diag R) is the PxP diagonal matrix with the p“‘
diagonal element RP and Hn(qn,an,in) is the vector
acceleration given by the dynamic equation [4].
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V_COST FUNCTION

There are many ways to derive the cost function
which is here the energy consumed by the robot during
the time T. An easy one is to look only at the
behavior of the motors which transmit all the power to
the robot. We know that all the electric energy
provided by the source is transformed into heat and
work. (Assuming that the field circuits of the motors
are independent of the armatures, the field circuits

have no effects on the minimization problem.)

We can consider that the heat is only dissipated

in the armature resistance and can be written as
by T
2
[16] H = Z JRPi(t) dt
where iP(t) is the current in the armature of

resistance RP of motor p. After discretization, we
obtain
N
[17] H =4d 2 u_ (diag R) u
n=0 " n

If we consider now the work of the torques or

forces of the motors, we can write
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P -
(18] W = é JoPmP(t) dt

where PmP(t) is the instantaneous mechanical power
provided by motor p. The total instantaneous

mechanical power can be written
[19] Pm = S S

where S is a P-vector representing the torques or
forces at the shafts of the motors and fL their

velocities.

We need now to find a mathematical model of the
motors and their reduction systems in order to express
the cost as a function of the state and control

variables.

Figure 1: model for the motor

' and the reduction system.
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R is the resistance of the armature,

=

is the inductance of the armature,

Km 1is the torque constant of the motor,

v is the input voltage,

i is the current in the induction circuit,
Red is the value of the reduction,

is the efficiency of the reduction system,

is the velocity of the link of the robot,

0
fLL 1is the velocity of the shaft of the motor,
q
S is the torque (force) on the shaft,

C

is the torque (force) on the link.

We have
[20] SL = q/Red
S = Km 1
and
A
= T Redn if R 1 + sfL) 0,
= T Red/n) 1f R 1% + S < 0.

For one motor p, we can write
[21] Pm dt =(KmP/RedP)iP(t) qg(t) de
After discretisation of equation [18], we obtain

P N
[22] W = d§ éo(KmP/REdP) iPr\ dpn
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Note that d 1s a constant, and has no effect on
on the minimum of the cost function. For
simplification, it will be substituted from the cost

function.

At this point, it is necessary to consider
several different cases, each of which gives rise to a
different cost function. The electric system can be
regenerative or not, and the mathematical model may or

may not include the friction effect.

Since we are more interested in the behavior of
the robot for high speed motion, it is a reasonable
assumption to neglect the effect of dry friction
compared to the effect of viscous friction. The
resistant force due to dry friction only depends on
the direction of motion, while the resistant force due
to viscous friction depends on the speed of

displacement.

We now state the cost function for various

combinations of the above conditions.
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1) Regenerative source and no friction

The assumption of no frictiom stands for
_ no dry friction,
_no viscous friction,
_ efficiency of the reduction system equal to 1,
but includes electrical friction (i.e. resistance of

the motors)

In this case, the mechanical energy consumed or
provided by the motors 1is independent of the
trajectory (if the velocities at the extreme points
are equal to zero, then the mechanical energy is the
difference of potential between those two points). The
loss is the heat dissipated in the resistances of the
motors. The cost function is derived from equation

[17], and the instantaneous cost can be written

-
[23] L, = up (diag R) upn

2) Regenerative source and friction

Because there is some energy dissipated in the
mechanical devices, we need to consider the electrical

and mechanical energies consumed by the global system.
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Using equation [17] and [22], the instantaneous cost

function can then be written

T T .
[24] L, = u, (diag R) u, + u (diag Km/Red) 9

3) Non-regenerative source

In the case of a non-regenerative electric
system with or without the friction effect , we cannot
recuperate the mechanical energy when a motor becomes
a generator. The loss is the energy consumed by the
motors. (We don’t benefit when the energy is coming
back to the voltage source). So for each motor,and

using equation [20], we define the variable SPnby

2 .
[25] SP..,= 1, when Rg ign +Q<mp/ned?) ipn dpa > O,
(i.e. when the actuator is a motor)
S .= 0 when R 12' +(Km /Red )i q < 0
pa= U P 'po p/repltpn dpn & F-

(1.e. when the actuator is a generator)
and the instantaneous cost function by

&l T .
[26] L, = u, (diag 8nn) u, + up, (diagSnKm/Red) q.

n



Optimal open-loop control page 24

VI_EQUALITY CONSTRAINTS

For the purpose of this thesis, the only
equality constraint is that the final position must be
equal to its expected value and that the velocity at

this position is equal to zero. We have

[27] qy ~ qf = 0 and
&N = 0.

The inequality constraints are defined from
n=20,...,N-1. But using the state transition function
we can express the final constraints at step N-1.
Furthermore, the algorithm will converge more rapidly
if we define the constraints as function of the
control and the state variables. Using the fact that qN A
is function of qN > We define the position

constraints at step N-2. We obtain

L] 2- .
[28] Ay = Ay * 2 d Iyt d qN:L(xNJL’uN4L)
(291 a, = g q ¥4 9 (g ougn)

It is to be noted that it is possible to add

other constraints. For example, one could think of
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defining a configuration of the robot at a certain
step s, which would ailow the robot to arrive at the
final position from a given direction. It would cross
this point without stopping. This constraint can be
written

2

[30] 4g o * 2dq ., +d qs_,z_(xs_ »Ug9) = Qeg = O

where dQeg is the required position of the robot at

step s.
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VII_INEQUALITY CONSTRAINTS

The robot we are dealing with is driven by P
d.c. electric motors which are limited in power. From
Figure 1, we can write the equation of motion of an
electric d.c. motor. Compared to the inertias of the
links, the inductance of the armature in negligible.
Thus

[31] v =R i + Km (L
where KmJ{) is the back-EMF of the motor.
From equation [16], we can deduce

(32] v, = (diag R) u, + (diag Km/Red) q_

where v, is a P-vector representing the voltages at
the inputs of the motors. These voltages are provided
by amplifiers which are limited in voltage and
current. From these remarks, we can deduce three
inequality constraints defined for every step n, which

are

[33] (diag R) up + (diag Km/Red) q,, = Vemax € O

-(diag R) u,. - (diag Km/Red) &h -V

N moxso
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yu
[34] (diag R) u, - Ppeak.s 0.
where Vntu is a P-vector representing the maximum
voltages at the output of the amplifiers, and Epank is
a P-vector representing the maximum peak power

admissible in the armature of the motors.

The inequality constraint concerning the maximum
average heat power has been introduced in section III,
and using equation [15)], we can write the constraint

for the final step at step N-1 as follows

2
[35] a4 t (diag R) uy 4 - N P o € O.
where Pqoye 1s a P-vector representing the maximum
average heat powers during the motion of the robot.

This inequality constraint is defined at step N-1.

Other inequality constraints are given by the
limits of displacement of the links. (We will not
consider obstacles avoidance in this paper.) As an
example on the limits of displacement, we can define a
minimum and a maximum value for each joint

displacement, and we have

[36] q . < q

oA " £4q for n = 0,...,N

mQx
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so
. 2 ee
[37] q, + 2d q + d qn(xniéﬁ) ~ Apox$ 0
Unin ~ 90 2dgq,-d qn(xn,un) £ 0.
These constraints must be defined at all steps
n.

In Chapters IV, V, VI and VII, we have
determined all the necessary functions for solving by
dynamic programming the minimum energy or minimum time
control of a general P degree of freedom manipulator
using d.c. electric motors. Let us recall all these

functions:

The state transition function is given by
equations [4] and [15].

The equality constraints are given by equations
[28],[29] and [30]. Equation [28] is defined at step
N-2, equation [29] at step N-1 and equation [30] at
step s-2.

The inequality constraints are given by
equations [33], [34], [35] and [37]. Equations [33],
[34], [35] are defined at all steps n and equation
[37] at step N-1.

The cost function is given by equations [23], or
[24], or [25] and [26].
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VIII DYNAMIC PROGRAMMING

Conventional dynamic programming is described in
this section. Define V_ (X) the optimal cost of the

trajectory from step n to the final step N as
N-4

[38] Vn(xn) = min é;;Lt(xL,uL) + LN(xN) subject to

g, (x;,u;) £ O,
hy (x{,u;) =0

Y i’n,ooa’N_l
for n = 0,...,N-1
Then the principle of optimality leads to

[39] Vn(xr9 = min {—Ln(xn,un) + vn¥1{xn¥i} sub ject to

gn(xn’un) s 0)
hr$xn,un) =0

for n = 0,0IO’N-I
and by [2], VN(xN) is given by

(401 ¥ (x) = L(xy-
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As is well known, the optimal control ({ uﬁ } can
be obtained by starting from [40] and solving [39]
recursively for n = N-1,...,0. Since this approach is
computationally impossible when the number of state
variables 1s greater than 4, we will follow the
differential dynamic programming method invented by

Jacobson and Mayne (2).

Define the Lagrangian function F (n = 0,...N-1) for

one variable minimization problem [37] as

[41] F (xn,u ,)ﬂ‘ = Lo(xq5uq)

-
* Vouq (£ (xhuad} + Ag (xn,u0)

-+
+ /u.n hna(xq,rupn)

where)\n and ); are the Lagrangian multipliers. Note
that the minimum value of VA ( ) is attained at

u, = ui . If Vet 1s twice continuously

differentiable, then the following Kuhn-Tucker
conditions hold as second-order necessary conditions
that Jﬁ be an optimal solution of [39]. There exist An
and /.x?: such that
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>*%
[42] Pyq = 0,
¥*
(diag )\?‘) g =0,

>

h, =0,
gX <o,
My o,

and such that for every vector z satisfying

»
gLun
and

*
hgun

[43] z =0 for all 1 {i; g = 0}

z =0 for all j,

T
z Fyyn 2 ) 0.
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IX DIFFERENTIAL DYNAMIC PROGRAMMING ALGORITHM

and define
T v
[44] T (x4,90) = ( Fynsgn (diagAn),hp )

With this notation, condition [40] can be
rewritten as Tn(x§ ,j§') = 0. Therefore, if y: is an
isolated solution of Tn(xﬁ',yn) = 0, Then jﬁ can be
obtained by solving Tn(xn,yh) = 0 in its appropriate
neighborhood. If the Jacobian matrix of T, with
respect to Yn is nonsingular at jf' , then j§ is an

»
isolated solution of Tn(xn »Y4) = 0.

Denote by J,, the Jacobian matrix of T, with
respect to y., and by Kr‘the Jacobian matrix of T,
with respect to X..

Let { y:,n = 0,.¢.,N-1 } be given, and let

{ x%,n = 0,...,N } be the trajectory corresponding to

{ uﬁ }. Then a conceptual algorithm is as follows.
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1
Calculate y:+ using Newton’s method for
n = N-1,...,0, Newton’s method is described as

w+i "3 A R % 1
(451 vy = 3% = 30 (x],70) T (xR, ¥W)

It is to be noted that Tn’ Jas K4 for

n=0,...,N-2 include unknown values V (x:*_,l) and

x
an+1(x:+1). Consequently it 1is essenti‘:‘]‘:lto obtain
their approximate values which guarantee that { y:}
1s a poini: of attraction. We know that for the optimal
control { u:(; }, the cost function is equal to the
Lagrangian function. It is then possible to determine
Voast (Xqer ) and Vexns2l{Xne4) by an approximation of the
Lagrangian function. With a second order

approximation, we obtain for Ay:-(xn)

-4
[46] Byn(xn) = = Jn (%, In(x)) Klxa, 7o (xp))

Denote by 77 the approximate value of . .

So calculate for n = N-1,...,1, ';:‘M’ by

~ K+l Kk - ~
471 5 5% 30 - T (= hu) Ta(xpsue

and consequently

Venr(Xay) and Vo (i 4(xp,, ) using equation [46].
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Compute the new control variable and the new

state variable for n = 1,...,N-1 by

k+d k+1 w+l

[48] x‘?is fn.x(xn-‘\.’uh:‘ . " .
~ -

Tar o= T - I R (xay) 1xy = %)

K+t ked
and X9 " fN_4(_xN-1’uN-'\)

Choose £ , and if

K+l 'Y
[49] max ( Iy —va 11 < &

then stop, otherwise set k = k+1 and use this

trajectory as initial guess for a new iteration.

For more details, refer to Ohno’s algorithm (1).



Optimal open-loop control page 35

X INITIAL TRAJECTORY

We could guess any trajectory starting from the
initial point, but it is better to choose a trajectory
as near as possible to the optimal one. This would
require fewer iterations for optimality. It would be
interesting to choose a trajectory currently used for
industrial robots so that we are able to compare the
energy or the time reduction. In the space domain,
straight lines in joint or cartesian coordinates are
the most often used (Luh (3)). Along these paths,
there is no specific method used to determine the
positions and the velocities. For our case, let us
choose a trajectory such that the velocities are zero
at the initial and final points. A cubic function of
the time for each parameter 1is well adapted here,
because it has one minimum and one maximum which can
correspond to the extreme points. This would represent
the straight line in the joint coordinates. For the
straight line in cartesian coordinates, it 1is
sufficient to calculate X(n), Y(n), Z(n) in the
cartesian frame and use the inverse kinematics to find

the joint coordinates.

The cubic function for each parameter can be

written as follows:
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[50] q, = A 65 + B Al + Cn + D.

The initial and final conditions are

[51] = D
1o 2 2
9= AN +BN +CN+D
0 =2°¢

3AN +2BN+C

So, we find for n = 0,...,N
) 2
[52] q = 2 (q5-qg)(a/N) + 3 (qc-q,)(n/N) +q

The corresponding control ({ un} will be
calculated by the dynamic equation [4].

Ohno’s algorithm will converge to optimality,
only if the initial control corresponding to the
initial trajectory is in the neighborhood of the
optimal control dﬁ . For this reason, defining initial
trajectories only by straight lines in joint and
cartesian coordinates 1s not sufficient. Those
trajectories can be far fromoptimal. Consequently, we
must be able to use previously calculated trajectories
as initial ones for related problems. As an example,

we can use the optimal trajectory corresponding to a
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given time of displacement, to solve the optimal
control for the problem with a shorter or longer time.
This can be the basis for an algorithm to find the

minimum time trajectory.
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XI_REMARKS

This DDP algorithm is the only one of which we
are aware that includes equality and inequality
constraints on both control and state variables and
whose convergence has been proved. This proof of
convergence (1) holds when the functions L_,f~,g, and
h, are twice differentiable and their second
derivatives are locally Lipschitz continuous. In the
cases of a non-regenerative source and some friction
effects in the reduction systems, those derivatives
are not continuous. Some further work is required to
approximate those functions by continuous functions.
Those cases should not be forgotten since they are

more appropriate models for many real problems.
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XI1I EXAMPLE

Let us take now an an example of this
optimization problem applied to an industrial robot.
The example treated is based on the assumption of a
regenerative source and no friction. In order to
simplify the equations of motion and especially the
number of state variables and inequality constraints,
the effect of the end-effector (wrist) will be
neglected. The robot chosen for this example will have
spherically defined coordinates, such as the UNIMATE
2000 or the BENDIX AA-160 robots. A model of the robot

and its parameters are presented in Figure 2.

For these robots, without considering the wrist,
three parameters are sufficient to define the
configuration. That is, we represent a three degree of

freedom robot. The parameters are

R = the length between the center of rotation and the
effective end,

6 = the deviation angle of the arm from the vertical
axis,

$ = the deviation angle of the arm from a fixed

horizontal axis.
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The control variables will be the currents in

the three motors.
Ig = current in the translationnal motor,
Ig = current in the theta rotation motor,

Iy = current in the phi rotation motor.

From equations [11] and [12], we define

[53] X, = Bn and u, = Ig



Optimal open-loop control page 41

1)Model of robot

Figure 2: Model of the robot

hous\ne

AN

acrm.shalt
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Hypothesis

The shaft is a uniformaly distributed mass

L =
me =
Jse =
Js@ =
Housing
rh =
my =
Jne =
Jh¢ =
JP =
*Base
Jb =

length
mass
inertia

inertia

for rotation theta

for rotation phi

algebraic distance between the center

of gravity and the center of rotation

mass
inertia
inertia
inertia

around

inertia

for rotation theta
for rotation phi
of shaft and housing for rotation

their long axis

for rotation phi

The workplece 1is a point mass m and we write for

simplification

mt = m + Me
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2)Equations of motion

The equations of motion are derived from

Lagrange’s equation in appendix A. They are expressed

as follows

[54]

with

R = [CR Ig + (mgy R =~ mg L/2) (624 ;Zsinle)]/mt

- g cos®B

D
1]

[ Co I + (me R - ms L/2 + my, ry) g sin®
- 2 (mg R - mg L/2) R ©

1/2 (mt RZ- mg L R + mg L/3 + m r% + Jh¢
- J¢) ? sin20 ]
/(mtR-msLR+msL/3+mht7v’\+.]he)

+

7 o o
$ = [ Cy Ig - 2 (mg R - %? L/2) R § siélﬁ
(m, R~ mg LR + mg L/3 + my, r& + Jnd - Je)

& 8 sin26 ]
: 2 2 2
/ [ Jg *+ Jp cos 0 + (mt R -mg LR+ mg L/3

+mh r&+Jh4,) sin?'B]
CP= P\?P/Red 9
B jf RF IF + (KmP/Red ) I? qP
Co = Km Red
i ¥ Pr)PifR = + (Rm./Red.) I 4o <
P e p/Redp) Tp dp

0
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In order to apply Ohno’s algorithm, we need to
find the derivatives of all the equations fn’ Ln’ 8ey?
h, with respect of all the state and control

variables. They are listed in appendix B.

3) Programs

FORTRAN programs have been written. As expected,
we have not been able to get succesful results with
friction or non-~regenerative conditions. But on the
other hand, very interesting and unanticipated results
have been achieved with the regenerative case without
friction. A general flowchart of the program appears

in Figure 3.
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Figure 3: General flowchart of the main program

¥
Acquisition of the

__ dimensions of the robot
_ characteristics of the motors

_ characteristics of the reductions

v

Give
_ mass of the workpiece

_ time of displacement

- &

Generate the initial trajectory
_ Previously calculated one
_ straight lines in joint coordinates

_ sStraight lines in cartesian

coordinates

!

D.D.P. Algorithm

v

Optimal trajectory

More details, using the names of the subroutines and

the files, are shown in Figure 4.
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Figure 4: detailed flowchart of the main program

run OPTCTL

robot dimensions

4#
same values ?

call ROB_DIM

[}ead ROBDIM.DAT

motor characteritics] N

same values 2

Y {call ROB_POW

[read ROBPOW.DAT|
; <
call CONSTANT
Xtreme pointsy N
>
same values ?
call DATA_TRAJ|
[fead DATTRJ.DAT] +
[Seme trajectory 7N »
1Y [call INI_TRAJ
|[read TRAJEC.DAT|
I —
Mass = ?
Time = ?
E =2

|
ri.D.P. Algorithm
end Y
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Figure 5:Description of the D.D.P.

call ACCELER |
|
call MOTION FCT
call COST FCT

call POWER LIM

page 47

Algorithm

computation of the
accelerations

computation of f,,Lgq,
8n and their

derivatives

n = N-1 Y > ] computation of:
YN lcall FSTP_CSTR] h,, step N-1
Y | e——
n = N-2 > T
{:7// [call PoSC _CSTR|| h,, step N-2

[call LIMIT_ROB|
-

y - all step n

compute 21 {? Kn

|call INVERS J|

;ﬁ*1= y: - JgﬁTn
Vx =
Vex =

n=n-1

computation of J;‘AKn

-1
and Jn Tn

o~ Kl
computation of yn+

~ ~NJ
VX ’VXX
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Y.
K+ ~ K
Yo = 7o
K&l Kk
Xq Xq

1,29 A 1
A Xn = ﬁhéx;:,u::) computation of xﬁﬂ
kel kel -1 Kel K
yr: - ?r: -3, K] (x -x.) computation of y:“

computation of the

energy, iteration k

RETURN Y

In order to display all the results, three other

programs have been written :

The program GRAF shows the graphs of CURRENT vs
VELOCITY for all the motors, specifying the feasible
region (i.e. all the possible values of current and
velocity satisfying the inequality constraint

conditions).
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The program POW shows the graphs of POWER vs TIME for

all the motors.

The program MOV shows the motion of the robot along a

calculated trajectory, under different views.
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XIII_RESULTS

As described in the flowchart in Figure 3, the
program can solve the optimal control for any robot
defined in spherical coordinates for any choice of the
parameters for its dimensions and for the
characteristics of its motors and reductions. All the
following examples have been treated with the same
robot. The parameters are listed in Table 1 for the
dimensions and in Table 2 for the motors and
reductions. The following results describe general
observations on minimum energy and near minimum time

control trajectories.
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Table 1 : Dimensions of the robot

lenght in meters
mass in kilos
angle in degrees

DIMENSIONS OF THE ROBOT inertias in kg.m**2
| SHAFT | 1s= 1.000 ms= 3.00 |
HOUSING rh= -0.100 mh= 8.00

| |
| Iht= 0.150000 Ihp= 0.150000 |
I I
I I

Ir= 0.050000

[ BASE | Ib= 0.400000 |
LIMITS

| RADIUS | Rmin= 0.160 Rmax= 0.910 |

| ANGLE | Tmin= -135.0 Tmax= 250.0 |

Table 2 : Characterisics of the motors and reduction systems

voltage in Volts
resistance in Ohms

M 1: MOTOR TRANSLATION constant Km in Newton.meter/amp.

2: MOTOR THETA power in Watts

3- MOTOR PHI Red(1l) in meter/rev
MmNz} 1} 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 100.0 | 1.0 | 80.0 | 200.0 | 0.80 | 0.04 | 1.00 |
| 2 | 100.0 | 1.0 | 80.0 | 200.0 | 1.70 | 0.15 | 1.00 |
| 3 | 100.0 | 1.0 | 80.0 | 200.0 | 1.70 | 0.15 | 1.00 |
| | Vmax | R | Ppeak | Pave | Knm | Red | ef |

REGENERATIVE ELECTRIC SYSTEM
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1) General observations

a) Control

For a P degree of freedom robot with a
regenerative source and no friction, we have seen in
Chapter V, that the cost function is defined by
equation [23], but can be written

P T
2
[55] Et = F‘Z=‘4-RP [ JOIP dt]

When a motor is applying a torque, a current is
set in the armature, and heat is dissipated in the
resistance. It therefore consumes energy. From
equation [50], we can say that the energy is the sum
of the energy of each motor. One way to minimize this
energy is to reduce the current in each motor. We must
not forget that the robot has to meet all the
constraint conditions and in particular the final
position constraint. We have observed that the minimum
energy control to go from one point to an other in a
given time is to apply some torque just at the
beginning and at the latest moment. An intuitive
explanation of this behavior is that it should reach
some speed at the earliest time, then move without

consuming any energy, then stop by the opposite
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torque. This behavior is achieved for many examples,
in particular, for the rotation of the robot around
its vertical axis. The graphs R.I2 vs TIME from
Figure 6 show that each motor is only excited at the
beginning and at the end of the trajectory. For this
trajectory, note that the energy reduction compared to
a straight line in joint coordinates (see Chapter X)

is 76 2. Other examples demonstrate similar behavior.
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Figure 6 a
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Figure 6 b
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b) Choice of the trajectory

If we consider the example of reaching the
antipodal point, we note that several poésibilities
for the initial trajectory exist. It 1s possible to
reach the final position by the top (from 8 = 90° to
8 = -90°), by the bottom (from 8 = 90° to 270°), or by
the side (from ¢ = 0°to 180°). Figure 7 shows the
optimum trajectory for the rotation by the top. Note
that the energy consumption is 4.94 Joules. For the
rotation by the bottom (Figure 8) the energy
consumption is 4.28 Joules, and for the rotation by
the side (Figure 9), the energy consumption is 0.95
Joules. In the previous section we mentioned that it
is better to reach some speed as early as possible. It
is therefore not surprising that the trajectory by the
top demands more energy. The trajectory by the bottom
is not so good, because the centrifugal force reacts
in the same direction as the gravity. For this
specific robot, even if you need to activate the motor
for the rotation the base, we find that it is
worthwhile to move by the side.
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Figure 7 Rotation by the top
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Figure 8 : Rotation by the bottom
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Figure 9 : Rotation by the side
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c) Transfer of energy

There is an interesting observation if equation
[55] is written as follows
T ®
[56] Et=J[ZR‘, I ]. dt

With this notation, we can say that the energy
is the time integral of the total instantaneous power
consumed by the motors. Hence, the total instantaneous
power could be reduced by exciting the motors which
would need less current to accomplish the task. The
current in the motors depends on the dynamics of the
system, but in particular on the reduction systems. In
other words, this is a transfer of energy from some 4
motors to others. To give an example, suppose that the
robot is holding a piece and has to be at the same
location a few moments later (see Figure 10). If it
stays at rest, it needs constant torque and force. For
the minimum energy trajectory, the power needed to
apply the torque has been transfered to the
translational motor which uses it to pull the arm
towards a position of less potential energy. This
observation also comes from the example of the
extension of the arm in the horizontal plane (X,Y)
(Figure 11). In this case, the O rotation motor is

commanded so that the arm can be extended only by 1its
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own weight. Then it must bring the robot to its final
position.
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Figure 10 a
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Figu;e 10 b
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Figure 11 D
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d) resonance of the robot

It is important to know how the energy
consumption varies as a function of the final time. In
Section l)a) we observed that in a minimum energy
trajectory, the torques are applied only at the
beginning and at the end, this behavior is even more
accentuated when the time of displacement is long. It
is a reasonable guess to say that the robot tends to
move towards a trajectory where it does not consume
energy. If the dimensions of the robots and the
inequality constraints permit it, trajectories of zero
energy exlst, and are defined by the resonances of the
system. Since the robot does not consume any energy on
these trajectories, the electric components have no
effects. The equations of motion at the resonance are
found by solving the dynamic equation [4] when the

input forces are equal to zero, that is
e « T . L]
[52] 1I(q).q = q .Q(q).q + D(q).q + G(q)

Note that the equilibrium is a solution of this
equation and is defined by q, such that

G(qe) =0 (at the equilibrium c.le_= 0 and He= 0).

The equilibrium position is achieved when no
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forces are needed to maintain the robot at rest.
Necessarily, the arm must be in the horizonal plane,
and the radius is determined by the dimensions of the
housing, the arm and the workpiece. For a long time of
displacement, it could have been possible that the
robot moved to this position, rested, and moved
finally to the final position. But in all the studied
cases, this behavior never happened. It oscillates

around its equilibrium position.

In order to visualize this phenomenon, let us
take the two previous examples but with a longer time.
T = 2 seconds has been chosen for the examples shown
in Figures 12 and 13. Note that the energy reduction
is 67 Z for Figure 12 and 88 Z for Figure 13
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Figure 12 a
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Figure 12 b
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Figure 13 a
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Figure 13 b
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2) energy consumption vs time of displacement

In this section, we show the effect of the total
time of displacement on the energy consumption. Two
experiments are studied and i1llustrated by Figures 14
and 15.

Those figures show very interesting results for
the choice of the final time. For each task, there are
some local minimum energy trajectories. One appears
when the robot has not enough time to oscillate.
Another one appears at the time where one oscillation
at the resonance 1s possible. There should be another
minimum, at the time when the robot can complete two
oscillations, but the present algorithm has not been
able to converge for such long time. Between these
times, the robot has no time to complete the
oscillation, and it has to maintain the piece. Hence

it consumes more energye.

The results given by the graphs ENERGY vs FINAL
TIME (Figure 16 and Figure 17) suggest that if the
operation time of the robot is longer that the time of
the first minimum, it is better to accomplish the task
in less time, and wait for the end of the operation by
using a brake.
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Figure 14 C
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Figure 14 D
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Figure 14 F
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Figure 15 A
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Figure 15 ¢
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Figure 15 K
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Figure 15 L
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3) Minimum time

Minimum time trajectories have been difficult to
obtain. Nevertheless, one successful result is
presented in Figure 18, and show that the behavior is
quite similar to those of Section 1). The forces are
applied at the beginning and at the end of the motion,
but they are limited by the maximum peak power
constraints. A very interesting result is shown in
comparison with Figures 16 and 17 The first local
minimum energy trajectory appears at a time close to

the minimum time trajectory.
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XIV_SUMMARY AND CONCLUSION

A method for solving the optimal open-loop
control of industrial robots has been presented. The
determination of the trajectories of minimum energy
for a given time of displacement, and the minimum time
trajectories are difficult problems because the
equations of motion are highly nonlinear and there are
some equality and inequality constraints on both
control and state variales. In addition, the number of

state variables 1s large.

Several numerical examples have been studied and
succesful results have been achieved. The work has
been performed with Ohno’s D.D.P. algorithm. This
algorithm includes equality and inequality constraints
on both control and state variables.

In Chapters III, IV, V, VI, VII, we have
presented the equations for a general robot, including
to the state transition function, the cost function
and the constraint conditions for the minimization

problem. We have emphasize the importance of the cost
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function for different types of model. The results
have been achieved only with one type, but some
further work must be done to transform the model to
meet all the convergence conditions of the algorithm.
In Chapter X, we have shown the necessity to use
different initial trajectories. One fundamental reason
is that the initial control must be in the
neighborhood of convergence of the optimal control,
and the time of computation is smaller if there are

fewer iterations.

Important observations have to be noted for a
robot with a regenerative source and no friction :
_ It is suitable to retract the arm in order to reduce
the moments of inertia.
_ The optimal control tends to give forces only at the
beginning and at the end of the trajectory.
__ It is beneficial to use the gravitational forces
whenever possible to get some kinetic energy.
_ The results show that local minimum energy
trajectories exist as a function of the time of
displacement.
_ These trajectories make use of the mechanical
resonance of the robot.
_ The minimum time trajectory 1is not far for the first

local minimum trajectory.
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2) Conclusion

More results can be achieved with the present
method. For example, the determination of the optimum
dimensions of robot assigned to a given task. This
method can also lead to the determination of the
motors and their reduction system. The time of
computation is long, further work 1is required to make
this procedure more efficient. The cases of friction
and non-regenerative source have to be studied. The
determination of the minimum time trajectories also
need more attention. It will be possible to extend the
method for the avoidance of obstacles by using the

inequality constraint.



Optimal open-loop control page 98

(1)

(2)

(3)

(4)

(5)

(6)

XIV_REFERENCES

K. OHNO, "A new approach to differential dynamic
programming for discrete time systems". IEEE
Transaction on Automatic Control, vol.AC-23,
no-1, February 78.

D.H. JACOBSON and D.Q. Mayne, "Differential
Dynamic Programming". New York: American
Elvesier, 1970.

J.Y.S. LUH, "An anatomy of industrial robots and
their controls". IEEE Transaction on Automatic
Control, vol. AC-28, no-2, February 83.

J.A. IEMENSCHOT and D.E. WHITNEY, "Optimal
trajectory generation for mechanical arms".
Thesis MIT, M.E. 1972.

M.E. KAHN and ROTH, "The near minimum time
control of open loop articulated chains”. Trans.
ASME, J. Dynamic Syst., Meas., Contr., vol 93,
Sept. 71.

M. TAKEGAKI and S. ARIMOTO, "A new feedback
method for dynamic control of mechanical
manipulators". Trans. ASME, J. Dynamic Syst.,

Meas., Contr., vol. 103, June 8l.



Appendices page 99

APPENDIX A

Determination of the equations of motion of the

three link robot.
Hypothesis : (see Figure 2)

_ The two axes of rotation and the axis of

translation converge.

_ The moments of inertia of each part are defined
with respect of thelr center of gravity, except for the
base, for which it is with respect of its axis of

rotation.

The workpiece is a point mass attached to the

end of the shaft.

_ The shaft is a uniformaly distributed mass along

its length L. Its moment of inertia for rotation 8 is
' yA
359 = ms L / 12

The equations of motion will be derived from the
Lagrange’s equation. Denote by K, the kinetic energy of
the global system, and by P its potential energy.

Lagrange’s equation can be written
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dt qu aqP aq\._,
R Fr
with q = e and F = Te
b Tp

Kinetic Energy

2 2 2 9 =2 2
workpiece : Kw = 1/2 m (R + R 6 + R 4 sin 8)
.2 2. 'L
shaft 't Ks = 1/2 mg (R + (R-L/2) 8 ,
+ (R-L/2)% $~ s1n%0)

+1/2 mg 15/12 &%

+1/2 mg (12/12) $* siclo

2 * 9
housing : Kh = 1/2 my, (r% 0 + r& ) sin29)
+ 1/2 Jwe éz
2 2 2.
+ 1/2 (Jh¢ sin™® + J_ cos 8) ¢
*2
base : Kb = 1/2 J_ $

If we write m, = mg + m , then the total kinetic

energy can be expressed as
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-2
K =1/2 mg R
2. 2 2 -
+1/2 (mg R - mg LR+ mg L /12 + m, 1y, + Jne) O
+ 1/2 [(mt R2 - mg L R + mg LL/IZ + m, r% + Jh¢) sinze

+ J. cosze + Jb] &Z

Potential Energy

P=(mn R+ mg (R-L/2) + mg rh) g cos®

Equations of motion

a) qo¢ = R
.0 K L «2 2.
C%__ %-‘-é{)._-_ ™, R g_.z(mtR-ms_z.)(‘ea-bsmle)
g_\g = my Qs
b) qp = ©

= (mt R%+ msL\%_R)-.- mhrz;' N 3‘\_‘4) _'.T,.\S'me coseq.az

oK
0O
3%; — -(rntJQ- "“3%2'*f"hrh\)CiSﬁ(ﬁa
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c)qP=«f

dét( 3—-‘;) = [( mtRz-l- msL("_-?;_R) 4 mhr‘% {.Thb\ S\.h'ze
+ Sy o8 4+ 35] EI; +2(meR _ms\iyi J; )
+ (mt_Rz+ ms\_(%-ﬂ) +m h"£'+ 3)-,,1, -jr'\ VAS, 8 $
C)K = (@) C.;‘_Q =0
53°° ¢ 38

we can deduce

e -'Z. '2- 2.
R = [CR IR + (mt R - mg L/2) (8 + {, sin 0)]/mt

- g cos®

0 = [Ce Igt+ (mg R - mg L/2 + my, Iy,) g sin®
- 2 (mg R - mg L/2) R 6 0
+ 1/2 SZt R"— m‘LR+m$L/3+mhr%+Jh¢
= Jp) ¢$7sin28 ] g
e ° . 2.
# = [C¢ I¢ -2 (mt ﬂl- mg L/2) R $ sin ©
-(mtR—msLR+msL%3+mhr%+Jh¢-Jp)
0 ¢ sin26 ] o
/ 1 Jg+ Jncos® + (mg K- mg L R + mg L/3
+mh r:'+ Jhb) sinzel
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Notations

g = 9.81 m/s
constants CST(i) :

CST(2) 1/CST(1)
CST(3) - mg L/2
CST(4) = mg L¥/3 + my, r&
CST(5) = mg L%/3 + m,, r2
CST(6) Je
CST(7) = mg L /3 + my, ry
CST(8) = Jy
CST(9) = mg L5/3 + my, ry,

CST(10) = m, Ty, 8

CX(1)
CX(2)
CX(3)

constants CX(1)

Kme / Re de
Km¢/Red¢

+ Jh¢
+ Jh¢- J

+ Jnwe

page 103
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global inertias IRT(i) :

IRT(1) = CST(1) R= + 2 GST(3) R + CST(9)
IRT(2) = CST(8) + CST(6) cos2®

+ (IRT(1) - CST(9) + CST(5)) sinZ®
IRT(3) = IRT(1l) - CST(9) + CST(7)
IRT(4) = CST(l) R + CST(3)

We can deduce the accelerations

o r
R = CST(2) (FR + IRT(A) (8 + (b sin ) )) - g cos®

¢ = (T6 + IRT(3)/2 4 Sin26 - 2 IRT(4) A 6
+ (g IRT(4) + CST(10)) sin®)/IRT(1)
$ = (T¢ - IRT(3) 6 jsinze

- 2 IRT(4) R § si48 )/IRT(2)
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APPENDIX B

Determination of the derivatives of the state
transition function, the cost function, the
inequality constraint function and the equality

constraint function for the three link robot.

Notation : Luq:( A_\T_':'

3 La 3
Lux = _—
du'm) ! " (éuLn Agn

£(1) = R + At R
£(2) = 0 + At O
£(3) = ¢ + At 4
£(4) = R + At R
£¢5) = 0 + At ©
F(6) = & + At &

2
£(8) = wy + Rg I
£(9) = wy + Ry 1%
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fu(4,l)
fu(5,2)
fu(6,3)
fu(7,1)
fu(8,2)
fu(9,3)
fuu(7,1,
fuu(8,2,
fuu(9,3,
fx(1,1)
£x(2,2)
£x(3,3)
£fx(4,4)
£x(1,4)
fx(2,5)
£fx(3,6)
fx(4,1)
£fx(4,2)
£fx(4,5)
£fx(4,6)
£x(5,1)

£x(5,2)
£x(5,4)

£x(5,5)
£x(5,6)

page 106

= At CI(l) CST(2)

= At CI(2)/IRT(1)

= At CI(3)/IRT(2)

= 2 Ry Ig

= 2 Rg Ig

= 2 R¢ I¢

1) = 2 Rg

2) = 2 Rg

3) =2 Ry

=1

= 1

=1

= 1

= At

= At

= At

- At (8% + (b sin@))

= At (CST(2) IRT(4) b sin20 + g sind)

= 2 At CST(2) IRT(4) ©

= 2 At CST(2) IRT(4) 5 sir6

= Bt (IRT(4) ¢~ sin28 - 2 IRT(4) B
+ CST(1) (g sin® - 2 R 8))/IRT(1)

= At (IRT(3) 4 cos28 + (g IRT(4)
+ CST(10)) cosB)/IRT(1l)

= - 2 At IRT(4) 8/IRT(1)

=1 - A 2 IRT(4) R/IRT(1)

= At IRT(3) 4 sin28/IRT(1)
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fx(6,1) =
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2 At (IRT(4) 8 $ sin26

+ (CST(1) R § + IRT(4) P) sin8)/IRT(2)

£fx(6,2) =

At (2 IRT(3) 8 ¢ cosZB

+ (IRT(3) b + 2 IRT(4) R Q) s1in26)/IRT(2)

£x(6,4) =
£fx(6,5) =
£fx(6,6)

£x(7,7) =
£x(8,8) =
£x(9,9)

2 At IRT(4) } 51028/ IRT(2)
At IRT(3) ¢ sin28/IRT(2)

1 - At (IRT(3) 8 sin28 + 2 IRT(4) R sinze)

P et Pt

/IRT(2)

2
fxx(4,1,2) = At ¢ sin20

fxx(4,1,5)
fxx(4,1,6)
fxx(4,2,2)
£fxx(4,2,6)
£fxx(4,5,5)
fxx(5,1,1)

fxx(5,1,2)
fxx(5,1,4)

fxx(5,1,5)
fxx(5,1,6)

£fxx(5,2,2)

ZAté
2 At # sin )
At (2 CST(2) IRT(4) § cos28 + g cos8)
2 At CST(2) IRT(4) ¢ sin26
2 At CST(2) IRT(4)
(At CST(1l) (¢ sin286 - 2 9)
- 4 IRT(4) £x(5,1))/IRT(1)
(At (2 IRT(4) ;L cos28 + g CST(1l) cos8)
- 2 IRT(4) £x(5,2))/IRT(1)
- 2 (CST(1) At 6 + IRT(4) £x(5,4))
/IRT(1)
- 2 At csT(1) i/IRT(l)
2 (Mt IRT(4) & sin28 - IRT(4) £x(5,6))
JIRT(1)
- At (2 IRT(3) sin28 &Z
+ (g IRT(4) + CST(10)) sin®)/IRT(1)
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fxx(5,2,6)
fxx(5,4,5)
fxx(5,6,6)
fxx(6,1,1)

fxx(6,1,2)

fxx(6,1,4)

fxx(6,1,5)

fxx(6,1,6)

£fxx(6,2,2)

fxx(6,2,4)

fxx(6,2,5)

£xx(6,2,6)

fxx(6,4,6)
fxx(6,5,6)
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2 At IRT(3) ; cos28/IRT(1)
- 2 Mt IRT(4)/IRT(1)
At IRT(3) sin28/IRT(1)

- 2 (At CST(1) (® b sin26 + 4 sin” @)

(

+ 2 IRT(4) £x(6,1) sin®8)/IRT(2)
2 At (2 IRT(4) 8 ; cos26
+ (CST(1) R § + IRT(4) §) sin28)
2 IRT(4) sin”® £x(6,2)
IRT(3) sin26 £fx(6,1))/IRT(2)
2 (At CST(1) ¢
+ IRT(4) £x(6,4)) sin®8)/IRT(2)
2 (At ; sin20
+ £x(6,5) sin=8) IRT(4))/IRT(2)

- 2 (At IRT(4) 6 sin20

+ (CST(l) At i
+ IRT(4) (£x(6,6) - 1)) sin=0)
JIRT(2)

(2 At (2 IRT(3) © $ sin20

- (2 IRT(4) R ¢ + IRT(3) §) cos28)
- 2 IRT(3) £x(6,2) sin28)/IRT(2)
(2 Bt IRT(4) §
+ IRT(3) £x(6,4)) sin26/IRT(2)
(2 At IRT(3) 5 cos28
+ IRT(3) £fx(6,5) sin26)/IRT(2)
(2 At (IRT(3) © cos26 + IRT(4) R sin28)
+ IRT(3) (£x(6,6) - 1) sin26)/IRT(2)
2 At IRT(4) sin®8/IRT(2)
At IRT(3) sin26/IRT(2)
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fux(5,2,1) = =- 2 At CI(2) IRT(4)/IRT(1)
fux(6,3,1) = = 2 At CI(3) IRT(4) sin®8/IRT(2)
fux(6,3,2) = - At!CI(3) IRT(3) sin28/IRT(2)

and for all i,j,k
fxx(1i,j,k) = fxx(i’k’j)
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COST FUNCTION L

If the electric system is regemerative
and we make the assumption that there is no friction,

then the cost function is R I

Lu(l) = 2 Rg Ig
Lu(2) = 2 Rg Ig
Lu(3) = 2 R$ Iy
Luu(l,l) = 2 RR
Luu(2,2) = 2 Rg
Luu(3,3) = 2 Ry

If the electric system is non regenerative

2 .
+
then the cost function is &= RP IP CX(pP) qP IP

If Rg IR + CX(1) IR R ) 0, then
Lu(l) = 2 Rg Ig + R CX(1)
Lux(1l,4) = CX(1l)

Lx(4) = I CX(1)
Luu(l,1) = 2 Rg
else

Lu(l) = 0
Lux(l,4) = 0
Luu(l,1) =0
Lx(4) = 0
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If Rg I8 + CX(2) Ip 8 > 0, then
Lu(2) = 2 Rg Ig + 6 CX(2)
Lux(2,5) = CX(2)
Lx(5) = Ig CX(2)
Luu(2,2) = 2 Ry
else
Lu(2) = 0
Lux(2,5) =0
Luu(2,2) = 0
Lx(5) = 0

If Ry Ig +'cxg3) Iy b > 0, then
Lu(3) = 2 Ry Iy + ¢ CX(3)
Lux(3,6) = CX(3)

Lx(6) = Ig CX(3)
Luu(3,3) = 2 RP
else

Lu(3) = 0
Lux(3,6) = 0
Lx(6) = 0
Luu(3,3) = 0
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INEQUALITY CONSTRAINTS g

- ——— - — ———— =" = ———— — - - - —— -

g(l)
g(2)
g(3)

g(4) =
g(5) =
g(6) =
gu(l,1)
gu(2,2)
gu(3,3)
gu(4,1)
gu(5,2)
gu(6,3)
gx(1l,4)
gx(2,5)
gx(3,6)
gx(4,4)
gx(5,5)
gx(6,6)

maximum voltage Vmox (all steps)

IR + CX(1) R

= YmaxR
10 + CX(2) @ - Vmox®
Ip + CX(3) ¢ - Vmox$

g(2) = 2 Voo
g(3) - 2 vnwm#

R}

Ro

R¢

- RR

- Rg

- R¢
CX(1)
CX(2)
CX(3)

- CX(1)
- CX(2)
- CX(3)
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_ maximum peak power P (all steps)

g(7) = Ry IR - Pomkg
g(8) = Rg I8 - Poeck?d
g(9) = Ry Ip - PF=k+
gu(7,1) = 2 Rg Igq
gu(8,2) = 2 Rg Ig
gu(9,3) = 2 }4 I4
guu(7,1,1) = 2 Rq
guu(8,2,2) = 2 Rg
guu(9,3,3) = 2 R+

_ maximum average power P (step N-1)

g(10) = £(7) - N Paer
g(l1l) = £(8) - N Bye®
g(l2) = £(9) - N Qme¢
gx(10,7) =1

gx(11,8) =1

gx(12,9) =1

gu(l0,1) = fu(7,1)
gu(ll,2) = fu(8,2)
gu(l2,3) = fu(9,3)
guu(l0,1,1) = fuu(7,1,1)
guu(l11,2,2) = fuu(8,2,2)
guu(l12,3,3) = fuu(9,3,3)
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__ limits of the robot (all steps except N-1)

fori 1’...,9 ) j = 1’...’9

g(10) = R + 2 At R + A& R = Ry
g(11) = 6 + 2 At 8 + Bt™ 8 - Bmox
8(12) = Rmin = Remox — 8(10)

g(13) = Bmin = Bmax - g(ll)
gu(l10,1) = At fu(é4,l)

gu(l1,2) =8t fu(5,2)

gu(l2,1) = - gu(l0,1)

gu(13,2) = - gu(ll,2)

gx(10,1) = ¢t £x(4,1)

gx(ll,i) = t £x(5,1)

gx(10,1) = gx(10,1) + 1
gx(11,2) = gx(11,2) + 1
gx(10,4) = gx(10,4) + At
gx(11,5) = gx(11,5) + At
gx(12,1) = - gx(10,1i)
gx(13,1) = - gx(1l1,1)

gux(10,1,1i) = Bt fux(4,1,1)
gux(11,2,1i) = At fux(5,2,1)
gux(1l2,1,1i) = - gux(10,1,1)
gux(13,2,i) = - gux(11,2,1i)
gxx(10,1,j) = At £fxx(4,1,]3)
gxx(1l,i,3j) = At £xx(5,1,3)
gxx(12,1,3) = - gxx(10,1i,])
gxx(13,i,j) = - gxx(11,1,])
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EQUALITY CONSTRAINTS h

for 1 =

__ position constraint (step N-2)

1,.0-,6 Y j= 1,--.,6

h(1) = R + 2 At R + & R - By
h(2) = 8 + 2 At & + At® & - 6
h(3) = ¢ + 2 Bt & + Ot% § - §¢

hu(l,1)
hu(2,2)
hu(3,3)
hx(1l,1)
hx(2,1)
hx(3,1)
hx(1l,1)
hx(2,2)
hx(3,3)
hx(1l,4)
hx(2,5)
hx(3,6)
hux(1l,1,
hux(2,2,
hux(3,3,
hxx(1l,1i,
hxx(2,1i,
hxx(3,1,

= At fu(4,l)

= At fu(5,2)

= At fu(6,3)

= At fx(4,1)

a At fx(5,1)

= At fx(6,1)

= hx(1l,1) + 1

= hx(2,2) + 1

= hx(3,3) + 1

= hx(l,4) + At

= hx(2,5) + At

= hx(3,6) + At

i) = At fux(4,1,1)
i) = At fux(5,2,1i)

1) = At fux(6,3,1i)
j) = At fxx(4,1i,3)
j) = At fxx(5,1,j)

j) bt fxx(6,1,]3)
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S

__ Vvelocity equal zero (step N-1)

for 1 = 1,...,6
j- 1’...’6

h(l) = £(4)
h(2) = £(5)
h(3) = £(6)
hu(l,1) = fu(4,1)
hu(2,2) = fu(5,2)
hu(3,3) = fu(6,3)
hx(1l,1i) = £fx(4,1i)
hx(2,1) = fx(5,1)
hx(3,1) = £x(6,1)

hxx(1l,1,j) =
hxx(2,1i,3j) =

hxx(3,1,]3)
hux(1l,1,1i)
hux(2,2,1)
hux(3,3,1)

fxx(4,1,3)
fxx(5,1,3)
£xx(6,1,3)
fux(4,1,1i)
fux(5,2,1)
fux(6,3,1)
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