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Abstract

Multi-core scalability presents a major implementation challenge for data system designers today. Traditional methods such
as latching no longer scale in today’s highly parallel architectures. While the designer can make use of techniques such as
latch-free programming to painstakingly design specialized, highly-performant solutions, such solutions are often intricate to
build and difficult to reason about. Of particular interest to data system designers is a class of data structures we call almost-
latch-free; such data structures can be made scalable in the common case, but have rare complications (e.g., dynamic resizing)
that prevent full latch-free implementations. In this work, we present a new programming framework called Epoch-Protected
Version Scheme (EPVS) to make it easy to build such data structures. EPVS makes use of epoch protection to preserve
performance in the common case of latch-free operations, while allowing users to specify critical sections that execute under
mutual exclusion for the rare, non-latch-free operations. We showcase the use of EPVS-based concurrency primitives in a
few practical systems to demonstrate its competitive performance and intuitive guarantees. EPVS is available in open source

as part of Microsoft’s FASTER project (Epoch Protected Version Scheme (source code) 2022; Microsoft FASTER 2022).

Keywords Multi-core programming - Concurrency control - Epoch protection

1 Introduction

Modern processors have seen a steady increase in core
counts over the past several decades. Consequently, mod-
ern applications use many more threads, which makes safe
and scalable concurrent access to shared data structures
crucial for application correctness and performance. Tra-
ditional solutions such as mutexes or reader—writer latches
scale poorly under this environment, scaling up to only a
handful of threads [16, 23]. To alleviate these bottlenecks,
modern systems use a wide range of techniques for latch-
free programming. However, building latch-free systems and
reasoning about their correctness is notoriously difficult; in
our own experience building FASTER [8], Silo [49], and
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NoisePage [30], doing so requires months of careful design
and many lines of subtle code, followed by lengthy debug-
ging sessions. The main reason behind this difficulty is that
latch-free systems rely on atomic primitives provided by
the hardware (e.g., compare-and-swap instructions) instead
of latches. Consequently, unlike with latch-based program-
ming, developers cannot easily define critical sections for
exclusion and must reason about numerous interleavings on
the instruction level to establish invariants and ensure correct-
ness. In short, developers today face a steep trade-off between
intuitive latch-based programming that does not scale, and
scalable latch-based programming that is difficult to build
and maintain.

Such a trade-off is particularly costly for a common class
of use cases we call “almost-latch-free”. Almost-latch-free
data structures can be accessed and modified latch-free in
most cases, but must rely on more complex mechanisms
in rare situations for correct synchronization. Examples of
this include latch-free hash tables or arrays that occasionally
resize, and metadata data structures that are mostly read-only
but are occasionally updated. Ideally, developers implement
latch-free programming for the common case and revert to

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00859-8&domain=pdf
http://orcid.org/0000-0003-2531-8253

T.Lietal.

latch-based solutions in rare cases, but they are unable to
easily do so with today’s primitives.

In this paper, we present a general solution for building
almost-latch-free data structures, called Epoch Protected Ver-
sion Scheme (EPVS). EPVS offers lightweight, epoch [27]
protection that allows programmers to mix common latch-
free operations with strong, mutually exclusive critical
sections that execute without any interleaving latch-free oper-
ations. Similar to latches, users protect code blocks and
specify the protection level (latch-free or mutually-exclusive)
for each block, and EPVS ensures that each code block is
executed at the specified protection level. At the heart of
EPVS is a highly optimized epoch protection framework
from the FASTER system [8] that can sustain tens of millions
of fine-grained operations per second on a modern multi-core
machine. The simplest way to use EPVS is as a replacement
for the standard reader—writer latch with much more scal-
able shared access but more expensive exclusive access. For
advanced users, EPVS allows complex orchestration of con-
current operations and long-running critical sections through
a general state machine model. For example, [43] and [30]
both implemented bespoke almost-latch-free solutions that
can be simplified with EPVS. Our experience shows that
EPVS can deliver competitive performance and is intuitive
to use.

Summary of contributions

— We identify almost-latch-free data structures as a com-
mon challenge in building scalable data systems.

— We present EPVS, a general solution to the almost-
latch-free problem, which makes use of epoch protection
to achieve highly scalable operation and strong mutual
exclusion properties where necessary.

— We evaluate EPVS in the context of practical data system
challenges to demonstrate its performance and ease of
use.

2 Background
2.1 Almost-latch-free data structures

As mentioned, almost-latch-free data structures are those
that are amenable to simple, efficient, and scalable latch-
free implementations, but under rare conditions must resort
to more complex thread coordination, which in turn prevents
latch-free operations in the common case as well. For exam-
ple, consider a simple resizable array (holding 8-byte object
references) implementation, with only the following methods
for simplicity of illustration:
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— Count (): the number of elements in the array. May
include elements that are under construction from a con-
current Push call.

— Read(i): read the element at index i (0 < i <
Count ()).

— Write(
Count (

— Push (v
array.

)
i, wv):write v toentry atindex i (0 < i <
).

) : Add an entry with value v to the end of the

Users expect the array to grow automatically to accom-
modate new elements added via Push. The textbook single-
threaded implementation copies content into a new array
of double the current size when growth is required. Unfor-
tunately, this is very difficult to implement with latch-free
programming. Current hardware atomic instructions only
support limited-size updates (e.g, aligned 64-bit length vari-
ables), and cannot atomically copy arbitrary-sized arrays.
The common solution of “shadowing”, which copies the
array separately and atomically updates the data structure
reference to point to the new array, also does not work as it
cannot prevent interleavings of the growth operation and con-
current read/write operations and can result in lost updates
during growth. Programmers often need to settle for a signif-
icantly less performant alternative with a latch (e.g., protect
normal array operations with a shared latch, and the growth
operation with an exclusive latch), or invest in a more com-
plex solution (e.g., a concurrent vector [1]).

This is a generalizable pattern. As shown in Fig. 1, almost-
latch-free data structures can be broadly categorized as
undergoing state transitions. In the REST state, the data struc-
ture is amenable to latch-free synchronization (e.g. using
atomic instructions or other wait-free techniques); for exam-
ple, resizable arrays are at rest when there is enough space
left in its buffer. The data structure can also have multiple
disturbed states, where stronger synchronization primitives
such as latches are required. Resizable arrays, for exam-
ple, have a singular disturbed state corresponding to array
resizing, during which they cannot easily allow latch-free
operations. While many data structures can be modeled in
this fashion, almost-latch-free data structures are special in
that they:

1. exist in the REST for the vast majority of the time,

2. only enter disturbed states in response to rare user requests
or internal conditions,

3. eventually return to the rest state each time they enter a dis-
turbed state, making disturbed states a transient anomaly
rather than the norm.

To showcase how prevalent this paradigm is in modern data
systems, we now present several examples from real systems
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Fig.1 Almost-latch-free
archetype—We consider a data
structure almost-latch-free if its
operations can be classified into
a common, latch-free rest state,
and occasionally transitions to a
disturbed state where latch-free
access is no longer safe in
response to a user request or
some internal signal

being disturbed

that can be classified as almost-latch-free using the model
we presented:

Metadata management Many distributed systems rely on
cached metadata at each local machine for performance.
For example, FASTER [26] distributes keys across multiple
shards and maintains a mapping for key ownership locally at
each shard; before an operation, the shard first verifies that it
owns the key before operating on it. However, to implement
this correctly is difficult: suppose that a shard decides to drop
ownership of key & during an ownership change; it cannot
declare the change done until all earlier validated requests
for k finish; otherwise, a race can result in operations on k
after the shard drops ownership. A naive implementation may
prevent this race by protecting the validation and the oper-
ation in a critical section using a shared latch, and updating
ownership information under an exclusive latch, but can lead
to scalability issues, especially if the underlying key-value
store is more scalable than a shared latch [8]. We transform
this problem into an almost-latch-free one by observing that
metadata such as ownership information is largely static, and
only modified infrequently compared to normal operations.
We consider the ownership mapping at rest when it is static,
and consider it to be in a disturbed state when a user requests
to change the ownership mapping. Validation of the owner-
ship mapping table without latch protection is then naturally
safe during the rest phase as the mapping is assumed to be
immutable.

Background data reorganization Hybrid Transactional
Analytical Processing (HTAP) systems often need to trans-
form cold, read-mostly data into a more read-optimized
format. Such transformations are not always safe to com-
plete with concurrent transactions; for example, in [30], the
transformation process needs to compact each storage block
such that tuples are laid out contiguously to each other, and
then reorganize storage layout on the contiguous block for

Certain stimulus (e.g., user request to
start a special operation, the need to
resize an array) result in the rest state

In rest state, the
data structure allows
latch-free access

f\ REST

Eventually, the data structure has
finished responding to the initial stimulus
and will be back at the rest state

In Disturbed states, the
data structure cannot
safely allow latch-free

access due to transient

conditions

analytics. A correct implementation must exclude transac-
tional access that may modify the block, without latching
each block, which makes transactional access in normal sit-
uations more expensive. In the almost-latch-free model, a
block is at rest if it is either hot or already transformed, and
disturbed during transformation, which is infrequent com-
pared to normal access.

Consistent snapshots Often, application builders maintain
data structures in memory and periodically snapshot them to
persistent storage for fault-tolerance. Such snapshots range
from simply writing a counter to disk to checkpointing entire
complex data stores such as [43], and often come with consis-
tency requirements. Consider an example where we need to
checkpoint a hash table that handles insert requests that need
to be deduplicated—upon encountering a request, we first
deduplicate the request by checking and updating a dedu-
plication vector, and then handle the request. A consistent
snapshot of this data structure means that any request logged
in the deduplication vector has its effects reflected in the hash
table. Then, the deduplication vector update and the hash
table update must appear atomic with regards to the snapshot,
which is difficult to achieve latch-free. In the almost-latch-
free model, we consider the deduplicated hash table to be at
rest when snapshotting is not under way, and only need to
ensure atomicity of the updates when a snapshot is requested.

2.2 Epoch protection

Underlying the challenge of thread scalability is a fundamen-
tal hardware restriction—parallel threads run on physically
distinct processor cores, and information must travel from
one core to the other for thread coordination to occur. This
incurs communication overhead that is often expensive for
the application. Consequently, the key design principle for
scalable multi-threaded data structures is to avoid thread
coordination where possible. One natural design pattern to
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develop based on this principle is to have threads run unco-
ordinated in predefined time periods called epochs, and only
coordinate at epoch boundaries. We now introduce epoch
protection as formulated in FASTER [8], which serves as a
basis for our work.

Atahigh level, epoch protection consists of a global epoch
number E and a set of participant threads 7'. Threads incre-
ment E using atomic instructions to signal the end of the
old epoch. Participant threads each own a local copy of E,
denoted E;,t € T, that periodically synchronizes with the
global value. We define an epoch number e to be safe if
Vt € T, E; > e. Intuitively, an epoch number is safe when
no thread is active with local epoch number e (although they
may be running actively with a larger epoch number). Impor-
tantly, programmers often want to associate actions with the
end of epochs. Executing an action after the associated epoch
is safe implies all threads have discovered the intention to
execute this action, and therefore presumably done the nec-
essary preparatory work (e.g., finish using a resource) before
releasing their epoch. We summarize the epoch framework
API below:

— Acquire():Addathreadzto T and set E;, = E.

— Refresh(): E; = E, temporarily drops and imme-
diately reacquires protection. If a thread is expected
to be long-running, refresh is cheaper than calling
Release () followed by Acquire.

— Release (): Remove current thread ¢ from 7.

— BumpEpoch (e, action): increment E to e and
associate action with the old epoch.

A code block is considered “protected” if it is guaran-
teed to execute within a single epoch, and therefore cannot
interleave with epoch change or the associated action. Pro-
grammers can achieve protection by acquiring and not
refreshing or releasing the epoch within a code block. We
now give a concrete example in Fig.2. Consider a simple
workload where threads share access to a resource that must
occasionally be renewed (e.g., a shared data structure that is
moved out of a memory region for memory compaction). To
renew a resource, we simply construct a new object for use
and reclaim the old. It is safe to use the resource fully concur-
rently, but the resource must not be reclaimed when it is under
active use. One might synchronize these threads by protect-
ing resource usage with a shared latch, and renewing the
resource under an exclusive latch. However, on most shared
latch implementations, acquiring the shared latch requires a
write operation to update a counter, which results in cache-
line ping-ponging that limits thread scalability. Instead, we
can use the epoch protection framework to solve this prob-
lem as shown in Fig.2. Consider a thread ¢ executing from
line 6 while a separate renewal thread starts executing from
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EpochFramework e;
Resource r;

// Run concurrently on each thread:
e.Acquire();
while(true)
{
e.Refresh();
r.Use();

© 00O ULk W

10 3}
11 e.Release();

13 // To update resource:

14 var old_r = r;

15 r = new Resource();

16 e.BumpEpoch(() => old_r.Reclaim());

Fig.2 Example use case of epoch protection framework

line 14 in parallel. On line 16, the global epoch E is incre-
mented from ey;4 to e,y . If t Observed e;,0, When refreshing
on line 8, then it must be using the new resource (which is
not being reclaimed) as the read of r happened after line 15.
If t observed e,;4 instead, it may see r before the renewal and
use the old resource. However, because ¢ does not refresh its
epoch while using the resource, e,y does not become safe;
by registering reclamation as an action to execute after the
epoch is safe, we ensure reclamation cannot happen while
the resource is in use. Compared to a shared latch, refreshing
an epoch reads from the global shared epoch E, and a write
to the local E; variable, avoiding any potential cache-line
ping-ponging on the common code paths.

3 Epoch-protected version schemes

The key challenge in implementing almost-latch-free data
structures is to enable high common-case concurrency with-
out introducing prohibitive implementation complexity due
to rare disturbed states. One idea is to apply epoch protection
as a performant synchronization primitive to this problem.
The key missing ingredient here, however, is critical sections;
even as the epoch protection framework ensures execution
of BumpEpoch actions only after all participants have seen
the end of the epoch, the action is still executed in parallel
with other protected regions. This is sufficient for exclud-
ing some interleavings (e.g., free-before-use when garbage
collecting), but is still fundamentally a latch-free technique.
Imagine implementing a resizable array with epochs — if
we were to similarly resize the array with a BumpEpoch
call, the resize operation will occur in parallel with normal
write operations, which still cannot protect against concur-
rent updates. This is a key limitation of epochs as formulated
in [8], and one we address with our proposed framework
of EPVS. In this section, we cover the interface and usage
of EPVS, deferring the implementation details of EPVS for
Sect. 4.
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3.1 EPVS basics

EPVS simplifies almost-latch-free programming by provid-
ing a new abstraction called versions. At a high level, an
almost-latch-free data structure starts a version change when
it leaves the REST state, and completes the version change
when it re-enters REST. Versions are explicitly numbered
monotonically so they are distinguishable from each other,
but version numbers are not necessarily always meaningful
beyond this purpose. Developers protect code regions with
epochs, so that each code region executes entirely within
one state (rest or disturbed), and transitions between states
by executing critical sections under mutual exclusions with
all protected regions or other transitions. We summarize the
(simplified for the moment) user API of EPVS below:

— Enter () : Begin executing protected region; protected
region will execute entirely within the returned version.

— Leave () : Exit protected region.

— Refresh(): Equivalent to calling Leave () imme-
diately followed by Enter (), but is more performant
when called frequently.

— AdvanceVersion (Action criticalSection,
long targetVersion): Advance version to target
version (or unconditonally to the next version if target
version is — 1) asynchronously, executing the supplied
critical section under mutual exclusion for transition. Ver-
sion advances monotonically, and each version can be
advanced to at most once; otherwise, the call does noth-

ing.

Intuitively, EPVS allows us to implement the aforemen-
tioned resizable array example by executing concurrent
operations such as reads and writes in protected regions,
and resizing the array as a version transition under mutual
exclusion. We now walk through a pseudo-code implemen-
tation of this in Fig.3. Users initialize EPVS instances as
objects, much like with traditional latches. To protect a code
region, users surround the protected region with Enter and
Leave, as shown between lines 8-16 in Fig. 3; in protected
regions, operations proceed latch-free. To push elements into
the array, our implementation first uses an atomic counter
(line 22) to obtain a unique position in the array, and then
attempts to populate that spot under version protection. If
the spot is beyond the limits of the current array, we execute
the resize operation on line 31 as part of the state transition in
an explicit AdvanceVersion call. Then, by the semantics
of EPVS, the resize operation executes in mutual exclu-
sion with all protected blocks, which ensures thread-safety.
Threads then temporarily release version protection and wait
until the submitted transition completes. For simplicity, our
implementation spins (by re-entering the loop on line 23)

until array growth is complete. Note here that Enter and
Refresh calls explicitly return the version number, which
EPVS will not advance until the corresponding Leave com-
pletes. For illustration purposes, we use this version number
for deduplication purposes in this implementation. On line
32, we explicitly specify that EPVS should only advance to
the immediate next version; because AdvanceVersion
only allows for a version to be advanced to once, this ensures
that when multiple concurrent threads are pushing onto a full
array, only one request to resize is actually executed.

In this simple form, version schemes behave very much
like traditional reader—writer latches, with concurrent oper-
ations protected under shared mode and version changes
happening in exclusive mode. The difference here is that con-
current operations incur little to no overhead due to the use
of epochs, until a version change happens; in exchange, ver-
sion changes are more expensive than obtaining an exclusive
latch, as we will show later in Sect.6. This tradeoff, how-
ever, results in better overall performance as long as version
changes are infrequent.

3.2 Advanced usage

While intuitive to understand, the simple version scheme we
showed earlier limits concurrency in many cases. Specifi-
cally, if the critical section takes a long time (e.g., persisting
to storage synchronously), all concurrent work is paused and
scalability will suffer. The source of this issue is that we
assumed it is unsafe to execute protected regions outside
of the stable state. Consider again the example of resizable
arrays; it is possible to define an intermediate, semi-stable
state of COPYING and allow limited forms of operations while
the array is resizing. We summarize the logic in Fig. 4, where
REST is the stable state as before. In COPYING, both the
old and the new arrays are visible, and some thread (either
background or collaboratively by participants) is copying
content from the old array to the new array. Let us assume
we are resizing from size c to 2¢, copying from arr_old
to arr_new. Firstly, we disallow writes in this state to
avoid lost writes due to possible concurrent copying; writers
retry until the array is back at REST. This implies that the
array between index range [0, ¢) is temporarily immutable
in COPYING, and readers can read the value from arr_old
instead. EPVS ensures that if a reader observes the array
in COPYING (line 10), the array stays in COPYING due to
epoch protection until it is dropped (line 17). As for push
requests, any push requests serviced at this state must write
to arr_new in the index range [c, 2c), as the original array
was full up to c. This region of arr_new will not be copied
into from arr_old and is therefore safe to push into, and
subsequently read from or written to normally. Now that we
have shown how to operate the resizable array in RESIZE, we
simply need to define how to transition between these two
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1 class ResizableArray<T> {

2 EpochProtectedVersionScheme epvs;
3 TL] list;

4 int count;

6

8 T Read(int index) {

9 epvs.Enter();

10 try {

11 // bounds check

12 R

13 return list[index];

14 } finally {

15 epvs.Leave();

16 }

17 }

19 int Push(T value) {

20 var v = epvs.Enter();

21 try {

22 var pos = AtomicIncrement(count);
23 while (true) {

24 // Normal push into array tail
25 if (pos < list.Length) {
26 list[pos] = value;

27 return pos;

28 }

30 epvs.AdvanceVersion(

31 () => /* Resize x/ ..., v + 1);
32 v = epvs.Refresh();

33 }

34 } finally {

35 epvs.Leave();

36 }

37 }

38

39 3}

Fig.3 Pseudo-code for almost-latch-free resizable array with EPVS

critical section:
Allocate new array
and start copying

REST state: full concurrent

operations

RESIZE state: copying in progress,
read/push allowed, write disallowed

critical section:
Swap arrays,
deallocate old

Fig.4 Resizable array with two-phase state machine—adding an inter-
mediate RESIZE state allows for concurrent read and push operations

states. With mechanisms similar to before, we can transition
between these two states using critical sections. Intuitively,
to start resizing, we allocate arr_new and start the copying
process in the critical section from REST to RESIZE; to restore
stable state after copying is done, we swing the array pointer
from arr_oldto arr_new and deallocate arr_old.

@ Springer

EPVS generalizes schemes like this into transition state
machines. Transition state machines allow programmers to
specify a number of semi-stable intermediate states like
RESIZE during a version change, and move between these
states using critical sections. Each protected region is guar-
anteed to execute entirely within one state that is made known
at the start of execution. We show the EPVS state machine
abstraction below:

— GetNextStep (State current):Returns whether
a next state is available and the state

— OnEnteringState(State from, State to):
Transition logic that executes in isolation before entering
the next state.

Here, State is one 64-bit variable that encodes both a
version number and a byte value for the phase of transi-
tion (e.g., RESIZE). A state machine always starts at REST
in some version v, and ends at REST at a larger version,
closely mirroring our state-based modeling of almost-latch-
free data structures. Along the way, a state machine defines
a series of semi-stable states, along with a critical section
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that executes in isolation between two states. Clearly, this
is a generalization of the API shown earlier, as the crit-
ical section is just a trivial state machine with one REST
state that always transitions directly to itself. Importantly,
a state machine can dynamically decide whether a next
state is ready; for example, a resizable array may stay
in RESIZE until the copying is complete, and only then
will GetNextStep signal that the next state is REST
for transition to occur. In summary, for advanced users,
Enter () /Refresh () nowreturn State as opposed to a
single version number, and AdvanceVersion is comple-
mented with ExecuteStateMachine, which similarly
advances the version to a specified target, but takes a state
machine instead of a critical section.

We now walk through the pseudo-code implementation
of this two-phase resizable array in Figs.5 and 6. In con-
trastto the earlier implementation, the 2-phase resizable array
explicitly reserves references to both arrays during resizing.
As described earlier, Read first acquires version protection,
and then case on the observed phase to proceed differently,
reading the corresponding underlying array. In the case of
Write, because we disallow updates under COPYING, the
implementation simply drops protection and retries until the
array is at rest. Similarly, pushing into the array additionally
cases on the current phase to decide which state to push into;
the difference here is that instead of advancing the version
with a critical section, we supply a state machine (Fig.5) that
resizes the array asynchronously (line 40 in Fig. 5). Note here
that EPVS excludes interleavings where a resize is under-
way, but a concurrent push request is pushing into the old
array (line 52 in Fig.5, otherwise, a race may result in the
copy into 1ist not getting copied over into newList).
This is because the transition that starts the copying exe-
cutes in mutual exclusion with all protected blocks, which
implies that no concurrent Push call is executing. Addition-
ally, the transition starts only after count grows larger than
list.Length, which, combined with the previous obser-
vation, implies that all Push calls into the old list has exited
when copying starts.

4 Implementation
4.1 Efficient epoch framework implementation

We first describe FASTER s efficient, latch-free implementa-
tion! of the epoch protection framework sketched in Sect. 2,
which serves as a basis for EPVS. At the core of this imple-
mentation is the global epoch table — an array of epoch entries
consisting of a thread id, local epoch number, and padded to
occupy an entire cache line to avoid false-sharing between

! https://aka.ms/faster-epochs.

threads. Threads access the epoch table as a latch-free lin-
ear probing hash table to add and remove themselves during
Acquire and Release calls; for Refresh, they locally
cache the array offset for their entry without a hash table
lookup. To avoid repeatedly scanning the hash table, threads
locally stash their index into the table in any instance of
the epoch protection framework and reuse the same index
for other instances for performance. The epoch protection
framework additionally maintains a thread to index hash
table for conflict resolution, ensuring that no other thread
active in other instances has access to the same index. We
allocate an array for epoch-action pairs called the drain list
that BumpEpoch calls write to. Our implementation of the
epoch framework is collaborative in nature; participants scan
the epoch table at the end of each call to compute the safe
epoch and traverse the drain list to perform any associated
actions. Scanning the hash table, however, can be a relatively
expensive operation if the number of threads is large, or if
the memory access is across NUMA nodes. It is possible to
reduce this overhead by offloading the scan responsibility
to dedicated, affinitized threads, but we do not find it to be
necessary in our experience for most workloads.

Note that in our current implementation, the global epoch
table and drain list are statically preallocated and fixed-sized.
When the number of concurrent threads is large compared to
the size, hash table performance may degrade due to hash
collisions, and eventually block new participants until some
threads Release; similarly, frequent BumpEpoch calls
may fill up the drain list and block until epochs are safe.
We do not observe this to be a major concern in practical
deployments, as it is often desirable to limit max threads
in an application for performance anyways, and because our
formulation of EPVS processes version changes sequentially,
which limits the drain list size.

4.2 EPVS from epochs

We implement EPVS as a layer on top of the epoch frame-
work. At a high level, threads enter and leave a version as
they would an epoch, with the added responsibility to:

— block themselves when another thread is executing a crit-
ical section
— step the state machine if possible

Each EPVS instance holds an epoch framework instance,
a single 64-bit atomic State struct, and a pointer to the
current StateMachine (null when none is active). The
State struct holds a version number, current phase, and a
1-bit flag on whether a thread is executing a critical sec-
tion (intermediate state flag). When entering a version, a
thread first acquires epoch protection and checks the cur-
rent state, dropping epoch protection and retrying until the
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class ResizableArray<T>
{

EpochProtectedVersionScheme epvs;
T[] list, newlList;

int count;

NO U W N

}

9 class ArrayGrowthStateMachine<T>
10 : StateMachine

11 {

12 const byte COPYING = 1;

13 ResizableArray<T> obj;

14 bool copyDone = false;

16 (bool, State) GetNextStep(State curr)

17 {

18 switch (curr.Phase)

19 {

20 case REST:

21 next = new State(COPYING,
22 curr.Version);
23 return (true, next);

24 case COPYING:

25 next = new State(REST,

26 curr.Version + 1);
27 return (copyDone, next);
28 }

29 }

31 void OnEnteringState(State from,
32 State to)
33 {

34 switch (from.Phase)

35 {

36 case REST:

37 var newLen = obj.list.Length * 2;
38 obj.newList = new T[newlLen];
39 // Execute asynchronously
40 Task.Run(() => {

41 Array.Copy(obj.list,

42 obj.newlList,

43 obj.list.Length);

44 copyDone = true;

45 s

46 break;

47 case COPYING:

48 obj.list = obj.newlList;

49 break;

50 }

51 }

52 }

Fig.5 Psuedo-code for 2-phase resizable array EPVS state machine

state is not intermediate. To start a state machine (including
when advancing with a critical section, which, as mentioned,
is a trivial state machine), EPVS tries to atomically swap in
the new StateMachine, retrying if there is another cur-
rently active state machine. In some cases, multiple threads
may attempt to install state machines concurrently that do
duplicate work (e.g., two threads inserting entries to an array
concurrently request resizing at the same time). To prevent
this, users may either handle it with application-specific logic
or optionally specify the exact version a state machine is
advancing to, and EPVS will disregard a state machine if it
is behind the current EPVS version.
Stepping the state machine is achieved by:
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1. calling StateMachine.GetNextStep to check if
there is a next state available,

2. if so, attempting to atomically set state to the intermediate
state

3. bumping the epoch with action to execute transition crit-
ical section, and transitioning from the intermedate state
to next state

Because the transition critical section is associated with an
epoch bump, all threads that observed the previous, non-
intermediate state will have exited the epoch when the
critical section executes, ensuring mutual exclusion. The next
challenge in implementing EPVS is ensuring that the sys-



Performant almost-latch-free data structures using epoch protection in more depth

1 c
2 {
3

lass ResizableArray<T>

public T Read(int i) {
var state = epvs.Enter();

try {
// bounds check

if (state.Phase == COPYING
&& i < newlList.Length)
return newlList[i];

if (index < list.Length)
return list[il;

} finally {
epvs.Leave();
}
}

public void Write(int i, T v) {
var s = epvs.Enter();

try {
// bounds check

while (s.Phase == COPYING) {

s = epvs.Refresh();
3
list[i] = v;
} finally {

epvs.Leave();
}
3

public int Push(T v) {
var state = epvs.Enter();
try {
var pos = AtomicIncrement(count);
while (true) {
switch(state.Phase) {
case REST:
if (pos >= list.Length) {
epvs.ExecuteStateMachine(
/* init state machine =/,
state.Version + 1);
state = epvs.Refresh();
continue;
3
list[pos] = v;
break;
case COPYING:
ASSERT (pos >= list.Length)
newList[pos] = v;
break;
3
3
} finally {
epvs.Leave();

Fig.6 Pseudo-

code for 2-phase resizable array with EPVS
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tem makes progress even when threads are not constantly
refreshing. Imagine an otherwise quiescent resizable array
implemented with EPVS, with one Push call triggering a
resize. We would like the push call to succeed and the resiz-
ing to complete without the need for future calls. To guarantee
this, we add an additional step attempt after each transition,
which ensures that a state machine that does not delay steps
(e.g., until copying is done in resizable array) can finish by
itself without new threads entering the version. Otherwise,
users are expected to explicitly invoke a step attempt when a
new state becomes available.

4.3 Discussion

Just like any other concurrency building block, EPVS has
a number of pitfalls and peculiarities that developers must
pay attention to. We briefly outline some of them in this
subsection:

Deadlocks It is possible for EPVS to deadlock much like
with traditional latches. Consider a classical setup, as shown
in Fig. 7, where two code blocks, b1 and b; acquire protection
from two EPVS instances, x and y. In an interleaving where
both code blocks have only just entered the critical section,
EPVS guarantees that no thread enters protected region while
the version transition is underway; however, as seen on line 3
and 10, neither critical section will complete until it enters the
protected region. There are two ways to handle this scenario,
again analogous to handling deadlocks in traditional latches.
First, programmers can merge the two EPVS instances into
one, coarse-grained EPVS. This might appear to limit con-
currency, but upon inspection is the preferred way to deal
with deadlocks, as doing so hardly impacts thread scalabil-
ity on the common path thanks to epoch protection, and the
almost-latch-free assumption states that version transitions
are rare, and therefore unlikely to have a major impact on
scalability. Second, programmers can apply programming
discipline to avoid wait-for cycles, either by rewriting the
program to not enter protected region within transitions, or
by rewriting b, to advance x first, and execute the y version
change as part of the critical section. Note that simply enter-
ing protected region outside of the AdvanceVersion call
does not work, as the critical section is asynchronous and
may execute on another thread.

Advancing under protection A common pattern when using
EPVS is to acquire protection, check some condition, and
then decide to advance the version (e.g., line 30 in Fig. 3).
This may lead to complications, as the version change cannot
take place until the code block exits and leaves the cur-
rent version, which temporarily creates a self-dependency
for progress. Recall also that even though EPVS advances
versions asynchronously, it may need to continuously retry
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1 b1:

2 x.AdvanceVersion (() => {
3 y.Enter();

4

5 y.Leave();

6 3, ...);

8 b2:

9  y.AdvanceVersion(() => {
10 x.Enter ();

11

12 x.Leave ();

13 Yo c00dB

Fig.7 EPVS Deadlocks

(e.g., due to an existing state machine already underway)
before it can register or discard a request to advance the
version. Then, consider a situation where a call to advance
the version is continuously retried under protection due to
another active state machine; the retry continues until the
other state machine completes, and the other state machine
cannot complete until the retry finishes, and the code block
exits from protection. To avoid situations like this, we have
written the AdvanceVersion call to allow spurious fail-
ures, and return without registering a state machine, even
when future retries may succeed. Like line 33 of Fig. 3, users
should retry AdvanceVersion calls only after exiting or
refreshing protection.

Epoch sharing EPVS is a thin layer of state machine logic
on top of the epoch protection framework. This means that
multiple data structure can, in theory, share the same under-
lying epoch framework instance. Because instantiating an
epoch framework is more expensive than traditional latches
(more memory space required for the epoch table and drain
list), sharing epochs can significantly reduce this overhead,
especially when there are many EPVS instances. Applica-
tions can either do so explicitly by using the same EPVS
instance and install their own state machines, or each have
its own EPVS instance sharing an underlying epoch table.
Doing so comes with some disadvantages, however. Gener-
ally, as the number of EPVS instances multiplexed increases,
the epoch framework will, on average, bump its epoch more
frequently at the cost of performance. Additionally, depend-
ing on the implementation, sharing an EPVS instance forces
version changes to be serialized even when they may be from
different data structures, introducing performance interfer-
ence, whereas sharing an underlying epoch must support
re-entrance to avoid deadlocking when multiplexed instances
interleave.We leave a more detailed study of the trade-offs
and workarounds for future work.

Performance inconsistencies It is worth pointing out that
EPVS is, as one might expect, almost latch-free, rather
than latch-free. Pedandically, this means that threads syn-
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chronizing using EPVS potentially blockingly wait for a
version transition, nullifying the wait-free, non-blocking
aspect of the original epoch framework when a version
change is underway. Practically, this translates into perfor-
mance instability, as EPVS blocks and take longer to acquire
protection/allow useful work while in disturbed states. It is
also not uncommon for almost-latch-free data structures to
naturally operate at reduced capacity during disturbed states
(e.g., FASTER is forced to copy records instead of updat-
ing them in-place during checkpointing, drastically reducing
maximum write throughput until checkpointing is complete).
Recent work in distributed systems [] proposed the idea of
metastable failures, where a system optimized for the com-
mon path can enter a state of sustained failure (metastable)
after a trigger moves its workload off the optimized path
and temporary performance degradation is sustained by work
amplification or decreased efficiency. EPVS appears partic-
ularly vulnerable to metastable failures (more specificially,
a single-node variant of it) as it is built to optimize for the
common stable state and has degraded performance in vul-
nerable states. It is worth noting, however, it is not a good
idea to eliminate the possibility of metastable failures by not
using techniques like EPVS- there is fundamental trade-off
between efficiency and safety in the form of performance
or capacity redundancy, and real-world resource constraints
often force developers to pursue the former. That said, EPVS
programmers must take special care to handle such scenarios
via request throttling or other mechanisms to avoid staying
in the metastable state for prolonged periods of time.

5 FASTER case study

We have used EPVS to simplify synchronization logic in
FASTER and many of its derivative systems [24, 31, 32].
In this section, we provide two examples of EPVS usage in
the FASTER system. We first show how we use EPVS to
implement the aforementioned key ownership management
scheme in the distributed version of FASTER; then, we show
how EPVS can be used to simplify FASTER’s asynchronous
checkpointing logic, as described in [43].

5.1 Cluster ownership management

As discussed in Sect. 2, the distributed version of FASTER
relies on a key ownership map at each shard to ensure that
only owners operate on a key. We walk through a simpli-
fied implementation of this logic in Fig. 8, using a ownership
tracking scheme similar to Redis-cluster with 16-bit hash
buckets. Each FASTER shard owns a single-threaded set data
structure holding hash bucket ids, and relies on EPVS for both
thread-safety at the data structure level, and to ensure that
operations are not executed on the wrong shard or become

lost during ownership changes. When a normal operation
arrives, the FASTER shard first acquires protection on line
6, and then proceeds to use a simple membership check to
determine if it is allowed to execute the operation; protec-
tion extends until the operation is finished. When the server
encounters a user request to acquire/relinquish ownership
of a bucket, it instead executes the logic as a version tran-
sition (lines 24 and 30). Thread-safety is guaranteed for the
ownership set because EPVS guarantees that it is never mod-
ified when normal requests read into it under protection, and
that updates to it are serialized as version transitions. For
correctness during ownership changes, FASTER models an
ownership transfer as a relinquish followed by an acquire,
with a transient period of migration when no shard owns a
bucket. On line 28, we first initiate a version transition to drop
the bucket, and wait for it to complete on line 29. Then, as we
exit from the loop, EPVS ensures that all future requests will
see the ownership mapping without the relinquished bucket,
and it will not be modified; it is therefore safe to begin the
migration logic at that point.

5.2 Asynchronous checkpointing

Traditional DBMS recovery methods rely on the write-ahead
log, which is a serial bottleneck, especially for update-
intensive workloads. To alleviate such bottlenecks, FASTER
utilizes the concurrent prefix recovery (CPR) model to asyn-
chronously and incrementally checkpoint DBMS state. With
the CPR scheme, FASTER threads modify entries in-place
in the common code path, but temporarily freeze them dur-
ing checkpoints; at this time, threads switch to a special
read-copy-update mode while a background thread flushes
the DBMS state to storage. CPR guarantees that the check-
pointed content constitutes a consistent cut across all threads.
FASTER uses a checkpoint state machine to model this
process and identify checkpoints using sequential version
numbers, much like EPVS’s approach, as shown in Fig.9.
We describe each phase on a high level as follows:

— Rest Phase: In the rest phase, FASTER exists in a sta-
ble state and processes requests normally by updating
records in-place.

— Prepare Phase: Requests processed in the prepare phase
are committed as part of the current checkpoint; threads
may advance to the next phase voluntarily or as a result
of consistency issues (e.g., reading a record written by
another thread in the next phase, which does not belong
to the commit).

— In-Progress Phase: Threads cross the CPR cut in the in-
progress phase — requests accepted in this phase or later
do not belong to the current checkpoint.

— Wait-Flush Phase: Records of the current checkpoint
are flushed asynchronously to storage.
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class FasterShard {
EpochProtectedVersionScheme epvs;
HashSet <BucketId> ownership;

1
2
3
4 .
5) void ProcessRequest (Request r) {
6 epvs.Enter();

7

8

21 void AcquireOwnership(BucketId b) {

try {
// Safe to use non-thread-safe data structure

9 // here because ownership is read-only when
10 // under protection
11 if (!ownership.Contains(r.Bucket))
12 // Report Error
13 ..
14 ExecuteRequest(r);
15 } finally {
16 epvs.Leave();
17 }
18 }
19

22 // Migration logic not shown

23 C

24 epvs.AdvanceVersion(() => ownership.Add(b), -1);
25 }

27 void RelinquishOwnership (BucketId b) {

28 epvs.AdvanceVersion(() => ownership.Remove(b), -1);
29 while (/* version not advanced *x/...) {}

30 // Migration logic not shown

31

32 }

33 3}

Fig.8 Using EPVS to implement ownership mapping in FASTER

/-> PREPARE

REST

Fig.9 The original FASTER CPR state machine

To implement this scheme correctly on FASTER’s epoch
framework requires much work, however, due to the lack
of mutual exclusion. FASTER implemented a marker sub-
system on top of the epoch framework, which adds a global
version and phase variable packed into a single 64-bit integer,
and a vector of 64-bit integers in each thread’s local storage.
Each phase of FASTER’s state machine is mapped to an index
on the vector, and developers manually note down the version
number of a thread at the offset when the thread reaches a
phase. A thread advances its phase at epoch boundaries, if
either the global phase is ahead its local phase, or it scans
other active threads and discovers that all of them have arrived
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at the same phase, at which point it advances the global phase
to the next phase. The marker system is highly complex as
it is completely latch-free — other threads may be actively
executing requests when a phase advances, and an inactive
thread rejoining the system may start out arbitrarily behind
the current phase in its phase vector, leading to many subtle
races and bugs.

We now briefly sketch out an implementation of the
CPR state machine in EPVS. Unlike the original CPR state
machine, our new implementation just uses two states, a
rest state and the wait-flush state, as shown in Fig. 10. We
determine the checkpoint content (i.e., the entries to per-
sist) in the transition critical section to wait-flush. Threads in
wait-flush read-copy-update, and transition the system back
to rest when flush is complete. Note that EPVS trades-off
some concurrency for simplicity here. For example, threads
using EPVS protection cannot start in the next phase until
all threads exit the previous phase, whereas with epoch and
marks, some threads may continue executing in the previous
phase until they refresh protection even after the rest of the
system moves on. Consequently, the original FASTER CPR
machine features an additional prepare phase, which ensures
that no thread operates without knowledge of the checkpoint
(i.e., in rest) when the checkpoint logic is executed (i.e., the
system enters in-progress); this is not necessary in the EPVS
version at the expense of threads potentially delaying longer
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1 class FasterEpvsStateMachine StateMachine {

2 FasterKV faster;

3

5 override bool GetNextStep(State curr, State next) {
6 switch(curr.Phase) {

7 case REST:

8 next = new State(WAIT_FLUSH), curr.Version)

9 return true;

10 case WAIT_FLUSH:

11 next = new State(REST,curr.Version + 1);

12 // Return based on whether the flush is complete
13 return ...;

14 3

15 }

17 override void OnEnteringState(State from,

18 State to) {

19 switch(curr.Phase) {

20 case REST:

21 // Initialize and start checkpoint by capturing
22 // a snapshot of FASTER-KV hybrid log in the form
23 // of an offset

24 ..

25 break;

26 case WAIT_FLUSH:

27 // Complete checkpoint by resetting local data
28 // structures and persisting metadata

29 ..

30 break;

31 }

32 }

33 3}

35 class FasterKV {

36 EpochProtectedVersionScheme epvs;

37 ..

38 Status Op(...) {

39 var state = epvs.Enter();

40 // original FASTER logic for the operation

41 .

42 epvs.Leave();

43 }

44 R

45 bool TakeHybridLogCheckpoint(...) {

46 return epvs.ExecuteStateMachine(

A7 new FasterEpvsStateMachine(this));

48 }

49 }

Fig. 10 Psuedo-code for FASTER checkpoints using EPVS

before starting the next phase. As we show later in Sect. 6,
this is not a high price to pay except under extreme condi-
tions, such as when a straggler thread does not refresh for a
copious amount of time, halting progress for the rest of the
system.

6 Evaluation

We now evaluate the performance of EPVS in a variety of
workloads, seeking to address the following questions:

— Does EPVS generalize to a variety of data management
workloads?

— Does EPVS provide increased scalability and lower cost
compared to alternative synchronization solutions?

— Does EPVS perform gracefully under extreme conditions
(e.g., frequent version changes, frequent thread context
switches, limited memory space)?

We implement EPVS in C# as discussed before. We ran all
experiments on the Azure public cloud [9], using the machine
type Standard_D48s_v3, which has 48 vCPUs (2.60 GHz
Intel Xeon Platinum 8171 M CPUs) within one CPU socket.
We also implement the BRAVO algorithm [11] in C# accord-
ing to the paper as a comparison baseline. BRAVO uses a
globally shared visible readers table to record presence of
readers, and instance-local bias bits to denote the preferred
access mode, which corresponds to the epoch table and per-

@ Springer



T.Lietal.

instance phase indicator of EPVS. Both EPVS and BRAVO
runs with a hash table size of 4096 entries unless otherwise
specified.

6.1 End-to-end experiments

Resizable array We now compare throughput of 6 imple-
mentations of our resizable array example in earlier sections.
Here, latch-free-mock is an ideal (and unrealistic) latch-free
implementation where we provision a large array such that
no resizing is required for the experiment. Note that this is
not a reasonable implementation for most applications and
instead represents an upper limit for performance.We pro-
vide an additional baseline where we protect array resizing
under exclusive latches, and other operations under shared
latches. For EPVS, we implement the two schemes detailed in
Sect. 3, as simple-EPVS and 2-phase-EPVS, respectively. We
also supply an additional implementation of simple-EPVS
where threads are long-running and refresh, rather than leav-
ing and rejoining epoch for protection (EPVS-pinned). We
randomly generate one million operations with p% push
operations, and (1 — p)/2% each for read and write oper-
ations. We first study the performance of the array without
resize in Fig. 11. Here, we start the array at 1 million ele-
ments and issue 1 million operations per threads, with 50%
reads and writes. We can see that EPVS-based solutions are
linearly scalable, similar to the latch-free baseline, and per-
form significantly better than the latched alternatives. EPVS
and BRAVO are roughly equal in performance normally, but
EPVS when pinned clearly outperforms alternatives, because
threads no longer go through the shared hash table in this code
path. That said, overall throughput using EPVS is quite a bit
lower than the latch-free-mock due to the intrinsic overhead
of epochs (a few random memory accesses), which is expen-
sive compared to the extremely fast array operations (one
random memory access). As we show in other experiments,
this cost is negligible for many other workloads. We then
study performance of our scheme with varying percentage of
push workloads, starting from an empty array to force more
resizing. As the results in Fig. 12 show, push itself cannot be
a linearly scalable operation as push percentage increases, as
there is workload-induced contention at the tail of the array.
Although the two-phase-EPVS array implementation is in
theory superior to the simple-EPVS one, displays no signif-
icant advantage over simple-EPVS when push percentage is
low. In practice, we have discovered that additional phases
in the state machine is usually only worth the overhead if
protected operations would otherwise have to wait for I/O or
other similarly expensive process. To illustrate this, we tweak
the benchmark to add a 10ms delay to each array resize. Then,
as shown in Fig. 13, the 2-phase solution clearly outperforms
the simple baseline.Lastly, we demonstrate that EPVS per-
forms better than BRAVO under adverse circumstances. In
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Fig. 11 Scalability of EPVS resizable array—read/write

Fig. 14, we have reduced the hash table size to 128 for both
EPVS anf BRAVO to increase contention and collision. As
the esults show, EPVS is clearly more robust than BRAVO
at handling this — this is because EPVS’s epoch table has a
linear probing design to resolve conflicts, whereas BRAVO
falls back to the slowpath on such conflicts. EPVS is also
able to avoid slowdown from small epoch tables by pinning
threads to epochs thanks to its epoch-based design.

Cluster ownership management Figure 15 shows the
performance of our prototype of a sharded version of
the FASTER key-value store described before. We use a
YCSB workload with 50:50 read-write ratio and uniform
distribution, and report the average throughput on three con-
figurations: one without any validation, one with validation
protected by a reader—writer latch, and one with EPVS. We
do not trigger any ownership transfer for the purpose of this
benchmark. We can see that EPVS has similar scalability as
the no-validation baseline, and is much more scalable than
the naive latch-based baseline.

Asynchronous checkpointing We now compare EPVS
against a hand-written latch-free epoch-based checkpointing
solution as described in [43]. We again use a YCSB workload
with 50:50 read-write ratio and uniform distribution, trig-
gering checkpoints periodically. Checkpoints are written to
/dev/null/for speed, such that the checkpointing mecha-
nism itself, rather then the disk, is stressed. Note that we only
show scalability on a single CPU socket to minimize inter-
ference from NUMA in this experiment. We use two models
of operations: fine-grained, where each protected region con-
sists of one key-value operation, and coarse-grained, where
each protected region consists of 16,384 operations. As
shown in Fig. 16, EPVS retains most of the performance
and scalability of the original FASTER CPR implementa-
tion when operations are fine-grained and checkpoints are
frequent. It is important to note that the original CPR algo-
rithm was designed in such way that threads never block each
other unless accessing the same record during checkpointing,
from which most of its complexity derives. The EPVS-based
solution, on the other hand, forces threads to wait while a
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Fig. 12 Scalability of EPVS resizable array
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Fig. 13 Scalability of EPVS resizable array—with resize delay

critical section is underway. We can see this manifest in the
coarse-grained operations case in Fig. 16, where the original
solution outperforms EPVS. Such cases are rarely encoun-
tered in practice, however. In exchange for performance in
this edge case, we were able to reimplement the necessary
checkpointing mechanism in FASTER using EPVS in just

-=- EPVS  —-- EPVS-pinned —=-- BRAVO
200

w

S

O 150 .

= ol

= -

5100 = .

by =7 . v

o Pt L Ve

3 50 P OPAL \ » _

< PP AL L s S A

~ P

8 16 24 32 40 48
#cores

(a) p=0%

Fig. 14 Scalability of EPVS resizable array—with constrained hash
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Fig. 15 Scalability of FASTER-remote key validation

a few hours with dozens of lines of code, whereas the orig-
inal solution took months of subtle engineering and many
lines of code with supporting mechanisms. While EPVS is
not optimal in performance, it achieves most of the speed-up
of FASTER CPR with a fraction of its complexity.

6.2 Microbenchmarks

We now evaluate the performance of EPVS in a series of
microbenchmarks to better understand its limits and sensi-
tivity to implementation parameters. For these experiments,
each thread protects hashing of some local bytes, which sim-
ulates work but does not generate any contention between
threads; the synchronization method used is the only source
of contention. For each experiment, we run 1 million simu-
lated operations per thread.

Impact of version change frequency In this experiment,
we vary the frequency of version change by participating
threads. Each thread will trigger a version change with proba-
bility p for each operation. Other than EPVS, we also provide
two baselines where operations are executed without any syn-
chronization (latch-free) or with mutual exclusion (latched).
We can see from the results in Fig. 17 that EPVS retains
competitive performance when version change is infrequent
as before; however, performance begins to degrade for more
frequent version changes, both because more synchroniza-
tion is required and because version change is expensive.
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Fig. 16 Scalability of FASTER-KYV checkpointing

When version change is frequent, EPVS is less performant
than simply executing protected regions under a latch. This
is because version change is relatively expensive compared
to a latch given epoch and state machine mechanics. To sum-
marize, EPVS performs best when version change is rare
compared to normal operations. We conduct the same exper-
iment for BRAVO and observe that BRAVO is much more
sensitive to frequent exclusive acccess, likely because it is
designed to be more conservative than EPVS in bypassing
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protection in the common case. Noticably, however, BRAVO
performs no worse than a latch in the worst case of p = 1,
unlike EPVS, thanks to this design philosophy.

Impact of hash table size Recall from Sect.4 that EPVS
is implemented on top of the epoch protection framework,
which is in turn built on a fixed-size latch-free hash table. In
this experiment, we vary the size of this table and report the
resulting throughput. All experiments execute with version
change probability le—4. We can see from the results on
the left in Fig. 18 that with a small epoch table size, EPVS
experiences reduced scalability as threads crowd the table
and EPVS operation repeatedly scans the table for a spare
slot. This problem is alleviated as table size increases; we
have found that in general, provisioning a table with at least
double the thread count is desirable for performance. One
would expect that with large tables, computing the safe epoch
becomes more expensive as it requires scanning every entry
in the table. This effect does not appear to be profound, as
the epoch table is still a relatively small chunk of contiguous
memory even for large table sizes, which makes it cheap to
scan. Recall from earlier as well that we can optimize EPVS
to skip hash table lookup for long-running threads, by using
Refresh instead. We show such a run on the right side
of Fig. 18, and see that indeed this improves scalability for
smaller table sizes. Lastly, we perform the same experiment
for BRAVO and observe that BRAVO is more sensitive to
smaller hash tables, and only performs well when the table
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is much larger than the number of threads. This is because
a hash collision in BRAVO results in an overly conservative
switch to the slow path, whereas EPVS handles collisions via
linear probing.

Impact of phases To study the overhead of a complex state
machine over a coarse-grained critical section, we fix the
total amount of work (measured in iterations of hashing) in
a version change and vary the number of phases it is split
across. As reported in Fig. 19, there is little overhead intro-
duced by additional stages. This makes sense because phases
and versions are implemented based on the same epoch pro-
tection primitives, and therefore the only overhead the state
machine adds is logic that looks up the next transition, which
is lightweight. However, users should still be aware, as we
showed earlier in the resizable array example, that additional
phases can resultin added application complexity, which may
manifest as an overall loss, even when performance overhead
is minimal on the EPVS level.

sition (i.e. no nesting) and 4 nested acquisitions, under the
same microbenchmark with no version changes. As reported
in Fig.19, EPVS sees very little change in performance,
whereas BRAVO sees significant performance degradation
during nesting. This is due to a flaw in the BRAVO design,
where different lock instances share one underlying hash
table with no collision handling scheme other than revert-
ing to the slow path. Because BRAVO uses thread identity
as a key to its hash table, nested protection guarantees such
degenerate case. To avoid this issue, BRAVO will need to
either introduce collision or use a different scheme for hash-
ing (e.g. hashing with a combination of thread identity and
lock instance id).

Impact of sharing Lastly, we briefly study the potential
impact of epoch sharing. As discussed earlier, sharing is one
way to reduce complexity in deadlock detection and memory
overhead by protecting many data structures with one coarse-
grained latch primitive. In this experiment, we provision 8
instances of EPVS, BRAVO, and the C# reader—writer latch.
In the no-sharing scenario, each thread is randomly assigned
one instance (maximum 6 threads sharing an instance) for
use in the same microbenchmark, whereas in the sharing
scenario, every thread uses the same instance. We run a work-
load with relatively frequent version change (p = le—4)

@ Springer
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and observe that EPVS is able to retain most of its scala-
bility, whereas BRAVO and the C# reader—write latch sees
noticeable drop in scalability.

7 Related work

Traditional latches Latches, in various forms, are the most
common synchronization primitives for protecting shared
resources in concurrent programming [21]. Reader—writer
latches, or shared-exclusive latches, are the most related to
EPVS, allowing arbitrary numbers of shared readers or one
exclusive writer access at any given time. Traditional reader—
writer latch designs [6, 40, 47] use a shared counter to record
presence of readers, which becomes a bottleneck when there
are many concurrent readers; this is because concurrent read-
ers frequently update the shared counter, which introduces
frequent cache invalidation [10, 12]. To alleviate this bottle-
neck, prior work has proposed distributing the shared counter
across threads at various granularity [7, 25, 28, 33] at the
expense of increased memory footprint. EPVS is closest to
the concept of biased locking [42, 45, 51], where certain
threads are allowed bypass the normal, expensive codepath
when acquiring and releasing the latch, and other threads
must revoke this bias via a heavy codepath. Other work
explores the possibility of achieving a similar effect through
hardware-based lock elision [36, 44]. In this line of work,
BRAVO [11] is of particular note because it applies the con-
cept of biased locking to reader—writer latches, leading to a
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user experience very similar to EPVS. Apart from the similar-
ity in implementation, however, EPVS is still fundamentally
an epoch-based mechanism, and is interoperable with pure
epoch-protected code such as FASTER. BRAVO is, in con-
trast, a latch-based approach that regresses to an underlying
reader—writer latch in the case of hash collisions or recent
write access. EPVS, on the other hand, has no such fallback
mechanism and has extra logic (e.g., reassigning a thread to a
different slot in the hash table) to ensure correctness in these
situations.

Latch-free programming and epoch protection While
latches are often easier to reason about and use in most cases,
they limit concurrency and introduce bottlenecks in many
highly concurrent workloads. There is much work in build-
ing data structures with operations that do not require mutual
exclusion, i.e. latch-free through the use of hardware-level
atomic instructions like compare-and-swap [5, 18, 38, 39, 50,
53]. However, such latch-free data structures are not always
faster than their latch-based counterparts, due to reasons such
as failed and retried non-blocking operations and additional
data copying [4]. Additionally, latch-free programming suf-
fers from additional complexity in memory reclamation and
other background maintenance tasks [22], which has lead to
the introduction of epochs [27] as an efficient garbage collec-
tion mechanism for concurrent binary search trees. Epochs
have continued and continue to support garbage collection
in more modern concurrent data structures such as the Bw-
tree [29, 37, 52], but epochs have been used in a more general
sense as well. Silo [49] is an OLTP system that uses epochs
to improve transaction throughput, where threads commit
transactions only at the end of epochs to reduce the amount
of synchronization overhead. Similarly, the concept has been
extended to later transactional systems such as [35, 48, 54].
EPVS follows a more general notion of epoch protection for
thread coordination and safe code scheduling, as formulated
in FASTER [8].

Transactional memory Much of the complexity in latch-
free programming arises from the limited size of the atomic
unit (e.g., 64-bit compare-and-swap), which has lead to
proposals of multi-operation atomicity support in the form
of transactional memory [34]. The original proposal [20]
proposes an extension to existing multiprocessor cache-
coherence protocols on the hardware level; later work [46]
extends this idea with software transactional memory. While
the initial transactional memory proposals are latch-free
and obstruction-free [17, 19, 41], the community eventually
converged on latch-based methods for performance and sim-
plicity [13—-15]. EPVS, although not transactional, follows
a similar philosophy, replacing a previously non-blocking
solution with a potentially blocking one for simplicity, and
may benefit from similar improvements and techniques from
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the transactional memory community. We leave this discus-
sion for future work.

8 Conclusion

We presented EPVS, a framework for concurrent program-
ming that combines the raw performance of latch-free
programming with the intuitive guarantees of critical sec-
tions and mutual exclusion. EPVS is implemented on top
of an efficient epoch protection framework that can easily
scale up to millions of fine-grained operations per second
and dozens of cores. Our evaluation of EPVS suggests that
it is both easy to use and highly efficient. EPVS is available
in open source as part of Microsoft’s FASTER project [2, 3].
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