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Abstract
Scientific programming languages should pursue two goals: closeness to mathematical no-
tation, and the ability to express efficient numerical algorithms. To meet these goals si-
multaneously, languages use imperative surface syntaxes that mimic mathematical notation.
However, mimicking does not make them the same—mathematics is declarative, pliable,
and caters to exploratory human nature; but algorithms are imperative and must cater to
machines. Hence, there is a fundamental limit to this approach and we leave the expressive
power of the symbolic representation on the table.

In this thesis, we ask the question: How can symbolic and numerical modes of computing
co-exist, one informing the other? As an answer, we develop a symbolic-numeric system
that can trace through numerical code to produce symbolic expressions, and turn symbolic
expressions back into high-quality numerical code at staged compilation time. This allows
the scientific user to generate code with the full power of algebraic manipulation and to treat
numerical code as the symbolic artifact it is. We identified siloing of symbolic software into 3
categories which currently each reproduce similar forms of symbolic capabilities, but cannot
share code between each other. Our work demonstrates that this siloing is not essential and
an ecosystem of symbolic-numeric libraries can thrive in symbiosis.

Our system is adaptable to any domain: users can define 1) Symbolic variables of any
type 2) the set of primitive (symbolically indivisible) functions in the domain, 3) the propa-
gation of partial information, and 4) pattern-based rewrites and simplification rules. There
is a tendency in scientific computing to create a “compiler for every problem” starting from
scratch every time. Every such effort erects its own towers of symbolic and numerical ca-
pabilites. A system like ours eliminates this redundancy and lets every scientific user be a
“compiler designer” without any prior knowledge of compiler development.

Thesis Supervisor: Alan Edelman
Title: Professor, Department of Mathematics
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Chapter 1

Introduction

Every piece of numerical code was once a symbolic expression. For instance, the code for

the Taylor approximation of ex near 0 by a polynomial of degree 4 is a straightforward

transcription of the polynomial:

function exp1(x)

1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24

end

The approximation for different functions and of different degrees can be derived symbol-

ically on a black board or, conveniently, on a computer 1. However, turning symbolic results

into numerical code is either not supported by symbolic computing environments, is ineffi-

cient, or is limited to and by a lower-level target language. For example, Mathematica [46],

the poster child of symbolic computing, is great for symbolic manipulation, but cannot itself

be compiled to machine code. The CCodeGenerate [47] function compiles symbolic expres-

sions to C code, however, in an interactive application, one may not know which functions

need to be generated beforehand, and need to generate them on a case-by-case basis. This

is a particularly important problem in scientific computing where interactive computing is

favored by users. The compiled code is limited by the constraints of the C language, such

1This example can be symbolically computed in Mathematica: Sum[xn/Factorial[n], {n,Range[0, 4]}]
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as machine-precision numbers, whereas some computation may require arbitrary precision.

Further, it can only call library code that is already somehow accessible from C.

The ability to analyze and transform numerical code as symbolic expressions is powerful

as we will see in Chapter 5. We continue our example to illustrate this ability below. Let’s

say we have the Taylor approximation of a different function, say, e2x:

function exp2(x)

1 + 2x + 2x^2 + 4x^3 / 3 + 2x^4 / 3

end

Now, ex+e2x can be approximated by exp1(x) + exp2(x) 2 but, this is not efficient—the

computation can be achieved with one polynomial evaluation whereas here it takes two, one

each in exp1 and exp2. The computational cost is at least double the necessary cost. A

smart user may know that they just need to add the polynomials in the bodies of exp1 and

exp2 to get a single polynomial that computes the same value but they don’t have any means

of adding the insides of a function programmatically. If these programs contain polynomial

expressions, why can’t we add the polynomial expressions?

Here is where we can use symbolic computation to overcome this limitation: In a suf-

ficiently generic language, a symbolic unknown y can be passed into the functions in place

of a number. If operations on unknowns produced symbolic expressions, the resulting two

expressions will be polynomials. The polynomials can then be added and function can be

generated automatically from that result:

@variables y # declare y to be a symbolic variable

# run the functions with symbols:

new_polynomial = exp1(y) + exp2(y)

# Result: 2 + 3y + (5y^2/2) + (3y^3/2) + (17y^4/24)

2This is also equal to exp1(x) + exp1(2x)
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# make a function with new_polynomial as the body and y as the argument

f = makefunction(new_polynomial, y)

Such symbolic treatment of numerical code is currently, at best, hidden away in compiler

pipelines and not accessible to the average scientific user. Floating point optimizations [62]

and automatic differentiation (AD) [39] are examples of symbolic transformations imple-

mented as compiler passes. At the compiler level, we throw away the mathematical domain

of variables and only deal with them as machine-precision numbers conforming to a machine-

level standard. We discuss this with an example in Section 2.4. Designing compiler passes is

usually not part of the expertise of a scientific programmer, and they are forced to live with

or work around such limitations.

This thesis demonstrates that a sufficiently nice numerical language can be extended with

a symbolic subsystem that can open up a “symbolic-numeric” mode of computing in which

users can switch between the symbolic representation and machine executable code. This

gives scientific users power that would previously only be available to language developers and

compiler engineers. This power can be compounded by a general purpose computer algebra

system. With rule-based term rewriting, users can optimize and transform programs as easily

as they can symbolic expressions. This becomes a higher-level platform for building domain-

specific languages than previously available. We present our implementation, Symbolics.jl,

on top of the Julia [5] language.

Expressive power with performance is the name of the scientific computing game. The

system we present here extends the expressive power of multi-methods where specialization

occurs on the types of input, with a pattern-based rewriting and predicate-based dispatch.

This leads to a system where the user can choose to overspecialize on input values and partial

information when they know compiling a special case is beneficial. This thesis is a glimpse

into what we believe is the future evolution of scientific computing languages.

15



1.1 Definitions

Symbolic computing

Computing with named unknowns of different types such as real numbers, vectors and ma-

trices. We use these terms interchangeably: symbolic computing, symbolic programming,

computer algebra, symbolic manipulation. This is in line with the common use of these

phrases to describe systems like Mathematica, SymPy [63], Maxima [40], etc.

Symbolic tracing, symbolic trace

Executing a piece of code, originally intended to be run on numbers or number-like ob-

jects, with symbols to obtain a symbolic result instead of numerical result. The symbolic

result is called a symbolic trace. Note that the symbolic trace can be an array of sym-

bolic expressions, if the function being traced returns an array. In the example above,

2 + 3y + (5y^2/2) + (3y^3/2) + (17y^4/24) is the symbolic trace of exp1(y) + exp2(y).

Numerical computing and numerical language

Computing with numbers and number-like objects such as vectors and matrices is numer-

ical computing. We include both low-level numerical libraries like BLAS [6], TACO [54],

FFTW [31] are implemented in low-level code, and high-level level productivity systems like

MATLAB, NumPy and Julia in our definition. However we do not consider Python and

MATLAB numerical languages. In our definition, numerical languages are those in which

one can implement efficient low-level routines first and, optionally, also provide a high-level

API. Examples are C, FORTRAN and Julia.

Symbolic expression, terms, algebraic expression, symbolic representation

We use these terms interchangeably. Polynomials, trigonometric terms (even though we say

algebraic expression), array expressions, are all included in our usage.

16



1.2 A brief history of numerical and symbolic modes

of computing

In the early days of computing, numerical computing was the only kind of programming,

and compilers were considered a luxury. FORTRAN [53] (short for Formula translation)

was the first numerical computing language, and is still a staple in some fields of science. In

recent years, emphasis has been given to productivity and interactive numerical computing

by systems such as MATLAB [45], R [68], Mathematica [46], SymPy [63], Octave [24], etc.

Recently the Julia language [5] has brought together the requirements of performance and

productivity into one platform through elegant language design.

In 1960 the LISP (short for LISt Processor) system of McCarthy [61] was introduced

for the IBM 704 computer. The LISP system would be used to build a “common sense”

answering program that could take instructions in declarative or imperative form. This was

perhaps the first practical form of symbolic computing.

Schoonschip was one of the first computer algebra systems, developed in 1963 by Martinus

J. G. Veltman, for use in particle physics [86]. It was instrumental in his work leading to the

Nobel prize in 1999 [88]. Symbolic computing (referred to also as symbolic programming,

computer algebra, symbolic manipulation) has taken a few different forms: the first category,

one can say, caters to the mathematical skills of the freshman science and engineering student

– Mathematica, Sage [80], SymEngine [81] and SymPy [63] are in this camp; the second caters

to abstract algebraists – GAP - Groups, Algorithms, Programming [33], Magma [9], Nemo

[29] are in this category. These software are characterized by efficient implementations of

limited kinds of algebraic objects: groups, fields and polynomials, etc.; a third category would

be of packages such as Modelica [26], Simulink [23] which are domain specific languages for

differential symbolic modeling to generate numerical computations. Symbolic languages are

either implemented in Lisp, or in C/C++ (more in Table 4.6).

Numerical computing focuses on performance, while symbolic computing focuses on com-

puter algebra, pattern matching and term rewriting.
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1.3 Symbolic-numeric programming

Symbolic programming and numerical programming have been used in tandem for a long

time in ad-hoc ways. For example, modeling and simulation packages need to turn sym-

bolic equations into numerical functions given to numerical solvers. In this field symbolic

algorithms are used to make problems feasible to solve, as well as to optimize numerical com-

putation. Numerical software such as fast Fourier transforms [12] and numerical integrators

require highly optimized kernels to handle specific kinds of input sizes and types. Symbolic

programming is used to generate these variations.

The flip side of generating code from symbolic expressions is being able to symbolically

analyze and transform numerical code. A numerical integrator needs to compute the ja-

cobian of a user-provided function, automatic differentiation (AD), an essentially symbolic

transformation, is performed for this purpose. Properties such as sparsity of the jacobian,

hessian, or convexity which help guide program selection and optimization, and can be

symbolically inferred by rewrite rules. AD is applied in machine learning where code de-

notes array operations rather than elementwise operations. A pattern-matching rule-based

rewriter system would serve someone building a compiler for numerical purposes, for exam-

ple the Finch sparse tensor compiler [2] that supports fast loop nests on sparse tensors with

various storage datastructures.

FORMAC (FORmula MAnipulation Compiler) [7] project started in 1962 at IBM was

the first symbolic-numeric language. We reproduce an expert enumerating its purpose as

presented in [73]:

• “...To provide a system which has basic FORTRAN capabilities and also the ability to

do symbolic mathematics...”

• “...To provide a system which can be used for both production runs of problems in-

volving both symbolic and numerical mathematics...”

• “...To provide a system which can be useful to application areas which have previously
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used numerical approximations because the analytic methods were too time consuming

and prone to errors...”

The FORMAC project shows that the intention to create a symbolic-numeric system has

been around since the beginning of the genre of symbolic computing. We also see, in the

retrospective [73], the difficulty of communicating the need for such a system to funding

sources within IBM at the time which was a major road-block to its prevalance. We hope

this thesis provides some compelling reasons for the necessity of such systems in the future

as well as the technical know-how to construct it in a modern way.

1.4 A Two-language problem in symbolic-numeric

programming

A two-language problem exists in scientific computing [5]: users write exploratory code in

a high level productivity focused language, but the libraries they invoke from this code are

actually written in a lower-level performance-focused language like C, or Fortran. Implicit

is the assumption that users of the high-level language don’t need to look at the lower-level

code, and it’s to be written by a different kind of expert.

Symbolic manipulation software actually exarcerbate this split. Most symbolic softwares

have their own language, and cannot describe efficient low-level numerical code, they do

focus less on wrapping numerical libraries in comparison to a numerically focused dynamic

language like, say, MATLAB would. The code generation from Symbolic expressions in these

languages takes two directions which both have limitations:

• They compile to a low-level language such as C/C++/Fortran. Target programs must

become limited to types and functions supported by the lower-level language. (e.g.

Mathematica, Maple, etc. take this route – See Table 4.6 for a larger comparison).

• They compile to high-level functions wrapped in the high-level language. This limits

the freedom to use lower-level constructs such as efficient loops when necessary, and
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becomes essentially as fast as the host language. Sometimes, these languages also do

not faithfully map from a symbolic form to a numerical form. See Section 4.10.2 for an

example of this. MATLAB’s Symbolic Math Toolkit [78], SymPy, etc take this route.

The Julia language showed that this split between productivity and performance lan-

guages is not some law of nature, but it is accidental. With the right use of multiple-dispatch

generic functions as an abstraction for code selection and code specialization at the same

time, it achieves a single language that is dynamic, yet due to dynamic types and data flow

type inference, can be compiled to efficient machine code just-in-time. Chapter 3 describes

Julia’s contribution in detail.

A symbolic subsystem written with multiple-dispatch in a language like Julia can rep-

resent symbolic expressions which faithfully map to a subset of the language, and hence

to meaningful numerical code. It can contain non-symbolic values like big integers, matri-

ces, even strings, custom data types, calls to any library functions, and the generated code

can simply use the same values rather than the ones obtained by their trasnsciption via

priting a file in a lower level langauge. Our system, Symbolics.jl described in Chapter 4,

achieves this ideal and makes symbolic-numeric programming effective in interesting ways

as demonstrated by the case studies in Chapter 5.

1.5 Quoting code by symbolic evaluation

A symbolic-numeric system needs to be able to represent code as symbolic expressions which

have a parallel mathematical meaning. Ideally, these would be the expressions generated

when a piece of code is evaluated with symbols. There are many ways one can represent

code as such expressions:

1. Abstract syntax trees (ASTs) as expressions: To treat these expressions as val-

ues, one has to define arithmetic operators on expression trees. However this means

the behavior of operators is fixed, and cannot vary based on the type of the expres-

sions. For example, expressions representing numbers may commute, but expressions
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representing matrices are not meant to. ASTs can also contain expressions that are

code with control flow and side effects, now the operators become undefined. This is

the method used for the most part in scmutils [34].

2. Symbols and expressions as objects with types: Here we define symbols and

assign a “symbolic type”, and then define how operators on symbols and expressions

of specific symbolic types interact with eachother. This eliminates the problems caused

by the trees lacking types as in the previous kind.

3. A combination of normalized syntax tree, produced by partial evaluation:

basic blocks (a sequence of statements, with assignments), branches, loops, possibly in

a normalized form like single-static-assignment (SSA). Coupled with the ability to use

symbols within them, this representation has more power than the previous two.

Although the third kind is the most powerful, in the rest of this thesis we deal with the

second kind. This was the most useful and intuitive representation in real world problems,

and we leave the exploration of the third kind to future work.

Metaprogramming is the powerful idea of programmatically generating programs. It is

facilitated by a natural representation of code as symbolic expression. It has the obvious

benefit of relieving one of the tedium of manually writing and checking (hopefully) larger

amount of code. It can make otherwise intractable software development tractable. One can

think of it as an order increase in productivity.

1.6 Vignettes of symbolic-numeric programming

This section shows some simple illustrative examples of symbolic-numeric programming.

1.6.1 Eliminate memory overhead by symbolic reassembly

Following is a PDE discretization code. This code is a typical function that may be received

by a numerical integrator. Although the code is easy to read, it’s not exactly efficient since
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it allocates a bunch of intermediate arrays and invites garbage collector overhead.

using Symbolics, LinearAlgebra

function f(u, p, t)

# all lines below lead to one allocation each

A = u[:,:,1]

B = u[:,:,2]

C = u[:,:,3]

MyA = My*A

AMx = A*Mx

DA = @. _DD*(MyA + AMx)

dA = @. DA + α₁ - β₁*A - r₁*A*B + r₂*C

dB = @. α₂ - β₂*B - r₁*A*B + r₂*C

dC = @. α₃ - β₃*C + r₁*A*B - r₂*C

cat(dA, dB, dC, dims=3)

end

Here αi, βi, and ri are scalar parameters, My and Mx are tridiagonal matrices of weights.

To optimize this code, we run this function with symbolic “placeholder” input. From the

result of this symbolic run (we call this a symbolic trace), we generate a new function which

is now in-place and modifies an existing block of memory, and completely unrolls the original

function. By in-place, we mean it takes a pre-allocated array as the first argument and writes

the result to it. The performance is measured by the ‘@b‘ macro from the Chairmarks julia

library.

@variables u[1:4,1:4,1:3]

f1! = makefunction(f, u, inplace=true) # make it in-place

U = rand(size(u)...);

22



out = zero(U)

julia> @b($f($U)) # benchmark `f` as-is

2.400 μs (41 allocs: 3.094 KiB)

julia> @b($f1!($out, $U))] # benchmark optimized in-place f1!

25.405 ns

julia> out ≈ f(U)

true

We see that the original code resulted in 41 allocations, and took 2.4 microseconds, but

the symbolically reassembled function took only 2̃5 nanoseconds and allocated nothing. This

is a 94 times improvement in performance of this code which would be repeatedly run in the

critical loop of a PDE solver.

There are certain further niceties here:

• this optimization generalizes to any size of input. For every size of the input, we get a

specialized function.

• one may argue that using static arrays, i.e. arrays of static size that are backed

by stack-allocated tuples can give you the same performance improvement without

sacrificing performance:

julia> sU = SArray{Tuple{4,4,3}}(U);

julia> @b f($sU)

1.156 μs (23 allocs: 44.000 KiB)

in practice it does not work. Presumably, compiling such a series of expressions to

work with static arrays is quite expensive
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1.6.2 Jacobian sparsity

In automatic differentiation, sparsity of a Jacobian can be used to speed up the computation

of the Jacobian itself.

Sparsity is nothing but the information on which output depends on which inputs. It’s

easy to conceive such an analysis: you simply take the symbolic trace, and see which inputs

appear in each output of the trace.

brusselator_f(x, y, t) = ifelse((((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) &&

(t >= 1.1), 5., 0.)

limit(a, N) = a == N+1 ? 1 : a == 0 ? N : a

function brusselator_2d_loop(du, u, p, t)

A, B, α, xyd, dx, N = p; α = α/dx^2

@inbounds for I in CartesianIndices((N, N))

i, j = Tuple(I)

x, y = xyd[I[1]], xyd[I[2]]

ip1, im1 = limit(i+1, N), limit(i-1, N)

jp1, jm1 = limit(j+1, N), limit(j-1, N)

du[i,j,1] = α*(u[im1,j,1] + u[ip1,j,1] + u[i,jp1,1] +

u[i,jm1,1] - 4u[i,j,1]) + B + u[i,j,1]^2*u[i,j,2] -

(A + 1)*u[i,j,1] + brusselator_f(x, y, t)

du[i,j,2] = α*(u[im1,j,2] + u[ip1,j,2] + u[i,jp1,2] +

u[i,jm1,2] - 4u[i,j,2]) + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2]

end

end

Snippet 1.1: 2D brusselator loop

This functionality is already present in the Symbolics software in the form of the jacobian_sparsity

function. Figure 1-1 shows the sparsity pattern for one instantiation of this function.
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Figure 1-1: Sparsity pattern of the Jacobian of the Brusselator code in Listing ?? with input

and output tensors of size 6× 6× 2 = 72.

1.6.3 Pre-allocation

The commutator is a common operator in scientific computing: [B,H] = BH − HB. Its

computation requires 3 allocations, BH, HB and BH-HB. Now if you’re applying this operator

to thousands of B and H values of the same shape, you’re going to be allocating 3 times as

many intermediate arrays.

A symbolic transformation can turn the following code:

function commutator(B, H)

B*H-H*B

end

into its equivalent, but in-place version:

function commutator!((X,Y,Z), B, H)

mul!(X, B, H)
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mul!(Y, H, B)

Z .= X .- Y

end

Given the sizes of B and H, it’s possible to symbolically call commutator with symbolic

arrays B and H of the same size. This results in the the symbolic expression B*H-H*B.

We can turn this expression symbolically into a completely in-place version by using the

following algorithm:

• initialize a dictionary inters to store intermediate arrays

• walk the expression, for every call subexpression f(args...) do this:

– allocate an intermediate array tmp of the inferred output size for that subexpres-

sion

– generate a symbol sym, set inters[sym] = tmp

– rewrite f(args...) as inplace(f)(sym, args...)

• assemble a new function expression which takes inters as an additional argument

along with B and H with the resulting expression of the rewriting process in step 2 as

the body.

This type of rewriting also comes in handy when optimizing neural inference.

The inplace function is defined simply as follows:

inplace_version(::typeof(*)) = mul!

inplace_version(::typeof(broadcast)) =

@inline (out, f, args...) -> (broadcast!(f, out, args...); out)

# fallback. Take the extra argument but do the original operation

inplace_version(f) = @inline (out, args...) -> f(args...)

Here is the resulting code:
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julia> @code_typed f!(intermediates, B, H)

Let’s compare the performance:

julia> @b $f($B,$H)

107.881 ns (3 allocs: 384 bytes)

julia> @b $f!($intermediates, $B, $H)

33.644 ns

julia> f(B, H) == f!(intermediates, B, H)

true

1.6.4 Easy domain-specific optimization

In geometry the euclidean distance is a common operation. Users may implement this as

sqrt(x^2 + y^2), where x and y are the coordinates. There is a more numerically accurate

way of computing it, called ‘hypot’ [8]. A geometry package can apply this domain-specific

optimization by writing a simple rewrite rule in the symbolic language.

struct Point{T} x::T; y::T end

x(p::Point) = p.x

y(p::Point) = p.x

radius(p) = sqrt(x(p)^2 + y(p)^2)

f(p, q) = radius(p) - radius(q)

Note that to optimize f, a syntactic rewrite, such as that done by a hygienic macro, is not

sufficient because f in turn calls the function radius which is where the expression we want
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to rewrite is. The macro applied to f will not have access to the code of radius, especially if

it resides in a different module. It would require type-propagation and reflection to obtain

this code and rewrite it. However, one can easily trace through this function with a simple

symbolic variable:

@variables a::Point b::Point

# "lift" existing `x` and `y` functions to be symbolic

@register_symbolic x(a::Point)::Real

@register_symbolic y(a::Point)::Real

f(a, b)

# => sqrt(x(p)^2 + y(p)^2) + sqrt(x(q)^2 + y(q)^2)

The trace can be rewritten with a pattern-based rule:

newexpr = replace(f(a, b), @rule sqrt((~a)^2 + (~b)^2) => hypot(~a, ~b))

# => hypot(x(a), y(a)) + hypot(x(b), y(b))

f′ = makefunction(newexpr, a, b)

The function f′ will look something like this:

function f′(p, q)

hypot(x(p), y(p)) - hypot(x(p), y(p))

end

It is then possible to provide syntactic conveniences that abstract the above symbolic tracing

followed by rewriting:

@symopt function f(p::Point, q::Point)

radius(p) - radius(q)
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end @rule sqrt((~a)^2 + (~b)^2) => hypot(~a, ~b)

Snippet 1.2: Replacing sqrt(x^2 + y^2) with hypot(x,y)

Notice the flexibility our system affords: the user was able to mark x and y as primitives

in the symbolic tracing. The rule @rule sqrt((~a)^2 + (~b)^2) => hypot(~a, ~b) is easy

enough for a Geometeer to write down without knowing about how the Julia compiler works.

1.7 Contribution by chapter

• We identify software engineering problems in symbolic-numeric software, reflect on the

cause, and analyse its symptoms. (Chapter 2)

• We reflect on the nature of the scientific computing, and the contributions of the Julia

language, specifically multiple-dispatch, code generation, and staged programming.

Then we design a symbolic subsystem on top of Julia. (Chapter 3)

• We introduce Symbolics, a free software symbolic-numeric system implemented in and

for Julia (Chapter 4). Currently, Symbolics is actively utilized by 70 dependent projects

and has a reach of 231 indirect dependencies, showcasing the practicality and impact

of our approach. We discuss the technical contributions and compare Symbolics with

other systems in Sections 4.9 and 4.10, respectively.

• By providing features for symbolic tracing and code generation, our system acts as

a high-level basis for building domain-specific langauges that can call numerical code

from the whole Julia ecosystem of packages. We present case studies of Symbolics

being used to build interesting scientific software. (Chapter 5)
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29



• “Sparsity Programming: Automated Sparsity-Aware Optimizations in Differentiable

Programming” – Shashi Gowda, Yingbo Ma, Valentin Churavy, Alan Edelman, and

Christopher Rackauckas – Program Transformations for ML Workshop at NeurIPS

2019 [37]

• “High-performance Symbolic-numeric programming via multiple-dispatch” Shashi Gowda,

Yingbo Ma, Alessandro Cheli, Maja Maja Gwóźdź, Viral B. Shah, Alan Edelman,

Christopher Rackauckas – ACM Communications in Computer Algebra, Vol. 55, No.

3, Issue 217, September 2021 [36].

• “ModelingToolkit: A Composable Graph Transformation System For Equation-Based

Modeling” – Yingbo Ma, Shashi Gowda, Ranjan Anantharaman, Chris Laughman,

Viral B. Shah, Christopher Rackauckas – preprint Feb 2022. [59]

• “Catalyst: Fast and flexible modeling of reaction networks” – Torkel E. Loman, Yingbo

Ma, Vasily Ilin, Shashi Gowda, Niklas Korsbo, Nikhil Yewale, Chris Rackauckas,

Samuel A. Isaacson – PLOS Computational Biology 19, 10 (10 2023), 1–19. [57]

• “Groebner.jl: A package for Groebner bases computations in Julia” – Alexander

Demin, Shashi Gowda – preprint 2023 [18]

30



Chapter 2

Symbolic-numeric status quo

In this chapter we consider the software engineering problems in today’s symbolic-numeric

programming systems. Generating numerical code is a feature that is available in most

symbolic systems, however, they generate code of a different low-level language. We will

reflect on some problems this creates. On the other hand, the only place numerical languages

treat code as symbolic expressions is during compilation, but at this level mathematical

meaning is thrown away, and expressions are dealt with according to floating point standards.

Scientific users do not have any control over this phase of compilation, and cannot contribute

domain expertise at this level of compilation.

2.1 The unfortunate siloing of symbolic software

Symbolic programming is seen as a sub-genre of scientific computing rather than an integral

part of a system that is also numerically functional. We believe the main reason for this is

that there has not been an implementation of a symbolic system in a language that is also

productive and heavily used for numerical computing. The former attitude results in three

categories of symbolic software:

1. Languages dedicated to symbolic computation, such as Mathematica and SymPy. Al-

though they may be able to generate numerical (C/C++) code from symbolic code,
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they are not also languages designed for writing efficient numerical code, so their vo-

cabulary cannot contain arbitrary numerical methods.

2. The symbolic metaprogramming inside numerical systems such as FFTW, and NNLib.

These systems don’t use software from the first category, and would rather reproduce

parts of it their implementation language.

3. Languages that use symbolic programming as the surface abstraction but have a hidden

numerical workhorse built in a low-level language, examples in this category are JuMP,

Convex optimizaiton libraries.

The main disadvantage is that, as of now, these categories do not share code. However, as

we will demonstrate in this thesis, this division into three distinct categories is unnecessary.

By fostering proper interaction between symbolic and numerical code, it becomes feasible to

integrate these three types of software within a single system. The practical advantage is

that software from each category can utilize functionalities from the others without the need

to replicate certain aspects. For example, symbolic libraries can generate efficient algorithms

that leverage an extensive array of existing numerical routines. Similarly, numerical func-

tions can be ”lifted” into the symbolic domain or transformed into ”nodes” within symbolic

expressions, significantly enhancing the power and utility of symbolic representations.

2.2 Symptoms of disharmony

Systems without properly interacting symbolic and numerical features exhibit one or more

of these symptoms:

1. They are inefficient at writing numerical algorithms In systems in category 1,

numerical routines are often implemented in low-level languages such as C. The host

language focuses on symbolic programming, with features sucha as treating unbound

names as symbolic variables, but these same features also preclude them from being

a good implementation language for numerical code. However, features that support

32



robust numerical code without losing the flexibility required for symbolic programming

can be efficiently implemented using macros in languages like Julia, which do not com-

promise on generality.

Ideal: A language general enough for both numerical computing and symbolic com-

puting.

2. No support for user-defined symbolic expressions. An ideal symbolic system

should enable the creation of symbols that represent values of any type from the host

language. These symbols often necessitate distinct algebraic and operator behaviors.

Furthermore, expressions of the same type might require different data structures tai-

lored to specific applications. Unfortunately, most existing packages are limited to

providing a small variety of symbols, primarily numerical ones, and they standardize

the data structure for expressions to be uniform and centrally defined. Additionally,

a significant limitation is the lack of flexibility in defining which functions should

be considered primitive when constructing symbolic expressions. To the best of our

knowledge, most packages do not permit users to register new primitives dynamically

at runtime.

Ideal: A usefully generic definition of what constitutes a symbolic expression, and

ways to define new kinds of symbolic expressions.

3. They lack constant-space array symbols and expressions. For a symbolic

library to serve effectively as a metaprogramming tool in scientific software, it must

be capable of representing vectors, matrices, and general n-dimensional arrays. We

differentiate between an array of symbols—a straightforward concept—and a symbolic

array, which is a symbol representing an array of known or unknown dimensions.

Symbolic arrays and related expressions can be represented in constant O(1) space,

regardless of the array’s dimensions. This offers two advantages: first, it facilitates

the application of simplification and transformation rules to these expressions; second,

code derived from these expressions can seamlessly invoke routines that operate on
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numerical arrays. Importantly, support for such array expressions could be built atop

user-defined expression capabilities.

Ideal: the ability to represent arrays and operations on them symbolically, with well

defined ways of turning the expressions back into numerical code.

4. They only compile to numerical code in a different lower-level language.

Although symbolic packages support numerical code generation, they typically offer

a limited library of functions that the generated code can call. For instance, Mathe-

matica uses an intermediate representation that directly maps to C. However, because

Mathematica does not support efficient numerical code creation, it cannot incorporate

existing numerical routines as nodes within the symbolic expression tree.

Ideal: a symbolic-numeric environment should allow the representation of calls to ar-

bitrary library functions as symbolic nodes and compile these into executable numerical

code.

As computer models become complex and larger in sheer size, generating numerical code

from high-level symbolic representations becomes extremely important, and the limitations

above will need to be overcome.

We recommend reading Section 4.10 for nuanced discussion of features of various symbolic-

numeric systems. We tabulate the findings in Table 4.6.

2.3 DSLs – Modelica example

Domain-specific languages are useful in scientific computing. DSLs essentially mirror the

tendency in mathematics to create new notation to suit a problem.

Modelica [32] is an object-oriented language for physical system simulation. Systems are

written in a custom language, following is the example of an RC circuit:

Equations:
C
Vc(t)

dt
= i(t)

i(t) =
E(t)− Vc(t)

R
Code:
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model RC "RC model"

Modelica.SIunits.Voltage E

Modelica.SIunits.Voltage Vc

Modelica.SIunits.Current i

parameter Modelica.SIunits.Capacity C=1e-3

parameter Modelica.SIunits.Resistance R=1e3

initial equation

Vc = 0.0;

equation

E = 10.0;

C*der(Vc) = i;

R*i = E - Vc;

end RC_v1;

The language is designed for description of systems that can be nested and connect

with each other. This is essentially symbolic representation. The main task Modelica can

do is transform this representation into one that can be executed by numerical differential

equation and nonlinear equation solvers. A key part of this process is being able to compile

to C code. Even though the language may not look like a traditional symbolic computing

language such as Mathematica, it essentially needs to allow symbolic expressions and know

how to deal with them. You can also notice that there is library of SI units.

Modia is an effort by the Modelica developers to rewrite it in Julia [64]. The motivation

is that it is not easy to also have to maintain a language while developing symbolic and

numerical algorithms for DAE simulations. Modia was developed before the work in this

thesis using Julia expressions as its substrate symbolic expressions. In the Section ?? we

discuss an alternative physical simulation system which uses the work in this thesis as the

substrate.

We present SciML and the ModelingToolkit package in Section 5.1 which provides a

counterpoint to the idea that one needs to invent a new language from scratch and create a
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compiler for a DSL like Modelica.

2.4 Optimizations and low-level compilers

Low-level compilers (by default) allow only those optimizing transforms that result in the

exactly equivalent numerical values. For examples, LLVM (Low-Level Virtual Machine) [55],

which is what the Julia language uses, does not simplify the expression (a + b) - a.

julia> f(a,b) = a + b - a

f (generic function with 1 method)

julia> @code_llvm f(1.0,1.0)

define double @julia_f_133(double %0, double %1) #0 {

top:

%2 = fadd double %0, %1

%3 = fsub double %2, %0

ret double %3

}

The reason is one specific case: 0.0 + -0.0 - 0.0 returns 0.0 according to the floating

point standard, but simplification to b would cause it to return -0.0. This is not such a

performance blunder, but consider that 10 * a / 10 also does not get simplified. The /

operation is expensive.

The reader might make the observation that the above simplifications must be done by

the programmer before compiling the program. But doing that would not be possible if there

was just a little more abstraction involved: g(a, b) = a + b; f(a, b,) = g(a, b) - a.

LLVM does have flags to allow these optimizations[15], but in general, verifying these

optimizations can be made is a hard [62]. LLVM makes the commitment to not talk in terms

of real numbers at all, and only talk in terms of machine representable numbers.
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In a well-designed symbolic-numeric system, we can view variables as reals when com-

piling. One can also imagine pattern-matching based rewrites of more complex expressions

with instructions at a much higher level than at the LLVM level. For example, consider the

rule @rule ~x^2 + ~y^2 => hypot(~x, ~y) in Snippet ??.

This might look like a micro-optimization but consider the expression f.(A, B) .+ C

where f is applied element-wise on arrays A and B and the result is added element-wise with

C. If there was a simplification performed on f, then this expression will never load A into

memory, resulting in huge benefits in performance.

These are the exact kinds of rewrites that the Finch [2] structured array compiler performs

on loops to obtain performance benefits. Finch uses the symbolic system described in this

thesis.
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Chapter 3

Synthesis of a symbolic-numeric

system

In this chapter we develop an understanding of scientific computing, how the Julia language

solves its problems, and finally how a symbolic-numeric system can be designed to com-

pound Julia’s productivity and performance. Our system will be built on multiple-dispatch,

homoiconicity, and staged programming–all features of Julia. Before Julia, libraries like

NumPy [43] were written as a high-level productivity language layered on top of libraries in

a low-level performance language. Julia addresses productivity and performance in a single

language, this is why a symbolic-numeric system built in Julia can work to serve all levels

of the scientific computing stack–from the very low level scalar operations to the high level

array computations. Research languages like Fortress [76] also thought about simultane-

ous productivity and performance, but have not attained real-world popularity and remain

obscure partly because they didn’t tend to the needs of the real-world community.
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3.1 Nature of scientific computing

Scientific computing is characterized by the following facts:

1. The same operators operate on a large variety of objects. For example, the

multiplication operator * works on pairs of numbers, matrices, a matrix and a vector,

a row vector and any of the previous objects. Additionally it may act on symbolic

expressions representing any of these objects. Further, there can be many kinds of

matrices: dense, sparse, diagonal, or other structured storages.

2. Really about domains rather than types. Scientific problems care about sets of

values rather than on the type. Whether a value is real or complex, positive or negative,

greater than 1, symmetric, Hermitian, matter more than the type representing their

storage.

3. Dynamic languages are preferred. A scripting-style workflow is common in sci-

entific computing. An exploratory workflow is common in science–load a script or

module, load some data, try different hypotheses in a read-eval-print-loop (REPL).

4. Performance is paramount. the lesser the amount of time a computation takes,

the bigger the size of the problem users can solve. Research advances at the cutting-

edge of performance. However, this requirement is in conflict with the previous one–

dynamic languages introduce uncertainty at runtime, causing slowness. The answer to

this problem before Julia was to “vectorize” operations. That is make operations on

matrices and vectors really fast by implementing them in a lower-level language like

C, and provide surface-level interaction with it through a dynamic language. This is

the two-language problem, as we will see in the next section, this distinction is not

necessary.

5. Need for domain-specific languages. Mathematical formulations of many prob-

lems need an entirely different way of expressing the problems than imperative pro-

gramming. For example, an optimization library needs a language to express con-
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straints, a modeling and simulation library needs a language to express differential

relationships between quantities. In these examples, variables are placeholders for

numerical values during simulation rather than variables of the host language. Yet,

the DSL needs to achieve its solutions fast. To solve such problems there has been

a tendency to create a new compiler for every problem. Some examples of DSLs are

COPASI, BioNetGen, PySB.

6. Interdisciplinary collaboration. Scientific computing effort mirrors the collabora-

tion in real world research. For example, a climate modeler needs code about geometry,

cartography, differential equations, PDE discritizations, visualization, and data stor-

age. Experts from these fronts should be able to provide tools that are palatable to

climateologists.

For a longer discussion of the nature of technical (synonymous to scientific) computing,

see Chapter 2 of Abstraction in Technical Computing by Jeff Bezanson [50]. In the next

section we see how the Julia language meets most of these needs. Then we consider how the

Symbolic-numeric system can be built on top of it.

3.2 Contribution of Julia

3.2.1 Dynamic multiple-dispatch

Multiple-dispatch is a way of organizing code that is a generalization of single-dispatch

popular in class-based object-oriented programming languages like Java, Python, etc.

For example, using single-dispatch, a bidiagonal matrix implementation could have the

following code. The bidiagonal matrix can be either an upper or a lower triangular matrix

where only the diagonal and one subdiagonal are nonzero.

class Bidiagonal <: AbstratMatrix

function initialize(diag, subdiag, type)
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self.diag = diag

self.subdiag = subdiag

self.type = type

end

function multiply(B::AbstractMatrix)

... # matrix-matrix product

end

function add(B::Bidiagonal)

if self.type == B.type

return Bidiagonal(...)

else

return Tridiagonal(...)

end

end

...

end

Snippet 3.1: Sketch of a Bidiagonal matrix implementation in an imaginary single-dipatch

language

Let’s say, the operation A * B in this language is syntactic sugar for A.multiply(B), and

A + B for A.add(B). Some remarks can be made about this:

• The method to perform A * B where A is a Bidiagonal and B is any other kind of

AbstractArray belongs to the class Bidiagonal.

• In A * B, if B is a different subclass of AbstractMatrix, let’s say, a column-major dense

matrix, of type Matrix, then the definition here only works to multiply A * B and it’s

clear that B * A must be handled by the class Matrix. But Matrix maybe defined

in a different library (presumably a standard library), and the library implementing

the Bidiagonal class cannot modify Matrix’s definition to add this method. You can

42



imagine an arrangement where Bidiagonal can define a leftmultiply method, but that

would be ambiguous with Matrix.multiply(B::Bidiagonal) if there needed to be such

a method. Even if there was a way to break the tie in such a case, this seems overall

like a messy situation, a hack.

• The methods on Bidiagonal become fixed once the Bidiagonal class is written down.

Let’s say a Solver class wants to implement a solve function which works on various

matrix types. After having imported the module with Bidiagonal, it can implement

Solver.solve(b::Bidiagonal, x::AbstractVector). On the other hand, if Bidiagonal

module came into existence after the Solver module, and yet wanted to provide a solve

functionality so that existing users of Solver.solve could also use Bidiagonal matrices,

it would be out of luck.

These are some of concerns Julia’s dynamic multiple-dispatch can address, apart from

providing performance. Now let’s see what the above code would look like in Julia:

struct Bidiagonal{T} <: AbstractMatrix{T}

diag::Vector{T}

subdiag::Vector{T}

type::Symbol

end

function *(A::Bidiagonal, B::AbstractMatrix)

... # matrix-matrix product

end

function *(A::AbstractMatrix, B::Bidiagonal)

...

end

function *(A::Bidiagonal, B::Bidiagonal)

# this method is necessary because it is ambiguous which of
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# the above are to be chosen in case both arguments are Bidiagonal

end

function +(A::Bidiagonal, B::Bidiagonal)

if self.type == B.type

return Bidiagonal(...)

else

return Tridiagonal(...)

end

end

import SolverModule: solve

function solve(A::Bidiagonal, b::AbstractVector)

... # add a solve method for Bidiagonal

end

Snippet 3.2: Sketch of a Bidiagonal matrix implementation in Julia

• The definitions of the methods have been moved out of the definition of the datastruc-

ture.

• * naturally has the right methods: Bidiagonal * AbstractMatrix, AbstractMatrix *

Bidiagonal, and Bidiagonal * Bidiagonal. The first argument is no more “special”,

the name multiple-dispatch is used to denote that the dispatch (selection of code)

occurs on the types of all the arguments.

• We completely avoided talking about ownership: no one class owns the generic operator
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*, it stands by itself. Any function which is written using * will be polymorphic on

these inputs. (For example a product function which takes a vector of objects).

• New definitions of * can be loaded dynamically into the environment. This sometimes

might require a recompilation of methods previously defined. See the paper on world

age in Julia [4] for more on this.

• If solve is a generic function from a SolverModule module, the module defining Bidiag-

onal can import the SolverModule, and add a method to solve. Now another module

which uses SolverModule alone, does not at all need to know about Bidiagonal. If

however, it imports both SolverModule and Bidiagonal, it can call solve on Bidiagonal

matrices!

Language design has implications on the social phenomena of development of an ecosys-

tem of packages, especially in an open source ecosystem. The above multiple dispatch

strategy clearly sets up a platform for a kind of layered abstraction–new types can be added

to the system that depend on old types, and can also affect how existing operators behave

on the new types as well as in conjunction with old types. We say “old” and “new” here

to mean an earlier or a later layer of abstraction. We will explain more on type hierarchy,

parametric types, and their use in performance in the next section.

In single-dispatch, the class becomes the unit of abstraction. In the extreme case like

Java where all methods must be inside a class, there is a tendency to orient programming

towards the nouns in the system. Sometimes you will end up inventing new nouns for the

sake of doing this. In Julia, the generic function, the verb, is the unit of abstraction. This is

in line with mathematics where operators act on objects of various types, and there is little

need for an actor who needs to save some hidden state between operations [89].

3.2.2 Type inference, code selection and code specialization

Type inference in Julia works by first looking at types of inputs to a function and propagating

a best guess output type for every function call and variable in the function body. For
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example consider the function:

function f(A, B, C)

(A + B) * C

end

Suppose f is called with 3 complex Float64 numbers, we can naturally infer the the

following types for subexpressions:

function f(A::Complex{Float64},

B::Complex{Float64},

C::Complex{Float64})::Complex{Float64}

((A + B)::Complex{Float64} * C)::Complex{Float64}

end

Julia uses dynamic types that are different from types in statically compiled languages

in that they don’t need to be completely erased after compilation. Types can be present at

runtime. Properties like the number of diagonals are important in numerical computing, yet

they are highly dynamic. Consider the add and + methods on Bidiagonal above. If both

inputs are upper bidiagonal, or both are lower bidiagonal, the output is a bidiagonal matrix;

if however, one is upper and the other is lower, the output becomes Tridiagonal. The type

of this function is inferred as a Union type.

function f(A::Bidiagonal{Float64},

B::Bidiagonal{Float64},

C::Bidiagonal{Float64})::Matrix{Float64}

((A + B)::Union{Bidiagonal{Float64}, Tridiagonal{Float64}} * C)::Matrix{Float64}

end

The inferred type of (A + B) is Union{Bidiagonal{Float64}, Tridiagonal{Float64}}.

Which subsequent * method should (A+B) * C call? The answer is of course, it depends

on the output at runtime! Since this is a simple Union with two types, Julia can compile a

branch here:
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TMP = (A + B)

if TMP isa Bidiagonal

# call *(::Bidiagonal{Float64}, ::Matrix{Float64}) on (TMP, C)

elseif TMP isa Tridiagonal

# call *(::Tridiagonal{Float64}, ::Matrix{Float64}) on (TMP, C)

end

This is known as Union-splitting. Note that Union splitting is not enough in cases where

the inferred type is an abstract type or else there are too many types in the Union – in such

cases Julia resorts to doing dispatch at runtime. This can be quite slow, so there is incentive

to write code in such a way that it can be inferred and it does not create a large number of

Unions.

Multiple-dispatch is used to select the right method to call as we saw in this section, but it

turns out that this means of abstraction also has an important consequence for performance

– it can be used to write algorithms that are fast for specific combinations of input types.

The field of scientific computing is rife with the need to do this [50], and it results in a

language that is both performant and highly productive. It supports a layered approach to

abstraction in scientific open source community where new types and efficient methods are

constantly added to existing generic functions. Any function that use those generic functions

continue to benefit from this.

3.2.3 Macro programming

Julia supports Scheme-style Hygienic macros. Macros read an argument expression and

rewrite it into a different one, which is then actually evaluated. This poses an important

limitation–if a macro is looking at a function call, it has no way of looking inside the body

of that function.

Imagine a macro @hypot_optimize that takes in an expression that matches the structure:

a2 + b2 and rewrites it as hypot(a, b):
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@hypot_optimize x^2 + y^2 # works!

len(x, y) = x^2 + y^2

@hypot_optimize len(x, y) # does not!

The first invocation works since the expression passed to the function call matches the

criteria. However, the second invocation cannot work even though it is essentially doing

the same operation. This is where symbolic tracing becomes more powerful than macro

programming as we see in the example in Section 1.6.4.

In the Symbolics system, we use macros heavily to provide syntactic conveniences. One

should remember that macros are just that: syntactic conveniences, and does not add to the

expressive power of the base language [28].

3.2.4 Staged compilation

Staged compilation is the generation of the body of a method during compile time, based on

the concrete types of the input arguments it is called with. For every combination of input

argument types it only generates the body once and Julia reuses it the next time it sees the

same argument types. A staged function is written with the @generated macro, and has the

same syntax a functions, except, within the body, the formal arguments refer to the type of

the corresponding inputs.

julia> @generated function foo(x)

Core.println(x)

return :(x * x)

end

julia> foo(2)

Int64

4
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julia> foo(3)

6

In this example, the first time foo was called, it printed the type Int64 along with the

output of x*x, showing that it ran the body of the function with the type in order to take

its return value as the new function body! We defer longer discussion of generated functions

to the Julia documentation [19].

3.3 Symbolic-numeric subsystem

3.3.1 Expressions: A term interface

The purpose of a symbolic subsystem is expression manipulation. But what is an expression?

The answer cannot be a single datastructure, because we want a system that adapts to the

needs of the domain. Some expressions may require compact representation (like Polyno-

mials that expand on construction), while others may require symbols that don’t behave

like numbers (such as symbolic arrays), and yet others may not even deal with numerical

computing at all, but be concerned with symbolic representation of code of a richer variety

with loops and conditionals. To cater to all these needs and to allow reuse of manipulation

functions we came up with a “term interface” that defines what an expression is and how to

construct it, without talking about the underlying datastructure. This starting point creates

the balance necessary for an ecosystem of symbolic packages to interoperate successfully. To

reiterate, the requirements we keep in mind as we build the expression interface are:

1. Encapsulation of representation: no matter what datastructure is used to store an

expression, expression manipulation code should be able to 1) traverse and 2) create

such expressions without actually knowing about the datastructure’s internals.

2. Symbolic polymorphism: symbols of different types, and with different operator

behaviors, must be permissible.
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3. Metadata: different modules should be able to attach metadata to expressions with-

out namespace conflicts.

Hence, the lowest common denominator view of an expression is the typed S-expression

with metadata. This is what the expression interface allows. To implement the expression

interface, a module defining a term representation (i.e. a data structure for a specific kind

of terms), must extend the following generic functions.

• symtype(expr) – returns the symbolic type of the expression. We will refer to this

simply as symtype. This defaults to the type of expr itself, making sure it applies to

all julia objects, symbolic and non-symbolic. In other words, non-symbolic objects can

be nodes in a symbolic tree.

• issym(expr) – returns true if expr is a symbol. (Distinct from Julia’s Symbol. This

symbol has a symtype as well as a name). If true, nameof(expr) must be defined.

• nameof(expr) – the Julia Symbol that gives the name of expr.

• isexpr(expr) – returns a boolean which checks if expr is a symbolic expression. If yes,

the below functions must apply to it.

• head(expr) – a head of the expression. This distinguishes the different kinds of expres-

sions. A function call is one such type.

• children(expr) – returns the arguments to construct the expression.

• maketerm(T, head, children, symtype, metadata=nothing) – returns an expression.

T is a super type which T descends from (or a sibling of T, if desired).

All but the last interface functions deal with querying the S-expression. The last one,

maketerm, creates an S-expression. By using ”the closest available T”, an expression manipu-

lation function can work on all expression currently in the ecossystem and that will ever be

created in the future.
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A generic symbolic substitution function can be written using only these interface func-

tions, and avoiding completely any implementation detail of the representation.

function substitute(expr, dict)

if haskey(dict, expr)

dict[expr]

elseif isexpr(expr)

# recursively substitute children

maketerm(typeof(expr),

head(expr),

map(c -> substitute(c, dict), children(expr)))

else expr end

end

Snippet 3.3: substitute function to raplace variables with values.

Example: a closure of symbolic expression types

Consider the following representation of expressions: Basic represents a generic function,

Mul represents multiplication of powers, Add

abstract type NumberExpr end

struct Basic <: NumberExpr

f

args::Vector

end

struct Mul <: NumberExpr # a monomial

dict::Dict # base => power

end
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struct Add <: NumberExpr

dict::Dict # term => coefficent

end

Something like sin(θ)x− 2y maybe represented as:

Add(Dict(Mul(Dict(Basic(sin, θ)=>1, x=>1)=>1, y=>-2)))

Of course, the construction can be made to happen via methods to the sin, * and +

generic functions from Base Julia. 1

In other words, it represents the expression.

1*(sin(θ)^1 * x^1) + -2 * y

One can overload the printing of these types such that julia prints them in a way that is

human friendly, with the no-ops like 1* and ^1 removed.

Representing with 3 types has benefits over doing it with just one Basic type:

• Mul can merge monomial terms. For example, Mul(Dict(x=>1, y=>2)) * Mul(Dict(x=>1))

is Mul(Dict(x=>2, y=>2)). This operation is on the order of the size of the smaller term,

but tends to lead to compact expressions and lesser need for simplification.

• Similarly Add(2, Dict(x=>1, y=>2)) + Add(3, Dict(x=>1))= Add(Dict(5, x=>2, y=>2)).

Add provides the same benefit as Mul.

The term interface is implemented as follows:

Snippet 3.4: Term interface definition for Add and Mul

1In fact, defining new symbolic types that are numbers are common enough and nuanced enough that

Symbolics uses a macro (@number_methods) to generate these methods automatically.
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isexpr(x::NumberExpr) = true

head(x::NumberExpr) = x isa Basic ? x.f : x isa Add ? + : *

children(x::Basic) = x.args

children(m::Mul) = [k^v for (k, v) in m.dict] # every child is a power

children(a::Add) = [k*v for (k, v) in a.dict] # every child is coeff*term

maketerm(::Type{<:NumberExpr}, head, children) = Basic(head, children)

maketerm(::Type{<:NumberExpr}, ::typeof(+), children) = construct_add(children)

maketerm(::Type{<:NumberExpr}, ::typeof(*), children) = construct_mul(children)

This makes all existing and future symbolic manipulation functions such as substitute

work on Basic, Mul and Add.

The term interface functions, without any specific methods, are defined in an extremely

lightweight package called TermInterface [35]. Any package can include the module and add

methods to the functions to define a new term or, just as well, to write term rewriters. We

will explore term rewriting in 3.3.3

Concrete expression types

These are a few examples of the symbolic expression types that support the term interface

in the wild:

• Sym{T}: a symbol with symtype T.

• Term{T}: a basic term capturing a function call f(args...)

• BasicSymbolic: a compact type to represent canonical forms of numeric expressions.

This is a combination of Add and Mul shown in the example above into one datastructure

to save compile time.

• Code nodes such as Func, Let, Cond, Block, Assignment, SetArray, MakeArray,

MakeSparseArray, MakeTuple, SpawnFetch{T}. Each one represents a specific fragment

of Julia code. They are used in the code generation phase we discuss in Chapter 4.
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• ArrayOp: a term type to represent array operations in Einstein summation notation.

See Section 4.5 for more on symbolic arrays.

• Expr: the Julia Expr itself is given the term interface by Metatheory.jl [14], an equality

saturation library. Note that this library also works out of the box with all the above

types, thanks to the term interface.

• FinchNode: These are nodes in the Finch [2] sparse tensor co-iteration compiler. These

represent an intermediate representation internal to Finch, including function calls,

indexing, caching, loop nests, sieve and so on.

Definition: Symbolic tracing

We use the term symbolic tracing to mean executing code with symbols. The result of such

a run is a symbolic trace of the program.

3.3.2 Partial information

The term interface also allows attaching metadata to terms. The interface an expression

implementation must define for metadata is:

• metadata(x::T, d::AbstractDict{DataType, Any}) →x′ where the output x′ is also of

type T but stores the metadata somewhere inside it.

• metadata(x::T) →d where the output d is an abstract dictionary with data types as

key, and any kind of values.

Once these methods exist, TermInterface will automatically provide:

• hasmetadata(x, K): checks whether x has metadata K

• setmetadata(x, K, v): sets a single metadata entry, with key K and value v

• getmetadata(x, K): get the metadata entry with key K
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Note the use of datatypes as keys. This provides automatic namespacing of metadata.

An alternative could have been using symbols, but if two modules could attach a metadata

with the key, say :source onto the same object, they will confuse eachother. However they

can both define a type called Source, and these types will be automatically namespaced by

Julia as Module1.Source and Module2.Source.

3.3.3 Building on the term interface

The term interface is the exact right amount of abstraction necessary to build the symbolic-

numeric system on top of. As we saw in the implementation of substitute, this interface

provides an easy way to write storage-agnostic term rewriters. In the next chapter we look

at the concrete implementation of Symbolics.jl package with the starting point of this term

interface. Two important next pieces come together:

• Term rewriting, i.e., taking a term and rewriting it into a different term or value.

A simple definition of a rewriter will serve to be quite useful: A rewriter is a function

that takes an expression and returns either an expression, a constant value, or nothing.

nothing represents that the input symbolic expression did not merit a rewrite. This

sentinal result is useful in short-circuiting the rewriting process.

Term rewriting code should work only using the term interface described above in order

to become useful on an unbounded set of symbolic types. We explore the various kinds

of possible rewriters in the next chapter in Section 4.2.

• Code generation: By representing terms flush with Julia function objects and literal

values, along with symbolic variables, the terms in Julia can faithfully represent code

in the language. This allows a natural code generation which directly turns symbolic

expressions into Julia AST, and finally into a generated function which executes that

AST. We develop the code generator in Section 4.4.
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Chapter 4

The Symbolics.jl system

This chapter builds on the background in previous chapter. It shows the construction of the

Symbolics.jl system, enumerates its features, discusses its contributions (Section 4.9), and

compares it with existing (Section 4.10).

4.1 Expression types and canonicalization

4.1.1 Numeric expressions

Symbolics represents defines a number of expession types that implement the term interface

defined in Section 3.3.1. The Sym and Term types are the most generic and simple – Sym

represents an unknown, Term represents a function call. Add, Mul, and Div 1 that together try

to represent numeric expressions in a simplified canonical form. They are described below.

This canonical form is inspired by SymEngine [81] and Reduce.

• Sym{T}(name): A symbolic named unknown (also called a symbol or a variable in

this text.). name is a Julia Symbol. T is the symtype. To create a symbol that

1In practice we combine all these types into a single struct called BasicSymbolic and use Unityper.jl [27]

to generate a specialized type. This is to avoid unnecessary compiler overhead and increase the type stability

of symbolics code. For the sake of this explanation, it serves us better to talk about them as separate types.
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represents a function, and is callable with arguments, one can use the special type

FnType{ArgType, OutputType}. Note that this type is defined by Symbolics and is not

the type of Julia functions. Every julia function has a unique type that is a subtype

of Function and does not encode in its parameters the input and output types. FnType

lets us know what type the term formed by calling a symbolic function is going to be.

• Term{T}(f, args): A basic term of symtype T representing the function call f(args...).

Note that f can itself be a Sym or a symbolic expression of FnType described above.

Unitary functions and functions that aren’t commutative or associative, such as sin or

hypot are stored as Terms. Commutative and associative operations like +, *, and their

complementary operations like -, / and, ^, when used on terms of symtype <:Number,

stand to gain from the use of more efficient datastrucutres.

• Add{T}(coeff, dict): Linear combinations such as α1x1 + α2x2 + ... + αnxn are rep-

resented by Add(Dict(x₁ => α₁, x₂ => α₂, ..., xₙ => αₙ)). Here, any xi may itself

be other types mentioned here, except for Add. When an Add is added to an Add, we

merge their dictionaries and add up matching coefficients to create a single “flattened”

Add.

• Mul{T}(coeff, dict): Similarly, xm1
1 xm2

2 ...xmn is represented by

Mul(Dict(x₁ => m₁, x₂ => m₂, ..., xₙ => mₙ)). xi may not themselves be Mul, mul-

tiplying a Mul with another Mul returns a “flattened” Mul.

• Div{T}(p, q): p/q is represented by Div(p, q). The result of * on Div is maintained

as a Div. For example, Div(p₁, q₁) * Div(p₂, q₂) results in Div(p₁ * p₂, q₁ * q₂)

and so on. The effect is, in Div(p, q), p or q or, if they are Mul, any of their mul-

tiplicands is not a Div. So Muls must always be nested inside a Div and can never

show up immediately wrapping it. This rule sets up an expression so that it helps the

simplify_fractions procedure described in Section 4.7.
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4.1.2 Implementation of the term interface

For all the numerical types above, the head function is defined to return BasicSymbolic. This

essentially indicates that the expression is one of the above types. This allows us to create

a common maketerm method that accepts any of these types and returns an object of one of

these types. We do this because rewriting, for example, an Add might return in a Mul.

The vector children(<expr>) returns for every kind of expression is given below:

Type children

Term{T}(f, args) [f, args...]

Add{T}(coeff, dict) [+, coeff, sort_args([v*k for (k,v) in dict])...]

Mul{T}(coeff, dict) [*, coeff, sort_args([k^v for (k,v) in dict])...]

Div{T}(p, q) [\, p, q]

Table 4.1: Definition of children on various storage types of terms

Since iteration on dictionaries is unordered, we have used a sort_args to denote that

the monomials of Add and Mul are ordered. Symbolics uses the reverse degree lexicographic

ordering [17] by default.

4.1.3 Polynomial representation

While Add and Mul and other types above serve quite well when performing a symbolic

trace, they are not the most efficient representation for polynomial algebra. Abstract algebra

modules in Julia [30] [56] have much faster representations of multi-variate polynomials. The

limitation of such packages though is that they cannot represent transcendental functions in

their expressions.

To get the best of both worlds, i.e., be able to represent any expression including polyno-

mials with transcendental terms, and to be able to work with those polynomials efficiently,

Symbolics has a PolyForm expression type.

59



They are designed specifically for multi-variate polynomials. They provide common algo-

rithms such as multi-variate polynomial GCD. The restrictions that make it fast also mean

some things are not possible: Firstly, DynamicPolynomials can only represent flat polyno-

mials. For example, (x-3)*(x+5) can only be represented as (x^2) + 15 - 8x. Secondly,

DynamicPolynomials does not have ways to represent generic Terms such as sin(x-y) in the

tree.

PolyForm type holds a polynomial and the mappings necessary to present the polynomial

as a Symbolics expression (i.e. by defining head and arguments). The mappings constructed

for the conversion are 1) a bijection from DynamicPolynomials Variable type to a Symbolics

Sym, and 2) a mapping from Syms to non-polynomial terms that the Syms stand-in for. These

terms may themselves contain PolyForm if there are polynomials inside them. The mappings

are transiently global, that is, when all references to the mappings go out of scope, they are

released and re-created.

julia> @syms x y

(x, y)

julia> PolyForm((x-3)*(y-5))

x*y + 15 - 5x - 3y

In the polynomial, terms which are not +, *, or ^ calls are replaced with a unique symbol

obtained by hashing the term, and a mapping from this new symbol to the original expression

it stands-in for is maintained as stated above.

julia> p = PolyForm((sin(x) + cos(x))^2)

(cos(x)^2) + 2cos(x)*sin(x) + (sin(x)^2)

julia> p.p # this is the actual DynamicPolynomial stored

cos_3658410937268741549² +

2cos_3658410937268741549 * sin_10720964503106793468 +

sin_10720964503106793468²
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By default, polynomials inside non-polynomial terms are not also converted to PolyForm.

For example,

julia> PolyForm(sin((x-3)*(y-5)))

sin((x - 3)*(y - 5))

But the recurse=true keyword argument will do this.

julia> PolyForm(sin((x-3)*(y-5)), recurse=true)

sin(x*y + 15 - 5x - 3y)

Polynomials are constructed by first turning symbols and non-polynomial terms into

DynamicPolynomials-style variables and then applying the +, *, ^ operations on these vari-

ables. You can control the list of the polynomial operations with the Fs keyword argument.

It is a Union type of the functions to apply. For example, let’s say you want to turn terms

into polynomials by only applying the + and ^ operations, and want to preserve * operations

as-is, you could pass in Fs=Union{typeof(+), typeof(^)}

julia> PolyForm((x+y)^2*(x-y), Fs=Union{typeof(+), typeof(^)}, recurse=true)

((x - (y))*((x^2) + 2x*y + (y^2)))

Note that in this case recurse=true was necessary to indicate that the polynomialization

should descend into the * operation.

4.1.4 Default implicit assumptions, and how to avoid them

By default, the canonicalization process assumes several things, we present the assumptions

with an example for each one:

All these can be avoided by initializing x and y to be LiteralReal rather than the implicit

Real variables:
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Input Output Implicit Assumption

y*x x*y * is commutative

x/(x^2) 1/x x != 0

x-x 0 x != NaN and x != Inf

2(x+y) 2x + 2y + is distributive

x+x 2x

x*x x^2

Table 4.2: Implicit assumptions made in automatic simplification

julia> @variables x::LiteralReal y::LiteralReal;

julia> y*x, x/(x^2), x-x, 2*(x+y), x+x, x*x

(y * x, x / (x ^ 2), x - x, 2 * (x + y), x + x, x * x)

LiteralReal is a subtype of Julia’s Real and hence can be used to trace through the

same code that accepts Real variables. This works by defining the numerical methods on all

Symbolic{LiteralReal} to result in a Term.

4.2 Term rewriting

What is a rewriter?

A rewriter is any function or function-like callable object that accepts an expressions

and returns either nothing or an expression. One can always assume that recieving nothing

from a rewriter means that the expression did not need to be rewritten. Rewriters are also

free to return the unmodified expression in this case, but nothing is preferred so as to allow

short-circuiting in chains of rewriters.
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4.2.1 Rule-based rewriting

A rule matches terms of a certain form and rewrites them by executing a right-hand-side

expression.

The syntax of @rule is: @rule <pattern> => <consequent> where <pattern> is a pattern

to match, and <consequent> is a piece of code to run once a match has occured. The

argument to a rule is an expression, and the rule matches the entire expression.

Symbolics has a pattern matching language for easily querying terms and accessing parts

inside them. Patterns are essentially Terms that may contain a slot or segment, the pattern

matching algorithm matches the internals of the term with an input term part-by-part storing

any slots or segments in a match dictionary.

An example rule is:

r = @rule sin(2(~x)) => 2sin(~x)*cos(~x)

This matches expressions like sin(2x) or sin(2acos(θ)) and rewrites them into 2sin(x)*cos(x)

and 2sin(acos(θ))*cos(acos(θ)) respectively.

x is called a slot and is a stand-in for any subexpression.

Because a rule is a rewriter, it can be called with an expression:

r(sin(2x))

# => 2sin(x)*cos(x)

r1(sin(3z))

# => nothing

Rules can have many slot variables:

r2 = @rule sin(~x + ~y) => sin(~x)*cos(~y) + cos(~x)*sin(~y);

r2(sin(α+β)) # => sin(α)*cos(β) + cos(α)*sin(β)

A segment variable in place of a slot variable matches 0 or more argument subexpressions

at once. ~~xs in the following example is a segment variable:
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@rule(+(~~xs) => ~~xs)(x + y + z)

# => [x, y, z]

r = @rule ~x * +(~~ys) => sum(map(y-> ~x * y, ~~ys));

r(z * (w+w+α+β))

# => w*z + w*z + z*α + z*β

The pattern matcher is implemented with continuation-passing-style backtracking code.

It is similar to the one described in [42].

Predicates

Slots and segments may be annotated with predicate functions in Symbolics. For instance,

the expression ~~x::g attaches a predicate g to a segment variable, where g is a function

that accepts a vector of expressions and returns a boolean value. It is imperative that if the

same slot or segment variable is repeated within a pattern, only one occurrence may include

a predicate.

In the following example in Julia we use a predicate function to rewrite

@syms a b c d

r = @rule ~x + ~~y::(ys->iseven(length(ys))) => "odd terms";

r(a + b + c + d) # => nothing

r(b + c + d) # => "odd terms"

4.2.2 Associative-Commutative Rules

An expression f(x, f(y, z, u), v, w), a f is said to be associative if the expression is

equivalent to f(x, y, z, u, v, w) and commutative if the order of arguments does not
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matter. Symbolics has a special @acrulemacro meant for rules on functions that are associate

and commutative such as addition and multiplication of real and complex numbers.

A @rule for a pythagorean identity does not match the commutated expression:

pyid = @rule sin(~x)^2 + cos(~x)^2 => 1

pyid(cos(x)^2 + sin(x)^2) # => nothing

But @acrule can:

acpyid = @acrule sin(~x)^2 + cos(~x)^2 => 1

acpyid(sin(x)^2 + cos(x)^2) # => 1

acpyid(cos(x)^2 + sin(x)^2) # => 1

4.3 Rewriter combinators

A rewriter is any callable object that takes an expression and returns an expression or

nothing. If nothing is returned that means there was no changes applicable to the input

expression. The Rules we created above are rewriters.

The SymbolicUtils.Rewriters module contains some types that create and transform

rewriters.

• Empty() is a rewriter that always returns nothing

• Chain(itr) chain an iterator of rewriters into a single rewriter that applies each chained

rewriter in the given order. If a rewriter returns nothing this is treated as a no-change.

• RestartedChain(itr) like Chain(itr) but restarts from the first rewriter once on the

first successful application of one of the chained rewriters.

• IfElse(cond, rw1, rw2) runs the cond function on the input, applies rw1 if cond returns

true, rw2 if it retuns false
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• If(cond, rw) is the same as IfElse(cond, rw, Empty())

• Prewalk(rw; threaded=false, thread_cutoff=100) returns a rewriter that does a pre-

order (from top to bottom and from left to right) traversal of a given expression and

applies the rewriter rw. threaded=true will use multi threading for traversal.

Note that if rw returns nothing when a match is not found, then Prewalk(rw) will

also return nothing unless a match is found at every level of the walk. If you are

applying multiple rules, then Chain already has the appropriate passthrough behavior.

If you only want to apply one rule, then consider using PassThrough.

thread_cutoff

is the minimum number of nodes in a subtree that should be walked in a threaded

spawn.

• Postwalk(rw; threaded=false, thread_cutoff=100) similarly does post-order

(from left to right and from bottom to top) traversal.

• Fixpoint(rw) returns a rewriter that applies rw repeatedly until there are no changes

to be made.

• PassThrough(rw) returns a rewriter that if rw(x) returns nothing will instead

return x otherwise will return rw(x).

The Finch sparse tensor compiler uses Symbolics’ rule-based rewriting system. Below is

the table of number of places in the code Finch uses @rule and the rewriter combinators:

Type Occurances

@rule 267

Prewalk 11

Postwalk 54

Chain 34

Fixpoint 34
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This demonstrates the effectiveness of the rewriter abstraction.

4.4 Code generation

Symbolics has term types to represent code, they can be constructed recursively to create

complex pieces of code. Calling the toexpr function will turn terms into Julia expressions.

In the table below, we show an example of each term type and the resulting Julia expression

on calling toexpr on it.

Term Julia Expr (toexpr)

Assignment(a, b) also a ← b a = b

Let([a ← foo(b)], body) let a = foo(b); body; end

Func([x, y], [w, z←a], body) function (x,y; w, z=a) body end

Func(DestructuredArgs([x,y]), [], body) function (_arg1) let (x,y)=_arg1 body end end

SetArray(out, [a,b,c]) begin out[1] = a; out[2] = b; out[3] = c end

MakeArray([a,b,c], Array) vcat(a,b,c)

MakeArray([a,b,c]) @SArray([a,b,c])

MakeSparseArray(A::SparseMatrixCSC) SparseMatrixCSC(A.col...)

MakeSparseArray(v::SparseVector) SparseVector(...)

SpawnFetch([f(a),g(b)], combine) combine(fetch.([@spawn(f(a)),@spawn(g(b))]))

LiteralExpr(expr) expr

Table 4.3: Term and its corresponding Julia expression after calling toexpr

Note that in the examples above, a, b, x, y, w, z, are symbols, for example, those con-

structed by the @variables macro. A and v are a sparse matrix and a sparse vector, respec-

tively, with symbolic expressions as non-zero values.
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As an escape hatch, to allow expressing arbitraty Julia expressions, Symbolics provides

LiteralExpr(expr) term which wraps a native Julia expression. The Julia expression may

contain Symbolics terms interpolated within them, in which case Symbolics finds them and

turns them into julia expressions.

4.4.1 build_function

Symbolics provides a convenience function build_function(exprs, args...) to construct

numerical functions from symbolic expressions. It takes a vector of expressions exprs, and

a sequence of argument symbols args, and returns two Julia expressions: both are Julia

function expressions.The first one computes the symbolic expressions in exprs on the input

arguments, and returns an array (out-of-place); the second one takes an extra first argument

which is the output array, and fills the output with the computed results (in-place).

4.4.2 Staged Compilation

We use the library RuntimeGeneratedFunctions [71] to compile functions at runtime and

execute them on the fly. Given a function expression, RuntimeGeneratedFunctions creates a

type unique to that expression. Function application on this type is a generated function

(see Section 3.2.4) which splices in the original expression as the body. Hence you can think

of it as a generated function parameterized by its own body.

The limitation of this approach is that, the functions may not have closures in their body.

However it is possible to get around this in most cases by rewriting the closures in the body

as other RuntimeGeneratedFunctions and interpolating those into the function expression

instead.

4.5 Symbolic arrays

Symbolics supports symbols that represent arrays of known size of any dimension. Note that

this is not an array of symbols: a 10000×10000 matrix can be represented as a single symbol
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and not an array of a 100 million different scalar symbols. Operations on array symbols yield

symbolic expressions. We implemented the same operations as Julia’s Base library does on

regular Julia arrays. Some example invocations are as follows:

julia> @variables X[1:10, 1:5] y[1:5] b[1:10];

julia> X*y

(X*y)[1:10]

julia> prod(X, dims=1)

prod(X, dims=1)[1, 1:5]

julia> exp.(X .* y')

(broadcast(exp, broadcast(*, X, adjoint(y))))[1:10,1:5]

Here X is a matrix of size 10× 5, y and b are vectors of lengths 5 and 10 respectively.

Internally, Symbolics encodes array operations with a modified Einstein-summation no-

tation [25] [13]. Our notation is general enough to represent N-dimensional array operations

such as map, broadcast, reduce (along any dimension(s)), mapreduce (combines the former

two in one operator), slicing. A set of example Julia expressions and the resulting underlying

storage is given in the table 4.1.

julia> Symbolics.show_arrayop[] = true; # printing flag to show array notation

julia> X*y

@arrayop(_[i] := X[i, k]*y[k])

julia> prod(X, dims=1)

@arrayop(_[1,j] := X[i, j]) (*)
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julia> exp.(X .* y')

@arrayop(_[i,j] := exp(

(@arrayop(_[i,j] := X[i, j]*(

@arrayop(_[1,i] := y[i]))[1, j]))[i, j]))

Some features of this notation are:

• It does not make a distinction between up and down indices, any index left out from

the output is assumed to be contracted.

• It allows using a reducer function that is not + to reduce contracted dimensions, this

means we can represent arbitrary reduce operations. For example,

@arrayop (j,) A[i, j] (*) is the same as dropdims(reduce(*, A, dims=1)).

• It allows reducing a dimension to have the size 1, rather than completely deleting it.

For example, @arrayop (1, j,) A[i, j] (*) is the same as reduce(*, A, dims=1).

• We can offset indices on the right hand side to look at neighboring elements. For

example @arrayop (i,j) A[i+1, j] + A[i, j+1] + A[i, j-1] + A[i-1, j] will sum

the elements in the cardinatal directions of A[i,j]. The resulting array will be of size

size(A) .- 2, since it has to exclude the calculation at the boundaries of A which result

in out-of-bounds access.

• We can bound the range of indices that applies to an index symbol, resulting in the

ability to represent slicing of arrays. For example,

@arrayop (i, j) A[i,j] where (j in 1:10) is equivalent to A[i, 1:10].

The benefits of encoding the Einstein summation notation are:

• Shape checking and propagation can be implemented in one central place to work on

a generic expression, as opposed to separately for every operation supported.
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• Code generation for array operations can take advantage of this notation to generate

loops as well as optimize those loops. It’s possible to call out to tensor notation com-

pilers such as Tullio.jl [1]. These compilers can generate code that executes on GPUs

as well as code perform automatic differentiation on these expressions. Symbolics.jl

currently does not support writing to Tullio because Tullio expressions create closures

which are not currently supported in Julia’s generated functions.

• Symbolically computing all or some elements of an array expression, called “scalariza-

tion”, can be performed by substituting the required indices in the Einstein summation

notation, and simplifying the resulting expression.

Code fragment Symbolics Einsum Notation Reducer

map(f,A[1:10,:]) out[i,j] := f(A[i,j]) (i in 1:10)

A' out[i,j] := conj(A[j,i])

A*b out[i] := A[i,k]*b[k] +

A*B out[i,j] := A[i,k]*B[k,j] +

p=prod(A, dims=2) out[i,1] := A[i,j] *

A .+ p out[i,j] := A[i,j]+p[i,1]

Table 4.4: Array operations and their corresponding encoding in our notation. The reducer

column shows the reduction function used. An empty reducer entry means, no reducer

function is necessary since no dimension is contracted.

4.5.1 ArrayMaker: nesting arrays

ArrayMaker can be used to construct an array that is made of blocks of subarrays. Ar-

rayMaker is used to implement hcat, vcat concatenation functions. It also plays a crucual

role in the making of the MethodOfLines.jl package for partial differential equation dis-

cretizations. Which require the construction of highly structured matrices with interesting

boundary conditions.
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ArrayMaker is constructed with a shape and a sequence of slices

ArrayMaker(shape, sequence). The shape is the shape of the array (in julia shape is called

axes and is a tuple of index ranges representing the range of indices of the output array

(usually starting from 1) along every dimension of the array); the sequence is a vector of pairs:

each pair contains an index set (an index into a view of the array) and the corresponding

right-hand-side array which must fill the indices in the view.

The @makearray macro can be used to create a new Julia variable which points to an

ArrayMaker object constructed from the body of the macro call. The body is a block where

every statement is a pair (=>) where the left hand side is the index range nad the right hand

side is the array to be broadcasted into that index range.

julia> @makearray y[1:5, 1:5] begin

y[2:end-1, 1:end] => @arrayop (i,j) x[i-1, j] + x[i+1, j]

y[1, 1:end] => @arrayop (j,) (x[1, j]+x[2, j])/2

y[end, 1:end] => @arrayop (j,) (x[end-1, j]+x[end-2, j])/2

end

(ArrayMaker((1:5, 1:5), begin

(2:4, 1:5) => @arrayop(_[i,j] := x[-1 + i, j] + x[1 + i, j])

(2:4, 1:5) => @arrayop(_[i,j] := x[-1 + i, j] + x[1 + i, j])

(1, 1:5) => @arrayop(_[j] := (x[1, j] + x[2, j]) / 2)

(5, 1:5) => @arrayop(_[j] := (x[4, j] + x[3, j]) / 2)

end))[1:5,1:5]

Note that y is an array symbolic expression just like any other. And can be combined

with other array operations. Symbolics.scalarize function turns a symbolic array into an

array of symbolic expressions by forcing elementwise evaluation.

julia> Symbolics.scalarize((y + y')[2,2])

2x[1, 2] + 2x[3, 2]

julia> Symbolics.scalarize((y+y')[2,3])

x[1, 3] + x[2, 2] + x[3, 3] + x[4, 2]
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The ArrayMaker functionality is used in MethodOfLines.jl package for PDE descritiztions.

It becomes the perfect tool for the job of composing arrays that are highly structured, with

the composability far better than composing loops as Julia expressions.

4.6 Primitive registration

Users can create or extend existing Julia functions with Symbolic methods by a convenience

macro called @register_symbolic.

For example,

@register_symbolic hypot(x::Number, y::Number)::Real

Adds the methods:

hypot(x::Symbolic{Number}, y::Symbolic{Number})

hypot(x::Number, y::Symbolic{Number})

hypot(x::Symbolic{Number}, y::Number)

Which all return Term(hypot, [x, y], type=Real).

Array function registration uses the @register_array_symbolic macro, where one can

also designate how the output array size is computed.

@register_array_symbolic vandermonde(x::AbstractVector) begin

size=(length(x), length(x))

end

4.7 Simplification

We use the rule-based rewriting system described above to implement the simplify routine.

In practice, while tracing code symbolically, a lot of simplification occurs due to the Add, Mul

and Div types we described at the beginning of this chapter. Simplification as a separate

step is sometimes necessary.
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Our simplification routine uses 80 rules which are sequenced using the rewriter combi-

nators described in Section 4.3. We manually arranged the rules to make sure that the

normalizating rules are applied at the beginning. The default simplifier, and the simplifier

it calls on Number expressions look like this:

function default_simplifier(; kw...)

IfElse(has_trig_exp,

Postwalk(IfElse(x->symtype(x) <: Number,

Chain((number_simplifier(),

trig_exp_simplifier())),

If(x->symtype(x) <: Bool,

bool_simplifier()))

; kw...),

Postwalk(Chain((If(x->symtype(x) <: Number,

number_simplifier()),

If(x->symtype(x) <: Bool,

bool_simplifier())))

; kw...))

end

function number_simplifier()

rule_tree = [If(istree, Chain(ASSORTED_RULES)),

If(x -> !isadd(x) && is_operation(+)(x),

Chain(CANONICALIZE_PLUS)),

If(is_operation(+), Chain(PLUS_DISTRIBUTE)),

If(x -> !ismul(x) && is_operation(*)(x),

Chain(CANONICALIZE_TIMES)),

If(is_operation(*), MUL_DISTRIBUTE),

If(x -> !ispow(x) && is_operation(^)(x),
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Chain(CANONICALIZE_POW)),

If(is_operation(^), Chain(POW_RULES)),

] |> Chain

rule_tree

end

isadd, ismul branches make sure that redundant rules are not applied on Add and Mul

which are already simplified.

In the future a performant e-graph based rewriter can replace this rewriter, allowing

bi-directional rules and better searches for simplified expressions. Simplification is one of

the most vaguely described, yet often debated topics in symbolic computing. See “Algebraic

simplification: a guide to the perplexed” by Joel Moses [65] for a discussion on different

schools of algebraic simplification. With e-graphs it would be possible for the user to provide

custom cost functions to be minimized on the expression, essentially parameterizing the

notion of simplicity.

4.8 Algebra and calculus functions

• Differential calculus: Users can represent differentials in expressions with the syntax

Differential(t)(x(t)) which means dx(t)
dt

. It is often convenient to define a short-form

constant const D = Differential(t) for the differentials with respect to the indepen-

dent variables in their system, then one can write D(x(t)), D(D(x(t))), etc. The APIs

Symbolics.gradient, Symbolics.jacobian, Symbolics.hessian compute the gradient,

Jacobian, and Hessian respectively.

• Sparsity computation: we provide functions to obtain sparsity of Jacobians and Hes-

sians via Symbolics.jacobian_sparsity and Symbolics.hessian_sparsity respectively.

Jacobian sparsity is computed in the fashion described in the example in Section 1.6.2.

Hessian sparsity is computed by rewriting expressions into the degree 2 polynomial
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which has the equivalent Hessian sparsity, and repeating the process until a single at

most degree 2 polynomial is left behind. The Hessian sparsity of the final expression

is easy to compute and represents the Hessian sparsity of the original expression. A

few example Hessian sparsity matrices and their equivalent degree-2 polynomials are

shown in Table 4.5.

• Simplification of polynomial fractions: We provide the function simplify_fractions

which takes a fraction expression, turns the numerator and denominator into polyno-

mials (see Section 4.1.3 for more on Polynomials) and cancels the GCD from them.

• Expansion: Symbolics.expand expands an expression by distributing multiplication

of polynomial subexpressions.

• Groebner bases: Symbolics.groebner_basis takes a vector of polynomials and re-

turns the groebner basis for them.

• Semi-linear form: Symbolics.semilinear_form(exprs, vars) expresses exprs in the

form A * vars + f(vars) and returns A and f(vars). This is beneficial for compilation

of exprs. Since, the matrix A * vars will be faster to compile, and sometimes already

parallel, than when the output of the same is written out statement-by-statement.

Symbolics community is working on the following functionality:

• Symbolic integration (Xinghui Hu)

• Matrix derivatives (Roni Edwin)

• Factorization and root finding (Yassin ElBedwihy)

The future development of Symbolics will focus on high-performance symbolic root find-

ing, expansive algorithm selection for a Gröbner basis.

Symbolics and its ecosystem are quickly becoming a common foundation for the con-

struction of next-generation Domain-Specific Languages in Julia, all of which will benefit

from the coming advancements as the system grows.
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code fragment polynomial sparsity

deg2rad(x[1]) x1

log(x[1]) x2
1

x[1] + x[4] x1 + x4

x[1] * x[4] x1x4

q = x[1]/x[4] x1x
2
4

asin(q)*x[3] (x2
1x

2
4)x3

Table 4.5: Hessian sparsity construction for an expression in x[1:4]. The 4 × 4 sparsity

pattern for each intermediate value is shown. The provenance polynomial has the same

hessian sparsity pattern.

4.9 Contributions

The ideas in Symbolics have existed in various systems. However, Symbolics.jl is the first

symbolic-numeric system written in and for a host language that is also a numerical language.

This not only allows code generation which is the focus of previous work, but also allows

symbolic analysis and transformation of code written in a useful subset of the language. This

advances the state of the art in the following ways:

• The transformations are accessible to the scientific user, do not require any knowledge

of compiler development, and is high-level as one is dealing with expressions that

support arithmetic operators supplemented by the power of a modern computer algebra

system.

• By the syntactic convenience of @register_symbolic, which adds symbolic methods to

existing generic functions, the whole ecosystem of Julia’s scientific packages can be
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called from a symbolic expression. The numerical code generated from it can naturally

call these numerically.

• The symbolic representation, manipulation, and code generation capabilities are ex-

tensible by an ecosystem of packages whose power increases by a network effect, this

prevents the siloing in symbolic-numeric systems we describe in Chapter 2.

We note that out of the systems we surveyed, only Symbolics, JAX [10], MATLAB’s

Symbolic Math Toolbox (SMT) [78] and Scmutils [34] can trace numerical code written in

the host language faithfully. JAX does this by providing a drop-in replacement to NumPy,

while Symbolics uses symbols of different types. JAX is not explicitly Symbolic, and we

discuss more about it in Section 4.10.5. MATLAB SMT is embedded within MATLAB, and

supports array symbols that match the operator behavior of MATLAB. SMT does not expose

a pattern-based rewrite language. MATLAB itself is not a good language to implement

numerical algorithms since it is interpreted and lacks fast loops. Symbols of custom types,

and hence custom arithmetic methods on them are not supported by this system. Scmutils

is written in a variation on Scheme that supports generic functions (multi-methods) based

on predicate dispatch. It works by adding arithmetic methods directly on quoted Scheme

expressions. Since Scheme expressions are untyped, this forces expressions to have a single

meaning–i.e., as numeric calculations. Custom symbol types can be defined, but Scheme

expressions containing them still remain untyped and hence only have the numeric meaning.

In contrast, in Symbolics, both variables and expressions can represent a trace of any Julia

type and their behavior on functions can vary.

4.10 Comparisons

We present a comparison of features in Table 4.6, and describe some details on the systems

we surveyed in the next several paragraphs. Note at the outset that apart from Symbol-

ics, MATLAB-SMT, Scmutils, and JAX, other systems are not able to faithfully trace and

reproduce numerical code.
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Package ↓

Feature →

Host language Num
eric

ally
fast

Cus
tom

sym
bols

Gen
eric

fun
ctio

ns

O(1
) sp

ace
Arr

ays

Compiles to

Mathematica C 1 3 7 7 7 C/Fortran

SymPy Python 3 3 3 3 Python and C

Maxima Common Lisp 3 3 3 3 Fortran

MATLAB-SMT 3 7 7 3 C, Fortran, MAT-

LAB

Magma C 3 7 7 7 –

Reduce Lisp (PSL) 3 7 7 7 Fortran

AXIOM Lisp 3 3 3 3 Fortran

JAX Python 3 3 7 7 Python and XLA

scmutils Scheme 3 3 3 7 Scheme

Modelica C 3 7 7 3 C

Maple Lisp 3 7 7 3 C and Fortran

Symbolics Julia 3 3 3 3 Julia

Table 4.6: Table of features supported by various symbolic systems. The orange 3mark
represents that the system is numerically fast by calling out to code written in a different,
low-level language because the host language is itself slow. Symbolics, MATLAB-SMT, JAX
and Scmutils are in a position to be able to treat numerical code as Symbolic expressions.
1 “extension of C which supports certain memory management and object-oriented features” [87]
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Mathematica is written in “an extension of C which supports certain memory manage-

ment and object-oriented features” [87]. Mathematica does not have support for symbolic

arrays although in the assumption system you can specify that a variable is a member of a

matrix vector space. However, this does not prevent a matrix variable from being commuted

in multiplication, for example. Mathematica has a compiler which is can be explicitly in-

voked or is automatically invoked when it is valid and benificial to do so, e.g. in higher-order

functions like Map and Table [48]. Mathematica is not a good language to implement numer-

ical algorithms since it lacks a transparent memory layout and efficient for loops. There is

no explicit support for generic programming in Mathematica. This means it is not possible

for the user to create custom operator behavior.

SymPy [63] is written in Python, and has support for symbolic matrices. It can compile

symbolics to Python functions or to C and invoke it from Python using the autowrap function

[82]. However, as we discuss in 4.10.3, because of lack of consistency with numerical libraries,

the codegen can be unintuitive to use. The code generated in C also has the limitations of

the C language and breaks the closure property of symbolic-numeric programming, in that

the C code cannot call back a library code in Python if it needs to. SymPy has extensive

support for tensors and tensor symbols, including Matrix and Vector types. It can also

generate efficient tensor contraction code in C. Symbolics’ implementation is closest to that

of SymPy, and hence we consider in greater detail in the coming sections.

Maxima [40] is written in Common Lisp, it supports arrays up to 5 dimensions and has

a gentran function [79] that can–

generate FORTRAN, C, and RATFOR code from Maxima language code. Gen-

tran can translate mathematical expressions, iteration loops, conditional branch-

ing statements, data type information, function definitions, matrtices and arrays,

and more.

Maple [60] by Waterloo Maple Software is a language for symbolic, numerical and graph-

ical applications. It has a Fortran command to generate Fortran code from Maple expres-

sions. Maple supports class-based object-oriented programming and operator overloading.
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[21] Method dispatch is based on all arguments, and proceeds left to right. The first object

of a class with the method gets called.

Magma [9] is an abstract algebra language designed for computations in algebra, num-

ber theory, algebraic geometry, and algebraic combinatorics. It supports imperative and

functional styles of programming and has a type system suitable for abstract algebra. It

is possible for users to evaluate strings of Magma code at runtime using eval [20]. It also

allows creation of numerical arrays performing linear algebra operations on them. Magma

does not concern itself with emitting C or Fortran code.

MATLAB Symbolic Math Toolkit is a computer algebra system embedded in MAT-

LAB. This software supports Matrix symbols, and has the same operators as MATLAB.

Symbolic Math Toolbox provides functions for generating MATLAB functions, Simulink

Function blocks, and equations based on the Simscape language. MATLAB supports class-

based objec-oriented programming [77]. However it is not possible to create custom symbols

with custom operator behavior.

Reduce [44] is a comprehensive symbolic language. In Reduce, there are no generic

functions (although they do use the phrase generic function to refer to function symbols), it

supports matix and tensor variables, produces Fotran code, has no facility for custom types

or classes.

AXIOM describes itself as “a self-contained toolbox designed to meet your scientific

programming needs, from symbolics, to numerics, to graphics” [51]. Generic programming

abilities in AXIOM are provided by hierarchy of type classes to manipulate and propagate

domains over values. It supports array symbols and tensor operations. It is a symbolically

focused environment, and hence does not try to also be a language which is fast for numerical

code. It can generate FORTRAN code from symbolic expressions.

Scmutils is a Scmutils is a package developed by Gerald J. Sussman, Jack Wisdom,

Chris Hanson et. al. [34]. It is implemented in the Scheme language, and works by adding

arithmetic methods to the default homoiconic expressions of Scheme. We described the

limitation of this in the previous section. Scmutils does not support array symbols, and can
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compile to machine code using the existing facilities to do so in Scheme.

In the following subsections, we consider the advantages of using Julia as a host lan-

guage for a symbolic-numeric system vs. Python as a host language, taking the example

of SymPy+numpy. Our goal is to show that 1) we solve the two-language problem in

symbolic-numeric programming (see Section 1.4); 2) the same benefits of multiple dispatch

that makes organizing numerical code great, also makes organizing symbolic ecosystem just

as great. After this, we make some remarks on JAX and compare it to Symbolics.

4.10.1 Modularity and extensibility

The design of terms in Symbolics is similar in spirit to that in SymPy. SymPy is written

with class-based object-oriented programming. A superclass Expr assumes the existence of

an .args and .func properties, whereas in our case we have the head and children accessor

generic functions which serve the same purpose of querying an expression. Note that the

notion of a symbolic type (symtype), is very informal in SymPy (in the listing below, we

see them appear as string tags) whereas in Symbolics, symtypes map to Julia types such as

Real and AbstractArray – we keep close to the numerical language, while also utilizing the

generality of abstract types.

Instead of class-based inheritence, we use the minimal term interface described in Sec-

tion 3.3.1. SymPy must use single-dispatch, which comes with code organization problems

exarcerbated in scientific computing as described in Section 3.2.1. For example, if a Band-

edMatrices module wanted to create a symbolic BandedMatrix method, and wanted to set

up a way to multiply it with existing symbolic matrices, for instance BasicMatrix, it would

have to somehow inform the existing BasicMatrix class about this new type (at least for the

case A * B where A is an instance of BasicMatrix and B is an instance of BandedMatrix). In

SymPy, the __mul__ method of BasicMatrix executes the following piece of dispatch code:

self, other, T = _unify_with_other(self, other)

if T == "possible_scalar":
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try:

return self._eval_scalar_mul(other)

except TypeError:

return NotImplemented

elif T == "is_matrix":

if self.shape[1] != other.shape[0]:

raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.shape}.")

m = self._eval_matrix_mul(other)

...

return m

else:

return NotImplemented

Here _unify_with_other is used as an imperfect substitute for multiple dispatch. It

returns a tag called T which tells what kind of Symbolic expression to produce as output,

and a runtime branch then performs the right action. This function also converts other to

be in a form that _eval_matrix_mul down the line.

We believe it is much more natural that this multiplication be addressed by the

BandedMatricesmodule instead, and Julia’s multiple-dispatch makes this possible, and avoids

the ad-hoc dispatch as in SymPy.

To reinforce this point, consider that with Symbolics we can easily define the term in-

terface on the default Julia expression type Expr which is obtained on quoting Julia code.

For example, Metatheory.jl [14]’s E-graph rewriting works both on Julia expressions and

Symbolics expressions by way of this interface. This would not be possible in a language

with static dispatch, say, C++. Mathematica does is not object-oriented, and does not have

an interface for creating new kinds of expressions.

An important benefit of using Julia as the implementation language is its performance.

Julia is performant in comparison to Python even in applciations heavy on dynamic dispatch
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(dispatch that cannot be inferred at compile time) such as symbolic computing. When one

real-world robotics application was ported from SymPy (being called via the Julia wrapper)

to Symbolics, we found that symbolically tracing into the mass matrix computation of a

rigid body dynamical system with 7 degrees of freedom took 3.721925 seconds in Symbolics,

while SymPy takes 16.333147 seconds resulting in a 4.4x speed up. 2

4.10.2 Symbolic tracing of numerical code

Symbolic tracing in Julia works based on generic function calls. For example there is only one

function *, and * always refers to this function (except in degenerate cases like bootstrapping

of the language and deliberate attempts to break something). In a plain julia session, * has

over 200 methods. To have these many methods, creators of many types must have agreed

on its consistent meaning: on numbers it is multiplication, on strings it is concatenation, on

matrices it is matrix multiply, on a matrix and a vector it is a matrix-vector muliply, and so

on.

In Python * is allowed to be opininonated, since there is a tendency to think of the __mul__

method (which * desugars to) as a property of whichever class is defining it. In numpy, *

works on matrices of matching dimensions and performs an element-wise multiplication. In

sympy it performs a matrix multiplication.

from sympy import Matrix, MatrixSymbol

import numpy

>>> M = Matrix([[1, 7], [-2, 3]]);

>>> N = Matrix([[0, 1], [1, 0]]);

>>> M * N

Matrix([

[7, 1],

[3, -2]])

2Reproducable code at https://github.com/JuliaSymbolics/SymbolicUtils.jl/pull/254
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>>> nM = numpy.array([[1, 7], [-2, 3]]);

>>> nN = numpy.array([[0, 1], [1, 0]]);

>>> nM * nN

array([[ 0, 7],

[-2, 0]])

Now consider the trace of a simple function mulT written meant to take matrix arguments

in, say numpy:

>>> def mulT(a, b): return a * b.T

>>> A = MatrixSymbol('A', 2,2)

>>> mulT(A,A);

A*A.T

Let’s say we trace this function as mulT(A,A), with matrix symbol A from SymPy, the

resulting expression will not mean the same thing as a fragment of numpy code which is

only one possible instance of ”numerical code” in Python. In the latter case, a*b.T is

commutative, and in the former case it is not! How can one implement term manipulation

on this trace and be sure that the resulting expression can be turned into numerical code

that uses numpy? It’s possible but the amount of unwanted complexity is unfortunately a

lot.

4.10.3 Numerical code generation

We can continue with the same example and see how the differing meanings of * makes the

semantics of code generation awkward:

>>> f=sympy.lambdify([A], mulT(A, A), 'numpy')

>>> f(nM)
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array([[50, 19],

[19, 13]])

>>> mulT(nM, nM)

array([[ 1, -14],

[-14, 9]])

The regenerated code is not faithful to the original.

When generating code in Julia, native non-symbolic values used within symbolic ex-

pressions simply get interpolated into the Julia expression (without a copy). This means

expressions containing non-symbolic matrices, big integers etc, also behave faithfully as in

the base language, and not according to the target language such as C. SymPy has this

limitation in its autowrap utility which emits and compiles C code for symbolic expressions.

4.10.4 Function registration

When we register functions as symbolic-level primitives, any calls to that function with

symbols becomes a node in the symbolic trace. Here the head of the node is simply the

generic function object itself!

Note that this is different from defining symbols which behave as functions. Symbols

create a new binding while registering a Julia function simply adds the necessary methods

to accept one or more arguments to it as symbolic.

In SymPy, one can create function symbols either as Function('f'), or by creating a class

that extends the Function class. Note that this is the same as creating a function symbol.

In python there can be no notion of function registration, for example, it’s not possible to

make the following work:

A = MatrixSymbol('A', 2,2)

numpy.matmul(nM, A)
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When a function symbol such as Function('matmul') is lambdified, it simply writes the

identifier ’matmul’ into the output code, and it’s the job of the user then to make sure

the identifier function matmul is present in the environment and points to numpy.matmul (for

example, by doing from numpy import matmul.

4.10.5 Notes on JAX

JAX [10] uses symbolic tracing to optimize, differentiate, schedule numpy-like array code.

It is designed to be drop-in replacement of NumPy [43] in Python. The trace is a custom

data structure called Jaxpr which is similar to a single-static-assignement intermediate rep-

resentation Julia produces after type-inference (See Section 3.2.2 for @code_typed example).

The main difference in JAX from type inference of Julia is that:

• All functions are assumed to have no side effects.

• Tracing of functions with JAX arrays will cause the traced code to propagate type as

well as size information whereas in Julia, sizes are not considered known at compile

time.

However, these assumptions and behavior are equivalent to the assumptions that Sym-

bolics makes during the tracing process with symbols.

All code optimizations are written as interpreters of Jaxprs, and can be composed. Finally

a jit function can turn the Jaxpr into fast code, specifically utilizing the XLA [72] instruction

set.

The subset of NumPy/Python JAX compiles is similar to what Symbolics is interested

in tracing (and hence compiling).

import jax.numpy as jnp

def Dense(x, w, b):

return jnp.matmul(x, w) + b
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jax_fn = jit(Dense)

We envision the future evolution of symbolic-numeric software as a fusion of symbolic

tracing and interpreter-based approaches. An example of this hybrid paradigm is showcased

in the ReversePropagation.jl [74] package, which harnesses Symbolics to construct a reverse-

mode interval propagator, as well as reverse-mode automatic differentiator. This package

closely mirrors the structure of Jaxpr, demonstrating the potential of this idea.

4.11 Limitations of Symbolics

Branches: A big limitation of Symbolics is that symbolic expressions appearing in branch

conditions immediately error since only booleans are allowed as branch conditions. A tracing

mechanism based on abstract interpretation [16] can detect these cases and decide to rewrite

the trace to represent branches symbolically.

Need for wrapper types: Since Julia does not support multiple inheritance, to integrate

seamlessly with Julia’s type system, we define expression types as subtypes of the abstract

Real and AbstractArray types, respectively. Consequently, our system is compatible only

with functions and types that can accept inputs as general as these abstract types.

In Julia, there is often an incentive to specify the most precise type possible to achieve an

efficient memory layout and optimized performance. This is especially true when it comes

to types of fields in structs. If the type is specialized by a type parameter, then it can

hold symbolic expressions, otherwise it cannot. Thankfully, critical types like Complex{T}

are parameterized based on the types of their fields, which allows symbolic expressions to be

part of them.

Compilation: Julia effectively balances specialization and abstraction in its code compila-

tion process. However, code generated using the Symbolics library can become excessively

lengthy, which often results in significantly prolonged compile times. Techniques like com-

mon subexpression elimination help to an extent, but some kind of compression strategy
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which can automatically find larger abstractions (discovering libraries of functions to make

programs shorter) could become useful in the future.
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Chapter 5

Case studies

In this chapter we present some case studies of using Symbolics’ Symbolic-numerical abili-

ties to solve problems, and we demonstrate the effectiveness and power of Symbolics. The

first use case of ModelingToolkit shows the effectiveness of Symbolics as a lingua-franca for

Modeling and Simulation software in the SciML (“Scientific machine learning”) field. With

ModelingToolkit as the base, several scientific modeling frameworks have been written all

utilizing the symbolic-numeric programming style. The second use case on Convex opti-

mization exemplifies the productivity advantage of Symbolics over implementing the same

problem using plain multiple-dispatch this also provides a look into one subsystem within

SciML that benefits from Symbolics. Next we consider Catalyst.jl a chemical reaction net-

work framework, where Symbolics is used to build a domain-specific compiler for chemical

reaction network simulations. Finally, we consider ReversePropagation.jl, a project for re-

verse mode interval propagation and reverse mode differentiation showcasing the compasable

nature of Symbolics when used for transforming programs.

5.1 SciML: Scientific Machine Learning

SciML is an ecosystem of Julia projects aiming to bring together high-quality implementation

of scientific modeling under a consistent umbrella abstraction that creates a sum greater than
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its parts. Symbolics acts as a symbolic lingua-franca in SciML. Before we get to the symbolic

aspects of the SciML story, let’s look at the numerical part of SciML.

5.1.1 Numerical building blocks

The numerical building blocks of SciML are listed below. We also show an example invocation

for each item. Note the generic nature of the solve function, it takes 2 arguments: a problem

and a solver type, and returns a solution, and the problem type varies within an across each

project below. The result of solve is a solution array-like object.

1. LinearSolve.jl: Unified high-performance linear solvers.

Problem: solve for b in Au = b. A can be a matrix, or the problem can be expressed

as a numerical function A(u, p) = b, where p are parameters.

prob = LinearProblem(A, b)

sol = solve(prob, KrylovJL_GMRES())

2. NonlinearSolve.jl: Unified non-linear solver.

Problem: find value u such that f(u) = 0. f can be specified by a numerical function

f(u, p) where p are parameters.

prob = NonlinearProblem(f, u0, p)

sol = solve(prob, TrustRegion())

3. DifferentialEquations.jl [69] [70]: Unified interface for all differential equations.

Problem: given a differential equation problem, evolve its solution from a start state

u0 over some timespan. Notice the generality of this difnition–the problem itself can

be polymorphic.

prob = ODEProblem(f, u0, tspan)

sol = solve(prob, Tsit5())
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Currently, these problem types (and one or more solvers for them) are supported: Dis-

crete equations (function maps, discrete stochastic (Gillespie/Markov) simulations),

Ordinary differential equations (ODEs), Split and Partitioned ODEs (Symplectic inte-

grators, IMEX Methods), Stochastic ordinary differential equations (SODEs or SDEs),

Stochastic differential-algebraic equations (SDAEs), Random differential equations

(RODEs or RDEs), Differential algebraic equations (DAEs), Delay differential equa-

tions (DDEs), Neutral, and algebraic delay differential equations (NDDEs, RDDEs,

and DDAEs), Stochastic delay differential equations (SDDEs), Experimental support

for stochastic neutral, retarded, and algebraic delay differential equations (SNDDEs,

SRDDEs, and SDDAEs), Mixed discrete and continuous equations (Hybrid Equations,

Jump Diffusions), (Stochastic) partial differential equations ((S)PDEs) (with both fi-

nite difference and finite element methods).

4. Optimization.jl [22]: Unified solutions of optimization problems.

Problem:
minimize f(u, p)

subject to g(u, p) ≤ 0, h(u, p) = 0

prob = OptimizationProblem(f, p)

sol = solve(prob, Optimisers.ADAM(0.05))

5. Integrals.jl [69]: Unified quadrature interface

Problem:

∫ ub

lb

f(t, p)dt

f(x, p) = sin(x * p)

prob = IntegralProblem(f, (-2, 5), 1.7) # over x in [-2,5]

sol = solve(prob, QuadGKJL())
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5.1.2 Symbolic-numeric modeling langauge

ModelingToolkit (MTK) is a symbolic equation-based modeling library built on top of Sym-

bolics. It takes equations written with Symbolics expressions, and allows the creation of the

Problem types from across the SciML ecosystem that described in the previous subsection.

using ModelingToolkit, OrdinaryDiffEq

@parameters t σ ρ β

@variables x(t) y(t) z(t)

D = Differential(t)

eqs = [D(x) ~ σ*(y-x),D(y) ~ x*(ρ-z)-y,D(z) ~ x*y - β*z]

@named lorenz1 = ODESystem(eqs)

u0 = [x => 1.0,y => 0.0,z => 0.0]

p = [σ => 10.0, ρ => 28.0, β => 8/3]

tspan = (0.0,100.0)

prob = ODEProblem(lorenz1,u0,tspan,p)

sol = solve(prob,Tsit5())

ModelingToolkit produces the following code to be used by ODEProblem, using Symbolics’s

build_function function (Section 4.4.1):

(out, arg1, arg2, t) = begin

out[1] = (-1 * arg1[1] + arg1[2]) * arg2[1]

out[2] = -1 * arg1[2] + arg1[1] * (-1 * arg1[3] + arg2[2])

out[3] = arg1[1] * arg1[2] + (-1 * arg1[3]) * arg2[3]

nothing

end

which is then solved using a Tsit5 [84] solver.

In this example we see that an ODESystem is converted into an ODEProblem. As one can

imagine, this is not the only kind of equation system ModelingToolkit supports. There

94



are also: Stochastic differential(-algebraic) equations (SDESystem), Partial differential equa-

tions (PDESystem), Nonlinear solve equations (NonlinearSystem), Optimization problems

(OptimizationSystem), Continuous-Time Markov Chains (JumpSystem), and Nonlinear Opti-

mal Control (ControlSystem).

Turning Systems into Problems sometimes requires turning a System into another System

first, to make it feasible to dispatch the problem to the right solver.

System transformations

ModelingToolkit can provides a suite of system transformation functions that takes one

system and turns it into a different, often more useful, system.

PDESystems are turned into ODESystems by various discretization techniques; Differential

Algebraic Equations (DAEs) are transformed to eliminate variables, and do DAE index

reduction.

A simple example of a system transformation is turning a system which connects many

named subsystems, into a single flattened system:

@named lorenz2 = ODESystem(eqs)

@variables a; @parameters γ

connections = [0 ~ lorenz1.x + lorenz2.y + a*γ]

@named connected = ODESystem(connections,t,[a],[γ],systems=[lorenz1,lorenz2])

u0 = [lorenz1.x => 1.0,lorenz1.y => 0.0,lorenz1.z => 0.0,

lorenz2.x => 0.0,lorenz2.y => 1.0,lorenz2.z => 0.0,

a => 2.0]

p = [lorenz1.σ => 10.0,lorenz1.ρ => 28.0,lorenz1.β => 8/3,

lorenz2.σ => 10.0,lorenz2.ρ => 28.0,lorenz2.β => 8/3,

γ => 2.0]

tspan = (0.0,100.0)

prob = ODEProblem(connected,u0,tspan,p)

sol = solve(prob,Rodas4())
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The flattening is automatically invoked in the call to ODEProblem in this case, but trans-

formations can be explicit, and user-defined. Some explicit transformations provided by

MTK are:

• Structural simplification (structural_simplify) removes the numerically-unnecessary

modeling abstractions to solve a single differential equation.

• DAE Index reduction (dae_index_lowering) transforms a higher index DAE into

an index-1 DAE via Pantelides algorithm [67] or its extensions [75].

• Alias eliminiation (alias_elimination) Elimination of singular equations which amount

to 0 = 0, while being able to recover the original variables [66].

• Nonlinear tearing reorders equations to reduce the size of the problem which requires

a nonlinear solve [3].

These transformations can be chained together and applied to a system as necessary.

A user-defined transformation function can use the full power of Symbolics. For example,

probabilistic robustness can be assessed via the trace of the Jacobian of an ODE [41]. This

is a simple 7 lines of code, which appends the following equation onto the system:

D(trJ) ~ trJ*-tr(calculate_jacobian(sys))

Note that we use <lhs> ~ <rhs> to construct equations in Symbolics since <lhs> = <rhs> is

reserved for assignment in Julia.

To perform this robustly, one can call in sequence dae_index_lowering, then structural_simplify,

after that liouville_transform(sys) which could append the equation above.

Now we reproduce an example of structural simplification from [58].

Example of structural simplification

A pendulum system can be specified, as follows, by 5 state variables, x, y, the velocities vx
and vy, and T , with parameters g for the acceleration due to gravity, and the fixed length of
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the pendulum L:

x′ = vx (5.1)

v′x = Tx (5.2)

y′ = vy (5.3)

v′y = Ty − g (5.4)

0 = x2 + y2 − L2 (5.5)

We add a symbolic-tracing detour to the story by assuming a user has written down a

pendulum drift function instead of symbolically specifying the equations, and is currently

just using DifferentialEquations.jl to solve it:

function pendulum!(du, u, p, t)

x, dx, y, dy, T = u

g, L = p

du[1] = dx; du[2] = T*x

du[3] = dy; du[4] = T*y - g

du[5] = x^2 + y^2 - L^2

end

pendulum_fun! = ODEFunction(pendulum!, mass_matrix=Diagonal([1,1,1,1,0]))

u0 = [1.0, 0, 0, 0, 0]; p = [9.8, 1]; tspan = (0, 10.0)

pendulum_prob = ODEProblem(pendulum_fun!, u0, tspan, p)

The Jacobian of the algebraic equation with respect to L is singular, making this an index-3

DAE. Since most DAE solvers require an index-1 DAE, a user may easily and inadvertently

write such an “unsolvable” equation, leading to a non-convergent solving process and leaving

the user to think the issue is a “bad solver”. For example, if the user attempts to solve this

with the Rodas4 method for DAEs, the solver almost immediately exits due to claims of

instability.
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modelingtoolkitzie is a function that takes a drift function such as pendulum! and

turns it into a ModelingToolkit system. An important benefit of modelingtoolkitize is that

it also geenerates the Jacobian of the drift wherever necessary–and it can use the sparsity

information described in 1.6.2 to do this.

Because the underlying problem is structural, we can use the modelingtoolkitize func-

tion to transform the user’s equations to MTK symbolic representations, and subsequently

use dae_index_lowering to generate an index-1 form which is numerically solvable. The

algebraic equation can then be replaced via a rootfind inside the right hand side system

(done as part of the ODAEProblem construction) to arrive at a simple non-stiff ODE. These

transformations are performed via:

traced_sys = modelingtoolkitize(pendulum_prob)

pendulum_sys = structural_simplify(dae_index_lowering(traced_sys))

prob = ODAEProblem(pendulum_sys, Pair[], tspan)

sol = solve(prob, Tsit5())

The method automatically transforms the user’s code to the form:

x′ =vx (5.6)

v′x =xT (5.7)

y′ =vy (5.8)

v′y =yT − g (5.9)

0 =2
(
v2x + v2y + y(yT − g) + Tx2

)
(5.10)

which is mathematically equivalent but numerically more stable. The graph algorithm au-

tomatically figures out that only the fifth equation needs to be changed, and it needs to

be differentiated twice for the numerical solution to be stable. This variant of the model is

successfully solved with an explicit Runge-Kutta method for non-stiff ODEs [84], as shown in

Figure 5-1. Such automated transformation features allows users of the numerical environ-
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Figure 5-1: Index-3 DAE model of a pendulum solved by an explicit Runge-Kutta

method. Pendulum model successfully solved by the Tsit5 [84] 5th order Runge-Kutta

method [83] after performing index reduction via the Pantelides algorithm [67] and reducing

the nonlinear system.
ment to make use of symbolic graph algorithms like Pantelides algorithm to nearly invisibly

achieve better numerical stability. This abstract interpretation process thus enables the

application of such discrete algorithms by the users of numerical functionality of standard

programming languages.

In this paper, models reduced by MTK are shown to outperform the Dymola Modelica

compiler on an HVAC model by 590x at 3% error.

5.1.3 Moving the methodology forward in PDEs

Solutions to PDEs are often written on a case-by-case basis. For example, it is common for

users to write a fast loop to solve a single problem. Publications implement new methods

on a small machine, and leave the fast implementation that runs on modern hardware to

later engineering work. Good algorithms, and a high-quality fast implementation are both

required in the future.

New methods in PDE solvers amount to a small improvement or mathematical trick
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that applies to one part of the solver pipeline. By delineating every step of the process of

going from a problem to its solution–reducing it into a computable form, turning that into a

better computable form, finally choosing the right solver and parameters for that problem,

generating code from symbolic information, we can allow these new methods to be actually

implemented as a small change to this pipeline.

5.2 Convex optimization

Modern computational convex optimization has been significantly shaped by Disciplined

Convex programming (DCP) [38]. From Grant, et. al [38]:

Disciplined convex programming is inspired by the practices of those who regu-

larly study and use convex optimization in research and applications. They do

not simply construct constraints and objective functions without advance regard

for convexity; rather, they draw from a mental library of functions and sets whose

convexity properties are already known, and combine and manipulate them in

ways which convex analysis insures will produce convex results. When it proves

necessary to determine the convexity properties of a new function or set from

basic principles, that function or set is added to the mental library to be reused

in other models.

Disciplined convex programming formalizes this strategy, and includes two key

components:

1. An atom library: an extensible collection of functions and sets, or atoms,

whose properties of curvature/shape (convex/concave/affine), monotonic-

ity, and range are explicitly declared.

2. A convexity ruleset, drawn from basic principles of convex analysis, that

governs how atoms, variables, parameters, and numeric values can be com-

bined to produce convex results.
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In DCP, optimization requires inferring whether a function is actually convex, its sign

and monotonicity. This is essentially a symbolic analysis.

The application of this ruleset to programs lends itself to term-rewriting. Our imple-

mentation https://github.com/Vaibhavdixit02/SymbolicAnalysis.jl of DCP can then be

leverage in the Optimization.jl [22] framework to certify convexity. Optimization.jl is sum-

marized briefly in Section 5.1.

5.2.1 Symbolics vs. multiple-dispatch for implementation

In the past, DCP has been implemented in Julia in the Convex.jl project [85] using Julia’s

multiple-dispatch. Here the scheme of implementation is roughly:

• For every primitive function supported such as exp, encode the “trace” using a different

type, e.g. ExpAtom, containing children that are the arguments to exp, and size which

holds the output size of the expression.

• Define methods on generic functions sign, monotonicity, curvature, evaluate. These

functions take an ExpAtom object and respectively return 1) the sign of exp, 2) the mono-

tonicity, 3) the curvature, 4) the result of executing the node (e.g., exp.(evaluate(node.children[1]))).

In all cases these functions may recursively call themselves on the children to make the

final choice of output.

The implementation also needs to bookkeep and verify that the Atoms are composed in

valid ways, for example:

mutable struct AdditionAtom <: AbstractExpr

children::Vector{AbstractExpr}

size::Tuple{Int,Int}

function AdditionAtom(x::AbstractExpr, y::AbstractExpr)

# find the size of the expression = max of size of x and size of y

101

https://github.com/Vaibhavdixit02/SymbolicAnalysis.jl


sz = if x.size == y.size

x.size

elseif y.size == (1, 1)

y = y * ones(x.size)

x.size

elseif x.size == (1, 1)

x = x * ones(y.size)

y.size

else

error(

"[AdditionAtom] cannot add expressions of sizes $(x.size) and $(y.size)",

)

end

# See if we're forming a sum of more than two terms and condense them

...

end

Note that, presumably to simplify implemenation, they represent all values as matrices,

including scalars which are 1×1 matrices. In the code above, the branches for y.size == (1,

1) and x.size == (1, 1) are handling these edge cases. An unfortunate consequence of this

is that AbstractExpr will fit into neither the Number type hierarchy, nor the AbstractArray

type hierarchy of Julia.

In contrast, our implementation in Symbolics starts off at a much higher-level of abstrac-

tion. We already have symbolic expressions that can be scalar expressions, matrices and

vectors, and the size checking and validation are taken care of by Symbolics.

We use the metadata system described in Section 3.3.2 to layer on top of the expressions

metadata for sign, convexity, and monotonicity information. Not being tied to using multiple-

dispatch to propagate rules, we can simply store the rules in a lookup table. For example,

our code to porpagate the sign looks like a rewriter pass on the expression. It starts at the
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leaf nodes, and applies the first of a series of rules and propagates this information up the

tree (Postwalk).

function propagate_sign(ex)

rs = [@rule ~x::issym => hassign(~x) ? ~x : setsign(~x, AnySign)

@rule ~x::istree => setsign(~x, (dcprule(head(~x),

children(~x)...).sign)) where {hasdcprule(head(~x))}

@rule *(~~x) => setsign(~MATCH, mul_sign(~~x))

@rule +(~~x) => setsign(~MATCH, add_sign(~~x))

]

ex = Postwalk(RestartedChain(rs))(ex)

return ex

end

The section of the code in Convex.jl that sets up various expression types and defines

the requried methods on them (by performing cloc on atoms/ subdirectory) contains 2215

lines of Julia code. Our implementation contains only 625 lines of code.

This is a big productivity and maintainability advantage.

5.3 Catalyst

Catalyst is a library for modeling simulations of chemical reaction networks (CRNs). Cat-

alyst supports simulating stochastic chemical kinetics (jump process), chemical Langevin

equation (stochastic differential equation), and reaction rate equations (ODEs). CRNs have

applications in synthetic biology, epidemics, chemical reaction research, systems biology,

pharmacology.

Catalyst has a domain-specific language which produces Symbolics.jl equations that are

then turned into one of the systems in SciML according to need.

using Catalyst

rs = @reaction_network begin
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α, S + I --> 2I

β, I --> R

end

p = [:α => .1/100, :β => .01]

tspan = (0.0,500.0)

u0 = [:S => 99.0, :I => 1.0, :R => 0.0]

# Solve ODEs.

oprob = ODEProblem(rs, u0, tspan, p)

osol = solve(oprob, Tsit5())

It can also turn the same reaction systems into discrete jump problem:

# Solve Jumps.

dprob = DiscreteProblem(rs, u0, tspan, p)

jprob = JumpProblem(rs, dprob, Direct())

jsol = solve(jprob, SSAStepper())

5.3.1 Symbolic-numeric research advantage

Catalyst has been used to simulate systems with 3744 species (Variables), and 58276 Reac-

tions (each reaction with approximately 2 terms). This is the nature of the computations in

this field, and of course requires automatic code generation starting from symbolic represen-

tation of equations.

A second advantage is more interesting, from [57]:

Chemical reaction networks with polynomial ODEs (a condition that holds for

pure mass action systems) can be easily converted to symbolic steady-state sys-

tems of polynomial equations. Polynomial methods such as homotopy continua-

tion (implemented by the HomotopyContinuation.jl Julia package) can be used

to reliably compute all roots of a polynomial system [11]. This is an effective
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approach for finding multiple steady states of a system. When the CRN contains

Hill functions (with integer exponents), by multiplying by the denominators, one

generates a polynomial system with identical roots to the original, on which

homotopy continuation can still be used.

By representing reaction systems as ODEs and in the form of Homotopy continuation at

the same time, Catalyst was able to push the state of the art, apart from being the fastest

tool for many CRNs as shown through comprehensive benchmarks.

5.4 ReversePropagation.jl

ReversePropagation.jl is a Julia package for reverse propagation along a syntax tree, using

source-to-source transformation via Symbolics.

Interval arithmetic can propagate a intervals through an expression. Consider, for exam-

ple, propagating the intervals x ∈ [−10, 10] and y ∈ [−10, 10] through x2 + y2:

julia> using Symbolics, ReversePropagation, IntervalArithmetic

julia> @variables x y;

julia> replace(x^2 + y^2, x=>Interval(-10..10), y=>Interval(-10..10))

[0, 200]

Meaning x2 + y2 ∈ [0, 200].

But now let’s say we come to know that x2 + y2 ∈ [0, 1]. How can we propagate this

information back, so that we can contract the original assumptions of x ∈ [−10, 10] and

y ∈ [−10, 10]?

Reverse propagation provides the function forward_backward_contractor to do this.

julia> contractor_func = forward_backward_contractor(x^2 + y^2, [x, y])

julia> contractor_func(Interval(-10..10) × Interval(-10..10), 0..1)

(([-1, 1], [-1, 1]), [0, 200])
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The result contains two parts: the decimated interval box stating that x ∈ [−1, 1] and

y ∈ [−1, 1] such that x2 + y2 ∈ [0, 1], and the result of the forward evaluation.

Here the contractor_func is a function specifically created from the x2 + y2 expression.

The algorithm to construct contractor_func is called the HC4 contraction [49]. In the

left-hand side Snippet in 5.1 we see the reverse-mode propagation of intervals. First this

code computes c to be the output of the forward pass, next it intersects the result with the

known constraint of the output. Then propagates this back up through x2 + y2.

Juxtaposed is the reverse differentiation pass which is also available in ReversePropa-

gation.jl, it is the same backward propagation process that is used for both. Line by line

comparison of the transformations reveal an abstract relationship between them.

Since both transformations are in Symbolics expressions, it becomes possible to com-

pose them together. For example, we can ask the question if we constrain the gradient

∂x(f(x, y)) = [0, 0], ∂y(f(x, y)) = [0, 0] what are the intervals in of x and y? So this would

bound the regions where maxima, minima or saddle points of the functions lie.

a ← x^2

b ← y^2

c ← a + b

output ← c

c ← c ∩ constraint # consrtaint on output

a, b ← (c-b) ∩ a, (c-a) ∩ b

y ← (sqrt(y) ∪ -sqrt(y)) ∩ y

x ← (sqrt(x) ∪ -sqrt(x)) ∩ x

q ← x^2

r ← y^2

s ← q + r

s1̄← 1

q1̄← s1̄

r1̄← s1̄

ȳ ← 2r1*̄y

x̄ ← 2q1*̄x

Snippet 5.1: On the left, the Symbolics expressions generated for reverse propagation of

intervals; on the right reverse-mode automatic differentiation.

The author of this project is a mathematician with little knowledge about compilers,

but is able to create this sophisticated software thanks to Symbolics’ easy to understand

interface. If one were to use Julia’s intermediate representation (IR) object, then there is an
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additional complexity of maintaining slots etc.

The reverse propagation expressions are generated by doing a function call to a single

function rev. For example, a, b ← (c-b) ∩ a, (c-a) ∩ b comes from (c, a, b) = rev(+,

c, a, b). But by symbolically tracing this, the function call can be removed. Similarly,

the reverse differentiation snippet traces through the rrule function of ChainRules.jl [52] to

obtain these expressions. This is an inlining pass and the complexity of implementing this

on IR is a lot more, in fact, it takes hacks to select the right method to inline. In contrast,

here we can just allow functions to be called with symbols. The IR is a moving target to

work with, since it can change between Julia versions, but Symbolic interface remains the

same.
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Chapter 6

Conclusion

6.1 Advancing beyond the expressiveness of Julia

The Julia thesis by Jeff Bezanson titled “Abstraction in technical computing” analyzes the

field of scientific computing and provides the rationale for the design of the Julia language

[50].

Multiple-dispatch–i.e., directing control flow based on types of all arguments in a function

call, which we review in Section 3.2–provides the means for code-selection as well as code-

specialization necessary to implement a language that can provide both the productivity of

a dynamic language and the performance comparable to a statically compiled language.

Two methods are more powerful than multiple-dispatch in deciding what a given piece

of code in a language should do:

• Predicate-based dispatch: where values are tested with boolean predicates to see

if a method should admit them.

• Pattern-based rewrites: where a pattern matcher looks an expression to see if it

can rewrite it into something more specific.

However both are too powerful in another sense: they make compilation undecidable.

The Julia thesis remarks the following in considering of pattern-based rewriting as a means
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of dispatch:

There has always been a divide between “numeric” and “symbolic” languages in

the world of technical computing. To many people the distinction is fundamental,

and we should happily live with both kinds of languages. But if one insists on

an answer as to which approach is the right one, then the answer is: symbolic.

Programs are ultimately symbolic artifacts. Computation is limited only by our

ability to describe it, and symbolic tools are needed to generate, manipulate, and

query these descriptions.

With the system we presented in this thesis, users can essentially use predicates on

runtime values, as well as pattern-based rewriting, when they wish to utilize its power to

compile a highly-specialized piece of code to do performance-intensive tasks. User-created

trasnformations may not only be optimizations, but can be transformations that are not pos-

sible purely through multipe-dispatch, allowing programs to become the basis for generating

different programs rather than simply procedures that do what’s asked of them.
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