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ABSTRACT

In this thesis I aim to show several developments related to notions of randomness and
structure in combinatorics and probability. One central notion, the pseudorandomness-
structure dichotomy, has played a key role in additive combinatorics and extremal graph
theory. More generally, however, such notions come into play in the study of combinatorial
probability and the use of random processes in extremal combinatorics. In a broader view,
randomness (and the pseudorandomness notions which resemble it along various axes) can be
viewed as a type of structure in and of itself which has certain typical and global properties
that may be exploited to exhibit or constrain combinatorial and probabilistic behavior.

These broader ideas often come in concert to allow the construction or extraction of exact
behavior. I have chosen three directions along which to study this theme: the singularity
of discrete random matrices, thresholds for Steiner triple systems, and improved bounds for
Szemerédi’s theorem. Each concerns breakthroughs in central questions of the fundamental
areas of random matrices, combinatorial designs, and additive combinatorics.
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Chapter 1

Introduction

1.1 Outline

The pseudorandomness-structure dichotomy has played a key role in the modern develop-
ment of additive combinatorics and extremal graph theory, highlighted by authors such as
Tao [100]. More broadly, as discussed in the abstract, we may view randomness and pseu-
dorandomness as a certain form of structure itself; we develop this narrative further by
demonstrating how random structures can aid the understanding of exact structures, and
vice versa. I have chosen three representative works to highlight this narrative. An out-
line and summary of the key insights of each work in context of this theme constitutes the
remainder of this first introductory chapter.

The second chapter is focused on work [41] on “Singularity of discrete random matrices”,
joint with Vishesh Jain and Mehtaab Sawhney, which in most cases provides an exact char-
acterization of the probabilistic event that certain random matrices are singular. This work
has appeared in Geometric and Functional Analysis.

The third chapter involves work [87] on the “Threshold for Steiner triple systems”, joint
with Mehtaab Sawhney and Michael Simkin, which proves the tight exponent for the prob-
abilistic threshold for Steiner triple systems, a form of combinatorial design, to exist with
high probability while using only a random set of allowed triples. This work has appeared
in Geometric and Functional Analysis.

The fourth and final chapter contains recent work [68] on “Improved bounds for Sze-
merédi’s theorem”, joint with James Leng and Mehtaab Sawhney, which gives the first
improvement to bounds for Szemerédi’s theorem on sizes of sets avoiding arithmetic pro-
gressions of length k ≥ 5 since the breakthrough work of Gowers [25, 26] at the turn of the
century. This new work in turn relies on recent improved quasipolynomial bounds by the
same authors [69] for the inverse theorem for the Gowers U s+1[N ]-norm, which I have chosen
to treat as a black box in this thesis.
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1.2 Singularity of discrete random matrices

1.2.1 Summary

The study of nonasymptotic random matrix theory has been central in establishing limiting
results and behavior of the spectrum of random matrices, such as the circular law. A more
detailed history of the combinatorial study of this area, focused on the singularity question,
is given in Section 2.1, and we focus on the broad strokes here.

Question 1.2.1. Let ξ be a distribution with finite support on R. What is the probability
that an n×n matrix M with independent entries distributed as ξ is singular, i.e., detM = 0?

The natural conjecture is that the “easiest” way to enforce singularity explains the entire
behavior, namely, the event that detM = 0 occurs with probability (1 + o(1))q, where q is
the probability that M has a left- or right-kernel vector of the form ei or ei ± ej where ei, ej
are elementary basis vectors. One can conjecture an even stronger asymptotic expansion
graded by the size of the support and height of potential kernel vectors. In the case where
ξ = Ber(1/2) is uniform on {0, 1}, this implies a prediction of (1/2+o(1))n for the singularity
probability, which was established only recently by Tikhomirov [103].

The content of this work is to extend this to all discrete distributions ξ, and furthermore
to prove the stronger (1+ o(1))q version for all ξ which are not uniform on its support (e.g.,
Ber(p) for p ̸= 1/2). In fact, our result is stronger: for certain ξ we can pick up the second-
order term in the conjectural asymptotic expansion (in particular, this applies to ξ = Ber(p)
for p ∈ (0, 1/2)).

1.2.2 Overview of proof techniques

In the most naive approach, one wishes to look at each v ∈ Sn−1 and consider the probability
that Mv = 0, and then add up over all vectors. For a fixed v, the probability of Mv = 0 is
the same as P[v ·x = 0]n, where x is a vector of n independent copies of ξ. When v has large
support, this probability is superexponentially small and if v has constant size support, one
can explicitly analyze the potential outcomes. However, the number of v ∈ Sn−1 is infinite
(and the number of potential v, after ruling out those which cannot be the kernel of such a
matrix, is still quite large). So, these observations do not suffice on their own.

For future reference, we remark that each ei can be a kernel vector precisely when ξ is
supported at 0, and contributes P[ξ = 0]n ≤ ∥ξ∥n∞ each, where ∥ξ∥∞ = maxa∈supp(ξ) P[ξ =
a]. Each ei − ej can always be a kernel vector and contributes ∥ξ∥2n2 each, where ∥ξ∥22 =∑

a∈supp(ξ) P[ξ = a]2. Each ei + ej can be a kernel vector if ξ has two elements summing to
0 in its support. It always contributes at most ∥ξ∥2n2 , with equality when ξ is a symmetric
distribution. Additionally, there are events corresponding to left-kernel vectors instead of
the traditional right-kernel.

At a high level, the proof must handle two types of events: M has a “somewhat short”
kernel vector (i.e., the approximate support has size at most cn for small c) on either side,
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called a compressible vector, or the kernel of M on both sides has only incompressible vectors.
In the case of compressible vectors, one uses an ε-net and rounding argument to achieve

the dream of a union bound over the continuous sphere Sn−1; combined with a sharp analysis
along the lines of the “naive approach” we can obtain the correct exponential prediction for
the compressible sphere. For a sharper estimate, this works for every vector v not in the
neighborhood of the special vectors ei and ei ± ej which may be contributing to the tight
probability. For these special vectors, we may use that we are in a close neighborhood to
meaningfully improve the analysis. (We remark that technically this sharp analysis requires
some level of understanding of incompressible vectors on a submatrix.)

In the more difficult case of incompressible vectors, we adapt methods of Tikhomirov
[103] to work for more general distributions. To be more specific, consider the following
simplified strategy. We focus on the usual right-kernel (the fact that we have no compressible
left-kernel vectors is simply used for an intermediate distance-to-hyperplane reduction and
related steps). We bucket incompressible vectors v ∈ Sn−1 based on their threshold, which
is the largest dyadic scale T such that the distribution of v · x at resolution 1/T no longer
resembles N (µ, σ2) where µ, σ2 are the mean and standard deviation of v ·x. Specifically, we
care that v · x never concentrates in an interval of length 1/T by a much larger factor than
what N (µ, σ2) can do, encoded via the Lévy concentration function. For vectors of threshold
T , roughly by rounding them to an n-dimensional lattice (T

√
n)−1Zn and attempting to

run the same argument as above, it turns out that a union bound approach can still work
given a key inversion of randomness estimate (Theorem 2.2.15) which essentially bounds the
number of vectors in this lattice that actually have approximately the required threshold T
and shows these occur at a superexponential level of sparsity.

The higher thresholds T we can handle, the smaller the error term in our estimate
of P[detM = 0] will be (it is roughly 1/T up to subexponential terms). Unfortunately,
this generalization of Tikhomirov’s inversion of randomness only goes up to thresholds
T ≈ (∥ξ∥−1

∞ − o(1))n, and this is best-possible for thresholds against rows x that have n
independent entries. So, with this we can only handle a restricted class of distributions
(roughly, those where P[ξ = 0] = ∥ξ∥∞); furthermore, we do not obtain the sharp version of
the result for these distributions.

In order to go further, we need to be more discerning and utilize the fact that it is
very rare for x to be very “atypical” for more than a few rows x of M . For example, with
superexponentially good probability, all but O(1) rows x of M are such that the multiset
of elements of x are roughly in proportion to the distribution of ξ. Thus, in reality we use
a multi-slice generalization of inversion of randomness (Theorem 2.2.1) which along with
proper conditioning arguments allows us to push the argument through. This works since
the best-possible threshold for such a statement is T ≈ exp((H(ξ) − o(1))n) where H(ξ) is
the entropy of ξ. For ξ which are non-uniform, exp(−H(ξ)) < ∥ξ∥22 < ∥ξ∥∞ and this allows
us to obtain an error term which is less than the contribution from the main term coming
from the compressible vector cases (and in some cases, the second term of the asymptotic
expansion). Here, a slice distribution is something like taking a uniform distribution on
{0, 1}n and conditioning to have sum in the range (p±γ)n, instead of using the independent
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vector Ber(p)⊗n. A multi-slice distribution is similar but with potentially larger support
than {0, 1}. This requires rerandomization arguments implemented delicately to avoid loss
in the relevant estimates. (Earlier methods of Litvak and Tikhomirov [71] in some sense
perform a cruder switching argument on top of inversion of randomness to handle Ber(p) for
p of small constant order.)

The proof of the key inversion of randomness result is quite technical, but there are
three key steps at a high level. First, we replace the notion of Lévy concentration with
a log-Lipschitz smoothed version. Second, we prove an initial base estimate which counts
the possible choices for most of the coordinates of vectors of threshold T allowing a weaker
threshold. Third, we process the rest of the vector in small roughly linear-sized traunches,
using the chunks to iteratively smooth the notion of threshold to obtain the correct condition
on the threshold.

Thus, for the singularity problem we derive strong structure in a random distribution
by isolating the key contributing factors (the compressible event), and demonstrating uni-
form global control in the “generic” portion of the distribution (the incompressible event).
The latter step is accomplished by reformulating a question about vectors satisfying certain
threshold structure using inversion of randomness.

1.3 Threshold for Steiner triple systems

1.3.1 Summary

The study of designs is one of the oldest areas of combinatorics. Indeed, one of the first
theorems in combinatorics is that a Steiner triple system of order n exists precisely when n ≡
1, 3 (mod 6), due to Kirkman [58]. That is, for such n there is a collection of size 3 subsets of
[n] = {1, . . . , n} such that every pair is included in exactly one triple. The construction given
by Kirkman is explicit, but much attention has been given to understanding less-structured
combinatorial designs since much of the history of constructing designs has utilized algebraic
or explicit methods. For instance, Steiner triple systems are closely related to Latin squares:
we can view a Steiner triple system as a decomposition of the edges of the complete graph Kn

into triangles, and a Latin square as a decomposition of the edges of the complete tripartite
graph Kn,n,n into triangles. In fact, until a recent breakthrough result of Keevash [54] (and
a second proof by Glock, Kühn, Lo, and Osthus [24]), Steiner systems with more general
parameters were not known to exist in most cases. We defer more detail to Section 3.1.

One question of particular interest concerns how random such objects can be, in various
senses. One natural notion of randomness has to do with the probabilistic threshold for
existence: if we sample each size 3 subset of [n] with probability p, will there exist a Steiner
triple system only using these subsets with high probability? This is closely related to
problems on matchings and hypergraph matchings such as Shamir’s problem, for which the
answer is that this holds for p roughly larger than (log n)/n.

Determining the threshold for existence of Steiner triple systems, and relatedly Latin
squares, is a folklore question that was in particular asked by Johansson and highlighted in
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Keevash’s 2018 ICM talk. Similar considerations to matchings suggest that the probabilistic
threshold must be at least (log n)/n, which was conjectured to be correct.

The content of this work is to show that for an appropriate choice of p = n−1+o(1), with
high probability a Steiner triple system does exist among p-sampled size 3 subsets of [n] (and
similar for Latin squares), determining the correct asymptotic constant. We remark that in
later work, the upper bound was improved to (log n)2/n [52] and then to the optimal order
of magnitude (log n)/n [39, 55].

1.3.2 Overview of proof techniques

The requirement to construct fairly random-looking Steiner systems means that it is not
enough to follow the classical explicit constructions. Additionally, the approach of Keevash
[54] for constructing designs utilizes sampling from algebraically structured templates which
simply do not exist at the optimal level of sparsity p = n−1+o(1). Thus, we start with the
iterative absorption approach introduced by Glock, Kühn, Lo, and Osthus [24].

To construct a Steiner triple system, without concern for the p-sampling, we perform the
following procedure. First, we fix a vortex [n] = V0 ⊇ · · · ⊇ Vℓ of sets, each decreasing by
roughly a large constant factor each step until the final set Vℓ of very small size (say less
than

√
log n). Then we plant an absorber A in the edges of KV0 \ KV1 with the property

that for any possible remainder graph X on Vℓ (specifically, a triangle-divisible graph with
even degrees and number of edges a multiple of 3), the union A ∪ X can be decomposed
into triangles. This can be done by disjointly embedding single-graph absorbers BX with
the property that BX ∪ X and BX both have triangle-decompositions, which are not hard
to explicitly construct.

Then, our goal is to iteratively cover down by using all edges in KV0 \ (KV1 ∪ A), then
all edges in KV1 \KV2 , and so on until we reach a subset of KVℓ

which will be our X. Each
step of the cover down is similar, and merely requires that the remaining graph Gi satisfies
some pseudorandomness properties with respect to the current set Vi and the next set Vi+1

(and technically, the future sets as well). It is executed in four steps.
First, we set aside a random reserve graph Ri which is bipartite between Vi\Vi+1 and Vi+1

and ensure that the random outcome satisfies various pseudorandomness conditions. Second,
we use a random triangle removal process on Gi \ Ri (with a slight bias to account for the
fact that we are avoiding Vi+1 and the reserve graph) to remove all but a small fraction of
edges, smaller than the reserve graph. Furthermore, the outcome of this random process is
pseudorandom according to various heuristics, so that e.g. the degree of the remainder at
each vertex is small and roughly what it should be. Third, we use a random greedy process
to cover every remaining edge in Vi \ Vi+1 via an extension to a vertex in Vi+1 within the
reserve graph (and again, ensure the outcome is appropriately pseudorandom).

Fourth and finally, every vertex in Vi \Vi+1 has a neighborhood within Vi+1 and we must
cover the resulting edges. For each vertex, covering those edges with triangles corresponds
to finding a matching in the neighborhood within the induced graph Gi[Vi+1]. This can
be done since we were sure to include the reserve graph Ri which provides enough options
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and pseudorandomness for each vertex. In fact, we use a greedy random process to take
matchings for each vertex in some order, and use the pseudorandomness properties to show
that this is likely to be successful in producing matchings which use disjoint edges across the
different vertices (so that the resulting triples never reuse a pair).

Again, studying typical outcomes of this sequence of random processes allows us to
conclude that a suitable version of this strategy will succeed with high probability and
ensure that the next stage has appropriate pseudorandomness conditions on the resulting
Gi+1 to continue this process downwards.

Now, we turn to a discussion of introducing the concept of threshold. If we p-sample and
try to find a Steiner system among limited choices, then optimizing all possible constructions
and various other parts of the proof still leaves us stuck at roughly p = n−1/2+o(1) due to the
requirement of having absorbers such as BX above. (Furthermore, to even get to this, due
to other issues with the construction one needs some of the ideas detailed below anyway.)

Instead, we utilize a recent breakthrough relating thresholds to spread distributions, or
equivalently the fractional expectation-threshold, due to Frankston, Kahn, Narayanan, and
Park [19]. (One can also use the more recent resolution of the Kahn–Kalai conjecture due
to Park and Pham [77], but this is not needed.) A q-spread distribution µ on a family
H ⊆ 2X is a distribution such that PA∼µ[S ⊆ A] ≤ q|S| for all S ⊆ X. Such a distribution
is “dominated” by q-sampling in an appropriate sense. On the other hand, the threshold of
a nontrivial family is the value p such that a p-sample of X contains an element of H with
probability 1/2. The result of [19] is that the threshold is O(q log ℓ) if both |S| ≤ ℓ for all
S ∈ H and there is a q-spread distribution supported on H.

Thus, instead of exhibiting a Steiner system in a random sample (threshold), we may in-
stead focus on producing a spread distribution of many Steiner systems. In fact, the iterative
absorption procedure described above already has many elements amenable to spread, such
as the fact that most choices (except for the absorber) are made using random processes
that satisfy various pseudorandomness estimates. Careful analysis can make this notion
more precise. As it turns out, the key issue becomes finding out how big we can afford to let
Vℓ be: the spread that we can afford is morally closer to n−1+o(1) the closer |Vℓ| is to n1−o(1).

Unfortunately, the strategy described above requires roughly |Vℓ| = O(
√
log n). A more

efficient naive absorption strategy can achieve |Vℓ| = O(nc) for some absolute c > 0, but this
is nowhere near good enough.

The second key insight is that instead of using an absorber A, the final remainder graph
X is itself a near-complete triangle-divisible graph. Thus, the iterative absorption argument
for existence of Steiner triple systems (which is somewhat robust) can be applied to X as a
black box to finish the construction. Of course, as stated this is merely a sleight of hand: if
we unwrap the black box then there will be another vortex inside X until some point where
there is an even smaller “final set” and there is still an absorber.

However, if we have some bound on the threshold for Steiner triple systems (or some
appropriate generalization), then we know that we can find a decomposition of X that only
uses a sample of the triangles. This is a bit more constraining than before, but again if we
unwrap this argument then we can never improve the spread of our constructions by using
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a black box construction for X.
Therefore, we introduce the concept of spread boosters. Essentially, we do plant something

that serves as A with respect to X, but it is generated by randomly sampling triangles and
including their edges (so that it is “inherently spread” to a near optimal degree). The purpose
of A is not to complete the triangle-decomposition per se, but rather to replace triangles
within X with triangles that are more “spread”. This, converted to a boosting procedure,
allows us to iteratively improve the spread of the construction to n−1+o(1).

Thus, for thresholds for Steiner triple systems we can create exact structures such as
combinatorial designs using random processes (and some absorption to “fix” the structure).
The success of such a procedure in turn relies on various global heuristics and pseudorandom-
ness properties of the outcomes of these processes. Finally, converting this to a procedure to
construct spread probability measures and performing spread boosting enables us to bound
the probabilistic threshold which is measured with respect to ordinary Bernoulli measures.

1.4 Improved bounds for Szemerédi’s theorem

1.4.1 Summary

Szemerédi’s theorem states that in a subset of the integers with positive upper density, there
exist arbitrarily long arithmetic progressions. This answers a classical question of Erdős
and Turán. We defer more detail to Section 4.1, but this is a foundational question and
quantitative bounds for this question remain central to the field of additive combinatorics.
Study of this and related questions involving the inverse theorem for the Gowers U s+1[N ]-
norm led to, among other things, the proof of the celebrated Green–Tao theorem on primes
in arithmetic progressions.

To be more precise regarding quantitative bounds, we let rk(N) be the size of the largest
subset of [N ] = {1, . . . , N} with no nontrivial k-term arithmetic progression. Prior to
this work, the best known bounds were r3(N) ≪ N exp(−c(logN)1/9) due to recent work
of Bloom and Sisask [9] improving on a breakthrough of Kelley and Meka [57], r4(N) ≪
N(logN)−c due to Green and Tao [28,32], and rk(N) < N(log logN)−2−2k+9

due to seminal
work of Gowers [25,26].

We establish the bound

rk(N) ≪ N exp(−(log logN)ck)

for all k ≥ 5, providing an improvement to the bounds for Szemerédi for general progressions
for the first time since the work of Gowers. The key input to this is a new quasipolynomial
bound on the inverse theorem for the Gowers U s+1-norm [69] in companion work. In applica-
tion, one takes s = k−2 (for instance, the proof of Roth’s theorem on three-term arithmetic
progressions can be seen as utilizing the proof of the U2-inverse theorem, which follows from
basic Fourier analysis).
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1.4.2 Overview of proof techniques

Define

Λk(f1, . . . , fk) = Ex,y∈{0,...,N}

k∏
j=1

fj(x+ (j − 1)y)

for functions fj : [N ] → C, where we extend functions by 0 to Z. We will generally be
interested in 1-bounded functions such as indicators of sets or shifts of indicators.

The proof of Roth’s theorem for three-term arithmetic progressions follows a density
increment strategy. Given A ⊆ [N ] of size αN , or density α, we write

Λ3(1A,1A,1A) = Λ3(α1[N ], α1[N ], α1[N ]) + · · · ,

where there are 7 terms in the remainder each of the form Λ3(f1, f2, f3) where one of the fj
is of the form 1A − α1[N ] and the rest are 1-bounded.

The first term is roughly α3 in size up to a constant factor, so it is easy to see that we have
a three-term arithmetic progression unless one of the remainder terms is large in magnitude.
By an application of the Gowers–Cauchy–Schwarz inequality (e.g. Lemma 4.3.3) we see that
the Gowers U2-norm of 1A − α1[N ] is large. Or, we can merely use Fourier inversion here.

Then, by the inverse theorem for the Gowers U2-norm, this function must correlate with
a Fourier phase n 7→ exp(2πiθn). Finally, by a rational approximation argument using
Dirichlet’s theorem, we may find a long subprogression P ⊆ [N ] on which A has a density
increment, namely something like |A ∩ P |/|P | ≥ α + cα2. Then we are done, since we can
iterate this until the density hits 1 and we are guaranteed to find a progression by that point.

The original proof of Roth gives r3(N) ≪ N/ log logN , but this was improved by Sze-
merédi [98] and Heath-Brown [35] by a strategy which extracts a set of multiple Fourier
phases instead of just one, giving a multiplicative density increment. A robust version of
this which can be extended to higher progressions was given in the work of Green and Tao
[28] on progressions of length four.

We use this approach, and replace Fourier analysis (or the U2-inverse theorem) with the
Uk−1-inverse theorem. In order to obtain the desired bounds, we require that the correlation
with a single degree k − 2 nilsequence (which replaces Fourier phases) is quasipolynomial,
and require appropriate complexity bounds on said nilsequence.

A higher degree nilsequence is essentially derived from polynomial phases such as the
function exp(2πiθn2), except we also allow bracket polynomials such as exp(2πiαn⌊βn⌋)
or exp(2πiαn⌊βn⌋⌊γn⌊δn⌋⌋), and combinations of such. As it turns out, the proof of the
inverse theorems is only amenable when we represent such functions via polynomial sequences
valued on nilpotent Lie groups of appropriate step, leading to the theory of nilsequences. For
simplicity we do not elaborate further on this point and refer the interested reader to [33,69].

Beyond this broad approach, in order to be able to efficiently pass to subprogressions we
must prove a robust rational approximation result for multiple nilsequences, which involves
proving a Schmidt-type decomposition result. This is accomplished via an iterative Schmidt
refinement. At a high level, we first use a more classical rational approximation argument

16



to decompose [N ] into subprogressions within which multiple pure floor functions such as
⌊βn⌋ and ⌊δn⌋ and ⌊θn2⌋ behave purely as polynomials without rounding (perhaps with
very different coefficients). Then, on each subprogression we plug in these functions into the
nested bracket polynomials, simplify, and apply a similar argument to the current innermost
polynomials. Upon iteration, this provides a decomposition into subprogressions on which
our nilsequences are almost constant, in a way that yields good enough bounds for our
argument.
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Chapter 2

Singularity of discrete random matrices

2.1 Introduction

Let Mn(ξ) be an n × n random matrix, each of whose entries is an independent copy of a
random variable ξ. We will restrict attention to when ξ is a real-valued random variable
whose support is finite and contains at least two points (which we call discrete). What is the
probability that Mn(ξ) is singular? This question, which has been studied since the 1960s,
has attracted considerable attention over the years. A well-known folklore conjecture is that
the dominant contribution to the probability of singularity is from the events that a row or
column is zero, or that two rows or two columns are equal (possibly up to a sign). In order
to facilitate discussion, let us introduce some notation. For a vector v ∈ Rn, we define the
event

Ev := {Mn(ξ)v = 0}.
We will also denote the canonical basis vectors of Rn by e1, . . . , en. Then, the aforementioned
conjecture may be stated as follows.

Conjecture 2.1.1. Let ξ be a discrete random variable, and let Mn(ξ) be an n× n random
matrix whose entries are independent copies of ξ. Then

P[Mn(ξ) is singular] = (1 + o(1))

(
2nP[Ee1 ] + n(n− 1)P[Ee1−e2 ] + n(n− 1)P[Ee1+e2 ]

)
.

In this paper, as our first main result, we confirm a stronger version of Conjecture 2.1.1
for all discrete distributions which are not uniform on their support. Let sn(Mn) denote the
least singular value of an n × n matrix Mn; recall that sn(Mn) = infx∈Sn−1∥Mnx∥2, where
Sn−1 denotes the unit sphere in Rn and ∥·∥2 denotes the standard Euclidean norm on Rn.

Theorem 2.1.2. Let ξ be a discrete random variable which is not uniform on its support.
There exist cξ, Cξ > 0 so that for all sufficiently large n, and for all t ≥ 0,

P[sn(Mn(ξ)) ≤ t/
√
n] ≤ Cξt+2nP[Ee1 ]+(1+O(exp(−cξn)))

(
n(n−1)P[Ee1+e2 ]+n(n−1)P[Ee1−e2 ]

)
.
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By applying Theorem 2.1.2 with t = 0 for the upper bound, and considering the prob-
ability that a row or column is zero, or that two rows or two columns are the same (up to
a sign) for the lower bound (cf. the corresponding calculation in [71, Section 3.2]), we thus
establish the following strengthening of Conjecture 2.1.1 for discrete distributions which are
not uniform on their support.

Theorem 2.1.3. Let ξ be a discrete random variable which is not uniform on its support.
There exists cξ > 0 such that

P[Mn(ξ) is singular] = 2nP[Ee1 ]+(1+O(exp(−cξn)))
(
n(n−1)P[Ee1+e2 ]+n(n−1)P[Ee1−e2 ]

)
.

Let us record the consequence of this theorem for the special case of ξ = Ber(p), which
has attracted considerable attention.

Theorem 2.1.4. Fix p ∈ (0, 1/2). There exists cp > 0 such that

P[Mn(Ber(p)) is singular] = 2n(1− p)n + (1 +O(exp(−cpn)))n(n− 1)(p2 + (1− p)2)n.

Remark 2.1.5. As discussed in Section 2.1.1, the above theorem resolves a conjecture of
Litvak and Tikhomirov [71, Problem 8.2], thereby completing the program of determining
the (dominant) mechanism leading to the singularity of sparse Bernoulli matrices. In fact,
the above theorem provides the first two terms in the asymptotic expansion of the singularity
probability of Mn(Ber(p)); a result of this precision was not available before in any context.

Theorem 2.1.6. Fix p ∈ (1/2, 1). There exists cp > 0 such that

P[Mn(Ber(p)) is singular] = (1 +O(exp(−cpn)))n(n− 1)(p2 + (1− p)2)n.

Remark 2.1.7. The above theorem provides the leading term in the asymptotic expansion of
the singularity probability of Mn(Ber(p)). Prior to this work, even the correct value of

lim
n→∞

n−1 logP[Mn(Ber(p)) is singular)]

had not been determined; compared to the true value of (p2+(1− p)2) for this quantity, the
previous best-known result of Bourgain, Vu, and Wood [13] provides a weaker upper bound
of √p. The reason that the case p ∈ (1/2, 1) is more challenging than p ∈ (0, 1/2) (treated
in [6,36,71], see the discussion below) is that in the former case, the dominant contribution
to the probability of singularity comes from the event of two rows or columns being equal
to each other, whereas in the latter case, the dominant contribution comes from the much
simpler event of a single row or column being zero.

For general discrete distributions, we determine the value of limn→∞ n−1 logP[Mn(ξ) is singular].
The only case not covered by Theorem 2.1.2 is that of uniform distributions, which we handle
with a non-exact main term.

Theorem 2.1.8. Let ξ be a discrete random variable. There exists Cξ > 0 such that for any
fixed ϵ > 0 and for all sufficiently large n and all t ≥ 0,

P[sn(Mn) ≤ t/
√
n] ≤ Cξt+ 2nP[Ee1 ] + (1 + ϵ)nP[Ee1−e2 ].

Remark 2.1.9. For non-uniform discrete distributions, Theorem 2.1.2 is strictly stronger.
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2.1.1 Previous work

Let us put Theorems 2.1.2 and 2.1.8 in the context of known results. For convenience, we
will use qn(ξ) to denote P[Mn(ξ) is singular]. The work of Komlós [60] was the first to show
that qn(Ber(1/2)) = o(1). Much later, an exponential bound on qn(Ber(1/2)) was obtained
by Kahn, Komlós, and Szemerédi [50]. Subsequently, the base of the exponent was improved
to 0.939 and 3/4+o(1) in a series of works by Tao and Vu [101,102], and later to 1/

√
2+o(1)

by Bourgain, Vu, and Wood [13]. Finally, a truly breakthrough result of Tikhomirov [103]
in 2018 established that qn(Ber(p)) = (1 − p + o(1))n for fixed p ∈ (0, 1/2]. As mentioned
earlier, for fixed p ∈ (1/2, 1), the analogous result was not known prior to this work.

Conjecture 2.1.1 has been most accessible for sparse Bernoulli distributions, in which case,
the right hand side simplifies considerably to (1 + o(1)) · 2nP[Ee1 ]. Here, by the Bernoulli
distribution with parameter p, which we will henceforth denote by Ber(p), we mean the
two point distribution which attains the value 1 with probability p and the value 0 with
probability 1 − p. Basak and Rudelson [6] confirmed the conjecture for ξ = Ber(pn) for pn
in a certain range of sparsity limited to n−1 lnn− n−1g(n) ≤ pn ≤ n−1 lnn + o(n−1 ln lnn),
where g(n) is some function which grows slowly with n. Subsequently, Litvak and Tikhomirov
showed that the conjecture also holds for ξ = Ber(pn) for Cn−1 lnn ≤ pn ≤ c, where c > 0
is a small absolute constant and C > 0 is a large absolute constant. Recent work of Huang
[36] was able to bridge the gap between the regimes covered in [6] and [71], leaving open the
regime p ∈ (c, 1/2). Establishing Conjecture 2.1.1 (as opposed to the stronger Theorem 2.1.4)
in this case does not require the full strength of the ideas in this paper; in particular the
treatment of the ‘compressible’ part of the unit sphere is substantially simpler. Since this
is a case of particular interest (see [71, Problem 8.2]), we have isolated the proof (given
Theorem 2.2.1) of Conjecture 2.1.1 for sparse Bernoulli random variables in Section 2.3,
which also serves as a ‘warm-up’ to subsequent sections.

For general discrete distributions ξ, the only previous systematic study in the literature
is the work of Bourgain, Vu, and Wood [13]. They show [13, Corollary 1.2] that if ξ is a
discrete distribution with supr∈R P[ξ = r] =: p, then qn(ξ) ≤ (

√
p+ o(1))n, which is far from

optimal (the true bound is never more than (p+ o(1))n, although it may be much smaller).
On the other hand, up to a possible o(1) term, Theorem 2.1.8 in this work always obtains
the correct base of the exponent.

For certain specific distributions, Bourgain, Vu, and Wood obtain the correct base of
the exponent (again, up to a o(1) term). Specifically, they show [13, Corollaries 3.1, 3.2]
that if ξ1,µ is a random variable taking on the value 0 with probability 1 − µ and ±1 with
probability µ/2 each, and if ξ2,µ is a random variable taking on the value 0 with probability
1 − µ and ±1,±2 with probability µ/4 each, then qn(ξ1,µ) = (1 − µ + o(1))n for all µ ∈
(0, 1/2) and qn(ξ2,µ) = (1 − µ + o(1))n for all µ ∈ (0, 16/25). For these random variables,
Theorem 2.1.8 determines the correct base of the singularity probability for all fixed µ ∈
(0, 1), and Theorem 2.1.2 determines the leading order in the asymptotic expansion for
µ ∈ (0, 1), µ ̸= 2/3 in the first case, and µ ∈ (0, 1), µ ̸= 4/5 in the second case. In fact, for
µ ∈ (0, 2/3) in the first case, and µ ∈ (0, 4/5) in the second case, Theorem 2.1.2 determines
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the first two terms in the asymptotic expansion.
We remark that the results of [13] such as [13, Corollary 1.2] are also applicable to discrete

random variables valued in the complex numbers, and settings where the entries of Mn(ξ) are
not identically distributed, and a small number of rows of Mn(ξ) are possibly deterministic;
we have not pursued these extensions.

Finally, we remark that there was a recent paper of Irmatov [37] which claimed to resolve
Conjecture 2.1.1 for Rademacher random matrices. Experts have informed us that there are
some unresolved issues in that work that its author is aware of, including [37, Theorem 3].
Furthermore, upon slight modification, the proof in [37] would appear to give impossibly
good error terms.

2.1.2 Additional results

The next result addresses the main question left open by our work, namely, the resolution
of Conjecture 2.1.1 for discrete distributions ξ which are uniform on their support. In this
direction, we provide a sharp analysis of the contribution of a certain low-entropy part of the
unit sphere; in fact, it is this contribution which forms the leading term of the conjectured
asymptotic expansion of the singularity probability. This theorem is also central to the
proofs of Theorems 2.1.2 and 2.1.8.

Theorem 2.1.10. Fix a discrete distribution ξ. There exist δ, ρ, η > 0 depending on ξ such
that for all sufficiently large n and t ≤ 1,

P
[

inf
x∈Cons(δ,ρ)

∥Mn(ξ)x∥2 ≤ t

]
≤ nP[Ee1 ] +

(
n

2

)
(P[Ee1−e2 ] + P[Ee1+e2 ]) + (t+ P[Ee1−e2 ])e

−ηn.

The set Cons(δ, ρ) appearing above is the set of unit vectors which have at least (1− δ)n
coordinates within distance ρ/

√
n of each other (see Definition 2.3.2), although a trivial

modification shows this result holds for any sufficiently low-entropy subset of the unit sphere.
Our techniques also lend themselves naturally to studying a certain model of random

matrices with combinatorially dependent entries. Let Qn denote a random matrix with
independent rows, each of which is chosen uniformly from among those vectors in {0, 1}n
which have sum exactly ⌊n/2⌋. In [76], Nguyen showed that P[Qn is singular] = OC(n

−C) for
any C > 0, and conjectured [76, Conjecture 1.4] that P[Qn is singular] = (1/2+o(1))n. After
intermediate work [18, 38], an exponential upper bound on the singularity probability was
only very recently obtained in work of Tran [104]. Our next result settles [76, Conjecture 1.4].

Theorem 2.1.11. For every ϵ > 0, there exists Cϵ depending on ϵ such that for all sufficiently
large n, and for all t ≥ 0,

P[sn(Qn) ≤ t/
√
n] ≤ Cϵt+ (1/2 + ϵ)n.
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2.1.3 Overview of the techniques

As in many works in this area, we use the high-level strategy (going back to Kašin [53] and
subsequently used in [70, 85, 86, 90]) of dividing the unit sphere into ‘structured’ and ‘un-
structured’ components, and estimating the contribution of each part separately. However,
compared to previous works, the treatment of both components require overcoming signifi-
cant obstacles which unavoidably arise in the sharp analysis of the invertibility of random
matrices in any amount of generality.

For instance, in the analysis of structured vectors, we need to additionally capture the
event that two rows/columns of the matrix are equal (up to a sign) whereas previous con-
siderations of sharp invertibility only addressed scenarios where the dominant contribution
to the probability of singularity is due to a single row or column being zero. As discussed
in the remark after Theorem 2.1.3, this is a fundamental issue. Moreover, in the analysis
of unstructured vectors, we need precise metric entropy estimates for the anti-concentration
problem with respect to random vectors on general multi-slices. Obtaining partial estimates
of this nature (which are not sufficient to prove Conjecture 2.1.1) even for the special case of
the Boolean slice is already a highly non-trivial endeavor which is at the heart of the recent
work of Litvak and Tikhomirov [71], where it is accomplished using the substantially more
involved notion of the ‘UDLCD’.

Structured vectors: The structured vectors in our work are ‘almost-constant vectors’
i.e. those vectors on Sn−1 which have (1 − δ)n coordinates within distance ρ/

√
n of each

other, where δ, ρ > 0 are sufficiently small constants. This class of structured vectors arises
naturally in the consideration of the anti-concentration property of a sequence of numbers
with respect to a random vector constrained to lie in a ‘slice’. Moreover, since vectors which
are close to the standard basis vectors ei or to ei±ej clearly play a special role in the problem
under consideration, it is natural to separately handle ‘elementary’ and ‘non-elementary’
structured vectors.

Our treatment of structured vectors, culminating in Theorem 2.1.10, requires significant
innovations compared to previous works on the sharp invertibility of sparse random Bernoulli
matrices [6,36,71] – in the sparse Bernoulli case, the corresponding class of elementary vectors
only needs to consist of those vectors which are close to some ei, and the largest atom of the
the random variable Ber(p) is conveniently at 0.

In the present work, in order to handle non-elementary vectors, we need to develop novel
sharp anticoncentration estimates Propositions 2.6.2 and 2.6.3. (In contrast, the essentially
standard estimate Lemma 2.3.7 is sufficient for the case of sparse Bernoulli random variables
at the corresponding step). Even more involved is the analysis of elementary vectors, for
which we develop a new technique. Let us begin by discussing this technique for ξ = Ber(p)
for fixed p ∈ (0, 1/2), in which case, the elementary vectors are those which are close to
some standard basis vector. For concreteness, consider vectors which are sufficiently close
to e1. We show that, if any such vector has exponentially small image, then either the first
column of the matrix is the zero vector, or it must belong to a universal subset of nonzero
vectors of {0, 1}n of measure at most (1 − p + ϵ)n. The first case corresponds to the term
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P[Ee1 ] in Conjecture 2.1.1; for the second case, we leverage the seminal work of Rudelson
and Vershynin to show that, on our event, the probability that any vector in this universal
subset appears as the first column of the matrix is at most exp(−4ϵn), at which point we
can conclude using the union bound.

Of course, for general discrete random variables ξ, one must enlarge the class of elemen-
tary vectors to include unit vectors which are close to (ei±ej)/

√
2 and unit vectors which are

close to ei. In the first case (Propositions 2.6.5 and 2.6.7), we use a rotation trick to reduce
to a situation where we can use an analysis similar to (but more complicated than) the one
outlined in the previous paragraph. The second case requires a very careful treatment since
we are aiming for a leading term of the form (P[ξ = 0])n (as opposed to (supr∈R P[ξ = r])n),
and moreover, the desired error is (P[ξ = ξ′]− η)n which may be very small. To accomplish
this, we first prove a version of Theorem 2.1.8 with an estimate on the singularity probabil-
ity of the form (supr∈R P[ξ = r] + o(1))n (Proposition 2.5.4 and Theorem 2.5.5), and then
leverage these preliminary estimates to obtain the desired bound.

We emphasize that our treatment of structured vectors, as captured by Theorem 2.1.10, is
not sensitive to the non-uniformity of the distribution ξ. In particular, given Theorems 2.1.2
and 2.1.10, the only missing case in the complete resolution of Conjecture 2.1.1 (in fact, in
a stronger form) is a sharp analysis of unstructured vectors in the case when ξ is uniform on
its support.

Unstructured vectors: The unstructured vectors are the complement of the structured
vectors i.e. those which do not have a (1− δ)-fraction of their coordinates within ρ/

√
n of

each other. Our treatment of these vectors relies on the non-uniformity of ξ by exploiting
the gap between P[ξ = ξ′] and the entropy of ξ; the idea to exploit such a gap to prove
sharp invertibility results (in the case of Bernoulli random variables) is due to Litvak and
Tikhomirov [71].

The main ingredient in our work for handling such vectors is Theorem 2.2.1, which is an
extension of [103, Theorem B] to a (real) multislice, i.e., the set of vectors in {a1, . . . , ak}n
which have a prescribed number of coordinates taking on each of the values a1, . . . , ak. Such
a result was previously not known even for the Boolean slice; indeed, the work [71] uses a
rather involved notion of arithmetic structure to study anti-concentration on Boolean slices,
which is not powerful enough to handle slices that are not very far from the central slice. We
remark that in general, even establishing much less precise versions of [103, Theorem B] on
the Boolean slice has been very challenging, despite much work due to the natural connection
to certain combinatorial models of random matrices (cf. [43] and the references therein).

Compared to [103, Theorem B], we need to overcome two challenges. The first, as
mentioned above, is the lack of independence between the coordinates of a vector uniformly
distributed on the multi-slice. The second challenge is that a1, . . . , ak are now arbitrary
real numbers (corresponding to the support of ξ), and hence, certain arguments tailored for
integers no longer apply. Overcoming these challenges requires additional ideas, which we
discuss in Section 2.2.
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2.1.4 Notation

For a positive integer N , SN−1 denotes the set of unit vectors in RN , and if x ∈ RN and
r ≥ 0 then BN

2 (x, r) denotes the radius r Euclidean ball in RN centered at x. ∥·∥2 denotes
the standard Euclidean norm of a vector, and for a matrix A = (aij), ∥A∥ is its spectral
norm (i.e., ℓ2 → ℓ2 operator norm).

We will let [N ] denote the interval {1, . . . , N}. For nonnegative integers m ≤ n, we let
{0, 1}nm be the set of vectors in {0, 1}n with sum m.

Since it is essential throughout the paper, we formally record the definition of a discrete
random variable and the corresponding random matrix.

Definition 2.1.12. We say that a random variable ξ is a discrete random variable (equiv-
alently, has a discrete distribution) if it is real-valued, its support is finite, and the support
contains at least two distinct points. Mn(ξ) denotes the n × n random matrix, with inde-
pendent entries that are copies of ξ.

For ξ a discrete random variable with k = | supp(ξ)| (so that k ≥ 2), we will denote
its support by a⃗ = (a1, . . . , ak), and the (nonzero) probabilities of attaining a1, . . . , ak by
p⃗ = (p1, . . . , pk). Note that ∥p⃗∥1 = 1, and ∥p⃗∥22 ≤ ∥p⃗∥∞ with equality if and only if ξ
is uniform on its support. We will use H(ξ) to denote the natural-logarithmic entropy of
ξ, i.e., H(ξ) = H(p⃗) =

∑k
i=1 −pi log(pi). We will (somewhat abusively) use p0 to denote

P[ξ = 0].
For a random variable ξ and a real number r ≥ 0, we let L(ξ, r) := supz∈R P[|ξ − z| ≤ r].

We will use ℓ1(Z) to denote the set of functions f : Z → R for which
∑

z∈Z |f(z)| <∞.
We will also make use of asymptotic notation. For functions f, g, f = Oα(g) (or f ≲α g)

means that f ≤ Cαg, where Cα is some constant depending on α; f = Ωα(g) (or f ≳α g)
means that f ≥ cαg, where cα > 0 is some constant depending on α, and f = Θα(g) means
that both f = Oα(g) and f = Ωα(g) hold. For parameters ϵ, δ, we write ϵ≪ δ to mean that
ϵ ≤ c(δ) for a sufficient function c.

Finally, we will omit floors and ceilings where they make no essential difference.

2.1.5 Organization

The remainder of this paper is organized as follows. In Section 2.2, we prove our key inversion
of randomness estimate for conditional thresholds on the multislice (Theorem 2.2.1). In
Section 2.3, we combine this with a much simpler analysis of the structured vectors (compared
to the proof of Theorem 2.1.10) in order to complete the proof of Conjecture 2.1.1 for the
special case of ξ = Ber(p) for a fixed p ∈ (0, 1/2). This section also serves as a ‘warm-up’
to the subsequent sections. In Section 2.4, we use the results of Section 2.2 to prove the
necessary invertibility estimate for unstructured vectors (Theorem 2.4.1). In Section 2.5,
we prove a weaker version of Theorem 2.1.8; this is used in our significantly more involved
treatment of structured vectors in general case (i.e., the proof of Theorem 2.1.10), which is
the content of Section 2.6. In Section 2.7, we quickly combine Theorems 2.1.10 and 2.4.1
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to prove Theorems 2.1.2 and 2.1.8. Finally, in Section 2.8, we prove Theorem 2.1.11 for the
combinatorial model of random matrices discussed earlier.
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2.2 Inversion of randomness on the multislice

In this section, we prove our key inversion of randomness result, Theorem 2.2.1. We will
focus on the non-independent “multislice” version as its deduction is strictly harder than the
independent version, Theorem 2.2.15 (which we will only use to establish the preliminary
estimate Theorem 2.5.5).

The proof of Theorem 2.2.1 follows a direction introduced by Tikhomirov [103]. In this
approach, the relevant Lévy concentration function of a random vector is replaced with
certain random averages of functions. One then shows that the random vectors with large
values of the Lévy concentration function are super-exponentially rare, by first demonstrating
a weaker notion of anticoncentration after revealing (1−ϵ)n coordinates of the random vector,
and then iterating a smoothing procedure on linear-sized pieces of the vector which allows
one to bootstrap the strength of anticoncentration considered.

Our major challenges lie in (i) the non-independence of the coordinates of a vector on
the multislice, as the arguments in [103] rely strongly on the independence structure of the
considered model, and (ii) the freedom to allow the support of ξ to consist of arbitrary real
numbers, as certain arguments in [103] rely on the integrality of the support. For a more
gentle introduction to the techniques in this section, we refer the reader to the expository
paper [40, Theorem 3.1] where we record the proof for the Boolean slice, a setting which
encounters the first challenge but not the second. We note that the presentation here is
entirely self-contained and familiarity with [40] is not assumed.

2.2.1 Statement and preliminaries

Let N, n ≥ 1 be integers and let 0 < δ < 1/4, K3 > K2 > K1 > 1 be real parameters. We
say that A ⊆ Zn is (N, n,K1, K2, K3, δ)-admissible if

• A = A1 × · · · × An, where each Ai is a subset of Z,

• |A1| · · · |An| ≤ (K3N)n,
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• maxi max{|a| : a ∈ Ai} ≤ nN ,

• Ai is an integer interval of size at least 2N + 1 for i > 2δn, and either (P1) and (P2)
hold, or (Q1) and (Q2) hold:

(P1) A2i is an integer interval of size at least 2N + 1 contained in [−K1N,K1N ] for i ≤ δn,

(P2) A2i−1 is symmetric about 0, is a union of two integer intervals of total size at least 2N ,
and satisfies A2i−1 ∩ [−K2N,K2N ] = ∅ for i ≤ δn.

(Q1) A2i is an integer interval of size at least 2N + 1 contained in [K1N,K2N ] for i ≤ δn,

(Q2) A2i−1 is an integer interval of size at least 2N + 1 contained in [−K2N,−K1N ] for
i ≤ δn.

Recall at this point that ξ, which has (nonzero) probabilities p⃗ = (p1, . . . , pk) on atoms
a⃗ = (a1, . . . , ak), is fixed. Let A = A1 × · · · × An be an (N, n,K1, K2, K3, δ)-admissible set,
and let (X1, . . . , Xn) be the random vector uniformly distributed on A. For any f : R → R,
any 0 ≤ ℓ ≤ n, and any s⃗ ∈ Zk

≥0 with ∥s⃗∥1 = ℓ, define the random function (depending on
the randomness of X1, . . . , Xn):

fA,s⃗,ℓ(t) := Eb

[
f

(
t+

ℓ∑
i=1

biXi

)∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
,

where Eb denotes the expectation over a random vector b = (b1, . . . , bℓ) ∈ Rℓ with coordinates
independently distributed as ξ. The conditioning encodes that for all j ∈ [k], there are
exactly sj coordinates (out of ℓ) where b hits the atom aj.

Theorem 2.2.1. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ϵ ≪
min(p⃗), and a given parameter M ≥ 1, there are L2.2.1 = L2.2.1(ξ, ϵ, δ,K1, K2, K3) > 0, and
γ2.2.1 = γ2.2.1(ξ, ϵ, δ,K1, K2, K3) ∈ (0, ϵ) independent of M and n2.2.1 = n2.2.1(ξ, ϵ, δ,K1, K2, K3,M) ≥
1 and η2.2.1 = η2.2.1(ξ, ϵ, δ,K1, K2, K3,M) such that the following holds.

Let n ≥ n2.2.1, 1 ≤ N ≤ exp((H(p⃗)− ϵ)n), f ∈ L1(R) be a nonnegative function such that
∥f∥1 = 1 and log2 f is η2.2.1-Lipschitz, and A be (N, n,K1, K2, K3, δ)-admissible. Suppose
also that ∥γ⃗∥∞ ≤ γ2.2.1. Then, for any m⃗ ∈ Zk

≥0 such that ∥m⃗∥1 = n and ∥m⃗−p⃗n∥∞ ≤ γ2.2.1n,

P[∥fA,m⃗,n∥∞ ≥ L2.2.1(N
√
n)−1] ≤ exp(−Mn).

Given this we can deduce the following corollary which is crucial in our application.

Definition 2.2.2. Fix a discrete distribution ξ. Let γ⃗ be a nonnegative vector with ∥γ⃗∥∞ ∈
(0,min(p⃗)) and let r ≥ 0. For a vector (x1, . . . , xn) ∈ Rn, we define

Lξ,γ⃗

( n∑
i=1

bixi, r

)
:= sup

z∈R
P
[∣∣∣∣ n∑

i=1

bixi − z

∣∣∣∣ ≤ r

∣∣∣∣#{bi = aj} ∈ [pjn− γjn, pjn+ γjn] ∀j ∈ [k]

]
,

26



where b1, . . . , bn are independent ξ random variables. We also define

Lξ

( n∑
i=1

bixi, r

)
= sup

z∈R
P
[∣∣∣∣ n∑

i=1

bixi − z

∣∣∣∣ ≤ r

]
.

Corollary 2.2.3. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ϵ ≪
min(p⃗), and a given parameter M ≥ 1, there are L2.2.3 = L2.2.3(ξ, ϵ, δ,K1, K2, K3) > 0 and
γ2.2.3 = γ2.2.3(ξ, ϵ, δ,K1, K2, K3) ∈ (0, ϵ) independent of M and n2.2.3 = n2.2.3(ξ, ϵ, δ,K1, K2, K3,M) ≥
1 such that the following holds.

Let n ≥ n2.2.3, 1 ≤ N ≤ exp((H(p⃗) − ϵ)n) and A be (N, n,K1, K2, K3, δ)-admissible.
Suppose also that ∥γ⃗∥∞ ≤ γ2.2.3. Then∣∣∣∣{x ∈ A : Lξ,γ⃗

( n∑
i=1

bixi,
√
n

)
≥ L2.2.3N

−1

}∣∣∣∣ ≤ e−Mn|A|.

Proof sketch. This is essentially the same as the deduction in [103, Corollary 4.3]. We apply
Theorem 2.2.1 to f(t) := 2−|t|/

√
n/ι, where t ∈ R and ι is an appropriate normalization,

separately for all m⃗ ∈ Zk
≥0 such that ∥m⃗− p⃗n∥∞ ≤ γ2.2.1n, and then conclude using a union

bound.

The proof of Theorem 2.2.1 makes use of an anticoncentration estimate on the multislice,
which we record below (Lemmas 2.2.5 and 2.2.6), and is ultimately a consequence of the
following standard anticoncentration inequality due to Kolmogorov–Lévy–Rogozin.

Lemma 2.2.4 ([83]). Let ξ1, . . . , ξn be independent random variables. Then, for any real
numbers r1, . . . , rn > 0 and any real r ≥ maxi∈[n] ri, we have

L
( n∑

i=1

ξi, r

)
≤ C2.2.4r√∑n

i=1(1− L(ξi, ri))r2i
,

where C2.2.4 > 0 is an absolute constant.

Lemma 2.2.5. Fix (a1, . . . , ak) ∈ Rk with distinct coordinates. Let σ, λ ∈ (0, 1/3) and
r > 0. Let Z = {z1, . . . , zn} be a set of real numbers for which there exist disjoint subsets
Z1, Z2 ⊆ Z such that |Z1|, |Z2| ≥ σn and such that |zi − zj| ≥ r for all zi ∈ Z1, zj ∈ Z2.
Then, there exists C2.2.5 = C2.2.5(λ, σ, k) such that for any s⃗ ∈ Zk

≥0 with ∥s⃗∥1 = n and with
sℓ ∈ [λn, (1− λ)n] for some ℓ ∈ [k], we have

L
( n∑

i=1

zibi, r ·min
i<j

|ai − aj|
)

≤ C2.2.5√
n
,

where (b1, . . . , bn) is a random vector uniformly chosen from among those with sj coordinates
equal to aj for all j ∈ [k].
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Proof. By reindexing the coordinates of Z, we may assume that for i ∈ [σn], z2i−1 ∈ Z1

and z2i ∈ Z2. In particular, for i ∈ [σn], we have |z2i − z2i−1| ≥ r. Furthermore, by the
pigeonhole principle, there exists some ℓ′ ̸= ℓ such that sℓ′ ≥ λn/k. We will now use the
randomness within the atoms aℓ and aℓ′ in order to derive the anticoncentration result. Note
that

∑n
i=1 bizi has the same distribution as∑

i>2σn

zibi +
∑
j≤σn

(
z2j−1b2j−1 + z2jb2j + b′j(b2j − b2j−1)(z2j−1 − z2j)

)
,

where b′1, . . . , b′σn are i.i.d. Ber(1/2) random variables. Next, note that by a standard large
deviation estimate, we have

P[|{j ∈ [σn] : {b2j−1, b2j} = {aℓ, aℓ′}| ≤ c(σ, λ, k)n] ≤ exp(−c(σ, λ, k)n), (2.2.1)

where c(σ, λ, k) > 0 is a constant depending only on σ, λ, and k. On the other hand, on the
complement of this event, we may conclude by applying Lemma 2.2.4 to (2.2.1), using only
the randomness in b′1, . . . , b′σn.

Lemma 2.2.6. Fix a discrete distribution ξ, λ ∈ (0, 1/3), δ0 ∈ (0, 1/4). Let A be (N, n,K1, K2, K3, δ)-
admissible for some integer parameters N, n and real parameters δ ∈ [δ0, 1/4), K3 > K2 >
K1 > 1. Suppose that n > n2.2.6(λ, δ0, K1, K2, K3), ℓ ≥ δ0n, and s⃗ ∈ Zk

≥0 with ∥s∥1 = ℓ and
sj0 ∈ [λℓ, (1− λ)ℓ] for some j0 ∈ [k]. Then, for any interval J ,∫

t∈J
fA,s⃗,ℓ(t)dt ≤

C2.2.6(λ, ξ, δ0, K1, K2)max(|J |, N)

N
√
n

.

Proof. The proof is nearly identical to that in [103, Lemma 4.4] though we provide details
as we are in the slightly different setting of L1(R). Fix X1, . . . , Xℓ. Then∫

t∈J
fA,s⃗,ℓ(t)dt =

∫
t∈J

Eb

[
f

(
t+

ℓ∑
i=1

biXi

)∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
dt

= Eb

[ ∫
t∈J

f

(
t+

ℓ∑
i=1

biXi

)
dt

∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
= Eb

[ ∫
t∈R

f(t)1J+
∑ℓ

i=1 biXi
(t)dt

∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
=

∫
t∈R

f(t)Eb

[
1J+

∑ℓ
i=1 biXi

(t)

∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
dt

=

∫
t∈R

f(t)Pb

[ ℓ∑
i=1

biXi ∈ J − t

∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
dt

≤ L
( ℓ∑

i=1

biXi, |J |
)∫

t∈R
|f(t)|dt ≤ L

( ℓ∑
i=1

biXi, |J |
)
,
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where (b1, . . . , bℓ) is uniformly chosen from vectors which have sj coordinates equal to aj for
all j ∈ [k], and we have used that ∥f∥1 = 1. The required estimate now follows immediately
from Lemma 2.2.5 applied with r = (K2 −K1)N , which is possible due to the admissibility
of A.

2.2.2 Preprocessing on real-valued multislices

As in [103], we first prove a version of Theorem 2.2.1 in which L is allowed to depend on M .

Proposition 2.2.7. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1,
ϵ ≪ min(p⃗), and a given parameter M ≥ 1, there is γ2.2.7 = γ2.2.7(ξ, ϵ, δ,K1, K2, K3) ∈
(0, ϵ) independent of M and there are L2.2.7 = L2.2.7(ξ, ϵ, δ,K1, K2, K3,M) > 0 and n2.2.7 =
n2.2.7(ξ, ϵ, δ,K1, K2, K3,M) ≥ 1 such that the following holds.

Let n ≥ n2.2.7, 1 ≤ N ≤ exp((H(p⃗)− ϵ)n), and A be (N, n,K1, K2, K3, δ)-admissible. Let
f be a nonnegative function in L1(R) with ∥f∥1 = 1 such that log2 f is 1-Lipschitz. Then,
for all ℓ ∈ [(1− γ2.2.7)n, n] and s⃗ ∈ Zk

≥0 with ∥s⃗∥1 = ℓ and ∥s⃗− p⃗ℓ∥∞ ≤ γ2.2.7ℓ, we have

P
[
∥fA,s⃗,ℓ∥∞ ≥ L2.2.7(N

√
n)−1

]
≤ exp(−Mn).

Proposition 2.2.7 should be seen as an analogue of [103, Proposition 4.5] for the mul-
tislice. As mentioned earlier, compared to [103], our situation is much more delicate since
we are working with a vector with non-independent coordinates and need to extract a term
corresponding to the entropy of the multislice. (Such complications are already encountered
when working with a Boolean slice.) Working on real multislices presents additional difficul-
ties (along with significant notational complications), owing to the fact that we are working
on L1(R); this extension is handled by using the log-Lipschitz condition on f . We note that
the corresponding statements in [103] do not need to use any log-Lipschitz assumption at
this stage of the argument since they are proved for ℓ1(Z). We also note that, while the
constant 1 in 1-log-Lipschitz is arbitrary, some condition of this nature is necessary to rule
out f being very close to a Dirac mass ([103]).

We first note the trivial recursive relation

fA,s⃗,ℓ(t) =
k∑

i=1

si
ℓ
fA,s⃗−ei,ℓ−1(t+ aiXℓ)

for all 1 ≤ ℓ ≤ n and s⃗ ∈ Zk
≥0 with ∥s⃗∥1 = ℓ. If any coordinate of s⃗ is zero, note that the

corresponding term (which would be undefined) has a coefficient of 0, and drops out. Note
also that, by definition, fA,⃗0,0 = f .

Definition 2.2.8 (Step record and averaging sequence). Fix f,A, s⃗, ℓ, a point t ∈ R, and a
choice of X = (X1, . . . , Xn). For such a choice, we define the averaging sequence (ti)

ℓ
i=0 and

step record (wi)
ℓ
i=1 as follows:
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• tℓ := t,

• Since

hℓ := fA,s⃗,ℓ(tℓ) =
k∑

j=1

sj
ℓ
fA,s⃗−ej ,ℓ−1(tℓ + ajXℓ),

at least one of the k terms fA,s⃗−ej ,ℓ−1(tℓ+ajXℓ) has a positive coefficient and is at least
hℓ. If it is index j, set wℓ = j.

• Set tℓ−1 := tℓ + awℓ
Xℓ, hℓ−1 := fA,s⃗−ewℓ

,ℓ−1(tℓ−1), and repeat with tℓ−1, s⃗− ewℓ
, ℓ− 1.

It will be convenient to write

• Wi(j) := #{u ∈ [i] : wu = j} and W i(j) := Wi(j)/i for all i ∈ [ℓ] and j ∈ [k]. We will
view Wi = (Wi(1), . . . ,Wi(k)) as a vector in Zk.

We note some straightforward consequences of these definitions.

• Wℓ = s⃗.

• Wi−1 = Wi − ewi
for 1 ≤ i ≤ ℓ, where we assume W0 = 0⃗.

• ∥Wi∥1 = i.

• ti−1 = ti + awi
Xi for all i ∈ [ℓ].

• fA,Wi,i(ti) =
∑k

j=1Wi(j)fA,Wi−ej ,i−1(ti + ajXi).

• hi = fA,Wi,i(ti).

• f(t0) = h0 ≥ h1 ≥ · · · ≥ hℓ = fA,s⃗,ℓ(t).

Definition 2.2.9 (Drops and robust steps). With notation as above, given i ∈ [ℓ]:

• For λ ∈ (0, 1), we say that step i is λ-robust if

W i(wi) ∈ (λ, 1− λ)

• For R > 0, we say that there is an R-drop at step i if

fA,Wi−ej ,i−1(ti−1 + zXi) ≤
R

N
√
n

for all j ∈ [k] such that Wi(j) > 0 and for all z ∈ supp(ξ − ξ′) \ {0}.

Next we show that if ∥fA,s⃗,ℓ∥∞ is large in an appropriate sense, then there is a step
record and averaging sequence with linearly many robust steps which do not participate in
an R-drop.
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Lemma 2.2.10. Let ξ,A, f, N, ϵ be as in Proposition 2.2.7, and let L ≥ 1. Then, there
exist λ2.2.10 = λ2.2.10(ξ, ϵ) ∈ (0, 1/3), γ2.2.10 = γ2.2.10(ξ, ϵ) ∈ (0, 1), and n2.2.10 = n2.2.10(ξ, ϵ)
for which the following holds.

Let n ≥ n2.2.10, R = γ2.2.10L, let ℓ ∈ [(1 − γ2.2.10)n, n] and s⃗ ∈ Zk
≥0 satisfy ∥s⃗∥1 = ℓ and

∥s⃗− p⃗ℓ∥∞ ≤ γ2.2.10ℓ. Then, for (X1, . . . , Xn) ∈ A,

∥fA,s⃗,ℓ∥∞ ≥ L(N
√
n)−1

implies that there exists some t ∈ R with fA,s⃗,ℓ(t) ≥ L(N
√
n)−1 so that its averaging sequence

(ti)
ℓ
i=0 and step record (wi)

ℓ
i=1 satisfy

#{i ∈ [ℓ] : step i is λ2.2.10-robust and is not an R-drop} ≥ γ2.2.10n.

Proof. Consider (X1, . . . , Xn) ∈ A satisfying ∥fA,s⃗,ℓ∥∞ ≥ L(N
√
n)−1. Then, there is some

t ∈ R such that fA,s⃗,ℓ(t) ≥ L(N
√
n)−1. We will show that the conclusion of the lemma is

satisfied for this t, for suitable choice of γ2.2.10, λ2.2.10. Below, we will make extensive use
of the notation and relations in Definitions 2.2.8 and 2.2.9. Let (ti)

ℓ
i=0 and (wi)

ℓ
i=1 denote,

respectively, the averaging sequence and step record of t. Note that

L(N
√
n)−1 ≤ fA,s⃗,ℓ(t) = h0

ℓ∏
i=1

hi
hi−1

≤ hℓ−1 ≤ · · · ≤ h0.

We begin by controlling the ratios hi/hi−1 at steps i which are R-drops. Hence, suppose
that step i is an R-drop. If wi = u, then Wi = Wi−1 + eu and ti = ti−1 − auXi. Hence

hi
hi−1

=
k∑

j=1

W i(j)
fA,Wi−ej ,i−1(ti + ajXi)

fA,Wi−1,i−1(ti−1)

= W i(u) +
∑
j ̸=u

W i(j)
fA,Wi−ej ,i−1(ti−1 + (aj − au)Xi)

hi−1

≤ W i(u) +
∑
j ̸=u

W i(j)
R(N

√
n)−1

L(N
√
n)−1

= W i(u) + (1−W i(u))γ2.2.10.

The inequality uses the definition of R-drops (this is applicable since aj −au ∈ supp(ξ− ξ′)\
{0}) along with hi ≥ L(N

√
n)−1. Note that if the condition Wi(j) > 0 in the definition of

R-drops is not satisfied, then the jth term already drops out in the first line. Thus, we see
that if step i is an R-drop, then

hi
hi−1

≤ W i(wi) + (1−W i(wi))γ2.2.10. (2.2.2)
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Note that if step i is λ2.2.10-robust, the right-hand side is at least λ2.2.10. Therefore, for
any step i which is λ2.2.10-robust, we have

λ2.2.10 ≤ W i(wi) + (1−W i(wi))γ2.2.10 ≤ W i(wi)

(
1 +

γ2.2.10
λ2.2.10

)
, (2.2.3)

where the final inequality uses (1−W i(wi))/W i(wi) ≤ 1/λ2.2.10 at any λ2.2.10-robust step i.
Now, let I ⊆ [ℓ] denote the steps i which are λ2.2.10-robust, and let J ⊆ I denote the

steps i which are not R-drops (so that I \ J is the set of λ2.2.10-robust R-drops). Our goal is
to provide a lower bound on |J |.

Since h0 ≤ ∥f∥∞ ≤ ∥f∥1 = 1 (this uses the 1-Lipschitz condition on log2 f), we have

L(N
√
n)−1 ≤

∏
i∈I\J

hi
hi−1

≤
∏
i∈I\J

(W i(wi) + (1−W i(wi))γ2.2.10)

=

∏
i∈I(W i(wi) + (1−W i(wi))γ2.2.10)∏
i∈J(W i(wi) + (1−W i(wi))γ2.2.10)

≤
(1 + γ2.2.10/λ2.2.10)

|I| ∏
i∈I W i(wi)

λ
|J |
2.2.10

= (1 + γ2.2.10/λ2.2.10)
|I|λ

−|J |
2.2.10

∏
i∈[ℓ]

W i(wi)
∏

i∈[ℓ]\I

W i(wi)
−1

= (1 + γ2.2.10/λ2.2.10)
|I| · λ−|J |

2.2.10 ·
(
ℓ

s⃗

)−1

·
∏

i∈[ℓ]\I

W i(wi)
−1; (2.2.4)

here, the first line uses hi/hi−1 ≤ 1 and (2.2.2), the third line uses (2.2.3), and the last line
uses the identity ∏

i∈[ℓ]

W i(wi) =

(
ℓ

s⃗

)−1

:=

(
ℓ

s1, . . . , sk

)−1

.

This follows since both sides are equal to the probability that a uniformly random sample
from [k]ℓ, conditioned on having sj copies of j for each j ∈ [k], returns (w1, . . . , wℓ).

Note that the first and the third terms in the final product in (2.2.4) are easy to suitably
control (by taking γ2.2.10 and λ2.2.10 to be sufficiently small). As we will see next, these
parameters also allow us to make the last term at most exp(cϵn) for any constant c > 0.

Let K ⊆ [ℓ] \ I denote those indices i such that W i(wi) ≥ 1− λ2.2.10. Then,∏
i∈K

W i(wi)
−1 ≤ (1− λ2.2.10)

−|K|. (2.2.5)

It remains to bound ∏
i∈[ℓ]\(I∪K)

W i(wi)
−1.

32



Note that for every i ∈ [ℓ] \ (I ∪K), we have W i(wi) ≤ λ2.2.10. Let Jj for j ∈ [k] be the set
of i ∈ [ℓ] \ (I ∪K) with wi = j.

The following is the key point: let i1, . . . , iuj
∈ Jj be all elements of Jj in order. Then,

for all y ∈ [uj], we have

y ≤ Wiy(j) ≤ λ2.2.10ℓ.

Hence,

uj ≤ λ2.2.10ℓ and W iy(wiy)
−1 ≤ iy/y ≤ ℓ/y.

We derive

∏
i∈[ℓ]\(I∪K)

W i(wi)
−1 =

k∏
j=1

∏
i∈Jj

W i(wi)
−1 ≤

( ⌈λ2.2.10ℓ⌉∏
u=1

ℓ

u

)k

≤
(

e

λ2.2.10

)2kλ2.2.10ℓ

. (2.2.6)

Substituting (2.2.5) and (2.2.6) in (2.2.4), we have

Ln−1/2 exp((ϵ−H(p⃗))n) ≤ λ
−|J |
2.2.10 ·

(
1 +

γ2.2.10
λ2.2.10

)ℓ

·
(
ℓ

s⃗

)−1

· (1− λ2.2.10)
−ℓ ·

(
e

λ2.2.10

)2kλ2.2.10ℓ

.

(2.2.7)

We will first choose λ2.2.10, and then choose some γ2.2.10 < λ22.2.10. Note that, by enforcing
the constraint γ2.2.10 < λ22.2.10, we can choose λ2.2.10 sufficiently small depending on ϵ and ξ
so that the second term, the fourth term, and the fifth term in the product in (2.2.7) are
each bounded above by exp(ϵn/10) and so that (using Stirling’s approximation) the third
term is bounded above by exp(ϵn/10 −H(p⃗)n). Hence, we can choose λ2.2.10 depending on
ϵ and ξ such that

n−1/2 exp(ϵn/2) ≤ λ
−|J |
2.2.10.

Now, for all n sufficiently large depending on ϵ, we can find γ2.2.10 sufficiently small depending
on ϵ, λ2.2.10 such that |J | ≥ γ2.2.10n. This completes the proof.

We are now ready to prove Proposition 2.2.7.

Proof of Proposition 2.2.7. We use Lemma 2.2.10 along with a union bound. For controlling
individual events in the union, we will use the following. Consider a step record (wi)

ℓ
i=1.

We write Ai = Ai,0 ∪ Ai,1, where each of these is an integer interval of size at least N (this
is possible by the admissibility of A). Now suppose step i is λ2.2.10-robust with respect to
(wi)

ℓ
i=1. If i > δ0n, then for any t ∈ R, j ∈ [k] and z ∈ supp(ξ − ξ′) \ {0}, by Lemma 2.2.6,

we have

E[fA,Wi−ej ,i−1(t+ zXi)|X1, . . . , Xi−1] =
1

|Ai|
∑

τ∈t+zAi

fA,Wi−ej ,i−1(τ)
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≤ max
y∈{0,1}

1

|Ai,y|
∑

τ∈t+zAi,y

fA,Wi−ej ,i−1(τ)

≤ max
y∈{0,1}

2|z|

|Ai,y|

∣∣∣∣ ∫ t+zmaxAi,y

t+zminAi,y

fA,Wi−ej ,i−1(τ)dτ

∣∣∣∣
≤ 2|z|+1C2.2.6(λ2.2.10/2, ξ, δ0, K1, K2)max(|z||Ai,y|, N)

|Ai,y|N
√
n

≤ 4|z|+1C2.2.6(λ2.2.10/2, ξ, δ0, K1, K2)

N
√
n

.

Here, we have used that i− 1 ≥ δ0n, that Wi − ej has at least one coordinate in [λ2.2.10(i−
1)/2, (1 − λ2.2.10/2)(i − 1)] (since Wi satisfies a similar property with coordinate wi), and
that each Ai,y is length at least N . We also used that log2 f is 1-Lipschitz in the second
inequality (where the absolute values are put just in case z < 0 and the limits of integration
are in the wrong direction).

Now, consider t ∈ R with averaging sequence (ti)
ℓ
i=0 and step record (wi)

ℓ
i=1. Note that,

given the ‘starting point’ t0 of the averaging sequence, the points t1, . . . , ti−1 are determined
by X1, . . . , Xi−1. In particular, the event that step i is not an R-drop is determined by
t0, X1, . . . , Xi, w1, . . . , wi. Therefore, by Markov’s inequality, we see that for any λ2.2.10-
robust step i with i > δ0n, given the step record (wi)

ℓ
i=1 and the starting point t0 of the

averaging sequence (ti)
ℓ
i=0,

P[step i is not an R-drop|X1, . . . , Xi−1] ≤
k342∥a⃗∥∞+1C2.2.6(λ2.2.10/2, ξ, δ0, K1, K2)

R
. (2.2.8)

This follows from a union bound over the at most k3 possible conditions for an R-drop and
the fact that all z ∈ supp(ξ − ξ′) \ {0} have magnitude at most 2∥a⃗∥∞.

From here on, the proof closely follows the proof of [103, Proposition 4.5]. Fix pa-
rameters as given in the proposition statement. Let λ2.2.10 = λ2.2.10(ξ, ϵ). We choose
γ2.2.7 = γ2.2.10(ξ, ϵ). Further, we set R′ = γ2.2.10L/2, where L ≥ 1 will be chosen later.

Let EL denote the event that ∥fA,s⃗,ℓ∥∞ ≥ L(N
√
n)−1. For (X1, . . . , Xn) ∈ EL, by

Lemma 2.2.10, there exists t ∈ R with fA,s⃗,ℓ(t) ≥ L(N
√
n)−1 with averaging sequence (ti)

ℓ
i=0

and step record (wi)
ℓ
i=1 such that

#{i ∈ [ℓ] : step i is λ2.2.10-robust and is not a 2R′-drop in (ti)
ℓ
i=0} ≥ γ2.2.10n.

We then shift t0 to the nearest integer t̃0. We also shift (ti)ℓi=1 by the same amount to obtain
points (t̃i)

ℓ
i=1 (note that these points are not necessarily integers). We call the sequence

(t̃i)
ℓ
i=0, which technically may no longer be an averaging sequence, a witnessing sequence.

We see that every index which is not a 2R′-drop in (ti)
ℓ
i=0 will not be an R′-drop in (t̃i)

ℓ
i=0

as log2 f is 1-Lipschitz.
Taking a union bound over the choice of the step record is not costly, and note that given

(X1, . . . , Xn) and the step record, the witnessing sequence is completely determined by its
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starting point t̃0. Furthermore, the definition of the witnessing sequence and the definition
of fA,s⃗,ℓ easily show that

t̃0 ∈ {τ ∈ Z : f(τ) > (2N
√
n)−1} =: D.

Note that D is a deterministic set depending only on f . Further, since ∥f∥1 = 1 and log2 f
is 1-Lipschitz, we see that

|D| ≤ 4N
√
n.

To summarize, we have shown that if (X1, . . . , Xn) ∈ EL, then there exists a witnessing
sequence (t̃i)

ℓ
i=0 with step record (wi)

ℓ
i=1 such that t̃0 ∈ D, and such that

#{i ∈ [ℓ] : step i is λ2.2.10-robust and is not an R′-drop in (t̃i)
ℓ
i=0} ≥ γ2.2.10n.

Therefore, by the union bound and since N ≤ kn (as H(p⃗) ≤ log k), it follows that

P[EL] ≤ (2k2)n sup
I⊆[ℓ],|I|=⌈γ2.2.10n⌉
t̃0∈D,(wi)

ℓ
i=1∈[k]ℓ

P[The witnessing sequence starts at t̃0, has step record (wi)
ℓ
i=1, and

every i ∈ I is λ2.2.10-robust and is not an R′-drop],

where the supremum is only over those (wi)
ℓ
i=1 which have sj coordinates equal to j for all

j ∈ [k].
From (2.2.8), taking δ0 = γ2.2.10/2, it follows that the probability appearing on the right

hand side above is bounded by(
2k342∥a⃗∥∞+1C2.2.6(λ2.2.10/2, ξ, γ2.2.10/2, K1, K2)

γ2.2.10L

)γ2.2.10n/2

,

since there are at least γ2.2.10n/2 values of i ∈ I with i > δ0n and since R′ = γ2.2.10L/2 by
definition. Therefore, taking L and n sufficiently large depending on M and the parameters
appearing above gives the desired conclusion.

2.2.3 Refining the initial estimate

We now need to remove the dependence of L on M . This is accomplished by the main result
of this subsection, Proposition 2.2.11, which is a multislice and L1(R) analogue of [103,
Proposition 4.10]. Even though we are working in the much more complicated setting of real
multislices, remarkably, our proof of Proposition 2.2.11 is able to use [103, Proposition 4.10]
as a black box: roughly, we first use a re-randomization procedure to reduce smoothing on
the multislice for L1(R) to smoothing on the hypercube, also for L1(R). At this juncture,
the necessary smoothing estimate on the hypercube for L1(R) can in fact be lifted from the
smoothing estimate for the hypercube for ℓ1(Z), proved in [103]. In particular, we reduce
the smoothing estimate for general log-Lipschitz functions in L1(R) to that of a simpler class
of “step” functions, which in turn is equivalent to ℓ1(Z).
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Proposition 2.2.11. Fix a discrete distribution ξ. There exists h = h(ξ) ≥ 1 so that the
following holds. For any ϵ ∈ (0, 1), R̃ ≥ 1, L0 ≥ hR̃, and M ≥ 1, there is γ2.2.11 = γ2.2.11(ξ)

and there are n2.2.11 = n2.2.11(ξ, ϵ, L0, R̃,M) > 0 and η2.2.11 = η2.2.11(ξ, ϵ, L0, R̃,M) ∈ (0, 1)

with the following property. Let L0 ≥ L ≥ hR̃, let n ≥ n2.2.11, N ∈ N, and let g ∈ L1(R) be
a nonnegative function satisfying

(A) ∥g∥1 = 1,

(B) log2 g is η2.2.11-Lipschitz,

(C)
∫
t∈I g(t) ≤ R̃/

√
n for any interval I of size N , and

(D) ∥g∥∞ ≤ L/(N
√
n).

For each i ≤ 2⌊ϵn⌋, let Yi be a random variable uniform on some disjoint union of in-
teger intervals of cardinality at least N each, and assume that Y1, . . . , Y2⌊ϵn⌋ are mutually
independent. Define a random function g̃ ∈ L1(R) by

g̃(t) = Eb

[
g

(
t+

2⌊ϵn⌋∑
i=1

biYi

)∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
where b = (b1, . . . , b2⌊ϵn⌋) is a vector of independent ξ components and s⃗ ∈ Zk

≥0 satisfies
∥s⃗∥1 = 2⌊ϵn⌋ and ∥∥∥∥ s⃗

2⌊ϵn⌋
− p⃗

∥∥∥∥
∞

≤ γ2.2.11.

Then
P
[
∥g̃∥∞ >

19L/20

N
√
n

]
≤ exp(−Mn).

We now state an analogue of Proposition 2.2.11 for independent scaled Bernoulli random
variables, which in fact is strong enough to imply Proposition 2.2.11.

Proposition 2.2.12. Fix h ≥ 1, and let z ∈ [h−1, h]. For any ϵ ∈ (0, 1), R̃ ≥ 1, L0 ≥ 64h2R̃,
and M ≥ 1, there are n2.2.12 = n2.2.12(h, ϵ, L0, R̃,M) > 0 and η2.2.12 = η2.2.12(h, ϵ, L0, R̃,M) ∈
(0, 1) with the following property. Let L0 ≥ L ≥ 64h2R̃, let n ≥ n2.2.12, N ∈ N, and let
g ∈ L1(R) be a nonnegative function satisfying

(A) ∥g∥1 = 1,

(B) log2 g is η2.2.12-Lipschitz,

(C)
∫
t∈I g(t) ≤ R̃/

√
n for any interval I of size N , and

(D) ∥g∥∞ ≤ L/(N
√
n).
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For each i ≤ ⌊ϵn⌋, let Yi be a random variable uniform on some disjoint union of integer in-
tervals of cardinality at least N each, and assume that Y1, . . . , Y⌊ϵn⌋ are mutually independent.
Define a random function g̃ ∈ L1(R) by

g̃(t) = Ebg

(
t+ z

⌊ϵn⌋∑
i=1

biYi

)
where b is a vector of independent Ber(1/2) components. Then

P
[
∥g̃∥∞ ≥ 9L/10

N
√
n

]
≤ exp(−Mn).

This follows almost immediately from an ℓ∞(Z) decrement result established by Tikhomirov
[103].

Proposition 2.2.13 ([103, Proposition 4.10]). For any p ∈ (0, 1/2], ϵ ∈ (0, 1), R̃ ≥
1, L0 ≥ 16R̃, and M ≥ 1 there are n2.2.13 = n2.2.13(p, ϵ, L0, R̃,M) > 0 and η2.2.13 =

η2.2.13(p, ϵ, L0, R̃,M) ∈ (0, 1) with the following property. Let L0 ≥ L ≥ 16R̃, let n ≥ n2.2.13,
N ∈ N, and let g ∈ ℓ1(Z) be a nonnegative function satisfying

(A) ∥g∥1 = 1,

(B) log2 g is η2.2.13-Lipschitz,

(C)
∑

t∈I g(t) ≤ R̃/
√
n for any integer interval I of size N , and

(D) ∥g∥∞ ≤ L/(N
√
n).

For each i ≤ ⌊ϵn⌋, let Yi be a random variable uniform on some disjoint union of integer in-
tervals of cardinality at least N each, and assume that Y1, . . . , Y⌊ϵn⌋ are mutually independent.
Define a random function g̃ ∈ ℓ1(Z) by

g̃(t) = Ebg

(
t+

⌊ϵn⌋∑
i=1

biYi

)
where b is a vector of independent Ber(p) components. Then

P
[
∥g̃∥∞ >

(1− p(1− 1/
√
2))L

N
√
n

]
≤ exp(−Mn).

Remark 2.2.14. In [103, Proposition 4.10], there is a condition N ≤ 2n which is not necessary
(indeed, it is not used anywhere in the proof) and so has been dropped. In fact, we will
only need values N ≤ kn, in which case one can actually replace n by kn and ϵ by ϵ/k (and
adjust other parameters appropriately) in order to deduce what we need directly from the
statement as written in [103]. We will only need this statement for p = 1/2.
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We first prove Proposition 2.2.12.

Proof of Proposition 2.2.12. Consider the operator O : L1(R) → ℓ1(Z) given by

(Oω)(t) =
∫ z/2

−z/2

ω(zt+ u) du.

We note that ∥ω∥1 = ∥Oω∥1 and if ω is nonnegative and log2 ω is η-Lipschitz, then

z2−ηh/2∥ω∥∞ ≤ ∥Oω∥∞ ≤ z∥ω∥∞.

Given g ∈ L1(R) satisfying the given conditions, we consider g′ ∈ ℓ1(Z) defined via

g′ = Og.

We see that g′ satisfies properties (A), (B), (C), (D) of Proposition 2.2.13 with log-Lipschitz
constant slightly changed (depending on z, hence h), L changed to zL, and R̃ increased to
4hR̃. These last changes are responsible for the condition L0 ≥ 64h2R̃.

Since zL ≥ h−1L ≥ 16(4hR̃), we may apply Proposition 2.2.13 to g′ to deduce that ∥g̃′∥∞
is small, except with superexponentially small probability. Here g̃′ is averaged in the sense
of Proposition 2.2.13 with respect to the same Y1, . . . , Y⌊ϵn⌋.

Now, by Fubini’s theorem, note that

g̃′ = Og̃,

where g̃ is averaged in the sense of Proposition 2.2.12. Therefore,

P
[
∥Og̃∥∞ >

(2 +
√
2)zL/4

N
√
n

]
≤ exp(−Mn),

so that

P
[
∥g̃∥∞ >

(2 +
√
2)2η2.2.12h/2L/4

N
√
n

]
≤ exp(−Mn).

Finally, if η2.2.12 is appropriately small, we deduce the desired as

2 +
√
2

4
<

9

10
.

Finally, we are able to deduce Proposition 2.2.11.

Proof of Proposition 2.2.11. Similar to the proof of Lemma 2.2.5, we can use an equivalent
method of sampling from the s⃗-multislice to rewrite g̃(t) as

g̃(t) = Eb

[
g

(
t+

⌊ϵn⌋∑
i=1

(b2i−1Y2i−1 + b2iY2i)

)∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
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= Eb,b′

[
g

(
t+

⌊ϵn⌋∑
i=1

b2i−1Y2i−1 + b2iY2i + b′i(b2i − b2i−1)(Y2i−1 − Y2i)

)∣∣∣∣#{bi = aj} = sj ∀j ∈ [k]

]
,

where b′ is an ⌊ϵn⌋-dimensional vector with independent Ber(1/2) components. Below, we
will fix b and use only the randomness in b′. In order to do this, let

B0 :=

{
b1, . . . , b2⌊ϵn⌋ : #{i : b2i−1 = a1, b2i = a2} ≥ min(p⃗)2ϵn/8

}
.

Then, provided that γ2.2.11 is chosen sufficiently small depending on ξ, and n is sufficiently
large depending on ξ and ϵ, we have

Eb[1B0|#{bi = aj} = sj ∀j ∈ [k]] >
1

2
.

Let EL denote the event (depending on Y1, . . . , Y2⌊ϵn⌋) that ∥g̃∥∞ > 19L/(20N
√
n). Now,

suppose Y1, . . . , Y2⌊ϵn⌋ ∈ EL, and suppose further that ∥g̃∥∞ is attained at t ∈ R. Let

B1 :=

{
b1, . . . , b2⌊ϵn⌋ : Eb′

[
g

(
t+

⌊ϵn⌋∑
i=1

(b2i−1Y2i−1+b2iY2i+b
′
i(b2i−b2i−1)(Y2i−1−Y2i)

)∣∣∣∣b] ≥ 9L/10

N
√
n

}
.

Since ∥g∥∞ ≤ L/(N
√
n), it follows from the reverse Markov inequality that

Eb[1B1|#{bi = aj} = sj ∀j ∈ [k]] >
1

2
.

Thus, we see that for every (Y1, . . . , Y2⌊ϵn⌋) ∈ EL, there exists some b ∈ B0 ∩ B1. Hence,
taking a union bound, we see that

P
[
∥g̃∥∞ >

19L/20

N
√
n

]
≤ P[∃b ∈ B0 : b ∈ B1]

≤ |B0| sup
b∈B0

P
[
∃t : Eb′

[
g

(
t+

⌊ϵn⌋∑
i=1

(b2i−1Y2i−1 + b2iY2i + b′i(b2i − b2i−1)(Y2i−1 − Y2i))

)]
≥ 9L/10

N
√
n

]

≤ |B0| sup
b∈B0

P
[
∃t : Eb′

[
g

(
t+

⌊ϵn⌋∑
i=1

b′i(b2i − b2i−1)(Y2i−1 − Y2i)

)]
≥ 9L/10

N
√
n

]
. (2.2.9)

We now bound the probability appearing on the right hand side of the above equation
uniformly for b ∈ B0. We fix b ∈ B0, and note that, by definition, there is a set I =
{i1, . . . , im} ⊆ ⌊ϵn⌋ such that |I| = m ≥ min(p⃗)2ϵn/8 and such that for all j ∈ [m],

b′ij(b2ij − b2ij−1)(Y2ij−1 − Y2ij) = b′ij(a2 − a1)(Y2ij−1 − Y2ij).
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For j ∈ [k], let Y b
j := Y2ij − Y2ij−1. Let Y−2·I denote all components of Y1, . . . , Y2⌊ϵn⌋, except

those corresponding to indices in 2 · I, and let Y2·I denote the remaining components. Then,
for b ∈ B0 and a choice of Y−2·I , we define the random function (depending on Y2·I),

g̃b,Y−2·I (t) := Eb′g

(
t+ (a1 − a2)

⌊min(p⃗)2ϵn/8⌋∑
j=1

b′jY
b
j

)
.

Thus, we see that for any b ∈ B0 and Y−2·I , the probability appearing on the right hand side
of (2.2.9) is bounded by

P
[
∥g̃b,Y−2·I∥∞ ≥ 9L/10

N
√
n

]
,

where the probability is over the choice of Y2·I .
At this point, we can apply Proposition 2.2.12 to g̃b,Y−2·I . Let us quickly check that

the hypotheses of Proposition 2.2.12 are satisfied. The assumptions on g needed in Propo-
sition 2.2.12 are satisfied because the same properties are assumed in Proposition 2.2.11
(see below for the log-Lipschitz condition). Moreover, b′1, . . . , b′⌊min(p⃗)2ϵn/8⌋ are independent
Ber(1/2) random variables. Finally, notice that, given Y−2·I , each Y b

j is a random variable
uniform on some disjoint intervals of cardinality at least N each (since Y b

j is a translation
of Y2ij which is assumed to satisfy this property). Also, a1 − a2 is bounded away from 0 (in
terms of ξ).

Thus, Proposition 2.2.12 shows that the expression on the right hand side of (2.2.9) is
bounded above by

|B0| sup
b∈B0,Y−2·I

P
[
∥g̃b,Y−2·I∥∞ >

9L/10

N
√
n

]
≤ kn exp(−M min(p⃗)2n/8),

provided that we choose η2.2.11 sufficiently small compared to η2.2.12(d,min(p⃗)2ϵ/8, L0, R̃,M),
where d = max(|a2 − a1|, |a2 − a1|−1). The desired result now follows after rescaling M by a
constant factor (depending on ξ).

2.2.4 Deriving the final result

We now prove the main result of this section, Theorem 2.2.1. The proof of Theorem 2.2.1
given Propositions 2.2.7 and 2.2.11 is similar to the derivation in [103, Theorem 4.2] however
we record the argument in full detail below.

Proof of Theorem 2.2.1. Fix ξ and any admissible parameters δ,K1, K2, K3, ϵ, N , and the
given parameter M ≥ 1. We need to choose L2.2.1, γ2.2.1, η2.2.1, n2.2.1, where the first two
quantities are allowed to depend on all the parameters except M , and the last two quantities
are allowed to depend on all the parameters.

We let

L′ := L2.2.7(ξ, ϵ/2, δ,K1, K2, K3, 2M); γ2.2.1 := γ = min{γ2.2.7(ξ, ϵ/2, δ,K1, K2, K3), γ2.2.11(ξ)}/4;
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note that γ2.2.1 = γ does not depend on M . We choose

R̃ := C2.2.6(1/4, δ/2, K1, K2); L2.2.1 := 16R̃;

note that L2.2.1 does not depend on M , as desired. We choose q to be the smallest positive
integer for which

0.95qL′ ≤ 16R̃.

Now, let
η2.2.1 = η2.2.11(p, γn/2q,max{L′, 16R̃}, R̃, 2M),

and suppose that f ∈ ℓ1(Z) with ∥f∥1 = 1, and that log2 f is η2.2.1-Lipschitz.
Step 1: Let ℓ := ⌈(1−γ)n⌉. SinceN ≤ exp((H(p⃗)−ϵ)n), it follows from Proposition 2.2.7

and the choice of parameters that, as long as ∥s⃗− p⃗ℓ∥∞ ≤ 4γℓ, then for all sufficiently large
n,

P[∥fA,s⃗,ℓ∥∞ ≥ L′(N
√
n)−1] ≤ exp(−2Mn).

Let E0 be the event that ∥fA,s⃗,ℓ∥∞ < L′(N
√
n)−1 simultaneously for all s⃗ satisfying ∥s⃗ −

p⃗ℓ∥∞ ≤ 4γℓ. Then, by the union bound, we see that

P[Ec
0 ] ≤ nk exp(−2Mn).

Step 2: We split the interval [ℓ + 1, n] into q subintervals of size γn/q each, which we
denote by I1, . . . , Iq. Note that

fA,s⃗,n(t) = EbfA,s⃗′,ℓ

(
t+

q∑
i=1

∑
j∈Ii

bjXj

)
;

here, we have sampled a uniform point in the multislice #{bi = aj} = sj ∀j ∈ [k] by
first sampling from the distribution of its last γn coordinates, which we denote by b =
(bℓ+1, . . . , bn), and then sampling the remaining coordinates, subject to the constraint that
the amounts of each value aj is in total equal to sj. For each j ∈ [k] let s′j be the number of
values in b equal to aj (which is therefore a random variable).

Note that if sj ∈ [pjn− γn, pjn+ γn], then we always have s′j ∈ [pjℓ− 2γℓ, pjℓ+2γℓ]. In
particular, on the event E0, we have for all s⃗ satisfying ∥s⃗− p⃗n∥∞ ≤ γn and for all possible
realizations of s⃗′ that

∥fA,s⃗′,ℓ∥∞ < L′(N
√
n)−1.

Step 3: For i ∈ [q], let s⃗(i) be the vector of values s(i)j = #{u ∈ Ii : bu = aj} for j ∈ [k].
Let G be the event that ∥s⃗(i) − p⃗|Ii|∥∞ ≤ γ|Ii| for all i ∈ [q]. Then, by a standard large
deviation estimate, it follows that for all n sufficiently large, P[Gc] ≤ n−1/2 (say). Hence,
using the conclusion of the previous step, conditioning on the values s⃗(1), . . . , s⃗(q), and using
the law of total probability, we see that on the event E0,

fA,s⃗,n(t) ≤ L′n−1/2 · (N
√
n)−1 + sup

∥s⃗(i)/|Ii|−p⃗∥∞≤γ
for all i∈[q]

EbfA,s⃗′,ℓ

(
t+

q∑
i=1

∑
u∈Ii

buXj

)
, (2.2.10)
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where each vector (bu)u∈Ii is independently sampled uniformly from the multislice corre-
sponding to s⃗(i). Fix vectors s⃗(1), . . . , s⃗(q) such that ∥s⃗(i)/|Ii|− p⃗∥∞ ≤ γ and ∥s⃗(i)∥1 = |Ii|. In
particular, this fixes s⃗′ = s⃗− s⃗(1) − · · · − s⃗(q). We define the sequence of functions (gr)qr=0 by

g0(t) = fA,s⃗′,ℓ(t)

gr(t) = Eb

[
fA,s⃗′,ℓ

(
t+

r∑
i=1

∑
j∈Ii

bjXj

)∣∣∣∣#{u ∈ Ii : bu = aj} = s⃗
(i)
j ∀j ∈ [k], i ∈ [r]

]
for r ≥ 1.

Note that for all r ∈ [q],

gr(t) = Eb

[
gr−1

(
t+

∑
j∈Ik

bjXj

)∣∣∣∣#{u ∈ Ir : bu = aj} = s⃗
(r)
j ∀j ∈ [k]

]
.

Step 4: We now wish to apply Proposition 2.2.11 to g0, . . . , gq−1 successively with pa-
rameters L0, . . . , Lq−1 given by

Lr := L′ · (19/20)r.

More precisely, for r ≥ 1, let Er denote the event that ∥gr∥∞ ≤ Lr(N
√
n)−1. We claim that

P[Er|Er−1] ≥ 1− exp(−2Mn) for all r ∈ [q]. (2.2.11)

Let us quickly check that on the event Er−1, the hypotheses of Proposition 2.2.11 are satisfied
for gr−1. We have ∥gr−1∥1 = 1 and log2 gr−1 is η2.2.1-Lipschitz since it is a convex combination
of functions satisfying the same properties. The condition ∥gr−1∥∞ ≤ Lr−1(N

√
n)−1 holds

on Er−1 by definition. Moreover, the condition that for any interval I of size N ,∫
t∈I

gr−1(t) ≤ R̃/
√
n

follows since, by Lemma 2.2.6 and our choice of R̃, the analogous property holds for fA,s⃗′,ℓ,
and hence for gr−1, which is a convex combination of translates of fA,s⃗′,ℓ. Proposition 2.2.11
now justifies (2.2.11). In particular, by the union bound, we have

P[Eq | E0] ≥ 1− q exp(−2Mn).

Combine this with the estimate on P [Ec
0 ] (with an at most nkq sized union bound to account

for the choice of s⃗(1), . . . , s⃗(q)), then use (2.2.10), and finally take n sufficiently large (so that
all the quoted results hold). This gives the desired conclusion.

2.2.5 Independent model

We conclude this section with an analogue of Corollary 2.2.3 in the independent case.
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Theorem 2.2.15. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1,
ϵ ≪ ∥p⃗∥∞, and a given parameter M ≥ 1, there is L2.2.15 = L2.2.15(ξ, ϵ, δ,K1, K2, K3) > 0
independent of M and n2.2.15 = n2.2.15(ξ, ϵ, δ,K1, K2, K3,M) ≥ 1 such that the following
holds.

Let n ≥ n2.2.15, 1 ≤ N ≤ ∥p⃗∥−n
∞ exp(−ϵn) and A be (N, n,K1, K2, K3, δ)-admissible.

Then ∣∣∣∣{x ∈ A : Lξ

( n∑
i=1

bixi,
√
n

)
≥ L2.2.15N

−1

}∣∣∣∣ ≤ e−Mn|A|.

The proof of Theorem 2.2.15 is analogous to that of Theorem 2.2.1 followed by Corol-
lary 2.2.3, except that the random variables bi are now independent copies of ξ. This inde-
pendence simplifies matters dramatically, as one can derive an analogue of Proposition 2.2.7
by simply considering drops (as in [103, Proposition 4.5]) instead of “well-conditioned” drops,
and then using subsampling arguments similar to those appearing above to prove analogues
of Proposition 2.2.11 and Theorem 2.2.1. We leave the details to the interested reader.

2.3 Sharp invertibility of sparse Bernoulli matrices

In this section, we use Theorem 2.2.1 to confirm Conjecture 2.1.1 for the case ξ = Ber(p)
for fixed p ∈ (0, 1/2), thereby resolving [71, Problem 8.2]. More precisely, we will show the
following.

Theorem 2.3.1. Fix p ∈ (0, 1/2). There exist constants Cp, ϵp, np > 0 such that for all
n ≥ np and t ≥ 0,

P[sn(Bn(p)) ≤ t/
√
n] ≤ Cpt+ (2 + (1− ϵp)

n)n(1− p)n.

Compared to the proof of Theorem 2.1.2, the main difference in this section is the sub-
stantially simpler treatment of structured vectors, due to the reasons mentioned in the
introduction. At the same time, the arguments used in this section form the basis of devel-
opments in subsequent sections, and we hope that encountering them in this simpler setting
will clarify their role later in the paper.

2.3.1 Almost-constant and almost-elementary vectors

We recall the usual notion of almost-constant vectors, a modification of compressible vectors
(see, e.g., [104]).

Definition 2.3.2 (Almost-constant vectors). For δ, ρ ∈ (0, 1), we define Cons(δ, ρ) to be the
set of x ∈ Sn−1 for which there exists some λ ∈ R such that |xi − λ| ≤ ρ/

√
n for at least

(1− δ)n values i ∈ [n].

The main result of this subsection is the following.
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Proposition 2.3.3. For any c > 0, there exist δ, ρ, ϵ, n0 > 0 depending only on c, such that
for all n ≥ n0,

P[∃x ∈ Cons(δ, ρ) : ∥Bn(p)x∥2 ≤ 2−cn] ≤ n(1− p)n + (1− p− ϵ)n.

For later use, we record the following simple property of non-almost-constant vectors.

Lemma 2.3.4. For δ, ρ ∈ (0, 1/4), there exist ν, ν ′ > 0 depending only on δ, ρ, and a finite
set K of positive real numbers, also depending only on δ, ρ, such that if x ∈ Sn−1\Cons(δ, ρ),
then at least one of the following two conclusions is satisfied.

1. There exist κ, κ′ ∈ K such that

|xi| ≤
κ√
n

for at least νn indices i ∈ [n], and

κ+ ν ′√
n

< |xi| ≤
κ′√
n

for at least νn indices i ∈ [n].

2. There exist κ, κ′ ∈ K such that

κ√
n
< xi <

κ′√
n

for at least νn indices i ∈ [n], and

− κ′√
n
< xi < − κ√

n
for at least νn indices i ∈ [n].

Proof. Let I0 := {i ∈ [n] : |xi| ≤ 4/
√
δn}. Since ∥x∥2 = 1, it follows that |I0| ≥ (1− δ/16)n.

We consider the following cases.
Case I: |{i ∈ I0 : |xi| < ρ/(10

√
n)}| ≥ δn/16. Since x /∈ Cons(δ, ρ), there are at least

δn indices j ∈ [n] such that |xj| ≥ ρ/
√
n. Moreover, at least δn/8 of these indices satisfy

|xj| ≤ 4/
√
δn. Hence, in this case, the first conclusion is satisfied for suitable choice of

parameters.
Case II: |{i ∈ I0 : |xi| < ρ/(10

√
n)}| < δn/16 and |{i ∈ I0 : xi ≤ −ρ/(10

√
n)}| ≥ δn/16

and |{i ∈ I0 : xi ≥ ρ/(10
√
n)}| ≥ δn/16. In this case, the second conclusion is clearly

satisfied for suitable choice of parameters.
Case III: Either |{i ∈ I0 : xi ≥ ρ/(10

√
n)}| ≥ (1 − δ/4)n or |{i ∈ I0 : xi ≤

−ρ/(10
√
n)}| ≥ (1 − δ/4)n. We assume that we are in the first sub-case; the argument

for the second sub-case is similar. We decompose

[0, 4/
√
δn] = ∪L

ℓ=1Jℓ,

where Jℓ := [(ℓ− 1) · ρ/(10
√
n), ℓ · ρ/(10

√
n)), and L = Oδ,ρ(1). Let

ℓ0 := min{ℓ ∈ L : |{i ∈ [n] : xi ∈ J1 ∪ · · · ∪ Jℓ}| ≥ δn/16}.

Since x /∈ Cons(δ, ρ), there are at least δn indices j ∈ [n] such that |xj − ℓ0 · ρ/(10
√
n)| >

ρ/
√
n. On the other hand, by the assumption of this case and the definition of ℓ0, there

exist at least δn − (δn/4) − (δn/16) − (δn/16) > δn/2 indices j ∈ I0 for which xj >
(ℓ0+2)·ρ/(10

√
n). Thus, the first conclusion is satisfied for suitable choice of parameters.
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We also isolate the following set of almost-elementary vectors.

Definition 2.3.5 (Almost-elementary vectors). For δ > 0 and i ∈ [n], let

Elemi(δ) := Sn−1 ∩ Bn
2 (ei, δ) = {x ∈ Sn−1 : ∥x− ei∥2 ≤ δ}.

We define the set of δ-almost-elementary vectors by

Coord(δ) :=
n⋃

i=1

Elemi(δ).

We will need a standard concentration estimate for the operator norm of a random matrix
with independent centered sub-Gaussian entries.

Lemma 2.3.6 ([105, Lemma 4.4.5]). There exists an absolute constant C > 0 such that the
following holds. Let A be an m × n i.i.d. matrix with mean 0, sub-Gaussian entries with
sub-Gaussian norm at most K. Then for any t ≥ 0 we have

P[∥A∥ ≤ C(
√
m+

√
n+ t)] ≤ 2 exp(−t2/K2).

To prove Proposition 2.3.3, we will handle almost-elementary vectors and non-almost-
elementary vectors separately. We begin with the easier case of non-almost-elementary vec-
tors.

2.3.1.1 Invertibility on non-almost-elementary vectors

Using Lemma 2.2.4, we can prove the following elementary fact about sums of independent
Ber(p) random variables.

Lemma 2.3.7. Fix p, δ ∈ (0, 1/2). There exists θ = θ(δ, p) > 0 such that for all x ∈
Sn−1 \ Coord(δ),

L(b1x1 + · · ·+ bnxn, θ) ≤ 1− p− θ,

where b = (b1, . . . , bn) is a random vector whose coordinates are independent Ber(p) random
variables.

Proof. Since Coord(δ) is increasing with δ, it suffices to prove the statement for all sufficiently
small δ (depending on p). We may assume that |x1| ≥ |x2| ≥ · · · ≥ |xn|. The desired
conclusion follows by combining the following two cases.

Case 1: Suppose |x2| > δ4. We claim that there is some θ = θ(δ, p) for which

L(b1x1 + · · ·+ bnxn, θ) ≤ L(b1x1 + b2x2, θ) ≤ 1− p− θ.

We borrow elements from [71, Proposition 3.11]. The first inequality is trivial. For the second
inequality, we note that the random variable b1x1 + b2x2 is supported on the four points
{0, x1, x2, x1+x2}. Moreover, the sets {0, x1+x2} and {x1, x2} are δ4-separated, and each of
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these two sets is attained with probability at most max{p2+(1− p)2, 2p(1− p)} < 1− p− θ,
where the final inequality uses p < 1/2.

Case 2: |x2| ≤ δ4. Note that we must have ∥(x2, . . . , xn)∥2 ≥ δ/2, since otherwise,
we would have ∥x − e1∥2 < δ, contradicting x /∈ Coord(δ). We claim that there is some
θ = θ(δ, p) > 0 such that

L(b1x1 + · · ·+ bnxn, θ) ≤ L(b2x2 + · · ·+ bnxn, θ) ≤ 1− p− θ.

Once again, the first inequality is trivial. The second inequality follows from Lemma 2.2.4
applied with ξi = bixi for i = 2, . . . , n, ri = |xi|/4, and r = δ4, and from our assumption
that δ was small enough in terms of p.

By combining the preceding statement with a standard net argument exploiting the low
metric entropy of almost-constant vectors and the well-controlled operator norm of random
matrices with independent centered subgaussian entries (Lemma 2.3.6), we obtain invertibil-
ity on non-almost-elementary vectors.

Proposition 2.3.8. Fix p ∈ (0, 1/2). Then, for any δ′ > 0, there exist δ, ρ, ϵ′, n0 > 0
(depending on p, δ′) such that for all n ≥ n0,

P[∃x ∈ Cons(δ, ρ) \ Coord(δ′) : ∥Bn(p)x∥2 ≤ ϵ′
√
n] ≤ (1− p− ϵ′)n.

Proof. The argument is closely related to the proof of [103, Proposition 3.6], and we omit
the standard details. The point is that we can first choose ϵ′ depending on δ′, p, then choose
ρ sufficiently small depending on δ′, p, ϵ′, and finally, choose δ sufficiently small depending
on all prior choices.

2.3.1.2 Invertibility on almost-elementary vectors

We now prove the much more delicate claim that Coord(δ′) contributes the appropriate size
to the singularity probability.

Proposition 2.3.9. Fix p ∈ (0, 1/2). Given θ′ > 0, there exist δ′, θ, n0 > 0 depending on p
and θ′ such that for all n ≥ n0,

P[∃x ∈ Coord(δ′) : ∥Bn(p)x∥2 ≤ exp(−θ′n)] ≤ n ·
(
(1− p)n + (1− p− θ)n

)
.

Before proceeding to the proof, we need the following preliminary fact, which essentially
follows from the seminal work of Rudelson and Vershynin [86] (although we were not able
to locate the precise statement needed here in the literature).

Lemma 2.3.10. Fix p ∈ (0, 1). For any c > 0, there exist c′, n0 > 0 depending on c and p
for which the following holds. For all n ≥ n0 and for any v ∈ Rn with ∥v∥2 ≥ 1, we have

P[∃x ∈ Rn−1 : ∥Ax− v∥2 ≤ 2−cn] ≤ 2−c′n,

where A is a random n× (n− 1) matrix with independent Ber(p) entries.
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Proof. By reindexing the coordinates, we may write

A =

[
R
B

]
, v =

[
v1
v′

]
,

where B is an (n − 1) × (n − 1) matrix, v′ ∈ Rn−1 and ∥v′∥2 ≥ 1/2. Let E = {sn−1(B) ≤
2−cn/2}. Then, by an extension of the main result of Rudelson and Vershynin [86] (see, e.g.,
[42, Theorem 1.3] for a concrete reference), P[E ] ≤ 2−c1n for some c1 > 0 depending on c and
p.

Moreover, on the event Ec, if there exists some x ∈ Rn−1 such that ∥Ax − v∥2 ≤ 2−cn,
then

∥Bx− v′∥2 ≤ 2−cn =⇒ ∥x−B−1v′∥2 ≤ 2−cn/2, and

|Rx− v1| ≤ 2−cn =⇒ |R(B−1v′)− v1| ≤ 2−cn + n2−cn/2.

Let x0 := B−1v′/∥B−1v′∥2; this is a random vector depending on B. It follows from a
straightforward modification of the argument of Rudelson and Vershynin that there exists
a constant c2 > 0, depending on c and p, such that with probability at least 1 − 2−c2n,
L(

∑n−1
i=1 bi · (x0)i, 2−cn/4) ≤ c−1

2 2−c2n, where b1, . . . , bn are independent Ber(p) random vari-
ables (again, one has to take into account that Ber(p) does not have mean 0, but this is not
an issue, see, e.g., [42]). Let G denote the event (depending on B) that this occurs.

Finally, note that since ∥B∥ ≤ n deterministically, we have ∥B−1v′∥2 ≥ 1/(2n). Hence,
we see that for all n sufficiently large depending on c and p, we have

P[Ec ∧ ∥Ax− v∥2 ≤ 2−cn] ≤ P[Ec ∧ |R(B−1v′)− v1| ≤ 2n · 2−cn/2]

≤ P[Ec ∧ G ∧ |R(B−1v′)− v1| ≤ 2n · 2−cn/2] + 2−c2n

≤ L
( n−1∑

i=1

bi · (x0)i, 4n2 · 2−cn/2

)
+ 2−c2n ≤ 2−c2n/2,

which completes the proof.

Now we are ready to prove Proposition 2.3.9.

Proof of Proposition 2.3.9. By taking a union bound, and exploiting the permutation invari-
ance of the distribution of the matrix, it suffices to prove the statement for Elem1(δ

′) and
without the additional factor of n on the right hand side. Let GK denote the event that
∥Bn(p)− pJn×n∥ ≤ K

√
n, where Jn×n denotes the n× n all ones matrix. We fix a choice of

K such that P[Gc
K ] ≤ exp(−2n), which is possible by Lemma 2.3.6.

For δ′ ∈ (0, 1/4), let Eδ′ denote the event that there exists some x ∈ Elem1(δ
′) such that

∥Bn(p)x∥2 ≤ exp(−θ′n). By rescaling, we see that on the event Eδ′ , there exists y = e1+u ∈
Rn with u1 = 0 and ∥u∥2 ≤ 4δ′ for which ∥Bn(p)y∥2 ≤ 2 exp(−θ′n). For convenience, let
u′ := (u2, . . . , un) ∈ Rn−1. Writing

Bn(p) =

[
b11 R
S Bn−1

]
,
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we see that

|Ru′ + b11| ≤ 2 exp(−θ′n), ∥Bn−1u
′ + S∥2 ≤ 2 exp(−θ′n).

Let B(1) denote the first column of Bn(p) and let B(−1) denote the n× (n−1) matrix formed
by excluding the first column of Bn(p). Then, on the event Eδ′ ∧ GK , we have

∥B(1) + pJn×n−1u
′∥2 = ∥B(1) +B(−1)u′ −B(−1)u′ + pJn×n−1u

′∥2
≤ ∥B(1) +B(−1)u′∥2 + ∥(B(−1) − pJn×n−1)u

′∥2
≤ 4 exp(−θ′n) +K

√
n · 4δ′

≤ 8Kδ′
√
n.

The key point is the following. Let C := {x ∈ {0, 1}n : ∃λ ∈ R such that ∥x − λ1n∥2 ≤
8Kδ′

√
n}, where 1n denotes the n-dimensional all ones vector. Then, it is readily seen that

for any ϵ > 0, there exists δ′ > 0 sufficiently small so that

P[B(1) ∈ C] ≤ (1− p+ ϵ)n.

To summarize, we have shown that for any θ′, ϵ > 0, there exists δ′ ∈ (0, 1/4) such that

P[Eδ′ ] ≤ P[Eδ′ ∧ GK ] + exp(−2n)

≤
∑
a∈C

P[B(1) = a] · P[∃u′ ∈ Rn−1, ∥u′∥2 ≤ 4δ′ : ∥B(−1)u′ + a∥ ≤ 2 exp(−θ′n)]. (2.3.1)

If we only wanted a bound of the form (1 − p + ϵ)n on the right hand side, then we would
be done. However, since we want a more precise bound, we need to perform a more refined
analysis based on whether or not a = 0.

Case I: a = 0. The contribution of this term to the sum in (2.3.1) is exactly (1− p)n.
Case II: a ̸= 0. Since a ∈ {0, 1}n, we have ∥a∥2 ≥ 1. In this case, we can apply

Lemma 2.3.10 with c = θ′ to see that, for all n sufficiently large,

P[∃u′ ∈ Rn−1, ∥u′∥2 ≤ 4δ′ : ∥B(−1)u′ + a∥ ≤ 2 exp(−θ′n)] ≤ 2−c′n,

where c′ > 0 depends only on θ′ and p. Thus, we see that the contribution of a ∈ C, a ̸= 0
to the sum in (2.3.1) is at most

(1− p+ ϵ)n × 2−c′n.

Since c′ does not depend on δ′, we can fix c′ (depending on θ′ and p), and then choose δ′
sufficiently small so that ϵ > 0 is small enough to make the above product at most (1−p−θ)n,
for some θ > 0 depending on the previous parameters.

We now put everything together to prove Proposition 2.3.3.

Proof of Proposition 2.3.3. Let c > 0 be as in the statement of the proposition, and choose
θ′ > 0 such that exp(−θ′n) = 2−cn. Then, applying Proposition 2.3.9 with this choice of
θ′, we find δ′, θ, n0 such that for all n ≥ n0, we have the desired estimate for x ∈ Coord(δ′)
(provided that ϵ is chosen small enough). Then, we apply Proposition 2.3.8 with this choice
of δ′ to find δ, ρ, n0 > 0 such that for all n ≥ n0, we have the desired estimate for x ∈
Cons(δ, ρ) \ Coord(δ′), provided again that we choose ϵ > 0 sufficiently small.
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2.3.2 The structure theorem for Boolean slices

The following is a natural extension of the threshold function appearing in [103] to the
Boolean slice.

Definition 2.3.11. Let p ∈ (0, 1/2], γ ∈ (0, p), and L ≥ 1. Then, for any integer n ≥ 1 and
x ∈ Sn−1, we define

Tp,γ(x, L) := sup

{
t ∈ (0, 1) : Lp,γ

( n∑
i=1

bixi, t

)
> Lt

}
.

For p ∈ (0, 1/2), let H = H(p) denote an (n − 1) × n random matrix, each of whose
entries is an independent copy of a Ber(p) random variable. We fix a function v(H) which
takes as input an (n− 1)× n matrix and outputs a unit vector in its right kernel. The goal
of this subsection is to prove the following result about the threshold function of v(H).

Proposition 2.3.12. Let δ, ρ, ϵ ∈ (0, 1). Let p ∈ (0, 1/2) and let H = H(p) denote an (n−
1)×n random matrix as above. There exist L2.3.12 = L2.3.12(δ, ρ, p, ϵ), γ2.3.12 = γ2.3.12(δ, ρ, p, ϵ)
and n2.3.12 = n2.3.12(δ, ρ, p, ϵ) such that for all n ≥ n2.3.12, with probability at least 1 − 4−n,
exactly one of the following holds.

• v(H) ∈ Cons(δ, ρ), or

• Tp,γ2.3.12(v(H), L2.3.12) ≤
(
n
pn

)−1
exp(ϵn).

Remark 2.3.13. We note that p ∈ (0, 1/2) is not actually necessary for this statement or its
proof, and this is crucial in the more general setting of all discrete random variables.

We will need the following lemma, proved using randomized rounding (cf. [72]), which
is a straightforward generalization of [103, Lemma 5.3]. We omit details since the proof is
identical.

Lemma 2.3.14. Let y = (y1, . . . , yn) ∈ Rn be a vector, and let µ > 0, λ ∈ R be fixed. Let ∆
denote a probability distribution which is supported in [−s, s]n. There exist constants c2.3.14
and C2.3.14, depending only on s, for which the following holds. Suppose that for all t ≥

√
n,

P
[∣∣∣∣ n∑

i=1

biyi − λ

∣∣∣∣ ≤ t

]
≤ µt,

where (b1, . . . , bn) is distributed according to ∆. Then, there exists a vector y′ = (y′1, . . . , y
′
n) ∈

Zn satisfying

(R1) ∥y − y′∥∞ ≤ 1,

(R2) P[|
∑n

i=1 biy
′
i − λ| ≤ t] ≤ C2.3.14µt for all t ≥

√
n,

(R3) L(
∑n

i=1 biy
′
i,
√
n) ≥ c2.3.14L(

∑n
i=1 biyi,

√
n),
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(R4) |
∑n

i=1 yi −
∑n

i=1 y
′
i| ≤ C2.3.14

√
n.

We also record two useful tensorization statements.

Lemma 2.3.15 ([103, Lemma 3.2]). Let χ1, . . . , χm be independent random variables.

• Assume that for all ϵ ≥ ϵ0,
P[|χi| ≤ ϵ] ≤ Kϵ.

Then for ϵ ≥ ϵ0
P[∥(χ1, . . . , χm)∥2 ≤ ϵ

√
m] ≤ (CKϵ)m,

where C is an absolute constant.

• Assume that for some η, τ > 0,

P[|χi| ≤ η] ≤ τ.

Then for ϵ ∈ (0, 1],

P[∥(χ1, . . . , χm)∥2 ≤ η
√
ϵm] ≤ (e/ϵ)ϵmτm−ϵm.

Proof of Proposition 2.3.12. For lightness of notation, we will often denote v(H) simply by
v. If v /∈ Cons(δ, ρ), it follows from Lemma 2.2.5 that for all γ < p/4, there exists some
L0 = L0(δ, ρ, p) and C0 = C0(δ, ρ, p) such that Tp,γ(v, L) ≤ C0 · n−1/2 for all L ≥ L0. Fix
K0 such that the event EK0 := {∥H − pJn−1×n∥ ≤ K0

√
n} holds with probability at least

1− 2−1729n.
Let L > L0 be a parameter to be chosen later, depending on δ, ρ, p, ϵ. Let γ < 1/4 be a

parameter to be chosen later depending on δ, ρ, p, ϵ. Fix some N ∈ [C−1
0 ·

√
n,

(
n
pn

)
exp(−ϵn)],

and let UN denote the event that Tp,γ(v, L) ∈ [1/N, 2/N ]. We proceed to bound P[UN ∧EK0 ].
Let D := C1

√
nN , where C1 = C1(δ, ρ) ≥ 1 will be an integer chosen later. Let y := Dv.

Since for all t ≥
√
n,

P
[∣∣∣∣ n∑

i=1

biyi

∣∣∣∣ ≤ t

]
= P

[∣∣∣∣ n∑
i=1

bivi

∣∣∣∣ ≤ t

C1

√
nN

]
≤ P

[∣∣∣∣ n∑
i=1

bivi

∣∣∣∣ ≤ t√
nN

]
≤ L

N
· 2t√

n
,

it follows that by applying Lemma 2.3.14 to y, with µ := 2L/(N
√
n), λ = 0, and the

distribution on Rn coinciding with that of n independent Ber(p) random variables conditioned
to have sum in [pn− γn, pn + γn], we see that for all sufficiently large n, there exists some
y′ ∈ Zn satisfying the conclusions of Lemma 2.3.14 (note that C2.3.14, c2.3.14 in this case are
absolute constants). By (R3), we have

L
( n∑

i=1

biy
′
i,
√
n

)
≥ c2.3.14L

( n∑
i=1

bivi, 1/(C1N)

)
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≥ (2C1)
−1 · c2.3.14L

( n∑
i=1

bivi, 2/N

)
≥ (2C1)

−1 · c2.3.14 · 2LN−1. (2.3.2)

Moreover, by (R1) and (R4), we have on the event EK0 that

∥Hy′∥2 = ∥H(y′ − y)∥2
≤ ∥(H − pJn−1×n)(y

′ − y)∥2 + ∥pJn−1×n(y
′ − y)∥2

≤ K ′
0n, (2.3.3)

where K ′
0 is a constant depending only on K0.

We claim that there is an absolute constant C2 > 0 and a constant C3 = C3(δ, ρ), a collec-
tion of real numbers (depending on δ, ρ) (K3)j > (K2)j > (K1)j > 1 for j ∈ [C3 ·Cn

2 ], a posi-
tive real number δ′ > 0 (depending on δ, ρ), and a collection of (N, n, (K1)j, (K2)j, (K3)j, δ

′)-
admissible sets Aj (depending on δ, ρ) for j ∈ [C3·Cn

2 ] such that y′ ∈ Aj for some j ∈ [C3·Cn
2 ].

Let ṽ := y′/D. By (R1), it follows that ∥ṽ − v∥∞ ≤ D−1. Moreover, by Lemma 2.3.4, there
exist ν, ν ′ depending on δ, ρ, and a finite set K of positive real numbers, also depending on
δ, ρ, such that either the first conclusion or the second conclusion of Lemma 2.3.4 is satisfied
for v. Since D−1 ≤ C−1

1 C0/n, we see that there exists n0 depending on δ, ρ, p such that for
all n ≥ n0, ṽ satisfies either the first conclusion or the second conclusion of Lemma 2.3.4,
with ν/2, ν ′/2 and 2−1 · K ∪ 2 · K. After paying an overall factor of at most 2n, we may
assume that the νn coordinates of ṽ satisfying this conclusion are the first νn coordinates.
The remaining (1− ν)n coordinates of ṽ lie in the (1− ν)n-dimensional ball of radius 1. By
a volumetric argument, we see that this ball can be covered by at most 100n translates of
[0, n−1/2](1−ν)n. By paying an overall factor of 100n, we may fix the translate of [0, n−1/2](1−ν)n

that the remaining (1 − ν)n coordinates lie in. Note that each such translate contains at
most (2D/

√
n)(1−ν)n points in (1/D)Zn. Finally, taking C1(δ, ρ) sufficiently large so that

C1(δ, ρ) ·min(2−1 · K) > 1 and rescaling by D proves the claim.
To summarize, we have so far shown the following. For parameters L and γ depending

on δ, ρ, p, ϵ (to be chosen momentarily), on the event UN ∧ EK0 , the event Bj holds for some
j ∈ [C2 ·Cn

3 ], where Bj is the event that there exists some y′ ∈ Aj satisfying (2.3.2), (2.3.3),
and (by (R2)),

P
[∣∣∣∣ n∑

i=1

biy
′
i

∣∣∣∣ ≤ t

]
≤ C2.3.14µt for all t ≥

√
n, (2.3.4)

where recall that µ = 2L/(N
√
n).

We are now ready to specify the parameters L and γ. First, let

L′ := max
j
L2.2.3(Ber(p), ϵ, δ

′, (K1)j, (K2)j, (K3)j); γ
′ := min

j
γ2.2.3(Ber(p), ϵ, δ

′, (K1)j, (K2)j, (K3)j)/4.

Then, let
L := (2C1) · c−1

2.3.14 · L′ + L0; γ := γ′.
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Our goal is to bound P[∪jBj]. Let H1, . . . , Hn−1 denote the rows of H. By a standard
large deviation estimate, we can find an absolute constant Q ≥ 1 such that the event

WQ := {|{i ∈ [n− 1] :
n∑

j=1

Hi,j /∈ [pn− γn, pn+ γn]}| ≤ Q}

holds with probability at least 1 − 2−1729n. Then, it suffices to bound P[∪j(Bj ∧WQ)]. We
will provide a uniform (in j) upper bound on P[Bj ∧WQ], and then conclude using the union
bound. Note that on the event Bj, y′ belongs to the set Dj defined by

Dj :=

{
x ∈ Aj : Lp,γ

( n∑
i=1

bixi,
√
n

)
≥ LN−1

}
.

By the choice of L, it follows from Corollary 2.2.3 that for any M ≥ 1, for all sufficiently
large n,

|Dj| ≤ e−Mn|Aj| ≤ e−Mn(K3N)n, (2.3.5)

where K3 := maxj(K3)j. Moreover, it follows from (2.3.4) and Lemma 2.3.15 that

P[{∥Hy′∥2 ≤ K ′
0n} ∧WQ] ≤

(
C4LK

′
0

N

)n−Q

, (2.3.6)

where C4 ≥ 1 is an absolute constant. Here, we have used that on the event WQ, the entries
of at least n−Q rows have sum in [pn− γn, pn+ γn].

Finally, from (2.3.5) and (2.3.6), we see that first taking M to be sufficiently large (com-
pared to various constants depending on δ, ρ, p, ϵ), and then taking n sufficiently large, gives
the desired conclusion.

2.3.3 Proof of Theorem 2.3.1

We now have all the ingredients needed to prove Theorem 2.3.1. The proof uses the insight
from [71] of exploiting the exponential gap between

(
n
pn

)
and (1 − p)n for p < 1/2 by using

a ‘row boosting’ argument to reduce to an anticoncentration problem on a well-conditioned
slice.

Proof of Theorem 2.3.1. Throughout, we fix functions x(A), y(A) which take as input a ma-
trix A and output (fixed, but otherwise arbitrary) right and left least singular unit vectors,
respectively. Let B = Bn(p) for simplicity. Fix ϵ > 0 such that

(
n
pn

)
exp(ϵn) ≤ (1− p− ϵ)n.

Step 1: By the work of Rudelson and Vershynin [86], there is some cp > 0 so that for
all t > 2−2cpn,

P[sn(B) ≤ t/
√
n] ≤ Cpt;
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note that there is a slight complication since Ber(p) is not centered, but this can be handled
using standard techniques (see, e.g., [42, Theorem 1.3]) Therefore, it suffices to consider the
case t ≤ 2−2cpn.

Step 2: For δ, ρ ∈ (0, 1), we define

EL(δ, ρ) = {∃y ∈ Cons(δ, ρ) : ∥y(B)TB∥2 ≤ 2−cpn},
ER(δ, ρ) = {∃x ∈ Cons(δ, ρ) : ∥Bx(B)∥2 ≤ 2−cpn}.

Applying Proposition 2.3.3 with cp > 0, we find that there exist δ, ρ, ϵ′ > 0 such that for all
sufficiently large n,

P[sn(B) ≤ t/
√
n] ≤ 2n(1− p)n + 2(1− p− ϵ′)n + P[sn(B) ≤ t/

√
n ∧ EL(δ, ρ)c ∧ ER(δ, ρ)c].

Here, we have used that the distribution of B is invariant under transposition.
Step 3: Let γ = γ2.3.12(δ, ρ, p, ϵ). Let Wγ ⊆ {0, 1}n denote the set of vectors x ∈ {0, 1}n

such that
∑n

i=1 xi ∈ [pn− γn, pn+ γn]. As in the proof of Proposition 2.3.12, let Q ≥ 1 be
a constant such that the event

WQ := {|{i ∈ [n] : Bi /∈ Wγ}| ≤ Q}

holds with probability at least 1−2−1729n. Then, it suffices to bound P[sn(B) ≤ t/
√
n∧Ec

L∧
Ec
R ∧ WQ], where for simplicity, we have omitted the parameters δ, ρ fixed in the previous

step.
Let B1, . . . , Bn denote the rows of B, and for simplicity, let y = y(B). On the event that

sn(B) ≤ t/
√
n, we have

∥y1B1 + · · ·+ ynBn∥2 ≤ t/
√
n.

Moreover, on the event Ec
L, using Lemma 2.3.4, there is a set I ⊆ [n] such that |I| ≥ νn

and such that for all i ∈ I, |yi| ≥ κ/
√
n, for some κ := κ(δ, ρ) > 0. In particular, since

for any i ∈ [n], ∥y1B1 + · · · + ynBn∥2 ≥ |yi| dist(Bi, Hi), where Hi denotes the span of rows
B1, . . . , Bi−1, Bi+1, . . . Bn, it follows that

dist(Bi, Hi) ≤
t

κ
for all i ∈ I.

Also, on the event WQ, there are at least νn/2 indices i ∈ I such that Bi ∈ Wγ. Thus, we
see that

P[sn(B) ≤ t/
√
n ∧ Ec

L ∧ Ec
R ∧WQ] ≤

2

νn

n∑
i=1

P[dist(Bi, Hi) ≤ t/κ ∧ Ec
L ∧ Ec

R ∧Bi ∈ Wγ].

Step 4: By symmetry, it suffices to bound P[B1], where

B1 := dist(B1, H1) ≤ t/κ ∧ Ec
R ∧B1 ∈ Wγ.

Let v(H1) be a unit vector normal to H1. Then, by Proposition 2.3.12, except with proba-
bility 4−n (over the randomness of H1), exactly one of the following holds.
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• v(H1) ∈ Cons(δ, ρ), or

• Tp,γ(v(H1), L) ≤
(
n
pn

)−1
exp(ϵn),

where L := L2.3.12(δ, ρ, p, ϵ). If the first possibility occurs, then B1 cannot hold, since then,
v(H1) ∈ Cons(δ, ρ) satisfies

∥Bv(H1)∥2 = |⟨B1, v(H1)⟩| ≤ dist(B1, H1) ≤ t/κ ≤ 2−2cpn/κ,

which contradicts Ec
R for all n sufficiently large. Hence, the second possibility must hold.

But then, using dist(B1, H1) ≥ |⟨B1, v(H1)⟩|, we have that (over the randomness of B1),

P[dist(B1, H1) ≤ t/κ ∧B1 ∈ Wγ] ≤ P[|⟨B1, v(H1)⟩| ≤ t/κ | B1 ∈ Wγ]

≤ Lt

κ
+

(
n

pn

)−1

exp(ϵn)

≤ Lt

κ
+ (1− p− ϵ)n.

This completes the proof.

2.4 Non-almost-constant vectors

In this short section, we prove the following result, which controls the invertibility of random
matrices with i.i.d. discrete entries on the bulk of the unit sphere. We note that this is a
generalization of the discussion in Sections 2.3.2 and 2.3.3.

Theorem 2.4.1. Fix a discrete distribution ξ. For any δ, ρ, ϵ > 0, there exists C2.4.1 =
C2.4.1(ξ, δ, ρ, ϵ) > 0 and n2.4.1(ξ, δ, ρ, ϵ) ≥ 1 such that for all n ≥ n2.4.1 and t ≥ 0,

P
[

inf
x∈Sn−1\Cons(δ,ρ)

∥Mn(ξ)x∥2 ≤ t/
√
n∧ inf

y∈Cons(δ,ρ)
∥yMn(ξ)∥2 > C2.4.1t

]
≤ C2.4.1t+exp((ϵ−H(p⃗))n).

Let ξ be a discrete distribution, and let A = A(ξ) denote an (n− 1)× n random matrix,
each of whose entries is an independent copy of a ξ random variable. We fix a function v(A)
which takes as input an (n−1)×n matrix and outputs a unit vector in its right kernel. As in
Section 2.3, a key ingredient in the proof of Theorem 2.4.1 is a structure theorem for kernel
vectors of A, which encodes the fact that (with very high probability) non-almost-constant
kernel vectors of A must be maximally unstructured in the relevant sense.

Definition 2.4.2. Fix a discrete distribution ξ. Let γ⃗ ∈ Rk
≥0 with ∥γ⃗∥∞ < min(p⃗), and let

L ≥ 1. Then, for any integer n ≥ 1 and x ∈ Sn−1, we define

Tξ,γ⃗(x, L) := sup

{
t ∈ (0, 1) : Lξ,γ⃗

( n∑
i=1

bixi, t

)
> Lt

}
.
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We also define

Tξ(x, L) := sup

{
t ∈ (0, 1) : Lξ

( n∑
i=1

bixi, t

)
> Lt

}
.

Proposition 2.4.3. Let δ, ρ, ϵ ∈ (0, 1) and k = | supp(ξ)|. There exist L2.4.3 = L2.4.3(δ, ρ, ξ, ϵ),
γ2.4.3 = γ2.4.3(δ, ρ, ξ, ϵ) and n2.4.3 = n2.4.3(δ, ρ, ξ, ϵ) such that for all n ≥ n2.4.3, with probability
at least 1− k−2n, exactly one of the following holds.

• v(A) ∈ Cons(δ, ρ), or

• Tξ,γ2.4.31k(v(A), L2.4.3) ≤ exp((ϵ−H(p⃗))n).

Proposition 2.4.3 follows from Corollary 2.2.3 and Lemma 2.3.14 in an identical fashion
to the proof given in Section 2.3.2, so we do not repeat it here. The only minor difference
is that in the last part of the proof, we now restrict ourselves to the event that all but
Oξ,γ2.2.3(1) rows belong to a well-conditioned multislice corresponding to ξ (instead of simply
restricting to well-conditioned slices).

Given this, we can complete the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Let M := Mn(ξ) for simplicity, and let δ, ρ, ϵ > 0 be as in the
statement of the theorem. Let k = | supp(ξ)| and denote the points in the support of ξ by
a1, . . . , ak. We will denote the columns of M by M (1), . . . ,M (n). Also, for each i ∈ [n], M (−i)

denotes the subspace spanned by all columns of M except for M (i).
Step 1: Let γ = γ2.4.3(δ, ρ, ξ, ϵ). Let Wγ ⊆ supp(ξ)n denote the set of vectors x ∈

supp(ξ)n such that #{xi = aj} ∈ [pjn−γn, pjn+γn] for all j ∈ [k]. Let Q ≥ 1 be a constant
such that the event

WQ := {|{i ∈ [n] : M (i) /∈ Wγ| ≤ Q}

holds with probability at least 1− k−1729n. Then, it suffices to bound

P
[

inf
x∈Sn−1\Cons(δ,ρ)

∥Mx∥2 ≤ t/
√
n ∧ inf

y∈Cons(δ,ρ)
∥yM∥2 > Ct ∧WQ

]
. (2.4.1)

Let us denote the first of the three events in the equation above by ER, and the second event
by EL.

Let x = x(M) denote a vector in Sn−1 \ Cons(δ, ρ) certifying the event ER, so that

∥x1M (1) + · · ·+ xnM
(n)∥2 ≤ t/

√
n.

Using Lemma 2.3.4, there is a set I ⊆ [n] such that |I| ≥ νn and such that for all i ∈ I,
|xi| ≥ κ/

√
n, for some κ := κ(δ, ρ) > 0. In particular, since for any i ∈ [n], ∥x1M (1) + · · ·+

xnM
(n)∥2 ≥ |xi| dist(M (i),M (−i)), it follows that

dist(M (i),M (−i)) ≤ t

κ
for all i ∈ I.
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Also, on the event WQ, there are at least νn/2 indices i ∈ I such that M (i) ∈ Wγ. Thus, we
see that

(2.4.1) = P[ER ∧ EL ∧WQ] ≤
2

νn

n∑
i=1

P[dist(M (i),M (−i)) ≤ t/κ ∧ EL ∧M (i) ∈ Wγ].

Step 2: By symmetry, it suffices to bound P[M1], where

M1 := dist(M (1),M (−1)) ≤ t/κ ∧ EL ∧M (1) ∈ Wγ.

Let v(M (−1)) be a unit vector normal to M (−1). Then, by Proposition 2.4.3, except with
probability k−2n (over the randomness of M (−1)), exactly one of the following holds.

• v(M (−1)) ∈ Cons(δ, ρ), or

• Tξ,γ1k(v(M
(−1)), L) ≤ exp((ϵ−H(p⃗))n),

where L := L2.4.3(δ, ρ, ξ, ϵ). If the first possibility occurs, then M1 cannot hold as v(M (−1)) ∈
Cons(δ, ρ) satisfies

∥v(M (−1))M∥2 = |⟨M (1), v(M (−1))⟩| ≤ dist(M (1),M (−1)) ≤ t/κ ≤ Ct,

(choosing C appropriately), which contradicts EL. Hence, the second possibility must hold.
But then, using dist(M (1),M (−1)) ≥ |⟨M (1), v(M (−1))⟩|, we have that (over the randomness
of M (1)),

P[dist(M (1),M (−1)) ≤ t/κ ∧M (1) ∈ Wγ] ≤ P[|⟨M (1), v(M (−1))⟩| ≤ t/κ |M (1) ∈ Wγ]

≤ Lt

κ
+ exp((ϵ−H(p⃗))n)).

2.5 Preliminary invertibility estimates

In this section, we will prove a version of Theorem 2.1.8 with the weaker singularity estimate
(∥p⃗∥∞ + o(1))n. This estimate, which generalizes [103, Theorem A], will be used crucially
in our refined treatment of invertibility for almost-constant vectors in the next section. The
techniques in this section also serve as a gentle warm-up to the next section, where much
more involved versions of the arguments are presented.

We begin with the following elementary fact regarding sums of ξ random variables.

Lemma 2.5.1. Fix a discrete distribution ξ. There is θ = θ(ξ) > 0 such that for all x ∈ Sn−1,

Lξ(b1x1 + · · ·+ bnxn, θ) ≤ ∥p⃗∥∞.

Proof. This is essentially identical to the proof given in [103, Lemma 3.5]. Briefly, if ∥x∥∞ ≥
δ, then we can choose θ small enough (depending on δ and ξ) so the claim is immediate.
Otherwise ∥x∥∞ < δ and ∥x∥2 = 1, in which case the claim follows from Lemma 2.2.4 as
long as δ is sufficiently small depending on ξ.
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Combining the above estimate with the second part of Lemma 2.3.15, we have the fol-
lowing.

Corollary 2.5.2. Fix a discrete distribution ξ. For every ϵ > 0, there exists c > 0 depending
on ϵ and ξ such that for any x ∈ Sn−1 and y ∈ Rn, we have

P[∥Mn(ξ)x− y∥2 ≤ c
√
n] ≤ (∥p⃗∥∞ + ϵ)n.

Moreover, combining this corollary with the low metric entropy of Cons(δ, ρ) and Lemma 2.3.6,
we obtain the following (weak) estimate for invertibility on almost-constant vectors.

Corollary 2.5.3. Fix a discrete distribution ξ. For every ϵ > 0, there exist δ, ρ, c > 0
depending on ϵ and ξ such that for any y ∈ Rn,

P
[

inf
x∈Cons(δ,ρ)

∥Mn(ξ)x− y∥2 ≤ c
√
n

]
≤ (∥p⃗∥∞ + ϵ)n.

Next, we show that with very high probability, the inverse of any fixed vector is unstruc-
tured.

Proposition 2.5.4. Fix a discrete distribution ξ. For every ϵ, η > 0, there exist δ, ρ, L > 0
depending on ϵ, η, ξ such that for any y ∈ Rn,

P
[
∃x ∈ Sn−1 :Mn(ξ)x ∥ y ∧ x ∈ Cons(δ, ρ) ∨ Tξ(x, L) ≥ (∥p⃗∥∞ + η)n

]
≤ (∥p⃗∥∞ + ϵ)n.

Proof. This follows essentially from combining Corollary 2.5.3 with a cruder analogue of
Proposition 2.4.3, the only difference being that we are considering Mn(ξ)x ∥ y for arbitrary
y ∈ Rn as opposed to only y = 0.

To handle this last point, we begin by choosing (using Lemma 2.3.6) a sufficiently large
constant K so that EK = {∥Mn(ξ) − E[ξ]Jn×n∥ ≤ K

√
n} satisfies P[Ec

K ] ≤ ∥p⃗∥2n∞ . Then, it
suffices to restrict to EK . Moreover, by the triangle inequality, we see that on the event EK ,
∥Mn(ξ)∥ ≤ K

√
n+ E[ξ]n, so that in particular, on the event in the proposition (intersected

with EK), we have that Mn(ξ)x = ty0 with y0 ∈ Sn−1 fixed and for some t ∈ R with
|t| ≤ K

√
n+ E[ξ]n.

Now, for the treatment of vectors in Cons(δ, ρ), we can divide the range of t into n3

uniformly spaced intervals, apply Corollary 2.5.3 with y equal to the mid-point of an interval
times y0, and use the union bound. For the treatment of vectors x satisfying (x ∈ Sn−1 \
Cons(δ, ρ)) ∧ Tξ(x, L) ≤ (∥p⃗∥∞ + η)n, we divide the range of t into ∥p⃗∥−2n

∞ equally spaced
intervals, use a slight generalization of the argument in the proof of Proposition 2.3.12 with
M sufficiently large (depending on ξ) for each y equal to the mid-point of an interval times
y0, and finally use the union bound. We leave the details to the interested reader.

Using Corollary 2.5.3 and Proposition 2.5.4, we can prove the following weaker version
of Theorem 2.1.8.
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Theorem 2.5.5. Let ξ be a discrete random variable. For any ϵ > 0, there exist C, n0 > 0
depending on ξ, ϵ such that for all n ≥ n0 and t ≥ 0,

P[sn(Mn) ≤ t/
√
n] ≤ Ct+ (∥p⃗∥∞ + ϵ)n.

Proof. The deduction of this theorem follows from the argument in [103, Section 5] with
the application of Corollary 2.5.3 and Proposition 2.5.4 at the appropriate steps. A similar
deduction appears in Section 2.3.3 and a more complicated version of this deduction also
appears in Section 2.7, so we omit the details.

2.6 Almost-constant vectors

The goal of this section is to prove Theorem 2.1.10. The proof is presented at the end of the
section and needs a few intermediate steps.

For the proof, we will need to isolate the following natural class of almost-elementary
vectors.

Definition 2.6.1. (Almost-elementary vectors) For δ > 0 and i, j ∈ [n], i ̸= j, let

Elemi(δ) := {x ∈ Sn−1 : ∥x− ei∥2 ≤ δ},
Elemi,j(δ) := {x ∈ Sn−1 : ∥x− (ei − ej)/

√
2∥2 ≤ δ},

Elem′
i,j(δ) := {x ∈ Sn−1 : ∥x− (ei + ej)/

√
2∥2 ≤ δ}.

Also, let

Elem(δ) :=
⋃
i∈[n]

Elemi(δ) ∪
⋃

i,j∈[n],i ̸=j

Elemi,j(δ),

Elem′(δ) := Elem(δ) ∪
⋃

i,j∈[n],i ̸=j

Elem′
i,j(δ).

Note that
⋃

i∈[n] Elemi(δ) is exactly the set Coord(δ) defined in Section 2.3.1.
For excluding almost-constant vectors which are not almost-elementary, we will need to

develop sharp results regarding the Lévy concentration function of discrete random variables.

Proposition 2.6.2. Fix a discrete distribution ξ and δ ∈ (0, 1/2). There exists θ = θ(δ, ξ) >
0 such that for all x ∈ Sn−1 \ Elem′(δ),

Lξ(b1x1 + · · ·+ bnxn, θ) ≤ ∥p⃗∥22 − θ.

Proof. Since Elem′(δ) is increasing with δ, it suffices to prove the statement for sufficiently
small δ (depending on ξ), which will be chosen during the course of the proof. Moreover, we
may assume that |x1| ≥ |x2| ≥ · · · ≥ |xn|.
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Since x /∈ Elem1(δ), we must have ∥(x2, . . . , xn)∥2 ≥ δ/2. In case |x2| ≤ δ4, then we are
done using Lemma 2.2.4 (cf. the proof of Lemma 2.3.7) for all sufficiently small δ. Similarly,
if ∥(x3, . . . , xn)∥2 ≥ δ/4 and |x3| ≤ δ4, we are done. We now analyze the remaining situations
via case analysis.

Case I: δ4 ≤ |x2| < (1 − δ5)|x1|. Since Lξ(b1x1 + · · · + bnxn, θ) ≤ Lξ(b1x1 + b2x2, θ), it
suffices to bound the latter. Let ξ′ be an independent copy of ξ. For any s ∈ R, we have

P[x1ξ + x2ξ
′ ∈ [s− c, s+ c]]2 =

(∑
a

P[ξ′ = a]P[|ξ − x−1
1 (s− x2a)| ≤ c|x1|−1]

)2

≤
(∑

a

P[ξ′ = a]2
)(∑

a

P[|ξ − x−1
1 (s− x2a)| ≤ c|x1|−1]2

)
≤ ∥p⃗∥42,

where the sum is over a ∈ supp(ξ). Here, the equality is by definition, the first inequality
is Cauchy–Schwarz, and the last inequality holds as long as c > 0 is chosen small enough
in terms of δ, ξ. Let us elaborate on this final point. We choose c > 0 small enough so
that c|x1|−1 ≤ cδ−4 is smaller than |x2/x1| times half the minimum gap in supp(ξ), which
is possible since |x2/x1| ≥ δ4. Now, such a choice of c clearly implies that each summand
in

∑
a P[|ξ − x−1

1 (s − x2a)| ≤ c|x1|−1]2 covers at most a single atom in supp(ξ), and that
different choices of a, a′ ∈ supp(ξ) cover distinct atoms in supp(ξ).

Moreover, for such a choice of c, equality in the final inequality holds if and only if there
is a permutation σ on supp(ξ) such that for all a ∈ supp(ξ),

P[ξ′ = σ(a)] = P[|ξ − x−1
1 (s− x2a)| ≤ c|x1|−1].

Summing over all the atoms in supp(ξ), we see that if equality holds in the final inequality,
then

supp(ξ) ⊆
k⋃

j=1

[x−1
1 (s− x2a)− c|x1|−1, x−1

1 (s− x2a) + c|x1|−1],

so that in particular, supp(ξ) is contained in an interval of length at most |x2/x1|mξ+2c|x1|−1,
where mξ = max supp(ξ)−min supp(ξ). But since |x2/x1| ≤ 1− δ5 and c|x1|−1 ≤ cδ−4, we
see (by taking c > 0 sufficiently small) that supp(ξ) is contained in an interval of length
at most (1 − δ5/2)mξ, which contradicts the definition of mξ. Hence, we see that equality
cannot hold in the final inequality.

Since equality does not hold, it follows from the above discussion that (for c > 0 suffi-
ciently small), we have the stronger inequality

P[x1ξ + x2ξ
′ ∈ [s− c, s+ c]]2 ≤ ∥p⃗∥22(∥p⃗∥22 − (min p⃗)2),

which completes the analysis in this case, noting that the choice of c depends only on ξ, δ.
Case II: |x2| ≥ (1 − δ5)|x1|, ∥(x3, . . . , xn)∥2 ≤ δ/4. This implies that x ∈ Elem′

1,2(δ) ∪
Elem1,2(δ), thereby violating our assumption.

Case III: δ4 ≤ |x3| ≤ (1− δ5)|x1|. This can be treated in exactly the same way as Case
I.
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Case IV: (1− δ5)|x1| ≤ |x3| ≤ |x2| and |x2| ≥ δ4. It suffices to bound Lξ(b1x1 + b2x2 +
b3x3). Let ui ∈ {±1} be defined via ui = sgn(xi) = xi/|xi|. Let m′

ξ > 0 be the smallest
positive real such that supp(ξ) ⊆ [−m′

ξ,m
′
ξ].

We begin by noting that for any s ∈ R,

P[x1ξ1 + x2ξ2 + x3ξ3 ∈ [s− c, s+ c]]

= P[|x1|(u1ξ1 + |x1|−1|x2|u2ξ2 + |x1|−1|x3|u3ξ3) ∈ [s− c, s+ c]]

≤ P[|x1|(u1ξ1 + u2ξ2 + u3ξ3) ∈ [s− c− 3δ5m′
ξ, s+ c+ 3δ5m′

ξ]],

where the inequality uses (1− δ5) ≤ |x1|−1|x3| ≤ |x1|−1|x2| ≤ 1, |x1| ≤ 1, and the definition
of m′

ξ.
Since |x1| ≥ |x2| ≥ δ4, this localizes the value of u1ξ1+u2ξ2+u3ξ3 to an interval of length

at most 2(cδ−4 + 3δm′
ξ). As discussed at the beginning, we can assume that δ is sufficiently

small based on ξ. By first choosing δ > 0 sufficiently small depending on ξ, and then
choosing c > 0 sufficiently small depending on δ and ξ, we may assume that 2(cδ−4 + 3δm′

ξ)
is smaller than the minimum distance between two distinct atoms in both supp(ξ + ξ′ + ξ′′)
and supp(ξ + ξ′ − ξ′′), where ξ, ξ′, ξ′′ are independent copies of ξ. Note that, after possibly
multiplying by an overall negative sign, u1ξ1 + u2ξ2 + u3ξ3 is distributed as either ξ+ ξ′ + ξ′′

or ξ + ξ′ − ξ′′.
Therefore, by our choice of δ and c, we see that it suffices to show that for all s ∈ R,

P[ξ1 + ξ2 + ξ3 = s] ≤ ∥p⃗∥22 − cξ, P[ξ1 + ξ2 − ξ3 = s] ≤ ∥p⃗∥22 − cξ,

for some cξ > 0 depending only on ξ. Now for u3 ∈ {±1}, we have

P[ξ1 + ξ2 + u3ξ3 = s]2 =

(∑
a

P[ξ3 = a]P[ξ1 + ξ2 = s− u3a]

)2

≤
(∑

a

P[ξ3 = a]2
)(∑

a

P[ξ1 + ξ2 = s− u3a]
2

)
≤

(∑
a

P[ξ3 = a]2
)( ∑

a′∈supp(ξ1+ξ2)

P[ξ1 + ξ2 = a′]2
)

≤ ∥p⃗∥42,

where the first line is by definition, the second line is Cauchy–Schwarz, and the last line
follows by Young’s convolution inequality. To obtain the inequality with a positive constant
cξ > 0, we note that equality cannot hold in the third line since supp(ξ1 + ξ2) has strictly
more positive atoms than supp(ξ) (since ξ is supported on at least 2 points), and this leads
to the desired improvement since ξ has finite support.

When ξ is not a translate of an origin-symmetric distribution, the above result can be
strengthened.
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Proposition 2.6.3. Fix a discrete distribution ξ and δ ∈ (0, 1/2). Suppose that ξ is not a
translate of any origin-symmetric distribution. Then, there exists θ = θ(δ, ξ) > 0 such that
for all x ∈ Sn−1 \ Elem(δ),

Lξ(b1x1 + · · ·+ bnxn, θ) ≤ ∥p⃗∥22 − θ.

Proof. As before, since Elem(δ) is increasing with δ, it suffices to prove the statement for
sufficiently small δ depending on ξ. By Proposition 2.6.2, we can choose θ = θ(δ, ξ) > 0 such
that for all x ∈ Sn−1 \ Elem′(δ),

Lξ(b1x1 + · · ·+ bnxn, θ) ≤ ∥p⃗∥22 − θ.

Hence, it remains to prove the result for x ∈ Elem′(δ) \Elem(δ). By symmetry, it suffices to
consider x ∈ Elem′

1,2(δ). We will bound Lξ(b1x1 + b2x2, θ).
We use an argument similar to Case IV of the proof of Proposition 2.6.2. Let m′

ξ > 0
be the smallest positive real for which supp(ξ) ⊆ [−m′

ξ,m
′
ξ]. We have

P[x1ξ1 + x2ξ2 ∈ [s− c, s+ c]] ≤ P
[

1√
2
(ξ1 + ξ2) ∈ [s− c− 2m′

ξδ, s+ c+ 2m′
ξδ]

]
.

Once again, by choosing δ and c sufficiently small (depending on ξ), we may assume that
2(c+2m′

ξδ) is smaller than the minimum distance between two distinct atoms in supp(ξ+ξ′),
where ξ, ξ′ are independent copies of ξ. With this choice of δ and c, the problem reduces to
showing that there exists some cξ > 0 depending only on ξ such that for all s ∈ R,

P[ξ1 + ξ2 = s] ≤ ∥p⃗∥22 − cξ.

We have

P[ξ1+ξ2 = s] =
∑
a

P[ξ1 = a]P[ξ2 = s−a] ≤
(∑

a

P[ξ1 = a]2
)1/2(∑

a

P[ξ2 = s−a]2
)1/2

≤ ∥p⃗∥22,

where the first inequality is Cauchy–Schwarz. To obtain the improved inequality with cξ > 0,
we note that equality can hold in both inequalities if and only if P[ξ1 = a] = P[ξ2 = s− a],
which implies that ξ is a shift (by s/2) of an origin-symmetric random variable. Since we
have assumed that ξ is not a shift of an origin-symmetric random variable, we see that
equality cannot hold, and using that the support of ξ is finite, we can conclude.

Using the preceding lemmas, and exploiting the low metric entropy of Cons(δ, ρ) along
with Lemma 2.3.6, we obtain the following corollary. Note that since ξ may not have mean 0,
one must perform the standard trick of densifying the net of these vectors along the direction
1n (see [103, Proposition 3.6]). We omit the (standard) proof; as in Proposition 2.3.8, it is
closely related to the proof of [103, Proposition 3.6].
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Corollary 2.6.4. Fix a discrete distribution ξ. For all δ′ > 0, there exist δ, ρ, ϵ′, n0 > 0,
depending on ξ and δ′, such that for all n ≥ n0,

P[∃x ∈ Cons(δ, ρ) \ Elem′(δ′) : ∥Mn(ξ)x∥2 ≤ ϵ′
√
n] ≤ (∥p⃗∥22 − ϵ′)n.

Further, if ξ is not a shift of any origin-symmetric random variable, then the same conclusion
holds with Elem(δ′) instead of Elem′(δ′).

Given the previous corollary, it remains to analyze vectors in Elem′(δ′) (or only in
Elem(δ′) if ξ is not a shift of any origin-symmetric random variable), which is the content of
the remainder of this section.

2.6.1 Two columns

We first handle vectors in Elemi,j(δ
′). By the invariance of the distribution of Mn(ξ) under

permuting columns, it suffices to analyze vectors in Elem1,2(δ
′). We show the following.

Proposition 2.6.5. Fix a discrete distribution ξ. There exist δ′, η, n0 > 0 depending on ξ
such that for all n ≥ n0 and t ≤ 1,

P[∃x ∈ Elem1,2(δ
′) : ∥Mn(ξ)x∥2 ≤ t] ≤ ∥p⃗∥2n2 + (∥p⃗∥22 − η)n + t exp(−ηn).

We will need the following preliminary lemma, which essentially follows from the seminal
work of Rudelson and Vershynin [86]. Since we were not able to locate the statement we
need in the literature, we provide details below.

Lemma 2.6.6. Fix S, s > 0. There exist C ′, c′, n0 > 0 depending on s, S such that the
following holds. For all n ≥ n0, any v ∈ Rn with ∥v∥2 ≥ 1, any κ ∈ (0, 1), and all t ≤ 1, we
have

P[∃x ∈ Rn−1 : ∥Ax− v∥2 ≤ t] ≤ C ′n3
√
t exp(κn) + exp(−c′n) exp(κn),

where A is an n× (n− 1) random matrix, each of whose entries is an independent random
variable with sub-Gaussian norm at most S, and such that all but a collection of κn specified
entries have variance at least s.

Proof. By the law of total probability, it suffices to assume that the κn specified entries
are deterministic, and take the values a1, . . . , aκn. Consider the n× (n− 1) random matrix
A′, which has the same distribution as A, except for the κn specified entries, which are
now replaced by a1 + b1, . . . , aκn + bκn, where b1, . . . , bκn are independent Ber(1/2) random
variables.

From a slight generalization of Lemma 2.3.10 (specifically, one should replace the appli-
cation of [86] with an inhomogeneous version due to [73] and replace 2−cn by t, see the proof
of Lemma 2.6.9), we get that there exist C ′, c′, n0 depending on s, S such that for all n ≥ n0,
for any v ∈ Rn with ∥v∥2 ≥ 1, and for all t ≥ 1, we have

P[∃x ∈ Rn−1 : ∥A′x− v∥2 ≤ t] ≤ C ′n3
√
t+ exp(−c′n).

The conclusion now follows since, with probability 2−κn, b1 = · · · = bκn = 0.
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We now prove Proposition 2.6.5.

Proof of Proposition 2.6.5. By Lemma 2.3.6, we can choose K > 0 depending on ξ such that
P[EK ] ≤ ∥p⃗∥3n2 , where

EK := {∥Mn(ξ)− E[ξ]Jn×n∥ ≤ K
√
n}.

For δ′ ∈ (0, 1/4), which will be chosen later in terms of ξ, let

E := {∃x ∈ Bn
2 (e1, δ

′) ∩ Sn−1 : ∥Mn(ξ)Qx∥2 ≤ t},

where Q is the rotation matrix whose bottom-right (n − 2) × (n − 2) minor is the identity
matrix, and the top-left 2× 2 minor is the rotation matrix given by[

1√
2

1√
2

− 1√
2

1√
2

]
.

Up to scaling δ′ by a constant factor, this is clearly equivalent to the event that we wish to
bound.

Note that on the event E , there exists some vector y = e1 + u ∈ Rn with u1 = 0 and
∥u∥2 ≤ 4δ′ such that

∥Mn(ξ)Qy∥2 ≤ 2t.

Let u′ = (u2, . . . , un) ∈ Rn−1, let M̃ (1) be the first column of Mn(ξ)Q, and let M̃ (−1) denote
the n × (n − 1) matrix obtained by removing this column. Then, on the event E ∧ EK , we
have

∥M̃ (1) − E[ξ]Jn×n−1u
′∥2 ≤ ∥M̃ (1) + M̃ (−1)u′∥2 + ∥(M̃ (−1) − E[ξ]Jn×n−1)u

′∥2
≤ 2t+K

√
n · 4δ′

≤ 8Kδ′
√
n

for all sufficiently large n, since t ≤ 1.
The key point is the following. Let Ξ := supp(ξ − ξ′)/

√
2 ⊆ R. Let

C := {a ∈ Ξn : ∃λ ∈ R with ∥a− λ1n∥2 ≤ 8Kδ′
√
n},

and for κ = κ(δ′, ξ) > 0, to be chosen later depending on δ′, ξ, and for z ∈ Ξ, let

Cz := C ∩ {a ∈ Rn : | supp(a− z1n)| ≤ κn}.

It is easy to see that
C ⊆

⋃
z∈Ξ

Cz

for an appropriate choice of κ which goes to 0 as δ′ goes to 0. Furthermore,

P[M̃ (1) ∈ Cz] ≤ P[(ξ − ξ′)/
√
2 = z]n exp(cκ,δ′,ξn),
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where cκ,δ′,ξ > 0 goes to 0 as κ, δ′ go to 0. Therefore, we have

P[M̃ (1) ∈ C] ≤ ∥p⃗∥2n2 exp(2cκ,δ′,ξn), and

P[M̃ (1) ∈ C \ C0] ≤ (∥p⃗∥22 − cξ)
n

for some cξ > 0 depending only on ξ, provided that δ′ (hence κ) is chosen sufficiently small.
Here, for the second inequality, we have used that by Cauchy–Schwarz (as in the proof of
Proposition 2.6.2), the unique most probable atom of (ξ − ξ′)/

√
2 is at 0, and is ∥p⃗∥22, so

that any other atom in Ξ has probability at most ∥p⃗∥22 − 2cξ for some cξ > 0.
So far, we have shown that for all κ and δ′ sufficiently small (depending on ξ), we have

P[E ] ≤ ∥p⃗∥3n2 +
∑
a∈C

P[M̃ (1) = a]P[∃u′ ∈ Rn−1 : ∥M̃ (−1)u′ + a∥2 ≤ 2t|M̃ (1)]

≤ ∥p⃗∥3n2 + (∥p⃗∥22 − cξ)
n +

∑
a∈C0

P[M̃ (1) = a]P[∃u′ ∈ Rn−1 : ∥M̃ (−1)u′ + a∥2 ≤ 2t|M̃ (1)].

We proceed to bound the third term in the above sum.
Case I: If a = 0, we have P[M̃ (1) = 0] = ∥p∥2n2 .
Case II: If a ̸= 0, we have in particular that ∥a∥2 ≥ hξ > 0. The crucial observation is the

following. Given M̃ (1) = a, the entries of the first column of M̃ (−1) are independent random
variables, each of which is distributed as the sum of two i.i.d. copies of ξ/

√
2, conditioned

on knowing their difference. In particular, for the coordinates i ∈ [n] for which ai = 0, the
corresponding coordinate of the first column of M̃ (−1) is distributed as

√
2 · ξ∗, where ξ∗ has

the same support as ξ but takes on atom ai with probability proportional to p2i . Thus, we see
that conditioned on M̃ (1) = a ∈ C0, all entries of M̃ (−1) are independent with sub-Gaussian
norm at most Sξ, and all but at most κn entries have variance at least sξ > 0. Hence, by
Lemma 2.6.6, and by using the lower bound ∥a∥2 ≥ hξ, we find that there exist C ′, c′, n1

depending on ξ such that for all n ≥ n1,

P[∃u′ ∈ Rn−1 : ∥M̃ (−1)u′ + a∥2 ≤ 2t|M̃ (1)] ≤ C ′n3
√
t exp(κn) + exp(−c′n) exp(κn).

Thus, the contribution of this case is at most

∥p⃗∥2n2 exp(2cκ,δ′,ξn) exp(κn)

(
C ′n3

√
t+ 2 exp(−c′n)

)
.

By the AM-GM inequality, we have ∥p⃗∥2n2
√
t ≤ t∥p⃗∥n2 + ∥p⃗∥3n2 . The desired conclusion now

follows by taking η > 0 sufficiently small so that ∥p⃗∥n2 ≤ exp(−2ηn), and then taking δ′

(hence κ) sufficiently small so that 2cκ,δ′,ξ + κ < min(c′/2, η/2).

The preceding proposition handles vectors in Elemi,j(δ). If the distribution ξ is a trans-
late of an origin-symmetric distribution, we also need to handle vectors in Elem′

i,j(δ). In
case the distribution ξ is itself an origin-symmetric distribution, the desired bound follows
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immediately from the previous proposition, using that the distribution of any column of
Mn(ξ) is invariant under negation in this case. Therefore, it remains to handle vectors in
Elem′

i,j(δ) when ξ is a nonzero translate of an origin-symmetric distribution, which is done
by the next proposition.

Proposition 2.6.7. Fix a discrete distribution ξ that is a nonzero translate of an origin-
symmetric distribution. There exist δ′, η, n0 > 0 depending on ξ such that for all n ≥ n0 and
t ≤ 1,

P[∃x ∈ Elem′
1,2(δ

′) : ∥Mn(ξ)x∥2 ≤ t] ≤ (∥p⃗∥22 − η)n + t exp(−ηn).
Proof. The proof is essentially the same as that of Proposition 2.6.5. The lack of the “main
term” ∥p⃗∥22 comes from the fact that e1 + e2 is unlikely to be a kernel vector since ξ is not
origin-symmetric.

We quickly discuss the main modifications to the proof of Proposition 2.6.5. Throughout,
s ̸= 0 denotes a real number such that ξ and s − ξ have the same distribution (such an s
exists by our assumption about ξ). First, the top-left 2× 2 minor of Q is now[

1√
2

− 1√
2

1√
2

1√
2

]
.

Next, we let Ξ = supp(ξ + ξ′)/
√
2 and as before, let

C := {a ∈ Ξn : ∃λ ∈ R with ∥a− λ1n∥2 ≤ 8Kδ′
√
n}

and for z ∈ Ξ,
Cz := C ∩ {a ∈ Rn : | supp(a− z1n)| ≤ κn},

where κ = κ(δ′, ξ) > 0 is chosen as in the previous argument. For such a choice of κ, we
have

P[M̃ (1) ∈ C] ≤ ∥p⃗∥2n2 exp(2cκ,δ′,ξn), and

P[M̃ (1) ∈ C \ Cs/√2] ≤ (∥p⃗∥22 − cξ)
n.

This time the inequalities are derived as follows. We note that, by Cauchy–Schwarz, for any
z ∈ Ξ, P[ξ+ξ′ = z

√
2] ≤ ∥p⃗∥22, with equality holding if and only if P[ξ = a] = P[ξ′ = z

√
2−a]

for all a ∈ supp(ξ), which happens if and only if z = s/
√
2.

Using this, we have as before that

P[E ] ≤ ∥p⃗∥3n2 + (∥p⃗∥22 − cξ)
n +

∑
a∈Cs/√2

P[M̃ (1) = a]P[∃u′ ∈ Rn−1 : ∥M̃ (−1)u′ + a∥2 ≤ 2t|M̃ (1)].

The most important detail is that for κ ≤ 1/2 (say), every a ∈ Cs/√2 is nonzero, since it
has at least (1 − κ)n coordinates equal to s/

√
2. Since s is a nonzero constant depending

only on ξ, we can now use the analysis in Case II of the proof of Proposition 2.6.5. The
final thing to note is that the distribution of the random variable (ξ − ξ′)/

√
2, conditioned

on (ξ + ξ′)/
√
2 = s/

√
2 coincides with the distribution of (2ξ∗ − s)/

√
2, where ξ∗ has the

same support as ξ, but takes on atom ai with probability proportional to p2i . The remaining
details of the proof are essentially the same.
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2.6.2 One column

We now handle vectors in Elemi(δ
′). Once again, by permutation invariance, it suffices to

handle Elem1(δ
′). We will prove the following.

Proposition 2.6.8. Fix a discrete distribution ξ. There exist C ′, δ′, η, n0 > 0 depending on
ξ such that for all n ≥ n0 and t ≤ 1,

P[∃x ∈ Elem1(δ
′) : ∥Mn(ξ)x∥2 ≤ t] ≤ pn0 + C ′t exp(−ηn) + (∥p⃗∥22 − η)n.

The analysis is more delicate than the two column case, since (i) we may have p0 < ∥p⃗∥∞,
but we still want to isolate p0 as the major contribution coming from these events, and (ii) we
are aiming for an error term of (∥p⃗∥22 − η)n, which may be smaller than (p0 − η)n. However,
given the preparation above, the rest of the proof is similar to the proof in the sparse
Bernoulli case, isolated in Proposition 2.3.9, except that we need to replace the application
of the results of Rudelson and Vershynin [86] with the much sharper Proposition 2.5.4 and
Theorem 2.5.5.

We begin with the following proposition.

Lemma 2.6.9. Fix a discrete distribution ξ. For any η ∈ (0, 1), there exist C, n0 > 0
depending on ξ, η for which the following holds. For any v ∈ Rn with ∥v∥2 ≥ 1, n ≥ n0, and
t ≥ 0, we have

P[∃x ∈ Rn−1 : ∥Ax− v∥2 ≤ t] ≤ C · n3t1/2 + (∥p⃗∥∞ + η)n,

where A is a random n× (n− 1) matrix with independent ξ entries.

Proof. Fix η > 0, and let E be the event whose probability we are trying to control. After
potentially reindexing the coordinates, we may write

A =

[
R

An−1

]
, v =

[
v1
v′

]
where An−1 is an (n − 1) × (n − 1) matrix and v′ ∈ Rn−1 satisfies ∥v′∥2 ≥ 1/2. Let
ES = {sn−1(An−1) ≤

√
t}. By Theorem 2.5.5, we have that for all sufficiently large n, there

exists a constant C ′ depending on ξ and η such that

P[ES] ≤ C ′√nt+ (∥p⃗∥∞ + η/2)n.

It therefore suffices to bound the probability of E ∧ Ec
S. In such a situation, we see that

y := (An−1)
−1v′ is unique. Let y0 := y/∥y∥2, and for δ, ρ, L to be chosen momentarily, let

EU = {y0 ∈ Cons(δ, ρ) ∨ Tξ(y0, L) ≥ (∥p⃗∥∞ + η/2)n}.

By Proposition 2.5.4, we can choose δ, ρ, L > 0 depending on ξ and η so that

P[EU ] ≤ (∥p⃗∥∞ + η/2)n.
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Hence, it suffices to bound the probability of E ∧Ec
S∧Ec

U . Let x ∈ Rn−1 be a vector certifying
this event. Then, we have for all sufficiently large n that

∥An−1x− v′∥2 ≤ t =⇒ ∥x− y∥2 ≤ t1/2, and

|Rx− v1| ≤ t =⇒ |Ry − v1| ≤ t+ nt1/2.

Furthermore, since ∥v∥2 ≥ 1, we have ∥y∥2 ≥ 1/C ′′n2, for some constant C ′′ depending on
ξ.

We now fix a realization of An−1 satisfying Ec
S∧Ec

U . In particular, this fixes y, y0 satisfying
the conditions in Ec

U and with ∥y∥2 ≥ 1/C ′′n2. Now, we use the independence of R and An−1

and the fact that E implies

|Ry − v1| ≤ t+ nt1/2 ≤ 2nt1/2.

Since
Tξ(y0, L) < (∥p⃗∥∞ + η/2)n

and ∥y∥2 ≥ 1/C ′′n2, we find that the desired probability is bounded by

2LC ′′n3t1/2 + L(∥p⃗∥∞ + η/2)n.

Now we are ready to conclude Proposition 2.6.8.

Proof of Proposition 2.6.8. A completely identical argument to the proof of Proposition 2.6.5
shows that for a sufficiently large constant K depending on ξ, and for Ξ := supp(ξ) ⊆ R,

P[E ] ≤ p3n0 +
∑
a∈C

P[M (1) = a]P[∃u′ ∈ Rn−1 : ∥M (−1)u′ + a∥2 ≤ 2t],

where M (1) denotes the first column of Mn, M (−1) denotes the n× (n− 1) matrix formed by
excluding this column, and

C = {a ∈ Ξn : ∃λ ∈ R with ∥a− λ1n∥2 ≤ 8Kδ′
√
n}.

We want to bound the contribution of the sum on the right hand side.
Case I: If a = 0, P[M (1) = a] = pn0 .
Case II: If a ̸= 0, then ∥a∥2 ≥ hξ > 0. Hence, by Lemma 2.6.9, there is a constant

C > 0 depending on ξ, η such that

P[∃u′ ∈ Rn−1 : ∥M (−1)u′ + a∥2 ≤ 2t] ≤ Cn3
√
t+ (∥p⃗∥∞ + η/2)n.

Moreover, a similar (but easier) argument as in the proof of Proposition 2.6.5 shows that

P[M (1) ∈ C] ≤ ∥p⃗∥n∞ exp(cξ,δ′n),

where cξ,δ′ goes to 0 as δ′ goes to 0.
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Hence, we see that the contribution to the sum from this case is bounded by

∥p⃗∥n∞ exp(cξ,δ′n) ·
(
Cn3

√
t+ (∥p⃗∥∞ + η/2)n

)
.

By choosing δ′ sufficiently small depending on ξ and η, and using ∥p⃗∥2∞ ≤ ∥p⃗∥22− cξ for some
cξ > 0, we see as before (using the AM-GM inequality) that the above quantity is at most

t exp(−η′n) + (∥p⃗∥22 − η′)n

for a sufficiently small η′ depending on ξ and η. This completes the proof.

The proof of Theorem 2.1.10 is now immediate.

Proof of Theorem 2.1.10. First, assume that ξ is not a shift of an origin-symmetric random
variable. We choose δ′ small enough so that the conclusions of Propositions 2.6.5 and 2.6.8
are satisfied. By the union bound, this shows that the contribution of Elem(δ′) to the
probability is at most

nP[Ee1 ] +
(
n

2

)
P[Ee1−e2 ] + (t+ ∥p⃗∥2n2 )e−ηn,

for a sufficiently small η > 0 depending on ξ, and for all sufficiently large n depending on ξ.
Now, we can conclude using Corollary 2.6.4.

Next, if ξ is a nonzero shift of an origin-symmetric random variable, we do the same,
except we require Propositions 2.6.5, 2.6.7, and 2.6.8 and then conclude with Corollary 2.6.4.

Finally, we consider the case when ξ is an origin-symmetric random variable. As before,
we begin by using Propositions 2.6.5 and 2.6.8. The only thing to note is that, by the
symmetry of ξ about the origin, for all i ̸= j, P[Eei−ej ] = P[Eei+ej ]. Hence, by the union
bound, the contribution of Elem′(δ′) to the probability is at most

nP[Ee1 ] +
(
n

2

)
(P[Ee1−e2 ] + P[Ee1+e2 ]) + (t+ ∥p⃗∥2n2 )e−ηn.

Now, we can conclude using Corollary 2.6.4.

2.7 Deduction of Theorems 2.1.2 and 2.1.8

Given the results in Sections 2.4 and 2.6, the deduction of Theorems 2.1.2 and 2.1.8 is
immediate. Fix a discrete distribution ξ, and let δ, ρ, η, n0 > 0 be parameters depending
on ξ coming from Theorem 2.1.10. Then, for the proof of Theorem 2.1.8, let ϵ > 0 be as
in the statement of the theorem (it suffices to assume that ϵ < 1), and for the proof of
Theorem 2.1.2, let ϵ > 0 be such that

exp(2ϵ−H(p⃗)) < ∥p⃗∥22,
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which is possible since, by the weighted AM-GM inequality, we have

exp(−H(p⃗)) =
∏
i

ppii ≤
∑
i

p2i = ∥p⃗∥22,

and equality holds if and only if ξ is uniform on its support.
Let C = C2.4.1(ξ, δ, ρ, ϵ/2). By taking Cξ,ϵ in Theorem 2.1.8 and Cξ in Theorem 2.1.2 to

be at least C, we may restrict our attention to 0 ≤ t ≤ 1/C (since for t ≥ 1/C, the right-hand
sides of Theorems 2.1.2 and 2.1.8 are at least 1). By Theorem 2.1.10 and Theorem 2.4.1, for
all 0 ≤ t ≤ 1/C, we have

P[sn(Mn(ξ)) ≤ t/
√
n] ≤ P

[
inf

x∈Cons(δ,ρ)
∥Mn(ξ)x∥2 ≤ t/

√
n

]
+ P

[
inf

y∈Cons(δ,ρ)
∥yMn(ξ)∥2 ≤ Ct

]
+ P

[
inf

x∈Sn−1\Cons(δ,ρ)
∥Mn(ξ)x∥2 ≤ t/

√
n ∧ inf

y∈Cons(δ,ρ)
∥yMn(ξ)∥2 > Ct

]
≤ 2nP[Ee1 ] + (n2 − n)(P[Ee1−e2 ] + P[Ee1+e2 ]) + 2(Ct+ ∥p⃗∥2n2 )e−ηn

+ Ct+ exp((ϵ/2−H(p⃗))n)

for all sufficiently large n. Here, we have used that Mn(ξ) and Mn(ξ)
⊺ have the same

distribution.
For Theorem 2.1.2, we are done by our choice of ϵ.
For Theorem 2.1.8, we note that by Cauchy–Schwarz (as in Proposition 2.6.2), P[Ee1+e2 ] ≤

P[Ee1−e2 ] and recall from above that exp(−H(p⃗)) ≤ ∥p⃗∥22. Using this, we can bound the right
hand side of the above computation by

2Ct+ 2nP[Ee1 ] + 2n2 exp(ϵn/2)P[Ee1−e2 ].

The desired conclusion follows since 2n2 exp(ϵn/2) ≤ (1 + ϵ)n for all ϵ < 1 and n sufficiently
large.

2.8 Singularity of random combinatorial matrices

In this section, we discuss the proof of Theorem 2.1.11. Given Theorem 2.4.1, the only
ingredient we need is the following estimate for invertibility on almost constant vectors.

Proposition 2.8.1. For any ϵ > 0, there exist δ, ρ, c, n0 depending on ϵ such that for all
n ≥ n0,

P
[

inf
x∈Cons(δ,ρ)

∥Qnx∥2 ≤ c
√
n ∨ inf

y∈Cons(δ,ρ)
∥yQn∥2 ≤ c

√
n

]
≤

(
1

2
+ ϵ

)n

.

We begin with the easier case of ∥yQn∥2.
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Lemma 2.8.2. For any ϵ > 0, there exists c, n0 depending on ϵ such that for all n ≥ n0 and
for any y ∈ Sn−1,

P[∥yQn∥2 ≤ c
√
n] ≤ (1/2 + ϵ)n.

Proof. Without loss of generality, we may assume that |y1| ≥ · · · ≥ |yn|. We divide the proof
into two cases depending on |y1|. Let δ > 0 be a constant to be chosen at the end of the
proof.

Case I: |y1| < δ. Note that any entry in the first n/4 columns of Qn, conditioned on
all the remaining entries in the first n/4 columns of Qn, is distributed as Ber(p) for some
p ∈ [1/3, 2/3]. Moreover, by Lemma 2.2.4, it follows that for independent random variables
ξ1, . . . , ξn, where ξi ∼ Ber(pi) for some pi ∈ [1/3, 2/3],

L(y1ξ1 + · · ·+ ynξn, δ) ≤ 3C2.2.4δ.

Therefore, a slight conditional generalization of the second part of Lemma 2.3.15 (which has
the same proof) shows that

P[∥yQn∥2 ≤ δ
√
n/8] ≤ (20C2.2.4δ)

n/8 ≤ (1/4)n,

provided that δ is chosen sufficiently small depending on C2.2.4.
Case II: |y1| ≥ δ. Let R1, . . . , Rn denote the rows of Qn. Then,

P[∥yQn∥2 ≤ δc
√
n] ≤ sup

R2,...,Rn

P[∥y1R1 + y2R2 + · · ·+ ynRn∥2 ≤ δc
√
n|R2, . . . , Rn]

≤ sup
v∈Rn

P[∥R1 − v∥2 ≤ c
√
n] ≤

(
n

n/2

)−1(
n

2c2n

)
≤

(
1

2
+ ϵ

)n

,

provided that c > 0 is chosen to be sufficiently small depending on ϵ > 0. This completes
the proof.

Next, we deal with the harder case of ∥Qnx∥2. We will need the following analogue of
Lemma 2.5.1.

Lemma 2.8.3. For any ϵ ∈ (0, 1/8), there exist θ = θ(ϵ) > 0 and n0 depending on ϵ for
which the following holds. For all n ≥ n0 and for all x ∈ Sn−1 such that |⟨x, 1n/

√
n⟩| ≤ 1/2,

we have
L(q · x, θ) ≤ 1/2 + ϵ,

where q is distributed uniformly on {0, 1}nn/2.

Proof. Without loss of generality, we may assume that |x1| ≥ · · · ≥ |xn|. Again, we divide
the proof into two cases depending on |x1|. Let δ > 0 be a constant to be chosen at the end
of the proof.

Case I: |x1| < δ. Let µ := E[q · x] and σ2 := Var(q · x). Since ⟨x, 1n⟩ ≤
√
n/2, a

direct computation shows that σ2 ≥ 3/16. Moreover, a quantitative combinatorial central
limit theorem due to Bolthausen [10] shows that the L∞ distance between the cumulative
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distribution function of (q ·x−µ)/σ and that of the standard Gaussian is at most Cδ, where
C is an absolute constant. Hence, for all δ sufficiently small, we have L(q · x, δ) ≤ 1/4
whenever |x1| < δ.

Case II: |x1| ≥ δ. Let G denote the event (depending on q) that

(n− ϵ2n− 1)−1

n−ϵ2n∑
i=2

qi ∈ [1/2− ϵ4/2, 1/2 + ϵ4/2].

Then for all sufficiently large n, we have

sup
r∈R

P[|q · x− r| ≤ θ] ≤ sup
r∈R

P[|q · x− r| ≤ θ ∧ G] + P[Gc]

≤ sup
r∈R

P[|q · x− r| ≤ θ ∧ G] + 2 exp(−ϵ8n/128),

where the final inequality is by a standard large deviation estimate. It remains to control
P[|q · x − r| ≤ θ ∧ G]. For this, fix any realization q′ := (q2, . . . , qn−ϵ2n) satisfying G. Note
that

1/2− 2ϵ2 ≤ inf
q′∈G

P[q1 = 0 | q′] ≤ sup
q′∈G

P[q1 = 0 | q′] ≤ 1/2 + 2ϵ2.

Note also that, since
∑

i≥n−ϵ2n x
2
i ≤ ϵ2 (this uses ∥x∥2 = 1 and |x1| ≥ |x2| ≥ · · · ≥ |xn|), it

follows that
sup

q′∈G,q1
Var

[ ∑
i≥n−ϵ2n

qixi

∣∣∣∣q1, q′] ≤ ϵ2,

so that by Markov’s inequality,

sup
q′∈G,q1

P
[∣∣∣∣ ∑

i≥n−ϵ2n

qixi − f(q′, q1)

∣∣∣∣ ≥ δ

8

∣∣∣∣q′, q1] ≤ 32ϵ2

δ2
,

where f(q′, q1) denotes the mean of
∑

i≥n−ϵ2n qixi conditioned on q′, q1. Finally, since |x1| ≥ δ,
and since

sup
q′∈G

|f(q′, 0)− f(q′, 1)| ≤ |xn−ϵ2n| ≤ 2/
√
n,

it follows by putting everything together that

sup
r∈R

P[|q · x− r| ≤ θ ∧ G] ≤ sup
r∈R

sup
q′∈G

P[|q · x− r| ≤ θ | q′] ≤ 1/2 + 2ϵ2 + 64ϵ2/δ2,

provided that θ is chosen sufficiently small compared to δ, and n is sufficiently large. Indeed,
the two values of q1x1 (for q1 = 1 and q1 = 0) differ by |x1|, which is at least δ by assumption,
and the above discussion shows that given q′ and q1,

∑
i≥n−ϵ2n qixi is localized in an interval of

length δ/2 + 2/
√
n except with probability at most 32ϵ2/δ2. Since δ is an absolute constant

coming from Case I, this gives the desired conclusion for all sufficiently small ϵ, which
completes the proof.
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Given the previous two lemmas, the proof of Proposition 2.8.1 is by now standard.

Proof of Proposition 2.8.1. The estimate for infy∈Cons(δ,ρ)∥yQn∥2 ≤ c
√
n (for a suitable choice

of δ, ρ, c) follows immediately by combining Lemma 2.8.2 with the low metric entropy of
Cons(δ, ρ). To exploit the latter, one could either use a randomized rounding based net
construction due to Livshyts [72, Theorem 4], which uses that ∥Qn∥2HS ≤ n2, or one could use
the fact that there exists a constant K such that with probability at least 1−4−n, all singular
values of Qn except for the top singular value are at most K

√
n (see [104, Proposition 2.8]).

For the estimate on infx∈Cons(δ,ρ)∥Qnx∥2 ≤ c
√
n (for suitable δ, ρ, c), we begin by using

the fact [104, Proposition 2.8] noted above that there exists a constant K > 0 such that with
probability at least 1−4−n, the operator norm of Qn restricted to the subspace perpendicular
to 1n is at most K

√
n. Let us denote this event by EK . Then, on EK , for any x ∈ Sn−1 such

that ⟨x, 1n/
√
n⟩ ≥ 1/2, we have ∥Qnx∥2 ≥ n/4 − K

√
n. Hence, on the event EK , and for

all n sufficiently large, it suffices to consider the infimum over those vectors x ∈ Cons(δ, ρ)
which also satisfy ⟨x, 1n/

√
n⟩ < 1/2. For this, we can use Lemma 2.2.6 followed by the

tensorization lemma Lemma 2.3.15, and then exploit the low metric entropy of Cons(δ, ρ) as
above. We leave the details to the interested reader.

Finally, given Proposition 2.8.1, the proof of Theorem 2.1.11 follows exactly as in Theo-
rem 2.1.8.
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Chapter 3

Threshold for Steiner triple systems

3.1 Introduction

A foundational result in the theory of random graphs, due to Erdős and Rényi [17], is that
the threshold for the appearance of perfect matchings in G(n, p) is log n/n. It is natural
to seek higher-dimensional analogues of this result. As the simplest case, consider perfect
matchings in 3-uniform hypergraphs. These are collections of 3-edges, or triangles, such that
each vertex is contained in exactly one triangle. Let G(3)(n, p) denote the binomial random
n-vertex hypergraph in which each triangle is present with probability p. Determining the
threshold for the appearance of perfect matchings in this model is the well-known “Shamir’s
problem” [91], which was resolved (up to a constant factor) in a seminal paper by Johansson,
Kahn, and Vu [45] with sharp threshold and hitting time results obtained in later work of
Kahn [47,48].

Of course, there is more than one high-dimensional analogue to (graphical) perfect match-
ings. It is just as natural to consider (spanning) Steiner triple systems (i.e., triangle sets
in which each pair of vertices is contained in exactly one triangle) and their appearance in
G(3)(n, p). Here, much less is known and until recently such results seemed out of reach.
Indeed, even the log-asymptotics of the number of Steiner triple systems was a mystery until
the work of Keevash [56] (which built on his earlier breakthrough establishing the existence
of designs [54]). Furthermore, both of these problems can be viewed under the common um-
brella of determining the threshold for the existence of designs relative to a random set, with
Shamir’s problem corresponding to (r, 1)-designs and Steiner triple systems to (3, 2)-designs.

Our main result is the determination of the threshold for Steiner triple systems up to a
sub-polynomial factor, which is the first higher-dimensional generalization of Erdős–Rényi
and Johansson–Kahn–Vu incorporating nontrivial designs.

Theorem 3.1.1. Let n ∈ N satisfy n ≡ 1, 3 (mod 6). Let H ∼ G(3)
(
n, exp(C(log n)3/4)/n

)
,

with C > 0 a sufficiently large constant. With high probability1, H contains an order-n
1We say that a sequence of events, parameterized by n, holds with high probability (w.h.p.) if the proba-

bilities of their occurrence tend to 1.
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Steiner triple system.

Remark 3.1.2. An order-n Steiner triple system is equivalent to a triangle-decomposition of
the complete graph Kn. A graph has a triangle-decomposition only if it is triangle-divisible,
i.e., its every degree is even and the number of edges is a multiple of 3. For Kn this is
equivalent to the arithmetic condition n ≡ 1, 3 (mod 6), demonstrating the necessity of this
assumption. That Steiner triple systems indeed exist whenever n satisfies this condition is a
famous classical theorem of Kirkman [58].

Note that exp((log n)3/4) = no(1). Thus, Theorem 3.1.1 implies that the threshold for the
appearance of Steiner triple systems is bounded above by n−1+o(1). A corresponding lower
bound is obtained by observing that if H contains a Steiner triple system then every edge of
Kn is contained in at least one triangle of H. A straightforward calculation (analogous to that
for isolated vertices in G(n, p)) reveals that the (sharp) threshold for this modified property
is 2 log n/n = n−1+o(1). Hence, our result establishes the threshold up to a subpolynomial
factor.

A recent breakthrough relating thresholds and fractional expectation-thresholds by Frankston,
Kahn, Narayanan, and Park [19] (and also a very recent breakthrough of Park and Pham
[77] resolving the Kahn–Kalai conjecture), as a corollary, gave an alternate and substantially
simpler proof of the result of Johansson, Kahn, and Vu. This proof hinges on the ability
to determine the fractional expectation-threshold, which can be viewed as a linear program
whose variables are all sets of hyperedges.

The sheer size of such programs suggests that determining the expectation-threshold or
fractional expectation threshold is a difficult task in general. Instead, in previous applica-
tions, the uniform distribution on some desired class of objects is used to witness a lower
bound, via a parameter known as “spread”. In this light, the application of [19] to Shamir’s
problem relies crucially on the fact that the enumeration of (r, 1)-designs (as well as ex-
tensions of partial (r, 1)-designs) is straightforward. However, determining the fractional
expectation-threshold of Steiner triple systems is nontrivial; as noted in [19, Section 8.D]
the error terms in the enumerative results of Keevash [56] are too large to prove that the
uniform distribution on Steiner triple systems has sufficiently small spread. Therefore the
authors of [19] raise applying these methods to combinatorial designs as an interesting open
problem. In this paper, we circumvent this difficulty by constructing a (non-uniform) distri-
bution on Steiner triple systems with small spread. We expect this approach to have further
applications.

Steiner triple systems are closely related to Latin squares (i.e., n × n matrices in which
every row and column is a permutation of {1, 2, . . . , n}). The latter are naturally equivalent
to (labeled) triangle-decompositions of Kn,n,n, with the three vertex parts corresponding to
rows, columns, and symbols. With a few adjustments the proof of Theorem 3.1.1 yields a
similar threshold result for Latin squares.

We use the following terminology: Let S : [n]2 → 2[n] be a function that assigns, to each
cell in an n × n grid, a set of symbols from {1, 2, . . . , n}. Say that S supports an order-n
Latin square L if for every i, j ∈ [n] there holds L(i, j) ∈ S(i, j). For p ∈ [0, 1] let M(n, p)

74



be the distribution on functions S : [n]2 → 2[n] where for every i, j, k ∈ [n], the symbol k is
included in S(i, j) with probability p independent of all other choices.

Theorem 3.1.3. Let n ∈ N and let S ∼ M(n, exp(C(log n)3/4)/n), with C > 0 a sufficiently
large constant. W.h.p. S supports a Latin square.

Prior to this work the only known upper bounds on the thresholds in Theorems 3.1.1
and 3.1.3 were quite far from the no(1)−1 proved here. For Latin squares, Andrén, Casselgren,
and Öhman [3] proved that there exists a constant p < 1 such that w.h.p. M(n, p) supports
a Latin square. For Steiner triple systems, Simkin [94] observed that Keevash’s method
of randomized algebraic construction [54] can be used to show that for a sufficiently small
ε > 0, w.h.p. G(3)(n, n−ε) contains a Steiner triple system.

Before moving on to proofs we mention an interesting consequence of Theorem 3.1.1: the
threshold for the appearance of Steiner triple systems is sharp, in the following sense.

Corollary 3.1.4. There is a function pSTS(n) such that for all ε > 0, when n ≡ 1, 3 (mod 6)
w.h.p. G(3)(n, (1+ε)pSTS(n)) contains a Steiner triple system but w.h.p. G(3)(n, (1−ε)pSTS(n))
does not.

This is surprising, since we have not determined what the threshold actually is. Neverthe-
less, Corollary 3.1.4 follows from Friedgut’s characterization of sharp thresholds [21,22]. In-
deed, for n ≡ 1, 3 (mod 6), let pSTS(n) be the threshold for containing Steiner triple systems
(i.e., G(3)(n, pSTS(n)) contains a Steiner triple system with probability 1/2). Theorem 3.1.1
tells us that pSTS(n) ≤ no(1)−1. On the other hand, by considering the disappearance of
vertex pairs not contained in a triangle, we concluded that pSTS(n) = Ω(n−1 log n). Hence,
pSTS(n) ̸= Θ(nα) for any α ∈ R. However, a consequence of [22, Theorem 2.1] and the
remarks immediately after is that in our setting (sampling hypergraphs), coarse thresholds
are limited to the form Θ(nα), implying that our threshold is sharp.

Regarding Latin squares, the threshold is sharp for essentially the same reasons. Although
triangle-decompositions of Kn,n,n are not invariant under vertex permutations so that [22]
does not directly apply, similar methods can be used to deduce a sharp threshold [20].

3.1.1 Techniques for bounding thresholds

Finding thresholds for spanning structures in random graphs and hypergraphs has played
a major role in the field since its inception. Prominent examples include thresholds for
containing a spanning tree (which is equivalent to connectivity) [15], a perfect matching
[16, 17], a Hamilton cycle [79], a triangle-factor [45], and a given bounded-degree spanning
tree [75].

Lower bounds on the thresholds for each of these properties (and many others) can be
obtained in more or less the same way: fixing a vertex v, it is contained in a spanning tree or
perfect matching only if its degree is at least 1. Similarly, it is contained in a Hamilton cycle
only if its degree is at least 2. Finally, it is contained in a triangle-factor only if it is contained
in at least one triangle. By computing the expectation of each of these random variables and
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applying Markov’s inequality we obtain a lower bound of Ω(n−1) for connectivity, perfect
matchings, and Hamiltonicity, and a lower bound of Ω(n−2/3) for existence of a triangle-
factor. Avoiding formal definitions (which can be found in [49]), the maximal lower bound
obtained by similar arguments is known as the expectation-threshold for the property.

Surprisingly, these easily-obtained lower bounds turn out to be within a logarithmic
factor of the true thresholds. However, in sharp contrast to the lower bounds, the original
proofs of the corresponding upper bounds are problem-specific. This disparity (and the
associated difficulty of obtaining thresholds for some properties, as in Shamir’s problem)
motivated a family of beautiful conjectures of Kahn and Kalai [49]. The main conjecture
is that the threshold for a monotone property is always within a logarithmic factor of its
expectation-threshold.

In a very recent breakthrough, Park and Pham [77] gave an ingenious proof of the Kahn–
Kalai conjecture. However, for our application (and many others), a fractional version of
the conjecture, due to Talagrand [99], suffices. The so-called fractional expectation-threshold
vs. threshold conjecture was proved by Frankston, Kahn, Narayanan, and Park [19] in an
earlier breakthrough. These works are related to yet another, yet earlier, breakthrough:
the advance on the sunflower conjecture due to Alweiss, Lovett, Wu, and Zhang [2]. For
our purposes it suffices to consider a corollary of these results, for which we need the next
definition.

Definition 3.1.5. Consider a finite ground set Z and fix a nonempty collection of subsets
H ⊆ 2Z . Let µ be a probability measure on H. For q > 0 we say that µ is q-spread if for
every set S ⊆ Z:

µ({A ∈ H : S ⊆ A}) ≤ q|S|.

The next theorem, relating spread measures and thresholds, is due to Frankston, Kahn,
Narayanan, and Park [19]. We have slightly tailored it to our setting.

Theorem 3.1.6 (From [19, Theorem 1.6]). There exists a constant C = C3.1.6 > 0 such
that the following holds. Consider a non-empty ground set Z and fix a nonempty collection
of subsets H ⊆ 2Z. Suppose that there exists a q-spread probability measure on H. Then a
random binomial subset of Z where each element is sampled with probability min(Cq log |Z|, 1)
contains an element of H as a subset with probability at least 3/4.

For many graph families, including those mentioned above, the spread of the uniform
distribution is easily seen to match the lower bounds on the threshold. Thus, Theorem 3.1.6
immediately determines these thresholds up to a logarithmic factor. However, Theorem 3.1.6
does not immediately imply any bound at all on the threshold for G(3)(n, p) to contain a
Steiner triple system. The issue is that currently, our understanding of the uniform distri-
bution on Steiner triple systems is rather poor. Indeed, as remarked in [19, Section 8.D],
even the uncertainty in the number of order-n Steiner triple systems is large enough that it
precludes any useful bounds on the spread.

Although the uniform distribution is the most natural one with which to apply Theo-
rem 3.1.6, this is certainly not required. We prove Theorem 3.1.1 by designing a distribution
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on Steiner triple systems that is no(1)−1-spread by construction, and then applying Theo-
rem 3.1.6.

3.1.2 Spread distributions and iterative absorption

The no(1)−1-spread distribution used to prove Theorem 3.1.1 is defined implicitly by a ran-
domized algorithm to construct Steiner triple systems. In order to outline this algorithm we
briefly recount some recent breakthroughs in design theory.

We begin with the triangle removal process, which is closely related to the influential Rödl
nibble [81]. This is the following random greedy algorithm to construct a partial Steiner triple
system: Beginning with G = Kn repeatedly and for as long as possible delete, uniformly at
random, a triangle from G and add it to a growing collection of triples. Spencer [95] and
Rödl and Thoma [82] independently proved that w.h.p. this process terminates when G has
only o(n2) edges. Equivalently, this method produces an approximate Steiner triple system.

It is straightforward to adapt the triangle removal process so that the triangle set it
produces has spread O(no(1)−1). Perhaps the simplest way is to first restrict the available
triangles to a prescribed binomial random subset of density (say) (log n)2/n, and then show
that the process is still likely to construct an approximate Steiner triple system.

Given the success of the triangle removal process, a natural way to construct an exact
Steiner triple system is to find a triangle-decomposition of the edges remaining at the end of
the process2. This is essentially what Keevash does with his breakthrough method of ran-
domized algebraic constructions [54,56]. Moreover, Keevash’s method is incredibly powerful
in that it proves the existence of designs with arbitrary parameters, which was a central ques-
tion in combinatorics since the nineteenth century. Unfortunately, the algebraic component
of Keevash’s construction has rather poor spread, and so is unsuitable for our application.

An alternative to Keevash’s method is iterative absorption, developed by Kühn, Osthus,
and collaborators [5,59,63]. This method gave an alternate proof of the existence of designs
[24] using purely probabilistic and combinatorial methods. In this paper we mostly follow
its specialization by Barber, Glock, Kühn, Lo, Montgomery, and Osthus [4] to triangle-
decompositions.

A key insight is that by using a modified version of the triangle removal process, the
uncovered edges at the end of the process can be “localized” to a small vertex set U1 ⊆ V (Kn).
That is, after fixing U1 ⊆ V (Kn) (satisfying, say, |U1| ≈ εn for a small ε > 0), a multi-stage
randomized “cover-down” procedure can produce a partial Steiner triple system that covers
all edges in Kn not spanned by U1. Furthermore, the graph of uncovered edges in U1 is
nearly-complete. By repeating this process the uncovered edges can be iteratively localized
to sets U1 ⊇ U2 ⊇ · · · ⊇ Uℓ = X, where X may be quite small. Since the goal is to construct
an exact Steiner triple system, the iterative process is preceded by setting aside an “absorber”
for X. This is a graph H ⊆ Kn with the property that for any possible remainder graph L
on X, the graph H ∪ L admits a triangle-decomposition.

2Strictly speaking, one must stop the triangle removal process before its natural termination, at which
point there are no triangles in G by definition.
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Iterative absorption, as outlined in [4], does not itself produce a distribution with suffi-
cient spread. The issue is that for each Ui, the triangle set constructed on Ui forms a nearly
complete graph and contains Ω(|Ui|2) triangles. Thus, the best spread one can hope for in
this method is Ω(|X|−1), which is far larger than 1/n since X must be small in order to
construct the absorber H.

As a remedy, our algorithm combines iterative absorption with a bootstrapping scheme
that iteratively constructs distributions with better and better spread. Concretely, let P (η)
be the proposition that for every sufficiently large, near-complete, and triangle-divisible
graph G there exists an nη/n-spread distribution over triangle-decompositions of G. Note
that P (0) would imply Theorem 3.1.1, since we may take G = Kn. We remark that here,
and in the remainder of this outline, our goal is to provide a clear and concise summary of
our argument. Thus, we take some leeway and are not as precise with some statements as
we will be in the proof. For example, proposition P (η) is slightly different from its analogue,
Theorem 3.3.1(η).

We define the sequence ηk = 2/(2 + k), and we will inductively show that P (ηk) holds.
Since ηk → 0, this implies that there exists an no(1)−1-spread distribution of Steiner triple
systems. The fact that P (η0 = 1) holds is itself a non-trivial fact; this follows implicitly from
[56] and explicitly from [4].

Now suppose that P (ηk−1) holds. We wish to show that P (ηk) holds as well. Let G
be a large, near-complete, triangle-divisible graph. We wish to construct an nηk−1-spread
distribution on the triangle-decompositions of G. We proceed as follows: We first set aside
a vertex set X ⊆ V (G) of size approximately n1−ηk . Next, we set aside a small, random,
absorbing triangle set H in G. The triangle set H resembles a binomial random triangle set
of density 1/n, ensuring that it does not negatively impact the spread. As we will explain
momentarily, this absorber serves a different purpose than the absorber in [4].

After setting aside the absorber, we use iterative absorption to find a triangle set S that
covers all edges in G \ (E(H) ∪G[X]). Let L ⊆ G[X] denote the graph of uncovered edges.
We remark that since S is constructed by processes resembling the triangle removal process,
it is straightforward to ensure that the spread of S is approximately |X|−1 ≈ nηk−1.

Now, by assumption, there exists an |X|ηk−1−1-spread distribution over the triangle-
decompositions of L. Let L be a triangle-decomposition sampled according to this distribu-
tion. Observe that S ∪ L is a triangle-decomposition of G. However, due to the presence
of L, its spread is |X|ηk−1−1 ≫ nηk−1. This is where the absorber comes in: its purpose is
to “spread” the probability mass of the triangles induced by X over the rest of the graph.
This reduces the overall spread of the Steiner triple system. Specifically, H has the property
that for every triangle T in X, there exist many configurations H′ ⊆ H such that H′ ∪ {T}
can be replaced by a triangle set that does not use T . Furthermore, given the triangle-
decomposition L of L, it is possible to choose a set of such configurations {H′

T}T∈L that are
mutually disjoint. Thus, all the triangles used in L can be replaced by a set of triangles that
are not spanned by X. Finally, if these configurations are randomly chosen in an appropriate
way, then the spread of the resulting Steiner triple system is less than nηk−1. Since there
exists an nηk−1-spread distribution of triangle-decompositions of G, the proposition P (ηk)
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holds.
Finally, the modification for Latin squares is straightforward; we detail the minor changes

in Section 3.5.

3.1.3 Absorbers as spread boosters

We stress that unlike traditional uses of absorbers, we cannot intentionally plant specific
absorbers for each triangle that might appear in L (though it may seem like there is available
space within Kn for such constructions). The reason is that any specific finite absorber
w.h.p. will not appear at all in G(n, nθ−1) for θ > 0 sufficiently small. In fact, as far as
algorithmically finding absorbers in H goes, there seems to be a “barrier” around density
1/
√
n which is polynomially far from the conjectured threshold of O(log n/n).

This is different to other threshold problems. For example, absorber-based algorithms
were used to bound the threshold for the appearance of the square of a Hamilton cycle in
G(n, p) up to a subpolynomial factor [62]. (Eventually, the true threshold was recovered by
Kahn, Narayanan, and Park [51] using ideas related to [19] and without use of absorbers.) In
contrast, we use the richness of possible configurations within H, which is essentially spread
by definition, to show that there is some way to absorb L in a spread manner. However,
the absorbers are not necessarily themselves contained in H. Thus one can think of our
absorber as a sparsification template that facilitates boosting the spread, after which the
non-algorithmic [19] is applied. To our knowledge this is the first such use of absorbers.

3.1.4 Further directions

We briefly remark on a few natural questions arising from this work. First, the next two
conjectures convey our intuition that the disappearance of uncovered edges probabilistically
tells the whole story regarding the appearance of Steiner triple systems. The first conjecture
locates a sharp threshold at 2 log n/n, while the second is the corresponding hitting time
statement.

Conjecture 3.1.7. Let n ∈ N satisfy n ≡ 1, 3 (mod 6) and fix ϵ > 0. If H ∼ G(3)(n, (2 +
ϵ) log n/n), then with high probability H contains an order-n Steiner triple system.

Conjecture 3.1.8. Let n ∈ N satisfy n ≡ 1, 3 (mod 6) and let T1, T2, . . . be a uniformly
random ordering of

(
[n]
3

)
. W.h.p. the first prefix T1, . . . , Tk that covers each 2-edge at least

once contains a Steiner triple system.

We note that a threshold of O(log n/n) would follow from the existence of an O(n−1)-
spread distribution, while Conjecture 3.1.7 seems to require ideas beyond those in [19]3.

3Since this paper was released the bounds on the threshold have been improved, first to O((log n)2/n)
[52] and then to O(log n/n) [39, 55]. The latter is within a constant factor of the lower bound. As in this
paper, the proofs rely in part on a cover-down procedure and construction of non-uniform spread measures;
however, the implementations are substantially different.
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It is also natural to ask for the threshold of more general Steiner systems in random hyper-
graphs. Since iterative absorption can famously construct designs with arbitrary parameters,
we expect that some of the ideas in this paper might extend to this setting. However, to
highlight just one potential difficulty, the current argument hinges on the ability to find
absorbers that are sufficiently sparse so as not to contribute adversely to the spread. It is
unclear whether this is possible for designs with other parameters.

Finally, we wonder whether there exists an efficient algorithm to find Steiner triple sys-
tems in G(3)(n, p), with p sufficiently large for them to exist w.h.p. This question is relevant
to Shamir’s problem too: while the sharp threshold for the existence of perfect matchings
in G(3)(n, p) is known, it is not known whether a perfect matching can be found algorithmi-
cally. We note that a slight modification of the proof given for Theorem 3.3.1 (though it is
not stated this way) allows one to construct the measure on Steiner triple systems which is
well-spread in an algorithmic fashion. The difficulty lies in the black-box application of [19]
to show that G(3)(n, n−1+o(1)) therefore contains Steiner triple systems w.h.p.

3.1.5 Organization

The paper is organized as follows. At the end of this section we introduce some notation.
Section 3.2 introduces basic concepts connected to triangle-decompositions and also collects
useful probabilistic tools. In Section 3.3 we lay out the bootstrapping technique that is the
heart of our argument. In Section 3.4 we adapt the framework of iterative absorption to the
sparse random setting. Finally, as mentioned, in Section 3.5 we describe the modifications
to our proof required to obtain Theorem 3.1.3.

3.1.6 Notation

For a graph G we write V (G) for its vertex set, and Gc for its complement within that set.
For v ∈ V (G) we write NG(v) for its set of neighbors in G. If X ⊆ V (G) then G[X] is the
induced subgraph on vertex set X.

If H is a 3-uniform hypergraph, we may refer to its 3-edges as triangles. We denote by
e(H) the number of triangles in H, and we denote by E(H) the graph of edges that are
contained in a triangle of H.

3.2 Preliminaries

We remind the reader of the following definitions.

Definition 3.2.1. A graph G is triangle-divisible if every vertex degree is even and the
number of edges is a multiple of 3. A triangle-decomposition of a graph G is a collection of
triangles in G such that every edge of G is contained in exactly one triangle.

Remark 3.2.2. It is easy to see that triangle-divisibility is a necessary but insufficient condi-
tion for G to admit a triangle decomposition. The main result of [56] (and also [4]) is that
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if G is sufficiently large, dense, and typical (pseudorandom in an appropriate sense) then
triangle-divisibility is sufficient for G to admit a triangle-decomposition.

We will repeatedly use the Chernoff bound for binomial and hypergeometric distributions
(see for example [44, Theorems 2.1 and 2.10]) without further comment.

Lemma 3.2.3 (Chernoff bound). Let X be either:

• a sum of independent random variables, each of which take values in {0, 1}, or

• hypergeometrically distributed (with any parameters).

Then for any δ > 0 we have

P[X ≤ (1− δ)EX] ≤ exp(−δ2EX/2), P[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

Next we will require that if a sequence of random variables is stochastically dominated
by a sequence of Bernoulli random variables it satisfies an identical set of tail bounds.

Lemma 3.2.4 ([80, Lemma 8]). Let X1, . . . , Xn be {0, 1}-valued random variables such that
for all i ∈ [n], we have that P[Xi = 1|X1, . . . , Xi−1] ≤ p then P[

∑
i∈[n]Xi ≥ t] ≤ P[Bin(n, p) ≥

t] for all t ≥ 0.

Finally we will need the symmetric form of the Lovász Local Lemma.

Lemma 3.2.5 ([1, Corollary 5.1.2]). Let A1, A2, . . . , An be events in a probability space such
that each Ai is mutually independent of all but d other events. If P[Ai] ≤ p for every i ∈ [n]
and ep(d+ 1) ≤ 1 then P[

∧
i∈[n]A

c
i ] > 0.

3.3 Bootstrapping with Spread Families

In order to prove Theorem 3.1.1, we will iteratively prove the following result for all η ∈ (0, 1].
We fix a constant C3.3.1 > 0, large enough for various inequalities we encounter later to hold.

Theorem 3.3.1 (Theorem(η)). Fix a triangle-divisible graph G on n vertices with ∆(Gc) ≤
n/ log n and n ≥ exp(C3.3.1/η

4). Let H ∼ G(3)(n, nη/n). With probability at least 1/2 the
collection H contains a triangle-decomposition of G.

Let η′ = c(log n)−1/4, with c > 0 a large constant. Note that Theorem 3.3.1(η′) im-
plies Theorem 3.1.1. Indeed, assuming Theorem 3.3.1(η′), if H1,H2, . . . ,Hm are (say)
m = log n independent samples of G(3)(n, nη′/n) then w.h.p. at least one of them con-
tains a Steiner triple system. On the other hand

⋃m
i=1 Hi is distributed as G(3)(n, p) with

p = exp(O((log n)3/4))/n.
We note that Theorem 3.3.1(η = 1) was proved by Gustavsson [34] and also follows

immediately from the results of Keevash [56, Theorem 2.1] or Barber, Kühn, Lo, and Osthus
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Figure 3.1: The absorber F6 consists of the shaded triangles, while the unshaded triangles
(including the external triangle) comprise its absorber flip F∗

6 .

[5, Theorem 1.2]. This will serve as the base case for our results, and we will inductively
show that the result is true for smaller and smaller η.

We will need the following result, which can be thought of as stating that a triangle-
decomposition iterative absorption scheme that attempts to cover G ⊆ Kn and ultimately
has a leftover contained in a smaller setX ⊆ V (Kn) can be performed using only a |X|−1+o(1)-
fraction of triangles of G. (This is essentially the limit for a pure iterative absorption
framework as in [4, 24].) We defer its proof to Section 3.4. The remaining argument is
independent of its justification.

Proposition 3.3.2. There exists a constant C = C3.3.2 > 0 such that the following holds.
Let n ∈ N. Fix a subset X of V (Kn) such that |X| ∈ [C, n/(log n)3]. Furthermore fix a
triangle-divisible graph G ⊆ Kn such that ∆(Gc) ≤ n/ log n+ n/(log n)2 and |X \NG(v)| ≤
|X|(1/ log |X|−1/(log |X|)2) for all v ∈ V (G). Given a sample H′ ∼ G(3)(n, (log |X|)C/|X|)),
with probability at least 3/4 there exists an edge-disjoint triangle set H ⊆ H′ such that
G∗ := E(H) satisfies:

1. G \G[X] ⊆ G∗ (i.e., H covers all edges of G outside of X),

2. G∗ ⊆ G (i.e., H consists of triangles in G), and

3. ∆((Gc ∪G∗)[X]) ≤ |X|/ log |X| (the graph of uncovered edges in G[X] is nearly com-
plete).

As outlined in the introduction, we describe a randomized construction of Steiner triple
systems. It uses “probabilistic absorbers”, whose role is to “spread out” the distribution of
triangles that are too highly concentrated on a small vertex set. The absorbers are copies
of the 3-uniform hypergraph F2m, defined as follows: Consider a cycle C2m and add two
vertices that are each connected with edges to the 2m vertices in the cycle. The resulting
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graph naturally has a 2-colorable triangulation. Let F2m be one of the color classes. Define
its “absorber-flip” F∗

2m as the hypergraph on the same vertex set but with the opposite color
class of triangles. For an illustration, see Figure 3.1.

The next lemma allows us to find such absorbers in random linear hypergraphs. Crucially,
it requires only that F2m be present. It uses the following construction, akin to the Rödl
nibble: Let G be a graph with a distinguished vertex set X ⊆ V (G) and let p ∈ [0, 1]. Let
G(3)

∗ (G,X, p) be the distribution on pairs of triangle sets (H,H′) defined as follows: First,
include each triangle of G \G[X] in H′ with probability p, independently. Then, let H ⊆ H′

be the set of triangles that are edge-disjoint from all other triangles in H′.

Lemma 3.3.3. The following holds for a sufficiently large C3.3.3 > 0. Fix a graph G on
n ≥ C3.3.3 vertices with ∆(Gc) ≤ n/(log n), an integer 2 ≤ m ≤ (log n)3/4, a set X ⊆ V (G)

of size at most n/2, and a triangle T in G[X]. Let (H,H′) ∼ G(3)
∗ (G,X, 1/n). Then with

probability at least 1/(4e)12m−6, there exists a collection C of 2m− 1 triangles in H such that
F := C ∪ {T} is a copy of F2m with V (F) ∩X = V (T ).

Proof. Let F be the collection of copies F of F2m using triangles fromG such that V (F)∩X =
V (T ). Let Z be the number of copies F ∈ F such that F \ {T} ⊆ H. We observe that

|F| ≥ 3(2m− 1)!

(
n/2

2m− 1

)(
1−O

(
m

log n

))
. (3.3.1)

This accounts for the three non-isomorphic ways to embed T into F2m and the number of
ways to choose the remaining vertices. The factor of 1 − O(m/ log n) accounts for the fact
that not all edges of Kn are present in G.

Let F ∈ F and let C := F \ {T}. We claim that

P[C ⊆ H] ≥
(

1

2e3n

)2m−1

. (3.3.2)

Indeed, by definition, P[C ⊆ H′] = n−(2m−1). Next, we bound P[C ⊆ H|C ⊆ H′]. Condition-
ing on C ⊆ H′, this is equal to the probability that the 2-skeleton of C does not participate
in any triangles of H′ besides C. There are at most |E(C)|n = (6m− 3)n such triangles, and
so the probability that none of them are in H′ is at least (1− 1/n)(6m−3)n > (1.1e)−(6m−3).
This proves (3.3.2).

By linearity of expectation, (3.3.1), and (3.3.2) we have that

EZ ≥
(

1

2e

)6m−3

. (3.3.3)

Now note that

E
[
Z2

]
= EZ + E[Z(Z − 1)] ≤ EZ +

(
3(2m− 1)!

(
n

2m− 1

))2

n−2(2m−1) ≤ EZ + 9.
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In calculating E[Z(Z − 1)], we have used the fact that any pair of distinct configurations
that appear in H do not share a triangle. Applying the second moment method we obtain

P[Z > 0] ≥ (EZ)2

E[Z2]
≥ (EZ)2

EZ + 9

(3.3.3)
>

(
1

4e

)12m−6

,

completing the proof.

The next lemma follows via a direct union-bound computation.

Lemma 3.3.4. Fix a graph G on n vertices and a pair of distinct triangles T1, T2 in G,
and sample each triangle in G with probability 1/n. Call this random hypergraph H. Let
2 ≤ m ≤ (log n)3/4. Let q be the probability that H ∪ {T1, T2} contains two copies, F1

and F2, of F2m, with Ti ∈ F i and T3−i /∈ F i for i ∈ {1, 2}, that share a triangle. There
exists a constant C3.3.4 > 0 such that q ≤ C3.3.42

3m/n2 if T1 and T2 are vertex-disjoint and
q ≤ C3.3.42

3m/n if T1 and T2 share exactly one vertex.

Proof. Consider two copies of F2m and all possible ways to identify vertices of one copy to
vertices of the other (if there is a repeated triangle as a result of this gluing, we keep only one
copy). There are at most (2m)2 resulting hypergraphs. Suppose that F ′ is obtained in this
way and has a repeated triangle. Consider the probability that a copy of F ′ that extends
T1, T2 simultaneously can be found in H. There are O(m2) ways to choose which triangles
correspond to T1, T2. Fixing such a choice the probability is bounded by nv(F ′)−6(1/n)e(F

′)−2

in the vertex-disjoint case and nv(F ′)−5(1/n)e(F
′)−2 when T1 and T2 share a vertex. Therefore,

it suffices to show that in both cases e(F ′) ≥ v(F ′)− 2.
We will use the following property of F2m, which is related to it being an Erdős con-

figuration in the sense of [23, 64]. Let S ⊆ F2m be a set of s > 0 triangles. Then S is
incident to at least s + 2 vertices. Indeed, if s = 2m then S = F2m and so S is incident
to all 2m + 2 = s + 2 vertices. Otherwise, the triangles in S cover s < 2m edges in the
cycle C2m. The covered edges form a collection of paths and so have at least s+ 1 vertices.
Furthermore, S is incident to at least one of the two additional vertices in F2m, and so S is
incident to at least s+ 2 vertices, as desired.

Returning to the main argument, let v be the number of pairs of glued vertices and t be
the number of triangles that occur as repeated triangles. We have v(F ′) = 2(2m + 2) − v
and e(F ′) = 2(2m)− t, so we equivalently must show v ≥ t+2. Suppose that the t repeated
triangles, within a single copy of F2m, span w vertices. By the argument above w ≥ t + 2.
Moreover, it is evident that v ≥ w, completing the proof.

3.3.1 Bootstrapping

We are now in a position to lay out the bootstrapping argument that establishes iteratively
improved versions of Theorem 3.3.1 and, eventually, Theorem 3.1.1.
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Proof of Theorem 3.3.1. For k ≥ 0 let ηk = 2/(k + 2). As discussed, Theorem 3.3.1(η = η0)
follows from [54, Theorem 1.4] or [24, Theorem 1.1]. We will show Theorem 3.3.1(η = ηk)
via induction on k. Then, to see the result for arbitrary η > 0 we may round down to the
nearest ηk and appropriately adjust the constant C3.3.1.

Let k ≥ 1 and assume that Theorem 3.3.1(η = ηk−1) holds. Set γk = 4/(2k + 5)
and consider a graph G on n ≥ exp(C3.3.1/η

4
k) vertices satisfying the conditions of Theo-

rem 3.3.1(η = ηk). Our goal is to construct a measure µ on triangle-decompositions of G
which is O(nηk−1/(log n)2)-spread, since then Theorem 3.1.6 will imply the result.

Our first task is to construct the absorber. As it concerns the measure µ, the absorber
is deterministic. However, we will need it to satisfy certain structural properties. For this
reason we will use the probabilistic method. We define the following quantities:

M = n1−γk exp
(
(log n)1/3

)
, m =

√
log n,

ℓ1 =

√
n

M1+ηk−1
, ℓ2 =

√
M1+ηk−1n

em
, ℓ′1 =

ℓ1
2(logM)6

.

Claim 3.3.5. There exist sets X,X1, . . . , Xℓ1 , Y1, . . . , Yℓ1 ⊆ V (G) satisfying the following
conditions.

Ab1 |X| =M and Y1, . . . , Yℓ1 are disjoint sets of vertices within V (G) \X, each of size ℓ2,
and X1, . . . , Xℓ1 ⊆ X are sets of vertices of size |X|/(log |X|)2. We set Gi = G[Xi∪Yi].

Ab2 Every triangle in G[X] is contained in at least ℓ′1 graphs Gi.

Ab3 Every v ∈ V (G) satisfies |(V (G) \NG(v)) ∩X| ≤ |X|(1/ log |X| − 2/(log |X|)2).

Ab4 Every i ∈ [ℓ1] satisfies ∆(Gc
i) ≤ |V (Gi)|/ log |V (Gi)|.

Proof. First, let X ⊆ V (G) be a uniformly random set of size M . Then, sample ℓ1 disjoint
sets of vertices Y1, . . . , Yℓ1 of size ℓ2 uniformly at random from V (G) \X. For each i ∈ [ℓ1]
choose a set Xi ⊆ X of size |X|/(log |X|)2 uniformly at random. Then Ab1 is satisfied by
definition.

Observe that the number of graphs Gi containing a fixed triangle in G[X] is distributed
binomially with parameters (ℓ1, (logM)−2). Therefore, by Chernoff’s inequality and a union
bound, with probability 1−O(|X|−1) every triangle in G[X] is contained in at least ℓ′1 graphs
Gi. This establishes Ab2.

Recall that ∆(Gc) ≤ n/ log n. Thus, since X was chosen randomly, by a similar applica-
tion of Chernoff’s inequality we conclude that with probability 1−O(|X|−1) each v ∈ V (G)
satisfies |(V (G)\N(v))∩X| ≤ |X|(1/ log |X|−2/(log |X|)2). This proves Ab3. Ab4 follows
from a similar argument.

For the remainder of the proof we fix (deterministic) sets X,X1, . . . , Xℓ1 , Y1, . . . , Yℓ1 and
graphs G1, . . . , Gℓ1 satisfying Ab1 to Ab4.

We now define µ, which corresponds to the output of a randomized algorithm to find
a triangle-decomposition of G. At a high level, we (i) sample a rich random template of
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triangles within X ∪ Y1 ∪ · · · ∪ Yℓ1 to use as an absorber, (ii) use Proposition 3.3.2 to run
iterative absorption to cover the remainder apart from X in a spread fashion, (iii) use
Theorem 3.3.1(η = ηk−1) to decompose this remainder in a |X|−1+ηk−1-spread fashion, and
(iv) simultaneously flip all of the resulting triangles within X using the template to improve
the spread. The algorithm is as follows:

Alg1 For each i ∈ [ℓ1] letG′
i := Gi[Xi∪Yi]\Gi[Xi] and sample (Hi,H′

i) ∼ G(3)
∗ (G′

i, Xi, |V (G′
i)|−1)

(with independent samples for each i ∈ [ℓ1]).

Alg2 Let HIA ∼ G(3)(n, (log |X|)C3.3.2/|X|).

Alg3 Sample every triangle in G[X] with probability |X|−1+ηk−1 and call this family HRand.

Alg4 Condition on the event EIA that there is a triangle set HDec ⊆ HIA satisfying the
conditions Proposition 3.3.2(1-3) for G′ = G \ (

⋃ℓ1
i=1E(Hi)).

Alg5 Condition on the event EInd that (G′\E(HDec))[X] has a triangle-decomposition HInd ⊆
HRand.

Alg6 Condition on the event EAbs that we can find, for each T ∈ HInd, an index iT ∈ [ℓ1] and
a 3-uniform hypergraph FT ≃ F2m contained in HiT ∪ {T} such that (a) V (FT )∩X =
V (T ) and (b) the triangle sets {FT}T∈HInd

are edge-disjoint.

Alg7 Let HAbs =
⋃

T∈HInd
(FT \{T}) and let HFlip =

⋃
T∈HInd

F ∗
T , where for each T ∈ HInd the

3-graph F ∗
T consists of all triangles of the corresponding “absorber-flip” F∗

2m associated
to FT .

Alg8 Finally, output the triple system H = HDec ∪HFlip ∪ (
⋃ℓ1

i=1Hi \ HAbs).

Remark 3.3.6. Although we have described an algorithm to sample from µ, this should
not be misconstrued as an algorithm to find the triangle-decomposition guaranteed by The-
orem 3.3.1. The main reason is that we will ultimately use the non-algorithmic Theorem 3.1.6
applied to µ.

Nevertheless, with a slight modification to the algorithm one can efficiently sample from
µ. To do so, in Alg5, one should inductively invoke the ability to efficiently sample from an
|X|−1+ηk−1-spread distribution on triangle-decompositions. However, we would still rely on
Theorem 3.1.6 to convert the spread distribution into a threshold result. Additionally, the
analysis is slightly more involved. As thresholds, rather than spread distributions, are our
main concern, we have not made this change.

To verify that µ satisfies the desired properties, we must check that µ is supported on
triangle-decompositions and also that the above process succeeds with nonzero probability
(otherwise µ is not well-defined). We do so in Claims 3.3.7 and 3.3.8. Finally, in Claim 3.3.9
we show that µ has the appropriate spread.

Claim 3.3.7. H is a triangle-decomposition of G.
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Proof. First note that
⋃ℓ1

i=1Hi is a set of edge-disjoint triangles contained in G. Indeed,
every Hi is such a set by definition. Additionally, the sets Y1, . . . , Yℓ1 are disjoint, and by
definition every edge in G′

i contains at least one vertex from Yi. Hence, the triangle sets
H1, . . . ,Hℓ1 are mutually edge-disjoint.

Next, by Alg4 we have that HDec is a set of edge-disjoint triangles covering all edges
of G′ except for some in X. By Alg5 these remaining edges are covered by HInd. That is,
HDec∪HInd∪

⋃ℓ1
i=1Hi is a triangle-decomposition of G. Finally, we have E(FT ) = E(F ∗

T ) and
the FT are edge-disjoint by Alg6. Hence HInd∪HAbs and HFlip are each edge-disjoint triangle-
decompositions, and they decompose the same underlying graph. Since HAbs ⊆

⋃ℓ1
i=1 Hi by

Alg6, the result follows.

Next we show that µ is well-defined. In fact, we show that the above process defining µ
succeeds with probability at least (3/4)(1/2)(2/3) = 1/4.

Claim 3.3.8. We have P[EIA] ≥ 3/4, P[EInd|EIA] ≥ 1/2, and P[EAbs|EIA ∧ EInd] ≥ 2/3.

Proof. We first claim that G′ and X satisfy the assumptions of Proposition 3.3.2 regardless
of the outcome of

⋃ℓ1
i=1Hi. Note that by Alg1 and Alg4, G′ differs from G only by edges in⋃ℓ1

i=1E(G
′
i). Additionally, since Y1, . . . , Yℓ1 are disjoint, every v ∈ V (G)\X is contained in at

most one graphG′
i. By construction, every v ∈ Yi has at most |Xi| = |X|/(log |X|)2 neighbors

inX within G′
i. Therefore |X\NG′(v)| ≤ |X|(1/ log |X|−2/(log |X|)2)+|X|/(log |X|)2, using

Ab3. For v ∈ X, the number of neighbors withinX is unchanged upon removing
⋃ℓ1

i=1E(G
′
i).

Additionally, C3.3.2 ≤ |X| ≤ n/(log n)3 is immediate from Ab1 and the assumption n ≥
exp(C3.3.1/η

4
k). Finally,

∆((G′)c) ≤ ∆(Gc) + |X|+
ℓ1∑
i=1

|Yi|
Ab1
≤ ∆(Gc) + n/(log n)2 ≤ n/ log n+ n/(log n)2.

Thus all conditions are satisfied, and by Proposition 3.3.2 the necessary HDec ⊆ HIA exists
with probability at least 3/4.

We condition on EIA occurring. This means that (G′ \ E(HDec))[X] has maximum de-
gree at most |X|/ log |X| due to Proposition 3.3.2(3). Therefore the inductive hypothesis
Theorem 3.3.1(η = ηk−1) applies and shows that the necessary HInd ⊆ HRand exists with
probability at least 1/2, since

|X| ≥ n1−γk ≥ (exp(C3.3.1/η
4
k))

1−γk ≥ exp(C3.3.1/η
4
k−1).

It remains to prove that P[EAbs|EIA ∧ EInd] ≥ 2/3. The proof is more involved, and we
break it into three steps.

Step 1: Potential absorbers with few overlaps. We first establish that certain
conditions hold with high probability in the unconditional model. For any triangle T of G[X]
and any i ∈ [ℓ1], let AT,i be the set of copies F of F2m that contain T , use only triangles in
Hi ∪ {T}, and V (F) ∩X = V (T ). Note that this is a random collection depending only on
Hi. Given T and i, we consider (a) the number of choices NT,i = |AT,i| and (b) the number
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MT,i of triangles T ′ of G[X] such that E(T ′) ∩ E(T ) = ∅ and AT,i,AT ′,i contain a pair of
copies of F2m that are not edge-disjoint (equivalently, these copies share a triangle). Let
ETem be the event that the following conditions for the random template hold:

Tem1 For each triangle T of G[X], |{i ∈ [ℓ1] : NT,i > 0}| ≥ ℓ′1/(8e)
12m−6.

Tem2 For each T , at most ℓ′1/(32e)12m−6 indices i ∈ [ℓ1] satisfy MT,i ≥ 290m|X|2/ℓ2.

We claim that P[ETem] ≥ 1 − 1/n. For Tem1, fix T and note that NT,i for i ∈ [ℓ1] are
independent, as each depends only on Hi. Furthermore, Lemma 3.3.3 implies that P[NT,i >
0] ≥ 1/(4e)12m−6 whenever V (T ) ⊆ Xi. By Ab2 we have at least ℓ′1 such indices, so
Chernoff’s inequality implies that |{i ∈ [ℓ1] : NT,i > 0}| ≥ ℓ′1/(8e)

12m−6 with probability at
least 1− n−5. Applying a union bound, Tem1 holds with probability at least 1− n−2.

For Tem2, fix T and note that by linearity of expectation and Lemma 3.3.4 we have

EMT,i ≤ |X|2 ·O(23m/ℓ2) + |X|3 ·O(23m/ℓ22) ≤ 24m|X|2/ℓ2,

since every triangle in G[X] shares a vertex with at most |X|2 other triangles in G[X]. By
Markov’s inequality, we have

P[MT,i ≥ 290m|X|2/ℓ2] ≤ 2−86m.

Now let ZT be the number of indices i ∈ [ℓ1] satisfying MT,i ≥ 290m|X|2/ℓ2. Applying
Chernoff’s inequality:

P[ZT ≥ ℓ′1/(32e)
12m−6] ≤ 1

n5
.

By a union bound, Tem2 holds with probability at least 1 − n−2. Thus ETem holds with
probability at least 1− 1/n, as desired.

Step 2: Few overlaps in absorbers for HRand. Next we show that the number of
potential conflicts counted by MT,i significantly diminishes (w.h.p.) when we consider only
the sparse random set HRand. First, for each triangle T in G[X] we define the index set IT of
indices i satisfying NT,i > 0 and MT,i < 290m|X|2/ℓ2. If ETem holds then |IT | ≥ ℓ′1/(32e)

12m−6

for all T .
Next, given T , let M′

T be the set of triangles T ′ ∈ HRand with E(T ′) ∩ E(T ) = ∅ such
that for some i ∈ IT , the collections AT,i,AT ′,i contain a pair of copies of F2m that are not
edge-disjoint. Let EPack be the event that the following holds:

Pack1 For all T ∈ HRand, we have |M′
T | ≤ 295m|X|1+ηk−1ℓ1/ℓ2.

We claim that P[EPack|ETem] ≥ 1− 1/n. Indeed, reveal all of
⋃ℓ1

i=1Hi and fix any triangle T
of G[X]. Condition on T ∈ HRand and on ETem. Then, expose the remainder of HRand. It
follows that |M′

T | is distributed as Bin(M∗, |X|−1+ηk−1) for some

M∗ ≤
∑
i∈IT

MT,i ≤ 290m|X|2ℓ1/ℓ2.
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Chernoff’s inequality and a union bound now imply that P[EPack|ETem] ≥ 1−1/n, as desired.
Step 3: Finding simultaneous edge-disjoint absorbers. Now we condition on EIA

and EInd occurring. We have

P[(ETem ∧ EPack)c|EIA ∧ EInd] ≤
O(1/n)

1/2 · 3/4
= O(1/n),

so P[ETem ∧ EPack|EIA ∧ EInd] ≥ 1−O(1/n).
We now argue that if ETem ∧EPack ∧EIA ∧EInd holds then EAbs holds, which will finish the

proof. Assuming EInd, Alg5 succeeds so there exists some edge-disjoint collection HInd ⊆
HRand. We will use the Lovász Local Lemma (Lemma 3.2.5) to prove the existence of the
absorbers necessary for Alg6. As we are assuming Tem1 and Tem2, for each T ∈ HInd we
have a nonempty set of indices IT such that for all i ∈ IT , NT,i > 0. For every T ∈ HInd

we choose, uniformly at random, an index iT ∈ IT and then uniformly at random choose
one of the extensions of T (isomorphic to F2m) counted by NT,iT . We make these choices
independently for each triangle in HInd. We claim that with nonzero probability, all of these
extensions are edge-disjoint.

We define a “disjointness graph” H with vertex set HInd. For each T, T ′ ∈ HInd, we put
an edge between them if there is some i ∈ IT ∩IT ′ such that AT,i,AT ′,i contain a pair of copies
of F2m that are not edge-disjoint. We see that NH(T ) ⊆ HInd ∩M′

T . Hence, by Pack1,

∆(H) ≤ 295m|X|1+ηk−1ℓ1/ℓ2 = 290mem = eO(
√
logn).

For each edge f ∈ E(H), let Bf be the “bad” event that the random extensions chosen
for T and T ′ share an edge. We wish to show that with nonzero probability, we can simulta-
neously avoid all the bad events. This will prove the result, since by definition the only pairs
T, T ′ that can have a conflict with this process are those corresponding to some f ∈ E(H).
To apply the Lovász Local Lemma we observe that each Bf is mutually independent from
all other events except for Bf ′ where f, f ′ share a vertex. There are at most 2∆(H) such
events. Additionally, for each bad event Bf where f = {T, T ′} we have

P[Bf ] ≤ P[iT = iT ′ ] ≤ 1

|IT |
≤ (32e)12m−6

ℓ′1
.

Since ℓ1 ≥ n1/(20k2), we see that ℓ′1 = nΩ(1) and therefore

e max
f∈E(H)

P[Bf ] · (2∆(H) + 1) =
eO(

√
n)

nΩ(1)
< 1.

The result follows.

Finally, we verify the spread condition.

Claim 3.3.9. µ is O(nηk−1/(log n)2)-spread.
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Proof. Step 1: Spread of H \ HFlip. Let T = {T1, . . . , Tt} be a set of triangles in G,
and consider the probability that they simultaneously appear in a sample S ∼ µ. Since S
consists of edge-disjoint triangles we may assume that the triangles in T are edge-disjoint as
well. Additionally, recall that the underlying probability space associated to µ is defined by
independent samples HIA, HRand, and H′

1, . . . ,H′
ℓ1

conditional on EIA ∧ EInd ∧ EAbs. Finally,
we have H = HDec ∪HFlip ∪ (

⋃ℓ1
i=1Hi \ HAbs).

Suppose that T ⊆ S. Then each Tj is either in HDec ⊆ HIA, in
⋃ℓ1

i=1 Hi\HAbs ⊆
⋃ℓ1

i=1 H′
i,

or in HFlip. Let J1, J2, J3 ⊆ [t] be the index sets of the triangles contained in each of these
respective sets. Observe that for triangles Tj such that j ∈ J3, this means that Tj is in some
“absorber-flip” F∗

2m where the corresponding F2m consists of a triangle Sj ∈ HInd ⊆ HRand

and 2m − 1 triangles of
⋃ℓ1

i=1H′
i by Alg6 and Alg7. Furthermore, those triangles cannot

share an edge with any {Tj : j ∈ J2}.
Now, for a partition J1 ⊔ J2 ⊔ J3 = [t], let EJ1,J2,J3 be the event that:

E1 Tj ∈ HIA for all j ∈ J1;

E2 Tj ∈
⋃ℓ1

i=1H′
i for all j ∈ J2;

E3 For all j ∈ J3, there is a copy of Fj ≃ F2m, consisting of one triangle Sj ∈ HRand and
2m− 1 triangles of

⋃ℓ1
i=1H′

i such that Tj is in the associated “absorber-flip” F∗
2m;

E4 Fj is edge-disjoint from {Tj′ : j′ ∈ J2};

E5 Every pair Fj, Fj′ for distinct j, j′ ∈ J3 is edge-disjoint or identical.

The above analysis shows that the union of the 3t events EJ1,J2,J3 covers all possible situations
where {T1, . . . , Tt} ⊆ S. Thus, we have

P[{T1, . . . , Tt} ⊆ S] ≤
∑

J1,J2,J3

P[EJ1,J2,J3|EIA ∧ EInd ∧ EAbs] ≤ 4 · 3t max
J1,J2,J3

P[EJ1,J2,J3 ]

by Claim 3.3.8 and Bayes’ theorem. Furthermore, the event EJ1,J2,J3 does not depend directly
on S, but rather on an independent model of triangles. Thus, we can essentially disregard
the complicated process Alg1 to Alg8 in favor of this substantially simpler situation.

We will reduce the situation further to studying the triangles in J3. Given J3 ⊆ [t], let
EJ3 be the event that E3 and E5 hold. We see that

P[EJ1,J2,J3 ] ≤
( ∏

j∈J1

P[Tj ∈ HIA]
∏
j∈J2

P
[
Tj ∈

ℓ1⋃
i=1

H′
i

])
P[EJ3 ].

Indeed, the first term can be extracted due to independence of HIA and conditions E2 to E5.
Additionally, careful scrutiny shows that in fact E2 is independent from the event that events
E3 to E5 hold by construction.
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By definition, we have P[Tj ∈ HIA] = (log |X|)C3.3.2/|X| and P[Tj ∈
⋃ℓ1

i=1H′
i] ≤ 1/|V (G′

i)| ≤
1/|X|. Since |X| = n1−γk exp((log n)1/3), these terms are bounded by nηk−1/(log n)2. Putting
everything together, we find

P[{T1, . . . , Tt} ⊆ S] ≤ 4 · 3tmax
J⊆[t]

(nηk−1/(log n)2)t−|J |P[EJ ]. (3.3.4)

Step 2: Preliminaries for understanding HFlip. Now we analyze the absorber-
flips. Call a copy of F2m with a distinguished triangle a rooted absorber, and call any
nonempty subset of triangles P ⊆ F∗

2m within the flip of a rooted absorber a polymer. If
we additionally distinguish a triangle of a polymer we call it a rooted polymer. We see that
there are 22m − 1 (labeled) polymers. At a high level, we wish to count the number of ways
to break {Tj : j ∈ J} into polymers, then count extensions to a full F∗

2m, and then consider
the probability that the corresponding F2m is in HRand ∪

⋃ℓ1
i=1H′

i.
Let

p(s) = max
T1,...,Tt

max
J∈([t]s )

P[EJ ],

where the maximum is over edge-disjoint collections of triangles.
Given a triangle T of G′

i for some i and an edge-disjoint triangle set T , both within Kn,
and given a rooted polymer P , let f(P , T, T ) be the number of ways to extend T to a copy
of P within G′

i where T is the root of the polymer, and the other triangles are all in T . We
claim that

f(P , T, T ) ≤

{
(2ℓ2)

v(P)−e(P)−2 e(P) ≤ 2m− 1

(2ℓ2) e(P) = 2m.
(3.3.5)

(Here, v(P) is the number of vertices incident to triangles in P .)
We first reduce to the case where e(P) ≤ 2m−1. Indeed, if e(P) = 2m let P ′ be a polymer

obtained by removing a non-root triangle from P . It then holds that f(P , T, T ) ≤ f(P ′, T, T )
and v(P ′)− e(P ′)− 2 = 2m+ 2− (2m− 1)− 2 = 1. Thus, (3.3.5) with e(P) = 2m follows
from (3.3.5) with e(P) = 2m− 1.

We prove (3.3.5) when e(P) ≤ 2m − 1 by induction on e(P). When e(P) = 1, the
corresponding polymer consists only of the root triangle and hence must be {T}; the result
follows. Now assume that (3.3.5) holds for all e(P) < k where 2 ≤ k ≤ 2m − 1. Let P
be a polymer with e(P) = k. Now fix a rooted polymer P ′ ⊆ P such that e(P \ P ′) = 1
and v(P) − v(P ′) ≥ 1 (this is possible since 2 ≤ e(P) ≤ 2m − 1: any such polymer covers
a proper subgraph of the cycle C2m, and we can remove a non-root triangle containing a
degree 1 vertex from P). By the inductive hypothesis

f(P ′, T, T ) ≤ (2ℓ2)
v(P ′)−e(P ′)−2.

We now consider the possible ways to extend a copy of P ′ to a copy of P , using only
triangles from T . There are three cases. If v(P) − v(P ′) = 3, note that since the triangles
in T are edge-disjoint there are at most |T | ≤ |V (G′

i)|2 ≤ (2ℓ2)
2 possible extensions. If

v(P)− v(P ′) = 2, there are at most (2ℓ2) possible triangles in T within G′
i which could be
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in P \P ′ as this triangle must contain a fixed vertex (given P ′). Finally, if v(P)−v(P ′) = 1,
note that there is at most 1 triangle in T within G′

i which could be in P \P ′ as this triangle
must contain a fixed edge (given P ′) and the triangles in T are edge disjoint. This completes
the inductive proof.

Next, given a polymer P within some G′
i, let g(P) be the number of ways to extend it

to a full copy of F∗
2m within G′

i with its flip having the property that at least one triangle is
fully within X. We claim that

g(P) ≤ (2ℓ2)
2m−v(P)+2

and that if e(P) = 1 then g(P) ≤ |X|(2ℓ2)2m−2. To see this note that given the polymer
there are at most 2m − v(P) + 2 labelled vertices to be specified and at most (2ℓ2) choices
for each vertex. Additionally, when e(P) = 1, at least one vertex remaining to be chosen
must be in X (since the flip of F∗

2m has at least one triangle fully in X, while F∗
wm does not),

improving the bound to |X| · (2ℓ2)2m+2−3−1 = |X|(2ℓ2)2m−2 as desired.
Step 3: Spread of HFlip. Finally, we bound p(s). Suppose that J ∈

(
[t]
s

)
. For each

j ∈ J in increasing order, there are at most 22m − 1 ways to choose which polymer type P
the set {Tj′ : j′ ∈ J, Fj = Fj′} creates. Given P , there are at most f(P , Tj, {Tj′ : j′ ∈ J})
ways to choose how Tj actually extends to that polymer within {Tj′ : j′ ∈ J}. There are
then at most g(P) ways to count the number of extensions to a full F∗

2m. Given these
choices, the probability that the flip of this F∗

2m is contained in HRand ∪
⋃ℓ1

i=1H′
i is at most

|X|ηk−1−1(1/ℓ2)
2m−1.

It follows that

p(s) ≤
2m∑
s′=1

(
2m

s′

)(
max

e(P)=s′

T,T

f(P , T, T )g(P) · |X|ηk−1−1(1/ℓ2)
2m−1

)
p(s− s′),

≤ max
s′∈[2m]
e(P)=s′

T,T

(2m)s
′
f(P , T, T )g(P) · |X|ηk−1−1(1/ℓ2)

2m−1p(s− s′)

where we let p(s) = 0 for s < 0 and p(0) = 1.
When e(P) = s′ ∈ {2, . . . , 2m− 1} we have

f(P , T, T )g(P) · |X|ηk−1−1(1/ℓ2)
2m−1 ≤ (2ℓ2)

1−s′ · |X|ηk−1−1 ≤ (nηk−1/(log n)3)s
′
.

The last inequality is true since it holds for s′ = 2 and since 2ℓ2 ≥ n1−ηk(log n)3.
When e(P) = 2m we have

f(P , T, T )g(P) · |X|ηk−1−1(1/ℓ2)
2m−1 ≤ 2ℓ2−2m

2 · |X|ηk−1−1 ≤ (nηk−1/(log n)3)2m.

The inequality holds as |X|ηk−1−1 ≤ 1 and 2ℓ
(2−2m)/(2m)
2 ≤ exp(

√
log n)/(2ℓ2) ≤ nηk−1/(log n)3

as nΩ(1/k2) ≥ exp(O(m)).
When e(P) = 1 we have

f(P , T, T )g(P) · |X|ηk−1−1(1/ℓ2)
2m−1 ≤ |X|ηk−122m−2/ℓ2
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≤ (4e)m/(n1/2|X|(1−ηk−1)/2) ≤ nηk−1/(log n)3

where the final inequality follows as nηk−1/2|X|(1−ηk−1)/2 = nΩ(1/k2) ≥ exp(O(m)).
Putting this together, we obtain

p(s) ≤ max
s′∈[2m]

(4mnηk−1/(log n)3)s
′
p(s− s′).

Along with the initial conditions, this immediately yields p(s) ≤ (4mnηk−1/(log n)3)s. Fi-
nally, combining with (3.3.4) yields

P[{T1, . . . , Tt} ⊆ S] ≤ (O(nηk−1/(log n)2))t,

as desired.

Claims 3.3.7 and 3.3.9 imply that µ is an O(nηk−1/(logn)2)-spread distribution on triangle-
decompositions of G. Applying Theorem 3.1.6 to µ yields Theorem 3.3.1(η = ηk), completing
the induction.

3.4 Iterative Absorption in Random Hypergraphs

In this section we use the machinery of iterative absorption to prove Proposition 3.3.2.
Informally, it states that given a nearly complete graph G and a specified set X ⊆ V (G),
one can use edge-disjoint triangles to cover all edges in G \G[X] while only covering a small
fraction of edges in G[X]. Moreover, the triangles can be restricted to a sparse random set.
It is proved via iterating the following lemma.

Lemma 3.4.1. There exists a constant C3.4.1 > 0 such that the following holds. Let n ∈ N.
Fix a subset V1 ⊆ V (Kn) such that |V1| ∈ (n/(log n)4, n/(log n)2). Furthermore fix G ⊆ Kn

such that ∆(Gc) ≤ 2n/ log n, and |N(v)c ∩ V1| ≤ 2|V1|/ log |V1| for every v ∈ V (G), and for
every v /∈ V1 we have degG(v) ≡ 0 (mod 2).

Let H′ ∼ G(3)(n, (log n)C3.4.1/n). Then there exists an edge-disjoint triangle set H ⊆ H′,
with G∗ := E(H), such that:

1. G∗[V1] is stochastically dominated by sampling every edge independently with probability
(log |V1|)−20,

2. G \G[V1] ⊆ G∗ (i.e., H covers all edges of G outside of V1) with probability 1−n−ω(1),

3. G∗ ⊆ G (i.e., H consists of triangles in G).

Before proving Lemma 3.4.1 we show how it implies Proposition 3.3.2.
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Proof of Proposition 3.3.2 given Lemma 3.4.1. Let n = t0 > t1 > · · · > tℓ = |X| be a
sequence of integers such that ti+1 ∈ (ti/(log ti)

4, ti/(log ti)
2) for every 0 ≤ i < ℓ. Observe

that ℓ = O(log n). Sample a uniformly random descending sequence of sets V (Kn) = V0 ⊇
V1 ⊇ V2 ⊇ · · · ⊇ Vℓ = X such that |Vi| = ti for every i. We call this sequence of sets the
vortex.

We now consider the respective degrees from each vertex set into the next. By applying
the Chernoff bound (Lemma 3.2.3), a union bound, and the assumed upper bound on |X \
NG(v)|, with probability at least 0.99 (over the random choice of the vortex), we have that
every vertex v ∈ Vi has |N(v)c ∩ Vi+1| ≤ 3|Vi+1|/(2 log |Vi+1|) and ∆(Kn[Vi] \ G[Vi]) ≤
3|Vi|/(2 log |Vi|) for 0 ≤ i < ℓ. We assume these conditions hold.

We now apply Lemma 3.4.1 inductively. Suppose that for some 0 ≤ i < ℓ we have
already applied Lemma 3.4.1 i times, leaving the graph Li ⊆ G[Vi] of uncovered edges. In
order to simplify the analysis we will not apply Lemma 3.4.1 to Li directly. Rather, we will
apply it to the graph Gcurr

i , defined as follows: If i = ℓ − 1 then Gcurr
i = Li. Otherwise let

Gcurr
i = Li \ G[Vi+2]. Applying Lemma 3.4.1 in this way implies that an edge in G[Vi] can

only be covered in the i-th or (i− 1)-th stage of the algorithm (but not before).
We next note that as |Vi+2| ≤ |Vi|/(log |Vi|)5/4 we see that G′

i := G[Vi] \ G[Vi+2] has the
property that for all v ∈ Vi, we have |NG′

i
(v)c ∩Vi| ≤ 7|Vi|/(4 log |Vi|) and |NG′

i
(v)c ∩Vi+1| ≤

7|Vi+1|/(4 log |Vi+1|). Hence Gcurr
i satisfies the necessary conditions for Lemma 3.4.1 with

high probability. Indeed, by the inductive assumption, after i steps of the process Li is
stochastically dominated by sampling every edge independently with probability (log |Vi|)−20.
Thus, by Chernoff’s inequality and a union bound, the two minimum degree assumptions
hold w.h.p. Moreover, Li is obtained from the triangle-divisible graph G by removing a set
of edge-disjoint triangles. Therefore all degrees in Li are even. Since Gcurr

i is obtained from
Li by removing only edges spanned by Vi+2, the degrees of all vertices in Vi \ Vi+1 in Gcurr

i

are even as well. Therefore we can apply Lemma 3.4.1 to Gcurr
i and continue the process.

Assuming C3.3.2 is sufficiently large, the failure probability in stage i is less than |Vi|−2. Thus,
the total failure probability is less than

∑
i≥0

|Vi|−2 ≤
∞∑

k=C3.3.2

k−2 ≤ 1/8.

Finally, note that in this procedure no edges in G[X] are covered until the final step.
Therefore the degree bound on G[X] follows by noting that G∗[X] is stochastically dominated
by sampling every edge with probability (log |X|)−20.

3.4.1 Fractional matching

In order to find the existence of fractional matchings within a sparse set of triangles we will
use the following result of Barber, Glock, Kühn, Lo, Montgomery, and Osthus [4].

Lemma 3.4.2. There exists an ε = ε0 > 0 such that the following holds. Given a graph
G on n vertices with minimum degree at least (1 − ε)n, let T denote the set of triangles in
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G, and, for e ∈ E(G), let T (e) be the set of edges containing e. There exists a function
γ : T → [0, 1] such that

∑
T∈T (e) γ(T ) = n/8 for every e.

Remark 3.4.3. This follows from [4, Lemma 4.2], noting that any sufficiently dense graph is
regular in the appropriate sense and letting γ(·) = ψ(·) · 1/(2p2) where ψ(·) is defined as in
[4, Lemma 4.2] and p is the density of G.

The crucial tool for our setting is that given such a fractional matching, one can subsample
every triangle with weight proportional to γ and obtain a nearly perfect fractional matching
inside the sampled hypergraph.

Lemma 3.4.4. There exists an ε = ε0 > 0 such that the following holds. Given a graph G
on n vertices with minimum degree at least (1 − ε)n let T denote the set of triangles in G.
Sample every triangle in G with probability p with p ≥ (log n)2/n and call this collection H.
Then with probability 1 − n−ω(1), there exists a triangle set H1 ⊆ H such that every edge is
contained in pn/8±√

pn log n triangles of H1.

Proof. Let γ(·) be as in Lemma 3.4.2. Let H1 be the random model where every triangle
is sampled with probability γ(T ) · p and note we can couple H1 ⊆ H. The result then
follows immediately from the Chernoff bound, noting that the expected number of triangles
containing a given edge e is

∑
T∈T (e) pγ(T ) = pn/8.

3.4.2 Covering process within regular triangle subset

We now show that we can cover most of the edges of an almost-complete graph using a
sparse random triangle set. We will first require a set of notions with regards to hypergraph
matchings. For a hypergraph H, define

∆(H) := max
v∈V (H)

degH(v), ∆
co(H) := max

v1,v2∈V (H)
codegH(v1, v2).

Call a function ω : E(H) → R≥0 a weight function, and for X ⊆ E(H) let ω(X) =∑
x∈X ω(x). We will require the following result of Ehard, Glock, and Joos [14] which

guarantees the existence of hypergraph matchings which are pseudorandom with respect to
a collection of weight functions.

Theorem 3.4.5 ([14, Theorem 1.2]). Suppose δ ∈ (0, 1) and r ∈ N with r ≥ 2, and let
ε := δ/(50r2). Then there exists ∆0 such that for all ∆ ≥ ∆0 the following holds: Let H be
an r-uniform hypergraph with ∆(H) ≤ ∆ and ∆co(H) ≤ ∆1−δ as well as e(H) ≤ exp(∆ε2).
Suppose that W is a set of at most exp(∆ε2) weight functions on E(H). Then, there exists a
matching M in H such that ω(M) = (1±∆−ε)ω(E(H))/∆ for all ω ∈ W with ω(E(H)) ≥
maxe∈E(H) ω(e)∆

1+δ.

This immediately implies the following lemma. We include the proof for completeness.
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Lemma 3.4.6. There exists ε = ε0 > 0, C = C3.4.6 > 0 such that the following holds for
sufficiently large n. Fix p ∈ ((log n)C/n, 1), a graph G on n vertices with minimum degree
at least (1 − ε0)n, and let H1 be a collection of triangles in G such that each edge is in
pn/8±√

pn log n triangles. Then there exists a set of edge disjoint triangles H2 ⊆ H1 such
that ∆(G \ E(H2)) ≤ n/(log n)1000.

Proof. Define the auxiliary 3-uniform hypergraph H with vertices corresponding to the set
of edges in G and 3-edges corresponding to the triangles in H1. Notice that ∆(H) = pn/8+
O(

√
pn log n). Furthermore as any pair of edges are contained in at most 1 triangle, it follows

that ∆co(H) ≤ 1. Thus Theorem 3.4.5 applies with δ = 1/2 and therefore ε = 1/(900), and
∆ = ∆(H).

We now define the weight functions. For a vertex v, let wv be 1 on all 3-edges of H
corresponding to triangles containing v, and 0 elsewhere. Note that wv(E(H)) ≥ pn2/32 ≥
∆(H)1+δ. Furthermore if C is sufficiently large we have that exp(∆ε2) ≥ n and thus there is
a matching M in H such that

wv(M) ≥ (1±∆−ε)

∆
·
(∆−O(

√
pn log n)) degG(v)

2
≥ (1− 2∆−ε) degG(v)

2

for all v ∈ V (G). This implies that the matching, which corresponds to triangles of G,
covers all but 2∆−εn edges incident to v. Taking C sufficiently large the result follows
immediately.

In the next three sections we prove Lemma 3.4.1. Our proof closely follows the proof of
[4, Lemma 3.8], with the necessary adaptations to account for the random triangle set H′

and the fact that |V1|/|V (G)| is relatively smaller in our setting than in [4].

3.4.3 Setup for iterative absorption

We are now in position to apply the results of Lemma 3.4.4 and Lemma 3.4.6. However,
we cannot simply invoke these results on the whole graph G; a more delicate approach is
required.

Recall that we have a graph G ⊆ Kn with a distinguished vertex subset V1. Let q =
(log |V1|)−30. Let R be a set of edges in G[V (Kn) \ V1, V1] with the following properties:

(A1) For all v ∈ V (G) \ V1, degR v = q|V1|+O(q|V1|(log |V1|)−1).

(A2) For all v ∈ V1, degR v = qn+O(qn(log n)−1).

(A3) For all v ∈ V (G)\V1, v′ ∈ V1, we have that |NR(v)∩NG(v
′)| = q|V1|+O(q|V1|(log |V1|)−1).

(A4) For all v, v′ ∈ V (G) \ V1, we have that |NR(v) ∩NR(v
′)| ≥ q2|V1|/2.

(A5) For all v, v′ ∈ V1 we have that |NR(v) ∩NR(v
′)| ≤ 2q2n.
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That such a graph R exists is established by noting that if each edge in G[V (Kn)\V1, V1] is
independently sampled with probability q then, by Chernoff’s inequality and a union bound,
these properties hold with positive probability.

Let G1 = G\ (R∪G[V1]). It is easy to see that δ(G1) ≥ |V (G)|−O(|V (G)|/(log |V (G)|).
Let T denote the set of triangles in G1 and sample each triangle in T with probability
p = (log n)2C3.4.6/n to form the random set H′′. By Lemma 3.4.4, with probability 1− n−ω(1)

there exists a subset of triangles H1 ⊆ H′′ such that every edge of G1 is in pn/8±√
pn log n

triangles. Applying Lemma 3.4.6, we find that there exists a set of edge-disjoint triangles
in H1 that covers all edges of G1 except at most n/(log n)100 incident to each vertex. Let
L ⊆ G1 be the graph of uncovered edges. Let L1 ⊆ L be the “internal” edges with no vertex
in V1 and let L2 := L \ L1 be the uncovered “crossing” edges with an endpoint in V1. We
remark that since G1 contains no edges with both vertices in V1, neither does L.

It remains to cover G2 := L1 ⊔ L2 ⊔ R with triangles while not covering too many edges
in G[V1]. Let R2 := L2 ∪R. Observe that R2 satisfies:

(B1) For all v ∈ V (G) \ V1, we have that degR2
(v) = q|V1|+O(q|V1|(log |V1|)−1).

(B2) For all v ∈ V1, we have that degR2
(v) = qn+O(qn/ log n).

(B3) For all v ∈ V (G)\V1, v′ ∈ V1, we have that |NR2(v)∩NG(v
′)| = q|V1|+O(q|V1|(log |V1|)−1).

(B4) For all v, v′ ∈ V (G) \ V1, we have that |NR2(v) ∩NR2(v
′)| ≥ q2|V1|/2.

(B5) For all v, v′ ∈ V1 we have that |NR2(v) ∩NR2(v
′)| ≤ 3q2n.

We complete the construction by first covering the internal edges that comprise L1 and
then covering the remaining crossing edges.

3.4.4 Cover-down stage 1: internal edges

Lemma 3.4.7. With the above setup, let T2 denote the set of triangles in G2 and let H3 ⊆ T2

be a random set of triangles with each triangle included with probability (log n)100/n. Then
with probability 1 − n−ω(1), one can choose edge disjoint triangles H4 ⊆ H3 such that L1 ⊆
E(H4).

Proof. We construct H4 with a random greedy algorithm. Order the edges in L1 arbitrarily.
When processing an edge e, expose the triangles of H3 containing e and then choose one such
triangle, not overlapping with previous choices, uniformly at random and add it to H4. This
procedure only fails if for some e, all triangles containing it in H3 overlap previous choices.
However note that initially each edge in L1 is contained in at least q2|V1|/2 triangles in T2,
and that triangles added previously to H4 eliminate at most 2n/(log n)100 ≤ q2|V1|/4 of these.
Thus the expected number of extensions at each stage is at least q2|V1|/4 · (log n)100/n ≳
(log n)50. Applying Chernoff’s inequality and a union bound, with probability 1 − n−ω(1)

there is at least one choice for each stage.
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Given Lemma 3.4.7, the remaining graph to cover is R3 := R2 \ E(H4). We note that
since every triangle in H4 involves an edge of L1, we have:

(C1) For all v ∈ V (G) \ V1, we have that degR3
(v) = q|V1|+O(q|V1|/ log |V1|).

(C2) For all v ∈ V1, we have that degR3
(v) = qn+O(qn/ log n).

(C3) For all v ∈ V (G)\V1, v′ ∈ V1, we have that |NR3(v)∩NG(v
′)| = q|V1|+O(q|V1|/ log |V1|).

(C4) For all v, v′ ∈ V1, we have that |NR3(v) ∩NR3(v
′)| ≤ 3q2n.

3.4.5 Cover-down stage 2: crossing edges

Our goal is to cover R3 using only a small number of edges from G[V1]. This will be ac-
complished by reducing the problem to a simultaneous matching problem on link graphs of
vertices in V (G) \ V1.

We first require the following lemma. It is an immediate consequence of the (substantially
stronger) main results in [46, 61]. We include an elementary proof for completeness.

Lemma 3.4.8. Let G′ be a graph on N vertices, with N even, and with minimum degree
at least 3N/4. Let H be a random subgraph of G′ where each edge is sampled independently
with probability (logN)2/N . Then H has a perfect matching with probability 1−N−ω(1).

The proof of Lemma 3.4.8 uses the following convenient Hall-type criterion for a bipartite
graph to have a perfect matching. It is an immediate consequence of the main theorem in
[93].

Lemma 3.4.9. Let G′ = (X ∪ Y,E) be a bipartite graph with |X| = |Y | = N . Suppose that
for every S ⊆ X, S ′ ⊆ Y with |S ′| < |S| ≤ ⌈N/2⌉ we have e(S, Y \ S ′) ̸= 0, and that for
every T ′ ⊆ X, T ⊆ Y with |T ′| < |T | ≤ ⌈N/2⌉ we have e(T,X \ T ′) ̸= 0. Then G has a
perfect matching.

Proof of Lemma 3.4.8. Consider a uniformly random equipartition X ∪ Y of V (G′) and let
G† := G′[X, Y ]. By the Chernoff bound for hypergeometric random variables and a union
bound with probability 1−N−ω(1) we have degG†(v) ≥ N/3 for each vertex v. Now consider
some S ⊆ X,S ′ ⊆ Y satisfying ⌈N/4⌉ ≥ |S| > |S ′|. It holds that

eG†(S, Y \ S ′) =
∑
v∈S

degG†(v)− eG′(S, S ′) ≥ (N/3)|S| − |S|2 ≥ N |S|/12.

Similarly, if T ′ ⊆ X,T ⊆ Y with |T ′| < |T | ≤ ⌈N/4⌉ then eG†(T,X \ T ′) ≥ N |S|/12.
We observe that with probability at least 1−exp(−Ω((logN)2)), we have eH(S, Y \S ′) > 0

for every pair of sets S ⊆ X,S ′ ⊆ Y with ⌈N/4⌉ ≥ |S| > |S ′|. Indeed, by a union bound
over S, S ′ and the Chernoff bound, the probability that this fails to hold is at most

⌈N/4⌉∑
k=1

(
N/2

k

) k−1∑
ℓ=0

(
N/2

ℓ

)
exp(−Ω(k(logN)2)) ≤

⌈N/4⌉∑
k=1

N2k exp(−Ω(k(logN)2)))
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≤ exp(−Ω((logN)2)).

By symmetry, the same is true (with probability at least 1 − exp(−Ω((logN)2))) when
switching the roles of X and Y . The desired result then follows from Lemma 3.4.9.

Lemma 3.4.10. Fix R3 as in Section 3.4.4 and suppose that it satisfies (C1)-(C4). Let T3

be the set of triangles in R3 ∪G[V1] and let H5 ⊆ T3 be a random set of triangles with each
triangle included with probability (log |V1|)2/(q|V1|). We then have:

• For each edge in G[V1], the probability that it is contained in a triangle in H5 is at
most (log n)−25. Moreover, these events are mutually independent.

• With probability 1 − n−ω(1), there exists a set of edge disjoint triangles H6 ⊆ H5 such
that R3 ⊆ E(H6).

Proof. For the first point, recall that by (C4) every pair of distinct u, v ∈ V1 has at most
3q2n common neighbors in R3. Thus, the probability for an edge to be contained in a triangle
in H5 is at most 3q2n · (log |V1|)2/(q|V1|) ≤ (log n)−25. Moreover, for distinct edges in G[V1],
their extensions into triangles in H5 are disjoint, implying mutual independence of these
events.

For the second point, order the vertices in V (G) \ V1 and consider them sequentially.
Suppose we are processing v and note first that by (C1) the graph spanned by the triangles
containing v in R3 ∪G[V1] has q|V1|+O(q|V1|(log |V1|)−1) vertices. Furthermore by (C3) its
link graph (i.e., the subgraph spanned by V1)has minimum degree q|V1|+O(q|V1|(log |V1|)−1).
Our goal is to find a perfect matching in this link graph that is edge-disjoint from previously
found perfect matchings. These perfect matchings correspond to the desired H6.

At every step the set of edges removed is stochastically dominated by our random sample
of edges at rate (log n)−25, so we find that the minimum degree in this link is essentially
unchanged by the previous triangles removed in this process. Therefore if one samples each
triangle in the link with probability (log |V1|)2/(q|V1|), or equivalently each edge in the link
with probability (log |V1|)2/(q|V1|), by Lemma 3.4.8 we can construct a matching for v with
probability 1− n−ω(1). This immediately gives the desired result.

We are now in position to prove Lemma 3.4.1.

Proof of Lemma 3.4.1. Using the construction above, let H∗ := H2∪H4∪H6. Observe that
H∗ is stochastically dominated by a random hypergraph of the specified density. Further-
more, if R3 is suitable in the sense of Section 3.4.4 then E(H∗)[V1] is stochastically dominated
by a random hypergraph of the appropriate density as well. Hence, we may take H = H∗ if
R3 is suitable. Otherwise we take H = ∅. Since R3 is suitable with probability 1 − n−ω(1)

and H∗ covers all edges in G \G[V1] with probability 1− n−ω(1), the result follows.
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3.5 Modifications for Latin squares

In this section we briefly discuss the necessary changes to prove Theorem 3.1.3, as opposed to
Theorem 3.1.1. Since these changes are largely superficial, we do not repeat the arguments
in detail.

A Latin square can be thought of as a triangle-decomposition of Kn,n,n, with vertex parts
V 1, V 2, V 3, each of size n. We say that a tripartite subgraph of Kn,n,n is triangle-divisible
if for every j ∈ [3] and vertex v ∈ V j, its degrees into V j−1 and V j+1 are the same (taking
indices mod3). The analogue of Theorem 3.3.1 is the following:

Theorem 3.5.1. Fix a triangle-divisible tripartite graph G ⊆ Kn,n,n with ∆(Kn,n,n \ G) ≤
n/ log n and n ≥ exp(C3.5.1/η

4). Let H be the result of randomly sampling each triangle
of Kn,n,n with probability nη/n. With probability at least 1/2 the collection H contains a
triangle-decomposition of G.

The proof strategy is similar, and we detail the necessary changes.

• To prove an analogue of Proposition 3.3.2, the vortex V (KN,N,N) = V0 ⊇ · · · ⊇ Vℓ = X
should be chosen so that each Vk has the same number of vertices in each V j.

• During the iteration, replace the various degree typicality assumptions (e.g. (C1)
to (C4)) with the obvious tripartite analogues.

• In the final step of the cover-down procedure (Section 3.4.5), in the original setup we
reduced to a bipartite matching problem by taking a random bipartition of Ui+1. In
the Latin square setting this is not necessary since the bipartite structure is already
induced by Kn,n,n.

• The existence of the regular triangle subset (Lemma 3.4.2) relies on weight-shifting
gadgets which are not tripartite. It is possible to adapt work of Montgomery [74]
to obtain a suitable approximate tripartite fractional matching result; see e.g. [65,
Lemma 8.11].

• The absorbing structures used in Alg6 and Alg7 within the proof of Theorem 3.3.1
must be tripartite. However, this is not an obstruction since the vertices of F2m can
be split into three classes so that all hyperedges are tripartite.
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Chapter 4

Improved bounds for Szemerédi’s
theorem

4.1 Introduction

Let [N ] = {1, . . . , N} and rk(N) denote the size of the largest S ⊆ [N ] such that S has no
k-term arithmetic progressions. The first nontrivial upper bound on r3(N) came from work
of Roth [84] which proved

r3(N) ≪ N(log logN)−1.

A long series of works improved this bound, including works of Heath-Brown [35], Szemerédi
[98], Bourgain [11,12], Sanders [88,89], Bloom [7], and Bloom and Sisask [8]. In breakthrough
work, Kelley and Meka [57] very recently proved

r3(N) ≪ N exp(−c(logN)1/12);

the constant 1/12 was refined to 1/9 in work of Bloom and Sisask [9].
For higher k, a long-standing conjecture of Erdős and Turán stated that rk(N) = o(N).

In seminal works, Szemerédi [96, 97] first established the estimate r4(N) = o(N) and then
established his eponymous theorem that

rk(N) = o(N).

Due to uses of van der Waerden theorem and the regularity lemma (which was introduced in
this work), Szemerédi’s density saving was exceedingly small. In breakthrough work, Gowers
[25,26] introduced higher order Fourier analysis and proved the first “reasonable” bounds for
Szemerédi’s theorem:

rk(N) < N(log logN)−2−2k+9

.

The only improvement to this result for k ≥ 4 was work of Green and Tao [28, 32] which
ultimately established that

r4(N) ≪ N(logN)−c,
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and recent work of the authors [67] which proved

r5(N) ≪ N exp(−(log logN)c).

Our main result is an extension of this bound for all k ≥ 5.

Theorem 4.1.1. Fix k ≥ 5. There is ck ∈ (0, 1) such that

rk(N) ≪ N exp(−(log logN)ck).

4.1.1 Proof outline and techniques

4.1.1.1 Local and global inverse theorems

The primary input to our result will be the main result of recent work of the authors [69], i.e.,
quasipolynomial bounds on the inverse theorem for the Gowers Uk+1-norm. Given an inverse
theorem, the deduction of Szemerédi’s theorem via a standard density increment strategy is
essentially folklore and was recorded in work of Green and Tao [30] (although, prior to [69] the
resulting bounds would be far from matching those of Gowers [26]). However, if one naively
follows this script using [69], one obtains a bound of N exp(−(log log logN)−Ωk(1)) which is
weaker than the work of Gowers [26]. Furthermore, Gowers’s argument makes use of a “local”
inverse theorem that in fact gives a slightly stronger correlation compared to the bound given
for the “global” inverse theorem in [69] (namely, polynomial versus quasipolynomial). Thus,
this global nature of [69] must be exploited. Additionally, use of global inverse theorems
necessitates understanding of nilsequences and polynomial sequences on nilpotent Lie groups,
as opposed to merely polynomials as in the work of Gowers [26].

4.1.1.2 Schmidt-type decomposition problems

This is done via the improved density increment strategy of Heath-Brown [35] and Szemerédi
[98] which involves extracting a set of functions to correlate with instead of simply one
and using this to give a multiplicative density increment. Such a strategy was given a
robust formulation in work of Green and Tao [28] on four-term progressions; in particular,
their reformulation avoided the explicit Fourier-analytic formulas used in [35, 98] and thus
is applicable to the higher order setting. The strategy here runs smoothly given the inverse
theorem, modulo resolving a certain Schmidt-type problem for nilsequences. In particular,
given a polynomial sequence g(n) with g(0) = idG on a nilmanifold G/Γ of degree k with
complexity M and dimension d, one needs to prove that

min
1≤n≤N

dG/Γ(idG, g(n)Γ) ≪MOk(d
Ok(1))N−1/dOk(1)

.

In particular, the polynomial dependence on dimension within the exponent is key.
We in fact require a certain slightly stronger result (decomposing [N ] into long arithmetic

progressions P such that the diameters of the sets {g(n)Γ: n ∈ P} are small), which is the
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heart of the matter for this work. When the underlying nilpotent group G is abelian, this
is easily deduced from a result of Schmidt [92] (see Lemma 4.2.3, or [28, Section 6] in the
quadratic case).

For general degree 2 nilmanifolds such a problem was implicitly solved in work of Green
and Tao [28] and for degree 3 nilmanifolds it was essentially solved in recent work of the
authors [67]. More precisely, [67] essentially proves that given a list of bracket expressions
(ain⌊bin⌋⌊cin⌋)1≤i≤d that

min
1≤n≤N

∥ain⌊bin⌋⌊cin⌋∥R/Z ≤ N−1/dO(1)

and via an explicit computation with fundamental domains on degree 3 nilmanifolds one
may reduce to such a situation. The proof given in [67] relies on the fact that 3 is sufficiently
small and in particular that it is possible to reduce to a situation in which there are no
“nested integer part operations” as one attempts to solve the “bracket Schmidt” problem in
one go.

4.1.1.3 Iterative Schmidt refinement

The key observation required for our work, at least at a heuristic level, is a procedure
for solving such “bracket Schmidt” problems even when there are nested brackets. As a
simple example, consider bracket expressions (ain⌊bin⌊cin⌋⌋)1≤i≤d. We will solve the Schmidt
problem via iteratively “reducing” the number of brackets from the inside-out (at the cost of
passing to subprogressions). In particular, using Dirichlet’s theorem, one can break [N ] into
arithmetic progressions P each of length N1/dO(1) such that when restricted to each arithmetic
progression, every function ⌊cin⌋ is a linear function (i.e., it is a locally linear function on
each P ). Since the only locally linear functions on a progression agree with genuinely linear
functions, we can replace ⌊cin⌋ by di,Pn+ei,P and reduce to considering the bracket expression
ain⌊bin(di,Pn+ei,P )⌋ when restricted to P . One can then iterate this argument on the “inner
quadratics” bin(di,Pn+ ei,P ) (essentially using abelian Schmidt as discussed above for degree
2 in this case). We may find a decomposition into long arithmetic progressions Q such
that ⌊bin(di,Pn + ei,P )⌋ is locally quadratic (and hence agrees with a global quadratic) on
each Q. Thus, restricted to any such Q, our original functions ain⌊bin⌊cin⌋⌋ agrees with a
genuine cubic. Finally, we can decompose these progressions Q into ones where the cubics
are approximately constant mod 1 (using abelian Schmidt for degree 3). While in theory
this approach can be made to work for all such bracket Schmidt problems, this however
necessitates working with bracket functions and rather quickly becomes messy to handle.

This procedure can be adapted to work with polynomial sequences on nilmanifolds di-
rectly due to an unpublished observation of Green and Tao. This is the approach we take in
the present work. The crucial point is that given a polynomial sequence g(n) with respect
to a group G given a filtration G0 = G1 ⩾ G2 ⩾ · · · ⩾ Gk ⩾ IdG, the polynomial sequence
g(n) modG2 is a standard polynomial. Thus one can apply Schmidt to a standard polynomial
and therefore (after passing to long subprogressions) one may factor g(n) modG2 = ε(n)·γ(n)
where ε is smooth and γ lies in the lattice Γ mod G2. One may then lift ε, γ from G mod G2
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to ε̃, γ̃ on G and analyze the polynomial sequence ε̃−1gγ̃−1 which now lives in the group G2.
One can iterate this procedure and inductively reduce G2 to G3 and so on, which allows
us to solve the Schmidt problem for our nilmanifold. We remark that this procedure is an
induction on the length of the filtration whereas the (closely related) approach taken in [30]
is phrased as an induction on dimension. This difference is crucial for getting bounds in
which the exponent depends polynomially on dimension.

4.1.2 Organization and notation

All definitions regarding nilsequences and associated complexity will be exactly as in [69,
Sections 3–4]. We refer the reader to that paper for all such definitions; we will only require
degree filtrations in this paper.

We use standard asymptotic notation. Given functions f = f(n) and g = g(n), we write
f = O(g), f ≪ g, g = Ω(f), or g ≫ f to mean that there is a constant C such that
|f(n)| ≤ Cg(n) for sufficiently large n. We write f ≍ g or f = Θ(g) to mean that f ≪ g
and g ≪ f , and write f = o(g) or g = ω(f) to mean f(n)/g(n) → 0 as n → ∞. Subscripts
on asymptotic notation indicate dependence of the bounds on those parameters. We will
use the notation [x] = {1, 2 . . . , ⌊x⌋}. In this paper x = ⌊x⌋ + {x} where {x} ∈ [0, 1) and
⌊x⌋ ∈ Z; we remark this is different than in [69]. We write ∥x∥R/Z = dist(x,Z) for x ∈ R.
Furthermore throughout this paper we abusively write log for max(log(·), ee); this is to avoid
trivial issues with small numbers.

Finally, in terms of organization, in Section 4.2 we solve the Schmidt problem for nilse-
quences and in Section 4.3 we prove Theorem 4.1.1.

Acknowledgments

The third author thanks Mark Sellke and Dmitrii Zakharov for helpful and motivating con-
versations. We thank Ben Green for helpful comments on the manuscript. We thank Zach
Hunter for various minor corrections.

4.2 Schmidt’s problem for nilsequences

In this section, we prove that given a list of nilsequences on [N ], one can decompose [N ] into
a controlled set of arithmetic progressions such that the nilsequences are almost constant on
these sequences.

Lemma 4.2.1. Consider nilmanifolds Gi/Γi for 1 ≤ i ≤ T , each given a degree k filtration,
having complexity bounded by M , dimension bounded by d, and for each 1 ≤ i ≤ T let gi(n)
be a polynomial sequence with respect to the specified degree k-filtration on Gi.

We may decompose [N ] into disjoint arithmetic progressions P1, . . . ,PL such that follow-
ing conditions hold:

• N/L ≥ NΩk(1/(Td)Ok(1))/2;
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• We have

max
1≤i≤T
1≤j≤L

max
n,n′∈Pj

dGi/Γi
(gi(n)Γi, gi(n

′)Γi) ≤MOk(d
Ok(1)) ·N−Ωk(1/(Td)Ok(1)).

The key ingredient in this proof is a result of Schmidt [92] regarding finding small frac-
tional parts of polynomials. We will need a version of this result with explicit quantification;
this is explicitly stated in work of the authors [67, Proposition 3.7] although the argument
is essentially verbatim from a paper of Green and Tao [28, Appendix A] generalized from
quadratics to all degrees.

Proposition 4.2.2. Fix an integer k ≥ 1. There exist ck > 0 such that the following holds.
Let α1, . . . , αd be real numbers. Then

min
1≤n≤N

max
1≤i≤d

∥αin
k∥R/Z ≪k dN

−ck/d
2

.

As stated this result is for pure monomial phases and only provides a single point with
small fractional part. This statement however can be “upgraded” via a straightforward
iterative argument which is implicit in say [28, Proposition 6.4] (where the quadratic case is
handled).

Lemma 4.2.3. Fix an integer k ≥ 0. Consider polynomials Q1, . . . , Qd of degree k. Then
there exist disjoint arithmetic progressions P1, . . . ,PL such that following conditions hold:

• N/L ≥ NΩk(1/d
Ok(1))/2

• We have
max
1≤i≤d
1≤j≤L

max
n,n′∈Pj

∥Qi(n)−Qi(n
′)∥R/Z ≤ 2 ·N−Ωk(1/d

Ok(1)).

Proof. We proceed by induction on k. The case k = 0 is trivial as Qj(·) are constant.
Furthermore we may assume that N ≥ exp(dΩk(1)) else we may break [N ] into singleton
arithmetic progressions.

Let Qj(n) =
∑k

ℓ=0 αj,ℓn
ℓ. Applying Proposition 4.2.2, there exists D ≤ N1/2 such that

max
1≤j≤d

∥αj,kD
k∥R/Z ≪k dN

−ck/(2d
2) =: τ.

We break [N ] into arithmetic progressions of common difference D and with lengths between
2−1τ−1/(2k) and τ−1/(2k). Label these progressions R1, . . . ,RL′ with starting points si for
1 ≤ i ≤ L′. We have

Qj(Dn+ si) = αj,kD
knk +Qj,i(n)

for appropriately defined polynomials Qj,i(n) of degree at most k − 1. Note that for n, n′ ∈
[τ−1/(2k)], we have

∥Qj(Dn+ si)−Qj(Dn
′ + si)∥R/Z = ∥αj,kD

k(nk − (n′)k) +Qj,i(n)−Qj,i(n
′)∥R/Z
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≤ 2τ−1/2 · ∥αj,kD
k∥R/Z + ∥Qj,i(n)−Qj,i(n

′)∥R/Z
≤ 2τ 1/2 + ∥Qj,i(n)−Qj,i(n

′)∥R/Z.

The result now follows by induction applied to each Qj,i(n) for 1 ≤ i ≤ L′ on the interval
[τ−1/(2k)] and using these decompositions to split the Ri into our final decomposition. Letting
N ′ = τ−1/(2k), the number of arithmetic progressions resulting is bounded by

(2N/N ′) · 2(N ′)1−c1/dc2 ≤ 2N1−Ωk(1/d
Ok(1)),

where c1, c2 are the implicit constants for the inductive hypothesis k− 1. The result follows.

We next require the following lemma controlling coefficients of polynomials which live in a
restricted range mod 1. It will be convenient to recall the smoothness norm of a polynomial
P (n) =

∑k
i=0 αi

(
n
i

)
which is defined as

∥P∥C∞[N ] := max
1≤i≤k

N i∥αi∥R/Z.

Lemma 4.2.4. Fix an integer k ≥ 1. There exists ck > 0 such that if ε ∈ (0, ck) and
N ≥ c−1

k then the following holds. Consider a polynomial P (n) =
∑k

i=0 αi

(
n
i

)
. Suppose that

for n, n′ ∈ [N ], we have ∥P (n)− P (n′)∥R/Z ≤ ε. Then

∥P∥C∞[N ] ≪k ε.

Proof. Note that ∣∣∣∣ N∑
n=1

e(P (n))

∣∣∣∣ ≥ N/2.

By a quantitative version of Weyl’s inequality, which may be found in Green and Tao [31,
Proposition 4.3], there exists q ∈ N with q ≪k 1 such that

∥qP∥C∞[N ] ≪k 1.

Let 1 ≤ t ≤ ⌊N/(2k)⌋ be an integer and note that

αk · tk =
k∑

i=0

(−1)k−i

(
k

i

)
· P (t · i+ 1).

Via the triangle inequality, we therefore have

∥αk · tk∥R/Z ≤ 2k−1ε.

Take t to be a prime between ⌊N/(2C)⌋ and ⌊N/C⌋ where C is a sufficiently large absolute
constant in terms of k. Combining this with the estimate ∥qαk∥R/Z ≪k N

−k implies that
∥αk∥R/Z ≪k ε · N−k. The result then follows by induction on k and applying the result for
the degree (k − 1) polynomial P ′(n) =

∑k−1
i=0 αi

(
n
i

)
.
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With this we are in position to deduce the result for nilsequences along the lines sketched
in Section 4.1.1.3.

Proof of Lemma 4.2.1. Consider the degree k filtration of the group Gi, Gi,0 = Gi,1 ⩾ Gi,2 ⩾
· · · ⩾ Gi,k ⩾ IdGi

. We say the group Gi has a degree k filtration of type t if Gi,t = Gi (i.e.,
the first (t+1) groups in the filtration match). We prove the result by backwards induction
on t assuming that all groups Gi have degree k filtrations of type t; note that the result is
trivial when t = k + 1 and we aim to prove the claim when t = 1. So, consider the case
where the filtration has type t for some 1 ≤ t ≤ k and suppose that we already know cases
of larger type.

Let Xi = {Xi,1, . . . , Xi,dim(Gi)} denote the Mal’cev basis for Gi. By the classification of
polynomial sequences (see [29, Lemma 6.7]), we have

gi(n) = exp

( dim(Gi)∑
j=1

Pi,j(n) ·Xi,j

)
where if Xi,j ∈ (Xi ∩ log(Gi,ℓ)) \ (Xi ∩ log(Gi,ℓ+1)) then the degree of polynomial Pi,j(n) is
bounded by ℓ.

We consider the polynomials Pi,j(n) for 1 ≤ i ≤ T and 1 ≤ j ≤ dim(Gi) − dim(Gi,t+1).
The degrees of Pi,j(n) are all at most t ≤ k and the total number of polynomials number
consideration is bounded by T · d. By applying Lemma 4.2.3, there exists a decomposition
of [N ] into arithmetic progressions P1, . . . ,PL such that:

• N/L ≥ NΩk(1/(dT )Ok(1))/2

• We have

max
1≤i≤T

1≤j≤dim(Gi)−dim(Gi,t+1)

max
1≤s≤L

max
n,n′∈Ps

∥Pi,j(n)− Pi,j(n
′)∥R/Z ≤ 2 ·N−Ωk(1/(dT )Ok(1)).

We break the progressions Ps into two classes: the first class (s ∈ S) if the progression
has length bounded by

√
N/L and the second class (s ∈ L) otherwise. For progressions

which are short, we break each such progression into singletons; after this there are at most
L +

√
N/L · L ≤ 2

√
NL progressions which is qualitatively identical to before. For each

s ∈ L, we write Ps = {asn+ bs}n∈[|Ps|] where |Ps| denotes the length of the progression.
Using the second condition above and applying Lemma 4.2.4, we see that for each long

progression Ps, we have for all i, j that

Pi,j(asn+ bs) = Pi,j,s,small(n) + Pi,j,s,int(n)

where:

• deg(Pi,j,s,int), deg(Pi,j,s,small) ≤ deg(Pi,j)

• Pi,j,s,int maps Z → Z
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• If Pi,j,s,small(n) =
∑t

r=0 αi,j,s,small,r

(
n
r

)
then

|αi,j,s,small,r| ≤ 2N−r ·N−Ωk(1/(dT )Ok(1))

for 1 ≤ r ≤ t and |αi,j,s,small,0| ≤ 1.

We have implicitly used |Ps| ≥
√
N/L ≥ NΩk(1/(dT )Ok(1)

) for s ∈ L here.
The key trick is to now “reduce” the polynomial sequence gi to one which lives in Gi,t+1.

Define

• εi,s(n) = exp
(∑dim(Gi)−dim(Gi,t+1)

j=1 Pi,j,s,small(n) ·Xi,j

)
• γi,s(n) =

∏dim(Gi)−dim(Gi,t+1)
j=1 exp(Xi,j)

Pi,j,s,int(n)

• g′i,s(n) = εi,s(n)
−1 · g(asn+ bs) · γi,s(n)−1

Note that εi,s, γi,s are polynomial sequences with respect to the filtration given on Gi by
the classification of polynomial sequences (see [29, Lemma 6.7]) and the fact that the set of
polynomial sequences form a group. Therefore g′i,s is also seen to be a polynomial sequence.
The crucial point, however, is that by the Baker–Campbell–Hausdorff formula, we have that
g′i,s only takes on values inGi,t+1. (We are using the assumption on type thatGi = G0,i = Gt,i,
so any commutator is in G2t,i ⩽ Gt+1,i since t ≥ 1.)

Therefore we may inductively apply the claim for each long progression Ps, to the poly-
nomials g′i,s on Gi,t+1 where we take the filtration on Gi intersected with Gi,t+1 (note that
the filtration is still degree k). The corresponding Mal’cev basis is given by taking the last
dim(Gi,t+1) elements of Xi. By induction therefore we may break each long Ps into Ls such
progressions Ps,r where Ls ≤ |Ps|1−Ωk(1/(Td)Ok(1)) and such that

max
s∈L

1≤r≤Ls

max
n,n′∈Ps,r

dGi/Γi
(g′i,s(n)Γi, g

′
i,s(n

′)Γi) ≤MOk(d
Ok(1)) ·N−Ωk(1/d

Ok(1)).

Here we are using [66, Lemma B.9] to compare distances between Gi and Gi,t+1.
Furthermore note that γi,s takes values only in Γ by the definition of a Mal’cev basis and

that for n, n′ ∈ [|Ps|] we have

dGi
(εi,s(n), idGi

) ≤MOk(d
Ok(1)) and dGi

(εi,s(n), εi,s(n
′)) ≤MOk(d

Ok(1)) ·N−Ωk(1/(dT )Ok(1)).

This is due to our bounds on the smoothness norm of Pi,j,s,small and [66, Lemma B.3].
It therefore follows by [66, Lemma B.4] that for any s, r we have

max
n,n′∈Ps,r

dGi/Γi
(gi(asn+ bs)Γi, gi(asn

′ + bs)Γi)

= max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n)Γi, εi,s(n

′)g′i,s(n
′)Γi)

≤ max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n)Γi, εi,s(n)g

′
i,s(n

′)Γi)
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+ max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n

′)Γi, εi,s(n
′)g′i,s(n

′)Γi)

≤MOk(d
Ok(1))

(
max

n,n′∈Ps,r

dGi/Γi
(g′i,s(n)Γi, g

′
i,s(n

′)Γi)
)
+ max

n,n′∈Ps,r

dGi
(εi,s(n), εi,s(n

′))

≤MOk(d
Ok(1)) ·N−Ωk(1/(dT )Ok(1))

which completes the inductive step (our final decomposition is composed of all elements
of the short Ps indexed by s ∈ S and all Ps,r arising from the long progressions indexed
by s ∈ L). We are done, noting that the number of inductive steps (hence the decay in
parameters) is bounded in terms of k.

4.3 Completing the proof

We are now run the Heath-Brown [35] and Szemerédi [98] density increment strategy as re-
formulated by Green and Tao [28]. In the first subsection we recall a number of preliminaries
for the proof and in the second subsection we prove Theorem 4.1.1. Our treatment at this
point is quite close to that of [28] and we borrow certain elements from the density increment
portion of [78] as well.

4.3.1 Preliminaries for density increment

We first recall the definition of the Gowers U s-norm over the integers.

Definition 4.3.1. Given f : Z/NZ → C and s ≥ 1, we define

∥f∥2sUs(Z/NZ) = Ex,h1,...,hs∈Z/NZ∆h1,...,hsf(x)

where ∆hf(x) = f(x)f(x+ h) is the multiplicative discrete derivative (extended to vectors
h in the natural way).

Given a natural number N and a function f : [N ] → C, we choose a number Ñ ≥ 2sN

and define f̃ : Z/ÑZ → C via f̃(x) = f(x) for x ∈ [N ] and 0 otherwise. Then

∥f∥Us[N ] := ∥f̃∥Us(Z/ÑZ)/∥1[N ]∥Us(Z/ÑZ).

One can check that this definition does not depend on the choice of Ñ . This is well known
to be a seminorm for s ≥ 1 and a norm for s ≥ 2.

As mentioned, the main input for our result will be the following improved bound for the
U s-norm inverse theorem given as [69, Theorem 1.2].

Theorem 4.3.2. Fix δ ∈ (0, 1/2). Suppose that f : [N ] → C is 1-bounded and

∥f∥Us+1[N ] ≥ δ.
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Then there exists a nilmanifold G/Γ of degree s, complexity at most M , and dimension at
most d as well as a function F on G/Γ which is at most K-Lipschitz such that

|En∈[N ][f(n)F (g(n)Γ)]| ≥ ε,

where we may take

d ≤ log(1/δ)Os(1) and ε−1, K,M ≤ exp(log(1/δ)Os(1)).

We now define the k-fold linear operator corresponding to counting k-term arithmetic
progressions. Given functions fi : [N ] → C, define

Λk(f1, . . . , fk) = Ex,y∈{0,...,N}

k∏
j=1

fj(x+ (j − 1)y)

where fi are extended by 0 outside of [N ]. We also write

Λk(f) := Λk(f, . . . , f).

We have the following basic inequalities regarding the operator Λk. The proof is by now
standard and hence is omitted (see [28, Lemma 3.2] and [27, Theorem 3.2]).

Lemma 4.3.3. Consider functions fi : [N ] → C for 1 ≤ i ≤ k. Then we have

Λk(f1, . . . , fk) ≤ min
1≤i≤k

∥fi∥L1[N ] ·
∏
j ̸=i

∥fj∥L∞[N ],

Λk(f1, . . . , fk) ≪k min
1≤i≤k

∥fi∥Uk−1[N ] ·
∏
j ̸=i

∥fj∥L∞[N ].

We next define factors and the factor induced by function g with a resolution K.

Definition 4.3.4. We define a factor B of [N ] to be a partition [N ] =
⊔

B∈B B. We define
B(x) for x ∈ [N ] to be the part of B that contains x. We say B′ refines B if every part of B
can be written as a disjoint union of parts of B′. We define a join of a sequence of factors
to be the partition (discarding empty parts)

B1 ∨ · · · ∨ Bd := {B1 ∩ · · · ∩Bd : Bi ∈ Bi}.

Next given a function g : [N ] → R and a resolution K, we define the factor induced by g of
resolution K to be

Bg,K =
⊔
j∈Z

{x ∈ [N ] : g(x) ∈ [j/K, (j + 1)/K).

Finally, given a factor B, we define ΠBf by

ΠBf(x) = Ey∈B(x)f(y).
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A technical annoyance is that one may potentially have a large set of points near the
cutoffs when defining Bg,K . We define a notion of regularity capturing when a function g
avoids such issues, which is related to an idea introduced by Bourgain [11] with regards to
Bohr sets.

Definition 4.3.5. The factor Bg,K is C-regular if

sup
r>0

(
1

2r

1

N

∣∣{x ∈ [N ] : ∥K · g(x)∥R/Z ≤ r
}
|
)

≤ C.

It turns out to be easy to obtain “regular” factors; a useful trick (motivated by the proof of
[29, Corollary 2.3]) is to consider a random shift of g and then apply the Hardy—Littlewood
maximal inequality. Given a function g and resolution K, we define the maximal function

Mg,K(t) := sup
r>0

1

2r

1

N

∣∣{x ∈ [N ] : ∥K · g(x)− t∥R/Z ≤ r}
∣∣.

The Hardy–Littlewood maximal inequality (on the torus R/Z) implies that

Et∈[0,1][Mg,K(t)] = O(1).

Therefore we have the following elementary fact which will prove useful.

Fact 4.3.6. There exists a constant C = C4.3.6 > 0 such that the following holds. Given a
function g : [N ] → R and a resolution K, there exists a shift t ∈ [0, 1/K) such that Bg−t,K is
C-regular.

4.3.2 Constructing factor approximation and density increment

The key claim which we need to prove Theorem 4.1.1 is the following density increment
lemma, phrased as a trichotomy.

Lemma 4.3.7. Fix an integer k ≥ 5 and a constant c > 0. Consider a function f : [N ] →
[0, 1] such that En∈[N ]f(n) = δ. There exist c′ = c′(c, k) and C = C(c, k) such that one of
the following always holds:

• N ≤ exp(exp(log(1/δ)C));

• |Λk(f)− Λk(δ · 1[N ])| ≤ cδk;

• There exists an arithmetic progression P ⊆ [N ] of length at least N1/ exp(log(1/δ)C) such
that

En∈Pf(n) ≥ (1 + c′)δ.

We prove Theorem 4.1.1 given Lemma 4.3.7; this is the standard density increment
strategy.
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Proof of Theorem 4.1.1 given Lemma 4.3.7. Suppose A ⊆ [N ] has no k-term arithmetic pro-
gressions. We iteratively increase the density of A; set A = A1, N = N1 and δ = δ1 and we
iteratively define Ai ⊆ [Ni], and δi = |Ai|/Ni.

If Ni ≤ exp(exp(log(1/δi)
C)), we immediately terminate. Otherwise, note that as Ai is

free of k-term arithmetic progressions, we have that

|Λk(1Ai
)− Λk(δi · 1[Ni])| ≥ δki · |Λk(1[Ni])| − |Ai| ·N−2

i ≫k δ
k
i

where we have used that Ni ≥ exp(exp(log(1/δi)
C)) ≫ δ−k

i . Therefore, the third case in
Lemma 4.3.7 occurs and there exists Pi+1 such that

|Ai ∩ Pi+1|/|Pi+1| ≥ (1 + c′)δi

and |Pi+1| ≥ N
1/ exp(log(1/δi)

C)
i . We now rescale the arithmetic progression Pi+1 to [|Pi+1|] =:

[Ni+1], which sends Ai ∩ Pi+1 to a new set Ai+1, and then we continue the iteration.
Note that at every iteration the density δi increases by a multiplicative factor of at least

(1+ c′), so we must terminate in at most Ok(log(1/δ)) iterations. Thus there exists an index
j ≤ Ok(log(1/δ)) such that

N1/ exp(Ok(log(1/δ)
C+1)) ≤ Nj ≤ exp(exp(log(1/δj)

C)) ≤ exp(exp(log(1/δ)C)).

This implies that
logN ≤ exp(Ok(log(1/δ)

Ok(1)))

and thus
δ ≤ exp(−(log logN)Ωk(1)).

In order to prove Lemma 4.3.7, we first iterate Theorem 4.3.2 to obtain the following
result.

Lemma 4.3.8. Fix a parameter η ∈ (0, 1/2) and k ≥ 5. There exists a constant C = Ck > 0
such that the following statement holds. If N ≥ exp(log(1/η)C) and f : [N ] → R is 1-bounded
then there exist functions h1, . . . , hT : [N ] → R and d,M,K ≥ 1 such that:

• B =
∨

1≤i≤T Bhi,K satisfies ∥f − ΠBf∥Uk−1[N ] ≤ η;

• T,M,K ≤ exp(log(1/η)C) and d ≤ log(1/η)C;

• hi = Fi(gi(n)Γi) is a nilsequence where gi(n) takes values in a group Gi which is given
a degree (k− 2) filtration, Gi/Γi has complexity bounded by M and dimension bounded
by d, and Fi : Gi/Γi → R is M-Lipschitz;

• Bhi,K is C-regular for 1 ≤ i ≤ T .
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Proof. The proof follows via applying Theorem 4.3.2 repeatedly. We begin the iteration by
setting B0 = [N ] (i.e., the trivial partition). At each stage we will construct hi+1 and then
set Bi+1 = Bi ∨Bhi+1,K with K = ⌈exp(log(1/η)Ok(1))⌉, where the implicit constant is chosen
sufficiently large.
Step 1: If ∥f − ΠBi

f∥Uk−1[N ] ≤ η, we terminate.
Step 2: If ∥f−ΠBi

f∥Uk−1[N ] > η, by Theorem 4.3.2, there exists a nilsequence Fi+1(gi+1(n)Γi+1)
such that ∣∣En∈[N ][(f − ΠBi

f)(n)Fi+1(gi+1(n)Γi+1)]
∣∣ ≥ exp(− log(1/η)Ok(1))

and where Gi+1/Γi+1 has complexity bounded by exp(log(1/η)Ok(1)), dimension bounded
by log(1/η)Ok(1), Fi+1 : Gi+1/Γi+1 → C is exp(log(1/η)Ok(1))-Lipschitz, Gi+1 has been given
a degree (k − 2) filtration, and where gi+1(n) is a polynomial sequence with respect to
this filtration. Taking either the real or imaginary part of Fi+1, we may assume that
Fi+1 : Gi+1/Γi+1 → R and thus that∣∣En∈[N ][(f − ΠBi

f)(n)Fi+1(gi+1(n)Γi+1)]
∣∣ ≥ exp(− log(1/η)Ok(1)).

Note that for any t ∈ [0, 1/K), this implies that∣∣∣∣En∈[N ]

[
(f − ΠBi

f)(n)
⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋

K

]∣∣∣∣
≥

∣∣En∈[N ][(f − ΠBi
f)(n)Fi+1(gi+1(n)Γi+1)]

∣∣− 2/K

≥ exp(− log(1/η)Ok(1))

given that the implicit constant defining K is chosen sufficiently large. Recall here ⌊x⌋ is
defined in the standard manner that x = ⌊x⌋ + {x} where ⌊x⌋ ∈ Z and {x} ∈ [0, 1). We
then take t ∈ [0, 1/K), such that BFi+1(gi+1(n)Γi+1)+t,K is C-regular; this exists for C larger
than an absolute constant by Fact 4.3.6.

Set hi+1(n) := Fi+1(gi+1(n)Γi+1) + t. Note that

⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋
K

is measurable with respect to Bhi+1,K by construction and it is bounded by exp(log(1/η)Ok(1)).
Therefore since ΠBhi+1,K

is self-adjoint we have

En∈[N ][|ΠBhi+1,K
(f − ΠBi

f)(n)|]

≥ (1 + ∥Fi+1∥L∞(Gi+1/Γi+1))
−1 ·

∣∣∣∣En∈[N ]

[
(f − ΠBi

f)(n)
⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋

K

]∣∣∣∣
≥ exp(− log(1/η)Ok(1)).

Step 3: We now return back to Step 1 and keep on iterating this procedure until it ter-
minates. This completes the proof modulo showing that the iteration terminates in a small
number of steps. To show this, note that

∥ΠBhi+1,K
(f − ΠBi

f)∥L1[N ] ≤ ∥ΠBhi+1,K
(f − ΠBi

f)∥L2[N ] = ∥ΠBhi+1,K
ΠBi+1

(f − ΠBi
f)∥L2[N ]
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≤ ∥ΠBi+1
(f − ΠBi

f)∥L2[N ] = ∥ΠBi+1
f − ΠBi

f∥L2[N ]

= (∥ΠBi+1
f∥2L2[N ] − ∥ΠBi

f∥2L2[N ])
1/2.

The final equality is the Pythagorean theorem with respect to projections (this follows from
e.g. [78, Lemma 4.3(iv)]). We deduce

∥ΠBi+1
f∥2L2[N ] − ∥ΠBi

f∥2L2[N ] ≥ exp(− log(1/η)Ok(1)).

Since for all i we have ∥ΠBi
f∥L2[N ] ≤ ∥f∥L2[N ] ≤ 1, there are at most exp(log(1/η)Ok(1))

iterations as desired.

We now complete the proof of Lemma 4.3.7 and therefore the proof of Theorem 4.1.1. The
first part of the proof is finding a density increment on a factor derived from nilsequences,
which is essentially identical to that of [28, Lemma 5.8]. In the second part, we apply our
nilsequence Schmidt-type result Lemma 4.2.1 to find a long arithmetic progression with
density increment.

Proof of Lemma 4.3.7. Without loss of generality, we may assume that c is smaller than an
absolute constant. Furthermore we may assume that N ≥ exp(exp(log(1/δ)Ω(1))) (where the
implicit constant may depend on c, k) and |Λk(f)− Λk(δ · 1[N ])| ≥ cδk.
Step 1: Increment on a factor. By applying Lemma 4.3.8, there exists a factor B (derived
from nilsequences of appropriate complexity, with parameters below) such that

∥ΠBf − f∥Uk−1[N ] ≤ c∗δk

where we choose c∗ sufficiently small in terms of c. Via telescoping and the second inequality
in Lemma 4.3.3, we have

|Λk(f)− Λk(ΠBf)| ≤ cδk/2

as long as c∗ was chosen appropriately, and therefore

|Λk(ΠBf)− Λk(δ · 1[N ])| ≥ cδk/2.

Take c′ = min(c, 1)/(10k)5. Let g = min(ΠBf, (1 + c′)δ). The crucial claim is that if
Ω′ = {n ∈ [N ] : g(n) ̸= ΠBf(n)} = {n ∈ [N ] : ΠBf(n) > (1 + c′)δ} then Ω′ must have
sufficiently large measure. To see this note that:

|Λk(ΠBf)− Λk(g)| ≤ k∥ΠBf − g∥L1[N ] ≤ kPn∈[N ][n ∈ Ω′],

|Λk(δ1[N ])− Λk(g)| ≤ k(1 + c′)k−1δk−1∥δ1[N ] − g∥L1[N ],

∥g − δ1[N ]∥L1[N ] ≤ Pn∈[N ][n ∈ Ω′] + ∥δ1[N ] − ΠBf∥L1[N ].

The first and second inequality follow from the first part of Lemma 4.3.3 and telescoping
while the final inequality follows from the triangle inequality. We simplify the inequalities
slightly; as En∈[N ][δ1[N ]] = En∈[N ][f ] = En∈[N ][ΠBf ], we have

∥δ1[N ] − ΠBf∥L1[N ] = 2∥max(ΠBf − δ1[N ], 0)∥L1[N ] ≤ 2c′δ + 2Pn∈[N ][n ∈ Ω′].
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Given this and using the upper bound on c′, we deduce

|Λk(ΠBf)− Λk(g)| ≤ k∥ΠBf − g∥L1[N ] ≤ kPn∈[N ][n ∈ Ω′],

|Λk(δ1[N ])− Λk(g)| ≤ 2kδk−1∥δ1[N ] − g∥L1[N ],

∥g − δ1[N ]∥L1[N ] ≤ 3Pn∈[N ][n ∈ Ω′] + 2c′δ.

Therefore

cδk/2 ≤ |Λk(δ · 1[N ])− Λk(ΠBf)| ≤ |Λk(δ · 1[N ])− Λk(g)|+ |Λk(ΠBf)− Λk(g)|
≤ kPn∈[N ][n ∈ Ω′] + 2kδk−1∥δ1[N ] − g∥L1[N ] ≤ 7kPn∈[N ][n ∈ Ω′] + 4kc′δk;

thus we have Pn∈[N ][n ∈ Ω′] ≥ cδk/(20k).
Step 2: Increment on a progression. We are now in position to apply the nilsequence
Schmidt-type result Lemma 4.2.1. Recall that we applied Lemma 4.3.8 to find B, and hence
we may write B =

∨
1≤i≤T Bhi,K where:

• T,M,K ≤ exp(log(1/δ)C) and d ≤ log(1/δ)C ;

• hi = Fi(gi(n)Γi) is a nilsequence where gi(n) takes values in a group Gi which is given a
degree (k− 2) filtration, Gi/Γi has complexity bounded by M and dimension bounded
by d, and Fi : Gi/Γi → R is M -Lipschitz;

• Bhi,K is C-regular for 1 ≤ i ≤ T .

Here C is a slightly larger value than the constant Ck in Lemma 4.3.8, depending only on k.
We now apply Lemma 4.2.1 to gi(n) for 1 ≤ i ≤ T . We obtain a decomposition of [N ]

into arithmetic progressions P1, . . . ,PL such that

• N/L ≥ N−1/ exp(log(1/δ)Ok(1));

• We have

max
1≤i≤T
1≤j≤L

max
n,n′∈Pj

dGi/Γi
(gi(n)Γi, gi(n

′)Γi) ≤ exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)).

We now consider Pj which intersect Ω′. Call a progression in the decomposition crossing
if it intersects Ω′ and [N ] \ Ω′ and a progression contained if it is fully within in Ω′. Since
Ω′ is measurable in terms of B, for a progression to be crossing it must “cross a boundary”
defining Bhi,K for at least one 1 ≤ i ≤ T . If a progression Pj crosses one of these boundaries
defined by hi then all points in Pj map close to this boundary, since the function Fi is
M -Lipschitz. In particular, by regularity of each Bhi,K , the measure (with respect to the
uniform distribution on [N ]) of improper progressions is bounded by

≪k T · exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)) = exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)).
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Let Ω∗ denote the union of all the contained progressions which have length at least
N ′ = cc′δk+1/(400k) · N/L (hence certainly Ω∗ ⊆ Ω′). Let I be the set of all 1 ≤ i ≤ L so
that Pi either has length at most N ′ or is crossing. We easily see that

0 ≤ Pn∈[N ][n ∈ Ω′]− Pn∈[N ][n ∈ Ω∗] ≤
∑
i∈I

Pn∈[N ][n ∈ Pi] ≤ cc′δk+1/(200k);

in the final inequality we have used that N ≥ exp(log(1/δ)Ω(1)) for a sufficiently large implicit
constant.

Finally, this implies that

En∈Ω∗ [f ] =
En∈[N ][f · 1n∈Ω∗ ]

Pn∈[N ][n ∈ Ω∗]
≥

En∈[N ][f · 1n∈Ω′ ]− cc′δk+1/(200k)

Pn∈[N ][n ∈ Ω′]

≥
En∈[N ][f · 1n∈Ω′ ]

Pn∈[N ][n ∈ Ω′]
− cc′δk+1/(200k)

cδk/(20k)

=
En∈[N ][ΠBf · 1n∈Ω′ ]

Pn∈[N ][n ∈ Ω′]
− c′δ/10

≥ (1 + c′)δ − c′δ/10 ≥ (1 + c′/2)δ.

By pigeonhole, this implies that there exists a contained arithmetic progression Pi having
length at least cc′δk+1/(400k) · N/L ≥ N−1/ exp(log(1/δ)Ok(1)) on which the density of f is at
least (1 + c′/2)δ. Adjusting the value of c′, this completes the proof.
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