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Doctor of Philosophy

Abstract
Stochastic processes have captivated scientific interest by balancing conceptual sim-
plicity with the ability to model complex, poorly understood, or even entirely un-
known phenomena. Still, the deployment of stochastic process models remains chal-
lenging in practice due to their intrinsically uncertain nature, complicating the com-
putation and interpretation of model predictions. This thesis addresses two distinct
challenges for the study of Markovian processes and associated control problems:
certification and scale.

In the first part of this thesis, we present an algorithmic framework for conser-
vatively answering the question: What is the best performance a controlled jump-
diffusion process can attain? Answers to this question, even if conservative, shed
light on fundamental limits, allowing us to distinguish situations where intrinsic noise
masks poor decisions from situations where any attempt of improvement is futile. We
connect infinite-dimensional linear programming over cones of occupation measures
to techniques for approximating the solutions of Hamilton-Jacobi-Bellman and Kol-
mogorov backward equations. The result is a hierarchy of structured sum-of-squares
programs that furnishes a sequence of hard, yet computable bounds for common con-
trol performance indicators encoding, for instance, operating cost or the probability
of failure. These bounds in turn serve as witnesses of fundamental limitations or
certificates of optimality and safety.

In the second part of this thesis, we explore the use of the framework devel-
oped in part one to shed light on the limits of quantum information technologies by
quantifying the performance limits of controlled quantum devices. In the context
of open-loop quantum control, our framework improves upon quantum speed lim-
its, such as the Mandelstam-Tamm bound, and provably allows characterization of
performance boundaries to arbitrary precision. For closed-loop controlled quantum
systems, it constitutes the first ever approach to rigorously bound performance losses
induced by continuous measurement.

The third part of the thesis is devoted to the challenge of scale as commonly en-
countered when studying Markov process models in high-dimensional spaces. Here,
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the complexity of computing and representing model predictions routinely exceeds
available resources and renders interpretation challenging. We develop computational
tools based on dynamical low-rank approximation that allow us to extract the dom-
inant characteristic features of processes described by vast, nonlinear matrix-valued
differential equations and track their evolution over time at a reduced cost.

The methods developed in this thesis are accompanied by software solutions ex-
ploiting the features of the Julia programming language to enable deployment of
Markov process models in the context of scientific inquiry and engineering advance-
ment more widely, with greater ease, and rigorous guarantees.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics, Department of Mathematics

Thesis Supervisor: Richard D. Braatz
Title: Edwin R. Gilliland Professor, Department of Chemical Engineering
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Chapter 1

Introduction

In 1827 the botanist Robert Brown documented the erratic motion of small particles

suspended in a viscous medium. In the following decades, fueled by the emergence

of the theory of molecules, a debate ensued among contemporary scientists about the

origin of this phenomenon known today as Brownian motion. The nearly century-

long debate came to its conclusion with a series of articles in the early 1900s by

Albert Einstein [1], Marian von Smulochowski [2], and Paul Langevin [3]. What

unites these contributions and ultimately led to the breakthrough on this problem

was the probabilistic abstraction of a phenomenon simply too overwhelmingly com-

plex to be described deterministically – the disordered collisions between a suspended

particle and molecules of the surrounding medium. These ideas initially conceived by

the physical community were subsequently extended and put on a firm mathematical

ground by the mathematicians of the 20th century including Norbert Wiener, Andrey

Kolmogorov, and Paul Lèvy [4]. Made available to the wider scientific community

through this effort, today, models of stochastic processes akin to Brownian motion

find applications in virtually all disciplines of science and engineering. And although

the landscape of stochastic process models has become more diverse since then, the

motivation to deploy them in the context of scientific inquiry and engineering ad-

vancement remains unchanged. Stochastic process models strike a delicate balance

between conceptual simplicity and the capacity of describing complex, erratic behav-

iors. As such, they promise to be of great utility where deterministic abstractions
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fall short in capturing the nuances of the dynamics at play, whether that is because

the governing phenomena are poorly understood, entirely unknown, or simply too

overwhelmingly complex. Consider, for instance, the unpredictable motion of the

stock market, the spread of a virus within a population, or the intricacies of cellular

communication.

At the same time, facilitated by the steadily improving computational resources

and the emergence of powerful programming languages, computational models have

become an integral part of modern scientific and engineering activities. Computa-

tional models aid not only in unifying explanations for empirical observations but

also guide engineering decisions and inform experimental design, paving the way for

new discoveries. Unfortunately, however, the conceptual simplicity of stochastic pro-

cess models rarely carries over to computation, let alone interpretation, of their pre-

dictions. The rich and complex behavior of systems typically modeled as stochastic

processes gives rise to unwieldy computational representations of model predictions

that do not readily compose with established decision-making routines. Additional

challenges arise when stochastic models are used to guide decisions in safety- and

performance-critical situations, where their inherent randomness renders it difficult

to rigorously rule out erroneous conclusions or distinguish poor decisions from un-

avoidable, intrinsic noise as the cause of undesired outcomes.

The computational methods and tools developed in this thesis promise to enable

the deployment of stochastic process models in scientific and engineering workflows

more widely, and with greater ease and confidence. In safety- and performance-critical

situations, they allow us to remove any doubts about our conclusions by putting hard

bounds on failure probabilities or computing witnesses of fundamental limitations. In

problems of challenging scale, they allow us to extract the dominant characteristic

features of high-dimensional predictions, simplifying interpretation and accelerating

computation.
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1.1 Overview & contributions

This thesis is comprised of multiple research threads united by the common goal of

advancing the computational study of controlled Markov processes through new math-

ematical methods, applications, and software tools. Accordingly, the contributions of

this thesis are organized in three parts, each of which may be read independently. The

first two parts consider new methods and applications for certifying robustness, opti-

mality, and fundamental limits of controlled jump and diffusion processes. The third

part advances techniques and presents new software tools for addressing the challenge

of scale when studying high-dimensional processes governed by matrix-valued differ-

ential equations. In the following, we outline the main contents and contributions of

each part in greater detail.

Part I: Local occupation measures introduces a mathematical framework for

computing guaranteed bounds for the statistics of controlled jump and diffusion pro-

cesses. It is an extension to the traditional approach of analyzing controlled stochastic

processes through the lens of infinite-dimensional linear programming over cones of

occupation measures [5, 6]. To boost the overall practicality of this traditional ap-

proach, the presented framework leverages a concept that we call local occupation

measures as derived from restricting the traditional (global) notion of occupation

measures to subdomains of a partition of the process’ space-time domain. Through

the choice of this partition, it enables fine-grained control over the construction of

structured semidefinite bounding problems via the moment-sum-of-squares hierarchy.

Chapter 2 reviews the mathematical foundations on which the presented local

occupation measure framework is built. It introduces essential notions of measure

theory, convex optimization, moment problems, and real algebraic geometry. A par-

ticular emphasis is placed on the duality between moment problems and non-negative

polynomials as well as its connection to conic linear and semidefinite programming.

In Chapter 3, we then present the local occupation measure framework for bound-

ing the statistics of controlled jump and diffusion processes. By enabling to bound

the best attainable control performance, it complements heuristics and local search
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techniques for controller design as the bounds shed light on fundamental perfor-

mance barriers and provide optimality certificates. We show that the local occupa-

tion measure framework bridges the gap between discretization-based approximations

to the solution of the Hamilton-Jacobi-Bellmann or Kolmogorov backward equations

and techniques based on the traditional occupation measures framework and the

moment-sum-of-squares hierarchy. With examples from population control and cel-

lular biology, we demonstrate that it yields notable performance gains relative to

the traditional approach; its additional flexibility enables the construction of tighter,

numerically better conditioned bounding problems.

Chapter 4 concludes Part I with a discussion of the analysis of stochastic reac-

tion systems within the framework of local occupation measures. Here, its bounding

capabilities complement commonly employed analysis methods such as approximate

sampling techniques [7] or moment closure approximations [8–11]; it enables rigorous

error quantification and robustness certification, and provides side information for

otherwise difficult to compute quantities such as rare event probabilities or long-term

statistics. We show that a range of recently proposed moment bounding schemes for

the analysis of stochastic reaction systems [12–16] are unified and extended by the

framework of local occupation measures. Moreover, it is shown to bridge the gap be-

tween these schemes and the widely adopted technique of finite state projection [17,

18].

Part II: Quantifying the limits of quantum control is dedicated to the task

of mapping out the performance boundaries of controlled quantum devices. Positioned

as the facilitators of quantum information processing, the performance limits of such

devices have immediate consequences for quantum information technologies at large,

yet have remained largely unexplored. To address this gap, we leverage the occupation

measure framework and its more practical extension put forward in Part I.

After a brief primer on the principles and mathematics of quantum mechanics

presented in Chapter 5, we first consider the case of open-loop controlled quantum

systems in Chapter 6. Through application of the occupation measure framework, we

devise a hierarchy of sum-of-squares bounding problems for the optimal performance
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of common open-loop quantum optimal control problems. We establish practically

verifiable conditions under which the bounds furnished by this hierarchy converge to

the true optimal control performance and demonstrate their utility with practically

relevant examples. In particular, the bounds are found to yield significantly less con-

servative estimates of the performance limits as those determined by known quantum

speed limits such as the celebrated Mandelstam-Tamm [19] and Margolus-Levitin [20]

bounds, or the recent algorithmic bounding approach by Zhang et al. [21].

In Chapter 7 we turn to the case of feedback-controlled quantum systems. We

identify a class of quantum systems under continuous observation for which the com-

bination of quantum filtering theory, describing the intrinsically stochastic dynam-

ics of such systems, with the occupation measure framework yields a hierarchy of

tractable sum-of-squares bounding problems for the best attainable feedback control

performance. This result constitutes the first ever methodology to rigorously bound

the limits of quantum feedback control and, in particular, the unavoidable losses in-

duced by continuous observation. We further discuss practically relevant extensions

of this methodology to quantum feedback control in the presence of unobserved decay

channels or measurement inefficiencies, establish technical conditions under which the

bounds converge to the best attainable performance, and demonstrate their utility of

the method with a qubit control example.

Between the strong theoretical guarantees and empirically good performance of

the proposed bounding methods, we argue they can have relevant implications for

the design of the next generation of quantum devices. On the one hand, they provide

access to heuristic controllers alongside performance bounds which may guide con-

troller design or certify the optimality of a given control policy. On the other hand, by

revealing fundamental limitations the bounds can inform assessments of technological

potential and early-stage design decisions.

Part III: Dynamical low-rank approximation pivots from the certification

questions explored in Parts I and II to tackling the issue of scale in analyzing high-

dimensional Markov processes. We focus on compressing predictions of Markov pro-

cesses described by extensive matrix-valued differential equations as commonly en-
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countered in the study of phenomena governed by stochastic or multi-dimensional

partial differential equations. Our approach centers on dynamical low-rank approxi-

mation, which invokes the Dirac-Frenkel variational principle to trace an approximate

solution of the governing equations through the manifold of low-rank matrices. As

such, it reduces the computational load associated with computing model predictions

and promotes interpretability by exposing their characteristic features.

Our core contributions, presented in Chapter 8, are novel computational tools

and methods for dynamical low-rank approximation under nonlinear dynamics – a

feature that frustrates the state of the art. From the methodological perspective,

we extend the on-the-fly sparse approximation heuristic recently proposed by Naderi

and Babaee [22] to a broader context, enabling dynamical low-rank approximation

in the presence of general nonlinear dynamics with local structure. Moreover, we

decouple this heuristic from an explicit parameterization of the low-rank manifold,

facilitating its seamless composition with robust geometric schemes for numerical dy-

namical low-rank approximation. Our parametrization-independent approach endows

this heuristic with distinctly improved robustness in the presence of small singular val-

ues of the low-rank approximation when compared to the original proposal by Naderi

and Babaee [22]. From the perspective of computational tooling, we present a per-

formant, yet high-level ecosystem for dynamical low-rank approximation in the Julia

programming language. By leveraging the features of the Julia language alongside

on-the-fly sparse approximation, it enables streamlined use of dynamical low-rank

approximation in a problem-agnostic, minimally intrusive way. Through this combi-

nation of methodological advancements and software tools, our efforts simplify the

deployment of dynamical low-rank approximation in practice as demonstrated for the

model-based uncertainty quantification in solar wind predictions.
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Chapter 2

Mathematical Background

Convex conic programming, its special case of semidefinite programming, and their

close connection to moment problems and non-negative polynomials lies at the heart

of Parts I and II of this thesis. In the following, we introduce all four concepts

and highlight key results on which the contributions of these parts are built. Along

the way, we recall important foundational mathematical concepts and introduce the

notation used throughout.

2.1 Notation

We largely follow the notational conventions summarized below. Occasionally, how-

ever, we take the liberty to deviate from these conventions if it avoids unnecessary

clutter or improves the clarity of exposition.

General

Unless conflicting with standard notation, we use lowercase symbols to denote scalars

and vectors (or scalar- and vector-valued functions), and uppercase symbols for ma-

trices (or matrix-valued functions and operators) as well as sets. Further distinctions

between these cases will be clear from context. For common (topological) spaces or

sets we use the standard notation. The (non-negative) 𝑛-dimensional reals and inte-

gers are denoted by R𝑛 (R𝑛
+) and Z𝑛 (Z𝑛+), respectively; similarly, the set of symmetric
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(positive semidefinite) 𝑛×𝑛 matrices is denoted by S𝑛 (S𝑛+) and we use the standard

shorthand notation 𝐴 ⪰ 𝐵 for 𝐴 − 𝐵 ∈ S𝑛+. The set of 𝑚-times differentiable func-

tions on a domain 𝐷 ⊂ R𝑛 is denoted by 𝒞𝑚(𝐷) and when 𝐷 is closed differentiability

shall be understood in the sense of Whitney [23]. For functions with two arguments

that are differentiable 𝑛 times in their first and 𝑚-times in their second argument, we

write 𝒞𝑛,𝑚(𝐷). Throughout, we broadly indicate the dual of an object 𝑋 (for example

a vector spaces, operator, cone, . . . ) by 𝑋*. A (bilinear) pairing between two vector

spaces (𝒳 , 𝒴) (over the reals) will be denoted by ⟨ · , · ⟩ : 𝒳 × 𝒴 → R; when 𝒳 and

𝒴 are dual, we refer to the pairing as duality bracket. Lastly, we abbreviate index

ranges of the form {1, 2, . . . ,𝑚} with the shorthand [𝑚].

Polynomials

We denote the ring of polynomials in the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) with real coeffi-

cients by R[𝑥]; the subset of polynomials with degree at most 𝑑 is denoted by R𝑑[𝑥].

The degree of a polynomial 𝑓 is referred to as deg 𝑓 . The addition and multiplication

of polynomials (and functions in general) is denoted and defined in the usual way:

𝑓 = 𝑔 + ℎ ⇐⇒ 𝑓, 𝑔, ℎ satisfy 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), ∀𝑥 ∈ R𝑛,

𝑓 = 𝑔ℎ ⇐⇒ 𝑓, 𝑔, ℎ satisfy 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), ∀𝑥 ∈ R𝑛.

Furthermore, we employ the multi-index notation for monomials: given the multi-

index (𝑗1, . . . , 𝑗𝑛) ∈ Z𝑛+, the corresponding monomial is denoted by 𝑥𝑗 = ∏︀𝑛
𝑖=1 𝑥

𝑗𝑖
𝑖 ; we

use the shorthand notation |𝑗| = ∑︀𝑛
𝑖=1 𝑗𝑖 to denote the (total) degree of a monomial

corresponding to the multi-index 𝑗.

Integration

The Lebesgue integral with respect to a measure 𝜌 of a 𝜌-integrable function 𝑓 : 𝑋 →

R is denoted by
∫︀
𝑋 𝑓(𝑥) d𝜌(𝑥). The Lebesgue integral with respect to the Lebesgue

measure is denoted simply by
∫︀
𝑋 𝑓(𝑥) d𝑥. For Lebesgue integrals with respect to

probability measures, we use the expectation operator; that is, if 𝜌 is a probability
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measure, we write E [𝑓 ] in place of
∫︀
𝑋 𝑓(𝑥) d𝜌(𝑥). The probability measure associated

with an expectation will be clear from context. Lastly, we denote the indicator

function of a set 𝐴 with 1𝐴.

2.2 Measure theory

In preparation for the treatment of moment problems, we review in the following some

quintessential notions of measure theory. Specifically, we formalize the distinction

between the concept of a distribution and a measure as that will play an important

role in the formulation of moment problems. For more details on these and other

related measure theoretic concepts, we refer the reader to the first Chapters of the

standard texts of Durrett [24] and Kowalski [25] based on which this section was

developed.

Before we give a definition of a measure, we recall some other fundamental notions

of measure theory. We begin with the concept of a 𝜎-algebra.

Definition 2.1 (𝜎-algebra). Let 𝑋 be a set and 𝒮 a set of subsets of 𝑋. 𝒮 is called

a 𝜎-algebra of 𝑋 if it satisfies the following three conditions

(i) 𝒮 contains the empty set, i.e., ∅ ∈ 𝒮

(ii) 𝒮 is closed under countable union, i.e., {𝐴𝑖 ∈ 𝒮}𝑖≥1 =⇒ ∪𝑖≥1𝐴𝑖 ∈ 𝒮

(iii) 𝒮 is closed under complementation, i.e., 𝐴 ∈ 𝒮 =⇒ 𝑋 ∖ 𝐴 ∈ 𝒮

If 𝐴 ⊂ 𝑋 and 𝐴 ∈ 𝒮, we call 𝐴 a measurable subset of 𝑋.

The most simple examples of 𝜎-algebras are the trivial 𝜎-algebra 𝒮 = {∅, 𝑋} and

the discrete 𝜎-algebra given by the powerset 𝒫(𝑋) of 𝑋, i.e., 𝒫(𝑋) = {𝐴 : 𝐴 ⊂ 𝑋}.

The powerset is the canonical choice for a 𝜎-algebra when 𝑋 is at most countable; for

example in the case where 𝑋 denotes all possible realizations of a discrete random

variable. For uncountable subsets of R𝑛, the following notion of the Borel 𝜎-algebra

is most frequently employed.
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Definition 2.2 (Borel 𝜎-algebra). The Borel 𝜎-Algebra ℬ(𝑋) of a topological space

𝑋 is the smallest 𝜎-Algebra that contains all open subsets of 𝑋, i.e., ℬ(𝑋) = ∩𝒮∈𝐾𝒮

where 𝐾 = {𝒮 : 𝒮 is a 𝜎-Algebra of 𝑋 and 𝒮 contains all open subsets of 𝑋}. The

elements of ℬ(𝑋) are called Borel sets or Borel subsets of 𝑋.

Probability theory offers a particularly intuitive interpretation to understand the

significance of 𝜎-algebras from a practical perspective. For a probabilistic experiment,

say tossing a coin a certain number of times, one can think of the 𝜎-algebra as the

set of events one might be interested in studying; in this example that could be all

possible sequences of heads and tails that are consistent with the number of coin

tosses but it could also be simpler, for example only considering if a sequence of coin

tosses included a heads or not. This view emphasizes that the choice of a 𝜎-algebra

remains in many cases a modeling choice. For example, one might only be interested

in studying the probability of one specific event (and with that the probability of its

complement). In that case, it is potentially advantageous to choose a 𝜎-algebra that

is simpler than the powerset of all possible outcomes of the experiment.

The concept of a 𝜎-algebra leads to the definition of a measurable space and with

that finally allows us to formally define the concepts of a measure and measured

space.

Definition 2.3 (Measurable space). A measurable space is a pair of a topological

space 𝑋 and a 𝜎-algebra 𝒮 of it.

Definition 2.4 (Measure). Let (𝑋,𝒮) be a measurable space. 𝜌 : 𝒮 → [0,+∞] is

a measure on (𝑋,𝒮) if it is a non-negative, countably additive set function, i.e., 𝜌

satisfies the conditions

(i) 𝜌(∅) = 0.

(ii) If {𝐴𝑖}𝑖≥1 is a countable collection of pairwise disjoint elements of 𝒮, then

𝜌(∪𝑖≥1𝐴𝑖) = ∑︀
𝑖≥1 𝜌(𝐴𝑖).

If 𝜌(𝑋) < +∞, we call 𝜌 finite. If further 𝜌(𝑋) = 1, we call 𝜌 a probability measure.
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Definition 2.5 (Measured space). The triple (𝑋,𝒮, 𝜌) is called measured space.

When 𝜌 is a probability measure, (𝑋,𝒮, 𝜌) is called a probability space.

Intuitively, a measure assigns a “size” or “mass” to a set. This idea is intimately

related to the concept of a distribution as described by a density or mass function

in the continuous and discrete case, respectively. Here, the result of integrating the

density or summing the probability mass over a specific subset of the support of the

distribution can be interpreted as the “size” or “mass” that the distribution assigns

to this set. The following two examples demonstrate that, by this construction, every

such distribution can be described by an associated measure.

Example 2.1 (Discrete random variable). Let 𝑥 be a discrete random variable taking

values in an at most countable set 𝑋 ⊂ R𝑛 and let 𝑝 : 𝑋 → R be the probability mass

function associated with the distribution of 𝑥. Then, 𝜌 : 𝒫(𝑋) → R defined by

𝜌(𝐴) =
∑︁
𝑥∈𝐴

𝑝(𝑥)

is a probability measure on (𝑋,𝒫(𝑋)). Specifically, 𝜌 describes the distribution of 𝑥

in terms of the probability of all possible events.

Example 2.2 (Continuous random variable). Let 𝑥 be a continuous random variable

supported on 𝑋 ⊂ R𝑛 and let 𝑝 : 𝑋 → R be the probability density function associated

with the distribution of 𝑥. Then, 𝜌 : ℬ(𝑋) → R defined by

𝜌(𝐴) =
∫︁
𝐴
𝑝(𝑥) d𝑥

is a probability measure on (𝑋,ℬ(𝑋)). Specifically, 𝜌 describes the distribution of 𝑥

in terms of the probability of events in ℬ(𝑋).

The case of discrete random variables further motivates the following special

classes of measures.

Definition 2.6 (Dirac measure). Consider (𝑋,𝒮) and let 𝑥 ∈ 𝑋. The Dirac measure

at 𝑥 is defined as 𝛿𝑥(𝐴) = 1𝐴(𝑥), i.e., 𝛿𝑥 assigns a size of 1 to every measurable set

𝐴 if it contains 𝑥, and 0 otherwise.
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Definition 2.7 (Discrete measure). 𝜌 is called a discrete measure if it is a finite or

countable sum of non-negatively weighted Dirac measures.

In the context of moment problems, we will further frequently encounter the class

of (finite) Borel measures as defined below.

Definition 2.8 (Borel measure). Given a topological space 𝑋, a measure 𝜌 : ℬ(𝑋) →

[0,+∞] is called a Borel measure. If 𝜌(𝑋) < +∞, 𝜌 is called a finite Borel measure.

There are two main advantages of describing and analyzing distributions in terms

of the associated measure. On the one hand, the measure theoretic view provides a

unified perspective in which discrete and continuous distributions, as well as mixtures

thereof, can be treated alike. This is emphasized by the above examples as the

expectation of any integrable function 𝑓 : 𝑋 → R can concisely be written and

analyzed as

E [𝑓 ] =
∫︁
𝑋
𝑓(𝑥) d𝜌(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
𝑥∈𝑋

𝑝(𝑥)𝑓(𝑥) in Example 2.1
∫︁
𝑋
𝑓(𝑥)𝑝(𝑥) d𝑥 in Example 2.2

irrespective of the discrete or continuous nature of the underlying distribution. On the

other hand, the measure theoretic perspective provides a sound theoretical bedrock

of foundational results to be leveraged for formal analysis.

Another concept we will extensively use throughout this thesis is the support of

a measure.

Definition 2.9 (Support). Given a measured space (𝑋,𝒮, 𝜌), the support of 𝜌 is

definded and denoted as

supp 𝜌 = cl ({𝐴 ∈ 𝒮 : 𝜌(𝐴) > 0}) ,

where cl refers to the closure operation.

In the context of probability measures, the support delineates unlikely from likely

outcomes. Events that do not intersect the support of the probability measure occur
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with zero probability. As such, the notion of support plays also an important role in

describing hard constraints on random variables.

Next, we define the notion of a (canonical) moment of a measure or distribution.

Definition 2.10 (Canonical moment). Consider a measured space (𝑋,𝒮, 𝜌) with 𝑋 ⊂

R𝑛 and let 𝑗 ∈ Z𝑛+. Then, we call

𝑦𝑗 =
∫︁
𝑋
𝑥𝑗 d𝜌(𝑥)

the 𝑗th moment of 𝜌. Likewise, we say 𝜇𝑗 is the 𝑗th moment of a distribution if it is

the 𝑗th moment of the associated measure.

The following generalization of this notion provides additional flexibility.

Definition 2.11 (Generalized moment). Consider a measured space (𝑋,𝒮, 𝜌) with

𝑋 ⊂ R𝑛 and a 𝜌-integrable function 𝑓 : 𝑋 → R. Then, we define the generalized

moment of 𝜌 with respect to 𝑓 by

𝑧𝑓 =
∫︁
𝑋
𝑓(𝑥) d𝜌(𝑥).

We say 𝑧𝑓 is generated by 𝑓 .

2.3 Convex optimization

In the following, we review two classes of convex optimization problems that relate

closely to moment problems: semidefinite & conic linear programming. For a broader

introductory treatment of convex optimization, the reader is referred to [26].

2.3.1 Semidefinite programming

Semidefinite programming refers to optimization over the convex cone of symmetric

positive semidefinite matrices. A semidefinite program (SDP) in its standard form
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reads

inf
𝑋∈S𝑛

tr (𝐶𝑋) (2.1)

s.t. tr (𝐴𝑖𝑋) = 𝑏𝑖, ∀𝑖 ∈ [𝑚],

𝑋 ⪰ 0,

where 𝐶 ∈ S𝑛, 𝐴𝑖 ∈ S𝑛, 𝑖 ∈ [𝑚] and 𝑏𝑖 ∈ R, 𝑖 ∈ [𝑚] is considered the problem data

while 𝑋 denotes the decision variable of the optimization problem. Note that we

deliberately use the infimum in the formulation of (2.1), indicating that the optimal

value of SDPs need not be attained [27]. While every SDP can be recast in the

standard form (2.1), from a practitioner’s point of view the following formulation is

often more natural:

inf
𝑥∈R𝑛

𝑐⊤𝑥

s.t. 𝐹0 +
𝑛∑︁
𝑖=1

𝑥𝑖𝐹𝑖 ⪰ 0 (2.2)

𝐴𝑥 = 𝑏.

Here, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 and 𝐹𝑖 ∈ S𝑘, 𝑖 ∈ [𝑛] constitutes the problem data and

𝑥 is the decision variable. We refer to a constraint of the form (2.2) as linear matrix

inequalitiy (LMI). In contrast to the standard form, the above SDP formulation pro-

vides useful insights into the geometry of the problem: from a geometric perspective,

semidefinite programming can be viewed as the task of optimizing a linear function

over a feasible set of the form 𝐹 = {𝑥 ∈ R𝑛 : 𝐴𝑥 = 𝑏, 𝐹0 +∑︀𝑛
𝑖=1 𝑥𝑖𝐹𝑖 ⪰ 0}. In words,

𝐹 is the intersection of an affine subspace and the set defined by an LMI. Such sets are

called spectrahedra and they are of remarkable versatility. For instance, spectrahedra

include polyhedra and ellipsoids, or more broadly, intersections of polyhedral and

second-order cones. Consequently, semidefinite programming encompasses linear and

second-order cone programming as special cases. However, spectrahedra, in general,

present more diverse nonlinear characteristics. Specifically, guided by Sylvester’s cri-
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Figure 2-1: Oval of an elliptic curve described by the LMI (2.3).

terion for positive semidefiniteness, a spectrahedron can be described by a finite set

of polynomial inequalities, representing the non-negativity of the principal minors of

a matrix. The following examples elucidate the intricate nonlinear nature of feasible

regions of SDPs.

Example 2.3 (Oval of an elliptic curve [27]). Figure 2-1 shows the spectrahedron

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥 ∈ R2 : 𝑀(𝑥1, 𝑥2) =

⎡⎢⎢⎢⎢⎢⎣
𝑥1 + 1 0 𝑥2

0 2 −𝑥1 − 1

𝑥2 −𝑥1 − 1 2

⎤⎥⎥⎥⎥⎥⎦ ⪰ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.3)

The boundary of this spectrahedron is given by the oval of the elliptic curve encoded

by the condition det(𝑀(𝑥1, 𝑥2)) = 0.
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Figure 2-2: Elliptope described by the LMI (2.4).

Example 2.4 (3-D elliptope [27]). Figure 2-2 shows the 3-dimensional elliptope

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥 ∈ R3 :

⎡⎢⎢⎢⎢⎢⎣
1 𝑥1 𝑥2

𝑥1 1 𝑥3

𝑥2 𝑥3 1

⎤⎥⎥⎥⎥⎥⎦ ⪰ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.4)

The boundary of this spectrahedron is again given by a cubic surface describing the

points at which the determinant of the above matrix vanishes.

We call the formulation of Problem (2.1) the primal SDP or sometimes simply the

primal for short. With the primal SDP there is associated a related, often in some

sense equivalent, optimization problem called the dual SDP:

sup
𝑦∈R𝑚

𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖 (2.5)

s.t. 𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 0

It is easily verified that the optimal value of (2.1) is lower bounded by the optimal
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value of (2.5). To see this, simply note that for any feasible point 𝑋 of (2.1) and any

feasible point 𝑦 of (2.5), we have that

tr
(︃(︃

𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖

)︃
𝑋

)︃
= tr (𝐶𝑋) −

𝑚∑︁
𝑖=1

𝑦𝑖tr (𝐴𝑖𝑋) = tr (𝐶𝑋) −
𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖 ≥ 0,

where the second equality and non-negativity follows from the constraints in Problem

(2.1) and positive semidefiniteness of 𝑋 combined with the LMI in Problem (2.5),

respectively [28]. This relation between the optimal value of the primal and dual is

referred to as weak duality. The argument above also shows that (2.1) and (2.5) in

fact have the same optimal value if there exist feasible points 𝑦 and 𝑋 such that

tr
(︃(︃

𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖

)︃
𝑋

)︃
= 0.

Accordingly, tr ((𝐶 −∑︀𝑚
𝑖=1 𝑦𝑖𝐴𝑖)𝑋) is called the duality gap and we say strong duality

holds if there exist 𝑋 and 𝑦 feasible for the primal and dual SDP, respectively, such

that the duality gap vanishes.

To conclude this brief introduction to semidefinite programming, we wish to high-

light the properties underpinning the immense practical relevance of SDPs. On one

hand, semidefinite programming possesses a remarkable modeling power as spectra-

hedra allow for representation of a wide range of convex sets. Remarkably, this allows

for many problems in operations research [26], control theory [29], algebraic geome-

try [27, 30] and combinatorial optimization [31] to be modeled and solved via SDPs.

On the other hand, SDPs are convex optimization problems, thus cannot have subop-

timal local optima [26]. Moreover, SDPs can in theory be solved efficiently [32] and,

in practice, there exist powerful off-the-shelf available solvers [33–35] that reliably

solve small to medium scale problems to high accuracy.

2.3.2 Conic linear programming

The notion of semidefinite programming and other prominent classes of convex op-

timization problems such as linear, second-order cone, or exponential cone program-
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ming admit natural generalization by the notion of conic linear programming. Conic

linear programming refers broadly to the optimization of a linear function over the

intersection of a closed convex cone and an affine set [36]. A conic linear program

(CLP) in its standard form reads

inf
𝑥∈𝒳

⟨𝑐, 𝑥⟩ (2.6)

s.t. 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝐾,

where 𝑥 is the decision or optimization variable from a topological vector space 𝒳

(over real numbers), 𝐾 ⊂ 𝒳 is a closed convex cone, 𝐴 : 𝒳 → 𝒴 is a linear operator

encoding together with the right-hand side 𝑏 ∈ 𝒴 linear constraints on the decision

variable in the topological space 𝒴 , and 𝑐 ∈ 𝒳 * is an element of the continuous

dual space (the space of continuous functionals on 𝒳 ) defining the objective function.

For optimization over subsets of finite-dimensional (euclidean) space (𝒳 ⊂ R𝑛), the

CLP (2.6) includes many prominent classes of convex optimization problems such

as linear programming (𝐾 = R𝑛
+), second-order cone programming (𝐾 = {(𝑥, 𝑡) ∈

R𝑛+1 : ‖𝑥‖2 ≤ 𝑡, 𝑡 ≥ 0}), or semidefinite programming (𝐾 = S𝑛+) as special case.

Throughout this thesis, however, we will frequently consider the case where the space

of decision variables and the cone 𝐾 are infinite-dimensional. Most frequently, we

will consider the cases of optimization over the (dual) cones of non-negative measures

and continuous functions, in which case we refer to the CLP (2.6) as an infinite-

dimensional linear program [37].

Analogous to the case of SDPs as reviewed earlier, any CLP (2.6) has a companion

dual problem. The convex dual of (2.6) reads

sup
𝑦∈𝒴*

⟨𝑦, 𝑏⟩ (2.7)

s.t. 𝑐− 𝐴*𝑦 ∈ 𝐾*,
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where 𝐴* : 𝒴* → 𝒳 * is the adjoint of 𝐴 and 𝐾* the dual cone of 𝐾, i.e.,

𝐾* = {𝑠 ∈ 𝒳 * : ⟨𝑠, 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾}.

By an analogous argument as for SDPs, it is easily verified that weak duality holds

between (2.6) and (2.7), i.e., the optimal value of (2.6) is lower bounded by the

optimal value of (2.7). To see this, simply note that for any pair of primal-dual

feasible points (𝑥, 𝑦), we have that

⟨𝑐, 𝑥⟩ − ⟨𝑦, 𝑏⟩ = ⟨𝑐, 𝑥⟩ − ⟨𝑦, 𝐴𝑥⟩ = ⟨𝑐− 𝐴*𝑦, 𝑥⟩ ≥ 0.

The last inequality follows from the fact that 𝑐−𝐴*𝑦 ∈ 𝐾* and 𝑥 ∈ 𝐾 must hold as

𝑥 and 𝑦 are feasible for (2.6) and (2.7), respectively.

2.4 Non-negative polynomials

The theory of moments draws extensively on its duality with the theory of non-

negative polynomials. In preparation for the discussion of moment problems, we

therefore review some key results in algebraic geometry pertaining to the non-negativity

of polynomials in the following.

Definition 2.12 (Non-negative/positive polynomial). A polynomial 𝑝 ∈ R[𝑥] is called

non-negative (positive) when 𝑝(𝑥) ≥ 0 (𝑝(𝑥) > 0) for all 𝑥 ∈ R𝑛. Similarly, we say 𝑝

is non-negative (positive) on 𝑆 ⊂ R𝑛 if 𝑝(𝑥) ≥ 0 (𝑝(𝑥) > 0) for all 𝑥 ∈ 𝑆.

The ability to certify the non-negativity of a polynomial globally or over a subset

of its domain finds a wide range of applications in the fields systems, control and

optimization [27, 30]. Accordingly, this question has received substantial attention

over the last century from theorists and practitioners alike. A deceptively simple case

in which one can immediately conclude the global non-negativity of a polynomial is

when it is a “sum of squares” as defined below.

Definition 2.13 (Sum-of-squares polynomial). A polynomial 𝑝 ∈ R[𝑥] is a sum of
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squares or a sum-of-squares polynomial if there exist finitely many polynomials 𝑔𝑖 ∈

R[𝑥] such that 𝑝 = ∑︀𝑚
𝑖=1 𝑔

2
𝑖 . The set of sum-of-squares polynomials of arbitrary degree

is denoted by Σ and the subset of sum-of-squares polynomials of degree at most 2𝑑 is

denoted by Σ𝑑.

While, as famously noted by Hilbert [38], not all non-negative polynomials are

a sum of squares, sum-of-squares polynomials serve as the primary tool for deriving

computational certificates of non-negativity. This is because determining whether a

polynomial is a sum of squares (up to a given maximum degree) can be reduced to

solving an SDP. This is formalized in the following proposition.

Proposition 2.1. Let 𝑑 be a positive integer such that 𝑝 ∈ R2𝑑[𝑥]. 𝑝 is a sum of

squares if and only if there exists a matrix 𝑍 ∈ S(𝑛+𝑑
𝑛 )

+ such that

𝑝(𝑥) = 𝑏(𝑥)⊤𝑍𝑏(𝑥), ∀𝑥 ∈ R𝑛,

where 𝑏 denotes a basis of R𝑑[𝑥].

Proof. The if direction follows immediately from the existence of an eigendecompo-

sition of 𝑍 [39]. Conversely, if there exist 𝑚 polynomials 𝑔𝑖 such that 𝑝 = ∑︀𝑚
𝑖=1 𝑔

2
𝑖 ,

then clearly no 𝑔𝑖 can be of degree greater than 𝑑 such that there exist 𝑐𝑖 ∈ R(𝑛+𝑑
𝑛 )

for which 𝑔𝑖 = 𝑐⊤
𝑖 𝑏. Thus, we can choose 𝑍 = ∑︀𝑚

𝑖=1 𝑐𝑖𝑐
⊤
𝑖 ∈ S(𝑛+𝑑

𝑛 )
+ .

In light of Proposition 2.1, feasibility of the following problem

find 𝑍

s.t. 𝑝(𝑥) = 𝑏(𝑥)⊤𝑍𝑏(𝑥), ∀𝑥 ∈ R𝑛,

𝑍 ∈ S(𝑛+𝑑
𝑛 )

+ ,

provides a certificate of non-negativity of a given polynomial 𝑝 of degree at most 2𝑑.

It is worth emphasizing that the above problem translates into a finite semidefinite
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feasibility problem, as imposing the condition

𝑝(𝑥) = 𝑏(𝑥)⊤𝑍𝑏(𝑥), ∀𝑥 ∈ R𝑛

is equivalent to matching the coefficients of the polynomials on both sides of the

equality when expressed in a common basis. This translates into finitely many, in

fact
(︁
𝑛+𝑑
𝑛

)︁
, affine equality constraints on the entries of 𝑍.

The idea of certifying global non-negativity of a polynomial by finding a sum-

of-squares representation is easily extended to certifying non-negativity on special

subsets of R𝑛 called basic closed semialgebraic sets.

Definition 2.14 (Basic closed semialgebraic set). A set 𝑆 ⊂ R𝑛 is called basic closed

semialgebraic if it is the intersection of finitely many 0-superlevel sets of polynomials

with real coefficients, i.e., 𝑆 admits a representation of the form 𝑆 = {𝑥 ∈ R𝑛 :

𝑝𝑖(𝑥) ≥ 0, 𝑖 ∈ [𝑚]} where 𝑝𝑖 ∈ R[𝑥].

To that end, note that any polynomial of the form

𝑝 = 𝜎0 +
𝑚∑︁
𝑖=1

𝜎𝑖𝑝𝑖, 𝜎0, . . . , 𝜎𝑚 ∈ Σ (2.8)

must necessarily be non-negative on 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, 𝑖 ∈ [𝑚]}. Note further

that choosing 𝑆 = R𝑛 reduces to the previously discussed case of sum-of-squares

polynomials. This observation motivates the following definition.

Definition 2.15 (Quadratic module). Given finitely many polynomials 𝑝1, . . . , 𝑝𝑚 ∈

R[𝑥], the set of polynomials 𝑄(𝑝1, . . . , 𝑝𝑚) = {𝜎0+∑︀𝑚
𝑖=1 𝜎𝑖𝑝𝑖 : 𝜎0, . . . , 𝜎𝑚 ∈ Σ} is called

the quadratic module generated by 𝑝1, . . . , 𝑝𝑚. Likewise, we define the truncation

of the quadratic module to polynomials of degree at most 2𝑑 by 𝑄𝑑(𝑝1, . . . , 𝑝𝑚) =

{𝜎0 +∑︀𝑚
𝑖=1 𝜎𝑖𝑝𝑖 : 𝜎0, . . . , 𝜎𝑚 ∈ Σ such that deg(𝜎0), deg(𝜎1𝑝1), . . . , deg(𝜎𝑚𝑝𝑚) ≤ 2𝑑}.

It is a simple corollary of Proposition 2.1 that, given polynomials 𝑝1, . . . , 𝑝𝑚 and

a degree 𝑑 ≥ max{deg 𝑝1, . . . , deg 𝑝𝑚}, the membership of 𝑝0 in 𝑄𝑑(𝑝1, . . . , 𝑝𝑚) can

be tested via solution of a finite SDP. As per Proposition 2.1, the sum-of-squares
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polynomials 𝜎0, . . . , 𝜎𝑚 in the expression

𝑝 = 𝜎0 +
𝑚∑︁
𝑖=1

𝜎𝑖𝑝𝑖

can be parameterized by finite positive semidefinite matrices. Equality can be en-

forced by finitely many equality constraints after expressing all polynomials in a

common basis. Feasibility of the resultant SDP certifies non-negativity of 𝑝 on the

basic closed semialgebraic set {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]} by construction.

So far we have only discussed conditions that are sufficient for the non-negativity

of a polynomial on a basic closed semialgebraic set. Another natural and important

question is addressing the converse direction: suppose 𝑝 is non-negative on the basic

closed semialgebraic set {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]}, is 𝑝 ∈ 𝑄(𝑝1, . . . , 𝑝𝑚)?

Although it is well-known that this is not true in general, there exist practically

verifiable conditions under which this implication holds. Results that establish such

conditions are known in the literature as Positivstellensätze. We review one such

Positivstellensatz due to Putinar next. It relies on the following technical property.

Definition 2.16 (Putinar’s condition [40] & Archimedean property [41]). Given poly-

nomials 𝑝1, . . . , 𝑝𝑚, the associated quadratic module 𝑄(𝑝1, . . . , 𝑝𝑚) is called Archimedean

if there exists 𝑟 ∈ Z+ such that 𝑝 + 𝑟 ∈ 𝑄(𝑝1, . . . , 𝑝𝑚) for any polynomial 𝑝. Equiv-

alently, 𝑄(𝑝1, . . . , 𝑝𝑚) is Archimedean if there exists an integer 𝑟 ∈ Z+ such that

𝑟 − ∑︀𝑛
𝑖=1 𝑥

2
𝑖 ∈ 𝑄(𝑝1, . . . , 𝑝𝑚). We say the polynomials 𝑝1, . . . , 𝑝𝑚 satisfy Putinar’s

condition if 𝑄(𝑝1, . . . , 𝑝𝑚) is Archimedean.

Remark 2.1. It is clear from the definition above that if 𝑄(𝑝1, . . . , 𝑝𝑚) is Archimedean,

the set 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]} must be compact. While the converse

conclusion does not hold in general (see Example 7.3 in [41] for a counterexample), 𝑆

can then easily be modified such that the associated quadratic module is Archimedean;

it suffices to include the redundant polynomial inequality constraint 𝑟−‖𝑥‖2
2 ≥ 0 where

𝑟 =
⌈︁
max𝑥∈𝑆 ‖𝑥‖2

2

⌉︁
in the definition of 𝑆.

Informally, Putinar’s Positivstellensatz shows that the Archimedean property guar-

antees the existence of a non-negativity certificates of the form (2.8) for polynomials
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that are strictly positive on a basic closed semialgebraic set. The formal statement is

given below.

Theorem 2.1 (Putinar’s Positivstellensatz [41]). Let 𝑝1, . . . , 𝑝𝑚 be polynomials on

R𝑛 and 𝑄(𝑝1, . . . , 𝑝𝑚) be Archimedean. Then, any polynomial 𝑝 that is positive on

{𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]} satisfies 𝑝 ∈ 𝑄(𝑝1, . . . , 𝑝𝑚).

We conclude this section by reviewing a key connection between the theory of

non-negative polynomials and the theory of moments – the Riesz-Haviland Theorem.

To that end, we first need to introduce the so-called Riesz functional as defined in

[42].

Definition 2.17 (Riesz functional). Fix 𝑑 ∈ Z+ and consider a finite sequence of real

numbers {𝑦𝑗}|𝑗|≤𝑑. We define 𝐿𝑦 : R𝑑[𝑥] → R such that 𝐿𝑦(𝑓) = ∑︀
|𝑗|≤𝑑 𝑐𝑗𝑦𝑗 for any

polynomial 𝑓(𝑥) = ∑︀
|𝑗|≤𝑑 𝑐𝑗𝑥

𝑗. Likewise, for an infinite sequence {𝑦𝑗}𝑗∈Z𝑛
+

we define

𝐿𝑦 : R[𝑥] → R by 𝐿𝑦(𝑓) = ∑︀
𝑗∈Z𝑛

+
𝑐𝑗𝑦𝑗. For vector- or matrix-valued arguments, 𝐿𝑦

shall be understood as being applied componentwise. We call 𝐿𝑦 the Riesz functional.

With this definition, we can state the Riesz-Haviland Theorem.

Theorem 2.2 (Riesz-Haviland Theorem [42]). Let 𝑆 ⊂ R𝑛 be closed and consider

a sequence of real numbers 𝑦 = {𝑦𝑗}𝑗∈𝑍𝑛
+
. There exists a finite Borel measure 𝜌

supported on 𝑆 such that

𝑦𝑗 =
∫︁
𝑆
𝑥𝑗 d𝜌(𝑥), ∀𝑗 ∈ Z𝑛+

if and only 𝐿𝑦(𝑓) ≥ 0 if for any polynomial 𝑓 ∈ R[𝑥] that is non-negative on 𝑆.

In light of the Riesz-Haviland Theorem, deciding whether a sequence of real num-

bers can be associated with the moments of a finite Borel measure is closely tied to

characterizing non-negativity of polynomials. The notion of sum-of-squares polyno-

mials (alongside a suitable Positivstellensatz) provides such a characterization and

builds the basis for tackling this question computationally through its connection to

semidefinite programming.

45



2.5 Moment problems

In many situations, both in practice and theory, distributions and the associated

measures are sufficiently characterized by their moments. In line with this practical

relevance, so-called moment problems have a long history in mathematics [43]. Tradi-

tionally, the term moment problem refers to questions pertaining to the reconstruction

of a measure solely from knowledge of its moments.

Definition 2.18 ((Real) Moment Problem). Let 𝑆 be a Borel subset of R𝑛 and con-

sider a sequence of real numbers {𝜇𝑗}𝑗∈Z𝑛
+
. Does there exist a measure 𝜌 supported on

𝑆 such that

𝑦𝑗 =
∫︁
𝑆
𝑥𝑗 d𝜌(𝑥)

holds for all 𝑗 ∈ Z𝑛+?

With the Hamburger (𝑆 = R), Hausdorff (𝑆 = [0,+∞)) and Steltjes (𝑆 = [0, 1])

moment problems, one-dimensional moment problems received substantial attention

throughout the 20th century and the results pertaining to existence and uniqueness

of measures described by moment sequences in this case are considered rather com-

plete [42]. Higher-dimensional moment problems are less well understood but nev-

ertheless strong results alongside many impactful applications of moment problems

and variations thereof have been established over the last years. In particular, the

Generalized Moment Problem (GMP) as introduced by Lasserre [42] and its wide

range of applications has received substantial attention since the early 2000s follow-

ing Lasserre’s landmark paper [44] and Parrilo’s thesis [30].

Definition 2.19 (Primal generalized moment problem [42]). Let ℳ+(𝑆) be the set

of finite Borel measures supported on 𝑆. Given a Borel set 𝑆 ⊂ R𝑛, an at most

countable index set Γ, functions 𝑓, ℎ𝑗 : 𝑆 → R, 𝑗 ∈ Γ and real numbers 𝜇𝑗, 𝑗 ∈ Γ

that are integrable with respect to any element in ℳ+(𝑆), the (primal) generalized
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moment problem is given by

sup
𝜌∈ℳ+(𝑆)

∫︁
𝑆
𝑓(𝑥) d𝜌(𝑥) (GMP)

s.t.
∫︁
𝑆
ℎ𝑗(𝑥) d𝜌(𝑥) ≤ 𝜇𝑗, ∀𝑗 ∈ Γ.

In words, the feasible set of (GMP) is the set of all conceivable measures sup-

ported on 𝑆 that are consistent with given information 𝜇𝑗 about their generalized

moments as generated by the functions ℎ𝑗. (GMP) therefore seeks among those mea-

sures those with maximal generalized moment as generated by 𝑓 . As such, (GMP)

provides a natural framework for quantifying the moments of a distribution under

partial information. This situation is commonly encountered in practice when only

few moments of the distribution of interest can be deduced from measurements or

simulation but quantification of additional moments (or related statistics) is sought.

If (GMP) is solvable it allows for computation of rigorous upper and lower bounds

for the unknown moments or statistics of interest.

A key observation is that (GMP) is a conic linear program, i.e., the objective

function and all constraints depend linearly on the decision variable 𝜌 so that the

feasible set of (GMP) is the intersection of the convex cone ℳ+(𝑆) and the half

spaces 𝐻𝑗 = {𝜌 :
∫︀
𝑆 ℎ𝑗(𝑥) d𝜌(𝑥) ≤ 𝜇𝑗}, 𝑗 ∈ Γ. On the one hand, (GMP) is therefore

a convex optimization problem, hence does not exhibit subobtimal local maxima.

On the other hand, a crucial consequence of this property is that many instances

of (GMP) that arise in practice can be readily solved or approximated by finite

dimensional conic optimization problems for which powerful off-the-shelf solvers are

available. For example, if 𝑆 is a finite set, it follows that 𝜌 must be a discrete measure

with finitely many atoms such that the corresponding GMP is equivalent to a finite

linear program. If 𝑆 is infinite or even uncountable, we discuss in the following that

under relatively mild assumptions (GMP) can be approximated to arbitrary accuracy

by suitably constructed SDPs. More specifically, one can construct a hierarchy of

SDPs whose optimal values converge from above to the true optimal value of (GMP).

This hierarchy, widely referred to as the moment-sum-of-squares or Lasserre hierarchy
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[44], allows a practitioner to trade off more computation for higher quality solutions.

The key insight that allows a tractable approximation of (GMP) despite its gen-

erally infinite dimensional nature is that, if Γ is finite1, we can translate (GMP) into

an optimization problem with only finitely many decision variables, namely a finite

subset of the (generalized) moments of a finite Borel measure. Particularly strong

results can be obtained when all the data of (GMP) is further assumed to be charac-

terized by polynomials; that is, if we assume that the set 𝑆 in Definition 2.19 is basic

closed semialgebraic and the functions 𝑓 and ℎ𝑗, 𝑗 ∈ Γ are polynomials of degree at

most 𝑑. Under these assumptions, (GMP) can be stated equivalently as

sup
𝑦∈R(𝑛+𝑑

𝑛 )
𝐿𝑦(𝑓)

s.t. 𝐿𝑦(ℎ𝑗) ≤ 𝜇𝑗, ∀𝑗 ∈ Γ,

𝑦 is a truncated moment sequence

consistent with a measure in ℳ+(𝑆)
, (2.9)

where 𝐿𝑦 denotes the Riesz functional as described in Definition 2.17. Clearly the

objective function and inequality constraints of the above optimization problem are

linear in the decision variables. The crux lies in characterizing the condition (2.9).

The concept of moment and localizing matrices enable such a characterization.

Definition 2.20 (Moment matrix). For a non-negative integer 𝑑, define 𝑞 =
⌊︁
𝑑
2

⌋︁
and

let 𝑏 be the monomial basis of R𝑞[𝑥] arranged in a vector. Then, we call 𝑀𝑑(𝑦) =

𝐿𝑦
(︁
𝑏𝑏⊤

)︁
the moment matrix of degree 𝑑.

Definition 2.21 (Localizing matrix). For a polynomial 𝑝 ∈ R[𝑥] and a positive

integer 𝑑 ≥ deg(𝑝), define 𝑞 =
⌊︁
𝑑−deg(𝑝)

2

⌋︁
and let 𝑏 be the monomial basis of R𝑞[𝑥]

arranged in a vector. Then, we call 𝑀𝑝,𝑑(𝑦) = 𝐿𝑦
(︁
𝑝𝑏𝑏⊤

)︁
the localizing matrix of

degree 𝑑 generated by 𝑝.

1If Γ is infinite, one can first relax (GMP) itself by only imposing the constraints corresponding
to a finite subset of Γ.
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Remark 2.2. We remark that

R(𝑛+𝑑
𝑛 ) ∋ 𝑦 ↦→ 𝑀𝑑(𝑦) ∈ S(𝑛+𝑞

𝑛 )

and

R(𝑛+𝑑
𝑛 ) ∋ 𝑦 ↦→ 𝑀𝑝,𝑑(𝑦) ∈ S(𝑛+𝑞

𝑛 )

are linear maps between truncated moment sequences and symmetric matrices. Posi-

tive semidefiniteness of the moment and localizing matrices therefore describe convex

constraints on truncated moment sequences.

As the following proposition shows, positive semidefiniteness of the moment and

localizing matrices are necessary conditions for a sequence of real numbers to be

associated with a finite Borel measure supported on a basic semi-algebraic set.

Proposition 2.2. Suppose 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]} is basic closed semi-

algebraic and consider a measure 𝜌 ∈ ℳ+(𝑆) with its associated moment sequence

{𝑦𝑗}𝑗∈Z𝑛
+
. For any degree 𝑑 ∈ Z+, the truncated moment sequence 𝑦 = {𝑦𝑗}|𝑗|≤𝑑

satisfies

𝑀𝑑 (𝑦) ⪰ 0

and

𝑀𝑝𝑖,𝑑 (𝑦) ⪰ 0

for any 𝑖 ∈ [𝑚] such that deg(𝑝𝑖) ≤ 𝑑.

Proof. Fix 𝑑 ∈ Z+ and let 𝑏 be the monomial basis of R𝑞[𝑥] arranged in a vector

where 𝑞 =
⌊︁
𝑑
2

⌋︁
. It follows by Definition 2.20 that

∫︁
𝑆
𝑏(𝑥)𝑏(𝑥)⊤ d𝜌(𝑥) = 𝑀𝑑(𝑦).
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Further let 1∞
S+ : S(𝑛+𝑞

𝑛 ) → R ∪ {+∞} be the extended convex indicator function of

S(𝑛+𝑞
𝑛 )

+ given by

1∞
S+(𝑀) =

⎧⎪⎨⎪⎩
0, if 𝑀 ⪰ 0

+∞, otherwise
.

Since clearly 𝑏(𝑥)𝑏(𝑥)⊤ ⪰ 0 for any 𝑥 ∈ R𝑛 ⊃ 𝑆, it follows by Jensen’s inequality that

0 ≤ 1∞
S+

(︂∫︁
𝑆
𝑏(𝑥)𝑏(𝑥)⊤ d𝜌(𝑥)

)︂
≤
∫︁
𝑆
1∞
S+

(︁
𝑏(𝑥)𝑏(𝑥)⊤

)︁
d𝜌(𝑥) = 0

and hence that 𝑀𝑑(𝑦) ⪰ 0. Using the fact that 𝑝𝑖(𝑥) ≥ 0 for any 𝑥 ∈ 𝑆, an analogous

argument shows that also 𝑀𝑝𝑖,𝑑(𝑦) ⪰ 0 for all 𝑖 ∈ [𝑚] that satisfy deg(𝑝𝑖) ≤ 𝑑.

Under additional regularity conditions, also the converse of Proposition 2.2 holds.

That is, positive semidefiniteness of the moment and localizing matrices is in fact

sufficient for a sequence of real numbers to be the moments associated with a finite

Borel measure.

Theorem 2.3. Suppose 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈ [𝑚]} is basic closed semial-

gebraic and the quadratic module 𝑄(𝑝1, . . . , 𝑝𝑚) is Archimedean. If {𝑦𝑗}𝑗∈Z𝑛
+

is a se-

quence of real numbers such that the finite truncations 𝑦 = {𝑦𝑗}|𝑗|≤𝑑 satisfy 𝑀𝑑(𝑦) ⪰ 0

and 𝑀𝑝𝑖,𝑑(𝑦) ⪰ 0, 𝑖 ∈ [𝑚] for any integer 𝑑 ≥ max𝑖∈[𝑚] deg(𝑝𝑖), then there exist a

measure 𝜌 ∈ ℳ+(𝑆) such that 𝑦𝑗 is the 𝑗th moment of 𝜌 for all 𝑗 ∈ Z𝑛+.

Proof. By the Riesz-Haviland Theorem it suffices to show that 𝐿𝑦(𝑓) ≥ 0 for any

polynomial that is non-negative on 𝑆. First let 𝑓 be positive on 𝑆. By Putinar’s

Positivstellensatz, it follows that there exist sum-of-squares polynomials 𝜎𝑖 such that

𝑓 = 𝜎0 + ∑︀
𝑖∈[𝑚] 𝜎𝑖𝑝𝑖. Now define 𝑞𝑖 = deg(𝑝𝑖) and choose 𝑑 such that deg(𝜎𝑖) ≤ 2𝑑

for all 𝑖 = 0, . . . ,𝑚. Further recall that there exist 𝑐𝑖 ∈ R(𝑛+𝑑
𝑛 ) such that 𝜎𝑖(𝑥) =

𝑐⊤
𝑖 𝑏(𝑥)𝑏(𝑥)⊤𝑐𝑖 for all 𝑥 ∈ R𝑛 where 𝑏 denotes the monomial basis of R𝑑[𝑥] arranged
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in a vector. By the linearity of 𝐿𝑦 it follows that

𝐿𝑦(𝑓) = 𝐿𝑦(𝜎0) +
∑︁
𝑖∈[𝑚]

𝐿𝑦(𝑝𝑖𝜎𝑖)

= 𝐿𝑦(𝑐⊤
0 𝑏(𝑥)𝑏(𝑥)⊤𝑐0) +

∑︁
𝑖∈[𝑚]

𝐿𝑦
(︁
𝑝𝑖(𝑥)𝑐⊤

𝑖 𝑏(𝑥)𝑏(𝑥)⊤𝑐𝑖
)︁

= 𝑐⊤
0 𝑀2𝑑(𝑦)𝑐0 +

∑︁
𝑖∈[𝑚]

𝑐⊤
𝑖 𝑀𝑝𝑖,2𝑑+𝑞𝑖

(𝑦)𝑐𝑖.

Clearly, the above relation is non-negative if the moment and localizing matrices are

positive semidefinite.

Finally, if 𝑓 is non-negative on 𝑆, 𝑓 + 𝜖 is positive on 𝑆 such that 𝐿𝑦(𝑓) ≥ −𝜖

holds by the above argument for any 𝜖 > 0. Thus, 𝐿𝑦(𝑓) ≥ 0 must hold.

From a practical standpoint, Proposition 2.2 establishes that SDPs of the form

sup
𝑦∈R(𝑛+𝑑

𝑛 )
𝐿𝑦(𝑓)

s.t. 𝐿𝑦(ℎ𝑗) ≤ 𝜇𝑗, ∀𝑗 ∈ Γ,

𝑀𝑑(𝑦) ⪰ 0,

𝑀𝑝𝑖,𝑑(𝑦) ⪰ 0, 𝑖 ∈ [𝑚],

are tractable relaxations of (GMP). Moreover, these SDP relaxations form a hierar-

chy of increasingly tight relaxations of (GMP) known as the moment-sum-of-squares

or Lasserre hierarchy. As the truncation order 𝑑 is increased, the relaxations become

strictly tighter, leaving a mechanism to balance approximation quality with compu-

tational cost. Remarkably, if the hypotheses of Theorem 2.3 are satisfied, it can be

shown that the optimal value of the relaxations converges from below to the optimal

value of (GMP) in the limit 𝑑 → ∞ [42, Theorem 4.1].

We conclude this section with a brief discussion of the dual view of (GMP) and

its relation to optimization over non-negative polynomials. The dual of (GMP) is

given below.

Definition 2.22 (Dual generalized moment problem [42]). Let 𝑓, 𝜇𝑗, ℎ𝑗, 𝑗 ∈ Γ, and
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𝑆 be as in Definition 2.19. Then, the dual GMP is given by

inf
𝜆∈R𝑚

+

∑︁
𝑗∈Γ

𝜆𝑗𝜇𝑗 (dual GMP)

s.t.
∑︁
𝑗∈Γ

𝜆𝑗ℎ𝑗(𝑥) ≥ 𝑓(𝑥), ∀𝑥 ∈ 𝑆.

It follows immediately from the definition of (dual GMP) that weak duality holds.

To see this, let 𝜆 and 𝜌 be feasible for the dual and primal GMP, respectively. It follows

from the constraints in both problems that

∑︁
𝑗∈Γ

𝜆𝑗𝜇𝑗 −
∫︁
𝑆
𝑓(𝑥) d𝜌(𝑥) ≥

∑︁
𝑗∈Γ

𝜆𝑗

∫︁
𝑆
ℎ𝑗(𝑥) d𝜌(𝑥) −

∫︁
𝑆
𝑓(𝑥) d𝜌(𝑥) ≥ 0.

If the data framing the primal GMP (𝑓 , {ℎ}𝑗∈Γ, 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0, ∀𝑖 ∈

[𝑚]}) is given only in terms of polynomials, (dual GMP) is a variant of a polynomial

optimization problem in which we seek to find a polynomial 𝑝 with the structure

𝑝 =
∑︁
𝑗∈Γ

𝜆𝑗ℎ𝑗 − 𝑓

that is non-negative on the basic closed semialgebraic set 𝑆 such that a linear combi-

nation of its coefficients is minimized. From the discussions in Section 2.4, it is clear

that restricting 𝑝 to be an element of 𝑄𝑑(𝑝1, . . . , 𝑝𝑚) for some degree 𝑑 results in a

tractable approximation of this problem, equivalent to a finite SDP. More precisely,

it results in a valid restriction of (dual GMP), thus furnishes again a valid upper

bound to the optimal value of (GMP) by weak duality. Overall, the dual view offers

a different perspective through the lens of non-negative polynomials and can provide

additional insights for the solution of moment problems.
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Chapter 3

Stochastic optimal control via local

occupation measures

The content of this chapter is based on the preprint F. Holtorf et al., “Stochastic Optimal

Control via Local Occupation Measures,” arXiv:2211.15652v2, 2024

3.1 Introduction

The optimal control of stochastic processes is one of the archetypical problems of

decision-making under uncertainty with a myriad of applications in science and en-

gineering. Despite their ubiquity, however, only a small subset of such stochastic

optimal control problems admits the computation of a globally optimal control policy

in a tractable and certifiable manner. As a consequence, engineers are often forced to

resort to one of many available heuristics for the design of control policies in practice.

And although such heuristics often perform remarkably well, they seldom come with a

simple mechanism to quantify rigorously the degree of suboptimality they introduce,

ultimately leaving it to the engineer’s intuition when the controller design process

shall be terminated.

In response to this undesirable situation, the task of computing theoretically guar-
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anteed yet informative bounds gauging the best attainable performance for various

classes of stochastic optimal control and related problems has received considerable

attention in the recent past; contributions range from bounding schemes for the op-

timal control of systems described by deterministic nonlinear ordinary [46–49] and

partial differential equations [50, 51] over discrete-time Markov control problems [52,

53] to the control of diffusion and other continuous-time stochastic processes [54–

58]. In particular the framework of occupation measures has proved to be a versatile

and effective approach to this task. The notion of occupation measures allows for

the translation of a rich class of stochastic optimal control problems into infinite-

dimensional linear programs over Borel measure spaces [5, 6, 59, 60], for which a

sequence of increasingly tight, tractable semidefinite programming (SDP) relaxations

is readily constructed via the moment-sum-of-squares (MSOS) hierarchy [30, 44]. A

key limitation of this framework, however, remains in its poor scalability. Specifically,

the problem size of the SDP relaxations grows combinatorially with the hierarchy

level and often high levels are necessary to establish informative bounds in practice.

The notorious numerical ill-conditioning of moment problems involving high-order

moments further exacerbates this limitation.

In this paper, we set out to improve the practicality of the occupation measure

approach to stochastic optimal control by proposing a simple modification of the

traditional framework. To that end, we introduce a localized notion of occupation

measures based on partitioning of the state space of the controlled process and the

control horizon. Analogous to its traditional counterpart, the resultant local occu-

pation measure framework enables the construction of SDP relaxations for a large

class of stochastic optimal control problems via the MSOS hierarchy. In contrast to

the traditional approach, however, the resultant relaxations can be tightened without

increasing the hierarchy level, but instead by simply refining the spatio-temporal par-

tition of the problem domain. Such a “tightening-by-refinement” provides two major

practical advantages:

1. It avoids numerical ill-conditioning originating from high-order moments which

in practice often prohibits the accurate solution of SDP relaxations furnished
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by high levels of the MSOS hierarchy.

2. It provides more fine-grained and easily interpretable control over tightening

of the SDP relaxations when compared to increasing the level in the MSOS

hierarchy.

As we demonstrate with examples, these advantages hold the potential to construct

equally or even tighter relaxations that can be solved notably faster than those de-

rived with the traditional approach. Another potential advantage worth mentioning

yet beyond the scope of this work is that the proposed approach is similar in spirit to

a wide range of numerical approximation techniques for the solution of partial differ-

ential equations (PDEs); as such, the resultant moment-sum-of-squares relaxations

exhibit a benign, weakly-coupled block structure akin that of discretized PDEs which

may be exploited further, for example by distributed optimization techniques [61, 62].

A partitioning approach closely related to the here proposed local occupation

measure framework has recently been studied by Cibulka et al. [63] in the context

of approximating the region of attraction for deterministic control systems via sum-

of-squares programming. In another related work, Holtorf and Barton [16] have used

temporal partitioning in order to improve MSOS bounding schemes for trajectories of

stochastic chemical systems modeled by jump processes. Both works report significant

computational merits of the respective modifications. Here, we unify and extend

these contributions by introducing the notion of local occupation measures which

applies beyond deterministic control problems to jump and diffusion control problems

alike. The resulting framework is independent from and can be complemented by

other approaches aimed at improving the tractability and practicality of the MSOS

hierarchy, such as symmetry reduction [64, 65], sparsity exploitation [66–68], and

linear/second-order cone programming hierarchies [69–72].

The remainder of this chapter is structured as follows: In Section 3.2, we review

the concept of occupation measures and show how it enables the construction of

tractable convex relaxations for a large class of stochastic optimal control problems

with embedded diffusion processes. In Sections 3.3 and 3.4, we introduce the notion
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of local occupation measures and study its interpretation in the context of stochastic

optimal control from the primal (moment) and dual (polynomial) perspective, respec-

tively. Section 3.5 is dedicated to highlight the advantages of the proposed framework

for the construction of high quality relaxations with regard to the scaling properties

and structure of the resultant optimization problems. In Section 3.6, we demonstrate

the practical advantages of the proposed approach with an example problem from

population control. In Section 3.7, we discuss the extension of the proposed local oc-

cupation measure framework to discounted infinite horizon control problems as well

as the control of jump processes, supported with an example from systems biology.

We conclude with some final remarks in Section 3.8.

3.2 Problem description & preliminaries

We consider a continuous-time diffusion process 𝑥𝑡 in R𝑛𝑥 driven by a standard R𝑚-

Brownian motion 𝑏𝑡 and controlled by a non-anticipative control process 𝑢𝑡 in R𝑛𝑢 ,

d𝑥𝑡 = 𝑓(𝑥𝑡, 𝑢𝑡) d𝑡+ 𝑔(𝑥𝑡, 𝑢𝑡) d𝑏𝑡, (3.1)

and study the associated finite horizon optimal control problem

𝐽 := inf
𝑢𝑡

E𝜈0

[︃∫︁
[0,𝑇 ]

ℓ(𝑥𝑡, 𝑢𝑡) d𝑡+ 𝜑(𝑥𝑇 )
]︃

(OCP)

s.t. 𝑥𝑡 satisfies (3.1) on [0, 𝑇 ] with 𝑥0 ∼ 𝜈0,

(𝑥𝑡, 𝑢𝑡) ∈ 𝑋 × 𝑈 on [0, 𝑇 ],

𝑢𝑡 is non-anticipative.

Here, E𝜈0 denotes the expectation with respect to the probability measure P𝜈0 over

the paths of the diffusion process (3.1). The subscript 𝜈0 indicates the dependence

on the distribution of the initial state, which we assume to be known. Throughout,

we further assume that all problem data is described in terms of polynomials in the

following sense.
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Assumption 3.1. The drift coefficient 𝑓 : 𝑋 × 𝑈 → R𝑛𝑥, diffusion matrix 𝑔𝑔⊤ :

𝑋 × 𝑈 → R𝑛𝑥×𝑛𝑥, stage cost 𝑙 : 𝑋 × 𝑈 → R and terminal cost 𝜑 : 𝑋 × 𝑈 → R are

componentwise polynomial functions jointly in both arguments. The state space 𝑋

and the set of admissible control inputs 𝑈 are basic closed semialgebraic sets.

We say a control process 𝑢𝑡 is admissible if the the controlled process (𝑥𝑡, 𝑢𝑡)

satisfies the constraints in Problem (OCP). Furthermore, we make the following

well-posedness assumption that ensures that the optimal value of (OCP) is finite.

Assumption 3.2. The controlled diffusion process (3.1) has finite moments for any

admissible control process, i.e., E𝜈0 [𝑤(𝑥𝑡, 𝑢𝑡)] is finite for all polynomials 𝑤 and 𝑡 ∈

[0, 𝑇 ].

Note that this assumption does not impose strong practical restrictions as it is

for instance implied if the distribution of the controlled process has exponentially

decaying tails or if 𝑋 and 𝑈 are compact.

The key insight enabling the construction of convex relaxations of (OCP) is that

the controlled process described by (3.1) admits a weak-form characterization in terms

of a pair of occupations measures: the (terminal) instantaneous and expected state-

action occupation measure [5, 6, 60]. This characterization endows the control prob-

lem with a convex, albeit infinite-dimensional, geometry, sidestepping the nonlinear

dependence of the paths of the diffusion process (3.1) on the control process.

The (terminal) instantaneous occupation measure 𝜈 is given by the probability to

observe the process state in Borel set 𝐵 ⊂ 𝑋 at the terminal time 𝑇 . Formally, we

define

𝜈(𝐵) := P𝜈0 [𝑥𝑇 ∈ 𝐵] .

or equivalently,

⟨𝑤, 𝜈⟩ := E𝜈0 [𝑤(𝑇, 𝑥𝑇 )]
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for every continuous test function 𝑤 ∈ 𝒞([0, 𝑇 ] ×𝑋), where

⟨𝑤, 𝜈⟩ :=
∫︁
𝑋
𝑤(𝑇, 𝑥) d𝜈(𝑥)

denotes the standard duality bracket between continuous functions and finite mea-

sures.

The expected state-action occupation measure 𝜉 is defined as the average time the

controlled process (𝑡, 𝑥𝑡, 𝑢𝑡) remains in a Borel subset of [0, 𝑇 ] ×𝑋 ×𝑈 ; formally, we

define

𝜉(𝐵𝑇 ×𝐵𝑋 ×𝐵𝑈) := E𝜈0

[︃∫︁
[0,𝑇 ]∩𝐵𝑇

1𝐵𝑋×𝐵𝑈
((𝑥𝑡, 𝑢𝑡)) d𝑡

]︃

for any Borel subsets 𝐵𝑇 ⊂ [0, 𝑇 ], 𝐵𝑋 ⊂ 𝑋, 𝐵𝑈 ⊂ 𝑈 ; or equivalently,

⟨𝑤, 𝜉⟩ := E𝜈0

[︃∫︁
[0,𝑇 ]

𝑤(𝑡, 𝑥𝑡, 𝑢𝑡) d𝑡
]︃

for any continuous test function 𝑤 ∈ 𝒞([0, 𝑇 ] × 𝑋 × 𝑈). The instantaneous and

expected state-action occupation measures are finite, non-negative measures by con-

struction. The notions of instantaneous and expected occupation measures are graph-

ically illustrated in Figure 3-1 for an uncontrolled process. The intuition is analogous

for the controlled case.

The occupation measure pair (𝜈, 𝜉) characterizes the expected time evolution of

sufficiently smooth observables1 𝑤 ∈ 𝒞1,2([0, 𝑇 ] × 𝑋) of the controlled process (𝑡, 𝑥𝑡)

by Dynkin’s formula [73, Theorem 1.24],

E𝜈0 [𝑤(𝑇, 𝑥𝑇 )] = E𝜈0 [𝑤(0, 𝑥0)] + E𝜈0

[︃∫︁
[0,𝑇 ]

𝒜𝑤(𝑠, 𝑥𝑠, 𝑢𝑠) d𝑠
]︃
,

or equivalently,

⟨𝑤, 𝜈⟩ = ⟨𝑤, 𝜈0⟩ + ⟨𝒜𝑤, 𝜉⟩ , (3.2)

1that is functions on the domain [0, 𝑇 ] × 𝑋 with continuous first and second derivatives (in the
sense of Whitney [23]) in the first and second argument, respectively.
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(a) instantaneous occupation measure (b) expected state occupation measure

Figure 3-1: Illustration of expected occupation measure pair associated with a
stochastic process. Pane (a) illustrates the instantenous occupation measure. The
instantaneous occupation measure of a Borel set 𝐵 ⊂ 𝑋 (shown in blue) corresponds
intuitively to the fraction of trajectories terminating in 𝐵. Pane (b) illustrates the
expected occupation measure of an uncontrolled process. The expected state occu-
pation measure of a Borel subset of 𝑆 ⊂ [0, 𝑇 ] ×𝑋 (shown in blue) corresponds with
the average time the process remains in 𝑆.

where 𝒜 : 𝒞1,2([0, 𝑇 ] × 𝑋) → 𝒞([0, 𝑇 ] × 𝑋 × 𝑈) denotes the (extended) infinitesimal

generator of the diffusion process (3.1) [73], i.e.,

𝒜 : 𝑤(𝑡, 𝑥) ↦→ 𝜕𝑤

𝜕𝑡
(𝑡, 𝑥) + 𝑓(𝑥, 𝑢)⊤∇𝑥𝑤(𝑡, 𝑥) + 1

2tr
(︁
𝑔𝑔⊤(𝑥, 𝑢)∇2

𝑥𝑤(𝑡, 𝑥)
)︁
.

Conversely, we say that a measure pair (𝜈, 𝜉) is a weak solution to (3.1) on the interval

[0, 𝑇 ] if it satisfies Equation (3.2) for all test functions 𝑤 ∈ 𝒞1,2([0, 𝑇 ] × 𝑋). This

notion of weak solutions to (3.1) motivates the following weak form of (OCP) [5]:

𝐽* := inf
𝜈,𝜉

⟨ℓ, 𝜉⟩ + ⟨𝜑, 𝜈⟩ (weak-OCP)

s.t. ⟨𝑤, 𝜈⟩ − ⟨𝒜𝑤, 𝜉⟩ = ⟨𝑤, 𝜈0⟩ , ∀𝑤 ∈ 𝒞1,2([0, 𝑇 ] ×𝑋),

𝜈 ∈ ℳ+(𝑋),

𝜉 ∈ ℳ+([0, 𝑇 ] ×𝑋 × 𝑈).

where ℳ+(𝑌 ) denotes the cone of finite, positive Borel measures supported on the set
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𝑌 . Problem (weak-OCP) is an infinite-dimensional linear program [37] and generally

a relaxation of (OCP), albeit conditions for their equivalence can be established (see

for example [6, Section 4]).

From a practical perspective, (weak-OCP) remains intractable as an infinite di-

mensional linear program; however, Assumption 3.1 enables the construction of a se-

quence of increasingly tight SDP relaxations via the MSOS hierarchy [30, 44]. To that

end, (weak-OCP) is relaxed to the optimization over moment sequences of the mea-

sures 𝜈 and 𝜉 truncated at finite order 𝑑. For polynomial test functions, constraints

of the form (3.2) reduce to affine constraints on the moment sequence as 𝒜 maps

polynomials to polynomials under Assumption 3.1. Similarly, the conic constraints

𝜈 ∈ ℳ+(𝑋) and 𝜉 ∈ ℳ+([0, 𝑇 ] ×𝑋 ×𝑈) can be relaxed to positive semidefiniteness

constraints of certain moment and localizing matrices, which under Assumption 3.1

reduce to linear matrix inequalities [44]; see Chapter 2 for a detailed discussion on

this construction.

The infinite-dimensional linear programming dual [37] to (weak-OCP) has an in-

formative interpretation that serves as motivation for the partitioning strategy pre-

sented in the next section. The dual reads

sup
𝑤

∫︁
𝑋
𝑤(0, 𝑥) d𝜈0(𝑥) (sub-HJB)

s.t. 𝒜𝑤 + ℓ ≥ 0, on [0, 𝑇 ] ×𝑋 × 𝑈, (3.3)

𝑤(𝑇, ·) ≤ 𝜑, on 𝑋, (3.4)

𝑤 ∈ 𝒞1,2([0, 𝑇 ] ×𝑋),

where the decision variable 𝑤 can be interpreted as a smooth underestimator of the

value function associated with the control problem (OCP). The following Corollary

formalizes this claim.

Corollary 3.1. Let 𝑤 be feasible for (sub-HJB) and let 𝛿𝑧 denote the Dirac measure
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centered at 𝑧. Then, 𝑤 underestimates the value function

𝑉 (𝑡, 𝑧) := inf
𝑢𝑠

E𝛿𝑧

[︃∫︁ 𝑇

𝑡
ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ 𝜑(𝑥𝑇 )

]︃
(3.5)

s.t. 𝑥𝑠 satisfies (3.1) on [𝑡, 𝑇 ] with 𝑥𝑡 ∼ 𝛿𝑧,

(𝑥𝑠, 𝑢𝑠) ∈ 𝑋 × 𝑈 on [𝑡, 𝑇 ],

𝑢𝑠 is non-anticipative.

for any (𝑡, 𝑧) ∈ [0, 𝑇 ] ×𝑋.

Proof. Let 𝑧 ∈ 𝑋 and 0 ≤ 𝑡 ≤ 𝑇 and fix any admissible control policy 𝑢𝑠, i.e., a

control policy such that the path of the stochastic process (𝑥𝑠, 𝑢𝑠) remains in 𝑋 × 𝑈

on [𝑡, 𝑇 ]. Then, Constraints (3.3) and (3.4) imply that

E𝛿𝑧

[︃
−
∫︁ 𝑇

𝑡
𝒜𝑤(𝑠, 𝑥𝑠, 𝑢𝑠) d𝑠+ 𝑤(𝑇, 𝑥𝑇 )

]︃
≤ E𝛿𝑧

[︃∫︁ 𝑇

𝑡
ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ 𝜑(𝑥𝑇 )

]︃
.

The left-hand-side coincides with 𝑤(𝑡, 𝑧) by Dynkin’s formula. The result follows by

minimizing over all admissible control policies.

Remark 3.1. It is worth emphasizing the interpretation of Corollary 3.1 for the

special case of an uncontrolled process (𝑛𝑢 = 0) and vanishing stage cost ℓ(𝑥, 𝑢) ≡ 0.

In this case, Problems (weak-OCP) and (sub-HJB) bound the terminal expectations

E𝜈0 [𝜑(𝑥𝑇 )] of the process. More specifically in light of Corollary 3.1, any feasible point

of (sub-HJB) bounds the conditional expectation

𝑉 (𝑡, 𝑧) = E [𝜑(𝑥𝑇 )|𝑥𝑡 = 𝑧]

from below. Moreover, for any sufficiently smooth observable 𝜑 ∈ 𝒞2(𝑋), it is well-

known that 𝑉 as defined above is the unique solution of the Kolmogorov backward

equation [74, Theorem 8.1.1]

⎧⎪⎨⎪⎩
𝒜𝑉 = 0, on [0, 𝑇 ] ×𝑋

𝑉 (𝑇, ·) = 𝜑 on 𝑋.
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Thus it holds in particular that 𝑉 is feasible for (sub-HJB) and hence

E𝜈0 [𝜑(𝑥𝑇 )] ≥ 𝐽* ≥
∫︁
𝑋
𝑉 (0, 𝑥) d𝜈0(𝑥) = E𝜈0 [𝜑(𝑥𝑇 )]

implies that strong duality holds between (weak-OCP) and (sub-HJB) and in fact

𝐽* = E𝜈0 [𝜑(𝑥𝑇 )].

Analogous to its primal counterpart, the MSOS hierarchy gives rise to a sequence

of increasingly tight SDP restrictions of (sub-HJB) by restricting 𝑤 to be a polynomial

of degree at most 𝑑 and imposing the non-negativity constraints by means of sufficient

sum-of-squares conditions [30, 44]. The restriction is weakened by increasing the

degree 𝑑 yielding a monotonically increasing sequence of lower bounds for the optimal

value 𝐽* of (weak-OCP). The following theorem establishes a set of easily verifiable

conditions under which this sequence converges from below to 𝐽* (implying also strong

duality between (sub-HJB) and (weak-OCP)).

Theorem 3.1. Let 𝐽𝑑 be the optimal value of the 𝑑th level MSOS restriction of

(sub-HJB) (resp. relaxation of (weak-OCP)). If Assumption 3.1 holds and more-

over 𝑋 and 𝑈 are represented as

𝑋 = {𝑥 : 𝑝𝑖(𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑣, 𝑅𝑋 − ‖𝑥‖2
2 ≥ 0},

𝑈 = {𝑢 : 𝑞𝑖(𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑤, 𝑅𝑈 − ‖𝑢‖2
2 ≥ 0},

with suitable polynomials 𝑝𝑖 and 𝑞𝑖, and sufficiently large 𝑅𝑋 and 𝑅𝑈 , then 𝐽𝑑 ↑ 𝐽*.

Proof. First note that under the given assumptions, the set [0, 𝑇 ] × 𝑋 × 𝑈 is com-

pact. Thus, it suffices to impose condition (3.2) for all polynomial test functions in

(weak-OCP) as a dense subset of 𝒞1,2([0, 𝑇 ] × 𝑋). Further observe that constraint

(3.2) implies that every feasible pair (𝜈, 𝜉) has constant mass. Specifically, for test

functions 𝑤(𝑡, 𝑥) ≡ 1 and 𝑤(𝑡, 𝑥) = 𝑡, constraint (3.2) reduces to ⟨1, 𝜈⟩ = 1 and

⟨1, 𝜉⟩ = 𝑇 , respectively. The result thus follows from [75, Corollary 8].

Remark 3.2. The condition imposed by Theorem 3.1 on the representation of 𝑋

and 𝑈 is only marginally stronger than imposing their compactness in addition to
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Assumption 3.1. If 𝑋 and 𝑈 are compact basic closed semialgebraic sets, one may

add redundant ball constraints 𝑅𝑋 − ‖𝑥‖2
2 ≥ 0 and 𝑅𝑈 − ‖𝑢‖2

2 ≥ 0 to their description

to enforce the hypotheses of Theorem 3.1.

3.3 The dual perspective revisited: piecewise poly-

nomial approximation

In order to construct improved approximations to the value function in the spirit of

(sub-HJB), we consider a generalization of problem (sub-HJB) that seeks a piecewise

smooth underapproximation of the value function over the problem’s space-time do-

main [0, 𝑇 ]×𝑋. To that end, we consider a discretization 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛𝑇
= 𝑇

of the control horizon and a collection of state space restrictions 𝑋1, . . . , 𝑋𝑛𝑋
⊂ 𝑋

which satisfy the following assumption and hence form a partition of 𝑋.

Assumption 3.3. The collection 𝑋1, . . . , 𝑋𝑛 ⊂ R𝑛𝑋 satisfies

(i) 𝑋 = ∪𝑛𝑋
𝑘=1𝑋𝑘,

(ii) 𝑋𝑖 ∩𝑋𝑗 = ∅ for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛𝑋 .

(iii) the closure 𝑋̄𝑖 and boundary 𝜕𝑋𝑖 are each the union of finitely many basic closed

semialgebraic sets for all 𝑖 = 1, . . . , 𝑛𝑋

Remark 3.3. A partition that satisfies Assumption 3.3 is in practice easily con-

structed from a collection of disjoint interval boxes 𝐼1, . . . , 𝐼𝑛𝑋
whose union covers

the entire state space 𝑋. The partition elements may then simply be chosen as

𝑋𝑘 = 𝑋 ∩ 𝐼𝑘, 𝑘 = 1, . . . , 𝑛𝑋 . This construction is illustrated in Figure 3-2.

The elements [𝑡𝑖−1, 𝑡𝑖]×𝑋𝑘 then form a partition of the problem’s entire space-time
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Figure 3-2: Spatio-temporal partition generated by an interval box cover of 𝑋. The
light blue shaded area are slices of the space-time tube corresponding to a two-
dimensional state space 𝑋.

domain and we can formulate the following natural generalization of (sub-HJB):

sup
𝑤

𝑛𝑋∑︁
𝑘=1

∫︁
𝑋𝑘

𝑤1,𝑘(0, 𝑥) d𝜈0(𝑥) (pw-sub-HJB)

s.t. 𝒜𝑤𝑖,𝑘 + ℓ ≥ 0 on [𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘 × 𝑈, ∀(𝑖, 𝑘) ∈ 𝑃, (3.6)

𝑤𝑖,𝑘(𝑡𝑖−1, ·) ≥ 𝑤𝑖−1,𝑘(𝑡𝑖−1, ·) on 𝑋𝑘, ∀(𝑖, 𝑘) ∈ 𝑃 ∘, (3.7)

𝑤𝑖,𝑘 = 𝑤𝑖,𝑗 on [𝑡𝑖−1, 𝑡𝑖] × (𝜕𝑋𝑗 ∩ 𝜕𝑋𝑘), ∀(𝑖, 𝑗, 𝑘) ∈ 𝜕𝑃, (3.8)

𝑤𝑛𝑇 ,𝑘(𝑇, ·) ≤ 𝜑 on 𝑋𝑘, ∀𝑘 ∈ {1, . . . , 𝑛𝑋}, (3.9)

𝑤𝑖,𝑘 ∈ 𝒞1,2([0, 𝑇 ] ×𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃, (3.10)
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with the index sets

𝑃 :=
{︁
(𝑖, 𝑘) ∈ Z2

+ : 1 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ≤ 𝑛𝑋
}︁
,

𝑃 ∘ := {(𝑖, 𝑘) ∈ Z2
+ : 2 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ≤ 𝑛𝑋},

𝜕𝑃 := {(𝑖, 𝑗, 𝑘) ∈ Z3
+ : 1 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ̸= 𝑗 ≤ 𝑛𝑋}.

The constraints in Problem (pw-sub-HJB) ensure that a valid underestimator of

the value function can be constructed from the function pieces {𝑤𝑖,𝑘 : (𝑖, 𝑘) ∈ 𝑃} for

all elements of the partition. As such, Problem (pw-sub-HJB) yields a lower bound

for the optimal value of (OCP). This is formalized in the following Corollary.

Corollary 3.2. Let {𝑤𝑖,𝑘 : (𝑖, 𝑘) ∈ 𝑃} be feasible for (pw-sub-HJB) and define

𝑤(𝑡, 𝑥) = 𝑤𝑖(𝑡),𝑘(𝑥)(𝑡, 𝑥) where 𝑖(𝑡) = max{𝑗 : 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗]}

and 𝑘(𝑥) such that 𝑥 ∈ 𝑋𝑘(𝑥). (3.11)

Then, 𝑤 underestimates the value function 𝑉 as defined in Equation (3.5).

Proof sketch. The proof proceeds by splitting the paths of the process (𝑡, 𝑥𝑡, 𝑢𝑡) up

into pieces during which it remains confined to a single subdomain [𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘 ×𝑈 .

For each of resultant pieces an analogous argument as in Corollary 3.1 implies that

𝑤𝑖,𝑘 underestimates the value function upon confinement of the process to the par-

tition element [𝑡𝑖−1, 𝑡𝑖] × 𝑋𝑘 × 𝑈 . Additionally, Constraints (3.7) and (3.8) ensure

conservative underestimation of the value function when the process crosses between

different time intervals and subdomains of the state space, respectively. Specifically,

Constraint (3.7) enforces that 𝑤(𝑡, 𝑥𝑡) can at most decrease when traced backward in

time across the boundary between the intervals [𝑡𝑖, 𝑡𝑖+1] and [𝑡𝑖−1, 𝑡𝑖], ensuring that

𝑤 cannot cross 𝑉 at such time points. Similarly, Constraint (3.8) imposes spatial

continuity and thus enforces that 𝑤 cannot cross 𝑉 when the process crosses spa-

tial boundaries between partition elements. The formal argument is presented in

Appendix A.1.
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Remark 3.4. Contrasting the monotonicity condition (3.7) enforced between subse-

quent time intervals, the stronger continuity requirement (3.8) at the boundary be-

tween spatial subdomains is necessary as the process may cross the boundary in any

direction due to stochastic fluctations. In case of a deterministic process (𝑔 = 0) this

condition may be further relaxed as we only require that 𝑤(𝑡, 𝑥𝑡) must at most increase

for all trajectories of the system when crossing the boundary between two subdomains.

Cibulka et al. [63] show in a similar argument that in this case it suffices to impose

that

(𝑤𝑖,𝑘(𝑡, 𝑥) − 𝑤𝑖,𝑗(𝑡, 𝑥))𝑛⊤
𝑗,𝑘𝑓(𝑥, 𝑢) ≥ 0, ∀(𝑡, 𝑥, 𝑢) ∈ [𝑡𝑖−1, 𝑡𝑖] × (𝜕𝑋𝑗 ∩ 𝜕𝑋𝑘) × 𝑈,

where 𝑛𝑗,𝑘 denotes the normal vector of the boundary between 𝑋𝑗 and 𝑋𝑘 pointing

from 𝑋𝑗 to 𝑋𝑘.

Remark 3.5. Valid MSOS restrictions of (pw-sub-HJB) are readily obtained simply

by restricting each function piece 𝑤𝑖,𝑗, (𝑖, 𝑗) ∈ 𝑃 to be a degree-𝑑 polynomial and

imposing non-negativity constraints through sufficient sum-of-squares constraints on

the closure of the respective sets. Note that such sufficient sum-of-squares constraints

are indeed well-posed due to Condition (iii) in Assumption (3.3).

3.4 The primal perspective revisited: local occu-

pation measures

In this section, we discuss the primal counterpart of the construction presented in

the previous section. By infinite-dimensional linear programming duality, the primal
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counterpart of (pw-sub-HJB) reads

inf
𝜈,𝜉,𝜋

∑︁
(𝑖,𝑘)∈𝑃

⟨ℓ, 𝜉𝑖,𝑘⟩ +
𝑛𝑋∑︁
𝑘=1

⟨𝜑, 𝜈𝑛𝑇 ,𝑘⟩ (pw-weak-OCP)

s.t. ⟨𝑤, 𝜈𝑖,𝑘⟩ − ⟨𝑤, 𝜈𝑖−1,𝑘⟩ = ⟨𝒜𝑤, 𝜉𝑖,𝑘⟩ +
∑︁
𝑗 ̸=𝑘

⟨𝑤, 𝜋𝑖,𝑗,𝑘⟩ ,

∀𝑤 ∈ 𝒞1,2([𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜈𝑖,𝑘 ∈ ℳ+(𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜉𝑖,𝑘 ∈ ℳ+([𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘 × 𝑈), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜋𝑖,𝑗,𝑘 = −𝜋𝑖,𝑘,𝑗 ∈ ℳ([𝑡𝑖−1, 𝑡𝑖] × (𝜕𝑋𝑗 ∩ 𝜕𝑋𝑘)), ∀(𝑖, 𝑗, 𝑘) ∈ 𝜕𝑃,

where ℳ(𝑌 ) refers to the space of signed measures supported on 𝑌 . The decision

variables in (pw-weak-OCP) can be interpreted as localized generalization of the

occupation measure pair introduced in Section 3.2. Specifically, the restriction of the

expected state-action occupation measures 𝜉 to a subdomain [𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘 × 𝑈 from

the partition generates the local state-action occupation measure 𝜉𝑖,𝑘:

𝜉𝑖,𝑘(𝐵𝑇 ×𝐵𝑋 ×𝐵𝑈) = 𝜉((𝐵𝑇 ∩ [𝑡𝑖−1, 𝑡𝑖]) × (𝐵𝑋 ∩𝑋𝑘) ×𝐵𝑈).

Likewise, the local instantaneous occupation measures with respect to different

time points 𝑡𝑖 and subdomains 𝑋𝑘 are given by the restriction of the instantaneous

occupation measure at time 𝑡𝑖 to 𝑋𝑘, i.e.,

𝜈𝑖,𝑘(𝐵) = P𝜈0(𝑥𝑡𝑖 ∈ 𝐵 ∩𝑋𝑘).

The measure 𝜋𝑖,𝑗,𝑘 in (pw-weak-OCP) takes the role of a slack variable and accounts

for transitions of the process between the spatial subdomains 𝑋𝑗 and 𝑋𝑘 in the time

interval [𝑡𝑖−1, 𝑡𝑖]. Formally, 𝜋𝑖,𝑗,𝑘 can be defined by

⟨𝑤, 𝜋𝑖,𝑗,𝑘⟩ := E𝜈0

⎡⎢⎣𝑁
𝑗𝑘
+∑︁

𝑛=1
𝑤
(︂
𝜏 𝑗𝑘𝑛+, 𝑥𝜏 𝑗𝑘

𝑛+

)︂
−

𝑁𝑗𝑘
−∑︁

𝑛=1
𝑤
(︂
𝜏 𝑗𝑘𝑛−, 𝑥𝜏 𝑗𝑘

𝑛−

)︂⎤⎥⎦ ,
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where 𝜏 𝑗𝑘𝑛+ and 𝜏 𝑗𝑘𝑛− denote the 𝑛th time points in [𝑡𝑖−1, 𝑡𝑖] at which the process tran-

sitions from subdomain 𝑋𝑗 into 𝑋𝑘 and vice versa, respectively. With these inter-

pretations, we can observe that the equality constraints in (pw-weak-OCP) reduce to

Dynkin’s formula applied between the stopping times of leaving and entering a given

subdomain 𝑋𝑘 in the time interval [𝑡𝑖−1, 𝑡𝑖] (see Appendix A.1 for a more detailed

derivation).

Finally, it is important to emphasize that the above interpretation of the decision

variables in (pw-weak-OCP) as local occupation measures shows immediately that ev-

ery feasible point for (pw-weak-OCP) generates a feasible point for (weak-OCP) via

the assignment 𝜉 = ∑︀
(𝑖,𝑘)∈𝑃 𝜉𝑖,𝑘 and 𝜈 = ∑︀𝑛𝑋

𝑘=1 𝜈𝑛𝑇 ,𝑘 with equal objective value. Anal-

ogously, any smooth function 𝑤 that is feasible for (sub-HJB) generates upon restric-

tion to the individual subdomains of the partition a feasible point for (pw-sub-HJB)

with equal objective value. This property carries over directly to the MSOS restric-

tions and relaxations of (pw-sub-HJB) and (pw-weak-OCP), respectively, as long as

the closure 𝑋̄𝑘 of each subdomain is represented in terms of a strictly greater set of

polynomial inequalities than 𝑋 is. This condition, which is easily obeyed in prac-

tice (see Remark 3.3), therefore guarantees that MSOS restrictions and relaxations

of (pw-sub-HJB) and (pw-weak-OCP), respectively, furnish bounds that are at least

as tight as those obtained from the traditional formulation.

3.5 Moment-sum-of-squares approximations: struc-

ture & scaling

The construction of tractable relaxations of the problems (sub-HJB) or (weak-OCP)

relies on the restriction to optimization over polynomials of fixed degree 𝑑 or the

relaxation to optimization over moment sequences truncated at order 𝑑, respectively.

Increasing this approximation order 𝑑 has traditionally been the only mechanism

used to weaken the restriction, respectively strengthen the relaxation, to improve the

resultant bounds to a desired level. The main motivation behind the proposed par-
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titioning approach lies in circumventing the limited practicality and interpretability

of this tightening mechanism. With the proposed notion of local occupation mea-

sures, refinement of the space-time domain partition serves as an additional bound

tightening mechanism. Table 3.1 summarizes how the MSOS SDP restrictions and

relaxations of (pw-sub-HJB) and (pw-weak-OCP) scale in size with respect to the

different tightening mechanisms of increasing 𝑛𝑋 , 𝑛𝑇 (refining the partition), or 𝑑 (in-

creasing the approximation order). The linear scaling of the SDP sizes with respect

to 𝑛𝑋 and 𝑛𝑇 underlines the fine-grained control over the tightening process via re-

finement of the partition. In particular, it opens the door to exploit problem specific

insights such as the knowledge of critical parts of the (extended) state space [0, 𝑇 ]×𝑋

to be resolved more finely than others, to construct tighter relaxations without in-

curring a combinatorial increase in the number of partition elements. This flexibility

and interpretability is in stark contrast to tightening the bounds by increasing the ap-

proximation order 𝑑; translating such insights into specific moments to be constrained

or polynomial basis elements to be considered for the value function approximator

is significantly less straightforward. It is further worth emphasizing that not only

the linear scaling with respect to 𝑛𝑇 and 𝑛𝑋 is desirable but in particular that the

invariance of the linear matrix inequality (LMI) dimension promotes practicality due

to the unfavorable scaling (worse than cubic) of interior point algorithms with respect

to this quantity [76].

Table 3.1: Scaling of problem size of the MSOS SDP approximations for
(pw-sub-HJB) and (pw-weak-OCP) with respect to different tightening mechanisms.2

#variables # LMIs dimension of LMIs

𝑑 𝑂
(︁(︁

𝑛𝑥+1+𝑑
𝑑

)︁)︁
𝑂(1) 𝑂

(︁(︁
𝑛𝑥+1+⌊(𝑑+𝑐)/2⌋

⌊(𝑑+𝑐)/2⌋

)︁)︁
𝑛𝑇 𝑂(𝑛𝑇 ) 𝑂(𝑛𝑇 ) 𝑂(1)

𝑛𝑋 𝑂(𝑛𝑋) 𝑂(𝑛𝑋) 𝑂(1)

Additionally, the problems (pw-sub-HJB) and (pw-weak-OCP) give rise to highly

structured SDPs. Specifically, all constraints involve only variables corresponding to
2here, 𝑐 = max {deg𝑢𝑓 + deg𝑥𝑓 − 1, deg𝑢𝑔 + deg𝑥𝑔 − 2}.
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adjacent subdomains. As a consequence, the structure of the constraints is analogous

to those arising from discretized PDEs and may be exploited with suitable distributed

optimization algorithms and computing architectures.

3.6 Example: population control

3.6.1 Control problem

We demonstrate the computational merits of the proposed local occupation measure

framework with an example problem from the field of population control. The ob-

jective is to control the population size of a primary predator and its prey in a noisy

ecosystem featuring the prey species, primary predator species as well as a secondary

predator species. The problem is adapted from Savorgnan et al. [53] where it has

been studied in a discrete time, infinite horizon setting.

The interactions between the primary predator and prey population are described

by a standard Lotka-Volterra model, while the effect of the secondary predator species

is modeled by a Brownian motion. The population sizes are assumed to be controlled

via hunting of the primary predator species. The controlled evolution of the popula-

tion sizes is thus described by the diffusion process

d(𝑥𝑡)1 = (𝛾1(𝑥𝑡)1 − 𝛾2(𝑥𝑡)1(𝑥𝑡)2) d𝑡+ 𝛾5(𝑥𝑡)1 d𝑏𝑡,

d(𝑥𝑡)2 = (𝛾4(𝑥𝑡)1(𝑥𝑡)2 − 𝛾3(𝑥𝑡)2 − (𝑥𝑡)2𝑢𝑡) d𝑡,

where 𝑥1, 𝑥2, and 𝑢 refer to the prey species, predator species, and hunting effort,

respectively. The model parameters 𝛾 = (1, 2, 1, 2, 0.025) and initial condition 𝑥0 ∼

𝛿(1,0.25) are assumed to be known deterministically. Moreover, we assume that the

admissible hunting effort is confined to 𝑈 = [0, 1]. Under these assumptions, it

is easily verified that the process state 𝑥𝑡 evolves by construction within the non-

negative orthant 𝑋 = R2
+ for any admissible control policy. For the control problem
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Figure 3-3: Spatial partition of 𝑋 = R2
+ with 𝑛1 × 𝑛2 interval boxes.

we further choose a time horizon of 𝑇 = 10 and stage cost

ℓ(𝑥, 𝑢) = (𝑥1 − 0.75)2 + (𝑥2 − 0.5)2

10 + (𝑢− 0.5)2

10

penalizing variations from the target population sizes.

3.6.2 Partition of problem domain

In order to investigate the effect of different spatio-temporal partitions on bound

quality and computational cost, we utilize a simple grid partition of the state space

𝑋 as parameterized by the number of grid cells 𝑛1 and 𝑛2 in the 𝑥1 and 𝑥2 direction,

respectively. As the state space is the non-negative orthant in this example, and

hence semi-infinite, we choose to discretize the compact interval box [0, 1.5] × [0, 1.5]

with a uniform grid of (𝑛1 − 1) × (𝑛2 − 1) cells and cover the remainder of 𝑋 with

appropriately chosen semi-infinite interval boxes. This choice is motivated by the

insight that the uncontrolled system resides with high probability in [0, 1.5] × [0.1.5].

The resultant grid is illustrated in Figure 3-3.
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The temporal domain is partitioned uniformly into 𝑛𝑇 subintervals, i.e., 𝑡𝑖 = 𝑖Δ𝑡

with Δ𝑡 = 𝑇/𝑛𝑇 . Throughout, we refer to a specific partition with the associated

triple (𝑛1, 𝑛2, 𝑛𝑇 ). The computational experiments are conducted for all partitions

corresponding to the triples {(𝑛1, 𝑛2, 𝑛𝑇 ) ∈ Z3
+ : 1 ≤ 𝑛1, 𝑛2 ≤ 5, 1 ≤ 𝑛𝑇 ≤ 10}.

3.6.3 Evaluation of bound quality

In order to assess the tightness of the bounds obtained with different approximation

orders and partitions, we compare the relative optimality gap (𝐽−𝐽)/𝐽 , where 𝐽 and

𝐽 refer to the lower bound furnished by an instance of the sum-of-squares restriction

of (pw-sub-HJB) and to the control cost associated with the best known admissible

control policy, respectively. The best known control policy was constructed from

the approximate value function 𝑤* obtained as the solution of the sum-of-squares

restriction of (pw-sub-HJB) with approximation order 𝑑 = 4 on the grid described

by 𝑛1 = 𝑛2 = 4 and 𝑛𝑇 = 10. To that end, we employed the following control law

mimicking a one-step model-predictive controller

𝑢*
𝑡 ∈ arg min

𝑢∈𝑈
𝒜𝑤*(𝑡, 𝑥𝑡, 𝑢) + ℓ(𝑥𝑡, 𝑢)

and estimated the associated control cost

𝐽 = E𝜈0

[︃∫︁
[0,𝑇 ]

ℓ(𝑥𝑡, 𝑢*
𝑡 ) d𝑡

]︃

by the ensemble average over 100, 000 sample trajectories generated with the Euler-

Maruyama scheme and a step size of 1 × 10−3.

3.6.4 Computational aspects

All computational experiments presented in this section were conducted on a Mac-

Book M1 Pro with 16GB unified memory. All sum-of-squares programs and the cor-

responding SDPs were constructed using our custom developed and publicly available
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specify model
data

create 
SOS program

SumOfSquares.jl
JuMP

DynamicPolynomials.jl
Symbolics.jl
Catalyst.jl

generate 
bounding problem 

MarkovBounds.jl

solve problem

Mosek, SeDuMi,
Cosmo, SDPT3, 

...

MathOptInterface.jl

Figure 3-4: Workflow for computing performance bounds for controlled jump-diffusion
processes via MarkovBounds.jl.

package MarkovBounds.jl3 built on top of SumOfSquares.jl [77] and the MathOptInterface [78].

Figure 3-4 illustrates how these packages compose to facilitate a largely automated

workflow from model specification via symbolic modeling tools to computation of

bounds with general purpose SDP solvers. In the following, all SDPs were solved

using Mosek v10.

3.6.5 Results

We put special emphasis on investigating the effect of refining the discretization of the

problem domain on bound quality and computational cost. Focusing on the effect on

computational cost in isolation first, Figure 3-5 confirms that the computational cost

for the solution of sum-of-squares restrictions of (pw-sub-HJB) scales approximately

linearly with the number of elements 𝑛1 × 𝑛2 × 𝑛𝑇 of the spatio-temporal partition

as discussed in Section 3.5. Moreover, Figure 3-5 also indicates that increasing the

approximation order 𝑑 results in a notably steeper increase in computational cost.

These results are in line with the discussion in Section 3.5 (see Table 3.1.
3https://github.com/fholtorf/MarkovBounds.jl
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Figure 3-5: Computational cost of solving (pw-sub-HJB) with increasing number of
partition elements.

Figure 3-6 shows the trade-off between bound quality and computational cost for

different approximation orders and partitions. First, it is worth noting that the pro-

posed partitioning strategy enables the computation of overall tighter bounds with an

approximation order of only up to 𝑑 = 6 when compared to the traditional formulation

with an approximation order of up to 𝑑 = 18. It is further worth emphasizing that

beyond 𝑑 = 18, numerical issues prohibited an accurate solution of the SDPs arising

from the traditional formulation such that no tighter bounds could be obtained this

way. Furthermore, upon choice of a suitable partition, the proposed local occupa-

tion measure framework enables a notable speed-up over the traditional occupation

measure framework across the entire accuracy range. Lastly, the results indicate that

a careful choice of partitioning is crucial to achieve good performance. Figure 3-6b

suggests that for this example particularly good performance is achieved when only

the time domain is partitioned; additionally partitioning the spatial domain becomes

an effective means of bound tightening only after the time domain has been resolved

sufficiently finely.
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(a) spatial & temporal partitioning
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(b) exclusively temporal partitions highlighted (𝑛1 = 𝑛2 = 1)

Figure 3-6: Trade-off between computational cost and bound quality for different
approximation orders 𝑑 and spatio-temporal partitions (𝑛1, 𝑛2, 𝑛𝑇 ). The red markers
correspond to MSOS restrictions of the labeled approximation order for the traditional
formulation (sub-HJB).

3.7 Extensions

Before we close, we briefly discuss two direct extensions to the described local occu-

pation measure framework showcasing its versatility.
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3.7.1 Discounted infinite horizon problems

Consider the following discounted infinite horizon stochastic optimal control problem

with discount factor 𝜌 > 0:

inf
𝑢𝑡

E𝜈0

[︃∫︁
[0,∞)

𝑒−𝜌𝑡ℓ(𝑥𝑡, 𝑢𝑡) d𝑡
]︃

s.t. 𝑥𝑡 satisfies (3.1) on [0,∞) with 𝑥0 ∼ 𝜈0,

(𝑥𝑡, 𝑢𝑡) ∈ 𝑋 × 𝑈, on [0,∞),

𝑢𝑡 is non-anticipative.

The construction of a weak formulation of this problem akin (weak-OCP) can be done

in full analogy to Section 3.2. To that end, note that the infinitesimal generator 𝒜

maps functions of the form 𝑤̂(𝑡, 𝑥) = 𝑒−𝜌𝑡𝑤(𝑡, 𝑥) to functions of the same form, i.e.,

𝒜𝑤̂(𝑡, 𝑥, 𝑢) = 𝑒−𝜌𝑡(𝒜𝑤(𝑡, 𝑥, 𝑢) − 𝜌𝑤(𝑡, 𝑥, 𝑢)).

By analogous arguments as in Section 3.2, it therefore follows that any function

𝑤 ∈ 𝐶1,2([0,∞) ×𝑋) that satisfies

𝒜𝑤(𝑡, 𝑥, 𝑢) − 𝜌𝑤(𝑡, 𝑥, 𝑢) + ℓ(𝑥, 𝑢) ≥ 0, ∀(𝑡, 𝑥, 𝑢) ∈ [0,∞) ×𝑋 × 𝑈

generates a valid subsolution 𝑤̂(𝑡, 𝑥) = 𝑒−𝜌𝑡𝑤(𝑡, 𝑥) of the value function associated

with the infinite horizon problem. Since the proposed partitioning approach does

neither rely on boundedness of the state space nor control horizon in order to establish

valid bounds, it follows that it readily extends to the infinite horizon setting.

3.7.2 Jump processes with discrete state space

Many application areas ranging from chemical physics to queuing theory call for

models that describe stochastic transitions between discrete states. In those cases,

jump processes are a common modeling choice [79, 80]. In the following, we show
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that the local occupation measure framework extends with only minor modifications

to stochastic optimal control of a large class of such jump processes. Specifically, we

consider controlled, continuous-time jump processes driven by 𝑚 independent Poisson

counters 𝑛𝑖(𝑡) with associated propensities 𝑎𝑖(𝑥𝑡, 𝑢𝑡):

d𝑥𝑡 =
𝑚∑︁
𝑖=1

(ℎ𝑖(𝑥𝑡, 𝑢𝑡) − 𝑥𝑡) d𝑛𝑖,𝑡. (3.12)

We will again assume that the process can be fully characterized by polynomials, but

additionally impose the assumption that the state space of the process is discrete.

Assumption 3.4. The jumps ℎ𝑖 : 𝑋 ×𝑈 → 𝑋, propensities 𝑎𝑖 : 𝑋 ×𝑈 → R+, stage

cost 𝑙 : 𝑋 × 𝑈 → R and terminal cost 𝜑 : 𝑋 × 𝑈 → R are polynomial functions

jointly in both arguments. The state space is a discrete, countable set and the set of

admissible control inputs 𝑈 is basic closed semialgebraic.

The local occupation measure framework outlined previously for diffusion pro-

cesses can be extended for computing lower bounds on the best attainable control

performance for such jump processes:

inf
𝑢𝑡

E𝜈0

[︃∫︁
[0,𝑇 ]

ℓ(𝑥𝑡, 𝑢𝑡) d𝑡+ 𝜑(𝑥𝑇 )
]︃

(jump OCP)

s.t. 𝑥𝑡 satisfies (3.12) on [0, 𝑇 ] with 𝑥0 ∼ 𝜈0,

(𝑥𝑡, 𝑢𝑡) ∈ 𝑋 × 𝑈, on [0, 𝑇 ],

𝑢𝑡 is not anticipative.

Given the extended infinitesimal generator 𝒜 : 𝒞1,0([0, 𝑇 ] ×𝑋) → 𝒞([0, 𝑇 ] ×𝑋 × 𝑈)

associated with the process (3.12),

𝒜𝑤 ↦→ 𝜕𝑤

𝜕𝑡
(𝑡, 𝑥) +

𝑚∑︁
𝑖=1

𝑎𝑖(𝑥, 𝑢) (𝑤(𝑡, ℎ𝑖(𝑥, 𝑢)) − 𝑤(𝑡, 𝑥)) ,

the weak form of (jump OCP) and its dual are analogous to (weak-OCP) and (sub-HJB),

respectively. Further, given a partition of the problem’s space-time domain as intro-

duced in Section 3.3, the analog of Problem (pw-sub-HJB) seeking a piecewise smooth
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subsolution of the value function takes the form

sup
𝑤𝑖,𝑘:(𝑖,𝑘)∈𝑃

𝑛𝑋∑︁
𝑘=1

∫︁
𝑋𝑘

𝑤1,𝑘(0, ·) d𝜈0 (jump pw-subHJB)

s.t. 𝒜𝑤𝑖,𝑘 + ℓ ≥ 0 on [𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘 × 𝑈, ∀(𝑖, 𝑘) ∈ 𝑃,

𝑤𝑖,𝑘(𝑡𝑖−1, ·) ≥ 𝑤𝑖−1,𝑘(𝑡𝑖−1, ·) on 𝑋𝑘, ∀(𝑖, 𝑘) ∈ 𝑃 ∘,

𝑤𝑖,𝑘 = 𝑤𝑖,𝑗 on [𝑡𝑖−1, 𝑡𝑖] ×𝑁𝑘𝑗, ∀(𝑖, 𝑗, 𝑘) ∈ 𝜕𝑃,

𝑤𝑛𝑇 ,𝑘(𝑇, ·) ≤ 𝜑 on 𝑋𝑘, ∀𝑘 ∈ {1, . . . , 𝑛𝑋},

𝑤𝑖,𝑘 ∈ 𝒞1,0([0, 𝑇 ] ×𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

where 𝑁𝑘𝑗 denotes the “neighborhood” of 𝑋𝑘 in 𝑋𝑗 defined as all states in 𝑋𝑗 which

have a non-zero transition probability into 𝑋𝑘; formally,

𝑁𝑘𝑗 = {𝑥 ∈ 𝑋𝑗 : ∃𝑢 ∈ 𝑈 such that ℎ𝑖(𝑥, 𝑢) ∈ 𝑋𝑘 for some 𝑖 and 𝑎𝑖(𝑥, 𝑢) > 0}.

Note that under Assumption 3.4, the extended infinitesimal generator 𝒜 asso-

ciated with a jump process again maps polynomials to polynomials laying the ba-

sis for the application of the MSOS hierarchy to construct tractable relaxations of

(jump OCP). In contrast to the discussion in Section 3.2, however, the state space

𝑋 of a jump process is closed basic semialgebraic if and only if it is finite. Thus, the

MSOS hierarchy provides finite SDP relaxations of the weak form of (jump OCP)

only in the case of a finite state space 𝑋. Moreover, even if 𝑋 is finite but of large

cardinality, these relaxations may not be practically tractable due to the large number

or high degree of the polynomial inequalities needed to describe such a set. If 𝑋 is

infinite (or of sufficiently large cardinality), tractable MSOS relaxations can only be

constructed at the price of introducing additional conservatism. From the dual per-

spective, this additional conservatism is introduced by imposing the non-negativity

conditions in (sub-HJB) on a basic semialgebraic overapproximation of 𝑋; in par-

ticular polyhedral overapproximations are a common choice [12–14, 16, 81]. The
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(a) global convex overapproximation (b) union of convex overapproximations

Figure 3-7: Tightening of bounding problems for discrete jump problems on a 2-D
lattice by partitioning of the state space into unions of convex overapproximations.
Overapproximations are shown in blue, lattice nodes are shown with black circles.

framework of local occupation measures provides a way to reduce this conservatism.

While the construction of tractable MSOS restrictions of (jump pw-subHJB) requires

basic semialgebraic overapproximation of each infinite (or sufficiently large) partition

element, the union of such overapproximations will generally be less conservative than

a global semialgebraic overapproximation (see Figure 3-7).

3.7.3 Example: optimal gene regulation for protein expres-

sion

We demonstrate the efficacy of the local occupation measure framework for the control

of jump processes with an example from cellular biology. Specifically, we consider the

problem of optimal regulation of protein expression through actuation of the promoter

kinetics in the biocircuit illustrated in Figure 3-8. The associated jump process has

three states encoding the molecular counts of protein (𝑥1), active promoter (𝑥2), and

inactive promoter (𝑥3). The process undergoes jump transitions in response to the
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u · c5
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Figure 3-8: Biocircuit model for gene regulation.

following chemical reactions with associated rates:

ℎ1 : (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1 + 1, 𝑥2, 𝑥3), 𝑎1(𝑥, 𝑢) = 10𝑥2 (expression)

ℎ2 : (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1 − 1, 𝑥2, 𝑥3), 𝑎2(𝑥, 𝑢) = 0.1𝑥1 (degradation)

ℎ3 : (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1, 𝑥2 − 1, 𝑥3 + 1), 𝑎3(𝑥, 𝑢) = 0.1𝑥1𝑥2 (repression)

ℎ4 : (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1, 𝑥2 + 1, 𝑥3 − 1), 𝑎4(𝑥, 𝑢) = 10(1 − 𝑢)𝑥3 (activation)

ℎ5 : (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1, 𝑥2 − 1, 𝑥3 + 1), 𝑎5(𝑥, 𝑢) = 10𝑢𝑥2 (inactivation)

The expression of protein can be controlled indirectly via the activation and inac-

tivation rates of the promoter. Admissible control actions 𝑢 are constrained to lie

within the interval 𝑈 = [0, 1]. Moreover, we assume a deterministic initial condition

𝑥0 ∼ 𝛿(0,1,0) and exploit that due to the reaction invariant (𝑥𝑡)2 +(𝑥𝑡)3 = (𝑥0)2 +(𝑥0)3

the state space 𝑋 is effectively two-dimensional, i.e., we eliminate (𝑥𝑡)3 = 1−(𝑥𝑡)2. It

can be easily verified that, after elimination of the reaction invariant, the state space

of the jump process is given by

𝑋 = {𝑥 ∈ Z2
+ : 𝑥2 ∈ {0, 1}}
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such that Assumption 3.4 is satisfied.

The goal of the control problem is stabilization the protein level in the cell at a

desired target value of 10 molecules. To that end, we seek to minimize the stage cost

ℓ(𝑥, 𝑢) = (𝑥1 − 10)2 + 10(𝑢− 0.5)2

over the horizon [0, 10].

In order to investigate the effect of different partitions of the problem domain on

bound quality and computational cost, we discretize the time horizon uniformly into

𝑛𝑇 intervals and partition the state space into 2𝑛𝑋 singletons

𝑋𝑖 =

⎧⎪⎨⎪⎩
{(𝑖− 1, 0), 𝑖 ≤ 𝑛𝑋

{(𝑖− 𝑛𝑋 − 1, 1)}, 𝑖 > 𝑛𝑋

for 𝑖 = 1, . . . , 2𝑛𝑋

and lump the remaining part of the state space in the last partition element

𝑋2𝑛𝑋+1 = {𝑥 ∈ Z2
+ : 𝑥1 ≥ 𝑛𝑋 , 𝑥2 ∈ {0, 1}}.

We explore the partitions corresponding to all combinations of 𝑛𝑇 ∈ {2, 4, . . . , 18, 20}

and 𝑛𝑋 ∈ {0, 8, . . . , 32, 40}.

Note that the partition elements 𝑋1, . . . , 𝑋2𝑛𝑋
are already basic closed semial-

gebraic such that no overapproximation is required for the construction of valid

MSOS restriction of the non-negativity constraints in (jump pw-subHJB). In con-

trast, the partition element 𝑋2𝑛𝑋+1 is discrete and infinite, hence not basic closed

semialgebraic. We therefore strengthen the formulation of the MSOS restriction of

(jump pw-subHJB) by imposing the non-negativity conditions on the polyhedral con-

vex hull of 𝑋2𝑛𝑋+1, thereby recovering tractability.

Figure 3-9 shows the trade-off between computational cost and bound quality

achieved by different choices for the partition of the problem domain and approxi-

mation order. The bound quality is again measured by the relative optimality gap,

estimated as described in Section 3.6.3. Analogous to the diffusion control example
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Figure 3-9: Trade-off between computational cost and bound quality for different
approximation orders 𝑑 and domain partitions. The red markers correspond to
MSOS restrictions of the labeled approximation order for the traditional formula-
tion (sub-HJB).

considered in Section 3.6, the results demonstrate that an adequate partitioning of the

problem domain substantially reduces the cost of computing bounds of a given quality

when compared to the traditional approach. Moreover, notably tighter bounds could

be computed overall due to a less conservative overapproximation of the process’

infinite state space in the formulation of the bounding problems.

3.8 Conclusion

We have proposed a simple partitioning strategy for improving the practicality of

MSOS relaxations for stochastic optimal control problems with polynomial data.

From the primal perspective, this strategy can be interpreted as constructing the

MSOS relaxation for a linear program over finitely many occupation measures “local-

ized” on elements of a partition of the control problem’s space-time domain. From

the dual perspective, the bounding problems seek a maximal piecewise-polynomial

underestimator to the value function via sum-of-squares programming.

The key advantage of this framework over application of the MSOS hierarchy to

the traditional occupation measure formulation for stochastic optimal control is that
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it offers a flexible and interpretable mechanism to tighten the obtained semidefinite

bounding problems without degree augmentation – simple refinement of the problem

domain partition. On the one hand, this enables tightening of the bounding prob-

lems at as benign as linearly increasing cost, contrasting the combinatorial scaling

incurred by naive degree augmentation. On the other hand, it promotes practical-

ity by providing a way to avoid high degree sum-of-squares constraints and their

notorious implications for poor numerical conditioning. As demonstrated with two

examples, these advantages can lead to notable improvements in practical utility of

the occupation measure approach to stochastic optimal control.

In future work, we will investigate the use of distributed optimization techniques to

further improve efficacy of the proposed framework by exploiting the weakly-coupled

block structure of the bounding problems.

83



84



Chapter 4

Analysis of stochastic reaction

systems via local occupation

measures

The content of this chapter is an extension of the publication F. Holtorf and P. I. Barton,

“Tighter bounds on transient moments of stochastic chemical systems,” Journal of

Optimization Theory and Applications, vol. 200, no. 1, pp. 104–149, 2024. The essential

ideas were conceived under supervision of Paul I. Barton.

4.1 Introduction

The model-based analysis of reacting systems at the microscopic scale is garnering

increasing interest in the pursuit of understanding the functioning of living cells [82].

As continuum assumptions underpinning the classical deterministic description of

chemical reaction kinetics begin to break down at the length scales and low molecular

counts present in singular cells, however, it becomes essential to account for the ran-

domness originating from the complex and chaotic motion of molecules in this regime.

In fact, the intrinsically noisy nature of microscopic reaction systems is found to play

a key role in facilitating biological processes as general as cellular decision-making,
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gene expression, and enzymatic regulation [83–87]. While a probabilistic description

of such systems is therefore crucial to develop a complete understanding of their

behavior, it also complicates associated analysis and inference tasks dramatically.

Stochastic reaction systems as found at the microscopic and in particular cellu-

lar level are canonically modeled as continuous-time Markov chains on discrete state

spaces (jump processes) [82]. The associated Kolmogorov forward equation, or in this

context more commonly known as the chemical master equation (CME), therefore

governs the dynamics of the law of stochastic reaction systems. And although it

reduces to a linear ordinary differential equation (ODE) due to the discrete nature

of the state space, its solution remains out of computational reach for all but the

simplest systems. The dimension of the CME coincides with the number of reach-

able states which routinely exceeds millions if it is finite at all. In practice, the

computational analysis of stochastic reaction systems therefore has traditionally re-

lied on Monte Carlo techniques [7, 88, 89], finite state projection [17], or moment

closure approximations [8–11]. Here, we focus on a fourth more recently considered

approach: moment bounding schemes [12–14, 81, 90]. Compared to the traditional

approaches, moment bounding schemes combine the advantages of a low-dimensional

moment-based description of the system’s statistics with a mechanism for rigorous

error control. On one hand, this alleviates the shortcomings of moment-closure ap-

proximations which are generally based on unverifiable assumptions and known to

introduce severe errors as these assumptions break down [91–93]. On the other hand,

it complements Monte Carlo approaches by providing additional side information for

quantities with poor sample complexity such as rare event probabilities, quantities of

large variance, or statistics of the system’s long-term behavior.

In recent years, several researchers have proposed convex optimization-based bound-

ing routines for the moments (and related statistics) of stochastic reaction networks;

such bounding schemes have been proposed for statistics of stationary [12–14, 90],

transient [16, 94–96], and exit time distributions [15] of such networks. While de-

rived independently, these techniques can be unified within the occupation measure

framework. As such, they stand to be generalized by the spatio-temporal partition-
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ing approach and the associated notion of local occupation measures put forward in

Chapter 3. We show in the following that viewing stochastic reaction systems through

the lens of local occupation measures in fact not only unifies and generalizes moment

bounding schemes for stochastic reaction systems but also that it bridges the gap to

finite state projection [17] and related truncation-based analysis techniques [81]. In

this context, we show further that the notion of local occupation measures enables

a practical method to approximate the stationary distribution of stochastic reaction

systems with potentially unbounded state space by invoking the maximum entropy

principle – an approach that has previously been found to be greatly effective for the

construction of moment closure approximations [11].

The remainder of this chapter is organized as follows. In Section 4.2, we briefly

review the modeling framework of stochastic chemical kinetics and discuss essential

assumptions. In Section 4.3, we adapt the local occupation measure framework to

derive tractable bounding problems for transient and stationary statistics of stochastic

reaction systems. In Sections 4.4 and 4.5 we establish formal connections between the

proposed bounding problems and previously proposed moment bounding schemes and

truncation-based analysis techniques for stochastic reaction systems, respectively. In

Section 4.6, we discuss the combination of local occupation measures and maximum

entropy regularization to approximate stationary distributions of stochastic reaction

systems before we conclude in Section 4.7.

4.2 Stochastic chemical kinetics

We consider throughout a reaction system featuring 𝑛 chemical species 𝑆1, . . . , 𝑆𝑛

undergoing 𝑛𝑅 different reactions. The system state 𝑥 is assumed to be encoded

entirely by the molecular counts of the individual species, i.e., 𝑥 = [𝑥1 . . . 𝑥𝑛]⊤ ∈ Z𝑛+.

Upon the event of chemical reaction 𝑟 ∈ [𝑛𝑅] occurring, the system state changes

according to the stoichiometry

𝛾−
1,𝑟𝑆1 + · · · + 𝛾−

𝑛,𝑟𝑆𝑁 → 𝛾+
1,𝑟𝑆1 + · · · + 𝛾+

𝑛,𝑟𝑆𝑛
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leading to a discrete transition from state 𝑥 to state 𝑥 + 𝛾𝑟, where 𝛾𝑟 = [𝛾+
1,𝑟 −

𝛾−
1,𝑟 . . . 𝛾

+
𝑛,𝑟 − 𝛾−

𝑛,𝑟]⊤ ∈ Z𝑛. We will restrict ourselves to the framework of stochastic

chemical kinetics for modeling such systems.

The notion of stochastic chemical kinetics treats the position and velocities of

all molecules in the system as random variables; reactions are assumed to occur at

collisions with a prescribed probability. Consequently, the evolution of the system

state is a continuous-time Markov chain, i.e., a continuous-time jump process with

discrete state space. Accordingly, we assume that the dynamics of the distribution

of the system state is described by the Kolmogorov forward equation which is more

commonly known as the chemical master equation (CME) in this context.

Assumption 4.1. Let 𝑝(𝑡, 𝑥) be the probability to observe the system in state 𝑥 at

time 𝑡 given the distribution 𝜈0 of the initial state of the system. Then, 𝑝(𝑡, 𝑥) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑝

𝜕𝑡
(𝑡, 𝑥) =

∑︁
𝑅+(𝑥)

𝑎𝑟(𝑥− 𝛾𝑟)𝑝(𝑡, 𝑥− 𝛾𝑟)−
∑︁
𝑅−(𝑥)

𝑎𝑟(𝑥)𝑝(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇 ] ×𝑋,

𝑝(0, 𝑥) = 𝜈0(𝑥), 𝑥 ∈ 𝑋,

(CME)

where 𝑎𝑟 denotes the propensity of reaction 𝑟, i.e., 𝑎𝑟(𝑥) d𝑡 quantifies the probability

that reaction 𝑟 occurs in [0, d𝑡) as d𝑡 → 0 assuming the system is in state 𝑥 initially.

𝑅+(𝑥) and 𝑅−(𝑥) denote the sets of reactions with non-zero propensity into and out

of state 𝑥, respectively; i.e., 𝑅+(𝑥) = {𝑟 ∈ [𝑛𝑅] : 𝑎𝑟(𝑥 − 𝛾𝑟) > 0} and 𝑅−(𝑥) = {𝑟 ∈

[𝑛𝑅] : 𝑎𝑟(𝑥) > 0}.

Throughout, our constructions will rely on explicit knowledge of the system’s state

space defined as follows.

Definition 4.1. The state space of a stochastic reaction system is the set of reachable

states. A state 𝑥 ∈ Z𝑛+ is called reachable on the time-horizon [0, 𝑇 ] (with 𝑇 ∈

R+ ∪ {+∞}) if there is a non-zero probability to observe the system in state 𝑥 at

some time point in [0, 𝑇 ]. Accordingly, the set of reachable states is formally given by

𝑋 = {𝑥 ∈ Z𝑛+ : ∃𝑡 ∈ [0, 𝑇 ] such that 𝑝(𝑡, 𝑥) > 0}.
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Note in particular that the set of reachable states is generally fully characterized by

conservation of mass and the stoichiometry of the chemical reactions. It is hence easily

determined by intersecting of the lattice of non-negative integers Z𝑛+ with reaction

invariants implied by the stoichiometry.

Furthermore, we will restrict our considerations to the case of polynomial reaction

propensities.

Assumption 4.2. The reaction propensities 𝑎𝑟, 𝑟 ∈ [𝑛𝑅] in (CME) are polynomials

and non-negative on the reachable set 𝑋.

To ensure the moments of the CME solution remain finite and well-defined at all

times, we will further assume that the jump process describing the reaction system

is regular, i.e., it does not explode in finite time. The following assumption ensures

regularity [97].

Assumption 4.3. The number of reaction events occurring in the system within

finite time is finite with probability 1.

We wish to emphasize that Assumptions 4.1 – 4.3 are rather weak; Assumptions

4.1 and 4.2 are in line with widely accepted microscopic models [79] while Assumption

4.3 should intuitively be satisfied for any practically relevant system for which the

CME is a reasonable modeling approach. Furthermore, Assumption 4.3 is formally

necessary for the CME to hold on an indefinite time horizon [97]. For a detailed,

physically motivated derivation of the CME alongside discussion of the underlying

assumptions and potential relaxations thereof, the interested reader is referred to

Gillespie [79].
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4.3 Local occupation measures for stochastic reac-

tion systems

4.3.1 Transient problems

It is easily verified that the CME described in Assumption 4.1 is the Kolmogorov

forward equation associated with the jump process

d𝑥𝑡 =
𝑛𝑅∑︁
𝑟=1

𝛾𝑟 d𝑛𝑟𝑡 , (4.1)

where the Poisson counter 𝑛𝑟𝑡 fires at rate of the reaction propensity 𝑎𝑟(𝑥𝑡). As such,

the algorithmic machinery discussed in Chapter 3, Section 3.7.2 in principle applies

to bounding the statistics of stochastic reaction systems without modification. (Note

that the absence of a control action is simply a special case of what is discussed in

Chapter 3, Section 3.7.2.) However, the simple structure of the jump process (4.1)

enables additional simplifications that were not employed in Chapter 3. We therefore

begin by briefly revisiting the key concepts of the traditional occupation measure

framework from the perspective of stochastic reaction systems and subsequently de-

rive its localized generalization tailored to such systems.

The instantaneous and expected occupation measures associated with a stochastic

reaction system are defined as

𝜈(𝐵) = E𝜈0 [1𝐵(𝑥𝑇 )] =
∑︁
𝑥∈𝐵

𝑝(𝑇, 𝑥)

and

𝜉(𝐴×𝐵) = E𝜈0

[︃∫︁
𝐴∩[0,𝑇 ]

1𝐵(𝑥𝑡) d𝑡
]︃

=
∫︁
𝐴∩[0,𝑇 ]

∑︁
𝑥∈𝐵

𝑝(𝑡, 𝑥) d𝑡,

respectively, for any discrete subset of reachable states 𝐵 ⊂ 𝑋 and Borel subset 𝐴

of the time horizon [0, 𝑇 ]. (We used Tonelli’s theorem to exchange limits for the

expected occupation measure.)
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The instantaneous and expected occupation measures are related by Dynkin’s

formula [74] according to

⟨𝒜𝑤, 𝜉⟩ = ⟨𝑤, 𝜈⟩ − ⟨𝑤, 𝜈0⟩

for any sufficiently smooth test function 𝑤 ∈ 𝒞1,0([0, 𝑇 ] × 𝑋). Here, 𝒜 refers to the

extended infinitesimal generator of the stochastic reaction system (4.1), and ⟨·, 𝜉⟩ and

⟨·, 𝜈⟩ denote the duality brackets

⟨𝑤, 𝜉⟩ = E𝜈0

[︃∫︁
[0,𝑇 ]

𝑤(𝑡, 𝑥𝑡) d𝑡
]︃

and ⟨𝑤, 𝜉⟩ = E𝜈0 [𝑤(𝑇, 𝑥𝑇 )]

as defined for continuous observables 𝑤 ∈ 𝒞([0, 𝑇 ] × 𝑋). The extended infinitesimal

generator 𝒜 acts according to

𝒜𝑤(𝑡, 𝑥) = 𝜕𝑤

𝜕𝑡
(𝑡, 𝑥) +

∑︁
𝑟∈𝑅−(𝑥)

𝑎𝑟(𝑥) (𝑤(𝑡, 𝑥+ 𝛾𝑟) − 𝑤(𝑡, 𝑥)) (4.2)

and describes via Dynkin’s formula how expectations of the system state of sufficiently

smooth observables evolve over time.

The following, infinite-dimensional linear program over non-negative measures

therefore bounds the expectation of an observable 𝜑 ∈ 𝒞(𝑋) of the state of the

stochastic reaction system (4.1) at time 𝑇 from below:

𝐽*
OM = inf

𝜈,𝜉
⟨𝜑, 𝜈⟩ (OM)

s.t. ⟨𝒜𝑤, 𝜉⟩ = ⟨𝑤, 𝜈⟩ − ⟨𝑤, 𝜈0⟩, ∀𝑤 ∈ 𝒞1,0([0, 𝑇 ] ×𝑋),

𝜉 ∈ ℳ+([0, 𝑇 ] ×𝑋),

𝜈 ∈ ℳ+(𝑋),

where ℳ+(𝑌 ) denotes to the cone of non-negative measures supported on 𝑌 . (Note

that by construction the true occupation measures as defined above are feasible for

(OM).) The dual of (OM) is an infinite-dimensional linear program over continuous
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functions and reads

𝐽*
subKBE = sup

𝑤

∫︁
𝑋
𝑤(0, ·) d𝜈0 (sub-KBE)

s.t. 𝒜𝑤 ≥ 0, on [0, 𝑇 ] ×𝑋,

𝜑− 𝑤(𝑇, ·) ≥ 0, on 𝑋,

𝑤 ∈ 𝒞1,0([0, 𝑇 ] ×𝑋).

Analogous to the controlled case treated in Section 3, the dual (sub-KBE) admits

an informative interpretation as seeking the maximal smooth subsolution of the Kol-

mogorov backward equation. This claim is formalized in the following proposition.

Proposition 4.1. Let 𝜑 ∈ 𝒞(𝑋) and 𝑉 be the solution to the Kolmogorov backward

equation

⎧⎪⎨⎪⎩
𝒜𝑉 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0, 𝑇 ) ×𝑋

𝑉 (𝑇, 𝑥) = 𝜑(𝑥), 𝑥 ∈ 𝑋.
. (4.3)

Further let 𝑤 be feasible for (sub-KBE). It follows that 𝑤(𝑡, 𝑥) ≤ 𝑉 (𝑡, 𝑥) for all

(𝑡, 𝑥) ∈ [0, 𝑇 ] ×𝑋.

Proof. First recall that 𝑉 (𝑠, 𝑧) = E [𝜑(𝑥𝑇 )|𝑥𝑠 = 𝑧] is the unique solution of Equation

(4.3) [74, Theorem 8.1.1].1 From the endpoint constraint in (sub-KBE) it further

follows immediately that

𝑉 (𝑇, 𝑥) = 𝜑(𝑥) ≥ 𝑤(𝑇, 𝑥)

holds for all 𝑥 ∈ 𝑋. Now let 𝑠 ∈ [0, 𝑇 ] and 𝑧 ∈ 𝑋. Then, Dynkin’s formula implies

1The statement and proof of Theorem 8.1.1 [74] is presented for diffusion processes but holds
almost verbatim for any process that admits an infinitesimal generator and for which Dynkin’s
formula holds.
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that

𝑉 (𝑠, 𝑧) = E [𝜑(𝑥𝑇 )|𝑥𝑠 = 𝑧] ≥ E [𝑤(𝑇, 𝑥𝑇 )|𝑥𝑠 = 𝑧]

= 𝑤(𝑠, 𝑧) + E
[︃∫︁

[𝑠,𝑇 ]
𝒜𝑤(𝑡, 𝑥𝑡) d𝑡

⃒⃒⃒⃒
⃒𝑥𝑠 = 𝑧

]︃
≥ 𝑤(𝑠, 𝑧),

where the second inequality follows from the non-negativity of 𝒜𝑤 on [0, 𝑇 ] ×𝑋.

Corollary 4.1. Strong duality holds between (OM) and (sub-KBE). Moreover, 𝐽*
OM =

𝐽*
subKBE = E𝜈0 [𝜑(𝑥𝑇 )].

Proof. 𝑉 (𝑠, 𝑧) = E𝜈0 [𝜑(𝑥𝑇 )|𝑥𝑠 = 𝑧] is the unique solution to Equation (4.3) [74, The-

orem 8.1.1]. As a consequence 𝑉 ∈ 𝒞1,0([0, 𝑇 ] ×𝑋) (note that Equation (4.3) implies

that 𝑠 ↦→ 𝑉 (𝑠, 𝑧) is differentiable for all 𝑧 ∈ 𝑋). It follows by Proposition 4.1 that

𝐽*
subKBE =

∫︀
𝑋 𝑉 (0, ·) d𝜈0 = E𝜈0 [𝜑(𝑥𝑇 )]. The result thus follows from weak duality in

infinite dimensional linear programming [37] and by noting that 𝐽*
OM ≤ E𝜈0 [𝜑(𝑥𝑇 )]

holds by construction:

E𝜈0 [𝜑(𝑥𝑇 )] ≥ 𝐽*
OM ≥ 𝐽*

subKBE = E𝜈0 [𝜑(𝑥𝑇 )].

Remark 4.1. As the solution of the backward equation (4.3) is given by 𝑉 (𝑡, 𝑧) =

E [𝜑(𝑥𝑇 )|𝑥𝑡 = 𝑧], any feasible point of (sub-KBE) enables the computation of lower

bounds for the conditional expectations

∫︁
𝑋
𝑤(𝑠, ·) d𝜌 ≤ E [𝜑(𝑥𝑇 )|𝑥𝑠 ∼ 𝜌]

for arbitrary times 𝑠 ∈ [0, 𝑇 ] and distributions 𝜌 supported on the reachable set 𝑋.

Proposition 4.1 and Corollary 4.1 establish that feasible points of (OM) and

(sub-KBE) furnish bounds on the statistics of stochastic reaction systems. More-

over, under Assumption 4.2 both problems admit tractable moment-sum-of-squares

(MSOS) approximations to compute such bounds in practice. The only complicating
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factor in practice arises from the fact that the state space 𝑋 of stochastic reaction

systems is discrete and typically vast. To recover practically tractable MSOS approx-

imations, the state space 𝑋 must be overapproximated by a “simple” semialgebraic

set; see Chapter 3, Section 3.7.2 for a detailed discussion of this issue and its practical

implications. Here, we simply note that for stochastic reaction systems such semialge-

braic overapproximations are readily and easily constructed. In particular, the state

space of stochastic reaction systems is by construction contained in the non-negative

orthant. Further refinements of this crude basic semialgebraic overapproximation can

be obtained by considering reaction invariants and isolating particular integer states

through low-degree polynomial inequalities [12–14, 16, 81].

Another natural approach to address complications arising from the discrete state

space of stochastic reaction systems is the local occupation measure framework de-

scribed in Chapter 3. In the following, we adapt and tailor this framework to stochas-

tic reaction systems. To that end, let us consider a state space partition 𝑋1, . . . , 𝑋𝑛𝑋

such that 𝑋𝑖 ∩ 𝑋𝑗 = ∅ for 𝑖 ̸= 𝑗 and ∪𝑛𝑋
𝑖=1𝑋𝑖 = 𝑋. Further consider a discretization

of the time horizon 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛𝑇
= 𝑇 . The sets [𝑡𝑖−1, 𝑡𝑖] × 𝑋𝑘 thus parti-

tion the entire space-time domain [0, 𝑇 ] ×𝑋. When restricting the global occupation

measures introduced in the beginning of this section to the subdomains [𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘

we obtain the localized occupation measures

𝜈𝑖𝑘(𝐵) =
∑︁

𝑥∈𝐵∩𝑋𝑘

𝑝(𝑡𝑖, 𝑥)

and

𝜉𝑖𝑘(𝐴×𝐵) = 𝜉(𝐴 ∩ [𝑡𝑖−1, 𝑡𝑖] ×𝐵 ∩𝑋𝑘) =
∫︁

[0,𝑇 ]∩[𝑡𝑖−1,𝑡𝑖]∩𝐴

∑︁
𝑥∈𝐵∩𝑋𝑘

𝑝(𝑡, 𝑥) d𝑡.

We further introduce “exchange” measures 𝜋𝑖𝑗𝑘 which capture the probability mass

concentrated in states of 𝑋𝑗 from which the process can transition into 𝑋𝑘 during the

time interval [𝑡𝑖−1, 𝑡𝑖]. The exchange measure 𝜋𝑖𝑗𝑘 is thus supported on the “relative

neighborhood” of 𝑋𝑘 in 𝑋𝑗 defined as follows.
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Definition 4.2 (Relative neighborhood). The relative neighborhood 𝑁𝑘𝑗 of 𝑋𝑘 in 𝑋𝑗

consists of all states in 𝑋𝑗 that transition with non-zero rate into 𝑋𝑘, i.e.,

𝑁𝑘𝑗 = {𝑥 ∈ 𝑋𝑗 : 𝑅𝑘(𝑥) ̸= ∅} where 𝑅𝑘(𝑥) = {𝑟 ∈ [𝑛𝑅] : 𝑥+ 𝛾𝑟 ∈ 𝑋𝑘 and 𝑎𝑟(𝑥) > 0}.

Formally, 𝜋𝑖𝑗𝑘 is defined as

𝜋𝑖𝑗𝑘(𝐴×𝐵) =
∫︁

[𝑡𝑖−1,𝑡𝑖]∩𝐴

∑︁
𝑥∈𝐵∩𝑁𝑘𝑗

𝑝(𝑡, 𝑥) d𝑡

for Borel subsets 𝐴 ⊂ [𝑡𝑖−1, 𝑡𝑖] and 𝐵 ⊂ 𝑁𝑘𝑗. By definition, the exchange measure

𝜋𝑖𝑗𝑘 characterize the effect of transitions of the process from 𝑋𝑗 to 𝑋𝑘 in the time

interval [𝑡𝑖−1, 𝑡𝑖]. The effect of these transitions on observables is described by the

flux operator

ℱ𝑘𝑤(𝑡, 𝑥) =
∑︁

𝑟∈𝑅𝑘(𝑥)
𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑎𝑟(𝑥)

which encodes the rate of change of the observable 𝑤 due to transitions into 𝑋𝑘 in

expectation.

Overall, the following conservation equation encodes how the expectations of

a sufficiently smooth observable 𝑤 ∈ 𝒞1,0([0, 𝑇 ] × 𝑋) of the process evolves over

[𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘:

⟨𝑤, 𝜈𝑖𝑘⟩ − ⟨𝑤, 𝜈(𝑖−1)𝑘⟩ = ⟨𝒜𝑤, 𝜉𝑖𝑘⟩ +
∑︁
𝑗 ̸=𝑘

⟨ℱ𝑘𝑤, 𝜋𝑖𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑖𝑘𝑗⟩. (4.4)

A detailed, constructive derivation of this relation from the governing CME is pro-

vided in Appendix B.1. This constructive derivation further justifies the following

intuition: the left-hand side of Equation 4.4 quantifies the change in expectation of

an observable 𝑤 that vanishes outside of the subdomain 𝑋𝑘 × [𝑡𝑖−1, 𝑡𝑖] induced by

• dynamics of the process while residing in 𝑋𝑘 (first term of the right-hand side),

• transitions of the process from 𝑋𝑗 to 𝑋𝑘 (second term of the right-hand side),
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• and transitions of the process from 𝑋𝑘 to 𝑋𝑗 (third term of the right-hand side).

When finally taking the non-negativity and support of the localized occupation

and exchange measures into account, the following generalization of the infinite-

dimensional linear program (OM) is obtained.

inf
𝜈,𝜉,𝜋

𝑛𝑋∑︁
𝑘=1

⟨𝜑, 𝜈𝑛𝑇 𝑘⟩ (local-OM)

s.t. ⟨𝑤, 𝜈𝑖𝑘⟩ −
⟨
𝑤, 𝜈(𝑖−1)𝑘

⟩
= ⟨𝒜𝑤, 𝜉𝑖𝑘⟩ +

∑︁
𝑗 ̸=𝑘

⟨ℱ𝑘𝑤, 𝜋𝑖𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑖𝑘𝑗⟩ ,

∀𝑤 ∈ 𝒞1,0([𝑡𝑖−1, 𝑡𝑖] × 𝑋̄𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜈𝑖𝑘 ∈ ℳ+(𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜉𝑖𝑘 ∈ ℳ+([𝑡𝑖−1, 𝑡𝑖] ×𝑋𝑘), ∀(𝑖, 𝑘) ∈ 𝑃,

𝜋𝑖𝑗𝑘 ∈ ℳ+([𝑡𝑖−1, 𝑡𝑖] ×𝑁𝑘𝑗), ∀(𝑖, 𝑗, 𝑘) ∈ 𝜕𝑃,

with the index sets

𝑃 := {(𝑖, 𝑘) : 1 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ≤ 𝑛𝑋} ,

𝑃 ∘ := {(𝑖, 𝑘) : 2 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ≤ 𝑛𝑋},

𝜕𝑃 := {(𝑖, 𝑗, 𝑘) : 1 ≤ 𝑖 ≤ 𝑛𝑇 , 1 ≤ 𝑘 ̸= 𝑗 ≤ 𝑛𝑋}.

The extension of the test function domain by all states that transition into 𝑋𝑘, i.e.,

𝑋̄𝑘 =
(︁
∪𝑛𝑋
𝑗=1𝑁𝑘𝑗

)︁
∪𝑋𝑘,

ensures that 𝒜𝑤 and ℱ𝑗𝑤 are well-defined on the support of 𝜉𝑖𝑘 and 𝜋𝑖𝑘𝑗, respectively.

We remark that while (local-OM) and (OM) are equivalent, their MSOS relax-

ations are not. In general, MSOS relaxations of (local-OM) require semialgebraic

overapproximation of the subdomains 𝑋1, . . . , 𝑋𝑛𝑋
which can give rise to significantly

tighter relaxations than obtained for (local-OM) for which a global semialgebraic

overapproximation of 𝑋 is required. This holds particular potential when the prob-
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ability mass of the system is concentrated in few states which then can be resolved

by the partition as singletons. Analogous advantages are obtained for sum-of-squares

restrictions of the dual of (local-OM) which in full analogy to Chapter 3 admits in-

terpretation as seeking the maximal piesewise smooth subsolution to the Kolmogorov

backward equation (4.3).

4.3.2 Stationary problems

The occupation measure framework and its local generalization extend naturally to

the analysis of stationary statistics of stochastic reaction systems. To that end, let

𝑝∞ be a stationary distribution of the system and 𝜇(𝐴) = ∑︀
𝑥∈𝐴 𝑝∞(𝑥) for any 𝐴 ⊂ 𝑋

be the associated stationary (occupation) measure. Then, 𝑝∞ is invariant under the

CME, i.e.,

∑︁
𝑅+(𝑥)

𝑎𝑟(𝑥− 𝛾𝑟)𝑝∞(𝑥− 𝛾𝑟) −
∑︁
𝑅−(𝑥)

𝑎𝑟(𝑥)𝑝∞(𝑥) = 0 for all 𝑥 ∈ 𝑋.

Consequently, Dynkin’s formula implies that for any observable 𝑤 ∈ 𝒞(𝑋)

⟨𝒜𝑤, 𝜇⟩ = 0

must hold. To derive an analogous problem to (local-OM) for bounding stationary

averages, we thus define for any discrete set 𝐴 ⊂ 𝑋 the localized stationary occupation

and exchange measures as

𝜇𝑘(𝐴) =
∑︁

𝑥∈𝐴∩𝑋𝑘

𝑝∞(𝑥) and 𝜋𝑗𝑘(𝐴) =
∑︁

𝑥∈𝐴∩𝑁𝑘𝑗

𝑝∞(𝑥), (4.5)

respectively. By analogy to Equation (4.4) the localized stationary occupation and

exchange measures satisfy the conservation relation

⟨𝒜𝑤, 𝜇𝑘⟩ +
∑︁
𝑗 ̸=𝑘

⟨ℱ𝑘, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0.

97



Taking further the non-negativity and support of the localized stationary occupation

and exchange measures into account, the following infinite-dimensional linear program

bounds the stationary averages of an observable 𝜑 ∈ 𝒞(𝑋) from below:

inf
𝜇,𝜋

𝑛𝑋∑︁
𝑘=1

⟨𝜑, 𝜇𝑘⟩ (local-OM∞)

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
∑︁
𝑗 ̸=𝑘

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃,

with index sets

𝑃 := {𝑘 ∈ Z+ : 1 ≤ 𝑘 ≤ 𝑛𝑋} and 𝜕𝑃 := {(𝑗, 𝑘) ∈ Z2
+ : 1 ≤ 𝑘 ̸= 𝑗 ≤ 𝑛𝑋}.

We finally remark that, unlike in the transient case discussed previously, the sta-

tionary distribution of a stochastic reaction system need not be unique. The optimal

value of (local-OM∞) consequently bounds the minimal average of 𝜑 as generated

among all possible stationary distributions from below.

4.4 Connections to moment bounding schemes: nec-

essary moment conditions revisited

In recent years, several algorithmic schemes for putting hard bounds on the moments

of stochastic reaction systems have emerged as a counterpart to heuristic moment

closure approximations with rigorous error control [12–16, 81, 94, 95]. These moment

bounding schemes share a common basis that is unified and extended by the local

occupation measure framework discussed in the previous section. In broad strokes,

they identify moment bounds by searching the extreme points of a set of truncated

moment sequences confined by so-called necessary moment conditions, i.e., conditions
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that the moments of the solution of the CME must satisfy. In particular moment con-

ditions in the form of affine constraints (reflecting the system’s dynamics) and linear

matrix inequalities (LMIs) (reflecting the support of the underlying distribution) have

been found to enable a computationally efficient search via convex optimization while

providing often remarkably accurate bounds for low-order moments of interest [12–16,

81, 94, 95]. We show here that combining the MSOS hierarchy with the traditional

occupation measure framework outlined in Section 4.3 gives rise to analogous moment

conditions and bounding problems as derived by these contributions.

Although this observation comes with little surprise as all of the preceding moment

bounding schemes leverage the MSOS hierarchy (with or without explicit mention)

and some even use the concept of occupation measures directly [15], it establishes that

the occupation measure framework provides a unifying perspective. Furthermore,

this perspective will underline the advantages and promises of employing the local-

ized occupation measure framework for the construction of more stringent bounding

problems.

In the following, we focus on the moment bounding scheme for transient stochastic

reaction systems by Dowdy and Barton [94], Sakurai and Hori [95], and Holtorf and

Barton [16]. Adapting the discussion to moment bounding schemes for the stationary

case [12–14] or the case of exit time distributions [15] is straightforward.

4.4.1 Affine constraints

In contrast to the discussion in Section 4.3, the moment bounding schemes of Dowdy

and Barton [94], Sakurai and Hori [95] and Holtorf and Barton [16] do not directly rely

on the characterization of the system dynamics through Dynkin’s formula. Instead,

they leverage the differential analog of Dynkin’s formula. Specifically, by exchanging

expectation and integration in Dynkin’s formula via Tonelli’s theorem, it is easily

established that the dynamics of the expectation of an observable 𝑤 ∈ 𝒞(𝑋) satisfy

d
d𝑡E𝜈0 [𝑤(𝑥𝑡)] = E𝜈0 [𝒜𝑤(𝑥𝑡)] .
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The previous contributions therefore derived necessary moment conditions by inte-

grating

d
d𝑡 (𝑔(𝑡)E𝜈0 [𝑤(𝑥𝑡)]) = d𝑔

𝑑𝑡
(𝑡)E𝜈0 [𝑤(𝑥𝑡)] + 𝑔(𝑡)E𝜈0 [𝒜𝑤(𝑥𝑡)] .

for suitable test functions 𝑔 ∈ 𝒞1([0, 𝑇 ]) and 𝑤 ∈ 𝒞(𝑋) [94, 95]. The resultant

conditions read

𝑔(𝑇 )E𝜈0 [𝑤(𝑥𝑇 )] − 𝑔(0)E𝜈0 [𝑤(𝑥0)] =
∫︁ 𝑇

0
E𝜈0

[︃
d𝑔
d𝑡 (𝑡)𝑤(𝑥𝑡) + 𝑔(𝑡)𝒜𝑤(𝑥𝑡)

]︃
d𝑡. (4.6)

By defining 𝑤̃(𝑡, 𝑥) = 𝑔(𝑡)𝑤(𝑥), however, it is easily verified that the above relation

is equivalent to the condition

⟨𝑤̃, 𝜈⟩ − ⟨𝑤̃, 𝜈0⟩ = ⟨𝒜𝑤̃, 𝜉⟩.

To see this, simply note that expectation and integration in (4.6) may be exchanged

by Tonelli’s theorem and that

𝒜𝑤̃(𝑡, 𝑥) = d𝑔
d𝑡 (𝑡)𝑤(𝑥) + 𝑔(𝑡)𝒜𝑤(𝑥).

holds by the definition of the infinitesimal generator (cf. Equation (4.2)).

The above relation makes clear that upon the choice of monomial test functions

𝑔 and 𝑤, the so-derived moment conditions coincide with constraints generated by

the standard MSOS hierarchy when applied to Problem (OM). While all previous

contributions rely on monomials for the spatial test functions 𝑤, different choices have

been explored for the temporal test functions 𝑔. Dowdy and Barton [14] argue that

exponential test functions 𝑔 are better suited due to their relation to eigenfunctions of

the infinitesimal generator 𝒜 associated with linear reaction networks.2 Sakurai and

Hori [95] contrast Dowdy and Barton’s proposal with monomial test functions and

2Dowdy and Barton [14] do not make the connection to the infinitesimal generator explicit. In-
stead, they analyze the coefficient matrix representing the action of 𝒜 on monomial test functions [98,
Appendix C.3].
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find empirically that neither choice yields a clear advantage. In the conceptual pre-

decessor to the local occupation measure framework, Holtorf and Barton [16] discuss

the choice of temporal test functions in a more abstract setting and argue based on

smoothness and causality of moment trajectories in favor of piecewise temporal test

functions. By employing piecewise monomial and exponential temporal test functions,

they demonstrate notable advantages over the proposal by Dowdy and Barton [98]

as well as the use of monomial test functions [95]. As a generalization of that, the

local occupation measure framework generates strictly more stringent affine moment

constraints via MSOS relaxations of Problem (local-OM) by effectively employing

piecewise monomial test functions for both the temporal and spatial domain.

4.4.2 Linear matrix inequalities

The fact that the solution of the CME, 𝑝(𝑡, ·), is at every instant 𝑡 ∈ [0, 𝑇 ] a non-

negative measure supported only on the reachable set 𝑋 ⊂ Z𝑛+ implies that its trun-

cated moment sequences satisfy certain LMIs. To see this, let 𝑓 be a polynomial

that is non-negative on 𝑋 and 𝑏 be the monomial basis of 𝑛−variate polynomials in

𝑥 up to degree 𝑑 arranged in a vector. The fact that the law 𝑝(𝑡, ·) of a stochastic

reaction system is a non-negative measure directly implies that the moment matrix

E𝜈0

[︁
𝑓(𝑥𝑡)𝑏(𝑥𝑡)𝑏(𝑥𝑡)⊤

]︁
is positive semidefinite for any 𝑡 ∈ [0, 𝑇 ]. By convexity of the

cone of positive semidefinite matrices, it further follows that

∫︁ 𝑇

0
𝑔(𝑡)E𝜈0

[︁
𝑓(𝑥𝑡)𝑏(𝑥𝑡)𝑏(𝑥𝑡)⊤

]︁
d𝑡 ⪰ 0

holds for any non-negative test function 𝑔(𝑡) on [0, 𝑇 ]. The moment bounding schemes

of Dowdy and Barton [14] and Sakurai and Hori [95] accordingly rely necessary mo-

ment conditions of the form

E𝜈0

[︁
𝑓(𝑥𝑇 )𝑏(𝑥𝑇 )𝑏(𝑥𝑇 )⊤

]︁
⪰ 0 and E𝜈0

[︃∫︁ 𝑇

0
𝑔(𝑡)𝑓(𝑥𝑡)𝑏(𝑥𝑡)𝑏(𝑥𝑡)⊤ d𝑡

]︃
⪰ 0
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for suitable test functions 𝑔. While Sakurai and Hori [95] leverage polynomial test

functions of the form 𝑔(𝑡) = 𝑡𝛼(𝑇 − 𝑡)𝛽 with 𝛼 ∈ Z+ and 𝛽 ∈ {0, 1} for this purpose,

Dowdy and Barton [14] use only the exponential test functions as discussed in the

previous section. The latter choice, however, has the notable disadvantage of not

capturing the support on the time interval [0, 𝑇 ] explicitly (exponential test functions

are non-negative on R, not only [0, 𝑇 ]). Holtorf and Barton [16] instead employ a

combination of both test functions restricted to successive subintervals of [0, 𝑇 ].

The above conditions are in one-to-one correspondence with the positive definite-

ness of analogous moment matrices of the occupation measures:

⟨𝑓𝑏𝑏⊤, 𝜈⟩ ⪰ 0,

⟨𝑔𝑓𝑏𝑏⊤, 𝜉⟩ ⪰ 0,

where the duality bracket shall be understood as being evaluated component-wise.

When 𝑔 is chosen as a polynomial of the form 𝑔(𝑡) = 𝑡𝛼(𝑇 − 𝑡)𝛽 with 𝛼 ∈ Z+ and

𝛽 ∈ {0, 1}, these conditions are a subset of the standard MSOS outer approximation

of the cones ℳ+(𝑋) and ℳ+([0, 𝑇 ] × 𝑋) through the positive semidefiniteness of

moment and localizing matrices; see Chapter 2 or [42] for details. These conditions

are therefore also implied by the stronger MSOS relaxations of (local-OM).

4.5 Connection to truncation-based approximation

schemes

Viewing stochastic reaction systems through the lens of local occupation measures is

not only related to moment bounding schemes but also similar in spirit to truncation-

based analysis techniques. Notably, finite state projection (FSP) algorithms [17, 18]

and Kuntz et al.’s [81] recently proposed bounding scheme for stationary statistics

share common features with the local occupation measure approach: they come with

mechanisms to bound approximation errors rigorously and rely explicitly on a parti-

tioning of the reachable state space 𝑋. In the following, we discuss their connections,
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Figure 4-1: State space partition of an open system with two chemical species. Sin-
gleton elements of the partition are shown in black. The remainder is shown in gray.
Arrows indicate possible transitions due to reaction.

similarities, and differences by contrasting the transient FSP algorithm [17], its sta-

tionary counterpart [99], and the bounding scheme of Kuntz et al. [81] with the local

occupation measure framework.

The first notable difference between these approaches is that the FSP algorithms

and Kuntz et al.’s bounding scheme are less flexible than the local occupation mea-

sure with regard to the state space partitions they accommodate. Specifically, they

only consider state space truncations, i.e., partitions of the state space into 𝑛𝑋 − 1

singletons 𝑋𝑖 = {𝑥𝑖 ∈ 𝑋}, 𝑖 = [𝑛𝑋 − 1] and a remainder 𝑋𝑛𝑋
= 𝑋 ∖ ∪𝑛𝑋−1

𝑖=1 𝑋𝑖

lumping the remaining reachable states. Figure 4-1 illustrates such a partition for

a two-dimensional state space. Beyond this difference, the methods may be distin-

guished by how probability fluxes in the truncated part of the state space 𝑋𝑛𝑋
are

approximated. Figure 4-2 provides an overview of these differences. In the following

sections, we discuss the relations between all four methods in greater detail.
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necessary moment
conditions

(a) local occupation measures

absorbing state

(b) transient FSP [17]

tail bound

(c) truncation-based LP [100]

in�ux = out�ux

(d) stationary FSP [18]

Figure 4-2: Overview of truncation-based approximation & bounding schemes for
stochastic reaction systems. The singleton elements 𝑋1, . . . , 𝑋𝑛𝑋−1 of the partition
are depicted as black circles. The remainder partition element 𝑋𝑛𝑋

= 𝑋 ∖ ∪𝑛𝑋−1
𝑖=1 𝑋𝑖,

covering all truncated states, is illustrated in blue and labeled according to the method
of approximation. The “designated state” of the stationary FSP algorithm [18] is
highlighted in red. Arrows indicate possible transitions due to reaction events. States
with probability mass dynamics explicitly constrained by the CME balance equation
(in weak/integral or strong/differential form) are enclosed within a dashed box.
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4.5.1 The transient case

The transient FSP algorithm proposed by Munsky and Khammash [17] approximates

the solution of the CME on a finite time horizon. As illustrated in Figure 4-2b,

FSP relies on a finite approximation of the stochastic reaction system by treating the

collection of truncated states 𝑋𝑛𝑋
as an absorbing state. Formally, an approximation

𝑝 for the solution of the CME is obtained by solving the following 𝑛𝑋 − 1 coupled

ODEs
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑝

𝜕𝑡
(𝑡, 𝑥) =

∑︁
𝑟∈𝑅+(𝑥)

𝑥−𝛾𝑟 /∈𝑋𝑛𝑋

𝑎𝑟(𝑥− 𝛾𝑟)𝑝(𝑡, 𝑥− 𝛾𝑟) −
∑︁

𝑟∈𝑅−(𝑥)
𝑎𝑟(𝑥)𝑝(𝑡, 𝑥),

(𝑡, 𝑥) ∈ [0, 𝑇 ] ×𝑋 ∖𝑋𝑛𝑋
,

𝑝(0, 𝑥) = 𝜈0(𝑥), 𝑥 ∈ 𝑋 ∖𝑋𝑛𝑋
.

(4.7)

This construction results in general in an irreversible outflux of probability mass from

the collection of states 𝑋1, . . . , 𝑋𝑛𝑋−1 into the absorbing state 𝑋𝑛𝑋
. The cumulative

probability mass over these states therefore decays in general strictly, i.e.,

d
d𝑡

∑︁
𝑥∈𝑋∖𝑋𝑛𝑋

𝑝(𝑡, 𝑥) < 0.

A consequence of this irreversible outflux of probability mass into 𝑋𝑛𝑋
is that 𝑝(𝑡, 𝑥)

bounds the true solution 𝑝(𝑡, 𝑥) of the CME from below for all 𝑥 ∈ ∪𝑛𝑋−1
𝑖=1 𝑋𝑖 and

𝑡 ∈ [0, 𝑇 ]. On one hand, this implies hard bounds on the approximation error [17,

Theorems 2.1 & 2.2]. On the other hand, however, it results in a steady deterioration

of the approximation as time increases.

Similar to FSP, MSOS relaxations of (local-OM) may also be used to approxi-

mate the solution of the CME on the chosen partition with guaranteed error bounds.

Specifically, one may compute a lower/upper bound for the probability mass 𝑝(𝑇, 𝑥𝑘)

by solving MSOS relaxations of (local-OM) for the (piecewise constant) observable

𝜑(𝑥) = ±1𝑋𝑘
(𝑥). The optimal point of such relaxations in turn provides a proxy

for the solution of the CME at the boundary points of the spatio-temporal partition
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elements due to the correspondence with the instantaneous occupation measures, i.e.,

𝑝(𝑡𝑖, 𝑥𝑗) ≈ 𝜈𝑖𝑗({𝑥𝑗}) for 𝑖 ∈ [𝑛𝑇 ] and 𝑗 ∈ [𝑛𝑋 − 1]. Note that this approximation is

readily computable from solutions of MSOS relaxations of (local-OM) as it is fully

characterized by the zeroth order moments of the measures 𝜈𝑖𝑗. In contrast to FSP,

however, the local occupation measure approach does not treat 𝑋𝑛𝑋
as an absorbing

state (see Figure 4-2a). Instead, MSOS relaxations of (local-OM) impose necessary

moment conditions on the probability mass flowing into 𝑋𝑛𝑋
, reflecting its support

and dynamics, as well as the interactions with the neighboring partition elements

through the exchange measures 𝜋𝑖𝑗𝑛𝑋
and 𝜋𝑖𝑛𝑋𝑗, 𝑗 ∈ [𝑛𝑋 − 1]. A clear advantage

of this construction over FSP is therefore that this approximation and any bounds

computed from it do not necessarily deteriorate as the time horizon 𝑇 increases; see

for instance [16] for the several examples of such behavior.

Finally we wish to emphasize another connection between FSP and the linear pro-

gram (local-OM). As shown in Appendix B.1, the equality constraints in (local-OM)

are simply weak form equivalents of the possibly infinite ODE system (CME). Con-

sequently, the equality constraints in (local-OM) are weak form analogs of the ODE

governing the evolution of 𝑝(𝑡, 𝑥) for any state 𝑥 without direct transitions into 𝑋𝑛𝑋
.

4.5.2 The stationary case

Treatment of truncated states as absorbing state renders the transient FSP algo-

rithm [17] fundamentally incapable of predicting the long-term statistics of stochastic

reaction systems. In the common case of irreducible systems, i.e., systems in which

every state can be reached from any another state by a finite sequence of reactions

with non-zero propensity, the system will absorb in the truncated part of the state

space with probability one in the limit of long times. In other words, the only sta-

tionary solution to the FSP ODE system (4.7) for irreducible systems is 𝑝∞(𝑥) = 0,

𝑥 ∈ 𝑋 ∖𝑋𝑛𝑋
. For reducible systems, the situation is typically not much better as any

irreducible component of the state space with a non-zero propensity transition into

𝑋𝑛𝑋
will suffer the same fate.

To address this limitation, Gupta et al. [18] present an FSP approximation scheme
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for stationary solutions of the CME. The state space partition underlying their ap-

proximation is illustrated in Figure 4-2d. In this partition, the truncated part of

the state space is crucially no longer treated as an absorbing state but instead as an

instant redirection into a “designated state” (marked in red in Figure 4-2d). As a

consequence, probability mass no longer accumulates in the truncated states 𝑋𝑛𝑋
but

rather remains conserved in 𝑋 ∖ 𝑋𝑛𝑋
. Remarkably, for growing state space trunca-

tions approaching the full (possibly infinite) reachable set in the limit, convergence

of this scheme to a unique stationary solution of the CME can be established under

appropriate Foster-Lyapunov conditions [18, Theorem 3.1]. Unlike its transient coun-

terpart, however, the stationary FSP algorithm does not provide hard error bounds.

The bounding scheme of Kuntz et al. [81] alleviates this shortcoming of the station-

ary FSP algorithm at the cost of relying on an optimization-based routine. In the

following, we discuss the close relationship of this bounding scheme with the local

occupation measure framework. We show that under mild assumptions it can in

fact be viewed as a linear programming relaxation of certain MSOS relaxations of

(local-OM∞). A notable consequence of this observation is that the rich set of con-

vergence guarantees of Kuntz et al.’s approach under growing state space truncations

are inherited by the MSOS relaxations of (local-OM∞).

In the spirit of moment bounding schemes, Kuntz et al. [81] characterize a set of

candidate stationary solutions for the CME by finitely many conditions imposed on

a state space partition as illustrated in Figure 4-2c. Concretely, Kuntz et al. [81] use

that any stationary solution of the CME is a member of the bounded polyhedron

𝒫∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝑝∞

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

∑︀
𝑟∈𝑅+(𝑥)

𝑎𝑟(𝑥− 𝛾𝑟)𝑝∞(𝑥− 𝛾𝑟) − ∑︀
𝑟∈𝑅−(𝑥)

𝑎𝑟(𝑥)𝑝∞(𝑥) = 0, ∀𝑥 ∈ 𝑋∘,

𝑝∞(𝑥) ≥ 0, ∀𝑥 ∈ 𝑋 ∖𝑋𝑛𝑋∑︀
𝑥∈𝑋∖𝑋𝑛𝑋

𝑝∞(𝑥) ≥ 1 − 𝜖

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where

𝑋∘ = {𝑥 ∈ 𝑋 : 𝑥 /∈ 𝑋𝑛𝑋
and 𝑥 /∈ ∪𝑛𝑋−1

𝑖=1 𝑁𝑛𝑋 𝑖}
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denotes all states without transitions into the set of truncated states 𝑋𝑛𝑋
. (𝑋∘ is

illustrated by the dashed box in Figure 4-2c. Recall that 𝑁𝑛𝑋 𝑖 denotes the states in

𝑋𝑖 that transition with non-zero rate into 𝑋𝑛𝑋
.)

The set of candidate stationary solutions 𝒫∞ is framed by three kinds of con-

straints. The first one is the obvious stationarity condition

∑︁
𝑟∈𝑅+(𝑥)

𝑎𝑟(𝑥− 𝛾𝑟)𝑝∞(𝑥− 𝛾𝑟) −
∑︁

𝑟∈𝑅−(𝑥)
𝑎𝑟(𝑥)𝑝∞(𝑥) = 0 (4.8)

as implied by the CME. The second kind are non-negativity constraints on the prob-

ability masses assigned to states in the truncation, and the third kind is a tail bound

imposed on the probability mass in the truncated part of the state space 𝑋𝑛𝑋
:

∑︁
𝑥∈𝑋𝑛𝑋

𝑝∞(𝑥) ≤ 𝜖 ⇐⇒
∑︁

𝑥∈𝑋∖𝑋𝑛𝑋

𝑝∞(𝑥) ≥ 1 − 𝜖.

As these conditions are in general not fully determinant of stationary solutions of the

CME, Kuntz et al. [81] proposed to identify approximate stationary distributions as

the extreme points of 𝒫∞. Formally, such extreme points of 𝒫∞ are characterized by

the solution of finite linear programs of the form

min
𝑝∞∈𝒫∞

∑︁
𝑥∈𝑋∖𝑋𝑛𝑋

𝑝∞(𝑥)𝜑(𝑥). (4.9)

The above problem also bounds the expectation of the observable 𝜑 ∈ 𝒞(∪𝑛𝑋−1
𝑖=1 𝑋𝑖)

from below. As such, it provides a natural way for rigorous error quantification.

Specifically, for the observable 𝜑(𝑥) = ±1𝑋𝑖
(𝑥), the optimal value of (4.9) furnishes

hard upper and lower bounds for the stationary probability mass of the state 𝑥𝑖.

The crux of Kuntz et al.’s approach lies in deriving an informative, yet guaranteed

tail bound. To that end, they consider tail bounds from concentration inequalities

and generalized moment bounds for “norm-like” functions.

Definition 4.3 (Norm-like function). A norm-like function 𝑚 : 𝑋 → R satisfies

(i) 𝑚 is non-negative on 𝑋
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(ii) 𝑚 has compact sublevel sets

(iii) the 𝑟-superlevel sets of 𝑚, i.e., 𝑋≥𝑟 = {𝑥 ∈ 𝑋 : 𝑚(𝑥) ≥ 𝑟}, are nested: 𝑟1 ≤

𝑟2 =⇒ 𝑋≥𝑟2 ⊂ 𝑋≥𝑟1, and the inclusion is strict for sufficiently large 𝑟2 − 𝑟1.

A valid moment bound 𝑐 > 0 for such a norm-like function, i.e.,

∑︁
𝑥∈𝑋

𝑝∞(𝑥)𝑚(𝑥) ≤ 𝑐,

implies a tail bound for the 𝑟-superlevel sets of 𝑚 via the concentration inequality

∑︁
𝑥∈𝑋≥𝑟

𝑝∞(𝑥) ≤
∑︁

𝑥∈𝑋≥𝑟

𝑚(𝑥)
𝑟

𝑝∞(𝑥) ≤ 1
𝑟

∑︁
𝑥∈𝑋

𝑚(𝑥)𝑝∞(𝑥) ≤ 𝑐

𝑟
. (4.10)

A valid tail bound for the probability mass in 𝑋𝑛𝑋
is thus obtained by choosing 𝑟 small

enough such that 𝑋𝑛𝑋
⊂ 𝑋≥𝑟. A particularly appealing property of this construction

is that the tail bound for 𝑋𝑛𝑋
may be tightened arbitrarily by increasing the threshold

𝑟 and enlarging the state space truncation correspondingly to ensure that 𝑋𝑛𝑋
⊂ 𝑋≥𝑟.

Based on this feature, Kuntz et al. [81] establish several convergence results in the

limit of suitably growing state space truncations.

While this construction defers the problem of deriving a tail bound to that of

deriving a moment bound for norm-like function, the latter task is readily addressed

for polynomial norm-like functions, such as 𝑚(𝑥) = ∑︀𝑛
𝑖=1 𝑥

𝛼
𝑖 with even 𝛼, by station-

ary moment bounding schemes [12–14]. This connection establishes a direct relation

between Problem (4.9) and MSOS relaxations of (local-OM∞). Specifically, when the

moment bound 𝑐 is derived from (or implied by) a MSOS relaxation of (local-OM∞),

then Problem (4.9) reduces to a relaxation of the MSOS relaxations of (local-OM∞).

The following proposition formalizes this claim.

Proposition 4.2. Let 𝑋1, . . . , 𝑋𝑛𝑋
be a partition of the reachable set 𝑋 such that

𝑋1 = {𝑥1}, . . . , 𝑋𝑛𝑋−1 = {𝑥𝑛𝑋−1} are singletons and 𝑋𝑛𝑋
= 𝑋∖∪𝑛𝑋−1

𝑖=1 𝑋𝑖. Further, let

𝑚 be a polynomial norm-like function such that 𝑚(𝑥) ≥ 𝑟 for all 𝑥 ∈ 𝑋𝑛𝑋
. Finally,

let ⟨1, 𝜇𝑘⟩, 𝑘 ∈ [𝑛𝑋 ] and ⟨1, 𝜋𝑘𝑗⟩, 𝑘 ̸= 𝑗 ∈ [𝑛𝑋 ] be the zeroth order moments of a

109



feasible point of a MSOS relaxation of (local-OM∞) which implies the moment bound∑︀𝑛𝑋
𝑘=1⟨𝑚,𝜇𝑘⟩ ≤ 𝑐 and explicitly incorporates positive semidefiniteness of the localizing

matrix generated by the constraint 𝑚(𝑥) − 𝑟 ≥ 0 on 𝑋𝑛𝑋
(see Definition 2.21). Then,

𝑝(𝑥𝑘) = ⟨1, 𝜇𝑘⟩, 𝑘 ∈ [𝑛𝑋 ] is feasible for (4.9) with tail bound 𝜖 = 𝑐/𝑟.

Proof. First note that MSOS relaxations constrain all zeroth order moments of non-

negative measures to be non-negative. Thus, ⟨1, 𝜇𝑘⟩ ≥ 0 must hold for all 𝑘 ∈ [𝑛𝑋 ].

Further note that ⟨1, 𝜇𝑘⟩ and ⟨1,∑︀𝑗 ̸=𝑘 𝜋𝑘𝑗⟩ coincide on the singleton partition elements

(cf. Equation 4.5). Thus, for the constant test function 𝑤 ≡ 1, the equality constraints

in (local-OM∞) reduce to MSOS constraints for the partition elements centered on

the states 𝑥 ∈ 𝑋∘ and involve only the zeroth moments ⟨1, 𝜇1⟩, . . . , ⟨1, 𝜇𝑛𝑋−1⟩. These

constraints are further easily confirmed to be equivalent to the stationarity conditions

(4.8) for the respective states (see the derivation in Appendix B.1). Similarly, sum-

ming the equality constraints of (local-OM∞) for the constant test function 𝑤 ≡ 1

over all partition elements, implies that any feasible point of a MSOS relaxation of

(local-OM∞) must satisfy

𝑛𝑋−1∑︁
𝑘=1

⟨1, 𝜇𝑘⟩ = 1 − ⟨1, 𝜇𝑛𝑋
⟩ (4.11)

To finally establish that also the tail bound

𝑛𝑋−1∑︁
𝑘=1

⟨1, 𝜇𝑘⟩ ≤ 1 − 𝑐

𝑟

must hold for any feasible point of the described MSOS relaxation, we note that

positive semidefiniteness of the localizing matrix generated by the constraint 𝑚(𝑥) −

𝑟 ≥ 0 implies that

⟨𝑚− 𝑟, 𝜇𝑛𝑋
⟩ = ⟨𝑚,𝜇𝑛𝑋

⟩ − 𝑟⟨1, 𝜇𝑛𝑋
⟩ ≥ 0 ⇐⇒ ⟨1, 𝜇𝑛𝑋

⟩ ≥ ⟨𝑚,𝜇𝑛𝑋
⟩

𝑟
. (4.12)

The tail bound thus follows by combining the asserted moment bound∑︀𝑛𝑋
𝑘=1⟨1, 𝜇𝑘⟩ ≤ 𝑐

with (4.11) and (4.12).
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Proposition 4.2 notably formalizes conditions under which all convergence guaran-

tees of Kuntz et al.’s [100] bounding scheme carry over to MSOS relaxations generated

via the local occupation measure framework.

4.6 Approximating stationary distributions: local

occupation measures & the maximum entropy

principle

The local occupation measure framework naturally extends to bounding the expecta-

tions of piecewise polynomial observables 𝜑 through MSOS relaxations of (local-OM)

or (local-OM∞). To that end, one may simply choose a spatial partition of the state

space (and semialgebraic overapproximation thereof) that coincides with the domain

of the polynomial pieces defining 𝜑. The standard MSOS hierarchy then generates

without modification semidefinite relaxations of (local-OM) and (local-OM∞) which

in turn furnish valid bounds. This observation is of particular practical interest as it

enables bounding the probability mass of a given set of states. For instance, tractable

bounding problems for the stationary probability mass of the subdomain 𝑋𝑖 are read-

ily construction from the infinite-dimensional linear program

inf
𝜇,𝜋

⟨1, 𝜇𝑖⟩

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃.
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which is a special case of (local-OM∞) for the piecewise constant observable 𝜑(𝑥) =

1𝑋𝑖
(𝑥). While a similar bounding problem has been considered in prior work by

Dowdy and Barton [14], their proposal comes with additional limitations. On the

one hand, Dowdy and Barton [14] only consider a bipartition of the state space into

two subsets 𝑋̂1 = 𝑋𝑖 and 𝑋̂2 = 𝑋 ∖ 𝑋𝑖. On the other hand, they do not account

for exchange measures; instead, they impose the less restrictive global conservation

constraint

⟨𝒜𝑤, 𝜇̂1⟩ + ⟨𝒜𝑤, 𝜇̂2⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋),

on the stationary local occupation measures 𝜇̂1 and 𝜇̂2 associated with 𝑋̂1 and 𝑋̂2, re-

spectively. Overall, Dowdy and Barton’s [14] bounding problems are therefore weaker

and less flexible when 𝑋 ∖𝑋𝑖 does not admit tractable semialgebraic overapproxima-

tion.

Another advantage of the flexibility of (local-OM∞) is that it enables one-shot

approximation of stationary measures through convex optimization and the maximum

entropy principle. To that end, let us first consider systems with finite state space 𝑋.

By drawing inspiration from the maximum entropy principle, one may approximate

the stationary measure associated with a stochastic reaction system on a such finite

state space as the optimal point of the following convex optimization problem.

𝑆* = sup
𝜇,𝜋

−
𝑛𝑋∑︁
𝑘=1

⟨1, 𝜇𝑘⟩ log ⟨1, 𝜇𝑘⟩
|𝑋𝑘|

(uniform-S∞)

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃,

where |𝑋𝑘| denotes the cardinality of the partition element 𝑋𝑘. The connection to the

maximum entropy principle is made explicit by the following proposition establishing

that (uniform-S∞) bounds the entropy of the all stationary solutions of the CME
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from above.

Proposition 4.3. Let 𝑋 be finite and 𝑝∞ be a stationary solution to the CME with

entropy 𝑆 [𝑝∞] = −∑︀
𝑥∈𝑋 𝑝∞(𝑥) log 𝑝∞(𝑥). Then, 𝑆* ≥ 𝑆[𝑝∞].

Proof. Consider the local stationary occupation and exchange measures (𝜇, 𝜋) as

defined in Equation (4.5). By construction (𝜇, 𝜋) is feasible for (uniform-S∞) and

satisfies ⟨1, 𝜇𝑘⟩ = ∑︀
𝑥∈𝑋𝑘

𝑝∞(𝑥) for all 𝑘 ∈ 𝑃 . Further recall that the function

𝑓(𝑥) = −∑︀𝑁
𝑖=1 𝑥 log 𝑥 attains its global maximum over the (scaled) 𝑁−simplex

{𝑥 ∈ R𝑁
+ : ∑︀𝑁

𝑖=1 𝑥𝑖 = 𝑐} at the uniform distribution 𝑥 = 𝑐
𝑁

[1, . . . , 1]⊤. It there-

fore follows that the entropy contribution of partition element 𝑋𝑘 is bounded above

by

𝑆𝑘 = −
∑︁
𝑥∈𝑋𝑘

𝑝∞(𝑥) log 𝑝∞(𝑥) ≤ −
∑︁
𝑥∈𝑋𝑘

⟨1, 𝜇𝑘⟩
|𝑋𝑘|

log ⟨1, 𝜇𝑘⟩
|𝑋𝑘|

for all 𝑘 ∈ 𝑃 . Thus,

𝑆 [𝑝∞] =
𝑛𝑋∑︁
𝑘=1

𝑆𝑘 ≤ −
∑︁
𝑥∈𝑋𝑘

⟨1, 𝜇𝑘⟩
|𝑋𝑘|

log ⟨1, 𝜇𝑘⟩
|𝑋𝑘|

≤ 𝑆*,

where the second inequality follows from feasibility of (𝜇, 𝜋) for (uniform-S∞).

Remark 4.2. When 𝑋 is finite, (uniform-S∞) is a finite, convex optimization problem

as the occupation measures are fully characterized by the probability mass assigned to

each state 𝑥 ∈ 𝑋. Moreover, we may then obtain an exact entropy bound by choosing

𝑛𝑋 = |𝑋| partition elements to coincide with the singleton states of 𝑋. The resultant

problem, however, will become computationally intractable when the state space 𝑋 is

vast, as is typically the case for stochastic reaction systems. In that scenario, a coarser

partitioning of 𝑋 will still give rise to tractable MSOS relaxations of (uniform-S∞).

We show in Appendix B.2 that these relaxations preserve the upper bounding property

of Problem (uniform-S∞) and admit reformulation as finite conic programs.

Proposition 4.3 shows that for systems with finite state space 𝑋, (uniform-S∞)

seeks a stationary measure 𝜇 that is consistent with the CME and whose “piecewise
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uniform” approximation

𝜇̃(𝐴) =
𝑛𝑋∑︁
𝑘=1

∑︁
𝑥∈𝐴∩𝑋

⟨1, 𝜇𝑘⟩
|𝑋𝑘|

(4.13)

attains maximum entropy. This interpretation and the bounding property established

in Proposition 4.3 is naturally inherited by MSOS relaxations of (uniform-S∞), giving

rise to a computational method for computing maximum entropy approximations to

stationary measures for stochastic reaction systems via convex optimization.

The proof of Proposition 4.3, however, also suggests that such a “piecewise uni-

form” approximation of the stationary measure and the associated entropy bound

will deteriorate the coarser the partition of 𝑋 is chosen. In particular, the uniform

entropy bound is expected to become increasingly loose the coarser the partition is.

While this is intuitive, it calls the utility of this an approximation scheme into ques-

tion. After all, a key advantage of the local occupation measure framework is that we

may partition vast state spaces rather coarsely and still obtain informative approx-

imations (or bounds) for key statistics. In the context of approximating stationary

measures this is of particular interest when the true stationary measure concentrates

in a small subset of the state space. This subset may then be partitioned very finely

while the remainder is covered by only a few partition elements. The entropy contri-

bution from the uniform bound, however, is by construction disproportionately loose

for such regions of large cardinality.

As pathologies arise from conservatively estimating the entropy contribution of

regions of large cardinality with that of a uniform distribution, the following more

flexible regularization strategy is natural: We may approximate the entropy contri-

bution of a subdomain 𝑋𝑘 simply by asserting the associated stationary occupation

measure 𝜇𝑘 to resemble the shape of a given measure 𝑞. Concretely, we may ap-

proximate the associated entropy contribution 𝑆[𝜇𝑘] = ∑︀
𝑥∈𝑋𝑘

𝜇𝑘(𝑥) log 𝜇𝑘(𝑥) as the

entropy of 𝑞 with its mass rescaled to ⟨1, 𝜇𝑘⟩:

𝑆[𝜇𝑘] ≈ −
∑︁
𝑥∈𝑋

⟨1, 𝜇𝑘⟩𝑞(𝑥) log (⟨1, 𝜇𝑘⟩𝑞(𝑥)) = −⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩ + ⟨1, 𝜇𝑘⟩𝑆[𝑞].
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When choosing 𝑞 as the uniform measure on 𝑋𝑘, we recover the same entropy con-

tributions as considered in (uniform-S∞). By choosing 𝑞 differently, however, we can

not only leverage prior knowledge but also accommodate systems with infinite state

spaces where the uniform entropy bound is uninformative. For instance, if we sus-

pect 𝑋𝑘 to only contain the exponential tails of the stationary distribution, we may

choose 𝑞 to be an exponential measure. The following regularized variant of Problem

(regularized-S∞) is the result:

sup
𝜇,𝜋

𝑛𝑋∑︁
𝑘=1

⟨1, 𝜇𝑘⟩𝑆[𝑞𝑘] − ⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩ (regularized-S∞)

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃,

where 𝑞𝑘 denotes the probability measure which is assumed to resemble the measure

𝜇𝑘 up to rescaling of its mass.

Remark 4.3. Problem (regularized-S∞) is convex and admits reformulation as infi-

nite dimensional linear program over the intersection of convex cones of non-negative

Borel measures and exponential cones. Its MSOS relaxations are convex conic repre-

sentable through positive semidefinite and exponential cone constraints. As such, the

MSOS relaxations can be solved with off-the-shelf conic solvers such as Mosek [33].

A detailed derivation of the conic reformulation is provided in Appendix B.2.

It is lastly worth emphasizing that the formulation (regularized-S∞) does not re-

quire detailed specification of 𝑞𝑘 but only its entropy 𝑆[𝑞𝑘]. The latter is typically

substantially less demanding and high-level intuition often suffices to specify it ade-

quately. For instance, if 𝜇𝑘 is assumed to capture the tails of the stationary measure

decaying at rate 𝜆, then we shall choose 𝑆[𝑞𝑘] = 1 − log 𝜆 which coincides with the

entropy of an exponential distribution with parameter 𝜆. Similarly, if we assume 𝜇𝑘
to resemble a Gaussian with variance 𝜎2, we do not need to explicitly specify its mean
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and simply choose 𝑆[𝑞𝑘] = 1
2(1 + log 2𝜋𝜎2).

4.6.1 Example: Schlögl’s system

We illustrate the utility and advantages of Problem (regularized-S∞) for approximat-

ing stationary distributions of stochastic reaction systems with Schlögl’s system [101].

Schlögl’s system is a nonlinear birth-death process

2𝐴 𝑘1−⇀↽−
𝑘2

3𝐴, ∅ 𝑘3−⇀↽−
𝑘4
𝐴

with reaction propensities

𝑎1(𝑥) = 𝑘1𝑥(𝑥− 1),

𝑎2(𝑥) = 𝑘2𝑥(𝑥− 1)(𝑥− 2),

𝑎3(𝑥) = 𝑘3,

𝑎4(𝑥) = 𝑘4𝑥.

The stationary distribution of Schlögl’s system can be determined analytically such

that it provides a suitable test case. A recursive formula for its stationary distribution

is given by

𝑝∞(𝑥) = 𝑎1(𝑥− 1) + 𝑎3(𝑥− 1)
𝑎2(𝑥) + 𝑎4(𝑥) 𝑝∞(𝑥− 1),

with 𝑝∞(0) = 2𝐹2

(︃
−𝑐1 + 1

2 ,
𝑐1 − 1

2 ; −𝑐2 + 1
2 ,

𝑐2 − 1
2 ; 𝑘1

𝑘2

)︃
,

where 2𝐹2 denotes the generalized hypergeometric function with 𝑐1 =
√︁

1 − 4𝑘3/𝑘1

and 𝑐2 =
√︁

1 − 4𝑘4/𝑘2 [81]. Depending on the kinetic parameters 𝑘1, . . . , 𝑘4, 𝑝∞ is

either uni- or bimodal. Here, we consider a bimodal case obtained for 𝑘1 = 0.15,

𝑘2 = 1.5 × 10−3, 𝑘3 = 20, and 𝑘4 = 3.5.

In order to emphasize the value of maximum entropy regularization when ap-

proximating stationary measures, we contrast approximations obtained from MSOS
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relaxations of two distinct local occupation measure problems: (regularized-S∞) and

(local-OM∞) for the observable 𝜑(𝑥) = −𝑥. Both problems seek to approximate the

stationary distribution from the same set of candidate distributions framed by neces-

sary MSOS conditions. However, while the former does so by maximizing an entropy

proxy, the latter returns the candidate distribution with maximum mean. We further

compare both local occupation measure approaches against the independet baseline

provided by the stationary FSP algorithm [18].

For all approximation schemes we utilize the following partition to overapproxi-

mate the state space 𝑋 = Z+ of Schlögl’s system:

𝑋𝑘 =

⎧⎪⎨⎪⎩
{𝑘 − 1}, 𝑘 = 1, . . . , 𝑛𝑋 − 1

{𝑥 ∈ R : 𝑥 ≥ 𝑛𝑋}, 𝑘 = 𝑛𝑋 .

We refer to the states {0, . . . , 𝑛𝑋 − 2} as the state space truncation. For entropy

regularization, we choose 𝑆[𝑞𝑘] = 0 for the partition elements that are singletons.3

For the entropy contribution of the remaining states lumped in the partition element

𝑋𝑛𝑋
, we leverage the prior knowledge that Schlögl’s system has a bimodal stationary

distribution with approximately binomial tails. We thus expect that the probability

mass concentrating in 𝑋𝑛𝑋
is well approimated by a binomial distribution. In line

with this rationale, we choose the entropy regularization 𝑆[𝑞𝑛𝑋
] = 1

2 + 1
2 log 𝜋𝑛

2 which

approximates the entropy of a binomial distribution with parameters 𝑛 and 𝑝 = 0.5.

We choose 𝑛 = 100 but show in Appendix B.3 that the results are rather insensitive

to this choice.

Figure 4-3 shows approximations of the stationary distribution obtained by all

three approaches for successively growing state space truncations. Notably, the local

occupation measure framework allows for significantly more accurate approximations

than the FSP algorithm for small state space truncations. This is a consequence of

the increased flexibility of the local occupation measure framework which, in congru-

ence with necessary MSOS conditions, allows probability mass to escape from the

3Note that this corresponds to choosing 𝑞𝑘 as the Dirac measure at 𝑋𝑘 and therefore recovers
the exact contribution of 𝜇𝑘 to the entropy of the stationary measure proxy 𝜇 =

∑︀𝑛𝑋

𝑘=1 𝜇𝑘.
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(a) (regularized-S∞) with binomial entropy regularization 𝑆[𝑞𝑛𝑋 ] = 1
2 + 1
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(b) (local-OM∞) with 𝜑(𝑥) = −𝑥
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(c) stationary FSP algorithm [18] with designated state 𝑥 = 0

Figure 4-3: Approximation of the stationary distribution of Schlögl’s system for dif-
ferent approximation algorithms. Approximations are shown with solid lines on the
state space truncation {0, . . . , 𝑛𝑋 − 1}. The true stationary distribution is indicated
by the dashed line.
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Figure 4-4: Errors in stationary measure approximations for Schlögl’s system com-
puted via degree-𝑑 MSOS relaxations of (regularized-S∞) (colored dashed lines),
(local-OM∞) (colored solid lines), and the stationary FSP algorithm [18] (black solid
line) for growing state space truncations. The entropy regularization for truncated
region in (regularized-S∞) is chosen as 𝑆[𝑞𝑛𝑋

] = 1
2 + 1

2 log 50𝜋. The objective function
in (local-OM∞) is chosen as 𝜑(𝑥) = −𝑥.

state space truncation. The FSP algorithm, in contrast, forces by construction all

probability mass to concentrate in the state space truncation, rendering accurate ap-

proximation impossible when the true distribution assigns significant mass to states

outside of the truncation.

Figure 4-4 further contrasts the approximation error attained by the FSP and

both local occupation measure approaches. Remarkably, the MSOS relaxations of

(regularized-S∞) furnish significantly more accurate approximations than both other

approaches. The improvement over FSP is particularly notable. Interestingly, the

approximation error of the entropy-regularized local occupation measure approach

does not decay monotonically and has a local minimum at a truncation that covers the

first ∼ 40 states. This truncation captures only the first mode of the true stationary

distribution and omits the second. For this partition, the chosen binomial entropy

regularization is thus particularly adequate as it aligns closely with the truncated

mode of the true distribution.
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4.7 Conclusion

The analysis of stochastic reaction systems relies widely on approximations that ex-

ploit unverifiable assumptions. Rigorous error control is therefore imperative to rule

out erroneous conclusions. A host of recently proposed moment bounding schemes

constitute a practical way to certify correctness. Here, we have unified and ex-

tended these bounding schemes under the framework of local occupation measures.

We further establish direct connections of this framework to FSP algorithms and

the truncation-based bounding scheme of Kuntz et al. [81]. Notably, the notion of

localized occupation measures gives rise to tractable entropy-regularized bounding

problems which are shown with an example to enable excellent approximation for

stationary distributions. As such, the local occupation measure framework bridges

the gap between (truncation-based) moment bounding schemes and moment closure

approximations invoking the maxmimum entropy principle [11].
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Part II

Quantifying the limits of quantum

control
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Chapter 5

A (very) brief primer on the

mathematics of quantum

mechanics

In this chapter, we introduce the quintessential mathematical concepts underpinning

the modern description of quantum mechanics. We focus on the concepts most rele-

vant for the task of quantum control. For a more thorough treatment of the subject,

the reader is referred to [102–104] and the references therein.

5.1 Notation

In contrast to most material on the subject, we do not use Dirac notation. Instead,

vectors (kets) are simply denoted by lower-case symbols and dual vectors (bras) are

indicated with a superscript asterisk, i.e., the dual vector of 𝜓 is denoted 𝜓*. Beyond

that, we rely on the following notational conventions throughout Part II of this thesis.

Linear algebra & analysis – The adjoint of a matrix 𝐴 will be denoted by

𝐴*. The commutator and anticommutator of two square matrices 𝐴 and 𝐵 will be

denoted by [𝐴,𝐵] = 𝐴𝐵 − 𝐵𝐴 and {𝐴,𝐵} = 𝐴𝐵 + 𝐵𝐴, respectively. The notation

⟨ · , · ⟩ should not be confused with the Dirac notation commonly used in quantum

physics but instead should be understood more broadly as bilinear form (duality
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bracket) between two (dual) vector spaces. We use 𝒞1,2(𝐴) to denote functions that

are once, respectively twice, continuously differentiable with respect to their first,

respectively second, argument on the domain 𝐴; when 𝐴 is closed, differentiability

shall be understood in the sense of Whitney [23].

Probability – For the sake of a light notation, we denote the classical expectation

of a random variable 𝑥 by E[𝑥] and omit explicit reflection of the underlying probabil-

ity measure as that will be clear from context throughout. We use 𝛿𝑥 to refer to the

Dirac measure at the singleton {𝑥}. Finally, we differentiate intrinsically stochastic

processes from deterministic dynamical systems with our notation by indicating the

time dependence of the former as subscript and of the latter as an argument.

Algebraic geometry – The set of polynomials with real coefficients in the vari-

ables 𝑥 will be denoted by R[𝑥]; similarly, we refer to the restriction of R[𝑥] to poly-

nomials with degree at most 𝑑 with R𝑑[𝑥]. The set of sum-of-squares polynomials will

be denoted by Σ2[𝑥]. Whenever we refer to polynomials in R[𝜌] where 𝜌 ∈ C𝑛×𝑛, we

mean a polynomial with real coefficients jointly in the elements of Re(𝜌) and Im(𝜌).

Lastly, we refer to vector- and matrix-valued functions as polynomials when all of

their components are polynomials.

5.2 Hilbert space

A Hilbert space is a Banach space, i.e., a normed vector space in which all Cauchy

sequences converge to a point in the vector space, endowed with an inner product

structure [105]. In the context of quantum mechanics, Hilbert spaces form the home

of quantum states. The inner product structure allows the comparison between two

quantum states and quantification of their overlap (or similarity) simply through inner

products. Although Hilbert spaces may generally be finite- or infinite-dimensional,

we will consider only finite-dimensional Hilbert spaces here and thus not worry about

the many complications that arise in the infinite-dimensional case.
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5.3 Pure and mixed quantum states

The elements (vectors) 𝜓 of an 𝑛-dimensional Hilbert space ℋ𝑛 may be considered

the states of an 𝑛-level quantum system. That said, depending on how we choose to

represent ℋ𝑛 not every element in ℋ𝑛 will correspond to a distinct quantum state. In

the following and without loss of generality, we will simply choose ℋ𝑛 = C𝑛 (endowed

with the usual inner product) and then consider all quantum states identical up to an

arbitrary scaling (norm). To avoid ambiguities, we then insist that quantum states

have unit norm. In this formalism, the set

𝐵 = {𝜓 ∈ C𝑛 : ‖𝜓‖2 = 1},

describes all distinct configurations of an 𝑛-level quantum system. This character-

ization is particularly convenient since it admits a straightforward interpretation of

a quantum state 𝜓 as the encoding of a probability distribution over a set of basis

states. More precisely, if we choose an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of C𝑛, then any

𝜓 ∈ 𝐵 admits a decomposition

𝜓 =
𝑛∑︁
𝑖=1

(𝑒*
𝑖𝜓)𝑒𝑖

such that ∑︀𝑛
𝑖=1 |𝑒*

𝑖𝜓|2 = 1. 𝜓 can therefore be interpreted as encoding of a probability

distribution that assigns probability |𝑒*
𝑖𝜓|2 to the basis state 𝑒𝑖.

States 𝜓 ∈ 𝐵 are referred to as pure quantum states. The description of quantum

systems with pure states is useful and complete only if there is no uncertainty about

the state of the system. If the state of the quantum system is not known with complete

certainty, for example, due to noise or decoherence as a consequence of interaction

with the environment, a strictly more general description in terms of density matrices

is required. A density matrix provides an encoding of an entire ensemble of quantum

states in the following sense: Suppose we lack complete knowledge of the precise state

of a quantum system but instead know that the system occupies one of the finitely

many distinct pure states 𝜓1, . . . , 𝜓𝑚 ∈ 𝐵, each with probability 𝑝1, . . . , 𝑝𝑚 > 0 such
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that ∑︀𝑚
𝑖=1 𝑝𝑖 = 1. Such an ensemble of quantum states is encoded by the density

matrix

𝜌 =
𝑚∑︁
𝑖=1

𝑝𝑖𝜓𝑖𝜓
*
𝑖 .

We say that the quantum state 𝜌 encodes a mixed quantum state. Note that this

is in line with the interpretation of each pure quantum state 𝜓𝑖 as a distribution

over basis states which lets us interpret 𝜌 as a classical probabilistic mixture of these

distributions with mixture weights 𝑝1, . . . , 𝑝𝑚. When expressed in a given basis, the

diagonal entries in 𝜌 are the average populations of the different basis states. The

following theorem provides a complete characterization of density matrices.

Theorem 5.1 (Characterization of density matrices [102]). A Hermitian matrix 𝜌 ∈

C𝑛×𝑛 is a density matrix if and only if it satisfies

(i) tr (𝜌) = 1

(ii) 𝜓*𝜌𝜓 ≥ 0 for any 𝜓 ∈ C𝑛

Proof. First consider a density matrix 𝜌 = ∑︀𝑚
𝑖=1 𝑝𝑖𝜓𝑖𝜓

*
𝑖 . Condition (i) is satisfied

since

tr (𝜌) = tr
(︃

𝑚∑︁
𝑖=1

𝑝𝑖𝜓𝑖𝜓
*
𝑖

)︃
=

𝑚∑︁
𝑖=1

𝑝𝑖(𝜓*
𝑖𝜓𝑖) =

𝑚∑︁
𝑖=1

𝑝𝑖 = 1,

where the second equality follows from the cyclic property of the trace. Furthermore,

𝜌 satisfies condition (ii) since

𝜓*𝜌𝜓 =
𝑚∑︁
𝑖=1

𝑝𝑖|𝜓*
𝑖𝜓|2 ≥ 0.

Conversely, consider a Hermitian matrix 𝜌 that satisfies conditions (i) and (ii). By

the spectral theorem, 𝜌 admits a decomposition

𝜌 =
𝑚∑︁
𝑖=1

𝑝𝑖𝜓𝑖𝜓
*
𝑖
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with 𝑚 ≤ 𝑛 and 𝜓1, . . . , 𝜓𝑚 orthonormal. Conditions (i) and (ii) thus imply directly

that

tr (𝜌) =
𝑚∑︁
𝑖=1

𝑝𝑖tr (𝜓𝑖𝜓*
𝑖 ) =

𝑚∑︁
𝑖=1

𝑝𝑖 = 1

and 𝑝1, . . . , 𝑝𝑚 ≥ 0, respectively. In other words, the spectral decomposition of 𝜌

furnishes an ensemble of (orthogonal) quantum states 𝜓1, . . . , 𝜓𝑚 with probabilities

𝑝1, . . . , 𝑝𝑚.

A corollary to Theorem 5.1 is the relation between the rank of the density matrix

and purity of the state.

Corollary 5.1. A density matrix 𝜌 encodes a mixed state if and only if it has rank

greater than one. Conversely, a density matrix encodes a pure state if and only if it

has rank one.

The following closed basic semialgebraic characterization of the set of density

matrices encoding pure states will play an important role for the following chapters.

Proposition 5.1. The set of pure quantum states encoded by a density matrix is

described by 𝐵 = {𝜌 ∈ C𝑛×𝑛 : 𝜌* = 𝜌, tr (𝜌) = 1, tr (𝜌2) = 1}.

Proof. By Theorem 5.1 and Corollary 5.1, any density matrix 𝜌 representing a pure

state admits a factorization 𝜌 = 𝜓𝜓* where 𝜓 ∈ C𝑛 has unit norm. It follows that

tr (𝜌2) = tr (𝜓(𝜓*𝜓)𝜓*) = tr (𝜌) = 1.

This result further motivates an overapproximation of the set of density matrices

with a simple inequality for the purity tr (𝜌2) of a quantum state.

Proposition 5.2. If 𝜌 is a density matrix, then its purity satisfies the inequality

tr (𝜌2) ≤ 1. If 𝜌 further encodes a mixed quantum state, the inequality is strict.

Proof. Let 𝜌 be a density matrix. By Theorem 5.1, 𝜌 admits a decomposition

𝜌 =
𝑚∑︁
𝑖=1

𝑝𝑖𝜓𝑖𝜓
*
𝑖

127



with 𝑝1, . . . , 𝑝𝑚 > 0, ∑︀𝑚
𝑖=1 𝑝𝑖 = 1 and 𝜓1, . . . , 𝜓𝑚 orthonormal. It follows from or-

thonormality of the 𝜓𝑖 that

tr
(︁
𝜌2
)︁

=
𝑚∑︁
𝑖=1

𝑝2
𝑖 ≤ 1.

Finally note that, by strong convexity, the inequality above is tight if and only if

𝑚 = 1.

5.4 Quantum measurement

Quantum information science sets out to exploit the principles of quantum mechanics

to derive protocols and build devices that can process data in a targeted manner. A

key ingredient to achieve this goal is the ability to interact with a quantum system

in two ways: targeted manipulation of the system state to process information and

measurement of the system’s observables to retrieve the result. Quantum control is

concerned with the former kind of interaction, while quantum measurement deals

with the latter.

The simplest kinds of measurements are projective measurements. Projective mea-

surements are defined by observables which in turn are Hermitian matrices defined

on the underlying Hilbert space. Consider such an observable, say 𝑀 ∈ C𝑛. By the

spectral theorem, 𝑀 admits a decomposition 𝑀 = ∑︀𝑚
𝑗=1 𝜆𝑗Π𝑗 where Π1, . . . ,Π𝑚 are

mutually orthogonal projectors onto the eigenspaces of 𝑀 . When 𝑀 has 𝑛 distinct

eigenvalues, each projector has rank one and can be represented as Π𝑗 = 𝜑𝑗𝜑
*
𝑗 , where

𝜑𝑗 is the eigenvector corresponding to the eigenvalue 𝜆𝑗 of 𝑀 . A projective mea-

surement generated by such an observable is called a von Neumann measurement. It

has 𝑛 distinct outcomes that coincide with the eigenvalues of 𝑀 . When measuring a

system in a pure quantum state 𝜓, the probability of measuring 𝜆𝑗 is

P [measuring 𝜆𝑗] = |𝜑*
𝑗𝜓|2 = 𝜓*Π𝑗𝜓.

A natural extension of this definition to the case of measuring a mixed quantum state
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𝜌 = ∑︀𝑚
𝑗=1 𝑝𝑗𝜓𝑗𝜓

*
𝑗 is obtained by interpreting the mixed quantum state as an ensemble

of pure quantum states. We thus define

P [measuring 𝜆𝑗] =
𝑚∑︁
𝑘=1

P [measuring 𝜆𝑗 | system is in state 𝜓𝑘] 𝑝𝑘

=
𝑚∑︁
𝑘=1

𝑝𝑘(𝜓*
𝑘Π𝑗𝜓𝑘) =

𝑚∑︁
𝑘=1

𝑝𝑘tr (Π𝑗𝜓𝑘𝜓
*
𝑘) = tr (Π𝑗𝜌) .

It is worth emphasizing that the above rules for projective quantum measurements

need not be treated as definitions but instead can be derived from more fundamental

primitives [103, Chapter 1.2].

So far we have laid out the rules for how likely projective measurement outcomes

are. Lastly, we need to define what happens to the quantum state upon measure-

ment. To that end, we need to distinguish two scenarios: After measurement, we can

either look at the measurement outcome and use it or we can throw the measurement

result away. In the case of a von Neumann measurement, if we use the measure-

ment, the quantum state collapses to the eigenstate of the measured eigenvalue, say

𝜑𝑗. Formally, if 𝜓+ (or 𝜌+ in density matrix form) denotes the quantum state post

measurement, we are left with a pure state 𝜓+ = 𝜑𝑗 (or 𝜌+ = 𝜑𝑗𝜑
*
𝑗 in density matrix

form). If we instead apply the measurement but ignore the outcome, we are left with

the entire ensemble of all possible outcomes, i.e., the mixed quantum state

𝜌+ =
𝑛∑︁
𝑗=1

tr (Π𝑗𝜌) Π𝑗 =
𝑛∑︁
𝑗=1

Π𝑗𝜌Π𝑗.

In the more general case of a projective measurement, the eigenspaces of the ob-

servable can be degenerate. In those cases, the same construction as above applies

except that a measurement need not lead to collapse to a pure quantum state co-

inciding with the measured eigenstate. If a degenerate eigenvalue is measured, the

state collapses to a mixed state in the corresponding eigenspace

𝜌+ = Π𝑗𝜌Π𝑗

tr (Π𝑗𝜌)
.
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(Note that this relation reduces readily to 𝜌+ = 𝜑𝑗𝜑
*
𝑗 if the eigenspace is not degen-

erate and spanned by 𝜑𝑗.)

The concept of projective measurements is further generalized by the notion of

positive operator-valued measurements (POVMs). POVMs play an important role in

describing and constructing continuous measurements of quantum systems and thus

for quantum feedback control [103]. In contrast to projective measurements, POVMs

are defined not by projectors onto the eigenspaces of an observable but by a collection

of operators 𝑀1, . . . ,𝑀𝑚 ∈ C𝑛×𝑛 such that ∑︀𝑚
𝑖=1 𝑀

*
𝑖𝑀𝑖 = 𝐼. While the associated

operators 𝑀𝑗 need no longer be projectors, the rules for quantum measurement re-

main similar. The probability of measurement outcome 𝑗 (now corresponding to the

operator 𝑀𝑗 as opposed to the projector onto the 𝑗th eigenspace) conditioned on mea-

suring a quantum system in state 𝜌 is tr
(︁
𝑀𝑗𝜌𝑀

*
𝑗

)︁
; the effect of the measurement on

the quantum state is

𝜌+ =
𝑀𝑗 𝜌𝑀

*
𝑗

tr
(︁
𝑀𝑗 𝜌𝑀

*
𝑗

)︁
when the measurement outcome is used and

𝜌+ =
𝑚∑︁
𝑗=1

𝑀𝑗 𝜌𝑀
*
𝑗

when it is ignored. Note that these rules reduce to the previously introduced rules

when the 𝑀1, . . . ,𝑀𝑚 are chosen to be projectors onto the eigenspaces of an observ-

able.

5.5 The dynamics of closed quantum systems

The time evolution of the state of a closed quantum system with Hermitian Hamil-

tonian 𝐻 ∈ C𝑛×𝑛 is governed by the (time-dependent) Schrödinger equation

d𝜓
d𝑡 (𝑡) = −𝑖𝐻𝜓(𝑡). (5.1)
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(We have chosen units in which Planck’s constant is unity.) The Hamiltonian encodes

how the system components interact energetically. We emphasize that the dynamics

(5.1) give rise to a unitary evolution, i.e., the state 𝜓(𝑡) will remain of unit norm if

evolved according to Equation (5.1). To see this, note that the closed-form solution

of Equation (5.1) for a given initial state 𝜓0 is

𝜓(𝑡) = exp (−𝑖𝑡𝐻)𝜓0.

Since 𝐻 is Hermitian, −𝑖𝑡𝐻 is skew-symmetric, and exp (−𝑖𝑡𝐻) thus unitary.

The analog of the Schrödinger equation for the density matrix description of quan-

tum systems is known as the (Liouville-)von Neumann Equation. It is obtained di-

rectly from the Schrödinger Equation by a simple calculation: Consider a density

matrix 𝜌 = ∑︀𝑚
𝑗=1 𝑝𝑗𝜓𝑗𝜓

*
𝑗 and note that

d𝜌
d𝑡 =

𝑚∑︁
𝑗=1

𝑝𝑗
d(𝜓𝑗𝜓*

𝑗 )
d𝑡

=
𝑚∑︁
𝑗=1

𝑝𝑗

(︃
d𝜓𝑗
d𝑡 𝜓

*
𝑗 + 𝜓𝑗

d𝜓*
𝑗

d𝑡

)︃

=
𝑚∑︁
𝑗=1

𝑝𝑗
(︁
−𝑖𝐻𝜓𝑗𝜓*

𝑗 + 𝑖𝜓𝑗𝜓
*
𝑗𝐻

)︁
= −𝑖 [𝐻, 𝜌] , (5.2)

where [𝐴,𝐵] = 𝐴𝐵−𝐵𝐴 denotes the commutator and we used that 𝐻 is Hermitian.

5.6 The dynamics of open quantum systems

The time evolution behavior of open quantum systems is more diverse than that of

their closed counterparts. The dynamics of open quantum systems are not necessarily

unitary and depend on the specific details of the interactions with the environment.

If the interactions are measurements, it is further important to distinguish if the state

is conditioned on the measurements or not. Here, we focus on two particular kinds of

continuous measurements: direct photon counting and homodyne detection. Among
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continuous measurements, they are the most relevant for quantum information science

and engineering [106–112], and also for the contributions of this thesis (see Chapter

7).

We follow [103, Chapter 4] to introduce the idea of continuous measurements

and sketch the derivation of the governing equations for the state of a continuously

measured quantum system. For a more formal treatment, the reader is referred to

Belavkin [113].

5.6.1 Photon counting

The dynamics of a quantum system with Hamiltonian 𝐻 subjected to photon counting

measurements can be deduced by designing a suitable POVM as introduced in Section

5.4. For the sake of simplicity, let us consider a POVM with only two outcomes

described by the measurement operators

𝑀1(ℎ) = 𝐼 −
(︂1

2𝜎
*𝜎 + 𝑖𝐻

)︂
ℎ and 𝑀2(ℎ) =

√
ℎ𝜎.

The so-called jump operator 𝜎 characterizes this measurement as it defines via 𝑀2

the state the system jumps to upon emission of a photon. It is easily verified that

𝑀1(ℎ)*𝑀1(ℎ) +𝑀2(ℎ)*𝑀2(ℎ) = 𝐼 +𝑂(ℎ2)

so that 𝑀1 and 𝑀2 form indeed an asymptotically valid POVM as ℎ approaches 0.

If we now assume that the measurement takes time ℎ and the state of the system is

𝜌𝑡 at time 𝑡, we find that the evolution of the system state conditioned on repeated

application of the POVM is characterized by the recursion

𝜌𝑡+ℎ = 𝑀𝑖(ℎ)𝜌𝑡𝑀𝑖(ℎ)*

tr (𝑀𝑖(ℎ)𝜌𝑡𝑀𝑖(ℎ)*) with probability tr (𝑀𝑖(ℎ)𝜌𝑡𝑀𝑖(ℎ)*) .
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Expanding the above expression to first order in ℎ, we obtain

𝜌𝑡+ℎ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑡 +

(︂
−𝑖[𝐻, 𝜌𝑡] − 1

2{𝜎*𝜎, 𝜌𝑡} + tr (𝜎𝜌𝑡𝜎*) 𝜌
)︂
ℎ, with prob. 1 − tr (𝜎𝜌𝑡𝜎*)ℎ

𝜎𝜌𝑡𝜎
*

tr (𝜎𝜌𝑡𝜎*) with prob. tr (𝜎𝜌𝑡𝜎*)ℎ

In the limit ℎ → 0 this reduces to a stochastic process driven by a Poisson counter

d𝑛𝑡 with rate tr (𝜎𝜌𝑡𝜎*):

d𝜌𝑡 =
(︂

−𝑖[𝐻, 𝜌𝑡] − 1
2{𝜎*𝜎, 𝜌𝑡} + tr (𝜎𝜌𝑡𝜎*) 𝜌𝑡

)︂
d𝑡+

(︃
𝜎𝜌𝑡𝜎

*

tr (𝜎𝜌𝑡𝜎*) − 𝜌𝑡

)︃
d𝑛𝑡. (5.3)

This is a form of a stochastic master equation which describes the random paths of

the state of a quantum system when conditioned on the result of continuous photon

counting measurements. If we apply continuous photon counting measurements but

ignore the result, the system state evolves deterministically according to the mean

𝜌(𝑡) = E[𝜌𝑡] over all possible paths of the above process. The resultant governing

equation, known as the Lindblad master equation [114], reads

d𝜌
d𝑡 (𝑡) = −𝑖[𝐻, 𝜌(𝑡)] + 𝜎𝜌(𝑡)𝜎* − 1

2{𝜎*𝜎, 𝜌(𝑡)}.

5.6.2 Homodyne detection

For homodyne detection, the system’s photon emissions are superimposed with the

emissions of a strong local oscillator [103]. The advantage of this setup is that it allows

the measurement of specific amplitude components or quadratures of the measured

signal which has various practical advantages for quantum feedback control and other

applications [115–117, for example].

A stochastic master equation analogous to that derived for photon counting in

the previous section can be obtained from an analogous POVM as before. This time,

however, the system Hamiltonian and jump operator must be adjusted to account

for the superimposed oscillator field. For an oscillator with strength 𝛾 ∈ R, the

Hamiltonian and jump operator change according to 𝐻 → 𝐻 − 𝑖𝛾
2 (𝜎 − 𝜎*) and 𝜎 →
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𝜎 + 𝛾𝐼 [103, Chapter 4.4]. Proceeding as before, we obtain a stochastic master

equation of the form (5.3). It is easy to see from Equation (5.3) that the rate of

photon detection is then proportional to 𝛾2 in the homodyne detection setup. In

other words, the photon detections are dominated by the local oscillator. In the ideal

limit of an infinitely strong oscillator, this dependence allows us to further simplify

the stochastic master equation to a diffusion equation. In this limit, the statistics

of the driving Poisson counter increments
∫︀ 𝑡+ℎ
𝑡 d𝑛𝑡 will be approximately Gaussian

distributed with mean (𝛾2 + 𝛾tr ((𝜎 + 𝜎*)𝜌))ℎ and variance 𝛾2ℎ [118]. Combing this

with Equation (5.3) and letting 𝛾 approach infinity while scaling ℎ ∼ 𝛾−3/2 finally

yields

d𝜌𝑡 =
(︂

−𝑖[𝐻, 𝜌𝑡] + 𝜎𝜌𝑡𝜎
* − 1

2{𝜎*𝜎, 𝜌𝑡}
)︂

d𝑡+ (𝜎𝜌𝑡 + 𝜌𝜎* − tr (𝜌𝑡𝜎 + 𝜌𝑡𝜎
*) 𝜌𝑡) d𝑏𝑡,

where d𝑏𝑡 denote standard Brownian increments. Physically, the Brownian motion 𝑏𝑡
is in one-to-one correspondence with a physically measured photon current induced by

the superposition of the oscillator field and the system’s photon emissions. The above

equation can therefore be used to infer a quantum system’s state from experimentally

observed measurements.
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Chapter 6

Quantifying the limits of open-loop

quantum control

6.1 Introduction

The speed and accuracy with which quantum states can be controlled put a limit

on the capabilities of quantum information technology. Quantum speed limits in

the spirit of the celebrated Mandelstam-Tamm bound [19] or Margolus-Levitin the-

orem [20] establish that these limitations are non-trivial for problems of minimal

time transition and, likewise, we ought to expect non-trivial limitations for other

performance metrics in quantum control. Two natural questions therefore arise when

designing quantum control protocols.

Question 1 (Certification). Is a projected performance goal for the operation of a

given quantum device fundamentally unattainable?

and the natural follow-up question

Question 2 (Quantification). What is the best attainable performance?

In this Chapter, we apply the (local) occupation measure framework developed

Part I of this thesis to devise a method to answer Question 1 definitively and Question

2 to arbitrary precision for a large class of open-loop quantum control problems.
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For problems of minimal time transition, Question 1 can in some situations be

answered by one of many quantum speed limits [19, 20, 119–122] providing hard lower

bounds on the shortest possible time for the transition between quantum states [123];

see the review [124] for a detailed account. The performance bounds implied by such

quantum speed limits, however, are often not informative in practice. They derive

from fundamental trade-offs like energy-time uncertainty relations and leverage only

coarse-grained system information, such as summary statistics of the system’s energy.

In practice, however, technological constraints like bounds on control drives and the

detailed structure of the control fields and other energetic interactions impose more

stringent performance barriers. With the exception of some recent work [125, 126]

such information remains generally unaccounted for in the derivation of quantum

speed limits, rendering them simply too conservative in many situations.

In principle, a rich set of tools from classical control theory like the Hamilton-

Jacobi-Bellman equations or Pontryagin’s maximum principle is available to char-

acterize and identify globally optimal quantum control protocols [127–130]. While

elegant when possible, these tools, however, remain limited to rather specific, usu-

ally two-level [130, 131], quantum systems without constraints on the system’s state

trajectory and the control drives. More complicated settings are often out of reach

for this approach due to the difficulty of posing optimality conditions and estab-

lishing their sufficiency [46]. Practitioners instead resort in most cases to numeri-

cal local search techniques to design control protocols [132]; for example, Krotov’s

method [133–135], gradient ascent pulse engineering [136, 137], nonlinear program-

ming via direct collocation [138], reinforcement learning [139], or the chopped random

basis technique [140]. The empirical success of these techniques is often attributed to

the well-known fact that the performance landscape generated by transition fidelities

between given quantum states has no spurious local optima under the assumption of

full and unconstrainted controllability [141]. In practice, however, these assumptions

are typically unrealistic; control fields and drives are generally confined by techno-

logical constraints. Local search methods can in those cases, at best, ensure local

optimality due to the typically non-convex nature of quantum control problems, and
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consequently are fundamentally incapable of providing affirmative answers to the

Certification Question 1, let alone quantitative answers to Question 2.

To remove any doubt that a given control protocol is in fact (near-)optimal, its

performance must match (or at least be close to) a guaranteed bound on the best

attainable performance. Zhang et al. [21] recently proposed a systematic, convex

optimization-based framework to compute such bounds for a large class of quantum

optimal control problems. They recast the quantum optimal control problem as a

quadratically constrained quadratic program by introducing a sufficient characteri-

zation of quantum evolution in terms of generalized probability conservation laws in

the form of quadratic integral equations. Upon discretization and semidefinite re-

laxation of the quadratic constraints, a finite semidefinite program bounds the best

attainable performance. In contrast to quantum speed limits, this framework incor-

porates constraints, fine-grained system information, accommodates a wider range of

performance metrics for quantum control, and is shown to consistently furnish (more)

informative bounds. That said, the discretization and semidefinite relaxation step re-

quired for its construction introduces an unknown level of error and conservatism. We

show here that a deterministic analog of the (local) occupation measure framework

introduced in Chapter 3 gives rise to a hierarchy of semidefinite bounding problems

that do not suffer from the same limitations and that can under mild assumptions

reliably answer Questions 1 and 2.

6.2 Open-loop quantum optimal control

The goal of open-loop quantum optimal control is to direct the dynamical evolution

of a quantum system in a way that minimizes a given objective functional without

relying on feedback information. The conceptually simplest and, due to its relevance

for many quantum computing tasks, most commonly studied open-loop quantum op-

timal control problem is that of minimal time transition, also known as the quantum

Brachistochrone problem [128, 129, 142–144]. Analogous to its classical counterpart,

the objective of a quantum Brachistochrone problem is to drive a quantum system
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Figure 6-1: Illustration of quantum optimal control for minimal time transition.

from a given initial state 𝜓init (for example the outcome of a projective measurement)

to a given target state 𝜓tar (for example an input state needed to implement a quantum

information protocol) in the shortest possible time. As illustrated in Figure 6-1, such

a targeted evolution of the system is facilitated by manipulation of its Hamiltonian.

Designing protocols that realize or approximate an optimal Hamiltonian manipula-

tion, typically through the application of external, time-dependent electromagnetic

fields, is at the heart of any open-loop quantum optimal control problem. In the fol-

lowing, we introduce a mathematical formalism and model abstraction for this design

problem.

We consider quantum systems with Hamiltonians of the form

𝐻(𝑢) = 𝐻0 +
𝐾∑︁
𝑘=1

𝑢𝑘𝐻𝑘,

where 𝐻0 is the Hamiltonian of the nominal, uncontrolled system and 𝐻1, . . . , 𝐻𝐾 are

external control fields with real-valued drives 𝑢 = [𝑢1 · · · 𝑢𝐾 ]. We assume without

loss of generality that the control fields are constant1 and take the control drives

and their variation over time to be the subject of design. Note that this is in line

with most experimental setups where the structure of the control fields is dictated

by available instrumentation (laser sources) but their intensity (power supply) can be

varied. Following this intuition, we also assume that the control drives are confined

1If for a given problem the control fields are subject to design, it suffices in this formalism to let
𝐻1, . . . , 𝐻𝐾 be a basis of the feasible design space.
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to an admissible set 𝑈 ⊂ R𝐾 , representing technological constraints such as bounded

power supply or safety restrictions. We further assume complete knowledge of the

initial system state 𝜓init and that the system is closed. Consequently, we treat the

system state as pure and describe its dynamical evolution over the control horizon

[0, 𝑇 ] with the time-dependent Schrödinger equation

⎧⎪⎪⎨⎪⎪⎩
d𝜓
d𝑡 (𝑡) = −𝑖𝐻(𝑢(𝑡))𝜓(𝑡), 𝑡 ∈ [0, 𝑇 ]

𝜓(0) = 𝜓init,

. (6.1)

Here, {𝑢(𝑡) ∈ 𝑈 : 𝑡 ∈ [0, 𝑇 ]} denotes a feasible control protocol2; that is, explic-

itly time-dependent admissible control drives. We further consider restrictions on

trajectories of the quantum system during and at the end of the control horizon 𝑇 .

Formally, we will impose that the quantum state evolves and terminates in feasible

sets 𝑋 and 𝑋𝑇 , respectively. Restrictions of this form are common in practice where

they encode constraints on maximum allowable leakage into undesirable states [145]

or terminal accuracy [21].

Equipped with the model abstraction outlined above, the following optimization

problem provides a mathematical formalism for open-loop quantum optimal control.

𝐽* := inf
𝑢

∫︁ 𝑇

0
ℓ(𝑡, 𝜓(𝑡), 𝑢(𝑡)) d𝑡+𝑚(𝜓(𝑇 )) (QOCP)

s.t. 𝜓(𝑡) satisfies (6.1),

𝜓(𝑡) ∈ 𝑋 on [0, 𝑇 ],

𝜓(𝑇 ) ∈ 𝑋𝑇 ,

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ].

To quantify the limits of quantum control we seek lower bounds for the optimal value

𝐽* of (QOCP), encoding the best attainable control performance as quantified by

an accumulating stage cost ℓ and terminal cost 𝑚. In the following section, we list

several common quantum control tasks which reduce to special cases of (QOCP).

2We assume throughout implicitly that a feasible control protocol is absolutely integrable.
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6.3 Special cases

6.3.1 Quantum Brachistochrone problems

The quantum Brachistochrone problem seeks the minimal time transition between

an initial quantum state 𝜓init and a target quantum state 𝜓tar. Although the control

horizon 𝑇 is fixed in (QOCP), one may simply rephrase the search for the minimal

time transition as a sequence of feasibility problems of the form

find 𝑢

s.t. 𝜓(𝑡) satisfies (6.1),

𝜓(𝑇 ) = 𝜓tar,

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ],

The search for the minimal allowable control horizon 𝑇 that renders the above problem

feasible coincides with the search for the minimal time transition. The former can be

done by successively bisecting the interval [0, 𝑇 ].

We emphasize that the feasibility problem above is obtained as a special case of

(QOCP) by choosing vanishing stage and terminal cost, and letting the terminal con-

straint set be the singleton 𝑋𝑇 = {𝜓tar}. Another common variation of the quantum

Brachistochrone problem is obtained when the terminal state is only required to be

𝜖-close to the target state. This setting is also readily accommodated by choosing the

terminal constraint set 𝑋𝑇 = {𝜓 ∈ C𝑛 : |𝜓*𝜓tar|2 ≥ 1 − 𝜖}.

6.3.2 State preparation problems

A common quantum control problem closely related to the quantum Brachistochrone

problem is that of state preparation. Here, the objective is to drive the system as

close as possible to a given target state 𝜓tar within a fixed afforded control horizon
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[0, 𝑇 ]. This problem is obtained as a special case of (QOCP) with the following form

inf
𝑢

1 − |𝜓(𝑇 )*𝜓tar|2

s.t. 𝜓(𝑡) satisfies (6.1),

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ].

Note that the choice of terminal cost 𝑚(𝜓(𝑇 )) = 1 − |𝜓(𝑇 )*𝜓tar|2 precisely quantifies

the overlap between the terminal and target state and attains its minimum value of

zero if and only if they coincide.

6.3.3 Minimum energy transition problems

The promise of faster and more accurate quantum devices has historically been driving

the development and application of quantum optimal control [146]. In the wake of

steadily growing uncertainty about the future of the global energy system [147–149],

however, quantum optimal control is garnering increasing attention as a means to

attenuate the energy requirements of emerging quantum technologies [150, 151]. A

natural control problem arising in this context is that of minimum energy transitions;

that is, the task of finding a transition protocol between a given initial and target

quantum state within an afforded maximal time and with minimal required energy

expenditure. Formally, this problem may be stated as

inf
𝑢

∫︁ 𝑇

0
𝐸(𝑢(𝑡)) d𝑡

s.t. 𝜓(𝑡) satisfies (6.1),

𝜓(𝑇 ) = 𝜓tar,

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ],

which is easily identified as a special case of (QOCP). The accumulating cost 𝐸(𝑢)

measures the energy expenditure associated with the control action 𝑢. Typical choices

are 𝐸(𝑢) = ‖𝐻(𝑢)‖2 [151] and 𝐸(𝑢) = ‖𝑢‖2
2 [152], which measure the maximum
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energy of the system and the power supplied through the external control fields,

respectively.

6.4 A convex bounding approach

Even for convex cost functionals and control constraints, the open-loop quantum op-

timal control problem (QOCP) is generally a non-convex optimization problem due to

the bilinear structure of the Schrödinger equation (6.1). Local optimization routines

are therefore only guaranteed to converge to globally optimal control protocols under

strong, typically unrealistic, and unverifiable assumptions [141]. To certify that a con-

trol protocol is near-optimal it is therefore necessary to compare its performance to a

guaranteed (and informative) bound for the best attainable control performance. Us-

ing the moment-sum-of-squares hierarchy in combination with the (local) occupation

measure framework, we next construct tractable optimization problems that furnish

such bounds. To that end, however, we must adopt a reformulation of (QOCP) in

terms of real-valued variables and impose additional restrictions on the nature of the

functions and constraints that frame the problem.

6.4.1 Real reformulation

In order to draw on the tools from real algebraic geometry and the moment-sum-

of-squares hierarchy as reviewed and extended in Chapters 2 and 3, respectively,

we reformulate (QOCP) to involve only real variables. To that end, we represent

the state vector 𝜓 of the quantum system by its real and imaginary parts 𝜓𝑅 and

𝜓𝐼 , respectively. For simplicity, we abuse notation and from here onward implicitly

identify a quantum state 𝜓 with its real representation (𝜓𝑅, 𝜓𝐼). In particular, we

will not explicitly redefine sets and functions that were originally defined for complex

quantum states but instead treat them as composed with the bijection

R2𝑛 ∋ (𝜓𝑅, 𝜓𝐼) ↦→ 𝜓𝑅 + 𝑖𝜓𝐼 ∈ C𝑛
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between the real and complex representation of quantum states. The corresponding

expressions are easily derived; for instance, the Schrödinger equation (6.1) takes in

real coordinates the form
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
d𝑡

⎡⎢⎣𝜓𝑅(𝑡)

𝜓𝐼(𝑡)

⎤⎥⎦ =

⎡⎢⎣ 𝐻𝐼(𝑢(𝑡)) 𝐻𝑅(𝑢(𝑡))

−𝐻𝑅(𝑢(𝑡)) 𝐻𝐼(𝑢(𝑡))

⎤⎥⎦
⎡⎢⎣𝜓𝑅(𝑡)

𝜓𝐼(𝑡)

⎤⎥⎦ , 𝑡 ∈ [0, 𝑇 ]

⎡⎢⎣𝜓𝑅(0)

𝜓𝐼(0)

⎤⎥⎦ =

⎡⎢⎣𝜓𝑅,init

𝜓𝐼,init

⎤⎥⎦
, (6.2)

where 𝐻𝑅 and 𝐻𝐼 refer to the real and imaginary part of the system Hamiltonian,

respectively.

6.4.2 Assumptions on constraints and cost functionals

We make the following assumptions to ensure that the cost function and constraints

in (QOCP) are described entirely by polynomials and closed basic semialgebraic sets,

respectively. This property will be a key ingredient for constructing tractable convex

lower bounding problems for (QOCP). Note that the following assumptions are based

on the real representation of quantum states as discussed in the previous paragraph.

Assumption 6.1. The sets 𝑈 , 𝑋, and 𝑋𝑇 in (QOCP) are compact closed basic

semialgebraic sets. Accordingly, there exist finite collections of polynomials 𝒰 ⊂ R[𝑢],

and 𝒳 ,𝒳𝑇 ⊂ R[𝜓] such that 𝑈 = {𝑢 ∈ R𝐾 : 𝑝(𝑢) ≥ 0, ∀𝑝 ∈ 𝒰}, 𝑋 = {𝜓 ∈ R2𝑛 :

𝑝(𝜓) ≥ 0, ∀𝑝 ∈ 𝒳 }, and 𝑋𝑇 = {𝜓 ∈ R2𝑛 : 𝑝(𝜓) ≥ 0, ∀𝑝 ∈ 𝒳𝑇} are compact. We

refer to the polynomials in 𝒰 , 𝒳 , and 𝒳𝑇 as control, state, and terminal constraints,

respectively.

Assumption 6.2. Let 𝐵 = {𝜓 ∈ R2𝑛 : ‖𝜓‖2
2 = 1} denote the set of pure quantum

states. The accumulating stage cost ℓ : [0, 𝑇 ] × 𝐵 × 𝑈 → R and terminal cost 𝑚 :

𝐵 → R are polynomials jointly in all arguments.

A few remarks are in order to put Assumptions 6.1 and 6.2 into perspective. First,

it is worth noting that control constraints represent almost exclusively technological
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limitations. As such, they typically rule out unbounded control drives and describe

a closed, and hence compact, set of admissible control actions. In fact, the charac-

terization of technological limits is in practice rarely more complicated than simple

box constraints which readily satisfy Assumption 6.1. Moreover, a review of common

quantum control problems, as provided in Section 6.3, reveals that also state and

terminal constraints are typically representable by polynomial inequalities of degree

at most two. The state and terminal constraint sets 𝑋 and 𝑋𝑇 can further always

be made compact as they may without loss of generality be intersected with the set

of pure states. Assumption 6.1 can therefore be expected to hold in most practically

relevant settings. Similarly, most cost functionals used in practice can be encoded by

polynomials of degree at most two (cf. Section 6.3) which renders also Assumption

6.2 rather weak.

6.4.3 Open-loop quantum optimal control via infinite-dimensional

linear programming

To construct convex bounding problems for (QOCP), we adopt the occupation mea-

sure approach for deterministic optimal control introduced by Lasserre et al. [46].

Although this method represents a strict special case of the framework outlined in

Chapter 3, we revisit its core concepts and assumptions here to discuss them from the

perspective of open-loop quantum control. To that end, we first introduce the notion

of instantaneous and state-action occupation measures as an alternative description

for the trajectories {(𝜓(𝑡), 𝑢(𝑡)) : 𝑡 ∈ [0, 𝑇 ]} of a controlled quantum system and its

dynamics.

The instantaneous occupation measure is defined as

𝜈𝑇 (𝐶) = 1𝐶(𝜓(𝑇 ))

for any Borel subset of 𝐶 of the set of pure quantum states 𝐵 [46]. Here, 1𝐶 denotes

the indicator of the set 𝐶, thus 𝜈𝑇 (𝐶) simply indicates whether or not the quantum

trajectory terminates in 𝐶. The associated duality bracket, i.e., the operation of
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averaging a continuous observable 𝑤 ∈ 𝒞(𝐵) with respect to 𝜈𝑇 , therefore reduces to

⟨𝑤, 𝜈𝑇 ⟩ =
∫︁
𝐵
𝑤(𝜓) d𝜈𝑇 (𝜓) = 𝑤(𝑇, 𝜓(𝑇 )). (6.3)

The state-action occupation measure is defined for any Borel subsets 𝐶 ⊂ [0, 𝑇 ],

𝐷 ⊂ 𝐵, and 𝐸 ⊂ 𝑈 such that

𝜉(𝐶 ×𝐷 × 𝐸) =
∫︁
𝐶∩[0,𝑇 ]

1𝐷×𝐸((𝜓(𝑡), 𝑢(𝑡))) d𝑡.

Intuitively, 𝜉(𝐶 × 𝐶 × 𝐸) measures the time that the trajectory {(𝑡, 𝜓(𝑡), 𝑢(𝑡)) : 𝑡 ∈

[0, 𝑇 ]} resides in 𝐶×𝐷×𝐸. Its duality bracket therefore reduces to the computation

of time averages of continuous 𝑤 ∈ 𝒞([0, 𝑇 ] ×𝐵 × 𝑈) along this trajectory:

⟨𝑤, 𝜉⟩ =
∫︁
𝑋𝑇

𝑤(𝜓) d𝜈𝑇 (𝜓) =
∫︁ 𝑇

0
𝑤(𝑡, 𝜓(𝑡), 𝑢(𝑡)) d𝑡. (6.4)

The support of the occupation measures encodes satisfaction of path and terminal

constraints. This is immediately apparent from the definition of the instantaneous

occupation measure since 𝜈𝑇 (𝑋𝑇 ) = 1 is equivalent to the condition that 𝜓(𝑇 ) ∈ 𝑋𝑇 .

Similarly, the expected state-action occupation measure satisfies the condition

𝜉([0, 𝑇 ] ×𝑋 × 𝑈) =
∫︁

[0,𝑇 ]
1𝑋×𝑈((𝜓(𝑡), 𝑢(𝑡))) d𝑡 = 𝑇

if and only if (𝜓(𝑡), 𝑢(𝑡)) ∈ 𝑋 × 𝑈 for almost every 𝑡 ∈ [0, 𝑇 ].

The key advantage of the occupation measure-based abstraction of quantum tra-

jectories is that is gives rise to a linear description of quantum dynamics. Specifically,

by the fundamental theorem of calculus, the instantaneous and state-action occupa-

tion measures describe the dynamics of a quantum system through the linear weak

form condition

⟨𝑤, 𝜈𝑇 ⟩ − 𝑤(0, 𝜓init) = ⟨𝒜𝑤, 𝜉⟩ , ∀𝑤 ∈ 𝒞1([0, 𝑇 ] ×𝑋), (6.5)
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where 𝒜 denotes the Liouville operator defined such that

d𝑤
d𝑡 (𝑡, 𝜓(𝑡)) = 𝒜𝑤(𝑡, 𝜓(𝑡), 𝑢(𝑡))

holds along the trajectories of the system. For controlled quantum systems governed

by the (real) Schrödinger equation (6.2), 𝒜 thus acts on smooth functions according

to

𝒜𝑤(𝑡, 𝜓, 𝑢) = 𝜕𝑤

𝜕𝑡
(𝑡, 𝜓) +

⎡⎢⎣∇𝜓𝑅
𝑤(𝑡, 𝜓)

∇𝜓𝐼
𝑤(𝑡, 𝜓)

⎤⎥⎦
⊤ ⎡⎢⎣ 𝐻𝐼(𝑢) 𝐻𝑅(𝑢)

−𝐻𝑅(𝑢) 𝐻𝐼(𝑢)

⎤⎥⎦
⎡⎢⎣𝜓𝑅
𝜓𝐼

⎤⎥⎦ . (6.6)

It follows from these consideration that any feasible trajectory for (QOCP) gener-

ates non-negative occupation measures 𝜈𝑇 and 𝜉 that satisfy Equation (6.5) and are

supported only on 𝑋𝑇 and [0, 𝑇 ] × 𝑋 × 𝑈 , respectively. Thus, the following linear

program describes a valid lower bound for the optimal value of (QOCP):

𝐽*
OM := inf

𝜈𝑇 ,𝜉
⟨ℓ, 𝜉⟩ + ⟨𝑚, 𝜈𝑇 ⟩ (OM-QOCP)

s.t. ⟨𝑤, 𝜈𝑇 ⟩ − 𝑤(0, 𝜓init) = ⟨𝒜𝑤, 𝜉⟩ , ∀𝑤 ∈ 𝒞1([0, 𝑇 ] ×𝑋),

𝜈𝑇 ∈ ℳ+(𝑋𝑇 ),

𝜉 ∈ ℳ+([0, 𝑇 ] ×𝑋 × 𝑈).

Here, ℳ+(𝑌 ) denotes the cone of non-negative measures supported on 𝑌 . It can be

shown by an analogous argument as for the stochastic case treated in Chapter 3 that

the linear programming dual of (OM-QOCP),

𝐽*
HJB := sup

𝑤
𝑤(0, 𝜓init) (HJB-QOCP)

s.t. 𝒜𝑤 + ℓ ≥ 0 on [0, 𝑇 ] ×𝑋 × 𝑈,

𝑚− 𝑤(𝑇, ·) ≥ 0 on 𝑋𝑇 ,

𝑤 ∈ 𝒞1([0, 𝑇 ] ×𝑋),
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admits a useful interpretation as seeking the maximal smooth subsolution for the

value function associated with (QOCP) (cf. Corollary 3.1). Any near-optimal point

of (HJB-QOCP) can therefore be used to construct heuristic control protocols [47].

Moreover, the results of Lasserre et al. [46] and Vinter [59] establish easily verifiable

conditions under which the linear programs (OM-QOCP) and (HJB-QOCP) charac-

terize the true optimal control performance 𝐽* defined by (QOCP).

Theorem 6.1. Let Assumptions 6.1 and 6.2 be satisfied, the set of admissible control

actions 𝑈 be compact and convex, and the stage cost ℓ(𝑡, 𝜓, ·) be convex on 𝑈 for any

𝜓 ∈ 𝑋 and 𝑡 ∈ [0, 𝑇 ]. Further, assume that (QOCP) is feasible, i.e., there exists

some control protocol {𝑢(𝑡) ∈ 𝑈 : 𝑡 ∈ [0, 𝑇 ]} that induces a trajectory of the quantum

state that satisfies all constraints of (QOCP). Then, 𝐽* = 𝐽*
OM = 𝐽*

HJB.

Proof. This result is a special case of [46, Theorem 2.3]. To establish that the hy-

potheses of [46, Theorem 2.3] are satisfied, let 𝜓 ∈ 𝑋 and 𝑡 ∈ [0, 𝑇 ] be arbitrary but

fixed. Then, define the function

𝑉 (𝑢) :=

⎡⎢⎣ 𝐻𝐼(𝑢) 𝐻𝑅(𝑢)

−𝐻𝑅(𝑢) 𝐻𝐼(𝑢)

⎤⎥⎦
⎡⎢⎣𝜓𝑅
𝜓𝐼

⎤⎥⎦ .

Clearly, the image of 𝑈 under 𝑉 is convex as 𝑉 is an affine map [26]. It remains to

show that the function

𝑔(𝑣) := inf
𝑢∈𝑈

{ℓ(𝑡, 𝜓, 𝑢) : 𝑣 = 𝑉 (𝑢)}

is convex. To that end, consider 𝑣1, 𝑣2 such that 𝑔(𝑣1) and 𝑔(𝑣2) are finite. Since 𝑈 is

compact, and 𝑉 and ℓ are continuous, the infimum in the definition of 𝑔 is attained.

Thus, there exist 𝑢1, 𝑢2 ∈ 𝑈 such that 𝑔(𝑣1) = ℓ(𝑡, 𝜓, 𝑢1) and 𝑔(𝑣2) = ℓ(𝑡, 𝜓, 𝑢2). Since

further 𝑉 is an affine function, it follows that 𝛼𝑣1 + (1 − 𝛼)𝑣2 = 𝑉 (𝛼𝑢1 + (1 − 𝛼)𝑢2)

holds for any 𝛼 ∈ [0, 1]. By convexity of 𝑈 , definition of 𝑔, and convexity of ℓ in its
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last argument, we thus conclude that

𝑔(𝛼𝑣1 + (1 − 𝛼)𝑣2) ≤ ℓ(𝑡, 𝜓, 𝛼𝑢1 + (1 − 𝛼)𝑢2) ≤ 𝛼𝑔(𝑣1) + (1 − 𝛼)𝑔(𝑣2).

We remark that the hypotheses of Theorem 6.1 hold for a broad class of quantum

optimal control problems. In particular, the conclusion of Theorem 6.1 applies to

all problems stated in Section 6.3 under the assumption box or polyhedral control

constraints that imply bounded controls.

6.4.4 Tractable moment-sum-of-squares relaxations

The infinite-dimensional linear programs (OM-QOCP) and (HJB-QOCP) require

further approximation to become computationally tractable. The moment-sum-of-

squares hierarchy provides a systematic way to construct such approximations while

preserving the lower-bounding property of (OM-QOCP) and (HJB-QOCP). On an

intuitive level, the approximations are obtained by relaxing (OM-QOCP) to opti-

mization over finite, truncated moment sequences of the measures 𝜉 and 𝜈𝑇 , or con-

versely restricting (HJB-QOCP) to optimization over polynomials of bounded maxi-

mum degree. Upon these approximations, tractable and finite semidefinite programs

are obtained by relaxing, respectively restricting, the non-negativity constraints in

(OM-QOCP) and (HJB-QOCP): Non-negativity of the occupation measures is re-

laxed to necessary positive semidefiniteness constraints on moment and localizing

matrices, while the non-negativity constraints in (HJB-QOCP) are restricted to suffi-

cient sum-of-squares constraints; see Chapter 2 for more details on this construction.

The approximation quality of the so-obtained restrictions and relaxations can fur-

ther be improved by the partitioning approach introduced in Chapter 3. For the

sake of brevity, however, we state only the traditional sum-of-squares restriction of
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(HJB-QOCP) below.

𝐽*
HJB,𝑑 := inf

𝑤𝑑
𝑤𝑑(0, 𝜓init) (HJB-QOCP𝑑)

s.t. 𝒜𝑤𝑑 + ℓ ∈ 𝑄𝑑+1 (𝒯 ∪ 𝒳 ∪ 𝒰) ,

𝑚− 𝑤𝑑(𝑇, ·) ∈ 𝑄𝑑 (𝒳𝑇 ) ,

𝑤𝑑 ∈ R𝑑[𝑡, 𝜓].

Here, 𝑄𝑑 (𝒮) refers to the truncated quadratic module (cf. Definition 2.15) generated

by a collection of polynomials 𝒮 = {𝑝1, . . . , 𝑝𝑛}. The constraint set 𝒯 = {𝑡, 𝑇 − 𝑡}

is chosen such that it frames the control horizon via [0, 𝑇 ] = {𝑡 : 𝑝(𝑡) ≥ 0, ∀𝑝 ∈

𝒯 }. Note that (HJB-QOCP𝑑) is well-posed as the left-hand side of all constraints in

(HJB-QOCP𝑑) are in fact polynomials due to Assumption 6.2 and the observation

that the Liouville operator 𝒜 maps polynomials to polynomials (cf. Equation (6.6)).

It is easily seen that 𝐽*
HJB,𝑑 forms by construction a sequence of monotonically

improving lower bounds for 𝐽* with increasing degree 𝑑. Further, we can establish

mild and practically verifiable conditions under which these bounds converge to 𝐽*
HJB

(and via Theorem 6.1 also to 𝐽*).

Theorem 6.2. Suppose the control, state, and terminal constraints 𝒰 , 𝒳 , and 𝒳𝑇

as defined in Assumption 6.1 satisfy Putinar’s condition (see Definition 2.16). Then,

strong duality holds between (OM-QOCP) and (HJB-QOCP) and the optimal value

𝐽*
HJB,𝑑 converges from below to 𝐽*

HJB as 𝑑 → ∞.

Proof. The result follows as a special case of [75, Corollary 8] which proves strong

duality as well as primal/dual convergence of the moment-sum-of-squares hierarchy

for the class of generalized moment problems (cf. Problem (GMP)) with at most

countably many moment constraints that satisfy Putinar’s condition (cf. Definition

2.16) and explicitly bounded zeroth order moments. We show that (OM-QOCP) falls

into this class.

To that end, we first recognize that, by the density of polynomials in continuous

functions on compact sets, it suffices to impose condition (6.5) in (OM-QOCP) for
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all monomial test functions. Therefore (OM-QOCP) is equivalent to a generalized

moment problem with countably many moment constraints. Next, we observe that

𝒰 , 𝒳 , and 𝒯 contain polynomials in distinct variables (𝑢, 𝜓, and 𝑡). Thus, 𝒯 ∪𝒳 ∪𝒰

satisfies Putinar’s condition as 𝒰 , 𝒳 , and 𝒯 do. (𝒯 describes a bounded polyhedron

and thus satisfies Putinar’s condition [42].) Finally, we observe that for test functions

𝑤(𝑡, 𝑥) = 1 and 𝑤(𝑡, 𝑥) = 𝑡, the condition (6.5) implies that any feasible point of

(OM-QOCP) must satisfy that ⟨1, 𝜈𝑇 ⟩ = 1 and ⟨1, 𝜉⟩ = 𝑇 . The zeroth order moments

of any feasible measures are therefore bounded.

We finally remark that the hypotheses of Theorem 6.2 are broadly satisfied for

quantum optimal control problems arising in practice. In particular, the state and

terminal constraints can without loss of generality be augmented to satisfy Putinar’s

condition, simply by including the (redundant) constraint 1 − ‖𝜓‖2
2 ≥ 0. Similarly,

the control constraints typically describe a compact set. If the set is a polytope, for

example an bounded interval box, it readily satisfies Putinar’s condition. If it is more

complicated but still compact, Putinar’s condition can be enforced to hold by adding

an additional redundant control constraint of the form 𝑅− ‖𝑢‖2
2 ≥ 0 with sufficiently

large 𝑅 > 0.

6.5 Extensions

6.5.1 Variable control horizon

Improving the processing speed of quantum devices is one of the key motivating ap-

plications of quantum control. Accordingly, many common quantum optimal control

problems boil down to performing a specific manipulation of a quantum state in min-

imal time. We have discussed in Section 6.3 that these problems can be reformulated

as a sequence of feasibility problems, each with a fixed control horizon. However, the

bounding framework outlined above readily extends to dealing with problems that do

not have a fixed horizon, allowing minimal time problems to be tackled directly. To
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that end, we consider the following generalization of (QOCP)

inf
𝑢,𝑇

∫︁ 𝑇

0
ℓ(𝑡, 𝜓(𝑡), 𝑢(𝑡)) d𝑡+𝑚(𝜓(𝑇 ))

s.t. 𝜓(𝑡) satisfies (6.1),

𝜓(𝑡) ∈ 𝑋 on [0, 𝑇 ],

𝜓(𝑇 ) ∈ 𝑋𝑇 ,

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ],

𝑇 ∈ [0, 𝑇 ].

Here, 𝑇 denotes the maximal affordable control time. Minimal time problems are

obtained from the above formulation when choosing ℓ ≡ 1 and 𝑚 ≡ 0. The infinite-

dimensional linear programming counterpart of the above problem is given by the

following primal-dual pair.

inf
𝜈𝑇 ,𝜉

⟨ℓ, 𝜉⟩ + ⟨𝑚, 𝜈𝑇 ⟩

s.t. ⟨𝑤, 𝜈𝑇 ⟩ − 𝑤(0, 𝜓init) = ⟨𝒜𝑤, 𝜉⟩ , ∀𝑤 ∈ 𝒞1([0, 𝑇 ] ×𝑋),

𝜈𝑇 ∈ ℳ+([0, 𝑇 ] ×𝑋𝑇 ),

𝜉 ∈ ℳ+([0, 𝑇 ] ×𝑋 × 𝑈).

sup
𝑤

𝑤(0, 𝜓init)

s.t. 𝒜𝑤 + ℓ ≥ 0 on [0, 𝑇 ] ×𝑋 × 𝑈,

𝑚− 𝑤 ≥ 0 on [0, 𝑇 ] ×𝑋𝑇 ,

𝑤 ∈ 𝒞1([0, 𝑇 ] ×𝑋).

As before, the decision variables 𝜈𝑇 and 𝜉 admit interpretation as an occupation

measure pair, albeit with slightly modified definition. To account for the variable

control horizon 𝑇 , the instantaneous occupation measure 𝜈𝑇 is now given by

𝜈𝑇 (𝐴×𝐵) = 1𝐴×𝐵((𝑇, 𝜓(𝑇 )))
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for any Borel sets 𝐴 ⊂ [0, 𝑇 ] and 𝐵 ⊂ 𝑋𝑇 . The dual interpretation of the linear

programming approach as finding the maximal smooth HJB subsolution also remains

valid. Furthermore, by analogous arguments as for the fixed control horizon case, the

above pair of primal-dual linear programs admit tractable moment-sum-of-squares

approximations under Assumptions 6.1 and 6.2.

6.5.2 Mixed quantum states

The formulation of the open-loop quantum optimal control problem (QOCP) as well

as the associated convex bounding problems considered so far admit straightforward

extension to handling mixed quantum states. For mixed quantum states, represented

in terms of a density matrix, the open-loop quantum optimal control problem reads

inf
𝑢

∫︁ 𝑇

0
ℓ(𝑡, 𝜌(𝑡), 𝑢(𝑡)) d𝑡+𝑚(𝜌(𝑇 ))

s.t.

⎧⎪⎪⎨⎪⎪⎩
d𝜌
d𝑡 (𝑡) = −𝑖[𝐻(𝑢(𝑡)), 𝜌(𝑡)], 𝑡 ∈ [0, 𝑇 ]

𝜌(0) = 𝜌init

,

𝜌(𝑡) ∈ 𝑋 on [0, 𝑇 ],

𝜌(𝑇 ) ∈ 𝑋𝑇 ,

𝑢(𝑡) ∈ 𝑈.

Following an analogous construction as in Section 6.4, this problem may again be

conservatively approximated by a primal-dual pair of infinite-dimensional linear pro-

grams analogous to (OM-QOCP) and (HJB-QOCP), which under similar conditions

as Assumptions 6.2 and 6.1 further admit tractable moment-sum-of-squares approx-

imations. It must be noted, however, that in particular the representation of state

and terminal constraints as closed basic semialgebraic sets is more complicated in

the mixed state regime. A detailed discussion of this issue presented in Chapter 7

in the context of closed-loop control of open quantum systems where it bears greater

relevance.
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6.5.3 Gate design

Quantum gates are the elementary building blocks for programs in the circuit model

of quantum computation [102]. As such, their design is essential for a practical real-

ization of general purpose quantum computers. Mathematically, a quantum gate rep-

resents a unitary transformation, and its application to a quantum state is physically

realized by the unitary evolution of the state under a time-dependent Hamiltonian

according to the Schrödinger equation (6.1). The design of control protocols that

induce this evolution in minimal time is therefore essential for the development of

fast quantum computing hardware and hence a key application of open-loop quan-

tum optimal control. To apply the bounding method outlined in Section 6.4 to this

problem, we first note that the evolution of a unitary matrix 𝑉 (𝑡) under a controlled

Hamiltonian is described by

⎧⎪⎪⎨⎪⎪⎩
d𝑉
d𝑡 (𝑡) = −𝑖𝐻(𝑢(𝑡))𝑉 (𝑡), 𝑡 ∈ [0, 𝑇 ]

𝑉 (0) = 𝑉init

. (6.7)

For the sake of gate design, 𝑉init is typically taken as the identity and one seeks a con-

trol protocol that terminates in a target unitary matrix 𝑉tar at the end of the control

horizon 𝑇 . Applying such a control protocol to a system with the same controlled

Hamiltonian, which initially resides in state 𝜓, then amounts to the computation of

𝑉tar𝜓.

In the language of optimal control, the gate design problem for a target unitary

𝑉tar ∈ C𝑛×𝑛 can be stated as follows.

inf
𝑢

1 − |tr (𝑉 *
tar𝑉 (𝑇 )) |2

𝑛2

s.t. 𝑉 (𝑡) satisfies (6.7),

𝑢(𝑡) ∈ 𝑈 on [0, 𝑇 ].

Here, |tr (𝑉 *
tar𝑉 (𝑇 )) |/𝑛 is the gate fidelity which assumes its maximal value of unity

if and only if 𝑉 (𝑇 ) = 𝑉tar.
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The proposed bounding approach and all of its guarantees extend readily to the

gate design problem as it can be reduced to a state preparation problem discussed in

Section 6.3. To that end, simply consider an auxiliary 𝑛2-level quantum system with

initial and target states given by

𝜓init = 1
𝑛

⎡⎢⎢⎢⎢⎢⎣
𝑉init𝑒1

...

𝑉init𝑒𝑛

⎤⎥⎥⎥⎥⎥⎦ and 𝜓tar = 1
𝑛

⎡⎢⎢⎢⎢⎢⎣
𝑉tar𝑒1

...

𝑉tar𝑒𝑛

⎤⎥⎥⎥⎥⎥⎦ ,

and block diagonal Hamiltonian

𝐻̂(𝑢) =

⎡⎢⎢⎢⎢⎢⎣
𝐻(𝑢)

. . .

𝐻(𝑢)

⎤⎥⎥⎥⎥⎥⎦ .

Clearly, through vectorization and rescaling, the state of this auxiliary system is in

one-to-one correspondence with the unitary operation representing the gate. Sim-

ilarly, it is easily verified that Schrödinger equation with this auxiliary system is

equivalent to Equation (6.7) and that the gate fidelity coincides with the state fi-

delity.

6.6 Examples

6.6.1 State preparation and minimum time transitions

We demonstrate the efficacy of the proposed sum-of-squares-based bounding method

by mapping out the performance boundary for minimal time transition problems

under control and leakage constraints. Specifically, we compute upper bounds for the

maximum attainable fidelity given a finite control horizon. The resultant performance

boundary in turn sheds light on the minimal transition time.

Throughout, we compare the proposed sum-of-squares bounds with known quan-

tum speed limits as well as bounds furnished by the recent semidefinite programming
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(SDP)-based bounding method of Zhang et al. [21]. As representative quantum speed

limits, we compare against a practical variant of the Mandelstam-Tamm [19] and

Margolus-Levitin [122] bound. To that end, we recall the Mandelstam-Tamm bound:

𝑇min ≥ arccos |𝜓*
tar𝜓init|

Δ𝐸 ,

where Δ𝐸 refers to the time-averaged uncertainty of the system’s energy

Δ𝐸 = 1
𝑇min

∫︁ 𝑇min

0

√︁
𝜓(𝑡)*𝐻(𝑢(𝑡))2𝜓(𝑡) − (𝜓(𝑡)*𝐻(𝑢(𝑡))𝜓(𝑡))2 d𝑡.

Clearly, this quantity and hence also the Mandelstam-Tamm bound cannot be com-

puted without prior knowledge of the path of the minimal time transition. A prac-

tically computable and still guaranteed variant of the Mandelstam-Tamm bound is

therefore proposed in [21]. This variant relies on conservatively bounding the in-

stantaneous energy variance in terms of the magnitude-wise largest eigenvalue of the

system Hamiltonian 𝜆max[𝐻(𝑢)]:

𝜓(𝑡)*𝐻(𝑢(𝑡))2𝜓(𝑡) − (𝜓(𝑡)*𝐻(𝑢(𝑡))𝜓(𝑡))2 ≤ 𝜓(𝑡)*𝐻(𝑢(𝑡))2𝜓(𝑡) ≤ sup
𝑢∈𝑈

𝜆max [𝐻(𝑢)]2 .

When composed with the Mandelstam-Tamm bound, this conservative estimate yields

the valid lower bound

𝑇min ≥ arccos |𝜓*
tar𝜓init|

sup𝑢∈𝑈 𝜆max [𝐻(𝑢)]

for the minimal required transition time. Furthermore, this bound is also a conserva-

tive but practical variant of the Margolus-Levitin bound [153]

𝑇min ≥ arccos |𝜓*
tar𝜓init|

𝐸̄
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Figure 6-2: Potential energy surfaces of the three-level quantum system models sum-
marized in Table 6.1.

as 𝜆max[𝐻(𝑢)] also bounds the average energy

𝐸̄ = 1
𝑇min

∫︁ 𝑇min

0
|𝜓*

init𝐻(𝑢(𝑡))𝜓init| d𝑡

from above.

For our examples, we follow Zhang et al. [21] and consider two three-level quantum

systems with distinct features: a system in an asymmetric double-well potential [154]

and a typical transmon qubit model given by an approximately harmonic potential

with nearest level couplings [155]. The potential energy surfaces of both systems

are illustrated in Figure 6-2 and their Hamiltonians are summarized in Table 6.1.

The control goal is to drive the systems from their ground state to the first excited

state in minimal time. To map out the entire performance boundary, however, we

reformulate the minimal time transition problem as a sequence of state preparation

problems seeking to maximize the terminal probability of residing in the first excited

state, 𝑃2(𝑇 ) = |𝑒*
2𝜓(𝑇 )|2, for a range of control horizons 𝑇 .

First, we consider the unconstrained case; that is, we let 𝑋 and 𝑋𝑇 coincide with

the set of pure quantum states. For this case, Figure 6-3 compares the performance

limits established by the sum-of-squares approach proposed here, the D-matrix SDP

bound of Zhang et al. [21], and the described practical variant of the Mandelstam-

Tamm/Margolus-Levitin bound. The performance limits are further contextual-
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Table 6.1: Controlled Hamiltonians 𝐻(𝑢) = 𝐻0 + 𝑢𝐻1 for a three-level transmon
qubit and asymmetric double-well model.

Drift
Hamiltonian 𝐻0

Control field 𝐻1
Admissible
controls 𝑈

Approx. harmonic
potential [21]

⎡⎢⎣0 0 0
0 1.9 0
0 0 3.7

⎤⎥⎦
⎡⎢⎣ 0 −1 0

−1 0 −
√

2
0 −

√
2 0

⎤⎥⎦ [−0.15, 0.15]

Double-well
potential [154]

⎡⎢⎣0 0 0
0 0.1568 0
0 0 0.7022

⎤⎥⎦
⎡⎢⎣−2.5676 0.3921 0.6382

0.3921 2.3242 −0.7037
0.6382 −0.7037 −0.5988

⎤⎥⎦ [−0.3, 0.3]

ized by locally optimal trajectories obtained via gradient ascent pulse engineering

(GRAPE) [136]. For both quantum systems, it is evident that the Mandelstam-

Tamm/Margolus-Levitin bound is exceedingly conservative and not suitable to gauge

performance limits, let alone to make meaningful conclusions about optimality of a

given control protocol. The D-matrix bound provides a notably better quantification

of the performance limits, in particular at early times. From the practical perspective,

however, it is the case of long times over which a transition with near unit fidelities

can be achieved that bears the most relevance. The D-matrix bound deteriorates in

this regime. The sum-of-squares bounds proposed here, in contrast, remain within a

few percent of the maximum attainable fidelity over the entire time horizon. As such,

they provide meaningful certificates of near-global optimality for the locally optimal

trajectories.

Next, we consider the minimum time transition problem under additional max-

imal allowable leakage constraints. While allowing the quantum system to occupy

higher energy levels during transition between quantum states can enable faster state

preparation, it can also be the source of additional errors that must be detected and

corrected [145]. Designing transition protocols that balance transition time and leak-

age into undesirable states thus plays a vital role in realizing fast but fault-tolerant

quantum computation. In the considered example, we incorporate such considerations

by a seeking transition path subject to a maximal allowable leakage threshold 𝑃3,max

for the second excited state; formally, we constrain the quantum state to remain in
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Figure 6-3: Bounds for the maximum attainable fidelity for the preparation of the first
excited state. The gray lines correspond to locally optimal trajectories computed via
GRAPE [136]. The shaded area is fundamentally unattainable. The dashed black line
marks the lower bound for the minimal transition time implied by the Mandelstam-
Tamm [19] and Margolus-Levitin [20] bounds. The solid black and blue lines mark
the performance boundary implied by the D-matrix bound [21] and the proposed
sum-of-squares bound, respectively.

158



sum-of-squares bound

D-matrix bound

Figure 6-4: Upper bound for the attainable fidelity of preparing the first excited state
of a three-level transmon qubit system (see Table 6.1) under the leakage constraint
|𝑒*

3𝜓(𝑡)|2 ≤ 𝑃3,max for the second excited state. The gray-shaded area is fundamentally
not attainable. The black and blue solid lines indicate the performance boundary
implied by the D-matrix bound [21] and the proposed sum-of-squares bound.

the set

𝑋 = {𝜓 ∈ 𝐵 : |𝑒*
3𝜓|2 ≤ 𝑃3,max}

during the transition. Due to its common use for modeling quantum computation

applications, we focus here on the transmon qubit model from before (cf. Table 6.1).

Figure 6-4 compares the D-matrix [21] and sum-of-squares bounds for the maximal

achievable fidelity of the first excited state at time 𝑇 = 5 for a range of leakage

budgets. The sum-of-squares bound outperforms the D-matrix bound again notably.

6.6.2 Entanglement generation

A maximally entangled pair of qubits is a common prerequisite for quantum informa-

tion protocols [102]. Entanglement generation is consequently an important applica-

tion for quantum control. To showcase that the sum-of-squares bounding approach

159



outlined in this chapter applies to entanglement creation problems as well, we con-

sider a simple two-qubit quantum system and map out its performance boundary for

minimum time entanglement generation. To that end, we compute lower bounds for

the optimal value of (QOCP) with terminal cost

𝑚(𝜓) = −4|𝜓1𝜓4 − 𝜓2𝜓3|2

measuring entanglement by the (negative) squared concurrence [102]. The Hamilto-

nian of the considered two-qubit system is given by

𝐻(𝑢) = −1
2 (𝜎𝑧 ⊗ 𝜎𝑧 + 𝐼 ⊗ 𝜎𝑧 + 𝜎𝑧 ⊗ 𝐼) − 𝑢

2 (𝐼 ⊗ 𝜎𝑥 + 𝜎𝑥 ⊗ 𝐼) , 𝑢 ∈ [−1, 1],

where ⊗ denotes the Kronecker product, and 𝜎𝑥 and 𝜎𝑧 the Pauli matrices

𝜎𝑥 =

⎡⎢⎣0 1

1 0

⎤⎥⎦ and 𝜎𝑧 =

⎡⎢⎣1 0

0 −1

⎤⎥⎦ .
We assume the system resides initially in a separable ground state, i.e., 𝜓init = 𝑒1 ⊗𝑒1.
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Figure 6-5: Performance boundary for minimal time entanglement generation in a
two-qubit system. The gray-shaded area is fundamentally unattainable.
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Figure 6-5 compares the computed performance boundary for maximal concur-

rence generation over time with that attained by a locally optimal control protocol

(identified via GRAPE [136]). The performance boundary is quantified accurately,

thus certifying near-optimality of the control protocol obtained via local search.

6.6.3 Gate design

Motivated by its relevance for quantum computing applications, we finally consider

a gate design problem as discussed in Section 6.5. Following an example studied by

Zhang et al. [21], we consider the problem of designing a single-qubit Hadamard gate,

𝑉tar = 1√
2

⎡⎢⎣1 1

1 −1

⎤⎥⎦ ,

a common building block for essentially all quantum circuits [102]. The controlled

Hamiltonian to implement this gate is assumed to be of the form

𝐻(𝑢) = 𝜔𝜎𝑧 + 𝑢𝜎𝑥,

where 𝜎𝑥 and 𝜎𝑧 again denote the Pauli matrices. The drift parameter is chosen as

𝜔 = 0.0784 according to [154].

We quantify the best attainable gate fidelity over time. Figure 6-6 shows the

performance boundary as quantified by the proposed bounding method. The bound-

ary is again quantitatively accurate and can certify near-optimality of a given locally

optimal control protocol to high precision over the entire fidelity range.
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Figure 6-6: Performance boundary for Hadamard gate design problem. The gray-
shaded area is fundamentally unattainable.
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Chapter 7

Quantifying the limits of

closed-loop quantum control

The content of this chapter has been accepted for publication in the IEEE Transactions

on Automatic Control.

7.1 Introduction

Feedback control of devices at the quantum scale holds significant potential for cur-

rent and future applications in the field of quantum information science [146, 156].

The nonlinear and stochastic nature of quantum systems under continuous observa-

tion, however, complicates the quest for an effective deployment of feedback control

in practice [103]. While the characterization of optimal quantum feedback controllers

through the dynamic programming principle has a longstanding history, dating back

to the work of Belavkin [113] in 1988, designing such controllers by solving the quan-

tum analog of the nonlinear Hamilton-Jacobi-Bellman (HJB) equation remains, bar-

ring a few simplified situations [157–159], an elusive challenge. It is instead common

practice to rely on heuristics, often rooted in reinforcement learning, gradient-based

optimization, or expert intuition, to design quantum feedback controllers in appli-
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cations [132, 139, 160]. And although such heuristically derived control policies are

frequently found to perform remarkably well, their degree of suboptimality essen-

tially always remains unquantified, leaving uncertainty about whether any observed

performance limitations are fundamental or simply due to a suboptimal controller

design. In this section, we construct a method to bring clarity to such situations by

computing informative bounds on the best attainable performance for a wide range

of quantum feedback control problems. These bounds may serve as certificates of op-

timality, witnesses of fundamental limitations, or performance targets and, as such,

complement controller design heuristics.

The key insight to enable our construction is that quantum filtering theory re-

duces the problem of optimal feedback control of continuously observed quantum

systems to the optimal control of structured jump-diffusion processes. Therefore, by

combining quantum filtering theory with the (local) occupation measure framework

described in Chapter 3, we devise a method for computing informative bounds on

the best attainable feedback control performance for a rich class of quantum sys-

tems via the moment-sum-of-squares hierarchy. We establish conditions under which

the bounds converge to the true optimal control performance and discuss extensions

of this method to account for measurement imperfections and decoherence due to

non-observed decay channels.

The remainder of this Chapter is structured as follows. In Section 7.2, we define

the class of quantum feedback control problems under consideration and discuss key

assumptions. Our main contribution, the construction and convergence analysis of a

hierarchy of increasingly tight convex bounding problems for the best attainable quan-

tum feedback control performance, is presented in Section 7.3. Section 7.4 discusses

a heuristic for the construction of near optimal control policies as well as practically

relevant extensions of this hierarchy to account for infinite horizon problems, deco-

herence due to unobserved decay channels, and measurement imperfections. Finally,

we demonstrate the practical utility of the proposed bounding method with a qubit

control example in Section 7.5.
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7.2 Quantum stochastic optimal control

We consider quantum systems with a Hermitian Hamiltonian of the form

𝐻(𝑢) = 𝐻0 +
𝐾∑︁
𝑘=1

𝑢𝑘𝐻𝑘,

where 𝐻0 denotes the drift Hamiltonian of the system, and 𝐻1, . . . , 𝐻𝐾 are control

fields with tunable drives 𝑢 = [𝑢1 · · · 𝑢𝐾 ]. The control drives are assumed to be

confined to an admissible set 𝑈 ⊂ R𝐾 . To enable feedback control, we consider

systems subjected to a continuous measurement process 𝜁𝑡. Conditioned on this

measurement process, the density matrix 𝜌𝑡 encoding the state of such a system

follows stochastic dynamics described by the Quantum Filtering Equation [161]

d𝜌𝑡 = ℒ(𝑢𝑡)𝜌𝑡 d𝑡+ 𝒢𝜌𝑡 d𝜁𝑡. (QFE)

Note that, in contrast to Chapter 7, we here deliberately use the more general den-

sity matrix formalism as potential measurement imperfections or entirely unobserved

decay channels lead to classical probabilistic mixtures of quantum states [103]. For

systems of the described structure, the action of the Lindbladian ℒ(𝑢) is given by

ℒ(𝑢)𝜌 = −𝑖[𝐻(𝑢), 𝜌] +
𝐿∑︁
𝑙=1

(︂
𝜎𝑙𝜌𝜎

*
𝑙 − 1

2{𝜎*
𝑙 𝜎𝑙, 𝜌}

)︂
,

where the jump operators 𝜎𝑙 characterize the interaction between the quantum sys-

tem and its environment due to observation. We focus on systems that are subjected

to a combination of homodyne detection and photon counting measurements. For

notational convenience, we partition the index set of measurements {1, . . . , 𝐿} into

sets HD and PC, covering the homodyne detection and photon counting measure-

ments, respectively. For sake of conceptual simplicity, we further assume that there

are no measurement inefficiencies and that all measurement channels are observed,

i.e., HD∪PC = {1, . . . , 𝐿}; we comment in Section 7.4 on the necessary modifications

in the presence of unobserved decay channels or imperfect detection.
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The innovation operator 𝒢 decomposes under these assumptions into two sepa-

rate contributions associated with homodyne detection and photon counting mea-

surements, respectively:

𝒢𝜌𝑡 d𝜁𝑡 =
∑︁
𝑙∈HD

𝒢𝑙𝜌𝑡 d𝑏𝑙𝑡 +
∑︁
𝑙∈PC

𝒢𝑙𝜌𝑡 d𝑛𝑙𝑡 − ℒ𝑙𝜌𝑡 d𝑡.

Homodyne detection causes diffusive innovations described by standard Gaussian

increments d𝑏𝑙𝑡 which are in one-to-one correspondence with a measured homodyne

current [103]. The associated innovation operator acts according to

𝒢𝑙𝜌𝑡 d𝑏𝑙𝑡 = (𝜎𝑙𝜌𝑡 + 𝜌𝑡𝜎
*
𝑙 − tr (𝜎𝑙𝜌𝑡 + 𝜌𝑡𝜎

*
𝑙 ) 𝜌𝑡) d𝑏𝑙𝑡.

Photon counting, in contrast, causes a deterministic drift

ℒ𝑙𝜌𝑡 d𝑡 = (𝜎𝑙𝜌𝑡𝜎*
𝑙 − tr (𝜎𝑙𝜌𝑡𝜎*

𝑙 ) 𝜌𝑡) d𝑡.

and leads to discrete innovations upon detection of photon emissions as described

by Poisson counters 𝑛𝑙𝑡 which fire at rate 𝜆𝑙(𝜌) = tr (𝜎𝑙𝜌𝜎*
𝑙 ) [103]. Conditioned on

the measurement of an emitted photon, the state of the system jumps to ℎ𝑙(𝜌) =

𝜎𝑙𝜌𝜎
*
𝑙 /tr (𝜎𝑙𝜌𝜎*

𝑙 ). The associated innovation operator accordingly acts as

𝒢𝑙𝜌𝑡 d𝑛𝑙𝑡 = (ℎ𝑙(𝜌𝑡) − 𝜌𝑡) d𝑛𝑙𝑡.

As it will be relevant throughout, it is worth noting here that the dynamics de-

scribed by (QFE) inherently preserve purity of the (conditioned) quantum state due

to the assumed complete and lossless observation of all measurement channels.

Lemma 7.1. The set of pure quantum states

𝐵 =
{︁
𝜌 ∈ C𝑛×𝑛 : 𝜌* = 𝜌, tr (𝜌) = tr

(︁
𝜌2
)︁

= 1
}︁

is invariant under the dynamics (QFE).
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Table 7.1: Common quantum feedback control problems as special cases of (QSOCP).

Control task Stage cost ℓ(𝜌𝑡, 𝑢𝑡) Terminal cost 𝑚(𝜌𝑇 )
State preparation 0 1 − 𝜓*

tar𝜌𝑇𝜓tar

State stabilization 1 − 𝜓*
tar𝜌𝑡𝜓tar 0

State purification tr (𝜌2
𝑡 ) 0

Entanglement creation1 0 1 − tr (𝜌2
𝑇 )

1 𝜌𝑇 denotes the reduced density matrix for a given subsystem [162]

Proof. Applying Itô’s lemma to (QFE) shows that

d [tr (𝜌𝑡)] = d
[︁
tr
(︁
𝜌2
𝑡

)︁]︁
= 0

if 𝜌0 ∈ 𝐵. Moreover, the right-hand side of (QFE) maps Hermitian matrices into

Hermitian matrices.

Given the described abstraction of feedback-controlled quantum systems under

continuous observation, we now turn to the task of computing guaranteed lower

bounds on the best attainable feedback control performance as characterized by the

quantum stochastic optimal control problem

𝐽* = inf
𝑢𝑡

E
[︃∫︁ 𝑇

0
ℓ(𝜌𝑡, 𝑢𝑡) d𝑡+𝑚(𝜌𝑇 )

]︃
(QSOCP)

s.t. 𝜌𝑡 satisfies (QFE) on [0, 𝑇 ] with 𝜌0 ∼ 𝜈0,

𝑢𝑡 ∈ 𝑈 is non-anticipative on [0, 𝑇 ].

Here, ℓ and 𝑚 frame the control task by encoding the control performance in terms

of an accumulating stage and terminal cost, respectively. Several common quantum

feedback control tasks alongside the associated cost functions are listed in Table 7.1,

showcasing the versatility of the formulation (QSOCP).

To ensure the well-posedness and tractability of the bounding problems for (QSOCP)

as will be derived in the following section, we finally make some assumptions on the

nature of the initial state of the quantum system, the representation of control con-
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straints and cost functions, as well as the structure of photon counting measurements.

Assumption 7.1. The initial distribution 𝜈0 of the quantum state satisfies supp 𝜈0 ⊂

𝐵, i.e., the initial state is guaranteed to be pure albeit potentially uncertain.

Assumption 7.2. The set of admissible control actions 𝑈 is a compact and basic

closed semialgebraic set, i.e., there exist polynomials 𝒰 = {𝑞1, . . . , 𝑞𝑟} such that 𝑈 =

{𝑢 ∈ R𝐾 : 𝑞(𝑢) ≥ 0,∀𝑞 ∈ 𝒰} is compact. We refer to 𝒰 as the control constraints.

Assumption 7.3. The cost functions ℓ and 𝑚 are polynomials.

Assumption 7.4. The jump operators 𝜎𝑙 with 𝑙 ∈ PC are such that ℎ𝑙(𝜌) is a poly-

nomial of degree at most one.

Assumption 7.1 ensures that the quantum state, conditioned on the measurements,

remains pure as per Lemma 7.1 and thus confined to a basic closed semialgebraic

set. Assumptions 7.2 – 7.4 guarantee further that the dynamics (QFE) and control

problem (QSOCP) are described entirely by polynomials and thus establish the basis

for application of the semialgebraic and moment-sum-of-squares to derive tractable

bounding problems.

It is worth emphasizing that, while Assumptions 7.1 – 7.3 are extremely mild and

may even be relaxed (see Section 7.4), Assumption 7.4 is more limiting. Notwith-

standing, it remains consistent with many practically relevant photon counting mea-

surement setups; for example, measurements associated with unitary jump operators

or measurements that cause a jump to the same quantum state independent of the

state the photon emission occurred in.

7.3 A convex bounding approach

To construct computable bounds on the optimal value of (QSOCP), we follow the

construction of Chapter 3. For sake of brevity, we focus here exclusively on the

dual perspective of constructing (polynomial) subsolutions to the Hamilton-Jacobi-

Bellman equations. To that end, we draw on the dynamic programming heuristic,
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which asserts that the value function associated with (QSOCP), i.e., the minimal

cost-to-go

𝑉 (𝑡, 𝜌) = inf
𝑢𝑠

E
[︃∫︁ 𝑇

𝑡
ℓ(𝜌𝑠, 𝑢𝑠) 𝑑𝑠+𝑚(𝜌𝑇 )

]︃
(7.1)

s.t. 𝜌𝑠 satisfies (QFE) on [𝑡, 𝑇 ] with 𝜌𝑡 ∼ 𝛿𝜌,

𝑢𝑠 ∈ 𝑈 is non-anticipative on [𝑡, 𝑇 ],

satisfies the Hamilton-Jacobi-Bellman (HJB) equation [73]:

⎧⎪⎪⎨⎪⎪⎩
inf
𝑢∈𝑈

𝒜𝑉 (·, ·, 𝑢) + ℓ(·, 𝑢) = 0 on [0, 𝑇 ) ×𝐵,

𝑉 (𝑇, ·) = 𝑚 on 𝐵.

Here, 𝒜 denotes to the infinitesimal generator [73] associated with the process (QFE);

the action of 𝒜 on a smooth observable 𝑤 ∈ 𝒞1,2([0, 𝑇 ] ×𝐵) is given by

𝒜𝑤(𝑡, 𝜌, 𝑢) =𝜕𝑤
𝜕𝑡

(𝑡, 𝜌) + ⟨ℒ̃(𝑢)𝜌,∇𝜌𝑤(𝑡, 𝜌)⟩ (7.2)

+ 1
2
∑︁
𝑙∈HD

⟨𝒢𝑙𝜌,∇2
𝜌𝑤(𝑡, 𝜌) 𝒢𝑙𝜌⟩

+
∑︁
𝑙∈PC

𝜆𝑙(𝜌) (𝑤(𝑡, ℎ𝑙(𝜌)) − 𝑤(𝑡, 𝜌)) ,

where ℒ̃(𝑢) = ℒ(𝑢) − ∑︀
𝑙∈𝑃𝐶 ℒ𝑙 is the effective drift operator associated with the

control action 𝑢. Note that, due to Assumption 7.1, it suffices to solve the HJB

equation on [0, 𝑇 ] × 𝐵 as 𝐵 is invariant under (QFE) as per Lemma 7.1 and thus

constitutes the effective state space of the quantum system.

While the HJB equation is a nonlinear partial differential equation which is ex-

tremely difficult to solve even for low-dimensional systems, we can cast the search

for a smooth HJB subsolution as a convex, albeit infinite-dimensional, optimization
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problem:

sup
𝑤∈𝒞1,2([0,𝑇 ]×𝐵)

∫︁
𝐵
𝑤(0, ·) d𝜈0 (sub-HJB)

s.t. 𝒜𝑤 + ℓ ≥ 0 on [0, 𝑇 ] ×𝐵 × 𝑈,

𝑚− 𝑤(𝑇, ·) ≥ 0 on 𝐵.

Lemma 7.2. Any feasible point 𝑤 of (sub-HJB) underestimates the value function

(7.1) on [0, 𝑇 ] × 𝐵 and so
∫︀
𝐵 𝑤(0, ·) d𝜈0 underestimates the best attainable control

performance 𝐽*.

Proof. At 𝑡 = 𝑇 , feasibility of 𝑤 implies that 𝑤(𝑇, ·) ≤ 𝑉 (𝑇, ·) = 𝑚 on 𝐵. Now

consider any time 0 ≤ 𝑡 < 𝑇 , any state 𝜌 ∈ 𝐵, and any feedback controller {𝑢𝑠}𝑠∈[𝑡,𝑇 ]

admissible on [𝑡, 𝑇 ]. By feasibility of 𝑤, it follows that for 𝜌𝑡 ∼ 𝛿𝜌,

E
[︃∫︁ 𝑇

𝑡
ℓ(𝜌𝑠, 𝑢𝑠) 𝑑𝑠+𝑚(𝜌𝑇 )

]︃
≥ E

[︃∫︁ 𝑇

𝑡
−𝒜𝑤(𝑠, 𝜌𝑠, 𝑢𝑠) 𝑑𝑠+ 𝑤(𝑇, 𝜌𝑇 )

]︃
= 𝑤(𝑡, 𝜌),

where we used Dynkin’s formula [74] in the last step. Finally, taking the infimum of

the left-hand side over all admissible controllers establishes that 𝑉 (𝑡, 𝜌) ≥ 𝑤(𝑡, 𝜌).

The infinite-dimensional nature of (sub-HJB) renders its immediate practical value

rather limited. We therefore proceed by constructing tractable finite dimensional

restrictions of (sub-HJB) using the moment-sum-of-squares hierarchy. To that end,

we restrict the optimization to polynomials of fixed maximum degree 𝑑 instead of

arbitrary smooth functions and further strengthen the non-negativity constraints in

(sub-HJB) to sufficient sum-of-squares constraints. For this restriction to be well-

posed and tractable, we must ensure that the left-hand side of the non-negativity

constraints in (sub-HJB) are polynomials and that non-negativity is imposed on closed

basic semialgebraic sets. The latter is guaranteed by Assumption 7.2 and the fact

that 𝐵 is basic closed semialgebraic. The former follows from Assumptions 7.3, 7.4,

and the following result.
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Lemma 7.3. Under Assumption 7.4, the infinitesimal generator 𝒜 [cf. Equation

(7.2)] maps polynomials to polynomials.

Proof. Let 𝑤 be a polynomial. Then, 𝜕𝑤
𝜕𝑡
,∇𝜌𝑤, and ∇2

𝜌𝑤 are componentwise poly-

nomials as polynomials are closed under differentiation. Further note that ℒ̃(𝑢)𝜌,

𝒢𝑙𝜌, 𝜆𝑙(𝜌), and by Assumption 7.4 also ℎ𝑙(𝜌), are componentwise polynomials. Since

polynomials are also closed under addition, multiplication, and composition, it thus

follows that ⟨ℒ̃(𝑢)𝜌,∇𝜌𝑤(𝑡, 𝜌)⟩, ⟨𝒢𝑙𝜌,∇2
𝜌𝑤(𝑡, 𝜌) 𝒢𝑙𝜌⟩, and 𝜆𝑙(𝜌) (𝑤(𝑡, ℎ𝑙(𝜌)) − 𝑤(𝑡, 𝜌))

are polynomials and therefore so is 𝒜𝑤.

The resultant sum-of-squares restriction of (sub-HJB) reads

𝐽*
𝑑 = sup

𝑤𝑑∈R𝑑[𝑡,𝜌]

∫︁
𝐵
𝑤𝑑(0, ·) d𝜈0 (sos-HJB𝑑)

s.t. 𝒜𝑤𝑑 + ℓ ∈ 𝑄𝑑+2 (𝒯 ∪ ℬ ∪ 𝒰) ,

𝑚− 𝑤𝑑(𝑇, ·) ∈ 𝑄𝑑 (ℬ) ,

where we use 𝑄𝑑 (𝒮) to refer to the bounded-degree quadratic modulus associated

with a set of polynomials 𝒮 = {𝑠1, . . . , 𝑠𝑝} (see Definition 2.15).

The set of control constraints 𝒰 is defined as in Assumption 7.2. The sets 𝒯 and ℬ

similarly denote collections of polynomial constraints whose non-negativity describe

the sets [0, 𝑇 ] and 𝐵, respectively. There is not a unique choice for these constraints,

so we make the following choice which endows the sequence of restrictions (sos-HJB𝑑)

with favorable convergence guarantees as shown later.

Assumption 7.5. For the construction of (sos-HJB𝑑) we choose 𝒯 = {𝑡, 𝑇 − 𝑡} so

that [0, 𝑇 ] = {𝑡 ∈ R : 𝑝(𝑡) ≥ 0, ∀𝑝 ∈ 𝒯 }. Moreover, to keep the computational

burden associated with solving (sos-HJB𝑑) at a minimum, we explicitly eliminate the

symmetry and unit trace constraints in 𝐵 and represent density matrices only in

terms of the remaining degrees of freedom, i.e., Re(𝜌𝑖𝑖), for 1 ≤ 𝑖 < 𝑛, and 𝜌𝑖𝑗, for

1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The set of such reduced density matrix representations will be denoted

by 𝐷. In the following, we abuse notation and refer to reduced representations simply
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by 𝜌 ∈ 𝐷. In these reduced coordinates, the set of pure density matrices 𝐵 is given

by a single polynomial equality constraint

tr
(︁
𝜌2
)︁

=
(︃

1 −
𝑛−1∑︁
𝑖=1

Re(𝜌𝑖𝑖)
)︃2

+
𝑛−1∑︁
𝑖=1

Re(𝜌𝑖𝑖)2 + 2
∑︁

1≤𝑖<𝑗≤𝑛
|𝜌𝑖𝑗|2 = 1. (7.3)

Accordingly, we let ℬ = {1 − tr (𝜌2) , tr (𝜌2) − 1} so that 𝐵 = {𝜌 ∈ 𝐷 : 𝑝(𝜌) ≥ 0, ∀𝑝 ∈

ℬ}.

The hierarchical structure of Problem (sos-HJB𝑑) described in the following corol-

lary is desirable from a practical point of view as it allows to trade off more compu-

tation for tighter bounds.

Corollary 7.1. Any feasible point 𝑤𝑑 of Problem (sos-HJB𝑑) underestimates the value

function (7.1) on [0, 𝑇 ] ×𝐵 and as such
∫︀
𝐵 𝑤𝑑(0, ·) d𝜈0 underestimates 𝐽*. Moreover,

the optimal values 𝐽*
𝑑 form a monotonically increasing sequence.

Proof. Any feasible point of Problem (sos-HJB𝑑) is also feasible for (sub-HJB) so

underestimates the value function by Lemma 7.2. Since 𝑄𝑑 (𝒮) ⊂ 𝑄𝑑+1 (𝒮) for any

set of polynomials 𝒮, it follows that (sos-HJB𝑑+1) is a relaxation of (sos-HJB𝑑) and

hence 𝐽*
𝑑+1 ≥ 𝐽*

𝑑 .

A natural question that arises from Corollary 7.1 is if the bound 𝐽*
𝑑 approaches the

true optimal value 𝐽* as the degree 𝑑 is increased. In the following, we make a first

step toward analyzing this convergence question. Specifically, we prove convergence

whenever (QSOCP) admits a smooth value function and the control constraints satisfy

Putinar’s condition (see Definition 2.16).

First, we observe that the polynomials that frame Problem (sos-HJB𝑑) naturally

satisfy Putinar’s condition as long as the control constraints do.

Lemma 7.4. The set ℬ as defined in Assumption 7.5 satisfies Putinar’s condition.

If further the set of control constraints 𝒰 satisfies Putinar’s condition, then so does

the set 𝒯 ∪ ℬ ∪ 𝒰 .
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Proof. From the description in Assumption 7.5, it is easily verified that ℬ satisfies

Putinar’s condition since Equation (7.3) yields for 𝜌 ∈ 𝐷 that

1 −
𝑛−1∑︁
𝑖=1

Re(𝜌𝑖𝑖)2 −
∑︁

1≤𝑖<𝑗≤𝑛
|𝜌𝑖𝑗|2 =

(︃
1 −

𝑛−1∑︁
𝑖=1

Re(𝜌𝑖𝑖)
)︃2

+
∑︁

1≤𝑗<𝑗≤𝑛
|𝜌𝑖𝑗|2 + 1 − tr

(︁
𝜌2
)︁
.

The right-hand side of the relation above is clearly an element of𝑄2 (ℬ) as the first two

terms are sums of squares and the last term 1 − tr (𝜌2) is an element of ℬ. Further, 𝒯

satisfies Putinar’s condition as it is a set of degree one polynomials defining a bounded

polyhedron [42]. Finally note that 𝑎 ∈ 𝑄𝑑 (𝒯 ), 𝑏 ∈ 𝑄𝑑 (ℬ), 𝑐 ∈ 𝑄𝑑 (𝒰) implies that

𝑎 + 𝑏 + 𝑐 ∈ 𝑄𝑑 (𝒯 ∪ ℬ ∪ 𝒰) as 𝒯 , ℬ, and 𝒰 are comprised of polynomials in distinct

variables. The conclusion follows.

With this in hand, the convergence of the bounds furnished by (sos-HJB𝑑) can

be established by application of Putinar’s Positivstellensatz [40] according to the

following theorem.

Theorem 7.1. If the value function (7.1) is 𝒞1,2([0, 𝑇 ] × 𝐵) and the set of control

constraints 𝒰 satisfies Putinar’s condition, then 𝐽*
𝑑 ↑ 𝐽*.

Proof. Let 𝜖 > 0 and recall that on a compact set any continuously differentiable

function and its (partial) derivatives can be approximated uniformly by a polynomial

and its derivatives [23]. Therefore, there exists a polynomial 𝑤 such that

‖𝑉 − 𝑤‖∞, ‖𝒜𝑉 − 𝒜𝑤‖∞ < 𝜖,

where ‖ · ‖∞ refers to the sup norm on the respective the domains, [0, 𝑇 ] × 𝐵 and

[0, 𝑇 ]×𝐵×𝑈 . Under the assumed smoothness of the value function 𝑉 , it is well-known

that 𝑉 satisfies the HJB equation (see e.g. [73, Thm. 3.1]) and thus in particular it

holds that

𝒜𝑉 + ℓ ≥ 0 on [0, 𝑇 ] ×𝐵 × 𝑈,

𝑚− 𝑉 (𝑇, ·) ≥ 0 on 𝐵.
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Now consider 𝑤̂ = 𝑤 + 2𝜖(𝑡− 𝑇 − 1) and note that, by construction, 𝒜𝑤̂ = 𝒜𝑤 + 2𝜖

and 𝑤̂(𝑇, ·) = 𝑤(𝑇, ·) − 2𝜖. It follows that

𝒜𝑤̂ + ℓ ≥ 𝒜𝑉 + ℓ+ 𝜖 > 0 on [0, 𝑇 ] ×𝐵 × 𝑈,

𝑚− 𝑤̂(𝑇, ·) ≥ 𝑚− 𝑉 (𝑇, ·) + 𝜖 > 0 on 𝐵.

By Lemma 7.4, Putinar’s Positivstellensatz [40, Lemma 4.1] therefore guarantees for

sufficiently large 𝑑 that 𝒜𝑤̂+ ℓ ∈ 𝑄𝑑+2 (𝒯 ∪ ℬ ∪ 𝒰) and likewise 𝑚− 𝑤̂(𝑇, ·) ∈ 𝑄𝑑 (ℬ)

such that 𝑤̂ is feasible for (sos-HJB𝑑). The result follows by noting that

𝐽* − 𝐽*
𝑑 ≤

∫︁
𝐵

|𝑉 (0, ·) − 𝑤̂(0, ·)| d𝜈0

≤ max
𝜌∈𝐵

|𝑉 (0, 𝜌) − 𝑤(0, 𝜌)| + |2𝜖(𝑇 + 1)|

< (2𝑇 + 3)𝜖.

Remark 7.1. It should be emphasized that the assumption that (QSOCP) admits a

smooth value function is by no means weak and, even if satisfied, generally not easily

verified. Theorem 7.1 is only a first step toward establishing a formal basis for our

empirical observation that the bounds in fact often do appear tight. Related work [5,

6, 46] suggests that the conditions under which convergence can be guaranteed may be

substantially relaxed.

We conclude this section with a few remarks about the practicality of the derived

bounding problems. First, the local occupation measure framework proposed in Chap-

ter 3 provides straightforward generalizations of the bounding problems constructed

here. And although these generalizations add little conceptual depth from the per-

spective of quantum control, they boost the practicality of the general approach. By

considering piecewise polynomial value function underapproximators, the local occu-

pation measure framework provides more fine-grained control over the construction

of tighter and numerically better conditioned bounding problems. Second, the sum-
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of-squares bounding problems (sos-HJB𝑑) (as well as their generalizations derived

from the local occupation measure framework) are equivalent to finite semidefinite

programs (SDP) [30, 44]. As such, they are readily solved by a range of powerful

off-the-shelf available solvers [33–35, 163–165]. Finally, these SDPs can further be

automatically constructed from symbolic representations of the underlying sum-of-

squares programs by openly available optimization modeling tools [45, 77, 78, 166].

7.4 Extensions

7.4.1 Infinite horizon problems

While we detailed our analysis for the finite horizon problem (QSOCP), one can

construct analogous bounding problems for (discounted) infinite horizon problems.

Specifically, it suffices to note that for control objectives of the form

E
[︂∫︁ ∞

0
𝑒−𝛾𝑡ℓ(𝜌𝑡, 𝑢𝑡) d𝑡

]︂

with discount rate 𝛾 > 0 a global value function underestimator 𝑒−𝛾𝑡𝑤 is obtained

from any smooth function 𝑤 ∈ 𝒞1,2([0,∞) ×𝐵) that satisfies

𝒜𝑤 − 𝛾𝑤 + ℓ ≥ 0 on [0,∞) ×𝐵 × 𝑈.

This conclusion follows by analogous arguments as in the proof of Lemma 7.2 after

noting that

𝒜(𝑒−𝛾𝑡𝑤) = 𝑒−𝛾𝑡 (𝒜𝑤 − 𝛾𝑤) .

It is thus straightforward to adapt the hierarchy of the bounding problems (sos-HJB𝑑)

to furnish valid bounds on the best attainable control performance for discounted

infinite horizon problems.
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7.4.2 Decoherence and mixed initial states

The relaxation of Assumption 7.1 to mixed initial quantum states or the consideration

of unobserved decay channels is possible at the expense of introducing additional

conservatism. For initially mixed quantum states or unobserved decay channels, the

purity of the quantum state can no longer be guaranteed. (sub-HJB), however, still

characterizes valid bounds when the constraints are enforced on the set of all mixed

quantum states

𝐵̄ =
{︁
𝜌 ∈ C𝑛×𝑛 : 𝜌 = 𝜌*, tr (𝜌) = 1, 𝜓*𝜌𝜓 ≥ 0 ∀𝜓 ∈ C𝑛

}︁
.

As 𝐵̄ can be defined by a finite set of polynomial inequality constraints, the resulting

problem in principle also admits valid sum-of-squares restrictions akin to (sos-HJB𝑑).

However, these restrictions are typically deemed impractical. Representing the posi-

tivity requirement for density matrices in terms of polynomial inequalities necessitates

enforcing the non-negativity of all its principal minors, as dictated by Sylvester’s

criterion. The large number and high degree of the associated polynomials render

the corresponding sum-of-squares restrictions computationally cumbersome. A more

practical approach is to impose the constraints in (sub-HJB) instead on a simpler

closed basic semialgebraic overapproximation of 𝐵̄; for example,

𝐵̃ =
{︁
𝜌 ∈ C𝑛×𝑛 : 𝜌* = 𝜌, tr (𝜌) = 1, tr

(︁
𝜌2
)︁

≤ 1
}︁
.

This modification potentially introduces additional conservatism as 𝐵̃ is a strict super-

set of 𝐵̄ but leads to practical sum-of-squares restrictions. Moreover, the restriction

𝐵̃ can be refined flexibly by adding additional constraints of the form 𝜓*𝜌𝜓 ≥ 0 for

any number of fixed state vectors 𝜓 ∈ C𝑛.

7.4.3 Imperfect measurements

So far we have assumed lossless or perfect homodyne and photon counting measure-

ments. In practice, however, various factors lead to imperfect detection [103]. While
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in most such cases the bounds furnished by (sos-HJB𝑑) will remain valid due to the

simple fact that additional losses typically lead to more stringent performance limita-

tions, it is often of interest to quantify explicitly the limitations induced by measure-

ment imperfections. The presented bounding method extends naturally to this task.

To that end, it is necessary to account for measurement inefficiencies in (QFE). For

homodyne measurements with efficiency 𝜂 ∈ [0, 1], the innovation operator in (QFE)

acts according to

𝒢𝑙𝜌 = 𝜂(𝜎𝑙𝜌𝑡 + 𝜌𝜎*
𝑙 − tr (𝜎𝑙𝜌𝑡 + 𝜌𝜎*

𝑙 ) 𝜌),

and for inefficient photon detection, the drift operator ℒ𝑙 must be modified to

ℒ𝑙𝜌 = 𝜂 (𝜎𝑙𝜌𝜎*
𝑙 − tr (𝜎𝑙𝜌𝜎*

𝑙 ) 𝜌𝑡)

alongside the arrival rate of the driving Poisson counter which decays to 𝜆𝑙(𝜌) =

𝜂 tr (𝜎𝑙𝜌𝜎*
𝑙 ) [103, Section 4.8]. It is easily observed that under these modifications

the conclusion of Lemma 7.3 remains valid. Given imperfect measurements (𝜂 < 1),

however, the conclusion of Lemma 7.1 no longer holds and initially pure quantum

states no longer remain pure as they evolve under the dynamics (QFE). As a conse-

quence, the set of pure quantum states 𝐵 in (sub-HJB) must be replaced by a basic

semialgebraic overapproximation of the set of mixed states as discussed in Section

7.4.2.

7.4.4 Extraction of heuristic controllers

Bounds computed via (sos-HJB𝑑) may be used to verify the near-optimality of any

given control policy. As such, the proposed bounding method complements heuristic

approaches for the design of control policies. The solution of (sos-HJB𝑑), however, can

also be used to inform controller design directly. At the optimal point of (sos-HJB𝑑),

the optimization variable 𝑤𝑑 approximates by construction the best possible polyno-

mial underapproximator of the value function. Thus, it is reasonable to treat 𝑤𝑑 as a
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proxy for the value function [47, 53] and construct a heuristic controller by greedily

descending on 𝑤𝑑 along the trajectory, i.e.,

𝑢*
𝑡 (𝜌) ∈ arg min

𝑢∈𝑈
𝒜𝑤𝑑(𝑡, 𝜌, 𝑢) + ℓ(𝜌, 𝑢). (7.4)

The above requires minimization of a polynomial over the set of admissible control

actions 𝑈 , which is only expected to be tractable in the case of one or few control

inputs. Otherwise, we argue that the inherently heuristic nature of this construction

may justify the use of fast heuristics to find local or approximate minimizers instead,

for example by relying on recent advances in machine learning [167, 168].

7.5 Example

We finally demonstrate the utility of the proposed bounding method for the problem

of stabilizing the state of a qubit in a cavity [139]. Figure 7-1 shows a schematic of

the associated control loop.

continuous 
measurements

controller
quantum 

�lter

qubit in cavity

Figure 7-1: Closed-loop controlled qubit in a cavity subjected to continuous measure-
ments.

The Hamiltonian of the qubit is given by

𝐻(𝑢) = Δ
2 𝜎𝑧 + Ω

2 𝑢𝜎𝑥,
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where

𝜎𝑥 =

⎡⎢⎣0 1

1 0

⎤⎥⎦ and 𝜎𝑧 =

⎡⎢⎣1 0

0 −1

⎤⎥⎦
denote the Pauli matrices. To enable feedback, we assume that the qubit is subjected

to continuous measurements associated with the jump operator

𝜎 = 𝜅

⎡⎢⎣0 0

1 0

⎤⎥⎦ .
Note that such a measurement conforms with Assumption 7.4. The parameters are

chosen as Δ = Ω = 5 and 𝜅 = 1; the set of admissible control actions is 𝑈 = [−1, 1].

In the following, we consider a realization of the measurements through homodyne

detection and photon counting setups and contrast the two.

The objective of the control problem is to stabilize the excited state 𝜓tar = [1 0]*

with minimal expected infidelity (viz. maximum expected fidelity)

E
[︃∫︁ 𝑇

0
1 − 𝜓*

tar𝜌𝑡𝜓tar d𝑡
]︃
.

The qubit is assumed to reside initially in its ground state 𝜓0 = [0 1]* and the

distribution of the initial state in density matrix form is hence given by 𝜈0 = 𝛿𝜓0𝜓
*
0
.

For the implementation of the presented bounding method, we relied on the opti-

mization ecosystem in Julia. Specifically, we used the packages MarkovBounds.jl [45]

and SumOfSquares.jl [77] to assemble the bounding problems and pass the resultant

SDPs via the MathOptInterface [78] to Mosek v10 [33]. All computations were per-

formed on a MacBook M1 Pro with 16GB unified memory.

Table 7.2 summarizes upper bounds for the maximal average fidelity attainable

with both measurement setups as obtained by solving the bounding problems (sos-HJB𝑑)

for increasing degree 𝑑. The bounds are clearly non-trivial and suggest to be in-

formative even for moderate degrees. To emphasize this point, we further con-

structed heuristic controllers for both measurement setups from the optimal solution
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Table 7.2: Performance bounds for feedback controlled qubit in a cavity subjected to
homodyne detection and photon counting measurements.

Homodyne detection

Degree 𝑑 Fidelity bound Computational time [s]
2 0.8502 0.008
4 0.8111 0.078
6 0.7973 0.64
8 0.7893 5.0
10 0.7856 27.9

Best known fidelity: 0.7750

Photon counting

Degree 𝑑 Fidelity bound Computational time [s]
2 0.9602 0.0043
4 0.7497 0.031
6 0.7153 0.180
8 0.6902 1.67
10 0.6798 14.9

Best known fidelity: 0.6547

of (sos-HJB4) as described in Section 7.4.4. Their empirical performance serves as an

achievable lower bound for the best attainable mean fidelity. Figure 7-2 shows the

mean fidelity and noise level attained by both controllers, alongside a visualization of

the associated control policy as a function of the polarisations of the quantum state.

The controllers achieve mean fidelities of 77.50 % and 65.47 % (ensemble averages over

10,000 sample trajectories) for the homodyne detection and photon counting setup,

respectively. Against the backdrop of the computed bounds, the controllers are thus

certifiably near-optimal, showcasing the practical utility of the proposed bounding

method.

An interesting spillover of this example is that, barring (highly unlikely) major sta-

tistical errors in the estimates of the fidelity attained by the heuristic controllers, this

case study constitutes a computational proof that under the assumed circumstances

a homodyne detection setup allows for strictly and significantly greater average mean
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Figure 7-2: Fidelity of the closed-loop controlled qubit alongside a visualization of
the heuristic controller at 𝑡 = 5 in the x-y plane of the Bloch sphere for homodyne
(a,b) and photon counting measurements (c,d). Mean trace and standard deviation
band are shown in blue. A representative sample path is shown in black.

fidelity than photon counting. This demonstrates that the proposed bounding method

may indeed provide relevant insights for the design of quantum devices.

7.6 Conclusion

We have showed in Part II of this thesis that viewing controlled quantum systems

through the lens of occupation measures and combining this perspective with moment-

sum-of-squares techniques yields a powerful approach for revealing the limits of quan-

tum control at large. For the case of open-loop quantum control, we have established

mild conditions under which this approach is capable of mapping out the performance

boundary for various common open-loop quantum control tasks to arbitrary precision.

By combining it further with quantum filtering theory, we have presented the first

ever technique for bounding the best attainable feedback control performance for a

broad class of quantum systems subjected to continuous measurements. Convergence

of the bound sequence to the true optimal feedback control performance was proved
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under technical conditions.

Our theoretical considerations are complemented by demonstrations of the pro-

posed bounding methods on a range of quantum systems and control tasks, both

open- and closed-loop. In all cases, we have found that the established bounds are

tight or nearly so. Moreover, for open-loop controlled quantum systems, the ob-

tained bounds were found to provide distinct improvements over performance limits

implied by quantum speed limits such as the celebrated Mandelstam-Tamm [19] and

Margolus-Levitin [20] bounds as well as other more recent algorithmic proposals [21].

Between the established theoretical guarantees and the empirically good perfor-

mance, we argue that the proposed bounding methods can have relevant implications

for the design of the next generation of quantum devices. On the one hand, they pro-

vide access to heuristic controllers alongside performance bounds which may guide

controller design or certify the optimality of a given control policy. On the other

hand, the bounds may serve as witnesses of fundamental limitations and so inform

design decisions at an early stage.
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Part III

Dynamical low-rank approximation
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Chapter 8

Robust dynamical low-rank

approximation for nonlinear matrix

differential equations

8.1 Introduction

We consider the task of approximating the solution of intractably large matrix-valued

initial value problems (IVPs),

⎧⎪⎪⎨⎪⎪⎩
𝑋̇(𝑡) = 𝐹 (𝑋(𝑡), 𝑡), 𝑡 ∈ [0, 𝑇 ]

𝑋(0) = 𝑋0 ∈ R𝑛×𝑚
, (8.1)

with a nonlinear vector field 𝐹 : R𝑛×𝑚 × [0, 𝑇 ] → R𝑛×𝑚. Many tasks in computa-

tional and engineering science involve, boil down to, are well-approximated by, or can

be recast as such problems; for instance, the solution of high-dimensional ordinary

(ODE) and partial differential equation (PDE) models [169–173], forward propagation

of uncertainties through such models [174–178], filtering and smoothing problems in

high-dimensions [179, 180], the training of machine learning models [181, 182], com-

pression of matrix-valued data streams [183], and sensitivity analysis [184, 185] to list

only a few.
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Dynamical low-rank approximation (DLRA) [186] offers a systematic framework

for computing a rank-𝑟 approximation for the solution of the IVP (8.1). To that end,

DLRA seeks the solution of the auxiliary problem

⎧⎪⎪⎨⎪⎪⎩
˙̂
𝑋(𝑡) = Π𝒯ℳ𝑟 (𝑋̂(𝑡))𝐹 (𝑋̂(𝑡), 𝑡), 𝑡 ∈ [0, 𝑇 ]

𝑋̂(0) = Πℳ𝑟𝑋0,

(8.2)

where ℳ𝑟 refers to the manifold of rank-𝑟 𝑛 × 𝑚 matrices, 𝒯ℳ𝑟(𝑌 ) to its tangent

space at the point 𝑌 ∈ ℳ𝑟, and Π𝒳 to orthogonal projection onto the manifold 𝒳 .

Intuitively, Equation (8.2) greedily minimizes the error accumulation rate incurred by

approximating the solution of the IVP (8.1) in the low-rank manifold – an approach

also known as the Dirac-Frenkel variational principle [187, 188]. By construction, the

solution 𝑋̂ of the IVP (8.2) can therefore be viewed as a rank-𝑟 approximation to the

full solution 𝑋 of the original IVP (8.1).

Due to the reduced complexity of representing and processing low-rank matrices,

DLRA often yields tractable approximations when solving the full problem is out

of computational reach. The greatest potential for recovering tractability is realized

when the vector field 𝐹 (and its projection onto the tangent bundle of the low-rank

manifold) can be evaluated more efficiently by exploiting low-rank structure in its

argument. A common setting where this applies is when 𝐹 leads to a structurally

bounded rank growth; that is, when for all 𝑡 and 𝑋 = 𝑈𝑆𝑉 ⊤ ∈ ℳ𝑟, 𝐹 (𝑋, 𝑡) admits

an explicit rank-𝑟𝐹 ≪ 𝑚,𝑛 factorization that can be computed efficiently from the

individual factors of 𝑋, in particular without computing full ambient representations

of the matrices 𝑋 and 𝐹 (𝑋, 𝑡). In practice, this situation is encountered for example

when 𝐹 is a polynomial of moderate degree. Accordingly, DLRA has been widely

demonstrated to enable dramatic speedups for the approximate solution of IVPs of

the form (8.1) where 𝐹 is linear, bilinear or quadratic [169, 175, 176, 178]. When 𝐹

does not lead to structurally bounded rank growth or the rank growth is too steep,

the computational advantages of DLRA, beyond a reduction in memory footprint for

storing and processing the approximate solution, are less clear. Moreover, even when
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𝐹 admits an explicit and efficiently computable low-rank factorization, it typically

remains a highly intrusive, error-prone process to exploit this structure in numerical

DLRA schemes.

For the approximate propagation of parametric uncertainties through nonlinear

PDEs via DLRA, Naderi and Babaee [22] have recently proposed a remedy to the men-

tioned complications arising from nonlinear vector fields. In broad strokes, they com-

bine sparse approximation and interpolatory projectors [189–192] to devise a DLRA

scheme that approximates the evaluation of the vector field 𝐹 in each integration

step from a small subset of strategically selected rows and columns. The resultant

approximation and its projection onto the tangent bundle of the low-rank manifold

can then be performed efficiently without implementation of tailored, problem-specific

routines, even in the presence of nonlinearities.

In this chapter, we put the on-the-fly sparse approximation heuristic of Naderi

and Babaee [22] on a more general footing, showing that it enables with minor mod-

ifications the efficient DLRA for matrix-valued IVPs of the form (8.1) with local

vector fields. We show further that this heuristic composes naturally with a rich

set of robust geometric integration routines for DLRA, yielding distinctly improved

robustness properties in the presence of small singular values of the low-rank approx-

imation. Lastly, we present LowRankIntegrators.jl – a performant, yet high-level

package for DLRA in the Julia programming language [193]. As part of a rich feature

set, LowRankIntegrators.jl notably exploits the composable nature of on-the-fly

sparse approximation and robust DLRA integrators to enable efficient DLRA for

generic IVPs of the form (8.1) with minimal intrusion. The minimal required user

input are row-, column- and element-wise evaluation oracles for the vector field 𝐹 .

8.2 Notation & terminology

Throughout this chapter we rely on the following notational conventions, terminology,

and blanket assumptions.

Basic linear algebra – We assume that all matrices and vectors are real, and
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unless specified otherwise, matrices will be assumed to be of dimension 𝑛 × 𝑚. Ac-

cordingly, we default to considering approximation in the manifold of real 𝑛 × 𝑚

rank-𝑟 matrices, which we denote by ℳ𝑟 = {𝑋̂ ∈ R𝑛×𝑚 : rank 𝑋̂ = 𝑟}. We loosely

refer to ℳ𝑟 and elements 𝑋̂ ∈ ℳ𝑟 as the low-rank manifold and low-rank matri-

ces, respectively. The tangent space of ℳ𝑟 at a point 𝑋̂ ∈ ℳ𝑟 will be denoted

by 𝒯ℳ𝑟(𝑋̂) and the tangent bundle by 𝑇ℳ𝑟 = {(𝑋̂, 𝑉 ) : 𝑋̂ ∈ ℳ𝑟, 𝑉 ∈ 𝒯ℳ𝑟(𝑋̂)}.

The real Stiefel manifold of (semi-)orthogonal 𝑛 × 𝑘 matrices will be denoted by

𝒱𝑛,𝑘 = {𝑈 ∈ R𝑛×𝑘 : 𝑈⊤𝑈 = 𝐼}, where 𝐼 refers to the identity matrix of appropriate

dimension. Lastly, the euclidean projection onto a set 𝐴 will be denoted by Π𝐴.

Low-rank representations – For considerations of computational efficiency,

it is relevant to distinguish between different representations of low-rank matrices.

Throughout, we refer to the full representation of a low-rank matrix 𝑋̂ ∈ ℳ𝑟 in

terms of its 𝑛 × 𝑚 individual entries as the ambient or full matrix representation.

When 𝑋̂ is instead represented in terms of the factors 𝑈 ∈ 𝒱𝑛,𝑟, 𝑉 ∈ 𝒱𝑚,𝑟, and

𝑆 ∈ R𝑟×𝑟, such that 𝑋̂ = 𝑈𝑆𝑉 ⊤ we refer to it as an SVD-like factorization. Simi-

larly, when the factors are unstructured, i.e., 𝑈 ∈ R𝑛×𝑟, 𝑉 ∈ R𝑚×𝑟 and 𝑆 ∈ R𝑟×𝑟, we

simply refer to a low-rank factorization of 𝑋̂ without further qualification.

8.3 Numerical methods for dynamical low-rank ap-

proximation

Numerical schemes for DLRA fall broadly into one of two categories. The first cate-

gory of methods relies on solving the IVP (8.2) in intrinsic coordinates of the low-rank

manifold with standard ODE integrators [174, 186, 194]. To that end, 𝑋̂(𝑡) is replaced

by a structurally fixed low-rank factorization and ordinary evolution equations for the

individual factors are derived from the Dirac-Frenkel variational principle. For in-

stance, when expressing 𝑋̂(𝑡) with an SVD-like factorization 𝑋̂(𝑡) = 𝑈(𝑡)𝑆(𝑡)𝑉 (𝑡)⊤

with time-dependent factors 𝑈(𝑡) ∈ 𝒱𝑛,𝑟, 𝑉 (𝑡) ∈ 𝒱𝑚,𝑟, and 𝑆(𝑡) ∈ R𝑟×𝑟 and im-

posing the gauge conditions 𝑈̇(𝑡)⊤𝑈(𝑡) = 0 and 𝑉̇ (𝑡)⊤𝑉 (𝑡) = 0 to preserve semi-
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orthogonality of 𝑈(𝑡) and 𝑉 (𝑡) over time, it is easily verified that the IVP (8.2) is

equivalent to the ordinary IVP [186].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑈̇(𝑡)

𝑆̇(𝑡)

𝑉̇ (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(𝐼 − 𝑈(𝑡)𝑈(𝑡)⊤)𝐹 (𝑋̂(𝑡), 𝑡)𝑉 (𝑡)𝑆−1(𝑡)

𝑈(𝑡)⊤𝐹 (𝑋̂(𝑡), 𝑡)𝑉 (𝑡)

(𝐼 − 𝑉 (𝑡)𝑉 (𝑡)⊤)𝐹 (𝑋̂(𝑡), 𝑡)⊤𝑈(𝑡)𝑆−⊤(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , 𝑡 ∈ [0, 𝑇 ]

𝑋̂(0) = 𝑈(0)𝑆(0)𝑉 (0)⊤ = Πℳ𝑟𝑋0 such that 𝑈(0) ∈ 𝒱𝑛,𝑟, 𝑉 (0) ∈ 𝒱𝑚,𝑟

(8.3)

Analogous IVPs are obtained for structurally different factorizations such as 𝑋̂ =

𝑈𝑍⊤ with 𝑈 ∈ 𝒱𝑛,𝑟 and 𝑍 ∈ R𝑚×𝑟 [174], or when a weighted inner product is used

to characterize orthogonality and projections [174, 194]. The resultant IVPs can in

principle be solved with standard ODE integrators due to the intrinsic parameteri-

zation of the low-rank manifold. While conceptually straightforward, this approach

is recognized as coming with various practical limitations. Most notably, it leads to

stringent stepsize restrictions in the presence of small singular values of 𝑋̂ [195] –

a situation that is closely tied to achieving an accurate approximation of the true

solution and so can rarely be avoided in practice. The stepsize restrictions originate

from the stiffness inherent to the IVP (8.2) in the presence of small singular values:

the Lipschitz constant of the vector-field 𝐹 is amplified by the inverse of the smallest

non-zero singular value of 𝑋̂ [186, Lemma 4.2].

Remarkably, there still exists a class of time-stepping methods for the IVP (8.2)

with accuracy guarantees that are independent of the magnitude of the smallest

singular value. We refer to these methods here loosely as robust geometric integrators.

Methods from this class avoid a fixed parameterization of the low-rank manifold.

Instead, they take a fundamentally geometric approach to discretize the IVP (8.2),

alternating between applying explicit time-stepping routines in the ambient space and

retracting back to the low-rank manifold [196, 197]. Figure 8-1 shows an illustration

of the explicit Euler method,

𝑋̂𝑘+1 = 𝑅𝑋̂𝑘

(︁
ℎΠ𝒯ℳ𝑟 (𝑋̂𝑘)𝐹 (𝑋̂𝑘, 𝑡𝑘)

)︁
, (8.4)

189



<latexit sha1_base64="Z6PHlWl2ue/aaTOps7stgAtbcWg="></latexit>

h⇧ TMr
(X̂k

)
F (X̂k

, tk
)

<latexit sha1_base64="QZR7zvHhzoOEoaAUNIre+pNkPmw=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoICURX8uCIC4r2Ae0IU6mk3boZBJmboQa+iVuXCji1k9x5984bbPQ1gMXDufcy733BIngGhzn21paXlldWy9sFDe3tndK9u5eU8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJ74rUemNI/lPYwS5kWkL3nIKQEj+XZpcFPpDghk7bE/PIFj3y47VWcKvEjcnJRRjrpvf3V7MU0jJoEKonXHdRLwMqKAU8HGxW6qWULokPRZx1BJIqa9bHr4GB8ZpYfDWJmSgKfq74mMRFqPosB0RgQGet6biP95nRTCKy/jMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcGdf3mRNE+r7kX1/O6sXHvI4yigA3SIKshFl6iGblEdNRBFKXpGr+jNerJerHfrY9a6ZOUz++gPrM8f7/KSuw==</latexit>

hF (X̂
k , t)

<latexit sha1_base64="FhDAPPJtJYkiMGqDk3WqmtI35dM=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxLxtSy4cSNU6AuaECfTSTt0MgkzE6GE/IEbf8WNC0XcunXn3zhpg2jrgYEz59zLvff4MaNSWdaXsbC4tLyyWlorr29sbm2bO7ttGSUCkxaOWCS6PpKEUU5aiipGurEgKPQZ6fijq9zv3BMhacSbahwTN0QDTgOKkdKSZx45IVJDjFjazLz053OTeSKrOkOk0m7mjY49s2LVrAngPLELUgEFGp756fQjnISEK8yQlD3bipWbIqEoZiQrO4kkMcIjNCA9TTkKiXTTyT0ZPNRKHwaR0I8rOFF/d6QolHIc+royX1jOern4n9dLVHDpppTHiSIcTwcFCYMqgnk4sE8FwYqNNUFYUL0rxEMkEFY6wrIOwZ49eZ60T2r2ee3s9rRSvyviKIF9cACqwAYXoA6uQQO0AAYP4Am8gFfj0Xg23oz3aemCUfTsgT8wPr4BKr2deA==</latexit>

TMr
(X̂k)

<latexit sha1_base64="Dzr6OYhsRGYiSNFmwS/qd/nBu5A=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0VwFRKbPrIruHEjVLAPaEOdTCft0MkkzkwKJfQ73LhQxK0f486/cdJWUNEDA4dz7uWeOX7MqFSW9WHk1tY3Nrfy24Wd3b39g+LhUVtGicCkhSMWia6PJGGUk5aiipFuLAgKfUY6/uQy8ztTIiSN+K2axcQL0YjTgGKktOT1Q6TGGLH0ej4Qg2LJMi23VndcqIldLVfKmrhuxXEsaJvWAiWwQnNQfO8PI5yEhCvMkJQ924qVlyKhKGZkXugnksQIT9CI9DTlKCTSSxeh5/BMK0MYREI/ruBC/b6RolDKWejrySyk/O1l4l9eL1FB3UspjxNFOF4eChIGVQSzBuCQCoIVm2mCsKA6K8RjJBBWuqeCLuHrp/B/0r4w7apZuXFKjbtVHXlwAk7BObBBDTTAFWiCFsDgHjyAJ/BsTI1H48V4XY7mjNXOMfgB4+0Tm6mSxg==</latexit>Mr

<latexit sha1_base64="ouQUzB/MIX/EgXmFBWo9n6Q4XEE=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi8cI5iHJEmcns8mQmdllplcIS77CiwdFvPo53vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80TZxqyho0FrFuh8QwwRVrIEfB2olmRIaCtcLRzdRvPTFteKzucZywQJKB4hGnBK300B0SzNqT3qhXrnhVbwZ3mfg5qUCOeq/81e3HNJVMIRXEmI7vJRhkRCOngk1K3dSwhNARGbCOpYpIZoJsdvDEPbFK341ibUuhO1N/T2REGjOWoe2UBIdm0ZuK/3mdFKPrIOMqSZEpOl8UpcLF2J1+7/a5ZhTF2BJCNbe3unRINKFoMyrZEPzFl5dJ86zqX1Yv7s4rtcc8jiIcwTGcgg9XUINbqEMDKEh4hld4c7Tz4rw7H/PWgpPPHMIfOJ8/DjuQrw==</latexit>

X̂k

<latexit sha1_base64="y7VrGREUUyAX0u0v79iqLhEylUU="></latexit>

X̂k+1 = RX̂k

⇣
h⇧TMr (X̂k)F (X̂k, tk)

⌘

Figure 8-1: Projected Euler step for integration along the low-rank manifold.

in this framework. Here, the map 𝑇ℳ𝑟 ∋ (𝑌, 𝑉 ) ↦→ 𝑅𝑌 (𝑉 ) ∈ ℳ𝑟 refers to a retraction

to the low-rank manifold ℳ𝑟. Formally, a retraction 𝑅𝑌 is defined so that for any

𝑌 ∈ ℳ𝑟 and 𝑉 ∈ 𝒯ℳ𝑟(𝑌 ), the function 𝛾(𝑡) = 𝑅𝑌 (𝑡𝑉 ) is (for sufficiently small 𝑡)

a well-defined, smooth curve in ℳ𝑟 satisfying 𝛾(0) = 𝑌 and 𝛾̇(0) = 𝑉 [198]. These

conditions ensure that the discretization (8.4) is consistent with (8.2) when passing to

the limit ℎ → 0 [199, Theorem 1]. A plethora of retractions for the low-rank manifold

exist [177, 197, 200, 201, for example] and each generates a consistent integrator

by Equation (8.4) [197, 199]. Furthermore, many computationally tractable and

practically common retractions are extended; that is, they map not only elements

from the tangent bundle of the low-rank manifold consistently to smooth curves in

the low-rank manifold but any sufficiently small element from the ambient space. The

most commonly used extended retraction for the low-rank manifold is the projective

retraction

𝑅̄⊥
𝑌 (𝑉 ) = arg min

𝑍∈ℳ𝑟

‖𝑌 + 𝑉 − 𝑍‖𝐹 .
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(We use equality above because the minimizer is unique for sufficiently small 𝑉 [200,

Lemma 3.1].) More generally, an extended retraction 𝑅̄𝑌 : R𝑚×𝑛 → ℳ𝑟 satisfies that

𝛾(𝑡) = 𝑅̄𝑌 (𝑡𝑉 ) is a smooth curve in ℳ𝑟 with 𝛾(0) = 𝑌 and 𝛾̇(0) = Π𝒯ℳ𝑟 (𝑌 )𝑉 for any

𝑌 ∈ ℳ𝑟 and 𝑉 ∈ R𝑛×𝑚 [202]. In other words, the recursion

𝑋𝑘+1 = 𝑅̄𝑋̂𝑘
(ℎ𝐹 (𝑋̂𝑘, 𝑡𝑘)) (8.5)

is also a consistent discretization for the IVP (8.2). Recursion (8.5) generalizes readily

to higher-order explicit projected Runge-Kutta (PRK) schemes [196]; see Algorithm

1 for the skeleton of practical PRK schemes.

Algorithm 1 Explicit 𝑠-step projected Runge-Kutta integrator [196]

Input: Current state 𝑋̂0 ∈ ℳ𝑟, extended low-rank retraction 𝑅̄, current time 𝑡,
time step ℎ, Butcher tableau (𝑎, 𝑏, 𝑐).
Compute

𝑌1 = 𝑋̂0

𝐾1 = Π𝒯ℳ𝑟 (𝑌1)𝐹 (𝑌1, 𝑡)

for 𝑖 = 2, . . . , 𝑠 do
Compute

𝑌𝑖 = 𝑅̄𝑋̂0

⎛⎝ℎ 𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗𝐾𝑗

⎞⎠
𝐾𝑖 = Π𝒯ℳ𝑟 (𝑌𝑖)𝐹 (𝑌𝑖, 𝑡+ 𝑐𝑖ℎ)

end for
Compute

𝑋̂1 = 𝑅̄𝑋̂0

(︃
ℎ

𝑠∑︁
𝑖=1

𝑏𝑖𝐾𝑖

)︃

Output: Approximation of evolved state 𝑋̂1 ∈ ℳ𝑟
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8.4 Computational cost of dynamical low-rank ap-

proximation

It is clear that numerically approximating the low-rank solution of the IVP (8.2)

yields a reduced memory footprint relative to computing and storing the solution

of its higher-dimensional counterpart (8.1). In this section, we discuss conditions

under which DLRA also promises a asymptotically lower computational load as the

side dimensions of the matrix grow. To that end, we analyze the cost associated

with a projected Euler step (8.4) in two scenarios: First, we consider the case when

𝐹 (𝑋̂, 𝑡) has no exploitable structure and must be evaluated element-wise from an

ambient 𝑛×𝑚 matrix representation of 𝑋̂ ∈ ℳ𝑟. Second, we assume that 𝐹 leads to

structurally bounded rank growth; that is, 𝐹 (𝑋̂, 𝑡) admits an explicit rank-𝑟𝐹 (with

𝑟𝐹 ≪ 𝑚,𝑛) factorization that, given a low-rank factorization of the input 𝑋̂ ∈ ℳ𝑟,

can be evaluated in 𝑂(𝑟𝐹 (𝑚 + 𝑛)) operations. Throughout, we assume that 𝑋̂ is

available as an SVD-like rank-𝑟 factorization 𝑋̂ = 𝑈𝑆𝑉 ⊤. This is in line with most

numerical DLRA schemes. The analysis is presented for the projected Euler method

(8.4) for sake of simplicity. It is readily extended to more complicated geometric

time-stepping routines and yields identical conclusions.

The projected Euler step (8.4) involves four distinct computational substeps: eval-

uation of the vector field 𝐹 (𝑋̂, 𝑡) and its tangent space projection, an update step in

the ambient space, and retraction to the low-rank manifold. When 𝐹 has no notable

structure, it must be evaluated element-wise from an ambient matrix representation

of 𝑋̂, rendering the first step most expensive. Assuming that every element of 𝐹 can

be evaluated in constant time1, 𝑂(𝑚𝑛) and 𝑂(𝑚𝑛𝑟) operations are required for the

evaluation of 𝐹 (𝑋̂, 𝑡) and the computation of the ambient representation of 𝑋̂ from its

low-rank factorization 𝑈𝑆𝑉 ⊤, respectively. Since further the result of the evaluation

of 𝐹 (𝑋̂, 𝑡) is an unstructured matrix 𝑍 ∈ R𝑛×𝑚, its tangent space projection [186,

1While this assumption is not always valid, it generally holds for vector fields generated by PDEs
or more broadly vector fields with local structure.
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Lemma 4.1]

Π𝒯ℳ𝑟 (𝑋̂)𝑍 = 𝑈𝑈⊤𝑍 + 𝑍𝑉 𝑉 ⊤ − 𝑈𝑈⊤𝑍𝑉 𝑉 ⊤

=
[︂
𝑈 𝑍𝑉

]︂ ⎡⎢⎣𝐼 −𝑈⊤𝑍𝑉

0 𝐼

⎤⎥⎦ [︂𝑍⊤𝑈 𝑉

]︂⊤ (8.6)

requires additional 𝑂(𝑚𝑛𝑟) operations. The expression (8.6) for the tangent space

projection underlines further that all tangent space elements have at most rank 2𝑟.

It follows that the update step in the ambient space as well as the retraction to the

low-rank manifold can be computed relatively cheaply as long as 𝑟 ≪ 𝑛,𝑚; using

the truncated SVD for example, computing the projective retraction requires only

𝑂(𝑟2(𝑚 + 𝑛)) operations [203]. In contrast, a classical Euler step for solving the

original IVP (8.1) requires 𝑂(𝑚𝑛) operations. Leaving memory requirements aside,

the computational cost for DLRA (at fixed rank 𝑟) scales therefore asymptotically

equivalently with the side dimensions of the matrix as computing the full solution.

The vector field evaluation remains the driving cost. The situation is different, how-

ever, when 𝐹 (𝑋̂, 𝑡) admits an explicit rank-𝑟𝐹 factorization that can be evaluated

in 𝑂(𝑟𝐹 (𝑛 + 𝑚)) operations from the low-rank factorization of 𝑋̂. Not only does

this lead to asymptotically reduced costs for evaluating 𝐹 (𝑋̂, 𝑡) but also yields a

low-rank factorization as a result, which can be projected into the tangent space at

a reduced cost. In light of Equation (8.6), the cost for the tangent space projection

of a rank-𝑟𝐹 factorization of 𝐹 (𝑋̂, 𝑡) is 𝑂(max{𝑟𝐹 𝑟, 𝑟2}(𝑛 + 𝑚)) operations. In this

situation, the solution of the DLRA problem (8.2) is overall asymptotically cheaper

(𝑂(max{𝑟𝐹 𝑟, 𝑟2}(𝑛 + 𝑚)) operations) than solving the original IVP (8.1) (𝑂(𝑚𝑛)

operations).

8.5 On-the-fly sparse approximation

We have established in the previous section that DLRA is only expected to yield com-

putational advantages beyond reduced memory requirements when the vector field 𝐹

leads to structurally bounded rank growth. While this applies in some important
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cases, most notably when 𝐹 is a polynomial of low degree and low-rank constant

term2, it does not hold in the presence of many commonly encountered nonlineari-

ties; for example, element-wise exponential, trigonometric or logarithmic functions.

Furthermore, computational routines to take advantage of structurally bounded rank

growth in DLRA are, even if they exist, often not readily available. Instead, they

must be implemented in an intrusive, often tedious and error-prone process. At

the same time, a simple empirical observation inspires hope that the computational

advantages of DLRA can be leveraged more easily and extended to more general

vector fields: Even if the vector field 𝐹 involves nonlinearities that do not lead to

structurally bounded rank growth, it often admits a (locally) excellent low-rank ap-

proximation. This empirical observation has been leveraged with great success in the

context of model order reduction [204]. In particular, variants of the empirical inter-

polation method (EIM) [205] and its discrete analog (DEIM) [189, 206] are utilized

widely to determine structural low-rank approximation for nonlinear vector fields in

the context of projective model order reduction [204]. The key advantage of DEIM-

induced low-rank factorizations over other approximation schemes for this purpose

is that the factorizations are constructed by combining sparse interpolation and pro-

jection. Put differently, the individual factors of the vector field approximation are

computed from only a few strategically selected elements of the vector field. If the

vector field has local structure, the computation of a full ambient representation of

the input can then be avoided, rendering evaluation of the vector field approximation

at low-rank inputs efficient. Bringing this approach to DLRA, however, comes with

unique challenges. Specifically, DEIM schemes typically require an offline stage where

input-output samples of the vector field are collected to determine which elements

should best be interpolated and how. For typical applications of DLRA, however,

such an offline stage is considered intractable. To circumvent this limitation in these

situations, Naderi and Babaee [22] proposed a DLRA scheme for nonlinear stochas-

tic PDEs that builds and adapts sparse approximations of the vector field without

2We say 𝐹 is a polynomial when 𝐹 is obtained from the composition of finitely many matrix
additions as well as matrix and Hadamard products.
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offline stage. Instead, they combine discrete interpolation with recursive on-the-fly

adaptation of the interpolation indices to approximate the evolution equations for a

low-rank factorization akin to Equation (8.3). Here, we extend this construction to a

parameterization-independent on-the-fly sparse approximation heuristic that applies

for DLRA of generic matrix-valued IVPs (8.1) with local vector field 𝐹 . The heuris-

tic composes readily with geometric DLRA schemes which is shown in Section 8.8

to be numerically favorable. The proposed heuristic involves executing the following

three-step procedure at every iterate 𝑋̂𝑘 of a numerical DLRA scheme.

Heuristic 1 (On-the-fly sparse approximation). Given a current low-rank iterate 𝑋̂𝑘,

time step 𝑡𝑘, and a desired rank 𝑟𝐹 , construct a sparse rank-𝑟𝐹 approximator of 𝐹 via

the following steps:

1. Identify 𝑈𝐹 ∈ R𝑛×𝑟𝐹 and 𝑉𝐹 ∈ R𝑚×𝑟𝐹 so that the range of 𝑈𝐹 and 𝑉𝐹 approxi-

mate the range and co-range of 𝐹 (𝑋̂𝑘, 𝑡𝑘), respectively.

2. Based on 𝑈𝐹 and 𝑉𝐹 , identify 𝑂(𝑟𝐹 ) row and column indices that are best suited

to interpolate the remaining rows and columns of 𝐹 (𝑋̂𝑘, 𝑡𝑘). Let 𝑅𝑘 and 𝐶𝑘

be submatrices of the identity such that left multiplication with 𝑅⊤
𝑘 and right

multiplication with 𝐶𝑘 extract the respective rows and columns.

3. Compute oblique projectors 𝑃𝑘 = 𝑈𝐹 (𝑅⊤
𝑘 𝑈𝐹 )†𝑅⊤

𝑘 and 𝑄𝑘 = 𝑉𝐹 (𝐶⊤
𝑘 𝑉𝐹 )†𝐶⊤

𝑘 , and

approximate 𝐹 by 𝑃𝑘𝐹𝑄⊤
𝑘 .3

Step 3 of the above heuristic is easily executed once step 1 and 2 are completed.

Similarly, once step 1 has been performed, step 2 is readily addressed by a host

of DEIM procedures [189–191, 206, 207] or CUR decomposition methods based on

leverage scores [208, 209]. The crux of Heuristic 1 lies in its first step. Given an iterate

𝑋̂𝑘, it is not obvious how the range and co-range of 𝐹 (𝑋̂𝑘, 𝑡𝑘) should be approximated

when the full evaluation of 𝐹 (𝑋̂𝑘, 𝑡𝑘) is exceedingly expensive. A straightforward

recursive solution to this problem is to use the sparse approximator obtained from

the previous iteration. Concretely, one may simply compute 𝑈𝐹 and 𝑉𝐹 as the leading
3𝑌 † denotes the Moore-Penrose inverse of 𝑌 .
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left and right singular vectors of 𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤
𝑘−1 and 𝑃𝑘−1𝐹 (𝑋̂𝑘, 𝑡), respectively. This

is the essence of the proposal by Naderi and Babaee [22]. We will discuss several

tractable alternatives for performing step 1 in Section 8.6.

We emphasize that the sparse approximator 𝑃𝑘𝐹𝑄
⊤
𝑘 furnished by Heuristic 1

admits by construction an explicit rank-𝑟𝐹 factorization that can be evaluated from

𝑂(𝑟2
𝐹 ) individual entries of 𝐹 . When composed with a numerical DLRA scheme,

Heuristic 1 therefore recovers the favorable scaling properties of DLRA. A tractable

approximation for the projected Euler method (8.4) for nonlinear vector fields is for

instance

𝑋̂𝑘+1 = 𝑅𝑋̂𝑘

(︁
ℎΠ𝒯ℳ𝑟 (𝑋̂𝑘)𝑃𝑘𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤

𝑘

)︁
. (8.7)

It follows from the discussions in Section 8.4 that the approximate DLRA recur-

sion (8.7) achieves favorable scaling properties, even in the presence of nonlinearities

in the vector field 𝐹 . Moreover, implementation of this recursion requires minimal

intrusion as it relies exclusively on simple element-, row- and column-wise evaluation

oracles for the vector field 𝐹 .

An alternative, but equally natural approximation is obtained by taking advan-

tage of the splitting of the tangent space projection into subprojections as given in

Equation (8.6). The subprojections onto the range and co-range of 𝑋̂𝑘 = 𝑈𝑆𝑉 ⊤ with

(semi-)orthogonal factors 𝑈 and 𝑉 can be approximated from the rows and columns

selected in Heuristic 1:

Π𝒯ℳ𝑟 (𝑋̂𝑘)𝐹 (𝑋̂𝑘, 𝑡) ≈

𝑈𝑈⊤𝑃𝑘𝐹 (𝑋̂𝑘, 𝑡) + 𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤
𝑘 𝑉 𝑉

⊤ − 𝑈𝑈⊤𝑃𝑘𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤
𝑘 𝑉 𝑉

⊤.

Note in particular that this construction preserves the favorable scaling properties:

the application of only one of the oblique projectors 𝑃𝑘 and 𝑄𝑘 to 𝐹 yields explicit

rank-𝑟𝐹 factorizations approximating 𝐹 which require the evaluation of only 𝑂(𝑟𝐹 ) of

its rows and columns, respectively. Heuristic 1 therefore composes readily in a natural
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way with many numerical DLRA schemes that exploit the splitting of the tangent

space projection explicitly, such as projector-splitting integrator [210] or basis-update

and Galerkin integrators [171, 211].

8.6 On-the-fly approximation of range and co-range

The main complication of DLRA with on-the-fly sparse approximation is computing

informative rank-𝑟𝐹 approximations of the range and co-range of the vector field 𝐹

in each integration step. To ultimately best approximate 𝐹 in a least squared error

sense, the most natural approach to this problem is computing the 𝑟𝐹 leading left and

right singular vectors of 𝐹 (𝑋̂𝑘, 𝑡𝑘) at a given low-rank iterate 𝑋̂𝑘. In the following,

we discuss two tractable routines to approximate this computation.

Recursive range and co-range approximation – The continuous and causal

evolution of the state 𝑋̂(𝑡) according to the ODE (8.2) implies under suitable regu-

larity conditions on 𝐹 that also the leading left and right singular values of 𝐹 (𝑋̂(𝑡), 𝑡)

evolve continuously (or at least nearly so) [212]. This suggests a recursive approach

that incrementally updates approximations of 𝑋̂(𝑡) alongside range and co-range ap-

proximations of 𝐹 (𝑋̂(𝑡), 𝑡). Given a numerical DLRA scheme that recursively updates

approximations 𝑋̂𝑘 from the previous iterate 𝑋̂𝑘−1, a natural update rule for the range

and co-range is described in Algorithm 2. This update rule is indeed tractable as

Algorithm 2 Recursive range and co-range approximation
Input: Current iterate 𝑋̂𝑘, time 𝑡𝑘, oblique projectors 𝑃𝑘−1 and 𝑄𝑘−1 from previous
time step, desired rank 𝑟𝐹 .
Compute rank-𝑟𝐹 truncated SVDs (in parallel)

𝑈𝐹𝑆𝐶𝑉
⊤
𝐶 = SVD𝑟𝐹

(︁
𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤

𝑘−1

)︁
𝑉𝐹𝑆𝑅𝑈

⊤
𝑅 = SVD𝑟𝐹

(︁
𝐹 (𝑋̂𝑘, 𝑡𝑘)⊤𝑃⊤

𝑘−1

)︁
Output: Approximations 𝑈𝐹 and 𝑉𝐹 for the 𝑟𝐹 leading singular vectors 𝐹 (𝑋̂𝑘, 𝑡𝑘).

𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤
𝑘−1 and 𝑃𝑘−1𝐹 (𝑋̂𝑘, 𝑡𝑘) are explicit rank-𝑟𝐹 factorization which are com-

puted by evaluating 𝑂(𝑟𝐹 ) columns and rows of 𝐹 explicitly. The computation of
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the truncated SVDs in Algorithm 2 therefore requires only 𝑂(𝑟2
𝐹 (𝑛+𝑚)) operations.

Note further that it is critical to update the range from 𝐹 (𝑋̂𝑘, 𝑡𝑘)𝑄⊤
𝑘−1 and the co-

range from 𝑃𝑘−1𝐹 (𝑋̂𝑘, 𝑡𝑘) and not vice versa. Otherwise, the computed range and

co-range would be subsets of the range of 𝑃𝑘−1 and 𝑄𝑘−1, respectively, and hence re-

main unchanged between iterations. Lastly, this recursive process must be initialized.

A natural initialization is obtained from the truncated SVD of 𝐹 (𝑋̂0, 0). When this

is intractable, we discuss a clustering approach in the next subsection that may be

applied instead.

Naderi and Babaee [22] propose a similar update rule to Algorithm 2 in the context

of DLRA for stochastic PDEs:

1. Compute 𝑈𝐹 as the leading left singular vectors of 𝐹 (𝑋̂𝑘, 𝑡𝑘)𝐶𝑘−1, where 𝐶𝑘−1

is the column selector matrix identified in the previous time step.

2. Based on 𝑈𝐹 compute a row selector matrix 𝑅𝑘.

3. Compute 𝑉𝐹 as the leading right singular vectors of 𝑅⊤
𝑘 𝐹 (𝑋̂𝑘, 𝑡𝑘).

4. Based on 𝑉𝐹 compute a column selector matrix 𝐶𝑘.

There are several notable distinctions between this procedure and embedding Algo-

rithm 2 in Heuristic 1. First, this procedure intertwines the range estimation and

index selection step of Heuristic 1. As such, the range and co-range approximation

can no longer be parallelized. Second, it introduces an ordering into the range and

co-range estimation step. This ordering appears natural in the problem-specific con-

text of [22], but arbitrary in the generic setting treated here. Lastly, the range and

co-range approximations from the above procedure are obtained from singular vec-

tors of the row and column-wise evaluation of the vector field directly. Algorithm 2 in

contrast computes the singular vectors of a low-rank approximation of 𝐹 generated

by the oblique projectors determined in a previous time step. While both approaches

yield equivalent range approximations when the oblique projectors have full rank, the

approach in Algorithm 2 more closely mimics the computation of the leading singular

vectors of 𝐹 . As such it is expected to return more accurate approximations for the
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leading singular vectors. Chaturantabut and Sorensen [189] argue that this property

is advantageous when the classical DEIM routine [189, Algorithm 1] is used to iden-

tify suitable approximation indices in Step 2 of Heuristic 1. Moreover, as a useful

by-product Algorithm 2 produces an estimate of the singular values of 𝐹 (𝑋̂𝑘, 𝑡𝑘).

This information enables error estimates for the sparse approximation of 𝐹 [206] and

thus can inform adaptation of the approximation rank 𝑟𝐹 as discussed by Naderi and

Babaee [22] who compute this information in a separate step.

Cluster-based range and co-range approximation – In many scientific ap-

plications of DLRA, the state 𝑋 in the IVP (8.1) corresponds to a discretization

of a continuous spatio-temporal field; for example a temperature, concentration, or

pressure field. The vector field 𝐹 then typically derives from a partial-differential

operator governing the field’s dynamics. In this setting, the rows and columns of

𝐹 (𝑋(𝑡), 𝑡) typically inherit patterns of “smoothness” and “similarity” from the field

𝑋(𝑡). Given a low-rank approximation 𝑋̂(𝑡) for the field, it is therefore a reasonable

strategy to approximate the range of 𝐹 (𝑋̂(𝑡), 𝑡) by identifying rows and columns in

𝑋̂(𝑡) that loosely speaking are mutually as dissimilar as possible. The intuition is

that such rows and columns capture the distinct spatial features of the physical field

and that the corresponding rows and columns of 𝐹 (𝑋̂(𝑡), 𝑡) therefore collectively span

the co-range and range of the dynamics in close approximation.

The identification of a diverse set of rows and columns in 𝑋̂ is naturally posed as

a clustering problem. Among the wide range of clustering problem formulations and

algorithms available [213, 214], K-means clustering stands out as a suitable choice

for this application. On the one hand, K-means clustering algorithms can be warm-

started [214] which is important when clustering is performed in every iteration of

a numerical DLRA scheme as per Heuristic 1. On the other hand, low-rank struc-

ture can be exploited to reduce the associated computational load further. For the

identification of representative columns of 𝑋̂, the K-means clustering problem seeks

clusters 𝑆1, . . . , 𝑆𝑟𝐹
(index sets referencing collections of columns) that approximate
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the solution to the following combinatorial optimization problem:

min
𝑆1,...,𝑆𝑟𝐹

𝑟𝐹∑︁
𝑖=1

∑︁
𝑘∈𝑆𝑖

‖𝑋̂𝑒𝑘 − 𝜇𝑖‖2
𝐹

s.t. 𝜇𝑖 = 1
|𝑆𝑖|

∑︁
𝑘∈𝑆𝑖

𝑋̂𝑒𝑘, 𝑖 ∈ [𝑟𝐹 ],

𝑆𝑖 ∩ 𝑆𝑗 = ∅, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑟𝐹 ,

∪𝑟𝐹
𝑖=1 𝑆𝑖 = [𝑚],

where [𝑟] denotes the index range {1, . . . , 𝑟}. When 𝑋̂ is available as a rank-𝑟 fac-

torization 𝑈𝑍⊤ with 𝑈 ∈ 𝒱𝑛,𝑟,4 the invariance of the Euclidean norm under or-

thogonal transformations can be exploited to solve the clustering problem instead in

𝑟-dimensional space:

min
𝑆1,...,𝑆𝑟𝐹

𝑟𝐹∑︁
𝑖=1

∑︁
𝑘∈𝑆𝑖

‖𝑍⊤𝑒𝑘 − 𝜇𝑖‖2
𝐹

s.t. 𝜇𝑖 = 1
|𝑆𝑖|

∑︁
𝑘∈𝑆𝑖

𝑍⊤𝑒𝑘, 𝑖 ∈ [𝑟𝐹 ],

𝑆𝑖 ∩ 𝑆𝑗 = ∅, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑟𝐹 ,

∪𝑟𝐹
𝑖=1 𝑆𝑖 = [𝑚].

The identification of representative rows of 𝑋̂ via K-means clustering proceeds anal-

ogously and can be performed in parallel.

Once the clusters of rows and columns of 𝑋̂ are identified, there are different

conceivable ways to approximate the range and co-range of 𝐹 (𝑋̂, 𝑡). On the one

hand, one or few representative rows and columns can be sampled from each cluster.

On the other hand, when 𝐹 represents a discretized partial-differential operator, it is

often feasible to evaluate 𝐹 at the cluster means directly. In either case, the range and

co-range of 𝐹 (𝑋̂, 𝑡) can be approximated by the singular vectors of the submatrices

generated by evaluating 𝐹 at the identified rows and columns.

4Such a factorization is readily computed from the SVD-like factorization 𝑋̂ = 𝑈𝑆𝑉 ⊤ used
internally by numerical DLRA routines.
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8.7 LowRankIntegrators.jl – dynamical low-rank

approximation in Julia

Numerical DLRA schemes are designed to exploit low-rank structures in every oper-

ation they are composed of. While this gives rise to a distinctly improved memory

footprint and scaling properties, it also comes at the cost of a notably more com-

plicated computational implementation. It is no easy feat to realize the promised

computational benefits of such an algorithmic design, especially not while maintain-

ing an easy-to-use, yet general and extensible code base. As a consequence, it remains

common practice to tailor implementations of numerical DLRA schemes to a given

application exploiting the structure of the field 𝐹 wherever possible. Once a new

application arises, this process is repeated, starting from low-level primitives [215].

While such a workflow has been shown to deliver on the promises of DLRA in several

applications [172, 173, 216, 217], it renders DLRA rather inaccessible non-experts.

Moreover, this approach is cumbersome when developing algorithms or in prototyp-

ing situations where the problem at hand is subject to frequent change. With this

perspective, it is natural to wonder how much performance must really be sacrificed

by a generic implementation of numerical DLRA schemes with a high-level interface.

LowRankIntegrators.jl5 provides such an implementation. It integrates sparse on-

the-fly approximation, robust geometric DLRA time-stepping routines, and ancillary

techniques for the manipulation of low-rank matrix factorizations to enable DLRA

for generic matrix-valued IVPs with minimal intrusion. Performance losses due to

its problem-agnostic implementation are mitigated by leveraging the features of the

Julia programming language [193], in particular specialization on parametric types.

A particular emphasis is placed on on-the-fly sparse approximation. The user is

only required to supply element-, row- and column-wise evaluation oracles for the

vector field 𝐹 and choose a sparse approximation scheme. Not only does this ex-

tend applicability of DLRA to problems where routines for an efficient evaluation

and tangent space projection of the vector field at low-rank inputs are not read-

5https://github.com/fholtorf/LowRankIntegrators.jl
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ily available, but it also enables a workflow that closely mimics that of solving the

IVP (8.1) with one of many widely adopted tools for solving ordinary IVPs [218,

for example]. As such, LowRankIntegrators.jl complements software efforts, such

as Ensign6 [215], aimed at streamlining the low-level implementation of tailored,

problem-specific DLRA schemes.

To achieve a performant, yet problem-agnostic implementation of numerical DLRA

schemes, LowRankIntegrators.jl relies on Julia’s automatic specialization on para-

metric types. On the one hand, automatic type specialization enables a unified and

high-level user interface which accepts DLRA problems in a generic form but still

allows problem-specific structure to be exploited during the solve step. Most impor-

tantly, the solve routine specializes on how the vector field shall be evaluated and

projected: Is the vector field or a component of it linear? Shall nonlinear compo-

nents be approximated via on-the-fly sparse approximation, or did the user provide a

function that maps low-rank inputs to an explicit low-rank factorization of the vector

field in an efficient way? Can these functions be evaluated in-place to avoid memory

allocations or are they inherently allocating? Information that answers these and

more questions is encoded by the problem type and the solve routines take advantage

of them. On the other hand, LowRankIntegrators.jl leverages Julia’s type system

to implement a rich and extensible library of DLRA integrators. The implementation

exploits the common structure of geometric DLRA integrators as outlined in Section

8.3 and in greater detail in [197]; for instance, LowRankIntegrators.jl implements

the generic projected Runge-Kutta scheme of [196] which may be composed with a

range of retractions, including user-defined ones, and Butcher tableaus to generate

a rich set of consistent integrators. Moreover, integrators that involve the solution

of ordinary IVPs as substeps [171, 210, 211, for example] can be composed with any

of the routines in DifferentialEquations.jl [218] for these substeps. A list of in-

tegration and ancillary routines available in LowRankIntegrators.jl at the time of

writing this thesis is given in Table 8.1.

Lastly, the numerical DLRA schemes implemented in LowRankIntegrators.jl

6https://github.com/leinkemmer/Ensign
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Table 8.1: DLRA routines and ancillary utilities implemented in
LowRankIntegrators.jl

Time-stepping routines
Projected Euler (arbitrary retraction) [199]
Projected Runge-Kutta (arbitrary retraction & explicit Butcher tableau) [196]
(Rank-adaptive) BUG/unconventional algorithm [211, 219]
Lie-Trotter projector splitting algorithm [210]
Strang projector splitting algorithm [195]
Retractions
SVD/projective retraction
KSL/Lie-Trotter retraction [202]
KLS retraction [197, 219]
orthographic retraction [200]
Sparse approximation
DEIM index selection [189]
QDEIM index selection [190]
LDEIM index selection [191]
recursive range approximation [22]
K-means clustering approximation

depend inherently on efficient routines for processing and manipulating low-rank ma-

trix factorizations. As illustrated in Figure 8-3, this is facilitated by the Julia pack-

age LowRankArithmetic.jl7. LowRankArithmetic.jl leverages Julia’s type system

by introducing custom types for common low-rank factorization formats alongside

specialized methods for common operations on them. A concise overview of the

supported low-rank formats and operations is outlined in Table 8.2. Furthermore,

LowRankArithmetic.jl facilitates the propagation of low-rank factorizations through

generic Julia functions composed of the supported operations without the need for

custom implementations. As exemplified for the case of matrix addition below, this

feature hinges on the property that the supported operations preserve the structure

of the low-rank factorization formats and lead to at most bounded rank growth.

Example 8.1 (Addition of low-rank factorizations). Consider two real low-rank fac-

torizations 𝑋𝑖 = 𝑈𝑖𝑆𝑖𝑉
⊤
𝑖 , with 𝑈𝑖 ∈ R𝑛×𝑟𝑖, 𝑆𝑖 ∈ R𝑟𝑖×𝑟𝑖 and 𝑉𝑖 ∈ R𝑚×𝑟𝑖 for 𝑖 = 1, 2.

7https://github.com/fholtorf/LowRankArithmetic.jl
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Their sum admits the structurally identical factorization

𝑋1 +𝑋2 =
[︂
𝑈1 𝑈2

]︂ ⎡⎢⎣𝑆1 0

0 𝑆2

⎤⎥⎦ [︂𝑉1 𝑉2

]︂⊤
.

The addition of low-rank matrices represented as factor triples (𝑈𝑖, 𝑆𝑖, 𝑉𝑖) can therefore

be reduced to suitable concatenation of the factors. This is computationally favorable

when 𝑟1 + 𝑟2 ≪ 𝑛,𝑚.

Similar, albeit more complicated, rules apply for the remaining operations listed

in Table 8.2. This perspective underlines that LowRankArithmetic.jl can stream-

line the process of exploiting low-rank structure beyond internal manipulations of

low-rank factorizations in numerical DLRA schemes. Most notably, it enables au-

tomation of the otherwise cumbersome but crucial step of implementing custom rou-

tines for efficient evaluation of the vector field at inputs in low-rank format. Via

LowRankArithmetic.jl a generic Julia function for the vector field may be automat-

ically specialized on such inputs. This is demonstrated in Figure 8-2 for a vector field

of the form

𝐹 (𝑋) = 𝐿𝑋 −𝑋 ⊙ (𝐺𝑋) (8.8)

as obtained from discretization of Burgers’ equation with an uncertain initial condi-
tion; see [175] for details.8 Figure 8-2 shows the computational advantage realized
by automatic specialization of the generic implementation of the vector field (8.8) in
Julia

function F(X, p)

L, G = p

return L*X - X .* (G*X)

end

as it is evaluated on low-rank matrix representations of LowRankArithmetic.jl’s

SVD-like factorization type. This specialization intrinsically capitalizes on the fact
8The matrices 𝐿 and 𝐺 represent second-order finite difference approximations of the Laplacian

and gradient on an equidistant one-dimensional grid.
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Figure 8-2: Computational cost of propagating an SVD-like low-rank factorization
through the bilinear vector field (8.8) via LowRankArithmetic.jl.

that the vector field (8.8) maps matrices of rank 𝑟 to matrices of rank at most 𝑟+ 𝑟2

and returns a low-rank factorization in place of a dense matrix. The computational

savings therefore increase as the side dimensions of the input grow relative to its rank.

8.8 Examples

8.8.1 Test equation

We first demonstrate the value of composing on-the-fly sparse approximation with

robust geometric integrators. The additional error induced by sparse approximation,

even if small, is found to amplify the stiffness of evolution equations of a fixed pa-

rameterization of the low-rank manifold given in Equation (8.3). As a consequence,

even more stringent step size restrictions are imposed on explicit integrators for such

approximate evolution equations in the presence of small singular values. To demon-

strate this effect, we consider the test problem from Kieri et al. [195], seeking low-rank

approximation of the time-dependent matrix

𝐴(𝑡) = exp (𝑡𝑊1)𝐷(𝑡) exp (𝑡𝑊2) ,
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Table 8.2: Low-rank factorization formats and operations supported by
LowRankArithmetic.jl.

Low-rank factorization formats
SVD-like representation (𝑋 = 𝑈𝑆𝑉 ⊤)
Two factor representation (𝑋 = 𝑈𝑍⊤)
Arithmetic operations
Matrix addition
Matrix multiplication
Hadamard products
Element-wise integer powers
Utilities
Concatenation
Slicing & indexing
Adjoints
QR
SVD (rounding)
Orthonormalization of factors (by SVD, QR, Gram-Schmidt, gradient flow [178], or
second-moment matching [220])
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Figure 8-4: Comparison between the accuracy of robust geometric integrators for
DLRA with on-the-fly sparse approximation and standard integrators for evolution
equations of low-rank factors. The number of approximation points is chosen as
𝑟𝐹 = 2𝑟.

where 𝐷(𝑡) = exp(𝑡)diag(1/2, 1/4, . . . , 1/2𝑛) and 𝑊1,𝑊2 ∈ R𝑛×𝑛 skew-symmetric

matrices with independent normal entries. The vector field in the DLRA IVP (8.2)

is thus given by 𝐹 (𝑋, 𝑡) = 𝐴̇(𝑡). We consider the case of 𝑛 = 100 and a final time

𝑇 = 1.

Figure 8-4a compares the final approximation error obtained by applying a stan-

dard integrator (the 4-stage Runge-Kutta method from [218]) to the evolution equa-

tions of an SVD-like low-rank approximation (8.3) with and without on-the-fly sparse

approximation of the vector field, for different step sizes, and approximation ranks.

We observe that the step size restriction due to small singular values is notably exacer-

bated by sparse approximation of the vector field. In contrast, Figure 8-4b illustrates

that the robust Strang projector splitting integrator [195, 210] remains stable across

the entire range of step sizes. Remarkably, the robustness persists when the vector

field is sparsely approximated which is in stark contrast to the evolution equation

approach. The computational cost of both numerical schemes compared in Figure

8-4 is dominated by matrix multiplications of identical cost and is thus similar [219].
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8.8.2 Solar wind prediction under uncertainty

The quantification of uncertainty in predictions for the dynamics of the solar-terrestrial

system remains an open challenge in numerical space weather prediction [221]. The

large scale of the involved models and nonlinearity of the governing equations pose

significant complications for this task. DLRA with on-the-fly sparse approximation

promises to alleviate both issues at the cost of a small approximation error. In the

following, we demonstrate that these promises can indeed be kept. To that end, we

consider the propagation of uncertainty through the heliospheric upwind extrapola-

tion (HUX) model [222, 223], describing the propagation of solar wind streams in

the ecliptic plane. Leaving physical details aside, the HUX model boils down to the

following nonlinear PDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑟
𝑣(𝑟, 𝜑, 𝜔) = Ω 𝜕

𝜕𝜑
log 𝑣(𝑟, 𝜑, 𝜔), 𝜑 ∈ [0, 2𝜋], 𝑟 ∈ [0.14 AU, 1 AU]

𝑣(𝑟, 0, 𝜔) = 𝑣(𝑟, 2𝜋, 𝜔), 𝑟 ∈ [0.14 AU, 1 AU]

𝑣(𝑟0, 𝜑) = 𝑣0(𝜑, 𝜔), 𝜑 ∈ [0, 2𝜋]

, (8.9)

where 𝑣(𝑟, 𝜑, 𝜔) denotes the radial velocity of solar wind at distance 𝑟 from the sun’s

center, angle 𝜑 in the ecliptic plane, and realization of uncertainty 𝜔. Ω denotes the

sun’s rotational frequency. For a detailed derivation, we refer the reader to [222].

The largest source of uncertainty in space weather models stems from uncertain

initial and boundary conditions [221]. We therefore assume that the initial solar wind

profile at the inner heliosphere is uncertain and admits a Karhunen-Loève expansion,

𝑣0(𝜑, 𝜔) = E[𝑣0(𝜑, 𝜔)] +
10∑︁
𝑖=1

√︁
𝜆𝑖 𝜉𝑖(𝜑)𝜔𝑖,

where 𝜉𝑖 and 𝜆𝑖 are the leading eigenfunction and eigenvalue pairs of the periodic

kernel [224]

𝑘(𝜑, 𝜑′) = 𝜎2 exp sin2 𝜋|𝜑− 𝜑′|
𝐿2 .
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Figure 8-5: Marginal density of initial solar wind velocity profile in the inner helio-
sphere (𝑟 = 0.14 AU).

We chose a velocity and length scale of 𝜎 = 20 km s−1 and 𝐿 = 0.2, respectively. The

mean velocity profile is given as the solution of a high-fidelity magnetohydrodynamic

model simulated under the conditions of the Carrington rotation 2068 [223]. The

marginal density of the corresponding initial velocity profile is shown in Figure 8-5.

In order to turn this problem into a form amenable to DLRA, we discretize the

angular domain into 𝑛 = 512 uniformly spaced intervals and draw 𝑚 = 4096 inde-

pendent samples for 𝜔 from a standard multivariate normal distribution. A sample

approximation of the stochastic solution of the HUX model (8.9) is then encoded

in the matrix-valued state 𝑋𝑖,𝑗(𝑟) = 𝑣(𝑟, 𝜑𝑖, 𝜔𝑗). Upon first-order accurate upwind

discretization of the angular gradient operator as proposed in [223], the associated

vector field is given by

d𝑋𝑖,𝑗

d𝑟 (𝑟) = 𝐹𝑖,𝑗(𝑋(𝑟), 𝑟) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ωlog𝑋𝑖+1,𝑗(𝑟) − log𝑋𝑖,𝑗(𝑟)

Δ𝜑 , 1 ≤ 𝑖 < 𝑁

Ωlog𝑋1,𝑗(𝑟) − log𝑋𝑁,𝑗(𝑟)
Δ𝜑 , 𝑖 = 𝑁

.

We note that without further approximation or transformation, this vector field does

not admit an efficient projection onto the tangent bundle of the low-rank manifold.

Thus, on-the-fly sparse approximation is necessary to leverage the scaling benefits of

DLRA.
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In the following, we compare a rank-15 DLRA solution to the full solution of the

HUX model for the entire ensemble of initial conditions. The DLRA solution was

computed using the 4th order projected Runge-Kutta method of Kieri and Vander-

eycken [196] with KSL retraction [197] as implemented in LowRankIntegrators.jl.

The vector field was sparsely approximated from 𝑟𝐹 = 30 rows and column indices

which were updated after every integration step via Heuristic 1 with recursive range

and co-range estimates from Algorithm 2. The approximation indices were selected

with the classical DEIM procedure [189, Algorithm 1]. Computation of the rank-15

DLRA solution took ∼ 30 s on a MacBook M1 Pro with 16 GB unified memory.

Despite the modest size of the problem, this corresponds to four-fold speed-up over

computing the full ensemble solution with the canonical fourth order Runge-Kutta

method from DifferentialEquations.jl. Figure 8-6 shows that the DLRA solution

accurately tracks the leading singular values of the full ensemble solution from the

inner heliosphere to the earth’s orbit and thus achieves near-optimal compression.

As further illustrated in Figure 8-7, the recursive updating strategy for the selection

of approximation indices aligns with common intuition. The selected approximation

indices cluster around shocks in the velocity profile and track them as they propagate

to earth’s radius. Figure 8-8 finally contrasts the predictions of the rank-15 DLRA

and full ensemble solution for the velocity profile at the earth’s orbit (1 AU). As

indicated by the accurate tracking of the leading singular values, the solutions are

qualitatively and quantitatively accurate, differing by no more than 0.5% on average.

Moreover, characteristics of the stochastic solution such as non-Gaussian marginals

are preserved by the low-rank approximation, rendering it suitable to quantify predic-

tion uncertainties of the HUX model originating from an uncertain initial condition.

8.8.3 2-D nonlinear heat equation

With this last example, we demonstrate the favorable scaling properties attained

by composing on-the-fly sparse approximation with robust DLRA routines. To that

end, we consider a heat conduction problem on a square with Dirichlet boundary
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Figure 8-6: Near-optimal compression of the stochastic solution of the HUX model.
The best attainable relative error (lower bound) is computed via the rank-15 truncated
SVD of the full ensemble solution.

(a) mean (b) absolute error

Figure 8-7: Mean solar wind velocity profile prediction of rank-15 DLRA solution with
on-the-fly sparse approximation. Approximation points points are shown in black.
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Figure 8-8: Predictions of solar wind velocity profile at the earth’s orbit (𝑟 = 1 AU).
Left: negative logarithm of marginal density on the entire orbit. Right: histogram of
velocity predictions at 𝜑 = 𝜋/2.
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conditions and a nonlinear, time-dependent heat source. The source term consists of

a volumetric heating flux with an extended Arrhenius rate expression and a balancing

cooling term. The corresponding (dimensionless) PDE reads

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑇̇ + 𝛼Δ𝑇 = 𝑇 𝛽 exp
(︁
− 𝛾
𝑇

)︁
𝑄− 𝛿(𝑇 − 𝑇𝑎), 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ (0, 1)2

𝑇 (𝑡, 𝑥, 𝑦) = 𝑇𝑎, 𝑡 ∈ [0, 1], (𝑥, 𝑦) ∈ {0, 1}2

𝑇 (0, 𝑥, 𝑦) = 𝑇𝑎, (𝑥, 𝑦) ∈ [0, 1]2

, (8.10)

where Δ denotes the Laplacian operator 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 . The spatially and temporally

varying heat flux 𝑄 is given by

𝑄(𝑡, 𝑥, 𝑦) =10 exp
(︃

−(𝑥− 𝑥̄(𝑡))2 + (𝑦 − 𝑦(𝑡))2

2𝐿2

)︃
with

⎡⎢⎣𝑥̄(𝑡)

𝑦(𝑡)

⎤⎥⎦ =

⎡⎢⎣0.1 + 0.8𝑡 sin2 3𝜋
2 𝑡

0.1 + 0.8𝑡2

⎤⎥⎦ .

The remaining parameters are chosen as 𝛼 = 1 × 10−4, 𝛽 = 0.3, 𝛾 = 0.5, 𝛿 = 8,

𝐿 = 0.1, and 𝑇𝑎 = 0.5. The large cooling rate 𝛿 leads to a locally sharply peaked

temperature profile ideally suited for low-rank approximation.

To apply DLRA to the heat equation (8.10), the spatially continuous tempera-

ture field is approximated by a time-dependent 𝑛 × 𝑛 matrix 𝑋 such that 𝑋𝑖,𝑗(𝑡) ≈

𝑇 (𝑡, 𝑥𝑖, 𝑦𝑗) on a uniform grid {(𝑥𝑖, 𝑦𝑖) = (𝑖, 𝑗)Δ𝑙 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛} of width Δ𝑙 =

1/(𝑛 + 1). The vector field encoding the dynamics of 𝑋 is obtained by discretiz-

ing the Laplacian operator with a second-order centered difference stencil. For the

numerical solution of the DLRA problem, we use the basis update and Galerkin time-

stepping scheme [171] from LowRankIntegrators.jl with Euler substeps (also known

as the KLS integrator [197]). For a tractable approximation of the nonlinear vector

field, the integrator is composed with on-the-fly sparse approximation. The approxi-

mation indices are determined with the classical DEIM procedure [189, Algorithm 1].

The range and co-range approximations are updated recursively via Algorithm 2. For

a rank-𝑟 DLRA approximation, we use a rank-2𝑟 sparse approximation of the vector

field constructed from 2𝑟 rows and columns. Figure 8-9 shows snapshots of a rank-5

approximation to the solution of Equation (8.10) as computed with the described
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numerical scheme. As illustrated, the rows and columns identified for sparse approx-

imation concentrate on the temperature peak induced by the heat source and follow

closely as it travels through the domain. Moreover, the width of the approximation

grid increases as the temperature profile becomes more diffuse.

Finally, Figure 8-10 shows the cost-accuracy trade-off offered by the described

DLRA scheme. The composition of on-the-fly sparse approximation with robust

geometric DLRA integrators yields the desired linear scaling of the computational

cost with respect to the number of grid points 𝑛 along one dimension of the domain.

This is in stark contrast to the quadratically scaling cost incurred by solving the

full equation and enables substantial computational savings for sufficiently fine grids.

At the same time, DLRA yields highly accurate low-rank approximations to the

true solution. Relative to the full solution, the rank-10 DLRA solution for instance

accumulates less than 0.01% error over the simulation horizon.

All computational experiments were conducted on MIT supercloud’s Intel Xeon

Platinum 8260 processor with 48 cores and 187.5 GB RAM [225].

8.9 Conclusion

DLRA has enabled the computation of accurate low-rank approximations to other-

wise intractable matrix-valued IVPs in applications across various domains. These

success stories have traditionally been achieved on the back of low-level implementa-

tions of numerical DLRA schemes tailored to structured, typically linear, bi-linear, or

at most quadratic vector fields. In this chapter, we have presented methods and com-

putational tools that extend the applicability of DLRA to general nonlinear vector

fields with local structure while alleviating the need for tailored low-level implemen-

tations. From a methodological perspective, we have shown that a simple modifi-

cation of Naderi and Babaee’s on-the-fly sparse approximation heuristic [22] enables

DLRA for generic nonlinear matrix-valued IVPs with vector fields and composes

readily with a host of geometric DLRA schemes. The composition with geomet-

ric DLRA schemes was demonstrated to endow the heuristic with notably improved
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Figure 8-9: Snapshots of a rank-5 DLRA solution of the heat equation (8.10). The
on-the-fly adapted sparse approximation grid is indicated in black. Temperatures are
shown on the scale between 0.5 (dark blue) and 1.0 (dark red). The center and path
of the source is shown with a white marker and white dashed line, respectively.
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Figure 8-10: Trade-off between cost and accuracy for DLRA of the nonlinear heat
equation (8.10) with increasing grid resolution and rank.

numerical robustness properties. From the tooling perspective, we have developed

LowRankIntegrators.jl, a high-level software package for DLRA in the Julia pro-

gramming language. LowRankIntegrators.jl leverages Julia’s type system to auto-

matically specialize numerical DLRA schemes on problem-specific information. As

such, it enables performant DLRA with minimal intrusion from high-level input spec-

ifications.
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Chapter 9

Concluding Remarks

There is no such thing as a free lunch. What renders Markovian stochastic processes

and control problems so fascinating is broadly what makes them difficult to study.

Uncertain, intrinsically noisy dynamics, even if governed by conceptually simple prin-

ciples, can give rise to rich and complex behaviors. While this endows stochastic

processes with the capacity of modeling phenomena of remarkable complexity and

so motivates myriads of established and nascent use cases in science and engineer-

ing, it in turn also complicates quantitative analyses in various ways. In this thesis,

we have presented new mathematical techniques alongside computational tools for

bounding the statistics of controlled jump-diffusion processes and dynamical low-

rank approximation. These contributions address two kinds of such complications:

certification and scale. As demonstrated by quantifying the limits of quantum control,

our bounding techniques may produce witnesses of fundamental limitations, certifi-

cates of optimality or robustness, and performance targets for challenging Markov

control problems. The developed tools for dynamical low-rank approximation in turn

offer a way forward in analyzing otherwise exceedingly large matrix-valued dynam-

ical systems as commonly encountered in the study of stochastic partial differential

equations by extracting and tracking only their dominant features.

Our contributions line up with many efforts aimed at unlocking the full potential

of stochastic Markov process models to support scientific and engineering activities at

large. One of the major challenges of this vision is bringing methodological advances
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to practitioners and their applications. Only when new methods are tested on real,

meaningful problems can we as a scientific community hope to establish a positive

feedback loop where those developing methods cater to the problems faced by practi-

tioners using them. A glaring obstacle in this pursuit is that techniques for analyzing

stochastic processes tend to build on a complicated web of different mathematical

and computational domains and the connections between them. As such, new meth-

ods are difficult to deploy. It appears natural to take advantage of the emergence of

performant, high-level programming languages to overcome this obstacle. Program-

ming languages like Julia allow us to hide sophisticated and complicated methods

behind approachable interfaces at an all time low effort and without compromising

on performance. We hope to lead by example in making the methods developed in

this thesis available in this manner.
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Appendix A

Stochastic optimal control via local

occupation measures

A.1 Proof of Corollary 1

Proof. Fix 𝑧 ∈ 𝑋 and 𝑡 ∈ [𝑡𝑛𝑇 −1, 𝑇 ]. Now consider an admissible control process

𝑢𝑠 such that all paths of the controlled process (𝑠, 𝑥𝑠, 𝑢𝑠) lie in [𝑡, 𝑇 ] × 𝑋 × 𝑈 with

𝑥𝑡 ∼ 𝛿𝑧. Further define 𝜏0 = 𝑡 and 𝜏𝑖 for 𝑖 ≥ 1 to be the minimum between 𝑇 and the

time point at which the process crosses for the 𝑖th time from one subdomain of the

partition 𝑋1, . . . , 𝑋𝑛𝑋
to another. By construction, the process is confined to some

(random) subdomain 𝑋𝑘 in the interval [𝜏𝑖, 𝜏𝑖+1]. Since 𝑤𝑛𝑇 ,𝑘 is sufficiently smooth

on [𝜏𝑖, 𝜏𝑖+1] ×𝑋𝑘, Ito’s lemma applies and yields that

𝑤𝑛𝑇 ,𝑘(𝜏𝑖+1, 𝑥𝜏𝑖+1) = 𝑤𝑛𝑇 ,𝑘(𝜏𝑖, 𝑥𝜏𝑖
) +

∫︁ 𝜏𝑖+1

𝜏𝑖

𝒜𝑤𝑛𝑇 ,𝑘(𝑠, 𝑥𝑠, 𝑢𝑠) d𝑠

+
∫︁ 𝜏𝑖+1

𝜏𝑖

∇𝑥𝑤𝑛𝑇 ,𝑘(𝑠, 𝑥𝑠)⊤𝑔(𝑥𝑠, 𝑢𝑠) d𝑏𝑠.

Now note that by Constraint (3.6),

∫︁ 𝜏𝑖+1

𝜏𝑖

𝒜𝑤𝑛𝑇 ,𝑘(𝑠, 𝑥𝑠, 𝑢𝑠) d𝑠 ≥ −
∫︁ 𝜏𝑖+1

𝜏𝑖

ℓ(𝑥𝑠, 𝑢𝑠) d𝑠.
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Further note that

E𝛿𝑧

[︂∫︁ 𝜏𝑖+1

𝜏𝑖

∇𝑥𝑤𝑛𝑇 ,𝑘(𝑠, 𝑥𝑠)⊤𝑔(𝑥𝑠, 𝑢𝑠) d𝑏𝑠
]︂

= 0

as the integrand is square-integrable by Assumption 3.2 and 𝜏𝑖 ≤ 𝜏𝑖+1 are stopping

times with respect to the natural filtration [226, Chapter 2, Proposition 1.1]. Thus,

after taking expectations, we obtain

E𝛿𝑧 [𝑤𝑛𝑇 ,𝑘(𝜏𝑖, 𝑥𝜏𝑖
)] ≤ E𝛿𝑧

[︂∫︁ 𝜏𝑖+1

𝜏𝑖

ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ 𝑤𝑛𝑇 ,𝑘(𝜏𝑖+1, 𝑥𝜏𝑖+1)
]︂
.

Moreover, continuity holds at any crossing between any distinct subdomains 𝑋𝑘

and 𝑋𝑗 due to Constraint (3.8) such that

E𝛿𝑧 [𝑤(𝜏𝑖, 𝑥𝜏𝑖
)] = E𝛿𝑧 [𝑤𝑛𝑇 ,𝑘(𝜏𝑖, 𝑥𝜏𝑖

)] = E𝛿𝑧 [𝑤𝑛𝑇 ,𝑗(𝜏𝑖, 𝑥𝜏𝑖
)] ,

when the process crosses from𝑋𝑘 to𝑋𝑗 at 𝜏𝑖. Now using that E𝛿𝑧 [𝑤(𝜏0, 𝑥𝜏0)] = 𝑤(𝑡, 𝑧),

we obtain by summing over the time intervals [𝜏0, 𝜏1], . . . , [𝜏𝑁 , 𝜏𝑁+1] that

𝑤(𝑡, 𝑧) ≤ E𝛿𝑧

[︂∫︁ 𝜏𝑁+1

𝑡
ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ 𝑤(𝜏𝑁+1, 𝑥𝜏𝑁+1) d𝑠

]︂
.

Letting 𝑁 → ∞, it follows that

𝑤(𝑡, 𝑧) ≤ E𝛿𝑧

[︃∫︁ 𝑇

𝑡
ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ 𝑤(𝑇, 𝑥𝑇 )

]︃

as 𝜏𝑁 → 𝑇 almost surely. Finally using that 𝑤(𝑇, 𝑥) ≤ 𝜑(𝑥) on 𝑋 due to Constraint

(3.9) and the fact that all results hold for any admissible control policy, we obtain

the desired result 𝑤(𝑡, 𝑧) ≤ 𝑉 (𝑡, 𝑧).

It remains to show that 𝑤 preserves the lower bounding property across the bound-

aries introduced by discretization of the time domain. To that end, note that by an
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analogous argument as before, we have for any 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖) that

𝑤(𝑡, 𝑧) ≤ E𝛿𝑧

[︂∫︁ 𝑡𝑖

𝑡
ℓ(𝑥𝑠, 𝑢𝑠) d𝑠+ lim

𝑠↗𝑡𝑖
𝑤(𝑠, 𝑥𝑠)

]︂
.

Since Constraint (3.7) implies that lim𝑠↗𝑡𝑖 𝑤(𝑠, 𝑥) ≤ 𝑤(𝑡𝑖, 𝑥) on 𝑋, it finally follows

by induction that 𝑤(𝑡, 𝑧) ≤ 𝑉 (𝑡, 𝑧) for any 𝑡 ∈ [0, 𝑇 ] and 𝑧 ∈ 𝑋.
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Appendix B

Analysis of stochastic reaction

systems via local occupation

measures

B.1 Direct derivation of local occupation and ex-

change measures for stochastic reaction sys-

tems

We have shown in the main text that suitably defined localized occupation and ex-

change measures lead to an infinite-dimensional linear program that characterizes

the expectations of observables of stochastic reaction systems. Here, we approach the

same construction from a different perspective. We show that the localized notions of

occupation and exchange measures arise naturally from the CME when considering

the time evolution of certain “local” observables.

Let us first recall the setup of Chapter 4: 𝑋1, . . . , 𝑋𝑛𝑋
denotes a partition of

the state space of the system 𝑋, i.e., 𝑋𝑖 ∩ 𝑋𝑗 = ∅ if 𝑖 ̸= 𝑗 and ∪𝑛𝑋
𝑖=1𝑋𝑖 = 𝑋.

Combined with a grid of time points 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛𝑇
, the sets [𝑡𝑖−1, 𝑡𝑖] × 𝑋𝑘

form a partition of the spatio-temporal domain [0, 𝑇 ] × 𝑋. Now consider a smooth
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observable 𝑤 ∈ 𝒞1,0([0, 𝑇 ] ×𝑋) and its restriction 𝑤̂(𝑡, 𝑥) = 1𝑋𝑘
(𝑥)𝑤(𝑡, 𝑥) to 𝑋𝑘. By

the fundamental theorem of calculus, the evolution of the expectation of 𝑤̂ between

the times 𝑡𝑖−1 and 𝑡𝑖 is given by

∑︁
𝑥∈𝑋𝑘

𝑤(𝑡𝑖, 𝑥)𝑝(𝑡𝑖, 𝑥) − 𝑤(𝑡𝑖−1, 𝑥)𝑝(𝑡𝑖−1, 𝑥) =
∫︁

[𝑡𝑖−1,𝑡𝑖]

∑︁
𝑥∈𝑋𝑘

𝑝(𝑡, 𝑥)𝜕𝑤
𝜕𝑡

(𝑡, 𝑥) + 𝑤(𝑡, 𝑥)𝜕𝑝
𝜕𝑡

(𝑡, 𝑥) d𝑡.

It follows from the CME that

∑︁
𝑥∈𝑋𝑘

𝑤(𝑡, 𝑥)𝜕𝑝
𝜕𝑡

(𝑡, 𝑥) =
∑︁
𝑥∈𝑋𝑘

𝑤(𝑡, 𝑥)
𝑛𝑅∑︁
𝑟=1

𝑎𝑟(𝑥− 𝛾𝑟)𝑝(𝑡, 𝑥− 𝛾𝑟) − 𝑎𝑟(𝑥)𝑝(𝑡, 𝑥).

This can not quite be identified as the expectation (or Lebesgue integral) of a suitable

measures supported on 𝑋𝑘 since the inner sum includes terms with respect to states

that do lie in 𝑋𝑘. In order to separate these states, we reorder swap the order of

summation and shift the summation index by the stoichiometric coefficients 𝛾𝑟:

∑︁
𝑥∈𝑋𝑘

𝑤(𝑡, 𝑥)𝜕𝑝
𝜕𝑡

(𝑡, 𝑥) =
𝑛𝑅∑︁
𝑟=1

∑︁
𝑧+𝛾𝑟∈𝑋𝑘

𝑤(𝑧 + 𝛾𝑟, 𝑡)𝑎𝑟(𝑧)𝑝(𝑡, 𝑧) −
∑︁
𝑥∈𝑋𝑘

𝑤(𝑡, 𝑥)𝑎𝑟(𝑥)𝑝(𝑡, 𝑥).

Now note that the inner summation range of the first sum may be decomposed into

three components

{𝑥 ∈ 𝑋 : 𝑥+ 𝛾𝑟 ∈ 𝑋𝑘} =
(︁
𝑋𝑘 ∪𝑋𝑟,in

𝑘

)︁
∖𝑋𝑟,out

𝑘

where 𝑋𝑟,in
𝑘 and 𝑋𝑟,out

𝑘 denote the states outside of 𝑋𝑘 that transition into 𝑋𝑘 and

conversely the states in 𝑋𝑘 that leave 𝑋𝑘 via reaction 𝑟 with non-zero rate:

𝑋𝑟,in
𝑘 = {𝑥 ∈ 𝑋 : 𝑥 /∈ 𝑋𝑘, 𝑥+ 𝛾𝑟 ∈ 𝑋𝑘, 𝑎𝑟(𝑥) > 0},

𝑋𝑟,out
𝑘 = {𝑥 ∈ 𝑋𝑘 : 𝑥+ 𝛾𝑟 /∈ 𝑋𝑘, 𝑎𝑟(𝑥) > 0}.
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After reordering terms accordingly, we obtain

∑︁
𝑥∈𝑋𝑘

𝑤(𝑡, 𝑥)𝜕𝑝
𝜕𝑡

(𝑡, 𝑥) =
∑︁
𝑥∈𝑋𝑘

𝑛𝑅∑︁
𝑟=1

𝑎𝑟(𝑥)(𝑤(𝑡, 𝑥+ 𝛾𝑟) − 𝑤(𝑡, 𝑥))𝑝(𝑡, 𝑥)+

𝑛𝑅∑︁
𝑟=1

⎛⎜⎝ ∑︁
𝑥∈𝑋𝑟,in

𝑘

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥) −
∑︁

𝑥∈𝑋𝑟,out
𝑘

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥)

⎞⎟⎠ .
In this form, the right-hand side is readily interpreted as the sum of Lebesgue integrals

with respect to non-negative measures. To tie the last two terms finally to the state

space partition, we recall the notion of “relative neighborhoods” from the main text:

the “relative neighborhood” of 𝑋𝑘 in 𝑋𝑗 denoted by 𝑁𝑘𝑗 comprises all states in 𝑋𝑗

that transition into 𝑋𝑘 with non-zero rate; formally,

𝑁𝑘𝑗 = {𝑥 ∈ 𝑋𝑗 : 𝑅𝑘(𝑥) ̸= ∅} where 𝑅𝑘(𝑥) = {𝑟 : 𝑥+ 𝛾𝑟 ∈ 𝑋𝑘 and 𝑎𝑟(𝑥) > 0}.

This allows us to concisely express the states that lead to transition into and out of

𝑋𝑘 in a way that is directly tied to the partition:

∪𝑛𝑅
𝑟=1 𝑋

𝑟,in
𝑘 =

(︁
∪𝑛𝑋
𝑗=1𝑁𝑘𝑗

)︁
∖𝑁𝑘𝑘 = all states that enter 𝑋𝑘 with non-zero rate.

∪𝑛𝑅
𝑟=1 𝑋

𝑟,out
𝑘 =

(︁
∪𝑛𝑋
𝑗=1𝑁𝑗𝑘

)︁
∖𝑁𝑘𝑘 = all states that leave 𝑋𝑘 with non-zero rate.

As a consequence, we can concisely express

𝑛𝑅∑︁
𝑟=1

∑︁
𝑥∈𝑋𝑟,in

𝑘

𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑎𝑟(𝑥)𝑝(𝑡, 𝑥) =
∑︁
𝑗 ̸=𝑘

∑︁
𝑥∈𝑁𝑘𝑗

∑︁
𝑟∈𝑅𝑘(𝑥)

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥),

𝑛𝑅∑︁
𝑟=1

∑︁
𝑥∈𝑋𝑟,out

𝑘

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥) =
∑︁
𝑗 ̸=𝑘

∑︁
𝑥∈𝑁𝑗𝑘

∑︁
𝑟∈𝑅𝑗(𝑥)

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥).

Overall, it follows from the definition of the infinitesimal generator (cf. Equation
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(4.2)) that

∑︁
𝑥∈𝑋𝑘

𝑤(𝑡𝑖, 𝑥)𝑝(𝑡𝑖, 𝑥) −
∑︁
𝑥∈𝑋𝑘

𝑤(𝑡𝑖−1, 𝑥)𝑝(𝑡𝑖−1, 𝑡) =
∫︁

[𝑡𝑖−1,𝑡𝑖]

∑︁
𝑥∈𝑋𝑘

𝒜𝑤(𝑡, 𝑥)𝑝(𝑡, 𝑥) d𝑡

+
∑︁
𝑗 ̸=𝑘

∫︁
[𝑡𝑖−1,𝑡𝑖]

∑︁
𝑥∈𝑁𝑘𝑗

∑︁
𝑟∈𝑅𝑘(𝑥)

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥) d𝑡

−
∑︁
𝑗 ̸=𝑘

∫︁
[𝑡𝑖−1,𝑡𝑖]

∑︁
𝑥∈𝑁𝑗𝑘

∑︁
𝑟∈𝑅𝑗(𝑥)

𝑎𝑟(𝑥)𝑤(𝑡, 𝑥+ 𝛾𝑟)𝑝(𝑡, 𝑥) d𝑡.

Clearly, every term above may be interpreted as the Lebesgue integral of a certain

observable with respect to a local occupation or exchange measure as defined in the

main text.

B.2 Conic reformulation of maximum entropy prob-

lems

Recall the maximum entropy problem (regularized-S∞) introduced in Chapter 4, Sec-

tion 4.6:

sup
𝜇,𝜋

𝑛𝑋∑︁
𝑘=1

⟨1, 𝜇𝑘⟩𝑆[𝑞𝑘] − ⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩ (max-S∞)

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃.

Further recall the definition of the exponential cone.

Definition B.1 (Exponential cone). The exponential cone is defined as

𝐾exp = {𝑥 ∈ R3 : 𝑥1 ≥ 𝑥2 exp 𝑥3

𝑥2
, 𝑥2 > 0} ∪ {𝑥 ∈ R3 : 𝑥1 ≥ 0, 𝑥2 = 0, 𝑥3 ≤ 0}.
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In order to reformulate (regularized-S∞) as a conic program, we consider the

hypograph reformulation of the nonlinear terms in the objective function,

sup
𝜇,𝜋,𝑠

𝑛𝑋∑︁
𝑘=1

⟨1, 𝜇𝑘⟩𝑆[𝑞𝑘] + 𝑠𝑘

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ = 0, ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃,

𝑠𝑘 ≤ −⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩, ∀𝑘 ∈ 𝑃.

and pose the hypograph constraints as exponential cone constraints. To that end,

note first that for ⟨1, 𝜇𝑘⟩ > 0, we have

𝑠𝑘 ≤ −⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩ ⇐⇒ ⟨1, 𝜇𝑘⟩ exp 𝑠𝑘
⟨1, 𝜇𝑘⟩

≤ 1 ⇐⇒ (1, ⟨1, 𝜇𝑘⟩, 𝑠𝑘) ∈ 𝐾exp.

Further note that in the limit ⟨1, 𝜇𝑘⟩ → 0, we also have that ⟨1, 𝜇𝑘⟩ log⟨1, 𝜇𝑘⟩ → 0 so

that by closedness of 𝐾exp the conclusion

𝑠𝑘 ≤ −⟨1, 𝜇𝑘⟩ log ⟨1, 𝜇𝑘⟩
|𝑋𝑘|

⇐⇒ (1, ⟨1, 𝜇𝑘⟩, 𝑠𝑘) ∈ 𝐾exp

remains valid if ⟨1, 𝜇𝑘⟩ = 0. It follows that (regularized-S∞) is equivalent to the

infinite dimensional linear program

sup
𝜇,𝜋,𝑠

𝑛𝑋∑︁
𝑘=1

⟨1, 𝜇𝑘⟩𝑆[𝑞𝑘] + 𝑠𝑘

s.t. ⟨𝒜𝑤, 𝜇𝑘⟩ +
𝑛𝑋∑︁
𝑗=1

⟨ℱ𝑘𝑤, 𝜋𝑗𝑘⟩ − ⟨ℱ𝑗𝑤, 𝜋𝑘𝑗⟩ , ∀𝑤 ∈ 𝒞(𝑋̄𝑘), ∀𝑘 ∈ 𝑃,

𝜇𝑘 ∈ ℳ+(𝑋𝑘), ∀𝑘 ∈ 𝑃,

𝜋𝑗𝑘 ∈ ℳ+(𝑁𝑘𝑗), ∀(𝑗, 𝑘) ∈ 𝜕𝑃,

(1, ⟨1, 𝜇𝑘⟩, 𝑠𝑘) ∈ 𝐾exp, ∀𝑘 ∈ 𝑃.
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Upon moment sum-of-squares relaxation of this problem, the exponential cone con-

straints are preserved as they involve only the zeroth order moments of the measures

𝜇𝑘.

B.3 Approximations to the stationary distribution

of Schlögl’s system

The results presented in Chapter 4, Section 4.6.1 are presented for entropy regu-

larization 𝑆[𝑞𝑛𝑋
] = 1

2 + 1
2 log 𝜋𝑛

2 with 𝑛 = 100. Here we present results for 𝑛 =

50, 75, 125, 150 to showcase that the advantage persists for a range of regularizations.
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(a) 𝑛 = 50 (b) 𝑛 = 75

(c) 𝑛 = 125 (d) 𝑛 = 150

Figure B-1: Errors in stationary measure approximations for Schlögl’s system com-
puted via degree-𝑑 moment-sum-of-squares relaxations of (regularized-S∞) (dashed
lines) and (local-OM∞) (solid lines) for different partitions. The entropy regulariza-
tion for truncated region in (regularized-S∞) is chosen as 𝑆[𝑞𝑛𝑋

] = 1
2 + 1

2 log 𝜋𝑛
2 . The

objective function in (local-OM∞) is chosen as 𝜑(𝑥) = −𝑥.
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