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ABSTRACT

Current developments in automated experimental imaging allow for high-resolution track-
ing across various scales, from whole animal behavior to single-cell dynamics to spatiotempo-
ral gene expression. Transforming these high-dimensional data into effective low-dimensional
models is an essential theoretical challenge to enable the characterization, comparison, and
prediction of dynamics both within and across biological systems. Spectral mode representa-
tions have been used successfully across physics, from quantum mechanics to fluid dynamics,
to compress and model dynamical data. However, their use in analyzing biological systems
has yet to become prevalent. Here, we present a set of noise-robust, geometry-aware math-
ematical tools that enable spectral representations to extract quantitative measurements
directly from experimental data. We demonstrate the practical utility of these methods
by applying them to the extraction of defects in signaling fields on membranes, the infer-
ence of partial differential equations directly from videos of active particle dynamics, and
the categorization of emergent patterns in spatiotemporal gene expression during bacterial
swarming.

An additional challenge occurs for complex biophysical processes where the underlying
dynamics are only partially determined. We wish to use experimental data directly to infer
effective dynamical models that elucidate the system’s underlying biological and physical
mechanisms. Building on spectral mode representations, we construct a generic computa-
tional framework for inferring the dynamics of living systems through the evolution of their
mode representations. The framework can incorporate prior knowledge about biological
and physical constraints. We apply this framework first to single-cell imaging data during
zebrafish embryogenesis, demonstrating how our framework can compactly characterize de-
velopmental symmetry-breaking and reveal similarities between pan-embryo cell migration
and Brownian particles on curved surfaces. Next, we apply the framework to the undula-
tory locomotion of worms, centipedes, robots, and snakes to distinguish between locomotion
behaviors. Finally, we present an extension of the framework to the case of nonlinear dy-
namics when all relevant degrees of freedom are only partially observed, with applications
to neuronal and chemical dynamics.

Thesis supervisor: Jörn Dunkel
Title: MathWorks Professor of Mathematics
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List of Figures

3.1 Time evolution of chemical Rho signaling wave patterns on the starfish oocyte
from a homogeneous initial state to a quasi-steady state exhibiting turbulent
spiral patterns. Snapshots show maximal intensity projections of three near-
membrane Z-stack confocal slices spanning 5 µm. Scale bar: 40 µm. Experi-
mental images provided by the Fakhri lab [70]. Note the visible presence of
noise in the images on top of relatively smooth intensity profiles, lending these
types of microscopic images well to spectral representation. . . . . . . . . . . 38

3.2 (a) Truncated spectral representation (middle) shows significant noise reduc-
tion compared to noise-polluted input data (second left) while retaining the
structure of the true underlying field (left) for simulated CGL test data with
added Poisson noise. A comparison of the extracted phase field from the true
CGL data (second right) and the denoised reconstructed field (right) shows
they contain the same structure and very similar defect statistics. (b) Param-
eter sweep over possible Fourier and Chebyshev mode cutoffs for the CGL test
data. Reconstruction error contours (black lines) and compression contours
(white lines) are shown. Points where the two contours are tangent corre-
spond to points on the error compression front. (c) Compression error front
extracted from the parameter sweep in (b) along with the linear fit to the
log-log curve (green line) and the chosen cutoff point (red dot) . . . . . . . . 41

3.3 (a) Comparison of an experimental snapshot with the corresponding data and
phase field representation (3.2) for state ii shows significant noise reduction
while maintaining the main underlying structure. The extracted phase using
the Hilbert transform is shown on the right. Scale bar 20 µm. (b) Parameter
sweep over possible Fourier and Chebyshev mode cutoffs for state ii. Recon-
struction error contours (black lines) and compression contours (white lines)
are shown. (c) Compression error fronts for the experimental states. We see
that all the curves have a similar shape across all states. The linear fit to each
of the experimental fronts on the log-log graph is shown with thick lines. . . 42
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3.4 (a) Quasi-steady wave patterns (t > 60min) of Rho-GTP intensity field from
four starfish egg cells, aligned with phase fields reconstructed from oscilla-
tions in pixel fluorescence intensity signal (inset). Scale bar: 20 µm. (b) The
reconstructed phase fields harbor topological defects of winding number +1
(red, counter-clockwise rotating spiral core) and -1 (blue, clockwise rotating
spiral core). Lower: Time-lapse snapshots of localized creation (annihilation)
events that produce (destroy) oppositely charged defects in pairs. Scale bar:
5 µm. (c) Worldline representation of topological defects embedded in 2+1-
dimensional phase field. The time-lapse snapshots in (b) correspond to the
formation of the simple space-time loop in (c). Scale bars: 5 µm; 30 s (vertical). 44

3.5 Learning hydrodynamic models from particle simulations and experiments.
(a) Inputs are time-series data for particle positions xi(t), and particle ori-
entations pi(t) = (cos θi, sin θi)

⊤, measured in simulations or experiments
with microscale resolution. (b) Spatial kernel coarse-graining of the discrete
microscopic variables provides continuous hydrodynamic fields, such as the
density ρ(t,x) or the polarization density p(t,x). (c) Coarse-grained fields are
sampled on a spatiotemporal grid and projected onto suitable spectral basis
functions. Systematic spectral filtering (compression) ensures smoothly inter-
polated hydrodynamic fields, enabling efficient and accurate computation of
spatiotemporal derivatives. (d) Using these derivatives, a library of candidate
terms Cl(ρ,p) and Cl(ρ,p) consistent with prior knowledge about conserva-
tion laws and broken symmetries is constructed. A sparse regression algorithm
determines subsets of relevant phenomenological coefficients al and bl. The
resulting hydrodynamic models are sparse and interpretable, and their pre-
dictions can be directly validated against analytic coarse-graining results or
experiments. Bottom: Snapshots illustrating the workflow for microscopic
data generated from simulations of chiral active Brownian particles [84]. . . . 47
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3.6 Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian kernel
width σ for the chiral particle model data (top) quantifies the fraction of in-
formation that remains in Fourier space after coarse-graining. Representative
snapshots of coarse-grained fields are shown in the bottom panels. Charac-
teristic scales in units of particle-particle interaction distance: Median vortex
distance ∼ 17 (obtained from a Delaunay triangulation of density peaks), box
size 100. (i, σ = 0.02): Raw image before coarse-graining. (i, σ = 0.02)–
(ii, σ = 0.12): The particle data’s discrete nature remains present, leading to
little information loss. (ii, σ = 0.12)–(iii, σ = 0.86): As the coarse-graining
scale approaches the interaction length scale, σ → 1, coarse-grained data
starts losing single-particle information and vortices become more prominent
than individual particles. (iii, σ = 0.86)–(iv, σ = 5): Vortices start to be
smoothed out as σ exceeds the particle interaction distance and vortex size.
Data from (iv, σ = 5) was used for inferring a continuum model from the
chiral-particle simulation date; this choice of the coarse-graining scale ensures
that the hydrodynamic fields are sufficiently smooth while still containing
sufficient information about density fluctuations and vortex patterns. (v,
σ = 12.6): When the kernel width σ approaches the typical vortex-vortex
distance, coarse-graining results in a constant homogeneous density, and all
spatially heterogeneous information is lost. . . . . . . . . . . . . . . . . . . 49

3.7 Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian ker-
nel width σ for the Quincke roller system (top) quantifies the fraction of
information that remains in Fourier space after coarse-graining. Represen-
tative snapshots of coarse-grained fields are shown in the bottom panels.
Characteristic length scales: Roller diameter 4.8µm, mean roller-roller cen-
troid distance ∼ 11µm, window height H = 0.286mm, window width W =
1.146mm. (i, σ = 10−5 mm): Raw image before coarse-graining. (ii, σ =
0.0033mm)–(iii, σ = 0.0085mm): Single rollers are increasingly smoothed
out, leading to an initial decrease in information. (iii, σ = 0.0085mm)–
(iv, σ = 0.045mm): Large-scale density fluctuations become increasingly
smoothed out by the coarse-graining. Data from (iv, σ = 0.045mm) was
used for model learning from experimental Quincke roller data, providing
a compromise between sufficiently smooth data and well-resolved details of
density fluctuation in both spatial directions. (v, σ = 0.24mm): As the
coarse-graining scale σ becomes comparable to the window height H, den-
sity fluctuations in the vertical direction have been smoothed out, leading to
an effective one-dimensional density pattern that varies only along the hori-
zontal direction. (vi, σ = 1.04mm): As σ becomes comparable to the window
width W , all density variations disappear, and the coarse-graining yields a
constant homogeneous density. . . . . . . . . . . . . . . . . . . . . . . . . . 50
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3.8 (a) Slices through the spatio-temporal power spectrum Sx;n,q = |ex · p̂n,q|2
for different values of the Chebyshev polynomial order n ∈ {0, 300, 600}, cor-
responding to modes with increasing temporal frequencies. The rightmost
panel depicts the total spatial spectral power

∑
q Sx;n,q [see Eq. (3.9b)] of

each Chebyshev mode n. The slowly decaying long tail of fast modes in-
dicates a regime in which fluctuations dominate over a smooth signal. The
cut-off n0 = 600 removes these modes, which is in line with the goal of learning
a hydrodynamic model for the slow, long-wavelength modes. (b) Kymographs
of the spectral derivatives ∂tρ and −∇·p at y = 50, obtained from the spectral
representation of the data are spatiotemporally consistent. . . . . . . . . . . 52

3.9 Power spectra of coarse-grained data for experimental applications to tracked
particle data: the Quincke roller system from Denis Bartolo’s lab [87] (left)
and for sunbleak fish from Iain Couzin’s lab [89] (right), where n denotes
temporal Chebyshev mode numbers. The normalized power shown in the two
panels is given by Sx;n/Sx;n=0. For both the Quincke roller and the sunbleak
fish data spectral powers decay exponentially with increasing temporal mode
number n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Spatiotemporal transcriptome measurements and microscopy-based pheno-
typing during Bacillus subtilis swarm development provided by the Drescher
lab. (a) Spatiotemporal transcriptome results are summarized in kymograph
heatmaps with each colored tile corresponding to one sample - the color of
each tile in the heatmap indicates the expression level of a particular gene,
LRNA. The “Range” value corresponds to the dynamic range of gene expres-
sion, defined as the ratio between the highest and lowest color bar values,
which are the 5th and 95th percentile of the gene expression values, taking
all three replicates into account (additional replicates can be found in [12]).
Three spatiotemporal heatmaps depicting the expression pattern of genes re-
lated to various processes are shown. Thousands of additional spatiotemporal
gene expression heatmaps are available [12]. (b) Spatiotemporal phenotype
heatmaps, analogous to the gene expression heatmaps in panel (a). Similar
spatiotemporal phenotype maps are available for ten additional properties [12]. 55

3.11 (a) An exponential function is fitted to the space-time location of boundary
points (indicated in purple color) for each data set. Space-time coordinates
are then rescaled. (b) The rescaled space-time coordinates are shown in their
common non-dimensionalized domain. . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Spectral representation of spatiotemporal expression pattern data from the
Drescher lab. The spatiotemporal expression heatmap for each gene and each
phenotypic property was approximated by a linear combination of six orthogo-
nal basis functions Pi, (i = 0, ..., 5) that are optimized for the spatiotemporal
swarm domain. The coefficients ci of the basis functions were determined
using all three biological replicates. . . . . . . . . . . . . . . . . . . . . . . . 59
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3.13 Identification of genes with spatiotemporal regulation and different spatiotem-
poral expression patterns. (a) A spatiotemporal information score was defined,
quantifying the spatiotemporal information observed for a given gene. By
ranking genes according to this spatiotemporal information score and defin-
ing a cutoff at the weighted median of the spatiotemporal information, we
identified all genes with spatiotemporal gene expression patterns. Insets show
gene expression heatmaps with low, intermediate, and high spatiotemporal in-
formation scores. (b) For the 572 genes with spatiotemporal gene expression
patterns identified in panel (a), we used cosine similarity based on the co-
efficients ci to identify clusters of highly correlated spatiotemporal patterns,
revealing six major distinct spatiotemporal gene expression patterns (indi-
cated by colored lines on the side of the similarity matrix). (c) To visualize
these, the pattern corresponding to the mean of all coefficients ci within each
pattern cluster is shown. (d-e) Multidimensional scaling (MDS) was applied
to genes and swarm properties based on their cosine similarity, as shown in
panel (b). The expression pattern of each gene is represented as a point with
color indicating their expression pattern category in panel (d) or gene function
in panel (e). Gene functions are based on subtiWiki [103, 104]. Gene function
categories with fewer than ten genes assigned to them are grouped into the
category “other”. Five phenotypic properties of the swarm (see Figure 3.10
for heatmaps) are shown as stars, revealing that their location in the MDS
space is near some gene patterns and functions. (e) The 50 nearest neighbor
genes in the MDS space (corresponding to similar gene expression patterns)
were identified and grouped into gene function categories for each of these five
phenotypic properties. The number of genes in each gene function category
for each phenotypic property is visualized in the connection plot (right). . . . 60

3.14 With increasing clusters, the minimum clustering cost decreases, with an ini-
tially sharp decline that levels off for high cluster numbers. Highlighted in red
is the location of 6 clusters, the number which was chosen for further analyses
in Figure 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Schematic of the learning procedure. Initially, the data is rescaled using the
median absolute deviation (MAD) (4.15) to account for variation in scales
across the modes. Tildes denote scaled variables. To avoid local minima of
the optimization function, we iteratively feed more data into the cost function.
Next, we sequentially threshold the small terms in the matrix until conver-
gence is reached. These procedures are repeated until the sparsity pattern
converges. Finally, the scaling is undone, and the parameters are optimized
on the unscaled data to produce the final matrix. . . . . . . . . . . . . . . . 75
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5.1 From single-cell tracking data to sparse mode amplitude representations. (a) Mi-
croscopic imaging data of early zebrafish development (adapted from the
Huisken lab [180]) shows cell migration from an initially homogeneous pole of
cells (left) towards an elongated structure that indicates the head-tail axis of
the fully developed organism. Scale bar, 100µm. (b) Experimental single-cell
tracking data from [8] (blue dots) during similar developmental time points
(±20min) as in (a). t = 0min for the indicated time points in B corresponds
to a developmental time of 4 hours post fertilization. The z-axis points from
the ventral pole (VP) to the animal pole (AP). (c) Coarse-grained relative
cell density ρ(r, t) (color) and associated coarse-grained flux J(r, t) (stream-
lines) determined from single cell positions and velocities from data in (b) via
equations (5.1). The thickness of streamlines is proportional to the logarithm
of the spatial average of |J|. (d) Dynamic harmonic mode representation of
the relative density ρ(r, t) [equation (5.5), left panel] and of the flux J(r, t)
[equation (5.6), middle and right panel] for fields shown in (c). The modes
j
(1)
lm correspond to compressible, divergent cell motion, the modes j(2)lm describe

incompressible, rotational cell motion. Mode amplitudes become negligible
for l ≥ 5. For all panels, horizontal black lines delineate blocks of constant
harmonic mode number l, and black triangles denote the end of the epiboly
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Normalized spectral entropy as a function of the coarse-graining kernel width
(top) computed for density ρ and flux field J using equation (5.4). To evaluate
the spectral entropy for the vector-valued flux, we define S(J) := S(Jx) +
S(Jy) + S(Jz) (“Flux sum”). The coarse-graining width – the half-width at
half-maximum arccos(2−1/k) is varied by varying the kernel index k. The
fields ρ and |J| are shown in the two bottom rows for different values of k.
i. k = 5000 (blue, data used to compute the reference spectral entropies S0(ρ)
and S0(J)) ii. k = 60 (brown) iii. k = 6 (yellow, used in main text) iv. k = 2
(purple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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5.3 Learning active Brownian particle (ABP) dynamics on a sphere. (a) ABPs
move on a unit sphere (radius R0 = 1) with angular speed v0 = 1 along
a tangential unit vector u(t) that is subject to stochastic in-plane fluctua-
tions. Example single-particle trajectories are shown in the high-noise (or-
ange, Dr = 10 in units of R0v0) and in the low-noise regime (blue, Dr = 0.5).
Time t is measured in units of R0/v0 in all panels. (b) Position correlation
function ⟨x(t) · x(0)⟩ averaged over 3 × 104 independent ABP trajectories
show distinct oscillations of period ≈ 2π in the low-noise regime, as ABPs
orbit the spherical surface more persistently. The standard error of the mean
is smaller than the symbol size. (c) Analytically predicted (left) and inferred
(right) dynamical matrices M [see equation (5.9)] describing the mean-field
dynamics of a large collection of non-interacting ABPs show good quantita-
tive agreement. (d) Mollweide projections of coarse-grained ABP simulations
with v0 = 1 and Dr = 0.5 using cell positions from the first time point in
the zebrafish data (Figure 5.1) as the initial condition: At each position, 60
particles with random orientation were generated and their ABP dynamics
simulated, amounting to approximately 1.2× 105 particles in total. The den-
sity fields homogenize over time, where the maximum density at t = 12.3
has decayed to about 5% of the maximum density at t = 1.02. Blue lines
and arrows indicate streamlines of the cell flux J(r, t). (e) Simulation of the
learned linear model (5.9) with M shown in Figure 5.3(c) (right), for the same
initial condition as in (d). Marked time points indicate intervals of learning,
validation, and prediction phases of the model inference. . . . . . . . . . . . 88

5.4 Model learning for experimental data of collective cell motion during early ze-
brafish development. (a) Visualization of the constant mode coupling matrix
M that was learned from experimental data and describes the dynamics of
the mode vector a = [ρlm(t), j

(1)
lm (t), j

(2)
lm (t)]T via (5.9). Dimensionless fields

are defined by ρ̂lm = R2
sρlm and ĵ

(i)
lm = Rs∆tj

(i)
lm (i = 1, 2) with Rs = 300µm

and ∆t = 2min. (b) Scaling the learned matrix M by the Mean Absolute
Deviation (MAD) of the modes reveals structures reminiscent of the mode
coupling matrix learned for ABPs (Figure 5.3(c)). (c) The learned model
recovers mass conservation (5.2) in mode space. (d) Comparison of exper-
imental mode dynamics (circles) with numerical solution (solid line) of the
minimal model (5.9) for learned matrix M visualized in Figure 5.4(a). For
clarity, the comparison is shown for the two dominant modes of each set of
harmonic modes ρlm, j

(1)
lm and j(2)lm . (e, f) Mollweide projections of the experi-

mental data (e) and of the numerical solution of the learned model (f) show
very good agreement. Blue lines and arrows illustrate streamlines defined by
the cell flux J(r, t), circles depict defects with topological charge +1 (white)
and −1 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

17



5.5 Simulating the learned model with different initial conditions. Mollweide pro-
jections from simulations of the model Eq. (5.9) with M depicted in Fig-
ure 7.4B that was learned for experimental data from sample 1, but using
different initial conditions (from top to bottom): initial condition from exper-
imental data set sample 2; initial condition from sample 1 rotated by 10◦ away
from the animal pole; initial condition from sample 1 with ϵ = 10% of the den-
sity at the animal pole removed. Blue lines and arrows illustrate streamlines
defined by the cell flux J(r, t), circles depict defects with topological charge
+1 (white) and −1 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Chebyshev mode representation enables an efficient and interpretable low-
dimensional description of undulatory locomotion across species and model
systems. (a) Experimental image of C. elegans worm from the Flavell lab
with center of mass (COM) and mean orientation overlayed. (b) Tracked
centerline of worm over 100 seconds. The arrow indicates the direction of
motion. (c) A small number of Chebyshev polynomials suffices to reconstruct
the worm shape (left) accurately. Faint colored lines correspond to centerline
reconstructions at different polynomial degrees. Reconstruction error (right)
decays rapidly as the Chebyshev degree n increases. (d) The zeroth-order
Chebyshev coefficients closely follow the worm’s geometric COM, illustrating
the physical interpretability of the Chebyshev mode representation. (e) Sim-
ilarly, the first-order Chebyshev coefficients represent the tail-to-head worm
orientation. (f) The mode-averaged dominant frequency of Chebyshev mode
oscillations correlates closely with the locomotion speed of the worm. . . . . 109

7.2 (top) True length ℓ and approximate length ℓa calculated using (6.12) show
close agreement. (bottom) Deviation between ℓa − ℓ shows that the true
deviation is much lower than the bound 0.13. Also the deviation is always
positive which means ℓa provides a close upper bound on ℓ. . . . . . . . . . 110

7.3 Inferred Schrödinger dynamics replicate stereotypical C. elegans locomotion
(data provided by the Flavell lab). (a) Representative real propulsion vec-
tor h0 and Hamiltonian H = S + iA for a minimal periodic straight-motion
model (7.1), with S = 0 and equidistant spectrum of H, fitted to data from
a single oscillation period (τ = 3.05 s). (b) Kymographs of x(s, t) and y(s, t)
coordinate fields for observed data (left) and model prediction (middle) show
little deviation (right), confirming that (7.1) can accurately capture undula-
tory shape dynamics of C. elegans. (c) Real-space dynamics predicted by the
Schrödinger model (line) is consistent with the observed worm dynamics (cir-
cles). Experimental data has been periodically extended for visualization to
avoid overlapping body segments. (d) Real-space shape functions [Eq. (7.2)]
corresponding to the three smallest magnitude eigenvalues, λ±k = ±kλ for
k = 0, 1, 2, account for > 98% of the shape dynamics, enabling a generaliz-
able low-rank description. More complex turning dynamics can be described
using time-varying Hamiltonians with unconstrained spectra (Figure 7.5). . . 111
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7.4 Mode-space Hamiltonians provide a compact dynamical description of undula-
tory motion across different species and model systems. (a) Living and nonliv-
ing systems [236, 240] analyzed here and representative straight-motion Hamil-
tonians H = iA inferred from a single oscillation period. The eigenspaces of
the Hamiltonians enable the comparison and classification of undulation dy-
namics in panel (d). Scale bars are 8 mm [centipede (data provided by the
Goldman lab)], 10 cm [snake (data provided by the Goldman lab)], 10 cm
(toy snake), and 0.25 mm (worm model). (b) Inferred Schrödinger model
dynamics (line) provide an accurate description of the observed dynamics
(circles). Models were fitted on a single period τ = 0.19 s (centipede), 0.33 s
(snake), 0.45 s (toy snake), 2.2 s (worm model). Experimental data has been
periodically extended for visualization to avoid overlapping body segments.
(c) The dominant shape eigenvectors v1(s) and w1(s) are consistent within
each species and capture differences between species. (d) Pairwise Grass-
mann distances between subspaces spanned by first excited eigenstates of the
Hamiltonians (top) and its 2D planar embedding (bottom, constructed by a
multidimensional scaling) capture the similarities and differences between un-
dulatory locomotion in organisms, model simulations, and robots. Each point
corresponds to a different trajectory. . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Breakdown of adiabaticity during reversal turning behavior of C. elegans.
(a) The turning part S(t) of the Hamiltonian H(t) = S(t) + iA(t) becomes
switched on at the turn. (b) The turn is signaled by a sudden change in
the geometric Berry phase (blue) of the dominant eigenvector, and the RMS
reconstruction error of the adiabatic approximation increases noticeably after
the turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1 General HDI framework illustrated for strongly noise-corrupted FHN simu-
lation data. (a) Algorithm flow chart: (1) ODE sensitivity optimization [37]
yields N ∼ 20, 000 candidate models by tuning 20 parameters of dense two-
field cubic observed (blue) and hidden (dark-gray) variable equations from
random initializations. Models are filtered for stability and fit quality. (2)
The remaining ∼ 4000 models are hierarchically clustered using the cosine
similarity between their parameter vectors. Histograms of parameters in the
largest cluster are used to rank the terms based on their coefficient of variation.
(3) Kemeny-Young ranking produces a list of candidate models of decreasing
sparsity. Models are refit at each sparsity level, and the user can select the
model that best balances sparsity and relative error (RE). (b) Using data
from only the v time series corrupted by 50% noise, HDI correctly discovers
a sparse first-order system that reduces to the same second-order form as the
FHN model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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8.2 HDI framework learns a parsimonious two-variable model from an experimen-
tal recording of the membrane potential in a squid giant axon and reproduces
the dynamics in additional squid giant axons from the SGAMP database [294,
295]. (a) North Atlantic longfin inshore squid (Loligo pealeii) with a sketch
of the nervous system and position of giant axons (top). The learned two-
variable HDI model with nine terms accurately fits the membrane potential
v (center, line) of an experimental squid giant axon (open circles) in response
to a noisy stimulus input current. The hidden variable h (bottom) acts as
a slow recovery variable. (b) Polynomial model terms in v̇ and ḣ equations
ranked from most to least important based on their coefficient of variation in
the largest model cluster. Training data losses of sparse models containing
only top s ranked terms are shown, and a model with sparsity nine is chosen.
(c) Limit cycle and fixed points (black) of the learned model are consistent
with prior models of regular spiking neurons [259] where the proximity of
the saddle fixed point to the orbit likely arises from a homoclinic bifurcation.
Nullclines of v, h are plotted in blue and gray, respectively. (d) The Selected
nine-term model (line) generalizes to two additional squid axon recordings
(open circles). (e) Coefficients of the nine-term model align across all three
trains and test squid axon experiments. . . . . . . . . . . . . . . . . . . . . . 123

8.3 HDI applied to our experimental BZ reaction data from J. F. Totz learns a
two-variable linear-quartic model that generalizes under catalyst variations.
(a) Experimental snapshots of the BZ reaction showing periodic color oscil-
lations (top). Input data (open circles) and observed and hidden variables
(solid line) integrated from the learned polynomial ODE model. Using data
from three oscillations, the learning framework finds that a seven-term ODE
can accurately describe the dynamics. (b) Polynomial ODE terms appear-
ing in ċ and ḣ equations ranked from most to least important based on their
coefficient of variation. Model terms are added one at a time in order of im-
portance, with the seventh term leading to a drop in the training loss. (c)
Phase plane diagram of learned seven-term ODE from the previous panel con-
tains crucial features found in most two-variable BZ models [296]. The limit
cycle contains an unstable fixed point (black) with a monotonic x-nullcline
(blue) and an h-nullcline (dark gray) in the form of a “cubic" curve as found
in the FHN, Rovinsky, and ZBKE models. (d) The Resulting seven-term
model (solid line) accurately fits the dynamics of the chemical solution’s color
(open circles) in two new BZ experiments. (e) Coefficients of the model re-
main consistent across all three experimental BZ reactions. Chemical con-
centrations: 0.20mH2SO4, 0.11mNaBrO3, 0.05mCH2(COOH)2, 0.03mNaBr,
0.3mm ferroin (blue), 0.41mH2SO4, 0.17mNaBrO3, 0.03mCH2(COOH)2, 0.02mNaBr,
0.3mm ferroin (green), 0.51mH2SO4, 0.10mNaBrO3, 0.03mCH2(COOH)2, 0.02mNaBr,
0.3mm ferroin (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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8.4 HDI discovers true Lorenz system from observations of x and y coordinates.
(a) Given observations of only the x and y coordinates (gray region), the
learned model predicts the evolution for several additional Lyapunov time
scales. (b) Lorenz model terms and coefficients are discovered exactly by an
HDI search based solely on data in the gray region of the previous panel. (c)
The reconstructed attractor of the learned model closely agrees with the true
Lorenz attractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1 W matrix for n = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.1 Optical measurement of periodic concentration changes in the oscillating Belousov-
Zhabotinsky reaction performed by J. F. Totz. (a) The experimental setup
consists of a spatially homogenized broadband light-source supplying the il-
lumination that is absorbed by the reagents in the closed stirred chemical.
The transmitted light is captured by a camera. (b) During chemical oscil-
lations the ferroin reagent cyclically changes its oxidation state affecting its
corresponding absorption spectrum: reduced catalyst Fe2+ (red) and oxidized
catalyst Fe3+ (blue). This allows for tracking the chemical oscillation state
optically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 (Top) Snapshots of BZ reaction. (Middle) Average color in cropped region
(dashed box top) plotted in RGB color space shows that the reaction follows
a 1 dimensional curve in color space. (Bottom) A single trajectory is extracted
from the BZ movies by first cropping the movies to a rectangle (dashed box
top row) and then calulating the color difference between the average color
of a frame and a reference frame (5s) using Euclidean distance in the Lab
colorspace. The resulting trajectory is rescaled to lie between [0, 1]. . . . . . 133
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Chapter 1

Introduction

Experimental advances in live imaging and high-throughput sequencing make it possible to
study biological processes in unprecedented detail across scales. From whole animal be-
havioral states [1–3], to high resolution microscopy of signaling [4, 5] and single-cell [6–9]
dynamics, to the spatiotemporal physical [10, 11] and genetic [12] dynamics of multicel-
lular bacterial colonies. Combined with algorithmic progress in automated tracking and
segmentation [8–10], experiments can yield thousands of tracked long-lived single-particle
trajectories, often with simultaneous measurements of gene expression [5] or neuronal dy-
namics [13]. These novel data enable us to ask questions about the nature of interactions
within a system and the interplay between biological signaling and physical behavior. How-
ever, making quantitative statements and theoretical predictions directly from experimental
data requires developing new mathematical tools that are robust to noise, scattered sam-
pling, and partial observations. We require methods to translate high-dimensional input
data into low-dimensional representations that provide insight into a system’s dynamics.

Modal decompositions have been widely applied in physics [14–16], applied mathemat-
ics [17–20], and numerical analysis [21, 22] to decompose a systems’ dynamics into its
dominant components. Modal representations, therefore, are a powerful tool for provid-
ing low-dimensional representations and differentiating structure from noise. Different types
of modes may be used to analyze a system: data-driven modes from techniques such as dy-
namic mode decomposition [19] and proper orthogonal decomposition [20]; prescribed modes
like Fourier bases or orthogonal polynomials chosen based on the geometry of the system [22,
23]; or eigen-modes from theoretical models [14, 15]. Here, we aim to build generic methods
readily applicable across experimental realizations and systems. Therefore, we focus here
on spectral representations where the basis is chosen based on the system’s geometry in a
data and model-free way. One benefit of spectral bases is that fast methods exist for work-
ing with them [24], but many of these algorithms require data sampled on fixed transform
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grids. While recent works have applied data-driven mode decomposition to analyze multi-
cellular communities [25] and developmental dynamics [26], the use of spectral methods to
analyze experimental data is not yet common due to the challenges posed by working with
data not sampled on the fast transform grid and the presence of noise. In the first part of
this thesis, we develop tools to apply spectral representations to experimental data and use
these representations to robustly extract theoretical quantities directly from experimental
measurements, enabling direct comparison between theory and experiment.

A full understanding of the underlying mechanisms of complex biophysical phenomena
may not always be available. Therefore, we would like to infer predictive models directly
from experimental data and use these models to interpret the dynamic structure. Dynamical
system inference has gained popularity lately due to the increased availability of experimental
data and computational power [27, 28]. Commonly used methods include library-based
regression [27, 29–33], symbolic regression [34, 35] and neural networks [28, 36, 37]. Many of
these previous works have focused on synthetic data, whereas applications of model discovery
to biological data are less frequent. In the second part of this thesis, we develop dynamical
system inference techniques that can be applied directly to experimental biological data.
Specifically, we focus on developing and inferring models directly in spectral mode space,
leading to methods robust to noise, scattered data samples, and partial observations.

The organization of this thesis is as follows. In Chapter 2, we introduce spectral rep-
resentations and develop techniques to apply them to experimental data. In particular, we
focus on accounting for noise during spectral projection and show that fast algorithms exist
in the presence of noise, even for data not sampled on the fast transform grid. Chapter 3
contains three applications of spectral methods for analyzing experimental data:

1. In collaboration with Nikta Fakhri’s lab at MIT, we apply spectral methods to live
imaging data of Rho-GTP signaling protein on the surface of starfish egg cells. We use
the representations to extract smooth, differentiable, denoised signaling fields. We then
use this denoised representation for further analysis, enabling the robust tracking of
long-lived defects, revealing a correlation between cellular activity and braiding expo-
nents, and suggesting phenomenological similarities between living matter and certain
quantum systems. The results have previously been published in J. Liu, J. F. Totz, P.
W. Miller, A. D. Hastewell, Y. C. Chao, J. Dunkel, and N. Fakhri, "Topological braid-
ing and virtual particles on the cell membrane," Proceedings of the National Academy
of Sciences, 118(34), e2104191118, 2021.

2. We apply spectral methods to coarse-grained active particle data. We use the resulting
differentiable fields to compute high-accuracy derivatives of the data, improving the
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robustness of library-based model inference regression. The results have previously
been published in R. Supekar, B. Song, A. D. Hastewell, G. P. Choi, A. Mietke, and
J. Dunkel "Learning hydrodynamic equations for active matter from particle simu-
lations and experiments," Proceedings of the National Academy of Sciences, 120(7),
e2206994120, 2023.

3. Finally, we extend the spectral representation framework to a non-rectangular domain.
In collaboration with Knut Drescher’s lab, we apply the framework to spatiotempo-
rally measured gene expression patterns during bacterial swarming. We use the low-
dimensional representation provided by spectral projection to identify and categorize
genes with strong spatiotemporal patterns. The resulting analysis reveals a strong
relationship between the spatiotemporal expression patterns of genes associated with
metabolism and the spatiotemporal dynamics of phenotypic properties, leading to the
discovery of spatiotemporal cross-feeding interactions within the swarm. The results
have previously been published in H. Jeckel*, K. Nosho*, K. Neuhaus, A. D. Hastewell,
D. J. Skinner, D. Saha, N. Netter, N. Paczia, J. Dunkel and K. Drescher, "Simultaneous
spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development
reveal cooperation across generations," Nature Microbiology, 8(12), 2378-2391, 2023.

We study dynamic system inference for mode space dynamics in the second part. In
Chapter 4, we consider the theory behind mode space dynamics and develop a sparse linear
dynamical systems inference framework that is robust to noise. In Chapter 5, we apply
the inference framework to the developmental dynamics of zebrafish during the early stages
of embryogenesis. The results in Chapters 4 and 5 have previously been published in N.
Romeo*, A. D. Hastewell*, A. Mietke, and J. Dunkel, "Learning developmental mode dy-
namics from single-cell trajectories". Elife, 10, e68679, 2021.

Chapter 6 shows how to incorporate physical and biological constraints into mode space
models using planar curve dynamics as an example. Additionally, we develop an efficient
inference algorithm for the constrained dynamics. In Chapter 7, we apply the results in
Chapter 6 to undulatory locomotion and show how the resulting inferred dynamical mod-
els can be used to classify different animals’ motion and behavioral states. The results in
Chapters 6 and 7 have previously been published in A. E. Cohen*, A. D. Hastewell*, S. Prad-
han, S. W. Flavell, and J. Dunkel, "Schrödinger Dynamics and Berry Phase of Undulatory
Locomotion," Physical Review Letters, 130(25), 258402, 2023.

Finally, in Chapter 7, we discuss extensions of the inference framework to incorporate
nonlinearities and account for unobserved variables. We show the utility of this extension
by applying it to neural, chemical, and chaotic dynamics. The results in Chapter 7 have
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previously been published in a preprint G. Stepaniants*, A. D. Hastewell*, D. J. Skinner, J.
F. Totz, and J. Dunkel, "Discovering dynamics and parameters of nonlinear oscillatory and
chaotic systems from partial observations," arXiv preprint arXiv:2304.04818, 2023.

Chapter 8 concludes with some final remarks about the general framework presented and
possible future extensions.
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Chapter 2

Spectral representations

The key idea underlying spectral representations, formalized in the next section, is that a
function is well approximated by a series expansion in a fixed basis {ϕn(x)}Nn=1,

f(x) ≈
N∑

n=0

cnϕn(x). (2.1)

We call expansions of the form (2.1) a spectral representation of f(x) in the basis ϕn(x).
Common examples of spectral representations are Fourier series where the basis is trigono-
metric functions, for example, ϕn(x) = cosnx, or orthogonal polynomial expansions, such
as Chebyshev series where ϕn(x) = Tn(x) = cos(n arccosx). When performing expansions
of the form (2.1), we are shifting information about the function f(x) into a finite number
of scalar coefficients cn. At the same time, operations on f(x), such as differentiation and
integration, are shifted to corresponding manipulations on the known basis ϕn(x). This split
has several advantages. From a theoretical perspective, we can compare functions by com-
paring their coefficients and properties of f(x), such as continuity and differentiability, follow
directly from the basis. From a practical perspective, we can perform accurate computations
on spectral representations since operations on the functions become operations on known
bases.

Spectral representations have been used with great success in numerical analysis [21]
to develop efficient and accurate algorithms for function approximation [24, 38], solving
differential equations [22, 39], and root solving [40]. The success of these methods relies on the
observation that when the function f(x) is continuous and has continuous derivatives, then
the coefficients cn in the expansion (2.1) decay rapidly, enabling accurate approximations
with small N , for a large class of functions with a single fixed basis. Additionally, the
existence of fast algorithms [41] for calculating coefficients cn directly from samples of f
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enables the development of practical and efficient algorithms.
In biophysics, many experimentally measured quantities, from chemical signaling fields

and gene expression profiles to physical densities and velocity fields, are assumed to vary
smoothly in space and time. Such data, therefore, lend themselves naturally to spectral
representations. Furthermore, the existence of fast algorithms means that these approaches
can be readily scaled to high-resolution imaging data.

In this chapter, we summarize some definitions and theoretical results for spectral rep-
resentations. We then discuss how spectral representations behave when applied to noisy
inputs and the consequences when working with experimental data.

2.1 Spectral representations in orthogonal bases

We consider spectral representations of real or complex, scalar differentiable functions defined
over some possibly infinite subset D of Rn, f(x) : D ⊆ Rn → R or C. We define an inner
product over the domain D, using ∗ to denote complex conjugation,

⟨f(x), g(x)⟩w =

∫
D

dxw(x)f(x)g∗(x) (2.2)

with w(x) a non-negative weight function that is integrable over the domain D. We will
work with bases that are orthogonal under the inner product

⟨ϕn(x), ϕm(x)⟩w = kϕnδn,m (2.3)

where δn,m is the Kronecker delta defined by,

δn,m =

1 if n = m

0 otherwise
. (2.4)

When the choice of basis is clear, we will drop the ϕ and w labels on the inner product
and kn. The coefficients in (2.1) are given by,

cn =
⟨f, ϕn⟩w
⟨ϕn, ϕn⟩w

=
1

kϕn

∫
D

dxw(x)f(x)ϕ∗
n(x). (2.5)

We define the weighted square approximation error of the spectral representation by,

EN =

∫
D

dxw(x)

∣∣∣∣∣f −
N∑

n=1

cnϕn(x)

∣∣∣∣∣
2

. (2.6)
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By differentiating (2.6) with respect to cn, we see that the values of cn that minimize the
square error are given by (2.5).

We will frequently work with two sets of basis functions: the Fourier basis for periodic
data and the Chebyshev basis for non-periodic data. For convenience, we summarize some
details about these bases below.

2.1.1 Fourier series

In one dimension, the Fourier basis is defined by the representation,

f(x) = a0 +
N∑

n=1

an cos(2πnx) + bn sin(2πnx) =
N∑

n=−N

cne
2πin (2.7)

which are orthogonal on [0, 1] under the weight function w(x) = 1. We will use the series’ real
and complex exponential forms interchangeably based on convenience. Using integration by
parts, we can bound the coefficients an and bn. If f(x) is periodic and is k times differentiable
with k − 1 periodic derivatives and the kth derivative of f has bounded variation, then the
coefficients decay as an, bn ∼ n−(k+1). If the function is analytic, then the coefficients decay
geometrically as an, bn ∼ ρ−n for some ρ > 1 [42]. These decay rates have immediate
consequences for the accuracy of the spectral representation since the error will generally be
on the order of the last retained coefficient [23].

Given M samples of f on the uniform grid xm = m/M for 0 ≤ m < M we can discretize
the integral in (2.5) using the trapezoidal rule, which is known to be exponentially convergent
for periodic functions [43],

c̃k =
1

M

M−1∑
m=0

f(xm)e
− 2πimk

M . (2.8)

The coefficients c̃k are accurate approximations of ck and we will treat them interchangably
and drop the tilde. The summation (2.8) can be evaluated efficiently using the Fast Fourier
Transform (FFT) in O(n log n) operations, enabling the accurate and efficient evaluation
of coefficients in the spectral representation using uniform function samples. We discuss
dealing with noisy or non-uniform samples in Section 2.2.

We can evaluate a Fourier representation at an arbitrary point using Horner’s method
for polynomial evaluation. We can calculate the representation’s derivative as,

d

dx
f(x) = 2π

N∑
n=1

−nan sin(2πnx) + nbn cos(2πnx) = 2πi
N∑

n=−N

ncne
2πin, (2.9)
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which corresponds to another series of the form (2.7) but with coefficients a′n = 2πnbn and
b′n = −2πnan or c′n = 2πincn.

2.1.2 Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind defined by

Tn(x) = cos(n arccosx) (2.10)

are degree n polynomials and are orthogonal on [−1, 1] under the weight function w(x) =

(1 − x2)−1/2 [23, 44]. The Chebyshev polynomials form a complete orthogonal basis for
continuous functions on the domain [−1, 1]. A Chebyshev polynomial representation of a
function is given by,

f(x) =
N∑

n=0

cnTn(x) (2.11)

The Chebyshev coefficients for a function f are given by,

cn =
2− δn0
π

∫ 1

−1

dx
1√

1− x2
Tn(x)f(x) =

2− δn0
π

∫ π

0

dθ cos(nθ)f(cos θ) (2.12)

Analogous theorems for the decay of coefficients exist for the Chebyshev series. Suppose
that f(x) and its first k − 1 derivatives are absolutely continuous on [−1, 1] and the kth
derivative has bounded variation then the Chebyshev coefficients decay as cn ∼ n−(k+1). If
f(x) is analytic on [−1, 1] then its Chebyshev coefficients decay geometrically cn ∼ ρ−n for
some ρ > 1 [45].

The N + 1 point Chebyshev grid {xcn}Nn=0 is defined by the extremal points of TN(x)

xcn = − cos(nπ/N) for 0 ≤ n ≤ N. (2.13)

Given a function f(x) sampled on the Chebyshev grid, the first N + 1 coefficients can be
approximated to high accuracy by the sum,

cn ≈ 2− δ0,n − δN,n

N

[
f(−1)(−1)n + f(1)

2
+ (−1)n

N−1∑
m=1

f(xcm) cos
(πnm
N

)]
. (2.14)

The sum can be considered the trapezoidal rule applied to the periodic integral on the right-
hand side of (2.12). The sum in the coefficient transform can be calculated efficiently using
a fast DCTII in O(N logN) operations [41].
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As a general rule of thumb, the magnitude of the error (2.6) will be governed by the
magnitude of the last coefficient cN [23]. An important observation for smooth differentiable
functions is that the magnitude of cn decays rapidly, implying that spectral representations
can provide accurate representations of data with significant compression – the number of
terms retained, N , for an accurate representation of the data is much less than the number
of data samples .

Given a representation of the form (2.11), we can evaluate the series and its derivatives at
arbitrary points using Clenshaw-Smith recurrence [46]. The representation of the derivative
is given by,

d

dx
f(x) =

N∑
n=0

cn
d

dx
Tn(x) =

N−1∑
n=0

c′nTn(x) (2.15)

which is a polynomial of degree N − 1. The coefficients in the new expansion are given
by [23, 44],

c′n = (2− δn,0)

⌊N−1−n
2

⌋∑
m=0

(n+ 1 + 2m)cn+1+2m. (2.16)

2.1.3 Extension to multiple dimensions

A natural extension of spectral representation bases into multiple dimensions is given by the
tensor product basis,

ϕn1,n2,··· ,nN
(x) =

N∏
i=1

ϕni
(xi). (2.17)

Moreover, we can extend this concept further by introducing mixed tensor product bases,
allowing for different bases in each dimension. Frequently, we will use these mixed bases to
analyze video data where the time dimension is treated separately from the spatial dimen-
sions.

2.2 Calculation of spectral coefficients from data

A unique challenge posed by experimental data is fixed grid sampling. In many applications
in numerical computing, we assume that the function can be sampled on an arbitrary grid,
enabling fast algorithms. Here, we present several approaches for calculating coefficients
in spectral representations when data samples are on a fixed grid and contain noise. We
will illustrate the approaches using a sampled one-dimensional function, although higher-
dimensional generalizations are readily possible. Consider a function f(x) sampled on an
ordered grid {xsn}Nn=0, fn = f(xsn). The function samples and the coefficients in the spectral

31



representation can be stacked into vectors f = [f0, . . . , fN ] and c = [c0, . . . , cM ]. We will
frequently not have access to f but a noise corrupted version f̃ = f + ϵ, where we assume
that the noise is additive and ∥f∥ ≫ ∥ϵ∥

2.2.1 Least squares fit coefficients

We define a discrete square approximation error by,

EN =
M∑

m=1

(
fm −

N∑
n=1

cnϕn(xm)

)2

= ∥f − Φc∥2 (2.18)

where the Vandermonde matrix Φ has entries Φmn = ϕn(xm), and ∥·∥ is the standard Eu-
clidean vector norm. When the number of observations is small enough, the coefficient
vector c may be determined from the least squares solution of the problem Φc = f implied
by (2.18). When the samples are not well distributed or when N approaches M , the least
squares solution may become ill-conditioned, and it becomes necessary to add regularization
to the least squares problem [47].

2.2.2 Interpolated DCT coefficients

The solution of the least squares problem scales as O(M2N), which becomes computation-
ally too expensive for high-resolution data. Instead, we would like to use fast transforms
that scale as O(M logM). However, we need the function to be sampled on a fixed grid
to use fast transforms. We consider Chebyshev transforms but the ideas presented can be
generalized to other bases if needed. We transform between sample points and the fixed grid
using interpolation. Consider a function f(x) sampled on a uniform grid fm = f(m∆x) for
0 ≤ m ≤ M and ∆x = 1/M . We must obtain samples of the function on the Chebyshev
grid f c

m. The Chebyshev coefficients are given on this grid by performing the DCTII. Var-
ious approaches to resampling points between the two grids have been proposed, including
polynomial interpolation [48], rational interpolation [21], and kernel methods [49].

For efficiency, we choose to use linear interpolation. For a given Chebyshev point xck
define the interval [xsk, xsk+1] to be the shortest interval with endpoints in the sample grid
such that xck is contained in the interval. Then linear interpolation gives

f(xck) = f(xsk)

(
xsk+1 − xck
xsk+1 − xsk

)
+ f(xsk+1)

(
xck − xsk
xsk+1 − xsk

)
+ rk (2.19)
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where the error term by Rolle’s Theorem is bounded by [48],

|rk| ≤
(xsk+1 − xsk)

2

8
max

x∈[xs
k−1,x

s
k]
|f ′′(x)| (2.20)

and scales as the square in the sample spacing and with the smoothness of the function
through the second derivative term. The operations required for the interpolation step are
linear in the number of Chebyshev samples, meaning that the dominant computational cost
is still the O(N, logN) computation.

2.2.3 Noise robustness of DCT interpolated coefficients

If instead of f we use samples f̃ then the interpolated sample vector will be given by f̃ c =

f c + ϵ̃ + r, with two sources of error; the interpolated noise ϵ̃ and the interpolation error r.
The interpolated noise ϵ̃ is given by,

ϵ̃k = ϵk

(
xsk+1 − xck
xsk+1 − xsk

)
+ ϵk+1

(
xck − xsk
xsk+1 − xsk

)
. (2.21)

Under the assumption that the ϵk are independent and identically distributed Normal random
variables with mean 0 and variance σ2, the interpolated noise will also be a random variable
with modified variance

σ̃2 = σ2

(
α2 + (∆− α)2

∆2

)
≤ σ2 (2.22)

where ∆ = xsk+1 − xsk, α = xsk+1 − xck. The bound comes from maximizing the quadratic
coefficient over 0 ≤ α ≤ ∆.

When we use f̃ c to calculate Chebysehv coefficients using (2.14), by the linearity of the
transform, the coefficient vector will be given by c̃ = c + ϵ̂ + r̂. The first term is the true
coefficients accurate to machine precision. The second term comes from the Chebyshev
transform of the interpolated noise. Again assuming that the noise on each term is an
independent Normal variable with mean 0 and variance σ̃2, the transformed noise will also
be a Normal random variable with zeros mean and new variance, 1 ≤ k ≤ N − 1,

σ̂2
k =

4

N2

[
1

4
+

1

4
+

N−1∑
n=1

cos2
(
πnk

N

)]
σ̃2 =

4

N2

N − 1

2
σ̃2 ≈ 2

N
σ̃2. (2.23)

The Chebyshev transform decreases the variance in the noise; the mean magnitude of the
noise is E[|ϵ̂k|] =

√
4/πNσ̃. The third term comes from the Chebyshev transform of the
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interpolation error. The triangle inequality can bound the interpolation error sum,

r̂k ≤
2

N

[
N−1∑
n=1

∣∣∣cos(πnm
N

)∣∣∣ |rn|+ |r0|+ |rN |
2

]
≤ 2

N

[
N−1∑
n=1

|rn|+
|r0|+ |rN |

2

]
≤ 2

N
∥r∥1.

(2.24)
In practice, however, the interpolation error will not saturate the bound, and numerically,
we see similar behavior to the noise term with a factor of

√
N decrease in the error, which

can be justified by thinking of the interpolation error as a random variable with variance
proportional to the upper bound.

Similar results for Fourier representations and, more generally, any quadrature-based
coefficient calculation are possible. The results above show that we can efficiently and
robustly use spectral representations for many types of noisy data where function samples
are provided on a dense enough grid and the underlying function is sufficiently smooth such
that r̂k ≪ ϵ̂k ≪ ck for small k. The interpolation step does not introduce significant errors
while enabling efficient computations.

2.2.4 Noise reduction of spectral representations

A key property of spectral representations that makes them useful for data analysis is their
ability to separate information about a function’s smooth structure – contained in the low-
degree coefficients – from noise in the measurement – which dominates higher-degree coeffi-
cients where the contribution from the smooth structure has become negligible. This enables
us to remove noise from data by thresholding the coefficients in the spectral representation.

Given full information about the underlying function and the noise statistics, the results in
the previous section may be used to determine the transition point between coefficients that
capture the structure and those that are noise-polluted and should, therefore, be thresholded.
In practice, however, we do not have either piece of information. We, therefore, have to
come up with heuristic arguments to determine where to truncate the spectral expansion.
Heuristics have to be used even in the noise-free case; see, for example, [50] for a detailed
discussion. In general, we wish to balance a few key properties,

• Accuracy in the representation with compression in the number of coefficients retained;

• Structure in the underlying function with noise reduction.

If we plot the square error (2.18) as a function of the number of the number of coefficients
used in the expansion N , we would expect to see two distinct regimes in the curve. Initially,
the error will be dominated by the large coefficients that are not retained, and the error
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should decay geometrically ρ−N if the underlying function is sufficiently smooth. Eventually,
the noise will dominate ρ−N ≪ ϵ, and the error will begin to decay linearly in N to some
fixed level. In general, the square error will not decrease to machine precision due to the
interpolation errors. This suggests a method to extract thresholds. We choose a cutoff in the
elbow of the error curve where we do not retain coefficients associated with the noise. We can
identify the start of this noise regime by looking for regions where the error is approximately
linear on a log-log plot. We show applications of this approach to experimental data in
Chapter 3.
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Chapter 3

Applications of spectral representations
to experimental data

3.1 Application to Rho-GTP imaging data

The contents of this section have been adapted from the publication, J. Liu, J. F. Totz, P.
W. Miller, A. D. Hastewell, Y. C. Chao, J. Dunkel, and N. Fakhri, “Topological braiding
and virtual particles on the cell membrane” Proceedings of the National Academy of Sciences,
118(34), e2104191118, 2021.

As a first application we apply spectral representations to experimental imaging data
from Nikta Fakhri’s lab performed by J. Liu and Y. C. Chao. The resulting spectral repre-
sentations were then used in further analyses by J. Liu, J. F. Totz and P. W. Miller.

3.1.1 Motivation

Braiding confers remarkable robustness to static and dynamic structures, from plaited hair
and fabrics [51] to the entangled worldlines of classical [52] and quantum particles [53].
Stabilized by an inherent topological protection, braided threads, ropes, and wires have
long been used to transmit forces and shield signals [54]. Over the last decade, dynamic
braiding processes [55–57] have attracted major interest in soft matter [58, 59] and quantum
physics [53] as promising candidates for robust information storage and processing [60, 61]. A
widely studied application is topological quantum algorithms that perform computations by
braiding the worldlines of 2D quasiparticle excitations [53, 60, 61]. Of similar importance to
information processing in living systems – albeit much less well understood – is the braiding
dynamics of chemical spiral wave signals on cell membranes, which control a wide range of
developmental and physiological functions, including cell division [62], cardiac rhythm [63–66]
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Figure 3.1: Time evolution of chemical Rho signaling wave patterns on the starfish oocyte
from a homogeneous initial state to a quasi-steady state exhibiting turbulent spiral patterns.
Snapshots show maximal intensity projections of three near-membrane Z-stack confocal slices
spanning 5 µm. Scale bar: 40 µm. Experimental images provided by the Fakhri lab [70].
Note the visible presence of noise in the images on top of relatively smooth intensity profiles,
lending these types of microscopic images well to spectral representation.

and brain activity [67]. These spiral waves belong to a rapidly expanding class of recently
discovered biological phenomena [68, 69] in which topological structures serve as robust
organizers of essential life processes.

To investigate the braiding dynamics of biochemical spiral waves in living cells, we con-
sider experimental observations of Rho-GTP activation waves, a highly conserved signaling
protein [71, 72] across a wide variety of eukaryotic species [73], on starfish oocyte membranes
performed by J. Liu and Y. C. Chao in the Fakhri lab [4, 70](Figure 3.1). Since the biological
functions of Rho-GTP have been widely investigated previously [74], we focused here on the
topological characterization of the biochemical signaling dynamics. Different steady-state
patterns of Rho-GTP are induced by a systematic increase of the GEF (guanine exchange
factor) responsible for activating Rho-GTP (experimental states i–v) [75]. Rho-GTP waves
maintained constant oscillatory periods within all observed non-equilibrium steady states
with different cellular activity [4], enabling the reconstruction of spatiotemporal phase fields.
We compare the experimental phase fields and the resulting defect statistics to predictions
from the complex Ginzburg-Landau (CGL) equation [76]

∂tψ = ψ − (1 + ic)|ψ|2ψ + (1 + ib)∇2ψ ,

a generic model describing the spatio-temporal evolution of oscillatory continuum systems
ψ(x, t) near a Hopf bifurcation [70].

Overcoming previous observational and algorithmic limitations, we achieved the spa-
tiotemporal resolution required for dynamical analysis by combining in vivo imaging with
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spectral signal representation, quantitative mathematical modeling, and large-scale compu-
tational parameter estimations. Full details about the experimental setup and computational
modeling can be found in [70]. Here, we detail the spectral representation step that enabled
the extraction of phase fields and defect tracking from the experimental movies for compar-
ison with theoretical predictions.

3.1.2 Spectral representations of microscopic imaging data.

We constructed the phase field from microscope images using the following procedure: Raw
time-lapse Z-stack images (covering ∼5 µm near the membrane) were first combined into a
single intensity field video through a maximal intensity projection. The rectangular intensity
field video, I(x, t), was extracted from the experimental intensity video by least square fitting
an ellipse to the boundary of the oocyte. The data was then rotated to axis align the major
and minor axes of the ellipse. We extract the rectangular region by choosing the largest
rectangle inscribed in the ellipse. Following the approach outlined in Chapter 2, we use the
tensor product basis to construct a multidimensional basis (Section 2.1.3); the (2+1)D space-
time data cube with Nx, Ny and Nt pixels in each dimension respectively is represented as
a sum over basis functions, Chebyshev polynomials of the first kind in space (Section 2.1.2)
and Fourier in time (Section 2.1.1), assuming Nt is even,

I(x, t) =
Nx−1∑
n=0

Ny−1∑
m=0

Nt/2−1∑
k=−Nt/2

cn,m,kTn(x)Tm(y)e
2πikt/Nt . (3.1)

The coefficients cn,m,k are found following the linear interpolation approach outlined in Sec-
tion 2.2 generalized to multiple dimensions. The coefficients can be calculated efficiently
using fast algorithms for the Discrete Cosine Transform and the Discrete Fourier Trans-
form [41, 44] applied along their respective dimensions. These transforms assume that the
function is sampled on the Chebyshev grid in both spatial dimensions and uniformly spaced
in time. The data is converted from the uniformly spaced experimental grid to the Cheby-
shev grid using linear interpolations. Given the noise in the images, we expect that the errors
introduced in the coefficients from the linear interpolations will be of lower order than the
errors already introduced from the noise in the data (Section 2.2).

From Figure 3.1, we expect that the image I(x, t) will be well approximated by a smooth
differentiable function f(x, t) with additive noise. We, therefore, expect that we can remove
noise and get a smooth representation of the data by cutting off the summation in (3.1) at
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the thresholds Mc and Mf to get the new denoised representation of the data (Section 2.2.4),

f(x, t) ≈
(Ny/Nx)n+m≤Mc∑

n,m=0

Mf∑
k=−Mf

cn,m,kTn(x)Tm(y)e
2πikt/Nt . (3.2)

We define the threshold Mc to include all combined spatial polynomial basis functions below
a given total degree. The Ny/Nx weighting is incorporated to account for the different sizes
of the two spatial dimensions, leading to different resolutions of polynomials with the same
degree along the two different dimensions. The thresholdsMc andMf are chosen by sweeping
over all possible thresholds 0 ≤ Mc ≤ Ny and 1 ≤ Mf ≤ Nt/2 and calculating the relative
reconstruction error,

E(Mc,Mf ) =

√∑
x,t(I(x, t)− f(x, t))2√∑

x,t I(x, t)2
(3.3)

and the effective compression at each point. The effective compression is defined by the mean
of the spatial and temporal compression C = 0.5(Cs+Ct) where Ct = (2Mf +1)/(2Nt+1) and
Cs = (2 + 2Mc −Ny)(1 +Nx)/(2NxNy). A scatter plot of compression versus reconstruction
error shows a front corresponding to the points of best reconstruction error for a given
compression (Figure 3.2). These correspond to points where the reconstruction error and
compression contours are tangent. Following the discussion in Section 2.2.4, we expect the
error to show two different regimes: a rapid decay as the compression is initially increased,
followed by a slower decrease when the noise starts to dominate. Therefore, we choose the
threshold at the start of the elbow of this error compression front, which is determined by
fitting a line to the linear part of the curve on a log-log plot.

Validation on mock CGL data

The method was first tested on mock CGL data with added Poisson noise of varying strengths
to approximate experimental noise. Figure 3.2(b, c) illustrates the process for choosing the
thresholds, and Figure 3.2(a) shows a comparison of the resulting reconstruction to the noisy
input image and the true image for one noise strength.

The phase was calculated from the spectral data representation. Let τ be approximately
a quarter of the oscillation period of the oscillating time signal of each pixel. First, the
moving center, Ī(t), calculated by convolving the signal with a Gaussian window of width
τ , was subtracted from each pixel. This centers the pixel time signal around 0. Next we
computed the analytic extension of each pixel trajectory (I − Ī)(t) into the complex plane,
z(t) = (I− Ī)(t)+HT[(I− Ī)(t)], where HT[(I− Ī)(t)] is the Hilbert transform of the signal
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Figure 3.2: (a) Truncated spectral representation (middle) shows significant noise reduction
compared to noise-polluted input data (second left) while retaining the structure of the true
underlying field (left) for simulated CGL test data with added Poisson noise. A compar-
ison of the extracted phase field from the true CGL data (second right) and the denoised
reconstructed field (right) shows they contain the same structure and very similar defect
statistics. (b) Parameter sweep over possible Fourier and Chebyshev mode cutoffs for the
CGL test data. Reconstruction error contours (black lines) and compression contours (white
lines) are shown. Points where the two contours are tangent correspond to points on the
error compression front. (c) Compression error front extracted from the parameter sweep in
(b) along with the linear fit to the log-log curve (green line) and the chosen cutoff point (red
dot)

[77]. In the frequency domain, this corresponds to setting all coefficients corresponding to
negative frequencies to 0 and doubling those corresponding to positive frequencies. For a
discrete signal of length N with discrete Fourier coefficients Îk this is given by

ẑk =


2Îk for 1 ≤ k ≤ N

2
− 1

0 for N
2
+ 1 ≤ k ≤ N − 1

Îk for k = 0 or k = N
2

. (3.4)

We then define the phase of the signal ϕ(t) as the angle of the analytic signal in the complex
plane ϕ(t) = tan−1(HT[(I − Ī)(t)], (I − Ī)(t)). The phase field is extracted for each pixel
in the image to obtain the time-lapse phase field, ϕ(x, t). Figure 3.2(a, right) compares
the phase extracted using the Hilbert phase between the true CGL simulation data and the
denoised spectral representation. We see that the denoised phase closely matches the true
phase, highlighting the ability of spectral representations to extract quantitative quantities
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Figure 3.3: (a) Comparison of an experimental snapshot with the corresponding data and
phase field representation (3.2) for state ii shows significant noise reduction while maintaining
the main underlying structure. The extracted phase using the Hilbert transform is shown on
the right. Scale bar 20 µm. (b) Parameter sweep over possible Fourier and Chebyshev mode
cutoffs for state ii. Reconstruction error contours (black lines) and compression contours
(white lines) are shown. (c) Compression error fronts for the experimental states. We see
that all the curves have a similar shape across all states. The linear fit to each of the
experimental fronts on the log-log graph is shown with thick lines.

from noisy input data robustly.

Application to experimental data

For the experimental data, the same parameter sweeps were performed for each state, and
a cutoff was chosen for each state [Figure 3.3(a–c)]. Once we have the basis representation
for the experimental data, we can then evaluate the expansion in (3.2) at any points (x, y, t)
inside the domain interpolating the data at higher resolution. Evaluating the representa-
tions at higher resolutions provides increased robustness for defect extraction and tracking.
The denoised expansions were, therefore, evaluated at 2 times higher spatial resolution and
at 1 frame per second temporal resolution before calculating the phase field and extracting
defects. Raw videos have frame rates of 10 s to 12 s and pixel resolution of 0.625µm. Fig-
ure 3.4(a) shows the reconstructed intensity and phase field snapshots for all experimental
states. An example of the phase extraction for an individual pixel is shown on the right.

The phase defects were subsequently tracked based on the reconstructed phase field. To
locate the positions of phase defects harbored in the phase field of an instantaneous time
frame, ϕ(x), we performed a line integral

∮
C
∇ϕ(x) · ds for every two-pixel-by-two-pixel local
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window. Plus defects have a value of 2π, and minus defects have a value of −2π. We used
particle-tracking software to retrieve the trajectories of phase defects through continuous
time frames (see [70] for details). An example of the defect trajectories that were extracted
from the spectral representation is shown in Figure 3.4(b, c).

3.1.3 Conclusions

The defect statistics extracted from the spectral representations of the experimental images
enable the study of topological braiding of the defects and the quantitative matching of
the experiments to parameters in the CGL equation; see [70] for further details. In sum-
mary, our quantitative analysis showed that these defects exhibit complex braiding, pair
creation, and annihilation dynamics. Experimentally measured worldline braiding expo-
nents and topological entropy correlate with cellular activity and agree with CGL theory
predictions. More broadly, our analysis reveals the creation and annihilation of phase de-
fects during scattering events, suggesting phenomenological parallels between information
transport in quantum and living matter. Spectral representations played a critical role in
providing robust measurements of the quantities needed to compare with the theory and
observe these phenomena, demonstrating the power of spectral representations for analyzing
high-resolution microscopic imaging data.
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Figure 3.4: (a) Quasi-steady wave patterns (t > 60min) of Rho-GTP intensity field from
four starfish egg cells, aligned with phase fields reconstructed from oscillations in pixel fluo-
rescence intensity signal (inset). Scale bar: 20 µm. (b) The reconstructed phase fields harbor
topological defects of winding number +1 (red, counter-clockwise rotating spiral core) and
-1 (blue, clockwise rotating spiral core). Lower: Time-lapse snapshots of localized creation
(annihilation) events that produce (destroy) oppositely charged defects in pairs. Scale bar:
5 µm. (c) Worldline representation of topological defects embedded in 2+1-dimensional phase
field. The time-lapse snapshots in (b) correspond to the formation of the simple space-time
loop in (c). Scale bars: 5 µm; 30 s (vertical).
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3.2 Application of spectral methods to coarse grained ac-

tive particle dynamics

The contents of this section have been adapted from R. Supekar, B. Song, A. D. Hastewell, G.
P. Choi, A. Mietke, and J. Dunkel “Learning hydrodynamic equations for active matter from
particle simulations and experiments,” Proceedings of the National Academy of Sciences,
120(7), e2206994120, 2023.

For a second application of spectral representations, we consider coarse-grained active
particle data. We use spectral representations to evaluate high-quality derivatives of input
data. Additionally, we use the spectral representations to justify the selection of coarse-
graining length scale. The results are applied to particle simulations by B. Song and exper-
imental data from Denis Bartolo’s and Iain Couzin’s lab. The spectral representations are
incorporated into the larger model inference framework developed by R. Supekar.

3.2.1 Introduction

Active systems, from self-propelled colloids to animal swarms, can form complex dynam-
ical patterns as their microscopic constituents exchange energy and momentum with the
environment. Reflecting this complexity, continuum models for active matter typically pos-
sess many more parameters than those of classical fluids like water. While much progress
has been made in the qualitative understanding of active pattern formation, measuring the
various hydrodynamic parameters of an active system still poses significant challenges.

Recent advances in high-resolution imaging techniques [6–8, 10] and agent-based com-
putational modeling [78], mean active matter systems can now be observed and analyzed
at unprecedented spatiotemporal [11, 79, 80] resolution. To infer interpretable predictive
theories, the high-dimensional data recorded in experiments or simulations must be com-
pressed and translated into low-dimensional models. Such models must faithfully capture
the macroscale dynamics of the relevant collective properties. Macroscale properties can be
efficiently encoded through hydrodynamic variables, continuous fields that are linked to the
symmetries, and conservation laws of the underlying microscopic system [81, 82]. Although
much theoretical progress has been made in the field of dynamical systems learning over the
last two decades [27, 29–31, 34, 35, 83], the inference of hydrodynamic models and their
parameters from particle data has remained largely unsuccessful in practice, not least due to
severe complications arising from measurement noise, inherent fluctuations and self-organized
scale-selection in active systems. We present a framework that leverages spectral basis rep-
resentations and sparse regression algorithms to discover PDE models from microscopic
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simulation and experimental data while incorporating the relevant physical symmetries.

3.2.2 Summary of the learning framework

The full learning framework is summarized in Figure 3.5 and consists of three main steps:

Coarse-graining. Spatial coarse-graining of time-series data for particle positions and ori-
entations measured from experiments or simulations.

Spectral representation. Coarse-grained data is projected onto spectral basis functions,
enabling accurate computation of spatiotemporal derivatives.

Sparse regression. Sparse regression on a library of candidate terms to determine hydro-
dynamic PDEs. The candidate terms contain derivatives of the coarse-grained fields,
which are calculated from the data using the spectral representation. The resulting
sparse PDE models are then validated by simulation to ensure stability and accuracy.

Full details about the particle simulations and regression framework can be found in [84].
Here, we provide details on the coarse-graining, specifically how to choose the correct coarse-
graining length scale and the spectral representation used for library construction.

3.2.3 Selecting coarse-graining length scales

Given the particle positions xi(t) and orientations pi(t), an associated particle number den-
sity field ρ(t,x) and polarization density field p(t,x) can be defined by convolution with a
kernel K(x),

ρ(t,x) =
∑
i

K[x− xi(t)], (3.5a)

p(t,x) =
∑
i

K[x− xi(t)]pi(t). (3.5b)

The symmetric kernel K(x) is centered at x = 0 and normalized,
∫
d2x K(x) = 1, so

that the total number of particles is recovered from
∫
d2x ρ(t,x) = N . We found that, in the

context of hydrodynamic model learning, the coarse-graining equations (3.5) with a Gaussian
kernel K(x) ∝ exp[−|x|2/(2σ2)] are suitable and provide a useful preprocessing step that
simplifies the use of fast transforms at later stages. The coarse-graining scale σ determines
the spatial resolution of the hydrodynamic theory. In practice, σ must be chosen larger than
the particles’ mean-free path length or interaction scale to ensure the smoothness of the
hydrodynamic fields but also smaller than the emergent collective structures. To understand
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Figure 3.5: Learning hydrodynamic models from particle simulations and experiments.
(a) Inputs are time-series data for particle positions xi(t), and particle orientations pi(t) =
(cos θi, sin θi)

⊤, measured in simulations or experiments with microscale resolution. (b) Spa-
tial kernel coarse-graining of the discrete microscopic variables provides continuous hydro-
dynamic fields, such as the density ρ(t,x) or the polarization density p(t,x). (c) Coarse-
grained fields are sampled on a spatiotemporal grid and projected onto suitable spectral basis
functions. Systematic spectral filtering (compression) ensures smoothly interpolated hydro-
dynamic fields, enabling efficient and accurate computation of spatiotemporal derivatives.
(d) Using these derivatives, a library of candidate terms Cl(ρ,p) and Cl(ρ,p) consistent with
prior knowledge about conservation laws and broken symmetries is constructed. A sparse
regression algorithm determines subsets of relevant phenomenological coefficients al and bl.
The resulting hydrodynamic models are sparse and interpretable, and their predictions can
be directly validated against analytic coarse-graining results or experiments. Bottom: Snap-
shots illustrating the workflow for microscopic data generated from simulations of chiral
active Brownian particles [84].
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suitable choices of σ, we can observe how the information loss due to coarse-graining changes
as a function of σ.

To quantify the information loss due to coarse-graining as a function of the coarse-graining
length scale σ, we use spectral entropy [85, 86] as a measure of the information content that
remains in the coarse-grained fields. Specifically, we define the spectral entropy as

H(σ) = −
∑
q

Ŝ(σ)
ρ;x(t,q) log2 Ŝ

(σ)
ρ;x(t,q), (3.6)

where the normalized spatial power spectral density Ŝ(σ)
ρ;x is defined as

Ŝ(σ)
ρ;x(t,q) = S(σ)

ρ;x(t,q)

(∫
d2qS(σ)

ρ;x(t,q)

)−1

, (3.7)

with S(σ)
ρ;x(t,q) the spatial power spectral density defined by

S(σ)
ρ;x(t,q) = A−1

∣∣∣∣∫ d2x ρ(σ)(t,x) exp(2πiq · x)
∣∣∣∣2 . (3.8)

Here, A is the domain area. The index σ indicates the Gaussian kernel smoothing width
(‘coarse-graining length scale’) with which the underlying density field ρ(σ)(t,x) was com-
puted from the raw particle data. For our analysis, we rescale the spectral entropy H given
in (3.6) by the spectral entropy of the raw particle data, yielding a normalized spectral en-
tropy between 0 and 1. Figures 3.6 and 3.7 show example applications to simulation [84] and
experimental Quinke roller [87] particle data. The shape of the curve H(σ) reveals impor-
tant information about the effect of the coarse-graining length scale. Plateaus in the curve
suggest regions where changing σ does not affect the information content in the fields. Rapid
changes in the curve indicate regions where changing σ changes the information stored in
the fields. Characteristically, we see that there is an initial plateau where the coarse-graining
is not obscuring the particle nature of the data (i in Figures 3.6 and 3.7). This plateau is
followed by an initial decrease in the entropy when the particle nature of the data starts
to become obscured, but sharp boundaries between high and low-density regions exist (ii in
Figures 3.6 and 3.7). There is then a large decrease in the entropy when the boundaries start
to become smoothed out, followed by a steady decrease in the entropy as the field becomes
progressively smoother (iii – v Figures 3.6 and 3.7). Coarse-graining length scales should
be chosen in this region (iv in the figures) to balance the smoothness of the fields with the
collective structures.

Interestingly, measuring the spectral entropy at the chosen coarse-graining length scale
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for both simulated and experimental data showed that coarse-grained hydrodynamic fields
typically maintain only about 1% of the spectral information contained in the fine-grained
particle data (Figure. 3.6 and 3.7).
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Figure 3.6: Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian kernel
width σ for the chiral particle model data (top) quantifies the fraction of information that
remains in Fourier space after coarse-graining. Representative snapshots of coarse-grained
fields are shown in the bottom panels. Characteristic scales in units of particle-particle
interaction distance: Median vortex distance ∼ 17 (obtained from a Delaunay triangulation
of density peaks), box size 100. (i, σ = 0.02): Raw image before coarse-graining. (i, σ =
0.02)–(ii, σ = 0.12): The particle data’s discrete nature remains present, leading to little
information loss. (ii, σ = 0.12)–(iii, σ = 0.86): As the coarse-graining scale approaches the
interaction length scale, σ → 1, coarse-grained data starts losing single-particle information
and vortices become more prominent than individual particles. (iii, σ = 0.86)–(iv, σ =
5): Vortices start to be smoothed out as σ exceeds the particle interaction distance and vortex
size. Data from (iv, σ = 5) was used for inferring a continuum model from the chiral-particle
simulation date; this choice of the coarse-graining scale ensures that the hydrodynamic fields
are sufficiently smooth while still containing sufficient information about density fluctuations
and vortex patterns. (v, σ = 12.6): When the kernel width σ approaches the typical vortex-
vortex distance, coarse-graining results in a constant homogeneous density, and all spatially
heterogeneous information is lost.
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Figure 3.7: Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian kernel
width σ for the Quincke roller system (top) quantifies the fraction of information that remains
in Fourier space after coarse-graining. Representative snapshots of coarse-grained fields are
shown in the bottom panels. Characteristic length scales: Roller diameter 4.8µm, mean
roller-roller centroid distance ∼ 11µm, window height H = 0.286mm, window width W =
1.146mm. (i, σ = 10−5 mm): Raw image before coarse-graining. (ii, σ = 0.0033mm)–(iii, σ =
0.0085mm): Single rollers are increasingly smoothed out, leading to an initial decrease in
information. (iii, σ = 0.0085mm)–(iv, σ = 0.045mm): Large-scale density fluctuations
become increasingly smoothed out by the coarse-graining. Data from (iv, σ = 0.045mm)
was used for model learning from experimental Quincke roller data, providing a compromise
between sufficiently smooth data and well-resolved details of density fluctuation in both
spatial directions. (v, σ = 0.24mm): As the coarse-graining scale σ becomes comparable to
the window height H, density fluctuations in the vertical direction have been smoothed out,
leading to an effective one-dimensional density pattern that varies only along the horizontal
direction. (vi, σ = 1.04mm): As σ becomes comparable to the window width W , all density
variations disappear, and the coarse-graining yields a constant homogeneous density.
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3.2.4 Spectral representations for library construction

A central challenge in PDE learning is the computation of spatial and temporal derivatives of
the coarse-grained fields. Our framework exploits that hydrodynamic models aim to capture
the long-wavelength dynamics of the slow collective modes [81]. As discussed in Chapter 2,
this allows us to project the coarse-grained fields on suitable basis functions that enable sparse
representations (high compression), fast transforms, and efficient differentiation. Here, we
work with representations of the form

ρ(t,x) =
∑
n,q

ρ̂n,qTn(t)Fq(x), (3.9a)

p(t,x) =
∑
n,q

p̂n,qTn(t)Fq(x), (3.9b)

where Tn(t) denotes a degree-n Chebyshev polynomial of the first kind [23, 44] (Section 2.1.2),
and Fq(x) is a tensor product spatial basis (Section 2.1.3). Generally, the choice of the spatial
basis functions should be adapted to the spatiotemporal boundary conditions of the micro-
scopic data. For periodic simulation data we use the Fourier basis Fq(x) = exp(2πiq·x) with
wave vector q = (qx, qy)

⊤ (Section 2.1.1), where ρ̂n,q and p̂n,q are complex mode coefficients.
For non-periodic experimental data we use the Chebyshev basis Fq(x) = Tqx(x)Tqy(y), where
ρ̂n,q and p̂n,q are real mode coefficients. Since the coarse-graining can be evaluated at arbi-
trary points in space, the fast transforms can be applied directly to the spatial dimensions.
In time, the coefficients are found using the interpolation method discussed in Section 2.2.

The spectral representation (3.9) enables the efficient and accurate computation of space
and time derivatives [88] as discussed in Chapter 2. Preprocessing via spatial coarse-graining
ensures that the mode coefficients ρ̂n,q and p̂n,q decay quickly for |q| ≫ 1/(2πσ) (Fig-
ure 3.8(a), left). If the asymptotic decay of the mode amplitudes with the temporal mode
number n is at least exponential, then deterministic PDE descriptions are sufficient, whereas
algebraically decaying temporal spectra indicate that stochastic PDEs may be required to
capture essential aspects of the coarse-grained dynamics. For the simulated and experimen-
tal systems considered in this work, temporal spectra were found to decay exponentially
[Figure 3.8(b)] or super-exponentially (Figure 3.9), suggesting the existence of deterministic
PDE-based hydrodynamic models. To infer such models from data, we focus on the slow
hydrodynamic modes and filter out the fast modes with n > n0 by keeping only the dominant
Chebyshev terms in (3.9). The cut-off value n0 can usually be inferred from a characteristic
steep drop-off in the power spectrum of the data, which signals the transition to hydrody-
namically irrelevant fast fluctuations [50] [Figure 3.8(a, right)]. Choosing n0 according to
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Figure 3.8: (a) Slices through the spatio-temporal power spectrum Sx;n,q = |ex · p̂n,q|2
for different values of the Chebyshev polynomial order n ∈ {0, 300, 600}, corresponding to
modes with increasing temporal frequencies. The rightmost panel depicts the total spatial
spectral power

∑
q Sx;n,q [see Eq. (3.9b)] of each Chebyshev mode n. The slowly decaying

long tail of fast modes indicates a regime in which fluctuations dominate over a smooth
signal. The cut-off n0 = 600 removes these modes, which is in line with the goal of learning
a hydrodynamic model for the slow, long-wavelength modes. (b) Kymographs of the spectral
derivatives ∂tρ and −∇ · p at y = 50, obtained from the spectral representation of the data
are spatiotemporally consistent.

this criterion yields accurate, spatiotemporally consistent derivatives as illustrated for the
kymographs of the derivative fields ∂tρ and −∇ ·p as seen in Figure 3.8(b). More generally,
combining kernel-based coarse-graining and spectral representations mitigates measurement
noise, enabling a direct application to experimental data.

3.2.5 Conclusions

Leveraging spectral representations of field observables and recent advances in the sparse
PDE-inference [27, 31, 32, 83], we presented a PDE learning framework that robustly iden-
tifies hydrodynamic models for the self-organized dynamics of active matter systems [84].
The quality of the derivatives was essential for the inference framework to discover con-
sistent PDEs [84] robustly. Spectral representations contributed to the robustness of the
overall framework, allowing for insights into coarse-graining length scales from the spatial
coefficients and the form of the temporal dynamics from the decay of temporal coefficients.
Additionally, spectral representations enabled the robust and efficient extraction of deriva-
tives from experimental data, providing direct comparisons between experimental data and
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Figure 3.9: Power spectra of coarse-grained data for experimental applications to tracked
particle data: the Quincke roller system from Denis Bartolo’s lab [87] (left) and for sunbleak
fish from Iain Couzin’s lab [89] (right), where n denotes temporal Chebyshev mode numbers.
The normalized power shown in the two panels is given by Sx;n/Sx;n=0. For both the Quincke
roller and the sunbleak fish data spectral powers decay exponentially with increasing tem-
poral mode number n.

inferred theoretical models.
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3.3 Applications to gene expression profiles during bac-

terial swarming

The results in this section are adapted from H. Jeckel*, K. Nosho*, K. Neuhaus, A. D.
Hastewell, D. J. Skinner, D. Saha, N. Netter, N. Paczia, J. Dunkel and K. Drescher, “Si-
multaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm de-
velopment reveal cooperation across generations,” Nature Microbiology, 8(12), 2378-2391,
2023

As a final application of spectral representations we consider spatiotemporal gene expres-
sion data during bacterial swarming from by Knut Drescher’s lab [12]. The results of the
spectral representation were incorporated into further analyses by H. Jeckel and K. Nosho.

3.3.1 Motivation

Dynamically evolving microbial communities with spatial structure are ubiquitous in na-
ture, from the intestinal microbiota in humans to soil-based biofilms and bacterial swarms
expanding across moist surfaces [90–94]. Spatiotemporal patterns in microbial communities
can emerge for the arrangement of genotypes, for phenotypic subpopulations of the same
genotype, and for emergent community properties, such as resource gradients, biophysical
properties, and stress tolerance [95–99]. Pattern formation in microbial communities and
other multicellular systems is a complex multi-scale process influenced by cellular growth,
division, differentiation, and motility, as well as many types of chemical and physical cell-
cell interactions. All these factors can change in space and time due to the varying resource
availabilities within developing communities [100, 101]. Even for the simplest microbial com-
munities, such as single-species bacterial swarms, the number and spatiotemporal variability
of the parameters influencing community development lead to a degree of complexity that
makes it difficult to disentangle which intracellular processes and cellular interactions deter-
mine the emergent spatial structure of the community. To understand how spatial structure
arises during bacterial community development, multi-scale spatiotemporal measurements
of intracellular states, cellular phenotypes, and multicellular structures are required.

Using Bacillus subtilis swarm development as a model system for the emergence of spatial
structure in multicellular communities, our collaborators in Knut Drescher’s lab developed
an experimental platform for the measurement of spatiotemporal transcriptomes from live
communities with high genome coverage and the simultaneous acquisition of microscopy-
based measurements of cellular phenotypes, multicellular phenotypes, and the whole swarm
development [12].
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Figure 3.10: Spatiotemporal transcriptome measurements and microscopy-based phenotyp-
ing during Bacillus subtilis swarm development provided by the Drescher lab. (a) Spatiotem-
poral transcriptome results are summarized in kymograph heatmaps with each colored tile
corresponding to one sample - the color of each tile in the heatmap indicates the expression
level of a particular gene, LRNA. The “Range” value corresponds to the dynamic range of
gene expression, defined as the ratio between the highest and lowest color bar values, which
are the 5th and 95th percentile of the gene expression values, taking all three replicates
into account (additional replicates can be found in [12]). Three spatiotemporal heatmaps
depicting the expression pattern of genes related to various processes are shown. Thousands
of additional spatiotemporal gene expression heatmaps are available [12]. (b) Spatiotempo-
ral phenotype heatmaps, analogous to the gene expression heatmaps in panel (a). Similar
spatiotemporal phenotype maps are available for ten additional properties [12].
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By integrating these different levels of biological and biophysical information, we system-
atically uncovered spatiotemporally varying processes and properties of the swarm. Full
experimental details can be found in [12]. Here, we will focus on the spatiotemporal pattern
analysis framework based on spectral representations.

In all previous examples of spectral representations, we have considered rectangular do-
mains that lend themselves naturally to tensor product extensions into multiple dimensions
(Section 2.1.3). Bacterial swarming, however, occurs on an exponentially growing domain
(see example experimental images from Knut Drescher’s lab, Figure 3.10), requiring the de-
velopment of new basis functions for the spectral representation of spatiotemporal patterns
from swarming experiments.

3.3.2 Non-dimensionalizing and aligning spatiotemporal domains

The transcriptome measurements and the microscopy-based measurement of phenotypic
properties are sampled at a set of radial space-time points {rl = (tl, pl)}Ll=1, where tl is
the time and pl is the radial position from the center of the swarm at which the sample is
acquired. For each gene, we have a sample vector gn with length L, where the lth entry
is the gene expression at the point (tl, pl). Similarly, we have a sample vector ϕn for each
phenotypic property with length L. To enable spectral representation across experiments, we
fit a common domain between the three experimental replicates. Experimentally, the radial
position of the boundary bl of the swarm at each time tl was determined automatically by
detecting the presence and location of bacteria in the microscopy field of view and moving
the microscope stage until the field of view was split between colonized agar containing bac-
teria and uncolonized agar in approximately equal proportions. We simultaneously fitted a
boundary of the form b(t) = b0 exp(t/τ) to all replicates by first minimizing the loss function,

L(τ, b
(1)
0 , b

(2)
0 , b

(3)
0 ) =

3∑
k=1

L(k)∑
l=1

(
b
(k)
i − b

(k)
0 exp(t

(k)
l /τ)

)2
(3.10)

where superscript (n) denotes the index of the three replicates. This exponential fit approx-
imates the experimental data very well [Figure 3.11(a)].

To obtain non-dimensional data, we rescaled data as follows. Let r be the index corre-
sponding to the largest b(k)0 , we defined the time shift t(r)s = t

(r)
0 and scaled the initial value

b0 = b
(r)
0 exp(t

(r)
s /τ). The other time shifts are given by

t(k)s = τ
[
log(b

(r)
0 )− log(b

(k)
0 )
]
+ t(r)s .
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Figure 3.11: (a) An exponential function is fitted to the space-time location of boundary
points (indicated in purple color) for each data set. Space-time coordinates are then rescaled.
(b) The rescaled space-time coordinates are shown in their common non-dimensionalized
domain.

We then non-dimensionalized the data (̃· variables) using t̃l = (tl− t(k)s )/τ and p̃l = pl/b0. In
non-dimensional variables, the domain boundary is given by 0 ≤ t̃ ≤ T and 0 ≤ r̃ ≤ exp(t̃)

where T is maximum non-dimensional time present in all three replicates. Data points
outside the domain after rescaling are not used in the spectral representation. The non-
dimensionalized domain and how the individual sampling data points are distributed within
this domain are shown in Figure 3.11(b).

3.3.3 Construction of spectral representations on the swarming do-

main

We built a domain-specific orthogonal polynomial basis {Pm(t̃, p̃)}Mm=0 by applying Gram-
Schmidt orthogonalization [102] over the non-dimensional domain 0 ≤ t̃ ≤ T , 0 < p̃ ≤ exp(t̃)
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to the monomial set,
{1, t̃, p̃, t̃2, t̃p̃, p̃2, . . .},

under the inner product

⟨f, g⟩ =
∫ T

0

dt̃

∫ exp(t̃)

0

dp̃e−t̃fg. (3.11)

The space-time dependence of each gene is compressed by expanding each sample vector,

gn =
M∑

m=0

cm,nPm (3.12)

where Pm is the length L vector formed by evaluating Pm(t̃, p̃) at each non-dimensional
space-time point (t̃l, p̃l). The coefficients are fit using least squares on the matrix equation
(Section 2.2),

gn = [P0P1 · · · PM ]


c0,n

c1,n
...

cM,n

 (3.13)

for each gene and property.
To combine information from all replicates, we fitted a single coefficient vector for the

replicates by stacking the least square problems on top of each other to form a single linear
regression problem, g

(1)
n

g
(2)
n

g
(3)
n

 =

P
(1)
0 P

(1)
1 · · · P

(1)
M

P
(2)
0 P

(2)
1 · · · P

(2)
M

P
(3)
0 P

(3)
1 · · · P

(3)
M



c̄0,n

c̄1,n
...

c̄M,n

 , (3.14)

from which a smooth average spatiotemporal gene expression was formed,

ḡn(t̃, p̃) =
M∑

m=0

c̄m,nPm(t̃, p̃). (3.15)

The same procedure was also used to produce average properties Φ̄n.

3.3.4 Analysis of spatiotemporal gene expression

To systematically characterize the different types of spatiotemporal patterns in gene expres-
sion and phenotypes during swarm development, we performed an unbiased analysis of the
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Figure 3.12: Spectral representation of spatiotemporal expression pattern data from the
Drescher lab. The spatiotemporal expression heatmap for each gene and each phenotypic
property was approximated by a linear combination of six orthogonal basis functions Pi,
(i = 0, ..., 5) that are optimized for the spatiotemporal swarm domain. The coefficients ci of
the basis functions were determined using all three biological replicates.

spatiotemporal data. For this, each spatiotemporal swarming dataset was represented by the
coefficients cm,n in the domain-adapted orthogonal basis functions expansion (Figure 3.12).

Using the coefficients cm,n for each spatiotemporal dataset, we assesed how strongly each
gene varies in space and time during swarming. With the analysis, we would like to identify
the underlying patterns independent of global shifts and scaling. Therefore, we defined
coefficients with the mean subtracted and scaled by the standard deviation,

km,n =
cm,n − δm,0µn/P0

σn
(3.16)

where σn is the standard deviation of the expression of gene n, µn is the mean of the expression
of gene n, δn,k is the Kronecker delta, and P0 is constant since it is a degree 0 polynomial.
Note that k0,n is no longer an independent parameter under this rescaling since it is fully
determined using the higher-order polynomials and their respective coefficients. Using these
rescaled coefficients km,n, we defined a score for how strongly patterned a gene expression
profile is. A spatiotemporally patterned expression profile should have two components:

• The pattern should vary smoothly, so the pattern should be well approximated by the
spectral representation, which means that the scaled representation error

En = ∥(gn − µn)/σn −
M∑

m=0

km,nPm∥2

should be small.
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Figure 3.13: Identification of genes with spatiotemporal regulation and different spatiotem-
poral expression patterns. (a) A spatiotemporal information score was defined, quantifying
the spatiotemporal information observed for a given gene. By ranking genes according to
this spatiotemporal information score and defining a cutoff at the weighted median of the
spatiotemporal information, we identified all genes with spatiotemporal gene expression pat-
terns. Insets show gene expression heatmaps with low, intermediate, and high spatiotemporal
information scores. (b) For the 572 genes with spatiotemporal gene expression patterns iden-
tified in panel (a), we used cosine similarity based on the coefficients ci to identify clusters of
highly correlated spatiotemporal patterns, revealing six major distinct spatiotemporal gene
expression patterns (indicated by colored lines on the side of the similarity matrix). (c) To
visualize these, the pattern corresponding to the mean of all coefficients ci within each pat-
tern cluster is shown. (d-e) Multidimensional scaling (MDS) was applied to genes and swarm
properties based on their cosine similarity, as shown in panel (b). The expression pattern of
each gene is represented as a point with color indicating their expression pattern category
in panel (d) or gene function in panel (e). Gene functions are based on subtiWiki [103, 104].
Gene function categories with fewer than ten genes assigned to them are grouped into the
category “other”. Five phenotypic properties of the swarm (see Figure 3.10 for heatmaps) are
shown as stars, revealing that their location in the MDS space is near some gene patterns
and functions. (e) The 50 nearest neighbor genes in the MDS space (corresponding to similar
gene expression patterns) were identified and grouped into gene function categories for each
of these five phenotypic properties. The number of genes in each gene function category for
each phenotypic property is visualized in the connection plot (right).
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• The pattern should not just be constant, meaning that the higher coefficients should
be important, which means that the pattern score

Pn =
M∑

m=1

k2m,n

should be large.

We, therefore, define a space-time ranking,

Rn =
Pn

En
(3.17)

which is large when a gene expression has a strong spatiotemporal pattern and small when
there is no spatiotemporal pattern [Figure 3.13(a)]. We define the cutoff for which genes are
designated as displaying a spatiotemporal pattern by ordering the genes by their ranking
smallest to largest and then finding the largest integer Nc such that,∑Nc

n=1 Rn∑N
n=1 Rn

≤ 0.5. (3.18)

This results in 572 genes with a spatiotemporal pattern.
The coefficients km,n for the basis functions Pm encode information about the spatiotem-

poral expression pattern of the genes and phenotypic properties, which allows us to cluster
genes based on their spatiotemporal expression pattern using the spectral coefficients km,n

directly. For the 572 genes that displayed a high degree of spatiotemporal variation dur-
ing swarming, we computed the similarity in their spatiotemporal expression pattern, using
cosine similarity between the coefficients,

dn,p =

∑M
m=1 km,nkm,p√∑M

m=1 k
2
m,n

√∑M
m=1 k

2
m,p

. (3.19)

We use cosine distances since we need a metric independent of a global scaling to the ex-
pression level. The distance matrix D = (dn,p) is then separated into clusters using the
k-medoids algorithm [105] to produce k distinct patterns. The number of clusters is chosen
based on a plot of the total cost versus number of clusters and choosing a value in the elbow
of the curve (Figure 3.14). This analysis revealed 6 clusters of genes with similar spatiotem-
poral expression patterns [Figure 3.13(b); inset shows the number of genes with a particular
pattern]. To illustrate the six different patterns, the pattern corresponding to the mean of
all coefficients is shown in Figure 3.13(c). Interestingly, all six patterns vary in space and
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Figure 3.14: With increasing clusters, the minimum clustering cost decreases, with an
initially sharp decline that levels off for high cluster numbers. Highlighted in red is the
location of 6 clusters, the number which was chosen for further analyses in Figure 3.13

time, not only in space or time.
Spatiotemporal phenotype patterns correlate with metabolism gene expression patterns.

To reveal connections between our measurements of gene expression and microscopy-based
phenotypic properties, we performed a 2D embedding using multidimensional scaling [106]
for the spatiotemporally expressed genes and the phenotypic properties [Figure 3.13(d, e)].
This analysis shows that the biomass density and the abundance of non-motile cells in the
swarm are closely related and are close to patterns 5 and 6. In contrast, motility-related
phenotypic properties, such as the cell speed and the abundance of rafting cells, as well as
the cell size, are close to patterns 1 and 2 [Figure 3.13(d, e)]. By looking at the gene func-
tions of the 50 closest genes to the phenotypic properties in Figure 3.13(e), we found that
metabolic genes are most closely associated with the spatiotemporal dynamics of the pheno-
typic properties [Figure 3.13(e) right]. This insight led us to investigate the spatiotemporal
changes in metabolism during swarm development, with the aim of understanding how and
why metabolic changes occur in space and time and how they influence swarm development.
Spatiotemporal measurements of metabolites secreted and consumed by the different sub-
populations led us to discover spatiotemporal cross-feeding interactions within the swarm.

3.3.5 Conclusions

Spectral representations of the spatiotemporal gene expression and phenotypic properties
enabled an unbiased and quantitative analysis of the emergent patterns. This pattern analy-
sis led to the discovery of a strong relationship between metabolic genes and spatiotemporal
dynamics of the phenotypic properties and, on further investigation, a spatiotemporally
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organized cross-feeding mechanism. These results further emphasize the strength and exten-
sibility of spectral representations for the robust analysis of biological data, even on more
complicated experimental domains.
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Chapter 4

Dynamical systems inference in spectral
mode space

As highlighted in the previous chapter, mode space representations of data have many ben-
efits that make them useful for analyzing experimental data. We used spectral represen-
tations to extract quantitative information from experimental data and make comparisons
with theoretical models. However, the underlying dynamical system of complex biophysical
phenomena is often unknown. We wish, therefore, to infer the dynamics directly from ex-
perimental data when this is the case. Inferring models directly in mode space has several
theoretical advantages. As shown in the following two sections, a large class of dynamics in
real space can be reduced to coupled ordinary differential equations (ODEs) in mode space,
allowing us to focus on dynamical systems inference techniques specifically for ODEs.

4.1 Projection of real space dynamics into mode space

Until now, we have used mode space representation as an intermediary step where operations
are easy to compute before projecting back into real space. However, the projection into
mode space is orthogonal, and the mode space representation contains the same information
as the real space representation. Therefore, understanding a system’s dynamics in real space
is equivalent to understanding its dynamics in mode space. Concretely, consider a scalar
field ρ(t,x) that evolves according to a possibly nonlinear and non-local integrodifferential
equation,

∂

∂t
ρ(t,x) = F (t,x, ρ,∇ρ,∇2ρ, . . .). (4.1)
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A spatial mode representation of ρ is given by,

ρ(t,x) ≈
N∑

n=1

ρ̂n(t)ϕn(x) (4.2)

where the dynamical information about the field is now shifted into the finite number of
time-varying mode amplitudes ρ̂n(t). We substitute (4.2) into (4.1) and write the right hand
side as a mode representation

N∑
n=1

d

dt
ρ̂n(t)ϕn(x) = F

(
t,x,

N∑
n=1

ρ̂n(t)ϕn(x)

)
=

N∑
n=1

fn(t, ρ̂1, . . . , ρ̂N)ϕn(x) (4.3a)

where the functions fn are given by the integrals,

fn(t, ρ̂1, . . . , ρ̂N) =

∫
D

dxw(x)ϕn(x)F

(
t,x,

N∑
m=1

ρ̂m(t)ϕn(x)

)
. (4.3b)

The function F approximated by a mode representation will have coefficients that depend,
possibly nonlinearly, on the original coefficients. Projecting both sides of (4.3a) onto the
basis ϕn(x) gives a set of coupled nonlinear ODEs for the mode amplitudes,

d

dt
ρ̂n(t) = fn(t, ρ̂1, . . . , ρ̂N) (4.4)

The approach is intricately linked with spectral methods for solving differential equations [22],
where a truncated basis function expansion approximates solutions to the differential equa-
tion. Many of the same technical challenges for spectral methods, such as aliasing and
closure, are also present here.

The procedure outlined above is also readily generalized to sets of coupled differential
equations; see Chapter 5 for an example.

Linear partial differential equations

An important sub-class of problems is linear partial differential equations with constant
coefficients, for example

∂

∂t
ρ(t, x) =

K∑
k=0

ck
∂k

∂xk
ρ(t, x). (4.5)
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under the projection into mode space, the dynamics become,

d

dt
ρ̂ =

[
K∑
k=0

ck(Dϕ)
k

]
ρ̂ (4.6)

where Dϕ is the differentiation matrix in mode space for the basis given by ϕn(x) and
ρ̂ = [ρ̂0, . . . , ρ̂N ] is a vector of the representation coefficients. Equation (4.6) is a linear set
of coupled ODEs. Note that, in general, for polynomial bases, the differentiation matrix will
be strictly upper triangular. This can have severe consequences for the truncated dynamics.
Consider, as a simple example, the heat equation on [−1, 1] with initial condition ρ(0, x) = ρ0

and boundary conditions ρ(t,−1) = ρ(t, 0) = 0.

∂

∂t
ρ(t, x) =

∂2

∂x2
ρ(t, x) =⇒ d

dt
ρ̂ = D2

T ρ̂ (4.7)

in the Chebyshev basis, where DT is strictly upper triangular. The last two rows of the
D2

T contain all 0 entries. This decoupling of the last coefficients can have catastrophic
consequences when the ODE is reintegrated since it is unstable. To see this we look at the
highest modes’ dynamics, ρ̂N(t) = ρ̂N(0), since the row is all 0, and d/dt ρ̂N−2(t) = 280ρ̂N(0),
which shows that ρN−2(t) will grow unbounded in time. Some form of closure is required
for the dynamics to be stable. In Chebyshev spectral methods, the zero rows are typically
replaced with boundary conditions to close the system. When we apply model inference in
mode space, we will discover these closures alongside the dynamics by enforcing that our
inferred models are stable.

Generically, we find that linear partial differential equations in real space will lead to linear
ODEs in mode space. Modeling dynamics directly in mode space has several theoretical and
practical advantages. The theory of ODEs, with robust uniqueness and existence theorems,
is more straightforward than of partial differential equations and robust numerical methods
exist to solve them efficiently.

4.2 Projection of mode space dynamics into real space

We now show that linear models in mode space generally lead to linear integrodifferential
equations in real space. Consider a linear dynamics in mode space,

d

dt
ρ̂ =M ρ̂. (4.8)
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Define the vector function ϕ(x) = [ϕ1(x), . . . ϕN(x)], which gives a compact formula for the
real space dynamics ρ(t, x) = ϕ⊤(x)ρ̂(t). Multiplying both sides of the dynamics by ϕ(x)⊤

and using the definition of the coefficients (2.5) the dynamics becomes,

ϕ⊤(x)
d

dt
ρ̂ = ϕ⊤(x)MK−1

∫
D

dy w(y)ρ(t, y)ϕ(y). (4.9)

where K is a diagonal matrix with entries Knn = ⟨ϕn, ϕn⟩. Defining the two-dimensional
kernel,

G(x, y) = w(y)ϕ⊤(x)MK−1ϕ(y) (4.10)

the real space dynamics become,

∂

∂t
ρ(t, x) =

∫
D

dy G(x, y)ρ(t, y) (4.11)

a linear integro-differential equation for the time evolution of ρ(t, x).
The non-local behavior of generic linear mode space models makes them particularly well

suited to study biological phenomena where non-local effects appear frequently, for example,
in Lévy processes [107], chemotaxis [108, 109], or cell migration [110]. By studying the
resulting real space kernels, we can infer information about the locality of a given mode of
space dynamics.

4.3 Previous approaches to dynamical systems inference

This section has adapted from the preprint G. Stepaniants*, A. D. Hastewell*, D. J. Skinner,
J. F. Totz, and J. Dunkel, "Discovering dynamics and parameters of nonlinear oscillatory
and chaotic systems from partial observations," arXiv preprint arXiv:2304.04818, 2023.

In canonical form, data-driven dynamics discovery consists of fitting the parameters p

of an ODE ẋ = f(x,p) to a given dataset. This problem has been considered since early
computers were used to solve differential equations numerically [111]. Renewed interest in
the problem came with increasing computational power in the 1980s and 1990s [112]. With
the increasing prevalence of machine learning techniques and the explosion of high-resolution
data acquisition, once again, attention has turned to this problem in recent years [37, 113–
116].
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4.3.1 Parametric models

The simplest case is when the form of the ODE right-hand side f(x,p) is fixed ahead of
time by some knowledge of the system, and the parameter vector p is the only unknown.
Frequently, p will be low dimensional, consisting of only a few parameters. Fitting these
parameters can be formulated as an optimization problem minimizing a data loss

∑
i |ẋi −

f(xi,p)|2. Approximations of the time derivative can be calculated by finite differences,
smooth derivative approximations [112, 117, 118] or weak formulations [119]. Minimizing
the data loss to find p can be done using either linear [27, 120] or nonlinear [118, 121] least
squares based on the structure of the dynamical equations. For instance, the parameters of
the canonical Lorenz system enter linearly while the parameters of the nonlinear pendulum
ẍ = −A sin(ωx) do not. Such methods are not robust and can overfit noisy data, as they
impose no causal constraints that the observed data at time t+∆t is related to the data at
time t through the evolution of an underlying differential equation.

4.3.2 Optimization methods

In the case of partial observations or noise-corrupted data, we need a causal formulation of
the problem, which encodes prior knowledge that observed data come from the evolution of
a differential equation. When the integrated solution to the ODE model has a closed form,
such as linear time-invariant systems, we can use least squares fitting to match the integrated
solution to the data [122]. For more complicated models, we need to use numerical approxi-
mations to the integrated ODE solution and fit the parameters by solving suitably chosen,
often nonlinear, and non-convex optimization problems. The causal nature of the problem
can be encoded by adding additional penalty terms to the data loss enforcing an ODE struc-
ture, leading to a large class of approaches known as data assimilation methods [114, 123].
These approaches typically enforce that the fit dynamics is consistent with a single time step
of an ODE model, although generalizations to n steps have shown better stability and noise
robustness [124–126]. While better suited for data with partial observations and noise, there
is still no guarantee that the integrated model is stable over long times or fits the data when
these finite steps are performed sequentially. A stronger constraint on the ODE structure is
that the solution x(t,p) comes from numerically integrating the model, which is then fitted
to the data. We can achieve this hard constraint by directly optimizing through a numerical
ODE solver. Such optimization techniques roughly fall into two categories: (1) gradient-free
methods like root finding [127], multiple shooting [128], Nelder-Mead, particle swarm opti-
mization [129], or Kalman filters [130–132], and (2) gradient-based methods like Newton’s
method, ADAM [133], and BFGS [134] where derivatives are approximated either using fi-
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nite differencing on the ODE solutions, sensitivity methods or automatic differentiation [37,
135]. These techniques have been applied successfully to learn periodic, chaotic, and tran-
sient dynamics [37]. The question of parameter identifiability, which studies whether model
coefficients can be determined uniquely from the data, has also been extensively explored
for parametric models [136, 137]. However, parametric models are only applicable when we
have some prior knowledge about the form of the model governing the dynamics in our data,
which is frequently not the case for experimental systems.

4.3.3 Nonparametric models

A more expressive and less constrained right-hand side function f is needed if we cannot
assume a particular parametric form of the equations. Taking f as a general function with a
large set of model parameters, such as a neural network, results in a nonparametric model.
It is called nonparametric as the large set of parameters has no inherent interpretation.
Examples of such functions f that have been applied to dynamical inference include locally
linear models [138, 139], bases expansions [140] (sometimes referred to as atlases or libraries
including polynomial [27], rational polynomial [141, 142], wavelet [143], and radial basis
functions [144]), discrete-time perceptrons [145, 146], and neural networks (referred to as
neural ODEs) [37]. The techniques for fitting parametric models outlined above can also be
applied to these general functions. These techniques often discretize the ODE during fitting;
directly learning a discretized form of the dynamics xt+∆t = f(xt,p), is called a discrete
nonparametric model [140, 141, 144–146].

4.3.4 Model selection

Without prior knowledge about the form of the dynamics, nonparametric models can fit
an ODE to data. However, the resulting model lacks physical interpretability. This draw-
back prompted the development of automated methods for learning physically interpretable
ODE models without assuming prior knowledge of the dynamics. A popular approach is
first to learn a nonparametric model given as a linear combination of basis terms and to
subsequently perform model selection keeping only a few basis terms in the expansion [27,
140]. Various techniques for basis term selection include sparse identification [27], boot-
strapping [147], information criteria (MLE, AIC, BIC, MDL) ranking [140, 148, 149], and
hypothesis testing [150, 151]. When partial knowledge of the ODE model is available, a
parametric interpretable ODE model can be added to a nonparametric model and jointly fit
to the data, an approach called hybrid modeling [131].
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4.4 Linear dynamical systems inference

Even for complex nonlinear dynamics, effective linear models can capture the relevant dy-
namics over a characteristic region of phase space. Studying linearizations of nonlinear
dynamics to reveal information about the underlying dynamical system is frequently used in
dynamical systems theory [152], for example, in the analysis of fixed point stability. More
recently, data-driven approaches have shown the power of effective linear dynamical models
in characterizing complex nonlinear phenomena. In fluid dynamics, dynamic mode decom-
position extracts dominant spatio-temporal motifs from data [19]. In neuronal dynamics,
switching linear dynamical systems are used to accurately approximate nonlinear dynamics
using different linear models for different regions of phase space [153]. In the following two
chapters, we will restrict ourselves to inferring linear dynamics in mode space and assume
that all relevant degrees of freedom have been observed. We discuss extensions to the case
of nonlinear dynamics and unobserved degrees of freedom in Chapter 8.

Dynamic Mode Decomposition (DMD) [19] discovers the eigen-decomposition of a linear
operator assuming deterministic discrete or continuous linear dynamics. The N mode con-
tinuous time DMD assumes that the dynamics of the system follow the linear matrix ODE
ḋ(t) =Md(t). The solution of the linear dynamics gives a series approximation to the data
d(t) of the form

d(t) ≈
N∑

n=1

cnvne
λnt, (4.12)

where vn are the eigenvectors of the matrix M with corresponding eigenvalues λn. Multiple
approaches have been developed for fitting approximations of the form (4.12) [19] using linear
algebra [17] and variable projection [154]. In general, the expansion (4.12) can be sensitive
to noise, leading to eigenvalues with spurious positive real parts and unstable dynamics.
Additionally, the expansion (4.12) will generally correspond to a dense unstructured matrix
with no prior knowledge about the structure imposed by physical or biological constraints
used. The recent development of physics-informed DMD (piDMD) [155] shows that incor-
porating prior knowledge about the dynamics adds robustness to the inference step. A key
challenge with biological data is noise in the data, making differentiating data challenging
and ill-posed. It may also be unclear ahead of time what the correct model structure is,
or only a portion of the structure may be known. As we saw in Section 4.1, mode space
dynamics arising from linear differential equations in real space often have a sparse structure
in their dynamical matrix. We, therefore, seek to develop a method that can infer sparse
linear dynamical systems that match the data well and are stable over the time region of
interest.
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In the rest of this chapter, we describe in detail an inference procedure to learn parsimo-
nious linear ODE models. We consider an approach where known sparse structures can be
imposed ahead of time, and additional sparsity can be inferred directly from the data. We
gain robustness by directly matching integrated predictions of the linear dynamical system
to experimental data. By comparing integrated quantities, we avoid numerically differenti-
ating noisy data, which is known to be ill-posed. We also ensure that long-time integrated
solutions of the linear system match the data well and are stable.

4.5 Inferring sparse linear models

In this section we outline an optimization procedure for robustly fitting sparse linear dy-
namical systems to experimental mode trajectories. In the next chapter so show how this
is integrated into a full analysis of zebrafish embrogenesis in collaoration with N. Romeo
and A. Mietke. The results in this section have previously been published in N. Romeo*,
A. D. Hastewell*, A. Mietke, and J. Dunkel, "Learning developmental mode dynamics from
single-cell trajectories". Elife, 10, e68679, 2021.

Given a dynamical mode vector a(t), the goal is to learn a linear minimal model

da(t)

dt
=M · a(t) (4.13)

of the mode dynamics. Here, M is an unknown n× n mode coupling matrix. Our inference
algorithm combines adjoint techniques [37] and a multi-step sequential thresholding approach
inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm introduced
by Brunton et al. [27].

To describe the algorithm used to infer the mode coupling matrix M , we parameterize M
by a vector p that contains all non-zero entries and introduce a function M that represents
the underlying matrix structure. Together, they generate the explicit form M = M(p) of
the mode coupling matrix. Imposing structure on the matrix, such as rank constraints or
sparsity, leads to a shorter vector p and modifies the definition of M accordingly. Denoting
A(t;M,p, a0) as the result of numerically integrating the system of ODEs (4.13) up to time t
from initial condition a0 with M = M(p), we define the loss function

L(p; M, tI , tN) =
1

N − I

N∑
i=I

∥a(ti)−A(ti;M,p, a(tI)∥22, (4.14)

where the ti are time points in an interval [tI , tN ] at which the data and the ODE solution
are sampled. Using the ODE solvers and optimization functions provided by
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DifferentialEquations.jl and DiffEqFlux.jl [37], we can differentiate through the ODE
solver to calculate derivatives of the loss function (4.14) with respect to parameters p and sub-
sequently apply gradient-based optimization algorithms. The loss function is minimized us-
ing the ADAM algorithm [133], followed by the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
algorithm [156]. To increase the robustness of the optimization and promote sparsity, we use
a sequentially thresholded algorithm [27, 33, 84]. A complete overview of this procedure is
shown in Figure 4.1, and the details of the specific design decisions made in the algorithm
are discussed in the following:

1. To account for the variation in scale between the different modes in the data a(t), each
mode is normalized by its median absolute deviation (MAD) across the full period in
which the data are available. Specifically, we scale each mode by

mad(ai) = mediank (|ai(tk)− āi|) , (4.15)

where āi = mediank[ai(tk)] and the median is taken over all time-points, giving rise
to a scaled mode vector ã(t). Losses analogous to equation (4.14) that are computed
using scaled data are denoted in the following by L̃.

2. To prevent over-fitting, we divide the data into two regions, a learning region from tI to
tN and a validation region from tN to tF . Only data from the learning region is used to
optimize the loss function (4.14). However, the model is integrated into the validation
region, and a corresponding validation loss using only the data in the validation region
is calculated. We choose the model with the lowest loss in the validation region during
each optimization run, lowering the likelihood of over-fitting to the specific data in the
learning region.

3. To prevent the optimization from getting stuck in local minima, we incrementally in-
crease the time span of the data included in the optimization objective (blue box in
Figure 4.1). We increase the time window backward from a fixed endpoint t1 = tF ,
choosing an earlier initial condition at each iteration at time ti < ti−1. The advan-
tage of stepping backward rather than forward from a fixed initial condition is twofold.
First, the validation region stays unchanged throughout the optimization, making com-
parisons of the validation loss easy. Second, because the initial condition changes with
each run, the learned matrix tends to be more robust to fluctuations in the initial
condition.

4. After the optimization step, sparsity is promoted by thresholding the elements in the
matrix [27], removing small magnitude elements that do not noticably contribute to

73



the mode dynamics (purple box in Figure 4.1). The optimization procedure is then
repeated until the thresholding converges. The threshold is chosen to generate a sparse
matrix that faithfully reproduces the dynamics.

5. Once the sparsity pattern is obtained from the sequential thresholding and optimization
procedure, a final run of the optimization is performed on the unscaled mode data to
find the final dynamical matrix M , which removes any potential slight bias the MAD
scaling might have introduced in the parameter values p.

Finally, the numerical stability of the model can be checked by examining the eigenvalues
of the learned matrix.
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Figure 4.1: Schematic of the learning procedure. Initially, the data is rescaled using the
median absolute deviation (MAD) (4.15) to account for variation in scales across the modes.
Tildes denote scaled variables. To avoid local minima of the optimization function, we
iteratively feed more data into the cost function. Next, we sequentially threshold the small
terms in the matrix until convergence is reached. These procedures are repeated until the
sparsity pattern converges. Finally, the scaling is undone, and the parameters are optimized
on the unscaled data to produce the final matrix.
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Chapter 5

Learning developmental mode dynamics
from single-cell trajectories

The work in this chapter has been adapted from N. Romeo*, A. D. Hastewell*, A. Mietke,
and J. Dunkel, "Learning developmental mode dynamics from single-cell trajectories," Elife,
10, e68679, 2021.

In this chapter, we apply the model inference framework outlined in the previous chap-
ter. We summarize a coarse-graining and spectral representation procedure on the sphere
developed by N. Romeo and A. Mietke. We also show an additional application of spectral
entropy to determine coarse-graining length scales. We then apply the dynamical systems
inference procedure to a test data set from N. Romeo and the results from the coarse-graining
procedure. Finally, we discuss the implications of the resulting models.

5.1 Motivation

Embryogenesis, the development of a multicellular organism from a single fertilized egg cell,
requires coordinated collective motions of thousands of cells across a wide range of length
and time scales [157, 158]. Understanding how a highly reproducible and robust tissue
organization arises from the dynamics and interactions of individual cells presents a major
interdisciplinary challenge [159]. Recent advances in high-resolution live imaging make it
possible to track the internal biological states and physical movements of many individual
cells on pan-embryonic scales throughout various stages of development [6–8, 10]. This
unprecedented wealth of data poses two intertwined compression problems of equal practical
and conceptual importance: the first concerns the efficient reduction of high-dimensional
tracking data without losing relevant information; the second concerns inferring predictive
low-dimensional models for developmental dynamics. Mathematical solutions to the first
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problem are aided by considering the geometry and symmetries of the developing embryo,
which suggest suitable basis functions for a coarse-grained and sparse mode representation
of raw data [160]. Efficient algorithmic approaches tackling the second problem are within
reach thanks to recent advances in the direct inference of dynamical systems equations from
data [27, 37] as discussed in the previous chapter. Building on these ideas, we construct and
demonstrate a computational framework that translates developmental single-cell trajectory
data on curved surfaces into quantitative models for the dominant hydrodynamic modes.

Widely applied in physics [14, 161–163], engineering [164, 165] and spectral comput-
ing [21, 22, 166], mode representations [17, 18] provide a powerful tool to decompose and
study system dynamics at and across different energetic, spatial and temporal scales. In
quantum systems, for example, mode representations in carefully constructed eigenstates
are used to characterize essential energetic system properties [167, 168]. Similarly, turbu-
lence theory has seen significant progress by studying the coupling between Fourier modes
representing dynamics at different length scales. This approach enabled a better under-
standing of energy cascades [169, 170] and provided insights into the nature of turbulence in
non-living [171, 172] and in living [173–176] systems. Additionally, the multi-scale nature of
many biological processes makes them particularly amenable to a representation in terms of
spatial and temporal modes [81]. Despite this, mode representations are not yet widely used
to characterize and compress cell tracking data or infer dynamic models from such data.

To demonstrate the practical potential of mode representations for the description of
multicellular developmental processes, we develop here a computational framework that takes
cell tracking data as inputs, translates these data into a sparse mode representation by
exploiting symmetries of the biological system, and utilizes recently developed ODE inference
techniques [37] to infer a predictive dynamical model. The model will be specified in terms
of a learned Green’s function – linear dynamics in mode space – that propagates initial cell
density and flux data forward in time. To validate the approach, we demonstrate that it
correctly recovers the hydrodynamic equations for active Brownian particle (ABP) dynamics
on curved surfaces. Subsequently, as a first example application to experimental single-cell
tracking data, we consider the pan-embryonic cell migration during early gastrulation in
zebrafish [8], an important vertebrate model system for studying various morphogenetic
events [158, 177, 178]. During gastrulation, complex migratory cell movements organize
several thousand initially undifferentiated cells into different germ layers that lay out the
primary body plan [179]. The underlying high-dimensional single-cell data make this process
a prototypical test problem for illustrating how spatiotemporal information can be efficiently
compressed to analyze and model biological structure formation.

Broadly, our goal is to translate experimentally measured single-cell trajectories on a
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curved surface into a quantitative model of collective cell migration dynamics. As a spe-
cific example, we consider recently published light sheet microscopy data that captures the
individual movements of thousands of cells during early zebrafish development from epi-
boly onset at 4 hours post-fertilization (hpf) to about 18 hpf from the Huisken lab [8].
This developmental period is characterized by a collective symmetry-breaking event dur-
ing which cells collectively migrate over the yolk cell surface [179]. Namely, they rearrange
from an initial localization around the animal pole (AP) [Figure 5.1(a), left] into a more
elongated configuration that already indicates the basic geometry of the fully developed ze-
brafish larva [Figure 5.1(a), right]. Working with a two-dimensional (2D) sphere projection
of the experimental data, we first coarse-grain the trajectories on a curved surface. Next,
we construct a sparse mode representation of the resulting hydrodynamic fields in terms
of scalar and vector spherical harmonic basis functions and then use the resulting spectral
representation to infer linear dynamics that capture the initial symmetry-breaking event.
We validate this mode representation framework and the subsequent model inference using
synthetic data of ABPs on a sphere, for which coarse-grained fields and learned models can
be directly compared against analytical predictions. Finally, we infer a linear model for the
mode dynamics of the experimental zebrafish data, which enables us to study the character-
istics of cell interactions through kernels that couple cell density and flux and compare their
features with the hydrodynamic mean-field signatures of ABPs on a sphere.

5.2 Coarse-graining of cellular dynamics on a spherical

surface

The experimentally observed cell motions are approximately two-dimensional (2D): The ra-
dius of the yolk cell surface on which the dynamics take place is much larger than the average
height changes of the evolving cell mass [8]. Therefore, we adopt a thin film approximation,
in which the cellular motion is represented on an effective spherical mid-surface [gray surface
in Figure 5.1(b)]; refined future models should aim to account for the full 3D dynamics. Fo-
cusing on the in-plane dynamics, we project all cell positions and velocities onto a spherical
mid-surface S of radius Rs = 300µm. On this spherical surface, each cell α = 1, 2, ..., N has
a position rα(t) and in-plane velocity vα(t) = drα/dt.

As a second processing step, a coarse-grained representation of the single-cell dynamics
on a spherical surface is determined. To facilitate the applicability of our framework to a
wide range of experimental inputs, we propose a coarse-graining approach that can flexibly
integrate cell number variations stemming from cell divisions, as well as those from experi-
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Figure 5.1: From single-cell tracking data to sparse mode amplitude representations. (a) Mi-
croscopic imaging data of early zebrafish development (adapted from the Huisken lab [180])
shows cell migration from an initially homogeneous pole of cells (left) towards an elongated
structure that indicates the head-tail axis of the fully developed organism. Scale bar, 100µm.
(b) Experimental single-cell tracking data from [8] (blue dots) during similar developmental
time points (±20min) as in (a). t = 0min for the indicated time points in B corresponds to
a developmental time of 4 hours post fertilization. The z-axis points from the ventral pole
(VP) to the animal pole (AP). (c) Coarse-grained relative cell density ρ(r, t) (color) and
associated coarse-grained flux J(r, t) (streamlines) determined from single cell positions and
velocities from data in (b) via equations (5.1). The thickness of streamlines is proportional
to the logarithm of the spatial average of |J|. (d) Dynamic harmonic mode representation of
the relative density ρ(r, t) [equation (5.5), left panel] and of the flux J(r, t) [equation (5.6),
middle and right panel] for fields shown in (c). The modes j(1)lm correspond to compressible,
divergent cell motion, the modes j(2)lm describe incompressible, rotational cell motion. Mode
amplitudes become negligible for l ≥ 5. For all panels, horizontal black lines delineate blocks
of constant harmonic mode number l, and black triangles denote the end of the epiboly
phase.
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mental uncertainties in cell imaging and tracking. Details of the coarse-graining procedure
can be found in [181]. Briefly, we translate microscopic cell positions rα(t) and velocities
vα(t) into a continuous cell surface density ρ(r, t) and an associated flux J(r, t) at any point r
of the spherical mid-surface through a kernel coarse-graining of the form

ρ(r, t) =
1

N

N∑
α=1

K [r, rα(t)] (5.1a)

J(r, t) =
1

N

N∑
α=1

K [r, rα(t)] · v̄α, (5.1b)

where N is the total number of cells and v̄α = vα/|rα| is the angular velocity of a given cell
on a reference unit sphere. The kernels K and K are chosen so that the field ρ and J are
related by mass conservation,

∂ρ

∂t
+∇S · J = 0. (5.2)

However, because cell divisions are essential to most developmental processes, total cell
numbers will, in many cases – including early zebrafish gastrulation [180] – vary over time.
In the following analysis, we thus focus on normalized fields, ρ̃ = N(t)ρ and J̃ = N(t)J that
satisfy the modified mass conservation equation,

∂ρ̃

∂t
+∇S · J̃ = k(t)ρ̃. (5.3)

where k(t) = Ṅ(t)/N(t) denotes a time-dependent effective growth rate.

Information loss due to coarse graining

Coarse-graining microscopic data into smooth fields is an irreversible operation, during which
some of the original particle information is irretrievably lost. As seen in the second example of
Chapter 3, the choice of coarse-graining scale is thus dictated by a trade-off between smooth-
ness and information content - choosing larger coarse-graining scales leads to smoother fields
but blurs finer scale structures which may be of interest. To inform our choice of coarse-
graining scale, we quantify the loss of information incurred by the coarse-graining operation.

The measure we introduce to quantify information loss is based on the the well-known
relationship between the smoothness of functions in real space and Fourier space [182]:
A smooth function in real space should have a peaked, quickly decaying spectrum in Fourier
space while a collection of point-like objects such as delta functions should have a uniform
non-decaying spectrum. Specifically, we describe a uniformly sampled field as a M × N

matrix with components being the field values Xi,j = X(θi, ϕj). In our case, Xi,j represents
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either the density field ρ or any of the Cartesian components of the flux vector field J at a
given time point. We find the complex discrete Fourier spectrum X̂i,j of this matrix using
the two-dimensional fast Fourier transform. We then calculate the power spectral density
(PSD) of the Fourier spectrum as Ri,j = |X̂i,j|2 and interpret the normalized PSD

Pi,j =
Ri,j∑
a,bRa,b

as a discrete probability distribution. The spectral entropy S characterizing the information
content of the field X is then defined by

S(X) = − 1

log2NM

∑
i,j

Pi,j log2 Pi,j. (5.4)

Smooth fields are sharply peaked in Fourier space and have a low spectral entropy, whereas
fields that resolve discrete single particle information are rather flat in Fourier space and
have a large spectral entropy. The difference in entropy between particle data and smoothed
fields then measures the information eliminated by the coarse-graining procedure. If we
additionally normalize by the entropy of the spectral entropy S0(X) of the raw particle
data, we finally obtain a relative measure of the information that is lost in the coarse-
graining process. In general, a measure as given in equation (5.4) can be defined for any
transform with the property that smoothness in real space leads to a fast decaying spectrum
in transform space.

We compute the spectral entropy of density and flux component fields at a represen-
tative time point and for varying coarse-graining length scales (Figure 5.2). Specifically,
we coarse-grain density and flux for different values of the kernel parameter k that de-
termines the coarse graining length scale. Large values of k correspond to small coarse-
graining length scales, with the effective half-width at half-maximum of the kernels scaling
as HWHM= arccos(2−1/k). Normalized spectral entropies S(X)/S0(X) with X ∈ {ρ,J} are
then computed using (5.4). For the flux field, we define S(J) := S(Jx)+S(Jy)+S(Jz) (“Flux
sum” in Figure 5.2) and interpret the sum of these three contributions (“Flux x”, “Flux y”,
“Flux z” in Figure 5.2) as the total information contained in the flux field. We find that
the spectral entropies of all fields show similar features. In particular, an increasing coarse-
graining width first results in a sharp loss of information as individual particle positions
are blurred, followed by less steep information loss as continuous fields progressively lose
details of finer structures. In this work, we use an intermediate value of the coarse-graining
parameter k = 6 (yellow data in Figure 5.2).
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Figure 5.2: Normalized spectral entropy as a function of the coarse-graining kernel width
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S0(J)) ii. k = 60 (brown) iii. k = 6 (yellow, used in main text) iv. k = 2 (purple).
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5.3 Mode representation of spatiotemporal dynamics on

a spherical surface

5.3.1 Spatial mode representation

To obtain a sparse mode representation of the hydrodynamic fields ρ(r, t) and J(r, t) on
the spherical surface, we expand them in terms of scalar and vector spherical harmonics
(SHs) [183, 184] [181]. Spherical harmonics are defined on points r̂ = r/Rs of the unit
sphere, where Rs = 300µm is the mid-surface radius. In this basis, the scalar density field
is represented as

ρ(r, t) =
lmax∑
l=0

l∑
m=−l

ρlm(t)Ylm(r̂), (5.5)

which conveniently separates the time- and space-dependence of ρ(r, t) into mode amplitudes
ρlm(t) and scalar harmonic functions Ylm(r̂), respectively. The maximal mode number lmax is
a proxy for the maximal spatial resolution at which ρ(r, t) is faithfully represented. Similarly,
the vector-valued flux J(r, t) can be decomposed into time-varying mode amplitudes j(1)lm (t)

and j
(2)
lm (t), while its spatial dependence is described by vector spherical harmonics Ψlm(r̂)

and Φlm(r̂) [184],

J(r, t) =
lmax∑
l=1

l∑
m=−l

(
j
(1)
lm (t)Ψlm(r̂) + j

(2)
lm (t)Φlm(r̂)

)
. (5.6)

Besides the in-plane divergence ∇S · J that leads to local density changes, the cell number
flux J(r, t) also contains an in-plane curl component ∇S × J that is associated with locally
rotational cell flux. The two sets of vector spherical harmonics {Ψlm} and {Φlm} conveniently
decompose the flux into these contributions: j(1)lm (t) corresponds to modes that drive density
changes and j(2)lm (t) represents modes of local rotational cell motion that change relative cell
positions but do not change local density.

5.3.2 Mass conservation constraint in mode space

Using harmonic mode representations of the cell number density (5.5) and the cell number
flux (5.6) directly in the continuity equation (5.2) we find a set of ordinary differential
equation in mode space

d

dt
ρlm(t) =

l(l + 1)

Rs

j
(1)
lm (t), (5.7)
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where l = 0, 1, ..., lmax and for each value of l, m = −l,−l+1, ..., l−1, l. Equation (5.2) offers
an alternative way of determining the modes j(1)lm (t) directly from the modes ρlm(t) of the
coarse-grained cell number density, while ensuring that the resulting fields obey mass conser-
vation exactly. In practice, the modes j(1)lm (t) found from a vector harmonic representation of
the coarse-grained cell number flux (5.1b) will often deviate from modes j(1)lm (t) determined
from (5.2), even if cell numbers are expected to be conserved. This can be, for example,
due to limited accuracy in determining velocities vα(t) from noisy single-cell trajectories
rα(t), or due to spatially inhomogeneous appearances and disappearances of cells in tracking
data. Consistent with our simplifying assumption that a globally homogeneous growth rate
can sufficiently well approximate cell number changes in the data, the subsequent analysis
uses the modes j(1)lm (t) as determined from the density modes ρlm(t) via. (5.7), together with
modes j(2)lm (t) from the explicit velocity coarse-graining Eq. (5.1b).

The representation of ρ(r, t) and J(r, t) in terms of spherical harmonic modes with l ≤
lmax leads in total to 3(lmax+1)2 mode amplitude trajectories, displaying only a few dominant
contributions (Figure 5.1(d)) with almost no signal remaining for l ≥ 5. This demonstrates
that the underlying coarse-grained experimental data is sufficiently smooth and implies that
a spectral representation is indeed meaningful.

5.3.3 Temporal mode representation

We further compress the dynamical information by representing the time series of the modes
in terms of Chebyshev polynomial basis functions Tn(t) [21, 44] (Section 2.1.2). To simplify
notation, we define a dynamic mode vector a(t) = [ρlm(t), j

(1)
lm (t), j

(2)
lm (t)]⊤ that collects all

the modes up to l = lmax determined in the previous section and consider an expansion

a(t) =
nmax∑
n=0

Tn(t) ân (5.8)

in terms of the spatiotemporal mode coefficients ân with temporal mode number n. This
compression allows us to accurately evaluate time derivatives of the mode amplitudes [84],
an important step when using (5.7) to determine flux modes j(1)lm (t) directly from density
modes ρlm. Fixing lmax = 4 and nmax = 30 in the remainder, the initial single-cell data set of
about 1.4 million recorded cell position entries, or 4.2 million degrees of freedom, has thus
been reduced to 2250 mode coefficients, corresponding to a compression ratio ≳ 1800.
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5.3.4 Characterization of the developmental mode dynamics

The associated harmonic basis functions and vectors have an intuitive physical meaning, con-
venient algebraic properties, and encode information about the length scales and symmetries
of the collective dynamics. By studying the evolution and relative importance of different
mode trajectories [181], we find that mode signatures of the symmetry breaking and progres-
sion through developmental stages are robust, illustrating that mode-based analysis can pro-
vide a systematic and meaningful characterization of the developmental symmetry-breaking
event.

5.4 Learning a linear hydrodynamic model of the devel-

opmental mode dynamics

A low-dimensional mode representation can capture essential characteristics of developmental
symmetry-breaking processes [181]. The mode representation, therefore, provides a natural
starting point for the inference of hydrodynamic models from coarse-grained cell-tracking
data. For a given time-dependent mode vector a(t) = [ρlm(t), j

(1)
lm (t), j

(2)
lm (t)]⊤ that con-

tains all modes up to l = lmax, the simplest hydrodynamic model corresponds to the linear
dynamical equation

da(t)

dt
=M · a(t), (5.9)

where the constant coefficient matrix M encodes the couplings between different modes.
Intuitively, (5.9) aims to describe an experimentally observed density and flux dynamics in
terms of a relaxation process, starting from inhomogeneous initial conditions represented by
a(0). The mathematical learning problem is then to find a coefficient matrix M such that
the linear model (5.9) holds for the mode vector time series a(t) that was determined from
the coarse-graining procedure described in the previous sections. The method used to infer
the linear matrix was detailed in Chapter 4

5.4.1 Validation of the learning framework using active Brownian

particle dynamics

Before applying the combined coarse-graining and inference framework to experimental data,
we illustrate and validate the learning approach on synthetic data for which coarse-graining
results and hydrodynamic mean-field equations are analytically tractable. To this end, we
consider the stochastic dynamics of non-interacting active Brownian particles (ABPs) on
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the unit sphere of radius R0 = 1 [181, 185–187]. Similar to a migrating cell, an ABP
at position x(t) moves across the unit sphere at constant speed v0 in the direction of its
fluctuating orientation unit vector u(t). The strength of the orientational Gaussian white
noise is characterized by a rotational diffusion constant Dr. Details of the full model can be
found in [181]. We use simulated non-interacting ABPs on a unit sphere as a test data set,
with approximately 1.2 × 105 particles in total. The resulting trajectory data were coarse-
grained following the procedure outlined in the previous sections, yielding dynamic density
fields ρ(r, t) and fluxes J(r, t), together with their mode representations ρlm(t), j

(1)
lm (t) and

j
(2)
lm (t).

In the ‘learning’ step, we infer a sparse mode coupling matrix M that approximates
the dynamics (5.9) for the dynamical mode vectors a(t) = [ρlm, j

(1)
lm , j

(2)
lm ]⊤ obtained from

the coarse-grained simulated ABP data. The full algorithm is detailed in Chapter 4 and
illustrated in the summary flowchart Figure 4.1. In the inference, we enforce the sparsity
structure given by mass conservation but do not enforce the values of the entries. Check-
ing that these values agree with mass conservation provides a good way to check that the
inference has converged to a good minimum. Importantly, we perform the sparse regression
using dynamical mode vectors a(t) rescaled by their median absolute deviation (MAD) to
compensate for substantial scale variations between different modes. The final output ma-
trix M of this learning algorithm is shown in the right panel of Figure 5.3(c) and can be
compared against the analytically coarse-grained dynamics of ABPs on curved surfaces [186,
187]. Under suitable closure assumptions [181], the mean-field dynamics of ABPs on a unit
sphere is given in harmonic mode space by

dρlm
dt

=
l(l + 1)

R0

j
(1)
lm (5.10a)

dj
(1)
lm

dt
= − v20

2R0

ρlm −Drj
(1)
lm (5.10b)

dj
(2)
lm

dt
= −Drj

(2)
lm , (5.10c)

from which we can read off the mode coupling matrix M shown in the left panel of Fig-
ure 5.3(c). A direct comparison between the theoretical and the inferred matrices shows that
our framework recovers both the structure and the quantitative values of M with good ac-
curacy. Due to the finite number of ABPs used to determine the coarse-grained fields, we do
not expect that the theoretically predicted coupling matrix will be recovered perfectly from
the data. Instead, some mode couplings suggested by (5.10) may not be present or modified
in the particular realization of the ABP dynamics that was coarse-grained. Indeed, direct
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Figure 5.3: Learning active Brownian particle (ABP) dynamics on a sphere. (a) ABPs move
on a unit sphere (radius R0 = 1) with angular speed v0 = 1 along a tangential unit vector
u(t) that is subject to stochastic in-plane fluctuations. Example single-particle trajectories
are shown in the high-noise (orange, Dr = 10 in units of R0v0) and in the low-noise regime
(blue, Dr = 0.5). Time t is measured in units of R0/v0 in all panels. (b) Position correlation
function ⟨x(t) · x(0)⟩ averaged over 3 × 104 independent ABP trajectories show distinct
oscillations of period ≈ 2π in the low-noise regime, as ABPs orbit the spherical surface more
persistently. The standard error of the mean is smaller than the symbol size. (c) Analytically
predicted (left) and inferred (right) dynamical matrices M [see equation (5.9)] describing the
mean-field dynamics of a large collection of non-interacting ABPs show good quantitative
agreement. (d) Mollweide projections of coarse-grained ABP simulations with v0 = 1 and
Dr = 0.5 using cell positions from the first time point in the zebrafish data (Figure 5.1) as the
initial condition: At each position, 60 particles with random orientation were generated and
their ABP dynamics simulated, amounting to approximately 1.2×105 particles in total. The
density fields homogenize over time, where the maximum density at t = 12.3 has decayed to
about 5% of the maximum density at t = 1.02. Blue lines and arrows indicate streamlines
of the cell flux J(r, t). (e) Simulation of the learned linear model (5.9) with M shown in
Figure 5.3(c) (right), for the same initial condition as in (d). Marked time points indicate
intervals of learning, validation, and prediction phases of the model inference.
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simulation of the learned model projected in real space [Figure 5.3(e)] reveals density and
flux dynamics that agree very well with the dynamics of the coarse-grained input data [Fig-
ure 5.3(d)]. Altogether, these results demonstrate that the proposed inference framework
enables us to faithfully recover expected mean-field dynamics from coarse-grained fields of
noisy particle-based data.

5.4.2 Learning developmental mode dynamics from experimental

data

The same inference framework can now be directly applied to the coarse-grained experi-
mental zebrafish embryo data shown in Figure 5.1(c, d), yielding a sparse coefficient ma-
trix M [Figure 7.4(a, b)] that encodes the dynamics of the developmental mode vector
a(t) = [ρlm(t), j

(1)
lm (t), j

(2)
lm (t)]⊤ according to (5.9). The inferred coupling between the time

derivative of density modes ρlm and flux modes j(1)lm faithfully recovers mass conservation [Fig-
ure 7.4(c) and (5.7)]. Overall, the learned matrix M has 395 non-zero elements, effectively
providing further compression of the experimental data, which required 2250 spatiotemporal
mode coefficients collected in ân [see (5.8)] for its representation. Using the mode vector
a(t = 0) of the first experimental time point as the initial condition, the inferred minimal
model (5.9) withM shown in Figure 7.4(a, b) faithfully recovers both the mode and real-space
dynamics seen in the coarse-grained fields of the experimental input data [Figure 7.4(e–g)].

It is instructive to analyze the inferred matrix M and the linear model it encodes in more
detail. Comparing the MAD-rescaled matrix learned for the experimental zebrafish data [Fig-
ure 7.4(b)] with the non-dimensionalized matrix learned for the active Brownian particle
dynamics [Figure 5.3(c)], we find similar patterns of prominent diagonal and block-diagonal
couplings. Consistent with the analysis of single-cell trajectories [8], this suggests that a ran-
dom but persistent movement of cells akin to ABPs moving on a sphere partially contributes
to the early gastrulation process in zebrafish. This is complemented in the minimal model
of the experimental dynamics by significant off-diagonal contributions [Figure 7.4(b)], which
are absent in the non-interacting ABP model. Such off-diagonal contributions represent
effective linear approximations of cell-cell interactions, environmental influences, or other
external stimuli reflected in the experimental time-series data. Ultimately, such contribu-
tions to the mode coupling matrix M help realize the symmetry-breaking process observed
in the underlying experimental data.

The inferred mode coupling matrixM shown in Figure 7.4(b) together with (5.9) provides
a highly robust minimal model. Specifically, despite being linear, it is numerically stable over
a period of approximately four times as long as the input data from which the matrix M
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Figure 5.4: Model learning for experimental data of collective cell motion during early
zebrafish development. (a) Visualization of the constant mode coupling matrix M that
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(i)
lm = Rs∆tj
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lm (i = 1, 2) with Rs = 300µm and ∆t = 2min. (b) Scaling the learned matrix

M by the Mean Absolute Deviation (MAD) of the modes reveals structures reminiscent of
the mode coupling matrix learned for ABPs (Figure 5.3(c)). (c) The learned model recovers
mass conservation (5.2) in mode space. (d) Comparison of experimental mode dynamics
(circles) with numerical solution (solid line) of the minimal model (5.9) for learned matrix
M visualized in Figure 5.4(a). For clarity, the comparison is shown for the two dominant
modes of each set of harmonic modes ρlm, j

(1)
lm and j

(2)
lm . (e, f) Mollweide projections of the

experimental data (e) and of the numerical solution of the learned model (f) show very good
agreement. Blue lines and arrows illustrate streamlines defined by the cell flux J(r, t), circles
depict defects with topological charge +1 (white) and −1 (red).
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was learned. Furthermore, simulations with modified initial conditions (see Figure 5.5) still
exhibit a characteristic symmetry breaking and lead to the emergence of density and flux
patterns similar to those seen in Figure 7.4(f, g). For example, simulating (5.9) using the
initial condition of a different experimental data set leads to final patterns with the same
symmetry as in the original training data, further corroborating that the observed symmetry
breaking is directly encoded in the interactions represented by the matrix M . A similar ro-
bustness is observed under moderate perturbations of the initial condition, such as a rotation
of initial cell density patterns relative to the coordinate system in which M was inferred or
a local depletion of the initial density, emulating a partial removal of cells as experimentally
realized in [178]. Taken together, these numerical experiments demonstrate that the inferred
mode coupling matrix M meaningfully captures the dynamics and interactions of cells that
facilitate the symmetry breaking observed during early zebrafish development.

Additional real-space analysis and comparison of inferred interaction kernels further high-
light potential ABP-like contributions to the collective cellular organization during early
zebrafish development and reveal an effectively non-local coupling between density and flux
dynamics [181]. The latter could result, for example, from unresolved fast-evolving mor-
phogens [188], through mechanical interactions with the surrounding material [189] or due
to other relevant degrees of freedom that are not explicitly captured in this linear hydrody-
namic model. More generally, a real-space representation of kernels provides an alternative
interpretable way to study the interactions and symmetry-breaking mechanisms encoded by
models directly learned in mode space.

5.5 Discussion

Leveraging a sparse mode representation of collective cellular dynamics on a curved sur-
face, we have presented a learning framework that translates single-cell trajectories into
quantitative hydrodynamic models. This work complements traditional approaches to find
quantitative continuum models of complex multicellular processes [178, 189–192] that match
problem-specific constitutive relations of active materials in real-space with experimental
observations. The successful applications to synthetic ABP simulation data and experimen-
tal zebrafish embryo data show that model learning in mode space provides a promising
and computationally feasible approach to infer quantitative interpretable models in complex
geometries.

The learned linear minimal model for cell migration during early zebrafish morphogen-
esis quantitatively recapitulates the spatiotemporal dynamics of a complex developmental
process [Figure 7.4(f, g)], and highlights similarities between collective cell migration and
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Figure 5.5: Simulating the learned model with different initial conditions. Mollweide pro-
jections from simulations of the model Eq. (5.9) with M depicted in Figure 7.4B that was
learned for experimental data from sample 1, but using different initial conditions (from top
to bottom): initial condition from experimental data set sample 2; initial condition from
sample 1 rotated by 10◦ away from the animal pole; initial condition from sample 1 with
ϵ = 10% of the density at the animal pole removed. Blue lines and arrows illustrate stream-
lines defined by the cell flux J(r, t), circles depict defects with topological charge +1 (white)
and −1 (red).
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analytically tractable ABP dynamics on a curved surface. An extension to nonlinear mode-
coupling models or integration of additional, experimentally measured degrees of freedom,
such as concentration fields of morphogens involved in mechanochemical feedbacks [188], is
in principle straightforward by including nonlinear terms in the model (5.9). Furthermore,
the above framework could be generalized to describe the dynamics within a spherical shell
of finite height by complementing the surface vector spherical harmonics used in this work
by their radial counterpart [193].

To provide a concrete example, we focused here on applying the model learning frame-
work to single-cell tracking data of early zebrafish morphogenesis. However, the essentially
spherical organization of cells during gastrulation observed in zebrafish is shared by many
species whose early development occurs through a similar discoidal cleavage [157], and the
framework introduced here is directly applicable once tracking data becomes available for
these systems. More generally, as novel imaging technologies are being developed [8, 194,
195], we expect that even more extensive and more detailed imaging data will further facili-
tate the exploration of finer scales and length-scale bridging processes [196] through learning
approaches that directly build on mode-based data representations.
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Chapter 6

Structured linear dynamical systems
inference: planar curve dynamics

The results in this chapter have previously been published in A. E. Cohen*, A. D. Hastewell*,
S. Pradhan, S. W. Flavell, and J. Dunkel, "Schrödinger Dynamics and Berry Phase of
Undulatory Locomotion," Physical Review Letters, 130(25), 258402, 2023.

In this chapter, we develop the theoretical framework for constrained linear dynamics of
planar curve dynamics in mode space. At the end of the chapter, we outline adaptations
to the optimization procedure introduced in Chapter 4 for inferring the resulting structured
linear dynamical system, developed in collaboration with A. E. Cohen.

6.1 Motivation

Many physical and biological systems, from quantum [197] and many-body systems [198]
to animal locomotion [199] and front propagation [200] can be characterized through the
evolution of planar curves. In many cases, however, a complete characterization of the
system may be intractable, and we, therefore, wish to construct low-dimensional effective
curve dynamics in mode-space and infer these dynamics directly from data. In this chapter,
we consider linear mode-space models of open planar curves evolving with approximately
constant length and how we can efficiently infer such dynamics directly from experimental
data. As we have seen previously, compared with traditional continuum descriptions of
planar curve dynamics in position space, formulating models in mode space [17, 18, 181,
201] offers several theoretical and practical advantages:

1. high-dimensional experimental data can be efficiently compressed to obtain an inter-
pretable low-dimensional representation;
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2. the mode dynamics reduces to a system of linear ordinary differential equations (ODEs);

3. physical symmetries and biological constraints can be efficiently encoded through the
structure of the dynamical matrix;

4. all model parameters can be directly inferred from experimental data using ODE sen-
sitivity methods [37, 202] that exploit the imposed matrix structure [203].

In particular, for undulatory curve locomotion, we find that translational invariance, rota-
tional invariance, and length constraints generically lead to a Schrödinger equation [204] in
mode space.

6.2 Linear mode space models of planar curve dynamics

6.2.1 Spectral representation of planar curves

Starting from a vector field representation of the curve, r = (x(t, s), y(t, s)), where s ∈ [−1, 1]

is the parameter along the curve and r is the Cartesian coordinate of the curve at s, we
construct a single complex field z(t, s) = x(t, s) + iy(t, s). We can represent this field with
an expansion in Chebyshev polynomials

z(t, s) =
n∑

k=0

Tk(s)ẑk(t) =
n∑

k=0

Tk(s) [x̂k(t) + iŷk(t)] (6.1)

which have advantageous analytical and computational properties; in principle other basis
functions could also be chosen.

Interpretation of coefficients

The coefficients in the Chebyshev expansion have nice interpretations as physical properties
of the curve. Starting from the definition of the Chebyshev coefficients (2.5) and using the
fact that T0 = 1, the n = 0 coefficient is given by,

ẑ0(t) = x̂0(t) + 1iŷ0(t) =
1

π

∫ 1

−1

ds
z(t, s)√
1− s2

, (6.2)

which is the w-weighted center of mass of the curve.
We can express the n = 1 coefficients as,

ẑ1(t) = x̂1(t) + 1iŷ1(t) =
2

π

∫ 1

−1

ds
sz(t, s)√
1− s2

=
2

π

∫ 1

−1

ds
√
1− s2

∂

∂s
z(t, s) (6.3)
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where we use the fact that T1(s) = s,
∫
ds sw(s) = −(1− s2)1/2 = −1/w(s) and integration

by parts. The resulting expression is the 1/w-weighted Chebyshev orientation of the curve.
Higher-order coefficients will pick up increasingly large curvatures.

6.2.2 Imposing physical symmetries in planar curve dynamics

From the spectral representation of the curve we define the complex coefficient state vector
Ψz = [ẑ0, ẑ1, . . . , ẑn] from (6.1) and consider a general linear dynamics Ψ̇z =MΨz for some
complex matrix M . We seek a dynamics that is invariant under rotation and translation.
We also incorporate one additional symmetry typical for curve dynamics – the length of the
curve is constant. Each of these symmetries will impose structure on the matrix M .

Rotational invariance

Rotation of the coordinate system corresponds to multiplying z by eiθ, z′ = eiθz, which
implies that the coefficients transform as ẑ′k(t) = eiθẑk(t). Hence the complex coefficient
state vector Ψz transforms as Ψ′

z = eiθΨz. Considering a general linear dynamics

Ψ̇′
z =MΨ′

z

=⇒ eiθΨ̇z =MeiθΨz

=⇒ Ψ̇z =MΨz

we see that using this construction, the dynamics are automatically rotationally invariant.

Translational invariance

Invariance under translation requires that the dynamics are invariant under the shift z′ =
z + cz. Under this shift the coefficients transform as Ψ′

z = Ψz + cze1 and the transformed
dynamics

Ψ̇′
z =M (Ψz + cze1)

=⇒ Ψ̇z =MΨz + czMe1

show that we need Me1 = 0. The first column of M is zero decoupling the ẑ0 dynamics from
the higher mode dynamics of ψ̂z = [ẑ1, ẑ2, . . . , ẑn],

˙̂z0 =m
†ψ̂z (6.6a)

˙̂
ψz = M̂ψ̂z. (6.6b)
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6.2.3 An approximate length constraint on planar curve dynamics

The length of the curve in terms of the real fields x(s, t) and y(s, t) is,

ℓ(t) =

∫ 1

−1

ds

√(
∂

∂s
x(t, s)

)2

+

(
∂

∂s
y(t, s)

)2

=

∫ 1

−1

ds

∣∣∣∣ ∂∂sz(t, s)
∣∣∣∣ . (6.7)

To allow for a convenient representation of an approximate length constraint in mode space,
we consider ℓ2. Using the Cauchy-Schwarz inequality, ⟨f, g⟩2 ≤ ⟨f, f⟩⟨g, g⟩, with metric
⟨f, g⟩ =

∫ 1

−1
ds f · g, we can derive a convex upper-bound on the square length using f = 1

and g =
√
xs(s, t)2 + ys(s, t)2,

ℓ2 =

∫ 1

−1

ds 1 ·
√(

∂

∂s
x(t, s)

)2

+

(
∂

∂s
y(t, s)

)2
2

≤
(∫ 1

−1

ds 12
)(∫ 1

−1

ds

[(
∂

∂s
x(t, s)

)2

+

(
∂

∂s
y(t, s)

)2
])

ℓ2 ≤ 2ℓ̃2

where we define a convex approximate square length ℓ̃2,

ℓ̃2 =

∫ 1

−1

ds

[(
∂

∂s
x(t, s)

)2

+

(
∂

∂s
y(t, s)

)2
]
.

We can also bound ℓ2 from below. Assuming that the curve is regular (has non-zero and
bounded differential arc length),

0 < m ≤
(
∂

∂s
x(t, s)

)2

+

(
∂

∂s
y(t, s)

)2

≤M = m+∆m, (6.8)

then the following lower bound is true by Cassel’s inequality [205],

2(m2 +m∆m)

(m2 +m∆m) + (∆m)2
ℓ̃2 =

8mM

(m+M)2
ℓ̃2 ≤ ℓ2. (6.9)

Enforcing that ℓ̃ is constant, bounds ℓ giving an effective length constraint. The tightness
of the bound is controlled by how much the differential arc length varies along the curve.
When ∆m = 0 then we get equality

√
2ℓ̃ = ℓ. To illustrate this, we consider a couple of

common curves,
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1. A straight curve translating in space

(x(t, s), y(t, s)) = (x0(t) + s, y0(t) +ms) =⇒ ∂

∂s
(x, y) = (1,m).

The differential arc length is constant dℓ =
√
1 +m2. The length of the curve is,

therefore, ℓ = 2
√
1 +m2 and the approximate length is ℓ̃ =

√
2
√
1 +m2.

2. A sinusoidal wave,

(x(t, s), y(t, s)) = (s, sin(ks)) =⇒ ∂

∂s
(x, y) = (1, k cos(ks− ωt)).

The curve speed is x2s + y2s = 1 + k2 cos2(ks). The bound is therefore given by,

√
2

√
4(1 + k2)

(2 + k2)2
ℓ̃ ≤ ℓ ≤

√
2ℓ̃.

The bound is exact, ℓ =
√
2ℓ̃, when k = 0, which corresponds to a straight line along

the x-axis. The approximate length is ℓ̃2 = 2 + k2 + k cos(k) sin(k). When k = π the
bound is given by 0.81ℓ̃ ≤ ℓ ≤ 1.42ℓ̃. Numerically, we find in this case ℓ = 4.61 and
ℓ̃ = 3.44, which satisfy the bounds. ℓ̃, however, is not a good approximation of ℓ in
this case.

Error in approximate length constraint

We can find a better approximation for ℓ in terms of ℓ̃ by considering the Taylor expansion
of f(a, b) =

√
a+ b around a0 and b0. Any k = n+mth order derivative of f(a, b), is given

by, using (2n− 1)!! = (2n− 1)(2n− 3) . . . 1 as the double factorial,

∂n

∂an
∂m

∂bm
f(a, b) = −(−1)n+m

2n+m
(2(n+m)− 3)!!

1

(a+ b)n+m−1/2

which only depends on n +m. The Taylor series then becomes, summing over all terms of
the same polynomial degree,

√
a+ b =

√
a0 + b0 +

(a+ b)− (a0 + b0)

2
√
a0 + b0

−
√
a0 + b0

∞∑
k=2

(−1)k(2k − 3)!!

2kk!

(
a+ b

a0 + b0
− 1

)k

=
1

2

√
a0 + b0 +

a+ b

2
√
a0 + b0

−
√
a0 + b0

∞∑
k=2

(−1)k(2k − 3)!!

2kk!

(
a+ b

a0 + b0
− 1

)k

. (6.10)
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Setting a = x2s and b = y2s we can expand around a0 = ⟨x2s⟩ and b0 = ⟨y2s⟩ in (6.10), where
we use ⟨·⟩ to represent the average value over s and t

⟨f⟩ = 1

2T

∫ T

0

dt

∫ 1

−1

ds f(s, t),

to get an expansion of the square-root term in (6.7),

√
x2s + y2s =

1

2

√
⟨x2s⟩+ ⟨y2s⟩+

x2s + y2s

2
√

⟨x2s⟩+ ⟨y2s⟩

−
√

⟨x2s⟩+ ⟨y2s⟩
∞∑
k=2

(−1)k(2k − 3)!!

2kk!

(
x2s + y2s

⟨x2s⟩+ ⟨y2s⟩
− 1

)k

. (6.11)

Integrating (6.11) over s, we get the following relationship between ℓ and ℓ̃,

ℓ =

∫ 1

−1

ds
√
x2s + y2s =

√
⟨x2s⟩+ ⟨y2s⟩+

1

2
√

⟨x2s⟩+ ⟨y2s⟩

∫ 1

−1

ds
(
x2s + y2s

)
+R(∆)

ℓ ≈ ℓa =
√

⟨x2s⟩+ ⟨y2s⟩+
1

2
√

⟨x2s⟩+ ⟨y2s⟩
ℓ̃2 (6.12)

where we define
∆ =

x2s + y2s
⟨x2s⟩+ ⟨y2s⟩

− 1

a measure of how much the deviations vary from their average. We can get a bound for
the magnitude of R(∆) by evaluating the remaining summation and utilizing the triangle
inequality,

|R(∆)| =
√

⟨x2s⟩+ ⟨y2s⟩
∣∣∣∣∣
∫ 1

−1

ds
∞∑
k=2

(−1)k(2k − 3)!!

2kk!
∆k

∣∣∣∣∣
≤
√

⟨x2s⟩+ ⟨y2s⟩
∫ 1

−1

ds
∞∑
k=2

(2k − 3)!!

2kk!
∆k

M

≤ 2
√
⟨x2s⟩+ ⟨y2s⟩

∞∑
k=2

(2k − 3)!!

2kk!
∆k

M

=
√

⟨x2s⟩+ ⟨y2s⟩
(
2−∆M − 2

√
1−∆M

)
(6.13a)

≈
√

⟨x2s⟩+ ⟨y2s⟩
∆2

M

4
(6.13b)

provided that ∆M ≤ 1, where ∆M = maxs,t|∆|. The error bound given in (6.13) allows us
to say when the approximate length constraint will be suitable. The error will be small for
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curves that do not have rapid or large oscillations in their shape. The approximate length
constraint should work well for relatively smooth curves, as highlighted by our two examples,

1. For a translating straight line ∆ = 0 and ⟨x2s + y2s⟩ = 1+m2. The approximate length
is

ℓa =
√
1 +m2 +

2(1 +m2)

2
√
1 +m2

= 2
√
1 +m2 =

√
2ℓ̃ = ℓ.

The approximate length becomes exact for a straight line and agrees with the above-
mentioned bounds.

2. For a sinusoidal wave the average gives ⟨x2s + y2s⟩ = 1+ k2/2. The approximate length
is,

ℓa = 2
√
1 + k2/2 +

k cos(k) sin(k)

2
√

1 + k2/2
.

The maximum fluctuation is ∆M = k2/(2 + k2) and the error bound is given by,

|R| ≤ 4 + k2√
4 + 2k2

− 2.

We see that the error is monotonically increasing in k > 0 consistent with the expec-
tation that the approximate length will get worse for more oscillatory curves.

When k = π the approximate length is ℓa = 2
√

1 + π2/2 ≈ 4.87 which is within 10% of
the true value 4.61 and the error bound is given by |R| ≤ 0.85. Note that in practice,
the error is much less than the bound.

Since ℓa is a function solely of ℓ̃2, keeping ℓa constant is the same as keeping ℓ̃2 constant.
We, therefore, continue working under the assumption that ℓ̃2 is a constant of the motion.

6.2.4 Imposing an approximate length constraint in mode-space

One of the benefits of working with ℓ̃2 rather than ℓ is that x and y appear quadratically,
making it convenient to represent ℓ̃2 in mode space. We can express, zs(t, s) in mode space
by differentiating (2.12),

∂

∂s
z(t, s) =

n∑
k=0

d

ds
Tk(s)ẑk(t). (6.14)

Substituting (6.14) into the expression for ℓ̃2 (6.2.3) gives

ℓ̃2 =

∫ 1

−1

ds
n∑

k,m=1

ẑ†k(t)ẑm(t)
dTk
ds

(s)
dTm
ds

(s)
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=
n∑

k,m=1

ẑ†k(t)ẑm(t)

∫ 1

−1

ds
dTk
ds

(s)
dTm
ds

(s)

=
n∑

k,m=1

ẑ†k(t)ẑm(t)Wk,m

= ψ̂†W ψ̂ (6.15a)

where we define the symmetric matrix W with elements given by,

Wk,m =

∫ 1

−1

ds
dTk
ds

(s)
dTm
ds

(s). (6.15b)

Note that the choice of basis fixes the value of W . Therefore, W is a basis-dependent
constant. The matrix W is symmetric positive definite. From the definition of ℓ̃2 we have
that x†Wx ≥ 0 for all x. For ℓ̃ = 0 we need |zs| = 0 which immediately implies that x =.
We can derive the values of Wm,n (6.15b) explicitly for the Chebyshev basis,

Wm,n =

0 if m− n odd

2nm
∑n+m−1

k=|n−m|+1
1
k

if m− n even
. (6.16)

Details of the calculation are provided in Appendix A.
The approximate length constraint requires that ψ̂ lives on a hyperellipsoid defined by

the matrix W . We can use the Cholesky decomposition of W = LL† to define the rescaled
coefficients ψz = L†ψ̂z/ℓ under which the relaxed length constraint becomes

1 = ψ†
zψz.

Under the rescaling the dynamics (6.6) becomes

ψ̇z = L† ˙̂ψz/ℓ = L†M̂ψ̂z/ℓ

= L†M̂(L†)−1ψz

=Mψz.

In order to satisfy the unit norm constraint, we require that,

1̇ = 0 = ψ̇†
zψz +ψ

†
zψ̇z = ψ

†
z(M

† +M)ψz (6.17)

giving the condition that M = −M † is skew-Hermitian. Since M is skew-Hermitian, we
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can write it as iH where H is Hermitian, yielding the following set of equations for the
constrained complex dynamics of the center line,

ψ†
zψz = 1 (6.18a)

h†ψz = ˙̂z0 (6.18b)

iHψz = ψ̇z (6.18c)

We can also write an equivalent real dynamics for the center line motion. Writing M =

A − iS where A and S are real skew-symmetric and symmetric matrices respectively, the
dynamics become Mψz = (A− iS)(ψx + iψy) = Aψx + Sψy + i(Aψy − Sψx). Taking real
and imaginary components we get, ψ̇x = Aψx + Sψy and ψ̇y = −Sψx + Aψx. These two
equations can be summarized in a matrix equation,[

ψ̇x

ψ̇y

]
=

[
A S

−S A

][
ψx

ψy

]
.

Sometimes, it may be easier to work numerically with the real formulation.

6.2.5 Projection of mode-space model into real-space

Projecting the dynamics back into real space reveals that the linear mode space model gives
an integro-differential equation for the curve dynamics. We define the Chebyshev vector
functions T(s) = [T1(s), T2(s), . . . , TN(s)]. The shape dynamics can be rewritten as,

ż(t, s)− ˙̂z0 = T†(s)
˙̂
ψz = iT†(s)(L†)−1HL†ψ̂z

= iT†(s)(L†)−1HL†
∫ 1

−1

ds′w(s′)T(s′)z(t, s′)

=

∫ 1

−1

ds′
[
iw(s′)T†(s)(L†)−1HL†T(s′)

]
z(t, s′)

=

∫ 1

−1

ds′G(s, s′)z(t, s′)

where we define the shape integral kernel,

G(s, s′) = iw(s′)T†(s)(L†)−1HL†T(s′). (6.19a)
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A similar calculation yields,

˙̂z0 =
1

ℓ
h†L†ψ̂z =

∫ 1

−1

ds′
[
w(s′)h†L†T(s′)

]
z(t, s′)

=

∫ 1

−1

ds′ g(s′)z(t, s′)

where we define the center of mass integral kernel,

g(s′) = w(s′)h†L†T(s′). (6.19b)

The full real space dynamics is, therefore, given by

ż(t, s) =

∫ 1

−1

ds′ [g(s′) +G(s, s′)] z(t, s′). (6.19c)

The shape of the kernels allows us to infer properties of the motion, such as locality and
heterogeneity along s.

6.2.6 Analytic solution of constrained linear model

Since the matrix H in (6.18) is Hermitian we know that it has real eigenvalues, λn and
orthogonal eigenvectors vn, H = V ΛV † with V †V = I. The general solution of a linear ODE
of the form, ẋ = Mx, is x(t) = exp(Mt)x(t0). From the orthogonality of the eigenvectors,
the matrix exponential is given by exp(itH) = V exp(itΛ)V †. The solution is given by,

ψz(t) = V exp(itΛ)V †ψz(t0) (6.20a)

=
N∑

n=1

(v†
nψz(t0))vne

itλn

=
N∑

n=1

cnvne
itλn (6.20b)

We can project the solution back onto the hyper-ellipsoid,

ψ̂z(t) = ℓ

N∑
n=1

cn(L
†)−1vne

itλn
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and then back into real space,

z(t, s) = ẑ0(t) + ℓ
N∑

n=1

cnT(s)†(L†)−1vne
itλn = ẑ0(t) + ℓ

N∑
n=1

cnvn(s)e
itλn (6.21)

with vn(s) = T(s)†(L†)−1vn being the real space eigenfunctions of the motion.

6.2.7 Inference of constrained linear models

The problem of learning an equation of the form (6.18) from data for ψz and ψ0 at discrete
time points {tn}Mn=0 can be formulated as a physics-informed dynamic mode decomposition
(PI-DMD) optimization problem. In continuous time, the inference problem for the shape
dynamics becomes,

min
H

T∑
n=0

∥ψ̇z(tn)− iHψz(tn)∥22 = min
H

∥Ṗ − AP∥2F (6.22)

where P = [ψz(t0)ψz(t1)ψz(t2) · · · ψz(tT )] is the matrix whose columns consists of the
discrete-time samples of ψ. The minimization problem in (6.22) has an analytical minimum
in terms of the singular value decomposition (SVD) of P but requires numerically differ-
entiating noisy data to calculate Ṗ an ill-posed and challenging problem. We, therefore,
formulate the problem in discrete time. If the data are separated by a constant time step
∆t we can reformulate (6.22) in the form,

min
A

T−1∑
n=0

∥∥ψz(tn+1)− eiH∆tψz(tn)
∥∥2
2
= min

A

∥∥P2:T − eiH∆tP1:T−1

∥∥2
F

(6.23)

where P1:T−1 consists of the first T − 1 columns of P and P2:T consists of the last T − 1

columns. The skew-Hermitian structure of the continuous time problem does not transfer to
the discrete-time problem; instead, exp(iH∆t) is a unitary matrix with a fixed form of its
eigenvalues. Additionally, there is no guarantee that a matrix iH found through the single
time-step minimization problem in (6.23) will produce reintegrated trajectories close to the
original input data when integrated over a long time. Using the matrix exponential solution
of linear ODEs, we can modify (6.23)

min
A

T∑
m=1

N∑
n=0

wn

∣∣ψz(tm)− eiHtmψz(t0)
∣∣2
n

(6.24)
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where we introduce the possibility of a weighting function wn on the nth mode to account
for the magnitude variations across the modes. Using the solution of the dynamical system,
the optimization loss function (6.24) can then be written as,

min
Q,{λi}ri=1

T∑
m=1

N∑
n=0

wn

[
ψz(tm)− V exp(iΛtm)V

†ψ(t0)
]2
n
. (6.25)

Writing the formula in this way enables us to optimize or constrain the eigenvectors and
eigenvalues of H separately. To optimize V , we follow the procedure in [203], parameterizing
the orthogonal matrix as the product of Householder matrices, V = H1H2 · · ·HN , where
each Householder matrix has the form

Hn =

[
In−1 0

0 IN−n+1 − pnp
†
n

|pn|2

]
(6.26)

and can be further parameterized by a vector pn of length N − n + 1. Fast in-place
matrix-vector multiplication algorithms exist for both Householder matrices and the di-
agonal exp(iΛt), enabling us to efficiently compute the loss function from the combined
parameter vector p = [p1, · · ·pN , λ1, · · · , λr]. To minimize the loss function, we calculate
gradients using automatic differentiation of the real and complex components of the vector
p and perform gradient descent using the AdaBelief algorithm followed by BFGS.

To learn the time-dependent dynamics, each entry of pn(t) is parameterized by a basis
function expansion in time. The expansion coefficients are then optimized to find time-
varying models by differentiating through the numerical solution of the time-varying linear
model. See [37, 135] for more details on the differentiation.
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Chapter 7

Schrödinger dynamics and Berry phase
of undulatory locomotion

The results in this chapter have previously been published in A. E. Cohen*, A. D. Hastewell*,
S. Pradhan, S. W. Flavell, and J. Dunkel, "Schrödinger Dynamics and Berry Phase of
Undulatory Locomotion," Physical Review Letters, 130(25), 258402, 2023.

In this chapter, in collaboration with A. E. Cohen, we apply the planar curve dynamics
developed in the previous chapter to experimental data of undulatory locomotion provided
by the labs of Steven Flavell and Daniel Goldman. We also summarize clustering analyses
from the planar curve modeling and extensions to time-varying matrices developed with and
primarily by A. E. Cohen.

7.1 Motivation

Undulatory propulsion is the natural locomotion strategy [206, 207] of many aquatic and ter-
restrial animals, from worms [208–212] and fish [213, 214] to lizards [215, 216] and snakes [199,
217]. The mechanical wave patterns that drive undulatory motion reflect an animal’s behav-
ioral state [218], providing a macroscopic physical readout of the underlying biochemical and
neuronal excitations. Recent advances in automated live-imaging [219, 220] enable simulta-
neous observations of macroscopic locomotion dynamics and microscopic cellular activity [3,
221–225], producing rapidly growing multi-scale data sets [226] that have to be tracked [1,
227, 228] and translated into predictive and interpretable models. Despite recent major
progress in the experimental characterization [3, 221–224] and biophysical description of
specific organisms [139, 209, 215, 229–235], a quantitative model inference framework for
comparing experimentally observed undulatory dynamics within and across species has yet
to be developed. In addition to providing unifying biophysical insights spanning different an-
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imal kingdoms, such a framework would also allow for a direct comparison of living systems
with computational models [236, 237] and biomimetic robotic devices [238, 239].

Here, we use spectral mode representations to identify symmetry-constrained dynamical
models that can capture and distinguish the undulatory locomotion of worms (Caenorhabditis
elegans) [218], neuro-mechanical worm models [236], Mojave shovel-nosed snakes (Chionactis
occipitalis) [240], mechanical snakes, and centipedes (Lithobius forficatus). Using the theoret-
ical and practical advantages of models for planar curve dynamics formulated in mode space
as outlined in the previous chapter, we model the undulatory dynamics using a Schrödinger
equation [204] in mode space. Similar to the characterization of quantum systems in terms
of their spectra and eigenstates [15], the eigenspaces of the effective Hamiltonians enable an
efficient classification of the locomotion dynamics of worms, snakes, robots, and computa-
tional models. Furthermore, transitions between animal behavioral states are encoded in the
time evolution of the Hamiltonian and thus can be detected using Berry phases [241]. While
our discussion focuses on an important subclass of biophysical dynamics, the underlying
approach generalizes to other physical or living systems that permit a mode representation
while being subject to exact or approximate geometric constraints.

7.2 Mode space representation of undulatory locomotion

The planar undulatory locomotion of an elongated worm-like object can be described by its
centerline position in the complex plane z(s, t) = x(s, t) + iy(s, t), where s ∈ [−1, 1] is the
arc length and t denotes time [Figure 7.1(a) and (b)]. While tens to hundreds of points are
typically required for an accurate depiction of an organism’s shape in position space [3], inter-
pretable lower-dimensional representations can often be obtained by projecting on suitable
polynomial, trigonometric, or other basis functions [14, 229]. Although system-dependent
representations, such as PCA-based eigenworms [229, 233], yield near-optimal compression
for a specific organism under fixed experimental conditions, system-independent orthogo-
nal basis expansions enable direct comparisons across different systems and experimental
conditions. Moreover, system-dependent representations are often non-differentiable, mak-
ing physically constrained modeling analytically intractable. Here, following (6.1), we use
Chebyshev polynomials [23] of the first kind, Tk(s); in principle other basis functions could
be chosen as well. The dynamics of the complex scalar field z(s, t) = x(s, t) + iy(s, t) can
then be represented in terms of its leading Chebyshev coefficients ẑk(t) = x̂k(t) + iŷk(t) up
to degree n, calculated using (2.12). For the experimental imaging data analyzed below,
n+ 1 = 10 modes suffice for achieving reconstruction errors less than 1% [Figure 7.1(c)]. We
illustrate the physical meaning of the Chebyshev modes using recent tracking microscopy
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Figure 7.1: Chebyshev mode representation enables an efficient and interpretable low-
dimensional description of undulatory locomotion across species and model systems. (a) Ex-
perimental image of C. elegans worm from the Flavell lab with center of mass (COM) and
mean orientation overlayed. (b) Tracked centerline of worm over 100 seconds. The arrow
indicates the direction of motion. (c) A small number of Chebyshev polynomials suffices to
reconstruct the worm shape (left) accurately. Faint colored lines correspond to centerline
reconstructions at different polynomial degrees. Reconstruction error (right) decays rapidly
as the Chebyshev degree n increases. (d) The zeroth-order Chebyshev coefficients closely
follow the worm’s geometric COM, illustrating the physical interpretability of the Chebyshev
mode representation. (e) Similarly, the first-order Chebyshev coefficients represent the tail-
to-head worm orientation. (f) The mode-averaged dominant frequency of Chebyshev mode
oscillations correlates closely with the locomotion speed of the worm.

video data, provided by the Flavell lab [3], for C. elegans [Figure 7.1(a) and (b)], a widely
studied model organism with 95 body wall muscle cells, 302 neurons, and a rich set of be-
havioral states and corresponding locomotion patterns [218]. The real and imaginary parts
of ẑ0(t) = x̂0(t) + iŷ0(t), (6.2), describe the w-weighted Chebyshev center of mass (CCOM)
of the moving worm, which follows closely the geometric center of mass [Figure 7.1(d)]. The
degree-1 coefficient ẑ1(t), (6.3), represents the mean orientation of the worm [Figure 7.1(e)].
Similarly, the Chebyshev coefficients ẑk of degree k ≥ 2 encode curvature and higher de-
formation modes [Figure 7.1(c), inset]. The average dominant frequency across the mode
oscillations closely matches the speed of the worm in real space [Figure 7.1(f)].

Equation (7.1b) describes how the CCOM dynamics couples to the body oscillations
through h0. Equation (7.1c), which governs the shape dynamics, is mathematically equiva-
lent to a Schrödinger equation with Hamiltonian H [204].
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than the bound 0.13. Also the deviation is always positive which means ℓa provides a close
upper bound on ℓ.

7.3 Modeling undulatory locomotion in mode space

Equipped with this representation, we model the dynamics of the undulatory motion in
mode space. The model should incorporate rotational and translational invariance. An
additional biophysical constraint for undulatory motion is that the length of the centerline
ℓ(t) =

∫ 1

−1
ds |∂sz|, remains approximately constant. Following Chapter 6 we instead keep

ℓ̃ constant; for the worm dynamics considered here the approximation (6.12) agrees very
well with the true value of ℓ (Figure 7.2). Demanding constant ℓ̃ corresponds to an energetic
penalty against contracting or lengthening and ensures ℓ remains approximately constant and
bounded. The class of permissible linear models is, therefore, of the form (6.18), repeated
below for clarity,

1 = ψ†ψ (7.1a)

ψ̇0 = h
†
0ψ (7.1b)

iψ̇ = Hψ, (7.1c)

where h0 is a complex vector and H is a complex Hermitian matrix with real eigenvalues.

7.3.1 Inferring models directly from data

To confirm that (7.1) can indeed describe and distinguish the undulatory dynamics of C. el-
egans worms [3] and other organisms and systems, we implemented an inference framework,
described in Section 6.2.7, for estimating the propulsion vector h0(t) and the shape Hamil-
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Figure 7.3: Inferred Schrödinger dynamics replicate stereotypical C. elegans locomotion
(data provided by the Flavell lab). (a) Representative real propulsion vector h0 and Hamil-
tonian H = S + iA for a minimal periodic straight-motion model (7.1), with S = 0 and
equidistant spectrum of H, fitted to data from a single oscillation period (τ = 3.05 s).
(b) Kymographs of x(s, t) and y(s, t) coordinate fields for observed data (left) and model
prediction (middle) show little deviation (right), confirming that (7.1) can accurately cap-
ture undulatory shape dynamics of C. elegans. (c) Real-space dynamics predicted by the
Schrödinger model (line) is consistent with the observed worm dynamics (circles). Exper-
imental data has been periodically extended for visualization to avoid overlapping body
segments. (d) Real-space shape functions [Eq. (7.2)] corresponding to the three smallest
magnitude eigenvalues, λ±k = ±kλ for k = 0, 1, 2, account for > 98% of the shape dynam-
ics, enabling a generalizable low-rank description. More complex turning dynamics can be
described using time-varying Hamiltonians with unconstrained spectra (Figure 7.5).

tonian H(t) from experimental data for short straight-motion segments (Figures 7.3, 7.4) as
well as longer trajectories that include turning events (Figure 7.5). Recall that any Hermi-
tian matrix H can be decomposed into H = S + iA, where S is real symmetric and A is
real skew-symmetric. In the present context, S encodes turning behavior whereas A governs
straight locomotion: For straight motions, x- and y-modes do not couple significantly, so
that h0 is real and S ≈ 0 and, hence, H ≈ iA in this case [Figure 4(a)].

Generally, both h0 and H can be efficiently determined from tracked centerlines via a
physics-informed dynamic mode decomposition [19, 155] that exploits matrix structure [203].
Since H is Hermitian, it permits the decomposition H = UΛU †, where U is unitary and Λ is
a real diagonal matrix. This structure leaves n2 parameters in U and Λ plus 2n in h0 to be
estimated from data. If available data is limited, the number of parameters can be reduced
further by imposing additional constraints on the spectrum of H. To avoid numerical dif-
ferentiation of noisy data, our inference scheme compares numerically integrated predictions
from the model (7.1) directly to the experimental data. Our algorithm sequentially optimizes
U , Λ, and h0 by minimizing deviations from both real space body shapes and mode space
trajectories to balance shape matching with model generalizability and prevent overfitting.
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Minimization is performed using gradient-based optimization [133, 242, 243] with forward
mode automatic differentiation through the ODE solver [37, 181, 202]. This scheme makes
it possible to infer the instantaneous shape Hamiltonians H(t) and the propulsion vectors
h0(t) from just a single oscillation period for straight motions (Figures 7.3 and 7.4) as well
as from longer curved trajectories (Figure 7.5). For C. elegans data, provided by the Flavell
lab, (Figure 7.3) as well as for previously proposed neuro-mechanical worm models [236],
C. occipitalis snake data, provided by the Goldnam lab [240], snake robots, and L. forfica-
tus centipede data, provided by the Goldman lab, (Figure 7.4), the best-fit straight-motion
models based on (7.1) with H = iA accurately capture the undulatory dynamics.

7.4 Categorizing undulatory locomotion

Since the Hamiltonian H encodes the shape dynamics, we can use its eigenstates to compare
and classify undulatory motion across species and systems [15]. Indeed, for straight motions,
it suffices to study the eigenstates of A. Considering n = 9 as before, A has one zero
eigenvalue λ0 = 0 corresponding to the zero-mode eigenvector ϕ0, and 4 distinct pairs of
opposite sign eigenvalues λ±k≥1 with complex conjugate eigenvectors ϕ±

k , where ϕ+
k = (ϕ−

k )
∗.

We define two real orthogonal mode space vectors vk = Re(ϕ+
k ) and wk = Im(ϕ+

k ) that span
the eigenspace of ϕ±

k . The real space shape functions corresponding to the real mode space
vectors are

vk(s) = ℓ(L−1T(s))†vk, wk(s) = ℓ(L−1T(s))†wk, (7.2)

where T(s) = [T1(s), T2(s), . . . , Tn(s)] is a vector of Chebyshev functions. Time-varying lin-
ear combinations of vk(s) and wk(s) give the instantaneous centerline reconstruction. We
find that the zero-function v0(s) is close to the best fit straight line through the motion, ac-
counting for 85% of the time-averaged centerline reconstruction while most of the oscillations
are accounted for by the first excited-states v1(s) and w1(s) corresponding to the smallest
magnitude non-zero eigenvalues (13.3%). Since most (> 98%) of the dynamics is captured
by the zero-state and first excited states, one can, in fact, further reduce the complexity
of the Schrödinger model by approximating A through its projection Â on the eigenspaces
corresponding to the first two distinct eigenvalues. This additional low-rank approximation
also further reduces the risk of overfitting and hence improves model generalizability, similar
to sparsity promotion in other dynamical inference methods [27].

The compact low-rank characterization of the undulatory shape dynamics makes it possi-
ble to compare the locomotion behaviors of C. elegans, previously proposed neuro-mechanical
worm models [236], C. occipitalis snakes [240], robotic toy snakes, and centipedes, by mea-
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Figure 7.4: Mode-space Hamiltonians provide a compact dynamical description of undu-
latory motion across different species and model systems. (a) Living and nonliving sys-
tems [236, 240] analyzed here and representative straight-motion Hamiltonians H = iA
inferred from a single oscillation period. The eigenspaces of the Hamiltonians enable the
comparison and classification of undulation dynamics in panel (d). Scale bars are 8 mm
[centipede (data provided by the Goldman lab)], 10 cm [snake (data provided by the Gold-
man lab)], 10 cm (toy snake), and 0.25 mm (worm model). (b) Inferred Schrödinger model
dynamics (line) provide an accurate description of the observed dynamics (circles). Models
were fitted on a single period τ = 0.19 s (centipede), 0.33 s (snake), 0.45 s (toy snake),
2.2 s (worm model). Experimental data has been periodically extended for visualization to
avoid overlapping body segments. (c) The dominant shape eigenvectors v1(s) and w1(s) are
consistent within each species and capture differences between species. (d) Pairwise Grass-
mann distances between subspaces spanned by first excited eigenstates of the Hamiltonians
(top) and its 2D planar embedding (bottom, constructed by a multidimensional scaling)
capture the similarities and differences between undulatory locomotion in organisms, model
simulations, and robots. Each point corresponds to a different trajectory.

113



suring the Grassmann distance [244] between the dominant eigenspaces of Â. As most of
the variation of the oscillatory dynamics is contained in the first excited-states v1 and w1,
we determined the pairwise Grassmann distances between the eigenspaces spanned by v1
and w1 for the various systems. The Grassmann distance between two subspaces can be
calculated by

dG(A,B) =

√∑
i

θ2i , (7.3)

where A and B are two matrices whose columns are an orthonormal basis of their respective
subspaces and θi are the principal angles between A and B [244]. The principal angles can
be calculated through an SVD, where the singular values of A⊤B are σi = cos (θi). Both
the distance matrix and a corresponding 2D phase diagram constructed by multidimensional
scaling reveal that the neuro-mechanical worm model [236] succeeds in reproducing key
dynamical aspects of C. elegans locomotion, whereas the robotic toy snake used in our
experiments is equally far from real snake or worm locomotion (Figure 7.4d).

7.5 Time varying linear models

Beyond inter-species comparisons, the above framework enables us to characterize behav-
ioral transitions by borrowing concepts from quantum mechanics, such as Berry phases and
adiabatic approximations [241]. To illustrate this, we focus on a longer C. elegans trajectory
during which the worm performs a turn [Figure 7.5(a)] after briefly reversing its motion
due to a change in neuro-mechanical activity [245]. By reconstructing the time-dependent
Hamiltonian H(t) = S(t) + iA(t) along the path, we observe a significant increase in ||S(t)||
at the turn, whereas A(t) remains approximately constant throughout. When the worm
switches on S to facilitate a turn, the instantaneous eigenvectors of H(t) change, signaled
by a rapid change of the Berry phase [blue curve in Figure 7.5(b)]. Furthermore, while the
locomotion dynamics before the turn is well described by an adiabatic approximation, this
approximation becomes inaccurate during the turn [red curve in Figure 7.5(b)].

7.6 Conclusions

From a practical perspective, the above results show how symmetry-constrained mode rep-
resentations can facilitate a low-dimensional description and efficient classification of bio-
physical dynamics. The underlying inference framework is directly applicable to diagnosing
and quantifying the effects of genetic or chemical perturbations on animal locomotion within
and across species. From a theoretical perspective, the fact that translational and rotational
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Figure 7.5: Breakdown of adiabaticity during reversal turning behavior of C. elegans. (a)
The turning part S(t) of the Hamiltonian H(t) = S(t) + iA(t) becomes switched on at the
turn. (b) The turn is signaled by a sudden change in the geometric Berry phase (blue) of
the dominant eigenvector, and the RMS reconstruction error of the adiabatic approximation
increases noticeably after the turn.

invariance combined with a quadratic integral constraint generically lead to a Schrödinger
equation [204] in mode space, promises advances in the quantitative understanding of bio-
logical systems, as the comprehensive toolbox of quantum physics [246, 247] now becomes
available to characterize and predict behavioral dynamics.
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Chapter 8

Discovering dynamics and parameters of
nonlinear oscillatory and chaotic systems
from partial observations

This chapter and the accompanying appendices are adapted from the preprint G. Stepani-
ants*, A. D. Hastewell*, D. J. Skinner, J. F. Totz, and J. Dunkel, "Discovering dynamics
and parameters of nonlinear oscillatory and chaotic systems from partial observations," arXiv
preprint arXiv:2304.04818, 2023.

This chapter demonstrates extensions of the model inference optimization framework we
presented previously to incorporate nonlinear dynamics and account for unobserved variables.
The modified optimization procedure is integrated with a model selection procedure that can
account for additional hidden symmetries introduced by partial observations developed by G.
Stepaniants in collaboration with A. D. Hastewell and D. J Skinner. We apply the resulting
hidden dynamics inference framework to simulated data, previously published recordings of
giant squid axon recordings from the SGAMP database, and chemical reaction experiments
performed by J. F. Totz.

8.1 Motivation

Significant advances in live-imaging and fluorescence labeling techniques over the last decades
have made it possible to record extensive time-series data of neuronal [13, 248] and other
cellular activity [11, 249] at high temporal resolution. Nevertheless, notwithstanding such
progress, for many complex biophysical and biochemical systems, direct measurements are
limited to a single experimentally accessible observable [250] while essential components of
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the underlying dynamical circuit stay hidden [251]. As shown in Chapter 4, nonlinear dynam-
ics generally lead to nonlinear ODEs in mode space (4.4). These realities pose an additional
challenge in identifying valid theoretical nonlinear models and estimating their parameters
from an incomplete set of experimentally accessible time series, such as time-varying mode
amplitudes. As a proof of concept, we consider nonlinear oscillations and chaos, which are
ubiquitous in natural and artificial systems [152], from neurons [252, 253] and biochemical
networks [254] to power grids [255, 256], lasers [257], and the Earth’s climate [258]. Limited
observability has led to the emergence of competing theoretical models for neuronal [259]
and gene-regulatory networks [251], and identifying valid models and their parameters from
incomplete data remains a central challenge. Here, we combine sensitivity methods [37] for
differential equations with ranked choice voting [260, 261] to construct a hidden dynam-
ics inference (HDI) framework that can discover predictive nonlinear dynamical models for
both observable and latent variables from noise-corrupted incomplete data in oscillatory and
chaotic systems.

Driven by the rapidly advancing data acquisition techniques, dynamical model inference is
becoming increasingly more important [27, 112] in climate physics [262–264], fluid mechan-
ics [265, 266] and biophysics [84, 181, 267]. Time-delay embeddings [268, 269], recurrent
neural networks [270] and autoencoders [271] have successfully been used to estimate hidden
dimensions and forecast complex dynamics [272]. However, such ‘equation-free’ approaches
often cannot reveal coupling mechanisms and their dependencies on experimental condi-
tions. Complementary equation-based approaches [27, 273] have shown promise in learning
interpretable dynamical models from partially observed data using physics-informed neural
networks [113, 115, 274–276], manifold methods [277], or data assimilation [114], enabling
prediction of nonlinear and chaotic dynamics in mechanical, electrical, and hydrodynamic
systems. Despite such substantial progress, however, applications to experimental data from
nonlinear biophysical and biochemical systems still face many open problems, as existing
methods require long time series recordings with low noise (for example, to construct time-
delay embeddings or train neural networks) and do not ensure the stability of learned models,
as seen in the previous linear model inference approaches.

The HDI framework introduced here overcomes these challenges by integrating the robust-
ness of sensitivity methods [37] and ranked-choice model selection [260, 261] with traditional
library-based learning methods [27, 147]. This enables us to learn physically interpretable
models for partially hidden nonlinear systems from short, highly noisy data trajectories in
a manner that ensures correct long-time dynamics. Since the hidden-variable dynamical
equation discovered from partial observations may not be unique, we develop a systematic
algebraic procedure for comparing learned models. After validating the HDI framework on
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strongly noise-corrupted simulations of the FitzHugh-Nagumo oscillator, we apply our ap-
proach to experimental measurements of squid neuron spike trains and video observations of
Belousov-Zhabotinsky chemical reactions, demonstrating how HDI can be used to measure
model parameters as a function of external experimental conditions.

Our HDI methodology falls into the class of physically interpretable methods, and we
learn ODE models as a sparse combination of polynomial or trigonometric basis functions.
However, HDI uses a novel robust procedure for model selection by sampling the space of
possible ODE models, forming a cluster of the best-fit models, and keeping those basis terms
in our final model that have the least variation in their coefficients across all model fits.
This allows HDI to robustly select a few important model terms from libraries containing
on the order of 10-100 candidate terms, thus exploring a broad range of potential ODE
models. HDI’s core model fitting procedure uses gradient-based sensitivity methods that are
robust to high levels of noise in the data, ensure the learned models accurately capture the
experimental dynamics, and are stable over long-time integration.

8.2 Description of the HDI framework

A canonical example of a nonlinear oscillator is the FitzHugh-Nagumo (FHN) model [259]

v̇ = v − v3

3
− w + I, ẇ = τ

(
v + a− bw

)
, (8.1)

a simplified model of a firing neuron where the membrane voltage v rapidly increases be-
fore being diminished by the slow recovery variable w [278]. The rapid spiking and slow
recovery arise from a separation in time scales τ ≪ 1 between variables. FHN has become
a prototypical model of neuron spike trains, as it is stable and parsimonious, relying only
on a small number of polynomial terms. The HDI framework aims to learn models of this
type from limited noisy recordings of a single variable, for example, the v-coordinate of
FHN [Fig. 8.1(a)]. This motivates us to define the following class of models, with observed
variables x1, . . . , xm and hidden variables hm+1, . . . , hM , given by

ẋk = τk
∑

|α|≤dk

ckαx
α1
1 . . . hαM

M , 1 ≤ k ≤ m (8.2a)

ḣk = τk
∑

|α|≤dk

ckαx
α1
1 . . . hαM

M , m < k ≤M (8.2b)

which encompass a broad range of nonlinear oscillatory dynamics. Here, we only use polyno-
mial terms on the right-hand side of the equation, although this can be extended to any other
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Figure 8.1: General HDI framework illustrated for strongly noise-corrupted FHN simulation
data. (a) Algorithm flow chart: (1) ODE sensitivity optimization [37] yields N ∼ 20, 000
candidate models by tuning 20 parameters of dense two-field cubic observed (blue) and
hidden (dark-gray) variable equations from random initializations. Models are filtered for
stability and fit quality. (2) The remaining ∼ 4000 models are hierarchically clustered
using the cosine similarity between their parameter vectors. Histograms of parameters in
the largest cluster are used to rank the terms based on their coefficient of variation. (3)
Kemeny-Young ranking produces a list of candidate models of decreasing sparsity. Models
are refit at each sparsity level, and the user can select the model that best balances sparsity
and relative error (RE). (b) Using data from only the v time series corrupted by 50% noise,
HDI correctly discovers a sparse first-order system that reduces to the same second-order
form as the FHN model.

nonlinearities, such as trigonometric functions. To avoid scaling ambiguities between τk and
ck = {ckα} in (8.2) we enforce that each ck has unit norm. HDI models are determined by
a parameter vector p containing the initial conditions of the variables {x0k}mk=1, {h0k}Mk=m+1,
time scales {τk}Mk=1, and polynomial coefficients {ck}Mk=1. While time-delay embeddings can
be used to provide lower bound estimates on the number of hidden variables M −m, here
we restrict to periodic models with M = 2 variables or chaotic models with M = 3 variables,
which we find sufficient to explain the experimental data.

To demonstrate the HDI framework (Fig. 8.1), we consider noise-corrupted observations
yi1 = v(ti) + ξi1 of the v-coordinate of the FHN model (8.1) [Fig. 8.1(a, INPUT)]. HDI
repeatedly fits hidden two-variable models (x1, h1) by minimizing the mean square error on
the observed variables

MSE(p) =
1

n

n∑
i=1

m∑
k=1

(xk(ti,p)− yik)
2 (8.3)
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plus a regularization term Reg(p) that enforces the unit norm constraint on ck and pro-
motes sparsity, favoring lower-order terms that often lead to more stable dynamics. The
full objective function L(p) = MSE(p) + Reg(p) is minimized using ODE sensitivities and
gradient descent methods [243, 279] from random initializations [Fig. 8.1(a, 1)]. Noise ro-
bustness in our approach comes from using the full ODE solution xk(ti,p) in the objective
function, which avoids numerically differentiating noisy time series data, a typically ill-posed
problem [117], and enforces that models learned are stable over the time-span of the training
data. Multiple fits are required to sufficiently sample multiple local minima of the complex
non-convex loss landscape L(p): the model described by p is not unique since model symme-
tries – linear, h 7→ αh+ β, and nonlinear transformations of the hidden variables – produce
new models with identical xk dynamics.

To select a single candidate model, a set of models is optimized from random initial-
ization (see Appendix C for further details). Model quality is measured using the relative
error RE(p) =

√
MSE(p)/Var({yi1}ni=1), given here for a single (m = 1) observable, where

Var is the uncorrected sample variance. Outlier models with incorrect dynamics (nonperi-
odic, nonchaotic, or divergent) or large RE values are removed in an automated manner,
and the remaining models are hierarchically clustered using the cosine similarity between
their parameter vectors, taking into account possible linear hidden variable transformations.
Measurement noise and regularization break many of the symmetry ambiguities, resulting
in a dominant largest cluster; on FHN data corrupted by 50% noise, we start by optimiz-
ing 20, 000 dense two-variable cubic models resulting in 4,006 filtered models, of which 427
models form the dominant cluster [Fig. 8.1(a, 2)]. Sparse models are identified from the
dominant cluster by ranking each term by its coefficient of variation in the cluster, the in-
terquartile range divided by the median. Rankings are aggregated over a range of clustering
thresholds using the Kemeny-Young method to provide a robust ordering of terms. Based
on this ordering, a list of candidate models of decreasing sparsity containing the top-ranked
s terms can be refit [Fig. 8.1(a, 3)]. From this list, practitioners can determine a suitable
model sparsity that balances the trade-off between a model’s complexity and RE based on
their scientific judgment [Fig. 8.1(a, OUTPUT)].

From just three noisy oscillations of the FHN v-coordinate, we learn a list of two-variable
HDI models that at sparsities six and seven recover models which are equivalent to FHN
[Fig. 8.1(a, 3)]. The seven-term model matches the sparsity pattern of FHN while the six-
term model is equivalent under the shift w 7→ w − I in the FHN dynamics (8.1). Indeed by
taking the true FHN model (8.1), solving for w in terms of v, v̇ and substituting into the ẇ
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equation, we obtain a second-order reduced model solely in v

v̈ = −3cv2v̇ +
(
1− b

τ

)
v̇ − bc

τ
v3 +

b− 1

τ
v +

bI − a

τ
. (8.4)

Performing a similar reduction of our learned six-term model, we see that it has the same
structure and coefficients as the true FHN model [Fig. 8.1(b)], confirming that HDI has
recovered a two-variable model that is equivalent to ground-truth FHN. Full details of the
optimization and model selection procedure can be found in [280].

At this point, one might hope to avoid using hidden variables and their associated ambi-
guities by learning the reduced higher-order equation in the observed variable directly [281,
282]. However, even simple multivariate systems can give rise to complex reduced higher-
order equations that are often less sparse, implicit and contain fractional powers [283–291];
for example, ẋ = xy3, ẏ = x reduces to xẍ = ẋ2 + 3x7/3ẋ2/3. Working with reduced models
directly would require learning dense implicit ODEs with more candidate terms [142, 292],
a challenging approach that can be ill-posed [293]. A general advantage of ‘first-order’ HDI
is that it robustly learns multivariate explicit ODE models that are sparse and integrable,
avoiding the above complications. Next, we apply HDI to identify quantitative models from
experimental data for neuron activity and chemical reactions.

8.3 Application of HDI to experimental nonlinear oscil-

lators

Figure 8.2(a) shows experimental measurements [294, 295] of the membrane potential v in
the giant axon of the North Atlantic longfin inshore squid (Loligo pealeii) in response to noisy
stimulus input currents. Following previous spike train model formulations [278, 297–299],
we apply HDI to the time series data for v to learn a sparse two-variable model [Fig. 8.2(a,b)].
Consistent with prior descriptions of neuron dynamics [259], the phase portrait of the dis-
covered seven-term model is governed by a homoclinic orbit [Fig. 8.2(c)]. Notably, the model
generalizes to describe recordings from different squids, yielding consistent coefficients across
all samples [Fig. 8.2(d,e)].

For a second, more challenging HDI application, we use Belousov-Zhabotinsky (BZ)
reaction experiments performed by J. F. Totz [300]. Over the course of the reaction, a
substrate species is slowly consumed, fueling the periodic rise and decay of intermediary
reagents far from thermodynamic equilibrium. The basic reaction scheme [301] involves more
than 20 chemical species and 40 reaction steps. Many different chemical models have been
developed that capture the BZ reaction qualitatively [296, 302–305]. In our experiments, the
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Figure 8.2: HDI framework learns a parsimonious two-variable model from an experimental
recording of the membrane potential in a squid giant axon and reproduces the dynamics
in additional squid giant axons from the SGAMP database [294, 295]. (a) North Atlantic
longfin inshore squid (Loligo pealeii) with a sketch of the nervous system and position of
giant axons (top). The learned two-variable HDI model with nine terms accurately fits the
membrane potential v (center, line) of an experimental squid giant axon (open circles) in
response to a noisy stimulus input current. The hidden variable h (bottom) acts as a slow
recovery variable. (b) Polynomial model terms in v̇ and ḣ equations ranked from most to
least important based on their coefficient of variation in the largest model cluster. Training
data losses of sparse models containing only top s ranked terms are shown, and a model
with sparsity nine is chosen. (c) Limit cycle and fixed points (black) of the learned model
are consistent with prior models of regular spiking neurons [259] where the proximity of
the saddle fixed point to the orbit likely arises from a homoclinic bifurcation. Nullclines
of v, h are plotted in blue and gray, respectively. (d) The Selected nine-term model (line)
generalizes to two additional squid axon recordings (open circles). (e) Coefficients of the
nine-term model align across all three trains and test squid axon experiments.
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Figure 8.3: HDI applied to our experimental BZ reaction data from J. F. Totz learns a two-
variable linear-quartic model that generalizes under catalyst variations. (a) Experimental
snapshots of the BZ reaction showing periodic color oscillations (top). Input data (open cir-
cles) and observed and hidden variables (solid line) integrated from the learned polynomial
ODE model. Using data from three oscillations, the learning framework finds that a seven-
term ODE can accurately describe the dynamics. (b) Polynomial ODE terms appearing in ċ
and ḣ equations ranked from most to least important based on their coefficient of variation.
Model terms are added one at a time in order of importance, with the seventh term leading
to a drop in the training loss. (c) Phase plane diagram of learned seven-term ODE from the
previous panel contains crucial features found in most two-variable BZ models [296]. The
limit cycle contains an unstable fixed point (black) with a monotonic x-nullcline (blue) and
an h-nullcline (dark gray) in the form of a “cubic" curve as found in the FHN, Rovinsky, and
ZBKE models. (d) The Resulting seven-term model (solid line) accurately fits the dynamics
of the chemical solution’s color (open circles) in two new BZ experiments. (e) Coefficients
of the model remain consistent across all three experimental BZ reactions. Chemical con-
centrations: 0.20mH2SO4, 0.11mNaBrO3, 0.05mCH2(COOH)2, 0.03mNaBr, 0.3mm ferroin
(blue), 0.41mH2SO4, 0.17mNaBrO3, 0.03mCH2(COOH)2, 0.02mNaBr, 0.3mm ferroin
(green), 0.51mH2SO4, 0.10mNaBrO3, 0.03mCH2(COOH)2, 0.02mNaBr, 0.3mm ferroin
(red).
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repeated oxidation and reduction of the metal catalyst ferroin produces a periodic change
in the color of the solution from red to light blue [Fig. 8.3(a)]. The recorded average color
of the solution follows a 1D curve in color space, which we map to our single observed
coordinate c(t) (Appendix B). Working with polynomial approximations consistent with
established two-variable BZ models [300], we optimize overall two-variable ODEs that are
linear in the ċ equation and quartic in the ḣ equation. Using this library, HDI discovers a
seven-term model that accurately fits the color dynamics c(t) for BZ reactions [Fig. 8.3(a,
d)] with parameters that vary smoothly across the different reactant concentrations in each
experiment [Fig. 8.3(e)]. Furthermore, the phase portrait of the learned model correctly
captures the dynamical properties of the BZ reaction [300], showing an unstable fixed point
enclosed in a stable limit cycle with a typical cubic-shaped nullcline ḣ = 0 [Fig. 8.3(c)].

8.4 Application of HDI to chaotic systems

HDI straightforwardly extends to higher-dimensional nonlinear systems. For example, when
only given observations of the x and y coordinates of the 3D Lorenz system, with σ = 10, ρ =

28, β = 8/3,

ẋ = σ(y − x) (8.5a)

ẏ = x(ρ− z)− y (8.5b)

ż = xy − βz., (8.5c)

for one or two lobe transitions [gray-shaded in Fig. 8.4(a)], a HDI search over all polyno-
mial three-variable ODEs in (x, y, z) with quadratic interactions recovers the exact Lorenz
equations with correct coefficient values (modulo a trivial scaling of the hidden z variable)
[Fig. 8.4(b)]. The learned model has the correct attractor dynamics and can predict the x, y,
and z dynamics substantially beyond the training interval [Fig. 8.4(a,c)]. Further analysis
shows that, even when only given observations of x, HDI learns a predictive model for Lorenz
dynamics, albeit with reduced predictive power [280].

8.5 Conclusions

By combining sensitivity methods and ranked-choice voting, HDI can discover parsimonious
predictive models from partial noisy observations of oscillatory and chaotic dynamics without
extensive preprocessing of time-series data. The above framework can be directly applied
to experimental observations of biophysical, ecological, and other systems, for which ODE

125



Figure 8.4: HDI discovers true Lorenz system from observations of x and y coordinates.
(a) Given observations of only the x and y coordinates (gray region), the learned model
predicts the evolution for several additional Lyapunov time scales. (b) Lorenz model terms
and coefficients are discovered exactly by an HDI search based solely on data in the gray
region of the previous panel. (c) The reconstructed attractor of the learned model closely
agrees with the true Lorenz attractor.

models can inform the prediction, control, and optimal perturbations [306] of dynamical
behavior. By mapping time series to ODE model coefficients, HDI can help facilitate the
clustering of dynamical data, as those appearing in health [307] and climate [258] studies.
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Chapter 9

Conclusions and outlook

Spectral representations are a powerful tool for the analysis and modeling of biological data.
In the first part of this thesis, we showed how spectral methods are applicable across a
broad range of experimental systems, from high-resolution microscopy data to tracked single-
particle trajectories to gene expression profiles. In all cases, the spectral projections gave a
noise-robust low-dimensional representation of the data. Using these low-dimensional repre-
sentations, we could extract quantitative measurements from experimental data and compare
experiments and theory directly. The methods presented here readily apply to data that live
on simple geometries, like rectangles and spheres where basis functions are known ahead of
time or other simple geometries where analytic Gram-Schmidt orthogonalization is possible.
However, many experimental systems exist in more general geometries – active matter sys-
tems may form arbitrarily shaped clusters [308] or during morphogenesis tissues can form
complicated time-evolving surfaces [9] – requiring the extension of the presented methods to
more complex domains. Developing more general construction methods for basis functions,
domain mapping techniques, and robust and efficient algorithms to extract representation
coefficients is an ongoing research direction. Furthermore, in the work presented here, we
assume that the underlying geometry of the system is identifiable independently from a spe-
cific model or dataset. This assumption is frequently valid for physical dynamics. However,
for biological signaling data, such as neural activity or gene expression, this assumption may
no longer hold. Methods that can extract the correct geometry and spectral representation
to use for such data will be critical for incorporating additional fields into the framework and
for building fuller pictures of the multi-scale, multi-modal underlying dynamics of biological
systems.

Mode space dynamical models have many practical and theoretical advantages. The re-
duction of potentially complex real space dynamics to a coupled set of ordinary differential
equations is a powerful simplification that loses no predictive power due to the orthogonal-
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ity of the transform. In the second half of this thesis, we demonstrate the power of mode
space models in capturing complex biophysical phenomena. By considering linear models of
morphogenesis, we found that mode space models can effectively capture symmetry-breaking
during the early stages of development. By studying the resulting linear dynamical system,
we can also identify dynamic similarities between the early stages of development and ac-
tive Brownian motion. Additionally, we considered physically constrained models of planar
curve dynamics and applied the resulting model framework to undulatory locomotion. We
show how linear mode space models can accurately distinguish different types of undulatory
locomotion across species and behavioral states. Taken together, these results demonstrate
the power of linear mode space models to act as a tool to characterize complex biophysical
phenomena. The simplicity of the underlying linear dynamics enables efficient inference pro-
cedures directly from experimental data, and by directly comparing integrated predictions
of the linear model, we can enforce stability and gain robustness to noise.

Despite the power of linear mode space models, most biological dynamics are not linear.
In the last chapter, we show some initial extensions of the underlying inference framework
to partially observed dynamics and nonlinear models. The sensitivity approach introduced
here, coupled with sparse model selection, enables inference of predictive models even when
variables are unobserved and in the presence of noise. The application of the nonlinear infer-
ence framework to mode space dynamics is straightforward. However, the number of model
terms multiplies as the number of modes increases and quickly becomes infeasible. Therefore,
constraining the number of terms in the nonlinear models will be necessary. This requirement
poses the interesting theoretical challenge of determining what model structures, physical
symmetries, biological constraints, and basis choice can impose on nonlinear dynamical sys-
tems. From a practical perspective, developing algorithms that can then use this additional
structure to speed up the inference will also be crucial for the broader applicability of these
ideas.

As high-resolution, multi-scale, and multi-modal data increasingly becomes available for
biological dynamics, new mathematical analysis tools will become increasingly important to
further our understanding of the complex interplay between physics, chemistry, and biology
that governs the dynamics. Spectral representations provide a powerful, extensible, and
robust framework for developing such tools.
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Appendix A

Derivation of planar curve length
constraint in Chebyshev basis

Making use of the following four Chebyshev polynomial identities,

d

ds
T0(s) = 0

d

ds
Tk(s) = kUk−1(s)

Un(s)Um(s) =

2min(n,m)∑
k=0

U|n−m|+2k(s)∫ 1

−1

dsUn(s) =
Tn+1

n+ 1

∣∣∣∣1
−1

=
1

n+ 1
− (−1)n+1

n+ 1
=

1 + (−1)n

n+ 1

we can derive the values of Wm,n (6.15b) explicitly for the Chebyshev basis,

Wm,n =

∫ 1

−1

ds
dTn
ds

(s)
dTm
ds

(s)

= nm

∫ 1

−1

dsUn−1(s)Um−1(s)

= nm

∫ 1

−1

ds

min(n−1,m−1)∑
k=0

U|n−m|+2k(s)

= nm

min(n−1,m−1)∑
k=0

∫ 1

−1

dsU|n−m|+2k(s)

= nm

min(n−1,m−1)∑
k=0

1 + (−1)|n−m|+2k

|n−m|+ 2k + 1
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W

Figure A.1: W matrix for n = 10

= nm(1 + (−1)|n−m|)

min(n,m)−1∑
k=0

1

|n−m|+ 2k + 1

=

0 if m− n odd

2nm
∑n+m−1

k=|n−m|+1
1
k

if m− n even

which shows that W has a checkerboard pattern and is diagonally dominant (Figure A.1).
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Appendix B

Belousov-Zhabotinsky reaction
trajectory extraction

We provide details on the extraction of a single variable from optical measurements of the
Belousov-Zhabotinsky reaction performed by J. F. Totz.

The Belousov-Zhabotinsky (BZ) reaction is the paradigmatic nonlinear chemical oscilla-
tor. It involves more than 30 chemical species and 40 elementary reactions. Over the course
of the net reaction an organic substrate such as malonic acid (MA) is consumed:

3MA + 2BrO –
3 + 2H+ 2BrMA + 3CO2 + 4H2O . (B.1)

However, intermediary species (Br–, BrO +
3 , [Fe(phen)3]

3+) are periodically built up and
expended, leading to a periodically changing consumption rate of the organic substrate.
One of the intermediary species, the oxidized form of the catalyst ferroin [Fe(phen)3]

3+, can
be readily observed optically using spectrophotometry (Figure B.1(a) to track the chemical
oscillation state.

The chemical oscillation state is optically observable because the absorption spectrum
of the solution depends on the ratio of reduced to oxidized catalyst [Figure B.1(b)]. In the
reduced state the catalyst absorbs blue and green wavelengths 450 nm to 550 nm, so that one
observes a red coloration of the solution. In the oxidized state the catalyst weakly absorbs
red wavelengths around 600 nm, leading to a faint blue coloration of the BZ solution.

A single trajectory was extracted from the movie Figure B.2. First the movie was cropped
to a rectangle containing only the BZ solution (dashed box). Next the frame with with the
highest average blue channel value over the rectangle was chosen as a reference frame and
the distance between this color and the average color was calculated using the Euclidean
distance between the colors in the Lab colorspace. The distance was then normalized to lie
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Figure B.1: Optical measurement of periodic concentration changes in the oscillating
Belousov-Zhabotinsky reaction performed by J. F. Totz. (a) The experimental setup con-
sists of a spatially homogenized broadband light-source supplying the illumination that is
absorbed by the reagents in the closed stirred chemical. The transmitted light is captured
by a camera. (b) During chemical oscillations the ferroin reagent cyclically changes its ox-
idation state affecting its corresponding absorption spectrum: reduced catalyst Fe2+ (red)
and oxidized catalyst Fe3+ (blue). This allows for tracking the chemical oscillation state
optically.

in [0, 1] and inverted so that the reference frame is a peak at 1.
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Figure B.2: (Top) Snapshots of BZ reaction. (Middle) Average color in cropped region
(dashed box top) plotted in RGB color space shows that the reaction follows a 1 dimensional
curve in color space. (Bottom) A single trajectory is extracted from the BZ movies by
first cropping the movies to a rectangle (dashed box top row) and then calulating the color
difference between the average color of a frame and a reference frame (5s) using Euclidean
distance in the Lab colorspace. The resulting trajectory is rescaled to lie between [0, 1].
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Appendix C

Additional details on the nonlinear
optimization procedure

Here we describe the initial optimization procedure that is used to fit models to experimental
data for use in the larger model selection framework. Our aim is to fit ODE models consisting
of M scalar variables, such that the first m variables x(t) = {xk(t)}mk=1 fit observed data
{(ti,yi)}ni=1 where yi = {yik}mk=1 and the next M −m variables {hk(t)}Mk=m+1 are hidden.

Given a recorded time series, we select a window of training data points {(ti,yi)}ni=1 where
t1 < t2 < . . . < tn. If the time series dynamics behaves periodically, then we choose our
training window [t1, tn] to contain three periods of oscillation. This heuristic ensures that our
optimization converges to a model with periodic behavior from most random initializations.
Choosing too few periods in the training window results in learned models with only transient
periodic behavior which then either diverge or converge to a fixed point. On the other
hand, choosing too many time periods (or generally a large training window) leads the HDI
optimization to ODE models that converge to a fixed point close to the mean of the data,
a common feature in sensitivity-based ODE inference methods. If the time series dynamics
behaves chaotically, as with the Lorenz system, we choose our training window [t1, tn] to
contain two or three branch switches which helps our algorithm converge to a chaotic model
more frequently. Providing too few branch switches leads to models that eventually fall on
a periodic limit cycle. As before, we do not include more than three branch switches as long
time windows lead to models which converge to fixed points.

We define an M -variable polynomial HDI model with degree combination (d1, . . . , dM)

as

ẋk = τk
∑

|α|≤dk

ckαx
α1
1 . . . hαM

M , xk(0) = bk, 1 ≤ k ≤ m (C.1a)
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ḣk = τk
∑

|α|≤dk

ckαx
α1
1 . . . hαM

M , hk(0) = bk, m < k ≤M (C.1b)

where the free parameters are the initial conditions bk, polynomial coefficient vectors ck =

{ckα}|α|≤dk , and time scales τk for all 1 ≤ k ≤M . By definition, the degree of any polynomial
term in equation k does not exceed dk. The power of each monomial term above is expressed
in multi-index notation α = (α1, α2, . . . , αM) where each entry αr ∈ N denotes the power of
xr and we write |α| =∑M

k=1 αk to denote the total degree of the monomial term.
In a model sweep, each HDI model is initialized randomly by setting the initial conditions

of its observed variables to bk = y1k for 1 ≤ k ≤ m and of its hidden variables to bk = 1

for m + 1 ≤ k ≤ M . Lastly, we choose the M coefficient vectors {ck}Mk=1 independently at
random as uniformly distributed vectors on the unit sphere and set the time scales of all
equations to τk = 0 for 1 ≤ k ≤M .

All initialized HDI models are dense which means they contain all polynomial terms
up to degree dk in the kth equation for 1 ≤ k ≤ M . Each randomly initialized model is
parameterized by the stacked vector

p = ({bk}Mk=1, {ck}Mk=1, {τk}Mk=1) (C.2)

of its initial conditions, coefficients, and time scales and is trained for one round of optimiza-
tion to minimize the objective

L(p) = MSE(p) + Reg(p) (C.3)

which is a sum of the mean squared error

MSE(p) =
1

n

n∑
i=1

m∑
j=1

(xj(ti,p)− yij)
2 (C.4)

and a regularization term. The regularization term in the objective function is given by

Reg(p) = λ

M∑
k=1

∑
|α|≤dk

√
1 + |α||ckα|+ γ

M∑
k=1

(∥ck∥2 − 1)2 (C.5)

where the first term penalizes the sparsity of the learned model, since polynomial terms
xα1
1 ...x

αM
M in the model with a higher total degree |α| = α1 + . . . + αM are more actively

down-weighted by the factor
√

1 + |α|. The second part of the regularization function above
enforces that the coefficients ck of the kth equation have a unit norm, which allows us to
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avoid scaling ambiguities between the timescales τk and model coefficients ck. The unit norm
penalty on the coefficients is always set to the large value of γ = 5 × 104, forcing the unit
norm constraints to be satisfied almost exactly.

Each model is optimized for 100,000 AdaBelief [243] iterations followed by 50,000 itera-
tions of BFGS [279] (e.g. large enough for our optimization to converge). The derivatives
of the loss functions are calculated using the by solving the forward sensitivity equations to
calculate the derivative through the ODE solution [37, 135]. In general, our method is not
overly sensitive to how these values are set.
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