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ABSTRACT

Current developments in automated experimental imaging allow for high-resolution track-
ing across various scales, from whole animal behavior to single-cell dynamics to spatiotempo-
ral gene expression. Transforming these high-dimensional data into effective low-dimensional
models is an essential theoretical challenge to enable the characterization, comparison, and
prediction of dynamics both within and across biological systems. Spectral mode representa-
tions have been used successfully across physics, from quantum mechanics to fluid dynamics,
to compress and model dynamical data. However, their use in analyzing biological systems
has yet to become prevalent. Here, we present a set of noise-robust, geometry-aware math-
ematical tools that enable spectral representations to extract quantitative measurements
directly from experimental data. We demonstrate the practical utility of these methods
by applying them to the extraction of defects in signaling fields on membranes, the infer-
ence of partial differential equations directly from videos of active particle dynamics, and
the categorization of emergent patterns in spatiotemporal gene expression during bacterial
swarming.

An additional challenge occurs for complex biophysical processes where the underlying
dynamics are only partially determined. We wish to use experimental data directly to infer
effective dynamical models that elucidate the system’s underlying biological and physical
mechanisms. Building on spectral mode representations, we construct a generic computa-
tional framework for inferring the dynamics of living systems through the evolution of their
mode representations. The framework can incorporate prior knowledge about biological
and physical constraints. We apply this framework first to single-cell imaging data during
zebrafish embryogenesis, demonstrating how our framework can compactly characterize de-
velopmental symmetry-breaking and reveal similarities between pan-embryo cell migration
and Brownian particles on curved surfaces. Next, we apply the framework to the undula-
tory locomotion of worms, centipedes, robots, and snakes to distinguish between locomotion
behaviors. Finally, we present an extension of the framework to the case of nonlinear dy-
namics when all relevant degrees of freedom are only partially observed, with applications
to neuronal and chemical dynamics.

Thesis supervisor: Jörn Dunkel
Title: MathWorks Professor of Mathematics
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List of Figures

3.1 Time evolution of chemical Rho signaling wave patterns on the star�sh oocyte
from a homogeneous initial state to a quasi-steady state exhibiting turbulent
spiral patterns. Snapshots show maximal intensity projections of three near-
membrane Z-stack confocal slices spanning5µm. Scale bar: 40µm. Experi-
mental images provided by the Fakhri lab [70]. Note the visible presence of
noise in the images on top of relatively smooth intensity pro�les, lending these
types of microscopic images well to spectral representation. . . . . . . . . . . 38

3.2 (a) Truncated spectral representation (middle) shows signi�cant noise reduc-
tion compared to noise-polluted input data (second left) while retaining the
structure of the true underlying �eld (left) for simulated CGL test data with
added Poisson noise. A comparison of the extracted phase �eld from the true
CGL data (second right) and the denoised reconstructed �eld (right) shows
they contain the same structure and very similar defect statistics. (b) Param-
eter sweep over possible Fourier and Chebyshev mode cuto�s for the CGL test
data. Reconstruction error contours (black lines) and compression contours
(white lines) are shown. Points where the two contours are tangent corre-
spond to points on the error compression front. (c) Compression error front
extracted from the parameter sweep in (b) along with the linear �t to the
log-log curve (green line) and the chosen cuto� point (red dot) . . . . . . . . 41

3.3 (a) Comparison of an experimental snapshot with the corresponding data and
phase �eld representation (3.2) for state ii shows signi�cant noise reduction
while maintaining the main underlying structure. The extracted phase using
the Hilbert transform is shown on the right. Scale bar 20� m. (b) Parameter
sweep over possible Fourier and Chebyshev mode cuto�s for state ii. Recon-
struction error contours (black lines) and compression contours (white lines)
are shown. (c) Compression error fronts for the experimental states. We see
that all the curves have a similar shape across all states. The linear �t to each
of the experimental fronts on the log-log graph is shown with thick lines. . . 42
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3.4 (a) Quasi-steady wave patterns (t > 60min) of Rho-GTP intensity �eld from
four star�sh egg cells, aligned with phase �elds reconstructed from oscilla-
tions in pixel �uorescence intensity signal (inset). Scale bar:20µm. (b) The
reconstructed phase �elds harbor topological defects of winding number +1
(red, counter-clockwise rotating spiral core) and -1 (blue, clockwise rotating
spiral core). Lower: Time-lapse snapshots of localized creation (annihilation)
events that produce (destroy) oppositely charged defects in pairs. Scale bar:
5µm. (c) Worldline representation of topological defects embedded in 2+1-
dimensional phase �eld. The time-lapse snapshots in (b) correspond to the
formation of the simple space-time loop in (c). Scale bars:5µm; 30 s(vertical). 44

3.5 Learning hydrodynamic models from particle simulations and experiments.
(a) Inputs are time-series data for particle positionsx i (t), and particle ori-
entations p i (t) = (cos � i ; sin� i )> , measured in simulations or experiments
with microscale resolution. (b) Spatial kernel coarse-graining of the discrete
microscopic variables provides continuous hydrodynamic �elds, such as the
density � (t; x) or the polarization densityp(t; x). (c) Coarse-grained �elds are
sampled on a spatiotemporal grid and projected onto suitable spectral basis
functions. Systematic spectral �ltering (compression) ensures smoothly inter-
polated hydrodynamic �elds, enabling e�cient and accurate computation of
spatiotemporal derivatives. (d) Using these derivatives, a library of candidate
terms Cl (�; p) and C l (�; p) consistent with prior knowledge about conserva-
tion laws and broken symmetries is constructed. A sparse regression algorithm
determines subsets of relevant phenomenological coe�cientsal and bl . The
resulting hydrodynamic models are sparse and interpretable, and their pre-
dictions can be directly validated against analytic coarse-graining results or
experiments. Bottom: Snapshots illustrating the work�ow for microscopic
data generated from simulations of chiral active Brownian particles [84]. . . . 47
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3.6 Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian kernel
width � for the chiral particle model data (top) quanti�es the fraction of in-
formation that remains in Fourier space after coarse-graining. Representative
snapshots of coarse-grained �elds are shown in the bottom panels. Charac-
teristic scales in units of particle-particle interaction distance: Median vortex
distance� 17 (obtained from a Delaunay triangulation of density peaks), box
size 100. (i,� = 0:02): Raw image before coarse-graining. (i,� = 0:02)�
(ii, � = 0:12): The particle data's discrete nature remains present, leading to
little information loss. (ii, � = 0:12)�(iii, � = 0:86): As the coarse-graining
scale approaches the interaction length scale,� ! 1, coarse-grained data
starts losing single-particle information and vortices become more prominent
than individual particles. (iii, � = 0:86)�(iv, � = 5): Vortices start to be
smoothed out as� exceeds the particle interaction distance and vortex size.
Data from (iv, � = 5) was used for inferring a continuum model from the
chiral-particle simulation date; this choice of the coarse-graining scale ensures
that the hydrodynamic �elds are su�ciently smooth while still containing
su�cient information about density �uctuations and vortex patterns. (v,
� = 12:6): When the kernel width � approaches the typical vortex-vortex
distance, coarse-graining results in a constant homogeneous density, and all
spatially heterogeneous information is lost. . . . . . . . . . . . . . . . . . . 49

3.7 Normalized spectral entropy, Eq. (3.6), as a function of the Gaussian ker-
nel width � for the Quincke roller system (top) quanti�es the fraction of
information that remains in Fourier space after coarse-graining. Represen-
tative snapshots of coarse-grained �elds are shown in the bottom panels.
Characteristic length scales: Roller diameter4:8� m, mean roller-roller cen-
troid distance � 11� m, window height H = 0:286mm, window width W =
1:146mm. (i, � = 10� 5 mm): Raw image before coarse-graining. (ii,� =
0:0033mm)�(iii, � = 0:0085mm): Single rollers are increasingly smoothed
out, leading to an initial decrease in information. (iii, � = 0:0085mm)�
(iv, � = 0:045mm): Large-scale density �uctuations become increasingly
smoothed out by the coarse-graining. Data from (iv,� = 0:045mm) was
used for model learning from experimental Quincke roller data, providing
a compromise between su�ciently smooth data and well-resolved details of
density �uctuation in both spatial directions. (v, � = 0:24mm): As the
coarse-graining scale� becomes comparable to the window heightH , den-
sity �uctuations in the vertical direction have been smoothed out, leading to
an e�ective one-dimensional density pattern that varies only along the hori-
zontal direction. (vi, � = 1:04mm): As � becomes comparable to the window
width W, all density variations disappear, and the coarse-graining yields a
constant homogeneous density. . . . . . . . . . . . . . . . . . . . . . . . . . 50
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3.8 (a) Slices through the spatio-temporal power spectrumSx;n;q = jex � p̂n;q j2

for di�erent values of the Chebyshev polynomial ordern 2 f 0; 300; 600g, cor-
responding to modes with increasing temporal frequencies. The rightmost
panel depicts the total spatial spectral power

P
q Sx;n;q [see Eq. (3.9b)] of

each Chebyshev moden. The slowly decaying long tail of fast modes in-
dicates a regime in which �uctuations dominate over a smooth signal. The
cut-o� n0 = 600 removes these modes, which is in line with the goal of learning
a hydrodynamic model for the slow, long-wavelength modes. (b) Kymographs
of the spectral derivatives@t � and �r� p at y = 50, obtained from the spectral
representation of the data are spatiotemporally consistent. . . . . . . . . . . 52

3.9 Power spectra of coarse-grained data for experimental applications to tracked
particle data: the Quincke roller system from Denis Bartolo's lab [87] (left)
and for sunbleak �sh from Iain Couzin's lab [89] (right), wheren denotes
temporal Chebyshev mode numbers. The normalized power shown in the two
panels is given bySx;n=Sx;n=0 . For both the Quincke roller and the sunbleak
�sh data spectral powers decay exponentially with increasing temporal mode
number n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Spatiotemporal transcriptome measurements and microscopy-based pheno-
typing during Bacillus subtilis swarm development provided by the Drescher
lab. (a) Spatiotemporal transcriptome results are summarized in kymograph
heatmaps with each colored tile corresponding to one sample - the color of
each tile in the heatmap indicates the expression level of a particular gene,
LRNA . The �Range� value corresponds to the dynamic range of gene expres-
sion, de�ned as the ratio between the highest and lowest color bar values,
which are the 5th and 95th percentile of the gene expression values, taking
all three replicates into account (additional replicates can be found in [12]).
Three spatiotemporal heatmaps depicting the expression pattern of genes re-
lated to various processes are shown. Thousands of additional spatiotemporal
gene expression heatmaps are available [12]. (b) Spatiotemporal phenotype
heatmaps, analogous to the gene expression heatmaps in panel (a). Similar
spatiotemporal phenotype maps are available for ten additional properties [12]. 55

3.11 (a) An exponential function is �tted to the space-time location of boundary
points (indicated in purple color) for each data set. Space-time coordinates
are then rescaled. (b) The rescaled space-time coordinates are shown in their
common non-dimensionalized domain. . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Spectral representation of spatiotemporal expression pattern data from the
Drescher lab. The spatiotemporal expression heatmap for each gene and each
phenotypic property was approximated by a linear combination of six orthogo-
nal basis functionsPi , (i = 0; :::; 5) that are optimized for the spatiotemporal
swarm domain. The coe�cients ci of the basis functions were determined
using all three biological replicates. . . . . . . . . . . . . . . . . . . . . . . . 59
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3.13 Identi�cation of genes with spatiotemporal regulation and di�erent spatiotem-
poral expression patterns. (a) A spatiotemporal information score was de�ned,
quantifying the spatiotemporal information observed for a given gene. By
ranking genes according to this spatiotemporal information score and de�n-
ing a cuto� at the weighted median of the spatiotemporal information, we
identi�ed all genes with spatiotemporal gene expression patterns. Insets show
gene expression heatmaps with low, intermediate, and high spatiotemporal in-
formation scores. (b) For the 572 genes with spatiotemporal gene expression
patterns identi�ed in panel (a), we used cosine similarity based on the co-
e�cients ci to identify clusters of highly correlated spatiotemporal patterns,
revealing six major distinct spatiotemporal gene expression patterns (indi-
cated by colored lines on the side of the similarity matrix). (c) To visualize
these, the pattern corresponding to the mean of all coe�cientsci within each
pattern cluster is shown. (d-e) Multidimensional scaling (MDS) was applied
to genes and swarm properties based on their cosine similarity, as shown in
panel (b). The expression pattern of each gene is represented as a point with
color indicating their expression pattern category in panel (d) or gene function
in panel (e). Gene functions are based on subtiWiki [103, 104]. Gene function
categories with fewer than ten genes assigned to them are grouped into the
category �other�. Five phenotypic properties of the swarm (see Figure 3.10
for heatmaps) are shown as stars, revealing that their location in the MDS
space is near some gene patterns and functions. (e) The 50 nearest neighbor
genes in the MDS space (corresponding to similar gene expression patterns)
were identi�ed and grouped into gene function categories for each of these �ve
phenotypic properties. The number of genes in each gene function category
for each phenotypic property is visualized in the connection plot (right). . . . 60

3.14 With increasing clusters, the minimum clustering cost decreases, with an ini-
tially sharp decline that levels o� for high cluster numbers. Highlighted in red
is the location of 6 clusters, the number which was chosen for further analyses
in Figure 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Schematic of the learning procedure. Initially, the data is rescaled using the
median absolute deviation (MAD) (4.15) to account for variation in scales
across the modes. Tildes denote scaled variables. To avoid local minima of
the optimization function, we iteratively feed more data into the cost function.
Next, we sequentially threshold the small terms in the matrix until conver-
gence is reached. These procedures are repeated until the sparsity pattern
converges. Finally, the scaling is undone, and the parameters are optimized
on the unscaled data to produce the �nal matrix. . . . . . . . . . . . . . . . 75
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5.1 From single-cell tracking data to sparse mode amplitude representations. (a) Mi-
croscopic imaging data of early zebra�sh development (adapted from the
Huisken lab [180]) shows cell migration from an initially homogeneous pole of
cells (left) towards an elongated structure that indicates the head-tail axis of
the fully developed organism. Scale bar,100�m . (b) Experimental single-cell
tracking data from [8] (blue dots) during similar developmental time points
(� 20min) as in (a). t = 0 min for the indicated time points in B corresponds
to a developmental time of 4 hours post fertilization. Thez-axis points from
the ventral pole (VP) to the animal pole (AP). (c) Coarse-grained relative
cell density � (r ; t) (color) and associated coarse-grained �uxJ(r ; t) (stream-
lines) determined from single cell positions and velocities from data in (b) via
equations (5.1). The thickness of streamlines is proportional to the logarithm
of the spatial average ofjJj. (d) Dynamic harmonic mode representation of
the relative density � (r ; t) [equation (5.5), left panel] and of the �ux J(r ; t)
[equation (5.6), middle and right panel] for �elds shown in (c). The modes
j (1)

lm correspond to compressible, divergent cell motion, the modesj (2)
lm describe

incompressible, rotational cell motion. Mode amplitudes become negligible
for l � 5. For all panels, horizontal black lines delineate blocks of constant
harmonic mode numberl, and black triangles denote the end of the epiboly
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Normalized spectral entropy as a function of the coarse-graining kernel width
(top) computed for density� and �ux �eld J using equation (5.4). To evaluate
the spectral entropy for the vector-valued �ux, we de�neS(J) := S(Jx ) +
S(Jy) + S(Jz) (�Flux sum�). The coarse-graining width � the half-width at
half-maximum arccos(2� 1=k) is varied by varying the kernel indexk. The
�elds � and jJj are shown in the two bottom rows for di�erent values ofk.
i. k = 5000 (blue, data used to compute the reference spectral entropiesS0(� )
and S0(J)) ii. k = 60 (brown) iii. k = 6 (yellow, used in main text) iv. k = 2
(purple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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5.3 Learning active Brownian particle (ABP) dynamics on a sphere. (a) ABPs
move on a unit sphere (radiusR0 = 1) with angular speedv0 = 1 along
a tangential unit vector u(t) that is subject to stochastic in-plane �uctua-
tions. Example single-particle trajectories are shown in the high-noise (or-
ange,D r = 10 in units of R0v0) and in the low-noise regime (blue,D r = 0:5).
Time t is measured in units ofR0=v0 in all panels. (b) Position correlation
function hx(t) � x(0)i averaged over3 � 104 independent ABP trajectories
show distinct oscillations of period� 2� in the low-noise regime, as ABPs
orbit the spherical surface more persistently. The standard error of the mean
is smaller than the symbol size. (c) Analytically predicted (left) and inferred
(right) dynamical matrices M [see equation (5.9)] describing the mean-�eld
dynamics of a large collection of non-interacting ABPs show good quantita-
tive agreement. (d) Mollweide projections of coarse-grained ABP simulations
with v0 = 1 and D r = 0:5 using cell positions from the �rst time point in
the zebra�sh data (Figure 5.1) as the initial condition: At each position, 60
particles with random orientation were generated and their ABP dynamics
simulated, amounting to approximately1:2 � 105 particles in total. The den-
sity �elds homogenize over time, where the maximum density att = 12:3
has decayed to about 5 % of the maximum density att = 1:02. Blue lines
and arrows indicate streamlines of the cell �uxJ(r ; t). (e) Simulation of the
learned linear model (5.9) withM shown in Figure 5.3(c) (right), for the same
initial condition as in (d). Marked time points indicate intervals of learning,
validation, and prediction phases of the model inference. . . . . . . . . . . . 88

5.4 Model learning for experimental data of collective cell motion during early ze-
bra�sh development. (a) Visualization of the constant mode coupling matrix
M that was learned from experimental data and describes the dynamics of
the mode vectora = [ � lm (t); j (1)

lm (t); j (2)
lm (t)]T via (5.9). Dimensionless �elds

are de�ned by �̂ lm = R2
s� lm and ĵ (i )

lm = Rs� tj (i )
lm (i = 1; 2) with Rs = 300 � m

and � t = 2 min. (b) Scaling the learned matrix M by the Mean Absolute
Deviation (MAD) of the modes reveals structures reminiscent of the mode
coupling matrix learned for ABPs (Figure 5.3(c)). (c) The learned model
recovers mass conservation (5.2) in mode space. (d) Comparison of exper-
imental mode dynamics (circles) with numerical solution (solid line) of the
minimal model (5.9) for learned matrixM visualized in Figure 5.4(a). For
clarity, the comparison is shown for the two dominant modes of each set of
harmonic modes� lm ; j (1)

lm and j (2)
lm . (e, f) Mollweide projections of the experi-

mental data (e) and of the numerical solution of the learned model (f) show
very good agreement. Blue lines and arrows illustrate streamlines de�ned by
the cell �ux J(r ; t), circles depict defects with topological charge+1 (white)
and � 1 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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5.5 Simulating the learned model with di�erent initial conditions. Mollweide pro-
jections from simulations of the model Eq. (5.9) withM depicted in Fig-
ure 7.4B that was learned for experimental data from sample 1, but using
di�erent initial conditions (from top to bottom): initial condition from exper-
imental data set sample 2; initial condition from sample 1 rotated by 10� away
from the animal pole; initial condition from sample 1 with� = 10% of the den-
sity at the animal pole removed. Blue lines and arrows illustrate streamlines
de�ned by the cell �ux J(r ; t), circles depict defects with topological charge
+1 (white) and � 1 (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Chebyshev mode representation enables an e�cient and interpretable low-
dimensional description of undulatory locomotion across species and model
systems. (a) Experimental image ofC. elegansworm from the Flavell lab
with center of mass (COM) and mean orientation overlayed. (b) Tracked
centerline of worm over 100 seconds. The arrow indicates the direction of
motion. (c) A small number of Chebyshev polynomials su�ces to reconstruct
the worm shape (left) accurately. Faint colored lines correspond to centerline
reconstructions at di�erent polynomial degrees. Reconstruction error (right)
decays rapidly as the Chebyshev degreen increases. (d) The zeroth-order
Chebyshev coe�cients closely follow the worm's geometric COM, illustrating
the physical interpretability of the Chebyshev mode representation. (e) Sim-
ilarly, the �rst-order Chebyshev coe�cients represent the tail-to-head worm
orientation. (f) The mode-averaged dominant frequency of Chebyshev mode
oscillations correlates closely with the locomotion speed of the worm. . . . . 109

7.2 (top) True length ` and approximate length`a calculated using (6.12) show
close agreement. (bottom) Deviation betweeǹa � ` shows that the true
deviation is much lower than the bound0:13. Also the deviation is always
positive which means̀ a provides a close upper bound oǹ. . . . . . . . . . 110

7.3 Inferred Schrödinger dynamics replicate stereotypicalC. eleganslocomotion
(data provided by the Flavell lab). (a) Representative real propulsion vec-
tor h 0 and Hamiltonian H = S + iA for a minimal periodic straight-motion
model (7.1), with S = 0 and equidistant spectrum ofH , �tted to data from
a single oscillation period (� = 3:05 s). (b) Kymographs ofx(s; t) and y(s; t)
coordinate �elds for observed data (left) and model prediction (middle) show
little deviation (right), con�rming that (7.1) can accurately capture undula-
tory shape dynamics ofC. elegans. (c) Real-space dynamics predicted by the
Schrödinger model (line) is consistent with the observed worm dynamics (cir-
cles). Experimental data has been periodically extended for visualization to
avoid overlapping body segments. (d) Real-space shape functions [Eq. (7.2)]
corresponding to the three smallest magnitude eigenvalues,� �

k = � k� for
k = 0; 1; 2, account for > 98% of the shape dynamics, enabling a generaliz-
able low-rank description. More complex turning dynamics can be described
using time-varying Hamiltonians with unconstrained spectra (Figure 7.5). . . 111
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7.4 Mode-space Hamiltonians provide a compact dynamical description of undula-
tory motion across di�erent species and model systems. (a) Living and nonliv-
ing systems [236, 240] analyzed here and representative straight-motion Hamil-
tonians H = iA inferred from a single oscillation period. The eigenspaces of
the Hamiltonians enable the comparison and classi�cation of undulation dy-
namics in panel (d). Scale bars are 8 mm [centipede (data provided by the
Goldman lab)], 10 cm [snake (data provided by the Goldman lab)], 10 cm
(toy snake), and 0.25 mm (worm model). (b) Inferred Schrödinger model
dynamics (line) provide an accurate description of the observed dynamics
(circles). Models were �tted on a single period� = 0.19 s (centipede), 0.33 s
(snake), 0.45 s (toy snake), 2.2 s (worm model). Experimental data has been
periodically extended for visualization to avoid overlapping body segments.
(c) The dominant shape eigenvectorsv1(s) and w1(s) are consistent within
each species and capture di�erences between species. (d) Pairwise Grass-
mann distances between subspaces spanned by �rst excited eigenstates of the
Hamiltonians (top) and its 2D planar embedding (bottom, constructed by a
multidimensional scaling) capture the similarities and di�erences between un-
dulatory locomotion in organisms, model simulations, and robots. Each point
corresponds to a di�erent trajectory. . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Breakdown of adiabaticity during reversal turning behavior ofC. elegans.
(a) The turning part S(t) of the Hamiltonian H (t) = S(t) + iA (t) becomes
switched on at the turn. (b) The turn is signaled by a sudden change in
the geometric Berry phase (blue) of the dominant eigenvector, and the RMS
reconstruction error of the adiabatic approximation increases noticeably after
the turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1 General HDI framework illustrated for strongly noise-corrupted FHN simu-
lation data. (a) Algorithm �ow chart: (1) ODE sensitivity optimization [37]
yields N � 20; 000 candidate models by tuning20 parameters of dense two-
�eld cubic observed (blue) and hidden (dark-gray) variable equations from
random initializations. Models are �ltered for stability and �t quality. (2)
The remaining � 4000 models are hierarchically clustered using the cosine
similarity between their parameter vectors. Histograms of parameters in the
largest cluster are used to rank the terms based on their coe�cient of variation.
(3) Kemeny-Young ranking produces a list of candidate models of decreasing
sparsity. Models are re�t at each sparsity level, and the user can select the
model that best balances sparsity and relative error (RE). (b) Using data
from only the v time series corrupted by 50% noise, HDI correctly discovers
a sparse �rst-order system that reduces to the same second-order form as the
FHN model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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8.2 HDI framework learns a parsimonious two-variable model from an experimen-
tal recording of the membrane potential in a squid giant axon and reproduces
the dynamics in additional squid giant axons from the SGAMP database [294,
295]. (a) North Atlantic long�n inshore squid (Loligo pealeii) with a sketch
of the nervous system and position of giant axons (top). The learned two-
variable HDI model with nine terms accurately �ts the membrane potential
v (center, line) of an experimental squid giant axon (open circles) in response
to a noisy stimulus input current. The hidden variableh (bottom) acts as
a slow recovery variable. (b) Polynomial model terms in_v and _h equations
ranked from most to least important based on their coe�cient of variation in
the largest model cluster. Training data losses of sparse models containing
only top s ranked terms are shown, and a model with sparsity nine is chosen.
(c) Limit cycle and �xed points (black) of the learned model are consistent
with prior models of regular spiking neurons [259] where the proximity of
the saddle �xed point to the orbit likely arises from a homoclinic bifurcation.
Nullclines of v; h are plotted in blue and gray, respectively. (d) The Selected
nine-term model (line) generalizes to two additional squid axon recordings
(open circles). (e) Coe�cients of the nine-term model align across all three
trains and test squid axon experiments. . . . . . . . . . . . . . . . . . . . . . 123

8.3 HDI applied to our experimental BZ reaction data from J. F. Totz learns a
two-variable linear-quartic model that generalizes under catalyst variations.
(a) Experimental snapshots of the BZ reaction showing periodic color oscil-
lations (top). Input data (open circles) and observed and hidden variables
(solid line) integrated from the learned polynomial ODE model. Using data
from three oscillations, the learning framework �nds that a seven-term ODE
can accurately describe the dynamics. (b) Polynomial ODE terms appear-
ing in _c and _h equations ranked from most to least important based on their
coe�cient of variation. Model terms are added one at a time in order of im-
portance, with the seventh term leading to a drop in the training loss. (c)
Phase plane diagram of learned seven-term ODE from the previous panel con-
tains crucial features found in most two-variable BZ models [296]. The limit
cycle contains an unstable �xed point (black) with a monotonicx-nullcline
(blue) and an h-nullcline (dark gray) in the form of a �cubic" curve as found
in the FHN, Rovinsky, and ZBKE models. (d) The Resulting seven-term
model (solid line) accurately �ts the dynamics of the chemical solution's color
(open circles) in two new BZ experiments. (e) Coe�cients of the model re-
main consistent across all three experimental BZ reactions. Chemical con-
centrations: 0:20mH2SO4, 0:11mNaBrO3, 0:05mCH2(COOH)2, 0:03mNaBr,
0:3 mmferroin (blue), 0:41mH2SO4, 0:17mNaBrO3, 0:03mCH2(COOH)2, 0:02mNaBr,
0:3 mmferroin (green),0:51mH2SO4, 0:10mNaBrO3, 0:03mCH2(COOH)2, 0:02mNaBr,
0:3 mmferroin (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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8.4 HDI discovers true Lorenz system from observations ofx and y coordinates.
(a) Given observations of only thex and y coordinates (gray region), the
learned model predicts the evolution for several additional Lyapunov time
scales. (b) Lorenz model terms and coe�cients are discovered exactly by an
HDI search based solely on data in the gray region of the previous panel. (c)
The reconstructed attractor of the learned model closely agrees with the true
Lorenz attractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.1 W matrix for n = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.1 Optical measurement of periodic concentration changes in the oscillating Belousov-
Zhabotinsky reaction performed by J. F. Totz. (a) The experimental setup
consists of a spatially homogenized broadband light-source supplying the il-
lumination that is absorbed by the reagents in the closed stirred chemical.
The transmitted light is captured by a camera. (b) During chemical oscil-
lations the ferroin reagent cyclically changes its oxidation state a�ecting its
corresponding absorption spectrum: reduced catalyst Fe2+ (red) and oxidized
catalyst Fe3+ (blue). This allows for tracking the chemical oscillation state
optically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2 (Top) Snapshots of BZ reaction. (Middle) Average color in cropped region
(dashed box top) plotted in RGB color space shows that the reaction follows
a 1 dimensional curve in color space. (Bottom) A single trajectory is extracted
from the BZ movies by �rst cropping the movies to a rectangle (dashed box
top row) and then calulating the color di�erence between the average color
of a frame and a reference frame (5s) using Euclidean distance in the Lab
colorspace. The resulting trajectory is rescaled to lie between[0; 1]. . . . . . 133
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Chapter 1

Introduction

Experimental advances in live imaging and high-throughput sequencing make it possible to

study biological processes in unprecedented detail across scales. From whole animal be-

havioral states [1�3], to high resolution microscopy of signaling [4, 5] and single-cell [6�9]

dynamics, to the spatiotemporal physical [10, 11] and genetic [12] dynamics of multicel-

lular bacterial colonies. Combined with algorithmic progress in automated tracking and

segmentation [8�10], experiments can yield thousands of tracked long-lived single-particle

trajectories, often with simultaneous measurements of gene expression [5] or neuronal dy-

namics [13]. These novel data enable us to ask questions about the nature of interactions

within a system and the interplay between biological signaling and physical behavior. How-

ever, making quantitative statements and theoretical predictions directly from experimental

data requires developing new mathematical tools that are robust to noise, scattered sam-

pling, and partial observations. We require methods to translate high-dimensional input

data into low-dimensional representations that provide insight into a system's dynamics.

Modal decompositions have been widely applied in physics [14�16], applied mathemat-

ics [17�20], and numerical analysis [21, 22] to decompose a systems' dynamics into its

dominant components. Modal representations, therefore, are a powerful tool for provid-

ing low-dimensional representations and di�erentiating structure from noise. Di�erent types

of modes may be used to analyze a system: data-driven modes from techniques such as dy-

namic mode decomposition [19] and proper orthogonal decomposition [20]; prescribed modes

like Fourier bases or orthogonal polynomials chosen based on the geometry of the system [22,

23]; or eigen-modes from theoretical models [14, 15]. Here, we aim to build generic methods

readily applicable across experimental realizations and systems. Therefore, we focus here

on spectral representations where the basis is chosen based on the system's geometry in a

data and model-free way. One bene�t of spectral bases is that fast methods exist for work-

ing with them [24], but many of these algorithms require data sampled on �xed transform
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grids. While recent works have applied data-driven mode decomposition to analyze multi-

cellular communities [25] and developmental dynamics [26], the use of spectral methods to

analyze experimental data is not yet common due to the challenges posed by working with

data not sampled on the fast transform grid and the presence of noise. In the �rst part of

this thesis, we develop tools to apply spectral representations to experimental data and use

these representations to robustly extract theoretical quantities directly from experimental

measurements, enabling direct comparison between theory and experiment.

A full understanding of the underlying mechanisms of complex biophysical phenomena

may not always be available. Therefore, we would like to infer predictive models directly

from experimental data and use these models to interpret the dynamic structure. Dynamical

system inference has gained popularity lately due to the increased availability of experimental

data and computational power [27, 28]. Commonly used methods include library-based

regression [27, 29�33], symbolic regression [34, 35] and neural networks [28, 36, 37]. Many of

these previous works have focused on synthetic data, whereas applications of model discovery

to biological data are less frequent. In the second part of this thesis, we develop dynamical

system inference techniques that can be applied directly to experimental biological data.

Speci�cally, we focus on developing and inferring models directly in spectral mode space,

leading to methods robust to noise, scattered data samples, and partial observations.

The organization of this thesis is as follows. In Chapter 2, we introduce spectral rep-

resentations and develop techniques to apply them to experimental data. In particular, we

focus on accounting for noise during spectral projection and show that fast algorithms exist

in the presence of noise, even for data not sampled on the fast transform grid. Chapter 3

contains three applications of spectral methods for analyzing experimental data:

1. In collaboration with Nikta Fakhri's lab at MIT, we apply spectral methods to live

imaging data of Rho-GTP signaling protein on the surface of star�sh egg cells. We use

the representations to extract smooth, di�erentiable, denoised signaling �elds. We then

use this denoised representation for further analysis, enabling the robust tracking of

long-lived defects, revealing a correlation between cellular activity and braiding expo-

nents, and suggesting phenomenological similarities between living matter and certain

quantum systems. The results have previously been published in J. Liu, J. F. Totz, P.

W. Miller, A. D. Hastewell, Y. C. Chao, J. Dunkel, and N. Fakhri, "Topological braid-

ing and virtual particles on the cell membrane,"Proceedings of the National Academy

of Sciences, 118(34), e2104191118, 2021.

2. We apply spectral methods to coarse-grained active particle data. We use the resulting

di�erentiable �elds to compute high-accuracy derivatives of the data, improving the
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robustness of library-based model inference regression. The results have previously

been published in R. Supekar, B. Song, A. D. Hastewell, G. P. Choi, A. Mietke, and

J. Dunkel "Learning hydrodynamic equations for active matter from particle simu-

lations and experiments,"Proceedings of the National Academy of Sciences, 120(7),

e2206994120, 2023.

3. Finally, we extend the spectral representation framework to a non-rectangular domain.

In collaboration with Knut Drescher's lab, we apply the framework to spatiotempo-

rally measured gene expression patterns during bacterial swarming. We use the low-

dimensional representation provided by spectral projection to identify and categorize

genes with strong spatiotemporal patterns. The resulting analysis reveals a strong

relationship between the spatiotemporal expression patterns of genes associated with

metabolism and the spatiotemporal dynamics of phenotypic properties, leading to the

discovery of spatiotemporal cross-feeding interactions within the swarm. The results

have previously been published in H. Jeckel*, K. Nosho*, K. Neuhaus, A. D. Hastewell,

D. J. Skinner, D. Saha, N. Netter, N. Paczia, J. Dunkel and K. Drescher, "Simultaneous

spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development

reveal cooperation across generations,"Nature Microbiology, 8(12), 2378-2391,2023.

We study dynamic system inference for mode space dynamics in the second part. In

Chapter 4, we consider the theory behind mode space dynamics and develop a sparse linear

dynamical systems inference framework that is robust to noise. In Chapter 5, we apply

the inference framework to the developmental dynamics of zebra�sh during the early stages

of embryogenesis. The results in Chapters 4 and 5 have previously been published in N.

Romeo*, A. D. Hastewell*, A. Mietke, and J. Dunkel, "Learning developmental mode dy-

namics from single-cell trajectories".Elife, 10, e68679,2021.

Chapter 6 shows how to incorporate physical and biological constraints into mode space

models using planar curve dynamics as an example. Additionally, we develop an e�cient

inference algorithm for the constrained dynamics. In Chapter 7, we apply the results in

Chapter 6 to undulatory locomotion and show how the resulting inferred dynamical mod-

els can be used to classify di�erent animals' motion and behavioral states. The results in

Chapters 6 and 7 have previously been published in A. E. Cohen*, A. D. Hastewell*, S. Prad-

han, S. W. Flavell, and J. Dunkel, "Schrödinger Dynamics and Berry Phase of Undulatory

Locomotion," Physical Review Letters, 130(25), 258402,2023.

Finally, in Chapter 7, we discuss extensions of the inference framework to incorporate

nonlinearities and account for unobserved variables. We show the utility of this extension

by applying it to neural, chemical, and chaotic dynamics. The results in Chapter 7 have
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previously been published in a preprint G. Stepaniants*, A. D. Hastewell*, D. J. Skinner, J.

F. Totz, and J. Dunkel, "Discovering dynamics and parameters of nonlinear oscillatory and

chaotic systems from partial observations,"arXiv preprint arXiv:2304.04818, 2023.

Chapter 8 concludes with some �nal remarks about the general framework presented and

possible future extensions.
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Chapter 2

Spectral representations

The key idea underlying spectral representations, formalized in the next section, is that a

function is well approximated by a series expansion in a �xed basisf � n (x)gN
n=1 ,

f (x) �
NX

n=0

cn � n (x): (2.1)

We call expansions of the form (2.1) a spectral representation off (x) in the basis � n (x).

Common examples of spectral representations are Fourier series where the basis is trigono-

metric functions, for example,� n (x) = cos nx, or orthogonal polynomial expansions, such

as Chebyshev series where� n (x) = Tn (x) = cos(n arccosx). When performing expansions

of the form (2.1), we are shifting information about the functionf (x) into a �nite number

of scalar coe�cients cn . At the same time, operations onf (x), such as di�erentiation and

integration, are shifted to corresponding manipulations on the known basis� n (x). This split

has several advantages. From a theoretical perspective, we can compare functions by com-

paring their coe�cients and properties off (x), such as continuity and di�erentiability, follow

directly from the basis. From a practical perspective, we can perform accurate computations

on spectral representations since operations on the functions become operations on known

bases.

Spectral representations have been used with great success in numerical analysis [21]

to develop e�cient and accurate algorithms for function approximation [24, 38], solving

di�erential equations [22, 39], and root solving [40]. The success of these methods relies on the

observation that when the functionf (x) is continuous and has continuous derivatives, then

the coe�cients cn in the expansion (2.1) decay rapidly, enabling accurate approximations

with small N , for a large class of functions with a single �xed basis. Additionally, the

existence of fast algorithms [41] for calculating coe�cientscn directly from samples off
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enables the development of practical and e�cient algorithms.

In biophysics, many experimentally measured quantities, from chemical signaling �elds

and gene expression pro�les to physical densities and velocity �elds, are assumed to vary

smoothly in space and time. Such data, therefore, lend themselves naturally to spectral

representations. Furthermore, the existence of fast algorithms means that these approaches

can be readily scaled to high-resolution imaging data.

In this chapter, we summarize some de�nitions and theoretical results for spectral rep-

resentations. We then discuss how spectral representations behave when applied to noisy

inputs and the consequences when working with experimental data.

2.1 Spectral representations in orthogonal bases

We consider spectral representations of real or complex, scalar di�erentiable functions de�ned

over some possibly in�nite subsetD of Rn , f (x) : D � Rn ! R or C. We de�ne an inner

product over the domainD, using � to denote complex conjugation,

hf (x); g(x)i w =
Z

D
dx w(x)f (x)g� (x) (2.2)

with w(x) a non-negative weight function that is integrable over the domainD. We will

work with bases that are orthogonal under the inner product

h� n (x); � m (x)i w = k�
n � n;m (2.3)

where� n;m is the Kronecker delta de�ned by,

� n;m =

8
<

:
1 if n = m

0 otherwise
: (2.4)

When the choice of basis is clear, we will drop the� and w labels on the inner product

and kn . The coe�cients in (2.1) are given by,

cn =
hf; � n i w

h� n ; � n i w
=

1

k�
n

Z

D
dx w(x)f (x)� �

n (x): (2.5)

We de�ne the weighted square approximation error of the spectral representation by,

EN =
Z

D
dx w(x)

�
�
�
�
�
f �

NX

n=1

cn � n (x)

�
�
�
�
�

2

: (2.6)
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By di�erentiating (2.6) with respect to cn , we see that the values ofcn that minimize the

square error are given by (2.5).

We will frequently work with two sets of basis functions: the Fourier basis for periodic

data and the Chebyshev basis for non-periodic data. For convenience, we summarize some

details about these bases below.

2.1.1 Fourier series

In one dimension, the Fourier basis is de�ned by the representation,

f (x) = a0 +
NX

n=1

an cos(2�nx ) + bn sin(2�nx ) =
NX

n= � N

cne2�in (2.7)

which are orthogonal on[0; 1] under the weight functionw(x) = 1 . We will use the series' real

and complex exponential forms interchangeably based on convenience. Using integration by

parts, we can bound the coe�cientsan and bn . If f (x) is periodic and isk times di�erentiable

with k � 1 periodic derivatives and thekth derivative of f has bounded variation, then the

coe�cients decay asan ; bn � n� (k+1) . If the function is analytic, then the coe�cients decay

geometrically asan ; bn � � � n for some � > 1 [42]. These decay rates have immediate

consequences for the accuracy of the spectral representation since the error will generally be

on the order of the last retained coe�cient [23].

Given M samples off on the uniform grid xm = m=M for 0 � m < M we can discretize

the integral in (2.5) using the trapezoidal rule, which is known to be exponentially convergent

for periodic functions [43],

~ck =
1

M

M � 1X

m=0

f (xm )e� 2�imk
M : (2.8)

The coe�cients ~ck are accurate approximations ofck and we will treat them interchangably

and drop the tilde. The summation (2.8) can be evaluated e�ciently using the Fast Fourier

Transform (FFT) in O(n logn) operations, enabling the accurate and e�cient evaluation

of coe�cients in the spectral representation using uniform function samples. We discuss

dealing with noisy or non-uniform samples in Section 2.2.

We can evaluate a Fourier representation at an arbitrary point using Horner's method

for polynomial evaluation. We can calculate the representation's derivative as,

d
dx

f (x) = 2 �
NX

n=1

� nan sin(2�nx ) + nbn cos(2�nx ) = 2 �i
NX

n= � N

ncne2�in ; (2.9)
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which corresponds to another series of the form (2.7) but with coe�cientsa0
n = 2�nb n and

b0
n = � 2�na n or c0

n = 2�inc n .

2.1.2 Chebyshev polynomials of the �rst kind

The Chebyshev polynomials of the �rst kind de�ned by

Tn (x) = cos(n arccosx) (2.10)

are degreen polynomials and are orthogonal on[� 1; 1] under the weight function w(x) =

(1 � x2)� 1=2 [23, 44]. The Chebyshev polynomials form a complete orthogonal basis for

continuous functions on the domain[� 1; 1]. A Chebyshev polynomial representation of a

function is given by,

f (x) =
NX

n=0

cnTn (x) (2.11)

The Chebyshev coe�cients for a functionf are given by,

cn =
2 � � n0

�

Z 1

� 1
dx

1
p

1 � x2
Tn (x)f (x) =

2 � � n0

�

Z �

0
d� cos(n� )f (cos� ) (2.12)

Analogous theorems for the decay of coe�cients exist for the Chebyshev series. Suppose

that f (x) and its �rst k � 1 derivatives are absolutely continuous on[� 1; 1] and the kth

derivative has bounded variation then the Chebyshev coe�cients decay ascn � n� (k+1) . If

f (x) is analytic on [� 1; 1] then its Chebyshev coe�cients decay geometricallycn � � � n for

some� > 1 [45].

The N + 1 point Chebyshev gridf xc
ngN

n=0 is de�ned by the extremal points ofTN (x)

xc
n = � cos(n�=N ) for 0 � n � N: (2.13)

Given a function f (x) sampled on the Chebyshev grid, the �rstN + 1 coe�cients can be

approximated to high accuracy by the sum,

cn �
2 � � 0;n � � N;n

N

"
f (� 1)(� 1)n + f (1)

2
+ ( � 1)n

N � 1X

m=1

f (xc
m ) cos

� �nm
N

�
#

: (2.14)

The sum can be considered the trapezoidal rule applied to the periodic integral on the right-

hand side of (2.12). The sum in the coe�cient transform can be calculated e�ciently using

a fast DCTII in O(N logN ) operations [41].
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As a general rule of thumb, the magnitude of the error (2.6) will be governed by the

magnitude of the last coe�cient cN [23]. An important observation for smooth di�erentiable

functions is that the magnitude ofcn decays rapidly, implying that spectral representations

can provide accurate representations of data with signi�cant compression � the number of

terms retained,N , for an accurate representation of the data is much less than the number

of data samples .

Given a representation of the form (2.11), we can evaluate the series and its derivatives at

arbitrary points using Clenshaw-Smith recurrence [46]. The representation of the derivative

is given by,
d

dx
f (x) =

NX

n=0

cn
d

dx
Tn (x) =

N � 1X

n=0

c0
nTn (x) (2.15)

which is a polynomial of degreeN � 1. The coe�cients in the new expansion are given

by [23, 44],

c0
n = (2 � � n;0)

bN � 1� n
2 cX

m=0

(n + 1 + 2 m)cn+1+2 m : (2.16)

2.1.3 Extension to multiple dimensions

A natural extension of spectral representation bases into multiple dimensions is given by the

tensor product basis,

� n1 ;n2 ;��� ;nN (x) =
NY

i =1

� n i (x i ): (2.17)

Moreover, we can extend this concept further by introducing mixed tensor product bases,

allowing for di�erent bases in each dimension. Frequently, we will use these mixed bases to

analyze video data where the time dimension is treated separately from the spatial dimen-

sions.

2.2 Calculation of spectral coe�cients from data

A unique challenge posed by experimental data is �xed grid sampling. In many applications

in numerical computing, we assume that the function can be sampled on an arbitrary grid,

enabling fast algorithms. Here, we present several approaches for calculating coe�cients

in spectral representations when data samples are on a �xed grid and contain noise. We

will illustrate the approaches using a sampled one-dimensional function, although higher-

dimensional generalizations are readily possible. Consider a functionf (x) sampled on an

ordered grid f xs
ngN

n=0 , f n = f (xs
n ). The function samples and the coe�cients in the spectral
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representation can be stacked into vectorsf = [ f 0; : : : ; f N ] and c = [ c0; : : : ; cM ]. We will

frequently not have access tof but a noise corrupted version~f = f + � , where we assume

that the noise is additive andkf k � k � k

2.2.1 Least squares �t coe�cients

We de�ne a discrete square approximation error by,

EN =
MX

m=1

 

f m �
NX

n=1

cn � n (xm )

! 2

= kf � � ck2 (2.18)

where the Vandermonde matrix� has entries� mn = � n (xm ), and k�k is the standard Eu-

clidean vector norm. When the number of observations is small enough, the coe�cient

vector c may be determined from the least squares solution of the problem� c = f implied

by (2.18). When the samples are not well distributed or whenN approachesM , the least

squares solution may become ill-conditioned, and it becomes necessary to add regularization

to the least squares problem [47].

2.2.2 Interpolated DCT coe�cients

The solution of the least squares problem scales asO(M 2N ), which becomes computation-

ally too expensive for high-resolution data. Instead, we would like to use fast transforms

that scale asO(M logM ). However, we need the function to be sampled on a �xed grid

to use fast transforms. We consider Chebyshev transforms but the ideas presented can be

generalized to other bases if needed. We transform between sample points and the �xed grid

using interpolation. Consider a functionf (x) sampled on a uniform gridf m = f (m� x) for

0 � m � M and � x = 1=M. We must obtain samples of the function on the Chebyshev

grid f c
m . The Chebyshev coe�cients are given on this grid by performing the DCTII. Var-

ious approaches to resampling points between the two grids have been proposed, including

polynomial interpolation [48], rational interpolation [21], and kernel methods [49].

For e�ciency, we choose to use linear interpolation. For a given Chebyshev pointxc
k

de�ne the interval [xs
k ; xs

k+1 ] to be the shortest interval with endpoints in the sample grid

such that xc
k is contained in the interval. Then linear interpolation gives

f (xc
k) = f (xs

k)
�

xs
k+1 � xc

k

xs
k+1 � xs

k

�
+ f (xs

k+1 )
�

xc
k � xs

k

xs
k+1 � xs

k

�
+ r k (2.19)
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where the error term by Rolle's Theorem is bounded by [48],

jr k j �
(xs

k+1 � xs
k)2

8
max

x2 [xs
k � 1 ;x s

k ]
jf 00(x)j (2.20)

and scales as the square in the sample spacing and with the smoothness of the function

through the second derivative term. The operations required for the interpolation step are

linear in the number of Chebyshev samples, meaning that the dominant computational cost

is still the O(N; logN ) computation.

2.2.3 Noise robustness of DCT interpolated coe�cients

If instead of f we use samples~f then the interpolated sample vector will be given by~f c =

f c + ~� + r , with two sources of error; the interpolated noise~� and the interpolation error r .

The interpolated noise~� is given by,

~� k = � k

�
xs

k+1 � xc
k

xs
k+1 � xs

k

�
+ � k+1

�
xc

k � xs
k

xs
k+1 � xs

k

�
: (2.21)

Under the assumption that the� k are independent and identically distributed Normal random

variables with mean0 and variance� 2, the interpolated noise will also be a random variable

with modi�ed variance

~� 2 = � 2

�
� 2 + (� � � )2

� 2

�
� � 2 (2.22)

where � = xs
k+1 � xs

k , � = xs
k+1 � xc

k . The bound comes from maximizing the quadratic

coe�cient over 0 � � � � .

When we use~f c to calculate Chebysehv coe�cients using (2.14), by the linearity of the

transform, the coe�cient vector will be given by ~c = c + �̂ + r̂ . The �rst term is the true

coe�cients accurate to machine precision. The second term comes from the Chebyshev

transform of the interpolated noise. Again assuming that the noise on each term is an

independent Normal variable with mean0 and variance~� 2, the transformed noise will also

be a Normal random variable with zeros mean and new variance,1 � k � N � 1,

�̂ 2
k =

4
N 2

"
1
4

+
1
4

+
N � 1X

n=1

cos2
�

�nk
N

� #

~� 2 =
4

N 2

N � 1
2

~� 2 �
2
N

~� 2: (2.23)

The Chebyshev transform decreases the variance in the noise; the mean magnitude of the

noise isE[j�̂ k j] =
p

4=�N ~� . The third term comes from the Chebyshev transform of the
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interpolation error. The triangle inequality can bound the interpolation error sum,

r̂ k �
2
N

"
N � 1X

n=1

�
�
�cos

� �nm
N

� �
�
� jrn j +

jr0j + jrN j
2

#

�
2
N

"
N � 1X

n=1

jrn j +
jr0j + jrN j

2

#

�
2
N

krk1:

(2.24)

In practice, however, the interpolation error will not saturate the bound, and numerically,

we see similar behavior to the noise term with a factor of
p

N decrease in the error, which

can be justi�ed by thinking of the interpolation error as a random variable with variance

proportional to the upper bound.

Similar results for Fourier representations and, more generally, any quadrature-based

coe�cient calculation are possible. The results above show that we can e�ciently and

robustly use spectral representations for many types of noisy data where function samples

are provided on a dense enough grid and the underlying function is su�ciently smooth such

that r̂ k � �̂ k � ck for small k. The interpolation step does not introduce signi�cant errors

while enabling e�cient computations.

2.2.4 Noise reduction of spectral representations

A key property of spectral representations that makes them useful for data analysis is their

ability to separate information about a function's smooth structure � contained in the low-

degree coe�cients � from noise in the measurement � which dominates higher-degree coe�-

cients where the contribution from the smooth structure has become negligible. This enables

us to remove noise from data by thresholding the coe�cients in the spectral representation.

Given full information about the underlying function and the noise statistics, the results in

the previous section may be used to determine the transition point between coe�cients that

capture the structure and those that are noise-polluted and should, therefore, be thresholded.

In practice, however, we do not have either piece of information. We, therefore, have to

come up with heuristic arguments to determine where to truncate the spectral expansion.

Heuristics have to be used even in the noise-free case; see, for example, [50] for a detailed

discussion. In general, we wish to balance a few key properties,

ˆ Accuracy in the representation with compression in the number of coe�cients retained;

ˆ Structure in the underlying function with noise reduction.

If we plot the square error (2.18) as a function of the number of the number of coe�cients

used in the expansionN , we would expect to see two distinct regimes in the curve. Initially,

the error will be dominated by the large coe�cients that are not retained, and the error
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should decay geometrically� � N if the underlying function is su�ciently smooth. Eventually,

the noise will dominate� � N � � , and the error will begin to decay linearly inN to some

�xed level. In general, the square error will not decrease to machine precision due to the

interpolation errors. This suggests a method to extract thresholds. We choose a cuto� in the

elbow of the error curve where we do not retain coe�cients associated with the noise. We can

identify the start of this noise regime by looking for regions where the error is approximately

linear on a log-log plot. We show applications of this approach to experimental data in

Chapter 3.
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Chapter 3

Applications of spectral representations

to experimental data

3.1 Application to Rho-GTP imaging data

The contents of this section have been adapted from the publication, J. Liu, J. F. Totz, P.

W. Miller, A. D. Hastewell, Y. C. Chao, J. Dunkel, and N. Fakhri, �Topological braiding

and virtual particles on the cell membrane� Proceedings of the National Academy of Sciences,

118(34), e2104191118, 2021.

As a �rst application we apply spectral representations to experimental imaging data

from Nikta Fakhri's lab performed by J. Liu and Y. C. Chao. The resulting spectral repre-

sentations were then used in further analyses by J. Liu, J. F. Totz and P. W. Miller.

3.1.1 Motivation

Braiding confers remarkable robustness to static and dynamic structures, from plaited hair

and fabrics [51] to the entangled worldlines of classical [52] and quantum particles [53].

Stabilized by an inherent topological protection, braided threads, ropes, and wires have

long been used to transmit forces and shield signals [54]. Over the last decade, dynamic

braiding processes [55�57] have attracted major interest in soft matter [58, 59] and quantum

physics [53] as promising candidates for robust information storage and processing [60, 61]. A

widely studied application is topological quantum algorithms that perform computations by

braiding the worldlines of 2D quasiparticle excitations [53, 60, 61]. Of similar importance to

information processing in living systems � albeit much less well understood � is the braiding

dynamics of chemical spiral wave signals on cell membranes, which control a wide range of

developmental and physiological functions, including cell division [62], cardiac rhythm [63�66]
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Figure 3.1: Time evolution of chemical Rho signaling wave patterns on the star�sh oocyte
from a homogeneous initial state to a quasi-steady state exhibiting turbulent spiral patterns.
Snapshots show maximal intensity projections of three near-membrane Z-stack confocal slices
spanning 5µm. Scale bar: 40µm. Experimental images provided by the Fakhri lab [70].
Note the visible presence of noise in the images on top of relatively smooth intensity pro�les,
lending these types of microscopic images well to spectral representation.

and brain activity [67]. These spiral waves belong to a rapidly expanding class of recently

discovered biological phenomena [68, 69] in which topological structures serve as robust

organizers of essential life processes.

To investigate the braiding dynamics of biochemical spiral waves in living cells, we con-

sider experimental observations of Rho-GTP activation waves, a highly conserved signaling

protein [71, 72] across a wide variety of eukaryotic species [73], on star�sh oocyte membranes

performed by J. Liu and Y. C. Chao in the Fakhri lab [4, 70](Figure 3.1). Since the biological

functions of Rho-GTP have been widely investigated previously [74], we focused here on the

topological characterization of the biochemical signaling dynamics. Di�erent steady-state

patterns of Rho-GTP are induced by a systematic increase of the GEF (guanine exchange

factor) responsible for activating Rho-GTP (experimental states i�v) [75]. Rho-GTP waves

maintained constant oscillatory periods within all observed non-equilibrium steady states

with di�erent cellular activity [4], enabling the reconstruction of spatiotemporal phase �elds.

We compare the experimental phase �elds and the resulting defect statistics to predictions

from the complex Ginzburg-Landau (CGL) equation [76]

@t  =  � (1 + ic)j j2 + (1 + ib)r 2 ;

a generic model describing the spatio-temporal evolution of oscillatory continuum systems

 (x; t) near a Hopf bifurcation [70].

Overcoming previous observational and algorithmic limitations, we achieved the spa-

tiotemporal resolution required for dynamical analysis by combiningin vivo imaging with

38



spectral signal representation, quantitative mathematical modeling, and large-scale compu-

tational parameter estimations. Full details about the experimental setup and computational

modeling can be found in [70]. Here, we detail the spectral representation step that enabled

the extraction of phase �elds and defect tracking from the experimental movies for compar-

ison with theoretical predictions.

3.1.2 Spectral representations of microscopic imaging data.

We constructed the phase �eld from microscope images using the following procedure: Raw

time-lapse Z-stack images (covering� 5 µm near the membrane) were �rst combined into a

single intensity �eld video through a maximal intensity projection. The rectangular intensity

�eld video, I (x; t), was extracted from the experimental intensity video by least square �tting

an ellipse to the boundary of the oocyte. The data was then rotated to axis align the major

and minor axes of the ellipse. We extract the rectangular region by choosing the largest

rectangle inscribed in the ellipse. Following the approach outlined in Chapter 2, we use the

tensor product basis to construct a multidimensional basis (Section 2.1.3); the(2+1) D space-

time data cube with Nx , Ny and N t pixels in each dimension respectively is represented as

a sum over basis functions, Chebyshev polynomials of the �rst kind in space (Section 2.1.2)

and Fourier in time (Section 2.1.1), assumingN t is even,

I (x; t) =
N x � 1X

n=0

N y � 1X

m=0

N t =2� 1X

k= � N t =2

cn;m;k Tn (x)Tm (y)e2�ikt=N t : (3.1)

The coe�cients cn;m;k are found following the linear interpolation approach outlined in Sec-

tion 2.2 generalized to multiple dimensions. The coe�cients can be calculated e�ciently

using fast algorithms for the Discrete Cosine Transform and the Discrete Fourier Trans-

form [41, 44] applied along their respective dimensions. These transforms assume that the

function is sampled on the Chebyshev grid in both spatial dimensions and uniformly spaced

in time. The data is converted from the uniformly spaced experimental grid to the Cheby-

shev grid using linear interpolations. Given the noise in the images, we expect that the errors

introduced in the coe�cients from the linear interpolations will be of lower order than the

errors already introduced from the noise in the data (Section 2.2).

From Figure 3.1, we expect that the imageI (x; t) will be well approximated by a smooth

di�erentiable function f (x; t) with additive noise. We, therefore, expect that we can remove

noise and get a smooth representation of the data by cutting o� the summation in (3.1) at
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the thresholdsM c and M f to get the new denoised representation of the data (Section 2.2.4),

f (x; t) �
(Ny=Nx )n+ m� M cX

n;m =0

M fX

k= � M f

cn;m;k Tn (x)Tm (y)e2�ikt=N t : (3.2)

We de�ne the thresholdM c to include all combined spatial polynomial basis functions below

a given total degree. TheNy=Nx weighting is incorporated to account for the di�erent sizes

of the two spatial dimensions, leading to di�erent resolutions of polynomials with the same

degree along the two di�erent dimensions. The thresholdsM c and M f are chosen by sweeping

over all possible thresholds0 � M c � Ny and 1 � M f � N t=2 and calculating the relative

reconstruction error,

E(M c; M f ) =

q P
x;t (I (x; t) � f (x; t))2

q P
x ;t I (x; t)2

(3.3)

and the e�ective compression at each point. The e�ective compression is de�ned by the mean

of the spatial and temporal compressionC = 0:5(Cs + Ct ) whereCt = (2 M f +1) =(2N t +1) and

Cs = (2 + 2 M c � Ny)(1 + Nx )=(2NxNy). A scatter plot of compression versus reconstruction

error shows a front corresponding to the points of best reconstruction error for a given

compression (Figure 3.2). These correspond to points where the reconstruction error and

compression contours are tangent. Following the discussion in Section 2.2.4, we expect the

error to show two di�erent regimes: a rapid decay as the compression is initially increased,

followed by a slower decrease when the noise starts to dominate. Therefore, we choose the

threshold at the start of the elbow of this error compression front, which is determined by

�tting a line to the linear part of the curve on a log-log plot.

Validation on mock CGL data

The method was �rst tested on mock CGL data with added Poisson noise of varying strengths

to approximate experimental noise. Figure 3.2(b, c) illustrates the process for choosing the

thresholds, and Figure 3.2(a) shows a comparison of the resulting reconstruction to the noisy

input image and the true image for one noise strength.

The phase was calculated from the spectral data representation. Let� be approximately

a quarter of the oscillation period of the oscillating time signal of each pixel. First, the

moving center, �I (t), calculated by convolving the signal with a Gaussian window of width

� , was subtracted from each pixel. This centers the pixel time signal around0. Next we

computed the analytic extension of each pixel trajectory(I � �I )( t) into the complex plane,

z(t) = ( I � �I )( t) + HT[(I � �I )( t)], where HT[(I � �I )( t)] is the Hilbert transform of the signal
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Figure 3.2: (a) Truncated spectral representation (middle) shows signi�cant noise reduction
compared to noise-polluted input data (second left) while retaining the structure of the true
underlying �eld (left) for simulated CGL test data with added Poisson noise. A compar-
ison of the extracted phase �eld from the true CGL data (second right) and the denoised
reconstructed �eld (right) shows they contain the same structure and very similar defect
statistics. (b) Parameter sweep over possible Fourier and Chebyshev mode cuto�s for the
CGL test data. Reconstruction error contours (black lines) and compression contours (white
lines) are shown. Points where the two contours are tangent correspond to points on the
error compression front. (c) Compression error front extracted from the parameter sweep in
(b) along with the linear �t to the log-log curve (green line) and the chosen cuto� point (red
dot)

[77]. In the frequency domain, this corresponds to setting all coe�cients corresponding to

negative frequencies to 0 and doubling those corresponding to positive frequencies. For a

discrete signal of lengthN with discrete Fourier coe�cients Î k this is given by

ẑk =

8
>>><

>>>:

2Î k for 1 � k � N
2 � 1

0 for N
2 + 1 � k � N � 1

Î k for k = 0 or k = N
2

: (3.4)

We then de�ne the phase of the signal� (t) as the angle of the analytic signal in the complex

plane � (t) = tan � 1(HT[(I � �I )( t)]; (I � �I )( t)) . The phase �eld is extracted for each pixel

in the image to obtain the time-lapse phase �eld,� (x; t). Figure 3.2(a, right) compares

the phase extracted using the Hilbert phase between the true CGL simulation data and the

denoised spectral representation. We see that the denoised phase closely matches the true

phase, highlighting the ability of spectral representations to extract quantitative quantities
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