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Abstract 
 

Defect engineering provides access to a much larger range of material properties and is 

particularly necessary when designing any high-defect density material such as nanocrystalline 

(NC) alloys. Traditionally, bulk equilibrium phases have been considered in a decoupled manner 

from defects, such as solute and segregated atoms, dislocations, and grain boundaries. In recent 

years, a push has been made to treat defects as “defect states” in a manner analogous to bulk 

phases so they can be analyzed alongside existing bulk equilibrium phase diagrams – a treatment 

I refer to here as “phase-and-defect” diagrams. Segregated grain boundaries (GBs) are one such 

defect phase, and recent progress has indicated that spectral information, which describes the full 

distribution of available atomic environments, is required to rigorously understand segregated 

polycrystalline grain boundaries. However, models proposed prior to this work are primarily 

thermodynamic isotherms, which suffer from several limitations that prevent their use in the 

development of phase-and-defect diagrams. Existing spectral isotherms often use scalar 

assumptions to address solute-solute interactions, or are not atomistically informed, and have not 

been constructed from analytical free energy functions. For this reason, they cannot be used to 

construct fully spectral phase-and-defect diagrams. Furthermore, existing databases of spectral 

parameters contain only dilute limit information, limiting the accessibility of spectral segregation 

predictions at finite concentrations.  

 

In this work, I take the following steps to address this need. First, I present a thermodynamic 

model that captures the spectral nature of both the segregation and solute interaction energies, 

and I describe an atomistic, physically motivated method to measure the full spectrum of GB 

solute interaction energies in a polycrystal. Then, I present the analytical framework for a 

spectral regular solution model of segregated polycrystals. I use this framework to derive a fully 

spectral free energy function and demonstrate how it can be used to develop a self-consistent 

phase-and-defect diagram which considers the bulk regular solution and the segregated 

polycrystalline defect state, and which shows significant improvement of the spectral model over 

traditional scalar representations. Finally, I develop an accelerated framework for predicting 

spectral solute-solute interactions, using a modified “bond-focused” local atomic environment 

(LAE) representation to construct descriptors for nearest neighbor pairs in the GB. I rigorously 

demonstrate its use for multiple binary alloys, and I then apply this accelerated framework to 

approximately 200 available embedded atom method (EAM) potentials to construct a large-scale 

database of spectral parameters for binary alloys beyond the dilute limit. 

 

This work makes accessible, for the first time, fully spectral segregation parameters at finite 

concentrations. Additionally, it provides a framework for incorporating those estimates into 

existing CALPHAD methodology, allowing the production of phase-and-defect diagrams for 

segregated polycrystals. In doing so, I hope that this work will improve the community’s ability 

to engineer stable nanocrystalline alloys and other defect states in the future. 

 

Thesis Advisor: Christopher A. Schuh 

Title: John G. Searle Professor, Northwestern University Materials Science and Engineering; 

Dean, Northwestern University Robert R. McCormick School of Engineering and Applied 

Sciences 

  



3 
 

Graphical Abstract 

 

 

  



4 
 

Acknowledgements 

 

I would like to thank my thesis advisor, Professor Christopher A. Schuh, without whose support 

and mentorship this work would not have been possible.  

 

I would also like to thank my thesis committee, Professor Craig. W. Carter and Professor Alfredo 

Alexander-Katz, who provided invaluable guidance throughout this work.   

 

The members of the Schuh group made this an unforgettable experience. Many valuable 

discussions with Dr. Nutth Tuchinda and Dr. Malik Wagih in particular helped to bring this work 

to fruition.  

 

Additionally, I would like to give a huge thank you to the many people throughout my life who 

helped me in starting this journey. Specifically, I would like to thank Professor Elizabeth Holm, 

my undergraduate research advisor at Carnegie Mellon University, who helped provide one the 

first of many great research experiences I’ve had, and Timothy Chelednik and Donald 

Allenbaugh, my high school teachers who helped set me on the path towards an academic career.  

 

Finally, I would like to extend an incredible thank you to my family, whose support from afar 

made all this possible, and to all my friends near and far who have been with me throughout this 

journey.  

 

This work was supported by the National Science Foundation Graduate Research Fellowship 

[grant number 2141064], the National Science Foundation [grant number DMR2002860], and 

the Department of Energy [grant number DE-SC0020180].  



5 
 

Table of Contents 

 

1. Introduction……………………………………………………………………….. 8 

2. Background………………………………………………………………………... 14 

2.1. Scalar Representation of GB Segregation…………………………………….  14 

2.2. The Spectral Representation of GB Segregation……………………………... 16 

3. The Solute-Solute Interaction Spectrum………………………………………….. 18 

3.1. Atomistic Simulations………………………………………………………... 18 

3.2. Measuring the Solute-Solute Interaction Spectrum…………………………... 23 

3.3. The Fully Spectral Segregation Isotherm…………………………………….. 24 

4. A Spectral Free Energy Representation for Segregated Polycrystals……………... 29 

4.1. The Spectral Nanocrystalline Regular Solution Model………………………. 30 

4.2. Spectral Solution Model ……………………………………………………... 32 

4.3. Spectral Bond Distributions………………………………………………….. 34 

4.4. Spectral Free Energy Functions………………………………………………. 37 

4.5. Spectral Equilibrium Conditions and the Spectral Isotherm Model………….. 40 

4.6. Conversion of Site-Specific Spectra to Bond Energy Spectra……………….. 41 

5. Phase-and-Defect Diagram Construction…………………………………………. 43 

5.1. The Nanocrystalline Free Energy at Fixed Grain Size……………………….. 44 

5.2. The Nanocrystalline Phase-and-Defect Diagram…………………………….. 47 

6. A Large-Scale Database of Spectral Parameters Beyond the Dilute Limit……….. 51 

6.1. Background on LAE Representations………………………………………... 51 

6.2. Atomistic Assessment of the Site Spectra……………………………………. 52 

6.3. Representation of the LAE…………………………………………………… 55 

6.4. A High-Fidelity Learning Model Based on the LAE…………………………. 57 

6.5. Accelerated Predictions – Automatic Selection of Training Data…………….  58 

6.6. Model Validation……………………………………………………………... 60 

6.7. A Full Tri-Variate Database of Spectral Segregation Parameters……………..  63 

      Conclusion…………………………………………………………………………….. 66 

      Future Outlook………………………………………………………………………… 69 

      Appendix A – The Scalar NCRS Model………………………………………………. 71 



6 
 

      Appendix B – Solute Interaction Predictions from a “Site-Focused” LAE…………… 79 

      Appendix C – Accelerated Model Validation…………………………………………. 79 

      Appendix D – Full Tri-Variate Database of Spectral Segregation Parameters………... 82 

      References…………………………………………………………………………….. 150 

 

List of Figures 
 

Figure 1.1. Components of the free energy of segregation, ∆Gseg, separated into dilute 

and non-dilute terms……………………………………………………………………….. 

 

12 

Figure 3.1: Visualization of the grain boundary network of the pure Al polycrystal after 

relaxation and annealing…………………………………………………………………… 

 

19 

Figure 3.2. Dilute limit segregation energy distribution for Al-Mg……………………….. 20 

Figure 3.3. Al-Mg polycrystal equilibrated via MC/MS and corresponding site occupation 

distribution, GB concentration, and GB excess, up to 10 percent total solute...   

 

22 

Figure 3.4. Example 2d atomic configurations used to calculate the per-bond solute 

interaction parameter……………………………………………………………………….  

 

24 

Figure 3.5. Site-wise solute interaction spectrum for Al-Mg………………………………   25 

Figure 3.6. 2d Histogram and bivariate normal spectrum of the segregation and solute 

interaction energy for Al-Mg………………………………………………………………. 

 

25 

Figure 3.7. Top-down view of Figure 3.6 with covariance………………………………… 27 

Figure 3.8. Predicted occupation distribution for Al-Mg using the bivariate spectrum…… 28 

Figure 4.1. Visual overview of the spectral NCRS model………………………………… 30 

Figure 5.1. Hypothetical spectral system parameters to construct a phase-and-defect 

diagram……………………………………………………………………………………... 

 

43 

Figure 5.2. Free energy predictions for the hypothetical system at a fixed grain size……... 44 

Figure 5.3. Minimum energy convex hulls of the polycrystalline free energy function…… 47 

Figure 5.4. Polycrystalline phase-and-defect diagram……………………………………...  49 

Figure 6.1. Spectral quantities for GB segregation in Ag-Cu……………………………… 54 

Figure 6.2. Schematic depiction of SOAP LAE descriptors……………………………….. 56 

Figure 6.3. Feed-forward neural network architecture……………………………………..  58 

Figure 6.4. Schematic depiction of automatic training set selection………………………. 59 



7 
 

Figure 6.5. Model predictions for Ag-Cu…………………………………………………... 61 

Figure 6.6. Occupation predictions for Ag-Cu with each model…………………………...  62 

Figure 6.7. Predicted solute interaction spectra for Al-based alloys……………………….. 64 

Figure B1. Site-wise solute interaction parameter predicted using a site-focused LAE…… 79 

 

List of Tables 

 

Table 4.1. Bond types in each region of the spectral NCRS model……………………….. 32 

Table 4.2. Concentration-dependent probabilities for each bond type in the spectral 

NCRS model………………………………………………………………………………. 

 

36 

Table A1. Bond types in each region of the scalar NCRS model………………………….. 71 

Table A2. Concentration-dependent probabilities for each bond type in the scalar NCRS 

model……………………………………………………………………………………….. 

 

74 

Table C1. Accelerated model validation on Al-Mg, Nb-Ni, Ni-Pt, and Pt-Au…………….. 79 

Table D1. Database of spectral GB parameters beyond the dilute limit…………………… 83 

 

  



8 
 

1. Introduction 

 

Defect engineering has become a central focus in the design of materials in recent years, 

including the study of grain boundary complexions [1–3], dislocations [4–6], and point defects 

[7–9], encompassing a wide variety of applications. Grain boundary complexions in particular 

are known to be responsible for discontinuous transitions in many properties, such as mobility, 

diffusivity, cohesive strength, as well as various phenomena such as activated sintering, liquid-

metal embrittlement, and abnormal grain growth [1–3,10–14]. The increased design space 

afforded by the structural and chemical variation of defects enables access to combinations of 

properties that are otherwise unattainable. This is particularly true in high defect density 

materials, such as nanocrystalline alloys. Due to the large volume fraction of grain boundaries 

present, the nanocrystalline state provides access to a broad range of improved mechanical [15–

19] and functional [20–24] properties, such as hardness, magnetic and electronic behavior, 

corrosion resistance, etc.   

 

Unfortunately, the nanocrystalline state is generally unstable against grain growth in pure metals, 

even at low temperatures [25–28], due to the large driving force for grain growth. 

Thermodynamic stabilization via grain boundary segregation offers an alloying approach to 

stability by reducing the excess energy of the grain boundary, and thus reducing the driving force 

for grain growth [25,29–43], as well as offering secondary kinetic pinning advantages against 

grain boundary motion [44–49]. Weissmüller first offered a stability criterion in which the 

enthalpic benefit of grain boundary segregation, ∆𝐻𝑠𝑒𝑔,  competes with the enthalpic penalty of 

the grain boundary, 
𝛾

Г
 (where 𝛾 is the grain boundary energy of the solvent, and Г is the solute 

excess at the boundary), and the entropic effect of bulk mixing [42], as shown in Equation (1.1). 

 

∆𝐻𝑠𝑒𝑔  >  
𝛾

Г
− 𝑘𝐵𝑇𝑙𝑛(𝑋) (1.1) 

 

If the enthalpic benefit of segregation is larger than the competing processes, then there exists a 

segregated state that is stable with respect to grain size. 
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This criterion was later expanded by other investigators to account for a broader range of 

compositions and to access a larger configurational space, using a variety of regular solution, 

lattice Monte Carlo, and phase field techniques [12,37,39,41,50,51]. One benefit of these 

expanded formulations is their ability to approximate total free energy functions for the 

nanocrystalline state, which allows for the construction of what I am terming here “phase-and-

defect diagrams” for nanocrystalline alloys. These expand existing phase diagrams with 

additional information about the stable defect states. This approach was first applied to grain 

boundaries and nanocrystalline structures in the form of nanocrystalline alloy phase-and-defect 

diagrams [52] and can of course also be extended to other segregation states involving, e.g., 

dislocations, stacking faults, or special high symmetry boundaries [1,53–58]. To be clear, a 

“phase-and-defect” diagram as defined here refers to a diagram that contains information about a 

system containing both the phases defined by bulk equilibrium thermodynamics as well as 

potential defects that are not rigorously considered phases. Defects can experience phase-like 

behavior, as commonly observed for grain boundary complexions [1–3,10,11,13] however, the 

full system containing these defects will be referred to here as a “defect state” to ensure clarity.  

 

While some experimental techniques exist to construct phase-and-defect diagrams (particularly 

in the case of complexion engineering, which has produced equilibrium complexion diagrams 

and time-temperature-transformation (TTT) diagrams for select systems), most of these diagrams 

are constructed via observation, using techniques such as high-angle annular dark-field 

(HAADF)-STEM, atom prove tomography (APT), or by tracking changes in the structure or 

composition, or in properties such as diffusivity and mobility [11,59–63,63]. Furthermore, while 

the free energy of certain structurally simple complexions can be computed from atomistics 

[57,63–65], this approach cannot be extended to segregated polycrystalline defect states, 

furthering the need for an analytical free energy representation for segregated polycrystals.   

 

The above approaches to modeling grain boundary segregation can provide such a free energy 

representation; however, they have typically elected, just as in Equation (1.1), to simplify the 

segregation problem to one with a scalar segregation enthalpy or energy. This simplification is in 

opposition to studies providing atomic-level understanding of segregation as a spectral problem 

that involves a multitude of sites with significant anisotropy from one site, and one boundary, to 
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the next [66–71]. Recent studies that explicitly compare the use of scalar assumptions against the 

use of a full spectrum have revealed that spectral information is necessary to accurately 

understand and describe grain boundary segregation. Such demonstrations have so far been 

achieved in the form of thermodynamic segregation isotherms [67–69], and show the necessity 

of a fully spectral approach in many cases: beyond the dilute limit [69], at elevated temperatures 

either with [68] or without [67] excess vibrational entropy considered, or in nanocrystalline 

materials where the populations of grain boundaries and triple junctions can compete for solute 

[72].  

 

These spectral models provide a framework to capture the complex, anisotropic energetics of 

grain boundaries, in a manner comparable to other models, such as Wynblatt and Chatain’s layer 

model [73], or Cahn’s lattice gas model [74]. However, while these alternatives to the spectral 

approach provide a similar framework, they are generally useful when modeling only one grain 

boundary character at a time and often require many energetic parameters that are difficult to pair 

with experimental data, particularly when considering many different grain boundaries in a 

polycrystalline grain boundary network. Spectral models simplify the complex geometry and 

energetics of the grain boundary network into random variables described by energetic 

distributions, thus generalizing the geometric constraints and providing a simpler method for 

future efforts to fit alloyed grain boundary energetics to experimental data. 

 

Despite the observation that a full spectrum of segregation sites and energies must be accounted 

for in a rigorous understanding of defect chemistry, no spectral formulation currently exists that 

provides a total free energy function that could be used in the construction of a nanocrystalline 

phase-and-defect diagram. Wagih and Schuh took an initial step in this direction by applying the 

spectral model at 0 K in the dilute limit to develop a stability criterion [75] that is a spectral 

analog of Equation (1.1), but did not formulate a spectral free energy function. The focus of this 

thesis, therefore, is to derive an analytical spectral free energy model for grain boundary 

segregation and provide computational methods to efficiently measure the required inputs, 

allowing for the accessible production of phase-and-defect diagrams.  
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Assuming a finite volume fraction of the grain boundaries, 𝑓𝑔𝑏, such a spectral free energy 

should have the following form: 

 

∆𝐺𝑚𝑖𝑥 = (1 − 𝑓𝑔𝑏)∆𝐺𝑚𝑖𝑥
𝑏 + 𝑓𝑔𝑏 ∫ 𝐹𝑔𝑏,𝑖∆𝐺𝑚𝑖𝑥,𝑖

𝑔𝑏
𝑑𝑆

𝑖

 (1.2) 

where the Gibbs free energy of mixing, ∆𝐺𝑚𝑖𝑥, is given as a rule of mixtures between a bulk free 

energy of mixing, ∆𝐺𝑚𝑖𝑥
𝑏 , and an integral over the spectral contributions due to the grain 

boundary, ∆𝐺𝑚𝑖𝑥,𝑖
𝑔𝑏

, where 𝑖 denotes available site types, 𝐹𝑔𝑏,𝑖 are the corresponding site 

probabilities, and 𝑆 represents the spectral parameter space (which is generally 

multidimensional, and will be further developed in Chapter 4). In the limit where the spectrum 

collapses to a scalar, the resulting free energy function in Equation (1.2) should devolve to a 

conventional scalar solution model. 

 

To begin construction of such a spectral free energy representation, consider the free energy of 

segregation [76], ∆𝐺𝑠𝑒𝑔, given as the sum of the segregation internal energy, ∆𝐸𝑠𝑒𝑔, a work term, 

−𝑃∆𝑉 (with pressure 𝑃, and volume change ∆𝑉), and an excess entropy term −𝑇∆𝑆𝑥𝑠
𝑠𝑒𝑔

 [77]. 

 

∆𝐺𝑠𝑒𝑔 = ∆𝐸𝑠𝑒𝑔  − 𝑃∆𝑉 − 𝑇∆𝑆𝑥𝑠
𝑠𝑒𝑔

. (1.3) 

 

In metals, the work term is often negligible, so the enthalpy of segregation, ∆𝐻𝑠𝑒𝑔 can be 

approximated as ∆𝐸𝑠𝑒𝑔 [78]. The excess entropy of segregation can have many contributions, 

including configurational, ∆𝑆𝑐𝑜𝑛𝑓
𝑠𝑒𝑔

, and vibrational, ∆𝑆𝑣𝑖𝑏
𝑠𝑒𝑔

, which may or may not be negligible. 

These components are illustrated schematically in Figure 1.1, with components that were 

addressed with a spectral representation prior to this work shown in green, components that are 

not considered here shown in red, and the components still required to construct a minimally 

viable spectral free energy function at finite concentrations shown in yellow.  

 

In the dilute limit, the spectral segregation energy, ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, and ideal spectral configurational 

entropy, ∆𝑆𝑖𝑑𝑒𝑎𝑙
𝑐𝑜𝑛𝑓𝑖𝑔

, have already been addressed by the work of White and Stein [79], Kirchheim 



12 
 

[80,81], and Wagih and Schuh [67]. Recent work by Tuchinda and Schuh has addressed the 

spectrum of vibrational entropies, ∆𝑆𝑖,𝑖𝑑𝑒𝑎𝑙
𝑣𝑖𝑏 , involved in grain boundary segregation [68]; 

however, it is a minor contribution up to moderate temperatures, and can be neglected for 

simplicity and consistency with prior work in modeling of segregating systems. It may be added 

back in future work with little difficulty based on the work presented here. As such, all 

derivations throughout this work will assume that ∆𝐺𝑠𝑒𝑔 ≈ ∆𝐸𝑠𝑒𝑔.  

 

The impact on the excess entropy at finite concentrations (given by a configurational component, 

∆𝑆𝑐𝑜𝑛𝑓𝑖𝑔, and a vibrational component, ∆𝑆𝑖
𝑣𝑖𝑏) has not yet been studied; however, a viable non-

dilute spectral free energy can be derived neglecting these components. This leaves the solute-

solute interactions, 𝜔𝑖−𝑗
𝐺𝐵 , as a necessary component of the spectral free energy of segregation that 

will be addressed in this work. 

 

 

Figure 1.1. Components of the free energy of segregation, ∆𝐺𝑠𝑒𝑔, separated into dilute and non-

dilute terms. Components addressed with a spectral representation prior to this work are shown 

in green, components neglected here or not yet addressed are shown in red, and components 
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required for a minimally viable spectral free energy function at finite concentrations are 

highlighted in yellow. 

  

In the spectral model, one would expect a wide range of solute-solute interactions, due to the 

range of local atomic environments. Prior to this work, Wagih and Schuh showed that the 

addition of a single, fitted interaction energy (assumed relevant to all sites) could account for 

non-dilute interactions in an average sense, with good agreement to the overall segregated solute 

concentrations of full atomistic simulations of Al-Mg polycrystals [82]. However, because the 

parameter calculated by Wagih and Schuh was simply fitted to the results of atomistic 

simulations, it is not derived from atomistic-level physics directly. As a result, it is not 

generalizable without expensive computations on each individual alloy, and it does not provide 

the spectral energetics one would require for the fully spectral free energy given above. 

Furthermore, while Wagih and Schuh [83,84] and Tuchinda and Schuh [68] have developed 

large-scale databases for the dilute limit segregation spectra and vibrational entropy spectra of 

binary alloys, no such resource exists for spectral parameters beyond the dilute limit, making 

spectral predictions of nanocrystalline phase-and-defect diagrams generally inaccessible.  

 

In this thesis, I will therefore take three necessary steps towards developing spectral phase-and-

defect diagrams for segregated polycrystalline alloys, and towards making them accessible for 

the broader community. These steps will be addressed in the following chapters, and are as 

follows: 

 

1) In Chapter 3, I will develop a physically motivated atomistic method to assess solute 

interactions during grain boundary segregation, in a way that acknowledges the wide 

diversity of local atomic environments in the GB. Additionally, I will propose a bivariate 

thermodynamic model which incorporates both the spectral segregation energies and 

spectral solute interactions.  

 

2) In Chapter 4, I will derive a spectral regular solution model describing the segregated 

polycrystalline state and its corresponding free energy, in a manner that uses the 

energetics measured in (1) as inputs. In Chapter 5, I will use this free energy 
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representation to demonstrate a framework for creating phase-and-defect diagrams for the 

segregated polycrystalline state. 

 

3) In Chapter 6, I will produce a high-throughput method for measuring the spectral 

energetics in (1), using a modified “bond-focused” descriptor for the local atomic 

environment, and I will use this method to construct a database of spectral parameters for 

binary alloys beyond the dilute limit from approximately 200 EAM potentials. 

 

In the following chapters, each of these steps will be addressed primarily in the form of excerpts 

from existing manuscripts [69,85,86], both published and under review for publication, that I 

have written as the primary author alongside Professor Schuh, and which I have edited together 

here to give a concise presentation of this thesis.  

 

2. Background 

 

2.1. Scalar Representations of GB Segregation  

 

The first isotherm for grain boundary segregation was proposed by McLean [87], in which the 

segregation energy is taken to be a single average parameter, ∆�̅�𝑠𝑒𝑔, given as the difference in 

energy of the full system when a solute, 𝐵, occupies a grain boundary site, 𝐸𝑔𝑏
𝐵 , vis-à-vis a bulk 

site, 𝐸𝑐
𝐵: 

 

∆�̅�𝑠𝑒𝑔 = 𝐸𝑔𝑏
𝐵 − 𝐸𝑐

𝐵 . (2.1) 

 

This approach assumes that the segregation energy, ∆�̅�𝑠𝑒𝑔, is independent of grain boundary 

character (or the site occupied by the solute), solute concentration, and temperature (T), resulting 

in McLean’s isotherm [87]:  

 

�̅�𝑔𝑏

1 − �̅�𝑔𝑏

= 
𝑋𝑐

1 − 𝑋𝑐
exp (−

∆�̅�𝑠𝑒𝑔

𝑘𝑇
) (2.2) 
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where �̅�𝑔𝑏 is the average solute concentration in the grain boundary, 𝑋𝑐 is the concentration in 

the bulk, and 𝑘 is Boltzmann’s constant.  

 

To extend this treatment beyond the dilute limit, Fowler and Guggenheim accounted for 

concentration dependence of the segregation energy via the addition of a single interaction 

parameter based on a heat of mixing in the grain boundary, Ω𝑔𝑏 [88]: 

 

�̅�𝑔𝑏

1 − �̅�𝑔𝑏

= 
𝑋𝑐

1 − 𝑋𝑐
exp(−

∆�̅�𝑠𝑒𝑔 + 2Ω𝑔𝑏�̅�𝑔𝑏

𝑘𝑇
) (2.3) 

 

which assumes that solute interactions in the bulk are negligible, due primarily to the assumption 

of relatively large, dilute grains, and thus relatively constant, dilute values of 𝑋𝑐 ≈ 𝑋𝑡𝑜𝑡, where 

𝑋𝑡𝑜𝑡 is the total system solute concentration. This assumption can be corrected with the addition 

of a term that includes the bulk heat of mixing, Ω𝑐 [69,89]. This term appears consistently in 

more recent models that explicitly consider the nanocrystalline grain sizes [37,40,41,50,75], and 

when combined with the mixture rule, where  𝑋𝑡𝑜𝑡 is fixed and 𝑋𝑐 and  �̅�𝑔𝑏  can vary 

dependently as [90]: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏�̅�𝑔𝑏 , (2.4) 

 

results in the complete scalar isotherm for nanocrystalline alloys: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏  [1 − 
1 − 𝑋𝑐

𝑋𝑐
exp(

∆�̅�𝑠𝑒𝑔 − 2Ω𝑔𝑏�̅�𝑔𝑏 + 2Ω𝑐𝑋𝑐

𝑘𝑇
)]

−1

(2.5) 

 

where 𝑓𝑔𝑏 is the volume fraction of the grain boundary and is typically related to the grain size, 

𝑑, and grain boundary thickness, 𝑡, by the equation: 

 

𝑓𝑔𝑏 = 1 − (
𝑑 − 𝑡

𝑑
)

3

. (2.6) 
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Assuming only nearest-neighbor contributions for solvent 𝐴 and solute 𝐵, the heat of mixing can 

be represented as: 

 

Ω𝑠 =
1

2
𝑧𝑠𝜔𝑠 =

1

2
𝑧𝑠 (𝐸𝑠

𝐴𝐵 −
𝐸𝑠

𝐴𝐴 + 𝐸𝑠
𝐵𝐵

2
) (2.7) 

 

where 𝑠 refers to either the GB or the bulk, 𝑧 is the atomic coordination, and 𝐸𝑠
𝐴𝐵, 𝐸𝑠

𝐴𝐴, and 𝐸𝑠
𝐵𝐵 

are the bond energies of 𝐴𝐵,  𝐴𝐴, and 𝐵𝐵 bonds, respectively. 

 

This model for scalar grain boundary segregation closely resembled that of Trelewicz and Schuh 

[41], who derived a nanocrystalline regular solution (NCRS) model and corresponding scalar 

free energy function for the segregated nanocrystalline state. This scalar NCRS formed the basis 

of many regular solution stability criteria and lattice Monte Carlo models that followed 

[39,43,52]. In Chapter 4 I will develop a spectral polycrystalline regular solution model, and I 

reproduce the corresponding scalar derivation in Appendix A.  

 

2.2. The Spectral Representation of GB Segregation 

 

Following the density of sites approach introduced by White and Stein [79], Wagih and Schuh 

developed a spectral model for grain boundary segregation, which assumes that each atomic 

grain boundary site has its own dilute limit segregation energy, ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, defined as the 

difference between the energy of the system with a solute, B, populating that grain boundary site, 

𝐸𝑔𝑏,𝑖
𝐵 , relative to the energy of the system with B on a bulk site surrounded by solvent, 𝐸𝑐

𝐵:  

 

∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

= 𝐸𝑔𝑏,𝑖
𝐵 − 𝐸𝑐

𝐵 . (2.8) 

 

Assuming a McLean-type contribution from each site type 𝑖 with dilute limit segregation energy 

∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, and accounting for the mixture rule of Equation (2.4), Wagih and Schuh’s spectral 

isotherm is given as an integral over segregation energies [67]: 
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𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏 ∫ 𝐹𝑔𝑏,𝑖 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp(

∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

𝑘𝑇
)]

−1

𝑑(∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

)
∞

−∞

(2.9) 

 

where 𝐹𝑔𝑏,𝑖 is the density of sites of type 𝑖, and was shown by Wagih and Schuh to follow a 

roughly skew-normal distribution for general polycrystals: 

 

𝐹𝑔𝑏,𝑖 =
1

√2𝜋𝜎
exp [−

(∆𝐸𝑖
𝑠𝑒𝑔

− 𝜇)2

2𝜎2
] erfc [−

𝛼(∆𝐸𝑖
𝑠𝑒𝑔

− 𝜇)

√2𝜎
] (2.10) 

 

where 𝛼, 𝜇, and  𝜎 are the fitted shape, location, and breadth of the dilute limit segregation 

energy distribution, respectively. The values of these parameters for several hundred binary 

alloys have been presented in Ref. [83]. 

 

Following from Equation (2.3), this spectral isotherm can be adapted to account for solute 

interactions in the grain boundary with a single Fowler-type interaction parameter: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏  ∫ 𝐹𝑔𝑏,𝑖 [1 − 
1 − 𝑋𝑐

𝑋𝑐
exp (

∆𝐸𝑖
𝑠𝑒𝑔

− 2Ω𝑔𝑏�̅�𝑔𝑏

𝑘𝑇
)]

−1

𝑑(∆𝐸𝑖
𝑠𝑒𝑔

)
∞

−∞

. (2.11) 

 

Wagih and Schuh showed that for the Al-Mg system, the grains remain dilute even as the GB 

segregation raises the concentration locally at the boundary, leading to a significant effect via 

Ω𝑔𝑏; thus, a single fitted value of Ω𝑔𝑏 provided a reasonably accurate description of full 

atomistic simulations beyond the dilute limit [82]. For other nanocrystalline alloys, the bulk 

concentration may vary more significantly, particularly at higher total concentrations, so for 

completeness it is appropriate to account for both GB and bulk contributions to the interactions, 

as in Equation (2.5). 

 

 

 

 



18 
 

3. The Solute-Solute Interaction Spectrum 

 

In this chapter, I present a thermodynamic model which captures the spectral nature of solute-

solute interactions, and develop an atomistically-informed method to measure the solute 

interaction spectra, providing a case study on Al-Mg [91]. This chapter has been modified from 

work previously published in Ref. [69].  

 

Following from the derivations above, the isotherm of Equation (2.9) can be extended to account 

for non-dilute interactions as follows: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏  ∫ 𝐹𝑔𝑏,𝑖 [1 − 
1 − 𝑋𝑐

𝑋𝑐
exp (

∆𝐸𝑖
𝑠𝑒𝑔

− 2Ω̅𝑔𝑏�̅�𝑔𝑏 + 2Ω𝑐𝑋𝑐

𝑘𝑇
)]

−1

𝑑(∆𝐸𝑖
𝑠𝑒𝑔

)
∞

−∞

(3.1) 

 

where Ω̅𝑔𝑏 and 𝑋𝑐 are the average heat of mixing parameters of the grain boundary and bulk, 

respectively. The overbar on the former term is introduced to acknowledge that this Ω̅𝑔𝑏 is no 

longer formally a single parameter in the spectral model, as there are many sites with unique 

behaviors. Assessing this value over many sites from atomistic information will be the major 

focus of my efforts below, with the goal of constructing a fully spectral representation of this 

model.  

 

3.1. Atomistic Simulations 

 

To study the solute-solute interactions, I produced an Al-Mg polycrystal with dimensions of (10 

nm)3, 60,367 total atoms, and 10 grains of random orientation with an average diameter of 6 nm. 

The polycrystal was randomly initialized via Voronoi tessellation using the toolkit Atomsk [92], 

followed by structural relaxation with conjugate gradient minimization. The polycrystal was then 

thermally annealed in an isothermal isobaric ensemble with a Nose-Hoover thermostat/barostat, 

at zero pressure and a temperature of 600 K for 0.5 ns. Finally, the polycrystal was cooled to 0 K 

over 0.25 ns, followed by a final conjugate gradient minimization. An image of the grain 

boundary network is shown in Figure 3.1, using polyhedral template matching to identify non-
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FCC regions in the visualization tool OVITO [93]. All simulations here and in the remainder of 

this chapter were performed with the LAMMPS simulation package [94] and use the embedded 

atom method (EAM) potential by Mendelev for Al-Mg [91]. 

 

 

 

Figure 3.1: Visualization of the grain boundary network of the pure Al polycrystal after 

relaxation and annealing, with dimensions of (10 nm)3, 10 randomly oriented grains of average 

diameter 6 nm, and 60,367 total atoms.  

 

The Al-Mg system studied in this work was chosen for the strong agreement between its 

available interatomic potential [91] and density functional theory [95] when calculating 

segregation energies, and because it has been previously used for spectral grain boundary 

segregation analysis [82]. To compute the dilute limit segregation energy distribution of the Al 

polycrystal, I follow the procedure of Wagih and Schuh [67], and compute the dilute limit 

segregation energy, ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, as given by Equation (2.8), for every site lacking FCC 

coordination. The resulting discrete distribution for Al-Mg is thus shown in Figure 3.2, with a 

skew-normal function fitted to Equation (2.10) overlaid. The distribution calculated here is skew-

left, spans from approximately -60 to 40 kJ/mol, and has a mean of -6.82 kJ/mol, all of which are 

in excellent agreement with the distribution calculated previously by Wagih and Schuh for a (36 

nm)3 polycrystal [67].  

 



20 
 

 

 

Figure 3.2. Dilute limit segregation energy distribution for Al-Mg, calculated from the (10 nm)3 

polycrystal, with a fitted skew-normal distribution overlaid.  

 

To evaluate the predictions of the procedure proposed in this work, it is necessary to obtain the 

equilibrated segregation state of the Al-Mg polycrystal with finite solute content. This is done 

using a standard Monte Carlo (MC) procedure at a finite temperature to sample configurational 

space, in combination with molecular statics relaxations [12,30,96–102]. The Al polycrystal 

shown in Figure 3.1 was randomly populated with Mg solute, at concentrations of 𝑋𝑡𝑜𝑡 up to 10 

percent. One step in the hybrid MC/MS procedure, referred to as one MC step, was conducted as 

a series of micro-MC steps at finite temperature, followed by a full-system relaxation at 0 K and 

constant pressure. Each micro-MC step consisted of a Monte-Carlo swap, attempted with a 

probability given by the metropolis criterion at 600 K, using the EAM potential for all energy 

evaluations. 6,000 micro-MC steps were attempted per MC step in the hybrid MC/MS procedure. 

1,000 to 2,000 MC steps, scaling linearly with total solute concentration, were conducted to 

reach adequate convergence in both system energy and solute distribution.  

 

The final state of the system after this process is taken as the true equilibrium segregation state, 

from which the final solute distribution is measured. An example equilibrated polycrystal of Al-

Mg at 𝑋𝑡𝑜𝑡 = 0.05 is shown in Figure 3.3(a). The distribution of occupied sites is shown in red in 
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Figure 3.3(b), and resembles prior work on this system from Ref. [82]. These occupation 

distributions represent the true equilibrium segregation state, which I intend to understand in 

terms of Equation (3.1). 

 

The resulting average equilibrium grain boundary solute concentration, �̅�𝑔𝑏 is plotted as a 

function of 𝑋𝑡𝑜𝑡, shown as red points in Figure 3.3(c). Here, it is important to note that �̅�𝑔𝑏 

defines the concentration in the grain boundary volume, determined by the geometric methods 

described above. For this reason, �̅�𝑔𝑏 is not invariant to changes in the position or thickness of 

the grain boundary, and depends entirely on how the grain boundary is defined, as noted in many 

prior GB models such as those of Gibbs and Cahn [103,104]. For this reason, I have also plotted 

the grain boundary excess, 𝛤𝑔𝑏, defined as the area normalized number of excess solute atoms 

due to the presence of the grain boundary region, in Figure 3.3(d). However, while I note that 

�̅�𝑔𝑏 is subjectively defined, it does provide a more convenient means of interpreting these results 

in the context of the isotherms defined above and is a necessary parameter in the models 

developed in Chapter 4. For this reason, I will continue using �̅�𝑔𝑏 throughout the following 

sections.  

 

To extract the solute interaction parameter from the results of MC/MS, Wagih and Schuh [82] 

fitted Equation (3.1) to simulation results such as these, treating the solute interaction 

parameter(s) as unknown constants. Following this same approach here, as shown in Figure 

3.3(c), results in a value of Ω𝑔𝑏 = -22.86 kJ/mol. For comparison, a McLean-style isotherm is 

plotted in green, using an effective segregation energy, ∆�̅�𝑒𝑓𝑓
𝑠𝑒𝑔

 = -26.5 kJ/mol, fitted from 

Equation (2.2) in the dilute limit. Equation (2.9), which includes the effect of the segregation 

energy spectrum in the dilute limit, is also shown in blue. 

 

This result, while physically motivated by the work of Fowler and Guggenheim [88], is 

ultimately a fitted parameter that is not derived from atomistic-level physics directly, and 

requires relatively expensive simulations to compute. Additionally, the use of a single interaction 

parameter does not explicitly separate the interaction contributions from the bulk and grain 

boundary, which may become relevant at high concentrations for some systems. My goal here is 
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to instead seek a direct atomistic assessment of those parameters, and success will be measured 

by my ability to reproduce the true segregation state in Figures 3.3(b) and 3.3(c). 

 

(a) 

 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 3.3. (a) Al-Mg polycrystal with 5 percent total solute, equilibrated with hybrid MC/MS at 

600 K. (b) Segregation energy distribution with the equilibrium occupied distribution shown in 

red. Predicted occupied distribution is shown for the dilute case (Equation (2.8) (blue)). (c) For 

the (10nm)3 Al-Mg polycrystal: McLean-style isotherm with effective segregation energy ∆�̅�𝑒𝑓𝑓
𝑠𝑒𝑔

 

= -26.5 (Equation (2.2) (green)), dilute limit spectral isotherm (Equation (2.8) (blue)), and 

polycrystal equilibrated via MC/MS, with a fitted linear interaction parameter Ω𝑔𝑏 = -22.86 

kJ/mol (Equation (2.10) (red)). (d) Grain boundary excess solute, 𝛤𝑔𝑏, converted from (c).  

 



23 
 

3.2. Measuring the Solute-Solute Interaction Spectrum 

 

I am not aware of any measurement of the full distribution of solute-solute interactions in a 

polycrystalline grain boundary prior to this work, so I proceed to make one here. To begin, 

consider the site-wise version of the interaction parameter given in Equation (2.7), 𝜔𝑔𝑏,𝑖. To 

calculate this site-wise parameter, one must first calculate its pairwise equivalent for each nearest 

neighbor of a given site, as follows.    

 

The coordination and nearest neighbors of each grain boundary site are calculated via Voronoi 

analysis in the OVITO visualization tool. The pair-wise parameter 𝜔𝑔𝑏,𝑖−𝑗, where 𝑖 is the site and 

𝑗 is one of its nearest neighbors, is then extracted for each nearest neighbor bond of each grain 

boundary site, including grain boundary to bulk bonds, via the following definition: 

 

𝜔𝑔𝑏,𝑖−𝑗 = (𝐸𝑖𝑗,𝐴−𝐵
𝑔𝑏

−
𝐸𝑖𝑗,𝐴−𝐴

𝑔𝑏
+ 𝐸𝑖𝑗,𝐵−𝐵

𝑔𝑏

2
) = 𝐸𝑖𝑗,𝐵𝐴

𝑔𝑏
− 𝐸𝑖𝑗,𝐵𝐵

𝑔𝑏
+ 𝐸𝑖𝑗,𝐴𝐵

𝑔𝑏
− 𝐸𝑖𝑗,𝐴𝐴

𝑔𝑏 (3.2) 

 

where 𝐸𝑖𝑗,𝐼−𝐽
𝐺𝐵  refers to a bond energy, 𝐸𝑖𝑗,𝐼𝐽

𝐺𝐵  refers to the local atomic energy of site 𝑖, 𝐼 and 𝐽 

denote whether solute (B) or solvent (A) is present at sites 𝑖 and 𝑗, and the local atomic energy of 

the site is related to the bond energies via: 

 

𝐸𝑖𝑗,𝐼𝐽
𝑔𝑏

=
1

2
[(𝑧 − 1)𝐸𝑖𝑗,𝐼−𝐽

𝑔𝑏
+ 𝐸𝑖𝑗,𝐼−𝐽

𝑔𝑏
]. (3.3) 

 

The necessary atomic configurations required to calculate 𝜔𝑔𝑏,𝑖−𝑗 are shown schematically in 

Figure 3.4. Once obtained via molecular statics measurements, 𝜔𝑔𝑏,𝑖−𝑗, can then be averaged 

over each nearest neighbor for a given grain boundary site 𝑖 to obtain the average per-site 

parameter ѡ𝑔𝑏,𝑖. This value can in turn be combined with the atomic coordination of the site to 

obtain the per-site heat of mixing parameter, 𝛺𝑔𝑏,𝑖, and thus the full heat of mixing distribution of 

the grain boundary. It should be noted that the heat of mixing calculated here assumes the 
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structure of the pure solvent A – in either the grain boundary or bulk, respectively – as the 

reference state for both components A and B. 

 

 

 

Figure 3.4. Example 2d atomic configurations used to calculate the per-bond parameter ѡ𝑔𝑏,𝑖−𝑗 

for bond 𝑖𝑗, by measuring the per-atom energy of atom 𝑖 in the fully relaxed polycrystal, 𝐸𝑔𝑏,𝑖𝑗
𝐼𝐽

, 

where atoms I and J can be either solvent A or solute B.  

 

Following this procedure for a bulk site in the interior of a fully relaxed 16x16x16 supercell of 

FCC Al, values for the grain interior of 𝑧𝑐 = 12, ѡ𝑐 = -4.72 kJ/mol, and Ω𝑐 = -28.32 kJ/mol 

were obtained. Then, following this procedure for the grain boundaries achieves the distribution 

shown in Figure 3.5. This per-site interaction parameter exhibits a roughly skew-normal 

distribution, similar to the segregation energy spectrum itself, with an average value of �̅�𝑔𝑏 = -

3.78 kJ/mol. The average grain boundary coordination was measured as 𝑧𝑔𝑏 = 14.3. 

 

3.3. The Fully Spectral Segregation Isotherm  

 

The results in Figure 3.5 represent what I believe to be the first atomistic measurement of the full 

spectrum of solute-solute interaction effects during grain boundary segregation in a polycrystal. 

As such, they permit a very detailed level of analysis of the grain boundary segregation state 

beyond the dilute limit.  
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Figure 3.5. For every GB site in the (10nm)3 Al-Mg polycrystal, the average per-site parameter, 

ѡ𝑔𝑏,𝑖, measured via the atomistic method given in Equations (3.2) and (3.3).  

 

(a) 

 

(b) 

 

 

Figure 3.6. (a) 2D histogram of the dilute limit segregation energy and per-site interaction 

parameter ѡ𝑔𝑏,𝑖, exhibiting a bivariate skew-normal distribution. (b) Bivariate normal 

distribution fitted to the data depicted in Figure 3.6(a).  

 

For example, in the spirit of exhaustive rigor, consider an isotherm analysis based on both the 

spectrum of segregation energies and the spectrum of solute interactions across the grain 
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boundary, combined in a self-consistent probabilistic model. This is explored in Figure 3.6(a), 

where the per-site dilute limit segregation energy and interaction parameter are cross-compared, 

and together apparently constitute a single 2D distribution function with a single central peak. 

 

Such a distribution could be modeled by, e.g., a bivariate normal (or skew-normal) distribution 

[105]. Equation (3.1) might therefore be modified to include an integral over the joint probability 

density of the segregation and interaction energies. The skewness is small in the present case, so 

a bivariate normal distribution is appropriate, and has the following form:  

 

𝐹𝑔𝑏,𝑖 =
1

√(2𝜋)2|𝛴|
exp [−

1

2
(𝑥 − µ)𝑇𝛴−1(𝑥 − µ)] (3.4) 

 

where 𝐹𝑔𝑏,𝑖 now varies with the vector quantities 𝑥 and µ, where 𝑥 contains the segregation and 

interaction energies and µ their means, and 𝛴 is their covariance matrix. For Al-Mg, I find the 

bivariate normal parameters to be µ = [∆�̅�𝑠𝑒𝑔, �̅�𝑔𝑏], where ∆�̅�𝑠𝑒𝑔 = -7.10 kJ/mol is the mean 

segregation energy and �̅�𝑔𝑏 = -3.78 kJ/mol is the mean interaction energy, with a covariance 

matrix given by: 

 

𝛴 = [ 
244.04 4.76
4.76 3.86

 ] kJ/mol. 

 

Combining Figures 3.6(a) and (b) into a top-down view provides a clear picture of a covariant 

relationship between the dilute limit segregation energy and solute interaction energy, as shown 

by the dashed black line in Figure 3.7. This representation makes clear that sites with more 

negative segregation energies (that more heavily favor segregation) also tend to experience more 

repulsive solute interactions. The implications of this relationship can be explored by comparing 

thermodynamic predictions based on these bivariate spectral energetics to prior scalar models.  
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Figure 3.7. Top-down view of Figure 3.6, with the covariance shown as a dashed black line.  

 

Performing an integration over both the segregation energy and interaction energy produces the 

following isotherm: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐

+𝑓𝑔𝑏  ∫ ∫ 𝐹𝑔𝑏,𝑖 [1 − 
1 − 𝑋𝑐

𝑋𝑐
exp(

∆𝐸𝑖
𝑠𝑒𝑔

− Ω̅𝑔𝑏,𝑖�̅�𝑔𝑏 + 2Ω𝑐𝑋𝑐

𝑘𝑇
)]

−1

𝑑(Ω̅𝑔𝑏,𝑖)𝑑(∆𝐸𝑖
𝑠𝑒𝑔

)
∞

−∞

∞

−∞

.
(3.5) 

 

Equation (3.5) can be readily solved numerically, and the resulting occupation distribution and 

isotherm are shown in magenta in Figure 3.8 for Al-Mg. When this fully atomistic solution is 

compared with the single-parameter Fowler-like fit in the details of the atomic site distributions 

(Figure 3.8(a)), it is clear that the full bivariate distribution more accurately captures the 

distribution at equilibrium. This is largely due to its ability to correctly incorporate the covariant 

behavior exhibited in Figure 3.7; because sites with more negative segregation energies tend to 

experience more repulsive interactions, the distribution shifts to the right relative to the single 

parameter fit, which overpredicts occupation in strongly segregating sites.  
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The bivariate isotherm also credibly reproduces the trend of the isotherm in Figure 3.8(b) with no 

fitting parameters. Interestingly, though, the conformity in Figure 3.8(b) is not better than can be 

achieved with direct fitting. Thus, even though the full bivariate distribution approach may be 

more rigorous, it may not dramatically improve predictive power over a simple linear interaction 

term, if one is concerned only with the average grain boundary solute concentration and does not 

care about the details of site occupation. Since the full bivariate spectrum approach adds 

significantly more computational complexity, an atomistically-informed single parameter model 

may be a preferred solution. Introducing the directly atomistically measured average values of 

Ω̅𝑔𝑏 and Ω𝑐 into Equation (3.1) achieves the results shown by black lines in Figure 3.8; the result 

is a reasonable compromise between accuracy and speed. 

 

(a) 

 

(b) 

 

  

Figure 3.8. For the (10 nm)3 Al-Mg polycrystal: (a) the occupied site distribution at 600 K and 5 

percent total solute, equilibrated via MC/MS (red), with predicted occupation distributions, and 

(b) average grain boundary occupation as a function of total solute concentration, equilibrated 

via MC/MS at 600K, with predicted averages via isotherms. Both use the fitted isotherm with an 

interaction parameter Ω𝑔𝑏= -22.86 kJ/mol (Equation (2.11) (red)), the measured isotherm with 

the average bulk interaction parameter 𝛺𝑐 = -28.32 kJ/mol and average grain boundary 

interaction parameter Ω̅𝑔𝑏  = -27.10 kJ/mol (Equation (3.1) (black)), and the full spectral 

isotherm with the fitted bivariate normal distribution (Equation (3.5) (magenta)). 
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The above analysis shows that the general approach of using a Fowler-like composition-

dependent correction to the spectral model, as proposed by Wagih and Schuh, is indeed an 

excellent compromise between simplicity and accuracy to capture grain segregation beyond the 

dilute limit in the case when only knowledge of an average grain boundary solute concentration 

is required.  However, the manner of its use proposed by those authors is computationally 

cumbersome and may not provide rigorously correct energetic predictions for the sake of 

developing a spectral free energy representation of segregated polycrystals. While the 

methodology proposed in this chapter also suffers from a high computational cost, it is readily 

adjustable to a high throughput method, which is discussed in Chapter 6. The fully spectral 

representation proposed here is therefore tractable to measure atomistically and enables a more 

rigorous approach for constructing a spectral free energy function, which I will address in the 

following chapter. 

 

4. A Spectral Free Energy Representation for 

Segregated Polycrystals 

 

The isotherm developed in Equation (3.5) was constructed assuming behavior similar to existing 

scalar Fowler-Guggenheim isotherms used for both surfaces and grain boundaries [88], which 

assume a regular solution model of both the bulk and grain boundary, and as such are physically 

based on bond counting. The above equations are all written with a spectrum of sites, and site 

energies; this in turn implies the existence of a spectrum of bond energies. Thus, to map the 

above progress on grain boundary segregation spectra into a regular-solution-based free energy 

in the form of Equation (1.2), we need to map site-wise spectra to bond-wise spectra. Trelewicz 

and Schuh [41] developed a similar mapping of scalar segregation energetics in their 

nanocrystalline regular solution model. Therefore, the focus of this chapter will be to construct a 

similar mapping in a fully spectral representation, by first using bond counting to develop a 

spectral regular solution model, and subsequently fitting that model to the site-wise spectral 

representation used in Equation (3.5) above. The work presented in this chapter was previously 

published in Ref. [85]. 
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4.1. The Spectral Nanocrystalline Regular Solution Model 

 

In this section I derive an analytical framework for the spectral nanocrystalline regular solution 

model, considering solvent atoms A and solute atoms B, with standard reference states of phases 

α and β, respectively. To begin, consider the nanocrystalline configuration shown schematically 

in Figure 4.1, in which a finite volume fraction of grain boundary, defined by spectral bond 

energetics, is attached to a standard bulk regular solution of B in A, in the α phase.  

 

 

 

Figure 4.1. Visual overview of the spectral NCRS model. (a) Schematic of the spectral NCRS 

model, with bulk, GB, and transitional bonds labeled in pink, blue, and green, respectively. (b) 

Schematic reference states – the single lattice spectral NCRS reference state (top), and a more 

general standard reference state (bottom).  

 

The enthalpy of mixing is formulated as a solution model assuming spectral bond energies in the 

grain boundary, and hence spectral concentrations at the grain boundary. The spatial distribution 

of bond energies in the grain boundary is assumed random, allowing for random mixing 

assumptions at the nearest-neighbor shell. While this assumption may be questionable for highly 
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symmetric grain boundaries or strongly interacting species, prior work by Wagih and Schuh [67], 

as well at that presented in Chapter 3 [69], on a general, primarily high angle grain boundary 

network in polycrystalline Al-Mg demonstrated reasonable conformity to a random mixing 

assumption. The enthalpy of mixing is then combined with an ideal configurational entropy of 

mixing for the bulk, and the spectral configurational entropy of mixing formulated by White and 

Stein [79] for the grain boundary to produce the total free energy of mixing for the 

nanocrystalline state.  

 

In the absence of grain boundaries, the system should be a bulk regular solution defined by a heat 

of mixing parameter, 𝐸𝐵𝑖𝑛𝐴 and total concentration 𝑋𝑡𝑜𝑡, given by the molar free energy function 

𝐺𝐵𝑖𝑛𝐴
𝑚𝑖𝑥 : 

 

𝐺𝐵𝑖𝑛𝐴
𝑚𝑖𝑥 = 𝐸𝐵𝑖𝑛𝐴𝑋𝑡𝑜𝑡(1 − 𝑋𝑡𝑜𝑡) + 𝑅𝑇(𝑋𝑡𝑜𝑡 ln(𝑋𝑡𝑜𝑡) + (1 − 𝑋𝑡𝑜𝑡) ln(1 − 𝑋𝑡𝑜𝑡)) (4.1) 

 

where T is the temperature in Kelvin and R is the ideal gas constant. Here, I note that the 

conventional bulk heat of mixing, 𝐸𝐵𝑖𝑛𝐴, is defined as the energy of dissolving one mol of B 

from the β phase into the α phase. However, the regular solution formulation presented here 

considers only B in the α phase, as shown in the top of Figure 4.1(b). Therefore, in the general 

case, a shift in reference state must be accounted for, given as 𝐸𝛽𝑡𝑜𝛼
𝑟𝑒𝑓

: 

 

𝐸𝛽𝑡𝑜𝛼
𝑟𝑒𝑓

= 
𝑋𝑡𝑜𝑡

2
(𝑧𝛼𝐸𝐵𝐵

𝛼 − 𝑧𝛽𝐸𝐵𝐵
𝛽

) (4.2) 

 

where 𝑧𝑖 is the coordination number, and 𝐸𝐵𝐵
𝑖  is the bond energy of a BB bond in phase 𝑖. This 

standard reference state is depicted in the bottom of Figure 4.1(b).  

 

For simplicity, the derivation in this section will proceed with the α phase as reference state, and 

this additional correction will be assumed negligible for the hypothetical systems shown in the 

following parametric study and construction of phase and defect diagrams. However, it should be 

stressed that it must be included in the general case. Additionally, no competing ordered phases 
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will be considered in this work, though I note that they may be added using existing models and 

similar energetic considerations [106]. 

 

4.2. Spectral Solution Model 

 

Table 4.1. Bond types in each region of the spectral NCRS model – bulk (grain interior), grain 

boundary, and transition – along with the corresponding notation for the number of bonds and 

bond energies of each type.  

 

Bond Type Number of Bonds Bond Energies 

Bulk 𝑵𝒃
𝑨𝑨 𝑬𝒃

𝑨𝑨 

 𝑵𝒃
𝑨𝑩 𝑬𝒃

𝑨𝑩 

 𝑵𝒃
𝑩𝑩 𝑬𝒃

𝑩𝑩 

GB-GB (Site Type 𝒊) 𝑵𝒈𝒃,𝒊
𝑨𝑨  𝑬𝒈𝒃,𝒊

𝑨𝑨  

 𝑵𝒈𝒃,𝒊
𝑨𝑩  𝑬𝒈𝒃,𝒊

𝑨𝑩  

 𝑵𝒈𝒃,𝒊
𝑩𝑩  𝑬𝒈𝒃,𝒊

𝑩𝑩  

Transition (Site Type 𝒊) 𝑵𝒕,𝒊
𝑨𝑨 𝑬𝒈𝒃,𝒊

𝑨𝑨  

 𝑵𝒕,𝒊
𝑨𝑩 𝑬𝒈𝒃,𝒊

𝑨𝑩  

 𝑵𝒕,𝒊
𝑩𝑩 𝑬𝒈𝒃,𝒊

𝑩𝑩  

 

The binary nanocrystalline mixture of solvent A and solute B on the α phase lattice is described 

using pairwise bond energies in a manner similar to a regular solution model. As shown 

schematically in Figure 4.1(a), the system is divided into separate bulk and grain boundary 

regions, with the grain boundary region defined using spectral bond energies, where a specific 

atomic site, 𝑖, is described with its own unique set of bond energies.  

 

Here it is necessary to define a third, transitional bond type that represents the bonds that bridge 

the grain boundary and bulk regions, so that the number of bonds can be calculated correctly in 

the following sections. In this derivation, I treat the energetics of transitional bonds the same as 

GB-GB bonds, however they are counted with the appropriate combination of grain boundary 
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and bulk concentrations, as will be shown in the following section [41]. The range of available 

grain boundary site types considered here follow a tri-variate distribution, 𝐹𝑔𝑏,𝑖, where 𝑖 denotes 

a site type, and the corresponding GB bond energies connected to that site, 𝐸𝑔𝑏,𝑖
𝐴𝐴 , 𝐸𝑔𝑏,𝑖

𝐴𝐵  , and 𝐸𝑔𝑏,𝑖
𝐵𝐵  

are all spectral, and constitute a parameter space denoted here as 𝑆. Presently, I assume that the 

number of each site type, and thus the number of each bond type, can take on any value; in later 

sections, I will explore the actual form of this distribution for general polycrystalline grain 

boundaries. 

  

Given the numbers and energies of each bond type as listed in Table 4.1, the total solution 

energy, 𝑈𝑠𝑜𝑙𝑛, can be written as a sum over all the bond types, 𝑠, in each region, which for the 

spectral approach here includes a summation over every site type 𝑖 in the grain boundary: 

 

𝑈𝑠𝑜𝑙𝑛 = ∑[𝑁𝑏
𝑠𝐸𝑏

𝑠 + ∑𝑁𝑔𝑏,𝑖
𝑠 𝐸𝑔𝑏,𝑖

𝑠 + 𝑁𝑡,𝑖
𝑠 𝐸𝑡,𝑖

𝑠

𝑖

]

𝑠

(4.3) 

 

where 𝑁 and 𝐸 represent the bond numbers and energies, and 𝑏, 𝑔𝑏, and 𝑡 denote the bulk, grain 

boundary, and transitional bonds, respectively. In addition to the solution energy, this model must 

also incorporate the interfacial energy resulting from the grain boundary and transitional bonds 

by defining the mixing energy, ∆𝑈𝑚𝑖𝑥, with respect to the unmixed, interface-free α phase of the 

same composition, as depicted in the top of Figure 4.1(b):  

 

∆𝑈𝑚𝑖𝑥 = 𝑈𝑠𝑜𝑙𝑛 − 𝑈𝑟𝑒𝑓 (4.4) 

 

where the reference state, 𝑈𝑟𝑒𝑓, is given as: 

 

𝑈𝑟𝑒𝑓 =
𝑧𝑁𝐴

2
𝐸𝑏

𝐴𝐴 +
𝑧𝑁𝐵

2
𝐸𝑏

𝐵𝐵 . (4.5) 

 

Here, 𝑁𝐴 and 𝑁𝐵 are the total number of A and B atoms, respectively, and z is the coordination 

number of the α phase. The coordination number and total number of A and B atoms are related 

to the number of bonds given in Table 4.1 via: 
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𝑧𝑁𝐴 = 2𝑁𝑏
𝐴𝐴 + 𝑁𝑏

𝐴𝐵 + ∑2𝑁𝑔𝑏,𝑖
𝐴𝐴 + 2𝑁𝑡,𝑖

𝐴𝐴 + 𝑁𝑔𝑏,𝑖
𝐴𝐵 + 𝑁𝑡,𝑖

𝐴𝐵

𝑖

(4.6) 

𝑧𝑁𝐵 = 2𝑁𝑏
𝐵𝐵 + 𝑁𝑏

𝐴𝐵 + ∑2𝑁𝑔𝑏,𝑖
𝐵𝐵 + 2𝑁𝑡,𝑖

𝐵𝐵 + 𝑁𝑔𝑏,𝑖
𝐴𝐵 + 𝑁𝑡,𝑖

𝐴𝐵

𝑖

. (4.7) 

 

Combining these relationships with Equations (4.3) – (4.5), the change in internal energy upon 

mixing becomes: 

 

∆𝑈𝑚𝑖𝑥 = 𝑁𝑏
𝐴𝐵 (𝐸𝑏

𝐴𝐵 −
𝐸𝑏

𝐴𝐴 + 𝐸𝑏
𝐵𝐵

2
)                                                                            

+∑[

(𝑁𝑡,𝑖
𝐴𝐴 + 𝑁𝑔𝑏,𝑖

𝐴𝐴 )(𝐸𝑔𝑏,𝑖
𝐴𝐴 − 𝐸𝑏

𝐴𝐴) + (𝑁𝑡,𝑖
𝐵𝐵 + 𝑁𝑔𝑏,𝑖

𝐵𝐵 )(𝐸𝑔𝑏,𝑖
𝐵𝐵 − 𝐸𝑏

𝐵𝐵)

+(𝑁𝑡,𝑖
𝐴𝐵 + 𝑁𝑔𝑏,𝑖

𝐴𝐵 ) (𝐸𝑔𝑏,𝑖
𝐴𝐵 −

𝐸𝑏
𝐴𝐴 + 𝐸𝑏

𝐵𝐵

2
)

]

𝑖

(4.8) 

 

where terms containing like bonds in the bulk have cancelled with those of the reference state, 

and spectral bond energies in the grain boundary region are paired with the corresponding bulk 

reference energies.  

 

4.3. Spectral Bond Distributions 

 

To determine the value of ∆𝑈𝑚𝑖𝑥 in Equation (4.8), I must determine the number of each bond 

type listed in Table 4.1. The number of bonds in the bulk, grain boundary, and transition region 

can be assessed geometrically, assuming a volume fraction of grain boundary,  𝑓𝑔𝑏, as given by 

Equation (2.4). Additionally, the number of transitional bonds can be defined with respect to the 

number of grain boundary atoms via a geometric parameter, 𝑣, which determines the fraction of 

bonds connected to grain boundary atoms which are transitional (GB-bulk) bonds. The number 

of bulk, transition, and grain boundary bonds, 𝑃𝑟, where 𝑟 is the region, are thus given as: 

 

𝑃𝑏 = (
𝑧

2
(1 − 𝑓𝑔𝑏) −

𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (4.9) 

𝑃𝑔𝑏 = (
𝑧

2
𝑓𝑔𝑏 −

𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (4.10) 
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𝑃𝑡 = (
𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (4.11) 

 

where 𝑁 is the total number of atoms, and the number of transitional bonds is subtracted from 

both the bulk and grain boundary to prevent double counting. For the case of the spectral grain 

boundary, the number of bonds for site type 𝑖 are given by Equations (4.10) and (4.11) weighted 

by the site type probability, 𝐹𝑔𝑏,𝑖. It is important to note that 𝑣 is not necessarily a constant and 

should converge to zero in the amorphous limit. Prior work has demonstrated the important 

effect of triple junctions and quadruple nodes on the spectral segregation energies [72]. Here, I 

neglect this energetic change, which is relatively small except at very small grain sizes, and I 

model the triple junctions geometrically by scaling 𝑣  with the volume fraction of triple junctions 

and quadruple nodes, 𝑓𝑡𝑗, given relative to the total intergranular volume fraction 𝑓𝑔𝑏 by the 

Palumbo polynomial [31,107–110]:  

 

𝑓𝑡𝑗 = 𝑓𝑔𝑏 −
3𝑡(𝑑 − 𝑡)2

𝑑3
(4.12) 

 

The fraction of grain boundary bonds that are then transitional bonds can be given as: 

 

𝑣 =  𝑣0 (1 −
𝑓𝑡𝑗

𝑓𝑔𝑏
) (4.13) 

 

where 𝑣0 is the value of 𝑣 for a grain boundary with no triple junctions or quadruple nodes, 

which I approximate here as 0.33 by fitting to the results of the atomistic simulations from  

Chapter 3 [69].  

 

To calculate the number of each bond type, the number of bonds in each region from Equations 

(4.9)-(4.11) must be scaled by the probability of each bond type in that region. Here, in the spirit 

of a regular solution model, I assume random mixing in the bulk region, and random mixing at 

the nearest-neighbor level in the grain boundary, resulting in spectral probabilities for the grain 

boundary and transition regions, as shown in Table 4.2.  
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Table 4.2. Bond types in each region of the spectral NCRS model – bulk (grain interior), grain 

boundary, and transition. Additionally, the corresponding notation for the number of bonds and 

bond energies of each type, the concentration-dependent probabilities assigned of each bond 

type, and the total number of bonds in each region.  

 

Bond Type Number of 

Bonds 

Bond 

Energies 

Probabilities 

 
 

Bonds in 

Region 

Bulk 𝑵𝒃
𝑨𝑩 𝑬𝒃

𝑨𝑩 𝟐𝑿𝒃(𝟏 − 𝑿𝒃) 𝑷𝒃 

GB-GB 𝑵𝒈𝒃,𝒊
𝑨𝑨  𝑬𝒈𝒃,𝒊

𝑨𝑨  (𝟏 − 𝑿𝒈𝒃,𝒊)(𝟏 − �̅�𝒈𝒃) 𝑭𝒈𝒃,𝒊(𝑷𝒈𝒃) 

(Site Type 𝒊) 𝑵𝒈𝒃,𝒊
𝑨𝑩  𝑬𝒈𝒃,𝒊

𝑨𝑩  𝑿𝒈𝒃,𝒊(𝟏 − �̅�𝒈𝒃) + �̅�𝒈𝒃(𝟏 − 𝑿𝒈𝒃,𝒊)  

 𝑵𝒈𝒃,𝒊
𝑩𝑩  𝑬𝒈𝒃,𝒊

𝑩𝑩  𝑿𝒈𝒃,𝒊(�̅�𝒈𝒃,𝒊)  

Transition 𝑵𝒕,𝒊
𝑨𝑨 𝑬𝒈𝒃,𝒊

𝑨𝑨  (𝟏 − 𝑿𝒃)(𝟏 − 𝑿𝒈𝒃,𝒊) 𝑭𝒈𝒃,𝒊(𝑷𝒕) 

(Site Type 𝒊) 𝑵𝒕,𝒊
𝑨𝑩 𝑬𝒈𝒃,𝒊

𝑨𝑩  𝑿𝒃(𝟏 − 𝑿𝒈𝒃,𝒊) + 𝑿𝒈𝒃,𝒊(𝟏 − 𝑿𝒃)  

 𝑵𝒕,𝒊
𝑩𝑩 𝑬𝒈𝒃,𝒊

𝑩𝑩  𝑿𝒃(𝑿𝒈𝒃,𝒊)  

 

The total solute concentration, 𝑋𝑡𝑜𝑡, bulk solute concentration, 𝑋𝑏, and average grain boundary 

solute concentration, �̅�𝑔𝑏, are related to the site-specific solute concentrations, 𝑋𝑔𝑏,𝑖, via the 

relationships: 

 

𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑏 + 𝑓𝑔𝑏�̅�𝑔𝑏 (4.14) 

�̅�𝑔𝑏 = ∫ 𝐹𝑔𝑏,𝑖(𝑋𝑔𝑏,𝑖)

𝑖

𝑑𝑆. (4.15) 

 

The probabilities and number of bonds in the region, as given in Table 4.2, can thus be combined 

to determine the number of bonds of each type and populate Equation (4.8) to determine the total 

change in internal energy upon mixing.  
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4.4. Spectral Free Energy Functions 

 

The free energy of mixing, ∆𝐺𝑚𝑖𝑥, can be determined from the combination of the enthalpic,  

∆𝐻𝑚𝑖𝑥, and entropic, ∆𝑆𝑚𝑖𝑥, contributions upon mixing, given as: 

 

∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥. (4.16) 

 

Here, it should be noted that the geometric construction of the grain boundary used above and in 

prior spectral work [67–69,72,83] resembles that of the finite-thickness layer model previously 

developed by Cahn [104] as an extension of the dividing plane approach of Gibbs [111]. Under 

this construction, many of the energetic parameters describing the segregated grain boundary 

must be reported as properly constructed excess quantities to avoid dependence on the chosen 

grain boundary thickness and location of the dividing plane, as noted in Chapter 3 above. 

However, in the following construction of phase-and-defect diagrams, I will only consider the 

total free energy of mixing of the defect state, which encapsulates the whole system and is 

independent of the chosen grain boundary thickness or location of the dividing plane. 

Additionally, while the free energy of the defect state rigorously contains a work term 

corresponding to the excess volume of the grain boundary, I choose here to approximate the 

enthalpy of mixing as the internal energy of mixing given by Equation (4.8), using the same 

condensed phase assumptions as for the internal energy of segregation, ∆𝐸𝑠𝑒𝑔, discussed in 

Equation (1.3). The entropic term follows the same mixing assumptions discussed in the above 

section, and matches the dilute limit spectral formulation by White and Stein [79]: 

 

∆𝑆𝑚𝑖𝑥 = −𝑅𝑁[(1 − 𝑓𝑔𝑏)(𝑋𝑏 ln(𝑋𝑏) + (1 − 𝑋𝑏) ln(1 − 𝑋𝑏))

+𝑓𝑔𝑏 ∫ 𝐹𝑔𝑏,𝑖

𝑖

(𝑋𝑔𝑏,𝑖 ln(𝑋𝑔𝑏,𝑖) + (1 − 𝑋𝑔𝑏,𝑖) ln(1 − 𝑋𝑔𝑏,𝑖))𝑑𝑆]. (4.17)
 

 

Combining Equations (4.8) and (4.17) with (4.16), and normalizing by 𝑁 results in the molar, 

fully functional form for the free energy of mixing for the spectral nanocrystalline state, which 

can be conveniently represented in three components that speak to the unique physical regions of 

the structure:  
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∆𝐺𝑚𝑖𝑥 = (1 − 𝑓𝑔𝑏)∆𝐺𝑚𝑖𝑥
𝑏 + 𝑓𝑔𝑏∆𝐺𝑚𝑖𝑥

𝑔𝑏
+ 𝑣𝑓𝑔𝑏 ∫ 𝐹𝑔𝑏,𝑖

[
 
 
 
 
𝑧

2
ѡ𝑔𝑏,𝑖(𝑋𝑏 − �̅�𝑔𝑏)(2𝑋𝑔𝑏,𝑖 − 1)

−𝑧ѡ𝑏𝑋𝑏(1 − 𝑋𝑏)

+
1

2

𝑉𝑚

𝑡
(𝛾𝐵,𝑖 − 𝛾𝐴,𝑖)(𝑋𝑏 − �̅�𝑔𝑏)]

 
 
 
 

𝑑𝑆

𝑖

. (4.18) 

 

The first term here, ∆𝐺𝑚𝑖𝑥
𝑏 , is the bulk mixing energy and is the only term present in the limit 

when grain size, 𝑑, is infinite. In this regime, the free energy of mixing follows that of a standard 

regular solution, and is derived as: 

 

∆𝐺𝑚𝑖𝑥
𝑏 = 𝑧𝑋𝑏(1 − 𝑋𝑏) (𝐸𝑏

𝐴𝐵 −
𝐸𝑏

𝐴𝐴 + 𝐸𝑏
𝐵𝐵

2
)

+𝑅𝑇(𝑋𝑏 ln(𝑋𝑏) + (1 − 𝑋𝑏) ln(1 − 𝑋𝑏)) (4.19)

 

 

and the bulk regular-solution interaction parameter, ѡ𝑏, emerges as: 

 

ѡ𝑏 = (𝐸𝑏
𝐴𝐵 −

𝐸𝑏
𝐴𝐴 + 𝐸𝑏

𝐵𝐵

2
) . (4.20) 

 

The second term in Equation (4.18), ∆𝐺𝑚𝑖𝑥
𝑔𝑏

, corresponds to the grain boundary mixing free 

energy, and is the only term present in the so-called “amorphous limit” where 𝑓𝑔𝑏 → 1: 

 

∆𝐺𝑚𝑖𝑥
𝑔𝑏

= ∫ 𝐹𝑔𝑏,𝑖

[
 
 
 
 
 

𝑧

2
{(1 − 𝑋𝑔𝑏,𝑖)(𝐸𝑔𝑏,𝑖

𝐴𝐴 − 𝐸𝑏
𝐴𝐴) + 𝑋𝑔𝑏,𝑖(𝐸𝑔𝑏,𝑖

𝐵𝐵 − 𝐸𝑏
𝐵𝐵)

+(𝐸𝑔𝑏,𝑖
𝐴𝐵 −

𝐸𝑔𝑏,𝑖
𝐴𝐴 + 𝐸𝑔𝑏,𝑖

𝐵𝐵

2
) (�̅�𝑔𝑏 + 𝑋𝑔𝑏,𝑖 − 2�̅�𝑔𝑏𝑋𝑔𝑏,𝑖)}

+𝑅𝑇(𝑋𝑔𝑏,𝑖 ln(𝑋𝑔𝑏,𝑖) + (1 − 𝑋𝑔𝑏,𝑖) ln(1 − 𝑋𝑔𝑏,𝑖)) ]
 
 
 
 
 

𝑖

𝑑𝑆. (4.21) 

 

This formulation requires an integral over all grain boundary site types, and that the enthalpic 

contributions generally contain both spectral concentrations, 𝑋𝑔𝑏,𝑖, and the average grain 

boundary concentration, �̅�𝑔𝑏. Additionally, this free energy term reveals a spectral regular-

solution interaction parameter analogous to the bulk parameter above: 
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ѡ𝑔𝑏,𝑖 = (𝐸𝑔𝑏,𝑖
𝐴𝐵 −

𝐸𝑔𝑏,𝑖
𝐴𝐴 + 𝐸𝑔𝑏,𝑖

𝐵𝐵

2
) . (4.22) 

 

The first two terms of Equation (4.21) consider the difference in like-bond energies between the 

bulk and the grain boundary, and are related to the conventional grain boundary energies of the 

solvent, 𝛾𝐴,𝑖, and of the solute, 𝛾𝐵,𝑖, by the relationship: 

 

𝛾𝐴,𝑖 =
𝑧

2

𝑡

𝑉 𝑚
(𝐸𝑔𝑏,𝑖

𝐴𝐴 − 𝐸𝑏
𝐴𝐴) (4.23) 

𝛾𝐵,𝑖 =
𝑧

2

𝑡

𝑉𝑚
(𝐸𝑔𝑏,𝑖

𝐵𝐵 − 𝐸𝑏
𝐵𝐵) (424) 

 

where 
𝑡

𝑉𝑚
 converts the grain boundary excess energy to a molar quantity by normalizing with the 

thickness of the boundary, 𝑡, and the molar volume, 𝑉𝑚. 

 

Introducing these definitions into Equation (4.21), the free energy contribution due to the grain 

boundary region can be written in a more familiar form as: 

 

∆𝐺𝑚𝑖𝑥
𝑔𝑏

= ∫ 𝐹𝑔𝑏,𝑖

[
 
 
 
 (1 − 𝑋𝑔𝑏,𝑖)

𝑉𝑚

𝑡
𝛾𝐴,𝑖 + 𝑋𝑔𝑏,𝑖

𝑉𝑚

𝑡
𝛾𝐵,𝑖

+
𝑧

2
ѡ𝑔𝑏,𝑖(�̅�𝑔𝑏 + 𝑋𝑔𝑏,𝑖 − 2�̅�𝑔𝑏𝑋𝑔𝑏,𝑖)

+𝑅𝑇(𝑋𝑔𝑏,𝑖 ln(𝑋𝑔𝑏,𝑖) + (1 − 𝑋𝑔𝑏,𝑖) ln(1 − 𝑋𝑔𝑏,𝑖))]
 
 
 
 

𝑖

𝑑𝑆 (4.25) 

 

where the top row is now seen to be the excess energy of the alloyed grain boundary (a 

composition-weighted average of the excess energies of the two components), the second row 

speaks to mixing enthalpy in the grain boundary, and the third row is a configurational entropy.  

This is the correct assemblage of terms for a grain boundary mixing energy [41], formulated here 

in a spectral version integrated over all site types for the first time. 

 

The first two terms of Equation (4.18) are thus described by Equations (4.19) and (4.25) and 

represent a rule of mixtures between the bulk and grain boundary regions. The remaining, third 
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term of Equation (4.18) handles the transitional bonds between the grain boundary and bulk 

region, bridging the two limiting cases considered here. Due to the assumption of a sharp 

interface between the bulk and grain boundary, this term includes both the addition of the 

correctly counted transitional bonds, and the removal of any double-counted bonds from the 

grain boundary and bulk.  

 

Equation (4.18) is thus a complete free energy function for polycrystals and is ready for 

evaluation if spectral inputs about the grain boundary sites are available. Importantly, if all the 

spectral parameters in Equation (4.18) are replaced with their non-spectral counterparts, this 

model properly devolves into a standard scalar nanocrystalline regular solution model in the 

form derived by Trelewicz and Schuh [41]. This derivation is shown in Appendix A. 

 

4.5. Spectral Equilibrium Conditions and the Spectral Isotherm Model 

 

At this stage, the equilibrium condition of the nanocrystalline state could generally be solved by 

finding the minimum energy configuration across the possible space of solute configurations and 

grain sizes. In the case of a scalar, single-parameter segregation state, this problem is reduced to 

a simple minimization of Equation (4.18) with respect to the grain size, d (or equivalently, the 

grain boundary volume fraction, 𝑓𝑔𝑏), and the average solute concentration at the grain boundary, 

�̅�𝑔𝑏, assuming a closed system with constant total concentration, 𝑋𝑡𝑜𝑡.  

 

In the case of a spectral model such as this, such a minimization is non-trivial, because it must 

span the full configuration space of site-wise concentrations, 𝑋𝑔𝑏,𝑖, which results in a recursive 

definition, where knowledge of the equilibrium isotherm is necessary to populate the spectral 

concentrations in Equations (4.18) and (4.25). For that reason, a closed-form analytical solution 

of the spectral isotherm is not forthcoming. Instead, I use a modified version of the isotherms 

proposed in Chapter 3 that allows for a solution to this inverse problem in a reduced, yet 

physically reasonable, parameter space. These can be mapped to the form of the non-spectral 

solution given in Appendix A and have been shown to give reasonable agreement with the results 

of fully atomistic simulations. With this approach, I can populate the spectral concentrations of 
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Equations (4.18) and (4.25) to solve for an equilibrium condition. I elaborate this mapping in 

what follows. 

 

Comparing the form of my previously proposed isotherm in Equation (3.5) to that of the non-

spectral regular solution isotherm derived in Appendix A (A19) reveals that a similar set of dilute 

terms, as well as non-dilute terms modified by average solute concentrations, appear in both. 

Carrying the terms that account for transitional bonds, and converting non-spectral terms in 

Equation (A19) to spectral terms matching the present derivation, the following site-specific 

spectral isotherm is achieved: 

 

𝑋𝑔𝑏,𝑖

1 − 𝑋𝑔𝑏,𝑖
=

𝑋𝑏

1 − 𝑋𝑏
exp (

−∆𝐻𝑖
𝑠𝑒𝑔

 

𝑘𝑇
) (4.26) 

 

where the spectral site-specific segregation energy, ∆𝐻𝑖
𝑠𝑒𝑔

, is derived as: 

 

∆𝐻𝑖
𝑠𝑒𝑔

= (
𝑣𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
− 1) 𝑧ѡ𝑏 + (1 +

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)) 𝑧ѡ𝑔𝑏,𝑖

+
𝑉𝑚

𝑡
(1 −

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)) (𝛾𝐵,𝑖 − 𝛾𝐴,𝑖)

+2𝑧 ((1 −
𝑣𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)𝑤𝑏𝑋𝑏 − (1 +

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
))ѡ𝑔𝑏,𝑖�̅�𝑔𝑏 +

𝑣

2
ѡ𝑔𝑏,𝑖(𝑋𝑏 − �̅�𝑔𝑏))

. (4.27) 

 

The first two lines of Equation (4.27) are derived from the dilute-limit contributions to the 

segregation energy, and the third line of terms correspond to the effects of solute-solute 

interactions in the bulk and grain boundary. Note again that the convention here is that negative 

segregation energies favor segregation [67]. 

 

4.6. Conversion of Site-Specific Spectra to Bond Energy Spectra 

 

Prior derivations of the spectral segregation energy have considered only site-specific energies in 

which the bulk site considered in Equation (2.2) is assumed to be far in the grain interior [67,69]. 
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As such, prior spectral measurements do not account for any grain boundary effects on the bulk 

energetics – an assumption which this model does not support, due to the necessary transition 

region, potentially large values of 𝑓𝑔𝑏, and arbitrary choice of grain boundary thickness. This can 

be noted by the modification terms containing 𝑣 and 𝑓𝑔𝑏 in Equation (4.27) that adjust the 

segregation energy as a function of grain size, to account for the relative fraction of transitional 

bonds contributing to the bulk energy in Equation (4.1). For the sake of comparison with past 

measurements of the dilute limit segregation energy spectrum, and to allow for the conversion 

between site-specific and bond-based spectra, one can neglect the transition bond terms in the 

first two lines of Equation (4.27) and write the dilute limit segregation energy for the case of a 

perfect bulk,  ∆𝐻𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, simply as: 

 

∆𝐻𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

= [−𝑧ѡ𝑏 + 𝑧ѡ𝑔𝑏,𝑖 +
𝑉𝑚

𝑡
(𝛾𝐵,𝑖 − 𝛾𝐴,𝑖)] . (4.28) 

 

This simplified form of the dilute limit segregation energy given in Equation (4.28) can be used 

to solve for 𝛾𝐵,𝑖: given measurements of site-specific spectra, such as those computed in Chapter 

3, for the dilute limit segregation energy  ∆𝐻𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, solute-solute interaction energy, ѡ𝑔𝑏,𝑖, and 

the molar excess energy of the pure solvent grain boundary, 
𝑉𝑚

𝑡
𝛾𝐴,𝑖, to solve for the remaining 

term 
𝑉𝑚

𝑡
𝛾𝐵,𝑖. These site-specific spectra can then be used in combination with the definitions of 

𝛾𝐴,𝑖, 𝛾𝐵,𝑖, and ѡ𝑔𝑏,𝑖 given in Equations (4.22)-(4.24) to map the site-specific spectral description 

of the grain boundary to the corresponding bond energy spectra, by assuming asymmetric half 

bonds connected to each site. An example of this approach is shown in Figure 5.1 below.  
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5. Phase and Defect Diagram Construction 

 

 

 

Figure 5.1. Hypothetical spectral system parameters. (a) Site-wise distributions for the 

hypothetical system used in this work, including the dilute limit segregation energy, solute-solute 

interaction parameter, and grain boundary excess energy of the solvent. (b) Bond-wise 

distributions for the grain boundary AA, AB, and BB bond energies, corresponding to the site-

wise distributions in (a).   

 

In this chapter, I consider a hypothetical system, given by the spectral parameters shown in 

Figure 5.1, and using a bulk interaction parameter, ѡ𝑏, of 2.17 kJ/mol. Given the assumed α 

phase reference state, the heat of mixing of B in A, 𝐸𝐵𝑖𝑛𝐴, is thus 26.04 kJ/mol. These parameters 

were chosen for the physically reasonable breadths and shapes of the spectra, with characteristic 

energies that favor nanocrystalline states and exhibit the interesting behavior first visualized by 

Weissmueller in the context of Equation (1.1).  The integrals in the free energy equations are 

solved with discrete summation of the energetic distributions shown in Figure 5.1. The content of 

this chapter was previously published in Ref. [85] alongside Chapter 4. 
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5.1. The Nanocrystalline Free Energy at Fixed Grain Size 

  

 

 

Figure 5.2. Free energy predictions for the hypothetical system at a fixed grain size. (a) Free 

energy of mixing of the polycrystalline state (dark blue – Equation (4.18)) at a grain size of 7 nm 

(𝑓𝑔𝑏 ≈ 0.2) and temperature of 600 K, as well as the corresponding polycrystalline bulk (light 

blue – Equation (4.19)), polycrystalline grain boundary (orange – Equation (4.25)), and 

remaining transitional terms (green), alongside the free energy of mixing for the bulk regular 

solution (red – Equation (4.1). (b) The free energy of mixing of the polycrystalline state at 

several grain sizes (dark blue), and the corresponding minimum energy hull (magenta). (c)-(f) 

The occupied grain boundary distribution as a function of dilute limit segregation energy for 

total solute concentrations of 0.05, 0.15, 0.22, and 0.4, respectively.  

 

To construct a phase and defect diagram in concentration-temperature space for the segregated 

polycrystalline state, one can solve for the equilibrium condition of Equation (4.18) at a fixed 
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temperature. To do so, I sample across many grain sizes and total concentrations (including the 

infinite grain size, or bulk, limit) to numerically find the minimum energy configuration.  

 

As an initial analysis of the form of this solution, observe the free energy of mixing as a function 

of total concentration at a fixed grain size of 7 nm (𝑓𝑔𝑏 ≈ 0.2) and a temperature of 600 K, given 

in Figure 5.2(a). The total free energy of mixing for the polycrystalline state is given by Equation 

(4.18) and shown in dark blue. To determine the dominant behavior in the system, I separate the 

contributions due to the bulk (light blue – Equation (4.19), the grain boundary (orange – 

Equation (4.25)), and the remaining transitional terms (green). The bulk free energy of mixing, 

given by Equation (4.1), or equivalently, the infinite grain size limit given by Equation (4.19), is 

plotted in red.  

 

Plots showing the predicted solute occupation of the grain boundary as a function of the dilute 

limit segregation energy are shown in Figure 5.2(c)-(e), for total concentrations of 0.05, 0.15, 

0.22, and 0.4, respectively. Note that the dilute limit segregation energies shown in these figures 

are not the simplified segregation energies given by Equation (4.28), rather they are the 

segregation energies after transitional bond corrections are taken into account, as in Equation 

(4.27). 

 

From Figure 5.2(a), note that the free energy of mixing of the polycrystalline state is generally a 

complex form with various inflections as different terms attain prominence. In this example set 

of conditions, it initially rises to a maximum of about 9 percent total solute, before decreasing to 

a minimum at about 22 percent total solute and then rising again. Examining the sub-contribution 

lines, these changes correspond, respectively, to behavior dominated by the grain boundary (up 

to about 22% solute) and then by the bulk. This is confirmed by the occupation of the grain 

boundary at the plotted concentrations in Figure 5.2(c)-(f) – below 22 percent total solute, the 

spectrum of available sites in the grain boundary gradually fills, resulting in an asymmetric 

regular solution curve until saturation at 22 percent total solute, at which point the 

polycrystalline bulk begins to fill and a secondary peak in free energy emerges.  
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This behavior agrees well with prior models of grain boundary segregation which demonstrate 

“overfull” and “underfull” behavior [36,37,41], in which a fixed grain size achieves its minimum 

energy when there is enough solute to saturate the amount of available grain boundary, but not 

excess such that the bulk begins to fill. However, in this case it should be noted that the saturated 

grain boundary for this fixed grain size, as shown in Figure 5.2(e) and labeled in Figure 5.2(a), is 

not pure solute. Rather, appropriately accounting for temperature and solute interaction effects, 

the spectrum of available sites fills until the remaining sites are so unfavorable that the 

competing bulk sites are energetically preferred.  

 

While Figure 5.2(a) demonstrates the behavior of this model at a single grain size, a convex hull 

construction across many grain sizes is required to find the equilibrium condition. Figure 5.2(b) 

shows the free energy of mixing of several grain sizes, sampled with uniformly spaced grain 

boundary volume fractions. In total, 100 different grain sizes were calculated, as well as the 

hypothetical “fully amorphous” (d = t, 𝑓𝑔𝑏 = 1) state. Taking the free energies sampled across 

many grain sizes, as well as the calculated amorphous limit, a convex hull construction can be 

used to construct the minimum energy hull for the polycrystalline state, shown as the multicolor 

line in Figure 5.2(b), where the color corresponds to the grain size at that point on the hull. This 

minimum energy hull can be used as a free energy function in temperature-concentration space 

to determine the minimum energy grain size and produce a phase and defect diagram, as will be 

demonstrated in the following section.   

 

Here, I stress that the model presented here is asymmetric, and assumes only the segregated 

polycrystalline defect state with a randomly mixed solvent-based bulk; it does not account for 

two phase grains, nor the segregated polycrystalline defect state with a solute-based bulk. For 

that reason, I only consider concentrations below 50 percent total solute in this analysis. 

Additionally, the amorphous state presented in Equation (4.25) is a theoretical limit; it is non-

physical and cannot exist outside of the geometric constraints of the grain boundary. 
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5.2. The Nanocrystalline Phase and Defect Diagram 

 

 

 

Figure 5.3. Minimum energy convex hull of the polycrystalline free energy (Equation (4.18)) 

across many grain sizes at 300, 600, 900, and 1200 K. The infinite grain size limit (Equation 

(4.1)) is shown in red for reference.  

 

Repeating the construction of the minimum energy convex hull in Figure 5.3(b) across many 

temperatures, the resulting free energy curves can be used to produce a phase and defect 

diagram. This is shown for 300, 600, 900, and 1200 K in Figure 5.3. From this, observe that the 

polycrystalline state with a finite grain size is the minimum energy configuration at every 

observed temperature, with the grain size decreasing at higher solute concentrations, and 

converging to the infinite grain size limit at zero solute concentration. The amount of solute 

required to access smaller grain sizes increases with temperature.  
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The minimum energy hulls constructed above can be used to construct minimum energy grain 

size contours in temperature-concentration space and produce the phase and defect diagram 

shown in Figure 5.4. which also plots the bulk miscibility gap, determined by Equation (4.1), for 

comparison; note that this model predicts the replacement of bulk phase behavior with a 

gradually decreasing grain size as solute is introduced, without need for phase separation. For 

reference, I have also plotted the left-most grain size contour at 𝑓𝑔𝑏 = 0.001 (1499 nm) as an 

arbitrary limit to show the boundary between nanocrystalline stability and typical micron-scale 

polycrystalline behavior. Here, it should be reiterated that this model considers only solvent-

based polycrystalline states and does not consider B-rich phases or polycrystalline states. By 

visual inspection of the shape of the minimum energy hulls shown in Figure 5.3, a reasonable 

assumption can be drawn that the A-based states considered here should be in equilibrium with 

either the B-rich regular solution, or a B-based polycrystalline state via a common tangent that 

extends beyond the 50% total solute limit imposed here. Future efforts with experimentally 

measured spectral inputs should consider both ends of the concentration range and enable the 

modeling of such behaviors.  

 

The nanocrystalline stability regime shrinks with increasing temperature, requiring additional 

solute to reach stability at higher temperatures. Additionally, the equilibrium grain size decreases 

with additional solute, and increases with temperature, as observed above. It should be noted that 

the prediction for this system indicates polycrystalline stability well outside of and at higher 

temperatures than the bulk miscibility gap. However, this stability prediction at higher 

temperatures does not consider vibrational entropy, nor competition with the liquid phase. A 

more complete extension in the future should incorporate these effects, and the model presented 

here is simply designed to provide a roadmap for future phase and defect diagrams.  
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Figure 5.4. Polycrystalline phase and defect diagram, using the spectral parameters for the 

hypothetical system shown in Figure 5.1. The infinite grain size two-phase region is shown in 

red, and the minimum energy grain size contours are colored according to grain size. The 

polycrystalline stability boundary is given arbitrarily at 𝑓𝑔𝑏 = 0.001 (1499 nm). Scalar 

predictions are shown as faded dashed lines.  

 

For comparison with previously developed non-spectral models, the solute interaction energy 

and grain boundary excess energy spectra in Figure 5.1 were collapsed into average parameters, 

and the segregation energy was taken as the average of the lower quartile of dilute limit 

segregation energy spectrum, to emulate the fitted effectively segregation energies generally used 

in scalar models [67,69,72,82]. These parameters were used as inputs for the scalar 

nanocrystalline regular solution model originally developed in [41], and reproduced in Appendix 

A, to create the phase and defect diagram shown as the faded dashed lines in Figure 5.4.  
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Figure 5.4 convincingly shows that a spectral approach gives rise to different states than a scalar 

approach. This is because effective segregation energies, which are typically fitted at fixed grain 

sizes with lower solute concentrations, often only account for the most favorable segregation 

sites. As such, when a spectrum is accounted for, the effective segregation energy can change as 

both a function of composition and temperature, as noted in several prior works [67,72,82]. 

Furthermore, the scalar nanocrystalline regular solution model, when using true averages of the 

spectral parameters shown in Figure 5.1, predicts no polycrystalline stability whatsoever for this 

system, indicating that even a true average of the full spectrum of sites fails to capture the correct 

behavior. This work therefore further augments recent discussion about the necessity of spectral 

information for the polycrystalline state to accurately produce phase and defect diagrams such as 

these.  

 

While the model presented here has several limitations – its assumed random mixing in both the 

bulk and grain boundary, ability to handle only the regular solution complexion state, and 

inability to address the B-rich end of the phase diagram without additional adjustments – it does 

provide an initial framework for the use of spectral models in the production of phase-and-defect 

diagrams of segregated polycrystalline alloys. The development of these phase-and-defect 

diagrams will constitute a huge step forward in the potential and ease of engineering alloyed 

grain boundaries, providing access to information about a huge range of available alloys and 

properties that were previously unexplored. However, while large-scale databases for the dilute 

limit segregation spectra and vibrational entropy spectra of binary alloys exists [68,83,84], no 

such resource exists for spectral parameters beyond the dilute limit, making usage of this model 

inaccessible in practice. The following chapter will focus on addressing this need.  
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6. A Large-Scale Database of Spectral Parameters 

Beyond the Dilute Limit 

 

In this chapter, I seek to develop a database of spectral grain boundary parameters at finite 

concentrations, to enable the population of the model described in Chapters 4 and 5. To that end, 

I turn towards constructing an accelerated to approach to measuring the solute interaction spectra 

described in Chapter 3 [69], and I seek here to find a mapping between the local atomic 

environment (LAE) of each GB nearest neighbor bond, depicted in Figure 3.4, and the 

corresponding pair-wise energetics. Section 6.1 provides a brief overview of the use of LAE 

representations, and the remainder of this chapter presents the development of a “bond-focused” 

LAE representation, which I then use to construct a database of non-dilute spectral parameters 

for binary alloys from almost 200 EAM potentials available on the NIST potential repository 

[112,113]. The work presented in this chapter is currently under review for publication in a peer 

reviewed journal.  

 

6.1. Background on LAE Representations 

 

Simplified numerical representations that capture the local atomic environment (LAE) have 

proven invaluable in understanding complex alloy configuration energetics in recent years, such 

as in high entropy alloys (HEAs) [114–116], metallic glasses [117–119], and grain boundaries 

[68,83,120]. Especially in topologically disordered environments (such as the grain boundaries 

considered in this work) these LAE representations are often constructed from basic structural 

features, such as coordination, atomic volume, or Voronoi parameters [121,122]. An approach 

that is more physics-agnostic while capturing site geometry in full detail is provided by complex 

descriptors, such as those often used in machine-learned interatomic potentials [123,124]. These 

descriptors encode the local atomic environment within a cutoff radius as a simplified feature 

vector and include methods such as atom-centered symmetry functions [125] or the Smooth 

Overlap of Atomic Positions (SOAP) [126].  
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The SOAP representation has recently been used to map the full distribution of local atomic 

environments in a polycrystalline grain boundary network onto the corresponding spectra of 

dilute limit segregation energies [83] and vibrational entropies [68], and both have been adapted 

into high throughput frameworks to produce large-scale databases of spectral information for 

binary grain boundary segregation. These two spectra are similar in the sense that each atomic 

site in the grain boundary undergoes a single solute substitution and has a unique resulting 

energy or entropy quantity. This facilitates the use of LAE descriptors based on a site-centered 

geometry; with a SOAP vector for each site in the grain boundary network, a simple regression-

type model connects the LAE to the energy and entropy of segregation at that site [83]. 

 

The above examples of grain boundary environments represent a challenge to the geometric 

description of the LAE but are not especially chemically complicated (one solute atom always 

lies at the center of a solvent-based LAE). Chemically more complex environments become 

relevant as composition moves away from the dilute limit. This is a common problem in high 

entropy alloys, in which LAE representations are often required to capture a large degree of 

chemical complexity within an otherwise geometrically simple phase [114–116]. Often, this 

chemical complexity is captured using separate site-centered descriptors for each chemical 

species in the local environment. However, the combination of non-dilute concentrations and 

complex site topologies presents an interesting cross-section where new approaches to the LAE 

may be needed.  The interaction of solutes at grain boundaries at higher concentration (which I 

have measured in Chapter 3, and seek to produce accelerated predictions for here), is a prime 

example: this is no longer strictly a site-centered problem, but one in which two key sites 

interact, and those sites are geometrically disordered and distinct. It is therefore the purpose of 

this chapter to present an approach to this problem, by developing a “bond-focused” LAE 

descriptor and subsequently applying it in a learning model to create a database for solute 

interactions at grain boundaries. 

 

6.2. Atomistic Assessment of the Site Spectra 

 

All atomistic simulations in this work were performed using LAMMPS [94]. The Al-Mg [127], 

Ag-Cu [128], Nb-Ni [129], Ni-Pt [130], and Pt-Au [131] systems were chosen as case studies to 
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span different crystal structures, segregation behaviors, and interaction behaviors. For each of 

these systems, a (10 x 10 x 10) nm3 polycrystal of the pure solvent was produced with 10 

randomly positioned and randomly oriented grains. Each polycrystal was initialized with Voronoi 

tessellation in the Atomsk [92] toolkit, and was then structurally relaxed with conjugant gradient 

minimization, followed by a thermal anneal under an isothermal-isobaric ensemble, with a Nose-

Hoover thermostat at roughly 0.4 𝑇𝑚𝑒𝑙𝑡 and barostat at zero pressure for 0.5 ns. The polycrystals 

were then cooled to 0 K over 0.25 ns and relaxed with a final conjugate gradient minimization. 

This resulted in polycrystals with an average grain size of 6 nm, and between 50,000 and 90,000 

atoms and 11,000 to 20,000 GB sites, varying with lattice parameter. This results in 

approximately 150,000 to 300,000 nearest neighbor GB pairs.  

 

Grain boundary sites were detected for each polycrystal using polyhedral template matching with 

a 0.1 RMSD cutoff [93] by selecting atoms which do not have the same crystal structure as the 

bulk solvent. Nearest neighbors of GB atoms were then detected via Voronoi analysis. For each 

grain boundary site in the (10 x 10 x 10) nm3 polycrystals, the dilute limit segregation energy 

was calculated using molecular statics via Equation (2.8). The GB excess energy of site 𝑖, 
𝑉𝑚

𝑡
𝛾𝐴,𝑖, 

following from Equation (4.23), was defined and measured as the difference between the local 

energy of the site, 𝐸𝑖 , and the energy of a bulk crystalline site, 𝐸𝑥𝑡𝑎𝑙, both composed entirely of 

pure solvent A [85]: 

 
𝑉𝑚

𝑡
𝛾𝐴,𝑖 = 𝐸𝑖 − 𝐸𝑥𝑡𝑎𝑙 . (6.1) 

 

 

Finally, the solute interaction parameters were calculated for each GB nearest neighbor pair and 

averaged for each site using molecular statics and the definitions given in Equations (2.7), (3.2), 

and (3.3), and these calculations were then repeated to obtain the bulk interaction parameter from 

a crystalline supercell.  

 

Figure 6.1 shows an example of the spectral energetics for grain boundary sites in a (10 x 10 x 

10) nm3 Ag-Cu polycrystal simulated using the embedded-atom-method (EAM) potential by Wu 

and Trinkle [128]. Figure 6.1(a) shows in red the full tri-variate spectrum required to populate 
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the spectral nanocrystalline regular solution model presented in Chapters 4 and 5 [85], and 

projections of its bivariate components in blue. Figure 6.1(c) shows how the tri-variate spectrum 

decomposes into its measurable univariate components, including the site-wise grain boundary 

excess energy of the pure solvent, defined by Equation (6.1), and the dilute limit segregation 

energies and interaction parameters as used in Equation (3.5). 

 

 

 

Figure 6.1. Spectral quantities for GB segregation in Ag-Cu [128]. (a) Full site-wise tri-variate 

spectrum, with projections of the corresponding bi-variate distributions. (b) Pair-wise spectrum 

of solute interaction parameters, ѡ𝑔𝑏,𝑖−𝑗. (c) Univariate spectra comprising the tri-variate 

spectrum shown in (a), from left to right: GB excess energy of the solvent, 
𝑉𝑚

𝑡
𝛾𝐴,𝑖, dilute limit 

segregation energy, ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, and the site-wise solute interaction parameter, ѡ𝑔𝑏,𝑖.  
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Figure 6.1(b) shows the spectrum of pair-wise interaction parameters, ѡ𝑔𝑏,𝑖−𝑗, calculated for Ag-

Cu. While the site-wise parameters shown in Figure 6.1(c) have been known to follow simple 

skew-normal behavior as defined by Equation (2.10) [67,69,85], the pair-wise energies in this 

system - and many other examples studied in this chapter – demonstrate a broad, dual-peak 

distribution. This behavior is indicative of the more complex underlying dependence on the local 

atomic environment, thus necessitating a more complex LAE representation to correctly capture 

this behavior.  

 

6.3. Representation of the LAE 

 

The starting point for LAE considerations in problems of grain boundary segregation is the site-

centered approach used elsewhere [68,83,84]. Here, I adopt that approach as an internal check 

and a touchpoint with the prior literature, as done in Figure 6.2(a). I predict the dilute limit 

segregation energy, ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

, using a site-centered descriptor constructed via the Smooth 

Overlap of Atomic Positions (SOAP) method [126]. SOAP produces a feature vector from the 

coefficients of a set of radial basis functions and spherical harmonics fitted to the local atomic 

environment. The feature vector size, 𝑁𝑆𝑂𝐴𝑃, is determined by the maximum number of radial 

basis functions, 𝑛𝑚𝑎𝑥, degree of spherical harmonics, 𝑙𝑚𝑎𝑥, and the width of the gaussian 

functions used for fitting, 𝜎𝑎𝑡. In this work, I have chosen to use the DScribe Python library 

[132] to construct the SOAP vectors, with the parameters 𝑛𝑚𝑎𝑥 = 12, 𝑙𝑚𝑎𝑥 = 6, and 𝜎𝑎𝑡 = 0.5, 

which results in a SOAP vector of length 𝑁𝑆𝑂𝐴𝑃 = 1016. I have chosen these parameters, in 

addition to a radial cutoff of 6 Å, for their generally strong performance across the several alloys 

which I rigorously validate in Section 6.6 below.  
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Figure 6.2. Schematic depiction of SOAP LAE descriptors. (a) Left to right: Pure polycrystal of 

Ag, pure solvent LAE, dilute limit SOAP matrix. (b) Left to right: required nearest neighbor 

solvent-solute pairs to atomistically measure ѡ𝑔𝑏,𝑖−𝑗, a bond-focused LAE on bond i-j required 

to predict ѡ𝑔𝑏,𝑖−𝑗, non-dilute SOAP matrix.  

 

To predict the solute-solute interaction parameter, ѡ𝑔𝑏,𝑖−𝑗, defined in Equation (3.2), one must 

reflect the pair-wise nature of this quantity in the chosen LAE representation. I propose to do so 

by constructing a “bond-focused” SOAP embedding of the local atomic environment. For a 

given GB site 𝑖, this LAE has a corresponding nearest neighbor 𝑗 denoted by a solute atom of a 

different type. Using the same parameters described above, this results in a SOAP feature vector 

that is approximately twice the length compared to a pure solute environment, 𝑁𝑆𝑂𝐴𝑃 = 2031, due 

to fitting an additional, separate set of functions for the second atom type. While the SOAP 

parameters could be individually tuned to provide the best performance when predicting solute 

interaction spectra for each alloy, these initial values provide a strong starting point with which I 
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can rapidly screen many alloys. With this construction, the LAE depicted in Figure 6.2(b) can be 

mapped into a SOAP feature vector, as described above and shown schematically in Figure 

6.2(b).   

 

6.4. A High-Fidelity Learning Model Based on the LAE 

 

The adjusted LAE representation presented above provides more information than a single-

component site-centered approach, in a manner that better reflects the nature of the pair-wise 

quantities being computed. Because of this, the corresponding SOAP vectors are larger, and 

present a more complex feature space that necessitates the use of more complex learning 

algorithms than the linear regression that was previously employed for dilute limit segregation 

energies [83]. In fact, my efforts seeking a simple regression-based connection between site-

focused LAE and solute interaction energetics led to unacceptable results, shown for Al-Mg in 

Appendix B, motivating the development of more complex LAE representations, and thus more 

complex learning models.  

 

I therefore use a feed-forward neural network to map the LAE representation to the solute-solute 

interaction parameters. This neural network was constructed using the Keras Python library 

[133], with a TensorFlow backend [134], and is depicted in Figure 6.3. The tapered architecture 

was chosen for its consistent performance across many machine learning tasks [135], and the 

overall number of nodes, ReLU activations, and number of layers were selected to optimize the 

performance of the model across the many alloys I use for validation in Section 6.6. The model 

was then trained for 80 epochs using a mean-squared-error loss function and an Adam optimizer 

with a learning rate of 0.001, and the parameters 𝜀, 𝛽1, and 𝛽2 set to 0.9, 0.999, and 10−7, 

respectively. When testing the model, the measured solute-solute interaction spectra for each 

alloy are randomly split into a 50/50 test-train split, for training and validation, respectively. 
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Figure 6.3. Feed-forward neural network architecture used in this work, connecting input bond-

focused LAEs to the pair-wise solute interactions, ѡ𝑔𝑏,𝑖−𝑗.  

 

6.5. Accelerated Predictions – Automatic Selection of Training Data 

 

Using a 50/50 test/train split to train a high-fidelity model results in several hundred thousand 

individual calculations required before training can even begin. To reduce this cost and 

efficiently select a smaller training set, I follow the process depicted schematically in Figure 6.4. 

To begin, I map every atomic bond involving GB atoms (i.e., every nearest neighbor GB pair) 

into its corresponding SOAP vector, to produce a matrix which describes the feature space. I then 

use principal component analysis (PCA) [136] to reduce the dimensionality of the feature space, 

choosing here a 10-dimensional representation, which captures > 98% of the explained variance 

(EV), as shown in Figure 6.4(b). This approach matches the 10-dimensionial representation used 

by Wagih and Schuh to predict dilute limit segregation energies [83]. Next, I automatically select 

a representative set of nearest neighbor pairs to use as training data by clustering the reduced 

feature space with K-Means clustering [137]. Here, I choose to use the non-reduced feature space 

during training, to preserve as much information about the LAE as possible. This results in the 

need for a larger number of training data points on the order of 10 times the size of the input 

features. For this reason, I choose to use 7,000 cluster centers.  
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The process of constructing and selecting training data in the manner described here, as well as 

the training and prediction itself, is minimal compared to the cost of rigorous computation of the 

many energies involved, as in Chapter 3 [69]. This results in roughly an order of magnitude 

decrease in computational time required to predict a solute-solute interaction spectrum. 

 

 

 

Figure 6.4. Schematic depiction of automatic training set selection. (a) Non-dilute SOAP matrix. 

(b) Explained variance for the first 10 components of the PCA-reduced feature space. (c) PCA-

reduced feature space. (d) K-means clustering projected into the first two PCA components; 

cluster centers in the histograms are shown at 10x scale for clarity. (e) Pair-wise predictions of 

ѡ𝑔𝑏,𝑖−𝑗 for the high-fidelity model on Al-Mg [127]. (f) The corresponding site-wise predictions of 

𝜔𝑔𝑏,𝑖. 

 

Once the training data are chosen, they are then fed into the neural network, using the same 

training procedure as above, and the resulting predictions produce a pair-wise construction of the 

solute-solute interaction spectra, as shown in Figure 6.4(e). These pair-wise parameters can then 

be averaged on a site-wise basis, as in Chapter 3 [69], to produce the comparable site-wise 
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interaction parameters that can be used as an input for spectral thermodynamic models. 

Similarly, 100 training points specifically selected to learn ∆𝐸𝑖
𝑠𝑒𝑔,𝑑𝑖𝑙

 are fed into a linear 

regression model following Wagih and Schuh [83] to reproduce the corresponding dilute limit 

segregation spectra.  

 

6.6. Model Validation  

 

To validate the performance of the model, both in its high-fidelity and accelerated forms, I begin 

by considering the (10x10x10) nm3 polycrystal of Ag-Cu [128] produced in Section 6.2 above. 

The full solute-solute interaction spectra and dilute limit segregation energy spectra were 

measured exhaustively on a site-wise basis, and these spectra are shown in the first bi-variate 

plots in Figure 6.5(a). The same polycrystal was then used to construct bond-focused SOAP 

feature matrices for the GB nearest neighbor pairs and execute the learning algorithms described 

above. Both the high-fidelity (50/50 train/test split) and accelerated (7,000 bond) versions were 

then used to train the neural network model, and the resulting predicted solute-solute interaction 

spectra are shown on the y-axis of the parity plots in Figure 6.5(b). 

 

To interpret the difference between the calculated and predicted spectra, I choose here to use a 

test case which compares the site-wise solute occupation predictions of each spectrum, under 

conditions of finite concentration (5 at%) and temperature (600 K). This can be done using the 

bivariate form of the spectral isotherm defined by Equations (3.5). These predictions are shown 

relative to the rigorously measured version in Figure 6.6, and the corresponding dilute limit 

isotherm and scalar interaction isotherm are shown for comparison.  

 

As can be seen in the parity plots shown in Figure 6.5(b), both the high fidelity and accelerated 

versions of the model provide qualitatively good agreement with the solute interaction spectrum 

for Ag-Cu. Both models appear to accurately capture the shape and mean of the pair-wise 

interaction spectra, including the multi-peak behavior present in Ag-Cu. These multiple peaks are 

distinct from the consistently skew-normal distributions seen in the site-wise spectra, which 

indicates the ability of this model to correctly capture that increased complexity. Upon averaging 

to a site-wise value the predicted mean remains accurate, and the multi-peak distribution 
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correctly collapses to the expected skew-normal behavior. Once these spectra are used to 

evaluate site occupation in realistic conditions, the learning models produce an output that is 

essentially identical to the exhaustive computation, as seen in Figure 6.6. 

 

 

 

Figure 6.5. Model predictions for Ag-Cu [128]. (a) Bivariate spectrum – measured spectrum 

(top), high-fidelity predicted spectrum (middle), and accelerated predicted spectrum (bottom), 
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with fitted bivariate normal distributions superimposed. (b) Parity plots – accelerated pair-wise 

predictions (upper left), accelerated site-wise predictions (upper right), high-fidelity pair-wise 

predictions (bottom left), high-fidelity site-wise predictions (bottom right). 

 

 

 

Figure 6.6. Occupation prediction plot for each model (high-fidelity in dotted blue and 

accelerated in dashed black), the dilute limit isotherm (light blue), an isotherm with scalar 

interactions(orange), and an isotherm with the measured bivariate interactions at 600 K and 5 

percent total solute (pink).  

 

Repeating the above process for the remaining polycrystals of Al-Mg [127], Nb-Ni [129], Ni-Pt 

[130], and Pt-Au [131] results in the predictions shown in Appendix C. These tests demonstrate 

that this model continues to provide qualitatively strong agreement across multiple alloys with 

different crystal structures and energetics. The accelerated model generally captures the correct 

mean and shape of the distribution, with the primary difference being the occasional narrowing 

of the average site-wise predictions, relative to the exhaustively calculated spectra.  Despite this 

difference, the accelerated occupation distributions continue to provide good agreement with the 
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full computation, and the high fidelity and accelerated models consistently agree with one 

another.  

 

Importantly, all these systems require the spectral interaction parameters to capture the true 

segregation response, even at relatively low total solute concentrations of 5 at%.  This is because 

even in the global “dilute limit”, segregation amplifies concentrations locally at the GBs to the 

point where interactions cannot be ignored. Each system correctly predicts the increase or 

decrease in occupation relative to that which would be expected in the dilute limit, depending on 

the sign of the interaction parameter. Furthermore, the effect due to the correlation between 

segregation energy, combined with the spread in interaction energies, requires a full spectral 

representation to capture correctly; some systems, such as Nb-Ni, even incorrectly exhibit little 

to no interaction effect when using a scalar interaction model. This is consistent with my prior 

observations of Al-Mg [69], and indicates that an approach such as this, which learns the full 

spectrum of interaction energies, is necessary to correctly capture GB energetics.  

 

6.7. A Full Tri-Variate Database of Spectral Segregation Parameters 

 

Having validated the accelerated method developed above, I now construct a database of spectral 

solute-solute interaction parameters for grain boundary segregation in binary alloys. 

Additionally, I reproduce the dilute limit segregation spectra using the accelerated method by 

Wagih and Schuh  [83] and measure the excess GB energy spectra for the pure solvents via 

Equation (6.1). I choose here to construct this database from the available EAM potentials on the 

NIST Potential Repository [112,113]. To limit computational cost, I choose here to only use 

EAM potentials for which GPU acceleration [138–142] is available; however, this procedure can 

apply to any available interatomic potential.  

 

To perform these predictions, I use (13 x 13 x 13) nm3 polycrystals constructed using the same 

procedure as above, resulting in average grain sizes of 8-9 nm and a number of atoms between 

120,000 and 200,000. While the 10x10x10 nm3 polycrystals produced above are known to be 

sufficiently large for training purposes [69], for this step I choose to use a slightly larger 

polycrystal to improve the resolution of the spectra predictions available in the subsequent 
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database. From these polycrystals, I then detect the grain boundary sites and nearest neighbors 

using the method in Section 6.2, predict the site-wise solute interaction parameters using the 

accelerated method from Sections 6.3-6.5, predict the dilute limit segregation energies using the 

procedure by Wagih and Schuh [83], and measure the solvent GB excess energy spectra using 

Equation (6.1). The bulk interaction parameters are then calculated using the same process as 

Equations (2.7), (3.2), and (3.3) in a bulk crystalline supercell. An example of the solute 

interaction predictions, taken from Appendix D, are shown for a solvent base of Al in Figure 6.7.  

 

 

 

Figure 6.7. Solute interaction spectra, 𝜔𝑔𝑏,𝑖, in kJ/mol, for Al-based solutes, predicted using the 

accelerated model developed in sections 4-6. The dotted line indicates where 𝜔𝑔𝑏,𝑖 = 0 kJ/mol.    

[143] [144] [145] [146] [101] [127] [147] [148] [149,150] [151] [152] [153] [154] [147] [155] 
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The results in Figure 6.7 and Appendix D are, in principle, complete and rigorous to within the 

accuracy of the potentials used to produce them. Used in conjunction with Equation (3.5) or 

(4.18), they provide accurate predictions of grain boundary segregation even down to the level of 

site occupancy and neighbor clustering. For ease of use, all the predicted spectra are available in 

a tri-variate database alongside their corresponding bulk interaction parameters; the spectra are 

shown in a tabulated form in Appendix D, and the complete site-wise data are available for 

fitting in the Supplemental Data of the corresponding publication [86]. Additionally, I have 

provided skew-normal parameters for each univariate distribution fitted to Equation (2.10). 

However, as seen in some alloys in Figure 6.7 and Appendix D, a skew-normal fit is not always 

appropriate. Furthermore, Equation (2.10) cannot capture the covariances between the spectra 

unless adjusted to higher dimensions, such as in the bivariate spectra shown in Figure 6.5. For 

this reason, I recommend use of the univariate distributions only for initial screening purposes 

and suggest that the site-wise spectra provided in the Supplemental Data [86] be used as the 

primary input for predictions.    

 

I urge caution when undertaking segregation predictions; as always, energetics of atomic 

interactions are highly sensitive to the fitting of the corresponding interatomic potential. 

Particularly in the case of solute-solute interactions, interatomic potentials not explicitly fitted 

for disordered environments can produce non-physical results, demonstrating both predicted and 

measured interactions that are of a magnitude or sign that are not physically reasonable relative 

to the expected or observed behavior. In Appendix D and the Supplementary Data [86], I have 

marked examples of spectra derived from potentials that are fitted to more robust sets of complex 

atomic environments. These are relatively few at present, underscoring the note of caution above. 

Additionally, I have noted any potentials which present predictions that are of relative concern, 

including interactions which deviate, on average, more than 50% from the corresponding bulk 

interactions, those which have a different sign than the corresponding bulk interactions, those 

with a magnitude of greater than 10 kJ/mol, or potentials which produce negative values for the 

grain boundary excess energy of the solvent.  

 

Moving forward, newly developed potentials can be easily incorporated into the present 

workflow to produce trustworthy grain boundary segregation spectra. Additionally, the prospect 
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of quantum-accurate approaches to this problem are foreshadowed by the work of Wagih and 

Schuh for the case of dilute-limit segregation energies [84], which may be adapted to address 

solute interactions in future work. The “bond-focused” LAE representation and learning 

algorithm presented here has opened the door to such possibilities, and has provided what is, to 

my knowledge, the first database of fully spectral parameters describing grain boundaries for 

binary alloys beyond the dilute limit, making spectral-accurate predictions of grain boundary 

segregation, and therefore the production of nanocrystalline phase-and-defect diagrams at finite 

concentrations broadly accessible for the first time. 

 

Conclusion 

  

Recent progress in defect engineering has focused on the incorporation of “defect states” into 

what I have termed here “phase-and-defect diagrams.” These diagrams seek to analyze systems 

containing defects with similar methodology as bulk thermodynamic phases, thus allowing for a 

direct comparison and mapping of the two onto a single diagram, comparable to a bulk 

equilibrium phase diagram [1,52–58]. These diagrams constitute a significant step forward in our 

ability to understand and engineer stable defect states. While significant progress has been made 

in this area in the case of solute segregation to relatively simple defects, such as dislocations or 

simple, highly symmetric brain boundaries [1,53–58], this problem has only been addressed for 

polycrystalline grain boundary segregation using homogenous, scalar representations of the GB 

energetics [52]. While spectral representations for grain boundary segregation have recently been 

shown to offer significant improvements, spectral representations developed prior to this work 

rely on thermodynamic isotherms, which cannot be used to construct phase-and-defect diagrams, 

and which have limited, often non-spectral options for extension beyond the dilute limit [82]. 

Furthermore, only dilute-limit spectral data is currently accessible to the broader community 

[68,83], severely restricting the usage of spectral models in predicting stable defect states, thus 

prevent the production of accurate nanocrystalline phase-and-defect diagrams.  

 

To fulfill these needs, I have accomplished the following in this thesis: 
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1) In Chapter 3, I have explored the natural extension of the spectral model for GB 

segregation by assessing a comparable distribution of solute-solute interaction energies. 

The method presented here has provided what is, to my knowledge, the first measurement 

of the full spectrum of solute-solute interaction energies at the GB. The spectrum of 

interaction energies follows a roughly skew-normal distribution for the Al-Mg system 

analyzed here, and when combined with the existing segregation energy distribution 

constitutes a full bivariate (skew-)normal distribution that describes the GB beyond the 

dilute limit.  

 

A full bivariate normal distribution of site and interaction energies provides an excellent 

prediction of the solute distribution at equilibrium, as validated against rigorous hybrid 

Monte Carlo/ Molecular statics simulations, both on average and over the full spectrum 

of GB sites. Importantly, though, in the present case the interactions can be approximated 

by a scalar average over their full distribution and still achieve reasonable accuracy for 

many practical problems. This compromise is one that has the benefit of being fully 

atomistically informed, but less computationally intensive. This work thus paves the way 

to use simple, inexpensive atomistic measurement to predict solute interaction behavior 

during grain boundary segregation, and allows for the development of a spectral free 

energy model with which a spectral phase-and-defect diagram can be produced.  

 

2) In Chapters 4 and 5, I have presented what is, to my knowledge, the first analytical model 

for spectral grain boundary segregation, and the first fully spectral free energy 

representation for the segregated polycrystalline defect state. With this spectral regular 

solution model, I have constructed a phase-and-defect diagram for a hypothetical system, 

from which I note two key points. First, the bulk two-phase behavior predicted via bulk 

thermodynamics has been replaced by a stable grain size that increases with temperature 

and decreases with solute concentration. And second, this model predicts a significant 

deviation from its scalar counterpart when attempting to fit an appropriate scalar 

segregation energy, reinforcing the need for spectral information of the polycrystalline 

state. The proposed model, while limited in its assumptions, provides the first framework 

for the production of spectral phase-and-defect diagrams, constituting a massive 
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improvement in our ability to engineer these defect states and access information about a 

broad range of alloys and properties that were previously unexplored. 

 

3) In Chapter 6, I have presented a modified “bond-focused” LAE representation to 

accurately capture the pair-wise nature of grain boundary solute interactions. I then also 

presented a learning algorithm which takes this LAE as an input to learn the solute 

interaction spectra. This method is roughly an order of magnitude faster than exhaustive 

computation [69], enabling rapid solute interaction predictions and making solute 

interaction spectra accessible to quantum-accurate predictions in the future.  

 

And finally, I have used this “bond-focused” LAE representation and learning algorithm 

to produce what is, to my knowledge, the first large-scale database of spectral grain 

boundary parameters beyond the dilute limit, encompassing binary alloys from nearly 

200 EAM potentials available on the NIST repository [112,113]. This enables broader 

accessibility to spectral-accurate predictions of stable segregated polycrystalline states, 

and thus to the production of nanocrystalline phase-and-defect diagrams.  

 

With the completion of this thesis, I hope that the models, methods, and data presented here 

allow for improved access to spectral modeling of stable segregation states, enabling the 

production of nanocrystalline phase-and-defect diagrams and their broader adoption into existing 

CALPHAD methodology. In doing so, my hope is that we can achieve significant improvement 

in our understanding and engineering of defect states, and in our prediction and development of 

stable nanocrystalline alloys.  
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Future Outlook 

 

The above models, methods, and data constitute a massive step forward in our understanding and 

ability to model spectral defect states. However, most of the work presented in this thesis suffer 

from limiting assumptions that, while appropriate for the steps being taken at the time of writing, 

will need to be stripped away and improved upon as spectral models and their corresponding 

phase-and-defect diagrams continue to improve. The sheer quantity of open questions in this area 

is staggering, and below I list but a few which I have personally spent time contemplating.  

 

1. Quantum-Accurate Modeling of Solute Interaction Spectra 

 

While the database of non-dilute spectral GB parameters produced in Chapter 6 is the first of its 

kind, it is constructed from existing interatomic potentials that are highly sensitive to the atomic 

configurations and material parameters with which they were fit. As noted in Chapter 6, this 

results in a large portion of these potentials being inappropriate for modeling polycrystalline 

grain boundary segregation in some or all of the required concentration range. For this reason, an 

ab-initio approach to measuring solute interaction spectra will be a necessary step forward.  

 

Wagih and Schuh [84] have recently adopted a hybrid quantum mechanical-molecular 

mechanical (QM-MM) [156–158] approach to calculating dilute limit segregation spectra using 

ab-initio calculations in a “core” region around each grain boundary site and a pure-solvent 

interatomic potential in the remainder of the system, performing force and energy pairing 

through a buffer layer between the two. Even with the accelerated learning algorithm developed 

in Chapter 6, performing a comparable set of QM-MM calculations for the required number of 

nearest-neighbor pairs would prove prohibitively expensive. For this reason, further development 

of either the QM-MM method proposed by Wagih and Schuh, or the learning algorithm proposed 

here will be necessary to achieve quantum-accurate solute interaction spectra.  
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2. Nanocrystalline Phase-and-Defect Diagrams and CALPHAD 

 

The phase-and-defect diagram produced in Chapter 5 is limited in the composition range and 

number of phases and defect states it considers. In the model proposed above, only the A-

(solvent) rich polycrystalline defect state, defined by my spectral nanocrystalline regular solution 

model, and the A-rich bulk regular solution are considered. As such, only the A-rich side of the 

phase-and-defect diagram is shown. In reality, there could be any number of potential defect 

states, including a variety of grain boundary complexions, dislocations, etc., alongside all of the 

bulk ordered and solution phases spanning the entire composition range. To reliably produce a 

phase-and-defect diagram which contains as much of this information as possible will require the 

adoption of a CALPHAD [159,160] approach which incorporates as many available free energy 

functions as possible, including both the bulk phases and defect states. Additionally, this 

information will be most useful when it is derived from thermodynamically consistent sources, 

which will require the use of a single interatomic potential or self-consistent ab-initio 

calculations, both of which come with the complications discussed above. Despite this difficulty, 

a phase-and-defect diagram with such complete information would prove an invaluable asset to 

the defect engineering community.  

 

3. Non-Ideal Configurational Entropy in the Spectral Model 

 

Figure 1.1 shows many of the components that could be used to construct a spectral free energy 

function, as done in Chapter 4. Here, I have only considered the enthalpic components and the 

ideal configurational entropy. While the dilute limit vibrational entropy has been addressed [68] 

and could be easily incorporated in future works, the non-ideal configurational entropy has yet to 

be considered. In bulk equilibrium phases, this non-ideal behavior can be captured by analytical 

models (i.e. the quasi-chemical model [111]); however, it is often ignored or handled via fitted 

polynomials and activity coefficients [159,160]. In the case of spectral grain boundary 

segregation, non-ideality becomes even more significant due to the physical distribution of sites 

throughout the grain boundary network, and how that distribution overlaps with the spectral 

energetics, resulting in complex configurations of solutes which I have observed in some of my 

simulations with particularly strong (often attractive) solute interactions.   
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4. Final Thoughts  

 

The above suggestions are only some of the possible improvements that could be made following 

this work, and those which I have considered personally. Other possibilities include the 

development of ternary and multinary spectral models, solute interactions for interstitial 

segregation [161], solute segregation in ordered compounds, and the translation of the 

thermodynamics and driving forces developed here to corresponding kinetic models. It is my 

hope that this work will serve as a starting point for many such developments in the future.  

 

Appendix A – The Scalar NCRS Model 

 

In this section I derive the scalar analog of the spectral nanocrystalline regular solution model 

developed in Chapter 4. This derivation is equivalent to that of Trelewicz and Schuh [41] and 

follows the same procedure used in the spectral derivation, assuming scalar rather than spectral 

bond energies for the grain boundary and transitional regions.   

 

A1. Scalar Solution Model 

 

Following the same procedure as shown in Chapter 4, the number of bonds and corresponding 

bond energies in each region are shown in Table A1. The scalar total solution energy, 𝑈𝑠𝑜𝑙𝑛, is 

then given as the summation over each region, denoted by 𝑠, as: 

 

𝑈𝑠𝑜𝑙𝑛 = ∑[𝑁𝑏
𝑠𝐸𝑏

𝑠 + 𝑁𝑔𝑏
𝑠 𝐸𝑔𝑏

𝑠 + 𝑁𝑡
𝑠𝐸𝑡

𝑠]

𝑠

. (𝐴1) 
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Table A1. Bond types in each region of the scalar NCRS model – bulk (grain interior), grain 

boundary, and transition – along with the corresponding notation for the number of bonds and 

bond energies of each type.  

 

Bond Type Number of Bonds Bond Energies 

Bulk 𝑵𝒃
𝑨𝑨 𝑬𝒃

𝑨𝑨 

 𝑵𝒃
𝑨𝑩 𝑬𝒃

𝑨𝑩 

 𝑵𝒃
𝑩𝑩 𝑬𝒃

𝑩𝑩 

GB-GB (Site Type 𝒊) 𝑵𝒈𝒃
𝑨𝑨 𝑬𝒈𝒃

𝑨𝑨 

 𝑵𝒈𝒃
𝑨𝑩 𝑬𝒈𝒃

𝑨𝑩 

 𝑵𝒈𝒃
𝑩𝑩 𝑬𝒈𝒃

𝑩𝑩 

Transition (Site Type 𝒊) 𝑵𝒕
𝑨𝑨 𝑬𝒈𝒃

𝑨𝑨 

 𝑵𝒕
𝑨𝑩 𝑬𝒈𝒃

𝑨𝑩 

 𝑵𝒕
𝑩𝑩 𝑬𝒈𝒃

𝑩𝑩 

 

Here, 𝑁 and 𝐸 represent the bond numbers and energies, and 𝑏, 𝑔𝑏, and 𝑡 denote the bulk, grain 

boundary, and transitional bonds, respectively, and there is no longer a summation over spectral 

terms. The mixing energy, ∆𝑈𝑚𝑖𝑥, is still defined with respect to the unmixed, interface-free α 

phase of the same composition: 

 

∆𝑈𝑚𝑖𝑥 = 𝑈𝑠𝑜𝑙𝑛 − 𝑈𝑟𝑒𝑓 (𝐴2) 

 

where the reference state, 𝑈𝑟𝑒𝑓, is the same as in the spectral derivation: 

 

𝑈𝑟𝑒𝑓 =
𝑧𝑁𝐴

2
𝐸𝑏

𝐴𝐴 +
𝑧𝑁𝐵

2
𝐸𝑏

𝐵𝐵 . (𝐴3) 
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Here, 𝑁𝐴 and 𝑁𝐵 are the total number of A and B atoms, respectively, and z is the coordination 

number of the α phase. The coordination number and total number of A and B atoms are related 

to the number of scalar bonds given in Table A1 via: 

 

𝑧𝑁𝐴 = 2𝑁𝑏
𝐴𝐴 + 𝑁𝑏

𝐴𝐵 + 2𝑁𝑔𝑏
𝐴𝐴 + 2𝑁𝑡

𝐴𝐴 + 𝑁𝑔𝑏
𝐴𝐵 + 𝑁𝑡

𝐴𝐵 (𝐴4) 

𝑧𝑁𝐵 = 2𝑁𝑏
𝐵𝐵 + 𝑁𝑏

𝐴𝐵 + 2𝑁𝑔𝑏
𝐵𝐵 + 2𝑁𝑡

𝐵𝐵 + 𝑁𝑔𝑏
𝐴𝐵 + 𝑁𝑡

𝐴𝐵 . (𝐴5) 

 

Combining these relationships with Equations (A1) – (A3), the scalar change in internal energy 

upon mixing becomes: 

 

∆𝑈𝑚𝑖𝑥 = 𝑁𝑏
𝐴𝐵 (𝐸𝑏

𝐴𝐵 −
𝐸𝑏

𝐴𝐴 + 𝐸𝑏
𝐵𝐵

2
) + (𝑁𝑡,𝑖

𝐴𝐴 + 𝑁𝑔𝑏,𝑖
𝐴𝐴 )(𝐸𝑔𝑏,𝑖

𝐴𝐴 − 𝐸𝑏
𝐴𝐴)

+(𝑁𝑡,𝑖
𝐵𝐵 + 𝑁𝑔𝑏,𝑖

𝐵𝐵 )(𝐸𝑔𝑏,𝑖
𝐵𝐵 − 𝐸𝑏

𝐵𝐵) + (𝑁𝑡,𝑖
𝐴𝐵 + 𝑁𝑔𝑏,𝑖

𝐴𝐵 ) (𝐸𝑔𝑏,𝑖
𝐴𝐵 −

𝐸𝑏
𝐴𝐴 + 𝐸𝑏

𝐵𝐵

2
)

(𝐴6) 

which is functionally identical to Equation (4.8), without the summation over spectral terms.  

 

A2. Scalar Bond Distributions 

 

The number of bulk, transition, and grain boundary bonds, 𝑃𝑟, where 𝑟 is the region, are given as: 

 

𝑃𝑏 = (
𝑧

2
(1 − 𝑓𝑔𝑏) −

𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (𝐴7) 

𝑃𝑔𝑏 = (
𝑧

2
𝑓𝑔𝑏 −

𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (𝐴8) 

𝑃𝑡 = (
𝑧𝑣

2
𝑓𝑔𝑏)𝑁 (𝐴9) 

 

where 𝑁 is the total number of atoms, 𝑓𝑔𝑏 is the grain boundary volume fraction, 𝑧 is the 

coordination number, and 𝑣 is the geometric parameter that described the fraction of bonds 

attached to GB atoms which are transitional bonds. These are the same values of 𝑃𝑟 from 

Equations (4.9)-(4.11); however, they do not need to be weighted by a spectral site probability 

for this scalar derivation. 
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Table A2. Bond types in each region of the scalar NCRS model – bulk (grain interior), grain 

boundary, and transition. Additionally, the corresponding notation for the number of bonds and 

bond energies of each type, the concentration-dependent probabilities assigned of each bond 

type, and the total number of bonds in each region.  

 

Bond Type Number of 

Bonds 

Bond 

Energies 

Probabilities Bonds in 

Region 

Bulk 𝑵𝒃
𝑨𝑩 𝑬𝒃

𝑨𝑩 𝟐𝑿𝒃(𝟏 − 𝑿𝒃) 𝑷𝒃 

GB-GB 𝑵𝒈𝒃
𝑨𝑨 𝑬𝒈𝒃

𝑨𝑨 (𝟏 − �̅�𝒈𝒃)
𝟐 𝑷𝒈𝒃 

 𝑵𝒈𝒃
𝑨𝑩 𝑬𝒈𝒃

𝑨𝑩 𝟐�̅�𝒈𝒃(𝟏 − �̅�𝒈𝒃)  

 𝑵𝒈𝒃
𝑩𝑩 𝑬𝒈𝒃

𝑩𝑩 �̅�𝒈𝒃
𝟐
  

Transition 𝑵𝒕
𝑨𝑨 𝑬𝒈𝒃

𝑨𝑨 (𝟏 − 𝑿𝒃)(𝟏 − �̅�𝒈𝒃) 𝑷𝒕 

 𝑵𝒕
𝑨𝑩 𝑬𝒈𝒃

𝑨𝑩 𝑿𝒃(𝟏 − �̅�𝒈𝒃) + �̅�𝒈𝒃(𝟏 − 𝑿𝒃)  

 𝑵𝒕
𝑩𝑩 𝑬𝒈𝒃

𝑩𝑩 𝑿𝒃(�̅�𝒈𝒃)  

  

As above, I model the geometric effect of triple junctions and quadruple nodes by scaling 𝑣  with 

the volume fraction of triple junctions and quadruple nodes, 𝑓𝑡𝑗, given relative to the total 

intergranular volume fraction 𝑓𝑔𝑏 by the Palumbo polynomial [31,107–110]:  

 

𝑓𝑡𝑗 = 𝑓𝑔𝑏 −
3𝑡(𝑑 − 𝑡)2

𝑑3
(𝐴10) 

 

and the fraction of grain boundary bonds that are then transitional bonds is given as: 

 

𝑣 =  𝑣0 (1 −
𝑓𝑡𝑗

𝑓𝑔𝑏
) (𝐴11) 
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where 𝑣0 is the value of 𝑣 for a grain boundary with no triple junctions or quadruple nodes, 

which I approximate as 0.33 as in Chapter 4.  

 

For this scalar derivation, I assume standard random mixing in both the grain boundary and the 

bulk, resulting in the bond probabilities shown in Table A2. The probabilities and number of 

bonds in the region are then combined to determine the number of bonds of each type and 

populate Equation (S6) to determine the total scalar change in internal energy upon mixing.  

 

A3. Scalar Free Energy Functions 

 

The scalar free energy of mixing, ∆𝐺𝑚𝑖𝑥, can be constructed from the internal energy of mixing 

and entropic contribution due to mixing assumptions using the same construction as in Chapter 

4. Given the random mixing assumptions here, the entropic contribution, ∆𝑆𝑚𝑖𝑥, becomes: 

 

∆𝑆𝑚𝑖𝑥 = −𝑅𝑁[(1 − 𝑓𝑔𝑏)(𝑋𝑏 ln(𝑋𝑏) + (1 − 𝑋𝑏) ln(1 − 𝑋𝑏))

+(�̅�𝑔𝑏 ln(�̅�𝑔𝑏) + (1 − �̅�𝑔𝑏) ln(1 − �̅�𝑔𝑏))]. (𝐴12)
 

 

Combining Equations (A6) and (A12) with the definition for ∆𝐺𝑚𝑖𝑥 from Equation (4.16), and 

normalizing by 𝑁 results in the molar free energy of mixing for the scalar nanocrystalline state:  

 

∆𝐺𝑚𝑖𝑥 = (1 − 𝑓𝑔𝑏)∆𝐺𝑚𝑖𝑥
𝑏 + 𝑓𝑔𝑏∆𝐺𝑚𝑖𝑥

𝑔𝑏
+ 𝑣𝑓𝑔𝑏

[
 
 
 
 
𝑧

2
ѡ𝑔𝑏(𝑋𝑏 − �̅�𝑔𝑏)(2�̅�𝑔𝑏 − 1)

−𝑧ѡ𝑏𝑋𝑏(1 − 𝑋𝑏)

+
1

2

𝑉𝑚

𝑡
(𝛾𝐵 − 𝛾𝐴)(𝑋𝑏 − �̅�𝑔𝑏)]

 
 
 
 

. (𝐴13) 

 

Note that this form is functionally the same as that derived in Chapter 4, except all the spectral 

terms have been replaced by a single scalar value with no need for an integral. Additionally, this 

form of the free energy of mixing is functionally the same as that derived previously by 

Trelewicz and Schuh [41].  

 

The bulk mixing energy, ∆𝐺𝑚𝑖𝑥
𝑏 , is the same as derived in Equation (4.19) and is given as: 
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∆𝐺𝑚𝑖𝑥
𝑏 = 𝑧𝑋𝑏(1 − 𝑋𝑏) (𝐸𝑏

𝐴𝐵 −
𝐸𝑏

𝐴𝐴 + 𝐸𝑏
𝐵𝐵

2
)

+𝑅𝑇(𝑋𝑏 ln(𝑋𝑏) + (1 − 𝑋𝑏) ln(1 − 𝑋𝑏)) (𝐴14)

 

 

with the same bulk regular-solution interaction parameter, ѡ𝑏: 

 

ѡ𝑏 = (𝐸𝑏
𝐴𝐵 −

𝐸𝑏
𝐴𝐴 + 𝐸𝑏

𝐵𝐵

2
) . (𝐴15) 

 

The scalar “amorphous limit”, ∆𝐺𝑚𝑖𝑥
𝑔𝑏

, is given as: 

 

∆𝐺𝑚𝑖𝑥
𝑔𝑏

=
𝑧

2
{(1 − �̅�𝑔𝑏)(𝐸𝑔𝑏

𝐴𝐴 − 𝐸𝑏
𝐴𝐴) + �̅�𝑔𝑏(𝐸𝑔𝑏

𝐵𝐵 − 𝐸𝑏
𝐵𝐵)

+(𝐸𝑔𝑏
𝐴𝐵 −

𝐸𝑔𝑏
𝐴𝐴 + 𝐸𝑔𝑏

𝐵𝐵

2
) (�̅�𝑔𝑏)(1 − �̅�𝑔𝑏)}

+𝑅𝑇(�̅�𝑔𝑏 ln(�̅�𝑔𝑏) + (1 − �̅�𝑔𝑏) ln(1 − �̅�𝑔𝑏))

(𝐴16) 

 

where the scalar GB analogue to the bulk regular-solution parameter, ѡ𝑔𝑏, emerges as: 

 

ѡ𝑔𝑏 = (𝐸𝑔𝑏
𝐴𝐵 −

𝐸𝑔𝑏
𝐴𝐴 + 𝐸𝑔𝑏

𝐵𝐵

2
) . (𝐴17) 

 

The first two terms of Equation (S16) and are related to the scalar versions of the conventional 

grain boundary energies of the solvent, 𝛾𝐴, and of the solute, 𝛾𝐵, by the relationship: 

 

𝛾𝐴 =
𝑧

2

𝑡

𝑉 𝑚
(𝐸𝑔𝑏

𝐴𝐴 − 𝐸𝑏
𝐴𝐴) (𝐴18) 

𝛾𝐵 =
𝑧

2

𝑡

𝑉𝑚
(𝐸𝑔𝑏

𝐵𝐵 − 𝐸𝑏
𝐵𝐵) (𝐴19) 
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where 
𝑡

𝑉𝑚
 converts the grain boundary excess energy to a molar quantity by normalizing with the 

thickness of the boundary, 𝑡, and the molar volume, 𝑉𝑚. 

 

Combining these definitions with Equation (A16), the scalar free energy contribution due to the 

grain boundary region is thus: 

 

∆𝐺𝑚𝑖𝑥
𝑔𝑏

=
𝑧

2
{(1 − �̅�𝑔𝑏)𝛾𝐴 + (�̅�𝑔𝑏)𝛾𝐵

+ѡ𝑔𝑏(�̅�𝑔𝑏)(1 − �̅�𝑔𝑏)}

+𝑅𝑇(�̅�𝑔𝑏 ln(�̅�𝑔𝑏) + (1 − �̅�𝑔𝑏) ln(1 − �̅�𝑔𝑏))

(𝐴16) 

 

which is the same as Equation (4.25) after brief rearrangement, when the spectral terms are 

replaced with their scalar counterparts, and the integral is removed.  

 

A4. Scalar Equilibrium Conditions and the Scalar Isotherm Model 

 

As discussed in Chapter 4, the equilibrium condition of the scalar nanocrystalline state can be 

readily solved via analytical minimization with respect to both grain size, d (or equivalently, the 

grain boundary volume fraction, 𝑓𝑔𝑏), and the average solute concentration at the grain boundary, 

�̅�𝑔𝑏, assuming a closed system with constant total concentration, 𝑋𝑡𝑜𝑡. Given the numerical 

framework used to find the equilibrium condition of the spectral model derived above, I neglect 

the rigorous minimization here, and refer readers to the original derivation by Trelewicz and 

Schuh for the complete procedure [41]. Here, I minimize only with respect to solute 

concentration to reveal the scalar isotherm model from which I constructed the spectral 

counterpart above. This minimization can be constructed by setting the following derivative of 

Equation (A13) equal to zero: 

 

𝑑∆𝐺𝑚𝑖𝑥

𝑑�̅�𝑔𝑏

|
𝑓𝑔𝑏

= 0. (𝐴17) 
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From the construction, the relationship between the bulk and grain boundary concentrations is 

revealed to follow a Fowler-type isotherm:  

 

𝑋𝑔𝑏

1 − 𝑋𝑔𝑏
=

𝑋𝑏

1 − 𝑋𝑏
exp (

−∆𝐻
𝑠𝑒𝑔

 

𝑘𝑇
) (𝐴18) 

 

where the scalar segregation energy, ∆𝐻
𝑠𝑒𝑔

, is given as: 

 

∆𝐻
𝑠𝑒𝑔

= (
𝑣𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
− 1) 𝑧ѡ𝑏 + (1 +

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)) 𝑧ѡ𝑔𝑏

+
𝑉𝑚

𝑡
(1 −

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)) (𝛾𝐵 − 𝛾𝐴)

+2𝑧 ((1 −
𝑣𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
)𝑤𝑏𝑋𝑏 − (1 +

𝑣

2
(1 +

𝑓𝑔𝑏

1 − 𝑓𝑔𝑏
))ѡ𝑔𝑏�̅�𝑔𝑏 +

𝑣

2
ѡ𝑔𝑏(𝑋𝑏 − �̅�𝑔𝑏))

. (𝐴19) 
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Appendix B – Solute Interaction Predictions from a 

“Site-Focused” LAE 

 

The site-wise solute interaction parameter, 𝜔𝑔𝑏,𝑖, predicted following the procedure of Wagih and 

Schuh using a site-focused LAE [83], is shown in Figure B1. The site-focused LAE, combined 

with the relatively simple linear-regression type learning model fails to accurately capture the 

behavior of the solute interaction parameter.  

 

 

 

Figure B1. Site-wise solute interaction parameter, 𝜔𝑔𝑏,𝑖, predicted using a site-focused LAE. 

 

Appendix C – Accelerated Model Validation 

 

Table C1. Accelerated Model Validation on Al-Mg, Nb-Ni, Ni-Pt, and Pt-Au, showing the 

rigorously measured and predicted spectra, parity plots, and occupation predictions from the 

dilute limit isotherm, scalar interaction isotherm, rigorously measured bivariate isotherm, and 

the accelerated and high-fidelity learning models. 

.  
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Appendix D - Full Tri-Variate Database of Spectral 

Segregation Parameters 

 

In this section, I provide individual spectra, including the solvent excess grain boundary 

enthalpy, dilute limit segregation energy, and solute interaction energy, for each binary alloy 

calculated in Chapter 6. Additionally, I provide the bulk interaction parameter. This data includes 

approximately 200 binary systems with EAM potentials available on the NIST potential 

repository [112,113]. The following data are depicted as separate single parameter spectra for 

easy viewing. For the complete tri-variate distribution, please refer to the site-wise values 

published in the Supplemental Data of the corresponding publication [86]. In the following, I 

have marked examples of potentials calibrated against more robust atomic environments, 

including amorphous environments. Additionally, I have marked any potentials which have 

produced energetics that are of concern when considering their physical reasonability. This 

includes potentials which predict GB solute interactions which deviate, on average, more than 

50% from the bulk interaction, GB interactions which have a different sign than that in the bulk, 

those with a magnitude of greater than 10 kJ/mol, or those that produce a solvent grain boundary 

excess enthalpy which is negative on average. For a more viewable list of these criteria, I refer 

the reader to the tabulated data published in the Supplemental Data [86].
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Table D1. Database of spectral GB parameters beyond the dilute limit, constructed for 

approximately 200 binary systems with EAM potentials from the NIST potential repository 

[112,113].  

 

☑ Fitted to complex and/or amorphous atomic environments 

⮽ Produced energetics of concerning physical reasonability 

 

Ag-based Alloys 

 

Ag-Au [130]

 

Ag-Au [162]
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Ag-Au [163]

Ag-Cu [130]

⮽ Ag-Cu [162]
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⮽ Ag-Cu [163] 

Ag-Cu [164]

 

⮽ Ag-Cu [128]

 



86 
 

Ag-Ni [130]

Ag-Ni [162]

 

☑ Ag-Ni [165]

 



87 
 

⮽ Ag-Pd [130]

Ag-Pd [162]

 

Ag-Pt [130]
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Ag-Pt [162]

 

Al-based Alloys 

 

⮽ Al-Co [143]

 

☑⮽ Al-Cu [144]

 



89 
 

☑⮽ Al-Fe [145]

 

⮽ Al-Mg [146]

 

☑⮽ Al-Mg [101]
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☑⮽ Al-Mg [127]

 

⮽ Al-Nb [147]

 

⮽ Al-Ni [148]

 



91 
 

⮽ Al-Ni [149]

 

⮽ Al-Ni [150]

 

⮽ Al-Ni [151]

 



92 
 

☑⮽ Al-Pb [152]

 

☑⮽ Al-Sm [153]

 

☑⮽ Al-Sm [154]

 



93 
 

⮽ Al-Ti [147]

 

⮽ Al-Ti [155]

 

Au-based Alloys 

 

Au-Ag [130]

 



94 
 

Au-Ag [162]

 

⮽ Au-Ag [163]

Au-Cu [130]

 



95 
 

Au-Cu [162]

Au-Cu [163]

Au-Ni [130]

 



96 
 

Au-Ni [162]

 

⮽ Au-Pd [130]

Au-Pd [162]

 



97 
 

Au-Pt [130]

Au-Pt [162]

 

☑⮽ Au-Pt [131]

 

 

Co-based Alloys 

 



98 
 

Co-Al [143]

Co-Al [143]

Co-Al [166]

 



99 
 

⮽ Co-Cr [167]

 

⮽ Co-Cr [166]

 

⮽ Co-Cr [168]

 



100 
 

⮽ Co-Cu [167]

 

⮽ Co-Cu [168]

 

⮽ Co-Fe [167]

 



101 
 

⮽ Co-Fe [166]

 

⮽ Co-Fe [168]

Co-Ni [143]

 



102 
 

Co-Ni [143]

 

⮽ Co-Ni [169]

 

⮽ Co-Ni [167]
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⮽ Co-Ni [166]

 

⮽ Co-Ni [168] 

 

Cr-based Alloys 

 

⮽ Cr-Fe [170]

 



104 
 

⮽ Cr-Ni [170]

 

Cu-based Alloys 

 

⮽ Cu-Ag [130]

 

⮽ Cu-Ag [162]

 



105 
 

Cu-Ag [164]

Cu-Ag [128]

 

⮽ Cu-Ag [163]
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☑ Cu-Al [144]

Cu-Au [130]

Cu-Au [162]

  



107 
 

⮽ Cu-Co [167]

 

⮽ Cu-Co [168]

Cu-Cr [167]

 



108 
 

Cu-Cr [168]

 

⮽ Cu-Fe [171]

Cu-Fe [167]

  



109 
 

⮽ Cu-Fe [168]

Cu-Ni [172]

Cu-Ni [130]

 



110 
 

Cu-Ni [162]

Cu-Ni [171]

Cu-Ni [173]

 



111 
 

Cu-Ni [167]

 

☑ Cu-Ni [174]

Cu-Ni [168]

  



112 
 

☑ Cu-Pb [175]

Cu-Pd [130]

Cu-Pd [162]

 



113 
 

Cu-Pt [130]

Cu-Pt [162]

 

⮽ Cu-Ta [163]

  



114 
 

☑⮽ Cu-Zr [176]

 

☑⮽ Cu-Zr [177]

  

☑ Cu-Zr [178]

 



115 
 

☑⮽ Cu-Zr

 

Fe-based Alloys 

 

☑⮽ Fe-Al [145]

⮽ Fe-Cr [170]

 



116 
 

⮽ Fe-Cu [171]

⮽ Fe-H [179]

⮽ Fe-Ni [171]

 



117 
 

⮽ Fe-Ni [180]

⮽ Fe-Ni [170]

⮽ Fe-P [181]

 



118 
 

⮽ Fe-V [182]

⮽ Fe-W [183]

 

Mg-based Alloys 

 

⮽ Mg-Al [146]

 



119 
 

☑ Mg-Al [101]

 

☑⮽ Mg-Al [127]

 

Nb-based Alloys 

 

⮽ Nb-Al [147]

 



120 
 

☑ Nb-Ni [129]

 

⮽ Nb-Ti [147]

 

Ni-based Alloys 

 

⮽ Ni-Ag [130]

 



121 
 

⮽ Ni-Ag [162]

 

☑ Ni-Ag [165]

 

⮽ Ni-Al [148]

  



122 
 

⮽ Ni-Al [149]

 

⮽ Ni-Al [150]

 

⮽ Ni-Al [151]

 



123 
 

Ni-Al [166]

Ni-Au [130]

Ni-Au [162]

 



124 
 

Ni-Co [143]

Ni-Co [169]

 

⮽ Ni-Co [167]

  



125 
 

⮽ Ni-Co [166]

Ni-Cr [184]

Ni-Cr [185]

 



126 
 

Ni-Cr [186]

 

⮽ Ni-Cr [167]

 

⮽ Ni-Cr [170]

  



127 
 

⮽ Ni-Cr [166]

 

⮽ Ni-Cu [172]

Ni-Cu [130]

 



128 
 

Ni-Cu [162]

Ni-Cu [171]

Ni-Cu [173]

 



129 
 

Ni-Cu [167]

 

☑⮽ Ni-Cu [174]

 

⮽ Ni-Fe [171]

  



130 
 

⮽ Ni-Fe [184]

Ni-Fe [185]

 

⮽ Ni-Fe [186]

  



131 
 

⮽ Ni-Fe [167]

Ni-Fe [170]

 

⮽ Ni-Fe [166]

  



132 
 

☑⮽ Ni-Nb [129]

Ni-Pd [130]

Ni-Pd [162]

 



133 
 

Ni-Pd [187]

Ni-Pt [130]

Ni-Pt [162]

 



134 
 

Ni-W [188]

 

☑⮽ Ni-Zr [189]

 

☑⮽ Ni-Zr [190]

 

 

 

 

 

 



135 
 

Pd-based Alloys 

 

Pd-Ag [130]

Pd-Ag [162]

 

⮽ Pd-Ag [191]

  



136 
 

⮽ Pd-Ag [191]

Pd-Au [130]

Pd-Au [162]

 



137 
 

Pd-Cu [130]

Pd-Cu [162]

 

⮽ Pd-H [191]

  



138 
 

⮽ Pd-H [191]

Pd-Ni [130]

Pd-Ni [162]

 



139 
 

Pd-Ni [187]

Pd-Pt [130]

Pd-Pt [162]

 

 

 

 

 

 



140 
 

Pt-Based Alloys 

 

⮽ Pt-Ag [130]

Pt-Ag [162]

Pt-Au [130]

 



141 
 

Pt-Au [162]

 

☑ Pt-Au [131]

Pt-Cu [130]

 



142 
 

Pt-Cu [162]

Pt-Ni [130]

Pt-Ni [162]

 



143 
 

Pt-Pd [130]

Pt-Pd [162]

 

Re-based Alloys 

 

Re-W [192]

 



144 
 

Re-W [193]

 

Ta-based Alloys 

 

Ta-Cu [163]

 

⮽ Ta-W [194]

 

 

 

 



145 
 

Ti-based Alloys 

 

Ti-Al [147]

Ti-Al [155]

 

⮽ Ti-Nb [147]

 

 

 

 



146 
 

V-based Alloys 

 

V-Fe [182]

 

W-based Alloys 

 

W-Fe [183]

⮽ W-Ni [188]

 



147 
 

W-Re [192]

⮽ W-Re [193]

⮽ W-Ta [194]

 

 

 

 

 

 



148 
 

Zr-based Alloys 

 

☑⮽ Zr-Cu [176]

 

☑⮽ Zr-Cu [177]

 

☑ Zr-Cu [178]

  



149 
 

☑⮽ Zr-Ni [189]

 

☑⮽ Zr-Ni [190]
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