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ABSTRACT

This thesis studies questions in nonparametric testing and estimation that are inspired
by machine learning. One of the main problems of our interest is likelihood-free hypothesis
testing: given three samples X, Y and Z with sample sizes n, n and m respectively, one
must decide whether the distribution of Z is closer to that of X or that of Y . We fully
characterize the problem’s sample complexity for multiple distribution classes and with high
probability. We uncover connections to two-sample, goodness-of-fit and robust testing, and
show the existence of a trade-off of the form mn ≍ k/ϵ4, where k is an appropriate notion
of complexity and ϵ is the total variation separation between the distributions of X and
Y . We generalize our problem to allow Z to come from a mixture of the distributions of
X and Y , and propose a kernel-based test for its solution, and also verify the existence of
a trade-off between m and n on experimental data from particle physics. In addition, we
demonstrate that the family of “classifier accuracy” tests are not only popular in practice but
also provably near-optimal, recovering and simplifying a multitude of classical and recent
results. Finally, we study affine classifiers as a tool for estimation and testing, with the key
technical tool being a connection to the energy distance. In particular, we propose a density
estimation routine based on minimizing the generalized energy distance, targeting smooth
densities and Gaussian mixtures. We interpret our results in terms of half-space separability
over these classes, and derive analogous results for discrete distributions. As a consequence
we deduce that any two discrete distributions are well-separated by a half-space, provided
their support is embedded as a packing of a high-dimensional unit ball. We also scrutinize
two recent applications of the energy distance in the two-sample testing literature.

Thesis supervisor: Philippe Rigollet
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Chapter 1

Introduction

The present chapter serves as an overview of the results of this thesis which, broadly speaking,
studies questions in nonparametric testing and estimation that are inspired by machine
learning. The material presented is based on the papers [77, 76, 74, 75].

1.1 Structure of the Thesis

The first paper [77] resolves the minimax sample complexity of “likelihood-free hypothesis
testing” (LFHT), which is a simplified model of a problem that emerges in the growing field
of likelihood-free inference (LFI). The results are summarized in Section 1.4, and the paper
can be found in full detail in Chapter 2.

The second paper [76] studies a generalization of LFHT inspired by particle physics
experiments, and uses an approach based on kernels. We also perform experiments with
trained kernels parametrized by neural networks, supporting our theoretical results. This is
summarized in Section 1.6, and the full paper can be found in Chapter 3.

The third paper [74] studies classifier-accuracy testing, which is essentially a meta-algorithm
that is widely used by practitioners of LFI. The results are summarized in Section 1.5 and
Sections 1.5.4 and 1.5.5 in particular, and the paper is reproduced in Chapter 4 in full.

The fourth paper [75] studies the use of affine classifiers for nonparametric testing and
estimation, with the key technical tool being a connection to the energy distance. These
results are also summarized in Section 1.5, and Sections 1.5.1 to 1.5.3 in particular. The
paper these sections are based on can be found in Chapter 5.

The remaining sections of this chapter are as follows. Section 1.2 presents the technical
preliminaries on nonparametric testing, estimation, LFHT and the energy distance that are
needed to state our results. Finally, Section 1.7 gives a short summary of our approach to
proving minimax lower bounds for testing problems in general, and LFHT in particular.

1.2 Technical Preliminaries

Here we go over the technical preliminaries required to state and understand our results. In
Section 1.2.1 we formally introduce the problem of likelihood-free hypothesis testing (LFHT)
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which is the main object of study in much of this thesis. In Section 1.2.2 we introduce some
classical statistical problems that LFHT is related to. Section 1.2.3 introduces the distribution
classes that are studied throughout Sections 1.4 to 1.7. Finally, Section 1.2.4 serves as an
introduction to the generalized energy distance, which is further studied in Section 1.5.

1.2.1 Definition of LFHT

Suppose we observe three i.i.d. samples X1, . . . , Xn, Y1, . . . , Yn and Z1, . . . , Zm from PX , PY
and PZ respectively, taking values in a common set X . Suppose in addition that P is a set of
probability distributions on X and that ϵ ∈ (0, 1). Likelihood-free hypothesis testing (LFHT)
over the class P with separation ϵ is defined as the problem of testing the hypothesis

H0(ϵ,P) =
{
(PX , PY , PZ) ∈ P3 : TV(PX , PY ) ≥ ϵ, PX = PZ

}
versus

H1(ϵ,P) =
{
(PX , PY , PZ) ∈ P3 : TV(PX , PY ) ≥ ϵ, PY = PZ

}
.

(LFHT)

Here we regard a hypothesis as a set of probability measures from which the data may
have come. Given δ ∈ (0, 1/2), we say that the “test”, that is, the measurable function
Ψn,m,ϵ,δ : X 2n+m → {0, 1} performs LFHT with worst-case error δ over the class P with
separation ϵ, if

max
i=0,1

sup
(PX ,PY ,PZ)∈Hi(ϵ,P)

P
(
Ψn,m,ϵ,δ(X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zm) ̸= i

)
≤ δ. (1.2.1)

We also allow the test Ψn,m,ϵ,δ to be a non-deterministic function of the data, that is, to take
an independent random seed as input, however we suppress this in the notation. Given the
parameters ϵ, δ,P , we can define the region

RLF(ϵ, δ,P) ..=
{
(n,m) ∈ N2 : there exists a test Ψn,m,ϵ,δ satisfying (1.2.1)

}
, (1.2.2)

which represents the set of sample sizes (n,m) for which it is possible to perform LFHT at
maximum error δ even in the worst-case over the distributions PX , PY , or using other words,
in a minimax sense. It is of primary interest to us to characterize the region RLF(ϵ, δ,P) up
to constants independent of ϵ, δ. As we shall see, in the case of discrete distributions we also
study the dependence on the support size, which will be denoted k, in addition to ϵ and δ.

Remark 1. Our definition of LFHT above was inspired by likelihood-free inference (LFI), as
we shall explain in Section 1.4.1 further. In the context of LFI, one may think of the Xi and
Yi as the data generated by our simulator, and the Zi as the experimental data. A priori we
don’t have a good model of the likelihood of our data (PZ) or the output distribution of the
simulation (PX and PY ); we only know that they lie in some class P and are separated in
total variation.

Remark 2. LFHT has been proposed and studied before our work under other names, see
Section 1.3.2 for historical details.
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Remark 3. When studying the constant error a.k.a. δ = Θ(1) regime, we will often simply
write δ = 0.3. Note that the value 0.3 could be replaced by any non-trivial error probability,
that is, any value strictly less than 1/2. This is because a simple strategy that splits data
into log(1/δ) disjoint and equal sized batches and then takes a majority vote of the output of
an optimal constant error test achieves worst-case error O(δ) at the cost of a multiplicative
log(1/δ) factor in the sample sizes n,m. We shall see later that the δ-dependence produced
by this naive strategy is sub-optimal.

1.2.2 Four Fundamental Problems in Statistics

As in the previous section, assume that P is a family of probability distributions throughout.

Binary Hypothesis Testing

First we consider binary hypothesis testing, one of the fundamental problems in statistics.
Given i.i.d. observed data Z1, . . . , Zm with law PZ and candidate distributions P0, P1, the
task is to decide, using full knowledge of P0, P1, between the simple hypotheses

H0 = {P0} versus H1 = {P1}.

This problem is famously and optimally solved by the Neyman-Pearson likelihood-ratio test
[157], and its error probability satisfies

err(P0, P1) ..= inf
Ψ

max
i=0,1

sup
PZ∈Hi

P(Ψ(Z1, . . . , Zm) ̸= i) = exp(−Θ(mH2(P0, P1))),

where H denotes the Hellinger distance, and the implied constant is universal. For a proof of
this fact see [168, Section 14.6]. From the above it follows that

nHT(ϵ, δ,P) ..= min
{
m ∈ N : sup

P0,P1∈P:TV(P0,P1)≥ϵ
err(P0, P1) ≤ δ

}
= Θ

 log(1/δ)

inf
P0,P1∈P:TV(P0,P1)≥ϵ

H2(P0, P1)

 ,

where the constant is again universal. The expression infΨ denotes the infimum over all
tests, possibly randomized, taking values in {0, 1}. Here nHT measures the worst-case sample
complexity, that is, the minimum number of observations required in the worst case to perform
binary hypothesis testing with error probability δ over the class P under the guarantee that
the two hypotheses are ϵ-separated. In all the cases that we care about nHT works out to be
Θ(log(1/δ)/ϵ2), and thus we rarely use the notation nHT. This simplification holds whenever P
is rich enough to include pairs of distributions (Pϵ, Qϵ) with TV(Pϵ, Qϵ) = Θ(H(Pϵ, Qϵ)) = Θ(ϵ)
for a sequence ϵ converging to 0.

Goodness-of-Fit Testing

The second problem we consider is that of goodness-of-fit testing. Here we observe i.i.d. data
X1, . . . , Xn with law PX and the task is to decide between the hypotheses

H0(ϵ,P) = {P0} versus H1(ϵ,P) = {P ∈ P : TV(P, P0) ≥ ϵ},
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where the null distribution P0 ∈ P is know to the tester. We define the sample complexity of
goodness-of-fit testing as

nGoF(ϵ, δ,P) ..= min
{
n ∈ N : sup

P0∈P
inf
Ψ

max
i=0,1

sup
PX∈Hi(ϵ,P)

P(Ψ(X1, . . . , Xn) ̸= i) ≤ δ
}
.

In other words, nGoF denotes the minimum number of samples required by any procedure
that is able to test H0 versus H1 in the worst case over P0 ∈ P .

Two-Sample Testing

Next we consider two-sample testing. Here we observe two i.i.d. samples X1, . . . , Xn and
Z1, . . . , Zm with distribution PX and PZ respectively. The goal is to decide between the
hypotheses

H0(ϵ,P) = {(P, P ) : P ∈ P} versus H1(ϵ,P) = {(P,Q) ∈ P2 : TV(P,Q) ≥ ϵ}.

Notice that two-sample testing is quite similar to goodness-of-fit testing, except the null
distribution is no longer known to the statistician. We define the set of n,m pairs for which
two-sample testing is possible as

RTS(ϵ, δ,P) ..=
{
(n,m) ∈ N2 : inf

Ψ
max
i=0,1

sup
(PX ,PZ)∈Hi(ϵ,P)

P(Ψ(X1, . . . , Xn, Z1, . . . , Zm) ̸= i) ≤ δ
}
.

We also define the minimax sample complexity of two-sample testing as

nTS(ϵ, δ,P) = min{n : (n, n) ∈ RTS(ϵ, δ,P)},

which measures the difficulty of the problem when we assume the two samples are of equal
size. This distinction will actually be meaningful, as it is not necessarily the case that
RTS ≍ {(n,m) : min{n,m} ≥ nTS}.

Estimation

Finally, we define the problem of estimation. Given an i.i.d. sample X1, . . . , Xn ∼ PX , the
goal is to produce an estimator P̂X that is close to PX in total variation either in expectation
or with high probability. We define the sample complexity of estimation to be

nEst(ϵ,P) ..= min
{
n ∈ N : inf

P̂X

sup
PX∈P

E
[
TV(P̂X , PX)

]
≤ ϵ
}
,

where the minimum is taken over all (possibly randomized) estimators P̂X , that is, measurable
functions of the observed data X1, . . . , Xn taking values in P .

1.2.3 Distribution Classes

Here we provide a list of the four choices of P that we study in Sections 1.4 and 1.5. In
Section 1.6 we consider a slightly different class of distributions, defined implicitly in terms
of a reproducing kernel Hilbert space (RKHS).
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Smooth Densities on the Hypercube

Let β > 0 and set β ..= ⌈β − 1⌉ as the largest integer strictly smaller than β. Write C(β, d, C)

for the set of functions f : [0, 1]d → R that are β-times differentiable and satisfy

max

(
max

0≤|α|≤β
∥f (α)∥∞, sup

x ̸=y∈[0,1]d,|α|=β

|f (α)(x)− f (α)(y)|
∥x− y∥β−β2

)
≤ C,

where |α| =
∑d

i=1 αi and f (α) = ∂α1
1 . . . ∂αd

d f for the multiindex α ∈ Nd. In other words,
C(β, d, C) is the set of functions whose partial derivatives up to order β are bounded by C and
whose partial derivatives of order β are (β − β)-Hölder continuous with constant C. Finally,
define PH(β, d, C) to be the class of distributions with Lebesgue-densities in C(β, d, C).

We will assume throughout that C > 1 when referring to PH(β, d, C). This is to ensure
that there are infinitely many distributions belonging to the class, so as to avoid vacuous
statements.

Gaussian Sequence Model

Given s, C > 0, define the Sobolev ellipsoid E(s, C) of smoothness s and size C as

E(s, C) ..=
{
θ ∈ RN :

∞∑
j=1

j2sθ2j ≤ C
}
.

Given a sequence θ ∈ RN, let us abuse notation and write N (θ, 1) ..=
⊗∞

i=1N (θi, 1), where
N (µ, σ2) for µ, σ ∈ R denotes the one-dimensional Gaussian measure with mean µ and
variance σ2. We define our second class as

PG(s, C) ..=
{
N (θ, 1) : θ ∈ E(s, C)

}
.

The motivation for the study of PG stems from regression. Consider the classical Gaussian
white noise model. Here we are given an observation of the stochastic process

dYt = f(t)dt+ dWt, t ∈ [0, 1],

where (Wt)t≥0 denotes Brownian motion and f ∈ L2[0, 1] is unknown. Suppose now that
{ϕi}i≥1 forms an orthonormal basis for L2[0, 1], and given an observation Y define the values

yi ..= ⟨Y, ϕi⟩ =
∫ 1

0

f(t)ϕi(t)dt+

∫ 1

0

ϕi(t)dWt =.. θi + ϵi.

Notice that ϵi ∼ N (0, 1) and that E[ϵiϵj] = 1{i = j}. In other words, the sequence {yi}i≥1

is an observation from the distribution N (θ, 1). Consider the particular case of ϕ1 ≡ 1
and ϕ2k(x) =

√
2 cos(2πkx), ϕ2k+1(x) =

√
2 sin(2πkx) for k ≥ 1 and assume that f satisfies

periodic boundary conditions. Then θ denotes the Fourier coefficients of f and the condition
that

∑∞
j=1 j

2sθ2j ≤ C is equivalent to an upper bound on the order (s, 2)-Sobolev norm of
f , which is loosely speaking equal to the L2-norm of the s’th derivative of f . For a proof of
this see for example [198, Proposition 1.14]. To summarize, by studying the class PG we can
deduce results for signal detection or regression under Gaussian white noise, where the signal
or regression function has bounded Sobolev norm.
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Discrete Distributions

The third class we consider is fairly self-explanatory, it is the set of all discrete distributions.
Given k ∈ N, let

PD(k) ..=
{

distributions on the finite alphabet {1, 2, . . . , k}
}
.

The fourth and final family of distributions are the “regular” or “bounded” discrete
distributions. For a constant C > 1, define

PDb(k, C) ..=
{
p ∈ PD(k) : ∥p∥∞ ≤ C/k

}
.

Such distributions are quite natural as they show up from the discretization of continuous
distributions with bounded density, such as those belonging to PH.

1.2.4 Introduction to the Generalized Energy Distance

The notion of energy distance was introduced by Székely in a series of lectures at the Budapest
University of Technology and Economics [195], and has been independently rediscovered
multiple times [62, 211, 18].1 Given an exponent γ ∈ (0, 2) and two probability measures µ, ν
on Rd with finite γ’th moment, the generalized energy distance between them is defined as

Eγ(µ, ν) =
√

2E∥X − Y ∥γ − E∥X −X ′∥γ − E∥Y − Y ′∥γ, (1.2.3)

where (X,X ′, Y, Y ′) ∼ µ⊗2 ⊗ ν⊗2 and ∥ · ∥ denotes the Euclidean norm. The energy distance,
and related ideas such as “distance covariance/correlation” (which likely first appeared in
[71]), have been applied to many problems in statistics with success, such as goodness-of-fit
[188, 174, 159, 38, 140, 150], two-sample [192, 46, 99, 171, 18] and independence testing
[194, 62, 191, 194, 189], see also the book [193] for additional references. The asymptotic
properties of these methods have been understood deeply, however, the energy distance hasn’t
enjoyed much attention in non-asymptotic statistics. Here, we will be concerned with the
latter. Since the energy distance is a Maximum Mean Discrepancy (MMD) [180, Theorem
22], generic results about MMDs can be specialized to the energy distance. Nevertheless,
by studying it directly we can derive previously unnoticed properties that lead to efficient
estimators and tests, and discover interesting connections to half-spaces along the way. First,
let us give a short exposition of some important properties of Eα, that will be used later on.

Representation as a Sobolev Norm

Given a probability measure µ on Rd, define its Fourier transform as

µ̂(ω) =

∫
Rd

e−i⟨x,ω⟩dµ(x) = EX∼µ
[
e−i⟨ω,X⟩].

We have the following simple analytic fact: given any ω ∈ Rd and γ ∈ (0, 2),∫
Rd

1− cos (⟨x, ω⟩)
∥x∥d+γ

dx = ∥ω∥γ π
d/2Γ(1− γ/2)
γ2γ−1Γ(d+γ

2
)
. (1.2.4)

1Despite nontrivial effort I haven’t been able to obtain a copy of [195].
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Indeed, using a rotation we may write the integral as∫
Rd

1− cos⟨x, ω⟩
∥x∥d+γ

dx =

∫
Rd

1− cos (x1∥ω∥)
∥x∥d+γ

dx = ∥ω∥γ
∫

Rd

1− cos(x1)

∥x∥d+γ
dx.

The above integral is clearly finite: since 1−cos(t) ∼ t2/2 at the origin, the integrand behaves
like 1/∥x∥d−γ ≪ 1/∥x∥d at zero, and its tail behaves like 1/∥x∥d+γ ≪ 1/∥x∥d as x→∞. The
conclusion follows by an explicit computation which we omit here, but details can be found
for example in [190, Appendix A]. Using Equation (1.2.4) we can show that Eγ is a weighted
L2-distance between the Fourier transforms µ̂ and ν̂. Alternatively, one may also recognize
the formula as the homogenous Sobolev norm of order −(d+ γ)/2, up to constant.

Proposition 1.2.1 ([190, Proposition 2]). Let γ ∈ (0, 2) and µ, ν be probability measures
with finite γ’th moment.

E2γ (µ, ν) =
1

C(d, γ)

∫
Rd

∣∣µ̂(ω)− ν̂(ω)∣∣2
∥ω∥d+γ

dω,

where C(d, γ) = πd/2Γ(1−γ/2)
γ2γ−1Γ( d+γ

2
)
.

Proof. It is easier if we work backwards from the final result. Following the proof from [190],
and writing (X,X ′, Y, Y ′) ∼ µ⊗2 ⊗ ν⊗2, we have∫

Rd

|µ̂(ω)− ν̂(ω)|2

∥ω∥d+γ
dω (1.2.5)

=

∫
Rd

E

[
(ei⟨X,ω⟩ − ei⟨Y,ω⟩)(e−i⟨X′,ω⟩ − e−i⟨Y ′,ω⟩)

∥ω∥d+γ

]
dω

=

∫
Rd

E

[
cos⟨X −X ′, ω⟩ − cos⟨Y −X ′, ω⟩ − cos⟨X − Y ′, ω⟩+ cos⟨Y − Y ′, ω⟩

∥ω∥d+γ

]
dω

Eq. (1.2.4)
= C(d, γ)E2γ (µ, ν),

where the second to last line used that sin(x) = − sin(−x).

Representation as a Maximum Mean Discrepancy

The second interpretation of the energy distance is as a Maximum Mean Discrepancy (MMD).
First, let us give a non-rigorous crash course on the background required to understand our
results. For a complete treatment we refer the readers to the book [96].

Given a set X , we call the function K : X 2 → R a kernel if the n× n matrix with ij’th
entry K(xi, xj) is symmetric positive semidefinite for all choices of x1, . . . , xn ∈ X and n ≥ 1.
There is a unique reproducing kernel Hilbert space (RKHS) HK associated to K. HK consists
of functions X 7→ R and satisfies the reproducing property ⟨K(x, ·), f⟩HK

= f(x) for all
f ∈ Hk and x ∈ X , in particular K(x, ·) ∈ HK . Given a probability measure P on X , define
its kernel embedding θP as

θP ..= EX∼PK(X, ·) =
∫
X
K(x, ·)P (dx). (1.2.6)
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Given the kernel embeddings of two probability measures P,Q, we can measure their distance
in the RKHS by MMD(P,Q) ..= ∥θP − θQ∥HK

, where MMD stands for maximum mean
discrepancy. MMD has a closed form thanks to the reproducing property and linearity:

MMD2(P,Q) = E
[
K(X,X ′) +K(Y, Y ′)− 2K(X, Y )

]
,

where (X,X ′, Y, Y ′) ∼ P⊗2 ⊗ Q⊗2. In particular, if P,Q are empirical measures based on
observations, we can evaluate the MMD exactly in quadratic time, which is crucial in practice.
Yet another attractive property of MMD is that (under mild integrability conditions) it is an
integral probability metric (IPM) where the supremum is over the unit ball of the RKHS
HK , that is,

MMD(P,Q) = sup
f∈HK :∥f∥HK

≤1

∫
f(x)(dP (x)− dQ(x)),

see for example [179, 151].
In the case of the generalized energy distance, the kernel is given by

kγ(x, y) = ∥x∥γ + ∥y∥γ − ∥x− y∥γ, (1.2.7)

which in one dimension corresponds to the covariance operator of fractional Brownian motion.
For a proof of the fact that kγ above is positive definite see [180, Proposition 3]. With kγ
defined as above, it is trivial to observe that the generalized energy distance Eγ is equal to the
MMD with kernel kγ . The following result is a simple consequence of the MMD formulation
of Eγ.
Lemma 1.2.2. Let ν be a probability distribution on Rd and let νn = 1

n

∑n
i=1 δXi

for an i.i.d.
sample X1, . . . , Xn from ν. Then, for any γ ∈ (0, 2),

EE2γ (ν, νn) ≤
2Mγ(ν)

n
.

Proof. Let X̃1, . . . , X̃n be an additional i.i.d. sample from ν, and write ν̃n for the corresponding
empirical measure. Using the definition of Eγ in (1.2.3), we can compute

EE2γ (νn, ν̃n) = E
[ 2
n2

n∑
i=1

n∑
j=1

∥Xi − X̃j∥γ −
1

n2

n∑
i=1

n∑
j=1

∥X̃i − X̃j∥γ

− 1

n2

n∑
i=1

n∑
j=1

∥Xi −Xj∥γ
]

=
2

n
E∥X1 −X2∥γ.

The conclusion then follows from taking the expectation of the expression

E
[
E2γ (ν̃n, νn)

∣∣∣νn] = E2γ (ν, νn) + 1

n
E∥X1 −X2∥γ

and the inequality |x+ y|γ ≤ 2max{0,γ−1}(|x|γ + |y|γ) for all x, y ∈ R.

In other words, the expected energy distance between empirical and population measures
decays at the parametric rate. This is not terribly surprising, as similar results hold for any
MMD with bounded kernel. In addition, [85, Theorem 7] also shows using McDiarmid’s
inequality that the same quantity is sub-Gaussian with variance proxy O(1/n).
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Representation as a Sliced Distance

Another equivalent characterization of the generalized energy distance is as a “sliced” distance.
Sliced distances are calculated by first choosing a random direction, and then computing a
one-dimensional distance in the chosen direction between the projections of the two input
distributions. One popular choice for the one-dimensional metric are the Wasserstein distances
[133, 57, 132, 56, 158], as slicing alleviates the prohibitive computational burden due to the
curse of dimensionality. Sliced distances are also studied for general one dimensional metrics
[152, 131], and most relevantly for us, for Cramér’s distance in particular [130, 129, 208].
The latter, as we shall see in Proposition 1.2.3 below, is precisely equivalent to the energy
distance. To extend this beyond just the setting γ = 1, define the function

ψγ(x) =

{
|x|(γ−1)/2 for γ ̸= 1

1{x ≥ 0} otherwise.
(1.2.8)

To the best of our knowledge, the following result is novel for γ ̸= 1. For the case γ = 1 see
for example [190, Equation (2.5)].

Proposition 1.2.3. Let γ ∈ (0, 2) and let µ, ν be probability distributions on Rd with finite
γ’th moment. Then for (X, Y ) ∼ µ⊗ ν we have

E2γ (µ, ν) =
1

Sγ

∫
Sd−1

∫
R

[
Eψγ(⟨X, v⟩ − b)− Eψγ(⟨Y, v⟩ − b)

]2
dbdσ(v), (1.2.9)

where Sγ =
π

d
2+1Γ(1− γ

2
)

γ2γ−1Γ( d+γ
2

) cos2(
π(γ−1)

4
)Γ( 1−γ

2
)2

when γ ̸= 1 and S1 =
π

d−1
2

Γ( d+1
2

)
.

The proof of Proposition 1.2.3 hinges on computing the Fourier transform of the function
ψγ , which can be interpreted as a tempered distribution. We point out a special property of
the integral on the right hand side of (1.2.9): after expanding the square, one finds that the
individual terms in the sum are not absolutely integrable for γ ̸= 1. Nevertheless, due to
cancellations within the squared quantity, the integral is finite.

1.3 Related work

In this section we survey prior results on problems related to the results of this thesis.

1.3.1 Estimation, Goodness-of-Fit and Two-Sample Testing

Ingster was the first to study minimax goodness-of-fit testing. In [112] he studies the problem
for the Gaussian sequence model, see also [68]. In [111] he derives the minimax sample
complexity of goodness-of-fit testing under L2 separation for densities on [0, 1] with bounded
W 2

2 norm, where the W q
β -norm denotes the Lq norm of the β’th derivative whenever β is

an integer, and the usual generalization thereof for non-integers. In [110] he extends these
results to Lp separated densities with bounded W β

q norm for general 1 ≤ p ≤ ∞ assuming
p ≤ q when p ≤ 2 and p = q otherwise. In particular, setting p = 1 and q =∞ recovers the

25



result from row PH and column nGoF in Table 1.1. These results are extended to multiple
dimensions and two-sample testing in [10, 139]. We are not aware of explicit prior work on
two-sample testing for the Gaussian sequence model, but for regular cases such as the one we
study, the results and methods carry over trivially. The estimation problems over PH and PG

are even older, for the former see the work by Chentsov [43] Bretagnolle and Huber [33] and
Ibragimov and Has’minskii [107] along with their book [109, Section IV.4]. For the latter
class PG, see Ibragimov and Has’minskii’s book [109, Section VII.4] and their papers [108,
106].

nHT nGoF RTS nEst

PH(β, d) 1/ϵ2 1/ϵ(2β+d/2)/β min{n,m} ≥ nGoF ϵ2n2
GoF

PG(β, d) 1/ϵ2 1/ϵ(2s+1/2)/s min{n,m} ≥ nGoF ϵ2n2
GoF

PDb(β, d) 1/ϵ2
√
k/ϵ2 min{n,m} ≥ nGoF ϵ2n2

GoF

PD(β, d) 1/ϵ2
√
k/ϵ2

max{n,m} ≥
√
k
ϵ2

+ k2/3

ϵ4/3
≍ nTS

min{n,m} ≥ nGoF

√
α

ϵ2n2
GoF

Table 1.1: Prior results on testing and estimation.

Turning to the discrete case, we note that the survey [36] gives an excellent and highly
detailed historical record of results and techniques. Goldreich and Ron introduced uniformity
testing to the computer science literature in [81], and Batu et al. consider goodness-of-fit
testing in [19]. In a sequence of follow up works, with [162] notably introducing the classical
lower bound construction, the results were eventually improved to the optimal Θ(

√
k/ϵ2).

We note that many of these results are in fact implied by Ingster [110]. Two-sample testing
was solved in the milestone paper [199]. Estimating discrete distributions in total variation is
solved optimally by the empirical measure. The first appearance of the result is unclear, the
note [35] provides an exposition of related results. The aforementioned results all concerned
the class PD of all discrete distributions, but one can easily specialize their proofs to apply to
PDb and obtain optimal testers.

1.3.2 Likelihood-Free Hypothesis Testing

In this section we survey prior work relating to LFHT.

Ziv and Gutman

LHFT initially appeared in Gutman’s paper [90], building on Ziv’s work [212], where the
problem is studied for distributions on a fixed, finite alphabet. Ziv called the problem
“classification with empirically observed statistics”, to emphasize the fact that hypotheses are
specified only in terms of samples and the underlying true distributions are unknown. In
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[209] it is shown that the error exponent of Gutman’s test is second order optimal. Recent
work [98, 93, 92, 30] extends this problem to distributed and sequential testing. However, the
setting of these papers is fundamentally different from the one studied in this thesis, a point
which we expand on below.

Given two arbitrary, unknown PX,PY over a finite alphabet of fixed size, Gutman’s test
(see [209, Equation (4)]) rejects the null hypothesis H0 : PZ = PX in favor of the alternative
H1 : PZ = PY if the statistic GJS(P̂X, P̂Z, α) is large, where P̂ denotes empirical measures,
GJS denotes the generalized Jensen-Shannon divergence defined in [209, Equation (3)] and
α = n/m. In other words, it simply performs a two-sample test using the samples from PX

and PZ of size n and m respectively, and completely discards the sample from PY. In light of
our sample complexity results this is strictly sub-optimal due to minimax lower bounds on
two-sample testing, see the difference of light gray and striped regions in Figure 1.1.

More generally, the method of types, which is a crucial tool for the works cited above,
cannot be used to derive our results, because in the regime where the alphabet size k scales
with the sample size n, the usual

(
n
k

)
= eo(n) approximation no longer holds, i.e. these factors

affect estimation rates and do not lead to tight minimax results. As a consequence, one
cannot deduce results about the minimax sample complexity of LFHT from works on the
classical regime because the latter do not quantify the speed of convergence of the error
terms as a function of the alphabet size. Specifically, let us examine [209, Theorem 1], which
is a strengthening of the results of [90]. Paraphrasing, it states that for any fixed ratio
α = n/m and pair of distributions (PX,PY), Gutman’s test has type-II error bounded by 1/3
when given samples from PX and PY as input, and type-I error bounded by exp(−λn) given
arbitrary input, where

λ = GJS(PX,PY, α) +

√
V (PX,PY, α)

n
Φ−1(1/3) +O

(
log(n)

n

)
(1)

as n→∞. Here V denotes the dispersion function defined in [209, Equation (9)] and Φ is
the standard normal cdf. The crucial point we make here is that in (1) the dependence of the
O(log(n)/n) term on PX,PY, and in particular their support size k and the ratio α = n/m is
unspecified. Because of this, (1) and similar results cannot be used to derive minimax sample
complexities as min{n,m, k} → ∞ jointly at possibly different rates.

This distinction between the fixed alphabet size setting studied in [90, 212, 209] and similar
works, and our large alphabet setting was recognized by [102, 103, 123, 124] whose results are
much closer to those presented in this thesis. In [103] Huang and Meyn introduce the concept
of “generalized error exponent” to deal with support sizes that grow superlinearly with sample
size (referred to as the “sparse sample regime” by them) in the setting of uniformity testing.2
In [102] they extend this idea to LFHT and say, quote,

“In the classification problem, the classical error exponent analysis has been
applied to the case of fixed alphabet in [212] and [90].... However, in the sparse
sample problem, the classical error exponent concept is again not applicable,
and thus a different scaling is needed."

2Uniformity testing is the problem of goodness-of-fit testing where the null is given by a uniform distribution.

27



Kelly et al.

The first time that LFHT appeared formulated as a minimax problem is in [123, 124]; let
us stick to the notation that we have introduced for LFHT. Both papers consider discrete
distributions on the alphabet {1, 2, . . . , k}, and are the first to study LFHT in the minimax
sense as n,m and k grow towards infinity. In more detail, these papers consider the setting
when both PX and PY (and consequently PZ) are guaranteed to be close to uniform in the
sense that the ratio of their pmfs to the uniform is bounded both above and below by a
constant. This is simply our class PDb with an additional lower bound assumption. They
assume moreover that the guaranteed separation, ϵ, between PX and PY is fixed at a constant
level and that n = m (i.e. the “simulation” sample size and the real data sample size is the
same). Finally, they are only concerned with characterizing when the sum of type-I and
type-II error probabilities decays to 0, thus disregarding the dependence on the probability
of error (δ in our notation) of the sample complexities.

The main result of the two papers is that the relation n ≳
√
k is necessary and sufficient

in order to have vanishing probability of error [123, Theorem 3 & 4]. Due to the equiv-
alence between LFHT and two-sample testing in the equal sample size n = m case (see
Proposition 1.4.1), their result follows from the fact that the minimax sample complexity
of two-sample testing over their distribution class (which is a subset of our PDb) is given by√
k/ϵ2; setting ϵ = Θ(1) recovers their claim. The test that they use for this is precisely the

same as that in my first paper on LFHT [77], which we discuss in Section 1.4.
The results discussed so far are interesting on their own, however Kelly and his coauthors

go on to show that some natural tests are not able to achieve this optimal sample complexity.
Writing p̂X , p̂Y , p̂Z for the empirical pmfs of PX , PY and PZ respectively, each of the tests
they consider are of the form:

reject H0 if d(p̂X∥p̂Z) ≥ d(p̂Y ∥p̂Z)

for some measure of distance d. Above we already mentioned that taking d(a∥b) = ∥a− b∥2
achieves the entire range n ≳

√
k. Additional choices they consider are the Jensen-Shannon

divergence, the χ2-divergence and Hellinger distance.
They show that using either the Jensen-Shannon divergence [124, Theorem 3] or the

χ2-divergence [124, Theorem 5] in place of d results in vanishing error probability provided
n≫ k for arbitrary discrete distributions as input (i.e. the class PD), but the performance
breaks down as soon as k ∼ n even on the more regular class PDb [124, Theorem 4 & 6]. They
conjecture, based on numerics, that the same negative result holds for the Hellinger distance.

Huang and Meyn

Follow-up work [102] extends the results of Kelly et al. to the case m ̸= n, showing that
LFHT is possible over the class PDb if and only if k ≲ min{n2, nm} [102, Theorem III.1.].
In addition, they go further and study the dependence on the probability of error δ in the
‘sparse regime’ n,m = O(k). They exhibit a novel test statistic based on collisions for which
the sum of type-I and type-II decays as exp(−J min{n2, nm}/k) for some J > 0 (in the
regime ϵ = Θ(1) that is). Surprisingly, they also show that the difference of L2-distances test
analysed by Kelly et al. (and us later in this thesis) does not enjoy this rate i.e. J = o(1).
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Remark 4. While the authors of [102] disregard the dependence on ϵ, their proof contains
all that is necessary to derive the optimal dependence on ϵ when m,n ≤ k; they even state
after Proposition VI.1. that J = Θ(ϵ4). The optimal error decay over all of PDb reads
exp(−ϵ4Θ(min{nm/k, n2/k,m/ϵ2})), as we show in Section 1.5.

Remark 5. Huang’s work [102, 103, 101] seems to have been somewhat underappreciated at
the time. First, in the proof of [102, Theorem III.1.] he proposes to split each support element
into multiple elements uniformly, an idea that form the basis of “flattening”/“Goldreich’s
reduction” [64, 82, 80, 62] and one that we use in our analysis of the class PD in some
regimes. Second, he is the earliest reference that studies the dependence on the probability of
error δ for both uniformity testing and LFHT. For both problems he identifies the optimal,
sub-Gaussian dependence on δ in the sparse regime n,m ≤ k, disregarding the dependence
on the separation ϵ. Recent progress has resolved the high-probability sample complexity of
goodness-of-fit testing [63] and two-sample testing [62], to which Huang’s work is a precursor.
Finally, [88] follows Huang’s work (which uses analytical depoissonization [115] and the
saddle point method [55]) closely to pin down down the minimax optimal sample complexity
of uniformity testing up to a multiplicative (1 + o(1)) factor.

Acharya et al.

Another related line of work studies LFHT (or ‘classification’ as the authors call it) in a
competitive setting. [3, 2] considers discrete distributions in the case n = m and measures
sample complexity relative with respect to a symmetric oracle tester which has full knowledge
of the underlying distributions PX , PY but doesn’t know whether PZ = PX or PZ = PY .3 In
[4] this problem is studied instead in the m = 1 case, i.e. the setting that is more classically
referred to as classification in statistics and machine learning.

Nonparametric Classification

The last connection that we mention is to classification as studied in the nonparametric
statistics community. Representative works are for example [205, 146], but the literature is
vast and we don’t attempt to review it here. In general, these papers are interested in the
case m = 1 i.e. when we observe a sample of size 1 from PZ and wish to assign it to either
PX or PY . Note that our LFHT problem is ill-posed when m ≪ 1/ϵ2, and when m = 1 in
particular, because even the optimal Neyman-Pearson likelihood-ratio test between PX and
PY , when fed a single observation from PZ , will be wrong with probability 1

2
(1−TV(PX , PY ))

of the time. Thi optimal error probability is also called the “Bayes error”. In contrast, in
LFHT we require that this error be less than a constant, taken to be 0.3 throughout this
thesis for concreteness. Therefore, these works have a different objective compared to ours:
they study the rate at which the classification error approaches the Bayes error as a function
of n. In [205] for example it is shown that this rate is equal to the rate of density estimation
over many popular nonparametric classes, for example Besov spaces, with the takeaway that

3Symmetric means that the output of the test is measurable with respect to the joint fingerprint of the
three samples from PX , PY , PZ . The joint fingerprint is simply the array with index N3 that for each triple
(a, b, c) counts the number of support elements that receive a, b, c observations from PX , PY , PZ respectively.
Note that the likelihood-ratio test is not symmetric in general.
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“classification is no easier than estimating the conditional probability in a uniform sense”. In
the setting that we study this conclusion fails to hold, as LFHT turns out to be significantly
“easier” than estimating the distributions PX , PY and PZ .

1.3.3 Classifier-Accuracy Testing

The first appearance of the idea of using a trained classifier to test whether two distributions
are equal was in [72]. Since then, the method has enjoyed popularity in empirical circles,
notably in neuroimaging [83, 210, 165] and likelihood-free inference [91, 67, 196, 5]. The
theoretical understanding of the usage of classifiers for testing is much more limited. The
only substantial work on the matter we are aware of is [126], where authors study the
minimax power of classical algorithms (such as LDA) for Gaussian mean testing in high
dimension. They also derive some results for general classifiers [126, Section 9], which apply
exchangeability/permutation arguments or the central limit theorem to the classifier accuracy
statistic (see (1.5.15) for the definition) as the test sample size goes to infinity, regarding the
classifier as fixed.

1.4 LFHT in the Constant Error Regime

This section presents our first results about the region RLF defined in (1.2.2). More concretely,
we fully characterize RLF in the constant error (δ = Θ(1)) regime for all classes P introduced
in Section 1.2.2, with the exception of PD, where we loose a log(k)-factor. It is based on the
preprint [77] which is joint work with Yury Polyanskiy, and is reproduced in full in Chapter 2.
We start this chapter with some motivation for LFHT, and an outlook towards potential
future research directions.

1.4.1 Motivation and Outlook

A setting called likelihood-free inference (LFI), also known as simulation based inference
(SBI), has independently emerged in many areas of science over the past decades. Given an
expensive to collect dataset and the ability to simulate from a high fidelity, often mechanistic,
stochastic model, whose output distribution and likelihood is intractable and inapproximable,
how does one perform model selection, parameter estimation or construct confidence sets?
The list of disciplines where such highly complex black-box simulators are used is long,
and include particle physics [9], astrophysics [7], climate science [97], epidemiology [155],
neuroscience [70] and ecology [24] to just name a few. For some of the above fields, such
as climate modeling, the bottleneck resource is in fact the simulated data as opposed to
the experimental data. In either case, understanding the trade-off between the number of
simulations and experiments required to do valid inference is crucial.

Let us make the above more formal. Suppose that we have a parameter set Θ ⊆ Rp and a
simulator S : Θ× [0, 1]→ Rd, which given an external seed U ∼ Unif([0, 1]) and a parameter
setting θ ∈ Θ, produces the random variable S(θ, U) ∼ Pθ. In addition to the simulator S,
we also observe an i.i.d. dataset Z1, . . . , Zm with unknown distribution PZ , that is produced
by our real-world experiment. The goal of likelihood-free inference is to find a parameter
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setting θ̂ such that Pθ̂ is close to PZ according to some notion of similarity. Most often we will
be using total variation, denoted TV, to measure distance between probability distributions.
Instead of producing a good approximation Pθ̂, one could also be interested in estimating
the true parameter θ∗ ∈ argminθ∈Θ TV(Pθ, PZ) itself, or to construct confidence sets that are
guaranteed to cover θ∗ with certain probability.

In this thesis we are focused on minimax performance guarantees, that is, we search for
algorithms that guarantee a certain level of performance given every input that satisfies a
pre-specified constraint. It is intuitively obvious that the quality of performance we can
guarantee will depend monotonically on the strength of these assumptions. Let us write P for
a set of distributions that contains all potential simulator outputs, so that {Pθ}θ∈Θ ⊆ P , and
suppose that we have a finite number of possible parameter settings, say Θ = {1, 2, . . . ,M}
for some M ≥ 2. We outline some natural questions that arise from this model below.

Let us be given i.i.d. simulation samples from each of P1, . . . , PM of size n1, . . . , nM
respectively. Write i∗ = argmin1≤i≤M TV(Pi, PZ) for the parameter setting for which the
simulator’s output is closest to the real data distribution PZ .

Question: How large must {ni}1≤i≤M and m be to identify i∗ w.h.p.? (Q1)

Here “w.h.p.” abbreviates “with high probability”. Clearly the answer to (Q1) will depend
on the geometry of the set {Pi}1≤i≤M . This chapter is about (Q1) in the case when M = 2,
PZ ∈ {P1, P2} and under the assmption that TV(P1, P2) ≥ ϵ for some small ϵ > 0. Recall from
Section 1.2 that we call this problem “LFHT” which is short for “likelihood-free hypothesis
testing”. It is essentially a version of binary hypothesis testing where the two hypotheses
P1 and P2 are specified only approximately via the two i.i.d. samples. An alternative and
perhaps more apt name could have been “three-sample testing”. As we’ll see in our review
of past work, the problem has also been called “classification” by the information theory
literature. This is somewhat different from the modern usage of the word by the statistics
and ML communities, where classification usually refers to the above problem in the special
case m = 1.

Although what we have covered above is all we need to understand the results of this
chapter, let us sketch some additional questions that could be the subject of future research.
Readers can safely skip to Section 1.4.2.

Instead of requiring that we perfectly identify i∗, one could relax this to a list-decoding
question. Let Î be a subset of [M ] that we choose based on the observed data.

Question: For given {ni}1≤i≤M and m, how large must the set Î

be to ensure that i∗ ∈ Î w.h.p.?
(Q2a)

Question (Q2a) is essentially the question of constructing confidence sets. Alternatively, if
we are more interested in finding a parameter for which the simulator approximates the true
distribution well, and don’t care whether we approximate the best parameter itself closely,
we can change (Q2a) to the following.

Question: How large must {ni}1≤i≤M and m be to identify î with
TV(Pî, Pi∗) ≤ ϵ in expectation or w.h.p.?

(Q2b)
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A potential name for the problem (Q2b) could be “likelihood-free estimation” and can be
interpreted as modeling a grid-search in LFI. In this interpretation we would run the simulator
n1, . . . , nM times with parameters θ1, . . . , θM respectively, producing i.i.d. datasets from the
distributions P1

..= Pθ1 , . . . , PM
..= PθM making up our grid-search.

If our resources are constrained, we might wish to minimize the total number of simulation
samples n1, . . . , nM used to identify our candidate î. Suppose that instead of drawing a
pre-specified number ni observations from Pi, we could choose an index i ∈ [M ] at each step
and observe an independent draw from Pi; call such a sequential algorithm “active”.

Question: How large must
∑M

i=1 ni and m be to identify î with TV(Pî, Pi∗) ≤ ϵ

in expectation or w.h.p. using an active algorithm?
(Q3)

Actively choosing which parameters to simulate from is an important technique that is widely
used by practitioners. For example, in the review [51] authors say that active learning is “...a
key idea to improve the sample efficiency...” and that “even simple implementations can lead
to a substantial improvement in sample efficiency”.

1.4.2 General Reductions

Before diving into results specific to distribution classes, let me describe a number of general
reductions between LFHT and the problems defined in Section 1.2.2. Some of these reductions
are not with high probability. While sample splitting and majority voting can amplify any
nontrivial success probability to, say 1−δ, this inflates the sample sizes by a factor of log(1/δ)
which we’ll see is sub-optimal except for simple binary hypothesis testing. Therefore, some of
the reductions below are only useful in the regime δ = Θ(1), that is, when we only require a
constant guarantee on the total error probability of our testing procedure.

Proposition 1.4.1. Let P be a generic family of distributions. There exists a universal
constant c > 0 such that for n,m ∈ N the following implications hold.

(n,m) ∈ RLF
∗

=⇒ m ≥ nHT, (1.4.1)

(n,m) ∈ RTS
∗

=⇒ n ∧m ≥ nGoF, (1.4.2)
(n,m) ∈ RLF =⇒ cn ≥ nGoF, (1.4.3)

(n,m) ∈ RTS
∗

=⇒ (n,m) ∈ RLF, (1.4.4)
m ≥ n and (n,m) ∈ RLF =⇒ (cn, cm) ∈ RTS, (1.4.5)

where we omit the argument (ϵ, 0.3,P) for simplicity and implications marked with ∗ also
hold with with the argument (ϵ, δ,P). In particular

N2
n≤m ∩RLF (ϵ, 0.3,P) ≍ N2

n≤m ∩RTS (ϵ, 0.3,P) , (1.4.6)

where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof. In what follows, let ΨLF,ΨTS be minimax optimal tests for LFHT and two-sample
testing respectively. Throughout the proof we omit the arguments (ϵ, δ,P) and (ϵ, 0.3,P) for
notational simplicty.
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Let us start by reducing hypothesis testing to LFHT. Suppose (n,m) ∈ RLF. Let P0,P1 ∈ P
be given with TV(P0,P1) ≥ ϵ and suppose Z is an i.i.d. sample with m observations. We
wish to test the hypothesis H0 : Zi ∼ P0 against H1 : Zi ∼ P1. To this end generate n i.i.d.
observations X, Y from P0,P1 respectively, and simply output ΨLF(X, Y, Z). This shows that
if (n,m) ∈ RLF then m ≥ nHT and concludes the proof of (1.4.1).

Next, we reduce goodness-of-fit testing to two-sample testing. Suppose (n,m) ∈ RTS.
Then obviously (n∧m,∞) ∈ RTS. However, two-sample testing with sample sizes (n∧m,∞)
is equivalent to goodness-of-fit testing with a sample size of n ∧m. Therefore, n ∧m ≥ nGoF

must hold, concluding the proof of (1.4.2).
Next, we reduce goodness-of-fit testing to LFHT. Suppose (n,m) ∈ RLF with m ≤ n.

Let a distribution P0 ∈ P be given as well as an i.i.d. sample X of size cn with unknown
distribution PX , where c ∈ N is a large integer. We want to test H0 : PX = P0 against
H1 : PX ∈ P ,TV(PX ,P0) ≥ ϵ. Generate c× 2 i.i.d. samples Y (i), Z(i) for i = 1, . . . , c of size
n,m respectively, all from P0. Split the sample X into c batches X(i), i = 1, . . . , c of size n
each and form the variables

Ai = ΨLF(X
(i), Y (i), Z(i))−ΨLF(X

(i), Y (i), X
(i+1)
1:m )

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where X(i)
1:m denotes the first m observations in the batch X(i).

Note that the Ai are i.i.d. and bounded random variables. Under the null hypothesis we
have EAi = 0, while under the alternative they have mean EAi ≥ 0.3. Therefore, a constant
number c/2 observations suffice to decide whether PX = P0 or not. In particular, cn ≥ nGoF

which concludes the proof of (1.4.3) for the case m ≤ n. The case n ≤ m follows from (1.4.5)
and (1.4.2).

Now we reduce LFHT to two-sample testing. Suppose (n,m) ∈ RTS. Let three samples
X, Y, Z be given, of sizes a, a, b from the unknown distributions PX , PY , PZ respectively, where
{a, b} = {n,m}. We want to test the hypothesis H0 : PX = PZ against H1 : PY = PZ . Then,
the test

Ψ̃LF(X, Y, Z) ..= ΨTS(X,Z)

shows that (n,m), (m,n) ∈ RLF and concludes the proof of (1.4.4).
We now reduce two-sample testing to LFHT. Suppose (n,m) ∈ RLF where m ≥ n. Let two

samples X, Y be given, from the unknown distributions PX , PY ∈ P and of sample size cn, cm
respectively, where c ∈ N is a large integer. We wish to test the hypothesis H0 : PX = PY
against H1 : TV(PX , PY ) ≥ ϵ. Split the samples X, Y into 2× c batches X(i), Y (i), i = 1, . . . , c
of sizes n,m respectively, and form the variables

Ai = ΨLF(X
(i), Y

(i)
1:n, Y

(i+1))−ΨLF(Y
(i)
1:n, X

(i), Y (i+1))

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where Y (i)
1:n denotes the first n observations in the batch Y (i). The

variables Ai are i.i.d. and bounded. Under the null hypothesis we have EAi = 0 while under
the alternative EAi ≥ 0.3 holds. Therefore a constant number c/2 observations suffice to
decide whether PX = PY or not. In particular, (cn, cm) ∈ RTS which concludes the proof of
(1.4.5).

Finally, for the equivalence between two-sample testing and LFHT, namely Equation
(1.4.6), follows immediately from (1.4.5) and (1.4.4).

33



All reductions above, with the possible exception of Equation (1.4.6), are obvious. Equa-
tion (1.4.6) says that the problems of likelihood-free hypothesis testing and two-sample testing
are equivalent for m ≥ n, i.e. when we have more real data than simulated data. We will see
in the next section (and on Figures 1.1 and 1.3 visually) that the distinction between n ≤ m
and m ≤ n is necessary.

1.4.3 Ingster’s Goodness-of-Fit Test for Smooth Distributions

In his seminal paper [110] Ingster computes the minimax sample complexity of uniformity
testing for a range of Sobolev spaces, measuring separation with respect to Lp, p ≥ 1.
Additionally, he provides matching minimax lower bounds for each of the cases he considers.
Most relevant to us, he obtains the famous formula

nGoF(ϵ, δ = Θ(1),PH(β, d = 1, C = Θ(1))) ≍ ϵ−(2β+1/2)/β.

This result stands in contrast with the, at that time already known, density estimation result
nEst ≍ ϵ−(2β+1)/β: the sample complexity of goodness-of-fit testing enjoys a savings of 1/(2β)
in the exponent of ϵ. This fact, that testing is (substantially) easier than estimation, is more
general and continues to hold in general dimension d in which case sample complexities read
ϵ−(2β+d/2)/β [10, 139] and ϵ−(2β+d)/β respectively.

Ingster’s approach was to reduce to the problem of uniformity testing over the class PDb

(bounded discrete distributions) by discretizing the interval [0, 1] using a regular grid. Once
discretized, he simply computes the L2-distance between the known null distribution’s p.m.f.
and the empirical p.m.f. of the data. More concretely, given i.i.d. data X1, . . . , Xn ∈ [0, 1]
and a resolution k, form the empirical p.m.f.

p̂i =
1

n

n∑
j=1

1

{
Xj ∈

[i− 1

k
,
i

k

]}
,

and reject the null hypothesis that the Xi are drawn from the uniform distribution on [0, 1] if

∥p̂i − 1/k∥2 ≥ γ

for an appropriate (k, n)-dependent threshold γ.
Notice that ∥p̂i − 1/k∥22 =

∑k
i=1 p̂

2
i − 1/k, so Ingster’s test for uniformity is equivalent

to thresholding
∑k

i=1 p̂
2
i , which is known as the collision statistic. The name comes from

the fact that
∑k

i=1 p̂
2
i = #{(i, j) : Xi = Xj}/n2. While largely overlooked by the computer

science community, Ingster’s work subsumes a lot of early progress in the distribution testing
literature [81, 20], including the upper and lower bound analyses as well as the test statistic
itself.

The key step enabling Ingster’s reduction is to show that the separation between any two
smooth distributions doesn’t degrade too much by going from continuous to discrete.

Lemma 1.4.2 ([10, Lemma 7.2]). Given r ∈ N and j ∈ {1, . . . , r}d, let Bj = (j − 1)/r +
[0, 1]d/r be the hypercube of sidelength 1/r with center (j − 1/2)/r. Define the map Pr by

(Prf)(x) =
∑
j∈[r]d

1{x ∈ Bj}

(
1

1/rd

∫
Bj

f(y)dy

)
.
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Then, for any β, C > 0 and d ≥ 1 there exist constants c, c′ > 0 such that for any f ∈ C(β, d, C)
we have

∥f∥2 ≥ ∥Prf∥2 ≥ c∥f∥2 − c′r−β.

Remark 6. Note that Pr is the L2 projection onto the space of functions piecewise constant
on the cubes Bj, which assigns for each x ∈ Bj the average value of the input on the box Bj.
We can also regard Pr as a projector onto the Haar wavelet basis.

If we take f to be a probability density in Lemma 1.4.2, then Prf is precisely the density
of the discretization of the original distribution on the regular grid. Therefore, Lemma 1.4.2
can be used to justify the reduction of Ingster from PH to PDb: taking r ≍ ϵ−1/β preserves
ϵ-separation with respect to L2 distance, which can then be converted to separation under
total variation via Hölder’s inequality.

On first look it might be surprising that Lemma 1.4.2 is true and can lead to minimax
optimal testing results for all levels of smoothness β > 0. Suppose we observe i.i.d. observa-
tions from the unknown β-smooth density f on [0, 1]d and consider the following scheme to
estimate f : simply output the histogram of the observations when discretized on the regular
grid with mesh r = ϵ−1/β. It is well known (see for example [35, Theorem 1]) that we need
O((rd + log(1/δ))/ϵ2) observations to estimate any discrete distribution with support size
rd within ϵ-TV distance with probability 1− δ. Therefore, if we take r = ϵ−1/β, this process
seems to produce an estimator of f with the minimax optimal sample complexity ϵ−(2β+d)/β.
However, it is common knowledge that this is not true for β > 1!

Indeed, to complete our fictitious analysis of the proposed density estimator we need an
upper bound on ∥f − Prf∥2 of order r−β, which can be shown to be false in general. The
best such result that holds in general is ∥f − Prf∥2 ≲ r−β∧1, and this can be seen from the
following simple example. Suppose that f(x) = 1/2 + x for x ∈ [0, 1] so that f lies in our
β-smooth class PH for any β > 0. Suppose we discretize f on a grid with mesh 1/r using the
operator Pr defined in Lemma 1.4.2. Then

∥f − Prf∥22 = r

∫ 1/(2r)

−1/(2r)

x2dx =
1

12r2
,

which proves that ∥f − Prf∥2 ≲ r−1 is the best bound one can hope for even for β ≥ 1.
Summarizing, taking histograms produces optimal density estimators only for β ≤ 1. This

does not contradict our results in the previous subsection, because Lemma 1.4.2 only asserts
that ∥f∥2 ≈ ∥Prf∥2 whenever ∥f∥2 ≳ r−β and makes no claims about the magnitude of
∥f − Prf∥2.

1.4.4 Results for Regular Classes

Inspired by Ingster, we proposed the following test for LFHT.4 To simplify our presentation,
let us focus on the case of PDb, that is, bounded discrete distributions with support in
{1, 2, . . . , k}. We observe i.i.d. random variables X1, . . . , Xn, Y1, . . . , Yn and Z1, . . . , Zm from

4Note that this statistic was already studied by [123, 124, 102] in some regimes, see Section 1.3.2 for more
on the history.
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PX , PY , PZ respectively. Writing pX , pY , pZ for the corresponding p.m.f.s, we construct their
empirical versions, that is, the normalized empirical frequencies denoted p̂X , p̂Y , p̂Z . Our test

rejects the null if ∥p̂X − p̂Z∥2 ≥ ∥p̂Y − p̂Z∥2 and accepts it otherwise.

A conceptually simple, although long, mean-variance analysis of this statistic coupled with
Chebyshev’s inequality yields the following result characterizing RLF for the three “regular”
classes and when δ = Θ(1).

Theorem 1.4.3. For each choice P ∈ {PH,PG,PDb} we have

RLF (ϵ, 0.3,P) ≍
{
m ≥ 1/ϵ2, n ≥ nGoF (ϵ, 0.3,P) ,mn ≥ nGoF (ϵ, 0.3,P)2

}
,

where the implied constants do not depend on k (in the case of PDb) or ϵ.

While we won’t cover the tedious calculation here, let us point out one aspect of the
analysis. Notice that the region that we obtain RLF is asymmetric, since m can be as small
as O(1/ϵ2), but n is constrained to be at least nGoF ≫ 1/ϵ2. As mentioned above, the
achievability direction of Theorem 1.4.3 follows by analyzing the mean and variance of the
statistic

T = ∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22

=
∥p̂X∥22 − ∥p̂Y ∥22

n2
+

2

nm

n∑
i=1

m∑
j=1

(p̂Y (i)− p̂X(i))p̂Z(j).

From the expanded expression in the second line above one can already glean where the
conditions on n and mn may come from. The key point is that the ∥p̂Z∥22/m2 term is cancelled,
which is precisely what allows us to take 1/ϵ2 ≲ m≪ nGoF. Phrased another way, the values
of ∥p̂X − p̂Z∥2 and ∥p̂Y − p̂Z∥2 are awful as estimators of the population distances ∥pX − pZ∥2
and ∥pY − pZ∥2; however they are “awful in the same direction”. We defer the discussion of
the lower bound constructions to Section 1.7

Figure 1.1 visualizes the region RLF for the classes covered in Theorem 1.4.3, and Figure
1.2 shows the empirical trade-offs for LFHT and two-sample testing from simulation on a toy
problem.5 In light of the reductions in Proposition 1.4.1, we see that the points {A,B,C,D}
of Figure 1.1 have special interpretations. A corresponds to the limit as n→∞. In this case
LFHT is equivalent to binary hypothesis testing in which case m = Θ(1/ϵ2) observations
suffice from PZ . On the other extreme, D shows the limit as m→∞. In this case we know
the distributions PZ exactly, but we do not know whether it is equal to PX or PY . Discarding,
say, the Y -sample and applying an optimal goodness-of-fit testing procedure to test whether
PX = PZ , we can prove that the point D = (m =∞, n = nGoF) is achievable. Conversely, our
reduction (1.4.3) shows that this is the best possible, that is, n cannot decrease below nGoF.

The lines m = 1/ϵ2 and nm = n2
GoF intersect at B = (n2

GoFϵ
2, 1/ϵ2), this is the point with

the minimal possible value of n for which m = Θ(1/ϵ2) still suffices. As can be seen from
5In this toy problem we set ϵ = .3, k = 100 and PX = PZ , PY are distributions on {1, 2, . . . , k} with

PX(i) = (1 + ϵ · (2 · 1{i odd} − 1))/k = 2/k − PY (i) for all i = 1, 2, . . . , k.
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Figure 1.1: log-scale plot of region where LFHT is possible at constant error level δ = Θ(1)
as per Theorem 1.4.3.

(a) Likelihood-free hypothesis testing. (b) Two-sample testing.

Figure 1.2: n versus m trade-off for a toy experiment. Probabilities estimated over 104 runs,
and smoothed using Gaussian noise.

Table 1.1, it turns out that n2
GoFϵ

2 is equal up to constant to the rate of estimation nEst for
all four distribution classes we consider. With this perspective the achievability of the point
B = (nEst, 1/ϵ

2) is obvious: if we collect enough observations from PX and PY to estimate
them to high accuracy, that is, to within a small fraction of the separation between the two,
then we can simply perform an ordinary robust binary hypothesis test between P̂X , P̂Y using
the m observations from PZ .6

6For a TV-robust hypothesis test see the seminal [104] and for Hellinger see [27].
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Finally, note from Table 1.1 that nGoF = nTS for the classes considered in Theorem 1.4.3.
We saw in Proposition 1.4.1 that two-sample testing and LFHT with n = m are equivalent,
and it is this point on the trade-off that C = (nGoF, nGoF) = (nTS, nTS) represents.

The sample complexity of LFHT naturally interpolates between that of multiple founda-
tional statistical problems. We point out a curious fact that is obvious as a result of the
above discussion: since the product of n and m remains constant on the line segment [B,C]
on the left plot of Figure 1.1, it follows that

nEst(ϵ, 0.3,P) ≍ n2
GoF(ϵ, 0.3,P) ϵ2 (1.4.7)

for each class P treated in Theorem 1.4.3. This relation between the sample complexity of
estimation and goodness-of-fit testing has not been observed before to our knowledge, and
the generality of this phenomenon remains open.

Question: For what classes P does the relation (1.4.7) hold? (Q5)

It seems likely that the answer is along the following lines: classes for which a mixture over a
hypercube provides the least favorable construction. According to personal correspondence
with Zeyu Jia and Yury Polyanskiy, there exist convex bodies for which (1.4.7) breaks down
under the Gaussian sequence model.

1.4.5 Results for the Unrestricted Discrete Class

Theorem 1.4.3 doesn’t cover the class PD of all discrete distributions. This is no accident,
as this case requires special attention. The proof of Theorem 1.4.3, that is, the analysis of
the L2-based test utilizes the fact that the density is bounded repeatedly. However, such a
bound is no longer available in the case of PD.

In order to salvage the analysis from the regular cases, we searched for a way to reduce from
PD back to PDb or at least to obtain some control over the infinity norm of the probability
mass functions. It turns out that in the distribution testing literature this reduction is known
as “flattening” [102, 64, 80]. The idea is to split your dataset into two parts. Using the
empirical frequencies from the first part you obtain an estimate of the mass placed on each
element of the support. Then, you divide each support element into additional artificial
buckets whose number is proportional to the empirical frequency in the first split. This
processing step maintains total variation distances and thus the ϵ-separation between PX and
PY . Furthermore, using a union bound where we lose a factor of log(k), this ensures that the
maximum of the p.m.f.s of both distributions PX , PY are controlled. Then, on the second
split of the data we simply apply the L2-based test just as before. This strategy leads us to
the following result.

Theorem 1.4.4. Let α = 1 ∨ ( k
n
∧ k

m
). Then

RLF (ϵ, 0.3,PD) ≍log(k)

{m ≥ 1/ϵ2, n ≥ nGoF(ϵ, 0.3,PD) ·
√
α

mn ≥ nGoF(ϵ, 0.3,PD)
2 · α

}
,

where the equivalence is up to a logarithmic factor in the alphabet size k.
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Remark 7. Note that RLF(ϵ, 0.3,PD(k)) ≍ RLF(ϵ, 0.3,PDb(k)) in the regime k < 1/ϵ4.

See Figure 1.3 for a depiction of the region in Theorem 1.4.4. Our follow-up work, which we
cover in Section 1.5, along with prior work on two-sample testing [62] removes the log(k)-factor
in Theorem 1.4.4.

Figure 1.3: log-scale plot of region where LFHT is possible at constant error level over PD in
the regime k ≥ 1/ϵ4. For k < 1/ϵ4 refer to Figure 1.1.

1.5 Testing and Estimation by Classification

In this chapter we study testing and estimation algorithms whose key step is identifying sets,
or equivalently, binary classifiers, where two distributions differ.

In Sections 1.5.1 to 1.5.3 we look at using half-spaces to separate distributions, and how
our insights can be used for density estimation and two-sample testing. Most of this material
is based on the preprint [75] which is joint work with Tianze Jiang, Yury Polyanskiy and Rui
Sun, which can be found in full detail in Chapter 5.

Second, in Sections 1.5.4 and 1.5.5 we will look at learning arbitrary separating sets, which
will lead, among other results, to achieving the optimal high probability sample complexity
of LFHT, improving on our results from Section 1.4. This work is based on [74] which was
published at the 36th Annual Conference on Learning Theory and is joint work with Yanjun
Han and Yury Polyanskiy, and can be found in full detail in Chapter 4.

1.5.1 Separating Distributions by Half-Spaces

We define the “half-space discrepancy” dH between two distributions µ and ν as

dH(µ, ν) = sup
half-spaces Σ

{
ν(Σ)− ν(Σ)

}
.
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In other words, it is the maximal difference in mass that µ and ν place on any half-space.
We start with a simple, but important observation.

Lemma 1.5.1. dH defines a metric over the space of probability measures.

Proof. Clearly, for any probability measures µ, ν and σ, it holds that dH(µ, ν) = dH(ν, µ),
dH(µ, µ) = 0 and dH(µ, ν) ≤ dH(µ, σ) + dH(σ, ν). The last property that we must prove to
conclude is that dH(µ, ν) = 0 implies that µ = ν. For this last step, we follow the argument in
the proof of [161, Theorem 4], which introdced dH concurrently to our work. They study dH
and generalizations of it for two-sample testing, we comment on their results more extensively
in Section 1.5.3. If X ∼ µ and Y ∼ ν with µ ̸= ν, there must exist ω ∈ Rd with

⟨ω,X⟩
d

̸= ⟨ω, Y ⟩,

as otherwise the Fourier transforms µ̂ and ν̂ would coincide. The conclusion follows by the
Fourier inversion theorem.

Recalling that E1 denotes the energy distance, by Proposition 1.2.3 we have that

E21 (µ, ν) =
Γ
(
d+1
2

)
π

d−1
2

∫
Sd−1

∫
R

(
P(⟨X, v⟩ ≥ b)− P(⟨Y, v⟩ ≥ b)

)2
dbdσ(v)

=..dH

,

where dσ is the surface measure on Sd−1, and X ∼ µ and Y ∼ ν. Clearly dH is similar to dH ,
except it takes an average over half-spaces instead of a maximum. This analogy isn’t quite
precise, as we integrate b over the entire real line, therefore it is not a bona fide average and
the inequality dH ≲ dH doesn’t have to hold in general. In the next few sections we show
that such an inequality does hold for certain structured classes of distributions, and show
that distributions belonging to these classes can be separated by half-spaces surprisingly well.

Smooth Distributions

In Section 1.2.3 we already saw the class PH(β, d, C) of densities on [0, 1]d whose β’th
derivative is bounded. Here we consider a related class. Given f ∈ L2(Rd) and β > 0, define
the homogenous Sobolev (semi)norm of order (β, 2) of f as

∥f∥2β,2 ..=

∫
Rd

∥ω∥2β|f̂(ω)|2dω.

When β is an integer, ∥f∥β,2 is equal, up to constant, to the L2-norm of the β’th derivative
of f . We define PS(β, d, C) to be the set of distributions on Rd that have density p with
supp(p) ⊆ B(0, 1) and ∥p∥β,2 ≤ C, where B(x, r) is the ball centered at x with radius r. Going
forward, to avoid trivialities, we assume that C is large enough in terms of β and d so that
PS(β, d, C) contains infinitely many distributions.

Lemma 1.5.2. For every β > 0, d ≥ 1 and C > 0 there exists a finite constant c such that
for any f, g ∈ PS(β, d, C) it holds that

TV(f, g)
2β+d+1

2β ≤ c dH(f, g). (1.5.1)
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Proof. Let us write ∥g∥2t,2 ..=
∫

Rd |ĝ(ω)|2∥ω∥2tdω for g ∈ L2 and t ∈ R. In the inequalities
below we use the symbols ≲,≍ freely, indicating inequalities that hold up to constants
involving d, β and C. Given any φ > 0 and Hölder conjugates r, r∗, we have

∥f − g∥22
Parseval≍ ∥f̂ − ĝ∥22

Hölder
≤ ∥f − g∥2/rφr

2
,2

≤C2/r

∥f − g∥2/r
∗

−φr∗
2
,2
. (1.5.2)

Choosing φ and r to satisfy φr = 2β and φr∗ = d+ 1, we get the chain of inequalities

TV(f, g)
Jensen
≲ ∥f − g∥2

Eq. (1.5.2)
≲

(
∥f − g∥− d+1

2
,2

) 2β+d+1
2β

Prop. 1.2.1
≍

(
E1(f, g)

) 2β
2β+d+1 .

The final step is to note that dH(f, g) ≲ dH(f, g) due to the compact support of f and g.

In the proof above we used two inequalities: Jensen’s inequality to pass from TV to the
L2 distance, and Hölder’s inequality in (1.5.2) to bound the L2 distance between f and g by
the energy distance times the homogenous Sobolev norm of their difference. Therefore, in
order to prove that (1.5.1) is the best possible result one can obtain in general, we just have
to exhibit a construction that saturates both inequalities at the same time.

In order for our application of Hölder’s inequality to be tight, the equality

|f̂(ω)− ĝ(ω)|2

∥ω∥d+1
= c|f̂(ω)− ĝ(ω)|2∥ω∥2β

would have to hold for almost every ω ∈ Rd and some fixed c. This is clearly only possible if
f̂ − ĝ is supported on a sphere of some radius k centered at 0, in which case c = (1/k)2β+d+1.
Unfortunately, this is impossible for f, g ∈ PS(β, d, C), because it would contradict the
requirement of compact support. Nevertheless, we are able to use this idea, and take f − g to
be a suitably modified version of the inverse Fourier transform of a sphere (which is a Bessel
function of the first kind [203]), leading to the following result.

Lemma 1.5.3 ([75, Proposition 7]). For any β > 0, d ≥ 1 and large enough C > 0, there
exists a finite constant C1 so that for any value of ϵ ∈ (0, 1), there exist µϵ, νϵ ∈ PS(β, d, C)
such that TV(µϵ, νϵ)/ϵ ∈ (1/C1, C1) and

dH(µϵ, νϵ) ≤ C1TV(µϵ, νϵ)
2β+d+1

2β log

(
3

TV(µϵ, νϵ)

)d−1

.

The bound in Lemma 1.5.3 above matches our bound from Lemma 1.5.2 exactly in one
dimension, and up to a logarithmic factor in dimension two and above.

Gaussian Mixtures

Let us write
PG(d) ..= {ν ∗ N (0, Id) : ν ∈ P(Rd), supp(ν) ⊆ B(0, 1)} (1.5.3)

for the set of all Gaussian mixtures with support in the unit ball. We are able to derive a
result similar to Lemma 1.5.2 for this class of distributions too.
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Lemma 1.5.4. For any d ≥ 1 there exists a finite constant c such that for any f, g ∈ PG(d)
it holds that

TV(f, g)

log(3/TV(f, g))
d+1
2

≤ c dH(f, g).

Proof sketch. The equation (1.5.2) still holds, except now we may let φr =.. 2β be as large
as we wish. Note that ∥f − g∥φr

2
,2 can be bounded by the 2β’th moment of a Gaussian

distribution. Optimizing over β we find that the best choice is given by β ≍ log(1/∥f − g∥2).
There are two additional steps to the proof, which involve bounding TV(f, g) as a function

of ∥f−g∥2 and dH as a function of dH . The former follows by a straightforward generalization
of [116, Theorem 22]. The latter follows by decomposing the integral in the definition of dH
into integration over a centered ball of radius

√
log(1/dH(f, g)) and its complement.

In other words, given any two Gaussian mixtures with total variation separation ϵ, there
always exists a half-space on which their mass differs by Õ(ϵ).

Discrete Distributions

Suppose we have two discrete distributions that are supported on a common, finite set of size
k. One way to measure the energy distance between them would be to identify their support
with the set {1, 2, . . . , k}, thereby embedding the two distributions in R, and applying the
one-dimensional energy distance.

While the above approach seems reasonable, it is entirely arbitrary. Indeed, there might
not be a natural ordering of the support; moreover, why should one choose the integers
between 1 and k instead of, say, the set {1, 2, 4, . . . , 2k}? The total variation distance does
not suffer from such ambiguities, and it is unclear how our choice of embedding affects the
relationship to TV. The following result attacks precisely this question.

Theorem 1.5.5. Let µ and ν be probability distributions supported on the set {x1, . . . , xk} ⊆
Rd and let δ = mini ̸=j ∥xi − xj∥. Then there exists a universal constant C > 0 such that

E21 (µ, ν) ≥
Cδ

k
√
d
TV2(µ, ν).

Proof. Let µ =
∑k

i=1 µiδxi and ν =
∑k

i=1 νiδxi . Then, by [15, Theorem 1] we have

E21 (µ, ν) = −
∑
i,j

(µi − νi)(µj − νj)∥xi − xj∥ ≥
Cδ√
d

k∑
i=1

(µi − νi)2 ≥
CδTV2(µ, ν)

k
√
d

as required.

Notice that by our discussion above, the support set {x1, . . . , xk} in Theorem 1.5.5 is
arbitrary and may be chosen by us. Since the scale of the supporting points x1, . . . , xk is
statistically irrelevant, we remove this ambiguity by restricting the points to lie in the unit
ball, that is, we require that maxi ∥xi∥ ≤ 1. We see now that the comparison between E1 and
TV improves as δ/

√
d grows. Given a fixed value of δ, we want to make the dimension d of

42



our embedding as low as possible, which means that the points x1, . . . , xk should form a large
δ-packing of the d-dimensional unit ball. Due to well known bounds on the packing number
of the Euclidean ball, it follows that the best one can hope for is

log(k) ≍ d log(1/δ).

Maximizing δ/
√
d subject to this constraint yields the choice d = Θ(log(k)) and δ = Θ(1).

This gives us the following corollary.

Corollary 1.5.6. There exists a universal constant C ∈ (0,∞) such that for any k ≥ 1 there
exists a set of points x1, . . . , xk ∈ R⌈C log(k)⌉ with maxi ∥xi∥ ≤ 1 such that

E1

(
k∑
i=1

µiδxi ,
k∑
i=1

νiδxi

)
≥ TV(µ, ν)

C
√
k 4
√

log(k)

for any two probability mass functions µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk).

The question arises how the set of points x1, . . . , xk in Corollary 1.5.6 should be constructed.
One solution is to use an error correcting code (ECC), whereby we take the xi to be the
codewords of an ECC on the scaled hypercube 1√

d
{±1}d for some dimension d, known as the

“blocklength” in this context. An ECC is asymptotically good if the message length log(k)
is linear in the blocklength d, that is d ≍ log(k), and if the minimum Hamming distance
between any two codewords is Θ(d), which translates precisely into δ = mini ̸=j ∥xi − xj∥ ≍ 1.
Many explicit constructions of asymptotically good error correcting codes exist, see [120] for
one such example, and random codes are almost surely good [17]. Clearly the better the code
is, the better the constants we obtain in Corollary 1.5.6.

Remark 8. One interesting consequence of Corollary 1.5.6 and the preceeding discussion is
the following: given a categorical feature with k possible values, the perceptron may obtain
better performance by identifying each category with the codewords x1, . . . , xk of an ECC
instead of standard one-hot encoding. The idea of using ECCs instead of one-hot-encoding
has been proposed before [65, 134, 175] along with data-dependent variants [50, 69, 204]. Our
observations in this section might give some theoretical justification for these methods.

Binomial Distributions

Finally, we look at the specific case of binomial distributions.

Proposition 1.5.7. There exists a positive constant C such that for all p, q ∈ [0, 1] and
n ∈ N the inequality

E21
(
Bin(n, p),Bin(n, q)

)
≥ Cmin

{
n|p− q|, n

2(p− q)2√
np+ nq

, n2(p− q)2
}

holds.

The proof of Proposition 1.5.7 is based on two technical lemmas, both of which are inspired
by discussions with Yanjun Han about Poisson distributions.
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Lemma 1.5.8. Let n ∈ N, x ∈ {0, 1, . . . , n} and p ∈ [0, 1]. Then

d

dp
P(Bin(n, p) ≤ x) = −nP(Bin(n− 1, p) = x). (1.5.4)

Proof. Follows by direct calculation.

Lemma 1.5.9. Let n ∈ N, p ∈ [0, 1/2] and x ∈ {0, 1, 2, . . . , n} with |x− np| ≤ √np. Then

P(Bin(n, p) = x) ≥ 2.74× 10−5

1 + 2
√
np

. (1.5.5)

Proof. Note that if p = 0 the claim is trivially true, so assume p > 0 without loss of generality.
Let λ = np and x ∈ [λ±

√
λ]. We break our argument into three cases.

1. Suppose λ < (3−
√
5)/2. Then λ+

√
λ < 1, so the only valid choice for x is 0. Plugging

in, we have

P(Bin(n, p) = 0) = (1− p)λ/p ≥ 2
√
5−3 ≥ 0.5.

2. Suppose (3−
√
5)/2 ≤ λ < (7−

√
13)/2 ≈ 1.697. Then λ+

√
λ < 3 so the only valid

choices for x are 0, 1 and 2. Once again, using the inequality 1− p ≥ e−1.4p valid for
p ∈ (0, 1/2), the following can be checked numerically:

P(Bin(n, p) = 0) = (1− p)λ/p ≥ 2
√
13−7 ≥ 0.09

P(Bin(n, p) = 1) = λ(1− p)λ/p−1 ≥ λe−1.4λ+1.4p ≥ 0.2

P(Bin(n, p) = 2) =
1

2
(λ2 − λp)(1− p)λ/p−2 ≥ 1

2
(λ2 − λ

2
)e−1.4λ+2.8p ≥ 0.03.

3. Suppose λ ≥ (7−
√
13)/2 and x, y ∈ [λ±

√
λ] ∩ {0, 1, . . . , n} with x ̸= y. Then

P(Bin(n, p) = x)

P(Bin(n, p) = y)
=
y!(n− y)!
x!(n− x)!

px−y(1− p)y−x =
max{x,y}∏

t=min{x,y}+1

1− p
p

t

n+ 1− t

≤

(
1− p
p

λ+
√
λ

n− λ−
√
λ

)|x−y|

=

(
1 + 1√

λ

1− p
1−p

1√
λ

)|x−y|

≤

(
1 + 1√

λ

1− 1√
λ

)|x−y|

≤ exp

(
2|x− y|√
λ− 1

)
,

where we used the inequality 1 + x ≤ exp(x) and p/(1− p) ≤ 1. Since |x− y| ≤ 2
√
λ

and λ ≥ 1.697, we have

exp

(
2|x− y|√
λ− 1

)
≤ exp

(
4 +

4√
1.697− 1

)
≤ 5473.
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By Chebyshev’s inequality we know that∑
x∈[np±2

√
np]

P(Bin(n, p) = x) ≥ 3

4
.

One of the modes of the binomial distribution is always one of the two integers closest
to np, see for example [121]. Moreover, in the case λ ≥ (7 −

√
13)/2 that we are

considering, the interval [np±√np] always contains the two closest integers to np. As a
consequence, the mode always belongs to [np±√np]. Since [np±√np] always contains
at least √np points, and [np± 2

√
np] contains at most 1 + 4

√
np points, we get∑

x∈[np±√
np]

P(Bin(n, p) = x) ≥ 3

20
.

From here we immediately get

P(Bin(n, p) = x) ≥ 3

20× 5473

1

1 + 2
√
np
,

concluding the proof.

Remark 9. If p ∈ (1/2, 1] then one can replace √np by
√
n(1− p) and the result remains

true. Moreover, up to some technicalities, an analogous statement seems to hold for all log-
concave distributions in one dimension. Namely, every log-concave distribution puts constant
mass on mean±deviation and the density on said range changes by at most a universal factor.

Proof of Proposition 1.5.7. Assume without loss of generality that p ≥ q. We further assume
that p ≤ 1/2 so that we may later apply Lemma 1.5.9. This is also without loss of generality
due to the following simple reduction. Split each support element i ∈ [k] into two, assigning
exactly half of the available mass to both. This inflates the support size by a factor of two
and maintains total variation distance. This is also known as the “flattening” [102, 64, 80]
reduction, which we already used in Section 1.4.5 of the thesis.

From (1.2.3) and Lemma 1.5.8 we have that

EZi = E2(Bin(n, p),Bin(n, q))

=
n∑
x=0

(
P(Bin(n, p) ≤ x)− P(Bin(n, q) ≤ x)

)2
= n2

n−1∑
x=0

(∫ p

q

P(Bin(n− 1, t) = x)dt

)2

.

Let us disregard the n2 multiplier and focus on the sum. Moreover, relabel n − 1 as n to
simplify notation. Note that if n(p+ q) ≤ 3 then most mass is concentrated at 0 and we may
use the simple bound

n∑
x=0

(∫ p

q

P(Bin(n, t) = x)dt

)2

≥
(∫ p

q

(1− t)ndt
)2

≳ (p− q)2.
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Going forward, assume that n(p + q) ≥ 3 holds, and note that p ≥ 1.5/n in this case. By
Lemma 1.5.9 we obtain

n∑
x=0

(∫ p

q

P(Bin(n, t) = x)dt

)2

≳
n∑
x=0

(∫ p

q

1{x ∈ [nt±
√
nt]}

1 +
√
nt

dt

)2

≳
1

pn

n∑
x=0

(∫ p

q

1{x ∈ [nt±
√
nt]}dt

)2

.

Expanding the square and performing the sum over x, the above becomes

≍ 1

pn

∫
q≤s≤t≤p

(ns+
√
ns− (nt−

√
nt)+)+dsdt.

Now, since α 7→ α−
√
α is non-negative and increasing on α ≥ 1, we can lower bound the

above integral as∫
q≤s≤t≤p

(ns+
√
ns− (nt−

√
nt)+)+dsdt ≥

∫
q≤s≤t,1/n≤t≤p

(
√
nt− n(t− s))+dsdt = (⋆).

Suppose we further restrict the region of integration above to

A =

{
(s, t) : q ≤ s ≤ t,

1

n
∨ p
2
≤ t ≤ p, n(t− s) ≤ 1

2

√
nt

}
.

This immediately yields the bound (⋆) ≳
√
np|A| where |A| denotes the area of A. A

simple sketch of A, which is a diagonal strip in the square [p, q]2, shows that |A| ≍ (p −
q)
(√

p
n
∧ (p− q)

)
. Summarizing, we obtain the bound

E2(Bin(n, p),Bin(n, q)) ≳

{
n2(p− q)2 if n(p+ q) ≤ 3

(n|p− q|) ∧ n2(p−q)2√
np

otherwise.

By checking the cases arising from n|p− q| ≶ 1 and np ≶ 1, one can verify that the above
bound is equal, up to constant, to the claimed result.

1.5.2 Density Estimation Using Half-Spaces

Suppose that we observe data X1, . . . , Xn
iid∼ ν from some unknown ν which is known to

belong to a class of distributions P . We define the minimum perceptron discrepancy estimator
ν̃ as

ν̃ ∈ argmin
ν′∈P

dH(ν
′, νn), (1.5.6)

where νn = 1
n

∑n
i=1 δXi

is the empirical measure of our sample. In this section we analyse the
performance of ν̃ when applied to smooth distributions, Gaussian mixtures and discrete dis-
tributions. The definition of ν̃ is reminiscent of the idea underpinning Generative Adversarial
Networks (GANs), where the density estimate is trained in conjunction with a discriminator.
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Here the discriminator is given by a one-layer network with threshold activation. In practice
the discriminator would likely be parametrized by a deep neural network, thus (1.5.6) can be
regarded as the simplest instantiation of this idea.

Assume for a moment that we have an inequality of the form

TV(µ, ν)α ≤ c dH(µ, ν) (1.5.7)

valid for all µ, ν ∈ P and some finite constants c, α that depend only on P . Note that α ≥ 1
must necessarily hold due to the inequality dH ≤ TV. We claim that then

ETV(ν̃, ν) ≤ c′(1/n)
1
2α (1.5.8)

for a finite constant c′ depending only on P. Recall that the VC-dimension of the set of
half-space indicators in Rd is d + 1, so that EdH(ν, νn) ≲

√
d/n for a universal implied

constant. Our conclusion (1.5.8) follows immediately from taking the expectation in the
chain of inequalities

TV(ν̃, ν)α
Eq. (1.5.7)

≲ dH(ν̃, ν)
Eq. (1.5.6)
≤ 2dH(ν, νn)

and applying Jensen’s inequality. This brings us to the following informal result.

Theorem 1.5.10 (informal). The minimum half-space discrepancy density estimator ν̃ defined
in (1.5.6) achieves the rate n− β

2β+d+1 over the class PS(β, d, C) and the rate (log n)
d+1
2 /
√
n

over the class PG(d).
Sketch proof. Combine Lemmas 1.5.2 and 1.5.4 with (1.5.8).

Both rates in Theorem 1.5.10 are close to being optimal. In the case of the smoothness
class PS(β, d, C) it is well known, see for example [107], that the minimax optimal rate of
estimation is given by n−β/(2β+d), so our estimator ν̃ has the same performance as the optimal
one in dimension d+ 1. The minimax optimal rate over PG(d) is not known, but the rate in
Theorem 1.5.10 is within log(n)Θ(d) of the unknown optimal rate.

We mention that the results of Theorem 1.5.10 can be improved if we were to replace
dH by the generalized energy distance Eγ in the definition of ν̃ in (1.5.6). In particular, for
the class PS(β, d, C) it would improve the rate to n−β/(2β+d+γ), meaning that performance
improves as γ ↓ 0. There is one caveat however, namely that some of the inequalities involved
in its proof deteriorate as γ ↓ 0. It turns out the optimal trade-off is achieved by setting
γ = (log(n))−1 in which case we achieve the rate (log(n)/n)β/(2β+d), which is only polylog
factor off from the minimax optimal rate. Analogous statements can be made also for the
Gaussian mixture class PG(d).

Finally, we comment on discrete distributions. The task of estimating discrete distributions
is effectively trivial, as the empirical probability mass function is minimax optimal, see for
example [35, Theorem 1] for an exposition of this fact. However, as a consequence of
Theorem 1.5.5 we can say the following. Suppose our observations X1, . . . , Xn are from a
discrete distribution with support size k ≥ 2. If we embed the support as a Ω(1)-packing
of the unit ball in log(k) dimensions, then any estimator ν̃ that satisfies dH(ν̃, νn) ≲

√
d/n

will be a minimax optimal distribution estimator up to a log(k) factor. The point of this
observation is to show that approximate minimizers of the half-space discrepancy, such as
those found by first order methods applied to GANs, are also good estimators.
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1.5.3 Two Sample Testing Using Half-Spaces

We saw in the previous section how the perceptron discrepancy can be used to design near-
optimal density estimators for smooth and Gaussian mixture distributions. In this section we
apply it to a rather different problem: that of two-sample testing for smooth and discrete
distributions.

Smooth Distributions

In a recent paper [161], the following test statistic for two-sample testing was proposed:

Td,k(p, q) = max
(w,b)∈Sd−1×[0,∞)

∣∣∣EX∼p
[
Relu(⟨w,X⟩ − b)k

]
− EY∼q

[
Relu(⟨w, Y ⟩ − b)k

] ∣∣∣,
where Relu(x) = max{x, 0} as usual. Notice that clearly Td,0 ≡ dH . They propose to reject
the null hypothesis that p = q whenever

Td,k(pn, qn) ≥ tn, (1.5.9)

where pn = 1
n

∑n
i=1 δXi

and qn = 1
n

∑n
i=1 δYi are empirical measures of two i.i.d. samples

X1, . . . , Xn and Y1, . . . , Yn, and the threshold satisfies both tn = o(1) and tn = ω(1/
√
n).

One of their main technical results [161, Theorem 6] shows that the test (1.5.9) returns the
correct hypothesis with probability 1 − o(1) asymptotically as n → ∞ for any qualifying
sequence {tn}n≥1 and fixed p, q. However, this result leaves open questions about the sample
complexity of their test, and in particular, whether it is able to achieve known minimax rates.

We show for k = 0 that (1.5.9) is not able to obtain the minimax optimal sample complexity
over the smoothness class PH(β, d, C) introduced in Section 1.2.3. It is well known (see for
example [10, 139]) that two-sample testing over PH(β, d, C) is solvable with probability
1− o(1) if and only if

n = ω(ϵ−
2β+d/2

β ), (1.5.10)
in which case a variant of the χ2-test, pioneered by Ingster, works. It turns out that our
construction showing the tightness of our comparison between dH and TV in Lemma 1.5.3,
also shows that (1.5.9) cannot achieve the optimal sample complexity (1.5.10).

Proposition 1.5.11 ([75, Proposition 10]). For all d, β > 0, there exists constants c, c′ such
that for all ϵ > 0, there exists probability density functions p, q supported on the d-dimensional
unit ball such that

1. ∥p∥β,2, ∥q∥β,2 ≤ c,

2. ∥p− q∥1 ≍ ∥p− q∥2 ≍ ϵ, and

3. the expected test statistic satisfies

E[Td,0(pn, qn)] ≤
c′√
n

for any n ≤ (log 1
ϵ
)−dϵ−

2β+d+1
β .

In other words, consistent testing using the statistic Td,0 is impossible with n = õ(ϵ−
2β+d+1

β )
samples, which is a far cry from the optimal sample complexity (1.5.10).
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Discrete Distributions

In the previous section we showed that thresholding dH does not result in a minimax optimal
two-sample testing procedure for smooth distributions. In contrast, in this section we find
that the energy distance E1 can be applied to the discrete two-sample testing problem to
obtain optimal performance.

Let p, q be two probability mass functions on the alphabet [k] = {1, 2, . . . , k} and suppose
that A1, . . . , A2n and B1, . . . , B2n are two i.i.d. samples from p, q respectively. Let Xi =∑n

j=1 1{Aj = i}, X ′
i =

∑n
j=1 1{Xn+j = i} and define Yi, Y ′

i in terms of the Bj analogously.
Our goal is to present a novel analysis of the statistic

T ..=
k∑
i=1

[
|Xi − Yi|+ |X ′

i − Y ′
i | − |Xi −X ′

i| − |Yi − Y ′
i |
]
,

which was introduced by [62]. The motivation of the authors for introducing the statistic
is a bit mysterious, and seems to have been the product of educated guesswork. However,
in light of Section 1.2.4 we see that ET is simply the sum of energy distances between two
binomials, each term corresponding to one support element. To make this more explicit,
writing T =

∑k
i=1 Zi, we have

EZi = E2(Bin(n, pi),Bin(n, qi)).

The concentration of T is straightforward, and the bulk of the technical difficulty lies in
lower bounding the expectation under the alternative hypothesis (the mean is clearly zero
under the null). Indeed, by McDiarmid’s inequality there exists a universal constant C > 0
such that

P(|T − ET | ≥ t) ≤ 2 exp(−Ct2n)

for any t ≥ 0. In other words, T is O(1/n)-sub-Gaussian. To deal with the mean, [62] proves
the following.

Proposition 1.5.12 ([62, Claim 3.4]). There exists a universal constant C > 0 such that for
any i ∈ [k],

EZi ≥ Cmin

{
n|pi − qi|,

n2(pi − qi)2√
n(pi + qi)

, n2(pi − qi)2
}
. (1.5.11)

The original proof of the key Proposition 1.5.12 proceeds by Poissonizing the samples, and
using some clever tricks, that may appear ad-hoc. More recently, a short (12 page) note [37]
was published which gave an alternative, more direct/principled analysis of ET using the fact
that

E|W | = 2

π

∫ ∞

0

1− E cos(itW )

t2
dt

for any integrable random variable W , which is attributed to Zolotarev [166], see also [190,
Chapter 9] for historical details. We note that using the Zolotarev identity to study ET is
essentially the same as using the Fourier-form (Proposition 1.2.1) of the energy distance,
although this connection isn’t made in [37]. However, we can recognize Proposition 1.5.12 as
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just re-stating our separation result Proposition 1.5.7, whose proof provides a third, in our
opinion further simplified proof of the corresponding results of [62].

For completeness, we mention the remaining steps needed to derive the minimax sample
complexity of two-sample testing. Partition the indices [k] into three sets S1 ⊔ S2 ⊔ S3 = [k]
according to which term on the RHS of (1.5.11) attains the minimum, breaking ties arbitrarily.
Since TV(p, q) ≥ ϵ under the alternative hypothesis, we have that

max
j=1,2,3

∑
i∈Sj

|pi − qi| ≥ 2ϵ/3. (1.5.12)

Depending on whether j = 1, 2 or 3 attains the maximum in (1.5.12), a straightforward
calculation using Hölder’s inequality shows that

ET =
n∑
i=1

EZi ≥ Cnmin

{
ϵ, ϵ2

n

k
, ϵ2
√
n

k

}
,

for a universal constant C > 0. Combining the above with the sub-Gaussianity of T , which
says that T = ET ±O(

√
log(1/δ)/n) with probability at least 1− δ, we see that to perform

two-sample testing with type-I + type-II error bounded by δ it is sufficient to take

n ≳
log(1/δ)

ϵ2
+

√
k log(1/δ)

ϵ2
+
k2/3 log1/3(1/δ)

ϵ4/3

observations, which can be shown to be minimax optimal.

1.5.4 Separating Distributions by Arbitrary Sets

In Section 1.5.1 we looked at separating distributions by the best possible half-space (using
dH), and random half-spaces (using the energy distance). In this section we take a more flexible
approach, and don’t restrict ourselves to half-spaces. Instead, given samples, we carefully
construct sets where the two distributions are guaranteed to differ with high probability.

Suppose that X1, . . . , Xn and Y1, . . . , Yn are i.i.d. from PX and PY respectively. Our goal
is to construct a set Ŝ based on these observations such that the separating power sep(Ŝ) is
“large” and the size τ(Ŝ) is “small”, where

sep(Ŝ) = PX(Ŝ)− PY (Ŝ)

and
τ(Ŝ) = min

{
PX(Ŝ)PX(Ŝ

c), PY (Ŝ)PY (Ŝ
c)
}
.

We shall see the importance of sep and τ later in Section 1.5.5, where we apply our results
downstream to goodness-of-fit, two-sample, and likelihood-free testing.

Gaussian Sequence Model

Our approach to the Gaussian sequence model is quite natural: Ŝ is simply a superlevel set of a
truncated version of the likelihood ratio between estimates of PX and PY . Indeed, suppose we
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have two samples X, Y of size n from ⊗∞
j=1N (θXj , 1) =: µθX and µθY respectively, where θX , θY

have Sobolev norm ∥θ∥2s =..
∑

j θ
2
j j

2s bounded by a constant and satisfy TV(µθX , µθY ) ≥ ϵ > 0.
We use θ̂X and θ̂Y to denote the empirical mean vector of the samples X and Y respectively.

The separating set is constructed as follows:

Ŝ = {Z ∈ RN : T (Z) ≥ 0},

where T (Z) = 2
∑J

j=1(θ̂
X
j − θ̂Yj )(Zj − (θ̂Xj + θ̂Yj )/2) for some J ∈ N to be specified. This is

simply a truncated version of the likelihood-ratio test between µθ̂X and µθ̂Y , where we set all
but the first J coordinates of θ̂X and θ̂Y to zero. The performance of the separating set is
summarized in the next proposition.

Proposition 1.5.13 ([74, Proposition 14]). There exists universal constants c, c′ such that
when J = ⌊cϵ−1/s⌋ the inequality

P

(
µθX (Ŝ)− µθY (Ŝ) ≥ c′

(√
nϵ1/s ∧ 1

ϵ

)
ϵ2
)
≥ 1− δ

holds, provided n ≳ 1
c′
nTS(ϵ, δ,PG).

The minimax sample complexity nTS(ϵ, δ,PG) is recorded in Table 1.2. The main tool in
the proof of Proposition 1.5.13 is Gaussian Lipschitz concentration.

Discrete Distributions

Suppose now that PX , PY are supported on [k] ..= {1, 2, . . . , k} with p.m.f.s pX , pY respectively.
One natural and simple approach is to take Ŝ1/2 defined as

i ∈ Ŝ1/2 ⇐⇒ p̂X(i) +
1

2n
Ωi > p̂Y (i),

where Ω1, . . . ,Ωk are i.i.d. Rademacher variables independent of the data and p̂X , p̂Y are
the empirical p.m.f.s. In other words, given a support element i ∈ [k], classify it as X if
its empirical frequency is larger in the X-sample and to flip a coin in case of a tie. This
“classifier” can also be thought as a minimizer of the empirical misclassification error on our
training set.

The bound τ(Ŝ1/2) ≤ 1/4 holds trivially. For the separation sep(Ŝ1/2) we must work a bit
harder. The following is the key technical result for this step.

Lemma 1.5.14 ([74, Lemma 21]). Let µ ≥ λ ≥ 0 and X ∼ Poi(µ), Y ∼ Poi(λ). Then

P(X > Y ) +
1

2
P(X = Y )− 1

2
≥ c

(
µ− λ√
λ+ 1

∧ 1

)
holds, where c > 0 is a universal constant.
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Assuming, without loss of generality, that our samples are Poissonized, we can proceed:

E sep(Ŝ1/2) =
k∑
i=1

(
pX(i)− pY (i)

)
P
(
i ∈ Ŝ1/2

)
=

k∑
i=1

(
pX(i)− pY (i)

)(
P
(
i ∈ Ŝ1/2

)
− 1

2

)
Lem. 1.5.14
≥ c

k∑
i=1

∣∣pX(i)− pY (i)∣∣( n|pX(i)− pY (i)|√
n(pX(i) ∧ pY (i)) + 1

∧ 1

)
,

where the last step uses that

P
(
i ∈ Ŝ1/2

)
= P

(
Poi
(
npX(i)

)
> Poi

(
npY (i)

))
+

1

2
P
(
Poi
(
npX(i)

)
= Poi

(
npY (i)

))
.

In the above display we use Poissonized samples so our X and Y sample may have a different
number of total observations, although both are guaranteed to be n + O(

√
n) with high

probability. This is in contrast with how we defined Ŝ1/2 above, where the size of the two
samples is fixed and equal, but the difference between the two is negligible due to the
concentration of the Poisson distribution.

Under the assumption that ∥pX − pY ∥1 ≥ ϵ, we can analyse the three cases that may arise
for each term in the sum above, and we arrive at the bound

E sep(Ŝ1/2) ≳ ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
=.. sep∗ .

To summarize, so far we have the bound τ(Ŝ1/2) ≤ 1/4 with probability one, and a lower
bound on E sep(Ŝ1/2). To ensure that the latter bound holds not only in expectation but
with probability 1− δ, we must analyse the concentration properties of sep(Ŝ1/2). To achieve
the optimal sample complexity, we rely on the exact characterization of the sub-Gaussian
variance proxy of Bernoulli random variables.

Lemma 1.5.15 ([34, Theorem 2.1]). Let σ2
opt(µ) be the optimal (smallest) sub-Gaussian

variance proxy of the Ber(µ) distribution. Then

σ2
opt(µ) =

1
2
− µ

log
(

1
µ
− 1
) ,

where the values for µ ∈ {0, 1
2
, 1} should be understood as the limit of the above expression,

resulting in σ2
opt = 0, 1

4
, 0 respectively.

Still assuming that our observations are Poissonized, by standard tail bounds we know
that for any i ∈ [k]

pi ..= P(i ∈ Ŝ1/2) ∧ P(i ̸∈ Ŝ1/2) ≤ 2 exp

(
−n(pX(i)− pY (i))

2

pX(i) + pY (i)

)
(1.5.13)
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holds. Using Lemma 1.5.15 we can bound the sub-Gaussian variance proxy as

σ2
opt

(
sep(Ŝ1/2)

)
= σ2

opt

(
n∑
i=1

(pX(i)− pY (i))1{i ∈ Ŝ1/2}

)
Lem. 1.5.15

=
k∑
i=1

(pX(i)− pY (i))2 ×
1
2
− pi

log
(

1
pi
− 1
)

(1.5.13)
≲

k∑
i=1

(pX(i)− pY (i))2 ∧
pX(i) + pY (i)

n
= O

(
1

n

)
.

Remarkably, the inverse logarithmic dependence of σ2
opt for small Bernoulli parameters is

crucial in obtaining the above result. Putting our bounds together, we obtain

P
(
τ(Ŝ1/2) ≤ 1/4 and sep(Ŝ1/2) ≳ sep∗

)
≥ 1− δ, (1.5.14)

provided that sep∗ ≳
√

log(1/δ)σopt(sep(Ŝ1/2)). The latter condition rearranges to

n ≳
log(1/δ)

ϵ2
+

√
k log(1/δ)

ϵ2
+
k2/3 log1/3(1/δ)

ϵ4/3
,

which may be recognized as the sample complexity of two-sample testing over PD.
In (1.5.14) we obtained a surprisingly simple and poweful result, however we weren’t able

to achieve non-trivial control over τ(Ŝ). It is in fact possible to do better, if we assume that
the distributions PX , PY are bounded, that is, if PX , PY ∈ PDb.

The first improvement that one can make to Ŝ1/2 is to consider the two sets Ŝ≶ defined by

i ∈ Ŝ≶ ⇐⇒ p̂X(i) ≶ p̂Y (i).

Notice that for i to be added to either set, we must observe at least one occurence of i in
either the X or Y sample. This gives us an improved bound on τ of the form

τ(Ŝ≶) ≤
1

4
∧
(
nmax
i∈Ŝ≶

{
pX(i) + qX(i)

})
,

which holds with high probability for Poissonized samples. If we assume that pX , pY ∈ PDb

then we obtain τ(Ŝ≶) ≲ 1 ∧ (n/k), which is exactly what we need to fill the gaps left by Ŝ1/2

for this class. However, there is one caveat: the expected separation of either set is no longer
guaranteed, and in fact it may even be negative!

Proposition 1.5.16 ([74, Proposition 8]). Consider the distributions p, q on [3k] with
pi = 1{i ≤ k}/(2k) + 1{i > k}/(4k) and qi = 1{i ≤ k}/k. Then, for n ≤ 0.6k,

E sep(Ŝ>) < 0.

Sketch Proof. The intuition for the construction is as follows: half the mass of p is placed on
the support elements [k], each of which incurs a separation loss of −1/(2k). The other half of
its mass is put on the support elements (k, 3k], each of which incurs a separation +1/(4k).
Therefore, the total expected separation of Ŝ> is roughly 1

2
× (−1

2k
+ 1

4k
) = − 1

8k
.
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What saves us is the fact that at least one of the two sets Ŝ>, Ŝ< has good expected
separation, since E sep(Ŝ>) + E sep(Ŝ<) = 2E sep(Ŝ1/2). In light of this, the strategy is clear:
hold out a linear fraction of the training samples to decide between Ŝ> versus Ŝ< by comparing
their empirical separations. By Bernstein’s inequality it is then straightforward to prove that
we identify the correct separating set with high probability, which results in the following.

Proposition 1.5.17 ([74, Corollary 10]). Suppose that PX , PY ∈ PDb with TV(p, q) ≥ ϵ.
There exists a universal constant c > 0 such that using the samples X, Y we can find a set
Ŝ ⊆ [k] which, with probability 1− δ, satisfies

∣∣ sep(Ŝ)∣∣ ≥ cϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
and τ(Ŝ) ≤ 1

c

(
1 ∧ n

k

)
,

provided n ≥ 1
c
nGoF(ϵ, δ,PDb).

The above discussion covers bounded discrete distributions. However, it is of no help for the
family of all discrete distributions PD, as we no longer have a bound on maxi∈Ŝ≶(pX(i)+qX(i)),
so our control of τ is still trivial. The key idea here is to use yet another part of our training
samples to partition the support [k] into O(log(k)) subsets on each of which either p or q is
approximately uniform. Due to its technical nature, we defer all details to Chapter 4 of the
thesis.

Smooth Distributions

Analogously to Section 1.4, our results for the smooth density class PH follow by reduction
to the bounded discrete PDb case. The approximation result Lemma 1.4.2 is what makes this
reduction possible. Effectively, it lets us prove a result analogous to Proposition 1.5.17 except
with k replaced by ϵ1/β throughout.

1.5.5 LFHT in the Small Error Regime

In this section we look at the idea of classifier-accuracy testing, which is a popular approach
amongst practitioners of LFI [91]. We derive theoretical guarantees for this class of testing
algorithms, using the classifiers that we have constructed in Section 1.5.4.

Introduction to Classifier-Accuracy Testing

Given two datasets A1, . . . , Aa
iid∼ PA and B1, . . . , Bb

iid∼ PB taking values in some space X ,
and a classifier C : X → {0, 1}, we define the “classifier-accuracy statistic”

TS(A,B) ..=
1

a

a∑
i=1

1{Ai ∈ S} −
1

b

b∑
j=1

1{Bj ∈ S}, (1.5.15)

where we abbreviate A = (A1, . . . , Aa), B = (B1, . . . , Bb) and where we identify the classifier
C with the set S = C−1({1}), so that C(x) = 1{x ∈ S}.
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Assuming that the classifier C aims to assign 1 to data from PA and 0 to data from PB, it
follows that TS(A,B) + 1 is simply equal to the sum of the fraction of correctly classified
instances. This property lends the name “classifier-accuracy” statistic. We say that a testing
procedure is a classifier-accuracy test if its output is obtained by thresholding |TS| for some
classifier on independent test data.

Notice that ETS(A,B) = 0 if PA = PB by design, irrespective of the classifier C. On the
other hand, if PA ̸= PB and C is good at distinguishing the two distributions, then one expects
that |TS(A,B)| is “large”. Therefore, depending on the power of C under the alternative,
thresholding |TS| should be a reasonable test of the null hypothesis PA = PB against the
alternative PA ̸= PB.

Classifier-accuracy testing is a popular method used by practitioners in likelihood-free
inference. One simply trains a classifier on simulated data that distinguishes PX from PY
and then applies the trained classifier to the experimental data to see which way the classifier
leans. More precisely, suppose we have i.i.d. samples X1, . . . , Xn, Y1, . . . , Yn and Z1, . . . , Zm
from unknown PX , PY , PZ respectively. Our goal is to test the null hypothesis PX = PZ
versus PY = PZ , and we are guaranteed that PX and PY are separated, and in particular
not equal to each other. Suppose that we train a classifier C = 1S on the first half of
data X1, . . . , Xn/2, Y1, . . . , Yn/2. Then, using the remaining data we compute the statistic
|TS({Zi}mi=1, {Xn/2+i}n/2i=1})| and reject the null for large values of this statistic.

Remark 10. In the specific case of testing over the class of all discrete distributions PD

we also need to use Z1, . . . , Zm/2 in our construction of S whenever m ≥ n. This can be
regarded as a sort of unsupervised step in the classifier training procedure, since we do not
know whether PZ = PX or PZ = PY . It is open whether this is information theoretically
necessary, or whether one can train purely on the X, Y samples and still attain minimax
optimal performance. Note that we didn’t cover this in Section 1.5.4, but the details can be
found in Chapter 4.

The same idea can also be applied to two-sample testing. Recall that in the setting
of two-sample testing we have two i.i.d. samples X1, . . . , Xn and Y1, . . . , Yn from PX , PY
respectively and the goal is to test the null PX = PY against the alternative that PX ≠ PY .
First, split the data into two batches and train a classifier C = 1S on X1, . . . , Xn/2 and
Y1, . . . , Yn/2. Then, on the second half, threshold the classifier-accuracy statistic, i.e. reject
the null hypothesis if |TS({Xn/2+i}n/2i=1, {Yn/2+i}

n/2
i=1)| is large.

Finally, since goodness-of-fit testing is a special case of two-sample testing where we have
an unlimited number of observations from one of the two distributions, the algorithm for
goodness-of-fit testing using the classifier accuracy statistic follows from the paragraph above.

The Key Lemma

Suppose for a moment that a classifier C = 1S has already been found. The following lemma
gives an upper bound on the number of independent test observations required for the second
step, that is, accepting/rejecting based on the magnitude of |TS|, to correctly identify the
true hypothesis with error probability at most δ ∈ (0, 1).
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Lemma 1.5.18. Let P,Q be two unknown distributions. Consider the hypothesis testing
problem H0 : P = Q versus an arbitrary alternative H1. Suppose that the learner has
constructed a “separating set” S such that

| sep(S)| = |P (S)−Q(S)| ≥ sep for every (P,Q) ∈ H1,

and

τ(S) = (P (S)(1− P (S)) ∧ (Q(S)(1−Q(S))) ≤ τ for every (P,Q) ∈ H0 ∪H1.

Then, using only the knowledge of τ and sep, the classifier-accuracy test (1.5.15) with n test
samples from both P and Q and an appropriate threshold achieves type-I and type-II errors
at most δ, provided that

n ≥ c
log(1/δ)

sep

(
1 +

τ

sep

)
for a large enough universal constant c > 0.

Note that Lemma 1.5.18 would follow immediately by Bernstein’s inequality if we were to
replace τ(S) by P (S)(1− P (S)) +Q(S)(1−Q(S)). This is because clearly

var (TS(X1, . . . , Xn, Y1, . . . , Yn)|S) =
1

n

{
P (S)(1− P (S)) +Q(S)(1−Q(S))

}
.

However, the savings we get by using τ(S) as defined in Lemma 1.5.18 is crucial in obtaining
optimal sample complexity bounds. We are able to derive this stronger result due to the
following simple observation: when the minimum of P (S)(1−P (S)) and Q(S)(1−Q(S)) is not
of the same order as the sum of the two quantities, then sep(S) must be large, thereby making
the testing problem easier. With a good choice of the classifier, we can use Lemma 1.5.18 to
derive the sample complexity results in Tables 1.2 and 1.3. The following three rules lay out
the interpretation of the table.

(i) Unmarked entries denote optimal results achievable by a classifier-accuracy test.
(ii) Entries marked with (OPT) denote optimal results that are not known to be achievable

by any classifier-accuracy test.
(iii) Entries marked with (CAT) denote the best known result using a classifier-accuracy

test.

To derive the rsults of the table, we can simply combine our classifier constructions in
Section 1.5.4 with Lemma 1.5.18. More concretely, using (1.5.14) we get that the CAT using
Ŝ1/2 is minimax optimal for the following cases.

(i) GoF in PDb and PD as long as k = O(log(1/δ)/ϵ4);
(ii) TS in PDb as long as k = O(log(1/δ)/ϵ4), and in PD for all (k, ϵ, δ);
(iii) LFHT in PDb as long as k = O(log(1/δ)/ϵ4), and in PD as long as n ≥ m.

Most notably, we see that the trivial classifier Ŝ1/2 is enough to recover the high-probability
minimax sample complexity of two-sample testing, which was resolved only recently in [62].
By applying Proposition 1.5.17 with Lemma 1.5.18 we can further resolve all cases for the
bounded discrete class PDb. In order to obtain the best results for PD and complete the table,
we refer the reader to Chapter 4 or the original source [74].
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nGoF nTS RLF

PDb(k)

√
k log(1/δ)

ϵ2
+ log(1/δ)

ϵ2
nGoF m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

PH(β, d)

√
log(1/δ)

ϵ(2β+d/2)/β + log(1/δ)
ϵ2

nGoF m ≥ log(1/δ)
ϵ2

and n ≥ nGoF and nm ≥ n2
GoF

PG(s)

√
log(1/δ)

ϵ(2s+1/2)/s +
log(1/δ)

ϵ2
nGoF m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

Table 1.2: Minimax sample complexity of testing (up to constant factors) over PH,PG,PDb.

nGoF(PD) nTS(PD)

n ≥ m m ≥ log(1/δ)

ϵ2
and mmin{n2/k, n} ≥ n2

GoF

(OPT)mn2 ≥ kn2
GoF and n ≥ nGoF

(CAT)nGoF

(
ϵ

log(k)
, δ
k
,PDb

)
(CAT)

mn2

log( k
δ )

≥ kn2
GoF

(
ϵ

log(k)
, δ
k

)
and n ≥ nGoF(

ϵ
log(k)

, δ
k
)

k <
log( 1

δ )
ϵ4

nGoF(PDb) nGoF(PDb)

RLF(PD)

k ≥ log( 1
δ )

ϵ4

(OPT)nGoF(PDb) (
k2 log( 1

δ )
ϵ4

) 1
3

m > n

m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

Table 1.3: Minimax sample complexity of testing (up to constant factors) over PD.

1.6 Kernel-Based Tests for LFHT and the Empirical Trade-
Off

This section is based on [76] which is joint work with Tianze Jiang, Yury Polyanskiy and
Rui Sun, and was published at NeurIPS ’23, and is included in Chapter 3 in full. While the
previous two sections characterized the region RLF in great generality, the minimax optimal
tests we exhibited were hardly usable in realistic scenarios. For example, the class PH of
smooth distributions requires discretizing the observations over a grid that is of exponential
size in the dimension. This prompted us to consider a practically more realistic, kernel-based
procedure.

1.6.1 A Generalization of LFHT

A prominent application of likelihood-free inference lies in the field of particle physics. Scien-
tists run sophisticated experiments in the hope of confirming the existence of a hypothesized
particle or phenomenon. Often said phenomenon can be predicted from theory, and thus can
be simulated, as was the case for the Higgs boson whose existence was verified after nearly 50
years at the Large Hadron Collider (LHC) [40, 5]. In such experiments, the goal is to prove
that the rate at which a special particle (such as the Higgs boson) is born is greater than
0, or more ambitiously, is lower bounded by a positive quantity that is within the range of
theoretical predictions. The generalization of LFHT that we introduce next, which we call
mixed LFHT (mLFHT), was inspired by this rate-detection problem.
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Suppose we have n simulations from the background distribution PX and the signal
distribution PY . Further, we also have m datapoints from PZ = (1 − ν)PX + νPY , so
the observed data is a mixture between the background and signal distributions with rate
parameter ν. The goal of physicists is to construct confidence intervals for ν, and a discovery
corresponds to a 5σ confidence interval that excludes ν = 0. We model this problem by
testing

H0 : ν = 0 versus H1 : ν ≥ π (mLFHT)

for fixed π > 0. In particular, a discovery can be claimed if H0 is rejected. More precisely,
given C, ϵ, R ≥ 0, let Pµ(C, ϵ, R) denote the set of triples (PX , PY , PZ) such that the following
three conditions hold:

(i) PX , PY and PZ have µ-densities bounded by C,
(ii) MMD(PX , PY ) ≥ ϵ holds, and
(iii) MMD(PZ , (1− ν)PX + νPY ) ≤ R ·MMD(PX , PY ),

where we define ν = ν(PX , PY , PZ) = argminν′∈R MMD(PZ , (1 − ν ′)PX + ν ′PY ). For some
π > 0, consider the two hypotheses

H0 = H0(C, ϵ, π,R) : (PX , PY , PZ) ∈ Pµ(C, ϵ, R) and ν(PX , PY , PZ) = 0

H1 = H1(C, ϵ, π,R) : (PX , PY , PZ) ∈ Pµ(C, ϵ, R) and ν(PX , PY , PZ) ≥ π.
(1.6.1)

Notice that R controls the level of mis-specification in directions orthogonal to the line
connecting the kernel embeddings of PX and PY . Setting R = 0 simply asserts that PZ is
guaranteed to be a mixture of PX and PY under both hypotheses and further taking π = 1
recovers LFHT. Given the parameters C, ϵ, π,R, mixed LFHT (mLFHT) is the problem of
testing H0 against H1, as defined in (1.6.1), based on n, n,m observations from PX , PY , PZ
respectively

1.6.2 A Kernel-Based Test for mLFHT

The following is a key result in understanding the behaviour of RKHSs and MMD, it is a
consequence of the general fact that every compact self-adjoint operator is diagonalizable.

Theorem 1.6.1 (Hilbert–Schmidt theorem [173]). Suppose that K ∈ L2(µ⊗µ) is symmetric.
Then there exists a sequence (λj)j≥1 ∈ ℓ2 and an orthonormal basis {ej}j≥1 of L2(µ) such
that K(x, y) =

∑
j≥1 λjej(x)ej(y) for all j ≥ 1, where convergence is in L2(µ⊗ µ).

Throughout the rest of Section 1.6, statements involving X , µ and K should implicitly be
understood as holding for any choice of the three objects for which Theorem 1.6.1 holds. We
warn the reader about the fact that given fixed X and K, the eigenvalues λj ≥ 0 depend on
the base measure µ that is chosen.

In our proofs we work with the kernel embedding of empirical measures for which we need
to modify the inner product ⟨·, ·⟩HK

, and thus MMD, by removing the diagonal terms. This
debiases and reduces the variance of these empirical estimates. More concretely, given i.i.d.
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samples X, Y of size n,m respectively and corresponding empirical measures P̂X , P̂Y , we
define

MMD2
u(P̂X , P̂Y )

..=
1

n(n− 1)

∑
i ̸=j

K(Xi, Xj) +
1

m(m− 1)

∑
i ̸=j

K(Yi, Yj)

− 2

mn

∑
i,j

K(Xi, Yj).
(1.6.2)

We also write ⟨θP̂X
, θP̂X
⟩u,HK

..= ∥θP̂X
∥2u,HK

..= 1
n(n−1)

∑
i ̸=jK(Xi, Xj) and extend linearly.

The u stands for unbiased, since EMMD2
u(P̂X , P̂Y ) = MMD2(PX , PY ) ̸= EMMD2(P̂X , P̂Y ).

Suppose, as usual, that we have samples X, Y, Z of sizes n, n,m from the probability
measures PX , PY , PZ and that our goal is to test between H0 and H1, defined in (1.6.1), for
given parameters C, ϵ, π,R. Write P̂X for the empirical measure of sample X, and analogously
for Y, Z. The core of our test statistic for (mLFHT) is the following:

T (X, Y, Z) ..= ⟨θP̂Z
, θP̂Y

− θP̂X
⟩u,HK

=
1

nm

n∑
i=1

m∑
j=1

{
K(Zj, Yi)−K(Zj, Xi)

}
. (1.6.3)

Further define
γ(X, Y, π) =

π

2
MMD2

u(P̂X , P̂Y ) + T (X, Y,X). (1.6.4)

The final output of our procedure is

reject the null if T (X, Y, Z) ≥ γ(X, Y, π) and accept otherwise. (1.6.5)

The above has a natural geometric interpretation: we reject the null hypothesis if the
projection of θP̂Z

− θP̂X
onto the vector θP̂Y

− θP̂X
falls further than π/2 along the segment

joining θP̂X
to θP̂Y

, up to deviations due to the deleted diagonal terms.
We are in a position to state our result on the minimax sample complexity of mLFHT

under MMD separation. For simplicity we set the mis-specification parameter R to zero, for
a more general statement of the result see Chapter 3.

Theorem 1.6.2. Let us observe data X1, . . . , Xn
iid∼ PX ,Y1, . . . , Yn

iid∼ PY and Z1,. . . , Zm
iid∼ PZ .

Then, there exists a finite universal constant c such that the procedure defined in (1.6.5) has
total error bounded by 5% for testing H0 vs H1, as defined in (1.6.1) with R set to 0, provided

min{m,n} ≥ c
C∥λ∥∞
π2ϵ2

and min{n,
√
nm} ≥ c

C∥λ∥2
πϵ2

.

The proof of Theorem 1.6.2 is a generalization of our analysis of the L2-tester from
Section 1.4.4, the strategy is simply to use the eigendecomposition available thanks to the
Hilbert-Schmidt theorem. In addition to the new mixing parameter π, one difference from
our previous results is that we put less restrictions on the class Pµ where our distributions
live. Indeed, our only requirement is that they have bounded density with respect to the
base measure µ we choose, in contrast with the smoothness assumptions of the previous
subsection.
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The bounds on the sample sizes n and m depend on the sequence of eigenvalues λ, which
in turn depends on the base measure µ that is chosen. Therefore, given a fixed kernel K, it
would be possible to try to optimize µ so that the resulting bounds in Theorem 1.6.2 are
as favorable as possible. However, since µ is also present in the definition of the hypothesis
class Pµ itself, it seems difficult to disentangle the relationships.

We also obtain a partial converse to Theorem 1.6.2 in the form of a minimax lower bound.
Due to the overly general setting of the problem, it harder to construct the least favorable
distributions. Therefore, we need additional assumptions on the problem.

Theorem 1.6.3. Given J ≥ 2, let ∥λ∥22J ..=
∑J

j=2 λ
2
j . Let

J⋆ϵ
..= max

{
J : sup

ηj=±1

∥∥∥ J∑
j=2

ηj
√
λjej

∥∥∥
∞
≤ ∥λ∥2J

2ϵ

}
.

Consider the setting of Theorem 1.6.2 and suppose that
∫
X K(x, y)µ(dx) ≡ λ1, µ(X ) = 1 and

supx∈X K(x, x) ≤ 1. There exists a universal constant c > 0 such that any test with total
error at most 5% must use

m ≥ cλ2
π2ϵ2

and n ≥ c
∥λ∥2J⋆

ϵ

ϵ2
and max{πm,

√
mn} ≥ c

∥λ∥2J⋆
ϵ

πϵ2
.

The requirements supx∈X K(x, x) ≤ 1 and µ(X ) = 1 are is essentially without loss of
generality, as µ and K can be rescaled. The condition

∫
X K(x, y)µ(dx) ≡ λ1 implies that

the top eigenfunction e1 is equal to a constant or equivalently, that K(dx, y)µ(dx) defines a
Markov kernel for µ-almost every y ∈ X , up to a normalizing constant.

The lower bound construction is inspired by that for PDb and PH, which we discuss
in more detail in Section 1.7.1. Simply take a vector of independent uniformly random
signs η = (η1, η2 . . . ) ∈ {±1}N and define the µ-density fη ∝ 1 + ρ

∑J
j=2 ηjej for J ≥ 2

and some scaling factor ρ > 0 chosen so that MMD(unif(X ), fη) ≥ ϵ for any realization
of the signs η. Recall that ej are the orthogonal eigenfunctions of the kernel K, so that∫
ej(x)µ(dx) = ⟨e1, ej⟩L2(µ) = 0, which implies that fη is a valid probability density with

respect to µ provided it is non-negative. This condition is precisely the reason why we
must take a potentially finite cutoff J : we are unable to control the size of the perturbation
∥
∑J

j=1 ηjej∥∞ for J = ∞. The largest J take we are able to take while still guaranteeing
non-negativity of the construction fη is precisely J = J⋆ϵ . Once we have the construction
in hand, the derivation of the lower bound follows in a completely analogous fashion to
Section 1.7 and Paninski’s construction in particular.

An apparent weakness of Theorem 1.6.3 is its reliance on the unknown value J⋆ϵ , which
depends on the specifics of the kernel K and base measure µ. Determining it is potentially
nontrivial even for simple kernels. Slightly weakening Theorem 1.6.3 we obtain the following
corollary, which shows that the dependence on ∥λ∥2 is tight, at least for small enough ϵ.

Corollary 1.6.4. Suppose J ≥ 2 is such that
∑J

j=2 λ
2
j ≥ c2∥λ∥22 for some c ≤ 1. Then

∥λ∥2J⋆
ϵ

can be replaced by c∥λ∥2 in Theorem 1.6.3 whenever ϵ ≤ c∥λ∥2/(2
√
J − 1).

The correct dependence on the signal rate π is the most pressing question left open by our
theoretical results.

60



1.6.3 Learning the Kernel and the Empirical Trade-Off

Given a fixed kernel K, our Theorems 1.6.2 and 1.6.3 show that the sample complexity
depends on the separation ϵ under the given MMD as well as the spectrum λ = λ(µ,K) of the
kernel. Thus, to have good test performance we need to use a kernel K that is well-adapted
to the problem at hand. In practice, however, instead of using a fixed kernel it would be
only natural to use part of the simulated data to try to learn a good kernel. Due to the
resulting dependence between the data and the kernel, Theorems 1.6.2 and 1.6.3 don’t apply
anymore. Our main experimental contribution is to confirm the existence of an asymmetric
simulation-experimentation trade-off similar to Figure 1.1, that appears in spite of said
dependence.

Training Objective

Consider taking a part of the simulation data and setting it aside for training the kernel; call
this (X tr, Y tr). Writing P̂Xtr , P̂Y tr for their empirical measures, we maximize the objective

Ĵ(X tr, Y tr;K) =
MMD2

u(P̂Xtr , P̂Y tr ;K)

σ̂(X tr, Y tr;K)
, (1.6.6)

which was introduced in [187], originally for two-sample testing. Here σ̂2 is an estimator of
the variance of MMD2

u(P̂Xtr , P̂Y tr ;K) defined in [143] as follows. For each pair i, j define

Hij := K(X tr
i , X

tr
j ) +K(Y tr

i , Y
tr
j )−K(X tr

i , Y
tr
j )−K(Y tr

i , X
tr
j ). (1.6.7)

The variance estimate is then computed via

σ̂2(Xntr , Y ntr ;K) =
4

n3
tr

ntr∑
i=1

(
ntr∑
j=1

Hij

)2

− 4

n4
tr

(
ntr∑
i=1

ntr∑
j=1

Hij

)2

. (1.6.8)

Intuitively, the objective J aims to separate PX from PY while keeping variance low. We
optimize the objective (1.6.6) over the choice of kernel K, which we parametrize as follows.
For τ ∈ (0, 1) we let

K(x, y) =
(
(1− τ)Gσ(φω(x), φω(y)) + τ

)
·Gσ0(x+ φω′(x), y + φω′(y)),

where Gσ is the Gaussian kernel with variance σ2; φω, φω′ are neural networks with parameters
ω, ω′, and σ, σ0, τ, ω, ω′ are all trainable scalars. This is the same architecture introduced in
[143] and is the best performing one in our experiments.

Experiment I : Image Source Detection

Our first empirical study looks at the task of detecting whether images come from the CIFAR-
10 [136] dataset or a SOTA generative model (DDPM) [95, 167]. While source detection is
on its own interesting, it turns out that detecting whether a group of images comes from
the generative model versus the real dataset can be too “easy” (see experiments in [118]).
Therefore, we consider a mixed alternative, where the alternative hypothesis is not simply
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the generative model but CIFAR with planted DDPM images. Namely, our n labeled images
come from the following distributions:

PX = CIFAR, and PY = π ·DDPM + (1− π) · CIFAR. (1.6.9)

The goal is to test whether the fraction of the m unlabeled observations Z which are fakes
generated by DDPM exceeds π.

Experiment II : Higgs Boson Dataset

The 2012 discovery of the Higgs boson by the ATLAS and CMS experiments [1, 40] marked
a significant milestone in physics. The statistical problem inherent in the experiment is
well-modeled by (mLFHT), using a signal rate π predicted by theory and misspecification
parameter R = 0. We use the open source Higgs dataset available at http://archive.ics.uci.
edu/ml/datasets/HIGGS and record the probability of error over multiple kernel training
runs with different sample sizes m,n.

The Empirical Trade-Off

Figure 1.4 shows the error probability of the two experiments described above, as we vary
the sample sizes m and n. Note that here n also includes those simulation samples that are
used for training the neural network, so that our minimax theory doesn’t apply. However, we
can clearly see from both plots that there is an asymmetric trade-off between the number
of simulation samples n and real data m. In particular, for a given level of error, one needs
fewer real data samples m as we take n→∞ compared to the opposite case.

Figure 1.4: n versus m trade-off for the Higgs and CIFAR experiments using our test. Error
probabilities are estimated by normal approximation for Higgs and simulated for CIFAR.
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1.7 Minimax Lower Bounds for LFHT

In this section we outline our approach to proving matching minimax lower bounds for LFHT,
and testing problems more generally. Suppose we observe a sample X from an unknown
distribution Q, and our goal is to test between the two hypotheses

H0 : Q ∈ Q0 versus H1 : Q ∈ Q1,

where Qi, i = 0, 1 are disjoint sets of probability distributions. Tsybakov’s [198] method of
fuzzy hypotheses gives us a recipe for deriving a lower bound on the minimax error probability
of this problem. Let Qi be random probability distributions supported on Qi respectively.
Then

best worst-case error = inf
Ψ

max
i=0,1

sup
Q∈Qi

PX∼Q(Ψ(X) ̸= i) ≥ 1

2
(1− TV(EQ0,EQ1)) (1.7.1)

holds, which is proven by replacing the supremum over Qi with an average. Therefore, the
problem is reduced to bounding the total variation distance between two mixtures. There
are many inequalities at our disposal, but the most useful for us is

1− TV(P,Q) ≥ 1/2

1 + χ2(P∥Q)
, (1.7.2)

which is valid for any P and Q and can be found for example in [168, Section 7.6].
So that we may give concrete examples, let us once again focus on the case of discrete

distributions for our discussion. There are two famous constructions for discrete distributions
that we cover here.

1.7.1 Perturbation of the Uniform Distribution

The first construction is attributed to Paninski [162] in the computer science literature,
however the idea is quite old and appears in [110] for the exact same purpose. Given a desired
separation ϵ ∈ (0, 1), an even support size k and a sequence of signs η1, . . . , ηk/2 ∈ {±1} we
define the pmf pη by

pη(2i) =
1 + ηiϵ

k
=

2

k
− pη(2i− 1)

for all i ∈ [k/2]. Also define p0 = (1/k, . . . , 1/k) to be the uniform distribution. Taking the
signs η to be uniformly random, one can immediately derive minimax sample complexity
lower bounds for goodness-of-fit testing, and consequently for two-sample testing and LFHT
by reduction c.f. Section 1.4.2, by computing

1 + χ2(Eηp
⊗n
η ∥p⊗n0 ) =

∑
x1,...,xn∈[k]n

(Eη
∏n

i=1 pη(xi))
2∏n

i=1 p0(xi)

= knEη,η′

[(
k∑
x=1

pη(x)pη′(x)

)n]
,
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where η, η′ are independent and identically distributed. Notice now that

k∑
x=1

pη(x)pη′(x) =
1

k

(
1 +

2ϵ2

k
⟨η, η′⟩

)
.

Plugging into our bound of the χ2-divergence, and using the inequalities 1 + x ≤ exp(x) and
cosh(x) ≤ exp(x2/2) valid for all x ∈ R, we obtain

1 + χ2(Eηp
⊗n
η ∥p⊗n0 ) ≤ Eη,η′ exp

(
2ϵ2n⟨η, η′⟩

k

)
(1.7.3)

=

(
Eη1,η′1 exp

(
2ϵ2nη1η

′
1

k

))k/2
= coshk/2

(
2ϵ2n

k

)
≤ exp

(
ϵ4n2

k

)
.

Via (1.7.1) and (1.7.2) this immediately implies the familiar lower bound
√
k log(1/δ)/ϵ2

on the sample complexity of goodness-of-fit testing. The idea to bound the total variation
distance between mixtures of products using the χ2-divergence, as above, is attributed to
Ingster (see for example [110, 113]).

The construction can also be used to derive optimal lower bounds for our problem LFHT.
For this we need to utilize the chain rule of the χ2-divergence. By conditioning on the outcome
of the X-sample, we have

χ2(Ep⊗nη ⊗ p⊗n0 ⊗ p⊗mη ∥Ep⊗nη ⊗ p
⊗(n+m)
0 ) = EXχ

2((Z1, . . . , Zm)∥p⊗m0 |X),

which uses the fact that X = (X1, . . . , Xn) has the same marginal distribution under both
hypotheses. If we expand the square in the conditional χ2-divergence we obtain an expression
similar to (1.7.3), but now η, η′ are drawn independently from the posterior given X, and
are no longer unconditionally independent. The remainder of the computation is similar to
the one above, the final bound we eventually obtain is exp(c(nm + n2)ϵ4/k) − 1 for some
constant c, which leads to the sample complexity lower bound mn ≳ k log(1/δ)/ϵ4.

1.7.2 Valiant’s Construction

The construction in Section 1.7.1 along with the reductions in Section 1.4.2 are sufficient to
give optimal sample complexity lower bounds for LFHT, except for the class of all discrete
distributions PD. In the regime 1/ϵ4 ≤ k this class requires a new construction. This is the
same threshold where the sample complexity of two-sample testing, given by

√
k
ϵ4

+ k2/3

ϵ4/3
in

the constant error regime, undergoes a phase transition. In fact, the same construction that
shows the matching lower bounds for two-sample testing can be adapted to the LFHT setting,
which we detail below.

Instead of the i.i.d. sampling model we use the Poissonized model and rely on the formalism
of pseudo-distributions as described in [62]. Specifically, suppose we can construct a random
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vector (p, q) ∈ [0, 1]2 such that 1) Ep = Eq = Θ(1/k) and E|p− q| = Θ(ϵ/k); and 2) one of
the following χ2 upper bounds hold:

χ2
(

E
[
Poi(np)⊗ Poi(nq)⊗ Poi(mp)

]∥∥∥E
[
Poi(np)⊗ Poi(nq)⊗ Poi(mq)

])
≤ B(n,m, ϵ, k)

or

χ2
(

E
[
Poi(nq)⊗ Poi(np)⊗ Poi(mp)

]∥∥∥E
[
Poi(np)⊗ Poi(nq)⊗ Poi(mp)

])
≤ B(n,m, ϵ, k);

then (n,m) ∈ RLF(ϵ, δ,PD) requires kB(n,m, ϵ, k) ≳ log(1/δ); this is essentially via (1.7.2).
Remark 11. The classical approach for proving lower bounds in the ‘sparse’ regime (i.e.
when the number of observations n is less than the support size k) is due to Paul Valiant.
His approach was developed for testing symmetric properties and is conceptually considerably
more involved than the direct calculation we outline below. Valiant’s method didn’t use pseudo-
distributions and instead relied on the notion of fingerprints, which is equivalent to randomly
permuting the support, and Roos’ inequality [177] to compare fingerprints with a product of
Poisson distributions. He calls the main inequality, which bounds the total variation of the
construction via difference in moments, the “wishful thinking theorem” [200, Theorem 6].
This has been used as a black box for proving lower bounds with great success, for example
for two-sample testing [39]. However, newer work shows how one can prove the same lower
bounds via the same constructions using a more direct approach by directly bounding the
mutual information [64] and most recently the KL-divergence [62]. The latter work in fact
passed from the KL-divergence to the more amenable χ2-divergence without realizing [62,
Lemma 5.15]. This prompts us to simply bound the χ2-divergence directly and thus reduce the
entire lower bound program to an elementary computation.

The m ≤ n ≤ k Case

Let p, q be two random variables defined as

(p, q) =


( 1
n
, 1
n
) with probability n

k
,

( ϵ
k
, 2ϵ
k
) with probability 1

2
(1− n

k
),

( ϵ
k
, 0) with probability 1

2
(1− n

k
).

Note that E[p] = E[q] = Θ(1/k) and E|p− q| = Θ(ϵ/k), so they form valid ϵ-TV separated
pseudo-distributions. Define the random variables U, V ∈ R3 with distribution given by

U |(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

V |(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mq).

It is not hard to verify that for any (a, b, c) ∈ N3 the following two estimates hold

P(V = (a, b, c)) = Ω

(
1

a!b!c!

){
1 if (a, b, c) = (0, 0, 0),
n
k

(
m
n

)c otherwise, and

∣∣∣P(U = (a, b, c))− P(V = (a, b, c))
∣∣∣ = Θ(1)

a!b!c!

( ϵ
k

)a+b+c
na+bmc


nmϵ2

k2
if b = c = 0,

2bmϵ
k

if b ≥ 1, c = 0,
nϵ
k

if b = 0, c = 1,

2b+c otherwise.
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With these we are ready to bound the χ2-divergence between the distributions of U and V .
Simply plugging in the estimates and checking the special cases that arise, one can show that

χ2(U∥V ) =
∑

(a,b,c)∈N3

(P(U = (a, b, c))− P(V = (a, b, c)))2

P(V = (a, b, c))
≲
ϵ4mn2

k3
.

As explained in the introduction of this section, via [62] this implies the minimax sample
complexity lower bound mn2 ≳ log(1/δ)k2/ϵ4.

The n ≤ m ≤ k Case

The approach in this case is very similar to the m ≤ n ≤ k case with one important distinction.
Let p, q be two random variables defined as

(p, q) =


( 1
m
, 1
m
) with probability m

k
,

( ϵ
k
, 2ϵ
k
) with probability 1

2
(1− m

k
),

( ϵ
k
, 0) with probability 1

2
(1− m

k
).

Let U, V ∈ R3 be random, whose distribution is given by

U |(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

V |(p, q) ∼ Poi(nq)⊗ Poi(np)⊗ Poi(mp).

Estimates for P(V = (a, b, c)) and P(V = (a, b, c))− P(V = (a, b, c)) that are analogous to
the n ≤ m ≤ k case above yield the final bound χ2(U∥V ) ≲ ϵ4mn2

k3
, which in turn implies the

desired bound n2m ≳ log(1/δ)k2/ϵ4.
Notice the difference in the definition of (U, V )|(p, q) between the cases m ≤ n ≤ k and

n ≤ m ≤ k. In the former case the third marginal of U and V are different, while in the
latter case the third marginal of U and V are the same. This is because m is larger than n
and if we let U and V deviate on the third marginal, which has “sample size” m, we would
reveal too much about U and V and make distinguishing the two distributions too easy. If
one were to work trough the computation it would result in the bound χ2(U∥V ) ≲ ϵ4nm2/k3,
which is sub-optimal. The reverse argument applies to the case m ≤ n ≤ k: we want to put
the difference of U, V on the third marginal as that provides less information compared to
the first two.
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Chapter 2

Likelihood-Free Hypothesis Testing

This chapter is a reproduction of [77], which is joint work with Yury Polyanskiy.

2.1 Introduction

A setting that we call likelihood-free inference (LFI), also known as simulation based inference
(SBI), has independently emerged in many areas of science over the past decades. Given an
expensive to collect “experimental” dataset and the ability to simulate from a high fidelity, often
mechanistic, stochastic model, whose output distribution and likelihood is intractable and
inapproximable, how does one perform model selection, parameter estimation or construct
confidence sets? The list of disciplines where such highly complex black-box simulators
are used is long, and include particle physics, astrophysics, climate science, epidemiology,
neuroscience and ecology to just name a few. For some of the above fields, such as climate
modeling, the bottleneck resource is in fact the simulated data as opposed to the experimental
data. In either case, understanding the trade-off between the number of simulations and
experiments necessary to do valid inference is crucial. Our aim in this paper is to introduce
a theoretical framework under which LFI can be studied using the tools of non-parametric
statistics and information theory.

To illustrate we draw an example from high energy physics, where LFI methods are used
and developed extensively. The discovery of the Higgs boson in 2012 [40, 5] is regarded as the
crowning achievement of the Large Hadron collider (LHC) - the most expensive instrument
ever built. Using a composition of complex simulators [6, 73, 48, 183, 8] modeling the
standard model and the detection process, physicists are able to simulate the results of
LHC experiments. Given actual data Z1, . . . , Zm from the collider, to verify existence of
the Higgs boson one tests whether the null hypothesis (physics without the Higgs boson, or
Zi

iid∼ P0) or the alternative hypothesis (physics with the Higgs boson, or Zi
iid∼ P1) describes

the experimental data more accurately. The standard Neyman-Pearson likelihood ratio test
is not implementable since P0 and P1 are only available via simulators.

How was this statistical test actually performed? First, a probabilistic classifier C was
trained on simulated data to distinguish the two hypotheses (a boosted decision tree to be more
specific). Then, the proportion of real data points falling in the set S = {x ∈ Rd : C(x) ≤ t}
was computed, where t is chosen to maximize an asymptotic approximation of the power.
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Finally, p-values are reported based on the asymptotic distribution under a Poisson sampling
model [49, 142]. Summarizing, the “Higgs boson” test was performing the simple comparison

1

m

m∑
i=1

1{Zi ∈ S} ≶ γ, (Scheffé)

where Z1, . . . , Zm are the real data and γ is some threshold. Such count-based tests, named
after Scheffé in folklore [60, Section 6], are quite intuitive.

Notice that Scheffé’s test converts each observation Zi into a binary 0/1 value. This extreme
quantization certainly helps robustness, but should raise the suspicion of potential loss of
power. Indeed, when the distributions under both hypotheses are completely known, the
optimal Neyman-Pearson test thresholds the sum of real-valued logarithms of the likelihood-
ratio. Thus, it is natural to expect that a good test should aggregate non-binary values. This
is what motivated this work originally, although follow-up work [74] has shown that Scheffé’s
test with a properly trained classifier can also be optimal.

Let us describe the test that we study for most of this paper. Given estimates p̂0, p̂1 of
the density of the null and alternative distributions based on simulated samples, our test
proceeds via the comparison

2

m

m∑
i=1

(p̂0(Zi)− p̂1(Zi)) ≶ γ (2.1.1)

where Z1, . . . , Zm are the real data. Tests of this kind originate from the famous goodness-of-
fit work of Ingster [110], which corresponds to taking p̂0 = p0, as the null-density is known
exactly.1 The surprising observation of Ingster was that such a test is able to reject the
null hypothesis that Zi

iid∼ p0 even when the true distribution of Z is much closer to p0 than
described by the optimal density-estimation rate; in other words goodness-of-fit testing is
significantly easier than estimation. In fact we will use γ = ∥p̂0∥22−∥p̂1∥22 in which case (2.1.1)
boils down to the comparison of two squared L2-distances.

Our overall goal is to understand the trade-off between the number n of simulated
observations and the size of the actual data set m. The characterization of this tradeoff is
reminiscent of the rate-regions in multi-user information theory, but there is an important
difference that we wanted to emphasize for the reader. In information theory, the problem is
most often stated in the form “given a distribution PX,Y,Z , or a channel PY,Z|X , find the rate
region”, with the distribution being completely specified ahead of time. In minimax statistics,
however, distributions are a priori only known to belong to a certain class. In estimation
problems the fundamental limits are thus defined by minimizing the estimation error over
this class, and the theoretical goal is to characterize the worst-case rate at which this error
converges to zero as the sample size grows to infinity. The definition of the fundamental
limit in testing problems, however, is more subtle. If the total variation separation ϵ between
the null and alternative distribution is fixed, and the number of samples is taken to infinity,
then the rate of convergence trivializes and becomes exponentially decreasing in n. By now a

1In the case of discrete distributions on a finite (but large) alphabet, the idea was rediscovered by the
computer science community startin with [81]. Moreover, the difference of L2-norms statistic was first studied
in [123]. See Section 2.1.2 for more on the latter.
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standard definition of fundamental limit, as suggested by Ingster following ideas of Pittman
efficiency, is to vary ϵ with n and to find the fastest possible decrease of ϵ so as to still have an
acceptable probability of error. This is the approach taken in the literature on goodness-of-fit
and two-sample testing, and also the one we adopt here. This perspective is also widely
used in TCS where the optimal value of n, as a function of ϵ, is referred to as the “sample
complexity" of the problem.

Specifically, we assume that it is known a priori that the two distributions P0,P1 belong to
a known class P and are ϵ-separated under total variation. Given a large number n of samples
simulated from P0 and P1 and m samples Z1, . . . , Zm from the experiment, our goal is to test
which of the Pi generated the data. If n is sufficiently large to estimate Pi in total variation to
precision ϵ/10, then one can perform the hypothesis test with m ≍ 1/ϵ2 experimental samples,
which is information-theoretically optimal even under oracle knowledge of Pi’s. However,
looking at the test (Scheffé) one may wonder if the full estimation of the distributions Pi is
needed, or whether perhaps a suitable decision boundary could be found with a lot fewer
simulated samples n. Unfortunately, our first main result disproves this intuition: any test
using the minimal m ≍ 1/ϵ2 dataset size will require n so large as to be enough to estimate the
distributions of P0 and P1 to within accuracy ≍ ϵ, which is the distance separating the two
hypotheses. In particular, any method minimizing m performs no different in the worst case,
than pairing off-the-shelf density estimators p̂0, p̂1 and applying (Scheffé) with S = {p̂1 ≥ p̂0}.

This result appears rather pessimistic and seems to invalidate the whole attraction of LFI,
which after all hopes to circumvent the exorbitant number of simulation samples required
for fully learning high-dimensional distributions. Fortunately, our second result offers a
resolution: if more data samples m ≫ 1/ϵ2 are collected, then testing is possible with n
much smaller than required for density estimation. More precisely, when neither p0 nor
p1 are known except through n i.i.d. samples from each, the test (2.1.1) is able to detect
which of the two distributions generated the Z-sample, even when the number of samples
n is insufficient for any estimate p̂i to be within a distance ≍ ϵ = TV(p0, p1) from the true
values. In other words, the test is able to reliably detect the true hypotheses even though the
estimates p̂i themselves have accuracy that is orders of magnitude larger than the separation
ϵ between the hypotheses.

In summary, this paper shows that likelihood-free hypothesis testing (LFHT) is possible
without learning the densities when m ≫ 1/ϵ2, but not otherwise. It turns out that
(appropriate analogues of) the simple test (2.1.1) has minimax optimal sample complexity up
to constants in both n and m in all “regular” settings, see also the discussion at the end of
Section 2.2.2.

2.1.1 Informal statement of the main result

Let us formulate the problem using the notation used throughout the rest of the paper.
Suppose that we observe true data Z ∼ P⊗m

Z and that we have two candidate parameter
settings for our simulator, from which we generate two artificial datasets X ∼ P⊗n

X and
Y ∼ P⊗n

Y . If we are convinced that one of the settings accurately reflects reality, we are faced
with the problem of testing the hypothesis

H0 : PX = PZ versus H1 : PY = PZ. (2.1.2)

69



Remark 12. We emphasize that PX and PY are known only through the n simulated samples.
Thus, (2.1.2) can be interpreted as binary hypothesis testing with approximately specified
hypotheses. Alternatively, using the language of machine learning, we may think of this
problem as having n labeled samples from both classes, and m unlabeled samples. The twist
is that the unlabeled samples are guaranteed to have the same common label, that is, they
all come from a single class. One can think of many examples of this setting occurring in
genetic, medical and other studies.

To put (2.1.2) in a minimax framework, suppose that PX,PY ∈ P for a known class P,
and that TV(PX,PY) ≥ ϵ. Clearly (2.1.2) becomes “easier” if we have a lot of data (large
sample sizes n and m) or if the hypotheses are well-separated (large ϵ). We are interested in
characterizing the pairs of values (n,m) as functions of ϵ and P , for which the hypothesis test
(2.1.2) can be performed with constant type-I and type-II error. Letting nGoF(ϵ,P) denote
the minimax sample complexity of goodness-of-fit testing (Definition 2), we show for several
different classes of P , that (2.1.2) is possible with total error, say, 5% if and only if

m ≳ 1/ϵ2 and n ≳ nGoF and mn ≳ n2
GoF.

We also make the observation that n2
GoF ϵ

2 ≍ nEst for these classes, where nEst(ϵ,P) denotes
the minimax complexity of density estimation to ϵ-accuracy (Definition 4) with respect to
total variation. This provides additional meaning to the mysterious formula of Ingster [110]
for the sample complexity of goodness-of-fit testing over the class of β-smooth densities
over [0, 1]d, see Table 2.1 below.2 More importantly, it allows us to interpret (2.1.2) as an
“interpolation" between different fundamental statistical procedures, namely

A ↔ Binary hypothesis testing,

B ↔ Estimation followed by robust binary hypothesis testing,

C ↔ Two-sample testing,

D ↔ Goodness-of-fit testing,

corresponding to the extreme points A,B,C,D on Figure 2.1.

2.1.2 Related work

LHFT as defined in (2.1.2) initially appeared in Gutman’s paper [90], building on Ziv’s work
[212], where the problem is studied for distributions on a fixed, finite alphabet. Ziv called
the problem classification with empirically observed statistics, to emphasize the fact that
hypotheses are specified only in terms of samples and the underlying true distributions are
unknown. In [209] it is shown that the error exponent of Gutman’s test is second order
optimal. Recent work [98, 93, 92, 30] extends this problem to distributed and sequential

2A possible reason for this observation having been missed previously is that fundamental limits in statistics
are usually presented in the form of rates of loss decrease with n, for example rEst(n) =.. n−1

Est(n) = 1/nβ/(2β+d)

and rGoF(n) =.. n−1
GoF(n) = 1/nβ/(2β+d/2) for β-smooth densities. Unlike nEst ≍ n2

GoFϵ
2 there seems to be no

simple relation between rEst and rGoF.
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testing. However, the setting of these papers is fundamentally different from ours, a point
which we expand on below.

Given two arbitrary, unknown PX,PY over a finite alphabet of fixed size, Gutman’s test
(see [209, Equation (4)]) rejects the null hypothesis H0 : PZ = PX in favor of the alternative
H1 : PZ = PY if the statistic GJS(P̂X, P̂Z, α) is large, where P̂ denotes empirical measures,
GJS denotes the generalized Jensen-Shannon divergence defined in [209, Equation (3)] and
α = n/m. In other words, it simply performs a two-sample test using the samples from PX

and PZ of size n and m respectively, and completely discards the sample from PY. In light of
our sample complexity results this is strictly sub-optimal due to minimax lower bounds on
two-sample testing, see the difference of light gray and striped regions in Figure 2.1.

More generally, the method of types, which is a crucial tool for the works cited above,
cannot be used to derive our results, because in the regime where the alphabet size k scales
with the sample size n, the usual

(
n
k

)
= eo(n) approximation no longer holds, i.e. these factors

affect estimation rates and do not lead to tight minimax results. As a consequence, one
cannot deduce results about the minimax sample complexity of LFHT from works on the
classical regime because the latter do not quantify the speed of convergence of the error
terms as a function of the alphabet size. Specifically, let us examine [209, Theorem 1], which
is a strengthening of the results of [90]. Paraphrasing, it states that for any fixed ratio
α = n/m and pair of distributions (PX,PY), Gutman’s test has type-II error bounded by 1/3
when given samples from PX and PY as input, and type-I error bounded by exp(−λn) given
arbitrary input, where

λ = GJS(PX,PY, α) +

√
V (PX,PY, α)

n
Φ−1(1/3) +O

(
log(n)

n

)
(1)

as n→∞. Here V denotes the dispersion function defined in [209, Equation (9)] and Φ is
the standard normal cdf. The crucial point we make here is that in (1) the dependence of the
O(log(n)/n) term on PX,PY, and in particular their support size k and the ratio α = n/m is
unspecified. Because of this, (1) and similar results cannot be used to derive minimax sample
complexities as min{n,m, k} → ∞ jointly at possibly different rates.

This distinction between the fixed alphabet size setting studied in [90, 212, 209] and similar
works, and our large alphabet setting was recognized by [102, 103, 123, 124] whose results
are much closer to those of this paper. In [103] Huang and Meyn introduce the concept of
“generalized error exponent” to deal with support sizes that grow superlinearly with sample
size (referred to as the “sparse sample regime” by them) in the setting of uniformity testing.3
In [102] they extend this idea to LFHT and say, quote,

“In the classification problem, the classical error exponent analysis has been
applied to the case of fixed alphabet in [212] and [90].... However, in the sparse
sample problem, the classical error exponent concept is again not applicable,
and thus a different scaling is needed."

Moving on to [123, 124], their authors study (2.1.2) with n = m over the class of discrete
distributions p with mini pi ≍ maxi pi ≍ 1/nα, which they call α-large sources. Disregarding
the dependence on the TV-separation ϵ, effectively setting ϵ to a constant, they find that

3Uniformity testing is the problem of goodness-of-fit testing where the null is given by a uniform distribution.
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achieving non-trivial minimax error is possible if and only if α ≤ 2, using in fact the
same difference of squared L2-distances test (2.1.1) that we study in this paper. Follow-up
work [102] extends to the case m ̸= n and the class of distributions on alphabet [k] with
maxi pi ≲ 1/k, we also cover this class under the name PDb. In the regime of constant
separation ϵ = Θ(1) and n,m→∞ they show that LFHT with vanishing error is possible if
and only if k = o(min(n2,mn)), thus discovering for the first time the trade-off between m
and n.4 Contrasting with our work, we are the first to characterize the full m,n, ϵ trade-off
in the regime of constant probability of error, and we also consider three other classes of
distributions, in addition to PDb.

Another related problem is that of two-sample testing with unequal sample sizes, studied
in [25, 64] for the class of discrete distributions PD. In Section 2.3.1 we present reductions
that show that our problem’s sample complexity equals, up to constant factors, to that of
two-sample testing in the case m ≥ n. We emphasize that the distinction between m ≥ n
and m ≤ n is necessary for this equivalence: in the latter case the sample complexities of the
two problems are not the same. Moreover, our reduction doesn’t help us solve classes other
than PD, as two-sample testing with unequal sample size exhibits a trade-off between n and
m only in classes for which nTS ̸= nGoF, see also the discussion at the end of Section 2.2.2.

The test (Scheffé) has been considered previously [58, 72, 144, 91, 143, 126, 94] and is
also known as a “classification accuracy” test (CAT). Follow-up work [74] to the present
paper shows that CATs are able to attain a (near-)minimax optimality in all settings studied
here, and also achieve optimal dependence on the probability of error (in this paper we only
consider a fixed error probability).

2.1.3 Contributions

Though the likelihood-free hypothesis testing problem (2.1.2) has previously appeared under
various disguises and was studied in different regimes for the class of bounded discrete
distributions, it omitted the key question of understanding the dependence of the sample
complexity on the separation ϵ. Our work fully characterizes the dependence on the separation
ϵ (Theorems 2.3.2 and 2.3.3). We discover the existence of a rather non-trivial trade-off
between the m and n showing that in the likelihood-free setting statistical performance
(m) can be traded for computational resources (n). Our results are shown for not just one
but multiple distribution classes. In addition, we also demonstrate that LFHT naturally
interpolates between its special cases corresponding to goodness-of-fit testing, two-sample
testing and density-estimation. As a by-product we observe the relation n2

GoF ϵ
2 ≍ nEst

that holds over several classes of distributions and measures of separation, hinting at some
universality property. On the technical side we provide a unified upper bound analysis
for all regular classes we consider, and prove matching lower bounds using techniques of
Tsybakov, Ingster and Valiant. Our upper bound analysis is inspired by Ingster [112, 110]
whose L2-distance testing approach, originally designed for goodness-of-fit in smooth-density

4The paper [102] contains implicitly other interesting results. For example, it appears that the constructive
(upper bound) part of their proof if done carefully can also handle the case of variable ϵ → 0 in the
regime m,n ≲ k. Specifically, we believe they also show that for the minimax error δ ∈ (0, 1) LFHT
is possible if k log(1/δ)/ϵ4 ≲ min(n2, nm). The lower bound appears to show LFHT is possible only if
k log(1/δ) ≲ min(n2, nm). In addition they also apply the flattening technique, later re-discovered in [64].
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classes, has been rediscovered in the discrete-alphabet world [123, 124, 81]. Compared to
Ingster’s work, the new ingredient needed in the discrete case is a “flattening" reduction [102,
64, 80], which we also utilize. Several minor extensions are also shown along the way, namely,
robustness with respect to L2-misspecification (Theorem 2.3.4) and characterization of nGoF

for the class of β-smooth densities with β ≤ 1 under Hellinger separation (Theorem 2.3.6).

2.1.4 Structure

Section 2.2 defines the statistical problems and the classes of distributions that are studied
throughout the paper, and discusses multiple tests for likelihood-free hypothesis testing.
Section 2.3 contains our main results and the discussion linking to goodness-of-fit and two-
sample testing, estimation and robustness. In Section 2.4 we provide sketch proofs for our
results. Finally, in Section 2.5 we discuss possible future directions of research. The detailed
proofs of Theorems 2.3.2 to 2.3.4 and 2.3.6 and all auxiliary results are included in the
Appendix.

2.1.5 Notation

For k ∈ N we write [k] =.. {1, 2, . . . , k}. For x, y ∈ R we write x ∧ y =.. min{x, y}, x ∨ y =..

max{x, y}. We use the Bachmann–Landau notation Ω,Θ,O, o as usual and write f ≲ g for
f = O(g) and f ≍ g for f = Θ(g). For c ∈ R and A ⊆ R2 we write cA =.. {(ca1, ca2) ∈
R2 : (a1, a2) ∈ A}. For two sets A,B ⊆ R2 we write A ≍ B if there exists c ∈ [1,∞) with
1
c
A ⊆ B ⊆ cA. For two probability measures µ, ν dominated by η with densities p, q we

define the following divergences: TV(µ, ν) =.. 1
2

∫
|p− q|dη, H(µ, ν) =.. (

∫
(
√
p−√q)2dη)1/2,

KL(µ∥ν) =..
∫
p log(p/q)dη, χ2(µ∥ν) =..

∫
((p − q)2/q)dη. Abusing notation, we sometimes

write (p, q) as arguments instead of (µ, ν). We write ∥ · ∥p for the Lp and ℓp norms, where
the base measure shall be clear from the context.

2.2 Sample complexity, non-parametric classes and tests

In the first two parts of this section we go over the technical background and definitions
that are required to understand the rest of the paper, after which we give an exposition of
multiple alternative approaches for our problem in Section 2.2.3.

2.2.1 Five fundamental problems in Statistics

Formally, we define a hypothesis as a set of probability measures. Given two hypotheses H0

and H1 on some space X , we say that a function ψ : X → {0, 1} successfully tests the two
hypotheses against each other if

max
i=0,1

sup
P∈Hi

PS∼P (ψ(S) ̸= i) ≤ 1/3. (2.2.1)
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Remark 13. For our purposes, the constant 1/3 above is unimportant and could be replaced
by any number less than 1/2. Throughout the paper we are interested in the asymptotic order
of the sample complexity, and Ω(log(1/δ))-way sample splitting followed by a majority vote
decreases the overall error probability to O(δ) of any successful tester, at the cost of inflating
the sample complexity by a multiplicative O(log(1/δ)) factor. Unfortunately, the resulting
dependence on δ is sub-optimal except for binary hypothesis testing, see for example [16,
Theorem 4.7]. Recent results for uniformity [63] and two-sample testing [62], and our follow-up
work on LFHT [74] resolves the optimal dependence to be

√
log(1/δ) or even 3

√
log(1/δ) in

some regimes.

Throughout this section let P be a class of probability distributions on X . Suppose
we observe independent samples X ∼ P⊗n

X , Y ∼ P⊗n
Y and Z ∼ P⊗m

Z whose distributions
PX,PY,PZ ∈ P are unknown to us. Finally, P0,P1 ∈ P refer to distributions that are known
to us. We now define five fundamental problems in statistics that we refer to throughout this
paper.

Definition 1. Binary hypothesis testing is the problem of testing

H0 : PX = P0 against H1 : PX = P1 (HT)

based on the sample X. We use nHT(ϵ,P) to denote the minimax sample complexity of binary
hypothesis testing, which is the smallest number such that for all n ≥ nHT(ϵ,P) and all
P0,P1 ∈ P with TV(P0,P1) ≥ ϵ there exists a function ψ : X n → {0, 1}, which given X as
input successfully tests H0 against H1 in the sense of (2.2.1).

It is well known that the complexity of binary hypothesis testing is controlled by the
Hellinger divergence.

Lemma 2.2.1. For all ϵ and P with |P| ≥ 2, the relation

nHT(ϵ,P) = Θ
(

sup
P0,P1∈P:TV(P0,P1)≥ϵ

H−2(P0,P1)
)

holds, where the implied constant is universal.

Proof. We include the proof in Appendix A.4.1 for completeness.

For all P considered in this paper nHT = Θ(1/ϵ2) holds. Therefore, going forward we
usually refrain from the general notation nHT and simply write 1/ϵ2.

Definition 2. Goodness-of-fit testing is the problem of testing

H0 : PX = P0 against H1 : TV(PX,P0) ≥ ϵ and PX ∈ P (GoF)

based on the sample X. We write nGoF(ϵ,P) for the minimax sample complexity of goodness-
of-fit testing, which is the smallest value such that for all n ≥ nGoF(ϵ,P) and P0 ∈ P there
exists a function ψ : X n → {0, 1}, which given X as input successfully tests H0 against H1 in
the sense of (2.2.1).
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Definition 3. Two-sample testing is the problem of testing

H0 : PX = PZ and PX ∈ P against H1 : TV(PX,PZ) ≥ ϵ and PX,PZ ∈ P (TS)

based on the samples X and Z. We write RTS(ϵ,P) for the maximal subset of R2 such that
for any (n,m) ∈ N2 for which there exists (x, y) ∈ RTS(ϵ,P) with (n,m) ≥ (x, y) coordinate-
wise, there also exists a function ψ : X n × Xm → {0, 1}, which given X and Z as input
successfully tests between H0 and H1 in the sense of (2.2.1). We will use the abbreviation
nTS(ϵ,P) = min{ℓ ∈ N : (ℓ, ℓ) ∈ RTS(ϵ,P)} and refer to it as the minimax sample complexity
of two-sample testing.

Definition 4. The minimax sample complexity of estimation is the smallest value nEst(ϵ,P)
such that for all n ≥ nEst(ϵ,P) there exists an estimator P̂X, which given X as input satisfies

ETV(P̂X,PX) ≤ ϵ. (Est)

In order to simplify the presentation of our final definition, let us temporarily write
Pϵ = {(Q0,Q1) ∈ P2 : TV(Q0,Q1) ≥ ϵ}. That is, Pϵ is the set of pairs of distributions in the
class P which are ϵ separated in total variation.

Definition 5. Likelihood-free hypothesis testing is the problem of testing

H0 : PZ = PX and (PX,PY) ∈ Pϵ against H1 : PZ = PY and (PX,PY) ∈ Pϵ (LF)

based on the samples X, Y and Z. Write RLF(ϵ,P) for the maximal subset of R2 such that for
any (n,m) ∈ N2 for which there exists (x, y) ∈ RLF(ϵ,P) with (n,m) ≥ (x, y) coordinate-wise,
there also exists a function ψ : X n × X n × Xm → {0, 1}, which given X, Y and Z as input
successfully tests H0 against H1 in the sense of (2.2.1).

Requiring RTS(ϵ,P) to be maximal is well defined, because for any (n0,m0) ∈ RTS(ϵ,P)
and (n,m) ∈ N2 with (n0,m0) ≤ (n,m) coordinate-wise, it must also hold that (n,m) ∈ RLF,
since ψ can simply disregard the extra samples. Clearly the same applies also to RLF(ϵ,P).

Remark 14. All five definitions above can be modified to measure separation with respect to an
arbitrary function d instead of TV. We will write nGoF(ϵ, d,P) et cetera for the corresponding
values.

2.2.2 Four classes of distributions

All of our definitions in the previous section assumed that we have some class of distributions
P at hand. Below we introduce the classes that we study throughout the rest of the paper.

(i) Smooth density. Let C(β, d, C) denote the set of functions f : [0, 1]d → R that are
β =.. ⌈β − 1⌉-times differentiable and satisfy

∥f∥Cβ =.. max

{
max

0≤|α|≤β
∥f (α)∥∞, sup

x ̸=y∈[0,1]d,|α|=β

|f (α)(x)− f (α)(y)|
∥x− y∥β−β2

}
≤ C,

where we write |α| =
∑d

i=1 αi for the multiindex α ∈ Nd as usual. We further define
PH(β, d, C) to be the class of distributions with Lebesgue-densities in C(β, d, C).
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(ii) Gaussian sequence model on the Sobolev ellipsoid. Given C > 0 and a smooth-
ness parameter s > 0, we define the Sobolev ellipsoid

E(s, C) =..
{
θ ∈ RN :

∞∑
j=1

j2sθ2j ≤ C
}
.

Our second distribution class is given by

PG(s, C) =.. {µθ : θ ∈ E(s, C)} ,

where µθ = ⊗∞
i=1N (θi, 1). It is well known that this class models an s-smooth signal

under Gaussian white noise, see for example [198, Section 1.7.1] for an exposition of
this connection.

(iii)-(iv) Distributions on a finite alphabet. For k ≥ 2, let

PD(k) =.. {all distributions on {1, 2, . . . , k}}

denote the class of all discrete distributions, and set

PDb(k, C) =.. {p ∈ PD(k) : ∥p∥∞ ≤ C/k}

for all C > 1. In other words, PDb are those distributions with support in {1, 2, . . . , k}
that are bounded by a constant multiple of the uniform distribution.

Note that depending on the choice of C some of the above distribution classes may be
empty. To avoid such issues, throughout the rest of paper we implicitly operate under the
following assumption.

Assumption 1. We always assume that C > 1 when referring to PH(β, d, C) and PDb(k, C).

As we shall see in Section 2.3.2 when discussing our results, the behaviour of PD is
qualitatively different from the other three classes introduced above. Consequently, we will
sometimes refer to PDb as the “regular discrete" class, and we will see that its minimax sample
complexities are similar to PH and PG but different from PD. More generally we will call the
classes PH,PG,PDb “regular", characterized by the fact that nGoF ≍ nTS, or equivalently, by
the fact that RTS ≍ {(n,m) : min{n,m} ≥ nTS}.

2.2.3 Tests for LFHT

We start this section by reintroducing the difference of L2-distances statistic that our results
are based on, and which we’ve already seen in (2.1.1). Then, in Section 2.2.3 we mention
some natural alternative approaches to the problem, which we however do not study further.
Therefore, the reader that wishes to proceed to our results without delay may safely skip
over Section 2.2.3.
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Ingster’s L2-distance test

For simplicity we focus on the case of discrete distributions. This case is more general than
may first appear: for example in the case of smooth densities on [0, 1]d one can simply take a
regular grid (whose resolution is determined by the smoothness of the densities) and count
the number of datapoints falling in each cell. Let p̂X, p̂Y, p̂Z denote the empirical probability
mass functions of the finitely supported distributions P̂X, P̂Y, P̂Z. The test proceeds via the
comparison

∥p̂X − p̂Z∥2 ≶ ∥p̂Y − p̂Z∥2. (2.2.2)

Squaring both sides and rearranging, we arrive at the form

1

m

m∑
i=1

(p̂Y(Zi)− p̂X(Zi)) ≶ γ,

where γ = (∥p̂Y∥2 − ∥p̂X∥2)/2. As mentioned in the introduction, variants of this L2-distance
based test have been invented and re-invented multiple times for goodness-of-fit [110, 81] and
two-sample testing [21, 10]. The exact statistic (2.2.2) with application to PDb has appeared
in [123, 124], and Huang and Meyn [102] proposed an ingenious improvement restricting
attention exclusively to bins whose counts are one of (2, 0), (1, 1), (0, 2) for the samples (X,Z)
or (Y, Z). We attribute (2.2.2) to Ingster because his work on goodness-of-fit testing for
smooth densities is the first occurence of the idea of comparing empirical L2 norms, but we
note that [123] and [81] arrive at this influential idea apparently independently.

We emphasize the following subtlety. Let us rewrite (2.2.2) as

∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22 ≶ 0 . (2.2.3)

As we shall see from our proofs, this difference results in an optimal test for the full range of
possible values of n and m for PDb. However, this does not mean that each term by itself
is a meaningful estimate of the corresponding distance: rejecting the null by thresholding
just ∥p̂X− p̂Z∥22 would not work. Indeed, the variance of ∥pX− p̂Z∥22 is so large that one needs
m ≳ nGoF ≫ 1/ϵ2 observations to obtain a reliable estimate of ∥pX − pZ∥22. The “magic" of
the L2-difference test is that the two terms in (2.2.3) separately have high variance, and thus
are not good estimators of their means, but their difference cancels the high-variance terms.

Remark 15. While testing (LF), practitioners are usually interested in obtaining a p-value,
rather than purely a decision whether to reject the null hypothesis. For this we propose the
following scheme. Let σ1, . . . , σP be i.i.d. uniformly random permutations on n+m elements.
Let T̂ = ∥p̂X− p̂Z∥22−∥p̂Y− p̂Z∥22 be our statistic, and write T̂i for the statistic T̂ evaluated on
the permuted dataset where {X1, . . . , Xn, Z1, . . . , Zm} are shuffled according to σi. Under the
null the random variables T̂ , T̂1, . . . , T̂P are exchangeable, thus reporting the empirical upper
quantile of T̂ in this sample yields an estimate of the p-value. Studying the variance of this
estimate or the power of the test that rejects when the estimated p-value is less than some
threshold, is beyond the scope of this work.
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Alternative tests for LFHT

In this section we discuss a variety of alternative tests that may be considered for (LF) instead
of (2.2.3). These are included only to provide additional context for our problem, and the
reader may safely skip it and proceed to our results in Section 2.3. The approaches we
consider are

(i) Scheffé’s test,

(ii) Likelihood-free Neyman-Pearson test and

(iii) Huber’s and Birgé’s robust tests.

The tests (i-ii) are based on the idea of using the simulated samples to learn a set or a
function that separates PX from PY. The test (iii) and (2.2.3) use the simulated samples to
obtain density estimates of PX,PY directly. All of them, however, are of the form

m∑
i=1

s(Zi) ≶ 0 (2.2.4)

with only the function s varying.
Variants of Scheffé’s test using machine-learning enabled classifiers are the subject of

current research in two-sample testing [144, 143, 91, 126, 94] and are used in practice for LFI
specifically in high energy physics, see also our discussion of the Higgs boson discovery in
Section 2.1. Thus, understanding the performance of Scheffé’s test in the context of (LF) is of
great practical importance. Suppose that using the simulated samples we train a probabilistic
classifier C : X → [0, 1] on the labeled data ∪ni=1{(Xi, 0), (Yi, 1)}. The specific form of the
classifier here is arbitrary and can be anything from logistic regression to a deep neural
network. Given thresholds t, γ ∈ [0, 1] chosen to satisfy our risk appetite for type-I vs type-II
errors, Scheffé’s test proceeds via the comparison

1

m

m∑
i=1

1{C(Zi) ≥ t} ≶ γ. (2.2.5)

We see that (2.2.5) is of the form (2.2.4) with s(z) = (1{C(z) ≥ t} − γ)/m. The follow-up
work [74] studies the performance of Scheffé’s test in great detail, finding that it is (near-
)minimax optimal in all cases considered in this paper. It is found that the optimal classifier
C must be trained not purely to minimize misclassification error, but rather must also keep
the variance of its output small.

If the distributions PX,PY are fully known, then the likelihood-ratio test corresponds to

m∑
i=1

sNP(Zi) ≶ γ sNP(z) = log

(
dPX

dPY
(z)

)
, (2.2.6)

where γ is again chosen to satisfy our type-I vs type-II error trade-off preferences. It is well
known that the above procedure is optimal due to the Neyman-Pearson lemma. Recall that
in our setting PX,PY are known only up to i.i.d. samples, and therefore it seems natural to
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try to estimate sNP from samples. It is not hard to see that sNP minimizes the population
cross-entropy/logistic loss, that is

sNP = argmin
s

Ez∼PX
[ℓ(s(z), 1)] + Ez∼PY

[ℓ(s(z), 0)] ,

where ℓ(s, y) = log(1 + es)− ys. In practice, the majority of today’s classifiers are obtained
by running some form of gradient descent on the problem

ŝ = argmin
s∈G

Ez∼P̂X
[ℓ(s(z), 1)] + Ez∼P̂Y

[ℓ(s(z), 0)] ,

where G is, say, a parametric class of neural networks and P̂X, P̂Y are empirical distributions.
Given such an estimate ŝ, we can replace the unknown sNP in (2.2.6) by ŝ to obtain the
likelihood-free Neyman-Pearson test. For recent work on this approach in LFI see for example
[53]. Studying properties of this test is outside the scope of this paper.

The final approach is based on the idea of robust testing, first proposed by Huber [104,
105]. Huber’s seminal result implies that if one has approximately correct distributions P̂X, P̂Y

satisfying

max
{
TV(P̂X,PX),TV(P̂Y,PY)

}
≤ ϵ/3 and TV(PX,PY) ≥ ϵ,

then for some c1 < c2 the test
m∑
i=1

sH(Zi) ≶ 0 where sH(z) = min

{
max

{
c1, log

(
dP̂X

dP̂Y

(z)

)}
, c2

}
has type-I and type-II error bounded by exp(−Ω(mϵ2)), and is in fact minimax optimal for all
sample sizes analogously to the likelihood-ratio test in the case of binary hypothesis testing.
From the above formula we can see that Scheffé’s test can be interpreted as an approximation
of the maximally robust Huber’s test. Let L̂(z) = (dP̂Y/dP̂X)(z) denote the likelihood-ratio
of the estimates. The values of c1, c2 are given as the solution to

ϵ/3 = Ez∼P̂X

[
1

{
L̂(z) ≤ c1

} c1 − L̂(z)
1 + c1

]
= Ez∼P̂Y

[
1

{
L̂(z) ≥ c2

} L̂(z)− c2
1 + c2

]
,

which can be easily approximated to high accuracy given samples from P̂X, P̂Y. This suggests
both a theoretical construction, since P̂X, P̂Y can be obtained with high probability from
simulation samples via the general estimator of Yatracos [206], and a practical rule: instead
of the possibly brittle likelihood-free Neyman-Pearson test (ii), one should try clamping the
estimated log-likelihood ratio from above and below.

Similar results hold due to Birgé [28, 27] in the case when distance is measured by Hellinger
divergence:

max
{
H(P̂X,PX),H(P̂Y,PY)

}
≤ ϵ/3 and H(PX,PY) ≥ ϵ.

For ease of notation, let p̂X, p̂Y denote the densities of P̂X, P̂Y with respect to some base measure
µ. Regarding

√
p̂X and

√
p̂Y as unit vectors of the Hilbert space L2(µ), let γ : [0, 1]→ L2(µ)
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be the constant speed geodesic on the unit sphere of L2(µ) with γ(0) =
√
p̂X and γ(1) =

√
p̂Y.

It is easily checked that each γt is positive, and Birgé showed that the test

m∑
i=1

log

(
γ21/3
γ22/3

(Zi)

)
≶ 0

has both type-I and type-II errors bounded by exp(−Ω(mϵ2)). For an exposition of this result
see also [79, Theorem 7.1.2]

2.3 Results

In this section we describe our results on the sample complexity of likelihood-free hypothesis
testing.

2.3.1 General reductions

In this first section, we give reductions that hold in great generality and show the relationship
of our problem with other classical testing and estimation problems that were introduced
in Section 2.2.1. The result below holds for a generic class P of distributions and a generic
measure of separation d, see also Remark 14.

Proposition 2.3.1. Let P be a generic family of distributions and d : P2 → R be any
function used to measure separation. There exists a universal constant c > 0 such that for
n,m ∈ N the following implications hold.

(n,m) ∈ RLF =⇒ m ≥ nHT, (2.3.1)
(n,m) ∈ RTS =⇒ n ∧m ≥ nGoF (2.3.2)
(n,m) ∈ RLF =⇒ cn ≥ nGoF, (2.3.3)
(n,m) ∈ RTS =⇒ (n,m) ∈ RLF, (2.3.4)

m ≥ n and (n,m) ∈ RLF =⇒ (cn, cm) ∈ RTS, (2.3.5)

where we omit the argument (ϵ, d,P) throughout for simplicity. In particular,

N2
n≤m ∩RLF ≍ N2

n≤m ∩RTS, (2.3.6)

where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof. In what follows, let ΨLF,ΨTS be minimax optimal tests for (LF) and (TS) respectively.
Throughout the proof we omit the arguments (ϵ, d,P) for notational simplicty.

Reducing hypothesis testing to (LF) Suppose (n,m) ∈ RLF. Let P0,P1 ∈ P be given
with d(P0,P1) ≥ ϵ and suppose Z is an i.i.d. sample with m observations. We wish to test the
hypothesis H0 : Zi ∼ P0 against H1 : Zi ∼ P1. To this end generate n i.i.d. observations X, Y
from P0,P1 respectively, and simply output ΨLF(X, Y, Z). This shows that if (n,m) ∈ RLF

then m ≥ nHT and concludes the proof of (2.3.1).
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Reducing goodness-of-fit testing to two-sample testing Suppose (n,m) ∈ RTS.
Then obviously (n ∧m,∞) ∈ RTS. However, two-sample testing with sample sizes n ∧m,∞
is equivalent to goodness-of-fit testing with a sample size of n ∧m. Therefore, n ∧m ≥ nGoF

must hold, concluding the proof of (2.3.2).
Reducing goodness-of-fit testing to (LF) Suppose (n,m) ∈ RLF with m ≤ n. Let

a distribution P0 ∈ P be given as well as an i.i.d. sample X of size cn with unknown
distribution PX, where c ∈ N is a large integer. We want to test H0 : PX = P0 against
H1 : PX ∈ P , d(PX,P0) ≥ ϵ. Generate c × 2 i.i.d. samples Y (i), Z(i) for i = 1, . . . , c of size
n,m respectively, all from P0. Split the sample X into c batches X(i), i = 1, . . . , c of size n
each and form the variables

Ai = ΨLF(X
(i), Y (i), Z(i))−ΨLF(X

(i), Y (i), X
(i+1)
1:m )

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where X(i)
1:m denotes the first m observations in the batch X(i).

Note that the Ai are i.i.d. and bounded random variables. Under the null hypothesis we have
EAi = 0, while under the alternative they have mean EAi ≥ 1/3 (since ΨLF is a successful
tester in the sense of (2.2.1)). Therefore, a constant number c/2 observations suffice to decide
whether PX = P0 or not. In particular, cn ≥ nGoF which concludes the proof of (2.3.3) for
the case m ≤ n. The case n ≤ m follows from (2.3.5) and (2.3.2).

Reducing (LF) to two-sample testing Suppose (n,m) ∈ RTS. Let three samples
X, Y, Z be given, of sizes a, a, b from the unknown distributions PX,PY,PZ respectively, where
{a, b} = {n,m}. We want to test the hypothesis H0 : PX = PZ against H1 : PY = PZ, where
d(PX,PY) ≥ ϵ under both. Then, the test

Ψ̃LF(X, Y, Z) =.. ΨTS(X,Z)

shows that (n,m), (m,n) ∈ RLF and concludes the proof of (2.3.4).
Reducing two-sample testing to (LF) Suppose (n,m) ∈ RLF where m ≥ n. Let two

samples X, Y be given, from the unknown distributions PX,PY ∈ P and of sample size cn, cm
respectively, where c ∈ N is a large integer. We wish to test the hypothesis H0 : PX = PY

against H1 : d(PX,PY) ≥ ϵ. Split the samples X, Y into 2× c batches X(i), Y (i), i = 1, . . . , c
of sizes n,m respectively, and form the variables

Ai = ΨLF(X
(i), Y

(i)
1:n, Y

(i+1))−ΨLF(Y
(i)
1:n, X

(i), Y (i+1))

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where Y (i)
1:n denotes the first n observations in the batch Y (i). The

variables Ai are i.i.d. and bounded. Under the null hypothesis we have EAi = 0 while under
the alternative EAi ≥ 1/3 holds. Therefore a constant number c/2 observations suffice to
decide whether PX = PY or not. In particular, (cn, cm) ∈ RTS which concludes the proof of
(2.3.5).

Equivalence between two-sample testing and (LF) Equation (2.3.6) follows immedi-
ately from (2.3.5) and (2.3.4).

Equation (2.3.6) tells us that the problems of likelihood-free hypothesis testing and two-
sample testing are equivalent, but only for m ≥ n, that is, when we have more real data
than simulated data. We will see in the next section, and on Figure 2.1 visually, that this
distinction is necessary.
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2.3.2 Sample complexity of likelihood-free hypothesis testing

In this section we present our results on the sample complexity of (LF) for the specific classes
P that were introduced in Section 2.2.1, with separation measured by TV. In all results
below the parameters β, s, d, C are regarded as constants, we only care about the dependence
on the separation ϵ and the alphabet size k (in the case of PD,PDb). Where convenient we
omit the arguments of nGoF, nTS,RTS, nEst,RLF to ease notation, whose value should be clear
from the context.

Theorem 2.3.2. Under TV-separation, for each choice P ∈ {PH,PG,PDb}, we have

RLF ≍
{
(n,m) : m ≥ 1/ϵ2, n ≥ nGoF, mn ≥ n2

GoF

}
,

where the implied constants do not depend on k (in the case of PDb) or ϵ.

For each class P in Theorem 2.3.2, the entire region RLF (within universal constant) is
attained by a suitable modification of Ingster’s L2-distance test from Section 2.2.3. The region
RLF is visualized on Figure 2.1 on a log-log scale, with each corner point {A,B,C,D} having
a special interpretation, as per the reductions presented in Proposition 2.3.1. The point A
corresponds to binary hypothesis testing and D can be reduced to goodness-of-fit testing.
Similarly, B and C can be reduced to the well-known problems of estimation followed by
robust hypothesis testing and two-sample testing respectively. In other words, (LF) allows us
to naturally interpolate between multiple statistical problems. Finally, we make an interesting
observation: since the product of n and m remains constant on the line segment [B,C] on the
left plot of Figure 2.1, it follows that

nEst(ϵ,P) ≍ n2
GoF(ϵ,P) ϵ2 (2.3.7)

for each class P treated in Theorem 2.3.2. This relation between the sample complexity of
estimation and goodness-of-fit testing has not been observed before to our knowledge, and
understanding the scope of validity of this relationship is an exciting future direction.5

Turning to our results on PD the picture is less straightforward. As first identified in [20]
and fully resolved in [39], the sample complexity of two-sample testing undergoes a phase
transition when k ≳ 1/ϵ4. This phase transition appears also in likelihood-free hypothesis
testing.

Theorem 2.3.3. Let α = max
{
1,min

{
k
n
, k
m

}}
. Then

RLF(ϵ,PD(k)) ≍log(k)

{
(n,m) : m ≥ 1/ϵ2, n ≥ nGoF(ϵ,PD(k))·

√
α, mn ≥ nGoF(ϵ,PD(k))

2·α
}
,

where the equivalence is up to a logarithmic factor in the alphabet size k.

The log k factor in our analysis originates from a union bound, and it is possible that it
may be removed. It follows from follow up work [74] and past results on two-sample testing

5Added in print: for example in [169] it is demonstrated that for the Gaussian sequence model (see
definition (ii) in Section 2.2.2) with the Sobolev ellipsoid replaced by the set Θ = {θ ∈ ℓ2 :

∑∞
i=1 i|θi| ≤ 1}, it

holds that nEst ≪ n2
GoF/ϵ

2.
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Figure 2.1: Light and dark gray show RLF and its complement resp. on log scale; the striped
region depicts RTS ⊊ RLF. Left plot is valid for P ∈ {PH,PG,PDb} for all settings of ϵ, k.
For PD the left plot applies when k ≲ ϵ−4 and the right plot otherwise.

[62] that the log(k) factor can be removed in all regimes, thus fully characterizing the sample
complexity of (LF), but using a different test from ours.

Table 2.1 summarizes previously known tight results for the values of nGoF, nTS,RTS and
nEst. The fact that nHT = Θ(1/ϵ2) for reasonable classes is classical, see Lemma 2.2.1. The
study of goodness-of-fit testing within a minimax framework was pioneered by Ingster [112,
110] for PH,PG, and independently studied by the computer science community [81, 199] for
PD,PDb under the name identity testing. Two-sample testing (a.k.a. closeness testing) was
solved in [39] for PD (with the optimal result for PDb implicit) and [110, 10, 139] consider PH.
The study of the rate of estimation nEst is older, see [108, 198, 119, 79] and references for
PH,PG and [35] for PD,PDb.

Table 2.1: Prior results on testing and estimation

nHT nGoF RTS nEst

PG 1/ϵ2 1/ϵ(2s+1/2)/s n ∧m ≥ nGoF ϵ2 n2
GoF

PH 1/ϵ2 1/ϵ(2β+d/2)/β n ∧m ≥ nGoF ϵ2 n2
GoF

PDb 1/ϵ2
√
k/ϵ2 n ∧m ≥ nGoF ϵ2 n2

GoF

PD 1/ϵ2
√
k/ϵ2 n ∨m ≥

√
k
ϵ2
∨ k2/3

ϵ4/3
≍ nTS, n ∧m ≥ nGoF

√
α ϵ2 n2

GoF
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2.3.3 L2-robust likelihood-free hypothesis testing

Even before seeing Theorems 2.3.2 and 2.3.3 one might guess that estimation in TV followed
by a robust hypothesis test should work whenever m ≳ 1/ϵ2 and n ≥ nEst(cϵ) for a small
enough constant c. This strategy does indeed work, which can be deduced from the work of
Huber and Birgé [104, 27] for total variation and Hellinger separation respectively, see also
Section 2.2.3 for a brief discussion of these robust tests. In other words, we have the informal
theorem

if separation is measured by TV or H, then (n ≥ nEst and m ≥ nHT) =⇒ (cn, cm) ∈ RLF.

In the case of total variation separation, in fact an even simpler approach succeeds: if p̂X and
p̂Y are minimax optimal density estimators with respect to TV, then Scheffé’s test using the
classifier C(x) = 1{p̂Y(x) ≥ p̂X(x)} can be shown to achieve the optimal sample complexity
by Chebyshev’s inequality.

The upshot of these observations is that they provide a solution to (LF) that is robust to
model misspecification, specifically at the corner point B on Figure 2.1. This naturally leads
us to the question of robust likelihood-free hypothesis testing: can we construct robust tests
for the full m vs n trade-off?

As before, suppose we observe samples X, Y, Z of size n, n,m from distributions belonging
to the class P with densities f, g, h with respect to some base measure µ. Given any u ∈ P ,
let Bu(ϵ,P) ⊆ P denote a region around u against which we wish to be robust. Recall
the notation Pϵ = {(Q0,Q1) ∈ P2 : TV(Q0,Q1) ≥ ϵ} from Definition 5. We compare the
hypotheses

H0 : h ∈ Bf (ϵ,P), (f, g) ∈ Pϵ versus H1 : h ∈ Bg(ϵ,P), (f, g) ∈ Pϵ, (rLF)

and write RrLF(ϵ,P ,B·) for the region of (n,m)-values for which (rLF) can be performed
successfully, defined analogously to RLF(ϵ,P). Note that RrLF ⊆ RLF provided u ∈ Bu for
all u ∈ P , that is, the range of sample sizes n,m for which robustly testing (LF) is possible
ought to be a subset of RLF.

Theorem 2.3.4. Theorems 2.3.2 and 2.3.3 remain true if we replaceRLF(ϵ,P) byRrLF(ϵ,P ,B·)
for the following choices:

(i) for PH(β, d, C) and Bu = {v ∈ PH(β, d, C) : ∥u − v∥2 ≤ cϵ} for a constant c > 0
independent of ϵ,

(ii) for PG(s, C) and Bµθ = {µθ′ : θ′ ∈ E(s, C), ∥θ − θ′∥2 ≤ ϵ/4},

(iii) for PDb(k, C) and Bu = {v : ∥u− v∥2 ≤ ϵ/(2
√
k)}, and

(iv) for PD(k) and Bu = {v : ∥u − v∥2 ≤ cϵ/
√
k, ∥v/u∥∞ ≤ c} for a constant c > 0

independent of k and ϵ.
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2.3.4 Beyond total variation

Recall from Remark 14 the notation nGoF(ϵ, d,P) etc. that is applicable when separation is
measured with respect to a general measure of discrepancy d instead of TV. In recent work
[154, Theorem 1] and [164, Lemma 3.6] it is shown that any test that first quantizes the
data by a map Φ : X → {1, 2, . . . ,M} for some M ≥ 2 must decrease the Hellinger distance
between the two hypotheses by a log factor in the worst case. This implies that for every
class P rich enough to contain such worst case examples, a quantizing test, such as Scheffé’s,
can hope to achieve m ≍ log(1/ϵ)/ϵ2 at best, as opposed to the optimal m ≍ 1/ϵ2. Thus, if
separation is assumed with respect to Hellinger distance, Scheffé’s test should be avoided.
This example shows that the choice of d can have surprising effects on the performance of
specific tests that would be optimal under other circumstances. Understanding the sample
complexity of (LF) for d other than TV might lead to new algorithms and insights.

This motivates us to pose the question: does a trade-off analogous to that identified in
Theorem 2.3.2 hold for other choices of d, and H in particular? In the case of PG we obtain a
simple, almost vacuous answer. From Lemma 2.3.5 it follows immediately that the results of
Table 2.1 and Theorem 2.3.2 continue to hold for PG for any of d ∈ {H,

√
KL,

√
χ2}, to name

a few.

Lemma 2.3.5. Let C > 0 be a constant. For any θ ∈ ℓ2 with ∥θ∥2 ≤ C

TV(µθ, µ0) ≍ H(µθ, µ0) ≍
√

KL(µθ∥µ0) ≍
√
χ2(µθ∥µ0) ≍ ∥θ∥2,

where µθ =.. ⊗∞
i=1N (θi, 1) and the implied constant depends on C.

The case of PD is more intricate. Substantial recent progress [64, 122, 54, 35] has been made,
where among others, the complexities nGoF, nTS, nEst for Hellinger separation are identified.
Since our algorithm for (LF) is ∥ · ∥2-based, we could immediately derive achievability bounds

nHT nGoF nTS nEst

PD 1/ϵ2
√
k/ϵ2 k2/3/ϵ8/3 ∧ k3/4/ϵ2 n2

Gof ϵ
2

PH 1/ϵ2 ? ? 1/ϵ2(β+d)/β

Table 2.2: Prior results for d = H.

for RLF(ϵ,H,PD) via the inequality ∥ · ∥2 ≥ H2/
√
k, however such a naive technique yields

suboptimal results, and thus we omit it. Studying (LF) under Hellinger separation for PD

and PDb is beyond the scope of this work.
Finally, we turn to PH. Due to the nature of our proofs, the results of Theorem 2.3.2

easily generalize to d = ∥ · ∥p for any p ∈ [1, 2]. The simple reason for this is that (i) our
algorithm is ∥ · ∥2-based and ∥ · ∥2 ≥ ∥ · ∥p by Jensen’s inequality and (ii) the lower bound
construction involves perturbations near 1, where all said norms are equivalent. In the
important case d = H the estimation rate nEst(ϵ,H,PH) ≍ 1/ϵ2(β+d)/β was obtained by Birgé
[26], our contribution here is the study of nGoF.
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Theorem 2.3.6. For any β > 0, C > 1 and d ≥ 1 there exists a constant c > 0 such that

nGoF(ϵ,H,P(β, d, C)) ≥ c/ϵ2(β+d/2)/β.

If in addition we assume that β ∈ (0, 1], c can be chosen such that

cnGoF(ϵ,H,P) ≤ 1/ϵ2(β+d/2)/β.

In particular, nEst ≍ n2
GoF ϵ

2.

2.4 Sketch proof of main results

In this section we briefly sketch the proofs of the main results of the paper.

2.4.1 Upper bounds for Theorems 2.3.2 to 2.3.4 and 2.3.6

Bounded discrete distributions

Consider first the case when PX and PY belong to the class PDb, that is, they are supported
on the discrete set {1, 2, . . . , k} and bounded by the uniform distribution. Let p̂X, p̂Y, p̂Z
denote empirical probability mass functions based on the samples X, Y, Z of size n, n,m from
PX,PY,PZ respectively. Define the test statistic

TLF = ∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22
and the corresponding test ψ(X, Y, Z) = 1{TLF ≥ 0}. The proof of Theorems 2.3.2 and 2.3.3
hinge on the precise calculation of the mean and variance of TLF. Due to symmetry it is
enough to compute these under the null. The proof of the upper bound is then completed
via Chebyshev’s inequality: if n,m are such that (ETLF)2 ≳ var(TLF) for large enough implied
constant on the right then ψ tests (LF) successfully in the sense of (2.2.1).

Proposition 2.4.1 (informal). Suppose ∥pX + pY + pZ∥∞ ≤ C∞/k. Then ψ successfully tests
(LF) if

ϵ4

k2

(ETLF)2

≳
C∞ϵ

2

k2

(
1

n
+

1

m

)
+
C∞

k

(
1

n2
+

1

nm

)
var(TLF)

. (2.4.1)

From (2.4.1) one can immediately see where each constraint in the region RLF(ϵ,PDb(k, C))
in Theorem 2.3.2 emerges. The first two terms in the variance require that both m and
n be larger than Ω(1/ϵ2). The 1/n2 term in the variance requires that n be at least
Ω(
√
k/ϵ2) ≍ nGoF, and the 1/(nm) term requires that the product nm be at least Ω(n2

GoF).

Smooth densities

Next we describe how Proposition 2.4.1 can be applied to the class PH of smooth densities.
Divide [0, 1]d into into κd regular grid cells for some κ ∈ N. Discretize the three samples
X, Y, Z over this grid and simply apply the optimal test for PDb, observing the crucial fact
that this discretization belongs to PDb. The following lemma, originally due to Ingster [110]
controls the approximation error of the discretization.
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Lemma 2.4.2 ([10, Lemma 7.2]). Let Pκ denote the L2 projection onto the space of functions
constant on each grid cell. For any β > 0, C > 1 and d ≥ 1 there exist constants c, c′ > 0
such that for any f, g ∈ PH(β, d, C) the following holds:

∥f − g∥2 ≥ ∥Pκ(f − g)∥2 ≥ c∥f − g∥2 − c′κ−β.

Based on Lemma 2.4.2 we set κ ≍ ϵ−1/β. This resolution is chosen to ensure that the
discrete approximation to any β-smooth density is sufficiently accurate, that is, approximate
ϵ-separation is maintained even after discretization. We see now that our problem is reduced
entirely to testing over PDb, so we may apply Proposition 2.4.1 with k = κd ≍ ϵ−d/β, which
yields the minimax optimal rates from Theorems 2.3.2 and 2.3.4.

Our proof of the achieavability direction in Theorem 2.3.6 follows similarly by reduction
to goodness-of-fit testing for discrete distributions [54] under Hellinger separation, where it is
known that nGoF(ϵ,H,PD) ≍

√
k/ϵ2. The key step is to prove a result similar to Lemma 2.4.2

but for H instead of ∥ · ∥2.

Proposition 2.4.3. For any β ∈ (0, 1], C > 1 and d ≥ 1 there exists a constant c > 0 such
that

cH(f, g) ≤ H(Pκf, Pκg) ≤ H(f, g)

holds for any f, g ∈ PH(β, d, C), provided we set κ = (cϵ)−2/β.

Gaussian sequence model

Let us briefly discuss the Gaussian sequence class PG(s, C). Here our approach is not to
discretize the distributions, but conceptually the test is very similar to the cases we’ve already
covered. Let us write PX = µθX and define θY, θZ analogously. For a given cutoff r, we simply

reject the null if TLF,G =..

r∑
i=1

{(
θ̂X,i − θ̂Z,i

)2 − (θ̂Y,i − θ̂Z,i)2} ≥ 0, (2.4.2)

where θ̂X,i = 1
n

∑n
j=1Xji and θ̂Y, θ̂Z are defined analogously. Once again, a precise calculation

of the mean and the variance of the sum above, yields the following result.

Proposition 2.4.4 (informal). Set r ≍ ϵ−1/s. The test (2.4.2) succeeds if

ϵ4

(ETLF,G)2
≳ ϵ2

(
1

n
+

1

m

)
+ ϵ−1/s

(
1

n2
+

1

nm

)
var(TLF,G)

. (2.4.3)

Similarly to (2.4.1), we can again read of the constraints that define the regionRLF(ϵ,PG(s, C))
from (2.4.3). The first and second terms in the variance ensure that n,m = Ω(1/ϵ2) and
n2,mn = Ω(n2

GoF) = Ω(ϵ−(4s+1)/s) respectively.
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General discrete distributions

Finally, we comment on PD. Here we can no longer assume that C∞ = O(1) in Proposi-
tion 2.4.1, in fact C∞ = Ω(k) is possible. We get around this by utilizing the reduction based
approach of [64, 80]. We take the first half of the data and compute

Bi = 1 +#

{
j ≤ min{k, n}

2
: Xj = i

}
+#

{
j ≤ min{k, n}

2
: Yj = i

}
+#

{
j ≤ min{k,m}

2
: Zj = i

}
for each i ∈ [k]. Then, we divide the i’th support element into Bi bins, uniformly. This
transformation preserves pairwise total variation, but reduces the ℓ∞-norms of pX, pY, pZ with
high probability, to order 1/(k ∧ (n∨m)), after an additional step that we omit here. We can
then perform the usual test with these new “flattened" distributions, using the untouched
half of the data.

It is insightful to interpret the “flattening" procedure followed by L2-distance comparison
as a one-step procedure that simply compares a different divergence of the empirical measures.
Intuitively, in contrast to the regular classes, one needs to mitigate the effect of potentially
massive differences in the empirical counts on bins i ∈ [k] where both pX(i) and pY(i) are
large but their difference |pX(i) − pY(i)| is moderate. Let LCλ be the “weighted Le-Cam
divergence" which we define as LCλ(p∥q) =

∑
i(pi − qi)2/(pi + λqi) for two probability mass

functions p, q. One may interpret the two step procedure (flattening followed by comparing L2

distances) as approximately comparing empirical weighted Le-Cam divergences. Performing
the test in two steps is a proof device, and we expect the test that directly compares, say, the
Le-Cam divergence of the empirical probability mass functions to have the same minimax
optimal sample complexity. Such a one-shot approach is used for example in the paper [39] for
two-sample testing. While Ingster [110] only considers goodness-of-fit testing to the uniform
distribution, his notation also suggests the idea of normalizing by the bin mass under the
null.

2.4.2 Lower bounds for Theorems 2.3.2 to 2.3.4 and 2.3.6

The reductions given in Proposition 2.3.1 immediately yields a number of tight lower bounds
on n and m. Namely, (2.3.1) gives m ≳ 1/ϵ2 and (2.3.3) gives n ≳ nGoF. Obtaining the lower
bound on the product term mn proves more challenging. First we introduce the well known
information theoretic tools we use to prove our minimax lower bounds.

Suppose that we have two (potentially composite) hypotheses H0, H1 that we test against
each other. Our strategy relies on the method of two fuzzy hypotheses [198], which is a
generalization of Le-Cam’s two point method. WriteM(X ) for the set of probability measures
on the set X .

Lemma 2.4.5. Take two hypotheses Hi ⊆M(X ) and random Pi ∈M(X ). Then

2 inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1− TV(EP0,EP1)−
∑
i

P(Pi /∈ Hi),

where the infimum is over all tests ψ : X → {0, 1}.
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Proof. We may assume without loss of generality that P(Pi ∈ Hi) > 0 for both i = 0 and
i = 1, as otherwise the claim is vacuous. Let P̃i be distributed as Pi|{Pi ∈ Hi}. Then for any
set A ⊂ X we have∣∣∣EP̃i(A)− EPi(A)

∣∣∣ = P(Pi /∈ Hi)
∣∣∣E[Pi(A)|Pi ∈ Hi]− E[Pi(A)|Pi /∈ Hi]

∣∣∣ ≤ P(Pi /∈ Hi).

In particular, TV(EP̃0,EP̃1) ≤ TV(EP0,EP1) +
∑

i P(Pi /∈ Hi). Therefore, for any ψ

max
i=0,1

sup
Pi∈Hi

Pi(ψ ̸= i) ≥ 1

2
(1− TV(EP̃0,EP̃1)) ≥

1

2

(
1− TV(EP0,EP1)−

∑
i

P(Pi /∈ Hi)

)
.

For clarity, we formally state (LF) as testing between the hypotheses

H0 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X : PX,PY ∈ P , TV(PX,PY) ≥ ϵ}

versus
H1 = {P⊗n

X ⊗ P⊗n
Y ⊗ P

⊗m
Y : PX,PY ∈ P , TV(PX,PY) ≥ ϵ}.

(2.4.4)

The lower bounds of Theorem 2.3.4 follow from those for Theorems 2.3.2 and 2.3.3 so we
may focus on the latter.

Smooth densities

For concreteness let us focus on the case of P = PH. We take P0 to be uniform on [0, 1]d and
Pη to have density

pη = 1 +
∑
j∈[κ]d

ηjhj (2.4.5)

with respect to P0. Here κ ∈ N, each η ∈ {±1}κd is uniform and hj is a bump function
supported on the j’th cell of the regular grid of size κd on [0, 1]d. The parameters κ, hj of the
construction are set in a way to ensure Pη ∈ PH and TV(P0,Pη) ≥ ϵ with probability 1 over
η. We have

1 + χ2(EηP
⊗m
η ∥P⊗m

0 ) =

∫
[0,1]dm

(
Eη

n∏
i=1

pη(xi)

)2

dx1 . . . dxm

= Eηη′⟨pη, pη′⟩mL2

= E(1 + ∥h1∥22⟨η, η′⟩)m (2.4.6)
≤ exp(m2∥h1∥42κd),

where η, η′ are i.i.d. uniform and we assume ∥h1∥2 = ∥hj∥2 for all j ∈ [κ]d. The above
approach is what Ingster used in his seminal paper [110] on goodness-of-fit testing, which
we adapt to likelihood-free hypothesis testing (2.4.4). Take P0 = P⊗n

η ⊗ P⊗n
0 ⊗ P⊗m

η and
P1 = P⊗n

η ⊗ P⊗n
0 ⊗ P⊗m

0 in Lemma 2.4.5. Bounding TV(EP0,EP1) proceeds in multiple steps:
first, we drop the Y -sample using the data-processing inequality. Then, we use Pinsker’s
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inequality and the chain rule to bound TV by the KL divergence of Z conditioned on X. We
bound KL by χ2, arriving at the same equation (2.4.6). However, the mixing parameters η, η′
are no longer independent, instead, given X they’re independent from the posterior. In the
remaining steps we use the fact that the posterior factorizes over the bins and the calculation
is reduced to just a single bin where it can be done explicitly.

Let us now turn to the lower bound in Theorem 2.3.6. The difference in the rate is a
consequence of the fact that H and TV behave differently for densities near zero. Inspired by
this, we slightly modify the construction (2.4.5) by putting the perturbations at density level
ϵ2 as opposed to 1. Bounding TV then proceeds analogously to the steps outlined above.

Bounded discrete distributions

The construction is entirely analogous to the case of PH and we refer to the appendix for
details. In the computer science community the construction of pη is attributed to Paninski
[162].

Gaussian sequence model

The null distribution P0 is the no signal case ⊗∞
i=1N (0, 1) while the alternative is Pθ =

⊗∞
i=1N (θi, 1) where θ has prior distribution ⊗∞

i=1N (0, γi) for an appropriate sequence γ ∈ RN.
We refer to the appendix for more details.

General discrete distributions

Once again, the irregular case PD requires special consideration. Clearly the lower bound for
PDb carries over. However, in the regime k ≳ 1/ϵ4 said lower bound becomes suboptimal, and
we need a new construction, for which we utilize the moment-matching based approach of
Valiant [200] as a black-box. The construction is derived from that used for two-sample testing
by Valiant, namely the pair (PX,PY) is chosen uniformly at random from {(p ◦ π, q ◦ π)}π∈Sk

.
Here we write Sk for the symmetric group on [k] and

p(i) =


1−ϵ
n

for i ∈ [n]
4ϵ
k

for i ∈ [k
2
, 3k

4
]

0 otherwise,

where we assume that m ≤ n ≤ k/2 and define q(i) = p(i) for i ∈ [k/2 − 1] and q(i) =
p(3k/2 − i) for i ∈ [k/2, k]. This construction gives a lower bound matching our upper
bound in the regime m ≲ n ≲ k. The final piece of the puzzle follows by the reduction
from two-sample testing with unequal sample size (2.3.6), as this shows that likelihood-free
hypothesis testing is at least as hard as two-sample testing in the n ≤ m regime, and known
lower bounds on the sample complexity of two-sample testing [25] (see also Table 2.1) let us
conclude.
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2.5 Open problems

A natural follow-up direction to the present paper would be to study multiple hypothe-
sis testing where PX and PY are replaced by PX1 , . . . ,PXM

with corresponding hypotheses
H1, . . . , HM . The geometry of the family {PXj

}j∈[M ] might have interesting effects on the
sample complexities.

Open problem 1. Study the dependence on M > 2 of likelihood-free testing with M
hypotheses.

Another possible avenue of research is the study of local minimax/instance optimal rates,
which is the focus of recent work [199, 13, 45, 44, 137] in the case of goodness-of-fit and
two-sample testing.

Open problem 2. Define and study the local minimax rates of likelihood-free hypothesis
testing.

Our discussion of the Hellinger case in Section 2.3.4 is quite limited, natural open problems
in this direction include the following.

Open problem 3. Let P ∈ {PH(β, d, C),PDb(k, CDb),PD(k)}.

(i) Study nGoF and nTS for P under Hellinger separation.

(ii) Determine the trade-off RLF for P under Hellinger separation.

More ambitiously, one might ask for a characterization of ‘regular‘ models (P , d) for which
goodness-of-fit testing and two-sample testing are equally hard and the region RLF is given
by the trade-off in Theorem 2.3.2.

Open problem 4. Find a general family of ‘regular‘ models (P , d) for which

nGoF(ϵ, d,P) ≍ nTS(ϵ, d,P) and
RLF(ϵ, d,P) ≍ {m ≥ 1/ϵ2, n ≥ nGoF(ϵ, d,P),mn ≥ n2

GoF(ϵ, d,P)}.

Recent follow-up work [74] showed that Scheffé’s test is also minimax optimal and achieves
the entire trade-off in Figure 2.1. It appears that the optimality of Scheffé’s test is a
consequence of the minimax point of view. Basically, in the worst-case the log-likelihood
ratio between the hypotheses is close to being binary, hence quantizing it to {0, 1} does not
lose optimality. Consequently, an important future direction is to better understand the
competitive properties of various tests and studying some notion of regret, see [2] for prior
related work.

Open problem 5. Study the competitive optimality of likelihood-free hypothesis testing
algorithms, and Scheffé’s test in particular.
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Chapter 3

Kernel-Based Tests for Likelihood-Free
Hypothesis Testing

This chapter is a reproduction of [76], which was published at the Thirty Seventh Annual
Conference on Neural Information Processing Systems, and is joint work with Tianze Jiang,
Yury Polyanskiy and Rui Sun.

3.1 Likelihood-Free Inference

The goal of likelihood-free inference (LFI) [66, 91, 32, 51], also called simulation-based
inference (SBI), is to perform statistical inference in a setting where the data generating
process is a black-box, but can be simulated. Given the ability to generate samples Xθ ∼ P⊗n

θ

for any parameter θ, and given real-world data Z ∼ P⊗m
θ⋆ , we want to use our simulations

to learn about the truth θ⋆. LFI is particularly relevant in areas of science where we have
precise but complex laws of nature, for which we can do (stochastic) forward simulations, but
can not directly compute the (distribution) density Pθ. The Bayesian community approached
the problem under the name of Approximate Bayesian Computation (ABC) [52, 182, 22].
More recent ML-based methods where regressors and classifiers are used to summarize data,
select regions of interest, approximate likelihoods or likelihood-ratios [114, 117, 163, 53, 196]
have also emerged for this challenge.

Despite empirical advances, the theoretical study of frequentist LFI is still in its infancy.
We focus on the nonparametric and non-asymptotic setting, which we justify as follows. For
applications where tight error control is critical one might be reluctant to rely on asymptotics.
More broadly, the non-asymptotic regime can uncover new phenomena and provide insights
for algorithm design. Further, parametric models are clearly at odds with the black-box
assumption. Recently, [78] proposed likelihood-free hypothesis testing (LFHT) as a simplified
model and found minimax optimal tests for a range of nonparametric distribution classes,
thereby identifying a fundamental simulation-experimentation trade-off between the number
of simulated observations n and the size of the experimental data sample m. Here we
extend [78], and prior related work [102, 100, 124, 123, 74], to a new setting designed to
model experimental setups more truthfully and derive sample complexity (upper and lower
bounds) for kernel-based tests over nonparametric classes.
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While minimax optimal, the algorithms of [78, 74] are impractical as they rely on discretizing
the observations on a regular grid. Thus, both in our theory as well as experiments we turn
to kernel methods which provide an empirically more powerful set of algorithms that have
shown success in nonparametric testing [86, 85, 118, 87, 143].

Contributions Our contributions are twofold. Theoretically, we introduce mixed
likelihood-free hypothesis testing (mLFHT), which is a generalization of (LFHT) and pro-
vides a better model of applications such as the search for new physics [49, 142]. We propose
a robust kernel-based test and derive both upper and lower bounds on its minimax sample
complexity over a large nonparametric class of densities, generalizing multiple results in [123,
102, 100, 124, 139, 78, 74]. Although the simulation-experimentation (m vs n) trade-off
has been proven in the minimax sense (that is, for some worst-case data distribution), it is
not clear whether it actually occurs in real data. Our second contribution is the empirical
confirmation of the existence of an asymmetric trade-off, cf. Figure 3.1. To this end we
construct state-of-the-art tests building on ideas of [187, 143] on learning good kernels from
the data. We execute this program in two settings: the Higgs boson discovery [14], and
detecting diffusion [95] generated images planted in the CIFAR-10 [135] dataset.

3.1.1 LFHT and the Simulation-Experimentation Trade-off

Suppose we have i.i.d. samples X, Y each of size n from two unknown distributions PX , PY
on a measurable space X , as well as a third i.i.d. sample Z ∼ PZ of size m. In the context of
LFI, we may think of the samples X, Y as being generated by our simulator, and Z being
the data collected in the real world. The problem we refer to as likelihood-free hypothesis
testing is the task of deciding between the hypotheses

H0 : PZ = PX versus H1 : PZ = PY . (LFHT)

This problem originates in [90, 212], where authors study the exponents of error decay for
finite X and fixed PX , PY as n ∼ m → ∞; more recently [123, 102, 100, 124, 2, 139, 78,
74] it is studied in the non-asymptotic regime. Assuming that PX , PY belong to a known
nonparametric class of distributions P and are guaranteed to be ϵ-separated with respect to
total variation (TV) distance (i.e. TV(PX , PY ) ≥ ϵ), [78] characterizes the sample sizes n and
m required for the sum of type-I and type-II errors to be small, as a function of ϵ and for
several different P’s. Their results show, for three settings of P, that (i) testing (LFHT) at
vanishing error is possible even when n is not large enough to estimate PX and PY within total
variation distance O(ϵ), and that (ii) to achieve a fixed level of error, say α, one can trade off
m vs. n along a curve of the form {min{n,

√
mn} ≳ nTS(α, ϵ,P),m ≳ log(1/α)/ϵ2}. Here

nTS denotes the minimax sample complexity of two-sample testing over P , i.e. the minimum
number of observations n needed from PX , PY ∈ P to distinguish the cases TV(PX , PY ) ≥ ϵ
versus PX = PY . Here ≳ suppresses dependence on constants and untracked parameters.

It is unclear, however, whether predictions drawn from minimax sample complexities
over specified distribution classes can be observed in real-world data. Without the theory,
a natural expectation is that the error contour {(m,n) : ∃ a test with total error ≤ α}
would look similar to that of minimax two-sample testing with unequal sample size, namely
{(m,n) : min{n,m} ≳ nTS(α, ϵ,P)}, i.e. n and m simply need to be above a certain threshold
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simultaneously (as is the case for e.g. two-sample testing over smooth densities [10, 139]).
However, from Figures 3.2 and 3.1 we see that there is indeed a non-trivial trade-off between
n and m: the contours are not always parallel to the axes and aren’t symmetric about the line
m = n. The importance of Fig. 3.1 is in demonstrating that said trade-off is not a kink of a
theory that arises due to some esoteric worst-case data distribution, but is instead a real effect
observed in state-of-the-art LFI algorithms ran on actual data. We remark that the n used
in this plot is the total number of simulated samples (most of which are used for choosing
a neural-network parameterized kernel) and are not just the n occuring in Theorems 3.3.1
and 3.3.2 which apply to a fixed kernel. See Section 3.4 for details on sample division.

3.1.2 Mixed Likelihood-Free Hypothesis Testing

A prominent application of likelihood-free inference lies in the field of particle physics.
Scientists run sophisticated experiments in the hope of finding a new particle or phenomenon.
Often said phenomenon can be predicted from theory, and thus can be simulated, as was
the case for the Higgs boson whose existence was verified after nearly 50 years at the Large
Hadron Collider (LHC) [40, 5].

Suppose we have n simulations from the background distribution PX and the signal
distribution PY . Further, we also have m (real-world) datapoints from PZ = (1−ν)PX +νPY ,
i.e. the observed data is a mixture between the background and signal distributions with rate
parameter ν. The goal of physicists is to construct confidence intervals for ν, and a discovery
corresponds to a 5σ confidence interval that excludes ν = 0. We model this problem by
testing

H0 : ν = 0 versus H1 : ν ≥ δ (mLFHT)
for fixed (usually predicted) δ > 0. See the rigorous definition of (mLFHT) in Section 3.3. In
particular, a discovery can be claimed if H0 is rejected.

3.2 The Likelihood-Free Test Statistic

This section introduces the testing procedure based on Maximum Mean Discrepancy (MMD)
that we study throughout the paper both theoretically and empirically. First, we introduce
the necessary background on MMD in Section 3.2.1. Then, we define our test statistics in
Section 3.2.2.

3.2.1 Kernel Embeddings and MMD

Given a set X , we call the function K : X 2 → R a kernel if the n × n matrix with ij’th
entry K(xi, xj) is symmetric positive semidefinite for all choices of x1, . . . , xn ∈ X and n ≥ 1.
There is a unique reproducing kernel Hilbert space (RKHS) HK associated to K. HK consists
of functions X 7→ R and satisfies the reproducing property ⟨K(x, ·), f⟩HK

= f(x) for all
f ∈ Hk and x ∈ X , in particular K(x, ·) ∈ HK . Given a probability measure P on X , define
its kernel embedding θP as

θP ..= EX∼PK(X, ·) =
∫
X
K(x, ·)P (dx). (3.2.1)
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Figure 3.1: n versus m trade-off for the Higgs and CIFAR experiments using our test
in Section 3.2. Error probabilities are estimated by normal approximation for Higgs and
simulated for CIFAR.

Given the kernel embeddings of two probability measures P,Q, we can measure their distance
in the RKHS by MMD(P,Q) ..= ∥θP − θQ∥HK

, where MMD stands for maximum mean
discrepancy. MMD has a closed form thanks to the reproducing property and linearity:

MMD2(P,Q) = E
[
K(X,X ′) +K(Y, Y ′)− 2K(X, Y )

]
where (X,X ′, Y, Y ′) ∼ P⊗2 ⊗ Q⊗2. In particular, if P,Q are empirical measures based on
observations, we can evaluate the MMD exactly, which is crucial in practice. Yet another
attractive property of MMD is that (under mild integrability conditions) it is an integral
probability metric (IPM) where the supremum is over the unit ball of the RKHS HK . See e.g.
[179, 151] for references. The following result is a consequence of the fact that self-adjoint
compact operators are diagonalizable.

Theorem 3.2.1 (Hilbert–Schmidt). Suppose that K ∈ L2(µ ⊗ µ) is symmetric. Then
there exists a sequence (λj)j≥1 ∈ ℓ2 and an orthonormal basis {ej}j≥1 of L2(µ) such that
K(x, y) =

∑
j≥1 λjej(x)ej(y) for all j ≥ 1, where convergence is in L2(µ⊗ µ).

Assumption 2. Unless specified otherwise, we implicitly assume a choice of a non-negative
measure µ and kernel K for which the conditions of Theorem 3.2.1 hold. Note that λj ≥ 0
and depend on µ.

Removing the Bias In our proofs we work with the kernel embedding of empirical
measures for which we need to modify the inner product ⟨·, ·⟩HK

(and thus MMD) slightly by
removing the diagonal terms. Namely, given i.i.d. samples X, Y of size n,m respectively and
corresponding empirical measures P̂X , P̂Y , we define

MMD2
u(P̂X , P̂Y )

..=
∑
i ̸=j

K(Xi, Xj)

n(n− 1)
+
∑
i ̸=j

K(Yi, Yj)

m(m− 1)
− 2

∑
i,j

K(Xi, Yj)

mn
. (3.2.2)
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We also write ⟨θP̂X
, θP̂X
⟩u,HK

..= ∥θP̂X
∥2u,HK

..= 1
n(n−1)

∑
i ̸=jK(Xi, Xj) and extend linearly.

The u stands for unbiased, since EMMD2
u(P̂X , P̂Y ) = MMD2(PX , PY ) ̸= EMMD2(P̂X , P̂Y ) in

general.

3.2.2 Test Statistic

With Section 3.2.1 behind us, we are in a position to define the test statistic that we use to
tackle (mLFHT). Suppose that we have samples X, Y, Z of sizes n, n,m from the probability
measures PX , PY , PZ . Write P̂X for the empirical measure of sample X, and analogously for
Y, Z. The core of our test statistic for (mLFHT) is the following:

T (X, Y, Z) ..= ⟨θP̂Z
, θP̂Y

− θP̂X
⟩u,HK

=
1

nm

n∑
i=1

m∑
j=1

{
K(Zj, Yi)−K(Zj, Xi)

}
. (3.2.3)

Note that T is of the additive form 1
m

∑m
j=1 f(Zi) where f(z) ..= θP̂Y

(z) − θP̂X
(z) can be

interpreted as the witness function of [85, 118]. Given some π ∈ [0, 1] (taken to be half the
predicted signal rate δ/2 in our proofs), the output of our test is

Ψπ = 1

{
T (X, Y, Z) ≥ γ(X, Y, π)

}
, where γ(X, Y, π) = πMMD2

u(P̂X , P̂Y ) + T (X, Y,X).

(3.2.4)
The threshold γ gives Ψπ a natural geometric interpretation: it checks whether the projection
of θP̂Z

− θP̂X
onto the vector θP̂Y

− θP̂X
falls further than π along the segment joining θP̂X

to
θP̂Y

(up to deviations due to the omitted diagonal terms, see Section 3.2.1).
Setting δ = 1 in (mLFHT) recovers (LFHT), and the corresponding test output is

Ψδ/2 = Ψ1/2 = 1 if and only if MMDu(P̂Z , P̂X) ≥ MMDu(P̂Z , P̂Y ). This very statistic
(i.e. MMDu(P̂Z , P̂X)−MMDu(P̂X , P̂Y )) has been considered in the past for relative goodness-
of-fit testing [31] where it’s asymptotic properties are established. In the non-asymptotic
setting, if MMD is replaced by the L2-distance we recover the test statistic studied by [102,
124, 78]. However, we are the first to introduce Ψδ for δ ̸= 1 and to study MMD-based tests
for (m)LFHT in a non-asymptotic setting.

Variance cancellation At first sight it may seem more natural to the reader to
threshold the distance MMDu(P̂Z , P̂X), resulting in rejection if, say, MMDu(P̂Z , P̂X) ≥
MMDu(P̂X , P̂Y )δ/2. The geometric meaning of this would be similar to the one outlined
above. However, there is a crucial difference: (LFHT) (the case δ = 1) is possible with very
little experimental data m due to the cancellation of variance. More precisely, the statistic
MMD2(P̂Z , P̂X) contains the term 1

m(m−1)

∑
i ̸=jK(Zi, Zj) — whose variance is prohibitively

large and would inflate the m required for reliable testing — but this can be canceled by
subtracting MMD2(P̂Z , P̂Y ). Our statistic T (X, Y, Z) − γ(X, Y, π) simply generalizes this
idea to (mLFHT).
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3.3 Minimax Rates of Testing

3.3.1 Upper Bounds on the Minimax Sample Complexity of (mLFHT)

Let us start by reintroducing (mLFHT) in a rigorous fashion. Given C, ϵ, R ≥ 0, let Pµ(C, ϵ, R)
denote the set of triples (PX , PY , PZ) of distributions such that the following three conditions
hold:
(i) PX , PY and PZ have µ-densities bounded by C,

(ii) MMD(PX , PY ) ≥ ϵ, and

(iii) MMD(PZ , (1− ν)PX + νPY ) ≤ R ·MMD(PX , PY ),

where we define ν = ν(PX , PY , PZ) = argminν′∈R MMD(PZ , (1 − ν ′)PX + ν ′PY ). For some
δ > 0, consider the two hypotheses

H0(C, ϵ, δ, R) : (PX , PY , PZ) ∈ Pµ(C, ϵ, R) and ν = 0

H1(C, ϵ, δ, R) : (PX , PY , PZ) ∈ Pµ(C, ϵ, R) and ν ≥ δ,
(3.3.1)

which we regard as subsets of probability measures. Notice that R controls the level of mis-
specification in the direction that is orthogonal to the line connecting the kernel embeddings
of PX and PY . Setting R = 0 simply asserts that PZ is guaranteed to be a mixture of PX
and PY , as is the case for prior works on LFHT. Before presenting our main result on the
minimax sample complexity of mLFHT, let us define one final piece of terminology. We say
that a test Ψ, which takes some data as input and takes values in {0, 1}, has total error
probability less than α for the problem of testing H0 vs H1 if

sup
P∈H0

P (Ψ = 1) + sup
Q∈H1

Q(Ψ = 0) ≤ α. (3.3.2)

Theorem 3.3.1. Suppose we observe three i.i.d. samples X, Y, Z from distributions PX , PY , PZ
composed of n, n,m observations respectively and let C ∈ (0,∞) and R, ϵ ≥ 0 and δ ∈ (0, 1).
There exists a universal constant c > 0 such that Ψδ/2 defined Section 3.2.2 tests H0 vs H1,
as defined in (3.3.1), at total error α provided

min{m,n} ≥ c
C∥λ∥∞ log(1/α)

(ϵδ/(1 +R))2
and min{n,

√
nm} ≥ c

C∥λ∥2 log(1/α)
δϵ2

.

Note that Theorem 3.3.1 does not place assumptions on the distributions PX , PY beyond
bounded density with respect to the base measure µ. This is different from usual results
in statistics, where prior specification of distribution classes is crucial. On the other hand,
instead of standard distances such as Lp, we assume separation with respect to MMD and
the latter is potentially harder to interpret than, say, L1 i.e. total variation. We do point out
that our Theorem 3.3.1 can be used to derive results in the classical setting; we discuss this
further in Section 3.3.4.
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Figure 3.2: n versus m trade-off for the
toy experiment, verifying Theorem 3.3.1.
Probabilities estimated over 104 runs,
and smoothed using Gaussian noise.

In an appropriate regime of the parameters, the
sufficient sample complexity in Theorem 3.3.1 ex-
hibits a trade-off of the form min{n,

√
mn} ≳

∥λ∥2 log(1/α)/(δϵ2) between the number of simula-
tion samples n and real observations m. This trade-off
is shown in Figure 3.2 using data from a toy problem.
The trade-off is clearly asymmetric and the relation-
ship m · n ≥ const. also seems to appear. In this toy
problem we set R = 0, δ = 1, ϵ = .3, k = 100 and
PX = PZ , PY are distributions on {1, 2, . . . , k} with
PX(i) = (1 + ϵ · (2 · 1{i odd} − 1))/k = 2/k − PY (i)
for all i = 1, 2, . . . , k. The kernel we take is K(x, y) =∑k

i=1 1{x = y = i} and µ is simply the counting mea-
sure; the resulting MMD is simply the L2-distance on
pmfs.

Figure 3.1 illustrates a larger scale experiment using
real data using a trained kernel. Note that we plot
the total number n of simulation samples, including those used for training the kernel itself
(see Section 3.4); which ensures that Figure 3.1 gives a realistic picture of data requirements.
However, due to the dependence between the kernel and the data, Theorem 3.3.1 no longer
applies. Nevertheless, we observe a trade-off similar to Figure 3.2.

3.3.2 Lower Bounds on the Minimax Sample Complexity of (mLFHT)

In this section we prove a minimax lower bound on the sample complexity of mLFHT, giving
a partial converse to Theorem 3.3.1. Before we can state this results, we must make some
technical definitions. Given J ≥ 2, let ∥λ∥22J ..=

∑J
j=2 λ

2
j and define

J⋆ϵ
..= max

{
J : sup

ηj=±1

∥∥∥ J∑
j=2

ηj
√
λjej

∥∥∥
∞
≤ ∥λ∥2J

2ϵ

}
.

Theorem 3.3.2 (Lower Bounds for mLFHT). Suppose that
∫
X K(x, y)µ(dx) ≡ λ1, µ(X ) = 1

and supx∈X K(x, x) ≤ 1. There exists a universal constant c > 0 such that any test of H0 vs
H1, as defined in (3.3.1), with total error at most α must use a number (n,m) of observations
that satisfy

m ≥ c
λ2 log(1/α)

ϵ2δ2
and n ≥ c

∥λ∥2J⋆
ϵ

√
log(1/α)

ϵ2
and δm+

√
mn ≥ c

∥λ∥2J⋆
ϵ

√
log(1/α)

ϵ2δ
.

Remark 16. Recall that the eigenvalues λ depend on the choice of µ, so that by choosing a
different base measure µ one can optimize the lower bound. However, since PX , PY , PZ are
assumed to have bounded density with respect to µ, this appears rather involved.

Remark 17. The requirements supx∈X K(x, x) ≤ 1 and µ(X ) = 1 are is essentially without
loss of generality, as µ and K can be rescaled. The condition

∫
X K(x, y)µ(dx) ≡ λ1 implies

that the top eigenfunction e1 is equal to a constant or equivalently, that y 7→ K(x, y)µ(dx)
defines a Markov kernel up to a normalizing constant.
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3.3.3 Tightness of Theorems 3.3.1 and 3.3.2

Dependence on ∥λ∥2∥λ∥2∥λ∥2 An apparent weakness of Theorem 3.3.2 is its reliance on the
unknown value J⋆ϵ , which depends on the specifics of the kernel K and base measure µ.
Determining it is potentially highly nontrivial even for simple kernels. Slightly weakening
Theorem 3.3.2 we obtain the following corollary, which shows that the dependence on ∥λ∥2 is
tight, at least for small ϵ.

Corollary 3.3.3. Suppose J ≥ 2 is such that
∑J

j=2 λ
2
j ≥ c2∥λ∥22 for some c ≤ 1. Then

∥λ∥2J⋆
ϵ

can be replaced by c∥λ∥2 in Theorem 3.3.2 whenever ϵ ≤ c∥λ∥2/(2
√
J − 1).

Dependence on RRR and ααα Due to the general nature of our lower bound constructions,
it is difficult to capture the dependence on the misspecification parameter R. As for the
probability of error α, based on related work [62] we expect the gap of size

√
log(1/α) to be

a shortcoming of Theorem 3.3.1 and not the lower bound. Closing this gap may require a
different approach, however, as tests based on empirical L2 distances are known to have a
sub-optimal concentration [102].

Dependence on δδδ The correct dependence on the signal rate δ is the most important
question left open by our theoretical results. Any method requiring n larger than a function of
δ irrespective of m (as in Theorem 3.3.1) is provably sub-optimal because taking m ≳ 1/(δϵ)2

and n large enough to estimate both PX , PY to within accuracy ϵ/10 always suffices to reach
a fixed level of total error.

3.3.4 Relation to Prior Results
In this section we discuss some connections of Theorem 3.3.1 to prior work. Specifically, we
discuss how Theorem 3.3.1 recovers some known results in the literature [10, 139, 78] that
are minimax optimal. Details omitted in this section are included in Appendix B.2.

Binary Hypothesis Testing Suppose the two distributions PX , PY are known, we are
given m i.i.d. observations Z1, . . . , Zm ∼ PZ and our task is to decide between the hypotheses
H0 : PX = PZ versus H1 : PY = PZ . Then, we may take n = ∞, R = 0, δ = 1 in Theorem
3.3.1 to conclude that

m ≥ c · C∥λ∥∞ log(1/α)

ϵ2

observations suffice to perform the test at total error α.
Two-Sample Testing Suppose we have two i.i.d. samples X and Y , both of size n, from

unknown distributions PX , PY respectively and our task is to decide between H0 : PX = PY
against H1 : MMD(PX , PY ) ≥ ϵ. We split our Y sample in half resulting in Y (1) and Y (2)

and form the statistic ΨTS
..= Ψ1/2(X, Y

(1), Y (2))−Ψ1/2(Y
(1), X, Y (2)), where Ψ1/2 is defined

in Section 3.2.2. Then |EΨTS| is equal to 0 under the null hypothesis and is at least 1− 2α1

under the alternative, where α1 is the target total error probability of Ψ1/2. Taking α1 = 5%,
by repeated sample splitting and majority voting we may amplify the success probability to
α provided

n ≥ c′
C∥λ∥2 log(1/α)

ϵ2
, (3.3.3)

where c′ > 0 is universal (see Appendix for details). The upper bound (3.3.3) partly recovers
[139, Theorem 3 and 5] where authors show that thresholding the MMD with Gaussian
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kernel Gσ(x, y) = σ−d exp(−∥x− y∥2/σ2) achieves the minimax optimal sample complexity
n ≍ ϵ−(2β+d/2)/β for the problem of two-sample testing over the class Pβ,d of d-dimensional
(β, 2)-Sobolev-smooth distributions (defined in Appendix B.2.3) under ϵ-L2-separation. For
this, taking σ ≍ ϵ1/β ensures that ∥P − Q∥L2 ≲ MMD(P,Q) over P,Q ∈ Pβ,d. Taking e.g.
dµ(x) = exp(−∥x∥22)dx as the base measure, (3.3.3) recovers the claimed sample complexity
since ∥λ∥22 =

∫
G2
σ(x, y)dµ(x)dµ(y) = O(σ−d) hiding dimension dependent constants. Our

result requires a bounded density with respect to a Gaussian.
Likelihood-Free Hypothesis Testing By taking α ≍ R ≍ δ = Θ(1) in Theorem 3.3.1

we can recover many of the results in [123, 124, 78]. When X is finite, we can take the
kernel K(x, y) =

∑
z∈X 1{x = y = z} in Theorem 3.3.1 to obtain the results for bounded

discrete distributions (defined in Appendix B.2.1) which state that under ϵ-TV-separation
the minimax optimal sample complexity is given by m ≳ 1/ϵ2; min{n,

√
nm} ≳

√
|X |/ϵ2. A

similar kernel recovers the optimal result for the class of β-Hölder smooth densities on the
hypercube [0, 1]d (see Appendix B.2.2).

Curse of Dimensionality Using the Gaussian kernel Gσ as for two-sample testing
above, one can conclude by Theorem 3.3.1 that the required number of samples for (mLFHT)
over the class Pβ,d under ϵ-L2-separation grows at most like Ω

(
( c
ϵ
)Ω(d) 1

δ2

)
for some c > 1,

instead of the expected Ω
(
( c
ϵδ
)Ω(d)

)
. This may be interpreted as theoretical support for the

success of LFI in practice where signal and background can be rather different (cf. [14,
Figures 2-3]) and the difficulty of the problem stems from the rate of signal events being
small (i.e. ϵ ≈ 1 but δ ≪ 1).

3.4 Learning Kernels from Data
Given a fixed kernel K, our Theorems 3.3.1 and 3.3.2 show that the sample complexity
is heavily dependent on the separation ϵ under the given MMD as well as the spectrum
λ = λ(µ,K) of the kernel. Thus, to have good test performance we need to use a kernel K
that is well-adapted to the problem at hand. In practice, however, instead of using a fixed
kernel it would be only natural to use part of the simulation sample to try to learn a good
kernel.

In Sections 3.4 and 3.5 we report experimental results after training a kernel parameterized
by a neural network on part of the simulation data. In particular, due to the dependence
between the data and the kernel, Theorem 3.3.1 doesn’t directly apply. Our main contribution
here is showing the existence of an asymmetric simulation-experimentation trade-off (cf. Figure
3.1 and also Section 3.1.1) even in this realistic setting. Figure 3.1 plots the total number n
of simulations used, including those used for training, so as to provide a realistic view of the
amount of data used. The experiments also illustrate that the (trained-)kernel-based statistic
of Section 3.2.2 achieves state-of-the-art performance.

3.4.1 Proposed Training Algorithm

Consider splitting the data into three parts: (X tr, Y tr) is used for training (optimizing) the
kernel; (Xev, Y ev) is used to evaluate our test statistic at test time; and (Xcal, Y cal) is used
for calibrating the distribution of the test statistic under the null hypothesis. We write
ns = |Xs| = |Y s| for s ∈ {tr, ev, cal}. Given the training data X tr, Y tr with empirical measures
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Algorithm 1 mLFHT with a learned deep kernel
Input: (Xtr, Xev, Xcal), (Y tr, Y ev, Y cal); parametrized kernel Kω; hyperparameters and initialization.
# Phase 1: Kernel training (optimization) on Xtr and Y tr.
ω ← argmaxOptimizer

ω Ĵ(Xtr, Y tr;Kω); # maximize objective as defined in (3.4.1)
# Phase 2: Distributional calibration of test statistic (under null hypothesis).
for r = 1, 2, . . . , k do

Zcal,r ← sample m points without replacement from Xcal;
Tr ← 1

nevm

∑
i,j

(
Kω(Z

cal,r
i , Y ev

j )−Kω(Z
cal,r
i , Xev

j )
)
;

end for
# Phase 3: Inference with input Z.

T̂ ← 1
nevm

∑
i,j

(
Kω(Zi, Y

ev
j )−Kω(Zi, X

ev
j )
)
;

Output: Estimated p-value: 1
k

∑k
i=1 1{T̂ < Ti}.

P̂Xtr , P̂Y tr , we maximize the objective in

Ĵ(X tr, Y tr;K) =
MMD2

u(P̂Xtr , P̂Y tr ;K)

σ̂(X tr, Y tr;K)
, (3.4.1)

which was introduced in [187]. Here σ̂2 is an estimator of the variance of MMD2
u(P̂Xtr , P̂Y tr ;K)

and is defined in Appendix B.6.1.
Intuitively, the objective J aims to separate PX from PY while keeping variance low. For

a heuristic justification of its use for (mLFHT) see Appendix.
In Algorithm 1 we describe the training and testing procedure, which produces unbiased

p-values for (mLFHT) when there is no misspecification (R = 0 in Theorem 3.3.1). During
training, we use the Adam optimizer [128] with stochastic batches.

Proposition 3.4.1. When there is no misspecification (R = 0 in Theorem 3.3.1), Algorithm
1 outputs an unbiased estimate of the p-value that is consistent as min{ncal, k} → ∞.

Time complexity Algorithm 1 runs in three separate stages: training, calibration, and
inference. The first two take O (#epochs ·B2 + knevm) total time, where B is the batch
size, whereas Phase 3 takes only O(nevm) time, which is generally much faster especially if
nev << ntr.

Sample usage Empirically, data splitting in Algorithm 1 can have non-trivial effects
on performance. Instead of training the kernel on only a fraction of the data ({X tr, Y tr} ∩
{Xev, Y ev} = ∅), we discovered that taking {Xev, Y ev} ⊆ {X tr, Y tr} results in more efficient
use of data. The stronger condition {Xev, Y ev} = {X tr, Y tr} can also be applied; we take
⊆ to reduce time complexity. We do, however, crucially require Xcal, Y cal in Phase 2 to be
independently sampled (“held-out”) for consistent p-value estimation. Finally, we remark also
that splitting this way is only valid in the context of Algorithm 1. For the test (3.2.4) using
the data-dependent threshold γ, one needs {X tr, Y tr} ∩ {Xev, Y ev} = ∅ to estimate γ.

3.4.2 Classifier-Based Tests and Other Benchmarks

Let ϕ : X → [0, 1] be a classifier, assigning small values to PX and high values to PY by
minimizing cross-entropy loss of a classifier net. There are two natural test statistics based
on ϕ:
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Scheffé’s Test. The first idea, attributed to Scheffé in folklore [59, Section 6], is to take
the statistic T (Z) = 1

m

∑m
i=1 1{ϕ(Zi) > t} where t is some (learn-able) threshold.

Approximate Neyman-Pearson / Logit Methods. If ϕ is trained to perfection, then
ϕ(z) = P(PX |z) would be the likelihood and ϕ(z)/(1− ϕ(z)) would equal precisely the likeli-
hood ratio between PY and PX at z. This motivates the use of T (Z) = 1

m

∑m
i=1 log(ϕ(Zi)/(1−

ϕ(Zi))). See also [42].
Let us list the testing procedures that we benchmark against each other in our experiments.
1. MMD-M: The MMD statistic (3.2.3) using K with the mixing architecture

K(x, y) = [(1− τ)Gσ(φω(x), φω(y)) + τ ] ·Gσ0(x+ φ′
ω′(x), y + φ′

ω′(y)).

Here Gσ is the Gaussian kernel with variance σ2; φω, φ′
ω′ are NN’s (with parameters

ω, ω′), and σ, σ0, τ, ω, ω′ are trained.

2. MMD-G: The MMD statistic (3.2.3) using the Gaussian kernel architecture K(x, y) =
Gσ(φω(x), φω(y)) where φω is the feature mapping parametrized by a trained network
and σ is a trainable parameter.

3. MMD-O: The MMD statistic (3.2.3) using the Gaussian Kernel K(x, y) = Gσ(x, y)
with optimized bandwidth σ. First proposed in [31, 143].

4. UME: An interpretable model comparison algorithm proposed by [118], which evaluates
the kernel mean embedding on a chosen “witness set”.

5. SCHE, LBI: Scheffé’s test and Logit Based Inference methods [42], based on a binary
classifier network ϕ trained via cross-entropy, introduced above.

6. RFM: Recursive Feature Machines, a recently proposed kernel learning algorithm by
[170].

3.4.3 Additive Statistics and the Thresholding Trick
Given a function f (usually obtained by training) and test data Z = (Z1, . . . , Zm), we call a
test additive if its output is obtained by thresholding Tf (Z) ..= 1

m

∑m
i=1 f(Zi). We point out

that all of MMD-M/G/O, SCHE, LBI, UME, RFM are of this form, see the Appendix
for further details. Similarly to [143], we observe that any such statistic can be realized by
our kernel-based approach.

Proposition 3.4.2. The kernel-based statistic defined in (3.2.3) with the kernel K(x, y) =
f(x)f(y) is equal to Tf up to a multiplicative and additive constant independent of Z.

Motivated by the Scheffé’s test, instead of directly thresholding the additive statistic
Tf(Z), we found empirically that replacing f by ft(x) ..= 1{f(x) > t} can yield improved
power. We set t by maximizing an estimate of the significance under the null using a normal
approximation, i.e. by solving topt ..= argmaxt

Tft (Y
opt)−Tft (X

opt)√
Tft (X

opt)(1−Tft (Xopt))
, where Xopt, Y opt satisfy

{Xopt, Y opt} ∩ ({Xcal, Y cal} ∪ {Xev, Y ev}) = ∅. This trick improves the performance of our
tester on the Higgs dataset in Section 3.5.2 but not for the image detection problem in
Section 3.5.1.
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Figure 3.3: Empirical performance on (3.5.1) for the CIFAR detection problem when ntr = 1920.
Plots from left to right are as follows. (a) rejection rate under the alternative if test rejects whenever
the estimated p-value is smaller than 5%; (b) expected p-value [178] under the alternative; (c)
the average of type-I and II error probabilities when thresholded at 0 (different from (3.2.4), see
Appendix); and (d) ROC curves for different m using MMD-M and Algorithm 1. Shaded area
shows the standard deviation across 10 independent runs. Missing benchmarks (thresholded MMD,
MMD-O, LBI, RFM) are weaker; see Appendix for full plot.

3.5 Experiments

Our code can be found at https://github.com/Sr-11/LFI.

3.5.1 Image Source Detection
Our first empirical study looks at the task of detecting whether images come from the CIFAR-
10 [136] dataset or a SOTA generative model (DDPM) [95, 167]. While source detection is
on its own interesting, it turns out that detecting whether a group of images comes from
the generative model versus the real dataset can be too “easy” (see experiments in [118]).
Therefore, we consider a mixed alternative, where the alternative hypothesis is not simply the
generative model but CIFAR with planted DDPM images. Namely, our n labeled images
come from the following distributions:

PX = CIFAR, and PY =
1

3
·DDPM +

2

3
· CIFAR. (3.5.1)

The goal is to test whether the m unlabeled observations Z have been corrupted with ρ or
more fraction of DDPM images (versus uncorrupted CIFAR); this corresponds to (LFHT) (or
equivalently (mLFHT) with δ = 1). Figure 3.3 shows the performance of our approach with
this mixed alternative.

Network Architecture With a standard deep CNN, the difference is only at the final
layer: for the kernel-based tests it is a feature output; for classifiers, we add an extra linear
layer to logits.

We see from Figure 3.3 that our kernel-based test outperforms other benchmarks at a fixed
training set size ntr. One potential cause is that MMD has an “optimization” subroutine
(which it solves in closed form) as it is an IPM. This additional layer of optimization may lead
to better performance at small sample sizes. The thresholding trick does not seem to improve
power empirically. We omit several benchmarks from this figure for graphic presentation and
they do not exhibit good separating power; see the Appendix for the complete results. The
bottom plot of Figure 3.1 shows m and n on log-scale against the total probability of error,
exhibiting the simulation-experimentation trade-off.
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3.5.2 Higgs-Boson Discovery
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Figure 3.4: Expected significance of discovery on a
mixture of 1000 backgrounds and 100 signals in the
Higgs experiment. Shaded area shows the standard
deviation over 10 independent runs. See Appendix
for full plot including missing benchmarks.

The 2012 announcement of the Higgs boson’s
discovery by the ATLAS and CMS experi-
ments [1, 40] marked a significant milestone
in physics. The statistical problem inher-
ent in the experiment is well-modeled by
(mLFHT), using a signal rate δ predicted by
theory and misspecification parameter R = 0
(as was assumed in the original discovery).
We consider our algorithm’s power against
past studies in the physics literature [14] as
measured by the significance of discovery.
We note an important distinction from Algo-
rithm 1 in this application.

Estimating the Significance In physics,
the threshold for claiming a “discovery” is
usually at a significance of 5σ, correspond-
ing to a p-value of 2.87 × 10−7. Approxi-
mately ncal ∼ (2.87)−1 × 107 samples would
be necessary for Algorithm 1 to reach such
a precision. Fortunately the distribution of
the test statistic is approximated by a Gaus-
sian customarily. We adopt this approach
for our experiment hereby assuming that m is large enough for the CLT to apply. We use
the “expected significance of discovery” as our metric [14] which, for the additive statistic
Tf =

1
m

∑m
i=1 f(Zi), is given by δ(Tf (Y

cal)−Tf (Xcal))√
v̂ar(f(Xcal))/m

. If the thresholding trick (Section 3.4.3) is

applied we use the more precise Binomial tail, in which case the significance is estimated by
−Φ−1(P(Bin(m,Tftopt (X

cal)) ≥ Tftopt (Z))), where Φ is the standard normal CDF.
Newtowk Architecture The architecture is a 6-layer feedforward net similar for all

tests (kernel-based and classifiers) except for the last layer. We leave further details to the
Appendix.

As can be seen in Figure 3.4, Scheffé’s test and MMD-M with threshold topt are the best
methods, achieving similar performance as the algorithm of [14]; reaching the significance
level of 5σ on 2.6 million simulated datapoints and a test sample made up of a mixture of 1000
backgrounds and 100 signals. The top plot of Figure 3.1 shows m and n on log-scale against
the total probability of error through performing the test (3.2.4), exhibiting the asymmetric
simulation-experimentation trade-off.

3.6 Conclusion
In this paper, we introduced (mLFHT) as a theoretical model of real-world likelihood-free
signal detection problems arising in science. We proposed a kernel-based test statistic and
analyzed its minimax sample complexity, obtaining both upper (Theorem 3.3.1) and lower
bounds (Theorem 3.3.2) in terms of multiple problem parameters, and discussed their tightness
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(Section 3.3.3) and connections to prior work (Section 3.3.4). On the empirical side, we
described a method for training a parametrized kernel and proposed a consistent p-value
estimate (Algorithm 1 and Proposition 3.4.1). We examined the performance of our method
in two experiments and found that parametrized kernels achieve state-of-the-art performance
compared to relevant benchmarks from the literature. Moreover, we confirmed experimentally
the existence of the asymmetric simulation-experimentation trade-off (Figure 3.1) which is
suggested by minimax analysis. We defer further special cases of Theorem 3.3.1, all relevant
proofs and experimental details to the Appendix.
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Chapter 4

Minimax Optimal Testing via
Classification

This chapter is a reproduction of [74], which was published at The Thirty Sixth Annual
Conference on Learning Theory, and is joint work with Yanjun Han and Yury Polyanskiy.

4.1 Introduction

The rapid development of machine learning over the past three decades has had a profound
impact on many areas of science and technology. It has replaced or enhanced traditional
statistical procedures and automated feature extraction and prediction where in the past
human experts had to intervene manually. One example is the technique that has become
known as ‘classification accuracy testing‘ (CAT). The idea, first explicitly described in [72],
is extremely simple. Consider the setting of two-sample testing: suppose the statistician has
samples X and Y of size n from two distributions PX and PY respectively on some space X ,
and wishes to test the hypotheses

H0 : PX = PY versus H1 : PX ̸= PY. (TS)

The statistician has many classical methods at their disposal such as the Kolmogorov-Smirnov
or the Wilcoxon – Mann – Whitney test. Friedman’s idea was to use machine learning as a
powerful tool to summarize the data and subsequently apply a classical two-sample test to the
transformed data. More concretely, the proposal is to train a binary classifier C : X → {0, 1}
on the labeled data ∪ni=1{(Xi, 0), (Yi, 1)} and compare the samples C(X1), . . . , C(Xn) and
C(Y1), . . . , C(Yn).

Friedman’s idea to use classifiers to summarize data before applying classical statistical
analysis downstream can be generalized beyond two-sample testing (TS). Likelihood-free
inference (LFI), also known as simulation-based inference (SBI), has seen a flurry of interest
recently. In LFI, the scientist has a dataset Z1, . . . , Zm

iid∼ Pθ⋆ and is given access to a black
box simulator which given a parameter θ produces a random variable with distribution
Pθ. The goal is to do inference on θ⋆. The key aspect of the problem, lending the name
‘likelihood-free‘, is that the scientist doesn’t know the inner workings of the simulator. In
particular its output is not necessarily differentiable with respect to θ and the density of
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Pθ cannot be evaluated even up to normalization. This setting arises in numerous areas of
science where highly complex, mechanistic, stochastic simulators are used such as climate
modeling, particle physics, phylogenetics and epidemiology to name a few, and its importance
was realized as early as [66]. In this paper we study the problem of likelihood-free hypothesis
testing (LFHT) proposed recently in [77] as a simplified model of likelihood-free inference.
Compared to two-sample testing, here in addition to the dataset Z of size m, we have two
‘simulated‘ samples X, Y of size n each from PX and PY respectively. The goal is to test the
hypotheses

H0 : Zi ∼ PX versus H1 : Zi ∼ PY. (LFHT)

It is important that apriori PX and PY are only known to belong to a certain ambient (usually
non-parametric) class. This stands in contrast with the earliest appearances of (LFHT) in
[212, 90], where authors studied the rate of decay of the type-I and type-II error probabilities
for fixed PX,PY.

In the context of (LFHT) the idea of Friedman materializes as follows. First, train a classifier
C : X → {0, 1} to distinguish between PX and PY and second, compare the transformed
dataset {C(Zj))}mj=1 to {C(Xi)}ni=1 and {C(Yi)}ni=1. The second step compares iid samples of
Bernoulli random variables (provided C is trained on held out data), thus any reasonable test
simply thresholds the number of Zj classified as 1, namely the test is of the form

1

m

m∑
j=1

C(Zj) ≥ γ (4.1.1)

for some γ ∈ [0, 1]. The idea to classify Z as coming from either PX or PY based on the
empirical mass on some separating set S = C−1({1}) ≈ {dPY/dPX ≥ 1} has been attributed
to Scheffé in folklore [60, Section 6]. To illustrate the genuine importance of these ideas, we
draw on the famous Higgs boson discovery. In 2012 [40, 5] at the Large Hadron Collider
(LHC) a team of physicists announced that they observed the Higgs boson, an elementary
particle theorized to exist in 1964. It is regarded as the crowning achievement of the LHC, the
most expensive instrument ever built. They achieved this feat via likelihood-free inference,
using the ideas of classification accuracy testing/Scheffé’s test in particular. As part of
their analysis pipeline they trained a boosted decision tree classifier on simulated data and
thresholded counts of observations falling in the classification region.

This work was initiated as an attempt to understand the theoretical properties of classifier-
accuracy testing, motivated by the clear practical interest in these questions. Our intuition
told us that restricting the classifier to have binary output might throw away too much
statistical power. In regions with large (small) density ratio, the binary output ought to loose
useful information about the (un)certainty of the classifier output. The Neyman-Pearson
Lemma phrases this succinctly: the optimal classifier aggregates the log density ratio, while
heuristically Scheffé’s test aggregates indicators that the log density ratio exceeds some
threshold. The operational implication of this would be to train probabilistic classifiers
C : X → R approximating the log density ratio, and to aggregate this R-valued output instead
of the binary output. However, our results show that this is not necessary for optimality, at
least in the minimax sense.
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4.1.1 Informal description of the results

We study the problems of goodness-of-fit testing, two-sample testing and likelihood-free
hypothesis testing in a minimax framework (see Section 4.2.1 for precise definitions). Namely,
given a family of probability distributions P , we study the minimum number of observations
n (and m for LFHT) that are required to perform the test with error probability less than
δ ∈ (0, 1/2) in the worst case over the distributions PX and PY. We show for multiple natural
classes P that there exist minimax optimal (with some restrictions) classification accuracy
tests.

Let us clarify what we mean by ‘classification-accuracy’ tests for goodness-of-fit testing
(GoF) and the problems TS and LFHT. Suppose we have a sample X of size 2n from the
unknown distribution PX. We also have a second sample Y of size 2n from PY ∈ P which
corresponds to the known null distribution in the case of GoF and is unknown in the case of
TS, LFHT. Finally, for LFHT we have an additional sample Z of size 2m from PZ ∈ {PX,PY}.
Write Dtr =.. {X tr, Y tr, Ztr} for the first halves of each sample and Dte =.. {X te, Y te, Zte} for the
rest. We train a classifier C : X → {0, 1} on the input Dtr that aims to assign 1 to PX and 0 to
PY. Going forward, it will be easier to think of C in terms of the ‘separating set’ S =.. C−1({1}).
Thus, S is a random subset of X whose randomness comes from Dtr and potentially an
external seed. Given two datasets {Ai}ai=1, {Bj}bj=1, we define the classifier-accuracy statistic

TS(A,B) =..
1

a

a∑
i=1

1{Ai ∈ S} −
1

b

b∑
j=1

1{Bj ∈ S}. (4.1.2)

The name ‘classifier-accuracy’ is given due to the fact that TS(X te, Y te) + 1 is equal to the
sum of the fraction of correctly classified test instances under the two classes. Finally, we
say a test is a classifier-accuracy test if its output is obtained by thresholding |TS| for some
classifier C = 1S on the test data Dte.

Theorem 4.1.1 (informal). There exist classifier-accuracy tests with minimax (near-)optimal
sample complexity for all problems GoF,TS, LFHT and multiple classes of distributions P.

4.1.2 Proof sketch

The bulk of the technical difficulty lies in finding a good separating set S ⊆ X . But how do
we measure the quality of S? Define the “separation” sep(S) =.. PX(S)−PY(S), and the “size”
τ(S) =.. min{PX(S)PX(S

c),PY(S)PY(S
c)}. The following lemma describes the performance

of classifier-accuracy tests (4.1.2) in terms of sep and τ .

Lemma 4.1.2. Consider the hypothesis testing problem H0 : p = q versus an arbitrary
alternative H1. Suppose that the learner has constructed a separating set S such that | sep(S)| =
|p(S)− q(S)| ≥ sep for every (p, q) ∈ H1, and τ(S) = (p(S)(1− p(S))∧ (q(S)(1− q(S))) ≤ τ
for every (p, q) ∈ H0 ∪H1. Then using only the knowledge of τ , the classifier-accuracy test
(4.1.2) with n test samples from both p and q and an appropriate threshold achieves type-I
and type-II errors at most δ, provided that

n ≥ c
log(1/δ)

sep

(
1 +

τ

sep

)
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for a large enough universal constant c > 0.

With Lemma 4.1.2 in hand it is clear how we need to design S. It should satisfy∣∣ sep(S)∣∣ is big under H1, and τ(S) is small under both H0 and H1 (4.1.3)

with probability 1− δ. The latter condition, namely that τ is small i.e. C = 1S is imbalanced,
may seem unintuitive as given any two (sufficiently regular) probability distributions there
always exists a balanced classifier whose separation is optimal up to constant.

Proposition 4.1.3. Let P,Q be two distributions on a generic probability space (X ,F). Then

TV(P,Q) ≤ 2 sup{P(C(X) = 0)− Q(C(X) = 0) : P(C(X) = 0) = Q(C(X) = 1)},

where C : X → {0, 1} is a possibly randomized classifier. Here the constant 2 is tight.

Despite Proposition 4.1.3, we find that choosing a highly imbalanced classifier C is crucial
in obtaining the minimax sample complexity in some classes. This has interesting implications
for practical classifier-accuracy testing. Indeed, classifiers are commonly trained to minimize
some proxy of misclassification error; however, the above heuristics show that this is not
necessarily optimal, instead one should seek imbalanced classifiers with large separation.
Another way to phrase it is that when training a classifier for testing one should have the
downstream task in mind, namely, maximizing the power of the resulting test, and not
classification accuracy.

4.1.3 Prior work and contribution

The problem of two-sample (TS) testing (aka closeness testing) and the related problem of
goodness-of-fit (GoF) testing (aka identity testing) has a long history in both statistics and
computer science. We only mention a small subset of the literature, directly relevant to our
work. In seminal works Ingster studied (GoF) for the Gaussian sequence model [112, 113]
and for smooth densities [110] in one dimension. Extensions to multiple dimensions and (TS)
can be found in works such as [139, 10]. For discrete distributions on a large alphabet the
two problems appeared first in [81, 20], see also [39, 199] and the survey [36]. Recent work
[63, 62] has focused on GoF and TS with vanishing error probability.

The problem of likelihood-free hypothesis testing appeared first in the works [212, 90], who
studied the asymptotic setting. Minimax likelihood-free hypothesis testing (LFHT) was first
studied by the information theory community in [123, 124] for a restricted class of discrete
distributions on a large alphabet, with a strengthening by [102] to vanishing error probability
(in some regimes). More recently, the problem was proposed in [77] as a simplified model
of likelihood-free inference, and authors derived minimax optimal sample complexities for
constant error in the settings studied in the present paper.

The idea of using classifiers for two-sample testing was proposed in [72] and has seen
a flurry of interest [83, 144, 126, 94]. In likelihood-free inference the output of classifiers
can be used as summary statistics for Approximate Bayesian Computation [117, 91] or to
approximate density ratios [51] via the ’likelihood-ratio trick’. A classifier with binary {0, 1}
output was used in the discovery of the Higgs boson [40, 5] to determine the detection region.
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Our work is the first to study the non-asymptotic properties of classifier-based tests in any
setting and we find that classifier-accuracy tests are minimax optimal for a wide range of
problems. As a consequence of our results we resolve the minimax high probability sample
complexity of LFHT over all classes studied, and also obtain new, tight results on high
probability GoF and TS.

4.1.4 Structure

In Sections 4.2.1 and 4.2.1 we define the statistical problems and distribution classes we
study. In Tables 4.1 and 4.2 we present all sample complexity results, and in Section 4.2.2 we
indicate how to derive them. Sections 4.3.1, 4.3.2 and 4.3.3 study the problem of learning
good separating sets for discrete and smooth distributions and the Gaussian sequence model
respectively. The appendix contains all proofs omitted from the main text, including all lower
bounds in Appendix C.4.

4.2 Results

4.2.1 Technical preliminaries

Two-sample, goodness-of-fit and likelihood-free hypothesis testing

Formally, we define a hypothesis as a set of probability measures. Given two hypotheses
H0 and H1 consisting of distributions on some measurable space X , we say that a function
ψ : X → {0, 1} tests the two hypotheses against each other with error at most δ ∈ (0, 1/2) if

max
i=0,1

max
P∈Hi

PS∼P (ψ(S) ̸= i) ≤ δ. (4.2.1)

Throughout the remainder of this section let P be a class of probability distributions on
X . Suppose we observe independent samples X ∼ P⊗n

X , Y ∼ P⊗n
Y and Z ∼ P⊗m

Z whose
distributions PX,PY,PZ ∈ P are unknown to us. We now define the problems at the center
of our work.

Definition 6. Given a known P0 ∈ P, goodness-of-fit testing is the comparison of

H0 : PX = P0 versus H1 : TV(PX,P0) ≥ ϵ (GoF)

based on the sample X. Write nGoF(ϵ, δ,P) for the smallest number such that for all n ≥ nTS

there exists a function ψ : X n → {0, 1} which given X as input tests between H0 and H1 with
error probability at most δ, for arbitrary PX,P0 ∈ P.

Definition 7. Two-sample testing is the comparison of

H0 : PX = PY versus H1 : TV(PX,PY) ≥ ϵ (TS)

based on the samples X, Y . Write nTS(ϵ, δ,P) for the smallest number such that for all
n ≥ nTS there exists a function ψ : X n×X n → {0, 1} which given X, Y as input tests between
H0 and H1 with error probability at most δ, for arbitrary PX,PY ∈ P.
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Definition 8. Likelihood-free hypothesis testing is the comparison of

H0 : PZ = PX versus H1 : PZ = PY (LF)

based on the samples X, Y, Z. Write RLF(ϵ, δ,P) ⊆ R2 for the maximal set such that for
all (n,m) ∈ N2 with n ≥ x,m ≥ y for some (x, y) ∈ RLF, there exists a function ψ :
X n ×X n ×Xm → {0, 1} which given X, Y, Z as input, successfully tests H0 against H1 with
error probability at most δ, provided TV(PX,PY) ≥ ϵ and PX,PY ∈ P.

Classes of distributions

We consider the following nonparametric families of distributions.
Smooth density. Let C(β, d, C) denote the set of functions f : [0, 1]d → R that are
⌈β − 1⌉-times differentiable and satisfy

∥f∥Cβ =.. max

(
max

0≤|α|≤⌈β−1⌉
∥f (α)∥∞, sup

x ̸=y∈[0,1]d,|α|=⌈β−1⌉

|f (α)(x)− f (α)(y)|
∥x− y∥β−⌈β−1⌉

2

)
≤ C,

where ⌈β − 1⌉ denotes the largest integer strictly smaller than β and |α| =
∑d

i=1 αi for the
multiindex α ∈ Nd. We write PH(β, d, CH) for the class of distributions with Lebesgue-densities
in C(β, d, CH).
Distributions on a finite alphabet. For k ∈ N, let

PD(k) =.. {all distributions on the finite alphabet [k]},
PDb(k, CDb) =.. {p ∈ PD(k) : ∥p∥∞ ≤ CDb/k},

where CDb > 1 is a constant. In other words, PDb are those discrete distributions that are
bounded by a constant multiple of the uniform distribution.
Gaussian sequence model on the Sobolev ellipsoid. Define the Sobolev ellipsoid
E(s, C) of smoothness s > 0 and size C > 0 as {θ ∈ RN :

∑∞
j=1 j

2sθ2j ≤ C}. For θ ∈ R∞ let
µθ = ⊗∞

i=1N (θi, 1), and define our second class as

PG(s, CG) =.. {µθ : θ ∈ E(s, CG)} .
To briefly motivate the study of PG, consider the classical Gaussian white noise model. Here
we have iid observations of the stochastic process

dYt = f(t)dt+ dWt, t ∈ [0, 1],

where (Wt)t≥0 denotes Brownian motion and f ∈ L2[0, 1] is unknown. Suppose now that
{ϕi}i≥1 forms an orthonormal basis for L2[0, 1] and given an observation Y define the values

yi =.. ⟨Y, ϕi⟩ =
∫ 1

0

f(t)ϕi(t)dt+

∫ 1

0

ϕi(t)dWt =.. θi + ϵi.

Notice that ϵi ∼ N (0, 1) and that E[ϵiϵj] = 1i=j. In other words, the sequence {yi}i≥1

is an observation from the distribution µθ. Consider the particular case of ϕ1 ≡ 1 and
ϕ2k =

√
2 cos(2πkx), ϕ2k+1 =

√
2 sin(2πkx) for k ≥ 1 and assume that f satisfies periodic

boundary conditions. Then θ denotes the Fourier coefficients of f and the condition that∑∞
j=1 j

2sθ2j ≤ C is equivalent to an upper bound on the order (s, 2)-Sobolev norm of f , see
e.g. Proposition 1.14 of [198]. In other words, by studying the class PG we can deduce results
for signal detection in Gaussian white noise, where the signal has bounded Sobolev norm.
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Table 4.1: Minimax sample complexity of testing (up to constant factors) over PH,PG,PDb.

nGoF nTS RLF

PDb(k)

√
k log(1/δ)

ϵ2
+ log(1/δ)

ϵ2
nGoF m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

PH(β, d)

√
log(1/δ)

ϵ(2β+d/2)/β + log(1/δ)
ϵ2

nGoF m ≥ log(1/δ)
ϵ2

and n ≥ nGoF and nm ≥ n2
GoF

PG(s)

√
log(1/δ)

ϵ(2s+1/2)/s +
log(1/δ)

ϵ2
nGoF m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

Table 4.2: Minimax sample complexity of testing (up to constant factors) over PD.

nGoF(PD) nTS(PD)

n ≥ m m ≥ log(1/δ)

ϵ2
and mn2 ≥ kn2

GoF

(OPT)mn2 ≥ kn2
GoF and n ≥ nGoF

(CAT)nGoF

(
ϵ

log(k)
, δ
k
,PDb

)
(CAT)

mn2

log( k
δ )

≥ kn2
GoF

(
ϵ

log(k)
, δ
k

)
and n ≥ nGoF(

ϵ
log(k)

, δ
k
)

k <
log( 1

δ )
ϵ4

nGoF(PDb) nGoF(PDb)

RLF(PD)

k ≥ log( 1
δ )

ϵ4

(OPT)nGoF(PDb) (
k2 log( 1

δ )
ϵ4

) 1
3

m > n

m ≥ log(1/δ)

ϵ2
and n ≥ nGoF and nm ≥ n2

GoF

4.2.2 Minimax sample complexity of classifier-accuracy tests

In Tables 4.1 and 4.2 we present our and prior results on the minimax sample complexity of
GoF,TS and LFHT; here

• unmarked entries denote minimax optimal results achievable by a classifier-accuracy
test;

• entries marked with (OPT) denote minimax optimal results that are not known to be
achievable by any classifier-accuracy test;

• entries marked with (CAT) denote the best known result using a classifier-accuracy test.

In the constant error regime (δ = Θ(1)) the results of Tables 4.1 and 4.2 are well known;
for instance, the sample complexities of GoF, TS, and LFHT under PD were characterized in
[162, 25, 77], respectively1. Less is known under the high-probability regime (δ = o(1)): for
PD, nGoF was characterized in [103, 63] for uniformity testing, with the general case following
from the flattening reduction [64]; nTS was characterized in [62]. For RLF, the k > n case
for PDb is resolved by [102], and the achievability direction of the case m > n of RLF for PD

can be deduced from [62] via the natural reduction between TS and LFHT (see [77]). The
1[77] only resolved the minimax sample complexity of LFHT for PD up to log(k)-factors in some regimes.

However, by combining the classifier accuracy tests of this paper for m ≤ n and the reduction to two-sample
testing with unequal sample size [25, 62] for m > n these gaps are filled.
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remaining upper bounds are achievable by the classifier-accuracy tests below, and the proofs
of all lower bounds are deferred to Appendix C.4.

As for the efficacy of classifier-accuracy tests, the upper bounds in Tables 4.1 and 4.2
follow from the combination of Lemma 4.1.2 and the following results:

• PDbPDbPDb : see Corollary 4.3.4;

• PHPHPH : see Section 4.3.2 and Corollary 4.3.4;

• PGPGPG : see Proposition 4.3.8;

• PDPDPD : for GoF, see Proposition 4.3.1 if k < log(1/δ)/ϵ4, and Proposition 4.3.6 otherwise;
for TS, see Proposition 4.3.1; for LFHT, see Proposition 4.3.1 if n ≥ k ∧m, and Section
4.3.1 and Proposition 4.3.6 otherwise.

4.3 Learning separating sets

In this section, we construct the separating sets S used in the classifier-accuracy test (4.1.2).
Section 4.3.1 is devoted to discrete distribution models PDb and PD, where we need a delicate
tradeoff between the expected separation and the size of S. A similar construction in the
Gaussian sequence model PG is presented in Section 4.3.3.

4.3.1 The discrete case

Given two iid samples X, Y of sizes NX , NY
iid∼ Poi(n) from unknown discrete distributions

p = (p1, . . . , pk), q = (q1, . . . , qk) over a finite alphabet [k] = {1, 2, . . . , k}, can we learn
a set Ŝ ⊆ [k] using X, Y that separates p from q? To measure the quality of a given
separating set A ⊆ [k], we define two quantities sep(A) =.. p(A) − q(A) and τ(A) =..

min{p(A)p(Ac), q(A)q(Ac)}. Intuitively, the first quantity sep(A) measures the separation
of A, and the second quantity τ(A) measures the size of A. Recall that by Lemma 4.1.2, in
order to perform the classifier-accuracy test (4.1.2), we aim to find a separating set Ŝ such
that

| sep(Ŝ)| is large and τ(Ŝ) is small. (4.3.1)

The rest of this section is devoted to the construction of Ŝ satisfying (4.3.1), and we will
present our results on learning separating sets in order of increasing complexity.

Notation: for a random variable X we write σ2(X) for the optimal sub-Gaussian variance
proxy of X. In other words, σ2(X) is the smallest value such that E exp(λ(X − EX)) ≤
exp(λ2σ2(X)/2) holds for all λ ∈ R.

A natural separating set

Let {Xi, Yi}i∈[k] be the empirical frequencies of each bin i ∈ [k] in our samples X, Y , i.e.
nXi ∼ Poi(npi) and nYi ∼ Poi(nqi). A natural separating set is the following:

Ŝ1/2 =.. {i : Xi > Yi or Xi = Yi and Ci = 1},
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where C1, C2 . . . Ck are iid Ber(1/2) random variables. We use the subscript “1/2” to illustrate
our tie-breaking rule: when Xi = Yi, the symbol i is added to the set with probability 1/2.

Our first result concerns the separating power of the above set.

Proposition 4.3.1. Suppose p, q ∈ PD(k) with TV(p, q) ≥ ϵ. There exists a universal
constant c > 0 such that

P

(
sep(Ŝ1/2) ≥ cϵ2

(
n

k
∧
√
n

k
∧ 1

ϵ

))
≥ 1− δ,

provided n ≥ 1
c
nTS(ϵ, δ,PD(k)).

Together with the trivial upper bound τ(Ŝ1/2) ≤ 1/4, Proposition 4.3.1 and Lemma 4.1.2
imply that using Ŝ1/2 achieves the minimax sample complexity for the following problems:

• GoF in PDb and PD as long as k = O(log(1/δ)/ϵ4);

• TS in PDb as long as k = O(log(1/δ)/ϵ4), and in PD for all (k, ϵ, δ);

• LFHT in PDb as long as k = O(log(1/δ)/ϵ4), and in PD as long as n ≥ m.

However, in the remaining regimes the above test could be strictly sub-optimal. This
failure comes down to two issues. First, Proposition 4.3.1 requires n ≳ nTS(ϵ, δ,PD(k)) in
order to find a good separating set, which can be sub-optimal when the optimal sample
complexity for the original testing problem is only n ≳ nGoF(ϵ, δ,PD(k)). Second, the quantity
τ(Ŝ1/2) is Ω(1) in the general case because the tie-breaking rule adds too many symbols to
the set. These issues will be addressed separately in the next two sections.

The “better of two” separating sets

This section aims to find a separating set Ŝ with essentially the same separation as Ŝ1/2 in
Proposition 4.3.1, but with a smaller τ(Ŝ). The central idea is to use a different tie-breaking
rule from Ŝ1/2. Given a subset D ⊆ [k], we define the imbalanced separating sets

Ŝ>(D) = {i ∈ D : Xi > Yi},
Ŝ<(D) = {i ∈ D : Xi < Yi}.

In other words, in both Ŝ> and Ŝ<, we do not include the symbols with Xi = Yi in the
separating set. Consequently, |Ŝ>(D)| ∨ |Ŝ<(D)| is upper bounded by the sample size; if
in addition qi is bounded from above uniformly over i ∈ D, this will yield good control
of τ for both separating sets Ŝ>(D) and Ŝ<(D). In particular, τ(Ŝ>(D)) ∨ τ(Ŝ<(D)) =
O(1 ∧ (nmaxi∈D qi)).

Next we aim to show that the above sets achieve good separation. However, there is a
subtlety here: removing the ties from Ŝ1/2 may no longer guarantee the desired separation,
as illustrated in the following proposition.
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Proposition 4.3.2. Consider the distributions p, q on [3k] with pi = 1{i ≤ k}/(2k) + 1{i >
k}/(4k) and qi = 1{i ≤ k}/k. Then, for n ≤ 0.6k,

E sep(Ŝ>([3k])) < 0.

Proposition 4.3.2 shows that sticking to only one set Ŝ> or Ŝ< fails to give the same
separation guarantees as Proposition 4.3.1. A priori it may seem that Ŝ> is designed to
capture elements of the support where p is greater than q, but it fails to do so spectacularly.
An intuitive explanation of this phenomenon is as follows. Since the probability of each bin
is small (≲ 1/k) under both p and q, in the small n regime2 can expect that (a) each bin
appears either once or not at all and (b) there is no overlap between the observed bins in
sample X and Y . In this heuristic picture, the set Ŝ> is simply the set of observed bins in the
X-sample. Each X-sample falling in the first k bins contributes − 1

2k
to the separation, while

each X-sample in the last 2k bins contributes only + 1
4k

to the separation. Since p puts mass
1/2 on both the first k and last 2k bins, there is an equal number of n/2 observations in each
part and the overall separation is ≍ − n

8k
. Similar results can be proved for Ŝ< with p, q as

above but swapped, and also for modified p, q separated by smaller ϵ in TV for any ϵ ∈ (0, 1).
Motivated by the above discussion, in the sequel we consider the sets Ŝ>, Ŝ< jointly.

Specifically, the next proposition shows that at least one of the sets Ŝ> and Ŝ< have a good
separation.

Proposition 4.3.3. There exists a universal constant c > 0 such that for any D ⊆ [k] and
probability mass functions p, q, it holds that

E
[
sep(Ŝ>(D))− sep(Ŝ<(D))

]
≥ c

∑
i∈D

n(pi − qi)2√
n(pi ∧ qi) + 1

∧ |pi − qi|,

σ2(sep(Ŝ>(D))) + σ2(sep(Ŝ<(D))) ≤ 1

c

∑
i∈D

pi + qi
n
∧ |pi − qi|2.

Based on Proposition 4.3.3, our final separating set is chosen from these two options, based
on evaluation on held out data. As for the choice of D, in this section we choose D = [k].
The following corollary summarizes the performance of this choice under PDb.

Corollary 4.3.4. Suppose p, q ∈ PDb(k,O(1)) with TV(p, q) ≥ ϵ. There exists a universal
constant c > 0 such that using the samples X, Y we can find a set Ŝ ⊆ [k] which, with
probability 1− δ, satisfies∣∣∣sep(Ŝ)∣∣∣ ≥ cϵ2

(
1

ϵ
∧
√
n

k
∧ n
k

)
and τ(Ŝ) ≤ 1

c

(
1 ∧ n

k

)
, (4.3.2)

provided n ≥ 1
c
nGoF(ϵ, δ,PDb(k,O(1))).

By Corollary 4.3.4 and Lemma 4.1.2, using the above set Ŝ achieves the minimax sample
complexity for all problems GoF, TS, and LFHT and all parameters (k, ϵ, δ) under PDb.

2Technically, to satisfy the stated conditions we would require n ≲
√
k, but the described event captures

dominant effects even for larger
√
k ≪ n≪ k.
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However, under PD, the performance of Ŝ is no better than that of Ŝ1/2. This is because
a good control of τ(Ŝ>([k])) requires a bounded probability mass function; in other words,
choosing D = [k] is not optimal for finding the best separating set under PD. In the next
section, we address this issue by choosing D to be one of O(log k) subsets of [k].

The “best of O(log k)" separating sets

This section is devoted to the two missing regimes m ≥ n for LFHT over PD and k ≳
log(1/δ)/ϵ4 for GoF over PD (cf. discussion after Proposition 4.1.3 and Corollary 4.3.4).
For the former, recall that the classifier-accuracy test based on Ŝ1/2 achieves the sample
complexity

n ≳ nGoF(ϵ, δ,PD) +
k
√
log(1/δ)√
nϵ2

. (4.3.3)

If n ≳ k then (4.3.3) is the same as n ≳ nGoF; if m/ log(1/δ) ≲ n then (4.3.3) is implied by
n ≳ nGoF +

k log(1/δ)√
mϵ2

, which is optimal within an O(log1/2(1/δ)) factor (cf. Table 4.2). In our
application to GoF we take m = ∞, and the missing regime k ≳ log(1/δ)/ϵ4 corresponds
precisely to nGoF ≲ k. Summarizing, in the remainder of this section we may assume that
k ∧ (m/ log(1/δ)) ≳ n.

Let t = k ∧ (c0m/ log(1/δ)), where c0 > 0 is a small absolute constant. By the previous
paragraph, we assume without loss of generality that t > n. For ℓ = ⌈log2(t/n)⌉ ≥ 1, define
the following ℓ+ 2 subsets of [k]:

D0 =

{
i : q̂0i ≤

1

t

}
, Dj =

{
i : q̂0i ∈

(2j−1

t
,
2j

t

]}
for j ∈ [ℓ], Dℓ+1 =

{
i : q̂0i >

2ℓ

t

}
.

Here q̂0i denotes the empirical pmf of m/2 held out samples drawn from q (for GoF, one can
understand q̂0i = qi for the distribution q is known). The motivation behind the above choices
is the “localization” of each q̂0i , as shown in the following lemma.

Lemma 4.3.5. For a small enough universal constant c0 > 0, with probability at least 1− kδ
it holds that for each i ∈ [k]:

1. if q̂0i ∈ D0, then qi < 2/t;

2. if q̂0i ∈ Dj for some j ∈ [ℓ], then qi ∈ (2j−2/t, 2j+1/t];

3. if q̂0i ∈ Dℓ+1, then qi > 2ℓ−1/t.

Lemma 4.3.5 ensures that with high probability, the distribution q restricted to each set
Dj is near-uniform. This is similar in spirit to the idea of flattening used in distribution
testing [64]. The proof of Lemma 4.3.5 directly follows from the Poisson concentration in
Lemma C.1.3 and is thus omitted.

Our main result of this section is the next proposition, which shows that there exist
some j ∈ {0, 1, · · · , ℓ+ 1} and Ŝ ⊆ Dj such that Ŝ is a near-optimal separating set within
logarithmic factors.
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Proposition 4.3.6. Suppose p, q ∈ PD(k) with TV(p, q) ≥ ϵ, and X, Y are n iid samples
drawn from p, q respectively. There exists a universal constant c > 0 such that using the
samples X, Y , we can find some j ∈ {0, 1, · · · , ℓ+1} and a set Ŝ ⊆ Dj which, with probability
1−O(kδ), satisfies∣∣∣sep(Ŝ)∣∣∣ ≥ c

(ϵ
ℓ

)2{ n/k if j = 0

n/
√
kt/2j if j ∈ [ℓ+ 1]

}
and τ(Ŝ) ≤ n2j

ct

provided that

n

√
1 ∧ m

log(1/δ)k
≥ 1

c
nGoF(ϵ/ℓ, δ,PD).

By Proposition 4.3.6 and Lemma 4.1.2, using the above set Ŝ leads to the following sample
complexity guarantee for the problems GoF and LFHT:

• for GoF under PD, it succeeds with n = Θ(nGoF(ϵ/ℓ, δ/k,PD)) observations, which is
within a multiplicative O(logΘ(1)(k)) factor of the minimax optimal sample complexity
in the missing k ≥ log(1/δ)/ϵ4 regime;

• for LFHT under PD andm ≥ n, it succeeds with n = Θ(nGoF(ϵ/ℓ, δ/k,PD)
√
k log(k/δ)/m)

observations, which is within a multiplicative O(logΘ(1)(k) log(k/δ)) factor of the mini-
max optimal sample complexity in the missing n ≤ m ∧ k.

Therefore, classifier-accuracy tests always lead to near-optimal sample complexities for all
GoF,TS, and LFHT problems under both PDb and PD, within polylogarithmic factors in
(k, 1/δ). We leave the removal of extra logarithmic factors for classifier-accuracy tests as an
open problem.

4.3.2 The smooth density case

We briefly explain how Corollary 4.3.4 can be used to learn separating sets between distri-
butions in the class PH of β-Hölder smooth distributions on [0, 1]d. The reduction relies on
an approximation result due to Ingster [110, 113], see also [10, Lemma 7.2]. Let Pr be the
L2-projection onto piecewise constant functions on the regular grid on [0, 1]d with rd cells.

Lemma 4.3.7. There exist constants c1, c2 independent of r such that for any f ∈ PH(β, d, CH),

∥Prf∥2 ≥ c1∥f∥2 − c2r−β.

For simplicity write f, g for the Lebesgue densities of PX,PY ∈ PH. Suppose TV(PX,PY) =
1
2
∥f − g∥1 ≥ ϵ. By Jensen’s inequality and Lemma 4.3.7, ϵ ≲ ∥Pr(f − g)∥2 for r ≍ ϵ−1/β. The

key observation is that Prf is essentially the probability mass function of the distribution PX

when binned on the regular grid with rd cells. We can now directly apply the results for PDb

(Corollary 4.3.4) with alphabet size k ≍ ϵ−d/β, which combined with Lemma 4.1.2 leads to
the sample complexity guarantees in Table 4.1 for the smooth density class PH in all three
problems GoF,TS and LFHT.
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4.3.3 The Gaussian case

Suppose we have two samples X, Y of size n from ⊗∞
j=1N (θXj , 1) =: µθX and µθY respectively,

where θX , θY have Sobolev norm ∥θ∥2s =..
∑

j θ
2
j j

2s bounded by a constant. In addition,
TV(µθX , µθY ) ≥ ϵ > 0. We use θ̂X and θ̂Y to denote the empirical mean vector from samples
X and Y , respectively.

The separating set is constructed as follows:

Ŝ = {Z ∈ RN : T (Z) ≥ 0},

where T (Z) = 2
∑J

j=1(θ̂
X
j − θ̂Yj )(Zj − (θ̂Xj + θ̂Yj )/2) for some J ∈ N to be specified. This is

simply a truncated version of the likelihood-ratio test between µθ̂X and µθ̂Y , where we set all
but the first J coordinates of θ̂X and θ̂Y to zero. The performance of the separating set is
summarized in the next proposition.

Proposition 4.3.8. There exists universal constants c, c′ such that when J = ⌊cϵ−1/s⌋ the
inequality

P

(
µθX (Ŝ)− µθY (Ŝ) ≥ c′

(√
nϵ1/s ∧ 1

ϵ

)
ϵ2
)
≥ 1− δ

holds, provided n ≳ 1
c′
nTS(ϵ, δ,PG).

Applying Proposition 4.3.8 and Lemma 4.1.2 with the trivial bound τ(Ŝ) ≤ 1/4 leads to
the sample complexity guarantees in Table 4.1 for the Gaussian sequence model class PG in
all three problems GoF,TS and LFHT.
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Chapter 5

Density Estimation Using the Perceptron

This chapter is a reproduction of [75], which is joint work with Tianze Jiang, Yury Polyanskiy
and Rui Sun.

5.1 Introduction

A standard step in many machine learning algorithms is to replace an (intractable) opti-
mization over a general function space with an optimization over a large parametric class
(most often neural networks). This is done in supervised learning for fitting classifiers, in
variational inference [29, 207] for applying ELBO, in variational autoencoders [127] for fitting
the decoder, in Generative Adversarial Networks (GANs) [84, 11] for fitting the discriminator,
in diffusion models [184, 41] for fitting the score function, and many other settings.

To be specific, let us focus on the example of GANs, which brought about the new era
of density estimation in high-dimensional spaces. The problem setting is the following. We
are given access to an i.i.d. data X1, . . . , Xn ∈ Rd sampled from an unknown distribution
ν and a class of distributions G on Rd (the class of available “generators”). The goal of
the learner is to find argminν′∈G D(ν ′, ν), where D is some dissimilarity measure (“metric”)
between probability distributions. In the case of GANs this measure is the Jensen-Shannon
divergence JS(p, q) ≜ KL(p∥1

2
p+ 1

2
q) + KL(q∥1

2
p+ 1

2
q) where KL(p∥q) =

∫
p(x) log p(x)

q(x)
dx is

the Kullback-Leibler divergence. As any f -divergence, JS has a variational form [see 168,
Example 7.5]: JS(p, q) = log 2 + suph:Rd→(0,1) Ep[h] + Eq[log(1− h)] . With this idea in mind,
we can now restate the objective of minimizing JS(ν ′, ν) as a game between a “generator” ν ′
and a “discriminator” h, i.e., the GAN’s estimator is

ν̃ ∈ argmin
ν′

sup
h:Rd→(0,1)

1

n

n∑
i=1

h(Xi) + Eν′ [log(1− h)] , (5.1.1)

where we also replaced the expectation over (the unknown) ν with its empirical version
νn =.. 1

n

∑n
i=1 δXi

. Subsequently, the idea was extended to other types of metrics, notably the
Wasserstein-GAN [11], which defines

ν̃ ∈ argmin
ν′∈G

sup
f∈D

∣∣∣∣∣EY∼ν′f(Y )− 1

n

n∑
i=1

f(Xi)

∣∣∣∣∣ , (5.1.2)
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where the set of discriminators D is a class of Lipschitz functions (corresponding to the
variational characterization of the Wasserstein-1 distance).

The final step to turn (5.1.1) or (5.1.2) into an algorithm is to relax the domain of the inner
maximization (“discriminator”) to a parametric class of neural network discriminators D. Note
that replacing suph:Rd→(0,1) with suph∈D effectively changes the objective from minimizing the
JS divergence to minimizing a “neural-JS”, similar to how MINE [23] replaces the true mutual
information with a “neural” one. This weakening is quite worrisome for a statistician. While
the JS divergence is a strong statistical distance, as it bounds total variation from above and
from below [168, Eq. (7.39)], the “neural-JS” is unlikely to possess any such properties.

How does one justify this restriction to a simpler class D? A practitioner would say that
while taking maxh∈D restricts the power of the discriminator, the design of D is fine-tuned
to picking up those features of the distributions that are relevant to the human eye.1 A
theoretician, instead, would appeal to universal approximation results about neural networks
to claim that restriction to D is almost lossless.

The purpose of this paper is to suggest, and prove, a third explanation: the answer is in
the regularity of ν itself. Indeed, we show that the restriction of discriminators to a very
small class D in (5.1.1) results in almost no loss of minimax statistical guarantees, even if D
is far from being a universal approximator. That is, the minimizing distribution ν̃ selected
with respect to a weak form of the distance enjoys almost minimax optimal guarantees with
respect to the strong total variation distance, provided that the true distribution ν is regular
enough. Phrased yet another way, even though the “neural” distance is very coarse and
imprecise, and hence the minimizer selected with respect to it might be expected to only fool
very naive discriminators, in reality it turns out to fool any arbitrarily complex, but bounded
discriminator.

Let us proceed to a more formal statement of our results. One may consult Section 5.1.3
for notation. We primarily focus on two classes of distributions on Rd: first, PS(β, d, C)
denotes the set of distributions supported on the d-dimensional unit ball B(0, 1) that have a
density with finite L2 norm and whose (β, 2)-Sobolev norm, defined in (5.1.7), is bounded
by C; second, PG(d) = {µ ∗ N (0, 1) : supp(µ) ⊆ B(0, 1)} is the class of Gaussian mixtures
with compactly supported mixing distribution. We remind the reader that the total variation
distance has the variational form TV(p, q) = suph:Rd→[0,1] Eph− Eqh . Our first result concerns
the following class of discriminators:

D1 = {x 7→ 1{x⊤v ≥ b} : v ∈ Rd, b ∈ R} ,

the class of affine classifiers, which can be seen as a single layer perceptron with a threshold
non-linearity.

Theorem 5.1.1. For any β > 0, d ≥ 1 and C > 0, there exists a finite constant C1 so that

sup
ν∈PS(β,d,C)

ETV(ν̃, ν) ≤ C1n
− β

2β+d+1 , (5.1.3)

1Implying in other words, that whether or not total variation TV(ν̃, ν) is high is irrelevant as long as the
generated images look “good enough” to humans.
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where the estimator ν̃ is defined in (5.1.2) with D = D1 and G = PS(β, d, C). Similarly, for
any d ≥ 1 there exists a finite constant C2 so that

sup
ν∈PG(d)

ETV(ν̃, ν) ≤ C2
(log(n))

2d+2
4

√
n

,

where the estimator ν̃ is defined in (5.1.2) with D = D1 and G = PG(d).

Recall the classical result [107] which shows that the minimax optimal estimation rate in
TV over the class PS(β, d, C) equals n−β/(2β+d) up to constant factors. Thus, the estimator in
(5.1.3) is almost optimal, the only difference being that the dimension d is replaced by d+ 1.
Similarly, for the Gaussian mixtures we reach the parametric rate up to a polylog factor.2

The proof of Theorem 5.1.1 relies on a comparison inequality between total variation and
the “perceptron discrepancy”, or maximum halfspace distance, which we define as

dH(µ, ν) =.. sup
f∈D1

{Eµf − Eνf}.

Note first that dH ≤ TV clearly holds since all functions in the class D1 are bounded by
1. For the other direction, by proving a generalization of the Gagliardo-Nirenberg-Sobolev
inequality we derive the following comparisons.

Theorem 5.1.2. For any β > 0, d ≥ 1 and C > 0, there exists a finite constant C1 so that

TV(µ, ν)
2β+d+1

2β ≤ C1dH(µ, ν) (5.1.4)

holds for all µ, ν ∈ PS(β, d, C). Similarly, for any d ≥ 1 there exists a finite constant C2 such
that

TV(µ, ν) log

(
3 +

1

TV(µ, ν)

)− d+1
2

≤ C2dH(µ, ν)

holds for all µ, ν ∈ PG(d).

We remark that we also show (in Proposition 5.3.3) that the exponent 2β+d+1
2β

in (5.1.4) is
tight, i.e. cannot be improved in general.

With Theorem 5.1.2 in hand the proof of Theorem 5.1.1 is notably simple. For example,
let us prove (5.1.3) (for full details, see Section 5.4.2). Recall that Xi

iid∼ ν, νn is the empirical
distribution and ν̃ = argminν′∈PS

dH(ν
′, νn). We then have from the triangle inequality and

minimality of ν̃:
dH(ν̃, ν) ≤ dH(ν̃, νn) + dH(νn, ν) ≤ 2dH(νn, ν) .

Thus, from Theorem 5.1.2 we have

TV(ν̃, ν) ≤ (2C1dH(νn, ν))
2β

2β+d+1 . (5.1.5)
2For estimation of Gaussian mixtures in total variation the precise value of the minimax optimal polylog

factor is at present unknown. However, for the L2 distance the minimax rate is known, and in the course
of our proofs (see (5.3.5)) we show that our estimator only loses a multiplicative factor of log(n)1/4 in loss
compared to the optimal L2-rate log(n)d/4/

√
n derived in [125].
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Lastly, we recall that D1 is a class with finite VC-dimension and thus from uniform convergence
(Theorem 8.3.23, [201]) we have for some dimension-dependent constant C that

E[dH(νn, ν)] ≤
C√
n
.

Thus, applying expectation and Jensen’s inequality to (5.1.5) we get

E[TV(ν̃, ν)] ≤ CE[dH(νn, ν)
2β

2β+d+1 ] ≤ CE[dH(νn, ν)]
2β

2β+d+1 ≤ Cn− β
2β+d+1

as claimed.
While we believe that Theorem 5.1.1 provides theoretical proof for the efficacy of simple

discriminators, it has several serious theoretical and practical deficiencies that we now address.
First, the rate for the class PS is not minimax optimal. In this regard, we show that by
replacing the perceptron class D1 with a generalized perceptron

Dγ = {x 7→ |x⊤v − b|
γ−1
2 : v ∈ Rd, b ∈ R} , γ ∈ (0, 2)

and taking an average over Dγ instead of a supremum, we are able to achieve a total variation
rate of n−β/(2β+d+γ), thus coming arbitarily close to minimax optimality as γ → 0. See
Theorem 5.4.1 for details.3

Second, from the implementation point of view, the density estimation algorithm behind
Theorem 5.1.1 is completely impractical. Indeed, finding the halfspace with maximal sep-
aration between even two empirical measures is a nonconvex, non-differentiable problem
and takes super-poly time in the dimension d assuming P ̸= NP [89], and ω(dω(ϵ−1)) time for
ϵ-optimal agnostic learning between two densities assuming either SIVP or gapSVP [197].

Even if we disregard the computational complexity, it is unclear how to find the exact
minimizer ν̃ of argminν′ dH(ν

′, νn). This concern is alleviated by the fact that any ν̃ satisfying
dH(ν̃, νn) = O(

√
d/n) will work withouth degrading our performance guarantee, and thus

only an approximate minimizer is needed. Taking this one step further, our proof proceeds
by replacing the perceptron discrepancy dH (defined with respect to the best perceptron)
with an average version dH defined in (5.2.2), for which the comparison in Theorem 5.1.2
still holds. Therefore, one does not even need to find an approximately optimal half-space, as
random half-spaces provide sufficient discriminatory power.

Somewhat unexpectedly, we discover that the average perceptron discrepancy dH exactly
equals Székely and Rizzo’s energy distance E1 (Definition 1, [190]), defined as

E21 (µ, ν) ≜ E [2∥X − Y ∥ − ∥X −X ′∥ − ∥Y − Y ′∥] , (X,X ′, Y, Y ′) ∼ µ⊗2 ⊗ ν⊗2 , (5.1.6)

where ∥ · ∥ is the usual Euclidean norm on Rd. Thus, our Theorem 5.4.1 (with γ = 1) shows
that minimizing minν′ E1(ν ′, νn) gives a density estimator with rates over PS and PG as given
in Theorem 5.1.1.

From the algorithmic point of view our message is the following. If one has access to
a parametric family of generators sampling from νθ for parameters θ ∈ Rp, and if one can
compute ∇θ of the generator forward pass, e.g., via pushforward of a reference distribution
under a smooth transport map or neural network-based models [202, 147], then one can fit θ
to the empirical sample νn by running stochastic gradient descent steps:

3More precisely, within a polylog in n.
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• sample m samples from νθ and form the empirical distribution ν ′m,

• compute the loss E1(ν ′m, νn) and backpropagate the gradient with respect to θ,

• update θ ← θ − η∇θE1(ν ′m, νn) for some step size η.

Note that the computation of E1(ν ′m, νn) according to (5.1.6) requires O(n2 +m2) steps and
is friendly to gradient evaluations.

5.1.1 Contributions

To summarize, our main contributions are as follows. We show that β-smooth distributions,
Gaussian mixtures and discrete distributions that are far apart in total variation distance
must possess a halfspace on which their mass is substantially different (Theorems 5.1.2, 5.3.2
and 5.3.5).

We apply the separation results to density estimation problems, showing that an ERM
density estimator nearly attains the minimax optimal density estimation rate with respect to
TV over the aforementioned distribution classes (Theorems 5.1.1, 5.4.1 and 5.4.4).

In Section 5.2 we show that the average halfspace separation distance dH is equal up to
constant to the energy distance E1 (Proposition 5.2.2), which has many equivalent expressions:
as a weighted L2-distance between characteristic functions (Proposition 5.2.3), as the sliced
Cramér-2 distance (Proposition 5.2.5), as an IPM/MMD/energy distance (Section 5.2.3), and
as the L2-norm of the Riesz potential (Proposition 5.2.6).

We generalize the average halfspace distance dH to include an exponent γ ∈ (0, 2),
corresponding to the generalized energy distance Eγ. Consequently, we discover that if
instead of thresholded linear features 1{v⊤x > b} we use the non-linearity |v⊤x − b|γ,
smooth distributions and Gaussian mixtures can be separated even better (Theorem 5.3.2).
Combined with the fact that Eγ, similarly to dH , decays between population and sample
measures at the parametric rate (Lemma 5.2.4), the ERM for Eγ reduces the slack in the
density estimation rate, almost achieving minimax optimality. This result, combined with its
strong approximation properties, supports its use in modern generative models (e.g. [95, 84,
176, 172]).

Finally, Proposition 5.5.1 shows that recent work applying dH for two-sample testing is
sub-optimal over the class of smooth distributions in the minimax sense.

5.1.2 Related Work

In the statistics literature, an estimator of the form (5.1.2) appears in the famous work of
[206]. Instead of indicators of halfspaces, they consider the class of discriminators

Yϵ =.. {1{dνi/dνj ≥ 1} : 1 ≤ i, j ≤ N(ϵ,G)},

where ν1, . . . , νN(ϵ,G) forms a minimal ϵ-TV covering of the class G and N(ϵ,G) is the so-called
covering number. Writing dY (µ, µ

′) = supf∈Y(Eµf − Eµ′f), it is not hard to prove that
|TV−dY | = O(ϵ) on G×G and that EdY (ν, νn) ≲

√
logN(ϵn,G)/n by a union bound coupled

with a binomial tail inequality. From here ETV(ν̃, ν) ≲
√
logN(ϵ,G)/n + ϵ follows by the
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triangle inequality (here ν̃ is defined as in (5.1.2) with D = Y). Note that in contrast to
our perceptron discrepancy dH , Yatracos’ estimator attains the optimal rate on G = PS,
corresponding to the choice ϵ = ϵ(n) ≍ n−β/(2β+d).

The paper by [160] derives minimax density estimation guarantees for a class of diffusion
based estimators. Their result is similar to ours in that it obtains rigorous (near-)optimal
guarantees for a method that is a realistic model of what is currently done in practice.
However, their analysis relies crucially on the universal approximation property of neural
networks, as they must show that the true score function can be approximated to high
precision. This stands in contrast to the present paper: the discriminator class of halfspace
indicators that we study certainly does not have such a universal approximation property.
However, our analysis does require the generator network to be able to fit the data sufficiently
well.

Several other related works such as [181, 141] study the problem of minimax density
estimation over classical smoothness classes with respect to Integral Probability Metrics
(IPMs) dD(P,Q) =.. supf∈D |EPf−EQf |. In particular, these works seek estimators ν̃ such that
dD(ν̃, ν) is small for some discriminator D. Note some crucial differences to our work: first,
we evaluate performance with respect to total variation in Theorem 5.1.1 which bears more
interest both theoretically and empirically; second, we restrict our attention to estimators ν̃
attained by ERM which is more commonly used in practice.

A paper closer in spirit to ours is [12] whose authors study comparison inequalities between
the Wasserstein distance W1 and the IPM drelu defined by the discriminator class D = {x 7→
Relu(x⊤v + b) : b, ∥v∥ ≤ 1}. They show [12, Theorem 3.1] that

√
κ/dW1 ≲ drelu ≲ W1

for Gaussian distributions with mean in the unit ball, where κ is an upper bound on their
condition numbers and d is the dimension. They obtain results for other distribution classes
(Gaussian mixtures, exponential families), but for each of these they use a different class of
discriminators that is adapted to the problem. In contrast, we mainly focus the discriminator
class D1 = {x 7→ 1{x⊤v ≥ b} : ∥v∥ ≤ 1, b ∈ R} and are able to derive novel comparisons to
TV for smooth distributions, Gaussian mixtures and discrete distributions. In addition, we
prove the (near)-optimality of our results (for smooth densities) and also derive nonparametric
estimation rates for the corresponding GAN density estimators.

Independent of this work, recent results by [161] investigate the halfspace separability of
distributions for the setting of two-sample testing. However, their focus was on the asymptotic
power of the test as the number of samples grows to infinity. Our lower bound construction
presented in Appendix D.4 proves that their proposed test is sub-optimal in the minimax
setting. See Section 5.5 for a more detailed discussion.

5.1.3 Notation

The symbols O, o,Θ,Ω, ω follow the conventional “big-O" notation, and Õ, õ hide polylog-
arithmic factors. We use ≲, ≳ and ≍ throughout our calculations to hide multiplicative
constants that are irrelevant (depending on the context). Given a vector x ∈ Rd, we write
∥x∥ for its Euclidean norm and ⟨x, y⟩ =.. x⊤y for the Euclidean inner product of x, y ∈ Rd.
The Gamma function is denoted by Γ. We write B(x, r) =.. {y ∈ Rd : ∥x − y∥ ≤ r},
Sd−1 =.. {x ∈ Rd : ∥x∥ = 1} and σ for the unnormalized surface measure on Sd−1. The surface
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area of a unit (d− 1)-sphere is also written as σ(Sd−1) = 2πd/2/Γ
(
d
2

)
. In particular, if X is a

random vector uniformly distributioned on Sd−1 then for any h we have

E[h(X)] =
1

σ(Sd−1)

∫
Rd

h(y)dσ(y) .

The convolution between functions/measures is denoted by ∗. We write Lp(Rd) for the space
of (equivalence classes of) functions Rd → C that satisfy ∥f∥p =..

(∫
Rd |f(x)|pdx

)1/p
<∞. The

space of all probability distributions on Rd is denoted as P(Rd). For a signed measure ν we
write supp(ν) for its support and Mr(ν) =..

∫
∥x∥rd|ν|(x) for its r’th absolute moment. Given

P,Q ∈ P(Rd) we write TV(P,Q) =.. supA⊆Rd [P(A) − Q(A)] for the total variation distance,
where the supremum is over all measurable sets.

Given a function f ∈ L1(Rd), define its Fourier transform as

f̂(ω) =.. F [f ](ω) =..

∫
Rd

e−i⟨x,ω⟩f(x)dx.

Given a finite signed measure ν on Rd, define its Fourier transform as F [ν](ω) =..
∫

Rd e
−i⟨ω,x⟩dν(x).

We extend the Fourier transform to L2(Rd) and tempered distributions in the standard man-
ner. Given f ∈ L2(Rd) and β > 0, define its homogenous Sobolev seminorm of order (β, 2)
as

∥f∥2β,2 =..

∫
Rd

∥ω∥2β|f̂(ω)|2dω. (5.1.7)

Further, we define two specific classes of functions of interest as follows: PS(β, d, C) is a set
of smooth densities while PG(d) is a set of all Gaussian mixtures with support in the unit
ball, formally

PS(β, d, C) =.. {µ ∈ P(Rd) : supp(µ) ⊆ B(0, 1), µ has density p with ∥p∥β,2 ≤ C},
PG(d) =.. {ν ∗ N (0, Id) : ν ∈ P(Rd), supp(ν) ⊆ B(0, 1)}.

Assumption 3. Throughout the paper we assume that C in the definition of PS(β, d, C) is
large enough relative to β and d, such that PS(β, d, C/2) is non-empty.

5.1.4 Structure

The structure of the paper is as follows. In Section 5.2 we introduce the generalized energy
distance, the main object of our study. We show how it relates to the perceptron discrepancy
dH and its relaxation dH ; we record equivalent formulations of the generalized energy distance,
one of which is a novel “sliced-distance” form. In Section 5.3, we present our main technical
results on comparison inequalities between total variation and the energy distance. In
Section 5.4 we analyse the density estimator that minimizes the empirical energy distance,
and prove Theorem 5.1.1 and Theorem 5.1.2 in Section 5.4.2. In Section 5.5 we show that
the use of dH for two sample testing results in suboptimal performance. We conclude in
Section 5.6. All omitted proofs and auxiliary results are deferred to the Appendix.
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5.2 The Generalized Energy Distance

Given two probability distributions µ, ν on Rd with finite γ’th moment, the generalized energy
distance of order γ ∈ (0, 2) between them is defined as

Eγ(µ, ν) = E
[
2∥X − Y ∥γ − ∥X −X ′∥γ − ∥Y − Y ′∥γ

]
, where (X,X ′, Y, Y ′) ∼ µ⊗2 ⊗ ν⊗2.

(5.2.1)
As we alluded to in the introduction, the proof of Theorems 5.1.1 and 5.1.2 becomes possible
once we relax the supremum in the definition of dH to an unnormalized average over halfspaces.
In Section 5.2.1 we discuss this relaxation in more detail and identify a connection to the
energy distance E1 defined above in (5.2.1). Motivated by this, we study the (generalized)
energy distance and give multiple equivalent characterizations of it from Section 5.2.1 to
Section 5.2.5.

5.2.1 From Perceptron Discrepancy to Energy Distance

Our first goal is to connect the study of dH to the study of Eγ with γ = 1. To achieve this, we
introduce an intermediary, the “average” perceptron discrepancy dH . Given two probability
distributions µ, ν on Rd, we define

dH(µ, ν) =..

√∫
v∈Sd−1

∫
b∈R

(∫
⟨v,x⟩≥b

dµ(x)− dν(x)

)2

dbdσ(v), (5.2.2)

where σ denotes the surface area measure.
If the two distributions µ, ν are supported on a compact set, then the overall definition

can indeed be regarded as a ‘mean squared’ version of perceptron discrepancy, because the
integrals over b and v only range over bounded sets. However, in general, the integral over
b in the definition of dH is not normalizable and that is why we put “average” in quotes.
Nevertheless, we have the following comparisons between dH and dH .

Proposition 5.2.1. For any β > 0, d ≥ 1, C > 0, and for all µ, ν ∈ PS(β, d, C), we have√
Γ(d/2)

4πd/2
dH(µ, ν) ≤ dH(µ, ν). (5.2.3)

Moreover, for all d ≥ 1, there exists a finite constant C1 such that for all µ, ν ∈ PG(d),

dH(µ, ν)

log(3 + 1/dH(µ, ν))1/4
≤ C1dH(µ, ν).

Proof. The proof of (5.2.3) is immediate after noting that all distributions in PS(β, d, C) are
supported on the d-dimensional unit ball and that

∫
v∈Sd−1

∫ 1

−1
dbdσ(v) = 4πd/2/Γ(d/2). Thus,

we focus on the Gaussian mixture case. Write µ− ν = τ ∗ ϕ where ϕ denotes the density of
the standard Gaussian N (0, Id) and τ ∈ P(Rd) is the difference of the two implicit mixing
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measures. For any R > 0, we have

dH(µ, ν) ≥ sup
v∈Sd−1,|b|≤R

∫
⟨x,v⟩≥b

(τ ∗ ϕ)(x)dx

≥

√
1

2R vold−1(Sd−1)

∫
Sd−1

∫
|b|≤R

(∫
⟨x,v⟩≥b

(τ ∗ ϕ)(x)dx
)2

dbdσ(v).

Now, since τ is supported on a subset of B(0, 1) by definition of the class PG(d), for any
v ∈ Sd−1 and R ≥ 2 we have the bound∫

|b|>R

(∫
⟨x,v⟩≥b

∫
Rd

ϕ(x− y)dτ(y)dx
)2

db ≤
∫
|b|>R

(∫
⟨x,v⟩≥|b|

exp(−(∥x∥ − 1)2/2)dx

)2

db

≤
∫
|b|>R

(∫
∥x∥≥|b|

exp(−∥x∥2/8)dx
)2

db

≲ exp(−Ω(R2)),

where we implicitly used that
∫
dτ = 0 as τ is the difference of two probability distributions.

Choosing R ≍
√

log(3 + 1/dH(µ, ν)) concludes the proof.

Proposition 5.2.1 implies that to obtain a comparison between TV and dH , specifically for
lower bounding dH , it suffices to consider the relaxation dH instead. The next observation
we make is that dH is in fact equal, up to constant, to the energy distance.

Proposition 5.2.2. Let µ, ν be probability distributions on Rd with finite mean. Then

dH(µ, ν) =
π(d−1)/4√
Γ(d+1

2
)
E1(µ, ν).

Proof. This is a direct implication of (5.2.4) and (5.2.7). We defer the proof to the more
general Proposition 5.2.5.

As will be clear from the rest of the paper, it does pay off to study Eγ for general γ, even
though so far we only justified its relevance to the results stated in the introduction for the
case of γ = 1. With this in mind, we proceed to study various properties of the generalized
energy distances {Eγ}γ∈(0,2).

5.2.2 The Fourier Form

The formulation of the generalized energy distance that we rely on most heavily in our proofs
is the following.

Proposition 5.2.3 ([190, Proposition 2]). Let γ ∈ (0, 2) and let µ, ν be probability distributions
on Rd with finite γ’th moment. Then,

E2γ (µ, ν) = Fγ(d)

∫
Rd

|µ̂(ω)− ν̂(ω)|2

∥ω∥d+γ
dω, (5.2.4)

where we define Fγ(d) =
γ2γ−1Γ( d+γ

2 )
πd/2Γ(1− γ

2
)
.
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Remark 18. Note that Fγ(d) = Θ
(
γ(2− γ)Γ

(
d+γ
2

)
π−d/2) up to a universal constant.

This shows that the generalized energy distance is a weighted L2 distance in Fourier space.
The fact that Eγ is a valid metric on probability distributions with finite γ’th moment is a
simple consequence of Proposition 5.2.3.

5.2.3 The MMD and IPM Forms

Another interpretation of the generalized energy distance is through the theory of Maximum
Mean Discrepancy (MMD). Given a set X and a positive semidefinite kernel k : X 2 → R,
there is a unique reproducing kernel Hilbert space (RKHS) Hk consisting of the closure of the
linear span of {k(x, ·), x ∈ X} with respect to the inner product ⟨k(x, ·), k(y, ·)⟩Hk

= k(x, y).

For a probability distribution µ on X , define its kernel embedding as θµ =
∫

Rd k(x, ·)dµ(x).
As shown in [151, Lemma 3.1], the kernel embedding θµ exists and belongs to the RKHS
Hk if E[

√
k(X,X ′)] <∞ for (X,X ′) ∼ µ⊗2 — as is the case for our kernel defined later in

Equation (5.2.5). Then, given two probability distributions µ and ν, the MMD measures
their distance in the RKHS by

MMDk(µ, ν) =.. ∥θµ − θν∥Hk
.

We refer the reader to [179, 151] for more details on the underlying theory. MMD has a
closed form thanks to the reproducing property:

MMD2
k(P,Q) = E

[
k(X,X ′) + k(Y, Y ′)− 2k(X, Y )

]
,

where (X,X ′, Y, Y ′) ∼ µ2 ⊗ ν2. Moreover, it also follows that MMD is an Integral Probability
Metric (IPM) where the supremum is over the unit ball of the RKHS HK :

MMDk(µ, ν) = sup
f∈Hk:∥f∥Hk

≤1

E[f(X)− f(Y )].

In our case, we can define the kernel

kγ(x, y) = ∥x∥γ + ∥y∥γ − ∥x− y∥γ (5.2.5)

for γ ∈ (0, 2), which in one dimension corresponds to the covariance operator of fractional
Brownian motion. For a proof of the nontrivial fact that kγ above is positive definite see for
example [180]. With the choice of kγ it follows trivially from its definition that the generalized
energy distance Eγ is equal to the MMD with kernel kγ, i.e.

Eγ(µ, ν) = MMDkγ (µ, ν)

for all distributions µ, ν with finite γ’th moment. It is noteworthy that while dH is by
definition an IPM, so is its averaged version dH .

A straightforward consequence of the above characterization is the fact that Eγ decays
at the parametric rate between empirical and population measures. This is not terribly
surprising as analogous results hold for arbitrary MMDs with bounded kernel, see for example
[85, Theorem 7]. Recall that Mt(ν) denotes the t’th absolute moment of the measure ν.
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Lemma 5.2.4. Let ν be a probability distribution on Rd and let νn = 1
n

∑n
i=1 δXi

for an i.i.d.
sample X1, . . . , Xn from ν. Then, for any γ ∈ (0, 2),

EE2γ (ν, νn) ≤
2Mγ(ν)

n
.

For a high-probability bound when ν is compactly supported, see Lemma 5.4.5.

Proof. Let X̃1, . . . , X̃n be an additional i.i.d. sample from ν, and write ν̃n for the corresponding
empirical measure. Using the definition of Eγ in (5.2.1), we can compute

EE2γ (νn, ν̃n) = E
[ 2
n2

n∑
i=1

n∑
j=1

∥Xi − X̃j∥γ −
1

n2

n∑
i=1

n∑
j=1

∥X̃i − X̃j∥γ

− 1

n2

n∑
i=1

n∑
j=1

∥Xi −Xj∥γ
]

=
2

n
E∥X1 −X2∥γ.

The conclusion then follows from taking the expectation of the expression

E
[
E2γ (ν̃n, νn)

∣∣∣νn] = E2γ (ν, νn) + 1

n
E∥X1 −X2∥γ

and the inequality |x+ y|γ ≤ 2max{0,γ−1}(|x|γ + |y|γ) for all x, y ∈ R.

5.2.4 The Sliced Form

Another equivalent characterization of the generalized energy distance is in the form of a
sliced distance. Sliced distances are calculated by first choosing a random direction on the
unit sphere, and then computing a one-dimensional distance in the chosen direction between
the projections of the two input distributions. For γ ∈ (0, 2) define the function

ψγ(x) =

{
|x|(γ−1)/2 for γ ̸= 1

1{x ≥ 0} otherwise.
(5.2.6)

The following result, to the best of our knowledge, has not appeared in prior literature except
for the case of γ = 1.

Proposition 5.2.5. Let γ ∈ (0, 2) and let µ, ν be probability distributions on Rd with finite
γ’th moment. Then for (X, Y ) ∼ µ⊗ ν we have

E2γ (µ, ν) =
1

Sγ

∫
Sd−1

∫
R

[
Eψγ(⟨X, v⟩ − b)− Eψγ(⟨Y, v⟩ − b)

]2
dbdσ(v), (5.2.7)

where Sγ =
π

d
2+1Γ(1− γ

2
)

γ2γ−1Γ( d+γ
2

) cos2(
π(γ−1)

4
)Γ( 1−γ

2
)2

when γ ̸= 1 and S1 =
π

d−1
2

Γ( d+1
2

)
.

129



The proof of Proposition 5.2.5 hinges on computing the Fourier transform of the function
ψγ, which can be interpreted as a tempered distribution. We point out a special property
of the integral on the right hand side of (5.2.7). After expanding the square, one finds that
the individual terms in the sum are not absolutely integrable for γ ̸= 1. However, due to
cancellations within the squared quantity, the integral is finite.

As claimed, using the language of [152], Proposition 5.2.5 allows us to interpret Eγ as a
sliced probability divergence. Given v ∈ Sd−1, write θv = ⟨v, ·⟩ and θv#ν = ν ◦ θv for the
pushforward of ν under θv. We have

Sγ(d)E2γ (µ, ν) = Sγ(1)

∫
Sd−1

E2γ (θv#µ, θv#ν)dσ(v).

We may also observe that the energy distance E1 is equal to the sliced Cramér-2 distance up
to constant, which has been studied recently by both theoretical and empirical works [130,
131].4

5.2.5 The Riesz Potential Form

The generalized energy distance can also be linked to the Riesz potential [138, Chapter 1.1],
which is the inverse of the fractional Laplace operator. Given 0 < s < d, the Riesz potential
Isf of a compactly supported signed measure f on Rd is defined (in a weak sense) by

Isf = f ∗Ks,

where Ks(x) = c−1
s ∥x∥s−d and cs = πd/22sΓ(s/2)Γ((d− s)/2)−1. The Fourier transform of the

Riesz kernel is given by K̂s(ω) = ∥ω∥−s, interpreted as a tempered distribution. The following
proposition is derived by setting s = d+γ

2
and using the Fourier form (Proposition 5.2.3) of

the energy distance.

Proposition 5.2.6. Let γ ∈ (0,min{d, 2}) and let µ, ν be compactly supported probability
distributions on Rd. Then

Eγ(µ, ν) = (2π)d/2
√
Fγ(d)∥I d+γ

2
(µ− ν)∥2. (5.2.8)

5.3 Main Comparison: TV Versus Energy

After considering the connection of the perceptron discrepancy dH to the energy distance in
Section 5.2, we turn to some of our main technical results, which provide novel quantitative
comparisons between {Eγ}γ∈(0,2) and the total variation distance. In Section 5.3.1 we show
that the generalized energy distance is upper bounded by total variation for compactly
supported distributions. In Section 5.3.2 we derive lower bounds on the generalized energy
distance in terms of the total variation distance over the two distribution classes that we have
introduced, namely smooth distributions and Gaussian mixtures. Finally, in Section 5.3.3 we
turn to the case of discrete distributions, which requires alternative techniques.

4The Cramér-p distance is simply the Lp distance between cumulative distribution functions.
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5.3.1 Upper Bound — Compactly Supported Distributions

Note that we (obviously) always have dH(µ, ν) ≤ TV(µ, ν) for arbitrary probability measures
µ and ν. Moreover, for distributions supported on a unit ball we also have dH(µ, ν) ≲
dH(µ, ν). Therefore, by the identification of dH and E1 (Proposition 5.2.2), we can see that
for distributions with bounded support, we always have E1(µ, ν) ≲ TV(µ, ν) . The next result
generalizes this estimate for all Eγ, not just γ = 1.

Proposition 5.3.1. For any dimension d ≥ 1 and γ ∈ (0,min{d, 2}) there exists a finite
constant c such that for any two probability distributions µ, ν supported on the unit ball we
have

Eγ(µ, ν) ≤ cTV(µ, ν) .

Proof. Assume first that both µ, ν are absolutely continuous, and let f(x) = dµ
dx −

dν
dx and

ϵ = TV(µ, ν). By Equation (5.2.8), it suffices to upper bound ∥Isf∥2 for s = (d+ γ)/2. First
we decompose ∥Isf∥2 as

∥Isf∥2 ≤ ∥Isf1B(0,2)c∥2 + ∥Isf1B(0,2)∥2

by the triangle inequality. Let f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0} so that∫
f+(x)dx =

∫
f−(x)dx = ϵ. Since supp(f) ⊆ B(0, 1), for all ∥x∥ > 2 we have

csIsf(x) =

∫
f+(y)− f−(y)

∥x− y∥d−s
dy

≤
∫
f+(y)dy

(∥x∥ − 1)d−s
−
∫
f−(y)dy

(∥x∥+ 1)d−s

= ϵ

(
1

(∥x∥ − 1)d−s
− 1

(∥x∥+ 1)d−s

)
≤ ϵ

2(d− s)
(∥x∥ − 1)d−s+1

where the last line follows from the convexity of the function u 7→ us−d for u > 0. Thus, we
can upper bound ∥Isf 1B(0,2)c∥2 by

∥Isf 1B(0,2)c∥2 ≤
ϵ

cs

(∫
B(0,2)c

4(d− s)2

(∥x∥ − 1)2d−2s+2
dx
)1/2

=
2(d− s)

√
σ(Sd−1)ϵ

cs

(∫ ∞

2

ud−1

(u− 1)2d−2s+2
du
)1/2

≲ ϵ

where we discard a finite constant depending only on d and γ.
Next we need to estimate ∥Isf1B(0,2)∥2. Let q = 2

1−γ/d > 2 and let ∥ · ∥q,w denote the weak
q-norm. Define the distribution function λ(t) = m{x ∈ Rd : |Isf(x)1B(0,2)| > t} where m
is the Lebesgue measure on Rd. Because λ(t) ≤ min

(
t−q∥Isf1B(0,2)∥qq,w,m(B(0, 2))

)
for any

t ≥ 0, we have

∥Isf1B(0,2)∥2 =
(
2

∫ ∞

0

tλ(t)dt
) 1

2

≤ C2∥Isf1B(0,2)∥q,w
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where C2(d, γ) = ( q
q−2

)
1
2m(B(0, 2))

1
2
− 1

q . By the Hardy-Littlewood-Sobolev lemma [185,
Theorem V.1],

∥Isf∥q,w ≲ ∥f∥1 = 2ϵ,

where we again discard a constant depending on d and γ. Combining these inequalities
together, we get

∥Isf∥2 ≤ ∥Isf1B(0,2)c∥2 + ∥Isf1B(0,2)∥2 ≤ C(d, γ)ϵ

for some constant C(d, γ).
Finally, if either µ or ν does not have a density, we pick a positive mollifier ϕ ∈ C∞

c (Rd)
such that supp(ϕ) ⊆ B(0, 1), ϕ ≥ 0, and

∫
ϕ = 1 and set ϕη(x) = η−dϕ(x − η) for η > 0.

Consider µη = µ ∗ϕη and νη = ν ∗ϕη, which are both absolutely continuous and supported on
B(0, 1+η). By the first part of our proof so far we get Eγ(µη, νη) ≤ C(d, γ)(1+η)γ/2TV(µη, νη)
by a simple argument that rescales the two mollified distributions to be supported on the
unit ball. It is well known that µη → µ and νη → ν as η → 0 in a weak sense, thus by the
definition of Eγ(µη, νη) given in (5.2.1), we obtain Eγ(µη, νη)→ Eγ(µ, ν) as η → 0. Moreover,
we have TV(µη, νη) ≤ TV(µ, ν) by the data processing inequality, which concludes the proof.

5.3.2 Lower Bound — Smooth Distributions And Gaussian Mixtures

In Section 5.3.1 we showed that the energy distance is upper bounded by total variation for
compactly supported measures. In this section we look at the reverse direction, namely, we
aim to lower bound the energy distance by total variation.

Theorem 5.3.2. For any β > 0, d ≥ 1 and C > 0, there exists a finite constant C1 so that√
γ(2− γ)TV(µ, ν)

2β+d+γ
2β ≤ C1Eγ(µ, ν) (5.3.1)

for any µ, ν ∈ PS(β, d, C) and γ ∈ (0, 2). Similarly, for any d ≥ 1 there exists a finite
constant C2 such that √

γ(2− γ)TV(µ, ν)
log(3 + 1/TV(µ, ν))

2d+γ
4

≤ C2Eγ(µ, ν) (5.3.2)

for every µ, ν ∈ PG(d) and γ ∈ (0, 2).

Proof. Abusing notation, identify µ and ν with their Lebesgue densities. The argument
proceeds trough a chain of inequalities:

1. Bound TV by the L2 distance between densities.

2. Apply Parseval’s Theorem to pass to Fourier space.

3. Apply Hölder’s inequality with well-chosen exponents.
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Proof of (5.3.1). Jensen’s inequality implies that

2TV(µ, ν) = ∥µ− ν∥1 ≤
√

vol(B(0, 1))∥µ− ν∥2 ≲ ∥µ− ν∥2,

where vol denotes volume and we discard dimension-dependent constants. This completes
the first step of our proof. For the second step note that µ, ν ∈ L2(Rd) and we may apply
Parseval’s theorem to obtain

∥µ− ν∥22 =
1

(2π)d
∥µ̂− ν̂∥22.

For arbitrary φ > 0 and r ∈ [1,∞], Hölder’s inequality with exponents 1
r
+ 1

r∗
= 1 implies

that

∥µ̂− ν̂∥22 =
∫

Rd

|µ̂(ω)− µ̂(ω)|2∥ω∥
φ

∥ω∥φ
dω

≤
(∫

Rd

|µ̂(ω)− ν̂(ω)|2∥ω∥φrdω
)1/r (∫

Rd

|µ̂(ω)− ν̂(ω)|2

∥ω∥φr∗
dω

)1/r∗

.

(5.3.3)

Now, we choose φ and r to satisfy

φr = 2β

φr∗ = d+ γ.

The first equation ensures that the first integral term is bounded by ∥µ − ν∥2/rβ,2 , which is
assumed to be at most a d, β dependent constant. The second equation ensures that the
second integral term is equal to (Eγ(µ, ν)2/Fγ(d))1/r

∗ by Proposition 5.2.3. The solution to
this system of equations is given by r∗ = (2β + d+ γ)/(2β) and φ = 2β · d+γ

2β+d+γ
. Note that

clearly φ > 0 and r∗ ≥ 1. Thus, after rearrangement and using that Fd(γ) = Θ(γ(2− γ)) up
to a dimension dependent constant, we obtain√

γ(2− γ)∥µ̂− ν̂∥
2β+d+γ

2β

2 ≤ C1Eγ(µ, ν),

for a finite constant C1 = C1(d, β), concluding the proof.
Proof of (5.3.2). We write C(d) ∈ (0,∞) for a dimension dependent constant that may

change from line to line. The outline of the argument is analogous to the above, with the
additional step of having to bound the (β, 2)-Sobolev norm of the Gaussian density as β →∞
for which we rely on Lemma D.1.6. Let µ and ν have densities p ∗ ϕ and q ∗ ϕ, where ϕ is the
density of N (0, Id). Writing f = (p− q) ∗ ϕ, we can extend the proof of [116, Theorem 22] to
multiple dimensions to find, for any R > 2, that

2TV(µ, ν) = ∥µ− ν∥1 =
∫
∥x∥≤R

|(f ∗ ϕ)(x)| dx+
∫
∥x||>R

∣∣∣∣∫
Rd

ϕ(x− y)df(y)
∣∣∣∣ dx

≤
√

vold(B(0, R))

√∫
∥x∥≤R

|(f ∗ ϕ)(x)|2dx+
∫
∥x∥>R

exp(−∥x∥2/8)dx

≤ C(d)
(
Rd/2∥µ− ν∥2 + exp(−Ω(R2))

)
,
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where the second line uses that supp(f) ⊆ B(0, 1). Taking R ≍
√
log(3 + 1/∥µ− ν∥2) we

obtain the inequality

TV(µ, ν) ≤ C(d)∥µ− ν∥2 log(3 + 1/∥µ− ν∥2)d/4. (5.3.4)

By Hölder’s inequality we obtain

∥f̂∥2 ≤ ∥∥ω∥β f̂(ω)∥
d+γ

2β+d+γ

2

∥∥∥∥∥ f̂(ω)

∥ω∥ d+γ
2

∥∥∥∥∥
2β

2β+d+γ

2

= ∥∥ω∥β f̂(ω)∥
d+γ

2β+d+γ

2 · Eγ(µ, ν)
2β

2β+d+γ · Fγ(d)−
β

2β+d+γ

by Proposition 5.2.3. Using that |f̂ | ≤ |ϕ̂| and applying Lemma D.1.6, for β ≥ 1 we get

Fγ(d)
β

2β+d+γ ∥f̂∥2 ≤ Eγ(µ, ν)
2β

2β+d+γ

(
5πd/2

Γ(d/2)

(
2β + d

2e

) 2β+d−1
2

) d+γ
2(2β+d+γ)

.

Rearranging and using Parseval’s Theorem, we get

Eγ(µ, ν) ≥ C(d)
√
γ(2− γ)∥f∥2

∥f∥
d+γ
2β

2(
2β+d
2e

) (d+γ)(2β+d−1)
8β

for some d-dependent, albeit exponential, constant C(d) > 0. Plugging in β = log(3+1/∥f∥2)
and assuming that ∥f∥2 is small enough in terms of d, we obtain

Eγ(µ, ν) ≥
C(d)

√
γ(2− γ)∥f∥2

log(3 + 1/∥f∥2)
d+γ
4

≥
C(d)

√
γ(2− γ)TV(µ, ν)

log(3 + 1/TV(µ, ν))
2d+γ

4

, (5.3.5)

where the second inequality uses (5.3.4) and Lemma D.1.2.

Theorem 5.3.2 is our main technical result, which shows that Eγ is lower bounded by
a polynomial of the total variation distance for both the smooth distribution class PS
and Gaussian mixtures PG. Note also that in one dimension, (5.3.1) follows from the
Gagliardo–Nirenberg-Sobolev interpolation inequality. However, to our knowledge, the
inequality is new for d > 1. As for the tightness of Theorem 5.3.2, we manage to prove
that this inequality is the best possible for PS in one dimension, and best possible up to a
poly-logarithmic factor in dimension 2 and above.

Proposition 5.3.3. For any β > 0, d ≥ 1, γ ∈ (0, 2) and C > 0 satisfying Assumption 3,
there exists a finite constant C1 so that for any value of ϵ ∈ (0, 1), there exist µϵ, νϵ ∈
PS(β, d, C) such that TV(µϵ, νϵ)/ϵ ∈ (1/C1, C1) and

Eγ(µϵ, νϵ) ≤ C1TV(µϵ, νϵ)
2β+d+γ

2β log

(
3 +

1

TV(µϵ, νϵ)

)d−1

.

In the special case γ = 1 we obtain an even stronger notion of tightness.
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Proposition 5.3.4. When γ = 1 we may replace E1 by dH in Proposition 5.3.3.

Proposition 5.3.4 is an improvement over Proposition 5.3.3 due to the inequality dH ≲ dH
over the class PS(β, d, C), which follows from Proposition 5.2.1. It shows also that our
construction has the property that there does not exist any halfspace that separates µ and ν
better than our bounds suggest.

The proofs of both results are presented in Appendix D.4. The general idea is to saturate
Hölder’s inequality in (5.3.3), for which the Fourier transform of f = dν

dx
− dµ

dx
should be

supported on a sphere. However, such f clearly cannot be compactly supported. Thus the
actual construction is to multiply the Fourier inverse of the uniform measure on a sphere
with a compactly supported mollifier. In d > 1 the mollifier that we require must have
super-polynomial Fourier spectrum decay, for which we use the recent construction in [47].

5.3.3 Lower Bound — Discrete Distributions

Suppose we have two discrete distributions that are supported on a common, finite set of size
k. One way to measure the energy distance between them would be to identify their support
with the set {1, 2, . . . , k}, thereby embedding the two distributions in R, and applying the
one-dimensional energy distance.

While the above approach seems reasonable, it is entirely arbitrary. Indeed, there might
not be a natural ordering of the support; moreover, why should one choose the integers
between 1 and k instead of, say, the set {1, 2, 4, . . . , 2k}? The total variation distance does
not suffer from such ambiguities, and it is unclear how our choice of embedding affects the
relationship to TV. The following result attacks precisely this question.

Theorem 5.3.5. Let µ and ν be probability distributions supported on the set {x1, . . . , xk} ⊆
Rd and let δ = mini ̸=j ∥xi − xj∥. Then there exists a universal constant C > 0 such that

E21 (µ, ν) ≥
Cδ

k
√
d
TV2(µ, ν).

Proof. Let µ =
∑k

i=1 µiδxi and ν =
∑k

i=1 νiδxi . Then, by [15, Theorem 1] we have

E21 (µ, ν) = −
∑
i,j

(µi − νi)(µj − νj)∥xi − xj∥ ≥
Cδ√
d

k∑
i=1

(µi − νi)2 ≥
CδTV2(µ, ν)

k
√
d

as required.

Remark 19. Similar results can be proved for the generalized energy distance Eγ, using e.g.
the work [153]. However, to the best of our knowledge, these estimates degrade significantly
in the dimension d in contrast with [15].

Notice that by our discussion above, the support set {x1, . . . , xk} in Theorem 5.3.5 is
arbitrary and may be chosen by us. Since the scale of the supporting points x1, . . . , xk is
statistically irrelevant, we remove this ambiguity by restricting the points to lie in the unit
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ball, i.e. requiring that maxi ∥xi∥ ≤ 1. We see now that the comparison between E1 and TV
improves as δ/

√
d grows. Given a fixed value of δ, we want to make the dimension d of our

embedding as low as possible, which means that the points x1, . . . , xk should form a large
δ-packing of the d-dimensional unit ball. Due to well known bounds on the packing number
of the Euclidean ball, it follows that the best one can hope for is

log(k) ≍ d log(1/δ).

Maximizing δ/
√
d subject to this constraint yields the choice d = Θ(log(k)) and δ = Θ(1).

This gives us the following corollary.

Corollary 5.3.6. There exists a universal constant C ∈ (0,∞) such that for any k ≥ 1 there
exists a set of points x1, . . . , xk ∈ R⌈C log(k)⌉ with maxi ∥xi∥ ≤ 1 such that

E1

(
k∑
i=1

µiδxi ,

k∑
i=1

νiδxi

)
≥ TV(µ, ν)

C
√
k 4
√

log(k)

for any two probability mass functions µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk).

The question arises how the set of points x1, . . . , xk in Corollary 5.3.6 should be constructed.
One solution is to use an error correcting code (ECC), whereby we take the xi to be the
codewords of an ECC on the scaled hypercube 1√

d
{±1}d for some dimension d (known as

“blocklength” in this context). An ECC is asymptotically good if the message length log(k)
is linear in the blocklength d, that is d ≍ log(k), and if the minimum Hamming distance
between any two codewords is Θ(d), which translates precisely into δ = mini ̸=j ∥xi − xj∥ ≍ 1.
Many explicit constructions of asymptotically good error correcting codes exist, see [120] for
one such example, and random codes are almost surely good [17]. Clearly the better the code
is, the better the constants we obtain in Corollary 5.3.6.

Remark 20. One interesting consequence of Corollary 5.3.6 and the preceeding discussion is
the following: given a categorical feature with k possible values, the perceptron may obtain
better performance by identifying each category with the codewords x1, . . . , xk of an ECC
instead of the standard one-hot encoding.

5.4 Density Estimation

In this section we apply what we’ve learnt about the generalized energy distance and the
perceptron discrepancy in prior sections, and analyze multiple problems related to density
estimation.

5.4.1 Estimating Smooth Distributions and Gaussian Mixtures

Suppose that X1, . . . , Xn
iid∼ ν for some probability distribution ν on Rd. Given a class of

“generator” distributions G and γ ∈ (0, 2), define the minimum-Eγ estimator as

ν̃γ ∈ argmin
ν′∈G

Eγ(ν ′, νn), (5.4.1)
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where νn = 1
n

∑n
i=1 δXi

. Note that ν̃γ does not quite agree with our definition of ν̃γ in (5.1.2),
because the γ = 1 case minimizes the average halfspace distance dH ≍ E1 and not the
perceptron discrepancy dH . The following two results bound the performance of ν̃ as defined
in (5.4.1), as an estimator of ν for the smooth density class PS as well as the Gaussian
mixture class PG. In Section 5.4.2 we present the adapation of these to dH , thereby proving
Theorem 5.1.1.

Theorem 5.4.1. Let ν̃γ be the estimator defined in (5.4.1). For any β > 0, d ≥ 1 and C > 0,
there exists a finite constant C1 so that

sup
ν∈PS(β,d,C)

ETV(ν̃γ, ν) ≤ C1(nγ(2− γ))−
β

2β+d+γ (5.4.2)

holds for G = PS(β, d, C) and any γ ∈ (0, 2). Similarly, for any d ≥ 1 there is a finite
constant C2 such that

sup
ν∈PG(d)

ETV(ν̃γ, ν) ≤ C2ϕ(nγ(2− γ)) (5.4.3)

holds for G = PG(d) and any γ ∈ (0, 2), where ϕ(x) = log(3+x)
2d+γ

4√
x

.

Proof. Let us focus on the case G = PS(β, d, C) first and let t = 2β+d+γ
2β

. The inequality
Eγ(ν̃γ, νn) ≤ Eγ(ν, νn) holds almost surely by the definition of ν̃γ. Writing C1 = C1(β, d, C)
for a finite constant that we relabel freely, the first claim is substantiated by the chain of
inequalities

ETV(ν̃γ, ν)
Thm. 5.3.2
≤ E

[(
C1
Eγ(ν̃γ, ν)√
γ(2− γ)

)1/t ]
∆−ineq.
≤ E

[(
C1
Eγ(ν, νn) + Eγ(ν̃γ, νn)√

γ(2− γ)

)1/t ]
Eq. (5.4.1)
≤ E

[(
2C1

Eγ(ν, νn)√
γ(2− γ)

)1/t ]
Jensen’s
≤

(
2C1

EEγ(ν, νn)√
γ(2− γ)

)1/t

Lem. 5.2.4
≤

(
nγ(2− γ

8C2
1

)−1/2t

.

The result for G = PG follows analogously. Define the function r(x) = x
√
γ(2− γ)/ log(3 +

1/x)
2d+γ

4 . One can check by direct calculation that r is strictly increasing and convex on R+.
As a consequence, its inverse r−1 is strictly increasing and concave. Let C2 be a d-dependent
finite constant which we relabel repeatedly. Similarly to the case of smooth distributions
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covered above, using Theorem 5.3.2 and Jensen’s inequality we obtain the chain of inequalities

ETV(ν̃γ, ν) ≤ E
[
r−1

(
C2
Eγ(ν̃γ, ν)√
γ(2− γ)

)]
≤ r−1

(
C2

EEγ(ν̃γ, ν)√
γ(2− γ)

)

≤ r−1

(
2C2

EEγ(ν, νn)√
γ(2− γ)

)
≤ r−1

(
C2(nγ(2− γ))−1/2

)
.

The conclusion follows by Lemma D.1.2.

Notice that the rate of estimation of the minimum Eγ density estimator improves as γ ↓ 0,
and in fact seems to approach the optimum. However, simultaneously, the “effective sample
size” nγ shrinks. The best trade-off that we can derive is the following.

Corollary 5.4.2. The rate in (5.4.2) (resp. (5.4.3)) can be improved to (log(n)/n)β/(2β+d)

(resp.
log(n)d/4

√
log log n/

√
n) by adaptively setting γ = log(n)−1 (resp. γ = log log(n)−1).

5.4.2 Proof of Theorem 5.1.1 and Theorem 5.1.2

We already have everything needed to deduce Theorem 5.1.2. Since it is an exercise in
combining results, we simply list the required steps:

1. Use Theorem 5.3.2 to get a comparison between TV and Eγ.

2. Set γ = 1 and use Proposition 5.2.2 to get the equivalence between E1 and dH .

3. Use Proposition 5.2.1 to get a comparison between dH and dH .

Turning to the proof of Theorem 5.1.1, we find that it is completely analogous to the proof
of Theorem 5.4.1, with the only difference being that we can no longer rely on Lemma 5.2.4 to
show that the distance between empirical and population measures decays at the parametric
rate, as the latter applies to Eγ instead of dH . However, the corresponding result for dH is
well known.

Lemma 5.4.3. Let ν be a probability distribution on Rd and νn = 1
n

∑n
i=1 δXi

for i.i.d.
observations Xi ∼ ν. Then, for a finite universal constant C,

EdH(ν, νn) ≤ C

√
d

n
.

Proof. Follows for example from [201, p. 8.3.23] and the fact that Da, the family of halfspace
indicators, has VC dimension d+ 1.

With Lemma 5.4.3 in hand, completing the argument is straightforward: To deduce
Theorem 5.1.1 follow the same steps as in the proof of Theorem 5.4.1, except use Theorem 5.1.2
and Lemma 5.4.3 in place of Theorem 5.3.2 and Lemma 5.2.4 respectively.
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5.4.3 Estimating Discrete Distributions

In many practical machine learning tasks the data is discrete, albeit on a large alphabet
[k] = {1, 2, . . . , k}: for example, in recommender systems the alphabet could be all possible
ads, products or articles. A common idea to apply modern learning pipelines to such data is
to use an embedding E : [k]→ Rd, with “one-hot” encoding (d = k) being the most popular
choice. After such an embedding, the data is effectively made “continuous” and the density
estimation methods as discussed previously can be applied. Can such an approach be good
in the sense of minimax estimation guarantees? We answer this question positively in this
section, provided that embedding E comes from an error-correcting code.

Let Pk denote the set of all probability distributions on the set [k]. Suppose we observe
an i.i.d. sample X1, . . . , Xn ∼ ν from some unknown distribution ν ∈ Pk. The problem of
estimating ν is effectively trivial: the empirical distribution provides a minimax optimal
estimator. Indeed, it is a folklore fact, see for example [35, Theorem 1] or [168, Exc. VI.8],
that the optimal rate of estimation is given by

sup
ν∈Pk

ETV2

(
1

n

n∑
i=1

δXi
, ν

)
≍ min

{
k

n
, 1

}
. (5.4.4)

Recall from Section 5.3.3 that we may choose to embed the alphabet [k] into some higher
dimensional Euclidean space. Given distinct points x1, . . . , xk ∈ Rd for some d ≥ 1, we can
identify any distribution µ ∈ Pk with the probability distribution

∑k
i=1 µiδxi , where µi is the

mass that µ puts on i ∈ [k].

Theorem 5.4.4. There exists a universal constant C <∞ with the following property. For
any alphabet size k there exist embedding points a1, . . . , ak ∈ R⌈C log(k)⌉ such that given an
i.i.d. sample X1, . . . , Xn ∼ ν from an unknown ν ∈ Pk, any estimator ν̃ ∈ Pk that satisfies

E21

(
k∑
i=1

ν̃iδai ,
1

n

n∑
i=1

δaXi

)
≤ c

n
(5.4.5)

enjoys the performance guarantee

sup
ν∈Pk

ETV2(ν̃, ν) ≤ Cmin

{
(c+ 1)

k
√
log(k)

n
, 1

}
. (5.4.6)

Moreover, we may replace E1 by dH in (5.4.5) and the result (5.4.6) remains true with
√

log(k)
replaced by log(k).

Proof. Let a1, . . . , ak ∈ Rd be the points defined in Corollary 5.3.6 (relabeled from x1, . . . , xk
for clarity) so that d ≍ log(k). By the triangle inequality we have

EE21

(
k∑
i=1

ν̃iδai ,

k∑
i=1

νiδai

)
≤ 2EE21

(
k∑
i=1

ν̃iδai ,
1

n

n∑
i=1

δaXi

)
+ 2EE21

(
1

n

n∑
i=1

δaXi
,

k∑
i=1

νiδai

)
Lemma 5.2.4

≲
c+maxi ∥ai∥

n
≲
c+ 1

n
.
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By Corollary 5.3.6, the definition of ν̃ and the triangle inequality it follows that

ETV2(ν̃, ν) ≲
k
√
d(c+ 1)

n
≍
k
√
log(k)(c+ 1)

n
.

Noting the trivial fact that TV ≤ 1 completes the proof of the first claim.
Suppose now that we replace E1 by dH in the definition of ν̃. The proof follows analogously,

using the chain of inequalities

TV√
k 4
√
d

Cor. 5.3.6
≲ E1

Prop. 5.2.2
≍

√
Γ
(
d+1
2

)
π(d−1)/4

dH
maxi ∥ai∥≤1

≲ dH ,

and Lemma 5.4.3 in place of Lemma 5.2.4, which is where we loose the
√
d ≍

√
log(k)

factor.

As we explained, the empirical distribution ν̃ = 1
n

∑
i=1 δXi

achieves optimality in (5.4.4),
and clearly also achieves c = 0 in (5.4.5) i.e. minimizes the empirical risk globally. The point
of Theorem 5.4.4 is to show that approximate minimizers, such as those found via SGD, are
also nearly minimax optimal.

Estimating Hölder Smooth Densities

Theorem 5.4.4 has interesting implications for density estimation over the class of distributions
on the cube [0, 1]d with uniformly bounded derivatives up to order β =.. ⌈β − 1⌉ and (β − β)-
Hölder continuous βth derivative; call such distributions simply β-Hölder smooth.5 Writing
Bj for the cube with center (j − 1

2
)ϵ1/β and sidelength ϵ1/β where j ∈ {1, . . . , ϵ−1/β}d, it is

known that ∑
j

∣∣∣∣∣
∫
Bj

(f(x)− g(x))dx

∣∣∣∣∣ = c

∫
[0,1]d
|f(x)− g(x)|dx+O(ϵ)

for any β-Hölder smooth densities f, g and an ϵ-independent constant c > 0, see for example
[10, Lemma 7.2] or [113, Proposition 2.16]. In other words, discretizing such distributions
using a regular grid with Ω(ϵ−d/β) cells maintains total-variation distances up to an additive
O(ϵ) error.

Now, consider a ‘multilayer perceptron’, that is, a fully connected multilayer neural network
with activations given by x 7→ 1{x ≥ 0}. Such a multilayer network with large enough
hidden layers can in principle implement the discretization described above, and embed
the ϵ−d/β cells as an error correcting code. Thus, due to Theorem 5.4.4, the ERM density
estimator (5.1.2) would achieve the minimax optimal density estimation rate n−β/(2β+d) over
β-Hölder smooth densities up to polylog factors provided the discriminator class D includes
the aforementioned multilayer perceptron and has VC-dimension at most polylog in 1/ϵ. This
observation essentially generalizes Theorem 5.1.1, which shows that if the discriminator class
includes only the single layer perceptron then the best possible minimax rate is n−β/(2β+d+1).

5Note that this class is not the same as PS , although related.
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5.4.4 A Stopping Criterion for Smooth Density Estimation

As a corollary to our results, we propose a stopping criterion for training density estimators.
Before doing so, let us record a result about the concentration properties of the empirical
energy distance about its expectation.

Lemma 5.4.5. Let ν be supported on a compact subset Ω ⊆ Rd, and let νn be its empirical
measure based on n i.i.d. observations. For every γ ∈ (0, 2) there exists a constant C1 ∈ (0,∞)
such that

P

(
Eγ(ν, νn) ≥

C1√
n
+ t

)
≤ 2 exp

(
−nt

2

C1

)
.

In other words, Eγ(ν, νn) is O(1/n)-sub-Gaussian.

Proof. Recall the MMD formulation of the generalized energy distance from Section 5.2.3.
The corresponding kernel is given by kγ(x, y) = ∥x∥γ + ∥y∥γ − ∥x− y∥γ. Clearly

sup
x,x′,y,y′∈supp(ν)

(kγ(x, y)− kγ(x′, y′)) ≲ diam(Ω)γ.

Therefore, by McDiarmid’s inequality we know that Eγ(ν, νn) is O(1/n)-subGaussian (note we
don’t track constants depending on Ω here). From Lemma 5.2.4 we know that EEγ(ν, νn) ≲
1/
√
n, and the conclusion follows.

Consider the following scenario: we have i.i.d. training data X1, . . . , Xn from some
distribution ν and we are training an arbitrary generative model to estimate ν. Suppose that
this training process gives us a sequence of density estimators {µk}k≥1, which could be the
result of, say, subsequent gradient descent steps on our parametric class of generators. Is
there any way to figure out after how many steps K we may stop the training process? In
other words, can we identify a value of K such that TV(ν, µK) is guaranteed to be less than
some threshold with probability 1− δ? Note that an additional difficulty here is that our
generative model for µk is able to generate the samples from µk but otherwise gives us no
other access to µk. The fast (dimension-free) concentration properties of Eγ and the minimax
optimality guarantees of its minimizer (whenever ν is smooth) make it an excellent choice for
such a stopping criteria.

Let ν ∈ PS(β, d, C) and let νn be its empirical version based on the n i.i.d. observations.
Assume further that {µk}k≥1 ⊆ PS(β, d, C) is a sequence of density estimators based on
the sample X1, . . . , Xn. Finally, given the training sample (X1, . . . , Xn), for each k let
µk,mk

= 1
mk

∑mk

i=1 δX(k)
i

be the empirical distribution of the sample (X
(k)
1 , . . . , X

(k)
mk) ∼ µ⊗mk

k .

Proposition 5.4.6. For any β > 0, d ≥ 1 and γ ∈ (0, 2) there exists a constant c ∈ (0,∞)
such that

P

TV(µk, ν) ≤ c

(√
log(1/δ)

n
+ Eγ(µk,mk

, νn)

) 2β
2β+d+γ

, ∀ k ≥ 1

 ≥ 1− 2δ

provided we take mk = cn log(k2/δ)/ log(1/δ).
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Proof. Let c = C1 where C1 is as in Lemma 5.4.5 and fix δ ∈ (0, 1). Define the event

A =

{
Eγ(ν, νn) ≥ c√

n
+
√

c log(2/δ)
n

}
and similarly

Ak =

{
Eγ(µk,mk

, µk) ≥
c
√
mk

+

√
ctk
mk

}
for some sequence t1, t2, . . . , and each k ≥ 1. By Lemma 5.4.5,

P(A) ≤ δ,

P(Ak) = EP(Ak|X1, . . . , Xn) ≤ 2 exp(−tk).

Taking tk = log(k2π2/(3δ)), the union bound gives

P

(
A ∪

⋃
k≥1

Ak

)
≤ 2δ.

By the inequality Eγ(µk, ν) ≤ Eγ(µk, µk,mk
) + Eγ(µk,mk

, νn) + Eγ(νn, ν) it follows that

P

∃k : Eγ(ν, µk) > Eγ(µk,mk
, νn) +

c√
n
+

c√
mk

+

√
c log(2/δ)

n
+

√
c log(k2π2/(3δ))

mk


≤ 2δ.

Thus, by choosing mk ≍ n log(k2/δ)/ log(1/δ) we can conclude that there exists a constant c′
depending only on β, d, γ such that

P

(
Eγ(ν, µk) ≤ c′

√
log(1/δ)

n
+ Eγ(µk,mk

, νn),∀k ≥ 1

)
≥ 1− 2δ.

The final conclusion follows from Theorem 5.3.2.

Note that our bound on the probability holds for all k simultaneously, which is made
possible by the fact that mk grows as k → ∞. The empirical relevance of such a result
is immediate: suppose we have proposed candidate generative models µ1, µ2, . . . (e.g. one
after each period of training epochs, or from different training models) that is trained
on an i.i.d. dataset X1, . . . , Xn of size n from ν ∈ PS(β, d, C). A “verifier” only needs
to request for mk independent draws from the k’th candidate, and if we ever achieve
E(logn)−1 (µk,mk

, νn) ≲
√

log(1/δ)/n we can stop training and claim by Theorem 5.4.1 that we
are a constant factor away from (near-)minimax optimality with probability 1− δ.

5.5 Suboptimality for Two-Sample Testing

So far in this paper we have shown how the empirical energy distance minimizer, while being
mismatched with the target total variation loss, nevertheless achieves nearly minimax optimal
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performance for density estimation tasks. Unfortunately, this surprising effect does not carry
over to other statistical tasks, such as two-sample testing, which we describe in this section.

The task of two-sample testing over a family of distributions P is the following. Given
two samples (X, Y ) ∼ p⊗n ⊗ q⊗m with unknown distribution, we need to distinguish between
the hypotheses

H0 : p = q and p ∈ P , versus H1 : TV(p, q) > ϵ, and p, q ∈ P

with vanishing type-I and type-II error. The special case of m =∞ is known as goodness-of-fit
testing, and for the class of smooth distributions it was famously solved by [110], who showed
that in dimension d = 1 the problem is solvable with probability 1−O(1) if and only if

n = ω(ϵ−
2β+d/2

β ), (5.5.1)

in which case a variant of the χ2-test works. The case of general m,n and d ≥ 1 was resolved
in [10] who showed that the problem is solvable if and only if (5.5.1) holds with n replaced
by min{n,m}, using the very same χ2-test; see also [139]. In the remainder of the section we
focus on the m = n case for simplicity.

In a recent paper [161], the following test statistic for two-sample testing was proposed:

Td,k(p, q) = max
(w,b)∈Sd−1×[0,∞)

∣∣∣EX∼p
(
w⊤X − b

)k
+
− EY∼q

(
w⊤Y − b

)k
+

∣∣∣
where the arguments X, Y can be either discrete (e.g. via observed samples) or continuous
densities. Note that here we take (a)0+ = 1{a ≥ 0} by convention. Specifically, the test
proposed is to reject the null hypothesis when

Td,k(pn, qn) ≥ tn, (5.5.2)

where pn = 1
n

∑n
i=1 δXi

, qn = 1
n

∑n
i=1 δYi are empirical measures and the threshold that

satisfies both tn = O(1) and tn = ω(1/
√
n). One of their main technical results [161, Theorem

6] asserts that the test (5.5.2) returns the correct hypothesis with probability 1 − O(1)
asymptotically as n→∞ for any qualifying sequence {tn}n≥1 and fixed p, q. However, this
result leaves open questions about the sample complexity of their test, and in particular,
whether it is able to achieve known minimax rates. It turns out that our results imply that
their test, at least in the k = 0 case, cannot attain the optimal two-sample testing sample
complexity (5.5.1) over the smooth class PS(β, d, C). To connect to our results, notice that

Td,0(p, q) = dH(p, q) .

Proposition 5.5.1. For all d, β > 0, there exists constants c, c′ such that for all ϵ > 0, there
exists probability density functions p, q supported on the d-dimensional unit ball such that

1. ∥p∥β,2, ∥q∥β,2 < c,

2. ∥p− q∥1 ≍ ∥p− q∥2 ≍ ϵ, and
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3. the expected test statistic satisfies

E[Td,0(pn, qn)] ≤
c′√
n

for any n ≤ (log 1
ϵ
)−dϵ−

2β+d+1
β .

In other words, consistent testing using the statistic Td,0 is impossible with n = Õ(ϵ−
2β+d+1

β )
samples, which is a far cry from the optimal sample complexity (5.5.1) attainable by the χ2

test. The proof of Proposition 5.5.1 is given at Appendix D.5.

5.6 Conclusion

We analyzed the simple discriminating class of affine classifiers and proved its effectiveness
in the ERM-GAN setting (5.1.2) within the Sobolev class PS(β, d) and Gaussian mixtures
PG(d) with respect to the L2 norm (see Theorem 5.4.1 and Corollary 5.4.2) and the total
variation distance (see Theorem 5.1.1). Our findings affirm the rate’s near-optimality for the
considered classes of PS and PG. Moreover, we present inequalities that interlink the Eγ , TV,
and L2 distances, and demonstrate (in some cases) the tightness of these relationships via
corresponding lower bound constructions (Appendix D.4). We also interpret the generalized
energy distance in several ways that help advocate for its use in real applications. This work
connects to a broader literature on the theoretical analysis of GAN-style models.

An interesting question emerges about the interaction between the expressiveness and
concentration of the discriminator class. We found that the class of affine classifiers D1 is
guaranteed to maintain some (potentially small) proportion of the total variation distance,
and that it decays at the parametric rate between population and empirical distributions.
Thus, we have traded off expressiveness for better concentration of the resulting IPM. As
discussed in Section 5.1.2, Yatracos’ estimator lies at the other end of this discriminator
expressiveness-concentration trade-off: the distance dY is as expressive as total variation
when restricted to the generator class G, but supν∈G EdY (ν, νn) decays strictly slower than
1/
√
n for nonparametric classes G. A downside compared to dH is that (i) the Yatracos

class Y requires knowledge of G while our D1 is oblivious to G and (ii) the distance dY is
impractical to compute as it requires a covering of G. Our question is: is it possible to find a
class of sets S ⊆ 2B(0,1) that lies at an intermediate point on this trade-off? In other words,
does S exist such that the ERM ν̃ defined in (5.1.2) using the discriminator class D = S is
optimal over, say, G = PS and the induced distance converges slower than 1/

√
n but faster

than n−β/(2β+d) between empirical and population measures? Would there be desiderata for
a sample-efficient discriminator that has neither full expressiveness against total variation
and does not concentrate at a parametric rate?
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Appendix A

Appendix of “Likelihood-Free Hypothesis
Testing”

A.1 Proof of achievability in Theorem 2.3.2 and 2.3.3

Let µ be a measure on the measurable space (X ,F). Let {ϕi}i∈[r] be a sequence of orthonormal
functions in L2(µ), where we use the notation [r] =.. {1, 2, . . . , r}. For f ∈ L2(µ), define its
projection onto the span of {ϕ1, . . . , ϕr} as

Pr(f) =..
∑
i∈[r]

⟨fϕi⟩ϕi,

where we write ⟨·⟩ for integration with respect to µ and ∥ · ∥p for ∥ · ∥Lp(µ). Given an i.i.d.
sample X = (X1, . . . , Xn) from some density f , define its empirical projection as

P̂r[X] =..
∑
i∈[r]

(
1

n

n∑
j=1

ϕi(Xj)

)
ϕi.

We define the difference in L2-distances statistics to be

TLF = ∥P̂r[X]− P̂r[Z]∥22 − ∥P̂r[Y ]− P̂r[Z]∥22, (A.1.1)

for an appropriate choice of µ and {ϕj}j≥1 depending on the class P. Before calculating
the mean and variance, we separate out the diagonal terms in TLF thereby decomposing the
statistic into two terms:

TLF =.. T−d
LF +

1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2
i (Xj)− ϕ2

i (Yj)
)

︸ ︷︷ ︸
=..D

, (A.1.2)

which will simplify our proofs somewhat.
To ease notation in the results below, we define the quantities

Afgh = ⟨f
[
Pr(g − h)

]2⟩
Bfg =

r∑
i=1

⟨fϕiPr(gϕi)⟩
(A.1.3)
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for f, g, h ∈ L2(µ), assuming the quantities involved are well-defined. We are ready to state
our meta-result from which we derive all our likelihood-free hypothesis testing upper bounds.

Proposition A.1.1. Let f, g, h denote probability densities on X with respect to µ, and
suppose we observe independent samples X, Y, Z of size n, n,m from f, g, h respectively. Then

ET−d
LF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22 +

1

n
(∥Pr(g)∥22 − ∥Pr(f)∥22)

var(T−d
LF ) ≲

Affh + Aggh
n

+
Ahfg
m

+
∥f + g + h∥42 + |Bfh|+ |Bgh|

nm

+
|Bff |+ |Bgg|+ ∥f + g + h∥42 +

√
Aff0Affh + Agg0Aggh

n2

+
|Bff |+ |Bgg|+ ∥f + g + h∥42 + Aff0 + Agg0

n3
,

where the implied constant is universal.

Proposition A.1.1 is used to test (LF) by rejecting the null whenever T−d
LF ≥ 0. To

prove that this procedure performs well we show that T−d
LF concentrates around its mean by

Chebyshev’s inequality. For this we find sufficient conditions on the sample sizes n,m so that
(ET−d

LF )2 ≳ var(T−d
LF ) for a small enough implied constant on the left.

While Proposition A.1.1 is enough to conclude the proof of our main theorems, notice that
it uses the statistic T−d

LF which has the diagonal terms removed. For completeness we show
that rejecting when TLF ≥ 0 is also minimax optimal, that is, the diagonal term D in (A.1.2)
can be included without degrading performance.

A.1.1 The class PDb

Proposition A.1.2. For any C > 1 there exists a constant c > 0 such that

RrLF(ϵ,PDb(k, C),B·) ⊃ c
{
m ≥ 1/ϵ2, n ≥

√
k/ϵ2,mn ≥ k/ϵ4

}
,

where Bu = {u ∈ PDb(k, C) : ∥u− v∥2 ≤ ϵ/(2
√
k)}.

Proof. Choice of µ and ϕ. Take X = [k] and let µ =
∑k

i=1 δi be the counting measure. Let
ϕi(j) = 1{i=j} and choose r = k so that Pr = Pk is the identity. By the Cauchy-Schwarz
inequality ∥u∥1 ≤

√
k∥u∥2 for all u ∈ Rk.

Applying Proposition A.1.1. Recall the notation of Proposition A.1.1, so that f, g, h
are the pmfs of PX,PY,PZ respectively. We analyse the performance of the test 1{T−d

LF ≥ 0}
under the null hypothesis, the proof under the alternative is analogous. The inequality

∥f − h∥2 ≤
ϵ

2
√
k
≤ ∥f − g∥1

4
√
k
≤ ∥f − g∥2

4

along with the reverse triangle inequality yields

∥g − h∥22 − ∥f − h∥22 ≥ (∥f − g∥2 − ∥f − h∥2)2 − ∥f − h∥22
= ∥f − g∥22 − 2∥f − g∥2∥f − h∥2
≥ ∥f − g∥22/2.
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Combining the above inequality with Proposition A.1.1, we get that −ET−d
LF ≥ ∥f−g∥22/2+R,

where the residual term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22n

∣∣∣∣
≤ 2C

∥f − g∥2
n
√
k

.

Therefore, −ET−d
LF ≥

∥f−g∥22
4

holds provided 2C∥f − g∥2/(n
√
k) ≤ ∥f − g∥22/4, which in turn

is implied by n ≳ 1/ϵ and is thus always satisfied.
Turning towards the variance, we apply Proposition A.1.1 to see that

var(T−d
LF ) ≲

∥f − g∥22
k

(
1

n
+

1

m

)
+

1

k

(
1

n2
+

1

nm

)
, (A.1.4)

where we use the trivial bounds

∥f + g + h∥2 ≲
√
C

k
≲

√
1

k

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲
C

k
≲

1

k

Affh + Aggh + Ahfg ≲
C

k
∥f − g∥22 ≲

1

k
∥f − g∥22

Aff0 + Agg0 ≲

(
C

k

)2

≲
1

k2
.

Applying Chebyshev’s inequality and looking at each term separately in (A.1.4) and using
that ∥f − g∥2 ≥ ϵ/(2

√
k) yields the desired bounds on n,m.

The diagonal. While the above test using T−d
LF already achieves the minimax optimal

sample complexity, here we show for completeness that the diagonal D, defined in (A.1.2),
can be included without degrading the test’s performance. Indeed, we always have

D =
1

n2

∑
i∈[r]

∑
j∈[n]

(
1{Xj = i}2 − 1{Yj = i}2

)
= 0.

Therefore, trivially, the test 1{TLF ≥ 0} has the same performance as the one analyzed
above.

A.1.2 The class PH

Proposition A.1.3. For every C > 1, β > 0 and d ≥ 1 there exist two constants c, cr > 0
such that

RrLF(ϵ,PH(β, d, C),B·) ⊃ c
{
m ≥ 1/ϵ2, n ≥ 1/ϵ(2β+d/2)/β,mn ≥ 1/ϵ2(2β+d/2)/β

}
, (A.1.5)

where Bu = {v ∈ PH(β, d, C) : ∥v − u∥2 ≤ crϵ}.
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Proof. Choice of µ and ϕ. Take X = [0, 1]d, let µ the Lebesgue measure on X . Let
{ϕi}1≤i≤κd be the indicators of the cells of the regular grid with κd bins, normalized to have
L2(µ)-norm equal to 1, that is, the indicator is multiplied by κd, which is one over the volume
of one grid cell. By [10, Lemma 7.2] for any resolution r = κd and u ∈ C(β, d, 2C) we have

∥Pr(u)∥2 ≥ c1∥u∥2 − c2κ−β (A.1.6)

for constants c1, c2 > 0 that don’t depend on r. In particular, the inequalities

∥Pr(u)∥2 ≥
c1
2
∥u∥2 (A.1.7)

holds for any ∥u∥2 ≥ ϵ provided we choose κ =
(

2c2
c1ϵ

)1/β
.

Applying Proposition A.1.1. Recall the notation of Proposition A.1.1 so that f, g, h
are the µ-densities of PX,PY,PZ. We analyse the performance of the test 1{T−d

LF ≥ 0} under
the null hypothesis, the proof under the alternative is analogous. Let the radius of robustness

be cr = c1/4, and set κ =
(

2c2
c1ϵ

)1/β
. Then we have

∥Pr(f − h)∥2 ≤ crϵ =
cr
2
∥f − g∥2 ≤

cr
c1
∥Pr(f − g)∥2

by taking u = f − g in (A.1.7). Using the reverse triangle inequality we obtain

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22 ≥ (∥Pr(f − g)∥2 − ∥Pr(f − h)∥2)2 − ∥Pr(f − h)∥22
= ∥Pr(f − g)∥22 − 2∥Pr(f − g)∥2∥Pr(f − h)∥2
≥ ∥Pr(f − g)∥22(1− 2

cr
c1
)

= ∥Pr(f − g)∥22/2

Combining the above inequality with Proposition A.1.1, we see that −ET−d
LF ≥ ∥Pr(f −

g)∥22/2 +R where the residual term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22n

∣∣∣∣
≤ 2C

∥f − g∥2
n

.

Therefore, the inequality −ET−d
LF ≥ ∥Pr(f − g)∥22/4 holds provided 2C∥f − g∥2/n ≤ ∥Pr(f −

g)∥22/4, which in turn is implied by n ≳ 1/ϵ and is thus always satisfied.
Turning to the variance, using Proposition A.1.1 we obtain

var(T−d
LF ) ≲ ∥Pr(f − g)∥22

(
1

n
+

1

m

)
+ ϵ−d/β

(
1

n2
+

1

nm

)
, (A.1.8)

where we apply the trivial inequalities

∥f + g + h∥2 ≲
√
C ≲ 1

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲ Cr = Cκd ≍ ϵ−d/β

Affh + Aggh + Ahfg ≲ C∥Pr(f − g)∥22 ≲ ∥Pr(f − g)∥22
Aff0 + Agg0 ≲ C2 ≲ 1.
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Applying Chebyshev’s inequality and looking at each term separately in (A.1.8) and using
that ∥Pr(f − g)∥2 ≳ ∥f − g∥2 ≥ ∥f − g∥1 ≥ 2ϵ yields the desired bounds on n,m.

The diagonal. While the above test using T−d
LF already achieves the minimax optimal

sample complexity, for completeness we also note that including the diagonal terms D defined
in (A.1.2) doesn’t degrade performance. This follows from the simple fact that D = 0, which
is true for reasons analogous to the case of PDb that we already covered.

A.1.3 The class PG

Proposition A.1.4. For all s, C > 0 there exists a constant c > 0 such that

RrLF(ϵ,PG(s, C),B·) ⊃ c
{
m ≥ 1/ϵ2, n ≥ 1/ϵ(2s+1/2)/s,mn ≥ 1/ϵ2(2s+1/2)/s

}
,

where Bµθ = {µθ′ : θ′ ∈ E(s, C), ∥θ − θ′∥2 ≤ ϵ/4}.

Proof. Choosing µ and ϕ. Let X = RN be the set of infinite sequences and take as the
base measure µ = ⊗∞

d=1N (0, 1), the infinite dimensional standard Gaussian. For θ ∈ ℓ2 write
µθ = ⊗∞

d=1N (θi, 1) so that µ0 = µ. Take the orthonormal functions ϕi(x) = xi in L2(µ) for
i ≥ 1, so that

Pr

(
dµθ
dµ

)
=

r∑
i=1

xiθi.

Let θ, θ′ ∈ E(s, C) with TV(µθ, µθ′) ≥ ϵ. By direct computation we obtain

∥Pr
(
dµθ
dµ
− dµθ′

dµ

)
∥22 =

r∑
i=1

(θi−θ′i)2 ≥ ∥θ−θ′∥22−r−2s
∑
i>r

(θi−θ′i)2i2s ≥ ∥θ−θ′∥22−4C2r−2s.

(A.1.9)
In particular, the inequality

∥Pr
(
dµθ
dµ
− dµθ′

dµ

)
∥22 ≥

1

2
∥θ − θ′∥22 (A.1.10)

holds for all θ, θ′ ∈ E(s, C) with ∥θ − θ′∥2 ≥ ϵ, provided we take r = (4C/ϵ)1/s.
Applying Proposition A.1.1. Recall the notation of Proposition A.1.1, and let f, g, h be

the µ-densities of PX = µθX ,PY = µθY ,PZ = µθZ respectively. We analyse the test 1{T−d
LF ≥ 0}

only under the null hypothesis, as the analysis under the alternative is analogous. Note also
that by Lemma A.2.2 the inequality

TV(µθ, µθ′) ≤ H(µθ, µθ′) =
√
2(1− exp(−∥θ − θ′∥22/8)) ≤

∥θ − θ′∥2
2

holds for any θ, θ′ ∈ ℓ2. Therefore, we have

∥Pr(f − h)∥2 ≤
ϵ

4
≤ TV(µθ, µθ′)

4
≤ ∥θ − θ

′∥2
8

≤ ∥Pr(f − g)∥2
4

by (A.1.10).
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By the reverse triangle inequality we have

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22 ≥ (∥Pr(f − g)∥2 − ∥Pr(f − h)∥2)2 − ∥Pr(f − h)∥22
= ∥Pr(f − g)∥22 − 2∥Pr(f − g)∥2∥Pr(f − h)∥2
≥ ∥Pr(f − g)∥22/2

Combining the inequality above with Proposition A.1.1, we see that −ET−d
LF ≥ ∥Pr(f −

g)∥22/2 +R, where the residual term R can be bounded as

|R| =
∣∣∣∣∥Pr(f)∥22 − ∥Pr(g)∥22n

∣∣∣∣
≤ 2C

∥Pr(f − g)∥2
n

.

Therefore, −ET−d
LF ≥ ∥Pr(f − g)∥22/4 provided 2C∥Pr(f − g)∥2/n ≤ ∥Pr(f − g)∥22/4, which in

turn is implied by n ≳ 1/ϵ and is therefore always satisfied.
Let us turn to the variance of the statistic. Let u, v, t be the µ-densities of the distributions

µθ, µθ′ , µθ′′ for some vectors θ, θ′, θ′′ ∈ E(s, C) in the Sobolev ellipsoid. Straightforward
calculations involving Gaussian random variables produce

Auvt =
r∑
ij

(1(i = j) + θiθj)(θ
′
i − θ′′i )(θ′j − θ′′j ) ≤ (1 + C2)∥Pr(v − t)∥22

≲ ∥Pr(v − t)∥22 ≲ C2 ≲ 1

∥u∥2 = exp

(
1

2
∥θ∥22

)
≤ exp(C2/2) ≲ 1

Buv =
r∑
i=1

(
1 + θ2i + θ′

2
i + θiθ

′
i

r∑
j=1

θjθ
′
j

)
≤ r + 2C2 + C4

≲ r.

Applying Proposition A.1.1 tells us that

var(T−d
LF ) ≲ ∥Pr(f − g)∥22

(
1

n
+

1

m

)
+ ϵ−1/s

(
1

n2
+

1

nm

)
(A.1.11)

Applying Chebyshev’s inequality and looking at each term separately in (A.1.11) and using
that TV(µθ, µθ′) ≲ ∥Pr(f − g)∥ yields the desired bounds on n,m.

The diagonal. While the above test using T−d
LF already achieves the minimax optimal

sample complexity, for completeness we show that including the diagonal terms D defined in
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(A.1.2) doesn’t degrade performance. To this end we compute

ED = E
1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2
i (Xj)− ϕ2

i (Yj)
)

=
1

n

∑
i∈[r]

(θ2X,i − θ2Y,i)

≤ 1

n
∥θX + θY∥2

√∑
i∈[r]

(θX,i − θY,i2)

≤ 2C
∥Pr(f − g)∥2

n
.

We see that |ET−d
LF | ≳ |ED| as soon as n ≳ 1/ϵ. Turning to the variance, we have

var(D) =
1

n3

∑
i∈[r]

(
var(ϕ2

i (X1)) + var(ϕ2
i (Y1))

)
≲
rC2

n3
,

and so the diagonal terms do not inflate the variance by more than a constant factor.
Therefore, the sample complexity of the test is unchanged.

A.1.4 The class PD

Proposition A.1.5. Let α = 1 ∨
(
k
n
∧ k

m

)
. There exist constants c, c′, cr > 0 such that

RrLF(ϵ,PD(k),B·) ⊃
c

log(k)

{
m ≥ 1/ϵ2, n ≥

√
kα/ϵ2,mn ≥ kα/ϵ4

}
,

where Bu = {v : ∥u− v∥2 ≤ crϵ/
√
k, ∥v/u∥∞ ≤ c′}.

Proof. Choosing µ and ϕ. As for PDb, we take X = [k], µ =
∑k

i=1 δi, ϕi(j) = 1{i=j} and
r = k. By the Cauchy-Schwarz inequality ∥h∥1 ≤

√
k∥h∥2 for all h ∈ Rk.

Reducing to the small-norm case. Before applying Proposition A.1.1 we need to
‘pre-process‘ our distributions. For an in-depth explanation of this technique see [64, 80].
Recall that we write f, g, h for the probability mass functions of PX,PY,PZ respectively, from
which we observe the samples X, Y, Z of size n, n,m respectively. Recall also that the null
hypothesis is that ∥f − h∥2 ≤ crϵ/

√
k while the alternative says that ∥g − h∥2 ≤ crϵ/

√
k,

with ∥f − g∥2 ≥ 2ϵ/
√
k guaranteed under both. In the following section we use the standard

inequality P(λ− x ≥ Poi(λ)) ≤ exp(− x2

2(λ+x)
) valid for all x ≥ 0 repeatedly. We also utilize

the identity

E

[
1

Poi(λ) + 1

]
=

{
1 if λ = 0
1−e−λ

λ
if λ > 0,

(A.1.12)

which is easily verified by direct calculation. Finally, the following Lemma will come handy.
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Proposition A.1.6. [80, Corollary 11.6] Given t samples from an unknown discrete distri-
bution p, there exists an algorithm that produces an estimate ∥̂p∥22 with the property

P(∥̂p∥22 /∈ (
1

2
∥p∥22,

3

2
∥p∥22)) ≲

1

∥p∥2t
,

where the implied constant is universal.

First we describe a random “filter" F : PD(k) → PD(K) that maps distributions on [k]
to distributions on the inflated alphabet [K]. Let (nX, nY, nZ) =

1
2
(n ∧ k, n ∧ k,m ∧ k) and

let NX ∼ Poi(nX/2) independently of all other randomness, and define NY, NZ similarly.
We take the first NX, NY, NZ samples from the data sets X, Y, Z respectively. In the event
NX ∨NY > n or NZ > m let our output to the likelihood-free hypothesis test be arbitrary,
this happens with exponentially small probability. Let NX

i be the number of the samples
X1, . . . , XNX falling in bin i, so that NX

i ∼ Poi(nXfi/2) independently for each i ∈ [k], and
define NY

i , N
Z
i analogously. The filter F is defined as follows:

divide each support element i ∈ {1, 2, . . . , k} uniformly into 1 +NX
i +NY

i +NZ
i bins.

The filter has the following properties trivially:

1. The construction succeeds with probability ≥ 1− 3 exp(−n ∧m ∧ k/16), focus on this
event from here on.

2. The construction uses at most nX, nY, nZ samples from X, Y, Z respectively and satisfies
K ≤ 5k/2.

3. For any u, v ∈ PD(k) we have TV(F (u), F (v)) = TV(u, v) and ∥F (u) − F (v)∥2 ≤
∥u− v∥2.

4. Given a sample from an unknown u ∈ PD(k) we can generate a sample from F (u) and
vice-versa.

Let f̃ =.. F (f) be the probability mass function after processing and define g̃, h̃ analogously.
By properties 1−2 of the filter, we may assume with probability 99% that the new alphabet’s
size is at most 5k/2 and that we used at most half of our samples X, Y, Z. We immediately
get 2ϵ ≤ ∥f−g∥1 = ∥f̃− g̃∥1 ≤

√
5k/2∥f̃− g̃∥2 and ∥f̃− h̃∥2 ≤ ∥f−h∥2, ∥g̃− h̃∥2 ≤ ∥g−h∥2.

Notice that ∑
i∈[K]

f̃ig̃i =
∑
i∈[k]

figi
1 +NX

i +NY
i +NZ

i

holds, and similar statements can be derived for the inner product between f̃ , h̃ etc. Recall
that we set

α = max

{
1,min

{
k

n
,
k

m

}}
.
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Adopting the convention 0/0 = 1 and using (A.1.12) we can bound inner products between
the mass functions as

E
[
Bf̃ h̃ +Bg̃h̃

]
= E

[
⟨f̃ h̃⟩+ ⟨g̃h̃⟩

]
≤ 4

∑
i∈[k]

fihi + gihi
(n ∧ k)(fi + gi) + (m ∧ k)hi

≤ 8

(n ∨m) ∧ k
=

8α

k

E
[
Bf̃ f̃ +Bg̃g̃

]
= E

[
∥f̃∥22 + ∥g̃∥22

]
≤ 4

∑
i∈[k]

f 2
i + g2i

(n ∧ k)(fi + gi) + (m ∧ k)hi
≤ 8

n ∧ k

E∥h̃∥22 ≤ 4
∑
i∈[k]

h2i
(n ∧ k)(fi + gi) + (m ∧ k)hi

≤ 4

m ∧ k
.

By Markov’s inequality we may assume that the inequalities in the preceding display hold
not only in expectation but with 99% probability overall with universal constants. Notice
that under the null hypothesis ∥f̃ − h̃∥2 ≤ crϵ/

√
k and thus ∥f̃∥2 ≤ ∥h̃∥2 + crϵ/

√
k ≤

∥f̃∥2 + 2crϵ/
√
k, and similarly with f̃ replaced by g̃ under the alternative. We restrict our

attention to cr ∈ (0, 1) so that cr is treated as a constant where appropriate. Notice that
ϵ/
√
k ≲ 1/

√
(n ∨m) ∧ k holds trivially. Thus, we obtain ∥f̃∥2 ∨ ∥h̃∥2 ≤ c/

√
(m ∨ n) ∧ k

under the null and ∥g̃∥2 ∨ ∥h̃∥2 ≤ c/
√
(n ∨m) ∧ k under the alternative for a universal

constant c. We would like to ensure that

∥f̃∥2 ∨ ∥g̃∥2 ∨ ∥h̃∥2 ≲
1√

(m ∨ n) ∧ k
=

√
α

k
. (A.1.13)

To this end we apply Proposition A.1.6 using (n/4, n/4) of the remaining, transformed

but otherwise untouched X, Y samples. Let ∥̂f̃∥22, ∥̂g̃∥22 denote the estimates, which lie in
(1
2
∥f̃∥22, 32∥f̃∥

2
2) and (1

2
∥g̃∥22, 32∥g̃∥

2
2) respectively, with probability at least 1 − O((|f̃∥−1

2 +

∥g̃∥−1
2 )/n) ≥ 1−O(

√
k/n), since ∥f̃∥2 ∧ ∥g̃∥2 ≥

√
2/(5k) by the Cauchy-Schwarz inequality.

Assuming that n ≳
√
k this probability can be taken to be arbitrarily high, say 99%. Now

we perform the following procedure: if ∥̂f̃∥22 > 3
2
c2/((n ∨m) ∧ k) reject the null hypothesis,

otherwise if ∥̂g̃∥22 > 3
2
c2/((n ∨m) ∧ k) accept the null hypothesis, otherwise proceed with the

assumption that (A.1.13) holds. By design this process, on our 97% ≤ probability event of
interest, correctly identifies the hypothesis or correctly concludes that (A.1.13) holds. The
last step of the reduction is ensuring that the quantities Af̃ f̃ h̃, Ag̃g̃h̃, Ah̃f̃ g̃, Af̃ f̃0, Ag̃g̃0 are small.
The first two and last two may be bounded easily as

Af̃ f̃ h̃ + Ag̃g̃h̃ = ⟨f̃(f̃ − h̃)
2⟩+ ⟨g̃(g̃ − h̃)2⟩

≤ ∥f̃∥2∥f̃ − h̃∥24 + ∥g̃∥2∥g̃ − h̃∥24

≲
∥f̃ − h̃∥22 + ∥g̃ − h̃∥22√

(n ∨m) ∧ k

≲
∥f̃ − g̃∥22 + c2r ϵ

2/k√
(n ∨m) ∧ k

≲
∥f̃ − g̃∥22√
(n ∨m) ∧ k

=

√
α

k
∥f̃ − g̃∥22

Af̃ f̃0 + Ag̃g̃0 = ∥f̃∥33 + ∥g̃∥33 ≤ ∥f̃∥32 + ∥g̃∥32 ≲
1

((n ∨m) ∧ k)3/2
=
(α
k

)3/2
.

(A.1.14)
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To bound Ah̃f̃ g̃ we need a more sophisticated method. Recall that by definition

Ah̃f̃ g̃ =
∑
i∈[k]

hi(fi − gi)2

(1 +NX
i +NY

i +NZ
i )

2
.

Fix an i ∈ [k] and let P =.. NX
i +NY

i +NZ
i ∼ Poi((n ∧ k)(fi + gi)/4 + (m ∧ k)hi/4) and take

a constant c > 0 to be specified. We have

P

(
1

1 + P
> c log(k)

1

EP

)
=

{
0 if EP ≤ c log(k)

P
(

EP −
(

EP
(
1− 1

c log(k)

)
+ 1
)
> P

)
if EP > c log(k).

Assuming that i is such that EP ≥ c log(k) and taking k large enough so that c log(k) ≥ 2,
we can proceed as

P

(
EP −

(
EP

(
1− 1

c log(k)

)
+ 1

)
> P

)
≤ exp(−1

2

(EP (1− 1
c log(k)

) + 1)2

EP (2− 1
c log(k)

) + 1
)

≤ exp(− 1

16
EP )

≤ 1

kc/16
.

Choosing c = 32 and taking a union bound, the inequality

Ah̃f̃ g̃ ≲
log(k)

m ∧ k
∑
i∈[k]

(fi − gi)2

1 +NX
i +NY

i +NZ
i

≍ log(k)

m ∧ k
∥f̃ − g̃∥22

holds with probability at least 1− 1/k. Using that ∥h/f∥∞ ∧ ∥h/g∥∞ ≲ 1 by assumption, we
obtain Ah̃f̃ g̃ ≲

log(k)
n∧k ∥f̃ − g̃∥

2
2 similarly. Combining the two bounds yields

Ah̃f̃ g̃ ≲
log(k)

(m ∨ n) ∧ k
∥f̃ − g̃∥22 =

log(k)α

k
∥f̃ − g̃∥22. (A.1.15)

To summarize, under the assumptions that n ≳
√
k, and at the cost of inflating the alphabet

size to at most 5
2
k and a probability of error at most 3% + 1

k
, we may assume that the

inequalities (A.1.13), (A.1.14) and (A.1.15) hold with universal constants.
Applying Proposition A.1.1. We only analyse the type-I error, as the type-II error

follows analogously. As explained earlier, we apply the test 1{T−d
LF ≥ 0} to the transformed

samples with probability mass functions f̃ , g̃, h̃. Note that taking cr small eonugh shows that

∥g̃ − h̃∥22 − ∥f̃ − h̃∥22 ≳ ∥f̃ − g̃∥22
for a universal implied constant. Therefore, by Proposition A.1.1 we see that −ET−d

LF ≥
c∥f̃ − g̃∥22 +R for some universal constant c > 0, where the residual term R can be bounded
as

|R| =

∣∣∣∣∣∥f̃∥22 − ∥g̃∥22n

∣∣∣∣∣
≲

∥f̃ − g̃∥2
n
√
k ∧ (m ∨ n)

,
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where we used (A.1.13). We have−ET−d
LF ≳ ∥f̃−g̃∥22 provided n ≳ 1/(∥f̃−g̃∥2

√
k ∧ (m ∨ n)) ≍√

α/ϵ, which we assume from here on. Plugging in the bounds derived above, the test
1{TLF ≥ 0} on the transformed observations has type-I probability of error bounded by 1/3
provided

∥f̃ − g̃∥42 ≳
1

n

√
α

k
∥f̃ − g̃∥22 +

1

m

log(k)α

k
∥f̃ − g̃∥22 +

α

k

(
1

nm
+

1

n2

)
for a small enough implied constant on the left. Looking at each term separately yields the
sufficient conditions

m ≳
log(k)α

ϵ2︸ ︷︷ ︸
(I)

and n ≳

√
kα

ϵ2
and mn ≳

kα

ϵ4
. (A.1.16)

The final step is to check that the sufficient conditions in (A.1.16) are implied by what is
indicated in the statement of Theorem 2.3.3. Recall from the statement of the Theorem, that
it states that

m ≳
log(k)

ϵ2
and n ≳

√
kα

ϵ2
and mn ≳

k log(k)α

ϵ4
(A.1.17)

is sufficient to successfully perform the test, where we have replaced the generic ≳log(k)

notation with the precise dependence on log(k) that we require. Note that the only difference
between (A.1.16) and (A.1.17) is the condition on m, that is, the first term in the equations
(A.1.16) and (A.1.17). Suppose now that (A.1.17) holds, and let us split this discussion into
cases.

1. Suppose max{m,n} ≥ k. In this case α = 1, and (I) is implied by m ≳ log(k)/ϵ2. For
this the first condition of (A.1.17) is clearly sufficient.

2. Suppose n ≤ m ≤ k. In this case α = k/m, and (I) is implied by m ≳
√
k log(k)/ϵ.

By the third condition of (A.1.17) we know that m2n ≳ k2/ϵ4. Using that n ≤ m, this
implies that m ≳ k2/3/ϵ4/3, which is clearly sufficient.

3. Suppose m ≤ n ≤ k. In this case α = k/n, and (I) is implied by mn ≳ k log(k)/ϵ2. By
the third condition of (A.1.17) we know that mn2 ≳ k2 log(k)/ϵ4. After noting that
n ≤ k we get mn ≳ k log(k)/ϵ4, which is sufficient.

The diagonal. See the discussion at the end of the proof for PDb.

A.2 Lower bounds of Theorem 2.3.2 and 2.3.3

LetM(X ) be the set of all probability measures on some space X , and P ⊆M(X ) be some
family of distributions. In this section we prove lower bounds for likelihood-free hypothesis
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testing problems. For clarity, let us formally state the problem as testing between the
hypotheses

H0 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X : PX,PY ∈ P , TV(PX,PY) ≥ ϵ}

versus
H1 = {P⊗n

X ⊗ P⊗n
Y ⊗ P

⊗m
Y : PX,PY ∈ P , TV(PX,PY) ≥ ϵ}.

(A.2.1)

Our strategy for proving lower bounds relies on the following well known result proved in the
main text.

Lemma A.2.1. Take hypotheses H0, H1 ⊆M(X ) and P0, P1 ∈M(X ) random. Then

inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1

2
(1− TV(EP0,EP1))−

∑
i

P(Pi /∈ Hi),

where the infimum is over all tests ψ : X → {0, 1}.

The following will also be used multiple times throughout:

Lemma A.2.2 ([198, Lemmas 2.3 and 2.4]). For any probability measures P0,P1,

1

4
H4(P0,P1) ≤ TV2(P0,P1) ≤ H2(P0,P1) ≤ KL(P0∥P1) ≤ χ2(P0∥P1).

Note that some of the inequalities in Lemma A.2.2 can be improved, but since such
improvements have no effect on our results, we present their simplest available version. The
inequalities between TV and H are attributed to Le Cam, while the bound TV ≤

√
KL/2

is due to Pinsker. The use of the χ2-divergence for bounding the total variation distance
between mixtures of products was pioneered by Ingster [113], and is sometimes referred to as
the Ingster-trick.

In our bounds we will also rely on the following simple technical result.

Lemma A.2.3. Suppose that a, b, c > 0 and N = (N1, . . . , Nk) ∼ Multinomial(n, ( 1
k
, . . . , 1

k
)).

Then
EN

∏
j∈[k]

(a+ b(1 + c)Nj) ≤ (a+ becn/k)k.

Recall that the necessity of m ≳ nHT(ϵ,P) and n ≳ nGoF(ϵ,P) were shown in Propo-
sition 2.3.1. Thus, most of our work lies in obtaining the lower bound on the product
mn.

A.2.1 The class PH

Proposition A.2.4. For any β > 0, C > 1 and d ≥ 1 there exists a finite c independent of ϵ
such that

c{m ≥ 1/ϵ2, n ≥ ϵ−(2β+d/2)/β,mn ≥ ϵ−2(2β+d/2)/β} ⊇ RLF(ϵ,PH(β, d, C))

for all ϵ ∈ (0, 1).
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Proof. Adversarial construction. Take a smooth function h : Rd → R supported on of
[0, 1]d with

∫
[0,1]d

h(x)dx = 0 and
∫
[0,1]d

h(x)2dx = 1. Let κ ≥ 1 be an integer, and for j ∈ [κ]d

define the scaled and translated functions hj as

hj(x) = κd/2h(κx− j + 1).

Then hj is supported on the cube [(j − 1)/κ, j/κ] and
∫
[0,1]d

hj(x)
2dx = 1, where we write

j/κ = (j1/κ, . . . , jd/κ). Let ρ > 0 be small and for each η ∈ {−1, 0, 1}κd define the function

fη(x) = 1 + ρ
∑
j∈[κ]d

ηjhj(x).

In particular, f0 = 1 is the uniform density. Clearly
∫
[0,1]d

fη(x)dx = 1, and to make it
positive we choose ρ, κ such that ρκd/2∥h∥∞ ≤ 1/2. By [10], choosing

ρκd/2+β ≤ C/(4∥h∥C⌊β⌋ ∨ 2∥h∥C⌊β⌋+1) (A.2.2)

ensures that fη ∈ P(β, d, C). Note also that ∥fη−1∥1 = ρκd/2. For ϵ ∈ (0, 1) we set κ ≍ ϵ−1/β

and ρ ≍ ϵ(2β+d)/(2β). These ensure that (A.2.2) and TV(fη, f0) ≳ ϵ hold, where as usual the
constants may depend on (β, d, C). Noting that ∥

√
fη− 1∥2 ≍ ∥fη− 1∥1 ≳ ϵ, we immediately

obtain that m ≳ 1/ϵ2 is necessary for testing, by reduction from binary hypothesis testing
(2.3.1). Observe also that for any η, η′,∫

[0,1]d
fη(x)fη′(x)dx = 1 + ρ2⟨η, η′⟩ (A.2.3)

which will be used later.
Goodness-of-fit testing. Let η be drawn uniformly at random. We show that

TV(f⊗n
0 ,Ef⊗n

η ) can be made arbitrarily small provided n ≲ ϵ−(2β+d/2)/β, which yields a
lower bound on n via reduction from goodness-of-fit testing (2.3.3). By Lemma A.2.2 we can
focus on bounding the χ2 divergence. Via Ingster’s trick we have

χ2(Eη[f
⊗n
η ], f⊗n

0 ) + 1 =

∫
[0,1]d×···×[0,1]d

(
Eη

n∏
i=1

fη(xi)

)2

dx1 · · · dxn

= Eηη′
n∏
i=1

(∫
[0,1]d

fη(x)fη′(x)dx

)
,

where η, η′ are i.i.d.. By (A.2.3) and the inequalities 1 + x ≤ ex, cosh(x) ≤ exp(x2) for all
x ∈ R, we have

= Eηη′
(
1 + ρ2⟨η, η′⟩

)n
≤ Eηη′ exp(nρ

2⟨η, η′⟩)
= cosh(nρ2)κ

d

≤ exp(n2ρ4κd).
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Thus, goodness-of-fit testing is impossible unless n ≳ ρ−2κ−d/2 ≍ 1/ϵ(2β+d/2)/β.
Likelihood-free hypothesis testing. We are now ready to show the lower bound on the

product mn. Once again η ∈ {±1}κd is drawn uniformly at random and we apply Lemma
A.2.1 with the choices P0 = f⊗n

η ⊗ f⊗n
0 ⊗ f⊗m

η against P1 = f⊗n
η ⊗ f⊗n+m

0 . Let P0,XY Z ,P1,XY Z

denote the joint distribution of the samples X, Y, Z under the measures EP0,EP1 respectively.
By Pinsker’s inequality and the chain rule we have

TV(P0,XY Z ,P1,XY Z)
2 = TV(P0,XZ ,P1,XZ)

2

≤ KL(P0,XZ∥P1,XZ)

= KL(P0,Z|X∥P1,Z|X |P0,X) + KL(P0,X∥P1,X)︸ ︷︷ ︸
=0

,

where the last line uses that the marginal of X is equal under both measures. Clearly P1,Z|X
is simply Unif([0, 1]d)⊗m and P0,X ,P0,Z|X have densities Eηf⊗n

η and Eη|Xf⊗m
η respectively.

Given X, let η′ be an independent copy of η from the posterior given X. By Ingster’s trick
we have

KL(P0,Z|X∥P1,Z|X |P0,X) ≤ χ2(P0,Z|X∥P1,Z|X |P0,X)

= −1 + EX

∫
[0,1]d×···×[0,1]d

Eη|XEη′|X

m∏
i=1

fη(zi)fη′(zi)dz1 . . . dzm

= −1 + Eηη′(1 + ρ2⟨η, η′⟩)m,

where the last line uses (A.2.3). Let N = (N1, . . . , Nκd) be the vector of counts indi-
cating the number of Xi that fall into each bin {[(j − 1)/κ, j/κ]}j∈[κ]d . Clearly N

d∼
Multinomial(n, ( 1

κd
, . . . , 1

κd
)). Using that ηjη′j depends on only those Xi that fall in bin

j and the inequality 1 + x ≤ exp(x) valid for all x ∈ R, we can write

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1 ≤ ENEηη′|N
∏
j∈[κ]d

exp(ρ2mηjη
′
j)

= EN
∏
j∈[κ]d

Eηjη′j |Nj
exp(ρ2mηjη

′
j).

We now focus on a particular bin j. Define the bin-conditional densities

p± = κd(1± ρhj)1[(j−1)/κ,j/κ], (A.2.4)

where we drop the dependence on j in the notation. Let X(j) =.. (Xi1 , . . . , XiNj
) be those Xi

that fall in bin j. Note that {i1, . . . , iNj
} is a uniformly distributed size Nj subset of [n] and

given Nj, the density of Xi1 , . . . , XiNj
is 1

2
(p

⊗Nj

+ + p
⊗Nj

− ). We can calculate

P(ηjη
′
j = 1|Nj) = EX(j)|Nj

P(ηjη
′
j = 1|X(j))

= EX(j)|Nj

[
P(ηj = 1|X(j))2 + P(ηj = −1|X(j))2

]
= EX(j)|Nj

[
1
4
(p

⊗Nj

+ )2 + 1
4
(p

⊗Nj

− )2

1
4
(p

⊗Nj

+ + p
⊗Nj

− )2

]

=
1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )) + χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− ))

)
.
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By convexity of the χ2 divergence in its arguments and tensorization, we have

P(ηjη
′
j = 1|Nj) ≤

1

2
+

1

8

(
χ2(p

⊗Nj

+ ∥p⊗Nj

− ) + χ2(p
⊗Nj

− ∥p⊗Nj

+ )
)

=
1

4
+
∑

ω∈{±1}

(
κd
∫
[(j−1)/κ,j/κ]

(1 + ωρhj(x))
2

1− ωρhj(x)
dx

)Nj

.

Using that ρ∥hj∥∞ ≤ 1/2 by construction, we have∫
[(j−1)/κ,j/κ]

(1 + ρhj(x))
2

1− ρhj(x)
dx =

1

κd
+

∫
[(j−1)/κ,j/κ]

4ρ2h2j(x)

1− ρhj(x)
dx

≤ 1

κd
+ 8ρ2.

The same bound is obtained for the other integral term. We get

χ2(P0,Z|X∥P1,Z|X |P0,X)+1 ≤ EN
∏
j∈[κ]d

(
1

4

(
eρ

2m − e−ρ2m
)
(1 + (1 + 8ρ2κd)Nj) + e−ρ

2m

)
= (†).

The final step is to apply Lemma A.2.3 to pass the expectation through the product. Assuming
that m ∨ n ≲ ρ−2 ≍ ϵ−(2β+d)/β for a small enough implied constant, using the inequalities
ex ≤ 1 + x + x2, 1 − x ≤ e−x ≤ 1 − x + x2/2 valid for all x ∈ [0, 1], and Lemma A.2.3, we
obtain

(†) ≤ (e−ρ
2m +

1

4

(
eρ

2m − e−ρ2m
)
(1 + e8ρ

2n))κ
d

≤ (1 + cρ4mn)κ
d

≤ exp(cρ4κdmn)

for a universal constant c > 0. Therefore, if m ∨ n ≲ ϵ−(2β+d)/β likelihood-free hypothesis
testing is impossible unless mn ≳ ρ−4κ−d ≍ 1/ϵ2(2β+d/2)/β.

Suppose now that m ∨ n ≳ ϵ−(2β+d)/β instead. We have two cases:

1. If n ≳ ϵ−(2β+d)/β then from Proposition A.1.3 we know that m ≍ 1/ϵ2 is enough for
achievability. However, by the first part of the proof we know that m ≳ 1/ϵ2 must
always hold, which provides the matching lower bound in this case.

2. If m ≳ ϵ−(2β+d)/β then we can assume m ≳ n also holds, otherwise the first case
above would apply. From the goodness-of-fit testing lower bound we know that n ≳
ϵ−(2β+d/2)/β must always hold, and from Proposition A.1.3 we know that (m,n) ≍
(ϵ−(2β+d/2)/β, ϵ−(2β+d/2)/β) is achievable, so we get matching bounds in this case too.

Summarizing, we’ve shown that for succesful testing m ≳ 1/ϵ2, n ≳ 1/ϵ(2β+d/2)/β and
mn ≳ ϵ−2(2β+d/2)/β must hold, which concludes our proof.
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A.2.2 The class PG

Proposition A.2.5. For any s, C > 0 there exists a finite constant c independent of ϵ such
that

c{m ≥ 1/ϵ2, n ≥ ϵ−(2s+1/2)/s,mn ≥ ϵ−2(2s+1/2)/s} ⊇ RLF(ϵ,PG(s, C))

for all ϵ ∈ (0, 1).

Proof. Adversarial construction. Let γ ∈ ℓ1 be a non-negative sequence, and let θ ∼
⊗∞
k=1N (0, γk). Define the random measure µθ = ⊗∞

j=1N (θj, 1). Let ϵ ∈ (0, 1) be given. For
our proofs we use

γk =

{
c1ϵ

(2s+1)/s for 1 ≤ k ≤ c2ϵ
−1/s

0 otherwise
(A.2.5)

for appropriate constants c1, c2. Recall our definition of the Sobolev ellipsoid E(s, C) with
associated sobolev norm ∥ · ∥s. We have

(E∥θ∥s)2 ≤ E
∞∑
j=1

j2sθ2i = ∥
√
γ∥2s = c1ϵ

(2s+1)/s

c2ϵ−1/s∑
j=1

j2s ≤ c1c
2s+1
2

TV(Pγ,P0) ≥
1 ∧ ∥θ∥2

200
,

where last line holds by [61, Theorem 1.2].
First, we need to verify that our construction is valid, that is, that Pγ ∈ PG(s, C) and

TV(Pγ,P0) ≥ ϵ with high probability. For standard Gaussian Z ∼ N (0, 1) it holds that

E exp(λ(Z2 − 1)) ≤ exp(2λ2)

for all |λ| ≤ 1/4. Therefore, for a sequence of independent standard Gaussians Z1, Z2, . . . we
get

E exp(λ
∞∑
j=1

γj(Z
2
j − 1)) ≤ exp(2λ2∥γ∥22)

for all |λ| ≤ minj(4γj)
−1 = c−1

1 ϵ−(2s+1)/s/4. Assuming that c1ϵ(2s+1)/s ≤ ∥γ∥2, standard
sub-Exponential concentration bounds imply that there exists a universal constant c3 > 0
such that

P(∥θ∥22 − E∥θ∥22 ≤ −t) ≤ exp(− c3t

∥γ∥2
)

for all t ≥ 0. Since E∥θ∥22 = ∥γ∥1 = c1c2ϵ
2, and ∥γ∥22 = c2c

2
1ϵ

4s+1
s , we can set t = 1

2
∥θ∥22 to get

P(∥θ∥22 ≤
1

2
c1c2ϵ

2) ≤ exp(−1

2
c3
√
c2ϵ

−1/(2s)).

Now choose c1 and c2 to satisfy

100c1c
2s+1
2 = C and c1c2 = 2. (A.2.6)
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and ϵ small enough to satisfy

c1ϵ
(2s+1)/s ≤ ∥γ∥2 =

√
c1c1ϵ

(2s+1/2)/s and
1

2
c3
√
c2ϵ

−1/(2s) ≥ log(100).

Long story short, these conditions ensure that P(µγ ∈ PG(s, C),TV(µγ, µ0) ≥ ϵ) ≥ 0.98 for
all ϵ small enough in terms of C and s, and therefore we can proceed to computation using
Lemma A.2.1.

Note that we immediately get the binary hypothesis testing lower bound m ≳ 1/ϵ2 via
our reduction (2.3.3), as H(µ0, µ√

γ) ≍ TV(µ0, µ√
γ) =

√
2ϵ by Lemma 2.3.5 and the choice

(A.2.6).
Goodness-of-fit testing. We show that TV(µ⊗n

0 ,Eµ⊗n
γ ) can be made arbitrarily small

as long as n ≲ 1/ϵ(2s+1/2)/s, which yields a lower bound on n via reduction from goodness-
of-fit testing (2.3.3). Let us compute the distribution Eµ⊗n

γ . By independence clearly
Eµ⊗n

γ = ⊗∞
k=1Eθ∼N (0,γk)N (θ, 1)⊗n. Focusing on the inner term and and dropping the subscript

k, for the density we have

Eθ∼N (0,γ)

[
1

(2π)n/2
exp(−1

2

n∑
j=1

(xj − θ)2)

]
∝ exp(−∥x∥

2
2

2
)E exp(−n

2
(θ2 − 2θx̄)),

where we write x̄ =.. 1
n

∑
j xj. Looking at just the term involving θ, we have

E exp(−n
2
(θ2 − 2θx̄)) ∝

∫
exp(−1

2
(θ2(n+

1

γ
)− 2θnx̄))dθ ∝ exp(

1

2

n2x̄2

n+ 1
γ

).

Putting everything together, we see that Eµ⊗n
γ = ⊗∞

k=1N (0, (Idn − γk
1+nγk

1n1
T
n)

−1). Thus,
using Lemma A.2.2 we obtain

TV2(µ⊗n
0 ,Eµ⊗n

γ ) ≤
∞∑
k=1

KL(N (0, Idn)∥N (0, (Idn −
γk

1 + nγk
1n1

T
n)

−1

))

=
1

2

∞∑
k=1

(
− nγk
nγk + 1

+ log(1 + nγk)

)
≤ 1

2

∞∑
k=1

n2γ2k
1 + nγk

≲
∞∑
k=1

n2γ2k.

Taking γ as in (A.2.5) gives

TV2(µ⊗n
0 ,Eµ⊗n

γ ) ≲ n2ϵ2(2s+1/2)/s.

Thus, goodness-of-fit testing is impossible unless n ≳ 1/ϵ(2s+1/2)/s as desired.
Likelihood-free hypothesis testing. We apply Lemma A.2.1 with measures P0 =

µ⊗n
γ ⊗ µ⊗n

0 ⊗ µ⊗m
γ and P1 = µ⊗n

γ ⊗ µ⊗n
0 ⊗ µ⊗m

0 . By an analogous calculation to that in the
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previous part, we obtain

EP0 = ⊗∞
k=1N

(
0,
(
Id2n+m −

1

n+m+ 1
γk

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m

)−1
)

=.. ⊗∞
k=1N (0,Σ0k)

EP1 = ⊗∞
k=1N

(
0,
(
Id2n+m −

1

n+ 1
γk

1n1T
n 0 0

0 0 0
0 0 0

)−1
)

=.. ⊗∞
k=1N (0,Σ1k).

By the Sherman-Morrison formula, we have

Σ0k = Id2n+m + γk

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m


Therefore, by Pinsker’s inequality and the closed form expression for the KL-divergence
between centered Gaussians, we obtain

TV2(EP0,EP1) ≤ KL(EP0∥EP1)

=
1

2

∞∑
k=1

(
γkm− log

(
1 +

γkm

γk(n+m) + 1

))
.

Once again we choose γ as in (A.2.5). Using the inequality log(1 + x) ≥ x− x2 valid for all
x ≥ 0 we obtain

TV2(EP0,EP1) ≲ ϵ−2(2s+1/2)/s(m2 +mn).

Therefore, likelihood-free hypothesis testing is impossible unless m ≳ ϵ−(2s+1/2)/s or nm ≳
ϵ−2(2s+1/2)/s. Note that we already have the lower bound n ≳ ϵ−(2s+1/2)/s by reduction
from goodness-of-fit testing (2.3.3), so that m ≳ ϵ−(2s+1/2)/s automatically implies nm ≳
ϵ−2(2s+1/2)/s. Combining everything we get the desired bounds.

A.2.3 The classes PDb and PD

Our first result in this section derives tight minimax lower bounds for the class PDb. Since
PD ⊃ PDb these lower bounds immediately carry over to the larger class. However, to get tight
lower bounds for all regimes for PD, we have to prove additional results in Propositions A.2.7
and A.2.9 below.

Proposition A.2.6. For any C > 1 there exists a finite constant c independent of ϵ and k,
such that

c{m ≥ 1/ϵ2, n ≥
√
k/ϵ2,mn ≥ k/ϵ4} ⊇ RLF(ϵ,PDb(k, C)) ⊇ RLF(ϵ,PD(k))

for all ϵ ∈ (0, 1) and k ≥ 2.
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Proof. The second inclusion is trivial. For the first inclusion we proceed analogously to the
case of PH.
Adversarial construction. Let k be an integer and ϵ ∈ (0, 1). For η ∈ {−1, 1}k define the
distribution pη on [2k] by

pη(2j − 1) =
1

2k
(1 + ηjϵ)

pη(2j) =
1

2k
(1− ηjϵ),

for j ∈ [k]. Clearly H(pη, p0) ≍ TV(pη, p0) = ϵ, where p0 = Unif[2k], so that by reduction
from binary hypothesis testing (2.3.3) we get the lower bound m ≳ 1/ϵ2. Observe also that
for any η, η′ ∈ {±1}k, ∑

j∈[2k]

pη(j)pη′(j) =
1

2k
(1 +

ϵ2⟨η, η′⟩
k

). (A.2.7)

Goodness-of-fit testing. Let η be uniformly random. We show that TV(p⊗n0 ,Ep⊗nη ) can
be made arbitrarily small as long as n ≲

√
k/ϵ2, which yields the corresponding lower bound

on n by reduction from goodness-of-fit testing (2.3.3). Once again, by Lemma A.2.2 we focus
on the χ2 divergence. We have

χ2(Ep⊗nη ∥p⊗n0 ) + 1 = (2k)n
∑
j∈[2k]n

Eηη′
n∏
i=1

pη(ji)pη′(ji)

= Eηη′(1 +
ϵ2⟨η, η′⟩

k
)n

≤ exp(n2ϵ4/k)

where the penultimate line follows from (A.2.7) and the last line via the same argument as in
A.2.1. Thus, goodness-of-fit testing is impossible unless n ≳

√
k/ϵ2.

Likelihood-free hypothesis testing. We apply Lemma A.2.1 with the two random
measures P0 = p⊗nη ⊗ p⊗n0 ⊗ p⊗mη and P1 = p⊗nη ⊗ p

⊗(n+m)
0 . Analogously to the case of PH,

let P0,XY Z ,P1,XY Z respectively denote the distribution of the observations X, Y, Z under
EP0,EP1 respectively. As for PH, we have

TV2(P0,XY Z ,P1,XY Z) ≤ KL(P0,XY Z∥P1,XY Z)

≤ KL(P0,Z|X∥P1,Z|X |P0,X).

For any X the distribution P1,Z|X is uniform, and P0,Z|X ,P0,X have pmf Eη|Xp⊗mη and Eηp⊗nη
respectively. Once again, by Lemma A.2.2 we may turn our attention to the χ2-divergence.
Given X, let η′ have the same distribution as η and be independent of it. Then

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1 = (2k)mEX
∑

j∈[2k]m
Eη|XEη′|X

n∏
i=1

pη(ji)pη′(ji)

= Eηη′(1 +
ϵ2⟨η, η′⟩

k
)m

≤ Eηη′
∏
j∈[k]

exp(
ϵ2mηjη

′
j

k
),
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where we used Lemma A.2.7. Let N = (N1, . . . , Nk) be the vector of counts indicating
the number of the X1, . . . , Xn that fall into the bins {2j − 1, 2j} for j ∈ [k]. Clearly
N ∼ Mult(n, ( 1

k
, . . . , 1

k
)). Let us focus on a specific bin {2j − 1, 2j} and define the bin-

conditional pmf

p±(x) =


1
2
(1± ϵ) if x = 2j − 1,

1
2
(1∓ ϵ) if x = 2j

0 otherwise,

where we drop the dependence on j in the notation. Let Xi1 , . . . , XiNj
be the Nj observations

falling in {2j − 1, 2j}. Given Nj, the pmf of Xi1 , . . . , XiNj
is 1

2
(p

⊗Nj

+ + p
⊗Nj

− ). We have
ηjη

′
j ∈ {±1} almost surely, and analogously to Section A.2.1 we may compute

P(ηjη
′
j = 1|Nj) = EX|Nj

P(ηjη
′
j = 1|X)

= EX|Nj

[
P(ηj = 1|X)2 + P(ηj = −1|X)2

]
=

1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )) + χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )

)
≤ 1

2
+

1

8

(
χ2(p

⊗Nj

− ∥p⊗Nj

+ ) + χ2(p
⊗Nj

+ ∥p⊗Nj

− )
)
.

We can bound the two χ2-divergences by

χ2(p
⊗Nj

± ∥p⊗Nj

∓ ) + 1 =

(
1 + 3

2
ϵ2

1− ϵ2

)Nj

≤ (1 + 3ϵ2)Nj ,

provided ϵ ≤ c for some universal constant c > 0. Using Lemma A.2.3, we obtain the bound

EN
∏
j∈[k]

Eηη′|Nj
exp(

ϵ2mηjη
′
j

k
)

≤ EN
∏
j∈[k]

(
1

2
(exp(

ϵ2m

k
)− exp(−ϵ

2m

k
))(1 + (1 + 2ϵ2)Nj) + exp(−ϵ

2m

k
)

)

≤
(
1

2
(exp(

ϵ2m

k
)− exp(−ϵ

2m

k
))(1 + exp(

2ϵ2n

k
)) + exp(−ϵ

2m

k
)

)k
.

Now, under the assumption that m ∨ n ≲ k/ϵ2 for some small enough implied constant, the
above can be further bounded by

≤ (1 + c
ϵ4mn

k2
)k

≤ exp(
cϵ4mn

k
),

for a universal constant c > 0. In other words, for n ∨m ≲ k/ϵ2 likelihood-free hypothesis
testing is impossible unless mn ≳ k/ϵ4. The treatment of the case m ∨ n ≳ k/ϵ2 is straight-
forward, and entirely analogous to our discussion at the end of the proof of Proposition A.2.4,
so we won’t repeat it here. This completes the proof.
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This takes care of the class PDb. To prove tight bounds for PD in the large k regime, we
have to work harder. Our second lower bound, Proposition A.2.7 below, proves tight bounds
in the regime n ≤ m and follows by reduction to two-sample testing Proposition 2.3.1.

Proposition A.2.7. There exists a finite constant c independent of ϵ and k,

c{m ≥ 1/ϵ2, n2m ≥ k2/ϵ4, n ≤ m} ⊇ RLF(ϵ,TV,PD) ∩ N2
n≤m

for all k ≥ 2, ϵ ∈ (0, 2), where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof. Follows from (2.3.6) and the lower bound construction in [25].

Valiant’s wishful thinking theorem.

For our third and final lower bound, which is tight in the regime m ≤ n, we apply a method
developed by Valiant, which we describe below.

Definition 9. For distributions p1, . . . , pℓ on [k] and (n1, . . . , nℓ) ∈ Nℓ, we define the
(n1, . . . , nℓ)-based moments of (p1, . . . , pℓ) as

m(a1, . . . , aℓ) =
k∑
i=1

ℓ∏
j=1

(njpj(i))
aj

for (a1, . . . , aℓ) ∈ Nℓ.

Let p+ = (p+1 , . . . , p
+
ℓ ) and p− = (p−1 , . . . , p

−
ℓ ) be ℓ-tuples of distributions on [k] and suppose

we observe samples {X(i)}i∈[ℓ], where the number of observations in X(i) is Poi(ni). Let H±

denote the hypothesis that the samples came from p±, up to an arbitrary relabeling of the
alphabet [k]. It can be shown that to test H+ against H−, we may assume without loss
of generality that our test is invariant under relabeling of the support, or in other words,
is a function of the fingerprints. The fingerprint f of a sample {X(i)}i∈[ℓ] is the function
f : Nℓ → N which given (a1, . . . , aℓ) ∈ Nℓ counts the number of bins in [k] which have exactly
ai occurences in the sample X(i).

Theorem A.2.8 ([200, Wishful thinking theorem]). Suppose that |p±i |∞ ≤ η/ni for all
i ∈ [ℓ] for some η > 0, and let m+ and m− denote the (n1, . . . , nℓ)-based moments of p+, p−
respectively. Let f± denote the distribution of the fingerprint under H± respectively. Then

TV(f+, f−) ≤ 2(eηℓ − 1) + eℓ(η/2+log 3)
∑
a∈Nℓ

|m+(a)−m−(a)|√
1 +m+(a) ∨m−(a)

.

Proof. The proof is a straightforward adaptation of [200] and thus we omit it.

Although Theorem A.2.8 assumes a random (Poisson distributed) number of samples, the
results carry over to the deterministic case with no modification, due to the sub-exponential
concentration of the Poisson distribution. We are ready to prove our likelihood-free hypothesis
testing lower bound using Theorem A.2.8.
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Proposition A.2.9. There exists a finite constant c independent of ϵ and k, such that

c{m ≥ 1/ϵ2, n2m ≥ k2/ϵ4, m ≤ n} ⊇ RLF(ϵ,TV,PD) ∩ N2
m≤n

for all ϵ ∈ (0, 1) and k ≥ 2, where N2
m≤n = {(n,m) ∈ N2 : m ≤ n}.

Proof. We focus on the regime n ≤ k, as otherwise the result is subsumed by Proposition
A.2.6. Suppose that ϵ ∈ (0, 1/2), η = 0.01 (say) and n/η ≤ k/2. Define γ = n/η and let
p, q be pmfs on [k] with weight (1 − ϵ)/γ on [γ] and k/4 light elements with weight 4ϵ/k
on [k/2, 3k/4] and [3k/4, k] respectively. To apply Valiant’s wishful thinking theorem, we
take p+ = (p, q, p) and p− = (p, q, q) with corresponding hypotheses H±. The (n, n,m)-based
moments of p± are given by

1

na+bmc
m+(a, b, c) =


k if a+ c = 0, b = 0(
1−ϵ
α

)a+b+c
α +

(
4ϵ
k

)a+b+c k
4

if a+ c = 0 xor b = 0(
1−ϵ
α

)a+b+c
α if a+ c ≥ 1, b ≥ 1,

1

na+bmc
m−(a, b, c) =


k if a = 0, b+ c = 0(
1−ϵ
α

)a+b+c
α +

(
4ϵ
k

)a+b+c k
4

if a = 0 xor b+ c = 0(
1−ϵ
α

)a+b+c
α if a ≥ 1, b+ c ≥ 1.

By the wishful thinking theorem we know that

TV(f+, f−) ≤ 0.061 + 27.41
∑
a,b,c∈N

|m+(a, b, c)−m−(a, b, c)|√
1 + max(m+,m−)

.

Let us consider the possible values of |m+(a, b, c)−m−(a, b, c)|. It is certainly zero if a∧ b ≥ 1
or a = b = c = 0. Suppose that a = 0 so that necessarily b+ c ≥ 1. Then

1

nbmc
|m+(0, b, c)−m−(0, b, c)| =

(
4ϵ

k

)b+c
k

4
1(b ∧ c ≥ 1).

Using the symmetry between a and b and that 1 + m+ ∨ m− ≥ nbmc((1 − ϵ)/γ)b+cγ (for
m+ ̸= m−), we can bound the infinite sum above as

≲
∑
b,c≥1

nbmck1−(b+c)ϵb+c√
nbmcγ1−(b+c)(1− ϵ)b+c

≲
∑
b,c≥1

nb/2mc/2

(√
γ

k

)b+c−1

ϵb+c
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Plugging in γ = n/η ≍ n, and using m ≤ n ≤ k, we obtain

TV(f+, f−)− 0.061 ≲
∑
b,c≥1

nb+
c
2
− 1

2mc/2 1

kb+c−1
ϵb+c

=
n
√
mϵ2

k

∑
b,c≥0

(n
k

)b+ c
2
(m
k

) c
2
ϵb+c

≤ n
√
mϵ2

k

∑
b,c≥0

ϵb+c

≲
n
√
mϵ2

k
,

where we use that ϵ < 1/2. Thus, likelihood-free hypothesis testing is impossible for m ≤ n
unless n2m ≳ k2/ϵ4.

A.3 Proof of Theorem 2.3.6

A.3.1 Upper bound

We deduce the upper bound by applying the corresponding result for PD as a black-box
procedure.

Theorem A.3.1 ([54]). For a constant independent of ϵ and k,

nGoF(ϵ,H,PD) ≍
√
k/ϵ2.

Write Gℓ for the regular grid of size ℓd on [0, 1]d and let Pℓ denote the L2-projector onto
the space of functions piecewise constant on the cells of Gℓ. For convenience let us re-state
Proposition 2.4.3.

Proposition A.3.2. For any β ∈ (0, 1], C > 1 and d ≥ 1 there exists a constant c > 0 such
that

cH(f, g) ≤ H(Pκf, Pκg) ≤ H(f, g)

holds for any f, g ∈ PH(β, d, C), provided we set κ = (cϵ)−2/β.

With the above approximation result, the proof of Theorem 2.3.6 is straightforward.

Proof of Theorem 2.3.6. Suppose we are testing goodness-of-fit to f0 ∈ PH based on an i.i.d.
sample X1, . . . , Xn from f ∈ PH. Take κ ≍ ϵ−2/β and bin the observations on Gκ, denoting
the pmf of the resulting distribution as pf . Then, under the alternative hypothesis that
H(f, f0) ≥ ϵ, by Proposition 2.4.3

ϵ ≲ H(Pκf0, Pκf) = H(pf0 , pf ).

In particular, applying the algorithm achieving the upper bound in Theorem A.3.1 to the
binned observations, we see that n ≳

√
κd/ϵ2 = ϵ−(2β+d)/β samples suffice.
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A.3.2 Lower bound

The proof is extremely similar to the TV case, except we put the perturbations at density
level ϵ2 instead of 1.

Proof. Let ϕ : [0, 1]→ [0, 1] be a smooth function such that ϕ(x) = 0 for x ≤ 1/3 and ϕ(x) = 1
for x ≥ 2/3. Let h : Rd → R be smooth, supported in [0, 1]d, and satisfy

∫
[0,1]d

h(x)dx = 0

and
∫
[0,1]d

h(x)2dx = 1. Given ϵ ∈ (0, 1) let

f0(x) = ϵ2 +
ϕ(x1)

∥ϕ∥1
(1− ϵ2),

which is a density on [0, 1]d. For a large integer κ and j ∈ [κ/3]× [κ]d−1 let

hj(x) = κd/2h(κx− j + 1)

for x ∈ [0, 1]d. Then hj is supported on [(j − 1)/κ, j/κ] ⊆ [0, 1/3] × [0, 1]d−1 and
∫
h2j = 1.

For η ∈ {±1}[κ/3]×[κ]d−1 and ρ > 0 let

fη(x) = f0 + ρ
∑

j∈[κ/3]×[κ]d−1

ηjhj(x).

Then fη is positive provided that ϵ2 ≥ ρκd/2|h|∞ ≍ ρκd/2. Further, ∥fη∥Cβ is of constant order
provided ρκd/2+β ≲ 1. Under these assumptions fη ∈ PH. Note that the Hellinger distance
between fη and f0 is

H2(f0, fη) =
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ
, j
κ
]

(√
f0(x)−

√
fη(x)

)2

dx

=
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ
, j
κ
]

ρ2h2j(x)

(
√
f0(x) +

√
fη(x))2

dx

≥
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ
, j
κ
]

ρ2h2j(x)

4ϵ2
dx

≳
ρ2κd

ϵ2
.

Suppose we draw η uniformly at random. Via Ingster’s trick we compute

χ2(Eηf
⊗n
η ∥f⊗n

0 ) + 1 =

∫
Eηη′

n∏
i=1

fη(xi)fη′(xi)

f0(xi)
dx1 . . . dxn

= Eηη′
(∫

fη(x)fη′(x)

f0(x)
dx

)n
.
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Looking at the integral term on the inside we get

∫
fη(x)fη′(x)

f0(x)
dx =

∫
(
f0(x) + ρ

∑
j∈[κ/3]×[κ]d−1

ηjhj(x)

)(
f0(x) + ρ

∑
j∈[κ/3]×[κ]d−1

η′jhj(x)

)
f0(x)

dx

= 1 + ρ
∑
j

(ηj + η′j)

∫
hj(x)dx+ ρ2

∑
j

ηjη
′
j

∫
hj(x)

2

f0(x)
dx

= 1 +
ρ2

ϵ2

∑
j

ηjη
′
j

∫
hj(x)

2dx

= 1 +
ρ2

ϵ2
⟨η, η′⟩,

where we’ve used that hj and hj′ have disjoint support unless j = j′,
∫
hj = 0,

∫
h2j = 1, and

that f0(x) = ϵ2 for all x with x1 ≤ 1/3. Plugging in, using the inequalities 1 + x ≤ exp(x)
and cosh(x) ≤ exp(x2) we obtain

χ2(Eηf
⊗n
η ∥f⊗n

0 ) + 1 ≤ Eηη′(1 +
ρ2

ϵ2
⟨η, η′⟩)n

≤ Eηη′ exp(
ρ2n

ϵ2
⟨η, η′⟩)

= cosh(
ρ2n

ϵ2
)κ

d/3

≤ exp(
ρ4n2κd

3ϵ4
).

Choosing κ = ϵ−2/β and ρ = ϵ(2β+d)/β we see that goodness-of-fit testing of f0 is impossible
unless

n ≳
ϵ2

ρ2κd/2
= ϵ−

2β+d
β .

A.4 Auxiliary technical results

A.4.1 Proof of Lemma 2.2.1

Proof. We prove the upper bound first. Let P0,P1 ∈ P be arbitrary. Then by Lemma A.2.2,

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i) ≤ inf

ψ

(
P⊗m
0 (ψ = 1) + P⊗m

1 (ψ = 0)
)

= 1− TV(P⊗m
0 ,P⊗m

1 )

≤ 1− 1

2
H2(P⊗m

0 ,P⊗m
1 ) =.. (†).
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By tensorization of the Hellinger affinity, we have

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
. (A.4.1)

Plugging in, along with 1 + x ≤ ex gives

(†) ≤ exp(−m
2
H2
(
P⊗m
0 ,P⊗m

1 )
)
.

Taking m > 2 log(3)/H2(P0,P1) shows the existence of a successful test. Let us turn to the
lower bound. Using Lemma A.2.2 we have

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i) ≥ 1

2

(
1− TV(P⊗m

0 ,P⊗m
1 )

)
≥ 1

2

(
1− H(P⊗m

0 ,P⊗m
1 )

)
.

Note that it is enough to restrict the maximization in Lemma 2.2.1 to P0,P1 ∈ P with
H2(P0,P1) < 1. Now, by (A.4.1) and the inequalities e−2x ≤ 1− x valid for all x ∈ [0, 1/2]
and 1− x ≤ e−x valid for all x ∈ R, we obtain

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
≤ 2− 2 exp(−mH2(P0,P1))

≤ 2mH2(P0,P1).

Taking m = 1/(18H2(P0,P1)) concludes the proof via Lemma A.2.1.

A.4.2 Proof of Lemma 2.3.5

Proof. By standard inequalities between divergences (see e.g. Lemma A.2.2), omitting the
argument (µθ, µ0) for simplicity we have

TV ≤ H ≤
√
KL ≤

√
χ2 =

√
exp(∥θ∥22)− 1 ≲ ∥θ∥2.

For the lower bound we obtain TV(µθ, µ0) ≥ min{1, ∥θ∥2/200} ≳ ∥θ∥2 by [61, Theorem
1.2].

A.4.3 Proof of Proposition 2.4.3

Let us write a+ =.. a ∨ 0 for both functions and real numbers. We start with some known
results of approximation theory.

Definition 10. For f : [0, 1]d → R define the modulus of continuity as

ω(δ; f) = sup
∥x−y∥2≤δ

|f(x)− f(y)|.
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Lemma A.4.1. For any real-valued function f and δ ≥ 0,

ω(δ;
√
f+) ≤ ω(δ; f)1/2.

Proof. Follows from the inequality |√a+ −
√
b+|2 ≤ |a− b| valid for all a, b ∈ R.

Lemma A.4.2. Let f : [0, 1]d → R be β-smooth for β ∈ (0, 1]. Then

ω(δ; f) ≤ c δβ

for a constant c depending only on ∥f∥Cβ .

Proof. Follows by the definition of Hölder continuity.

Lemma A.4.3 ([156, Theorem 4]). For any continuous function f : [0, 1]d → R the best
polynomial approximation pn of degree n satisfies

∥pn − f∥∞ ≤ c ω

(
d3/2

n
; f

)
for a universal constant c > 0.

Definition 11. Given a function f : [0, 1]d → R, ℓ ≥ 1 and j ∈ [ℓ]d, let πj,ℓf : [0, 1]d → R
denote the function

πj,ℓf(x) =.. f

(
x+ j − 1

ℓ

)
.

In other words, πj,ℓf is equal to f zoomed in on the j’th bin of the regular grid Gℓ.

Recall that here Pℓ denotes the L2 projector onto the space of functions piecewise constant
on the bins of Gℓ. We are ready for the proof of Proposition 2.4.3.

Proof. Let κ ≥ r ≥ 1 whose values we specify later. We treat the parameters β, d, ∥f∥Cβ , ∥g∥Cβ

as constants in our analysis. Let uf : [0, 1]d → R denote the (piecewise polynomial) function
that is equal to the best polynomial approximation of

√
f on each bin of Gκ/r with maximum

degree α. By Lemmas A.4.1 and A.4.2 for any ℓ ≥ 1 and j ∈ [ℓ]d

ω(δ; πj,ℓ
√
f) ≤ ω(δ/ℓ;

√
f) ≲ (δ/ℓ)β/2, (A.4.2)

so that by Lemma A.4.3

|uf −
√
f |∞ = sup

j∈[κ/r]d
|πj,κ/r(uf −

√
f)|∞

≲ sup
j∈[κ/r]d

ω(d3/2/α; πj,κ/r
√
f)

≲ (ακ/r)−β/2.
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Regarding r as a constant independent of κ, α can be chosen large enough independently of
κ such that |uf −

√
f |∞ ≤ c1κ

−β/2 for c1 arbitrarily small. Define ug analogously to uf . We
have the inequalities

H(f, g) = ∥
√
f −√g∥2

≤ ∥
√
f − uf∥2 + ∥uf − ug∥2 + ∥ug −

√
g∥2

≤ 2c1κ
−β/2 + ∥uf − ug∥2.

We can write

∥uf − ug∥22 =
1

(κ/r)d

∑
j∈[κ/r]d

∥πj,κ/r(uf − ug)∥22

Now, by [10, Lemma 7.4] we can take r large enough (depending only on β, d, ∥f∥Cβ , ∥g∥Cβ)
such that

∥πj,κ/r(uf − ug)∥2 ≤ c2∥Prπj,κ/r(uf − ug)∥2
where the implied constant depends on the same parameters as r. Thus, we get

H2(f, g) ≤ 8c21κ
−β +

2c22
(κ/r)d

∑
j∈[κ/r]d

∥Prπj,κ/r(uf − ug)∥22

≤ 8c21κ
−β +

6c22
(κ/r)d

∑
j∈[κ/r]d

(
∥Prπj,κ/ruf −

√
Prπj,κ/rf∥22 + ∥Prπj,κ/rug −

√
Prπj,κ/rg∥22

)
+ 6c22H

2(Pκf, Pκf),

where c1, c2 depend only on the unimportant parameters, and c1 can be taken arbitrarily
small compared to c2. We also used the fact that Prπj,κ/r = πj,κ/rPκ. Looking at the terms
separately, we have

∥Prπj,κ/ruf −
√
Prπj,κ/rf∥2 ≤ ∥Prπj,κ/ruf − Pr

√
πj,κ/rf∥2 + ∥Pr

√
πj,κ/rf −

√
Prπj,κ/rf∥2

≤ cκ−β/2 + ∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥2,

since Pr is a contraction by Lemma A.4.4. We can decompose the second term as

∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥22 =

=
∑
ℓ∈[r]d

∫
[ ℓ−1

r
, ℓ
r ]

(
rd
∫
[ ℓ−1

r
, ℓ
r ]

√
πj,κ/rf(x)dx−

√
rd
∫
[ ℓ−1

r
, ℓ
r ]
πj,κ/rf(x)dx

)2

= (†).

For x ∈ [(ℓ− 1)/r, ℓ/r] we always have

|πj,κ/rf(x)− πj,κ/rf(ℓ/r)| ≤ ω(

√
d

r
; πj,κ/rf) ≲

(√
d/r

κ/r

)β

≲ κ−β.

Using the inequality
√
a+ b−

√
(a− b)+ ≤ 2

√
b valid for all a, b ≥ 0, we can bound (†) by

κ−β up to constant and the result follows.
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A.4.4 Proof of Proposition A.1.1

For f ∈ L2(µ) write fi = ⟨fϕi⟩ and fii′ = ⟨fϕiϕi′⟩, assuming that the quantities involved are
well-defined. We record some useful identities related to Pr that will be instrumental in our
proof of Proposition A.1.1.

Lemma A.4.4. Pr is self-adjoint and has operator norm

∥Pr∥ =.. sup
f∈L2(µ):∥f∥2≤1

∥Pr(f)∥2 ≤ 1.

Suppose that f, g, h, t ∈ L2(µ) and that each quantity below is finite. Then∑
ii′

figi′hii′ = ⟨hPr(f)Pr(g)⟩,∑
ii′

figihi′ti′ = ⟨fPr(g)⟩⟨hPr(t)⟩∑
ii′

fii′gii′ =
∑
i

⟨fϕiPr(gϕi)⟩,

where the summation is over i, i′ ∈ [r].

Proof. Let P⊥
r be the projection onto the orthogonal complement of span({ϕ1, . . . , ϕr}). Then

for any f, g ∈ L2(µ) we have

⟨fPr(g)⟩ = ⟨(Pr(f) + P⊥
r (f))Pr(g)⟩ = ⟨Pr(f)Pr(g)⟩ = ⟨Pr(f)g⟩,

where the last equality is by symmetry. We also have

∥Pr(f)∥22 ≤ ∥Pr(f)∥22 + ∥P⊥
r (f)∥22 = ∥Pr(f) + P⊥

r (f)∥2 = ∥f∥22.

Let f, g, h, t ∈ L2(µ). Then∑
ii′

figi′hii′ =
∑
i

fi
∑
i′

gi′hii′ =
∑
i

fi
∑
i′

⟨gPr(hϕi)⟩ =
∑
i

fi⟨Pr(g)hϕi⟩ = ⟨Pr(f)hPr(g)⟩∑
ii′

figihi′ti′ = (
∑
i

figi)(
∑
i′

hi′ti′) = ⟨fPr(g)⟩⟨hPr(t)⟩∑
ii′

fii′gii′ =
∑
i

⟨fϕi
∑
i′

⟨gϕiϕi′⟩ϕi′⟩ =
∑
i

⟨fϕiPr(gϕi)⟩.

Proof of Proposition A.1.1. Let us label the different terms of the statistic T−d
LF :

T−d
LF =

r∑
i=1

{
2

n2

n∑
j<j′

ϕi(Xj)ϕi(Xj′)−
2

n2

n∑
j<j′

ϕi(Yj)ϕi(Yj′)

− 2

nm

n∑
j=1

m∑
u=1

ϕi(Xj)ϕi(Zu) +
2

nm

n∑
j=1

m∑
u=1

ϕi(Yj)ϕi(Zu)

}

=
2

n2
I− 2

n2
II− 2

nm
III+

2

nm
IV.
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Recall that X, Y, Z ∼ f⊗n, g⊗n, h⊗m respectively. A straightforward computation yields

ETLF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22 −
1

n

(
∥Pr(f)∥22 − ∥Pr(g)∥22

)
.

We decompose the variance as

var(TLF) =
4

n4
var(I) +

4

n4
var(II) +

4

n2m2
var(III) +

4

n2m2
var(IV)

− 8

n3m
Cov(I, III)− 8

n3m
Cov(II, IV)− 8

n2m2
Cov(III, IV),

where we used independence of the pairs (I, II), (I, IV), (II, III). Expanding the variances we
obtain

var(I) =
∑
ii′

((
n

2

)
(f 2
ii′ − f 2

i f
2
i′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(fifi′fii′ − f 2

i f
2
i′)

)

var(II) =
∑
ii′

((
n

2

)
(g2ii′ − g2i g2i′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(gigi′gii′ − g2i g2i′)

)
var(III) =

∑
ii′

(
nm(fii′hii′ − fifi′hihi′) + nm(m− 1)(fii′hihi′ − fifi′hihi′)+

+mn(n− 1)(fifi′hii′ − fifi′hihi′)
)

var(IV) =
∑
ii′

(
nm(hii′gii′ − hihi′gigi′) +mn(n− 1)(hii′gigi′ − hihi′gigi′)

+ nm(m− 1)(gii′hihi′ − hihi′gigi′)
)
.

For the covariance terms we obtain

Cov(I, III) =
∑
ii′

2m

(
n

2

)
(fii′fihi′ − f 2

i fi′hi′)

Cov(II, IV) =
∑
ii′

2m

(
n

2

)
(gii′gihi′ − g2i gi′hi′)

Cov(III, IV) =
∑
ii′

mn2(hii′figi′ − figi′hihi′).

We can now start collecting the terms, applying the calculation rules from Lemma A.4.4
repeatedly. Note that

(
n
2

)2− (n
2

)
−
(
4
2

)(
n
4

)
= n3− 3n2+2n, and by inspection we can conclude

that 1/n, 1/m, 1/nm, 1/n2 and 1/n3 are the only terms with nonzero coefficients. We look at
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each of them one-by-one:

Coef

(
1

n

)
=

r∑
ii′

(
4(fifi′fii′ − f 2

i f
2
i′)︸ ︷︷ ︸

var(I)

+4(gigi′gii′ − g2i g2i′)︸ ︷︷ ︸
var(II)

+4(hihi′fii′ − fifi′hihi′)︸ ︷︷ ︸
var(III)

+

4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(fii′fihi′ − f 2
i fi′hi′)︸ ︷︷ ︸

Cov(I,III)

− 8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV )

)
= 4⟨fPr(f)2⟩ − 4⟨fPr(f)⟩2 + 4⟨gPr(g)2⟩ − 4⟨gPr(g)⟩2 + 4⟨fPr(h)2⟩ − 4⟨fPr(h)⟩2

+ 4⟨gPr(h)2 − 4⟨hPr(g)⟩2 − 8⟨fPr(f)Pr(h)⟩+ 8⟨fPr(f)⟩⟨fPr(h)⟩
− 8⟨gPr(g)Pr(h)⟩+ 8⟨gPr(g)⟩⟨gPr(h)⟩

= 4⟨f(Pr(f − h))2⟩+ 4⟨g(Pr(g − h))2⟩ − 4⟨Pr(f − h)⟩2 − 4⟨Pr(g − h)⟩2

≤ 4Affh + 4Aggh,

recalling the definition Auvt = ⟨u
[
Pr(v − t)

]2⟩ for u, v, t ∈ L2(µ). Similarly, we get

Coef

(
1

m

)
=

r∑
ii′

(
4(hii′fifi′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

+4(hii′gigi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(hii′figi′ − fihihi′gi′)︸ ︷︷ ︸
Cov(III,IV )

= 4⟨h(Pr(f − g))2⟩ − 4⟨hPr(f − g)⟩2

≤ 4Ahfg.

For the lower order terms we obtain

Coef

(
1

nm

)
=

r∑
ii′

(
4(fii′hii′ − fifi′hihi′)− 4(fii′hihi′ − fifi′hihi′)− 4(fifi′hii′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

+ 4(hii′gii′ − hihi′gigi′)− 4(hii′gigi′ − hihi′gigi′)− 4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

)
= 4Bfh − 4⟨fPr(h)⟩2 − 4⟨fPr(h)2⟩+ 4⟨fPr(h)⟩2

− 4⟨hPr(f)2⟩+ 4⟨fPr(h)⟩2 + 4Bgh − 4⟨gPr(h)⟩2

− 4⟨hPr(g)2⟩+ 4⟨gPr(h)⟩2 − 4⟨gPr(h)2⟩+ 4⟨gPr(h)⟩2

≤ 4⟨fPr(h)⟩2 + 4⟨gPr(h)⟩2 + 4Bfh + 4Bgh

≲ |Bfh|+ |Bgh|+ ∥f + g + h∥42

where we recall the definition Buv =
∑

i⟨uϕiPr(vϕi)⟩ for u, v ∈ L2(µ) and apply the Cauchy-
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Schwarz inequality. Next, we look at the coefficient of 1/n2 and find

Coef

(
1

n2

)
=
∑
ii′

(
2(f 2

ii′ − f 2
i f

2
i′)− 12(fii′fifi′ − f 2

i f
2
i′)︸ ︷︷ ︸

var(I)

+2(g2ii′ − g2i g2i′)− 12(gii′gigi′ − g2i g2i′)︸ ︷︷ ︸
var(II)

+ 8(fii′fihi′ − f 2
i fi′hi′)︸ ︷︷ ︸

Cov(I,III)

+8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV)

)
= 2Bff − 2⟨fPr(f)⟩2 − 12⟨fPr(f)2⟩+ 12⟨fPr(f)⟩2

+ 2Bgg − 2⟨gPr(g)⟩2 − 12⟨gPr(g)2⟩+ 12⟨gPr(g)⟩2

+ 8⟨fPr(f)Pr(h)⟩ − 8⟨fPr(f)⟩⟨fPr(h)⟩+ 8⟨gPr(g)Pr(h)⟩ − 8⟨gPr(g)⟩⟨gPr(h)⟩
≤ 2Bff + 2Bgg + 8⟨fPr(f)Pr(h− f)⟩+ 8⟨gPr(g)Pr(h− g)⟩+ 40∥f + g + h∥42
≲ |Bff |+ |Bgg|+ ∥f + g + h∥42 +

√
Aff0Affh + Agg0Aggh.

Finally, we look at the coefficient of 1/n3:

Coef

(
1

n3

)
=
∑
ii′

(
−2(f 2

ii′ − f 2
i f

2
i′) + 8(fii′fifi′ − f 2

i f
2
i′)︸ ︷︷ ︸

Cov(I,III)

−2(g2ii′ − g2i g2i′) + 8(gii′gigi′ − g2i g2i′)︸ ︷︷ ︸
Cov(I,III)

)
= −2Bff + 2⟨fPr(f)⟩2 + 8⟨fPr(f)2⟩ − 8⟨fPr(f)⟩2

− 2Bgg + 2⟨gPr(g)⟩2 + 8⟨gPr(g)2⟩ − 8⟨gPr(g)⟩2

≲ |Bff |+ |Bgg|+ ∥f + g + h∥42 + Aff0 + Agg0.

A.4.5 Proof of Lemma A.2.3

Proof. Expanding via the binomial formula and using the fact that sums of Nj ’s are binomial
random variables, we get

EN
∏
j∈k

(a+ b(1 + c)Nj) = E
k∑
ℓ=0

(
k

ℓ

)
bℓ(1 + c)Bin(n,ℓ/k)ak−ℓ

=
k∑
ℓ=0

(
k

ℓ

)
bℓ(1 +

cℓ

k
)nak−ℓ

≤ (a+ becn/k)k,

where we used 1 + x ≤ ex for all x ∈ R.
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Appendix B

Appendix of “Kernel-Based Tests for
Likelihood-Free Hypothesis Testing”

B.1 Notation

We use A ≳ B,A ≲ B,A ≍ B to denote A = Ω(B), B = Ω(A) and A = Θ(B) respectively,
where the hidden constants depend on untracked parameters multiplicatively.1

We write TV,KL, χ2 for total-variation, KL-divergence and χ2-divergence, respectively.
We write D(PY |X∥QY |X |PX) = EX∼PX

D(PY |X∥QY |X) as the conditional divergence for any
probability measures P,Q on two variables X, Y and divergence D ∈ {TV,KL, χ2}.

We write ℓp for the usual ℓp sequence space and Lp for the usual Lp space with respect to
the Lebesgue measure. Both the ℓp norm and the Lp norm are written as ∥ · ∥p if no ambiguity
arises.

For real numbers a, b ∈ R we also write max{a, b} as a ∨ b and min{a, b} as a ∧ b.
We use 1⃗d to denote an d-dimensional all 1’s vector.
For an integer k ∈ Z+, we write [k] as a short notation for the set {1, 2, . . . , k}.
In the proofs of Theorem 3.3.1 and Theorem 3.3.2, we use !

= for an equality that we are
trying to prove.

B.2 Applications of Theorem 3.3.1

Usually, minimax rates of testing are proven under separation assumptions using more
traditional measures of distance such as Lp, where p ∈ [1,∞]. In this section we show one
example of how Theorem 3.3.1 can be used to recover known results, and also obtain some
novel results under L2-separation and L1-separation.

1For example, the first equation in (B.2.1) means that there exists a constant c independent of α, k, ϵ, δ, R,
such that min{m,n} ≥ c log(1/α)(1+R)2

kϵ2δ2 .
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B.2.1 Bounded Discrete Distributions Under L2/L1-Separation

Sample Complexity Upper Bounds Let PDb(k, C) be the set of all discrete distributions
P supported on [k] = {1, 2, . . . , k} satisfying max1≤i≤k p(i) ≤ C/k, where p is the probability
mass function of P (here

∑k
i=1 p(k) = 1). For distributions PX , PY , PZ we shall write

pX , pY , pZ as their probability mass functions, respectively.
Let us apply Theorem 3.3.1 with underlying space X = [k] and measure µ = 1

k

∑k
i=1 δi.

Take the kernel K(x, y) = 1{x = y} =
∑k

i=1 1{x = y = i}, and note that for any two
distributions PX , PY we have

MMD2(PX , PY ) = E
[
K(X,X ′) +K(Y, Y ′)− 2K(X, Y )

]
=
∑
i

|pX(i)− pY (i)|2

where (X,X ′, Y, Y ′) ∼ P⊗2
X ⊗ P

⊗2
Y . So the corresponding MMD is the ℓ2-distance on prob-

ability mass functions. Note also that K =
∑k

i=1
1
k

(√
k1{x = i}

)(√
k1{y = i}

)
, where{√

k1{x = i}
}k
i=1

forms an orthonormal basis of L2(µ). So K has only one nonzero eigenvalue,
namely

λ1 = λ2 = . . . = λk = 1/k,

of multiplicity k. Suppose that we observe samples X, Y, Z of size n, n,m from PX , PY , PZ ∈
PDb(k, C), where MMD(PX , PY ) =

√∑
i |pX(i)− pY (i)|2 ≥ ϵ. Plugging into Theorem 3.3.1

shows that:

Proposition B.2.1. For any two PX , PY ∈ PDb(k, C), if the ℓ2-distance between pX , pY is
at least ϵ, then testing (mLFHT) is possible at total error α using n simulation samples and
m real data samples provided that

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

kϵ2δ2
,

min{n,
√
mn} ≳

C∥λ∥2
√

log(1/α)

ϵ2δ
≍
√

log(1/α)√
kϵ2δ

.

(B.2.1)

where R is defined as in the assumption (iii) of Section 3.3.1.

We can convert the above results to measure separation with respect to total variation
(recall TV(p, q) = 1

2

∑
i |p(i)− q(i)| =

1
2
∥p− q∥1) using the AM-QM inequality ∥pX − pY ∥1 ≤√

k∥pX −pY ∥2. Then, taking R ≍ α ≍ δ = Θ(1) recovers the minimax optimal results of [123,
124, 78], for LFHT over the class PDb. Note that analogous results for two-sample testing
follow from the above using the reduction presented in Section 3.3.4.

Sample Complexity Lower Bounds Recall the definition of J⋆ϵ and note that ∥λ∥22,J =
min(J−1,k)

k2
for all J ≥ 2. By Corollary 3.3.3 we see that J⋆ϵ ≳ k as soon as ϵ ≲ 1/k. Thus, for

ϵ ≲ 1/k the necessity of

m ≳
log(1/α)

kϵ2δ2
, n ≳

√
log(1/α)√
kϵ2

and m+
√
mn ≳

√
log(1/α)√
kϵ2δ

(B.2.2)
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follows by Theorem 3.3.2. Here it is crucial to note that when δ = Θ(1), we have

m+
√
mn ≳

√
log(1/α)√
kϵ2

and n ≳

√
log(1/α)√
kϵ2

⇐⇒
√
mn ≳

√
log(1/α)√
kϵ2

and n ≳

√
log(1/α)√
kϵ2

and hence the upper bound (B.2.1) meets with the lower bound (B.2.2) provided R ≍ δ = Θ(1).
Once again, setting R ≍ δ ≍ α = Θ(1) we the optimal lower bounds recovering the results of
[78] (in the regime ϵ ≲ 1/k). In short we can also recover the following result for LFHT.

Proposition B.2.2 ([78, Theorem 1, adapted]). On the class PDb(k, C), using n simulation
samples and m real data samples, if

n ≳
1√
kϵ2

, m ≳
1

kϵ2
,
√
mn ≳

1√
kϵ2

, (B.2.3)

then for any two distributions PX , PY ∈ PDb(k, C) with ∥pX − pY ∥2 ≥ ϵ, testing (LFHT) is
possible with a total error of 1%. Conversely, to ensure the existence of a procedure that can
test (LFHT) with a total error of 1% for any PX , PY ∈ PDb(k, C) with ∥pX − pY ∥2 ≥ ϵ, the
number of observations (n,m) must satisfy

n ≳
1√
kϵ2

, m ≳
1

kϵ2
,
√
mn ≳

1√
kϵ2

. (B.2.4)

The implied constants in (B.2.3) and (B.2.4) do not depend on k and ϵ, but may differ.

B.2.2 β-Hölder Smooth Densities on [0, 1]d Under L2/L1-Separation

Sample Complexity Upper Bounds Let PH(β, d, C) be the set of all distributions on
[0, 1]d with β-Hölder smooth Lebesgue-density p satisfying ∥p∥Cβ ≤ C for some constant
C > 1, where

∥p∥Cβ
..= max

0≤|α|≤⌈β−1⌉
∥f (α)∥∞ + sup

x ̸=y∈[0,1]d,|α|=⌈β−1⌉

|f (α)(x)− f (α)(y)|
∥x− y∥β−⌈β−1⌉

2

,

where ⌈β − 1⌉ is the largest integer strictly smaller than β and |α| =
∑

i αi is the norm of
a multi-index α ∈ Nd. Abusing notation, we also use PH(β, d, C) to denote the set of all
corresponding density functions.

We take K(x, y) =
∑

j 1{x, y ∈ Bj}, where {Bj}j∈[κ]d is the j’th cell of the regular grid
of size κd on [0, 1]d, i.e., Bj = [(j − 1⃗d)/κ, j/κ] for j ∈ [κ]d. Clearly there are κd nonzero
eigenvalues, each equal to 1. The following approximation result is due to Ingster [110], see
also [10, Lemma 7.2].

Lemma B.2.3. Let f, g ∈ PH(β, d, C) with ∥f − g∥2 ≥ ϵ. Then, there exist constants c, c′
independent of ϵ such that for any κ ≥ cϵ−1/β,

MMD(f, g) ≥ c′∥f − g∥2.
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Now, suppose that we have samples X, Y, Z of size n, n,m from PX , PY , PZ ∈ PH(β, d, C)
with densities pX , pY , pZ such that ∥pX − pY ∥2 ≥ ϵ. Then, Theorem 3.3.1 combined with
Lemma B.2.3 and the choice κ ≍ ϵ−1/β shows that

Proposition B.2.4. Testing (mLFHT) on PH(β, d, C) at total error α using n simulation
and m real data samples is possible provided

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

δ2ϵ2
,

min{n,
√
nm} ≳

C∥λ∥2
√

log(1/α)

ϵ2δ
≍
√

log(1/α)

ϵ(2β+d/2)/βδ
,

where ϵ is an L2-distance lower bound between PX , PY and R is defined as in the assumption
(iii) of Section 3.3.1.

Setting R ≍ α ≍ δ = Θ(1) recovers the optimal results of [78] for the class PH. Once again,
identical results under L1 separation follow from Jensen’s inequality ∥ ·∥L1([0,1]d) ≤ ∥·∥L2([0,1]d).
Note that analogous results for two-sample testing follow from the above using the reduction
presented in Section 3.3.4.

Sample Complexity Lower Bounds The kernel defined in the previous paragraph
is not suitable for constructing lower bounds over the class PH because its eigenfunctions
do not necessarily lie in PH. It would be possible to consider a different kernel that is more
adapted to this problem/class but we do not pursue this here.

B.2.3 (β, 2)-Sobolev Smooth Densities on Rd Under L2-Separation

Sample Complexity Upper Bounds Let PS(β, d, C) be the class of distributions that
are supported on Rd and whose Lebesgue density p satisfies ∥p∥β,2 ≤ C, where

∥p∥β,2 ..=
∥∥(1 + ∥ · ∥)βF [p]∥∥

2
(B.2.5)

and F denotes the Fourier transform. Again, abusing notation, we write PS(β, d, C) both as
the set of distributions and the set of density functions.

We take the Gaussian kernel Gσ(x, y) = σ−d exp(−∥x − y∥22/σ2) on X = Rd with base
measure dµ(x) = exp(−x2)dx. In [139] the authors showed that the two-sample test that
thresholds the Gaussian MMD with appropriately chosen variance σ2 achieves the minimax
optimal sample complexity over PS, when separation is measured by L2. A key ingredient in
their proof is the following inequality.

Lemma B.2.5 ([139, Lemma 5]). Let f, g ∈ PS(β, d, C) with ∥f − g∥2 ≥ ϵ. Then, there exist
constants c, c′ independent of ϵ such that for any σ ≤ c ϵ1/β, we have

MMD(f, g) ≥ c′∥f − g∥2.

Now, suppose that we have samples X, Y, Z of sizes n, n,m from PX , PY , PZ ∈ PS(β, d, C)
for some constant C with densities pX , pY , pY satisfying ∥pX − pY ∥2 ≥ ϵ.
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Note that the heat-semigroup is an L2-contraction (∥λ∥∞ ≤ 1) and that

∥λ∥22 =
∫
Gσ(x, y)

2dµ(x)dµ(y) ≍ σ−d

up to constants depending on the dimension. Theorem 3.3.1 combined with Lemma B.2.5
and a choice σ ≍ ϵ1/β yields the following result.

Proposition B.2.6. Testing (mLFHT) over the class PS with total error α is possible provided

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

δ2ϵ2

min{n,
√
nm} ≳

C∥λ∥2
√
log(1/α)

ϵ2δ
≍
√

log(1/α)

ϵ(2β+d/2)/βδ
,

where ϵ is the lower bound on the L2-distance between PX , PY and R is defined as in the
assumption (iii) of Section 3.3.1.

Taking R ≍ δ ≍ α = Θ(1) above, we obtain new results for LFHT and using the
reduction from two-sample testing given in Section 3.3.4 we partly recover [139, Theorem 5].
Only partly, because the above requires bounded density with respect to our base measure
dµ(x) = exp(−x2)dx.

Sample Complexity Lower Bounds Note that our lower bound Theorem 3.3.2 doesn’t
apply because the top eigenfunction of the Gaussian kernel is not constant. Once again, a
more careful choice of the base measure (or kernel) might lead to a more suitable argument
for the lower bound. We leave such pursuit as open.

B.3 Black-box Boosting of Success Probability

In this section we briefly describe how upper bounds on the minimax sample complexity
in the constant error probability regime (α = Θ(1)) can be used to obtain the dependence
log(1/α) in the small error probability regime (α = o(1)). We will argue abstractly in a way
that applies to the setting of Theorem 3.3.1.

Suppose that from some distributions P1, P2, . . . , Pk we take samples X1, X2, . . . , Xk of size
n1, n2, . . . , nk respectively and are able to decide between two hypotheses H0 and H1 (fixed but
arbitrary) with total error probability at most 1/3. Call this test as Ψ(X1, . . . , Xk) ∈ {0, 1},
so that

P(Ψ(X1, . . . , Xk) = 0|H0) ≥ 2/3 and P(Ψ(X1, . . . , Xk) = 1|H1) ≥ 2/3.

Now, to each an error of o(1), instead, we take 18n1 log(2/α), . . . , 18nk log(2/α) obser-
vations from P1 through Pk, and split each sample into 18 log(2/α) equal sized batches
{X i,j}i∈[k],j∈[18 log(2/α)]. Here 18 log(2/α) is assumed to be an integer without loss of generality.
The split samples form 18 log(2/α) independent binary random variables

Aj ..= Ψ(X1,j, . . . , Xk,j)
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for j = 1, 2, . . . , 18 log(2/α). We claim that the majority voting test

Ψα({X i,j}i,j) =

{
1 if Ā ≥ 1/2

0 otherwise

tests H0 against H1 with total probability of error at most α, where

Ā ..=
1

18 log(2/α)

18 log(2/α)∑
j=1

Aj.

Indeed, by Hoeffding’s inequality, we have

P
(
Ā ≥ 1/2

∣∣H0

)
≤ α/2

P
(
Ā ≤ 1/2

∣∣H1

)
≤ α/2.

Therefore, in the remainder of our upper bound proofs, we only focus on achieving a constant
probability of error (α = Θ(1)) as the logarithmic dependence follows by the above.

Remark 21. As mentioned in the discussion succeeding Corollary 3.3.3, we do conjecture
the tight dependence in the upper bound to be

√
log(α−1) instead of log(α−1) shown by this

method.

B.4 Proof of Theorem 3.3.1

B.4.1 Notation and Technical Tools

We use the expansion
K(x, y) =

∑
ℓ

λℓeℓ(x)eℓ(y)

extensively, where λ ..= (λ1, λ2, . . . ) are K’s eigenvalues (regarded as an integral operator on
L2(µ)) in non-increasing order and e1, e2, . . . are the corresponding eigenfunctions forming
an orthonormal basis for L2(µ), and convergence is to be understood in L2(µ). We use the
notation ⟨ · ⟩ ..=

∫
· dµ. For all u ∈ L2(µ) we define

uℓ ..= ⟨ueℓ⟩, uℓℓ′ ..= ⟨ueℓeℓ′⟩, ℓ = 1, 2, . . .

and consequently u =
∑

ℓ uℓeℓ. We also define

K[u](·) ..=

∫
K(t, ·)u(t)µ(dt) =

∑
ℓ

λℓuℓeℓ(·),

where the second equality follows from the orthonormality of {eℓ}∞ℓ=1. Note that the RKHS
embedding satisfies θu ..=

∫
K(x, ·)u(x)dµ(x) = K[u]. Now, for PX we write

xℓ ..= (pX)ℓ = ⟨pXeℓ⟩, xℓℓ′ ..= (pX)ℓℓ′ = ⟨pXeℓeℓ′⟩, ℓ, ℓ′ = 1, 2, . . .

where pX is the µ-density of PX . The similar notations also apply to PY , PZ . The following
identities will be very useful in our proofs.
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Lemma B.4.1. For each identity below, let f, g, h ∈ L2(µ) be such that the quantity is well
defined. Then,

∥θf∥2HK
=
∑
ℓ

λℓf
2
ℓ (B.4.1)

MMD2(f, g) =
∑
ℓ

λℓ(fℓ − gℓ)2 (B.4.2)

∥K[f ]∥22 =
∑
ℓ

λ2ℓf
2
ℓ (B.4.3)∑

ℓ

λℓfℓgℓ = ⟨fK[g]⟩ = ⟨K[f ]g⟩ (B.4.4)∑
ℓℓ′

λℓλℓ′hℓℓ′fℓgℓ′ = ⟨hK[f ]K[g]⟩ (B.4.5)∑
ℓℓ′

λℓλℓ′gℓℓ′fℓℓ′ =
∑
ℓ

λℓ⟨feℓK[geℓ]⟩. (B.4.6)

Suppose that f, g are probability densities with respect to µ that are bounded by C. Then

0 ≤
∑
ℓℓ′

λℓλℓ′gℓℓ′fℓℓ′ ≤ C2∥λ∥22. (B.4.7)

Proof. We prove each claim, starting with (B.4.1). Clearly

∥θf∥2HK
= ∥K[f ]∥2HK

=

∥∥∥∥∫ K(x, ·)f(x)dµ(x)
∥∥∥∥2
HK

=

∫∫
⟨K(x, ·), K(y, ·)⟩HK

f(x)f(y)dµ(x)dµ(y)

=

∫∫
K(x, y)f(x)f(y)dµ(x)dµ(y)

=
∑
ℓ

λℓf
2
ℓ

as required. The second claim (B.4.2) follows immediately from (B.4.1) by definition. For
(B.4.3) by orthogonality we have

∥K[f ]∥22 = ∥
∑
ℓ

λℓfℓeℓ∥22

=
∑
ℓ

λ2ℓf
2
ℓ .

For (B.4.4) by the definition of K[·] we have∑
ℓ

λℓfℓgℓ =

〈(∑
ℓ

λℓfℓeℓ

)
g

〉
= ⟨K[f ]g⟩.
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For (B.4.5) we can write

∑
ℓℓ′

λℓλℓ′hℓℓ′fℓgℓ′ =
∑
ℓ

λℓfℓ

〈(∑
ℓ′

λℓ′gℓ′eℓ′

)
heℓ

〉
=
∑
ℓ

λℓfℓ⟨K[g]heℓ⟩

= ⟨K[g]hK[f ]⟩.

Finally, for (B.4.6) we have

∑
ℓℓ′

λℓλℓ′fℓℓ′gℓℓ′ =
∑
ℓ

λℓ

〈(∑
ℓ′

λℓ′gℓℓ′eℓ′

)
feℓ

〉
=
∑
ℓ

λℓ⟨K[geℓ]feℓ⟩.

Suppose now that f, g are probability densities with respect to µ that are bounded by C > 0.
Let X, Y be independent random variables following the densities f, g. Then

∑
ℓℓ′

λℓλℓ′fℓℓ′gℓℓ′ = E

(∑
ℓ

λℓeℓ(X)eℓ(Y )

)2


≤ C2

∫
X

∫
X

(∑
ℓ

λℓeℓ(x)eℓ(y)

)2

dµ(x)dµ(y)

= C2∥λ∥22

as claimed, where we used that the eℓ are orthonormal.

B.4.2 Mean and Variance Computation

We take π = δ/2. Our statistic reads

−T (X, Y, Z) + γ(X, Y, π) = ⟨θP̂Z
− (π̄θP̂X

+ πθP̂Y
), θP̂X

− θP̂Y
⟩u,HK

=
1

nm

∑
ij

k(Xi, Zj)︸ ︷︷ ︸
I

− 1

nm

∑
ij

k(Yi, Zj)︸ ︷︷ ︸
II

− 2π̄

n(n− 1)

∑
i<i′

k(Xi, Xi′)︸ ︷︷ ︸
III

+
2π

n(n− 1)

∑
i<i′

k(Yi, Yi′)︸ ︷︷ ︸
IV

+
π̄ − π
n2

∑
ij

k(Xi, Yj)︸ ︷︷ ︸
V

.

Recall that ν = argminν′∈R MMD(PZ , ν̄
′PX + ν ′PY ). Let us write z = ν̄x + νy + r for

1− ν̄ = ν, where the residual term is denoted as r ∈ L2(µ). Let θr =
∫
r(t)K(t, ·)µ(dt) be the
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mean embedding of r. Under both hypotheses we assume that ∥θr∥HK
≤ R ·MMD(PX , PY ),

moreover ⟨θr, θPY
− θPX

⟩HK
= 0 by the definition of ν. We look at each of the 5 +

(
5
2

)
= 15

terms of the variance separately.

var(I) =
∑
ℓℓ′

λℓλℓ′
{
n(n− 1)m(zℓℓ′ − zℓzℓ′)xℓxℓ′ + nm(m− 1)(xℓℓ′ − xℓxℓ′)zℓzℓ′

+ nm(xℓℓ′zℓℓ′ − xℓxℓ′zℓzℓ′)
}

var(II) =
∑
ℓℓ′

λℓλℓ′
{
n(n− 1)m(zℓℓ′ − zℓzℓ′)yℓyℓ′ + nm(m− 1)(yℓℓ′ − yℓyℓ′)zℓzℓ′

+ nm(yℓℓ′zℓℓ′ − yℓyℓ′zℓzℓ′)
}

var(III) =
∑
ℓℓ′

λℓλℓ′
{(n

2

)
(x2ℓℓ′ − x2ℓx2ℓ′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(xℓℓ′ − xℓxℓ′)xℓxℓ′

}

var(IV) =
∑
ℓℓ′

λℓλℓ′
{(n

2

)
(y2ℓℓ′ − y2ℓy2ℓ′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(yℓℓ′ − yℓyℓ′)yℓyℓ′

}

var(V) =
∑
ℓℓ′

λℓλℓ′
{
n2(n− 1)(yℓℓ′ − yℓyℓ′)xℓxℓ′ + n2(n− 1)(xℓℓ′ − xℓxℓ′)yℓyℓ′

+ n2(xℓℓ′yℓℓ′ − xℓxℓ′yℓyℓ′)
}
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For the cross terms we obtain

Cov(I, II) =
∑
ℓℓ′

λℓλℓ′n
2m(zℓℓ′ − zℓzℓ′)xℓyℓ′

Cov(I, III) =
∑
ℓℓ′

λℓλℓ′n(n− 1)m(xℓℓ′ − xℓxℓ′)zℓxℓ′

Cov(I, IV) = 0

Cov(I,V) =
∑
ℓℓ′

λℓλℓ′n
2m(xℓℓ′ − xℓxℓ′)zℓyℓ′

Cov(II, III) = 0

Cov(II, IV) =
∑
ℓℓ′

λℓλℓ′n(n− 1)m(yℓℓ′ − yℓyℓ′)zℓyℓ′

Cov(II,V) =
∑
ℓℓ′

λℓλℓ′n
2m(yℓℓ′ − yℓyℓ′)zℓxℓ′

Cov(III, IV) = 0

Cov(III,V) =
∑
ℓℓ′

λℓλℓ′n
2(n− 1)(xℓℓ′ − xℓxℓ′)xℓyℓ′

Cov(IV,V) =
∑
ℓℓ′

λℓλℓ′n
2(n− 1)(yℓℓ′ − yℓyℓ′)yℓxℓ′ .

Note that
(
n
2

)2 − (n
2

)
−
(
n
2

)(
n
4

)
= n(n− 1)2 − n(n− 1). Collecting terms, and simplifying, we

get the coefficient of the 1
n

term:

Coef

(
1

n

)
=
∑
ℓ,ℓ′

λℓλℓ′

(
(xℓℓ′ − xℓxℓ′)zℓzℓ′︸ ︷︷ ︸

var(I)

+(yℓℓ′ − yℓyℓ′)zℓzℓ′︸ ︷︷ ︸
var(II)

+4π̄2(xℓℓ′ − xℓxℓ′)xℓxℓ′︸ ︷︷ ︸
var(III)

+ 4π2(yℓℓ′ − yℓyℓ′)yℓyℓ′︸ ︷︷ ︸
var(IV)

+(π̄ − π)2(yℓℓ′ − yℓyℓ′)xℓxℓ′ + (π̄ − π)2(xℓℓ′ − xℓxℓ′)yℓyℓ′︸ ︷︷ ︸
var(V)

− 4π̄(xℓℓ′ − xℓxℓ′)zℓxℓ′︸ ︷︷ ︸
Cov(I,III)

+2(π̄ − π)(xℓℓ′ − xℓxℓ′)zℓyℓ′︸ ︷︷ ︸
Cov(I,V)

− 4π(yℓℓ′ − yℓyℓ′)zℓyℓ′︸ ︷︷ ︸
Cov(II,IV)

− 2(π̄ − π)(yℓℓ′ − yℓyℓ′)zℓxℓ′︸ ︷︷ ︸
Cov(II,V)

− 4π̄(π̄ − π)(xℓℓ′ − xℓxℓ′)xℓyℓ′︸ ︷︷ ︸
Cov(III,V)

+4π(π̄ − π)(yℓℓ′ − yℓyℓ′)yℓxℓ′︸ ︷︷ ︸
Cov(IV,V)

)
.

After expanding zℓ as zℓ = ν̄xℓ + νyℓ + rℓ, we split the calculation into multiple parts to
simplify it. First, we focus on terms that are multiplied by (xℓℓ′ − xℓxℓ′) and do not contain
rℓ or rℓ′ . Using Lemma B.4.1 extensively and the fact that π̄ = 1− π, ν̄ = 1− ν, we find that
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the sum of these terms equals

ν̄2⟨xK[x]2⟩+ ν2⟨xK[y]2⟩+ 2ν̄ν⟨xK[x]K[y]⟩ − ν̄2⟨xK[x]⟩2 − ν2⟨xK[y]⟩2 − 2ν̄ν⟨xK[x]⟩⟨xK[y]⟩
+ 4π̄2⟨xK[x]2⟩ − 4π̄2⟨xK[x]⟩2 + (π̄ − π)2⟨xK[y]2⟩ − (π̄ − π)2⟨xK[y]⟩2

− 4π̄ν̄⟨xK[x]2⟩ − 4π̄ν⟨xK[x]K[y]⟩+ 4π̄ν̄⟨xK[x]⟩2 + 4π̄ν⟨xK[x]⟩⟨xK[y]⟩
+ 2(π̄ − π)ν̄⟨xK[x]K[y]⟩+ 2(π̄ − π)ν⟨xK[y]2⟩ − 2(π̄ − π)ν̄⟨xK[x]⟩⟨xK[y]⟩
− 2(π̄ − π)ν⟨xK[y]⟩2 − 4π̄(π̄ − π)⟨xK[x]K[y]⟩+ 4π̄(π̄ − π)⟨xK[x]⟩⟨xK[y]⟩

=(ν̄ − 2π̄)2
(
⟨xK[x− y]2⟩ − ⟨xK[x− y]⟩2

)
≤C ∥λ∥∞ MMD2(PX , PY ).

Similarly, the terms involving (yℓℓ′ − yℓyℓ′) but not rℓ or rℓ′ sum up to the quantity

(ν − 2π)2
(
⟨yK[x− y]2⟩ − ⟨yK[x− y]⟩2

)
≤ C∥λ∥∞ MMD2(PX , PY ).

Next, collecting the terms involving both (xℓℓ′ − xℓxℓ′) and rℓ or rℓ′ we get

2ν̄⟨xK[r]K[x]⟩+ 2ν⟨xK[r]K[y]⟩+ ⟨xK[r]2⟩ − 2ν̄⟨xK[x]⟩⟨xK[r]⟩ − 2ν⟨xK[y]⟩⟨xK[r]⟩
− ⟨xK[r]⟩2 − 4π̄⟨xK[x]K[r]⟩+ 4π̄⟨xK[x]⟩⟨xK[r]⟩
+ 2(π̄ − π)⟨xK[y]K[r]⟩ − 2(π̄ − π)⟨xK[y]⟩⟨xK[r]⟩

=2(ν̄ − 2π̄)
(
⟨xK[r]K[x− y]⟩ − ⟨xK[r]⟩⟨xK[x− y]⟩

)
+ ⟨xK[r]2⟩ − ⟨xK[r]⟩2

≲C ∥λ∥∞(R +R2)MMD2(PX , PY ).

Finally, collecting the terms involving both (yℓℓ′ − yℓyℓ′) and rℓ or rℓ′ we get

2(ν − 2π)
(
⟨yK[r]K[y − x]⟩ − ⟨yK[r]⟩⟨yK[y − x]⟩

)
+ ⟨yK[r]2⟩ − ⟨yK[r]⟩2

≲C∥λ∥∞(R +R2)MMD2(PX , PY ).

Similarly we get

Coef

(
1

m

)
=
∑
ℓℓ′

λℓλℓ′

(
(zℓℓ′ − zℓzℓ′)xℓxℓ′︸ ︷︷ ︸

var(I)

+(zℓℓ′ − zℓzℓ′)yℓyℓ′︸ ︷︷ ︸
var(I)

+2(zℓℓ′ − zℓzℓ′)xℓyℓ′︸ ︷︷ ︸
Cov(I,II)

)

= ⟨zK[x− y]2⟩ − ⟨zK[x− y]⟩2

≲ C∥λ∥∞ MMD2(PX , PY ).
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The remaining coefficients don’t rely on subtle cancellations, and simple bounds yield

Coef

(
1

n(n− 1)

)
=
∑
ℓℓ′

λℓλℓ′

(
4π̄2

(
1

2
(x2ℓℓ′ − x2ℓx2ℓ′)− (xℓℓ′ − xℓxℓ′)xℓxℓ′

)
︸ ︷︷ ︸

var(III)

+ 4π2

(
1

2
(y2ℓℓ′ − y2ℓy2ℓ′)− (yℓℓ′ − yℓyℓ′)yℓyℓ′

)
︸ ︷︷ ︸

var(IV)

)

≲ C2∥λ∥22

Coef

(
1

nm

)
=
∑
ℓℓ′

λℓλℓ′

(
−(zℓℓ′ − zℓzℓ′)xℓxℓ′ − (xℓℓ′ − xℓxℓ′)zℓzℓ′ + (xℓℓ′zℓℓ′ − xℓxℓ′zℓzℓ′)︸ ︷︷ ︸

var(I)

− (zℓℓ′ − zℓzℓ′)yℓyℓ′ − (yℓℓ′ − yℓyℓ′)zℓzℓ′ + (yℓℓ′zℓℓ′ − yℓyℓ′zℓzℓ′)︸ ︷︷ ︸
var(I)

)

≲ C2∥λ∥22

Coef

(
1

n2

)
=

∑
ℓℓ′

λℓλℓ′

(
(π̄ − π)

(
− (yℓℓ′ − yℓyℓ′)xℓxℓ′ − (xℓℓ′ − xℓxℓ′)yℓyℓ′ + (xℓℓ′yℓℓ′ − xℓxℓ′yℓyℓ′)

)
︸ ︷︷ ︸

var(V)

)

≲ C2∥λ∥22.

Summarizing, we’ve found that

var(T (X, Y, Z)− γ(X, Y, π)) ≲
(
1

n
+

1

m

)
C∥λ∥∞(1 +R2)MMD2(PX , PY )

+

(
1

n2
+

1

nm

)
C2∥λ∥22.

(B.4.8)

Using that ⟨θr, θPY
− θPX

⟩HK
= 0, we compute the expectation to be

E [−T (X, Y, Z) + γ(X, Y, π)] = (π − ν)MMD2(PX , PY ).

Taking π ..= δ/2 and applying Chebyshev’s inequality shows that there exists a universal
constant c > 0, such that the testing problem is possible at constant error probability (say
α = 5%), provided that the sample sizes m,n satisfy the following inequalities:

min{m,n} ≥ c
C∥λ∥∞(1 +R2)

δ2ϵ2

min{n,
√
nm} ≥ c

C∥λ∥2
δϵ2

.
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By repeated sample splitting and majority voting (see Appendix B.3), we can boost the success
probability of this test to the desired level 1− α by incurring a multiplicative Θ(log(1/α))
factor on the sample sizes n,m, which yields the desired result.

B.5 Proof of Theorem 3.3.2

B.5.1 Information theoretic tools

Our lower bounds rely on the method of two fuzzy hypotheses [198]. Given a measurable
space S, letM(S) denote the set of all probability measures on S. We call subsets H ⊆M(S)
hypotheses. The following is the main technical result that our proofs rely on.

Lemma B.5.1. Take hypotheses H0, H1 ⊆M(S) and P0, P1 ∈M(S) random with P(Pi ∈
Hi) = 1. Then

inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1

2
(1− TV(EP0,EP1)) ,

where the infimum is over all tests ψ : X → {0, 1}.

Proof. For any ψ

max
i=0,1

sup
Pi∈Hi

Pi(ψ ̸= i) ≥ 1

2
sup

Pi∈Hi

(P0(ψ = 1) + P1(ψ = 0))

≥ 1

2
E
[
P0(ψ = 1) + P1(ψ = 0)

]
.

Optimizing over ψ we get that the RHS above is equal to 1
2
(1−TV(EP0,EP1)) as required.

Therefore, to prove a lower bound on the minimax sample complexity of testing with
total error probability α, we just need to construct two random measures Pi ∈ Hi such
that 1− TV(EP0,EP1) = Ω(α). In our proofs we also use the following standard results on
f -divergences.

Lemma B.5.2 ([168, Section 7]). For any probability distributions P,Q the inequalities

1− TV(P,Q) ≥ 1

2
exp(−KL(P∥Q)) ≥ 1

2

1

1 + χ2(P∥Q)

hold.

Lemma B.5.3 (Chain rule for χ2-divergence). Let PX,Y , QX,Y be probability measures such
that the marginals on X are equal (PX = QX). Then

χ2(PX,Y ∥QX,Y ) = χ2(PY |X∥QY |X |PX).
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Proof. Let PX,Y , QX,Y have densities p, q with respect to some µ. Then, by some abuse of
notation, we have

χ2(PX,Y ∥QX,Y ) = −1 +
∫
p(x, y)2

q(x, y)
dµ(x, y)

= −1 +
∫
p(y|x)2p(x)
q(y|x)

dµ(x, y)

=

∫
p(x)

∫ (
p(y|x)2

q(y|x)
− 1

)
dµ(y, x)

= χ2(PY |X∥QY |X |PX).

B.5.2 Constructing hard instances

Recall that in the statement of Theorem 3.3.2, we assume that µ(X ) = 1, supx∈X K(x, x) ≤ 1
and

∫
K(x, y)µ(dx) ≡ λ1. Let f0 ≡ 1 and for each η ∈ {±1}N define

fη = 1 + ϵ
∑
j≥2

ρjηjej︸ ︷︷ ︸
=..gη

(B.5.1)

where {ρj}j≥2 is chosen as ρj = 1{2 ≤ j ≤ J}
√
λj/∥λ∥2,J , where we define ∥λ∥2,J =√∑

2≤j≤J λ
2
j for some J ≥ 2. Notice that

∫
fη(x)µ(dx) = µ(X ) = 1 due to orthogonality of

the eigenfunctions. Assume from here on that J is chosen so that for all η we have fη(x) ≥ 1/2
for all x ∈ X . This makes fη into a valid probability density with respect to the base measure
µ. Before continuing, we prove the following Lemma, which gives a lower bound on the
maximal J for which fη ≥ 1/2 for all η.

Lemma B.5.4. J ≤ J⋆ϵ holds provided 2ϵ
√
J − 1 ≤ ∥λ∥2J .

Proof of Lemma B.5.4. Notice that

∥ej∥∞ = sup
x∈X
⟨K(x, ·), ej⟩H ≤ sup

x∈X
∥K(x, ·)∥H∥ej∥H ≤

1√
λj
, (B.5.2)

where we use ∥K(x, ·)∥H =
√
K(x, x). We have

∥gη∥∞ = ϵ∥
∑
j≥2

ρjηjej∥∞ = ϵ sup
x∈X
⟨K(x, ·),

∑
j≥2

ρjηjej⟩H

≤ ϵ∥
∑
j≥2

ρjηjej∥H = ϵ

√∑
j≥2

ρ2j/λj =
ϵ
√
J − 1

∥λ∥2,J
,

and the result follows.
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Note that Lemma B.5.4 immediately gives us a proof of Corollary 3.3.3.

Proof of Corollary 3.3.3. Suppose that J is such that
∑J

j=2 λ
2
j ≥ c2∥λ∥22. Then, by Lemma B.5.4,

if ϵ ≤ ∥λ∥2J/(2
√
J − 1) then J ≤ J⋆ϵ . By assumption, this is implied by the inequality

ϵ ≤ c∥λ∥2/(2
√
J − 1), and the result follows.

Continuing with our proof, note that by construction we have

MMD2(f0, fη) =
∑
j≥2

λjρ
2
j = ϵ2, ∀η ∈ {±1}N. (B.5.3)

Lower Bound on m

Again, we apply Lemma B.5.1 with the new (deterministic) construction

P0 = f⊗n
0 ⊗(1+ϵe2/

√
λ2)

n⊗(1+δϵe2/
√
λ2)

⊗m, P1 = f⊗n
0 ⊗(1+ϵe2/

√
λ2)

n⊗f⊗m
0 , (B.5.4)

where we write f1 = f(1,1,... ) and similarly for g1. By the data-processing inequality for
χ2-divergence (also by Lemma B.5.3), we may drop the first 2n coordinates and obtain

χ2(EP0,EP1) = χ2((1 + δϵe2/
√
λ2)

⊗m∥f⊗m
0 )

=
(
1 + δ2ϵ2/λ2

)m − 1

≤ exp

(
δ2ϵ2m

λ2

)
− 1.

By Lemma B.5.2 we

1− TV(EP0,EP1) ≳
1

χ2(EP0,EP1)− 1
≥ exp(−δ2ϵ2m)

!
= Ω(α).

The lower bound m ≳ λ2 log(1/α)/(δϵ)
2 now follows readily.

Lower Bound on n

Once again, we apply Lemma B.5.1 to the new construction

P0 = f⊗n
0 ⊗ f⊗n

η ⊗ f⊗m
0 , P1 = f⊗n

η ⊗ f⊗n
0 ⊗ f⊗m

0 , (B.5.5)

where we put a uniform prior on η ∈ {±1}N as before. Using the subadditivity of total
variation under products, we compute

TV(EP0,EP1) = TV(f⊗n
0 ⊗ Ef⊗n

η ,E[f⊗n
η ]⊗ f⊗n

0 )

≤ 2TV(Ef⊗n
η , f⊗n

0 ).
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Just as in Appendix B.5.2 we upper bound by the χ2-divergence to get

χ2(Ef⊗n
η ∥f⊗n

0 ) = −1 + Eηη′
∫ n∏

i=1

(fη(xi)fη′(xi))µ(dx1) . . . µ(dxn)

≤ −1 + E exp(nϵ2
∑
j≥2

ρ2jηjη
′
j)

= −1 +
∏
j≥2

cosh(nϵ2ρ2j)

≤ −1 + exp(n2ϵ4
∑
j≥2

ρ4j)

= −1 + exp(n2ϵ4/∥λ∥22,J).

Again, by Lemma B.5.2 we obtain

1− TV(EP0,EP1) ≳
1

χ2(EP0∥EP1)− 1
≥ exp(−n2ϵ4/∥λ∥22,J)

!
= Ω(α).

The lower bound n ≳
√

log(1/α)∥λ∥2,J/ϵ2 now follows readily.

Lower Bound on m · n

We take a uniform prior on η and consider the random measures

P0 = f⊗n
0 ⊗ f⊗n

η ⊗ ((1− δ)f0 + δfη)
⊗m and P1 = f⊗n

0 ⊗ f⊗n
η ⊗ f⊗m

0 . (B.5.6)

Our goal is to apply Lemma B.5.1 to P0, P1. Notice that (1− δ)f0 + δfη = 1 + δϵgη. Let us
write X, Y, Z for the marginals first n, second n and last m coordinates of P0 and P1. By the
data processing inequality and the chain rule Lemma B.5.3 we have

χ2(EP0∥EP1) = χ2((EP0)Y,Z∥(EP1)Y,Z)

= χ2((EP0)Z|Y ∥(EP1)Z|Y |(EP0)Y )

= Eχ2
(
E
[
(1 + δϵgη)

⊗m∣∣Y ] ∥f⊗m
0

)
=: (†).

Notice that the expectation inside the χ2-divergence is with respect to η given the variables
Y , or in other words, over the posterior of η with uniform prior given n observations from the
density 1 + ϵgη = fη. The outer expectation is over Y . Given Y , let η and η′ be i.i.d. from
said posterior. We get the bound

(†) + 1 ≤ E
∫ m∏

i=1

(1 + δϵgη(xi))(1 + δϵgη′(xi))µ(dxi)

= E(1 + δ2ϵ2
∑
j≥2

ρ2jηjη
′
j)
m

≤ E exp(δ2ϵ2m
∑
j≥2

ρ2jηjη
′
j).
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Define the collections of variables η−j = {ηj}j≥2 \ {ηj} and η′−j similarly. We shall prove the
following claim:

E
[
exp(δ2ϵ2mρ2jηjη

′
j)
∣∣ η−jη′−j] ≤ exp(cδ2ϵ4(δ2m2 +mn)ρ4j) (B.5.7)

for some universal constant c > 0. Assuming that (B.5.7) holds, by induction we can show
that

(†) + 1 ≤ exp(cδ2(δ2m2 +mn)ϵ4
∑
j≥2

ρ4j)

= exp(cδ2(δ2m2 +mn)ϵ4/∥λ∥22,J).

Thus, if mn+ δ2m2 = o
(
∥λ∥22,J/(δ2ϵ4)

)
then testing is impossible.

We now prove (B.5.7). Since the variable η′jη′j is either 1 or −1, we have

E
[
exp(δ2ϵ2mρ2jηjη

′
j)
∣∣ η−jη′−j] = (eδ

2ϵ2mρ2j − e−δ2ϵ2mρ2j ) · P(ηjη′j = 1|η−jη′−j) + e−δ
2ϵ2mρ2j .

Let us write η±1,j for the vector of signs equal to η but whose j’th coordinate is ±1 respectively.
Looking at the probability above, and using the independence of η, η′ given Y , we have

P(ηjη
′
j = 1|Y, η−j, η′−j) = P(ηj = 1|Y, η−j)2 + P(ηj = −1|Y, η−j)2

=
1

4

(f⊗n
η1j

(Y ))2 + (f⊗n
η−1j

(Y ))2(
1
2
f⊗n
η1j

(Y ) + 1
2
f⊗n
η−1j

(Y )
)2 .

Taking the expectation E[ · |η−j, η′−j ] and using the HM-AM inequality (1
2
(x+y))−1 ≤ 1

2
( 1
x
+ 1

y
)

valid for all x, y > 0 gives

P(ηjη
′
j = 1|η−j, η′−j) =

1

4

∫
(
∏n

i=1 fη1j(xi))
2 + (

∏n
i=1 fη−1j

(xi))
2

1
2

∏n
i=1 fη1j(xi) +

1
2

∏n
i=1 fη−1j

(xi)
µ(dx1) . . . µ(dxn)

≤ 1

4
+

1

8

∫ (
(
∏n

i=1 fη1j(xi))
2∏n

i=1 fη−1j
(xi)

+
(
∏n

i=1 fη−1j
(xi))

2∏n
i=1 fη1j(xi)

)
µ(dx1) . . . µ(dxn) = (⋆).

Note that fη1j = fη−1j
+ 2ϵρjej. Using the lower bound fη±1j

(x) ≥ 1
2

for all x ∈ X and the
inequality 1 + x ≤ exp(x), we get

(⋆) ≤ 1

4
+

1

8

[(
1 +

∫
4ϵ2ρ2je

2
j(x)

fη−1j
(x)

µ(dx)

)n
+

(
1 +

∫
4ϵ2ρ2je

2
j(x)

fη1j(x)
µ(dx)

)n]
≤ 1

4
(1 + e8ϵ

2nρ2j ).

Recall that (⋆) is a probability so (⋆) ≤ 1, and we obtain

(⋆) ≤ 1

4
(1 + e8ϵ

2nρ2j∧ln 3).

193



Putting it together and applying Lemma B.5.5 we get

LHS of (B.5.7) ≤ (eδ
2ϵ2mρ2j − e−δ2ϵ2mρ2j )1

4
(1 + e8ϵ

2nρ2j∧ln 3) + e−δ
2ϵ2mρ2j

≤ ecδ
2ϵ4ρ4j (δ

2m2+mn)

for universal c = 16 > 0. Thus, by Lemma B.5.2 we obtain

1− TV(EP0,EP1) ≳
1

χ2(EP0,EP1) + 1
≥ exp(−cδ2ϵ4(δ2m2 +mn)/∥λ∥22,J)

!
= Ω(α).

The necessity of

mn+ δ2m2 ≳
log(1/α)∥λ∥22,J

δ2ϵ4

follows immediately.2

Lemma B.5.5. For a, b ≥ 0, the following inequality holds:

1

4
(ea − e−a)(1 + eb∧ln 3) + e−a ≤ e2(ab+a

2).

Proof. If b ≥ ln 3 or a ≥ 1 we have:

LHS ≤ 1

4
(ea − e−a)(1 + eln 3) + e−a = ea ≤ e

b
ln 3

a+a2 .

If b < ln 3 and a < 1, we have

eb ≤ 1 +
2

ln 3
b ≤ 1 + 2b,

ea + e−a

2
≤ ea

2

,
ea − e−a

2
≤ e− e−1

2
a ≤ 2a,

and then

1

4
(ea − e−a)(1 + eb) + e−a =

1

2
(ea + e−a) +

eb − 1

4
(ea − e−a)

≤ ea
2

+ 2ab

≤ ea
2

(1 + 2ab)

≤ ea
2+2ab

The result follows from ln 3 > 1.

B.6 Proofs From Section 3.4

B.6.1 Computing σ̂

We follow the implementation of σ̂2 in [143]. Given X1, . . . , X
tr
ntr

sampled from PX and
Y1, . . . , Y

tr
ntr

sampled from PY , denote

Hij := K(X tr
i , X

tr
j ) +K(Y tr

i , Y
tr
j )−K(X tr

i , Y
tr
j )−K(Y tr

i , X
tr
j ), i, j ∈ [ntr]. (B.6.1)

2We have mn+m2 ≤ (
√
mn+m)2 ≤ 2(mn+m2), so

√
mn+m ≍

√
mn+m2.
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Then σ̂2 is computed via

σ̂2(Xntr , Y ntr ;K) =
4

n3
tr

ntr∑
i=1

(
ntr∑
j=1

Hij

)2

− 4

n4
tr

(
ntr∑
i=1

ntr∑
j=1

Hij

)2

. (B.6.2)

Note that σ̂2 being non-negative follows from the AM-GM inequality.

B.6.2 Heuristic Justification of the Objective (3.4.1)

As usual, let X, Y, Z denotes samples of sizes n, n,m from PX , PY , PZ respectively. Let us
give a heuristic justification for using the training objective defined in (3.4.1) for the purpose
of obtaining a kernel for LFHT/mLFHT. Note that originally it was proposed as a training
objective for kernels to be used in two sample testing. Recall that our test for LFHT can be
written as

Ψ1/2(X, Y, Z) = 1

{
TLF ≥ 0

}
where

TLF = MMD2
u(P̂Z , P̂Y ;K)−MMD2

u(P̂Z , P̂X ;K),

Heuristically, to maximize the power of (mLFHT), we would like to maximize the following
population quantity

JLF ..=
E0[TLF]− E1[TLF]√

var0(TLF)

where

E0[TLF] = EX,Y,Z [TLF|PZ = PX ] = +MMD2(PX , PY ;K),

E1[TLF] = EX,Y,Z [TLF|PZ = PY ] = −MMD2(PX , PY ;K).

Let TTS = MMDu(P̂X , P̂Y ) be the usual statistic that is thresholded for two-sample testing.
Then, a computation analogous to that in Section B.4.2 show (cf. (B.4.8)) that

var0(TLF) ≈
A(K,PX , PY )

n
+
A(K,PX , PY )

m
+
B(K,PX , PY )

n2
+
B(K,PX , PY )

mn
,

var0(TTS) ≈
A(K,PX , PY )

n
+
B(K,PX , PY )

n2

for some A(K) and B(K). Therefore, we have approximately

JLF ≈
2MMD2(PX , PY ;K)√

1 + n
m

√
var0(TTS)

≈ 2

√
m

m+ n
Ĵ(X, Y ;K)

which only differs from our optimization objective defined in (3.4.1) by a constant factor.
Second, notice that MMD(PX ,PY ;K)√

var(TTS)
depends only on PX −PY and that ((1− δ)PX + δPY )−

PX ∝ PY − PX , therefore it is sensible to use (3.4.1) as our training objective for is also
sensible for (mLFHT), and we don’t even need to observe the sample Z.
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B.6.3 Proof of Proposition 3.4.1

Proof. In this proof we regard D ..= (X tr, Xev, Y tr, Y ev) and the parameters of the kernel
ω as fixed. Recall that we are looking at the problem mLFHT with a misspecification
parameter R = 0 (see Theorem 3.3.1). Given a test set {zi}i∈[m], our test statistic is
T ({zi}i∈[m]) =

1
m

∑m
i=1 f(zi) where

f(zi) =
1

nev

nev∑
j=1

(
Kω(zi, Y

ev
j )−Kω(zi, X

ev
j )
)
.

In Phase 3 of Algorithm 1, we observe the value T̂ = T (Z) = 1
m

∑m
i=1 f(Zi) and reject the

null hypothesis for large values of T̂ . Thus, the p-value is defined as

p = p(Z,D) ..= PZ̃∼P⊗m
X

(T (Z̃) > T̂ ).

Phase 2 of our Algorithm 1 produces random variables T1, . . . , Tk that all have the distribution
of T ({Z̃i}i∈[m]), so that 1{Tr ≥ T̂} (r = 1, . . . , k) are unbiased estimates of the p-value.
However, the Ti are not independent, because they sample from the finite collection of
calibration samples Xcal. However, as ncal →∞ the covariances between Tr1 , Tr2 for r1 ̸= r2
tend to zero, and we obtain a consistent estimate of p.

B.6.4 Proof of Proposition 3.4.2

Proof. The test statistic T (X, Y, Z) in (3.2.3) is given by

T (X, Y, Z) =
1

m

m∑
i=1

fK(Zi)

where
fK(z) = θP̂Y

(z)− θP̂X
(z).

This simplifies to (consider K(x, y) = f(x)f(y))

fK(z) =

(
1

n

n∑
j=1

f(Yj)−
1

n

n∑
j=1

f(Xj)

)
f(z) = C(X, Y )f(z).

where C(X, Y ) does not depend on z. Therefore, for any witness function f , we obtain the
desired additive test.

B.6.5 Additive Test Statistics

In this section we prove accordingly that the test statistics of all of MMD-M/G/O, SCHE,
LBI, UME, RFM are of the form Tf (Z) =

1
m

∑m
i=1 f(Zi) (where f might depends on X, Y ).

The test is to compare Tf (Z) with some threshold γ(X, Y ).
Note that in the setting of Algorithm 1, the X and Y here correspond to Xev and Y ev.
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MMD-M/G/O As described in (3.2.3) we have

Tf (Z) =
1

m

m∑
i=1

(
1

n

n∑
j=1

(K(Zi, Yj)−K(Zi, Xj))

)
.

SCHE As described in Section 3.4.2 we have

Tf (Z) =
1

m

m∑
i=1

1{ϕ(Zi) > t}.

LBI As described in Section 3.4.2 we have

Tf (Z) =
1

m

m∑
i=1

log

(
ϕ(Zi)

1− ϕ(Zi)

)
.

UME As described in [118], the UME statistic evaluates the squared witness function at
Jq test locations W = {wk}Jqk=1 ⊂ X . Formally for any two distributions P,Q we define

U2(P,Q) = ∥θQ − θP∥2L2(W ) =
1

Jq

Jq∑
k=1

(θQ(wk)− θP (wk))2.

However, we note a crucial difference that their result only considers the case of n =
m, and their proposed estimator for U2(PZ , PX) can not be naturally extended to the
case of n ̸= m. Here we generalize it to m ≠ n where we (conveniently) use a biased
estimate of their distance. Given samples X, Y, Z and a set of witness locations W , the test
statistic is a (biased yet) consistent estimator of U2(PZ , PY ) − U2(PZ , PX). Let ψW (z) =

1√
Jq
(K(z, w1), . . . , K(z, wJq)) ∈ R|W | be the “feature function,” then:

Û2(Z,X) =

∥∥∥∥∥ 1

m

m∑
i=1

ψW (Zi)−
1

n

n∑
j=1

ψW (Xi)

∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

m

m∑
i=1

ψW (Zi)

∥∥∥∥∥
2

2

+

∥∥∥∥∥ 1n
n∑
j=1

ψW (Xi)

∥∥∥∥∥
2

2

− 2

mn

∑
1≤i≤m,1≤j≤n

⟨ψW (Zi) , ψW (Xj)⟩

Here ⟨·, ·⟩ denotes the usual inner product. Therefore, the difference between distances is

Û2(Z, Y )− Û2(Z,X) =
1

m

m∑
i=1

〈
ψW (Zi) ,

2

n

n∑
j=1

(ψW (Xj)− ψW (Yj))

〉
+ F (X, Y )

where F is sum function based only on X, Y . This is clearly an additive statistic for Z.
RFM Algorithm 1 in [170] describes a method for learning a kernel from data given a

binary classification task. For convenience lets concatenate the data to XRFM = (X, Y ) ∈
R2n×d and labels yRFM = (⃗0n, 1⃗n) ∈ R1×2n. Given a learned kernel K, we write the Gram
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matrix as (K(XRFM, XRFM))i,j = K(XRFM
i , XRFM

j ) (1 ≤ i, j ≤ 2n). Let K(XRFM, z) be a
column vector with components K(XRFM

i , z) (1 ≤ i ≤ 2n). The classifier is then defined as

fRFM(z) = yRFM ·K(XRFM, XRFM)−1 ·K(XRFM, z). (B.6.3)

Though in [170] the kernel learned from RFM is used to construct a classifier as in Equa-
tion (B.6.3), since RFM is a feature learning method, we also apply the RFM kernel to our
MMD test, namely

fRFM to MMD(z) =
1

n

n∑
j=1

(K(z, Yj)−K(z,Xj)) .

B.7 Application: Diffusion Models vs CIFAR

We defer a more fine-grained detail to our code submission, which includes executable
programs (with PyTorch) once the data-generating script from DDPM has been run (see
README in the ./codes/CIFAR folder).

B.7.1 Dataset Details

We use the CIFAR-10 dataset available online at https://www.cs.toronto.edu/~kriz/cifar.html,
which contains 50000 colored images of size 32 × 32 with 10 classes. For the diffusion
generated images, we use the SOTA Hugging Face model (DDPM) that can be found at
https://huggingface.co/google/ddpm-CIFAR-10-32. We generated 10000 artificial images for
our experiments. The code can be found at our code supplements.

For dataset balancing, we randomly shuffled the CIFAR-10 dataset and used 10000 images
as data in our code. Most of our experiments are conducted with the null PX as CIFAR
images, and the alternate as PY = 2

3
· CIFAR + 1

3
·DDPM. To this end, we matched 20000

images from CIFAR to belong to the alternate hypothesis, and the remaining 30000 images to
stay in the null hypothesis. For the alternate dataset, we simply sample without replacement
from the 20000 + 10000 mixture. This sampled distribution is almost the same as mixing (so
long as the sample bank is large enough compared to the acquired data, so that each item in
the alternate has close to 1/3 probability of being in DDPM, which is indeed the case).

B.7.2 Experiment Setup and Benchmarks

We use a standard deep Conv-net [144], which has been employed for SOTA GAN discriminator
tasks in similar settings. It has four convolutional layers and one fully connected layer
outputting the feature space of size (300, 1). For SCHE and LBI, we simply added a linear
layer of (300, 2) after applying ReLU to the 300-dimensional layer and used the cross-entropy
loss to train the network. Note that this is equivalent to first fixing the feature space and
then performing logistic regression to the feature space. For kernels, we add extra trainable
parameters after the 300-d feature output.

For the MMD-based tests, we simply train the kernel on the neural net and evaluate our
objective. For UME, we used a slightly generalized version of the original statistic in [118]
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Figure B.1: Data visualization for CIFAR-10 (left) vs DDPM diffusion generated images
(right)

which allows for comparison on randomly selected witness locations in the null hypothesis
with m ̸= n (see Appendix B.6.5). The kernel is trained using our heuristic (see (3.4.1) and
Appendix B.6.2), with MMD replaced by UME. The formula for UME variance can be found
in [118]. For RFM, we use Algorithm 1 in [170] to learn a kernel on (stochastic batched)
samples, and then use our MMD test on the trained kernel.

We use 80 training epochs for most of our code from the CNN architecture (for classifiers,
this is well after interpolating the training data and roughly when validation loss stops
decreasing), and a batch size of 32 which has a slight empirical benefit compared to larger
batch sizes. The learning rates are tuned separately in MMD methods for optimality, whereas
for classifiers they follow the discriminator’s original setting from [144]. In Phase 2 of
Algorithm 1, we choose k = 1000 for the desired precision while not compromising runtime.
For each task, we run 10 independent models and report their performances as the mean and
standard deviation of those 10 runs as estimates. We refer to a full set of hyper-parameters
in our code implementation.

Our code is implemented in Python 3.7 (PyTorch 1.1) and was ran on an NVIDIA RTX
3080 GPU equipped with a standard torch library and dataset extensions. Our code setup
for feature extraction is similar to that of [143]. For benchmark implementations, our code
follows from the original code templated provided by the cited papers.

B.7.3 Sample Allocation

We make a comment on why (3.2.4) is different from just thresholding M̂MD2(Z, Y tr) −
M̂MD2(Z,X tr) at 0, which was what we did in part (c) of Figure 3.3 (and hence the difference
along the curve of MMD-M vs Figure 3.1). Our theory assumes that the samples are i.i.d.
conditioned on the kernel being chosen already. However, in the experiments, the kernel
is dependent on the training data. Therefore, to evaluate the MMD estimate (between
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Figure B.2: Relevant plots following the setting in Figure 3.3 (in the main text) of fixing
ntr = 1920 and varying sample sizem in the x-axis for the comparison with missing benchmarks.
Errorbars are projected showing standard deviation across 10 runs. We replaced part (d) in
Figure 3.3 (in the main text) to a sanity check in our FPR when thresholded at α = 0.05.

experimentations), one needs extra data that does not intersect with training.
In fact, it can be experimentally shown by comparing Figure 3.1 and Figure 2(c) that

doing so (while reducing the sample complexity on nev) hurts performance. Indeed, we found
out that when Xev, Y ev are non-intersecting with training, performance is (almost) always
better at a cost of hurting the overall sample complexity of n.

B.7.4 Remarks on Results

Figure B.2 lists all of our benchmarks in the setting of Figure 3.3 (in the main text) on
missing benchmarks, where the last figure is replaced by the false positive rate at thresholding
at α = 0.05 to verify our results. As mentioned in the main text, our MMD-M method
consistently outperforms other benchmarks on both the expected p-value (of alternate) and
rejection rate at α = 0.05, while all of our tests observe a empirical false positive rate close
to α = 0.05% (Part (b)), showing the consistency of methods.

B.8 Application: Higgs-Boson Detection

B.8.1 Dataset Details

We use the Higgs dataset available online at http://archive.ics.uci.edu/ml/datasets/HIGGS,
produced using Monte Carlo simulations [14]. The dataset is nearly balanced, containing
5, 829, 122 signal instances and 5, 170, 877 background instances. Each instance is a 28-
dimensional vector, consisting of 28 features. The first 21 features are kinematic properties
measured by the detectors in the accelerator, such as momentum and energy. The last 7
properties are invariant masses, derived from the first 21 features.

B.8.2 Experiment Setup and Training Models

The modified Algorithm 1 is shown in Algorithm 2 and Algorithm 3. Compared with
Algorithm 2, we implement the thresholding trick (Section 3.4.3) in Algorithm 3.
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Figure B.3: This figure visualizes the distribution of the 26th feature, the invariant mass
mWbb. The red and black lines are the histograms of the original dataset. We employ
MMD-M as a classifier, trained and evaluated using ntr = 1.3× 106 and nev = nopt = 2× 104

through Algorithm 3. The blue(green) line represents all instances z’s whose “witness scores”
f(z;Xev, Y ev)’s are larger(smaller) than topt.

Configuration and Model Architecture

We implement all methods in Python 3.9 and PyTorch 1.13 and run them on an NVIDIA
Quadro RTX 8000 GPU.

For all classifier-based methods in this study (SCHE and LBI), we adopt the same
architecture as previously proposed in [14]. The classifiers are six-layer neural networks with
300 hidden units in each layer, all employing the tanh activation function. For SCHE, the
output layer is a single sigmoid unit and we utilize the binary cross-entropy loss for training.
For LBI, the output layer is a linear unit and we utilize the binary cross entropy loss combined
with a logit function (which is more numerically stable than simply using a sigmoid layer
followed by a cross entropy loss).

For all MMD-based methods (MMD-M, MMD-G, MMD-O, and UME), the networks φ
and φ′ are both six-layer neural networks with 300 ReLU units in each layer. The feature
space, which is the output of the neural network φ, is set to be 100-dimensional. Here UME
has the same kernel architecture as MMD-M, and the number of test locations is set to
be Jq = 4096. For RFM, we adopt the same architecture as in [170], where the kernel is
KM (x, y) = exp(−γ(x−y)TM(x−y)) with a constant γ and a learnable positive semi-definite
matrix M . We set γ ≡ 1.

The neural networks are initialized using the default setting in PyTorch, and the bandwidths
σ, σ′ are initialized using the median heuristic [87]. The parameter τ is initially set to 0.5.
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For UME, the witness locations W are initially randomly sampled from the training set. For
RFM, the initial M equals the median bandwidth times an identity matrix.

Training

The size of our training set, denoted as ntr, varies from 1.0× 102 to 1.6× 106. For a given
ntr, we select the first ntr datapoints from each class of the Higgs dataset to form X tr and
Y tr, i.e., |X tr| = |Y tr| = ntr. Subsequently, we randomly select nvalidation = min(

√
10ntr, 0.1ntr)

points from each of Xtr, Ytr to constitute the validation set, while the remainder of Xtr, Ytr
are used for running gradient descent. The optimizer is set to be a minibatch SGD, with a
batch size of 1024, a learning rate of 0.001, and a momentum of 0.99. Training is halted once
the validation loss stops to decrease for 10 epochs, then we choose the checkpoint (saved
for each epoch) with the smallest validation loss thus far as our trained model. Beyond the
general setting above, in RFM a batch size of 1024 doesn’t work well and instead we use a
batch size of 20, 000.

B.8.3 Evaluating the Performance

Evaluating the p-Value with the Methodology of Algorithm 1

We call the “witness score” of an instance z ∈ X as

f(z;Xev, Y ev) =
1

ncal

ncal∑
i=1

(k(z, Y ev
i )− k(z,Xev

i )) . (B.8.1)

For a vector of instances Z = (Z1, . . . , Zm), we write

f(Z;Xev, Y ev) = (f(Z1;X
ev, Y ev), . . . , f(Zm;X

ev, Y ev)).

The testing procedure is summarized in Phases 2, 3 and 4 in Algorithm 2 and Algorithm 3.
In the Higgs experiment, we utilize the Gaussian approximation method to determine the
p-values when the witness function f is not thresholded, which allows us to reach very small
p-values and errors under limited computational resource. In cases where the score function f
is thresholded by a value t, using the Binomial distribution as in Algorithm 3 is more precise
and also fast enough.

Given a trained kernel K trained on X tr and Y tr, we set Xev = X tr and Y ev = Y tr, and
accordingly nev = ntr. This results in a more efficient use of data (since we reuseX tr, Y tr also as
Xev, Y ev). Then, out of the untouched portion of the data, we randomly choose ncal = 20, 000
datapoints from both classes to populate Xcal and Y cal, i.e., |Xcal| = |Y cal| = ncal = 20, 000.
In addition to the general setting above, for RFM, we need to solve a 2nev-dimensional linear
equation during inference, which arises from the inverse matrix in Equation (B.6.3) (solving
K(XRFM, XRFM)u = (yRFM)T for u ∈ R2nev). So we set nev = min(ntr, 10, 000) that Xev, Yev
are randomly sampled from the training set.

In order to compare different benchmarks, we evaluate the expected significance of discovery
on a mixture of 1000 backgrounds and 100 signals. For each benchmark and each ntr, we train
10 independent models. Then for each trained model we proceed through the Phases 2, 3 (and
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4) in Algorithm 2 and Algorithm 3 by 10 times for 10 different (Xev, Xcal, Xopt, Y ev, Y cal, Y opt).
The mean and standard deviation from these 100 runs are reported in Figure B.4.

We also display in Figure B.5 the trade-off b (m,nev) and (m,ntr) to reach certain levels
of significance of discovery in MMD-M. From the bottom left plot, we see that the (averaged)
significance is not sensitive to nev when lg nev is large. So taking nev = 20, 000 is sufficient.

Evaluating the Error of the Test (3.2.4)

We set the parameters to be δ = 0.1 and π = 1
2
δ in our experiments. As explained

Appendix B.7.3, here we no longer take Xev = X tr. Empirically, taking Xev = X tr yields
a very bad threshold γ(Xev, Y ev, π).3 Instead, Xev is sampled from untouched datapoints
other than X tr, and the same applies for Y . We still take nev = ntr here, resulting in a
total size of nev + ntr = 2ntr. Specifically, when nev ≥ 10, 000, computing a nev × nev Gram
matrix becomes computationally expensive, so we adopt Monte Carlo method to compute
γ(Xev, Y ev, π), in which we subsample 10, 000 points from Xev and Y ev to calculate γ and
repeat this process 100 times.

Again, we utilize the Gaussian approximation. Recall that the test is to compare T =
1
m

∑m
i=1 f(Zi) with γ. The type 1 and type 2 error are estimated as

CDFN (0,1)

(
−γ(X

ev, Y ev, π)− E[f |H0]√
var(f |H0)/m

)

and

CDFN (0,1)

(
−E[f |H1]− γ(Xev, Y ev, π)√

var(f |H1)/m

)
for the witness function f , which can be estimated efficiently using the calibration samples
Xcal, Y cal.

We consider both the regimes of fixing kernels and varying kernels (training kernel based
on n). The results are shown in the top plot in Figure 3.1 and the top plot in Figure B.5. For
each point on the plot, we train 30 independent models and test each model 10 times, and
report the average of these 300 runs. In both plots, we observe the asymmetricm vs n trade-off.

Algorithm 2 Estimate the significance of discovery of an input Ztest, using the original
statistic

Input: (X tr, Xev, Xcal), (Y tr, Y ev, Y cal); parametrized kernel Kω; input Ztest.
# Phase 1: Kernel training on X tr and Y tr

ω ← argmaxoptimizer
ω Ĵ(X tr, Y tr;Kw) # maximize objective Ĵ(X tr, Y tr;Kω) as in (3.4.1)

# Phase 2: Distributional calibration of test statistic
Scores(0) ← f(Xcal;Xev, Y ev) # Scores(0) has a length of ncal

Scores(1) ← f(Y cal;Xev, Y ev) # Scores(1) has a length of ncal

3If the kernel K(·, ·) = KXtr,Y tr(·, ·) is independent of Xev, Y ev, then we have γ(Xev, Y ev, δ/2) ≈
1
2

(
EZ∼Px [T (X

ev, Y ev, Z)] + EZ∼δPY +(1−δ)PX
[T (Xev, Y ev, Z)]

)
. However this is no longer true if (Xtr, Y tr)

and (Xev, Y ev) intersect.
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θ0 ← mean(Scores(0)) # estimate E[f(Z)|Z ∼ PX ]
θ1 ← mean(Scores(1)) # estimate E[f(Z)|Z ∼ PY ]
σ0 ← std(Scores(0)) # estimate

√
var[f(Z)|Z ∼ PX ]

# Phase 3: Inference with input Ztest

m ← length(Ztest)
T ← Tf (Ztest;X

ev, Y ev) = mean(f(Ztest;X
ev, Y ev)) # compute test statistic

Zdiscovery ← T−θ0
σ0/

√
m

Output: Estimated significance: Zdiscovery

Algorithm 3 Estimate the significance of discovery of an input Ztest, applying the
thresholding trick

Input: (X tr, Xev, Xcal, Xopt), (Y tr, Y ev, Y cal, Y opt); parametrized kernel Kω; input Ztest.
# Phase 1: Kernel training on X tr and Y tr

ω ← argmaxoptimizer
ω Ĵ(X tr, Y tr;Kw) # maximize objective Ĵ(X tr, Y tr;Kω) as in (3.4.1)

# Phase 2: Find the best threshold
Scores(0) ← f(Xopt;Xev, Y ev)
Scores(1) ← f(Y opt;Xev, Y ev) # witness function as in (B.8.1)
for i = 1, 2, ..., 2nopt do
t = (Scores(0) ∪ Scores(1))[i]
TP,TN = mean(Scores(1) > t),mean(Scores(0) < t) # true positive and true negative
rate
poweri = TP+TN−1√

TN(1−TN)
# find t to maximize the (estimated) p-value

end for
topt = (Scores(0) ∪ Scores(1))[argmaxi poweri]
# Phase 3: Distributional calibration of test statistic (under null hypothesis)
Scores(0) ← (f(Xcal;Xev, Y ev) > t) # Scores(0) ∈ {0, 1}nev

Scores(1) ← (f(Y cal;Xev, Y ev) > t) # Scores(1) ∈ {0, 1}nev

θ0 ← mean(Scores(0)) # estimate E[ft(Z)|Z ∼ PX ] ∈ [0, 1]
θ1 ← mean(Scores(1)) # estimate E[ft(Z)|Z ∼ PY ] ∈ [0, 1]

# Phase 4: Inference with input Ztest

m ← length(Ztest)
T ← Tf (Ztest;X

ev, Y ev) = mean(f(Ztest;X
ev, Y ev) > t) # compute test statistic

Zdiscovery ← CDF−1
N (0,1)(CDFBin(m,θ0)(T ))

Output: Estimated significance: Zdiscovery
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Figure B.5: The top plot displays the (m,nev) trade-off to reach certain levels of total error
using ntr = 1.3 × 106 in MMD-M. The bottom figures show the trade-off of (m,nev) and
(m,ntr) to reach certain level of significance of discovery in MMD-M. In the bottom left figure,
we fix ntr = 1.3× 106. In the bottom right figure, we fix nev = 20, 000. See Appendix B.8 for
details.

B.9 Limitations and Future Directions

Finally, we discuss several limitations of our work and raise open questions that we hope
will be addressed in future works. From the theoretical side of our arguments, we point out
several aspects. First, our upper bound (on the minimax sample complexity) Theorem 3.3.1
has a likely sub-optimal dependence on α, δ. Second, it might be possible to improve our
lower bound to a more natural form by replacing ∥λ∥2,J⋆

ϵ
by ∥λ∥2 and removing the constraint

that the top eigenfunction has to be constant. Third, it remains open to extend our theory
to include data-dependent K, as opposed to fixed K.

Empirically, our proposal Algorithm 1 can be inefficient in Phase 2 (prior works such
as [143] have used permutation-based arguments for a more efficient estimate), which we
adopted due to its simplicity and universality in all benchmarks. Moreover, one might hope
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that LFHT/mLFHT can be extended to more complex applications, such as text data or
videos. Such questions are important to investigate as a future direction.
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Appendix C

Appendix of “Minimax Optimal Testing
via Classification”

C.1 Auxiliary Lemmas

We state some auxiliary lemmas which will be used for the proof. We begin with a simple
identity for standard normal distributions.

Lemma C.1.1. Take a, b ∈ R and let Z be standard normal. Then

EΦ(aZ + b) = Φ

(
b√

1 + a2

)
.

Proof. Let Z ′ be a standard Gaussian independent of Z. Then

EΦ(aZ + b) = P(aZ + b ≥ Z ′) = P

(
Z ′ − aZ√
1 + a2

≤ b√
1 + a2

)
= Φ

(
b√

1 + a2

)
.

The following lemma is the celebrated result of Gaussian Lipschitz concentration.

Lemma C.1.2 (Lipschitz concentration for Gaussians [201, Theorem 5.2.1]). Let Q be a d-
dimensional standard Gaussian and let f : Rd → R be σ-Lipschitz. Then f(Q) is sub-Gaussian
with variance proxy σ2.

The next lemma states the Chernoff bound for Poisson random variables.

Lemma C.1.3 ([149, Theorem 5.4]). For all λ > 0 and x ≥ 0 we have

P(Poi(λ)− λ ≥ x) ≤ exp

(
− x2

2(λ+ x)

)
,

P(Poi(λ)− λ ≤ −x) ≤ exp

(
−x

2

2λ

)
.

The following technical lemma is helpful in establishing the Bernstein concentration in
Lemma C.2.1.

208



Lemma C.1.4. Let a ≥ 0, p, q ∈ [0, 1] and define τ = p(1−p)∧q(1−q), ν = p(1−p)∨q(1−q).
Then it always holds that

a

√
ν

2
≤ a
√
τ + a2 + |p− q|.

In particular, if |p− q| ≥ a
√
τ + a2, then

4|p− q| ≥ a
√
τ + a

√
ν + a2.

Proof. After rearranging and noting that 1 + 2
√
2 < 4, it is clear that the first inequality

implies the second. Below we prove the first inequality.
Since the claim is invariant under the transformations (p, q) 7→ (q, p) and (p, q) 7→

(1 − p, 1 − q), it suffices to consider the case where p ≤ 1/2 and p(1 − p) ≤ q(1 − q). It
further suffices to consider the case where p ≤ q ≤ 1/2: if not, then p ≤ 1 − q ≤ 1/2, and
the transformation (p, q) 7→ (p, 1− q) keeps (τ, ν) invariant while makes |p− q| smaller. The
proof is then completed by considering the following two scenarios:

• if p ≥ q/2, then ν = q(1− q) ≤ 2p(1− p) = 2τ , so a
√
ν/2 ≤ a

√
τ ;

• if p ≤ q/2, then 2a
√
ν ≤ a2 + ν ≤ a2 + q ≤ a2 + 2(q − p).

C.2 Omitted Proofs from Section 4.1

C.2.1 Proof of Lemma 4.1.2

Before we prove Lemma 4.1.2, we begin with a technical lemma on the Bernstein concentration
of the classifier-accuracy test (4.1.2).

Lemma C.2.1. Suppose A1, . . . , An
iid∼ Ber(p) and B1, . . . , Bm

iid∼ Ber(q). Let τ = p(1− p) ∧
q(1−q) and define the averages Ā = 1

n

∑n
i=1Ai and B̄ = 1

m

∑m
j=1Bj. There exists a universal

constant c > 0 such that

P

(∣∣Ā− B̄∣∣ ≤ 1

2
|p− q| − 1

2

√
c log(1/δ)τ

n ∧m
− 1

2

c log(1/δ)

n ∧m

)
≤ δ,

P

(∣∣Ā− B̄∣∣ ≥ 2|p− q|+ 2

√
c log(1/δ)τ

n ∧m
+ 2

c log(1/δ)

n ∧m

)
≤ δ.

Proof. Let ν = p(1− p) ∨ q(1− q). Note that the first inequality is trivially true if

|p− q| ≤
√
c log(1/δ)τ

n ∧m
+
c log(1/δ)

n ∧m
.
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Assuming otherwise, by the second statement of Lemma C.1.4, the first probability is upper
bounded by

P

(∣∣Ā− B̄∣∣ ≤ |p− q| − 5

8

√
c log(1/δ)τ

n ∧m
− 1

8

√
c log(1/δ)ν

n ∧m
− 5

8

c log(1/δ)

n ∧m

)
.

By choosing c sufficiently large (independently of p, q, n,m, δ), and applying Bernstein’s
inequality separately to both Ā and B̄, the above probability can be made smaller than δ.

For the second inequality, using the first statement of Lemma C.1.4, it is upper bounded
by

P

(
|Ā− B̄| ≥ |p− q|+

√
c log(1/δ)τ

n ∧m
+

1√
2

√
c log(1/δ)ν

n ∧m
+
c log(1/δ)

n ∧m

)
.

Again, taking c sufficiently large (independently of p, q, n,m, δ) and applying Bernstein’s
inequality separately to both Ā and B̄, the above probability can be made smaller than δ.

Now we proceed to prove Lemma 4.1.2. Using n test samples (X, Y ) from both p and q,
consider the following classifier-accuracy test: we accept H0 if∣∣∣∣∣ 1n

n∑
i=1

(1(Xi ∈ S)− 1(Yi ∈ S))

∣∣∣∣∣ ≤
√
cτ log(1/δ)

n
+
c log(1/δ)

n
,

and reject H0 otherwise. Here c > 0 is a large absolute constant, and we note that the
threshold only relies on the knowledge of τ in addition to (n, δ).

To analyze the type-I and type-II errors, first assume that H0 holds. Since sep(S) = 0
under H0, the second statement of Lemma C.2.1 implies that we accept H0 with probability
at least 1− δ/2 if c > 0 is large enough. If H1 holds, with probability at least 1− δ/2, by the
first statement of Lemma C.2.1 we have∣∣∣∣∣ 1n

n∑
i=1

(1(Xi ∈ S)− 1(Yi ∈ S))

∣∣∣∣∣ ≥ |sep| −
(√

cτ log(1/δ)

n
+
c log(1/δ)

n

)
.

By the lower bound of n assumed in Lemma 4.1.2, in this case we will reject H0, as desired.

C.2.2 Proof of Proposition 4.1.3

Lemma C.2.2. Let µ be a non-negative measure on some space X and let a, b : X → R+

such that
∫
a(x)dµ(x) > 0 and b(x) = 0 only if a(x) = 0. Then

inf
x∈spt(µ)

(
a(x)

b(x)

)
≤
∫
a(x)dµ(x)∫
b(x)dµ(x)

≤ sup
x∈spt(µ)

(
a(x)

b(x)

)
.

Proof. Defining 0/0 = 1, we have∫
a(x)dµ(x) =

∫
a(x)

b(x)
b(x)dµ(x)

≤ sup
x∈spt(µ)

(
a(x)

b(x)

)∫
b(x)dµ(x).

The other direction follows analogously.
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Proof of Proposition 4.1.3. Let p, q be the densities of P,Q with respect to a common domi-
nating measure, and let E =.. {x : p(x) > q(x)} so that TV(P,Q) = P(E)−Q(E) > 0. Assume
without loss of generality that P(E)+Q(E) ≥ 1. Given t ∈ [0, 1] define Et =.. {x : p(x)−q(x)

p(x)+q(x)
≥ t},

so that the map t 7→ P(Et) + Q(Et) is non-increasing and left-continuous. Note that E0 = E
while E1 = ∅, so that t⋆ = max{t ∈ [0, 1] : P(Et) + Q(Et) ≥ 1} exists. Now choose the
randomized classifier C as follows:

C(x) =


0 if x ∈ E(t⋆)+ ,

1 if x /∈ Et⋆ ,
Ber(r) if x ∈ Et⋆ − E(t⋆)+ ,

where E(t⋆)+ = ∩t>t⋆Et ⊆ Et⋆ , and

r :=
1− P(E(t⋆)+)− Q(E(t⋆)+)

P(Et⋆) + Q(Et⋆)− P(E(t⋆)+)− Q(E(t⋆)+)
∈ [0, 1].

This classifier is balanced, as

P(C(X) = 0) + Q(C(X) = 0)

= P(E(t⋆)+) + Q(E(t⋆)+) + r(P(Et⋆) + Q(Et⋆)− P(E(t⋆)+)− Q(E(t⋆)+))

= 1.

For t ∈ [0, 1] define

f(t) =..

{
(P(Et)− Q(Et))/(P(Et) + Q(Et)) if P(Et) + Q(Et) > 0,

1 otherwise.

Let 0 ≤ t ≤ s ≤ 1, we show that f(t) ≤ f(s). Without loss of generality assume that f(s) < 1
and that P(Es\Et) + Q(Es\Et) > 0. Notice that f(t) ≤ f(s) if and only if∫

Et\Es
(p(x)− q(x))dx∫

Et\Es
(p(x) + q(x))dx

!

≤
∫
Es
(p(x)− q(x))dx∫

Es
(p(x) + q(x))dx

.

However, the above inequality follows from Lemma C.2.2. Thus, it holds that

P(C(X) = 0)− Q(C(X) = 0)

P(C(X) = 0) + Q(C(X) = 0)
≥ f(t⋆) ≥ f(0) =

P(E)− Q(E)
P(E) + Q(E)

.

Plugging in P(C(X) = 0) + Q(C(X) = 0) = 1 and P(E) + Q(E) ≤ 2 yields the result.
To show tightness, one can consider p(x) = 1[0,1], q(x) = (1 + ϵ)1[0,1/(1+ϵ)], C(x) =

1x∈(1/(2+ϵ),1], and let ϵ→ 0+.

C.3 Omitted Proofs from Section 4.3

C.3.1 Useful Lemmas

Before we present the formal proofs, this section summarizes some useful lemmas on the
expected value and sub-Gaussian concentration of the separation.
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Lemma C.3.1. Let µ ≥ λ ≥ 0 and X ∼ Poi(µ), Y ∼ Poi(λ). Then

P(X > Y ) +
1

2
P(X = Y )− 1

2
≥ c

(
µ− λ√
λ+ 1

∧ 1

)
holds, where c > 0 is a universal constant.

Proof. For t ∈ [λ, µ] define the function

f(t) = P(Poi(t) > Y ) +
1

2
P(Poi(t) = Y ).

Clearly f(λ) = 1
2
. We have

d
dt

P(Poi(t) > Y ) = −P(Poi(t) > Y ) + P(Poi(t) > Y − 1) = P(Poi(t) = Y ).

Similarly we get

d
dt

P(Poi(t) = Y ) = −P(Poi(t) = Y ) + P(Poi(t) = Y − 1).

Thus, we obtain

f ′(t) =
1

2
E [P(Poi(t) ∈ {Y − 1, Y })] .

Next we prove the following inequality: if y is a non-negative integer with |y − t| ≤ 8
√
t,

then

P(Poi(t) = y) = Ω

(
1√
t+ 1

)
. (C.3.1)

To prove (C.3.1), we distinguish three scenarios:

1. If t < 1/100, then the only non-negative integer y with |y− t| ≤ 8
√
t is y = 0. Therefore

P(Poi(t) = y) = e−t = Ω(1).

2. If 1/100 ≤ t ≤ 100, then 0 ≤ y ≤ 180. In this case,

P(Poi(t) = y) ≥ min
1/100≤t≤100

min
0≤y≤180

P(Poi(t) = y) = Ω(1).

3. If t > 100, then for t− 8
√
t ≤ y1 ≤ y2 ≤ t+ 8

√
t, we have

P(Poi(t) = y1)

P(Poi(t) = y2)
= ty2−y1

y2!

y1!
=

y2∏
y=y1+1

t

y
=
(
1±O(t−1/2)

)O(16
√
t)
= Θ(1).

In the above we have used that |t/y−1| = O(t−1/2) for all y ∈ [y1, y2], and y2−y1 ≤ 16
√
t.

Consequently,

P(Poi(t) = y) = Ω

(
P(|Poi(t)− t| ≤ 8

√
t)

16
√
t

)
= Ω

(
1√
t

)
,

where the last step is due to Chebyshev’s inequality.
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Now we apply (C.3.1) to prove Lemma C.3.1. We first show that for non-negative integer
y,

{|y − λ| ≤ 2
√
λ} ∧ {

√
λ ≤
√
t ≤
√
λ+ 1} =⇒ {|y − t| ≤ 8

√
t}. (C.3.2)

In fact, if
√
λ <
√
2− 1, then the LHS of (C.3.2) implies that y = 0 and t < 2, thus (C.3.2)

holds. If
√
λ ≥
√
2− 1, then the LHS of (C.3.2) implies that

|y − t| ≤ |y − λ|+ (t− λ) ≤ 2
√
λ+ (2

√
λ+ 1) < 8

√
λ ≤ 8

√
t,

and (C.3.2) holds as well. Next, by (C.3.1) and (C.3.2), as well as Chebyshev’s inequality
P(|Y − λ| ≤ 2

√
λ) ≥ 3

4
, we have

f ′(t) ≥ 3

8
min

y≥0:|y−λ|≤2
√
λ

P(Poi(t) = y)

≥ 3

8
1{
√
λ ≤
√
t ≤
√
λ+ 1} · min

|y−t|≤8
√
t
P(Poi(t) = y)

= Ω

(
1{
√
λ ≤
√
t ≤
√
λ+ 1}√

t+ 1

)
= Ω

(
1{
√
λ ≤
√
t ≤
√
λ+ 1}√

λ+ 1

)
.

Finally, for some absolute constant c > 0 it holds that

f(µ)− f(λ) =
∫ µ

λ

f ′(t)dt ≥ c

∫ µ

λ

1{
√
λ ≤
√
t ≤
√
λ+ 1}√

λ+ 1
dt ≥ c

(
µ− λ√
λ+ 1

∧ 1

)
,

which is the statement of the lemma.

Lemma C.3.2. For any D ⊆ [k], each of sep(Ŝs(D)), s ∈ {>,<, 1/2} is sub-Gaussian with
variance proxy σ2 which can be bounded as

σ2 ≲
∑
i∈D

(pi − qi)2 ∧
pi + qi
n

= O
(
1

n

)
,

with universal hidden constants.

Proof. Using standard tail bounds of the Poisson distribution (Lemma C.1.3) we have for
any i ∈ D with pi > qi,

P(i ∈ Ŝ<(D)) ≤ P(i ̸∈ Ŝ1/2(D)) ≤ P(i ̸∈ Ŝ>(D))

= P(Poi(npi) ≤ Poi(nqi))

≤ P

(
Poi(npi)− npi ≤ −

1

2
n(pi − qi)

)
+ P

(
Poi(nqi)− nqi >

1

2
n(pi − qi)

)
≤ 2 exp

(
−cn(pi − qi)

2

pi + qi

)
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for some universal c > 0. Similarly, if i ∈ D with pi ≤ qi we get

P(i ∈ Ŝ>(D)) ≤ P(i ∈ Ŝ1/2(D)) ≤ P(i /∈ Ŝ<(D))

= P(Poi(npi) ≥ Poi(nqi)) ≤ 2 exp

(
−cn(pi − qi)

2

pi + qi

)
.

Using these estimates we turn to bounding the moment generating function of sep(Ŝs) for
s ∈ {>,<, 1/2}. Before doing so, recall [34, Theorem 2.1] that the best-possible sub-Gaussian
variance proxy σ2

opt(µ) of the Ber(µ) distribution satisfies

σ2
opt(µ) =

1
2
− µ

log
(

1
µ
− 1
) ,

where the values for µ ∈ {0, 1
2
, 1} should be understood as the limit of the above expression

(resulting in σ2
opt = 0, 1

4
, 0 respectively). Notice also that µ 7→ σ2

opt(µ) is increasing on [0, 1
2
]

and decreasing on [1
2
, 1], and

σ2
opt(µ) ≤


2

log(2/µ)
if 0 < µ < 1/4,

1/4 if 1/4 ≤ µ ≤ 3/4,
2

log(2/(1−µ)) if 3/4 < µ < 1.

Let T ⊆ D denote the subset of indices given by

T =

{
i ∈ D : 2 exp

(
−cn(pi − qi)

2

pi + qi

)
≥ 1

4

}
=

{
i ∈ D : (pi − qi)2 ≤

pi + qi
n

log(8)

c

}
.

Now, for any s ∈ {>,<, 1/2}, the sub-Gaussian variance proxy σ2
s of sep(Ŝs)− E sep(Ŝs) =∑

i∈D(pi − qi)(1{i ∈ Ŝs} − P(i ∈ Ŝs))) is at most

σ2
s ≤

∑
i∈T

(pi − qi)2

4
+
∑
i∈D\T

(pi − qi)2 ·
2(pi + qi)

cn(pi − qi)2
≲
∑
i∈D

(pi − qi)2 ∧
pi + qi
n

,

where the second step used the definition of T . In particular, since
∑

i∈D(pi + qi)/n ≤ 2/n,
the above expression is always upper bounded by O(1/n).

C.3.2 Proof of Proposition 4.3.1

By Lemma C.3.1, we have

E sep(Ŝ1/2) =
∑
i∈[k]

P(i ∈ Ŝ1/2)(pi − qi)

=
∑
i∈[k]

(P(i ∈ Ŝ1/2)−
1

2
)(pi − qi)

≳
∑
i∈[k]

(
n|pi − qi|√
n(pi ∧ qi) + 1

∧ 1

)
|pi − qi|

≥ min
G⊆[k]

{∑
i∈G

n(pi − qi)2√
n(qi ∧ pi) + 1

+
∑
i ̸∈G

|pi − qi|

}
.
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Applying the Cauchy-Schwarz inequality twice, we can bound the first term above by∑
i∈G

n(pi − qi)2√
n(qi + pi) + 1

≥
n
(∑

i∈G |pi − qi|
)2∑

i∈G

√
n(qi + pi) + 1

≥
n
(∑

i∈G |pi − qi|
)2

√
2nk + k2

.

Therefore, we get the lower bound

E sep(Ŝ1/2) ≳ min
0≤ϵ1≤ϵ

{
nϵ21√
k(n+ k)

+ ϵ− ϵ1

}
=

{
ϵ2

λ
if ϵ < λ

2

ϵ− λ
4
≥ ϵ

2
if ϵ ≥ λ

2

≳ ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
where λ =

√
k(n+k)

n
≍
√

k
n
∨ k

n
.

By Lemma C.3.2 we know that sep(Ŝ1/2) is sub-Gaussian with variance proxy O(1/n),
which implies that | sep(Ŝ1/2)| ≳ ϵ2(1

ϵ
∧
√

n
k
∧ n

k
) with probability at least 1− δ, provided that

ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
≳

√
log(1/δ)

n
.

The above rearranges to n ≳ nTS(ϵ, δ,PD).

C.3.3 Proof of Proposition 4.3.2

A direct computation gives

2E sep(Ŝ>) = 2
3k∑
i=1

(pi − qi)P(i ∈ Ŝ>)

= −P
(
Poi
( n
2k

)
> Poi

(n
k

))
+ 1− e−n/(4k)

≤ −(1− e−n/(2k))e−n/k + 1− e−n/(4k)

= −e−n/k + e−3n/(2k) + 1− e−n/(4k) ≤ 0,

for exp(−n/(4k)) ⪆ 0.86. Rearranging, this gives the sufficient condition n/k ≤ 0.6.

C.3.4 Proof of Proposition 4.3.3

Similar to the proof of Proposition 4.3.1, we have by Lemma C.3.1 that

E sep(Ŝ1/2(D)) =
∑
i∈D

(pi − qi)P(i ∈ Ŝ1/2(D)) ≥ cE(D) +
1

2
{p(D)− q(D)}

−E sep(D \ Ŝ1/2(D)) =
∑
i∈D

(qi − pi)P(i ̸∈ Ŝ1/2(D)) ≥ cE(D) +
1

2
{q(D)− p(D)}

where c > 0 is universal and E(D) =
∑

i∈D
n|pi−qi|2√
n(pi∧qi)+1

∧ |pi − qi|. Therefore,

E
[
sep(Ŝ>(D))− sep(Ŝ<(D))

]
= E

[
sep(Ŝ1/2(D))− sep(D \ Ŝ1/2(D))

]
≥ 2cE(D).

(C.3.3)

The bound on the sub-Gaussian variance proxy follows directly from Lemma C.3.2.
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C.3.5 Proof of Corollary 4.3.4

By a two-fold sample splitting, suppose that we have independent held out samples (X̃, Ỹ )
identical in distribution to (X, Y ). In the sequel we will use samples (X, Y ) to construct two
separating sets, and use samples (X̃, Ỹ ) to make a choice between them.

Let the sets Ŝ> =.. Ŝ>([k]), Ŝ< =.. Ŝ<([k]) be constructed using X, Y . By Proposition 4.3.1
and 4.3.3, we have

|E sep(Ŝ>)| ∨ |E sep(Ŝ<)| ≳ ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
,

σ2(Ŝ>) + σ2(Ŝ<) ≲
∑
i∈[k]

pi + qi
n

≲
1

k ∨ n
,

where the last step have used that pi + qi ≲ 1/k in PDb. Going forward, we assume that

ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

)
≳

√
log(1/δ)

k ∨ n
,

which rearranges to n ≳ nGoF(ϵ, δ,PD). Consequently, this ensures that | sep(Ŝ>)|∨| sep(Ŝ<)| ≳
ϵ2
(
1
ϵ
∧
√

n
k
∧ n

k

)
with probability 1−O(δ). Moreover, as n ≳ log(1/δ), with probability at

least 1−δ we have Poi(n) ≤ 2n (cf. Lemma C.1.3). Under this event, one has |Ŝ>|∨|Ŝ<| ≤ 2n,
and

τ(Ŝ>) ∨ τ(Ŝ<) ≲
|Ŝ>| ∨ |Ŝ<|

k
∧ 1 ≤ 2n

k
∧ 1.

Next we make a choice between Ŝ> and Ŝ< based on held out samples (X̃, Ỹ ). Let p̂, q̂
denote the empirical pmfs constructed using X̃, Ỹ respectively. For any set A ⊆ [k] write
ŝep(A) = p̂(A)− q̂(A). We define our final estimator to be

Ŝ =

{
Ŝ> if |ŝep(Ŝ>)| ≥ |ŝep(Ŝ<)|,
Ŝ< otherwise.

Clearly τ(Ŝ) ≤ τ(Ŝ>) ∨ τ(Ŝ<) ≲ 1 ∧ (n/k). To show the high-probability separation of Ŝ,
note that by Lemma C.2.1, it holds with probability at least 1−O(δ) that

| sep(Ŝ)| ≥ 1

2
|ŝep(Ŝ)| − O

√τ(Ŝ) log(1/δ)

n
+

log(1/δ)

n


=

1

2
|ŝep(Ŝ>)| ∨ |ŝep(Ŝ<)| − O

(√
log(1/δ)

n ∨ k
+

log(1/δ)

n

)

≥ 1

4
| sep(Ŝ>)| ∨ | sep(Ŝ<)| − O

(√
log(1/δ)

n ∨ k
+

log(1/δ)

n

)

= Ω

(
ϵ2
(
1

ϵ
∧
√
n

k
∧ n
k

))
−O

(√
log(1/δ)

n ∨ k
+

log(1/δ)

n

)
.

Here the first term always dominates the second as long as n ≳ nGoF(ϵ, δ,PD).
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C.3.6 Proof of Proposition 4.3.6

Similar to the proof of Corollary 4.3.4, we apply a two-fold sample splitting to obtain n
independent held out samples (X̃, Ỹ ). In the sequel we construct 2(ℓ+2) candidate separating
sets from (X, Y ), and make a choice among them using held out samples (X̃, Ỹ ).

The construction of the 2(ℓ+ 2) separating sets is simple: for each j ∈ {0, 1, · · · , ℓ+ 1},
we construct two sets Ŝ>(Dj) and Ŝ<(Dj). The following lemma summarizes some properties
of these separating sets. Recall that we assume that t = k ∧ (c0m/ log(1/δ)) > n so that
ℓ = ⌈log2(t/n)⌉ ≥ 1.

Lemma C.3.3. Fix any j ∈ {0, 1, · · · , ℓ+ 1}, and let ϵj =
∑

i∈Dj
|pi − qi|. With probability

at least 1− δ, the following statements hold:

1. if j = 0, then

∣∣∣sep(Ŝ>(D0))
∣∣∣ ∨ ∣∣∣sep(Ŝ<(D0))

∣∣∣ ≳ E0 −O

(√
E0 log(1/δ)

n

)
,

where

E0 =
∑
i∈D0

n|pi − qi|2 ∧ |pi − qi| ≳
nϵ20
k

=: Ẽ0(ϵ0).

2. if j ∈ [ℓ], then

∣∣∣sep(Ŝ>(Dj))
∣∣∣ ∨ ∣∣∣sep(Ŝ<(Dj))

∣∣∣ ≳ Ej −O

(√
Ej log(1/δ)

n

)
,

where

Ej =
∑
i∈Dj

n|pi − qi|2 ∧ |pi − qi| ≳
nϵ2j√
kt/2j

=: Ẽj(ϵj).

3. if j = ℓ+ 1, then

∣∣∣sep(Ŝ>(Dℓ+1))
∣∣∣ ∨ ∣∣∣sep(Ŝ<(Dℓ+1))

∣∣∣ ≳ Eℓ+1 −O

(√
log(1/δ)

n

)
,

where

Eℓ+1 =
∑
i∈Dℓ+1

n|pi − qi|2√
nqi

∧ |pi − qi| ≳
√
n

k
ϵ2ℓ+1 =: Ẽℓ+1(ϵℓ+1).

Proof. We prove the above statements separately.
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1. Case I: j = 0. By Proposition 4.3.3, it holds that

E[sep(Ŝ>(D0))− sep(Ŝ<(D0))] ≳
∑
i∈D0

n|pi − qi|2 ∧ |pi − qi| = E0,

where we have used Lemma 4.3.5 that qi ≤ 2/t ≤ 2/n for all i ∈ D0. Moreover,

σ2(sep(Ŝ>(D0))) ∨ σ2(sep(Ŝ<(D0)))

≲
∑
i∈D0

|pi − qi|2 ∧
pi + qi
n

≲
∑
i∈D0

1

n

(
n|pi − qi|2 ∧ |pi − qi|

)
=
E0

n
,

where the last inequality is due to the following deterministic inequality: if q ≤ 2/n,
then

|p− q|2 ∧ p+ q

n
≲

1

n

(
n|p− q|2 ∧ |p− q|

)
.

The proof of the above deterministic inequality is based on two cases:

• if p ≤ 3/n, then |p− q|2 ≲ |p− q|2 ∧ (|p− q|/n);
• if p > 3/n, then p+ q ≲ n|p− q|2 ∧ |p− q|.

Consequently, we have the first statement. For the second statement, similar to the
proof of Proposition 4.3.1 we have

E0 ≥ min
ϵ′0∈[0,ϵ0]

(
n(ϵ′0)

2

k
+ ϵ0 − ϵ′0

)
≳ ϵ20

(
1

ϵ0
∧ n
k

)
≍ nϵ20

k
.

2. Case II: j ∈ [ℓ]. By Proposition 4.3.3 and Lemma 4.3.5 we have

E[sep(Ŝ>(Dj))− sep(Ŝ<(Dj))] ≳
∑
i∈Dj

n(pi − qi)2 ∧ |pi − qi| = Ej.

Similar to Case I, we have

σ2(sep(Ŝ>(Dj))) ∨ σ2(sep(Ŝ<(Dj))) ≲
∑
i∈Dj

|pi − qi|2 ∧
pi + qi
n

≲
Ej
n
,

and the first statement follows.

For the second statement, note that |Dj| ≤ t/2j−1 = O(
√
kt/2j) by Lemma 4.3.5.

Therefore,

Ej ≥ min
ϵ′j∈[0,ϵj ]

(
n(ϵ′j)

2

|Dj|
+ ϵj − ϵ′j

)
≳ ϵ2j

(
1

ϵj
∧ n√

kt/2j

)
≍

nϵ2j√
kt/2j

.
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3. Case III: j = ℓ+ 1. By Proposition 4.3.3 and Lemma 4.3.5, we have

E[sep(Ŝ>(Dℓ+1))− sep(Ŝ<(Dℓ+1))] ≳
∑
i∈Dℓ+1

n(pi − qi)2√
nqi

∧ |pi − qi| = Eℓ+1.

The first statement then follows from Lemma C.3.2. The second statement then follows
from

Eℓ+1 ≥ min
ϵ′ℓ+1∈[0,ϵℓ+1]

(
n(ϵ′ℓ+1)

2

√
nk

+ ϵℓ+1 − ϵ′ℓ+1

)
≳ ϵ2ℓ+1

(
1

ϵℓ+1

∧
√
n

k

)
≍
√
n

k
ϵ2ℓ+1.

The proof is complete.

Based on Lemma C.3.3, we are about to describe how we choose from the sets
{Ŝ>(Dj), Ŝ<(Dj)}ℓ+1

j=0. Similar to the proof of Corollary 4.3.4, using the held out samples
(X̃, Ỹ ), we can obtain the empirical estimates ŝep(Ŝs(Dj)) for all s ∈ {>,<} and j ∈
{0, 1, · · · , ℓ+ 1}. With a small absolute constant c1 > 0 and Ẽj as defined in Lemma C.3.3,
the selection rule is as follows: if there is some s ∈ {>,<} and j ∈ {0, 1, · · · , ℓ+1} such that

|ŝep(Ŝs(Dj))| ≥ c1Ẽj(ϵ/(ℓ+ 2)),

then choose Ŝ = Ŝs(Dj); if there is no such pair (s, j), choose an arbitrary Ŝ.
We first show that with probability at least 1 − O(kδ), such a pair (s, j) exists. Since

∥p− q∥1 ≥ ϵ, there must exist some j ∈ {0, 1, · · · , ℓ+ 1} such that ϵj ≥ ϵ/(ℓ+ 2). As long as

n ≥ c2nGoF(ϵ/ℓ, δ,PD)

for a large constant c2 > 0, one can check via Lemma C.3.3 that | sep(Ŝ>(Dj))|∨| sep(Ŝ<(Dj))| ≥
4c1Ẽj(ϵ/(ℓ+ 2)) for a small enough universal constant c1 > 0. Assuming that n ≳ log(1/δ),
we have τ(Ŝ>(Dj)) ∨ τ(Ŝ<(Dj)) = O(n2j/t) with probability 1−O(δ) due to Poisson con-
centration (Lemma C.1.3). On this event, it holds with probability at least 1− δ that (cf.
Lemma C.2.1)

|ŝep(Ŝ>(Dj))| ∨ |ŝep(Ŝ<(Dj))| ≥ 2c1Ẽj(ϵ/(ℓ+ 2))−O

(√
2j log(1/δ)

t
+

log(1/δ)

n

)
,

which is at least c1Ẽj(ϵ/(ℓ+ 2)) as long as

n

√
t

k
≍ n

√
1 ∧ m

log(1/δ)k
≥ c3nGoF(ϵ/ℓ, δ,PD) (C.3.4)

for some large c3 > 0. Therefore, provided (C.3.4) holds, the desired pair (j, s) exists with
probability 1−O(kδ) due to a union bound.

Conversely, if |ŝep(Ŝs(Dj))| ≥ c1Ẽj(ϵ/(ℓ + 2)) holds for some (s, j), the true separation
|sep(Ŝs(Dj))| is at least of the same order as well. Indeed, Lemma C.2.1 shows that

|sep(Ŝs(Dj))| ≥
1

2
|ŝep(Ŝs(Dj))| − O

(√
2j log(1/δ)

t
+

log(1/δ)

n

)
,

which is at least c1Ej(ϵ/(ℓ+ 2))/4 as long as (C.3.4) holds. This completes the proof.
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C.3.7 Proof of Proposition 4.3.8

The statement of Proposition 4.3.8 follows immediately from the following lemma.

Lemma C.3.4. Let sep(Ŝ) =.. µθX (Ŝ)−µθY (Ŝ). There exist universal constants ci > 0, i ∈ [5]
such that for J = ⌊c1ϵ−1/s⌋ we have

E[sep(Ŝ)] +
c2√
n
≥ c3ϵ

2

ϵ+
√
J/n

P

(∣∣∣sep(Ŝ)− E sep(Ŝ)
∣∣∣ ≥ t+

c4√
n

)
≤ 2 exp(−c5nt2)

for all t ≥ 0.

Proof. Write ∥ · ∥, ⟨·, ·⟩ for the ℓ2 norm/inner product restricted to the first J coordinates.
Notice that given θ̂X and θ̂Y , T (θ) is simply a Gaussian random variable with ET (θ) =
∥θ̂Y − θ∥2 − ∥θ̂X − θ∥2 and var(T ) = 4∥θ̂X − θ̂Y ∥2. Define the vectors

U = {θ̂Xj − θ̂Yj }Jj=1

V = {θ̂Xj + θ̂Yj }Jj=1.

Note that they are independent, jointly Gaussain with variance 2IJ/n and means equal to
the first J coordinates of θX ∓ θY respectively. Let Φ be the cdf of the standard Gaussian
and ϕ = Φ′ be its density. The separation can be written as

sep(Ŝ) = f(θX)− f(θY ),

where

f(θ) = Φ

(
∥θ̂Y − θ∥2 − ∥θ̂X − θ∥2

2∥θ̂X − θ̂Y ∥

)
= Φ

(
−1

2

〈
V,

U

∥U∥

〉
+

〈
θ,

U

∥U∥

〉)
. (C.3.5)

We focus on proving the desired tail bound first. To make the dependence on the variables
explicit, write g(U, V ) = f(θX)−f(θY ) for the separation. Given U , V is a N (θX+θY , 2Ij/n)
random variable. Differentiating g and using that ϕ is 1/

√
2πe-Lipschitz we have

∥∇V g(U, V )∥ =
∥∥∥− 1

2

U

∥U∥

(
ϕ

(
−1

2

〈
V,

U

∥U∥

〉
+

〈
θX ,

U

∥U∥

〉)

− ϕ
(
−1

2

〈
V,

U

∥U∥

〉
+

〈
θY ,

U

∥U∥

〉))∥∥∥
≤ 1√

8πe

∣∣∣∣〈θX − θY , U

∥U∥

〉∣∣∣∣
≤ CG√

8πe
.

220



By Lipschitz concentration of the Gaussian distribution (Lemma C.1.2) we conclude that
g − E[g|U ] is sub-Gaussian with variance proxy C2

G/(4πen). Next we study the concentration
of E[g|U ]. To this end, note that

−1

2

〈
V,

U

∥U∥

〉
+

〈
θ,

U

∥U∥

〉∣∣∣∣U ∼ N (〈θ − 1

2
(θX + θY ),

U

∥U∥

〉
,
1

2n

)
.

Thus, using the independence of U and V and Lemma C.1.1 we obtain

E [g(U, V )|U ] = E
[
f(θX)− f(θY )|U

]
= Φ

(
W√

4 + 2/n

)
− Φ

(
− W√

4 + 2/n

)
,

where we write W =..
〈
θX − θY , U

∥U∥

〉
. Let Φ̃ = Φ(·/

√
4 + 2/n) to ease notation. Once again

by Lipschitzness of Φ, we obtain for every t ≥ 0 that

P
(∣∣∣Φ̃(W )− EΦ̃(W )

∣∣∣ ≥ t
)
≤ P

(∣∣∣Φ̃(W )− Φ̃(EW )
∣∣∣ ≥ t− ∥Φ̃∥Lip

√
var(W )

)
≤ P

(
|W − EW | ≥ t

∥Φ̃∥Lip
−
√
var(W )

)
,

and an analogous inequality can be obtained for −W . The last ingredient is showing that W
concentrates well.

Lemma C.3.5. W is sub-Gaussian with variance proxy 1/(2n).

Proof of Lemma C.3.5. To simplify notation, let τ = θX − θY , σ2 = 1/(2n) and let Q be a
zero-mean identity-covariance Gaussian random vector so that

W
d
=

〈
τ,

τ + σQ

∥τ + σQ∥

〉
.

We have 〈
τ,

τ + σQ

∥τ + σQ∥

〉
=

〈
τ

E∥τ + σQ∥
,
τ + σQ

∥τ + σQ∥

〉
︸ ︷︷ ︸

|·|≤1 almost surely

(∥τ + σQ∥ − E∥τ + σQ∥)︸ ︷︷ ︸
σ2 sub-Gaussian

+ σ

〈
τ

E∥τ + σQ∥
, Q

〉
︸ ︷︷ ︸

σ2 sub-Gaussian

,

where we use that E∥τ + σQ∥ ≥ ∥τ∥ by Jensen’s inequality, and apply Lemma C.1.2 twice.
Overall, this implies that W is sub-Gaussian with variance proxy σ2 = 1/(2n) as required.

Recall that we have decomposed the separation as follows:

sep(Ŝ)− E sep(Ŝ) = g − E[g|U ]︸ ︷︷ ︸
O(1/n) sub-Gaussian

+Φ̃(W )− Φ̃(−W )− E[Φ̃(W )− Φ̃(−W )]︸ ︷︷ ︸
O(1/n) sub-Gaussian tails beyond O(1/

√
n)

,
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which completes the proof.
Let us turn to calculating the expected separation. We have already seen that

E sep(Ŝ) = E
[
Φ̃(W )− Φ̃(−W )

]
.

Again by Lipschitzness we have |EΦ̃(W )− Φ̃(EW )| ≤ ∥Φ̃∥LipE|W − EW | ≲ 1/
√
n by Lemma

C.3.5. Thus, we see that

E sep(Ŝ) + Ω

(
1√
n

)
≥ Φ̃(EW )− Φ̃(−EW ),

where the implied constant is universal. To simplify notation, let τ = θX − θY , σ2 = 1/(2n)
and let Q be a standard normal random variable. Looking at EW we have

EW = E

〈
τ,

τ + σQ

∥τ + σQ∥

〉
=

1

σ
E ⟨τ,∇Q∥τ + σQ∥⟩ = 1

σ
E [⟨τ,Q⟩ ∥τ + σQ∥]

by Stein’s identity. By the rotational invariance of the Gaussian distribution, the above is
equal to

EW =
∥τ∥
σ

E

[
Q1

√
(∥τ∥+ σQ1)2 + · · ·+ σ2Q2

J

]
=
∥τ∥
σ

E

[
Q1

√
(∥τ∥+ σQ1)2 + · · ·+ σ2Q2

J −Q1

√
∥τ∥2 + σ2Q2

1 + · · ·+ σ2Q2
J

]
= 2∥τ∥2E

[
Q2

1√
(∥τ∥+ σQ1)2 + · · ·+ σ2Q2

J +
√
∥τ∥2 + σ2Q2

1 + · · ·+ σ2Q2
J

]
.

By the Cauchy-Schwarz inequality we have

(E|Q1|)2 ≲ E

[
Q2

1√
(∥τ∥+ σQ1)2 + · · ·+ σ2Q2

J +
√
∥τ∥2 + σ2Q2

1 + · · ·+ σ2Q2
J

] (
∥τ∥+ σ

√
J
)
.

Plugging into our expression for EW this yields

EW ≳
∥τ∥2

∥τ∥+ σ
√
J
.

To clarify notation, let us now write ∥ · ∥J for the ℓ2-norm restricted to the first J coordinates.
Taking J = cϵ−1/s it holds that

∥τ∥2J = ∥τ∥2 −
∑
j>J

τ 2j ≥ ∥τ∥2 − J−2s
∑
j>J

τ 2j j
2s = ∥τ∥2 − c−2sϵ2∥τ∥2s.

Since ∥τ∥s ≲ 1 and ∥τ∥ ≥ ϵ by assumption, we see that for large enough universal constant c
we have ∥τ∥J ≥ ϵ/2. Since the map x 7→ x2/(x+ c) is increasing for x, c > 0 it follows that

EW ≳
ϵ2

ϵ+
√
J/n

for a universal implied constant. By the inequality Φ(x) − Φ(−x) ≥ x/2 for x ∈ [0, 1] we
obtain

Φ̃(EW )− Φ̃(−EW ) ≥ 1 ∧ EW/2,

which completes the proof.
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C.4 Lower bounds

Recall the notation of Section 4.2.1. Given two hypotheses H0, H1, our aim is to lower bound
the minimum achievable worst-case error. To this end, we use the following standard fact:

min
ψ

max
i=0,1

sup
P∈Hi

PS∼P (ψ(S) ̸= i) ≥ 1

2

(
1− TV(EP0,EP1)

)
, (C.4.1)

where P0, P1 are any random probability distributions with P(Pi ∈ Hi) = 1 and EPi denote
the corresponding mixtures and TV denotes the total variation distance. Hence, deriving a
lower bound of order δ on the minimax error reduces to the problem of finding mixtures EPi
such that 1 − TV(EP0,EP1) = Ω(δ). To this end we utilize standard inequalities between
divergences.

Lemma C.4.1 ([168]). For any probability measures P,Q the inequalities

1− TV(P,Q) ≥ 1

2
e−KL(P∥Q) ≥ 1

2(1 + χ2(P∥Q))

hold, where KL and χ2 denote the Kullback-Leibler and χ2 divergence respectively.

Many of our lower bounds will follow from reduction to prior work.

C.4.1 Lower bounds for PDb

In [77] the authors gave the construction of distributions pη,ϵ, p0 ∈ PDb(k, 2) (originally due
to Paninski) for a mixing parameter η such that TV(pη,ϵ, p0) = ϵ ≍

√
KL(pη,ϵ, p0) for all η,

where the implied constant is universal. They further showed that

χ2(Eηp
⊗n
η,ϵ , p

⊗n
0 ) ≤ exp

(
c
n2ϵ4

k

)
− 1 (C.4.2)

and

χ2
(

Eη
[
p⊗n0 ⊗ p⊗(n+m)

ϵ,η

]∥∥∥Eη
[
p⊗n0 ⊗ p⊗nϵ,η ⊗ p⊗m0

])
≤ exp

(
c
m(n+m)ϵ4

k

)
− 1 (C.4.3)

for a universal c > 0.

Remark 22. More precisely, (C.4.3) can be extracted from [77] using the chain rule for χ2

(as opposed to KL).

Lower bound for TS and GoF

Take P0 = p⊗2n
0 and P1 = p⊗nϵ,η0 ⊗ p

⊗n
0 in (C.4.1) for a fixed η0. Then, by Lemma C.4.1 and

the data-processing inequality we have

1− TV(EP0,EP1) ≥
1

2
exp(−nKL(pϵ,η∥p0)) ≥

1

2
exp(−cnϵ2) !

= Ω(δ)

223



for a universal c > 0. This shows that GoF,TS are impossible at total error δ unless
n ≳ log(1/δ)/ϵ2, which gives the first term of our lower bound.

For the second term, consider the random measures P0 = p⊗2n
0 and P1 = p⊗n0 ⊗ p⊗nϵ,η in

(C.4.1). Then using (C.4.2) and Lemma C.4.1 we have

1− TV(EP1,EP0) ≥
1

2

1

1 + χ2(EP1∥EP0)

≥ 1

2
exp

(
−cn

2ϵ4

k

)
!
= Ω(δ).

Therefore, TS is impossible unless n ≳
√
k log(1/δ)/ϵ2, which yields the second term of our

lower bound.

Lower bound for LFHT

The necessity of m ≳ log(1/δ)/ϵ2 and n ≳
√
k log(1/δ)/ϵ2 follows as for TS above. Taking

P0 = p⊗n0 ⊗ p⊗nϵ,η ⊗ p⊗m0 and P1 = p⊗n0 ⊗ p
⊗(n+m)
ϵ,η in (C.4.1), using (C.4.3) and Lemma C.4.1

we obtain the inequality

1− TV(EP0,EP1) ≥
1

2

1

1 + χ2(EP1∥EP0)

≥ 1

2
exp

(
−cm(m+ n)ϵ4

k

)
!
= Ω(δ).

Therefore, LFHT is impossible with error O(δ) unless mn ≳ k log(1/δ)/ϵ4 (note that the
m2-term is never active), which completes the lower bound proof.

C.4.2 Lower bounds for PH

We don’t provide the details because they are entirely analogous to Section C.4.1 and rely on
classical constructions that can be found in [77].

C.4.3 Lower bounds for PG

Given a vector η ∈ {±1}N define the measure

Pη =
∞⊗
j=1

{
N (ηjc1ϵ

2s+1
2s , 1) if 1 ≤ j ≤ c2ϵ

−1/s,
N (0, 1) otherwise.

}
Let η1, η2, . . . be iid uniform signs in {±1}, and γη be the mean vector of Pη. Writing ∥ · ∥s
for the Sobolev-norm of smoothness s and ∥ · ∥ for the Euclidean norm, we see that for any η

∥γη∥2s =
∞∑
j=1

j2sγ2ηj =

c2ϵ−1/s∑
j=1

j2sc21ϵ
2s+1

s ≤ c21ϵ
2s+1

s

(
2c2ϵ

−1/s
)2s+1 ≍ c21c

2s+1
2 ,

∥γη∥2 =
∞∑
j=1

γ2ηj = c21ϵ
2s+1

s c2ϵ
−1/s ≍ c21c2ϵ

2.
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Then for any CG > 0 we can choose c1, c2 independently of ϵ such that P0,Pη ∈ PG(s, CG)
almost surely and ∥γη∥ = 10ϵ. Then for ϵ ≤ 1/10 we know that

TV(P0,Pη) = 2Φ

(
∥γη∥
2

)
− 1 ≥ ϵ.

Lower bounds for GoF and TS

Take P0 = P⊗2n
0 and P1 = P⊗n

1
⊗ P⊗n

0 . Then

KL(P0∥P1) = nKL(P0∥P1) = nc2ϵ
−1/s (c1ϵ

2s+1
2s − 0)2

2
≍ nϵ2.

Using Lemma C.4.1 this gives us

1− TV(P0, P1) ≳ exp(−KL(P0∥P1)) = exp(−Θ(nϵ2))
!
= Ω(δ).

By (C.4.1) we know then that n ≳ log(1/δ)/ϵ2 is necessary for both GoF and TS over PG.
To get the second term in the minimax sample complexity consider the construction

P0 = P⊗2n
0 and P1 = P⊗n

η ⊗ P⊗n
0 where η is a uniformly random vector of signs. Writing

ω = c1ϵ
2s+1
2s note that

EP⊗n
η =

c2ϵ−1/s⊗
j=1

(
1

2
N (ω, 1)⊗n +

1

2
N (−ω, 1)⊗n

)
.

From here we can compute

KL(P0∥EP1) ≍ ϵ−1/sKL

(
N (0, 1)⊗n

∥∥∥1
2
N (ω, 1)⊗n +

1

2
N (−ω, 1)⊗n

)
≍ ϵ−1/s

(
n

2
ω2 − EX∼N (0,In) log cosh

(
ω

n∑
i=1

Xi

))

≤ ϵ−1/s

4
n2ω4 ≍ n2ϵ

4s+1
s ,

where we used the inequality log cosh(x) ≥ x2

2
− x4

12
for all x ∈ R. Thus, using Lemma C.4.1,

1− TV(P0∥EP1) ≳ exp(−KL(P0∥EP1)) ≥ exp(−Θ(n2ϵ
4s+1

s ))
!
= Ω(δ).

By (C.4.1) we know then that n ≳
√

log(1/δ)/ϵ
2s+1/2

s is necessary for both GoF and TS over
PG.

Lower bounds for LFHT

If m ≥ n, from the GoF lower bound n ≳ nGoF we conclude that mn ≳ n2
GoF, as desired.

Therefore, throughout this section we assume that m < n.
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Let P0 = P⊗n
η ⊗ P⊗n

0 ⊗ Pmη and P1 = P⊗n
η ⊗ P⊗n

0 ⊗ P⊗m
0 , where η is a uniformly random

vector of signs. Once again, we define ω = c1ϵ
2s+1
2s . We follow a proof similar to the cases

PDb,PH in [77]. We use the data processing inequality, the chain rule and tensorization of χ2:

χ2(EP0∥EP1) = χ2(EP⊗(n+m)
η ∥EP⊗n

η ⊗ P⊗m
0 )

=

EX1Eη1|XEη′1|X1

∫
Rm

exp
(
−1

2

∑m
j=1 {(zj − η1ω)2 + (zj − η′1ω)2}

)
(2π)m/2 exp(−1

2

∑m
j=1 z

2
j )

dz

c2ϵ−1/s

− 1,

where X1 ∼ (1
2
N (ω, 1/n)+ 1

2
N (−ω, 1/n)) and η1, η′1|X1 are iid scalar signs from the posterior

p(·|X1), with joint distribution p(η1, X1) = ϕ(
√
n(X1 − η1ω))/2.

The Gaussian integral above can be evaluated exactly and we obtain

χ2(EP0∥EP1) = (EX1,η1,η′1
exp(ω2mη1η

′
1))

c2ϵ−1/s − 1.

Now, we can calculate

P(η1 = η′1) = EX1

p(X1|η1 = 1)2 + p(X1|η1 = −1)2

(p(X1|η1 = 1) + p(X1|η1 = −1))2

=
1

2
+

1

4

∫
(p(x1|η1 = 1)− p(x1|η1 = −1))2

p(x1|η1 = 1) + p(x1|η1 = −1)
dx1

≤ 1

2
+

1

16

∑
b∈{±1}

χ2(N (bω, 1/n)∥N (−bω, 1/n))

=
1

2
+

exp(4ω2n)− 1

8
.

Together with P(η1 = η′1) ≤ 1, we have

EX1,η1,η′1
exp(ω2mη1η

′
1) ≤ e−ω

2m +

(
1

2
+

1

2
∧ e

4ω2n − 1

8

)
(eω

2m − e−ω2m)

= cosh(ω2m) + t sinh(ω2m),

with t = 1 ∧ ((e4ω
2n − 1)/4). Distinguish into two scenarios:

• if t = 1, then 4ω2n ≥ 1, and the above expression is eω2m ≤ e4ω
4nm;

• if t < 1, then ω2n ≤ 1/2 and t ≤ 8ω2n. Since m < n, and cosh(x) ≤ 1+x2, sinh(x) ≤ 2x
for all x ∈ [0, 1], the above expression is at most

1 + (ω2m)2 + 2tω2m ≤ exp(17ω4mn).

Combining the above scenarios, we have

χ2(EP0∥EP1) ≤ exp(17ω4nm · c2ϵ−1/s)− 1.
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Thus, we obtain

1− TV(EP0,EP1) ≳
1

1 + χ2(EP0∥EP1)
≥ exp(−17ω4nm · c2ϵ−1/s)

!
= Ω(δ).

This gives the desired lower bound

nm ≳
log(1/δ)

ϵ
4s+1

s

.

C.4.4 Lower bounds for PD

Clearly all lower bounds that apply to PDb also apply to PD; in particular this gives the sample
complexity lower bound for GoF. In addition, lower bounds on the minimax high-probability
sample complexity of TS were derived in [62]. Hence, inspecting the claimed minimax rates,
we only need to consider the problem LFHT in the cases m ≤ n ≤ k and n ≤ m ≤ k. We
give two separate constructions for the two cases, both inspired by classical constructions
in the literature. As opposed to the i.i.d. sampling models, we will use the Poissonized
models and rely on the formalism of pseudo-distributions as described in [62]. Specifically,
suppose we can construct a random vector (p, q) ∈ [0, 1]2 such that 1) Ep = Eq = Θ(1/k) and
|E[p− q]| = Θ(ϵ/k); and 2) the following χ2 upper bounds hold for the Poisson mixture:

χ2(E[Poi(np)⊗ Poi(nq)⊗ Poi(mp)]∥E[Poi(np)⊗ Poi(nq)⊗ Poi(mq)]) ≤ B(n,m, ϵ, k),

χ2(E[Poi(nq)⊗ Poi(np)⊗ Poi(mp)]∥E[Poi(np)⊗ Poi(nq)⊗ Poi(mp)]) ≤ B(n,m, ϵ, k);
(C.4.4)

then (n,m) ∈ RLF(ϵ, δ,PD) requires kB(n,m, ϵ, k) ≳ log(1/δ) (essentially via Lemma C.4.1).

Case m ≤ n ≤ k

Suppose that m ≤ n ≤ k/2, and let p, q be two random variables defined as

(p, q) =


( 1
n
, 1
n
) with probability n

k
,

( ϵ
k
, 2ϵ
k
) with probability 1

2
(1− n

k
),

( ϵ
k
, 0) with probability 1

2
(1− n

k
).

Note that E[p] = E[q] = Θ(1/k) and |E[p− q]| = Θ(ϵ/k). Let X, Y ∈ R3 be random, whose
distribution is given by

X|(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

Y |(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mq).

Now, for any (a, b, c) ∈ N3 we have

P(X = (a, b, c)) =
1

a!b!c!

(n
k
e−2−m

n

(m
n

)c
+

1

2
(1− n

k
)e−(3n+m)ϵ/k

(ϵn
k

)a(2ϵn

k

)b (ϵm
k

)c
+

1

2
(1− n

k
)e−(n+m)ϵ/k

(ϵn
k

)a
1b=0

(ϵm
k

)c )
.
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Similarly, for Y we get

P(Y = (a, b, c)) =
1

a!b!c!

(n
k
e−2−m

n

(m
n

)c
+

1

2
(1− n

k
)e−(3n+2m)ϵ/k

(ϵn
k

)a(2ϵn

k

)b(
2ϵm

k

)c
+

1

2
(1− n

k
)e−nϵ/k

(ϵn
k

)a
1b=c=0

)
.

In particular, we have

P(Y = (a, b, c)) = Ω

(
1

a!b!c!

){
1 if (a, b, c) = (0, 0, 0),
n
k

(
m
n

)c otherwise.

Notice also that

P(X = (a, b, c))− P(Y = (a, b, c))

=
1

a!b!c!

1

2
(1− n

k
)e−nϵ/k︸ ︷︷ ︸

=Θ(1)

( ϵ
k

)a+b+c
na+bmc

×
[
2be−(2n+m)ϵ/k

(
1− 2ce−mϵ/k

)
+ 1b=0

(
e−mϵ/k − 1c=0

)]︸ ︷︷ ︸
=..Ibc

=
Θ(1)

a!b!c!

( ϵ
k

)a+b+c
na+bmcIbc,

where

|Ibc| ≲


nmϵ2

k2
if b = c = 0,

2bmϵ
k

if b ≥ 1, c = 0,
nϵ
k

if b = 0, c = 1,

2b+c otherwise.

(C.4.5)

We now turn to bounding the χ2-divergence between X and Y . Using the estimates (C.4.5),
we obtain

χ2(X∥Y ) =
∑

(a,b,c)∈N3

(P(X = (a, b, c))− P(Y = (a, b, c)))2

P(Y = (a, b, c))

≲ I200 +

( ∑
b=c=0,a≥1

+
∑

a≥0,b+c≥1

)
1

a!b!c!

(
ϵ
k

)2a+2b+2c
n2a+2bm2cI2bc

n
k

(
m
n

)c
= I200

(
1 +

∑
a≥1

1

a!

ϵ2an2a−1

k2a−1

)
+

(∑
a≥0

1

a!

ϵ2an2a

k2a

) ∑
b+c≥1

1

b!c!

ϵ2b+2cn2b+c−1mc

k2b+2c−1
I2bc

≲
n2m2ϵ4

k4

(
1 +

nϵ2

k
eϵ

2n2/k2
)

︸ ︷︷ ︸
=Θ(1)

+ eϵ
2n2/k2︸ ︷︷ ︸
=Θ(1)

∑
b+c≥1

1

b!c!

ϵ2b+2cn2b+c−1mc

k2b+2c−1
I2bc.
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Focusing on the sum and decomposing it as
∑

b+c≥1 =
∑

c=0,b≥1 +
∑

b=0,c=1 +
∑

b=0,c≥2 +
∑

b,c≥1

we have the estimates∑
b+c≥1

1

b!c!

ϵ2b+2cn2b+c−1mc

k2b+2c−1
I2bc

≲
∑

c=0,b≥1

1

b!

ϵ2b+2n2b−14bm2

k2b+1
+
ϵ4mn2

k3
+
∑

b=0,c≥2

1

c!

ϵ2cnc−1mc4c

k2c−1
+
∑
b,c≥1

1

b!c!

ϵ2b+2cn2b+c−1mc4b+c

k2b+2c−1

≲
ϵ4m2n

k3
+
ϵ4mn2

k3
+
ϵ4m2n

k3
+
ϵ4mn2

k3
≲
ϵ4mn2

k3
.

As m ≤ k, we obtain

χ2(X∥Y ) ≲
ϵ4mn2

k3
.

By (C.4.4) we conclude that in the regime m ≤ n ≤ k, (n,m) ∈ RLF(ϵ, δ,PD) requires
n2m ≳ k2 log(1/δ)/ϵ4, as desired.

Case n ≤ m ≤ k

This case is entirely analogous to the previous case with minor modifications. Suppose that
n ≤ m ≤ k/2, and let p, q be two random variables defined as

(p, q) =


( 1
m
, 1
m
) with probability m

k
,

( ϵ
k
, 2ϵ
k
) with probability 1

2
(1− m

k
),

( ϵ
k
, 0) with probability 1

2
(1− m

k
).

Let X, Y ∈ R3 be random, whose distribution is given by

X|(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

Y |(p, q) ∼ Poi(nq)⊗ Poi(np)⊗ Poi(mp).

Now, for any (a, b, c) ∈ N3 we have

P(X = (a, b, c)) =
1

a!b!c!

(m
k
e−

2n
m

−1
( n
m

)a+b
+

1

2
(1− m

k
)e−(3n+m)ϵ/k

(ϵn
k

)a(2ϵn

k

)b (ϵm
k

)c
+

1

2
(1− m

k
)e−(n+m)ϵ/k

(ϵn
k

)a
1b=0

(ϵm
k

)c )
.

Similarly, for Y we get

P(Y = (a, b, c)) =
1

a!b!c!

(m
k
e−

2n
m

−1
( n
m

)a+b
+

1

2
(1− m

k
)e−(3n+m)ϵ/k

(
2ϵn

k

)a (ϵn
k

)b (ϵm
k

)c
+

1

2
(1− m

k
)e−(n+m)ϵ/k

1a=0

(ϵn
k

)b (ϵm
k

)c )
.

In particular, we have

P(Y = (a, b, c)) = Ω

(
1

a!b!c!

){
1 if (a, b, c) = (0, 0, 0),
m
k

(
n
m

)a+b otherwise.
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Notice that

P(X = (a, b, c))− P(Y = (a, b, c))

=
1

a!b!c!

1

2
(1− m

k
)e−(n+m)ϵ/k

( ϵ
k

)a+b+c
na+bmc

(
e−2nϵ/k(2b − 2a) + 1b=0 − 1a=0

)︸ ︷︷ ︸
=..Jab

=
Θ(1)

a!b!c!

( ϵ
k

)a+b+c
na+bmcJab,

where

|Jab| ≲


0 if a+ b = 0,
nϵ
k

if a+ b = 1,

2a+b if a+ b ≥ 2.

(C.4.6)

We now turn to bounding the χ2-divergence between X and Y . We have

χ2(X∥Y ) =
∑

(a,b,c)∈N3

(
P(X = (a, b, c))− P(Y = (a, b, c))

)2
P(Y = (a, b, c))

≍
∑

a+b+c≥1

1
a!2b!2c!2

(
ϵ
k

)2a+2b+2c
n2a+2bm2cJ2

ab

1
a!b!c!

m
k

(
n
m

)a+b
≍

∑
a+b+c≥1

1

a!b!c!

ϵ2a+2b+2cna+bm2c+a+b−1J2
ab

k2a+2b+2c−1

= eϵ
2m2/k2︸ ︷︷ ︸
Θ(1)

∑
a+b≥1

1

a!b!

ϵ2a+2bna+bma+b−1J2
ab

k2a+2b−1
,

where the last step follows from Jab = 0 if a = b = 0. Now writing t = a+b and distinguishing
into cases t = 1 and t ≥ 2, by (C.4.6) we have

χ2(X∥Y ) ≲
ϵ4n3

k3
+
∑
t≥2

2t

t!

ϵ2tntmt−14t

k2t−1
≲
ϵ4n3

k3
+
ϵ4n2m

k3
≲
ϵ4n2m

k3
,

where the last line uses that n ≤ m. Once again, we can conclude by (C.4.4) that n2m ≳
log(1/δ)k2/ϵ4 is a lower bound for the sample complexity of LFHT.
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Appendix D

Appendix of “Density Estimation Using
the Perceptron”
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D.1 Auxiliary Technical Results

In this section we list some technical lemmas that are used in our later proofs.

Theorem D.1.1 (Plancherel theorem). Let f, g ∈ L2(Rd). Then∫
Rd

f(x)g(x)dx =
1

(2π)d

∫
Rd

f̂(ω)ĝ(ω)dω.

Lemma D.1.2. Suppose t, x, y > 0. Then there exist finite t-dependent constants C1, C2

such that

x ≤ y log(3 + 1/y)t =⇒ x

log(3 + 1/x)t
≤ C1 y =⇒ x ≤ C2 y log(3 + 1/y)t.

Proof. Let us focus on the first implication. If x ≤ y, then it clearly holds. If y ≤ x ≤
y log(3 + 1/y)t then it suffices to show(

x

log(3 + 1/x)t
≤
)

y log(3 + 1/y)t

log(3 + 1/(y log(3 + 1/y)t))t
!

≤ C1y.

The inequality marked by ! is equivalent to

3 + 1/y ≤ (3 + 1/(y log(3 + 1/y)t))
t√C1 .

Now, if y ≥ 1/2 then clearly taking C1 = log3(5)
t works. Suppose that instead y ∈ (0, 1/2).

Then, since log grows slower than any polynomial, there exists a t-dependent constant ct <∞
such that log(3 + 1/y) ≤ cty

−1/(2t) for all y ∈ (0, 1/2). Therefore, we have

3 +
1

y log(3 + 1/y)t
≥ 3 +

1

ctty
1/2
.

It is then clear that

3 +
1

y
≤
(
3 +

1

ctty
1/2

) t√C1

holds for all y ∈ (0, 1/2) if we take C1 large enough in terms of t. The second implication
follows analogously and we omit its proof.

Lemma D.1.3. Let µ be a probability distribution on Rd and γ ∈ (0, 2). Then

EX∼µ

∫
Rd

(cos⟨ω,X⟩ − 1)2 + sin2⟨ω,X⟩
∥ω∥d+γ

dω ≤ 16πd/2Mγ(µ)

Γ(d/2)γ(2− γ)
.

Proof. We use the inequalities (cos t− 1)2 +sin2(t) ≤ 4(t2 ∧ 1) valid for all t ∈ R. Plugging in
and using the Cauchy-Schwarz inequality, the quantity on the left hand side can be bounded
as

4E
∫

Rd

1 ∧ (∥ω∥2∥X∥2)
∥ω∥d+γ

dω ≤ 4 vold−1(S
d−1)E

∫ ∞

0

1 ∧ (r2∥X∥2)
r1+γ

dr

=
8πd/2

Γ(d
2
)

E

{
∥X∥2

∫ ∥X∥−1

0

1

rγ−1
dr +

∫ ∞

∥X∥−1

1

r1+γ
dr

}

=
16πd/2Mγ(ν)

Γ(d
2
)γ(2− γ)

,
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where vold−1(Sd−1) = 2πd/2

Γ
(

d
2

) is the surface area of the unit (d− 1)-sphere.

Lemma D.1.4. For γ ∈ (0, 2) define

Bγ =


sup0<a<c

∣∣∣∫ ca sin(ω)
ω

dω
∣∣∣ if γ = 1,

sup0<a<c

∣∣∣∫ ca cos(ω)

ω(1+γ)/2dω
∣∣∣ if γ ∈ (0, 1),

sup0<a<c

∣∣∣∫ ca cos(ω)−1

ω(1+γ)/2 dω
∣∣∣ if γ ∈ (1, 2).

Then Bγ <∞.

Proof. In the γ > 1 case, one immediately has Bγ ≤
∫∞
0

∣∣∣min{1,ω2/2}
ω(1+γ)/2

∣∣∣ dω < ∞. Now let us
consider γ ≤ 1. One has that Bγ = sup0<c1<c2 |Iγ(c2)− Iγ(c1)| ≤ supc>0 2|Iγ(c)| where

Iγ(a) =

{∫ a
1

sin(ω)
ω

dω if γ = 1,∫ a
1

cos(ω)

ω(1+γ)/2dω if γ ∈ (0, 1),

Clearly a 7→ Iγ(a) is continuous on (0,∞) for each γ ∈ (0, 2). Moreover,

|Iγ(a)| ≤ |a− 1| ·max{a−(γ+1)/2, 1}.

Therefore, we only need to show that lima→∞ |Iγ(a)| and lima→0 |Iγ(a)| are both finite. Let
gγ(x) = x−(γ+1)/2 and fγ(x) = sin(x) if γ = 1 and cos(x) otherwise, so that we may write
Iγ(a) =

∫ 1

a
fγ(ω)gγ(ω)dω.

1. For a→∞, since gγ(∞) = 0 and |
∫ a
1
fγ(x)dt| ≤ 2 is uniformly bounded,

∫∞
1
f(ω)g(ω)dω

converges to a finite value by Dirichlet’s test for improper integrals [145, page 391].1

2. For a→ 0, the conclusion follows by the inequality | sin(ω)| ≤ min{|ω|, 1} in the case
γ = 1, and by |Iγ(a)| ≤

∫ 1

a
ω−(1+γ)/2dω ≤

∫ 1

0
ω−(1+γ)/2dω = 2

1−γ for γ < 1.

Therefore, supa>0 |Iγ(a)| <∞ which concludes the proof.

Lemma D.1.5. Let
∫∞
0
· dω =.. limϵ→0

∫
1/ϵ≥ω≥ϵ · dω and recall the definition of ψγ from

(5.2.6). Then, for x ̸= 0 the following hold:

ψγ(x) = Cψγ


∫∞
0

sin(ωx)
ω

dω + π
2

for γ = 1,∫∞
0

cos(ωx)

ω(1+γ)/2dω for γ ∈ (0, 1),∫∞
0

cos(ωx)−1

ω(1+γ)/2 dω for γ ∈ (1, 2),

where

Cψγ =


(
cos(π(γ−1)

4
)Γ(1−γ

2
)
)−1

if γ ̸= 1,

1
π

if γ = 1.

1Reference pointed out by user Siminore on math.stackexchange.com.
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Proof. For x ̸= 0 clearly∫ ∞

0

sin(ωx)

w
dw = sign(x)

∫ ∞

0

sin(ω)

w
dw = sign(x)

π

2
,

which shows the first claim. Assume from here on without loss of generality that x > 0. For
γ ∈ (0, 1), by the residue theorem,∫ ∞

0

cos(ωx)

ω(1+γ)/2
dω = x(γ−1)/2

∫ ∞

0

ℜ
(

eiω

ω(1+γ)/2

)
dw

= x(γ−1)/2ℜ
(
ie−i

π
2
γ
) ∫ ∞

0

e−z

z(1+γ)/2
dz

= x(γ−1)/2 cos

(
π(γ − 1)

4

)
Γ((1− γ)/2).

Similarly, for γ ∈ (1, 2), integration by parts and the residue theorem gives∫ ∞

0

cos(ωx)− 1

ω(1+γ)/2
dω = x(γ−1)/2

∫ ∞

0

(cos(ω)− 1)d

(
−1

((γ − 1)/2)ω(γ−1)/2

)
= −x(γ−1)/2

∫ ∞

0

sin(w)

(γ − 1)/2ω(γ−1)/2
dω

= −x(γ−1)/2 2

γ − 1

∫ ∞

0

im

(
eiw

ω(γ−1)/2

)
dω

= −x(γ−1)/2 2

γ − 1
im
(
ie−

π
2
(γ−1)/2

) ∫ ∞

0

e−z

z(γ−1)/2
dz

= −x(γ−1)/2 2

γ − 1
cos

(
π(γ − 1)

4

)
Γ(1− (γ − 1)/2)

= x(γ−1)/2 cos

(
π(γ − 1)

4

)
Γ((1− γ)/2).

Lemma D.1.6. Let ϕ be the probability density function of N (0, σId) and write ϕ̂ for its
Fourier transform. Then, for any β ≥ 1,

∥ϕ̂(ω)∥ω∥β∥22 =
πd/2

Γ(d/2)σ2β+d
Γ

(
2β + d

2

)
≤ 5πd/2

Γ(d/2)σ2β+d

(
2β + d

2e

) 2β+d−1
2

.

Proof. It is well known that ϕ̂(ω) = e−
σ2

2
∥ω∥2 . The claimed equality then follows from the

formula for the 2β’th moment of the Gaussian distribution with mean 0 and variance 1/(2σ2).
The inequality follows by Lemma D.1.7.

Lemma D.1.7 (Properties of the gamma function). For all x > 1 the inequality Γ(x) ≤
5(x/e)x−1/2 holds.
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Proof. In [148] authors showed that log Γ(x) ≤ (x− 1
2
) log(x)−x+ 1

2
log(2π)+1 for all x ≥ 1,

from which the second claim follows as exp(1
2
log(2π) + 1/2) < 5.

Lemma D.1.8. Let b ≥ 1 and |a| < b. Then∫ r

0

xa| sin(x)|bdx = O(ra+b)

as r →∞, where we hide constants depending on a, b.

Proof. Since we are only interested in the asymptotic behaviour as r →∞, assume without
loss of generality that r ≥ 1. Then, we have∫ r

0

xa| sin(x)|bdx =

∫ 1

0

xa| sin(x)|bdx︸ ︷︷ ︸
I

+

∫ r

1

xa| sin(x)|bdx︸ ︷︷ ︸
II

.

Using the inequality | sin(x)| ≤ x, we can bound the first term as

I ≤
∫ 1

0

xa+bdx =
1

a+ b+ 1
≤ 1 = O(ra+b),

since a+ b > 0. For the second term, we obtain

II ≤
∫ r

1

xadx =

{
ra+1−1
a+1

if a ̸= −1
log(r) if a = −1

}
= O(ra+b),

where the last step uses a+ b > 0 and b ≥ 1.

Lemma D.1.9. Let a, b, c ∈ R with b > 0 be constants. For all large enough r one has∫ ∞

r

xa exp

(
− bx

log2(x+ 2)

)
dx < r−c.

Proof. Assume, without loss of generality, that c ≥ 0. For all large enough x one has

exp

(
− bx

log2(x+ 2)

)
< x−a−c−2.

Therefore, for large enough r,∫ ∞

r

xa exp

(
− bx

log2(x+ 2)

)
dx <

∫ ∞

r

x−c−2dx ≍ r−c−1 < r−c.

Lemma D.1.10. Let Jν be the Bessel function of the first kind of order ν.
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1. For all x ∈ Rd, ∫
Rd

ei⟨x,v⟩dσ(v) = (2π)d/2∥x∥1−d/2Jd/2−1(∥x∥).

2. For any ν ∈ R, as x→∞

Jν(x) =

√
2

πx
cos
(
x− νπ

2
− π

4

)
+O(x−3/2). (D.1.1)

3. For all x ∈ Rd, ∫
Bd(0,1)

ei⟨x,w⟩dw =

(
2π

∥x∥

)d/2
Jd/2(∥x∥).

Proof. For Item 1 set r = ∥x∥ and s = (2π)−1 in the calculation on page 154 of [186].
For Item 2 see [203, Eq. (1) in Section 7.21].
For Item 3, we can compute∫

∥w∥≤1

ei⟨x,w⟩dw =

∫ 1

−1

ei∥x∥w1

∫
w2

2+···+w2
d≤1−w2

1

dw2 . . . dwddw1

=
π(d−1)/2

Γ(d+1
2
)

∫ 1

−1

ei∥x∥w1(1− w2
1)

(d−1)/2dw1. (D.1.2)

Recall from [203, Section 3.1] the definition of the Bessel function of the first kind as

Jν(x) =
(x/2)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ ∞

0

cos(x cos(θ)) sin2ν(θ)dθ

valid for ν > −1/2; the above is also known as the Poisson representation. Changing variables
to u = cos(θ), we see that it is equal to

Jν(x) =
(x/2)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ 1

−1

eixu(1− u2)ν−1/2du. (D.1.3)

Comparing (D.1.3) with (D.1.2) concludes the proof.

Lemma D.1.11. There exists a radial function h0 ∈ L2(Rd) such that

supp(h0) ⊆ B(0, 1),

|ĥ0(w)| ≤ C exp

(
− c∥w∥
log(∥w∥+ 2)2

)
for all w ∈ Rd,

|ĥ0(w)| ≥
1

2
for all ∥w∥ ≤ rmin,

where C, c, rmin > 0.

Proof. Apply Theorem 1.4 in [47] using the spherically symmetric weight function u : Rd →
R≤0 defined by

u(w) = u(∥w∥) = − ∥w∥
log(∥w∥+ 2)2

(
(∥w∥ − 2)+
∥w∥+ 2

)4

,

where (a)+ := max(a, 0) for a ∈ R.
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D.2 Proof of Proposition 5.2.5

For v ∈ Sd−1 and b ∈ R let θv(x) = ⟨v, x⟩ and write ηv =.. θv#(µ− ν) for the pushforward of
the measure µ− ν through the map θv. To start with, we notice that∫

Sd−1

∫
R

[
Eψγ(⟨X, v⟩ − b)− Eψγ(⟨Y, v⟩ − b)

]2
dbdσ(v)

=

∫
Sd−1

∫
R

(∫
R
ψγ(x− b)dηv(x)

)2

dbdσ(v),

(D.2.1)

For each v ∈ Sd−1, the measure ηv has at most countably many atoms, therefore b 7→ ηv({b}) =
0 Leb-almost everywhere. Then, by Tonelli’s theorem we can conclude that ηv({b}) = 0
for σ ⊗ Leb-almost every (v, b), thus going forward we can focus on the case x ≠ b. By
Lemma D.1.5, and writing Aϵ = [ϵ, 1/ϵ] for ϵ > 0, we have

∫
R
ψγ(x− b)dηv(x) = Cψγ

∫
R
lim
ϵ→0

∫
Aϵ



sin(ω(x− b))
ω

if γ = 1

cos(ω(x− b))
ω(1+γ)/2

if γ ∈ (0, 1)

cos(ω(x− b))− 1

ω(1+γ)/2
if γ ∈ (1, 2)


dωdηv(x).

Note that in the γ = 1 case we implicitly used that
∫

dηv(x) = 0. To exchange the integral
over x and the limit over ϵ, notice that for any ϵ > 0 and x ̸= b ∈ R,∣∣∣∣∣

∫ 1/ϵ

ϵ

sin(ω(x− b))
ω

dω

∣∣∣∣∣ ≤ Bγ if γ = 1,∣∣∣∣∣
∫ 1/ϵ

ϵ

cos(ω(x− b))
ω(1+γ)/2

dω

∣∣∣∣∣ ≤ Bγ|x− b|(γ−1)/2 if γ ∈ (0, 1),∣∣∣∣∣
∫ 1/ϵ

ϵ

cos(ω(x− b))− 1

ω(1+γ)/2
dω

∣∣∣∣∣ ≤ Bγ|x− b|(γ−1)/2 if γ ∈ (1, 2).

where Bγ < ∞ depends only on γ and is defined in Lemma D.1.4. We now show that∫
R |x − b|

(γ−1)/2d|ηv|(x) < ∞ for σ ⊗ Leb-almost every b, v. To this end, let S = {(b, v) ∈
R × Sd−1 :

∫
R |x − b|

(γ−1)/2d|ηv|(x) = ∞} and assume for contradiction (σ ⊗ Leb)(S) > 0.
Then 1([−B,B]×Sd−1)∩S ↑ 1S as B →∞, and thus by the monotone convergence theorem there
exists a finite B such that Leb(([−B,B]× Sd−1) ∩ S) > 0. However, by Tonelli’s theorem we

237



have ∫ B

−B

(∫
R
|x− b|(γ−1)/2d|ηv|(x)

)2

db ≤
∫ B

−B

∫
R
|x− b|γ−1d|ηv|(x)db

≤ 2

∫
R

∫ B+|x|

0

bγ−1dbd|ηv|(x)

≲
∫

R
(B + |x|)γd|ηv|(x)

≲ Bγ + EX∼µ [|⟨v,X⟩|γ] + EY∼ν [|⟨v, Y ⟩|γ]
≤ Bγ +Mγ(µ+ ν),

which, after integration over v ∈ Sd−1, leads to a contradiction if Mγ(µ+ ν) <∞. Continuing
under the assumption Mγ(µ+ ν) <∞, we can apply the dominated convergence theorem to
obtain

∫
R
ψγ(x− b)dηv(x) = Cψγ lim

ϵ→0

∫
R

∫
Aϵ



sin(ω(x− b))
ω

if γ = 1

cos(ω(x− b))
ω(1+γ)/2

if γ ∈ (0, 1)

cos(ω(x− b))− 1

ω(1+γ)/2
if γ ∈ (1, 2)


dωdηv(x).

Then by Fubini’s theorem, we exchange the order of integration to get

∫
R
ψγ(x− b)dηv(x) = Cψγ lim

ϵ→0

∫
Aϵ

∫
R



sin(ω(x− b))
ω

if γ = 1

cos(ω(x− b))
ω(1+γ)/2

if γ ∈ (0, 1)

cos(ω(x− b))− 1

ω(1+γ)/2
if γ ∈ (1, 2)


dηv(x)dω.

Notice that
∫

R e
−iωxdηv(x) = η̂v(ω), η̂v(ω) = η̂v(−ω) and η̂v(0) = 0,∫

R
ψγ(x− b)dηv(x) = Cψγ lim

ϵ→0

∫
Aϵ

1

ω(1+γ)/2

{
im(e−iωbη̂v(ω)) if γ = 1

ℜ(e−iωbη̂v(ω)) if γ ̸= 1

}
dω

= Cψγ lim
ϵ→0

 im
(
Ψ̂γ,v,ϵ(b)

)
if γ = 1

ℜ
(
Ψ̂γ,v,ϵ(b)

)
if γ ̸= 1.

where we write

Ψγ,v,ϵ(ω) =
η̂v(ω)

ω(1+γ)/2
1{ω ∈ Aϵ}.

Notice that Ψγ,v,ϵ is bounded and compactly supported and thus lies in Lp(R) for any p, and
so in particular

Ψγ,v,ϵ ∈ L1(R) ∩ L2(R),
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which ensures that
Ψ̂γ,v,ϵ ∈ L∞(R) ∩ L2(R).

Finally, let us write

Ψγ,v(ω) = lim
ϵ→0

Ψγ,v,ϵ(ω) =
η̂v(ω)

ω(1+γ)/2
1{ω > 0}

for every ω. We now show that Ψγ,v ∈ L2(R) provided Mγ(µ + ν) < ∞, which is assumed
throughout. Let (X, Y ) ∼ µ⊗ ν. We have∫

R
|Ψγ,v(ω)|2dω =

∫ ∞

0

|η̂v(ω)|2

w1+γ
dw

=

∫ ∞

0

(E[cos⟨ω,X⟩ − cos⟨ω, Y ⟩])2 + (E[sin⟨ω,X⟩ − sin⟨ω, Y ⟩])2

ω1+γ
dω.

Using the inequality (a− b)2 ≤ 2(a− 1)2 + (b− 1)2, ∀ a, b ∈ R for the cos term, the inequality
(a + b) ≤ 2a2 + 2b2, ∀ a, b ∈ R for the sin term, and applying Jensen’s inequality to take
the expectation outside, we can conclude that Ψγ,v ∈ L2(R) by Lemma D.1.3. Thus, by the
dominated convergence theorem

∥Ψγ,v,ϵ −Ψγ,v∥2 → 0

as ϵ→ 0. Then, by Parseval’s identity∥∥∥Ψ̂γ,v,ϵ − Ψ̂γ,v

∥∥∥
2
→ 0 (D.2.2)

as ϵ→ 0. It is well know that convergence in L2(R) implies that there exists a subsequence
{ϵn}∞n=1 with ϵn → 0 and Ψ̂γ,v,ϵ → Ψ̂γ,v almost everywhere.2 Therefore, by passing to this
subsequence, it follows that

∫
R
ψγ(x− b)dηv(x) = Cψγ

 im
(
Ψ̂γ,v(b)

)
if γ = 1

ℜ
(
Ψ̂γ,v(b)

)
if γ ̸= 1

for σ ⊗ Leb-almost every (b, v) ∈ R× Sd−1. Note that since ηv(ω) ∈ R,

ℜ
(
Ψ̂γ,v(b)

)
=

Ψ̂γ,v(b) + Ψ̂γ,v(b)

2

=
1

2

∫ ∞

0

(
η̂v(ω)

ω(1+γ)/2
eibω +

η̂v(−ω)
ω(1+γ)/2

e−ibω
)

dω

=
1

2

∫ ∞

−∞

η̂v(ω) sign(ω)

|ω|(1+γ)/2
eibωdω

= F
[
η̂v(ω) sign(ω)

2|ω|(1+γ)/2

]
(−b), (D.2.3)

2We could also conclude this by Carleson’s theorem.

239



im
(
Ψ̂γ,v(b)

)
=

Ψ̂γ,v(b)− Ψ̂γ,v(b)

2i

=
1

2i

∫ ∞

0

(
η̂v(ω)

ω(1+γ)/2
e−ibω − η̂v(−ω)

ω(1+γ)/2
eibω

)
dω

=
1

2i

∫ ∞

−∞

η̂v(ω)

|ω|(1+γ)/2
sign(ω)eibωdω

= F

[
η̂v(ω) sign(ω)

2i|ω|(1+γ)/2

]
(−b). (D.2.4)

Plugging (D.2.3) and (D.2.4) into (D.2.1), by Parseval’s identity (implicitly using that
Ψγ,v ∈ L2(R)), we obtain∫

Sd−1

∫
R

[
Eψγ(⟨X, v⟩ − b)− Eψγ(⟨Y, v⟩ − b)

]2
dbdσ(v)

=

∫
Sd−1

∫
R

(∫
R
ψγ(x− b)dηv(x)

)2

dbdσ(v),

= 2πC2
ψγ

∫
Sd−1

∫
R

|η̂v(ω)|2

4|ω|1+γ
dwdσ(v)

= πC2
ψγ

∫
Sd−1

∫ ∞

0

|η̂v(ω)|2

|ω|1+γ
dwdσ(v)

= πC2
ψγ

∫
Rd

|F [µ− ν](ω)|2

∥ω∥d+γ
dω,

where the last step uses a polar change of variable. The result follows after comparing with
Proposition 5.2.3.

D.3 Proof of Proposition 5.2.6

Let S(Rd) be the Schwartz space and S ′(Rd) be the space of all tempered distributions on Rd.
Let τ = µ− ν and s = (d+ γ)/2. First, note that∫

Ks(x)dx
(1 + ∥x∥2)d

<∞,

so by [138, Theorem 0.10] we have Ks ∈ S ′(Rd). By [138, Theorem 0.12], since Ks ∈ S ′(Rd)
and τ has compact support,

Îsf = K̂s ∗ τ = K̂sτ̂ .

By Plancherel’s identity,

(2π)
d
2∥Isτ∥2 = ∥Îsτ∥2 = ∥K̂sτ̂∥2 =

1√
Fγ(d)

Eγ(µ, ν),

where the last equality follows from Proposition 5.2.3.
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D.4 Proof of Theorem 5.3.3 and Proposition 5.3.4

In this section we prove both Proposition 5.3.3 and Proposition 5.3.4. To do so, we give two
constructions. The first one, presented in Appendix D.4.1, only applies in one dimension
and gives optimal results. The second construction is given in Appendix D.4.2 applies in all
dimensions, but loses a polylogarithmic factor.

Notation: Abusing notation, in what follows we write Eγ(f, g) and dH(f, g) even when
f and g are not necessarily probability measures or probability densities. We will also
write ∥f∥t,2 = ∥∥ · ∥tf̂∥2 for potentially negative exponents t ∈ R. Note that Eγ(f, 0) =√
Fγ(d)∥f̂∥− d+γ

2
,2.

D.4.1 The Case d = 1

The Lemma below constructs the difference of two densities that has favorable properties.

Lemma D.4.1. Let f(x) = 1{|x| ≤ π} sin(rx) with r ∈ Z and write fβ = f ∗ · · · ∗ f for f
convolved with itself β − 1 times, i.e. f1 = f, f2 = f ∗ f and so on. Fix an integer β ≥ 1 and
let |t| < β. We have

∥fβ∥t,2 ≍ rt, ∥fβ∥1 ≍ 1, and dH(fβ, 0) ≍
1

r
, (D.4.1)

as r →∞ where the constants may depend on β, t.

Proof. The intuition for the estimates (D.4.1) is simple: most of the energy of f (and hence
fβ) is at frequencies around |ω| ≈ r and thus differentiating t times boosts the L2-energy by
rt. A simple computation shows f̂(ω) = c (−1)r

i
r

ω2−r2 sin(ωπ). Note that because r ∈ Z we
have ∥f̂∥ ≍ ∥f̂β∥ ≍ 1.

Estimating ∥fβ∥t,2. By definition we have

∥fβ∥2t,2 ≍
∫ ∞

0

|f̂(ω)|2βω2t dω ≍
∫ ∞

0

r2β

(ω2 − r2)2β
ω2t sin2β(ωπ)dω.

We decompose the integral into three regimes:

1. ω < r/2: here (ω2 − r2) ≍ r2 and thus∫ r/2

0

(. . . ) ≍ r−2β

∫ r/2

0

ω2t sin2β(ωπ) ≲ r2t

by Lemma D.1.8.

2. ω > 3r/2: here (ω2 − r2) ≍ ω2 and thus∫ ∞

3r/2

(. . . ) ≍ r2β
∫ ∞

3r/2

sin2β(ωπ)ω2t

ω4β
≍ r2βr2t−4β+1 = r1+2t−2β ≪ r2t.
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3. ω ∈ [r/2, 3r/2]: here (ω2−r2) ≍ yr, where y = ω−r. Note also sin(ωπ) = sin(rπ+yπ) =
(−1)r sin(yπ), and ω ≍ r. Thus∫ 3r/2

r/2

(. . . )dω =

∫ r/2

−r/2
(. . . )dy ≍ r2β

∫ r/2

−r/2
sin2β(yπ)r2t(yr)2βdy

≍ r2t
∫

R

(
sin(yπ)

y

)2β

dy ≍ r2t.

where the last inequality follows by that the integrand is bounded at 0 and has
y−2β ≲ y−2 tail.

Estimating ∥fβ∥1. Follows from ∥fβ∥1 ≲ ∥fβ∥2 ≍ 1 by the Cauchy-Schwartz inequality
and ∥fβ∥1 ≥ ∥f̂β∥∞ ≍ 1 by the Hausdorff–Young inequality.

Estimating dH . We get dH(fβ, 0) ≳ E1(fβ, 0) ≍ ∥fβ∥−1,2 ≍ 1
r

from the first estimate. For
the upper bound, note that ̂sign(x) = 2

iω
and dH(fβ, 0) = supb

1
2

∫
fβ(x) sign(x− b)dx, so by

Plancherel’s identity,

dH(fβ, 0) ≲ sup
b

∫ ∣∣∣∣f̂β(ω)eibωω
∣∣∣∣ dω ≲

∫ ∞

0

rβ

(ω2 − r2)β
ω−1 sinβ(ωπ).

The fact that the above is O(1/r) follows analogously to the proof of our bound on ∥fβ∥t,2 so
we omit it. This concludes our proof.

Proof of Proposition 5.3.3 and Proposition 5.3.4 for d = 1. We now turn to showing tight-
ness in one dimension, utilizing the density difference constructed in Lemma D.4.1. Given
a value of the smoothness β > 0, set β = ⌈β⌉ + 1 and let fβ be as in Lemma D.4.1 with
r = ϵ−1/β for some ϵ ∈ (0, 1). Let p0 be a smooth, compactly supported density with
infx∈[−π,π] p0(x) > 0. Define

pϵ(x) = p0(x) + ϵfβ(βx)/2 and qϵ(x) = p0(x)− ϵfβ(βx)/2.

Clearly both pϵ, qϵ are compactly supported probability densities for sufficiently small ϵ, since
∥fβ∥∞ < ∞ and is supported on [−βπ, βπ]. By Lemma D.4.1, for each γ ∈ (0, 2) the two
densities satisfy

∥pϵ−qϵ∥1 ≍ ϵ, ∥pϵ∥β,2 ≍ ∥qϵ∥β,2 ≍ 1, Eγ(pϵ, qϵ) ≍ ∥pϵ−qϵ∥−(1+γ)/2,2 ≍ ϵ
2β+γ+1

2β , dH(pϵ, qϵ) ≍ ϵ
β+1
β .

This proves both Proposition 5.3.3 and Proposition 5.3.4 for d = 1.

D.4.2 The Case d > 1

We move on to the case of general dimension. In Appendix D.4.2 we outline our approach.
Then, in Appendix D.4.2 we give full details of our construction, following the argument
outlined in the prior section.
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Overview

For the discussions below, we will assume that the ambient dimension d ≥ 2. Our construction
here is less straightforward than for d = 1 in Appendix D.4.1 but shares the same basic
idea. Recall that the basic premise is that we want to saturate the Hölder’s inequality
in Equation (5.3.3), which requires the density difference f = µ− ν to have Fourier transform
be (almost) supported on a sphere. For d = 1 we took f to be a pure sinusoid. However, of
course such f is not compactly supported and that is why we multiplied the sinusoid by a
rectangle (and then convolved many times to gain smoothness), which served as a mollifier.

For d > 1 let us attempt to follow the same strategy and take

fr(x) = gr(x)h(x) ,

where r > 0 is a parameter, h is some compactly supported smooth mollifier and gr(x) is
defined implicitly via

ĝr(ω) = r(1−d)/2δ(∥ω∥ − r),

where here and below we denote, a bit informally, by δ(∥ · ∥− r) a distribution that integrates
any smooth compactly supported function ϕ as follows:∫

Rd

ϕ(ω)δ(∥ω∥ − r)dω =.. rd−1

∫
Rd

ϕ(rω)dσ(ω) =
2πd/2rd−1

Γ(d
2
)

Eϕ(rX) [ ] ,

where σ is the unnormalized surface measure of Sd−1 and X is a random vector uniformly
distributed on Sd−1. Explicit computation shows

gr(x) = F−1[ĝr](x) =

√
r

(2π)drd/2

∫
Rd

ei⟨ω,x⟩δ(∥ω∥ − r)dω

=

√
r

(2π)d/2
∥x∥1−d/2 Jd/2−1(∥rx∥),

where Jν denotes Bessel functions of the first kind of order ν. Notice that g is spherically
symmetric and real-valued (some further properties of it are collected below in Lemma D.1.10).

Note that |gr(x)| = O(1) as r → ∞ for any fixed x ̸= 0 (Lemma D.1.10), while at the
origin we have |gr(0)| = Ω(r(d−1)/2), which follows from the series expansion of the Bessel
function given in for example [203, Section 3.1-3.11]. This causes an issue for d > 1, as gr
is too large at the origin as r →∞ compared to its tails, which makes it difficult to use it
as the difference between two probability densities. Hence, we choose our mollifier h to be
supported on an annulus instead of on a ball. In addition, it will also be convenient for it to
have a super-polynomially decaying Fourier transform, i.e.

|ĥ(w)| ≤ H(∥w∥) ≜ C exp

(
− c∥w∥
log(∥w∥+ 2)2

)
∀w ∈ Rd .

The existence of the desired function h is proven Lemma D.4.2.
Note that all of the Fourier energy of gr lies at frequencies ∥ω∥ = r by construction.

However, after multiplying by h the energy spills over to adjacent frequencies as well and we
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need to estimate the amount of the spill. Due to the fast decay of ĥ we will show, roughly,
the following estimates on the behavior of f̂r:

|f̂r(ω)| ≲ Õ(r(1−d)/2)1{∥ω − r∥ ≤ log2(r)}+ r(d−1)/2H(max(∥ω∥ − r, log2 r)), and

|f̂r(ω)| ≲ r(d−1)/2∥ω∥

as r →∞. Note that the first bound above is super-polynomially decaying in both ∥ω∥ and
r, which allows us to show that

∥fr∥t,2 ≤ Õ(rt)

for t > −d+2
2

, recalling the notation ∥f∥t,2 = ∥∥ · ∥tf̂∥2. A direct calculation will also show

∥fr∥1 ≍ ∥fr∥∞ ≍ ∥fr∥2 ≍ 1 .

For a desired total-variation separation ϵ, we will set µ − ν = ϵfr and choose r = ϵ−1/β to
ensure that ϵ∥fr∥β,2 = Õ(1). For the energy distance between µ and ν these choices yield

Eγ(µ, ν) ≍ ∥ϵfϵ−1/β∥− d+γ
2
,2 = Õ(ϵ1+

d+γ
2β ) = Õ(TV

d+2β+γ
2β ) ,

as required.
We now proceed to rigorous details.

The construction

First, we must construct the mollifier h with the properties outlined in Appendix D.4.2.
Recall that a function f is radial (also known as spherically symmetric) if its value at x ∈ Rd

depends only on ∥x∥. In other words, f(x) = f(y) holds for all x, y ∈ Rd with ∥x∥ = ∥y∥.

Lemma D.4.2. There exists a compactly supported radial Schwartz function h, and a positive
sequence {rn}∞n=1 satisfying rn = Θ(n), such that

supp(h) ⊂ B(0, 1), (D.4.2)
supp(h) ⊂ Rd \ B(0, r0), (D.4.3)

|ĥ(w)| ≤ C exp

(
− c∥w∥
log(∥w∥+ 2)2

)
for all w ∈ Rd, and (D.4.4)

ĥ(rnu) = 0 for all u ∈ Sd−1, (D.4.5)

for universal constants C, c, r0 > 0.

Proof. First, let h0 be as constructed in Lemma D.1.11, which already satisfies Equa-
tion (D.4.2) and Equation (D.4.4). To address the other two requirements, we modify
h0 by convolving it with two additional terms:

h(x) := (A0(·) ∗ h0(8·) ∗ ρ0(·))(x),

where A0 and ρ0 aim to address Equation (D.4.3) and Equation (D.4.5), respectively, and are
defined as

A0(x) = exp

(
− 1

1/64− (∥x∥ − 1/2)2

)
1
{
∥x∥ ∈ (3/8, 5/8)

}
, ρ0(x) = 1{∥x∥ < 1/8}.
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Before proceeding, note that clearly h is a radial Schwartz function. Let us now verify
that h indeed satisfies the four requirements. Note that A0 is an “annulus” supported
on B(0, 5/8)\B(0, 3/8), and both h0(8·) and ρ0 are supported on B(0, 1/8). Therefore,
supp(h) ⊂ B(0, 7/8)\B(0, 1/8), which implies Equations (D.4.2) and (D.4.3). We now turn to
the other two conditions in Fourier space. Note that

ĥ(w) = (1/8)d · Â0(w) · ĥ0(w/8) · ρ̂0(w).

From Item 3 of Lemma D.1.10 we know that

F [1{∥ · ∥ < 1}](w) =
(

2π

∥w∥

) d
2

J d
2
(∥w∥).

Hence, by Item 2 of Lemma D.1.10, the function ρ̂0(w) = (1/8)dF [1{∥ · ∥ < 1}](w/8) has
infinitely many zeros near the values of ∥w∥ = 8(2nπ + (d+1)π

4
) for sufficiently large n ∈ Z+,

which implies Equation (D.4.5).
Finally, for Equation (D.4.4), note that since both A0 and ρ0 are Schwartz functions, so

are their Fourier transforms Â0 and ρ̂0 so that

|ĥ(w)| ≤ (1/8)d∥Â0∥∞∥ρ̂0∥∞|ĥ0(w/8)| ≲ |ĥ0(w/8)|,

concluding the proof.

Let h be as constructed in Lemma D.4.2, and define

fr = grh (D.4.6)

for r > 0 and ĝ(ω) =.. r(1−d)/2δ(∥ω∥ − r). Recall from the overview of our construction
that we gave in Appendix D.4.2 that fr is our proposed density difference which we claim
(approximately) saturates Hölder’s inequality in (5.3.3). The next Lemma records the
properties of fr which will enable us to complete our proof.

Lemma D.4.3. Let fr be as in (D.4.6) and let {rn}∞n=1 be the sequence constructed in
Lemma D.4.2. The following hold.

(i) For all n ∈ N we have∫
Rd

frn(x)dx = 0 and supp(frn) ⊂ B(0, 1).

(ii) We have
∥frn∥∞ ≍ ∥frn∥2 ≍ ∥frn∥1 ≍ 1,

hiding constants independent of n.

(iii) For any t > −d+2
2

we have

∥frn∥t,2 = O(rtn log
d(rn))

as n→∞, hiding constants independent of n.
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(iv) Recall the definition of ψγ from (5.2.6). For any γ ∈ (0, 2) we have

sup
v∈Sd−1,b∈R

∣∣∣∣∫
Rd

ψγ(⟨x, v⟩ − b)frn(x)dx
∣∣∣∣ = O(r−(d+γ)/2

n log(rn)
d)

hiding constants independent of n.

Proof. Let us drop the dependence of rn to simplify notation.
Showing (i). Note that

∫
Rd fr(x)dx = f̂r(0). Then, f̂r(0) = 0 follows from the con-

struction of h and gr. Indeed, ĝr is supported on rSd−1 while ĥ|rSd−1 ≡ 0. The fact that
supp(fr) ⊂ B(0, 1) follows from supp(h) ⊂ B(0, 1).

Showing (ii). Since fr has compact support, we immediately have

∥fr∥1 ≲ ∥fr∥2 ≲ ∥fr∥∞.

As h is continuous and supported on the annulus {x : r0 ≤ ∥x∥ ≤ 1} by construction,
it suffices to bound gr on said annulus. Now, for any x with r0 ≤ ∥x∥ ≤ 1, we have by
Lemma D.1.10 that

gr(x) ≲
√
r∥x∥1−d/2 1√

r∥x∥
≲ 1,

which shows that ∥fr∥∞ ≲ 1.
We now turn to lower bounding ∥fr∥1. Recall that h is uniformly continuous and nontrivial,

hence
∫
|h(u∗v)|dσ(v) ̸= 0 for some radius u∗, and thus for all u ∈ (u0, u1) ⊆ (0, 1) for some

constants u0, u1. Using that gr is spherically symmetric, we compute

∥f∥1 =
∫

Rd

|gr(x)||h(x)|dx

=

∫ ∞

0

ud−1gr(u, 0, . . . , 0)

∫
h(uv)dσ(v)du

≳
√
r

∫ u1

u0

∣∣Jd/2−1(ru)
∣∣ du ≳ 1,

where the last line follows by (D.1.1) once again.

Showing (iii). Let 0 < s < r, whose precise value will be set later. For convenience, set
Bs = {x ∈ Rd : ∥x∥ ≤ s} and Bc

s = Rd \Bs. Recall that by definition

f̂r(ω) = r(1−d)/2
∫

Rd

ĥ(ω + x)δ(∥x∥ − r)dx

= r(1−d)/2
∫

Rd

(ĥ1Bs)(ω + x)δ(∥x∥ − r)dx︸ ︷︷ ︸
I

+ r(1−d)/2
∫

Rd

(ĥ1Bc
s
)(ω + x)δ(∥x∥ − r)dx︸ ︷︷ ︸
II

.

(D.4.7)
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Let C, c be as in Lemma D.4.2, and H(x) = C exp(−c∥x∥/ log2(∥x∥ + 2)). Note that
∥ĥ∥∞ ≤ C. Therefore, the first term in the decomposition (D.4.7) can be bounded by

|I| ≤ Cr(1−d)/2
∫

Rd

1{∥ω + x∥ ≤ s}δ(∥x∥ − r)dx

= Cr(1−d)/21{∥ω∥ ∈ [r − s, r + s]}
∫

Rd

1{∥ω + x∥ ≤ s}δ(∥x∥ − r)dx

≲ r(1−d)/2sd−1
1{∥ω∥ ∈ [r − s, r + s]}.

The second line uses that if ∥ω∥ ̸∈ [r − s, r + s] then the integral becomes zero. The third
line uses the fact that the surface area of the intersection of Bs with any sphere of any radius
(and the one centered at ω with radius r in particular) is at most O(sd−1).

Moving on to the second term, we have

|II| = r(d−1)/2

∫
|(ĥ1Bc

s
)(ω + ru)|dσ(u) ≲ r(d−1)/2H(max{∥ω∥ − r, s})

using that H : [0,∞) → (0, C] is decreasing and that |ĥ(y)1Bc
s
(y)∥ ≤ H(max{y, s}) for all

y ∈ Rd. Summarizing, we have the pointwise estimate

|f̂r(ω)| ≲ r(1−d)/2sd−1
1{∥ω∥ ∈ [r − s, r + s]}+ r(d−1)/2H(max{∥ω∥ − r, s}) (D.4.8)

for all ω ∈ Rd and 0 < s < r.
We now show that fr is Lipschitz continuous. Recall from the construction of h (Lemma D.4.2)

that h|rnSd−1 ≡ 0. Then, we observe that for any ω ∈ Rd

|f̂r(ω)| = r(d−1)/2

∣∣∣∣∫ ĥ(ω + ru)dσ(u)
∣∣∣∣

= r(d−1)/2

∣∣∣∣∫ {ĥ(ω + ru)− ĥ(ru)}dσ(u)
∣∣∣∣

= r(d−1)/2∥ĥ∥Lip
2πd/2∥ω∥
Γ(d

2
)

≲ r(d−1)/2∥ω∥, (D.4.9)

where we use that ĥ is Schwartz by construction, and thus has finite Lipschitz constant
∥ĥ∥Lip.

With (D.4.8) and (D.4.9) in hand we can proceed to bounding the norm of fr. Let
s = D log(r)2 for a large constant D independent of r, and assume that r is large enough so
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that s < r/2. Also set θ > 0, whose precise value is specified later. We have

∥fr∥2t,2 =

∫
Rd

∥ω∥2t|f̂r(ω)|2dω

(D.4.9)
≲ rd−1

∫
∥ω∥≤r−θ

∥ω∥2t+2dω +

∫
∥ω∥>r−θ

∥ω∥2t|f̂r(ω)|2dω

(D.4.8)
≲ rd−1−θ(2t+d)

+ r1−d log(r)2(d−1)

∫
∥ω∥>r−θ

∥ω∥2t1{∥ω∥ ∈ [r − s, r + s]}dω

+ rd−1

∫
∥ω∥>r−θ

∥ω∥2tH2(max{∥ω∥ − r, s})dω

≲ rd−1−θ(2t+d) + r2t log(r)2d−1 + rd−1

∫ ∞

r−θ

u2t+d−1H2(max{u− r, s})du.

Note that in the derivation above we changed to polar coordinates freely, and that in the
second inequality we used the assumption t > −d/2 − 1. Setting θ to any positive value
greater than (d− 1− 2t)/(2t+ d) ensures that the first term in the final line is O(r2t). As for
the integral term, we can bound it by

≲ rd−1H2(s)

∫ 2r

r−θ

u2t+d−1du+ rd−1

∫ ∞

2r

H2(u/2)du
Lemma D.1.9

≲ poly(r)×H2(s) + r2t.

By taking D large enough (independently of r) in the definition of s = D log2(r) we can make
also the first term poly(r)×H2(s) less than O(r2t), which concludes the proof of (iii).

Showing (iv). The bounds that we develop below are analogous to those given in the
proof of (iii). Fix b ∈ R and v ∈ Sd−1 and define

† :=
∫

Rd

ψγ(⟨v, x⟩ − b)fr(x)dx.

Suppose first that γ ̸= 1. Then, using Lemmas D.1.4 and D.1.5, we know by dominated
convergence that

† =
∫

Rd

lim
ϵ→0

∫ 1/ϵ

ϵ

Cψγ

cos(t(⟨v, x⟩ − b))− 1{γ > 1}
t(1+γ)/2

fr(x)dtdx

= Cψγ lim
ϵ→0

∫ 1/ϵ

ϵ

ℜ
{∫

Rd

eit(⟨v,x⟩−b)fr(x)

t(1+γ)/2
dx

}
dt

= Cψγ lim
ϵ→0

∫ 1/ϵ

ϵ

cos(tb)f̂r(tv)

t(1+γ)/2
dt.

Similarly, for γ = 1 we can compute

† = Cψγ lim
ϵ→0

∫ 1/ϵ

ϵ

sin(−tb)f̂r(tv)
t

dt.
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In either case, we have | † | ≲
∫∞
0
|f̂r(tv)|/t(1+γ)/2dt.

Let s = D log2(r) for large D independent of r as in the proof of (iii), and let θ > 0 whose
precise value is specified later. Assuming that r is large enough so that s < r/2, for any
γ ∈ (0, 2) we have

| † | ≤
∫ r−θ

0

|f̂r(tv)|
t(1+γ)/2

dt+
∫ ∞

r−θ

|f̂r(tv)|
t(1+γ)/2

dt

(D.4.9)
≲ r(d−1)/2

∫ r−θ

0

t(1−γ)/2dt+
∫ ∞

r−θ

|f̂r(tv)|
t(1+γ)/2

dt

(D.4.8)
≲ r

d−1
2

−θ 3−γ
2

+

∫ ∞

r−θ

1

t(1+γ)/2
(
r(1−d)/2sd−1

1{t ∈ [r − s, r + s]}+ r(d−1)/2H(max{t− r, s})
)
dt

≲ r
d−1
2

−θ 3−γ
2 + r−(d+γ)/2 logd(r) +H(s)r(d−1)/2

∫ 2r

r−θ

dt
t(1+γ)/2

+

∫ ∞

2r

H(t/2)

t(1+γ)/2
dt

Lemma D.1.9
≲ r

d−1
2

−θ 3−γ
2 + r−(d+γ)/2 logd(r) +H(s)× poly(r) + r−100d, (D.4.10)

Set θ to any value greater than (2d + γ − 1)/(3 − γ), which ensures that the first term in
(D.4.10) is O(r−(d+γ)/2). By taking D large enough in the definition of s = D log2(r), we can
make H(s) smaller than any polynomial in r, which ensures that the third term in (D.4.10)
is also O(r−(d+γ)/2). We thus obtain the final bound | † | ≲ r−(d+γ)/2 logd(r), concluding our
proof.

Proof of Theorem 5.3.3 and Proposition 5.3.4 for d > 1. Using the functions {frn}∞n=1 we
constructed in Lemma D.4.3, we are ready to prove Propositions 5.3.3 and 5.3.4 for d > 1.

Let p0 be a compactly supported probability density with inf∥x∥≤1 p0(x) > 0. Fix the
smoothness β > 0. Given any desired total variation separation ϵ ∈ (0, 1), we can find n0 ∈ N
such that ϵ−1/β ≍ rn0 , where we hide an ϵ-independent multiplicative constant. Define

pϵ = p0 + ϵfrn0
/2 and qϵ = p0 − ϵfrn0

/2.

Clearly pϵ and qϵ are compactly supported probability densities for all small enough ϵ.
Moreover, by Lemma D.4.3 they satisfy

∥pϵ − qϵ∥1 ≍ ϵ and ∥pϵ∥β,2 ≍ ∥qϵ∥β,2 ≍ 1 and

Eγ(pϵ, qϵ) ≲ ϵ
2β+d+γ

2β log(1/ϵ)d and dH(pϵ, qϵ) ≲ ϵ
2β+d+1

2β log(1/ϵ)d

for all fixed γ ∈ (0, 2). This concludes our proof.

D.5 Proof of Proposition 5.5.1

Proof. Note that dH = Td,0. Let pϵ, qϵ be the compactly supported densities constructed in
the proof of Proposition 5.3.3 in the general dimensional case. Then by construction

ϵ ≍ TV(pϵ, qϵ) ≍ ∥pϵ−qϵ∥2 and ∥pϵ∥β,2+∥qϵ∥β,2 ≲ 1 and dH(pϵ, qϵ) ≲ ϵ
2β+d+1

β log(1/ϵ)d.
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Write pϵ,n and qϵ,n for the empirical measures of pϵ and qϵ respectively, based on n i.i.d.
observations each. By the triangle inequality we have

EdH(pϵ,n, qϵ,n) ≤ EdH(pϵ,n, pϵ) + dH(pϵ, qϵ) + EdH(qϵ, qϵ,n)
Lemma 5.4.3

≲ 1/
√
n+ ϵ

2β+d+1
2β log(1/ϵ)d.

This completes the proof.
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