
Analysis and Optimization of Networks in Overload
by

Xinyu Wu
B.E., Shanghai Jiao Tong University (2018)

M.S., Massachusetts Institute of Technology (2020)
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024
© Xinyu Wu, MMXXIV. All rights reserved.

This permission legend MUST follow: The author hereby grants to MIT a nonexclusive,

worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright,

including to reproduce, preserve, distribute and publicly display copies of the thesis, or

release the thesis under an open-access license.

Author .
Department of Aeronautics and Astronautics

February 29, 2024
Certified by. .

Eytan Modiano
Richard C. Maclaurin Professor of Aeronautics and Astronautics

Thesis Supervisor
Certified by. .

Saurabh Amin
Professor of Civil and Environmental Engineering

Thesis Committee Member
Certified by. .

Gil Zussman
Professor of Electrical Engineering, Columbia University

Thesis Committee Member
Accepted by .

Jonathan How
Richard C. Maclaurin Professor in Aeronautics and Astronautics

Chairman, Graduate Program Committee

2

Analysis and Optimization of Networks in Overload

by

Xinyu Wu

Submitted to the Department of Aeronautics and Astronautics
on February 29, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Network overload occurs when the demand of network users exceeds the network
capacity. The increasing gap between the growth of network demand and capacity,
resulting from the surge in data-intensive machine learning applications and the
slowdown in Moore’s law, led to more frequent and severe occurrences of network
overload in recent years. Severe overload induces heavy congestion with high delay
and packet loss, impairing network performance. In this thesis, we develop new models
and methods to gain in-depth understanding of network overload in two aspects: (i)
designing network control policies to optimize network performance; (ii) quantifying
the capability of malicious routing attacks to induce network overload.

We first investigate network policy design to optimize multiple network
performance metrics including delay, fairness, and stability. We leverage a
deterministic fluid queueing model which regards packets as continuous flows to
overcome the bottlenecks of the classic stochastic models with discrete packets in
order to optimize the three metrics. (i) Delay: We establish the sets of transmission
policies that can minimize the average and maximum queueing delay in both
single-hop and multi-stage switching networks explicitly. We term the policies
rate-proportional policies since they require an identical ratio between the ingress
and egress rates of different nodes at the same layer of the network. We further
generalize them to queue-proportional policies, which asymptotically minimizes
queueing delay based on the real-time queue backlogs agnostic of packet arrival rates.
(ii) Fairness: We identify that the existing policies that can balance the overload in
networks with unbounded node buffers may not work given bounded buffer sizes.
We propose a policy that combines Maxweight scheduling and Backpressure routing
which can reach the most balanced queue overload in networks with bounded buffers.
(iii) Stability: We demonstrate that the introduction of bounded node buffers
affects the transmission policies that can guarantee queue stability and avoid queue
overload. We derive an explicit set of transmission policies that can guarantee queue
stability in both single-commodity and multi-commodity networks with bounded
node buffers.

We then quantify the capability of network adversaries to induce network

3

overload via routing attacks, where a subset of nodes is hijacked and the adversary
can manipulate their packet forwarding. We consider two objectives of routing
attacks: no-loss throughput minimization and loss maximization. The first objective
attempts to minimize the network’s throughput that is guaranteed to survive, and
the second objective attempts to maximize the packet loss due to link overflow
given the traffic demand. We start from networks with static routing. We propose
exact algorithms in general multi-hop networks for the first objective, and two
approximation algorithms with multiplicative and additive guarantees in single-hop
networks for the second objective. We then extend our approach to networks with
dynamic routing, where nodes that are not hijacked can optimize their routing
policies to maximize network throughput in response to routing attacks on hijacked
nodes. We show that the two objectives are equivalent in this case, and propose an
algorithm based on dynamic programming with performance guarantee when the
hijacked nodes are in a chain structure or parallel to each other. We demonstrate
the near-optimality of the proposed algorithms through simulations over a wide
range of network settings with either static or dynamic routing control, which
demonstrates their ability to evaluate the potential throughput loss due to overload
under malicious routing, and identify the critical nodes to be protected to reduce the
impact of routing attack.

Thesis Supervisor: Eytan Modiano
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

Thesis Committee Member: Saurabh Amin
Title: Professor of Civil and Environmental Engineering

Thesis Committee Member: Gil Zussman
Title: Professor of Electrical Engineering, Columbia University

4

Acknowledgement

First and foremost, I would like to express my sincere thanks to my advisor Professor

Eytan Modiano for all the help and instructions on my academic career and life

through the past five and a half years. I appreciate the precious experiences in

exploring different research topics and become much clearer on how research should

be done based on our discussion. I am also very thankful for Professor Modiano’s

suggestions when I met obstacles in pushing forward research progress and felt

perplexed on what research topics we should choose. Moreover, I acknowledge much

about the opportunities Professor Modiano gives to me to present our work and get

to know more people in multiple conferences and seminars.

Next, I would like to give my thanks to the other members in my thesis committee:

Professor Saurabh Amin and Gil Zussman. I really appreciate the valuable suggestions

on my research directions and techniques during our meeting, which inspired me to

make progress on the research in this thesis. I would also thank the two thesis readers:

Jun Sun and Dan Wu, who went through my thesis thoroughly and proposed valuable

comments on the thesis structure and technical writing.

I am also grateful to all the team members in our lab CNRG: Jianan Zhang,

Qingkai Liang, Rajat Talak, Igor Kadota, Dan Wu, Vishrant Tripathi, Jerrod

Wigmore, Chirag Rao, Nicholas Jones, Quang Minh Nguyen, Sathwik Chadaga,

Rudrapatna Vallabh Ramakanth, Darin Jeff, and so on. I enjoy very much the times

with you discussing problems, having group meetings, and going hiking and skating.

I am also thankful to all the other professors, friends, and staffs who helped me a

lot in MIT. I remember discussing my first research on power systems with Professor

Marija Ilic, and sharing my idea with Professor Moe Win, where I gained plenty of

5

new insights and ideas. Also I would like to give thanks to all the professors that

taught me courses. For my friends, I really appreciate the help from you and the times

with you, going for meals, hiking, gym, and also sharing the challenges in finding jobs.

I cannot imagine how I can go over the challenges and finally get here without your

supports. Also I sincerely thank all the staffs in MIT AeroAstro Department and

LIDS, for supporting our academic environment from different aspects.

I would also thank the funding sources of my research projects: CNS-1735463 and

CNS-1907905 from National Science Foundation (NSF) grants, HDTRA1-13-1-0021

and HDTRA1-14-1-0058 from Defense Threat Reduction Agency (DTRA) grants.

Finally, I would like to thank my parents and family members. I really appreciate

that all of you provide me with sufficient food and education, support me when I am

down, and give me the chance to decide my own career path and develop my interests.

Thanks very much!

6

Contents

1 Introduction 23

1.1 Literature Review . 25

1.1.1 Delay . 25

1.1.2 Overload Balancing . 26

1.1.3 Network Stability . 27

1.1.4 Network Attacks . 28

1.2 Contributions . 30

1.2.1 Chapter 2: Queueing Delay Minimization in Overloaded Networks 30

1.2.2 Chapter 3: Overload Balancing in Networks with Bounded Buffers 31

1.2.3 Chapter 4: Queue Stability in Networks with Bounded Node

Buffers . 32

1.2.4 Chapter 5: Routing Attack on Network Overload with Static

Routing . 32

1.2.5 Chapter 6: Routing Attack on Network Overload with Dynamic

Routing . 33

2 Queueing Delay Minimization in Overloaded Networks 35

2.1 Motivating Example . 36

2.2 Models, Definitions and Problem Formulation 37

2.2.1 Network Models: Topology and Dynamics 38

2.2.2 Network Overload . 41

2.2.3 Queueing Delay Characterization 42

2.2.4 Problem Formulation . 44

7

2.3 Static Min-Delay Policy Design . 46

2.3.1 𝑁 × 1 Networks . 46

2.3.2 General Single-Hop and Multi-Stage Networks 53

2.4 Queue-based Min-delay Policy Design 56

2.4.1 𝑁 × 1 Networks . 56

2.4.2 General Single-Hop and Multi-Stage Networks 58

2.5 Performance Evaluation . 60

2.5.1 𝑁 × 1 Networks . 60

2.5.2 General Single-Hop Networks 61

2.5.3 General Multi-Stage Networks 62

2.6 Extensions and Discussions . 64

2.6.1 Practical Extensions . 65

2.6.2 Theoretical Extensions . 68

2.7 Summary and Future Work . 72

2.8 Chapter Appendix . 72

2.8.1 Proof of Theorem 2.2 . 72

2.8.2 Proof of Theorem 2.3 . 75

2.8.3 Proof of Theorem 2.8 . 79

3 Overload Balancing in Networks with Bounded Buffers 81

3.1 Motivating Example . 82

3.2 Model and Problem Formulation . 83

3.2.1 Queue Dynamic Model . 83

3.2.2 Problem Formulation: Overload Balancing 85

3.3 Quadratic Sum Minimization Leads to Lexicographic Minimum . . . 86

3.3.1 Quadratic Sum Minimization to Maximum Overload Rate

Minimization . 87

3.3.2 Quadratic Sum Minimization to Lexicographic Minimum . . . 88

3.4 Maxweight + Backpressure Leads to Most Balanced Overload 89

3.4.1 Methodology . 90

8

3.4.2 Maxweight + Backpressure Policy in Differentiable Form . . . 91

3.4.3 MW+BP in Single-hop Networks with Sufficient Capacity . . 93

3.4.4 MW+BP in Single-hop Networks with Limited Capacity . . . 94

3.4.5 Practical Extensions . 96

3.5 Performance Evaluation . 98

3.5.1 Single-hop Networks . 99

3.5.2 Clos Network Structure . 102

3.6 Summary and Future Work . 103

3.7 Chapter Appendix . 105

3.7.1 Proof of Lemma 3.1 . 105

3.7.2 Proof of Theorem 3.2 . 107

4 Queue Stability in Networks with Bounded Node Buffers 111

4.1 Motivating Example . 111

4.2 Single-Commodity System . 112

4.2.1 Basic Setting . 113

4.2.2 Stability Analysis . 115

4.2.3 Existence of Equilibrium Point 119

4.3 Multi-Commodity System . 121

4.3.1 Basic Setting . 121

4.3.2 Stability Analysis . 121

4.3.3 Existence of Equilibrium Point 124

4.3.4 Rule of Thumb . 125

4.3.5 Shared buffer Case Study: Switched Networks 128

4.4 Summary and Future Work . 131

4.5 Chapter Appendix . 131

4.5.1 Proof of Theorem 4.1 . 131

4.5.2 Proof of Lemma 4.6 . 133

4.5.3 Example of Lemma 4.1 . 134

4.5.4 Necessity for Queue Length Stability 135

9

5 Routing Attack on Network Overload with Static Routing 137

5.1 Network Models and Problem Definition 138

5.1.1 Network Models . 138

5.1.2 Problem Definition . 141

5.2 No-Loss Throughput Minimization 143

5.2.1 Problem Formulation . 143

5.2.2 Exact Algorithms . 145

5.2.3 2-Approximation Algorithm with Partial Information 149

5.2.4 Practical Extensions . 153

5.3 Loss Maximization . 156

5.3.1 Problem Formulation and NP-Completeness 156

5.3.2 Approximation Algorithms . 159

5.3.3 Practical Extensions . 163

5.4 Optimal Node Selection . 164

5.4.1 Problem Formulation and NP-Completeness 165

5.4.2 Algorithms Under Parallel 𝒱𝑐𝑎𝑛𝑑 166

5.5 Performance Evaluation . 167

5.5.1 No-Loss Throughput 𝜆* Minimization 169

5.5.2 Loss Maximization . 171

5.5.3 Optimal Node Selection . 175

5.6 Summary and Future Work . 176

5.7 Chapter Appendix . 177

5.7.1 Proof of Theorem 5.5 . 177

5.7.2 Proof of Theorem 5.6 . 178

5.7.3 Proof of Theorem 5.7 . 181

5.7.4 Proof of Theorem 5.8 . 183

6 Routing Attack on Network Overload with Dynamic Routing 185

6.1 Model, Problem and Basic Results 186

6.1.1 Network Model . 186

10

6.1.2 Problem Formulation . 187

6.1.3 Basic Results . 189

6.2 Algorithms and Performance Guarantees 190

6.2.1 Chain Structure . 190

6.2.2 Parallel Structure . 194

6.3 Algorithm for General 𝒱𝐴 . 198

6.4 Performance Evaluation . 201

6.5 Summary and Future Work . 204

6.6 Chapter Appendix . 205

6.6.1 Proof of Proposition 6.1 . 205

6.6.2 Proof of Theorem 6.1 . 207

6.6.3 Proof of Theorem 6.2 . 208

6.6.4 Proof of Theorem 6.3 . 209

6.6.5 Proof of Theorem 6.4 . 211

6.6.6 Proof of Theorem 6.5 . 213

7 Concluding Remarks 215

11

12

List of Figures

2-1 An example of a 2 × 1 single-hop network: Under maxweight policy,

link (𝑠1, 𝑑) is always activated while (𝑠2, 𝑑) is blocked since the queue

in 𝑠1 grows with rate 𝜆1− 𝑐1 = 4 while the queue in 𝑠2 grows with rate

at most 𝜆2 = 3. 37

2-2 (a) A single-hop network structure; (b) A switched network with

ingress and egress ports; (c) A server farm with load balancers as

ingress and servers as egress. 38

2-3 An example of a 4-layer multi-stage network 41

2-4 An example of queueing delay characterization of a packet passing two

nodes . 43

2-5 An example of an 𝑁 × 1 single-hop network 46

2-6 A 3x1 example of Theorem 2.1: (a) Setting 𝑔𝑖/𝜆𝑖 = 1/2, 𝑖 = 1, 2, 3

satisfies (2.10) and leads to minimum delay; (b) Setting 𝑔𝑖 ≥ 𝜆𝑖, 𝑖 =

1, 2, 3 satisfies (2.10) and leads to minimum delay, despite different

queue growth rates compared with (a); (c) Setting g = {3, 5, 4} does

not satisfy (2.10) and thus does not incur minimum 𝐷̄avg and 𝐷̄max,

although all the 3 links rates are greater than those in (a), primarily

due to the higher congestion level at 𝑠3. 50

2-7 The min-delay region in a 2 × 1 single-hop network: (a) unlimited

capacity; (b) limited capacity (𝑐𝑖 ≤ 𝜆𝑖, 𝑖 = 1, 2) 51

13

2-8 A 2x2 example of Theorem 2.2: (a) and (b) set g that satisfies

(𝑔𝑠1𝑑1+𝑔𝑠1𝑑2)/(𝑔𝑠2𝑑1+𝑔𝑠2𝑑2) = 𝜆1/𝜆2 and (𝑔𝑠1𝑑1+𝑔𝑠2𝑑1)/(𝑔𝑠1𝑑2+𝑔𝑠2𝑑2) =

𝜇1/𝜇2 which lead to minimum 𝐷̄avg and 𝐷̄max simultaneously;

Setting link rates as in (c) does not lead to minimum delay since

(𝑔𝑠1𝑑1 + 𝑔𝑠2𝑑1)/(𝑔𝑠1𝑑2 + 𝑔𝑠2𝑑2) ̸= 𝜇1/𝜇2, although the total link rates are

higher than (a) and (b). 54

2-9 An example of link rate control in a 4-layer multi-stage network which

minimizes 𝐷̄avg and 𝐷̄max. The ingress and egress rates of nodes at

layer 1 to 4 are 1, 6/5, 5/4, and 4/3 respectively. 56

2-10 CDFs of 𝐷̄avg and 𝐷̄max in 32 × 1 single-hop networks with sufficient

capacity (OPT and MAX are overlapped) 61

2-11 CDFs of 𝐷̄avg and 𝐷̄max in 32 × 1 single-hop networks with limited

capacity . 62

2-12 CDFs of 𝐷̄avg and 𝐷̄max in 32× 16 single-hop networks 63

2-13 CDFs of 𝐷̄avg and 𝐷̄max in 16× 12× 8× 6 networks 65

2-14 CDFs of 𝐷̄avg and 𝐷̄max in 15× 12× 9× 12× 15 networks 65

2-15 A 3-layer fan-in tree data center example under min-delay transmission

policies derived in Theorem 2.8. 69

2-16 Validation of Conjecture 2.1 in 2 × 2 single-hop networks, where the

notation 𝑥(𝑦) over a link (𝑖, 𝑗) means 𝑔𝑖𝑗 = 𝑥 and its actual transmission

rate 𝑔𝑖𝑗 = 𝑦 calculated based on (2.23): (a) setting g = [4, 4, 5, 5]

leads to g̃ = [2, 2, 4, 4] which satisfies (2.18) thus min-delay; (b) setting

g = [4, 4, 5, 15] leads to g̃ = [2, 2, 2, 6] which does not satisfy (2.18)

thus not min-delay. 71

2-17 An example of a 3-layer 2× 2× 2 network 76

14

3-1 Suppose all ingress nodes have unbounded buffer. When node 𝑑

has unbounded buffer, backpressure achieves most balanced overload

rates where all 4 nodes grow with rate 3.75; When node 𝑑 has finite

buffer, then 𝑞𝑑 = 0 in the steady state due to buffer saturation, and

backpressure achieves overload rates (𝑞𝑠1 , 𝑞𝑠2 , 𝑞𝑠3 , 𝑞𝑑) = (2, 5, 8, 0),

deviating significantly from the most balanced one (5, 5, 5, 0). 82

3-2 Geometric interpretation of Lemma 3.1 through a 2 × 1 single-hop

network. The contour curves of (3.3) in red and (3.4) in green coincide

at the same optimal point 𝐵 on the boundary of 𝒢 under different

arrival rate vectors 𝜆 = (𝜆1, 𝜆2), denoted as point 𝐴 where 𝜆1 + 𝜆2 > 𝜇. 89

3-3 Condition 1 (existence) and 2 (convergence) to verify that a

queue-based policy achieves most balanced overload 91

3-4 Example that (3.9) does not achieve most balanced overload with

limited capacity with 𝛾 → ∞, where node 𝑑 has bounded buffer. On

the left, (𝑔1, 𝑔2, 𝑔3) = (2.5, 0.5, 0) denotes the transmission rates under

(3.9) in steady state, under which q̇ = [5.5, 5.5, 4]. It is not the most

balanced overload as presented on the right, where q̇* = [5, 3.5, 3.5]

under (𝑔*1, 𝑔*2, 𝑔*3) = (3, 2.5, 0.5), the optimal solution to (3.3). Other 𝛾

values also suffer from the suboptimality. 94

3-5 Quadratic Sum Gap Comparison in Steady State 101

3-6 Max Overload Rate Gap Comparison in Steady State 101

3-7 Transient Process of Quadratic Sum Gap 102

3-8 Example of a 3-stage Clos structure from [1] 103

3-9 Quadratic Sum Gap Comparison (Clos) 104

3-10 Max Overload Rate Gap Comparison (Clos) 104

15

4-1 Finite buffer may affect stability result. On the right is an example

of the queue dynamics in node 𝐾 following the backpressure policy.

The dashed frame denotes the packets to be served at the current time

step. In the final state, the average number of commodity 2 packet in

the buffer is 1.5, which arises from 1.5 = 𝜇1

𝑐1𝐾
𝑐2𝐾 with details deferred

to Section 4.3.3. Therefore the actual throughput of commodity 2 is

1.5, less than 𝜇2 = 3, due to the finite buffer. 113

4-2 One-hop system with 𝐶 commodities 130

5-1 (a) Switch network; (b) Server farm; (c) Bipartite graph (in the dashed

box) with meta source 𝑠0 and destination 𝑑0 140

5-2 (a) A 6-node network with 𝒱𝐴 = {3} and 𝒱𝑁 = {1, 2, 4, 5, 6}; (b)

Optimal routing to minimize 𝜆* is (𝑥34, 𝑥35) = (0, 1): 𝜆*
𝑂𝑃𝑇 is 2 and

(5, 6) is the first saturated link; (c) Given 𝜆 = 10, the optimal routing

to maximize loss is (𝑥34, 𝑥35) = (1, 0), with maximum loss of 𝜆− 𝑐46 =

10− 3 = 7. 142

5-3 Boundary Optimality: One of the 4 combinations must be optimal,

where 𝒱𝐴 = {2, 3} serve all traffic through the highlighted links. . . . 146

5-4 Example of Algorithm 5.1. Assume that 𝑐12, 𝑐13 → ∞ which means

(1, 2) and (1, 3) will not be the first saturated links. We can calculate

𝑀𝐹 [2] = 𝑥12, 𝑀𝐹 [3] = 1 since the adversarial node 2 can route all

packets to 3, 𝑀𝐹 [4] = 𝑥12 + 𝑥13𝑥34 since node 2 can route all packets

to 4, and 𝑀𝐹 [5] = 1 since node 4 can route all packets to 5. Then

we find the first saturated connected downstream link of each node

in {2, 3, 4, 5}, where the calculation in (a) and (c) follows step 5 since

2, 4 ∈ 𝒱𝐴 with links highlighted in red, while that in (b) and (d) follows

step 4 since 3, 5 ∈ 𝒱𝑁 highlighted in blue. 148

5-5 Example of running Algorithm 5.2 from (a) to (c) 150

16

5-6 Example of Algorithm 5.3. The original traffic flows are marked by the

numbers over each link in (a), and we can measure the total throughput

𝐹𝑡𝑜𝑡𝑎𝑙 = 7 at the destination node 6. We initialize 𝐹 [2] and 𝐹 [4] to be

the total flow to node 2 and node 4, which are 3 and 5 respectively

shown in (b). Since node 2 is the source node in 𝒢𝑑𝑜𝑤𝑛
𝐴 , 𝐹 [2] = 3 does

not need to be updated since all the flows from node 2 to 3 and 4 only

traverse node 2. Then in (c) we calculate the flows at node 4 that have

traversed node 2, which contains paths 2 → 4 and 2 → 3 → 4 with a

total of 7/9×𝐹 [2]. Then in (d) we substract these flow from 𝐹 [4] and

we get the final 𝐹 [4] = 8/21. 152

5-7 Example of 2|𝒱𝐴|×𝜆*
𝑂𝑃𝑇 under Algorithm 5.4. Suppose 𝒱𝐴 = {2, 4, 6};

𝑐28 = 4 − 4𝜖, 𝑐48 = 2 − 2𝜖, 𝑐68 = 1 − 𝜖 where 0 ≤ 𝜖 ≤ 1, 𝑐78 = 1,

and other links have infinite capacity. Nodes 1, 3, and 5 route half

of the traffic through each connected downstream link. Algorithm 5.1

routes all traffic through red links which leads to 𝜆* = 𝜆*
𝑂𝑃𝑇 = 1, while

Algorithm 5.4 routes all traffic through blue links (topological order

6→ 4→ 2) which leads to 𝜆* = 8𝜆*
𝑂𝑃𝑇 = 8 when 𝜖→ 0. 154

5-8 Graph Construction from Set Cover 159

5-9 Tightness validation of Theorem 5.5 under |𝒱𝐴| = 4. Consider 𝜖 →

0, Approach 1 on network (a) and Approach 2 on network (b) leads

to 1/|𝒱𝐴| = 1/4 approximation ratio; Algorithm 5.5 gives worst-case

approximation ratio 1/
√︀
|𝒱𝐴| = 1/2 on network (c). 162

5-10 Tightness validation of Theorem 5.6 (𝜆 = 4, 𝒱𝐴 = {𝑠2}): red route is

optimal, blue route is the output of Algorithm 5.6. 163

5-11 CDFs of approximation ratio under density 0.8 and |𝒱𝐴| = 20 168

5-12 CDFs of approximation ratio under density 0.3 and 𝜇/𝜆 = 2 in 8 × 8

networks . 173

5-13 CDFs of loss ratio under density 0.25 and 𝜇/𝜆 = 4 in 16× 16 networks 175

5-14 CDFs of approximation ratio of overload under density 0.3 and a

(𝜇, 𝜆)-ratio of 2 in 16× 16 networks 176

17

5-15 Examples for Proof of Approach 2 . 179

5-16 Proof for Case 3 of Theorem 5.6 . 181

5-17 Proof for Case 4 of Theorem 5.6 . 182

5-18 NP-hardness of Node Selection Problem 183

6-1 Examples of reachability and the chain structure of 𝒱𝐴. 191

6-2 Alg. 6.1 on Fig. 6-1(b): first on the left, we temporarily set the routing

policy of node 2 to be 𝑥23 = 1 so that all the traffic at 2 is sent to 4, and

determines the routing policy at 4 to be 𝑥46 = 1 to achieve minimum

s-d cut value 1, under which no traffic goes through (2, 5) and (4, 5);

then on the right, we fix x4 and determine the routing policy at 2 to

be 𝑥23 = 1 which keeps the minimum s-d cut value to be 1. 192

6-3 Example where adversarial nodes at different layers (shaded in black)

in a multi-layer network that are not in a parallel structure, although

𝑖 ̸→ 𝑗 for ∀𝑖, 𝑗 ∈ 𝒱𝐴 and 𝑖 ̸= 𝑗. 195

6-4 Example of the first iteration of Alg. 6.2 for 𝒱𝐴 in a parallel structure:

first set 𝑐𝑖𝑗 = 0 for all the links (𝑖, 𝑗) starting from an adversarial node 𝑖;

then follow line 5 to 7 to calculate the minimum s-d cut value increment

by activating each of the above links, and follow line 9 to 11 to calculate

the minimum s-d cut value increment by activating all adversarial nodes

reachable to each normal node, and obtain the mean minimum cut value

increment by dividing the value by the number of adversarial node reachable

to this normal node. 197

18

6-5 Example of Alg. 6.3 on 𝒱𝐴 with a combination of chain and parallel

structures. Given that 𝒱𝐴 = {2, 3, 4, 5} in (a) where 2 → 5 and 3 →

5, the algorithm temporarily sets 𝑥25 = 1 and 𝑥35 = 1 (line 5) and

determines the routing policies at 4 and 5 (line 6) as shown in (b);

suppose that in line 6 the algorithm determines that 𝑥57 = 1 based on

Δ57 = min{{Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ ∪ {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅}, then it starts to

consider adversarial nodes upstream to 5 in the chains, i.e., determines

the routing policies at {2, 3, 4}. 199

6-6 The top-down dynamic programming mechanism in Alg. 6.3 on the

example in Fig. 6-3. 200

6-7 CDFs of approximation ratios of Dynamic Programming (DP), Local

Search (LS), and Alg. 6.3 to the optimal solution to (6.2). 203

6-8 CDFs of approximation ratios to the optimal solution to (6.2) when 𝒱𝐴
is in a general structure (|𝒱𝐴| = 10). 204

6-9 Example of a constructed network based on an instance of Set Cover. 209

6-10 Example where COND holds: the optimal routing attack can be

decomposed into 2 iterations, where in the first iteration it determines

the routing policies of ℛ7, and in the second iteration it determines

those of ℛ5 whose routing policies have not been determined in

previous iterations. 212

19

20

List of Tables

2.1 Mean and maximum ratios between the two policies for comparison and

the min-delay policy in terms of 𝐷̄avg and 𝐷̄max in 32 × 16 single-hop

networks . 63

2.2 Mean and maximum ratios between each of the two tested policies

for comparison and the proposed min-delay policy in terms of 𝐷̄avg

(Column 1) and 𝐷̄max (Column 2), and the ratios 𝐷̄max/𝐷̄avg of the

tested policies themselves reflecting the delay imbalance of packets

injected into different ingress nodes (Column 3), over 7 multi-stage

topologies. 64

5.1 Approximation ratio statistics for Algorithm 5.2 (90% means

90-percentile) . 168

5.2 Statistics of performance guarantee for (5.6) in 8 × 8 networks under

different network settings (𝜇/𝜆 means (𝜇, 𝜆)-ratio; 10%, 90% mean

10-percentile, 90-percentile) . 173

5.3 Mean loss ratio in 16× 16 networks 174

6.1 Approximation ratio statistics of Dynamic Programming (DP), Local

Search (LS), and Alg. 6.3 (90% means 90-percentile). 203

21

22

Chapter 1

Introduction

Network overload occurs when the total demand of network users exceeds the

network capacity [2, 3]. Severe overload can impair network performance resulting

in throughput reduction [4, 5], increased latency [6, 7], or unfairness where some

sessions starve other sessions [3, 8]. Network overload becomes more frequent in

data center networks due to the increase in network demand, notably driven by the

upsurge of connected devices together with the exponentially increasing number and

size of machine learning applications [9–11]. Meanwhile, the slowdown in Moore’s

law compared with traffic growth further increases the likelihood of overload [12,13].

The increasing demand-capacity gap poses challenges for network service providers,

that need to develop network policies that can utilize communication bandwidth

more efficiently to improve network performance during overload [14–16]. Another

source of network overload is the reduction of network capacity, during maintenance

and upgrade of data center networks [1, 14], unexpected failures of network nodes

and links [14, 17], and cyberattacks such as denial-of-service attack which occupies

transmission resources [18, 19], and node hijacking which redirects the traffic to

longer paths or blackholes [20, 21]. Maintaining the network performance under

the temporary loss of network capacity requires high availability, reliability, and

robustness of network systems under the potential overload.

Previous research investigated optimal policies to avoid or mitigate network

overload and guarantee network performance. The seminal work from Tassiulas and

23

Ephremides showed that the backpressure routing policy can avoid queue overload

as long as the packet arrival rates to the network are within the capacity region of

the network [22]. Their result reveals the sufficient and necessary condition that can

guarantee bounded queue backlogs in networks with unbounded node buffers, and

serves as a basic policy design framework for a large body of works that capture

utility maximization [23–26], delay minimization [25, 27, 28], and network fairness

[3, 8, 24, 29]. When the packet arrival rates are beyond the capacity region, network

overload cannot be avoided. In this case, an important measure to mitigate the

consequences of severe overload is to balance the overload so as to ensure that all

sessions are equally affected by the congestion. In [3], Georgiadis and Tassiulas

demonstrated that the backpressure policy can achieve most balanced overload in a

network with unbounded buffers. This work inspired studies on overload balancing

considering different network constraints and topologies [8, 23, 29, 30]. A broader

range of studies include reducing network latency when data center networks are

overloaded [7, 31, 32], and quantification of the capability of cyberattacks to induce

network overload [18,19,33,34].

In this thesis, we build upon existing research to attain more in-depth

understanding of network overload. We overcome the limitations of previous work

and make progress by leveraging a deterministic fluid queue model to characterize

the network dynamics under overload. We first develop link rate control policies

to minimize the queueing delay of packets in overloaded multi-stage switching

networks in data center infrastructures. We demonstrate that the policies that

achieve close-to-minimum delay when the network is not overloaded may lead to bad

delay performance in overloaded networks. We then develop transmission policies

that balance the overload over different network nodes when packet arrival rates

are beyond the capacity region, and guarantee queue stability to avoid overload

otherwise, in networks with bounded node buffers. We point out that the bounded

buffers can significantly affect the optimal policy for both overload balancing and

network stability. We further quantify the capability of routing attacks to induce

network overload. Routing attacks, such as BGP hijacking [20, 35, 36] and routing

24

table poisoning [37, 38], are common in practice, their impact on network overload

has not been studied as thoroughly as denial-of-service [18, 19] and node removal

attacks [33,34].

1.1 Literature Review

1.1.1 Delay

Reducing network delay is crucial to both network users and enterprises, given

delay-sensitive applications such as short-form videos and quantitative trading [39].

Service level delay objectives are difficult to meet under overload in large-scale

data centers [7]. Enterprise revenues are sensitive to delay: Google reports that

advertisement revenues will decrease by 20% if web search delay increases from 0.4s

to 0.9s, and Amazon reports that an extra 100ms response time decreases the sales

by 1% [40].

The delay increase caused by network overload is mainly due to the queueing delay

of packets, since the queue buffers are increasingly backlogged due to the overload.

A common approach to reducing queueing delay is active queue management, which

drops packets when overload is observed or the queueing delay exceeds a specific

upper bound [31, 32, 41]. Alternative approaches include network calculus-based

scheduling with worst-case latency guarantees [7, 42], traffic shaping and pacing

[43, 44], and smart buffer design to absorb traffic spikes [45]. However, these

approaches are heuristic with no performance guarantees. Understanding optimal

policies that globally minimize queueing delay holds potential for further delay

reduction, which remains a hard problem [46–48]. Extensive previous work unveils

the power of load balancing approaches in achieving close-to-zero queueing delay

over heavily-loaded parallel servers [40, 49–52]: The Join-the-shortest-queue policy

is proven asymptotically delay-optimal [40], and a power-of-d-choices policy can

reduce communication overhead [52]. Other methods to reduce queueing delay

include packet replication [40] and network coding [53]. Techniques like Kleinrock

25

Independence Approximation have been applied to approximate the mean queueing

delay of packets in general networks [54–58]. However, developing policies to

minimize the queueing delay remains intractable.

Joint optimization of queueing delay and other metrics is another promising

research direction which reveals the trade-off between minimizing delay and

optimizing other metrics and guides policy design to balance the metrics for networks

in practice. Georgiadis et al. revealed a fundamental {𝑂(𝑉), 𝑂(1/𝑉)} network

utility-delay tradeoff under backpressure [59], and Huang et al. proved that under

a LIFO-backpressure policy such tradeoff becomes near-optimal [25]. Zhao et

al. pointed out energy consumption-delay tradeoff [60], and Talak and Modiano

unveiled the trade off between age of information and delay [61]. Moreover, previous

research has validated that the measured delay can facilitate policy design for the

optimization of other metrics. Neely proposed a delay-based scheduling policy

to achieve stability-utility joint optimization [47]. Ji et al. studied a delay-based

backpressure policy to guarantee the stability of networks supporting multiple traffics

with fixed routes [46]. Cardwell et al. utilized round-trip time to effectively reduce

congestion [62].

1.1.2 Overload Balancing

The concept of overload balancing stems from load balancing, which aims to

distribute traffic across multiple servers in large-scale network infrastructures to

increase the network efficiency and avoid severe congestion [63, 64]. Extensive

studies have been devoted to load balancing under server farms and cloud systems

with elegant theory under stochastic queueing model [50, 65, 66] and widespread

implementation in industry [67, 68]. However there is a lack of discussion and

analytical results on overloaded networks where network demand surpasses capacity.

As [3,4] pointed out and we show in this work, overload balancing makes a difference

compared with load balancing due to the buffer saturation.

A number of works considered the problem of overload balancing. Based

on the network fairness literature in flow control [69], Georgiadis and Tassiulas

26

demonstrated that the backpressure policy in [22] can achieve most balanced

overloading in networks with unbounded buffers [3]. Their criterion of the most

balanced state is that the queue overload rate vector achieves the lexicographic

minimum, a concept related to min-max optimization [70]. More recent works study

specific network structures. For parallel queues, [8] considered overload balancing by

introducing explicit constraints on fairness level, and [23] studied packet dropping

policies to control the flow. For server farms, [29] generalized different fairness

notions through 𝛼-fair penalty functions, which allowed for a convex optimization

formulation. For cloud systems, [30] studied detection and balancing the transient

overload through distributed optimization.

1.1.3 Network Stability

In the seminal paper on network stability, Tassiulas and Ephremides showed that

backpressure routing can stabilize networks whenever the packet arrival rates are

within the network stability region [22]. Their result elegantly solves the network

stability problem for systems with unbounded buffers, and serves as a basic policy

design framework for a large body of works for utility maximization [23–26], delay

minimization [25,27,28], and network fairness [3, 8, 24,29].

Bounded Node Buffers

However, most of the related works rely on the assumption of unbounded buffers,

which deviates from the fact that in reality buffers are finite [71]. In practice, internal

nodes in a communication network often have limited buffers [72, 73]. For example,

on-chip networks have very small internal buffers due to area and power limitation,

and similarly, satellite networks have small buffers on-board the satellite. In constrast,

buffers of the source nodes of the arriving packets have sufficient capacity to absorb

bursty packet arrivals [2], e.g. in a satellite network the buffer at the ground terminal

can be relatively large.

A plethora of works have tried to incorporate bounded buffer sizes in network

27

analysis. Giaccone et al. studied the throughput region of network systems with

bounded node buffers and discussed the relationship between buffer size and

throughput [71]. Le et al. studied the relationship between buffer size and network

utility under a modified backpressure mechanism [2], and Lien et al. designed a

dynamic algorithm to stabilize any admissible traffic conditioned on a finite internal

buffer with size larger than a certain bound [74]. All of these works proposed policies

and analyze their performance on finite-buffer systems, under certain assumptions

such as deterministic routing [71], separate buffers for different commodities [2, 71],

equal buffer sizes [2, 71], and minimum buffer size requirements [74]. A systematic

study of the policies that can achieve queue stability in buffered networks in general

buffer size setting is still necessary.

Fluid Queue Model

We leverage the fluid queue model to characterize the queueing dynamics of a network.

The fluid queue model in this thesis resembles the fluid model [75, 76] which was

proposed as a flow-based approximation to the discrete network systems to obtain

results for throughput [4], fairness [3] and delay [77]. However, that fluid model

captures the scaled limit of the queue backlogs, which for nodes with bounded buffers

is not very meaningful. A closely related framework is the ordinary differential

equation (ODE) model used to study the Transmission Control Protocol (TCP)

[78, 79]. Although sharing similar modeling of the queue dynamics, we point out

that the fluid queue model in this thesis can capture more general policies.

1.1.4 Network Attacks

The prevalence and severity of network attacks exhibited a notable escalation in

recent times, as evidenced by the growing number of reported incidents and their

increasingly profound ramifications [20]. These attacks often result in substantial

degradation in network performance, such as lower throughput and higher latency.

The 2018 Pakistan Telecom hijacking incident caused considerable network disruption

28

with extensive delays [80]. The 2016 Dyn DDoS attack led to a wide range of outages

and significantly downgraded user experiences on Twitter and Netflix [81].

We focus on the degradation of network performance due to routing attacks,

wherein adversaries hijack network servers to manipulate their routing decisions [82].

Routing attacks are a notable form of network node attacks that have broad impact,

which can last for several hours or even longer than a day before resolved [20, 21].

Furthermore, their impact can be significant over the Internet. Incidents have been

reported where routing attacks in 10 minutes polluted 90% of the network users [83].

Examples of routing attacks include BGP hijacking, where an attacker falsely claims

ownership of an IP prefix to affect routing [35,36]; routing table poisoning, where false

routing information is injected into a victim’s routing table [37, 38]; OSPF attacks,

which involve fabricating topology information to control routing [84]; and blackhole

attacks, which divert the traffic to non-existent destinations [85]. Routing attacks

have been detected in a wide range of networks, including data center networks [86],

software-defined networks [87], wireless ad hoc networks [37], and robotics networks

[88]. Over 40% of operators reported that their organizations have fallen victim to

node hijacks [20].

The quantification of routing attacks’ impact on network overload remains

a relatively unexplored research area [20], unlike other attack types including

denial-of-service [19], link removal [33], and node removal attacks [34]. We are

motivated to study this problem since both routing attacks and network overload

pose greater challenges as the network scale and user demand keep growing. Routing

attacks are concerning due to their low implementation cost for adversaries [86].

They may lead to broader impact in data center networks that apply software

defined networks, where a hijacked controller in the control plane may affect the

routing policies of multiple nodes in the data plane [14,89]. However, current defense

mechanisms against routing attacks are inadequate, and the detection of these

attacks is challenging [20].

29

1.2 Contributions

In this thesis, we analyze network overload from two major perspectives. We first

consider the side of network service providers to develop optimal network policies to

guarantee network performance: minimizing queueing delay, balancing the overload

across network nodes, and avoiding the overload so that queue stability is guaranteed.

We then stand on the side of network adversaries to quantify their potential for

causing network overload through routing attacks. We develop algorithms that can

accurately estimate the most severe overload level by routing attacks on a subset

of hijacked nodes, which can serve as the benchmarks for the evaluation of network

vulnerability and guide the protection of critical nodes under different routing attacks.

We summarize the contributions in each chapter of this thesis below.

1.2.1 Chapter 2: Queueing Delay Minimization in Overloaded

Networks

We summarize the contributions on queueing delay minimization in overloaded

networks as follows. (i) We derive explicit conditions on link rates that minimize

both the average and maximum queueing delay of packets in general single-hop

and multi-stage networks. The analytical results demonstrate that higher link rates

are not guaranteed to reduce queueing delay. These conditions correspond to a

rate-proportional policy which maintains an identical ratio between the ingress and

egress rates of different nodes at the same layer, i.e., the ingress rates of all the

nodes at a layer should be proportional to their egress rates. (ii) We generalize

the rate-proportional policy to a queue-proportional policy, which can minimize

queueing delay asymptotically based on real-time queue backlogs, and do not require

knowledge of packet arrival rates [52,90]. (iii) We validate that our proposed policies

achieve minimum delay in various settings of single-hop and multi-stage networks,

and demonstrate further delay reduction compared with benchmarks including the

backpressure policy [3,22] that maximizes network throughput and the max-link-rate

policy that fully utilizes bandwidth. (iv) We demonstrate that the proposed explicit

30

min-delay policies facilitate co-optimization with other metrics that are important

in data centers: minimizing the total required bandwidth, balancing link utilization,

and balancing overload rates at different node buffers. We also determine a set of

more relaxed min-delay conditions for tree data center structures, and provide a

conjecture on the sufficient and necessary condition minimizing queueing delay in

general multi-stage networks.

1.2.2 Chapter 3: Overload Balancing in Networks with

Bounded Buffers

We summarize the contributions on overload balancing in networks with bounded

node buffers as follows. (i) We prove that minimizing the quadratic sum of queue

overload rates leads to the minimum of the max queue overload rates among all

nodes, and also lexicographic minimum of queue overload rates. The quadratic

sum minimization offers an equivalent but more tractable way to analyze the

most balanced overload, compared with lexicographic minimization in [3]. (ii)

Agnostic of packet arrival rates and link capacities, we prove that a policy combining

maxweight and backpressure (mw+bp) achieves the most balanced overload in

single-hop networks, which only requires queue information. We show that our

fluid queue formulation can embed queue-based policies under bounded buffers

elegantly based on a novel characterization of the policy in a differentiable form.

(iii) From a practical perspective, we propose a distributed version of the mw+bp

policy which significantly reduces communication overhead. (iv) We verify our

proposed policies by simulation in single-hop structures and their concatenations

(Clos structure [1]), under randomly selected settings of packet arrival and departure

rates, link capacities, and buffer settings. We show the mw+bp converges to the

most balanced overload in all the test cases, while the distributed version sacrifices

little optimality. Both policies work much better than pure backpressure proposed

in [3] for unbounded-buffer systems.

31

1.2.3 Chapter 4: Queue Stability in Networks with Bounded

Node Buffers

We summarize the contributions on queue stability in network with bounded node

buffers as follows. (i) For single-commodity systems, we derive a sufficient condition

for a set of local policies to stabilize the network based on ODE stability theory.

We demonstrate that the condition has similar physical intuition to the backpressure

policy; (ii) For multi-commodity systems, we similarly derive a sufficient condition

for network stability, with an additional condition that captures the coupling level

between different commodities. The core idea is that these conditions reduce the

network stability problem to a problem of testing the existence of an equilibrium

point, and thus facilitate stability analysis.; (iii) The derived sufficient condition for

multi-commodity systems is not explicit enough for policy implementation in real

networks. We extend the results to an explicit rule of thumb of policy design that

facilitates network stability in multi-commodity systems.

1.2.4 Chapter 5: Routing Attack on Network Overload with

Static Routing

We summarize the contributions on the impact of routing attacks on network

overload when network nodes apply static routing policies as follows. (i) No-Loss

Throughput Minimization: We develop an exact polynomial-time routing attack

algorithm to minimize no-loss throughput in general multi-hop networks with

arbitrary combinations of hijacked nodes. We further propose a 2-approximation

algorithm for adversaries with partial information over the downstream of hijacked

nodes. We further generalize the methodology to a wider range of situations including

a heuristic algorithm that supports distributed attacks, constraints over the routing

attacks, and extension to multi-commodity networks. (ii) Loss Maximization: We

establish the NP-completeness of the loss maximization problem even in single-hop

networks. We develop two approximation algorithms with multiplicative and

additive performance guarantee respectively in single-hop networks. (iii) Optimal

32

Selection of Nodes to Hijack: We investigate the adversary’s optimal selection of

nodes to hijack over a set of candidate nodes to optimize the aforementioned two

objectives via routing attacks. We prove the NP-completeness of this problem in

general networks, propose heuristics and prove the performance guarantee for no-loss

throughput minimization in special cases. (iv) Performance Evaluation: We evaluate

the proposed algorithms and demonstrate their near-optimal performance under

a wide range of network settings that cover different network scenarios, including

different network densities, default routing policies, and number of hijacked nodes.

Our results quantitatively confirm the significant threat posed by routing attacks,

and demonstrate that our proposed algorithms can be used as benchmarks to

quantify the overload risk given arbitrary sets of hijacked nodes and to identify the

critical nodes that should be protected against routing attacks.

1.2.5 Chapter 6: Routing Attack on Network Overload with

Dynamic Routing

We summarize the contributions on the impact of routing attacks on network overload

when network nodes apply dynamic routing policies to maximize network throughput

in response to the attack as follows. (i) We formulate a minimax optimization

framework to calculate the maximum throughput loss due to adversarial routing at

the attacked nodes, and demonstrate its equivalence to minimizing the minimum s-d

cut value of the network. We show that this problem is NP-hard when the number

of adversarial nodes scales linearly with network size, thus motivating approximation

algorithm design. (ii) We develop algorithms for the adversary when the adversarial

nodes are in a chain structure or a parallel structure, and prove that the algorithm

for the chain structure can output a solution that maximizes throughput loss, and the

algorithm for the parallel structure returns a solution with a logarithmic worst-case

approximation ratio to the optimal solution. (iii) We generalize the above algorithms

to an arbitrary subset of adversarial nodes, and empirically validate its near-optimal

performance under a wide range of network settings with different topologies, capacity

33

settings, and sets of adversarial nodes, through comparison with common heuristics.

34

Chapter 2

Queueing Delay Minimization in

Overloaded Networks

In this chapter, we develop link rate control policies to minimize the queueing delay

of packets in overloaded networks. We show that increasing link rates does not

guarantee delay reduction during overload. We consider a fluid queueing model that

facilitates explicit characterization of the queueing delay of packets, and establish

explicit conditions on link rates that can minimize the average and maximum

queueing delay in both single-hop and multi-stage switching networks. These

min-delay conditions require maintaining an identical ratio between the ingress

and egress rates of different nodes at the same layer of the network. We term the

policies that follow these conditions rate-proportional policies. We further generalize

the rate-proportional policies to queue-proportional policies, which minimize the

queueing delay asymptotically based on the time-varying queue length while

remaining agnostic of packet arrival rates. We validate that the proposed policies

lead to minimum queueing delay under various network topologies and settings,

compared with benchmarks including the backpressure policy that maximizes

network throughput and the max-link-rate policy that fully utilizes bandwidth. We

further remark that the explicit min-delay policy design in multi-stage networks

facilitates co-optimization with other metrics, such as minimizing total bandwidth,

balancing link utilization and node buffer usage. This demonstrates the wider utility

35

of our main results in data center network optimization in practice.

2.1 Motivating Example

The motivation for redesigning transmission policies for queueing delay minimization

in overloaded networks, is that network overload raises the technical challenge in

characterizing queueing delay using stochastic models since Little’s law [48], the

foundation of queueing delay analysis in stationary systems, no longer holds in

overloaded networks as the long-term expectation of delay is infinite. Hence, policies

that achieve close-to-minimum delay when the network is not overloaded may no

longer perform well in overloaded networks. We give an intuitive example in the

2 × 1 single-hop network of Fig. 2-1, where the link capacities are 𝑐1 = 4, 𝑐2 = 2,

and external packets arrive at node 𝑠𝑖 with rate 𝜆𝑖 (𝑖 = 1, 2) and are transmitted to

the shared buffer at node 𝑑 whose service rate is 𝜇 = 2. Suppose that at most one

link can be activated at a time. In this case, the maxweight scheduling policy that

activates the link that is connected to the source node with longer queue backlog [49]

has been shown to have near-optimal delay performance when the network is not

overloaded (𝜆1 + 𝜆2 < 𝜇). However, the maxweight scheduling policy fails in delay

minimization for packets injected into node 𝑠2 during overload when (𝜆1, 𝜆2) = (8, 3),

as 𝑠1 always has longer queue backlog than 𝑠2, thus blocking packets in 𝑠2 until

the overload ends. For the case where the simultaneous activation of the two

links is allowed, we show later in this chapter that neither the throughout-optimal

backpressure policy [22] nor serving packets with maximum link rates can minimize

delay under overload, while instead fixing the rate of link (𝑠1, 𝑑) to be 2, and link

(𝑠2, 𝑑) to be 0.75, can minimize the delay in the example. These counter-intuitive

observations reveal the necessity to redesign link rate control policies for queueing

delay minimization in overloaded networks.

To this end, we develop a deterministic fluid queueing model that elegantly

solves the technical challenges of queueing delay characterization in overloaded

networks. The fluid model regards network traffic as continuous flows instead of

36

Figure 2-1: An example of a 2× 1 single-hop network: Under maxweight policy, link
(𝑠1, 𝑑) is always activated while (𝑠2, 𝑑) is blocked since the queue in 𝑠1 grows with
rate 𝜆1 − 𝑐1 = 4 while the queue in 𝑠2 grows with rate at most 𝜆2 = 3.

discrete packets. It well approximates the discrete packet transmission when the time

unit is sufficiently small. Based on the model, we develop link rate control policies

that minimize the queueing delay of the packets that arrive to the network within

a bounded time interval, which corresponds to the duration of the overload. We

demonstrate that our proposed policies minimize queueing delay in both single-hop

and multi-stage switching networks, which serve as the basic structure of data center

networks including Clos [1, 91, 92] and Tree [93, 94]. Hence, our results shed light on

policy design to reduce delay in data centers under overload.

2.2 Models, Definitions and Problem Formulation

In this section, we introduce the single-hop and multi-stage network models and

the fluid queueing model of packet flows, and define network overload. We then

characterize the queueing delay of a packet based on the fluid model and formulate

the queueing delay minimization problem based on the derived explicit forms of the

average and maximum queueing delay of packets.

37

2.2.1 Network Models: Topology and Dynamics

Single-hop networks

A single-hop network contains a set of ingress nodes and egress nodes. We model an

𝑁𝑆 × 𝑁𝐷 single-hop network as a bipartite graph (𝒱 , ℰ) with 𝒱 := {𝒱𝑆,𝒱𝐷}, where

𝒱𝑆 denotes the set of ingress nodes with size |𝒱𝑆| = 𝑁𝑆, and 𝒱𝐷 denotes the set of

egress nodes with size |𝒱𝐷| = 𝑁𝐷, and ℰ denotes the set of transmission links from

𝒱𝑆 to 𝒱𝐷. Fig. 2-2(a) visualizes the single-hop structure. Examples of single-hop

networks include switched networks as Fig. 2-2(b) and server farms as Fig. 2-2(c).

The single-hop structure is the basic network unit that constitutes many data center

networks [1, 17].

Figure 2-2: (a) A single-hop network structure; (b) A switched network with ingress
and egress ports; (c) A server farm with load balancers as ingress and servers as
egress.

We denote the 𝑖th ingress node by 𝑠𝑖 and the 𝑗th egress node by 𝑑𝑗 in single-hop

networks. We consider that a packet injected into an ingress node can be dispatched

to any connected egress node and depart. We denote the packet arrival rate at ingress

node 𝑠𝑖 by 𝜆𝑖, which represents the average number of packets injected into node 𝑠𝑖

in a time unit. We use 𝜆 := {𝜆𝑖}𝑁𝑖=1 to represent the packet arrival rate vector which

we assume static (i.e., time-invariant). We further assume to be that at each node,

packets in the buffer follow the first-come-first-serve service which is common in real

network infrastructures [48]. We denote the queue length in node 𝑘 at time 𝑡 by

𝑞𝑘(𝑡). We denote the packet transmission rate on link (𝑠𝑖, 𝑑𝑗) at time 𝑡 by 𝑔𝑠𝑖𝑑𝑗(𝑡),

38

which represents the number of packets transmitted over (𝑠𝑖, 𝑑𝑗) at time 𝑡. Each link

(𝑠𝑖, 𝑑𝑗) is associated with a capacity value 𝑐𝑠𝑖𝑑𝑗 , which is the maximum transmission

rate, i.e., 0 ≤ 𝑔𝑠𝑖𝑑𝑗(𝑡) ≤ 𝑐𝑠𝑖𝑑𝑗 , ∀𝑡, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ . Note that trivially 𝑔𝑠𝑖𝑑𝑗(𝑡) ≡ 0

for any (𝑠𝑖, 𝑑𝑗) /∈ ℰ , and 𝑔𝑠𝑖𝑑𝑗(𝑡) = 0 when 𝑞𝑠𝑖(𝑡) = 0 for any (𝑠𝑖, 𝑑𝑗) ∈ ℰ , which

means no packets will be transmitted through (𝑠𝑖, 𝑑𝑗) when there is no queue backlog

in node 𝑠𝑖. We use g(𝑡) := {𝑔𝑠𝑖𝑑𝑗(𝑡)}(𝑠𝑖,𝑑𝑗)∈ℰ to denote the transmission rate vector

and c := {𝑐𝑠𝑖𝑑𝑗}(𝑠𝑖,𝑑𝑗)∈ℰ to denote the capacity vector. We consider that each egress

node 𝑑𝑗 serves packets in a work-conserving manner with its maximum service rate

denoted by 𝜇𝑗, whenever there exists queue backlog in the buffer. It is clear that

work-conserving service at the egress nodes is a necessary condition for queueing

delay minimization. Therefore we can merely focus on setting the transmission rate

vector g(𝑡) between the ingress and egress nodes to minimize queueing delay.

We apply a fluid queueing model to characterize the queueing dynamics: Packets

are modeled as continuous traffic flows instead of discrete packet units, which means

the queue length can be fractional. The fluid model is based on the flow conservation

law, which states that the net increase of queue length equals to the difference between

the number of new arrivals and departures at a node at any time, i.e.,⎧⎪⎨⎪⎩𝑞𝑠𝑖(𝑡) = 𝜆𝑖 −
∑︀

𝑑𝑗∈𝒱𝐷
𝑔𝑠𝑖𝑑𝑗(𝑡), ∀𝑖 = 1, . . . , 𝑁𝑆

𝑞𝑑𝑗(𝑡) =
∑︀

𝑠𝑖∈𝒱𝑆
𝑔𝑠𝑖𝑑𝑗(𝑡)− 𝑔𝑑𝑗(𝑡), ∀𝑗 = 1, . . . , 𝑁𝐷

(2.1)

where under the work-conserving mechanism at egress nodes, 𝑔𝑑𝑗(𝑡) := 𝜇𝑗 if 𝑞𝑑𝑗(𝑡) > 0.

The dynamics (4.1) provide a simplified framework for flow control analysis compared

with the discrete queueing model [3]. Note that it is different from the fluid model

defined in some prior works which captures the scaled limit of the queue backlog

[4, 76,77], an indicator for queue stability but not suited to study queueing delay.

Multi-stage networks

We extend the definitions to multi-stage networks. A multi-stage network contains

multiple layers of network nodes, and transmission links connecting nodes at adjacent

39

layers. A multi-stage network with 𝐿 layers of nodes is composed of an ingress layer

where packets are injected into the network, an egress layer where packets depart

from the network, and 𝐿 − 2 middle layers between them. We index the layers in

order where the ingress layer is layer 1 and the egress layer is layer 𝐿. We can view

an 𝐿-layer network as a cascade of 𝐿− 1 single-hop networks, where a packet at any

node at layer 𝑙 can be dispatched to any of its connected node at layer 𝑙 + 1, and

finally departs at some node at the egress layer. Each packet will traverse one node in

each layer, and all the traversed nodes form the path of this packet. Different packets

may take different paths. Fig. 2-3 gives an example of a multi-stage network with

𝐿 = 4. Multi-stage networks are the common structures in data center infrastructures

like Fat-tree [17, 95], Clos [91, 93], and the direct-connect topology with spine blocks

removed [14,96].

We use the following notations in multi-stage networks. Denote the set of nodes

at layer 𝑙 by 𝒱𝑙 with size |𝒱𝑙| = 𝑁𝑙, the 𝑖-th node at layer 𝑙 by 𝑛𝑙
𝑖, and the transmission

rate and capacity of link (𝑛𝑙
𝑖, 𝑛

𝑙+1
𝑗) between layer 𝑙 and 𝑙 + 1 by 𝑔𝑛𝑙

𝑖,𝑛
𝑙+1
𝑗

and 𝑐𝑛𝑙
𝑖,𝑛

𝑙+1
𝑗

respectively. The packet arrival rate to the ingress node 𝑛1
𝑖 is 𝜆𝑖, and the maximum

service rate at the egress node 𝑛𝐿
𝑗 is 𝜇𝑗. Similarly, all the egress nodes operate in

a work-conserving manner, and 𝑔𝑛𝑙−1
𝑖 ,𝑛𝑙

𝑗
(𝑡) = 0 if 𝑞𝑛𝑙−1

𝑖
(𝑡) = 0 and 𝑔𝑛𝐿

𝑖
(𝑡) = 0 if

𝑞𝑛𝐿
𝑖
(𝑡) = 0. We define the queueing dynamics in multi-stage networks in (2.2), which

is an extension of (4.1) from 2 layers to 𝐿 layers.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑞𝑛1
𝑖
(𝑡) = 𝜆𝑖 −

∑︀
𝑛2
𝑗∈𝒱2

𝑔𝑛1
𝑖 ,𝑛

2
𝑗
(𝑡), ∀𝑖 = 1, . . . , 𝑁1

𝑞𝑛𝑙
𝑖
(𝑡) =

∑︀
𝑛𝑙−1
𝑘 ∈𝒱𝑙−1

𝑔𝑛𝑙−1
𝑘 ,𝑛𝑙

𝑖
(𝑡)−

∑︀
𝑛𝑙+1
𝑗 ∈𝒱𝑙+1

𝑔𝑛𝑙
𝑖,𝑛

𝑙+1
𝑗

(𝑡),

∀𝑖 = 1, . . . , 𝑁𝑙, ∀𝑙 = 2, . . . , 𝐿− 1

𝑞𝑛𝐿
𝑖
(𝑡) =

∑︀
𝑛𝐿−1
𝑘 ∈𝒱𝐿−1

𝑔𝑛𝐿−1
𝑘 ,𝑛𝐿

𝑖
(𝑡)− 𝑔𝑛𝐿

𝑖
(𝑡), ∀𝑖 = 1, . . . , 𝑁𝐿

(2.2)

In this work, we start from the special case of queueing dynamics (4.1) and (2.2)

under static transmission policies where the transmission rates 𝑔𝑖𝑗(𝑡) of each link (𝑖, 𝑗)

at different times 𝑡 are a constant value 𝑔𝑖𝑗 when 𝑞𝑖(𝑡) > 0. We demonstrate below

40

Figure 2-3: An example of a 4-layer multi-stage network

that the study over static policies facilitates the characterization of queueing delay

of packets and the policy design for delay minimization, and the results inspire the

dynamic policy design based on real-time queue backlog information instead of packet

arrival rates at the ingress layer.

Remark: The equations in (4.1) and (2.2) give the general formulation of

queueing dynamics without restrictions on packet routing, where the packets at a

node can be transmitted to any of its connected nodes at the next layer. We can

add routing constraints for example forcing 𝑔𝑖𝑗(𝑡) ≡ 0 which means packets at node

𝑖 cannot be dispatched to 𝑗. We derive the policies that minimize queueing delay

under the unrestricted dynamics and demonstrate that they still hold with routing

restrictions, with details in Section 2.6.1.

2.2.2 Network Overload

We say that a network is overloaded if there is no transmission policy that guarantees

bounded queueing backlog over all the node buffers in the network.

Definition 2.1. A network is overloaded if there is no transmission policy {g(𝑡)}𝑡≥0

that can guarantee lim𝑡→∞ 𝑞𝑖(𝑡) <∞, ∀𝑖 ∈ 𝒱.

Definition 2.1 requires that no transmission policy can stabilize the network, which

can be interpreted as the packet arrival rate vector 𝜆 beyond the network capacity

41

region [97]. We can purely focus on overloaded networks since if 𝜆 is interior to the

capacity region, there must exist a static policy g which guarantees that the total

egress link rates of any node is greater than its total ingress traffic rate. Then it is

trivial to apply this policy so that the queueing delay is zero under the deterministic

fluid queueing model.

Under static transmission policies, we can derive more explicit conditions for

a single-hop and a multi-stage network being overloaded in Definition 2.2 and 2.3

respectively.

Definition 2.2. An 𝑁𝑆 ×𝑁𝐷 single-hop network under static policies is overloaded

if there is no transmission rate vector g such that 𝑔𝑖𝑗 ∈ [0, 𝑐𝑖𝑗], ∀(𝑖, 𝑗) ∈ ℰ and

⎧⎪⎨⎪⎩
∑︀

𝑑𝑗 :(𝑠𝑖,𝑑𝑗)∈ℰ 𝑔𝑠𝑖𝑑𝑗 ≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁𝑆∑︀
𝑠𝑖:(𝑠𝑖,𝑑𝑗)∈ℰ 𝑔𝑠𝑖𝑑𝑗 ≤ 𝜇𝑗, ∀𝑗 = 1, . . . , 𝑁𝐷

(2.3)

Definition 2.3. An 𝐿-layer network under static policies is overloaded if there is no

transmission rate vector g such that 𝑔𝑖𝑗 ∈ [0, 𝑐𝑖𝑗], ∀(𝑖, 𝑗) ∈ ℰ and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀
𝑛2
𝑗∈𝒱2

𝑔𝑛1
𝑖 ,𝑛

2
𝑗
≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁1∑︀

𝑛𝑙−1
𝑘 ∈𝒱𝑙−1

𝑔𝑛𝑙−1
𝑘 ,𝑛𝑙

𝑖
≤
∑︀

𝑛𝑙+1
𝑗 ∈𝒱𝑙+1

𝑔𝑛𝑙
𝑖,𝑛

𝑙+1
𝑗

, ∀𝑖 = 1, . . . , 𝑁𝑙, ∀𝑙 = 2, . . . , 𝐿− 1∑︀
𝑛𝐿−1
𝑘 ∈𝒱𝐿−1

𝑔𝑛𝐿−1
𝑘 ,𝑛𝐿

𝑖
≤ 𝜇𝑖, ∀𝑖 = 1, . . . , 𝑁𝐿

(2.4)

2.2.3 Queueing Delay Characterization

We characterize the queueing delay of packets in overloaded networks under static

transmission policies. The queueing delay dominates other network delays including

preprocessing delay, transmission delay, and propagation delay in overloaded network,

since the overload leads to severe increase of queue backlog in node buffers. Moreover,

the other network delays are independent of the packet arrival rates and transmission

policies. Therefore, we ignore the other delays in our analysis, and the delay only

represents the queueing delay below.

42

We derive the explicit form of the total queueing delay of a packet that arrives at

an ingress node. We first consider a 2-node network with a single link in Fig. 2-4 to

explain the derivation. Consider the shaded packet at the tail of node 1. We assume

it arrives at node 1 at time 𝑡. The queueing delay of this packet at node 1 is 𝑞1(𝑡)/𝑔12,

as the shaded packet has to wait for all of the packets ahead of it to be served. The

packet departs from node 1 and arrives at node 2 at time 𝑡′ := 𝑡+ 𝑞1(𝑡)/𝑔12, and thus

its queueing delay at node 2 is 𝑞2 (𝑡
′) /𝜇. Therefore the total queueing delay for this

packet is

𝑞1(𝑡)

𝑔12
+

𝑞2 (𝑡
′)

𝜇
=

𝑞1(𝑡)

𝑔12
+max

{︃
𝑞2(𝑡) +

𝑞1(𝑡)
𝑔12

(𝑔12 − 𝜇)

𝜇
, 0

}︃

= max

{︂
𝑞1(𝑡) + 𝑞2(𝑡)

𝜇
,
𝑞1(𝑡)

𝑔12

}︂ (2.5)

where the queue growth rate at node 2 is 𝑔12−𝜇, and thus 𝑞2 (𝑡′) is equal to 𝑞2(𝑡) plus

the total growth of packets in the buffer over time length 𝑞1(𝑡)/𝑔12. The max term in

the second line is to take into account that 𝑞2(𝑡
′) may reach 0 when 𝑔12 < 𝜇.

Figure 2-4: An example of queueing delay characterization of a packet passing two
nodes

We extend the derivation in (2.5) to an 𝑁𝑆 ×𝑁𝐷 single-hop network. We denote

by 𝐷𝑠𝑖𝑑𝑗(𝑡) the queueing delay of a packet that arrives at the ingress node 𝑠𝑖 at

time 𝑡 and departs at the egress node 𝑑𝑗. The queueing delay of this packet at 𝑠𝑖

is 𝑞𝑠𝑖(𝑡)/
∑︀

𝑑𝑘:(𝑠𝑖,𝑑𝑘)∈ℰ 𝑔𝑠𝑖𝑑𝑘 where
∑︀

𝑑𝑘:(𝑠𝑖,𝑑𝑘)∈ℰ 𝑔𝑠𝑖𝑑𝑘 is the sum of the egress link rates

over all the links starting from 𝑠𝑖. Suppose that this packet is dispatched to 𝑑𝑗. The

time it arrives at 𝑑𝑗 is 𝑡′ = 𝑡 + 𝑞𝑠𝑖(𝑡)/
∑︀

𝑑𝑘:(𝑠𝑖,𝑑𝑘)∈ℰ 𝑔𝑠𝑖𝑑𝑘 , and its queueing delay at

𝑑𝑗 is 𝑞𝑑𝑗(𝑡
′)/𝜇𝑗. We consider the case where the static transmission rate vector g

guarantees 𝑞𝑑𝑗(𝑡) > 0, ∀𝑡, i.e., node 𝑑𝑗 keeps serving with rate 𝜇𝑗. In this case, we

43

can express the total delay of this packet as

𝐷𝑠𝑖𝑑𝑗(𝑡) =
𝑞𝑠𝑖(𝑡)∑︀
𝑑𝑘
𝑔𝑠𝑖𝑑𝑘

+
𝑞𝑑𝑗(𝑡

′)

𝜇𝑗

=
𝑞𝑠𝑖(𝑡)∑︀
𝑑𝑗
𝑔𝑠𝑖𝑑𝑗

+
1

𝜇𝑗

(︃
𝑞𝑑𝑗(𝑡) +

𝑞𝑠𝑖(𝑡)∑︀
𝑑𝑘
𝑔𝑠𝑖𝑑𝑘

(︁∑︁
𝑠𝑘
𝑔𝑠𝑘𝑑𝑗 − 𝜇𝑗

)︁)︃

=
1

𝜇𝑗

(︃
𝑞𝑑𝑗(𝑡) +

∑︀
𝑠𝑘
𝑔𝑠𝑘𝑑𝑗∑︀

𝑑𝑘
𝑔𝑠𝑖𝑑𝑘

𝑞𝑠𝑖(𝑡)

)︃ (2.6)

where the queueing delay of a single packet that arrives at the network at any time 𝑡

can be expressed by a linear combination of the queue length at time 𝑡 at the ingress

and egress nodes that this packet traverses. We can generalize (2.6) to multi-stage

networks with 𝐿 layers to characterize the total queueing delay of packets taking any

path 𝑝, denoted by 𝐷𝑝(𝑡), as a linear combination of the queue length at time 𝑡 at

all the nodes on the path. We show in later sections that the explicit forms like (2.5)

and (2.6) facilitate the derivation of static policies g that minimize queueing delay.

2.2.4 Problem Formulation

We define two queueing delay metrics that we try to minimize in this work: (i)

the average delay 𝐷̄avg (ii) the maximum ingress delay 𝐷̄max, whose definitions are

introduced later. At a high level, 𝐷̄avg reflects the overall delay performance of all

the arrived packets, which in practice is relevant to data centers where the overall

performance is important [7, 14, 92]; 𝐷̄max represents the largest delay of the packets

that arrive at different ingress nodes, which in practice is related to the fairness and

flow completion time of tasks parallelized to different ingress nodes [96, 98, 99]. We

focus on minimizing both metrics for packets that arrive to the network in some

bounded time interval [𝑡0, 𝑡0 + 𝑇] where 𝑡0 is the initial timestamp and 𝑇 <∞ is the

time duration, given that network overload is a temporary event in practice.

We give the formal definitions of 𝐷̄avg and 𝐷̄max. We first consider an 𝑁𝑆 × 𝑁𝐷

single-hop network. Denote the average queueing delay of packets that arrive at the

44

ingress node 𝑠𝑖 within [𝑡0, 𝑡0 + 𝑇] by 𝐷̄𝑖, which is

𝐷̄𝑖 =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑁𝐷∑︁
𝑗=1

𝑔𝑠𝑖𝑑𝑗∑︀𝑁𝐷

𝑘=1 𝑔𝑠𝑖𝑑𝑘
𝐷𝑠𝑖𝑑𝑗(𝑡)𝑑𝑡, ∀𝑖 = 1, . . . , 𝑁𝑆, (2.7)

where 𝐷𝑠𝑖𝑑𝑗(𝑡) is as in (2.6). Note that (2.7) contains two layers of averaging: (i)

averaging over different arrival times 𝑡 within [𝑡0, 𝑡0 + 𝑇], which is an unweighted

integral; (ii) averaging over packets sent to different egress nodes, which is weighted

by 𝑔𝑠𝑖𝑑𝑗/
∑︀𝑁𝐷

𝑘=1 𝑔𝑠𝑖𝑑𝑘 , i.e., the portion of packets that arrive at 𝑠𝑖 and will depart from

𝑑𝑗. With (2.7), we formulate the two delay metrics to be optimized as

𝐷̄avg =
𝑁∑︁
𝑖=1

𝜆𝑖∑︀𝑁
𝑗=1 𝜆𝑗

𝐷̄𝑖, (2.8)

𝐷̄max = max
𝑖=1,...,𝑁

𝐷̄𝑖. (2.9)

The 𝐷̄avg in (2.8) introduces an additional layer of averaging, weighted by the ratio

𝜆𝑖𝑇/
(︁∑︀𝑁

𝑗=1 𝜆𝑗𝑇
)︁
= 𝜆𝑖/

(︁∑︀𝑁
𝑗=1 𝜆𝑗

)︁
that is the portion of the packets that arrive at

the ingress node 𝑠𝑖 within [𝑡0, 𝑡0 + 𝑇]. The 𝐷̄max in (2.9) takes the maximum over all

𝐷̄𝑖’s, which represents the highest average queueing delay of packets among all the

ingress nodes.

We extend the definitions of both metrics to general multi-stage networks. We

solely need to modify (2.7) into

𝐷̄𝑖 =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

∑︁
𝑝: 𝑝[0]=𝑛1

𝑖

𝑤𝑝𝐷𝑝(𝑡)𝑑𝑡, ∀𝑖 = 1, . . . , 𝑁𝑆

where {𝑝 : 𝑝[0] = 𝑛1
𝑖 } contains all the paths 𝑝 that start from the ingress node 𝑛1

𝑖 , and

𝑤𝑝 represents the proportion of packets taking the path 𝑝 among all packets starting

from 𝑛1
𝑖 . We show in the proof of the results in Section 2.3.2 that 𝑤𝑝 can be expressed

as a function of the transmission rate vector g. The formulation of 𝐷̄avg and 𝐷̄max

are the same as (2.8) and (2.9) respectively.

45

2.3 Static Min-Delay Policy Design

In this section, we develop the static policies that minimize 𝐷̄avg and 𝐷̄max. We start

from 𝑁 × 1 single-hop networks with 𝑁𝑆 = 𝑁 ingress nodes and 𝑁𝐷 = 1 egress

node. Examples include a single server receiving requests from multiple sources,

and packets that arrive from multiple upstream links sharing a single port of a

downstream switch between two stages in a data center [1]. We prove a sufficient

and necessary condition on link rates that minimize both the delay metrics. The

conditions require that the link rates from all the ingress nodes to the egress node

are in the same proportion to their corresponding packet arrival rates. We term any

policy under which the condition holds as a rate-proportional policy. We unveil a

counter-intuitive corollary that using larger link rates may increase delay. We then

demonstrate that the rate-proportional policy can be extended to general single-hop

networks and multi-stage networks, and guarantees minimum 𝐷̄avg and 𝐷̄max.

2.3.1 𝑁 × 1 Networks

Consider an 𝑁 × 1 network as shown in Fig. 2-5. We identify the transmission rate

vector g := {𝑔𝑖}𝑁𝑖=1 that minimizes 𝐷̄avg and 𝐷̄max, where we abbreviate link rate 𝑔𝑠𝑖,𝑑

as 𝑔𝑖. We first derive the policies that minimize both delay metrics given unlimited

link capacities, and then discuss how the capacities affect the result.

Figure 2-5: An example of an 𝑁 × 1 single-hop network

46

We identify a sufficient and necessary condition on g that minimizes 𝐷̄avg and

𝐷̄max in Theorem 2.1. We give the detailed proof under 𝑁 = 2 for brevity, which can

be extended to general 𝑁 . We also derive the result under zero initial queue length

for brevity.

Theorem 2.1. Given an 𝑁 × 1 single-hop network with unlimited link capacity. For

∀𝑇 > 0, the set of g = {𝑔𝑖}𝑁𝑖=1 that minimizes 𝐷̄avg and 𝐷̄max of the packets that

arrive within [𝑡0, 𝑡0 + 𝑇] where q(𝑡0) = 0 is

{︃(︃
𝑁∑︁
𝑖=1

𝑔𝑖 ≥ 𝜇

)︃
∩
(︂
𝑔1
𝜆1

= · · · = 𝑔𝑁
𝜆𝑁

)︂}︃
∪ {𝑔𝑖 ≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁} , (2.10)

under which 𝐷̄avg = 𝐷̄max =
𝑇
2𝜇

max{
∑︀𝑁

𝑖=1 𝜆𝑖 − 𝜇, 0}.

Proof. Consider 𝑁 = 2. The main idea of the proof is that we divide the feasible link

rate region of g = (𝑔1, 𝑔2), which is [0,∞)× [0,∞), into 4 sub-regions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℛ1 := {g | 𝑔1 ∈ [0, 𝜆1], 𝑔2 ∈ [0, 𝜆2]}

ℛ2 := {g | 𝑔1 ∈ [𝜆1,∞), 𝑔2 ∈ [𝜆2,∞)}

ℛ3 := {g | 𝑔1 ∈ [𝜆1,∞), 𝑔2 ∈ [0, 𝜆2]}

ℛ4 := {g | 𝑔1 ∈ [0, 𝜆1], 𝑔2 ∈ [𝜆2,∞)}

(2.11)

and we identify the optimal g’s restricted in each of these sub-regions, denoted by

g*
(1),g

*
(2),g

*
(3),g

*
(4) respectively. We show that each g*

(𝑖) leads to the same average

queueing delay 𝐷̄avg =
𝑇
2𝜇

max{(𝜆1+𝜆2−𝜇), 0} and the same maximum ingress delay

𝐷̄max = 𝑇
2𝜇

max{(𝜆1 + 𝜆2 − 𝜇), 0}.

We define 𝐷𝑖(𝑡) as the total queueing delay of a packet injected into 𝑠𝑖 at time 𝑡.

47

According to (2.6), for 𝑖 = 1, 2,

𝐷𝑖(𝑡) =
𝑞𝑠𝑖(𝑡)

𝑔𝑖
+max

⎧⎨⎩𝑞𝑑(𝑡) +
𝑞𝑠𝑖 (𝑡)

𝑔𝑖
(𝑔1 + 𝑔2 − 𝜇)

𝜇
, 0

⎫⎬⎭
=

⎧⎪⎨⎪⎩
1
𝜇

(︁
𝑞𝑑(𝑡) +

𝑞𝑠𝑖 (𝑡)

𝑔𝑖
(𝑔1 + 𝑔2)

)︁
, 𝑔1 + 𝑔2 ≥ 𝜇

𝑞𝑠𝑖 (𝑡)

𝑔𝑖
, 𝑔1 + 𝑔2 < 𝜇

due to q(𝑡0) = 0 which guarantees that when 𝑔1+𝑔2 < 𝜇, 𝑞𝑑(𝑡) will keep zero and thus

the only queueing delay is at the ingress nodes. The average delay for packets that

arrive to ingress node 𝑠𝑖 within [𝑡0, 𝑡0 + 𝑇] is 𝐷̄𝑖 =
1
𝑇

∫︀ 𝑡0+𝑇

𝑡0
𝐷𝑖(𝑡)𝑑𝑡, 𝑖 = 1, 2, based

on which we can formulate the delay metrics 𝐷̄avg given by (2.8) and 𝐷̄max given by

(2.9) as functions of g.

Case 1: ℛ1 := {g | 𝑔1 ∈ [0, 𝜆1], 𝑔2 ∈ [0, 𝜆2]}

In ℛ1, we first consider the case when 𝑔1 + 𝑔2 ≥ 𝜇.

𝐷̄𝑖 :=
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝐷𝑖(𝑡)𝑑𝑡 =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑞𝑑(𝑡) +
𝑞𝑠𝑖 (𝑡)

𝑔𝑖
(𝑔1 + 𝑔2)

𝜇
𝑑𝑡

=
1

𝑇𝜇

∫︁ 𝑡0+𝑇

𝑡0

(𝑡− 𝑡0)max{𝑔1 + 𝑔2 − 𝜇, 0}+ 𝑔1 + 𝑔2
𝑔𝑖

(𝑡− 𝑡0)max{𝜆𝑖 − 𝑔𝑖, 0}𝑑𝑡

=
𝑇

2𝜇

(︂
𝜆1

𝑔1 + 𝑔2
𝑔𝑖

− 𝜇

)︂
, 𝑖 = 1, 2

Then according to (2.8) and (2.9),

𝐷̄avg =
𝜆1

𝜆1 + 𝜆2

𝐷̄1 +
𝜆2

𝜆1 + 𝜆2

𝐷̄2

=
𝑇

2𝜇

(︂
𝜆1

𝜆1 + 𝜆2

(︂
𝜆1

𝑔1 + 𝑔2
𝑔1

− 𝜇

)︂
+

𝜆2

𝜆1 + 𝜆2

(︂
𝜆2

𝑔1 + 𝑔2
𝑔2

− 𝜇

)︂)︂
and

𝐷̄max = max{𝐷̄1, 𝐷̄2} =
𝑇

2𝜇

{︂(︂
𝜆1

𝑔1 + 𝑔2
𝑔1

− 𝜇

)︂
,

(︂
𝜆2

𝑔1 + 𝑔2
𝑔2

− 𝜇

)︂}︂

For 𝐷̄avg, we can obtain by Cauchy-Schwartz inequality that the optimal solutions

48

are all g that satisfy 𝑔1 + 𝑔2 ≥ 𝜇, 𝑔1
𝑔2

= 𝜆1

𝜆2
under which the average delay is 𝐷̄avg =

𝑇
2𝜇
(𝜆1+𝜆2−𝜇). For 𝐷̄max, we can obtain that the set of g’s that satisfy (2.10) achieves

the minimum 𝐷̄max = 𝑇
2𝜇
(𝜆1 + 𝜆2 − 𝜇).

We then consider the case when 𝑔1 + 𝑔2 ≤ 𝜇. In this case there will be no queue

backlog in the egress node, and thus

𝐷̄𝑖 =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑞𝑠𝑖(𝑡)

𝑔𝑖
𝑑𝑡 =

max{𝜆𝑖 − 𝑔𝑖, 0}
𝑔𝑖𝑇

∫︁ 𝑡0+𝑇

𝑡0

(𝑡− 𝑡0)𝑑𝑡 =
𝑇

2

𝜆𝑖 − 𝑔𝑖
𝑔𝑖

, 𝑖 = 1, 2.

Therefore ⎧⎪⎨⎪⎩𝐷̄avg =
𝑇

2(𝜆1+𝜆2)

(︁
𝜆2
1

𝑔1
+

𝜆2
2

𝑔2
− 𝜆1 − 𝜆2

)︁
𝐷̄max = 𝑇

2
max

{︁
𝜆1−𝑔1
𝑔1

, 𝜆2−𝑔2
𝑔2

}︁
Then under 𝑔1+𝑔2 ≤ 𝜇, the optimal metric values are 𝐷̄avg = 𝐷̄max = 𝑇

2𝜇
(𝜆1+𝜆2−𝜇),

achieved only at 𝑔1 =
𝜆1

𝜆1+𝜆2
𝜇, 𝑔2 =

𝜆2

𝜆1+𝜆2
𝜇, which is on the boundary 𝑔1 + 𝑔2 = 𝜇.

Case 2: ℛ2 := {g | 𝑔1 ∈ [𝜆1,∞), 𝑔2 ∈ [𝜆2,∞)}

When 𝑔1 ≥ 𝜆1, 𝐷1(𝑡) =
𝑞𝑠1 (𝑡)

𝑔1
+

𝑞𝑑

(︁
𝑡+

𝑞𝑠1 (𝑡)

𝑔1

)︁
𝜇

= 𝑞𝑑(𝑡)
𝜇

as 𝑞𝑠1(𝑡) keeps 0 since 𝑞𝑠1(𝑡0) = 0,

which means the queueing delay only occurs at node 𝑑. Similar for 𝐷2(𝑡). Since

𝜆1+𝜆2 > 𝜇, packets will accumulate at node 𝑑 and at time 𝑡, and 𝑞𝑑(𝑡) = (𝜆1+𝜆2−𝜇)𝑡.

Thus

𝐷1(𝑡) = 𝐷2(𝑡) =
𝑞𝑑(𝑡)

𝜇
=

𝜆1 + 𝜆2 − 𝜇

𝜇
𝑡.

and 𝐷𝑠1 = 1
𝑇

∫︀ 𝑡0+𝑇

𝑡0
𝐷1(𝑡)𝑑𝑡 = 𝑇

2𝜇
(𝜆1 + 𝜆2 − 𝜇) = 𝐷𝑠2 , and hence 𝐷̄avg = 𝐷̄max =

𝑇
2𝜇
(𝜆1 + 𝜆2 − 𝜇) for ∀g ∈ ℛ2.

Case 3: ℛ3 := {g | 𝑔1 ∈ [𝜆1,∞), 𝑔2 ∈ [0, 𝜆2]}

Based on the derivation in case 1 and 2 respectively, we have 𝐷𝑠1 =
𝑇
2𝜇
(𝜆1+𝑔2−𝜇)

as packets that arrive at 𝑠1 only suffer from delay at 𝑑, and 𝐷𝑠2 =
𝑇
2𝜇

(︁
𝜆1+𝑔2
𝑔2

𝜆2 − 𝜇
)︁

where packets that arrive at 𝑠2 suffer from delay at 𝑠2 and 𝑑. We can verify easily

that any optimal g ∈ ℛ3 that achieves minimum 𝐷̄avg = 𝐷̄max = 𝑇
2𝜇
(𝜆1 + 𝜆2 − 𝜇)

should be guaranteed that 𝑔2 = 𝜆2 holds.

Case 4: ℛ4 := {g | 𝑔1 ∈ [0, 𝜆1], 𝑔2 ∈ [𝜆2,∞)} Similar to case 3, where any

optimal g ∈ ℛ4 satisfies 𝑔1 = 𝜆1.

49

We term (2.10) as the min-delay region of the transmission rate vector g, which

consists of a line segment connecting two points
{︂

𝜆𝑖∑︀𝑁
𝑗=1 𝜆𝑗

𝜇

}︂𝑁

𝑖=1

and {𝜆𝑖}𝑁𝑖=1 in an

𝑁 -dimensional space, and a polytope of g’s where 𝑔𝑖 ≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁 . Theorem

2.1 demonstrates that to achieve minimum delay, if there exists one link (𝑠𝑖, 𝑑) with

transmission rate 𝑔𝑖 higher than the packet arrival rate 𝜆𝑖 at 𝑠𝑖, then all the other links

should be as well; if on the contrary 𝑔𝑖 ≤ 𝜆𝑖 for some 𝑖, then we need to guarantee

that the link rates should be in the same proportion to the packet arrival rates among

all the ingress nodes in order to achieve minimum delay, i.e. 𝑔𝑖/𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁

are the same. We term any policy that satisfies this condition as a rate-proportional

policy. An important implication of this result is that setting link rates in the same

proportion to the packet arrival rates can achieve minimum delay as done by setting

them greater than the packet arrival rates but with less total bandwidth required.

We give an example when 𝑁 = 3 in Fig. 2-6: Both using the rate-proportional

policy with 𝑔𝑖 ≤ 𝜆𝑖 as Fig. 2-6(a) and setting 𝑔𝑖 ≥ 𝜆𝑖, 𝑖 = 1, 2, 3 as Fig. 2-6(b)

lead to minimum 𝐷̄avg and 𝐷̄max, while the transmission rate vector in Fig. 2-6(c)

is not in the min-delay region. Moreover, the min-delay regions for both 𝐷̄avg and

𝐷̄max in an 𝑁 × 1 single-hop network are the same, which demonstrates that we

can simultaneously achieve minimum average delay and in the meantime balance the

delay of packets injected into different ingress nodes.

Figure 2-6: A 3x1 example of Theorem 2.1: (a) Setting 𝑔𝑖/𝜆𝑖 = 1/2, 𝑖 = 1, 2, 3 satisfies
(2.10) and leads to minimum delay; (b) Setting 𝑔𝑖 ≥ 𝜆𝑖, 𝑖 = 1, 2, 3 satisfies (2.10) and
leads to minimum delay, despite different queue growth rates compared with (a); (c)
Setting g = {3, 5, 4} does not satisfy (2.10) and thus does not incur minimum 𝐷̄avg

and 𝐷̄max, although all the 3 links rates are greater than those in (a), primarily due
to the higher congestion level at 𝑠3.

50

We visualize the min-delay region when 𝑁 = 2 for detailed explanation in

Fig. 2-7(a), which is marked as the orange area: a line segment connecting the

points
(︁

𝜆1

𝜆1+𝜆2
𝜇, 𝜆2

𝜆1+𝜆2
𝜇
)︁

and (𝜆1, 𝜆2), and the polytope {g | 𝑔𝑖 ≥ 𝜆𝑖, 𝑖 = 1, 2}. We

mark the ℛ1 to ℛ4 in (2.11) in Fig. 2-7(a). We have the following insights: (i)

Setting 𝑔𝑖 no less than 𝜆𝑖 for both 𝑖 = 1, 2 achieves minimum queueing delay, while

further increasing 𝑔1 and 𝑔2 does not make a difference. This is because for any

g that 𝑔𝑖 ≥ 𝜆𝑖, the buffers of 𝑠1 and 𝑠2 are empty, hence all the queueing delay is

at the egress node 𝑑 bottlenecked by 𝜇. (ii) We can achieve the minimum delay

in ℛ1 using lower transmission rates compared with those in ℛ2 by consider the

rate-proportional policy where g = {𝑔1, 𝑔2} satisfies 𝑔1/𝑔2 = 𝜆1/𝜆2, and meanwhile

maximum throughput is guaranteed, i.e., 𝑔1 + 𝑔2 ≥ 𝜇. The minimum total link rate

is 𝜇 at the intersection point
(︁

𝜆1

𝜆1+𝜆2
𝜇, 𝜆2

𝜆1+𝜆2
𝜇
)︁
. (iii) It is not true that serving with

higher rates leads to lower queueing delay. For example serving with transmission

rates in ℛ3 and ℛ4 is inferior to controlling the transmission rates on the optimal

line segment in ℛ1. The counter-intuition is because packets from 𝑠1 and 𝑠2 share an

egress node, where the imbalance between 𝑔1 and 𝑔2 leads to severe delay increase of

packets that arrive to the ingress node with lower link rate downstream.

Figure 2-7: The min-delay region in a 2×1 single-hop network: (a) unlimited capacity;
(b) limited capacity (𝑐𝑖 ≤ 𝜆𝑖, 𝑖 = 1, 2)

We further extend Theorem 2.1 to the case of limited link capacities (i.e., capacity

of link (𝑠𝑖, 𝑑) is 𝑐𝑖). We can obtain directly that the min-delay region for limited

capacity case is simply the intersection of (2.10) and {g | 𝑔𝑖 ≤ 𝑐𝑖, 𝑖 = 1, . . . , 𝑁} as

51

limited capacity does not affect the proof, where 𝑐𝑖 is the abbreviation of 𝑐𝑠𝑖𝑑. We

illustrate the min-delay region given that 𝜆𝑖 > 𝑐𝑖, 𝑖 = 1, 2 in Fig. 2-7(b), which is a

single solid orange line segment. We observe that serving both links with maximum

rates equal to the link capacity does not lead to minimum delay in general cases,

which validates the necessity of refined control of link rates based on (2.10). This

result also gives insights on the demand-aware bandwidth allocation in data center

networks [92,100,101], where allocating bandwidth in proportion to the demands from

different ingress nodes leads to minimum delay when overload occurs. The minimum

total bandwidth 𝑐1 + 𝑐2 required to achieve the global minimum delay as in the case

with unlimited capacity is 𝜇, where 𝑐𝑖 =
𝜆𝑖

𝜆1+𝜆2
𝜇, 𝑖 = 1, 2.

Finally we discuss the impact of the initial queue length q(𝑡0) on the result.

Consider 𝑁 = 2 for example. We can follow the proof of Theorem 2.1 and obtain the

min-delay region in ℛ1 to be

𝑔1
𝑔2

=

√︃
𝜆1(𝜆1 + 𝑞𝑠1(𝑡0)/𝑇)

𝜆2(𝜆2 + 𝑞𝑠2(𝑡0)/𝑇)
, (2.12)

under which the queue length at any ingress node will not reduce to zero. Note

that (2.12) also follows the rate-proportional pattern with initial queue length and

duration 𝑇 included. For ℛ2, ℛ3 and ℛ4, the derivation is of higher complexity as we

need to analyze if the queue length at the ingress nodes will or will not change from

non-zero to zero within [𝑡0, 𝑡0 + 𝑇], which involves at least two cases for each ingress

node. In practice, the initial queue length 𝑞𝑠1(𝑡0) and 𝑞𝑠2(𝑡0) are generally very small

before overload occurs, and we generally care about rate control for relatively long

𝑇 instead of instantaneous overload. Therefore 𝑞𝑠1(𝑡0)/𝑇 is generally small and thus

(2.12) is approximately 𝑔1/𝑔2 = 𝜆1/𝜆2, matching (2.10). For these reasons and the

conciseness of proof, we neglect initial queue length and verify empirically in Section

6.4 that initial queue length does not affect the overall performance.

52

2.3.2 General Single-Hop and Multi-Stage Networks

We extend the rate-proportional policy shown in Theorem 2.1 to general single-hop

networks and multi-stage networks and show that it is a sufficient condition for

queueing delay minimization. The extended rate-proportional policy requires that

all the nodes at the same layer share the same ratio between their total ingress rates

and egress rates of packets.

𝑁𝑆 ×𝑁𝐷 single-hop networks

We derive a sufficient condition on g to achieve minimum 𝐷̄avg and 𝐷̄max in Theorem

2.2 given unlimited capacity in 𝑁𝑆 × 𝑁𝐷 single-hop networks. We can extend the

result to the case of limited capacity by adding the constraints g𝑖𝑗 ≤ 𝑐𝑖𝑗,∀(𝑖, 𝑗) ∈ ℰ

as discussed in 𝑁 × 1 networks.

Theorem 2.2. Given an 𝑁𝑆 × 𝑁𝐷 single-hop network with unlimited link capacity.

For ∀𝑇 > 0, a sufficient condition to globally minimize both 𝐷̄avg and 𝐷̄max of the

packets that arrive within [𝑡0, 𝑡0 + 𝑇] where q(𝑡0) = 0 is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︀𝑁𝐷
𝑘=1 𝑔𝑠𝑖𝑑𝑘∑︀𝑁𝐷
𝑘=1 𝑔𝑠𝑗𝑑𝑘

= 𝜆𝑖

𝜆𝑗
,∀𝑖, 𝑗 = 1, . . . , 𝑁𝑆∑︀𝑁𝑆

𝑘=1 𝑔𝑠𝑘𝑑𝑖∑︀𝑁𝑆
𝑘=1 𝑔𝑠𝑘𝑑𝑗

= 𝜇𝑖

𝜇𝑗
,∀𝑖, 𝑗 = 1, . . . , 𝑁𝐷∑︀𝑁𝑆

𝑘=1 𝑔𝑠𝑘𝑑𝑗 ≥ 𝜇𝑗,∀𝑗 = 1, . . . , 𝑁𝐷

(2.13)

under which 𝐷̄avg = 𝐷̄max =
𝑇

2
∑︀𝑁𝐷

𝑗=1 𝜇𝑗

max{
∑︀𝑁𝑆

𝑖=1 𝜆𝑖−
∑︀𝑁𝐷

𝑗=1 𝜇𝑗, 0}. Furthermore, (2.13)

is both sufficient and necessary for minimizing 𝐷̄avg and 𝐷̄max over the policies in

{g |
∑︀𝑁𝐷

𝑗=1 𝑔𝑠𝑖𝑑𝑗 ≤ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁𝑆}.

We defer the proof to Section 2.8. We explain the min-delay conditions (2.13):

The first constraint requires that the total egress rates of different ingress nodes

should be in the same proportion to their packet arrival rates {𝜆𝑖}𝑁𝑆
𝑖=1; The second

constraint requires that the total ingress rates of different egress nodes should be in

the same proportion to their service rates {𝜇𝑗}𝑁𝐷
𝑗=1; The third constraint guarantees

53

maximum throughput. Any transmission policy that satisfies these three conditions

guarantees minimum 𝐷̄avg and 𝐷̄max. Compared with (2.10) that requires the

rate-proportional property at the ingress layer solely for 𝑁 × 1 networks, (2.13)

requires the rate-proportional property at both the ingress and egress layers for

general single-hop networks.

We further point out that (2.13) is also a necessary condition for delay

minimization under limited transmission rates where g ∈ {g |
∑︀𝑁𝐷

𝑗=1 𝑔𝑠𝑖𝑑𝑗 ≤ 𝜆𝑖, ∀𝑖 =

1, . . . , 𝑁𝑆}, i.e., the egress rate of node 𝑠𝑖 is less than the packet arrival rate 𝜆𝑖. This

result indicates that given limited link capacity, the rate-proportional policies are

the only ones that minimize both delay metrics in overloaded single-hop networks.

We give a 2× 2 example in Fig. 2-8, which demonstrate that multiple min-delay

solutions can exist, as long as they satisfy (2.13) shown in Fig. 2-8(a) and (b), while

higher link rates may even increase the delay shown in Fig. 2-8(c).

Figure 2-8: A 2x2 example of Theorem 2.2: (a) and (b) set g that satisfies (𝑔𝑠1𝑑1 +
𝑔𝑠1𝑑2)/(𝑔𝑠2𝑑1 + 𝑔𝑠2𝑑2) = 𝜆1/𝜆2 and (𝑔𝑠1𝑑1 + 𝑔𝑠2𝑑1)/(𝑔𝑠1𝑑2 + 𝑔𝑠2𝑑2) = 𝜇1/𝜇2 which lead to
minimum 𝐷̄avg and 𝐷̄max simultaneously; Setting link rates as in (c) does not lead to
minimum delay since (𝑔𝑠1𝑑1 + 𝑔𝑠2𝑑1)/(𝑔𝑠1𝑑2 + 𝑔𝑠2𝑑2) ̸= 𝜇1/𝜇2, although the total link
rates are higher than (a) and (b).

Multi-stage networks

We further extend the min-delay conditions for single-hop networks to multi-stage

networks with 𝐿 layers. We show in Theorem 2.3 that applying the rate-proportional

policy design over each of the 𝐿 layers leads to minimum 𝐷̄avg and 𝐷̄max as long as

the maximum throughput is guaranteed.

54

Theorem 2.3. Consider an 𝐿-layer network with unlimited link capacity. For ∀𝑇 >

0, a sufficient condition to globally minimize both 𝐷̄avg and 𝐷̄max of the packets that

arrive within [𝑡0, 𝑡0 + 𝑇] when q(𝑡0) = 0 is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜆𝑖∑︀
𝑛2
𝑗
∈𝒱2

𝑔
𝑛1
𝑖
,𝑛2

𝑗

= 𝛾1, ∀𝑛1
𝑖 ∈ 𝒱1∑︀

𝑛𝑙−1
𝑘

∈𝒱𝑙−1
𝑔
𝑛𝑙−1
𝑘

,𝑛𝑙
𝑖∑︀

𝑛𝑙+1
𝑗

∈𝒱𝑙+1
𝑔
𝑛𝑙
𝑖
,𝑛𝑙+1

𝑗

= 𝛾𝑙, ∀𝑛𝑙
𝑖 ∈ 𝒱𝑙, ∀𝑙 = 2, . . . , 𝐿− 1∑︀

𝑛𝐿−1
𝑘

∈𝒱𝐿−1
𝑔
𝑛𝐿−1
𝑘

,𝑛𝐿
𝑖

𝜇𝑖
= 𝛾𝐿, ∀𝑛𝐿

𝑖 ∈ 𝒱𝐿

(2.14)

for some 𝛾 = {𝛾𝑙}𝐿𝑙=1 ∈ R𝐿
+ and the maximum throughput is achieved, where 𝐷̄avg =

𝐷̄max =
𝑇
2
max

{︂∑︀𝑁𝑆
𝑖=1 𝜆𝑖∑︀𝑁𝐷
𝑗=1 𝜇𝑗

− 1, 0

}︂
.

We defer the proof to Section 2.8, whose primary idea is to apply 𝐿 − 1 times

the proof idea of Theorem 2.2 for single-hop networks. Theorem 2.3 shows that we

guarantee minimum delay given that maximum throughput is achieved by setting

link rates such that at each layer 𝑙, the ingress rates of all the nodes are in the same

proportion to their egress rates. We denote the ratio between the ingress and egress

rates at nodes at the 𝑙-th layer by 𝛾𝑙. Note that we do not need to guarantee 𝛾𝑖 = 𝛾𝑗

for different layers 𝑖 and 𝑗. We give an example of g that satisfies (2.14) in Fig.

2-9. An important implication of the explicit sufficient condition is that they simplify

the problem of link rate control for delay minimization to finding a feasible solution

to (2.14) given a feasible 𝛾, which can be formulated as a linear programming (LP)

problem. We defer the discussion of its feasibility analysis and its wider applications

to Section 2.6.1. We point out that it is challenging to derive the necessary condition

for multi-stage networks and we leave it to future work.

We leave a final remark to conclude this section. Note that the rate-proportional

policy design is not equivalent to overload balancing in the buffers of nodes at the

same layer [29, 90]. The former is to maintain identical ratios between ingress and

egress rates, while the latter is to maintain identical differences between them. This

means that the delay minimization and overload balancing among node buffers cannot

be simultaneously achieved when the network is overloaded in general.

55

Figure 2-9: An example of link rate control in a 4-layer multi-stage network which
minimizes 𝐷̄avg and 𝐷̄max. The ingress and egress rates of nodes at layer 1 to 4 are
1, 6/5, 5/4, and 4/3 respectively.

2.4 Queue-based Min-delay Policy Design

In this section, we develop queue-based dynamic policies where link rates can be

adjusted according to real-time queue backlog information in the network, based

on the static min-delay policy design from Section 2.3. The motivation to study

queue-based min-delay policies is that the static policies require the complete

knowledge of network parameters, which in real networks may be difficult to estimate

or unavailable, for example the packet arrival rate vector 𝜆 [102], while the real-time

queue backlog q(𝑡) is often accessible. We demonstrate that the queue-proportional

policies can achieve minimum queueing delay asymptotically: setting the egress link

rates of nodes at a layer in the same proportion to the queue backlog length in

their buffers. We first introduce the min-delay queue-based policy design in 𝑁 × 1

networks, and then extend it to general single-hop and multi-stage networks.

2.4.1 𝑁 × 1 Networks

We propose the queue-based min-delay policy for 𝑁 × 1 networks (as in Fig. 2-5)

based on the static counterparts from Theorem 2.1. The min-delay condition (2.10)

on static g which requires 𝑔𝑖/𝑔𝑗 = 𝜆𝑖/𝜆𝑗, ∀𝑖 ̸= 𝑗 implies that the dynamic rate control

policy where g(𝑡) satisfies 𝑔𝑖(𝑡)/𝑔𝑗(𝑡) = 𝑞𝑠𝑖(𝑡)/𝑞𝑠𝑗(𝑡), ∀𝑖 ̸= 𝑗 can minimize both 𝐷̄avg

56

and 𝐷̄max, since
𝑔𝑖(𝑡)

𝑔𝑗(𝑡)
=

𝑞𝑠𝑖(𝑡)

𝑞𝑠𝑗(𝑡)
=

𝜆𝑖 − 𝑔𝑖(𝑡)

𝜆𝑗 − 𝑔𝑗(𝑡)

(*)
=

𝜆𝑖

𝜆𝑗

where (*) holds since if for some 𝑎, 𝑏, 𝑐, 𝑑 ̸= 0 and 𝑎 + 𝑐, 𝑏 + 𝑑 ̸= 0, 𝑎/𝑏 = 𝑐/𝑑, then

𝑎/𝑏 = 𝑐/𝑑 = (𝑎+ 𝑐)/(𝑏+ 𝑑). This dynamic policy inspires the following queue-based

policy without utilizing the information of 𝜆:

𝑔𝑖(q(𝑡))

𝑔𝑗(q(𝑡))
=

𝑞𝑖(𝑡)

𝑞𝑗(𝑡)
, ∀𝑖 ̸= 𝑗,

𝑁∑︁
𝑖=1

𝑔𝑖(q(𝑡)) ≥ 𝜇 (2.15)

where the link rates are set in the same proportion to the real-time queue length at the

ingress nodes. We term any policy that follows (2.15) as a queue-proportional policy.

We show in Theorem 2.4 that (2.15) achieves optimal 𝐷̄avg and 𝐷̄max with zero initial

queue length at all nodes, and further in Theorem 2.5 that (2.15) asymptotically

converges to the min-delay policy (2.10) given arbitrary initial queue vector q(𝑡0).

Theorem 2.4. With q(𝑡0) = 0, then the policy (2.15) achieves minimum 𝐷̄avg and

𝐷̄max as in (2.10).

Proof. Initially at 𝑡0, we take 𝜖→ 0 and have ∀𝑖 ̸= 𝑗,

𝑔𝑖(q(𝑡0 + 𝜖))

𝑔𝑗(q(𝑡0 + 𝜖))
=

𝑞𝑠𝑖(𝑡0 + 𝜖)

𝑞𝑠𝑗(𝑡0 + 𝜖)
=

∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑖 − 𝑔𝑖(q(𝑠))𝑑𝑠∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑗 − 𝑔𝑗(q(𝑠))𝑑𝑠

=

∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑖𝑑𝑠− 𝑔𝑖(q(𝑡0 + 𝛼𝑖𝜖))∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑗𝑑𝑠− 𝑔𝑗(q(𝑡0 + 𝛼𝑗𝜖))

→
∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑖𝑑𝑠∫︀ 𝑡0+𝜖

𝑡0
𝜆𝑗𝑑𝑠

=
𝜆𝑖

𝜆𝑗

where 𝛼𝑖, 𝛼𝑗 ∈ [0, 1]. Then in the time interval [𝑡0 + 𝜖, 𝑡0 + 2𝜖],

𝑔𝑖(q(𝑡0 + 2𝜖))

𝑔𝑗(q(𝑡0 + 2𝜖))
=

𝑞𝑠𝑖(𝑡0 + 2𝜖)

𝑞𝑠𝑗(𝑡0 + 2𝜖)
=

𝑞𝑠𝑖(𝑡0 + 𝜖) + 𝜖𝑞𝑠𝑖
𝑞𝑠𝑗(𝑡0 + 𝜖) + 𝜖𝑞𝑠𝑗

=
𝑞𝑠𝑖(𝑡0 + 𝜖) + 𝜖(𝜆𝑖 − 𝑔𝑖(q(𝑡0 + 𝜖)))

𝑞𝑠𝑗(𝑡0 + 𝜖) + 𝜖(𝜆𝑗 − 𝑔𝑗(q(𝑡0 + 𝜖)))
=

𝜆𝑖

𝜆𝑗

.

Iteratively, we can obtain

𝑔𝑖(q(𝑡))

𝑔𝑗(q(𝑡))
=

𝑞𝑠𝑖(𝑡)

𝑞𝑠𝑗(𝑡)
=

𝜆𝑖

𝜆𝑗

, ∀𝑡

57

which minimizes 𝐷̄avg and 𝐷̄max at any time 𝑡 according to Theorem 2.1.

Theorem 2.5. With arbitrary q(𝑡0), (2.15) converges to the state where

lim𝑡→∞ 𝑔𝑖(q(𝑡))/𝑔𝑗(q(𝑡)) = 𝜆𝑖/𝜆𝑗, ∀𝑖 ̸= 𝑗 which minimizes 𝐷̄avg and 𝐷̄max.

Proof. Under (2.15), for any 𝑖 ̸= 𝑗, when 𝑡→∞,

⃒⃒⃒⃒
𝑞𝑠𝑖(𝑡)

𝑞𝑠𝑗(𝑡)
− 𝜆𝑖

𝜆𝑗

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒ 𝑞𝑠𝑖(𝑡0) +

∫︀ 𝑡

𝑡0
𝜆𝑖 − 𝑔𝑖(q(𝑠))𝑑𝑠

𝑞𝑠𝑗(𝑡0) +
∫︀ 𝑡

𝑡0
𝜆𝑗 − 𝑔𝑗(q(𝑠))𝑑𝑠

− 𝜆𝑖

𝜆𝑗

⃒⃒⃒⃒
⃒ L’hos

=

⃒⃒⃒⃒
𝜆𝑖 − 𝑔𝑖(q(𝑡))

𝜆𝑗 − 𝑔𝑗(q(𝑡))
− 𝜆𝑖

𝜆𝑗

⃒⃒⃒⃒

and
𝑔𝑖(q(𝑡))

𝑔𝑗(q(𝑡))
=

𝑞𝑠𝑖(𝑡)

𝑞𝑠𝑗(𝑡)
L’hos
=

𝑞𝑠𝑖(𝑡)

𝑞𝑠𝑗(𝑡)
=

𝜆𝑖 − 𝑔𝑖(q(𝑡))

𝜆𝑗 − 𝑔𝑗(q(𝑡))
(2.16)

where L’hos means applying the L’hospital’s rule1. We further derive based on (2.16)

that lim𝑡→∞
𝑞𝑠𝑖 (𝑡)

𝑞𝑠𝑗 (𝑡)
= lim𝑡→∞

𝑔𝑖(q(𝑡))
𝑔𝑗(q(𝑡))

= 𝜆𝑖−lim𝑡→∞ 𝑔𝑖(q(𝑡))
𝜆𝑗−lim𝑡→∞ 𝑔𝑗(q(𝑡))

= 𝜆𝑖

𝜆𝑗
. This shows that the

transmission rates asymptotically become proportional to the corresponding packet

arrival rates at the ingress nodes, which reaches minimum 𝐷̄avg and 𝐷̄max based on

Theorem 2.1.

Although not necessarily achieving minimum delay at any time given arbitrary

q(𝑡0), the policy (2.15) keeps driving the queueing dynamics to the state under

which delay is minimized. Intuitively, it drives 𝑞𝑖(𝑡)/𝑞𝑗(𝑡) → 𝜆𝑖/𝜆𝑗: Suppose

𝑞𝑖(𝑡)/𝑞𝑗(𝑡) > 𝜆𝑖/𝜆𝑗, then 𝑔𝑖(q(𝑡))/𝑔𝑗(q(𝑡)) > 𝜆𝑖/𝜆𝑗 which drives down 𝑞𝑖(𝑡)/𝑞𝑗(𝑡), and

when 𝑞𝑖(𝑡)/𝑞𝑗(𝑡) < 𝜆𝑖/𝜆𝑗, the policy increases 𝑞𝑖(𝑡)/𝑞𝑗(𝑡) closer to 𝜆𝑖/𝜆𝑗.

2.4.2 General Single-Hop and Multi-Stage Networks

We extend the asymptotic min-delay policy (2.15) to general single-hop and

multi-stage networks. We show that adjusting link rates so that the egress rates of

nodes at the same layer in the same proportion to their queue backlogs at the current

time leads to minimum delay asymptotically. Theorem 2.6 delivers a sufficient

1We solely need to consider the case where the queue backlogs in ingress nodes keep growing
(i.e, lim𝑡→∞

∫︀ 𝑡

𝑡0
𝜆𝑖 − 𝑔𝑖(q(𝑠))𝑑𝑠 → ∞, ∀𝑖 = 1, . . . , 𝑁𝑆), since otherwise the min-delay condition is

trivial by serving with link rates higher than packet arrival rates at all the ingress nodes, as shown
in Theorem 2.1.

58

condition that minimizes 𝐷̄avg and 𝐷̄max asymptotically in single-hop networks.

Theorem 2.7 further generalizes the result to multi-stage networks.

Theorem 2.6. Consider an 𝑁𝑆 × 𝑁𝐷 single-hop network. Any queue-based policy

g(q(𝑡)), ∀𝑡 that satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︀𝑁𝐷
𝑘=1 𝑔𝑠𝑖𝑑𝑘 (q(𝑡))∑︀𝑁𝐷
𝑘=1 𝑔𝑠𝑗𝑑𝑘 (q(𝑡))

=
𝑞𝑠𝑖 (𝑡)

𝑞𝑠𝑗 (𝑡)
, ∀𝑖, 𝑗 = 1, . . . , 𝑁𝑆∑︀𝑁𝑆

𝑘=1 𝑔𝑠𝑘𝑑𝑖
(q(𝑡))∑︀𝑁𝑆

𝑘=1 𝑔𝑠𝑘𝑑𝑗
(q(𝑡))

= 𝜇𝑖

𝜇𝑗
, ∀𝑖, 𝑗 = 1, . . . , 𝑁𝐷∑︀𝑁𝑆

𝑘=1 𝑔𝑠𝑘𝑑𝑗(q(𝑡)) ≥ 𝜇𝑗, ∀𝑗 = 1, . . . , 𝑁𝐷

(2.17)

achieves asymptotically minimum 𝐷̄avg and 𝐷̄max as in (2.13) with arbitrary initial

queue backlog.

Theorem 2.7. Consider an 𝐿-layer multi-stage network. Any queue-based policy

g(q(𝑡)), ∀𝑡 that satisfies⎧⎪⎪⎨⎪⎪⎩
𝑞
𝑛𝑙
𝑖
(𝑡)∑︀

𝑛𝑙+1
𝑗

∈𝒱𝑙+1
𝑔
𝑛𝑙
𝑖
,𝑛𝑙+1

𝑗
(q(𝑡))

= 𝛾𝑙, ∀𝑛𝑙
𝑖 ∈ 𝒱𝑙, ∀𝑙 = 1, . . . , 𝐿− 1∑︀

𝑛𝐿−1
𝑘

∈𝒱𝐿
𝑔
𝑛𝐿−1
𝑘

,𝑛𝐿
𝑖
(q(𝑡))

𝜇𝑖
= 𝛾𝐿, ∀𝑛𝐿

𝑖 ∈ 𝒱𝐿
(2.18)

for some 𝛾 = {𝛾𝑙}𝐿𝑙=1 ∈ R𝐿
+ and guarantees maximum throughput can achieve

asymptotic minimum 𝐷̄avg and 𝐷̄max with arbitrary initial queue backlog.

The proof idea of both theorems follows Theorem 2.5. Theorem 2.6 is a special

case of Theorem 2.7 with 𝐿 = 2. Both demonstrate the idea of min-delay link rate

control by maintaining the egress rates of all the nodes in the same proportion to the

current queue backlogs in these nodes at the same layer.

In summary, we determined that the format of the min-delay queue-based policy is

similar to the static policies. The above analysis reduces the optimization problem in

dynamical systems to finding feasible solutions to an explicit set of queue-proportional

constraints. We show below in Section 2.6.1 that the explicit form facilitates the

co-optimization of queueing delay together with other metrics.

59

2.5 Performance Evaluation

In this section, we evaluate the proposed min-delay policies in overloaded networks.

We compare the performance of 𝐷̄avg and 𝐷̄max of our proposed methods with (i) the

Max-link-rate policy where all links are activated with rates equal to their capacities,

and (ii) the Backpressure policy that achieves optimal throughput and low latency

[3], which serves packets over a link (𝑖, 𝑗) with rate equal to its capacity if and only if

node 𝑖 has longer queue backlog than node 𝑗. We use the following abbreviations in

the evaluation: OPT for the proposed min-delay policies, MAX for the max-link-rate

policy, and BP for the backpressure policy.

We validate that our proposed methods achieve minimum 𝐷̄avg and 𝐷̄max in various

network settings: (i) different topologies of both single-hop and multi-stage networks;

(ii) different values of 𝜆 and 𝜇; (iii) different capacities c (single-hop networks only).

We consider multiple network instances with randomly sampled values of the above

parameters, and measure the empirical cumulative distribution functions (CDFs) of

𝐷̄avg and 𝐷̄max. We solely present the results for the queue-based policies, where

the static policies result in similar performance. Moreover, packets are transmitted

in discrete time intervals during simulation, and the results demonstrate that the

min-delay property of our proposed policies based on the continuous fluid model

holds under discrete transmission.

2.5.1 𝑁 × 1 Networks

We evaluate the delay performance over 32× 1 single-hop networks. We consider 500

different combinations of parameter settings sampled based on the following rules:

(i) The arrival rate 𝜆𝑖 to each ingress node 𝑠𝑖 is uniformly distributed in [12, 20]; (ii)

The service rate of the shared egress node is 0.4 ×
∑︀32

𝑖=1 𝜆𝑖 so that the network is

overloaded; (iii) Link capacities are uniformly distributed within [20, 35] to represent

the case of sufficient capacity where 𝜆𝑖 ≤ 𝑐𝑖 for each node 𝑠𝑖, and [5, 15] to represent

the case of limited capacity where 𝜆𝑖 may exceed 𝑐𝑖. We round any rational number to

an integer to characterize discrete packet transmission. We consider the initial queue

60

length in each node to be a random integer within [101, 300], and we consider the

𝐷̄avg and 𝐷̄max of packets that arrive within the first 200 time units that the network

is overloaded.

Fig. 2-10 illustrates the CDF curves of both 𝐷̄avg and 𝐷̄max under sufficient

capacity. The curves of the proposed min-delay policy and the max-link-rate policy

highly overlap, which matches the result shown in Fig. 2-7(a). Their 𝐷̄avg and 𝐷̄max

are lower than the backpressure policy: For 𝐷̄avg, the backpressure policy induces

5% higher delay on average and a maximum of 12% higher delay over the 500 tested

samples; For 𝐷̄max, the backpressure induces 61% higher delay on average and a

maximum of 159% higher delay over the 500 tested samples. Fig. 2-11 illustrates

the results under limited capacity. A major contrast to the sufficient capacity case

is the significantly poor delay performance of the max-link-rate policy, which echoes

Theorem 2.1 and Fig. 2-7. We find that the 𝐷̄avg and 𝐷̄max of the max-link-rate

policy are 18% and 123% higher than the proposed min-delay policy respectively on

average.

Figure 2-10: CDFs of 𝐷̄avg and 𝐷̄max in 32 × 1 single-hop networks with sufficient
capacity (OPT and MAX are overlapped)

2.5.2 General Single-Hop Networks

We evaluate the delay performance over 32 × 16 single-hop networks. We consider

500 different combinations of parameter settings based on the following rules: (i) The

arrival rate 𝜆𝑖 to each ingress node 𝑠𝑖 is uniformly distributed in [60, 100]; (ii) The

service rate 𝜇𝑗 of each egress node 𝑑𝑗 is determined as 0.4×𝛼𝑗×
∑︀32

𝑖=1 𝜆𝑖 where 𝛼𝑗 is a

randomly picked weight for 𝑑𝑗 with
∑︀16

𝑗=1 𝛼𝑗 = 1. We consider sufficient link capacity

61

Figure 2-11: CDFs of 𝐷̄avg and 𝐷̄max in 32 × 1 single-hop networks with limited
capacity

for each pair of ingress and egress nodes. We evaluate the 𝐷̄avg and 𝐷̄max of packets

that arrive within the first 50 time units.

Fig. 2-12 illustrates the CDF curves of both 𝐷̄avg and 𝐷̄max. Table 2.1

summarizes the mean and maximum ratio, in terms of both 𝐷̄avg and 𝐷̄max, between

the backpressure policy, or max-link-rate policy and the min-delay policy. Results

show significant reduction of 𝐷̄avg and 𝐷̄max under policies that follow (2.17): On

average the backpressure policy incurs 32% higher 𝐷̄avg and 111% higher 𝐷̄max,

while these metrics for the max-link-rate policy are 258% and 1166% higher than

the min-delay policy. We also observe that the worst case for both the backpressure

and the max-link-rate policy leads to more than 10× delay compared with the

min-delay policies in terms of both 𝐷̄avg and 𝐷̄max. We further find that unlike

𝑁 × 1 networks, the max-link-rate policy no longer minimizes the delay in general

single-hop networks in spite of sufficient capacity. Moreover, we demonstrate that

the 𝐷̄avg and 𝐷̄max of the proposed min-delay policy keep stable among all the tested

cases. This matches Theorem 2.6 where the minimum 𝐷̄avg and 𝐷̄max depend only

on the ratio
∑︀𝑁𝑆

𝑖=1 𝜆𝑖/
∑︀𝑁𝐷

𝑗=1 𝜇𝑗 which are the same among all the tested samples2.

2.5.3 General Multi-Stage Networks

We further evaluate the performance of the tested policies over general multi-stage

networks with 𝐿 layers. We consider 7 multi-stage network structures listed in Table

2There are mild fluctuations over different tested samples due to rounding the real numbers to
integers.

62

Figure 2-12: CDFs of 𝐷̄avg and 𝐷̄max in 32× 16 single-hop networks

𝐷̄avg 𝐷̄max

BP/OPT MAX/OPT BP/OPT MAX/OPT

Mean 1.32 2.32 2.11 2.93
Max 3.58 12.38 12.66 16.29

Table 2.1: Mean and maximum ratios between the two policies for comparison and
the min-delay policy in terms of 𝐷̄avg and 𝐷̄max in 32× 16 single-hop networks

2.2, including different numbers of layers and fan-in-fan-out topologies. We consider

full connection between adjacent layers. We consider 500 different combinations of

parameter settings based on the following rules: (i) The arrival rate 𝜆𝑖 to each node

𝑛1
𝑖 at the ingress layer is uniformly distributed in [30, 50]; (ii) The service rate 𝜇𝑗 of

each node 𝑛𝐿
𝑗 at the egress layer is determined as 0.4 × 𝛼𝑗 ×

∑︀|𝒱1|
𝑖=1 𝜆𝑖 where 𝛼𝑗 is a

randomly picked weight for 𝑛𝐿
𝑗 with

∑︀|𝒱𝐿|
𝑗=1 𝛼𝑗 = 1. We consider sufficient capacity

over each pair of nodes at adjacent layers. We evaluate the 𝐷̄avg and 𝐷̄max of packets

that arrive within the first 50 time units.

Table 2.2 lists the evaluation results over all the tested multi-stage networks.

Columns 1 and 2 show the mean and maximum ratio between the backpressure policy,

or the max-link-rate policy and the proposed min-delay policy with respect to 𝐷̄avg

and 𝐷̄max respectively. Column 3 shows 𝐷̄max/𝐷̄avg under the backpressure policy

and the max-link-rate policy, which reflects the level of delay fairness of packets

injected into different ingress nodes. Note that 𝐷̄max/𝐷̄avg = 1 under the min-delay

policy as given in Theorem 2.3. The key takeaway is that both the backpressure and

max-link-rate policies lead to at least 1.3× 𝐷̄avg and 𝐷̄max of the min-delay policy on

average in all 7 tested structures, showing the delay reduction of the proposed policy

63

in general multi-stage networks. Moreover the mean imbalance ratios 𝐷̄max/𝐷̄avg for

both the backpressure and max-link-rate policy are up to 20% higher than the optimal

case over the tested instances. We visualize the CDFs of the 𝐷̄avg and 𝐷̄max of two

multi-stage networks: 16×12×8×6 in Fig. 2-13 and 15×12×9×12×15 in Fig. 2-14

for detailed characterization of their distributions. We can observe the backpressure

and the max-link-rate policy have different performance in these two topologies, while

our proposed policy achieves minimum delay in all the tested instances.

Topology Policy Ratio (𝐷̄avg) Ratio (𝐷̄max) 𝐷̄max/𝐷̄avg

Mean Max Mean Max Mean Max

16x12x16 BP 1.46 2.76 1.71 3.17 1.17 1.63
MAX 1.46 2.16 1.51 2.23 1.03 1.11

12x16x12 BP 1.77 3.06 2.14 4.55 1.20 1.65
MAX 1.47 2.29 1.52 2.43 1.03 1.08

16x12x8x6 BP 1.33 1.85 1.42 2.02 1.07 1.21
MAX 1.50 3.53 1.53 3.62 1.02 1.07

6x8x12x16 BP 1.31 2.41 1.34 2.63 1.02 1.11
MAX 1.35 2.13 1.38 2.16 1.02 1.06

15x12x9x12x15 BP 1.34 1.93 1.37 2.11 1.02 1.15
MAX 1.49 2.28 1.52 2.34 1.02 1.07

9x12x15x12x9 BP 1.53 2.70 1.56 2.71 1.02 1.09
MAX 1.45 2.74 1.47 2.76 1.01 1.07

12x12x12x12x12 BP 1.41 2.49 1.44 2.72 1.02 1.09
MAX 1.51 2.64 1.54 2.70 1.02 1.07

Table 2.2: Mean and maximum ratios between each of the two tested policies for
comparison and the proposed min-delay policy in terms of 𝐷̄avg (Column 1) and 𝐷̄max

(Column 2), and the ratios 𝐷̄max/𝐷̄avg of the tested policies themselves reflecting the
delay imbalance of packets injected into different ingress nodes (Column 3), over 7
multi-stage topologies.

2.6 Extensions and Discussions

In this section, we extend the main results on min-delay policy design to a wider range

of scenarios both in practice and in theory. For practice, we demonstrate that the

64

Figure 2-13: CDFs of 𝐷̄avg and 𝐷̄max in 16× 12× 8× 6 networks

Figure 2-14: CDFs of 𝐷̄avg and 𝐷̄max in 15× 12× 9× 12× 15 networks

explicit form of the min-delay condition (2.14) (i) facilitates co-optimization of delay

and other metrics in data center networks with routing constraints, (ii) provides

high flexibility in selecting 𝜆 based on different objectives in network control, and

(iii) guarantees feasibility when adjacent layers are fully connected with sufficient

capacity. For theory, we derive a more relaxed min-delay condition for tree data

center structures than the general condition (2.14), and discuss our conjecture on the

sufficient and necessary condition for delay minimization in multi-stage networks. We

consider static policies in the following discussion for brevity, where the queue-based

policies follow the same idea.

2.6.1 Practical Extensions

Multi-Objective Optimization with Routing Constraints

We have shown that a transmission rate vector g can achieve global minimum

queueing delay if it is a feasible solution subject to the constraints (2.14). This

result implies that we can co-optimize delay with some other metric 𝑓(g) under the

min-delay constraints (2.14) as follows.

65

min
g

𝑓(g) s.t. g ∈ (2.14). (2.19)

As long as 𝑓(g) is a convex function, (2.19) is a convex optimization problem

that can be efficiently solved since the min-delay constraints (2.14) are linear given

any 𝛾 ∈ R+. Common examples of 𝑓(g) include (i) minimizing total required

bandwidth 𝑓(g) =
∑︀

(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗 [103]; (ii) minimizing the maximum link rate

𝑓(g) = max(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗/𝑐𝑖𝑗 and average link rate 𝑓(g) = |ℰ|−1
∑︀

(𝑖,𝑗)∈ℰ (𝑔𝑖𝑗/𝑐𝑖𝑗) [92];

(iii) minimizing the maximum queue overload rate 𝑓(g) = max𝑖∈𝒱
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑔𝑘𝑖 −∑︀
𝑗:(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗 [90]; (iv) minimizing the maximum total queue growth at a layer

𝑓(g) = max𝑙=1,...,𝐿

∑︀
𝑖∈𝒱𝑙

(︁∑︀
𝑘:(𝑘,𝑖)∈ℰ 𝑔𝑘𝑖 −

∑︀
𝑗:(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗

)︁
. The high generality of 𝑓(g)

demonstrates the wide application of (2.19) for multi-objective optimization together

with delay minimization in data center networks.

We can further add constraints on the transmission rate vector g in (2.19) in

order to capture the restrictions on link rate control. Note that introducing any

convex constraint on g does not violate the convex property of (2.19). We give some

common examples. (i) Packets cannot go through link (𝑖, 𝑗): 𝑔𝑖𝑗 = 0; (ii) A maximum

ratio 𝛽 of packets can be transmitted from node 𝑖 to 𝑗: 𝑔𝑖𝑗 ≤ 𝛽
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑔𝑘𝑖

)︁
; (iii)

The maximum link utilization should not be higher than a threshold 𝜃 in order to

avoid link overflow: max(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗/𝑐𝑖𝑗 ≤ 𝜃.

Choices of 𝛾

Theorem 2.3 shows that both of the minimum 𝐷̄avg and 𝐷̄max are independent of

𝛾, however we show that 𝛾 affects the overload levels at different nodes and layers,

where a lower value of 𝛾𝑙 means a higher proportion of packets ingress to layer 𝑙

will be backlogged. We give an example on choosing 𝛾 to balance the total queue

growth rates among all the 𝐿 layers. Denote the total arrival rates at layer 1 by

𝜆sum :=
∑︀|𝒱1|

𝑖=1 𝜆𝑖 and the total service rates at layer 𝐿 by 𝜇sum :=
∑︀|𝒱𝐿|

𝑗=1 𝜇𝑗. Then

the state we pursue is that the total queue growth rate at each layer is equal to

66

(𝜆sum − 𝜇sum)/𝐿. The corresponding 𝛾 that reaches this state is

𝛾𝑙 =
𝜆sum − 𝑙−1

𝐿
(𝜆sum − 𝜇sum)

𝜆sum − 𝑙
𝐿
(𝜆sum − 𝜇sum)

, 𝑙 = 1, . . . , 𝐿. (2.20)

Note that we can easily derive a weighted version of (2.20) based on the node buffers

that can balance the buffer utilization at each layer [32,104,105]. The main point we

convey from this example is the high flexibility of choosing 𝛾 according to different

objectives in network control.

Feasibility

We point out that it is difficult to characterize the conditions on the existence of

a feasible transmission rate vector g subject to (2.14) in multi-stage networks under

general network topology and link capacities. Instead, we show in Proposition 2.1 the

existence of a solution under any given 𝛾 ∈ R+, considering full connection between

adjacent layers and sufficient link capacities so that the minimum network cut is∑︀|𝒱𝐿|
𝑖=1 𝜇𝑗. We leave the discussion of general topologies and link capacities to future

work.

Proposition 2.1. Consider an 𝐿-layer multi-stage network with full connections and

sufficient link capacities between adjacent layers. Given the arrival rate vector 𝜆

and the service rate vector 𝜇, there exists a feasible g that satisfies the min-delay

conditions (2.14) under any given 𝛾 ∈ R+.

Proof. Given a feasible 𝛾, we can construct a feasible solution to (2.14) as follows

based on the full connection and sufficient capacity constraints. For the 𝑙-th

layer (𝑙 < 𝐿), we first set its total egress rates as
∑︀

𝑛𝑙
𝑖∈𝒱𝑙

∑︀
𝑛𝑙+1
𝑗 :(𝑛𝑙

𝑖,𝑛
𝑙+1
𝑗)∈ℰ 𝑔𝑛𝑙

𝑖,𝑛
𝑙+1
𝑗

=(︁∑︀|𝒱1|
𝑖=1 𝜆𝑖

)︁∏︀𝑙
𝑙′=1 𝛾𝑙, and we randomly set a positive value for each 𝑛𝑙

𝑖 ∈ 𝒱𝑙,

denoted by 𝑔𝐸
𝑛𝑙
𝑖
, which represents the egress rate of node 𝑛𝑙

𝑖, subject to∑︀
𝑛𝑙
𝑖∈𝒱𝑙

𝑔𝐸
𝑛𝑙
𝑖

=
∑︀

𝑛𝑙
𝑖∈𝒱𝑙

∑︀
𝑛𝑙+1
𝑗 :(𝑛𝑙

𝑖,𝑛
𝑙+1
𝑗)∈ℰ 𝑔𝑛𝑙

𝑖,𝑛
𝑙+1
𝑗

. We can now figure out a feasible

67

solution that satisfies (2.14) by setting

𝑔𝑛𝑙
𝑖,𝑛

𝑙+1
𝑗

= 𝛾𝑙 × 𝑔𝐼𝑛𝑙
𝑖
×

⎛⎝𝑔𝐸
𝑛𝑙+1
𝑗

/

|𝒱𝑙+1|∑︁
𝑘=1

𝑔𝐸
𝑛𝑙+1
𝑘

⎞⎠
for ∀𝑛𝑙

𝑖 ∈ 𝒱𝑙 and ∀𝑛𝑙+1
𝑗 ∈ 𝒱𝑙+1 iteratively from layer 1 to 𝐿 − 1 to calculate 𝑔𝐼

𝑛𝑙
𝑖
, the

ingress to each node 𝑛𝑙
𝑖, where we define 𝑔𝐼

𝑛1
𝑖
:= 𝜆𝑖 for each of the ingress nodes 𝑛1

𝑖

and 𝑔𝐼
𝑛𝑙
𝑖
:=
∑︀

𝑛𝑙−1
𝑘 :(𝑛𝑙−1

𝑘 ,𝑛𝑙
𝑖)∈ℰ

𝑔𝑛𝑙−1
𝑘 ,𝑛𝑙

𝑖
.

Remark: The existence of feasible solutions to (2.14) itself does not indicate

minimum delay, which requires achieving maximum throughput in the meantime.

2.6.2 Theoretical Extensions

Tree Data Center Structure

A tree structure is a special case of the multi-stage network whose undirected topology

is a tree. We visualize an example of a 3-layer tree in Fig. 2-15, which contains 6

ingress nodes and a single egress node. We focus on the fan-in structure where

|𝒱𝑙+1| ≤ |𝒱𝑙|,∀𝑙 = 1, . . . , 𝐿−1 below, while the discussion of general fan-out structures

follows in a similar manner. We derive a sufficient condition on the link rates to

achieve minimum 𝐷̄avg and 𝐷̄max in Theorem 2.8 based on the parent source set of

an node 𝑛𝑙
𝑖 at a layer 𝑙, denoted by 𝑃𝑆𝑆[𝑛𝑙

𝑖], which is defined as all the nodes at

the ingress layer that are the parents of 𝑛𝑙
𝑖, and we set 𝑃𝑆𝑆[𝑛1

𝑖] = {𝑛1
𝑖 } for each

ingress node 𝑛1
𝑖 . In Fig. 2-15, we have 𝑃𝑆𝑆[𝑛2

1] = {𝑛1
1, 𝑛

1
2}, 𝑃𝑆𝑆[𝑛2

2] = {𝑛1
3, 𝑛

1
4},

𝑃𝑆𝑆[𝑛2
3] = {𝑛1

5, 𝑛
1
6}, and 𝑃𝑆𝑆[𝑛3

1] = 𝒱𝑆.

Theorem 2.8. Consider an 𝐿-layer tree data center structure. Any transmission

policy g that guarantees maximum throughput and in the meantime satisfies the

following conditions achieves minimum 𝐷̄avg and 𝐷̄max: For ∀𝑙 ∈ 2, . . . , 𝐿 and

∀𝑛𝑙
𝑗 ∈ 𝒱𝑙, we have

∑︀
𝑘∈𝑃𝑆𝑆[𝑛𝑙−1

𝑖
]
𝜆𝑘

𝑔
𝑛𝑙−1
𝑖

,𝑛𝑙
𝑗

= 𝛾𝑛𝑙
𝑗

for some 𝛾𝑛𝑙
𝑗
> 0 for ∀𝑛𝑙−1

𝑖 ∈ 𝒱𝑙−1 with

(𝑛𝑙−1
𝑖 , 𝑛𝑙

𝑗) ∈ ℰ.

68

Figure 2-15: A 3-layer fan-in tree data center example under min-delay transmission
policies derived in Theorem 2.8.

We prove Theorem 2.8 under a 3-layer 4×2×1 tree structure in Section 2.8 which

can be applied to general multi-layer tree structures. We explain Theorem 2.8 through

the example in Fig. 2-15. Layer 2 contains three nodes 𝑛2
1, 𝑛2

2, 𝑛2
3. The parents of

these three nodes at layer 1 are {𝑛1
1, 𝑛

1
2}, {𝑛1

3, 𝑛
1
4}, and {𝑛1

5, 𝑛
1
6} respectively. Then a

sufficient condition to achieve minimum delay in Theorem 2.8 corresponding to these

three nodes at layer 2 are ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜆1/𝑔𝑛1

1,𝑛
2
1
= 𝜆2/𝑔𝑛1

2,𝑛
2
1
= 𝛾𝑛2

1

𝜆3/𝑔𝑛1
3,𝑛

2
2
= 𝜆4/𝑔𝑛1

4,𝑛
2
2
= 𝛾𝑛2

2

𝜆5/𝑔𝑛1
5,𝑛

2
3
= 𝜆6/𝑔𝑛1

6,𝑛
2
3
= 𝛾𝑛2

3

(2.21)

for some 𝛾𝑛2
1
, 𝛾𝑛2

2
, 𝛾𝑛2

3
> 0. Similarly, layer 3 contains a single node 𝑛3

1, whose parents

are {𝑛2
1, 𝑛

2
2, 𝑛

2
3}. The corresponding condition for 𝑛3

1 is that for some 𝛾𝑛3
1
> 0,

𝜆1 + 𝜆2

𝑔𝑛2
1,𝑛

3
1

=
𝜆3 + 𝜆4

𝑔𝑛2
2,𝑛

3
1

=
𝜆5 + 𝜆6

𝑔𝑛2
3,𝑛

3
1

= 𝛾𝑛3
1

(2.22)

Combining (2.21) and (2.22) gives a sufficient condition on g to minimize 𝐷̄avg and

𝐷̄max for the 3-layer tree in Fig. 2-15 as long as maximum throughput is achieved.

An implication of Theorem 2.8 is that its min-delay condition also follows the

rate-proportional property, where the transmission rates of the egress links from the

same layer should be in the same proportion to the total external packet arrival rates

69

among their parent source sets. Moreover, it is straightforward to verify that any

policy that satisfies the general min-delay condition (2.14) in the tree structure must

satisfy the condition in Theorem 2.8. This means Theorem 2.8 gives a more relaxed

sufficient condition on link rate control to minimize delay than applying (2.14) directly

to the tree.

Conjecture on Sufficient and Necessary Conditions

We have yet derived the necessary conditions to achieve minimum delay in general

multi-stage networks. The challenge is to characterize all the min-delay policies due

to the possible switching from non-zero to zero queue length at some nodes whose

egress rates are greater than ingress rates in the time window [𝑡0, 𝑡0 + 𝑇]. The 𝑁 × 1

network is the special case that we can fully characterize the complete set of min-delay

policies, as shown in Theorem 2.1.

We conjecture that the crux lies in that the actual transmission rate of a link (𝑖, 𝑗)

starting from a node with zero queue length are not equal to the transmission rate

we originally set. Consider the example where a node 𝑖 at a layer 𝑙 with links (1, 𝑖),

(2, 𝑖), (𝑖, 3), and (𝑖, 4), where node 1 and 2 are at layer 𝑙−1, node 3 and 4 are at layer

𝑙+ 1. Suppose we set 𝑔1𝑖 = 1, 𝑔2𝑖 = 2, 𝑔𝑖3 = 𝑔𝑖4 = 3. Clearly 𝑔1𝑖 + 𝑔2𝑖 < 𝑔𝑖3 + 𝑔𝑖4 thus

𝑞𝑖(𝑡) = 0 starting from some time. Since the definition of link rate is the number of

packets transmitted over this link in a time unit, there are 3 units of packets injected

into node 𝑖 at time 𝑡, and 1.5 units will be served to each of the egress links (𝑖, 3) and

(𝑖, 4), and thus the actual transmission rates over (𝑖, 3) and (𝑖, 4) are both 1.5, less

than 𝑔𝑖3 = 𝑔𝑖4 = 3. Following this idea, given the transmission rate vector g we set, we

can obtain the actual transmission rates denoted by g̃ based on (2.23) starting from

the ingress layer in multi-stage networks: For ∀𝑙 = 1, . . . , 𝐿− 1, ∀𝑖 ∈ 𝒱𝑙, 𝑗 ∈ 𝒱𝑙+1,

𝑔𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑔𝑖𝑗, if

∑︀
𝑘∈𝒱𝑙−1

𝑔𝑘𝑖 ≥
∑︀

𝑘∈𝒱𝑙+1

𝑔𝑖𝑘

𝑔𝑖𝑗

∑︀
𝑘∈𝒱𝑙−1

𝑔𝑘𝑖∑︀
𝑘∈𝒱𝑙+1

𝑔𝑖𝑘
, o.w.

= 𝑔𝑖𝑗 min

{︃
1,

∑︀
𝑘∈𝒱𝑙−1

𝑔𝑘𝑖∑︀
𝑘∈𝒱𝑙+1

𝑔𝑖𝑘

}︃
(2.23)

where we define
∑︀

𝑘∈𝒱0
𝑔𝑘𝑖 := 𝜆𝑖, ∀𝑖 ∈ 𝒱1 to incorporate the ingress layer in (2.23).

70

We have the following conjecture of the sufficient and necessary condition to minimize

𝐷̄avg and 𝐷̄max based on actual transmission rate vector g̃.

Conjecture 2.1. Consider an 𝐿-layer multi-stage network. The sufficient and

necessary condition of a transmission policy g to minimize both 𝐷̄avg and 𝐷̄max is

that its corresponding actual transmission rate vector g̃ satisfies (2.14) and achieves

maximum throughput.

We can validate the conjecture in 𝑁 × 1 networks based on Fig. 2-5: Any g such

that 𝑔𝑖 ≥ 𝜆𝑖, ∀𝑖 = 1, . . . , 𝑁 leads to minimum delay, and its corresponding 𝑔𝑖 = 𝜆𝑖

and thus {𝑔𝑖}𝑁𝑖=1 are in proportion to {𝜆𝑖}𝑁𝑖=1. However, if there is a single 𝑖0 ∈ 𝒱𝑆
such that 𝑔𝑖0 < 𝜆𝑖0 , which does not induce minimum delay, then clearly 𝑔𝑖0 = 𝑔𝑖0 and

thus 𝑔𝑖0/𝜆𝑖0 < 𝑔𝑖/𝜆𝑖 = 1, ∀𝑖 ̸= 𝑖0, i.e., (2.14) does not hold for g̃. We further visualize

an example of 2 × 2 networks in Fig. 2-16 to explain the conjecture. Furthermore,

we point out that the conjecture can be generalized to queue-based policies, where

we require that the corresponding actual transmission rate vector g̃(q(𝑡)) meets

the queue-proportional condition (2.18) and maximum throughput requirement in

Theorem 2.7. We leave the proof of this conjecture to future work.

Figure 2-16: Validation of Conjecture 2.1 in 2 × 2 single-hop networks, where the
notation 𝑥(𝑦) over a link (𝑖, 𝑗) means 𝑔𝑖𝑗 = 𝑥 and its actual transmission rate 𝑔𝑖𝑗 = 𝑦
calculated based on (2.23): (a) setting g = [4, 4, 5, 5] leads to g̃ = [2, 2, 4, 4] which
satisfies (2.18) thus min-delay; (b) setting g = [4, 4, 5, 15] leads to g̃ = [2, 2, 2, 6] which
does not satisfy (2.18) thus not min-delay.

71

2.7 Summary and Future Work

We study link rate control for queueing delay minimization in overloaded networks.

Leveraging the fluid queueing model, we show that any static rate-proportional policy,

which guarantees identical ratios between the ingress and egress rates of all the nodes

at each layer, minimizes the average delay 𝐷̄avg and the maximum ingress delay 𝐷̄max

in general single-hop and multi-stage networks. We further extend the result to the

queue-proportional policies which can achieve asymptotically minimum delay based

on real-time queue information agnostic of packet arrival rates. We evaluate the

performance of our proposed policies under different network settings, validate their

min-delay property, and demonstrate their superiority in delay reduction compared

with the backpressure policy and the max-link-rate policy. We finally discuss the

extensions of the main results in practice and in theory. We envision multiple future

directions including proving sufficient and necessary conditions on link rate control

for delay minimization in general multi-stage networks, the extension of main results

to multi-hop networks, and the implementation of the proposed policies in real data

center networks.

2.8 Chapter Appendix

2.8.1 Proof of Theorem 2.2

We present the proof sketch here. Due to the space limit, we only prove for 𝐷̄avg,

where 𝐷̄max is similar. For packets that arrive at the ingress node 𝑠1 at time 𝑡 and

72

finally transmitted to the egress node 𝑑1, the total queueing delay is

𝐷𝑠1𝑑1(𝑡) =
𝑞𝑠1(𝑡)

𝑔11 + 𝑔12
+

𝑞𝑑1

(︁
𝑡+

𝑞𝑠1 (𝑡)

𝑔11+𝑔12

)︁
𝜇1

=
𝑞𝑠1(𝑡)

𝑔11 + 𝑔12
+

1

𝜇1

max

{︂
0, 𝑞𝑑1(𝑡) +

𝑞𝑠1(𝑡)

𝑔11 + 𝑔12
(𝑔11 + 𝑔21 − 𝜇)

}︂

=

⎧⎪⎨⎪⎩
𝑞𝑑1 (𝑡)

𝜇1
+

𝑞𝑠1 (𝑡)

𝜇1

𝑔11+𝑔21
𝑔11+𝑔12

, 𝑔11 + 𝑔21 ≥ 𝜇1

𝑞𝑠1 (𝑡)

𝑔11+𝑔12
, 𝑔11 + 𝑔21 < 𝜇1

Since q(𝑡0) = 0, then the average delay for packets from 𝑠1 to 𝑑1, denoted as 𝐷̄𝑠1𝑑1 , is

𝐷̄𝑠1𝑑1 :=
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝐷𝑠1𝑑1(𝑡)𝑑𝑡

=

⎧⎪⎨⎪⎩
𝑇
2𝜇1

(𝑔11 + 𝑔21 − 𝜇1) +
𝑇
2𝜇1

𝑔11+𝑔21
𝑔11+𝑔12

max{𝜆1 − 𝑔11 − 𝑔12, 0}, 𝑔11 + 𝑔21 ≥ 𝜇1

𝑇
2(𝑔11+𝑔21)

max {𝜆1 − 𝑔11 − 𝑔12, 0} , 𝑔11 + 𝑔21 ≤ 𝜇1

We can verify that among all transmission rate vectors g’s that 𝑔11 + 𝑔21 ≤ 𝜇1, the

g’s that satisfy 𝑔11+𝑔21 = 𝜇1 achieve minimum delay3. Therefore the minimum delay

achieved under 𝑔11 + 𝑔21 ≥ 𝜇1 is exactly the global optimum, under which

𝐷̄𝑠1𝑑1 =

⎧⎪⎨⎪⎩
𝑇
2𝜇1

(︁
𝜆1

𝑔11+𝑔21
𝑔11+𝑔12

− 𝜇1

)︁
, 𝑔11 + 𝑔12 ≤ 𝜆1

𝑇
2𝜇1

(𝑔11 + 𝑔21 − 𝜇1) , 𝑔11 + 𝑔12 ≥ 𝜆1

Generally, we can obtain that for any (𝑖, 𝑗) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)},

𝐷̄𝑠𝑖𝑑𝑗 =

⎧⎪⎨⎪⎩
𝑇
2𝜇𝑗

(︁
𝜆𝑖

𝑔1𝑗+𝑔2𝑗
𝑔𝑖1+𝑔𝑖2

− 𝜇𝑗

)︁
, 𝑔𝑖1 + 𝑔𝑖2 ≤ 𝜆𝑖

𝑇
2𝜇𝑗

(𝑔1𝑗 + 𝑔2𝑗 − 𝜇2) , 𝑔𝑖1 + 𝑔𝑖2 ≥ 𝜆𝑖

3The intuition is clear that 𝑔11 + 𝑔21 < 𝜇1 does not fully utilize the service capability of node 𝑑1.

73

Therefore, we have

𝐷̄avg =
𝜆1

𝜆1 + 𝜆2

𝑔11
𝑔11 + 𝑔12

𝐷̄𝑠1𝑑1 +
𝜆1

𝜆1 + 𝜆2

𝑔12
𝑔11 + 𝑔12

𝐷̄𝑠1𝑑2

+
𝜆2

𝜆1 + 𝜆2

𝑔21
𝑔21 + 𝑔22

𝐷̄𝑠2𝑑1 +
𝜆2

𝜆1 + 𝜆2

𝑔22
𝑔21 + 𝑔22

𝐷̄𝑠2𝑑2

where 𝜆𝑖

𝜆1+𝜆2

𝑔𝑖𝑗
𝑔𝑖1+𝑔𝑖2

denotes the portion of packets from 𝑠𝑖 to 𝑑𝑗 that arrive within

[𝑡0, 𝑡0+𝑇]. We again consider the four regions {g | 𝑔11+ 𝑔12 ≶ 𝜆1, 𝑔21+ 𝑔22 ≶ 𝜆2} and

prove that the optimal solutions constrained in each region are all global optimum.

Due to space limit we only show the details of the case 𝑔11+ 𝑔12 ≤ 𝜆1, 𝑔21+ 𝑔22 ≤ 𝜆2.

In this case, the average delay of packets that arrive in [𝑡0, 𝑡0 + 𝑇] among all ingress

nodes is

𝐷̄avg :=
𝜆1

𝑔11
𝑔11+𝑔12

𝐷𝑠1𝑑1 + 𝜆1
𝑔12

𝑔11+𝑔12
𝐷𝑠1𝑑2 + 𝜆2

𝑔21
𝑔21+𝑔22

𝐷𝑠2𝑑1 + 𝜆2
𝑔22

𝑔21+𝑔22
𝐷𝑠2𝑑2

𝜆1 + 𝜆2

∼ 𝑔11 + 𝑔21
𝜇1

(︃
𝜆2
1

𝑔11

(︂
𝑔11

𝑔11 + 𝑔12

)︂2

+
𝜆2
2

𝑔21

(︂
𝑔21

𝑔21 + 𝑔22

)︂2
)︃

+
𝑔12 + 𝑔22

𝜇2

(︃
𝜆2
1

𝑔12

(︂
𝑔12

𝑔11 + 𝑔12

)︂2

+
𝜆2
2

𝑔22

(︂
𝑔22

𝑔21 + 𝑔22

)︂2
)︃

=
1

𝜇1

(︂
𝜆2
1𝑥

2 + 𝜆2
2𝑦

2 + 𝜆2
1𝑥

2 𝑔21
𝑔11

+ 𝜆2
2𝑦

2 𝑔11
𝑔21

)︂
+

1

𝜇2

(︂
𝜆2
1(1− 𝑥)2 + 𝜆2

2(1− 𝑦)2 + 𝜆2
1(1− 𝑥)2

𝑔22
𝑔12

+ 𝜆2
2(1− 𝑦)2

𝑔12
𝑔22

)︂
(i)
≥ 1

𝜇1

(𝜆1𝑥+ 𝜆2𝑦)
2 +

1

𝜇2

(𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))2

(ii)
≥ 𝑇

2(𝜇1 + 𝜇2)
(𝜆1 + 𝜆2)−

𝑇

2
=

𝑇

2(𝜇1 + 𝜇2)
(𝜆1 + 𝜆2 − 𝜇1 − 𝜇2)

where ∼ means removing constant terms, 𝑥 := 𝑔11
𝑔11+𝑔12

, and 𝑦 := 𝑔21
𝑔21+𝑔22

. The

inequality (i) stems from Cauchy-Schwartz Inequality, which turns into equality when
𝑔11
𝑔21

= 𝜆1𝑥
𝜆2𝑦

, 𝑔12
𝑔22

= 𝜆1(1−𝑥)
𝜆2(1−𝑦)

and equivalently,

𝑔11 + 𝑔12
𝑔21 + 𝑔22

=
𝜆1

𝜆2

. (2.24)

74

The inequality (ii) holds due to solving

min
𝑥,𝑦∈[0,1]

1

𝜇1

(𝜆1𝑥+ 𝜆2𝑦)
2 +

1

𝜇2

(𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))2

where the optimal (𝑥, 𝑦) satisfies

⎧⎪⎨⎪⎩𝜆1𝑥+ 𝜆2𝑦 = 𝜆1+𝜆2

𝜇2

(︁
1
𝜇1

+ 1
𝜇2

)︁−1

𝜆1(1− 𝑥) + 𝜆2(1− 𝑦) = 𝜆1+𝜆2

𝜇1

(︁
1
𝜇1

+ 1
𝜇2

)︁−1

which, combined with (2.24), is equivalent to

⎧⎪⎨⎪⎩
𝜆2

𝜆1+𝜆2

𝑔11+𝑔21
𝑔21+𝑔22

= 𝜇1

𝜇1+𝜇2

𝜆2

𝜆1+𝜆2

𝑔12+𝑔22
𝑔21+𝑔22

= 𝜇2

𝜇1+𝜇2

and thus
𝑔11 + 𝑔21
𝑔12 + 𝑔22

=
𝜇1

𝜇2

(2.25)

suffices to make the inequality (ii) achieve its lower bound. Therefore (2.24) and (2.25)

with 𝑔11 + 𝑔21 ≥ 𝜇1, 𝑔12 + 𝑔22 ≥ 𝜇2 give us the sufficient and necessary condition on

g to minimize 𝐷̄avg under 𝑔11 + 𝑔12 ≤ 𝜆1 and 𝑔21 + 𝑔22 ≤ 𝜆2.

2.8.2 Proof of Theorem 2.3

We prove the min-delay conditions on static transmission policies under a 3-layer

network with 2 nodes at each layer, and links connecting each pair of nodes at adjacent

layers, as shown in Fig. 2-17. Note that we re-index each node from 1 to 6 to increase

readability of the proof. The results can be smoothly extended to general 𝐿-layer

networks with arbitrary numbers of nodes at each layer and links between adjacent

layers. For simplicity, we consider zero initial queue length of each node.

Note that we can classify all the packets going through the 3-layer network by

their paths. We characterize the total queueing delay of a packet taking the path

1→ 3→ 5 as in (2.26), where the other possible paths are in similar form.

75

Figure 2-17: An example of a 3-layer 2× 2× 2 network

𝐷135 =
𝑞1(𝑡)

𝑔13 + 𝑔14
+

𝑞3

(︁
𝑡+ 𝑞1(𝑡)

𝑔13+𝑔14

)︁
𝑔35 + 𝑔36

+

𝑞5

(︂
𝑡+ 𝑞1(𝑡)

𝑔13+𝑔14
+

𝑞3
(︁
𝑡+

𝑞1(𝑡)
𝑔13+𝑔14

)︁
𝑔35+𝑔36

)︂
𝜇

(𝑎)
= 𝑞1(𝑡)×

1

𝑔13 + 𝑔14
× 𝑔13 + 𝑔23

𝑔35 + 𝑔36
× 𝑔35 + 𝑔45

𝜇1

+ 𝑞3(𝑡)×
1

𝑔35 + 𝑔36
× 𝑔35 + 𝑔45

𝜇1

+ 𝑞5(𝑡)×
1

𝜇1

(𝑏)
=

(︂
𝜆1

𝑔13 + 𝑔14
× 𝑔13 + 𝑔23

𝑔35 + 𝑔36
× 𝑔35 + 𝑔45

𝜇1

− 1

)︂
𝑡

(2.26)

where (𝑎) stems from the expansion of 𝑞3
(︁
𝑡+ 𝑞1(𝑡)

𝑔13+𝑔14

)︁
and 𝑞5

(︂
𝑡+ 𝑞1(𝑡)

𝑔13+𝑔14
+

𝑞3
(︁
𝑡+

𝑞1(𝑡)
𝑔13+𝑔14

)︁
𝑔35+𝑔36

)︂
into a linear combination of 𝑞1(𝑡), 𝑞3(𝑡), and 𝑞5(𝑡), for example

𝑞3

(︂
𝑡+

𝑞1(𝑡)

𝑔13 + 𝑔14

)︂
= 𝑞3(𝑡) +

𝑞1(𝑡)

𝑔13 + 𝑔14
× (𝑔13 + 𝑔23 − 𝑔34 − 𝑔35)

and similarly for 𝑞5
(︂
𝑡+ 𝑞1(𝑡)

𝑔13+𝑔14
+

𝑞3
(︁
𝑡+

𝑞1(𝑡)
𝑔13+𝑔14

)︁
𝑔35+𝑔36

)︂
; (b) is due to 𝑞1(𝑡) = (𝜆1−𝑔13−𝑔14)𝑡,

𝑞3(𝑡) = (𝑔13+ 𝑔23− 𝑔34− 𝑔35)𝑡, and 𝑞5(𝑡) = (𝑔35+ 𝑔45−𝜇1)𝑡. We can similarly express

the queueing delay of packets taking the other 7 paths.

We can then express the average queueing delay of packets that arrive to the

network in overload within time window [0, 𝑇] as 𝐷̄avg :=
∑︀

𝑝∈𝒫 𝑤𝑝𝐷𝑝, where 𝒫

denotes the set of possible paths of packets, and 𝑤𝑝 denotes the proportion of the

packets that take the path 𝑝. For example,

𝑤135 = 𝜆1
𝑔13

𝑔13 + 𝑔14

𝑔35
𝑔35 + 𝑔36

,

76

and similarly for the other paths. In the following, we derive the conditions on the

transmission rate vector g that minimizes 𝐷̄avg. We first consider the sum of the

weighted delay for two paths 1→ 3→ 5 and 2→ 3→ 5, which can be derived as

𝑤135𝐷135 + 𝑤235𝐷235 =
𝑔13 + 𝑔23

𝜇1

× 𝑔35(𝑔35 + 𝑔45)

(𝑔35 + 𝑔36)2
×
(︂
𝜆2
1

𝑔13
(𝑔13 + 𝑔14)2

+ 𝜆2
2

𝑔23
(𝑔23 + 𝑔24)2

)︂
=

1

𝜇1

× 𝑔35(𝑔35 + 𝑔45)

(𝑔35 + 𝑔36)2
×
(︂
𝜆2
1𝑥

2 + 𝜆2
2𝑦

2 + 𝜆2
1𝑥

2 𝑔23
𝑔13

+ 𝜆2
2𝑦

2 𝑔13
𝑔23

)︂
≥ 1

𝜇1

× 𝑔35(𝑔35 + 𝑔45)

(𝑔35 + 𝑔36)2
(𝜆1𝑥+ 𝜆2𝑦)

2

where 𝑥 = 𝑔13
𝑔13+𝑔14

and 𝑦 = 𝑔23
𝑔23+𝑔24

, and the last inequality is based on Cauchy-Schwartz

inequality, where the condition of link rates to reach the lower bound is

𝜆1𝑥

𝜆2𝑦
=

𝑔13
𝑔23

. (2.27)

We can similarly derive the same condition (2.27) for the sum 𝑤136𝐷136 + 𝑤236𝐷236

reaching its lower bound. For the other two sums 𝑤145𝐷145+𝑤245𝐷245 and 𝑤146𝐷146+

𝑤246𝐷246, the condition becomes

𝜆1(1− 𝑥)

𝜆2(1− 𝑦)
=

𝑔14
𝑔24

. (2.28)

Note that with 𝑥 = 𝑔13
𝑔13+𝑔14

and 𝑦 = 𝑔23
𝑔23+𝑔24

, both (2.27) and (2.28) lead to the

condition
𝑔13 + 𝑔14
𝑔23 + 𝑔24

=
𝜆1

𝜆2

. (2.29)

Suppose that (2.29) is satisfied below. We can further extend the above idea

to derive the min-delay transmission rates between layer 2 and 3. Specifically, let

𝑧 = 𝑔35
𝑔35+𝑔36

, 𝑤 = 𝑔45
𝑔45+𝑔46

, then we have

𝑤135𝐷135 + 𝑤235𝐷235 + 𝑤145𝐷145 + 𝑤245𝐷245

=
1

𝜇1

(︀
(𝜆1𝑥+ 𝜆2𝑦)

2𝑧2
(︀
1 +

𝑔45
𝑔35

)︀
+ (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))2𝑤2

(︀
1 +

𝑔35
𝑔45

)︀)︀
≥ 1

𝜇1

((𝜆1𝑥+ 𝜆2𝑦)𝑧 + (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))𝑤)2

77

where the condition that achieves the lower bound is

𝑧(𝜆1𝑥+ 𝜆2𝑦)

𝑤(𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))
=

𝑔35
𝑔45

=
𝑔35 + 𝑔36
𝑔45 + 𝑔46

=
𝜆1𝑥+ 𝜆2𝑦

𝜆1(1− 𝑥) + 𝜆2(1− 𝑦)
. (2.30)

The other half 𝑤136𝐷136+𝑤236𝐷236+𝑤146𝐷146+𝑤246𝐷246 leads to the same condition

as in (2.30).

Suppose that (2.30) is satisfied below. The problem to minimize the average

queueing delay now becomes

min
𝑥,𝑦,𝑧,𝑤

1

𝜇1

((𝜆1𝑥+ 𝜆2𝑦)𝑧 + (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))𝑤)2

+
1

𝜇2

((𝜆1𝑥+ 𝜆2𝑦)(1− 𝑧) + (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))(1− 𝑤))2

Based on the Cauchy-Schwartz inequality, the optimal condition is that

(𝜆1𝑥+ 𝜆2𝑦)𝑧 + (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))𝑤

(𝜆1𝑥+ 𝜆2𝑦)(1− 𝑧) + (𝜆1(1− 𝑥) + 𝜆2(1− 𝑦))(1− 𝑤)
=

𝜇1

𝜇2

(2.31)

We combine the three optimal conditions (2.29), (2.30), and (2.31) which

altogether reach the lower bound of the average queuing delay of packets. We

simplify them and obtain the min-delay constraints that reach the lower bound as

follows. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜆1

𝜆2
= 𝑔13+𝑔14

𝑔23+𝑔24

𝑔13+𝑔23
𝑔14+𝑔24

= 𝑔35+𝑔36
𝑔45+𝑔46

𝑔35+𝑔45
𝑔36+𝑔46

= 𝜇1

𝜇2

(2.32)

which means to guarantee an identical ratio between the ingress and egress rates

of each node at a layer. Combining (2.32) and the condition to achieve maximum

throughput in the network, we obtain a sufficient condition on a policy that minimizes

the average queueing delay. We can derive similarly for 𝐷̄max minimization, which is

the maximum average queueing delay of a packet in the network over different ingress

nodes.

78

2.8.3 Proof of Theorem 2.8

We give the proof of a 4 × 2 × 1 tree structure, where 𝒱1 = {𝑛1
1, 𝑛

1
2, 𝑛

1
3, 𝑛

1
4}, 𝒱2 =

{𝑛2
1, 𝑛

2
2}, 𝒱3 = {𝑛3

1}. We denote the total queueing delay of a packet injected into

node 𝑛1
𝑖 at the ingress layer at time 𝑡 as 𝐷𝑖(𝑡), which is composed of the queueing

delay at each of the 3 layers. For example,

𝐷1(𝑡) =
𝑞𝑛1

1
(𝑡)

𝑔𝑛1
1,𝑛

2
1

+

𝑞𝑛2
1

(︂
𝑡+

𝑞
𝑛1
1
(𝑡)

𝑔
𝑛1
1,𝑛

2
1

)︂
𝑔𝑛2

1,𝑛
3
1

+

𝑞𝑛3
1

⎛⎜⎝𝑡+
𝑞
𝑛1
1
(𝑡)

𝑔
𝑛1
1,𝑛

2
1

+
𝑞
𝑛2
1

(︃
𝑡+

𝑞
𝑛1
1
(𝑡)

𝑔
𝑛1
1,𝑛

2
1

)︃
𝑔
𝑛2
1,𝑛

3
1

⎞⎟⎠
𝜇

which is similar for 𝐷2(𝑡), 𝐷3(𝑡), and 𝐷4(𝑡). We only show the derivation associated

with packets that are injected into the network at node 𝑛1
1. For simplicity, we only

show the derivation of the case where all the nodes have positive length during

overload, where the min-delay conditions also hold for the other cases. We can simplify

𝐷1(𝑡) as

𝐷1(𝑡) = 𝑞𝑛1
1
(𝑡)

(︃
𝑔𝑛2

1,𝑛
3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝜇
×

𝑔𝑛1
1,𝑛

2
1
+ 𝑔𝑛1

2,𝑛
2
1

𝑔𝑛2
1,𝑛

3
1

× 1

𝑔𝑛1
1,𝑛

2
1

)︃

+ 𝑞𝑛2
1
(𝑡)×

𝑔𝑛2
1,𝑛

3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝜇
× 1

𝑔𝑛2
1,𝑛

3
1

+ 𝑞𝑛3
1

1

𝜇

and by expressing 𝑞𝑖(𝑡) as the multiplication of 𝑡 (assuming 𝑡0 = 0) and the queue

growth rate, we have

𝐷1 :=
1

𝑇

∫︁ 𝑇

0

𝐷1(𝑡)𝑑𝑡 =
𝑇

2𝜇

(︃
𝜆1 ×

𝑔𝑛2
1,𝑛

3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝑔𝑛2
1,𝑛

3
1

×
𝑔𝑛1

1,𝑛
2
1
+ 𝑔𝑛1

2,𝑛
2
1

𝑔𝑛1
1,𝑛

2
1

− 𝜇

)︃
.

79

We can now express the average delay 𝐷̄avg as

𝐷̄avg :=

∑︀4
𝑖=1 𝜆𝑖𝐷𝑖∑︀4
𝑖=1 𝜆𝑖

(𝑎)∼
𝑔𝑛2

1,𝑛
3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝑔𝑛2
1,𝑛

3
1

(︃
𝜆2
1

𝑔𝑛1
1,𝑛

2
1
+ 𝑔𝑛1

2,𝑛
2
1

𝑔𝑛1
1,𝑛

2
1

+ 𝜆2
2

𝑔𝑛1
1,𝑛

2
1
+ 𝑔𝑛1

2,𝑛
2
1

𝑔𝑛1
2,𝑛

2
1

)︃

+
𝑔𝑛2

1,𝑛
3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝑔𝑛2
2,𝑛

3
1

(︃
𝜆2
3

𝑔𝑛1
3,𝑛

2
2
+ 𝑔𝑛1

4,𝑛
2
2

𝑔𝑛1
3,𝑛

2
2

+ 𝜆2
4

𝑔𝑛1
3,𝑛

2
2
+ 𝑔𝑛1

4,𝑛
2
2

𝑔𝑛1
4,𝑛

2
2

)︃
(𝑏)

≥
𝑔𝑛2

1,𝑛
3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝑔𝑛2
1,𝑛

3
1

(𝜆1 + 𝜆2)
2 +

𝑔𝑛2
1,𝑛

3
1
+ 𝑔𝑛2

2,𝑛
3
1

𝑔𝑛2
2,𝑛

3
1

(𝜆3 + 𝜆4)
2

(𝑐)

≥ (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4)
2

(2.33)

where at (a) we remove the constant additive and multiplicative terms, and at (b)

and (c) we apply the Cauchy-Schwarz inequality. The conditions to achieve equality

at (b) are
𝑔𝑛1

1,𝑛
2
1

𝑔𝑛1
2,𝑛

2
1

=
𝜆1

𝜆2

,
𝑔𝑛1

3,𝑛
2
2

𝑔𝑛1
4,𝑛

2
2

=
𝜆3

𝜆4

, (2.34)

and the condition to achieve equality at (c) is

𝑔𝑛2
1,𝑛

3
1

𝑔𝑛2
2,𝑛

3
1

=
𝜆1 + 𝜆2

𝜆3 + 𝜆4

. (2.35)

Therefore any policy that satisfies (2.34) and (2.35) leads to minimum 𝐷̄avg, which is
𝑇
2𝜇

max
{︀(︀∑︀4

𝑖=1 𝜆𝑖 − 𝜇
)︀
, 0
}︀
. Similarly, we can show (2.34) and (2.35) together form a

sufficient condition to minimize the maximum ingress delay 𝐷̄max.

80

Chapter 3

Overload Balancing in Networks with

Bounded Buffers

In this chapter, we consider overload balancing in single-hop networks with bounded

buffers. We show that the backpressure policy, which is known to achieve the most

balanced overload for networks with unbounded buffers, does not balance the overload

for networks with bounded buffers. We formulate the problem of overload balancing in

single-hop networks with bounded buffers by leveraging ordinary differential equations

(ODE) to model the queue dynamics. We prove that choosing service rates on each

transmission link that minimizes the quadratic sum of queue overload rates leads

to the most balanced overload. Based on this result, we propose a queue-based

policy combining maxweight scheduling with backpressure, which can asymptotically

achieve the most balanced overload agnostic of packet arrival rate and capacity

information. The proof technique is based on a novel characterization of the policy

in a differentiable form, which is of independent interest. We further propose a

distributed version of the policy, which reduces overhead by an order of magnitude.

We evaluate our proposed policies under single-hop network and their concatenation

into Clos structure, under randomly selected packet arrival rates, link capacities, and

buffer sizes. Results demonstrate that our proposed policy converges to the most

balanced overload in all cases, and the distributed version is nearly optimal.

81

3.1 Motivating Example

We explain the motivation of redesigning transmission policies for balancing the

overload in networks with bounded buffers. Consider the 3 × 1 switched network in

Fig. 3-1. According to [3], if the egress node 𝑑 has unbounded buffer, the backpressure

policy1 guarantees that in the steady state, the queue overload rates in all 4 nodes

are the same, which is most balanced. However, if node 𝑑 has bounded buffer,

which means its buffer size is finite, then backpressure will fill up the buffer in

the steady state, and lead to overload imbalance as explained in the figure caption.

Therefore, figuring out effective transmission policies to balance the queue overload

in bounded-buffer systems is nontrivial and practically significant.

Figure 3-1: Suppose all ingress nodes have unbounded buffer. When node 𝑑 has
unbounded buffer, backpressure achieves most balanced overload rates where all 4
nodes grow with rate 3.75; When node 𝑑 has finite buffer, then 𝑞𝑑 = 0 in the
steady state due to buffer saturation, and backpressure achieves overload rates
(𝑞𝑠1 , 𝑞𝑠2 , 𝑞𝑠3 , 𝑞𝑑) = (2, 5, 8, 0), deviating significantly from the most balanced one
(5, 5, 5, 0).

In this chapter, we propose a general analytical framework based on ordinary

differential equations (ODE) to characterize queue dynamics, which we demonstrate

can capture general buffer settings, and facilitate analytical results and policy design.

We concentrate on single-hop networks modeled as a bipartite graph connecting

ingress and egress nodes, each with a buffer to store incoming packets. This work can
1The definition of backpressure is deferred to Section 3.4 (eqn. (3.8)).

82

serve as the foundation for future work on multi-hop structures, such as datacenter

network that are made up of multiple single-hop structures [17].

3.2 Model and Problem Formulation

3.2.1 Queue Dynamic Model

In this section, we introduce the ODE model for queue dynamics in single-hop network

structure. We use a bipartite graph (𝒱 , ℰ) to model the network, where 𝒱 := {𝒱𝐼 ,𝒱𝐸}

denotes the node set with 𝒱𝐼 the set of ingress nodes, 𝒱𝐸 the set of egress nodes, ℰ the

set of transmission links between 𝒱𝐼 and 𝒱𝐸, and |𝒱𝐼 | = 𝑁 and |𝒱𝐸| = 𝑀 . We term it

as an 𝑁×𝑀 single-hop network. Denote the 𝑖th ingress node as 𝑠𝑖 and the 𝑗th egress

node as 𝑑𝑗. Each node 𝑘 has a buffer that stores the packets, whose size is denoted

by 𝑏𝑘. The packets in each node 𝑘 form a queue, whose length at time 𝑡 is denoted by

𝑞𝑘(𝑡). Therefore 𝑞𝑘(𝑡) ∈ [0, 𝑏𝑘],∀𝑘,∀𝑡, which means that queue length cannot surpass

the buffer size. We do not allow packet transmission to a saturated node. This is

desirable in practice since it prevents packet dropping and significantly reduces the

retransmission delay due to buffer overflow [2, 106], and can be implemented simply

with a detection signal of the saturation level of downstream buffers. Packets will be

backlogged until there exists spare buffer storage downstream.

Each packet arrives to one of the ingress nodes and departs from one of the egress

nodes. The packet arrival rate at ingress node 𝑠𝑖, denoted by 𝜆𝑖, represents the average

number of packets that are injected into 𝑠𝑖 in a time unit. We use 𝜆 := {𝜆𝑖}𝑁𝑖=1 to

denote the packet arrival rate vector. Packets in the buffer of 𝑠𝑖 are transmitted to

an adjacent egress node 𝑑𝑗 through link (𝑠𝑖, 𝑑𝑗) ∈ ℰ . The transmission rate on link

(𝑠𝑖, 𝑑𝑗) at time 𝑡, denoted by 𝑔𝑠𝑖𝑑𝑗(𝑡), represents the number of packets transmitted

over (𝑠𝑖, 𝑑𝑗) in a time unit. Each link (𝑠𝑖, 𝑑𝑗) is associated with a capacity value

𝑐𝑠𝑖𝑑𝑗 , which represents its maximum transmission rate. Specifically, 0 ≤ 𝑔𝑠𝑖𝑑𝑗(𝑡) ≤

𝑐𝑠𝑖𝑑𝑗 , ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ . We use c := {𝑐𝑠𝑖𝑑𝑗}(𝑠𝑖,𝑑𝑗)∈ℰ to denote the capacity vector. Finally,

packets in an egress node 𝑑𝑗 depart from the networks with departure rate denoted

83

as 𝑔𝑑𝑗(𝑡), and the service rate of node 𝑑𝑗, which is the maximum departure rate

for packets in 𝑑𝑗, is denoted by 𝜇𝑗. Thus 𝑔𝑑𝑗(𝑡) ∈ [0, 𝜇𝑗], ∀𝑗 = 1, . . . ,𝑀 . Let

𝜇 := {𝜇𝑗}𝑀𝑗=1.

Based on the above setting, we now formulate the queue dynamics according to

the flow conservation law, which states that the net increase of queue length equals

the difference between the number of new arrivals and departures at a node at any

time. Specifically, for any ingress node 𝑠𝑖,

𝑞𝑠𝑖(𝑡) = 𝜆𝑖 −
∑︁

𝑑𝑗 :(𝑠𝑖,𝑑𝑗)∈ℰ

𝑔𝑠𝑖𝑑𝑗(𝑡) (3.1)

and for any egress node 𝑑𝑗,

𝑞𝑑𝑗(𝑡) =
∑︁

𝑠𝑖:(𝑠𝑖,𝑑𝑗)∈ℰ

𝑔𝑠𝑖𝑑𝑗(𝑡)− 𝑔𝑑𝑗(𝑡). (3.2)

𝑞𝑘(𝑡) denotes the queue overload rate of node 𝑘 at time 𝑡, and we assume that 𝑞𝑘 :=

lim𝑡→∞ 𝑞𝑘(𝑡) exists where 𝑞𝑘 denotes node 𝑘’s queue overload rate in steady state2.

All the nodes thus have nonnegative queue overload rates in the steady state as the

queue length is bounded below by 0. Furthermore, the queue length in nodes with

bounded buffers will not grow with a positive rate in the steady state, therefore 𝑞𝑖 = 0

for any 𝑖 ∈ 𝒱 with bounded buffer.

In this work, we assume that internal (egress) buffers are bounded while ingress

buffers are large enough to avoid saturation. In practice, internal nodes often have

limited buffers [72,73]. For example, on-chip networks have very small internal buffers.

Similarly, satellite networks have small buffers on-board the satellite. In contrast,

ingress buffers have sufficient capacity to absorb bursty packet arrivals, e.g. in a

satellite network the buffer at the ground terminal can be relatively large.

In reality, even ingress buffers have limited size, and packet loss will be inevitable

when the packet arrival rate to an ingress node 𝑠𝑖 is larger than the sum of the

capacities of its downstream links. We can deal with bounded ingress buffers by

2The existence holds under most of the policies of interest [29,102].

84

introducing a virtual queue for such 𝑠𝑖 with unbounded buffer, whose length is 𝑞𝑠𝑖

plus the number of dropped packets that are to be retransmitted, and thus the actual

overload rate at 𝑠𝑖 can be exactly characterized by the overload rate of a virtual

queue with unbounded buffer. Therefore, we can assume without loss of generality

that ingress buffers are unbounded.

We define q̇ := {q̇𝑠, q̇𝑑} ∈ R𝑁+𝑀 as the queue overload rate vector, where q̇𝑠 =

{𝑞𝑠𝑖}𝑁𝑖=1 ∈ R𝑁 and q̇𝑑 = {𝑞𝑑𝑗}𝑀𝑗=1 ∈ R𝑀 are the ingress and egress queue overload rate

vector respectively3. Similarly, we define the transmission rate vector of the system

as g :=
{︀
{𝑔𝑠𝑖𝑑𝑗}(𝑠𝑖,𝑑𝑗)∈ℰ , {𝑔𝑑𝑗}𝑀𝑗=1

}︀
. We further define the feasible flow region 𝒢 as

the set of transmission rate vectors g that satisfy the flow conservation laws (3.1)

and (3.2) and capacity constraints. We then define the feasible queue overload rate

region ℛ as the set of queue overload rate vectors q̇ that can be achieved under some

element in 𝒢.

Remark: In (3.1) and (3.2), the queue length can be fractional. This is a fluid

approximation to the real case where packets are discrete, which offers a simplified

framework for studying flow control [3]. This fluid approximation is different from

the fluid model defined in some prior works which captures the scaled limit of the

queue backlog [4,76,77], an indicator for queue stability but not suited to study finite

buffers and queue overload dynamics.

3.2.2 Problem Formulation: Overload Balancing

In this section we define the problem of overload balancing. The queue overload rate

vector q̇ indicates the severity of queue overload. We need a metric to evaluate how

balanced q̇ is. Multiple metrics related to network fairness have been investigated.

The very first concept is min-max fairness which aims to identify a transmission rate

vector such that any other vector that decreases the overload rate at some nodes must

be at the expense of increasing the overload rate of some other nodes with a higher

overload rate [70]. This concept stems from max-min fairness [69] which maximizes

3We neglect time 𝑡 in the notations for brevity. We will clarify explicitly when notations without
𝑡 represents steady state value to avoid ambiguity.

85

the minimum commodity flow to be transmitted, while in overload balancing the

direction is reversed as reducing the max queue overload is desired.

Moreover, the min-max fairness solution is closely related to the lexicographic

minimum solution [3] defined as follows.

Definition 3.1. The queue overload vector q̇* is the lexicographic minimum in the

feasible overload rate region ℛ if and only if for ∀q̇ ∈ ℛ that q̇ ̸= q̇*,
∑︀𝑘

𝑖=1 𝑞
*
(𝑖) ≤∑︀𝑘

𝑖=1 𝑞(𝑖), ∀𝑘, where 𝑞*(𝑖), 𝑞(𝑖) denote the 𝑖th maximal element of q̇*, q̇ respectively.

The lexicographic minimum q̇* represents the most balanced overload vector since

it guarantees that the top-𝑘 most severely overloaded nodes have been balanced under

the metric of the sum of queue overload rates for every 𝑘. Therefore the overload

balancing problem can be formally stated as: determine the transmission rate vector

g so that the resulting overload rate vector is the lexicographic minimum.

Nevertheless, the lexicographical minimum is hard to formulate as it involves the

ordering of a vector with cumulative sum comparisons. To overcome the challenge,

we prove that minimizing the quadratic sum of queue overload rates serves as an

equivalent criterion to lexicographic minimum under network flow constraints, which

facilitates analysis of overload balancing, as shown in following sections.

3.3 Quadratic Sum Minimization Leads to Lexicographic

Minimum

In this section, we prove that identifying g ∈ 𝒢 to minimize the quadratic sum of

queue overload rates leads to lexicographic minimum overload rates. This result is

derived under the prior information of (𝜆, c,𝜇), and it can capture the most balanced

solution at any time shot when (𝜆, c,𝜇) is obtained. Analysis of policies without such

prior information in following sections is based on it. This result can be directly proved

by Cauchy-Schwarz inequality if there are no constraints on g, however there is no

general result (and it generally does not hold) when g is constrained. We, for the

first time, prove the result under general single-hop network with bounded buffers.

86

We first introduce an intermediate result that the minimizer of the quadratic sum

minimizes the maximum overload rate, and then show the main result.

3.3.1 Quadratic Sum Minimization to Maximum Overload

Rate Minimization

The quadratic sum minimization framework of overload balancing under an 𝑁 ×𝑀

single-hop network can be formulated as

min
g

1

2

𝑁∑︁
𝑖=1

(︃
𝜆𝑖 −

𝑀∑︁
𝑗=1

𝑔𝑠𝑖𝑑𝑗

)︃2

+
1

2

𝑀∑︁
𝑗=1

(︃
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗 − 𝑔𝑑𝑗

)︃2

s.t.
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗 = 𝑔𝑑𝑗 , ∀𝑑𝑗 ∈ ℬ

0 ≤ 𝑔𝑠𝑖𝑑𝑗 ≤ 𝑐𝑠𝑖𝑑𝑗 , ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ

0 ≤ 𝑔𝑑𝑗 ≤ 𝜇𝑗, ∀𝑗 = 1, . . . ,𝑀

(3.3)

where the objective represents the quadratic sum of queue overload rates at all ingress

and egress nodes according to (3.1) and (3.2), the variables g can represent the

transmission rate vector at any specific time shot 𝑡, with ℬ denoting the nodes whose

buffer has been saturated at this time shot. The constraint
∑︀𝑁

𝑖=1 𝑔𝑠𝑖𝑑𝑗 = 𝑔𝑑𝑗 means

that 𝑞𝑑𝑗 = 0 for an egress node 𝑑𝑗 saturated at this time shot. It is trivial to verify that

the optimum can never be achieved when ∃𝑖 /∈ ℬ, 𝑞𝑖 < 0, since the objective function

is a quadratic sum of q̇. This property enables using (3.3) to study the steady state

(𝑡→∞), since we require 𝑞𝑖 ≥ 0, ∀𝑖 in steady state mentioned in Section 3.2.1.

The minimization of maximum queue overload rate corresponds to the objective

function ming∈𝒢 max𝑖∈𝒱 𝑞𝑖. This can be equivalently formulated as a linear

87

programming problem

min
g,𝑣

𝑣

s.t.
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗 = 𝑔𝑑𝑗 , ∀𝑑𝑗 ∈ ℬ

0 ≤ 𝑔𝑠𝑖𝑑𝑗 ≤ 𝑐𝑠𝑖𝑑𝑗 , ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ

0 ≤ 𝑔𝑑𝑗 ≤ 𝜇𝑗, ∀𝑗 = 1, . . . ,𝑀

𝜆𝑖 −
𝑀∑︁
𝑗=1

𝑔𝑠𝑖𝑑𝑗 ≤ 𝑣, ∀𝑠𝑖 ∈ 𝒱𝐼

𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗 − 𝑔𝑑𝑗 ≤ 𝑣, ∀𝑑𝑗 ∈ 𝒱𝐸

(3.4)

by introducing an auxiliary variable 𝑣 and additional constraints 𝑞𝑖 ≤ 𝑣, ∀𝑖 ∈ 𝒱 .

Now we state the intermediate result as Lemma 3.1.

Lemma 3.1. Suppose that g* ∈ 𝒢 is optimal in (3.3), then g* is optimal in (3.4).

The main proof idea is to take advantage of the Karush-Kuhn-Tucker (KKT)

conditions of (3.3) and (3.4). Details are deferred to Section 3.7. We present a

geometric interpretation of Lemma 3.1 in Fig. 3-2 through a 2×1 single-hop networks.

Lemma 3.1 states that the the minimizer of (3.3) always overlaps with a minimizer

of (3.4) in the feasible flow region 𝒢 under the constraints.

3.3.2 Quadratic Sum Minimization to Lexicographic Minimum

We now demonstrate the main result in Theorem 3.1. The idea is that by Lemma 3.1,

g* minimizes the maximum queue overload rate, then we can show it must minimize

the second maximum queue overload among all g ∈ 𝒢 that minimizes the maximum

queue overload, otherwise it violates Lemma 3.1. Then iteratively we can obtain

lexicographical minimum.

Theorem 3.1. Suppose that g* ∈ 𝒢 is optimal in (3.3), then it is lexicographic

minimum in 𝒢.

88

Figure 3-2: Geometric interpretation of Lemma 3.1 through a 2×1 single-hop network.
The contour curves of (3.3) in red and (3.4) in green coincide at the same optimal
point 𝐵 on the boundary of 𝒢 under different arrival rate vectors 𝜆 = (𝜆1, 𝜆2), denoted
as point 𝐴 where 𝜆1 + 𝜆2 > 𝜇.

Proof. (sketch) Note that g*, the minimizer of quadratic sum
∑︀𝑛

𝑖=1 𝑞
2
𝑖 in (3.3) is the

minimizer of max growth rate 𝑞(1) in (3.4). Denote the minimum 𝑞(1) as 𝑞△(1), then

the set 𝒢1 = {g ∈ 𝒢 | 𝑞(g)(1) = 𝑞△(1)} contains g*, where 𝑞
(g)
(1) denotes the maximum

queue overload rate under the transmission rate vector g. Now we consider (3.3)

and (3.4) with additional constraint that g ∈ 𝒢1. Obviously 𝒢1 is a convex set,

thus (3.4) with g ∈ 𝒢1 is still convex. Meanwhile, with additional constraint that

g ∈ 𝒢1, (3.3) keeps in the form of a quadratic optimization problem. Therefore we

can apply Lemma 3.1 to (3.3) and (3.4) in 𝒢1 similarly to obtain that the g* minimizes

𝑞(2), the second largest queue overload rate. Denote the minimum 𝑞(2) as 𝑞△(2), thus

g* ∈ 𝒢2 := {g ∈ 𝒢 | 𝑞(g)(1) = 𝑞△(1), 𝑞
(g)
(2) = 𝑞△(2)}. Iteratively, g* ∈ 𝒢𝑁+𝑀 where any

element in 𝒢𝑁+𝑀 induces the lexicographic minimum queue overload rate vector.

3.4 Maxweight + Backpressure Leads to Most

Balanced Overload

Section 3.3 demonstrates that solving (3.3) can achieve most balanced overload.

However, it requires the complete knowledge of network parameters (𝜆, c,𝜇), which in

real networks may not be available [102]. In practice, the queue backlog q(𝑡) is often

89

accessible in real-time, thus we consider if there exists any queue-based transmission

policy, which determines the transmission rate vector g(𝑡) based on q(𝑡), that can

achieve most balanced overload as (3.3) does.

The ODE dynamical system (3.1) and (3.2) under queue-based policy form an

autonomous system⎧⎪⎨⎪⎩𝑞𝑠𝑖(𝑡) = 𝜆𝑖 −
∑︀

𝑑𝑗 :(𝑠𝑖,𝑑𝑗)∈ℰ 𝑔𝑠𝑖𝑑𝑗(q(𝑡)), ∀𝑖 = 1, . . . , 𝑁

𝑞𝑑𝑗(𝑡) =
∑︀

𝑠𝑖:(𝑠𝑖,𝑑𝑗)∈ℰ 𝑔𝑠𝑖𝑑𝑗(q(𝑡))− 𝑔𝑑𝑗(q(𝑡)), ∀𝑗 ∈ 1, . . . ,𝑀

(3.5)

Due to the absence of prior knowledge of (𝜆, c,𝜇), we can no longer achieve most

balanced overload in one stroke by optimizing (3.3). Instead, we aim to propose

queue-based policies that can render the queue dynamics (3.5) to converge to the

most balanced overload state. Formally, the problem of overload balancing under

queue-based policy can be formulated as: Is there g(q) that guarantees lim𝑡→∞ q̇(𝑡) =

q̇* in (3.5), where q̇* is the overload rate vector induced by g*, the optimal solution to

(3.3) with the oracle (𝜆, c,𝜇)? We prove that a maxweight + backpressure (mw+bp)

queue-based policy yields a solution under 𝑁 ×𝑀 single-hop structure, and propose

a distributed version of this policy that reduces communication overhead from 𝑂(𝑁)

to 𝑂(1), with performance close to optimum shown in Section 3.5.

3.4.1 Methodology

Our methodology to prove that a queue-based policy g(q) achieves the most balanced

overload is to verify that it satisfies two conditions which together, as illustrated in

Fig. 3-3, is a sufficient condition. For the first condition, we establish the existence

of a queue vector q such that the transmission rate vector under the policy at q is

an optimizer of (3.3) which leads to most balanced queue overload. Specifically, we

consider the following optimization framework in which the only difference with (3.3)

is that the queue vector q is the decision variable.

90

min
q

1

2

𝑁∑︁
𝑖=1

(︃
𝜆𝑖 −

𝑀∑︁
𝑗=1

𝑔𝑠𝑖𝑑𝑗(q)

)︃2

+
1

2

𝑀∑︁
𝑗=1

(︃
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗(q)− 𝑔𝑑𝑗(q)

)︃2

s.t.
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗(q) = 𝑔𝑑𝑗(q), ∀𝑑𝑗 ∈ ℬ

0 ≤ 𝑔𝑠𝑖𝑑𝑗(q) ≤ 𝑐𝑠𝑖𝑑𝑗 , ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ

0 ≤ 𝑔𝑑𝑗(q) ≤ 𝜇𝑗, ∀𝑗 = 1, . . . ,𝑀

(3.6)

Denote an optimizer of (3.6) as q* and the set of all optimizers of (3.6) as 𝒬*. The

first condition is to verify that the policy g(q) satisfies ∀q* ∈ 𝒬*, g(q*) equals some

g* ∈ 𝒢* where 𝒢* denotes the set of optimizers of (3.3). For the second condition,

we verify the convergence of the ODE dynamics (3.5) to the most balanced state

under the policy g(q) given any initial queue vector. Namely, as 𝑡→∞, the second

condition is to verify that the policy drives the queue vector to 𝒬*. If the policy g(q)

satisfies both conditions, it can achieve most balanced overload in the steady state.

Figure 3-3: Condition 1 (existence) and 2 (convergence) to verify that a queue-based
policy achieves most balanced overload

3.4.2 Maxweight + Backpressure Policy in Differentiable

Form

The ODE-based methodology in Section 3.4.1 requires the queue-based policy g(q)

in a differentiable form. We now define the mw+bp policy accordingly. The policy

91

contains two parts: maxweight scheduling and a backpressure mechanism. The idea

of maxweight scheduling is to serve input nodes that have longer queue backlogs with

higher priority [77]. The backpressure mechanism determines to transmit packets over

a link (𝑠𝑖, 𝑑𝑗) at 𝑡 with rate 𝑐𝑠𝑖𝑑𝑗 if 𝑞𝑠𝑖(𝑡) > 𝑞𝑑𝑗(𝑡), and does not transmit otherwise

[3]. To avoid buffer overflow, backpressure also ensures that packets are not served

to a saturated node.

Both maxweight and backpressure were proposed in discrete forms originally.

To embed them in the ODE framework, we propose the following differentiable

characterization which can well approximate their original version.

Maxweight Scheduling: The maxweight scheduling in differentiable form is

defined as

𝑔𝑠𝑖𝑑𝑗(q) = 𝑐𝑠𝑖𝑑𝑗
𝑒𝛾𝑞𝑠𝑖∑︀𝑁
𝑘=1 𝑒

𝛾𝑞𝑠𝑘
, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ (3.7)

where 𝛾 > 0 is a parameter. The larger 𝛾 is, the more we favor to serve ingress

nodes with longer queue length. An extreme case is 𝛾 → ∞, which matches to the

serve-the-longest-queue policy [107]: only the ingress node with longest queue length

will be served, and if there are 𝐾 ingress nodes that have the same longest queue

length, then (3.7) guarantees that each of these 𝐾 nodes, say node 𝑠𝑖, will be served

with rate 𝑐𝑠𝑖𝑑/𝐾. This corresponds to the result under serve-the-longest-queue policy

in expectation, in which one of these 𝐾 nodes is chosen uniformly at random to be

served.

Backpressure Mechanism:

𝑔𝑠𝑖𝑑𝑗(q) = 𝑐𝑠𝑖𝑑𝑗𝛼𝑠𝑖𝑑𝑗𝛽𝑑𝑗 , ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ (3.8)

where

𝛼𝑠𝑖𝑑𝑗 =
1

1 + 𝑒−𝑎(𝑞𝑠𝑖−𝑞𝑑𝑗)
, 𝛽𝑑𝑗 :=

1

1 + 𝑒−𝑎(𝑏𝑑𝑗−𝑞𝑑𝑗−𝜖)

and 𝑎 > 0 and 𝜖 > 0 are preset values. Note that if 𝑎→∞ and 𝜖 is close enough to

0, then the term 𝛼𝑠𝑖𝑑𝑗 = 1 if 𝑞𝑠𝑖 > 𝑞𝑑𝑗 and 𝛼𝑠𝑖𝑑𝑗 = 0 if 𝑞𝑠𝑖 < 𝑞𝑑𝑗 ; the term 𝛽𝑑𝑗 → 1 if

𝑞𝑑𝑗 < 𝑏𝑑𝑗 and 𝛽𝑑𝑗 → 0 if 𝑞𝑑𝑗 → 𝑏𝑑𝑗 . Therefore the policy (3.8) transmits the packets

92

from an ingress node 𝑠𝑖 to an egress node 𝑑𝑗 with maximum service rate 𝑐𝑠𝑖𝑑𝑗 if and

only if the queue length in 𝑠𝑖 is greater than in 𝑑𝑗, and meanwhile the buffer of node

𝑑 is not saturated, which shows that (3.8) is an approximation to backpressure under

sufficiently large 𝑎 and small 𝜖.

Maxweight + Backpressure (mw+bp): Combining (3.7) and (3.8), we can

formulate the mw+bp policy as

𝑔𝑠𝑖𝑑𝑗(q) = 𝑐𝑠𝑖𝑑𝑗𝛼𝑠𝑖𝑑𝑗𝛽𝑑𝑗

𝑒𝛾𝑞𝑠𝑖∑︀𝑁
𝑘=1 𝑒

𝛾𝑞𝑠𝑘
, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ (3.9)

In (3.9), a transmission link is activated if and only if its corresponding ingress

queue length satisfies the link activation requirements under both maxweight and

backpressure.

In addition, egress nodes operate in a work-conserving manner, where each

egress node 𝑑𝑗 serves packets with rate 𝜇𝑗 whenever the buffer is nonempty. This

guarantees that the egress nodes reduce the queue overload at the maximum rates.

This work-conserving policy can also be formulated into a differentiable form as

𝑔𝑑𝑗(q) = 𝜇𝑗
1

1 + 𝑒−𝑎(𝑞𝑑𝑗−𝜖)
,∀𝑗 ∈ 1, . . . ,𝑀 (3.10)

under sufficiently large 𝑎 and 𝜖→ 0.

3.4.3 MW+BP in Single-hop Networks with Sufficient

Capacity

In this part, we prove that the mw+bp policy (3.9) can achieve most balanced overload

as by optimizing (3.3) if every transmission link has sufficient capacity, and all egress

nodes run (3.10), stated in Theorem 3.2.

Theorem 3.2. The queue dynamics under (3.9) and (3.10) converges to the most

balanced overloading if 𝑐𝑠𝑖𝑑𝑗 > 𝜇𝑗, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ , 𝑗 = 1, . . . ,𝑀 .

The proof idea is to verify the existence and convergence of most balanced state.

More details are deferred to Section 3.7. Implementing (3.10) clearly makes for

93

overload mitigation as all egress nodes do their best to send packets out. The

intuition why (3.9) achieves most balanced overload is three-fold: (i) The maxweight

(3.7) balances the ingress nodes as it favors serving queues with longer length; (ii)

The backpressure (3.8) balances any connected ingress 𝑠𝑖 and egress 𝑑𝑗 as it sets

the threshold for transmission decision at 𝑞𝑠𝑖 = 𝑞𝑑𝑗 ; (iii) The condition 𝑐𝑠𝑖𝑑𝑗 >

𝜇𝑗, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ guarantees that mw+bp can achieve maximum throughput since

it makes any egress node 𝑑𝑗 never be idle. The sufficient link capacity generally holds

in data center networks and server farms which have sufficient transmission resources

to guarantee high quality-of-service requirements [29].

3.4.4 MW+BP in Single-hop Networks with Limited Capacity

Next we consider limited capacity where 𝑐𝑠𝑖𝑑𝑗 > 𝜇𝑗, ∀(𝑠𝑖, 𝑑𝑗) ∈ ℰ does not hold.

In this case, mw+bp policy (3.9) may not achieve most balanced overload since the

maximum throughput may not be achieved, compared with sufficient capacity case

in Section 3.4.3. We show an example in Fig. 3-4. Our solution is to consider a

generalized version of mw+bp, where we run (3.9) and in the meantime additionally

serve the ingress nodes with longest queues in order until maximum throughput is

achieved. A special case is to consider 𝛾 →∞ in (3.9) so that the whole mechanism

is exactly an extended version of serving-the-longest-queue policy.

Figure 3-4: Example that (3.9) does not achieve most balanced overload with limited
capacity with 𝛾 → ∞, where node 𝑑 has bounded buffer. On the left, (𝑔1, 𝑔2, 𝑔3) =
(2.5, 0.5, 0) denotes the transmission rates under (3.9) in steady state, under which
q̇ = [5.5, 5.5, 4]. It is not the most balanced overload as presented on the right, where
q̇* = [5, 3.5, 3.5] under (𝑔*1, 𝑔

*
2, 𝑔

*
3) = (3, 2.5, 0.5), the optimal solution to (3.3). Other

𝛾 values also suffer from the suboptimality.

94

We summarize our solution in Algorithm 3.1. Algorithm 3.1 is a real-time

algorithm that determines the service rates on every link given the current queue

information q(𝑡). We run (3.9) and calculate the remaining capacity on each link.

Then we sort the ingress nodes in non-increasing order, and further follow the

order to inject packets to egress nodes whose packet injection rate is lower than

its service rate. Algorithm 3.1 presents our solution in a quantified way, which

uses the information of c and 𝜇 that may not be available. However, in practical

implementation we do not require them: (i) We can sense if a link has been served

with full capacity. If so, we do not inject more packets through this link. This

replaces the need of calculation in line 3 and 8; (ii) Each egress node 𝑑𝑗 can send

the information of whether the queue length is increasing to ingress nodes through

broadcasting or a controller, serving as an alternative indicator of 𝑟𝑑𝑗 < 𝜇𝑗 in line 7

and replaces the need of calculation in line 4 and 9.

Algorithm 3.1: Generalized maxweight + backpressure with limited
capacity
1 Input: current queue vector q := q(𝑡);
2 Run (3.9) and (3.10), and obtain g(q);
3 For all (𝑠𝑖, 𝑑𝑗) ∈ ℰ , calculate the remaining capacity 𝑐𝑠𝑖𝑑𝑗 := 𝑐𝑠𝑖𝑑𝑗 − 𝑔𝑠𝑖𝑑𝑗(q);
4 Calculate the packet injection rate to all 𝑑𝑗 ∈ 𝒱𝐸 as

𝑟𝑑𝑗 :=
∑︀

𝑠𝑖:(𝑠𝑖,𝑑𝑗)∈ℰ 𝑔𝑠𝑖𝑑𝑗(q);
5 Sort the queue length of ingress nodes in non-increasing order

𝑞𝑠(1) ≥ 𝑞𝑠(2) ≥ · · · ≥ 𝑞𝑠(𝑁)
, where {𝑠(𝑖)}𝑁𝑖=1 is a permutation of {𝑠𝑖}𝑁𝑖=1;

6 for 𝑖 = 1, . . . , 𝑁 do
7 for all 𝑑𝑗 that 𝑟𝑑𝑗 < 𝜇𝑗 do
8 𝑔𝑠(𝑖)𝑑𝑗(q)← 𝑔𝑠(𝑖)𝑑𝑗(q) + min{𝑐𝑠(𝑖)𝑑𝑗 , 𝜇𝑗 − 𝑟𝑑𝑗};
9 𝑟𝑑𝑗 ← 𝑟𝑑𝑗 +min{𝑐𝑠(𝑖)𝑑𝑗 , 𝜇𝑗 − 𝑟𝑑𝑗};

10 Return g(q) as the transmission policy;

We can show that the generalized maxweight scheduling leads to most balanced

overloading.

Theorem 3.3. The generalized mw+bp policy in Algorithm 3.1 achieves most

balanced overloading.

The proof idea is similar to the proof of Theorem 3.2 by expressing the generalized

95

mw+bp policy into a differentiable form, and then verify the conditions 1 and 2 in

Section 3.4.1. The intuition is that Algorithm 3.1 achieves maximum throughput, and

is a combination of mw+bp (3.9) and the serving-the-longest-queue, both of which

achieve most balanced overload once maximum throughput can be achieved. Due to

space limitation, we omit the proof.

3.4.5 Practical Extensions

At the end, we discuss three more extensions of the results in this work: (i) distributed

mw + bp; (ii) weighted overload balancing; (iii) systems with discrete packets. All of

them extend the results to meet broader practical constraints and needs.

Distributed MW + BP

In mw+bp policy (3.9), collecting real-time queue information of all ingress nodes

is required at each ingress node or through a centralized controller. This induces

large communication overhead in large-scale networks. We consider a distributed

version of (3.9) to reduce overhead. The idea is that each ingress node gets access

to another 𝑟 ingress nodes, and run (3.9) where the maxweight part only depends on

the queue length of itself and these 𝑟 ingress nodes. One extreme case is that 𝑟 = 1,

where each ingress node 𝑠𝑖 has the information of 𝑠𝑖+1 (𝑠𝑁 has the information of

𝑠1). The ingress node 𝑠𝑖 serves packets to egress nodes only if 𝑞𝑠𝑖 > 𝑞𝑠𝑖+1
(for 𝑠𝑁 the

condition is 𝑞𝑠𝑁 > 𝑞𝑠1), thus no need of sharing queue information of ingress nodes

other than 𝑠𝑖+1 to 𝑠𝑖, which reduces the communication overhead at the ingress side

from 𝑁−1 to 1 for each ingress node. The intuition this distributed mechanism works

for overload balancing is that balancing the pairs (𝑠𝑖−1, 𝑠𝑖) and (𝑠𝑖, 𝑠𝑖+1) together

indirectly balances the pair (𝑠𝑖−1, 𝑠𝑖+1).

The above distributed mw + bp policy at any ingress 𝑠𝑖 can be formalized into a

differentiable form as

𝑔𝑠𝑖𝑑𝑗(q) = 𝑐𝑠𝑖𝑑𝑗𝛼𝑠𝑖𝑑𝑗𝛽𝑑𝑗

𝑒𝛾𝑞𝑠𝑖

𝑒𝛾𝑞𝑠𝑖 + 𝑒𝛾𝑞𝑠𝑖+1
(3.11)

96

where 𝛼𝑠𝑖𝑑𝑗 and 𝛽𝑑𝑗 represents the backpressure terms as in (3.8). We show in Section

3.5 that this distributed variant, even under 𝑟 = 1, is close to the optimum achieved by

mw+bp (3.9) in a large portion of test cases, which serves as a promising alternative

of (3.9) to reduce communication overhead with low performance sacrifice in practical

implementation.

Weighted overload balancing

A more generalized problem is the weighted overload balancing problem, in which

we require some nodes to have lower overload rates, for example bottlenecks and

centroids, while other peripheral nodes whose overload does not affect majority of

network transmission can have higher overload rates. A straightforward way to

formulate the problem is to assign a weight 𝑤𝑖 for each node according to practical

need. The weighted queue overload rate of node 𝑖 becomes 𝑤𝑖𝑞𝑖. The problem of

weighted overload balancing can thus be formalized as figuring out transmission

policies to achieve lexicographical minimum of w ⊙ q̇ = {𝑤𝑖𝑞𝑖}𝑖∈𝒱 .

It has been shown that in systems with unbounded buffers, a weighted

backpressure policy can achieved the target result of weighted overload balancing [3].

In systems with bounded buffer, we can extend our result by changing the quadratic

sum objective function corresponding to (3.3) to

1

2

𝑁∑︁
𝑖=1

𝑤𝑠𝑖

(︃
𝜆𝑖 −

𝑀∑︁
𝑗=1

𝑔𝑠𝑖𝑑𝑗

)︃2

+
1

2

𝑀∑︁
𝑗=1

𝑤𝑑𝑗

(︃
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑𝑗 − 𝑔𝑑𝑗

)︃2

(3.12)

and show that figuring out optimal g that satisfies constraints in (3.3) achieves the

weighted lexicographical minimum following the methodology of Lemma 3.1 and

Theorem 3.1. We state the result as Lemma 3.2 and Theorem 3.4 without proof.

Specifically, Lemma 3.2 can be explained geometrically through a 2 × 1 single-hop

network similar as Fig. 3.1 with the circular and square contours replaced by ellipsoid

and rectangular contours.

Lemma 3.2. Suppose that g* ∈ 𝒢 optimizes (3.12), then g* minimizes max𝑖∈𝒱 𝑤𝑖𝑞𝑖.

97

Theorem 3.4. Suppose that g* ∈ 𝒢 optimizes (3.12), then g* achieves weighted

lexicographical minimum.

For queue-based policy, following the idea of (3.9), we can similarly propose a

weighted maxweight + backpressure policy. Consider a 2× 1 single-hop system with

egress node being bounded. Given a targeted weight vector w = [𝑤1, 𝑤2] for 𝑞𝑠1

and 𝑞𝑠2 , then the following policy achieves weighted most balanced overload under

sufficient capacity. ⎧⎪⎨⎪⎩g𝑠1𝑑 = 𝑐𝑠1𝑑𝛽𝑑𝛼𝑠1𝑑
𝑒𝛾𝑤1𝑞𝑠1

𝑒𝛾𝑤1𝑞𝑠1+𝑒𝛾𝑤2𝑞𝑠2

g𝑠2𝑑 = 𝑐𝑠2𝑑𝛽𝑑𝛼𝑠2𝑑
𝑒𝛾𝑤2𝑞𝑠2

𝑒𝛾𝑤1𝑞𝑠1+𝑒𝛾𝑤2𝑞𝑠2

whose steady state is 𝑤1𝑞𝑠1 = 𝑤2𝑞𝑠2 . The case of 𝑁 ×𝑀 single-hop network can be

similarly formulated.

Implementation in discrete systems

To harness the benefits of ODE stability analysis for overload balancing in systems

with bounded node buffers, we set the queue length to be continuous. We point

out that the idea of our result can be extended to the discrete packet transmission

in real networks. The maxweight + backpressure policy can be implemented in a

discrete manner naturally. Furthermore, the optimal solution g* to (3.3) can serve

as a baseline. For any (𝑖, 𝑗) ∈ ℰ , an intuitive way to determine 𝑔𝑖𝑗(𝑡), interpreted

as the number of packets served through link (𝑖, 𝑗) at 𝑡-th time unit in discrete

implementation, is to compare the time-average 𝑔𝑖𝑗(𝑡) :=
1
𝑡

∑︀𝑡
𝑠=1 𝑔𝑖𝑗(𝑠) at any time 𝑡

with 𝑔*𝑖𝑗. Suppose 𝑔𝑖𝑗(𝑡) < 𝑔*𝑖𝑗, then activate (𝑖, 𝑗); otherwise do not activate. In the

long term, the solution will statistically converge to the optimal overload balancing.

3.5 Performance Evaluation

In this section, we verify our proposed policies and theories through experiments

over (i) single-hop network: server farm, packet switch, etc.; (ii) tree-structured

datacenter network, for example Clos structure [1]. Clos concatenates multiple

98

stages of single-hop structures. Although not proved analytically, verification results

over Clos structure below demonstrate the extendability of our proposed policies to

multi-hop networks.

We evaluate three policies: (i) Pure backpressure (3.8) [3]; (ii) Centralized

Maxweight + Backpressure ((3.9) and Algorithm 3.1); (iii) Distributed Maxweight

+ Backpressure under 𝑟 = 1 (3.11). We evaluate their performance in overload

balancing through measuring the gap between q̇*, the optimal solution to (3.3)

achieved with prior knowledge of (𝜆,𝜇, c) in steady state, and q̇𝜋, the steady state

queue overload rate vector under a particular queue-based policy 𝜋. Closer gap

represents superior overload balancing performance. Specifically, we consider two

gap ratio metrics: (i) Quadratic sum gap ratio: ||q̇𝜋||2/||q̇*||2 which is exactly the

metric we postulate; (ii) Max overload rate gap ratio: max𝑖∈𝒱 𝑞
𝜋
𝑖 /max𝑖∈𝒱 𝑞

*
𝑖 which

reflects particularly the balancing of the most severe overload. For both metrics, the

closer to 1, the better 𝜋 is. The first metric reflects more on overall balancing while

the second fits into cases where maximum overload is more important.

To demonstrate the universality of our proposed policy, we evaluate it using (i)

different 𝜆 and 𝜇, which represents different overload levels; (ii) different c, which

represents different service capacity; (iii) different buffer values b, which represents

different buffer settings, including the spatial distribution of sufficient and limited

buffers. We consider multiple networks instances with randomly sampled values of

the above parameters, and measure the empirical cumulative distribution function

(CDF) of the two gap metrics.

As introduced at length below, we see that maxweight + backpressure achieves

most balanced overload rates in steady state, far better than pure backpressure in both

metrics, while the performance of distributed maxweight + backpressure approaches

that of maxweight + backpressure.

3.5.1 Single-hop Networks

We evaluate on a 64 × 32 single-hop network with full connection between ingress

and egress nodes, modeling real switched networks [1,72]. We consider 200 randomly

99

selected parameter settings: (i) The arrival rate to each ingress port is uniformly

distributed in [0, 4]; (ii) The service rates of each egress port is uniformly distributed

within [0, 6]; (iii) The capacity 𝑐𝑠𝑖𝑑𝑗 for each ingress-egress pair (𝑠𝑖, 𝑑𝑗) is uniformly

distributed in [0, 10]; (iv) The buffer size for any ingress node is 10,000 so that it

is never saturated during the simulation, and the buffer size for any egress node is

10,000 with probability 0.2 and uniformly distributed within [30, 80] with probability

0.8. The initial queue length in each node is set to be uniformly distributed within

[0,min(30, buffer size)], so that no queues are overflow initially. The rationales behind

the settings are: (i) and (ii) guarantee that the system is overloaded with high

probability, as the expected sum of arrival rates is 2×64 = 128, 133% of the expected

sum of egress service rates 3 × 32 = 96; (iii) considers both sufficient and limited

capacity values; (iv) realizes different buffer settings, which follows the real case that

buffers at ingress are large [2] while egress ports may have limited buffers [72, 73]

generally.

We plot the CDFs of the quadratic sum gap ratio and max overload rate gap ratio

of all 200 sampled settings in steady state in Fig. 3-5 and Fig. 3-6, where the x-axis

is in logarithmic scale to make details clearer. Our proposed mw+bp (3.9) achieves

quadratic sum gap close to 1 for nearly all test instances, and achieves max overload

rate gap close to 1 for more than 70% instances. The optimality shown in the results

is not 100% as in theory due to limited time span. The value difference between these

two gaps is due to the balancing effect of quadratic sum4. The distributed version of

mw + bp (3.11) loses some accuracy while still performs generally well, as in more

than 85% instances, the quadratic sum overlaod gap is less than 1.15 and the max

overload rate gap is less than 1.4, as pointed out in the figures. Comparatively, the

backpressure policy incurs large gaps in the steady state and achieves the optimum

in none of the cases. Typically, with more than 75% of instances the quadratic sum

gap exceeds 1.4 and the max overload rate gap exceeds 1.5.

We further present the transient process of the quadratic sum gap ratio in Fig. 3-7

4Consider, for example, q̇* = [0.5, 0.5] and q̇𝜋 = [0.6, 0.4], then a gap of 0.6/0.5 = 1.2 in the max
overload rate only leads to a gap of (0.62 + 0.42)/(0.52 + 0.52) = 1.04 in quadratic sum, where the
gap is smaller.

100

Figure 3-5: Quadratic Sum Gap Comparison in Steady State

Figure 3-6: Max Overload Rate Gap Comparison in Steady State

101

under the ODE. Note that negative queue overload rate may exist in transient states,

which is desirable for overload mitigation at a node. Therefore the quadratic sum gap

ratio at any time in Fig. 3-7 only considers the sum of positive queue overload rates.

At the beginning, the gap ratio is high for all three schemes, because the queue is far

from the equilibrium point. For example, in pure backpressure, when all connected

nodes satisfy backpressure constraints, then all intermediate links will be activated,

thus all ingress nodes have negative overload rates while egress nodes have large

positive rates due to the arriving packets from all upstream links. Approaching the

steady state, shown in the zoomed-in subfigure, the gap of mw + bp, both centralized

and distributed, converges close to 1, while the gap of pure backpressure converges a

value greater than 1, not optimal solution for overload balancing.

Figure 3-7: Transient Process of Quadratic Sum Gap

3.5.2 Clos Network Structure

We further test on a 3-stage Clos structure abstracted from Google’s work on their

Jupiter datacenter [1], shown in Fig. 3-8. It contains 24 ingress blocks at the top,

102

fully connected to 12 aggregation blocks at the middle, and the aggregation blocks

1 to 4 are connected to 4 egress blocks, as are aggregation blocks 5 to 8. Packets

depart from the network from the 8 egress blocks and aggregation blocks 9 to 12,

which may have buffers with limited size. Similarly, we randomly take 200 different

settings of parameters: Arrival rate is uniformly distributed within [0, 12]; Service

rate of blocks where packet depart from the network is uniformly distributed within

[0, 12]; Capacity values of different links, and buffer size setting at blocks from which

packets depart are identical to the single-hop case in Section 3.5.1. The performance

of the network policies are presented in Fig. 3-9 and Fig. 3-10. The results share a

similar trend with the single-hop case.

Figure 3-8: Example of a 3-stage Clos structure from [1]

3.6 Summary and Future Work

In this chapter, we study overload balancing in single-hop networks with bounded

buffers. We show that bounded buffer affects the resulting policy to achieve most

balanced overload. We leverage ordinary differential equations to model the queue

dynamics in bounded buffer systems. We first prove that setting link service rates

to minimize the quadratic sum of the queue overload rates leads to the lexicographic

103

Figure 3-9: Quadratic Sum Gap Comparison (Clos)

Figure 3-10: Max Overload Rate Gap Comparison (Clos)

104

minimum queue overload. Based on this result, we prove that a maxweight scheduling

and backpressure policy asymptotically achieves most balanced overload, through a

novel formulation of the policy in a differentiable form which may be of independent

interest. We further propose a distributed maxweight + backpressure policy that

can reduce communication overhead by one order of magnitude. We validate the

performance of our proposed policies by simulation over single-hop structure and

Clos networks under different packet arrival rates, link capacities, and buffer settings.

Extension of the results in this work to multi-hop networks, and exploitation of the

differential equation formulation for other network performance metrics, are promising

future directions.

3.7 Chapter Appendix

3.7.1 Proof of Lemma 3.1

We term (3.3) as 𝑙2 problem and (3.4) as 𝑙∞ problem, since they respectively minimize

the 𝑙2 and 𝑙∞ norm of q̇. The Lagrangian functions of (3.3) and (3.4) are5

• ℒ(2)(g, a,b, ℎ) = 1
2

∑︀
𝑖∈𝒱(𝑞𝑖)

2+
∑︀

(𝑖,𝑗)∈ℰ 𝑎𝑖𝑗(𝑔𝑖𝑗− 𝑐𝑖𝑗)−
∑︀

(𝑖,𝑗)∈ℰ 𝑏𝑖𝑗𝑔𝑖𝑗+
∑︀

𝑖∈ℬ ℎ𝑖𝑞𝑖.

• ℒ(∞)(g, 𝑣,𝛼,𝛽,𝛾, ℎ̄) = 𝑣 +
∑︀

𝑖∈𝒱 𝛾𝑖(𝑞𝑖 − 𝑣) +
∑︀

(𝑖,𝑗)∈ℰ 𝛼𝑖𝑗(𝑔𝑖𝑗 − 𝑐𝑖𝑗) −∑︀
(𝑖,𝑗)∈ℰ 𝛽𝑖𝑗𝑔𝑖𝑗 +

∑︀
𝑖∈ℬ ℎ𝑖𝑞𝑖.

where 𝑞𝑖 follows (3.1) and (3.2). Their KKT conditions are respectively

𝑙2 problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝑞𝑖 + 𝑞𝑗 + 𝑎𝑖𝑗 − 𝑏𝑖𝑗 − ℎ𝑖 + ℎ𝑗 = 0, ∀(𝑖, 𝑗) ∈ ℰ

ℎ𝑖𝑞𝑖 = 0, ∀𝑖 ∈ ℬ

𝑎𝑖𝑗(𝑔𝑖𝑗 − 𝑐𝑖𝑗) = 0, 𝑎𝑖𝑗 ≥ 0; 𝑏𝑖𝑗𝑔𝑖𝑗 = 0, 𝑏𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ

(3.13)

5{𝑏𝑖}𝑁𝑖=1 in the proof are Lagrangian multipliers rather than buffer sizes.

105

𝑙∞ problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
∑︀

𝑖∈𝒱 𝛾𝑖 = 0

−𝛾𝑖 + 𝛾𝑗 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗 − ℎ̄𝑖 + ℎ̄𝑗 = 0, ∀(𝑖, 𝑗) ∈ ℰ

ℎ̄𝑖𝑞𝑖 = 0, ∀𝑖 ∈ ℬ

𝑎𝑖𝑗(𝑔𝑖𝑗 − 𝑐𝑖𝑗) = 0, 𝑎𝑖𝑗 ≥ 0; 𝑏𝑖𝑗𝑔𝑖𝑗 = 0, 𝑏𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ

𝛾𝑖(𝑞𝑖 − 𝑣) = 0, 𝛾𝑖 ≥ 0, ∀𝑖 ∈ 𝒱

(3.14)

Our proof idea is as follows. Denote an optimizer of the 𝑙2 problem as g(2),

and it suffices to show that given (g(2), a,b,h) that satisfies (3.13), there exists

(ḡ, 𝑣,𝛼,𝛽,𝛾, ℎ̄) that satisfies (3.14), and g(2) = ḡ. If this holds, then g(2) = ḡ

minimizes (3.4) as the 𝑙∞ problem is convex, thus satisfying KKT condition suffices

to optimal solution.

To show this, suppose that under an optimizer of 𝑙2 problem g(2), inside the queue

overload rate vector q̇ there are 𝑘 maximum entries. Denote the set of these 𝑘 elements

as 𝒦, then ∀𝑗 ∈ 𝒱∖𝒦, we must have 𝛾𝑗 = 0 due to complementary slackness. Thus∑︀
𝑖∈𝒦 = 1. We can set 𝑣 = max𝑞𝑖 induced by g(2). We set 𝛾𝑗 = 1/|𝒦|, ∀𝑖 ∈ 𝒦 with the

intuition that all these nodes share the same overload rate. Furthermore, note that

the constraint ℎ𝑖𝑞𝑖 = 0 in 𝑙2 problem and ℎ̄𝑖𝑞𝑖 = 0 in 𝑙∞ problem for ∀𝑖 ∈ ℬ, hence we

can set ℎ̄𝑖 = ℎ𝑖. Now what remains is to figure out feasible 𝛼𝑖𝑗, 𝛽𝑖𝑗, ∀(𝑖, 𝑗) ∈ ℰ , and

we show their existence under 3 × 3 = 9 combinations of 𝑖 and 𝑗, as every node can

be in one of the three subsets 𝒦, ℬ, or 𝒱∖(𝒦 ∪ ℬ), where 𝒦 ∩ ℬ = ∅ in overloaded

networks as 𝑞𝑗 = 0, ∀𝑖 ∈ ℬ. This can be validated with simple derivation.

106

3.7.2 Proof of Theorem 3.2

Condition 1: The Lagrangian function of (3.6) is

ℒ(𝑞)
(︀
q, ℎ(𝑞), a(𝑞),b(𝑞)

)︀
=

1

2

𝑁∑︁
𝑖=1

(𝜆𝑖 − 𝑔𝑠𝑖𝑑(q))
2 + ℎ(𝑞)

(︃
𝑁∑︁
𝑖=1

𝑔𝑠𝑖𝑑(q)− 𝜇

)︃

+
𝑁∑︁
𝑖=1

𝑎
(𝑞)
𝑖 (𝑔𝑠𝑖𝑑(q)− 𝑐𝑠𝑖𝑑)−

𝑁∑︁
𝑖=1

𝑏
(𝑞)
𝑖 𝑔𝑠𝑖𝑑(q).

The KKT condition for (3.3) is (3.13) while the KKT condition for the queue-based

framework (3.6) is that for ∀𝑖 = 1, . . . , 𝑁 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕ℒ(𝑞)

𝜕𝑞𝑠𝑖
= −

∑︀𝑁
𝑗=1(𝜆𝑗 − 𝑔𝑠𝑗𝑑(q)− 𝑎

(𝑞)
𝑗 + 𝑏

(𝑞)
𝑗)

𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
= 0

𝜕ℒ(𝑞)

𝜕𝑞𝑑
= −

∑︀𝑁
𝑗=1(𝜆𝑗 − 𝑔𝑠𝑗𝑑(q)− 𝑎

(𝑞)
𝑗 + 𝑏

(𝑞)
𝑗)

𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑑
= 0

𝜕ℒ(𝑞)

𝜕ℎ(𝑞) =
∑︀𝑁

𝑖=1 𝑔𝑠𝑖𝑑(q)− 𝜇 = 0

𝑎
(𝑞)
𝑖 (𝑔𝑠𝑖𝑑(q)− 𝑐𝑠𝑖𝑑) = 0, 𝑎

(𝑞)
𝑖 ≥ 0

𝑏
(𝑞)
𝑖 𝑔𝑠𝑖𝑑(q) = 0, 𝑏

(𝑞)
𝑖 ≥ 0

Under the mw+bp policy (3.9) and sufficient capacity, node 𝑑 will keep saturated

in the steady state, which means that
∑︀𝑁

𝑖=1 𝑔𝑠𝑖𝑑(q) = 𝜇 always holds in the steady

state. Therefore we have
∑︀𝑁

𝑗=1

𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
= 0, ∀𝑖 = 1, . . . , 𝑁 . We can then transform the

first equation in the KKT conditions into

𝜕ℒ(𝑞)

𝜕𝑞𝑠𝑖
= −

𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

(𝑧𝑗 − 𝑧𝑖)
𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
= 0, ∀𝑖 = 1, . . . , 𝑁 (3.15)

where 𝑧𝑖 := 𝜆𝑖−𝑔𝑠𝑖𝑑(q)−𝑎
(𝑞)
𝑖 +𝑏

(𝑞)
𝑖 . Further, we note that under (3.9), for any 𝑖 ∈ 𝒱𝑆,

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑖

> 0,
𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
< 0, ∀𝑗 ̸= 𝑖, which corresponds to the maxweight + backpressure

policy that the service rate of a node will not be decreased whenever its queue gets

longer. This indicates that 𝑧1 = 𝑧2 = · · · = 𝑧𝑁 , otherwise there must exist one of the

107

LHS’s of (3.15) is strictly greater than 0. Then we have

𝜆1 − 𝑔𝑠1𝑑(q)− 𝑎
(𝑞)
1 + 𝑏

(𝑞)
1 = · · · = 𝜆𝑁 − 𝑔𝑠𝑁𝑑(q)− 𝑎

(𝑞)
𝑁 + 𝑏

(𝑞)
𝑁 . (3.16)

Any optimizer q* to (3.6) satisfies (3.16) under maxweight + backpressure policy

denoted as g(q) in (3.9). Then we can assign g̃ := g(q), a := a(𝑞), b := b(𝑞), and

ℎ := ℎ(𝑞), such that (g̃, a,b, ℎ) satisfies (3.13), the KKT condition of (3.3). Since

(3.3) is a convex optimization problem, then g̃ = g(q*) is the optimizer of (3.3),

which means q* leads to most balanced overloading under maxweight + backpressure

policy (3.9).

Condition 2: Now we prove that under the maxweight + backpressure policy

g(q), q(𝑡) converges into 𝒬* given any initial state q(0). Since 𝑐𝑠𝑖𝑑 > 𝜇, ∀𝑖 =

1, . . . , 𝑁 , we can categorize all 𝑁 entries in g(q) at q* into 𝒜(𝑞) = {𝑖 | 𝑔𝑠𝑖𝑑(q*) ∈

(0, 𝑐𝑠𝑖𝑑)},ℬ(𝑞) = {𝑖 | 𝑔𝑠𝑖𝑑(q*) = 0}, where we have shown that ∀𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ ℬ,

𝑞𝑠𝑖 = 𝑞𝑠𝑗 ≥ 𝑞𝑠𝑘 = 𝜆𝑘, where 𝑞𝑠𝑝 = 𝜆𝑝 − 𝑔𝑠𝑝𝑑(q
*), 𝑝 = 𝑖, 𝑗, 𝑘 and we remove the trivial

case that 𝑞𝑠𝑖 = 𝑞𝑠𝑗 = 𝑞𝑠𝑘 which can be verified easily. Without loss of generality,

we consider 𝒜 := {1, 2, . . . , 𝑁0} and ℬ = {𝑁0 + 1, . . . , 𝑁}. Then the most balanced

overloading rates achieved by (3.3) satisfy that

𝜉1𝑞1 = · · · = 𝜉𝑁0𝑞𝑁0 = 𝜉𝑁0+1𝑞𝑁0+1 = · · · = 𝜉𝑁𝑞𝑁 (3.17)

for 𝜉1, . . . , 𝜉𝑁0 = 1 and some 𝜉𝑁0+1, . . . , 𝜉𝑁 > 1.

Note that in overloaded networks, there exists 𝑞𝑠𝑖(𝑡) → ∞, so there is no

equilibrium point. To prove that the dynamics converge to the state (3.17), we

introduce a series of auxiliary variables x := {𝑥𝑖}𝑁−1
𝑖=1 where 𝑥𝑖 = 𝜉𝑖𝑞𝑠𝑖 − 𝜉𝑖+1𝑞𝑠𝑖+1

, and

transform the original q-based ODE into x-based ODE. Since q ∈ R𝑁 and x ∈ R𝑁−1,

there will remain one 𝑞𝑠𝑖0 in the x-based ODE. As there exists a queue that grows

to infinity, we let 𝑞𝑠𝑖0 be this queue and thus let 𝑞𝑠𝑖0 → ∞ in the x-based ODE as

we focus on the steady state. The reason of the transformation into x-based ODE is

that its equilibrium point x*, if there exists one, corresponds to the most balanced

overloading. Namely, ẋ = 0 leads to (3.17). Condition 1 guarantees the existence of

108

x* under (3.9), so what remains is to prove any x* is a stable equilibrium point.

For any input node 𝑠𝑗 that 𝑗 ∈ ℬ, it can be easily verified that the x-based ODE

under maxweight + backpressure policy (3.9) and 𝑞𝑠𝑖0 →∞ indicates 𝑞𝑠𝑗 = 𝜆𝑠𝑗 , which

means that the queue dynamics of all input nodes corresponding to ℬ converge to the

most balanced rate values under (3.9). Thus 𝑔𝑠𝑗𝑑(q) = 0 in the steady state under

(3.9) and all terms 𝑥𝑁0 , . . . , 𝑥𝑁−1 are eliminated from the x-based ODE.

Therefore we only need to consider the set 𝒜. Over 𝒜, note that 𝑥𝑖 = 𝑞𝑠𝑖 −

𝑞𝑠𝑖+1
, ∀𝑖 = 1, . . . , 𝑁0 − 1. By the chain rule of partial derivatives, we have for any

input node 𝑠𝑖, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠1

= −𝜕𝑔𝑠𝑖𝑑
𝜕𝑥1

,

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑘

= −𝜕𝑔𝑠𝑖𝑑
𝜕𝑥𝑘

+
𝜕𝑔𝑠𝑖𝑑
𝜕𝑥𝑘−1

, 𝑘 = 2, . . . , 𝑁0 − 1

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑁0

=
𝜕𝑔𝑠𝑖𝑑

𝜕𝑥𝑁0−1

(3.18)

Equivalently, we can write it as 𝜕𝑔𝑠𝑖𝑑
𝜕𝑥𝑘

= −
∑︀𝑘

𝑗=1

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑗

, ∀𝑘 = 1, . . . , 𝑁0− 1, and further

express it as 𝜕𝑔𝑠𝑖𝑑
𝜕x

= −L 𝜕𝑔𝑠𝑖𝑑
𝜕q1:𝑁0−1

where L ∈ R(𝑁0−1)×(𝑁0−1) is a lower triangular matrix

with 𝐿𝑖𝑗 = 1, ∀𝑖 ≥ 𝑗, and 𝜕𝑔𝑠𝑖𝑑
𝜕q1:𝑁0−1

denotes the derivative over 𝑞𝑠1 to 𝑞𝑠𝑁0−1
where 𝑞𝑠𝑁0

is neglected as it is redundant.

Now we connect the Jacobian J𝑥 := {𝐽𝑥,𝑖𝑗}𝑗=1,...,𝑁0−1
𝑖=1,...,𝑁0−1 ∈ R(𝑁0−1)×(𝑁0−1) w.r.t.

x-based ODE with J𝑞 := {𝐽𝑞,𝑖𝑗}𝑗=1,...,𝑁0

𝑖=1,...,𝑁0
∈ R𝑁0×𝑁0 w.r.t. q-based ODE. Note that

𝐽𝑥,𝑖𝑗 =
𝜕𝑔𝑠𝑖𝑑
𝜕𝑥𝑗
− 𝜕𝑔𝑠𝑖+1𝑑

𝜕𝑥𝑗
and 𝐽𝑞,𝑖𝑗 = −

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑗

. We can derive J𝑥 = KJ𝑞,1:(𝑁0−1)L
𝑇 , where

J𝑞,1:(𝑁0−1) denotes the truncation of J𝑞 by removing the 𝑁0-th row and column, and

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...

0 0 0 · · · 1 −1

1 1 1 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The transformation uses
∑︀𝑁0

𝑖=1

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑗

= 0, ∀𝑗 = 1, . . . , 𝑁0.

109

Now our goal is to show the stability of x-based ODE to guarantee the dynamics

converge to its equilibrium point. It suffices to show all the eigenvalues of J𝑥 have

negative real parts at any equilibrium point. We need the following theorem.

Theorem 3.5. [108] Let A,P ∈ R(𝑁0−1)×(𝑁0−1), where P is positive-definite. If

PA+A𝑇P is negative definite, then all eigenvalues of A have negative real parts.

This requires us to identify a P that is positive-definite. Interestingly, we identify

that P = LK−1 serves as a solution, where we can calculate that 𝑃𝑖𝑗 = 𝑗𝑁0−𝑖
𝑁0

, ∀𝑖 ≥ 𝑗

and 𝑃𝑗𝑖 = 𝑃𝑖𝑗, ∀𝑖 < 𝑗. We can show P has the Cholesky decomposition: P := CC𝑇 ,

where C is lower triangular and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐶𝑗𝑗 =

√︁
𝑁0−𝑗

𝑁0−(𝑗−1)
, ∀𝑗 = 1, . . . , 𝑁0 − 1

𝐶𝑖𝑗 =

⎧⎪⎨⎪⎩
𝑁0−𝑖

𝑁0−(𝑗−1)

(︁√︁
𝑁0−𝑗

𝑁0−(𝑗−1)

)︁−1

𝑖 > 𝑗

0, 𝑖 < 𝑗

Furthermore, since P = P𝑇 , we have

PJ𝑥 + J𝑇
𝑥P = PKJ𝑞,1:(𝑁0−1)L

𝑇 +
(︀
KJ𝑞,1:(𝑁0−1)L

𝑇
)︀𝑇

P𝑇

= LK−1KJ𝑞,1:(𝑁0−1)L
𝑇 + LJ𝑇

𝑞,1:(𝑁0−1)K
𝑇
(︀
K−1

)︀𝑇
L𝑇

= L
(︀
J𝑞,1:(𝑁0−1) + J𝑇

𝑞,1:(𝑁0−1)

)︀
L𝑇

Now it suffices to show that J𝑞,1:(𝑁0−1) + J𝑇
𝑞,1:(𝑁0−1) is negative definite, as once

this holds, we have the Cholesky decomposition J𝑞,1:(𝑁0−1) +J𝑇
𝑞,1:(𝑁0−1) = −GG𝑇 and

thus PJ𝑥 + J𝑇
𝑥P = −LGG𝑇L𝑇 which indicates that PJ𝑥 + J𝑇

𝑥P is negative definite,

and thus J𝑞,1:(𝑁0−1)+J𝑇
𝑞,1:(𝑁0−1) is negative definite. Note that in the steady state the

mw+bp policy satisfies that
∑︀𝑁0

𝑗=1

𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
= 0, ∀𝑖, and 𝜕𝑔𝑠𝑖𝑑

𝜕𝑞𝑠𝑖
> 0,

𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
< 0, ∀𝑗 ̸= 𝑖 when

𝑎→∞. We have that J𝑞,1:(𝑁0−1) is diagonally dominant in any column. Now we show

that
(︀
J𝑞,1:(𝑁0−1)

)︀𝑇 is diagonally dominant in any column as well. This stems from
𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑖

> 0,
𝜕𝑔𝑠𝑗𝑑

𝜕𝑞𝑠𝑖
< 0, ∀𝑗 ̸= 𝑖 and (3.18) which indicates

∑︀𝑁0

𝑗=1

𝜕𝑔𝑠𝑖𝑑
𝜕𝑞𝑠𝑗

= 0, ∀𝑖. Therefore

J𝑞,1:(𝑁0−1) + J𝑇
𝑞,1:(𝑁0−1) is diagonally dominant in column and all its diagonal entries

are negative, which guarantees that it is negative definite.

110

Chapter 4

Queue Stability in Networks with

Bounded Node Buffers

In this chapter, we consider the problem of network stability in finite-buffer systems.

We observe that finite buffer may affect stability even in simplest network structure.

For single-commodity systems, we propose a sufficient condition, which follows

the fundamental idea of backpressure, for local transmission policies to stabilize

the networks based on ODE stability theory. We further extend the condition

to multi-commodity systems, with an additional restriction on the coupling level

between different commodities, which can model networks with per-commodity

buffers and shared buffers. The framework characterizes a set of policies that can

stabilize buffered networks, and is useful for analyzing the effect of finite buffers on

network stability.

4.1 Motivating Example

We explain the motivation of reconsidering transmission policies to guarantee queue

stability in networks with bounded buffers. The introduction of finite buffer size may

affect stability even in simplest network structures. Consider the example in Fig. 4-1.

The system transmits two commodities with arrival rate 𝜆1 and 𝜆2, and destination

node 𝑇1 and 𝑇2 respectively. Both commodities share the buffer of node 𝐾 on their

111

paths. For the link (ℓ,𝐾) where ℓ = 1, 2, we implement the backpressure routing

policy [22], where link (ℓ,𝐾) transmits with rate equal to the capacity value 𝑐ℓ𝐾

when the queue backlog in node ℓ is longer than in node 𝐾, while otherwise it does

not transmit. Furthermore, we do not allow buffer overflow, i.e., when the buffer

in node 𝐾 is fully occupied then no new commodity will be transmitted to 𝐾. For

packets departed from node 𝐾, the service rate of commodity ℓ is 𝜇ℓ, and we assume

for each commodity it serves in a first-come-first-serve manner, where in every time

unit the first 𝜇ℓ commodity ℓ packets in the buffer are sent to destination 𝑇ℓ.

We consider the case where 𝜆1 > 3, i.e., commodity 1 is overloaded, and we

figure out that the finiteness of buffer size of node 𝐾 affects the stability result for

commodity 2. When 𝑏𝐾 is infinite, backpressure guarantees that commodity 2 will not

be increasingly backlogged in the networks under 𝜆2 ∈ [0, 3], which means commodity

2 is stabilized, as 𝜇2 = 3 is the corresponding minimum cut value. However, this may

not hold when 𝑏𝑘 is finite. Consider the example that 𝑏𝐾 = 6 and both commodities

account for 3 units of packets initially in Fig. 4-1, then within 1 unit of time, all these

packets are served due to 𝜇1 = 𝜇2 = 3, and 8/(4+8)×6 = 4 units of commodity 1 and

4/(4 + 8)× 6 = 2 units of commodity 2 are injected into node 𝐾 to fill in the buffer

again. Note that queue backlog of commodity 1 takes up higher ratio in node 𝐾, and

following this process, finally the number the actual throughput of commodity 2 will

be 1.5, as we can calculate that there is averagely 1.5 units of commodity 2 packet

in node 𝐾. Therefore only under 𝜆2 ∈ [0, 1.5] can commodity 1 be stabilized, which

means if 𝜆2 ∈ (1.5, 3], node 2 will be overflowed, due to finite buffer at node 𝐾.

4.2 Single-Commodity System

In this section, we introduce the ODE model for single-commodity systems in buffered

communication networks, and utilize ODE stability theory to study network stability.

Specifically, we reveal a general sufficient condition for local policies to stabilize the

systems. The results, with explicit guidance for transmission policy design in practice,

serve as the basis for our analysis of multi-commodity systems and are the main

112

Figure 4-1: Finite buffer may affect stability result. On the right is an example
of the queue dynamics in node 𝐾 following the backpressure policy. The dashed
frame denotes the packets to be served at the current time step. In the final state,
the average number of commodity 2 packet in the buffer is 1.5, which arises from
1.5 = 𝜇1

𝑐1𝐾
𝑐2𝐾 with details deferred to Section 4.3.3. Therefore the actual throughput

of commodity 2 is 1.5, less than 𝜇2 = 3, due to the finite buffer.

technical contribution of the work in this chapter.

4.2.1 Basic Setting

Given an acyclic directed network 𝒢 = (𝒱 , ℰ) with |𝒱| = 𝑁 nodes and |ℰ| = 𝑀 links.

Each node 𝑖 has a queue buffer, whose size is denoted by 𝑏𝑖. The queue length at

node 𝑖 at time 𝑡 is denoted by 𝑞𝑖(𝑡), where 𝑞𝑖(𝑡) ∈ [0, 𝑏𝑖],∀𝑡. We use an 𝑁 × 1 vector

q(𝑡) to denote the queue length vector of the system, and denote 𝒬 := ×𝑁
𝑖=1[0, 𝑏𝑖]

as the set of feasible queue length vectors, where ×𝑁
𝑖=1 denotes the 𝑁 -dimensional

Cartesian product. Packets in the buffer of node 𝑖 can be transmitted to an adjacent

downstream node 𝑗 through link (𝑖, 𝑗) ∈ ℰ . The transmission rate on link (𝑖, 𝑗) at

time 𝑡, denoted by 𝑔𝑖𝑗(𝑡), captures the number of packets transmitted over (𝑖, 𝑗) in a

time unit. Each link (𝑖, 𝑗) is associated with a capacity value 𝑐𝑖𝑗, which is the largest

flow that link (𝑖, 𝑗) can transmit at any time. Specifically, 0 ≤ 𝑔𝑖𝑗(𝑡) ≤ 𝑐𝑖𝑗, ∀(𝑖, 𝑗) ∈ ℰ .

In communication systems, the transmission rate 𝑔𝑖𝑗(𝑡) on each link (𝑖, 𝑗) is

generally determined by the controller at node 𝑖, according to the queue length

vector q(𝑡) and network configurations, including link capacity values {𝑐𝑖𝑗}(𝑖,𝑗)∈ℰ and

113

node buffer size values {𝑏𝑖}𝑖∈𝒱 . Therefore 𝑔𝑖𝑗(𝑡) is also referred to as the transmission

policy over link (𝑖, 𝑗). In this work, we consider a set of local, stationary policies

that do not allow buffer overflow. (i) Locality: We say that a policy is local if 𝑔𝑖𝑗(𝑡)

depends only on 𝑞𝑖(𝑡) and 𝑞𝑗(𝑡). Local policies are attractive due to their simple

implementation and light communication overhead for information exchange. This

definition is to some extent extremely local as in reality, node 𝑖 can have information

on all 𝑞𝑘(𝑡)’s for (𝑖, 𝑘) ∈ ℰ . However, we show that even with this restricted queue

information, a policy can stabilize the network under certain general conditions with

clear physical intuition. (ii) Stationarity: A policy is stationary if it does not depend

on time explicitly. Note that stationary policies can depend on the network state

(e.g., queue size, channel conditions); i.e., a local policy 𝑔𝑖𝑗(𝑡) can be denoted by

𝑔𝑖𝑗(𝑞𝑖(𝑡), 𝑞𝑗(𝑡))
1. We neglect the notation 𝑡 in the following unless specified. (iii) No

buffer overflow: Any link (𝑖, 𝑗) must stop packet transmission once the buffer of node

𝑗 is saturated, i.e., 𝑔𝑖𝑗 = 0 when 𝑞𝑗 = 𝑏𝑗. In addition to the above three constraints

on the policy, we naturally have 𝑔𝑖𝑗 = 0 when 𝑞𝑖 = 0, which means link (𝑖, 𝑗) has

nothing to transmit when the buffer of upstream node 𝑖 is empty. For technical

convenience, we assume 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) is first-order differentiable with respect to 𝑞𝑖 and

𝑞𝑗, and we show that it can well approximate discrete policies in Section 4.2.2.

Packets are injected into the networks at their source nodes. We denote the packet

injection rate at node 𝑖 as 𝜆𝑖(𝑡) and assume that 𝜆𝑖(𝑡) is independent from the queue

length vector q(𝑡). Packets may depart from the networks at any node, and we model

this by introducing a meta destination node 𝑇 to receive the departing packets. The

transmission rate from node 𝑖 to 𝑇 is 𝑔𝑖𝑇 (𝑞𝑖), purely based on 𝑞𝑖 under the local policy,

and the capacity is denoted by 𝑐𝑖𝑇 := 𝜇𝑖, where 𝜇𝑖 denotes the maximum departure

rate at node 𝑖.

We now formulate the ODE to characterize the queue dynamics. The general form

is given by,

q̇ =
𝑑q

𝑑𝑡
:= f(q), (4.1)

1A local policy 𝑔𝑖𝑗(𝑡) should also depend on 𝑐𝑖𝑗 , 𝑏𝑖 and 𝑏𝑗 , but for brevity we neglect them in the
notation as they do not vary with time.

114

where f(q) := [𝑓𝑖(q)]
𝑁
𝑖=1 ∈ R𝑁 denotes the system dynamics. Due to flow conservation

at each node, under the local policy we define earlier, we have for ∀𝑖 ∈ 𝒱 ,

𝑓𝑖(q) = 𝜆𝑖(𝑡) +
∑︁

𝑘:(𝑘,𝑖)∈ℰ

𝑔𝑘𝑖(𝑞𝑘, 𝑞𝑖)−
∑︁

𝑗:(𝑖,𝑗)∈ℰ

𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗)− 𝑔𝑖𝑇 (𝑞𝑖). (4.2)

In the above dynamics, the term 𝜆𝑖(𝑡) +
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑔𝑘𝑖(𝑞𝑘, 𝑞𝑖) denotes the total packet

inflow rate to node 𝑖, while the term
∑︀

𝑗:(𝑖,𝑗)∈ℰ 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) + 𝑔𝑖𝑇 (𝑞𝑖) denotes the total

packet departure rate from node 𝑖.

4.2.2 Stability Analysis

Next, we study network stability of the dynamics (4.2) under local policies. We

consider the queue length stability, as given by Definition 4.1.

Definition 4.1. The system (4.2) is queue length stable if ∀𝑖 ∈ 𝒱, lim𝑡→∞ sup 𝑞𝑖(𝑡) <

∞.

Queue length stability ensures the boundedness of the queue backlog at each node.

In a system with finite buffers, where overflow is not permitted, instability can only

occur at the nodes with unbounded buffers (i.e., source nodes). We note that the

assumption of “unbounded” buffers at the source node captures the reality that in

many systems internal buffers are small, and buffers at source nodes are relatively

large. It is also a useful modeling tool that captures the impact of finite buffers on

congestion by “pushing” congestion to the source nodes. Finally, we note that it can

be easily shown that queue stability at the source nodes implies rate stability, which

is a more meaningful notion of stability in finite-buffer systems2.

We study the queue length stability based on the stability analysis of the

equilibrium points of ODE system.

Definition 4.2. q* is an equilibrium point of the system (4.2) if f(q*) = 0.

2Rate stability implies that the arrival rate is equal to the departure rate [97].

115

The stability of an equilibrium point q* is defined based on either a Lyapunov

function or the Jacobian matrix. In this work, we take the latter way to define

stability.

Definition 4.3. The equilibrium point q* of an ODE system (4.2) is asymptotically

stable if all the eigenvalues of the Jacobian matrix J at q*, i.e.,

J

⃒⃒⃒⃒
q=q*

=

[︂
𝜕𝑓𝑖(q)

𝜕𝑞𝑗

]︂ ⃒⃒⃒⃒
q=q*, 𝑖,𝑗=1,2,...,𝑁

have negative real parts.

An equilibrium point of an ODE being stable means that the dynamics will not

move away from this equilibrium under small disturbances, which is different from

queue length stability. In the following, our goal is to connect the notion of equilibrium

point stability to queue length stability. The intuitive idea is that if the system

in (4.1) has a unique asymptotically stable equilibrium point, then queue length

stability follows as the dynamics will not diverge to infinity. Specifically, we first

seek a sufficient condition for a policy 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) such that any equilibrium point q* is

asymptotically stable, which ensures local queue length stability. We then extend it

to a global condition which guarantees the global queue length stability.

Local Result

We first derive a sufficient condition of the local policy such that an equilibrium point

of the system (4.2) is asymptotically stable.

Theorem 4.1. For a local policy, if there exists an equilibrium point q*, such that at

q = q*, ⎧⎪⎨⎪⎩
𝜕𝑔𝑖𝑗(𝑞𝑖,𝑞𝑗)

𝜕𝑞𝑖
> 0,

𝜕𝑔𝑖𝑗(𝑞𝑖,𝑞𝑗)

𝜕𝑞𝑗
< 0, ∀(𝑖, 𝑗) ∈ ℰ ,

𝜕𝑔𝑖𝑇 (𝑞𝑖)
𝜕𝑞𝑖

> 0, ∃𝑖 ∈ 𝒱
(4.3)

then the ODE is asymptotically stable at q*.

116

Proof. (Sketch) According to (4.2), given any node 𝑢 ∈ 𝒱 , and for ∀𝑖 = 1, . . . , 𝑁 ,

J𝑖𝑢 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (𝑖, 𝑢) /∈ ℰ , (𝑢, 𝑖) /∈ ℰ , 𝑖 ̸= 𝑢

−𝜕𝑔𝑖𝑢(𝑞𝑖,𝑞𝑢)
𝜕𝑞𝑢

, (𝑖, 𝑢) ∈ ℰ
𝜕𝑔𝑢𝑖(𝑞𝑢,𝑞𝑖)

𝜕𝑞𝑢
, (𝑢, 𝑖) ∈ ℰ∑︀

𝑘:(𝑘,𝑢)∈ℰ
𝜕𝑔𝑘𝑢(𝑞𝑘,𝑞𝑢)

𝜕𝑞𝑢
−
∑︀

𝑗:(𝑢,𝑗)∈ℰ
𝜕𝑔𝑢𝑗(𝑞𝑢,𝑞𝑗)

𝜕𝑞𝑢
− 𝜕𝑔𝑢𝑇 (𝑞𝑢)

𝜕𝑞𝑢
, 𝑖 = 𝑢

(4.4)

Under the condition (4.3), we can verify that all the diagonal entries of J are

negative, and |J𝑖𝑖| ≥
∑︀

𝑢:𝑢̸=𝑖 |J𝑘𝑖|, ∀𝑖 ∈ 𝒱 . Hence J is a column diagonally dominant

matrix. This indicates that all the eigenvalues have non-positive real parts by the

Gershgorin circle theorem [109], and starting from this fact, we can further prove that

all eigenvalues have negative real parts under (4.3), with details deferred in Section

4.5.

Theorem 4.1 conveys that under any local policy so that the two conditions in (4.3)

hold, the network will be queue length stable given the initial queue length lies in a

sufficiently small neighborhood of the equilibrium point. The first condition is related

to the intuition of the backpressure policy [22]: The fluid flows from high pressure

nodes to low pressure nodes. The queue length represents the pressure, and once the

pressure at the upstream node 𝑖 increases, then pressure difference increases for 𝑖 and

𝑗 thus 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗), the flow over (𝑖, 𝑗), should be larger; in contrast, once the pressure at

the downstream node 𝑗 increases, the difference decreases and thus 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) should

be smaller. The second condition means there exists at least one node (egress node)

where packets can depart from the network , and the departure rate increases as more

packets accumulate in the buffer. We show later in this section specific examples of

network policies, including backpressure, that satisfy both conditions.

Different from prior works proposing and proving queue length stability under

a specific policy, Theorem 4.1 presents an explicit and intuitive condition which

generalizes a set of local policies that can guarantee an equilibrium point to be

stable, with no limitations over the buffer setting embedded in the policy function

117

𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗), ∀(𝑖, 𝑗) ∈ ℰ .

Global Result

Theorem 4.1 can only guarantee local stability. In Theorem 4.2 we extend to a global

stability result, by identifying a sufficient condition for the local policy to have at

most one globally asymptotically stable equilibrium point, which is a crucial step

towards queue length stability.

Theorem 4.2. If for all queue length vector q ∈ 𝒬, the policy 𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) for

any (𝑖, 𝑗) ∈ ℰ satisfies (4.3), then (4.2) either has a unique asymptotically stable

equilibrium point or does not have any equilibrium points.

Proof. Suppose there exists more than one equilibrium point, then the ODE system

must have some equilibrium point q̃ that is not asymptotically stable. However, by

Theorem 4.1, since (4.3) holds at q̃, then q̃ should be asymptotically stable, which is

a contradiction.

Theorem 4.2 ensures that any equilibrium point is unique and asymptotically

stable when all feasible queue length vectors satisfy (4.3) under a local policy. This

indicates that under such a policy, the problem to determine the queue length stability

of the system can be reduced to determine whether there exists any feasible solution to

the equation f(q) = 0. This reduces the network stability problem to a feasibility test

problem of 𝑁 -dim equations, which facilitates network stability analysis especially

under large 𝑁 .

To interpret Theorem 4.2 more concretely, we propose the following policy

examples that globally satisfy (4.3).

Policy based on Backpressure: At time 𝑡, each node 𝑖 compares its queue

length to the queue length of each of its downstream nodes 𝑗. If 𝑞𝑖(𝑡) > 𝑞𝑗(𝑡), link

(𝑖, 𝑗) transmits with its capacity value 𝑐𝑖𝑗, and otherwise it does not transmit. The

118

policy can be formulated using differentiable rate functions as follows.⎧⎪⎨⎪⎩𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) =
1

1+𝑒−𝑎(𝑞𝑖−𝑞𝑗−𝜖)
1

1+𝑒−𝑎(𝑏𝑗−𝜖−𝑞𝑗)
𝑐𝑖𝑗, ∀(𝑖, 𝑗) ∈ ℰ

𝑔𝑖𝑇 (𝑞𝑖) =
1

1+𝑒−𝑎(𝑞𝑖−𝜖)𝜇𝑖, if 𝑖 is an egress node
(4.5)

where 𝑎 > 0 and 𝜖 > 0 are preset values. It is easy to verify that (4.5) satisfies (4.3)

globally for any feasible q. The form of (4.5) matches backpressure under 𝑎 → ∞

and 𝜖 := 1/
√
𝑎→ 0, which transmits the packets from 𝑖 to 𝑗 with rate 𝑐𝑖𝑗 if and only

if 𝑞𝑖 > 𝑞𝑗 and 𝑞𝑗 < 𝑏𝑗, i.e., the buffer of 𝑗 is not saturated. This shows that (4.5) is

an approximation to backpressure under sufficiently large 𝑎 and small 𝜖. Moreover,

the form of 𝑔𝑖𝑇 (𝑞𝑖) guarantees work-conservation under 𝑎 → ∞ and 𝜖 := 1/
√
𝑎 → 0,

i.e., maximum departure rate if there are packets in the buffer.

Policy based on Buffer Occupancy Level: Consider⎧⎪⎨⎪⎩𝑔𝑖𝑗(𝑞𝑖, 𝑞𝑗) =
1

1+𝑒−𝑎(𝑞𝑖−𝜖)

(︁
1− 𝑞𝑗

𝑏𝑗

)︁
𝑐𝑖𝑗, ∀(𝑖, 𝑗) ∈ ℰ

𝑔𝑖𝑇 (𝑞𝑖) =
1

1+𝑒−𝑎(𝑞𝑖−𝜖)𝜇𝑖, if 𝑖 is an egress node

We can similarly verify it globally satisfies (4.3). Taking 𝑎 large enough and 𝜖 → 0

to guarantee 𝑔𝑖𝑗 = 0 when 𝑞𝑖 = 0. The transmission rate of link (𝑖, 𝑗) in this policy

declines linearly with respect to 𝑞𝑗/𝑏𝑗, the buffer occupancy level of node 𝑗. This policy

does not transmit with rate equal to link capacity when the downstream node’s buffer

is not empty, but Theorem 4.2 reveals that it can also stabilize the network if there

exists an equilibrium point for (4.2) under this policy.

4.2.3 Existence of Equilibrium Point

With Theorem 4.2, The remaining gap to proving queue length stability for a local

policy that satisfies (4.3) globally is to show that there exists an equilibrium point

for (4.2) under this policy. There is no well-known answer to this question except

verifying the feasibility of (4.2) directly. We identify one sufficient condition for

the existence of an equilibrium point in Lemma 4.1, proved by Poincare-Miranda

119

Theorem, a multi-dimensional version of the intermediate value theorem.

Poincare-Miranda Theorem [110]: Consider 𝑛 continuous functions of 𝑛

variables, 𝑔1, . . . , 𝑔𝑛. Assume that for each variable 𝑥𝑖, the function 𝑔𝑖 is constantly

negative when 𝑥𝑖 = −1 and constantly positive when 𝑥𝑖 = 1. Then there is a point

in the 𝑛-dimensional cube [−1, 1]𝑛 such that 𝑔1, . . . , 𝑔𝑛 are simultaneously equal to 0.

Lemma 4.1. Suppose that there exists finite values {𝑏̄𝑗}𝑁𝑖=1 and {𝑏𝑗}𝑁𝑖=1 such that

for every node 𝑖 and any 𝑞𝑗 ∈ [𝑏𝑗, 𝑏̄𝑗], ∀𝑗 ̸= 𝑖: (i) when 𝑞𝑖 = 𝑏̄𝑖, the policy leads to

𝑓𝑖(q) ≤ 0; (ii) when 𝑞𝑖 = 𝑏𝑖, 𝑓𝑖(q) ≥ 0, then system (4.2) has an equilibrium point in

ℬ̄ := ×𝑁
𝑖=1[𝑏𝑖, 𝑏̄𝑖].

Proof. We can apply the Poincare-Miranda Theorem over the cube ℬ̄ := ×𝑁
𝑖=1[𝑏𝑖, 𝑏̄𝑖]

and taking 𝑔𝑖 := 𝑓𝑖 in (4.1), which ensures at least one q such that f(q) = 0.3

Lemma 4.1 is a general result for the existence of an equilibrium point in which

ℬ̄ requires specification for a particular policy. We consider the policy (4.5) as an

example to show how we can obtain ℬ̄ in Section 4.5. Combining Theorem 4.2 and

Lemma 4.1, we have the following theorem for queue length stability.

Theorem 4.3. For any local policy that satisfies the conditions in both Theorem 4.2

and Lemma 4.1, there exists a unique stable equilibrium point in ℬ̄ defined in Lemma

4.1, and the system is queue length stable (and thus rate stable).

Proof. Theorem 4.2 ensures there exists at most one stable equilibrium point, while

Lemma 4.1 ensures there exists at least one equilibrium point. Therefore there exists

a unique stable equilibrium point and thus starting at any queue length vector, the

dynamics will converge to the equilibrium.

Theorem 4.3 can be viewed as an extension to Theorem 4.2 which only adds a

sufficient condition for equilibrium point existence. The above stability results differ

from previous works in that (i) they capture a set of policies, and (ii) they can be

applied in systems with arbitrary buffer settings.
3In the proof, we do not follow the condition constantly negative/positive, instead we consider

constantly non-positive/non-negative. This does not affect our result as we consider the existence of
solution in a closed cube.

120

4.3 Multi-Commodity System

We extend the above results to multi-commodity systems, where different

commodities are coupled due to shared links or buffers. We identify a sufficient

condition for queue length stability that is similar to the single-commodity case, but

with an additional condition on the coupling among different commodities.

4.3.1 Basic Setting

Suppose that the system consists of 𝐶 commodities. We use 𝑞(ℓ)𝑖 (𝑡) to denote the queue

length of commodity ℓ at node 𝑖 and time 𝑡, and an 𝑁ℓ×1 vector q(ℓ)(𝑡) to denote the

queue length vector for commodity ℓ, where 𝑁ℓ denotes the number of nodes on the

available paths of commodity ℓ. We denote vector q(𝑡) that concatenates {q(ℓ)(𝑡)}𝐶ℓ=1

as the queue length vector for the entire network. For commodity ℓ, we denote the

arrival rate at node 𝑖 as 𝜆
(ℓ)
𝑖 (𝑡), the transmission rate on link (𝑖, 𝑗) as 𝑔

(ℓ)
𝑖𝑗 (𝑡), and the

departure rate to outside the networks at node 𝑖 as 𝑔(ℓ)𝑖𝑇ℓ
(𝑡), where 𝑇ℓ denotes the meta

destination connected for commodity ℓ.

We also consider local, stationary policies in the multi-commodity case with no

overflow permitted, namely the same conditions as for the single-commodity systems.

The queueing dynamics under a local policy for any commodity ℓ at any node 𝑖 is

given by
𝑞
(ℓ)
𝑖 = 𝜆

(ℓ)
𝑖 +

∑︁
𝑘:(𝑘,𝑖)∈ℰ

𝑔
(ℓ)
𝑘𝑖 ({𝑞

(𝑝)
𝑘 }

𝐶
𝑝=1, {𝑞

(𝑝)
𝑖 }𝐶𝑝=1)

−
∑︁

𝑗:(𝑖,𝑗)∈ℰ

𝑔
(ℓ)
𝑖𝑗 ({𝑞

(𝑝)
𝑖 }𝐶𝑝=1, {𝑞

(𝑝)
𝑗 }𝐶𝑝=1)− 𝑔

(ℓ)
𝑖𝑇 ({𝑞

(𝑝)
𝑖 }𝐶𝑝=1).

(4.6)

4.3.2 Stability Analysis

We follow a similar pattern to the single-commodity case. We first derive conditions

for local queue length stability, and extend to a global sufficient condition that ensures

an equilibrium point q* to be globally unique and stable, which captures a set of local

policies that can achieve queue length stability for all commodities.

To study the stability at q*, we need to first introduce an important concept of

121

block diagonally dominant matrix.

Definition 4.4. A matrix J is called a block diagonally dominant matrix if J can be

partitioned into the following 𝐶 × 𝐶 blocks

J =

⎡⎢⎢⎢⎢⎢⎢⎣
J1,1 J1,2 · · · J1,𝐶

J2,1 J2,2 · · · J2,𝐶

...
...

J𝐶,1 J𝐶,2 · · · J𝐶,𝐶

⎤⎥⎥⎥⎥⎥⎥⎦ (4.7)

where J𝑖,𝑗 ∈ R𝑁𝑖×𝑁𝑗 , the diagonal submatrices {J𝑖,𝑖}𝐶𝑖=1 are nonsingular, and for some

operator norm || · ||, ||J−1
𝑗,𝑗 ||−1 ≥

∑︀𝐶
𝑘=1,𝑘 ̸=𝑗 ||J𝑗,𝑘||, ∀𝑗 = 1, . . . , 𝐶. J is called a block

strictly diagonally dominant matrix if the last condition is a strict inequality.

This definition is directly related to the system (4.6): Each block on the diagonal

(Jℓ,ℓ) represents the derivative of the dynamics of commodity ℓ with respect to the 𝑞(ℓ)𝑖

at each node 𝑖, while each off-diagonal block (Jℓ′,ℓ) denotes its derivative with respect

to 𝑞
(ℓ′)
𝑖 for commodity ℓ′ ̸= ℓ, which reflects the coupling between commodities ℓ and

ℓ′. Intuitively, block diagonally dominance requires the total coupling effect of each

commodity ℓ (i.e.
∑︀𝐶

𝑘=1,𝑘 ̸=ℓ ||Jℓ,𝑘||) to be relatively small.

Before proving our results based on the block diagonally dominant matrix, we

need to introduce the concepts of M-matrix and absolute norm, and a theorem [111]

about matrix eigenvalues.

Definition 4.5. A matrix is called an M-matrix if all of its eigenvalues have

nonnegative real parts and all its off-diagonal entries are nonpositive.

Definition 4.6. A norm || · || is an absolute norm if ||q|| = || |q| ||, where |q| denotes

the element-wise absolute value.

Theorem: [111] Let matrix J be partitioned as in (4.7), and let J be block strictly

diagonally dominant. Further, suppose that −J𝑗,𝑗 is an M-matrix, ∀1 ≤ 𝑗 ≤ 𝐶, and

the norm is an absolute norm. The any eigenvalue of J has negative real part.

122

The theorem informs that we need to ensure three points to prove that

an equilibrium point is asymptotically stable: (i) J is block strictly diagonally

dominant; (ii) −Jℓ,ℓ is an M-matrix, ∀ℓ = 1, . . . , 𝐶; (iii) the norm is an absolute

norm. The last point obviously holds when we apply the 𝑙2-norm. We have the

following lemma for (i) and (ii).

Lemma 4.2. Suppose that the Jacobian matrix J of (4.6) at an equilibrium point q*

under the local policy satisfies

• Block strictly diagonal dominance:

√︁
𝜆min(Jℓ,ℓJ𝑇

ℓ,ℓ) >
𝐶∑︁

𝑝=1,𝑝 ̸=ℓ

√︁
𝜆max(J𝑇

𝑝,ℓJ𝑝,ℓ)

for ∀ℓ = 1, . . . , 𝐶.

• M-matrix condition: For ∀(𝑖, 𝑗) ∈ ℰ and ∀ℓ = 1, . . . , 𝐶, 𝜕𝑔
(ℓ)
𝑖𝑗

𝜕𝑞
(ℓ)
𝑖

> 0,
𝜕𝑔

(ℓ)
𝑖𝑗

𝜕𝑞
(ℓ)
𝑗

< 0, and

𝜕𝑔
(ℓ)
𝑖𝑇

𝜕𝑞
(ℓ)
𝑖

> 0, ∃𝑖 ∈ 𝒱.

then the equilibrium point q* is asymptotically stable.

Proof. The block strictly diagonal dominance constraint is derived based on constraint

||J−1
𝑠,𝑠 ||−1 ≥

∑︀𝐶
𝑡=1,𝑡̸=𝑠 ||J𝑡,𝑠|| under 𝑙2-norm. Specifically,

||J−1
𝑠,𝑠 || =

√︁
𝜆max((J𝑇

𝑠,𝑠)
−1J−1

𝑠,𝑠) =
√︁
𝜆max(J𝑠,𝑠J𝑇

𝑠,𝑠)
−1 =

(︁√︁
𝜆min(J𝑠,𝑠J𝑇

𝑠,𝑠)
)︁−1

.

Therefore ||J−1
𝑠,𝑠 ||−1 =

√︁
𝜆min(J𝑠,𝑠J𝑇

𝑠,𝑠) while the RHS
∑︀𝐶

𝑡=1,𝑡̸=𝑠 ||J𝑡,𝑠|| is equal to∑︀𝐶
𝑡=1,𝑡̸=𝑠

√︁
𝜆max(J𝑇

𝑡,𝑠J𝑡,𝑠) based on the definition of 𝑙2-norm. The M-matrix condition

can be similarly proved as Theorem 4.1 to show that under the condition, −Jℓ,ℓ is an

M-matrix. Then all the eigenvalues of J have negative real parts based on [111], and

thus q* is asymptotically stable.

Compared with Theorem 4.1 for single-commodity systems, the block strictly

diagonal dominance in Lemma 4.2 is an additional condition for the restriction of

coupling level among different commodities, while for each commodity, the M-matrix

123

condition coincides with the conditions (4.3). In fact, in the case that different

commodities do not affect each other, the block strictly diagonal dominance holds

naturally as all the off-diagonal blocks are zero matrices, and thus Lemma 4.2 is

reduced to a 𝐶-fold version of Theorem 4.1.

Similar to the single-commodity case, we can obtain a sufficient condition of a local

policy such that (4.6) has a unique stable equilibrium point, reducing the stability

problem to testing the existence of an equilibrium point.

Theorem 4.4. Suppose that the conditions in Lemma 4.2 hold for any feasible q,

then there either exists a unique asymptotically stable equilibrium point for (4.6) or

there does not exist any equilibrium point.

4.3.3 Existence of Equilibrium Point

In terms of the existence of an equilibrium point, we similarly apply the

Poincare-Miranda Theorem. However since it can only capture cube form regions

of q, we can only obtain results for systems with per-commodity buffers, where

node 𝑖 allocates a portion of its buffer to each commodity ℓ, with length denoted as

𝑏
(ℓ)
𝑖 , which satisfies 𝑞

(ℓ)
𝑖 ≤ 𝑏

(ℓ)
𝑖 and

∑︀𝐶
𝑝=1 𝑏

(𝑝)
𝑖 ≤ 𝑏𝑖. For systems with shared buffers,

the constraint is
∑︀𝐶

𝑝=1 𝑞
(𝑝)
𝑖 ≤ 𝑏𝑖, not a cube, hence this theorem is not applicable.

Systems with shared buffers will be discussed in Section 4.3.5.

Lemma 4.3. For every commodity ℓ, under the condition that there exists finite

values {𝑏̄(ℓ)𝑗 }𝑁𝑖=1 and {𝑏(ℓ)𝑗 }𝑁𝑖=1 such that for every node 𝑖, and 𝑞
(ℓ)
𝑗 ∈ [𝑏

(ℓ)
𝑗 , 𝑏̄

(ℓ)
𝑗], ∀𝑗 ̸= 𝑖:

(i) when 𝑞
(ℓ)
𝑖 = 𝑏̄

(ℓ)
𝑖 , 𝑓

(ℓ)
𝑖 (q) ≤ 0; (ii) when 𝑞

(ℓ)
𝑖 = 𝑏

(ℓ)
𝑖 , 𝑓

(ℓ)
𝑖 (q) ≥ 0. There exists a

feasible equilibrium point q ∈ ℬ̄ := ×𝑁
𝑖=1 ×𝐶

𝑝=1 [𝑏
(𝑝)
𝑖 , 𝑏̄

(𝑝)
𝑖] for system (4.6).

Proof. The proof is a simple extension of Lemma 4.1 by applying its idea for each

commodity ℓ.

Note that Lemma 4.3 only decouples different commodities at node buffers, which

means it still applies when different commodities affect each other’s transmission rates

on shared links. Combining Lemma 4.3 with Theorem 4.4, we obtain the following

124

result regarding queue length stability for all commodities. The proof is similar to

Theorem 4.3.

Theorem 4.5. For policies under the conditions of Theorem 4.4 and Lemma 4.3,

there exists a globally unique stable equilibrium point for (4.6), which guarantees queue

length stability for all commodities.

4.3.4 Rule of Thumb

Theorem 4.4 gives a sufficient condition to guarantee queue stability. However, the

coupling constraint is not an explicit form of the queue policy as in Theorem 4.1,

which impedes its practical usage. Technical difficulty blocks derivation of explicit

coupling conditions. In this section, we propose a rule of thumb in an explicit form

that benefits the queue stability in two folds: (i) For a system that is not stable,

adding coupling between different commodities following this rule drives the system

to approach or reach being stable; (ii) For a system that is stable, the introduction

of such coupling accelerates the convergence to the steady state. The result reveals

an easy-to-implement way to introduce coupling among the queueing dynamics of

different commodities that drives the network system to queue stability.

The idea is to quantify the effect of the coupling on the eigenvalues. Recall the

block matrix (4.7). Introducing the coupling changes the form of off-diagonal blocks,

which does not affect the form of the trace of the matrix, as it is only associated with

diagonal elements. Since the sum of the eigenvalues equals to the trace, then if the

eigenvalues of each diagonal block matrix J𝑖,𝑖 have negative real part, the eigenvalues

sum is negative. Given this fact, our rule of thumb is to balance all the eigenvalues,

which minimizes the maximum real part of all the eigenvalues since it determines the

convergence rate. Balancing the eigenvalues of the Jacobian 𝐽 can be formulated as

an optimization problem that minimizes the quadratic sum of the real part of the

eigenvalues.

We first present our idea through a toy example: two nodes connected by a single

link shared by two commodities, and all the eigenvalues of J are real numbers. The

125

corresponding queueing dynamics is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑞
(1)
1 = 𝜆

(1)
1 + 𝑔

(1)
12 ({𝑞

(𝑝)
1 }2𝑝=1, {𝑞

(𝑝)
2 }2𝑝=1)

𝑞
(1)
2 = 𝑔

(1)
12 ({𝑞

(𝑝)
1 }2𝑝=1, {𝑞

(𝑝)
2 }2𝑝=1)− 𝑔

(1)
2𝑇 (𝑞

(1)
2)

𝑞
(2)
1 = 𝜆

(2)
1 + 𝑔

(2)
12 ({𝑞

(𝑝)
1 }2𝑝=1, {𝑞

(𝑝)
2 }2𝑝=1)

𝑞
(2)
2 = 𝑔

(2)
12 ({𝑞

(𝑝)
1 }2𝑝=1, {𝑞

(𝑝)
2 }2𝑝=1)− 𝑔

(2)
2𝑇 (𝑞

(2)
2)

(4.8)

Under the assumption that the eigenvalues of J are all real, our objective is to

reduce
∑︀2

𝑖=1 𝜆
2
𝑖 . Note that

∑︀2
𝑖=1 𝜆

2
𝑖 = trace(J2), then the objective can be expressed

as

∑︁
𝑖

𝜆2
𝑖 = trace

⎛⎝⎡⎣𝐽1,1 𝐽1,2

𝐽2,1 𝐽2,2

⎤⎦2⎞⎠ = trace(𝐽2
1,1 + 𝐽1,2𝐽2,1 + 𝐽2,1𝐽1,2 + 𝐽2

2,2)

Since coupling only lies in the off-diagonal matrices, then the objective function with

respect to the coupling satisfies trace(𝐽1,2𝐽2,1 + 𝐽2,1𝐽1,2) = 2trace(𝐽1,2𝐽2,1) due to

the fact that commutation does not affect trace value. The objective is an explicit

function of the off-diagonal Jacobian matrix, which is

𝐽1,2 =

⎡⎢⎣−𝜕𝑔
(1)
12

𝜕𝑞
(2)
1

−𝜕𝑔
(1)
12

𝜕𝑞
(2)
2

𝜕𝑔
(1)
12

𝜕𝑞
(2)
1

𝜕𝑔
(1)
12

𝜕𝑞
(2)
2

⎤⎥⎦ , 𝐽2,1 =

⎡⎢⎣−𝜕𝑔
(2)
12

𝜕𝑞
(1)
1

−𝜕𝑔
(2)
12

𝜕𝑞
(1)
2

𝜕𝑔
(2)
12

𝜕𝑞
(1)
1

𝜕𝑔
(2)
12

𝜕𝑞
(1)
2

⎤⎥⎦
and thus

trace(𝐽1,2𝐽2,1) =

(︃
𝜕𝑔

(1)
12

𝜕𝑞
(2)
1

𝜕𝑔
(2)
12

𝜕𝑞
(1)
1

)︃
+

(︃
−𝜕𝑔

(1)
12

𝜕𝑞
(2)
2

𝜕𝑔
(2)
12

𝜕𝑞
(1)
1

)︃
+

(︃
−𝜕𝑔

(1)
12

𝜕𝑞
(2)
1

𝜕𝑔
(2)
12

𝜕𝑞
(1)
2

)︃
+

(︃
𝜕𝑔

(1)
12

𝜕𝑞
(2)
2

𝜕𝑔
(2)
12

𝜕𝑞
(1)
2

)︃
(4.9)

Our goal is to reduce the objective function, therefore one rule of thumb of the

policy is to satisfy

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑙)
12

𝜕𝑞
(𝑝)
1

< 0,
𝜕𝑔

(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
2

< 0, 𝑝, 𝑙 ∈ {1, 2}, 𝑝 ̸= 𝑙 (4.10)

126

under which each of the four bracketed terms in (4.9) to negative. Therefore for this

link (1, 2) and the two commodities sharing this link, with this condition, it achieves

more balanced eigenvalues compared with non-coupling case.

The intuition of (4.10) is as follows. (i) For 𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑙)
12

𝜕𝑞
(𝑝)
1

< 0, suppose that when 𝑞
(1)
1

increases, 𝑔(2)12 increases, i.e., 𝜕𝑔
(2)
12

𝜕𝑞
(1)
1

> 0, then an increasing 𝑔
(2)
12 tends to decrease 𝑞

(2)
1 ,

and an intuitive idea to balance the two commodities is to increase 𝑔
(1)
12 to prevent

the gap 𝑔
(2)
12 − 𝑔

(1)
12 from being too large. This means 𝜕𝑔

(1)
12

𝜕𝑞
(2)
1

< 0. (ii) For 𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
2

< 0,

it shares the intuition with the condition in Theorem 4.2, which means the flow of

commodity 𝑝 on link (𝑖, 𝑗) follows different trends when 𝑞
(𝑙)
𝑖 and 𝑞

(𝑙)
𝑗 shares the same

changing direction. This balances the 𝑔
(𝑝)
𝑖𝑗 to fluctuate around an intermediate value

and impedes it from reaching extreme values, either occupying the resource of or fully

sacrificing itself for other commodities.

This result can be extended to multiple commodities sharing a link, as Lemma

4.4 indicates.

Lemma 4.4. Consider a system with a single link (1, 2) shared by 𝐶 commodities,

then
∑︀𝐶

𝑝=1

∑︀
𝑙 ̸=𝑝 trace(𝐽𝑝,𝑙𝐽𝑙,𝑝) ≤ 0 if

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑙)
12

𝜕𝑞
(𝑝)
1

≤ 0,
𝜕𝑔

(𝑝)
12

𝜕𝑞
(𝑙)
1

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
2

≤ 0, 𝑝, 𝑙 ∈ {1, 2, . . . , 𝐶}, 𝑝 ̸= 𝑙 (4.11)

Proof. Based on extending (4.8) to 𝐶 commodities, we can derive that

𝐶∑︁
𝑝=1

∑︁
𝑙 ̸=𝑝

trace(𝐽𝑝,𝑙𝐽𝑙,𝑝)

=
𝐶∑︁

𝑝=1

∑︁
𝑙 ̸=𝑝

(︃
𝜕𝑔

(𝑙)
12

𝜕𝑞
(𝑝)
1

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

)︃
+

(︃
−𝜕𝑔

(𝑙)
12

𝜕𝑞
(𝑝)
2

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
1

)︃
+

(︃
−𝜕𝑔

(𝑙)
12

𝜕𝑞
(𝑝)
1

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
2

)︃
+

(︃
𝜕𝑔

(𝑙)
12

𝜕𝑞
(𝑝)
2

𝜕𝑔
(𝑝)
12

𝜕𝑞
(𝑙)
2

)︃

and the condition (4.11) guarantees that each bracked term is non-positive.

Lemma 4.4 characterizes a rule of thumb to introduce and utilize the coupling to

balance the eigenvalues on a single link. Following the idea, we can extend the result

to multi-hop networks, where each link satisifies the condition (4.11) with an extra

127

condition regulating the coupling of all upstream and downstream links at each node,

stated in Theorem 4.6.

Theorem 4.6. Consider a multi-hop network shared by 𝐶 commodities, then∑︀𝐶
𝑝=1

∑︀
𝑙 ̸=𝑝 trace(𝐽𝑝,𝑙𝐽𝑙,𝑝) ≤ 0 if (4.11) holds for each link (𝑖, 𝑗) and at each node 𝑖,

∀𝑝 = 1, . . . , 𝐶, ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑔
(𝑝)
𝑖𝑗1

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑖𝑗2

𝜕𝑞
(𝑙)
𝑖

≥ 0,∀(𝑖, 𝑗1), (𝑖, 𝑗2) ∈ ℰ
𝜕𝑔

(𝑝)
𝑘1𝑖

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑘2𝑖

𝜕𝑞
(𝑙)
𝑖

≥ 0,∀(𝑘1, 𝑖), (𝑘2, 𝑖) ∈ ℰ

𝜕𝑔
(𝑝)
𝑘𝑖

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑖𝑗

𝜕𝑞
(𝑙)
𝑖

≤ 0,∀(𝑘, 𝑖), (𝑖, 𝑗) ∈ ℰ

(4.12)

The extra condition (4.12) has following intuition. Consider an arbitrary node

𝑖. (i)
𝜕𝑔

(𝑝)
𝑖𝑗1

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑖𝑗2

𝜕𝑞
(𝑙)
𝑖

≥ 0 means the coupling between commodity 𝑙 and 𝑝 should be in

same direction for all downstream links of node 𝑖; (ii)
𝜕𝑔

(𝑝)
𝑘1𝑖

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑘2𝑖

𝜕𝑞
(𝑙)
𝑖

≥ 0 means the same

direction also holds for all upstream links of node 𝑖; (iii) 𝜕𝑔
(𝑝)
𝑘𝑖

𝜕𝑞
(𝑙)
𝑖

𝜕𝑔
(𝑝)
𝑖𝑗

𝜕𝑞
(𝑙)
𝑖

≤ 0 means that

the dependence of any upstream-downstream link pair of node 𝑖 are opposite. The

condition (4.12) in fact echoes the underlying idea of Lemma 4.1 (also the M-matrix

constraint in Lemma 4.2), under which all upstream (downstream) links of a node 𝑖

share the same trend, while an upstream link and a downstream link share different

trend, taking partial derivative with respect to 𝑞𝑖.

4.3.5 Shared buffer Case Study: Switched Networks

In networks with shared buffers, one commodity may fully occupy a shared buffer

and thus squeeze out other commodities, which may induce the instability of these

commodities. While we have not been able to obtain results for general networks

under this setting, we can obtain explicit results over single-hop network structure as

Fig. 4-1, which serves as the basic structure for server farms [29] and switches in data

center networks [17].

128

Consider the policy based on backpressure (4.5) for the system in Fig. 4-1. Let

⎧⎪⎪⎨⎪⎪⎩
𝛼
(ℓ)
𝑖𝑗 = 1

1+𝑒
−𝑎(𝑞

(ℓ)
𝑖

−𝑞
(ℓ)
𝑗

−𝜖)
, ∀(𝑖, 𝑗) ∈ ℰ , ℓ = 1, 2

𝛽𝐾 = 1

1+𝑒
−𝑎(𝑏𝐾−𝑞

(1)
𝐾

−𝑞
(2)
𝐾

−𝜖)
,

where 𝑎→∞ and 𝜖 := 1/
√
𝑎→ 0, and we can then write the queueing dynamics as

(1)
1 = 𝜆1 − 𝑐1𝐾𝛼

(1)
1𝐾𝛽𝐾 , 𝑞

(1)
𝐾 = 𝑐1𝐾𝛼

(1)
1𝐾𝛽𝐾 − 𝜇1𝛼

(1)
𝐾𝑇

𝑞
(2)
2 = 𝜆2− 𝑐2𝐾𝛼

(2)
2𝐾𝛽𝐾 , 𝑞

(2)
𝐾 = 𝑐2𝐾𝛼

(2)
2𝐾𝛽𝐾 −𝜇2𝛼

(2)
𝐾𝑇 We assume 𝑐1𝐾 > 𝜇1 and 𝑐2𝐾 > 𝜇2,

then the admissible region for (𝜆1, 𝜆2) is [0, 𝜇1] × [0, 𝜇2]. If both commodities have

arrival rates interior to the admissible region, then the network is queue length stable

for both commodities under (4.5). However, suppose that commodity 1 is overloaded

(𝜆1 > 𝜇1), Lemma 4.5 shows that under 𝑐1𝐾/𝜇1 > 𝑐2𝐾/𝜇2, 𝜆2 < 𝜇2 does not guarantee

the queue length stability of commodity 2, which explains the instability example

given in the introduction (Fig. 4-1) due to the non-existence of equilibrium point for

the subsystem (4.3.5).

Lemma 4.5. For the 2-commodity toy system in Fig. 4-1, suppose that 𝜆1 > 𝜇1 and

𝑐1𝐾/𝜇1 > 𝑐2𝐾/𝜇2, then under the (4.3.5) and (4.3.5), the subsystem (4.3.5) has an

equilibrium point if and only if 𝜆2 ∈ [0, 𝜇1

𝑐1𝐾
𝑐2𝐾] ⊂ [0, 𝜇2).

Proof. To guarantee that the subsystem (4.3.5) has an equilibrium point, we need have

𝑞
(2)
2 = 0 and 𝑞

(2)
𝐾 = 0 i.e., 𝜆2 = 𝑐2𝐾𝛼

(2)
2𝐾𝛽𝐾 = 𝜇2𝛼

(2)
𝐾𝑇 . To capture this, we first identify

the value of 𝛽𝐾 . Since 𝑐1𝐾/𝜇1 > 𝑐2𝐾/𝜇2, then when node 𝐾 saturates, commodity

1 will squeeze out commodity 2 and dominates in node 𝐾, hence 𝛼
(1)
1𝐾 → 1 as queue

backlog at node 1 increases to infinity and 𝛼
(1)
𝐾𝑇 → 1 since there exists positive queue

backlog length of commodity 1 in node 𝐾. Since node 𝐾 has finite buffer, then when

𝑡→∞ we should have

𝑞
(1)
𝐾 = 𝑐1𝐾𝛼

(1)
1𝐾𝛽𝐾 − 𝜇1𝛼

(1)
𝐾𝑇 = 𝑐1𝐾𝛽𝐾 − 𝜇1 = 0,

129

and thus 𝛽𝐾 = 𝜇1/𝑐1𝐾 . Then we require

𝜆2 = 𝑐2𝐾𝛼
(2)
2𝐾𝛽𝐾 =

𝜇1𝑐2𝐾
𝑐1𝐾

𝛼
(2)
2𝐾 ∈

[︂
0,

𝜇1𝑐2𝐾
𝑐1𝐾

]︂

to ensure the existence of an equilibrium point, and
[︁
0, 𝜇1𝑐2𝐾

𝑐1𝐾

]︁
⊂ [0, 𝜇2) because

𝑐1𝐾/𝜇1 > 𝑐2𝐾/𝜇2.

Lemma 4.5 quantifies the shrinkage of the range of 𝜆2 under which backpressure

can stabilize commodity 2. The result can be extended to Theorem 4.7, where 𝐶

commodities shares a single buffer in the one-hop system as shown in Fig. 4-2.

Theorem 4.7 identifies the maximum arrival rate of each commodity to guarantee

the existence of an equilibrium point for the subsystem of each commodity under the

policy based on backpressure, in the form of (4.3.5), when overloading occurs on one

commodity. Proof of Theorem 4.7 is similar to that of Lemma 4.5 above.

Figure 4-2: One-hop system with 𝐶 commodities

Theorem 4.7. For the system in Fig. 4-2, assume that 𝑐𝑖𝐾 > 𝜇𝑖, ∀𝑖 = 1, 2, . . . , 𝐶,

and w.l.o.g 𝑐𝑖𝐾/𝜇𝑖 > 𝑐𝑗𝐾/𝜇𝑗 for ∀𝑖, 𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝐶. Suppose that commodity ℓ is

the only overloaded commodity (𝜆ℓ > 𝜇ℓ), then there exists an equilibrium point for

the subsystem of commodity 𝑝 (𝑝 ̸= ℓ) with 𝜆𝑝 ∈ [0, 𝜇𝑝) for 𝑝 = 1, 2, . . . , ℓ − 1 and

with 𝜆𝑝 ∈ [0, 𝜇ℓ𝑐𝑝𝐾/𝑐ℓ𝐾] ⊂ [0, 𝜇𝑝) for 𝑝 = ℓ + 1, . . . , 𝐶, under the policy in the form

of (4.3.5) for every commodity.

130

4.4 Summary and Future Work

In this chapter, we propose an ODE model that can capture the dynamics of buffered

communication systems to study network stability. For single-commodity systems,

we propose a sufficient condition for a local policy to stabilize the network. The result

characterizes a set of policies, and captures systems with arbitrary buffers. For such

policies the network stability problem is reduced to an problem testing the existence

of an equilibrium point for the ODE system. For multi-commodity systems, we extend

the condition by incorporating an additional condition on the coupling level between

different commodities, and explain the existence of an equilibrium point in different

buffer settings. Future work includes obtaining necessary conditions for network

stability, and the analysis of other network performance metrics such as throughput,

delay, and fairness using this framework.

4.5 Chapter Appendix

4.5.1 Proof of Theorem 4.1

The basic idea is to use Theorem 4.8 to show all the eigenvalues of J at the equilibrium

point under (4.3).

Theorem 4.8. [108] All the eigenvalues of a matrix J ∈ R𝑁×𝑁 have strictly negative

real parts if and only if there exists a symmetric positive-definite matrix A ∈ R𝑁×𝑁

that satisfies AJ𝑇 + JA is negative definite.

We prove the existence of a diagonal matrix A := diag{𝑎𝑖}𝑁𝑖=1 with 𝑎𝑖 > 0, ∀𝑖 =

1, . . . , 𝑁 so that AJ + J𝑇A is negative definite. The proof relies on the notation

J0 = J − Λ, where Λ := diag
{︁
−𝜕𝑔𝑖𝑇

𝜕𝑞𝑖

}︁𝑁

𝑖=1
, and the following Lemma 4.6, with proof

in Section 4.5.2.

Lemma 4.6. ∃𝛿 ∈ R𝑁
+ such that J0𝛿 = 0.

131

Denote Q := AJ+ J𝑇A, where we can obtain

𝑄𝑖𝑗 =

⎧⎪⎨⎪⎩−𝑎𝑖
𝜕𝑔𝑖𝑗
𝜕𝑞𝑗

+ 𝑎𝑗
𝜕𝑔𝑖𝑗
𝜕𝑞𝑖

, 𝑖 ̸= 𝑗

2𝑎𝑖

(︁∑︀
𝑘:(𝑘,𝑖)∈ℰ

𝜕𝑔𝑘𝑖
𝜕𝑞𝑖
−
∑︀

𝑙:(𝑖,𝑙)∈ℰ
𝜕𝑔𝑖𝑙
𝜕𝑞𝑖
− 𝜕𝑔𝑖𝑇

𝜕𝑞𝑖

)︁
, 𝑖 = 𝑗

(4.13)

We show that there exists a negative vector 𝛼 := {𝛼𝑖𝑗}(𝑖,𝑗)∈ℰ so that

z𝑇Qz =
∑︁

𝑖:(𝑖,𝑗)∈ℰ

𝛼𝑖𝑗 (𝑎𝑖𝑧𝑖 − 𝑎𝑗𝑧𝑗)
2 − 2

𝑁∑︁
𝑖=1

𝑎𝑖
𝜕𝑔𝑖𝑇
𝜕𝑞𝑖

𝑧2𝑖 (4.14)

where 𝛼𝑖𝑗 is a function of the entries in J. Once (4.14) is proved, then ∀z ∈ R𝑁∖0,

z𝑇Qz < 0 due to the existence of 𝑖 such that 𝜕𝑔𝑖𝑇
𝜕𝑞𝑖

is negative.

Based on Lemma 4.6, there exists 𝛿 ∈ R𝑁
+ so that J0𝛿 = 0. Take A :=

diag{𝛿−1
𝑖 }𝑁𝑖=1, i.e. 𝑎𝑖 = 𝛿−1

𝑖 > 0, ∀𝑖 = 1, . . . , 𝑁 , and take

𝛼𝑖𝑗 := −𝛿𝑖
𝜕𝑔𝑖𝑗
𝜕𝑞𝑖

+ 𝛿𝑗
𝜕𝑔𝑖𝑗
𝜕𝑞𝑗

,

which is negative under the condition 𝜕𝑔𝑖𝑗
𝜕𝑞𝑖

> 0,
𝜕𝑔𝑖𝑗
𝜕𝑞𝑗

< 0. Then based on (4.13), we

can show the LHS of (4.14) is

z𝑇Qz =
𝑁∑︁
𝑖=1

𝑄𝑖𝑖𝑧
2
𝑖 + 2

∑︁
1≤𝑖<𝑗≤𝑁

𝑄𝑖𝑗𝑧𝑖𝑧𝑗

=
𝑁∑︁
𝑖=1

2

𝛿𝑖

⎛⎝ ∑︁
𝑘:(𝑘,𝑖)∈ℰ

𝜕𝑔𝑘𝑖
𝜕𝑞𝑖
−

∑︁
𝑗:(𝑖,𝑗)∈ℰ

𝜕𝑔𝑖𝑗
𝜕𝑞𝑖

⎞⎠ 𝑧2𝑖

+ 2
∑︁

1≤𝑖<𝑗≤𝑁

(︂
1

𝛿𝑖

𝜕𝑔𝑖𝑗
𝜕𝑞𝑗
− 1

𝛿𝑗

𝜕𝑔𝑖𝑗
𝜕𝑞𝑖

)︂
𝑧𝑖𝑧𝑗 − 2

𝑁∑︁
𝑖=1

𝑎𝑖
𝜕𝑔𝑖𝑇
𝜕𝑞𝑖

𝑧2𝑖

=
𝑁∑︁
𝑖=1

1

𝛿2𝑖

⎛⎝ ∑︁
𝑘:(𝑘,𝑖)∈ℰ

𝛼𝑘𝑖 +
∑︁

𝑗:(𝑖,𝑗)ℰ

𝛼𝑖𝑗

⎞⎠ 𝑧2𝑖 + 2
∑︁

1≤𝑖<𝑗≤𝑁

𝛼𝑖𝑗𝑧𝑖𝑧𝑗 − 2
𝑁∑︁
𝑖=1

𝑎𝑖
𝜕𝑔𝑖𝑇
𝜕𝑞𝑖

𝑧2𝑖

(4.15)

where the equivalence of the coefficients of 𝑧2𝑖 for any 𝑖 in the last equation is due to

J0𝛿 = 0. It is trivial to verify the coefficients of {𝑧2𝑖 }𝑁𝑖=1 and {𝑧𝑖𝑗}1≤𝑖<𝑗≤𝑁 in (4.15)

132

match to the RHS of (4.14)4. Thus we obtain the proof.

4.5.2 Proof of Lemma 4.6

Proof. Note that J0 is not full rank as we can verify 1𝑇J0 = 0. Therefore there exists

an eigenvalue 0. Denote the eigenvalues of J0 as {𝜆𝑖}𝑁𝑖=1, without loss of generality that

they are sorted with non-increasing real part: Re(𝜆1) ≥ Re(𝜆2) · · · ≥ Re(𝜆𝑁). Since

J0 is diagonally dominant and all diagonal entries are negative, thus Re(𝜆𝑖) ≤ 0 by

the Gershgorin circle theorem [109]. Therefore 𝜆1 = 0. Suppose 𝜆𝑖 := 𝑟𝑖+ j𝑢𝑖, ∀𝑖 ̸= 1

where 𝑟𝑖 ≤ 0.

Denote J𝜃 = J0 + 𝜃I. Since all diagonal entries of J0 are negative while all the

off-diagonal entries are non-negative. Then ∃𝜃 > 0 so that J𝜃 is a matrix with all

entries non-negative. Since the network is acyclic5, it does not contain any strongly

connected component. Therefore J𝜃 is a irreducible non-negative matrix [112], to

which the Perron-Frobenius theorem [112] can be applied: For such 𝛿, there exists a

real eigenvalue 𝑟 > 0 such that (i) ∃v ∈ R𝑁
+ so that J𝛿v = 𝑟v, and (ii) any other

eigenvalue of J𝛿 has smaller magnitude than 𝑟.

The 𝑖-th eigenvalue of J𝜃, denoted as 𝜆̃𝑖, equals to 𝜆𝑖 + 𝜃. Note that {𝜆̃𝑖}𝑁𝑖=1 are

not necessarily sorted in non-decreasing real part, where 𝜆̃1 = 𝜃. Take 𝜃 so that the

matrix is non-negative.

Step 1: Consider the case where J0 has no pure imaginary eigenvalues.

In this case, 𝑟𝑖 < 0, ∀𝑖 ̸= 1. The eigenvalues of J𝜃 is 𝜆̃1 = 𝛿, 𝜆̃𝑖 = 𝑟𝑖 + 𝜃 + j𝑢𝑖.

It is easy to verify that by taking 𝛿 > max𝑖:𝑖 ̸=1

{︁
−2 |𝜆𝑖|

Re(𝜆𝑖)

}︁
, we can guarantee that

𝜃 = 𝜆̃1 > |𝜆̃𝑖|, ∀𝑖 ̸= 1, which means 𝜆̃1 = 𝜃 = 𝑟. Thus the eigenvector, denoted as v,

of J𝜃 associated with eigenvalue 𝑟, is positive. Therefore

J𝜃v = (J0 + 𝜃I)v = 𝑟v = 𝜃v

Thus J0v = 0. This v is the 𝛿 that meet our condition.

4For (𝑖, 𝑗) /∈ ℰ , 𝑔𝑖𝑗 ≡ 0 and the coefficient of 𝑧𝑖𝑧𝑗 is 0.
5In fact it only requires the available paths of the commodity is acyclic.

133

Step 2: Prove that J0 does not contain pure imaginary eigenvalues. It

is to show there is no 𝑖 ̸= 1 such that 𝑟𝑖 = 0 and 𝑢𝑖 ̸= 0. We prove by contradiction.

Suppose that there exists a pure imaginary eigenvalue. Then it is 𝜆2, and 𝜆3 is

also pure imaginary which is the conjugate of 𝜆2. Then there exists 𝜃 such that J𝜃

is non-negative, and |𝜆̃3| = |𝜆̃2| > |𝜆̃1| > |𝜆̃𝑖|, 𝑖 ≥ 4. Then by Perron-Frobenius

theorem, 𝜆̃3 = 𝜆3 + 𝜃 should be a real positive eigenvalue of J𝜃, which contradicts

that 𝜆3 is pure imaginary. Therefore we get the proof.

4.5.3 Example of Lemma 4.1

For the policy (4.5) based on backpressure, if we suppose that

𝜆𝑖 +
∑︁

𝑘:(𝑘,𝑖)∈𝐸

𝑐𝑘𝑖 ≤
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗 + 𝑐𝑖𝑇 ,

then we can set 𝑏𝑖 = 0, ∀𝑖 ∈ 𝑉 . We can then set the values of {𝑏̄𝑖}𝑛𝑖=1 such that

(i) 𝑏̄𝑗 > 𝑏̄𝑘 for any link (𝑗, 𝑘), and (ii) 𝑏̄𝑖 ≤ 𝑏𝑖 − 𝛿𝑖 for any node 𝑖 with finite buffer,

where 𝛿𝑖 is a positive constant close to 0. We can verify that for 𝑞𝑖 = 𝑓𝑖(q), when

𝑞𝑖 = 𝑏𝑖 = 0, then

𝑓𝑖(q) = 𝜆𝑖 +
∑︁

𝑘:(𝑘,𝑖)∈𝐸

𝑔𝑘𝑖(𝑞𝑘, 0)−
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑔𝑖𝑗(0, 𝑞𝑗)− 𝑔𝑖𝑇 (0)

= 𝜆𝑖 +
∑︁

𝑘:(𝑘,𝑖)∈𝐸

𝑔𝑘𝑖(𝑞𝑘, 0) ≥ 0

and when 𝑞𝑖 = 𝑏̄𝑖, note that for any node 𝑗 such that (𝑖, 𝑗) ∈ 𝐸, 𝑔𝑖𝑗(𝑏̄𝑖, 𝑞𝑗) = 𝑐𝑖𝑗 since

𝑞𝑗 ∈ [0, 𝑏̄𝑗] ∈ [0, 𝑏𝑗) ∩ [0, 𝑏̄𝑖), therefore

𝑓𝑖(q) = 𝜆𝑖 +
∑︁

𝑘:(𝑘,𝑖)∈𝐸

𝑔𝑘𝑖(𝑞𝑘, 𝑏̄𝑖)−
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑔𝑖𝑗(𝑏̄𝑖, 𝑞𝑗)− 𝑔𝑖𝑇 (𝑏̄𝑖)

≤ 𝜆𝑖 +
∑︁

𝑘:(𝑘,𝑖)∈𝐸

𝑐𝑘𝑖 −
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗 − 𝑐𝑖𝑇 ≤ 0

134

Therefore the conditions in Lemma 4.1 holds, which implies the policy (4.5) can

ensure a unique stable equilibrium point, and thus render the networks to be queue

length stable.

4.5.4 Necessity for Queue Length Stability

We have proposed the sufficient condition for the policies to stabilize the networks.

Here we add more discussion over the necessary condition. We first pose a toy example

that the sufficient condition is not necessary. Consider a two node system where the

queue dynamics6 are⎧⎪⎨⎪⎩𝑞1 = −𝑔12(𝑞1, 𝑞2) = −(𝑞21 + 𝑞22 − 5)(𝑞21 + 𝑞22 − 1)

𝑞2 = 𝑔12(𝑔1, 𝑔2) = (𝑞21 + 𝑞22 − 5)(𝑞21 + 𝑞22 − 1)

.

The set of equilibrium points is {(𝑞1, 𝑞2) : 𝑞21 + 𝑞22 = 1 ∪ 𝑞21 + 𝑞22 = 5}. Inside, the

stable points can be obtained by the two eigenvalues of the Jacobian matrix 𝐽 , where

𝜆1 = 0 and 𝜆2 = 4(𝑞2 − 𝑞1)(𝑞
2
1 + 𝑞22 − 3). The set of stable points, denoted by 𝑆,

contains all the queue length vector (𝑞1, 𝑞2) such that that 𝜆2 ≤ 0. The set of stable

points obtained from our proposed sufficient condition in Lemma 4.1, denoted by 𝑆 ′,

is

{𝜕𝑔12
𝜕𝑞1

= 𝑞1(𝑞
2
1 + 𝑞22 − 3) ≥ 0,

𝜕𝑔12
𝜕𝑞2

= 𝑞2(𝑞
2
1 + 𝑞22 − 3) ≤ 0}.

It can be easily verified that 𝑆 ′ is a proper subset of 𝑆, where point (𝑞1, 𝑞2) =

(1/2,
√
3/2) belongs to 𝑆 but not to 𝑆 ′.

Although not acquiring explicit necessary conditions, here we propose a potential

idea to solve this problem based on the concept of unstable manifold for an equilibrium

point [113], which can be interpreted as the set of points in the space, once given as

the initial point, that achieve the equilibrium point when taking 𝑡→ −∞. Similarly

the stable manifold is defined with only difference at taking 𝑡→∞. For example, in

the 2-dim system 𝑞1 = −𝑞1, 𝑞2 = 𝑞2 + 𝑞21, the unique equilibrium point is (0, 0) which

6We can translate the origin such that the queue length are nonnegative.

135

is a saddle point. The stable manifold of it is {(𝑞1, 𝑞2)|𝑞2 = −𝑞21/3} while the unstable

manifold is {(𝑞1, 𝑞2)|𝑞1 = 0}. In this system, we can observe that 𝑞2 → ∞ primarily

result from the unstable manifold {(𝑞1, 𝑞2)|𝑞1 = 0} being unbounded, therefore we

may naturally conjecture that once the policy guarantees the unstable manifold of

any equilibrium point to be bounded, we can ensure network stability as the queue

length is prevented from going to infinity. We formalize this as a conjecture that may

enlighten the future exploration over this problem.

Conjecture 4.1. A necessary condition for the policy to achieve queue length stability

is that it can ensure that for every equilibrium point, its unstable manifold is bounded.

136

Chapter 5

Routing Attack on Network Overload

with Static Routing

In this chapter, we consider a network where a subset of the nodes have been

hijacked and is subject to a routing attack, and quantify the ability of network

adversaries to induce network overload through a routing attack. We develop

routing attack strategies for two objectives related to overload: no-loss throughput

minimization and loss maximization. The first objective attempts to identify a

routing attack strategy that minimizes the network’s throughput that is guaranteed

to survive, and the second objective simply attempts to maximize the throughput

loss. We propose a polynomial-time routing attack algorithm that minimizes no-loss

throughput for general multi-hop networks. In contrast, we demonstrate that finding

the optimal routing attack strategy for loss maximization is NP-complete even in

single-hop networks. We develop two approximation algorithms with multiplicative

and additive guarantees respectively for single-hop networks, and validate the

near-optimal performance of the proposed algorithms over a wide range of network

settings. Our results quantitatively confirm the significant threat posed by routing

attacks, and demonstrate that our proposed algorithms can be used as benchmarks

to quantify the overload risk given arbitrary sets of hijacked nodes and to identify

the critical nodes that should be shielded against routing attacks.

137

5.1 Network Models and Problem Definition

In this section, we introduce the multi-hop and single-hop network models, along with

basic definitions including routing and attack policies. We then define the problems

of finding the optimal routing attack to minimize no-loss throughput and maximize

loss.

5.1.1 Network Models

Multi-hop network

We define a multi-hop network as a graph 𝒢 = (𝒱 , ℰ), where 𝒱 denotes the set of

nodes and ℰ denotes the set of edges, with |𝒱| = 𝑁 and |ℰ| = 𝑀 . Node indices are

1, 2, · · · , 𝑁 , and (𝑖, 𝑗) ∈ ℰ if there is a link from node 𝑖 to 𝑗. Denote the traffic flow

over link (𝑖, 𝑗) by 𝑓𝑖𝑗. Each link has capacity 𝑐𝑖𝑗 which is the maximum transmission

rate over (𝑖, 𝑗), i.e., 𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗]. We treat (𝑖, 𝑗) and (𝑗, 𝑖) as different links. We

start by considering a single commodity, with node 1 as the source and 𝑁 as the

destination.

The network traffic may have multiple available paths from node 1 to 𝑁 , where

each network node dispatches the traffic to its connected nodes. We define the

dispatch ratio vector at a non-destination node 𝑖 as a vector x𝑖 ∈ R𝑁 , where each

element 𝑥𝑖𝑗 denotes the fraction (ratio) of traffic sent from node 𝑖 to its connected node

𝑗 among the total traffic at node 𝑖, and 𝑥𝑖𝑗 = 0 for (𝑖, 𝑗) /∈ ℰ , and
∑︀𝑁

𝑗=1 𝑥𝑖𝑗 = 1. We

call x𝑖 the routing policy at node 𝑖, and X = [x𝑖]𝑖=1,··· ,𝑁 denotes the routing matrix

of the network1. We validate this definition of routing policy through Proposition

5.1, which shows the equivalence between the above dispatch ratio characterization

and the common multi-path characterization [19]. Henceforth, we will solely use the

dispatch ratios to model routing. We give an example of a routing policy in Fig. 5-2(a)

where at source node 1, (𝑥12, 𝑥13) = (0.5, 0.5).

Proposition 5.1. Suppose there are 𝑃 paths {𝑃𝑎𝑡ℎ𝑝}𝑃𝑝=1, where a fraction 𝜃𝑝

1x𝑁 = 0. We put node 𝑁 in to keep the dimension equal to network size.

138

of the traffic takes 𝑃𝑎𝑡ℎ𝑝. The corresponding routing matrix X satisfies 𝑥𝑖𝑗 =

𝛽𝑖𝑗/
∑︀

𝑘:(𝑖,𝑘)∈ℰ 𝛽𝑖𝑘, ∀(𝑖, 𝑗) ∈ ℰ, where 𝛽𝑖𝑗 =
∑︀

𝑝:(𝑖,𝑗)∈𝑃𝑎𝑡ℎ𝑝
𝜃𝑝, and 𝑥𝑖𝑗 = 0, ∀(𝑖, 𝑗) /∈ ℰ,

where (𝑖, 𝑗) ∈ 𝑃𝑎𝑡ℎ𝑝 if link (𝑖, 𝑗) is on 𝑃𝑎𝑡ℎ𝑝.

We can characterize the overload at a link (𝑖, 𝑗) using the definition of routing

policy. If the traffic to be sent through (𝑖, 𝑗) exceeds 𝑐𝑖𝑗, i.e.,
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗 > 𝑐𝑖𝑗,

then link (𝑖, 𝑗) will be saturated, i.e., 𝑓𝑖𝑗 = 𝑐𝑖𝑗, and we say that overload occurs at

(𝑖, 𝑗), where the excess traffic
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗 − 𝑐𝑖𝑗 will be dropped, and lost.

We define the upstream and downstream node set used in algorithm design. The

upstream node set of a node 𝑖, denoted by 𝒱𝑢𝑝
𝑖 , contains all the nodes except 𝑖 that

have a path in the available path set to transmit traffic to 𝑖 under the routing matrix

X. The downstream node set of a node 𝑖, denoted by 𝒱𝑑𝑜𝑤𝑛
𝑖 , contains all the nodes

except 𝑖 to which there exists a path in the available path set starting from 𝑖. We

define a node 𝑗 ∈ 𝒱𝑑𝑜𝑤𝑛
𝑖 to be a connected downstream node of 𝑖 if further (𝑖, 𝑗) ∈ ℰ .

We define a link (𝑗, 𝑘) to be a downstream link of node 𝑖 if 𝑗, 𝑘 ∈ 𝒱𝑑𝑜𝑤𝑛
𝑖 ∪ {𝑖}, and a

connected downstream link of node 𝑖 if further 𝑗 = 𝑖. Note that 𝒱𝑢𝑝
𝑖 ∩𝒱𝑑𝑜𝑤𝑛

𝑖 = ∅ holds

in directed acyclic networks, while there may exist nodes that are simultaneously the

upstream and downstream node of a node 𝑖 in general networks. The framework and

analysis in this work hold for general networks. However, for ease of understanding

we use examples with 𝒱𝑢𝑝
𝑖 ∩ 𝒱𝑑𝑜𝑤𝑛

𝑖 = ∅ for explanation, as in Fig. 5-2(a) we have

𝒱𝑢𝑝
5 = {1, 3} and 𝒱𝑑𝑜𝑤𝑛

2 = {4, 6}.

Single-hop network

A single-hop network contains a set of source (ingress) nodes and destination (egress)

nodes. Examples include server farms, switched networks, and the basic structure of

data center networks like Fat-Tree [17] and Clos [1], as shown in Fig. 5-1(a) and (b).

We show in Section 5.3 that we can obtain theoretical performance guarantees for

our proposed attack algorithms under single-hop networks.

A 𝑁𝑠×𝑁𝐷 single-hop network is a bipartite graph 𝒢 = (𝒱 , ℰ) with 𝒱 := {𝒱𝑆,𝒱𝐷},

where 𝒱𝑆 and 𝒱𝐷 represent the set of source and destination nodes respectively, and

ℰ denotes the set of links between 𝒱𝑆 and 𝒱𝐷, and |𝒱𝑆| = 𝑁𝑆 and |𝒱𝐷| = 𝑁𝐷. Denote

139

Figure 5-1: (a) Switch network; (b) Server farm; (c) Bipartite graph (in the dashed
box) with meta source 𝑠0 and destination 𝑑0

the 𝑖th source node by 𝑠𝑖 and 𝑗th destination node by 𝑑𝑗. Each traffic flow is injected

into one of the source nodes and departs from one of the destination nodes. We use

slightly different notations and objectives in single-hop networks as follows. Denote

the traffic arrival rate at source 𝑠𝑖 by 𝜆𝑖, the service rate of destination 𝑑𝑗 by 𝜇𝑗,

and the transmission rate over link (𝑠𝑖, 𝑑𝑗) by 𝑓𝑖𝑗, with their corresponding vector

forms being 𝜆 := {𝜆𝑖}𝑁𝑆
𝑖=1, 𝜇 := {𝜇𝑗}𝑁𝐷

𝑗=1, and f = {𝑓𝑖𝑗}(𝑖,𝑗)∈ℰ , respectively. Denote

the routing policy at 𝑠𝑖 by x𝑖 = {𝑥𝑖𝑗}𝑑𝑗∈𝒱𝐷
. We consider sufficient capacity for links

between 𝒱𝑆 and 𝒱𝐷 so that they will not be saturated, with a primary focus on how

a routing attack at 𝒱𝑆 affects overload at 𝒱𝐷 [18, 29]. Overload occurs at 𝑑𝑗 ∈ 𝒱𝐷 if∑︀𝑁𝑆

𝑖=1 𝜆𝑖𝑥𝑖𝑗 > 𝜇𝑗 under routing matrix X.

We can transform the single-hop structure to a single commodity starting from

a meta-source 𝑠0, connected to each source in 𝒱𝑆, to a meta-destination 𝑑0 that

receives traffic from each destination in 𝒱𝐷, by setting the traffic arrival rate to 𝑠0 to

be 𝜆 =
∑︀𝑁𝑆

𝑖=1 𝜆𝑖, the dispatch ratio from 𝑠0 to 𝑠𝑖 to be 𝑥0𝑖 = 𝜆𝑖/𝜆, and the capacity

of link (𝑑𝑗, 𝑑0) to be 𝜇𝑗. It is straightforward to see that the transformed graph is

equivalent to the bipartite graph, shown in Fig. 5-1(c).

Remark: We focus on static parameters in this work. We anticipate that the

methodology we propose will inspire addressing time-varying network parameters in

future work.

140

5.1.2 Problem Definition

We consider a network adversary who hijacks and gains control over the routing

decisions of certain network nodes, 𝒱𝐴 ⊆ 𝒱 . We call 𝒱𝐴 the set of adversarial nodes,

and 𝒱𝑁 := 𝒱∖𝒱𝐴 the set of normal nodes. The adversary aims to find the routing

policies at adversarial nodes, denoted by x𝐴 := {x𝑖}𝑖∈𝒱𝐴
, to maximize overload. We

consider fixed routing policies at normal nodes 𝒱𝑁 (default routing) that do not change

after the adversary alters the routing of nodes in 𝒱𝐴. We assume that the adversary

has access to the default routing at normal nodes2. In the example in Fig. 5-2(a),

𝒱𝐴 = {3} and 𝒱𝑁 = {1, 2, 4, 5, 6}. The whole numbers denote link capacities and the

highlighted fraction over a link denotes the dispatch ratio. We use shaded nodes to

denote adversarial nodes and unshaded nodes to denote normal nodes.

We optimize routing attacks for two objectives related to overload given 𝒱𝐴. (i)

Minimize No-Loss Throughput: We define no-loss throughput, denoted by 𝜆*, as

the maximum traffic arrival rate 𝜆 at the source node that will not lead to link overload

given the routing matrix X. Equivalent interpretations of 𝜆* include the maximum

traffic arrival rate that can be successfully transmitted [114], the max arrival rate

that guarantees maximum link utilization below 100% [92], and the max arrival rate

that ensures queue stability [18]. Essentially, 𝜆* captures the network robustness to

routing attacks. We investigate the capability of routing attack over 𝒱𝐴 to minimize

𝜆*, i.e., minimizing network robustness to overload. The minimum 𝜆*, denoted by

𝜆*
𝑂𝑃𝑇 , can be interpreted as the upper limit of traffic arrival rate that guarantees

no traffic loss under any adversarial routing attack on the given 𝒱𝐴. (ii) Maximize

Loss: Given the default routing policies at normal nodes 𝒱𝑁 and the arrival rate 𝜆, the

adversary manipulates routing in 𝒱𝐴 to maximize traffic loss caused by link overload,

equivalent to minimize total traffic transmitted to the destination. Loss maximization

reflects the most severe overload that can be caused via a routing attack. These two

objectives reflect different facets of network overload, and we show in Fig. 5-2(b)

2As traffic flow is considered static, the dispatch ratio from node 𝑖 to 𝑗 can be estimated via
𝑓𝑖𝑗/

∑︀
𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖 given that there is no overload over any link starting from 𝑖, which is common

when no attack is conducted.

141

and 5-2(c) that their optimal routing attack policies are different, motivating our

algorithm designs in Section 5.2 and 5.3. In summary, we give the formal statement

of the core problem of this work: Given 𝒢, capacity {𝑐𝑖𝑗}(𝑖,𝑗)∈ℰ , default routing at

normal nodes {x𝑖}𝑖∈𝒱𝑁
, and adversarial nodes 𝒱𝐴, what is the optimal routing attack

policy over 𝒱𝐴 to minimize no-loss throughput and maximize loss?

Figure 5-2: (a) A 6-node network with 𝒱𝐴 = {3} and 𝒱𝑁 = {1, 2, 4, 5, 6}; (b) Optimal
routing to minimize 𝜆* is (𝑥34, 𝑥35) = (0, 1): 𝜆*

𝑂𝑃𝑇 is 2 and (5, 6) is the first saturated
link; (c) Given 𝜆 = 10, the optimal routing to maximize loss is (𝑥34, 𝑥35) = (1, 0),
with maximum loss of 𝜆− 𝑐46 = 10− 3 = 7.

Furthermore, in Section 5.4 we investigate the optimal node selection problem:

The adversary needs to identify the optimal nodes to hijack from a set of candidate

nodes to conduct routing attack so that it can minimize no-loss throughput or

maximize loss. This problem fits into the practice where the adversary can only

hijack and manipulate the routing polices over a limited number of nodes due to

the cost or the risk of being exposed. The answers to this problem inform network

service providers of the critical nodes that should be protected against routing

attacks whose control by the adversary can lead to high risk of overload and traffic

loss.

142

5.2 No-Loss Throughput Minimization

In this section, we investigate the optimal routing attack to minimize no-loss

throughput 𝜆*. We develop an exact polynomial-time algorithm that returns

an optimal routing attack based on linear programming (LP), given the global

information of the network topology, link capacities, and default routing at 𝒱𝑁 . We

tehn study the case where the adversary only has access to the routing information

downstream to the adversarial nodes 𝒱𝐴, and propose a routing attack algorithm

with an approximation ratio of at most 2. We further demonstrate that the proposed

algorithms can be extended to more practical settings, including routing attack

constraints, multiple commodities, and distributed heuristics. The key takeaway

is that the adversary can execute routing attacks efficiently to achieve optimal

performance in diminishing the network’s robustness against overload in general

network settings given arbitrary sets of 𝒱𝐴, which quantitatively unveils the threat

of routing attacks in increasing the risk of overload.

5.2.1 Problem Formulation

We formulate the 𝜆*-minimization problem as follows.

𝜆*
𝑂𝑃𝑇 := min

f
max

𝜆
𝜆

s.t. f ∈ Λ, 𝜆 = 𝑓01, 𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗],∀(𝑖, 𝑗) ∈ ℰ
(5.1)

where the constraints Λ := Λ𝑁 ∩ Λ𝐴 and⎧⎪⎨⎪⎩Λ𝑁 : 𝑓𝑖𝑗 =
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗,∀𝑖 ∈ 𝒱𝑁 , ∀(𝑖, 𝑗) ∈ ℰ

Λ𝐴 :
∑︀

𝑗:(𝑖,𝑗)∈ℰ 𝑓𝑖𝑗 =
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖, ∀𝑖 ∈ 𝒱𝐴
. (5.2)

In (5.1), we introduce a meta source node 0 that serves traffic flows only to the

original source node 1 with 𝑓01 = 𝜆 and 𝑐01 ≥ 𝜆, so that node 1 can be either a

normal or adversarial node. Note that 𝜆 is a variable instead of a given parameter.

The decision variables of (5.1) are the flow variables f := {𝑓𝑖𝑗}(𝑖,𝑗)∈ℰ . In constraints

143

(5.2), Λ𝑁 represents the flow conservation at any normal node 𝑖 ∈ 𝒱𝑁 , which has fixed

default routing 𝑥𝑖𝑗 through any (𝑖, 𝑗) ∈ ℰ . The flow on (𝑖, 𝑗) is equal to the total traffic

injection to node 𝑖 multiplied by the dispatch ratio 𝑥𝑖𝑗 from 𝑖 to 𝑗. Λ𝐴 represents

the flow conservation at any adversarial node 𝑖 ∈ 𝒱𝐴, where the adversary can

manipulate routing arbitrarily subject to flow conservation. The optimal solution to

(5.1), denoted by f*, leads to the optimal routing attack, denoted by x*
𝐴 := {x*

𝑖 }𝑖∈𝒱𝐴
,

where 𝑥*
𝑖𝑗 = 𝑓 *

𝑖𝑗/
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓
*
𝑘𝑖 for (𝑖, 𝑗) ∈ ℰ . In the above formulation, we use f instead

of x𝐴 as decision variables in order to formulate the constraints in linear form.

However, note that the minimax problem (5.1) cannot be formulated as a standard

LP problem. We thus transform (5.1) into the following equivalent optimization

framework (5.3) that paves the way for polynomial-time algorithm design.

max
f

max
(𝑖,𝑗)∈ℰ

𝑓𝑖𝑗/𝑐𝑖𝑗

s.t. f ∈ Λ, 𝑓01 = 1, 𝑓𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ .
(5.3)

Proposition 5.2. The optimal solutions f* to (5.1) and (5.3) are equivalent. The

minimum no-loss throughput 𝜆*
𝑂𝑃𝑇 is given by (max(𝑖,𝑗)∈ℰ 𝑓

*
𝑖𝑗/𝑐𝑖𝑗)

−1 from (5.3).

Proof. In (5.1), define new variables 𝑓𝑖𝑗 := 𝑓𝑖𝑗/𝜆,∀(𝑖, 𝑗) ∈ ℰ . Then the optimization

in (5.1) is equivalent to

min
f̃

max
𝜆

𝜆

s.t. f̃ ∈ Λ, 𝑓01 = 1, 𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗/𝜆], ∀(𝑖, 𝑗) ∈ ℰ .
(5.4)

We have 𝜆 ≤ 𝑐𝑖𝑗/𝑓𝑖𝑗 for each link, and thus 𝜆 ≤ min(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗/𝑓𝑖𝑗. Note

that this is the only constraint for 𝜆, and 𝜆 is an independent decision

variable after the transformation. Therefore the maximum 𝜆 that guarantees

no loss is equal to min(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗/𝑓𝑖𝑗, and the objective function becomes

minf̃ min(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗/𝑓𝑖𝑗 = maxf̃ max(𝑖,𝑗)∈ℰ 𝑓𝑖𝑗/𝑐𝑖𝑗 which is exactly (5.3) by changing

notation 𝑓𝑖𝑗 to 𝑓𝑖𝑗.

The formulation (5.3) lets 𝑓01 = 1, i.e., one unit of traffic arrival rate into the

144

networks3, and the goal is to find the optimal routing policy that maximizes the

maximum link utilization, which is max(𝑖,𝑗)∈ℰ 𝑓𝑖𝑗/𝑐𝑖𝑗. Then the minimum possible

𝜆* under an optimal routing attack is (max(𝑖,𝑗)∈ℰ 𝑓
*
𝑖𝑗/𝑐𝑖𝑗)

−1 where f* is the optimal

solution to (5.3). The intuition is that the link with the highest utilization is the first

saturated link when the arrival rate increases gradually from 0. The critical point of

Proposition 5.2 is that the new link-wise maximization formulation (5.3) inspires the

following design of polynomial-time algorithms.

5.2.2 Exact Algorithms

We propose exact algorithms to minimize no-loss throughput 𝜆* based on (5.3). We

derive a simple brute-force algorithm which is polynomial under |𝒱𝐴| = 𝑂(1), and a

polynomial-time algorithm under general 𝒱𝐴 based on solving an LP for maximum

flow.

Brute-Force under |𝒱𝐴| = 𝑂(1)

Based on (5.3), we prove Theorem 6.1 below, which states that there must exist an

optimal routing policy that each adversarial node 𝑖 ∈ 𝒱𝐴 dispatches all traffic flows

to a single downstream connected node.

Theorem 5.1 (Boundary Optimality). There exists an optimal solution f* to (5.3)

such that for ∀𝑖 ∈ 𝒱𝐴, ∃𝑗 that (𝑖, 𝑗) ∈ ℰ and 𝑥*
𝑖𝑗 =

𝑓*
𝑖𝑗∑︀

𝑘:(𝑖,𝑘)∈ℰ 𝑓*
𝑖𝑘

= 1, while 𝑥*
𝑖𝑘 = 0 for

𝑘 ̸= 𝑗.

Proof. The objective function of problem (5.3) is convex with respect to the flow

variables f = {𝑓𝑖𝑗}(𝑖,𝑗)∈ℰ due to the convexity of the elementise maximum function.

Meanwhile the constraints are all linear which form a polytope. Therefore (5.3) is a

convex maximization problem, where at least one of the optimal solutions is at one

of the vertices of the polytope. There is a total of 𝑀 +1 decision variables (including

𝑓01). Denote the number of links starting from 𝒱𝑁 ∪ {0} as 𝑀𝑁 , and links starting

3We can choose arbitrary constant for 𝑓01 as we evaluate the saturation level and thus no
constraint on 𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗].

145

from 𝒱𝐴 as 𝑀𝐴. Then the total number of equality constraints in (5.3) is 𝑀𝑁 + |𝒱𝐴|,

and thus at any vertex there should have at least 𝑀 + 1 −𝑀𝑁 − |𝒱𝐴| = 𝑀𝐴 − |𝒱𝐴|

flow variables 𝑓𝑖𝑗 over link (𝑖, 𝑗) to be zero. Each 𝑖 ∈ 𝒱𝐴 routing traffic to a single

downstream adjacent node guarantees the above condition, i.e., ∃𝑗 that (𝑖, 𝑗) ∈ ℰ and

𝑥*
𝑖𝑗 =

𝑓*
𝑖𝑗∑︀

𝑘:(𝑖,𝑘)∈ℰ 𝑓*
𝑖𝑘
= 1, while 𝑥*

𝑖𝑘 = 0 for 𝑘 ̸= 𝑗.

Figure 5-3: Boundary Optimality: One of the 4 combinations must be optimal, where
𝒱𝐴 = {2, 3} serve all traffic through the highlighted links.

The intuition of Theorem 6.1 is that (5.3) maximizes a convex function over a

polytope, hence one of the vertices of the polytope must be the optimal solution. The

implication of Theorem 6.1 is that the optimal attack to minimize 𝜆* can be identified

in a brute force manner by exhausting all the combinations where each adversarial

node sends all the traffic to one of its connected downstream nodes. The upper bound

on the number of combinations is 𝑑|𝑉𝐴|
max, where 𝑑max denotes the maximum number of

connected downstream links of a node. Note that 𝑑max = 𝑂(𝑁) and thus 𝑑
|𝑉𝐴|
max is a

polynomial function of network size 𝑁 when |𝑉𝐴| = 𝑂(1). We give an example with

|𝒱𝐴| = 2 in Fig. 5-3.

For each of the above combinations of routing attacks over 𝒱𝐴, we can calculate 𝜆*

given the routing matrix X by a two-step process: First, for each (𝑖, 𝑗) ∈ ℰ , calculate

the proportion of the traffic starting from the source node that will go through this

link, under the assumption that all link capacities are infinite. The flow variable 𝑓𝑖𝑗

given 𝜆 = 1 under this setting is exactly the proportion of traffic that flows over

link (𝑖, 𝑗) ∈ ℰ . In general, this can be done by solving the linear equations built

via the first constraint in (5.2) given the routing policy at each node 𝑖, with worst

146

time complexity 𝑂(𝑀3). For directed acyclic networks, the time complexity can be

reduced to 𝑂(𝑀) by assuming 𝜆 = 1 and following 𝑓𝑖𝑗 =
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗 over all

the 𝑀 links. Second, resume the original link capacities, and find the link (𝑖*, 𝑗*) =

argmax(𝑖,𝑗)∈ℰ 𝑓𝑖𝑗/𝑐𝑖𝑗 in 𝑂(𝑀) time. Then 𝜆* = (𝑓𝑖*𝑗*/𝑐𝑖*𝑗*)
−1. The limitation of

the brute-force algorithm is the exponential time complexity under general 𝒱𝐴 with

|𝒱𝐴| = 𝑂(𝑁).

MaxFlow-based Solution for General 𝒱𝐴

We demonstrate that there exists a polynomial algorithm that outputs the optimal

routing attack to (5.3) under general 𝒱𝐴, presented in Algorithm 5.1. First, we figure

out the routing policy at 𝒱𝐴 ∩ 𝒱𝑢𝑝
𝑖 that maximizes the total flow to each node 𝑖

(except destination), assuming arrival rate 𝜆 = 1 at the source and infinite capacity

over all the links. Denote the corresponding maximum possible flow to node 𝑖 by

𝑀𝐹 [𝑖]. 𝑀𝐹 [1] = 1 trivially, while for 𝑖 > 1, 𝑀𝐹 [𝑖] can be obtained by solving an

LP that outputs the maximum flow solution. Second, for each non-destination node

𝑖, we identify the first link that can be saturated under routing attack among all

the connected downstream links of node 𝑖 as follows. If 𝑖 ∈ 𝒱𝑁 , the first saturated

link starting from 𝑖 must be (𝑖, 𝑗*𝑖) = argmax(𝑖,𝑗)∈ℰ 𝑥𝑖𝑗/𝑐𝑖𝑗; If 𝑖 ∈ 𝒱𝐴, the adversary

can arbitrarily alter the routing at 𝑖, thus the first-saturated link starting from 𝑖 is

(𝑖, 𝑗*𝑖) = argmin(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗. It is straightforward to see that the first link that will be

saturated under the optimal routing attack given by (5.3) must be among the 𝑁 − 1

first-saturated links {(𝑖, 𝑗*𝑖)}𝑁−1
𝑖=1 . Combining the two steps as done in Algorithm 5.1

establishes its correctness to solving (5.3), which outputs the routing attack solution

with minimum traffic arrival rate required to saturate one of the 𝑁−1 first-saturated

links, and the resulting minimum arrival rate is 𝜆*
𝑂𝑃𝑇 in (5.3). We state this result

in Theorem 5.2. We give a toy example running Algorithm 5.1 in Fig. 5-4.

Theorem 5.2. Algorithm 5.1 outputs the optimal solution to (5.3).

The computation cost of Algorithm 5.1 mainly lies in solving LPs to obtain 𝑀𝐹 [𝑖]

for each non-destination node 𝑖. We can apply interior point methods to solve LPs

147

Algorithm 5.1: Exact Algorithm to Minimize 𝜆* for General 𝒢 = (𝒱 , ℰ)
and 𝒱𝐴
1 Input: 𝒢 = (𝒱 , ℰ), 𝒱𝐴, default routing {x𝑖}𝑖∈𝒱𝑁

;
2 for ∀𝑖 ∈ 𝒱∖{𝑁} do
3 Given one unit of arrival while assuming unlimited capacity, calculate

𝑀𝐹 [𝑖], the max flow to node 𝑖;
4 if 𝑖 ∈ 𝒱𝑁 then 𝑉 [𝑖] = 𝑀𝐹 [𝑖]× 𝑥𝑖𝑗*/𝑐𝑖𝑗* with

(𝑖, 𝑗*) = argmax(𝑖,𝑗)∈ℰ 𝑥𝑖𝑗/𝑐𝑖𝑗;
5 else 𝑉 [𝑖] = 𝑀𝐹 [𝑖]/𝑐𝑖𝑗* with (𝑖, 𝑗*) = argmin(𝑖,𝑗)∈ℰ 𝑐𝑖𝑗;

6 Find 𝑖* = argmax𝑖∈𝒱 𝑉 [𝑖];
7 Construct the routing attack at ∀𝑖 ∈ 𝒱𝐴 ∩ (𝒱𝑢𝑝

𝑖* ∪ {𝑖*}), corresponding to
node 𝑖*, denoted by x

(𝑖*)
𝑖 ;

8 For all 𝑖 ∈ 𝒱𝐴, let x𝑖 = x
(𝑖*)
𝑖 if 𝑖 ∈ 𝒱𝑢𝑝

𝑖* ∪ {𝑖*} else arbitrarily set the routing
policy x𝑖;

9 Return x𝐴 = {x𝑖}𝑖∈𝒱𝐴
;

Figure 5-4: Example of Algorithm 5.1. Assume that 𝑐12, 𝑐13 → ∞ which means
(1, 2) and (1, 3) will not be the first saturated links. We can calculate 𝑀𝐹 [2] = 𝑥12,
𝑀𝐹 [3] = 1 since the adversarial node 2 can route all packets to 3, 𝑀𝐹 [4] = 𝑥12 +
𝑥13𝑥34 since node 2 can route all packets to 4, and 𝑀𝐹 [5] = 1 since node 4 can route
all packets to 5. Then we find the first saturated connected downstream link of each
node in {2, 3, 4, 5}, where the calculation in (a) and (c) follows step 5 since 2, 4 ∈ 𝒱𝐴
with links highlighted in red, while that in (b) and (d) follows step 4 since 3, 5 ∈ 𝒱𝑁
highlighted in blue.

148

in polynomial time.

5.2.3 2-Approximation Algorithm with Partial Information

We extend to the situation where each adversarial node 𝑖 ∈ 𝒱𝐴 only has the access

to the routing information of its downstream nodes in 𝒱𝑑𝑜𝑤𝑛
𝑖 . This is realistic as

routers may only store the topology and routing information downstream. We

demonstrate an interesting result that even with such partial information, there

exists a 2-approximation algorithm for minimizing 𝜆*, which means 𝜆*
𝐴𝐿𝐺, the no-loss

throughput under the routing attack given by the algorithm, satisfies 𝜆*
𝐴𝐿𝐺 ≤ 2𝜆*

𝑂𝑃𝑇 ,

where 𝜆*
𝑂𝑃𝑇 is the no-loss throughput under the optimal routing attack with complete

routing information.

We propose the approximation algorithm in Algorithm 5.2. The core idea is to

decompose the traffic flows into two sets: flows that pass some 𝑖 ∈ 𝒱𝐴, and those

not passing ∀𝑖 ∈ 𝒱𝐴. Then it constructs the routing attack based on the first set

of flows, which we show can be derived purely based on the topology and routing

information downstream to 𝒱𝐴 by Algorithm 5.3, explained soon below. In detail,

Algorithm 5.2 contains three steps: (i) Construct the downstream subgraph starting

from 𝒱𝐴, denoted by 𝒢𝑑𝑜𝑤𝑛
𝐴 = (𝒱𝑑𝑜𝑤𝑛

𝐴 , ℰ𝑑𝑜𝑤𝑛
𝐴), where 𝒱𝑑𝑜𝑤𝑛

𝐴 = 𝒱𝐴 ∪ {𝒱𝑑𝑜𝑤𝑛
𝑖 }𝑖∈𝒱𝐴

and

ℰ𝑑𝑜𝑤𝑛
𝐴 = {(𝑖, 𝑗) ∈ ℰ | 𝑖, 𝑗 ∈ 𝒱𝑑𝑜𝑤𝑛

𝐴 }; (ii) For each 𝑖 ∈ 𝒱𝐴, calculate the ratio of traffic

flows that are transmitted from the source node to node 𝑖 without passing any other

adversarial node 𝑗 ∈ 𝒱𝐴∖{𝑖}, denoted by 𝑅[𝑖], based on Algorithm 5.3; (iii) Find the

optimal routing of 𝒱𝐴 to minimize 𝜆* in 𝒢𝑑𝑜𝑤𝑛
𝐴 with 𝑅[𝑖] units of arrival to 𝑖 ∈ 𝒱𝐴.

Algorithm 5.2: 2-Approximation algorithm to minimize 𝜆* based on 𝒢𝑑𝑜𝑤𝑛
𝐴

1 Input: 𝒱𝐴, 𝒢𝑑𝑜𝑤𝑛
𝐴 , normal routing {x𝑖}𝑖∈𝒱𝑁∩𝒱𝑑𝑜𝑤𝑛

𝐴
;

2 Determine 𝑅[𝑖],∀𝑖 ∈ 𝒱𝐴 by Algorithm 5.3;
3 Add 𝑅[𝑖] units of arrival rate to node 𝑖 ∈ 𝒱𝐴 and solve the optimal solution
{x*

𝑖 }𝑖∈𝒱𝐴
by (5.3) on 𝒢𝑑𝑜𝑤𝑛

𝐴 ;
4 Return x𝐴 = {x*

𝑖 }𝑖∈𝒱𝐴
;

We introduce Algorithm 5.2 by a toy example in Fig. 5-5, where 𝒱𝐴 = {2, 4}.

In this case, 𝒱𝑑𝑜𝑤𝑛
𝐴 = {2, 3, 4, 5, 6} and adversarial nodes only can access the routing

149

information in the red dashed frame in Fig. 5-5(a). We then calculate 𝑅[𝑖],∀𝑖 ∈ 𝒱𝐴
based on 𝒢𝑑𝑜𝑤𝑛

𝐴 by Algorithm 5.3, while here we explain the meaning of 𝑅[𝑖] using the

upstream information to 𝑖 as in Fig. 5-5(b) for simplicity. We observe that 𝑥12 of the

traffic will arrive to node 2 without passing the other adversarial node 4, therefore

𝑅[2] = 𝑥12. For node 4, the only traffic flow that does not pass node 2 and arrive to

4 take the path 1→ 3→ 4, thus 𝑅[4] = 𝑥13𝑥34. A special case is that 𝑅[𝑖] = 0 if all

the traffic arrived at adversarial node 𝑖 needs to pass some other adversarial nodes.

Finally, we add an arrival rate of 𝑅[𝑖] unit to adversarial node 𝑖 in the downstream

subgraph 𝒢𝑑𝑜𝑤𝑛
𝐴 as in Fig. 5-5(c), and we solve the optimal routing attack over 𝒢𝑑𝑜𝑤𝑛

𝐴

by Algorithm 5.1.

Figure 5-5: Example of running Algorithm 5.2 from (a) to (c)

Now we introduce Algorithm 5.3, which presents the mechanism to calculate 𝑅[𝑖]

for ∀𝑖 ∈ 𝒱𝐴 purely based on 𝒢𝑑𝑜𝑤𝑛
𝐴 . The adversary first does not conduct routing

attack on 𝒱𝐴 = {2, 4}, which means nodes in 𝒱𝐴 take their default routing policies

before being hijacked4. It chooses a timestamp where the network is not overloaded5

to measure the traffic flow 𝑓𝑖𝑗 for ∀(𝑖, 𝑗) ∈ ℰ𝑑𝑜𝑤𝑛
𝐴 under the default routing policies of

both 𝒱𝑁 and 𝒱𝐴, and the total throughput 𝐹𝑡𝑜𝑡𝑎𝑙 at the destination node. Then

4We visualize 𝒱𝐴 in Fig. 5-6 by shaded instead black nodes for this reason.
5We assume that the network before the routing attack does not contain saturated links, which

is common in real networks with sufficient provisioned capacity [92].

150

we can calculate 𝑅[𝑖] by traversing the downstream nodes 𝒱𝑑𝑜𝑤𝑛
𝐴 in the order of

topological sorting over 𝒢𝑑𝑜𝑤𝑛
𝐴 : Iteratively determine 𝑅[𝑖] whenever traversing at

𝑖 ∈ 𝒱𝐴, and remove the adversarial node 𝑖 and its adjacent downstream links with

updated 𝒱𝑑𝑜𝑤𝑛
𝐴 = 𝒱𝑑𝑜𝑤𝑛

𝐴 ∖{𝑖} and ℰ𝑑𝑜𝑤𝑛
𝐴 = ℰ𝑑𝑜𝑤𝑛

𝐴 ∖{(𝑖, 𝑗) ∈ ℰ , ∀𝑗}, and then determine

the next adversarial node. Fig. 5-6 gives an example of applying Algorithm 5.3 over

the networks in Fig. 5-5, and it is easy to verify the correctness.

Algorithm 5.3: Calculate 𝑅[𝑖], 𝑖 ∈ 𝒱𝐴 based on 𝒢𝑑𝑜𝑤𝑛
𝐴

1 Input: 𝒱𝐴, 𝒢𝑑𝑜𝑤𝑛
𝐴 , normal routing {x𝑖}𝑖∈𝒱𝑁∩𝒱𝑑𝑜𝑤𝑛

𝐴
;

2 Measure the traffic flow 𝑓𝑖𝑗,∀(𝑖, 𝑗) ∈ ℰ𝑑𝑜𝑤𝑛
𝐴 without routing attack on 𝒱𝐴, and

total flow 𝐹𝑡𝑜𝑡𝑎𝑙 at destination node;
3 Measure the total traffic arrival to each source node 𝑖 ∈ 𝒱𝑑𝑜𝑤𝑛

𝐴 as 𝐹 [𝑖];
4 Initialize the total flow to each node 𝑗 ∈ 𝒱𝑑𝑜𝑤𝑛

𝐴 from within 𝒢𝑑𝑜𝑤𝑛
𝐴 as

𝐹 [𝑗] =
∑︀

𝑖:(𝑖,𝑗)∈ℰ𝑑𝑜𝑤𝑛
𝐴

𝑓𝑖𝑗;
5 Topological sort 𝒱𝑑𝑜𝑤𝑛

𝐴 ;
6 for 𝑖 ∈ 𝒱𝑑𝑜𝑤𝑛

𝐴 do
7 If 𝑖 ∈ 𝒱𝑁 , continue;
8 𝑅[𝑖] = 𝐹 [𝑖]/𝐹𝑡𝑜𝑡𝑎𝑙;
9 Remove 𝑖 and {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ ℰ𝑑𝑜𝑤𝑛

𝐴 } from 𝒱𝑑𝑜𝑤𝑛
𝐴 and ℰ𝑑𝑜𝑤𝑛

𝐴 respectively;
10 Update 𝐹 [𝑗] based on (𝒱𝑑𝑜𝑤𝑛

𝐴 , ℰ𝑑𝑜𝑤𝑛
𝐴) by removing flow starting from 𝑖 to

𝑗, ∀𝑗 ∈ 𝒱𝑑𝑜𝑤𝑛
𝐴 ;

11 Return {𝑅[𝑖]}𝑖∈𝒱𝐴
;

We prove Theorem 5.3 that 𝜆*
𝐴𝐿𝐺 under the routing attack x𝐴 output by Algorithm

5.2 satisfies 𝜆*
𝐴𝐿𝐺 ≤ 2𝜆*

𝑂𝑃𝑇 .

Theorem 5.3. Algorithm 5.2 is a 2-approximation algorithm.

Proof. Recall the optimal traffic flow vector to (5.3) is denoted by f*. We denote

f* by f𝑂𝑃𝑇 in the proof, and the traffic flow vector under the routing output by

Algorithm 5.2 by f𝐴𝐿𝐺. Therefore (𝜆*
𝑂𝑃𝑇)

−1 = max(𝑖,𝑗)∈ℰ 𝑓
𝑂𝑃𝑇
𝑖𝑗 /𝑐𝑖𝑗 and (𝜆*

𝐴𝐿𝐺)
−1 =

max(𝑖,𝑗)∈ℰ 𝑓
𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗. Further notice that the flow 𝑓𝑖𝑗 is the sum of flow that are in the

constructed 𝒢𝑑𝑜𝑤𝑛
𝐴 and those are not. Denote them as 𝑔𝑖𝑗 and ℎ𝑖𝑗 respectively, and

151

Figure 5-6: Example of Algorithm 5.3. The original traffic flows are marked by the
numbers over each link in (a), and we can measure the total throughput 𝐹𝑡𝑜𝑡𝑎𝑙 = 7
at the destination node 6. We initialize 𝐹 [2] and 𝐹 [4] to be the total flow to node 2
and node 4, which are 3 and 5 respectively shown in (b). Since node 2 is the source
node in 𝒢𝑑𝑜𝑤𝑛

𝐴 , 𝐹 [2] = 3 does not need to be updated since all the flows from node 2
to 3 and 4 only traverse node 2. Then in (c) we calculate the flows at node 4 that
have traversed node 2, which contains paths 2 → 4 and 2 → 3 → 4 with a total
of 7/9 × 𝐹 [2]. Then in (d) we substract these flow from 𝐹 [4] and we get the final
𝐹 [4] = 8/21.

thus 𝑓𝑖𝑗 = 𝑔𝑖𝑗 + ℎ𝑖𝑗. Therefore the approximation ratio

(︂
𝜆*
𝐴𝐿𝐺

𝜆*
𝑂𝑃𝑇

)︂−1

=
max(𝑖,𝑗)∈ℰ(𝑔

𝐴𝐿𝐺
𝑖𝑗 + ℎ𝐴𝐿𝐺

𝑖𝑗)/𝑐𝑖𝑗

max(𝑖,𝑗)∈ℰ(𝑔𝑂𝑃𝑇
𝑖𝑗 + ℎ𝑂𝑃𝑇

𝑖𝑗)/𝑐𝑖𝑗

(𝑎)
=

max(𝑖,𝑗)∈ℰ(𝑔
𝐴𝐿𝐺
𝑖𝑗 + ℎ𝐴𝐿𝐺

𝑖𝑗)/𝑐𝑖𝑗

max(𝑖,𝑗)∈ℰ(𝑔𝑂𝑃𝑇
𝑖𝑗 + ℎ𝐴𝐿𝐺

𝑖𝑗)/𝑐𝑖𝑗

(𝑏)

≥
max

{︀
max(𝑖,𝑗)∈ℰ 𝑔

𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗,max(𝑖,𝑗)∈ℰ ℎ

𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗

}︀
max(𝑖,𝑗)∈ℰ(𝑔𝑂𝑃𝑇

𝑖𝑗 + ℎ𝐴𝐿𝐺
𝑖𝑗)/𝑐𝑖𝑗

(𝑐)

≥
max

{︀
max(𝑖,𝑗)∈ℰ 𝑔

𝑂𝑃𝑇
𝑖𝑗 /𝑐𝑖𝑗,max(𝑖,𝑗)∈ℰ ℎ

𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗

}︀
max(𝑖,𝑗)∈ℰ 𝑔𝑂𝑃𝑇

𝑖𝑗 /𝑐𝑖𝑗 +max(𝑖,𝑗)∈ℰ ℎ𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗

(𝑑)

≥ 1/2.

In the derivation, (𝑎) holds because ℎ𝑖𝑗 represents the flow that does not pass any

adversarial node any under default routing, thus not related to the difference between

adversarial routing solutions and ℎ𝐴𝐿𝐺
𝑖𝑗 = ℎ𝑂𝑃𝑇

𝑖𝑗 ; (b) holds based on max𝑖{𝑎𝑖 + 𝑏𝑖} ≥

max{max𝑖{𝑎𝑖},max𝑖{𝑏𝑖}}; (c) holds since Algorithm 5.2 outputs the solution that

minimizes the no-loss throughput of the constructed 𝒢𝑑𝑜𝑤𝑛
𝐴 , thus max(𝑖,𝑗)∈ℰ 𝑔

𝐴𝐿𝐺
𝑖𝑗 /𝑐𝑖𝑗 ≥

152

max(𝑖,𝑗)∈ℰ 𝑔
𝑂𝑃𝑇
𝑖𝑗 /𝑐𝑖𝑗, and the denominator is due to max𝑖{𝑎𝑖 + 𝑏𝑖} ≤ max𝑖{𝑎𝑖} +

max𝑖{𝑏𝑖}; (d) holds since max{𝑎, 𝑏}/(𝑎+ 𝑏) ≥ 1/2. Therefore 𝜆*
𝐴𝐿𝐺/𝜆

*
𝑂𝑃𝑇 ≤ 2.

We then can obtain a straightforward corollary, which states that as long as 𝒱𝐴
contains a node cut of 𝒢, the removal of which disconnects the source and destination,

then Algorithm 5.2 returns the optimal routing attack that minimizes 𝜆* solely with

downstream information.

Corollary 5.1. With 𝒢𝑑𝑜𝑤𝑛
𝐴 , Algorithm 5.2 outputs the optimal solution to (5.3) if

𝒱𝐴 contains a node cut to 𝒢.

Proof. If 𝒱𝐴 contains a node cut of the network, then no traffic flows will be sent to

destination node without passing any adversarial node. Therefore ℎ𝐴𝐿𝐺
𝑖𝑗 = ℎ𝑂𝑃𝑇

𝑖𝑗 =

0,∀(𝑖, 𝑗) ∈ ℰ𝑑𝑜𝑤𝑛
𝐴 , and thus 𝜆*

𝐴𝐿𝐺

𝜆*
𝑂𝑃𝑇

= 1.

5.2.4 Practical Extensions

Heuristic for Distributed Attack

Algorithm 5.1 and 5.2 require a centralized adversary who can manipulate the routing

at different adversarial nodes simultaneously, while it does not apply to distributed

routing attack where each adversarial node determines the routing separately. We

introduce a heuristic in Algorithm 5.4 that works for distributed attack in directed

acyclic networks with lower time complexity 𝑂(𝑑𝑚𝑎𝑥|𝒱𝐴|𝑀). Each 𝑖 ∈ 𝒱𝐴 decides its

routing that minimizes the no-loss throughput 𝜆* of the induced subgraph formed

by {𝑖} ∪ 𝒱𝑑𝑜𝑤𝑛
𝑖 where node 𝑖 itself serves as the source. We can traverse the nodes

from the destination, and whenever we encounter an adversarial node, we decide its

routing as above, fix it and continue the traversal to the source. The routing of the

predecessor adversarial nodes depends on the successor ones.

We point out that Algorithm 5.4 can lead to an approximation ratio of 2|𝒱𝐴| under

the topology in Fig. 5-7. However, we show empirically in Section 5.5.1 that it is an

effective heuristic that balances the attack performance and time efficiency.

153

Algorithm 5.4: Heuristics for Distributed Attack
1 Input: directed acyclic 𝒢 = (𝒱 , ℰ), 𝒱𝐴, {x𝑖}𝑖∈𝒱𝑁

;
2 Topology sort 𝒱𝐴 from sink to source;
3 for 𝑖 ∈ 𝒱𝐴 in topological sorted order do
4 Determine x*

𝑖 by running Algorithm 5.1 on the induced graph of 𝒱𝑑𝑜𝑤𝑛
𝑖 ,

and fix x*
𝑖 ;

5 Return x*
𝐴;

Figure 5-7: Example of 2|𝒱𝐴| × 𝜆*
𝑂𝑃𝑇 under Algorithm 5.4. Suppose 𝒱𝐴 = {2, 4, 6};

𝑐28 = 4− 4𝜖, 𝑐48 = 2− 2𝜖, 𝑐68 = 1− 𝜖 where 0 ≤ 𝜖 ≤ 1, 𝑐78 = 1, and other links have
infinite capacity. Nodes 1, 3, and 5 route half of the traffic through each connected
downstream link. Algorithm 5.1 routes all traffic through red links which leads to
𝜆* = 𝜆*

𝑂𝑃𝑇 = 1, while Algorithm 5.4 routes all traffic through blue links (topological
order 6→ 4→ 2) which leads to 𝜆* = 8𝜆*

𝑂𝑃𝑇 = 8 when 𝜖→ 0.

154

Constraints on Routing Attacks

There may exist constraints over routing attacks in practice for the adversary. For

example, the dispatch ratio may need to be within a normal range, i.e. 𝑥𝑖𝑗 ∈

[𝑥min
𝑖𝑗 , 𝑥max

𝑖𝑗] for some (𝑖, 𝑗) ∈ ℰ . Routing in an extreme manner outside such range,

like routing all traffic to a single link based on Algorithm 5.1, may have a high risk of

being detected as anomalous traffic and thus being exposed [115]. By incorporating

such upper and lower bounds on dispatch ratio, the brute-force approach based on

Theorem 6.1 is no longer guaranteed to be solved in polynomial time even under

|𝒱𝐴| = 𝑂(1) in that the polytope with constraints over each dimension may contain

exponential number of vertices6, while Algorithm 5.1 can still output the optimal

solution in polynomial time since 𝑥𝑖𝑗 = 𝑓𝑖𝑗/
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖 ∈ [𝑥min
𝑖𝑗 , 𝑥max

𝑖𝑗] is a linear

constraint given 𝑥min
𝑖𝑗 and 𝑥max

𝑖𝑗 .

Multi-Commodity Networks

The 𝜆*-minimization formulation and results can be extended to multi-commodity

networks as follows. Assume 𝐿 commodities, each commodity 𝑙 has its source 𝑠𝑙,

destination 𝑑𝑙, and default routing 𝑥
(𝑙)
𝑖𝑗 for each link (𝑖, 𝑗) that it passes through.

Suppose the adversary knows the ratio of different commodities in the network,

denoted by {𝛼𝑙}𝐿𝑙=1 where
∑︀𝐿

𝑙=1 𝛼𝑙 = 1, and it can manipulate the routing of any

commodity that pass the nodes in 𝒱𝐴, then the following optimization identifies the

optimal routing attack that minimizes no-loss total throughput 𝜆*, under which each

commodity 𝑙 has an arrival rate of 𝜆*𝛼𝑙, whose correctness can be erected similar as

6Suppose A ∈ R𝑚×𝑛 (𝑚 < 𝑛) in the constraints Ax = b of an LP in standard form, with linearly
independent rows, and columns in any subset of 𝑚 columns of A, then there are at most

(︀
𝑛
𝑚

)︀
basic

feasible solutions (vertices), each of which corresponds to a basis of the LP. In our problem, 𝑛 =
𝑂(𝑀). Without additional routing constraints, there are only 𝑚 = |𝒱𝐴| = 𝑂(1) flow conservation
constraints, hence the brute-force algorithm has polynomial-time complexity. However, we may have
𝑚 = 𝑂(𝑛) that leads to

(︀
𝑛
𝑚

)︀
= 𝑂(2𝑀) vertices by adding routing constraints.

155

Algorithm 5.1.

max
f={f (𝑙)}𝐿𝑙=1

max
(𝑖,𝑗)∈ℰ

𝐿∑︁
𝑙=1

𝑓
(𝑙)
𝑖𝑗 /𝑐𝑖𝑗

s.t. f (𝑙) ∈ Λ(𝑙), 𝑓
(𝑙)
0𝑠𝑙

= 𝛼𝑙, 𝑓
(𝑙)
𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ

(5.5)

In (5.5), the f (𝑙) and Λ(𝑙) denote the flow variables and conservation laws as in (5.2)

for commodity 𝑙. This problem can be solved in polynomial time in a way similar

to (5.3), where for each link, we calculate the traffic arrival rate that saturates it

assuming that the other links have infinite capacity, based on interior point methods

to solve LP problems, and then take the routing attack which requires the minimum

arrival rate to guarantee a saturated link. The 2-approximation ratio in Theorem

5.2 holds for (5.5) when the adversary only has access to the downstream routing

information of each commodity, with similar proof. One future extension is to study

the optimal attack when 𝛼 fluctuates within a certain range, which is practical in

data center networks [92,104].

5.3 Loss Maximization

In this section, we investigate the optimal routing attack x𝐴 = {x𝑖}𝑖∈𝒱𝐴
to maximize

the total traffic loss given the arrival rate 𝜆. We establish that the problem is

NP-complete. We propose two approximation algorithms with performance guarantee

for single-hop networks, and discuss the extension to more general constraints and

multi-hop networks.

5.3.1 Problem Formulation and NP-Completeness

We formulate the loss maximization problem in a general network as in (5.6).

156

min
f ,x𝐴

∑︁
𝑖:(𝑖,𝑑)∈ℰ

𝑓𝑖𝑑

s.t. 𝑓𝑖𝑗 = min

⎧⎨⎩
(︃ ∑︁

𝑘:(𝑘,𝑖)∈ℰ

𝑓𝑘𝑖

)︃
𝑥𝑖𝑗, 𝑐𝑖𝑗

⎫⎬⎭ ,∀(𝑖, 𝑗) ∈ ℰ

𝜆 = 𝑓01, 𝑓𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ

(5.6)

The objective of (5.6) is to minimize the total traffic arrived at the destination

node, which is equivalent to maximizing the loss 𝜆 −
∑︀

𝑖:(𝑖,𝑑)∈ℰ 𝑓𝑖𝑑. The decision

variables contain both the flow variables f and routing policies x𝐴. The constraints

require that the flow over a link (𝑖, 𝑗) is equal to the minimum between the total flow

injected from node 𝑖 to node 𝑗 and the link capacity 𝑐𝑖𝑗. If the flow routed to (𝑖, 𝑗) from

𝑖 exceeds 𝑐𝑖𝑗, then 𝑓𝑖𝑗 = 𝑐𝑖𝑗 and the excess 𝑓𝑖𝑗 − 𝑐𝑖𝑗 traffic will be dropped. We point

out the loss maximization problem cannot be formulated with linear constraints as

(5.1). A more compact but less intuitive equivalent way is to remove x𝐴 from decision

variables by expressing x𝑖 via f as done in (5.1).

We prove Proposition 5.3 that the problem (5.6) also has the boundary optimality

property as (5.3). This indicates a brute-force approach following the idea of Theorem

6.1 with the objective replaced by loss maximization can output the optimal solution

to (5.6), with time complexity 𝑂(𝑁 |𝑉𝐴|𝑀) which is polynomial under |𝒱𝐴| = 𝑂(1).

Proposition 5.3 (Boundary Optimality). There exists an optimal solution to (5.6)

such that for ∀𝑖 ∈ 𝒱𝐴, ∃𝑗 that (𝑖, 𝑗) ∈ ℰ and 𝑥*
𝑖𝑗 = 1, while 𝑥*

𝑖𝑘 = 0 for 𝑘 ̸= 𝑗.

Proof. Note that the constraint in (5.6) implies that the flow 𝑓𝑖𝑗 can be expressed by

a 𝑘-layer nested min function by the flows over links 𝑘 hops predecessor to link (𝑖, 𝑗).

Consider the example in Fig. 5-2 w.l.o.g and of higher clarity, the objective function

can be written as

𝑓46 + 𝑓56 = min{𝑓24 + 𝑓34, 𝑐46}+min{𝑓35, 𝑐56}

= min{min{𝑓12, 𝑐24}+min{𝑓13𝑥34, 𝑐34}}

+min{min{𝑓13𝑥35, 𝑐35}, 𝑐56} = ...

157

We first consider the case with a single adversarial node 𝒱𝐴 = {𝑖}. Then the

objective in (5.6) is a nested combination of minimum and sum of affine functions of

x𝑖, which is concave since the min function is concave. Furthermore, by expressing

(5.6) with decision variables of x𝑖, the constraints are only
∑︀

𝑗:(𝑖,𝑗)∈ℰ 𝑥𝑖𝑗 = 1, 𝑥𝑖𝑗 ≥ 0,

which are linear. Therefore (5.6) is to minimize a concave function in an affine feasible

region, indicating that one of the vertices must be optimal, i.e. ∃𝑗 that (𝑖, 𝑗) ∈ ℰ and

𝑥*
𝑖𝑗 = 1, while 𝑥*

𝑖𝑘 = 0 for 𝑘 ̸= 𝑗.

Now we extend to general 𝒱𝐴. Note that for ∀𝑖 ∈ 𝒱𝐴, when the routing policies of

nodes in 𝒱𝐴∖{𝑖} are fixed, the objective is a concave function of the routing policies

x𝑖. Given any fixed routing of nodes in 𝒱𝐴∖{𝑖}, one of the optimal routing polices at

node 𝑖 must be 𝑥𝑖𝑗 = 1 over some link (𝑖, 𝑗). This means that given an adversarial

routing solution {x𝑖}𝑖∈𝒱𝐴
, if there exists any node 𝑖0 that satisfies 𝑥𝑖0𝑗 < 1,∀(𝑖, 𝑗) ∈ ℰ ,

there must exist 𝑗0 where letting 𝑥𝑖0𝑗0 = 1 will not cause less loss. Therefore via proof

by contradiction, there must exist a vertex that maximizes the loss.

However, we show that unlike no-loss throughput minimization, loss maximization

(5.6) is an NP-complete problem under general 𝒱𝐴.

Theorem 5.4. Problem (5.6) is NP-complete under |𝒱𝐴| = 𝑂(𝑁).

Proof. We reduce Set Cover to Problem 5.6. Given an instance of Set Cover: 𝑚

elements {𝑒𝑖}𝑚𝑖=1, 𝑛 sets {𝑆𝑗}𝑛𝑗=1 where each set covers several elements, what is the

minimum number of sets that can fully covers all the elements? We construct the

graph in Fig. 5-8, where element 𝑒𝑖 as a node 𝑠𝑖, and set 𝑆𝑗 as a node 𝑑𝑗, and there

is a directed link from (𝑠𝑖, 𝑑𝑗) if and only if the set 𝑆𝑗 contains 𝑒𝑖, with capacity

𝑐𝑠𝑖,𝑑𝑗 = ∞. We further introduce a meta source node 𝑠0, and a link from 𝑠0 to

each of the nodes in {𝑠𝑖}𝑚𝑖=1 with link capacity 𝑐𝑠0,𝑠𝑖 = ∞. The routing policy at

𝑠0 is 𝑥𝑠0,𝑠𝑖 = 1/𝑚, ∀𝑖 = 1, · · · ,𝑚, and an external arrival rate of 𝑚. We then

introduce a meta destination node 𝑑0, and introduce a directed link (𝑑𝑗, 𝑑0) with

capacity 𝑐𝑑𝑗 ,𝑑0 = 1. The adversarial node set 𝒱𝐴 = {𝑠𝑖}𝑚𝑖=1, and they can dispatch

traffic to any of its connected downstream nodes. Clearly, the optimal routing attack

of 𝒱𝐴 that maximizes the loss is to route traffic to minimum number of nodes in

158

{𝑑𝑗}𝑛𝑗=1, where the maximum loss is 𝑚 − 𝑝 suppose that the minimum number is 𝑝.

Therefore if there exists a polynomial algorithm for Problem (5.6), then it outputs the

minimum number of nodes in {𝑑𝑗}𝑛𝑗=1 that receives traffic under the optimal attack,

which corresponds to the minimum set cover over elements {𝑒𝑖}𝑚𝑖=1, thus contradicting

to the NP-hardness of Set Cover.

Figure 5-8: Graph Construction from Set Cover

5.3.2 Approximation Algorithms

We propose two approximation algorithms with multiplicative and additive

performance guarantees respectively in single-hop networks, where routing attacks

are conducted on source nodes 𝒱𝑆. Under static routing, we can assume w.l.o.g.

𝒱𝑆 = 𝒱𝐴, i.e., all source nodes are hijacked. This is because if a source node is

normal, then based on its default routing policy we can calculate the traffic flow

sent from this node to each of its connected downstream destination nodes. We can

then correspondingly reduce the service rate 𝜇𝑗 at each destination node 𝑑𝑗 by the

total amount of flow arriving from all normal source nodes to 𝑑𝑗 until the remaining

service rate at 𝑑𝑗 reaches zero. Therefore, the single-hop network with normal source

nodes can be equivalently transformed into the one with all sources being adversarial,

and updated remaining service rates at 𝒱𝐷. We consider 𝒱𝑆 = 𝒱𝐴 below.

159

Algorithm with Multiplicative Guarantee

We propose a greedy-based algorithm that has a worst-case approximation ratio of

1/
√︀
|𝒱𝐴|. We summarize the details in Algorithm 5.5, which executes two greedy

approaches and outputs the solution that leads to higher loss. Both approaches

share the idea of iteratively routing traffic to the destination node that leads to

maximum overload. Approach 1 maximizes the overload at a destination node without

normalization. In each iteration, the adversary takes aim at the destination node

𝑑*𝑗 = argmax𝑑𝑗∈𝒱𝐷

(︁∑︀
𝑠𝑖∈𝑈𝐷:(𝑠𝑖,𝑑𝑗)∈ℰ 𝜆𝑖

)︁
−𝜇𝑗, where 𝑈𝐷 denotes the set of adversarial

nodes whose routing is undecided by the current iteration, and then sets the routing

policy at all source nodes in 𝑈𝐷 ∩ {𝑠𝑖 ∈ 𝒱𝑆 | (𝑠𝑖, 𝑑*𝑗) ∈ ℰ} to be dispatching all their

traffic to 𝑑*𝑗 . Approach 2 maximizes overload at a destination node with normalization,

where at each 𝑑𝑗 ∈ 𝒱𝐷, the adversary finds the routing that maximizes the per-source

overload at 𝑑𝑗, defined as

𝑃𝑆𝑂[𝑑𝑗] := max
𝒮𝑑𝑗

⊆𝑈𝐷

1

|𝒮𝑑𝑗 |

⎛⎝ ∑︁
𝑠𝑖∈𝒮𝑑𝑗

:(𝑠𝑖,𝑑𝑗)∈ℰ

𝜆𝑖 − 𝜇𝑗

⎞⎠ (5.7)

which means to find the subset of source nodes, denoted by 𝒮𝑑𝑗 , that can send traffic

to and maximizes the overload at 𝑑𝑗 normalized by the size of 𝒮𝑑𝑗 . Denote the optimal

𝒮𝑑𝑗 with respect to (5.7) for node 𝑑𝑗 by 𝒮*
𝑑𝑗

. The adversary routes all the traffic at

source nodes in 𝒮*
𝑑*𝑗

to 𝑑*𝑗 = argmax𝑑𝑗∈𝒱𝐷
𝑃𝑆𝑂[𝑑𝑗]. We iterate the above process

over the source nodes whose routing policies are yet to be determined. Note that

the determination of 𝒮*
𝑑𝑗

for each 𝑑𝑗 ∈ 𝒱𝐷 can be done in polynomial time: Initialize

𝒮*
𝑑𝑗

= ∅, sort all source nodes in 𝑈𝐷 ∩ {𝑠𝑖 ∈ 𝒱𝑆 | (𝑠𝑖, 𝑑*𝑗) ∈ ℰ} non-increasingly with

respect to the traffic arrival rates to them, and add these source nodes to 𝒮*
𝑑𝑗

in sequel,

until the 𝑃𝑆𝑂[𝑑𝑗] reaches the peak value and starts decreasing. This guarantees that

Approach 2 is a polynomial-time algorithm.

We demonstrate in Theorem 5.5 that taking the better routing attack solution

between Approach 1 and 2 leads to 1/
√︀
|𝒱𝐴| worst-case approximation ratio. A single

application of either of the two approaches, however, has a worst-case approximation

160

Algorithm 5.5: Approx. with Multiplicative Guarantee
1 Input: Single-hop network 𝒢 = (𝒱 , ℰ), 𝒱𝐴, 𝜆, 𝜇;
2 Function GreedyAlg(𝒢, 𝜆, 𝜇, GreedyType):
3 Initialize x𝑖 = 0, ∀𝑠𝑖 ∈ 𝒱𝐴; 𝑈𝐷 = 𝒱𝐴;
4 while ∃𝑠𝑖 ∈ 𝑈𝐷 do
5 if 𝐺𝑟𝑒𝑒𝑑𝑦𝑇𝑦𝑝𝑒 is Approach1 then

6 𝑗* ← argmax𝑗

(︃ ∑︀
𝑠𝑖∈𝑈𝐷,(𝑠𝑖,𝑑𝑗)∈ℰ

𝜆𝑖

)︃
− 𝜇𝑗;

7 if 𝐺𝑟𝑒𝑒𝑑𝑦𝑇𝑦𝑝𝑒 is Approach2 then
8 𝑗* ← argmax𝑗 𝑃𝑆𝑂[𝑑𝑗] as (5.7);

9 Let x𝑖𝑗* = 1, 𝑈𝐷 = 𝑈𝐷∖𝑠𝑖, ∀𝑠𝑖, (𝑠𝑖, 𝑑*𝑗) ∈ ℰ ;
10 Calculate 𝑙𝑜𝑠𝑠 based on 𝑠𝑜𝑙← {x𝑖}𝑖∈𝒱𝐴

;
11 return 𝑙𝑜𝑠𝑠, 𝑠𝑜𝑙

12 Update remaining service rates at 𝒱𝐷;
13 Remove 𝒱𝑁 from 𝒱𝑆, and associated links from ℰ ;
14 𝑙𝑜𝑠𝑠1, 𝑠𝑜𝑙1 ← GreedyAlg (𝒢, 𝜆, 𝜇, Approach1);
15 𝑙𝑜𝑠𝑠2, 𝑠𝑜𝑙2 ← GreedyAlg (𝒢, 𝜆, 𝜇, Approach2);
16 Return 𝑠𝑜𝑙1 if 𝑙𝑜𝑠𝑠1 > 𝑙𝑜𝑠𝑠2 else 𝑠𝑜𝑙2;

ratio of 𝑂(|𝒱𝐴|−1). We give toy examples in Fig. 5-9 to validate the tightness of these

performance guarantees. The red routing is the optimal routing attack, while the

blue one is the routing attack output by Approach 1 in Fig. 5-9(a), Approach 2 in

Fig. 5-9(b), and Algorithm 5.5 in Fig. 5-9(c), respectively. In the table in Fig. 5-9,

Δ𝑂𝑃𝑇 , Δ𝐴1, Δ𝐴2 and Δ𝑀𝑈𝐿 denote respectively the loss under optimal routing attack,

applying Approach 1, applying Approach 2, and applying Algorithm 5.5 which has

multiplicative guarantee.

Theorem 5.5. Algorithm 5.5 outputs a solution with loss Δ𝑀𝑈𝐿 that satisfies Δ𝑀𝑈𝐿

Δ𝑂𝑃𝑇
≥

1√
|𝒱𝐴|

.

Algorithm with Additive Guarantee

We further propose Algorithm 5.6 with additive performance guarantee. The main

idea is to iteratively solve the 𝜆*-minimization problem (5.3) until either all the

adversarial nodes have determined their routing policies or the 𝜆* exceeds the given

arrival rate 𝜆. The intuition behind Algorithm 5.6 is to greedily find the routing attack

161

Figure 5-9: Tightness validation of Theorem 5.5 under |𝒱𝐴| = 4. Consider 𝜖 → 0,
Approach 1 on network (a) and Approach 2 on network (b) leads to 1/|𝒱𝐴| = 1/4
approximation ratio; Algorithm 5.5 gives worst-case approximation ratio 1/

√︀
|𝒱𝐴| =

1/2 on network (c).

to cause the next possible saturated link with minimum arrival rate increment, which

can be done by iteratively fixing the routing decided in previous iterations (line 7),

and updating the capacity of previous saturated links to be infinite (line 8).

Algorithm 5.6: Approx. with Additive Guarantee
1 Input: Single-hop network 𝒢 = (𝒱 , ℰ), 𝒱𝐴, 𝜆, 𝜇;
2 Introduce meta-source normal node 𝑠0 to 𝒢 with dispatch ratio

𝑥𝑠0,𝑠𝑖 = 𝜆𝑖/
∑︀|𝒱𝑆 |

𝑘=1 𝜆𝑘,∀𝑠𝑖;
3 Introduce meta-destination 𝑑0 with 𝑐𝑑𝑗 ,𝑑0 = 𝜇𝑗, ∀𝑑𝑗;
4 Initialize x𝑖 = 0,∀𝑠𝑖 ∈ 𝒱𝐴; 𝑈𝐷 = 𝒱𝐴;
5 while ∃𝑠𝑖 ∈ 𝑈𝐷 do
6 Run Algorithm 5.1 on the updated 𝒢,𝒱𝐴,x𝑁 and get the first saturated

link (𝑑𝑗* , 𝑑0);
7 Let 𝑥𝑖𝑗* = 1, 𝑈𝐷 = 𝑈𝐷∖{𝑠𝑖}, and fix the routing at 𝑠𝑖, for

∀𝑠𝑖 ∈ 𝑈𝐷, (𝑠𝑖, 𝑑
*
𝑗) ∈ ℰ ;

8 Let 𝑐𝑑𝑗* ,𝑑0 =∞;

9 Calculate 𝑙𝑜𝑠𝑠 based on 𝑠𝑜𝑙← {x𝑖}𝑠𝑖∈𝒱𝐴
;

10 Return 𝑠𝑜𝑙, 𝑙𝑜𝑠𝑠;

162

We demonstrate in Theorem 5.6 that the gap between the output of Algorithm

5.6 and the maximum loss given by (5.6) is bounded above by 𝜆/4 in the worst case

for any single-hop network. This means, for example, if the optimal attack causes

traffic loss 50%× 𝜆, then Algorithm 5.6 at least causes 25%× 𝜆.

Theorem 5.6. Algorithm 5.6 outputs the solution with loss Δ𝐴𝐷𝐷 that satisfies
Δ𝑂𝑃𝑇−Δ𝐴𝐷𝐷

𝜆
≤ 1

4
.

We point out that the 1/4 bound is tight, given by the example shown in Fig. 5-10.

The optimal routing at 𝑠2 is to route traffic to 𝑑1, causing loss of 2, while the solution

by Algorithm 5.6 will route traffic to 𝑑2, causing loss of 1 + 𝜖 where 𝜖 > 0. Thus the

gap (2− (1 + 𝜖))/𝜆→ 1/𝜆 = 1/4 when 𝜖→ 0. However, the condition to achieve the

worst-case gap 1/4 is very strong, which requires the arrival rates to all sources and

the service rates of all destinations to meet some ratio equality, where in Fig. 5-10

they are 𝑥𝑠0,𝑠2 = 𝜇2/𝜇1 and 𝜇2/𝜇1 → 1/2. We show in Section 6.4 that empirically

Algorithm 5.6 leads to the gap less than 5%× 𝜆 in more than 95% tested cases.

Figure 5-10: Tightness validation of Theorem 5.6 (𝜆 = 4, 𝒱𝐴 = {𝑠2}): red route is
optimal, blue route is the output of Algorithm 5.6.

5.3.3 Practical Extensions

Constraints on Routing Attack

We follow the constraint form, 𝑥𝑖𝑗 ∈ [𝑥min
𝑖𝑗 , 𝑥max

𝑖𝑗] for some (𝑠𝑖, 𝑑𝑗) ∈ ℰ , in Section 5.2.4.

We show that both Algorithm 5.5 and 5.6 can incorporate this constraint in single-hop

163

networks. For the lower bound, we can require that each adversarial source 𝑠𝑖 initially

sends 𝜆𝑖×𝑥min
𝑖𝑗 traffic through each link (𝑠𝑖, 𝑑𝑗). For the upper bound, Algorithm 5.6,

which is based on no-loss throughput minimization, can keep unchanged as discussed

in Section 5.2.4. In Algorithm 5.5, an adversarial node 𝑠𝑖 will still be considered in

future iterations if 𝑠𝑖 has not determined the destination nodes for all its traffic, unlike

the unconstrained case where the routing of an adversarial node will be determined

in one of the iterations. For example, suppose 𝑥min
𝑖𝑗 = 0 and consider that 𝑠𝑖 routes

𝑥max
𝑠𝑖𝑑𝑗

of all the traffic to 𝑑𝑗, then there remains 𝜆𝑖(1− 𝑥max
𝑠𝑖𝑑𝑗

) units of traffic rates at 𝑠𝑖

whose routing is undecided, and we will consider 𝑠𝑖 in future iterations to route the

remaining traffic to destinations other than 𝑑𝑗 until there no longer exists traffic with

routing undecided at 𝑠𝑖. With such adjustment, the factor 1/|𝒮𝑑𝑗 | in (5.7) should

be the reciprocal of the sum of the remaining proportions of traffic with undecided

routing over 𝒮𝑑𝑗 .

Multi-hop Networks

We briefly discuss the extension of the algorithms to multi-hop networks. In

Algorithm 5.5, unlike in single-hop networks we maximize the inflow to each node

in a greedy manner, in multi-hop networks we greedily find the node 𝑖 that achieves

maximum possible loss over its connected downstream links, under the adversarial

routing at 𝒱𝐴 ∩𝒱𝑢𝑝
𝑖 that maximizes the total inflow to node 𝑖. This is similar to lines

2-5 in Algorithm 5.1 with the objective changed to traffic loss. For Algorithm 5.6,

we can naturally extend it to multi-hop networks polynomially based on Algorithm

5.1: iteratively saturate the next link by minimizing the no-loss throughput 𝜆*, until

𝜆* ≥ 𝜆 or all nodes in 𝒱𝐴 have determined their routing policies.

5.4 Optimal Node Selection

In this section, we investigate the situation where the adversary needs to select a

limited number of nodes to hijack before conducting routing attack. The discussion

serves as an extension to the capability of routing attack in practice, and gives a

164

benchmark to evaluate the most critical nodes that should be protected from routing

attack.

5.4.1 Problem Formulation and NP-Completeness

We consider a set of candidate nodes that can be hijacked by the adversary, 𝒱𝑐𝑎𝑛𝑑.

The adversary selects at most 𝐾 < |𝒱𝑐𝑎𝑛𝑑| nodes to hijack, and the objective is to

conduct routing attack on them to minimize no-loss throughput or maximize loss, i.e.,

solving (5.3) or (5.6). This setting maps to the practice: 𝒱𝑐𝑎𝑛𝑑 is a subset of nodes

with insecure firewalls so that the adversary can hijack into, and the adversary can

attack a limited number of nodes due to the attack cost, and the risk to be detected.

The problem can extended naturally to a weighted version with a bounded total cost,

which shares the idea below but is deferred to future work.

We prove that for both no-loss throughput minimization and loss maximization,

the problem is NP-complete for general 𝐾 = 𝑂(𝑁), while polynomially solvable for

𝐾 = 𝑂(1).

Theorem 5.7. Finding the optimal selection of 𝐾 nodes from 𝒱𝑐𝑎𝑛𝑑 to conduct routing

attack for no-loss throughput minimization and loss maximization is NP-complete

under 𝐾 = 𝑂(𝑁) while P under 𝐾 = 𝑂(1).

Although polynomial under 𝐾 = 𝑂(1), the brute-force solution is impractical

when 𝐾 is a large constant7. Below we propose efficient heuristic algorithms which

can minimize the no-loss throughput exactly, and achieve close-to-optimal traffic loss

verified empirically in Section 5.5.3, when 𝒱𝑐𝑎𝑛𝑑 are in parallel structure. Parallel

𝒱𝑐𝑎𝑛𝑑 means any node 𝑖1 ∈ 𝒱𝑐𝑎𝑛𝑑 is not upstream or downstream to another node

𝑖2 ∈ 𝒱𝑐𝑎𝑛𝑑. The single-hop network is a special case where 𝒱𝑐𝑎𝑛𝑑 ⊆ 𝒱𝑆 are parallel to

each other.

7Time complexity is at least 𝑂(𝑁5) if |𝒱𝑐𝑎𝑛𝑑| = 𝑂(𝑁) and 𝐾 = 5, which is high in practice.

165

5.4.2 Algorithms Under Parallel 𝒱𝑐𝑎𝑛𝑑

No-Loss Throughput Minimization

We show that the optimal node selection problem is polynomially solvable with

parallel 𝒱𝑐𝑎𝑛𝑑 for no-loss throughput minimization by Algorithm 5.7. Denote the

candidate nodes upstream to node 𝑖 as 𝒱𝑢𝑝,𝑖
𝑐𝑎𝑛𝑑 (assume 𝑖 ∈ 𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑 if 𝑖 ∈ 𝒱𝑐𝑎𝑛𝑑). The

main idea is to traverse each link (𝑖, 𝑗) in the downstream graph to 𝒱𝑐𝑎𝑛𝑑. For each

candidate node 𝑣 ∈ 𝒱𝑢𝑝,𝑖
𝑐𝑎𝑛𝑑, the adversary can evaluate the maximum reduction of the

required traffic arrival rate at the source node to saturate (𝑖, 𝑗) by choosing to attack

𝑣. The adversary then chooses min{𝐾, |𝒱𝑢𝑝,𝑖
𝑐𝑎𝑛𝑑|} nodes from 𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑 non-decreasingly in

terms of the maximum reduction. Denote the choice for (𝑖, 𝑗) ∈ ℰ as 𝒱(𝑖,𝑗)
𝐴 . We can

traverse all links (𝑖, 𝑗) downstream to 𝒱𝑐𝑎𝑛𝑑 to build {𝒱(𝑖,𝑗)
𝐴 }(𝑖,𝑗)∈ℰ , and pick the 𝒱(𝑖*,𝑗*)

𝐴

under which the no-loss throughput is minimized by solving the routing attack for

(5.3). We show that it gives the exact optimal node selection in Theorem 5.8.

Algorithm 5.7: Optimal node selection for no-loss throughput minimization
under parallel 𝒱𝑐𝑎𝑛𝑑
1 Input: 𝒢 = (𝒱 , ℰ), parallel 𝒱𝑐𝑎𝑛𝑑, number of nodes to attack 𝐾, default

routing X;
2 Build 𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑 for each node 𝑖 ∈ 𝒱𝑐𝑎𝑛𝑑 and downstream to 𝒱𝑐𝑎𝑛𝑑;
3 for (𝑖, 𝑗) ∈ ℰ downstream to 𝒱𝑐𝑎𝑛𝑑 do
4 Calculate Δ

(𝑖,𝑗)
𝑣 , ∀𝑣 ∈ 𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑, the difference of minimum arrival rate that
saturates a (𝑖, 𝑗) with and without attacking 𝑣, not attacking other
candidate nodes;

5 Sort non-increasingly {Δ(𝑖,𝑗)
𝑣 }𝑣∈𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑
;

6 Determine 𝒱(𝑖,𝑗)
𝐴 , the optimal node choice to saturate link (𝑖, 𝑗), by finding

the top-min{𝐾, |𝒱𝑢𝑝,𝑖
𝑐𝑎𝑛𝑑|} candidate nodes in 𝒱𝑢𝑝,𝑖

𝑐𝑎𝑛𝑑 with maximum Δ
(𝑖,𝑗)
𝑣 ;

7 Calculate the minimum no-loss throughput under routing attack over 𝒱(𝑖,𝑗)
𝐴

for all (𝑖, 𝑗) ∈ ℰ downstream to 𝒱𝑐𝑎𝑛𝑑, and find the minimum one
corresponding to link (𝑖*, 𝑗*);

8 Return 𝒱(𝑖*,𝑗*)
𝐴 as the selected nodes to attack;

Theorem 5.8. Algorithm 5.7 outputs the optimal node selection to conduct routing

attack that leads to minimum no-loss throughput given parallel 𝒱𝑐𝑎𝑛𝑑.

166

Loss Maximization

Unlike no-loss throughput, it is challenging to derive heuristics with performance

guarantee even under parallel 𝒱𝑐𝑎𝑛𝑑 for loss maximization. The main bottleneck lies

in the performance verification of a specific node selection, i.e., finding the optimal

routing attack to achieve maximum loss among a given set of the selected nodes, is

NP-complete. We leave the theoretical challenge in future work, while we propose a

heuristic in Algorithm 5.8 over single-hop networks with 𝒱𝑐𝑎𝑛𝑑 ⊆ 𝒱𝑆 to explain the

basic idea by a greedy approach over each destination node, where the extension

to parallel 𝒱𝑐𝑎𝑛𝑑 is natural by a greedy approach over each link. Algorithm 5.8

iteratively picks nodes to attack until 𝐾 nodes have been chosen. In each iteration, for

each destination node 𝑑𝑗, the algorithm evaluates the value for each of its connected

source node 𝑠𝑖 ∈ 𝑈𝐷, i.e. whose routing has not been decided, to route all its

traffic to 𝑑𝑗. The value is defined as 𝑣𝑖𝑗 = 𝜆𝑖(1 − 𝑥𝑖𝑗), the increment of inflow

to 𝑑𝑗 after routing attack where 𝑥𝑖𝑗 is the default dispatch ratio from 𝑠𝑖 to 𝑑𝑗.

Then for each destination node 𝑑𝑗, we have a corresponding choice of the connected

source nodes, which have not been selected in previous iterations, according to the

non-increasing order of {𝑣𝑖𝑗}𝑠𝑖:(𝑠𝑖,𝑑𝑗)∈ℰ until either the per-source contribution to the

loss at 𝑑𝑗, defined as 𝑃𝑆𝐶[𝑑𝑗] in Algorithm 5.8, reaches the peak value denoted by

𝑃𝑆𝐶*[𝑑𝑗]
8, or the algorithm has chosen 𝐾 nodes in total till this iteration. With all

𝑃𝑆𝐶*[𝑑𝑗] calculated and the corresponding selected source nodes to attack, denoted

by 𝒮𝑗, we then determine the new nodes to attack in this iteration to be 𝒮𝑗* , with

𝑑𝑗* = argmax𝑑𝑗∈𝒱𝐷
𝑃𝑆𝐶*[𝑑𝑗], and determine their routing to be dispatching all the

traffic to 𝑑𝑗* . We then fix the routing of the selected sources and update the remaining

service rate of the 𝑑𝑗* , and do iteratively.

5.5 Performance Evaluation

In this section, we evaluate the proposed routing attack and optimal node selection

algorithms to showcase their near-optimal performance over no-loss throughput
8The process is similar to the (5.7) in Algorithm 5.5

167

Algorithm 5.8: Heuristic node selection for loss maximization in single-hop
networks
1 Input: Single-hop network 𝒢, 𝜆, 𝜇, 𝒱𝑐𝑎𝑛𝑑, number of nodes to attack 𝐾,

default routing X;
2 while |𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑| < 𝐾 do
3 for 𝑑𝑗 ∈ 𝒱𝐷 do
4 Evaluate value for each 𝑠𝑖 ∈ 𝒱𝑆∖𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 as 𝑣𝑖𝑗 = 𝜆𝑖(1− 𝑥𝑖𝑗);
5 Sort nodes in 𝒱𝑆∖𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 non-increasingly with respect to value;
6 Initialize 𝑆𝑡𝑚𝑝 = ∅;
7 Add each source node to 𝑑𝑗 in the above sorted order to 𝑆𝑡𝑚𝑝 and

update 𝑃𝑆𝐶[𝑑𝑗] :=
1

|𝑆𝑡𝑚𝑝|

(︁∑︀
𝑠𝑖∈𝑆𝑡𝑚𝑝

𝑣𝑖𝑗 − 𝜇𝑗

)︁
before this value starts

to decrease;
8 Find the peak value 𝑃𝑆𝐶*[𝑑𝑗] in line 7, and the selected source nodes

as 𝒮𝑗;
9 Determine 𝑗* = argmax𝑑𝑗∈𝒱𝐷

𝑃𝑆𝐶*[𝑑𝑗], and add 𝒮𝑗* to 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑.
Updated the routing of nodes in 𝒮𝑗* in X, and the remaining service rate
𝜇𝑗* ;

10 Return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 as the selected nodes, X as the updated routing of
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑;

minimization and loss maximization over a wide range of network settings, including

different network densities, sizes of adversarial node set, and default routing policies.

Uniform Proportional ECMP MaxFlow
Den |𝒱𝐴| Mean 90% Max Mean 90% Max Mean 90% Max Mean 90% Max

0.4 10 1.00 1.00 1.09 1.01 1.00 1.18 1.00 1.00 1.15 1.01 1.00 2.00
0.8 10 1.01 1.07 1.24 1.02 1.10 1.27 1.01 1.08 1.15 1.04 1.17 1.50
0.4 20 1.00 1.00 1.03 1.00 1.00 1.04 1.00 1.00 1.01 1.00 1.00 1.25
0.8 20 1.00 1.00 1.03 1.00 1.00 1.04 1.00 1.00 1.02 1.01 1.07 1.33

Table 5.1: Approximation ratio statistics for Algorithm 5.2 (90% means 90-percentile)

Figure 5-11: CDFs of approximation ratio under density 0.8 and |𝒱𝐴| = 20

168

5.5.1 No-Loss Throughput 𝜆* Minimization

For no-loss throughput minimization, we have shown that Algorithm 5.1 yields

the exact optimal solution in polynomial time. This exact algorithm serves as our

baseline, and we test the performance of 3 algorithms by measuring their gaps to the

baseline: (i) the 2-approximation Algorithm 5.2, in order to validate the correctness

of Theorem 5.3 and show its closeness to the baseline; (ii) the distributed attack

heuristic Algorithm 5.4, in order to evaluate the performance gap between distributed

and centralized routing attack; (iii) a local heuristic where each adversarial node

routes all the traffic through the link with minimum capacity among all its connected

downstream links, in order to demonstrate the performance enhancement that

adversaries can achieve via Algorithm 5.1 compared with a naive attack.

We simulate multi-hop networks with size |𝒱| = 50. Our evaluation has the

following dimensions. (I) Network Density: We generate random network topologies9

given different link existence probabilities 𝑝, and present representative results under

𝑝 = 0.4 and 𝑝 = 0.8; (II) Number of Adversarial Nodes |𝒱𝐴|: We showcase results

for 𝒱𝐴 = 10 and 20, with other values exhibiting similar outcomes; (III) Default

Routing Policy: We consider 4 routing policies at normal nodes, which have been

applied in different scenarios: (i) Uniform routing: Each normal node 𝑖 dispatches

an equal portion of traffic to each of its downstream connected nodes, oblivious to

link capacity, i.e., 𝑥𝑖𝑗 = 1/outdegree[𝑖], (𝑖, 𝑗) ∈ ℰ . (ii) Capacity Proportional routing:

The dispatch ratio of traffic to a downstream connected node is proportional to the

capacity of this link, i.e., 𝑥𝑖𝑗 = 𝑐𝑖𝑗/
∑︀

𝑘:(𝑖,𝑘)∈ℰ 𝑐𝑖𝑘. (iii) Equal-Cost Multi-Path (ECMP)

routing [116]: Traffic at the source is dispatched through the paths with minimum

cost. If there are 𝐿 > 1 min-cost paths, then 1/𝐿 of the traffic takes each of the

paths. We only present the results where each link has the same cost, as the other

costs we have tested share similar results. ECMP is widely used in load balancing

and commonly applied in industrial data center and cloud networks [1]. (iv) MaxFlow

routing [117]: This default routing achieves maximum throughput under no routing

attacks, which is widely studied in theory and serves as a paradigm for network design
9We ensure that there exists at least a path from source to destination.

169

[22]. We simulate 10000 network instances for each combination of the above network

settings: We construct 20 different topologies, and under each topology, we consider

20 different adversarial node sets 𝒱𝐴, and further under each 𝒱𝐴, we set 25 different

link capacity allocations.

We evaluate the cumulative distribution function (CDF) of the approximation

ratio 𝜆*
𝐴𝐿𝐺/𝜆

*
𝑂𝑃𝑇 , where 𝜆*

𝐴𝐿𝐺 is the no-loss throughput output by the tested

algorithms and 𝜆*
𝑂𝑃𝑇 is the optimal routing attack by Algorithm 5.1. We present

the approximation ratio statistics of the proposed Algorithm 5.2 in Table 5.1,

including the mean, 90-percentile, and maximum approximation ratio under various

network settings. For instance, the value 1.09 in the first row signifies the maximum

approximation ratio of Algorithm 5.2 under density 0.4, |𝒱𝐴| = 10, and uniform

default routing, over all 10000 tested instances under this setting. We have the

following observations: (i) In any tested setting, Algorithm 5.2 exhibits near-optimal

performance in most instances. The mean approximation ratio is less than 1.05, and

over 90% of instances have an approximation ratio of less than 1.20 under all network

settings. This result demonstrates that the routing attack by Algorithm 5.2 achieves

near-optimal overload increase in most cases, utilizing downstream information

only. (ii) Algorithm 5.2 performs worst on MaxFlow routing, with mean, p90, and

maximum approximation ratios larger than those of the other three policies. Notably,

under density 0.4 and |𝒱𝐴| = 10, an instance exists where the approximation ratio

reaches 2, the bound established in Theorem 5.3. This outcome can be attributed to

MaxFlow routing distributing traffic to optimally exploit network capacity, resulting

in a considerable portion of traffic being dispersed through paths without adversarial

nodes. (iii) The routing attack performs best on density 0.4 and |𝒱𝐴| = 20 and worst

on density 0.8 and |𝒱𝐴| = 10 in general. This observation aligns with the intuition

that higher density combined with fewer adversarial nodes allows network traffic to

access more available paths without adversarial nodes, thus reducing the possibility

of forming a node cut so that Algorithm 5.2 is able to output the optimal attack as

Algorithm 5.1, which echoes Corollary 5.1.

We proceed to compare the performance gaps to the baseline over the 3 algorithms:

170

Algorithm 5.2, Algorithm 5.4, and the local heuristic. We illustrate the CDFs of the

approximation ratios of the three algorithms under four default routing policies with

density 0.8 and |𝒱𝐴| = 20 in Fig. 5-11. Despite Algorithm 5.2 exhibits the worst

approximation performance under this setting compared to the other settings in Table

5.1, it still significantly outperforms Algorithm 5.4 and the local heuristic under all the

given default routing policies. The CDF curves reveal that Algorithm 5.2 identifies

the optimal solution in over 80% of the instances. Moreover, Algorithm 5.4 strikes a

balance between attack performance and time efficiency, compared with the optimal

attack performance of Algorithm 5.1 with higher time cost in solving LPs, and the

local heuristics with lowest time complexity but without any performance guarantee.

We can observe that Algorithm 5.4 leads to approximation ratio below 2.0 in more

than 50% of test cases under all these four default routing policies.

5.5.2 Loss Maximization

We evaluate the performance of loss maximization under Algorithm 5.5 and 5.6 in

single-hop networks. We simulate various settings in 8 × 8 and 16 × 16 single-hop

networks, considering all source nodes as adversarial, which does not compromise

generality as explained in Section 5.3.2. We compare our proposed algorithms with

two heuristics: (i) Min𝜇: Each adversarial node routes all the traffic to its connected

destination node with the minimum service rate. (ii) Rand: Each adversarial node

randomly selects a connected destination node and routes all the traffic to it.

We evaluate algorithms across various network settings in three dimensions:

(i) Network Density: as in Section 5.5.1. (ii) (𝜇, 𝜆)-ratio, which represents∑︀𝑁𝐷

𝑗=1 𝜇𝑗/
∑︀𝑁𝑆

𝑖=1 𝜆𝑖, the ratio between the total service rate and traffic arrival rates.

A higher ratio implies lighter traffic loads in the network, thus more challenging for

applying routing attacks to cause overload. (iii) Uniformity of service rates 𝜇 among

all destination nodes. We consider two scenarios: heterogeneous service rates, where

the service rates are randomly generated given the (𝜇, 𝜆)-ratio, and homogeneous

service rates, where the maximum difference of service rates between any pair of

destination nodes is within 10%, i.e., max𝑗1 ̸=𝑗2 |𝜇𝑗1 − 𝜇𝑗2|/max{𝜇𝑗1 , 𝜇𝑗2} ≤ 10%,

171

the idea of which is widely adopted in real-world data center networks to avoid

speed mismatch [1, 92]. For each network setting, we evaluate 30 random topologies

between 𝒱𝑆 and 𝒱𝐷, and 50 different values of 𝜆 and 𝜇 per topology, subject to the

given constraints of (𝜇, 𝜆)-ratio and uniformity of 𝜇.

We first present the results on 8×8 networks. We validate the proved performance

guarantees of Algorithm 5.5 and 5.6 , since the brute force mechanism in Proposition

5.3 is not prohibitive to simulate under |𝒱𝐴| = 8. We present the results in Table

5.2. For Algorithm 5.5, we assess the approximation ratio Δ𝑀𝑈𝐿/Δ𝑂𝑃𝑇 ∈ [0, 1],

which achieves optimum in more than 90% of the tested instances, and the worst

approximation ratio is above 2/3 under all tested settings, significantly surpassing

the bound 1/
√︀
|𝒱𝐴| = 1/

√
8 = 0.35 in Theorem 5.5. For Algorithm 5.6, we evaluate

(Δ𝑂𝑃𝑇 − Δ𝐴𝐷𝐷)/𝜆, which is less than 0.05 under heterogeneous service rates and

close to 0 under homogeneous service rates in 90% of the instances, with the largest

gap being less than 0.19, below the bound of 1/4 in Theorem 5.6. These results

demonstrate the near-optimal performance in most of the tested cases by both

Algorithm 5.5 and 5.6.

We then compare Algorithm 5.5 and 5.6 with the heuristic algorithms Min𝜇

and Rand in Fig. 5-12. Here we only present the CDFs of approximation ratios

Δ𝐴𝐿𝐺/Δ𝑂𝑃𝑇 given density 0.3 and a (𝜇, 𝜆)-ratio of 2, where the ranking of the

tested algorithms remains the same under the metric of performance gap (Δ𝐴𝐿𝐺 −

Δ𝑂𝑃𝑇)/𝜆. We have the following observations: (i) Algorithm 5.5 and 5.6 significantly

outperform the other heuristics, achieving approximation ratios close to 1 under both

heterogeneous and homogeneous 𝜇 in most instances. (ii) The advantage of Algorithm

5.5 and 5.6 over Min𝜇 diminishes under heterogeneous 𝜇 compared to homogeneous

𝜇. This is because under heterogeneous service rates, there are instances where a

destination node has very low service rates but is connected to a large number of

source nodes. Min𝜇 is well-suited to these instances by overloading this destination

node, thus closely approximating the optimal attack.

We further evaluate over larger 16 × 16 networks. The brute-force approach

becomes prohibitive to simulate under |𝒱𝐴| = 16. Therefore we measure the

172

Alg. 5.5 (Hetero) Alg. 5.5 (Homo) Alg. 5.6 (Hetero) Alg. 5.6 (Homo)
Den 𝜇/𝜆 10% Min 10% Min 90% Max 90% Max

0.3 2.0 1.00 0.69 1.00 0.75 0.04 0.17 0.00 0.17
0.5 2.0 1.00 0.68 1.00 0.74 0.04 0.14 0.00 0.14
0.3 3.0 1.00 0.73 1.00 0.69 0.01 0.13 0.00 0.06
0.5 3.0 1.00 0.76 1.00 0.71 0.04 0.18 0.00 0.07

Table 5.2: Statistics of performance guarantee for (5.6) in 8 × 8 networks under
different network settings (𝜇/𝜆 means (𝜇, 𝜆)-ratio; 10%, 90% mean 10-percentile,
90-percentile)

Figure 5-12: CDFs of approximation ratio under density 0.3 and 𝜇/𝜆 = 2 in 8 × 8
networks

173

alternative metric loss ratio, which is the ratio between the loss and total traffic

arrival rate. We present the mean loss ratio results among all the tested instances

under different settings in Table 5.3 with the following observations. (i) Min𝜇

achieves similar performance to our Algorithm 5.5 and 5.6 under heterogeneous

service rates, while far inferior under homogeneous service rates, matching the

results in Fig. 5-12. (ii) Under a (𝜇, 𝜆)-ratio of 8 with homogeneous 𝜇, with high

probability there is no way to induce overload by routing attack. However, our

proposed Algorithm 5.5 and 5.6 can still cause overload whenever such possibility

exists, while Min𝜇 and Rand are prone to miss. We further visualize the CDFs of

loss ratio under density 0.25 and a (𝜇, 𝜆)-ratio of 4 in Fig. 5-13, which echoes the

results in Table 5.3. The evaluation reveals that the proposed Algorithm 5.5 and 5.6

can effectively overload the networks with near-optimal performance.

𝜇/𝜆 = 4 𝜇/𝜆 = 4 𝜇/𝜆 = 8 𝜇/𝜆 = 8
Den= 0.5 Den= 0.25 Den= 0.5 Den= 0.25

Hetero Alg. 5.5 0.79 0.53 0.67 0.37
Hetero Alg. 5.6 0.78 0.53 0.66 0.37
Hetero Min𝜇 0.76 0.49 0.64 0.34
Hetero Rand 0.14 0.14 0.07 0.07
Homo Alg. 5.5 0.53 0.29 0.25 0.02
Homo Alg. 5.6 0.53 0.28 0.25 0.02
Homo Min𝜇 0.34 0.11 0.05 0.00
Homo Rand 0.01 0.01 0.00 0.00

Table 5.3: Mean loss ratio in 16× 16 networks

The theoretical optimality of Algorithm 5.1 and the empirical near-optimality of

Algorithm 5.5 and 5.6 demonstrate that our proposed routing attack strategies can

be used as benchmarks to accurately quantify the network vulnerability to a routing

attack with respect to both no-loss throughput minimization and loss maximization.

174

Figure 5-13: CDFs of loss ratio under density 0.25 and 𝜇/𝜆 = 4 in 16× 16 networks

5.5.3 Optimal Node Selection

We evaluate the performance of Algorithm 5.8 for loss maximization. We consider 400

randomly generated 12× 12 single-hop networks, with the link existence probability

being 0.3 and (𝜇, 𝜆)-ratio being 2. The candidate node set 𝒱𝑟𝑎𝑛𝑑 includes all 12 source

nodes. We set to choose at most 𝐾 = 4 nodes to attack. We consider heterogeneous

and homogeneous service rates at the destination nodes as in Section 5.5.2. The

total loss depends on the performance of both the node selection, and the routing

attack algorithm based on the selected nodes to hijack. We evaluate the following

3 methods: (i) Optimal node selection + Optimal routing attack, where the node

selection is to brute-force all
(︀
12
4

)︀
choices, and the optimal routing attack is done

based on Proposition 5.3; (ii) Algorithm 5.8 for node selection + Optimal routing

attack; (iii) Both node selection and routing attack output by Algorithm 5.8. We

calculate the approximation ratio of the total loss under method (ii) and (iii) over the

maximum total loss under method (i), and present the CDFs in Fig. 5-14. Results

demonstrate that with Algorithm 5.8 for node selection, the adversary can achieve

maximum loss in almost 80% of the test cases, and at least 80% of the maximum loss

in more than 95% of the test cases, under optimal routing attack, which demonstrates

the consistent performance of Algorithm 5.8 in node selection. Furthermore, directly

applying the output routing attack solution of Algorithm 5.8, which is of polynomial

time complexity for general 𝒱𝑟𝑎𝑛𝑑 and 𝐾, has performance close to applying the

optimal routing attack: the adversary can achieve maximum loss in almost 70% of

175

the test cases, and at least 80% of the maximum loss in more than 90% of the test

cases. The evaluation result demonstrates the good routing attack performance of

Algorithm 5.8 in most network settings, showing the high capability of routing attack

with node selection to maximize loss.

Figure 5-14: CDFs of approximation ratio of overload under density 0.3 and a
(𝜇, 𝜆)-ratio of 2 in 16× 16 networks

5.6 Summary and Future Work

In this chapter, we quantify the threat of routing attacks on causing network

overload. We investigate the optimal routing attacks for no-loss throughput

minimization and loss maximization. We demonstrate that the no-loss throughput

can be minimized in polynomial time in general multi-hop networks. We further

develop a 2-approximation algorithm by only leveraging the downstream information

of the adversarial nodes. We establish that loss maximization is NP-complete and

propose two approximation algorithms with guaranteed performance in single-hop

networks. Moreover, we address the adversary’s optimal selection of nodes to conduct

routing attacks and propose heuristic algorithms for this NP-complete problem. Our

performance evaluation showcases the near-optimal performance of the proposed

algorithms across a wide range of network settings. Future directions include deriving

the performance guarantee of loss maximization in multi-hop networks, investigating

the case where normal nodes can adjust their routing in response to routing attacks,

and designing network control algorithms under routing attacks.

176

5.7 Chapter Appendix

5.7.1 Proof of Theorem 5.5

Proof. Based on Proposition 5.3, there exists one optimal routing attack where each

adversarial node in 𝒱𝐴 sends all its traffic to a destination node. Consider an optimal

routing attack w.l.o.g. where source node 𝑠𝑖 sends all traffic to destination node 𝑑𝑗𝑖 ,

i.e., 𝑥𝑠𝑖𝑑𝑗𝑖
= 1. Denote the total overload of the optimal attack as Δ𝑂𝑃𝑇 . Multiple

source nodes may choose the same destination node (i.e., 𝑑𝑗𝑖1 and 𝑑𝑗𝑖2 may be the same

for some 𝑖1 ̸= 𝑖2), hence we remove the repeated elements in {𝑑𝑗𝑖}𝑚𝑖=1 into {𝑑𝑗}𝐿
′

𝑗=1,

where 𝐿′ denotes the number of destination nodes that receive traffic from at least one

source node. Furthermore, among 𝐿′ destination nodes, there may exist nodes with no

overload where total ingress is no greater than total egress. We further remove these

nodes from {𝑑𝑗}𝐿
′

𝑗=1 into {𝑑𝑗}𝐿𝑗=1 w.l.o.g., i.e. 𝐿 is the number of overloaded destination

nodes under this optimal routing attack. Note that 𝐿 ≤ |𝒱𝐴|. In the following, we

prove that the approximation ratio under Approach 1 in Algorithm 5.5 is at least

1/𝐿, and that under Approach 2 is at least 𝐿/|𝒱𝐴|. With these proved, taking the

solution that causes higher loss between these two methods causes approximation

ratio max{1/𝐿, 𝐿/|𝒱𝐴|} ≥ 1/
√︀
|𝒱𝐴|.

Approach 1 : Denote the total overload under the output of Approach 1 as Δ1.

The first step in Approach 1 is the find 𝑗* ← argmax𝑗
∑︀

(𝑠𝑖,𝑑𝑗)∈ℰ 𝜆𝑖−𝜇𝑗. If there is no

overload at destination node 𝑑𝑗* , then Δ1 = Δ𝑂𝑃𝑇 = 0, i.e., no overload can be caused

under any routing attack. When there exists overload, then Δ1 ≥
∑︀

(𝑠𝑖,𝑑𝑗*)∈ℰ 𝜆𝑖−𝜇𝑗* >

0, while for any overloaded destination node in {𝑑𝑗}𝐿𝑗=1, the overload is less than at

𝑑𝑗* under Approach 1. Therefore

Δ1

Δ𝑂𝑃𝑇

≥
∑︀

(𝑠𝑖,𝑑𝑗*)∈ℰ 𝜆𝑖 − 𝜇𝑗*

𝐿
(︁∑︀

(𝑠𝑖,𝑑𝑗*)∈ℰ 𝜆𝑖 − 𝜇𝑗*

)︁ =
1

𝐿
.

Approach 2 : We first prove the case when Approach 2 only runs one iteration

to overload a single destination node 𝑑𝑗* ∈ 𝒱𝐷 according to the definition of 𝑃𝑆𝑂

in (5.7), and we explain the idea based on the example in Fig. 5-15. Denote the

177

set of connected source nodes that send all their traffic to 𝑑𝑗* in this iteration as

𝒮𝑗* = argmax𝒮 𝑃𝑆𝑂[𝑑𝑗*]. In Fig. 5-15, 𝑗* = 3 and 𝒮3 = {𝑠4, 𝑠5, 𝑠6}, where the

routing is highlighted in blue10. We then denote as 𝒟𝑗* the set of destination nodes

to which the optimal routing attack routes all the traffic in 𝒮𝑗* . In Fig. 5-15, 𝒟𝑗* =

𝒟3 = {𝑑2, 𝑑4}, with the optimal routing attack highlighted in red. Then we evaluate

the ratio between the loss at 𝑑𝑗* under Approach 2, denoted by 𝛿
(2)
𝑑𝑗*

, and the total

loss over 𝒟𝑗* under optimal solution {x*
𝑖 }𝑠𝑖∈𝒱𝐴

, denoted by
∑︀

𝑗∈𝒟𝑗*
𝛿𝑂𝑃𝑇
𝑑𝑗

, which can

be lower bounded as follows

𝛿
(2)
𝑑𝑗*∑︀

𝑗∈𝒟𝑗*
𝛿𝑂𝑃𝑇
𝑑𝑗

=

(︁∑︀
𝑠𝑖∈𝒮𝑗*

𝜆𝑖

)︁
− 𝜇𝑗*∑︀

𝑑𝑗∈𝒟𝑗*

(︂(︂∑︀
𝑠𝑖:𝑥*

𝑠𝑖𝑑𝑗
=1 𝜆𝑖

)︂
− 𝜇𝑗

)︂ =
|𝒮𝑗* |

(︂∑︀
𝑠𝑖∈𝒮𝑗*

𝜆𝑖

)︂
−𝜇𝑗*

|𝒮𝑗* |∑︀
𝑑𝑗∈𝒟𝑗*

|𝒮𝑂𝑃𝑇
𝑗 |

(︂∑︀
𝑠𝑖∈|𝒮𝑂𝑃𝑇

𝑗
| 𝜆𝑖

)︂
−𝜇𝑗

|𝒮𝑂𝑃𝑇
𝑗 |

(𝑎)

≥
|𝒮𝑗* |

(︂∑︀
𝑠𝑖∈𝒮𝑗*

𝜆𝑖

)︂
−𝜇𝑗*

|𝒮𝑗* |∑︀
𝑑𝑗∈𝒟𝑗*

|𝒮𝑂𝑃𝑇
𝑗 |

(︂∑︀
𝑠𝑖∈𝒮𝑗*

𝜆𝑖

)︂
−𝜇𝑗*

|𝒮𝑗* |

=
|𝒮𝑗*|∑︀

𝑑𝑗∈𝒟𝑗*
|𝒮𝑂𝑃𝑇

𝑗 |
(𝑏)

≥ |𝒮𝑗
* |

|𝒱𝐴|
(𝑐)

≥ 𝐿

|𝒱𝐴|

(5.8)

where inequality (𝑎) holds due the optimality of 𝑑𝑗* among all destination nodes

w.r.t. (5.7), while inequality (𝑏) holds due to ∪𝑑𝑗∈𝒟𝑗*𝒮𝑂𝑃𝑇
𝑗 ⊆ 𝒱𝐴 (in the example of

Fig. 5-15 ∪𝑑𝑗∈𝒟𝑗*𝒮𝑂𝑃𝑇
𝑗 = 𝒱𝐴), and (𝑐) holds since each source node sends all its traffic

to a single destination, thus the number of overloaded destination nodes 𝐿 under

optimal attack is at most |𝒮𝑗* |. In Fig. 5-15, |𝒮𝑗*| = |𝒮3| = 3, 𝐿 = 2, and |𝒱𝐴| = 7.

5.7.2 Proof of Theorem 5.6

Proof. We conduct the proof through three steps: (i) 2 × 2 single-hop networks;

(ii) general single-hop networks while the optimal routing attack only overloads a

single destination node; (iii) extension of results in previous step to general single-hop

networks.

Case 1: 2×2 networks. Consider the 2×2 example in Fig. 5-10 with 𝒱𝑆 = {𝑠1, 𝑠2}
10Algorithm will choose the blue routing when 𝜆3 is small so that it will lower down the

overload-per-source.

178

Figure 5-15: Examples for Proof of Approach 2

and 𝒱𝐷 = {𝑑1, 𝑑2}, and general 𝜆 = (𝜆1, 𝜆2) and 𝜇 = (𝜇1, 𝜇2), where we introduce

a meta source and destination node equivalently. 𝑠1 can only send traffic to 𝑑1.

The routing of 𝑠2 under Algorithm 5.6 is determined by the comparison between

𝜇1/(𝑥1 + 𝑥2) = 𝜇1 and 𝜇2/𝑥2: Sending all traffic to 𝑑1 if 𝜇1 < 𝜇2/𝑥2 else 𝑑2. If

𝜇1 ≤ 𝜇2/𝑥2, then Δ𝐴𝐿𝐺, the loss by Algorithm 5.6 is [𝜆 − 𝜇1]
+, and in this case

the optimal solution has the same loss Δ𝑂𝑃𝑇 = Δ𝐴𝐿𝐺. If 𝜇1 > 𝜇2/𝑥2, then the

Δ𝐴𝐿𝐺 = [𝜆𝑥1 − 𝜇1]
+ + (𝜆𝑥2 − 𝜇2) where 𝜆𝑥2 > 𝜇2 otherwise node 𝑠2 will not route

to 𝑑2. The only possible case that Δ𝑂𝑃𝑇 > Δ𝐴𝐿𝐺 is that the optimal solution is

𝑥𝑠2𝑑1 = 1. In this case, we have the following gap

Δ𝑂𝑃𝑇 −Δ𝐴𝐿𝐺

𝜆
=

(𝜆− 𝜇1)− [𝜆𝑥1 − 𝜇1]
+ − (𝜆𝑥2 − 𝜇2)

𝜆

=
𝜇2 + 𝜆𝑥1 − 𝜇1 − [𝜆𝑥1 − 𝜇1]

+

𝜆

(𝑖)

≤ 𝜇2

𝜇1

𝑥1

(𝑖𝑖)

≤ 𝑥1𝑥2

(𝑖𝑖𝑖)

≤ 1

4

where (𝑖) holds as 𝜆 = 𝜇1

𝑥1
maximizes the gap, which is 𝑥1 − 𝜇1−𝜇2

𝜆
when 𝜆 < 𝜇

𝑥1
and

𝜇2

𝜆
and 𝜆 ≥ 𝜇

𝑥1
, and note that 𝜇1 > 𝜇2/𝑥2 ≥ 𝜇2. (𝑖𝑖) holds due to 𝜇1 > 𝜇2/𝑥2, and

(𝑖𝑖𝑖) holds due to 𝑥1 + 𝑥2 = 1, thus 𝑥1𝑥2 ≤ 1/4.

Case 2: 𝑀 × 𝑁 networks with the optimal routing overloading one destination

node. We extend the example in Fig. 5-10 to general 𝑀 = 𝐾 source nodes and

𝑁 = 𝐾 destination nodes w.l.o.g., where all sources nodes are connected to 𝑑1, while

𝑠𝑖 is at least connected to 𝑑𝑖. We consider the extreme case that will cause biggest

gap between the optimal solution and the output from Algorithm 5.6, where the

179

optimal routing is 𝑥*
𝑠𝑖𝑑1

= 1, while the algorithm outputs the solution 𝑥𝑠𝑖𝑑𝑖 = 1,

∀𝑖 = 1, · · · , 𝐾, under the condition 𝜇𝐾

𝑥𝐾
≤ 𝜇𝐾−1

𝑥𝐾−1
· · · ≤ 𝜇2

𝑥2
≤ 𝜇1∑︀𝐾

𝑖=1 𝑥𝑖
= 𝜇1. This can be

derived by induction based on Case 1. Then we have the bound

Δ𝑂𝑃𝑇 −Δ𝐴𝐿𝐺

𝜆
=

(︁
𝜆
∑︀𝐾

𝑖=1 𝑥𝑖 − 𝜇1

)︁
−
∑︀𝐾

𝑗=1(𝜆𝑥𝑗 − 𝜇𝑗)

𝜆

=
𝜆𝑥1 − 𝜇1 − [𝜆𝑥1 − 𝜇1]

+ +
∑︀𝐾

𝑗=2 𝜇𝑗

𝜆

≤
∑︀𝐾

𝑗=2 𝜇𝑗

𝜇𝑖

𝑥1 ≤ 𝑥1(
𝐾∑︁
𝑖=2

𝑥𝑖) = 𝑥1(1− 𝑥1) ≤
1

4

Case 3: Special case of 𝑀×𝑁 networks with the optimal routing attack overloading

multiple destination nodes. We now extend to multiple overloaded destination nodes

under optimal routing attack. Here we first consider a special case in Fig. 5-16, where

the optimal routing attack overloads two destination nodes 𝑑1 and 𝑑4 highlighted in

red, while Algorithm 5.6 outputs the routing attack as highlighted in blue, under the

conditions that 𝜇2/𝑥2, 𝜇3/𝑥3 ≤ 𝜇1/(𝑥1 + 𝑥2 + 𝑥3) and 𝜇5/𝑥5 ≤ 𝜇4/(𝑥4 + 𝑥5). Based

on the results in Case 2, we can derive

Δ𝑂𝑃𝑇 −Δ𝐴𝐿𝐺

𝜆
=

1

𝜆

(︀
𝜆𝑥1 − 𝜇1 − [𝜆𝑥1 − 𝜇1]

+ + 𝜇2 + 𝜇3

)︀
+

1

𝜆

(︀
𝜆𝑥4 − 𝜇4 − [𝜆𝑥4 − 𝜇4]

+ + 𝜇5

)︀
≤ 𝑥1 + 𝑥2 + 𝑥3

𝜆(𝑥1 + 𝑥2 + 𝑥3)

(︀
𝜆𝑥1 − 𝜇1 − [𝜆𝑥1 − 𝜇1]

+ + 𝜇2 + 𝜇3

)︀
+

𝑥4 + 𝑥5

𝜆(𝑥4 + 𝑥5)

(︀
𝜆𝑥4 − 𝜇4 − [𝜆𝑥4 − 𝜇4]

+ + 𝜇5

)︀
(𝑎)

≤ 1

4
(𝑥1 + 𝑥2 + 𝑥3) +

1

4
(𝑥4 + 𝑥5) =

1

4

where (𝑎) is based on the result from Case 2. We will use this result in the following

discussion over general single-hop networks in Case 4.

Case 4: General single-hop networks. The optimal attack may overload multiple

destination nodes. In this case, we can transform the original graph so that results

of Case 2 above can be applied. We give an example in Fig. 5-17. Suppose that the

optimal routing attack as highlighted in red, while the routing attack from Algorithm

180

Figure 5-16: Proof for Case 3 of Theorem 5.6

5.6 that minimizes no loss throughput 𝜆* is to route traffic from 𝑠2, 𝑠3 and 𝑠4 to 𝑑3,

highlighted in blue. Given the routing attack output by Algorithm 5.6, denoted by

x𝐴𝐿𝐺
𝒜 we show the following transformation of network topology will keep the same

overload as x𝐴𝐿𝐺
𝒜 : For each overloaded destination node 𝑑𝑗 under x𝐴𝐿𝐺

𝒜 , suppose that

it receives traffic from 𝒮𝑗 = {𝑠𝑖}𝑖:𝑥𝐴𝐿𝐺
𝑖𝑗 =1, then we decompose node 𝑑𝑗 into |𝒮𝑗| nodes

denoted by {𝑑(𝑘)𝑗 }
|𝒮𝑗 |
𝑘=1, each connect to the 𝑘-th source node in 𝒮𝑗 denoted by 𝑠(𝑘).

The new service rate for node 𝑑
(𝑘)
𝑗 is 𝜇

(𝑘)
𝑗 =

𝑥
𝑠(𝑘)∑︀|𝒮𝑗 |

𝑘=1 𝑥𝑠(𝑘)

𝜇𝑗. It is easy to verify that

applying Algorithm 5.6 to the transformed network outputs a routing attack solution

leads to same overload, as the minimum 𝜆* that saturates 𝑑(𝑘)𝑗 , ∀𝑘 is the same, equal

to the 𝜆* that saturates 𝑑𝑗 in the original graph. For example in Fig. 5-17, node 𝑑3

is decomposed into 3 new nodes with new service rates denoted by 𝜇
(2)
3 , 𝜇

(3)
3 and 𝜇

(4)
3 .

Note that this transformation is only for proof, where in Algorithm 5.6 we use the

original graph.

With the above transformation into multiple basic units in Case 1 (the dashed

boxes in Fig. 5-17), we can directly apply the analysis for Case 2, and obtain the

upper bound of 1/4.

5.7.3 Proof of Theorem 5.7

Proof. Under 𝐾 = 𝑂(1), the following brute-force algorithm outputs the optimal

solution: Enumerate all
(︀|𝒱𝑐𝑎𝑛𝑑|

𝐾

)︀
combinations of nodes to attack, and under each

181

Figure 5-17: Proof for Case 4 of Theorem 5.6

combination apply brute force method for 𝜆* minimization given by Theorem 6.1,

and apply Proposition 5.3 for loss maximization. The time complexity are both

𝑂
(︁(︀|𝒱𝑐𝑎𝑛𝑑|

𝐾

)︀
×𝑁𝐾𝑑max

)︁
= 𝑂(|𝒱𝑐𝑎𝑛𝑑|𝐾𝐾𝑑max𝑁) where 𝑑max is the maximum degree

among the 𝐾 selected nodes to attack.

Under 𝐾 = 𝑂(𝑁), we reduce Set Cover to the problem of node selection for

𝜆*-minimization, and the extension to loss maximization is trivial. Given an instance

of Set Cover as done in the proof of Theorem 5.4, we construct the graph as in

Fig. 5-18, which adds a node 𝑇 compared with Fig. 5-8 and the added links are

highlighted. The candidate node set is {𝑠𝑖}𝑚𝑖=1 ∪ {𝑑𝑗}𝑛𝑗=1, and their default routing

policies are all dispatching all the traffic to the intermediate node 𝑇 . All links have

unbounded capacity except link (𝑑0, 𝑇) with 𝑐𝑑0𝑇 = 1. Without routing attack, the

no-loss throughput 𝜆* = ∞. We show that if we can solve the decision problem of

node selection: Can we reduce 𝜆* from ∞ to 1 by attacking 𝑚+ 𝑘 nodes?, then there

exists a polynomial algorithm to decide if there exists 𝑘 sets in {𝑑𝑖}𝑛𝑖=1 that can cover

all elements corresponding to {𝑠𝑖}𝑚𝑖=1. To reduce 𝜆* to 1, all traffic flows need to go

through link (𝑑0, 𝑇) to node 𝑇 , thus all 𝑚 source nodes must be attacked to adjust

their routing to one of destination nodes instead of directly to 𝑇 . Then if attacking 𝑘

more nodes in {𝑑𝑗}𝑛𝑗=1 can reduce 𝜆* to 1, then it guarantees that all the source nodes

route traffic to one of the 𝑘 attacked destination nodes, and these 𝑘 nodes routing

all the traffic to 𝑑0, which is equivalent to being able to using 𝐾 sets to cover all

elements corresponding to {𝑠𝑖}𝑚𝑖=1.

182

Figure 5-18: NP-hardness of Node Selection Problem

5.7.4 Proof of Theorem 5.8

Proof. Algorithm 5.7 goes through each downstream link (𝑖, 𝑗) to 𝒱𝑐𝑎𝑛𝑑 (including

𝒱𝑐𝑎𝑛𝑑 themselves), and find the optimal choice of 𝐾 nodes to attack to minimize the

arrival rate that saturates one of them (𝑖, 𝑗). Since all candidate nodes are parallel,

we can separately evaluate the contribution of attacking a node 𝑣 ∈ 𝒱𝑐𝑎𝑛𝑑 over (𝑖, 𝑗),

denoted by Δ
(𝑖,𝑗)
𝑣 , which is the difference between the arrival rate that saturates link

(𝑖, 𝑗) with and without attack. We calculate Δ
(𝑖,𝑗)
𝑣 ,∀𝑣 ∈ 𝒱𝑢𝑝,𝑖

𝐴 , and then sort the value

over all 𝒱𝑢𝑝,𝑖
𝐴 non-decreasingly. Denote Δ𝑖

𝑣 = max(𝑖,𝑗)∈ℰ Δ
(𝑖,𝑗)
𝑣 . Then we can get the

optimal choice to each node 𝑖 as follows, where the choices to each link starting from

node 𝑖 are identical: If |𝒱𝑢𝑝,𝑖
𝐴 | > 𝐾, we choose the top-𝐾 nodes in 𝒱𝑢𝑝,𝑖

𝐴 with highest Δ𝑖
𝑣

values; If |𝒱𝑢𝑝,𝑖
𝐴 | ≤ 𝐾, we choose all |𝒱𝑢𝑝,𝑖

𝐴 | candidate nodes to attack, where choosing

𝐾−|𝒱𝑢𝑝,𝑖
𝐴 | candidate nodes does not affect the saturation level of link (𝑖, 𝑗) since they

are not upstream to node 𝑖. Denote the no-throughput loss under the choice 𝒱(𝑖)
𝐴 as

𝜆*
(𝑖), then the optimal node selection to attack is 𝒱(𝑖*)

𝐴 = argmin𝑖*∈𝒱𝑑𝑜𝑤𝑛
𝐴

𝜆*
(𝑖).

183

184

Chapter 6

Routing Attack on Network Overload

with Dynamic Routing

In this chapter, we quantify the maximum throughput loss that can be induced when

network adversaries maliciously control the routing policies at a subset of network

nodes, given that the other nodes can adjust their routing policies to minimize the

loss caused by the adversaries. We unveil the equivalence between maximizing the loss

and minimizing the minimum s-d cut value of the network, and prove its NP-hardness

under general adversarial node sets. We develop polynomial-time algorithms for

adversarial nodes that in a chain structure can output the optimal solution that

maximizes the loss, and in a parallel structure guarantee a logarithmic worst-case

approximation ratio to the optimal solution. We further generalize the algorithms

for the above two basic structures to an arbitrary structure of adversarial nodes. We

validate the near-optimality of the proposed algorithms under a wide range of network

settings, which demonstrates their ability to evaluate the potential throughput loss

due to overload under malicious routing, and identify the critical nodes to be protected

to reduce the impact of routing attack.

185

6.1 Model, Problem and Basic Results

We start by introducing the network model, the problem formulation of network

overload maximization, and basic results including the boundary optimality and the

NP-hardness of this problem.

6.1.1 Network Model

We define a network by a graph 𝒢 = (𝒱 , ℰ), where 𝒱 denotes the set of nodes and

ℰ denotes the set of links, with |𝒱| = 𝑁 and |ℰ| = 𝑀 . We denote the node indices

by 1, 2, · · · , 𝑁 , and (𝑖, 𝑗) ∈ ℰ if there is a link from node 𝑖 to 𝑗. We consider a single

commodity with node 1 as the source and node 𝑁 as the destination. We denote

the traffic arrival rate to the network at the source by 𝜆. Each node 𝑖, representing

a switch or a router, can forward the traffic to the nodes adjacent to it, denoted by

𝒱𝑖 := {𝑖 ∈ 𝒱|(𝑖, 𝑗) ∈ ℰ}. We denote the transmission rate over link (𝑖, 𝑗) by 𝑓𝑖𝑗,

defined as the amount of traffic transmitted over (𝑖, 𝑗) in a time unit. We denote the

capacity of a link (𝑖, 𝑗) by 𝑐𝑖𝑗 which is the maximum transmission rate over (𝑖, 𝑗), i.e.,

𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗]. Traffic departs from the network when it arrives at the destination.

We define the routing policy at a non-destination node 𝑖 by a forwarding ratio

vector x𝑖 ∈ R𝑁 , where each element 𝑥𝑖𝑗 denotes the fraction of traffic at node 𝑖 that

will be forwarded to its adjacent node 𝑗. The routing policy at a non-destination

node 𝑖 should be in the feasible set 𝒳𝑖 = {x𝑖 ∈ R𝑁 |
∑︀𝑁

𝑗=1 𝑥𝑖𝑗 = 1, 𝑥𝑖𝑗 ≥ 0 for (𝑖, 𝑗) ∈

ℰ , 𝑥𝑖𝑗 = 0 for (𝑖, 𝑗) /∈ ℰ}, where the sum of forwarding ratios of node 𝑖 to all its

adjacent nodes should be 1. Examples include random packet spraying [118], where

a node dispatches traffic uniformly to its adjacent nodes, i.e., 𝑥𝑖𝑗 =
1

|𝒱𝑖| , ∀(𝑖, 𝑗) ∈ ℰ ,

and weighted spraying based on link capacity where 𝑥𝑖𝑗 =
𝑐𝑖𝑗∑︀

𝑘:(𝑖,𝑘)∈ℰ 𝑐𝑖𝑘
, ∀(𝑖, 𝑗) ∈ ℰ . As

we explained in Proposition 5.1, our definition of routing policy based on forwarding

ratio vectors is equivalent to the multipath characterization for a commodity [19].

186

6.1.2 Problem Formulation

We investigate the maximum level of overload that can be induced by malicious

routing over a subset of network nodes, denoted by 𝒱𝐴. We term 𝒱𝐴 the set of

adversarial nodes, and 𝒱𝑁 := 𝒱∖𝒱𝐴 the set of normal nodes which are not controlled

by the adversary. The traffic transmitted from a node 𝑖 to an adjacent node 𝑗 is(︁∑︀
𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗. Overload occurs at (𝑖, 𝑗) if the traffic exceeds 𝑐𝑖𝑗, where 𝑓𝑖𝑗 = 𝑐𝑖𝑗

and the excess traffic
(︁∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗 − 𝑐𝑖𝑗 will be dropped.

We consider that the routing policies at normal nodes 𝒱𝑁 can be reconfigured

by the network controller, which adjusts their routing policies x𝑁 := {x𝑖}𝑖∈𝒱𝑁
in

order to minimize the throughput loss given the adversary’s routing policies x𝐴 :=

{x𝑖}𝑖∈𝒱𝐴
. Such dynamic routing control in response to the change of network states

has been widely enabled in modern network infrastructures [89]. In practice this

requires knowledge of the attack. However, here the dynamic re-routing allows us to

evaluate the fundamental limits on the attack, by considering the worst-case scenario

for the adversary. We denote the set of feasible routing policies at 𝒱𝐴 and 𝒱𝑁 by

𝒳𝐴 := ×𝑖∈𝒱𝐴
𝒳𝑖 and 𝒳𝑁 := ×𝑖∈𝒱𝑁

𝒳𝑖 respectively, where × represents the Cartesian

product, i.e., we require x𝐴 ∈ 𝒳𝐴 and x𝑁 ∈ 𝒳𝑁 . We term x𝐴 a routing attack.

We give the formal definition of our problem: Given the network 𝒢 = (𝒱 , ℰ) and

the adversarial node set 𝒱𝐴 ⊆ 𝒱 , find the optimal routing attack x𝐴 ∈ 𝒳𝐴 that

maximizes throughput loss, given that the network controller can optimize x𝑁 ∈ 𝒳𝑁

to minimize such loss in response to x𝐴. We formulate the problem by the following

minimax optimization framework (6.1).

max
x𝐴∈𝒳𝐴

min
x𝑁∈𝒳𝑁

𝜆−
∑︁

𝑖:(𝑖,𝑁)∈ℰ

𝑓𝑖𝑁

s.t. 𝑓𝑖𝑗 = min

⎧⎨⎩
⎛⎝ ∑︁

𝑘:(𝑘,𝑖)∈ℰ

𝑓𝑘𝑖

⎞⎠𝑥𝑖𝑗 , 𝑐𝑖𝑗

⎫⎬⎭ , ∀𝑖 ̸= 1, (𝑖, 𝑗) ∈ ℰ ,

𝑓1𝑗 = min{𝜆𝑥1𝑗 , 𝑐1𝑗}, ∀(1, 𝑗) ∈ ℰ .

(6.1)

The objective function 𝜆 −
∑︀

𝑖:(𝑖,𝑁)∈ℰ 𝑓𝑖𝑁 of (6.1) represents the total amount

of overload during the transmission: the gap between the traffic arrival rate 𝜆 at

187

the source and the total traffic
∑︀

𝑖:(𝑖,𝑁)∈ℰ 𝑓𝑖𝑁 that arrives at the destination. The

constraints reflect the flow conservation law over each link: the total traffic forwarded

to a link (𝑖, 𝑗) should be all transmitted through the link if it is no greater than 𝑐𝑖𝑗,

otherwise 𝑓𝑖𝑗 = 𝑐𝑖𝑗 is transmitted and the excess traffic is dropped. The adversary

aims to find the x𝐴 ∈ 𝒳𝐴 that maximizes the minimum loss achievable by some

x𝑁 ∈ 𝒳𝑁 .

Analyzing (6.1) directly is challenging due to the constraints with the element-wise

minimum function. We show in Proposition 6.1 that the original formulation (6.1) is

equivalent to the following formulation (6.2).

min
x𝐴∈𝒳𝐴

max
f

∑︁
𝑖:(𝑖,𝑁)∈ℰ

𝑓𝑖𝑁

s.t. 𝑓𝑖𝑗 =

⎛⎝ ∑︁
𝑘:(𝑘,𝑖)∈ℰ

𝑓𝑘𝑖

⎞⎠𝑥𝑖𝑗,∀𝑖 ∈ 𝒱𝐴, (𝑖, 𝑗) ∈ ℰ , 𝑖 ̸= 1,

∑︁
𝑗:(𝑖,𝑗)∈ℰ

𝑓𝑖𝑗 =
∑︁

𝑘:(𝑘,𝑖)∈ℰ

𝑓𝑘𝑖, ∀𝑖 ∈ 𝒱𝑁 , 𝑖 ̸= 1,

𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗], ∀(𝑖, 𝑗) ∈ ℰ .

(6.2)

Proposition 6.1. The sets of optimal solutions of (6.1) and (6.2) are the same.

The transformed problem (6.2) is to find the routing attack that minimizes the

maximum total network throughput that can be achieved without inducing loss. The

constraints of (6.2) are different from the original problem (6.1), where the flow

conservation law at both adversarial and normal nodes holds without loss. The first

constraint guarantees that at each 𝑖 ∈ 𝒱𝐴, the transmission rate over link (𝑖, 𝑗) is

equal to the total transmission rates injected into 𝑖 multiplied by the forwarding ratio

𝑥𝑖𝑗; The second constraint states that each 𝑖 ∈ 𝒱𝑁 can adjust the routing policy

arbitrarily to avoid loss, where the routing policy at 𝑖 ∈ 𝒱𝑁 can be obtained from the

decision variables {𝑓𝑖𝑗}(𝑖,𝑗)∈ℰ by 𝑥𝑖𝑗 = 𝑓𝑖𝑗/
∑︀

𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖.

Proposition 6.1 reveals an important property of (6.2) that the optimal routing

attack is independent of the traffic arrival rate 𝜆. We point out that this is a unique

property for the dynamic routing control over x𝑁 , which does not hold if normal

188

nodes have static routing policies. The transformation to (6.2) facilitates the analysis

by removing the dimension of 𝜆 and simplifying the constraints. We develop basic

analytical results based on (6.2) below that inspire routing attack design to optimize

(6.2).

6.1.3 Basic Results

We demonstrate that there exists a polynomial algorithm to solve (6.2) when the

number of adversarial nodes |𝒱𝐴| is a constant, i.e., |𝒱𝐴| = 𝑂(1), while (6.2) is

NP-hard for general 𝒱𝐴 with 𝒱𝐴 = 𝑂(𝑁). We first prove that given any network 𝒢

and adversarial node set 𝒱𝐴, there exists an optimal solution to (6.2) by routing all

the traffic at each adversarial node to one of its adjacent nodes.

Theorem 6.1. There exists an optimal solution x*
𝐴 ∈ 𝒳𝐴 to (6.2) which satisfies that

for ∀𝑖 ∈ 𝒱𝐴, ∃𝑗 ∈ 𝒱𝑖 so that 𝑥*
𝑖𝑗 = 1.

Theorem 6.1 states that there must exist a vertex of the polytope 𝒳𝐴 that

optimizes (6.2). We have
∏︀

𝑖∈𝒱𝐴
|𝒱𝑖| = 𝑂(𝑁 |𝒱𝐴|) vertices in 𝒳𝐴, one of which is an

optimal solution to (6.2). We can enumerate all these vertices and find the one that

minimizes the objective in (6.2), i.e., the maximum throughput without inducing

loss. This objective can be calculated in polynomial time when x𝐴 is a vertex of

𝒳𝐴 by evaluating the minimum s-d cut of a network, defined as the set of links

with minimum total capacity whose removal can disconnect the source node 1 and

destination node 𝑁 . Specifically, at a vertex x𝐴 of 𝒳𝐴, each 𝑖 ∈ 𝒱𝐴 forwards all the

traffic to a single adjacent node 𝑗 ∈ 𝒱𝑖, and thus the original network 𝒢 under x𝐴

is equivalent to a network 𝒢 ′ where each 𝑖 ∈ 𝒱𝐴 has only one egress link (𝑖, 𝑗) with

capacity 𝑐′𝑖𝑗 = 𝑐𝑖𝑗 and the other links (𝑖, 𝑘) with capacity 𝑐′𝑖𝑘 = 0 for 𝑘 ̸= 𝑗. Therefore

the maximum throughput without loss of 𝒢 is equal to the minimum s-d cut value of

𝒢 ′, which can be solved in polynomial time by the Edmonds-Karp algorithm [119] or

Karger’s algorithm [120]. We remark that the equivalence between (6.2) under 𝒢 and

the minimum s-d cut of 𝒢 ′ only holds when x𝐴 is a vertex of 𝒳𝐴, as Fig. 5-2 shows.

The above discussion demonstrates that the original problem (6.1) can be

189

formulated as a combinatorial optimization problem: Each 𝑖 ∈ 𝒱𝐴 needs to choose a

single adjacent node 𝑗 ∈ 𝒱𝑖 and activate the link (𝑖, 𝑗) with the goal of minimizing

the minimum s-d cut value of the network. The brute-force algorithm above is only

efficient in practice when the size of 𝒱𝐴 is a very small constant. The time complexity

becomes exponential when |𝒱𝐴| scales linear with network size 𝑁 . This is typical

in SDN where a routing controller is responsible for the routing policies of a fixed

proportion of data plane nodes, for example each of the Google’s SDN controller

taking over 25% of the networks [89]. We show in Theorem 6.2 that the problem

(6.2) is NP-hard given general size of |𝒱𝐴| by reducing the Set Cover problem to

(6.2). This result demonstrates the need to develop approximation algorithms with

acceptable performance guarantees and polynomial time complexity.

Theorem 6.2. Problem (6.2) is NP-hard under |𝒱𝐴| = 𝑂(𝑁).

6.2 Algorithms and Performance Guarantees

We develop polynomial-time routing attack algorithms with performance guarantees

for the problem (6.2), given that 𝒱𝐴 follows either a chain and a parallel structure.

We prove that the algorithm for 𝒱𝐴 in a chain structure can output the exact

optimal solution to (6.2), and the algorithm for 𝒱𝐴 in a parallel structure leads to an

approximation ratio at most 𝑂(log |𝒱𝐴|), over arbitrary network instance 𝒢.

6.2.1 Chain Structure

We first study the case where 𝒱𝐴 is in a chain structure. The definition of the chain

structure is based on the reachable nodes of adversarial nodes.

Definition 6.1. Given the network 𝒢 and the adversarial node set 𝒱𝐴, a node 𝑗 is

reachable from 𝑖 ∈ 𝒱𝐴, denoted by 𝑖→ 𝑗, if there exists a routing attack over 𝒱𝐴 such

that all the traffic at 𝑖 will arrive at node 𝑗, given arbitrary routing policies of 𝒱𝑁 .

We explain the definition of reachable nodes in Fig. 6-1, where in both (a) and

(b), 2→ 4, since taking 𝑥23 = 1 for (b) and further 𝑥34 = 1 for (a) guarantees all the

190

traffic at node 2 are sent to 4, while in (c) 2 ̸→ 4 since node 3 can forward traffic to

node 6. The reachability is important in the routing attack algorithm design below,

which characterizes the ability of an adversarial node 𝑖 to forward traffic to overload

the links starting from another node 𝑗. If node 𝑗 is not reachable from 𝑖, the dynamic

routing at 𝒱𝑁 can prevent this attempt by diverting traffic away from node 𝑗.

Figure 6-1: Examples of reachability and the chain structure of 𝒱𝐴.

We define an adversarial node set 𝒱𝐴 to be in a chain structure based on the

reachability.

Definition 6.2. The adversarial node set 𝒱𝐴 is in a chain structure if there exists

a permutation of nodes in 𝒱𝐴, denoted by {𝑖1, . . . , 𝑖|𝒱𝐴|}, such that 𝑖𝑗 → 𝑖𝑗+1, ∀𝑗 =

1, . . . , |𝒱𝐴| − 1.

Intuitively, the chain structure {𝑖1, . . . , 𝑖|𝒱𝐴|} facilitates overloading the network

in that an adversarial node 𝑖𝑗 can target overloading links starting from node 𝑖′ with

the guarantee that all the traffic at 𝑖𝑗 can be routed to 𝑖′ as long as node 𝑖′ is in the

union of reachable nodes of {𝑖𝑘}|𝒱𝐴|
𝑘=𝑗 . In Fig. 6-1, the 𝒱𝐴’s in (a) and (b) are in a

chain structure, while that in (c) is not. Notice that if 𝑖→ 𝑗 and 𝑗 → 𝑘, then 𝑖→ 𝑘.

Moreover, the chain only requires the existence of a permutation, where there may

exist loops where 𝑖𝑗+1 → 𝑖𝑗 for some 𝑗. 𝒱𝐴 in a chain structure is plausible in real

networks, where the adversary hijacks the nodes over a physical path of the traffic

in a network, or a controller in the control plane that is responsible for a physically

local mesh network where nodes are connected to each other.

We develop Alg. 6.1 with polynomial time complexity for 𝒱𝐴 in a chain structure,

and prove in Theorem 6.3 that it can output the exact optimal routing attack to

(6.2).

191

Algorithm 6.1: Exact Algorithm to (6.2) for 𝒱𝐴 in Chain
1 Input: 𝒢 = (𝒱 , ℰ), 𝒱𝐴 in a chain structure;
2 Find a permutation of 𝒱𝐴, {𝑖1, . . . , 𝑖|𝒱𝐴|}, such that

𝑖𝑗 → 𝑖𝑗+1, ∀𝑗 = 1, . . . , |𝒱𝐴| − 1;
3 Route the traffic from each 𝑖𝑗 ∈ 𝒱𝐴 to an adjacent node so that all the traffic

at 𝑖𝑗 can be transmitted to 𝑖𝑗+1, ∀𝑗 = 1, . . . , |𝒱𝐴| − 1;
4 for 𝑗 = |𝒱𝐴| to 1 do
5 for 𝑘 in 𝒱𝑗 do
6 Set 𝑥𝑖𝑗𝑘 = 1 and 𝑥𝑖𝑗𝑘′ = 0, ∀𝑘′ ̸= 𝑘;
7 Calculate the minimum s-d cut value of 𝒢 by assuming

𝑐𝑖𝑗𝑘′ = 0,∀𝑘′ ̸= 𝑘, denoted by 𝐶𝑘;

8 Let 𝑘* = argmin𝑘∈𝒱𝑗
𝐶𝑘, and determine the routing policy of node 𝑖𝑗 as

𝑥𝑖𝑗𝑘* = 1 and 𝑥𝑖𝑗𝑘′ = 0, 𝑘′ ̸= 𝑘*;

9 Return x𝐴 = {x𝑖}𝑖∈𝒱𝐴
;

Theorem 6.3. Alg. 6.1 outputs an optimal routing attack to (6.2) if 𝒱𝐴 is in a chain

structure.

Figure 6-2: Alg. 6.1 on Fig. 6-1(b): first on the left, we temporarily set the routing
policy of node 2 to be 𝑥23 = 1 so that all the traffic at 2 is sent to 4, and determines
the routing policy at 4 to be 𝑥46 = 1 to achieve minimum s-d cut value 1, under which
no traffic goes through (2, 5) and (4, 5); then on the right, we fix x4 and determine
the routing policy at 2 to be 𝑥23 = 1 which keeps the minimum s-d cut value to be 1.

We explain how Alg. 6.1 works by going through the first iteration which

determines the routing policy of 𝑖|𝒱𝐴|: Alg. 6.1 temporarily sets the routing policies at

adversarial nodes {𝑖1, . . . , 𝑖|𝒱𝐴|−1} following the chain 𝑖𝑗 → 𝑖𝑗+1, ∀𝑗 = 1, . . . , |𝒱𝐴| − 1,

which guarantees that the traffic sent from 𝑖𝑗 will all arrive at 𝑖𝑗+1. It then determines

the optimal routing policy of 𝑖|𝒱𝐴| based on Theorem 6.1 by sending all the traffic

from 𝑖|𝒱𝐴| to each of its adjacent nodes and computing their corresponding minimum

s-d cut values. The optimal routing policy at 𝑖|𝒱𝐴| is the one with the lowest minimum

192

s-d cut value. In the 𝑘-th iteration of Alg. 6.1, we determine the routing policy

of node 𝑖|𝒱𝐴|+1−𝑘 as we do in the first iteration, given that the routing policies of

{𝑖𝑗}|𝒱𝐴|
𝑗=|𝒱𝐴|+2−𝑘 have been determined in previous iterations, and the routing policies

of {𝑖𝑗}|𝒱𝐴|−𝑘
𝑗=1 follow the chain temporarily. Fig. 6-2 shows how Alg. 6.1 works over the

example in Fig. 6-1(b) where the numbers over links represent the link capacities.

The worst-case time complexity of Alg. 6.1 is 𝑂(|𝒱𝐴| × |𝒱| × 𝑇mincut): In each

iteration, the algorithm determines the routing policy of an adversarial node 𝑖 ∈ 𝒱𝐴,

which involves traversing |𝒱𝑖| = 𝑂(𝑁) adjacent nodes of 𝑖, with worst-case time

complexity of calculating minimum cut 𝑂(𝑇mincut) = 𝑂(|𝒱||ℰ|2) = 𝑂(𝑁𝑀2) using

Edmonds-Karp algorithm or 𝑂(𝑇mincut) = 𝑂(|𝒱|2) = 𝑂(𝑁2) using Karger’s algorithm.

Alg. 6.1 can be accelerated in real implementation. First, traversing the 𝒱𝑖 for each

𝑖 ∈ 𝒱𝐴 can be implemented in parallel, where parallelization over 𝐾 machines reduces

the complexity to 𝑂(|𝒱𝐴|× |𝒱|
𝐾
×𝑇mincut). Second, it is not always necessary to traverse

𝒱𝑖 at each 𝑖 ∈ 𝒱𝐴. The idea is that at 𝑖 ∈ 𝒱𝐴, we can first obtain the set of links

that constitute the minimum s-d cut under the assumption that 𝑐𝑖𝑘 = 0, ∀𝑘 ∈ 𝒱𝑖.

If the set of links does not contain a link (𝑖, 𝑘) for some 𝑘 ∈ 𝒱𝑖, then it means that

adjusting the routing policy at node 𝑖 does not affect the minimum s-d cut value, and

thus we can randomly find 𝑗 ∈ 𝒱𝑖 and forward all the traffic at 𝑖 to node 𝑗, which

does not affect the optimality of the output. This optimized approach does not lower

the worst-case complexity but can remove the unnecessary computation of minimum

s-d cut to reduce computation time in general networks.

Remarks: (i) Alg. 6.1 is optimal as long as there exists a permutation

{𝑖1, . . . , 𝑖|𝒱𝐴|} of 𝒱𝐴 that forms a chain. The existence of loops where nodes

𝑖𝑗1 , 𝑖𝑗2 ∈ 𝒱𝐴 such that 𝑖𝑗1 → 𝑖𝑗2 and 𝑖𝑗2 → 𝑖𝑗1 does not affect the optimality. Consider

the example where 𝑖|𝒱𝐴| → 𝑖1 in the chain, then an optimal routing attack is to route

all the traffic at 𝑖𝑗 to a node in 𝒱𝑖𝑗 that they can all arrive at 𝑖𝑗+1, and route the traffic

at 𝑖|𝒱𝐴| back to 𝑖1. This routing attack guarantees that any traffic forwarded to an

adversarial node will be trapped in the loop and thus cannot reach the destination.

Alg. 6.1 will output this solution, since in the first iteration the routing policy of 𝑖|𝒱𝐴|

will be determined to be routing following 𝑖|𝒱𝐴| → 𝑖1 so that all the traffic is sent

193

back to 𝑖1, which does not increase the minimum s-d cut value. (ii) The verification

and identification of chain structure are straightforward. We can validate if 𝑖 → 𝑗

by the following method: Suppose that each node uniformly forwards the traffic to

its adjacent nodes, and there is a close-to-zero amount of traffic 𝜖 starting at 𝑖 that

will not cause any overload, then 𝑖 → 𝑗 if and only if all the traffic can reach node

𝑗. We can identify all the chain structures in the network by applying the above

validation method for each pair of network nodes. (iii) The optimality of Alg. 6.1

is based on the prerequisite that 𝒱𝐴 is in a chain structure. Consider the example

in Fig. 6-1(c) where 2 ̸→ 4. Suppose that to determine the routing policy at node

4, we set the routing at node 2 to route all the traffic to node 3, then the output

routing attack will be 𝑥45 = 1 and 𝑥25 = 1, since in the first iteration setting 𝑥45 = 1

gives a minimum cut value of 200 while 𝑥46 = 1 gives 201. This attack leads to a

minimum s-d cut value of 102. However, the optimal routing attack is to set 𝑥46 = 1

and 𝑥25 = 1, under which the minimum s-d cut value is 3. This fact motivates the

need to develop alternative algorithms for 𝒱𝐴 not in a chain structure.

6.2.2 Parallel Structure

We further investigate the case where 𝒱𝐴 is in a parallel structure, as defined below.

Definition 6.3. The adversarial node set 𝒱𝐴 is in a parallel structure if for ∀𝑖 ∈ 𝒱𝐴
and any routing policy x𝑖, there exists routing policies over normal nodes 𝒱𝑁 so that

the traffic can be delivered from the source to the destination through 𝑖 without passing

through other adversarial nodes.

The definition requires that no matter what routing attack is taken over 𝒱𝐴, for

each adversarial node 𝑖, there exists a path from the source to the destination where

the only adversarial node on it is 𝑖 under some routing policy over 𝒱𝑁 . The intuition

is that for each pair of adversarial nodes 𝑖 and 𝑗, normal nodes can adjust the routing

so that the traffic at node 𝑖 will not be delivered to 𝑗. Real-world examples of 𝒱𝐴 in

a parallel structure include the load balancers in a server farm, and a middle layer

of nodes in a multi-layer network that serves a commodity from the ingress to the

194

egress layer.

We have the following remarks: (i) 𝒱𝐴 in a parallel structure implies that each pair

of adversarial nodes are not reachable from one to another. However, the reverse does

not hold, i.e., 𝑖 ̸→ 𝑗 for ∀𝑖, 𝑗 ∈ 𝒱𝐴, 𝑖 ̸= 𝑗 does not imply 𝒱𝐴 in a parallel structure. We

give an example in Fig. 6-3 and leave the discussion to Section 6.3. (ii) Definition 6.3

does not mean that there is no path between a pair of adversarial nodes. Fig. 6-1(c)

is an example where adversarial nodes {2, 4} are parallel since 2 ̸→ 4, although there

exists a path 2 to 3 to 4.

Figure 6-3: Example where adversarial nodes at different layers (shaded in black) in a
multi-layer network that are not in a parallel structure, although 𝑖 ̸→ 𝑗 for ∀𝑖, 𝑗 ∈ 𝒱𝐴
and 𝑖 ̸= 𝑗.

We develop Alg. 6.2 that can output a routing attack in polynomial time given

that 𝒱𝐴 is in a parallel structure. The idea behind Alg. 6.2 is to determine the routing

policies at adversarial nodes so that the average contribution of an adversarial node

on increasing the minimum s-d cut value is minimized in each iteration. Fig. 6-4

gives an example to explain how Alg. 6.2 works by going through the first iteration.

Alg. 6.2 investigates the minimum increment of the minimum s-d cut value by two

steps. The first step (line 5 to 8) is to go over each link (𝑖, 𝑗) where 𝑖 ∈ 𝒱𝐴, and

calculate the increment of the minimum s-d cut value, denoted by Δ𝑖𝑗, given that the

adversarial node 𝑖 forwards all the traffic to node 𝑗. The second step (line 9 to 12) is

to investigate the normal node set 𝒱𝑁 . For each normal node 𝑘, we figure out the set

of adversarial nodes from which node 𝑘 is reachable, denoted by ℛ𝑘 where ℛ𝑘 ⊆ 𝒱𝐴
and ∀𝑖 ∈ ℛ𝑘, 𝑖→ 𝑘. The algorithm skips 𝑘 if ℛ𝑘 = ∅, otherwise it routes the traffic

at each node 𝑖 ∈ ℛ𝑘 so that all the traffic is transmitted to node 𝑘. The algorithm

calculates the corresponding increment of the minimum s-d cut value based on the

195

above routing policies at ℛ𝑘, denoted by Δ𝑘, and evaluate the average increment

from each adversarial node in ℛ𝑘, which is Δ𝑘/|ℛ𝑘|. Finally, the algorithm chooses

the minimum value from the union of {Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ and {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅, and

determines the routing policies of the adversarial nodes corresponding to the choice

as done in line 14 or line 17. Alg. 6.2 iterates the above process over the adversarial

nodes whose routing policies have not been determined, and terminates when the

routing policies of all adversarial nodes are determined.

Algorithm 6.2: 𝑂(log |𝒱𝐴|)-Approximation Algorithm to (6.2) for 𝒱𝐴 in a
Parallel Structure
1 Input: 𝒢 = (𝒱 , ℰ), 𝒱𝐴 in a parallel structure;
2 Initialize the undetermined adversarial node set 𝑈𝐷 ← 𝒱𝐴, and

x𝑖 = 0, ∀𝑖 ∈ 𝒱𝐴;
3 For each 𝑖 ∈ 𝒱𝑁 , calculate ℛ𝑖, the set of adversarial nodes from which 𝑖 is

reachable;
4 while 𝑈𝐷 ̸= ∅ do
5 for link (𝑖, 𝑗) where 𝑖 ∈ 𝑈𝐷 do
6 Set 𝑥𝑖𝑗 = 1 and 𝑥𝑖𝑗′ = 0, 𝑗′ ̸= 𝑗;
7 Calculate Δ𝑖𝑗, the increment of minimum s-d cut value;

8 Find (𝑖*, 𝑗*)← argmin𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ Δ𝑖𝑗;
9 for 𝑘 ∈ 𝒱𝑁 and ℛ𝑘 ∩ 𝑈𝐷 ̸= ∅ do

10 Each adversarial node 𝑖 ∈ ℛ𝑘 ∩ 𝑈𝐷 routes all traffic to a node in 𝒱𝑖
s.t. all the traffic is guaranteed to reach node 𝑘;

11 Calculate Δ𝑘, the increment of minimum s-d cut value under the
above routing;

12 Find 𝑘* ← argmin𝑘∈𝒱𝑁
Δ𝑘/|ℛ𝑘 ∩ 𝑈𝐷|;

13 if Δ𝑖*𝑗* ≤ Δ𝑘*/|ℛ𝑘* ∩ 𝑈𝐷| then
14 Determine the routing policy at 𝑖* to be 𝑥𝑖*𝑗* = 1 and

𝑥𝑖*𝑗 = 0, ∀𝑗 ̸= 𝑗*;
15 𝑈𝐷 ← 𝑈𝐷∖{𝑖*}; ℛ𝑘 ← ℛ𝑘∖{𝑖*}, ∀𝑘 ∈ 𝒱𝑁 ;

16 else
17 Determine the routing policy of each node in ℛ𝑘* ∩ 𝑈𝐷 so that all

traffic at this node is guaranteed to be sent to 𝑘*;
18 𝑈𝐷 ← 𝑈𝐷∖ℛ𝑘* ; ℛ𝑘 ← ℛ𝑘∖ℛ𝑘* , ∀𝑘 ∈ 𝒱𝑁 ;

19 Return x𝐴 = {x𝑖}𝑖∈𝒱𝐴
;

The worst-case time complexity of Alg. 6.2 is 𝑂(|𝒱𝐴| × (|ℰ| + |𝒱𝑁 |) × 𝑇mincut):

Alg. 6.2 has at most |𝒱𝐴| iterations where each iteration only determines the routing

196

Figure 6-4: Example of the first iteration of Alg. 6.2 for 𝒱𝐴 in a parallel structure: first
set 𝑐𝑖𝑗 = 0 for all the links (𝑖, 𝑗) starting from an adversarial node 𝑖; then follow line 5 to
7 to calculate the minimum s-d cut value increment by activating each of the above links,
and follow line 9 to 11 to calculate the minimum s-d cut value increment by activating all
adversarial nodes reachable to each normal node, and obtain the mean minimum cut value
increment by dividing the value by the number of adversarial node reachable to this normal
node.

policy of a single adversarial node in the worst case, and in each iteration calculates

|{Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ |+|{Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘∈∅| = 𝑂(|ℰ|+|𝒱𝑁 |) times of the minimum s-d cut

value. We can accelerate the process in real implementation by pre-computing ℛ𝑖 for

∀𝑖 ∈ 𝒱𝑁 , parallel computing {Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ and {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁
in each iteration, and

calculating the minimum s-d cut value only if the newly introduced routing policies

at 𝒱𝐴 in this iteration increases the minimum s-d cut value, similar as discussed in

Alg. 6.1.

We prove in Theorem 6.4 that Alg. 6.2 outputs a routing attack which leads to a

worst-case approximation ratio of 𝑂(log |𝒱𝐴|) to the optimal solution to (6.2) given an

arbitrary network instance 𝒢 and adversarial node set 𝒱𝐴 in a parallel structure. This

logarithmic gap demonstrates the slow performance degradation of Alg. 6.2 when |𝒱𝐴|

scales linearly with the network size |𝒱|. The approximation ratio is asymptotic given

that |𝒱𝐴| → ∞ with |𝒱| → ∞. For a constant |𝒱𝐴|, the worst-case approximation

ratio is
∑︀|𝒱𝐴|

𝑖=1 𝑖−1.

Theorem 6.4. Alg. 6.2 is an 𝑂(log |𝒱𝐴|)-approximation algorithm to the problem

(6.2) given 𝒱𝐴 in a parallel structure.

We further demonstrate in Theorem 6.5 that 𝑂(log |𝒱𝐴|) is the minimum

worst-case approximation ratio that can be achieved by any polynomial-time

algorithm for the general problem (6.2). The proof idea is based on the

197

inapproximability of the Set Cover problem. For 𝒱𝐴 in a parallel structure, it

means that there does not exist another polynomial-time algorithm that can perform

better than Alg. 6.2 in terms of the worst-case approximation ratio.

Theorem 6.5. There is no polynomial-time algorithm with a worst-case

approximation ratio lower than 𝑂(log |𝒱𝐴|) to (6.2).

6.3 Algorithm for General 𝒱𝐴

In this section, we develop a polynomial-time algorithm given that the adversarial

node set 𝒱𝐴 is in a general structure, which means 𝒱𝐴 can be an arbitrary subset

of nodes. We provide the pseudo-code in Alg. 6.3 which is a recursive algorithm.

We explain the two major challenges when generalizing the algorithms designed in

Section 6.2 to 𝒱𝐴 in a general structure below.

Algorithm 6.3: Algorithm to (6.2) for General 𝒱𝐴
1 Input: 𝒢 = (𝒱 , ℰ), 𝒱𝐴 in a general structure;
2 Initialize x𝑖 = 0, ∀𝑖 ∈ 𝒱𝐴;
3 Find adversarial nodes 𝒱𝑝

𝐴 ⊆ 𝒱𝐴 to which the source node has a path that
solely consists of normal nodes;

4 Identify all the chain structures in 𝒱𝑝
𝐴, and temporarily set the routing

policies of adversarial nodes in these chains by following line 3 in Alg. 6.1;
5 Apply line 5 to 18 of Alg. 6.2 over the subset of nodes in 𝒱𝑝

𝐴 whose routing
policies are not temporarily set. If there exists any adversarial node
downstream whose routing policy is undetermined, recursively call Alg. 6.3
in the downstream subnetwork;

6 Return x𝐴 = {x𝑖}𝑖∈𝒱𝐴
;

The first challenge is that 𝒱𝐴 can be a combination of chain and parallel structures.

We show an example in Fig. 6-5(a). Alg. 6.3 addresses this challenge by combining

the ideas in Alg. 6.1 and 6.2. Alg. 6.3 contains two steps in each recursion. The first

step (line 4) is to identify the chain structures among the adversarial nodes whose

routing policies have not been decided, and temporarily sets their routing policies

following the chain structure. This step follows the idea in Alg. 6.1 where for two

adversarial nodes 𝑖, 𝑗 and 𝑖 → 𝑗, we first determine the routing policy at node 𝑗

198

given that node 𝑖 adopts the routing so that all the traffic at 𝑖 can arrive at 𝑗. In

Fig. 6-5(b), the algorithm first assumes that 𝑥25 = 1 and 𝑥35 = 1 since 2 → 5 and

3→ 5. The second step (line 5) is to determine the routing policies of the adversarial

nodes that are at the end of the above chains which are guaranteed to be in a parallel

structure. We then adopt the idea in Alg. 6.2 to determine the routing policies of a

subset of these parallel adversarial nodes. In Fig. 6-5(b), Alg. 6.3 runs its line 5 over

{4, 5}, and suppose that it determines that node 5 is to route all the traffic to node

7 in a single hop, i.e., 𝑥57 = 1. Alg. 6.3 iteratively follows the above process until the

routing policies of all adversarial nodes have been determined, where in Fig. 6-5(c) the

second iteration is to consider the routing policies of adversarial nodes {2, 3, 4} given

that the routing policy at node 5 has been determined. In summary, the main idea of

Alg. 6.3 is to synthesize the optimality of chain structures and the good performance

guarantee of parallel structures to 𝒱𝐴 in a general structure.

Figure 6-5: Example of Alg. 6.3 on 𝒱𝐴 with a combination of chain and parallel
structures. Given that 𝒱𝐴 = {2, 3, 4, 5} in (a) where 2→ 5 and 3→ 5, the algorithm
temporarily sets 𝑥25 = 1 and 𝑥35 = 1 (line 5) and determines the routing policies at 4
and 5 (line 6) as shown in (b); suppose that in line 6 the algorithm determines that
𝑥57 = 1 based on Δ57 = min{{Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ ∪ {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅}, then it starts
to consider adversarial nodes upstream to 5 in the chains, i.e., determines the routing
policies at {2, 3, 4}.

The second challenge is that 𝒱𝐴 may be in multiple layers of parallel structures,

where we cannot either utilize the optimality of chain structures or directly apply

Alg. 6.2 to solve the problem. Consider the example in Fig. 6-3, where the adversary

controls two layers of network nodes, and nodes 6, 7 are not reachable from nodes

2, 3. We cannot solely determine the routing policies at a single layer of adversarial

nodes ({2, 3} or {6, 7}), since any routing policy at a single layer will result in zero

199

increment of minimum s-d cut value and thus may lead to unbounded performance

guarantee. Therefore we introduce recursion in Alg. 6.3, which is a top-down dynamic

programming mechanism, to resolve this challenge. We explain the method by the

example in Fig. 6-6. In line 3, Alg. 6.3 figures out that {2, 3} are the adversarial

nodes which are on a path built by normal nodes starting from the source node. It

applies the idea in Alg. 6.2 to determine the routing policies of the parallel adversarial

nodes {2, 3}. Consider the calculation of Δ4, i.e., the increment of the minimum s-d

cut value by 𝑥24 = 1 and 𝑥34 = 1. Since {7, 8} are adversarial nodes downstream to

node 4 whose routing policies are undetermined, Alg. 6.3 will recursively call itself to

determine the routing attack of the subnetwork where 4 is viewed as the source node,

and the adversarial nodes are {7, 8}, denoted by the highlighted links in Fig. 6-6. The

routing attack solution starting from node 4 can be solved without further recursion

since {7, 8} are in a parallel structure without more adversarial nodes downstream to

them. Calculating Δ5 can be done similarly. The solutions starting from 4 and 5 are

then memorized for further usage in the top-down dynamic programming.

Figure 6-6: The top-down dynamic programming mechanism in Alg. 6.3 on the
example in Fig. 6-3.

Remarks: (i) Alg. 6.3 returns the same results and performance guarantees as

Alg. 6.1 when 𝒱𝐴 is in a chain structure, and Alg. 6.2 when 𝒱𝐴 is in a parallel

structure. (ii) Time complexity: Alg. 6.3 is guaranteed to complete in time polynomial

to the network size. The memorization ensures that the routing attack solution of the

subnetwork downstream to each node is calculated only once. The calculation start

from different nodes can be implemented in parallel. An alternative method is the

bottom-up dynamic programming which calculates the routing attack of subnetworks

starting from nodes in the order from 𝑁 − 1 to 1. The bottom-up approach has

no difference on the worst-case time complexity compared with top-down approach,

200

however it introduces unnecessary computation starting from nodes that will not be

used in later iterations. (iii) Performance Guarantee: We find that it is challenging

to prove the performance guarantee as done in Section 6.2, when 𝒱𝐴 is a general

structure. We observe in the simulation in Section 6.4 that if 𝒱𝐴 is in the form of 𝐾

chains in parallel1, the worst-case approximation ratio is at most 𝑂(log𝐾). We leave

the proof of this conjecture to future work.

6.4 Performance Evaluation

We evaluate the performance of the proposed algorithms over a wide range of network

settings including different topologies, link capacities, and sets of adversarial nodes.

We show that the proposed algorithm is superior to other heuristics in terms of

approximating the optimal solution to (6.2).

Algorithms for Comparison: We compare two heuristic algorithms with

Alg. 6.3. (i) Dynamic Programming (DP): this algorithm traverses the adversarial

nodes from the destination to the source, where at each adversarial node the

algorithm determines its routing policy to minimize the minimum s-d cut value in

the subnetwork downstream to this node. The main differences to Alg. 6.3 are that

DP only utilizes the downstream information to determine the routing policy of an

adversarial node, and treats each adversarial node separately. (ii) Local Search (LS):

this algorithm initializes a routing attack where each adversarial node forwards all

the traffic to one of its adjacent nodes, and iteratively check if there exists a better

routing attack that can reduce the minimum s-d cut value by adjusting the routing

policy of a single adversarial node. It adopts the better routing attack if there exists

one, otherwise outputs the current best routing attack.

Network Settings: We test the proposed algorithms over networks with a fixed

size of |𝒱| = 50. We first consider |𝒱𝐴| = 6 for 𝒱𝐴 in a parallel structure, and we

can add links between different pairs of adversarial nodes to introduce chains in 𝒱𝐴,

where our focus is to validate the analytical results developed in previous sections. We

1𝐾 = 1 is equivalent to the chain structure, 𝐾 = |𝒱𝐴| is equivalent to the parallel structure.

201

further consider |𝒱𝐴| = 10 for 𝒱𝐴 in a general structure to showcase the superiority

of Alg. 6.3 than DP and LS in terms of approximating the risk of overload in general

networks under malicious routing. For any given structure of 𝒱𝐴, we simulate 10, 000

network instances which comprises of 20 different network topologies, 25 different link

capacity settings under a given topology, and 20 randomly selected adversarial node

sets 𝒱𝐴 that follows the structure, in order to evaluate the algorithms under different

network settings.

Evaluation Results: We evaluate the performance of the proposed algorithms

in terms of approximating the optimal solution to (6.2). Based on the equivalence

between (6.1) and (6.2), an algorithm with a lower approximation ratio to (6.2)

indicates higher potential for inducing network overload.

We first evaluate the performance when 𝒱𝐴 is in a parallel structure. Fig. 6-7(a)

presents the cumulative distribution functions (CDF) of the approximation ratios

of the three algorithms to the optimal solution to (6.2). The statistics of mean,

90-percentile (p90), and maximum approximation ratios are listed in Table 6.1.

Results show that Alg. 6.3 leads to a lower mean, p90, and maximum approximation

ratio than DP and LS. The maximum approximation ratio of Alg. 6.3 among the

tested instances is 1.49, which is below the theoretical upper bound
∑︀6

𝑖=1 𝑖
−1 = 2.45.

Moreover, the mean approximation ratio 1.04 shows that on average Alg. 6.3 leads to

an approximation gap of at most 5% to the optimal routing attack for (6.2), and the

p90 approximation ratio 1.11 means that over 90% of the instances Alg. 6.3 leads to

a gap of at most 12%. These results demonstrate the high consistency of inducing

routing attack with good approximation performance on minimizing the minimum

s-d cut values via Alg. 6.3 compared with the other algorithms.

Next we evaluate the performance when there exists chain structures in 𝒱𝐴. We

introduce links among the 6 adversarial nodes, denoted by {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6}, in three

ways: (i) introducing (𝑖1, 𝑖2), (𝑖3, 𝑖4), (𝑖5, 𝑖6) so that there are 3 chains 𝑖1 → 𝑖2, 𝑖3 → 𝑖4,

𝑖5 → 𝑖6 in parallel; (ii) introducing (𝑖1, 𝑖2), (𝑖2, 𝑖3), (𝑖4, 𝑖5), (𝑖5, 𝑖6) so that there are 2

chains 𝑖1 → 𝑖2 → 𝑖3, 𝑖4 → 𝑖5 → 𝑖6 in parallel; (iii) introducing (𝑖𝑗, 𝑖𝑗+1), 𝑗 = 1, . . . , 5

so that 𝒱𝐴 is in a chain structure. We present the CDFs of the approximation ratios

202

Figure 6-7: CDFs of approximation ratios of Dynamic Programming (DP), Local
Search (LS), and Alg. 6.3 to the optimal solution to (6.2).

in Fig. 6-7(b) to 6-7(d) for these three ways respectively, and present their statistics

in Table 6.1. We find that Alg. 6.3 outperforms the other two algorithms in both the

average and worst-case performance. Moreover, Alg. 6.3 leads to better approximation

performance when the number of parallel chains is smaller, and outputs the optimal

solution when 𝒱𝐴 is in a chain structure. This observation echoes our conjecture in

Section 6.3 that the worst-case approximation ratio is logarithmic to the number of

chains in parallel.

Parallel 3 Parallel Chains 2 Parallel Chains 1 Chain
Mean 90% Max Mean 90% Max Mean 90% Max Mean 90% Max

DP 1.11 1.37 1.74 1.30 1.74 2.56 1.10 1.35 1.71 1.25 1.78 3.22
LS 1.15 1.18 13.35 1.31 1.51 13.17 1.08 1.34 2.97 4.85 2.40 25.14

Alg.6.3 1.04 1.11 1.49 1.02 1.00 1.48 1.01 1.00 1.27 1.00 1.00 1.00

Table 6.1: Approximation ratio statistics of Dynamic Programming (DP), Local
Search (LS), and Alg. 6.3 (90% means 90-percentile).

We finally investigate 𝒱𝐴 in a general structure. Fig. 6-8 shows the CDFs of the

approximation ratios, where the performance of Alg. 6.3 in approximating the optimal

solution to (6.2) is better than the other heuristics: The worst approximation ratio

of Alg. 6.3 is 1.26, less than 2.0 for DP and 4.0 for LS. Moreover, Alg. 6.3 outputs

the optimal routing attack in around 90% of the 10,000 tested network instances.

Discussion: We learn from the simulation results that our proposed algorithms

lead to close-to-optimal performance in terms of maximizing overload in a network

with dynamic routing control over a wide range of network topologies, link capacities,

and sets of adversarial nodes. The near-optimality of Alg. 6.3 under different network

settings demonstrates that it can be used to approximate the highest overload that

203

Figure 6-8: CDFs of approximation ratios to the optimal solution to (6.2) when 𝒱𝐴
is in a general structure (|𝒱𝐴| = 10).

malicious routing can induce given an arbitrary set of adversarial nodes, and identify

the critical nodes to protect from adversaries.

6.5 Summary and Future Work

We investigate the ability of malicious routing to induce overload, given that the

network can dynamically adjust the routing policies at normal nodes. We prove

the equivalence of maximizing the throughput loss and minimizing the minimum s-d

cut value of the network, and prove the NP-hardness of the problem. We develop

polynomial-time algorithms with performance guarantee when the adversarial nodes

are in a chain or a parallel structure. We further extend the proposed algorithms

to adversarial nodes that are in a general structure. We validate that the proposed

algorithms are near-optimal in most network instances under a wide range of network

settings that cover different network topologies, link capacities, and adversarial node

sets. Future directions include investigating the cases where normal nodes do not

always implement the optimal routing policies in response to the routing attack, and

the network adversaries may not have knowledge of the routing patterns at the normal

nodes.

204

6.6 Chapter Appendix

6.6.1 Proof of Proposition 6.1

We prove Proposition 6.1 in two steps. First, we show that there exists an optimal

solution x*
𝐴 to (6.1) where ∀𝑖 ∈ 𝒱𝐴, x*

𝑖 satisfies that 𝑥*
𝑖𝑗 = 1 for some 𝑗 and 𝑥*

𝑖𝑘 = 0

for 𝑘 ̸= 𝑗. Then we show that the problem (6.1) and (6.2) are equivalent if we add

the constraint that each adversarial node forwards all the traffic to a single adjacent

node. With these two results, together with Theorem 6.1 proved in the following

section, we show that the optimal solutions to (6.1) and (6.2) are equivalent.

Step 1: We prove the first result starting from a single adversarial node, and

extend to a general set of adversarial nodes. We first prove the following lemma.

Lemma 6.1. Given a network 𝒢 = (𝒱 , ℰ) with arrival rate 𝜆 at node 1 and 𝒱𝐴 = {1},

then one of the routing attacks such that ∃𝑗 ∈ 𝒱, 𝑥1𝑗 = 1, and ∀𝑘 ̸= 𝑗, 𝑥1𝑘 = 0 is

optimal to (6.1).

Proof. Consider a specific routing policy x1 at the adversarial node 1. Denote the set

of nodes adjacent to node 1 by 𝒱1. We show that this is a special case where (6.1) is

equivalent to the following problem.

max
f

∑︁
(𝑖,𝑁)∈ℰ

𝑓𝑖𝑁

s.t.
∑︁

𝑗:(𝑖,𝑗)∈ℰ

𝑓𝑖𝑗 =
∑︁

𝑘:(𝑘,𝑖)∈ℰ

𝑓𝑘𝑖,∀𝑖 ∈ 𝒱∖{1},

∑︁
𝑗:(𝑖,𝑗)∈ℰ

𝑓𝑖𝑗 = min{𝜆𝑥1𝑖, 𝑐1𝑖},∀𝑖 ∈ 𝒱1,

𝑓𝑖𝑗 ∈ [0, 𝑐𝑖𝑗], ∀(𝑖, 𝑗) ∈ ℰ .

(6.3)

The equivalence stems from the fact that (6.3) aims to optimize the routing policies at

normal nodes to maximize the throughput to the destination given that the adversarial

node 1 sets its routing policy. Instead of allowing loss at any node, (6.3) requires that

there is no loss at nodes downstream to node 1 and thus the traffic that will cause loss

at these nodes will be dropped at the source. This means maximizing the throughput

205

is equivalent to minimizing the loss.

We then investigate the dual problem of (6.3) below.

max
𝛼,𝛽,𝛾

∑︁
𝑖∈𝒱1

𝛽𝑖 min{𝜆𝑥1𝑖, 𝑐1𝑖}+
∑︁

(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗𝛾𝑖𝑗

s.t. 𝛾𝑖𝑗 + 𝛽𝑖 − 𝛼𝑗 ≤ −1𝑗=𝑁 , ∀𝑖 ∈ 𝒱1, (𝑖, 𝑗) ∈ ℰ ,

𝛾𝑖𝑗 + 𝛼𝑖 − 𝛼𝑗 ≤ −1𝑗=𝑁 , ∀𝑖 /∈ 𝒱1 ∪ {1}, (𝑖, 𝑗) ∈ ℰ ,

𝛾𝑖𝑗 ≤ 0, ∀(𝑖, 𝑗) ∈ ℰ .

(6.4)

We point out that the optimal solution to (6.4) guarantees 𝛽*
𝑖 ≥ 0, ∀𝑖 ∈ 𝒱1. Therefore,

the optimal objective value to (6.4) is a concave function with respect to x1, and thus

one of the optimal routing policies x*
1 that minimizes the optimal objective value of

(6.4) is at a vertex of the set of feasible routing policies of node 1, i.e., 𝑥*
1𝑗 = 1 for

some 𝑗. Meanwhile, (6.3) is a linear programming, and thus the optimal objective

values to (6.3) and (6.4) are the same. Therefore the optimal routing policy at node

1 to (6.3) satisfies that ∃𝑗 ∈ 𝒱 , 𝑥1𝑗 = 1, and ∀𝑘 ̸= 𝑗, 𝑥1𝑘 = 0 is optimal to (6.1).

Based on Lemma 6.1, we can generalize the result from 𝒱𝐴 = {1} to 𝒱𝐴 = {𝑖}

for some 𝑖 by considering the subnetwork downstream to node 𝑖, as the result holds

for arbitrary incoming traffic of node 𝑖, represented by 𝜆 in (6.3). We further extend

the results to general 𝒱𝐴: Given an arbitrary routing attack over 𝒱𝐴, suppose that

∃𝑖 ∈ 𝒱𝐴 whose routing policy x𝑖 is not a 0-1 vector, then fixing the routing policy of

the other adversarial nodes, there must exist 𝑗 so that changing the routing policy

of node 𝑖 such that 𝑥𝑖𝑗 = 1 is not worse than the current routing attack. This fact

demonstrates that there always exists a routing attack x𝐴 that optimizes (6.1) where

at each adversarial node 𝑖 ∈ 𝒱𝐴, 𝑥*
𝑖𝑗 = 1 for some 𝑗 and 𝑥*

𝑖𝑘 = 0 for 𝑘 ̸= 𝑗.

Step 2: We prove that given the constraints that the routing attack x𝐴 must

be restricted to the boundary of 𝒳𝐴, the optimal solutions to (6.1) and (6.2) are the

same. With this constraint, each adversarial node can only forward the traffic to a

single adjacent node. As discussed in Section 6.1.3, the optimal routing attack x*
𝐴 to

(6.2) for 𝒢 is the one that minimizes the minimum s-d cut of the network 𝒢 ′. There

206

are only two network states given any routing attack restricted to the boundary of

𝒳𝐴: When 𝜆 is not greater than the minimum s-d cut of 𝒢 ′, the loss is 0, otherwise the

excess traffic will be lost. We further show that the optimal solutions of (6.1) are the

same to (6.2): Since (6.2) outputs the routing attack that minimizes the minimum

s-d cut value, then if 𝜆 is no greater than this value, there is no chance to induce any

loss, otherwise the loss increases with the same rate as the arrival rate 𝜆, where the

growth of loss is maximized compared with the cases under other routing attacks,

and thus the maximum loss is achieved for any specific given 𝜆 under the optimal

solutions of (6.2).

6.6.2 Proof of Theorem 6.1

For (6.2), we consider an arbitrarily given x𝐴 ∈ 𝒳𝐴, and investigate the dual

formulation of the problem with the same constraints as (6.2) and the objective is

maxf
∑︀

𝑖:(𝑖,𝑁)∈ℰ 𝑓𝑖𝑁 . Define the problem as P. The dual problem of P is

min
𝛼,𝛽,𝛾

∑︁
(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗𝛼𝑖𝑗

s.t. 𝛼𝑖𝑗 − 𝛾𝑖 + 𝛾𝑗 ≥ 1𝑗=𝑁 , ∀𝑖 /∈ 𝒱𝐴, 𝑗 /∈ 𝒱𝐴, (𝑖, 𝑗) ∈ ℰ ,

𝛼𝑖𝑗 − 𝛽𝑖𝑗 + 𝛾𝑗 ≥ 1𝑗=𝑁 ,∀𝑖 ∈ 𝒱𝐴, 𝑗 /∈ 𝒱𝐴, (𝑖, 𝑗) ∈ ℰ ,

𝛼𝑖𝑗 − 𝛾𝑖 +
∑︁

𝑙:(𝑖,𝑙)∈ℰ

𝛽𝑗𝑙𝑥𝑗𝑙 ≥ 0, ∀𝑖 /∈ 𝒱𝐴, 𝑗 ∈ 𝒱𝐴, (𝑖, 𝑗) ∈ ℰ ,

𝛼𝑖𝑗 − 𝛽𝑖𝑗 +
∑︁

𝑙:(𝑖,𝑙)∈ℰ

𝛽𝑗𝑙𝑥𝑗𝑙 ≥ 0,∀𝑖 ∈ 𝒱𝐴, 𝑗 ∈ 𝒱𝐴, (𝑖, 𝑗) ∈ ℰ ,

𝛼𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ ℰ

(6.5)

where the decision variables 𝛼,𝛽,𝛾 correspond to the constraints 𝑓𝑖𝑗 ≤ 𝑐𝑖𝑗, 𝑓𝑖𝑗 =(︁∑︀
𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖

)︁
𝑥𝑖𝑗, and

∑︀
𝑗:(𝑖,𝑗)∈ℰ 𝑓𝑖𝑗 =

∑︀
𝑘:(𝑘,𝑖)∈ℰ 𝑓𝑘𝑖 in (6.2). We can transform the

207

objective function by replacing the variables 𝛼, which becomes

∑︁
𝑖/∈𝒱𝐴,𝑗 /∈𝒱𝐴,(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗 max{𝛾𝑖 − 𝛾𝑗 + 1𝑗=𝑁 , 0}

+
∑︁

𝑖∈𝒱𝐴,𝑗 /∈𝒱𝐴,(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗 max{𝛽𝑖𝑗 − 𝛾𝑗 + 1𝑗=𝑁 , 0}

+
∑︁

𝑖/∈𝒱𝐴,𝑗∈𝒱𝐴,(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗 max{𝛾𝑖 −
∑︁

𝑙:(𝑖,𝑙)∈ℰ

𝛽𝑗𝑙𝑥𝑗𝑙, 0}

+
∑︁

𝑖∈𝒱𝐴,𝑗∈𝒱𝐴,(𝑖,𝑗)∈ℰ

𝑐𝑖𝑗 max{𝛽𝑖𝑗 −
∑︁

𝑙:(𝑖,𝑙)∈ℰ

𝛽𝑗𝑙𝑥𝑗𝑙, 0}.

(6.6)

Notice that the problem P is a linear programming problem, therefore the optimal

values of the primal and dual functions are the same, and thus our goal is equivalent to

find a routing attack to minimize the dual problem. Consider any given 𝛽 and 𝛾, the

objective (6.6) is a function of the routing attack x𝐴 which only exists in the last two

terms of (6.6), and therefore for ∀𝑗 ∈ 𝒱𝐴, setting 𝑥𝑗𝑙′ = 1 where 𝑙′ = argmin𝑙:(𝑗,𝑙)∈ℰ 𝛽𝑗𝑙

can minimize (6.6). Due to the arbitrariness of 𝛽 and 𝛾 in the above analysis, we

have that there must exist a routing attack x*
𝐴 ∈ 𝒳𝐴 that can minimize the primal

problem, which satisfies that for ∀𝑖 ∈ 𝒱𝐴, ∃𝑗 ∈ 𝒱𝑖 so that 𝑥*
𝑖𝑗 = 1.

6.6.3 Proof of Theorem 6.2

We reduce the Set Cover problem to problem (6.2). Consider an instance of Set

Cover with 𝑁 elements, denoted by {𝑠1, . . . , 𝑠𝑁}, and 𝑀 collections {𝑑1, . . . , 𝑑𝑀}.

We introduce a link from 𝑠𝑖 to 𝑑𝑗 with infinite capacity if the collection 𝑑𝑗 covers

𝑠𝑖. We introduce a meta source node 𝑠0 and a meta destination node 𝑑0, and links

(𝑠0, 𝑠𝑖) with infinite capacity for ∀𝑖 = 1, . . . , 𝑁 , and links (𝑑𝑗, 𝑑0) with capacity 1 for

∀𝑗 = 1, . . . ,𝑀 . Suppose that 𝒱𝐴 = {𝑠𝑖}𝑁𝑖=1 and 𝒱𝑁 = {𝑠0, 𝑑0} ∪ {𝑑𝑗}𝑀𝑗=1. Fig. 6-9

presents an example of the construction based on an instance of Set Cover.

Suppose that there is a polynomial-time algorithm that can solve (6.2). We apply

it over the constructed graph from the Set Cover instance, and denote the optimal

solution by x*
𝑝 at each 𝑝 ∈ 𝒱𝐴. Denote the number of nodes in {𝑑𝑗}𝑀𝑗=1 that there

exists 𝑝 such that 𝑥𝑝𝑑𝑗 > 0 by 𝐿. We can show that by contradiction 𝐿 is equal to the

208

minimum number of collections that can cover {𝑠1, . . . , 𝑠𝑁}, denoted by 𝐿′. First, it

is obvious that 𝐿 ≥ 𝐿′ since each adversarial node needs to forward the traffic at it

to at least one of the nodes in {𝑑𝑗}𝑀𝑗=1. Second, 𝐿 ≤ 𝐿′, because 𝐿 is the maximum

traffic arrival rate at the meta source node 𝑠0 that does not cause any loss under the

optimal routing attack while 𝐿′ is only one of such maximum arrival rates without

inducing loss that is feasible via routing all the traffic at 𝑠𝑖 to 𝑑𝑗 that is assigned to

cover 𝑑𝑗 in the minimum set cover solution. Therefore 𝐿 = 𝐿′. This means that the

Set Cover can be solved in polynomial time if (6.2) can be solved in polynomial time,

which contradicts that the Set Cover is NP-hard.

Figure 6-9: Example of a constructed network based on an instance of Set Cover.

6.6.4 Proof of Theorem 6.3

Consider an optimal solution x*
𝐴 to the problem (6.2) where x*

𝑖 being a 0-1 vector

for ∀𝑖 ∈ 𝒱𝐴. As explained in Section 6.1.3, the network 𝒢 under such x*
𝐴 can be

transformed to another network 𝒢 ′ where ∀𝑖 ∈ 𝒱𝐴 there is only one link (𝑖, 𝑗𝑖) with

capacity 𝑐′𝑖𝑗𝑖 := 𝑐𝑖𝑗𝑖 where 𝑥𝑖𝑗𝑖 = 1, and 𝑐′𝑖𝑘 = 0, ∀𝑘 ̸= 𝑗𝑖. Therefore the minimum s-d

cut of 𝒢 ′ is equal to the maximum throughput without inducing loss.

We consider the minimum s-d cut (𝒮,𝒱∖𝒮) of 𝒢 ′ under the optimal solution x*
𝐴.

The set of links that build the cut is

ℰ𝑐 := {(𝑖, 𝑗) ∈ ℰ | 𝑖 ∈ 𝒮, 𝑗 ∈ 𝒱∖𝒮}.

209

We classify the adversarial nodes into three categories:

• 𝒱1
𝐴 := {𝑖 ∈ 𝒱𝐴 | 𝑐′𝑖𝑗 = 0,∀𝑗 ∈ 𝒱 and (𝑖, 𝑗) ∈ ℰ𝑐};

• 𝒱2
𝐴 := {𝑖 ∈ 𝒱𝐴 | 𝑐′𝑖𝑗 = 𝑐𝑖𝑗,∃𝑗 ∈ 𝒱 and (𝑖, 𝑗) ∈ ℰ𝑐};

• 𝒱3
𝐴 := {𝑖 ∈ 𝒱𝐴 |̸ ∃𝑗 ∈ 𝒱 s.t. (𝑖, 𝑗) ∈ ℰ𝑐}.

Note that 𝒱𝐴 = 𝒱1
𝐴 ∪ 𝒱2

𝐴 ∪ 𝒱3
𝐴, and adversarial nodes in 𝒱3

𝐴 are not in 𝒮. Therefore

taking any routing policy at nodes in 𝒱3
𝐴 does not affect the result if the routing

attack in 𝒱1
𝐴 ∪ 𝒱2

𝐴 is optimal.

We first consider the base case: two adversarial nodes 𝑖1, 𝑖2 where 𝑖1 → 𝑖2. We

show the optimality of Alg. 6.1 given that 𝑖1 and 𝑖2 are in each of the following four

cases under the minimum cut 𝒮: (i) If 𝑖1, 𝑖2 ∈ 𝒱1
𝐴, then the cut 𝒮 is the minimum cut

at the initial state in Alg. 6.1 where x𝑖1 = 0 and x𝑖2 = 0, and Alg. 6.1 will decide the

routing policy at 𝑖2 so that 𝑥𝑖2𝑗 = 1 and (𝑖2, 𝑗) /∈ ℰ𝑐 for some 𝑗 in the first iteration,

and similar for 𝑖1 in the second iteration, since the increment of minimum s-d cut

value is zero. (ii) If 𝑖1 ∈ 𝒱1
𝐴 and 𝑖2 ∈ 𝒱2

𝐴, then since 𝑖1 → 𝑖2, temporarily setting 𝑖1 to

route all the traffic to 𝑖2 does not affect the decision at 𝑖2 in the first iteration, and

𝑖2 will route the traffic to minimize the increment of minimum s-d cut value as the

optimal solution does. (iii) If 𝑖1 ∈ 𝒱2
𝐴 and 𝑖2 ∈ 𝒱1

𝐴, then 𝑖1 must route the traffic to a

node that bypasses 𝑖2 in the optimal routing attack (otherwise this case is impossible).

Therefore, the minimum s-d cut is the same as 𝒮 at the initial state, and Alg. 6.1

will route all the traffic at 𝑖1 to a node 𝑗 that causes zero increment of minimum s-d

cut value, and route 𝑖2 as the optimal solution does to achieve minimum increment of

the min-cut value. (iv) If 𝑖1 ∈ 𝒱2
𝐴 and 𝑖2 ∈ 𝒱2

𝐴, then in the optimal routing attack 𝑖1

will not route to 𝑖2, therefore as discussed in the third case, routing 𝑖1 to 𝑖2 does not

affect the optimality, and in each iteration Alg. 6.1 routes the traffic at an adversarial

node so that the minimum s-d cut is increased with minimum amount (in this case

the increment must be positive). Based on the case of two adversarial nodes, we can

generalize to larger size of 𝒱𝐴 by the mathematical reduction, following the similar

process for 𝑖𝑘 and 𝑖𝑘+1 in the chain {𝑖1, · · · , 𝑖|𝒱𝐴|} in the |𝒱𝐴| − 𝑘-th iteration. In

210

summary, the idea is to show that at the 𝑘-th iteration we do not need to modify the

routing policies determined in previous 𝑘 − 1 iterations to guarantee the optimality.

6.6.5 Proof of Theorem 6.4

Recall that Alg. 6.2 selects the minimum value among {Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ and

{Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅ and determines the routing policies of a subset of adversarial

nodes in each iteration. Notice that we only need to develop the proof considering that

Alg. 6.2 selects among {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅ in each iteration, since {Δ𝑖𝑗}𝑖∈𝒱𝐴,(𝑖,𝑗)∈ℰ

can be equivalently transformed to this form: for each (𝑖, 𝑗) ∈ ℰ where 𝑖 ∈ 𝒱𝐴
when 𝒱𝐴 is in a parallel structure, we can introduce an intermediate node 𝑘 and

replace the link (𝑖, 𝑗) by two links (𝑖, 𝑣) with 𝑐𝑖𝑣 =∞ and (𝑣, 𝑗) with 𝑐𝑣𝑗 equal to the

original capacity of the original link (𝑖, 𝑗), and then the original evaluation over Δ𝑖𝑗

is equivalently replaced by evaluating Δ𝑣 in the transformed network. Therefore we

solely develop the proof below selecting over {Δ𝑘/|ℛ𝑘|}𝑘∈𝒱𝑁 ,ℛ𝑘 ̸=∅ in each iteration.

We first prove the following Lemma 6.2, which states in every iteration, there

exists a choice 𝑘 ∈ 𝒱𝑁 and ℛ𝑘 ̸= ∅ such that the corresponding routing policies

over ℛ𝑘 determined by Alg. 6.2 leads to a bounded increment of minimum s-d cut

value. We give relevant definitions used below: Δ* denotes the minimum increment

of the minimum s-d cut value under the optimal routing attack; 𝒥𝑘 denotes the set

of adversarial nodes whose routing policies have not been determined in the first 𝑘

iterations; Δ𝑖,𝑘 denotes the increment of minimum s-d cut value when targeting 𝑖 ∈ 𝒱𝑁
and routing the traffic of all adversarial nodes in ℛ𝑖 ∩ 𝒥𝑘−1 in the 𝑘-th iteration of

Alg. 6.2.

Lemma 6.2. Given a input instance (𝒢,𝒱𝐴) to Alg. 6.2, then at the 𝑘-th iteration,

there exists a node 𝑖 such that Δ𝑖,𝑘/|ℛ𝑖 ∩ 𝒥𝑘−1| ≤ Δ*/|𝒥𝑘−1|.

Proof. We first show that the optimal routing attack can be decomposed into multiple

iterations such that the 𝑘-th iteration targets at a normal node 𝑖 and determines

the routing policies of adversarial nodes in ℛ𝑖 ∩ 𝒥 *
𝑘−1, where 𝒥 *

𝑘−1 denotes the set

of adversarial nodes whose routing policies have not been determined, and in the

211

meantime the following condition COND holds: the increment of the minimum s-d

cut value when targeting at node 𝑖 at this iteration is equal to the increment when

targeting at node 𝑖 at the first iteration over ℛ𝑖∖|𝒥 *
𝑘−1|. Recall that we define 𝒮 as

the minimum s-d cut under the optimal routing attack. In the transformed network

with intermediate nodes introduced in each link starting from an adversarial node,

the link set ℰ𝑐 in 𝒮 only contains normal nodes. It is straightforward to verify that an

arbitrary order of traversal of the nodes that start from some link in ℰ𝑐 guarantees that

COND holds. Denote the set of these normal nodes by 𝒱*
𝑁 , an order of traversal over

𝒱*
𝑁 by {𝑖1, 𝑖2, . . . , 𝑖|𝒱*

𝑁 |}. Note that Δ𝑖,𝑘 ≥ 0. Then we have Δ* =
∑︀

𝑘 Δ𝑖𝑘,𝑘. Fig. 6-10

shows an example.

Figure 6-10: Example where COND holds: the optimal routing attack can be
decomposed into 2 iterations, where in the first iteration it determines the routing
policies of ℛ7, and in the second iteration it determines those of ℛ5 whose routing
policies have not been determined in previous iterations.

We then prove the lemma by contradiction in the transformed network. Suppose

that at the 𝑘-th iteration of Alg. 6.2, Δ𝑖,𝑘/|ℛ𝑖 ∩ 𝒥𝑘−1| > Δ*/|𝒥𝑘−1| holds for ∀𝑖 ∈

𝒱𝑁 ,ℛ𝑖 ∩ 𝒥𝑘−1. Then we have

Δ* =
∑︁
𝑘

Δ𝑖𝑘,𝑘 =
∑︁
𝑘

Δ𝑖𝑘,𝑘

|ℛ𝑖𝑘 ∩ 𝒥𝑡−1|
|ℛ𝑖𝑘 ∩ 𝒥𝑡−1|

>
∑︁
𝑘

Δ*

|𝒥𝑘−1|
|ℛ𝑖𝑘 ∩ 𝒥𝑘−1| ≥

Δ*

|𝒥𝑘−1|
|𝒥𝑘−1| = Δ*

which leads to contradiction Δ* > Δ*.

Based on Lemma 6.2, we can bound the total increment of minimum s-d cut

212

value Δ induced by the output routing attack of Alg. 6.2. Suppose that Alg. 6.2 has

𝑇 ≤ |𝒱𝐴| iterations over a problem instance. Then we have

Δ ≤
𝑇∑︁

𝑘=1

Δ𝑖𝑘,𝑘
(𝑎)
=

𝑇∑︁
𝑘=1

Δ𝑖𝑘,𝑘

|ℛ𝑖𝑘 ∩ 𝒥𝑘−1|
|ℛ𝑖𝑘 ∩ 𝒥𝑘−1|

(𝑏)

≤ Δ*
𝑇∑︁

𝑘=1

|ℛ𝑖𝑘 ∩ 𝒥𝑘−1|
|𝒥𝑘−1|

= Δ*
𝑇∑︁

𝑘=1

|ℛ𝑖𝑘 ∩ 𝒥𝑘−1|
|𝒱𝐴| −

∑︀𝑘−1
𝑙=1 |ℛ𝑖𝑘 ∩ 𝒥𝑙|

(𝑐)

≤ Δ*
|𝒱𝐴|∑︁
𝑘=1

𝑘−1 = Δ* × log |𝒱𝐴|

where (a) holds in the transformed network, and (b) holds since we find the normal

node 𝑖 with minimum Δ𝑖,𝑘/|ℛ𝑖𝑘 ∩ 𝒥𝑘−1|, and (c) can be verified easily.

6.6.6 Proof of Theorem 6.5

We prove by contradiction. Suppose there exists an algorithm with worst-case

approximation ratio lower than 𝑂(log |𝒱𝐴|), then applying this algorithm to the

networks that can be viewed as instances of the Set Cover problem (for example

Fig. 6-9) guarantees that the approximation ratio is lower than 𝑂(log |𝒱𝐴|) where

|𝒱𝐴| in the Set Cover instance is the number of elements. This contradicts to the

well-known inapproximability result of the Set Cover problem [121], which states

that there is no polynomial-time algorithm with a worst-case approximation ratio

lower than 𝑂(log |𝒱𝐴|).

213

214

Chapter 7

Concluding Remarks

In this thesis, we build upon the previous research on network overload and obtain

novel results that deepen the understanding in this research topic, in terms of (i)

proposing optimal network policies to minimize queueing delay, balance the queue

overload over network nodes, and guarantee queue stability so that network overload

is avoided, and (ii) quantifying the capability of network adversaries inducing network

overload via routing attacks given static or dynamic routing policies. Our work

extends the models and methods to more diverse scenarios in real-world networks

including multi-stage structures for delay minimization, bounded node buffers when

investigating overload balancing and network stabilization, and the impact of routing

attacks on inducing network overload.

In Chapter 2, we study link rate control for queueing delay minimization in

overloaded networks. Leveraging the fluid queueing model, we show that any static

rate-proportional policy, which guarantees identical ratios between the ingress and

egress rates of all the nodes at each layer, minimizes the average delay 𝐷̄avg and

the maximum ingress delay 𝐷̄max in general single-hop and multi-stage networks.

We further extend the result to the queue-proportional policies which can achieve

asymptotically minimum delay based on real-time queue information agnostic of

packet arrival rates. We evaluate the performance of our proposed policies under

different network settings, validate their min-delay property, and demonstrate their

superiority in delay reduction compared with the backpressure policy and the

215

max-link-rate policy. We finally discuss the extensions of the main results in practice

and in theory.

In Chapter 3, we study overload balancing in single-hop networks with bounded

buffers. We show that bounded buffer affects the resulting policy to achieve most

balanced overload. We leverage ordinary differential equations to model the queue

dynamics in bounded buffer systems. We first prove that setting link service rates

to minimize the quadratic sum of the queue overload rates leads to the lexicographic

minimum queue overload. Based on this result, we prove that a maxweight scheduling

and backpressure policy asymptotically achieves most balanced overload, through a

novel formulation of the policy in a differentiable form which may be of independent

interest. We further propose a distributed maxweight + backpressure policy that

can reduce communication overhead by one order of magnitude. We validate the

performance of our proposed policies by simulation over single-hop structure and

Clos networks under different packet arrival rates, link capacities, and buffer settings.

In Chapter 4, we leverage the ODE fluid-queue model to capture the dynamics

of buffered communication systems to study network stability. For single-commodity

systems, we propose a sufficient condition for a local policy to stabilize the network.

The result characterizes a set of policies, and captures systems with arbitrary buffers.

For such policies the network stability problem is reduced to an problem testing the

existence of an equilibrium point for the ODE system. For multi-commodity systems,

we extend the condition by incorporating an additional condition on the coupling level

between different commodities, and explain the existence of an equilibrium point in

different buffer settings. We finally extend the results in multi-commodity networks

to a more explicit rule of thumb of policy design that facilitates network stability in

real-world networks.

In Chapter 5, we quantify the threat of routing attacks on causing network

overload. We investigate the optimal routing attacks for no-loss throughput

minimization and loss maximization. We demonstrate that the no-loss throughput

can be minimized in polynomial time in general multi-hop networks. We further

develop a 2-approximation algorithm by only leveraging the downstream information

216

of the adversarial nodes. We establish that loss maximization is NP-complete and

propose two approximation algorithms with guaranteed performance in single-hop

networks. Moreover, we address the adversary’s optimal selection of nodes to conduct

routing attacks and propose heuristic algorithms for this NP-complete problem. Our

performance evaluation showcases the near-optimal performance of the proposed

algorithms across a wide range of network settings.

In Chapter 6, we investigate the ability of malicious routing to induce overload,

given that the network can dynamically adjust the routing policies at normal nodes.

We prove the equivalence of maximizing the throughput loss and minimizing the

minimum s-d cut value of the network, and prove the NP-hardness of the problem. We

develop polynomial-time algorithms with performance guarantee when the adversarial

nodes are in a chain or a parallel structure. We further extend the proposed algorithms

to adversarial nodes that are in a general structure. We validate that the proposed

algorithms are near-optimal in most network instances under a wide range of network

settings that cover different network topologies, link capacities, and adversarial node

sets. Future directions include investigating the cases where normal nodes do not

always implement the optimal routing policies in response to the routing attack, and

the network adversaries may not have knowledge of the routing patterns at the normal

nodes.

We list multiple future directions that may further broaden and deepen the

understanding of network overload in real-world network infrastructures. In terms

of queueing delay minimization, we envision promising directions including proving

sufficient and necessary conditions on rate control in general multi-stage networks,

extending the min-delay policies to multi-hop networks, and implementing the

proposed min-delay policies in real data center networks. In terms of overload

balancing, one typical future direction is to extend the algorithms and theoretical

analysis to general multi-hop networks with arbitrary settings of node buffers. In

terms of network stability, the proof of necessary conditions of network policies

to stabilize the networks with bounded node buffers is an unsolved question. In

terms of cyberattacks on network overload, future directions include deriving the

217

performance guarantee of loss maximization in multi-hop networks given the static

routing policies, and quantifying the risk of routing attacks and other cyberattacks on

inducing network overload when the adversaries do not have access to the complete

knowledge of routing policies in the networks, for example inferring the routing

policies of network nodes based on their historical behaviors.

218

Bibliography

[1] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead,
Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano,
et al. Jupiter rising: A decade of clos topologies and centralized control
in google’s datacenter network. ACM SIGCOMM computer communication
review, 45(4):183–197, 2015.

[2] Long Bao Le, Eytan Modiano, and Ness B Shroff. Optimal control of wireless
networks with finite buffers. In 2010 Proceedings IEEE INFOCOM, pages 1–9.
IEEE, 2010.

[3] Leonidas Georgiadis and Leandros Tassiulas. Optimal overload response in
sensor networks. IEEE Transactions on Information Theory, 52(6):2684–2696,
2006.

[4] Devavrat Shah and Damon Wischik. Fluid models of congestion collapse in
overloaded switched networks. Queueing Systems, 69(2):121, 2011.

[5] Ohad Perry and Ward Whitt. Chattering and congestion collapse in an overload
switching control. Stochastic Systems, 6(1):132–210, 2016.

[6] VJ Venkataramanan and Xiaojun Lin. On the queue-overflow probability of
wireless systems: A new approach combining large deviations with lyapunov
functions. IEEE transactions on information theory, 59(10):6367–6392, 2013.

[7] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian Wu, Priyaranjan Jha,
Mosharaf Chowdhury, and Amin Vahdat. Aequitas: admission control for
performance-critical rpcs in datacenters. In Proceedings of the ACM SIGCOMM
2022 Conference, pages 1–18, 2022.

[8] Carri W Chan, Mor Armony, and Nicholas Bambos. Fairness in overloaded
parallel queues. arXiv preprint arXiv:1011.1237, 2010.

[9] openai. Ai and compute, 2018.

[10] Anny Xijia Zheng, Jianan Zhang, Rui Wang, and Leon Poutievski. How traffic
analytics shapes traffic engineering, topology engineering, and capacity planning
of jupiter. In 2023 Optical Fiber Communications Conference and Exhibition
(OFC), pages 1–3. IEEE, 2023.

219

[11] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[12] Hitesh Ballani, Paolo Costa, Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn
Thomsen, and Hugh Williams. Bridging the last mile for optical switching
in data centers. In Optical Fiber Communication Conference, pages W1C–3.
Optica Publishing Group, 2018.

[13] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. Understanding host network stack overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 65–77, 2021.

[14] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
et al. Jupiter evolving: Transforming google’s datacenter network via optical
circuit switches and software-defined networking. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 66–85, 2022.

[15] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George
Papen, Alex C Snoeren, and George Porter. Rotornet: A scalable,
low-complexity, optical datacenter network. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 267–280,
2017.

[16] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen,
et al. Sirius: A flat datacenter network with nanosecond optical switching.
In Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 782–797, 2020.

[17] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. ACM SIGCOMM computer
communication review, 38(4):63–74, 2008.

[18] Xinzhe Fu and Eytan Modiano. Fundamental limits of volume-based network
dos attacks. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(3):1–36, 2019.

[19] Xinzhe Fu and Eytan Modiano. Network interdiction using adversarial
traffic flows. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 1765–1773. IEEE, 2019.

220

[20] Pavlos Sermpezis, Vasileios Kotronis, Alberto Dainotti, and Xenofontas
Dimitropoulos. A survey among network operators on bgp prefix hijacking.
ACM SIGCOMM Computer Communication Review, 48(1):64–69, 2018.

[21] Bahaa Al-Musawi, Philip Branch, and Grenville Armitage. Bgp anomaly
detection techniques: A survey. IEEE Communications Surveys & Tutorials,
19(1):377–396, 2016.

[22] Leandros Tassiulas and Anthony Ephremides. Stability properties of
constrained queueing systems and scheduling policies for maximum throughput
in multihop radio networks. In 29th IEEE Conference on Decision and Control,
pages 2130–2132. IEEE, 1990.

[23] Chih-ping Li and Eytan Modiano. Receiver-based flow control for networks in
overload. IEEE/ACM Transactions on Networking, 23(2):616–630, 2014.

[24] Michael J Neely, Eytan Modiano, and Chih-Ping Li. Fairness and optimal
stochastic control for heterogeneous networks. IEEE/ACM Transactions On
Networking, 16(2):396–409, 2008.

[25] Longbo Huang, Scott Moeller, Michael J Neely, and Bhaskar Krishnamachari.
Lifo-backpressure achieves near-optimal utility-delay tradeoff. IEEE/ACM
Transactions On Networking, 21(3):831–844, 2012.

[26] Hao Yu and Michael J Neely. A new backpressure algorithm for joint rate control
and routing with vanishing utility optimality gaps and finite queue lengths.
IEEE/ACM Transactions on Networking, 26(4):1605–1618, 2018.

[27] Ying Cui, Edmund M Yeh, and Ran Liu. Enhancing the delay performance
of dynamic backpressure algorithms. IEEE/ACM Transactions on Networking,
24(2):954–967, 2015.

[28] Majed Alresaini, Kwame-Lante Wright, Bhaskar Krishnamachari, and Michael J
Neely. Backpressure delay enhancement for encounter-based mobile networks
while sustaining throughput optimality. IEEE/ACM Transactions on
Networking, 24(2):1196–1208, 2015.

[29] Chih-ping Li, Georgios S Paschos, Leandros Tassiulas, and Eytan Modiano.
Dynamic overload balancing in server farms. In 2014 IFIP Networking
Conference, pages 1–9. IEEE, 2014.

[30] Chenhao Qu, Rodrigo Neves Calheiros, and Rajkumar Buyya. Mitigating
impact of short-term overload on multi-cloud web applications through
geographical load balancing. concurrency and computation: practice and
experience, 29(12):e4126, 2017.

[31] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh,
and Adam Belay. Overload control for 𝜇s-scale rpcs with breakwater. In

221

Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation, pages 299–314, 2020.

[32] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and
Laurent Vanbever. Abm: Active buffer management in datacenters. In
Proceedings of the ACM SIGCOMM 2022 Conference, pages 36–52, 2022.

[33] Giacomo Como, Ketan Savla, Daron Acemoglu, Munther A Dahleh, and Emilio
Frazzoli. Robust distributed routing in dynamical networks—part i: Locally
responsive policies and weak resilience. IEEE Transactions on Automatic
Control, 58(2):317–332, 2012.

[34] Liang Tian, Amir Bashan, Da-Ning Shi, and Yang-Yu Liu. Articulation points
in complex networks. Nature communications, 8(1):1–9, 2017.

[35] Johann Schlamp, Ralph Holz, Quentin Jacquemart, Georg Carle, and Ernst W
Biersack. Heap: reliable assessment of bgp hijacking attacks. IEEE Journal on
Selected Areas in Communications, 34(6):1849–1861, 2016.

[36] Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Alberto Dainotti, and Phillipa
Gill. Bgp hijacking classification. In 2019 Network Traffic Measurement and
Analysis Conference (TMA), pages 25–32. IEEE, 2019.

[37] Seyyit Alper Sert, Adnan Yazıcı, and Ahmet Cosar. Impacts of routing
attacks on surveillance wireless sensor networks. In 2015 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 910–915.
IEEE, 2015.

[38] Yubo Song, Shang Gao, Aiqun Hu, and Bin Xiao. Novel attacks in ospf
networks to poison routing table. In 2017 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2017.

[39] Xinyu Wu, Dan Wu, and Eytan Modiano. Queueing delay minimization in
overloaded networks via rate control. In 2022 58th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 1–8. IEEE, 2022.

[40] Yin Sun, C Emre Koksal, and Ness B Shroff. On delay-optimal scheduling in
queueing systems with replications. arXiv preprint arXiv:1603.07322, 2016.

[41] Sanjeewa Athuraliya, Victor H Li, Steven H Low, and Qinghe Yin. Rem: Active
queue management. In Teletraffic Science and Engineering, volume 4, pages
817–828. Elsevier, 2001.

[42] Rene L Cruz. A calculus for network delay. i. network elements in isolation.
IEEE Transactions on information theory, 37(1):114–131, 1991.

[43] Achieving data center networking efficiency. https://network.nvidia.com/
related-docs/whitepapers/WT-PPR-DC-network-efficiency-WEB.pdf.

222

[44] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Mike Ryan, David J. Wetherall, and Amin Vahdat. Swift: Delay is simple
and effective for congestion control in the datacenter. 2020.

[45] Broadcom smart-buffer technology in data center switches for cost-effective
performance scaling of cloud applications. https://docs.broadcom.com/doc/
12358325.

[46] Bo Ji, Changhee Joo, and Ness B Shroff. Delay-based back-pressure scheduling
in multihop wireless networks. IEEE/ACM Transactions on Networking,
21(5):1539–1552, 2012.

[47] Michael J Neely. Delay-based network utility maximization. IEEE/ACM
Transactions on Networking, 21(1):41–54, 2012.

[48] Dimitri Bertsekas and Robert Gallager. Data networks. Athena Scientific, 2021.

[49] Ping-Chun Hsieh, I Hou, Xi Liu, et al. Delay-optimal scheduling for queueing
systems with switching overhead. arXiv preprint arXiv:1701.03831, 2017.

[50] Xin Liu and Lei Ying. On achieving zero delay with power-of-d-choices
load balancing. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 297–305. IEEE, 2018.

[51] Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and
Rayadurgam Srikant. Delay asymptotics and bounds for multi-task parallel
jobs. ACM SIGMETRICS Performance Evaluation Review, 46(3):2–7, 2019.

[52] Wentao Weng and Weina Wang. Achieving zero asymptotic queueing delay
for parallel jobs. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4(3):1–36, 2020.

[53] Atilla Eryilmaz, Asuman Ozdaglar, Muriel Médard, and Ebad Ahmed. On the
delay and throughput gains of coding in unreliable networks. IEEE Transactions
on Information Theory, 54(12):5511–5524, 2008.

[54] Leonard Kleinrock. Communication nets: Stochastic message flow and delay.
Courier Corporation, 2007.

[55] Joseph Pang and R Donaldson. Approximate delay analysis and results for
asymmetric token-passing and polling networks. IEEE journal on selected areas
in communications, 4(6):783–793, 1986.

[56] Hideaki Takagi. Queuing analysis of polling models. ACM Computing Surveys
(CSUR), 20(1):5–28, 1988.

[57] Eytan Modiano, Jeffrey E Wieselthier, and Anthony Ephremides. A simple
analysis of average queueing delay in tree networks. IEEE Transactions on
Information Theory, 42(2):660–664, 1996.

223

[58] Li Xia and Basem Shihada. A jackson network model and threshold policy for
joint optimization of energy and delay in multi-hop wireless networks. European
Journal of Operational Research, 242(3):778–787, 2015.

[59] Leonidas Georgiadis, Michael J Neely, and Leandros Tassiulas. Resource
allocation and cross-layer control in wireless networks. Now Publishers Inc,
2006.

[60] Xiaoyu Zhao, Wei Chen, Joohyun Lee, and Ness B Shroff. Delay-optimal and
energy-efficient communications with markovian arrivals. IEEE Transactions
on Communications, 68(3):1508–1523, 2019.

[61] Rajat Talak and Eytan H Modiano. Age-delay tradeoffs in queueing systems.
IEEE Transactions on Information Theory, 67(3):1743–1758, 2020.

[62] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. Bbr: congestion-based congestion control. Communications of
the ACM, 60(2):58–66, 2017.

[63] Valeria Cardellini, Michele Colajanni, and Philip S Yu. Dynamic load balancing
on web-server systems. IEEE Internet computing, 3(3):28–39, 1999.

[64] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma. Performance analysis
of load balancing algorithms. World academy of science, engineering and
technology, 38(3):269–272, 2008.

[65] Patrick Eschenfeldt and David Gamarnik. Join the shortest queue with many
servers. the heavy-traffic asymptotics. Mathematics of Operations Research,
43(3):867–886, 2018.

[66] Xin Liu and Lei Ying. Steady-state analysis of load-balancing algorithms in the
sub-halfin–whitt regime. Journal of Applied Probability, 57(2):578–596, 2020.

[67] Rajeev Kumar and Tanya Prashar. Performance analysis of load balancing
algorithms in cloud computing. International journal of computer Applications,
120(7), 2015.

[68] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. Maglev: A fast and reliable software network load
balancer. In 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16), pages 523–535, 2016.

[69] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks,
volume 2. Prentice-Hall International New Jersey, 1992.

[70] Bozidar Radunovic and Jean-Yves Le Boudec. A unified framework for
max-min and min-max fairness with applications. IEEE/ACM Transactions
on networking, 15(5):1073–1083, 2007.

224

[71] Paolo Giaccone, Emilio Leonardi, and Devavrat Shah. Throughput region
of finite-buffered networks. IEEE Transactions on Parallel and Distributed
Systems, 18(2):251–263, 2007.

[72] Juniper qfx5210 switch. https://www.juniper.net/us/en/products/
switches/qfx-series/qfx5210-switch-datasheet.html.

[73] Asaf Baron, Ran Ginosar, and Isaac Keslassy. The capacity allocation paradox.
In IEEE INFOCOM 2009, pages 1359–1367. IEEE, 2009.

[74] Ching-Min Lien, Cheng-Shang Chang, Jay Cheng, and Duan-Shin Lee.
Maximizing throughput in wireless networks with finite internal buffers. In
2011 Proceedings IEEE INFOCOM, pages 2345–2353. IEEE, 2011.

[75] Jim G Dai. On positive harris recurrence of multiclass queueing networks: a
unified approach via fluid limit models. The Annals of Applied Probability,
pages 49–77, 1995.

[76] Jim G Dai and Wuqin Lin. Maximum pressure policies in stochastic processing
networks. Operations Research, 53(2):197–218, 2005.

[77] Mihalis G Markakis, Eytan Modiano, and John N Tsitsiklis. Delay analysis
of the max-weight policy under heavy-tailed traffic via fluid approximations.
Mathematics of Operations Research, 43(2):460–493, 2018.

[78] Vishal Misra, Wei-Bo Gong, and Don Towsley. Stochastic differential
equation modeling and analysis of tcp-windowsize behavior. In Proceedings
of PERFORMANCE, volume 99, 1999.

[79] Yu Gu, Yong Liu, and Don Towsley. On integrating fluid models with packet
simulation. In IEEE INFOCOM 2004, volume 4, pages 2856–2866. IEEE, 2004.

[80] Yixin Sun, Maria Apostolaki, Henry Birge-Lee, Laurent Vanbever, Jennifer
Rexford, Mung Chiang, and Prateek Mittal. Securing internet applications
from routing attacks. Communications of the ACM, 64(6):86–96, 2021.

[81] Steve Mansfield-Devine. Ddos goes mainstream: how headline-grabbing attacks
could make this threat an organisation’s biggest nightmare. Network Security,
2016(11):7–13, 2016.

[82] Securing. Securing internet applications from routing attacks, 2021.

[83] Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jianping Wu. Detecting
prefix hijackings in the internet with argus. In Proceedings of the 2012 Internet
Measurement Conference, pages 15–28, 2012.

[84] Gabi Nakibly, Alex Kirshon, Dima Gonikman, and Dan Boneh. Persistent ospf
attacks. In NDSS, 2012.

225

[85] Ankur O Bang, Udai Pratap Rao, Pallavi Kaliyar, and Mauro Conti.
Assessment of routing attacks and mitigation techniques with rpl control
messages: A survey. ACM Computing Surveys (CSUR), 55(2):1–36, 2022.

[86] Anja Feldmann, Philipp Heyder, Michael Kreutzer, Stefan Schmid, Jean-Pierre
Seifert, Haya Shulman, Kashyap Thimmaraju, Michael Waidner, and Jens
Sieberg. Netco: Reliable routing with unreliable routers. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop (DSN-W), pages 128–135. IEEE, 2016.

[87] Chengjun Wang, Baokang Zhao, Wanrong Yu, Chunqing Wu, and Zhenghu
Gong. Routing algorithm based on nash equilibrium against malicious attacks
for dtn congestion control. In International Conference on Availability,
Reliability, and Security, pages 488–500. Springer, 2012.

[88] Hyongju Park and Seth Hutchinson. Worst-case performance of rendezvous
networks in the presence of adversarial nodes. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5579–5585. IEEE, 2013.

[89] Andrew D Ferguson, Steve D Gribble, Chi-Yao Hong, Charles Edwin Killian,
Waqar Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh,
Lorenzo Vicisano, et al. Orion: Google’s software-defined networking control
plane. In NSDI, pages 83–98, 2021.

[90] Xinyu Wu, Dan Wu, and Eytan Modiano. Overload balancing in single-hop
networks with bounded buffers. In 2022 IFIP Networking Conference (IFIP
Networking), pages 1–9. IEEE, 2022.

[91] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C Mogul, and Amin
Vahdat. Minimal rewiring: Efficient live expansion for clos data center networks.
In NSDI, pages 221–234, 2019.

[92] Mingyang Zhang, Jianan Zhang, Rui Wang, Ramesh Govindan,
Jeffrey C Mogul, and Amin Vahdat. Gemini: Practical reconfigurable
datacenter networks with topology and traffic engineering. arXiv preprint
arXiv:2110.08374, 2021.

[93] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis
Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastictree:
Saving energy in data center networks. In Nsdi, volume 10, pages 249–264,
2010.

[94] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers, 100(10):892–901, 1985.

[95] Brian Lebiednik, Aman Mangal, and Niharika Tiwari. A survey and evaluation
of data center network topologies. arXiv preprint arXiv:1605.01701, 2016.

226

[96] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao
Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. {TopoOpt}:
Co-optimizing network topology and parallelization strategy for distributed
training jobs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 739–767, 2023.

[97] Michael J Neely. Stability and capacity regions or discrete time queueing
networks. arXiv preprint arXiv:1003.3396, 2010.

[98] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. Detail: Reducing the flow completion time tail in datacenter networks.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication, pages
139–150, 2012.

[99] NM Mosharaf Kabir Chowdhury. Coflow: A networking abstraction for
distributed data-parallel applications. University of California, Berkeley, 2015.

[100] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. Numfabric: Fast and flexible
bandwidth allocation in datacenters. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 188–201, 2016.

[101] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn
Carlin, Mihai Amarandei-Stavila, et al. Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages 1–14,
2015.

[102] Michael J Neely. Stochastic network optimization with application to
communication and queueing systems. Synthesis Lectures on Communication
Networks, 3(1):1–211, 2010.

[103] Rui Zhang-Shen and Nick McKeown. Designing a predictable internet
backbone with valiant load-balancing. In Quality of Service–IWQoS 2005: 13th
International Workshop, IWQoS 2005, Passau, Germany, June 21-23, 2005.
Proceedings 13, pages 178–192. Springer, 2005.

[104] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages
123–137, 2015.

[105] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
High-resolution measurement of data center microbursts. In Proceedings of
the 2017 Internet Measurement Conference, pages 78–85, 2017.

227

[106] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu,
et al. B4: Experience with a globally-deployed software defined wan. ACM
SIGCOMM Computer Communication Review, 43(4):3–14, 2013.

[107] Paul Dupuis, Kevin Leder, and Hui Wang. Importance sampling for
weighted-serve-the-longest-queue. Mathematics of Operations Research,
34(3):642–660, 2009.

[108] Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

[109] Chi-Kwong Li and Fuzhen Zhang. Eigenvalue continuity and ger∖v {s} gorin’s
theorem. arXiv preprint arXiv:1912.05001, 2019.

[110] Wladyslaw Kulpa. The poincaré-miranda theorem. The American Mathematical
Monthly, 104(6):545–550, 1997.

[111] David G Feingold, Richard S Varga, et al. Block diagonally dominant matrices
and generalizations of the gerschgorin circle theorem. Pacific Journal of
Mathematics, 12(4):1241–1250, 1962.

[112] Carl D Meyer. Matrix analysis and applied linear algebra, Chapter 8, volume 71.
Siam, 2000.

[113] Michael Charles Irwin. Smooth dynamical systems, volume 17. World Scientific,
2001.

[114] Giacomo Como, Ketan Savla, Daron Acemoglu, Munther A Dahleh, and Emilio
Frazzoli. Robust distributed routing in dynamical networks–part ii: Strong
resilience, equilibrium selection and cascaded failures. IEEE Transactions on
Automatic Control, 58(2):333–348, 2012.

[115] Anderson Santos da Silva, Juliano Araujo Wickboldt, Lisandro Zambenedetti
Granville, and Alberto Schaeffer-Filho. Atlantic: A framework for anomaly
traffic detection, classification, and mitigation in sdn. In NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium, pages 27–35.
IEEE, 2016.

[116] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski,
Arjun Singh, and Amin Vahdat. Wcmp: Weighted cost multipathing for
improved fairness in data centers. In Proceedings of the Ninth European
Conference on Computer Systems, pages 1–14, 2014.

[117] Douglas S Altner, Özlem Ergun, and Nelson A Uhan. The maximum
flow network interdiction problem: valid inequalities, integrality gaps, and
approximability. Operations Research Letters, 38(1):33–38, 2010.

228

[118] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella. On
the impact of packet spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM, pages 2130–2138. IEEE, 2013.

[119] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM),
19(2):248–264, 1972.

[120] David R Karger. Global min-cuts in rnc, and other ramifications of a simple
min-cut algorithm. In Soda, volume 93, pages 21–30. Citeseer, 1993.

[121] Erika Melder. A chronology of set cover inapproximability results. arXiv
preprint arXiv:2111.08100, 2021.

229

