-1-

THE COMPLEXITY OF DECISION PROBLEMS
IN AUTOMATA THEORY AND LOGIC

by
Larry Joseph Stockmeyer
S.B., Massachusetts Institute of Technology
(1972)

S.M., Massachusetts Institute of Technology
(1972)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1974

Signature of Author ®veovweweowsyw lI.'l.'l'.’....‘..‘...l. 00 6000 00 0000
Department of Electrical Engineering, June 25, 1974

Certified by
Thesis Supervisor

Accepted by

.................. Je o e o0 oo

Chairman, Departmeﬁtal Committee on Graduate Students

ihﬁJﬁﬂ'may

0CT 21 1974

I -

2=

THE COMPLEXITY OF DECISION PROBLEMS
IN AUTOMATA THEORY AND LOGIC

by
Larry Joseph Stockmeyer

Submitted to the Department of Electrical Engineering on
June 28, 1974 in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy.

ABSTRACT

The inherent computational complexity of a variety of decision
problems in mathematical logic and the theory of automata is analyzed
in terms of Turing machine time and space and in terms of the complexity
of Boolean networks.,

The problem of deciding whether a star-free expression (a variation
of the regular expressions of Kleene used to describe languages accepted
by finite automata) defines the empty set is shown to require time and
space exceeding any composition of functions exponential in the length
of expressions, In particular, this decision problem is not elementary-
recursive in the sense of Kalmar.

The emptiness problem can be reduced efficiently to decision
problems for truth or satisfiability of sentences in the first order
monadic theory of (N,<), the first order theory of linear orders, and
the first order theory of two successors and prefix, among others., It
follows that the decision problems for these theories are also not
elementary~-recursive,

The number of Boolean operations and hence the size of logical
circuits required to cdecide truth in several familiar logical theories
of sentences only a few hundred characters long is shown to exceed the
number of protons required to fill the known universe.

The methods of proof are analogous to the arithmetizations and
reducibility arguments of recursive function theory.

Keywords: computational complexity, decision procedure
star-free, Turing machine

AMS (MOS) Subject Classification Scheme (1970)

primary 68A20, 02G05
secondary 68A40, 94A20

THESIS SUPERVISOR: Albert R. Meyer
TITLE: Associate Professor of Electrical Engineering

Acknowledgement

I am indebted to Albert R. Meyer for his guidance and
inspiration throughout my graduate studies, both as teacher and
as supervisor and companion in research. Much of the work
contained here is built on his previous work and was motivated by

his suggestions of promising directions for further research.

Michael J. Fischer contributed to several discussions

concerning this work, and his interest is appreciated.

Financial suppert was provided by a National Science

Foundation Graduate Fellowship and by NSF grant GJ=34671,

Table of Contents

Introduction

The Model of Computation
2,1 The Basic Model
2,2 A Technically Useful Model

Efficient Reducibility
3.1 Definitions
3.2 Applications to Complexity Bounds
3.3 Other Applications

Regular-Like Expressions
4.1 Expressions With Squaring
4,2 Expressions With Complementation
4,3 Expressions With Intersection

4,4 Expressions Over a One-Letter Alphabet
Nonelementary Logical Theories

Complexity of Finite Problems
6.1 Second Order Theory of Successor

6.2 First Order Integer Arithmetic
Conclusion
Bibliography
Appendix I. Notation

Appendix II. Some Properties of logspace

17
18
34

41
42
46
53

67
79
103
147
157

161

179
186
205

Figure

Figure

Figure

Figure

Figure

4.1:

6.1:

6.2:

6.3:

6.4:

List of Figures

E2 "matches'" a word w
P, B, and d

Illustrating the proof
of Lemma 6.,5.2 (i) and (ii)

I and J "code" a circuit

The circuit C0

82

194

196

198

204

6=

Chapter 1, Introduction

One major goal of computational complexity is to achieve the
ability to characterize precisely the amount of computational resource
needed to solve given computational problems or classes of problems.
Two important kinds of computational resource are time and space,
respectively the number of basic computational steps and the amount
of memory used in solvirng the problem. The complexity of a particulor
problem can be characterized by upper and lower bounds on computational
resources sufficient to solve the problem.

Upper bounds are usually established by exhibiting a specific
algorithm which solves the problem and whose time and/or space
complexity can be bounded from above., Much progress has been made
on this positive side of the complexity question. ' Many clever and
efficient algorithms have been devised for performing a wide variety

of computational tasks (cf. D.E. Knuth, The Art of Computer Programming).

However the progress made on the negative side of the question has
been less striking. In order to establish a lower bound on the complexity
of a particular problem, one must show that some minimum amount of
resource (time or space) is always required no matter which of the
infinitely many possible algorithms is used or how cleverly one writes
the algorithm to solve the problem. It is this latter side of the
complexity question which we address in this thesis. Although lower
bound results are negative in nature, they have the value that they

enable one to cease looking for efficient algorithms when none exist.

Also, the exhibition of specific problems or classes of problems
which are provably difficult may give insight into the "reasons" for
their difficulty, and these ''reasons' and proofs of difficulty may
provide clues for reformulating the problems so that in revised form
they become tractable.

Let us now sketch a bit more precisely what we mean by ''computational
problem'" and "algorithm"f. Many computational problems can be viewed
as problems of function evaluation. In particular, consider functions
mapping strings of symbols to strings of symbols. As a concept of
"algorithm" we could choose any one of a variety of universal computer
models. For definiteness we choose the well=-known Turing machine
model,

A Turing machine M computes the function f if M, when started
with any string x on its tape, eventually halts with f(x) on its tape.
The time and space used by M on input x are respectively the number of
basic steps executed and the number of tape squares visited by M before
halting when started on input x. In general, the time and space will
vary depending on the particular input x. One simplification which is
commonly made is to measure the time and space solely as a function of
the length of the input string.

Note that some functions can be complex for a reason which sheds
little light on thte question of inherent difficulty; namely, a function

can be computed no faster than the time required to print the value of

fComplete definitions appear in the main text.

the function. For example, consider the function which, for any
positive integer m, maps the binary representation of m to the binary
representation of 2", Any algorithm which computes this function
uses at least 2" steps on many inputs of length n for all n, these
steps being required to print the answer consisting of a one followed
by as many as 2"-1 zeroes.

We avoid these cases by considering only functions whose value
is always O or 1. The problem of computing such a 0-1 valued function
f can be viewed as the problem of recognizing the set of inputs which
f maps to 1. For example, we may wish to recognize the set of all
strings which code true sentences of some decidable logical theory.
When such a ''set recognition' or ''decision' problem is shown to
require time 2" on inputs of length n for infinitely many n, we conclude
that there is something inherently complex about the set itself; that is,
2" steps must be spent in deciding what to answer, not in printing
the answer,

Some information is known concerning the complexity of set
recognition problems. There are known to be sets whose recognition
problems are recursive yet "arbitrarily" complex [Rab60]. Let T(n)
and S(n) be any recursive functions from positive integers to positive
integers. Well-known diagonalization arguments imply the existence
of a recursive set Ahard such that any algorithm recognizing Ahard
requires at least time T(n) and space S(n) on all inputs of length n

for all sufficiently large n.

~10-

It is also possible to construct arbitrarily difficult recursive
problems by considering '"bounded" versions of undecidable problems,

The "bound" implies decidability, but the problem can be made arbi-
trarily complex by making the "bound'" arbitrarily large. TFor example,
Blum [B166] and Jeroslow [Jer72] consider a bounded version of the
halting problem, and Ehrenfeucht [Ehr72] considers a bounded version of
the first order theory of integer arithmetic.

One might animadvert that sets such as Ahard above are not 'matural"
in the sense that they were explicitly constructed to be difficult to
recognize. Informally, by 'matural" computational problem we mean one
which has arisen previously in the mathematical literature (excluding
complexity theory); for example, decision problems drawn from logic
and automata theory, word problems in algebra, etc.

Under even this weak view of "natural", there are few examples
of natural recursive set recognition problems whose time complexity has
been shown to necessarily grow faster than linearly in the length of
the input. Excluding 'diagonalization'" and "bounded undecidable"
problems, then prior to the research described here (and related
work by Meyer [Mey73], Fischer and Rabin [FR74], and Hunt [Hun73b])
we know of no examples of natural recursive set recognition problems
whose time complexity had been shown to necessarily grow more than
polynomially or whose space complexity had been shown to grow more than
linearly in the length of the input.

We now outline the remainder of this thesis. Chapters 2 and

-lla

3 are devoted mainly to definitions of key concepts and descriptions
of the technical machinery to be used in proving the results of
Chapters 4 and 5. Chapter 2 defines our formal model of "algorithm"
for set recognition and function computation. This model is a slight
variant of the well-known Turing machine, Known facts concerning the
model which are relevant to the sequel are also stated.

Chapter 3 defines the concept of "efficient reducibility". This
concept was first formally defined by Cook [Co7la], though its
significance was emphasized earlier by Meyer and McCreight [MM71].
Speaking informally for the moment, we say that a set A is efficiently
reducible to a set B, written A Seff B, if there is an efficiently
computable function f such that any question of the form "Is x in A?"
has the same answer as the question "Is f£(x) in I'?", Instead of
being precise about what is meant by f being "efficiently computable",
let us for the moment just assume that the time and space required to
compute f is very small compared to the minimum time required to
recognize A or B, Now given an algorithm M which recognizes B, one
can construct an algorithm M' which recognizes A as follows. Given
input x, M' first computes f(x) and then simulates M on input f(x).
Since x € A iff f(x) € B, M' recognizes A correctly. Moreover, the
resources used by M' are roughly the same as those used by M because
the resources used in computing f are negligible. Therefore an upper
bound on the complexity of B implies an upper bound on that of A.

Contrapositively, a lower bound on the complexity of A implies a

- 12-

lower bound on that of B.

In Chapter 4, this reducibility technique is applied to several
specific problems, This chapter deals with problems of recognizing
equivalence of expressions similar to the Kleene regular expressions
of finite automata theory [cf. Har65]. For example, consider regular
expressions which may use, as well as the usual operations U, -, and *,
a new unary operation on sets of words, ''squaring', defined by

32 = S.5, Let Bsq denote the set of all pairs of inequivalent such

expressions.

The major technical portion of most applications of the reducibility
technique involves a proof that any one of a large class of sets is
efficiently reducible to a particular set of interest. We always
choose the large class to be the class of all sets whose time or
space complexity is bounded above by some function or familiar family
of functions such as the polynomial or exponential functions.

In the case of Bsq’ this class, called EXPSPACE, is the class of all
sets recognizable within space which grows at most exponentially in the
length of the input. We show that if A € EXPSPACE then A Seff Bsq'

Now diagonalization arguments imply the existence of a set Ahard in
EXPSPACE which requires exponential space for recognition by any
algorithm, Thus Ahard Seff Bsq and so Bsq also requires exponential
space (and hence also requires exponential time).

Similarly we characterize the space complexity of recognizing
equivalence of regular expressions involving only the operations of

U, », and ~. We also consider other variants such as expressions with

-13-

only U and *, and expressions over a one-letter alphabet,

If the expressions are allowed to use the operation of set
complementation (~), a drastic increase in the complexity of the
equivalence problem results. We show that the equivalence problem forA
"star-free" expressions [cf. MP71] (using only the operatiomns U, °,

and ~) is not elementary-recursive [cf. Pet67]; that is, for no constant

on
L . 2" }“
k is its time or space complexity bounded above by 2 for all
inputs of length n and all n.

Chapter 5 gives several corollaries about the complexities of
decidable theories of formal logic. The equivalence problem for
star-free expressions is efficiently reducible to the decision problems
for several decidable logical theories; thus these decision problems
are not elementary-recursive. Our main corollary states that the first
order theory of any infinite linear order with a single monadic
predicate is not elementary-recursive, 1In particular, we obtain
Meyer's [Mey73] result that the weak monadic second order theory of
successor is not elementary=-recursive.

For convenience, we are content in Chapters 4 and 5 to give a lower
bound on the complexity of a particular set by proving that the resources
used by any algorithm in recognizing the set must exceed the lower bound
on infinitely many inputs. Section 3.3 points out that a given result
can usually be strengthened to state that the lower bound must hold

on some input of length n for all but finitely many n.

-14-

Even so, one might reasonably question the significance of our
results and methods on the grounds that the "difficult" inputs might
be so large as to never occur in practice, This is indeed an important
issue. Closer examination of our proofs can determine the point at
which the lower bounds take effect, though we do not in general
elaborate such results here.

However, in Chapter 6 we investigate two examples in detail,

Our methods do yield astronomical lower bounds on the complexities of
finite decision problems about words of only a few hundred characters.
The notion of '"'algorithm'" used here is Boolean circuits similar to
those studied in [Win65] and [Sav72]. For two logical theories, the
number of Boolean operations required by a circuit which recognizes the
true sentences only a few hundred characters long is shown to exceed
the number of protons required to fill the known universe.

In Chapters 4 and 5 we also give upper bounds on the complexities
of recognizing the particular sets considered. In most cases, the upper
bound given for a set is reasonably close to the proven lower bound.
The verifications of upper bounds involve only standard techniques
from automata theory.

In sunmary, the main contribution of this thesis is the

demonstration that efficient reducibility techniques can be used to

TThe major portion of Chapter 6 can be read independently of

Chapters 2 through 5.

«l5«

prove non-trivial lower bounds on the time, space, or circuit
complexities of certain natural recursive decision problems. The
main technical contribution lies in the various reducibility
constructions and "arithmetizations" of Turing machines and circuits,
These constructions are of an essentially different character than
those commonly found in recursion theory, due to the added condition
that reducibilities must be efficiently computable.

Much of the work presented here was done in collaboration with
Albert R. Meyer, and several results were obtained independently by
others. In the case of multiple discovery, all relevant names are
mentioned with the result. Major results for which no explicit credit

is given are due to the author.

-16=

Chapter 2. The Model of Computation

In order to prove that certain problems require a certain minimum
amount of computational resource no matter how one writes algorithms to
solve the problems, it is essential to have a formal definition of an
algorithm or computer. There are many formulations of the notions of
algorithm which are equivalent in the sense that the functions computable
within any of the formulations are precisely the recursive functionms.

We shall choose our model of computer to be Turing machines [HU69],
partly because this model is well=known and has been the subject of much
previous investigation, but more importantly because its simplicity will
ease the technical task of showing that the model cannot solve certain
problems quickly. It might seem that the simplicity of the model itself
implies its inefficiency and that it would be more realistic to choose
a more powerful formulation such as random access register machines or
iterative arrays [Col69]. However Turing machines can simulate the more
powerful models "efficiently enough' (in a sense to be made precise
shortly) for our purposes, so that if a Turing machine cannot compute
something ''quickly" neither will either of the more powerful models.

In fact, all of the results in this thesis giving upper or lower bounds
on the complexities of particulaf problems remain true without
modification if the Turing machine model is replaced by either of the

more powerful models mentioned above.

-18-

2.1 The Basic Model.

First we assume the reader is familiar with the basic concepts of
set theory and formal language theory. A discussion of the necessary
concepts can be found in the introductory portions of most formal
language theory texts, for example [HU69], [AU72].

In particular, we let gibdenote the set of all words over Z,
including the empty word A; §t denotes the set 2* - (M.

|wl demotes the lemgth of the word w; [A| = 0.

Zk, where k is a nonnegative integer, denotes repeated concatezz-
tion, that is, §E ={ wc¢€ E* | lwl = k.

If o is a symbol, gE denotes the word ¢oc-.-.0 of length k.

Since this notation is commonly used for repeated Cartesian product,
we let .Eff =X XXX XX (k times).

This and other notation is collected in Appendix I.

Our basic model of computation is input/output Turing machines
(I0TM's). IOTM's are multi-tape Turing machines in which the tapes
which handle the input/output processes are separated from the tapes
which serve as memory for the computation. Every IOTM consists of a
finite state control and k + 2 tapes (where k is a positive integer):
an input tape, k work tapes, and an output tape. Single heads scanning
each tape are called respectively the input head (2-way, read-only), the
work heads (2-way, read/write), and the output head (right-moving,

write-only).

We now give precise informal definitions of the IOTM model, its

-19-

computations, the time and space used by a computation, etc. Turing
machines (of which IOTM's are a minor variant) are formally defined in
many standard reference texts (e.g. [HU69]). Since our results are
invariant under the various differences in conventions normally used
in making these definitions, the reader can supply his own formal
definitions by choosing any consistent set of conventions.

One important distinction we must make is the difference between
nondeterministic and deterministic machines. We first define nondeter-
ministic IOTM's; deterministic IOTM's are then defined as a restricted

form of nondeterministic IOTM's. -

A particular nondeterministic IOTM, M, is specified by finite sets

Q (the set of states), I (the input alphabet), ' (the work tape alphabet),
and A (the output” alphabet); a transition function §; and designated
states , € Q (the initial state) and q, € Q (the accept state).

M operates in steps. The action taken at a given step depends on the
current state of the control and the symbols being scanned by the input
and work tape heads. M performs a particular action by changing state,
printing new symbols on the work tapes and possibly on the output tape,

’

and shifting the heads.

We now describe the computations of M on input x € I*. M is
started with the word x written on the input tape with the input head
scanning the leftmost $. ($ ¢ I is an endmarker. Let I' =1 U {($1.)
The control is placed in state EhY and the work and output tapes are
initially blarnk.

The total state of the machine at some step is given by an

-~

instantaneous description (i.d.). An i.d. consists of (1) the state of

the control, (2) the input word x, (3) the position of the input head in
the word x, (4) for each i = 1, 2,---, k, the word wi.E F* written on
the nonblank portion of the ith work tape, (5) for each i such that

wi # N, the position of the ith work head in the word wi’ and (6) the
word written on the nonblank portion of the output tape.

For example, the initial i.d. of M on input x described above is

given by: (1) the initial state; (2) x; (3) the input head is
scanning the Ieétmost symbol $; (4) w, = N for i=1,2,3,"°" k;
(5) @5 (6) A.

If r is an i.d., then display(r) is (q,c,sl,sz,-'-,sk) € QxI'xFXk,
where q is the current state of the control, and 6, Syp "7 sk are the
symbols being scanned by the input head and the k work heads respectively.

The function 8§ maps each element in Q X I' X "k a (possibly
empty) set of moves, A move is of the form

Moo= (q',sl',sz',°",sk',mo,ml,mz,'",mk,p) €QX & [&,E,E}Xk+1

X U N .

If M is currently in a situatiqn described by i.d. r, M may execute
any move in 8(display(r)). M executes move u above as follows: the finite
state control enters state q'; for each i = 1,2,...,k, the ith work head
prints symbol si' and shifts one square in direction m, (Left, right, or
nomove); the input head shifts in direction my3 if p # N\, the output
head prints p and shifts right one square; if p = A, the output head
does mnot print or shift.

If the execution of any move in §(display(r)) causes M to enter

-21-

i.d. r', we say r * r'.

A computation of M on inmput x, ¢, is any sequence of i.d.'s

c = iod.l’ i.d.z’ '." i.d.z Such that:
(L. i.d.1 is the initial i.d. of M on input x,
for all j = 1,2,3,°°°*,4=1,

2). i.d.j M i.d.j+1

3). 6(disp1ay(i.d.z)) = ¢ ; that is, M halts on i.d.z.

The le!Eth Of the Computation c = i.dol’ i.doz, '.', idd'z is ‘z.
The space used by the computation ¢ is the number of work tape
squares visited by heads of M during the computation. It is

technically convenient to make one exception to this definition of

space; namely, if c¢ = i'd'l’ i.d.z, ey, i.d.z and if for all

j = 1,2,3,¢0¢,4, i.d.j describes a situation in which all work tapes
are entirely bl;nk, then the space used by ¢ is defined to be 0.

The output produced by the computation ¢ is the word written on
the nonblank portion of the output tape in i.d.z.

If ¢ = i.d.l, i.d.2, vee, i.d.z as above, and also

display(i.d.,) € {q_} x I' x FXR, then ¢ is an accepting computation

of M on input x. (We assume q, is a halcing state; that is,

6(qa’c’sls""sk) =@ for all o€ 1', Sps®°*sSy €T,

Let AccCompM(x) denote the set of all accepting computations

of M on input x, Note that AccCompM(x) may contain many computations

correSpondihg to the different choices of moves from & taken at each

-22-

step. AccCompM(x) may also be empty if M does not enter state q,

regardless of what choices are made.

*
If x € I and AccCampM(x) # ¢, define
TimeM(x) = min{ £ | there is an accepting computation
c € AccCompM(x) of length £ },
and

SpaceM(x) = min{ m | there is a ¢ € AccCompM(x)

which uses space m }.
We leave TimeM(x) and SpaceM(x) undefined if AccCompM(x) = @.

Nondeterministic IOTM's are a technical construct and do not
correspond to the notion of algorithm in which each step is uniquely
determined. Deterministic IOTM's do correspond to this step-by-step

notion of algorithm.

A deterministic IOTM is a nondeterministic IOTM with the property
that its transition function § maps each element in Q X I' X ka to a
set containing at most one move. Thus the computation of a determinis-
tic IOTM on an input x is uniquely determined (provided that it exists).
Deterministic IOTM's are a special case of nondeterministic IOCTM's; the
definitions of AccCompM(x), TimeM(x), SpaceM(x) given above also define

these concepts for deterministic IOTM's.

IOTM's serve as our model of algorithm for set recognition.

Definition 2.1. Let M be a nondeterministic (or deterministic) IOTM

*
with input alphabet I, and let x € I,
M accepts x iff AccComp,(x) # ¢.

M rejects x 1iff M does not accept x.

Let A & I+. M accepts A iff

M accepts x ©® x €A for all x € I+.

Definition 2.2. Let M be a nondeterministic IOTM, let A S I+,

and let T and S both map N into the nonnegative rational numbers.T
M accepts A within time T(n) (within space S(n)) iff
(1). M accepts A

and
(2). for all but finitely many x € A,

Time, (x) < T(|x|)
(Spacey(x) < S(lx])).

Remark. Note that Definition 2.2 only requires the time and space
used by M to be bounded on almost all inputs x € A, A stronger
definition would require the time and space to be bounded for ;11
inputs x € I+. However if we show, for a certain set A apd functions
T(n) and S(n), that no IOTM accepts A within time T(n) or space S(n)
under the given definition, certainly the same result is true under

the stronger definition.

The particular algorithms we give to verify upper bounds can be

t N denotes the nonnegative integers.

casily modified to satisfy the stronger definition, that is, to halt
within the given resource bound on all inputs.

In particular we require only '"for all but finitely many x" to
emphasize the fact that, with respect to Turing machines, the inherent

complexity of a set is insensitive to finitely many exceptions.

Lemma 2.3. Suppose a nondeterministic (deterministic) IOTM M accepts
A, Let X €A with X finite., Then there are nondeterministic
(deterministic) IOTM's M' and M" which accept A such that:

(1). TimeM,(x) < TimeM(x) for all x € A

and
TimeM,(x) < x| + 2 for all x € X,

(2). SpaceM"(x) < SpaceM(x) for all x €A

and
SpaceM"(x) =0 for all x € X.

Proof sketch. Let G be a finite state acceptor (cf. [HU69]) for X.

(1). M' rums two procedures in parallel. The first procedure
runs G on the input, at the same time copying the input onto the first
work tape. The second procedure simulates M on the input by viewing
the first work tape as the input tape. M' accepts when either procedure

accepts. M' as described requires two heads on the first work tape.

However Fischer, Meyer, and Rosenberg [FMR72] show how to replace
many heads per tape by several single-headed tapes with no time loss.
(2). M" first runs G on the input; blanks are reprinted on the

work tapes at each step. M' accepts if G does, or simulates M on the

input otherwise. -

=25«

Similarly our lower bound results are strengthened by using the
nondeterministic model. If no nondeterministic IOTM can accept
a certain set within time T(n) or space S(mn), then neither can any

deterministic TOTM. We discuss this further below.

IOTM's also serve as our model of function computation.

Definition 2.4. Let M be a deterministic IOTM and f be a total

function, £:1 A*, where I, A are finite alphabets.

M computes f within time T(n) (within space S(n)) iff

%*
for all x €1
(1), AccCompM(x) # ¢ and the (necessarily unique)
c € AcchmpM(x) produces output f(x),
and

(2). TimeM(X) < T(|x|)
(Spacey,(x) < S(|x])).

Our motivation in separating the input/output processes from the
computation process is so that it makes sense to comsider a set being
accepted within space S(n) where S(n) grows more slowly than linearly
in n. The usual convention of writing the input initially on some work
tape requires the machine to use space [x| just to r2ad the entire input
X. Similarly, we may consider a function f being computed within space

S(n) where [f(x)| is much larger than S(|x]).

It is convenient to have notation for certain classes of all sets

which can be accepted within a given resource bound.

Definition 2,5. NTIME(T(n)) (DTIME(T(n)))

={ A I there is a nondeterministic (deterministic)

I0TM which accepts A within time T(n) }.

NSPACE(S(n)) (DSPACE(S(m)))

{ A I there is a nondeterministic (deterministic)
IOTM which accepts A within space S(n) }.
Here the sets A are also assumed to satisfy A < I+' for some
finite alphabet I.
In particular define:

= U DTIME(nk) ; N = U NI‘IME(nk) ;
k €N k €N

10

CSL = NSPACE(n) (= {context semsitive languages}, cf. [HU69]);

POLYSPACE = U NSPACE(nk) ;
k €N

EXPNTIME = U NIIME(e™ ; EXPSPACE = U NSPACE(c") .
c €N c €N

-27=

For a particular set B, a lower bound on the complexity of B will
be given as the statement that B does not belong to some class
NTIME(T(n)) or NSPACE(S(n)) for some particular T(n) or S(m). By
Definitions 2.2 and 2.5, such a statement implies that T(n) or S(m) is
an i.o. (infinitely often) lower bound on the nondeterministic time or
space complexity of B.

If B ¢ NTIME(T(n)) (B ¢ NSPACE(S(n))) and M is a nondeterminis-
tic IOTM which accepts B, then

TimeMu) > T(|x]|)

for infinitely many x € B.
(resp., Spacey(x) > S(|x|))

We now make more precise our earlier statement that the IOTM model
is not restrictive and that our results have genuine significance
independent of which formal notion of algorithm we adopt. In particular,
consider two ''more powerful" models of algorithm: random access machines
(RAM's) [CR72] (see also [SS63]), and d=dimensional iterative arrays

of finite state machines (d=IA's) [Col69].

The time and space of RAM and d-IA computations can reasonably be
defined as follows. The time of a RAM computation is the sum of the
costs of all steps; a step which manipulates (stores, fetches, adds)
numbers of magnitude z is charged cost riog(z+1)7*(this being the

length of the binary representation of integer z). The space of a

fLogarithms with no specified base are taken to base 2.

RAM computation is the sum over all registers of Mog(z+1)1 where z is
the largest integer stored in the register at some step during the
computation, The time of a d-IA computation is the number of steps
executed. The space of a d=-TA computation is the total number of
cells which do not remain quiescent throughout the entire computation.
The fact stated below follows by simulations of the other models

by IOTM's. See for example [CR72] for the simulation of RAM's.,

Fact 2.6, Let A be a set which can be accepted by a nondeterministic
(deterministic) RAM or d-IA within time T(n) and space S(n). Then there
is an integer k such that
A € NTIME((T(n))) and A € NSPACE(S(n))
(A € DTIME((T(n))*) and A € DSPACE(S(n))).

2 for the case of RAM's,

Moreover, we can always choose k

Thus any lower bound on space complexity applies equally well to
either of the more powerful models, Lower bounds on time complexity
may suffer a decrease with respect to the other models, but this
decrease is polynomial bounded which will be negligible in the cases
to be considered. For example, if we show that a set B requires time :
cn (i.o0.) for acceptance by any IOTM, it follows that B requires time

d® (i.o.) for acceptance by any RAM, where d = Vc .

The remainder of section 2.1 gives some known facts and open

29«

questions concerning the classes NTIME, DTIME, NSPACE, DSPACE.
All the particular functions we give bounding time or space

complexity are of a special type defined next,

Definition 2.7. A function T(n) (S(n)) 1is said to be countable

(constructable) iff for any finite I there is a deterministic IOTM

M such that +
T(lx]) for all x €1

TimeM(x)

S(|x|) for all x € 1I').

(SpaceM(x)

The countable and constructable functions are rich classes, The
countable functions include in particular max(nk, n+2), max([c™ 1, n+2),
for all k € N+, c € Q+.T The constructable functions include nk,
™ 1, and (r log n 1)k for all k € N+, c € Q+. Both classes are
closed under addition, multiplication, and composition [Yam62].

The following notation is useful for comparing the growth rates

of functions., Let F(n) and G(n) be functions from Nt to Q+LJ[0],

F(n) 0(G(n)) iff there is a ¢ € Q+ such that

F(n) < c¢+G(n) for all n.

o(G(n)) iff 1lim F(n)/G(m) = O.
n-+e

F(n)

The next fact states that any computation can be "sped=-up'" by any
constant factor. The proof is implicit in [SHL65] and [HS65], (see also

[HU69]). Part (2) also uses the main result in [FMR72],

T Q+ denotes the positive ratiomals, Nt denotes the positive integers.

Fact 2.8. Let c¢ € Q+ be arbitrary.

(1). Given a deterministic IOTM M with input alphabet I which

computes a function f, we can effectively find a deterministic IOTM M'

which computes f such that
SpaceM,(x) < c-SpaceM(x) for all x € I*.
(2). Given a nondeterministic (deterministic) IOTM M which accepts

a set A, we can effectively find nondeterministic (deterministic) IOTM's

M' and M" which accept A such that

TimeM,(x) < max(c-TimeM(x), x| +2) for all x € A

and
SpaceM"(x) < c-SpaceM(x) for all x € A,

(3). Assume n = o(T(n)). Then
A € NTIME(T(n)) = A € NTIME(c°T(n))
and

A € NSPACE(S(n)) = A € NSPACE(c.S(n)).

m

Thus the inherent complexity of a particular problem is insensitive
to constant factors and can at best be determined as an asymptotic
growth rate (expomential, quadratic, etc.). Fact 2.8 is also used
implicitly in several upper bound results. For example, we may describe
an algorithm which accepts a set B within space 17n, and then claim BECSL.

The next fact gives several known relationships among the complexity

classes.

Fact 2.9. Let T(n), S(n) be arbitrary.
A. Nondeterministic versus deterministic time.

(a). DTIME(T(m)) S NTIME(T(n)).

(b). NTIME(T(m)) € U DTIME(cT(n))-

\ CEN

-31-

B. Nondeterministic versus deterministic space.
(a). DSPACE(S(n)) € NSPACE(S(mn)).
(b). NSPACE(S(m)) < DSPACE((S(n))Z).
C. Time versus space.
(a). DTIME(T(n)) < DSPACE(T(n)).
NTIME(T(n)) S NSPACE(T(m)).

(b). NSPACE(S(m)) € U pTME(cS (™), provided logn = 0(S(n)).
c €N

The statements (a) all follow directly from definitions and
constant factor speedup (Fact 2.8). A.(b) follows from the fact that,
if M is nondeterministic and accepts a set within time T(n), AccCompM(x)
contains at most cT(le) computations which could conceivably accept x,
for some ¢ and all x. A deterministic machine can try each of these
computations in sequence and accept the input if any such computation
accepts. B.(b) is proved by Savitch [Sav70]. Note that B.(b) implies
that the definitions of POLYSPACE and EXPSPACE could have been made
equivalently in terms of DSPACE(). C.(b) is true because a space
S(n) bounded IOTM can enter at most cS(le) different i.d.'s when
computing on input x. A complete proof of C.(b) appears in [Co71b].

The ''gaps" between (a) and (b) in each of A, B, and C represent

major open questions of complexity theory.

Open Questions 2.10.

A. (i). 1Is there a class of functions ¥ all of which grow slower than

exponentially for which

NTIME(T(n)) € U DTIME(F(T(n))) ?
FEZF

-32a

(ii). May we take ¥ to be the class of polynomials ?
(iii). In particular, does P = NP ?
B. (i). Does NSPACE(S(n)) = DSPACE(S(mn)) ?
(ii). In particular, does CSL = DSPACE(n) ?
C. (i). 1Is there a class of functions ¥ as in A.(i) above for which

NSPACE(S(n)) € (U DTIME(F(S(n))) ?
F € ?

(ii). May we take ¥ to be the class of polynomials ?

(iii). 1In particular, is CSL € § ?

These open questions are stated to point out that, for most
particular problems we consider, the upper and lower bounds we give are
"tight'" is the sense that any substantiai improvement of either bound
would close the gap implicit in some open question. For example, in
section 4.1 we consider a set B (the set of all regular expressions
over alphabet {0,1} which do not describe {0,1]*) and show B € NSPACE(n)
but B ¢ NSPACE(n") if r < 1. Even though these space bounds are
tight, they do not translate into tight bounds on deterministic time
complexity. The best we can conclude (given present knowledge) is
B € DTIME(d™ for some d € Q' (by Fact 2.9C(b)); but B € DTIME(n")
if r < 1, which is a trivial lower bound on time. However it will be
seen that this gap (dn versus n) is closely related to Open Question 2.10C.
For example, if one succeeds in raising the lower bound, say to c o for
some ¢ > 1, then Open Question 2.10C(iii) would be settled in the negative.
On the other hand, if one shows that B € £, then this question would be

settled in the affirmative. See Remark 4,20 for further discussion of

-33-

the relevance of these open questions to this work.

Finally we give a fact which states that the complexity classes
NTIME(T(n)), NSPACE(S(n)) describe fine complexity hierarchies; that is,
for small increases in the growth rate of T(n) or S(n), new sets can
be accepted that could not be accepted before. The following deep
results, which are used several times in the sequel, are due to
Seiferas, Fischer, and Meyer [SFM73], and are refinements of earlier

work by Ibarra [Ib72] and Cook [Co73].t

Fact 2,11,
(1). Let T2(n) be countable, There is a set A < {0,1}+ such
that A € NTIME(Tz(n)) and for all Tl(n)
T, (ntl) = o(T,(n)) implies A ¢ NTIME(T,(n)).
(2). Let S,(n) be constructable and satisfy logn = 0(5,(n)).
There is a set A S [0,1]+ such that A € NSPACE(Sz(n)) and for
all Sl(n)

Sl(n+1) = o(Sz(n)) implies A ¢ NSPACE(Sl(n)).

Diagonalization arguments give similar hierarchies [SHL65],
[HS65] for the deterministic complexity classes, although the known

time hierarchy is slightly coarser in the deterministic case.

TFact 2,11 is not essential to our proofs, although we shall use it for

convenience. See Remark 4,21 for an alternative to the use of Fact 2,11,

2.2 A Technically Useful Model

Having defined the basic model of algorithm, we now define a
more restricted model called simple Turing machines (STM's). STM's
serve only as a technical tool within the proofs of certain results,
and are used only for set recognition. STM's are similar to IOTM's;
the major differences are the following.

An STM has one tape and one head. The single tape is one-way
infinite to the right and serves as both input tape and work tape. An
STM is started on input x by writing x left justified on the otherwise
blank tape with the head scanning the leftmost symbol of x. The moves
of STM's are similar to those of IOTM's. Any move which shifts the head
off the left end of the tape causes the STM to halt and reject the input.
We also require STM's to have a unique accepting configuration; this
configuration occurs when the control is in a designated state 9> the
entire tape is blank, and the head is scanning the leftmost tape
square. q must be a halting state. Also the STM cannot enter state
q, when computing an a word which is not to be accepted. STM's and

their related computational concepts are now made precise by a series

of definitions.

A (nondeterministic)f STM is a six-tuple M = (I, I', Q, 6, 55 qa)
consisting of a finite set I’ (the tape alphabet), a set I ST (the

input alphabet), a finite set Q (the set of states), a transition

t The adjective "nondeterministic" will sometimes be omitted.

35«
i +
function 5+ QxT - 2Qxe{-1,0,1]’
and designated states 9, € Q (the initial state) and q, € Q (the accept
state). 8 must satisfy the constraint 6(qa,s) =¢ for all s €T,

M is deterministic if Card(6(q,s)) <1 for all q €Q, s € I,

An instantaneous description (i.d.) of M is any word in F*-Q-F*.
Informally, if d is an i.d. of M, say
d = yqsz where y,z € F*, s €T, q €Qq,
we treat d as describing the symbols on the tape squares in an interval
around the head, with q being the state of the control, and q being

positioned in d immediately to the left of the symbol s being scanned.

We associate with M a function

o

* *
Nexl;M : I""-Q-I"" -+ 21" QT .

NéxtM(d) is the set of i.d.'s that can occur one step after the
situation described by i.d. d.

We first define NExth(d,u), an empty or singleton set containing
the next i.d. reached from d by a particular move ..

let pu = (q',s',m) € QxI'x(-1,0,1} and let d0 = yqsz as above.

{ yq's'z} if m=0

{ ys'q'z} if m=1

NExth(do,u) N { wq'ts'z} if m= -1 and y = wt for
some w € r and t €T
) if m=-1 and y =A

1 ZS denotes the set of all subsets of the set S.

-36-

Now
UJ Nexth(d,u) if d = yqsz as above
Next,(d) = uw € 8(q,s)
& if d=yq for somey €', q € Q.
Note that d' € Nexty(d) implies |d'| = |d|. This differs from the

usual definitions of "i.d.'" and '"mnext i.d." in the literature.
The set of i.d.'s occurring £ steps after d, NextM(d,E), is
defined by induction: B
NExtM(d,O) = (d},
Next,(d,#+1) = (d" | d" € Next,(d') for some

d' € Next,(d,4))

Definition 2.12, Let M = (I,F,Q,&,qo,qa) be a STM, and let A < I+.

Let ¥ denote the blank tape symbol.

M accepts A within time T(n) (within space S(n); here we assume

S(n) 2 n) iff:
(1). For all x € A, there exist £,k € N with £ < T([x]|)
and k > |x| (resp., with |[x] < k < S([x])) such that

k- |x|

a B € Next, (q B ™!, 1), and

(2). for all x € I+- A, there do not exist £,k € N and

v,z € " such that

k= [x|

yq,2 € NextM(qoxH , L)

We require S(n) = n for STM's because this amount of space is
required just to read the entire input. The following lemma states

that STM's can simulate IOTM's efficiently enough for our purposes.

Lemma 2.13. If A € NTIME(T(n)) where T(n) 2 mtl (if A € NSPACE(S(m)))
then there is a STM which accepts A within time (T(n))2 -

(resp., within space max(S(n), mnt+l)).

Proof. The proof follows by straightforward simulation of a multi-tape
Turing machine by a one tape Turing machine [HS65] (see also [HU69]).
Note that STM's possess '"constant factor speedup' similar to Fact 2.8.

The simulated IOTM may not operate within the given resource
bound T(n) or S(n) on a finite subset of A. However the simulating
STM can handle these finite exceptions by table look-up in its finite
state control (cf. Lemma 2.3).

The one tape machine can be easily modified to operate on a
one-way infinite tape [HU69]. This modification is usually implemented
by keeping a marker # on the leftmost tape square. The simulating STi{
can fulfill the acceptance convention by always keeping another marker
#' on the rightmost tape square thus far visited, If the simulated
IOTM ever enters its accepting state, the simulating STM can erase
its tape in a left sweep from #' to # and enter state qa without moving
after # has been erased. Moreover, this is the only situation in which

q, is entered. O

The remainder of section 2.2 treats a portion of the technical
machinery to be used in describing the computations of STM's. We wish
to formalize the statement that, given i.d.'s d, and d, of M, one can
determine if d2 € NéxtM(dl) or not by making '"local checks'". A

.th

"local check" consists of comparing the (j-l)th, j, and (j+1)th

-38=

symbols of d, and d, for some j, 2 < j < |d1|- 1. We can conclude
d2 € NextM(dl) if and only if all local checks succeed. This is now

formalized in a useful technical lemma.

Lemma 2.14, Let M = (I,F,Q,&,qo,qa) be a STM. Assume $ £ I U Q.
Let Z=TUQU($}. There is a function N'M:E3 + 53 with the
following properties.
(1). Let d, be any i.d. of M, let k = |d1|, and write
447 = dyodiadao Iy, K

= P) T .-— .
Let $d,$ = d,.d,,d,, d2kd2’k+1 where dzj €T for 0 <j < k+l

where dlj €X for 0 < j < k+l,

Then
dy € Nexty(dy) 1ff dy ; 4dy 5y 541 € Ne(dy 51,59, 540)
for all j, 1< j < k.
! 1] s 1]]
(2). For all 0150950450750, ,04 €z, if 0,'0,'04 € NM(616203),
then o,'=$% = o, =§ for i=12,3.
Proof. Four cases are involved in the specification of NM'
(i). NM must satisfy condition (2) of the lemma.
(ii). If 01505574 ¢ Q, then o, carnot change in going to some
next i.d.
(iii). 1If o, € Q and Oq € I', then each move in 6(02,03)
uniquely determines one word in NM(610203)-

(iv). 1If Ty €Q and Oy = $ then Nﬁ(01°2°3) = Q.

NM is precisely specified as follows. For each 010,94 € Zé,

=39-

NM(GIGZGB) = { 01'0'2'03' € 23 | 01,02,03,01',02',03' satisfy all
conditions (i),(ii),(iii), and (iv) below }.
(i). o, = $ iff oi' =$ for i =1,2,3,
(ii). 1If 01205504 £ Q then 9, =02'.
(iii). 1If o, € Q and oy € I' then

0'1'0'2'0'3' € U N]-M(clsp-) ’
TS 6(0'2,03)

where for arbitrary o € Z and p = (q',s',m) € QxI'x{-1,0,1)

{ oq's'} if m=0
NIM(c,u) = (q'os')} if m= -1
{ os'q')] if m=1

(iv).) #Q or T4 # 8.
The proof that NM satisfies condition (1) of the lemma is

straightforward and is left as an exercise. O

41la

Chapter 3. Efficient Reducibility

In this section we introduce a concept which will play a key role
in the remainder of the paper. This is the concept of efficient
reducibility.

Reducibility techniques have for some time been standard tools of
recursive function theory (cf. [Rog67]). Set A is reducible to set B
if the ability to answer questions about B enables one to answer questions
about A by various effective methods. Then, for example, the undecida-
bility of A implies the undecidability of B. However in order to get
more detailed information about computational complexity, one must also

show that the reducibility of A to B can be done "efficiently'". Then

if questions about A are known to be computationally complex, so must
corresponding questions about B, See the Introduction for a further

informal discussion of efficient reducibility.

42-

3.1, Definitions.

There are a variety of inequivalent technical formulations of
efficient reducibilities, differing not only in the degree of efficiency
but also in the methods by which questions about A are reduced to
questions about B. Many of these distinctions among efficient
reducibilities are analyzed in [LLS74]. The distinctions are analogous
to the differences among various reducibilities of recursion theory
such as many-one, truth-table, Turing reducibility, etc. (cf. [Rog67]).

We shall use essentially one kind of efficient reducibility
corresponding to the '"strong' reducibility (many-one or one-one) of
recursion theory. However we do use several different bounds on the
efficiency in terms of time or space to obtain four different reduci-
bilities of this kind.

Following a definitional suggestion of Knuth [Knu74], we henceforth

refer to these particular reducibilities as 'transformations'.

Definition 3.1, lecgspace
Let polylin denote the class of functions

poly

{ £ | £:1 - A* for some finite alphabets I, A, and there is

a deterministic IOTM which computes f

within space 1log n
within time p(n) and space n

within time p(n)

for some polynomial p(n) }.

43-

Definition 3.2. Let L:]N+ -+ N+. A function f:I+ -+ A+ is said to be

+
length L(n) bounded iff |[f(x)| < L(|x|) for all x € I .

f is linear bounded iff there is a ¢ € N+ such that

+
[£(x)| < e|x| for all x €1 .

Definition 3.3. (Efficient transformations).

Let A < I+, B < A+ for some finite alphabets I, A.

(A< B ;
log

iff f is a function, f:I+ - A+, such that

; A SPE B; A<B) yvia f

A =1og-1in B

x €A iff f(x) €B for all x €I, and
((=) £ € logspace ;

(
(sz) f € polylin and f is linear bounded ;

log
) f € logspace and f is linear bounded ;

<
log=1lin
(<) f € poly).
Also, if eff € { log, log-lin, pf } then

A= B iff A<
__eff e

< A,
eff ¢B and B = ..

f

Note: The transformations defined above do not change if we require the
function £ to be computed by _an IOTM with one work tape. Thus our
definitions are equivalent to previous definitions of Slog’ Slog-lin

[SM73], and sz IMS72].

Remark. It can be seen (by counting the number of possible i.d.'s)
that an TOTM which computes within space log n also computes within

polynomial time. Therefore A Slog B = A< B,

and B = A=< B.
P

Slog-lin

The next lemma is immediate from the facts that logspace, polylin,
and poly are each closed under functional composition. It should be
obvious that polylin and poly are closed under composition. Lind
and Meyer [LM74] prove that logspace is closed under composition; this

proof is very similar to the proof of Lemma 3.6 to follow.

Lemma 3.4. Let <q €{ = Let A < B

eff

1° f2 respectively

<
£f log’ Slog-lin’ Spﬂ’ S b

S .
and B off C via length Ll(n), Lz(n) bounded f

where L2(n) is monotone nondecreasing.

Then A se C wvia length L2(L1(n)) bounded f. of..

ff 271

The following definition is of central importance.

Definition 3.5. Let © be a class of sets, B be a set, and < be a

transformation.
(1). €< B iff A< B for all A €6,
(2). B is =-complete in & iff
(i). & < B, and
(ii). *B € 6,

(3). & < B via length order L(n) iff for all A € & there is

a c¢c € lN+ such that A < B via some length c¢-L(n) bounded

function.

All of the particular transformations described in the sequel
are members of logspace. Lind and Meyer [IM74] give a machine indepen-
dent characterization of logspace (which is similar in flavor to

Ritchie's characterizations of other subrecursive classes [Rit63])

45

by which one can prove rigorously that our transformations do indeed
belong to logspace. However such proofs are tedious and shed no new

light on the main issues.,

only in section 4.1

. < <
For this reason, we use log and log=-1lin

where our transformations are simple enough that their membership
in logspace should be obvious. In some cases we sketch a
verification that a particular transformation belongs to logspace,
omitting many of the details by appeal to the reader's intuition about
space bounded Turing machines, For ccnvenience, Appendix II collects
those closure properties and particular members of logspace which are
used either explicitly or implicitly in these verifications.

In other sections, we claim only that transformations are of

the types sz or < ; closer examination reveals that these

transformations also belong to logspace.

It is interesting to note that a few of our particular transforma-
tions can be easily modified to be computable within space zero, that is,
computable by a deterministic finite state transducer with 2-way input.
Aho and Ullman [AU70] prove that the class of zero-space computable
functions is closed under composition, and hence that
O-space=-transformable is a transitive relation,

The notion of efficient reducibility was first formally defined by
Cook [Co7la] (as a "Turing" version of <), Efficient reducibility was
used as a proof technique earlier in [MM71], Karp [Kar72] and others
have used < as a means of relating the complexities of various

combinatorial problems. Meyer [SM73] and Jones [Jon73] have noted

6=

that many of the particular polynomial time reducibilities presently
in the literature can actually be done within space log n, (although
it would be suprising if poly = logspace in general, cf, Open

Question 2.10.C.).

3.2 Applications to Complexity Bounds.

We shall use efficient transformations as a means of relating the
computational complexities of problems. Informally, if Seff is a
transformation, and A seff B via f, then one can conclude

"Complexity of A" < "Complexity of B" + '"Complexity of f" .

Thus the computational resources required to accept B are ''mo less than"
the resources required to accept A provided that the resources used in
computing f are low order compared to those used in accepting B.

This is made precise by a lemma for the case Seff = Slog' The
technical details involved in proving such a result for the case slog
are due to Meyer [SM73] and Jones [Jon73]. We reproduce a proof

sketch for this lemma here because minor modifications to the proof

are used implicitly in section 3.3.

Lemma 3.6. Suppose A Slog B wvia f where f is length L(n) bounded,
and M is a nondeterministic (deterministic) IOTM which accepts B

within time T(n) and within space S(n) where T(n) and S(n) are monotone

nondecreasing.

Then there is a polynomial p(n) and nondeterministic (determinis-

tic) IOTM's M' and M" such that:

M' accepts A within time T'(n) p(n).T(L(n)) and within

space S'(n) = S(L(n)) + logn;

M'" accepts A within time T'"(n) T(L(n)) + p(n).

Therefore:
NTIME NTIME
B € DTIME}(T(n)) = A€ e TLM) + p(n))
and
NSPACE NSPACE

B € qpgpace((SM) 7 A€ Jpepacg((S(L(M) + logn).

Proof. The obvious M'", given an input x, first computes f(x) and writes
f(x) on some work tape. As was moted before, £ € logspace implies that

f can be computed determiristically within polynomial time. M" then

simulates M on input f(x). M is time T(mn) bounded (on accepted words)

and is computing on the input f(x) of length at most L(|x|). Recall T(n)
is nondecreasing. M'" clearly accepts A within time T'"(n).

This obvious approach may not work for M'. The difficulty is
that M' cannot write f(x) on a work tape because |f(x)| might be much
larger than log|x| + S(L(|x|)); however M' must operate within space
S'(n). Instead, M' with input x can simulate the computation of M on
input f(x) by recording on its work tape an instantaneous description
of the computation of M, including the position j in f(x) which the input
head of M would occupy if the input to M were actually f(x).
f € logspace implies f € poly, and therefore

j < [£(x)| < p'(|x|) for some polynomial p'(n);

only c-log|x| extra work tape squares are required to record j in
binary. To simulate another step in the computation of M on input f(x),

M' computes the jth digit of f(x) within space 1log|x| and time

p'(Ixl), and updates the i.d. of M accordingly.
After an application of speedup (Fact 2.8), it is easy to see that

M' accepts A within time T'(n) and space S'(m). O

For completeness, similar results for the other transformations
are stated next, even though we shall not have occasion to use

Lemma 3.7 in its entirety.

Lemma 3.7, Assume T(n) and S(n) are nondecreasing.

B then

(). If A sz

B¢ NTIME}(T(n)) > A€ {NTIME}(p(n) + T(cn))

DTIME DTIME
NSPACE NSPACE
B € DSPACE}(S(n)) = A€ {DSPACE}(n+ S(en))

for some comnstant ¢ € Nt and polynomial p(n).

(2). If A< B then

NTIME NTIME
B € {DTIMQ}(T(“)) = Ac {ﬁszﬁz(p() + T(p(m))

A ,
B¢ {§§§22§}<S<n>> = A€ §§§A§§}< p(n) + S(p(m))

for some polynomial p(n).

The proof of Lemma 3.7 is by the obvious approach used to
construct M" in the proof of Lemma 3.6.

Our next objective is to give the basic outline which the
majority of results herein will follow. We give the outline for a

space result; a time result is analogous.

Outline 5.8. Let B be a particular set of interest.

(1). Choose a class ¥ of nondecreasing functions from Nt to Q+.

F will in general depend on B. Let

&= U NSPACE(S(n)).
S(n) € F

For example, we may take € = EXPSPACE or © = POLYSPACE in particular cases.

(2). Prove that & Seff B (via length order L(m)),
where Seff is an appropriate efficient transformation.

In many of our examples, the proof is analogous to an
"arithmetization" of Turing machines so that questions about Turing
machines accepting sets in © can be transformed into questions about B,
This of course is the maiﬁ portion of most of our proofs.

(3). (Deduce a lower bound on the complexity of B).

Since the majority of our particular transformations are linear
bounded, assume here that L(n) = n.

By Fact 2.1l (the nondeterministic hierarchy theorem), find a
"hard" set A € & such that S(n) is a large lower bound on the space
complexity of A; that is, A ¢ NSPACE(S(n)). Also choose S(n) to be
nondecreasing.

Now by part (2) above, A Seff B via f, where f is length bn
bounded for some b€ N'. |
We claim that S([n/bl) is a lower bound on the space complexity
of B, For suppose B € NSPACE(S(/n/bl)). Lemma 3.6 or 3.7 then implies
A € NSPACE(S(n) + F(n)) where F(n) is the space required to compute f.

Assuming F(n) < S(n) because f is an efficient transformation,

-50-

A € NSPACE(2.S(n)) = NSPACE(S(n)) by Fact 2.8 (constant factor speedup).
This contradicts one condition A was chosen to satisfy, and therefore
B ¢ NSPACE(S(/m/bl)).
For example, in the proof of Theorem 4,12 we have

EXPSPACE < . We can then choose A € NSPACE(2™ but

log=1lin B
A ¢ NSPACE((2-¢)™ if € >0, and conclude
B ¢ NSPACE(cn) where c¢ = (Z-G)I/b,

and b is such that A < B via some length bn bounded function.

log=lin
(4). In most cases, we also show B € &; thus B is <.geocomplete
in S, A completeness result in a sense pins down the complexity of B.

B € © implies an upper bound; & Seff B usually provides a lower bound

as in (3).

Remark. Step (3) only requires A Seff B for the particular "hard"
set A, rather than © Seff B. However the latter general statement

is no harder to prove than the former particular statement in the cases
we consider. Also, the general statement may have other implications
for B, (See for example section 3.3.)

As noted above, the main part of the proofs which follow the
preceding outline will consist in the proof of (2). The details
involved in (3) will be given for a few results and left as simple
exercises for others. The upper bound required for (4) will be

verified by giving an informal description of an algorithm which

accepts B.

-51-

For most examples there remain gaps between known lower and upper
bounds on their deterministic time complexity. As was mentioned earlier,
these gaps correspond to the gaps stated in Open Questions 2.10 (A) and
(C). A particular instance of this relationship is the following.
Several workers [Edm65], [Kar72] have proposed that a problem can be
considered computationally '"tractable'" only if it can be solved by a
deterministic algorithm within polynomial time, that is, only if it
is a member of . The following lemma can be used to relate the
tractability of various particular problems to the open questions

'°> = NP?" and "CSL S P?". A result of this flavor was first noted

in [Co71la].

Lemma 3.9. Let Seff € { Slog’ Slog-lin’ sz, < }. Let B be a set,
and © be a class of sets. If B is <.ge-complete in & then

BER o SGcp,

Proof. Immediate from definitions and Lemmas 3.6 and 3.7. O

Following the original work of Cook [Co7la] and Karp [Kar72],
a large number of common combinatorial problems have been shown to
be <=-complete in NP (see for example [Sah72], [Set73], [U1173], [GJS74]);
such problems are called NP-complete. By Lemma 3.9, either all or none
of the NP-complete problems are members of {?; moreover, the former case
holds if and only if = NP.

We shall make a few additions to the list of NP-complete problems.

In these cases, where we show that some particular B is <-complete in

-52-

NP, it will be seen that an application of step (3) of the outline
yields only a trivial bound on the nondeterministic time complexity

of B, (One could show that B requires time vn in certain cases, but
this is trivial because time n is required just to read the entire
input.) 1In these cases, step (3) of the outline can simply be replaced

by the statement that B € iff = NP,

3.3 Other Applications.f

Lemma 3.6 or 3.7 can be loosely interpreted as stating that the
property "i.o. lower complexity bound" of sets translates through an
efficient transformation. For example, as Outline 3.8.(3) shows, if
A Slog-lin B and A possesses the i,o. lower bound S(n) on space
complexity, then B possesses the i.o. lower bound S(lenl) on space
complexity for some c¢ € Q+, (provided logn = 0(S(m))).

The field of axiomatic complexity theory (initiated by Blum [B167])
has considered many other interesting computational properties. For
example: (A). There are known to exist sets which possess no optimal
acceptance algorithm in the sense that any algorithm accepting the set
can be effectively sped up on infinitely many inputs; (B). There are
known to exist sets for which any acceptance algorithm consumes large
amounts of time and space on some input of length n for all sufficiently
large n (rather than just infinitely many n). However these properties
have previously been known to hold only for sets comstructed by
diagonalizations or other esoteric methods.

The purpose of this section is to show that these two properties
also '"translate through" an efficient transformation and can therefore
be shown to hold for natural sets. Our aim is only to prove particular
results indicative of the types of results one can obtain rather than

to give a general treatment. We corcentrate attention on the space

TThe material of §3.3 is not used directly in the sequel.

measure; analogous results for the time measure can be obtained
similarly. The material of this section is based largely on
suggestions of Albert R, Meyer.

For the purposes of this section, assume all transformations

f mentioned satisfy [f(x)l 2 [x| for all x,

A, Effective i.,o. speedup,

Definition 3.10. Let A SZ' be a set of words, A possesses

S(n)-to-log effective i,o, speedup iff given any deterministic IOTM

M which accepts A one can effectively find a deterministic IOTM M'

which accepts A such that:

(1). SpaceM,(x) < Space (x) for all x € A ;

and M
(2). There exist infinitely many x € A such that

Space,(x) > s(lxl)

and
Space,, (x) < log x| .

Thus the new algorithm M' never uses more space than the old M (on
accepted words), but in general uses much less space than M on

infinitely many inputs.

Remark. For deterministic M, we can extend the definition of SpaceM(x)
in the obvious way to include also those inputs x which M rejects.

(In §2.1 Space,(x) is defined only if M accepts x). Then ome can

replace (1) of Definition 3.10 by "SpaceM,(x) < SpaceM(x) for all
x € Zﬁ:" The main result (Theorem 3,13) of this section is true
with respect to this modified definition of effective i.o. speedup,

although the proof requires minor changes.

Within the framework of axiomatic complexity theory, Blum [B171]
first proved the existence of sets with effective i.o. speedup. By
combining Blum's techniques with methods for constructing sets with
tight upper and lower bounds on space complexity, one can prove the

following.

Fact 3.1ll, 1let Sl(n), Sz(n) be such that Sz(n) is constructable,
Sl(n) 2 logn, and Sl(n) = o(Sz(n)). Then there is a set
A€ DSPACE(Sz(n)) such that A possesses Sl(n)-to-log effective

i.o. speedup.

The unpublished proof of Fact 3,11 is due to A.R. Meyer. We remark
that his proof actually shows that A possesses "Sl(n)-to-zero effective
i.o. speedup'"; this notion is defined as in Definition 3.10, where 0

replaces loglxl.
To complete the proof that the speedup property translates through
an efficient transformation, we need an additional "efficient

invertibility'" condition on the transformation.

+
Definition 3.12. Let f£:Z' + A", £ is logspace-invertible iff f is

one-to-one, and the function f-I:A+ -+ Z#'U {(u} defined by
-1 x if f(x) =y for some x € =t
£ (y) =
u otherwise (where u ¢ 2)

is a member of logspace.

Remark: All the particular transformations f € logspace considered

herein are logspace-invertible and satisfy |[f(x)| = [x].

We now show that the speedup property translates through "invertible"

slog-lin’

Theorem 3.13., Assume A < B via f, where f is logspace=~

log=-1lin

invertible and |f(x)| 2 |x| for all x. Let S(n) be nondecreasing and
satisfy S(n) 2 logn. If A possesses S(n)-to-log effective i.o.
speedup, then B possesses S(rcﬂ])-to-log effective i.o0. speedup for some
c € Q+.

Proof. Let A €Z', and B 4" for finite alphabets Z, 4.

Let M1 be any deterministic IOTM which accepts B, Effectively find a

deterministic IOTM M2 which accepts A such that:
L. Spacey, (x) < (1/2)(Spacey, (£(x)) + loglx|) for all x € A,

M2 operates like the procedure M' in the proof of Lemma 3.6, after this
procedure has been sped-up by a factor of 1/2 a la Fact 2.8.

Since A possesses S(n)-to-log effective i.o. speedup, effectively

find M3 accepting A where:

(2). SpaceM3(x) < SpaceMz(x) for all x €A , and

(3). There is an infinite set X S A such that:
(3.1). Spacey,(x) > s(|x|) for all x € x,

and
(3.2). SpaceM3(x) < log|x| for all x € X,

Let f-1 € logspace be as in Definition 3.12,
We describe a deterministic IOTM M4 which accepts B, M4 runs two
procedures M1 and Pl in parallel. Procedure Pl is procedure P1' sped-up

(Fact 2,8) by a factor of 1/3, Pl' operates as follows.

Pl', Given input y € at,
Begin a computation of f-l(y). If f-l(y) = u, then halt.
If f-i(y) produces an output symbol other tkan u, stop
computing f-l(y) and simulate M3 on input f-l(y) as in the
proof of Lemma 3,6(M'). (Recall f-1 € logspace).

Em p1',

Therefore:
(4). Spacey (y) S (1/3)(sPacem(f‘l(y)) + logly| + logl£ " (p)|)
for all y € B,

Given input y € A+, M4 can run M1l and Pl in "parallel" in such a

way that M4 accepts y iff either Ml or Pl accepts y, and
(5. SpaceMA(y) < min(Spaceml(y), SpacePl(y)) for all y €B ,

(Informally, M4 uses a '"mew" tape square iff both Pl and Ml require
another tape square).

- -1
Now if £ 1(y) #u, then f "(y) €A © y € B, Thus M4 accepts

~58=

B correctly.

Let

Let b € N be such that |x| = |£(x)| < b|x| for all x € X',

c = 1/b.

We now verify that M4 satisfies the conditions of Definition 3.10

to be a S(lenl)-to-log "sped-up" version of M1, First, by (5),

SpaceML(y) < SpaceMl(y) for ally € B .

let Y =f(X) = (£(x) | x €X }. Note Y is infinite because f is

one-to-one., Also, Y S B because f transforms A to B and X < A,

Y is the set of inputs on which M4 uses space log n while Ml requires

space S([enl).

SO

To verify this, let y € Y be arbitrary and let x = f'l(y),

x € X €A, Recall cfv| = x| < |y|. First:

space,, (y) < (1/3)(Spacey,y(x) + logly| + log|x|), by (4) and (5),
< (1/3)(loglx| + log|y| + loglx|), by (3.2),

< log|y|, because (x| = |y|.

Now suppose that SpaceMl(y) s S(fbly|1). Then:

Space,, (x) < (1/2)(s(le|y|1) + log|x|), by (1) and by assumption,
< s(|x]), by c|y| = |x|, S is nondecreasing, and

S(n) 2 logn.

Since x € X, this contradicts (3.1) and therefore
space, (v) > s(fely|1).

Since Ml was arbitrary, we are done.

Corollaries like the one below follow immediately from Fact 3.1l

and Theorem 3.13, For example, Fact 3.1l implies that EXPSPACE contains

some set with 2n-to-10g effective i.o. speedup.

<
Corollary 3.14, 1Let B be a set such that EXPSPACE log-lin B.
Assume furthermore that for all A € EXPSPACE, A Slog-lin B via some

logspace-invertible function f such that |[f(x)| = [x]|.

There is a ratiomal ¢ > 1 such that B possesses cn-to-log effective

i,o. speedup.

B. Lower bounds which hold for almost all ipput lengths.

As was mentioned before, we shall be content to show that lower
complexity bounds hold infinitely often., However, given any recursive
S(n), there is known to exist a set A such that any deterministic
algorithm accepting A uses more than space S(|x|) on all sufficiently
long inputs x. (Here we count space on all inputs rather than just
those x € A),

It would be suprising to find an uncontrived example of a set with
this property since the natural examples all seem to have ''easy subcases"
which occur infinitely often. For example, let TAUT denote the set of
all Boolean formulas in disjunctive normal form which are tautologies.
It has been conjectured [Co7la] that TAUT ¢ P, Let X © TAUT denote

the (infinite) set of such formulas of the form F V X, V--|xi vV G,

where F and G are formulas and X, is a Boolean variable. A deterministic

-60=

algorithm M accepting TAUT can first check within polynomial time if
the input x is in X. M accepts immediately if x € X, or applies a
resolution procedure if x # X. Therefore we cammot show that TAUT is
difficult on all sufficiently large inputs,

However, we can show that certain nmatural sets are difficult on
some input of lenmgth n for all sufficiently large n. We would then say
the set is difficult a.e. (almost everywhere) with respect to input
lengths, This question of '"frequency of difficult inputs' is important,
and there are some obvious directions for further inquiry which we have
not had time to pursue. For example, although we can show that the
number of difficult inputs of length n grows unboundedly with n, we
have not been able to show that a nonzero fraction of the length n

inputs are difficult,

}=]

Definition 3.15. Let A be a set of words., A requires space S(n) a.e.
iff for each deterministic IOTM which accepts A there is a n, €N
such that

(Vn = n,)(.Ex € A)[|x| =n and SpaceM(x) z S(n) 1.
Fact 3,16 (Stearns, Hartmanis, Lewis [SHL65]). Let $,(m, S,(n) be
such that Sz(n) is constructable, Sl(n) 2 logn, and Sl(n) = o(Sz(n)).

Then there is a set A € DSRACE(SZ(n)) such that A requires

space Sl(n) a.e. n,

Remark. The proof of Fact 3,17 is by a fairly straightforward diagona-
lization. The reader should be aware that by using more subtle techniques

one can construct sets A as in Fact 3.16 such that any IOTM M accepting

-61-

A satisfies SpaceM(x) =3 Sl(IxI) for all but finitely many x (rather
than just one x of each length). We would then say that A requires
space Sl(n) a.e. For arbitrary recursive Sl(n)’ Rabin [Rab60] first
exhibited sets which require space Sl(n) a.e. Blum [B167] shows that
the complexity of these sets can be 'compressed', that is, one can also
place tight upper boundsf(Sz(n)) on their complexity. Trachtenbrot
[Tra70] and Meyer and McCreight [MM71] show that the two bounds can be

compressed as tightly as Sl(n) = o(SZ(n)).

Definition 3.17. lLet B < A+. B is invariant under padding iff there

is a symbol # € A such that y €B © y# €B for all y € A+.

Theorem 3,18, Assume A < B via f, where B is invariant under

log=1lin

padding and |[f(x)| = |x|. Let S(n) be nondecreasing and satisfy
S(n) 2 logn. If A requires space S(n) a.e. n, then B requires space

S(fenl) a.e. n for some ¢ € Q+.

Proof. Let A < B via f, where |x| S |f(x)] < b|x| for

log=-1lin
some b € N and all x.
Let M be an arbitrary deterministic IOTM which accepts B, We

describe an IOTM M' which accepts A.

M'. Given input x:
For s = 0,1,2,3,°°* do:
For j =0,1,2,3,¢¢¢ b|x| do:

Simulate M on input f(x).#J,

-62-

(A trivial modification of the proof of Lemma 3.6 shows that
this can be done within space at most
SpaceM(f(x)-#j) + log|x|) ;
If during this simulation M' detects that SpaceM(f(x)°#j) > s,
then erase everything on the work tapes except the counters
s and j, and continue ;
If M accepts f(x)-#j, then accept x.
END

END M'.

M' obviously accepts A,
Define Reduce(x) = { £(x).# | 0= 3 < b|x| }. In a computation
on input x, M' considers all words in Reduce(x) as inputs to M.

Two facts about Reduce(x) are useful. The first is obvious., The

second follows from |[x| = [f(x)]| < b(x

(1) (x €A and y € Reduce(x)) @ (y €B and |y| < 2b|x|).

(2). For mn € N+, define the interval In =({mé€N l bns<sm<bn+n}.

Then for all n € N+, for all x € A with |[x| = n, for all m € Nt

with m € In’ there is some y € Reduce(x) with |y] = m.

It is helpful to picture (2) as stating that all x of length n are
mapped onto the entire interval In' If any m € In has the property that
M is "efficient" on all inputs y € B of length m, then M' is "efficient"
on all inputs x € A of length n. This is true because (if the counters

s and j are represented in radix notatiom),

-63=

3). SpaceM.(x) < F(x) + log F(x) + kelogl|x| for all x € A,
where F(x) = min{ SpaceM(y) | y € Reduce(x) }, log F(x) = space

for counter s, and kelog|x| = space for counter j and simulation

overhead where k € Nt,

Let ¢ = 1/2b.,

Suppose the conclusion of the theorem is false. That is, assume
there is a deterministic IOTM M which accepts B and an infinite set
g cNt of "easy lengths'" such that
(4). Space,(y) < s(fc|y|T) for all y € B with |y| € E.
Let E' be the corresponding set of "easy lengths" for M',
E' = (n€ Nt | m € I, for some m € E }.
E' is infinite because InIT I # ¢ for all n 2 b,

We claim that

(5). SpaceM,(x)'< (k+2)-S(|x|) for all x € A with |x| € E',
This, combined with constant factor speed-up (Fact 2.8), contradicts
the fact that A requires space S(n) a.e. n, It remains only to prove (5).
Let x € A with |x] € E' be arbitrary. By the definition of E',
together with fact (2), there is some y € Reduce(x) with |y| € E,
Also, by (1), y € B and c|y| <.|x|]. Now,
F(x) =< SpaceM(y), by definition of F(x),
< S(rEIyIT), by assumption (4) because |y| € E,
< s(lx)]), because S is nondecreasing.

Now by (3),
SpaceM,(x) < (k+2).S(|x|) because S(n) = logn.

6=

Therefore (5) is proved. O

As in part (A) above, corollaries now follow immediately from
Fact 3,16 and Theorem 3,18, For example, if EXPSPACE Slog-lin B, and
B is invariant under padding, then B requires space c" a.e. n for some

rational ¢ > 1,

The particular method of padding (Definition 3,17) was chosen mainly
for simplicity. It illustrates the point that more information about

"frequency of difficult inputs' can be obtained.

Many natural examples already possess, even without the artificially
added # symbol, a slightly weaker kind of padding property defined below.
This weaker property is also sufficient to imply Theorem 3.18 by a very

similar prcof which we omit,

Definition 3.19. Let B S A+. B is naturally padded iff there is a

+ %
symbol d ¢ A, a 3o € N, and a function p € logspace, p:A d - A+,
such that:

(1). Bed" =, B via
. b V1 H
and log P

2). |p(y-dj)| = |y| + 3, for all y € A+ and all integers j 2 jo.
However, the condition that B be invariant under some notion of
"padding' is necessary to reach the conclusion of Theorem 3.18. For
+ . .
any large recursive S(n), let A S (0,1} be a recursive set which

requires space S(n) a.e. n. Define the set B by

B=[x-o""| x €A} U xe,1%] x| is odd }.

~65=

Clearly A =< B, but it is easy to design an IOTM M which accepts

log=1lin
B and for which SpaceM(x) = 0 for all x such that [x]| is odd.

Remark. Section 3.3 can be carried out for the time measure in a more
or less analogous fashion. For example, analogous to Definition 3.10
we can define "T(n)=-to-polynomial effective i.o. time speedup'.
Analogous to Theorem 3,13 one can prove that this property translates
through "polynomial-time-invertible" sz, provided p(n) = o(T(mn))
for all polynomials p(n). The proof is completely analogous to that
of Theorem‘3.13.

The situation for a.e., n lower time bounds differs slightly from
that for space bounds because the machine M' in the proof of Theorem 3.18
heavily exploits the ability of Turing machines to reuse space, This
ability to reuse a resource is helpful, but results can be obtained for
the time measure also. For example, an a.e. n lower time bound of T(n)
on set A translates through sz to an a.e., n lower time bound of
VT(fenl)/n on set B if B is invariant under padding and T(n) is suffi-

ciently large. The interested reader can supply further details,

-67=

Chapter 4. Regular-Like Expressions

Regular expressions are a family of notations for describing sets
of words. They were first introduced in automata theory as an alternative
characterization of the languages (sets of words) accepted by finite
state machines [Kle 56], [CEW58], [MY60]. A treatment of regular
expressions can be found in most automata theory texts, for example
[Har65], [Salé9]. [Brz62] is an early survey paper. More recently,
regular expressions have been used to define the lexical analysis phase
of compilers [Gri71], and to specify patterns for pattern matching
algorithms [AHU74] and text editors.

Given two regular expressions, one might want to determine if they
are equivalent, that is, if they describe the same set of words.
Several workers, for example [Gin67], [Brz64], have given algorithms
which solve this equivalence problem, However no deterministic algorithm
has been found which runs within time bournded by a polynomial in the
input length,

In this chapter, inter alia, we show (Theorem 4.13) that the
problem of recognizing equivalence of regular expressions has the same
time and space requirements as the problem of deciding membership of
words in context sensitive languages. Theorem 4,13 provides strong
evidence that there is no deterministic polynomial time algorithm for
this equivalence problem, or for the related problem of minimizing the

size of nondeterministic finite state automata [cf. KW70].

-68=

There is reason to believe that the general membership problem for
context sensitive languages cannot be solved in deterministic polynomial
time., In particular, © # NP implies [# POLYSPACE iff CSL - P # ¢
[cf., Bo72]. (See the discussion following Lemma 3.9 concerning the
P versus NP question.) Because this question whether POLYSPACE - P £ 0
is open, we cannot actually prove that the equivalence problem for
regular expressions is not in {?, However we can prove that
POLYSPACE - P # ¢ iff the equivalence problem for regular expressions
is not in PP; we also obtain a nontrivial linear lower bound on the
space required for the equivalence problem.

The succinctness of regular expressions is increased by allowing
the use of operations other than U, +, and * in writing expressions,
For example, the additional set operations of intersection (1) and
complementation (~) relative to ¥ are sometimes helpful. Brzozowski
[Brz64] has developed methods for handling regular expressions extended
by N and ~; in particular, his methods yield an algorithm for checking
equivalence of such extended regular expressions, However a priori
analysis of his algorithm shows that for no fixed k is the running time

on
S
bounded above by 2 on all inputs of length n and all n., 1In
section 4.2 we show that such complexity growth is inherent in the
problem. The equivalence problem for star-free expressions (MP71]

(which may use only the operations of U, *, and ~) can be solved by

.2
5" } rlogbn-l

no algorithm which runs within time and space 2 if b > 3.

-69-

It immediately follows that the equivalence problem for star-free
expressions is not elementary-recursive in the sense of Kalmar [cf. Pet67].
Ritchie [Rit63] has shown that (the characteristic function of) a set is
elementary recursive i ff the set can be accepted within space

n

.2
2° }k
2 for some fixed k.

Apart from providing a nonelementary lower bound on a simple explicit
word problem, this result yields several interesting corollaries about
the complexity of decidable theories of formal logic. Chapter 5 is
devoted to these corollaries, each of which follows by an efficient
tq?nsformation from the equivalence problem for star-free expressions
to the decision problem for a particular logical theory. Thus these
theories are not elementary-recursive,

In section 4,1, lower bounds of exponential space and exponential
time are obtained for the equivalence problem if the unary operation
""'squaring' (defined by L2 = L.1L) may occur in expressions, even if
and ~ may not occur.,

Regular-like expressions are regular expressions generalized by
allowing sets of operations other than the usual {U,-,*}. A particular
class of regular-like expressions is specified by a finite set I of
alphabet symbols and a finite set ® of operations which may occur in

expressions.

Definition 4.1. Let 2 be a finite alphabet and ® be a finite set of

symbols denoting operations on sets of words, Assume ¢ contains only

unary and binary operations. Assume Z, ¢, and {b,‘g,‘l } are pairwise
disjoint sets of symbols.

We inductively define the class of Z~p-expressions and simulta-

neously define the map L which maps the class of L-p-expressions to
subsets of Z*. If E is an expression, L(E) is the language (set of
words) described by E.
(). (i). () is a Z=p-expression, and L((\)) = [K}T.

(ii). I1f o €L, (o) is a Z-p-expression and L((0)) = (0}.
(2). If E, and E2 are L=p-expressions, then:

(1). If @ € ® denotes the binary operation @,

(E1 R E)) is a Z-p-expression and
L((E, @ E,)) = L(E;) @L(E,).

(ii). If @ € © denotes the prefix (postfix) unary operation @,
S Ey) (resp., (El@‘z) is a Z-~p-expression and
L({ @, Q) = GL(E,) (resp., L((E,@)) = L(E)e).

(3). That's all,

If E is a E<$-expression, |E| denotes the length of E viewed as
aword in CUQ U [A, (,) D™

In particular, we consider cases where ¢ < (U, N, -, L, » ~).

Binary operations U (union) and 1 (intersection) are familiar.

TNote: N is a formal symbol; A denotes the empty word itself. We allow A

as an expression merely as a technical convenience. A can be removed from

our proofs at the cost of minor awkwardness. See Remark 4.23.

-71-

Concatenation is extended to sets of words in the obvious way;

Rl-R2=(WY|W€R1 and y€R2} forRl,Rz-‘;Z”".

If R SZ¥, define RO = (A} and R = R-R® for all k €N,
In particular, the unary ''squaring' operation is R_ = R°R.
Unary operation * (Kleene star) is now defined as
® ok
R-=U R .
k=0
Unary operation ~ denotes set complementation relative to E*;
~R = Z¥ - R.
The set T will always be clear from context.
To improve readability, several abbreviations are used in the text

in describing expressions. These are as follows.

Having made clear the distinction between the formal symbol @
and the metanotation @ for an operation, " " is usually deleated.
Similarly, we write (for (, etc.

Parentheses are used sparingly; the full parenthesization
required by Definition 4.1 is not used. Any ambiguity can be resolved
by two precedence rules: any unary operation takes precedence over any
binary operation; concatenation takes precedence over both union and
intersection.

If some character , say Z, is defined within the text to denote a

finite set of symbols, say Z = {cl, Gys % cs}, then Z may be used to

abbreviate the Z-(U} -expression (o u oy U e u o) which
describes {0, g, ***, cs]. Similarly (for example) Z - (9q]

may be used to abbreviate the regular like expression (o, Ueee U Cq).

«72=

Occasionally we let a word w € Z* abbreviate a L-(-)-expression

which describes {w}.
Iterated operations such as }51 Ei are used to abbreviate
Ey U E, Useeo U Ek' N
Two particular classes of expressions are used often enough to
deserve special notation.
Recall EE = (weZ| Jul =k} for k€N,
Let _Es_k= (weZ¥| |lul sk} for k €N,
Within the context of regular-like expressions, EEk] ([Zsk]) is an
abbreviation for the obvious Z-(U,-]-expression of size bounded by
7k(card(Z)), namely,
ZX] abbreviates Z-E-Z+ -+ T (k times)
Z%] abbreviates (T UM @ UM oo «(ZUA) (k times).
In most proofs involving regular-like expressions, a major concern

is the lengths of expressions we write, All abbreviations must be

taken into account when bounding the lengths of expressions.

Example 4.2. This example investigates two ways of writing a regular-
like expression which describes [0,1}* - { (01)k l k=0).

e

(1). 1If ., °, and ~ are available, a simple such expression is
-_ A~ ° *
(2). Such an expression can also be written using U, °, and *,
Expression F0 very simply illustrates a technique to be used thoughout

Chapter 4.

Fy = 10U H¥UuUuDTOU UL oOoUL.0UDT,

-73=

F0 describes the correct language because a word w € {0,1]* is not in
{ (01)k | k20 } iff w "begins wrong" (i.e. begins with 1), or
"ends wrong" (i.e. ends with 0), or '"moves wrong" (i.e. contains 00
or 11 as a subword).

Given a predicate P on regular-like expressions, an alphabet Z, and
a set of operations @, we may be interested to characterize the
complexity of deciding P restricted to Z-p-expressions. The problem of

""deciding" P is equivalent to the problem of accepting the set

P, ©) defined next.

Definition 4.3. Let P be an n-place predicate on regular-like expressions.

Define P&, Q) = { (El’ E2, cee, En) | El’EZ’”"En are Z~<p-expressions

and P(El,Ez,'--,En) is true }.

For simplicity, we concentrate attention on the problem of checking
inequivalence of expressions. Define the binary predicate INEQ by
;ygg(El,Ez) iff L(El) # L(EZ)'
In many cases we consider the special inequivalence predicate

NEC (nonempty complement) defined by

NEC(E,) iff L(E,) # il

1
where Z is the smallest alphabet such that E1 is a Z=p-expression
for some ©.

For example, if E0 and F0 are as in Example 4.2, then
(Ey»F,) & INEQ((0,1}, (~*, ,U}) and (Fy) € NEC((0,1}, (U,-,*)).

It is obvious that NEC is a special case of INEQ in the sense that,

73

if Z° is the language of some Z-<p-expression, then an algorithm which’
accepts INEQ(Z,p) immediately yields an algorithm which accepts

NEC(Z,®); formally NEC(Z,p) < INEQ(Z,»). A lower bound on the

log-1lin
complexity of NEC yields essentially the same lower bound on that of INEQ.
Hunt [Hun73a], [Hun73c] has extended our work to many other
interesting predicates on expressions.. He gives various criteria to
determine if the generalization applies to a given predicate.
For example, the unary predicates "L(El) is cofinite", "L(El) = RO"
where R0 is any particular unbounded regular set, and "L(El) is a
non-counting event [MP71]" satisfy one criterion, For these predicates
and others which satisfy the criterion, P(Z,p) is as computationally
difficult as NEC(Z,p). Usually this is proved by showing that
NEC (Z,) is efficiently reducible to P(Z,p). The reader is referred

to [Hun73a], [Hun73c], and [HR74] for further details.

Remark. We consider inequivalence (rather than equivalence) problems
because such problems are more amenable to solution by nondeterministic
algorithms; to determine that L(El) # L(Ez), a nondeterministic

algorithm can 'guess' a word in the symmetric difference

(L(El)-L(Ez)) U (L(Ez)-L(El)‘. (See for example Proposition 4,11.)

It is then possible in most cases to show that a particular inequivalence
problem is complete in some nondeterministic complexity class, whereas
it may not be immediate (or even true) that the corresponding

equivalence problem is complete in the class because certain nondeter-

ministic complexity classes such as NP and CSL are not known to be

«75a=

closed under complementation.

Because deterministic time (space) classes are closed under
complement for countable (constructable) bounds, it is clear that a
lower bound on the deterministic complexity of a particular inequivalence
problem immediately gives a lower bound on the deterministic complexity
of the corresponding equivalence problem provided the time (space) bounds
are countable (constructable). (The conditions of countability or
constructability are required only because our definition of complexity
bounded set acceptance (Definition 2.2) places no bounds on the
resources used by the algorithm when computing on rejected words. Of
course the countable or constructable conditions can be dropped if we
adopt the common definition of acceptance in which the algorithm must
halt within the resource bound on all inputs.) See also Remarks 4.20

and 4.21 for more discussion on the deterministic or nondeterministic

complexity of equivalence problems.

In the following sections we characterize the complexity of
accepting NEC(Z,») or INEQ(Z,p) for various choices of L and o.
Sections 4.1, 4.2, and 4.3 consider & = (0,1}, which actually subsumes
all choices of finite X with card(X) = 2. Section 4.4 contains two
results for the case L = (0} which show that restriction to a one letter
alphabet can affect the complexity of the inequivalence problem.
Section 4.1 considers several choices of ¢ from {U,-,*,Z], and in
particular considers regular expressions as usually defined

@ = (U,-,*]). In section 4.2 we show that the inequivalence problem

. } rlogbn-|
with ¢ = {U,-,~} requires time and space exceeding 2
if b > 3, We also investigate how the depth of nesting of ~ operations
affects the complexity, and find that each increase by one in ~-depth
causes an exponential jump in complexity. In section 4.3 we summarize
several results of Hunt [Hun73b] concerning cases where 1 € ¢, and
obtain a lower bound on the complexity of INEQ({0,1},(U,-,*,N1) by
a slightly different method than that used in [Hun73b].

As was described in section 3,2, we can obtain a lower bound on
the complexity of a particular set B by showing & seff B where Seff
is an efficient transformation and © is a suitably rich class of sets.
There is one basic method used in section 4.1 to show © S ff NEC (Z,®)

or & S.ff INEQ(X,9) for various particular &, Z, ¢, and S.ppr In

f
subsequent sections 4,2 and 4.3, the technical details become more
complicated but the basic method remains the same. The method utilizes

the following formal notion of the computations of a STM.

Definition 4.4. Let M = (I,F,Q,é,qo,qa) be a (nondeterministic) STM.
Let d be an i.d. of M.

PartComp, (d) = { w | w= $d18d,9d,8++5d ¢ where d; =d and

d. .y € Next, (d,) (and hence Idi+1' = ldil)

for all i = 1,2,3,¢°°,2-1).
CompM(d) = PartCompM(d) N{w|ws= aan for some
6B €QUTU(SH .

Recall the convention that state qa is entered iff M is computing

77 =

on an input x which is to be accepted. The next fact is then obvious.

Fact 4.5. Let M = (I,F,Q,G,qo,qa) be a STM which accepts a set A
within space S(n) (S:N+.* N+). Then for all x € I
x €A iff Comp(qxX gSUxh=1=xly o

where ¥ denotes the blank tape symbol.

The next lemma provides a useful equivalent characterization

of CompM(d).

Lemma 4,6, Let M = (I,F,Q,é,qo,qa) be a STM. Let d be an i.d. of M;
assume q_ does not appear as a symbol in d. Let k = [d| and
Z=QUTU($.
Then for all © € Z', w € Comp,(d) 1iff
g (i). ("starts correctly'") 8d$ is a prefix of w;
an

(ii). ("moves correctly'") If we write w = 010,04 *0 where

o €Z for 1< j<m, then for all j with 2 < j < m-k-2
%5 ek et € Mu(052193%540)
where Ny is the function of Lemma 2.14;
and
(iii). ("ends correctly')
(iiia). $ is the last symbol of w

and
(iiib). q_ appears as a symbol in w,

Proof. The "only if" direction of the proof is straightforward. We
sketch the proof of the "if" direction.

Using Lemma 2.14 the following statement can be proved by induction

-78-

on the number of $ symbols which appear in w:

For all w € E*, if |w| =2 k+4 and w satisfies conditions (i),
(ii), and (iiia), then' w € PartCompM(d).

Now assume w satisfies all four conditions. If |w| < k+2 then
q, cannot appear in . If |w| = k+3 then ®w cannot both end with $
and contain q_. Therefore |[w]| 2 k+4, Now w € PartComp, (d) by the
above, and q, appears in w by (iiib). Therefore w € CompM(d) by the
definition of Comp(d). | =

The proof of Lemma 4.8 soon to follow illustrates the general
method and is a prototype for most results of Chapter 4 which show

6 S.ff P(Z,p) for some S, Z, o, <o fg and P € (NEC,INEQ}.

4,1 Expressions With Squaring.

In this section we show that NEC([O,I},{U,-,“,Z}) is Slog-lin-
complete in EXPSPACE (Theorem 4.12) and that INEQ({0,1},(U,-,%}) is
= ._~complete in EXPNTIME (Theorem 4.18). It is then easy to

log=-1lin
deduce lower bounds of exponential space and exponential time respectively
for these problems using the methods outlined in section 3.2, Also,
* . - . .
NEC({0,1},{U,+, }) is Slog_lin-compxete in CSL (Theorem 4.13) and
INEQ({0,1},({U,*}) is Slog-complete in NP (Theorem 4.19),

First, the following fact is useful in the proofs of Lemmas 4.8
and 4,15: for any k € N+, using squaring and concatenation we can write
an expression ﬂﬁk]sq of length O(log k) which describes Zk; moreover
Eﬂ‘]sq is computable from bin(k) by a function in logspace.

bin(k) is defined as the binary representation of k € N without

leading zeroes unless k = 0.

Lemma 4.7. Let Z be a finite alphabet., There is a comstant « = «(Z)
such that for any k € Nt there is a Z;(U,-,z]-expression Eﬁk]sq such that
(. L@ =If

@). 1B, | < alogk.

Moreover, there is a function ﬁz € logspace with domain [0,1}+

and

such that fn(bin(k)) = [z:"]sq for all k € NF.

Proof. Define [ka]sq inductively as follows:

1 K, 2 kbl 2
Bl =T B = (B0 5 and BHh = (2 pts
for all k € N,

=80=

It is obvious that (1) and (2) hold for some constant a(X),

The structural similarity between bin(k) and [Zk]sq should be
obvious from the inductive definition above. We let the reader
convince himself that a suitable fE € logspace exists. (Alternatively,
fE can be defined by 2 sided recursion of concatenation (cf. Appendix II)

from functions which are trivially members of logspace.) d

Notation. Note that L([(Z U Z‘.)k]sq> - =K,

We use the notation [Z'Jgkls for [(Z U Z\:)k]sq.

Lemma 4.8 is the first result which shows that a regular-like
expression can '"simulate" a complexity bounded Turing machine. The

proof of this lemma was first given in [MS72].

Lemma 4.8 (Meyer, Stockmeyer). Let A € EXPSPACE. There is a finite

2

alphabet Z such that A < in NEC(E,{U,',*, 1)

log-1i

Proof. Let A € EXPSPACE. By Lemma 2.13 we can choose d € N such that

some (nondeterministic) STM M = (I,F,Q,G,qo,qa) accepts A within space

S(n) = 2dn. Let x € I+ be arbitrary, let n = |x|, and

Z=TUQU (%) (where $ ¢T UQ).

We construct a 2—[U,',*‘,2]-expression EM(x) such that
dn

% 2
L(EM(x)) =X - CompM(qoxH).
Therefore, (E,(x)) € NEC(Z,(U,",",%}) iff L(E.(x)) # i
dn
iff Compl\{(qox'l‘2 "My ¢ iff x € A.

- +
Letting EM be the function mapping x to EM(x) for all x € I,

-81-

we shall see that fM € logspace and fM is linear bounded. Thus

slog-lin NEC(E,{U,-’*’ }) via fM.

By Lemma 4,6, words in L(EM(x)) can be characterized as follows:
w € E* - CompM(quBZdn-n) iff
(1), ("starts wrong") w does not begin with $q0x32dn-n$ H

. (2). ("moves wrong'") w is of the form QUIGZGBBUicéc;y where

@,y €T ezzdn'l d 10,00 & N, (5,0,0,) ;
o A » an 919293 ¥ My(91953) 5
(3). ("ends wrong") w does not contain q, or does not end with $.

We now write expressions E E, which formally describe the

1 Eps B3
sets of words (1), (2), (3) above.

If o €Z, let o denote Z-{0}.
(1'). Words may satisfy (1) for three reasons.

First E11 describes all words which are ''too short'", that is

dn
2742
E11 - [ZS]sq y

Recall from Lemma 4.7 that I[Em]sql < |[z:s“‘]sq| < ologm for all m,
where o depends only on Z., Therefore, viewing |E11| as a function of n,
|E11| = 0(n).

Second, E12 describes all words which do not begin with $q0x.

Let x = x1x2x3---xn.

Epy = (F U $:(@y U aye (&) U xye By U oo
U xn-2‘(;n-]_ U xn-l.;n)))...)'zn o

Viewing |E12| as a function of n, note that |E = 0(n).

12
Finally, E13 describes all words longer than n+2 which do not

dn
begin with TBZ “%$ for some T of length n+2,

-82-

dn
_ +2 2 n-1 * +2 e
By, = B0 5 MRV s SRS s

Note |E13] = 0(n) for the same reasons given for IE11|.

Now let E1 = E11 U E12 U E13 .

(2'). Words (2) are described by an expression E2. Subexpression
dn
[Z? -]sq serves as a ''ruler" to measure the distance between pairs

of words 010203 and 01 2 3 which are inconsistent in the sense that
. dn .
1 2 3 g N (01 2 3) See also Figure 4.1 where E = 2 41 is the
length of each i.d.

oy 5193598, 508, g2t 918, 1 e o1, 95, e
—~ | = ’ | |
ol o g, © gk'z cl' g, o,' =
1 "2 73 1 2 3

Figure 4.1: E2 "matches'" a word w.

E - En‘.

dn
-1
) « Gg 53 0y0,0y° (5]sq-(z:3 - N (9,0,05))) "
1°2°3

Note |E2| = 0(n).

(39, B = @-(q,p" U ZE.

|E3| is fixed independent of n.

Now let EM(x) = E1 U E2 U E3 .
For w € E* we have

and w ¢ L(Ez) and w ¢ L(E3)

dn
iff w€ CompM(qoxB2 k) by Lemma &4,6.

w ¢ L(EM(x)) iff w ¢ L(E,)

-83-

* dn_
Therefore L(EM(x)) =X - CompM(qoxH2 n) as required.

Let fM be the function with domain I+ defined by
£,x) = (B (x)) for all x €T,

To complete the proof, we must show fM € logspace and fM is linear
bounded. The latter fact is immediate from our observation that
|E1|, IEZI’ and |E3| (viewed as functions of n) are all O(n).
Assuming £, € logspace, A <) . ;.. NEC(Z, (U,+,%,3) via £

We now outline how one might formally prove that EM € logspace,
using a number of facts from Appendix II. Those readers familiar with
space bounded Turing machines may wish to skip the next paragraph.

First by Lemma 4.7 there is a function ﬁE € logspace mapping
bin(m) to [ZP]sq for all m. The functions mapping x to bin(|x|) and

dlxl) belong to logspace. Now the functions

a(x) = bin2d*l 1x) - 1), a,(x) = bine2dlxly 5y, a5(x) = bin(2

x to bin(2
dlx|_

belong to logspace because addition and monus belong to logspace and

logspace is closed under composition. Therefore, by another application

of closure under composition, the functions mapping x to

ﬂiszdIX|

from x by two sided recursion of concatenation. Thus, all the

'lx"llsq, etc, belong to logspace. Finally E12 is definable

componenets of EM(x) can be computed by functions in logspace. These

components.can be combined appropriately by concatenation (€ logspace)

to give EM(x). O

)

-84 =

Lemma 4.9 (Meyer, Stockmeyer). Let A € CSL. There is a finite

alphabet Z such that A Slo n NEC (Z, (U, ',*]).

g=-11i

Proof. The proof is essentially the same as Lemma 4.8; only the
differences are sketched.

Let A € CSL and let M = (I,F,Q,é,qo,qa) be a (nondeterministic)
STM which accepts A within space S(n) = n+l, Let x € I+, n = [x],
and X =QUT U($ as before.

Since x € A iff CompM(qoxﬁ) £ 90, Ey(x) is constructed such that

L(EM(x)) = E* - CompM(quH).

EM(x) is constructed as in the proof of Lemma 4.8 where Zdn is

replaced by n+l, and []sq is replaced by [] (without the use of

""'squaring''). For example, subexpression E2 is now

E, = E*-(U -03-[21“]-(2'9 - NM(010203)))-E* .

2 0102036 23 1%
Recall that [Z°] abbreviates Z.L«Z+ -++ T (n times). Therefore
|E2| = 0(n). Similarly one can check that the lengths of E1 and E3
(after modification) are also 0(n).
Let fM' be the function mapping x to EM(x) for all x., Then omne

can prove fM' € logspace just as one proves EM € logspace in Lemma 4.8,

A Slog-lin NEC(,(U,*,7}) via fM'.]

In Lemmas 4.8 and 4.9, the alphabet Z depends on the set A,
However we would like to show that (for example) NEC(Z:,{U,',*]) is
complete in CSL for a fixed alphabet X. The next lemma shows that

alphabet symbols can be coded into binary. Therefore Lemmas 4.8 and

-85-

4.9 are true with Z = {0,1} always. For convenience, many results to
follow are stated only for the case Z = {0,1}; these results are

actually true for any finite Z with card(@) = 2,

Lemma 4.10. Let X be a finite alphabet with card(®¥) 2 2, and let

©® = [U,-,*,Z,n}.
(1). INEQZ,®) =log-1in MNEQ((0,1},9).
(2). If also U,+,* €, then
NEC(E’CQ> Elog-lin NEC([O’I] ’m)o

Proof. (1). The transformation INEQ({O0,1},%) Slog-lin INEQ(Z,®») is
trivial. We only show INEQ(Z,®) Slog-lin INEQ ({0, 11,0).

Let k = rlogz(card(E))-l. Let h be any one-to-one map,
h:Z -+ [O,l]k. Extend h as a map from 22* to 2[0’1]* in the obvious way:

h(A) = A; h(wo) = h(w)h(o) for all w € Z*, ¢ € Z; and

h(R) = { h(w) | W ER) for REZ .

If E is a Z-<p-expression, let h(E) be the {0,1}-9-expression
obtained from E by replacing each occurrence of a symbol ¢ € ¥ in E
by the word h(c). A simple inductive proof shows that
L(h(E)) = h(L(E)) for all Z<p-expressions E.

(E),E,)) € NEQE,9) iff (h(Ep),h(E,)) € WNEQ(({0,1),0).

The function mapping (E1,E2) to (h(El),h(Ez)) is obviously

linear bounded and a member of logspace. The conclusion follows.

(2). As in (1), we only show NEC(Z,%) slog_lin NEC ({0, 1},9).

Given an expression Eqs let Z be the set of alphabet symbols which

-86=

actually occur in E;. Let C = h(Z) U (A} = { h(o) | c€Z) U (N
be the set of code words., As in part (1), for all Z-p-expressions E,

LCW(E)) € ¢ and L(h(E)) = C* iff L(E) =Z .

Let F be the {0,1]-(U,-,*]-expression

F=(0OU 1)1‘)*-([0,1}sk - C)'((0 U l)k)* .

[0,1}* - C*. Therefore

Note L(F)
L((h(Ey) U F)) = (0,13 iff L(E;) =Z%.

The reduction (2) is via the function mapping E, to (h(E;) U F). O

The next result gives an upper bound on the space complexity of
INEQCE,[U,',*}). The algorithm is due to A.R. Meyer., Essentially the
same algorithm was discovered independently by Aho, Hopcroft, and
Ullman [AHU74]. Since lower bounds are our main interest, we only

outline the algorithm,

Proposition 4.11 (Meyer). Let X be a finite alphabet.

INEQ(Z, (U,*,*}) € CSL.

Proof. Given two 2—[U,-,*}-expressions E, and E,, an I0TM M tries to
nondeterministically '"guess'" a word w in L(El) ® L(Ez)

= (L(El) - L(Ez)) U (L(Ez) - L(El))' w is guessed one symbol at a
time. Eq and E2 will be viewed as nondeterministic finite automata
(NFA's, cf. HU69) which accept L(El) and L(Ez) respectively., M can
simulate these NFA's as though they were receiving W as input, and
thus determine if w belongs to L(El) 2] L(E2).

An expression, say El’ is viewed as an NFA as follows. The

parentheses of E, serve as the "states" of the NFA. If F is any
subexpression of El’ the leftmost (rightmost) parenthesis of F is
the initial (final) state of an NFA which accepts L(F). Implicitly

the following transitions exist between '"'states' of El'

A A A N A
g-)/""—'“\ ,%D " t
) U ()) (() o ())
= H———}' Y X X7
A A N
O %% O O 0,
(() «C &) (o) where o € Z,

LT_/"" 7 ~7

These transitions need not appear explicitly on a work tape because
given two designated parentheses Py and Py (designated say by being
marked insome way), an IOTM can check whether or not there is an arc
from p, to Py by counting parentheses. Such a check can be performed
within time polymomial in E1 and space logarithmic in E1 .

The simulation of these NFA's, Eq and E,, on w works as follows.,
A parenthesis state in Eq (or E2) will be marked at some time iff the
portion of w received up to that time could lead the NFA E1 (or EZ)

~ to that state. The following procedure update(c) is used to update the

subset of marked states, update(c) should perform as follows for
o €Z U (N}. At the completion of a call on update(c), a state Py

is marked iff there is a state 12 (possibly P = p2) such that

t The A-self-loops are redundant, but are included for purposes

of exposition.

-88=

(i) there is an arc labelled o from Py tO Py, and (ii) p, was marked
before the call on update(c). Note update(c) can be programmed to run
deterministically in polynomial time and linear space.
M operates as follows. Given input x (with n = [x|):
(1). Note that for any % and @, the set of Z-{p-expressions is a
context free language. Within space (log n)2 [cf. LSH65] check
that x is of the form (EI’EZ) where E1 and E2 are E-{U,-,*}-
expressions, Reject if x is not of this form.
(2), Write E1 and E2 on some work tape;
Mark the leftmost parenthesis of E1 and E2.
(3). Call update(A) n times.
(4). 1If exactly one of the rightmost parentheses of E1 and E2 are
marked, then accept.
(5). Nondeterministically guess a symbol ¢ € Z;
Call update(o).

(6). Go to (3).

M operates within space cn for some constant c. The conclusion

follows by Fact 2.8 (constant factor speedup). a

Completeness results now follow easily for the two cases

considered thus far.

-89~

Theorem 4,12 (Meyer, Stockmeyer).

% 2 . .
(1). NEC({0,1},{U,-,",7}) is Slog_lin-complete in EXPSPACE.

(2). In particular:

(2i). There is a rational c > 1 such that
NEC((0,1},(Y,,*,%}) ¢ NSPACE(c™ ;

(2ii). NEC{(0,1y,({U,-,*,%}) € NSPACE(2™).

Proof. First, for all A € EXPSPACE,

2

* 2 *
A Slog-lin NEC(Z, (U,*, , 1) Slog-lin NEC({0,1},(U,*, ,°1)

for some Z by Lemmas 4.8 and 4,10, Therefore

. * 2 A
EXPSPACE slog-lin NEC({0,1},{U,*, ,7}) by transitivity of slog-lin'

(2ii) is true because an IOTM, given a [Q,l}-[U,-,*,2}-expression
E of length n, can first expand the squaring operations; that is,
replace F2 by F-F if F is some subexpression of E. This produces the
(0,1} -(U,+,*)-expression E', where [E'| < 2" and L(E') = L(E).
The I0TM now applies the procedure of Proposition 4.1l to the pair
(E', (0 U 1)*). The entire procedure operates within space O(Zn) and

(2ii) then follows.

(1) is now immediate by the definitiom of <= -complete,.

log=-1lin
The proof of (2i) follows step (3) of Outline 3.8, That is,

for €> 0 1let A € NSPACE(2") - NSPACE((2-€)™), and deduce (2i)

where c = (2-€)1lb and A Slog-lin, NEC([O,I},{U,',*,Z}) via some

length bn bounded function. See Outline 3.8 for further details. O

Theorem 4,13 (Meyer, Stockmeyer).

(1). NEC({0,1},(U,*,"}) is Slog_lin-complete in CSL.
(2). If a nondeterministic IOTM accepts NEC([O,I],[U,',*}) within
space S(n), then there is a rational c¢ > 0 such that

S(n) 2 ecn for infinitely many integers n.

Proof. (1) is immediate from Lemmas 4.9 and 4.10 and Proposition 4.11.

(2). Let B = NEC({0,1},{U,*,*}). Suppose a nondeterministic
IOTM accepts B within space S(n) where for all ¢ € Q+, S(n) < cn
for all but finitely many n.

Let S'(n) = max{ S(m) | m<n}. Then B € NSPACE(S'(n)) and
S'(n) is nondecreasing.

By Fact 2.1l let the set A be such that A € CSL; and for all
Sl(n), Sl(n+1) = o(n) implies A ¢ NSPACE(Sl(n)).

By part (1) above, A Slog-lin B via some length bn bounded function
for some positive integer b, Therefore, by Lemma 3.6,
.A € NSPACE(S'(bn) + logn). However, by definition of S'(n) and our
assumption on S(n), S'(b{(n+l)) + log(ntl) = o(n). This contradiction

proves (2). g

Remark 4, 14.

(1). As was mentioned earlier (following the definitions of
NEC and INEQ), we can immediately replace NEC by INEQ in Theorems
4,12 and 4.13. [Hun73a], [Hun73c], and [HR74] give many other

predicates which are as complex to decide as NEC.

(2). The proofs of Lemmas 4.8 (4.9) and 4.10 actually show that
EXPSPACE (resp., CSL) is log-lin reducible to the inequivalence problem
for [0,1}-{U,-,*,2]-expressions (resp., [0,1]-{U,-,*}-expressions) of
star-height one [cf, MP71], The expression EM(x) constructed in
Lemma 4.8 (4.9) is of star-height one. Binary coding by Lemma 4.10
does not increase star-height above one. Therefore the lower bounds
of Theorems 4.12 and 4,13 also hold for the respective NEC or INEQ
problems restricted to expressions of star-heighi ome.

(3). Using padding techniques of Ruby and Fischer [RF65], one
can show that CSL Slog B implies POLYSPACE slog B for any set B.
(Hunt [Hun73a) has observed this fact using < in place of slog')

Thus, immediate from Theorem 4%.13, NEC([O,I},{U,',*]) is Slog-complete

in POLYSPACE,

We now investigate how removal of the * operation affects the

complexities of these problems. First consider INEQ(Z,{U,-,Z}).
Note that this is a purely finite word problem: if E is a
E-[U,-,Z}-expression then L(E) is a finite set of words. 1In fact,

if |E|] = n, then w € L(E) implies |w]| < 2", This suggests that a
) 2 . Nad n dn

-{U,*,“}~expression cannot "simulate" a space 2 bounded STM as was
done in Lemma 4.8 unless the expression itself is of length roughly

dn
d
2 n; a STM which operates within space 2dn may run for time 2 and

dn
thus may admit computations of length 2 .

However, a.E-{U,',Z}-expression can "simulate" a time 2dn

bounded STM. The computations (in the sense of CompM()) of a

-92-

2 _ 22dn.

time 29" bounded STM are of length roughly (29™)
The next result, presented by us previously in [SM73], was
stimulated by a remark of Brzozowski that our use of * in Lemmas

4.8 and 4.9 was very restricted and might therefore be removable.

Lemma 4.15 (Meyer, Stockmeyer).

EXPNTIME < n INEQ([O,l},[U,',z})-

log~-1i
Proof. The proof is very similar to that of Lemma 4.8. We need only
find a substitute for all occurrences of =" in the expression EM(x)

constructed to prove Lemma 4.8.

Let A € EXPNTIME. Choose d € N+ such that a (nondeterministic)
STM M = (I,P,Q,G,qo,qa) accepts A within time Zdn (and thus M accepts
A within space Zdn). Let x € I+, n=[x|], and Z=TUQU (%) as before.

We construct a Z;(U,',Z}-expression EM(x) such that

<b(n) 290y
L(EM(x)) =X - CompM(qoxﬁ)
where b(n) is specified below.
dn
Note that w € CompM(qoxn2 Ny implies [w] = 29729041y + (29741
< 22dn+2

b
. . . dn dn
because each i.d. in w is of length 2° +l and there are at most 2

such i.d.'s because M is time 2dn bounded; the markers $ account for

at most 2dn+1 more symbols,

Define a(n) = 22dn+2.

The role of Z in Lemma 4.8 is played by the expression [ZSa(n)]sq.
Construct E, and E2 exactly as in the proof of Lemma 4.8, except

replace all occurrences of = by Eisa(n)]sq.

~93a

_ <a(n) a(n)
et Ey = [E-(q,)7" W] U ZM) 5
Following the proof of Lemma 4.8, it can be checked that

L(E, U E2 U E3) contains all words in z;a(n) except those in

dn
CompM(qoxB2 -n). L(E1 U E2 U E3) contains other words longer thdn

a(n); however no such word is longer than
b(n) = 2a(n) + 29 + s,
(These longest words are in L(EZ)')

Therefore, we add all words w such that a(n) < [w| < b(n).

_ (n)+l, ~<b(n)-a(n)-1
B, = BT == laq *

Now if EM(x) = E1 U E2 U E3 U E4,
dn
- »b(n) _ 2""-n
L(Ey(x)) = z=P Comp,,(q,x¥)s

and therefore (E,(x), [Z:sb(“)]sq) € INEQ(T,(U,-,2)) iff x € A.

Let fM be the function mapping x to (E (x),[Esb(n)]) for all

M sq

x € I+. Following the proof of Lemma 4.8, the reader can check that

fM € logspace and fM is linear bounded, Finally the binary coding

lemma (4.10) implies the conclusion. O

2

Again we see that removal of the operation < causes an exponential

drop in complexity. The following lemma was discovered independently

by Hunt [Hun73a] (with < in place of Slog) using another proof.

Lemmz 4.16 (Hunt, Meyer, Stockmeyer).

NP <)o INEQ((0,1},{U,"}). !

Proof, Lemma 4.16 is analogous to 4,15 in the same way that Lemma 4.9

-9

is analogous to 4.8.

Given an STM M which accepts A € NP within polynomial time p(n),
and given input x with n = x|, EM(x) is constructed as in Lemma 4.15
to describe Esb(n) - CompM(quBP(n)'n) for some suitable polynomial
b(n). E* is replaced by the expression [zs(p(n)+1)2] in this case,
and the '"'ruler" in E2 is [Zp(n)-l]. Recall that [Z"] is written as
ZeXeZ* +e+ L (m times). By Fact AII.3 (Appendix II), if q(n) is a

polynomial there are functions in logspace mapping x to [Eq('lxl)] and

to [qu(lxl)]. Further details are left to the reader. a

An upper bound on the time complexity of INEQ(Z,(U,*}) follows

by a minor modification to the procedure of Proposition 4.1l1,

Proposition 4.17. Let Z be a finite alphabet.

INEQ(Z, (U,+)) € NP.

Proof. The set of 2-{U,*)-expressions is a context free language.
Given input x of length n, an IOTM can check deterministically within
time 0(n3) [ef. You67] that x is of the form (E1,E2) where El and E2
are Z-{U, +} -expressions.,

Note that if E is a Z={U,)} -expression,
w € L(E) implies |w| < |E|. Therefore

L(E,) # L(E,) 1iff (I)[w € L(Ey) ® L(E,) and [w]| <n].
The procedure of Proposition 4.11 (with step (1) modified as above)
therefore accepts INEQ(Z,(U,*)) within nondeterministic polynomial

time. O

Theorem 4.18 (Meyer, Stockmeyer).

(1). INEQ({0,1},(U,*,%}) is <log-1in-cOmPlete in EXENTIME,
(2). Therefore there are rational c,d > 1 such that
(21). INEQ({0,1},(U,*,%}) & NTIME(c™)

(2ii). INEQ((0,1},(U,*,%}) € NTIME(d™) .

Proof. (2ii) follows by eliminating the squaring operations as in
the proof of Theorem 4,12, and then applying the procedure of
Proposition 4.11 and 4,17, (1) now follows by Lemma 4.15.

The proof of (2i) is exactly as in Theorem 4.12(2i) where

NTIME replaces NSPACE. O

Theorem 4.19 (Hunt, Meyer, Stockmeyer).

INEQ({0,1},{U,*}) is Slog-complete in NP.

Proof. The proof is immediate from Lemma 4.16 and Proposition 4.17,

This section concludes with several remarks on the material of

section 4.1,

Remark 4,20. (Deterministic time complexities of these and related
problems.)

Given present knowledge, Theorems 4,13 and 4.19 provide no
interesting lower bounds on the deterministic time complexities of
NEC({O,I},[U,-,*]) or INEQ({0,1},(U,*}). These results imply only -
exponential upper bounds. Theorem 4.13 implies

NEC((0,1},(U,+,*}) € DTIME(d,") for some constant d;, by Fact 2.9C(b).

O

A deterministic simulation of the procedure of Proposition 4.17
yields INEQ({0,1},{U,*}) € DTIME(dZn) for some constant dz.
The exponential difference between the upper and lower bounds
on deterministic time is closely related to two important open problems

of complexity theory, namely ' = NP?" and "CSL < ?".

Corollary 4,20.1.

(1). NEC({0,1},(U,+,™}) €P {iff CSLESP iff cSL G P.

(2). 1INEQ({0,1},(U,*}) €P iff P = NP.

Proof., The equivalence CSL = iff CSL g:P follows by the result
of Book [Bo72] that CSL # ., (1) is now immediate from Lemma 3.9.

(2) is by Lemma 3,9 and ¥ < NP. O

. co < - . e,
More generally, if a set B is log-1in complete in CSL, e.g
B = NEC({O,l},[U,-,*]), then upper and lower bounds on the determi-

nistic time complexity of B are related to bounds for CSL by:

B € DTIME(T(n)) implies CSL S U DTIME(T(en) + n*)
and c,k €N

CSL € DTIME(T(n)) implies B € DTIME(T(n)),
the first implication following from Lemma 3.6.
Corollary 4.20,1(l) provides evidence that the problem of
checking equivalence of regular expressions (cf., [Gin67], [Brz64])
is computationally intractable. (By ''regular expression' we mean a
Z-(U,+,”} -expression. Following [Edm65], [Kar72], we call a problem
"intractable'" if there is no deterministic algorithm which solves the

problem within polynomial time.) If CSL - # ¢, then the equivalence

problem for regular expressions is intractable, as are the problems
of checking equivalence of nondeterministic finite state automata
(NFA's, [cf. HU69]) and minimizing NFA's [cf. KW70]. Assuming

CSL - P # ¢, the equivalence problem for NFA's is intractable since
there are well-known deterministic polynomial time procedures for
converting any regular expression to an equivalent NFA (e.g. [Har65],
[Sal69]).

To see that the minimization problem is intractable, suppose we
have a deterministic polynomial time procedure G which, when given an
NFA F, finds a smallest (in terms of number of states) NFA which
accepts the same language as F, Let A € CSL and consider the following
procedure for accepting A. Given input x, construct EM(x) as in
Lemma 4.9 such that L(EM(x)) # Z* iff x € A, Convert EM(x) to an
equivalent NFA and minimize this NFA using G. Since it is trivial to
check if a minimized NFA accepts E* (it can have only one state), the
entire procedure accepts A within deterministic polynomial time,

If CSL - > # ¢, then such an G canmot exist.

There are also '"gaps' in the known deterministic time complexities
of the problems with squaring. For example, Theorem 4.12 immediately
gives a lower bound of DTIME(cn) for NEC([O,I},{U,-,*,Z}), but an
upper bound of DTIME(ddn) for some c,d > 1, As in the cases above,
any improvement in this gap would supply new information about
Open Question 2,10C for the case S(n) € (" | c > 1}, and vice versa.

Also, the deterministic space complexity of NEC([O,l},(U,',*}) is

=98

related to the 'lba problem".

Corollary 4.20.2. NEC({0,1},(U,+,™)) € DSPACE(n) iff CSL = DSPACE(m).

Proof. Immediate from Theorem 4.13 and Lemma 3.6. O

Remark 4,21. (An alternative to the nondeterministic hierarchy

theorems.)

If one desires lower bounds on only the deterministic time or
space complexity of problems,the deterministic hierarchy theorems,
[SHL65] and [HS65], can be used in place of Fact 2.1l to assert, for
example, the existence of a get A € DTIME(Zn) - DTIME((Z-e)n).

The deterministic hierarchy theorems follow by fairly straightforward
diagonalizations, while the known proof of Fact 2.1l requires additional
deeper."translationai" arguments. For this reason, it seems worth
pointing out that the deeper results of Fact 2.1l are not always needed
to deduce lower bounds on nondeterministic complexity. In particular
we consider nondeterministic time complexity.

If A is a set of words and X~ is the smallest alphabet such that
A S ET let A demote the set Z' - A.

The first lemma was brought to my attention by Paul Young.

Lemma 4.21.1 (Young). Let T(n) be countable and satisfy T(n) = n.

There is a set A < [0,1}+ such that

A € NTIME(n+T(n)) and A ¢ NTIME(T(n)) .

-99.

Proof. Let { M(y) l y € [0,1}+ } be an efficient effective
enumeration of the nondeterministic IOTM's such that each IOTM in
the list has two work tapes and has input alphabet {0,1}. By
"efficient effective enumeration' we mean that there is a universal
IOTM U and a constant c such that for all x,y € {0,1}+,

(i). U accepts x#y iff M(y) accepts x,
and (ii). TimeU(x#Y) < c|y|TimeM(y)(x).

The standard methods of enumerating Turing machines (e.g. lists of
quintuples [Min67]) are suitably efficient.

Now let

A=(y€ (0,17 | My) accepts y and Time, . (v) < T(IyD)).
Since T(n) is countable, and {M(y)} is an efficient enumeration in
the above sense, it follows that A € NTIME(n-T(n)).

Now suppose A € NTIME(T(n)). First, implicit in [BGW70] is the
result that if B € NTIME(T(n)) then some IOTM with two work tapes
accepts B within time T(n). Therefore, for some. y,, M(yo) has two
work tapes and M(yo) accepts A within time T(n). Now

Yo €A iff M(yo) accepts y, and TimeM(yo)(yo) < T(lyol)

(by definition of M(yo))
iff Yo € A (by definition of A).

This contradiction proves A¢ NTIME(T(n)). O

Lemma 4,21.2. Let Seff € [Slog-lin’ Slog’ sz, <}, let A and B be sets

of words with A & E+ and B A+, and let A Seff B via £, where

f(E+) €S p & A+ for some set D. Then A Seff D-B via f,

-100-

Proof., The proof is immediate from the definition of transformation

(Definition 3.3). O

Define the predicate EQUIV as EQUIV(EI,EZ) iff L(El) = L(E2).
We illustrate the use of Lemmas 4.21.1 and 4.21,2 by proving an exponen-
tial lower bound on the nondeterministic time complexity of

EQUIV((0,1},({U,*,%}).

Corollary 4.21,3. There is a rational ¢ > 1 such that

EQUIV({0,1},(U,,2}) & NTIME(c™).

Proof, By Lemma 4.21.1 let the set A < (0,1}+ satisfy
A S NTIME(n2") but A &NITME(2"). Let
D = { (EI’EZ) [Eq and E2 are (0,1]-{U,',Z]-expressions'}.
Since A € EXPNTIME, the proof of Lemma 4,15 (with Lemma 4.10)
INEQ((0,1},(U,,%}) via £,

gives a function f such that A < .
log=1lin

f is length bn bounded for some b € N+, and f({0,1}+) S p.

1}

By Lemma 4.21,2,
A slog-lin D - INEQ([O’I]’[U"’Z}) = EQUIV([Oal},[U,',Z}) via f.
Now let ¢ = 21/b and conclude as usual (via Lemma 3.6) that

BQUIV((0,1},(U,*,2}) € NTIME(c™) implies A € NTIME(2") contrary

to assumption. O

Corollary 4.21,3 is of value itself because Theorem 4.18 does not
imply Corollary 4.21.3 given present knowledge. EXPNTIME is not

known to be closed under complementation.

-101-

Remark 4.22, (Effective i.o. speedup and a.e. n lower bounds.)

It can be checked that the transformations described in section
4.1 are logspace-invertible (cf, Definition 3.12)., 1In all cases, the
expression EM(x) is syntactically simple enough that an IOTM can
determine within space log|y| that y = EM(x) for some x. The word
X can then be 'read off" subexpression E1 of EM(x). From the results

of section 3.3A and Theorems 4.12 and 4,13 we immediately obtain:

Corollary 4.22,1, There is a rational ¢ > 1 such that

NEC({O,I],(U,-,*,Z}) possesses c"-to-log effective i.o. speedup.

Corollary 4,22,2. For all ratiomal r < 1, NEC((O,l},(U,-,*})

possesses nr-to-log effective i.o. speedup.

None of the sets NEC(Z,9) or INEQ(Z,p) described above possess a
nontrivial lower bound on a.e. n complexity because our syntactic
conventions imply that the length of any well-formed L-p-expression
is divisible by 3. However, Z-{p-expressions can be ''maturally
padded" (cf. Definition 3.19) to any length divisible by 3. For

example, using methods of section 3.3B we can prove the following:

Corollary 4,22.3, Let B = NEC({O,I},[U,-,*,Z]). There is a ratiomal

¢ > 1 such that given any deterministic IOTM M which accepts B,

there is an integer 0, such that

(Vn 2 n, such that 3 divides n)(dx € B)[|x|] = n and SpaceM(x) > " 1.

0

-102-

Remark 4.23. (A is not needed.)

The ability to write A as a regular-like expression is not
essential to our proofs. For example, for any k € N+, an expression
+<k
[@ "1 which describes { w € E+ l |[w| <m } can be constructed

sq
by the rules: [Zfl'SZk]sq = ([Z}"'Sk]sq)2 uxz

and [E+szk+1]sq) ([}::+sk]sq)2.z U2 US .

[E"'Sk]sq can be used in place of [& k]sq in the expressions
EM(x) constructed to prove Lemmas 4.8 and 4,15. Further minor
modifications to the expressions are required; the reader can easily

supply these.

-103-

4,2 Expressions With Complementation.

To simplify notation in this section (and later) let g(k,r) be the

¢2r

, 2’ }k .
function 2 for k € N and real r. That is, g(0,r) = r and
gktl,r) = 28T gor 011 Kk €N,

This section considers regular-like expressions with the operation
of set complementation., In particular this includes the class of
"'star-free' expressions containing only the operations U, °*, and ~.

The languages describable by star-free expressions have been extensively
studied as an interesting subset of the regular languages [cf, MP71],
For example, it is kmown that star-free expressions cannot describe all
regular languages; in particular (00)* is the language of no
2-{U,*,~}-expression,

Our interest in such expressions is to characterize the complexity
of their equivalence problem, As was mentioned earlier, Brzozowski
[Brz64] gives an algorithm which checks equivalence of regular expressions
extended by other Boolean operations including ~.

Even though star-free expressions cannot describe all regular
languages, we shall show that they can describe certain regular
languages much more succinctly than can regular-like expressions
which use only U, ¢, and *, In particular, a star-free expression of
length O(n) can describe the computations of any given STM which uses
space g(riogbnq,O) on any given input of length n., It follows_that the

inequivalence problem for star-free expressions is enormously difficult

=104~

to decide; NEC({0,1},{U,*,~}) is accepted by no IOTM which operates
within space g(rlogan,O) for b > 3 (Theorem 4.27).

It immediately follows that other decision problems concerning
star-free expressions are also this complex. For example, the problem
of finding the shortest star-free expression equivalent to a given
star-free expression also requires space g(rlogan,O), (cf. Remark 4,20).
See also [Hun73a], [Hun73c], and [HR74] for other predicates which are
as difficult to decide as NEC.

By examining a straightforward algorithm for deciding
NEC({0,1},{U,*,~}), we see why such multiple exponential complexity
might arise, Given a {0,1}-{U,*,~}-expression E, we might first
construct a nondeterministic finite automaton (NFA) which accepts L(E)
and then check that this NFA does not accept [0,1}*. This NFA can be
constructed inductively on the structure of E by well-known methods
[cf. RS59]. However, given a NFA F with q states which accepts L(El)’
to construct a NFA F' which accepts LCVEI), we may first have to
transform F to an equivalent deterministic finite automaton (DFA) F",
say by the Rabin=Scott ''subset construction" [RS59]. F'", and thus F',
might have as many as 24 states. F' might then be incorporated into a
larger NFA which later must be made deterministic, resulting in a DFA
with 22q states, and so on. This suggests that the number of exponen-
tial functions which must be composed to yield a complexity bound is

closely related to the depth of nesting of ~ operations in the expressions

being checked for equivalence.

-105-

The relation between ''~-depth'" and complexity is characterized
by another result (Theorem 4.28) which states that, for any fixed integer
k, there is a ¢ € Q+ such that the inequivalence problem for
[0,1]-{U,-;V,*}-expressions of maximum ~-depth k cannot be solved by
an slgorithm which uses less than space g(k,cn); however this problem
can be solved by an algorithm which uses space g(k,dn) for some other
constant d. If * is not allowed, we show (Theorem 4.29) that the
inequivalence problem for (0,1}-{U,*,~}-expressions of maximum ~-depth

k requires space g(k-=3,cvn) for some constant c,

Definition 4.24., Let E be a L-p-expression and define depth(E)

inductively as follows:

depth((c)) =0 for o €Z U (A} ;

depth((E; @ E,)) = max(depth(E,),depth(E,))
and 1f @€ - (~) ;

depth((E;@)) = depth((GE,)) = depth(E,)

depth((~E1)) depth(El) + 1,
If k € N, let P(Z,p,depth < k) denote the set P(Z,9p) restricted to
regular-like expressions of depth not exceeding k., That is, if P

is an n-place predicate,

P(E,0.depth S k) = PZ,@) N { (Eq,Ey,***,E) | depth(E,) < k

for 1 <1i=<n}j},

We first obtain some rough upper bounds on the complexity of
inequivalence problems with complementation. The algorithms utilize

the "subset-construction" together with some ideas used in the

-106-

algorithm of Proposition 4,11,

Proposition 4.25.
(1). INEQ((0,1},(U,*,~,*}) € NSPACE(g(n,0)).

(2). For all k € N, mEQ((0,1},(U,",~,* ,depth < k) € NSPACE(g(k,2n)).
) :

Proof sketch. Given (0,1}-{U,°,~,*}-expressions E1 and E2, construct

NFA's which accept L(El) and L(Ez). Note that if L(Ei') is accepted
by an NFA with 9, states for i = 1,2, then:

(i). L((El' U Ez’)) and L((El'-EZ')) are each accepted by an
NfA with q1+q2+2 states;

%
(ii). L((El')) 1is accepted by an NFA with q1+2 states;

(iii). L((~E1’)) is accepted by an NFA with 2ql states,
See for example [RS59] or [HU69].
It is now easy to show by induction that if E is a {0,1}-{U,-,~,*}
-expression and n = |E|, then L(E) is accepted by an NFA with
S g(n-1,0) states, If also depth(E) < k, then L(E) is accepted by
an NFA with < g(k,n) states., A description of an NFA with q states can
be coded onto an STM tape within space 0(q2) in a straightforward way.
Note (g(k,n))2 < g(k,2n) and (g(n-l,O))2 < g(n,0) for all k,n 2 1,
Also, given two NFA's with 9 and 9, states, by using the method

of Proposition 4,11, a nondeterministic TIOTM can determine within

1.By [Sav70], the distiction between NSPACE(S(n)) and DSPACE(S(n)) is
n
essentially negligible for S(n) 2 22 . For example,
oh 2n+1
NSPACE(2™) < DSPACE(2). We consider NSPACE here for definateness,

-107-

space q1+q2 whether or not they accept different languages.

The conclusions follow, a

The next lemma contains all the technical details required to
obtain the lower bounds. The proof of the lemma shows how expressions

using ~ can very succinctly "simulate" the computations of STM's.

Lemma 4.26. Let M be a (nondeterministic) STM which accepts a set
A S I+ within space S(n). Assume # ¢ I. There are deterministic
I0TM's T and M' which compute functions f and f' respectively, there
is a constant a € Q+ and a polynomial p (all depending on M) with the
following properties,
For all x € I+ and all m,z € Nt such that S(|x|) < g(m,2z):
()., £(x#0"#0%) = E (= E,(x,m,2)) where
(i), E is a {0,1}~(U,*,~}-expression ;
(1ii). [E| < a(3"n%22 + [x|) ;
(1liii)., depth(E) <m + 3 ;
(1iv). L(E) # (0,1} iff x € A ;
(v). Timep(x#0™$0%) < p(|E|]) and Spacey(x#0"#0%) = |E| .
(2). f£'(x#0™#0%) = E' (= E,'(x,m,2)) where
(2i). E' is a [0,1}-{U,';v,*}-expression H
(2i1). [E'] < a(Pn’z + o2lx|) ;
(2iii). depth(E') = m ;
(2iv). L(E') # (0,1} iff x € A ;

(2v). Timqm,(x#om#Oz) < p(|E'l) and sPacam.(x#o“‘#oz) < |E'] .

-108-

Before proving this lemma, we prove the main results which
illustrate its use, The first result concerns the case of

unlimited ~-depth,

Theorem 4.27. For all rational b > 3:

(1). NSPACE(g(Mlogynl,00) < , NEC((0,1},(U,*s~])
and
(2). NEC({0,1},(U,,~]) & NSPACE(g([log,nl,0)).

Proof. (1). Given b >3, let A € NSPACE(g([log,nl,0)) and let M
be an STM which accepts A within space S(n) = g(rlogbc"nj,l) for
some constant c' chosen so that (in particular) S(n) = n+l.

We describe a deterministic algorithm which computes a transformation
f" such that A sz NEC({0,1},(U,*,~}) via f". Given x with n = [x],
first compute m = rlogbc"nj; note that this can be done in time
polynomial in n and space linear in n. Let It be the IOTM of Lemma 4.26.
Simulate M on input x#0"#0, obtaining a (0,1}-{U,*,~} -expression E.

Finally produce E as output.

Since S(n) g(m,1), E satisfies the conditions (1) of Lemma 4.26.
First |[E] < a(3mm2 + 1n) < c¢'n for some constant c¢' which depends on
a, b, and c", but not on n. Thus f" is linear bounded. Also, I
operates within time p(c'n) and space c¢'n on input x#Om#O, where

b is a polynomial. Therefore £ € polylin. Since L(E) # (0,1}

iff x € A, f" is the required transformation.

(2). Assume NEC({0,1},({(U,*,~}) € NSPACE(g(rlogbnﬂ,O)) for some

b > 3, Choose rational b',b" with 3 < b' < Db" < b,

-109-

By Fact 2,11, there is a set A such that
A€ NSPACE(g(rlogb,ﬁ1,0)) - NSPACE(g(rlogb"n1,0)).
By part (1) above, by Lemma 3.7, and by assumption, it follows that
A€ NSPACE(g(rlogbcn],O)) for some c¢ € N+.
However, rlogbcn—l < riogb"ﬁ1 for all but finitely many n.
Therefore A € NSPACE(g(rlogb"ﬁ1,0)), and this contradiction

implies the conclusionm. a

Recall that Proposition 4.25 gives an upper bound of space g(n,0)
for this problem versus the lower bound of g(riogbn1,0) just proven,
Whether this gap can be decreased is an open question on which we will
comment at the end of this section,

We obtain a tighter complexity characterization for the case
{U,-;~,*] by holding ~~depth fixed at some k while allowing the

lengths of expressions to grow.

Theorem 4,28, For all integers k = 1:

(1). NEC({0,1},(U,*,~,* ,depth < k) is.sz-conlplete

in U NSPACE(g(k,dn)) ;
d €N
(2). 1In particular,
(2i). There is a ¢ € Q+ such that
NEC({0,1},(U,*,~,*} ,depth < k) ¢ NSPACE(g(k,cn)),

(2ii). NEC({0,1},{U,*,~,*} ,depth < k) € NSPACE(g(k,2n)).

Proof. First, the upper bound (2ii) required for completeness (1)

is given by Proposition 4.25,

-110-

To prove the other half of completeness, let A € NSPACE(g(k,dn))

for some k,d € N+, and let the STM M accept A within space S(n) = g(k,dn).
We show how to compute f'" such that

As, NEC({0,1},{U,*,~,"},depth < k) via f". Given x with n = |x|,

set m = k and 2z = dn, then simulate the IOTM M' of Lemma 4.26 on

input x#Om#Oz, and produce the resulting expression E' as output,

since S(n) = g(m,z), E' satisfies the conditions (2) of Lemma 4,26,

In particular, depth(E') = k and |[E'| < a(3mmzz + m2n) Sec¢'n

for a constant c¢' which is independent of n. As in the preceding

proof, it is easy to see that f" € polylin and that f" transforms

A correctly.

The lower bound (2i) follows from (1) in the usual way. O

Theorem 4.29. For all integers k = 4:

(1). U N NSPACE(g(k=3,dvn)) ‘pz NEC({0,1},(U,+,~} ,depth < k) ;
d €

(2). There is a ¢ € Q+ such that

NEC({0,1},{U,*,~},depth < k) ¢ NSPACE(g(k=3,cvn)),

Proof. Proceed as in the proof of Theorem 4,28 except set m = k-3

and z = [dvAl, and use M in place of W', O

We now turn to the proof of Lemma 4.26, The proof of course can
be simplified if one is content to show only that space g(k,n) is not
sufficient for any fixed k, or operation * is allowed, or ome is
content with weaker bounds on the length and depth of EM(x,m,z) and

EM'(x,m,z). A version of our proof simplified in these ways is

-111-

sketched in Chapter 11 of [AHU74],
The proof of Lemma 4.26 is similar in spirit to Meyer's [Mey73]
proof that the emptiness problem for 'y-expressions' is not elementary-

recursive, It is instructive to review one essential idea of [Mey73]

which is also used here: how regular-like expressions using

~ and y (y is defined below) can very succinctly describe the computa-

tions of STM's,

Let M be an STM and let d be an i.d. of M with |d| = k. Recall
from the proofs of section 4.l that, given a regular-like expression E

which describes Ek (that is, E is a '"ruler" which measures distance

k), by using E as a subexpression and using operations U, ¢, and *, one

can write an expression E (d) which describes - Comp,,(d) for
some alphabet Z, If operation ~ can also be used, ~EM(d) describes
CompM(d).

Now let G be a particular deterministic "counting" STM., When
k

started on an i.d., of the form &qOO &, G successively adds 1 to

the binary representation on its tape until lk is obtained., G

k

then halts. Note that the umique computation of G on input &q,0 &

is longer than 2k. Therefore,-ﬁa((&q00k&) describes a single wcrd
of length exceeding 2k. Now suppose an operation y is available
where y(Ww) = { w € = | |w| = lwl } for w€ =, The expression
E' = yo~qa(¢&qook&)) thus describes ZF' for some k' > Zk. Also, if

E is an expression such that L(E) = Z*; it is not hard to see

(cf., Lemmas 4.8 and 4.9) that |[E'| < c|E| for some constant c

-112-

independent of k. In summary, given an expression E (a '"ruler'") which
describes EF, one can write an expression E' (an exponentially longer
"ruler") which describes Zk' where k' > 2k. Moreover, |[E'| < c|E]

for some constant c.

Now starting with the "ruler" Z? for some 2, and applying the above
construction m times, we obtain a Z—{U,-,*;V,y]-expression E which
describes Z£ for some £ > g(m,z). Moreover, |E| < 0(c™z). As in
section 4.1, E can now be used as a ruler to write an expression of
length O(cmz) which simulates the computations of a given STM M,
even if M uses space g(m,z). This is a very succinct representation
of the computations of M, since ez grows much slower than g(m,z) as
a function of m. In particular, it follows that
NEC(Z, (U, *,*,~,v}) & NSPACE(g(k,n)) for all k € N,

However, if y cammot be used, difficulties arise. ~EG((&qOOk&)
is a single word of length exceeding 2k. However, to continue the
construction, we need a ''ruler'" consisting of all words of some large
length., The solution to this dilemma, described in detail shortly, is
to write an expression which describes all cycles of a computation.
This set of cycles can then serve as a "ruler'.

A preliminary lemma is useful. In the proof of Lemma 4.26, it
is convenient to represent i.d.'s in a slightly redundant form.

The jth symbol of the redundant form of an i.d. d contains the

.th

information in the (j-1)°%, i, and (j+1)™ symbols of d.

~113-

Definition 4.30. Let M = (I,F,Q,G,qo,qa) be an STM. Assume
X3)+

$ €T UQ. Define themap p: (T UQT 2 ((TUQ U (%)) as follows.

If dy,d,, ",d €T uaq, P(dydydyrecd) = dl'dz'd3'---dk’ where
($,d4,d5) if § =1

d' = (@_padid) if 25§ <kl

(4 _1rd%) if § =k

Note p is one=to-one so p-1 is a function on range(p).

r is a redundant i.d. (r.i.d.) of M iff p'l(r) is defined and

is an i.d. of M,
The function NextM is extended to r.i.d.'s in the obvious way:
If ry,r, are r.i.d.'s of M,
r, € Next (r,) iff p-l(rz) € NextM(p'l(rl))-

The technical convenience gained by using r.i.d.'s is the following.

If ry,r, are r.i.d.'s, a "local check'" (cf. Lemma 2,14) consists
. . .th .
of comparing the single j symbols of ry and r, for some j.

Furthermore, given an arbitrary word r, in (ruaqu {$])XB)+, one

can check if r, €p((T U Q)+) or not by checking each adjacent pair
of symbols in r, for consistency. This is formalized in the following

Lemma 4,31 which is the analogue for r.i.d.'s of Lemma 2,14,

Lemma 4,31, Let M = (I,F,Q,é,qo,qa) be an STM. Let $ be the special

endmarker as in Definitiomn 4.30 above.

=114~

X3

Let ©=(CUQU (N - ((5,5,9.

There are functions R.M:E -+ 22, JM:E - ZE with the following property.
Let ry = Ty9T99F13° " T1p be an r.i.d. of M,

be arbitrary,

and let r or

2 T T21%22%23" " Tk

where r15°T2; €X for 1< j <k,

Then r, € NextM(rl) iff

(L), r2j € RM(rlj) for all j, 1 < j <k,

and
(2). r2’j+1 € JM(ij) for all j, 1 < j < k-1,

Proof. JM((cl,GZ,ca)) contains all triples in Z which could

consistently follow (01,02,03) in any word in p((I' U Q)+).

For all (0‘1,02,03) €2,

T1((91509533)) = ((9,,05,0) €T | c €T UQU (3} }

RM is defined in the obvious way from the function NM of Lemma 2,14:
RM((GI’GZ’GB)) = { (0'1',0'2',0'3') P> I 0'1'0‘2'0'3' € NM(O'10'20‘3) 1.
The simple verification that ‘IM and RM have the required property

is left as an exercise. O

TThe triple ($,$,$) never appears in a word in range(p). A technical
condition within the proof of Lemma 4.26 requires that ($,$,$) be

explicitly removed from Z.

-115-

Proof of Lemma 4.26. Part (l) is done first in detail. (2) then follows

by some minor modifications to (1),

(1), Let M = (I_M,FM,QM,GM,qO,qa) be the given STM which accepts
a set A within space S(n)., Let x €]'.M+ and integers m,z € Nt with
S(|x|) < g(m,z) be given. Let n = [x]|.

The major portion of the proof describes the construction of a
Z-{U,*,~} =expression E i1 such that L(Em-l-l) # ZF iff x € A, where
Z is a large alphabet defined below. The {0,1}-({U,*,~} -expression
EM(x,m,z) is then obtained from Em_'_1 by appropriately coding the
symbols Z into binary. We show that EM(x,m,z) satisfies conditions
(1i) = (liv) of Lemma 4,26, It will be clear from the description of
the construction that there is an IOTM M which computes EM(x,m,z) from
x#0™#0% within time polynomial in and space linear in IEM(x,m,z)I ,
so that (lv) is also satisfied,

A particular deterministic "counting' STM G used here differs in
an important way from the one described earlier in the outline of the
proof for y-expressions. Namely, the halting state is never entered.

When started in an i.d. &qooﬂ'&, G cycles forever through the 21'

i.d.'s { &wqo& l w € (0,1}'0' } (with several steps taken between
occurrences of these i.d.'s to perform the addition modulo 21").

Also, letting D be the set of i.d.'s which occur in a computation of G
started in &qoo“&, G is programmed so that the particular word &:qo
appears as a subword of precisely one i.d. in D. In the construction

of E 12 &qo is used to uniquely identify the initial i.d. &qoo'a&.

-116-

Definition of the '"counting' machine C.

G = (I,T,Q,é,qo,qz) where I =10 =(0,1,&4 and Q = (qo,ql,qz}.

§:QxI" » ZQXFX[-I’O’I) is given by the following table. q4 is a
left-moving state which performs the additionm. 9, is a right-moving

state which returns to & after the addition is completed.

8 0 1 &
%o ((3,0,1)) ((3951,1)) ((aq,&,-1)]
qq ((qp,1,1)} ((qq,0,=1)} (g%, 1)}
q, ¢ ¢ ¢

Table 4.2.1, Transition table for '"counting'" machine G,

Also for £ € NT define:
init(4) = p(&qooz&),
loop(#) = min{ j € N | Next (init(#), i) = (init(8)} },
loop(4)-1
D(4) = U Nexta(init(ﬂ), i).
j=20

The next fact, which can be verified by inspection, states those

-117-

properties of G to be used.

Fact 4,26.1. For all & € N':

(1). loop(4) €N and 1loop(#) = 2% + 4 ;

(2). Assume w € D(£)., Then ($,&,q0) appears as a symbol in w
iff w = init({). Moreover, ($,&,q0) is the first symbol of

init(£), and |init(£)| = £+3,

Now for k = 1,2,3,¢¢°,m, let G(k) = (Ik’rk’Qk’ak’ko’qu)
be a '"copy" of G; that is, I = I"k = [Ok,lk,&k}, Qk = [ko’qkl’qu}’
and 61(is given by Table 4.2.1 where all states and tape symbols are
subscripted with k.

Also, let initk(!l) = p(&-.quoolf&k).

The alphabet symbols used in writing E i1 3re the following.

T = @ UT UGBH - ((5,8,9)) for 1sksn

@ U Ty U (1% - (5,8,9)).
- (.

Eurl-l
m+2
) +

Note: For k = 1,2,3,¢¢¢,m, p maps (Qk U I"k into Ek+’ and

v
RG(k) and J(I(k) both map Ek into 2-1k (cf. Lemma 4.31),

Assume symbols are chosen so that 21, 22, 23, cee, Em-l-Z are
pairwise disjoint,

The enrtire alphabet is X = U Ei .

-118-

k
Also denote Esk = .U 21
i=1
mt2
and EZk = U Zi .
i=k

Let s = card(X).

For the remainder of the proof, the '"O-notation' has the following
meaning., Let fl(n,m,z,s,k) be a function of the indicated parameters

(not necessarily depending on all the parameters). Then O(fl) denotes

an unspecified function f2 with the property that
f2(n,m,z,s,k) < c-fl(n,m,z,s,k) for all n,m,z,s,k € Nt
where ¢ € Nt can be chosen independently of all parameters M,x,n,m,z,s,k.
Certain subexpressions occur often within Em+1; special notation
is now given for these. Even though * cannot be used explicitly, it

is possible to write a Z={U,*,~} -expression which describes ® where

® € Z, First let

[Z° 1= (4 U#.

By convention, ~ denotes complementation relative to Z" in this

o

Z”. Also note that

context, Therefore L([D

I Zﬁ']l = 0(l) and depth([Z]) = 1.

If ® gE, let
[]=~([Z 1:@=-9)-[Z" D
where "L - ®@'" as usual abbreviates an expression equal to the union of

the symbols in £ - @, Note that L([® 1) =@, [[@ 1| = 0(s),

and depth([8 1) = 2.

-119-

In using these expressions within the construction of Em+1’ the
brackets [and] are deleted to improve readability. However we must
keep in mind the length and depth of the expression which ®* abbreviates,

As in the outline for y-expressions, we construct longer and
longer ''rulers'" in stages., The expression constructed at the kth
stage describes a '"ruler" which ''measures' distance d(k,z). The
numbers d(k,2) are defined as follows.

d(l,z) = loop(2z)

d(kt+l,z) = loop(d(k,z) = 4) for k € NT,

Lemma 4.26.2, For all k € N, d(k,z) = g(k,z) + 4.

Proof, By induction on k, using Fact 4.26.1(1l). O

The sets of words which serve as 'rulers" in this construction are
more complicated than those used in section 4.1, For this reason,
it is useful to have semantic descriptions of the rulers as well as
regular-like expressions for them,

We now define certain words in.E* which are used in these
semantic descriptions. The words Cri for 1< k<m and i €N
are defined inductively. Informally, one should think of Cri 28 the
ith r.i.d. of G(k) started on initk(d(k-l,Z) - 4) (although Cri

for k > 1 is slightly more complicated than this).

Definition of the words cki .

For i € N, 4 is the unique word in Nexqa(l)(initl(z), i).

=120~

For 1<k<ml and i €N,

“)+1,i T °k0%11%1%122%13%3 " Ck,d(k,z)-271,d(k,2)-1%,d(k,2)-1
where % € Zk+1 for 1< j <d(k,z)-1
and O, = 0419;,943 *°° Ui,d(k,z)-l is the unique word in

Nexta(k+1)(initk+1(d(k,z) - 4), i).

The next fact gives those properties of the (cki] to be used.

The fact follows from the definitions of d(k,z) and Cri? and Fact 4,26.1,

g..C .0,.,C ,T..C

“k+l,i - “k0°i1%k1712%2°%13%3 77 Sk,d(k,z)-21,d(k,z)-1%,d(k,z)-1

and 9y = 941%2%3 *** 1,d(k,z)-1 2° 3bove.

Then 0o, ., € NextG<k+1)(ci) for all i €N,

Also, for all k, 1 < k < m:

2). ¢ € (ng)* for all i €N ;

ki

(3). For all i,j €N, ¢ . =c, ., 1iff i = j (mod d(k,z)) ;

ki kj
4). ($’&k’qk0) appears as a symbol in ¢,y LEf e = ¢

We are now in a position to give semantic descriptions of the
sets of words which serve as '"rulers', Actually, two related sets of

words SE, and SF, are required at a given stage k, for 1 < k < m,

k k

-121-

Semantic description of the 'rulers" SEk and SFk'

For 1 <k < m:

SEk is the set of words of the form

gj lckj 'gj '+1ck,j l+1§j '+2ck,j '+2§j l+3ck’j |+3§j l+4 °* gjllckjllgju_l,l

where j" > j' and j"™+1 = j'(mod d(k,z)), and where §; € 22k+1
is arbitrary for j' < i < j'"+1 ;

SF, = SEk N{w | cxo 2ppears exactly once as a subword of w },

k

Again if ve informally describe c, . as the i™" r.i.d. of G(k),
then SEk is the set of all computations of G(k) which start on an
arbitrary ckj" run for an arbitrary (2 1) number of cycles, and
stop on ckj" such that (if the computation were continued one more
step to ck,j"+1) ck,j"+1 = ckj" Arbitrary single symbols from
Z$k+1 occur between adjacent r.i.d.'s ¢, i and Ck, i+1 in these cémputations,
as well as at the beginning and end of these computations, SFk is the
set of words in SEk which are computations (in the above sense) which
run for exactly one cycle; that is, these words contain cko exactly
once as a subword,

The major technical portion of the proof now follows.

Z=-(U,+,~} -expressions E, and F, for 1 <k <m are constructed
inductively such that LOVEk) = SEk and LCVFk) = SFk' Finally,

using ~Fm as a '"'ruler", we construct Em+1 such that

LE_,) #Z° 1£f Comp(agxk ™ ® ™™ %) 45 iff M accepts x.

-122-

The reader should recall that the alphabets 21, 22, 23, ces, 2m+2
are pairwise disjoint. This fact is used implicitly several times
in the constructions below. Also note that many of the basic ideas

used in .ne case k = 1 are also used in the induction step.

Base k = 1,

E1 should describe precisely those words which are not in SE,.
E1 is written as a union of '"mistakes' which could cause a word to be

excluded from SE1;

For each i, the length and depth of e and a semantic description of
L(eli) are given as comments.
First recall SE1 is the set of words w of the form (%) shown
below, where also W = Cqg for some i' with 1 < i' < £, and
i wi <i< f-
Voa1l € Nexta(l)(wi) for all i with 1 £ i < £=1, and vy € NeXtG(l)(wﬁ)'

w = t0 L] t1 v, t:2 Waq t3 oo tZ-l vy tE
where 422, t, € Z, for 0=is</, (*)
z+3

and w, €Z for 1 <1i < 4,
i 1

Construction of eq1°

e;q is constructed so that, for all w €Z", w ¢ L(ey,) iff

w is a word of the form (%*).

-123-

The first term of €11 describes all words which are ''too short",

i.e. shorter than z+6. The last four terms together describe a language

which includes all words longer than z+5 which are not in
z+3 %

&g By) ey
z+5 L * *I *. L] z+3. L *
ey = TP U T U D UT R, TR T

* L] z+2. L[] *
uzhE,, Ty, T .
|e11| = 0(zs). (Recall '"Z" abbreviates an expression of length
s, and thus Zf+3 = 0(2z8),.)

depth(e,,) = 1. (Recall "2*" abbreviates an expression of depth 1,)
PER{Cy

For the remainder of the construction of El’ assume w & L(ell)

and therefore that w denotes a word of the form (%).

Construction of e12.

€15 is constructed so that w ¢ L(e12) iff Wy = initl(z) = ¢yp
for some i', 1 < i' < £,

Let ylyzya...yz+3 = c10 where Yj € 21 for 1 < j < 243,
Note ¥, = ($,&1,q10) is the special symbol which appears in 1 iff

€y; = ©qo- Let Y denote (2 - {yj}).

L(elz) is completely described as the union of three mistakes:
(1). Yy does not appear in w; these words are described by
C - (v s

or
(ii). Some occurrence of Y1 is immediately preceded by some o € 21;

that is, y, appears in the wrong place;

ot
~

*
PDNES SR

=124~

or
(iii). Some Yy is not immediately followed by YoY3Y4" Y pe3s

these words are described by
= v v y, U
oyln (yz U yzl(y3 U y3o(y4 LN

o

Yor1" Ozaa U Vpp ey o o) E

€15 is now the union of the three expressions above.
| ey, = O(zs); depth(ey,) = 2. (Recall "Wz - [yl})"" abbreviates

an expression of depth 2,)

Construction of e13.

€13 is constructed so that w ¢ L(e13) iff W contains no pair

of adjacent triples 01595 € 21 which are inconsistent in the sense
oy & Ja(1) -

Sa

|e13| = 0(1); depth(ela) =1,

Construction of e14.

Assuming also that w ¢ L(e13), €14 is constructed so that

w ¢ L(e iff w "moves correctly", that is, w, € NextG(l)(wi)

14)
for all i, 1 < i < £-1, such that w, is an r.i.d. of G(L).

By Lemma 4.31, e, can be written as

Ja

% z+3.(21 - RG(I)(O_))).E" .

Z(U oZ

e =
14
oS Zﬁ

|e14| = 0(zs); depth(e14) =1,

-125-

Construction of e15'

Assuming again that w ¢ L(e13) and also that v, is an r.i.d.

of G(1), e,. is constructed so that w ¢ L(e15) iff w "loops back

15
correctly", that is, vy € NextG(l)(wz). Again by Lemma 4,31,

z+3 . " e i
ey5 = ! U EJ-(ZJ1 - RG(I)(O'))°Z oD skt
j=1 o € El
leys| = 0(z%s); depth(e,) = 1.
5
Now Ey = (}f ey).
i=1

Comparing this construction with the definition of SE1 in terms
of the form (*), it should now be apparent that LG~E1) = SE1.

To construct F,, note that a word w is pot in SF, iff either
w ¢ SE1 or w contains two (or more) occurrences of ¢19° Recall
that ($,&1,q10) appears in ¢y, iff ¢1; = C1p° F1 can thus be written

as follows.
% * *
Fl = (El uz '($s&1’q10)'2 '($’&19q10)'2)o

Clearly LC~F1) = SFI'
To summarize the length and depth of E1 and Fy:
2
(12) |E1|'< IF1| = 0(z"s)

(1d) depth(E,) = depth(F,) = 2.

=126-

Induction step k+l (k < m).

Assume we have the expressions Ek and Fk such that LOVER) = SEk
and L0~Fk) = SFk'

Ek+1 is constructed first, The construction is similar to the

base case; the details are slightly more involved. Again,

5
Bepp = (U rs1,1)
i=0
is written as a union of "mistakes'.
Recall ($,&k,qk0) is the special symbol which appears in i

iff i =0 (mod d(k,z)) 1iff ki = ko ,Let u = ($,&k,qko).

Construction of e.k+1 0°

®k+1,0 ~ e U Z;2k+1' (Esk - [u})“'Z:Zk_I_l'EA .

We claim that w € L iff w can be written in the form
(Cet1,0’
(*%) below. (The portion of (**) preceding '";'" denotes a

single word formed by concatenating the rows in order.)

(*%)

€y Cxo F11 Skl T12 Sk2 T13 %k3 °°° Sk,d(k,z)-2 T1,d(k,z)-1 Sk,d(k,z)-1 "1

°ko F21 k1 F22 k2 23 k3 °k,d(k,2)-2 T2,d(k,z)-1 %k,d(k,z)-1 "2

ro Ti1 Skl 12 k2 Ti3 °k3 " Sk,d(k,z)-2 Ti,d(k,z)-1 k,d(k,z)-1 "i
ko To1 Skl T42 k2 F43 Sk3 77 Ck,d(k,z)-2 T4,d(k,z)-1 %k,d(k,z)-1 "¢

where £ 2 1, and L € 22k+1 for 0si< £, 1<j<dk,z)-1.

=127~

Assume w ¢ L(ek+1,0). First, w € L(~Ek) and therefore w € SEk'
Therefore (in particular) clckj'GZ is a prefix of w for some j' and

some 04,0, € 22k+1' The second term of e'k+1,0 ensures that

* .
ckj' = ¢ by Fact 4,.26.3(4), and because Cri € (Esk) for all i,
and ZSk and r§k+1 are disjoint,
'ek+1,0' = |E | + 0(s); depth(ek+1,0) = max(depth(E,),2).

Until further notice, we assume w ¢ L(ek_l_1 o) and therefore
’

that w denotes a word of the form (*¥*),

Construction of ek+1 1°

1, 1 is constructed so that w ¢ L(ek+1,1) iff £ 2 2, and
t; € Ezk+2 for 0<i<{, and Ty € 2k+1 for all i,j,
l<is<4,1l<j<d(k,z)-1,

The mistake '"£ < 2" occurs iff W contains only one occurrence of ro’

€ - (u]) u @ - (u) .
The mistake "t € Ek+1" occurs iff, for some o € Ek+1’ either

o immediately precedes an occurrence of Cro °T © is the last

symbol of w:

% * * * *
Tk @g) rw@q) By B UL, .
The mistake "rij € 22k+2" occurs iff some symbol in 22k+2

immediately precedes ki for some j # O:

o * *
L Bopipt Bge = () By T

-128-

Then ek+1,1 is the union of the three expressions above.

= 0(s); depth = 2,
legs1,1] = ()5 depthley, 4)
For the remainder of the construction of Ek+1’ assume

w ¢ L(ek+1,0 U ek+1,1) and therefore that w denotes a word of the

form (*%*) below,.

(Yok 7':)

0 10 T11 Skl T12 k2 T13 k3 °°° Sk,d(k,z)-2 T1,d(k,z)-1 %k,d(k,z)-1 1

0 T21 Sk1 T22 k2 23 %k3 77 Sk,d(k,z)-2 F2,d(k,z)-1 Sk,d(k,z)-1 ©2

ko T11 k1 Ti2 k2 Ti3 k3 k,d(k,z)-2 Ti,d(k,z)-1 ®k,d(k,z)-1 ‘i
0 To1 k1 Tg2 k2 T3 k3 7" Ck,d(k,z)=2 T4,d(k,z)-1 “k,d(k,z)-1 "¢}
and T, =T, Tip Tig °°° ri,d(k,z)-l for 1=<i< i ;
where £ 2 2, £y € 22k+2’ and ris € Ek+1 for 0<1i <4,

1< j<dk,z)-1,

Construction of ek+1 9e
d Bl

€1, 2 is constructed to ensure that W contains a copy of the
H
initial r.i.d. of G(k+1l) started with d(k,z)=-4 zeroes. That is,
w ¢ L(ek+1’2) iff ry, = initk+1(d(k,z)-4) for some i', 1 < i' < 4,

The construction is analogous to that of €15 given above.

-129-

Let vy = (538,159041,00 Y2 = Fer1o%ern, 00 %) s
3 = (41,0001 %41 Vi T Operr O Ot
Y5 = Q104184170 Y6 = Opeprr G109
I *
so that 1n1tk+1(d(k,z)-4) € ¥1Y9Y4Y,YsYge
For 1< j <6, let ;5 denote Gsk+1 - (yj}).
is d ibed the union of four mistakes:
L(ek+1’2) is described as union our m
(i). yq does not appear:
*
& - [Yl]) 5
(ii). Some Y1 is immediately preceded by ckj for some j # 0,
that is, y, appears in the wrong place:
x % %
ol @ - W) ey T
(iii)., 1If rij =Yy for some 1i,j, then
%
Ty, 315, 542 77 Ti,d(k,2)-4T1,d(k,z2)-3 Y2YaYs ¢
%* , * — % -
Ty Qg "y, Uyy @g) *(yg
> % — > % > % > %
Uys Cqen) Y4 Caert) B Cqd B F)

Loy T s

(iv). 1If rij =¥ for some i,j, then ri,d(k,z)-Zri,d(k,z)-l # Y5¥g"

% %* - %* - % *
Zeyy Bgn) 5 Eq) Y Uye) Cg) Bopip'
Note that in (iii) and (iv), with w in form (*%*¥), if ¥q matches
.] *
r,. for some i,j, thenZ‘ék_P2 must:match t.. Also, each G;sk) can

only match ckj' for some j'.

-130-

Now €12 is the union of the four expressions above.
’
The fact that w is in form (**%) verifies that
. * .y
w ¢ L(ek+1’2) iff i € Y1Y9Y3Y,Y55¢ for some i

iff T, = initk+1(d(k,z)-4) for some i'.
|ek+1’2| = 0(s); depth(ek+1’2) = 2,

Construction of ek+1 3

1,3 prevents inconsistent triples. That is, w & L(ek+1,3)
iff w contains no "adjacent" triples rij’ ri,j+1’ which are
inconsistent in the sense ri,j+1 ¢ JG(k+1)(rij)’

_ E* U z * E-.’.-
ki1, 3 T EoC O 0 Eg) Gy T JTaae) @))0E
X1
%*
With w in form (¥%%*), (ng) can only match some ckj'

Therefore, w ¢ L(ek+1’3) iff ri,j+1 € JC(k+1)(rij) for all i,j,

with 1<is<{ and 1< j <d(k,z)=-2,

841,31 = 0C8); depthleyy 4) = 2.

Construction of ek+1,4°

€ 41,4 ETSUTES that the moves of G(k+l) are described correctly
)
by successive ri's in w,
First we need the following fact: If w is in form (*%*) and

w = aBy for some @,B,y € Z°, then B € SF, 1iff either

or B =t,Tt for some i,j € N and some T € T",
i 1

B =T T4, i+

This can be seen by inspection of form (***) and the semantic

-131-

description of SFk’ that is, SFk is one complete cycle of the [ckj]

starting arbitrarily,
We wish t ite such that w € L iff
e wis o wri ek+1’4 u a ¢ (ek+1,4)
Ti41,] € RG(k+1)(rij) for all i,j. We use the preceding fact about

— 2 i] n
w = afy to locate and constrain "adjacent' symbols rij and ri+1,j'

The constraints forced by the expression below will not apply to

ty»t;,q Since £, 4 € ng+2 while TiioTiH, € 2k+1.

Since LC~Fk) = SFk by induction, ek+1’4 could be written as:
el = Elev(NFkn G)02*

where G =

(U oI - Rypeeyy @))
(k+1)
o €&

By De Morgan's law, e' is equivalent to
% *
e" = 2 o~(Fk U ~¢)oz .

Now note the following two facts.

(i). Using only the definitions of the operations on words and
the fact that KG(k+1) maps Z%+1 into Zz, the following expression
can be shown to describe L(~G).

% %*
AUZUE-Z U] U 0T Rg 101y (@)

€ Z;k.-l-l

(ii). MUZ < L(Fk).

Therefore e'" can be written equivalently as

%* o * *
eil,q =& E U E -5)T U +Z Ry o1y))

U
€L

-132-

Assuming also that w ¢ L(e), by Lemma 4.31 we have that
k+1,3
w ¢ L(ek+1’4) iff T € Nexgz(k+1)(ri) for all i, 1 < i < f-1,
i £
such that r, is an r.i.d. of G(k+l). (Recall that w ¢ L(ek+1’2)

ensures that r,, is an r.i.d. of G(k+l) for some i', 1 < i' < £,)

lek+1,4| = |Fk| + 0(s); depth(ek+1,4) = max(depth(Fk),l) + 1,

Construction of ek+1,5'

€x+1, 5 ensures that w "loops back correctly'", that is,
9

that r, € Nexta(k+1)(rz).

First note another obvious fact: If w = thBytz for

* 3] —
some &,y € (ng+1) , then B € SE, 1iff either B = rlerzj or
B =ty7Tt, 4 for some j € N and some T € Z°. This follows from the
semantic description of SE, , together with the facts that
k

traty g € Zopqp amd Ty N Zhr = 9

We wish to write ek+1,5 such that w ¢ L(ek+1,5) iff
rlj € RG(k+1)(rEj) for all j, 1 < j = d(k,z)-1, Thus since

LC~Ek) = SEk’ ek+1,5 could be written as:

D G (BN C U @ = Ry @) E 0) @) T
g

€ Ek+1

As in the construction of extl. 4 above, this expression can be
H

written equivalently as:

2¥e) 1)*-~(E, U o - Z 1)

Cx+1,5 ~ <k+

% %
U U BRage1)©@T 29 Cgyy) T

o€

-133-

Assuming also that w ¢ L(ek+1’3) and that r, is an r.i.d. of
' .
Q(k+l), w ¢ L(ek+1’5) iff ry € Nexta(k+1)(rz).

e, 51 = [Ey] + 0(s); depth(ey;) = max(depth(E,),1) + 1.

5
Finally, Epq1 = (_LB €1,).
1=

%
To summarize the comstruction of E,_ ., assume €X is
now arbitrary. w ¢ L(E) iff
w is a word in form (*¥%),

and r,, = initk+1(d(k,z)-4) for some i', 1 < i' < £,

i
and L] € Nexta(k+1)(ri) for all i, 1 < i < f-1,
and ry € Nexta(k+1)(rz) .

But (ignoring the [ti}), the rows of (¥***) are therefore just
Cltl, it Ckal,i'41? Cktl,j'42° 772 Ckt1, v for some jU, 5" with
ck+1,j"+1 = ck+1;j,' (i.ee j"™+1 = j' (mod d(k+1l,z))).
It should now be apparent that chEk+1) = SEk+1’

The construction of Fk+1 is amnalogous to that of Fl'

- uz* ol =¥
Fet1 = g V& Godignn i 000 Friypa 9y o) %)-
Clearly LG~Fk+1) = SFk+1'

The length and depth of Ek+1 and Fk+1 are given by:

22) IEk+1l'< |Fk+1| = ZIEkl + IFkl + 0(s) ;
(24) depth(E = max(depth(Ek),depth(Fk),l) + 1,

= depth(F

et+1) k+1’

=134~

The relations (1£), (1ld), (24), (2d) imply:
B | < IF | = 03 %)
and for 1<k <m,

depth(Ek) = depth(Fk) =k +1

Final stage mtl.
Em-l-l is now constructed such that
* d(m,z)~n=2
L(E_) $#XZ iff CompM(quU) # ¢,
Recall that M accepts A within space S(n), and S(|x|) = g(m,2)
by assumption. Also, g(m,z) < d(m,z)-4 by Lemma 4.26.2,
Therefore L(Eurl-l) #Z° iff x €A,
5
We write E ., = (.U entl, i).
i=0
Construct e and e exactly like and bove
mt1, 0 m+l, 1 y €k+1,0 Cet1,1 @
where k = m, Then w ¢ L(em_|_1’0 U em+1’1) iff w is a word of the

form (***) where k = m.

Iem-l-l,Ol = IEmI + 0(s); depth(em-!—l,ﬂ) = max(depth(Em),Z).

|e

For the remainder of the construction of E e1? assume

w ¢ L(em-l-l,o U em+1,1) and therefore that w is a word of the form

(%*%%) where k = m, Also let T1sFpsTg,°7%,T, be as in (¥*¥%),

e is construected so that

mt+l, 2
d(m,2z)=-n=2

w & L(em_'_l’z) iff ry = p(qoxlﬁ).

-135-

The construction is similar to and somewhat simpler than the

. b .
construction of ek_|_1’2 above

XgeeeX o Let ¥1,¥5,¥4,°° %05 4, € zm-l-l be such that

Let x x1x2 3

d(m,2z)-n=2

*
p(qqx¥) € ¥1Yo¥5 YooV neaVnrs

That is, yy = ($,4p,%)s ¥y = (9,%1.%,), ¥; = (X, 5%, _4,%;) for Isism,

Y41 = (xn 1°¥n »B), Y = (x B,8), ¥ n+3 = (¥,¥,¥), yn+4 = (8,¥,9%).

For 1 < j < n+4, let yJ denote (& 1'{}’})

T E) G Uy B)y Uy B) 7y U ee

Cml,2 =

* - % - *
cee U yn+1‘(Esm) '(yn+2 U yn+2'(zsm+1) 'Y 3 (z m+1)

* ~
T Ce) B o) L

ot

* %
Uz @ m+1) Vors' Ce) T2'T

. %
The argument that w ¢ L(em+1’2) iff ry € Y1Y9Y3* " YooYt 3Y ol
is analogous to the one given above for .
g g abov ek+1,2

To bound the length of e , recall that

m+l, 2
"(T,) " abbreviates ~(Z'- (T, LI,
"(2 1) il abbreviates ~(2 (EZIIP"Z) E),
=1 abbreviates (~ U #), and Em-l-Z = {#).
Let s' = card(X 1)
Then |m+1 2| 0(s'n); depth(e oL, 2)
Also note that only alphabet symbols from 22m+1 appear within
e +1 2° This fact is used below to obtain an improved bound on the
’

length of e after the alphabet symbols have been coded into

m+1, 2

=136~

binary. 1In particular, we wish to bound the length of the coded

version of e by cn, where c depends on M but not on x, m, or z.

m+1l,2
Construct e and e exactly like and e above
w1, 3 w4 Y ®e+1,3 ktl,4 ’

where k = m and JM (RM) replaces JG(k+1) (RG(k+1))’ By the discussion
concerning e, .1 ,» it then follows that w ¢ L(eln+1 3 U e 1 ,) iff

b] ’
T € NextM(ri) for all i, 1 < i < £-1, such that r, is an r.i.d.

of M. Of course, since w ¢ L(e) ensures that r, is an r.i.d.

mt+1,2
of M, we conclude that ri € NextM(ri) for all i, 1 < i < £-1,
= 0(s); depth(em&1’3) = 2,

= |Fm| + 0(s); depth(em+1’4) = max(depth(Fm),l) + 1,

lene1, 3!

LT

Finally w ¢ L(em+1,5) iff w contains the symbol ($,qa,ﬁ).

(Recall the acceptance convention for STM's.)

em+1’5 = (z = {($sqa’w)})*

|em+1’5| = 0(s); depth(em*l’s) = 2,

Let E

5
m+l = ¢ N

. e
=0 m+l, i
Assume ® € I is now arbitrary. Now

iff w is of the form (**%*) where k = m
and

w ¢ L(Em+1)

ry = p(quup’ (™2
and

ri+1 € NextM(ri) fer 1 < i < f=1
and

($,qa,3) appears in w

-137-

iff M accepts x within space d(m,z)-2

iff x €A,

Therefore L(Em_'_lﬁ #Z iff x € A,

The next Lemma 4.26.4 describes a coding of many alphabet
symbols into binary in the case where ~ appears in expressions.
There are of course several alternative methods of coding, some of
which are simpler to prove correct than the one given here. This
particular method of coding is chosen to obtain a better bound on the

length of the coded e as described above, and thus a better bound

mt+l, 2
on the length of EM(x,m,z).

Lemma 4.26.4. There is a constant ¢ > 0 such that the following holds.

Let X = (015995045 ***,0,} be a finite alphabet. Let @ be
one of the sets {(U,+,~} or {U,-,~,*}.
Define the map h:Z -+ (0,1}+ by
h(s,) = 100 for 1s51is<s.
2, ,0,3° .
Extend h, h:2" =+ 2 , in the obvious way (cf., proof of Lemma 4,10).
Let G be the {0,1}-{U,+,~}-expression
G=(0e(~0UO0) U(~UO-1).
If E is a Z-<p-expression, define the {0,1}~p-expression B(E)
inductively by the rules:
B((0)) = (h(0)) if o €Z U (A)
B((E; @ E,)) = (B(E,) @ B(E,))
1 2 1 2 where @ # ~
B((E4@)) = (B(E{)@)
BO(~Ey)) = (~(B(E)) UG)) .

-138-

Let C = { 10i | 1<i=<s } be the set of code words,
let E be an arbitrary Z=p-expression. (All occurrences of ~
in E denote complementation relative to 2*.)
Then: (1). L(B(E)) N ¢ = h(L(E)) ;
(2). depth(B(E)) < depth(E) + 1 ;
(3). |B(E)| = cslE].
Proof. (3) should.be obvious by inspection. (2) is easily proved by
induction on depth(E).
To prove (1), let Ly = L(~G) = {M U 1'{0,1}*-0 . Note that

%
c C L0 and that C is a uniquely decipherable code, that is, h is

% *
one-to-one as a map fromZ to (0,1} .
Now by induction on the length of E, one can show that
(). L(B(E)) €1,
and *
(ii). L(B(E)) N C = h(L(E)).

We prove the induction step for one case. Assume (i) and (ii)
hold for an expression El' lLet E = (~E1) so B(E) = (~(B(E1) Uue)).
Assume w € {0,1}*.
(1). w € L(B(E)) = w € L(~(B(Ey) UE))
= W€ L(6) = L.

€ L(BEE) N ¢”

(ii). w
iff w¢ C* - L(B(El)) because C* CZLO
iff ©e€c” - h(L(E))) by induction
iff w € h(L(E)) because h is one=-to-one on 2*,

% *
and h(R) €C for RS X,

-139-

The remaining cases, E = El U E2, E = E1-E2, and E = EI*’ all
follow in a straightforward way from the facts that C is uniquely
. . % *
decipherable, and that if w,,®, € Ly and wyew, € C" then w;,u, €c.
O
Returning to the proof of the main Lemma 4.26, let h and C
be as in Lemma 4.26.4 for the alphabet Z used to construct Em-l-l'
o, %
By Lemma 4.26.4(1), L(E ;) #Z iff L(B(E_.;)) N c* 4 c”,

Let s+1

H= 0(~0UO0) U (CO0OUO0)1U(0UDO0)(O U 1ll).(~0 U 0),

* %
and note L(H) = {0,1} =C" .,

Therefore

L(B(E 1) UH) # (0,1} iff L(E,) #Z iff x €A,
Let EM(x,m,z) = B(Em_'_l) UH .,
We must now bound the depth and length of EM(x,m,z).

depth(E_ ;) = max(depth(E_),depth(F) + 1,2) = m + 2,
depth('B(Em_l_l)) < depth(Em-l-l) +1=m+ 3 by Lemma 4.26.4(2).

and thus depth(EM(x,m,z)) <Sm+3.

To bound the length of EM(x,m,z), note that:

(1), [Ey(x,m,2)| = |BE I + [H] +0(1) ;
(i1). [H] = o(s) ;
)
(1ii). IBE_ I = .20 [Be g)1 +0Q) ;
i= ’

(iv). Iem-l-l,il < IFmI + 0(s) for i # 2,

~140-

Now (iv), Lemma 4,26.4(3), and the bound |Fm| = 0(3mzzs)

derived above gives
_ m_2 2 .
(v). IB(em+1’i)| =0(3z°s") for i # 2,
It remains only to bound the length of B(qm+1 2). To achieve
?

the desired bound, assume X is enumerated so that
zénn+1 = [cl, Tps Tqs **°, cs,}, where s' = card(2é1n+l) depends only
on M (not on x, m, or z), Therefore o € ngﬁl implies |h(o)| < s'+1,

| = 0(s'n) and that e

By our remarks above that |e w1, 2

w1, 2

contains only alphabet symbols in 1° it is clear that

Z;'Zl'n--l-
(vi). |plenyy I = os'’n) .
(That is, the application of B to Qm+1,2 ""expands'" each alphabet
symbol by at most a factor of 0(s'), and '"expands' each operation
symbol by at most the fixed factor |G|, cf. Lemma 4,26.4,)
Combining (i), (ii), (iii), (v), and (vi) gives

IEM(x,m,z)l = 0(3mzzs2 + s'zn).

Finally, note that s = s' + O(m) because the alphabets

)2

1° 22, cee, Zﬁ are each of fixed size.
We conclude that there is a constant a (depending only on M)
such that
IEM(x,m,z)l < a(3mz2m2 + [x]) for all x, m, and z.
We let the reader supply his own argument that EM(x,m,z) can be
computed uniformly from x, m, and z, within time polynomial in and

space linear in EM(x,m,z) . The basic argument is by induction on k,

noting that, given B(Ek) and B(Fk), B(Ek+1) and B(Fk+1) can be

=141~

constructed within time polynomial in and space linear in their lengths.

This completes part (1) of the proof.

o

(2). Operation ~ is now available. We describe modifications
to the construction just given. For all k, construct Ek' and Fk'

exactly like Ek and Fk except:

M1). If0® €Z, write 0% as (eluezu---uejf

where O = {91,92,---,9j}. Now ®*’is an expression of depth 0.

(M2), In the construction of El', write subexpression els' as:

% +3 . % *
e15| = 2-21-(6221(21 - RG(].)(G)).EZ .(Ez) o).21.2 .

Note that |e15'| = 0(z8); depth(els') = 0.

We claim that if w € (222-2i+3)1’-222 for some £ = 2 (that is,
if w is of the form (*), cf. the construction of e11), then
w € L(els') iff w€ L(e15).

To see this, assume w is of the form (*) and write
W=ty V11W19¥13° Yy p43 B1 Vo B3 W3 B3 0t b ViVeoWe3 Ve 243 By
+3
where t, € ZEZ for 0 = i < £, W, € Ei for 2 < i < f-1,
and UTRIT € 21 for 1 < j < z+3.
In particular, mote that t,,t, , €2, and recall Z,, N Zﬁ = 9.

It is now easy to see that

w ¢ L(e15') iff vy € RG(I)(ij) for 1 < j < 2z+3 iff w ¢ L(els).

=142«

Clearly modification (M1l) does not alter the language described
by an expression., In particular, since w & L(ell') iff w ¢ L(ell)
iff w is of the form (*), it follows that LC”El') = LCVEI).

In general, it then follows that L(~Ek') = L(~E for all k.

")
One further modification concerns the method of coding

expressions over alphabet Z to expressions over alphabet {0,1}.

Let h:Z - (0,1} and C be as in Lemma 4.26.4, If E is a

E-[U,-,hg* -expression, define the [0,1}-{U,',~,*]-expression B'(E)

by the rules given for B(E) in Lemma 4.26.4 where B' replaces B and

G' replaces G, where . *
G'=(0(0UYl)y UUIL 1),

Since L(G) = L(G'), the proof of Lemma 4.26.4 shows that

(1'). L(B'(E)) N ¢* = h(L(E)) for all E.

Since depth(G') 0, we also have
(2'). depth(B'(E)) = depth(E) for all E.
Now let EM'(x,m,z) = B'(E;+1) U H.
By the argument above that L(E;ﬂl) = L(Em+1) and by (1') we conclude
that L(EM'(x,m,z)) = L(EM(x,m,z)).
The new bounds on the depth and length of EM'(x,m,z) are as follows,
From (M1) and (2'):
depth(El') = depth(Fl') =0 ;
! _ ! _ =
depth(Ek+1) = depth(Fk+1) = max(depth(Ek'),depth(Fk')) + 1=k

for 1<k <nm;

and depth(E,' (x,m,z)) = depth(EI;H_I) =m (provided m = 1),

-143-

Modification (M2) gives |E1'|'< |F1'| = 0(sz). The relation

(24) derived earlier remains the same, and therefore

' ' m
IE_ | < |Fm | = 0(3"s2).

0(3msz + sn) and therefore

It can now be checked that |E;+1|
IEm'(x,m,z)l = O(s(3msz + sn))
< a(3mm22 + m2|x|)

for some constant a depending only on M.

This completes the proof of Lemma 4,26, a

-144-

Remark 4.32. (Frequency of difficult inputs,)

Define the function log*n by
log*h = min{ k | g(k,1) =2n}.

Note that log*n is a very slowly growing function.

We suspect that a result giving more information about the
frequency of difficult inputs can be obtained:
There are constants ¢ > 0, d > 1 such that if M is an IOTM which
accepts NEC({0,1},(U,*,~}) then there is an integer n, such that for

_4log n

all n 2 n, with n divisible by 3, a fraction c-d of the

0
well-formed {0,1}~(U,*,~}-expressions of length n cause M to use

space 2",

The proof is along the following lines. Section 3.3B shows that
given a '"difficult" input x of length m, one can, in certain cases,
pad x to obtain a "difficult'" input of length mt+j for j = 0., If
inputs are regular-like expressions, the new idea here is to pad an
expression with another expression.

Define the map p on {0,1}-{U,*,~} ~expressions by:

p(E,F) = (E U (H.F)) where H = (~((~(0)) U (0))).
Note L(H) = ¢, and thus L(p(E,F)) = L(E) for all E,F,
Also |p(E,F)| = [E| + [F| + 21,

Let M be an IOTM which accepts NEC({0,1},{U,*,~}). By Theorem 4,27

there are infinitely many m for which M uses space at least

=145«

g(logam + 1, 1) on some expression of length m, For a given m, this
expression E of length m can be padded with a very long expression F
such that p(E,F) still requires space 2" where n = |p(E,F)]|.

Moreover, F can be any well-formed (0,1}-{U,¢,~}-expression of this

large length.

*
Now g(log,m + 1, 1) < 20 gives roughly m = 410g n,
g(log, ,

*
Thus |F| = |p(E,F)] = |E| = 21 1is roughly n - 41080 _ 91,

Let W(n) denote the number of well-formed {0,1}-(U,*,~} -expressions
of length n.

. log*n

We then have that a fraction W(n - 4 - 21) MW(n) of the
expressions of length n cause the algorithm M to use space at least
2n. This statement can be formally proved using the methods of $3.3B,

If furthermore bW(n-3) =2 W(n) for some constant b and all n divisible

*
by 3, this fraction is at least _ccnlogm
pm (7% T4 21y /3y

Section 4,2 closes with two open questions concerning the complexity
of inequivalence problems with ~, The first concerns the gap between

known lower and upper bounds for NEC([O,l},fU,',~ﬂ).

Open Question 4.33. Precisely where between g(rlogbn],O) and g(n,0)

does the space requirement for NEC({0,1},{U,*,~}) lie?

In particular, is NSPACE(g(n,0)) < NEC({0,1},{U,*,~}) ?

In the proof of Lemma 4.26 we essentially use three occurrences

of expressions for the g(k,0) '"ruler'" to construct expressions for the

-146-

g(k+1,0) "ruler'". Thus the size of the expression for the g(k,0)
"ruler" grows exponentially in k and we obtain only a g(logbn,O)
lower bound on the complexity of NEC({0,1},(U,*,~}). The lower
bound could be raised to g(cn,0) for some constant c, thereby
settling Open Question 4,33, if one could construct an appropriate
g(k+1,0) "ruler" using only one copy of a g(k,0) "ruler'"., Some of
the logical theories mentioned in Chapter 5 contain enough notational
power that only one occurrence of the formula corresponding to a
g(k,0) ruler is required to obtain a g(k+1,0) ruler and so one can
obtain g(cn,0) lower bounds on their complexity. However, for the
case of regular-like expressions using U, °, and ~, or even allowing

¥ as well, we are unable to settle Open Question 4,33,

For technical completeness, we would like to show that no two
out of three of the operations U,*,~ yield a nonelementary
inequivalence problem, We know by Theorem 4.27 that
INEQ({0,1},{U,*,~}) is nonelementary. The complexity of
INEQ(%,{U,+}) (where card(¥) = 2) is characterized by Theorem 4.19
as being precisely NP which is certainly elementary. Also, it is
easy to see that INEQ(Z,(U,~}) € P, If E is a Z-{U,~}-expression

then either L(E) =® or L(E) = =¥ -0® . for some @ S Z., Moreover,

-147-

such a description of L(E) can be obtained deterministically within

time polynomial in the length of E, The case {+*,~] is open.

Open Question. Characterize the complexity of INEQ(Z,{*,~})

for card(Z) = 2., In particular, is it elementary-recursive?

4,3 Expressions With Intersection,

This section briefly considers regular-like expressions which
may use intersection but not complementation.

First define the predicate NONEMPTY as:
NONEMPTY(E) iff L(E) # @ .

(This predicate was not introduced earlier for two reasons. (i). If
¥ < [U,°,*,2}, then any well-formed Z-(p-expression is a member of
NONEMPTY (Z,%) . (ii.). If ~ € ¢, then NONEMPTY(Z,®) and NEC(Z,%®)
are computationally equivalent in the sense that

NONEMPTY (Z,%) =log-1in VEC Z,9).)

It is interesting that in the case ¢ = {U,-,*,ﬂ), one can
characterize the complexity of both the NONEMPTY and NEC problems as
being complete in distinct complexity classes; in fact, NEC lies
strictly above NONEMPTY in complexity, NONEMPTY([O,I},(U,',*,n}) is
S=complete in POLYSPACE, and NEC({O,I},{U,',*,H}) is <ecomplete in

EXPSPACE [Hun73b]; POLYSPACE §3EXPSPACE by the hierarchy theorems -

Fact 2,11,

-148-

Fact 4,34 (Hunt, Hopcroft).
(1). NONEMPTY((0,1},(U,*,”,N}) is <-complete in POLYSPACE.
(2). 1In particular:
(2i). CSL = NONEMPTY({O,I],{U,',*,ﬂ]) via length order n2 s

(2ii). NONEMPTY({0,1},{U,-,*,N}) € csL .

Hunt [Hun73b] proves (2i). (2ii) is by Hopcroft and appears as

an exercise in Chapter 11 of [AHU74].

Fact 4,35 (Hunt).
(1). EXPSPACE < NEC(({0,1},(U,*,*,0}) via length order n°log n.
(2)., Therefore there is a ¢ > 1 such that

vn/log n

NEC((0,1},(U,*,¥,N}) & NSPACE(c y .

The proof of (1) is given in [Hun73b] and in Chapter 11 of
[AHU74]. (2) follows directly from (1) by the usual method.

Hunt and Hopcroft [personal communication] have also observed that
INEQ({0,1},(U,*,™,N}) € EXPSPACE,

(and thus NEC((0,1},(U,*,*,N]) € EXPSPACE), so (2) is a
reasonably tight lower bound.

The goal of this section is to obtain a slightly stronger lower
bound on the complexity of INEQ({O,I},[U,°,*,H}). The proof given below
was discovered independently of [Hun73b] but was stimulated by
Hunt's announcement that NEC([O,I],[U,-,*,ﬂ}) cannot be recognized
in polynomial space. For simplicity we obtain a lower bound on only
the INEQ problem., By combining the methods of Theorem 4.36 with those

in [Hun73b], [AHU74], it should be possible to obtain the same lower

=149~

bound on the NEC problem,

Theorem 4.36.

(1). EXPSPACE < INEQ({O,I},{U,-,*,H)) via length order n log n.
(2). Therefore there is a ¢ > 1 such that

INEQ({O,I]’[U,-’*’H}) ¢ NSPACE(cn/IOg")

Proof. Let A € EXPSPACE. Let M = (I,F,Q,é,qo,qa) be an STM which
accepts A within space Zdn-Z where d € N+. Let x € I+ be a given

input to M, and n = [x|., Let X =Y U (0,1}, where Y=QUT U ($};

assume Y N (0,1} = ¢,
The proof is similar in spirit to that of Lemma 4.8, We first
show how to construct a 'ruler'" of length 2dn.

Let m = dn and let m' be the least power of two such that

m' > m. Let
U= {u1:u2’u3s" .'um']

where UysUgycee,U , are symbols which are called "markers'. The
symbols in U are coded into binary before being introduced into the
regular-like expressions to be constructed.

let £ = 10g2m' and let

y:U = (0.1}1&

be any one-to-one map. let

YO = (yp | 1sism} = (o,n?
denote the set of coded markers. It is helpful to think of the
markers themselves as appearing in expressions and in languages

described by expressions even though the coded markers actually

appear.

-150-

Throughout this construction, we are concerned with words in
%
(Yey(U)) . The "Y-portion'" of such words will hold an accepting
computation of M on input x provided that such a computation exists.

The "y(U)=portion'" of such words is used to build a "ruler'" which

d m
measures distance 2°° = 2%,

The discussion is simplified by introducing two maps on words.

The purpose of hU (hY) is to pick out from a word the subsequence of

% %
symbols belonging to U Y).

Define hU:(Y Uy(@U) » U and hY:(Y Uy@U) »Y by

u, if o = y(ui) for some us €u

(o) =
hU {). otherwise

o) if o€y
o °

otherwise

Extend hy (h,) as a map from subsets of (Y U y(U)) "~ to subsets

*k
of U (Y) in the obvious way.

Useful ZQ{U,-,*JW}-expressions which describe certain sets of

coded markers or words are now defined.

1. Expression [U] describes the entire set y(U) of coded markers.
w] = 0 U ¥,
2. Expression [ui], for 1 < i <m', describes the single marker y(ui).

[ui] = Y(ui) .

-151-

3. Expression [Ei], for 1< i <m', describes vy(U) - [y(ui)].

Given a particular i, let y(ui) = b1b2b3---bz where

b, € (0,1} for 1 <j < £. Let Ej = (0,1} - (b

— -_— — — - %
(6,1 = ((by U bye(B, Ubye(by U +oe by 1.5)04))) (0 U D)
nounty.

%
4, Expression ('one ui") describes all words in (Y.y(U)) which

contain exactly one occurrence of y(ui).
("one u,") = Ye([u]-Y)*.[u]e (Yo [u])*
i i i i ‘

*
5. Expression ("two ui") describes all words in (Y-y(U)) which

contain exactly two occurrences of y(ui).
("tWO ui") = ("one uin).(none ui") .

View the lengths of these expressions as functions of n.

Note that [[U]|, |[ul}, I[Gill, [("one u.")|, and |("two u,")|

are all O(log n), because m' < 2m = 2dn and £ = log m'.

Now the 'ruler'" is constructed. Define expressions Rl,RZ,---,Rm

as follows,

=
]

(Y. [U]-Y.[U] N ("one ul")).

s
i

(R:—l N ("two ui_l") N ("one ui")) for 2 < i < m,

Rm will serve as the '"'ruler'. Note that |R1|= 0(log n),

IRiI = 'Ri-ll + 0(log n), and thus IRmI = 0(n log n).

-152-

Now note the following easily verified fact about L(Rm).
Part (1) below states that for all w € L(Rm), hY(w) is a string
of exactly 2™ symbols, Part (2) states that if w € (Y-y(U))*, then
the truth of "w € L(Rm) ?" depends only on the subsequence hU(w) of
markers; that is, arbitrary single symbols from Y may appear between

adjacent (coded) markers within words in L(Rm).

Lemma 4.36.1.

(1). Ifw €LR), then w€ (Y-y(U)) and [hy(w)| = 2%,

%
(2). If W€ (L+y(U)) ", then © € L(R) iff hy(w) € hy(LR)).
Proof. By induction on the definition of Rl,Rz,---,Rm. Details

are left to the reader. a

The following expressions Pl,Pz,-",Pm set up a fixed pattern

of markers.

Py = (Yeluyle¥e[u;])
P, = (P:-l N ("two u; g™ N ("one u,") n(u [U])*-[Ei])

for 2 <i < m,

Note that le|= O(n log n).

The next lemma gives a semantic description of L(Pi) for 1 < i < nm,

Lemma 4.36.2. Define words wy,w,,+**,w_€ U by:

=w.u, for 1 <1i < m-l,

Wy = uy5 and W, = W W,

-153-

“Then for 1 < i <m wE€ L(Pi) iff

*
w € (Yey(D)) and h (W) = wou for some u € (u, ,,u; 0, ,u]},

Proof. By induction on i, using the definitions of the Pi'

The details are an exercise, O
% %
If yu €U, define cycle(n) = { o | ¢, €U and u = aB}.

Lemma 4.36,3, For 1 <i<m, if u € [ui+1’ui+2’.'.’um'} then

cycle(wiu) c hU(L(Ri)) .

Proof. The proof is by induction on i, The base i = 1 is immediate

from the definition of R1.

To prove the induction step, assume the lemma is true for some i.

We now prove it for i+l,
Let u € [ui+2,ui+3,'°',um,] and let w € cycle(wi+1u).
Since cycle(wi+1u) = cycle(wiui+1wiu), W can be written as

%
either laBua or BuaBui+1a for some @,8 € U with w, = af.

Pus+
Note that u,u g € (ui+1,ui+2,---,um,}.

Therefore by induction, Bui+1d,Bua € hU(L(Ri))'

Therefore, Bui aBua,BuaBui+1a € hU(L(R;)), and in either case

+1
%
w € h (L(R))).

Since also w contains exactly two occurrences of u, and exactly

one occurrence of u.

i+l by the definition of WysWos®t oW, 4, We have

w € hU(L(Ri+1)> by the definition of Ri+1’ O

The next lemma states that Rm can be used as a '"'ruler'" within

=154~

words in L(Pm).

s
w

lemma 4.36.4. Suppose agByT € L(P:), where a,8,7 € (Y U y(U))

g € y(U), and y € Y, Then

peL®rR) iff [(B)] = 2% (= 29 .

Proof. ("only if") is immediate from Lemma 4.36,1(1l).
("if")., First note that B is a subword of a word in
% %
L(Pm) S (Yey(U)) . Thus also hU(B) is a subword of a word in
hU(L(P;)). Lemma 4.36.2 implies that
% %
hU(L(Pm)) = (wm'(um-l-l’unrl-Z’”.’um'}) .
Now since |h,(B)| = 2" and |w_| = 2™-1, a little thought
shows that hU(B) € cycle(wmp) for some u € {uu*l,gm+2,"',um,}.
Therefore hU(B) € hU(L(Rm)) by Lemma 4,36.3 (where i = m),

%
Also B € (Y-y(U)) because B is immediately preceded by a word
g in y(U) and is immediately followed by a symbol y in Y.

The conclusion B € L(Rm) now follows by Lemma 4.36,1(2).)

Now expression E1 describes all w such that:

o

(i). w has the correct background pattern of markers (i.e. P;)
L

and W ends with $:

and
(ii). w contains the accept state q,:

ey, = (Y U [UD) +q (Y U [UD)"

-155-

and Zdn-n-Z
(iii). hY(w) begins with $q0xU $, (let x = x1x2x3---xn):

813 (Pm n $. [U]'qo' [U]'xl‘ [U]'XZO [U]0x3c [U]o XX

c[U]ex_([U] U B)es-(v U uD)"

Now let E; = eq; n ey n €3 -
Expression F describes those w such that hY(w) "moves wrong'.

= (U wn”

%
¢ 0'190'290'3331’0;_’0:; €Y (Rm n 01. [U].Gz. [U] .03.(YU[U]))
019503 & Ny(010,93) o1 (U0 [0)-0

)

¥ U .

Lemma 4.36.4 implies that F correctly describes precisely
those w such that hY(w) "moves wrong" (cf. proof of Lemma 4.8).
That is, one can verify the following:

If w € L(P) and we write hy (W) = y,¥,75% %

where Vs €Y for 1=<1ic<k, then

££ €N Y.
wELE) LY onY s omirY s romy M 175417 142

for all i with 1 < i < k-2"-2,

Let E, = Eq N F. DNote |E1| = O(n log n) .and IE2| = 0(n log n).

We claim that M accepts x within space 2dn_2 iff L(El) # L(EZ)’

=156~

L(E,) # L(E,)
iff there exists an W such that w € L(El) and w € L(F)
iff hY(w) "starts correctly" and "ends correctly'" (because

w € L(El)) and "moves correctly" (because w ¢ L(F))
dn

iff h (W) € Com.pM(quE2 -n-2

) .

The transformation mapping x to (EI’EZ) is polynomial time
computable, Since Z is a finite alphabet, the conclusion (1) now
follows by Lemma 4.10 (the binary coding lemma).

(2) now follows directly from (1) by the usual method.]

Remark, The preceding proof of Theorem 4.36 is very similar to the
proofs of Fact 4,35 which appear in [Hun73b] and [AHU74] in that

a set of O(n) markers is used to %uild successively longer ''rulers'.

The larger length bound (n210g n versus n log n) in [Hun73b], [AHU74]
stems from the fact that a set of markers is described by an expression,
€.g. (ul U u, U u, U eee U uO(n))’ of length O0(n). Since 0(n) copies
of such expressions are needed and since the markers must then be

coded into words over an alphabet of fixed size, the final expression
is of length O(nzlog n.

The new idea in the proof just given is to code the markers into
binary before they are introduced into the expressions. Sets of
markers can then be described by expressions of length O(log n).

It should be fairly straightforward to incorporate this idea into the
proofs given in [Hun73b] and [AHU74], thus yielding a length O(n log n)

bounded transformation,

-157=-

4.4 Expressions Over a One-Letter Alphabet.

We have seen in previous sections that the complexity of INEQ(Z,%)
or NEC(Z,p) for a particular @ does not depend significantly on Z
provided card(@) 2 2 (cf. Lemma 4,10). This section shows that the
complexity of a problem can be affected, sometimes drastically, by the
restriction to a one-letter alphabet.

This is best illustrated by the case ® = (U,*,~}. The results
of section 4.2 show that INEQ(Z,(U,*,~}) is not elementary-recursive

if & = {0,1). However, this problem becomes relatively trivial

if £ = {0).

Theorem 4.37 (M.J. Fischer, A.R. Meyer).

INEQ({0},(U,*,~}) € P .

Proof. The proof rests on the fact that a {0}-(U,*,~} -expression

E describes either a finite or cofinite set of words, and moreover
*

that all words w € {0} of length exceeding |E| are either

all not in are all in L(E). That is:

&
Lemma 4,37.1, Let E be a {0}-{U,+,~}-expression. Then either

(i). (finite) TFor all w € (0, w € L(E) = [w| = [E],
or
(ii). (cofinite) For all w € (0}*, w ¢ L(E) = |w|l < [E].

Proof. By induction on the length of E.
If E=(0) or E = (M), the lemma is certainly true.

Suppose the lemma is true of expressions E, and E,.

-158-

If E= (~E), then w € L(E) iff w ¢ L(E;), |E1| < [E|,
and thus the lemma is true of E,

Suppose E = (EI'EZ)' First suppose L(El) and L(Ez) are both
finite., Then L(E) is finite, and w € L(E) implies w = Wy, for some
w, € L(E)) and w, € L(E,)). Since [w)| < |E;| and |u,] < [E,]
by induction, |w| < |E1| + IEZI < |E|. Now suppose L(E,) is cofinite
and L(Ez) is finite, If L(E2) = ¢, then L(E) = ¢ and the lemma is
true of E. If L(E,) # ¢, then ok € L(E,) for some k < |E2l by
induction., Also by induction, z > IE1| implies 0% ¢ L(El)
for all integers z. Therefore z > |E1| + k implies

0% ¢ L(El)-L(E = L(E). But |E1| + k < |E1| + |E2| < |E], and thus

9)
the lemma is true of E. The case in which both L(El) and L(E2) are
cofinite is handled similarly.

The reader can check the case E = (E1 U E2) in a similar fashion.

This completes the proof of Lemma 4.37.1l. O

Thus if E is a {0}=-{U,*,~}~-expression, L(E) has a finite

representation of the form [F,t], where F N, F is finite, t € (0,1},

]
o

(02| zeF} if ¢
[F,t] represents

I
[y

(0%] z¢gF) if ¢

and either max(F) < |[E| or F = ¢,
Also it is not hard to see that, given finite representations for
L(El) and L(Ez), a deterministic algorithm can find a finite represen-

tation for L(E1 U E2), L(EI'EZ), or L(~E1) within time bounded by

-159-

a fixed polynomial in |E1| + |E2|. Therefore, using this algorithm
recursively, the time required to find a finite representation of

L(E) is bounded above by T(|E|) where

T(n) = max{ T(nl) + T(nz) | n,,n, > 0 and n,+n, <n} + p(n)
where p(n) is a polynomial.
Therefore T(n) = O(n.-p(n)) assuming (without loss of generality)
that p(n1)+p(n2) < p(n) for all n,,n, >0 with n1+n2 < n,

Also, a deterministic algorithm can check that two finite
representations describe different sets of words within polynmomial time,
The first step of the main algorithm, checking that x is of the

form (E,,E,) where E, and E, are (0}=-{U,*,~} ~expressions, can be
done deterministically within time O(|x|3) [e£. You67].
The various pieces can be put together to give a deterministic

polynomial time acceptance algorithm for INEQ((0},(U,*,~}). 0

For another ¢, NEC({0},p) is complete in a class which may lie
strictly above P, The inequivalence problem for regular expressions
@ = {U,*,*}) over a one-letter alphabet is <-complete in NP,
(Recall that in the two-letter case, NEC((0,1},(U,*,”}) is

slog-complete in POLYSPACE (cf. Remark 4.14(3)).)

Theorem 4.38. NEC([O},[U,-,*}) is <=complete in NP,

We omit the proof of Theorem 4.38. A proof can be found in [SM73].

-160-

-161-

Chapter 5. Nonelementary Logical Theories

By using efficient reducibility techniques, several workers
[Mey73], [FR74], [Rob73] have obtained lower bounds on the complexities
of decision problems for certain decidable logical theories. In fact,
the first example of an inherently difficult natural decision problem
was provided by Meyer [Mey73] who showed that the decision problem for
the weak monadic second order theory of successor {WS1S) is not
elementary-recursive, Subsequently, Robertson [Rob73] showed that the
satisfiability problem for sentences in the first order language of the
nonnegative integers with < and a single uninterpreted monadic
predicate is not elementary-recursive. The purpose of this chapter
is to show that these two results and others follow as simple corollaries
of the result that the emptiness problem for star-free expressions
is not elementary-recursive (cf. $4.2).

To simplify notation in this chapter:

A star-free expression is a {0,1}-{U,*,~}-expression;

NE(star-free) = { E l E is a star-free expression

and L(E) # ¢} .

Note that E € NEC({0,1},{U,+,~}) 1iff (~E) € NE(star-free).

The next fact is now immediate from Theorem 4,27,

-162-

Fact 5.1, For all ratiomal b > 3, NE(star-free) ¢ NSPACE(g(rlogbn],O)).

In particular, NE(star-free) is not elementary-recursive.

In this chapter we consider several decision problems concerning
restricted forms of symbolic logic such as the two mentioned in the
opening paragraph. In each case we show that NE(star-free) is
efficiently (in particular sz) reducible to the particular decision
problem, and thus that these decision problems are not elementary-
recursive,

The main advantage of obtaining such results as corollaries of
Fact 5.1 (rather than by a direct arithmetization of Turing machines)
is simplicity. In the cases we consider, there is a simple, easily
described transformation from NE(star-free) to the particular decision
problem, and so we may avoid repeating for each decision problem the
arithmetization of Turing machines which we have already carried out
in terms of star-free expressionms.

WS1S can also play the role of NE(star-free) as a starting point
for further reductions. However, for several particular theories T,
we know of no direct transformation from WS1S to the decision problem
for TT, even though there is a simple transformation from NE(star-free)
to T. Intuitively, NE(star-free) succeeds where WS1S fails because

WS1S is a considerably richer language than the language of star-free

TIn certain cases, the only known efficient transformation from WS1S to
T involves first taking a decision procedure (Turing machine) M for

WS1S and then arithmetizing M in the language of T.

-163-

expressions; in the language of star-free expressions there is no
direct analogue of logical quantifiers or variables.

A disadvantage of obtaining such results as corollaries of the
star=free result is that (in the cases we consider) the implied lower
complexity bound is somewhat weaker than the bound which can be
obtained by a direct arithmetization. Since space g(rlogbnT,O) is
the best known lower bound on the complexity of NE(star-free),
space g(rlogbnj,O) is the best lower bound one can obtain on a set B
by a transformation f from NE(star-free) to B, assuming [£(x)] = [x|
for all x. However, as was first pointed out by Rabin for WS1S,
and then by Meyer'r for the satisfiability problem for sentences in the
first order theory of linear order, one can show that these problems
require space g(rcn1,0) for some ¢ > 0, This lower bound is closer
to known upper bounds of g(rdnT,O) for some constant d, [Buc60a],
[Elg6l], [Rab69]. Of course, if one wants only to show that a certain
decision problem is not elementary-recursive, then an efficient trans-
formation from NE(star-free) to the problem is sufficient,

We assume the reader is familiar with the basic notions of the
predicate calculus, (see for example [Sho671).

Let L(<,P) be the set of formulas written in first order predicate
calculus using only the binary relational symbol < and the monadic
predicate symbol P, together with the usual logical connectives

A, V, ~, 2, etc., quantifiers & and V, variables, and parentheses.

t . .
Personal communication.

=164~

We shall use other relational symbols such as < and = in writing
formulas since these can be expressed in terms of < by formulas of
fixed size; for example (x =y) iff ~((x<y) V (y <x)).
Lower case Roman letters are used to denote first order variables.
(Variables may in general be subscripted by a binary number, although
the particular formulas we shall write require only a fixed (approxi-
mately 8) number of variables.)

A formula F is a sentence if F contains no free variables.

Let S be a set and let <, be a linear (i.e. total) order on S,

S
Let ¢ be a sentence in L(<S,P)., @ is satisfiable with respect to
(8,<,) iff there is an interpretation P:S {(o,1} f of P such that

¢ is true under the interpretation (S,<S,P). Let SAT(S,<,) be the
set of all such satisfiable sentences.

The main result is that if S is an infinite set with linear order
<§, then NE(star-free) sz SAT(S,<.) and hence SAT(S,<;) is not
elementary-recursive,

Remark: The first order theories of (N,<), (Q,<), and various
other orders without a predicate P are all elementary-recursive
[cf., Fer74].

Before proving the general result, it is instructive tc prove a
somewhat simpler special case, namely S = N (the nonnegative integers)
and <% = < (the usual relation 'less than' on integers). Decidability

of SAT(N,<) follows from [Buc60b], The result than SAT(N,<) is not

TView 1 as "true'" and 0 as ''false".

-165-

elementary-recursive was obtained independently by Robertson [Rob73]

a year after Meyer using a direct arithmetization.

Theorem 5.2 (Meyer).
(1). NE(star-free) sz SAT(N,<).
(2)., Therefore SAT(N,<) is not elementary-recursive, and in fact

SAT(N,<) ¢ NSPACE(g(Flogbn'I,O)) for all b > 3.

Proof. (1). Given a star-free expression E, we construct a formula
with two free variables FE(x,y) € L(<,P) such that:
(*) If P:N-+(0,1} and 1i,j € N, then FE(i,j) is true under

the interpretation (N,<,P) iff

(i), i<j and P(i)P(i+l)P(i+2)e+P(j=1) € L(E)
or
(ii). i =] and A\ € L(E).

FE(x,y) is constructed inductively on the structure of E:
F(K)(X,Y) is (x=1y)

F(o)(x,Y) is (("y = x4+ 1") A ~B(x)) ;

FoyGeuy) is (("y =x+ 1" A B(x)) 5
where ("y = x + 1") abbreviates ((x<y) A ~{Ez)(x<z<y)).
Inductively, if E and E' are star-free expressions then:
Fgugy®y) is (FGGy) VFp ()) ;

Fegogry (%:¥) is (F2) (Fp(x,2) A Fp,(2,5)) 3

FQVE)(x,y) is ((x =y) A~Fp(x,Yy)).

=166~

By renaming variables appropriately, note that FE(x,y) can be
written using exactly three variables, It is also easy to prove by
induction that FE(x,y) has the property (*) above for all star-free

expressions E,

Now let mE be the sentence
op = (Fx) @) (F (x,7)).

Then clearly E € NE(star-free) iff Px € SAT(N,).

Let f be the function mapping E to wE for all E. Clearly f can
be computed within polynomial time and linear space, and f is linear
bounded. (To be completely precise, f(x) must also be defined if x
is not a well-formed star-free expression. However an IOTM computing
f can first check within space logn that x is well-formed, and output
some ill-formed or false sentence if not.)

(2). This is now immediate by Fact 5.1 and Lemma 3.7, . a

A transformation similar to that of Theorem 5.2 can be used to
embed NE(star-free) in the language of certain weak monadic second
order theories of N, For example, let WS1lS be the set of true
sentences written in weak monadic second order logic using only the
predicates y = x+l (y is the successor of x) and x € X. Meyer [Mey73]
has shown that WS1S is not elementary-recursive. This also follows

easily from Fact 5.1.

Theorem 5.3 (Meyer). NE(star-free) Sp£ Wws1s.

Therefore WS1S is not elementary-recursive,

-167-

Proof. A formula FE(x,y,g) is constructed to satisfy property (%)

of Theorem 5.2, where P is now viewed as a finite set variable.

Fooy(6y:B) is (x =Y) 3

x+1) A ~(x €P)) ;

F(O) (stsz) is ((y

Fry(®y,R) is ((y == A (x€P)).

F(ElJE')’ F(E-E')’ and FC~E) are written as in Theorem 5.2 where
"(x < y)" is expressed by the formula

(FA)((x € A) A ~(y+1 € A) A (Vz)(z+l €A = z € 4)).

As before, FE(x,y,g) can be written using a fixed number of

variables.

Finally, if @ = (ZP)(Ix)(@y) (Fy(x,y,P)) then

E € NE(star-free) iff ®p € Wsls. O

Remark. If depth(E) = k, then ¢E of Theorem 5.3 is transformable within

polynomial time to a sentence wé in prenex normal form with k-1

alternations of set quantifiers. Also, from Theorem 4.29 it follows that,

for any k =2 1, NSPACE(g(k,n)) < NE(star-free) 1 { E l depth(E) < k+4 }.
Therefore, for k = 1, NSPACE(g(k,n)) is transformable within

polynomial time to WS1S restricted to prenex sentences with at most

k+3 alternations of set quantifiers., By a direct proof, Robertson

[Rob73] has obtained the stronger result that, for k = 2, NSPACE(g(k,n))

is transformable within polynomial time to premnex sentences with at most

k=1 alternations of set quantifiers.,

-168-

Similarly in Theorem 5.2 one can relate the complexity of deciding

SAT(N,<) to the number of alternations of first order quantifiers.

We now turn to the main result of this section, that NE(star-free)
is efficiently reducible to SAT(S,<) for an arbitrary infinite set S
with linear order <. Of course SAT(S,<) may not be decidable for certain
choices of S and <, However, whatever the upper complexity bound,
SAT(S,<) is never elementary-recursive.

It should first be pointed out that the simple transformation of
Theorem 5.2 does not work for general S. This is illustrated by

t

% *
choosing (S5,<) = (Z ,<,) where Z =QxZ and

(ql’zl) <, (qz,zz) iff either (q1 < qz) or (q1 = q, and z1'< z2)

for q,,9, €Q, 2,52, € Z,

Now let E be a particular star-free expression which describes the
set of words which "start with 0" and "end with 1" and '"do not contain

01 as a subword'. That is

d

E = ~(~(0+(~0 U 0)) U~((~0 U 0)+1)U(~0 U 0):01.(~0 U 0)) .
(Recall L((~0 U 0)) = (0,137.)
Certainly L(E) = ® and therefore E ¢ NE(star-free). However

letting FE(x,y) and wE = (Hx)(Hy)(FE(x,y)) be as in Theorem 5.2, we

claim that Pg € SAT(ZK,<;). To see this, choose (for example)

0 if q=0
P(q,2) = for all q € Q, z € Z,
1 if q>0

1.Q denotes the rational numbers. Z denotes the integers.

=169~

It is now straightforward to verify that FE((O,O),(I,O)) is true
under the interpretation (Z*,<*,P) and therefore ¢E € SAT(Z*,<;).
(Informally, the infinite word P(0,0)P(0,1)P(0,2)ees «-.P(1,-1)P(1,0)
= 000¢++ +++111 correctly starts with 0 and ends with 1 and yet
doesn’t contain 01 as a subword.)

The proof that L(E) # ¢ iff Pp € SAT(N,<) implicitly uses the
property of N that for all i,j € N there are at most finitely many
k € N such that i < k < j, This property does not hold for other sets
such as z* causing the difficulty illustrated above. However this
difficulty can be overcome by a modification to the transformation
of Theorem 5.2.

Fix a particular infinite set S with linear order <, The first
step utilizes the predicate P to pick out a set of discrete '"points"
from the (possibly dense) set S. The formula point(x) is satisfied
by an interpretation of x and P iff P is identically false on some open
interval below x and is identically true on some interval above x.

The truth value of P(x) under the interpretation is not constrained
by point(x).

point(x) is (Es)Et)(TW)((s <x< t) A ((s Kw<x) = ~P(W))

AN ((x<w<t)=PwWw)).

Let nextpt(x,y) be the following formula which is satisfied by
an interpretation of x, y, and P iff x and y are "pcints" and y is

the next point after x.

-170-
nextpt(x,y) 1is (point(x) A point(y)
A (Vz)((x < z < y) = ~point(z))).

Let P:S - (0,1} be a given interpretation of P.

Define Points(P) = (x € S l point(x) }.

If Pys>P, € Points(P), we say that Py and p, are finitely far

apart iff card{ w l pp<w<p, and w € Points(P) } is finite.

If x,y € Points(P), x <y, and x and y are finitely far apart,

define wordP(x,y) = P(xO)P(xl)P(xz)---P(xz)
where Xy = X, nextpt(xz,y), and nextpt(xi_l,xi) for 1 =i < 4,
Define wordP(x,x) = A for all x € Points(P).

Lemma 5.4, For any star-free expression E there is a formula FE(x,y,u,v)
in L(<,P) with the following properties.

Let P:S -+ (0,1} be any interpretation of P.

(i), For all 81285553, € s, FE(SI’SZ’SB’SA) is true (under the
interpretation (S,<,P)) only if S155,:53,8, € Points(P)
and 54 < Sy < S, < S,

(ii). If P1sP9sP3sPy € Points(P), Py = Py s Ps] Pgss» Pq and p, are
finitely far apart, and P3 and p, are finitely far apart, then

FE(pl’PZ’pB’p4) is true 1iff wordP(pl,pz)-wordP(p3,p4) € L(E).

(iii). 1If P1sPysPy € Points(P) and Py < Py S Py then

FE(pl’pZ’PZ’p4> is true iff FE(pl,pA,pa,pa) is true.

-171-

(iv). Moreover there is a linear bounded function f € polylin

such that f(E) = FE for all star-free expressions E.

Proof. FE is defined inductively.
Let point(x,y,u,v) = (point(x) A point(y) A point(u) A point(v))

F(K)(X,Y,U,V) is (pOint(x’Y9u’V) A (x = Y) A (u = V) AN (x = u));

F(O)(x,y,u,V) is (point(x,y,u,v) A (y < u)
v) A ~B(x))

A ((nextpt(x,y) A (u

y) A~B(u))));

V (nextpt(u,v) A (x

F(l)(x,y,u,v) is similar to F(o)(x,y,u,v);

F(ElJE')(x’y’u’v) is (FE(x’Y’u:V) v FE,(x,y,u,v)) s

F(E.El)(st:u’V) is ((Ez)(FE(x’z’zsz) A FE,(z,y,u,v))

v (Hz)(FE(x’y’u,z) A FE'(Z,V,V,V))) s

FQVE)(xsy’u’V) is (point(x,y,u,v) A (x Sy s u=<v)

A “FE(X,Y,U,V)).

The assertions (i), (ii), and (iii) all follow by straightforward

inductive proofs.

For example, one part of the inductive step for (iii) is as follows.
Assume (iii) is true for expressions E and E'.

Assume Py;PysP, € Points(P) and Py <P, < P,e Then

-172-

F(E.El)(PlsP23P29P4) iff ((E{z)(FE(pl,z,Z,z) A FEl(zspzspzspl'_))
vV (E2) (FE(Plspzspzsz) A FEv(z’P49P4’P4)))
iff (Hz) (FE(Plaz’z’z) A FEl(zsP49P49P4))
by induction
iff ((Hz)(FE(pl,Z,Z,z) A FEu(z’P4’P49P4))
v (Hz)(FE(Pl’p4’P4,z) A FEV(Z,P41P4’P4)))
(because by part (i), the second disjunct
implies the first)
iff F(EoE')(Pl’p4’P4’p4) by definition.
The remaining cases are easier and are left to the reader. a
Let P:S -+ (0,1}, let E be a star-free expression, and let
pl,pz,pi,pé € Points(P) with p, < p, and pi < pé .

Define (pl,pz) EP,E (pi,pé) iff (FE(PI,PZ,U.V) d FE(Pi,PésU,V))

is true for all u,v € S,

Note that EP B is an equivalence relation on
’

(72}

= { (pl’PZ) € SXS I P15P) € Points(P) and P, < Py } o

Let index(= be the index (number of equivalence classes)

p,E’

of =P,E'

Lemma 5.5. For all P:S - (0,1} and all star-free expressions E,

index(EP E) is finite,
H]

Proof. Fix some P:S - (0,1}, and abbreviate EP g as EE' We prove
H

by induction that index(EE) is finite. The proof is similar to

~173-

Brzozowski's proof that any extended regular expression has a finite
number of types of derivatives [Brz64],

If E= (A) or (0) or (1) it is trivial to check that index(EE)
is finite,

Let E and E' be star-free expressions with index(EE) =n and

index(EE,) =n' From the inductive definition of FE(x,y,u,v) we have
for all (py,P,),(pysPy) € S:
(). If (py,P,) = (P1,Py) then (py,p)) = (py,P))-
Therefore index(§~E) < n,
(2). 1If (Plspz) EE (PisPé) and (P1’P2) EE| (Pispé)s
= 1]
then (py,Py) Spygr (P1sPy)-
Therefore index(EElJE,) < nn',
(3). Let Cl,Cz,C3,---,Cn, c § be the equivalence classes of EE"
If (x,y) € § define
Classes(x,y) = { 1 | (E2)[x <z <y and FE(x,z,z,z)
and (2,5) €C;1).
Now if (pq,P,) = (pi,pé) and Classes(py,p,) =-Classes(pi,pé),

1
then (py,Py) =g gr (pi,pé). Therefore index(=; ;,) < n2" .

(1), (2), and (3) are easy to verify from the definition of FE‘
We sketch the verification of (3). Let u,v €8S,
Fo,g1(PysPy,u,v) is true iff ((ﬁz)(FE(pl,z,z,z) A Fri(2,py,u,V))
\ (Ez)(FE(pl,pz,u,z) A FE,(z,v,v,v))).

But F_(pPq,P,,u,2) is true iff F_(pi,p,,U,z) is true because
E‘P1:P2 E‘P12P2

(PI’PZ) EE (Pispé)o

=174-

Also, (Hz)(FE(pl,z,z,z) A FE,(z,pz,u,v)) is true
iff (Hz)(FE(pi,z,z,z) A FE,(z,pé,u,v)) is true
because Classes(pl,pz) = Classes(pi,pé).
It follows that FE-E'(Pl’pZ’u’v) is true

iff FE.E,(pi,pé,u,v) is true. d

Theorem 5.6. ILet S be an infinite set with linear order <,

NE(star-free) sz SAT(S,<).
Therefore SAT(S,<) is not elementary-recursive, and in fact

SAT(S,<) ¢ NSPACE(g(rlogbn],O)) for all b > 3,
Proof. Let mE be the sentence

Pp = (Ex) (By) (Fo(X,¥,¥,¥)

A (Yz)(V2')((x < z < z' S y) = ~F(x,2,2',y))).

We claim that E € NE(star-free) iff Pg € SAT(S,<) .

(only if). Let w € L(E) be a shortest word in L(E); that is,
for all w' € [0,1}*, o] < |w| implies w' & L(E).

Since S is infinite, we can choose P:S + (0,1} and x,y € Points(P)
such that x and y are finitely far apart and wordP(x,y) = W, Therefore
FE(x,y,y,y) is true by Lemma 5.4(ii).

Choose any z,z' € Points(P) with x < z2<z' <y. Since z <2',
IwordP(x,z)-wordP(z',y)|'< lwordP(x,y)I = |w|, Again by Lemma 5.4(ii),
and since w is a shortest word in L(E), we have that FE(x,z,z',y) is
false. By Lemma 5.4(i), FE(x,z,z',y) is also false if z ¢ Points(P)

or z' ¢ Points(P).

-175-

Thus wE is true under the interpretation (S,<,P).

(if). Let P:S -+ (0,1} be such that wE is true under (S,<,P).
Therefore there are points x and y such that FE(x,y,y,y) and
(V2) (V2') ((x < 2 <2' S y) = ~Fp(x,2,2',y)).

Suppose x and y are not finitely far apart. Then since index(EP’E)
is finite, there must be z,z' € Points(P) such that x < z <z'<y
and (x,2z) EP,E (x,2'). Now

FE(x,z,z',y) is true

iff FE(x,z',z',y) is true (by definition of EP,E)

iff FE(x,y,y,y) is true (by Lemma 5.4(iii)).
Therefore FE(x,z,z',y) is true contrary to assumption.

It follows that x and y are finitely far apart and thus

wordP(x,y) € L(E). a

For example, SAT(Z,<), SAT(Q,<), and SAT(Z*,<;) are not
elementary-recursive.

A related decision problem is the satisfiability problem for
sentences in the first order theory of linear order. Let L(<) be the
set of formulas written in first order predicate calculus using only
the binary relational symbol <., Let SAT< be the set of satisfiable
sentences in L(<); that is, if ® € L(<) is a sentence, then
¢ € SAT< iff there is a set S and a linear order <% on S such that
® is true under the interpretation (S,<).

By a direct arithmetization, Meyer has shown that

SAT< ¢ NSPACE(g(cnl,0)) for some comstant c > 0.

-176-

Also, SAIK € DspACE(g(rdnﬂ,O)) for some d > 0 by [Rab69].

A nonelementary lower bound on SAT< also follows by a transformation

very similar to the one just given.

Theorem 5.7. NE(star=free) sz SAT<,

Thus SAT< is not elementary-recursive,.

Proof. Given a star-free expression E, a sentence P in L(<) is
constructed such that E € NE(star-free) iff Pg € SAT<. The
construction is very similar to that of Theorem 5.6 and Lemma 5.4.
The main difference is that the linear order is used to pick out a set
of discrete '"points" and also to "simulate" the monadic predicate P.
If S is a set with linear order <, x € S is a "point'" iff
x is isolated below. 'P(x) is true'" iff x is also isolated above
(so "P(x) is false" if x is isolated below but not above).
Construct FE(x,y,u,v) and P exactly as in Lemma 5.4 and Theorem
5.6 except:

(i). Write point(x) as
(Fs)((s <x) A ~@Ew)(s <w<x));
(ii). Replace each occurrence of P(x) by
E)(Z<t)A~Ew)x<w<t)).

Exactly as in the proofs of Lemmas 5.4 and 5.5 and Theorem 5.6,

it follows that E € NE(star-free) 1iff Py € SAT<, O

=177-

As a final example, we consider the first order theory of two
successors and prefix. Formulas in the language of this theory
contain first order variables interpreted as ranging over [0,1}*,
atomic predicates So(x,y) and Sl(x,y) interpreted as y = x.0 and
y = x.1 respectively, and the atomic predicate x < y interpreted
as (Fw € (0,1}) [xew =y 1.

This theory, with the additional predicate of equal length,
E(x,y) interpreted as |x| = |y|, is Epz to WS1S [ER66], which implies
a fortiori an upper bound of space g(dn,0) for the theory without
the equal length predicate. The following theorem implies a lower

bound of space g(rlogbnﬂ,O) for b > 3,

Theorem 5.8 (Meyer). NE(star-free) sz The first order theory of two

successors and prefix,

Proof. Given a star-free expression E, we construct a formula with two

free variables GE(x,y) such that for all a,b € [0,1}*
Gg(a,b) iff (&w € L(E))[a-w = b].

Gp(x,y) is constructed inductively on the structure of E:
G(X)(x,Y) is- (x =y) ;
Geoy(®:¥) 18 S53(%,5) 5 Gqy(%,y) is S, (x,y) ;5
Gep.gry(6y) is (E2)(Gp(x,2) A Gpi(2,¥)) ;
Grugy®Y) 1s (Gp(a,y) V Gpi(x,y)) ;
GOE“XJ) is ((x < y) A~G(x,5)).

The remainder of the proof is essentially the same as for Theorem 5.2.

a

-178-

Remark. (Length of proofs).

In the study of logical theories, it is natural to consider the
length of proofs of true sentences, as well as the time and space
required by procedures which recognize the true sentences. Of course,
given any compléte consistent system of axioms AX for a theory T, an
upper bound on the length of proofs from the axioms AX implies a
corresponding upper bound on the space required to decide T, assuming
that membership of words in AX can be decided efficiently (say, within
polynomial time). In particular, for the decision problems considered
in this chapter there is no upper bound on the length of proofs
elementary-recursive in the length of sentences, provided the axioms
are "efficiently recognizable' as above., See [FR74] for further

discussion on the relation between length of proofs and computational

complexity.

-179-

Chapter 6. Complexity of Finite Problems

The previous two chapters have shown that efficient reducibility
techniques can yield non=-trivial lower bounds on the complexities of
certain decision problems. For reasons of technical simplicity, lower
bounds have been stated in a form which implies that, no matter which
algorithm is used to solve the particular problem, the time or space
used by the algorithm must exceed the lower bound on some input of
length n for infinitely many n., The fact that any algorithm must use
excessively large amounts of time or space infinitely often might be
viewed as plausible evidence that any algorithm will also perform badly
on inputs of reasonable size which actually arise in practice.

Indeed, in order to draw meaningful conclusions about computational
complexity, it is essential to know at what finite point the asymptotic
lower bounds we have derived begin to take effect. Such information is
implicit in our earlier proofs (cf. $3.3B).

Our purpose in this chapter is to demonstrate that our methods
yield astronomical lower bounds (in the most literal sense, cf.

Theorem 6,1 below) on the complexity of decision problems for expressions
with only a few hundred characters.

We first consider the decision problem for the weak monadic
second order theory of the natural numbers and successor. Let WS1S be
the set of true sentences written in weak monadic second order logic
using only the relations y = x+1 and x € A; that is, the second order

sentences which are true under the standard interpretation (N,successor)

-180-

with set variables ranging over finite subsets of N, Biichi [Buc60a]
and Elgot [Elg6l] have shown that WS1S is decidable.f

For the purposes of this chapter, logical formulas are written in
a language STT enriched by certain notational abbreviations. In
particular we may use decimal constants within formulas, writing
5 for O+1+1+1+1+41, x+4 for x+1+141+41, etc, Alsq, the binary
relational symbols <, <, =, #, >, 2 on integers may be used.

Let EWS1S be the set of true sentences in £, Note that the
additional predicates of EWS1S are all expressible in WS1S, so EWS1S
has no more expressive power than WS1S, and EWS1S is also decidable.
Let Z be the alphabet of £, For fixed integers n, we seek lower bounds
on the complexity of recognizing the finite set EWS1S N ZP.TTT

Turing machine time and space are not sufficient to measure the
complexity of finite sets. Any finite set is accepted by a finite
state automaton within real time (time T(n) = n) and within space
zero. This is accomplished by coding a finite table of the elements of
a set into the states of the automaton.

Thus, for assessing the complexity of finite sets, account must be

TOn the other hand, see [Mey73] or Theorem 5,3 of this thesis for a
lower bound on the i.o. time and space complexity of WS1S.

TTS is defined precisely below.

T-r‘rWe shall include a blank symbol in Z, so that EWS1S N Z' essentially

contains the true sentences of length less than or equal to n.

-181-

taken of the size or complexity of the device performing an algorithm as
well as the time and space required by the algorithm. One quite general
way to do this is to measure the number of basic operations on bits or
the amount of logical circuitry required to decide membership in finite
sets, We assume the basic operations on bits are binary operations
performed by ''gates" with two inputs and one output which may itself

be fanned out to serve as input to other gates in a circuit, This
circuit model yields a basic measure of complexity for Boolean functions
as well as finite sets (via appropriate encoding into Boolean vectors)
called combinational complexity [cf. Sav72]. Precise definitions

appear below,

It will turn out that the alphabet Z used for EWS1S contains 63
characters, each of which can therefore be coded into six binary digits.
In particular, sentences of length 616 correspond to binary words or
Boolean vectors of 6°616 = 3696 bits and this will be the number of
inputs to a circuit which "accepts" the true sentences. The circuit
is to have a single output line which gives the value one if and only
if the input vector is the code of a true sentence of length 616.

One main result can now be informally stated.

Theorem 6.1. 1If C is a Boolean circuit which accepts EWS1S N 2616,

then C contains more than 10123 gates.

Thus if a circuit C accepts EWS1S restricted to sentences of

length not exceeding 616, and if each gate is the size of a proton,

-182-

then to accommodate C the entire known universe would be packed with
gates,

The first lower bound on the combinational complexity of sentences
of logic was obtained by Ehrenfeucht [Ehr72; originally written in 1967]
who showgd that the size of circuits which accept true sentences of
length n about integer arithmetic with all quantifiers bounded by
constants described using exponential notation (e.g., 325) must
exceed c" for some ¢ > 1 and all sufficiently large n. More generally,
Meyer [Mey74] has observed that if EXPSPACE sz A for some language
A, then the combinational complexity of A must grow exponentially. This
observation implies Ehrenfeucht's original result (indeed SPACE(g(€n,0))
is SPE to Ehrenfeucht's formulation of bounded arithmetic), and also
implies that the combinational complexity of most of the decision
problems studied in this thesis grows exponentially.

The idea of obtaining in this way lower bounds on sentences
with only a few hundred characters was suggested by Meyer. However,
in order to obtain significant lower bounds for as small sentences as
possible, it seems better to carry out a more direct arithmetization
based on Meyer's efficient transformation result instead of appealing
explicitly to the result,

We now define more precisely the notion of combinational complexity.

tWe take 10-13 cm., to be the radius of a proton, and 11.x109 light years

~ 1028 cm. to be the radius of the universe.

-183-

A circuit is best defined as a straight-line algorithm., Straight=line
algorithms are defined in [Sav72] for general domains and functional

bases. We repeat the definition, restricting it to the Boolean case.

Definition 6.2, Let Ql6 ={g l g:[0,1}2 -+ (0,1} } be the set of

Boolean functions of two arguments,

Let Q €Q € N+, and t € N, An Q-straight-line algorithm

16° ™

or Q-circuit of size t with m inputs is a sequence

C

Por Potle Powar *770 Poyea
such that for m < k < mtt=1, Bk = (i,j,8) where i and j are integers
with 0<i,j<k and g € Q,

With each step Bk for k 2 m we identify an associated function

gk:[o,1}m + (0,1) by induction, First, if 0 < £ < m-1, define §,

to be the Lth projection,
LN 3 o000 m
§z(bob1b2 bmpl) b, for all boblb2 bm_1 € (0,1},
If m <k < mtt=1 and Bk = (i,j,g) then define
S (®) = 85, (®),8,(x)) for x € (0,17,
If £ is a function, f:(O,l]m - {O,I]P for positive integers m and

p, then the circuit C computes f iff C has m inputs and there are

integers 0 < il,iz,o--,ip < mtt=1 such that

f£(x) = €i1(x)§i2(x)-'-§i (x) for all x € (0,1}",
P

The combinational complexity of a function f:[O,l}m + (0,1 P

is the smallest t such that there is a QIG-circuit of size t which

-184-

computes f.
Let S be a finite alphabet. An encoding for S is a one-to-one
function h:S - [0,1}s where s = l_log(car:d(S))-l..r.r

Let '%:S* -+ [0,1]* be the extension of h.
Let A S S" for some n € N*. Define fA,h:{O,l}sn -+ (0,1} by
A
£y pu () =1 iff w€{(hx | x€4a}.

The combinational complexity of the finite set A is the minimum

over all encodings h of the combinational complexity of fA h*
9

If L& S+, then the combinational complexity of L is a function
CQ(L):N+ + N such that for each n,

C (L) (n) = the combinational complexity of LI st

(Note: The subscript ® denotes unbounded fan-out [cf. Sav74].)

Remark 6.3. The notion of combinational complexity is in a sense
incomparable with time or space complexity on Turing machines.,
For example, define LA = {0,1}+ by x € LA iff |[x| €A

where A is some non-recursive set of integers. Then LA is non-recursive

TOf course there is no loss of generality in not allowing basic functions
of one argument. For example, an inversion gate ~b can be computed as
gNA(b,b) where gNA(vl’VZ) = ~(v1 A v2).
TTLogarithms with no specified base are taken to the base 2.

By considering only block encodings, the exposition is somewhat

simplified and there is essentially no loss of generality.

-185-

and its time and space complexity are not even defined., But C_(L)(n) =1
for all n because, for each fixed n, LN {0,1}" is either ¢ or [O,I}n.
Thus, non-recursive and arbitrarily complex recursive sets can have

a trivially small combinational complexity.

Another contrast is that time or space complexity of recursive
languages can be as large as any recursive function, whereas any
language L has combinational complexity C_(L)(n) = c" for some ¢ > 1
[cf. Lup50]. Moreover, there are elementary-recursive languages,
in fact languages in EXPSPACE, whose combinational complexity is maximum
for all values of n (over any given alphabet S), so that relatively
"easy' recursive languages can have maximally large combinational
complexity.

However, there is a basic relation in one direction between these
two notions of computational complexity, Combinational complexity
in effect always provides a lower bound on time complexity.

M. Fischer and N. Pippenger [FP74] have shown that
L € DTIME(T(n)) implies C_(L)(n) < 0(T(n)elog T(mn)).
So in particular, an exponential lower bound on C_(L)(n) implies an

exponential lower bound on time complexity,

-186-

6.1 Second Order Theory of Successor,

Since our numerical results depend on the language £ used to

write sentences, we give a BNF grammar for £.

<member of £> ::= <formula> | <member of £> ¥

<formulad> ::= & <variable> <formula> | ¥ <variable> <formula> l
~<formula> | <formula> <logical cnetv> <formula> |

(<formula>) | <atom>

<term> <Lorder relation> <term> |
<term> € <set variable> | <term> ¢ <set variable>

<latom> ::

<integer variable> | <constant> |

<term> e

<integer variable> + <constant>

<logical cmetv> ::= A lv]=]e

<order relation> ::= <|s|=|%#]2= | >

<variab1e> Pa= <integer variab1e> | <set variab1e>

<integer variable>> ::= <integer variable> <lower case> | <lower case>
<set variable> ::= <set variable><upper case> | <upper case>

alblec|]] plaq

<lower case > ::

aAlBlc| - |P]Q

<upper case> ::

-187-

<constant> ::= <comstant> <digit> | <digit>
<ldigit> ::= 0| 1] 2] 3] <o | 8] 09,

Let Z be the alphabet of £, that is, the set of terminal symbols
above. Note that card(X¥) = 63.

If & € £, then |%| denotes the length of & viewed as a word in E*.

In the absence of parentheses, the precedence order for logical
connectives is ~, A, V, 2, ® (decreasing). Binding of quantifiers to
formulas takes precedence over all logical connectives. To improve
readability, redundant parentheses are sometimes used in the text in
writing formulas; these are underlined, (and), and are not counted
in the length of formulas.

¢ € £ is a sentence if ® contains no free variables. Let
EWS1S be the set of sentences in & which are true under the standard
interpretation of the integers,with set variables ranging over finite
subsets of N, (Leading zeroes are ignored in interpreting
constants,) The symbol ¥ denotes a blank '"padding' character which
is ignored in determining the truth wvalue of a sentence. Since
sentences can be padded with blanks, Cm(EWSIS) (n) serves to measure

the combinational complexity of deciding sentences of length < n,

-188-

Theorem 6.4. Let k, m, and n be positive integers such that:

k+1

(). 2> 2 -log(2k + m), and
(2). k=242 3logm, and
(3). n =466 + [(log;p2)m] + 11 L10gqgm] -

Then C_(EWS1S)(n) > k=4

Theorem 6.4 is proved below. For a fixed numerical value of n, a
lower bound on CQ(EWSIS)(n) is obtained by choosing k and m to satisfy

the above constraints. For example, we can now obtain the precise

formulation of

Theorem 6.1. C_(EWS1S)(616) > 10727 |

Proof. Choose k = 414, m = 424, n = 616, and note that 2410 5 10123 g

The proof of Theorem 6.4 is similar to the proofs of Chapter 4
which utilize efficient transformations between sets to obtain lower
complexity bounds. The basic argument is as follows. We first prove
Lemma 6.5 which states that if k, m, and n satisfy certain constraints
then there is a function fo:{O,l}m -+ (0,1} of "large" (= 2k'3)
combinational complexity such that questions about the value of f0
on words of length m can be transformed to questions about membership
of sentences of length n in EWS1S; moreover, the combinational
complexity of the transformation T is relatively "'small'., It then

follows that the combinational complexity of EWS1S must be almost as

large as that of fo. For assume that the combinational complexity of

-189-

EWS1S is small. Then by placing a circuit which computes T in series
with a circuit which accepts EWS1S, we obtain a "small" circuit which
computes fo contrary to assumption,

One preliminary is required before proving Lemma 6.5, We shall
use a special case of an '"abbreviation trick' due to M. Fischer and
A, Meyer [FM74]., 1If ¢ is a logical formula involving several occurrences
of a subformula, the trick allows one to write & equivalently as a
formula involving only one occurrence of the subformula,

In the proof of Lemma 6.5, we shall always apply the trick to

formulas ¢ of the form
Q(ul’coo’un) = lelezzco-szm A(ul’ooo’un’zl,ooo’zm)
where Ql,"',Qm are quantifiers, Ups oy denote variables which occur

free in ¢, and TR denote variables. A denotes a formula (with

free variables ul,---,un,zl,’--,zm) of the form
A=(... G(Vll’...’vlp) cee G(Vzlp“.’vzp) see G(vﬂl’...’vﬂp) veo)

where G(vl,---,vp) denotes a formula of p free variables vl,---,vp, and
for 1 <1< 4 the ith occurrence, G(vil,--o,vip), of G in A denotes

a substitution instance of G(v1,°°',vp) with vy replaced by Vi Yo
replaced by Vo and so on., Each vij’ l1<is<{4, 1sj<p, denotes
either a variable or a constant., In the cases we consider, each vij
which is a variable is either free in ¢ or is bound by one of the
quantifiers Ql,Qz,"',Q .

m

Under these conditions, & can be written equivalently as a

-190-

formula &' involving one occurrence of G as follows, First let A'

be the formula obtained from A by replacing the ith occurrence,
G(vil,-o-,vip), of G by the atomic formula v, = 1 for i =1,2,3,¢¢¢,4,
where O YIRS) denote new variables. Now we use 'dummy variables"
y,dl,-o-,dp, and write a separate formula to ensure that if y = i

and dj = vij for some i and all j = 1,2,3,¢¢¢,p, then y =1 1iff

G(d1,°--,dp) is true. That is:

Q'(u-l_”"sun) = lel...szmayl...Hyﬂ(A

y
A le'-'Vdey(i;:q idl:vil A ese A dp=vip A y=Y4))

= (=1 ® G(dy,*r,d)).

In the cases we consider, ? uses sufficiently few variables that

the additional variables yl,---,yz,y,dl,---,dp can each be written as

a single letter. Also, each of the vij is either a single letter or a

single digit,

Under these conditions, the length of &' is related to the lengths
of ¢ and G by:

Length relation for the abbreviation trick:

[8'] = (8] + (L-4)|c| + (44p + 94 + 2p + 13),

In particular, the symbols lel---szm plus those symbols in A'

contribute (|3] + 34 - £|G|) to |&'].

-191-

Lemma 6.5. Let k, my, and n be positive integers which satisfy (1) and
(3) of Theorem 6.4, Then there is a function fo:[O,l]m + (0,1}
such that:

(i). The combinational complexity of f0 is greater than Zk'3 H

and
(ii). For each x € [0,1]m there is a sentence P € £ such that
wal =n, and P, € EWS1ls 1iff fo(x) =1,
Moreover, if h:X - {0,1]6 is any encoding, and if T is the function
. N m
which maps x to h@$x) for all x € (0,1}, then the c?mbinational

complexity of T is less than 220m3.

Proof., Let k, m, and n be fixed integers which satisfy constraints
(1) and (3) of Theorem 6.4.

We first describe the formula Easy'(F) (of one free set variable)
which is used within mx. Easy'(F) is constructed in Lemma 6,5.1 which
comprises the major technical portion of the proof of Lemma 6.5. Some
definitions are required to state this sublemma.

Let NAND be the singleton set consisting of the Boolean function
gNA of two arguments defined by gNA(Vl’V2) = ~(v1 A v2).

If x € [O,I}m, int(x) is the nonnegative integer z such that x is a
reverse binary representation (possibly with following zeroes) of z,
For example, int(111000) = 7 and int(101100) = 13 (if m = 6).

Let FCN, fct(F) is the function mapping {O,I}m to {0,1)
defined by fet(F)(x) =1 iff m(int(x) + 1) € F.
fct(F) is the means by which functions from [O,I}m to (0,1} are

represented as sets of integers in our arithmetization of circuits,

-192-

Lemma 6.5.1., Let k and m satisfy (1) of Theorem 6.4. There is a

formula Easy'(F) in £ such that:
(i). For all finite F C N, Easy'(F) is true iff there is a
NAND=circuit of size 2k with m inputs which computes fct(F)

and
(ii). |Easy'(F)| = 380 + 10 LloglomJ .

Proof. We first write a formula Easy(F) involving several occurrences
of a subformula, and then obtain Easy'(F) from Easy(F) via the
abbreviation trick described above.

Some notation is helpful, If S © N, let seq(S) denote the

1ifi €S8

(infinite) binary sequence bob1b2b3---, where bi
and bi =0 if i ¢ S, Let m=-word(S,j) denote the finite binary word

seb of seq(S).

byPss1P542" " Pyam-1
Let dec(m) denote the decimal representation of m, Let dec(k)
be a decimal representation of k with leading zeroes if necessary to
make [dec(k)| = |dec(m)|. (Constraint (1) implies k < m.)
Easy(F) is a conjunction of five terms. The first four terms
¢1, 02, ¢3, ¢4 place constraints on the variables B, P, d, and q.
The last term $5 expresses the fact that fct(F) is computable by a

NAND=circuit of size < 2k (which is the same as being computable by

a NAND=-circuit of size exactly 2k).

(v1). Va(¢1(B,d,a)) is true iff d € B and B = B0 where

B0 ={ 2z l m<z<d and z2 =0 (mod m) }.

-193-

¢1 is (d€B A dec(m) €B
AN((a<dec(m) V a>d) = a¢#B)

A (a<d A a#0) = (a€B ® a+dec(m) €B))).

(¥2). Assuming B = B, and d € B, then Va(wz(B,P,d,a)) is true iff
for all integers i with 0 < mi < d, m-word(P,mi) is a reverse binary
representation of the integer z where 2z = (i-1l)(mod 2m) and 0 < z < 2%,

That is,
m m m m m m

seq(P) = 111...11000+¢ 00100+ -00010+ + «00110+ ++000010°+00 =+~ |,

and where, if seq(P) = PoP1Py* * > then this pattern continues at least
to bit Pgetme1 of seq(P). The bits of seq(P) beyond the (d+m-1)th are
not constrained by WZ. (The formula #2 is similar to one used by

Robertson [Rob73].)

t,1is ((a<decm) = a€P)
A(a<d =
((a€P © a+dec(m) ¢ P)
®
@b((bEB V b=0)A bsa

ANVi((bsiAi<a) = 1€P))))).

(¥3). Assuming that B = BO’ d € B, and that seq(P) is as above, then

0 (mod m2™).

Va(¥,(P,d,a)) is true iff d

¢3 states simply that m-word(P,d) = 17,

~194-

¢31s ((d<a A a<d+dec(m)) = a€P),

Recall d € B and 0 ¢ B by (¥1), and thus d > 0. Now the truth of
Va(l[!i) for i = 1,2,3 together imply that seq(P) cycles at least once
through the 2" binary words of length m, (See Figure 6.1, Upward

arrows point to those positions of seq(P) which belong to B.)

seq(P) =
m m) m m m m
111+ 11000+ - 00100+ « + 00010+ *+00 ++ 01lles+11111.+.11 don't care ««-
t 1 t t t
d

Figure 6.1, P, B, and d.

(Y4). If B and P are as in Figure 6.1, then Va(“(B,P,q,a)) is true

iff q € B and quZk.

v, is (q€B A ((a€B A a<q = atdec(k) €P)) .

To summarize ({1) through (y4), if

Va(tyl(B,d,a) A ¢2(B,P,d,a) A ¢3(P,d,a) A qra(B,P,q,a)) is true then:

D), B=[z|mszsd and z =0 (mod m) },

(2). seq(P) is as in Figure 6.1,
(*)
(3). d=0 (mod m2™) and d >0,

(4). q€B and q<m2.

-195-

(§{5). We first describe the formula Match which is used as a
subformula within ‘115.
MatCh(xl’wl’XZ’WZ) is
K Vb (w1<w2 A (w1€B \ w1<dec(m))
/\(Lwlsb A b<w21 = (b€ K © b+dec(m) €K))
A (b<w1+dec(m) = (bEK © bEXl))

/\(wzsb=>(bEK@b€X2))) .
The following lemma describes certain properties of Match,

Lemma 6.5.2, Assume B, P,d, and q are as in (*), Let S,Sl,S2 c N,

(i). Let 2452, € BU (0}, Match(Sl,zl,Sz,zz) is true iff
z, < z, and m-word(sl,zl) = m-word(sz,zz).
(ii). Let a € B, Match(P,i,S,a) is true iff i < a and
either (1 € B and m-word(P,i) = m=word(S,a))
or {0<1i<m and m-word(S,a) = ot1™-i Yo

(iii). Let a € B with a < q. Then there is at most one i € N

such that Match(P,i,S,a) is true,

Proof. (i) and (ii) are left as exercises, See Figure 6.2 which shows
how K can be chosen in two particular cases., In Figure 6.2, m = 6 and

words are divided into blocks of length six for readability.

To verify (iii), let a € B with a < q be fixed. Constraint (1)

of Theorem 6.4 implies k <= m-1, Now a < gq < m2k < mZm-l implies

that for all i,1, € B with iy,i, < a:

=196«

seq(Sl) = 010010 101100 000000 101111 000000 000Q---
seq(K) = 010010 101100 101100 101100 010011 0000---
seq(Sz) = 100100 001100 111111 101100 010011 0000°--
T
22==18
i=4
!
seq(P) = 111111 000000 100000 010000 110000 «--
seq(K) = 111111 000011 000011 001010 000000 +--
seq(S) = 001010 000000 000011 001010 000000 -«

T
a=12

Figure 6,2, Illustrating the proof of Lemma 6.5.2 (i) and (ii).

(%) mrword(P,il) m-word(P,iz) iff i, = i2 ; and

() m-word(P,il) = boblbz'--bm_zo for some bo,bl,'--,bm__2 € (0,1}.

Now suppose that Match(P,il,S,a) and Match(P,iz,S,a) are both true,
Part (ii) of the lemma implies i1,12'< a and one of four cases:

First, if i,,i, € B then part (i) of the lemma together with
(**) implies i1= i, s

Second, if 11’i2 < m then part(ii) of the lemma implies

=1, =1 where m-word(S,a) = o1™*

The other two cases, namely where one of 11,i2 belongs to B and

iy

the other is less than m, cannot occur because of (***) together with

parts (i) and (ii). For example, if il € B and iz < m, then

-197-

m-word(S,a) because Match(P,il,S,a) is true

1y m-1p . .
0“1 because Match(P,lz,S,a) is true.

m-word(P,il)

However this now contradicts (***) which states that m-word(P,il)

must end with O. a

We now describe how sets of integers are viewed as representing
circuits and 'computatiomns" of circuits.

Let B, P, d, q be as in (*), and let I,J &N, Then gq-circuit(I,J)
is defined and g-circuit(I,J) is the NAND=-circuit C of size t = q/m
with m inputs where C = Bm, Bnrl-l’ Bnrl-Z’ cee, Bm-l-t-l iff
for each a € B with m < a < q there exist i,j such that

(i). Match(P,i,I,a) and Match(P,j,J,a) are both true, and

(ii). Ba(a) = (a(i),a(j),gNA), where o« is given by

z if z<m
a(z) =
z/m+m=-1 if z € B.

It is important to note by Lemma 6.5,2(iii) that q-circuit(I,J)
is uniquely defined when it is defined.

Figure 6.3 illustrates how a particular pair I,J © N codes a
circuit in the case q = 20, m = 5, (so t = 4), In Figure 6.3: seq(P)
is shown for reference; X is a '"don't care" symbol; words are divided

into blocks of length five for readability.

-198-

q-circuit(I,J) = (O,I,gNA), (3,4,gNA), (2,6,gNA), (5,7,gNA)

= BS ’ B6 ’ B7) BB

seq(P) = 11111 00000 10000 01000 11000 «-.

seq(I) = xxxXxx 11111 00011 00111 00000 ...

seq(J) = XXxxX 01111 00001 10000 01000 e«

seq(D) = 11101 OXXXX 1IXXXX OXXXX 1XXXX ¢ e
a 01234 5 10 15 20

@(a) 01234 5 6 7 8

Figure 6.3, I and J '"code" a circuit,

For arbitrary I,J ©N, if C = q-circuit(I,J) = B_, B .15 ***» By

is a circuit as on the preceding page, if x € [O,I}m, and D €N, then

D represents the computation of C on x iff for all a with

a€({z|0sz<m)}U(2z2€B|msz<gq)

a€D iff §d(a)(x) =1

-199-

where the [€i] are the associated functions of C (cf. Definition 6.2).
Note in particular that if D represents the computation of C
cn x, then m=word(D,0) = x.
Figure 6.3 also shows a set D which represents the computation of
q-circuit(I,J) on input 11101,
We note one fact and then write ws. Fact 6.5.3 is immediate from

the definition of int(x) and fct(F), and the fact that P is constrained

as in Figure 6.1,

Fact 6.5.3. Let x € (O,I}m, F <N, and e = m(int(x) +1). Then

m-word(P,e) = x, and e € F iff fct(F)(x) = 1.

Now assuming that B, P, d, and q are as in (*) above,

ky

wS(F,B,P,q) is true iff there is a NAND-circuit of size q/m (< 2

which computes fct(F).
¥g is FI &I Ve 3D Ya Ti Tj W;, where ¢; is

(5.1) (e€B =
(5.2) (Match(D,0,P,e)
(5.3) A(Ca€B =
" (Match(P,i,I,a) A Match(P,j,J,a)
" A(a€D ® ~(1€D A F€D))))

(5.4) AN(q€D ® e€F))).

=200~

Informally, ¢5 expresses the following.
There exists a circuit, q-circuit(I,J), of size t = q/m such that:
(5.1) For all inputs x € [O,I}m (where e = m(int(x) +1)), there
exists a computation D such that:
(5.2) m=word(D,0) = m=word(P,e) = x by Lemma 6.5.2(1)
and Fact6.5.3; and
(5.3) for all gates Ba(a) with a € B there exist i and j
such that the output §a(a)(x) of Ba(a) is computed
correctly as ~(§a(i)(x) A §d(j)(x)); and
(5.4) gate Ba(q) produces output 1 iff e € F (iff fet(F)(x) = 1,

cf., Fact 6.5.3).

Finally let Easy(F) be
4B Tp Td Hq II TJ Ve D Va Ti Hj (¢1A1|;2/\¢3/\¢r4/\\y;)
so that by standard manipulation of quantifiers Easy(F) is equivalent

We let the reader supply any additional argument required to
convince himself that Easy(F) is true iff there is a NAND-circuit of
size 2k which computes fct(F). (In the "if" direction, always choose

P = m2m, q = m2k, and choose I,J such that (gate B of)

a(q)
q-circuit¢I,J) computes fct(F) and moreover that

#iTj(Match(P,i,I,a) A Match(P, j,J,a)) is true also for those a € B
with a > q.)
We now count the length of Easy(F).

Let u = LloglomJ + 1. Note that |dec(k)| = [dec(m)| = u.

=201-

First, |Match| = 72 + 3u.

The lengths of ¢1, ¢2, ¢3, ¢4, ¢; are respectively 40 + 3y,
61 + 24, 14 + p, 18 + p, and 41 + 3|Match|. The length of Easy is the
sum of these plus 28 additional symbols, so

|Easy| = 202 + 7u + 3|Match| .

Using the Fischer-Meyer abbreviation trick with £=3 and p=4 to
reduce the three occurrences of Match to one, Easy can be written
equivalently as Easy' where

[Easy'| = |Easy| = 2|Match] + 96

380 + 10 L1og10m_J .

Note that the additional variables dl’d2’d3’d4’y1’y2’y3’y used in
the abbreviation trick can be named E,c,L,f,g,h,~%,0 respectively.

This completes the proof of Lemma 6.5.1, O

We now return to the proof of Lemma 6.5 and the construction
of wx. Let ¢; be the following sentence, where w(x) and Lessthan(G,F)

are defined below.

cp; is dF VG (w(x) € F A ~Easy'(F)
A (Lessthan(G,F) = Easy'(G))).
The formula Lessthan(G,F) is
Hda(a€F A a6 A Vb(b>a = (bEG ® BETF))).

Lessthan(G,F) is easily seen to degine a linear order on finite

subsets of N,

-202-

w(x) is a decimal representation of m(int(x) +1); leading
zeroes are appended so that
= |
loe)| = | (logyy2) mj + [logygm] + 2.
(Note that x € (0,1)™ implies int(x) < 2™-1, It follows that the

decimal representation of m(int(x) +1) need never be longer than

Llogyym2™]+ 1< [(logyy2) m] + [logygm] + 2.)
K k+1
It is easy to see that there are at most (2 + m) NAND-circuits

k+1

of size 2k with m inputs, (That is, each of the total 2 possible

inputs to gates is filled with a number between 0 and 2k41n- 1)

m
However there are 22 functions from (O,I}m to {0,1}. Constraint (1)

om K k+1
of Theorem 6.4 ensures 2° > (2" + m) and therefore that there is

a finite F © N such that Easy'(F) is false.

Since Lessthan defines a linear order, there is exactly one finite
FO C N such that VeG(~Easy'(Fo) A (Lessthan(G,Fo) = Easy'(G))) is true.

We take f0 = fct(Fo).

Since any Boolean function of two arguments can be synthesized
‘using at most five '"NAND-gates'" [cf., Har65], and since Easy'(Fo) is
false, it follows that the combinational complexity of f0 = fct(Fo)
must exceed (1/5)-2k > 2k-3.

Also by the definition of fect(F), w(x) € Fy iff £,(x) = 1,

so w; is true iff fo(x) =1,
|Lessthan| = 29 .

14 + |w(x)| + |Lessthan| + 2|Easy'|

1%,

45 + 2|Easy'| + L(10g102)m_| + L1og10m_J .

-203=-

The abbreviation trick with £=2 and p=1 applied to m; and Easy'

gives ©' equivalent to @' and
x x

lo | = |@, | = |Easy'| + 41
466 + L(logIOZ)nLJ + 11[_1og10mJ .

The additional variables dl,yl,yz,y can be named M,k,m,n respectively.

By constraint (3) of Theorem 6.4, j 2 0 can be chosen so that

@, = CP; ¥ and o) = n.

wx and f0 satisfy the requirements of Lemma 6.5.

It remains only to bound the combinational complexity of the trans-
formation T mapping x to ﬁ0$x). For fixed k, m, and n, 3(w(x)) is the
only part of‘%@$x) which depends on x. (Recall that the length of
w(x) is independent of x.) Thus all bits of'%(wx) excluding %(w(x))
can be computed using exactly two gates, namely the two gates with
constant output., Now 220m3 is a gross upper bound on the combinational
complexity of the transformation mapping x to %(w(x)), using
straightforward classical algorithms for binary addition, binary
multiplication, and binary-to-decimal conversion [cf. Knu69].

 This completes the proof of Lemma 6.5.

Proof of Theorem 6.4. Let k, m, and n satisfy the comstraints (1), (2),

and (3) of the theorem. Assume the conclusion is false, that is
C, (EWS1S)(n) < 2574,
Therefore there is an encoding h:X - [0,1]6 and a QIG-circuit C of

size 2k"4 with 6n inputs which computes a function f where in

-204-

particular for all sentences ¢ € £N Z",

fR@)) =1 iff ¢ € Ewsls,
0 and T be as in Lemma 6.5 for this k, m, n, and encoding h.
Let T be an QIG-circuit of size < 220m3 which computes T,

Let £

Now let C0 be the circuit shown in Figure 6.4.
| . A
—3 . f(h(CPx))
. ~
x . T hcpx) C —> - fO(x)
— .
N

Figure 6,4, The circuit CO

Since f(ﬁ@$x)) =1 iff o € EWSIS iff fy(x) = 1, C, computes f.

But "size of C." = "size of T" + ''size of C"

0
< 2ZOmB + 2k-4 < 2k-3’

because constraint (2) implies 220m3 < 2k'4. This contradicts the

fact that the combinational complexity of £, is greater than 2k-3.

0

Therefore we must have C_(EWS1S)(n) > 2k'4. O

fIt is clear how to define C0 from C and T within the formalism

of straight=-line algo,rithms.

=205~

6.2 First Order Integer Arithmetic.

In this section we obtain even stronger lower bounds on the
combinational complexity of a logical decision problem, Consider
the first order theory of the nonnegative integers with primitives
addition, multiplication, and exponentiation to the base 2. Sentences
are again written in a language £' allowing decimal constants and the
relations <, <, =, #, >, =, Terms are any arithmetic expressions
involving constants, variables, addition, multiplication, and base 2
exponentiation, For example, x+ 300.-y and z-2(i+1) are terms,
and x-u+6 < 2% is an atomic formula.

£' is defined by the following BNF grammar, where <formula>,
<order relation>, and <constant> are defined as in the grammar

given for &£ in 86,1.

<member of £> .= <member of S>> | <formula>

<atom> ::= <term> <order relation> <term> .

<lterm> + <term> | <term> . <term> | t <term> |
(<term>) | <variable> | <constant>

<lterm> ::

<variable> ::= <variable> <lower case> | <llower case>

<Llower case> ::i= a | b|lc | «ee |y]| 2.

t <term> denotes 2<tern;,\ s and the latter notation is used

in the text in writing formulas., The precedence order for arithmetic

operations is f, ¢, + (decreasing). As before, redundant parentheses,
(and), are sometimes used, Let Z' be the alphabet of £'; note that
card(Z') = 55,

Let FIA be the set of sentences in &' which are true under the

standard interpretation for +, -, ', etc., with variables ranging over N,

Theorem 6.6. Let k, m, and n be positive integers such that:

1y, 2"2%/m > 2k2X-m+1), and
2. 257/ = 22943, ana
(3). n= 262+ [(log;y2)m] + 6L 1og;m] .

k-7/

Then C_(FIA)(n) > 2°"//k .

For example, with k = 426, m = 447, and n = 388:

Corollary 6.6.1. C_(FIA)(388) > 2*10 > 10123,

If we seek a more modest bound, say a trillion gates, then
choosing k = 53, m = 69, and n = 268 gives:

Corollary 6.6.2. C,(FIA)(268) > 20 > 1012,

Note: In Corollaries 6.,6.1 and 6.6.2, the lengths of sentences in

"bits" are respectively 6-388 = 2328 and 6°268 = 1608.

Proof of Theorem 6.6. There are a number of similarities between this

proof and that of Theorem 6.4 and Lemma 6.5. We sketch only the essential

details.

Fix k, m, and n to satisfy the comstraints (1), (2), and (3).

-207-

Let T(z) denote the number of prime positive integers that do

not exceed z.

Fact 6,6,1 [cf. NZ66], For z = 2,
(1/4)z/logz < m(2) < 92/logz.
For d,i € N, Bit(d,i) is true iff the coefficient of ot in the

binary expansion of d is 1,

i (mod a)

For u,i €N and a € N+, Res(u,a,i) is true iff u
and i < a,

We now describe how integers are viewed as representing functions,
circuits, and computations of circuits. As in 86.1, let int(x) be the
integer i such that x is a reverse binary representation of i.

1f z € N, fct(z) is the function mapping LO,I}m to (0,1}
defined by fet(z)(x) = 1 iff int(x) divides z,

Of course there are functions from {O,I}m to {0,1} which do not equal

fet(z) for all z, However the following is true.

Lemma 6.6,2. Let F = (£ | £:(0,1" 2 (0,1) and (d2)[f = fet(z)] }.

2m-2/m
Then card(F) > 2 .

Proof. Let X =({ x € (0,1)™ | int(x) is prime }.
Given any choices of bx € {0,1} for x € X, there is a z

such that fet(z)(x) =b for all x € X, Namely 2z =TT int(x).
. b =1
X
Therefore card(F) = anrd(X).
»
But card(X) = 1T(2m- 1) = 1T(2m) > 2m-2/m (since (1) implies m = 2),
O

-208-

Let u,v €N and t € N*. Then t-circuit(u,v) is the NAND=-circuit

s - :] eoe £
of size t=-m with m inputs, Bm’ Bm+1’ Qm+2, , Bt-l’ where for each
awith m=< a =< t-1,

Ba = (i,j,gNA) where Res(u,a,i) and Res(v,a,j).

Not all circuits can be represented exactly in this way because
the residues of u and v (mod a) cannot be chosen independently for

a=mml,m2,°+, However:

Lemma 6.6.3. Let C be a NAND-circui: of size t with m inputs, and
assume t < TM(t'=1l) - T(m=1) for some t'.
Then there are u,v € N such that t'-circuit(u,v) computes the

same function as C.

Froof. Consider A ={ a | msa<t' -1 and a is prime },
For each a € A, let ia and ja with 0 < i3, < a be arbitrary,
By the Chinese Remainder Theorem [cf. NZ66] there are u,v € N such
that Res(u,a,ia) and Res(v,a,ja) for all a € A,
card(A) = T(t'=1) = TM(m=1) = t,
Therefore, ia and ja for a € A can be chosen so that the steps
Ba for a € A of t'-circuit(u,v) mimic the circuit C. The steps Bk

with k # A and k 2 m are irrelevant. 4

If C is a circuit of size t-m with m inputs, if x € [O,I}m,
and d € N, then d represents the computation of C on x iff

Bit(d,i) = §,(x) for 0 =i ¢-l

where the [Ei} are the associated functioms of C (cf. Definition 6.2).

-209-

In particular, note that the binary representation of d must begin

with the reverse of x; thus d = int(x) + be2® for some b € N,

Bit and Res can be expressed in FIA as:
Res(u,i,a) is Eb(u = bea+i A i< a)
Bit(d,i) is VeVb(r =2 V d # 2:be2 41).

(To see thuat Bit(d,i) is correct, note that its negation
Er&b (r<2" A d=2.b-2"+r) is true iff the coefficient

of 2% in the binary expansion of d is 0.)

Easy(z) is &u Hv Ve Id Va Hi Tj (

(El) (e< 2dec(m) y =
(E2) (3b(d=e+ pe pdec(m))
(E3) A((dec(m) <a A as29®y o

" (Res(u,a,i) A Res(v,a,j)
" A (Bit(d,a) ® ~{pit(d,i) A Bit(d,j)))))

(E4) A (Bie@d,298)y o mpz=bee)))).

Informally, Easy(z) expresses the following.
There exists a circuit, (2k4-1)-circuit(u,v), such that:
(E1) for all inputs x € (O,I}m (where e = int(x)) there exists a
computation d such that:

(E2) the binary representation of d begins with e = int(x) ;

(E3) for all gates Ba, m<s< acs Zk, the output §a(x) of Ba is

computed correctly as ~(§,(x) A §j(x)) ; and

and

-210-

(E4) the output of sz, §2k(x),is 1 iff e divides z
(iff fet(z)(x) =1).

The next lemma describes properties of Easy(z).

Lemma 6.6.4. Let z €N,

(i). Easy(z) is true iff there exist u,v € N such that
(Zk-+1)-circuit(u,v) computes fct{z).

(ii). 1If Easy(z) is true, there is a NAND=-circuit of size 2k-m4-1

which computes fct(z),

(iii)., 1If Easy(z) is false, there is no NAND-circuit of size 2k-3/k
which computes fct(z).

Proof. We let the reader check (i) by following the informal
description of Easy(z) above., (ii) is immediate from (i).

To prove (iii), assume Easy(z) is false and suppose C is a
_ 2k-3

NAND=-circuit of size ¢t /k which computes fct(z).

Let t' = 2k-F1. Now
k=3 k=2 ,
t =2 "/k=<2 "/k - 9m/logm (because (2) of Theorem 6.6
implies 2k-3/k 2 9m/logm)
< n(t' - 1) - TT(m- 1) (by Fact 6.6.1).

Therefore by Lemma 6.6.3, there are u,v € N such that (2k-+1)-circuit(u,v)

computes fct(z). Part (i) of this lemma now contradicts the fact that

Easy(z) is false. 4

After replacing the occurrences of Bit and Res by their definitions,

we find ,
|Easy) = 179 + 6 LloglomJ .

-211-

(Note: Using the abbreviation trick to eliminate multiple occurrences of

Bit or Res does not yield a shorter formula in this case.)

Let w; be the sentence

2Ty (db(z = bew(x)) A ~Easy(z)

A (y<z = Easy(y))).

w(x) is a decimal representation of int(x), with leading
zeroes appended if necessary to make the length of w(x) be

exactly L(10g102) m_] + 1,

k
2(2" - 1
k) (m+1) NAND=-circuits of size

There are at most (2

2k -m+1 with m inputs,

mr2/

n k)2(2k-m+1)

Constraint (1) of Theorem 6.6 implies 2 > (2

Then Lemma 6.6.2 and Lemma 6.6.4(ii) together imply that there is some
z € N such that Easy(z) is false.
Thus there is precisely one z, € N such that
Vy(~Easy(zo) AN (y < z > Easy(y))) 1is true.

Let fo = fct(zo).

By Lemma 6.6.4(iii) and by our remarks in $6.1 concerning the
synthesis of 916-circuits by NAND-circuits, it follows that the
combinational complexity of fo exceeds (1/5)-2k-3/k > 2k-6/k.
Also, m; is true iff w(x) divides z, iff fo(x) =1,

Using the abbreviation trick to replace the two occurrences of

Easy by one, we find ¢; equivalent to $; and

o) | = 262 + L (logyy2) m] + 6 [logm] .

-212-

Now mx is @; padded with blanks if necessary to be of length

exactly n.

As before, if T is the transformation mapping x to %0$x) for

an encoding h of X', then the combinational complexity of T is

certainly bounded above by 220m3.

k=7

The reader can now complete the proof that C_(FIA)(n) > 2" "/k

by following the proof of Theorem 6.4, The necessary facts are:

(i). the combinational complexity of fo exceeds 2k-6/k

(ii). fo(x) =1 iff P € FIA ; and (iii). by constraint (2) of

‘ -
the theorem, the combinational complexity of T is < 2 7/k. a

=213~

Chapter 7. Conclusion

We hava demonstrated that efficient reducibility techniques can
yield interesting lower bounds on the inherent computati;nal complexity
of a variety of decision problems from automata theory and logic.

For several of these problems, such as the equivalence problem for
star-free expressions (cf., 84.2) and the decision problems for the
various logical theories discussed in Chapter 5, our results imply
that any attempt to find an efficient algorithm for the problem

is foredoomed.

Recent studies by coworkers (cf., [Fer74], ([FR74], [Mey73],
[Rac74], [Rob73]) of decision procedures for logical theories show
that these reducibility methods are applicable to nearly all the
classical decidable theories. Moreover that with the exception of
the propositional calculus and certain theories resembling the first
order theory of equality, all these decidable theories can be proved
to require exponential or greater time,

Hopefully, both the general method of efficient reducibility and
some of the particular techniques of efficiently arithmetizing Turing
machines will extend to slgebra, topology, number theory, and other
areas where decision procedures arise, and will curtail wasted effort
in searching for efficient procedures when none exist., The exhibition
of provably difficult problems in these areas is one direction for

further research,

[AHU74]

[AU70]

[AU72]

[B166]

[B167]

[B171]

[Bo72]

[Brz62]

[Brz64]

[Buc60a]

[Buc60b]

[BGW7C]

-214-

Bibliography

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and
Analysis of Computer Algorithms, to appear.

Aho, A.V., and Ullman, J.D., "A characterization of two-way
deterministic classes of languages," J. Comput, Syst. Sci. 4,
6 (Dec 1970), 523-538,

Aho, A.V., and Ullman J,D,, The Theory of Parsing,Tramslation,
and Compiling, Vel. I: Parsing, Prentice-Hall, Englewood
Cliffs, New Jersey, 1972,

Blum, M., "Recursive function theory and speed of computation,"
Canadian Math, Bull, 9 (1966), 745-750.

Blum, M., "A machine-independent theory of the complexity of
recursive functioms," J. ACM 14, 2 (April 1967), 322-336.

Blum, M., "On effective procedures for speeding up algorithms,"
J. ACM 18, 2 (April 1971), 290-305.

Book, R.V., "On languages accepted in polynomial time,"
SIAM J, Comput, 1, 4 (Dec 1972), 281-287.

Brzozowski, J.A., "A survey of regular expressions and their
applications,'" IRE Trans. EC-11 (June 1962), 324-335.

Brzozowski, J.A., "Derivatives of regular expressions,"
J. ACM 11, 4 (Oct 1964), 481-494,

Buchi, J.R., '"Weak second order arithmetic and finite automata,
Zeit, f. Math. Log. and Grund. der Math, 5 (1960), 66-92.

Biichi, J.R., "On a decision method in restricted second order
arithmetic," Proc. Internat. Congr. Logic, Method. and Philos.
Sci. (1960), Stanford Univ, Press, Stanford, Cal., 1962, 1-11,

Book, R.V., Greibach, S.A., and Wegbreit, B., "Time and tape
bounded Turing acceptors and AFL's," J. Comput, Syst. Sci. &
(1970), 606=-621,

[Col69]

[Co7la]

[Co71b]

[Co73]

[CEW58]

[CR72]

[Edm65]

[Ehr72]

[Elg61]

[ER66]

[Fer74]

[FM74]

[FMR72]

=215«

Cole, S.N., '"Real-time computation by n-dimensional iterative
arrays of finite state machines,'" IEEE Trans. C-18 (April 1969),
349-365,

Cook, S.A., '"The complexity of theorem proving procedures,"
Proc. 3rd ACM Symp. on Theory of Computing (1971), 151-158.

Cook, S.A., '"Characterizations of pushdown machines in terms of
time-bounded computers,'" J. ACM 18, 1 (Jan. 1971), 4-18,

Cook, S.A.,, "A hierarchy for aondeterministic time complexity,"
J. Comput, Syst, Sci. 7, 4 (Aug. 1973), 343-353,

Copi, I.M., Elgot, C.C., and Wright, J.B., "Realization of
events by logical nets," J. ACM 5 (April 1958), 181-196,

Cook, S.A., and Reckhow, R.A., "Time-bounded random access
machines,' Proc., 4th ACM Symp. on Theory of Computing
(1972), 73-80,.

Edmonds, J., '"Paths, trees and flowers," Canadian Jour.
Math., 17 (1965), 449-467,

Ehrenfeucht, A., "Practical decidability,' Report CU-CS-008-72,
Dept. of Computer Science, Univ, of Colorado (Dec. 1972).

Elgot, C.C., ''Decision problems of finite automata design and
related arithuetics,'" Tramns. AMS 98 (1961), 21-51,

Elgot, C.C., and Rabin, M.0., ''Decidability and undecidability
of extensions of second (first) order theory of (generalized)
successor," Jour, Symb. Logic 31, 2 (June 1966), 169-181,

Ferrante, J.,, '"Some upper and lower bounds on decision
procedures in logic,' Doctoral Thesis, Dept., of Mathematics,
M,I.T., to appear 1974,

Fischer, M.J., and Meyer, A.R., personal communication.

Fischer, P.C., Meyer, A.R., and Rosenberg, A.L., '"Real-time
simulation of multi-head tape umits," J., ACM 19, 4 (Oct. 1972),
590-607.

-216-

[FP74] Fischer, M.J., and Pippenger, N., to appear.

[FR74] Fischer, M.J., and Rabin, M.0., "Super-exponential complexity
of Presburger arithmetic," Proc. AMS Symp. on Complexity of
Real Computational Processes (1974), to appear; also, MAC Tech.
Memo., 43, M.I.T., Project MAC, Cambridge, Mass, (Feb., 1974),

[Gin67] Ginzburg, A., '"A procedure for checking equality of regular
expressions,' J. ACM 14, 2 (April 1967), 355-362,

[Gri71] Gries, D., Compiler Construction for Digital Computers,
Wiley, New York, 1971,

[GIS74] Garey, M.R., Johnson, D.S., and Stockmeyer, L.J., ''Some
simplified NP-complete problems,’ Proc. 6th ACM Symp. on

Theory of Computing (1974), 47-63.

[Har65] Harrison, M.A,, Introduction to Switching and Automata Theory,
McGraw-Hill, New York, 1965,

[Hum73a] Hunt, H.B, III, "On the time and tape complexity of languages I,'"
Tech, Report TR73-156, Dept. of Computer Science, Cornell
University, (Jamn. 1973).

[Hun73b] Hunt, H.B, III, "The equivalence problem for regular
expressions with intersection is not polynomial in tape,"
Tech. Report TR73-161, Dept., of Computer Science, Cornell

University, (March 1973),

[Hun73c¢] Hunt, H.B., III, "On the time and tape complexity of languages I,"
Proc. 5th ACM Symp. on Theory of Computing (1973), 10-~19,

[HR74] Hunt, H.B. III, and Rosenkrantz, D.J., '"Computational parallels
between the regular and context-free languages,'" Proc. 6th ACM

Symp. on Theory of Computing (1974), 64-74.

[HS65] Hartmanis, J., and Stearns, R.E., "On the computational
complexity of algorithms," Trams. AMS 117 (1965), 285-306.

[HU69] Hoperoft, J,E., and Ullman, J.D., Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

[Ib72]

[Jer72]

[Jon73]

[Kar72]

[Kle56]

[Knu69]

[Knu74]

[KW70]

[Lin73]

[Lup50]

[L1S74]

[LM74]

-217-

Ibarra, 0.H., "A note concerning nondeterministic tape
complexities," J. ACM 19, 4 (Oct. 1972), 608-612,

Jeroslow, R.C., '"'On the stopping problem for computing
machines with a time bound," SIGACT News, No. 15

(April 1972), 9-11,

Jones, N.D., '"Reducibility among combinatorial problems in
log n space,' Proc. 7th Annual Princeton Conf. on Information

Sciences and Systems (1973), 547-551,

Karp, R.M., '"Reducibility among combinatorial problems," in

Complexity of Computer Computations, R.E. Miller and
J.W., Thatcher, ed., Plenum Press, New York, 1972, 85-104,

Kleene, S.C., '"Representation of events in nerve nets and
finite automata," in Automata Studies, Princeton Univ. Press,

Princeton, New Jersey, 1956, 3-41,

Knuth, D,E., The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969.

Knuth, D.E., '"Postscript about NP-hard problems,'" SIGACT News 6,
2 (April 1974), 15-16,

Kameda, T., and Weiner, P., "On the state minimization of
nondeterministic finite automata,'" IEEE Trams. C-19,
7 (July 1970), 617-627,

Lind, J., "Computing in logarithmic space,' Bachelor's Thesis,
Dept. of Electrical Engineering, M.I.T., 1973,

Lupanov, O.B., "On the synthesis of contact networks,"
Dokl. Akad., Nauk SSSR 70 (1950), 421-423,

Ladner, R., Lynch, N,, and Selman, A,., 'Comparison of
polynomial-time reducibilities,'" Proc. 6th ACM Symp. on
Theory of Computing (1974), 110-121,

Lind, J., and Meyer, A.R., "A characterization of log=-space
computable functions," to appear as a Project MAC Technical

Report, 1974,

[LSH65]

[Mey73]

[Mey74]

[Min67]

(MM71]

[MP71]

[MS72]

[MY60]

[NZ66]

[Pet67]

[Rab60]

[Rab69]

-218-

Lewis, P.M, II, Stearns, R.E., and Hartmamnis, J., 'Memory
bounds for recognition of context-free and context-sensitive
languages," 6th IEEE Symp. on Switching Circuit Theory and
Logical Design (1965), 191-202,

Meyer, A.R., '"Weak monadic second order theory of successor
is not elementary-recursive,'" Boston Univ. Logic Colloquium
Proc., to appear 1974; also MAC Tech, Memo 38, M.I.T.,

Project MAC, (1973),.

Meyer, A.R., personal commmication; 6.853 Lecture Notes,
Dept. of Electrical Engineering, M.I.T., (1974).

Minsky, M.L., Computation: Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

Meyer, A.R., and McCreight, E.M., '"Computationally complex and
pseudo-random zero-one valued functions,'in Theory of Machines
and Computations, Academic Press, New York, 1971, 19-42,

McNaughton, R,, and Papert, S., Counter-Free Automata,
M.I.T. Press, Cambridge, Mass, 1971,

Meyer, A.R., and Stockmeyer, L.J., '"The equivalence problem
for regular expressions with squaring requires exponential
space," Proc. 13th IEEE Symp., on Switching and Automata
Theory (1973), 125-129.

McNaughton, R., and Yamada, H., '"Regular expressions and state
graphs for automata," IRE Trams. EC-9 (March 1960), 39-47,

Niven, I., and Zuckerman, H.S., An Introduction to the Theory
of Numbers, Wiley, New York, 1966,

péter, R., Recursive Functions, Academic Press, New York, 1967,

Rabin, M.O,, '"Degree of difficulty of computing a function and
a partial ordering of recursive sets,' Tech. Report 2,
Hebrew Univ., Jerusalem, Israel, (1960).

Rabin, M.0., "Decidability of second-order theories and
automata on infinite trees,' Trams. AMS 141 (1969), 1-35,

[Rac74]

[Rit63]

[Rob73]

[Rog67]

[RF65]

[RS59]

[Sah72]

[sal69]

[Sav70]

[Sav72]

[Sav74]

[Set73]

-219-
Rackoff, C., "Complexity of some logical theories,' Doctoral
Thesis, Dept. of Electrical Engineering, M.I.T., to appear 1974,

Ritchie, R.W., "Classes of predictably computable functions,"
Trans. AMS 106 (1963), 139-173,

Robertson, E.L., "Structure of complexity in the weak monadic
second-order theories of the natural numbers,' Research
Report CS=73-31, Dept. of Applied Analysis and Computer
Science, Univ., of Waterloo, (Dec. 1973); also Proc. 6th ACM

Symp. on Theory of Computing (1974), 161-171,

Rogers, H. Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill, New York, 1967,

Ruby, S., and Fischer, P.C., "Translational methods and
computational complexity,'" 6th IEEE Symp. on Switching
Circuit Theory and Logical Design (1965), 173-178.

Rabin, M.0., and Scott, D., "Finite automata and their
decision problems," IBM J. Research and Development 3

(1959), 115-125; also in eguential Machines: Selected Papers,
E.F. Moore, ed., Addison-Wesley, Reading, Mass., 1964, 63-91,

Sahni, S,, '"'Some related problems from network flows, game
theory, and integer programming," Proc. 13th IEEE Symp. on
Switching and Automata Theory (1972), 130-138,

Salomaa, A., Theory of Automata, Pergamon Press, New York, 1969,

Savitch, W.J., "Relationships between nondeterministic and
deterministic tape complexities,'" J. Comput. Syst. Sci. &,
2 (April 1970), 177-192,

Savage, J.E., '""Computational work and time on finite machines,"
J. ACM 19, 4 (Oct. 1972), 660-674,

Savage, J.E., "The complexity of computing,' JPL Tech. Report,
draft, Jume, 1974, Chapter 2, .

Sethi, R., '"Complete register allocatiocn problems,'" Proc.
5th ACM Symp. on Theory of Computing (1973), 182-195,

[Sho67]

[SFM73]

[SHL65]

[sSM73]

[Ss63]

[Tra70]

[U1173]

[Win65]

[Yam62]

[You67]

-220-

Shoenfield, J.R., Mathematical Logic, Addison~Wesley,
Reading, Mass., 1967,

Seiferas, J.I., Fischer, M.J., and Meyer, A.R., "Refinements
of the nondeterministic time and space hierarchies," Proc.
14th IEEE Symp. on Switching and Automata Theory (1973), 130-137,

Stearns, R.E., Hartmanis, J., and Lewis, P.M. II, "Hierarchies
of memory limited computations," 6th IEEE Symp, on Switching
Circuit Theory and Logical Design (1965), 179-190.

Stockmeyer, L.J., and Meyer, A.R., 'Word problems requiring
exponential time: preliminary report,'" Proc. 5th ACM Symp.
on Theory of Computing (1973), 1-9,

Shepherdson, J.C., and Sturgis, H.E., 'Computability of
recursive functions," J. ACM 10, 2 (April 1963), 217-255.

Trachtenbrot, B.A., "On autoreducibility," Soviet Math,
Dokl, 11, 3 (1970), 814-817,

Ullman, J.D., "Polynomial complete scheduling problems,"
4th Symp. on Operating System Principles (1973), 96-101,

Winograd, S., "On the time required to perform additionm,"
J. ACM 12, 2 (April 1965), 277-285.

Yamada, H,, "Real-time computation and recursive functions
not real-time computable," IRE Trams. EC-11 (1962), 753-760.

Younger, D.H., "Recognition and parsing of context-free
languages in time n**3," Information and Control 10 (1967),

189-208.

card(A)

AXk

bin(k)

-221-
Appendix I. Notation.

The empty set,

{ x | x€A and x ¢ B} (set difference).

(A -B) U(B - A) (symmetric difference).

The set of all subsets of the set A,

The cardinality of the set A.

AXAXAX eee XA (k times).

The empty word.

The length of the word w,

Concatenation of words w and T,

The set of all words over the alphabet ¥ including A.
= - (N,

{w€ z* | |w| = k }, for positive integer k.
(weZ' | lul sk,

The word coo.««c of length k.

The binary representation of positive integer k.
The nonnegative integers.,

The positive integers,

-222-

VA The integers.

Q The rational numbers.

Q+ The positive rational numbers,
LrJ The integer part of real r.
Ml The least integer z such that z = r,
log r logzr.

21‘
oSk
g(k,r) 22 }

-223-

Appendix II. Some Properties of logspace.

An IOTM M computes a function f£:(Z)™ 4 A of n variables if
M computes a function f':(Z U (#)) =+ 4 where # #Z and

*
f'(xl#x2#3#---#xn) = f(xl,xz,xs,-'-,xn) for all XysKgstt X €xX.

o 1 %*
Definition. A function f:(Z)x(n-l-) o A of mtl variables is defined
% * % %
from functions g:(Z)Xn + A and hl,hZ:(E)x(n-l-2) -+ A by

two sided recursion of concatepztion if f satisfies

f(in,%') = g(;n)
and _
ER, ¥9) = by (X 7,00 £ _,¥) by K ,,0)

for all in € (2*))(“, y € Z*, c €.

Fact AII,1 [Lin73],[IM74]. logspace is closed under explicit
transformation (substituting constants and renaming or identifying

variables), composition, and two sided recursion of concatenation,

Fact AII.2 [Lin73],[LM74].

(1). The concatenation function belongs to logspace.
(2). For any alphabet 3, £ € logspace where
£(x) = bin(|x|) (the binary representation of |x]|)
for aii x € Z)*.
(3). Binary addition, monus, and multiplication belong to
logspace. That is, there are functions f+, £., f>< € logspace
such that f@(bin(ml),bin(mz)) = bin(ml @ m2)

for ® € {(+, =, X} and all m, ,m, € N.

=224-

{jml - m, if my 2 m,

Momus is defined as m; - m, =
0 otherwise .

Lemma AIT.3., Let p(n) be a polynomial with integer coefficients,

let ¥ be a finite alphabet, and let $ be a symbol,

Then £ € logspace where

fxy = sPUXD 20 e a1 xe X

The reader may verify Lemma AII.3, Fact AII.2 (2) and (3) may

be useful,

-225-

Biographic Note

The author entered M,I.T. in September 1966, receiving the
S.B. and S.M. Degrees in January 1972, He is a member of Sigma Xi
Research Honorary.

He has accepted a position with the Mathematical Sciences

Department at the IBM Thomas J. Watson Research Center.

