
Machine Learning for Physics: from Symbolic Regression
to Quantum Simulation

by

Owen Michael Dugan

Submitted to the Department of Physics
as a supplement to the requirements for the degree of

BACHELOR OF SCIENCE IN PHYSICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2024

© 2024 Owen Michael Dugan. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Owen Michael Dugan
Department of Physics
May 10, 2024

Certified by: Marin Soljačić
Professor of Physics, Thesis Supervisor

Accepted by: Lindley A. Winslow
Associate Professor of Physics
Associate Head, Department of Physics

https://creativecommons.org/licenses/by-nc-nd/4.0/

Machine Learning for Physics: from Symbolic Regression to
Quantum Simulation

by

Owen Michael Dugan

Submitted to the Department of Physics
as a supplement to the requirements for the degree of

BACHELOR OF SCIENCE IN PHYSICS

ABSTRACT

In this thesis, we explore the application of machine learning (ML) methods to problems
in physics.

Because ML has revolutionized a wide range of fields, it is natural to ask whether it may
be a valuable tool for physics. Physics applications present a challenge as many physics
problems have a precise mathematical definition a nd a c lassical (non-ML-based) solution,
making ML models less likely to outperform existing techniques.

In this paper, we focus on two general problems for which ML techniques provide an
improvement as compared to existing techniques in physics: 1) fast simulation, and 2) dis-
covering new physics. To illustrate the potential of ML to advance physics by solving these
problems, we develop a physics-optimized ML model for each of the problems identified
above, respectively: 1) Q-Flow, a technique for faster bosonic quantum simulation using
normalizing flows t o s imulate a c ompressed r epresentation o f a quantum s tate, and 2) Oc-
camNet, a framework for scientific discovery through novel algorithms for efficient and par-
allelizable symbolic regression. Our methods demonstrate the potential for ML as a valuable
tool for physics research.

Thesis supervisor: Marin Soljačić
Title: Professor of Physics

2

Acknowledgments

I would like to thank:

• Professor Marin Soljačić for being an incredible PI and academic advisor. Thank you for
helping me find and explore my passions in AI and physics.

• Rumen, Peter, Di, Zhuo, Donato, Charlotte, Viggo, Momchil, and all my other collab-
orators for making my research experience at MIT so fun.

• My friends at MIT for all the great times.

• My family for their constant support and belief in me.

• MIT for being even more amazing than I expected.

3

Contents

Title page 1

Abstract 2

Acknowledgments 3

1 Introduction 10

2 Q-Flow: Generative Modeling for Differential Equations of Open Quantum
Dynamics with Normalizing Flows 12
2.1 Introduction . 12
2.2 Related Work . 14

2.2.1 Neural Network Quantum States . 14
2.2.2 Partial Differential Equation (PDE) Solvers 14

2.3 Solving Open Quantum Dynamics with Q-Flow 15
2.3.1 Open Quantum System . 15
2.3.2 Q Function Formulation . 16
2.3.3 Q-Flow representation: Flow-based Generative Models of Q function 16
2.3.4 Q-Flow Optimization: Stochastic Euler-KL Method 17
2.3.5 Q-Flow Initialization: Initial State Pretraining 19

2.4 Experiments . 19
2.4.1 Dissipative Harmonic Oscillator . 20
2.4.2 Dissipative Bosonic Model . 24

2.5 Conclusion . 25

3 OccamNet: A Fast Neural Model for Symbolic Regression at Scale 26
3.1 Introduction . 26
3.2 Model Architecture . 27

3.2.1 Layer structure . 28
3.2.2 Temperature-controlled connectivity 29
3.2.3 A neural network as a probability distribution over functions 30

3.3 Training . 30
3.4 Results . 31

3.4.1 Analytic functions . 31
3.4.2 Non-analytic functions . 32

4

3.4.3 Implicit Functions and Image Recognition 33
3.4.4 Real-world regression datasets . 34
3.4.5 Scaling on real-world regression datasets 36

3.5 Discussion . 37
3.6 Methods . 38

3.6.1 Complete Model Description . 38
3.6.2 Experimental Setup . 54

4 Conclusion 59

A Q-Flow Appendices 60
A.1 Q Function Conversions . 60

A.1.1 Quantum Preliminaries . 60
A.1.2 Q Function to ρ . 61
A.1.3 Coherent State Identities . 63
A.1.4 ρ Evolution to Q Function Evolution 64
A.1.5 Observable calculation with respect to Q function 65

A.2 Stochastic Euler-KL Method . 66
A.3 Additional Experimental Details . 67

A.3.1 Pseudo-spectral and finite difference baseline details 67
A.3.2 PINN baseline details . 67
A.3.3 Euler experiment details . 68
A.3.4 TDVP experiment details . 68

B OccamNet Appendices 69
B.1 PMLB Experiment Results . 69
B.2 Analysis of Fits to PMLB Datasets . 72
B.3 Analysis of PMLB Scaling Tests . 74
B.4 Ablation Studies . 76
B.5 Neural Approaches to Benchmarks . 76
B.6 Small Experiments . 78
B.7 Related Work . 79

A Symbolic regression . 79
B Program synthesis . 79
C Integration with deep learning . 80
D SCGs and pruning . 80

B.8 Information about Symbolic Regression Benchmarks 80
B.9 Code, Videos, and Responsible Use . 82

References 83

5

List of Figures

2.1 Q-Flow. Reformulated density matrix dynamics in continuous systems to a
PDE for probability distributions. Off-the-shelf normalizing flows, and our
Euler-KL method are used to solve such PDEs. 13

2.2 The trajectory of the centroids of the simulated distributions. The PINN
baseline is excluded from the inset. Error bars are included for all except for
the Exact and PS methods. 22

2.3 The simulated evolution of two observables for 1-Well, 2-Well, and 20-Well
Fokker-Planck systems. Error bars are included for all except for the Exact
and Pseudo-spectral results. The unit of time t is inversely proportional to
the unit of γj. 23

2.4 Dynamics of ⟨n1⟩ in a 2-Well dissipative bosonic model. 24

3.1 OccamNet architecture and training. a. OccamNet is a stack of “symbolic
layers” each described by a collection of learned distributions (over the neurons
from the previous layer) for each neuron within the layer, as well as non-
linearities that are collections of symbolic expressions. b. By sampling from
each distribution independently, we are able to sample paths from OccamNet
that represent symbolic expressions, ready for evaluation. c. We evaluate
each expression by feeding the observations’ support data and comparing the
outputs with the ground truth. The probability of the best paths is increased
and the process is repeated until convergence. 28

3.2 (a) A two-output network model with depth L = 2, x⃗ = [x0, x1], user-selected
constants C = [1, π], and set of primitive functions Φ = (+(·, ·), sin(·), exp(·),×(·, ·)).
Boxed in blue are the arguments sublayers (composed of P-nodes). For each
arguments sublayer, the associated image sublayer (composed of the basis
functions from Φ) is boxed in green and to the right of the corresponding
arguments sublayer. Together, these two sublayers define a single hidden
layer of our model. The input layer can be thought of as an image layer and
the output layer can be thought as an arguments layer. (b) An example of
function-specifying directed acyclic graphs (DAGs) that can be sampled from
the network in (a). These DAGs represent the functions y0 = exp[sin(x0 + π)]
and y1 = sin(exp(x0) sin(x1)). 29

6

3.3 Experiment on analytic functions. a. A sketch of the function
∑3

n=1 sin(nx)
as an example of the analytics functions we consider in our work. b. Success
rate (out of 10 trials) for each of the five methods considered: OccamNet,
Eureqa, Eplex, AI Feynman 2.0 (AIF) and Deep Symbolic Regression (DSR)
(at the top). Training time for the methods (at the bottom). Eureqa almost
always finishes much more quickly than the other methods, so we do not
provide training times for Eureqa. We enumerate the functions to ease the
discussion. c. The “worst-case” performance for each methods, showing the
minimal success rate across the six tasks. 32

3.4 Experiments on non-analytic functions. a. Two prominent examples of non-
analytic functions: The challenging recursion g(x) = x2 if x < 2, else x/2,
y(x) = g◦4(x) = g(g(g(g(x)))) (top) and a sorting circuit of three numbers
(bottom). b. Success rate (out of 10 trials) and training time for OccamNet
and Eplex. We enumerate the functions to ease the discussion. 33

3.5 Experiments on implicit functions and standard vision benchmarks. a. Ex-
amples of implicit functions’ loci (left) and the corresponding success rate on
a suite of implicit functions (right). b. Examples of image recognition tasks
(left) and the best accuracy from 10 trials for both OccamNet and the base-
line. The baseline for MNIST Binary/ Trinary and ImageNet Binary is the
HeuristicLab symbolic regression algorithm [98]. The baseline for Backprop
OccamNet and Finetune ResNet is a feed-forward neural network with the
same number of parameters as OccamNet. 34

3.6 Bar charts showing the relative performance between OccamNet-CPU, OccamNet-
GPU, and two baseline methods, Eplex and AIF. The x-axis is the dataset
involved. The y-axis is the relative performance according to the given metric:
the MSE on the training, validation, or testing set or the training time. To
compute this relative performance, we divide the higher (worse) performance
value by the lower (better) performance value for each dataset. The green bars
represent datasets where OccamNet has a lower (better) performance value
than the comparison baseline method, and the red bars represent the datasets
where the comparison method has a better performance than OccamNet. . . 36

3.7 Left: The run time for OccamNet-GPU or Eplex as a function of the number
of functions sampled per epoch. Each curve represents one of the 15 datasets.
Right: Gradual modularity with training. Dark blue is the probability of the
correct function. Light blue is the probability of a suboptimal fit with a high
probability early in training. Red corresponds to the number of samples of the
correct function. The insets zoom in on the curves around the epoch where
the correct function is first sampled. 37

3.8 Skip connections. Nodes are color coded with lines indicating the origin of
the reused neurons. 42

3.9 A demonstration of the dropped connections from sampled paths in Occam-
Net. All red paths are dropped from the final symbolic form of the sampled
function because they are not directly connected to the outputs. These paths
are unnecessarily computed during OccamNet’s training process, leading to
potential slowdowns in training. 43

7

B.1 OccamNet-GPU and Eplex’s Training, Validation, and Testing MSE as a func-
tion of run time for the 15 PMLB datasets discussed above. 70

B.2 OccamNet-GPU and Eplex’s Training, Validation, and Testing MSE as a func-
tion of run time for the 15 PMLB datasets discussed above. For this figure, we
only consider the losses for a restricted subset of hyperparameter combinations. 71

B.3 In this figure, we present two video frames for the target sin(3x+ 2), which
could be accessed via videos/sin(3x + 2).mp4 in our code files. We show
the beginning of the fitting (left) and the end, where OccamNet has almost
converged (right). 81

B.4 In this figure we present two video frames for the target SORT(x0, x1, x2),
which could be accessed via videos/sorting.mp4 in our code files. We show
the beginning of the fitting (left) and the end, where OccamNet has almost
converged (right). 82

8

List of Tables

2.1 The loss L1[Qsim, Qexact] for each simulation method over time (in a unit in-
versely proportional to the unit of γj). For each row, we mark the best result
in bold. PS data for 20-Well does not exist because PS does not scale to
high-dimensional problems. 20

3.1 Analytic Functions. The proportion of 10 trials that converge to the correct
analytic function for OccamNet, Eureqa, Eplex, AI Feynman 2.0, and Deep
Symbolic Regression (DSR). sec. is the average number of seconds for con-
vergence. Eureqa almost always finishes much more quickly than the other
methods, so we do not provide training times for Eureqa. 39

3.2 Non-analytic Functions. The proportion of 10 trials that converge to the
correct function for OccamNet, Eureqa, and Eplex. sec. is the average number
of seconds for convergence. Eureqa almost always finishes much more quickly
than OccamNet and Eplex, so we do not provide training times for Eureqa.
∗For program #6, Eplex fits y1 every time and never fits y0 correctly, so we
give it a score of 0.5. 40

3.3 Implicit Functions: The proportion of 10 trials that converge to the correct
implicit function for OccamNet and Eureqa. Image Recognition: The best
accuracy from 10 trials for both OccamNet and the baseline. The baseline
above the mid-line is HeuristicLab [98], and the baseline below the mid-line
is a feed-forward neural network with the same number of parameters as
OccamNet. sec. is the average number of seconds for convergence. The
baselines almost always finish much more quickly than OccamNet, so we do
not provide baseline training times. 41

3.4 Primitive functions tested for clustering . 52
3.5 Hyperparameters for Experiments Where E = 0 56
3.6 Hyperparameters for Experiments Where E = 1 56
3.7 Datasets Tested . 57
3.8 OccamNet Hyperparameters . 57
3.9 Number of Functions Sampled Per Epoch . 58

B.1 Raw data from the PMLB experiments. Hyperparameters and best fits are in
the following path in our code (see Section B.9): pmbl-experiments/pmlb-results. 72

B.2 Ablation studies on representative experiments 77
B.3 Minimal configurations to sort list of length “input size.” 78

9

Chapter 1

Introduction

Machine Learning (ML) has revolutionized a wide range of fields, including image recognition
[1], natural language processing [2, 3], robotics [4], biology [5], and even areas of physics [6,
7]. This success stems from its ability to model arbitrary data [8, 9], or more generally to
use gradient descent to find local optima for any differentiable objective [10]. As such, ML
is often applied to tasks that lack formal definition or possess no obvious first-principles
solution, such as image classification or natural language processing, where ML algorithms’
ability to model arbitrary data makes them a viable option.

Given ML’s success, it is natural to ask in what ways it may be a valuable tool for
physics. Physicists have already used ML techniques for a variety of problems in physics,
including event detection and reconstruction at experiments like the LHC [6] and DUNE [7],
simulating quantum systems, and more.

However, physics applications can present a challenge for ML because most physics prob-
lems have a precise mathematical definition and a classical (non-ML-based) solution. This
means that ML models must not only work but also outperform existing classical techniques
in order to be useful. As such, in order to develop useful ML techniques for physics, it is
important to identify areas where existing techniques fail and ML algorithms have strengths.

In this paper, we focus on two such areas of physics research in which ML techniques
provide an improvement as compared to existing techniques:

1. Fast and memory-efficient simulation. Existing simulation techniques often struggle to
scale to large systems [11]. For a quantum system, for example, the size of the state of
the system grows exponentially with the number of components (particles, potential
wells, etc.), so conventional simulators quickly run out of memory and compute as
the size of the system grows [11]. Fields such as quantum computing and quantum
engineering center around the study of macroscopic collections of particles, so the
inability to simulate large quantum systems limits the progress in such fields [11].

2. Discovering new physics. Because of the open-ended nature of scientific discovery,
and the enormous search-space of possible theories, scientific discovery is traditionally
performed by hand, relying on human intuition. However, such a process can be
difficult and slow. This problem naturally lends itself to ML techniques, which can
assist in the high-dimensional search problem [12] and may even be infused with human-
like intuition [3].

10

To illustrate the potential of ML to advance physics through these avenues, we develop a
physics-optimized ML model for each:

1. In Chapter 2, we discuss Q-Flow, a technique for faster bosonic quantum simulation
using normalizing flows to simulate a compressed representation of a quantum state
[11]. Q-Flow enables simulating higher-dimensional quantum systems than is possible
using standard finite-difference or finite-element solvers [11].

2. In Chapter 3, we discuss OccamNet, a framework for scientific discovery through novel
algorithms for efficient and parallelizable symbolic regression [13]. By using reinforce-
ment learning and symbolic inductive biases, OccamNet intelligently searches through
the space of possible equations describing data, a step toward automated physics dis-
covery [13].

Our methods demonstrate the potential for ML as a valuable tool for physics research.

11

Chapter 2

Q-Flow: Generative Modeling for
Differential Equations of Open Quantum
Dynamics with Normalizing Flows

Q-Flow [11] enables faster bosonic quantum simulation by using normalizing flows to simulate
a compressed representation of a quantum state. This enables simulating higher-dimensional
quantum systems than is possible using standard finite-difference or finite-element solvers.
The below is taken from [11].

2.1 Introduction

Understanding the dynamics of open quantum systems is a necessary step towards advances
in fundamental physics and high-impact scientific applications such as quantum engineering
and quantum computation [14, 15]. The dynamics of such systems depend on the density
matrix ρ, which describes all the information of a quantum many-body system. The density
matrix is an exponentially scaling object in the double Hilbert space whose complexity grows
as N2k for N local degrees of freedom and k sites. Thus, solving for ρ suffers from the curse
of dimensionality.

Pioneering work on representing ρ in a compact form as a customized deep genera-
tive neural network has shown great promise in advancing the frontier of understanding
high-dimensional quantum systems [16, 17, 18, 19]. However, a number of computational
challenges remain when solving for ρ, which motivates the development of novel machine
learning methods. Notable challenges are:

1. The density matrix ρ is complex-valued and has the constraint tr[ρ] = 1. That makes
it non-trivial to model with standard deep generative models, which are real-valued.

2. The partial differential equation (PDE) that governs the dynamics of ρ models compli-
cated interactions, which hampers the application of standard machine learning PDE
solvers.

3. Previous efforts on modeling ρ with neural networks are restricted to discrete spin
systems, and it is unclear how to model ρ in continuous space or bosonic systems.

12

modeled with normalizing flows
(ours)

reformulation
used in
our work

Euler method (ours)

Figure 2.1: Q-Flow. Reformulated density matrix dynamics in continuous systems to a PDE
for probability distributions. Off-the-shelf normalizing flows, and our Euler-KL method are
used to solve such PDEs.

The state-of-the-art literature has addressed Challenge 1 by developing customized neural
architectures for ρ in spin systems with discrete degrees of freedom only [16, 17, 18, 19,
20, 21]. Challenge 2 has been attempted by exploring physics-inspired training objectives,
such as Physics-informed neural networks (PINNs) [22, 23]. PINNs have shown promise in
low-dimensional systems but it is not clear how they can scale to high-dimensional PDEs.
Furthermore, the existing literature has not addressed Challenge 3 and missed an opportunity
to establish a direct connection between progress in modeling open quantum dynamics and
novel deep generative models for standard machine learning benchmarks. Such a connection
would drive progress in both machine learning applications for open quantum dynamics and
deep generative modeling.

In this paper, we address Challenges 1-3 by establishing a bridge between open quantum
systems and continuous-variable generative modeling.

Firstly, we reformulate the problem by replacing the density matrix ρ with an alternative
representation, the Husimi Q function Q [24], which can be practically considered as a
probability distribution. Thus, we enable the use of off-the-shelf generative neural networks
to model Q. Because variational Monte Carlo methods for quantum systems require access
to both easy sampling and probability density values, we use normalizing flows [25, 26] as
our generative model.

Secondly, we develop novel methods for training normalizing flows that obey complicated
high-dimensional PDEs, which are an excellent fit for approximating Q. We propose a train-
ing method, the stochastic Euler-KL method, which is based on the forward discretization of
the differential equation for Q and the Kullback-Lieber matching of probability distributions.
Our normalizing flows approach can also be equipped with the Time-Dependent Variational

13

Principle (TDVP) method [27], which can be derived from the Euler method and can be
thought of as an analog of the natural gradient method [28, 29].

We name our contributions Q-Flow (see Figure 2.1). Q-Flow is a new approach to
solving open quantum systems based on off-the-shelf normalizing flows and the Euler/ TDVP
methods for evolving such flows in complicated PDEs. We demonstrate that Q-Flow is
scalable and efficient for simulating various open quantum systems. Our contributions can
be summarized as follows:

• New generative modeling approach for open quantum dynamics with continuous de-
grees of freedom based on the Husimi Q function, which allows for using normalizing
flows off-the-shelf.

• New methods for solving open quantum dynamics PDEs using normalizing flows with
stochastic Euler-KL method and TDVP.

• Demonstration of the scalability and efficiency of our methods on simulations of dissi-
pative harmonic oscillator and dissipative bosonic models by surpassing conventional
PDE solvers and state-of-the-art machine learning PDE solvers, physics-informed neu-
ral networks (PINN).

Importantly, with Q-Flow, the difficulty in simulating quantum dynamics is no longer the
dimension of the simulation but instead the complexity of the Q function and its evolution,
which opens a new avenue for research.

2.2 Related Work

2.2.1 Neural Network Quantum States

Neural network quantum states are generative neural network architectures—including re-
stricted Boltzmann machines [30], autoregressive models [31, 32, 33, 34], and determinant
neural network models [35, 36, 37]—that have been adapted to represent quantum wave
functions or density matrices (in the case of open quantum systems) rather than probabil-
ity distributions. They are optimized using variational quantum Monte Carlo methods and
have primarily been applied to model discrete spin systems [30, 31, 32] as well as tackle the
continuous many-body wave function in quantum chemistry [35, 36], condensed matter [38,
39] and quantum field theories [40, 41].

In contrast with prior deep learning-based approaches that directly model the wave func-
tion or density matrix, our work focuses on the Q function representation of the quantum
state—a continuous quasiprobability distribution [24] that can be modeled using an appro-
priate generative model, e.g. normalizing flows.

2.2.2 Partial Differential Equation (PDE) Solvers

To model the dynamics of an open quantum system using the Q function formulation, we
are required to solve a high-dimensional PDE. By parameterizing the Q function using a

14

normalizing flow, our approach can efficiently solve this PDE. For comparison, we benchmark
our work against alternative PDE solvers.

Traditional PDE solvers struggle to handle high-dimensional PDEs due to the curse of
dimensionality, where even storing the state of the system on a grid or mesh grows expon-
tentially with the dimension of the problem. As a comparison, we use a simple pseudo-
spectral method [42] as our traditional solver benchmark. While there are specialized meth-
ods for solving high-dimensional PDEs, they are often complex to set up and only apply to
a few restricted classes of PDEs, e.g. parabolic PDEs [43].

We also benchmark against physics informed neural networks (PINNs)—a promising
deep learning-based variational approach for solving PDEs [22, 23, 44]. PINNs, however,
have been shown to have limitations related to the difficulty of the variational optimization
problem [45] and, in their standard form, may also suffer from the curse of dimensionality.

2.3 Solving Open Quantum Dynamics with Q-Flow

In this work, we develop Q-Flow, an approach for solving open quantum dynamics based on
flow-based models under the Q function partial differential equation formulation. The key
contributions of our work are twofold. Firstly, we establish a general framework for solving
open quantum dynamics learning through the flow-based model representation. Secondly, we
develop optimization algorithms for solving high dimensional partial differential equations
and apply them to PDEs for the Q function.

2.3.1 Open Quantum System

A generic Markovian open quantum system starts with the following form

ρ̇ = Lρ = −i[H, ρ] + Llossρ, (2.1)

where ρ is the density matrix, H is the Hamiltonian, Lloss is the dissipative operator, and
[·, ·] is the commutation operator between matrices, i.e. [A,B] = AB −BA.

In general, ρ is a complex-valued density matrix whose size grows exponentially with the
number of particles. The density matrix ρ is a generalization of the wave function in the
Schrödinger equation, which can be viewed as an ensemble of wave functions. We note that
Eq. 2.1 is a complex-valued high-dimensional differential equation, which is challenging to
be solved in general.

In this work, we focus on bosonic open quantum dynamics with continuous degree of
freedom, which arises in a variety of contexts [46, 47]. A bosonic particle, also known as a
boson, is one kind of fundamental particle in quantum mechanics. A boson has continuous
degrees of freedom, which could be more challenging to represent compared to discrete
variable systems such as spin systems. In practice, one workaround is to truncate the infinite
continuous degree of freedom to some large finite degree K. Regardless of the truncation
effect, bosons at M Wells still live in an exponentially-large-dimensional Hilbert space of size
MK , which is intractable to simulations in general.

15

2.3.2 Q Function Formulation

The Husimi Q function [48] provides an exact reformulation of Eq. 2.1 into a probabilistic
differential equation:

Q̇ = L̃Q (2.2)
where Q is called the Husimi Q function and L̃ is the corresponding operators transformed
from the Hamiltonian operator H and the dissipative operator Lloss.

Mathematically, the Q function of one particle is related to density matrix ρ through
Q(α, α∗) = 1

π
⟨α|ρα⟩, where α = x + iy is a complex number, and |α⟩ is known as the

coherent state (see Appendix A.1.1 for more details). Q(α, α∗) ≥ 0 for any α and
∫
Q = 1,

so Q can be interpreted as a probability distribution in practice.
To efficiently apply the Q function formalism, we must be able to easily convert between

the ρ and Q functions and obtain L̃. We supplement the key conversion formulas and the
corresponding proofs in Appendix A.1.

2.3.3 Q-Flow representation: Flow-based Generative Models of Q
function

One important feature of our work is to represent the Q function with off-the-shelf flow-based
generative models. Thus, our work is distinguished from the previous works [16, 17, 18, 19]
that represent the high dimensional complex-valued density matrix using customized neural
networks. There are several advantages of our approach. Firstly, we do not need to work with
complex-valued functions, which could be complicated by the sign structure problem [49].
Secondly, Q-Flow is natural for systems with continuous degrees of freedom. Thirdly, Q-Flow
allows normalized probability modeling with exact sampling, which is important for solving
high dimensional probabilistic PDEs with the stochastic Euler method.

Normalizing Flows. Normalizing flows are generative models for continuous probability
distributions that provide both normalized probabilities and exact sampling—making them
ideal for modeling the continuous Q function in our approach. Normalizing flows transform
a simple initial density pX (often a unit normal distribution) to a target density pY (i.e. the
distribution that we want to model) via a sequence of invertible transformations [25, 26].
The invertible transformations are usually parameterized by an invertible neural network
architecture y = fθ(x) with x ∼ pX and y ∼ pY . The target probability density is then given
by

pY (y) = pX(f
−1
θ (y))

∣∣∣∣∂f−1
θ (y)

∂y

∣∣∣∣ .
Many choices of fθ are available, including affine coupling layers (RealNVP) [50], continuous
normalizing flows (CNF) [51], and convex potential flows (CP-Flow) [52]. While RealNVP is
the simplest to implement, affine coupling layers are less expressive than CNFs or CP-Flows,
which are provably universal density estimators [52]. In addition, because of Equation A.1,
we would like our flow to be infinitely differentiable which are satisfied by the above flow
architectures.

16

Algorithm 1 Stochastic Euler-KL Method

Input: normalizing flow models for Qt+dt
θ and Qt, total time T , time step dt, niter, optimizer

Adam.
Output: Optimal parameters θ∗ at time step t+ dt
Initialization: Random θ(t0)
for j in range(T/dt) do

for i = 0 to niter do
update θ using Eq. 2.5 and optimizer Adam

end for
Qt ← Qt+dt

θ∗

end for

Theorem 2.3.1. For a Q function from a given density matrix ρ, there exists a universal
approximation with a Q-Flow representation.

Proof. For any given density matrix ρ, there is a corresponding Qρ which satisfies Qρ ≥ 0
and

∫
Qρ = 1. Here, one can view Qρ practically. Since it has been shown that normalizing

flows are universal approximations of probability distributions [52], there exists a Q-Flow
representation Qf such that Qf can be arbitrarily close to Qρ.

Theorem 2.3.2. For any local observable expected value to be computed with respect to ρ,
there exists a Q-Flow representation which can compute the observable efficiently.

Proof. Consider the corresponding Q function Qρ of ρ. Consider a local observable in
the form of O = ama†n + ana†m. WLOG, we can consider O = ama†n, the reasoning for
the remaining part is analogous. The expectation is ⟨O⟩ρ = tr(ρama†n). Eq. A.1.5 in the
Appendix shows that it can be equivalently computed by

∫
(q + ip)m(q − ip)nQρ(p, q)dpdq,

which is a certain polynomial moment of the Q function. Since normalizing flows are a
universal approximators, there exists a Q-Flow representation Qf that can be arbitrarily
close to Qρ, which implies that ⟨Q⟩f can be arbitrarily close to ⟨Q⟩ρ. Even though computing
⟨Q⟩f =

∑
p,q∼Qf

(q + ip)m(q − ip)n has stochastic fluctuations, the exact sampling nature of
the flow-based model can suppress the statistical error, which will decay with the increasing
sample size Ns as 1√

Ns
due to the Central Limit Theorem.

2.3.4 Q-Flow Optimization: Stochastic Euler-KL Method

In the previous section, we discuss the representation of the Q function with flow-based
models. To solve the real-time dynamics given by Eq. 2.2, we further develop the high
dimensional stochastic Euler-KL method.

The algorithm represents the Q function at time t with a flow-based model and iteratively
updates the representation at the next time t + dt based on the Euler method. Concretely,
it requires two copies of flow-based models for Qt+dt and Qt. Based on the first-order Euler
method with time step dt, Eq. 2.2 yields

Qt+dt = Qt + L̃Qt dt = (I + L̃ dt)Qt ≡ Qt
L. (2.3)

17

Notice that Qt+dt represents the Q function that we obtain in the next time step. At
each learning step, we fix Qt and optimize the parameters θ in Qt+dt to match the above
relation. Hence, we also denote Qt+dt by Qt+dt

θ . It facilities us to define the following loss
function through KL divergence.

KL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt
θ ln

Qt+dt
θ

Qt
L

(2.4)

The gradient of Eq. 2.4 can be derived with a control variance technique as follows (see
Appendix for a derivation):

1

N

∑
x∼Qt+dt

θ

[
ln
Qt+dt
θ (x)

Qt
L(x)

− b
]
∇θ lnQ

t+dt
θ (x) (2.5)

where b = 1
N

∑
x∼Qt+dt

θ
ln

Qt+dt
θ (x)

Qt
L(x)

is the baseline for control variance.
The stochastic Euler-KL method is summarized in Algorithm. 1.

Theorem 2.3.3. The global error ϵ(tn) of the n-step stochastic Euler method is bounded by
|ϵE(tn)|+ |ϵNN(tn)|, where ϵE(tn) is the global error of the exact Euler method and ϵNN(tn) =
−P−1

∑n
i=0 P

irn+1−i with P = I+L̃dt and ri being the i-th step stochastic Euler optimization
error with neural network representation of the Q-Flow.

Proof. ϵ(tn) = Qtn −Qtn
NN = (Qtn −Qtn

E) + (Qtn
E −Q

tn
NN) ≡ ϵE(tn) + ϵNN(tn), where Qtn

E

and Qtn
NN are the Q function from the exact Euler method and the neural network Q-Flow

at time step tn. By the triangular inequality, |ϵ(tn)| ≤ |ϵE(tn)| + |ϵNN(tn)|. Since the Euler
method is a first order method, it has global error with order O(dt) where dt the time step.

Denote the optimization error of Eq. 2.4 at time step tn+1 as rn+1, such that Qtn+1

NN −
PQtn

NN = rn+1. It follows that Qtn+1

E − ϵNN(tn+1)− P (Qtn
E − ϵNN(tn)) = rn+1, which implies

that ϵNN(tn+1) = PϵNN(tn) − rn+1 due to the cancellation of Qtn+1

E − PQtn
E from the exact

Euler method. By induction, we have ϵNN(tn) = −P−1
∑n

i=0 P
irn+1−i.

Time Dependent Variational Principle (TDVP). Instead of taking gradient with re-
spect to the KL divergence as Eq. 2.5 shows, [53] demonstrate that the minimization of Eq. 2.4
is equivalent to the time dependent variational principle, which provides a nonlinear differ-
ential equation on the parameter space θ as Skk′ θ̇k′ = Fk, where Skk′ = E[(∂θk lnQ)(∂θ′k lnQ)]
is the Fisher information matrix, and Fk = E[(∂θk lnQ)(∂t lnQ)].

[53] apply TDVP only to solving classical PDEs. Under our Q-Flow approach, we can
also apply TDVP to simulate open quantum dynamics.

Complexity Analysis. Even though the stochastic Euler-KL method and the TDVP
method are equivalent mathematically, they share different algorithmic complexity. TDVP
requires to solve the nonlinear different equation, which needs to invert the Fisher information
matrix Skk′ . Besides potential instability, this procedure has complexity scaling as O(N3)
for explicit inversion or O(N2) at least with the conjugate gradient approach, where N is the
number of parameters. It may limit its application for parameters beyond the orders of ten
thousands. Meanwhile, the stochastic Euler method only requires first order optimization
based on Eq. 2.5, the main cost of which comes from the number of optimization steps in
each dt.

18

2.3.5 Q-Flow Initialization: Initial State Pretraining

Using a Q-Flow to simulate a quantum system requires initializing the flow to the correct
starting Q function. For some simple initial states, we find that it is sufficient to simply make
the initial state the prior for the flow and initialize the flow to the identity. However, we
find that using more complex initial distributions as priors to a flow tends to hamper their
ability to model a system’s evolution. In these cases, we instead use the standard Gaussian
prior, but we use a two-step process to pretrain the flow to match the initial distribution
Qinit.

First, we sample from the desired initial distribution using the Metropolis-Hastings Monte
Carlo method and update the flow parameters to minimize the negative log likelihood
−
∑

x∼Qinit
lnQθ(x). This ensures that the model has some overlap with Qinit which helps

the next step’s training algorithm converge more quickly.
Second, we sample from the flow and update the flow parameters to minimize the KL

Loss, KL(Qinit||Qθ). We compute the gradient according to

∇θKL ≈ −
1

N

∑
x∼Qθ

Qinit(x)

Qθ(x)
∇θ lnQθ(x). (2.6)

2.4 Experiments

For our experiments, we focus on two types of open quantum systems: dissipative har-
monic oscillators and dissipative bosonic systems. We test on dissipative harmonic oscil-
lators because they have an analytic solution, which makes them useful for benchmarking
high-dimensional PDE solvers beyond the limits of conventional solvers. We then test on dis-
sipative bosonic systems because they are commonly studied and of practical use in physics.

In these experiments, we compare Euler and TDVP methods to PINNs and pseudo-
spectral (PS) solvers. Although we do not develop the TDVP method, we propose a method
to apply it to open bosonic quantum systems. As such, we sometimes describe the Euler
and TDVP methods as “our methods."

For our experiments, we use Affine Coupling Flows and Convex-Potential Flows for the
Euler and TDVP methods. Affine Coupling Flows are fast but less expressive, so we use them
for the dissipative harmonic oscillator experiments. On the other hand, Convex Potential
Flows are slow but more expressive, so we use them for problems involving more complex Q
functions.

To run our experiments, we use the Jax library [54] for Euler and TDVP methods.
We make use of the jax-flows library. To implement the TDVP method, we make use
of the NetKet library [55, 56] and its Stochastic Reconfiguration [57, 58] feature, which
is mathematically equivalent to TDVP. For distributed training, NetKet uses the mpi4jax
package [59]. For PINNs, we use the PINA library which is built on top of PyTorch [60].
Finally, for our pseudo-spectral methods we use Julia [61].

19

Table 2.1: The loss L1[Qsim, Qexact] for each simulation method over time (in a unit inversely
proportional to the unit of γj). For each row, we mark the best result in bold. PS data for
20-Well does not exist because PS does not scale to high-dimensional problems.

1-Well

Time Q-Flow(Euler) Q-Flow(TDVP) PINN PS FD
(ours) (ours)

3 2.08 · 10−3 5.11 · 10−3 1.79 · 10−1 3.47 · 10−4 8.90 · 10−4

6 5.10 · 10−4 1.17 · 10−3 1.84 · 10−1 3.47 · 10−4 9.01 · 10−4

9 1.01 · 10−4 2.16 · 10−4 1.91 · 10−1 3.47 · 10−4 9.01 · 10−4

12 1.68 · 10−5 3.58 · 10−5 1.91 · 10−1 3.47 · 10−4 9.01 · 10−4

15 1.58 · 10−5 5.55 · 10−6 1.98 · 10−1 3.47 · 10−4 9.01 · 10−4

2-Well

3 3.91 · 10−3 1.23 · 10−2 2.10 · 10−1 1.83 · 10−1 6.12 · 10−2

6 1.91 · 10−3 4.66 · 10−3 1.00 1.82 · 10−1 6.09 · 10−2

9 7.59 · 10−4 1.77 · 10−3 1.00 1.81 · 10−1 6.09 · 10−2

12 2.92 · 10−4 6.21 · 10−4 1.00 1.81 · 10−1 6.09 · 10−2

15 1.47 · 10−4 2.05 · 10−4 1.00 1.81 · 10−1 6.09 · 10−2

20-Well

3 9.94 · 10−2 1.08 · 10−1 2.17 · 1031 - -
6 3.29 · 10−2 4.10 · 10−2 2.38 · 1030 - -
9 2.02 · 10−2 2.44 · 10−2 1.34 · 1029 - -
12 1.46 · 10−2 1.68 · 10−2 1.46 · 1028 - -
15 1.07 · 10−2 1.23 · 10−2 7.07 · 1026 - -

2.4.1 Dissipative Harmonic Oscillator

Experimental Setup. The multi-well dissipative harmonic oscillator evolves according to
Eq. 2.1 with Hamiltonian H =

∑
j ωja

†
jaj [48] and loss term

Llossρ =
∑
j

γj

[
1

2
(2ajρa

†
j − a

†
jajρ− ρa

†
jaj)

+ n̄j(ajρa
†
j + a†jρaj − a

†
jajρ− ρaja

†
j)

]
.

(2.7)

Here, j labels what we will call Wells.
To convert to the Q function formalism, we first define notation: For a Q function

Q(α1, . . . , αn), we define q and p such that αj = qj + ipj and set x = (q⃗, p⃗). We use the
notations Q(α1, . . . , αn), Q(q⃗, p⃗), and Q(x) interchangeably.

20

Now, converting to the Q function formalism with real inputs gives [24]

Q̇ =
∑
j

[
γj +

1

4
γj(n̄j + 1)

(
∂2

∂q2j
+

∂2

∂p2j

)

+
(γj
2
qj − ωjpj

) ∂

∂qj
+
(γj
2
pj + ωjqj

) ∂

∂pj

]
Q.

We test the simulation methods on three problems of increasing dimensionality: a 1-Well
system, a 2-Well system, and a 20-Well system. For each system, we use a coherent state
initial condition, which corresponds to a Gaussian with variance 1/2. We center the Gaussian
at (−1, . . . ,−1). As time passes this Gaussian spirals toward the origin and changes its
standard deviation. To make the simulation more challenging, for every Well j we uniformly
sample the system’s parameters n̄j ∈ [3, 7), γj ∈ [0.5, 1.5), and ωj ∈ [0.5, 1.5).

Metrics. To evaluate a simulation method’s performance, we compute the L1 Loss
between each simulation and the exact distribution:

L1[Qsim, Qexact] ≡
∫

ddx |Qsim(x)−Qexact(x)|

≈ 1

N

∑
x∼Qexact

∣∣∣∣ Qsim(x)

Qexact(x)
− 1

∣∣∣∣ . (2.8)

Although the L1 Loss is a useful metric, it is also illustrative to examine observables
of the system. One observable is the centroid, E[x⃗] ≈ 1

N

∑
x∼Qsim

x⃗. With more Wells, we
cannot easily plot the centroid trajectory, so instead we compute the centroid’s distance from
the origin, ∥E[x⃗]∥.

Additionally, we compute a second observable, E[(L̃Q/Q)2], which we refer to as the
Liouvillian loss. The Liouvillian loss measures the magnitude of the dynamics relative to
the distribution, an indicator of how perturbed the system is from equilibrium.

For the Euler and TDVP methods, we sample directly from the flow to compute expected
values. For PINNs, we use Markov chain Monte Carlo (MCMC) to obtain samples. For
pseudo-spectral results we compute expected values by summing over the grid and scaling
by Q.

Results and Discussion. Table 2.1 shows the L1 Loss between each simulation and
the exact distribution for a number of simulation times. Although we do not include error
bounds in the table for ease of viewing, the error is always at least an order of magnitude
smaller than the value in question. The one exception is for the Pseudo-spectral method
results, where because of our grid integration method, we do not compute error bounds. We
also exclude the pseudo-spectral method from the 20-Well system because a grid size of only
10 would require at least 1040 values to be stored.

Both the Euler and TDVP methods have extremely low L1 Loss. In fact, both methods
perform better than the Pseudo-spectral method in the 2-Well case and in the later times
of the 1-Well case. While increasing the number of Wells, we find that the Euler and
TDVP methods continue to perform well while PINNs and pseudo-spectral methods struggle
increasingly. Pseudo-spectral methods cannot simulate the 20-Well system due to the curse
of dimensionality, and while PINNs can in principle simulate the system, in practice they

21

1.0 0.8 0.6 0.4 0.2 0.0 0.2
E[q]

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
E[

p]

Exact
FD
PS

Q-Flow TDVP (Ours)
Q-Flow Euler (Ours)

PINN
Stochastic

Figure 2.2: The trajectory of the centroids of the simulated distributions. The PINN baseline
is excluded from the inset. Error bars are included for all except for the Exact and PS
methods.

perform extremely poorly. Indeed, the poor performance of PINN is also related to the curse
of dimensionality in sampling and optimization. This is because to train PINN, the standard
practice is to randomly sample points or use the grid points from the problem domain, the
complexity of which grows exponentially with the dimensionality. As a consequence, the
loss and the gradients from finite samples are not accurate enough for PINN. In addition,
PINN tries to learn the dynamics of multiple time steps simultaneously, which also increases
the challenges to its representational ability. On the other hand, both the Euler and TDVP
methods still consistently report low fidelities. Finally, note that the Euler method has a
consistently lower L1 loss than the TDVP method.

Figure 2.2 shows the trajectory of each simulation method’s centroid for the 1-Well case.
Once again, the Euler and TDVP methods both closely match the exact evolution and the
Euler method performs slightly better in general. On the other hand, the PINN solution
exhibits consistently biased and rapidly fluctuating estimates of the centroid. As expected,
the Pseudo-spectral method closely tracks the exact trajectory. However, we note that
although our methods appear to match the exact results less accurately, the large error
bars in the cutout demonstrate that this is in large part due to sampling error. We could
have computed the centroid for the Euler and TDVP methods using grid integration as
with the Pseudospectral method, but we instead choose to use sampling because this better

22

10 5

10 3

10 1

101

Ce
nt

ro
id

 D
ist

an
ce

1-site 2-site 20-site

Pseudo-spectral
Finite Difference
PINN
Q-Flow TDVP (Ours)
Q-Flow Euler (Ours)
Stochastic
Exact

0 5 10 15
t

10 3

10 1

101

Lio
uv

illi
an

0 5 10 15
t

0 5 10 15
t

Figure 2.3: The simulated evolution of two observables for 1-Well, 2-Well, and 20-Well
Fokker-Planck systems. Error bars are included for all except for the Exact and Pseudo-
spectral results. The unit of time t is inversely proportional to the unit of γj.

generalizes to higher dimensions.
Figure 2.3 shows the evolution of the centroid distance and the Liouvillian Loss for all

three problems. Euler and TDVP closely match the exact evolution of the two observables.
Athough the two methods’ estimates of the centroid distance begin to diverge from the exact
centroid distance at around time 10, once again the large error bars demonstrate that this
is due to error in the sampling estimate. Although the PINN centroid distance also begins
to diverge from the desired value, the small error bars for this estimate suggest that the
deviation does not come from sampling error.

In terms of the Liouvillian loss, both the Euler method and TDVP decrease consistently.
At around time 15 the Euler Liouvillian loss jumps slightly, but this can most likely be
improved by increasing the number of training steps per time step for the Euler method and
by decreasing the learning rate. Further, this occurs at a Liouvillian loss of less than 10−7,
so the simulation is still likely precise enough for most applications. In practice, we find
that decreasing the step size improves both the Euler and TDVP methods’ performance.
Interestingly, the Pseudo-spectral method provides a very poor estimate of the Liouvillian
loss. We suspect that this is due to error in numerical derivatives.

Finally, note that unlike the other methods, our methods continue to correctly simulate
the system for large numbers of Wells. It is only toward the end of time evolution in the
20-Well case that our methods begin to show some deviation from the exact observables.
Again, this can likely be reduced by decreasing the step size and taking more samples.

23

0 2 4 6 8
Jt

10

0

10

20

30

40

50
n 1

FD
PS

Q-Flow TDVP (Ours)
Q-Flow Euler (Ours)

PINN
Exact

Figure 2.4: Dynamics of ⟨n1⟩ in a 2-Well dissipative bosonic model.

2.4.2 Dissipative Bosonic Model

Experimental Setup. The dissipative bosonic model is a frequently studied open quantum
system [62, 44]. We test our methods on this model because it has a more complex evolution
equation and because it has greater real-world applicability.

The dissipative bosonic model we use has [62] H = −J
∑

j

(
a†j+1aj + a†jaj+1

)
and

Llossρ = −
1

2

∑
j

γj

(
njρ+ ρnj − 2ajρa

†
j

)
(2.9)

where nj = a†jaj and j enumerates the Wells. Converting to the Q function formalism gives
that L̃ is ∑

j

γj

(
1

4

(
∂2

∂q2j
+

∂2

∂p2j

)
+

1

2

(
qj

∂

∂qj
+ pj

∂

∂pj
+ 1

))

+ J
∑
j

(
pj+1

∂

∂qj
− qj+1

∂

∂pj
+ pj

∂

∂qj+1

− qj
∂

∂pj+1

)
.

Following Figure 3 of [63], we consider a 2-Well system with J = 1, γ1 = 1, and γ2 = 0.
We simulate the evolution of an antisymmetric Bose-Einstein Condensate (BEC) with 50

24

particles in each Well, which has a Q function Q(q1, p1, q2, p2) given by

Q =
[(q1 − q2)2 + (p1 − p2)2]100

π2 · 2100 · 100!
e−(q21+p

2
1+q

2
2+p

2
2).

Because of the complex multimodal initial distribution, we use the Convex Potential Flow
for these experiments. We pretrain the flow as described in Section 2.3.5.

Metric. For this system, we compute the observable ⟨n1⟩ ≈ 1
N

∑
x∼Qsim

(q21 + p21 − 1)
because it’s exact evolution is given in [63].

Results and Discussion. We show the simulated evolution of ⟨n1⟩ in Figure 2.4. Both
the Euler and TDVP methods closely match the exact evolution, demonstrating that our
methods’ can handle multi-Well interactions correctly. In particular, the J term is responsible
for the oscillations shown because it causes the two Wells to exchange particles.

2.5 Conclusion

In this work, we made a important contribution to the problem of simulating open quantum
systems. We used a reformulation of the density matrix to the Husimi Q function, which
allowed us to study open quantum systems as an evolution of a probability distribution under
dynamics, described by a partial differential equation that we derive for each system. This
allowed us to establish a direct connection between simulating continuous or bosonic open
quantum systems and the rich literature on generative models in standard machine learning.
With off-the-shelf normalizing flows, Affine Coupling Flows and Convex Potential Flows,
and a new efficient method for solving high-dimensional PDEs, Euler-KL, we established
Q-Flow, a new and efficient approach to simulation of open quantum systems.

We compared Q-Flow to the state-of-the-art numerical and deep learning approaches
on two important systems to the field, the dissipative harmonic oscillator and dissipative
bosonic models. We established superior performance across the board, especially when the
dimensionality of the system increases rapidly in an exponential manner.

We believe the significance of our results is twofold. On one hand, Q-Flow accurate
simulation of open quantum systems can be further developed to aid progress in fundamental
physics and engineering applications, such as superconductors and quantum computers. On
the other hand, through our reformulation from evolving the density matrix to evolving
the Q function, we shifted the modeling challenges from the curse of dimensionality to the
accurate evolution of a high-dimensional deep generative model. Q-Flow can aid progress
in evolving probability distributions under PDE dynamics and inspire future work on deep
generative models.

25

Chapter 3

OccamNet: A Fast Neural Model for
Symbolic Regression at Scale

OccamNet [13] is framework for scientific discovery through novel algorithms for efficient and
parallelizable symbolic regression. By using reinforcement learning and symbolic inductive
biases, OccamNet intelligently searches through the space of possible equations describing
data, a step toward automated physics discovery. The below is taken from [13]. In [64], we
extend the work below by applying it to scientific discovery in social science.

3.1 Introduction

Deep learning has revolutionized a variety of complex tasks, ranging from language modeling
to computer vision [65]. Key to this success is designing a large search space in which many
local minima sufficiently approximate given data [66]. This requires large, complex models,
which often conflicts with the goals of sparsity and interpretability, making neural nets not
optimally suited for a myriad of physical and computational problems with compact and
interpretable underlying mathematical structures [67]. Neural networks also might not pre-
serve desired physical properties (e.g., time invariance) and are typically unable to generalize
much beyond observed data.

In contrast, Evolutionary Algorithms (EAs), in particular genetic programming, can find
interpretable, compact models that explain observed data [68, 69, 70]. EAs have been em-
ployed as an alternative to gradient descent for optimizing neural networks in what is known
as neuroevolution [71, 72, 73]. Recently, evolutionary strategies that model a probability
distribution over parameters, updating this distribution according to their own best samples
(i.e., selecting the fittest), were found advantageous for optimization on high-dimensional
spaces, including neural networks’ hyperparameters [74, 75].

A number of evolution-inspired, probability-based models have been explored for Sym-
bolic Regression [76]. Along these lines, [77] explore deep symbolic regression by using an
RNN to define a probability distribution over a space of expressions and sample from it
using autoregressive expression generation. More recently, [78] have pretrained Transformer
models that receive input-output pairs as input and return functional forms that could fit
the data. In the related field of program synthesis, probabilistic program induction us-

26

ing domain-specific languages [79, 80, 81] has proven successful. [82] first train a machine
learning model to predict a DSL based on input-output pairs and then use methods from
satisfiability modulo theory [83] to search the space of programs built using the predicted
DSL.

One approach to symbolic regression which can integrate well with deep learning is the
Neural Arithmetic Logic Unit (NALU) and related models [84, 85], which provide neural in-
ductive bias for arithmetic in neural networks by shaping a neural network towards a gating
interpretation of the linear layers. Neural Turing Machines [86, 87] and their stable ver-
sions [88] can also discover interpretable programs, simulated by neural networks connected
to external memory, via observations of input-output pairs. Another option is Equation
Learner (EQL) Networks [89, 90, 91], which identify symbolic fits to data by training a
neural network with symbolic activation functions, such as multiplication or trigonometric
functions. However, these methods require strong regularization to be interpretable. NALUs
and to a lesser extent EQL Networks can also only use a restricted set of differentiable prim-
itive functions, and Neural Turing Machines do not include the concept of a “primitive.”
Additionally, these methods often converge to local minima and often converge to uninter-
pretable models unless they are carefully regularized for sparsity.

In this paper, we consider a mixed approach of connectionist and sample-based opti-
mization for symbolic regression. We propose a neural network architecture, OccamNet,
which preserves key advantages of EQL networks and other neural-integrable symbolic re-
gression frameworks while addressing many of these architectures’ limitations. Inspired by
neuroevolution, our architecture uses a neural network to model a probability distribution
over functions. We optimize the model by sampling to compute a reinforcement-learning loss,
tunable for different tasks, based on the training method presented in Risk-Seeking Policy
Gradients [77]. Our method handles non-differentiable and implicit functions, converges to
sparse, interpretable symbolic expressions, and can work across a wide range of symbolic
regression problems. Further, OccamNet consistently outperforms other symbolic regres-
sion algorithms in testing on real-world regression datasets. We also introduce a number of
strategies to induce compactness and simplicity a la Occam’s Razor.

The main goal of this study is not to replace existing symbolic regression methods, but
rather to create a novel hybrid approach that combines the strengths of neural networks and
evolutionary algorithms. Our proposed OccamNet method consistently achieves state-of-the-
art performance across a wide range of tasks, including a diverse range of synthetic functions,
simple programs, raw data classification, and real-world tabular tasks. Additionally, we show
how to connect OccamNet to state-of-the-art pretrained vision models, such as ResNets [92].
OccamNet has also shown promise in discovering quantitative and formal laws in social
sciences, indicating its potential to aid scientific research [93]. By striking a delicate balance
between expressiveness and interpretability, OccamNet presents a versatile and powerful
solution for symbolic regression challenges.

3.2 Model Architecture

In Figure 3.1 we sketch the OccamNet architecture and the method for training it, before
following with a more detailed description. We can view OccamNet as a fully-connected

27

ex
pr

es
si

on
s’

 e
va

l

c.

Encoder Layer 1

Encoder Layer 3

Encoder Layer 1

Encoder Layer 3

Encoder Layer 1

Encoder Layer 3

Symbolic Layer 1

Symbolic Layer 3
…

Sample Symbolic
Expressions

observations’ support

ground truth
expression 1
expression 2

a. b.

increase the probability
of the best paths and

move to a.
until convergence

Figure 3.1: OccamNet architecture and training. a. OccamNet is a stack of “symbolic
layers” each described by a collection of learned distributions (over the neurons from the
previous layer) for each neuron within the layer, as well as non-linearities that are collections
of symbolic expressions. b. By sampling from each distribution independently, we are able
to sample paths from OccamNet that represent symbolic expressions, ready for evaluation.
c. We evaluate each expression by feeding the observations’ support data and comparing
the outputs with the ground truth. The probability of the best paths is increased and the
process is repeated until convergence.

feed-forward network (a stack of fully connected linear layers with non-linearities) with two
key unique features. First, the parameters of the linear layer are substituted with a learned
probability distribution associated with the neurons from the preceding layer for each neuron
within the layer. Second, the non-linearities form a collection of symbolic expressions. Thus
we obtain a collection of “symbolic layers” that form OccamNet (Figure 1a). Figure 1b
shows a variety of symbolic expressions, representing paths within OccamNet from sampling
each probability distribution independently. Figure 1c shows OccamNet’s training objective,
which increases the probability of the paths that are closest to the ground truth. Below we
formalize OccamNet in detail.

3.2.1 Layer structure

A dataset D = {(x⃗p, y⃗p)}|D|
p=1 consists of pairs of inputs x⃗p and targets y⃗p = f⃗ ∗ (x⃗p) =

[f ∗
(0)(x⃗p), . . . , f

∗
(v−1)(x⃗p)]

⊤. Our goal is to compose either f ∗
(i)(·) or an approximation of f ∗

(i)(·)
using a predefined collection of N primitive functions Φ = {ϕi(·, . . . , ·)}Ni=1. Note that
primitives can be repeated, their arity (number of arguments) is not restricted to one, and
they may operate over different domains. The concept of a set of primitives Φ is similar to
that of DSL, domain-specific languages [94].

To solve this problem, we follow a similar approach as in EQL networks [90, 89, 91], in
which the primitives act as activation functions on the nodes of a neural network. Specifically,

28

each hidden layer consists of an arguments sublayer and an images sublayer, as shown in
Figure 3.2a. We use this notation because the arguments sublayer holds the inputs, or
arguments, to the activation functions and the images sublayer holds the outputs, or images,
of the activation functions. The primitives are stacked in the images sublayer and act as
activation functions for their respective nodes. Each primitive takes in nodes from the
arguments sublayer. Additionally, we use skip connections similar to those in DenseNet [95]
and ResNet [92], concatenating image states with those of subsequent layers.

Next, we introduce a probabilistic modification of the network: instead of computing the
inputs to the arguments sublayers using dense feed-forward layers, we compute them proba-
bilistically and sample through the network. This enables many key advantages: it enforces
sparsity and interpretability without requiring regularization, it allows the model to avoid
backpropagating through the activation functions, thereby allowing non-differentiable and
fast-growing functions in the primitives, and it helps our model avoid premature convergence
to local minima.

Because they behave probabilistically, we call nodes in the arguments sublayer P-nodes.
Figure 3.2 highlights this sublayer structure, while the methods section describes the com-
plete mathematical formalism behind it.

Figure 3.2: (a) A two-output network model with depth L = 2, x⃗ = [x0, x1], user-selected
constants C = [1, π], and set of primitive functions Φ = (+(·, ·), sin(·), exp(·),×(·, ·)). Boxed
in blue are the arguments sublayers (composed of P-nodes). For each arguments sublayer,
the associated image sublayer (composed of the basis functions from Φ) is boxed in green and
to the right of the corresponding arguments sublayer. Together, these two sublayers define a
single hidden layer of our model. The input layer can be thought of as an image layer and the
output layer can be thought as an arguments layer. (b) An example of function-specifying
directed acyclic graphs (DAGs) that can be sampled from the network in (a). These DAGs
represent the functions y0 = exp[sin(x0 + π)] and y1 = sin(exp(x0) sin(x1)).

3.2.2 Temperature-controlled connectivity

Instead of dense linear layers, we use T -softmax layers. For any temperature T > 0, we define
a T -softmax layer as a standard T -controlled softmax layer with weighted edges connecting
an images sublayer and the subsequent arguments sublayer, in which each P-node from the
arguments sublayer probabilistically samples a single edge between itself and a node in the
images sublayer. Each node’s sampling distribution is given by

p(l,i)(Tl) = softmax(w(l,i);Tl),

29

where w(l,i) and p(l,i) are the weights and probabilities for edges leading to the ith P-node
of the lth layer and Tl is the fixed temperature for the lth layer. Selecting these edges for
all T -softmax layers produces a sparse directed acyclic graph (DAG) specifying a function
f⃗ , as seen in Figure 3.2b. While controlling the temperature adjusts the entropy of the
distributions over nodes, OccamNet automatically enforces sparsity by sampling a single
input edge to each P-node. Adjusting the temperature has no impact on sparsity, but it
allows for balancing exploration and exploitation during training.

3.2.3 A neural network as a probability distribution over functions

Through the temperature-controlled connectivity described above, OccamNet can be sam-
pled to produce DAGs corresponding to functions f⃗ . Based on the weights of OccamNet,
some DAGs may be sampled with higher or lower probability. In this way, OccamNet can
be considered as representing a probability distribution over the set of all possible DAGs, or
equivalently over all possible functions sample-able from OccamNet.

Let W =
{
w(l,i); 1 ≤ l ≤ L, 1 ≤ i ≤ N

}
. The probability of the model sampling f(i) as its

ith output, qi(f(i)|W), is the product of the probabilities of the edges of f(i)’s DAG. Similarly,
q(f⃗ |W), the probability of the model sampling f⃗ , is given by the product of f⃗ ’s edges, or
q(f⃗ |W) =

∏v−1
i=0 qi(f(i)|W). For example, in Figure 3.2b, the probabilities of sampling the

DAG shown is given by the product of the probabilities sampling each of the edges shown.
In practice, we compute an approximation of this probability which we denote qapx,

as described in Methods Section 3.6.1. We find that OccamNet performs well with this
approximation. For all other sections of this paper, unless explicitly mentioned, we use q to
mean qapx.

We initialize the network with weights Wi such that qapx(f⃗1|Wi) = qapx(f⃗2|Wi) for all f⃗1
and f⃗2 in FLΦ. After training (Section 3.3), the network has weights Wf. The network then
selects the function f⃗f with the highest probability qapx(f⃗f|Wf). We discuss our algorithms
for initialization and function selection in the Methods section. A key benefit of OccamNet
is that, unlike other approaches such as [77], it allows for efficiently identifying the function
with the highest probability.

3.3 Training

To express a wide range of functions, we include non-differentiable and fast-growing primi-
tives. Additionally, in symbolic regression, we are interested in finding global minima. To
address these constraints, we implement a loss function and training method that combine
gradient-based optimization and sampling-based strategies for efficient global exploration of
the possible functions. Our loss function and training procedure are closely related to those
proposed by [77], differing mainly in the fitness function and regularization terms.

Consider a mini-batch M = (X, Y) and a sampled function from the network f⃗(·) ∼
q(·|W). We compute the fitness of each f(i)(·) with respect to a training pair (x⃗, y⃗) by
evaluating

ki
(
f(i)(x⃗), y⃗

)
= (2πσ2)−1/2 exp

(
−
[
f(i)(x⃗)− (y⃗)i

]2
/(2σ2)

)
,

30

which measures how close f(i)(x⃗) is to the target (y⃗)i. The total fitness is determined by
summing over the entire mini-batch: Ki

(
M, f(i)

)
=
∑

(x⃗,y⃗)∈M ki
(
f(i)(x⃗), y⃗

)
.

We then define the loss function

Hqi [f(i),W,M] = −Ki

(
M, f(i)

)
· log

[
qi(f(i)|W)

]
. (3.1)

as in [77]. As in [77], we train the network by sampling functions, selecting the number λ
of functions with the highest fitness for each output, and performing a gradient step based
on these highest-fitness functions using the loss defined in Equation 3.1. In practice, λ is a
critical hyperparameter to tune as it adjusts the balance between updating toward higher-
fitness functions and receiving information about all sampled functions.

To improve implicit function fitting, we implement regularization terms that punish trivial
solutions by reducing the fitness K, as discussed in the Methods (Section 3.6.1). We also
introduce regularization to restrict OccamNet to solutions that preserve units (Section 3.6.1).

OccamNet can also be trained to find recurrent functions, as discussed in the Methods
(Section 3.6.1).

3.4 Results

To empirically validate our model, we first develop a diverse collection of benchmarks in
four categories: Analytic Functions, simple, smooth functions; Implicit Functions, functions
specifying an implicit relationship between inputs; Non-Analytic Functions, discontinuous
and/or non-differentiable functions; Image/Pattern Recognition, patterns explained by ana-
lytic expressions. We then test OccamNet’s performance and ability to scale on real-world
symbolic regression datasets. The purpose of these experiments is to demonstrate that Oc-
camNet can perform competitively with other symbolic regression frameworks in a diverse
range of applications.

We compare OccamNet with several other symbolic regression methods: Eureqa [68], a
genetic algorithm with Epsilon-Lexicase (Eplex) selection [96], AI Feynman 2.0 (AIF) [69,
97], and Deep Symbolic Regression (DSR) [77]. We do not compare to Transformer-based
models such as [78] because, unlike our method, these methods utilize a prespecified and
immutable set of primitive functions which are not always sufficiently general to fit our
experiments. The results are shown in Tables 3.1, 3.2, and 3.3, and we discuss them below.
More details about the experimental setup are given in the methods section.

3.4.1 Analytic functions

In Figure 3.3 and Table 3.1 (in the Methods) we present our results on analytic functions.
Figure 3a presents an analytic function that is particularly challenging for Eureqa. Figure 3b
shows that OccamNet gives competitive success rate to state-of-the-art symbolic regression
methods. For all methods besides OccamNet, there is at least one function for which the
method gets zero accuracy; in contrast, OccamNet gets non-zero accuracy on every single
considered function (Figure 3c).

We highlight the large success rate for function 4, which we originally speculated could
easily trick the network with the local minimum f(x) ≈ x + 1 for large enough x. In

31

Figure 3.3: Experiment on analytic functions. a. A sketch of the function
∑3

n=1 sin(nx) as
an example of the analytics functions we consider in our work. b. Success rate (out of 10
trials) for each of the five methods considered: OccamNet, Eureqa, Eplex, AI Feynman 2.0
(AIF) and Deep Symbolic Regression (DSR) (at the top). Training time for the methods
(at the bottom). Eureqa almost always finishes much more quickly than the other methods,
so we do not provide training times for Eureqa. We enumerate the functions to ease the
discussion. c. The “worst-case” performance for each methods, showing the minimal success
rate across the six tasks.

contrast, as with the difficulties faced by AI Feynman 2.0, we find that OccamNet often
failed to converge for function 5 because it approximated the factor x20(x0 + 1) to x30; even
when convergence did occur, it required a relatively large number of steps for the network
to resolve this additional constant factor. Notably, Eureqa and Eplex had difficulty finding
function 3.

AI Feynman 2.0 consistently identifies many of the functions, but it struggles with func-
tion 5 and is also generally much slower than other approaches. Eplex also performs well on
most functions and is fast. However, like Eureqa, Eplex struggles with functions 3 and 6.
We suspect that this is because evolutionary approaches require a larger sample size than
OccamNet’s training procedure to adequately explore the search space. DSR consistently
identifies many of the functions and is very fast. However, DSR struggles to fit Equation 6,
which we suspect is because such an equation is complex but can be simplified using feature
reuse. OccamNet’s architecture allows such feature reuse, demonstrating an advantage of
OccamNet’s inductive biases.

3.4.2 Non-analytic functions

In Figure 3.4 and Table 3.2 (in the Methods) we benchmark the ability to find several non-
differentiable, potentially recursive functions. From our experiments, we highlight both the
network’s fast convergence to the correct functional form and the discovery of the correct
recurrence depth of the final expression. This is pronounced for function 7 in, which is a
challenging chaotic series on which Eureqa and Eplex struggle. Interestinly, Eplex fails to
identify the simpler functions 1-3 correctly. We suspect that this may be because, for these

32

Figure 3.4: Experiments on non-analytic functions. a. Two prominent examples of non-
analytic functions: The challenging recursion g(x) = x2 if x < 2, else x/2, y(x) = g◦4(x) =
g(g(g(g(x)))) (top) and a sorting circuit of three numbers (bottom). b. Success rate (out of
10 trials) and training time for OccamNet and Eplex. We enumerate the functions to ease
the discussion.

experiments, we restrict both OccamNet and Eplex to smaller expression depths. Although
OccamNet is able to identify the correct functions with small expression depth, we suspect
that Eplex often identifies expressions by producing more complex equivalents to the correct
program and so cannot identify the correct function when restricted to simpler expressions.

We also investigated the usage of primitives such as MAX and MIN to sort numbers
(function 4), obtaining relatively well-behaved final solutions: the few solutions that did not
converge fail only in deciding the second component, y2, of the output vector. Finally, we in-
troduced binary operators and discrete input sets for testing function 5, a simple 4-bit Linear
Feedback Shift Register (LFSR), the function (x0, x1, x2, x3) → (x0 + x3 mod 2, x0, x1, x2),
which converges fast with a high success rate.

We do not compare to AI Feynman 2.0 in these experiments because AI Feynman does
not support the required primitive functions.

3.4.3 Implicit Functions and Image Recognition

Figure 3.5a and Table 3.3 show OccamNet’s performance on implicit functions. OccamNet
demonstrates an advantage on challenging implicit functions. Notably, Eureqa is unsuccess-
ful in fitting m1v1 − m2v2 = 0 (conservation of momentum). Note that we only compare
OccamNet to Eureqa for Implicit Functions because none of the other methods include the
regularization that would be necessary to fit such functions.

Figure 3.5b and Table 3.3 demonstrate applications of OccamNet in image recognition,
a domain that are not natural for standard symbolic regression baselines, but is somewhat
more natural for OccamNet due to its interpretation as a feed-forward neural network.

We train OccamNet to classify MNIST [99]1 in a binary setting between the digits 0 and
1Creative Commons Attribution Share Alike 3.0 License

33

Figure 3.5: Experiments on implicit functions and standard vision benchmarks. a. Examples
of implicit functions’ loci (left) and the corresponding success rate on a suite of implicit
functions (right). b. Examples of image recognition tasks (left) and the best accuracy from
10 trials for both OccamNet and the baseline. The baseline for MNIST Binary/ Trinary and
ImageNet Binary is the HeuristicLab symbolic regression algorithm [98]. The baseline for
Backprop OccamNet and Finetune ResNet is a feed-forward neural network with the same
number of parameters as OccamNet.

7 (MNIST Binary). For this high-dimensional task, we implement OccamNet on an Nvidia
V100 GPU, yielding a sizable 8x speed increase compared to a CPU. For MNIST Binary, one
of the successful functional fits that OccamNet finds is y0 (x⃗) = tanh (10(max(x25,15, x26,19)+
tanh(x15,15) + 2x25,10 + 2x25,13)) and y1 (x⃗) = tanh (10 tanh(10 (x18,8 + x20,6))) . The model
learns to incorporate pixels into the functional fit that are indicative of the class: here x18,8
and x20,6 are indicative of the digit 7. These observations hold when we further bench-
mark the integration of OccamNet with deep feature extractors. We extract features from
ImageNet [100]2 images using a ResNet 50 model, pre-trained on ImageNet [92]. For sim-
plicity, we select two classes, “minivan” and “porcupine” (ImageNet Binary). OccamNet
significantly improves its accuracy by backpropagating through our model using a standard
cross-entropy signal. We either freeze the ResNet weights (Backprop OccamNet) or finetune
ResNet through OccamNet (Finetune ResNet). In both cases, the converged OccamNet
represents simple rules, (y0(x⃗) = x1838, y1(x⃗) = x1557), suggesting that replacing the head in
deep neural networks with OccamNet might be promising.

3.4.4 Real-world regression datasets

We also test OccamNet’s ability to fit real-world datasets, selecting 15 datasets with 1667 or
fewer datapoints from the Penn Machine Learning Benchmarks (PMLB3) regression datasets

2The Creative Commons Attribution (CC BY) License
3Creative Commons Attribution 4.0 International License

34

[101]. These are real-world datasets, and based on their names, we infer that many are
from social science, suggesting that they are inherently noisy and likely to follow no known
symbolic law. Additionally, 1/3 of the datasets we choose have feature sizes of 10 or greater.
These factors make the PMLB datasets challenging symbolic regression tasks. We again
compare OccamNet to Eplex and AI Feynman 2.0.4

We test OccamNet twice. For the first test, “OccamNet-Small,” we test exactly 1,000,000
functions, the same number as we test for Eplex. For the second test, “OccamNet-GPU,” we
exploit our architecture’s integration with the deep learning framework by running OccamNet
on an Nvidia V100 GPU and testing a much larger number of functions. We allow AIF to
run for approximately as long or longer than OccamNet for each dataset.

As discussed in the SM, we perform grid search on hyperparameters and identify the fits
with the best training, validation, and testing Mean Squared Error (MSE) losses. The raw
data from these experiments are shown in the SM.

Figure 3.6 shows the relative performance of OccamNet-CPU, OccamNet-GPU, and base-
lines according to several metrics. As shown in Figure 3.6a-c, overall, Eplex outperforms
OccamNet-CPU in training and testing MSE loss, but OccamNet-CPU outperforms Eplex
in validation loss. We speculate that OccamNet-CPU’s performance drop between the valida-
tion and testing datasets being larger than Eplex’s performance drop results from overfitting
from the larger set of hyperparameter combinations used by OccamNet-CPU (details in the
SM).

Additionally, OccamNet-CPU runs faster than Eplex in nearly all datasets tested, often
by an order of magnitude (Figure 3.6d). Furthermore, OccamNet is highly parallel and can
easily scale on a GPU. Thus, a major advantage of OccamNet is its speed and scalability (see
Section 3.4.5 for a further discussion of OccamNet’s scaling). Comparing OccamNet-GPU
and Eplex demonstrates that OccamNet continues to improve when testing more functions.
The testing MSE is where OccamNet-GPU performs worst in comparison to Eplex (see
Figure 3.6e), but it still outperforms Eplex at 10 out of 15 of the datasets while running
more than nine times faster on average. Thus OccamNet’s speed and scalability can be
exploited to greatly increase its accuracy at symbolic regression. This demonstrates that
OccamNet is a powerful alternative to genetic algorithms for interpretable data modeling.

Additionally, OccamNet outperforms AIF for training, validation, and testing MSE, while
running faster. OccamNet-CPU achieves a lower training and validation MSE than AIF for
every dataset tested. For training loss, OccamNet-CPU performs better than AIF in 4 out of
7 datasets (Figure 3.6f). Additionally, unlike OccamNet, AIF performs polynomial fitting,
giving it an additional advantage. However, the datasets we test are likely a worst-case for
AIF; the datasets are small, have no known underlying formula, and we normalize the data
prior to training, meaning that AIF will likely struggle not to overfit with its neural network
and will also be unlikely to identify graph modularities.

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151.0

1.1

1.2

1.3

1.4

1.5
Hi

gh
er

/L
ow

er
a)

1.06

1.01
1.04

1.27
1.31

1.04

1.15

1.1

1.04 1.02 1.04
1.02

1.11

1.18

1.38

OccamNet v. Eplex, Training
OccamNet Performs Better
Comparison Performs Better

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151.0

1.5

2.0

2.5

3.0

3.5
b)

1.08
1.26

2.62

1.02
1.13

1.35 1.36

1.61

2.66

3.26

1.1 1.09 1.03 1.02

1.47

OccamNet v. Eplex, Validation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151

2

3

4

5

c)

1.06

2.47

1.11 1.15
1.53

1.91

1.13 1.14 1.05

5.08

1.65

1.14

2.23

1.29

3.77

OccamNet v. Eplex, Testing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dataset

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Hi
gh

er
/L

ow
er

d)

2.04
1.05

19.6 19.5
18.4

6.01 5.91

9.54

17.9

4.93 4.77

17.2

1.03 1.02 1.37

OccamNet v. Eplex, Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dataset

1.0

1.5

2.0

2.5

3.0

e)

1.58

1.05 1.12 1.09 1.13

1.56

1.99

3.1

1.0

1.32

1.04 1.0

1.8

1.11
1.29

OccamNetV100 v. Eplex, Testing

1 4 6 7 10 11 13 15
Dataset

1

2

3

4

5

f)

2.95

1.25

2.08

1.3
1.52

1.71

1.26

5.13

OccamNet v. AIF, Testing

Figure 3.6: Bar charts showing the relative performance between OccamNet-CPU,
OccamNet-GPU, and two baseline methods, Eplex and AIF. The x-axis is the dataset in-
volved. The y-axis is the relative performance according to the given metric: the MSE on
the training, validation, or testing set or the training time. To compute this relative perfor-
mance, we divide the higher (worse) performance value by the lower (better) performance
value for each dataset. The green bars represent datasets where OccamNet has a lower (bet-
ter) performance value than the comparison baseline method, and the red bars represent the
datasets where the comparison method has a better performance than OccamNet.

3.4.5 Scaling on real-world regression datasets

As discussed in Section 3.4.4, OccamNet-CPU runs far more quickly than Eplex on the same
hardware, meaning that it can scale to testing far more functions per epoch than Eplex in
the same runtime. To explore this advantage, we compare OccamNet running on an Nvidia
V100 GPU (OccamNet-GPU) against Eplex while varying the number of functions sampled
per epoch for each method. Since Eplex is not designed to scale on a GPU, we run Eplex
on a CPU as before. We benchmark both methods on the same 15 PMLB datasets (see the
methods section for more details).

We include and discuss the complete results of this experiment in Appendix B.3. In this
section, we highlight key results. Figure 3.7 shows that OccamNet-GPU is often more than
an order of magnitude faster than Eplex. Eplex scales quadratically with the number of
functions, whereas OccamNet’s runtime asymptotes to linear growth. However, the V100
GPU’s extreme parallelism initially suppresses OccamNet-GPU’s linear time complexity,
demonstrating an advantage of OccamNet’s ability to scale on a GPU.

In all of the 15 datasets, OccamNet-GPU’s training loss decreases with larger runtimes,
demonstrating that OccamNet can utilize the greater number of sampled functions that its
efficient scaling allows. Additionally, for 11 of the training datasets, the OccamNet-GPU best
fit has a MSE that is lower than or equal to the Eplex best fit MSE. Interestingly, OccamNet-

4AIF’s regression algorithm examines all possible feature subsets, the number of which grows exponentially
with the number of features. Accordingly, we only test the datasets with ten or fewer features. AI Feynman
2.0 failed to run on a few datasets. All remaining datasets are included in tables and figures.

36

250 500 1000 2000 4000 8000 16000 32000 64000
Functions Sampled per Epoch

26

28

210

212

214

216
M

ea
n

Ru
n

Ti
m

e
(s

)
Eplex
OccamNet

0 200 400
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ilit

y

sin(x0 + x0)
sin(x0) + sin(x0)
sin(x0) + sin(x0)
sin(x0) + sin(x0)

0

50

100

150

Ti
m

es
 S

am
pl

ed

Figure 3.7: Left: The run time for OccamNet-GPU or Eplex as a function of the number of
functions sampled per epoch. Each curve represents one of the 15 datasets. Right: Gradual
modularity with training. Dark blue is the probability of the correct function. Light blue is
the probability of a suboptimal fit with a high probability early in training. Red corresponds
to the number of samples of the correct function. The insets zoom in on the curves around
the epoch where the correct function is first sampled.

GPU’s validation and testing loss do not always show such a clear trend of improvement with
increasing sample size. Given that the training loss does improve, we suspect that this is a
case of overfitting. OccamNet-GPU’s validation loss does decrease with increasing number
of functions sampled for most of the datasets.

3.5 Discussion

Since our experimental settings did not require very large depths, we have not tested the
limits of OccamNet-GPU in terms of depth rigorously (preliminary results on increasing the
depth for pattern recognition are in the SM). We expect increasing depth to yield signifi-
cant complications as the search space grows exponentially. We recognize the need to create
symbolic regression benchmarks that would require expressions that are large in depth. We
believe that other contributions to symbolic regression would also benefit from such bench-
marks. Another direction where OccamNet might be improved is low-level optimization that
would make the method more efficient to train. For example, in our PMLB experiments, we
estimate that OccamNet performs >8x as many computations as necessary. Eplex may also
benefit from optimization. Finally, similarly to other symbolic regression methods, Occam-
Net requires a specified set of primitives to fit a dataset. While it is a notable advantage of
OccamNet to have non-differentiable primitives, further work needs to be done to explore
optimization at a meta level that identifies appropriate primitives for the datasets of interest
without having them provided ahead of time.

OccamNet’s learning procedure allows it to combine partial solutions into better results.
For example in Figure 3.7, the correct function’s probability increases monotonically by
more than 100 times before being sampled because OccamNet samples similar approximate
solutions.

37

OccamNet successfully fits many implicit functions that other neurosymbolic architec-
tures struggle to fit because of the non-differentiable regularization terms required to avoid
trivial solutions. Although Eureqa also fits many of these equations, we find that it some-
times requires the data to be ordered by some latent variable and struggles when the dataset
is very small. This is likely because Eureqa numerically evaluates implicit derivatives from
the dataset [102], which can be noisy when the data is sparse. While [102] propose methods
for analyzing unordered data, it is unclear whether these methods have been implemented
in Eureqa. Thus, OccamNet seems to shine in its ability to fit unordered and small datasets
described by implicit equations (e.g., momentum conservation in line 5 in Table 3.3).

To our knowledge, a unique advantage of our method compared to other symbolic re-
gression approaches is that OccamNet represents complete analytic expressions with a single
forward pass. This allows sizable gains when using an AI accelerator, as demonstrated by our
experiments on a V100 GPU (Figure 3.6). Furthermore, because of this property, OccamNet
can be easily integrated with components from the standard deep learning toolkit. For ex-
ample, lines 9-10 in Table 3.3 demonstrate integrating OccamNet with other neural networks
and optimizing both together, which is not possible with Eureqa. We also conjecture that
such integration with autoregressive approaches such as DSR [77] might be challenging as
the memory and latency would increase.

An advantage of OccamNet over transformer-based approaches to symbolic regression is
that OccamNet can find fits to data regardless of the primitive functions it is given, whereas
transformer-based models [78] can only fit functions that contain a certain set of primitive
functions chosen at pretraining time. Thus, although transformer-based approaches may
outperform OccamNet for functions similar to their training distribution, OccamNet and
other similar approaches are more flexible and broadly applicable than transformer-based
models. As discussed above, this is the reason that we do not compare against transformer-
based methods in our experiments.

3.6 Methods

We divide our methods section into two parts. In Section 3.6.1, we provide a more detailed
description of OccamNet, and in 3.6.2 we fully describe the setup for all of our experiments.

3.6.1 Complete Model Description

We divide this section as follows:

1. In Section 3.6.1, we present additional materials that support the figures from the main
text.

2. In Section 3.6.1, we describe of OccamNet’s sampling process.

3. In Section 3.6.1, we describe OccamNet’s probability distribution.

4. In Section 3.6.1, we describe OccamNet’s initialization process.

5. In Section 3.6.1, we describe OccamNet’s function selection.

38

6. In Section 3.6.1, we describe OccamNet’s loss function.

7. In Section 3.6.1, we describe OccamNet’s outer training loop.

8. In Section 3.6.1, we describe OccamNet’s two-step training method for fitting constants.

9. In Section 3.6.1, we describe OccamNet’s handling of recurrence.

10. In Section 3.6.1, we describe OccamNet’s regularization for fitting implicit functions.

11. In Section 3.6.1, we describe OccamNet’s procedure for handling functions with unde-
fined outputs.

12. In Section 3.6.1, we describe OccamNet’s method for regularizing to respect units.

Supporting Materials for the Main Figures

Tables 3.1, 3.2, and 3.3 present our experiments in a tabular format.

Table 3.1: Analytic Functions. The proportion of 10 trials that converge to the correct ana-
lytic function for OccamNet, Eureqa, Eplex, AI Feynman 2.0, and Deep Symbolic Regression
(DSR). sec. is the average number of seconds for convergence. Eureqa almost always finishes
much more quickly than the other methods, so we do not provide training times for Eureqa.

Analytic Functions

Targets OccamNet sec. Eureqa Eplex sec. AI Feynman sec. DSR sec.

1 2x2 + 3x 1.0 5 1.0 1.0 16 1.0 35 1.0 3
2 sin(3x+ 2) 0.8 56 1.0 0.9 16 1.0 620 1.0 3
3

∑3
n=1 sin(nx) 0.7 190 0.0 0.0 17 1.0 815 1.0 36

4 (x2 + x)/(x+ 2) 0.9 81 0.7 0.5 44 1.0 807 1.0 2
5 x2

0(x0 + 1)/x5
1 0.3 305 1.0 0.9 53 0.0 1918 1.0 84

6 x2
0/2 + (x1 + 1)2/2 0.6 83 0.7 0.2 92 1.0 3237 0.0 3935

Sampling from OccamNet

In this section, we more carefully describe OccamNet’s sampling process. As described in
the main text, we start from a predefined collection of N primitive functions Φ = {ϕi(·)}Ni=1.
Each neural network layer is defined by two sublayers, the arguments and image sublayers.
For a network of depth L, each of these sublayers is reproduced L times. Now let us introduce
their corresponding hidden states: for 1 ≤ l ≤ L, each l’th arguments sublayer defines a
hidden state vector h̃(l), and each l’th image sublayer defines a hidden state h(l), as follows:

h̃(l) =
[
h̃
(l)
1 , . . . , h̃

(l)
M

]
, h(l) =

[
h
(l)
1 , . . . , h

(l)
N

]
, (3.2)

where
M =

∑
0≤k≤N

α(ϕk)

39

Table 3.2: Non-analytic Functions. The proportion of 10 trials that converge to the correct
function for OccamNet, Eureqa, and Eplex. sec. is the average number of seconds for
convergence. Eureqa almost always finishes much more quickly than OccamNet and Eplex,
so we do not provide training times for Eureqa. ∗For program #6, Eplex fits y1 every time
and never fits y0 correctly, so we give it a score of 0.5.

Non-analytic Functions

Targets OccamNet sec. Eureqa Eplex sec.

1 3x if x > 0, else x 0.7 26 1.0 0.0 52
2 x2 if x > 0, else −x 1.0 10 1.0 0.0 46
3 x if x > 0, else sin(x) 1.0 236 1.0 0.0 47
4 SORT(x0, x1, x2) 0.7 81 1.0 1.0 191
5 4LFSR(x0, x1, x2, x3) 1.0 14 1.0 1.0 262

6

y0(x⃗) = x1 if x0 < 2,

0.3 157 0.1 ∗0.5 121else −x1
y1(x⃗) = x0 if x1 < 0,

else x21

7
g(x) = x2 if x < 2,

1.0 64 0.0 0.0 189else x/2
y(x) = g◦4(x)

8
g(x) = x+ 2 if x < 2,

1.0 64 0.6 1.0 116else x− 1
y(x) = g◦2(x)

and α(ϕ) is the arity of function ϕ(·, . . . , ·). We also define h(0) to be the input layer (an
image sublayer) and h̃(L+1) to be the output layer (an arguments sublayer). These image
and arguments sublayer vectors are related through the primitive functions

h
(l)
i = ϕi

(
h̃
(l)
j+1, . . . , h̃

(l)
j+α(ϕi)

)
, j =

∑
0≤k<i

α(ϕk). (3.3)

This formally expresses how the arguments connect to the images in any given layer, visu-
alized as the bold edges between sublayers in Figure 1 in the main paper. To complete the
architecture and connect the images from layer l to the arguments of layer (l+1), we sample
from the softmax of the weights5:

h̃(l+1) =

h̃
(l+1)
1
...

h̃
(l+1)
Ml+1

 ≡ SAMPLE

 softmax(w

(l)
1 ;T (l))

...
softmax(w

(l)
Ml+1

;T (l)

h

(l)
1
...
h
(l)
Nl

 (3.4)

5we define for any z = [z1, . . . , zNl] the softmax function as follows softmax(z;T) :=[
exp(z1/T)∑Nl
i=1 exp(zi/T)

, . . . ,
exp(zNl/T)∑Nl
i=1 exp(zi/T)

]

40

Table 3.3: Implicit Functions: The proportion of 10 trials that converge to the correct implicit
function for OccamNet and Eureqa. Image Recognition: The best accuracy from 10 trials
for both OccamNet and the baseline. The baseline above the mid-line is HeuristicLab [98],
and the baseline below the mid-line is a feed-forward neural network with the same number
of parameters as OccamNet. sec. is the average number of seconds for convergence. The
baselines almost always finish much more quickly than OccamNet, so we do not provide
baseline training times.

Implicit Functions Image Recognition

Target OccamNet sec. Eureqa # Target OccamNet sec. Baseline

1 x0x1 = 1 1.0 294 1.0 6 MNIST Binary 92.9 150 92.8
2 x20 + x21 = 1 1.0 153 0.6 7 MNIST Trinary 59.6 400 81.2
3 x0/ cos(x1) = 1 1.0 131 1.0 8 ImageNet Binary 70.7 400 78.0

4 x1/x0 = 1 0.9 232 1.0 9 Backprop OccamNet 98.1 37 97.7
5 m1v1 −m2v2 = 0 1.0 270 0.0 10 Finetune ResNet 97.3 200 95.4

where the SAMPLE function samples a one-hot row vector for each row based on the cate-
gorical probability distribution defined by softmax(w;T)⊤. Here the hidden states h(l) and
h̃(l+1) have Nl and Ml+1 coordinates, respectively, and the vectors w(l)

i represent the ith row
of the weights for the lth layer. In practice, we set T (l) to a fixed, typically small, number.
The last layer is usually set to a higher temperature to allow more compositionality. These
sampled edges are encoded as sparse matrices, through which a forward pass evaluates f⃗ .

It is also possible to implement OccamNet without the sampling part of the propagation.
In this case, the softmax of the weight matrices is treated as the weights of linear layers,
and we minimize the MSE loss between the outputs and the desired outputs. In practice,
however, we find that this approach leads to solutions which are less sparse, which makes
this approach less interpretable and often converge to suboptimal local minima.

As shown in Figure 3.8, we use skip connections similar to those in DenseNet [95] and
ResNet [92], concatenating each image layer with prior image layers. In particular, such a
network now has argument layers computed as

h̃(l+1) =

h̃
(l+1)
1
...

h̃
(l+1)
Ml+1

 ≡ SAMPLE

 softmax(w

(l)
1 ;T (l))

...
softmax(w

(l)
Ml+1

;T (l)

CONCAT(h(0),h(1), . . . ,h(l)), (3.5)

where now each vector w(l+1)
i has

∑l
i=0Ni components instead of Nl. Skip connections yield

several desirable properties: (i) The depth of equations is not fixed, lifting the requirement
that the number of layers of the solution be known in advance. (ii) The network can
find compact solutions as it considers all levels of composition. This promotes solution
sparsity and interpretability. (iii) Primitives in shallow layers can be reused, analogous to
feature reuse in DenseNet. (iv) Subsequent layers may behave as higher-order corrections
to the solutions found in early layers. Additionally, if we implement OccamNet without
sampling, shallow layers are trained before or alongside the subsequent layers due to more
direct supervision because gradients can propagate to shallow layers more easily to avoid
exploding or vanishing gradients.

41

Figure 3.8: Skip connections. Nodes are color coded with lines indicating the origin of the
reused neurons.

From Equation (3.3), we see that Ml+1 = M =
∑

0≤k≤N α(ϕk). If no skip connections
are used, Nl = N = |Φ|. If skip connections are used, however, Nl grows as l increases.
We demonstrate how the scaling grows as follows. Let u be the number of inputs and v
be the number of outputs. When learning connections from images to arguments at layer
l (1 ≤ l ≤ L), there will be skip connections from the images of the previous l layers
0, 1, . . . , l − 1. Hence the ith layer has an image size of u+ iN, as shown in Figure 3.8. We
learn linear layers from these images to arguments, and the number of arguments is always
M . Thus, in total, we have the following number of parameters:

v(u+ (L+ 1)N) +M
L−1∑
i=0

(u+ iN) ∈ O(NML2).

Note that in the above discussion we assume that M remains constant. However, to be
able to represent all functions up to a particular depth, we must repeat primitives in earlier
layers, causing M to grow exponentially. For small numbers of layers, this is not problematic.
If a larger expression depth is required, one can avoid primitives and increase the number
of layers beyond what is necessary. This makes additional copies of each primitive available
for use without requiring an exponential growth in the layer size.

OccamNet’s Probability Distribution

OccamNet parametrizes not only the probability of sampling a given function f⃗ = (f(0), . . . , f(v−1))
⊤

but also the probability of sampling each f(i) independently of the other components of f⃗ .
As discussed in the main text, the probability of the model sampling f(i) as its ith out-
put, qi(f(i)|W), is the product of the probabilities of the edges of f(i)’s DAG. Similarly,

42

Figure 3.9: A demonstration of the dropped connections from sampled paths in OccamNet.
All red paths are dropped from the final symbolic form of the sampled function because they
are not directly connected to the outputs. These paths are unnecessarily computed during
OccamNet’s training process, leading to potential slowdowns in training.

q(f⃗ |W), the probability of the model sampling f⃗ , is given by the product of f⃗ ’s edges, or
q(f⃗ |W) =

∏v−1
i=0 qi(f(i)|W).

Because q(·|·) is a probability distribution, we have
∑

f⃗∈FL
Φ
q(f⃗ |W) = 1 and q(f⃗ |W) ≥ 0

for all f⃗ in FLΦ. Similar results hold for the probability distributions of each component f(i).
OccamNet’s sampling process involves independently sampling connections from each

layer. Although each of OccamNet’s layers represents an independent probability distribu-
tion, when sampling a function, the layers do not act independently. This is because the
samples from layers closer to the outputs inform which of the sampled connections from
previous layers are used. In particular, the full DAG that OccamNet samples has many
disconnected components, and all components of the DAG which are not connected to any
of the output nodes are effectively trimmed (See Figure 3.9). This is advantageous as it
allows OccamNet to produce very different distributions of functions for different choices of
connections in the final few layers, thereby allowing OccamNet to explore multiple classes of
functions simultaneously.

As discussed in the main text, q(f⃗ |W) is the product of the probabilities of the sampled
connections in f⃗ ’s DAG which are connected to the output nodes. However, in practice, we
compute probabilities of functions in a feed-forward manner. This computation underesti-
mates some probabilities; it actually computes an estimate qapx(f⃗ |W) of q(f⃗ |W).

To compute the probability of a given function, we assign each image and argument node
a probability given this function’s DAG. We denote the probability of the i’th node of the
l’th image layer with p(l)i and the probability of the i’th node of the l’th argument layer with
p̃
(l)
i .

We propagate probabilities as follows. If the i’th image node in layer l is connected to
the j’th argument node in layer l+1, the probability of the j’th argument node in layer l is

p̃
(l+1)
j = p

(l)
i · p

(l,j)
i (T (l)). (3.6)

The ith image node of the lth layer then has probability given by

p
(l)
i =

n+α(ϕi)∏
k=n+1

p̃
(l)
k , n =

i−1∑
j=1

α(ϕj), (3.7)

43

where α(f) denotes the number of inputs to f . Finally, to calculate the probability of a
function, we multiply the probabilities of the output nodes.

This algorithm computes function probabilities correctly unless a function’s DAG has
multiple nodes connecting to the same earlier node in the DAG. In this case, the probability
of the earlier node is included multiple times in the final function probability, producing an
estimate that is below the true probability of sampling the function.

In practice, we find that this biased evaluation of probabilities does not substantially
affect OccamNet training. Note that when we equalize all functions to have the same prob-
ability (Section 3.6.1) or sample the highest probability function (Section 3.6.1), we do so
with respect to the probability estimate qapx, not with respect to q. In this paper, we use q
to mean qapx unless otherwise specified.

Initialization

When beginning this project, we originally initialized all model weights to 0. However,
this initializes complex functions, which have DAGs with many more edges than simple
functions, to low probabilities. As a result, we found in practice that the network sometimes
struggled to converge to complex functions with high fitness K(M, f) because their initial
low probabilities meant that they were sampled far less often than simple functions. This is
because even if complex functions have a higher probability increase than simple functions
when they are sampled, the initial low probabilities caused the complex functions to be
sampled far less and to have an overall lower expected probability increase.

To address this issue, we now use a second initialization algorithm, which initializes all
functions to equal probability. This initialization algorithm iterates through the layers of
the network. In practice, to balance effects discussed at the end of this section, we initialize
to weights interpolated between 0 and the algorithm discussed below. More details are given
at the end of this section.

The algorithm to initialize all functions with equal probability establishes as an invariant
that, after assigning the weights up to the lth layer, all paths leading to a given node in the
lth argument layer have equal probabilities. Then, each argument layer node has a unique
corresponding probability, the probability of all paths up to that node. We denote the
probability of the ith node in the lth argument sublayer as p̃(l)i , because it is the probability
of any path leading to the ith node in the lth argument sublayer. Because each argument
layer node has a corresponding probability, each image layer node must also have a unique
corresponding probability, which, for the ith node in the lth image sublayer, we denote as
p
(l)
i . Again, we use the notation p

(l)
i because this is the probability of any path leading to

the ith node in the lth image sublayer. These image layer probabilities are given by

p
(l)
i =

n+α(ϕi)∏
k=n+1

p̃
(l)
k , n =

i−1∑
j=1

α(ϕj). (3.8)

Our algorithm starts with input layer, or the 0th image layer. Paths to any node in the
input layer have no edges so they all have probability 1. Thus, we initialize p(0)i = 1 for all i.
As the algorithm iterates through all subsequent T -Softmax layers, the invariant established
above provides a system of linear equations involving the desired connection probabilities,

44

which the algorithm solves. The algorithm groups the previous image layer according to the
node probabilities, obtaining a set of ordered pairs {(p′(l)a , n

(l)
a)}ki=a representing n

(l)
a nodes

with probability p′(l)a in the lth layer. Note that if two image nodes have the same probability
p
(l)
i = p

(l)
j , then the edges between any argument node in the next layer and the two image

nodes must have the same probability in order to satisfy the algorithm’s invariant: p(l,k)i =

p
(l,k)
j . Then, we define p′(l,i)a as the probability of the edges between the image nodes with

probability p′(l)a and the ith argument P -node of the lth layer. The probabilities of the edges
to a given P -node sum to 1, so for each j, we must have

∑
a n

(l)
a p′

(l,i)
a = 1. Further, the

algorithm requires that the probability of a path to a P -node through a given connection
is the same as the probability of a path to that P -node through any other connection.
The probability of a path to the ith P -node through a connection with probability p′(l,i)a

is p′(l)a p′
(l,i)
a , so we obtain the equations p′(l)0 p′

(l,i)
0 = p′(l)a p

′(l,i)
a , for all a and i. These two

constraints give the vector equation
n
(l)
0 n

(l)
1 n

(l)
2 · · · n

(l)
k

p′
(l)
0 −p′(l)1 0 · · · 0

p′
(l)
0 0 −p′(l)2 · · · 0
...

...
...

p′
(l)
0 0 0 · · · −p′(l)k

p′

(l,j)
0

p′
(l,j)
1

p′
(l,j)
2
...

p′
(l,j)
k

 =

1
0
0
...
0

 , (3.9)

for all 1 ≤ j ≤M . The algorithm then solves for each p′(l,j)a .
After determining the desired probability of each connection of the lth layer, the algo-

rithm computes the SPL weights w′(l,j) that produce the probabilities p′(l,j)a . Since there
are infinitely many possible weights that produce the correct probabilities, the algorithm
sets w′(l,j)

0 = 0. Then, the algorithm uses the softmax definition of the edge probabilities to
determine the required value of

∑k
n=1 exp

(
w′(l,j)

n /T (l)
)
:

p′
(l,j)
0 =

exp
(
w′(l,j)

0 /T (l)
)

∑k
n=1 exp

(
w′(l,j)

n /T (l)
)

=
1∑k

n=1 exp
(
w′(l,j)

n /T (l)
)

so
k∑
a=1

exp
(
w′(l,j)

a /T
)
= 1/p′

(l,j)
0 .

Substituting this equation into the expression for the other probabilities gives

p′
(l,j)
a = exp

(
w′(l,j)

a /T (l)
)
/

(
k∑

n=1

exp
(
w′(l,j)

n /T (l)
))

= p′
(l,j)
0 exp

(
w′(l,j)

a /T (l)
)
.

45

Solving for w′(l,j)
i gives

w′(l,j)
a = T (l) log

(
p′

(l,j)
a /p′

(l,j)
0

)
, (3.10)

which the algorithm uses to compute w′(l,j)
i .

After determining the weights w′(l,j)
a the algorithm assigns them to the corresponding

w
(l,j)
a . In particular, if the ith image node has probability p′(l)a , the weights of edges to the

ith node are given by w(l,j)
i = w′(l,j)

k , for all j. The algorithm then determines the values of
p̃
(l+1)
j , given by p̃(l+1)

j = p
(l)
i p

(l,j)
i . Finally, the algorithm determines p(l+1)

i using Equation 3.8
and repeats the above process for subsequent layers until it reaches the end of the network.

In summary, the algorithm involves the following steps:

1. Set l = 0.

2. Set p(l)i = 1.

3. Increment l by 1.

4. Compute {(p′(l)a , n
(l)
a)}ki=a and use Equation 3.9 to compute p′(l,j)a .

5. Set w′(l,j)
a according to Equation 3.10.

6. If l < L+ 1, Compute p̃(l+1)
i and p(l+1)

i .

7. Return to step 3 until l = L+ 1.

This algorithm efficiently equalizes the probabilities of all functions in the network. In
practice, however, we find that perfect equalization of functions causes activation functions
with two inputs to be highly explored. This is because there are many more possible func-
tions containing activation functions with two inputs than with one input. Additionally,
as mentioned in Section 3.6.1, in this section we have implicitly been using the approxi-
mate probability q̃. This probability underestimates many functions that include activation
functions with two or more inputs because these functions are those which can use a node
multiple times in their DAG. As a result, although all functions will have an equal q̃, some
functions with multiple inputs will have larger q than other functions, and q is what de-
termines the probability of being sampled. In practice, therefore, we find that a balance
between initializing all weights to one and initializing all functions to equal probability is
most effective for exploring all types of functions.

To implement this balance, we create an equalization hyperparameter, E. If E = 0, we
initialize all weights to 1 as in the original OccamNet architecture. If E ̸= 0, we use the
algorithm presented above to initialize the weights and then divide all of the weights by E.
For E > 1, this has the effect of initializing weights between the two initialization approaches.
In practice, we find that values of E = 1 and E = 5 are most effective for exploring all types
of functions (See Section 3.6.2).

46

Function Selection

As discussed in the main text, after training using a sampling strategy, the network selects
the function f⃗ with the highest probability q(f⃗ |W).

We develop a dynamic programming algorithm that determines the DAG with the highest
probability. The algorithm steps sequentially through each argument layer, and at each ar-
gument layer it determines the maximum probability path to each argument node. Knowing
the maximum probability paths to the previous argument layer nodes allows the algorithm
to easily determine the maximum probability paths to the next argument layer.

As with the network initialization algorithm, the function selection algorithm associates
the ith P -node of the lth argument sublayer with a probability, p̃(l)i , which represents the
highest probability path to that node. Similarly, we let p(l)i represent the assigned probability
of the ith node of the lth image sublayer, defined as the highest probability path to a given
image node. p(l)i can once again be determined from p̃

(l)
i using Equation 3.8. Further, the

algorithm associates each node with a function, f̃ (l)
i for argument nodes and f

(l)
i for image

nodes, which represents the highest probability function to the corresponding node. Thus,
f̃
(l)
i has probability p̃

(l)
i , and f

(l)
i has probability p

(l)
i . Further, f (l)

i is determined from f̃
(l)
i

using

f
(l)
i (x⃗) = ϕi

(
f̃
(l)
n+1(x⃗), . . . , f̃

(l)
n+α(ϕj)

(x⃗)
)
, n =

i−1∑
j=1

α(ϕj). (3.11)

The algorithm iterates through the networks layers. At the lth layer, it determines the
maximum probability path to each argument node, computing

p̃
(l+1)
i = MAX

(
p
(l)
0 p

(l,i)
0 , . . . , p

(l)
N p

(l,i)
N

)

f̃
(l+1)
i =

f
(l)
0 if p̃(l+1)

i = p
(l)
0 p

(l,i)
0

f
(l)
1 if p̃(l+1)

i = p
(l)
1 p

(l,i)
1

...
...

f
(l)
N if p̃(l+1)

i = p
(l)
N p

(l,i)
N

.

Next, it determines the maximum probability path up to each image node, computing p(l+1)
i

and f
(l+1)
i using Equations 3.8 and 3.11, respectively. The algorithm repeats this process

until it reaches the output layer, at which point it returns f⃗max = [f̃
(L)
1 , . . . , f̃

(L)
N]⊤ and

pmax =
∏N

i=1 p̃
(L)
i .

An advantage of this process is that identifying the highest probability function has
the same computational complexity as sampling functions. In particular, the complexity at
each layer is O(MNi), leading to an overall complexity of O(NML2) if skip connections are
included.

Loss Function and its Gradient

We train our network on mini-batches of data to provide flexibility for devices with various
memory constraints. Consider a mini-batch M = (X, Y), and a sampled function from the

47

network f⃗(·) ∼ q(·|W). We compute the fitness of each f(i)(·) with respect to a training pair
(x⃗, y⃗) by evaluating the likelihood

ki
(
f(i)(x⃗), y⃗

)
= (2πσ2)−1/2 exp

(
−
[
f(i)(x⃗)− (y⃗)i

]2
/(2σ2)

)
,

which is a Normal distribution with mean (y⃗)i and variance σ2, and measures how close
f(i)(x⃗) is to the target (y⃗)i. The fitness can be also viewed as a Bayesian posterior with a
noninformative prior. The total fitness is determined by summing over the entire mini-batch:
Ki

(
M, f(i)

)
=
∑

(x⃗,y⃗)∈M ki
(
f(i)(x⃗), y⃗

)
.

The variance σ2 of ki
(
f(i)(x⃗), y⃗

)
characterizes the fitness function’s smoothness. As

σ2 → 0, the fitness is a delta function with nonzero fitness for some (x⃗, y⃗) only if f(i)(x⃗) = (y⃗)i.
Similarly, a large variance characterizes a fitness in which potentially many solutions provide
accurate approximations, increasing the risk of convergence to local minima. In the former
case, learning becomes harder as few f(i)(·) out of exponentially many sampleable functions
result in any signal, whereas in the latter case learning might not converge to the optimal
solution. We let σ2 be a network hyperparameter, tuned for the tradeoff between ease of
learning and solution optimality for different tasks.

Similar to [77], we use a loss function for backpropagating on the weights of q(·|W):

Hqi [f(i),W,M] = −Ki

(
M, f(i)

)
· log

[
qi(f(i)|W)

]
. (3.12)

We can interpret (3.12) as the cross-entropy of the posterior for the target and the probability
of the sampled function f(i). If the sampled function f(i) is close to f ∗

(i), then Ki(M, f(i)) will
be large, and the gradient update below will also be large:

∇WHqi

[
f(i),W,M

]
= −
∇Wqi(f(i)|W)

qi(f(i)|W)
Ki

(
M, f(i)

)
. (3.13)

The first term on the right-hand side (RHS) of update (3.13) increases the probability
of the function f(i). The second term on the RHS is maximal when f(i)(x⃗) = f ∗

(i)(x⃗). Impor-
tantly, the second term approaches zero as f(i) deviates from f ∗

(i). If the sampled function
is far from the target, then the probability update is suppressed by Ki(M, f(i)). There-
fore, we only optimize the probability for functions close to the target. Note that in (3.13)
we backpropagate only through the probability of the function f(i) given by qi

(
f(i)|W

)
,

whose value does not depend on the primitives in Φ, implying that the primitives can be
non-differentiable. This is particularly useful for applications requiring non-differentiable
primitive functions. Furthermore, this loss function allows non-differentiable regularization
terms, which greatly expands the regularization possibilities.

Sample-based Training

We use a sampling-based strategy to update our model, explained below without constant
fitting for simplicity. This training procedure was first proposed in Risk-Seeking Policy
Gradients [77]. We denote W(t) as the set of weights at training step t, and we fix two
hyperparameters: R, the number of functions to sample at each training step, and λ, or
the truncation parameter, which defines the number of the R paths chosen for optimization
via (3.13). We initialize W(0) as described in Section 3.2.2. We then proceed as follows:

48

1. Sample R functions f⃗1, . . . , f⃗R ∼ q(·|W(t)). We denote the jth output of f⃗i as fi(j).

2. For each output j, sort fi(j) from greatest to least value of Kj

(
M, fi(j)

)
and select the

top λ functions, yielding a total of vλ selected functions g1,j, . . . , gλ,j. The total loss
is then given by

∑λ
i=1

∑v−1
j=0 Hqj [gi,j,W,M], which yields the training step gradient

update:

−
λ∑
i=1

v−1∑
j=0

∇Wqj(gi,j|W)

qj(gi,j|W)
Kj(M, gi,j). (3.14)

Notice that through (3.14) we have arrived at a modified REINFORCE update [103],
where the policy is qi(·|·) and the regret is the fitness Ki(·, ·).

3. Perform the gradient step (3.14) on W(t) for all selected paths to obtain W(t+1). In
practice, we find that the Adam algorithm [104] works well for this step.

4. Set t = t+ 1 and repeat from Step 1 until a stop criterion is met.

Note that Equations (3.13) and (3.14) represent different objective functions – we use (3.14).
The benefit of using Equation (3.14) is that accumulating over the top vλ best fits to the
target allows for explorations of function compositions that contain desired components but
are not fully developed. In practice, we find that reweighting the importance of the top-
vλ routes, substituting K ′

j(M, gi,j) = Kj(M, gi,j)/i, improves convergence speed by biasing
updates towards the best routes.

Constant Fitting

Thus far, our method works for functions with constants known a priori. Examples of
such functions include x2 or x + π if (·)2 and π are provided respectively as primitives and
constants ahead of time. In some cases, however, we may wish to fit functions that involve
constants that are not known a priori. To fit such undetermined constants, we use activation
functions with unspecified constants, such as xc and c · x (c is undefined). We then combine
the training process described in Section 3.6.1 with a constant fitting training process.

The two-step training process works as follows: We first sample a batchM and a function
batch (f⃗1, . . . , f⃗R). Next, for each function f⃗i, we fit the unspecified constants to M in f⃗i
using gradient descent. Any other constant optimization method would also work. Finally,
we update the network weights according to Section 3.6.1, using the fitnessK of the constant-
fitted function batch. To increase training speed, we store each function’s fitted constants
for reuse.

Recurrence

OccamNet can also be trained to find recurrence relations, which is of particular interest
for programs that rely on FOR or WHILE loops. To find such recurrence relations, we
assume a maximal recursion D. We use the following notation for recurring functions:
f ◦(n+1)(x) ≡ f ◦n(f(x)), with base case f ◦1(x) ≡ f(x).

49

To augment the training algorithm, we first sample (f⃗1, . . . , f⃗R) ∼ q(·|W(t)). For each f⃗i,
we compute its recurrence to depth D as follows

(
f⃗ ◦1
i , f⃗

◦2
i , . . . , f⃗

◦D
i

)
, obtaining a collection of

RD functions. Training then continues as usual; we compute the corresponding Kj(M, f⃗ ◦n
i(j)),

select the best vλ, and update the weights. It is important to note that we consider all
depths up to D since our maximal recurrence depth might be larger than the one for the
target function.

Note that we do not change the network architecture to accommodate for recurrence
depth D > 1. As described in the main text, we can efficiently use the network architecture
to evaluate a sampled function f⃗(x⃗) for a given batch of x⃗. To incorporate recurrence, we
take the output of this forward pass and feed it again to the network D times, similar to
what is typically done for recurrent neural networks. The resulting outputs are evaluations(
f⃗ ◦1
i (x⃗), f⃗ ◦2

i (x⃗), . . . , f⃗ ◦D
i (x⃗)

)
for a given batch of x⃗.

Regularization

As discussed in the main text, to improve implicit function fitting, we implement a regularized
loss function,

K ′
i(M, f) = Ki(M, f)− s · r[f],

for some regularization function r, where s = n(M)/
√
2πσ2 is the maximum possible value

of Ki(M, f). We define

r[f] = wϕ · ϕ[f] + wψ · ψ[f] + wξ · ξ[f] + wγ · γ[f],

where ϕ[f] measures trivial operations, ψ[f] measures trivial approximations, ξ[f] measures
the number of constants in f , γ[f] measures the number of activation functions in f, and
wϕ, wψ, wξ, and wγ, are weights for their respective regularization terms. We now discuss
each of these regularization terms in more detail.

The ϕ[f] Regularization Term: The ϕ[f] term measures whether the unsimplified form
of f contains trivial operations, by which we mean operations that simplify to 0, 1, or the
identity. For example, division is a trivial operation in x/x, because the expression simplifies
to 1. Similarly, 1 · x, x1, and x0 are all trivial operations. We punish these trivial operations
because they produce constant outputs without adding meaning to an expression.

To detect trivial operations, we employ two procedures. The first uses the SymPy package
[105] to simplify f . If the simplified expression is different from the original expression,
then there are trivial operations in f , and this procedure returns 1. Otherwise the first
procedure returns 0. Unfortunately, the SymPy == function to test if functions are equal often
incorrectly indicates that nontrivial functions are trivial. For example, SymPy’s simplify
function, which we use to test if a function can be simplified, converts x+x to 2·x, and the ==
function states that x+ x ̸= 2 · x. To combat this, we develop a new function, sympyEquals
which corrects for these issues with ==. The sympyEquals is equivalent to ==, except that
it does not take the order of terms into account, and it does not mark expressions such as
x+ x and x · x as unsimplified. We find that this greatly improves implicit function fitting.

The constant fitting procedure often produces functions that only differ from a trivial
operation because of imperfect constant fitting, such as f(x0) = x0.00010 , which is likely meant

50

to represent x00. SymPy, however, will not mark this function as trivial. The second procedure
addresses this issue by counting the constant activations, such as x0.00010 , 1.001 · x0, and
x0 + 0.001, which approximate trivial operations. For the activation function f(x) = x+ c,
if the fitted c satisfies −0.1 < c < 0.1, the procedure adds 1 to its counter. Similarly, for
the activation functions f(x) = cx and f(x) = xc, if the fitted c satisfies −0.1 < c < 0.1
or 0.9 < c < 1.1, the procedure adds 1 to its counter. We select these ranges to capture
instances of imperfect constant fitting without labeling legitimate solutions as trivial. After
checking all activation functions used, the procedure returns the counter.

The ϕ[f] term returns the sum of the outputs of the first and second procedures. We
find that a weight of wϕ ≈ 0.7 for ϕ[f] is most effective in our loss function. This value of
wϕ ensures that most trivial f have Ki(M, f)− s · wϕ · ϕ[f] < 0, thus actively reducing the
weights corresponding to functions with trivial operations, without over punishing functions
and hindering learning.

The ψ[f] Regularization Term: When punishing trivial operations using the ϕ term, we
find that the network discovers many nontrivial operations which very closely approximate
trivial operations by exploiting portions of functions with near-zero derivatives, which can
be used to artificially compress data. For example, cos(x/2) closely approximates 1 if −1 <
x < 1. Unfortunately, it is often difficult to determine if a function approximates a trivial
function simply from its symbolic representation. This issue is also identified in [102].

To detect these trivial function approximations, we develop an approach that analyzes
the activation functions’ outputs during the forward pass. The ψ[f] term counts the num-
ber of activation functions which, during a forward pass, the network identifies as possibly
approximating trivial solutions, as well as a metric for how close to trivial these functions
are. For each primitive function, the network stores values around which outputs of that
function often cluster artificially. Table 3.4 lists the primitives which the network tests for
clustering.

The procedure for determining ψ is as follows. The algorithm begins with a counter of
0. During the forward pass, if the network reaches a primitive function ϕ listed in Table 3.4,
the algorithm tests each ordered tuple (ϕ, a, δ) from Table 3.4, where a is the point tested
for clustering and δ is the cluster tolerance. If the mean of all the outputs of the primitive
function, ȳ, for a given batch satisfies |ȳ − a| < δ, the algorithm adds min(5, 0.1/ |ȳ − a|) to
the counter. These expressions increase with the severity of clustered data; the more closely
the outputs are clustered, the higher the punishment term. The minimum term ensures that
ψ[f] is never infinite.

We also test for the approximation sin(x) ≈ x by testing the inputs and outputs of
the sine primitive function. If the inputs and outputs x and y of the sine primitive satisfy
|y − x| < 0.1, the algorithm adds min(5, 0.05/|y − x|) to the counter. In the future, we plan
to consider more approximations similar to the small angle approximation.

ψ[f] should not artificially punish functions involving the primitives listed in Table 3.4
that are not trivial approximations because no proper use of these primitive functions will
always produce outputs very close to the clustering points. Because ψ[f] flags functions
based on their batch outputs, each batch will likely give different outcomes. This allows ψ[f]
to better discriminate between trivial function approximations and nontrivial operations:
ψ[f] should flag trivial function approximations often, but it should only flag nontrivial
operations rarely when the inputs statistically fluctuate to produce clustered outputs. In

51

Table 3.4: Primitive functions tested for clustering

Primitive Function Cluster Points Cluster Tolerance

(·)2 {0} 0.25
(·)3 {0} 0.25
sin(·) {1,−1} 0.25
cos(·) {1,−1} 0.25
(·)c {1} 0.5

practice, we find that a weight of wψ ≈ 0.3 for ψ[f] is most effective in our loss function.
The ξ[f] Regularization Term: When our network converges to the correct solution, it

may converge to a more complicated expression equivalent to the desired expression. To
promote simpler expressions, we slightly punish functions based on their complexity. The
ξ[f] term counts the number of activation functions used to produce f, which serves as
a measure of f ’s complexity. We find that a small weight of wξ ≈ 0.1 for ξ[f] is most
effective in our loss function. This small value has little significance when distinguishing
between a function that fits a dataset well and a function that does not, but it is enough to
promote simpler functions over complex functions when they have approximately the same
loss otherwise.

The γ[f] Regularization Term: The γ[f] term also punishes functions for their complexity.
The γ[f] term counts the number of constants in f , which, like the number of activation
functions, serves as a metric for f ’s complexity. We find that a weight of wγ ≈ 0.15 for γ[f]
is most effective in our loss function. Just as with ξ[f], this small value has little significance
when distinguishing between a function that fits a dataset well and a function that does not,
but it is enough to slightly promote simpler functions over complex functions when they are
otherwise equivalent. We weight γ[f] slightly higher than ξ[f] because many functions with
constants can be simplified.

Functions with Undefined Outputs

One difficulty that may arise when training OccamNet is that many sampled functions are
undefined on the input data range. Two cases of undefined functions are: 1) the function
is undefined on part of the input data range for all values of a set of constants, or 2) the
function is only undefined when the function’s constants take on certain values. An example
function satisfying case 1 is f1(x0) = c0/(x0− x0), which divides by 0 regardless of the value
of c0. An example function satisfying case 2 is f2(x0) = xc00 , which is undefined whenever x0
is negative and c0 is not an integer.

In the first case, the network should abandon the function. In the second case, the
network should try other values for the constants. However, the network cannot easily
determine which case an undefined function satisfies. To balance both cases, if the network
obtains an undefined result, such as NaN or inf, for the forward pass, the network tests up to
100 more randomized sets of constants. If none of these attempts produce defined results, the
network returns the array of undefined outputs. For example, with c0/(x0−x0), the network
tests a first set of constants, determines that they produce an undefined output, and tests

52

100 more constants. None of these functions are defined on all inputs, so the network returns
the undefined outputs.

In contrast, with xc00 , the network might find that the first set of constants produces
undefined outputs, but after 20 retries, the network might discover that c0 = 2 produces a
function defined on all inputs. The network will then perform gradient descent and return
the fitted value of c0. Further, if at any point in the gradient descent, the forward pass yields
undefined results, the network returns the well-defined constants and associated output from
the previous forward pass. For example, for xc00 , after the network discovers that c0 = 2 works,
the gradient for the constants will be undefined because c0 can only be an integer. Thus,
the network will return the outputs of xc00 , for c0 = 2, before the undefined gradients.

We find that if the network simply ignores functions with undefined outputs, these
functions will increase in probability because our network regularization punishes many
other functions. Since these punished functions decrease in probability during training,
the functions with undefined outputs begin to increase in probability. To combat this, in-
stead of ignoring undefined functions, we use a modified fitness for undefined functions,
K ′
i(M, f) = −wundefs, where wundef is a hyperparameter that can be tuned. This punishes

undefined functions, causing their weights to decrease. In practice, we find that a value of
wundef between 0 and 1 is most effective, depending on the application. Larger penalties may
overly decrease probabilities of valid functions which are similar to an undefined function.

OccamNet with Units

Although we do not use this feature in our experiments, we also allow users to provide units
for inputs and outputs. OccamNet will then regularize its functions so that they preserve
the desired units.

To determine if a function f preserves units, we first encode the units of each input
and output. We encode an input parameter’s units as a NumPy array in which each entry
represents the power of a given base unit. For example, if for a problem the relevant units
are kg, m, and s, and we have an input F with units kg ·m/s2, we would represent F ’s units
as [1, 1,−2].

We then feed these units through the sampled function. Each primitive function receives
a set of variables with units, may have requirements on those units for them to be consistent,
and returns a new set of units. For example, sin(·) receives one variable which it requires
to have units [0, . . . , 0] and returns the units [0, . . . , 0]. Similarly, +(·, ·) takes two variables
with units that it requires to be equal and returns the same units. Using these rules, we
propagate units through the function until we obtain units for the output. If at any point the
input units for a primitive function do not meet that primitive’s requirements, that primitive
returns [∞, . . . ,∞]. Any primitive functions that receive [∞, . . . ,∞] also return [∞, . . . ,∞].
Finally, if the output units of f do not match the desired output units (including if f outputs
[∞, . . . ,∞]), we mark f as not preserving units.

For the multiplication by a constant primitive function, ·c, we have to be careful. Because
the units of c are unspecified, this primitive function can produce any output units. As
such, it returns [NaN, . . . ,NaN]. If any primitive function receives [NaN, . . . ,NaN], it will
either return [NaN, . . . ,NaN] if it has no constraints on the input units, or it will treat
the [NaN, . . . ,NaN] as being the units required to meet the primitive function’s consistency

53

conditions. For example, if the sin(·) function receives [NaN, . . . ,NaN], it will treat the input
as [0, . . . , 0], and if the +(·, ·) function receives [1, 2, 3] and [NaN,NaN,NaN], it will return
[1, 2, 3].

After sampling functions from OccamNet, we determine which functions do not preserve
units. Because we wish to avoid these functions entirely, we bypass evaluating their normal
fitness (thereby saving compute time) and instead assign a fitness of K ′

i(M, f) = −wunitss,
where s = n(M)/

√
2πσ2 is the maximum possible value of Ki(M, f) and wunits is a hyper-

parameter that can be tuned (set to 1 by default).

3.6.2 Experimental Setup

We divide this section as follows:

1. Section 3.6.2 describes the hyperparameters used for the experiments described in the
main text testing OccamNet on Analytic Functions, Non-Analytic Functions, Implicit
Functions, and Image Recognition.

2. Section 3.6.2 describes the experimental setup for our tests with the PMLB datasets.

Experimental Setup and Hyperparameters for Non-PMLB Experiments

For the non-PMLB experiments, we terminate learning when the top-vλ sampled functions
all return the same fitness K(·, f) for 30 consecutive epochs. If this happens, these samples
are equivalent function expressions.

Computing the most likely DAG allows retrieval of the final expression. If this final
expression matches the correct function, we determine that the network has converged. For
pattern recognition, there is no correct target composition, so we measure the accuracy of
the classification rule on a test split, as is conventional. Note that in the experiments where
E = 0, we instead take an approximate of the highest probability function by taking the
argmax of the weights into each argument node.

In all experiments, if termination is not met in a set number of steps, we consider it
as not converged. We also keep a constant temperature for all the layers except for the
last one. An increased last layer temperature allows the network to explore higher function
compositionality, as shallow layers can be further trained before the last layer probabilities
become concentrated; this is particularly useful for learning functions with high degrees
of nesting. More details on hyperparameters for experiments are in the SM. Our network
converges rapidly, often in only a few seconds and at most a few minutes.

In Tables 3.5 and 3.6, we present and detail the hyperparameters we used for our ex-
periments in the main paper. Note that detail about the setup for each experiment is pro-
vided in the open source repositories available at https://github.com/druidowm/OccamNet_
Versions.

In Tables 3.5 and 3.6, + is addition (2 arguments); − is subtraction (2 arguments) · is
multiplication (2 arguments); / is division (2 arguments); sin(·) is sine, +c is addition of a
constant, ·c is multiplication of a constant, (·)c is raising to the power of a constant, ≤ is an
if-statement (4 arguments: comparing two numbers, one return for a true statement, and one
for a false statement); −(·) is negation. MIN, MAX, and XOR all have two arguments. Here,

54

https://github.com/druidowm/OccamNet_Versions
https://github.com/druidowm/OccamNet_Versions

SIGMOID′ is a sigmoid layer, and tanh′ is a tanh layer where the inputs to both functions
are scaled by a factor of 10, +4, and +9 are the operations of adding 4 and 9 numbers
respectively, and MAX4, MIN4, MAX9 and MIN9 are defined likewise. The primitives for
pattern recognition experiments are given as follows: ΦA consists of SIGMOID′, SIGMOID′,
tanh′, tanh′, +4, +4, +9, +9, +, +, MIN, MIN, MAX and MAX; ΦB consists of id, id, id, id, +,
+, +, +4, +4, +9, +9, +9, tanh,, tanh, SIGMOID, and SIGMOID. Additionally, the constants
used for pattern recognition are C = {−1,−1, 0, 0, 1, 1, 1}.

In Tables 3.5 and 3.6, L is the depth, T is the temperature, Tlast is the temperature of the
final layer, σ is the variance, R is the sample size, λ is the fraction of best fits, α is the learning
rate, E is the initialization parameter described in Section 3.6.1, and wϕ, wψ, wξ, and wγ
are as defined in Appendix 3.6.1. Table 3.5 does not include E as a listed hyperparameter
because for all experiments listed, E = 0. With ∗ we denote the experiments for which
the best model is without skip connections. We do not regularize for any experiments in
Table 3.5. NA entries mean that the corresponding hyperparameter is not present in the
experiment. Note that the first three equations in Table 3.6 are not discussed in the main
text. Instead, they are smaller experiments that we performed and which we discuss in the
SM.

For all experiments in Table 3.6, we use a learning rate of 0.01 and, when applicable, a
constant-learning rate of 0.05. We also set the temperature to 1 and the final layer temper-
ature to 10 for all experiments in the table. For the equation m1v1 −m2v2 = 0, we sample
m1, v1, and m2 from [−10, 10] and compute v2 using the implicit function.

All our experiments in Table 3.5 use a batch size of 1000, except for Backprop OccamNet
and Finetune ResNet, for which we use batch size 128. All our experiments in Table 3.6 use
a batch size of 200. For each of our pattern recognition experiments, we use a 90%/10%
train/test random split for the corresponding datasets. The input pixels are normalized to
be in the range [0, 1]. During validation, for MNIST Binary, MNIST Trinary and ImageNet
Binary the outputs of OccamNet are thresholded at 0.5. If the output matches the one-hot
label, then the prediction is accurate; otherwise, it is inaccurate. For Backprop OccamNet
and Finetune ResNet the outputs of OccamNet are viewed as the logits of a negative log
likelihood loss function, so the prediction is the argmax of the logits. Backprop OccamNet
and Finetune ResNet use an exponential decay of the learning rate with decay factor 0.999.

PMLB Experiments Setup

As described in the main text, we test OccamNet on 15 datasets from the Penn Machine
Learning Benchmarks (PMLB) repository [101]. The 15 datasets chosen and the correspond-
ing numbers we use to reference them, are shown in Table 3.7. We chose these datasets by
selecting the first 15 regression datasets with fewer than 1667 datapoints. These 15 datasets
are the only datasets from PMLB we examine.

We test four methods on these datasets. OccamNet-CPU, OccamNet-GPU, Eplex, AIF,
and Extreme Gradient Boosting (XGB) [106]. We have described all of these methods except
for XGB in the main text. XGB is a tree-based method that was identified by [107] as the
best machine learning method based on validation MSE for modeling the PMLB datasets.
However, XGB is not interpretable and thus cannot be used as a one-to-one comparison
with OccamNet. Hence, although we provide the raw data for XGB’s performance, we

55

Table 3.5: Hyperparameters for Experiments Where E = 0

Target Primitives Constants Range L/ T/ Tlast/ σ R/ λ/ α

Analytic Functions

2x2 + 3x (·, ·,+,+) ∅ [−10, 10] 2/1/1/0.01 50/5/0.05
sin(3x + 2) (·, sin, sin,+,+) 1, 2 [−10, 10] 3/1/1/0.001 50/5/0.005∑3
n=1 sin(nx) (sin, sin,+,+,+) 1, 2 [−20, 20] 5/1/1/0.001 50/5/0.005

(x2 + x)/(x + 2) (·, ·,+,+, /, /) 1 [−6, 6] 2/1/2/0.0001 100/5/0.005
x2
0(x0 + 1)/x5

1 (·, ·,+,+, /, /) 1 [[−10, 10], [0.1, 3]] 4/1/3/0.0001 100/10/0.002
x2
0/2 + (x1 + 1)2/2 (·, ·,+,+, /) 1, 2 [[−20,−2], [2, 20]] 3/1/2/0.1 150/5/0.005

Program Functions

3x if x > 0, else x (≤,≤, ·,+,+, /) 1 [−20, 20] 2/1/1.5/0.1 100/5/0.005
x2 if x > 0, else −x (≤,≤,−(·),+,+,−, ·) 1 [−20, 20] 2/1/1.5/0.1 100/5/0.005
x if x > 0, else sin(x) (≤,≤,+,+, sin, sin) 1 [−20, 20] 3/1/1.5/0.01 100/5/0.005

SORT(x0, x1, x2)
(≤,+,MIN,MAX, 1, 2 [−50, 50]4 3/1/4/0.01 100/5/0.004

MAX/, ·,−)

4LFSR(x0, x1, x2, x3) (+,+, XOR, XOR) ∅ {0, 1}4 2/1/1/0.1 100/5/0.005

y0(x⃗) = x1 if x0 < 2, else −x1 (≤,≤,−(·), ·) 1, 2 [−5, 5]2 3/1/3/0.01 100/5/0.002
y1(x⃗) = x0 if x1 < 0, else x2

1

g(x) = x2 if x < 2, else x/2 (≤,≤,+, ·, ·, /, /) 1, 2 [−8, 8] 2/1/2/0.01 100/5/0.005
y(x) = g◦4(x)

g(x) = x + 2 if x < 2, else x − 1 (≤,≤,+,+, 1, 2 [−3, 6] 2/1/1.5/0.01 100/5/0.005
y(x) = g◦2(x) +,−,−)

Pattern Recognition

MNIST Binary ΦA C [0, 1]784 2/1/10/0.01 150/ 10/0.05
MNIST Trinary ΦA C [0, 1]784 2/1/10/0.01 150/ 10/0.05
ImageNet Binary∗ ΦA C [0, 1]2048 4/1/10/10 150/10/0.0005
Backprop OccamNet∗ ΦB C [0, 1]2048 4/1/10/NA NA/NA/0.1
Finetune ResNet∗ ΦB C [0, 1]3×224×224 4/1/10/NA NA/NA/0.1

do not analyze it further. We train all methods except OccamNet-GPU on a single core
of an Intel Xeon E5-2603 v4 @ 1.70GHz. For all methods, we use the primitive set Φ =
(+(·, ·),−(·, ·),×(·, ·),÷(·, ·), sin(·), cos(·), exp(·), log | · |) .

For each dataset, we perform grid search to identify the best hyperparameters. The
hyperparameters searched for the two OccamNet runs are shown in Table 3.8. The other
hyperparameters not used in the grid search are set as follows: T = 10, Tlast = 10, wϕ = wψ =
wξ = wγ = 0, and the dataset batch size is the size of the training data. For OccamNet-
GPU, we set R to be approximately as large as can fit on the V100 GPU, which varies
between datasets. See Table 3.9 for the exact number of functions tested for each dataset
for OccamNet-GPU. For XGBoost, we use exactly the same hyperparameter grid as used in

Table 3.6: Hyperparameters for Experiments Where E = 1

Target Primitives Constants Range L σ R λ wϕ/wψ/wξ/wγ

Analytic Functions

10.5x3.1
(+,−, ·, /, sin, ∅ [0, 1] 2 0.0005 200 10 0/0/0/0
cos,+c, ·c, (·)c)

cos(x) (+, /, sin) 2, π [−100, 100] 3 0.01 400 50 0/0/0/0
ex (+, ·c, (·)c) 10 [0, 1] 3 0.05 200 1 0.7/0.3/0.05/0.03

Implicit Functions

x0x1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 400 1 0.7/0.3/0.15/0.1
x0/x1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 400 1 0.7/0.3/0.15/0.1
x2
0 + x2

1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 200 10 0.7/0.3/0.15/0.1
x0/ cos(x1) = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 200 10 0.7/0.3/0.15/0.1
m1v1 − m2v2 = 0 (+,−, ·, /, sin, cos) ∅ [−10, 10]3 2 0.01 200 10 0.7/0.3/0.15/0.1

56

Table 3.7: Datasets Tested

Dataset Size # Features

1 1027_ESL 488 4
2 1028_SWD 1000 10
3 1029_LEV 1000 4
4 1030_ERA 1000 4
5 1089_USCrime 47 13
6 1096_FacultySalaries 50 4
7 192_vineyard 52 2
8 195_auto_price 159 15
9 207_autoPrice 159 15
10 210_cloud 108 5
11 228_elusage 55 2
12 229_pwLinear 200 10
13 230_machine_cpu 209 6
14 4544_GeographicalOriginalofMusic 1059 117
15 485_analcatdata_vehicle 48 4

[107]. For Eplex, we use the same hyperparameter grid as used in [107], with the exception
that we use a depth of 4 to match that of OccamNet.

Table 3.8: OccamNet Hyperparameters

Hyperparameter OccamNet-CPU OccamNet-GPU

α {0.5, 1} {0.5, 1}
σ {0.5, 1} {0.1, 0.5, 1}
E {1, 5} {0, 1, 5}

λ/R {0.1, 0.5, 0.9} {0.1, 0.5, 0.9}
R {500, 1000, 2000} max
N 1000000/R 1000

We select the best run from the grid search as follows. For each hyperparameter combi-
nation, we first identify the models with the lowest training MSE and the lowest validation
MSE:

• For OccamNet-CPU and OccamNet-GPU, we examine the highest probability function
after each epoch. From these functions, we select the function with the lowest testing
MSE and the function with the lowest validation MSE.

• For Eplex, we examine the highest-fitness individual from each generation. From these
individuals, we select the individual with the lowest training MSE and the individual
with the lowest validation MSE.

• For XGBoost, we train the model until the validation loss has not decreased for 100
epochs. We then return this model as the model with the best training MSE and
validation MSE.

57

Table 3.9: Number of Functions Sampled Per Epoch

R

1 17123
2 8333
3 8333
4 8333
5 178571
6 166666
7 161290
8 52631
9 52631
10 78125
11 151515
12 41666
13 40000
14 7874
15 178571

Once we have the models with the lowest training and validation MSE for each hyperparam-
eter combination, we identify the overall model with the lowest training MSE from the set
of lowest training MSE models, and we identify the overall model with the lowest validation
MSE from the set of lowest validation MSE models. We then record these models’ training
MSE and validation MSE as the best training MSE and validation MSE, respectively. Fi-
nally, we test the model with the overall lowest validation MSE on the testing dataset and
record the result as the grid search testing MSE.

For our test of OccamNet and Eplex’s scalability on the PMLB datasets, we use the same
hyperparameter combinations as those listed described above, except that, as described in the
main text, we run OccamNet-GPU with 250, 1000, 4000, 16000, and 64000 functions sampled
per epoch and Eplex with 250, 500, 1000, 2000 and 4000 functions sampled per epoch. Our
evaluation of training, validation, and testing loss is exactly the same as described above,
except that we evaluate the lowest losses for each value of N instead of grouping N with all
of the other hyperparameters.

58

Chapter 4

Conclusion

Given ML’s success, it is natural to ask in what ways it may be a valuable tool for physics.
This thesis explores two approaches that can enable more effective ML techniques for physics:
1) fast and memory-efficient si mulation an d 2) di scovering ne w ph ysics. Th ese two direc-
tions reflect problems where classical techniques display shortcomings and machine-learning
models have the potential to overcome these shortcomings. We develop a physics-optimized
ML model for each approach to illustrate the potential of ML to advance physics through
each.

Regarding our first a pproach, e xisting s imulation t echniques o ften s truggle t o s cale to
large systems because of poor scaling of memory and compute [11]. For a quantum system,
this is especially problematic because the size of the state of the system grows exponen-
tially with the number of components (particles, potential wells, etc.) [11]. The inability
to simulate large quantum systems limits the progress in fields s uch a s q uantum comput-
ing and quantum engineering [11]. We discussed Q-Flow, a technique for bosonic quantum
simulation using normalizing flows and a novel time evolution algorithm to simulate a com-
pressed representation of a quantum state [11]. By time evolving the compressed neural
representation of the state, we avoid the need to store and process the full quantum state
and enable simulating higher-dimensional quantum systems than is possible using standard
finite-difference or finite-element solvers [11].

Regarding our second approach, scientific discovery is difficult to perform algorithmically
because of its open-ended nature and the enormous search-space of possible theories [13].
Instead, it is usually performed by hand, relying on human intuition and tedious trial and
error [13]. We beleive this problem naturally lends itself to ML techniques, because they
have proven successful in high-dimensional search problems [12] and can be instilled with
human-like intuition [3]. We discussed OccamNet, a novel architecture and set of algorithms
for scientific discovery using efficient and parallelizable symbolic regression [13]. By using re-
inforcement learning and symbolic inductive biases, OccamNet intelligently searches through
the space of possible equations describing data, a step toward automated physics discovery
[13].

Our methods demonstrate the potential for ML as a valuable tool for physics research.
In the future, we hope to extend this research by incorporating further inductive biases from
math and physics and applying our methods to real-world problems in physics.

59

Appendix A

Q-Flow Appendices

The below is taken from the appendices of [11].

A.1 Q Function Conversions

A.1.1 Quantum Preliminaries

Here, we provide a brief and intuitive introduction to the theory of bosonic systems. We
intentionally simplify most of the definitions and focus on the important concepts to our
study. For an in-depth discussion, please refer to [108].

We will discuss a few important terms that we use throughout the main text.

Braket notation. Such notation is used throughout the text to denote quantum states.
Quantum states are elements of a complex vector space V , equipped with a Hermitian
form. In our work we use the standard Hermitian inner product, which in math notation
is (v,w) = v†w. Here † denotes the complex conjugate, for any two vectors v,w ∈ V. In
physics notation, we write v as |v⟩ (known as a ket) and likewise for w. We also use the
notation ⟨v| ≡ v†, and call this a bra. Then, v†w can be written ⟨v| |w⟩, or more concisely
as ⟨v|w⟩. Furthermore, |v⟩ ⟨w| denotes the outer product of v and w†.

Vacuum states, the Fock space. In addition to using |·⟩ and ⟨·| to denote arbitrary
members of the Hilbert space and it’s dual. We also have special notation for a few members
of the Hilbert space. It turns out that the Hilbert space for a single Well is spanned by a
countably infinite set of basis vectors, which we label |0⟩ , |1⟩ , For multiple Wells, the
total Hilbert space will be the tensor product of each particle’s Hilbert space. To represent
a general element of |0⟩ , |1⟩ , . . ., we will use a Roman letter inside the ket or bra.

Creation, annihilation operators and Coherent state. The creation operator a† sat-
isfies a† |n⟩ =

√
n+ 1 |n+ 1⟩ and the annihilation operator a satisfies a |n⟩ =

√
n |n− 1⟩ with

a |0⟩ = 0. The coherent state |α⟩ with a complex number α is defined as |α⟩ = eαa
†−α∗a |0⟩,

where e should be interpreted as matrix exponential function.

60

Compute observables. In quantum mechanics, a density matrix ρ can be expressed as
ρ =

∑
n,m ρn,m |n⟩ ⟨m| and an observable O can be expressed as O =

∑
n,mOn,m |n⟩ ⟨m|,

where both ρ and O can be viewed as Hermitian matrices. It follows that the expectation
value of the observable ⟨O⟩ = tr(ρO) =

∑
n,mOn,mρm,n.

A.1.2 Q Function to ρ

In this section, we show that for a given Q(α, α∗), the density matrix ρ corresponding to it
is given by

⟨m| ρ |n⟩ = π
√
m!n!

min(m,n)∑
k=0

Qm−k,n−k

k!
, (A.1)

where

Qa,b(α, α
∗) =

1

a!b!

∂a+b

∂aα ∂bα∗Q(α, α
∗)

∣∣∣∣
α=α∗=0

.

From expressing ⟨α| and |α⟩ in terms of Harmonic Oscillator eigenstates, we have that

Q(α, α∗) =
1

π
e−αα

∗
∞∑
m=0

∞∑
n=0

⟨m| ρ |n⟩√
m!n!

α∗mαn

=
1

π

(
∞∑
s=0

(−1)s

s!
(αα∗)s

)
∞∑
m=0

∞∑
n=0

⟨m| ρ |n⟩√
m!n!

α∗mαn

=
1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

⟨m| ρ |n⟩√
m!n!

(α∗)m+s αn+s

To determine ⟨m| ρ |n⟩, we must thus invert this series. However, since we know the correct
form, we can simply substitute Equation A.1 into the expression above and show that it
correctly gives Q(α, α∗) :

1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

⟨m| ρ |n⟩√
m!n!

(α∗)m+s αn+s

=
1

π

∞∑
s=0

∞∑
m=0

∞∑
n=0

(−1)s

s!

π
√
m!n!

∑min(m,n)
k=0

Qm−k,n−k

k!√
m!n!

(α∗)m+s αn+s

=
∞∑
s=0

∞∑
m=0

∞∑
n=0

min(m,n)∑
k=0

(−1)s

s!

Qm−k,n−k

k!
(α∗)m+s αn+s.

Setting a = m+ s and b = n+ s gives

∞∑
a=0

∞∑
b=0

min(a,b)∑
s=0

min(a,b)−s∑
k=0

(−1)s

s!

Qa−k−s,b−k−s

k!
(α∗)a αb.

61

Then, setting d = s+ k gives

∞∑
a=0

∞∑
b=0

min(a,b)∑
d=0

d∑
s=0

(−1)s

s!

Qa−d,b−d

(d− s)!
(α∗)a αb

=
∞∑
a=0

∞∑
b=0

(α∗)a αb
min(a,b)∑
d=0

Qa−d,b−d

d∑
s=0

(−1)s
(
d

s

)
.

Now, by the Binomial Theorem,
∑d

s=0(−1)s
(
d
s

)
= (1− 1)d = 0d, which is 0 unless d = 1. So,

we get

∞∑
a=0

∞∑
b=0

Qa,b(α, α
∗) · (α∗)a αb

=
∞∑
a=0

∞∑
b=0

(α∗)a αb

a!b!

∂a+b

∂aα∂bα∗Q(α, α
∗)

=Q(α, α∗),

as desired. The last step comes from the Taylor series representation of Q, which is only
valid if Q is analytic. So as long as Q is analytic, this result holds.

Example. To convert a Liouvillian to an equation of motion for Q, we use the fact that

ρ̇ = (a†)jakρ(a†)lam, (A.2)

corresponds to

Q̇ = (α∗)j
(
α +

∂

∂α∗

)k
αm
(
α∗ +

∂

∂α

)l
Q. (A.3)

A linear combination of terms of the form in Equation A.2 corresponds to the same linear
combination of the corresponding terms in Equation A.3.

62

A.1.3 Coherent State Identities

a† |α⟩ = a†e−|α|2/2
∞∑
n=0

αn√
n!
|n⟩

= e−|α|2/2
∞∑
n=0

αn√
n!

√
n+ 1 |n+ 1⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn+1√
(n+ 1)!

|n+ 1⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn√
n!
|n⟩

= e−|α|2/2 ∂

∂α

∞∑
n=0

αn√
n!
|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩ −

(
∂

∂α
e−|α|2/2

) ∞∑
n=0

αn√
n!
|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩ −

(
∂

∂α
e−|α|2/2

) ∞∑
n=0

αn√
n!
|n⟩

=
∂

∂α
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩+ α∗

2
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩

=

(
α∗

2
+

∂

∂α

)
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩

=

(
α∗

2
+

∂

∂α

)
|α⟩ .

Similarly,

⟨α| a =

(
α

2
+

∂

∂α∗

)
⟨α| .

Also,

∂

∂α∗ |α⟩ =
∂

∂α∗ e
−|α|2/2

∞∑
n=0

αn√
n!
|n⟩ = −α

2
e−|α|2/2

∞∑
n=0

αn√
n!
|n⟩ = −α

2
|α⟩ (A.4)

and

∂

∂α
⟨α| = −α

∗

2
⟨α| .

63

A.1.4 ρ Evolution to Q Function Evolution

Note that

⟨α| a†Ô1ρÔ2 |α⟩ = α∗ ⟨α| Ô1ρÔ2 |α⟩ ,
⟨α| Ô1ρÔ2a |α⟩ = α ⟨α| Ô1ρÔ2 |α⟩ .

Also,

⟨α| aÔ1ρÔ2 |α⟩ =
[(

α

2
+

∂

∂α∗

)
⟨α|
]
Ô1ρÔ2 |α⟩

=

(
α

2
+

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩ − ⟨α| Ô1ρÔ2

∂

∂α∗ |α⟩

=

(
α

2
+

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩+

α

2
⟨α| Ô1ρÔ2 |α⟩

=

(
α +

∂

∂α∗

)
⟨α| Ô1ρÔ2 |α⟩ ,

and

⟨α| Ô1ρÔ2a
† |α⟩ = ⟨α| Ô1ρÔ2

(
α∗

2
+

∂

∂α

)
|α⟩

=

(
α∗

2
+

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩ −

[
∂

∂α
⟨α|
]
Ô1ρÔ2 |α⟩

=

(
α∗

2
+

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩+

α∗

2
⟨α| Ô1ρÔ2 |α⟩

=

(
α∗ +

∂

∂α

)
⟨α| Ô1ρÔ2 |α⟩ .

With these results, we now have that for an equation of the form

ρ̇ =
∑
j,k,l,m

cj,k,l,m(a
†)jakρ(a†)lam,

64

we can convert the the Q function equation of motion by inserting 1
π
⟨α| |α⟩ to get

1

π
⟨α| ρ̇ |α⟩ = 1

π

∑
j,k,l,m

cj,k,l,m ⟨α| (a†)jakρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α
∗)j ⟨α| akρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α
∗)j
(
α +

∂

∂α∗

)k
⟨α| ρ(a†)lam |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α
∗)j
(
α +

∂

∂α∗

)k
αm ⟨α| ρ(a†)l |α⟩

=⇒ Q̇(α, α∗) =
1

π

∑
j,k,l,m

cj,k,l,m(α
∗)j
(
α +

∂

∂α∗

)k
αm
(
α∗ +

∂

∂α

)l
⟨α| ρ |α⟩

=⇒ Q̇(α, α∗) =
∑
j,k,l,m

cj,k,l,m(α
∗)j
(
α +

∂

∂α∗

)k
αm
(
α∗ +

∂

∂α

)l
Q(α, α∗).

A.1.5 Observable calculation with respect to Q function

Consider a general observable Ô. Its expected value given a density matrix ρ is

⟨Ô⟩ = Tr
(
Ôρ
)
. (A.5)

Inserting the coherent state resolution of the identity, we get that

Tr
(
Ôρ
)
=

∫
dαdα∗

π
Tr
(
Ôρ |α⟩ ⟨α|

)
=

∫
dαdα∗

π
⟨α| Ôρ |α⟩ .

Depending on the operator, it may be most useful to insert the resolution of the identity
elsewhere.

Example The expected value of am(a†)n given a density matrix ρ is

⟨am
(
a†
)n⟩ = Tr

(
am
(
a†
)n
ρ
)

=

∫
dαdα∗

π
Tr
(
am |α⟩ ⟨α|

(
a†
)n
ρ
)

=

∫
dαdα∗

π
⟨α|
(
a†
)n
ρam |α⟩

=

∫
dαdα∗

π
αm(α∗)n ⟨α| ρ |α⟩

=

∫
dqdp (q + ip)m(q − ip)nQ(q, p).

If m ̸= n, this is not an observable, but could be made an observable by adding its Hermitian
conjugate.

65

A.2 Stochastic Euler-KL Method

Here we derive Equation 2.5 for the control-variance gradient of the KL-Divergence. We
start with

KL(Qt+dt
θ ||Qt

L) =

∫
Qt+dt
θ ln

Qt+dt
θ

Qt
L
.

Taking the gradient gives

∇θKL(Q
t+dt
θ ||Qt

L) = ∇θ

∫
Qt+dt
θ ln

Qt+dt
θ

Qt
L

=

∫ (
∇θQ

t+dt
θ

)
ln
Qt+dt
θ

Qt
L

+

∫
Qt+dt
θ ∇θ ln

Qt+dt
θ

Qt
L

=

∫
Qt+dt
θ

(
∇θ lnQ

t+dt
θ

)
ln
Qt+dt
θ

Qt
L

+

∫
Qt+dt
θ ∇θ lnQ

t+dt
θ

=

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ .

Now, note that∫
Qt+dt
θ (x)∇θ lnQ

t+dt
θ (x) =

∫
Qt+dt
θ (x)

∇θQ
t+dt
θ (x)

Qt+dt
θ (x)

=

∫
∇θQ

t+dt
θ (x) = ∇θ

∫
Qt+dt
θ (x) = ∇θ1 = 0.

(A.6)
So, letting

b =

∫
Qt+dt
θ ln

Qt+dt
θ (x)

Qt
L(x)

≈ 1

N

∑
x∼Qt+dt

θ

ln
Qt+dt
θ (x)

Qt
L(x)

, (A.7)

we can subtract a control variance to get

∇θKL(Q
t+dt
θ ||Qt

L) =

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ

=

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L

+ 1

]
∇θ lnQ

t+dt
θ − (b+ 1)

∫
Qt+dt
θ (x)∇θ lnQ

t+dt
θ (x)

=

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L
− b
]
∇θ lnQ

t+dt
θ

=

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L
− b
]
∇θ lnQ

t+dt
θ

Finally, approximating the integral gives

∇θKL(Q
t+dt
θ ||Qt

L) =

∫
Qt+dt
θ

[
ln
Qt+dt
θ

Qt
L
− b
]
∇θ lnQ

t+dt
θ

≈ 1

N

∑
x∼Qt+dt

θ

[
ln
Qt+dt
θ

Qt
L
− b
]
∇θ lnQ

t+dt
θ ,

as desired.

66

A.3 Additional Experimental Details

A.3.1 Pseudo-spectral and finite difference baseline details

As a baseline approach to solving the Q function evolution PDE (Eq. 2.2), we implement a
pseudo-spectral and finite difference discretization of the PDE [42] in a square domain with
−10 < qj < 10 and −10 < pj < 10 for each Well j, set Q = 0 at the boundaries, and integrate
using an adaptive Tsitouras 5/4 Runge-Kutta solver (Tsit5) [61] while projecting at each
time step to ensure the probability density Q remains positive and normalized. The psuedo-
spectral method uses periodic boundary conditions and computes spatial derivatives using
a fast Fourier transform. The finite difference method uses Dirichlet boundary conditions
set at zero and computes spatial derivatives using the standard second-order finite difference
stencil. We use a grid size of 256 grid points per dimension for 1-Well and 32 grid points per
dimension for 2-Wells, resulting in a state size of 2562 = 65,536 for 1-Well and 324 = 1,048,576
for 2-Wells. Note that for a fixed grid size, the state grows exponentially with the number of
Wells—i.e. the curse of dimensionality. This limits our ability to perform more fine-grained
simulations on larger domains and makes this baseline approach intractable for more than a
few Wells.

A.3.2 PINN baseline details

We also use Physics Informed Neural Networks (PINNs) as a baseline. To implement this,
we use the PINA library which is built on top of PyTorch. For each problem, we have two
loss terms. The first computes the L2 loss between the predicted initial distribution and
the actual initial distribution for points sampled uniformly from within the domain of the
solver at t = 0. The second computes the L2 loss between the PINN time derivative and
the predicted time derivative L̃Q at points sampled uniformly from within the spacial and
temporal domain of the solver. The total loss is the sum of these two losses. We then optimize
using gradient decent. Every 500 epochs we re-sample the points with which to compute
the loss. For each experiment, we use a fully connected network with skip connections. The
layer sizes are [input size, 40, 40, 40, 1]. The following are the hyperparameters used for
each of the experiments:

• 1-Well Harmonic Oscillator: We use 1000 samples at a time for the initial condition
and 50000 samples at a time for the derivative condition. We train for 25000 epochs
with a learning rate of 0.001.

• 2-Well Harmonic Oscillator: We use 1000 samples at a time for the initial condition
and 30000 samples at a time for the derivative condition. We train for 25000 epochs
with a learning rate of 0.001.

• 20-Well Harmonic Oscillator: We use 3000 samples at a time for the initial con-
dition and 3000 samples at a time for the derivative condition. We train for 50000
epochs with a learning rate of 0.001. Here, we have to decrease the number of samples
for the derivative condition because of memory limits.

67

• 2-Well Dissipative Bosonic Model: We use 1000 samples at a time for the initial
condition and 30000 samples at a time for the derivative condition. We train for 25000
epochs with a learning rate of 0.001.

A.3.3 Euler experiment details

Below are the hyperparameters we use for the Euler method. For the Harmonic Oscillator
results we use a 3 layer RealNVP where each affine transformation is a 2 hidden layer feed
forward neural network with hidden layers of size 5. For the Dissipative Bosonic Model
result, we use a Convex Potential Flow with a 5 hidden layer input-convex neural network
with hidden layers of size 20 and augmented layers of size 4, see [52].

• 1-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For
each step, we use the KL control variance loss to fit for 150 epochs with a learning rate
of 0.001. We use 1000 samples per fitting epoch.

• 2-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For
each step, we use the KL control variance loss to fit for 150 epochs with a learning rate
of 0.001. We use 1000 samples per fitting epoch.

• 20-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. For
each step, we use the KL control variance loss to fit for 150 epochs with a learning rate
of 0.001. We use 10000 samples per fitting epoch.

• 2-Well Dissipative Bosonic Model: We train for 400 steps with a step size of 0.02.
For each step, we use the KL control variance loss to fit for 200 epochs with a learning
rate of 0.002. We use 10000 samples per fitting epoch.

A.3.4 TDVP experiment details

Below are the hyperparameters we use for the TDVP method. For the Harmonic Oscillator
results we use a 3 layer RealNVP where each affine transformation is a 2 hidden layer feed
forward neural network with hidden layers of size 5. For the Dissipative Bosonic Model
result, we use a Convex Potential Flow with a 5 hidden layer input-convex neural network
with hidden layers of size 20 and augmented layers of size 4, see [52].

• 1-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We
use 1000 samples per step. We use a diagonal shift of 0.01.

• 2-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We
use 1000 samples per step. We use a diagonal shift of 0.01.

• 20-Well Harmonic Oscillator: We train for 1500 steps with a step size of 0.01. We
use 10000 samples per step. We use a diagonal shift of 0.01.

• 2-Well Dissipative Bosonic Model: We train for 2000 steps with a step size of
0.004. We use 10000 samples per step. We use a diagonal shift of 0.01.

68

Appendix B

OccamNet Appendices

The below is taken from the appendices of [13].
We have organized the Supplemental Material as follows:

• In Section B.1 we provide the results of our experiments on the PMLB datasets.

• In Section B.2 we examine the fits each method provides for the PMLB Datasets.

• In Section B.3 analyze the results of the experiment scaling OccamNet-GPU on the
PMLB datasets.

• In Section B.4 we present a series of ablation studies.

• In Section B.5 we discuss neural models for sorting and pattern recognition.

• In Section B.6 we discuss a few small experiments we tested.

• In Section B.7 we discuss research related to the various applications of OccamNet.

• In Section B.8 we discuss the evolutionary strategies for fitting functions and programs
that we use as benchmarks.

• In Section B.9, we catalog our code and video files.

B.1 PMLB Experiment Results

The raw data for the PMLB experiments are shown in Table B.1. To improve readability, we
use red highlighting and bold text to illustrate the best-performing model for each dataset
and metric. We compare OccamNet-CPU, OccamNet-GPU, Eplex, and AIF, marking the
method with the lowest MSE or training time in red. We also compare OccamNet-GPU,
Eplex, and AIF, marking the method with the lowest MSE or training time in bold. Plots
of the full results for the PMLB scaling experiment are shown in Figures B.1 and B.2.
As discussed in Section B.3, Figure B.2 shows OccamNet-GPU’s performance when only
considering a restricted set of hyperparameters.

69

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 1
OccamNet Train
OccamNet Validation
OccamNet Test
Eplex Train
Eplex Validation
Eplex Test

103 104 105

Run Time (s)

6 × 10 1

7 × 10 1

8 × 10 1

M
SE

 L
os

s

Dataset 2

103 104 105

Run Time (s)

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

M
SE

 L
os

s

Dataset 3

103 104 105

Run Time (s)

6.2 × 10 1

6.4 × 10 1

6.6 × 10 1

6.8 × 10 1

7 × 10 1

7.2 × 10 1

7.4 × 10 1

7.6 × 10 1

7.8 × 10 1

M
SE

 L
os

s

Dataset 4

103 104 105

Run Time (s)

10 1

100
M

SE
 L

os
s

Dataset 5

103 104 105

Run Time (s)

10 1

M
SE

 L
os

s

Dataset 6

103 104 105

Run Time (s)

10 1

100

101

M
SE

 L
os

s

Dataset 7

103 104 105

Run Time (s)

10 1

2 × 10 1

M
SE

 L
os

s

Dataset 8

103 104 105

Run Time (s)

10 1

9 × 10 2

2 × 10 1

M
SE

 L
os

s

Dataset 9

103 104 105

Run Time (s)

10 1

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

 L
os

s

Dataset 10

103 104 105

Run Time (s)

10 1

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 11

103 104 105

Run Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 12

103 104 105

Run Time (s)

10 1

100

101

M
SE

 L
os

s

Dataset 13

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

M
SE

 L
os

s

Dataset 14

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 15

Figure B.1: OccamNet-GPU and Eplex’s Training, Validation, and Testing MSE as a func-
tion of run time for the 15 PMLB datasets discussed above.

70

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 1
OccamNet Train
OccamNet Validation
OccamNet Test
Eplex Train
Eplex Validation
Eplex Test

102 103 104 105

Run Time (s)

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

M
SE

 L
os

s

Dataset 2

102 103 104 105

Run Time (s)

5 × 10 1

6 × 10 1

7 × 10 1

M
SE

 L
os

s

Dataset 3

102 103 104 105

Run Time (s)

6.25 × 10 1

6.5 × 10 1

6.75 × 10 1

7 × 10 1

7.25 × 10 1

7.5 × 10 1

7.75 × 10 1

M
SE

 L
os

s

Dataset 4

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 5

102 103 104 105

Run Time (s)

10 1

4 × 10 2

6 × 10 2

2 × 10 1

M
SE

 L
os

s

Dataset 6

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 7

102 103 104 105

Run Time (s)

10 1

M
SE

 L
os

s

Dataset 8

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

M
SE

 L
os

s

Dataset 9

102 103 104 105

Run Time (s)

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

 L
os

s

Dataset 10

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 11

102 103 104 105

Run Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 12

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 13

102 103 104 105

Run Time (s)

100

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 14

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 15

Figure B.2: OccamNet-GPU and Eplex’s Training, Validation, and Testing MSE as a func-
tion of run time for the 15 PMLB datasets discussed above. For this figure, we only consider
the losses for a restricted subset of hyperparameter combinations.

71

Table B.1: Raw data from the PMLB experiments. Hyperparameters and best fits are in
the following path in our code (see Section B.9): pmbl-experiments/pmlb-results.

Training Loss (MSE) Validation Loss (MSE)

OccamNet-CPU OccamNet-GPU Eplex AIF XGB OccamNet-CPU OccamNet-GPU Eplex AIF XGB

1 0.177 0.139 0.153 0.465 0.056 0.141 0.137 0.128 0.449 0.133
2 0.607 0.605 0.643 0.443 0.647 0.640 0.702 0.567
3 0.486 0.432 0.443 0.326 0.634 0.597 0.581 0.556
4 0.639 0.616 0.616 0.886 0.547 0.662 0.641 0.641 1.040 0.649
5 0.107 0.054 0.105 0.000 0.145 0.108 0.182 0.134
6 0.070 0.035 0.067 0.162 0.000 0.037 0.017 0.036 0.066 0.114
7 0.228 0.161 0.230 0.713 0.039 0.047 0.099 0.122 0.802 0.175
8 0.155 0.145 0.152 0.000 0.095 0.115 0.097 0.105
9 0.168 0.141 0.152 0.000 0.114 0.097 0.129 0.105
10 0.154 0.101 0.130 0.171 0.000 0.027 0.021 0.036 0.044 0.162
11 0.136 0.129 0.141 0.177 0.029 0.119 0.162 0.161 0.178 0.106
12 0.255 0.167 0.324 0.000 0.193 0.177 0.310 0.083
13 0.062 0.042 0.082 0.103 0.004 0.074 0.076 0.198 0.289 0.163
14 0.573 0.438 0.414 0.000 0.470 0.312 0.320 0.196
15 0.208 0.183 0.216 0.456 0.000 0.174 0.411 0.567 0.524 0.175

Testing Loss (MSE) Average Run Time (s)

OccamNet-CPU OccamNet-GPU Eplex AIF XGB OccamNet-CPU OccamNet-GPU Eplex AIF XGB

1 0.251 0.141 0.223 0.741 0.147 2246 319 4574 4498 5
2 0.704 0.706 0.742 0.648 4789 302 4651 7
3 0.542 0.491 0.474 0.464 4767 300 4696 6
4 0.713 0.679 0.679 0.895 0.659 4511 308 4729 4222 5
5 0.589 0.209 0.116 0.113 239 504 4684 3
6 0.151 0.082 0.091 0.088 0.234 244 479 4755 5076 3
7 0.335 0.761 0.829 0.698 0.316 249 468 4583 1222 1
8 0.137 0.132 0.119 0.094 751 359 4516 5
9 0.135 0.194 0.150 0.094 764 354 4517 5
10 0.084 0.086 0.097 0.109 0.080 483 373 4605 6196 2
11 0.180 0.177 0.275 0.274 0.150 259 455 4639 1223 2
12 0.223 0.214 0.426 0.165 944 335 4653 3
13 1.088 0.157 0.487 0.864 0.622 956 364 4561 6899 5
14 0.570 0.440 0.442 0.228 6562 354 4785 139
15 1.664 0.334 0.441 0.324 0.188 264 487 4533 586 29

B.2 Analysis of Fits to PMLB Datasets

In this section, we analyze the fits that the methods discussed in Section 3.6.2 provide for
the PMLB dataset.

OccamNet-CPU and OccamNet-GPU provide solutions which are all short, easy to com-
prehend fits to the data. We find that OccamNet uses addition, subtraction, multiplication,
and division most extensively, exploiting sin(·) and cos(·) for more nonlinearity. Interest-
ingly, OccamNet uses exp(·) and log | · | less frequently, perhaps because both functions can
vary widely with small changes in input, making functions with these primitives more likely
to represent poor fits.

OccamNet’s solutions demonstrate its ability to exploit modularity and reuse compo-
nents. These solutions often have repeated components, for example in dataset #1, 1027_ESL,
where OccamNet-CPU’s best fit to the training data is

y0 =
(sin(x2) + x3 + x1) · (sin(x2) + x3 + x1)

(sin(x2) + x3 + x1) + (x3 + x1) + (x1 + x3)
.

In this fit, OccamNet-CPU builds sin(x2) + x3 + x1 in the first two layers of the network
and then reuses it three times. Solutions like the above demonstrate OccamNet’s ability to
identify successful subcomponents of a solution and then to rearrange the subcomponents
into a more useful form. Examples like the above, however, also demonstrate that OccamNet
often overuses modularity, potentially restricting the domain of functions it can search. We

72

suspect that the main reason that OccamNet may rely too heavily on modularity in some
fits is that OccamNet uses an extremely high learning rate of 1 for its training. We used
such a large learning rate to allow OccamNet to converge even when faced with 1030 or
more functions. However, we suspect that this may also cause OccamNet to converge to
certain paths before exploring sufficiently. For example, with the function above, OccamNet
may have identified that sin(x2) + x3 + x1 is a useful component and, because of its high
learning rate, used this pattern several times instead of the one time needed. This hypothesis
is supported by the fact that OccamNet-GPU, which samples many more functions before
taking a training step, repeats patterns less frequently than OccamNet-CPU. For example
OccamNet-GPU’s best-fit solution for the training dataset of dataset #1 is

y0 = cos(x1/x1) · cos(x1/x1) · (x2 + x3 + sin(x0) + x3 + x1 − sin(x3)),

which contains almost no repetition.
Remarkably, for dataset #4, 1030_ERA, both Eplex and OccamNet-GPU discover equiv-

alent functions for both training and validation: OccamNet-GPU discovers

y0 = cos(sin(x1 − x2)) · (sin(x2) + x0 + x1) · cos(x2/x2),

and Eplex discovers

y0 = cos(x1/x1) · (sin(x2) + x0 + x1) · cos(sin(x2 − x1)).

As a result, the two methods’ losses are identical up to 7 decimal places. Still, we mark Eplex
as performing better on this dataset because after the seventh decimal place it has a slightly
lower loss, likely due to differences in rounding or precision between the two approaches. Two
different methods identifying the same function is extremely unlikely; OccamNet’s search
space includes 2 · 1030 paths for this dataset, meaning that the probability of both methods
identifying this function purely by chance is minuscule. In combination with the fact that
this function was the best fit to both the training and validation datasets for both methods,
this suggests that the identified function is a nearly optimal fit to the data for the given
search space. Given the size of the search space, this result thus provides further evidence
that OccamNet and Eplex perform far better than brute-force search. Interestingly, although
OccamNet-CPU did not discover this function, it’s best fit for the validation,

y0 = sin(x2/x2) · (sin(x2) + x0 + x1) · cos(cos(x3)) · cos(sin(x3)),

does include several features present in the fits found by OccamNet-GPU and Eplex, such
as the sin(x2) + x0 + x1 term, the cos(sin(·)) term, and the x2/x2 inside of the trigonomet-
ric function. This suggests that OccamNet-CPU may also have been close to converging
to the function discovered by Eplex and OccamNet-GPU. OccamNet-CPU’s loss was also
always within 5% of Eplex’s loss on this dataset, again suggesting that OccamNet-CPU had
identified a function close to that of Eplex and OccamNet-GPU.

Interestingly, AI Feynman 2.0’s fits generally tend to be very simple compared to those
of OccamNet-CPU and OccamNet-GPU. For example, AIF’s fit for the training dataset #11
is

y0 = −0.050638447726 + log(x0/ sin(x0))− x0,

73

whereas OccamNet-CPU’s fit is

y0 = sin(x0) · x1 · x0 · sin(x0) · log |x0| − cos(x1 · x0 − x1).

AI Feynman’s fit is slightly simpler and easier to interpret, but it comes at the cost of
having a 35% higher loss. We suspect that because the PMLB datasets likely do not have
modular representations, AI Feynman must rely mainly on its brute-force search, which
ultimately produces shorter expressions. AI Feynman can also produce constants because
of its polynomial fits, and it uses constants in nearly every solution it proposes. We did
not allow the other symbolic methods to fit constants, but they still consistently performed
better than AI Feynman, suggesting that fitting constants may not be essential to accurately
modeling the PMLB datasets.

As discussed in the main text, OccamNet-CPU is considerably faster than Eplex, often
running faster by more than an order of magnitude. This may be in part because we train
Eplex with the DEAP evolutionary computation framework [109], which is implemented in
Python and utilizes NumPy arrays for computation. Thus, our implementation of Eplex may
be somewhat slower than an implementation written in C. However, because of its selection
based on many fitness cases, Eplex is also by nature considerably slower than many other
genetic algorithms, running in O(TN2), where T is the number of fitness cases and N is
the population size [110]. This suggests that even a pure C implementation of Eplex may
not be as fast as OccamNet-CPU. More recent selection algorithms perform comparably to
Eplex but run significantly faster, for example Batch Tournament Selection [110]. However,
because these methods did not exist at the time of [107], they have not been compared to
other methods on the PMLB datasets. Thus, we have not tested these methods here. On the
other hand, our current implementation of sampling and the forward pass work with DAGs
in which an edge leads to each argument node, regardless of whether the argument node
is connected to the outputs. The result is that our implementation of OccamNet evaluates
more than |Φ| times more primitive functions than is necessary, where |Φ| is the number
of primitive functions. In the case of these experiments, this amounts to more than eight
times the number of calculations necessary. It may be possible to optimize OccamNet by
not evaluating such unused connections, thereby obtaining a much faster runtime.

B.3 Analysis of PMLB Scaling Tests

As can be seen in Figure B.1, OccamNet-GPU’s training loss decreases with increasing sample
size for every dataset – the training loss for 64000 functions sampled is always less than the
training loss for 250 functions sampled. For some datasets, OccamNet-GPU’s training loss
is not monotonically decreasing, but this is to be expected given OccamNet-GPU’s inherent
randomness and the size of the search space.

For datasets 1, 2, 3, 4, 13, and 14, the training loss does not drop noticeably when
increasing the sample size beyond a certain point. There are two possible explanations for
this. (i) For all of these datasets, OccamNet-GPU’s training loss is very close to or lower
than Eplex’s best training loss, suggesting that OccamNet-GPU may be approaching an
optimal fit and that there is little room to further decrease the loss. (ii) There may be
critical sample sizes before which OccamNet-GPU’s training loss is stagnant and beyond

74

which its training loss begins to decrease. This is apparent in datasets 1, 3, 4, 10, 12, and
14, where the OccamNet training loss temporarily stops decreasing at 1000 or 4000 functions
sampled. It is possible that for some datasets another such critical sample size exists beyond
64000 functions.

For datasets 1, 2, 3, 4, 6, 12, and 14, OccamNet-GPU’s validation loss also decreases with
the number of functions sampled. However, for datasets 5, 7, 8, 9, 10, and 11, it initially
decreases and then begins to increase, and for datasets 13 and 15 it does not decrease.
Interestingly, the datasets for which OccamNet-GPU’s testing loss does not decrease are
generally the same as the datasets for which OccamNet-GPU’s validation loss does not
decrease. The datasets where the validation and testing loss do not decrease are generally
very small, with around 200 or fewer datapoints. This suggests that OccamNet-GPU is
overfitting. Such overfitting is to be expected given the small number of samples in the
PMLB datasets. On the other hand, Eplex only seems to overfit in datasets 5 and 9. Because
overfitting results from fitting a training or validation dataset too well, this is further evidence
that OccamNet-GPU is fitting the training datasets better than Eplex.

Note that for each number of functions sampled, we tested 81 different hyperparame-
ter combinations for OccamNet-GPU and only 3 for Eplex. This is largely because, as a
new architecture, OccamNet-GPU’s optimal hyperparameters are not known. For a fair
comparison, the runtimes we report in Figure B.1 are the times required to run all hyperpa-
rameter combinations. Thus, because OccamNet-GPU uses 27 times more hyperparameter
combinations, its speed advantage is lessened, although still significant.

After examining the results for all hyperparameter combinations, however, we noted
that all hyperparameters but the learning rate had an “optimal” value, listed in Appendix
3.6.2. Restricting to only the remaining three hyperparameter combinations produces a best
training loss that is often the same as, and is never more than 40% greater than, the lowest
loss among all 81 hyperparameters. Figure B.2 shows the results when considering only
OccamNet-GPU’s restricted hyperparameter combinations for three datasets.

When OccamNet-GPU and Eplex are restricted to the same number of hyperparameter
combinations, OccamNet-GPU always runs faster when sampling 64000 functions per epoch
than Eplex does when sampling 1000 functions per epoch. OccamNet-GPU’s training loss
consistently decreases with increasing sample size, although its validation and testing losses
do not always follow such a clear trend. Further, OccamNet-GPU almost always converges
to training and validation losses that are close to or less than Eplex’s training and validation
losses. OccamNet-GPU’s best training loss is less than or approximately the same as Eplex’s
best training loss for all but datasets 1, 14, and 15.

Dataset 14 consists of over 1000 datapoints with 117 features, so it is likely one of the most
difficult datasets which we test. The fact that OccamNet-GPU does perform comparatively
to Eplex when it tests additional hyperparameter combinations suggests that for such difficult
problems OccamNet-GPU benefits from additional hyperparameter exploration, particularly
involving weight initialization.

For dataset 15, because Eplex only identifies a better function than OccamNet-GPU
when it samples 1000 functions and not when it samples 2000 or 4000 functions, Eplex’s
better performance appears to be somewhat of an outlier.

With the restricted set of hyperparameters, OccamNet-GPU still overfits on every dataset
it overfitted on when using the full set of hyperparameters, suggesting that the overfitting is

75

not due to the large number of hyperparameters. Interestingly, for both the full and restricted
hyperparameter versions of OccamNet-GPU, OccamNet-GPU and Eplex again identify the
same fit for Dataset 4,

y0 = cos(sin(x1 − x2)) · (sin(x2) + x0 + x1) · cos(x3/x3).

B.4 Ablation Studies

We test the performance of various hyperparameters in a collection of ablation studies, as
shown in Table B.2. Here, we focus on what our experiments demonstrate to be the most
critical parameters to be tuned: the collection of primitives and constants, the network
depth, the variance of our interpolating function, the overall network temperature (as well
as the last layer temperature), and, finally, the learning rate of our optimizer. As before, we
set the stop criterion and terminate learning when the top-λ sampled functions all return the
same fitness K(·, f) for 30 consecutive epochs. If this does not occur in a predefined, fixed
number of iterations, or if the network training terminates and the final expression does not
match the correct function we aim to fit, we say that the network has not converged. All
hyperparameters for baselines are specified in Section 3.6.2, except for the sampling size,
which is set to R = 100.

Our benchmarks use a sampling size large enough for convergence in most experiments.
It is worth noting, however, that deeper networks sometimes failed to converge (with a con-
vergence fraction of η = 8/10) for the analytic function we tested. Deeper networks allow
for more function composition and let approximations emerge as local minima: in practice,
we find that increasing the last layer temperature or reducing the variance is often needed
to allow for a larger depth L. For pattern recognition, we found that MNIST Binary and
Trinary require depth 2 for successful convergence, while the rest of the experiments require
depth 4. Shallower or deeper networks either yield subpar accuracy or fail to converge. We
also find that for OccamNet without skip connections, larger learning rates usually work
best, i.e., 0.05 works best, while OccamNet with skip connections requires a smaller learning
rate, usually around 0.0005. We also tested different temperature and variance schedulers in
the spirit of simulated annealing. In particular, we tested increasing or decreasing these pa-
rameters over training epochs, as well as sinusoidally varying them with different frequencies.
Despite the increased convergence time, however, we did not find any additional benefits of
using schedulers. As we test OccamNet in larger problem spaces, we will revisit these early
scheduling studies and investigate their effects in those domains.

B.5 Neural Approaches to Benchmarks

Since OccamNet is a neural model that is constructed on top of a fully connected neural
architecture, below we consider a limitation of the standard fully connected architectures for
sorting and then a simple application of our temperature-controlled connectivity.

E-1. Exploring the limits of fully connected neural architectures for sorting
We made a fully connected neural network with residual connections. We used the mean

squared error (MSE) as the loss function. The output size was equal to the input size and

76

Table B.2: Ablation studies on representative experiments

Modification Convergence fraction η Convergence epochs Tc

Experiment sin(3x+ 2)

baseline 10/10 390
added constants (2) and primitives (·, (·)2,−(·)) 10/10 710
lower last layer temperature (0.5) 10/10 300
higher last layer temperature (3) 10/10 450
lower learning rate (0.001) 10/10 2500
higher learning rate (0.01) 10/10 170
deeper network (6) 8/10 3100
lower variance (0.0001) 10/10 390
higher variance (0.1) 10/10 450
lower sampling (50) 10/10 680
higher sampling (250) 10/10 200

Experiment x2 if x > 0, else −x

baseline 10/10 100
added constants (1, 2) and primitives (−,−(·)) 10/10 290
lower last layer temperature (0.5) 10/10 160
higher last layer temperature (3) 10/10 150
lower learning rate (0.001) 10/10 780
higher learning rate (0.01) 10/10 90
deeper network (6) 10/10 180
shallower network (2) 10/10 160
lower variance (0.001) 10/10 160
higher variance (1) 10/10 180
lower sampling (50) 10/10 290
higher sampling (250) 10/10 140

represented the original numbers in sorted order. We used L2 regularization along with
Adam optimization. We tested weight decay ranging from 1e-2 to 1e-6 and found that 1e-5
provided the best training and testing accuracy. Finally, we found that the optimal learning
rate was around 1e-3. We used 30, 000 data points to train the model with batch size of 200.
Each of the data points is a list of numbers between 0 and 100. For a particular value of input
size x (representing the number of points to be sorted), we varied the number of hidden units
from 2 to 20 and the number of hidden layers from 2 (just an input and an output layer) to
x! + 2. Then, the test loss was calculated on 20,000 points, chosen from same distribution.
Finally, for each input size, Table B.3 records the combination (hidden_layer, hidden_unit)
for which the loss is less than 5 and (hidden_ layer * hidden_units) is minimized. As seen
from the table, the system failed to find any optimal combination for any input size greater
than or equal to 5. For example, for input size 5, the hidden units were upper capped at 20
and hidden layers at 120 and thus 2400 parameters were insufficient to sort 5 numbers.

E-2. Generalization
The model developed above generalizes poorly on data outside the training domain.

For example, consider the model with 18 hidden units and four hidden layers, which is
successfully trained to sort four numbers chosen from the range 0 to 100. It was first tested
on numbers from 0 to 100 and then on 100 to 200. The error in the first case was around

77

Table B.3: Minimal configurations to sort list of length “input size.”

Input Size Hidden units Hidden Layers Parameters

2 6 2 12
3 8 4 32
4 18 4 72
5 - - -

2 while the average error in the second case was between 6 and 8 (which is (200/100)2 = 4
times the former loss). Finally, when tested on larger ranges such as (9900, 10000), the error
exploded to around 0.1 million (which is an order greater than (10000/100)2 = 10000 times
the original loss). This gives a hint that the error might be scaling proportionally to the
square of the test domain with respect to the train domain. A possible explanation for this
comes from the use of the MSE loss function. Scaling test data by ρ scales the absolute
error by approximately the same factor and then taking a square of the error to calculate
the MSE scales the total loss by the square of that factor, i.e., ρ2.

E-3. Applying temperature-controlled connectivity to standard neural net-
works for MNIST classification

We would like to demonstrate the promise of temperature-controlled connectivity as a
regularization method for the classification heads of models with a very simple experiment.
We used the ResNet50 model to train on the standard MNIST image classification bench-
mark. We studied two variants of the model: the standard ResNet model and ResNet
augmented with our temperature-controlled connectivity (with T = 1) between the flattened
layer and the last fully connected layer (on the lines discussed in the main paper). Then we
trained both models with a learning rate fixed at 0.05 and a batch size of 64 and ran it for
10 epochs. The model with regularization performed slightly better than the one without it.
The regularized model achieved the maximum accuracy among all methods, 99.18%, while
the same figure for the standard one was 98.43%. Another interesting observation is that
the regularized model produces much more stable and consistent results across iterations
than the unregularized model. These results encourage us to study the above regularization
method in larger experiments.

B.6 Small Experiments

To demonstrate its ability to fit functions with constants, we also tested OccamNet on the
function 10.5x3.1 without providing either 10.5 or 3.1 beforehand. OccamNet identified the
correct function 10 times out of 10, taking an average of 553s.

We also investigated whether OccamNet could discover a formula for cosine using only
the primitives sin(·), +(·, ·), and ÷(·, ·) and the constants 2 and π. We expected OccamNet
to discover cos(x) = sin(x+ π/2), but, interestingly, it instead always identified the double
angle identity cos(x) = sin(2x)/(2 sin(x)). OccamNet successfully identified an identity for
cosine 8 out of 10 times and in an average of 410s. A more optimized implementation
of OccamNet takes only 7s for the same task, although its accuracy is somewhat lower,

78

fluctuating between 2 and 6 out of 10 correct identifications.
Similarly, we tested whether OccamNet could discover Taylor polynomials of ex. Occam-

Net identified ex ≈ 1 + x+ x2/2, but was unable to discover the subsequent x3/6 term.

B.7 Related Work

A Symbolic regression

OccamNet was partially inspired by the EQL network [89, 90, 91], a neural network-based
symbolic regression system that successfully finds simple analytic functions. Neural Arith-
metic Logic Units (NALU) and related models [84, 85] provide a neural inductive bias for
arithmetic in neural networks that can in principle fit some benchmarks in Table 3.1. NALU
updates the weights by backpropagating through the activations, shaping the neural network
towards a gating interpretation of the linear layers. However, generalizing those models to a
diverse set of function primitives might be a formidable task: from our experiments, back-
propagation through some activation functions (such as division or sine) makes training
considerably harder. In a different computational paradigm, genetic programming (GP) has
performed exceptionally well at symbolic regression [68, 69], and a number of evolution-
inspired, probability-based models have been explored for this goal [76].

A concurrent work [77] explores deep symbolic regression by using an RNN to search the
space of expressions using autoregressive expression generation. Interestingly, the authors
observed that a risk-aware reinforcement learning approach is a necessary component in
their optimization, which is similar to our approach of selecting the top λ function for
optimization in Step 2 of our algorithm. A notable difference is that OccamNet does not
generate the expressions autoregressively, although it still exhibits a gradual increase in
modularity during training, as discussed in Section 3.5. This is also a benefit both for speed
and scalability. Moreover, their entropy regularization is a potentially useful addition to our
training algorithm. Marrying our approach with theirs is a promising direction for future
work.

Transformer-based models can quickly and accurately identify functions given data by
leveraging their extensive pretraining. However, these approaches are limited in that they
are restricted to a set of primitive functions specified at training time. It may thus be fruitful
to investigate combining OccamNet and such approaches in a way that increases convergence
speed while maintaining OccamNet’s flexibility.

B Program synthesis

A field related to symbolic regression is program synthesis. For programs, one option to
fit programs is to use EQL-based models with logic activations (step functions, MIN, MAX,
etc.) approximated by sigmoid activations. Another is probabilistic program induction
using domain-specific languages [79, 80, 81]. Neural Turing Machines [86, 87] and their
stable versions [88] are also able to discover interpretable programs based on observations
of input-output pairs. They do so by simulating programs using neural networks connected
to an external memory. [82] first train a machine learning model to predict a DSL based

79

on input-output pairs and then use methods from satisfiability modulo theory [83] to search
the space of programs built using the predicted DSL. In contrast, our DSL is lower level
and can fit components like “sort” instead of including them in the DSL directly. [111]
develop a neural model for simple algorithmic tasks by utilizing memory access for pointer
manipulation and dereferencing. However, here we achieve similar results (for example,
sorting) without external memory and in only minutes on a CPU.

C Integration with deep learning

We are not aware of classifiers that predict MNIST or ImageNet labels using symbolic rules.
The closest baseline we found is using GP [112], which performs comparably well to our neural
method, but cannot easily integrate with deep learning. In the reinforcement learning (RL)
domain, [73] and [113] propose training deep models of millions of parameters on standard
RL tasks using a gradient-free GP, which is competitive to gradient-based RL algorithms.
Work such as [91] performs similar tasks with EQL, a less powerful symbolic regression
model.

D SCGs and pruning

Treating the problem of finding the correct function or program as a stochastic computa-
tional graph is appealing due to efficient soft approximations to discrete distributions [114,
115, 116]. Our T -softmax layers offer such an approximation and could further benefit from
an adaptive softmax methodology [117], which we leave for future work. Furthermore, the
sparsity induced by T -softmax layers parallels the abundant work on pruning connections
and weights in neural networks [118, 119] or using regularizations, encouraging sparse con-
nectivity [120, 121].

B.8 Information about Symbolic Regression Benchmarks

H-1. Eureqa
Eureqa is a software package for symbolic regression where one can specify different target

expressions, building block functions (analogous to the primitives in OccamNet), and loss
functions [68]. For most functions, we use the absolute error as the optimization metric. We
choose formula building blocks in Eureqa to match the primitive functions used in OccamNet.

For implicit functions, we use the implicit derivative error. We also order the data to
improve the performance. For the implicit functions in lines 1, 3, and 4 in Table 2 of the
main text, the data is ordered by x0. For the equation x20 + x21 = 1, the data is generated by
sampling θ ∈ [0, 2π) and calculating x0 = sin(x) and x1 = cos(x), and is ordered by θ. When
the data is not ordered, the value of the implicit derivative error is much higher, resulting
in the algorithm favoring incorrect equations. For equation m1v1 − m2v2, the ordering is
more ambiguous because of the higher dimensionality. We tried ordering by both m1 and
the product m1v1 without success.

H-2. HeuristicLab

80

Due to limits on the number of data points and feature columns in Eureqa, we instead
use HeuristicLab for the image recognition tasks described in Section 5.4 of the main text.
HeuristicLab is a software package for optimization and evolutionary algorithms, including
symbolic regression and symbolic classification. We use the Island Genetic Algorithm with
default settings.

Similar to the building block functions in Eureqa, HeuristicLab can specify the primitive
symbols for each task. However, HeuristicLab does not have the primitives MAX, SIGMOID,
or tanh. Instead, we use the symbols IfThenElse, GreaterThan, LessThan, And, Or, and Not.

H-3. Eplex
As discussed in Section 3.6.2, Eplex [96], short for Epsilon-Lexicase selection, is a genetic

programming population selection technique that we use as a symbolic regression benchmark
in our experiments with PMLB datasets. We implement a genetic algorithm using Eplex
with the DEAP [109] evolutionary framework, using Numpy arrays [122] for computation to
increase speed.

Eplex selects individuals from a population by evaluating the individuals on subsets,
or fitness cases, of the full data. For each fitness case, Eplex selects the top-performing
individuals and proceeds to the next fitness case. This process is repeated until only one
individual remains. This individual is then used as the parent for the next generation.

H-4. AI Feynman 2.0 We also benchmark OccamNet against AI Feynman 2.0 [97].
AI Feynman 2.0 is a mixed approach that combines brute-force symbolic regression, poly-
nomial fits, and identification for modularity in the data using neural networks. To identify
modularities in the data, AI Feynman first trains a neural network on it. This serves as an
interpolating function for the true data and allows the network to search for symmetries and
other forms of modularities.

Figure B.3: In this figure, we present two video frames for the target sin(3x+ 2), which
could be accessed via videos/sin(3x + 2).mp4 in our code files. We show the beginning
of the fitting (left) and the end, where OccamNet has almost converged (right).

81

Figure B.4: In this figure we present two video frames for the target SORT(x0, x1, x2), which
could be accessed via videos/sorting.mp4 in our code files. We show the beginning of the
fitting (left) and the end, where OccamNet has almost converged (right).

B.9 Code, Videos, and Responsible Use

Code for all iterations of OccamNet is available at https://github.com/druidowm/OccamNet_
Versions. The code used for this paper can be found at https://github.com/druidowm/
OccamNet_Public. We have grouped our code into five main folders. analytic-and-programs
stores our network and experiments for fitting analytic functions and programs. implicit
stores our network and experiments for implicit functions, although it also includes the
three analytic functions listed in Table 3.6. constant-fitting stores code very similar to
implicit but optimized for constant fitting. image-recognition stores our network and
experiments for image classification. pmlb-experiment stores our code for benchmarking
against the PMLB regression datasets. Finally, videos stores several videos of our model
converging to various functions. In Figures B.3 and B.4, we present snapshots of the videos.

Currently, our method is not explicitly designed against adversarial attacks. Thus, mali-
cious stakeholders could exploit our method and manipulate the symbolic fits that OccamNet
produces. A potential direction towards alleviating the problem would be to explore ways
to robustify OccamNet by training it against an adversary. In the meantime, we ask that
users of our code remain responsible and consider the repercussions of their use cases.

82

https://github.com/druidowm/OccamNet_Versions
https://github.com/druidowm/OccamNet_Versions
https://github.com/druidowm/OccamNet_Public
https://github.com/druidowm/OccamNet_Public

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger.
Vol. 25. Curran Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper_
files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In: arXiv
e-prints, arXiv:1706.03762 (June 2017), arXiv:1706.03762. doi: 10.48550/arXiv.1706.
03762. arXiv: 1706.03762 [cs.CL].

[3] OpenAI et al. “GPT-4 Technical Report”. In: arXiv e-prints, arXiv:2303.08774 (Mar.
2023), arXiv:2303.08774. doi: 10.48550/arXiv.2303.08774. arXiv: 2303.08774 [cs.CL].

[4] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-End Train-
ing of Deep Visuomotor Policies”. In: arXiv e-prints, arXiv:1504.00702 (Apr. 2015),
arXiv:1504.00702. doi: 10.48550/arXiv.1504.00702. arXiv: 1504.00702 [cs.LG].

[5] Igor Melnyk, Aurelie Lozano, Payel Das, and Vijil Chenthamarakshan. “AlphaFold
Distillation for Protein Design”. In: arXiv e-prints, arXiv:2210.03488 (Oct. 2022),
arXiv:2210.03488. doi: 10.48550/arXiv.2210.03488. arXiv: 2210.03488 [q-bio.BM].

[6] S. V. Chekanov and W. Hopkins. “Event-based anomaly detection for new physics
searches at the LHC using machine learning”. In: arXiv e-prints, arXiv:2111.12119
(Nov. 2021), arXiv:2111.12119. doi: 10.48550/arXiv.2111.12119. arXiv: 2111.12119
[hep-ph].

[7] Junze Liu, Jordan Ott, Julian Collado, Benjamin Jargowsky, Wenjie Wu, Jianming
Bian, and Pierre Baldi. “Deep-Learning-Based Kinematic Reconstruction for DUNE”.
In: arXiv e-prints, arXiv:2012.06181 (Dec. 2020), arXiv:2012.06181. doi: 10.48550/
arXiv.2012.06181. arXiv: 2012.06181 [physics.ins-det].

[8] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward net-
works are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.
issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. url: https:
//www.sciencedirect.com/science/article/pii/0893608089900208.

[9] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and
Sanjiv Kumar. “Are Transformers universal approximators of sequence-to-sequence
functions?” In: arXiv e-prints, arXiv:1912.10077 (Dec. 2019), arXiv:1912.10077. doi:
10.48550/arXiv.1912.10077. arXiv: 1912.10077 [cs.LG].

83

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.1504.00702
https://arxiv.org/abs/1504.00702
https://doi.org/10.48550/arXiv.2210.03488
https://arxiv.org/abs/2210.03488
https://doi.org/10.48550/arXiv.2111.12119
https://arxiv.org/abs/2111.12119
https://arxiv.org/abs/2111.12119
https://doi.org/10.48550/arXiv.2012.06181
https://doi.org/10.48550/arXiv.2012.06181
https://arxiv.org/abs/2012.06181
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.48550/arXiv.1912.10077
https://arxiv.org/abs/1912.10077

[10] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature 323 (1986), pp. 533–536. url:
https://api.semanticscholar.org/CorpusID:205001834.

[11] Owen Dugan, Peter Y. Lu, Rumen Dangovski, Di Luo, and Marin Soljačić. “Q-Flow:
Generative Modeling for Differential Equations of Open Quantum Dynamics with
Normalizing Flows”. In: arXiv e-prints, arXiv:2302.12235 (Feb. 2023), arXiv:2302.12235.
doi: 10.48550/arXiv.2302.12235. arXiv: 2302.12235 [quant-ph].

[12] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Re-
inforcement Learning Algorithm”. In: arXiv e-prints, arXiv:1712.01815 (Dec. 2017),
arXiv:1712.01815. doi: 10.48550/arXiv.1712.01815. arXiv: 1712.01815 [cs.AI].

[13] Owen Dugan, Rumen Dangovski, Allan Costa, Samuel Kim, Pawan Goyal, Joseph
Jacobson, and Marin Soljačić. “OccamNet: A Fast Neural Model for Symbolic Re-
gression at Scale”. In: arXiv e-prints, arXiv:2007.10784 (July 2020), arXiv:2007.10784.
doi: 10.48550/arXiv.2007.10784. arXiv: 2007.10784 [cs.LG].

[14] Frank Verstraete, Michael M Wolf, and J Ignacio Cirac. “Quantum computation
and quantum-state engineering driven by dissipation”. In: Nature physics 5.9 (2009),
pp. 633–636.

[15] Julio T Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg, Thomas Monz,
Michael Chwalla, Markus Hennrich, Christian F Roos, Peter Zoller, and Rainer Blatt.
“An open-system quantum simulator with trapped ions”. In: Nature 470.7335 (2011),
pp. 486–491.

[16] Filippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. “Variational
Neural-Network Ansatz for Steady States in Open Quantum Systems”. In: Phys. Rev.
Lett. 122 (25 June 2019), p. 250503. doi: 10.1103/PhysRevLett.122.250503. url:
https://link.aps.org/doi/10.1103/PhysRevLett.122.250503.

[17] Nobuyuki Yoshioka and Ryusuke Hamazaki. “Constructing neural stationary states
for open quantum many-body systems”. In: Phys. Rev. B 99 (21 June 2019), p. 214306.
doi: 10 . 1103 /PhysRevB . 99 . 214306. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevB.99.214306.

[18] Michael J. Hartmann and Giuseppe Carleo. “Neural-Network Approach to Dissipative
Quantum Many-Body Dynamics”. In: Phys. Rev. Lett. 122 (25 June 2019), p. 250502.
doi: 10.1103/PhysRevLett.122.250502. url: https://link.aps.org/doi/10.1103/
PhysRevLett.122.250502.

[19] Alexandra Nagy and Vincenzo Savona. “Variational Quantum Monte Carlo Method
with a Neural-Network Ansatz for Open Quantum Systems”. In: Phys. Rev. Lett.
122 (25 June 2019), p. 250501. doi: 10.1103/PhysRevLett.122.250501. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.122.250501.

[20] Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K Clark. “Autoregressive neural
network for simulating open quantum systems via a probabilistic formulation”. In:
Physical review letters 128.9 (2022), p. 090501.

84

https://api.semanticscholar.org/CorpusID:205001834
https://doi.org/10.48550/arXiv.2302.12235
https://arxiv.org/abs/2302.12235
https://doi.org/10.48550/arXiv.1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.48550/arXiv.2007.10784
https://arxiv.org/abs/2007.10784
https://doi.org/10.1103/PhysRevLett.122.250503
https://link.aps.org/doi/10.1103/PhysRevLett.122.250503
https://doi.org/10.1103/PhysRevB.99.214306
https://link.aps.org/doi/10.1103/PhysRevB.99.214306
https://link.aps.org/doi/10.1103/PhysRevB.99.214306
https://doi.org/10.1103/PhysRevLett.122.250502
https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
https://doi.org/10.1103/PhysRevLett.122.250501
https://link.aps.org/doi/10.1103/PhysRevLett.122.250501
https://link.aps.org/doi/10.1103/PhysRevLett.122.250501

[21] Moritz Reh, Markus Schmitt, and Martin Gärttner. “Time-dependent variational
principle for open quantum systems with artificial neural networks”. In: Physical Re-
view Letters 127.23 (2021), p. 230501.

[22] Maziar Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial
Differential Equations”. In: Journal of Machine Learning Research 19.25 (2018), pp. 1–
24. url: http://jmlr.org/papers/v19/18-046.html.

[23] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlin-
ear partial differential equations”. In: Journal of Computational Physics 378 (2019),
pp. 686–707. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045. url:
http://www.sciencedirect.com/science/article/pii/S0021999118307125.

[24] Howard J. Carmichael. “Quantum—Classical Correspondence for the Electromagnetic
Field II: P, Q, and Wigner Representations”. In: Statistical Methods in Quantum Op-
tics 1: Master Equations and Fokker-Planck Equations. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 101–145. isbn: 978-3-662-03875-8. doi: 10.1007/978-3-
662-03875-8_4. url: https://doi.org/10.1007/978-3-662-03875-8_4.

[25] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[26] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing flows”.
In: International conference on machine learning. PMLR. 2015, pp. 1530–1538.

[27] William Lauchlin McMillan. “Ground state of liquid He 4”. In: Physical Review 138.2A
(1965), A442.

[28] Shun-ichi Amari. “Neural learning in structured parameter spaces-natural Rieman-
nian gradient”. In: Advances in neural information processing systems 9 (1996).

[29] Shun-Ichi Amari. “Natural gradient works efficiently in learning”. In: Neural compu-
tation 10.2 (1998), pp. 251–276.

[30] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem
with artificial neural networks”. In: Science 355.6325 (2017), pp. 602–606. doi: 10.
1126/science.aag2302.

[31] Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. “Deep
Autoregressive Models for the Efficient Variational Simulation of Many-Body Quan-
tum Systems”. In: Phys. Rev. Lett. 124 (2 Jan. 2020), p. 020503. doi: 10 . 1103 /
PhysRevLett.124.020503.

[32] Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. “Autoregressive Neural
Network for Simulating Open Quantum Systems via a Probabilistic Formulation”. In:
Phys. Rev. Lett. 128 (9 Feb. 2022), p. 090501. doi: 10.1103/PhysRevLett.128.090501.

[33] Zhuo Chen, Di Luo, Kaiwen Hu, and Bryan K Clark. “Simulating 2+ 1D Lattice
Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions”. In:
arXiv preprint arXiv:2212.06835 (2022).

85

http://jmlr.org/papers/v19/18-046.html
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1007/978-3-662-03875-8_4
https://doi.org/10.1007/978-3-662-03875-8_4
https://doi.org/10.1007/978-3-662-03875-8_4
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevLett.128.090501

[34] Di Luo, Zhuo Chen, Kaiwen Hu, Zhizhen Zhao, Vera Mikyoung Hur, and Bryan K
Clark. “Gauge invariant autoregressive neural networks for quantum lattice models”.
In: arXiv preprint arXiv:2101.07243 (2021).

[35] David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C. Foulkes.
“Ab initio solution of the many-electron Schrödinger equation with deep neural net-
works”. In: Phys. Rev. Res. 2 (3 Sept. 2020), p. 033429. doi: 10.1103/PhysRevResearch.
2.033429.

[36] Jan Hermann, Zeno Schätzle, and Frank Noé. “Deep-neural-network solution of the
electronic Schrödinger equation”. In: Nature Chemistry 12.10 (Oct. 2020), pp. 891–
897. issn: 1755-4349. doi: 10.1038/s41557-020-0544-y.

[37] Di Luo and Bryan K Clark. “Backflow transformations via neural networks for quan-
tum many-body wave functions”. In: Physical review letters 122.22 (2019), p. 226401.

[38] Gabriel Pescia, Jiequn Han, Alessandro Lovato, Jianfeng Lu, and Giuseppe Carleo.
“Neural-network quantum states for periodic systems in continuous space”. In: Phys-
ical Review Research 4.2 (2022), p. 023138.

[39] Matija Medvidović and Dries Sels. “Towards unitary dynamics of large two-dimensional
quantum rotor models”. In: arXiv preprint arXiv:2212.11289 (2022).

[40] Di Luo, Shunyue Yuan, James Stokes, and Bryan K Clark. “Gauge equivariant neural
networks for 2+ 1d u (1) gauge theory simulations in hamiltonian formulation”. In:
arXiv preprint arXiv:2211.03198 (2022).

[41] John M Martyn, Khadijeh Najafi, and Di Luo. “Variational Neural-Network Ansatz
for Continuum Quantum Field Theory”. In: arXiv preprint arXiv:2212.00782 (2022).

[42] Bengt Fornberg. A practical guide to pseudospectral methods. 1. Cambridge university
press, 1998.

[43] E Weinan, Jiequn Han, and Arnulf Jentzen. “Algorithms for solving high dimensional
PDEs: from nonlinear Monte Carlo to machine learning”. In: Nonlinearity 35.1 (2021),
p. 278.

[44] Jens Berg and Kaj Nyström. “Data-driven discovery of PDEs in complex datasets”.
In: Journal of Computational Physics 384 (2019), pp. 239–252. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2019.01.036. url: http://www.sciencedirect.com/
science/article/pii/S0021999119300944.

[45] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W
Mahoney. “Characterizing possible failure modes in physics-informed neural networks”.
In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A.
Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran
Associates, Inc., 2021, pp. 26548–26560. url: https://proceedings.neurips.cc/paper/
2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf.

[46] Miguel Angel Cazalilla, Roberta Citro, Thierry Giamarchi, Edmond Orignac, and
Marcos Rigol. “One dimensional bosons: From condensed matter systems to ultracold
gases”. In: Reviews of Modern Physics 83.4 (2011), p. 1405.

86

https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/https://doi.org/10.1016/j.jcp.2019.01.036
http://www.sciencedirect.com/science/article/pii/S0021999119300944
http://www.sciencedirect.com/science/article/pii/S0021999119300944
https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf

[47] Gerardo Adesso, Sammy Ragy, and Antony R Lee. “Continuous variable quantum
information: Gaussian states and beyond”. In: Open Systems & Information Dynamics
21.01n02 (2014), p. 1440001.

[48] Howard J. Carmichael. “Dissipation in Quantum Mechanics: The Master Equation
Approach”. In: Statistical Methods in Quantum Optics 1: Master Equations and Fokker-
Planck Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 1–28.
isbn: 978-3-662-03875-8. doi: 10.1007/978-3-662-03875-8_1. url: https://doi.org/
10.1007/978-3-662-03875-8_1.

[49] Tom Westerhout, Nikita Astrakhantsev, Konstantin S Tikhonov, Mikhail I Katsnel-
son, and Andrey A Bagrov. “Generalization properties of neural network approxima-
tions to frustrated magnet ground states”. In: Nature communications 11.1 (2020),
p. 1593.

[50] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
Real NVP”. In: International Conference on Learning Representations. 2017. url:
https://openreview.net/forum?id=HkpbnH9lx.

[51] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. “Scal-
able Reversible Generative Models with Free-form Continuous Dynamics”. In: Inter-
national Conference on Learning Representations. 2019. url: https://openreview.
net/forum?id=rJxgknCcK7.

[52] Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville. “Con-
vex Potential Flows: Universal Probability Distributions with Optimal Transport and
Convex Optimization”. In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=te7PVH1sPxJ.

[53] Moritz Reh and Martin Gärttner. “Variational Monte Carlo approach to partial differ-
ential equations with neural networks”. In: Machine Learning: Science and Technology
3.4 (2022), 04LT02.

[54] James Bradbury et al. JAX: composable transformations of Python+NumPy pro-
grams. Version 0.3.13. 2018. url: http://github.com/google/jax.

[55] Giuseppe Carleo et al. “NetKet: A Machine Learning Toolkit for Many-Body Quan-
tum Systems”. In: SoftwareX (2019), p. 100311. doi: 10.1016/j.softx.2019.100311.
url: http://www.sciencedirect.com/science/article/pii/S2352711019300974.

[56] Filippo Vicentini et al. “NetKet 3: Machine Learning Toolbox for Many-Body Quan-
tum Systems”. In: SciPost Phys. Codebases (2022), p. 7. doi: 10.21468/SciPostPhysCodeb.
7. url: https://scipost.org/10.21468/SciPostPhysCodeb.7.

[57] Sandro Sorella. “Green function Monte Carlo with stochastic reconfiguration”. In:
Physical review letters 80.20 (1998), p. 4558.

[58] Sandro Sorella. “Generalized Lanczos algorithm for variational quantum Monte Carlo”.
In: Physical Review B 64.2 (2001), p. 024512.

[59] Dion Häfner and Filippo Vicentini. “mpi4jax: Zero-copy MPI communication of JAX
arrays”. In: Journal of Open Source Software 6.65 (2021), p. 3419. doi: 10.21105/joss.
03419. url: https://doi.org/10.21105/joss.03419.

87

https://doi.org/10.1007/978-3-662-03875-8_1
https://doi.org/10.1007/978-3-662-03875-8_1
https://doi.org/10.1007/978-3-662-03875-8_1
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=te7PVH1sPxJ
http://github.com/google/jax
https://doi.org/10.1016/j.softx.2019.100311
http://www.sciencedirect.com/science/article/pii/S2352711019300974
https://doi.org/10.21468/SciPostPhysCodeb.7
https://doi.org/10.21468/SciPostPhysCodeb.7
https://scipost.org/10.21468/SciPostPhysCodeb.7
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419
https://doi.org/10.21105/joss.03419

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Py-
torch: An imperative style, high-performance deep learning library”. In: Advances in
neural information processing systems 32 (2019).

[61] Christopher Rackauckas and Qing Nie. “Differentialequations.jl–a performant and
feature-rich ecosystem for solving differential equations in julia”. In: Journal of Open
Research Software 5.1 (2017), p. 15.

[62] G. Kordas, S. Wimberger, and D. Witthaut. “Decay and fragmentation in an open
Bose-Hubbard chain”. In: Phys. Rev. A 87 (4 Apr. 2013), p. 043618. doi: 10.1103/
PhysRevA.87.043618. url: https://link.aps.org/doi/10.1103/PhysRevA.87.043618.

[63] G. Kordas, D. Witthaut, P. Buonsante, A. Vezzani, R. Burioni, A. I. Karanikas, and
S. Wimberger. “The dissipative Bose-Hubbard model”. In: European Physical Journal
Special Topics 224.11 (Nov. 2015), pp. 2127–2171. doi: 10.1140/epjst/e2015-02528-2.
arXiv: 1510.00127 [cond-mat.quant-gas].

[64] Julia Balla, Sihao Huang, Owen Dugan, Rumen Dangovski, and Marin Soljacic. “AI-
Assisted Discovery of Quantitative and Formal Models in Social Science”. In: arXiv
e-prints, arXiv:2210.00563 (Oct. 2022), arXiv:2210.00563. doi: 10.48550/arXiv.2210.
00563. arXiv: 2210.00563 [cs.SC].

[65] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521.7553 (2015), pp. 436–444.

[66] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun. “The Loss Surfaces of Multilayer Networks”. In: AISTATS. 2015.

[67] Guillaume Lample and François Charton. “Deep Learning For Symbolic Mathemat-
ics”. In: ICLR. 2020.

[68] Michael Schmidt and Hod Lipson. “Distilling free-form natural laws from experimental
data”. In: Science 324.5923 (2009), pp. 81–85.

[69] Silviu-Marian Udrescu and Max Tegmark. “AI Feynman: A physics-inspired method
for symbolic regression”. In: Science Advances 6.16 (2020).

[70] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field
guide to genetic programming. lulu.com, 2008.

[71] P. J. Angeline, G. M. Saunders, and J. B. Pollack. “An evolutionary algorithm that
constructs recurrent neural networks”. In: IEEE Transactions on Neural Networks 5.1
(1994), pp. 54–65.

[72] Dirk V. Arnold and Nikolaus Hansen. “A (1+1)-CMA-ES for Constrained Optimisa-
tion”. In: GECCO. 2012.

[73] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. “Deep Neuroevolution: Genetic Algorithms Are a Competi-
tive Alternative for Training Deep Neural Networks for Reinforcement Learning”. In:
arXiv preprint arXiv:1712.06567 (2017).

88

https://doi.org/10.1103/PhysRevA.87.043618
https://doi.org/10.1103/PhysRevA.87.043618
https://link.aps.org/doi/10.1103/PhysRevA.87.043618
https://doi.org/10.1140/epjst/e2015-02528-2
https://arxiv.org/abs/1510.00127
https://doi.org/10.48550/arXiv.2210.00563
https://doi.org/10.48550/arXiv.2210.00563
https://arxiv.org/abs/2210.00563

[74] Nikolaus Hansen. “The CMA Evolution Strategy: A Tutorial”. In: arXiv preprint
arXiv:1604.00772 (2016).

[75] Ilya Loshchilov and Frank Hutter. “CMA-ES for Hyperparameter Optimization of
Deep Neural Networks”. In: arXiv preprint arXiv:1604.07269 (2016).

[76] Robert I Mckay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and
Michael O’neill. “Grammar-based genetic programming: a survey”. In: Genetic Pro-
gramming and Evolvable Machines 11.3-4 (2010), pp. 365–396.

[77] Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata
Santiago, Soo Kyung Kim, and Joanne Taery Kim. “Deep symbolic regression: Re-
covering mathematical expressions from data via risk-seeking policy gradients”. In:
ICLR. 2021.

[78] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambat-
tista Parascandolo. “Neural Symbolic Regression that Scales”. In: arXiv e-prints,
arXiv:2106.06427 (June 2021), arXiv:2106.06427. doi: 10.48550/arXiv.2106.06427.
arXiv: 2106.06427 [cs.LG].

[79] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. “Learning
to Infer Graphics Programs from Hand-Drawn Images”. In: NIPS. 2018.

[80] Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh
Tenenbaum. “Learning Libraries of Subroutines for Neurally–Guided Bayesian Pro-
gram Induction”. In: NIPS. 2018.

[81] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando
Solar-Lezama. “Write, Execute, Assess: Program Synthesis with a REPL”. In: NeurIPS.
2019.

[82] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. “DeepCoder: Learning to Write Programs”. In: ICLR. 2016.

[83] Armando Solar Lezama. “Program Synthesis By Sketching”. PhD thesis. EECS De-
partment, University of California, Berkeley, 2008.

[84] Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom.
“Neural Arithmetic Logic Units”. In: NIPS. 2018.

[85] Andreas Madsen and Alexander Rosenberg Johansen. “Neural Arithmetic Units”. In:
ICLR. 2020.

[86] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv
preprint arXiv:1410.5401 (2014).

[87] Alex Graves et al. “Hybrid computing using a neural network with dynamic external
memory”. In: Nature 538 (2016), pp. 471–476.

[88] Mark Collier and Joeran Beel. “Implementing Neural Turing Machines”. In: ICANN.
2018, pp. 94–104.

[89] Georg Martius and Christoph H. Lampert. “Extrapolation and learning equations”.
In: arXiv e-prints, arXiv:1610.02995 (Oct. 2016), arXiv:1610.02995. arXiv: 1610.02995
[cs.LG].

89

https://doi.org/10.48550/arXiv.2106.06427
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/1610.02995
https://arxiv.org/abs/1610.02995

[90] Subham Sahoo, Christoph Lampert, and Georg Martius. “Learning Equations for
Extrapolation and Control”. In: Proceedings of the 35th International Conference on
Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, Oct.
2018, pp. 4442–4450. url: http://proceedings.mlr.press/v80/sahoo18a.html.

[91] Samuel Kim, Peter Y. Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir
Čeperić, and Marin Soljačić. “Integration of Neural Network-Based Symbolic Re-
gression in Deep Learning for Scientific Discovery”. In: IEEE Transactions on Neural
Networks and Learning Systems (2020), pp. 1–12.

[92] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In: CVPR. 2016, pp. 770–778.

[93] Julia Balla, Sihao Huang, Owen Dugan, Rumen Dangovski, and Marin Soljacic. “AI-
Assisted Discovery of Quantitative and Formal Models in Social Science”. In: arXiv
preprint arXiv:2210.00563 (2022).

[94] Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Professional, 2010.

[95] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. “Densely
connected convolutional networks”. In: CVPR. 2017.

[96] William La Cava, Lee Spector, and Kourosh Danai. “Epsilon-Lexicase Selection for
Regression”. In: GECCO. 2016.

[97] Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and
Max Tegmark. “AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
modularity”. In: 2020.

[98] Stefan Wagner et al. “Advanced Methods and Applications in Computational Intelli-
gence”. In: vol. 6. Springer, 2014. Chap. Architecture and Design of the HeuristicLab
Optimization Environment, pp. 197–261.

[99] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-Based
Learning Applied to Document Recognition”. In: IEEE. 1998.

[100] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR. 2009.

[101] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and
Jason H. Moore. “PMLB: a large benchmark suite for machine learning evaluation
and comparison”. In: BioData Mining 10.1 (2017), p. 36.

[102] Michael Schmidt and Hod Lipson. “Symbolic Regression of Implicit Equations”. In:
Genetic Programming Theory and Practice VII. Ed. by Rick Riolo, Una-May O’Reilly,
and Trent McConaghy. Springer US, 2010, pp. 73–85.

[103] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Connec-
tionist Reinforcement Learning”. In: Mach. Learn. 8.3–4 (May 1992), pp. 229–256.

[104] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: ICLR. 2015.

90

http://proceedings.mlr.press/v80/sahoo18a.html

[105] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: Peer J Computer
Science 3 (2017), p. 103.

[106] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In:
arXiv e-prints, arXiv:1603.02754 (Mar. 2016), arXiv:1603.02754. arXiv: 1603.02754
[cs.LG].

[107] Patryk Orzechowski, William La Cava, and Jason H. Moore. “Where are we now? A
large benchmark study of recent symbolic regression methods”. In: GECCO. 2018.

[108] Ramamurti Shankar. Principles of quantum mechanics. Springer Science & Business
Media, 2012.

[109] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau,
and Christian Gagné. “DEAP: Evolutionary Algorithms Made Easy”. In: Journal of
Machine Learning Research 13 (2012), pp. 2171–2175.

[110] Vinicius V. Melo, Danilo Vasconcellos Vargas, and Wolfgang Banzhaf. “Batch Tour-
nament Selection for Genetic Programming”. In: GECCO. 2019, arXiv:1904.08658.

[111] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. “Neural Random-Access
Machines”. In: ICLR. 2016.

[112] David J. Montana and Lawrence Davis. “Training Feedforward Neural Networks Using
Genetic Algorithms”. In: IJCAI. Morgan Kaufmann Publishers Inc., 1989.

[113] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. “Evolution
Strategies as a Scalable Alternative to Reinforcement Learning”. In: arXiv preprint
arXiv:1703.03864 (2017).

[114] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables”. In: ICLR. 2017.

[115] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-
Softmax”. In: ICLR. 2017.

[116] George Tucker, Andriy Mnih, Chris J. Maddison, and Jascha Sohl-Dickstein. “RE-
BAR: Low-variance, unbiased gradient estimates for discrete latent variable models”.
In: NIPS. 2017.

[117] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.
“Efficient softmax approximation for GPUs”. In: ICML. 2017.

[118] Song Han, Jeff Pool, John Tran, and William J. Dally. “Learning both Weights and
Connections for Efficient Neural Networks”. In: (2015).

[119] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. “Pruning
Filters for Efficient ConvNets”. In: ICLR. 2017.

[120] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. “Variational Dropout Spar-
sifies Deep Neural Networks”. In: ICML. 2017.

[121] Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural
Networks through L0 Regularization”. In: ICLR. 2018.

91

https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1603.02754

[122] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362.

92

	Title page
	Abstract
	Acknowledgments
	Introduction
	Q-Flow: Generative Modeling for Differential Equations of Open Quantum Dynamics with Normalizing Flows
	Introduction
	Related Work
	Neural Network Quantum States
	Partial Differential Equation (PDE) Solvers

	Solving Open Quantum Dynamics with Q-Flow
	Open Quantum System
	Q Function Formulation
	Q-Flow representation: Flow-based Generative Models of Q function
	Q-Flow Optimization: Stochastic Euler-KL Method
	Q-Flow Initialization: Initial State Pretraining

	Experiments
	Dissipative Harmonic Oscillator
	Dissipative Bosonic Model

	Conclusion

	OccamNet: A Fast Neural Model for Symbolic Regression at Scale
	Introduction
	Model Architecture
	Layer structure
	Temperature-controlled connectivity
	A neural network as a probability distribution over functions

	Training
	Results
	Analytic functions
	Non-analytic functions
	Implicit Functions and Image Recognition
	Real-world regression datasets
	Scaling on real-world regression datasets

	Discussion
	Methods
	Complete Model Description
	Experimental Setup

	Conclusion
	Q-Flow Appendices
	Q Function Conversions
	Quantum Preliminaries
	Q Function to ρ
	Coherent State Identities
	ρ Evolution to Q Function Evolution
	Observable calculation with respect to Q function

	Stochastic Euler-KL Method
	Additional Experimental Details
	Pseudo-spectral and finite difference baseline details
	PINN baseline details
	Euler experiment details
	TDVP experiment details

	OccamNet Appendices
	PMLB Experiment Results
	Analysis of Fits to PMLB Datasets
	Analysis of PMLB Scaling Tests
	Ablation Studies
	Neural Approaches to Benchmarks
	Small Experiments
	Related Work
	Symbolic regression
	Program synthesis
	Integration with deep learning
	SCGs and pruning

	Information about Symbolic Regression Benchmarks
	Code, Videos, and Responsible Use

	References

