
Optimizing Traveling Salesman Problem in Multi-Agent

Systems with Practical Constraints

by

Ruixiao Yang

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Ruixiao Yang. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an

open-access license.

Authored by: Ruixiao Yang

Department of Aeronautics and Astronautics

May 2, 2024

Certified by: Chuchu Fan

Assitant Professor of Aeronautics and Astronautics, Thesis Supervisor

Accepted by: Jonathan P. How

R.C. Maclaurin Professor of Aeronautics and Astronautics

Chair, Graduate Program Committees

2

Optimizing Traveling Salesman Problem in Multi-Agent Systems

with Practical Constraints

by

Ruixiao Yang

Submitted to the Department of Aeronautics and Astronautics

on May 2, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

ABSTRACT

The Traveling Salesman Problem (TSP) is a fundamental challenge in multi-agent sys-

tems, particularly in task allocation scenarios. Traditional models considering the uncon-

strained multi-agent TSP, which require multiple salesmen to visit all customers collectively,

often fail to produce feasible solutions for real-world applications due to practical con-

straints. To address this gap, we explore two prevalent constraints: energy limitations and

aerial robot collaboration. We introduce two novel formulations: the Multi-Agent Energy-

Constrained TSP (MA-ECTSP) and the Multi-Agent Flying Sidekick TSP (MA-FSTSP).

The MA-ECTSP considers constraints such as limited battery levels and inter-agent con-

flicts at replenishment sites, while the MA-FSTSP models scenarios where multiple trucks,

each equipped with several drones, collaborate to visit all customers, with trucks restricted

to roads and drones having greater freedom in their flight paths. We propose a three-phase

framework that first deconstructs these complex problems into more manageable single-agent

versions, then optimizes them separately without constraints as heuristics, and finally inte-

grates the heuristics and optimizes under the practice constraints. For the MA-ECTSP,

we decompose the instance into smaller sub-problems by splitting the minimum spanning

3

tree (MST), solve each using a combination of TSP solvers and heuristic searches, and then

aggregate the tours into a feasible solution using a Mixed-Integer Linear Program (MILP)

with significantly few variables and constraints. For the MA-FSTSP, we initially decompose

the problem into subproblems of one truck with multiple drones, compute routes for trucks

without drones, and use these in the final phase as heuristics to optimize both drone and

truck routes concurrently. Our approach demonstrates significant effectiveness and scalabil-

ity compared to existing baselines, as validated on real-world road networks.

Thesis supervisor: Chuchu Fan

Title: Assitant Professor of Aeronautics and Astronautics

4

Acknowledgments

I am profoundly grateful to my advisor, Prof. Chuchu Fan, for her immense patience and

invaluable guidance during my master’s studies. I had a hard time in my first year, struggling

to find a community that acknowledged and appreciated my work. Her consistent encour-

agement, effective advice, and willingness to explore solutions with me were instrumental in

helping me through that difficult period.

I would like to extend my thanks to Yue Meng, a friend and lab mate, whose mentorship

in technical knowledge and idea brainstorming has been immensely beneficial. I am also

thankful to Dr. Kunal Garg for his expert guidance in crafting a technical paper, sentence

by sentence. I appreciate my lab mates—Mingxin, Oswin, Songyuan, Charles, Cheng, Yilun,

Yongchao, Anjali—and my collaborator, as well as the incoming lab mate, Eric, for their

companionship throughout this academic journey.

I am also grateful to my friends—Haike, Yang, Yuxin, Yun, and Mingxin—for enriching

my life with their friendship. Leaving China for the first time to live in a new country with a

different language and culture was a daunting experience. However, thanks to these friends,

I never felt alone.

Lastly, I owe a heartfelt thank you to my family, especially my parents, for their uncon-

ditional spiritual support over the past two years. Their presence was a constant reminder

of home and strength, which was especially comforting during times of challenge.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 15

1 Introduction 17

1.1 Practical Constraints . 18

1.1.1 Energy Limit . 18

1.1.2 Cooperation with Aerial Robots . 19

1.2 Contribution . 20

1.3 Structure . 22

2 Related Work 23

2.1 Methods for TSP . 23

2.1.1 Exact methods . 23

2.1.2 Approximation and heuristic algorithms 23

2.1.3 End-to-end learning-based methods 24

2.2 Multiple TSP . 24

7

2.3 Energy Constraints . 25

2.4 Collaborative Constraints . 25

2.4.1 Multi-Agent Path Finding . 25

2.4.2 Trucks and drones delivery problem 26

3 Multi-Agent Energy-Constrained Traveling Salesman Problem 27

3.1 Problem Formulation . 27

3.2 Methodology . 28

3.2.1 Customer assignment . 30

3.2.2 Congestion control . 33

3.3 Experiments . 35

3.3.1 Comparison with Baselines . 37

3.3.2 Compare with Exact Algorithm . 38

3.3.3 Studies of Components . 41

3.3.4 Effectiveness of Resource Distribution 42

3.3.5 Effect of replenishment time . 43

4 Multi-Agent Flying Sidekick Traveling Salesman Problem 45

4.1 Problem Formulation . 45

4.2 Methodology . 48

4.2.1 Phase 1: Set nearest-neighbor method 50

4.2.2 Phase 2: Set traveling salesman problem heuristic 51

4.2.3 Phase 3: Decode solution from heuristic 54

4.3 Experiments . 57

4.3.1 Comparison against baselines . 57

4.3.2 Validation for set-based methods . 60

4.3.3 Factors influencing the algorithm . 63

5 Conclusion and Future Work 67

8

A Mixed-Integer Linear Programming Forumlations 69

B Theorems and Proofs 73

B.1 Explaination for Function f and g . 73

B.2 Proof for Theorem 1 . 74

B.3 Proof for Theorem 3 . 76

References 77

9

10

List of Figures

3.1 A solution of MA-ECTSP in Manhattan: salesmen start from depots to col-

laboratively visit all customers and always keep their energy above zero. . . . 29

3.2 Illustration of partitions. The orange nodes represent customers, and the

blue nodes represent depots. Solid lines indicate the edges remaining after

partitioning, and dashed lines represent the edges removed after the partition.

In Fig.(a), we disconnect one depot from the root node to form two subtrees

with one depot in each. In Fig.(b), we disconnect both depots from the root

to form 3 subtrees, each with a depot except the subtree containing the root. 31

3.3 Four Datasets for experiments. (a) The driving road map of Manhattan, New

York. (b) The driving road map of Cambridge, Massachusetts (c) Hospitals

and Tesla’s Supercharger Stations in Massachusetts. (d) The existing bench-

mark for MDVRP [47] . 35

3.4 Results on comparison experiments. (a) The distribution of optimality gaps

with a mean value of 12.48%. (b) The change in the percentage of running

time for each part in the framework. (c) Comparison on Scalability. All

Y-axes are time in seconds. 39

3.5 Results of studies on components. (a) Keep the TSP solver to be LKH, our

partition algorithm outperforms all baselines; (b) keep the partition algorithm

MST-based, and the LKH solver produces the best solution quality and com-

petitive computation time. 41

11

3.6 Effect of the dispersion of stations. There are no feasible solutions for cases

with 1 or 3 station(s). 42

4.1 An example of the truck and drone routes on a directed graph with node 1∼6.

The solid arrows (in all colors) represent the road that the truck must follow.

The truck route (A, F, D, E, A) is colored red and the drone route (A, F, C,

D, E, B, A), represented as ⟨(A, F, D, E, A), {(2,C, 3), (5,B, 6)}⟩, where 2, 3,

4, 5 are indices of nodes F, D, E, A in the truck route, is colored green. The

solid green arrows mean the drone is carried by a truck, and the dashed green

arrows mean the drone is flying freely. 46

4.2 An Example of the output of each phase in the algorithm. In phase 1, we

assign customers, marked by hollow circles, to their closest depots, marked by

solid circles. The assignment is shown in Figure (a). In phase 2, we collect

nodes within half of the distance limit for drones as the circles shown in Figure

(b) and then apply the Set TSP method to find the shortest tour to visit all

sets for each truck group starting from its depot as the colored lines shown

in Figure (b). In phase 3, based on the visiting order on routes found in

phase 2, we optimize the route for truck and drone together. The final results

are shown in Figure (c), where the red and blue lines are routes for trucks

of different groups, and the green lines are routes for drones when they are

separated from the truck to visit customers. 49

12

4.3 An example of Set TSP versus TSP. Each set represents a set of nodes in the

graph, which can be arbitrarily connected inside. Sets are fully connected via

nodes at the boundary. The red arrows represent the optimal TSP tour to

visit the center nodes of sets in the graph, and the green arrows represent

the optimal Set TSP tour to visit every set. Since Set TSP does not require

visiting any exact node, it can pass through the set via shortcuts represented

in dashed green. As a result, the visiting order of sets on the TSP tour and

Set TSP tour can be different. 51

4.4 Ablation for parameters θnn and θtsp with congestion level δ. Results are

averaged over 100 instances of |C| = 50 and |P| = 5 from Manhattan. To

emphasize the relative changes, we normalize the results of each congestion

level by the minimal value of all θ and report the gap, i.e. Reported(θ, δ)←

Cost(θ, δ)/minθ Cost(θ, δ)− 1. The values are reported in percentages. . . 61

4.5 Results on scalability. Figure (a) fixes the ratio of expected customers per

truck group to visit |C|/|P| = 5, and figure (b) fixes the number of depots

|P| = 20. We set the time limit for each instance to 300 seconds. 62

4.6 The influence of relative speed and distance limit. Time in Fig. (b) is plotted

on a logarithm scale. 63

4.7 The distribution of the maximal road-geometry ratio of nodes in the Man-

hattan and Boston graphs. The maximal road-geometry ratio for a node v is

defined as maxu∈Sr/2
dtr(u, v)/d(u, v). 64

4.8 Ablation of congestion level and congestion area. We see the congestion area

to all nodes within the distance Radius to customers. The Radius is reported

in the unit of distance limit for drones r. 64

13

14

List of Tables

3.1 Results on 1000 Small Instances of 5 Depots, 30 customers, 20 Stations . . . 36

3.2 Results on 1000 Small Instances of 5 Depots, 30 customers, 20 Stations . . . 36

3.3 Results on 100 Large Instances of 10 Depots, 100 customers, 20 Stations . . 37

3.4 Results on 100 Large Instances of 10 Depots, 100 customers, 20 Stations . . 37

3.5 Ablation study on objective functions when Rc = 0.25 43

4.1 Comparison with Baselines. All results are averaged over 100 instances sam-

pled uniformly from all nodes in the graph. 57

4.2 Ablation of the set-based methods. Results are averaged over 100 instances

sampled uniformly from Manhattan. 60

4.3 Ablation of the set-based methods. Use the same datasets as Table 2 but

increase the congestion level to 5 for roads within a distance of 0.3r to customers. 60

4.4 Cost for different numbers of drones per truck on datasets sampling nodes

from uniform distribution and Clusters. 63

15

16

Chapter 1

Introduction

To optimize robots handling multiple tasks, a crucial step is to plan the mission with the

optimal order of tasks. The Traveling Salesman Problem (TSP), well-studied in a wide range

of fields including computer science, operation research, and optimization theory, seeks the

shortest route for a salesman to visit a set of customers exactly once and return to the

starting point. In the multi-agent robot system, the Multiple Depot TSP (MDTSP) [1]

is a corresponding variant of the classic TSP that adds multiple depots, where multiple

salesmen start, to visit a set of customers jointly. Such a problem arises in various real-world

robotics applications such as logistics scheduling, warehouse robots, healthcare routing for

metropolitan customers, and unmanned aerial vehicles (UAVs) [2]–[4].

However, a gap exists between the theoretical model of MDTSP and its practical ap-

plications. For instance, robots or electric vehicles may suffer from limited batteries when

conducting tasks; ground vehicles may incorporate aerial robots into the systems to en-

hance their ability. Such scenarios necessitate the introduction of further constraints into

the MDTSP to more accurately model real-world problems, which is the focus of the thesis.

In this chapter, we elucidate the specific challenges addressed in this thesis, highlight our

contributions, and present an outline of the thesis structure. This groundwork lays the foun-

dation for delving deeper into the optimization strategies that can bridge the gap between

17

theoretical models and practical applications in multi-agent systems.

1.1 Practical Constraints

In the thesis, we focus on two types of restrictions: the energy limit for the moving agents

and cooperation with constrained aerial robots.

1.1.1 Energy Limit

In multi-agent systems, particularly those involving autonomous robots or electric vehicles,

energy constraints are a critical factor that significantly influences operational efficiency and

effectiveness. The energy limit constraint, which refers to the maximum energy capacity

available to an agent for completing its route without replenishment, becomes especially

pertinent in scenarios involving extensive travel or multiple task assignments.

The optimal routes given by solving an unconstrained MDTSP might not be realizable in

practice due to each robot’s energy consumption and limited energy capability. For instance,

when assigning drones or electric vehicles to deliver items from different warehouses, visiting

charging stations must be considered. The charging stations also have limited capabilities

regarding the number of agents they can host and the total energy resources they can provide.

To better model such real-world requirements, we define a new class of MDTSP called

Multi-Agent Energy-Constrained TSP (MA-ECTSP) by introducing the energy and resource

constraints into MDTSP. In MA-ECTSP, each salesman starts with a finite energy level and

consumes energy proportional to the traveled distance. In addition, we introduce stations

as new nodes where each salesman can replenish their energy levels. The MA-ECTSP seeks

the shortest set of routes for m salesmen that start from different depots, jointly visit a set

of customers, and return to the depots where they start. Furthermore, each station has a

limited energy supply. Hence, there is an additional constraint on the number of salesmen

each station can cater to. It is worth noting that MA-ECTSP is also (NP-)hard as any TSP

18

can be reduced to an MA-ECTSP with m = 1 and zero energy consumption rate.

1.1.2 Cooperation with Aerial Robots

In the rapidly evolving landscape of aerial robotics, specifically drones, the reduction they

can contribute to road traffic through aerial package delivery has drawn much attention.

However, due to their limited battery capacity and carrying ability, drones are usually con-

sidered to accomplish tasks with the help of a ground vehicle. A common scenario is a

delivery system where trucks carry drones to send packages to customers cooperatively. The

Flying Sidekick Traveling Salesman Problem (FSTSP) [5], which is a variant of the famous

TSP problem, models the problem of a drone working in tandem with a delivery truck to

visit every customer. The problem captures the difficulty of synchronization between the

truck and the drone but oversimplifies the path-finding problem between customers for the

truck by an edge in the graph.

To better capture the truck-drone delivery problem in the real world, we consider a

multi-agent version of FSTSP over a common road network, termed Multi-Agent FSTSP

(MA-FSTSP). The FSTSP considers the TSP problem of one truck loaded with one drone

on a graph, consisting of only one node to depart and return called depot and a set of nodes

to visit called customers. The two differences in MA-FSTSP setting from FSTSP are:

(1) we consider multiple trucks carrying multiple drones instead of one truck with a single

drone; (2) we consider the problem on real-world road maps which contain (many) nodes

other than depots and customers. Those nodes can be considered as any location or address

on the map. In MA-FSTSP, multiple truck groups start from different depots to visit a

given set of customers. Each truck group consists of one truck and a fleet of drones, in which

the drones are loaded on the truck. Similar to TSP, in MA-FSTSP, each customer must

be visited exactly once by one member (a truck or a drone) in one of the truck groups. In

addition, the trucks and drones are required to synchronize at the same node on the graph

for the takeoff and land actions. While the trucks are constrained to move on the roads

19

in the road network, the drones can fly freely between any pair of nodes. However, due

to the limited battery capacity and carrying ability in practice, each drone is restricted to

the maximum distance it can travel before landing on the truck. Additionally, a drone is

required to visit its truck after serving each customer. We only allow drones to land on the

truck from which it initially took off. Given this setup, the MA-FSTSP asks for the route

that minimizes the total time for all truck-drone groups to finish the delivery job (i.e., all

customers are visited.) It is worth noting that MA-FSTSP is also NP-hard as any TSP can

be reduced to an MA-FSTSP by setting the number of truck groups to 1 and the number of

drones in each group to 0.

1.2 Contribution

This thesis presents a three-phase hierarchical framework for handling the two variants,

balancing solution quality and computational complexity. In the first phase, we break the

multi-agent problem into its single-agent version by assigning customers to each of the sales-

men. Then, we solve the sub-problems without considering the constraints to determine the

customers’ visiting order. Finally, based on the given order, we form the optimal feasible

solution under the constraints.

For the MA-ECTSP, we allocate customers to salesmen via a heuristic method involving

the Minimum Spanning Tree (MST) of a graph consisting of the customers and the depots

as the first phase. Then, in the second phase, we use the Lin-Kernighan heuristic (LKH) [6]

TSP solver to determine each salesman’s visit order in the assigned customers. Finally,

in the third phase, each salesman proposes multiple potentially feasible routes by adding

charging stations to their customers’ routes, and the best feasible solution is selected using

a MILP-based congestion control formulation.

Compared with the exact MILP formulation for MA-ECTSP, our framework uses a much

smaller MILP, whose number of both integer and real variables grows linearly to the number

20

of customers instead of quadratic and fourth order. In experiments, our method outperforms

selected baselines in both solution quality and scalability on datasets built from Manhattan,

Cambridge, and Massachusetts road maps, as well as existing benchmarks. We observe a

5.22%∼14.84% tour length reduction, a more than 79.8x speedup against the best baseline,

and a 12.48% mean optimality gap compared with the exact method. Our framework is

capable of solving large-scale instances with up to 1100 customers where the exact method

times out on 30 customers with the same time limit.

For MA-FSTSP, we assigned the customers to the salesman starting from their closest

depots under a set-based distance metric in the first phase. In the second phase, we extend

a TSP to a Set TSP by grouping the road nodes within a given distance to the customers

to form a set. The Set TSP asks for a route that visits each set exactly once instead of

the requirement of visiting each customer exactly once, which is designed to approximate

the usage of drones. The Set TSP is solved via Mixed-Integer Linear Programming (MILP).

Finally, we plan for trucks and drones simultaneously to find the optimal routes that visit

the customers in the same order as the Set TSP routes found in phase 2.

We compare our method with a column generation-based method [7] and a variable

neighborhood search method on a dataset of 1024 nodes, 30 customers, 5 depots, and 5 truck

groups with 3 drones in each per instance generated from the Manhattan road network, and

a dataset of 11000 nodes, 100 customers, 10 depots, and 10 truck groups with 4 drones in

each per instance generated from the Boston road network. Our method produces a 11.67%

cost reduction on the dataset from Manhattan with a 46.7 times speedup, and a 14.99% cost

reduction on the dataset from Boston with a 24.5 times speedup compared to the baseline

methods. We also validate the solution quality with an upper bound approximation and a

lower bound approximation for MA-FSTSP and get a less than 2.3 empirical optimality gap.

Our method scales up to instances with 600 customers on maps of 10000+ nodes within,

at most, 5 minutes of computation time. This is as expected since both the first and third

phases use algorithms of polynomial time complexity, and the number of binary variables

21

in the MILP in the second phase grows quadratic to the number of customers and nodes

in sets. We validate the set-based methods by comparing the performance with their node

version (i.e., standard nearest-neighbor and TSP) on Manhattan and observe cost savings of

up to 4.98% in the common case and cost savings of up to 13.77% when the traffic is bad.

1.3 Structure

The rest of the thesis is organized as follows:

1. Chapter 2 provides a literature review for papers on related topics

2. Chapter 3 introduces the method we model energy constraints

3. Chapter 4 introduces the method we model extra aerial robots in the systems

4. Chapter 5 concludes by summarizing the main points developed in this thesis and

pointing to several interesting directions for future work.

22

Chapter 2

Related Work

This chapter discusses the relevant literature on TSP in multi-agent systems. We begin

by discussing methods for solving TSP. Then, we discuss how people deal with multi-agent

settings, energy constraints, and truck-drone collaboration in related problems.

2.1 Methods for TSP

2.1.1 Exact methods

Exact methods for TSP and its variants, beyond brute force enumeration, include Dynamic

Programming [8] and MILP [9]. Existing tools such as Gurobi [10] and Concorde [11] op-

timize MILP through the Branch and Bound method and Cutting Plane Method for rapid

computation. While exact methods ensure optimality, they are computationally intensive,

leading to significant scaling challenges.

2.1.2 Approximation and heuristic algorithms

Approximation and heuristic algorithms are significantly more computationally efficient than

exact methods but provide only sub-optimal solutions. Among algorithms with worst-case

guarantee, the Christofides Algorithm [12] was the state-of-the-art, offering an approximation

23

ratio of 3
2

(defined as the ratio of the algorithms’ optimal cost to the theoretical optimal cost).

The Lin-Kernighan heuristic (LKH) algorithm [6] stands out as the best heuristic algorithm

for TSP. It begins with a TSP tour and iteratively removes several edges (with 2 or 3 favored

in practice) from the tour, then reconnects the remaining sub-tours to find a tour with a

lower cost. Recently, a neural version of LKH, dubbed NeuralLKH [13], has been developed,

showing superior performance. Metaheuristic algorithms like Simulated Annealing (SA) are

also applicable to solving TSP and are more flexible in adapting to its variants.

2.1.3 End-to-end learning-based methods

have recently attracted attention from researchers due to their good performance. The

pioneering neural-based approach to solve TSP utilized the Hopfield network [14], which

has recently been improved [15]. Another variant of RNN employed for TSP is the Pointer

Network [16]. Recently, Graph Neural Network (GNN) has emerged as an efficient method

for addressing TSP, as it learns the combinatorial structure of the graph problem better by

capturing the node properties against its graph neighbors [17], [18].

2.2 Multiple TSP

Multiple TSP (MTSP) is the basic problem modeling the multi-agent issue, which asks

multiple salesmen starting from the same depot to collaboratively visit a set of cities exactly

once and come back to the depot. MDTSP is an extension of it by allowing salesmen to

start from different depots. Exact algorithms model the problem into MILP [19] or constraint

programming [20], and metaheuristic algorithms include Genetic Algorithm (GA) [21], Ant

Colony Optimization (ACO) [22], and Artificial Bee Colony algorithm (ABC) [23].

24

2.3 Energy Constraints

Electric TSP (ETSP) introduces energy constraints and charging stations into standard

TSP. The problem is first formally stated by [24] together with the exact MILP formulation.

Previous research on energy constraints came together with a time window, known as the

Electric TSP with Time Windows (ETSPTW) [25], which is claimed to be easier [24]. Our

work can be viewed as a multi-agent variant of the ETSP problem, where we provide an

exact MILP formulation and a scalable hierarchical framework.

2.4 Collaborative Constraints

2.4.1 Multi-Agent Path Finding

The Multi-Agent Path Finding (MAPF) [26], [27] problem is a complex challenge in the field

of robotics and artificial intelligence, which asks to find paths for multiple agents like robots

or vehicles so that they can move from their starting points to designated goals while satisfy-

ing constraints. The problem is NP-hard to solve optimally [28] but is handled well by many

effective search algorithms [29]–[32] in practice. While most works seek feasible solutions to

avoid collisions between agents, there are some works for cooperation constraints between

agents. One kind of work models cooperative tasks by forcing agents to satisfy collaborative

constraints on feasible solutions. For example, an extension of MAPF to a pairwise col-

laboration version [33] asks two collaborative agents to meet at some place simultaneously.

Another kind of work puts benefits on cooperation and treats it as an optimization problem.

[34] allows drones to ride public transits to save energy and optimizes the route when tran-

sits’ behaviors are given. MA-FSTSP adapts a similar setting that drones can be carried by

truck and asks to optimize truck-drone routes simultaneously [35], which incorporates the

task allocation problem and TSP constraints in addition to the path-finding problem.

25

2.4.2 Trucks and drones delivery problem

In practice, especially in drone-assisted delivery tasks, trucks usually start from and end at

the same depot, which makes the problem a Traveling Salesman Problem (TSP) or a Vehicle

Routing Problem (VRP). The Flying Sidekick TSP (FSTSP) [5] studies the TSP variant

with drones. It asks a truck to carry a drone to visit all customers exactly once, as TSP

requires, and the drone to synchronize with the truck when taking off and landing. Based

on the problem, more variants are studied for practical applications. One of the directions

is generalizing FSTSP to a multi-agent version. The problem is first extended to one truck

carrying multiple drones [36]–[38], or multiple trucks with one drone on each [39], [40], and

then to multiple trucks with multiple drones [19], [41], [42]. All of them are considering a fully

connected graph consisting of customers and depots only or with extra nodes as stations,

which does not model the complexity of the environment, i.e., road networks. There are

several different ways to enhance the flexibility of the drones, including allowing the drone

to synchronize with the truck on arcs [43], relaxing the graph to a 2D plane [44], or to a road

network [7], [45] where drones can take off and land at arbitrary nodes. Compared with the

above works considering the road networks, our framework is far more scalable while keeping

the state-of-the-art solution quality.

26

Chapter 3

Multi-Agent Energy-Constrained

Traveling Salesman Problem

In this chapter, we introduce the implementation of our framework on MA-ECTSP. First,

we formally state the problem. Then, we show in detail how each phase is designed. Finally,

we demonstrate effectiveness and computational efficiency via experiments.

3.1 Problem Formulation

The MA-ECTSP is a variant of the TSP with multiple levels of constraints. The problem

asks to find the shortest tours for a group of salesmen to visit a set of customers so each

customer is visited exactly once while satisfying the following constraints: 1) the salesman

consumes energy proportional to the distance they travel and can replenish their energy at

specific locations called stations ; 2) The salesmen cannot run out of energy; and 3) Each

station can only serve a limited number of salesmen due to the limited resources. To clarify,

we use the term customer aligning with the term in the FSTSP, which may refer to arbitrary

targets or destinations in robotic tasks.

Formally, the problem is defined on a complete, undirected graph G = (V , E) := G(V),

where V represents the set of nodes. The vertex set V is partitioned into the union of three

27

sets D, C, and S, where D = {d1, d2, · · · , dm} denotes the set of m depots (i.e., starting and

ending locations of the salesmen’s tours), C = {c1, c2, · · · , cn} is the set of n customers, and

S = {s1, s2, · · · , sl} constitutes the set of l stations. Each edge (i, j) ∈ E is associated with

a weight c(i, j) ≥ 0, representing the cost of traveling from vertex i to vertex j. The energy

and resource constraints are encoded as an energy capacity ei and an energy consumption ki

per unit distance for each salesman i, along with a resource upper bound rs for each station

s ∈ S. We consider all salesmen homogeneous for simplicity, i.e., ki = k and ei = e for all

i = 1, 2, · · · ,m. The cost of a tour is typically defined as the sum of the costs of the edges

in the tour, and the total cost is defined as the sum of the costs of all tours. This cost may

be interpreted as distance, time, or other pertinent metric. Furthermore, each salesman’s

energy level is presumed to be fully replenished upon visiting any station.

Problem 1. (MA-ECTSP) Given a complete graph G = (V , E) where V = D ∪ C ∪ S

and m salesmen starting from different depots in D, find a set of m tours {ti}|D|
i=1, one per

salesman, such that: (1) each tour begins and ends at the same depot; (2) each customer in

C is visited exactly once; (3) each salesman maintains a nonnegative energy level throughout

the tour; (4) each station si is visited at most rsi times in total for i = 1, 2, · · · , l; and (5)

the total cost is minimized.

3.2 Methodology

Like the original TSP, MA-ECTSP can also be formulated as a MILP (see Appendix A).

However, the complexity of such a MILP scales exponentially with the number of customers

to the fourth power, the number of depots to the third power, and the number of stations

to the second power. Thus, this approach does not scale well for problems involving a large

number of depots, customers, or stations.

The intuition of our framework is straightforward: by decomposing the MA-ECTSP into

smaller subproblems, we aim to reduce the size of the MILP, the primary bottleneck for

28

+
−

 Leaflet (https://leafletjs.com) | © OpenStreetMap (http://www.openstreetmap.org/copyright) contributors © CartoDB (http://cartodb.com/attributions), CartoDB attributions (http://cartodb.com/attributions)

Depots
Cities
Stations
Roads
Solution

Figure 3.1: A solution of MA-ECTSP in Manhattan: salesmen start from depots to collab-
oratively visit all customers and always keep their energy above zero.

scaling. To this end, we propose a novel hierarchical framework that utilizes a heuristic and

smaller MILP, shown in Alg. 1. Initially, customers are allocated to salesmen (line 3) to form

standard TSPs for each (line 5). Then, each TSP is solved without the energy constraints

to return a potential tour ti for salesman i (line 6). For each pair of consecutive customers

(u, v) in ti, we suggest the top-k shortest paths to v from u by passing through a sequence of

stations to maintain a positive energy level (lines 7-10). Finally, we collect all paths proposed

29

Algorithm 1 Framework for solving MA-ECTSP
1: T , P , Soln = ∅
2: l = 0
3: {Ci}|D|

i=1 = Partition(C; D) ▷ Assign customers to salemen
4: for i ∈ {1, 2, · · · ,m} do
5: Gi = G(Ci ∪ {di}) ▷ Form a complete graph of Ci ∪ {di}
6: ti = TSP(Gi) ▷ Find the TSP solution of graph Gi
7: for (u, v) ∈ ti do
8: G ′i = G({u, v} ∪ S) ▷ Form a complete graph of {u, v} ∪ S
9: Pi(u, v) = k-shortest-path(u, v; G ′i; k) ▷ Find the shortest k paths from u to v

10: end for
11: end for
12: P = ∪|D|

i=1Pi

13: Soln = CongestionControl(P) ▷ Form a solution satisfying all constraints from P
14: return Soln

by all salesmen (line 12) to find a feasible tour for each salesman so that all the constraints,

including positive energy level and limited station resources, are satisfied (line 13). Fig. 3.1

shows an illustrative example of route planning in Manhattan.

3.2.1 Customer assignment

Algorithm 2 Assign Customers to Salesmen
Input: customer set C, depot set D
1: G = G(C ∪ D) ▷ Form a complete graph of C ∪ D
2: T = MST(G) ▷ Compute a minimum spanning tree
3: Compute minimum weight functions f, g ▷ Using Eq. (3.1), (3.2)
4: ∪|D|

i=1Ti = Part(T , f, g) ▷ Partition tree T based on f, g

5: return {C ∩ Ti}|D|
i=1

We first introduce Alg. 2, the customer assignment component in the framework.

To begin with, we construct a complete graph G = G(V) with V = D ∪ C of all depots D

and customers C and find its minimum spanning tree T (rt) rooted at some node rt ∈ D∪C.

Then, we split T (rt) into m components Ti by deleting m − 1 edges to separate every

pair of depots and minimizing the remaining edges’ weights using dynamic programming, as

explained next. Note that each resulting partition Ti contains exactly one depot di.

30

(a) Example of partition T̃ (b) Example of partition T̂

Figure 3.2: Illustration of partitions. The orange nodes represent customers, and the blue
nodes represent depots. Solid lines indicate the edges remaining after partitioning, and
dashed lines represent the edges removed after the partition. In Fig.(a), we disconnect one
depot from the root node to form two subtrees with one depot in each. In Fig.(b), we
disconnect both depots from the root to form 3 subtrees, each with a depot except the
subtree containing the root.

Given a rooted tree T (u) with root node u and mu depots inside, we define two types

of partitions T̃ (u) and T̂ (u). Partition T̃ (u) divides the tree T (u) into mu subtree(s) such

that each subtree contains exactly one depot. If mu = 0, i.e. T (u) contains no depot, then

partition T̃ (u) does not exist. Partition T̂ (u) divides tree T (u) into mu + 1 subtrees, where

the subtree containing the root node u has no depots inside, and the rest mu subtrees contain

exactly one depot each. If root node u is a depot, partition T̂ (u) does not exist. Fig. 3.2

shows an illustration of two partitions.

Next, define f : V → R such that f(u) represents the minimum total edge weights of

T̃ (u) and g : V → R such that g(u) represents the minimum total edge weights of T̂ (u). If a

partition does not exist, we set the corresponding value of f or g to be +∞, i.e., f(u) = +∞

for T (u) contains no depot and g(u) = +∞ if u is a depot. Let H(u) be the set of children

31

of node u. Functions f and g can be computed as:

f(u) =


min

v∈H(u)

{
f(v) + c(u, v) +

∑
v′∈H(u)\{v}

min{f(v′), g(v′) + c(u, v′)}
}
, u ∈ C,

∑
v∈H(u)

min{f(v), g(v) + c(u, v)}, u ∈ D,
(3.1)

g(u) =


∑

v∈H(u)

min{f(v), g(v) + c(u, v)}, u ∈ C,

+∞, u ∈ D.
(3.2)

We offer brief insights here. For a partition T̃ (u) or T̂ (u), all partitions on its subtrees are

also of type T̃ or T̂ . Computing weights for such a partition involves computing the optimal

connection from u to its children and weights for corresponding partitions on those subtrees.

Using this, we can obtain (3.1)-(3.2).

We can construct the optimal partition T̃ (rt) based on the functions f and g recursively

from root to leaves by the following rules. Suppose the partition type of T (u) is known. For

subtree T (v), v ∈ H(u): (1) If T (u) is partitioned to T̃ (u), u ∈ C, and v is the minimizer

in Eq. 3.1. T (v) is partitioned into T̃ (v) and u, v is connected. (2) Else, T (v) is partitioned

into T̃ (v) and disconnect to u if f(v) < g(v) + c(u, v), otherwise T (v) is partitioned into

T̂ (v) and (u, v) is connected. We show the correctness and optimality of Alg. 2’s output.

Theorem 1. Given a graph G = G(V) with V = D ∪ C and an edge-weight function c,

the partition T̃ (rt) recovered from value function assignment in (3.1)-(3.2) partitions the

minimum spanning tree T of G into m subtrees {Ti}mi=1 such that di ∈ Ti, and minimizes the

total edge weights in the connected components, i.e.,
∑|D|

i=1

∑
(u,v)∈Ti c(u, v).

Theorem 2. Alg. 2 for MDTSP has an approximation ratio of 2 for nodes on a 2D plane.

The proofs of Thm. 1 and Thm. 2 are in Appendix B.

After assigning customers to salesmen, we form graphs for each salesman with corre-

sponding depot and customers and solve TSPs to determine the order of visits for each

32

salesman. Since we are solving a standard TSP at this stage, any off-the-shelf TSP solver

can be plugged in here. Because the solver is called repeatedly, once for each salesman, and

the routes have no restriction on the size, it is desirable to use a TSP solver that is both

fast and scalable. In this framework, we use the state-of-the-art heuristic solver LKH-3 [46],

which efficiently produces solutions with a very small optimality gap and has good scalability.

Next, given a tour of customers, each salesman proposes k paths between each edge along

its tour by applying the shortest-path algorithm on the graph consisting of the edge and the

stations. That is, each salesman i with a tour ti proposes k|ti| paths in total, where |ti| is

the length of the tour ti. The total number of paths is
∑|D|

i=1 k|ti| = k(|C|+ |D|), so there are∏|D|
i=1

∏|ti|
j=1 k = k|C|+|D| potential solutions. The next step is to solve the congestion control

problem to find a solution for each salesman that satisfies all the energy constraints.

3.2.2 Congestion control

We say congestion happens at station s when more than rs salesmen want to visit the

station. The congestion control problem aims to plan salesmen tours to avoid congestion at

any station. To this end, a salesman i selects a path from the k proposed paths for each

edge (u, v) in each tour ti to satisfy energy requirements for all salesmen and station resource

limits. We set this as an optimization problem to find the path assignment that minimizes

the total edge weights while satisfying the constraints.

Let βi,j,h ∈ {0, 1} be a binary variable indicating whether pi,j,h, i.e. h-th path proposed

by salesman i for its j-th edge, is chosen and ci,j,h be the corresponding cost. If there is at

least one station on the path, we denote the minimum energy needed to arrive at the first

station from the j-th node as q1,i,j,h and the maximum energy left after finishing the path

(i.e., arriving at the (j + 1)-th node) as q2,i,j,h. Let γi,j ∈ R+ ∪ {0} be the energy level of

salesman i at the j-th node in tour ti. Thus, βi,j,h = 1 is feasible only if corresponding energy

constraints are satisfied, i.e., γi,j ≥ q1,i,j,h and γi,j+1 ≤ q2,i,j,h. In the case when a salesman

visits a station between the j-th and (j + 1)-th node, the energy level γi,j+1 is independent

33

of γi,j because the station charges the salesman’s energy to its full capacity. On the other

hand, if there is no station on the path, we denote the minimum energy needed to travel

the path pi,j,h by q3,i,j,h. In this case, βi,j,h = 1 is feasible only if γi,j − γi,j+1 ≥ q3,i,j,h, which

means that the energy level γi,j+1 depends on the previous energy level γi,j. Additionally,

we define q3,(·) = −∞ for paths with stations and q1,(·) = −∞, q2,(·) = +∞ for paths without

stations, so that the tuple q(·) = (q1,(·), q2,(·), q3,(·)) is well-defined for each edge. Based on

these definitions, the congestion-free tour assignment problem can be posed as:

min
m∑
i=1

|ti|∑
j=1

k∑
h=1

ci,j,h · βi,j,h, (3.3a)

s.t. βi,j,h ∈ {0, 1}, i ∈ [m], j ∈ [|ti|], h ∈ [k], (3.3b)
k∑

h=1

βi,j,h = 1, i ∈ [m], j ∈ [|ti|], (3.3c)

m∑
i=1

|ti|∑
j=1

k∑
h=1

βi,j,h · pi,j,h[s] ≤ rs, s ∈ [l], (3.3d)

0 ≤ γi,j, i ∈ [m], j ∈ [|ti|+ 1], (3.3e)
k∑

h=1

βi,j,h · q1,i,j,h ≤ γi,j, i ∈ [m], j ∈ [|ti|], (3.3f)

γi,j ≤
k∑

h=1

βi,j,h · q2,i,j−1,h, i ∈ [m], j ∈ [2, |ti|+ 1], (3.3g)

k∑
h=1

βi,j,h · q3,i,j,h ≤ γi,j − γi,j+1, i ∈ [m], j ∈ [|ti|], (3.3h)

where |ti| refers to the length of salesman i’s tour ti. The objective (3.3a) is the overall

cost to minimize. Constraints (3.3b) and (3.3c) ask to choose exactly one path out of k

proposed paths for each edge. Constraint (3.3d) is the station’s resource limit. Constraints

(3.3e)-(3.3h) are the energy constraints for salesmen when passing through the chosen paths.

Now, we analyze the complexity of our proposed MA-ECTSP solver. Given a graph

G = G(V) with |V| = |D ∪ C ∪ S| = m + n + l and parameter k denoting the number

34

++
−−

 Leaflet | © OpenStreetMap contributors © CARTO

 Hospitals
 Stations

Depots Cities

Figure 3.3: Four Datasets for experiments. (a) The driving road map of Manhattan, New
York. (b) The driving road map of Cambridge, Massachusetts (c) Hospitals and Tesla’s
Supercharger Stations in Massachusetts. (d) The existing benchmark for MDVRP [47]

of paths proposed for each edge, the MILP (3.3) has nk real variables, mk + nk integer

variables and 5m2 + 5mn + l constraints. Compared with the naive MILP formulation,

which has mn + mn2 + mn2(m + n + l)2 real variables, mn2 + n integer variables, and

m(m+ n)2(l2 + 6m+ 5n+ 7l+ 3) constraints, our algorithm has better scalability, which is

also validated via experiments presented in the next section.

3.3 Experiments

We empirically validate our method in this section. In section 3.3.1, we compare our method

with three baselines: Ant Colony Optimization (ACO) [48], Hybrid Evolutionary Algorithm

35

Table 3.1: Results on 1000 Small Instances of 5 Depots, 30 customers, 20 Stations

Manhattan Cambridge

Method Length Feasible Rate Time(s) Length Feasible Rate Time(s)

ACO 32.93 0.95 1.02 395.75 0.92 1.04
HEA 31.65 0.62 21.57 380.12 0.63 21.62
HVNS 28.26 1.00 12.95 338.86 1.00 14.80
Ours 24.96 1.00 1.90 313.45 1.00 1.91

Table 3.2: Results on 1000 Small Instances of 5 Depots, 30 customers, 20 Stations

Massachusetts MDVRP Benchmark

Method Length Feasible Rate Time(s) Length Feasible Rate Time(s)

ACO 830.13 0.99 1.05 907.83 0.84 1.26
HEA 848.34 0.97 10.68 909.78 0.43 14.45
HVNS 748.50 0.99 9.71 843.66 1.00 15.25
Ours 703.82 0.99 1.89 783.06 0.91 2.04

(HEA) [49], and Hybrid Variable Neighborhood Search (HVNS) [50], on real-world maps

and existing benchmarks. In section 3.3.2, we compare our method with a naïve MILP

formulation for the scalability and solution quality. In section 3.3.3, we study our framework’s

partition and TSP solver components to justify our choices. In section 3.3.4, we explore the

effectiveness of resource distribution and provide a sufficient condition for the existence of

feasible solutions based on the experiments. Finally, in section 3.3.5, we test the influence

of the replenishment time.

All experiments were run on a server with 1 AMD Ryzen Threadripper 3990X 64-Core

Processor and 4 Nvidia RTX A4000 GPUs. Gurobi 10.0.0 [10] served as the MILP solver.

We set the iterations of LKH to 10 and the number of paths proposed per edge by each

salesman k = 5. The selection of k is empirical; beyond 5, increasing k extends running

time without enhancing performance. For baselines, we adapt the parameters from their

papers [48]–[50].

36

Table 3.3: Results on 100 Large Instances of 10 Depots, 100 customers, 20 Stations

Manhattan Cambridge

Method Length Feasible Rate Time(s) Length Feasible Rate Time(s)

ACO 65.50 0.34 3.63 881.50 0.14 4.45
HEA 50.61 0.01 420.62 824.00 0.01 473.21
HVNS 47.70 0.94 270.19 653.54 0.48 300.75
Ours 41.74 0.98 2.54 619.43 0.56 3.11

Table 3.4: Results on 100 Large Instances of 10 Depots, 100 customers, 20 Stations

Massachusetts MDVRP Benchmark

Method Length Feasible Rate Time(s) Length Feasible Rate Time(s)

ACO 1685.88 0.99 4.16 2156.11 0.41 4.03
HEA 1619.08 0.95 310.27 1931.04 0.09 329.39
HVNS 1373.35 0.99 212.72 1642.98 0.67 287.45
Ours 1228.60 0.99 2.78 1511.19 0.70 2.32

3.3.1 Comparison with Baselines

Datasets: We present experiments on four datasets from real-world maps and existing

benchmarks. We use the driving road map of Manhattan [51], Cambridge, and Mas-

sachusetts [52]. For the Manhattan map, instances are generated by uniformly sampling

depots, customers, and stations from the map. For the Cambridge map, stations are uni-

formly sampled from Bluebikes stations in 2023 [53], and depots and customers are uniformly

sampled from the rest of the map. For the Massachusetts map, stations are uniformly sam-

pled from Tesla’s Supercharger stations, and depots and customers are uniformly sampled

from hospitals. We adapt the existing MDVRP benchmarks [47] by randomly turning a frac-

tion of customers into stations and uniformly sampling a fixed amount of depots, customers,

and stations. Salesmen are restricted to traveling along roads in instances from maps and

freely in the 2D space in instances from benchmarks. For each data source, we generate 1000

small instances consisting of depots |D| = 5, customers |C| = 30, and stations |S| = 20, and

100 large instances consisting of |D| = 10, |C| = 100, |S| = 20. We set the resource limit for

37

each station to be r = 2. Due to the different map sizes, the energy capacity of the salesman

is set differently, i.e., 4 in Manhattan, 40 in Cambridge, 400 in Massachusetts, and 4 in data

from the benchmark.

Metrics: We assess solvers based on total tour length, feasibility rate, and running time.

The tour length is defined as the sum of path lengths salesmen traveled in a solution. The

feasibility rate is defined as the ratio of feasible solutions found for instances in a dataset.

The running time is the duration from formatted data being fed into the solver to the solver

outputting the best solution. We report the average tour length and average running time.

Baselines: We use ACO, HEA, and HVNS as baselines. The ACO-based algorithm

uses the nearest neighbor partition to split the multi-depot problem into single-depot sub-

problems, with ACO employed to find local optima. HEA starts with the nearest neighbor

population, iteratively creates offspring by adding minimal incremental density routes from

parents, and enhances the solution with variable neighborhood search.HEA was originally

designed for MDVRP, so we added the station insertion procedure from the ACO baseline to

adapt it to MA-ECTSP. HVNS initializes the solution using a variable neighborhood search

in each iteration and searches for the best solution by tabu search. The three baselines

represent the main approaches for related problems and are state-of-the-art methods in their

categories.

Result: The comparison results are shown in Table 3.1-3.4. Our method effectively

produces the best solution quality in all test cases. When the problem size is small, our

method’s feasibility rate and running time are very close to the best baseline. On test cases

with large problem sizes, our method outperforms all other baselines in all evaluation metrics,

which also shows good scalability.

3.3.2 Compare with Exact Algorithm

Our framework’s solution quality and running time trade-offs are assessed by comparison

with an exact algorithm.

38

0.0 0.2 0.4
Optimality Gap

0

5

10

15

20

C
ou

n
t

(a)

250 500 750 1000
Customers

0

20

40

60

T
im

e
(%

)

Part. TSP P.P. Cong.

(b)

5

10
jCj=jDj= 5, Ours

0

200

jCj=jDj= 5, MILP

100 300 500 700 900 1100
Customers

0

200
jDj= 5, Ours

5 10 15 20
Customers

0

200

jDj= 5, MILP

(c)

Figure 3.4: Results on comparison experiments. (a) The distribution of optimality gaps with
a mean value of 12.48%. (b) The change in the percentage of running time for each part in
the framework. (c) Comparison on Scalability. All Y-axes are time in seconds.

39

Datasets: To measure the solution quality, we randomly generate 100 instances of |C| =

15, |D| = 3, |S| = 20, and r = 2 in the unit square [0, 1]2. To measure the scalability of our

framework, we vary the size of instances to 100 instances per size. The sizes of problems

increase in two ways: (1) fix the number of stations |S| = 20 and the number of salesmen

|D| = 5, the number of customers |C| varies from 100 to 1100 for our framework and from 5

to 20 for the MILP solver; (2) fix the number of stations |S| = 20 and the average customers

visited by each salesman, i.e., |C|/|D| = 5, the number of salesmen |D| varies from 20 to 220

for our framework and |D| from 1 to 5 for the MILP solver. To ensure the feasibility rate,

we empirically set r = 0.4 · |C|/|S|.

Baseline: The baseline we use is a naïve MILP.

Metrics: The solution quality is measured by the gap between our tour length and the

optimal one. The running time is the same metric as in Sec. 3.3.1.

Results: Our framework achieves a mean optimal gap of 12.48% and worst gap of

52.34% on the dataset with an average 41.7 times speedup, where the distribution is shown

in Figure 3.4a. We believe this is a good performance as the worst-case guarantee for standard

TSP is around 50%. Figure 3.4c demonstrates the trends of the increment in running time,

where our framework shows much better scalability than the MILP solver. Even with more

than 1000 customers, the running time of our framework is still acceptably low. We can

conclude that our framework achieves good suboptimality and tremendously reduces the

running time to scale up to a large problem size.

Comparing the first column in Figure 3.4c, the running time is shorter when there are

more salesmen given the same number of customers. We empirically evaluate the running

time of different components in our framework. Figure 3.4b shows the changes in relative

time consumption for subroutines in the entire algorithm as the number of customers grows

from 100 to 1100, while the number of depots is fixed at 5. The TSP solver and the MILP

in congestion control take up most of the computation time, which explains the negative

correlation between running time and the number of salesmen. Given more salesmen, the

40

1.00 1.25
Tour Length (1e3)

0

5
D

en
si

ty
(1

e-
3
)

Ours

N-N

K-M

(a)

0 10
Gap (%)

2.5

5.0

7.5

T
im

e(
s)

0 20
Gap (%)

10

20 Appr

NN

LKH

SA

(b)

Figure 3.5: Results of studies on components. (a) Keep the TSP solver to be LKH, our
partition algorithm outperforms all baselines; (b) keep the partition algorithm MST-based,
and the LKH solver produces the best solution quality and competitive computation time.

running time of the partition increases slightly, but the average size of TSP for salesmen

decreases, dramatically reducing the overall running time.

3.3.3 Studies of Components

In this section, we validate the effectiveness of our partition algorithm and TSP solver by

comparing them with several other potential plugin algorithms.

Datasets: We conduct experiments on 100 randomly generated instances of |D| = 5,

|C| = 150, |S| = 20, and 100 randomly generated instances of |D| = 5, |C| = 250, |S| = 20

in the unit square. We set r = 3 in both cases.

Metrics: For partition algorithms, we evaluate the algorithms by tour length only since

all of them take only polynomial time. We evaluate TSP solvers by tour length, measured

by the gap between using a MILP TSP solver and themselves, and the running time.

Baselines: For the partition algorithm, we choose the Nearest Neighbor (N-N) algo-

rithm, which assigns each customer to its closest salesman, and the K-Means clustering

algorithm, which first clusters the customers into several groups and then assigns each group

to the salesman closest to its cluster center, as baselines. For TSP solvers, we choose the

representatives of main approaches, including neural-based solver [17], approximation solver

(Christofides algorithm), heuristic solver (LKH), and metaheuristic solver (SA).

41

3 8 16 40 120
Stations

6

8

10

L
en

.
(1

e3
)

(B
o
x
)

0

25

50

75

100

F
ea

s.
 R

a
te

 (
L
in

e)

Figure 3.6: Effect of the dispersion of stations. There are no feasible solutions for cases with
1 or 3 station(s).

Results: Results in Figure 3.5a show that our partition method beats both NN and

KMeans. The result in the left figure of Figure 3.5b shows that LKH gives much smaller

gaps than others within acceptable running time. The right one of Figure 3.5b shows that

the LKH solver still produces the best solution with a small running time on large cases,

while the neural-based solver has an enormous drop in its solution quality due to the out-

of-distribution issue.

Again, we want to emphasize that our framework is adaptable to arbitrary partition algo-

rithms and TSP solvers, allowing for further performance improvements as these components

evolve.

3.3.4 Effectiveness of Resource Distribution

In this subsection, we investigate the effectiveness of the resource distribution given the total

resources and problem size to guide the station setup.

Datasets: We randomly generate 100 instances in the unit square of |D| = 30, |C| =

1200. Then, we vary |S| from 1 ∼ 120 and distribute them uniformly in the square, keeping

the total amount of resources r · |S| = 240.

Result: As shown in Figure 3.6, adding more stations increases feasibility and shortens

tour length, indicating that spreading resources more widely eases their use. Based on the

42

Table 3.5: Ablation study on objective functions when Rc = 0.25

Optimize Length Optimize Time

Length Time Length Time Similarity

Manhattan 16.56 19.70 16.64 19.43 0.75
Cambridge 197.73 237.16 199.22 232.38 0.70

Massachusetts 474.70 493.375 476.92 483.11 0.74

observation, we present a sufficient condition for resource density to ensure feasible solutions.

Theorem 3. Gridding the map with length e
(1+

√
5)k

into even squares. Suppose in grid i, the

number of stations is Ns[i] and the number of customers is Nc[i], then there exists a feasible

solution if Ns[i] ≥ 1 and Nc[i]/Ns[i] ≤ r for all i.

The proof is in Appendix B.3. In practice, the cost of setting up stations needs to be

balanced against their benefits for optimal resource allocation.

3.3.5 Effect of replenishment time

In this section, we show that the replenishment time in the objective function has minimal

impact on the final solution.

Method: We introduce the parameter Rc = w
k
, i.e., the rate between consuming en-

ergy and replenishing energy, into the naïve MILP to consider the replenishment time. We

generate solutions under Rc = +∞, i.e., optimizing tour length without accounting for re-

plenishment time, and Rc = 0.25 based on the speed of 180kW charging stations for each

instance.

Datasets: We build datasets from those in Sec. 3.3.1 by randomly sampling 2 depots out

of all depots and 12 customers out of all customers from each instance to avoid the explosion

of solving time. The sizes of the dataset are the same.

Results: The results are shown in 3.5. The length in the table represents the total

distance salesmen need to travel, and the time in the table represents the total time salesmen

need to spend given Rc = 0.25. Optimizing the length, equivalent to not considering the

43

replenishment time as our previous setting, can be done by cheating the MILP of Rc =

+∞. The similarity metric, representing the fraction of cases with identical solutions under

varying objectives, shows over 70% consistency in solutions whether or not the replenishment

time is considered, and very small gaps in the remaining cases.

44

Chapter 4

Multi-Agent Flying Sidekick Traveling

Salesman Problem

In this chapter, we introduce the implementation of our framework on MA-FSTSP. Following

the same structure, we formally state the problem and then show how each phase is designed.

Finally, we demonstrate effectiveness and computational efficiency via experiments.

4.1 Problem Formulation

The MA-FSTSP is a multi-agent generalization of FSTSP in both trucks and drones. The

problem asks us to find the fastest tours for each truck group to visit a set of customers

so that each customer is visited exactly once while satisfying the following constraints: (1)

trucks can only move along roads, while drones can fly directly between any locations after

leaving the truck; (2) drones can only fly a limited distance before landing back to its truck

due to limited battery capacity; (3) drones can be dispatched from the truck and collected

by the same truck in a different location; (4) takeoff and land actions only happen at the

ends of the road for simplicity; (5) drones can only visit one customer before back to the

truck due to the limited payload capacity.

We plan for a fleet of agents comprising m truck groups, denoted as T = {T1, T2, · · · , Tm}.

45

F

B

C

E
A

D

(a) Truck Route (red)

F

B

C

E
A

D

(b) Drone Route (green)

Figure 4.1: An example of the truck and drone routes on a directed graph with node 1∼6.
The solid arrows (in all colors) represent the road that the truck must follow. The truck
route (A, F, D, E, A) is colored red and the drone route (A, F, C, D, E, B, A), represented
as ⟨(A, F, D, E, A), {(2,C, 3), (5,B, 6)}⟩, where 2, 3, 4, 5 are indices of nodes F, D, E, A
in the truck route, is colored green. The solid green arrows mean the drone is carried by a
truck, and the dashed green arrows mean the drone is flying freely.

Each truck group Ti consists of a truck ti carrying a group of ki dronesDi = {d(i)1 , d
(i)
2 , · · · , d(i)ki

}.

For simplicity, we consider ki = k ≥ 1 for all truck groups in this work. The agents operate

on a shared road network, represented by a strongly connected directed graph 1 G = (V , E),

where V is the set of nodes (including depots nodes and customers nodes defined later) and

E is the set of edges.

Each pair of nodes u, v ∈ V is associated with a distance d(u, v) ≥ 0, which may represent

the Euclidean distance on a planar map or geometric distance on Earth. Trucks are moving

at a constant speed str > 0 discounted by the congestion level δ(e) on each edge e ∈ E . The

congestion level accounts for practical traffic conditions such as traffic jams or varying speed

limits, with the travel time across edge e being calculated as d(e)/(str · δ(e)). Drones can

be carried by trucks or deployed independently to execute delivery tasks. Drones operate

at a constant speed sdr > 0 and are capable of flying directly between any pair of nodes,

independent of the road network. Drones can take off from and land on their accompanying
1A directed graph is called strongly connected if there is a path in each direction between each pair of

graph nodes.

46

truck at any v ∈ G. In each delivery task, their operational range is limited to a maximum

distance r > 0 due to battery constraints, and they are limited to serving one customer due

to their loading capacity.

Let P = {p1, p2, · · · , pm} ⊆ V be the set of m depots for each truck group to start and

end their tours, and C = {c1, c2, · · · , cn} ⊆ V be the set of n customers to visit. A customer

c ∈ C can be visited by any agent starting from any depot d ∈ P . Furthermore, we assume

C ∩ P = ∅. Next, we formally define the truck route and the drone route that constitute a

solution to the MA-FSTSP.

Definition 1 (Truck Route). We call a sequence of nodes (v0, v1, · · · , vl), vj ∈ V ,∀j ∈

{0, 1, · · · , l}, a truck route if

v0 = vl = p ∈ P , (4.1a)

(vj, vj+1) ∈ E , ∀j ∈ {0, 1, · · · , l − 1}. (4.1b)

Intuitively, a truck route forms a cycle in the graph, starting and ending at a specific

depot, as illustrated in Fig. 4.1a. Before discussing drone routes, we first introduce the

concept of a drone delivery tuple to represent these routes effectively.

Definition 2 (Drone Delivery Tuple). Given a truck route (v0, v1, · · · , vl), a drone de-

livery tuple (x, c, y) describes a delivery task that a drone carried by the truck takes off from

vx, visits customer c, and lands on the truck at vy.

Definition 3 (Drone Route). A drone route is represented by a tuple ⟨(v0, v1, · · · , vl), {(x1, c1, y1), (x2, c2, y2), · · · }⟩,

where (v0, v1, · · · , vl) is the truck route that the drone accompanies, and {(x1, c1, y1), (x2, c2, y2), · · · }

comprises drone delivery tuples of the delivery tasks executed by drones.

An example of the drone route is shown in Fig. 4.1b.

We define the route for a truck group based on the truck route and the drone route

definitions.

47

Definition 4 (Truck Group Route). Given truck group Ti starting from depot pi, the

route is represented as a (k + 1)-tuple πi, where πi[0] = (v0, v1, · · · , vl) is a truck route that

v0 = vl = pi, πi[j] = {(x(j)
1 , c

(j)
1 , y

(j)
1), (x

(j)
2 , c

(j)
2 , y

(j)
2), · · · }, j = 1, 2, · · · k, are k sets of drone

delivery tuples such that ⟨πi[0], πi[j]⟩, j = 1, 2, · · · k, are all drone routes.

The total cost of a truck group route πi, denoted as cost(πi), is defined as the minimum

time needed for the truck group Ti to address all drone delivery tasks and return to the depot

pi. Now, we can formally state the MA-FSTSP problem.

Problem 2 (MA-FSTSP). Given a strongly connected directed graph G = (V , E), and m

truck groups starting from different depots in set D ⊆ V to visit a set of n customers C ⊆ V,

find a set of m truck group routes {πi}mi=1, one for each truck group, to visit every customer

c ∈ C exactly once that minimizes the total cost
∑m

i=1 cost(πi).

4.2 Methodology

Algorithm 3 Pipeline to Solve MA-FSTSP
Input: Road network G, customer set C, depot P , truck speed str, drone speed sdr, drone
endurance r, pairwise distance d

1: Initialize solution Soln as empty set
2: for (u, v) ∈ C × C do
3: dtr(u, v)← AdjustedShortestPathLength(u, v;G; δ)
4: end for
5: Assign customers {Ci}|P|

i=1 ← SetNN(C,P ; dtr, d)
6: for i ∈ {1, 2, · · · ,m} do
7: S ← {{n ∈ V(G) : w(n, c) < r/2} : c ∈ Ci} ∪ {{pi}}

▷ For each customer c collect nearby nodes
8: Order ← SetTSP(S; dtr, d; str, sdr)
9: Soln[i]← GetRoute(Ci, pi;Order; dtr, d; str, sdr)

10: end for
11: return Soln

We apply our three-phase framework to solve MA-FSTSP by carefully designing each

component based on the problem structure. In phase 1, the problem is broken down to

m subproblems (recall that m is the number of depots) of a single truck carrying multiple

48

++
−−

 Leaflet | © OpenStreetMap contributors © CARTO(a) Phase 1: assign customers
to truck groups

++
−−

 Leaflet | © OpenStreetMap contributors © CARTO

(b) Phase 2: solve the set TSP
for visiting orders

++
−−

 Leaflet | © OpenStreetMap contributors © CARTO

(c) Phase 3: optimize routes for
trucks and drones

Figure 4.2: An Example of the output of each phase in the algorithm. In phase 1, we assign
customers, marked by hollow circles, to their closest depots, marked by solid circles. The
assignment is shown in Figure (a). In phase 2, we collect nodes within half of the distance
limit for drones as the circles shown in Figure (b) and then apply the Set TSP method to
find the shortest tour to visit all sets for each truck group starting from its depot as the
colored lines shown in Figure (b). In phase 3, based on the visiting order on routes found
in phase 2, we optimize the route for truck and drone together. The final results are shown
in Figure (c), where the red and blue lines are routes for trucks of different groups, and the
green lines are routes for drones when they are separated from the truck to visit customers.

drones to visit customers on road networks by allocating customers to truck groups via the

nearest-neighbor method on sets. Next, in phase 2, a graph set TSP heuristic is applied to

determine the visiting order of customers for each truck group. Finally, in phase 3, a truck-

drone route is computed given the restriction of customers’ visiting orders. The pseudocode

for the proposed algorithm is shown in Alg. 3. Line 1∼4 is the preparation for data. The

adjusted shortest path length is computed by incorporating the congestion level into the

edge weights, i.e.,

dtr(u, v) = min
p∈Path(u,v)

∑
e∈p

d(e) · δ(e), (4.2)

where Path(u, v) is the set of all paths from u to v in graph G. Line 5 corresponds to phase

1. Line 7 computes the set for each customer, and lines 8∼9 correspond to phases 2 and 3,

respectively. Methods of phase 1∼3 are introduced in Sec. 4.2.1, Sec. 4.2.2, and Sec. 4.2.3,

49

respectively. An example is shown in Fig. 4.2.

4.2.1 Phase 1: Set nearest-neighbor method

Algorithm 4 Pseudocode for Set Nearest-Neighbor
Input: Road network G, customer set C, depot P , truck speed str, drone speed sdr, radius
parameter θ, pairwise distance d

1: Initialize assignment {Cp}p∈P as empty sets
2: for c ∈ C do
3: Sc(θ)← {v ∈ V(G) : d(v, c) < θ}
4: for p ∈ P do
5: Compute dset(p, c) by Eq. 4.4
6: end for
7: p∗ ← argminp∈P dset(p, c)
8: Cp∗ ← Cp∗ ∪ {c}
9: end for

10: return assignment {Cp}p∈P

To assign customers to truck groups, a common strategy used in multiagent systems is

the nearest-neighbor algorithm [54]–[56]. However, two geographically close nodes might be

distantly connected in road networks, commonly seen in practical scenarios such as places

around the highway, one-way roads, and traffic bottlenecks. In such cases, neither geometric

nor road map distance gives the most accurate estimation of the time required for the truck

group to traverse the path. To this end, we extend the nearest-neighbor method to a set

version called the set nearest-neighbor to consider both trucks and drones.

Given parameter θ, we collect all nodes within distance θ to a customer c ∈ C as:

Sc(θ) := {n ∈ V(G) : d(n, c) ≤ θ}. (4.3)

If θ ≤ r, each node in Sc is a valid takeoff or land node for a drone to visit customer c. Using

this set, we define the distance between a depot p and customer c as

dset(p, c) := min
v∈Sc(θ)

{
d(c, v) · str

sdr
+ dtr(p, v)

}
, (4.4)

50

Figure 4.3: An example of Set TSP versus TSP. Each set represents a set of nodes in the
graph, which can be arbitrarily connected inside. Sets are fully connected via nodes at the
boundary. The red arrows represent the optimal TSP tour to visit the center nodes of sets in
the graph, and the green arrows represent the optimal Set TSP tour to visit every set. Since
Set TSP does not require visiting any exact node, it can pass through the set via shortcuts
represented in dashed green. As a result, the visiting order of sets on the TSP tour and Set
TSP tour can be different.

where dtr is the adjusted shortest path for the truck defined in Eq. 4.2. The distance dset can

be viewed as a hybrid of truck distance on road networks and drone distance on geometry

concerning the distance limit of drones. It is reduced to the distance for the truck when

θ → 0. Based on dset, we assign customers to the truck group with the closest starting

depot. The pseudocode for this assignment is given in Alg. 4. Next, each group finds their

own shortest tours in phase 2-3.

4.2.2 Phase 2: Set traveling salesman problem heuristic

Following the same insight in Sec. 4.2.1, we extend the TSP heuristic to a set version as well

to take the usage of drones into account, which is formally stated as:

Problem 3 (Set TSP). Given n location sets V1, V2, · · · , Vn along with the traveling costs

between each pair of locations, find a possible route with the lowest total cost that visits each

51

location set exactly once and returns to the original starting location set, where a consecutive

visit to one or more location(s) in a location set is called a visit to the location set.

For the truck group Ti, approximating the task of designing a tour that visits each

customer in Ci, starting and ending at depot pi, can effectively be modeled by a set TSP as

follows. (1) The location sets are {Sc(θ) : c ∈ Ci}∪ {{pi}}, where Sc(θ) is defined in Eq. 4.3.

We choose θ = r/2 so all pairs of nodes in Sc(θ) can be a drone delivery task’s start and end

nodes. (2) The traveling cost from u ∈ Sc(θ), c ∈ Ci to v is defined as:

w(u, v) =


max{d(u,c)+d(c,v)

sdr
, d(u,v)

sdr
}, v ∈ Sc(θ);

d(u,v)
str

, v /∈ Sc(θ).

(4.5)

The cost is the time needed to move from node u to node v and visit customer c by the truck

group if u, v ∈ Sc(θ). The visiting order of customers in the optimal route found for the set

TSP is used as the heuristic in Phase 3.

The Set TSP is an NP-hard problem since the TSP is a special case when each set

only contains one node, and the total traveling cost can be computed in polynomial time.

To solve it, we extend the Gavish-Graves (GG) formulation [57] of Mixed-Integer Linear

Programming (MILP) for TSP.

For simplicity, we define C̄i := Ci ∪ {pi}. Let βc̄,c̄′ ∈ {0, 1} be a binary variable indicating

whether the next customer or depot is c̄′ after visiting customer or depot c̄, and yc̄,c̄′ ∈ R+

be the corresponding network flow. The TSP property of visiting each set exactly once can

be expressed as

52

βc̄,c̄ = yc̄,c̄ = 0,∀c̄ ∈ C̄i, (4.6a)∑
c̄′∈C̄i

βc̄,c̄′ =
∑
c̄′∈C̄i

βc̄′,c̄ = 1,∀c̄ ∈ C̄i, (4.6b)

yc̄,c̄′ ≤ |Ci| · βc̄,c̄′ ,∀c̄, c̄′ ∈ C̄i, (4.6c)∑
c̄∈C̄i

ypi,c̄ = |Ci|, (4.6d)

∑
c̄∈C̄i

yc̄,pi = 0, (4.6e)

∑
c̄′∈C̄i

yc̄′,c̄ −
∑
c̄′∈C̄i

yc̄,c̄′ = 1,∀c̄ ∈ C̄i. (4.6f)

The constraint 4.6a forbids self-loops, 4.6b forces the solution to be a collection of cycles,

and 4.6c∼4.6f ask the flow to reduce 1 unit each step along the cycle from |Ci| to 0, which

only allows the existence of one cycle.

Let γu,v be a binary variable indicating whether a drone tour starts from u to v for

u, v ∈ Sc and δv,u be a binary variable indicating whether a truck picks up a drone at v and

carry it to u to dispatch it. The constraints are:

∑
u,v∈Sc

γu,v = 1, ∀c ∈ Ci, (4.7a)

∑
v∈Sc̄

∑
u∈Sc̄′

δv,u = βc̄,c̄′ ,∀c̄, c̄′ ∈ C̄i, (4.7b)

∑
u∈Sc̄

γu,v =
∑
c̄′∈C̄i

∑
w∈Sc̄′

δv,w,∀c̄ ∈ C̄i, v ∈ Sc̄ (4.7c)

∑
v∈Sc̄

γu,v =
∑
c̄′∈C̄i

∑
w∈Sc̄′

δw,u,∀c̄ ∈ C̄i, u ∈ Sc̄. (4.7d)

Constraint 4.7a encodes the TSP constraint, which asks for exactly one drone visit start-

ing from a u ∈ Sc and ending at a v ∈ Sc to each customer c ∈ Ci. Constraint 4.7b aligns

the node-level route with the set-level route. If c̄ is visited followed by the visit of c̄′, i.e.

53

βc̄,c̄′ = 1, then the truck route should pass from a v ∈ Sc̄, where it picks up the drone visiting

c̄, to a u ∈ Sc̄′ , where it dispatches the drone to visit c̄′. Otherwise, such a sub-route does

not exist in the truck route. Constraint 4.7c means that if the drone lands at v ∈ Sc̄ after

visiting c̄, it is picked up at v by the truck. It synchronizes the truck and the drone at the

dispatching node. Constraint 4.7d, similarly, synchronizes the truck and the drone at the

landing node.

The objective function minimizes the sum of costs of the edges (defined in Eq. 4.5)

traversed by the route

∑
c∈C̄i

∑
u∈Sc

∑
v∈Sc

w(u, v) · γu,v +
∑
c′∈C̄i

∑
v∈Sc′

w(u, v) · δu,v

 . (4.8)

γ and δ together form the adjacent matrix of the truck group tour on the fully connected

graph G({pi} ∪c∈Ci Sc(θ)), from which we can extract the order of customers to visit.

4.2.3 Phase 3: Decode solution from heuristic

Even when the customers’ visiting order is given, determining the optimal route for the truck

group is an NP-hard problem. To approximate the optimal solution in polynomial time, we

only consider the action of dispatching all drones simultaneously. Intuitively, when using

multiple drones outperforms using one drone, the customers are close to each other within

O(r) distance, which means that the assumption does not sacrifice the performance a lot if

r is small.

Based on the assumption above, dynamic programming can finish the decoding proce-

dure within a polynomial time. Given visiting order Oi for truck group Ti, we first de-

fine Time(u, v; s, t) to be the minimum time needed for the truck group to visit customers

{Oi[s],Oi[s+ 1], · · · ,Oi[s+ t− 1]} with t drones. The drones are dispatched together from

u, and the last one is collected at node v. The initial state Time(u, v; s, 1) is the time for

54

the truck with one drone to visit the customer Oi[s] starting from u to v, which is

Time(u, v; s, 1) =


dtr(u,Oi[s])+dtr(Oi[s],v)

str
, d(u,Oi[s]) + d(Oi[s], v) > r;

max{d(u,Oi[s])+d(Oi[s],v)
sdr

, d
tr(u,v)
str
}, otherwise.

(4.9)

In the first case, the drone cannot finish the delivery task due to the energy limit given the

position of u, v, and Oi[s]. We set Time(u, v; s, 1) as the time needed for the truck to finish

the delivery task. In the second case, where the drone can finish the delivery task, we set

Time(u, v; s, 1) as the minimum time in which the truck can move from u to v along the

road network and the drone can fly from u to Oi[s] and then to v. For t ≥ 2, if condition

d(u,Oi[s + t − 1]) + d(Oi[s + t − 1], v) ≤ r is satisfied, i.e., the t-th drone can finish the

delivery task, Time(u, v; s, t) has the transition function

Time(u, v; s, t) = min
w∈SOi[s+t−2]

{max{Time(u,w; s, t− 1) +
dtr(w, v)

str
,

d(u,Oi[s+ t− 1]) + d(Oi[s+ t− 1], v)

sdr
}}.

(4.10)

It computes the minimum time needed to finish the t delivery tasks by identifying the optimal

node w to collect the (t − 1)-th drone, which minimizes the overall time the truck takes to

travel from u to v while ensuring that the first t− 1 drones are collected. If the condition is

not satisfied, i.e., the drone cannot finish the delivery task, we set Time(u, v; s, t) = +∞.

Then, we define Value(s, u) as the optimal cost starting from the depot pi to the current

node u after serving the first s customers. The initial state

Value(0, v) = dtr(pi, v),∀v ∈ V(G), (4.11)

which is the adjusted shortest path length from depot pi to end node u. Given the number

55

of drones k, the transition function takes the k preceding states into account,

Value(s, v) = max
0≤t≤k

u,w∈V(G)

Value(s− t, u) + Time(u,w; s− t, t) + dtr(w, v). (4.12)

In this way, Value(|OI |, pi) is the optimal cost for truck group Ti, and the corresponding

route can be reconstructed by tracing backward.

Here, we analyze the complexity of our 3-phase method. Suppose there is a lower bound l

for the distance between nodes on the graph; then each node has at most 6 neighbors within

distance l. So the number of nodes we collect to form sets |Sθ| ≤ 7πθ2

πl2
= O(θ2) grows in

quadratic to the radius θ. The time complexity for the first phase is O(|C||P||Sθ|) = O(mnθ2)

and for the third phase is O(k|C||Sθ| + k|C||Sθ|3) = O(knθ6), where k is the number of

drones per truck. Since phase 3 is executed for each truck group, the overall complexity

for the polynomial part is O(mnθ2 + kmnθ6) = O(kmnθ6). The second phase is a MILP

with (|C| + 1)2 = O(n2) binary variables β, (|C| + 1)|Sθ|2 = O(nθ4) binary variables γ, and

(|C|+1)2|Sθ|2 = O(n2θ4) binary variables δ, which are O(n2θ4) binary variables in total, and

O(n2) continuous variables y.

To address the NP-hard problem scalably, certain trade-offs in solution optimality are

made. The first phase estimates the cost post-allocation based on set distances between

nodes. This approach often deviates from the optimal solution as it does not account for

the spatial distribution of other customers. The second phase approximates the FSTSP with

multiple drones with standard TSP, which is effective when the customers are widely spaced.

However, it is not a good heuristic for areas with high customer density since it does not

consider the number of drones. The last phase only considers a limited subset of possible

drone routes, constrained by predetermined truck routes. Intuitively, the most effective route

in the set is a near-optimal solution.

56

Table 4.1: Comparison with Baselines. All results are averaged over 100 instances sampled
uniformly from all nodes in the graph.

Manhattan(part) Manhattan (full) Boston

Method Cost Time(s) Cost Time(s) Cost Time(s)

CG [7] 1.41 175.34 - - - -
HC-VNS 1.21 4.17 26.91 191.64 146.72 2507.9

Truck-Only 1.75 0.15 25.55 0.93 137.70 34.2
Ours 0.89 0.23 23.85 3.71 115.94 17.67
LB 0.60 - 10.85 - 61.34 -

4.3 Experiments

In this section, we report experiments to validate our method. In section 3.3.1, we com-

pare our method with four baselines: a column generation-based method [7], a hill-climbing

algorithm, an upper bound, and a lower bound implemented by us. In section 4.3.2, we

validate our set extension of nearest-neighbor and TSP heuristic. In section 4.3.3, we do the

sensitivity analysis to explore the influence of congestion level, truck/drone speed, distance

limit for drones, and number of trucks, drones, depots, and customers.

All experiments are performed on a server running on Ubuntu 20.04.6 LTS with an AMD

Ryzen Threadripper 3990X 64-Core Processor. The MILP was solved by Gurobi 10.0.0 [10].

Unless mentioned otherwise, we use the drone traveling distance limit r = 0.5, speeds

str = sdr = 1, congestion level δ(e) = 1, ∀e ∈ E , set radius θnn = θtsp = r/2, and the number

of iterations for hill-climbing algorithm rounds = 5000.

4.3.1 Comparison against baselines

Baselines. To the best of our knowledge, the only method for multiple trucks and drones on

the road networks is the column generation-based heuristic [7]. It sets the partition problem

as the master problem and the routing problem for each truck group as the pricing problem,

approximated via Variable Neighborhood Search (VNS).

57

We also implement a VNS-based method incorporated with the widely used meta-heuristic

method, the Hill-Climbing algorithm [58], for the problem. It assigns customers by nearest-

neighbor method, initiates the route for each truck group from truck-only routes, and itera-

tively replaces the current route with the best route in its neighborhood, i.e., the best route

among three classes of routes: (1) changes a drone’s takeoff/land location from current route,

(2) changes the agent to visit a customer from the truck to a drone from current route, (3)

switch the visiting order of two consecutive customers from current route.

Besides, we report an upper bound and a lower bound for the optimal cost as two base-

lines. The upper bound is the optimal truck-only solution cost. The lower bound for the

Manhattan datasets, including both the partial map and the full map, is the optimal solution

cost given k = +∞ and sdr = +∞, which is computed by solving an equivalent Set MATSP:

Problem 4 (Set-MATSP-v1). Given a strongly connected directed graph G = (V , E), and

m trucks starting from different depots in set D ⊆ V to visit a set of n customers C ⊆ V,

where a visit to customer c ∈ C is defined as reaching a node v ∈ Sc(
r
2
), find a set of m truck

routes, one for each truck, to visit every customer c ∈ C at least once that minimizes the

total cost. The cost of a truck route is the total weight of the edges it passes.

However, computing the optimal solution for Set-MATSP-v1 is also very hard. We ap-

proach the optimal cost by the lower bound from solving its MILP formulation via Gurobi

for 600 seconds. The Boston map is too large for Gurobi to get a reasonable lower bound in

3600 seconds, so we further relaxed the Set-MATSP not to consider the traveling cost within

Sc(
r
2
) for all c ∈ C, i.e., only considering the traveling cost between Sc(

r
2
). Formally, we state

the problem in an equivalent form:

Problem 5 (Set-MATSP-v2). Given a strongly connected directed graph G = (V , E), and

a fully connected graph G ′(D∪C), where D ⊆ V is the depots set and C ⊆ V is the customers

58

set and the edge weight of (u, v) ∈ G ′ is defined as

wG′(u, v) =



mins∈Su(
r
2
),t∈Sv(

r
2
) d

tr(s, t), u, v ∈ C,

mins∈Su(
r
2
) d

tr(s, v), u ∈ C, v ∈ D,

mint∈Sv(
r
2
) d

tr(u, t), u ∈ D, v ∈ C,

dtr(u, v), u, v ∈ D,

, find a set of m cycles on G ′, one starts from each d ∈ D (can be self cycle), to visit each

c ∈ C exactly once that minimize the total weights of edges passed.

We report the optimal cost of Set-MATSP-v2 for the Boston dataset from solving its

MILP formulation.

Datasets. The methods are evaluated on datasets created from three real-world road

networks. We use the Manhattan road map [51] and the Cambridge road map from Open-

StreetMap [52] and extract part of the Manhattan map to form a partial Manhattan map

to evaluate methods that cannot handle the full map.

We sample |C| = 6 customers and |P| = 2 depots each instance on tiny map of |V(G)| = 20

nodes, |C| = 30 customers and |P| = 5 depots on Manhattan of |V(G)| = 1024 nodes, and

|C| = 100 customers and P = 10 depots on Boston of |V(G)| = 11000 nodes. We set the

number of drones on each truck to be 2, 3, and 4 on the tiny map, Manhattan and Boston.

Metrics. We evaluate the methods by the tour costs for all truck groups and the running

time for each method. The tour cost is the sum of the minimal time needed for each truck

group to visit assigned customers. The running time is recorded since the input of formatted

datasets.

Results. The results are shown in table 4.1. Baseline CG suffers from the scalability

problem and cannot produce solutions within the time limit of 5 minutes. Our method

outperforms baselines in both solution quality and computational efficiency. On the dataset

from the full Manhattan graph, our method gives an 11.67% reduction in cost and a 46.74

59

Table 4.2: Ablation of the set-based methods. Results are averaged over 100 instances
sampled uniformly from Manhattan.

|C| = 30 |C| = 40 |C| = 50

θnn θtsp Cost Time(s) Cost Time(s) Cost Time(s)

0 0 26.78 1.54 28.76 1.86 31.33 2.60
0 r/2 26.42 6.56 28.31 11.68 30.72 19.54
r/2 0 26.53 1.55 28.09 1.90 30.49 2.54
r/2 r/2 26.19 6.58 27.57 12.31 29.77 19.59

Table 4.3: Ablation of the set-based methods. Use the same datasets as Table 2 but increase
the congestion level to 5 for roads within a distance of 0.3r to customers.

|C| = 30 |C| = 40 |C| = 50

θnn θtsp Cost Time(s) Cost Time(s) Cost Time(s)

0 0 33.18 1.32 38.03 1.91 42.18 2.42
0 r/2 32.77 11.42 36.94 20.12 39.47 33.47
r/2 0 31.58 1.35 34.86 1.90 39.02 2.40
r/2 r/2 31.44 11.77 33.98 17.99 36.37 29.91

times speed up. On the dataset from the Boston graph, it reduces 14.99% cost with a 23.77

times speed up.

4.3.2 Validation for set-based methods

The value of θ trades off between the computational efficiency and the performance of the

heuristic. When we set θ = 0, it is reduced to the standard TSP heuristic for a truck

group. In this section, we validate the Set NN and Set TSP and explore the influence of the

difference values of θ.

Effectiveness. To show that both set-based methods can contribute to the improve-

ment in results, we compare four pairs of θnn, θtsp ∈ {(0, 0), (0, r/2), (r/2, 0), (r/2, r/2)},

corresponding to NN + TSP, NN + Set TSP, Set NN + TSP, and Set NN + Set TSP, on

Manhattan map. We vary the number of customers |C| ∈ {30, 40, 50} with fixed number of

depots |P| = 5. We first do the test with δ = 1. In practice, customers are usually at places

60

0.0 0.2 0.4 0.6 0.8 1.0
µnn=r

0

1

2

3

4

G
ap

 R
at

io
 (

%
)

±=1

±=2

±=3

±=4

±=5

(a) Set NN parameter θnn

0.0 0.2 0.4 0.6 0.8 1.0
µtsp=r

0

2

4

6

G
ap

 R
at

io
 (

%
)

±=1

±=2

±=3

±=4

±=5

(b) Set TSP parameter θtsp

Figure 4.4: Ablation for parameters θnn and θtsp with congestion level δ. Results are averaged
over 100 instances of |C| = 50 and |P| = 5 from Manhattan. To emphasize the relative
changes, we normalize the results of each congestion level by the minimal value of all θ and
report the gap, i.e. Reported(θ, δ) ← Cost(θ, δ)/minθ Cost(θ, δ) − 1. The values are
reported in percentages.

like office buildings, schools, and resident areas, where traffic is quite heavy. To model it,

we test the four pairs of parameters with the level of congestion δ(e) = 5 for roads e within

geometry distance 0.3r to customers. The results are shown in Tab. 4.2 and Tab. 4.3. Ex-

tension to the set-based methods trades off between the computation cost and the solution

performance. Both Set NN and Set TSP show their contribution to the reduction of cost,

and the significance increases along with the increment of the density of customers as well

as the congestion level. While the Set NN does not take much extra computation time, the

Set TSP takes 20 times longer than the TSP.

Influence of θ and δ. We further explore the influence of θ for set NN and set TSP

under different congestion levels with fixed congestion area radius 0.3r. For the significance

of the difference, we use the dataset used in the effectiveness experiments with |C| = 50. To

avoid considering invalid nodes for drones to take off or land, θnn varies from 0 to r when

θtsp is fixed at 0, and θtsp varies from 0 to r when θnn is fixed at 0. The congestion level

δ varies from 1 to 5. The results are shown in Fig. 4.4a and Fig. 4.4b. The results are

generally good for θnn ∈ [0.3, 0.6] depending on the congestion level. The reason is that since

61

300 360 420 480 540 600
Customers

100

200

300

T
im
e(
s)

jCj=jPj=5

(a) Depots

60 90 120 150 180 210
Customers

100

200

300

T
im
e(
s)

jPj=20

(b) Customers

Figure 4.5: Results on scalability. Figure (a) fixes the ratio of expected customers per truck
group to visit |C|/|P| = 5, and figure (b) fixes the number of depots |P| = 20. We set the
time limit for each instance to 300 seconds.

the traveling distance limit for the drone is r, a take-off or land action should happen within

0.5r. Because the drone only takes off and lands at the ends of edges, the actual take-off

action or land action happens strictly closer than 0.5r to the customer. Hence, when taking

θnn around 0.4, the set distance metric is a better heuristic for the cost after partition than

other θnn values. Compared with the cost of θnn = 0 and θnn = 1, the Set NN is effective

in improving the solution cost by producing better assignments when the number of nodes

considered is within the proper range. From curves for θtsp, increasing the value of θtsp

generally decreases the solution cost. The local maximum happens at θtsp ∈ {0.4, 0.6} due

to the mismatch between the nodes considered by the Set TSP and the nodes considered by

the third phase. The relative changes also become more significant as the congestion level

δ around customers increases. This means that the set-based methods are more effective

for scenarios with heavy traffic. In Fig. 4.4b, the impact of congestion level after θtsp ≥ 0.5

quickly reduce to 0. Since we choose the congestion area radius to be 0.3r and str = sdr, it

is preferred to dispatch the drone outside the congestion area when θtsp ≥ 0.4r. In this case,

the truck route has very little or even no overlap with the congestion area; hence, it is not

influenced by the congestion level. We can conclude that the set-based methods successfully

62

1/5 1/3 1/2 1 3 5 7
Ratio of Speed

30

40

50
C

os
t

(B
ox

es
)

10.0

12.5

15.0

17.5

20.0

T
im

e(
s)

 (
L
in

e)

(a) Relative speed sdr/str

1 2 3 4 5 6 7 8 9
Distance Limit (1e-1)

20

30

40

50

C
os

t
(B

ox
es

)

101

T
im

e(
s)

 (
L
in

e)

(b) Distance limit r

Figure 4.6: The influence of relative speed and distance limit. Time in Fig. (b) is plotted
on a logarithm scale.

Table 4.4: Cost for different numbers of drones per truck on datasets sampling nodes from
uniform distribution and Clusters.

Cost

Distribution k = 1 k = 2 k = 3 k = 4 k = 5

Uniform 30.16 30.16 29.98 29.96 29.95
Clusters 29.76 29.75 29.52 29.50 29.49

considered the usage of drones and the advantages of not being influenced by road traffic

over ground vehicles.

4.3.3 Factors influencing the algorithm

In this section, we study the influence of various factors and parameters in our algorithm,

which includes the number of customers |C|, the number of depots |P|, the level of congestion

δ and the area where congestion happens, the number of drones per truck k, the relative

speed sdr/str between trucks and drones, and the distance limit r for drones.

Scalability. To measure the scalability of our method, we vary the number of depots

|P| and the number of customers |C| in two ways: (1) fix the ratio of |C| : |P| = 5, vary the

|P| from 10 to 100; (2) fix the number of depots |P| = 20, vary the number of customers

63

5 10 15
Ratio

0

50

100

150

200
C
ou
n
t

(a) Manhattan

0 5 10 15
Ratio

0

200

400

600

C
ou
n
t

(b) Boston

Figure 4.7: The distribution of the maximal road-geometry ratio of nodes in the Man-
hattan and Boston graphs. The maximal road-geometry ratio for a node v is defined as
maxu∈Sr/2

dtr(u, v)/d(u, v).

|C| from 60 to 210. All datasets are sampled randomly from the Boston road network. The

results are shown in Fig. 4.5a and Fig. 4.5b. When fixing the ratio |C|/|P|, which is also the

expected size for each Set TSP, the running time grows linearly as the number of depots |P|

grows, which is also the growth of the number of Set TSP to solve. When fixing the number

of depots |P|, the running time grows exponentially with the number of cities |C|. So, the

bottleneck for our method to scale up is the Set TSP phase.

0.1 0.3 0.5 0.7 0.9
Radius (r)

40

60

80

C
os

t

±=1

±=2

±=3

±=4

±=5

Figure 4.8: Ablation of congestion level and congestion area. We see the congestion area to
all nodes within the distance Radius to customers. The Radius is reported in the unit of
distance limit for drones r.

64

Congestion Level. We vary the congestion level from 1 to 5 and the radius Rad around

the customers from 0 to r. Experiments are conducted on datasets from the Manhattan with

|C| = 50 and |P| = 5, with parameters θnn = θtsp = r/2. The results are shown in Fig. 4.8.

When Radius ≤ 0.4r, the impact of increasing Radius and δ is not significant, which means

that the optimal locations for drones to take off and land are out of the area with radius

0.4r around customers. When Radius ≥ 0.5, both factors influence the cost in a sublinear

manner, which means that the increase of Radius and δ also result in different routes for

truck groups.

Relative Speed. We vary the relative speed sdr/str from 0.2 to 7 on instances of

|P| = 15, |C| = 75 from the Manhattan road network when there is no congestion. The

result is shown in Fig. 4.6a. The cost decreases as the relative speed increases, and the

biggest improvement happens between ranges 0.5 and 3. The marginal utility diminishes

quickly when sdr/str > 3 since the time consumption for trucks is much higher than for

drones. The increment also happens when 0.2 ≤ sdr/str ≤ 0.5, which means that even if the

drones are quite slow, the truck group still gets benefits from using drones to visit nodes

instead of trucks. Such nodes are near their neighbors in geometry but far reach through

road network. From the statistics in Fig. 4.7a and Fig. 4.7b, nodes with large geometry-road

distance ratio to some of their neighbors are quite common in the map. The maximum

running time is reached at sdr/str = 1 when there are more routes to choose from since

neither drones nor trucks have a dominant advantage.

Distance Limit for Drones. The limit r varies from 0.1 to 0.9 in the experiment,

which uses the same dataset as experiments for the relative speed. The result is shown in

Fig. 4.6b. The cost decreases linearly as the r increases while the running time increases

exponentially.

Number of Drones. We test different number of drones k ∈ {1, 2, 3, 4, 5} on 2 datasets

on Manhattan road networks with |P| = 15 and |C| = 75. One dataset is generated by

randomly sampling from all nodes on the graph, and the other one is generated by first

65

randomly sampling several nodes as the center of clusters and then sampling other nodes

within the distance 3r to them. The results are shown in Tab. 4.4.

66

Chapter 5

Conclusion and Future Work

This thesis introduces a three-phase hierarchical framework designed to address practical con-

straints in Traveling Salesman Problems (TSP) within multi-agent systems. We focus on two

prevalent constraints: energy limitations and the cooperation of aerial robots. We developed

two novel problem formulations to encapsulate these constraints: the Multi-Agent Energy-

Constrained TSP (MA-ECTSP) and the Multi-Agent Flying Sidekick TSP (MA-FSTSP). In

Chapter 3, we introduce algorithms for MA-ECTSP that deconstruct the problem using a

minimum spanning tree (MST) and tackle the energy constraints by selecting feasible path

combinations through Mixed Integer Linear Programming (MILP). Chapter 4 extends the

partitioning method and traditional TSP to a set version to accurately model drone be-

haviors in MA-FSTSP. Our proposed methodology generates solutions of superior quality

compared to existing baselines and demonstrates the capability to tackle significantly larger

problem sizes than those manageable by the Mixed Integer Linear Programming (MILP)

approach. These advancements are substantiated by rigorous experimental validation on

real-world datasets.

Currently, the three phases of our framework depend significantly on the specific structure

or inherent properties of the problem at hand. Given that many variants of the TSP in

multi-agent systems can be formulated as MILP, we are motivated to develop a more general

67

heuristic for the initial phase, i.e., the assignment of customers to salesmen, to accommodate

a wider range of problems. Although our method can manage scenarios involving up to

thousands of customers, it still struggles to handle some large-scale practical applications.

To bridge this gap, we aim to enhance the scalability of our framework while maintaining

high solution quality by integrating learning-based methods into our approach.

68

Appendix A

Mixed-Integer Linear Programming

Forumlations

We include the MILP formulations for MA-ECTSP in this chapter.

Let βd,u,v,i,j ∈ {0, 1} be a binary variable indicating whether a salesman who starts from

depot d passes the edge (i, j) when traveling from depot or customer u to depot or customer

v. Let ci,j be the weights of edge (i, j). The objective function is to minimize the total

weights of selected edges:

min
∑
d∈D

∑
u,v∈C∪D

∑
(i,j)∈E

ci,j · βd,u,v,i,j. (A.1)

Let γd,u ∈ {0, 1} be the binary variable indicating whether depot or customer u is visited by

the salesman who starts from depot a. Then, each customer should be visited exactly once,

i.e.,

∑
d∈D

γd,u = 1, u ∈ C ∪ D (A.2a)

γd,d = 1, a ∈ D. (A.2b)

69

To guarantee the TSP properties of salesmen, we adapt the GG formulation [57] with binary

ϕd,u,v ∈ {0, 1}, which indicates whether the tour starts from depot d will consecutively visit

depots or customers u and v, and real variable fd,u,v ∈ R+ w.r.t. ϕd,u,v.

ϕd,u,u = 0, d ∈ D, u ∈ C ∪ D, (A.3a)

ϕd,u,v = 0, d ∈ D, u ∈ C ∪ D, v ∈ D, (A.3b)∑
u∈C∪D

ϕd,u,v =
∑

u∈C∪D

ϕd,v,u = γd,v, d ∈ D, v ∈ C ∪ D \ {d}, (A.3c)

γd,v ≤
∑

u∈C∪D

ϕd,u,d =
∑

u∈C∪D

ϕd,d,u ≤ 1, d ∈ D, v ∈ C ∪ D, (A.3d)

∑
u∈C∪D

γd,u − ϕd,u,d ≥ 1, d ∈ D, (A.3e)

fd,u,v ≤ (|C|+ |D|) · ϕd,u,v, d ∈ D, u, v ∈ C ∪ D, (A.3f)∑
v∈C∪D

γd,v − fd,d,v = 1, d ∈ D, (A.3g)

∑
u∈C∪D

fd,u,v − fd,v,u = γa,v, d ∈ D, v ∈ C. (A.3h)

Then, we add the constrained selection of edges from the whole graph. We connect the

variables βd,u,v,i,j and variables ϕd,u,v to address the TSP property and multi-agent partition

restriction as

∑
j∈V

βd,u,v,u,j = ϕd,u,v, d ∈ D, u, v ∈ C ∪ D, (A.4a)

∑
i∈V

βd,u,v,i,v = ϕd,u,v, d ∈ D, u, v ∈ C ∪ D. (A.4b)

To ensure the selected edges form paths, we ask for the in-degree equal to the out-degree at

70

every node except for the start and end nodes, i.e.,

∑
j∈V

βd,u,v,i,j =
∑
j∈V

βd,u,v,j,i ≤ 1, d ∈ D, u, v ∈ C ∪ D, i ∈ V \ {u, v}, (A.5a)

∑
i∈V

βd,u,v,i,u =
∑
j∈V

βd,u,v,v,j = 0, d ∈ D, u, v ∈ C ∪ D. (A.5b)

Also, we need to get rid of self-loop

βd,u,v,i,i = 0,d ∈ D, u, v ∈ C ∪ D, i ∈ V . (A.6)

Finally, we do not want to visit any other customers or depots along the path from u to v,

i.e.

∑
j∈V

βd,u,v,i,j = 0,d ∈ D, u, v ∈ C ∪ D, i ∈ V \ {u, v}. (A.7)

Next, we start to address the energy constraints. The first energy constraint we need to

meet is the resource limitation for each station, which is

∑
d∈D

∑
u,v∈C∪D

∑
j∈V

βd,u,v,s,j ≤ rs, s ∈ S. (A.8)

To express the energy constraints for each salesman, we define non-negative real variables eu,

representing the energy level of a salesman when visiting the depot or customer u. Initially,

the energy for all salesman is E,

ed = E, d ∈ D. (A.9)

Every salesman should not run out of energy, i.e.,

eu ≥ 0, u ∈ C ∪ D (A.10)

In case of the edge (i, j) selected, if both i and j are stations, then the distance should not

71

exceed the maximum distance a full energy salesman can travel, i.e.,

ci,j · βd,u,v,i,j ≤ E, d ∈ D, u, v ∈ C ∪ D, i, j ∈ S. (A.11)

If the start node i is not a station but a customer or depot u, then the distance between u

and j should not take more than the energy remaining at u, i.e.,

cu,j · βd,u,v,u,j ≤ eu, d ∈ D, u, v ∈ C ∪ D, j ∈ V . (A.12)

And if the arriving node j is not a station but a customer v, then the energy remains is

bounded by full minus the consumption, which is

ci,v · βd,u,v,i,v ≤ E − ev, d ∈ D, u ∈ C ∪ D, v ∈ C ∪ D \ {d}, i ∈ S. (A.13)

If both i and j are not stations, i.e. i = u and j = v, then

(cu,v + E) · βd,u,v,u,v ≤ E + eu − ev, d ∈ D, u ∈ C ∪ D, v ∈ C ∪ D \ {d}. (A.14)

For the path returning back to the depot, we can get two restrictions conditioned on the

departing node following the discussion above,

(cu,d + E) · βd,u,d,u,d ≤ E + eu, d ∈ D, u ∈ C ∪ D, (A.15a)

ci,d · βd,u,d,i,d ≤ E, d ∈ D, u ∈ C ∪ D, i ∈ S. (A.15b)

Finally, combine objects (A.1) and constraints (A.2)-(A.15), we get the MILP formulation

for MA-ECTSP.

72

Appendix B

Theorems and Proofs

B.1 Explaination for Function f and g

By the optimality, for tree T (u), its optimal partitions T̃ (u) and T̂ (u) should have all

subtrees of its child partitioned optimally, i.e. optimal T̃ (v) or optimal T̂ (v) for all v ∈ H(u),

where H(u) represents the set of children of node u in T (rt). Based on this observation, we

briefly discuss the kind of partitions children nodes can have based on whether the root u is

a customer or a depot in the tree T (u).

1. If the root u is a customer and has type T̃ , i.e., there is a depot connected to u after

the partition. Then the depot is contained in a subtree T (v) for a child v ∈ H(u).

Thus, u and v are connected and have the same partition type T̃ , which means node

v contributes f(v) + c(u, v) to value function f(u). Other children cannot connect to

both u and any depot in their subtrees simultaneously to avoid the scenario that u

connects to two depots. So, each child either connects to u with partition type T̂ or

disconnects to u with partition type T̃ , which contributes min{f(v′), g(v′) + c(u, v′)}

to the value of f(u).

2. If the root u is either a depot partitioned with type T̃ or a customer partitioned with

type T̂ , every child v ∈ H(u) cannot connect to both u and any depot in their subtrees

73

at the same time, which contributes min{f(v), g(v) + c(u, v)} to the value of f(u) or

g(u) as argued in 1.

3. g(u) = +∞ for every depot u as it must contain a depot (itself).

B.2 Proof for Theorem 1

Lemma 1. Given the input as in Theorem 1, the assignment of partition type for each node

based on the output of Algorithm 2 is consistent with the resulting partition.

Proof. We prove the lemma by contradiction. Assume u is the node with an inconsistent

partition type and the minimum subtree.

If u is a leaf node in T (rt), then f(u) = +∞ for u ∈ C and g(u) = +∞ for u ∈ D. The

former results in type T̂ , and the latter results in type T̃ , matching the resulting partition in

both cases. So u cannot be a leaf node, and by minimum assumption, all its children should

have consistent types.

If u is assigned type T̃ but does not connect to any depot in the subtree, then u ∈ C.

By Eq. (3.1), there exists a child v of u connected to u and assigned type T̃ , which means v

also has an inconsistent type, contradicting the minimum assumption.

If u is assigned type T̃ but connects to more than one depot in the subtree, then u can

be either a customer or a depot. If u is a customer, then by Eq. (3.1), the reconstruction

only assigns one such v to connect to u and has type T̃ . So the other child connects to u,

and a depot in its subtree has the wrong type T̂ , contradicting the minimum assumption.

If u is a depot, then all children cannot both connect to u and be assigned T̃ , which means

the child connects to it and a depot in the subtree has the wrong type T̂ , contradicting the

minimum assumption.

If u is assigned type T̂ , then u ∈ C by the assignment rule. If u connects to any depot

in the subtree, then by Eq. (3.2), every child either connects to u or is assigned type T̃ . The

74

child connecting to v and a depot in its subtree has the wrong type T̂ , contradicting the

minimum assumption.

Lemma 2. Given the input as in Theorem 1, the reconstruction based on the value function

assignment in Eq. (3.1)-(3.2) produce the minimum T̃ (rt) and T̂ (rt).

Proof. We prove the lemma by induction. Let N = m + n, where m is the number of

depots, and n is the number of customers. When N = 1, there is either no customer to

visit or no depot for a salesman to start from, so the optimality holds trivially. Suppose

the algorithm gives an optimal solution for all N ∈ {1, 2, · · · ,m + n − 1}. Now, for the

case when N = m + n, assume a partition with smaller total weights exists. We prove

that this assumption leads to a contradiction; hence, the statement holds for the case when

N = m+n. Let v be the root node of the smallest subtree that v has the same partition type

in both the optimal partition and our partition, but the optimal partition gives a smaller

total weight of the remaining edges. Such node v exists because the root is given the same

partition type and, by assumption, does not minimize the weights. Let We denote the total

weights of remaining edges in the subtree rooted at v under our partition and Wo of that

under the optimal partition. By assumption Wo < We. Now, we construct a partition for

the subtree rooted at v with total weights no larger than Wo and no smaller than We to get

the contradiction. First, assign all child nodes of v the same partition type as the optimal

partition and apply our reconstruction rule to get partitions for their subtrees. Then, connect

v and its children in the same way as the optimal partition. The new partition is correct

because both the connections between v and its children and its children’s partition types

are the same as the optimal partition. Let W denote the total weights of the new partition.

By the induction hypothesis, all subtrees rooted at nodes in C(v) are optimal, which means

the total weight of remaining edges in the subtree rooted at v is no larger than Wo, i.e.,

W ≤ Wo. On the other hand, by Eq. (3.1)-(3.2), our partition selects the optimal way of

connecting v and its children, which means We ≤ W . So, we have We ≤ W ≤ Wo < We, a

contradiction. Hence, the statement holds for N = m+ n, and by induction, it holds for all

75

N .

Proof for Thm. 1. By lemma 1, all nodes have consistent partition types. If the partition is

incorrect, a connected component exists with either more than one depot or zero depots. In

both cases, the component’s root has an inconsistent partition type, contradicting lemma 1.

So, the partition is correct. By lemma 2, T̃ (rt) is the optimal partition.

B.3 Proof for Theorem 3

A sufficient condition for existence is the density of stations to be large enough, which is

Theorem 3. Gridding the map with length e
(1+

√
5)k

into even squares. Suppose in grid i, the

number of stations is Ns[i] and the number of customers is Nc[i], then there exists a solution

if Ns[i] ≥ 1 and Nc[i]/Ns[i] ≤ r for all i.

Proof. Since the number of squares is even, there is a tour to visit each grid exactly once.

Within grid i, there is a valid way to visit all customers since Nc[i]/Ns[i] ≤ r and the longest

distance in a grid is
√
2e

(1+
√
5)k

< e
2k

. For two grids to visit consecutively, the longest two-

segment poly-line is e
k
, which means it is valid to visit any customer between the visit of two

stations in two grids.

76

References

[1] E. Benavent and A. Martínez, “Multi-depot multiple TSP: a polyhedral study and

computational results,” Annals of Operations Research, vol. 207, pp. 7–25, 2013.

[2] S. Yadlapalli, W. A. Malik, S. Darbha, and M. Pachter, “A Lagrangian-based algorithm

for a multiple depot, multiple traveling salesmen problem,” Nonlinear Analysis: Real

World Applications, vol. 10, no. 4, pp. 1990–1999, 2009.

[3] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a heterogeneous, multi-

ple depot, multiple traveling salesman problem,” in 2009 American control conference,

IEEE, 2009, pp. 1292–1297.

[4] K. Sundar and S. Rathinam, “An exact algorithm for a heterogeneous, multiple depot,

multiple traveling salesman problem,” in 2015 International Conference on Unmanned

Aircraft Systems (ICUAS), IEEE, 2015, pp. 366–371.

[5] C. C. Murray and A. G. Chu, “The flying sidekick traveling salesman problem: Opti-

mization of drone-assisted parcel delivery,” Transportation Research Part C: Emerging

Technologies, vol. 54, pp. 86–109, 2015.

[6] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-

salesman problem,” Operations research, vol. 21, no. 2, pp. 498–516, 1973.

[7] J. Gao, L. Zhen, G. Laporte, and X. He, “Scheduling trucks and drones for coopera-

tive deliveries,” Transportation Research Part E: Logistics and Transportation Review,

vol. 178, p. 103 267, 2023.

77

https://link.springer.com/article/10.1007/s10479-011-1024-y
https://link.springer.com/article/10.1007/s10479-011-1024-y
https://www.sciencedirect.com/science/article/abs/pii/S1468121808000813
https://www.sciencedirect.com/science/article/abs/pii/S1468121808000813
https://ieeexplore.ieee.org/document/5160666
https://ieeexplore.ieee.org/document/5160666
https://ieeexplore.ieee.org/document/7152311
https://ieeexplore.ieee.org/document/7152311
https://www.sciencedirect.com/science/article/pii/S0968090X15000844
https://www.sciencedirect.com/science/article/pii/S0968090X15000844
https://pubsonline.informs.org/doi/abs/10.1287/opre.21.2.498
https://pubsonline.informs.org/doi/abs/10.1287/opre.21.2.498
https://www.sciencedirect.com/science/article/abs/pii/S1366554523002557?casa_token=iR4GjN8tmjUAAAAA:x23KLB7PrRurhxXLZ_UxbYPwBy3RDoEP71K8-9VAGnaibI_Gp2EiLPHNOYm_G9jErLxb1boxnQ
https://www.sciencedirect.com/science/article/abs/pii/S1366554523002557?casa_token=iR4GjN8tmjUAAAAA:x23KLB7PrRurhxXLZ_UxbYPwBy3RDoEP71K8-9VAGnaibI_Gp2EiLPHNOYm_G9jErLxb1boxnQ

[8] M. Held and R. M. Karp, “A dynamic programming approach to sequencing problems,”

Journal of the Society for Industrial and Applied mathematics, vol. 10, no. 1, pp. 196–

210, 1962.

[9] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formulation of

traveling salesman problems,” Journal of the ACM (JACM), vol. 7, no. 4, pp. 326–329,

1960.

[10] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2023. url: https :

//www.gurobi.com.

[11] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling Sales-

man Problem: A Computational Study. USA: Princeton University Press, 2007, isbn:

0691129932.

[12] N. Christofides, “Worst-case analysis of a new heuristic for the travelling salesman

problem,” in Operations Research Forum, Springer, vol. 3, 2022, p. 20.

[13] L. Xin, W. Song, Z. Cao, and J. Zhang, “NeuroLKH: Combining deep learning model

with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem,”

Advances in Neural Information Processing Systems, vol. 34, pp. 7472–7483, 2021.

[14] J. J. Hopfield, “Neural networks and physical systems with emergent collective com-

putational abilities.,” Proceedings of the national academy of sciences, vol. 79, no. 8,

pp. 2554–2558, 1982.

[15] Y. Luo, “Design and Improvement of Hopfield network for TSP,” in Proceedings of the

2019 International Conference on Artificial Intelligence and Computer Science, 2019,

pp. 79–83.

[16] J. Perera, S.-H. Liu, M. Mernik, M. Črepinšek, and M. Ravber, “A Graph Pointer

Network-Based Multi-Objective Deep Reinforcement Learning Algorithm for Solving

the Traveling Salesman Problem,” Mathematics, vol. 11, no. 2, p. 437, 2023.

78

https://dl.acm.org/doi/10.1145/800029.808532
https://dl.acm.org/doi/10.1145/321043.321046
https://dl.acm.org/doi/10.1145/321043.321046
https://www.gurobi.com
https://www.gurobi.com
https://press.princeton.edu/books/hardcover/9780691129938/the-traveling-salesman-problem
https://press.princeton.edu/books/hardcover/9780691129938/the-traveling-salesman-problem
https://link.springer.com/article/10.1007/s43069-021-00101-z
https://link.springer.com/article/10.1007/s43069-021-00101-z
https://arxiv.org/abs/2110.07983
https://arxiv.org/abs/2110.07983
https://www.pnas.org/doi/10.1073/pnas.79.8.2554
https://www.pnas.org/doi/10.1073/pnas.79.8.2554
https://dl.acm.org/doi/10.1145/3349341.3349372
https://www.mdpi.com/2227-7390/11/2/437
https://www.mdpi.com/2227-7390/11/2/437
https://www.mdpi.com/2227-7390/11/2/437

[17] W. Kool, H. van Hoof, and M. Welling, “Attention, Learn to Solve Routing Problems!”

In International Conference on Learning Representations, 2018.

[18] X. Bresson and T. Laurent, “The Transformer Network for the Traveling Salesman

Problem,” CoRR, vol. abs/2103.03012, 2021.

[19] P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee, J. M. Tanchoco, and

P. A. Brunese, “Multiple traveling salesman problem with drones: Mathematical model

and heuristic approach,” Computers & Industrial Engineering, vol. 129, pp. 14–30,

2019.

[20] M. Vali and K. Salimifard, “A constraint programming approach for solving multiple

traveling salesman problem,” in The Sixteenth International Workshop on Constraint

Modelling and Reformulation, 2017, pp. 1–17.

[21] Z. Wang, X. Fang, H. Li, and H. Jin, “An improved partheno-genetic algorithm with

reproduction mechanism for the multiple traveling salesperson problem,” IEEE Access,

vol. 8, pp. 102 607–102 615, 2020.

[22] M. Yousefikhoshbakht, F. Didehvar, and F. Rahmati, “Modification of the ant colony

optimization for solving the multiple traveling salesman problem,” Romanian Journal

of Information Science and Technology, vol. 16, no. 1, pp. 65–80, 2013.

[23] V. Pandiri and A. Singh, “A hyper-heuristic based artificial bee colony algorithm for k-

interconnected multi-depot multi-traveling salesman problem,” Information Sciences,

vol. 463, pp. 261–281, 2018.

[24] A. Ceselli and G. Righini, “The Electric Traveling Salesman Problem: properties and

models,” Tech. Rep., Nov. 2020. doi: 10.13140/RG.2.2.17712.99848.

[25] R. Roberti and M. Wen, “The electric traveling salesman problem with time windows,”

Transportation Research Part E: Logistics and Transportation Review, vol. 89, pp. 32–

52, 2016.

79

https://arxiv.org/abs/1803.08475
https://arxiv.org/abs/2103.03012
https://arxiv.org/abs/2103.03012
https://www.sciencedirect.com/science/article/pii/S0360835219300245
https://www.sciencedirect.com/science/article/pii/S0360835219300245
https://ozgurakgun.github.io/ModRef2017/files/ModRef2017_MTSP.pdf
https://ozgurakgun.github.io/ModRef2017/files/ModRef2017_MTSP.pdf
https://ieeexplore.ieee.org/document/9103533
https://ieeexplore.ieee.org/document/9103533
https://www.romjist.ro/content/pdf/05-myousefikhoshbakht.pdf
https://www.romjist.ro/content/pdf/05-myousefikhoshbakht.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0020025518304675
https://www.sciencedirect.com/science/article/abs/pii/S0020025518304675
https://www.researchgate.net/publication/345976231_The_Electric_Traveling_Salesman_Problem_properties_and_models
https://www.researchgate.net/publication/345976231_The_Electric_Traveling_Salesman_Problem_properties_and_models
https://doi.org/10.13140/RG.2.2.17712.99848
https://www.sciencedirect.com/science/article/abs/pii/S1366554516000181

[26] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atz-

mon, L. Cohen, T. Kumar, et al., “Multi-agent pathfinding: Definitions, variants, and

benchmarks,” in Proceedings of the International Symposium on Combinatorial Search,

vol. 10, 2019, pp. 151–158.

[27] O. Salzman and R. Stern, “Research challenges and opportunities in multi-agent path

finding and multi-agent pickup and delivery problems,” in Proceedings of the 19th Inter-

national Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 1711–

1715.

[28] J. Yu and S. LaValle, “Structure and intractability of optimal multi-robot path plan-

ning on graphs,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 27, 2013, pp. 1443–1449.

[29] M. Čáp, P. Novák, A. Kleiner, and M. Seleckỳ, “Prioritized planning algorithms for

trajectory coordination of multiple mobile robots,” IEEE transactions on automation

science and engineering, vol. 12, no. 3, pp. 835–849, 2015.

[30] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the conflict-

based search algorithm for the multi-agent pathfinding problem,” in Proceedings of the

International Symposium on Combinatorial Search, vol. 5, 2014, pp. 19–27.

[31] E. Lam, P. Le Bodic, D. Harabor, and P. J. Stuckey, “Branch-and-cut-and-price for

multi-agent path finding,” Computers & Operations Research, vol. 144, p. 105 809,

2022.

[32] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal

multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[33] N. Greshler, O. Gordon, O. Salzman, and N. Shimkin, “Cooperative multi-agent path

finding: Beyond path planning and collision avoidance,” in 2021 International Sympo-

sium on Multi-Robot and Multi-Agent Systems (MRS), IEEE, 2021, pp. 20–28.

80

https://ojs.aaai.org/index.php/SOCS/article/view/18510
https://ojs.aaai.org/index.php/SOCS/article/view/18510
https://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1711.pdf
https://www.ifaamas.org/Proceedings/aamas2020/pdfs/p1711.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/8541
https://ojs.aaai.org/index.php/AAAI/article/view/8541
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7138650
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7138650
https://ojs.aaai.org/index.php/SOCS/article/view/18315
https://ojs.aaai.org/index.php/SOCS/article/view/18315
https://harabor.net/data/papers/llhs-jcor22-bcpfmapf.pdf
https://harabor.net/data/papers/llhs-jcor22-bcpfmapf.pdf
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620590
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9620590

[34] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone, “Efficient large-scale

multi-drone delivery using transit networks,” Journal of Artificial Intelligence Research,

vol. 70, pp. 757–788, 2021.

[35] S. Choudhury, K. Solovey, M. Kochenderfer, and M. Pavone, “Coordinated multi-agent

pathfinding for drones and trucks over road networks,” arXiv preprint arXiv:2110.08802,

2021.

[36] C. C. Murray and R. Raj, “The multiple flying sidekicks traveling salesman prob-

lem: Parcel delivery with multiple drones,” Transportation Research Part C: Emerging

Technologies, vol. 110, pp. 368–398, 2020.

[37] A. Karak and K. Abdelghany, “The hybrid vehicle-drone routing problem for pick-

up and delivery services,” Transportation Research Part C: Emerging Technologies,

vol. 102, pp. 427–449, 2019.

[38] R. G. Mbiadou Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot, “An iter-

ative two-step heuristic for the parallel drone scheduling traveling salesman problem,”

Networks, vol. 72, no. 4, pp. 459–474, 2018.

[39] D. Sacramento, D. Pisinger, and S. Ropke, “An adaptive large neighborhood search

metaheuristic for the vehicle routing problem with drones,” Transportation Research

Part C: Emerging Technologies, vol. 102, pp. 289–315, 2019.

[40] W.-C. Chiang, Y. Li, J. Shang, and T. L. Urban, “Impact of drone delivery on sustain-

ability and cost: Realizing the UAV potential through vehicle routing optimization,”

Applied energy, vol. 242, pp. 1164–1175, 2019.

[41] F. Tamke and U. Buscher, “A branch-and-cut algorithm for the vehicle routing problem

with drones,” Transportation Research Part B: Methodological, vol. 144, pp. 174–203,

2021.

81

https://www.jair.org/index.php/jair/article/view/12450
https://www.jair.org/index.php/jair/article/view/12450
https://arxiv.org/abs/2110.08802
https://arxiv.org/abs/2110.08802
https://www.sciencedirect.com/science/article/abs/pii/S0968090X19302505
https://www.sciencedirect.com/science/article/abs/pii/S0968090X19302505
https://www.sciencedirect.com/science/article/pii/S0968090X18312932
https://www.sciencedirect.com/science/article/pii/S0968090X18312932
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21846
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21846
https://www.sciencedirect.com/science/article/pii/S0968090X18303218
https://www.sciencedirect.com/science/article/pii/S0968090X18303218
https://www.sciencedirect.com/science/article/pii/S0306261919305252
https://www.sciencedirect.com/science/article/pii/S0306261919305252
https://www.sciencedirect.com/science/article/abs/pii/S0191261520304410
https://www.sciencedirect.com/science/article/abs/pii/S0191261520304410

[42] C. Chen, E. Demir, and Y. Huang, “An adaptive large neighborhood search heuristic

for the vehicle routing problem with time windows and delivery robots,” European

journal of operational research, vol. 294, no. 3, pp. 1164–1180, 2021.

[43] H. Li, J. Chen, F. Wang, and Y. Zhao, “Truck and drone routing problem with syn-

chronization on arcs,” Naval Research Logistics (NRL), vol. 69, no. 6, pp. 884–901,

2022.

[44] J. G. Carlsson and S. Song, “Coordinated logistics with a truck and a drone,” Man-

agement Science, vol. 64, no. 9, pp. 4052–4069, 2018.

[45] M. Lin, Y. Chen, R. Han, Y. Chen, et al., “Discrete optimization on truck-drone col-

laborative transportation system for delivering medical resources,” Discrete Dynamics

in Nature and Society, vol. 2022, 2022.

[46] K. Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained

Traveling Salesman and Vehicle Routing Problems: Technical report, English. Roskilde

Universitet, Dec. 2017, p. 60.

[47] C. R. C. in Distribution Management, Mdvrp, http://neumann.hec.ca/chairedistributique/

data/mdvrp/, 2023.

[48] S. Zhang, W. Zhang, Y. Gajpal, and S. Appadoo, “Ant colony algorithm for routing

alternate fuel vehicles in multi-depot vehicle routing problem,” Decision Science in

Action: Theory and Applications of Modern Decision Analytic Optimisation, pp. 251–

260, 2019.

[49] B. Peng, L. Wu, Y. Yi, and X. Chen, “Solving the multi-depot green vehicle routing

problem by a hybrid evolutionary algorithm,” Sustainability, vol. 12, no. 5, p. 2127,

2020.

[50] M. E. H. Sadati and B. Çatay, “A hybrid variable neighborhood search approach for the

multi-depot green vehicle routing problem,” Transportation Research Part E: Logistics

and Transportation Review, vol. 149, p. 102 293, 2021.

82

https://www.sciencedirect.com/science/article/abs/pii/S037722172100120X
https://www.sciencedirect.com/science/article/abs/pii/S037722172100120X
https://onlinelibrary.wiley.com/doi/10.1002/nav.22053
https://onlinelibrary.wiley.com/doi/10.1002/nav.22053
https://pubsonline.informs.org/doi/10.1287/mnsc.2017.2824
https://www.hindawi.com/journals/ddns/2022/1811288/
https://www.hindawi.com/journals/ddns/2022/1811288/
http://akira.ruc.dk/~keld/research/LKH/LKH-3_REPORT.pdf
http://akira.ruc.dk/~keld/research/LKH/LKH-3_REPORT.pdf
http://neumann.hec.ca/chairedistributique/data/mdvrp/
http://neumann.hec.ca/chairedistributique/data/mdvrp/
https://link.springer.com/chapter/10.1007/978-981-13-0860-4_19
https://link.springer.com/chapter/10.1007/978-981-13-0860-4_19
https://www.mdpi.com/2071-1050/12/5/2127
https://www.mdpi.com/2071-1050/12/5/2127
https://www.sciencedirect.com/science/article/abs/pii/S1366554521000673
https://www.sciencedirect.com/science/article/abs/pii/S1366554521000673

[51] F. Blahoudek, T. Brázdil, P. Novotnỳ, M. Ornik, P. Thangeda, and U. Topcu, “Qualita-

tive controller synthesis for consumption Markov decision processes,” in International

Conference on Computer Aided Verification, Springer, 2020, pp. 421–447.

[52] OpenStreetMap contributors, Planet dump retrieved from https://planet.osm.org, https:

//www.openstreetmap.org, 2017.

[53] Bluebikes, System data, https://s3.amazonaws.com/hubway-data/current_bluebikes_

stations.csv, 2023.

[54] W. Ho, G. T. Ho, P. Ji, and H. C. Lau, “A hybrid genetic algorithm for the multi-depot

vehicle routing problem,” Engineering applications of artificial intelligence, vol. 21,

no. 4, pp. 548–557, 2008.

[55] S. Salhi, A. Imran, and N. A. Wassan, “The multi-depot vehicle routing problem with

heterogeneous vehicle fleet: Formulation and a variable neighborhood search imple-

mentation,” Computers & Operations Research, vol. 52, pp. 315–325, 2014.

[56] S. Geetha, P. Vanathi, and G. Poonthalir, “Metaheuristic approach for the multi-depot

vehicle routing problem,” Applied Artificial Intelligence, vol. 26, no. 9, pp. 878–901,

2012.

[57] B. Gavish and S. C. Graves, “The travelling salesman problem and related problems,”

1978.

[58] S. Chinnasamy, M. Ramachandran, M. Amudha, and K. Ramu, “A review on hill

climbing optimization methodology,” Recent Trends in Management and Commerce,

vol. 3, no. 1, 2022.

83

https://arxiv.org/pdf/2005.07227
https://arxiv.org/pdf/2005.07227
 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv
https://s3.amazonaws.com/hubway-data/current_bluebikes_stations.csv
https://www.sciencedirect.com/science/article/pii/S0377221705006983
https://www.sciencedirect.com/science/article/pii/S0377221705006983
https://www.sciencedirect.com/science/article/pii/S0305054813001408
https://www.sciencedirect.com/science/article/pii/S0305054813001408
https://www.sciencedirect.com/science/article/pii/S0305054813001408
https://www.tandfonline.com/doi/abs/10.1080/08839514.2012.727344
https://www.tandfonline.com/doi/abs/10.1080/08839514.2012.727344
https://dspace.mit.edu/handle/1721.1/5363
https://www.academia.edu/download/87163532/1.-A-Review-on-Hill-Climbing-Optimization-Methodology.pdf
https://www.academia.edu/download/87163532/1.-A-Review-on-Hill-Climbing-Optimization-Methodology.pdf

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Practical Constraints
	1.1.1 Energy Limit
	1.1.2 Cooperation with Aerial Robots

	1.2 Contribution
	1.3 Structure

	2 Related Work
	2.1 Methods for TSP
	2.1.1 Exact methods
	2.1.2 Approximation and heuristic algorithms
	2.1.3 End-to-end learning-based methods

	2.2 Multiple TSP
	2.3 Energy Constraints
	2.4 Collaborative Constraints
	2.4.1 Multi-Agent Path Finding
	2.4.2 Trucks and drones delivery problem

	3 Multi-Agent Energy-Constrained Traveling Salesman Problem
	3.1 Problem Formulation
	3.2 Methodology
	3.2.1 Customer assignment
	3.2.2 Congestion control

	3.3 Experiments
	3.3.1 Comparison with Baselines
	3.3.2 Compare with Exact Algorithm
	3.3.3 Studies of Components
	3.3.4 Effectiveness of Resource Distribution
	3.3.5 Effect of replenishment time

	4 Multi-Agent Flying Sidekick Traveling Salesman Problem
	4.1 Problem Formulation
	4.2 Methodology
	4.2.1 Phase 1: Set nearest-neighbor method
	4.2.2 Phase 2: Set traveling salesman problem heuristic
	4.2.3 Phase 3: Decode solution from heuristic

	4.3 Experiments
	4.3.1 Comparison against baselines
	4.3.2 Validation for set-based methods
	4.3.3 Factors influencing the algorithm

	5 Conclusion and Future Work
	A Mixed-Integer Linear Programming Forumlations
	B Theorems and Proofs
	B.1 Explaination for Function f and g
	B.2 Proof for Theorem 1
	B.3 Proof for Theorem 3

	References

