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Abstract: In recent years, the rapid growth of on-demand delivery services, especially in food
deliveries, has spurred the exploration of innovative mobility solutions. In this context, lightweight
autonomous vehicles have emerged as a potential alternative. However, their fleet-level behavior
remains largely unexplored. To address this gap, we have developed an agent-based model and an
environmental impact study assessing the fleet performance of lightweight autonomous food delivery
vehicles. This model explores critical factors such as fleet sizing, service level, operational strategies,
and environmental impacts. We have applied this model to a case study in Cambridge, MA, USA,
where results indicate that there could be significant environmental benefits in replacing traditional
car-based deliveries with shared lightweight autonomous vehicle fleets. Lastly, we introduce an
interactive platform that offers a user-friendly means of comprehending the model’s performance
and potential trade-offs, which can help inform decision-makers in the evolving landscape of food
delivery innovation.

Keywords: autonomous vehicles; micro-mobility; on-demand delivery; agent-based modeling;
environmental impact; emerging technologies

1. Introduction

Over the past century, many cities have undergone substantial transformations. The
global population has increased year-by-year, and this trajectory is projected to continue,
reaching the 9.7 billion mark by 2050 [1]. This would entail a growth of 1.7 billion people
relative to 2022, with most of this growth being concentrated in urban areas [1]. This
demographic shift will pose diverse challenges in cities, including a surge in urban mobility
demand and subsequent traffic-related problems, which could lead to adverse environmen-
tal and socioeconomic outcomes [2].

In the United States (US), a significant share of the rising urban mobility demand is
attributed to on-demand deliveries. While in 2009, online sales represented only 4% of
total US retail sales, by 2019, this figure had risen to 11%, and by 2021, it had reached
15% [3]. E-commerce, while potentially reducing the number of trips to physical stores,
tends to encourage more frequent purchases, resulting in complex delivery routes with
high stop frequency [4,5]. Consequently, the environmental implications of e-commerce
have been found to have a high dependency on factors such as demand consolidation,
delivery network, vehicle types, and return rates [6].

Within the sector of e-commerce deliveries, food delivery services have exhibited
remarkably rapid growth. According to McKinsey et al. [7], the market grew four- to
seven-fold between 2018 and 2021, with a global market estimated to be worth more
than $150 billion. This exponential market growth has led to a surge in the exploration of
innovative mobility solutions for food deliveries.

Academic and industrial players are currently exploring lightweight autonomous
vehicles that could provide an on-demand food delivery service. For instance, companies
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like DoorDash have established DoorDash Labs to develop automation and robotics sys-
tems for last-mile logistics (https://doordash.news/company/introducing-doordash-labs-
doordashs-robotics-and-automation-arm/ (accessed on 30 May 2024)). Similarly, Uber
Eats has recently partnered with Nuro, a startup working on autonomous delivery vehi-
cles (https://www.washingtontimes.com/news/2022/sep/13/uber-eats-partners-with-nuro-
for-driverless-delive/ (accessed on 21 May 2024)), and Amazon has developed an au-
tonomous delivery system, the Amazon Scout (https://www.aboutamazon.com/news/
transportation/whats-next-for-amazon-scout (accessed on 21 May 2024)). Concurrently,
academia is exploring an alternative approach, focusing on multi-functional shared
lightweight autonomous vehicles capable of serving as a mobility-on-demand system
during peak hours and transition into package or food delivery during periods of reduced
user demand [8,9].

These innovative vehicles hold the promise of delivering several advantages. Firstly,
they offer the potential to facilitate a transition to lighter vehicles that are more suitable
for delivering small food packages due to their lower environmental emissions. Secondly,
these shared lightweight autonomous vehicles (SLAV) are purposefully designed to operate
on sidewalks or bike lanes, eliminating the necessity for additional road infrastructure in
urban areas, which could, in turn, support the shift toward more human-centric and less
car-centric urban environments [10].

However, despite the substantial efforts invested in industry and academia to develop
lightweight autonomous systems for food deliveries, there is a research gap concerning
their performance at the fleet level. Notably, a comprehensive review of agent-based
models on autonomous vehicles up to 2020 by Li et al. [11] highlights the need for more
logistics-related studies, underscoring the need for further research in this field. The
significance of this research gap is particularly evident when considering prior studies that
highlight the crucial role of fleet-level investigations in understanding the performance
and environmental effects of emerging mobility systems [12–14].

To bridge this gap, this paper presents three fundamental contributions: (1) an agent-
based model that simulates the behavior of lightweight autonomous fleets for food deliver-
ies, (2) an environmental impact assessment of the shift from car-based deliveries to fleets of
shared lightweight autonomous vehicles, and (3) an interactive simulation tool that offers a
user-friendly means of understanding the model’s performance and potential trade-offs. In
a process that incorporates realistic data on food deliveries and considers different design
parameters and operational strategies, our study provides an extensive analysis evaluat-
ing the performance and potential implications of these new systems. In particular, the
outcomes of this study provide insights into essential parameters related to food delivery
fleets, encompassing aspects such as optimal fleet size, service level, operational strategies,
and environmental impacts.

The remainder of the paper is structured as follows. The first two subsections
(Sections 1.1 and 1.2) address the literature review and contribution of this paper. Section 2
presents the details of the modeling approach. Section 3 shows the experimental setup of
the defined model. Section 4 gathers and discusses the obtained results. Next, Section 5
presents a tangible simulation tool that allows the exploration of the model’s outcomes in
an interactive way. Finally, Section 6 summarizes the main conclusions of this study.

1.1. Literature Review

The field of shared autonomous micro-mobility (SAmM) encompasses the use of
shared lightweight autonomous vehicles as a mobility on-demand system. Numerous
studies have examined the fleet-level behavior within this field, focusing on aspects such
as service quality and environmental impacts [15–17]. However, the literature is relatively
scarce when it comes to utilizing shared lightweight autonomous vehicles for logistics.
Li et al. [11] reviewed all of the Agent-Based Models (ABMs) published in this field until
2020 and highlighted the limited number of relevant studies in the field of autonomous
robots for deliveries, emphasizing the need for further research. Out of a total of four studies
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that they identify, two focus on package deliveries [10,18] and only the other two are related
to food deliveries [19,20]. On one hand, Samouh et al. [19] presented an ABM for food
delivery considering three scenarios involving drones, ground robots, and a combination of
both. This study analyzes the fleet sizes needed to answer a specific demand profile during
a particular hour of the day. On the other hand, De Capitani Da Vimercate [20], instead,
studied the use of autonomous sidewalk robots to serve food delivery trips. Below, we
discuss how our research differs from such studies, and what our contribution is.

1.2. Contribution

The research presented in this article differs from previous related studies in several
aspects. First, regarding the input demand dataset, our model is based on a fine-grained
food delivery demand dataset with high-resolution time and location information (see
Section 3.3). The aforementioned studies, instead, utilize simplistic datasets such as the one-
hour uniform distribution of orders in the case of Samouh et al. [19] or the random and uni-
form distribution of customers and restaurants in the case of De Capitani Da Vimercate [20].
Realistic demand patterns produce more accurate results and, therefore, our research poses
a significant step forward in this sense [11].

Secondly, our model allows for the analysis of the performance of SLAVs across vari-
ous vehicle configurations and charging operational strategies and enables a comparison
to a baseline scenario represented by cars. Previous studies, instead, study simpler ve-
hicle configurations and lack a baseline that allows for a comparison with the current
scenario [19,20]. Lastly, unlike previous studies, our work includes an environmental im-
pacts analysis, which is an increasingly important aspect in evaluating the performance
of mobility systems [21]. In light of previous work, it can be concluded that there is still a
relevant literature gap in developing an in-depth study of the fleet-level performance and
environmental impacts of SLAVs for food deliveries.

In order to fill the existing literature gap, this study aims to comprehensively examine
the use of SLAVs for food deliveries. To achieve this goal, we have developed an ABM
that leverages a high-resolution synthetic database based on real-world data to compare
the current car-based scenario with the lightweight autonomous system, analyzing its
implications in terms of fleet sizing, service level, and environmental impacts. Addition-
ally, we explore the impact of different vehicle configurations and operational strategies,
enhancing the understanding of the system’s performance under varying conditions. The
modular design of our model enables its easy adaptability to other urban areas. Lastly,
our model has been integrated into an interactive tool that allows stakeholders to explore
the model’s performance in real time, helping to understand the system’s behavior and
trade-offs collaboratively.

This research sheds light on the transformative potential of SLAVs in the food delivery
industry, offering valuable insights for stakeholders such as policymakers, mobility opera-
tors, and citizens. Through our evaluation of the performance of lightweight autonomous
systems in urban food deliveries, informed decisions can be made regarding fleet design
and implementation, with particular attention to environmental considerations. This study
represents a crucial step towards understanding the capabilities and impacts of lightweight
autonomous systems, paving the way for future advancements in the field.

2. Modeling Approach

To study the performance of shared lightweight autonomous vehicles for food deliver-
ies and compare their performance to the current car-based systems, we have developed
an Agent-Based Model (ABM) and an environmental impact study which are detailed in
Sections 2.1 and 2.2, respectively.

2.1. Simulation Model Architecture

ABMs have emerged as a popular method to analyze the meso- and macroscopic
behavior of autonomous vehicles [11]. Their effectiveness lies in their ability to capture
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the complex interactions between various actors, such as vehicle fleets, users, and the
infrastructure. Additionally, these models offer flexibility in exploring different scenarios
and hypotheses, which is essential for understanding the uncertainties associated with
emerging technologies.

The ABM in this study is designed to capture the dynamics and interactions between
the different agents involved in food delivery processes. Figure 1 provides a visual repre-
sentation of the defined activities and their flow. First, the customer places a food delivery
order in a particular restaurant. Subsequently, a vehicle is assigned to fulfill the delivery
trip. The assigned vehicle drives to the restaurant and picks up the package. With the food
onboard, the vehicle proceeds to the destination location where it will deliver the order.

Figure 1. Diagram that depicts the process of food delivery orders.

The ABM architecture consists of three interconnected layers, as shown in Figure 2:
(A) the urban infrastructure, (B) the delivery vehicle fleet, and (C) the user demand.
The following subsections will detail what these layers represent and how they have
been modeled.

Figure 2. Diagram for the depiction of the structure and interdependencies among the agent-based
simulation layers: (A) urban infrastructure, (B) delivery vehicle fleet, (C) user demand.
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2.1.1. Urban Infrastructure

The urban infrastructure plays a crucial role in shaping the operations and dynamics
of the food delivery system. In this model, the urban infrastructure is represented by
several components (Figure 2A). Firstly, the city road network represents the paths that
vehicles will follow for their trips. It encompasses the network of streets and intersections
within the area under study. Secondly, the buildings serve as the origins (i.e., restaurants)
and destinations of the food delivery trips. Thirdly, the currently existing gas and charging
stations represent the locations where vehicles will refuel or recharge their batteries. More
details on the specific datasets used will be provided in Section 3.

2.1.2. Vehicle Behavior

The ABM considers different scenarios with distinct fleets of vehicles to fulfill food
deliveries (Figure 2B). In the baseline scenario, conventional cars are used, while the rest of
the scenarios model a fleet of shared lightweight autonomous vehicles. The behaviors of
these vehicle systems are defined as follows:

• Baseline scenario: Current car-based deliveries. This scenario models combustion cars to
represent current food deliveries and electric cars to represent a futuristic but closer-
to-date evolution of such deliveries. The behavior of these vehicles is modeled as a
Finite State Machine (FSM), illustrated in red in Figure 3.

Figure 3. Diagram of the Finite State Machine (FSM), representing the behavior and transitions
between states of the cars (in red), which are modeled as part of the baseline scenario, and shared
lightweight autonomous vehicles (in green), as part of the future scenario.
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Initially, cars are randomly placed on the city roads with a fuel/battery level set
between the maximum and minimum values. All vehicles start in an available state,
ready to respond to any food delivery request. When a customer orders at a specific
restaurant, a package pick-up request is sent to the nearest available car with sufficient
fuel/charge to complete the trip. The car then travels to the restaurant to collect the
food order and delivers it to the designated drop-off location. After completing the
delivery, the vehicle becomes available again and idles until it gets assigned a new pick-
up request. If the fuel/battery level is low, it drives to the closest gas/charging station
for refueling/recharging. Once refueled/recharged, the vehicle becomes available for
further deliveries. While in our model, vehicles simply choose the closest station in
order to minimize traveled distance, future versions could implement more advanced
decisions, such as considering the availability of each station and the distance that can
be covered with the remaining fuel/battery.

• Future scenario: Shared lightweight autonomous vehicles. The behavior of shared lightweight
autonomous vehicles is also modeled as a FSM, as depicted in green in Figure 3. The
FSM captures various operational states of the vehicles, such as idle, in route, and
delivering, and describes the transitions between these states.
Shared lightweight autonomous vehicles are initialized at random locations within the
road network, with an arbitrary battery level between the minimum and maximum
thresholds. All vehicles start in an available state for food delivery trips. When
an order is placed, a package pick-up request is assigned to the nearest available
vehicle or the vehicle with the best distance-to-battery-level ratio, depending on the
charging strategy being analyzed. The chosen vehicle autonomously travels to the
restaurant, collects the package, and drives to the drop-off point. After completing the
delivery, the vehicle becomes available again and idles until a new order is assigned.
If the battery level falls below the minimum threshold, it autonomously drives to
the closest available charging station, recharges, and becomes available again. Since
different charging operational strategies have been studied (Section 3.4), the conditions
under which vehicles initiate a recharge trip vary depending on the specific strategy
being analyzed.

2.1.3. Customer Behavior

This layer represents the customers who place food delivery orders (Figure 2C). The
customers’ behavior is also modeled as a FSM, which is illustrated in Figure 4. Whenever
a user places a food delivery order at a specific restaurant, a food delivery package is
generated at that location. As a first step, the system checks for the availability of vehicles.
If no vehicles are available, the package will continuously attempt to find an available
vehicle. If multiple vehicles are available, the system will determine which vehicle to assign
to that delivery based on either the closest distance or the one with the best proximity-to-
battery ratio, as defined in Section 3.4. Once a delivery vehicle is assigned, the package will
be transported to its designated delivery location, where the customer will receive it.

2.2. Environmental Impact Modeling

While the ABM in Section 2.1 aims to analyze the systems from a performance per-
spective, understanding the corresponding environmental impacts is key in analyzing the
potential implications of shared lightweight autonomous vehicles for food deliveries. In the
context of analyzing a new mobility mode, it is important to not only consider the emissions
of the new system, but also to compare them to the status quo that they are replacing. To do
so, we model the environmental impacts of lightweight autonomous vehicles, and compare
their performance to current combustion engine cars. Moreover, in order to represent an
alternative scenario which is closer to the current status quo, we also model battery electric
cars fueled by a zero-carbon grid.
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Figure 4. Diagram of the Finite State Machine (FSM), representing the behavior and transitions
between states of the food delivery orders that have been placed by the consumers.

The environmental impacts considered for this study are based on a life cycle as-
sessment (LCA). LCA is a standardized environmental impact calculation method that
considers the impacts from the entire life cycle: from raw material extraction to produc-
tion, use, and waste management [22,23]. This study focuses on the impacts in terms of
CO2 emissions because it is a metric that plays a central role in the transportation and
governmental decision-making processes [24].

The environmental assessments in this study draw upon the methodologies outlined
in [16], which have been suitably adapted to this specific case study. These adaptations
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involve the customization of vehicle utilization rates and battery ranges, guided by simula-
tion outcomes. Notably, infrastructure-related impacts are intentionally omitted from the
analysis because all scenarios consider a consistent number of charging stations. This ap-
proach is adopted to prevent potential bias introduced by not sizing charging infrastructure
proportionally to the number of vehicles in operation.

Our assessment of the environmental impacts unfolds through several key steps.
Firstly, the simulation results in Section 4.1 provide data on average kilometers covered
by both vehicle types (cars and shared lightweight autonomous vehicles) across various
vehicle configurations (speeds and battery ranges). Second, leveraging the environmental
impacts calculation process presented in [16], we have calculated the grams of CO2 per
kilometer traveled. Lastly, for the purpose of comparing environmental impact reductions
between scenarios, the total distance traveled by each system and the associated grams
of CO2 per kilometer traveled are taken into consideration. In order to model the fast-
charging method, twice as many batteries per vehicle have been considered to account for
the battery-swapping process.

2.3. Limitations

One of the limitations of this study is that we do not explicitly consider the dynamic
effect of traffic congestion on system performance. While the speed for the baseline
scenario is based on average urban speeds, it is important to note that congestion levels
may vary throughout the day, which is not captured in our model. Similarly, while
autonomous vehicles may navigate through traffic more efficiently, their speed may still be
affected by interactions with other vehicles and pedestrians. While the speed considered
for lightweight autonomous vehicles in this study reflects an average that would account
for such interactions, explicitly modeling dynamic interactions and their impact on system
performance remains an open question for future research. Further investigations in
this area could provide valuable insights into understanding the operation of fleets of
lightweight autonomous vehicles in busy urban environments.

Another limitation of this study pertains to its reliance on a single case study, which
may limit the generalizability of the results to other cities or contexts. For this reason,
we have focused on developing a tool that can be readily adapted for use in any city
with available food delivery demand data. By ensuring the tool’s easy transferability and
open-sourcing it, we aim to facilitate future case studies that address the question of the
diverse implications across different cities.

3. Experimental Setup
3.1. Agent-Based Modeling Software

The ABM in this study has been developed using the GAMA Platform [25]. GAMA
is an open-source tool specifically designed for spatially explicit multi-layer agent-based
simulations. It has successfully been employed in various domains, including urban
decision-making tools [26], epidemiology representation [27], and social simulation [28].

3.2. Case Study Location

While the model can be easily applied to any US city, we have chosen Cambridge, MA,
as the case study for this research. Cambridge has a population of approximately 118,403
residents and covers an area of 17 square kilometers [29]. The boundary of the city can be
observed in Figure 5.

The road network and buildings information have been integrated in the model in the
form of GIS data, extracted from OpenStreetMap [30], and the Cambridge, MA, government
website [31]. The data regarding the gas and charging station locations has been collected
from OpenStreetMap [30] and Bluebikes [32] data, and also provides detailed information
including their current capacity and location.
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Figure 5. Top: Heat map illustrating the spatial density of trip origins (left, restaurants) and
destinations (right), with areas of highest density represented in violet. The map also shows the
boundary of the study area, which encompasses Cambridge, MA, USA. Bottom: Demand profile
of food delivery orders in the study area (Cambridge, MA, USA) demonstrating the temporal
distribution of orders throughout the day, aggregated by time intervals of 7.5 min.

3.3. Input Demand Dataset

Since open-source data on food deliveries is limited, we have generated a synthetic
demand dataset, based on three different sources. Firstly, general land use data was
obtained from OpenStreetMap [30]. Secondly, data on trips made to go to restaurants
and bars was obtained through Replica [33], which also provided a breakdown of online
versus in-person food expenditures. Lastly, data on the popularity of specific restaurants
within each block group was obtained through SafeGraph [34]. A simplified outline of
methodology for generating the demand dataset is depicted in Figure 6. For more detailed
information, please refer to Appendix A, Figure A1.

The first step was to filter Replica trips with origin and destination in Cambridge,
and travel purpose of eating. Since Replica provides origins and destinations at block-
group level, we assigned a specific restaurant from SafeGraph to each trip based on the
popularity and open hours of the restaurants. To assign the origin of the trips, we created
two association tables (Appendix A Tables A1 and A2) that link the building land use
types defined in Replica with the land uses provided by SafeGraph and Open Street Map.
This allowed us to assign an exact location to each trip based on the land use of the
origin building.

After assigning specific origins and destinations to each trip, the dataset was filtered
to eliminate any unreasonable trips: we dropped all trips without a restaurant assignment,
trips without a duration, and trips with the same coordinates for the origin and destination.
Then, the number of trips was scaled proportionally to in-person versus online expenditures
reported by Replica [33] and their average order size [7,35–38]. Since there are fewer online
orders than in-person orders, the extra trips were removed randomly. As a last step, the
origin and destination of the trips were inverted to represent how food delivery trips work
(from the restaurant to any other location).

Using this methodology, we generated the food delivery demand dataset, consisting
of 3989 trips. Figure 5 illustrates heat maps of the spatial density of trip origins and
destinations and the number of food delivery orders placed at different times of the day.
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Figure 6. Simplified diagram of the synthetic database generation process for obtaining the fine-
grained food delivery demand dataset.

3.4. Scenario Definition

In order to understand and analyze the performance of shared lightweight autonomous
vehicles for food deliveries, we compared them to a baseline scenario that represents the
way food deliveries are handled now.

The baseline scenario is composed of two different sub-scenarios: The first sub-scenario
models food deliveries using internal combustion engine cars (ICE) as a baseline, while
the second sub-scenario models battery electric vehicles (BEV) to account for the ongoing
transition towards them.

In addition to the baseline scenario, a lightweight autonomous vehicle-based future
scenario has also been studied through several operational decisions. Various system
design parameters can be defined when designing a new mobility service to achieve the
desired performance. Hence, we have examined the potential implications of different
choices for these design parameters, including different vehicle configurations (i.e., battery
sizes and autonomous driving speeds) and operational strategies related to vehicle charging
(i.e., conventional, fast, and night charging, and strategic dispatching). The sub-scenarios
considered in the lightweight autonomous vehicle scenario are the following:

• Conventional charging (CC): This sub-scenario represents vehicles being charged at
conventional plug-in charging stations, taking 4.5 h for a full-battery recharge, which
reflects the performance of current lightweight electric vehicle charging processes [39].

• Night charging (NC): In this sub-scenario, charging stations are conventional charging
stations like in the CC scenario. However, vehicles with less than 90% battery charge
are recharged during the night, coinciding with the lowest demand period (2–5 am).

• Strategic dispatching (SD): This sub-scenario builds upon the NC scenario by adding a
strategic condition for dispatching. In such strategic dispatching, instead of assigning
the nearest available vehicle to each food delivery order, the dispatcher considers up
to five nearest available vehicles and then assigns the one with the manually adjusted
best distance to battery level ratio.

• Fast charging (FC): In this sub-scenario, stations are battery swapping stations instead
of plug-in stations. Battery swapping is a process where depleted batteries are replaced
with fully charged ones. This process eliminates the need to wait for the battery to
recharge. Therefore, the charging process is considered to take 1.85 min, which is an
average of the two battery-swapping scenarios studied in [40].

A comprehensive summary of the scenarios analyzed and their parameters can be
found in Table 1.
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Table 1. Overview of the scenarios examined in the study, including detailed specifications of
parameter values that define their operational characteristics and behavior.

Scenario Nomenclature Charging Technology Full Recharge
Time

Minimum
Battery Level

Riding Speeds
[km/h]

Battery
Autonomy [km]

Baseline (Cars) ICE Combustion 3 min 15% 30 500
Baseline (Cars) BEV Electric 30 min 15% 30 342
Future (SLAV) CC Conventional Charging 4 h 30 min 25% 8–11–14 35–50–65
Future (SLAV) NC Night Charging 4 h 30 min 25% 8–11–14 35–50–65
Future (SLAV) SD Strategic Dispatching 4 h 30 min 25% 8–11–14 35–50–65
Future (SLAV) FC Fast Charging 1.85 min 25% 8–11–14 35–50–65

3.5. Vehicle Modeling

The analysis of the different scenarios and sub-scenarios described in Section 3.4 re-
quired different vehicles to be modeled in the ABM. In this section, we define the modeling
assumptions for each vehicle type, which are also summarized in Table 1.

In the baseline scenario, ICE cars are considered to have a driving autonomy of
500 km and a refueling rate of 3 min [41,42]. For BEV cars, instead, the study assumes
an autonomy of 342 km, which is the average range reported by EV-database [43] and
a recharging rate of 30 min [44]. In both cases, cars have been modeled to travel at a
constant speed of 30 km/h [33,45]. In addition, they are also considered to transition into
the refuel/recharging state when their low gas/charge level is below 15% of the total
tank/battery [46]. Gas and charging stations are located at the same locations as current
gas stations in Cambridge [30] and considered to have the same capacity as them. Due to
this limited capacity, vehicles are served in a first-come first-serve basis.

In the future scenario that models shared lightweight autonomous vehicles, instead of
modeling their behavior with fixed parameters, we have analyzed different operational
decisions that include several values proposed in Sanchez et al. [15]. This is due to the
fact that modeling this emerging technology holds uncertainties regarding its real-world
performance and, as indicated by previous studies, vehicle configuration parameters and
charging operational strategies have a direct and very significant influence on fleet-level
performance [13]. As a consequence, we have modeled several battery sizes (35–50–65 km),
driving speeds (8–11–14 km/h), and charging strategies defined in Section 3.4. Shared
lightweight autonomous vehicles are considered to enter a low battery state when their
battery level is below 25% of their total capacity, and charging stations have been considered
to be at the same locations and have the same capacities as the current Bluebikes [32]
docking stations. Since the capacity of the stations is limited, the vehicles are charged in a
first-come first-serve basis. The charging threshold has been considered to be higher than it
is for cars because autonomous vehicle operators need to be more conservative in ensuring
that vehicles never run out of battery before reaching a charging station.

4. Results and Discussion

This section presents the simulations’ results aimed at evaluating the performance of
shared lightweight autonomous systems for food deliveries. As discussed in Section 3.4,
we compare the performance of this new system with the current car-based delivery
system, considering both internal combustion engine (ICE) cars and battery electric vehicles
(BEV). Moreover, we analyze different vehicle configurations and operational strategies
in lightweight autonomous systems. The summary of all the scenarios and sub-scenarios
considered can be found in Table 1.

To facilitate a fair comparison, all systems in the study adhere to the same design
criteria. In line with previous studies [13], this criteria has been based on a desired service
level. Specifically, we have defined a quality standard requiring all trips to be served, with
95% of the trips taking less than 40 minutes from order to delivery, based on a national
survey data by US-Foods [47].



Future Transp. 2024, 4 645

The assessment of the lightweight autonomous system’s performance has been ap-
proached from two distinct angles. Firstly, in Section 4.1, an in-depth exploration of
fleet-level performance is conducted, analyzing the interplay of various scenarios and
parameters on the overall system performance. Secondly, in Section 4.2, these findings
are leveraged to evaluate the corresponding environmental impacts. This comprehensive
approach not only sheds light on aspects like user wait times and fleet sizes, but also delves
into the environmental consequences of this potential transition to shared lightweight
autonomous vehicles.

4.1. Fleet-Level Performance

This section evaluates the fleet-level performance across the different scenarios and
sub-scenarios considered in this study. The exploration encompasses a detailed analysis of
diverse vehicle configurations and charging operational strategies.

We first analyze the baseline scenario, which represents the current car-based deliveries
in Section 4.1.1. Subsequently, we analyze the fleet-level performance of lightweight
autonomous systems, as elaborated in Section 4.1.2.

4.1.1. Baseline Scenario: Current Car-Based Deliveries

This scenario’s main objective, described in Section 3.4, is to provide a baseline scenario
against which we can evaluate shared lightweight autonomous systems. We present the
main results obtained from the simulation in Figure 7 and Table 2.

Figure 7. Variation of the average wait time for food delivery orders with an increasing number
of electric and combustion engine cars. The dashed horizontal line represents the desired service
level requirement.

Table 2. Summary of the main performance metrics in the baseline scenario, which models the way
food deliveries are currently handled by ICE vehicles, as well as BEV.

Baseline Scenario Results

Metric ICE BEV

Num. of cars [-] 40 45
Food delivery demand [-] 3989 3989
Avg. trip time [min] 12.71 6.19
Trips under 40 min [%] 99.82% 100%
Avg. trips/car/day [-] 99.72 88.64
Total refuelings/day [-] 33 37
Total vehicle km [km] 10,089.48 8681.82
| Avg. km for pick-up [%] 54.03% 46.58%
| Avg. km for delivery [%] 45.66% 53.06%
| Avg. km to refill [%] 0.31% 0.36%
Avg. km/car [km/car] 252.24 192.93

As can be observed in Table 2, the specified service requirements can be met by serving
the total demand of 3989 trips with 40 ICE cars. Figure 7 shows how the average wait time
decreases with increased fleet sizes until the service level requirement is met. The main
impact that can be expected from the transition towards BEVs from the fleet performance
perspective is a slight increase in the required fleet size. As shown in Table 2, the same
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demand can be served with 45 BEVs. This is due to the longer recharge time for BEVs than
the refueling time for ICE cars. However, it is noteworthy that the overall behavior and the
relationship between service level and fleet size remain similar in both cases.

4.1.2. Future Scenario: Shared Lightweight Autonomous Vehicles

This scenario presents the results of the fleet performance of shared lightweight
autonomous vehicle-based food deliveries, considering different vehicle configurations
and charging operational strategies.

- Vehicle configurations

The variations in service level under different vehicle configurations and fleet sizes
are summarized in Table 3 and illustrated in Figure 8. Table 3 demonstrates that the fleet
size required to meet the demand with the desired service level ranges from 170 to 310,
depending on the chosen vehicle configurations. As anticipated, these fleet sizes are notably
larger than the corresponding car fleets due to the lower speeds of vehicles (8–14 km/h
versus 30 km/h). However, as discussed in Section 4.2, despite the increased fleet sizes, the
lightweight nature of each vehicle offers potential improvements in environmental impacts.

Figure 8. Variation in the average wait time for food delivery orders for different fleet sizes. Each
figure represents a certain battery capacity (35 km, 50 km, and 65 km, left to right).

Table 3. Summary of the main performance metrics in a food delivery system based on a fleet of
shared lightweight autonomous vehicles. Different sub-scenarios account for different battery sizes
and autonomous driving speeds.

Future Scenario (SLAV) Results

Battery Size Small Medium Large

Speed Slow Medium Fast Slow Medium Fast Slow Medium Fast

Num. of SLAV [-] 310 280 240 250 230 190 210 190 170
Food delivery demand [-] 3989 3989 3989 3989 3989 3989 3989 3989 3989
Avg. trip time [min] 15.9 14.94 15.93 16.39 12.09 9.67 16.98 12.34 15.2
Trips under 40 min [%] 97.77% 98.09% 97.72% 97.39% 99.72% 100.00% 96.14% 99.65% 97.27%
Avg. trips/SLAV/day [-] 12.8 14.25 16.62 15.96 17.34 20.99 19 20.99 23.46
Total charges/day [-] 317 351 449 261 239 244 202 198 242
Total vehicle km [km] 6695.45 6935.2 9209.01 6919.22 6892.96 6899.58 7178.07 7046.08 8902.37
| Average km for pick-up [%] 30.30% 32.60% 49.02% 32.69% 32.47% 32.55% 35.24% 34.05% 47.68%
| Average km for delivery [%] 68.80% 66.42% 50.02% 66.58% 66.83% 66.77% 64.18% 65.38% 51.75%
| Average km to recharge [%] 0.89% 0.97% 0.95% 0.74% 0.70% 0.68% 0.58% 0.57% 0.57%
Average km/SLAV [km/SLAV] 21.6 24.77 38.37 27.68 29.97 36.31 34.18 37.08 52.37

The results in Table 3 and Figure 8 highlight the significant dependence of vehicle
configurations on the required fleet sizes. The largest fleet size is almost twice as big as the
smallest one, due to a number of factors: Firstly, faster vehicles can complete tasks quicker,
reducing the number of vehicles needed. Additionally, larger battery ranges minimize the
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frequency of charging trips, resulting in greater vehicle availability and smaller required
fleet size.

Notably, the transition from small to medium batteries has a more pronounced effect
on fleet size improvement than the transition from medium to large batteries. Similarly, the
increase in autonomous driving speed has a more substantial impact when transitioning
from medium to high speed compared to the transition from low to medium speeds. These
findings indicate that fleet operators can make specific cost-benefit trade-offs when deciding
on vehicle configurations.

- Charging operational strategies

This section examines different charging strategies and their potential impact on sys-
tem performance and fleet size requirements. As discussed in Section 3.4, four charging
strategies were studied: conventional charging (CC), night charging (NC), strategic dis-
patching (SD), and fast charging (FC). The fleet size variation in each scenario is presented
in Table 4. This table reveals that the NC strategy can reduce the fleet size needed for small
and medium battery sizes and low to medium travel speeds, but it has a negative impact at
high speeds. Similarly, the SD strategy only shows a positive impact at slower speeds.

Table 4. Fleet size needed to meet the service requirements under different operational strategies
related to charging. The minimum required fleet size for each operational strategy is calculated for
sub-scenarios with varying battery sizes and autonomous driving speeds.

Battery Speed Conventional Charging (CC) Night Charging (NC) Strategic Dispatching (SD) Fast Charging (FC)

Slow 310 260 −16.13% 300 −3.23% 150 −51.61%
Medium 280 260 −7.14% 280 0.00% 110 −60.71%Small

Fast 240 240 0.00% 270 12.50% 90 −62.50%

Slow 250 240 −4.00% 240 −4.00% 140 −44.00%
Medium 230 210 −8.70% 230 0.00% 110 −52.17%Medium

Fast 190 210 10.53% 230 21.05% 90 −52.63%

Slow 210 200 −4.76% 180 −14.29% 150 −28.57%
Medium 190 190 0.00% 180 −5.26% 110 −42.11%Large

Fast 170 180 5.88% 180 5.88% 90 −47.06%

On the other hand, the FC strategy consistently and significantly reduces the required
fleet size across all scenarios, with reductions ranging from 28.57% to 62.5%. Notably,
the impact is more pronounced for smaller battery sizes due to their higher reliance on
charging events. In fact, in the FC scenario, the minimum fleet size needed to meet the
quality standard is independent of the battery size. However, it should be noted that, while
cost is not explicitly modeled in this study, the cost of battery swapping (FC) stations tends
to be higher than that of conventional charging stations. Consequently, determining the
best solution will depend on context-specific cost trade-offs related to infrastructure and its
operation versus having additional vehicles.

For further insights to understand the reasons behind these phenomena, refer to
Figures A2–A5 in Appendix A. These figures demonstrate that in CC, NC, and SD scenarios,
the fleet size is strongly influenced by the dynamics of vehicle charging. However, in the FC
scenario, this dependency is significantly reduced because the battery-swapping process
is fast.

Figures A2 and A3 also illustrate that the peak of the concurrent number of vehicles
charging in the NC scenario is comparable to that of the CC scenario. The peak is even
higher in the SD scenario (Figure A4), while no peak is observed in the FC scenario
(Figure A5). These results can be attributed to two synergistic effects: Firstly, charging
vehicles at night in the NC and SD scenarios homogenizes the battery level across the
fleet. Consequently, when vehicles start to deplete their batteries later in the day, there is a
sudden surge of vehicles reaching low battery levels within a short period, resulting in the
observed abrupt increase in the number of vehicles charging. Secondly, the SD strategy
homogenizes the average distance traveled by vehicles per day by selecting vehicles based
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on the best distance-to-battery level ratio for trip assignments. This further concentrates
the charging needs of vehicles in a specific period, leading to a more pronounced peak in
the charging events.

In conclusion, two key findings emerge. Firstly, in the three scenarios involving
conventional charging, the fleet size is constrained by the charging events. In contrast, in
the fast charging (FC) scenario, the primary constraint is the demand itself. This significantly
impacts the required fleet size, with the fast charging scenario requiring roughly half the
fleet size compared to the other three scenarios. However, it should be noted that this
scenario might lead to higher costs, depending on the relative costs of battery swapping
infrastructure compared to the savings from needing fewer vehicles. Secondly, night
charging (NC) and strategic dispatching (SD) strategies provide limited benefits in reducing
the required fleet size due to the homogenization of battery levels and vehicle kilometers
traveled. Consequently, a delayed and more abrupt peak of charging events still limits the
fleet sizing.

4.2. Environmental Impacts

This section presents an overview of the potential reductions in the equivalent CO2
emissions of a shared lightweight autonomous vehicle-based system with the different
vehicle configurations and charging operational strategies analyzed in Section 4.1.2 and
how they compare to current car-based systems analyzed in Section 4.1.1. Moreover, since
current trends point towards the electrification of car fleets and a decarbonization of the
electricity grid, we have also considered a scenario in which all cars would be electric,
and the grid would be zero-carbon. This allows us to understand whether lightweight
autonomous vehicles could also be environmentally beneficial in this potential future. The
results of this analysis have been consolidated in Table 5.

In contrasting the existing car-based baseline scenario with the shared lightweight au-
tonomous vehicle-based scenario, a consistently positive environmental impact is observed
across all assessed vehicle configurations and charging strategies. Notably, as detailed
in Table 5, under the current US electricity composition, transitioning food deliveries
from combustion car-based to shared lightweight autonomous vehicle-based approach
showcases potential for reducing CO2 equivalent emissions between 81.33 % and 89.66%.
Furthermore, even when contemplating a prospective car-based scenario utilizing BEVs in
conjunction with a zero-carbon electricity grid, the reductions remain significant, ranging
from 48.34% to 78.58%.

A recurring pattern emerges regarding the implications of the distinct autonomous
driving speeds explored within this study: elevating the speed typically corresponds to a
greater reduction in CO2 emissions. Specifically, the reduction is particularly pronounced
when transitioning from a slow configuration to a medium-speed variant, compared to the
shift from medium to high speed. This trend is inherently tied to the system’s minimal
performance-driven fleet size requisites. With increased vehicle speed, the time required to
serve each trip is lower, subsequently decreasing the necessary fleet size to meet demand.
Despite the potential increase in total kilometers traveled due to fewer vehicles, this
drawback is counterbalanced by the reduction in environmental impact resulting from a
decreased fleet size.

Concerning battery ranges, in scenarios in which conventional charging is employed
(CC, NC, and SD), a bigger battery range is correlated with a smaller fleet size, thereby
reducing the environmental impact. Since the fleet size reduction is higher in changing from
small to medium batteries than in changing medium to large batteries (see Section 4.1.2),
the environmental impact reductions are also more considerable from small to medium
batteries. However, a divergent trend emerges in fast charging (FC) scenarios: a larger
battery range yields a smaller reduction in CO2 emissions. As the charging events in the
FC scenario do not influence fleet sizing, increasing the battery range results in larger and
more environmentally intensive batteries, with no subsequent reduction in fleet sizes. For
this reason, increasing the battery range in the FC scenario has a negative impact.
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Table 5. Results showing the fleet size needed to cover the demand with the desired service require-
ments, total system kilometers traveled, grams of CO2 per km traveled and CO2 reductions compared
to the baseline scenario.

US Electricity Mix 100% Renewable

Fleet
Size

Battery
km

Speed
km/h

Avg.
Distance km Total System km gCO2/km % Red. vs. ICE gCO2/km % Red. vs. BEV

Combustion Cars (ICE) 40 500 30 252.24 10,090 161.97 161.97

Electric Cars (BEV) 45 342 30 192.93 8682 107.53 53.85

Conventional Charging (CC)

310 35 8 21.6 6696 44.95 −81.58% 36.07 −48.34%
280 35 11 24.77 6936 41.08 −82.57% 32.20 −52.23%
240 35 14 38.37 9209 31.16 −82.44% 22.27 −56.13%
250 50 8 27.68 6920 38.79 −83.57% 29.90 −55.74%
230 50 11 29.97 6893 36.91 −84.43% 28.03 −58.67%
190 50 14 36.31 6899 32.65 −86.22% 23.77 −64.92%
210 65 8 34.18 7178 34.48 −84.86% 25.60 −60.70%
190 65 11 37.08 7045 32.91 −85.81% 24.03 −63.79%
170 65 14 52.37 8903 27.15 −85.21% 18.27 −65.21%

Night Charging (NC)

260 35 8 28.53 7418 37.34 −83.05% 28.46 −54.84%
260 35 11 27.63 7184 38.06 −83.27% 29.17 −55.18%
240 35 14 33.7 8088 33.63 −83.36% 24.74 −57.20%
240 50 8 29.49 7078 37.13 −83.92% 28.25 −57.23%
210 50 11 37.21 7814 32.23 −84.59% 23.34 −60.99%
210 50 14 38.27 8037 31.68 −84.42% 22.80 −60.81%
200 65 8 35.28 7056 33.82 −85.40% 24.94 −62.36%
190 65 11 40.67 7727 31.19 −85.25% 22.30 −63.14%
180 65 14 41.92 7546 30.60 −85.87% 21.72 −64.94%

Strategic Dispatching (SD)

300 35 8 24.76 7428 41.08 −81.33% 32.20 −48.84%
280 35 11 26.26 7353 39.35 −82.30% 30.46 −52.09%
270 35 14 28.46 7684 37.34 −82.44% 28.46 −53.22%
240 50 8 29.31 7034 37.36 −83.92% 28.47 −57.16%
230 50 11 33.70 7751 34.23 −83.76% 25.34 −57.99%
230 50 14 30.28 6964 36.49 −84.45% 27.60 −58.89%
180 65 8 40.90 7362 31.07 −86.00% 22.18 −65.07%
180 65 11 41.70 7506 30.72 −85.89% 21.83 −64.95%
180 65 14 39.74 7153 31.50 −88.21% 22.67 −65.31%

Fast Charging (FD)

150 35 8 46.3 6945 29.11 −87.63% 20.22 −69.96%
110 35 11 66.98 7368 24.25 −89.07% 15.36 −75.79%
90 35 14 86.11 7750 21.81 −89.66% 12.92 −78.58%

140 50 8 52.7 7378 27.98 −87.37% 19.10 −69.86%
110 50 11 69.2 7612 24.46 −88.61% 15.56 −74.67%
90 50 14 83.95 7556 22.51 −89.59% 13.63 −77.97%

150 65 8 46.13 6920 30.96 −86.89% 22.07 −67.34%
110 65 11 67.38 7412 25.36 −88.50% 16.47 −73.89%
90 65 14 82.52 7427 23.15 −89.48% 14.27 −77.33%

Finally, considering the impact of the different charging operational strategies, it is
concluded that the reductions in the CC, NC, and SD scenarios are similar, while the FC
scenario exhibits the most substantial reductions. Consequently, despite the necessity for
twice as many batteries per vehicle in the FC scenario, the resultant reduction in fleet size
contributes to reducing the environmental impact.

In conclusion, while shared lightweight autonomous systems require more vehicles
than current car-based systems, this study underscores their potential to effectively and
significantly mitigate environmental impacts. Moreover, the results highlight a high depen-
dency of the environmental impacts on the configuration metrics. This indicates that fleet
design and operation-related decisions can have a determinant effect. Therefore, decision-
making processes and regulations can play a significant role in defining the environmental
outcomes of lightweight autonomous vehicles for food deliveries.

5. Interactive Simulation Tool

With the goal of making the results of this study more accessible, we developed
an interactive version of the simulation model. This tool provides stakeholders with a
firsthand exploration of the model’s outcomes. The model is dynamically linked to the
ABM and environmental impact study outlined in Section 2, enabling users to interact with
the design variables discussed in Section 3 and receive real-time feedback.
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Inspired by projects like the CityScope, we have developed a tangible tool that allows
for collaborative manipulation by different users [26]. The configuration comprises two
main components: (1) a television monitor showcasing various performance indicators
(Figure 9), and (2) a dynamic map display projected onto a horizontal surface (Figure 10).

Figure 9. Information on the scenario (1—red), environmental impacts (2—green), service level
(3—blue), and fleet performance (4—yellow) display that the users analyze to generate insights.

Figure 10. Interactive board (1—red), legend (2—green), road network (3—blue), and agents
(4—yellow) displays that the user needs to analyze to generate insights.

Users engage with the model through a custom-made interactive board (Figure 10(1)).
This board allows users to select the simulation scenarios and define their lightweight au-
tonomous vehicle fleet system, customizing vehicle configurations and charging strategies,
as depicted in Figure 11.

The indicators’ display, illustrated in Figure 9, offers insights into environmental
impacts, service levels, and fleet performance. It begins with an informative category show-
casing the project’s title and visualized scenarios. Environmental impacts are presented
through a dynamic bar chart depicting CO2 emissions per vehicle kilometer, updating in
real-time according to user interactions. Service level indicators are comprised of an average
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wait time chart for food delivery orders and a counter for unfulfilled orders. Additionally,
real-time vehicle activities are showcased, representing the tasks (idle, pick up/delivery,
charging) that different vehicles are performing and how they evolve over time. While cost
considerations have not been included in the current version of the tool, we plan to include
them in future versions.

Figure 11. Schema depicting the different scenarios and parameters users can explore in the interactive
simulation tool.

Lastly, the dynamic map display in Figure 10 provides a detailed visual overview of
the study area’s map, agents’ movements on roads, and relevant simulation activities. This
display incorporates: a city road network map, moving agents with real-time activities
represented using distinct colors and shapes, and an accompanying legend.

As mobility systems grow in complexity, so does decision-making. This interactive
and adaptable method fosters consensus in complex, multi-stakeholder scenarios. By
facilitating meaningful discussions, it could help stakeholders grasp trade-offs and per-
spectives, ultimately informing better decisions in mobility system design, development,
and deployment. We have performed preliminary evaluations of the effectiveness of this
tool with diverse stakeholders. However, we anticipate conducting more comprehensive
testing in the future to evaluate its usefulness in real decision-making processes.

6. Conclusions

This study focuses on the mobility innovations that have been catalyzed by the surge
in online food deliveries in recent years. As researchers and delivery companies explore
lightweight autonomous vehicles to serve food deliveries, this research focuses on the
fleet-level performance and environmental implications of these new vehicles. We assess
the impact of diverse autonomous vehicle configurations and charging strategies in fleet-
level performance through an agent-based model, and we evaluate the corresponding
environmental implications through a life cycle assessment.

The findings of our analysis reveal that driving speed and battery range influence
fleet size, with faster speeds and extended ranges leading to reduced fleet requirements.
Charging strategies exhibit diverse impacts on fleet size, with fast charging proving to be
the most efficient in reducing fleet sizes and environmental impacts. Overall, the potential
for substantial environmental mitigation is significant despite the larger fleet sizes required
for autonomous systems compared to current car-based services. These conclusions pose
an important step in evaluating the viability of lightweight autonomous vehicles as a
transformative alternative to conventional food delivery practices.

Lastly, the interactive decision-making tool developed offers stakeholders a user-
friendly platform to extract valuable insights and facilitate informed discussions, support-
ing decision-making within this evolving landscape.
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Appendix A

Figure A1. Complete diagram of the synthetic database generation process for obtaining the fine-
grained food delivery demand dataset.

https://github.com/CityScope/FoodDeliveries/
https://github.com/CityScope/FoodDeliveries/
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Table A1. Land use tag association to each of the Replica trips based on their origin building land
use information.

Land Use Origin Building Land Use

Residential
Residential
Mixed-use—Residential
Mixed-use—Retail—Previous activity = Home or Work from home

Industrial Industrial
Mixed-use—Industrial

Office Mixed-use—Office
Commercial—Office

Shop Mixed-use—Retail—Previous activity = Shop
Commercial—Retail—Previous activity = Shop

Hotel Commercial—Retail—Previous activity = Lodging

Restaurants Mixed-use—Retail—Previous activity = Eat, Social or Other Activity
Commercial—Retail—Previous activity = Eat, Social or Other Activity

Work Mixed-use—Retail—Previous activity = Work or Maintenance
Commercial—Retail—Previous activity = Work or Maintenance

Non-Retail Attractions Mixed-use—Non-retail attraction
Commercial—Non-retail attraction

Park

Open space
Mixed-use—Open Space
Mixed-use—Retail—Previous activity = Recreation
Commercial—Retail—Previous activity = Recreation

Transportation Utilities Transportation utilities
Mixed-use—Transportation utilities

Civic Institutional Civic institutional—Civic institutional
Mixed-use—Civic institutional

Education

Civic-institutional—Education
Mixed-use—Education
Mixed-use—Retail—Previous Activity = School
Commercial—Retail—Previous Activity = School

Healthcare Civic-institutional—Healthcare
Mixed-use—Healthcare

Figure A2. Number of SLAVs carrying out different activities throughout the day in the conventional
charging (CC) sub-scenario.
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Figure A3. Number of SLAVs carrying out different activities throughout the day in the night
charging (NC) sub-scenario.

Table A2. Land use tag association to each of the SafeGraph and Open Street Map points of interest
(Part 1/3).

Land Use Origin Building Land Use

Residential

Open Street Map:
- Residential.
- Mixed-use residential.
- Assisted living/boarding house.
- Education residential.

Industrial

SafeGraph:
- Gambling Industries.
- Coating, engraving, heat treating, and allied activities.
- Machinery, equipment, and supplies merchant wholesalers.
- Motion picture and video industries.
- Converted paper product manufacturing.
- Glass and glass product manufacturing.
- Electric power generation, transmission, and distribution.
- Beverage manufacturing.
- Sound recording industries.
- Bakeries and tortilla manufacturing.
- Other amusement and recreation industries.
- Other miscellaneous manufacturing.

Office

SafeGraph:
- Offices of real estate agents and brokers.
- Management of companies and enterprises.
- Agencies, brokerages, and other insurance-related activities.
- Electronic and precision equipment repair and maintenance.
- Architectural, engineering, and related services.
- Personal and household goods repair and maintenance.
- Other professional, scientific, and technical assistance.
- Building equipment contractors.
- Automobile dealers.
- Activities related to real estate.
- Other financial investment activities.
- Travel arrangement and reservation services.
- Radio and television broadcasting.
- Automotive equipment rental and leasing.
- Management, scientific, and technical consulting services.
- Building materials and supplies dealers.
- Consumer goods rental.
- Building finishing contractors.
- Couriers and express delivery services.
- Cable and other subscription programming.
- Advertising, public relations, and related services.
- Administration of human resource programs.
- Other specialty trade contractors.
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Figure A4. Number of SLAVs carrying out different activities throughout the day in the strategic
dispatching (SD) sub-scenario.

Figure A5. Number of SLAVs carrying out different activities throughout the day in the fast charging
(FC) sub-scenario.

Table A3. Land use tag association to each of the SafeGraph and Open Street Map points of interest
(Part 2/3).

Shop

SafeGraph:
- Jewelry, luggage, and leather goods stores.
- Clothing stores.
- Office supplies, stationery, and gift stores.
- Furniture stores.
- Beer, wine, and liquor stores.
- Grocery stores.
- Specialty food store.
- Shoe stores.
- Florists.
- Health and personal care stores.
- Printing and related support activities.
- Home furnishing stores.
- Electronics and appliance stores.
- Department stores.
- Used merchandise stores.
- Drugs and druggists’ sundries merchant wholesalers.
- General merchandise stores, including warehouse clubs and supercenters.
- Lawn and garden equipment and supplies stores.
- Other motor vehicle dealers.
- Book stores and new dealers.
- Other miscellaneous store retailers.

Hotel SafeGraph:
- Traveler accommodation.

Restaurants

SafeGraph:
- Restaurants and other eating places.
- Drinking places (alcoholic beverages).
- Special food services.

Work SafeGraph: All the shops, hotels, and restaurants
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Table A3. Cont.

Non-Retail
Attractions

SafeGraph:
- Sporting goods, hobbies, and musical instrument stores.
- Museums, historical sites, and similar instructions.
- Amusement parks and arcades.
- Performing arts companies.
- Promoters of performing arts, sports, and similar events.
- Religious organizations.

Park
Open Street Map:
- Public open space.
- Private own open space.

Table A4. Land use tag association to each of the SafeGraph and Open Street Map points of interest
(Part 3/3).

Transportation Utilities

Open Street Map:
- Bicycle parking.
- Bicycle repair station.
- Bicycle rental.
- Boat rental.
- Boat sharing.
- Bus station.
- Car rental.
- Car sharing.
- Car wash.
- Vehicle inspection.
- Charging station.
- Ferry terminal.
- Fuel.
- Grit bin.
- Motorcycle parking.
- Parking.
- Parking entrance.
- Parking space.
- Taxi.

Civic Institutional

Open Street Map:
- Courthouse.
- Embassy.
- Fire station.
- Police.
- Post box.
- Post depot.
- Post office.
- Prison.
- Ranger station.
- Townhall.

Education

SafeGraph:
- Colleges, universities, and professional schools.
- Technical trade and trade schools.
- Administration of economic programs.
- Elementary and secondary schools.
- Child day care services.
- Other schools and instruction.

Healthcare

SafeGraph:
- Offices of physicians.
- Offices of dentists.
- Offices of other health practitioners.
- Outpatient care centers.
- Nursing care facilities (skilled nursing facilities).
- Nursing and residential care facilities.
- Medical and diagnostic laboratories.
- General medical and surgical hospitals.
- Specialty (except psychiatric and substance abuse) hospitals.
- Insurance carriers.
- Personal care services.
- Individual and family services.
- Death care services.
- Other personal services.
- Home health care services.
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