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ABSTRACT
The security and usability of cryptocurrencies and other blockchain-

based applications depend on the securemanagement of cryptographic

keys. However, current approaches for managing these keys often

rely on third parties, trusted to be available at a minimum, and

even serve as custodians in some solutions, creating single points

of failure and limiting the ability of users to fully control their

own assets. In this work we first revisit the problem of threshold

ECDSA by considering the commonly admissible ‘server-aided’

model, namely, the presence of a semi-honest and non-colluding

service provider. Then, we leverage that model and consider cases

where that ‘server’ is distributed, introducing the novel concept of

unstoppable wallets; hence eliminating any single point of failure.

Unstoppable wallets are programmable threshold ECDSA wallets

that allow users to co-sign transactions with a confidential smart

contract, rather than a singular third-party. We construct highly

efficient threshold ECDSAprotocols that form the basis of unstoppable

wallets and prove their security in the server-aidedmodel, achieving

the standard notion of fairness and robustness even in case of a

dishonest majority among the signers. Our protocols minimize the

write-complexity for threshold ECDSA key-generation and signing,

while reducing communication and computation overhead.

We provide a proof-of-concept implementation of these protocols,

written in a smart contract language, deployed on the Secret Network

- a blockchain that plays the role of the server. Using that deployment,

we showcase the protocols’ applicability for two interesting applications,

policy checking and wallet exchange, as well as their efficiency by

demonstrating low gas costs and fees.

CCS CONCEPTS
• Security andprivacy→Distributed systems security;Usability
in security and privacy; Digital signatures.
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Threshold ECDSA, Cryptocurrency Custody, Server-aided MPC,
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1 INTRODUCTION
Threshold ECDSA (Elliptic Curve Digital Signature Algorithm) is

a cryptographic technique that enables multiple parties to jointly

sign a message using a shared secret key. It has gained increasing

importance in the custody of cryptocurrencies and Web3 due to its

ability to improve security and control over private keymanagement.

By enabling multiple parties to jointly control a single private

key, threshold ECDSA allows for the creation of multisignature

(multisig) accounts that requiremultiple approvals before a transaction

can be signed. This enhances security by reducing the risk of funds

being stolen or lost due to a single point of failure. Additionally,

threshold ECDSA enables the creation of flexible and customizable

access policies.

Current deployments of threshold ECDSA (e.g., Fireblocks, Coinbase

Wallet, BitGo, Zengo and others) rely on a third party service

provider for availability and are often limited by closed-sourced

vendors [41]. In practice, relying on a service provider for availability

has proven itself inadequate, and in certain cases even disastrous,

leading to significant loss of funds (e.g., FTX
1
and Prime Trust[56]

incidents, to name a few). Furthermore, even beyond availability,

trusting a service providerwith correctness is difficult, as for example,

a compromised service provider may ignore a client’s policy and

convince the client to sign an unintended transaction (e.g., by

changing the user interface). Such attacks are not theoretical, see

MyEtherWallet for example [14].

In this paper, we introduce unstoppable wallets as a novel concept

that addresses the limitations of current threshold ECDSA systems.

An unstoppable wallet is a threshold ECDSA wallet where the

counterparty co-signing transactions with the user (or a set of

users) is not a singular third-party, but rather a blockchain itself ,

which naturally provides strong availability and correctness. This

enables the creation of programmable wallets that are controlled

directly by a smart contract, such as those being explored through

the concept of account abstraction [62]. Unstoppable wallets push

this idea further, as they can operate cross-chain and are not limited

to Ethereum or EVM chains only.

Since generally speaking, blockchains cannot keep a private state,

we require the use of blockchains that support confidential smart

contracts, which are gaining popularity and are being explored in

both research and practice. Confidential smart contracts can be

1
https://en.wikipedia.org/wiki/FTX
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constructed by different underlying techniques and assumptions,

such as Trusted Execution Environments (TEEs) [13, 22, 32, 45],

Secure Multiparty Computation (MPC) [12, 16, 29, 42, 69], or

Homomorphic Encryption (HE) [57, 58]. Similar to how smart

contracts eliminate the need for excessive trust in intermediaries,

enabling novel applications like Decentralized Finance, unstoppable

wallets further enable new use-cases that require similar levels of

trust. To illustrate this, consider a decentralized lending protocol

such as Compound
2
. In Compound, the smart contract acts as a

trusted escrow between lenders and borrowers. In contrast, many

centralized service providers offering the same functionality have

recently failed, leading to billions in customer funds lost. Similarly,

with unstoppable wallets, one can securely implement use-cases

such as a wallet exchange, which allows users to atomically trade

wallets. With an unstoppable wallet construct, an underlying smart

contract atomically escrows and facilitates the process (just like

lending in DeFi). Identifying a wallet as an asset on its own rather

than a vehicle to store assets hasmany advantages. For example, one

may transfer all its token portfolio in one transaction, even if part of

it is staked, locked or lent; in addition, wallets can accrue reputation

according to their activities, which may increase/decrease their

value. In some sense, one may see a wallet as a non-fungible token

(NFT).

1.1 Practical Model for Cryptographic Protocols
Cryptographic protocols in the server-aided model are common

in the literature and real-world deployments, for both generic

and application specific functionalities (see [40, 51] and references

within). In this section we take this model further and argue that

replacing the server with a blockchain serves as a better real-

world realization of that model, in particular when availability

is necessary.

Designers of cryptographic protocols have been increasingly

relying on blockchains as their broadcast channel infrastructure

[24, 38, 39, 50], as they may assist in achieving desired properties

(e.g., [39]), and work around known impossibility results (e.g., [24]).

Such a transition has prompted researchers to explore other benefits

that can be derived from blockchains.

At their core, blockchains provide such benefits due to the strong

availability and correctness properties that they provide. One might

alsowish for a blockchain that entirely handles sensitive information,

such as cryptographic keys, and is able to confidentially perform

operations (like sign and decrypt) using the keys. Confidential smart

contracts-enabled blockchains aim to offer exactly that, by relying

on an underlying MPC protocol or TEEs. Whichever assumption is

used, it is important to note that while active faults in cryptographic

multiparty protocols can be publicly detected and attributed, privacy

breaches (in general) are not. Consider, for instance, a publicly

auditable MPC protocol (in short, a protocol in which everyone can

determine if a party faithfully follows the protocol steps or not).

In case an attacker corrupts a sufficient number of parties it can

"silently" break privacy; however, even such an attacker is not able

to break the correctness of the protocol. .

While we can rely on blockchains for correctness and availability,

when it comes to privacy, and especially as it relates to storing

signature keys, the above suggests that it is better to split the

2
https://compound.finance/

trust between the users themselves (who owns the signature keys)

and the blockchain, even if the latter employs its own underlying

privacy-preserving techniques. In our case of threshold signatures,

we rely on the blockchain to store a partial secret, which is only a

share of the actual underlying signing key. By doing so, breaking

the blockchain security layer only reveals that share of the secret,

and not the full key.

Equipped with this intuition, we present a Threshold ECDSA

protocol for 𝑛 parties, out of which at most 𝑡 < 𝑛 are malicious

and colluding, to generate an ECDSA key-pair and sign messages,

with the aid of a blockchain as described above. We assume the

blockchain supports confidential smart contracts, meaning that

it uses privacy-preserving techniques to protect a contract state

from outside actors. To keep the model as general as possible, we

do not prescribe which technique the blockchain uses to achieve

confidentiality. Instead, we capture the properties described above

by modeling the blockchain as an additional semi-honest and non-

colluding party, referred to as 𝑃𝑐 . Such a party can easily play the

role of a broadcast channel (by simply relaying a message to all

other parties) and hold and operate on secrets.

Another benefit of this model, is that parties do not necessarily

need to know each other in advance, or set up complex ad-hoc

communication networks with point-to-point channels across each

set of parties, or an underspecified broadcast channel, as is common

with MPC protocols. Moreover, parties can come and go as they

please, even mid-execution of a protocol, since all coordination

is done on-chain, which is guaranteed to be robust. Finally, our

protocols support detection of cheating parties, which can be immediately

translated to a monetary punishment on-chain.

Lifting all communication on-chain is advantageous at a high

level because it simplifies protocol implementation in practice, as

each node only reads and writes to a single endpoint, regardless of

the number of counterparties. Specifically, by relying on a blockchain,

one does not need to take care of network synchronization, and

‘proofs of silence’ (i.e., a proof that a participant did not send a

message) are taken for granted
3
. There are several other benefits to

this, such as pseudonimity, higher degree of censorship-resistance,

public accountability (e.g., in the context of DAO multi-sigs), etc.

Finally, recall that in some settings, and in the dishonest majority

setting that we address in particular, implementation of a broadcast

channel is impossible. Thus, this blockchain assistedmodel implicitly

outsources the broadcast channel operation to an external entity.

In this new communication model every message, either peer-to-

peer or broadcast, is translated to a blockchain transaction, which

is inherently a broadcast message. On one hand, broadcasting on

chain may entail significantly larger latency than a plain broadcast

that is implemented among the parties. On the other hand, all

messages are available to the participants whenever they are ready

to consume them. This enables an easy recovery and auditability

by participants that experienced a temporary offline period.

This necessitates the reassessment of the concept of rounds –

a crucial performance metric used to evaluate protocols in the

3
This should not be interpreted as everything being perfect when using a blockchain;

rather, we argue that using a blockchain obscures these problems away from the

developer. Indeed, a block lacking a message from a user does not necessarily mean

the user did not send that message; for example, the recent blockchain block’s

validator/miner may have censored that message.
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standard MPC model (without the aid of blockchains). The number

of rounds informallymeasures the longest sequence of interdependent

messages sent between parties. In this modified model, each round

consists of one or more parties writing to the blockchain, followed

by all parties reading from it. Although one might assume that

this would typically involve decomposing each round into two

separate rounds, we must recognize that writing to a blockchain is

significantly more costly than reading, as it necessitates consensus

and updating a replicated state.

As a result, our primary objective in this model is to minimize

the total number of messages, with a specific focus on reducing the

number of sequential writes, simply referred to as ’writes’ hereafter.

While in previous works on threshold ECDSA the number of writes

is equivalent to the number of rounds, this does not hold for the

protocols presented in this work, highlighting the importance of

identifying a common performance metric.

Figure 1 illustrates themodel we described. All parties are connected

via a slow write channel to the blockchain party 𝑃𝑐 , which also acts

as a public bulletin board they can read from (specifically, we assume

𝑃𝑐 has a public state anyone can read from). Finally, being one of

the computing parties, 𝑃𝑐 also maintains its own private state.

Figure 1: Communication Model Illustrated

1.2 Our contributions
In this paper, we make the following main contributions:

• We revisit the problem of threshold ECDSA by considering a

real-world ‘server-aided’ model, and construct new protocols

for threshold ECDSA in that model. Defining messages to the

server as ‘write’ and messages from the server as ‘read’, our

protocols enjoy the minimal number of ‘writes’, compared to

previous works (see Table 1). In particular, our robust threshold

ECDSA incurs only a single write message from the parties, and

another one from the signature initiator, compared to previous

protocols that incur at least four writes. We also greatly reduce

communication and computation, by avoiding the use of expensive

cryptographic primitives such as Paillier encryption and costly

zero knowledge proofs over Paillier ciphertexts. We provide a

full proof of security of our protocols in the server-aided model,

treating the server as a semi-honest non-colluding party, and

show that the protocols offer both fairness and robustness. That is,

we achieve robustness in the sense that if 𝑡 +1 parties agree to sign
on a message (and hence participate in the protocol faithfully),

then they will obtain the signed message.

• We implement these protocols as smart contracts and deploy

them on a functioning blockchainwith confidential smart contract

capabilities. By doing this, we introduce the concept of unstoppable

wallets - programmable threshold ECDSA wallets where the

counterparty co-signing transactions with the user (or a set of

users) is not a singular third-party we need to rely on, but rather

a confidential smart contract.

• We ran benchmarks of our protocols, ranging from𝑛 = 2 to𝑛 = 15

signers, and prove their real world applicability by reporting on

their respective gas costs and fees. To show case the importance of

wallet programmabilitywe develop two applications: amultisignature

wallet with policy checks and a wallet exchange.

1.3 Related Work
Our work builds upon the existing body of research on concretely

efficient threshold ECDSA protocols in the dishonest majority

setting. Previous works in this setting can be grouped into several

categories:

• Protocols using Paillier’s Homomorphic Encryption (HE) with

a small number of rounds but high computational cost [11, 18,

34, 35, 48]. These also require expensive zero-knowledge proofs

over Paillier ciphertexts. Optimized variants for the two-party

variants also exist (e.g., [47, 65]).

• Replacing HE with class group-based schemes as in [19–21],

which improves the efficiency of zero-knowledge proofs but not

the number of rounds, while introducing different assumptions

on class groups of imaginary quadratic fields.

• Oblivious transfer (OT)-based protocols [30, 31], that reduce

cryptographic assumptions and computational overhead but

increases round complexity.

• Protocols that are based on generic MPC; in particular in such

protocols multiplication triplets are pre-processed [1, 26]. These

protocols typically increase the overall number of rounds (and

hence, the number of writes) and in some cases introduce newer

assumptions such as Learning Parity with Noise (LPN) [1].

In contrast to prior work, our protocols are designed to be

chain-friendly, by reducing the number of writes without resorting

to heavyweight cryptographic tools like HE and expensive ZKP

that are likely too inefficient to run in a constraint blockchain

environment.

Our protocol also achieves two often overlooked properties for

threshold ECDSA: fairness and robustness. The current state-of-the-

art honest majority threshold ECDSA protocol by Damgard et al.,

[27] achieves fairness in six writes, as opposed to 1-2 writes in our

work, and by well-known impossibility results, dishonest majority

protocols (without blockchain assistance) cannot hope to achieve

fairness at all [24, 25].

As to robustness, since the original work of Gennaro et al., on

threshold (EC)DSA for a super-honest majority (𝑛 ≥ 4𝑡 + 1) more

than two decades ago [36], most known efficient protocols in the

dishonest majority setting (e.g., [18, 34, 35, 48]) sacrifice robustness
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for additional efficiency gains. These protocols move from threshold

to additive secret sharing as soon as pre-signing starts, leaving no

room to handle faults mid-execution. Recently, attempts to partially

address robustness have been proposed. Gagol et al. [33] suggested

a robust scheme which requires all parties to participate honestly

in the pre-signature phase, while others proposed schemes with

identifiable aborts instead (e.g., [18] [21]). In a concurrent and

independent work, Wong et al., [63] achieve a stronger notion of

robustness they call ’self-healing robustness’, where as long as

the signers in the online-phase are a subset of the signers in the

pre-signature phase, their scheme is either robust (for an honest

majority) or gracefully falls back to identifiable aborts otherwise.

In contrast, in this work we achieve the standard plain notion of

robustness, where signers in pre-signing and signing can be disjoint.

For a comprehensive comparison of our work with the existing

literature, please refer to Table 1. Note that we also describe a

scenario unique to our work, where there is a single signing party

involved (i.e., 𝑛 = 1). This is an interesting scenario, as it allows

a single user to increase their wallet security by having 𝑃𝑐 as a

co-signer. Similarly, some use cases, like wallet exchange, may

make more sense under this setting. However, for this scenario, we

describe a modified version of [47] and show that while it is less

efficient than our main protocol, it can still run on-chain.

Other works address generic MPC with fairness and public

verifiability via bulletin boards (that can be implemented with

blockchains). Bentov et. al, Kumerasen et. al, and Baum et. al

[5, 9, 43, 44] achieve a revised form called ‘fairness with penalties’

using gradual release mechanisms and deposits using a blockchain.

Choudhuri et al. [24] showed how to use blockchains to achieve the

standard notion of fairness (without penalties), by leveraging either

witness encryption, which is too expensive in practice, or off-chain

TEEs. Baum et al. and Rivinius et al. show how to achieve public

verifiablity and robustness using a public bulletin board [4, 6, 53].

Similarly, a long line of works of MPC-as-a-service systems inspired

by blockchains have emerged in recent years [7, 23, 28, 37–39, 49,

50, 61, 68, 69]. While they address how a blockchain can help with

the general MPC problem (or how MPC can add confidentiality

to blockchains), our work, as far as we know, showcases the first

threshold ECDSA protocol that effectively provides both fairness

and robustness, by relying on an external blockchain.

Finally, in contrast to all prior works solving threshold ECDSA,

we are the first to consider a model for MPC protocols that leverage

a special non-colluding semi-honest party. We show how such

a model greatly increases efficiency, simplifies protocol design,

and achieves properties of interest – in our scenario, fairness and

robustness. We further show how this model is realized in practice

through the use of a confidential smart contracts, which have

garnered significant interest in recent years [2, 3, 8, 12, 13, 16, 22,

29, 32, 42, 45, 46, 57–59, 64, 66, 67, 69].

2 PRELIMINARIES
We use 𝜅 as a computational security parameter. For 𝑥,𝑦 ∈ {0, 1}∗
the expression 𝑥 | |𝑦 is the concatenation of 𝑥 and 𝑦. Uniformly

sampling a random value 𝑥 from a set 𝑋 is denoted by 𝑥 ← 𝑋 . The

result of a probabilistic algorithm 𝐴 on inputs 𝑥1, 𝑥2, . . . is written

by 𝑥 ← 𝐴(𝑥1, 𝑥2, . . .); or 𝑥 = 𝐴(𝑥1, 𝑥2, . . . ; 𝑟 ) for randomness 𝑟 . by

Protocol Parties Writes Messages Primitives Properties

LN18 [48] n 8 𝑂 (𝑛2 ) Paillier

CGGMP20 [18] n 4 𝑂 (𝑛2 ) Paillier IA

DKLS19 [31] n log(t) + 6 𝑂 (𝑛2 ) OT

BMP22 [10] n 4 𝑂 (𝑛) Paillier

CCLST20 [20] n 8 𝑂 (𝑛2 ) CL-HE

CGCL+23 [21] n 7 𝑂 (𝑛2 ) CL-HE IA,

Fairness

(Honest

Majority)

WMYC23 [63] n 5 𝑂 (𝑛2 ) Paillier Self-

healing

Lindell17 [47] 2 2 𝑂 (1) Paillier

XAXYC21 [65] 2 3 𝑂 (1) HE/OT

CCLST19 [19] 2 3 𝑂 (1) CL-HE

DKLS18 [30] 2 7 𝑂 (1) OT

This work n 1-2 𝑂 (𝑛) Group Fairness

This work n 1-2 𝑂 (𝑛2 ) Group Robustness

This work 1 1 𝑂 (1) Paillier

Table 1: Comparison with related work. For protocols that
support pre-signing – the number of writes consists of both
pre-sign and sign phase, ignoring amortization.

(G,𝐺, 𝑞) we denote the ECDSA elliptic curve group, its generator

and its order, respectively. For an element in the group 𝐻 ∈ G, we
write 𝐻.𝑥 to denote its 𝑥-coordinate.

2.1 The ECDSA Scheme and Functionality
The ECDSA scheme is defined by the following algorithms (the

group G,𝐺, 𝑞 is an implicit parameter in the algorithms):

• Gen(). Choose 𝑥 ← Z∗𝑞 and compute 𝑋 = 𝑥 ·𝐺 . Output 𝑥 as the

signing key and 𝑋 as the verification key.

• Sign(𝑥,𝑀). For a message 𝑀 ∈ {0, 1}∗, choose 𝑘 ← Z∗𝑞 and

compute 𝑟 = (𝑘 · 𝐺) .𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝑚 + 𝑟𝑥) mod 𝑞,

where 𝑚 = 𝐻𝑞 (𝑀) and 𝐻𝑞 : {0, 1}∗ → Z𝑞 is modeled as a

random oracle. Output the signature (𝑟, 𝑠).
• Verify(𝑋,𝑀, (𝑟, 𝑠)). For a message 𝑀 ∈ {0, 1}∗, compute 𝑚 =

𝐻𝑞 (𝑀) and output 1 iff (𝑚𝑠−1 · 𝐺 + 𝑟𝑠−1 · 𝑋 ) .𝑥 mod 𝑞 = 𝑟 ,

otherwise output 0.

Indeed, if (𝑟, 𝑠) is computed correctly on𝑀 , then𝑚𝑠−1 ·𝐺+𝑟𝑠−1 ·𝑋 =

𝑚𝑠−1·𝐺+𝑟𝑥𝑠−1·𝐺 = (𝑚+𝑟𝑥)𝑠−1·𝐺 = (𝑚+𝑟𝑥)
(
𝑘−1 (𝑚 + 𝑟𝑥)

)−1·𝐺 =

(𝑚 + 𝑟𝑥)𝑘 (𝑚 + 𝑟𝑥)−1 · 𝐺 = 𝑘 ·𝐺 = 𝑅 and so, projection to the 𝑥

coordinate results with 𝑅.𝑥 = 𝑟 .

The ECDSA functionality (Functionality 1) supports two interfaces,

the key-generation interface is called once, followed by many, calls

to the sign interface. We note that our robust protocol implements a

slightly different functionality, in which the gray text is omitted, in

that functionality the adversary does not get to decide on whether

to forward outputs to the parties or not.

2.2 Shamir Sharing and Lagrange Interpolation
Secret sharing enables a dealer to split a secret 𝑥 into 𝑛 pieces or

shares, such that only a sufficiently large subset of shares can be

used to recover the secret. Shamir 𝑡-out-of-𝑛 secret sharing over the

field F (where 𝑡 < 𝑛 ∈ N) is defined by a tuple of algorithms SSF =
(Share,Reconstruct), where [𝑥] = ( [𝑥]1, . . . , [𝑥]𝑛) = Share𝑡,𝑛 (𝑥 ; 𝑟 )
denotes a sharing of 𝑥 , and 𝑥 = Reconstruct( [𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 )
denotes the reconstruction using 𝑡 + 1 shares, which may result

with ⊥ if the shares are inconsistent.
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FUNCTIONALITY 1.

(
The ECDSA Functionality: FECDSA

)
The functionality is parameterized with the ECDSA group

description (G,𝐺,𝑞) as well as a threshold parameter 𝑡 , with

1 ≤ 𝑡 < 𝑛. The functionality works with parties 𝑃1, . . . , 𝑃𝑛 , 𝑃𝑐 ,

and an adversary S as follows.

• Upon receiving (keygen) from all parties:

(1) Generate an ECDSA key-pair (𝑋, 𝑥 ) by choosing a random

𝑥 ← Z∗𝑞 and computing 𝑋 = 𝑥 ·𝐺 .

(2) Choose a hash function 𝐻𝑞 : {0, 1} → {0, 1} ⌊log𝑞⌋ .
(3) If received (keygen, abort) from S then output ⊥ and halt;

otherwise, if received (keygen, continue) then continue.

(4) Store (𝐻𝑞, 𝑥 ) , output 𝑋 to all parties, and ignore future calls

to keygen.

• Upon receiving (sign, sid, 𝑀 ) from 𝑃𝑐 and 𝑡 + 1 parties out of

{𝑃1, . . . , 𝑃𝑛 }, if keygenwas already called and sidwas not already
used:

(1) Choose a random 𝑘 ∈ Z∗𝑞 , compute 𝑅 ← 𝑘 ·𝐺 and let 𝑟 = 𝑅.𝑥

mod 𝑞; then send 𝑅 to all parties.

(2) Let𝑚 = 𝐻𝑞 (𝑀 ) . Compute 𝑠 ← 𝑘−1 (𝑚 + 𝑟𝑥 ) mod 𝑞.

(3) If received (sign, sid, abort) from S then output ⊥ and halt;

otherwise, if received (sign, sid, continue) then continue.

(4) Send (𝑟, 𝑠 ) to all parties.

2.3 Schoenmakers’s Publicly Verifiable Random
Sharing Scheme

Verifiable secret sharing (VSS) enables a receiver to (1) check in the

dealing phase that the share received from the dealer is consistent

with a fully determined secret, and (2) check in the reconstruction

phase that the shares published by other receivers are correct.

Publicly VSS (PVSS) enables a receiver to check consistency not

only of its own share, but also all receivers’ shares; furthermore, it

enables an external party to check that conditions (1) and (2) hold.

While information theoretic schemes for PVSS schemes have been

proposed [52], we use Schoenmakers’s scheme that is based on the

hardness of discrete logarithm, as it is the minimal assumption in

our context anyway. Specifically, we use the special PVSS version

in [54], in which the secret is random, which allows using a simpler

protocol.
4
Thus, in the following we assume that 𝑥 is uniformly

random from Z𝑞 .
Schoenmakers’s PVSS [54] over the group (G,𝐺, 𝑞) is

parameterized with the receivers’ encryption keys, namely, the 𝑖-th

receiver is associated with El-Gamal key-pair (ek𝑖 , dk𝑖 ). While the

scheme supports any encryption scheme, the El-Gamal scheme

leads to a very simple implementation and efficient proof. The

dealer invokes the zero-knowledge functionality (see definition in

Section C) with the relation

𝑅PVSS,𝑛,𝑡 =
{ (
{ek𝑖 , 𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }

𝑡
𝑗=0), ({𝑟𝑖 }

𝑛
𝑖=1, {𝑎 𝑗 }

𝑡
𝑗=0

)
s.t.

∀𝑛𝑖=1 : 𝑐𝑖 = EG.Enc ©«
𝑡∑︁
𝑗=0

𝑖 𝑗 · 𝑎 𝑗 , 𝑟𝑖
ª®¬ ∧ ∀𝑡𝑗=1 : 𝐴 𝑗 = 𝑎 𝑗 ·𝐺

}
.

That is, the claim is that 𝑐𝑖 is an encryption of 𝑃 (𝑖) = ∑𝑡
𝑗=0 𝑖

𝑗 · 𝑎 𝑗
under the 𝑖-th public key ek𝑖 , where 𝑃 ′𝑠 coefficients are

log𝐺 (𝐴0), . . . , log𝐺 (𝐴𝑡 ). Note that given 𝐴 𝑗 ’s anyone can compute

4
When the secret 𝑥 is random it is possible for the dealer to publish 𝑥 ·𝐺 , whereas in

case 𝑥 is not random the dealer has to publish a Pedersen commitment 𝑥 ·𝐺 + 𝑟 · 𝐻
where 𝐻 is another generator of G for which logG𝐻 is unknown.

𝑄𝑖 = 𝑃 (𝑖) ·𝐺 by

∑𝑡
𝑗=0 𝑖

𝑗 ·𝐴 𝑗 , thus, interpretting 𝑐𝑖 = (𝐶𝑖,1,𝐶𝑖,2), this
statement is reduced to the statement that (𝑄𝑖 , 𝑋,𝐶𝑖,2 · (𝐶𝑖,1)−1)
is a Diffie-Helman tuple, for every 𝑖 . Indeed, the discrete logs are

𝑥, 𝑃 (𝑖) and 𝑥 · 𝑃 (𝑖), respectively. There exists standard NIZK for

that statement.

Then, the Schoenmakers’s scheme is defined by the tuple of

algorithmsPVSS(G,𝐺,𝑞),{ek𝑖 }𝑖 = (Share,Reconstruct,CheckDealer,CheckShare):

• ({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }
𝑡
𝑗=0
, 𝜋) ← Share𝑡,𝑛 (𝑥). Set𝑎0 = 𝑥 and pick𝑎1, . . . , 𝑎𝑡 ∈

F and compute [𝑥] = {[𝑥]1, . . . , [𝑥]𝑛}, where [𝑥]𝑖 = 𝑃 (𝑖) and
𝑃 (𝑥) = ∑𝑗

𝑗=0
𝑎 𝑗 ·𝑥 𝑗 . Then, pick 𝑟𝑖 ← Z∗𝑞 , compute 𝑐𝑖 = EG.Encek𝑖 ( [𝑥]𝑖 , 𝑟𝑖 )

for every 𝑖 ∈ [1, 𝑛], and compute 𝐴 𝑗 = 𝑎 𝑗 ·𝐺 for every 𝑗 ∈ [0, 𝑡].
Then, send (prove, sid, {ek𝑖 , 𝑐𝑖 , 𝑟𝑖 }𝑖 , {𝐴 𝑗 , 𝑎 𝑗 }) to F 𝑅PVSSzk to obtain

𝜋 = (proof, sid, {ek𝑖 , 𝑐𝑖 }𝑖 , {𝐴 𝑗 }) and output ({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }
𝑡
𝑗=0
, 𝜋).

• 𝑥 = Reconstruct( [𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 ). Given 𝑡+1 shares [𝑥]𝑖1 , . . . , [𝑥]𝑖𝑡+1 ,
where 1 ≤ 𝑖1 < 𝑖2 < . . . < 𝑖𝑡+1 ≤ 𝑛, for whichCheckShare({𝐴 𝑗 }, [𝑥]𝑖𝑘 ) =
1 for all 𝑘 ∈ [1, 𝑡 + 1], interpolate a polynomial 𝑃 such that

𝑃 (𝑖𝑘 ) = [𝑥]𝑖𝑘 for all 𝑘 ∈ [1, 𝑡 + 1] and output 𝑥 = 𝑃 (0).
• 𝑏 ← CheckDealer({𝑐𝑖 }𝑛𝑖=1, {𝐴 𝑗 }

𝑡
𝑗=0
𝜋). Output 𝑏 = 1 iff 𝜋 =

(proof, sid, {ek𝑖 , 𝑐𝑖 }𝑖 , {𝐴 𝑗 }), and 𝑏 = 0 otherwise.

• 𝑏 ← CheckShare({𝐴 𝑗 }𝑡𝑗=0, [𝑥]𝑘 ). For 𝑘 ∈ Z
∗
𝑞 , output 𝑏 = 1 iff

[𝑥]𝑘 ·𝐺 =
∑𝑡
𝑗=0 𝑘

𝑗 · 𝐴 𝑗 , and 𝑏 = 0 otherwise.

The scheme is a secure publicly verifiable secret sharing if the DDH

problem is hard relative to (G,𝐺, 𝑞).

2.4 Confidential Smart Contracts
A blockchain is a decentralized, distributed ledger that records

transactions across a network of nodes, ensuring data integrity

and transparency. Smart contracts are a fundamental component

of many blockchain platforms, enabling users to automate the

execution of agreements and facilitate trustless interactions between

parties. These self-executing, deterministic
5
programs provide correctness

and availability by ensuring that the code executes exactly as

programmed without downtime, censorship, fraud, or third-party

interference. However, traditional smart contracts do not inherently

provide privacy, as their logic and data are visible to all network

participants.

To address this issue, privacy-preserving blockchains have been

developed , which enable executing confidential smart contracts.

This means that these blockchains inherently hide sensitive input

data fed into contracts, persistent state data, and depending on the

use case, hide the output as well, even from the nodes operating

the chain. Confidential smart contract-enabled blockchains may

employ different privacy-preserving techniques, such as secret-

sharing MPC (e.g., [69]), TEEs (e.g., [45]), or even HE ([57, 58]).

3 THRESHOLD ECDSA PROTOCOL
As explained in Section 1.3, current threshold ECDSA protocols

require the use of expensive primitives (like HE or OT) and require

at the very least four rounds of interactions, which in our model,

translate to four consecutive writes to the blockchain. That kind

of latency, and more importantly, the implied requirement from

5
In our context, we require the contract to be non-deterministic in order to sample

random values, a challenge we address in our implementation.
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each user to sign four transactions in a row in order to produce a

signature is too burdensome in practice.

In-line with our goals, we seek to construct a protocol that

would be chain-friendly, and would minimize the number of writes

each party has to perform. For all parties except one, we achieve

the optimal of a single write per-party, which can be done non-

interactively. A designated party (the signature initiator) needs

to write twice. . The blockchain is modeled as an additional semi-

honest and non-colluding party, denoted 𝑃𝑐 . This enables us to take

a different approach and leverage techniques from honest-majority

MPC, even though the adversary may corrupt the majority of the

parties 𝑃1, . . . , 𝑃𝑛 . We do this by assigning 𝑛 shares to the parties,

and 𝑡 additional shares are held by 𝑃𝑐 , for a total of 𝑁 = 𝑛+ 𝑡 shares.
Our protocol ensures that as long as there are 𝑡 + 1 honest signers
they will generate a valid signature; otherwise, no information is

revealed.

In that sense, our protocol resembles the one by Damgard et al.

[27], which is secure in the honest majority setting; however, we

make significant changes to their protocol, greatly improving the

number of writes and the communication costs. In particular, their

protocol requires six writes (or four writes without fairness, which

we obtain anyway), which is significantly more than ours.

For readability reasons, in the protocols below we write that 𝑃𝑖
sends 𝑃 𝑗 amessage although it is understood that 𝑃𝑖 only communicates

through 𝑃𝑐 . That is, 𝑃𝑖 sends a ciphertext to 𝑃𝑐 under 𝑃 𝑗 ’s encryption

key, and then 𝑃 𝑗 decrypts that message (implicitly implying PKI).

3.1 Key Generation
Our key generation protocol (Protocol 2) begins with a standard

joint random secret sharing generation protocol having two dealers:

𝑃1 and 𝑃𝑐 . Given that the blockchain is semi-honest and non-

colluding, we can avoid a more expensive coin-tossing protocol.

This is a recurring theme we use in all of our protocols. After

both 𝑃1 and 𝑃𝑐 deal their shares, each party computes their final

share of the secret key [𝑥]𝑖 and sends their share of the public key

(𝑋𝑖 := [𝑥]𝑖 ·𝐺) to 𝑃𝑐 . Finally, 𝑃𝑐 ensures that all shares of the public
key are consistent by interpolating in the exponent. If any of the

parties cheated, it aborts, otherwise it sends the generated public

key 𝑋 to all parties, which concludes the protocol successfully.

3.2 Signing Protocol
Similarly to key generation, the signature protocol (Protocol 3)

begins with a two-dealer random secret-sharing protocol between

𝑃1 and 𝑃𝑐 , who jointly generate all required randomness for a

single execution. These include 𝑡-sharings of fresh random values

𝑘, 𝑎, and 2𝑡-sharings of zero, denoted as 𝑧, 𝑧′. Intuitively, 𝑘 is the

usual ECDSA nonce produced for every signature, and the other

values are used internally to mask 2𝑡-shares that are the product of

two 𝑡-shares. For concrete efficiency, the protocol does not check

consistency of any of these values. In fact, it may even be that the

parties hold inconsistent sharings, or that 𝑅 ≠ [𝑘] ·𝐺 . In the proof

we show that the adversary cannot learn anything even if it cheats,

and so it can only cause an abort.

After the parties obtain these sharings and 𝑟 := 𝑅.𝑥 , they can

locally compute their share of 𝑠1, 𝑠2, such that [𝑠1]𝑖 := [𝑎]𝑖 (𝑚 +
𝑟 [𝑥]𝑖 ) − [𝑧]𝑖 mod 𝑞 and [𝑠2]𝑖 := [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖 mod 𝑞. Notice

PROTOCOL 2.

(
Key-Generation: KeyGen

)
(1) Users’ dealing:

(a) Party 𝑃1 samples a random 𝑥𝑢 ← Z𝑞 .
(b) Party 𝑃1 computes [𝑥𝑢 ] ← SS.Share𝑡,𝑁 (𝑥𝑢 ) .
(c) Party 𝑃1 sends [𝑥𝑢 ]𝑖 to 𝑃𝑖 for all 𝑖 ∈ [1, 𝑛] and [𝑥𝑢 ]𝑖 to 𝑃𝑐

for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(2) Center’s dealing:

(a) Party 𝑃𝑐 samples a random 𝑥𝑐 ← Z𝑞 .
(b) Party 𝑃𝑐 computes [𝑥𝑐 ] ← SS.Share𝑡,𝑁 (𝑥𝑐 ) , and sends

[𝑥𝑐 ]𝑖 to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛].
(3) Compute key share:

(a) For each 𝑗 ∈ 𝑛 + 1, ..., 𝑁 , 𝑃𝑐 computes [𝑥 ] 𝑗 = [𝑥𝑢 ] 𝑗 + [𝑥𝑐 ] 𝑗
mod 𝑞 and 𝑋 𝑗 ← [𝑥 ] 𝑗 ·𝐺 .

(b) Each party 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) computes [𝑥 ]𝑖 = [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖
mod 𝑞 and 𝑋𝑖 = [𝑥 ]𝑖 ·𝐺 .

(c) Each party 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends 𝑋𝑖 to 𝑃𝑐 .

(4) Public key:
(a) Let 𝑃 be the polynomial defined by the 𝑡 + 1 points

(𝑛, [𝑥 ]𝑛 ), (𝑛 + 1, [𝑥 ]𝑛+1 ) . . . , (𝑁, [𝑥 ]𝑁 ) , and let

𝜆
𝑗
𝑛, 𝜆

𝑗

𝑛+1, . . . , 𝜆
𝑗

𝑁
be the Lagrange coefficients s.t.

𝑃 ( 𝑗 ) = ∑𝑁
𝑘=𝑛

𝜆
𝑗

𝑘
· [𝑥 ]𝑘 .

(b) Party 𝑃𝑐 verifies that the keys are consistent: For every 𝑗 ∈
[1, 𝑛− 1] compute𝑋 ′

𝑗
= 𝑃 ( 𝑗 ) ·𝐺 =

∑𝑁
𝑘=𝑛

𝜆
𝑗

𝑘
·𝑋𝑘 , then, abort

if 𝑋 ′
𝑗
≠ 𝑋 𝑗 .

(c) Otherwise (if all key shares are consistent) 𝑃𝑐 broadcasts the

public key 𝑋 = 𝑃 (0) ·𝐺 =
∑𝑁

𝑘=𝑛
𝜆0
𝑘
· 𝑋𝑘 .

that each 𝑠1 and 𝑠2 has a multiplicative depth of one, meaning that

the resulting shares are lifted from a degree 𝑡 polynomial to a degree

2𝑡 one. Furthermore, as these shares may no longer be properly

random, each party also uses their share of 𝑧, 𝑧′ to rerandomize

their resulting shares.

Finally, each party sends ([𝑠1]𝑖 , [𝑠2]𝑖 ) to 𝑃𝑐 . After receiving 𝑡 + 1
shares, 𝑃𝑐 can itself generate additional 𝑡 shares of these values,

and having 2𝑡 + 1 total shares of each, reconstruct 𝑠1, 𝑠2 to obtain
the final 𝑠 := 𝑠1 · 𝑠−1

2
mod 𝑞. Finally, if (𝑟, 𝑠) is a valid signature,

𝑃𝑐 sends it to all parties.

It should be clear that the protocol takes only a single write (for

producing the signature) by each party. The only exception is the

dealer 𝑃1, who needs to write twice (and can be pre-processed).

Fairness. Our protocol provides fairness, since we make sure

that the first party to see a valid signature is 𝑃𝑐 , which we know

follows the protocol. Therefore, if 𝑃𝑐 releases the signature to others,

then we know it is indeed a valid signature. Another benefit of

our construction is that 𝑃𝑐 , a de-facto smart contract, can use

incentives (e.g., penalties) to encourage parties to behave correctly

and participate in the protocol [43, 44].

We prove the following theorem in Section A.1.

Theorem 3.1. Protocols 2-3 securely compute the ECDSA functionality

(Functionality 1) with perfect security with abort, against a static

malicious adversary who corrupts at most 𝑡 parties (which are the

majority) of {𝑃1, . . . , 𝑃𝑛} or a semi-honest adversary who corrupts

𝑃𝑐 .

Security follows since we can perfectly simulate the adversary’s

view by picking random values for its shares. One challenge is to

align all parties’ shares (those of the adversary as well as those of

the honest parties) with the values obtained in from the ECDSA

functionality (like the public key 𝑋 , the random nonce 𝑅 and the
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PROTOCOL 3.

(
Signing: Sign (𝑀, (G,𝐺,𝑞), sid)

)
Inputs.

(1) Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], holds ( [𝑥 ]𝑖 , 𝑋 ) .
(2) Party 𝑃𝑐 holds 𝑋 and [𝑥 ]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(3) The parties Compute𝑚 = 𝐻𝑞 (𝑀 ) and verify that sid has not

been used before (otherwise the protocol is not executed).

The protocol.
(1) Users’ dealing:

(a) Party 𝑃1 samples a random 𝑘𝑢 , 𝑎𝑢 ← Z𝑞 .
(b) Party 𝑃1 computes [𝑘𝑢 ] ← SS.Share𝑡,𝑁 (𝑘𝑢 ) and [𝑎𝑢 ] ←

SS.Share𝑡,𝑁 (𝑎𝑢 ) .
(c) Party 𝑃1 computes [𝑧𝑢 ] ← SS.Share2𝑡,𝑁 (0) and [𝑧′𝑢 ] ←

SS.Share2𝑡,𝑁 (0) .
(d) Party 𝑃1 sends ( [𝑘𝑢 ]𝑖 , [𝑎𝑢 ]𝑖 , [𝑧𝑢 ]𝑖 , [𝑧′𝑢 ]𝑖 ) to party 𝑃𝑖 where

𝑖 ∈ [1, 𝑛] and to 𝑃𝑐 where 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(e) Party 𝑃1 sends 𝑅𝑢 = 𝑘𝑢 ·𝐺 to 𝑃𝑐 .

(2) Center’s dealing:
(a) Party 𝑃𝑐 computes 𝑘𝑐 = H(𝑥𝑐 ∥sid) .
(b) Party 𝑃𝑐 samples a random 𝑎𝑐 ← Z𝑞 .
(c) Party 𝑃𝑐 computes [𝑘𝑐 ] ← SS.Share𝑡,𝑁 (𝑘𝑐 ) and [𝑎𝑐 ] ←

SS.Share𝑡,𝑁 (𝑎𝑐 ) .
(d) Party 𝑃𝑐 computes [𝑧𝑐 ] ← SS.Share2𝑡,𝑁 (0) and [𝑧′𝑐 ] ←

SS.Share2𝑡,𝑁 (0) .
(e) 𝑃𝑐 sends ( [𝑘𝑐 ]𝑖 , [𝑎𝑐 ]𝑖 , [𝑧𝑐 ]𝑖 , [𝑧′𝑐 ]𝑖 ) to party 𝑃𝑖 for 𝑖 ∈
[1, 𝑛].

(f) 𝑃𝑐 sends 𝑅 = 𝑘𝑐 ·𝐺 + 𝑅𝑢 to everyone.

(3) Partial signature.
(a) Every party 𝑃𝑖 for 𝑖 ∈ [1, 𝑛], and 𝑃𝑐 for 𝑖 ∈ [𝑛 + 1, 𝑁 ]:

(i) Computes [𝛼 ]𝑖 = [𝛼𝑢 ]𝑖 + [𝛼𝑐 ]𝑖 mod 𝑞, for 𝛼 ∈
{𝑘, 𝑎, 𝑧, 𝑧′ }.

(ii) Computes [𝑠1 ]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥 ]𝑖 ) − [𝑧 ]𝑖 mod 𝑞 and

[𝑠2 ]𝑖 = [𝑘 ]𝑖 [𝑎]𝑖 − [𝑧′ ]𝑖 mod 𝑞.

(b) 𝑃𝑖 for 𝑖 ∈ [1, 𝑛] sends (𝑚, [𝑠1 ]𝑖 , [𝑠2 ]𝑖 ) to 𝑃𝑐 .
(4) Finalization. Upon receiving 𝑡 + 1 messages,

{ (𝑚, [𝑠1 ]𝑖 𝑗 , [𝑠2 ]𝑖 𝑗 ) }𝑡+1𝑗=1
, party 𝑃𝑐 :

(a) Computes 𝑠1 = SS.Reconstruct({ [𝑠1 ]𝑖 𝑗 }𝑡+1𝑗=1
, { [𝑠1 ] 𝑗 }𝑁𝑗=𝑛+1 )

and 𝑠2 = SS.Reconstruct({ [𝑠2 ]𝑖 𝑗 }𝑡+1𝑗=1
, { [𝑠2 ] 𝑗 }𝑁𝑗=𝑛+1 ) .

(b) Computes 𝑠 = 𝑠1 · 𝑠−1
2

mod 𝑞.

(c) Broadcasts (𝑟, 𝑠 ) if it is a valid signature on MSG, otherwise it
broadcasts ⊥.

signature 𝑠), in which case we first make sure that the adversary’s

shares are consistent with those values, and then ‘interpolate’

the other parties’ shares to reside on the same, fully determined,

polynomial. Another challenge is that 𝑃𝑢 picks a secret and shares

it first (before this is done by 𝑃𝑐 ), however, when simulating 𝑃𝑐 we

need to know 𝑃𝑐 ’s secret (be it 𝑥𝑐 in the key generation protocol

or 𝑘𝑐 in the signing protocol) before simulating 𝑃𝑢 ’s dealing. To

this end, in the protocol we instruct 𝑃𝑐 to derive its secret fromH ,

which is modeled as a random oracle that is programmable by the

simulator. Interestingly, since 𝑃𝑐 is semi-honest (and follows the

protocol) we can program the random oracle apriori. That is, we

can choose the secret values 𝑥𝑐 and 𝑘𝑐 on behalf of 𝑃𝑐 even before

it queried the random oracle for them. This was not possible if 𝑃𝑐
is malicious, since 𝑃𝑐 could have query the random oracle multiple

times (or not at all), and the simulator could not know which one

was the right one.

From ROM to the standard model.We stress that the protocol can

be described in a way that is secure in the standard model, without

the random oracle, by having 𝑃𝑐 commit to a PRF key as a first step

in the key generation protocol, and then this PRF can be used as a

random oracle. The simulator extracts that PRF key, as it takes the

role of the commitment functionality, and can reproduce any value

that 𝑃𝑐 produces during the protocol.

4 ROBUST THRESHOLD ECDSA
Note that Protocols 2 and 3 are fair, but not robust. They are

fair because either all or none of the parties 𝑃1, . . . , 𝑃𝑛 obtain the

result verification key 𝑋 and signatures. However, robustness is

not guaranteed, that is, if 𝑃1 cheats in its dealing then the protocols

abort and the parties will not learn the public key or signatures.

We can overcome that by using a publicly verifiable secret sharing

(cf. Section 2.3) in two different approaches: (1) Let 𝑃1 be the only

dealer (apart from 𝑃𝑐 ) as before, and if it cheats, repeat with 𝑃2 as

the dealer, and so on. This process will end by at most 𝑡 + 1 writes,
as at least one of 𝑃1, . . . , 𝑃𝑡+1 is honest; (2) Let all 𝑃1, . . . , 𝑃𝑡+1 be
dealers simultaneously which ensures that by one write this dealing

is complete. While optimistically the first approach entails only one

party to write to the blockchain, and hence the overall protocol’s

message complexity is 𝑂 (𝑛) (i.e., we consider 𝑃𝑖 sending a share

to 𝑃 𝑗 as one message), in the worst case there are 𝑂 (𝑡) rounds
and 𝑂 (𝑛2) messages. In the second approach there is still 𝑂 (𝑛2)
messages, but they are all happen in parallel and so this approach

is completed in one round. Protocols 4 and 5 follow the second

approach.

Note that ensuring correctness of sharing is not sufficient for

robustness - one has to make sure that the computation of 𝑠1 =

𝑎(𝑚 + 𝑟𝑥) and 𝑠2 = 𝑘𝑎 of the partial signatures by each party are

computed correctly. Since these values are the result of a non-linear

function, they could not be verified against existing values,𝑚, 𝑟,𝐴, 𝐾

and 𝑋 , that are already public. To this end, the parties provide

additional auxiliary information𝑀1 and𝑀2, such that𝑀1 = log(𝐴) ·
log(𝑋 ) ·𝐺 and𝑀2 = log(𝐴) · log(𝐾) ·𝐺 , then, everyone can check

that 𝑠1 and 𝑠2 are computed correctly by verifying the equalities

𝑠1 ·𝐺 = 𝑟 ·𝑀1 +𝑚 · 𝐴 and 𝑠2 ·𝐺 = 𝑀2. The last piece is verifying

that𝑀1 and𝑀2 are indeed computed correctly. This can be done

by having the parties provide a simple zero-knowledge proof that

(𝐴,𝑋,𝑀1) and (𝐴,𝐾,𝑀2) are Diffie-Helman tuples (DHT), where

the DHT relation is defined by

𝑅DHT = {(𝐴, 𝐵,𝐶) s.t. 𝑎 = log(𝐴), 𝑏 = log(𝐵), 𝑎𝑏 = log(𝐶)} .
Note that we use PVSS for the computation of 𝑃𝑐 even though

it is not needed as 𝑃𝑐 is semi-honest, we do this as the interface

already gives us the public values required for the messages of

parties 1, . . . , 𝑛 to be publicly verified.

We prove the following in Section A.2.

Theorem 4.1. Assuming the decisional Diffie-Helman (DDH) problem

is hard relative to (G,𝐺, 𝑞), Protocols 4 and 5 securely compute the

ECDSA functionality (Functionality 1) with guaranteed outupt delivery,

against a static malicious adversary who corrupts at most 𝑡 parties

(which is the majority of) of {𝑃1, . . . , 𝑃𝑛} or a semi-honest adversary

who corrupts 𝑃𝑐 .

In addition to the challenges aforementioned above for the non-

robust protocol, which we solve in the same way here, simulating

the robust protocol introduces a new challenge because the use of
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Shoenmakers’s PVSS scheme, which involves El-Gamal encryptions.

This extra challenge is introduced only when 𝑃𝑐 is corrupted, since

when it is not (and we are in the first case in which a subset of

𝑃1, . . . , 𝑃𝑛 are corrupted, and so the simulator simulates message

arriving from 𝑃𝑐 ) the simulator has to simulate only 𝑃𝑐 ’s messages,

which are not publicly verifiable, but are guaranteed to be correct

due to the fact that 𝑃𝑐 behaves honestly, thus, there is no need to

simulate encryptions of unknown plaintexts. In contrast, when 𝑃𝑐
is corrupted, we need to simulate publicly verifiable messages from

parties 𝑃1, . . . , 𝑃𝑡+1, let’s focus on one of them, 𝑃𝑢 . Then, in the key

generation, the simulator knows the public key 𝑋 (as received from

the ECDSA functionality) as well as the complementary part of

the public key 𝑋𝑐 (which is extracted by the technique described

above), therefore the simulator knows 𝑋𝑢 = 𝑋 − 𝑋𝑐 . However, for
a perfect simulation the simulator has to share 𝑥𝑢 = log(𝑋𝑢 ) using
the PVSS scheme. Now, in contrast to the non-publicly verifiable

secret sharing in which each receiver receives its own share only,

in PVSS the dealer has to broadcast the encryptions of all shares

under their respective key, and prove that they are consistent with

the commitment of the polynomial. In our case, the simulator does

not know 𝑥𝑢 and so it cannot produce a polynomial 𝑃 s.t. 𝑃 (0) =
𝑥𝑢 . Instead of providing encryptions of the shares 𝑃 (1), . . . , 𝑃 (𝑁 ),
which are obviously unknown to the simulator, the simulator picks

random shares [𝑥𝑢 ]𝑛+1, . . . , [𝑥𝑢 ]𝑁 intended for 𝑃𝑐 and encrypts

those correctly. Then, the simulator produces the commitment to

the polynomial 𝐴0, . . . , 𝐴𝑡 , where 𝐴0 = 𝑋𝑢 since the polynomial

must evaluate to 𝑥𝑢 at 0, and the values 𝐴1, . . . , 𝐴𝑡 are computed

from the linear system with 𝑡 equations and 𝑡 variables, where

the 𝑗-th equation is

∑𝑡
𝑗=0 𝑖

𝑗 · 𝐴 𝑗 = [𝑥𝑢 ]𝑖 · 𝐺 . By solving that

system the simulator obtains𝐴1, . . . , 𝐴𝑡 and so it has all information

required to make all 𝑃𝑐 ’s values be consistent with 𝑋 and 𝑋𝑐 .

Finally, for the encryptions of parties 𝑃1, . . . , 𝑃𝑛 , that are also sent

to 𝑃𝑐 , the simulator simply encrypts the value 0 ∈ Z𝑞 , which is

indistinguishable from an encryption of the actual value 𝑃 (𝑖) that
should have been encrypted, from the CPA-security of El-Gamal.

PROTOCOL 4.

(
Robust Key-Generation: KeyGen

)
(1) User’s dealing: Every 𝑃ℓ , (ℓ ∈ {1, . . . , 𝑡 + 1}) :

(a) Samples 𝑥ℓ ← Z𝑞 and computes and broadcasts

({𝑐ℓ𝑖 }
𝑁
𝑖=1, {𝐴ℓ

𝑗 }
𝑡
𝑗=0, 𝜋

ℓ ) ← PVSS.Share𝑡,𝑁 (𝑥ℓ ) .
(b) Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which

1 = PVSS.CheckDealer({𝑐𝑢𝑖 }𝑁𝑖=1, {𝐴𝑢
𝑗 }𝑡𝑗=0, 𝜋𝑢 ) .

Denote these values by {𝑐𝑖 }𝑁𝑖=1, {𝐴𝑗 }𝑡𝑗=0 (i.e., dropping the

supertext 𝑢)

(2) Center’s dealing:
(a) 𝑃𝑐 computes [𝑥𝑐 ] ← SS.Share𝑡,𝑁 (𝑥𝑐 ) for 𝑥𝑐 ← H(�̃� )

where �̃� ← {0, 1}𝜅 .
(b) 𝑃𝑐 sends [𝑥𝑐 ]𝑖 to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛].
(c) 𝑃𝑐 broadcasts𝑋 = 𝑥𝑐 ·𝐺+𝐴0 and𝑋𝑖 = [𝑥𝑐 ]𝑖 ·𝐺+

∑𝑡
𝑗=0 𝑖

𝑗 ·𝐴𝑗

for 𝑖 ∈ [1, 𝑛].
(3) Compute secret key shares: Each party 𝑃𝑖 computes [𝑥𝑢 ]𝑖 =

EG.Decdk𝑖 (𝑐𝑖 ) and [𝑥 ]𝑖 = [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 mod 𝑞.

5 A SOLUTION FOR A SINGLE USER
So far the chain-assisted protocols were designed to support a group

of signers, but are not extended to the case in which there is only one

PROTOCOL 5.

(
Robust Signing: Sign (𝑀, (G,𝐺,𝑞), sid)

)
Inputs.

(1) Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], holds ( [𝑥 ]𝑖 , 𝑋 ) .
(2) Party 𝑃𝑐 holds 𝑋 and [𝑥 ]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(3) The parties Compute𝑚 = 𝐻𝑞 (𝑀 ) and verify that sid has not

been used before (otherwise the protocol is not executed).

The protocol.
(1) User’s dealing: Every 𝑃ℓ , (ℓ ∈ {1, . . . , 𝑡 + 1}) :

(a) Samples 𝑘ℓ , 𝑎ℓ ← Z𝑞 and computes and broadcasts

({𝑐ℓ
𝑘,𝑖
}𝑁𝑖=1, {𝐾 ℓ

𝑗 }
𝑡
𝑗=0, 𝜋

ℓ
𝑘
) ← PVSS.Share𝑡,𝑁 (𝑘ℓ ),

({𝑐ℓ𝑎,𝑖 }
𝑁
𝑖=1, {𝐴ℓ

𝑗 }
𝑡
𝑗=0, 𝜋

ℓ
𝑎 ) ← PVSS.Share𝑡,𝑁 (𝑎ℓ ),

({𝑐ℓ𝑧,𝑖 }
𝑁
𝑖=1, {𝑍 ℓ

𝑗 }
𝑡
𝑗=0, 𝜋

ℓ
𝑧 ) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐ℓ
𝑧′,𝑖 }

𝑁
𝑖=1, {𝑍 ′

ℓ
𝑗 }𝑡𝑗=0, 𝜋 ℓ

𝑧′ ) ← PVSS.Share2𝑡,𝑁 (0) .
(b) Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which

1 = PVSS.CheckDealer({𝑐𝑢𝛼,𝑖 }𝑁𝑖=1, {𝛼𝑢𝑗 }𝑡𝑗=0, 𝜋𝑢𝛼 )
for all 𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′ }.

(2) Center’s dealing:
(a) 𝑃𝑐 computes 𝑘𝑐 = H(𝑥𝑐 ∥sid) , samples 𝑎𝑐 ← Z𝑞

and computes [𝑘𝑐 ] ← SS.Share𝑁,𝑡 (𝑘𝑐 ) , [𝑎𝑐 ] ←
SS.Share𝑁,𝑡 (𝑎𝑐 ) , [𝑧𝑐 ] ← SS.Share𝑁,2𝑡 (0) , and [𝑧′𝑐 ] ←
SS.Share𝑁,2𝑡 (0)

(b) 𝑃𝑐 sends ( [𝑘𝑐 ]𝑖 , [𝑎𝑐 ]𝑖 , [𝑧𝑐 ]𝑖 , [𝑧′𝑐 ]𝑖 ) to 𝑃𝑖 for 𝑖 ∈ [1, 𝑛]
(c) 𝑃𝑐 broadcasts 𝐾 = 𝑘𝑐 · 𝐺 + 𝐾𝑢

0
and (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍

′
𝑖
) for all

𝑖 ∈ [1, 𝑛], where 𝐸𝑖 = [𝑒𝑐 ]𝑖 · 𝐺 +
∑𝑡

𝑗=0 𝑖
𝑗 · 𝐸 𝑗 for every

(𝐸, 𝑒 ) ∈ { (𝐾,𝑘 ), (𝐴,𝑎), (𝑍, 𝑧 ), (𝑍 ′, 𝑧′ ) }.
(3) Local computation.

(a) 𝑃𝑖 (𝑖 ∈ [1, 𝑁 ]) computes [𝛼 ]𝑖 = [𝛼𝑢 ]𝑖 + [𝛼𝑐 ]𝑖 mod 𝑞 for

𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′ }, where [𝛼𝑢 ]𝑖 = EG.Decdk𝑖 (𝑐𝑢𝛼,𝑖 ) .
(b) 𝑃𝑖 (𝑖 ∈ [1, 𝑁 ]) computes [𝑠1 ]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥 ]𝑖 ) − [𝑧 ]𝑖

mod 𝑞 and [𝑠2 ]𝑖 = [𝑘 ]𝑖 [𝑎]𝑖 − [𝑧′ ]𝑖 mod 𝑞.

(c) 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) computes𝑀𝑖,1 = ( [𝑎]𝑖 · [𝑥 ]𝑖 ) ·𝐺 and𝑀𝑖,2 =

( [𝑎]𝑖 · [𝑘 ]𝑖 ) ·𝐺 .

(d) Everyone computes 𝑟 = 𝐾.𝑥 mod 𝑞.

(4) Partial signature.
(a) 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends (prove, sid∥1, 𝐴𝑖 , 𝑋𝑖 , 𝑀𝑖,1, 𝑎𝑖 , 𝑥𝑖 ) and
(prove, sid∥2, 𝐴𝑖 , 𝐾𝑖 , 𝑀𝑖,2, 𝑎𝑖 , 𝑘𝑖 ) to F𝑅𝐷𝐻𝑇

zk .

(b) 𝑃𝑖 (𝑖 ∈ [1, 𝑛]) sends (𝑚, [𝑠1 ]𝑖 , [𝑠2 ]𝑖 , 𝑀1, 𝑀2 ) to 𝑃𝑐 .
(5) Finalization. Upon receiving at least 𝑡 + 1 messages

(𝑚, [𝑠1 ]𝑖 , [𝑠2 ]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2 ) for which [𝑠1 ]𝑖 ·𝐺 = 𝑟 ·𝑀𝑖,1+𝑚 ·𝐴𝑖−
𝑍𝑖 , [𝑠2 ]𝑖 ·𝐺 = 𝑀𝑖,2 −𝑍 ′𝑖 , and proofs (proof, sid∥1, 𝐴𝑖 , 𝑋𝑖 , 𝑀𝑖,1 )
and (proof, sid∥2, 𝐴𝑖 , 𝐾𝑖 , 𝑀𝑖,2 ) were received from F𝑅𝐷𝐻𝑇

zk ,

denote these indices by 𝐼 . Then party 𝑃𝑐 :

(a) Computes 𝑠1 = SS.Reconstruct({ [𝑠1 ]𝑖 }𝑖∈𝐼 , { [𝑠1 ] 𝑗 }𝑁𝑗=𝑛+1 )
and 𝑠2 = SS.Reconstruct({ [𝑠2 ]𝑖 }𝑖∈𝐼 , { [𝑠2 ] 𝑗 }𝑁𝑗=𝑛+1 ) .

(b) Broadcasts 𝑠 = 𝑠1 · 𝑠−1
2

mod 𝑞.

signer. To see this, observe that for the smallest possible threshold

𝑡 = 1, we need at least two parties that are not 𝑃𝑐 . We therefore

need to utilize a different protocol between the user and 𝑃𝑐 directly.

This reduces to a two-party ECDSA protocol between a user 𝑃𝑢
and 𝑃𝑐 . One of the current state of the art protocols for two-party

ECDSA is that of Lindell’s [47]. Luckily, when taking into account

that our model allows for one of the parties to be semi-honest, we

can gain some performance improvements for this setting as well,

discussed shortly.
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First note that the functionality is a bit different than a typical

2PC ECDSA: since 𝑃𝑐 is only an assistant, party 𝑃𝑢 is the only

one who can ask for key generation or signatures. The formal

description appears in Functionality 8 (Section B). Second, note

that we employ the same technique for extracting 𝑃𝑐 ’s secret inputs

𝑥𝑐 , 𝑘𝑐 as done in the multiparty protocols above. As explained,

however, this technique can be replaced with a standard model

technique using a commitment on a PRF key. Third, since 𝑃𝑐 is semi-

honest in our model, and so it is guaranteed to choose its nonce

randomly and independently of 𝑃𝑢 ’s message, which is not the case

in Lindell’s protocol. This way, in our model the two-party protocol

enjoys non-interactive signing, or in other words, requires only one

write. As briefly discussed below, that fact also enables simulation

of both parties without the additional non-standard ‘Paillier-EC’

assumption that is used in [47]. The reason for that is that we assign

𝑃𝑐 the role of the party who performs the linear evaluation on the

encryption of 𝑃𝑢 ’s secret key share (𝑐𝑘𝑒𝑦 ). Now, since 𝑃𝑐 follows

the protocol’s description, it is guaranteed to not cheat and produce

an encryption of (𝑘𝑐 )−1 (𝑚 +𝑥𝑟 ) exactly as described. This removes

the need of (1) guessing whether 𝑃𝑐 will abort or not, (2) adding an

expensive zero-knowledge proof on 𝑃𝑐 ’s last message, or (3) relying

on a non-standard assumption as Paillier-EC. Except of the changes

mentioned above, our protocol resembles that of Lindell.

We prove the following theorem in Section A.3.

Theorem 5.1. Protocols 6 and 7 securely compute the ECDSA

functionality (Functionality 8) against a static malicious adversary

who corrupts 𝑃𝑢 or a semi-honest adversary who corrupts 𝑃𝑐 .

PROTOCOL 6.

(
Two-Party Key-Generation: KeyGen

)
(1) 𝑃𝑐 ’s randomness setup.

(a) 𝑃𝑐 picks a random value 𝑣 ← {0, 1}𝜅 and computes 𝑣𝑥 =

H(𝑣) .
(b) 𝑃𝑐 sends 𝑣𝑥 to 𝑃𝑢 .

(2) Party 𝑃𝑢 ’s message:
(a) 𝑃𝑢 samples a random 𝑥𝑢 ← Z∗𝑞 and computes 𝑋𝑢 = 𝑥𝑢 ·𝐺 .

(b) 𝑃𝑢 generates a Paillier key-pair (𝑝𝑘, 𝑠𝑘 ) where 𝑝𝑘 = 𝑁 = 𝑃 ·
𝑄 with 𝜅′-bit primes 𝑃,𝑄 , and computes 𝑐𝑘𝑒𝑦 = Enc𝑝𝑘 (𝑥𝑢 ) .
(𝜅′ is the bit-length of the factors of 𝑁 for the Paillier

encryption scheme to be secure).

(c) 𝑃𝑢 sends 𝑋𝑢 , 𝑝𝑘 = 𝑁 and 𝑐𝑘𝑒𝑦 to 𝑃𝑐 .

(d) 𝑃𝑢 proves in zero-knowledge that 𝑁 ∈ 𝐿𝑃 and that it knows

a witness (𝑥𝑢 , 𝑃,𝑄 ) such that (𝑐𝑘𝑒𝑦, 𝑁 ,𝑋𝑢 ) ∈ 𝐿𝑃𝐷𝐿 , by

sending (prove, 𝑐𝑘𝑒𝑦, 𝑁 ,𝑋𝑢 , 𝑥𝑢 , 𝑃,𝑄 ) to Fkeygen𝑧𝑘
.

(3) Party 𝑃𝑐 ’s message: Upon receiving (proof, 𝑐𝑘𝑒𝑦, 𝑁 ,𝑋𝑢 ) from
Fkeygen
𝑧𝑘

:

(a) Verify that 𝑐𝑘𝑒𝑦 ∈ Z∗𝑁 2
and that 𝑁 is of length at least 2𝜅′ .

(b) 𝑃𝑐 computes 𝑥𝑐 = H(𝑣 ∥keygen) , and 𝑋𝑐 = 𝑥𝑐 · 𝐺 and 𝑋 =

𝑥𝑐 · 𝑋𝑢 .

(c) Send 𝑋 to 𝑃𝑢 .

(4) Output:
(a) 𝑃𝑢 outputs (𝑝𝑘, 𝑠𝑘, 𝑥𝑢 , 𝑋 ) .
(b) 𝑃𝑐 outputs (𝑝𝑘, 𝑥𝑐 , 𝑋, 𝑐𝑘𝑒𝑦 ) .

6 APPLICATIONS
Unstoppablewallets serve as a foundational component for a diverse

array of applications. To demonstrate their applicability, we developed

PROTOCOL 7.

(
2P Signing: Sign (𝑀, (G,𝐺,𝑞), sid)

)
Inputs.
(1) Party 𝑃𝑢 holds (𝑝𝑘, 𝑠𝑘, 𝑥𝑢 , 𝑋 ) .
(2) Party 𝑃𝑐 holds (𝑝𝑘, 𝑥𝑐 , 𝑋, 𝑐𝑘𝑒𝑦 ) .
(3) The parties Compute𝑚 = 𝐻𝑞 (𝑀 ) and verify that sid has not

been used before (otherwise the protocol is not executed).

The protocol.
(1) Party 𝑃𝑢 ’s message:

(a) 𝑃𝑢 chooses 𝑘𝑢 ← Z𝑞 and computes 𝑅𝑢 = 𝑘𝑢 ·𝐺 .

(b) 𝑃𝑢 sends 𝑅𝑢 to 𝑃𝑐 .

(c) 𝑃𝑢 sends (prove, sid, 𝑅𝑢 , 𝑘𝑢 ) to FDL𝑧𝑘
to proves knowledge of

𝑘𝑢 .

(2) 𝑃𝑐 ’s message: Upon receiving (proof, sid, 𝑅𝑢 ) from FDL𝑧𝑘
:

(a) 𝑃𝑐 computes 𝑘𝑐 = H(𝑣 ∥sid) and computes 𝑅 = 𝑘𝑐 · 𝑅𝑢 and

𝑟 = 𝑅.𝑥 mod 𝑞.

(b) 𝑃𝑐 chooses 𝜌 ← Z𝑞2 and 𝑟 ← Z∗𝑁 .

(c) 𝑃𝑐 computes:

(i) 𝑐1 = Enc𝑝𝑘 (𝜌𝑞 + [ (𝑘𝑐 )−1𝑚 mod 𝑞 ], 𝑟 ) ,
(ii) 𝑣 = (𝑘𝑐 )−1 · 𝑟 · 𝑥𝑐 mod 𝑞,

(iii) 𝑐2 = 𝑐1 ⊕ (𝑣 ⊙ 𝑐𝑘𝑒𝑦 )
(d) 𝑃𝑐 sends 𝑅 and 𝑐2 to 𝑃𝑢 .

(3) Output:
(a) 𝑃𝑢 computes 𝑠′ = (𝑘𝑢 )−1 · Dec(𝑠𝑘, 𝑐2 ) mod 𝑞 and 𝑟 = 𝑅.𝑥

mod 𝑞.

(b) 𝑃𝑢 outputs (𝑟, 𝑠 ) where 𝑠 = min(𝑠′, 𝑞 − 𝑠′ ) .

and implemented two examples of applications that possess real-

world value. These applications were deployed to Secret Network’s

mainnet under contract addresses: secret1lge6kdh078u7yc778whz8wjdc39ce78knqjfjh,

secret1lkvhyg4723fxreeyrm0mk7pkzgd4qaztmx4ztw. At their core,

these wallets are governed by a smart contract, meaning that they

may have all kinds of other use-cases as well.

6.1 Multisignature Wallet with Policy Checks
In the traditional banking system, accounts often have various

checks and limits on spending to enhance security and control.

One can imagine a similar use case for cryptocurrency transactions,

integrating such checks and constraints within a multisignature

wallet.

Threshold ECDSA inherently supports amultisignature transaction

approval structure already, necessitating (𝑡 + 1)-out-of-𝑛 parties

to endorse signing a transaction. On top of this, with unstoppable

wallets, we can introduce further layers of spending policies into the

smart-contract component of the protocol, such as per-transaction

spending limits, daily spending limits, or a combination of both.

These policies offer increased control and security over transactions

involving cryptocurrency.

One can think of more elaborate schemes and use-cases as well,

that clearly benefit from the blockchain’s role as a public bulletin

board. For example, decentralized autonomous organizations (DAOs)

are often assumed to be governed by all token holders, but their

treasuries are in practice controlled by a small committee of signers
6
.

By leveraging unstoppable wallets, the community could define

clear spending limits in a smart contract to prevent a DAO committee

from abusing their mandate.

6
As a concrete example, as of Sep, 2022, Frax treasury of 1.2B USD was unilaterally

controlled by the team’s multisig (https://www.blockworksresearch.com/research/risk-

assessment-frax-governance).
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To demonstrate the concept of a multisig wallet with policy

checks, we developed a contract that not only requires a quorum of

at least 𝑡 + 1 approvals, but also verifies the transaction as a valid

Ethereum transaction with a spending limit of 1 ETH. The flow of

producing a spending transaction in this scenario is illustrated in

Figure 2.

Figure 2: Multisignature Wallet with Policy Checks

6.2 Wallet Exchange
Typically, users exchange cryptocurrencies, such as swapping BTC

for ETH between two parties. However, herewe propose an alternative

model: instead of exchanging assets, what if we could exchange

the wallet itself directly? This concept, a wallet exchange, is not

merely theoretical. For instance, venture capital funds often enter

illiquid deals for tokens that do not yet exist or have a certain

lockup, making selling the asset itself infeasible.

One could envision a wallet exchange platform that allows sellers

to list their wallets instead of their assets, and sell these to buyers,

who can be reassured that the seller provably loses access after

the transaction concludes. In light of the recent collapse of large

exchanges and centralized lenders like FTX andCelsius, an exchange

that allows creditors to sell their claims (likely at a discount) becomes

more appealing. Such exchanges have already started to emerge
7
,

and a wallet exchange mechanism could provide a more secure way

to facilitate this process.

Equipped with this motivation, we present an implementation of

a contract that enables selling a wallet from the current owner (the

seller) to an interested buyer. Initially, the wallet is jointly held by

the seller and the chain. A prospective buyer can send a bid to the

contract governing the wallet, which the seller can either accept or

ignore. The buyer can set a timeout to release their deposited bid if

they have not received a response from the seller after some time.

If the seller accepts the bid, they must re-encrypt their share

of the key with the buyer’s key and send it to the contract in

7
https://opnx.com/

a separate transaction that concludes the sale. The chain, after

verifying that neither party has cheated, assists in refreshing the

shares and revoking the seller’s share. The contract also atomically

finalizes the payment, completing the wallet exchange process

securely. This contract flow is illustrated in Figure 3.

(a) Step 1: Buyer initiates a bid for the wallet

(b) Step 2: Seller approves the sale

Figure 3: Wallet Exchange Application Flow

7 IMPLEMENTATION AND EVALUATION
We provide an overview of the implementation and evaluation of

our proposed underlying threshold ECDSAprotocols.We implement

the main threshold ECDSA protocol in 2, 3, and the protocol for

a single user. Using these as building blocks, we implement the

applications discussed in Section 6. We also discuss the practical

aspects of implementing cryptographic primitives on a confidential

smart-contract enabled blockchain and delve into the performance

analysis of our approach in terms of gas costs associated with on-

chain transactions, which is the main performance bottleneck in

addition to the number of consecutive writes (i.e., transactions)

each user has to perform.

7.1 Implementation Details
Our implementation is tied and optimized for the secp256k1 curve,

as that is themost commonly used curve related to cryptocurrencies.

However, our protocols are generic and our implementation can be

extended to support other curves as well. The implementation is

divided into two main parts: the local execution by users, and the

on-chain execution on the blockchain. Our code is written in Rust,
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but it is important to note that any language could be used for the

client.

For the on-chain part of our proposed protocols, the spectrum

of options is more constrained, as we needed a blockchain that

supports confidential smart contracts. We chose the Secret Network

[55], a blockchain platform that relies on TEEs for confidentiality

and has been running in production for several years. Another

benefit of choosing Secret Network is that it exemplifies a blockchain

that guarantees correctness, availability and privacy with different

levels of confidence. Namely, while the system’s correctness and

availability guarantees have never been broken, its privacy guarantees

were brokenmultiple times due to attacks on the underlying hardware

(e.g., [15, 60]). Attacks on privacy (but not on the availability nor the

correctness) may happen even when confidential smart contracts

are implemented using (publicly auditable) MPC protocols. In such

cases corrupted parties may ‘silently’ break privacy, but cannot

break correctness or availability. This is the source for ourmotivation

to not store the entire signing key within the smart contract.

We made our implementation open-source
8
. Including our

modifications below to existing repositories ,it consists of roughly

6,500 lines of code.

7.2 Cryptographic Primitives on Chain
In order to allow our protocols to run inside of a smart contract,

we needed to implement several cryptographic building blocks in

a way that allows them to run on-chain. In particular, we needed

libraries that support secret sharing (over secp256k1’s specified

field), elliptic curve operations (over the same curve), and Paillier

encryption.

This turned out to be especially challenging, since we had to

make sure these building blocks are efficient, do not use randomness

generated by the operating system, and do not use floating-point

types. The last two are practical constraints present in any blockchain

environment, which needs to be deterministic due to consensus.

Porting existing cryptographic libraries was especially challenging,

since practically all libraries need to generate randomness at one

point, and this issue propagates up the dependency tree.Wemodified

all relevant libraries to take in a custom PRG instead, and we used

that as a hook to plug in a deterministic PRG that is purpose-built

for Secret Network contracts. Overall, we modified approximately

1,350 lines of code across five open-source repositories.

7.3 Performance Evaluation
In this subsection, we assess the performance of our proposed

threshold ECDSA protocols by focusing on the gas costs associated

with on-chain transactions. Gas costs represent the computational

resources necessary to execute a transaction on a blockchain, and

are a popular cost metric on all smart-contracts chains, starting with

Ethereum [17]. These costs not only impact users monetarily but

also impose limitations on the number of gas-intensive transactions

a blockchain can process in a single block, as blockchains have

inherent constraints in terms of computational resources.

7.3.1 Multiparty Protocol Evaluation. In Table 2a we show an

evaluation for 𝑛 = 5, 𝑡 = 4. init marks the contract’s initialization

8
https://github.com/scrtlabs/unstoppable-secrets

(for each wallet we deploy a different contract), keygen is the dealing

portion of the key generation protocol, presig marks the dealing

part of the signing protocol where shared randomness and the

nonce are produced, and sign_i marks the cost for each signing

party. On a per user basis, the costs are negligible at the time of

writing, and amount to roughly one-tenth of a cent per user (with

the exception of the dealer who pays roughly three-tenths of a

cent). Since the actual cost was calculated based on the price of

SCRT, a volatile asset used to pay fees in Secret Network, it is also

useful to compare the unitless gas used metric between threshold

wallets and other common types of smart contract executions. We

reference these in Table 3 and note that surprisingly our results

are very appealing given that we have essentially implemented an

MPC protocol on-chain.

Table 2: Benchmarks for Multiparty and Two-party ECDSA

(a) Table (a)

Tx Type Time (ms) Tx size

(bytes)

Gas Used Tx Cost (¢)

init 0.07 43 45,227 0.04¢

Keygen 7.93 1,206 132,792 0.11¢

Presig 11.65 4,335 237,195 0.19¢

Sign_1 1.62 295 138,865 0.11¢

Sign_2 1.55 295 140,599 0.11¢

Sign_3 1.51 295 142,328 0.11¢

Sign_4 1.85 295 144,046 0.12¢

Sign_5 12.95 295 187,238 0.15¢

(b) Table (b)

Tx Type Time (ms) Tx size

(bytes)

Gas Used Tx Cost (¢)

Keygen 175.35 2,707 856,051 0.68¢

Sign 313.75 287 1,882,619 1.51¢

Table 3: Gas cost baselines

Tx Type Gas Used

Token transfer 55,877

NFT Mint/Transfer 150,833

Token Swap (direct) 595,916

Token Swap (2-hops) 1,553,937

We also found that costs scale very well (practically linearly, as

expected) with the number of parties, making this scheme highly

efficient in terms of scalability. We capture this close-to-linear

relation in Figure 4, which examines how the average gas expenditure

changes (on average) per party, as we increase the number of parties

(and assume the maximum corruption threshold of 𝑛 = 𝑡 − 1). We

make the same comparison for a fixed 𝑛 = 15 and a dynamic

threshold in Figure 5, and reach a similar result.

7.3.2 Two-Party Protocol Evaluation. Interestingly, as shown in 2b,

our performance evaluation reveals that the multiparty protocol,

even when accommodating numerous parties, incurs significantly

lower costs per party compared to the two-party protocol. This
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Figure 4: Gas Used vs. Number of Users (n)

Figure 5: Gas Used vs. Threshold (t) for 15 users

finding can be attributed to the relatively resource-intensive Paillier

Encryption used in the two-party protocol, which is used for a single

user. It is also worth mentioning that we have not implemented the

expensive zero-knowledge proofs necessary for this protocol on-

chain, which would undoubtedly widen the gap even more. Based

on our results, and assuming the maximum amount of corruptions,

we extrapolate that it would take around 𝑛 = 82 users for the gas

costs of the multiparty protocol to match the two party one.

Also, given current gas limits in Secret Network, and given

that state-of-the-art multiparty threshold ECDSA protocols (e.g.,

[18]) requires even more homomorphic operations and many more

zero-knowledge proofs, it is fair to assume any existing multiparty

variant would not even run on-chain. These results support the

need of devising chain-friendly threshold ECDSA protocols, as

demonstrated in this paper.
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A SECURITY PROOFS
A.1 Proof of Theorem 3.1
The proof below is separated to the two cases mentioned in the

Theorem, for each of which we present a perfect simulation. Note

that the use of H in the protocol is merely to easily extract 𝑃𝑐 ’s

randomly chosen 𝑥𝑐 . It is possible to remove this random oracle

usage by standard commitment techniques. In both cases it is easy

to see that the joint distributions of the honest parties’ output and

the adversary’s view in the real and ideal worlds are identically

distributed.

Case 1. Let A be a malicious real world adversary who corrupts

𝑃1 and a subset of {𝑃2, . . . , 𝑃𝑛} of size 𝑡 − 1. Denote the set of

corrupted parties by𝐶 and the rest of the parties by𝐻 = {𝑃1, . . . , 𝑃𝑛}−
𝐶 . We present an ideal world adversary S that does as follows.

• Key Generation.
(1) Send (keygen) to FECDSA.
(2) Run A internally and simulates all other parties:

(a) Receive all shares [𝑥𝑢 ]𝑖 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁 ].
(b) Reconstruct 𝑥𝑢 using the above |𝐻 | + 𝑡 shares.
(c) If reconstruction fails then send (keygen, abort) toFECDSA

and halt. Otherwise, compute [𝑥𝑢 ]𝑖 for all 𝑃𝑖 ∈ 𝐶 .
(d) Compute [𝑥𝑐 ] ← SS.Share(𝑥𝑐 , 𝑡, 𝑁 ) for a random 𝑥𝑐 ←
Z𝑞 , and send [𝑥𝑐 ]𝑖 to every party 𝑃𝑖 ∈ 𝐶 .

(e) Compute secret key shares [𝑥]𝑖 = [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 mod 𝑞

for all 𝑖 ∈ [1, 𝑁 ]. (Note that this 𝑥 is not the actual secret

key log𝐺 (𝑋 ) obtained by the functionality, however,

the simulator uses it in order to checks whether the

adversary cheats when computing the signature.)

(f) Receive 𝑋𝑖 for all 𝑖 ∈ 𝐶 and compute 𝑋𝑖 = [𝑥]𝑖 · 𝐺 =

( [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 ) ·𝐺 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁 ].
(g) Check consistency of all 𝑋𝑖 as done in the protocol, if

the check fails then send (keygen, abort) to FECDSA and

halt.

(h) Send (keygen, continue) to FECDSA and obtain 𝑋 and

𝐻𝑞 .

(i) Broadcasts 𝑋 and 𝐻𝑞 .

(j) Output whatever A outputs.

• Sign.
(1) Send (sign, sid) to FECDSA and obtain 𝑅.

(2) Run A internally and simulates all other parties:

(a) Receive all shares [𝑘𝑢 ]𝑖 and [𝑎𝑢 ]𝑖 for all 𝑖 ∈ 𝐻∪[𝑛+1, 𝑁 ].
(b) Receive all shares [𝑧𝑢 ]𝑖 and [𝑧′𝑢 ]𝑖 for all 𝑖 ∈ 𝐻∪[𝑛+1, 𝑁 ].
(c) Receive 𝑅𝑢 .

(d) Sample𝑘𝑐 , 𝑎𝑐 ← Z𝑞 and compute [𝑘𝑐 ] ← SS.Share(𝑘𝑐 , 𝑡, 𝑁 ),
[𝑎𝑐 ] ← SS.Share(𝑎𝑐 , 𝑡, 𝑁 ), [𝑧𝑐 ] ← SS.Share(0, 2𝑡, 𝑁 )
and [𝑧′𝑐 ] ← SS.Share(0, 2𝑡, 𝑁 )

(e) Send [𝑘𝑐 ]𝑖 , [𝑎𝑐 ]𝑖 , [𝑧𝑐 ]𝑖 , [𝑧′𝑐 ]𝑖 to 𝑃𝑖 for all 𝑖 ∈ 𝐶 .
(f) Compute [𝑘]𝑖 = [𝑘𝑢 ]𝑖 + [𝑘𝑐 ] mod 𝑞 and [𝑎]𝑖 = [𝑎𝑢 ]𝑖 +
[𝑎𝑐 ] mod 𝑞 for all 𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁 ].

(g) Send 𝑅 to all 𝑃𝑖 ∈ 𝐶 .
(h) Receive [𝑠1]𝑖 and [𝑠2]𝑖 from all 𝑃𝑖 ∈ 𝐶 .
(i) Compute [𝑠1]𝑖 and [𝑠2]𝑖 using values 𝑟,𝑚 and the shares

[𝑘]𝑖 , [𝑎]𝑖 , [𝑥]𝑖 for all 𝑃𝑖 ∈ 𝐻 ∪ [𝑛 + 1, 𝑁 ].
(j) Reconstruct 𝑠1 and 𝑠2 using the the shares received from

the adversary (for parties in𝐶) and the shares computed

above (for the parties in𝐻 ∪ [𝑛+1, 𝑁 ]). If reconstruction
(of a 2𝑡-degree polynomial) failed then send (sign, sid, abort)
and halt.

(k) Check whether 𝑟 and 𝑠 = 𝑠1 · 𝑠−1
2

mod 𝑞 is a valid

signature on𝑀 using the secret key 𝑥 that was computed

in the key-generation phase (recall, this is not the actual

secret key used by the functionality).

(l) If the check fails then send (sign, sid, abort) and halt.

(m) Send (sign, sid, continue) and obtain (𝑟, 𝑠). Broadcast
(𝑟, 𝑠) and output whatever A outputs.

Case 2. LetA be a semi-honest real world adversarywho corrupts

𝑃𝑐 . We present an ideal world adversary S that does as follows:

• Key Generation.
(1) Send (keygen) and (keygen, continue) to FECDSA, and obtain

𝑋 .

(2) Run A internally and simulate parties (𝑃1, . . . , 𝑃𝑛):

(a) Sample 𝑥𝑢 ← Z𝑞 , compute [𝑥𝑢 ] ← SS.Share(𝑥𝑢 , 𝑡, 𝑁 ) and
send [𝑥𝑢 ]𝑖 to 𝑃𝑐 , for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].

(b) Receive [𝑥𝑐 ]𝑖 from 𝑃𝑐 for all 𝑖 ∈ [1, 𝑛], reconstruct 𝑥𝑐
(always succeeds becauseA follows the protocl) and compute

[𝑥𝑐 ]𝑖 for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(c) Let 𝜆

𝑗

0
and {𝜆 𝑗

𝑖
}𝑖∈[𝑛+1,𝑁 ] be the Lagrange coefficients for

a polynomial evaluation on 𝑗 , using points at 0 and the

indices in [𝑛 + 1, 𝑁 ] (𝑡 + 1 points in total).

(d) For every 𝑗 ∈ [1, 𝑛] compute𝑋 𝑗 = 𝜆
𝑗

0
·𝑋+∑𝑖∈[𝑛+1,𝑁 ] 𝜆 𝑗𝑖 ·𝑋𝑖 .

(e) Send 𝑋 𝑗 to 𝑃𝑐 for every 𝑖 ∈ [1, 𝑛]. (The above computation

ensures that the consistency verification goes through.)

(f) Output whatever A outputs.

• Sign.
(1) Send (sign, sid) and (sign, sid, continue) toFECDSA and obtain

𝑅 and (𝑟, 𝑠).
(2) Run A internally and simulates all other parties:

(a) Sample𝑘𝑢 , 𝑎𝑢 ← Z𝑞 and compute [𝑘𝑢 ] ← SS.Share(𝑘𝑢 , 𝑡, 𝑁 ),
[𝑎𝑢 ] ← SS.Share(𝑎𝑢 , 𝑡, 𝑁 ), [𝑧𝑢 ] ← SS.Share(0, 2𝑡, 𝑁 )
and [𝑧′𝑢 ] ← SS.Share(0, 2𝑡, 𝑁 )

(b) Send [𝑘𝑢 ]𝑖 , [𝑎𝑢 ]𝑖 , [𝑧𝑢 ]𝑖 , [𝑧′𝑢 ]𝑖 to 𝑃𝑐 for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
(c) Sample 𝑘𝑐 ← Z𝑞 and programH(𝑥𝑐 ∥sid) ← 𝑘𝑐 .

(d) Compute 𝑅𝑐 = 𝑘𝑐 ·𝐺 and 𝑅𝑢 = 𝑅 − 𝑅𝑐 .
(e) Send 𝑅𝑢 to 𝑃𝑐 .

(f) Receive all shares [𝑘𝑐 ]𝑖 and [𝑎𝑐 ]𝑖 for all 𝑖 ∈ [1, 𝑛].
(g) Receive all shares [𝑧𝑐 ]𝑖 and [𝑧′𝑐 ]𝑖 for all 𝑖 ∈ [1, 𝑛]].
(h) Receive 𝑅.

(i) Compute [𝛼]𝑖 = [𝛼𝑢 ]𝑖+[𝛼𝑐 ]𝑖 mod 𝑞 for all 𝑖 ∈ [𝑛+1, 𝑁 ]
and for all 𝛼 ∈ {𝑘, 𝑎, 𝑧, 𝑧′}.

(j) Compute [𝑠1]𝑖 = [𝑎]𝑖 (𝑚 + 𝑟 [𝑥]𝑖 ) − [𝑧]𝑖 mod 𝑞 and

[𝑠2]𝑖 = [𝑘]𝑖 [𝑎]𝑖 − [𝑧′]𝑖 mod 𝑞 for all 𝑖 ∈ [𝑛 + 1, 𝑁 ].
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(k) Sample random 2𝑡-degree polynomials 𝑆1 and 𝑆2, such

that 𝑆𝑏 (0) = 𝑠𝑏 and 𝑆𝑏 (𝑖) = [𝑠𝑏 ]𝑖 , for all 𝑖 ∈ [𝑛 + 1, 𝑁 ]
and 𝑏 ∈ {1, 2}.

(l) Send (𝑚, [𝑠1]𝑖 , [𝑠2]𝑖 ) to 𝑃𝑐 for all 𝑖 ∈ [1, 𝑛], where [𝑠1]𝑖 =
𝑆1 (𝑖) and [𝑠2]𝑖 = 𝑆2 (𝑖).

A.2 Proof of Theorem 4.1
The proof below is separated to the two cases mentioned in the

Theorem, for each of which we present a perfect simulation. As

mentioned above, we useH as a random oracle in order to easily

extract 𝑃𝑐 ’s randomly chosen 𝑥𝑐 , but it is possible to replace it with

standard commitment techniques.

Case 1. Let A be a malicious real world adversary who corrupts

𝑃1 and a subset of {𝑃2, . . . , 𝑃𝑛} of size 𝑡−1.Without loss of generality,

let that subset be 𝑃1, . . . , 𝑃𝑡 . We present an ideal world adversary

S that does as follows.

• Key Generation.
(1) Send (keygen) to FECDSA, then send (keygen, continue) to
FECDSA and obtain 𝑋 and 𝐻𝑞 .

(2) Run A internally and simulates all other parties (knowing

their encryption key-pair, so it is possible to decrypt ciphertexts

under their key):

(a) Choose 𝑥𝑡+1 ← Z𝑞 , and send

({𝑐ℓ𝑡+1}
𝑁
𝑖=1, {𝐴

𝑡+1
𝑗 }

𝑡
𝑗=0, 𝜋

𝑡+1) ← PVSS.Share𝑡,𝑁 (𝑥𝑡+1),

to the adversary.

(b) Receive ({𝑐ℓ
ℓ
}𝑁
𝑖=1
, {𝐴ℓ

𝑗
}𝑡
𝑗=0
, 𝜋 ℓ ) from the adversary for all

ℓ ∈ [1, 𝑡].
(c) Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which

1 = PVSS.CheckDealer({𝑐𝑢𝑖 }
𝑁
𝑖=1, {𝐴

𝑢
𝑗 }
𝑡
𝑗=0, 𝜋

𝑢 ) .

Denote these values by {𝑐𝑖 }𝑁𝑖=1, {𝐴 𝑗 }
𝑡
𝑗=0

(i.e., dropping

the supertext 𝑢). Note that there must be such 𝑢, as the

above certainly holds for 𝑢 = 𝑡 + 1 (as this is the honest
party simulated here.

(d) Extract the secret 𝑥𝑢 by decrypting 𝑐𝑖 for 𝑡 + 1 parties
(which is possible because there are at least 𝑡 + 1 parties
under the control of the simulator). Note that this also

enables obtaining log(𝐴 𝑗 ) for all 𝑗 ∈ [0, 𝑡] sent by 𝑃𝑢 .
(e) Compute [𝑥𝑐 ] ← SS.Share(𝑥𝑐 , 𝑡, 𝑁 ) for a random 𝑥𝑐 ←
Z𝑞 .

(f) Send [𝑥𝑐 ]𝑖 to the adversary for every 𝑖 ∈ [1, 𝑡].
(g) Set 𝑋0 = 𝑋 and compute 𝑋𝑖 = ( [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 ) · 𝐺 for

every 𝑖 ∈ [1, 𝑡]. Then compute 𝑋𝑖 =
∑𝑡
𝑗=0 𝑖

𝑗 · 𝑋 𝑗 for
every 𝑖 ∈ [𝑡 + 1, 𝑛].

(h) Broadcast 𝑋 and 𝑋𝑖 for every 𝑖 ∈ [1, 𝑛].
(i) Output whatever A outputs.

• Sign.
(1) Send (sign, sid) to FECDSA and obtain 𝑅, then send

(sign, sid, continue) and obtain (𝑟, 𝑠).
(2) Run A internally and simulates all other parties:

(a) Choose 𝑘𝑡+1, 𝑎𝑡+1 ← Z𝑞 , and send to the adversary

({𝑐𝑡+1
𝑘,𝑖
}𝑁𝑖=1, {𝐾

𝑡+1
𝑗 }

𝑡
𝑗=0, 𝜋

𝑡+1
𝑘
) ← PVSS.Share𝑡,𝑁 (𝑘𝑡+1),

({𝑐𝑡+1𝑎,𝑖 }
𝑁
𝑖=1, {𝐴

𝑡+1
𝑗 }

𝑡
𝑗=0, 𝜋

𝑡+1
𝑎 ) ← PVSS.Share𝑡,𝑁 (𝑎𝑡+1),

({𝑐𝑡+1𝑧,𝑖 }
𝑁
𝑖=1, {𝑍

𝑡+1
𝑗 }

𝑡
𝑗=0, 𝜋

𝑡+1
𝑧 ) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐𝑡+1𝑧′,𝑖 }
𝑁
𝑖=1, {𝑍

′𝑡+1
𝑗 }𝑡𝑗=0, 𝜋

𝑡+1
𝑧′ ) ← PVSS.Share2𝑡,𝑁 (0) .

(b) For every 𝑖 ∈ [1, 𝑡], receive from the adversary

({𝑐𝑖
𝑘,𝑖
}𝑁𝑖=1, {𝐾

𝑖
𝑗 }
𝑡
𝑗=0, 𝜋

𝑖
𝑘
) ← PVSS.Share𝑡,𝑁 (𝑘𝑖 ),

({𝑐𝑖𝑎,𝑖 }
𝑁
𝑖=1, {𝐴

𝑖
𝑗 }
𝑡
𝑗=0, 𝜋

𝑖
𝑎) ← PVSS.Share𝑡,𝑁 (𝑎𝑖 ),

({𝑐𝑖𝑧,𝑖 }
𝑁
𝑖=1, {𝑍

𝑖
𝑗 }

2𝑡
𝑗=0, 𝜋

𝑖
𝑧) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐𝑖𝑧′,𝑖 }
𝑁
𝑖=1, {𝑍

′𝑖
𝑗 }2𝑡𝑗=0, 𝜋

𝑖
𝑧′ ) ← PVSS.Share2𝑡,𝑁 (0) .

(c) Let 𝑢 ∈ [1, 𝑡 + 1] be the first index for which all sharings

above are verified.

(d) Denote the public values of 𝑃𝑢 by {𝐾𝑗 , 𝐴 𝑗 }𝑡𝑗=0 and {𝑍 𝑗 , 𝑍
′
𝑗
}2𝑡
𝑗=0

.

(e) Extract the values 𝑘𝑢 , 𝑎𝑢 and 𝑧𝑢 , 𝑧
′
𝑢 (the values 𝑧𝑢 and

𝑧′𝑢 are extractable via the zero knowledge functionality).

(f) Generate the sharings [𝑘𝑐 ], [𝑎𝑐 ], [𝑧𝑐 ] and [𝑧′𝑐 ] as in the

protocol, and send the adversary {[𝑘𝑐 ]𝑖 , [𝑎𝑐 ]𝑖 , [𝑧𝑐 ]𝑖 , [𝑧′𝑐 ]𝑖 }
for every 𝑖 ∈ [1, 𝑡].

(g) Broadcast 𝑅 (as received from the ECDSA functionality).

(h) Set 𝐾0 = 𝑅 and compute 𝐾𝑖 = ( [𝑘𝑢 ]𝑖 + [𝑘𝑐 ]𝑖 ) · 𝐺 for

every 𝑖 ∈ [1, 𝑡]. Then compute 𝐾𝑖 =
∑𝑡
𝑗=0 𝑖

𝑗 · 𝐾𝑗 for
every 𝑖 ∈ [𝑡 + 1, 𝑛].

(i) Compute𝐴𝑖 = ( [𝑎𝑢 ]𝑖 + [𝑎𝑐 ]𝑖 ) ·𝐺 , 𝑍𝑖 = ( [𝑧𝑢 ]𝑖 + [𝑧𝑐 ]𝑖 ) ·𝐺
and 𝑍 ′

𝑖
= ( [𝑧′𝑢 ]𝑖 + [𝑧′𝑐 ]𝑖 ) ·𝐺 for every 𝑖 ∈ [1, 𝑛].

(j) Broadcast (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍 ′𝑖 ) for every 𝑖 ∈ [1, 𝑛].
(k) Send (proof, sid∥1, 𝐴𝑡+1, 𝑋𝑡+1, 𝑀𝑡+1,1) and (proof, sid∥2, 𝐴𝑡+1, 𝐾𝑡+1, 𝑀𝑡+1,1)

to the adversary, in addition, receive and verify the adversary’s

proof on its𝑀𝑖,1, 𝑀𝑖,2 for every 𝑖 ∈ [1, 𝑡].
(l) When received 𝑡 + 1messages ( [𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2) for

𝑖 for which the proof is verified, broadcast the signature

(𝑟, 𝑠) as received from the ECDSA functionality.

(m) Output whatever A outputs.

First note that the honest parties’s output are identically distributed

in both real and ideal world. We now argue that the adversary’s

views in bothworld are computationally indistinguishable. The only

difference between the views is that in the simulation the values 𝑋𝑖
and 𝐾𝑖 for 𝑖 ∈ [𝑡 + 1, 𝑛] that are observed by the adversary (since 𝑃𝑐
broadcasts them) are not computed correctly by ( [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 ) ·𝐺
and ( [𝑘𝑢 ]𝑖 + [𝑘𝑐 ]𝑖 ) · 𝐺 ; rather, they are computed (interpolated)

directly from the values 𝑋0, . . . , 𝑋𝑡 and 𝐾0, . . . , 𝐾𝑡 (if they were not

interpolated this way then it would have been easy to detect this).

Now, since the adversary does not have any information about

( [𝑥𝑢 ]𝑖 + [𝑥𝑐 ]𝑖 ) or ( [𝑘𝑢 ]𝑖 + [𝑘𝑐 ]𝑖 ) it cannot tell the difference and
so the views are identically distributed.

Case 2. LetA be a semi-honest real world adversarywho corrupts

𝑃𝑐 . We present an ideal world adversary S that does as follows:

• Key Generation.
(1) Send (keygen) and (keygen, continue) to FECDSA, and obtain

𝑋 .

(2) Run A internally and simulate parties (𝑃1, . . . , 𝑃𝑛):

(a) Choose 𝑥𝑐 ← Z𝑞 (on behalf of 𝑃𝑐 ).
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(b) Compute 𝑋𝑢 = 𝑋 − 𝑥𝑐 ·𝐺 .
(c) Choose random values [𝑥𝑢 ]𝑖 ← Z𝑞 and compute 𝑐𝑖 ←

EG.Encek𝑖 ( [𝑥𝑢 ]𝑖 ) for 𝑖 ∈ [𝑛+1, 𝑁 ]; and 𝑐𝑖 ←← EG.Encek𝑖 (1)
for every other 𝑖 ∈ [1, 𝑛]. Finally compute 𝐴1, . . . , 𝐴𝑡 such

that

∑𝑡
𝑗=0 𝑖

𝑗𝐴 𝑗 = [𝑥𝑢 ]𝑖 ·𝐺 for every 𝑖 ∈ [𝑛 + 1, 𝑁 ] (this is
a linear system of 𝑡 equations with 𝑡 variables).

(d) Broadcast {𝑐𝑖 }𝑁𝑖=1, {𝐴 𝑗 }
𝑡
𝑗=0

, and 𝜋 , where 𝜋 is generated by

the HVZK simulator associated with the zero-knowledge

proof.

(e) Receive a call toH from the adversary and respond with

𝑥𝑐 chosen above.

(f) Receive [𝑥𝑐 ]𝑖 from the adversary for every 𝑖 ∈ [1, 𝑛].
(g) Receive 𝑋 and 𝑋𝑖 for every 𝑖 ∈ [1, 𝑛].
(h) Output whatever the adversary outputs.

• Sign.
(1) Send (sign, sid) and (sign, sid, continue) toFECDSA and obtain

𝑅 and (𝑟, 𝑠).
(2) Run A internally and simulates all other parties:

(a) Choose 𝑘𝑐 ← Z𝑞 (on behalf of 𝑃𝑐 ).

(b) Compute 𝑅𝑢 = 𝑅 − 𝑘𝑐 ·𝐺 .
(c) Choose random values [𝑘𝑢 ]𝑖 ← Z𝑞 and compute 𝑐𝑖 ←

EG.Encek𝑖 ( [𝑘𝑢 ]𝑖 ) for 𝑖 ∈ [𝑛+1, 𝑁 ]; and 𝑐𝑖 ←← EG.Encek𝑖 (1)
for every other 𝑖 ∈ [1, 𝑛]. Finally compute 𝐾1, . . . , 𝐾𝑡
such that

∑𝑡
𝑗=0 𝑖

𝑗𝐾𝑗 = [𝑘𝑢 ]𝑖 ·𝐺 for every 𝑖 ∈ [𝑛 + 1, 𝑁 ]
(this is a linear system of 𝑡 equations with 𝑡 variables).

(d) Broadcast {𝑐𝑘,𝑖 }𝑁𝑖=1, {𝐾𝑗 }
𝑡
𝑗=0

, and𝜋𝑘 , where𝜋𝑘 is generated

by theHVZK simulator associatedwith the zero-knowledge

proof.

(e) Choose random 𝑎𝑢 ← Z𝑞 and compute

({𝑐𝑎,𝑖 }𝑁𝑖=1, {𝐴 𝑗 }
𝑡
𝑗=0, 𝜋𝑎) ← PVSS.Share𝑡,𝑁 (𝑎𝑢 ),

({𝑐𝑧,𝑖 }𝑁𝑖=1, {𝑍 𝑗 }
𝑡
𝑗=0, 𝜋𝑧) ← PVSS.Share2𝑡,𝑁 (0),

({𝑐𝑧′,𝑖 }𝑁𝑖=1, {𝑍
′𝑢 𝑗 }𝑡𝑗=0, 𝜋𝑧′ ) ← PVSS.Share2𝑡,𝑁 (0) .

(f) Broadcast the PVSS results above.

(g) Receive a call toH from the adversary and respond with

𝑘𝑐 chosen above.

(h) Receive ( [𝑘𝑐 ]𝑖 , [𝑎𝑐 ]𝑖 , [𝑧𝑐 ]𝑖 , [𝑧′𝑐 ]𝑖 ) from 𝑃𝑖 for 𝑖 ∈ [1, 𝑛],
and extract 𝑎𝑐 (𝑧𝑐 and 𝑧

′
𝑐 could not be extracted since

they are shared using a sharing of degree 2𝑡 ).

(i) Receive 𝐾 and (𝐾𝑖 , 𝐴𝑖 , 𝑍𝑖 , 𝑍 ′𝑖 ) for all 𝑖 ∈ [1, 𝑛].
(j) At this point the simulator knows the values [𝑠1]𝑖 , [𝑠2]𝑖

for every 𝑖 ∈ [𝑛+1, 𝑁 ] that are computed by the adversary

in the local computation step.

(k) The simulator generates random sharings of degree 2𝑡

for random values 𝑠1, 𝑠2 such that: (1) the shares at points

𝑖 ∈ [𝑛 + 1, 𝑁 ] are those computed by the adversary; (2)

it holds that 𝑠1 · 𝑠−1
2

= 𝑠 and 𝑠 is the value received from

the ECDSA functionality.

(l) The simulator also compute the values𝑀𝑖,1, 𝑀𝑖,2 according

to the constraints implied in the protocol. Note that these

values will not meet the constraints required by the zero-

knowledge proof, however, the proof will be successfully

verified since it is simulated using the HVZK simulator

associated with it.

(m) The simulator sends [𝑠1]𝑖 , [𝑠2]𝑖 , 𝑀𝑖,1, 𝑀𝑖,2 to the adversary
for all 𝑖 ∈ [1, 𝑛].

(n) Receive 𝑠 from the adversary and output whatever it

outputs.

Note that here the view of the adversary under the simulation

is identical to its view in the real world, except the fact that the

ciphertext that are published under the encryption keys of parties

𝑃1, . . . , 𝑃𝑛 are incorrect, that is, they encrypt 0 instead of the actual

value. That value that should have been encrypted is unknown

to the simulator and hence could not be used. This however is

computationally indistinguishable by the adversary and hence it

will proceed with the protocol exactly as it would have proceed if

these ciphertext were encrypting the correct messages, as otherwise

we could have used that adversary in order to break the CPA-

security of El-Gamal (which relies on the DDH assumption).

A.3 Proof of Theorem 5.1
The two-party FECDSA is slightly different than the one presented

in Functionality 1. For the two-party, the functionality works only

with 𝑃𝑢 , 𝑃𝑐 and an adversary S, who cannot abort the execution

(but is mentioned in the functionality solely to emphasize this).

This is possible because the first (and only) message sent in the

protocol from 𝑃𝑢 to 𝑃𝑐 fully determines whether the adversary will

abort or not (by verifying the zero-knowledge proofs), and if so, the

honest party refuses to participate. In the ideal world, such refusal

is expressed by not invoking FECDSA at all. Finally, since this case

could not be translated to a honest majority protocol we could not

achieve fairness, and only 𝑃𝑢 obtains the result signature from the

functionality. For completeness, the modified version is presented

in Functionality 8.

We separately present a simulator to the case of malicious 𝑃𝑢
and semi-honest 𝑃𝑐 .

Case 1. Let A be a malicious real world adversary who corrupts

𝑃𝑢 , consider an ideal world adversary S that does as follows:

• Key Generation.
(1) Run A internally and simulate the honest party 𝑃𝑐 :

(a) Receive (𝑋𝑢 , 𝑝𝑘, 𝑐𝑘𝑒𝑦) and (prove, 𝑐𝑘𝑒𝑦, 𝑝𝑘, 𝑋𝑢 , 𝑥𝑢 , 𝑃,𝑄) from
𝑃𝑢 , set 𝑠𝑘 = (𝑃 − 1) (𝑄 − 1) and verify that (1) 𝑋𝑢 = 𝑥𝑢 ·𝐺 ,
(2) 𝑃,𝑄 are primes of length 𝜅′, (3) 𝑁 = 𝑃𝑄 , (4) 𝑥𝑢 =

Dec(𝑠𝑘, 𝑐𝑘𝑒𝑦). If verification fails then halt, otherwise continue.
(b) Send (keygen) to FECDSA and receive 𝑋 .

(c) Compute 𝑋𝑐 = (𝑥𝑢 )−1 · 𝑋𝑢 and send 𝑋 to A.

(d) Output whatever A outputs.

• Sign.
(1) Run A internally and simulate the honest party 𝑃𝑐 :

(a) Receive 𝑅𝑢 and (prove, sid, 𝑅𝑢 , 𝑘𝑢 ) from 𝑃𝑢 , verify that 𝑅𝑢 =

𝑘𝑢 ·𝐺 . If verification fails then halt, otherwise continue.

(b) Send (sign, sid, 𝑀) to FECDSA and receive 𝑅 and (𝑟, 𝑠).
(c) Choose 𝜌 ← Z𝑞2 and 𝑟 ← Z∗𝑁 , and compute 𝑐2 = Enc(𝑝𝑘, 𝜌𝑞+
[𝑘𝑢 · 𝑠 mod 𝑞]), where 𝑠 is the signature received from

FECDSA.
(d) Send 𝑐2 to A and output whatever A outputs.

Observe that the view of 𝑃𝑢 under simulation and in the real

execution are identically distributed, except of the value 𝑐2: in the

simulation it is an encryption of 𝑧′
1
= 𝜌𝑞 + [𝑘𝑢 · 𝑠 mod 𝑞] whereas
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in the real execution it is an encryption of 𝑧′
2
= 𝜌𝑞 + [(𝑘𝑐 )−1𝑚

mod 𝑞] + [(𝑘𝑐 )−1𝑟𝑥𝑐 mod 𝑞] ·𝑥𝑢 , where 𝜌 is a random value from

{0, . . . , 𝑞2−1}. Denote by 𝑧1, 𝑧2 the values wihtout the addition of a

random multiple of 𝑞, that is, 𝑧1 = 𝑘𝑢 · 𝑠 mod 𝑞 and 𝑧2 = [(𝑘𝑐 )−1𝑚
mod 𝑞] + [(𝑘𝑐 )−1𝑟𝑥𝑐 mod 𝑞] · 𝑥𝑢 . Note that we consider 𝑧1 and
𝑧2 over the integers, rather than over Z𝑞 . In [47] the values 𝑧′

1
and

𝑧′
2
are shown to be statistically close (as long as all conditions on

𝑋𝑢 , 𝑝𝑘 and 𝑐𝑘𝑒𝑦 are met, which is guaranteed by using an ideal

functionality for zero-knowledge). We present this analysis here

for completeness.

Consider the real world value 𝑧2, it is an integer result of the

addition of an element from Z𝑞 (namely (𝑘𝑐 )−1𝑚 mod 𝑞) with the

product of of two elements from Z𝑞 (namely [(𝑘𝑐 )−1𝑟𝑥𝑐 mod 𝑞] ·
𝑥𝑢 ), and we know that by reducing that integer modulo 𝑞 we get

𝑘𝑢 · 𝑠 mod 𝑞 (where (𝑟, 𝑠) the ECDSA signature on𝑀 obtained by

the functionality), thus there exists some ℓ ∈ N such that [𝑘𝑢 · 𝑠
mod 𝑞] + ℓ · 𝑞 = 𝑧2. Also, note that 0 ≤ ℓ < 𝑞 since 𝑧2 < 𝑞(𝑞 − 1),
so the difference between the simulation and the real world is:

• Real: ciphertext 𝑐2 encrypts 𝑧
′
2
= [𝑘𝑢 · 𝑠 mod 𝑞] + ℓ ·𝑞 + 𝜌 ·𝑞,

and

• Simulation: ciphertext 𝑐2 encrypts 𝑧
′
1
= [𝑘𝑢 ·𝑠 mod 𝑞] +𝜌 ·𝑞.

We show that with a random choice of 𝜌 ∈ Z𝑞2 the values 𝑧′1 and 𝑧
′
2

are statistically close. Fix 𝑘𝑢 and 𝑠 , then for every 0 ≤ 𝜁 < 𝑞 define

𝑣 = [𝑘𝑢 · 𝑠 mod 𝑞] + 𝜁 · 𝑞, we have:
• If 0 ≤ 𝜁 < ℓ then Pr[𝑧′

1
= 𝑣] = 1/𝑞2 but Pr[𝑧′

2
= 𝑣] = 0

(because 𝑧′
2
> [𝑘𝑢 · 𝑠 mod 𝑞] + ℓ · 𝑞).

• If 𝑞2 − 1 < 𝜁 < ℓ + 𝑞2 then Pr[𝑧′
2
= 𝑣] = Pr[𝜌 = 𝑞2 −

1 − ℓ] = 1/𝑞2 but Pr[𝑧′
1
= 𝑣] = 0 (because 𝑧′

1
≤ [𝑘𝑢 · 𝑠

mod 𝑞] + (𝑞2 − 1)𝑞).
• If ℓ ≤ 𝜁 ≤ 𝑞2 − 1 then Pr[𝑧′

1
= 𝑣] = Pr[𝜌 = 𝜁 ] = 1/𝑞2 and

Pr[𝑧′
2
= 𝑣] = Pr[𝜌 = 𝜁 − ℓ] = 1/𝑞2.

We get that Δ(𝑧′
1
, 𝑧′

2
) =

∑ℓ+𝑞2−1
𝜁=0

��
Pr[𝑧′

1
= 𝑣] − Pr[𝑧′

2
= 𝑣]

�� = 2ℓ
𝑞2
,

which is negligible.

Case 2. LetA be a semi-honest real world adversarywho corrupts

𝑃𝑐 , consider an ideal world adversary S that does as follows:

• Key Generation.
(1) Run A internally and simulate the honest party 𝑃𝑢 :

(a) Receive the oracle call and obtain 𝑣 , forward 𝑣 to the RO and

obtain 𝑣𝑥 , forward 𝑣𝑥 back to A.

(b) Receive 𝑣𝑥 from A.

(c) Compute 𝑥𝑐 = H(𝑣 ∥keygen), 𝑋𝑐 = 𝑥𝑐 ·𝐺 and 𝑋𝑢 = (𝑥𝑐 )−1 ·
𝑋 .

(d) Generate a Paillier key-pair (𝑝𝑘, 𝑠𝑘) where 𝑝𝑘 = 𝑁 = 𝑃 ·𝑄 ,
with 𝜅′-bit primes 𝑃,𝑄 , and compute 𝑐𝑘𝑒𝑦 = Enc(𝑝𝑘, 0).

(e) Send (𝑋𝑢 , 𝑝𝑘, 𝑐𝑘𝑒𝑦) and (proof, 𝑐𝑘𝑒𝑦, 𝑁 , 𝑋𝑢 ) to 𝑃𝑐 .
(f) Send (proof,
(g) Receive 𝑋 from A and output whatever A outputs.

• Sign.
(1) Run A internally and simulate the honest party 𝑃𝑐 :

(a) Receive 𝑅 from FECDSA.
(b) Compute 𝑘𝑐 = H(𝑣 ∥sid), and computes 𝑅𝑢 = (𝑘𝑐 )−1 · 𝑅.
(c) Send 𝑅𝑢 and (proof, sid, 𝑅𝑢 ) to A.

(d) Receive 𝑐2 from A and output whatever A outputs.

The views ofA in the real execution and under the simulation of

the key generation protocol are computationally indistinguishable:

the value 𝑋𝑢 (and therefore 𝑋 ) are identically distributed in G and

the key-pairs generated in both worlds are identically distributed.

The only difference is in the generation of ciphertext 𝑐𝑘𝑒𝑦 : in the

real execution this is an encryption of 𝑥𝑢 and in the simulation this

is an encryption of zero, and since Paillier encryption scheme is

CPA-secure it follows that that the two views are computationally

indistinguishable.

In addition the views of A in the real execution and under the

simulation of the signing protocol are identically distributed, in both

cases it only receives 𝑅𝑢 and (proof, sid, 𝑅𝑢 ), such that 𝑘𝑐 · 𝑅𝑢 = 𝑅,

with 𝑅 chosen by the functionality. Note that unlike in [47], since

we assume A is semi-honest it always reply with a ciphertext

that holds a correct evaluation on 𝑐𝑘𝑒𝑦 and so we do not need to

guess whether to abort or not, neither to rely on the ‘Paillier-EC’

assumption [47, Def. 5.2].

B FUNCTIONALITY FOR TWO-PARTY ECDSA

FUNCTIONALITY 8.

(
2P ECDSA Functionality: FECDSA

)
The functionality is parameterized with the ECDSA group

description (G,𝐺,𝑞) and works with parties 𝑃𝑢 , 𝑃𝑐 , and an

adversary S as follows.

• Upon receiving (keygen) from 𝑃𝑢 :

(1) Generate an ECDSA key-pair (𝑋, 𝑥 ) by choosing a random

𝑥 ← Z∗𝑞 and computing 𝑋 = 𝑥 ·𝐺 .

(2) Choose a hash function 𝐻𝑞 : {0, 1} → {0, 1} ⌊log𝑞⌋ .
(a) Store (𝐻𝑞, 𝑥 ) .
(b) Output 𝑋 to 𝑃𝑢 and 𝑃𝑐 .

(c) Ignore future calls to keygen.

• Upon receiving (sign, sid, 𝑀 ) from 𝑃𝑢 , if keygen was already

called and sid was not already used:

(1) Choose a random 𝑘 ∈ Z∗𝑞
(2) Compute 𝑅 ← 𝑘 · 𝐺 and let 𝑟 = 𝑅.𝑥 mod 𝑞; then send 𝑅 to

𝑃𝑢 and 𝑃𝑐 .

(3) Let𝑚 = 𝐻𝑞 (𝑀 ) . Compute 𝑠 ← 𝑘−1 (𝑚 + 𝑟𝑥 ) mod 𝑞.

(4) Send (𝑟, 𝑠 ) to 𝑃𝑢 and S.

C ZERO KNOWLEDGE PROOF OF
KNOWLEDGE

For an NP-relation 𝑅, we use the F 𝑅zk functionality (Functionality 9

below). The protocols we use to realize F 𝑅zk are public coin, therefore
they can be instantiated with a non-interactive version in the

random oracle model via the Fiat-Shamir transform.

FUNCTIONALITY 9.

(
The ZKPoK Functionality: F𝑅zk

)
The functionality works with a prover P and verifiers

®V .

• Upon receiving (prove, sid, 𝑥, 𝑤 ) from P, if (𝑥, 𝑤 ) ∈ 𝑅 and sid
has never been used before, send (proof, sid, 𝑥 ) to ®V .
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