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A Tensor Compiler with Automatic Data Packing for Simple
and Efficient Fully Homomorphic Encryption

ALEKSANDAR KRASTEV∗, NIKOLA SAMARDZIC∗, SIMON LANGOWSKI, SRINIVAS

DEVADAS, and DANIEL SANCHEZ,Massachusetts Institute of Technology, USA

Fully Homomorphic Encryption (FHE) enables computing on encrypted data, letting clients securely offload

computation to untrusted servers. While enticing, FHE has two key challenges that limit its applicability: it

has high performance overheads (10,000× over unencrypted computation) and it is extremely hard to program.

Recent hardware accelerators and algorithmic improvements have reduced FHE’s overheads and enabled large

applications to run under FHE. These large applications exacerbate FHE’s programmability challenges.

Writing FHE programs directly is hard because FHE schemes expose a restrictive, low-level interface that

prevents abstraction and composition. Specifically, FHE requires packing encrypted data into large vectors

(tens of thousands of elements long), FHE provides limited operations on these vectors, and values have noise

that grows with each operation, which creates unintuitive performance tradeoffs. As a result, translating large

applications, like neural networks, into efficient FHE circuits takes substantial tedious work.

We address FHE’s programmability challenges with the Fhelipe FHE compiler. Fhelipe exposes a simple,

numpy-style tensor programming interface, and compiles high-level tensor programs into efficient FHE

circuits. Fhelipe’s key contribution is automatic data packing, which chooses data layouts for tensors and

packs them into ciphertexts to maximize performance. Our novel framework considers a wide range of layouts

and optimizes them analytically. This lets Fhelipe compile large FHE programs efficiently, unlike prior FHE

compilers, which either use inefficient layouts or do not scale beyond tiny programs.

We evaluate Fhelipe on both a state-of-the-art FHE accelerator and a CPU. Fhelipe is the first compiler that

matches or exceeds the performance of large hand-optimized FHE applications, like deep neural networks,

and outperforms a state-of-the-art FHE compiler by gmean 18.5×. At the same time, Fhelipe dramatically

simplifies programming, reducing code size by 10×–48×.

CCS Concepts: • Software and its engineering → Compilers; • Security and privacy → Cryptography.
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1 INTRODUCTION

Fully Homomorphic Encryption (FHE) is an emerging class of encryption that allows computing
directly on encrypted data. FHE enables offloading computation to untrusted servers in the cloud
with cryptographic privacy. While enticing, FHE is rarely used today due to two key challenges: it
has high performance overheads, and it is extremely hard to program.

∗Both authors contributed equally to this work.

Authors’ address: Aleksandar Krastev, alexalex@csail.mit.edu; Nikola Samardzic, nsamar@csail.mit.edu; Simon Langowski,

slangows@mit.edu; Srinivas Devadas, devadas@csail.mit.edu; Daniel Sanchez, sanchez@csail.mit.edu, Massachusetts

Institute of Technology, USA.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART152

https://doi.org/10.1145/3656382

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 152. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/
HTTPS://ORCID.ORG/0000-0002-4751-6472
HTTPS://ORCID.ORG/0000-0001-9188-0717
HTTPS://ORCID.ORG/0000-0003-2408-8441
HTTPS://ORCID.ORG/0000-0001-8253-7714
HTTPS://ORCID.ORG/0000-0001-8253-7714
HTTPS://ORCID.ORG/0000-0002-2453-2904
https://doi.org/10.1145/3656382
https://orcid.org/0000-0002-4751-6472
https://orcid.org/0000-0001-9188-0717
https://orcid.org/0000-0003-2408-8441
https://orcid.org/0000-0001-8253-7714
https://orcid.org/0000-0002-2453-2904
https://doi.org/10.1145/3656382


152:2 Aleksandar Krastev, Nikola Samardzic, Simon Langowski, Srinivas Devadas, and Daniel Sanchez

Currently, FHE programs are about 10,000× slower than their unencrypted equivalents when
run on a CPU. This has sparked work that has countered most of these overheads: FHE accelerator
chips [45–47, 74, 75] are about 10,000× faster than CPUs; and recent GPU [42] and FPGA [5, 85]
implementations achieve speedups beyond 100×. For example, deep neural networks like ResNet
can be evaluated in seconds on a GPU using modern FHE libraries and optimizations [66].
As FHE infrastructure and optimizations enable large and complex applications, it becomes

crucial to tackle the programmability challenges of FHE through new compiler techniques. While
recent work has proposed compilers for FHE, they either leave significant performance on the table
or tackle only small programs with tens of operations. Thus, large applications are still coded by
hand, a tedious process that takes weeks or months of work. In this paper, we present a compiler
called Fhelipe that, for the first time, translates large applications into efficient FHE programs that
match or outperform state-of-the-art, painstakingly optimized hand-coded programs.

def f(x: Tensor):
 for i in range(10):
  x = convLayer(x, w)
 return x
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Fig. 1. Overview of FHE execution. FHE

computations are circuits that are hard to

write manually. An FHE compiler automati-

cally produces an FHE circuit from a high-

level program.

Why is FHE hard to program? Fig. 1 shows how FHE
execution works. A client wants to compute an expensive
function 5 (e.g., a DNN inference) on private data G . The
client encrypts G and sends it to the server, which uses
FHE to compute 5 (G) directly on encrypted data G , and
returns the encrypted result. To do this, the server runs
5��� , an FHE implementation of 5 , i.e., an implementation
using the datatypes and operations supported by FHE.
Because data G is encrypted, FHE programs are cir-

cuits (i.e., static dataflow graphs), as it’s impossible to
perform data-dependent operations (e.g., branching) on
encrypted data. Though FHE is not Turing-complete, it
is sufficient to implement a broad class of computations.
But writing 5��� by hand is hard. The goal of FHE com-
pilers, as shown in Fig. 1, is to produce 5��� from an
implementation of 5 in a higher-level language.
Specifically, modern FHE schemes like CKKS [18] ex-

pose a restrictive and low-level vector interface with three
characteristics that complicate programming:
(1) Each ciphertext encrypts a huge vector , tens of thousands of elements long.
(2) Each encrypted vector supports limited operations: addition, multiplication, and rotations.
(3) Encrypted vectors have noise that grows with each operation, especially multiplications. This

requires expensive noise management operations to preserve correctness. Thus, minimizing
the circuit’s multiplicative depth is key for performance.

How do programmers cope with FHE’s challenges? Using FHE’s huge vectors well requires
filling them with data. But applications do not have vectors with tens of thousands of elements, so
the general strategy is to pack FHE vectors with larger data structures, like a matrix, tensor, or tile.
This allows implementing many kernels, like matrix-vector multiply, as massively data-parallel
procedures (e.g., operating on the whole matrix at once) despite FHE’s limited operation set.
The key challenge to pack data well is choosing a good data layout, i.e., how multidimensional

data is packed into vectors. Even if FHE vectors start fully packed, kernels perform reductions
that induce large gaps of empty vector elements, and leave output elements in a different order
than the input. Unlike conventional SIMD processing, FHE does not allow accessing individual
vector elements, and reordering elements is very expensive. Thus, programmers manually codesign
kernels and data layouts to (1) achieve good packing, and (2) avoid costly conversions. This often
requires reimplementing a kernel for many different data layouts.
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As a result, finding efficient layouts manually is very tricky (Sec. 2.2). For example, Lee et al.’s state-
of-the-art FHE ResNet introduces a new layout for efficient multi-channel convolutions [51–53],
that relies on a complex interleaving, and builds on years of prior work on this problem [13, 31, 44].
Why are current FHE compilers insufficient? Recent FHE compilers recognize that data layouts
are key, but they either leave substantial performance on the table or only handle tiny programs.
CHET [26], HECO [79], and HeLayers [6] are FHE compilers that abstract data layouts: pro-

grammers use a high-level language, and they automatically pack data into FHE vectors. But these
compilers use a limited set of layouts (e.g., row-major for CHET, column-major for HECO, and
the same layout throughout the program for HeLayers), which forces either inefficient packing
or expensive conversions. Moreover, these compilers rely on profiling to choose layouts, which is
expensive and greatly limits their search space. Though these compilers scale to large programs,
their limited layouts cause order-of-magnitude overheads over hand-coded benchmarks.
Prior work has also proposed compilers based on program synthesis, Porcupine [23] and Coy-

ote [58]. These are analogous to superoptimizers [59]: they produce high-performance FHE circuits,
but work only on tiny kernels with tens of instructions [23, 58] and cannot scale to large applications.

To tackle these challenges, we present Fhelipe, a tensor compiler that translates applications
written in a simple, numpy-style tensor language to efficient FHE programs. Fhelipe relies on two
key novel contributions:
1. A flexible framework to represent and optimize data layouts, achieving the dual goals
of maximizing packing and minimizing costly layout conversions. Our approach builds on four
new techniques. First, we introduce a new layout representation that enables many packing choices,
including arbitrary dimension orders and interleaved dimensions. This representation captures the
complex layouts used in real-world programs. Second, we contribute a novel compaction technique
that leverages our flexible layouts to pack data with little cost and achieve high utilization. Third,
we contribute an analytical layout assignment procedure that chooses layouts throughout the
program to minimize the number and cost of layout conversions. This process systematically
negotiates complex choices, and avoids the limitations of prior profiling-based approaches. Fourth,
we contribute novel layout conversion techniques that reduce the cost of necessary conversions.
2. Automatic end-to-end noise management, including bootstrapping: Compiling large FHE
programs requires addressing one more challenge beyond layouts: to cope with noise, programs
must perform auxiliary noise management operations to prevent data corruption. Prior compilers
like EVA and HECATE [25, 55] have automated the local aspects of noise management (rescaling).
However, large programs require bootstraps, expensive operations that reset ciphertext noise.
Bootstraps often dominate execution time, and placing them well is hard because it requires
reasoning about global program structure; optimal bootstrap placement is NP-hard [9], and the
only prior automatic technique, FHE-booster [83], places bootstraps poorly (Sec. 8.1).
We present a new scalable algorithm for automatic bootstrap placement. We identify a set of

simple heuristics that reduces this problem to dynamic programming. This lets Fhelipe efficiently
place bootstraps in close to linear time.

Together, these contributions enable abstraction and composition. Even local changes to an
FHE kernel often change the layout and noise of its output. Without a compiler, this requires (1)
rewriting all downstream kernels to use compatible layouts and (2) performing noise management
from scratch. Fhelipe automates these, drastically reducing programmer effort: for example, Lee et
al.’s hand-coded ResNet takes 4,800 lines of code [52]; with Fhelipe, it takes just 100.

We implement Fhelipe targeting CKKS on both CPUs and CraterLake [75], a state-of-the-art FHE
accelerator. We evaluate Fhelipe on several complex FHE programs, including neural networks,
logistic regression training, and higher-dimensional tensor kernels. Fhelipe is the first compiler to
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match or exceed the performance of these large and carefully hand-optimized FHE applications,
with speedups of up to 12.3×; Fhelipe also outperforms CHET+, which is CHET+EVA extended
with automatic bootstrapping, by gmean 18.5×.

2 BACKGROUND AND MOTIVATION

In this section, we first present the necessary background on FHE, focusing on the CKKS scheme
targeted by Fhelipe; then, we show the importance of data layouts in FHE; finally, we discuss prior
compilers and their limitations.

2.1 FHE Schemes

There are two types of FHE schemes: vector schemes like BGV and CKKS [11, 12, 18, 29], encrypt
long vectors of numbers and provide arithmetic operations on them, and scalar schemes like
FHEW/TFHE [21, 27] encrypt one value per ciphertext, typically a Boolean or a small integer.
Scalar schemes are more flexible than vector ones, but they have have much higher overheads,

especially in data-parallel applications. For example, in ResNet-20, the Lattigo CPU CKKS library
takes 31`s on average per application-level scalar multiply (Table 5); the TFHE-rs [86, 88] library
takes 2.1s per 32-bit multiply, over 60,000× slower. For this reason, Fhelipe targets CKKS [18], the
state-of-the-art vector scheme. But Fhelipe’s techniques apply to all vector schemes, as they all
have the same operations and performance trade-offs.

We introduce CKKS’s interface, i.e., its datatypes and operations, without delving into its imple-

mentation. We present only the details needed to understand CKKS’s tradeoffs between performance,
security, and correctness; full implementation details are available in prior work [18, 69, 75].
Ciphertexts encrypt long vectors: In CKKS, each ciphertext encrypts a vector of = fixed-point
numbers. Each ciphertext has a scale parameter, B , that determines the width of the fractional part
of each element; typically, B is between 30–60 bits.
Internally, ciphertexts are represented using two polynomials with integer coefficients modulo

some value. Typically, coefficient bitwidthF is over 1,000 bits, much larger than B .
Due to security requirements (that we detail later), = must be quite large, typically 32K or 64K.

As leaving vector slots unused does not reduce operation costs, applications must find ways to fill
these large vectors to avoid ineffectual work.
FHE provides a limited set of operations: Ciphertexts support only three operations, called ho-

momorphic operations: elementwise adds, elementwisemultiplies, and cyclic rotates of the underlying
encrypted vectors (add and multiply allow their second operand to be unencrypted).

FHE programs are static dataflow graphs of these operations: since data is encrypted, there is no
data-dependent control flow and all operations are known in advance.
Note that FHE provides no way to access individual vector elements. As a result, shuffling

vector elements is tremendously expensive, requiring many rotates and multiplies; this is a major
difference between FHE and conventional SIMD processing, as in vector instructions or GPUs.

Homomorphic operations have costs that vary with vector length = and coefficient widthF :1

• Adds of all types, and multiplies of an encrypted and an unencrypted vector are cheap, costing
$ (= ·F).

• Rotates, and multiplies of two encrypted vectors are expensive, costing $ (= ·F2).
However, these direct costs tell only part of the story: operations also indirectly affect the cost of

other operations due to noise, which we discuss next.

1Costs are given in aggregate bit-complexity per homomorphic operation; they are derived from a state-of-the-art CKKS

implementation that is optimized with RNS representation, NTTs, and multi-digit keyswitching [63, 75].
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Performance depends on multiplicative depth: For security, ciphertexts are encrypted with a
small amount of noise. Unfortunately, homomorphic operations increase noise, and if noise becomes
too large, it corrupts the underlying encrypted values. Noise grows primarily due to multiplies:
each one adds about B bits of noise. Adds and rotates add negligible noise.

There are two main techniques to keep noise in check:
(1) Noise is trimmed by progressively narrowing F . In CKKS,F is reduced by about B bits after each
multiply through two operations, rescaling and mod-switching. Thus, each ciphertext supports
; ≈ F/B noise trims before running out of bitwidth; we call ; the level of the ciphertext. Rescaling
and mod-switching are cheap and prior work has already proposed effective ways to apply them
automatically [25, 54, 55].
(2)OnceF cannot be narrowed further (; reaches 0), the ciphertext must be bootstrapped, a procedure
that lowers noise and restores the ciphertext to a high F , letting it undergo more operations.
Though bootstraps enable arbitrarily deep computations, they are extremely expensive: they
involve hundreds of rotates and multiplies of high-F ciphertexts. Thus, they should be minimized.
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Fig. 2. Noise management affects ciphertext coeffi-

cient width (F ). NarrowingF a�er operations trims
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F ciphertext.

Fig. 2 shows how F evolves in a typical pro-
gram: F decreases as noise is trimmed, then re-
sets up during bootstrapping. Since multiplies
consume F , the number of bootstraps depends
on the application’s multiplicative depth (i.e., the
longest chain of multiplies). And since bootstraps
dominate cost in most FHE programs, reducing
multiplicative depth is in practice far more im-
portant than minimizing direct operation costs.

2.2 Data Layout Is Crucial

Selecting good layouts is crucial in FHE. We first show this concretely with a simple example, then
discuss how this problem affects more complex prior applications.

Consider aworkload that consists of successivematrix-vectormultiplications: each stepmultiplies
an<-element vector with an<×< matrix, producing an<-element output vector for the next step.
This workload arises frequently, in e.g., fully connected or recurrent neural network (RNN) layers.

FHE ciphertexts have thousands of slots, and using all of these slots is crucial for performance.
For concreteness, assume<=128-element vectors and ==16K-slot ciphertexts. Placing each matrix
row in a separate ciphertext would be tremendously inefficient, as each ciphertext would use only
128 of these slots. Instead, we must pack data further: we store the entire< ×< matrix in one
ciphertext, using all its 16K slots. Fig. 3 shows this example scaled down to<=4 and ==16.
To perform the matrix-vector multiply efficiently, we replicate vector E to match the shape of

matrix � (Fig. 3b, step 1), then compute all partial products using a single FHE multiply (step 2),
and finally sum each row’s partial products to produce the output vector (step 3). This procedure is
efficient because replicate and sum are relatively cheap in FHE, performing only log<=7 rotates and
adds; overall, this computes matrix-vector multiply in multiplicative depth 1 and modest overhead.

The problem is that this procedure leaves the output in a different format than the input: while the
input G ’s elements are contiguous, the output ~’s elements have gaps of< − 1 unused slots. These
gaps cannot be removed efficiently: rotates are the only mechanism for moving elements between
slots, and each of the< output elements must be rotated by a different amount. Converting ~ back
to G ’s contiguous layout requires 128 rotates and masks, which would add about 10× overhead.
The right approach is to use different layouts for successive matrix-vector multiplies: instead

of converting ~ to follow G ’s layout, we can find a different procedure that uses ~ as-is. In this
simple example, this is achieved by alternating row-major and column-major layouts on successive
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Fig. 3. Example workload consisting of successive 4×4 matrix-vector multiplies: (a) � · G = ~. (b) Row-major

implementation of� ·G = ~ using ==16-slot ciphertexts. The resulting ciphertext ~ has gaps that are expensive

to remove. (c) Column-major implementation of � · ~ = I, which allows using ~’s ciphertext from (a) as-is.

matrix-vector multiplies, as Fig. 3c shows: a column-major procedure takes an input with gaps,
and produces an output with contiguous elements.
Stitching these layouts manually is tedious: changing the layout of a tensor requires rewriting

all downstream computation. And this example only scratches the surface of the issues in finding
good layouts in complex applications.

For a more complex example, consider deep learning. In 2018, GAZELLE [44] proposed a clever
layout for convolutional layers that allowed packing across input or output channels, but not both.
In 2022, Lee et al. [52] invented a more complex layout that allows full packing, even with striding,
and improves ResNet performance by about 10×. This layout uses a tricky interleaving of elements
(see Sec. 5.6 and [52, Fig.3, Fig.5]). Similarly, LoLa [13] achieves large speedups over CryptoNets [31]
through the use of efficient data layouts.

In summary, experts spend substantial effort to find data layouts, and the key contribution inmany
FHE application papers is a new layout. Fhelipe is the first compiler that finds and systematically
optimizes these layouts, matching or outperforming these manual implementations.

2.3 Prior FHE Compilers

Prior FHE compilers automate important aspects of FHE programming, but have key limitations.
Table 1 summarizes the main differences among these compilers.
Tensor compilers: CHET [26] is a domain-specific compiler for neural networks. CHET abstracts
the data layout of FHE programs, like Fhelipe. However, CHET is very different from Fhelipe: First,
it provides a limited interface that supports only a few coarse-grained operations (e.g., convolutions
and fully connected layers); by contrast, Fhelipe exposes a general tensor programming interface
that enables a broad set of applications beyond the specific neural nets targeted by CHET. Second,
CHET considers only row-major layouts; Fhelipe considers a far wider range of layouts, where
dimensions can be in arbitrary orders and interleavings. Third, CHET compares layout choices by
profiling, which limits it to evaluate only four layout combinations per program; instead, Fhelipe
selects layouts analytically, without profiling, and systematically produces programs that combine
hundreds of different layouts in linear time. As Sec. 8 shows, CHET’s limited layouts cause large
overheads: gmean 18.5× in neural networks and up to 7,600× in tensor applications.
Other tensor compilers improve some aspects of CHET, but share many of its limitations.

HECO [79] is a more general compiler than CHET that works by automatically vectorizing scalar
loop nests to FHE. But like CHET, HECO uses a fixed layout (column-major) for all tensors.
AHEC [16] compiles a range of machine learning frameworks down to different hardware backends,
but it also does not optimize layouts.
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Table 1. Prior FHE compilers have key limitations. By contrast, Fhelipe supports automatic layout assignment,

automatic bootstrap placement, programs with millions of operations, and a general tensor-based interface.

Auto

Layouts

Many

Layouts

Auto

Bootstrap

Large

Programs

General

Interface

CHET [26], ✓ ✗ ✗ ✓ ✗

HECO [79], HeLayers [6] ✓ ✗ ✗ ✓ ✓

EVA [25], HECATE [55], ELASM [54] ✗ ✗ ✗ ✓ ✓

Porcupine[23] ✗ ✗ ✗ ✗ ✓

Coyote[58] ✓ ✓ ✗ ✗ ✓

Fhelipe ✓ ✓ ✓ ✓ ✓

nGraph-HE2 [10] and SEALion [77] are also compilers for neural networks, but they use only
one ciphertext slot per inference and rely on batching to use more slots. Batching many inferences
together makes vectorization easy, but it is impractical: using all slots requires batching ==32K
inferences. Individual clients cannot provide this many inferences, and on large networks like
ResNet-20, batched activations take 100s of GB of memory [52, 75].
Finally, HeLayers [6] is a compiler for neural networks that supports a wider range of layouts

than row- or column-major. But these are only a small subset of Fhelipe’s layouts, which limits
packing. Moreover, HeLayers picks a single layout for the whole program, and uses profiling to
select it. Thus, HeLayers has similar overheads to CHET: its evaluation reports similar performance
on single inferences, and HeLayers outperforms CHET substantially only when batching is used [6].
Vector compilers: EVA [25],HECATE [55], and ELASM [54] abstract key details of CKKS, preventing
several correctness and security bugs. Their main contributions are efficient techniques for inserting
rescaling (managing noise by trimming coefficients, Sec. 2.1). However, these compilers expose a
vector interface that leaves data layouts to programmers. Their techniques are orthogonal to our
contributions, and in fact, Fhelipe adopts EVA’s waterline rescaling.
Alchemy [24], E3 [20], Marble [81], and T2 [33] are also vector compilers, but they do not

optimize rescaling.
Program synthesis: Porcupine [23] and Coyote [58] use program synthesis techniques to optimize
tiny FHE kernels. Like Fhelipe, Coyote optimizes layouts, whereas Porcupine leaves them to
programmers. These techniques work well on small programs, but are limited to programs with
only tens of scalar operations: they are so expensive that they would take years to compile any
real-world application. For example, Coyote [58] takes ≈10s per scalar operation. Extrapolating
linearly (generous, since its search algorithms are superlinear), ResNet-20 (120M operations) would
take 3.8 years. By contrast, Fhelipe leverages scalable optimizations to compile programs with
millions of operations in seconds (e.g., 15s for ResNet-20).
Automatic bootstrapping: All compilers mentioned so far target small applications and do not
perform bootstrapping. FHE-Booster [83] is recent work that automates bootstrapping. However,
FHE-Booster uses score-based heuristics that achieve limited speedups and incur pathologies, as
we show in Sec. 8. Moreover, these heuristics have superlinear runtime, and take many minutes or
fail to complete in some circuits [82]. By contrast, Fhelipe uses heuristics to reduce the problem to
dynamic programming, which it solves optimally in close to linear time.

DaCapo [19] is concurrent work that, like Fhelipe, automates bootstrapping by applying heuristics
to reduce the search space and then optimizing in polynomial time.
Scalar FHE compilers: Several prior compilers target scalar FHE schemes [14, 15, 22, 32, 50, 80, 87],
like TFHE. These compilers have different objectives from vector ones: scalar schemes encrypt one
value per ciphertext, so packing is unnecessary, and they bootstrap after every operation. However,
as Sec. 2.1 discussed, scalar schemes have much higher overheads than vector ones.
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3 FHELIPE OVERVIEW Tensor DSL program

Frontend parser

Assign layouts

Rescaling

Bootstrapping

Tensor DFG

+layouts

+depths

Lower to FHE ops

CPU

backend

Accelerator

backend

Fig. 4. Fhelipe overview.

Fig. 4 shows an overview of Fhelipe. Fhelipe takes as input a program
written in a simple tensor language (Sec. 4) that hides FHE details.

Fhelipe first parses the program to produce a dataflow graph (DFG) of
tensor operations, which is refined in successive passes. Then, Fhelipe as-
signs layouts to tensors (Sec. 5), inserting layout conversions when needed.
Next, Fhelipe applies noise-management techniques: waterline rescaling
first, and then automatic bootstrapping (Sec. 6).
Finally, Fhelipe lowers tensor operations to CKKS homomorphic oper-

ations on vector ciphertexts. The resulting circuit can be executed by a
variety of backends: Fhelipe currently supports the Lattigo CPU FHE li-
brary [63] and the CraterLake FHE accelerator [75]. Adding other backends
(e.g., other CPU [1, 3, 7, 34] and GPU [43] libraries) would be easy: for scale,
the Lattigo backend is only 400 lines of code (2% of the codebase).

4 FHELIPE PROGRAMMING INTERFACE

Fhelipe’s input language represents data as tensors: multidimensional arrays of fixed-point numbers.
Table 2 details the language’s native operations. This is a Python-embedded DSL, providing usual
conveniences like functions and loops. Overall, this interface is similar to numpy [39] and other
tensor languages, like those provided by PyTorch [68] and TensorFlow [4]. Listings 1 and 2 show
two basic examples: matrix-vector multiply and convolution. Note that, while tensors have a logical
shape, their ciphertext layout is left unspecified. For instance, Listing 1 can be synthesized using
both the row-major and the column-major layouts from Sec. 2.2 (and many others).
Because Fhelipe enables composability, programmers can reuse procedures like these to build

more complex ones. We implement a simple standard library that we reuse across applications. It

Table 2. Fhelipe’s native operations on tensors.

Operation Description

t + u Elementwise add

t * u Elementwise multiply

t.shift(dim: int, by: int) Shift along dim

t.rotate(dim: int, by: int) Cyclic shift along dim

t.extend(dim: int, size: int) Zero-pad dim up to size

t.shrink(dim: int, size: int) Shrink dim down to size

t.stride(dim: int, by: int)

Discard indices

8 . 0 (mod 1~) ; by

must be a power of 2

t.drop_dim(dim: int)
Discard a dimension of

size 1

t.insert_dim(dim: int)
Insert a dimension of

size 1

t.reorder_dim(p: List[int])
Permute dimensions

(e.g., a transpose)

t.sum(dim: int)
Sum along dimension

dim, discarding it

t.replicate(dim: int, n: int)

Copy tensor n times,

forming a new

dimension dim

1 def mv_mul(m: Tensor, v: Tensor) -> Tensor:

2 v_ext = v.replicate(dim=1, n=m.shape[1])

3 products = m * v_ext

4 return products.sum(dim=0)

Listing 1. Multiplication of # × " matrix m with

"-column vector v.

1 def conv2d(img: Tensor, wgts: Tensor):

2 C, H, W = img.shape

3 K, C, R, S = wgts.shape

4 # img_r and wgts_r both contain ' · (

5 # tensors with shape  × � × � ×, .

6 img_r = [

7 img.shift(dim=0,by=i).shift(dim=1,by=j)

8 .replicate(dim=3, n=K)

9 for i in range(-(S//2), (S+1) // 2)

10 for j in range(-(R//2), (R+1) // 2)

11 ]

12 wgts_r = replicate_conv_wgts(wgts, H, W)

13 return sum(i*w for i, w in

14 zip(img_r, wgts_r)).sum(dim=2)

Listing 2. 2D convolution on image (img) with

weights (wgts). There are � input and  output

channels; channels are � ×, ; filters are ' × ( .
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includes common kernels (e.g., convolutional and fully connected layers) and non-linear functions
(e.g., ReLU and sigmoid), which in FHE are approximated using polynomials.

5 AUTOMATIC DATA PACKING

Fhelipe’s key contribution is a framework to represent, analyze, and choose tensor layouts that
efficiently pack data into FHE’s enormous vectors.

FHE has unique restrictions and optimization goals that are not present in unencrypted computa-
tion. Prior work, including tensor compilers [4, 68], tensor optimizers [65, 72, 84, 89], and automatic
vectorization techniques [17, 60, 70, 78], optimizes data layouts to use SIMD datapaths and systolic
arrays well, reduce data transformations and shuffles, and tile to reduce data movement. By contrast,
FHE requires optimizing layouts to pack much larger vectors and minimize multiplicative depth,
while coping with operations that create large gaps and avoiding expensive layout conversions.
New techniques are necessary to reason about these tradeoffs and choose appropriate layouts.
Fhelipe’s layout framework combines four novel contributions. First, we introduce a flexible

layout representation (Sec. 5.1) that supports arbitrary dimension orders, interleavings of dimensions,
and gaps. This representation generalizes the wide range of packing choices proposed in prior FHE
applications, enables new optimizations, and reduces data transformations. Second, we introduce
a compaction procedure (Sec. 5.2) that leverages our flexible layouts to keep ciphertexts highly
packed. Third, we present a layout assignment algorithm (Sec. 5.4) that operates analytically and
without profiling, by reasoning about the work added by conversions induced by incompatible
layouts. Fourth, novel FHE permutation algorithms (Sec. 5.5) reduce the cost of needed conversions.
These contributions open a wide range of layouts and enable the compiler to optimize them

quickly. We showcase these new capabilities with two end-to-end examples (Sec. 5.6).

5.1 Flexible Layout Representation

To motivate the need for flexible layouts, consider again the matrix-vector multiply example in
Sec. 2.2. If we restricted all tensors to a row-major layout, we would miss the efficient implementa-
tion that alternates row-major and column-major layouts. To enable this, layouts need two key
ingredients. First, they need to support arbitrary dimension orders (e.g., row-major and column-
major in this case). Second, they need to support gaps, runs of empty slots that arise during tensor
operations like striding or summing. For instance, in Fig. 3b the< ×< output vector ~ has a stride
of<, with< − 1 gaps between each element, due to the summing of partial products. To avoid
conversions, we must track and cope with these gaps.
Fhelipe’s layout representation is even more flexible than just allowing arbitrary dimension

orders and gaps: it allows arbitrary permutations of the bits of each index.
Layout definition: Consider a tensor with dimension indices 8 , 9 , : , ..., each with a different
number of bits � , � ,  , .... Let the string ( = (8�−1, ..., 80, 9 � −1, ..., 90, : −1, ...) be the concatenation of
the individual bits of all indices. Then, a layout of this tensor is any permutation of the elements of
( , with gap bits (denoted with �) interleaved arbitrarily.

t = Tensor(4, 4)

FHE ciphertext with layout: (i1, i0, j1, j0)

t.reorder({1, 0}) à Layout: (j1, j0, i1, i0)

t.sum(dim=0)        à Layout: (G, G, j1, j0)

t.stride(dim=1, 2) à Layout: (i1, i0,  j0, G)

t.shrink(dim=0, 2)à Layout: (G, i0, j1, j0)

i

j

Fig. 5. Fhelipe’s layouts implement complex tensor

operations as simple changes of layout, without mov-

ing elements between ciphertext slots.

For example, in Fig. 5, C ’s layout is (81, 80, 91,
90), i.e., row-major. This encodes the mapping of
tensor indices to slots in the vector: for instance,
element C23 (row 8=210=102, col 9=310=112) maps
to slot 8180 91 90=10112=1110 in the underlying vec-
tor. Similarly, in Fig. 3b, G ’s layout is (81, 80), and
~’s layout is (81, 80,� ,�), denoting stride-4 gaps.

Fig. 5 shows the flexibility of this representa-
tion: it allows performing many operations by
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Fig. 6. Example showing ciphertext-selecting and slot-selecting bits, and how compaction removes gaps.

simply changing the tensor layout (the permutation of index bits), without changing the underlying
ciphertexts. Fig. 5 shows that transposing two dimensions simply swaps their layout bits; and
shrinking a dimension, striding by a power of two, and sum-reducing simply introduce gap bits.
Additionally, allowing the bits of each dimension to be out of order reduces the costs of more

complex transformations, like compaction, which we will see in detail later.
Restrictions: The key limitation of this layout format is that dimensions whose size is not a power
of two need padding (e.g., a 3×3 matrix would have one element unused between rows). However,
padding non-power-of-two dimensions is a good choice overall: it simplifies layout conversions,
and it is a natural fit for FHE vectors, which are power-of-two sized for performance reasons.
Slot- and ciphertext-selecting bits: As ciphertexts have only = slots, larger tensors must be
stored across multiple ciphertexts. By convention, the lowest-order log2 = bits of ( encode the slot
of each element, and the remaining (|( | − log2 =) bits encode its specific ciphertext. We call these
bits slot-selecting and ciphertext-selecting, respectively.

For example, Fig. 6 (left) shows a 4×4×4 tensor with layout (I1, I0; ~1, ~0, G1, G0). With ==16-slot
ciphertexts, bits I1 and I0 are ciphertext-selecting, and the rest are slot-selecting. We use “;” to
denote the boundary between ciphertext- and slot-selecting bits.
Since we can access ciphertexts individually (unlike slots within the ciphertext), ciphertext-

selecting bits are more flexible than slot-selecting bits: they can be reordered for free and gaps can
be discarded with no overhead.

5.2 Compaction

As we have seen, common operations like striding and summing introduce gaps in slot-selecting
bits. Gaps cause low utilization, as they leave many ciphertext slots unused. With restrictive layouts
(e.g., row- or column-major), eliminating these gaps would require an expensive format conversion
(Sec. 2.2). But our flexible layouts make eliminating gaps cheap, by converting ciphertext-selecting

bits into slot-selecting bits, replacing the gap bits. We call this process compaction.
Fig. 6 shows compaction at work. A 4×4×4 tensor that takes four 16-slot ciphertexts is strided

in the G and ~ dimensions, creating a 4×2×2 tensor with two gap bits in its layout. Compaction
merges these four ciphertexts into a single ciphertext, by filling gap bits with ciphertext-selecting
bits. This produces a tensor with layout (~0, I1, G0, I0).
Fig. 6 (right) shows that compaction is relatively cheap: ciphertexts have the same gap pattern,

so they can be combined using only one rotate and add each, without consuming any levels. This
also shows why we allow the bits of a dimension to be out of order: cheap compaction would have
been impossible if I’s bits had to be contiguous.

Compaction’s compute cost is quickly recouped: compacting by #× takes # -1 rotates and adds,
and reduces downstream computation by #×. Thus, compaction breaks even after a single rotate or

multiply, and brings large savings when followed by more expensive operations like polynomials
or bootstraps. As a result, compaction lets us eliminate all inefficiencies due to gaps: compaction is
automatically performed on any tensor that spans multiple ciphertexts, and gaps are unavoidable
for small tensors that already fit within a single ciphertext.
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5.3 Implementation of Tensor Operations

Fhelipe’s layout representation makes it easy to perform operations efficiently on all tensor layouts:
Reshapes only change the tensor’s layout string (extend, shrink, stride, drop_dim, insert_dim,
reorder_dim), but do not modify the underlying data.
replicate and sum perform a logarithmic sequence of rotates and adds. Both operations rotate by
the powers of 2 corresponding to the bits of the replicated or summed dimension: in replicate,
each rotate-add doubles the number of replicated copies; in sum, each rotate-add produces partial
sums on subsets of double the size.
shift, rotate, and layout conversions require reordering the elements of the underlying FHE
vectors; Fhelipe implements them using a unified approach for permutations, described in Sec. 5.5.
+ and * perform elementwise adds or multiplies on the underlying FHE vectors. This requires both
inputs to have the same layout, which is ensured by conversions inserted during Fhelipe’s layout
assignment pass (Sec. 5.4).

To simplify compaction, Fhelipe keeps gap elements set to 0. Thus, sequences of operations
that introduce gaps (shrink, stride, sum) must mask out discarded elements. This is done by
multiplying with an unencrypted vector of 0 and 1 values.

5.4 Analytical Layout Assignment

Fhelipe assigns tensor layouts analytically, without any profiling. It uses a forward pass that assigns
initial layouts, enhanced with backtracking to reconsider and improve layout choices.

The forward pass traverses the dataflow graph in topological order, starting from program inputs.
It assigns initial layouts using a simple procedure: (1) each program input is assigned row-major
layout, (2) each unary operation consumes its input in its current layout, which determines the
layout of its output, and (3) each operation that produces gaps (stride, shrink, sum) performs
compaction (Sec. 5.2) to fill them when possible.
So far, this requires no layout conversions. However, binary operations (+ and *) need both

inputs to have the same layout. So, when the pass reaches a binary operation with mismatched
input layouts, it initiates backtracking to insert a layout conversion.

Backtracking independently considers converting each of the two inputs. For each, backtracking
inserts a conversion at the input, and then attempts to hoist that conversion earlier in the program,
where it may become cheaper or unnecessary. Each step of hoisting moves the conversion from the
output of an operation to its inputs by deterministically finding input layouts that would produce
the output in the desired layout. Hoisting proceeds greedily while the cost of the conversion
decreases or stays the same (in terms of rotate groups, Sec. 5.5). At the end, backtracking is left
with two options for resolving the mismatch; it picks the cheaper one.

Backtracking works well because the cost of layout conversions varies drastically. In the best case,
the conversion can be hoisted all the way to a program input, where it can be completely avoided
by just changing the input’s initial layout. But there are also other cases where the conversion can
be made cheaper. For example, consider a matrix-vector multiply � · G = ~ (as in Fig. 3) where �
and G have mismatched layouts: G is in row-major format (as in Fig. 3b), but � is in column-major
format (like � in Fig. 3c). At the element-wise multiply, converting either input—� or the replicated
G vector—is equally expensive. But hoisting the conversion before G ’s replication makes it much
cheaper, as it requires permuting<=128 times fewer elements.

Our implementation traverses only linear chains of operations (fan-in and fan-out of 1) to keep
runtime linear. While more sophisticated implementations are possible (e.g., backtracking through
the entire graph), we find that this suffices to find efficient layouts for all the applications we study.
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5.5 Permutations

Even with a good layout assignment, layout conversions are sometimes needed. Fhelipe implements
layout conversions and tensor shifts using a unified framework for permuting vector elements.
Single-stage permutations: In principle, any permutation can be implemented as a dataflow graph
with multiplicative depth 1. Let a rotate group be a subset of vector elements that the permutation
rotates by the same amount. Then, we implement a single-stage permutation by (1) isolating
each group into a separate vector via masking, (2) rotating each group vector individually, and
(3) summing the rotated vectors. Unfortunately, permutations can have 6 = $ (=) rotate groups,
resulting in $ (=) vector operations taking $ (=2) time.
Decomposed permutations: To reduce runtime, we decompose permutations into a sequence of
stages. Each stage is a permutation with a small number of rotate groups. Picking the number of
stages is non-trivial: adding stages reduces the number of operations but increases multiplicative
depth, as each stage performs masking. Thus, using too many stages can hurt performance by
forcing more frequent bootstrapping. Empirically, we find that limiting stages to 6<0G=16 groups
balances work and depth, and works well in practice.

For a given number of stages : , the best general permutation algorithm requires =2/: groups per
stage [34]. But this is far worse than the theoretical lower bound of 61/: , especially when 6 ≪ =.
To avoid this inefficiency, we propose decomposition algorithms, described below, that exploit the
structure in the permutations induced by each operation.
Decomposing layout conversions: Layout conversions reorder the bits of the layout, with a
conversion that moves 1 bits requiring 6 = 21 groups. Fhelipe decomposes conversions so that
each stage (except the last) moves 1<0G = log2 (6<0G ) = 4 bits of the layout. Each stage can be
constructed greedily so that it reduces 1 by at least 1<0G − 1, thus reducing 6 by at least a factor
of (6<0G/2). As a result, Fhelipe’s layout conversions perform at most 2× more rotates than the
theoretical lower bound.
Decomposing shifts: A tensor shift by B moves index 8 to index ≡ 8 + B (mod 2� ). Fhelipe
decomposes shifts so that the first 9 stages move 8 to index ≡ 8 + B (mod 2� 9 ): the first 9 stages add
the first � 9 bits of 8 + B . Fhelipe chooses � 9 greedily under the constraint that no stage exceeds 6<0G
groups.
We compare our tensor shift algorithm against the lower bound empirically (obtaining an

analytical bound is hard because the behavior of shifts has a complex dependence on both the
layout and the shift amount). For ==32K, Fhelipe’s shift algorithm performs on average 1.68×
(standard deviation 14.0%, max 3.10×) more rotates than the theoretical lower bound. We compute
this by randomly sampling 200,000 layouts and simulating all possible shift amounts (results don’t
change after about 2,000 samples).

5.6 Pu�ing It All together: Layouts in ResNet and LogReg

We show Fhelipe’s layouts in action through two examples:
1 def convLayer(img: Tensor,

2 wgts: Tensor, s: int):

3 x = conv2d(img, wgts)

4 y = x.stride(dim=0, by=s) \

5 .stride(dim=1, by=s)

6 return ReLU(y)

Listing 3. CNN layer with striding

and ReLU activations.

1. CNN layer with striding: A convolutional neural network
(CNN) layer processes an input activation tensor with� channels
of � ×, elements, and produces an output activation tensor
with  channels of % ×& elements. The convolution weights are
 ×� filters of ' × ( elements.

A key part of CNNs are bottleneck layers, where each % ×&

output channel is smaller than each � ×, input channel, and
the output has more channels than the input ( > �). Striding is a common way to achieve this:
striding by B discards all but every B-th row and column, so each output channel is �/B ×, /B .
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Listing 3 shows the Fhelipe code for a CNN layer with striding, representative of ResNet. This
code reuses conv2d from Listing 2. Fig. 7 shows Fhelipe’s implementation when the input activation
is 2 × 4 × 4, weights are 4 × 2 × 2 × 2, and the stride is B=2, resulting in 4 × 2 × 2 output activations.
For simplicity, each ciphertext holds ==16 elements.

In activation

[C=2 x H=4 x W=4]
Layout: (c0; h1:0, w1:0)

>> >> >>

in.shift(dim=0, by=-1).shift(dim=1,by=-1)

H

rotate(-5)

.replicate(dim=3, n=4) # K = 4 out channelsRepRepRepRep

Layout: (k1:0, c0; h1:0, w1:0)  (8 cts/tensor)

x x x x

W[R=0,S=0] W[R=0,S=1] W[R=1,S=0] W[R=1,S=1]

C
W

+

Sum

2D conv

for

C=0 K=0
padding

C

K

.sum(dim=2) # Reduce across input channels

Layout: (k1:0; h1:0, w1:0)  (4 cts/tensor)

Layout: (k1:0; h0, G, w0, G)  (4 cts/tensor)

.stride(dim=0, by=2).stride(dim=1, by=2) 

Compact

Layout: (h0, k1, w0, k0)  (1 ct/tensor)

Out activation [K=4 x H=2 x W=2]

1

2

3

4

Stride

ReLU

5

Approximated with a polynomial, evaluated with
element-wise * and + (does not change layout)

+ k1:0

- c0

w0 à G
 h0 à G
w1 à w0

 h0 à h0

k1:0

fills
Gs

Fig. 7. Fhelipe detailed layouts in strided convolution, for a

simplified example with 16-element ciphertexts. Fhelipe’s com-

paction produces a fully packed output.

The dataflow graph in Fig. 7 shows
the tensor operations. Some opera-
tions list the corresponding Fhelipe
code and ciphertext operations. The
drawings on the right show the ten-
sors, layouts, and ciphertext contents
like in Fig. 6. Dashed lines separate
graph regions with different layouts
(labeled 1 – 5 ). We emphasize
which layout bits change on the right.

The input tensor is in row-major
layout and takes 2 ciphertexts 1 .
Convolution first shifts the input to
produce 4 tensors, each aligned with
an element of the 2 × 2 filters. This
does not change layouts. Then, each
tensor is replicated  =4 times. This
adds :1:0 as ciphertext-selecting bits,
so each tensor now takes 8 ciphertexts
2 . Next, the tensors are multiplied by
the weights and added together; lay-
outs remain the same. Last, the com-
bined tensor is summed along its �=2
dimension: as 20 is ciphertext-selecting, this involves summing ciphertexts pair-wise and does not
introduce gaps 3 .
Striding is challenging in FHE, because it creates gaps. Here, striding with B=2 discards every

other element of ℎ andF , replacing their least significant layout bits ℎ0 andF0 with gaps � 4 .
Note how ℎ1 andF1 in the input become ℎ0 andF0 in the output. Fhelipe automatically fills these
gaps through compaction 5 : ciphertext-selecting bits :1 and :0 fill the� bits, reducing the tensor
from 4 to 1 ciphertext (just as in Fig. 6). Lee et al.’s multiplexed-convolutions layout is a specific
implementation of this technique for ResNet [52]; however, Fhelipe generalizes this technique, and
is the first to apply it automatically.
Finally, a non-linear activation function (ReLU) produces the output activations. In FHE, non-

linear functions are approximated with polynomials, which consist only of element-wise adds and
multiplies. These element-wise operations do not change the layout. Fhelipe allows implementing
any polynomial; prior work has proposed a range of accurate [53] and cheap [41, 62, 67] activation
functions for FHE.

Due to compaction, the output layout (ℎ0, :1,F0, :0) has the bits of dimension : in non-consec-
utive slot-bits. Thus, the next layer must use that layout for its input. With Fhelipe, this happens
automatically and without any conversions: the shifts in Fig. 7 induce different rotations (and
masking if needed); Fhelipe automatically chooses the right format for filter weights; and the
sum-reduction on � is done with rotates and adds.
2. LogReg: Fig. 8 shows Fhelipe’s layouts in logistic regression training, an end-to-end FHE
application (Sec. 7). Here, we show full tensor sizes and ciphertext layouts instead of using reduced
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Fig. 8. Fhelipe layouts in LogReg. Fhelipe’s flexible layouts and assignment algorithm keep tensors fully

packed and avoid costly layout conversions.
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Mismatch

Fig. 9. Backtracking resolves layout mismatches by considering converting each operand, and then hoisting

these conversions to reduce their cost. Here, the conversion can hoisted to an input, eliminating it completely.

dimensions. We show one LogReg iteration, which consists of two matrix-vector multiplies with a
non-linear activation in between. There are :=1024 data points with<=197 features; ciphertexts
have ==32K slots. Colors in Fig. 8 denote different layouts, which are listed at the bottom.

First, note how Fhelipe’s flexible layouts again enable fully using ciphertexts without expensive
conversions. As in Sec. 2.2, E starts in row-major, replicate fills gaps, and sum creates new ones.
But here, matrices are large and take 8 ciphertexts. So, after each matrix-vector multiply, Fhelipe
compacts the vector back to 1 ciphertext. Like in the CNN layer, efficient compactions require
complex layouts that are not just a reordering of dimensions.

Flexible layouts are crucial for performance.Using only row-major layouts forces a conversion after
each sum, resulting in a 22.5× slowdown (Sec. 8.2). Further, the prior state-of-the-art solution [37],
which simply alternates between row-major and column-major layouts, is also inefficient: its lack
of compaction makes it 7× slower than Fhelipe due to extra bootstrapping (Sec. 8.1).
Second, LogReg demonstrates the need for backtracking. Fig. 9 shows backtracking in action.

Initially, the second input (from Fig. 8) is given a row-major layout, (<7:5; <4:0, :9:0), causing
mismatched layouts at the multiply (Fig. 9 left). Backtracking resolves this by separately considering
converting each of the two operands: the replicate (Fig. 9 top) and the input (Fig. 9 bottom). For
each branch, backtracking first inserts a conversion at the operand; this is expensive because all
layout bits mismatch, costing 218=262,144 rotate groups (Sec. 5.5). To reduce this cost, the conversion
is then hoisted earlier in the computation: hoisting before replicate reduces the cost to 210=1,024,
whereas absorbing the conversion into the input (by changing its layout) eliminates it completely.
Finally, backtracking selects the cheaper option (eliminating the conversion). Without backtracking,
the inserted conversions in would have increased runtime by about 10×.

6 AUTOMATIC BOOTSTRAP PLACEMENT

As discussed in Sec. 2.1, FHE ciphertexts have noise that grows during the computation. To avoid
corruption, auxiliary noise management operations are required.
Rescale and mod-switch trim the noise of a ciphertext by reducing its coefficient bitwidth F ,
usually after each multiply. We associate each ciphertext with a level ; : the number of noise trims it
can go through before running out of bitwidth. All ciphertexts start at ;=;0, with ;0 typically ≈10.
Noise trimming is computationally cheap and prior work has found effective ways to apply it

automatically; Fhelipe adopts EVA’s waterline rescaling algorithm [25].
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Fig. 10. Example of bootstrap placement. By partitioning the graph by depth (a), our dynamic programming

approach (b) outperforms lazy bootstrapping (c), placing 3× fewer bootstraps (diamond B nodes).

Bootstrap resets a ciphertext back to the initial ;0, allowing for arbitrarily deep FHE programs.
Bootstraps are very expensive, so minimizing them is crucial for performance. We propose a
practical algorithm for placing bootstraps automatically.

6.1 Placing Bootstraps Is Challenging

Fig. 10 analyzes a simplified ResNet block with the input starting at ;=1. As the graph is 2 multiplies
deep (Fig. 10a), this forces a bootstrap. Then, it is best to bootstrap right after the batch normalization
(Fig. 10b): this bootstraps only one ciphertext, and produces an output at a high level (;0 − 1), which
reduces the need for bootstraps in subsequent layers.
Systematically finding the above bootstrap placement is not easy (in fact, optimal placement is

NP-hard [9]). As a comparison point, consider lazy bootstrapping: bootstrapping ciphertexts right
before they run out of levels. While simple, this approach performs poorly (Fig. 10c). First, it inserts
3× more bootstraps, due to bootstrapping during the convolution, where computation is wide.
Second, it produces an output at ;=0, which forces an immediate bootstrap before the subsequent
multiply. As a result, Fhelipe outperforms lazy bootstrapping by gmean 3.5× (Sec. 8.2).

6.2 Base Algorithm

We propose a novel heuristic that lets us place bootstraps using dynamic programming in close to
linear time.

We define the depth of a node as the maximum number of noise trims (multiplies) on a path from
an input to the node. Depth partitions the nodes of the graph, as shown in Fig. 10a. Depth and level
are closely related: if there was no need for bootstraps, nodes at depth 3 would be at level ; = ;0 −3 .
Fhelipe’s heuristic is to make bootstrapping decisions at depth boundaries: bootstrap either all

edges crossing a boundary, or none of them. This avoids one of the main pitfalls we saw in Fig. 10c:
lazy bootstrapping bootstraps all but one of the edges crossing the 1–2 depth boundary (the residual
connection), producing an output at level 0; had it bootstrapped all of them, the output would have
been at level ;0=10.
Then, Fhelipe uses dynamic programming to find the best boundaries to bootstrap at. Let (1)

3? [8] be the minimum cost of computing all nodes up to depth 8 , (2) 1 [8] the cost of bootstrapping
all ciphertexts crossing boundary 8 , and (3) 2 [8] [ 9] the cost of computing all values at depth 8 at level
9 . We compute 3? [8] recursively by choosing the best option for the last bootstrapped boundary 9 :

3? [8] = min
1≤;≤;0

(

3? [8 − ;] + 1 [8 − ;] +

9<;
∑

9=0

2 [8 − 9] [ 9]

)

.

3? [8−;] guarantees that no node up to depth 8−; falls below level 0; bootstrapping the ciphertexts
crossing boundary 8 − ; (1 [8 − ;]), together with ; ≤ ;0, guarantees the same for the nodes between
depths 8 − ; and 8 .
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For a program with maximum depth 3 , computing 3? [3] takes $ (3 · ;0) time; since ;0 is a small
constant (≈10), this is practically linear in the size of the program. We obtain 1 [8] and 2 [8] [ 9] from
CraterLake’s per-operation costs [75]; other cost models can be used as well.

6.3 Additional Optimizations

Narrowing depth boundaries: Any node at depth 8 that does not trim noise can be treated as
having depth 8+1 without violating correctness. For instance, the rotates in Fig. 10a can be treated as
having depth 2 instead of 1. This reduces 1 [1], the cost of bootstrapping at the 1–2 depth boundary,
from 3 ciphertexts to 1. Fhelipe uses this to reduce each 1 [8] by running a simple min-cut algorithm.
Omitting shortcut bootstraps: Not all edges crossing a boundary need to be bootstrapped.
This is common for shortcut edges that skip over multiple depths, like the residual connection
in Fig. 10. Specifically, shortcuts that go from a higher- to a lower-level node do not need to be
bootstrapped. Fhelipe exploits this by greedily omitting such shortcuts from 1 [8]. To implement
this correctly, Fhelipe tracks the mapping from depth to level for each 3? [8]; using persistent
append-only lists [64], this increases runtime only by a factor of log3 .

7 METHODOLOGY

7.1 Benchmarks

We evaluate Fhelipe on a diverse set of challenging benchmarks. Table 3 summarizes their features.
Large FHE applications: Fhelipe seeks to compile large applications, which exacerbate pro-
grammability issues. But prior FHE compilers use simple benchmarks, like small kernels [23, 58, 79]
with tens of scalar operations or shallow neural networks that require no bootstrapping [25, 26]. To
test Fhelipe’s capabilities against well-optimized baselines, we use three large FHE programs that
have been manually developed by FHE experts. Each program is the state-of-the-art in its domain,
and is beyond the reach of prior FHE compilers:
(1) ResNet-20 is one of the most complex neural networks to be ported to FHE. Our manual
baseline is Lee et al.’s implementation [52], which uses state-of-the-art layouts. ResNet is a deep
convolutional network with a non-linear structure, including skip connections that complicate data
layouts. It approximates ReLU activation functions with high-degree polynomials, which achieve
high accuracy but are much costlier than the low-degree approximations used by simpler FHE
networks [13, 41]. As a result, ResNet-20 requires frequent bootstrapping. Each execution performs
one inference using images from the CIFAR-10 dataset [48].
(2) RNN is an NLP benchmark that performs sentiment analysis using a Recurrent Neural Net-
work [28]. Our manual baseline follows Podschwadt’s algorithm [71], enhanced with the data
layouts proposed by Samardzic et al. [75]. RNN processes a sequence of 200 word embeddings G8 ,
and incorporates each in its hidden state following ℎ8+1 = f (,ℎℎℎ8 +,8ℎG8 + 1). f (·) is a degree-3
approximation of tanh(·), and G8 andℎ8 are both of dimension 128. The chain of,ℎℎℎ8 matrix-vector
multiplies has a similar structure to the workload in Sec. 2.2. We use the IMDB dataset [57].
(3) LogReg performs logistic regression to train a linear binary classifier. LogReg is one of the
few FHE applications that trains an ML model, instead of performing inference. Our manual
baseline is state-of-the-art HELR [37]. LogReg performs 32 iterations of Nesterov Accelerated
Gradient Descent [73] with batch size 1024 and 197 features per sample; the sigmoid activation is
approximated by a degree-7 polynomial. We use the MNIST dataset [49].

Table 3 shows that these applications perform tens to hundreds of millions of scalar operations
(when unencrypted), and their multiplicative depth is in the hundreds, requiring frequent bootstraps.
Shallow neural network: Since prior compilers do not perform bootstrapping, we also use a
shallow neural network that does not require it:
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Table 3. Characteristics of our benchmarks: fixed-point scale B and total scalar operations; Fhelipe’s multi-

plicative depth, compilation time, and lines of application code; lines of code in the manual implementation.

Fhelipe Manual

Benchmark B Ops. Depth Compile LoC References LoC

ResNet-20 45 120M 412 14.7s 100 [52, 76] 4,800

RNN 45 13M 802 1.6s 80 [71, 75] —

LogReg 35 77M 224 27.3s 60 [36, 37] 600

LoLa-MNIST 35 1M 10 0.8s 50 [13, 61] 1,700

FFT 45 41M 59 18.5s 85 new

TTM 45 34M 2 1.7s 7 new

MTTKRP 45 34M 4 1.7s 9 new

(4) LoLa-MNIST is a LeNet-style network from Low-Latency CryptoNets (LoLa-Dense) [13] that
uses sophisticated layouts. It has unencrypted weights and uses the MNIST dataset [49].
Tensor kernels: Finally, we include three tensor kernels that would be hard to code manually in
FHE. These kernels have no prior implementation, and showcase Fhelipe’s generality:
(5) FFT computes the Fast Fourier Transform of a vector of 128K samples.
(6) TTM computes the third-order tensor-matrix product �8 9: =

∑

; �8 9;�:; [56]; all dimensions
have size 64.
(7) MTTKRP computes the matricized tensor times Khatri-Rao product �8 9 =

∑

:; �8:;�: 9�; 9 [40];
all dimensions have size 64.

7.2 Compared Systems

We compare Fhelipe against carefully ported manual baselines and CHET+, an extension of the
CHET compiler that incorporates EVA [25] and other improvements. CHET+ is representative
of state-of-the-art FHE compilers; in Sec. 8.2, we also compare with other relevant prior work,
including FHE-Booster [83] and HeLayers [6].
Fhelipe: We implement Fhelipe in 21,000 lines of Python and C++ code. Fhelipe compiles all
applications in under a minute using a single CPU thread (Table 3). Compilation time scales linearly
with program size.

Fhelipe automatically chooses the = andF CKKS parameters to meet a user-provided security
level (128-bit security by default) [8]. It uses==32K as it is the smallest= that allows for bootstrapping
with 128-bit security. Then, benchmarks with bootstrapping (ResNet-20, RNN, LogReg, FFT) use
the maximumF ciphertext modulus bitwidth allowed by the security level (F=1,552 for 128-bit
security), whereas benchmarks without bootstrapping use the minimumF sufficient to cover their
multiplicative depth. LoLa-MNIST uses ==16K to match the manual implementation.
Fhelipe leaves to the user the choice of the application fixed-point scale B . For the evaluation,

applications with manual baselines use the scales selected by prior work (between 35 and 45 bits),
whereas tensor kernels use 45-bit scales (Table 3).

Fhelipe uses Lattigo’s state-of-the-art bootstrapping algorithm [2], which uses variable scales
and consumes 742 bits of modulus per bootstrap. Fhelipe also uses multi-digit keyswitching (an im-
portant optimization [30, 47, 75]), which consumes 305 bits. This leaves ;0 ≈ 10 levels of application
computation for applications with bootstraps (the exact value depends on the application’s scale).
Manual baselines: To perform a controlled comparison, we port manual baselines to a common
framework (each baseline uses a different FHE library and bootstrap algorithm). We modify Fhelipe
to expose a vector interface, disabling all layout passes and automatic bootstrapping. With our
contributions removed, this compiler is essentially a reimplementation of EVA [25] that targets the
same backends as Fhelipe.
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Table 4. Performance on CraterLake for Fhelipe, Manual, and

CHET+ baselines. All systems use EVA waterline rescaling.

Execution time [ms] for Speedup over

Fhelipe Manual CHET+ Manual CHET+

ResNet-20 235.8 236.1 526.4 1.0× 2.2×

RNN 434.7 452.4 2,223 1.0× 5.1×

LogReg 141.5 1,741 4,592 12.3× 32.5×

LoLa-MNIST 0.3 0.9 90.1 3.2× 322.4×

ML gmean speedup 2.5× 18.5×

FFT 240.6 — 256.9 — 1.1×

TTM 1.1 — 8,105 — 7,643×

MTTKRP 1.5 — 8,106 — 5,569×

Tensor gmean speedup 360.4×

Table 5. Performance on CPU for Fhelipe,

and speedups over Manual and CHET+. t-

out denotes runs that timed out a�er 5h.

Execution time [s] for Speedup over

Fhelipe Manual CHET+

ResNet-20 1,555 1.0× 7.3×

RNN 4,502 1.1× t-out

LogReg 1,535 6.2× t-out

LoLa-MNIST 19 2.1× 86.4×

ML gmean speedup 1.9× 25.1×

FFT 1,270 — 1.0×

TTM 18 — t-out

MTTKRP 25 — t-out

When the original baseline implementations use different bootstrapping algorithms that leave
a different number of usable levels, we have to place bootstraps anew. We insert bootstrap man-
ually at natural chokepoints, following the intuitions in the original papers. All of the manual
reimplementations have better performance than reported in the original papers.
CHET+: CHET, a state-of-the-art tensor FHE compiler, cannot compile most of our benchmarks.
First, CHET provides only a few coarse-grained kernels (e.g., matrix-vector multiply), and our
benchmarks have operations that cannot be expressed with this limited interface (e.g., LogReg’s
gradient descent). Second, CHET does not support bootstrapping.

To compare Fhelipe with CHET’s approach, we extend CHET to CHET+. CHET+ includes manual
implementations of the additional kernels necessary for our applications, and automatic lazy
bootstrapping at kernel boundaries (i.e., bootstrapping tensors between CHET’s kernels right
before they run out of noise budget).
We implement CHET+ by modifying Fhelipe: we group Fhelipe’s fine-grained operations (e.g.,

replicate, *, reduce) into CHET kernels (e.g., matrix-vector multiply), and convert tensors to
CHET’s row-major layout after each kernel. We also disable optimizations that are unique to Fhelipe:
repacking, replicating data inside of ciphertexts, and decomposing permutations into stages. This
implements CHET’s approach to layouts while allowing a controlled comparison. Like all other
systems, CHET+ uses EVA waterline rescaling, so it supersedes the CHET+EVA combination in [25].

7.3 Platforms

We evaluate Fhelipe on CraterLake [75], a state-of-the-art FHE accelerator, and on a CPU. For the
CPU results, we use the Lattigo state-of-the-art FHE library [2], and run experiments on a single
core of a 3.5 GHz AMD Zen2 Threadripper PRO 3975WX CPU (Lattigo is single-threaded). For the
CraterLake results, we target the CraterLake configuration in [75]. CraterLake uses double-prime
rescaling, using two moduli per level, to support scales larger than its 28-bit wide datapath [45, 75].
We use CraterLake’s backend compiler and simulator, which the authors shared with us.

8 EVALUATION

8.1 Fhelipe Achieves High Performance

Table 4 compares the performance of Fhelipe, state-of-the-art manual baselines, and CHET+ (Sec. 7)
on CraterLake. On the fourmachine learning applications, Fhelipe outperforms themanual baselines
by gmean 2.5× and CHET+ by 18.5×; on the three tensor kernels, Fhelipe outperforms CHET+ by
up to 7,600×. Further, Fhelipe matches or outperforms the manual baselines across all benchmarks.
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Fig. 11. Breakdown of execution time between boot-

strap and non-bootstrap computation across bench-

marks.

To help us analyze the performance of these
different implementations, Fig. 11 shows the
percentage of execution that each application
and system spends on bootstrap and non-
bootstrap computation. On the large appli-
cations (ResNet-20, LogReg, RNN), the well-
optimized implementations (Fhelipe and man-
ual) are dominated by bootstrapping, taking up
88%–99% of total runtime.
Although CHET+ spends similar time on bootstrapping as Fhelipe (1×–1.3× across all applica-

tions), CHET+ performs much more non-bootstrap compute due to poorly utilizing ciphertext slots
and frequently permuting ciphertext elements to keep tensors in its restrictive row-major layouts.
On applications without bootstrapping (LoLa-MNIST, TTM, MTTKRP) these layout inefficiencies
translate directly into CHET+’s large end-to-end slowdowns.
ResNet-20: Fhelipe matches the performance of Lee et al.’s heavily-optimized manual ResNet-
20 [52]. This implementation relies on complex layouts to replicate data within ciphertexts and fill
gaps after strided convolutions (as in Fig. 6); an earlier version from the same authors [53] lacked
these optimizations and performed 10× worse. Yet, these optimizations are naturally captured in
Fhelipe’s layout representation, and Fhelipe performs them automatically.
CHET+ incurs 58× more non-bootstrap compute because (1) it does not replicate data within

ciphertexts, and (2) it needs to reshuffle data after each strided convolution. Further, CHET+’s naïve
bootstrapping places 1.3× more bootstraps.
RNN: RNN performs a sequence of matrix-vector multiplies, similar to the example in Sec. 2.2. Both
Fhelipe andmanual achieve good performance by alternating between row-major and column-major
layouts; CHET+ is 5.1× slower because it uses only row-major layouts.
LogReg: Fhelipe outperforms manual LogReg by 12.3× mainly due to performing 14× fewer
bootstraps. First, thanks to compaction, Fhelipe needs to bootstrap only 1 ciphertext per tensor
instead of 7. As we saw in Sec. 5.6, these compactions are cheap and add no overheads. Second,
Fhelipe bootstraps only 1 tensor per iteration instead of 2 due to bootstrapping at depth boundaries
that avoid shortcut bootstraps (Sec. 6.3).
CHET+ also removes gaps eagerly, and so performs only 6% more bootstraps than Fhelipe.

However, CHET+ is 32.5× slower overall because its limited row-major layouts cause poor utilization,
as little as 1/256 of ciphertext slots; Fhelipe packs densely, as we saw in Fig. 8.
LoLa-MNIST: As LoLa-MNIST requires no bootstrapping, it stresses the efficiency of layouts more
heavily than the large applications. Fhelipe outperforms manual by 3.2× due to manual missing
opportunities for data packing and replication, and CHET+ by 322× due to CHET+ incurring an
expensive layout conversion after the first strided convolution.
Note LoLa-MNIST uses only non-power-of-2 tensor dimensions. This shows that the padding

overheads incurred by Fhelipe’s bit-permutation layout (Sec. 5.1) are far outweighed by the efficiency
gains from the additional data packing opportunities that this representation provides.
Tensor kernels: As the tensor kernels have no prior manual implementations, we compare Fhelipe
only to CHET+. FFT operates on one-dimensional vectors of fixed size and its dataflow graph is a
simple sequence of fixed-width stages. This stresses neither layouts, nor bootstrap placement, so
CHET+ is only 1.1× slower than Fhelipe.

TTM and MTTKRP stress layouts the most, as they replicate and sum across multiple dimensions,
and do not bootstrap (like LoLa-MNIST). CHET+ falters because it does not replicate data within
ciphertexts, using as little as 1/512 of ciphertext slots, and because it extensively shuffles data to keep
tensors in row-major layout. As a result, CHET+ is 7,600× slower on TTM and 5,600× on MTTKRP.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 152. Publication date: June 2024.



152:20 Aleksandar Krastev, Nikola Samardzic, Simon Langowski, Srinivas Devadas, and Daniel Sanchez

Table 6. Fhelipe speedups over alternative bootstrap

placement algorithms (Lazy and FHE-Booster); and over

a version of Fhelipe that uses only row-major layouts.

Benchmark vs. Lazy vs. FHE-Booster vs. Row-Major

ResNet-20 9.0× 1.4× 2.1×

RNN 1.1× 1.8× 5.8×

LogReg 5.9× 1.4× 22.5×

Lola-MNIST — — 32.1×

FFT 2.5× 1.5× 1.0×

TTM — — 706.9×

MTTKRP — — 520.3×

gmean 3.5× 1.5× 22.8×

Table 7. Prediction accuracy (with 95% confi-

dence intervals) and number of error-free man-

tissa bits compared to unencrypted double-

precision computation across all slots of the out-

put (higher is be�er) for Fhelipe and manual base-

lines.

Error-free

Accuracy mantissa bits

Benchmark Fhelipe Manual Fhelipe Manual

ResNet-20 91%±1% 91% 13 13

RNN 78%±1% 78% 16 16

LogReg 97%±1% 97% 9 9

CPU performance: Table 5 compares Fhelipe to the manual and CHET+ baselines when running
on a CPU. Again, Fhelipe matches or outperforms manual implementations (ML gmean 1.9×). We
set a timeout of 5 hours; since CHET+ produces inefficient code, several CHET+ benchmarks exceed
this timeout (note timeouts match the longest CHET+ runtimes in Table 4). Fhelipe outperforms
CHET+ by gmean 25.1× on the ML benchmarks that complete, ResNet-20 and LoLa-MNIST.
While the general trends on CPU match CraterLake, speedups are somewhat different. This

happens because CraterLake uses highly optimized functional units that change the relative costs
of FHE operations. Specifically, higher-depth operations are cheaper in CraterLake, and some
rotations are as well, due to the way Lattigo implements automorphisms [35, Sec.4.3]. These fully
account for the differences in speedups, like CHET+’s higher slowdown on ResNet-20 (7.3× on
CPU vs. 2.2× on CraterLake): its 58× higher non-bootstrap compute has a higher effect on the CPU.

8.2 Analysis of Fhelipe’s Contributions and Comparison With Alternatives

Fhelipe’s contributions are automatic data packing and bootstrap placement. Table 6 shows that
both are crucial by comparing them to alternative techniques.
Bootstrap placement: Table 6 shows the speedup of Fhelipe with our DP-based bootstrap place-
ment algorithm over Fhelipe using two alternative algorithms: Lazy is lazy bootstrapping, i.e.,
bootstrapping when ciphertexts run out of noise budget; and FHE-Booster is FHE-Booster’s heuristic-
based algorithm [82, 83]. Table 6 shows speedups only for benchmarks with bootstrapping.

Lazy Boot incurs gmean 3.5× slowdown. ResNet-20, LogReg, and FFT are 2.5×–9.0× slower due
to the issues shown in Fig. 10c: Lazy Boot bootstraps in the middle of kernels where computation
is wide (e.g., convolutions in ResNet-20), and doesn’t account for shortcuts. Lazy Boot works well
only on RNN, because RNN’s simple structure causes Lazy Boot to bootstrap at regular intervals
that, at 10 usable levels, happen to coincide with RNN’s natural chokepoints.
Note that Lazy Boot differs from CHET+’s lazy bootstrapping algorithm in that Lazy Boot

considers bootstrapping after every Fhelipe operation, whereas CHET+ considers bootstrapping
only at the boundaries of CHET kernels. This fine-grained approach is necessary to support Fhelipe’s
general tensor interface, but creates more opportunities for mistakes. This is why Lazy Boot has
higher bootstrapping overheads than CHET+.
FHE-Booster incurs gmean 1.5× slowdown. While better than Lazy overall, it is consistently

worse than our DP-based algorithm, and shows pathological behavior on RNN, where it places many
more bootstraps than Lazy. This happens because FHE-Booster places bootstraps greedily, trying
to cover the maximum amount of paths per bootstrap. This approach fails to find RNN’s regular
chokepoints. Moreover, FHE-Booster relies on path enumeration, which has exponential runtime
and fails to complete in some cases [82]; our DP-based algorithm does not have this problem.
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Layouts: To study the importance of using flexible layouts independently of CHET+, Table 6
compares with Row-Major, a version of Fhelipe that restricts all tensors to row-major layouts.
Row-Major differs from CHET+ in that it keeps all other Fhelipe features (bootstrap placement,
decomposed permutations, replicating in ciphertexts) and in that it converts to row-major after
every Fhelipe operation, whereas CHET+ converts only after each of its coarse-grained kernels.
Row-Major incurs gmean 22.8× slowdown. This is due to layout conversions, e.g., to remove

gaps after each sum and stride. The slowdowns of Row-Major and CHET+ are highly correlated
across applications. However, Row-Major outperforms CHET+ on TTM and MTTKRP due to using
Fhelipe’s efficient algorithm for decomposing layout conversions into stages (Sec. 5.5).
We’ve so far focused our layout comparisons to CHET, but HECO and HeLayers also select

layouts automatically. HECO [79] uses only column-major layouts (and lacks other Fhelipe features,
like our decomposed layout conversions), so it would suffer large overheads on these benchmarks.
HeLayers [6] supports a wider range of layouts than CHET or HECO. Since implementing its

approach within Fhelipe would be hard, we compare using a single representative benchmark,
ResNet-20. We manually apply HeLayers’ layouts to ResNet-20, following the exact implementation
of convolutions and striding in [6] and selecting the layout that maximizes performance. We found
its performance to be 8.3× worse than Fhelipe’s (on CraterLake).
This slowdown is due to gaps in HeLayers’ layouts leading to 2×–16× more bootstraps per

tensor. HeLayers’ layouts can be viewed as a subset of Fhelipe’s, where each dimension has a tiling
specifying its slot-selecting bits. However, HeLayers forces the same tiling to be used through the

entire computation. So gaps introduced by, for example, summing across input channels (Sec. 5.6)
cannot be immediately filled, as the vacated slot-selecting bits are coupled to the summed dimension.
Fhelipe uses a fundamentally different approach from HeLayers: rather than fixing one layout

and using profiling to find the best single layout, Fhelipe assigns different layouts freely throughout
the computation, and implements each tensor operation for its specific layout. This lets Fhelipe
simultaneously (1) keep data packed throughout by using compaction, and (2) avoid expensive
layout conversions that add work and depth. In ResNet-20, the first effect is crucial, as keeping data
packed drastically reduces bootstrapping. This highlights the advantage of our analytical approach.

8.3 Fhelipe Preserves Accuracy

The unencrypted versions of ResNet-20, RNN, and LogReg achieve accuracies of 91%, 78%, and 97%,
which are typical for the datasets they use. Table 7 shows that the Fhelipe and manual versions
match the accuracy of their unencrypted counterparts. We run enough samples to achieve 95-th
percentile confidence intervals below ±1%[38]. This result is expected, since Fhelipe uses the same
scales as the manual versions. Nonetheless, Fhelipe versions have a different computation graph,
and this shows that our transformations are correct and do not impact accuracy.
Table 7 also shows the number of error-free mantissa bits measured against the unencrypted

computation with 64-bit floating-point values. This conveys the maximum absolute error of the
output. (e.g., 13 error-free mantissa bits means absolute error < 2−13 across all output slots). Fhelipe
matches the manual versions on this finer-grained metric as well.

9 CONCLUSION

FHE is enticing but very hard to program. We have presented Fhelipe, a novel FHE compiler that
is the first to address FHE’s key remaining programmability challenge, automating data layouts
to use FHE’s huge vector ciphertexts well. Fhelipe also automatically manages noise end-to-end
by placing bootstraps efficiently. We show that these contributions enable programs written in a
simple tensor language to match or outperform hand-optimized FHE circuits, widely outperform
prior compiler techniques, and dramatically simplify programming.
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