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ABSTRACT

This thesis studies the design of government intervention in environmental and healthcare
markets.

The first chapter, joint with Karl M. Aspelund, studies how asymmetric information in-
fluences the performance and design of government-established markets for conservation.
Market mechanisms aim to deliver environmental services at low cost. However, this ob-
jective is undermined by participants whose conservation actions are not marginal to the
incentive — or “additional” — as the lowest cost providers of environmental services may
not be the highest social value. We investigate this potential market failure in the world’s
largest auction mechanism for ecosystem services, the Conservation Reserve Program, with
a dataset linking bids in the program’s scoring auction to satellite-derived land use. We
use a regression discontinuity design to show that three of four marginal winners of the
auction are not additional. Moreover, we find that the heterogeneity in counterfactual land
use introduces adverse selection in the market. We then develop and estimate a joint model
of multi-dimensional bidding and land use to quantify the implications of this market fail-
ure for the performance of environmental procurement mechanisms and competitive offset
markets. We design alternative auctions with scoring rules that incorporate the expected im-
pact of the auction on bidders’ land use. These auctions increase efficiency by using bids and
observed characteristics to select participants based on both costs and expected additionality.

The second chapter explores the observation that healthcare is often allocated without prices,
sacrificing efficiency in the interest of equity. Wait times then typically serve as a substitute
rationing mechanism, creating their own distinct efficiency and distributional consequences.
I study these issues in the context of the Veterans Health Administration (VA) healthcare
system, which provides healthcare that is largely free but congested, and the Choice Act,
a large-scale policy intervention that subsidized access to non-VA providers to reduce this
congestion. Using variation in Choice Act eligibility in both patient-level and clinic-level
difference-in-differences designs, I find that the price reduction for eligible veterans led to
substitution away from the VA, an increase in overall healthcare utilization and spending,
and reduced wait times at VA clinics in equilibrium. I then use the policy-induced price
and wait time variation to estimate the joint distribution of patients’ willingness-to-pay and
willingness-to-wait. I find that rationing via wait times redistributes access to healthcare
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to lower socioeconomic status veterans, but at a large efficiency cost (-24%). This equity-
efficiency trade-off is steep: rationing by wait times is an inefficient form of redistribution
across a range of equity objectives. By contrast, I find that a coarsely targeted, modest
increase in copayments increases consumer surplus by more than the Choice Act, at lower
cost to the VA, while disproportionately benefitting low-income veterans.

The third chapter, joint with Abigail Ostriker, investigates the effects of regulations designed
to correct a wedge between privately- and socially-optimal construction in areas at risk of
flooding in Florida. Using a spatial regression discontinuity around regulatory boundaries
and an event study around the policy’s introduction, we document that floodplain regulation
reduces new construction in high-risk areas and mitigates damages at homes constructed un-
der flood-safe building standards. Embedding these effects in a model of the housing market,
we find the policy reduces damages to the socially-efficient level, but incurs higher costs than
a first-best corrective tax. Improved targeting of the existing policy achieves 94% of first-best
welfare gains, or $7,567 per newly-constructed house.

JEL Codes: D4, D6, D8, H2, H5, I1, I3, Q2, Q5

Thesis supervisor: Amy Finkelstein
Title: John & Jennie S. MacDonald Professor of Economics

Thesis supervisor: Nikhil Agarwal
Title: Professor of Economics
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Chapter 1

Additionality and Asymmetric Information
in Environmental Markets: Evidence from
Conservation Auctions

1.1 Introduction

Land-use change contributes 13% of global greenhouse gas emissions (Friedlingstein et al., 2022)
and leads to biodiversity loss, water pollution, and erosion (Dirzo et al., 2014; Vörösmarty et al.,
2010; Borrelli et al., 2017). While environmental markets can, in theory, reduce environmental
degradation at low cost (Samuelson, 1954a; Anderson and Libecap, 2014; Teytelboym, 2019),
many believe that existing mechanisms have failed to meet this potential (Anderson, 2012; File-
wod, 2017; Maron et al., 2016; West et al., 2020; Jones and Lewis, 2023). A leading explanation
for this failure is the possibility of inframarginality: some participants may have engaged in the in-
centivized action even absent an incentive. The notion of “additionality,” defined as the likelihood
that an action is marginal to an incentive, is a central challenge to the design and success of many
environmental markets (Engel et al., 2008; West et al., 2023).

Does the challenge of additionality drive markets to failure, undermining environmental incentive
policies and offset markets?1 Or can markets be designed to achieve low-cost climate change

1In offset markets, private buyers purchase contracts that “offset” environmental degradation acre-for-acre or ton-
for-ton. Offset markets exist in a range of settings, due to direct implementation from regulators (wetlands and air
pollution), to allow for gains from trade between regulated and unregulated industries (e.g. compliance offsets in
California’s cap-and-trade program), between countries to provide flexibility in meeting international emissions com-
mitments (the Clean Development Mechanism and REDD+), and due to the large volume of voluntary net-zero com-
mitments among firms (McKinsey Sustainability, 2021, 2022). See Salzman et al. (2018) for an overview of Payments
for Ecosystems Services, specifically.
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mitigation? We explore these questions by analyzing the challenge of additionality as a market
failure due to asymmetric information. Social welfare in markets for environmental conservation
depends on both a landowner’s unobserved additionality and her private cost of complying with
the market requirements. Market mechanisms, however, screen only on the latter. If asymmetric
information prevents incentives from reflecting heterogeneity in landowner additionality, market
mechanisms may not achieve allocative efficiency and in the extreme, may fail (Akerlof, 1970a).
In this paper, we use this perspective to analyze, test, and quantify this potential failure and to
examine remedies in alternative market designs.

We conduct our analysis in the context of the United States Department of Agriculture’s (USDA)
Conservation Reserve Program (CRP), one of the oldest and largest Payments for Ecosystem Ser-
vices (PES) mechanisms in the world.2 The CRP incentivizes agricultural land retirement and con-
servation actions via procurement auctions of conservation contracts. CRP contracts pay landown-
ers $1.6-$1.8 billion per year to take cropland out of production and to plant grass mixes, plant or
maintain trees, or establish habitats for a duration of ten years. Combining administrative data and
high-resolution satellite imagery, we construct a dataset that links landowners’ multi-dimensional
bids in the CRP scoring auction to their land use, which we use to measure additionality. The CRP
auction provides a rich empirical setting for each step of our analysis: assessing the extent of addi-
tionality, testing for asymmetric information, and quantifying their implications for social welfare
under current and alternative market designs. Moreover, the insights from this setting are broadly
applicable: CRP contracts are structured similarly to other PES programs, to contracts traded in
global offset markets, and to private competitive agricultural offset markets in the US.3

We first analyze the market failure introduced by additionality with a stylized framework that
builds on the graphical analysis in Einav et al. (2010a). Landowners differ in two dimensions. The
first is their cost of contracting, which includes the forgone option value of cropping and the hassle
costs of complying with program requirements. The second is their conservation behavior without
the contract, which determines their additionality. The social value of contracting depends on a
landowner’s cost and additionality, but her choices depend only on her cost and the market incen-
tive. This difference can lead to allocative inefficiency. When a landowner’s cost of contracting
is positively correlated with her additionality — for example, landowners who expect to conserve
regardless of the program have lower opportunity costs of contracting — there will be adverse
selection in the market. In procurement, adverse selection can limit the implementability of effi-
cient allocations and undermine the performance of standard mechanisms (Manelli and Vincent,
1995). In competitive offset markets, adverse selection can limit trade because buyers consider the

2Over its history, the CRP is the largest PES mechanism in the world. Within a given year, the CRP is second to
China’s Sloping Land Conversion Program.

3See Kinzig et al. (2011), Engel et al. (2008), and Stubbs et al. (2021), respectively.
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expected additionality of all market participants, not only those contracting at the margin. These
challenges can be remedied if markets are designed to close the gap between socially-optimal
choices and the choices made in the market.

The stylized framework provides guidance for empirical analysis. Social welfare under current
and counterfactual market designs depends on the distribution of landowner contracting costs and
the population expectation of additionality at each value of costs. Contracting costs and addi-
tionality may be correlated due to landowners’ expectations of low payoffs from cropping land.
However, landowners may have only limited information about future payoffs to cropping over
the contract’s duration and incur hassle costs that may be arbitrarily correlated with additionality
(Jack and Jayachandran, 2019). The extent of additionality, the existence of adverse selection in
the market, and together, their quantitative implications for the performance and design of markets
for environmental services are empirical questions.

We begin by examining the extent of additionality in our setting. Credible estimates of addi-
tionality, particularly in large-scale mature markets, are scarce as they require knowledge of an
unobserved counterfactual. We use the discontinuity in contracting around the winning bid in the
procurement auction to evaluate additionality at the margin of contract awards. We find that, as
incentivized by the CRP, landowners substitute away from agriculture to natural vegetation and
grasslands upon contracting. However, only one quarter of marginal winners are additional, which
we calculate by comparing the regression discontinuity treatment effect to the magnitude of land
contracting at the margin. In other words, three quarters of landowners at the margin of contract
awards would have conserved without a CRP contract. However, the status quo auction implicitly
assumes all landowners are additional in the design of its scoring rule (Claassen et al., 2018).

To test for adverse selection in the market, we correlate heterogeneity in additionality with het-
erogeneity in the costs of contracting reflected in landowner bids. We make two assumptions —
perfect compliance and no spillovers, both of which we test and validate — to obtain a landowner-
specific measure of additionality for all rejected bidders (82% in the most restrictive auction).
We examine the relationship between landowner-specific additionality and bids following classic
tests for asymmetric information in insurance markets (Chiappori and Salanie, 2000) and auctions
(Hendricks and Porter, 1988). We document substantial heterogeneity in additionality and a posi-
tive correlation between additionality and bids, indicating the presence of adverse selection in the
market. The positive correlation persists even conditional on a rich set of observed characteristics.
This analysis also highlights opportunities for improvements to market design: heterogeneity in
additionality is predicted by landowners’ choice of contract in the mechanism and by the observed
characteristic of soil productivity.

These facts demonstrate that both additionality and asymmetric information are relevant to the
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function of this market; to quantify their welfare implications and evaluate the performance of
counterfactual market designs, we develop and estimate a joint model of bidding and additionality.
First, we infer costs of contracting from revealed preferences in optimal bidding. Then, we estimate
landowner additionality, including how it varies with costs, by matching the moments of land use
presented in the first half of the paper.

In the CRP auction, landowners submit multi-dimensional bids on a menu of heterogeneous con-
tracts, which are ranked by a scoring rule. This provides a rich environment for market design,
as scores across the menu of contracts and observed asymmetry terms are tools to increase social
welfare. In the first part of the model, we extend the multi-dimensional bidding models of Asker
and Cantillon (2008b) and Che (1993) to a setting with a discrete contract choice and a non-linear
scoring rule. In the second part, we model additionality with a conditional expectation function
that relates land use to both observed characteristics and unobserved landowner costs. This condi-
tional expectation function is the component of the model that captures the possibility of inefficient
or adverse selection.

We estimate the model in three steps. The first two steps adapt standard procedures for the em-
pirical analysis of auctions (Guerre et al., 2000a; Hortaçsu, 2000; Hortaçsu and McAdams, 2010;
Agarwal et al., 2023). First, we estimate bidder beliefs via simulation. Second, we estimate bidder
costs via revealed preferences in optimal bidding. Because of the discrete choice in the bidding
problem, we rely on variation in the scoring rule for identification. In the final step, we estimate
additionality, including how it varies with unobserved landowner costs, by matching the levels of
additionality and the correlation between additionality, landowner characteristics, and optimal bids
observed in our linked land use and bid data. We use our estimates of additionality to calculate the
social benefits of contracting based on valuations of environmental services from the CRP litera-
ture and the USDA’s revealed preferences across landowners and contracts implied by the scoring
rule.

Using these estimates, we first examine whether the existence of a market for conservation in-
creases social welfare. When some landowners in the market are not additional, this is theoreti-
cally ambiguous; we investigate it empirically in a simple uniform market for the base contract.
We find substantial social welfare gains under the socially-optimal uniform price ($14.66 per acre-
year) and in a stylized competitive offset market ($14.11 per acre-year). The difference between
these two market structures (-4%) reflects the trade-limiting effects (-15%) of adverse selection
in competitive markets. Despite landowners who are not additional and the adverse selection this
introduces, we find that the market does not fail.

We then evaluate the performance of the status quo auction mechanism. We estimate that the
status quo mechanism leads to social welfare gains of $126 million per auction, relative to no
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market. However, it implements only 15% of the social welfare gains of an efficient allocation.
This allocation determines contract awards based on both landowners’ costs and expected social
benefits, which depend on additionality.

Implementing the efficient allocation with an incentive compatible auction may not be possible
(Myerson, 1981a). Because they are less additional, lower cost landowners are not always higher
social value. Our estimates imply that the allocation rule for this efficient benchmark need not be
monotone in bidder cost.

We instead propose and evaluate alternative auctions with scoring rules that trade off bidders’ costs
against both their conservation actions’ heterogeneous social benefits and their expected addition-
ality. This differs from the status quo scoring rule, which does not consider the latter. Alternative
scoring rules adjust asymmetry across bidder observables and scores across the menu of contracts
based on predictions of additionality. Instead of restricting participation in the market through eli-
gibility requirements, our approach re-designs the auction to impact conservation, acknowledging
that some landowners in the market may not be additional.

Simple modifications to the auction’s scoring rule close the gap between the status quo and effi-
cient allocation by 41%, increasing social welfare by $284 million per auction. All gains are due
to changes that incorporate landowner additionality. A large share are from setting the socially-
optimal uniform adjustment to the scoring rule. Further gains accrue from using the rule to dif-
ferentiate among heterogeneously additional landowners. By contrast, switching from the status
quo (inefficient) auction to an (if all landowners were additional, efficient) Vickrey-Clarke-Groves
mechanism that remains naive to additionality reduces social welfare.

We conclude with the implications of supply-side adverse selection for competitive offset mar-
ket design.4 Competitive markets introduce distinct considerations: a differentiated market may
or may not be more efficient than a uniform one. Differentiation based on available covariates
would increase social welfare in a stylized competitive offset market for the base contract by 15%,
reducing both inefficient selection and inefficiently-limited trade due to adverse selection. Next,
we consider which contracts could be traded. Markets for tree planting and maintenance unravel,
while social welfare losses from adverse selection in other markets, including grasses planting and
habitat creation, are limited to at most 3%.

Together, our results highlight that although additionality and the adverse selection that it intro-
duces are relevant in practice, and in theory, can cause markets to fail, voluntary environmental
markets can deliver on their promise of low-cost conservation. However, successful market de-
sign must consider not only the heterogeneity in private costs that determine choices, but also the

4The Growing Climate Solutions Act of 2021 includes provisions for the USDA to serve as a regulator of agricul-
tural offset markets.
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implications of these choices for additionality and social welfare in the market.

Related Literature Our primary contribution is to develop an empirical framework to evaluate
social welfare under current and counterfactual market designs in the presence of the additionality
market failure. We also provide credible estimates of the extent of additionality and evidence of
adverse selection in a large-scale, mature market for ecosystem services. Our regression disconti-
nuity estimates of additionality contribute to a literature estimating treatment effects of payments
for ecosystem services (Jack, 2013; Alix-Garcia et al., 2015; Jayachandran et al., 2017a; West et
al., 2020; Rosenberg et al., 2022) and inframarginality in offset markets (Calel et al., 2021). Our
framework builds on theoretical analyses of asymmetric information (van Benthem and Kerr, 2013;
Mason and Plantinga, 2013; Li et al., 2022; Haupt et al., 2023) and empirical tests for selection
(Montero, 1999; Jack, 2013; Jack and Jayachandran, 2019) in environmental incentive programs
and offset markets.

Though our context is additionality in conservation incentives, our framework relates broadly to
the design of environmental incentive programs and other voluntary regulation (Allcott and Green-
stone, 2012; Borenstein, 2012; Allcott and Greenstone, 2017; Einav et al., 2022; Ito et al., 2023)
and complements work studying other sources of inefficiency in markets for environmental con-
servation (Harstad, 2016; Harstad and Mideksa, 2017; Aronoff and Rafey, 2023). Beyond envi-
ronmental markets, our approach to auction design relates to a literature evaluating market designs
based on treatment effects, not only revealed preferences (e.g. Agarwal et al. (2020)).

We contribute to a literature studying quality concerns in procurement auctions (Manelli and Vin-
cent, 1995; Decarolis, 2014a; Carril et al., 2022; Lopomo et al., 2023), where we provide an em-
pirical framework to evaluate alternative auction designs in the presence of adverse selection on
bidder quality (additionality in our setting). This empirical framework draws on a large literature
studying selection in insurance markets (Akerlof, 1970a; Chiappori and Salanie, 2000; Einav et
al., 2010a; Bundorf et al., 2012a; Marone and Sabety, 2022).

Methodologically, our model and estimation strategy use techniques from a rich literature ad-
vancing the empirical analysis of auctions (Guerre et al., 2000a; Hortaçsu, 2000; Hortaçsu and
McAdams, 2010; Jofre-Bonet and Pesendorfer, 2003; Agarwal et al., 2023). We draw on and
extend existing work on scoring and other multi-dimensional auctions (Che, 1993; Asker and Can-
tillon, 2008b, 2010; Lewis and Bajari, 2011; Sant’Anna, 2017; Hanazono et al., 2020; Kong et
al., 2022; Allen et al., 2023; Bolotnyy and Vasserman, 2023b) to incorporate discrete bidding, a
non-linear scoring rule, and a correlation between additionality and bidder costs.
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1.2 Theoretical Framework

We present a framework to analyze additionality in markets for environmental services.

1.2.1 Model

There exists a continuum of landowners, indexed by i, each making a decision to contract, xi ∈
{0,1}, to obtain a transfer, p. In Section 1.5, we adapt this framework to a finite number of
landowners bidding for contracts in a procurement auction with a quantity constraint.

The contract involves a promise to provide an environmental service (ai = 1) versus not (ai = 0).
In our setting, ai = 1 denotes agricultural land retirement (conservation) and ai = 0 denotes crop-
ping. The action ai = 1 generates social benefits from positive environmental externalities. The
buyer of the contract — either a regulator or a private buyer in an offset market — values the social
benefits from ai = 1 at B > 0.

Define ai1 as landowner i’s action when xi = 1 and ai0 as her action when xi = 0. We assume
perfect compliance, so ai1 = 1. Because B is generated whenever i chooses ai = 1, regardless of
contract choice xi, the benefit of contracting with i is only the incremental value B · (1−ai0). ai0

is unobserved whenever xi = 1 and is therefore non-contractible.

A landowner’s decision to contract xi is the only available instrument to affect the provision of the
environmental service. A Pigouvian subsidy (B) on all conservation would correct the externality,
but is unavailable due to considerable practical constraints.5 We thus focus on the performance and
design of existing markets for environmental services. In practice, the instrument xi is a binding
long-term contract, and compliance may involve hassle costs, as documented across social pro-
grams, including in Payments for Ecosystem Services programs (Jack and Jayachandran, 2019).

Landowner Types Each landowner i is characterized by a type θi = (ci,ai0) distributed ac-
cording to the cumulative distribution function F(θ). ci is a landowner’s cost of contracting,
defined as the minimum transfer p required for a landowner to accept the contract xi = 1. ai0 is
a landowner’s expected action absent the contract.6 We do not restrict the joint distribution of ci

5The $36 billion Payments for Ecosystem Services industry (Salzman et al., 2018) has emerged as a second-best
substitute to a first-best Pigouvian corrective instrument. This is motivated by limits to the feasibility of a Pigouvian
instrument in practice. A Pigouvian subsidy on all conserved agricultural land in the United States would cost over
forty times the current budget of the Conservation Reserve Program. A tax on ai = 0, while raising revenue, may face
political constraints. Both may be costly to monitor and administer. Moreover, binding long-term contracts allow for
an extended period of conservation, which facilitates ecosystem development.

6We define landowners by the expected action ai0, given each landowner’s information about the payoffs to crop-
ping versus conserving, at the time of contracting. Results that apply to a hidden information model also apply to a
hidden action model (Milgrom, 1987).

20



and ai0. Landowners may have a low ci because they have unprofitable land that they do not plan
to crop (ai0 = 1). But landowners may face uncertainty over the stochastic payoffs to cropping
that determine their forgone option value of cropping over ten-year contracts, and contracting in
realistic settings involves activities beyond choosing not to crop that impose hassle costs that enter
ci and may be arbitrarily correlated with ai0.7 It is therefore ambiguous whether and how ci and
ai0 are related.

It will be useful to define the conditional expectation function:

τ (c) =E [1−ai0 |c = ci] . (1.1)

This function describes the expected additionality, or the expected impact of contracting on ai,
among all landowners with the same cost of contracting.

Social versus Landowner Incentives The social surplus of contracting with landowner i is:

SSi = B · (1−ai0)− ci. (1.2)

Gains from trade occur when the incremental value of environmental services due to contracting
is higher than a landowner’s cost of contracting.

Landowners choose xi = 1 if p≥ ci. Let

x∗i (p) = 1{p− ci ≥ 0} (1.3)

be landowner i’s choice to contract at price p. Equations (1.2) and (1.3) show that landowner i

transacts based only on p and her contracting cost ci, but social surplus depends also on 1−ai0, or
her additionality. p will therefore not necessarily incentivize the highest social surplus landowners
to contract.

Efficient Prices and Allocations The socially-optimal uniform price solves:8

max
p

∫
(B · τ (c)− c)x∗ (p;c) fC (c)dc, (1.4)

7These include complying with mandates to purchase specific seed mixes whose costs to obtain differ across
regions, effort costs to comply with specific configurations of grass planting, tree planting, or habitat establishment
required in the contract, paperwork burdens to process payments, audits to manage compliance, and any taste or
distaste for participating in an environmental market.

8A uniform price is motivated by the absence of observables. This could be because they have already been
conditioned on, where equation (1.4) defines the pricing problem in a sub-population.
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where the density fC is the marginal of F(θ) on contracting costs, ci, and x∗ (p;c) = 1{p− c≥ 0}.
The solution to this problem is equivalent to one where a quantity is chosen and an allocation is
implemented with a Vickrey auction.

Equation (1.4) shows that fC and τ (c) are sufficient statistics for social welfare and landowner
choices when p is the only instrument available to allocate landowners to contracts. More gen-
erally, fC and τ (c) are sufficient statistics for social welfare for any incentive compatible mecha-
nism.9 Contracting with a landowner with cost ci increases expected social surplus when:

B · τ (ci)− ci ≥ 0. (1.5)

Our interest in this stylized framework is in when an allocation that maximizes expected social
surplus, B ·τ (c)−c, is implementable. We will refer to this allocation as the efficient allocation.10

1.2.2 Graphical Analysis

We analyze the efficiency of allocations in the market graphically, plotting markets with different
F(θ) in Figures 1.1a and 1.1b. Each figure plots two curves: one based on fC and one based
on τ (c). The first curve is the inverse distribution function of contracting costs, F−1

C (q), or the
marginal cost curve (MC), where the horizontal axis q is the share of the population ranked by
contracting costs. The second curve is the value of contracting at each quantile of the distribution
of contracting costs, B · τ , or the contract value curve.11 The contract value curve lies weakly
below B reflecting the possibility that ai0 > 0 for some landowners.

Each panel in Figure 1.1 displays an upwards-sloping contract value curve (τ ′(c)> 0). This cap-
tures the fact that landowners’ expectations about future payoffs to cropping influence both ci and
ai0; landowners who expect to conserve may face a low cost of accepting a contract requiring
conservation. In other words, there may be adverse selection in the market.12 Modeling adverse
selection with an upwards-sloping contract value curve builds on the widely-used graphical anal-
ysis of adverse selection in insurance markets developed in Einav et al. (2010a). We emphasize,

9See Lopomo et al. (2023) for more details and a proof. See also Einav et al. (2010a) on the use of similar sufficient
statistics for the analysis of adverse selection in competitive insurance markets

10We focus on this benchmark, the maximum social welfare gain achievable given knowledge of ci and the function
τ (c) in the population, following Lopomo et al. (2023), as it maximizes expected social surplus given cost reports ci.
Implementing this allocation, however, will be possible only for some F(θ).

11This plots B · τ
(
F−1

C (q)
)
. We conduct the change of variables (to q) so that the areas between the contract value

and marginal cost curves are interpretable as magnitudes of social welfare gains (or losses).
12Some may argue that using the term “adverse selection” abuses terminology. This is an example of “selection on

moral hazard” defined in Einav et al. (2013a), which also includes a discussion on terminology.
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however, that Figure 1.1 is for illustration: τ (c) — including whether it is upwards-sloping — and
F−1

C (q) are to be estimated.

The vertical distance between the contract value and marginal cost curves equals B · τ (c)− c, or
the expected social surplus of contracting with all landowners with costs equal to c. From equation
(1.5), it is efficient to contract only in regions where the contract value curve lies above the marginal
cost curve.

In Figure 1.1a, the efficient allocation can be implemented with socially-optimal incentives, sat-
isfying p∗ = B · τ (p∗), at the intersection of the contract value and marginal cost curves. This
implements social welfare gains in triangle CDE. Setting p = B, the social value of the conserva-
tion action, can result in inefficient contracting and social welfare losses (triangle EFG). Socially-
optimal incentives therefore require knowledge of both fC and τ (c): the distribution of contracting
costs and heterogeneous impacts of contracting along this distribution.

In Figure 1.1b, the efficient allocation cannot be implemented. In fact, in Figure 1.1b, it is socially-
optimal not to offer a market, despite the existence of landowners for whom contracting is socially
desirable. In the distribution of landowner types illustrated in Figure 1.1b, the contract value curve
lies below the marginal cost curve at low contracting costs (low q). This represents landowners that
have low but positive costs of contracting — due to some option value of cropping and/or hassle
costs — but a high likelihood of conserving without the contract. In this market, a regulator cannot
implement the efficient allocation (triangle EFG), as any incentive that is attractive for landowners
in triangle EFG is also attractive for landowners in CDE, where losses in CDE outweigh gains in
EFG.

The difference between equations (1.2) and (1.3) causes the inefficiency in Figure 1.1b. The regula-
tor can only affect allocations based on landowner costs, ci, and the incentive p, but social surplus
depends also on the impact of contracting, or ai0. In contrast to standard markets, the relation-
ship between social surplus and landowner costs may not be monotonically decreasing. Because
B ·τ (c)−c, the vertical distance between the contract value and marginal cost curves, crosses zero
from below in Figure 1.1b, no mechanism can implement the efficient allocation (triangle EFG)
as it would require an allocation rule that is not monotonically decreasing in landowner costs (see
Myerson (1981a); Lopomo et al. (2023)). The difference between Figures 1.1a and 1.1b thus has
implications beyond the illustrative posted prices mechanism in this Section. In a procurement
auction with a quantity constraint — our empirical setting — if B · τ (c)− c is not decreasing in
c, the efficient allocation (subject to the quantity constraint) may not be implementable by any
mechanism. In Figure 1.1a, B · τ (c)− c is decreasing in c, but in Figure 1.1b, it is not.

If contracts are traded in competitive markets, which we term offset markets,13 adverse selection
13We will refer to competitive markets with price-taking buyers as offset markets, though we model buyers as
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can also prevent the competitive equilibrium price from implementing an efficient allocation, even
when it is implementable with the price that solves equation (1.4) (Akerlof, 1970a). Price-taking
buyers in the market take expectations over the additionality of all market participants, not only
those contracting at the margin. We define a competitive market price pc by the equilibrium con-
dition: pc = E [B · τ (ci) |ci ≤ pc].14 Figure 1.1c adds the curve defined by E [B · τ (ci) |ci ≤ p] to
the population of landowners presented in Figure 1.1a.15 Its intersection with the marginal cost
curve defines the competitive market equilibrium, which differs from the socially-optimal price. In
the presence of adverse selection, trade in competitive (offset) markets will be limited and efficient
contracting, with social welfare gains represented in triangle EFG, will not occur.

Empirical Questions Figure 1.1 illustrates that the welfare implications of additionality depend
on fC and τ (c). The goal of our empirical analysis is therefore to estimate fC and τ (c). But
this stylized model was limited in its tools. Our empirical analysis will include a richer set of
contracts and observable characteristics. We will then investigate both the possibility of social
welfare losses when market incentives do not implement the efficient allocation and social welfare
gains from alternative market designs.

1.3 Setting and Data

1.3.1 The Conservation Reserve Program

Our empirical setting is the Conservation Reserve Program (CRP), a Payments for Ecosystem
Services (PES) scheme incentivizing conservation on agricultural land administered by the United
States Department of Agriculture (USDA). Established in 1985, the CRP pays landowners between
$1.6 and $1.8 billion per year to retire erodible and other environmentally sensitive cropland and
adopt additional conservation actions for a contract duration of 10 years. The CRP is one of the
largest and most mature PES schemes in the world. It is also a major source of expenditures on
environmental policy in the United States; the CRP is one of several conservation programs at
the USDA with a combined budget of $8 billion.16 Moreover, the structure of the CRP and its

valuing all of the social benefits of the conservation action B, not only an emissions offset.
14We focus on the social welfare losses from supply-side adverse selection. We abstract away from the possibility

that buyer valuations may diverge from B, that buyers may not know the distribution F(θ), or that buyers may not
value additionality.

15This curve is defined as
∫ q

0 B · τ
(
F−1

C (q̃)
)

dq̃.
16By comparison, the Superfund program and Weatherization Assistance Programs have annual budgets of $1.1

billion, and the total Environmental Protection Agency (EPA) budget is $12 billion. See the USDA FY 2023 Budget
Summary, FY 2023 EPA Budget in Brief, and NASCP Weatherization Assistance Program Funding Report for FY
2019 for more details.
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incentivized activities are similar to other government financed PES schemes,17 to offset contracts
traded in voluntary markets,18 and most specifically, to a burgeoning private agricultural offset
market in the US. There is substantial policy interest in growing this market. The Growing Climate
Solutions Act of 2021 includes provisions for the creation of a USDA-regulated agricultural offset
market, in which CRP-style contracts would be sold to private buyers.19

Unlike the uniform pricing problem in Section 1.2, the USDA awards CRP contracts via a complex
auction mechanism. This adds richness to both the strategic and contracting environment that we
will leverage empirically. Under the CRP’s General Enrollment mechanism, eligible landowners
bid for heterogeneous contracts in a discriminatory, asymmetric, scoring auction.20 Contracts are
differentiated by conservation actions that “top up” the base action of land retirement. These
actions include planting specific grass mixes, planting or maintaining trees, and establishing or
restoring pollinator or rare habitats.

Bids are scored according to a known scoring rule that awards bidders points for the environmen-
tal sensitivity of their land, their chosen contract (described above), and their bid rental rate, a
payment per acre per year. Characteristics of the land that determine points for environmental
sensitivity include erodibility, importance for habitats, potential for water and air pollution, and
carbon sequestration potential. Bid rental rates are subject to a bid cap based on the average land
rental rate in the county and soil productivity estimates. Appendix 1.10.1 describes the auction
mechanism and scoring rule in more detail.

The aggregate acreage to be awarded contracts is determined by Congress in the Farm Bill, which
in turn determines the threshold score for contract awards. All bidders with scores above the
threshold score are awarded a contract.21 Given uncertainty in both the aggregate acreage and
their opposing bidders, bidders face uncertainty over the threshold score at the time of bidding.
Bids are prepared with the assistance of staff at Farm Services Agency county offices, who help
landowners trade-off different contracts and bid rental rates.

Auctions occur once every 1-4 years. Landowners are eligible to bid if they meet erosion stan-
dards, are in a national or state conservation priority area, and either had cropped at least four
years in a 5-10 year window preceding the auction or are re-enrolling CRP land.22 This eligibility

17See Kinzig et al. (2011) and Salzman et al. (2018) for overviews.
18Over 50% of contracts traded in voluntary offset markets are related to land use and management. See the Volun-

tary Registry Offsets Database at the Berkeley Carbon Trading Project for more details.
19See S. 1251 and H.R. 2820 for more details.
20In addition to the General Enrollment mechanism, there is a posted-price Continuous Enrollment mechanism

for targeted land. Historically, 75% of CRP acreage has been contracted via the General Enrollment mechanism
(Hellerstein, 2017a).

21There is an additional constraint that no more than 25% of a county’s total acreage can be in a CRP contract. This
constraint essentially never binds.

22The fact that eligibility is determined in a window five years preceding bidding is designed to eliminate any
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requirement is designed to limit participation to additional landowners. Landowners face steep
penalties, refunding all payments since enrollment plus a 25-percent penalty, if they exit early or
fail to comply with the rules of the program.23

Research quantifying the value of the CRP has documented improvements in wildlife habitats, ero-
sion control, water quality, and carbon sequestration from cropland retirement (Feather et al., 1999;
Hansen, 2007a; FAPRI-MU, 2007; Allen and Vandever, 2012; Johnson et al., 2016a; Hellerstein,
2017a). However, these analyses are typically conducted using models that ignore counterfactual
land use. Perhaps motivated by eligibility requirements designed to restrict to additional landown-
ers, the scoring rule is constructed under the assumption that land would crop in the absence of the
program (Claassen et al., 2018). Because the primary environmental gains from the CRP accrue
from land retirement, relative to cropping, the possibility that some landowners conserve absent
the CRP (ai0 = 1) presents the additionality concern.

1.3.2 Data

Our dataset links bids to a panel of landowners’ land use to measure additionality.

Data on Bids We obtain data on all components of the bid, including the bid rental rate, the
bid contract, and the characteristics of landowners that impact the score. Our data cover all seven
auctions that occurred from 2009 to 2021. We also obtain data on all CRP contracts.

Each landowner is defined by a collection of fields, or Common Land Units, the smallest agricul-
tural unit with a common land use. CRP contracts typically cover only a subset of a landowner’s
total fields. Our data include the geolocation of all bidding landowners for all auctions as well
as identifiers for the specific fields offered into the mechanism (“bid fields”) for one auction (in
2016).

Data on Land Use We link bidders, and for the purpose of comparison, agricultural non-bidders,
to a panel of land use outcomes. The primary land use outcome of interest is whether land is
cropped versus retired, as this is the behavior incentivized by the CRP. We use both remote sensing
and administrative datasets due to their complementary strengths.

Our primary dataset is the Cropland Data Layer (CDL), a remote-sensing product from the Na-
tional Agricultural Statistics Service (NASS). This dataset provides land cover classifications at

perverse incentives to crop land to in order to become eligible or maintain eligibility for the CRP. Activities in the 1-5
years preceding bidding have no impact on CRP eligibility.

23The USDA has occasionally allowed for voluntary contract extensions or automatic re-enrollment. No such
initiatives were implemented during our main period of study.
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30m by 30m resolution (roughly a quarter acre) from 2009-2020. The binary indicator of crop
versus non-crop — our primary outcome of interest — is rarely misclassified (Lark et al., 2021).24

However, as in other satellite-derived products, non-classical measurement error can generate bi-
ases in assessing land-use change (Torchiana et al., 2022; Alix-Garcia and Millimet, 2022).

Our second dataset is field-level administrative data on land use that agricultural landowners re-
port to the USDA in “Form 578” for 2013-2019. These data are accurate and comprehensive for
cropped land because crop insurance payouts are dependent on these reports, but have two limita-
tions. Landowners are only incentivized to report Form 578 if fields are insured by crop insurance,
and landowners with CRP contracts are mechanically classified as non-cropped.

Our final land-use dataset is a collection of high-resolution satellite imagery (1m) of contracted
land collected under the National Agriculture Imagery Program (NAIP) from 2017-2021. We use
these images to observe and confirm compliance with CRP rules.

While accurate to assess agricultural land retirement — the main incentivized activity of the CRP
— these datasets cannot measure the different “top-up” actions that differentiate the heterogeneous
contracts in the mechanism (e.g. specific species). Our main estimates of additionality will focus
on the measure that we can observe and the principal goal of the program: the binary outcome of
retiring versus cropping land.

Appendix 1.10.2 provides more details about agricultural land units, the construction of our dataset,
and the use of aerial photographs to confirm compliance with CRP rules.

Summary Statistics Table 1.1 presents summary statistics. Columns (1)-(2) summarize all agri-
cultural landowners in the US, including CRP-eligible and ineligible landowners. Columns (3)-(4)
summarize all land among bidders in our sample and columns (5)-(6) summarize bid fields.

Panel A presents land use outcomes in the year prior to bidding. Approximately 21% of bidders’
land is cropped (18-21% on bid fields) versus 28-30% nationwide. The majority of the remainder
is in natural vegetation and grassland. Corn and soybean cultivation account for two-thirds of all
cropping. The remote sensing and administrative data generally align, but do not match exactly.

Bidders have lower USDA-constructed estimates of soil productivity (Panel B), are larger, and
are more environmentally sensitive as measured by the scoring rule than the average agricultural
landowner. These differences, along with the differences in land use in Panel A, are likely driven
in part by eligibility requirements that columns (1) and (2) are not conditioning on.

24The superclass accuracy of cropland in the Cropland Data Layer has user (probability that a classification of crop
is true crop) and producer (probability that true crop is classified as crop) accuracy of over 95% from 2008-2016 (Lark
et al., 2021)
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The average bidder offers 84.1 acres into the CRP mechanism (33% of a bidder’s land) for a rental
rate per acre per year of $83. Two-thirds of bidders bid on a contract that includes a grassland-
planting action, 21% choose a wildlife habitat action, and 12% choose a tree-planting action. 70%
of bidders are re-contracting after their initial 10-year contract expired.25 81% of bidders are
awarded contracts across the auctions in our sample. The average auction includes 36,763 bidders.

1.4 Evidence: Additionality and Asymmetric Information

In this section, we estimate the extent of additionality in the CRP and test for heterogeneity in and
asymmetric information about additionality.

1.4.1 Regression Discontinuity Estimates of Additionality

Estimates of additionality are important inputs into the evaluation and design of markets for en-
vironmental services but require a credible empirical strategy. We exploit the sharp discontinuity
in CRP contract awards at the winning score threshold to evaluate the treatment effect of a CRP
contract in a regression discontinuity (RD) design.

Empirical Strategy Our RD specification pools all auctions in the sample, normalizes each
landowner’s score relative to her auction’s win threshold, and evaluates how land use outcomes
differ over time around this threshold.

Our main specification estimates, for landowner (or bidder) i, in auction g, and year t:

yigt = βr(i,t) ·1{Sig ≥ Sg}+ fr(i,t)(Sig−Sg)+νigt , (1.6)

where Sig is landowner i’s score in auction g, Sg is the winning score threshold in auction g,
r (i, t) = t − tg(i) normalizes the time dimension relative to the year of each auction (tg(i)), and
fr(i,t)(Sig− Sg) are relative-year-specific local-linear regressions in the MSE-optimal bandwidth
(Calonico et al., 2014) allowed to differ for positive and negative values of Sig−Sg. βr(i,t) estimates
time-varying RD coefficients around the year of the auction. We also estimate the following pooled
specification:

yigt = β ·1{Sig ≥ Sg}+ f (Sig−Sg)+νigt . (1.7)

25Re-contracting bidders are treated identically to new bidders by the scoring rule.
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Restricted to r (i, t) ≤ 0, equation (1.7) provides a test of validity. Restricted to r (i, t) > 0, β

provides an estimate of the treatment effect at the margin of contract awards pooled over auctions
and post-auction years.

We estimate equations (1.6) and (1.7) at the landowner level to accommodate the possibility of
spillovers across bid and non-bid fields. We cluster standard errors at the landowner level.

Validity The RD design is valid under the assumption that bidders possess information about the
winning score threshold’s distribution, but not its exact ex-post realization. Testing this assumption
translates to standard smoothness and manipulation tests for RD analyses (McCrary, 2008); if
bidders knew the threshold score, they would optimally bid just above it. Figure 1.2a presents
a histogram of the score distribution normalized relative to the threshold score, Sig− Sg, or the
running variable of the RD. Bidders with positive values are awarded contracts and bidders with
negative values are not. Figure 1.2a confirms the lack of bunching at the winning score threshold.
Figure 1.2b also shows no differential cropping at the discontinuity before the auction, plotting
(binned) raw data and estimates of equation (1.7) for r (i, t)≤ 0.

Interpretation of equations (1.6) and (1.7) also requires an estimate of the magnitude of the first
stage. Figure 1.2c plots the share of bidders with a CRP contract after the auction around the
award threshold (equation (1.7) for r (i, t) > 0) and demonstrates a first stage close to one. We
will therefore interpret the RD coefficients from equations (1.6) and (1.7) as the impact of a CRP
contract.

Results Figure 1.3 presents raw data and estimates of equation (1.7) for r (i, t)> 0. As the CRP’s
primary goal is to incentivize agricultural land retirement, our outcome of interest in Figure 1.3a
is the share of each bidder’s land that is cropped, which we measure in the remote sensing data.
Figure 1.3a demonstrates that CRP contracts impact land use at the margin of contract awards.
Landowners above the score threshold, who are awarded a contract, crop eight percentage points
less land than the marginal landowners who are not awarded contracts. This land is instead put into
natural vegetation and grassland (trees, shrubs, wetlands and grasses), as incentivized by the CRP
(Figure 1.3b). Because we present estimates at the bidder level, cropping is not zero for winners
who typically only contract on a subset of their land.

To analyze the time path of effects and estimate the extent of additionality, Figure 1.4 presents
coefficient estimates of βr(i,t) from equation (1.6) and compares them to a 100% additional (ai0 = 0
for all i) benchmark. We estimate equation (1.6) using both the remote sensing data (used in
Figures 1.2b and 1.3) and the administrative data to ensure that results are consistent across the
two datasets. The 100% additional (τ = 1) benchmark in Figure 1.4 is calculated as the share
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of marginal bidders’ land in a CRP contract. If contracting induced all bidders to change land
use, treatment effects would equal the τ = 1 line on Figure 1.4. Dashed lines represent pooled
post-period estimates (equation (1.7)) in each dataset.

Figure 1.4 presents four facts. First, consistent with the pre-period placebo test in Figure 1.2b,
coefficient estimates are zero before the auction. Because the estimates in Figure 1.4 are relative-
year-specific RD coefficients, pre-period effects are identified in levels. Second, post-period effect
sizes and time-trends are similar in both datasets, confirming that results are not driven by either
non-classical measurement error in the remote sensing data or misreporting in the administrative
data. Third, while treatment effects grow in the first two years as land transitions, effects are
constant over the ten year contract period. Opportunities to rebid, which would cause treatment
effects to decrease over time, do not drive down average treatment effects.26

Finally, the main result in Figure 1.4 is that over the 10-year contract, the magnitude of the treat-
ment effect of a CRP contract on land use is substantially smaller than the τ = 1, or 100% addi-
tional, benchmark. Figure 1.4 demonstrates that approximately one in four bidders is additional.
Conversely, three of four bidders conserve even absent a CRP contract. Figure 1.4 provides evi-
dence on the relevance of additionality in the CRP.

Table 1.2 summarizes results from Figures 1.2, 1.3, and 1.4, presenting estimates for the pooled
specification (equation (1.7)) in both datasets. The main results in Table 1.2 quantify the addi-
tionality estimates from Figure 1.4: depending on the specification and data, we estimate rates of
additionality at the margin of contract awards between 21% and 31%, with a mean and median
effect size of 26%. Panel B presents estimates on other land use outcomes.27

Discussion Estimates of additionality at the margin provide information about the contract value
(B · τ) curve in Figure 1.1. First, it lies below B, as many landowners are not additional. The
results in Figure 1.4 also highlight the need to estimate, rather than assume, the τ(c) function.
If alternatively, costs and additionality could be summarized by a single index, in which bidders
with positive costs are additional and bidders with costs equal to zero are not, then at the margin
additionality should be either zero or one. Estimates of additionality at the margin reject both of
these hypotheses.28 This will motivate our modeling and estimation approach: neither estimates of

26We observe limited rebidding. Appendix Figure A.7 plots the hazard rate of rebidding following a failed initial
bid. Even five years following the initial bid, only approximately 20% of losers have rebid and fewer than 15%
have won (despite multiple opportunities). This is consistent with the magnitude of the first stage in Figure 1.2c and
the institutions of the setting. The CRP is so mature that the General Enrollment mechanism is shrinking over time;
acreage contracted in later auctions is lower than acreage contracted in earlier auctions over our time period of analysis.

27Appendix Figures A.4, A.5, and A.6 present corresponding RD figures. Appendix Table A.6 replicates Table 1.2
restricting to bids of more than five acres, following Lark et al. (2017).

28This interpretation is slightly complicated by bidder asymmetry, contract choices, and the pooling of auctions
with different thresholds. Appendix Table A.5 presents RD estimates split by the location of the win threshold param-
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costs nor additionality alone are sufficient to estimate social welfare under current or counterfactual
market designs.

Mechanisms We argue that the estimates in Figure 1.4 are driven by heterogeneous land use
absent the contract (ai0) specifically on the land bid into the mechanism. Panel C of Table 1.2
(and Appendix Figure A.4) documents the absence of any spillovers onto non-bid fields. This
could occur either via a leakage mechanism, by which landowners reduce cropping on bid fields
but increase it on other fields, or if there are complementarities to cropping multiple fields. We
observe no evidence in support of either of these hypotheses.

In theory, both conservation without a CRP contract and cropping with a CRP contract (non-
compliance) could contribute to the result in Figure 1.4. We assess the CRP’s compliance regime
by inspecting high resolution aerial photographs of over 1,000 contracted fields.29 As described in
more detail in Appendix 1.10.2, we find no evidence of non-compliance.

Beyond the RD Together, these two results — no spillovers and compliance — provide a basis
for empirical analysis beyond the RD. Among rejected bidders, we observe a realization of each
bidder’s ai0 on bid fields. With knowledge that ai1 = 1, we therefore observe 1− ai0 for each
landowner that loses the auction. In other words, we simplify to a “selective labels” problem
(Lakkaraju et al., 2017; Chan et al., 2022b; Arnold et al., 2022).

1.4.2 Testing for Asymmetric Information

Empirical Strategy We use observations of landowners’ realized additionality (1−ai0) and bids
to conduct a test for asymmetric information in the spirit of Chiappori and Salanie (2000) and
Hendricks and Porter (1988). We estimate the following regression specification:

1−ai0 = β ·bi +π · zi +h(zs
i )+νi, (1.8)

where 1−ai0 is measured as the share of landowner i’s bid fields that are cropped, observed only for
landowners without a contract award (those rejected by the auction), bi represents characteristics of
i’s bid, h(zs

i ) are controls for characteristics that enter the scoring rule, and zi are other landowner
characteristics. Every specification of equation (1.8) includes controls for the scoring rule, which

eterized by the amount a bidder would need to bid for the base contract to achieve Sg and finds that 0 < τ < 1 across
groups.

29We use aerial photographs because any measurement error in the remote sensing classifications will mechanically
bias toward finding non-compliance.
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impacts the strategic environment facing bidders. These include estimates of groundwater quality,
surface water quality, wind and water erosion (deciles), air quality impacts, and whether a bidder
is in a Wildlife Priority Zone or Air Quality Zone. We restrict to the one auction where we observe
the delineations of bid fields (the 2016 auction); this is required to construct 1−ai0. This auction
is also the most restrictive auction in our sample: 1−ai0 is observed for 82% of bidders. We will
address the complication that equation (1.8) is estimated in the selected sample of rejected bidders
in Section 1.5.

Following the logic of Chiappori and Salanie (2000) and Hendricks and Porter (1988), a positive
correlation between bids and 1−ai0 is indicative of asymmetric information about additionality. In
the context of the stylized model in Section 1.2, a positive correlation implies an upwards-sloping
contract value curve, or adverse selection in the market.

Results We first document evidence of adverse selection in the market. Figure 1.5a presents a
binned scatterplot of the correlation between additionality and the bid per acre-year (the bid rental
rate), residualized of h(zs

i ). Figure 1.5a demonstrates substantial heterogeneity in additionality
and a systematic positive relationship between higher bids — reflecting higher costs of contracting
— and additionality. The interpretation of Figure 1.5a is intuitive: bidders with low costs of con-
tracting have low costs in part because of private information that they would be likely to conserve
even without a CRP contract. Figure 1.5b shows that bids remain correlated with additionality,
capturing residual private information, conditional on other observables including prior land use
interacted with estimates of the soil productivity of the bidders’ land

Next, we show that choices of contracts in the mechanism are systematically correlated with ad-
ditionality. Figure 1.5c replaces bi with a vector of chosen contract indicators — the submitted
bid on the menu of contracts — and documents substantial adverse selection (low additionality)
on tree-related contracts, relative to the base category of introduced grasses. Figure 1.5c highlights
that contract choices reveal information about additionality and that alternative menus of contracts
may lead to different outcomes in the market.

Finally, we present evidence that observable characteristics are predictive of additionality. Figure
1.5d plots additionality by decile of landowner predicted soil productivity, conditional on h(zs

i )

but excluding any endogenous bid choices from the regression specification. These estimates of
soil productivity are collected by the USDA and are designed to approximate the amount that a
landowner would be able to earn on a given parcel of land. This characteristic is an ideal predictor
of additionality in theory, and Figure 1.5d demonstrates that it is predictive of additionality in
practice. This result highlights the potential to differentiate incentives using this characteristic,
which is not currently incorporated in the scoring rule.
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Discussion The analysis in Sections 1.4.1 and 1.4.2 provide evidence on the extent of addition-
ality, the presence of asymmetric information in the market, and the availability of tools to differ-
entiate landowners by their additionality. However, the welfare and market design implications of
these facts require a quantitative economic framework. In the next section, we develop an empiri-
cal approach to obtain the sufficient statistics for welfare presented in Section 1.2. Relative to that
stylized set-up, our empirical model will incorporate heterogeneity across contracts and observable
characteristics to capture a richer empirical setting for analysis and market design.

1.5 Empirical Model of Bidding and Additionality

We develop a joint model of bidding and additionality. We use this model to estimate (i) the
distribution of landowner costs of contracting over a menu of contracts and (ii) additionality as a
function of landowner costs and observable characteristics. Together with estimates of the social
benefits of CRP actions, which we take from the literature, the model facilitates analysis of social
welfare under current and counterfactual market designs.

Landowners are characterized by a vector of private costs and bid on discrete contracts, differenti-
ated by heterogeneous conservation actions, in response to a non-linear scoring rule. Landowners
also differ in their additionality, which we model with a conditional expectation function that de-
pends on both observable characteristics and bidders’ vector of costs. Our empirical strategy first
uses the optimality of bidding in the auction to estimate bidders’ costs by revealed preferences
and then estimates expected additionality as a function of costs and landowner characteristics by
matching moments of the observed joint distribution of land use, landowner characteristics, and
optimal bids (presented in Section 1.4).

1.5.1 Model

Landowners There are N landowners, indexed by i, and J contracts, indexed by j. Each landowner
is characterized by (i) her costs (ci,κi) for κi = {κi j}, and (ii) her action ai0 absent the CRP. Extend-
ing the model in Section 1.2, re-define F(θ) as the cumulative distribution function of landowner
types θi = ((ci,κi) ,ai0) and Fc,κ as the marginal on (ci,κi).

The vector (ci,κi) defines landowner i’s costs of contracting. A landowner’s cost of contract j is
ci +κi j, where ci is the base cost of contracting, common across contracts, and κi j is the top-up
cost associated with contract j. We assume (ci,κi) are drawn independently across landowners
conditional on observables zi.
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It will again be useful to define the function:

τ (zi,ci,κi) =E [1−ai0 |zi,ci,κi] , (1.9)

or the expected difference in conservation with a CRP contract versus without a CRP contract
given observable characteristics zi and landowner costs (ci,κi).

Auction Landowners (bidders) submit a two-part bid bi = (ri,xi). xi is a contract vector, with
xi j = 1 if the j-th contract is chosen and xi j = 0 otherwise. Landowners choose a single contract
so ∑ j xi j = 1. If landowner i wins the auction, bi describes the terms of her CRP contract: she
performs the action defined in xi and receives a payment of ri dollars per acre-year. Each bid bi is
converted into a score according to a known scoring rule s(bi,zs

i ). All landowners above a winning
threshold score S are awarded a contract.

Landowner i forms beliefs about the probability of winning the auction with a score S given un-
certainty over her competitors and the acreage limit of the auction.30 We assume that landowner
i does not observe the number or characteristics of her competitors, and all landowners form the
same beliefs about the distribution of the threshold score S.31 Define G(S) = Pr{S≥ S}.

Optimal Bidding Each landowner i solves:

b∗i = argmax
(r,x)

 (r− ci−x ·κi)︸ ︷︷ ︸
Payoff to i conditional on bid (r,x)

× G(s((r,x) ,zs
i ))︸ ︷︷ ︸

Probability of i winning with bid (r,x)

 , (1.10)

where a landowner chooses her bid bi = (ri,xi) to maximizes her payoff conditional on winning,
multiplied by the probability of winning with that bid, given her costs (ci,κi).

Additionality In the contract period, landowners make land use decisions. If awarded a contract,
ai1 = 1. If not, landowners choose ai0, which is not contractible. At the time of bidding, equation
(1.9) is the population expectation of 1−ai0 for landowners with observable characteristics zi and
contracting costs (ci,κi). We estimate the function τ (zi,ci,κi), instead of modeling the choice
of ai0, because τ (zi,ci,κi) and Fc,κ are sufficient statistics for social welfare under current and
alternative market designs (see Section 1.2).

30The acreage limit is determined by Congress in the Farm Bill. Appendix Figure A.9 documents evidence consis-
tent with quantity uncertainty.

31This is motivated by the fact that bidding is decentralized among thousands of bidders across the US.
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Remarks Landowners compete on both r and x in equation (1.10). This captures the importance
of competition on contracts in reality and allows for counterfactuals that re-design the menu or
incentives across contracts in the scoring rule.32 Although landowners are competing on multiple
dimensions, whether the landowner wins against her competitors depends only on the choice of
score. The bidding problem can be solved as an “inner problem” of a single-agent discrete choice
and an “outer problem” of a one-dimensional game, building on Asker and Cantillon (2008b) and
Che (1993). Each score induces a menu of payoffs from winning the auction for each contract
for each bidder (illustrated in Appendix Table A.3). The resulting discrete choice problem is
the bidder’s “inner problem.” Then, the choice of the optimal score, given the optimally chosen
contract, defines the bidder’s “outer problem.”

The bidding problem in equation (1.10) incorporates two important simplifications. First, bidding
is costless and there is no selection into bidding.33 Second, the bidding problem in equation (1.10)
is static. The CRP is so mature that the quantity procured in the auction is in decline. This limits
the option value to rebid, and is reflected in the fact that the vast majority of bidders do not re-bid
upon losing (see Appendix Figure A.7). However, in a dynamic framework, the cost parameters
estimated from equation (1.10) can be interpreted as pseudo-costs that are the result of mapping a
dynamic program with sequential auctions into a static game (Jofre-Bonet and Pesendorfer, 2003).
Counterfactuals that do not condition on prior actions and hold the sequence of future auctions
fixed will not be biased by the static formulation of equation (1.10).

Although the mechanism is more complex, the market failure is the same as in Section 1.2.
Landowner choices and allocations depend only on the scoring rule s(bi,zs

i ) and costs of con-
tracting (ci,κi), but the efficient allocation depends also on τ (zi,ci,κi).

1.5.2 Identification and Estimation

Identification Because observed bids are discrete, we cannot invert them using bidders’ first
order conditions to point identify costs as in Guerre et al. (2000a). We instead obtain inequalities
from the observed b∗i = (ri,xi) revealed preferred from optimal bidding in equation (1.10) that
define identified sets containing the true values of (ci,κi) (Agarwal et al., 2023). Instruments in
the scoring rule s((r,x),zs

i ), which vary the relative payoffs across contracts x but are conditionally
independent of costs, narrow the bounds on the identified sets. Variation in s((r,x),zs

i ) traces out

32The EBI Factsheets provided to landowners state: “The single most important producer decision involves deter-
mining which cover practice to apply to the acres offered. Planting or establishing the highest scoring cover mixture
is the best way to improve the chances of offer acceptance.”

33This is a simplifying assumption. Hellerstein (2017a) makes the point that many eligible landowners do not bid.
We assume that non-bidders are invariant to changes in the mechanism.
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the distribution of (ci,κi) conditional on observable characteristics zi, Fc,κ |z. Appendix Figure
A.10 provides a graphical explanation; Agarwal et al. (2023) provides a proof.

For identification of τ (zi,ci,κi), suppose bidders truthfully report (ci,κi) to the mechanism, but
no bidders are awarded contracts. F(θ) is point identified from observing the joint distribution of
(ci,κi) in bids and ai0 in the land use data. Our setting differs from this ideal: (i) the discrete choice
in equation (1.10) results in only identified sets for (ci,κi) from observed bids, and (ii) ai0 is not
observed for the 18% of bidders who win the auction and are awarded a contract. Identification
of the function τ (zi,ci,κi) uses the observed joint distribution of 1− ai0, characteristics zi, and
optimal bids b∗i = (ri,xi) and instruments that shift s((r,x),zs

i ). τ (zi,ci,κi) is the conditional
expectation function that rationalizes this joint distribution. With full support, instruments in the
scoring rule that shift payoffs across contracts and the probability of winning replicate the “ideal
experiment” described above.

We use three sources of variation in the scoring rule as instruments. Two shift relative payoffs
across contracts (illustrated in Figure A.11). One shifts only the level of the score. We assume that
all three sources of variation are conditionally independent of (ci,κi) and ai0. The first source of
variation is a mid-mechanism policy change: after bids were initially collected in 2021, Climate
Smart Practice Incentives — additional payments dependent on contracts’ carbon sequestration
potential — were announced and bids were recollected under the new scoring rule. We obtained
the bids submitted in both the interim and final mechanisms, which provides variation in the relative
payoffs across contracts for the same bidders and same contract period.34 The second source of
variation comes from the fact that bidders in Wildlife Priority Zones (WPZs) face different payoffs
across contracts both cross-sectionally and over time. The third source of variation is similar,
whether a bidder is in an Air Quality Zone (AQZ), but shifts only the level of the score. The use
of these instruments are justified by the fact that WPZ and AQZ status are based on state priorities
and the sensitivity of wildlife or the importance of air quality, not characteristics of landowners or
their land.

Parameterization Although with sufficient variation in the scoring rule, the model is non-parametrically
identified, to take it to the data, we parameterize Fc,κ |z and τ (zi,ci,κi). Landowners make a dis-
crete choice across contracts with heterogeneous features, so we parameterize (ci,κi) with a char-
acteristics model:

ci ∼ N
(
c(zi) ,σ

2
c (zi)

)
κi j = p j (zi)+u j (zi)+ εi j εi j

iid∼ N
(
0,σ2

κ (zi)
)
. (1.11)

34We can use this policy experiment to directly test that landowners are competing on contracts; 8% of landowners
change their contract choice under the new scoring rule.
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ci and κi j are drawn from independent normal distributions with means and variances that depend
on observable characteristics, zi. κi j costs are differentiated by contract features, p j and u j. p j

defines mean costs for a vector of primary covers, which vary by the left-most four categories
in Figure 1.5c, relative to the base category of introduced grasses (normalized to zero). u j is a
vector of upgrade covers, which varies by the right-most two categories in Figure 1.5c plus the
no-upgrade option, normalized to zero. The parameterization in equation (1.11) parsimoniously
captures differences across contracts.35

We also parameterize
τ (zi,ci,κi) = π · zi +β · ci +α ·κ i. (1.12)

This specification allows τ (zi,ci,κi) to depend on observable characteristics, zi, and unobserved
bidder costs (ci,κi), where we align the dimension of α with the primary and upgrade parameteri-
zation of κi j, i.e. we impose that α j = α j′ if p j = p j′ and u j = u j′ .

Estimation Estimation proceeds in three steps and closely follows the identification argument. In
the first step, we estimate landowner beliefs G(S) via simulation. In the second step, we estimate
the parameters of Fc,κ |z via revealed preferences in observed optimal bids (equation (1.10)). In
the third step, we estimate τ (zi,ci,κi) using the Step 2 estimates of Fc,κ |z and optimal bidding
in equation (1.10) to simulate and match land-use moments of the joint distribution of 1− ai0,
b∗i = (ri,xi), and zi. Steps 1 and 2 are a common approach to the empirical analysis of auctions
(Guerre et al., 2000a; Hortaçsu and McAdams, 2010; Agarwal et al., 2023) and Steps 2 and 3 are
a common approach to the empirical analysis of selection markets (Bundorf et al., 2012a; Tebaldi,
2022). Appendix 1.10.4 provides additional details.

Step 1: Simulate G(S) First, we estimate G(S) by simulation following Hortaçsu (2000); Hor-
taçsu and McAdams (2010). We fit Beta distributions to the number of bidders and acreage limits
across auctions. We supplement our primary dataset with additional historic data on acreage limits
and the numbers of bidders for all auctions from 2000 to 2021 to fit these distributions. Then, we
simulate the numbers of bidders and the acreage thresholds and re-sample from the observed joint
distribution of the scores and acreages of bidders within each auction.

Step 2: Estimate Costs The next step estimates Fc,κ |z using the parameterization in (1.11) and
the optimality of observed bids from equation (1.10). We classify bidders into 32 categories of

35Landowners face a discrete choice over each of the primary and upgrade covers, but primary and upgrade covers
can be combined. There are 36 total possible contracts, reflecting finer categorizations of primary covers beyond the
five dimensions in p j (twelve total) that each can be combined with an upgrade option. See Appendix 1.10.1 for more
details.
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observable types zi that parameterize Fc,κ |z based on interactions of quartiles of soil productivity,
prior CRP status, and prior land use status.

We estimate the parameters of Fc,κ |z via Maximum Simulated Likelihood (MSL). This estimator
maximizes the likelihood of each bidder’s observed score-contract combination. Estimation poses
a computational challenge because the combined discrete-continuous bidding problem makes choice
sets extremely large without allowing for an inversion. We address this challenge in two ways.
First, we coarsen the bid space used to construct each bidder’s likelihood contribution, maintaining
the full dimensionality of the problem when solving equation (1.10).36 Second, we use a change
of variables and importance sampling (following Ackerberg (2009)) to reduce the computational
burden associated with searching over a high dimensional bid space for each simulation draw.

Step 3: Estimate Additionality The third step estimates the parameters in equation (1.12),
(π,β ,α), via the Method of Simulated Moments (MSM). This estimator searches for the parame-
ters (π,β ,α) that rationalize moments of the joint distribution of 1− ai0, b∗i = (ri,xi), and zi ob-
served in the data (key moments are illustrated in Figures 1.5). Specifically, we simulate

(
ck

i ,κ
k
i
)

from Fc,κ |z estimated in Step 2, solve for the optimal b∗ki (equation (1.10)) for each simulation
draw k, and search for the parameters (π,β ,α) that match: (i) additionality at the winning score
threshold, (ii) additionality among all rejected bidders and by observable characteristics, (iii) the
covariance between additionality and chosen scores, and (iv) the additionality among all landown-
ers choosing a given contract.

We measure additionality as 1− ai0 among rejected bidders in the remote sensing land use data,
as in Section 1.4.2. All moments condition on optimal bids that are below the score threshold.
This feature of the estimator accounts for the sample selection in Figure 1.5. The observables
zi in τ (zi,ci,κi) are the 32 observable bidder types that parameterize Fc,κ |z and the remaining
components of the scoring rule.

1.5.3 Parameter Estimates

Costs Figures 1.6a and 1.6b plot the estimated distributions of ci and κi j.37 A large share of
landowners have low values of ci, below $50 per acre, per year with a tail of bidders with higher ci.
Top-up costs κi j are mostly positive; most contracts are more costly than the normalized category
of introduced grasses. Table 1.3 summarizes mean costs across contract features and highlights

36We coarsen the observed continuous choice of score into deciles of the score distribution and the choice of contract
into seven categories corresponding to the seven dimensions of p j and u j. See Appendix 1.10.4.

37Appendix Table A.7 presents parameter estimates for select cells of zi and standard errors.
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observable heterogeneity along landowner soil productivity. Relative costs across contracts are
generally intuitive. Higher soil productivity bidders have higher costs for primary covers, but
lower costs for upgrade covers.

Because costs are estimated using only revealed preferences in bids, Figure 1.6c examines whether
estimated costs correlate with land use. Figure 1.6c presents a binned scatterplot of 1−ai0 against
mean base costs ci among rejected bidders. Figure 1.6c documents that landowners with higher
mean base costs are more additional. This both validates the revealed preference estimates and
indicates the presence of adverse selection in the market mediated by observables.

Appendix 1.10.4 examines model fit and compares estimated top-up costs to some limited admin-
istrative data on costs submitted to the USDA. Our fit is reasonable and model-implied costs are
similar in rank and in magnitude to the administrative data.

Additionality Table 1.4 presents select parameter estimates in τ (zi,ci,κi) that describe how ad-
ditionality varies with (ci,κi). The remaining parameters estimate how additionality varies across
observable characteristics.

Each column of Table 1.4 presents a different specification of τ (zi,ci,κi). Columns (1) and (2)
restrict to a correlation between additionality and ci and impose that α = 0. Column (1) includes
observable characteristics from the scoring rule and column (2) adds observable characteristics
that parameterize Fc,κ |z (interactions of soil productivity and prior land use). Consistent with the
positive correlation between bids and additionality in Figures 1.5a and 1.5b, the positive coeffi-
cients in columns (1) and (2) of Table 1.4 indicate that landowner additionality is systematically
correlated with costs, conditional on observable characteristics. The magnitude of the coefficients
presented in Table 1.4 imply that a one standard deviation increase in ci is associated with an eight
percentage point increase in additionality. The coefficient estimates in Table 1.4 reflect the adverse
selection presented in Figures 1.5a and 1.5b.

Columns (3) and (4) allow additionality to also depend on κi. Column (3) only allows tree-related
action costs to impact additionality. The coefficient on tree-related κi j is positive and large, while
the coefficient on ci is reduced, but still positive. Column (4) allows additionality to vary with
κi more flexibly, and the residual correlation between costs and additionality loads onto κi. The
largest coefficient remains on tree-related contracts.

The model-implied estimate of additionality at the RD margin is between 22-23%, within our range
of estimates of 21%-31%. This is expected, as our estimation strategy matches land use moments
directly.

39



1.5.4 From Additionality to Contract Value

To calculate social welfare, we require estimates of the social benefits of contracted actions, B j (zs
i ).

We now index B j (zs
i ) by j to account for heterogeneous social benefits across contracts and allow

B j (zs
i ) to depend on observable characteristics in the scoring rule zs

i that capture heterogeneity in
the environmental sensitivity of landowners. We take average estimates of the value of CRP actions
from literature that quantifies the benefits from habitat restoration and reductions in erosion, water
and air pollution, and greenhouse gas emissions from the CRP (Johnson et al., 2016a; Feather et
al., 1999; Hansen, 2007a). We take relative valuations across landowners with characteristics zs

i

and across contracts j from the scoring rule. We therefore consider social welfare under valuations
B j (zs

i ) revealed preferred by the USDA. See Appendix 1.10.5 for more details.

One remaining detail concerns the fact that additionality is one-dimensional (land-retirement),
but the menu of contracts is multi-dimensional. This is due to fundamental data limitations, the
substantial simplification that focusing on only this one dimension affords, and the fact that the
primary incentivized activity of the CRP is land retirement. Our baseline specification follows
Section 1.2 and calculates contract value as B j (zs

i )·τ (zi,ci,κi). In Appendix 1.10.6, we present and
discuss results under an alternative assumption where additionality only affects the base contract.
This assumes a valuation of contracts equal to B0 (zs

i ) · τ (zi,ci,κi)+B j (zs
i ), where B0 (zs

i ) is the
value of the base action and B j (zs

i ) is the incremental value of the top-up action.

1.6 Social Welfare and Alternative Market Designs

With estimates of the costs (ci,κi) and expected social benefits B j (zs
i ) · τ (zi,ci,κi) of contracting,

we turn to analyzing the social welfare and market design consequences of additionality. Define
the expected social surplus of contracting with landowner i for contract j as:

B j (zs
i ) · τ (zi,ci,κi)− ci−κi j. (1.13)

Equation (1.13) is based on τ (zi,ci,κi) not 1−ai0. Because current and counterfactual mechanisms
screen only on (zi,ci,κi), using equation (1.13) for comparisons of social welfare under current and
alternative market designs is without further loss.

We first examine allocative efficiency and pricing in the context of our graphical framework with a
uniform price and a single contract. In these analyses, we collapse heterogeneity to one dimension
of cost for a single contract and the expected additionality at each point in this one-dimensional
cost distribution (as in Section 1.2). We then build on the graphical analysis — incorporating
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heterogeneity across landowners and contracts — to investigate the performance and design of
current and counterfactual auctions and competitive markets for conservation (offset markets).

1.6.1 Graphical Analysis

Base Contract Figure 1.7 presents the empirical analogue of Figure 1.1, graphing the marginal
cost (MC), contract value (B · τ), and average contract value curves for the base contract. We
simulate the minimum cost to landowners of fulfilling the base contract to construct the MC curve.
Then, we calculate the average B0 (zs

i ) · τ (zi,ci,κi), where B0 (zs
i ) denotes the social benefit of the

base action, at each quantile of this cost distribution to obtain the contract value curve. The two
facts from Section 1.4 are reflected in Figure 1.7. The contract value curve lies below B, repre-
senting landowners who are not additional (Section 1.4.1), and is upwards-sloping, representing
adverse selection (Section 1.4.2). Figure 1.7 offers three conclusions about the welfare implica-
tions of these two facts in the context of our stylized framework.

First, the contract value curve crosses the marginal cost curve from above: the empirical market
described by Figure 1.7 is similar to Figure 1.1a, not Figure 1.1b. The socially-optimal uniform
price implements the one-dimensional efficient allocation defined by equation (1.5) with social
surplus equal to the vertical distance between the contract value and marginal cost curves. This
leads to social welfare gains of $14.66 per acre-year in region CDG. Figure 1.7 demonstrates that
the potential market failure introduced by additionality does not lead the market to completely fail.

Second, Figure 1.7 illustrates inefficient contracting when prices are set at B (the average B0 (zs
i )

across landowners), ignoring counterfactual land use. Pricing at B leads to social welfare losses
of $11.79 per acre-year in triangle GHI, 80% of the gains realized in triangle CDG. These so-
cial welfare losses underscore the importance of quantitative analysis of the joint distribution of
the costs of contracting and additionality to set socially-optimal incentives to implement efficient
allocations.

Third, Figure 1.7 illustrates the trade-limiting effects of adverse selection in competitive (offset)
markets with price-taking buyers. We isolate the effect of supply-side adverse selection by assum-
ing buyers in competitive markets possess the same full-information preferences as the USDA, but
take expectations over the additionality of all market participants. This demand curve is illustrated
with the gray average contract value curve in Figure 1.7. Adverse selection would limit trade in a
competitive market to the equilibrium quantity qc = 0.58, a 15% reduction from the socially opti-
mal quantity q∗ = 0.68. Triangle EFG represents social welfare gains from contracting that are not
realized in competitive markets. The magnitude of triangle EFG is 4% of the (one-dimensional)
efficient allocation, triangle CDG. Though the adverse selection introduced by additionality exists

41



in the market, limits trade, and reduces social welfare, it does not unravel the market.

Overall, Figure 1.7 presents a relatively optimistic view of markets for environmental services,
which contrasts with arguments that establishing these markets is a futile endeavor (Anderson,
2012). Figure 1.7 also illustrates why. Perhaps surprisingly, the contract value curve is flat for
landowners with low contracting costs.

Heterogeneity Figure 1.8 uses the estimated heterogeneity to examine differences in the graph-
ical analysis across observable characteristics and contracts. This heterogeneity will serve as a
basis for counterfactual market designs.

Figures 1.8a and 1.8b replicate Figure 1.7 in sub-populations split by estimated soil productivity.
Both contract value and marginal cost curves differ in the lowest versus high quintile of the soil
productivity distribution, implying different socially-optimal prices.

Figure 1.8c examines heterogeneity across contracts. We focus on tree contracts due to the evi-
dence of substantial adverse selection in Table 1.4 and the prevalence of tree-related PES programs
and offset contracts. Figure 1.8c calculates the marginal cost curve as the minimum cost required
to fulfill any tree-related contract and plots the average B j (zs

i ) · τ (zi,ci,κi) at each quantile of this
distribution. The exercise requires substantial out-of-sample extrapolation, but it illustrates how
alternative landowner type distributions across important classes of contracts in our setting can
generate different conclusions.

In Figure 1.8c, the contract value curve crosses the marginal cost curve from below, leading to
social welfare losses at low q. The socially-optimal uniform price cannot implement the one-
dimensional efficient allocation (DE) defined in equation (1.5). This is because, as in Figure 1.1b,
the ordering of landowners by social surplus (the vertical distance between the contract value and
marginal cost curves) differs from the ordering of landowners by contracting costs (the construction
of the x-axis, q). Because they are less additional, the lowest cost landowners are not the highest
social value.

Figure 1.8c also illustrates that supply-side adverse selection would cause a competitive (offset)
market for tree contracts to unravel.

1.6.2 Alternative Auctions

The standard auction design problem focuses on cost-minimizing procurement auctions, but the
objective of payments for ecosystem services mechanisms is to impact outcomes (conservation) at
lowest cost. Many other incentive-based public policies face similar objectives. However, standard
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mechanisms focused on cost-minimization, which consider reports of (ci,κi) but not the effect of
contracting on conservation τ (zi,ci,κi), may not advance this goal.

We simulate bidding and additionality under status quo and counterfactual auctions to investigate
this possibility and the performance of alternative designs. Figure 1.9 and Table 1.5 present results.
Figure 1.9 plots social welfare under each allocation:

∑
i

∑
j

(
B j (zs

i ) · τ (zi,ci,κi)− ci−κi j
)
· xi j. (1.14)

Table 1.5 tabulates the bars in Figure 1.9 and reports additional details: USDA spending, landowner
surplus, the value of environmental benefits ∑i ∑ j B j (zs

i ) · τ (zi,ci,κi) · xi j, average additionality,
and the share of bidders allocated a contract. Each bar of Figure 1.9 corresponds to the same
numbered column in Table 1.5.

The Status Quo Auction versus an Efficient Benchmark Because social welfare depends on
additionality but the design of the status quo auction does not, the social value of the CRP is
ambiguous. We document social welfare gains of $126 million per auction in the status quo (bar
(1) of Figure 1.9). This is calculated by simulating optimal bidding in the mechanism with the
estimated distribution of (ci,κi) and beliefs G(S).

However, social welfare under the status quo auction is only 15% of an efficient benchmark. This
efficient benchmark is defined as the allocation that uses all observables zi and the full vector of
costs (ci,κi) to maximize social welfare (equation (1.14)) subject to two constraints. First, each
landowner must obtain at most one contract ∑ j xi j ≤ 1. Second, no more landowners are allocated
contracts than in the status quo. Because many landowners are not additional, the efficient allo-
cation involves contracting with fewer landowners than the status quo and the quantity constraint
does not bind (column (2) of Table 1.5).

This efficient allocation may not be implementable in an incentive compatible auction if social
surplus and allocations are not monotone in bidder costs (Myerson, 1981a). This complication is
relevant because of adverse selection; once the mechanism’s impact on conservation (additional-
ity) is considered, the lowest cost landowners may not be the highest social value. This issue is
illustrated in principle in Figure 1.1b and based on our estimates in Figure 1.8c.

Alternative Auctions: Vickrey Auctions with Scoring The status quo auction underperforms
the efficient allocation in part because it does not consider additionality in its design. Implementing
the efficient allocation may be impossible, but changes in design to incorporate additionality may
close the gap.
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In practice, a common approach to additionality is to define eligibility requirements that determine
who and what is allowed to trade.38 Emphasis is placed on identifying additional participants who
are then allowed to participate in the market.

We consider a more flexible approach that treats landowners asymmetrically by their expected
additionality. Contracting with a low expected additionality landowner could be justified at suffi-
ciently low cost. Conversely, landowners who are likely to be additional may still counterfactually
conserve with some probability. This approach accommodates a minimum standard — incen-
tives could be zero for some participants or some conservation actions — but it also allows in-
centives to differ across landowner observables and contracts in the market. We implement this
approach in counterfactual scoring auctions that construct scoring rules based on predictions of
B j (zs

i ) · τ (zi,ci,κi). These auctions build directly on the status quo, which uses a scoring rule
based on B j (zs

i ).

Define a contract value scoring rule s j (zi) to parameterize the (score-implied) expected social
benefit of contracting with a bidder with characteristics zi for contract j. We focus on linear rules
based on (a simplified version of) the functional form of the status quo scoring rule,39

s j (zi) = ωz · zi +ω j, (1.15)

where ωz parameterizes scores across observables zi (asymmetry terms) and ω j parameterizes
scores across contracts j.

We implement allocations defined by the status quo and alternative scoring rules with a Vickrey-
Clarke-Groves (VCG) mechanism.40 We term these auctions “Vickrey auctions with scoring,”
which maximize a definition of social welfare implied by the scoring rule s j (zi):

∑
i

∑
j

(
s j (zi)− ci−κi j

)
· xi j. (1.16)

Bidders are treated asymmetrically by s j (zi) not τ (zi,ci,κi): compare equations (1.14) and (1.16).
In Vickrey auctions with scoring, bidders truthfully report their vector of (ci,κi), then are ranked
by max j s j (zi)− ci−κi j.41 The highest scoring bidders subject to the auction’s quantity threshold

38For examples, see the Clean Development Mechanism Methodology Booklet, the REDD+ eligibility require-
ments, and the Verified Carbon Standard.

39We simplify the status quo scoring rule by eliminating heterogeneity across contracts based on WPZ status and
non-linearities in the scoring rule. See Appendix 1.10.1 for more details.

40A VCG mechanism is a generalization of a second price auction. Many of the well-known undesirable proper-
ties of VCG mechanisms do not apply in our setting because bidders have substitutes preferences (see Ausubel and
Milgrom (2005)).

41The term max j s j (zi)− ci−κi j is a bidder’s pseudo-type in the terminology of Asker and Cantillon (2008b). It is
the maximum level of scoring-rule-implied social surplus that bidder i can generate.
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are allocated the contract argmax j s j (zi)− ci−κi j.42 Unlike in Asker and Cantillon (2008b) and
Che (1993), the scoring rule may not capture all heterogeneity in τ (zi,ci,κi). s j (zi) depends only
on observable characteristics. Moreover, some characteristics may not be used to avoid introducing
perverse incentives to game the scoring rule (e.g. prior land use).

Vickrey auctions with scoring have three advantages. First, they focus attention on the design of
the scoring rule because they implement an allocation that maximizes scoring-rule-implied social
welfare (equation (1.16)). Second, allocations are not computationally demanding to calculate.
Finally, they are simple: the market designer needs only to compute s j(zi).43

Social Welfare Under Status Quo and Alternative Scoring Rules Bars (3)-(6) of Figure 1.9
adjust the scoring rule s j (zi), holding the number of awarded contracts fixed at the status quo quan-
tity. Each bar evaluates the allocation implemented by the auction with equation (1.14). Additional
details are reported in the corresponding columns of Table 1.5.

Bar (3) maintains the status quo scoring rule, s j (zi) = B j (zs
i ), but changes the auction mechanism

to VCG. This counterfactual isolates the impact of a scoring rule that is naive to additionality (bar
(2) versus bar (3)) and provides a basis for further comparisons that change only the rule s j (zi)

but hold constant the VCG auction mechanism. If all landowners were additional, the scoring
rule defined by s j (zi) = B j (zs

i ) would implement the efficient allocation and dominate the status
quo. Instead, it slightly underperforms it. Correcting inefficient design features of the status quo
auction, e.g. bid caps, does not increase social welfare when the scoring rule does not incorporate
additionality. The comparison of bar (3) to bars (1) and (2) illustrates that the poor performance of
the status quo, relative to the efficient allocation, is because τ (zi,ci,κi) is not incorporated into the
mechanism.

Bars (4)-(6) in Figure 1.9 adjust the scoring rule s j (zi) defined in equation (1.15) based on predic-
tions of additionality. First, we adjust the scoring of the menu of contracts, ω j. In bar (4), ω j is
calculated to maximize equation (1.14), holding ωz constant at the status quo rule.44 This change
to the scoring rule doubles the social welfare gains of the auction relative to the status quo ($128

42The VCG incentive payment that implements this allocation is:

∑
j

s j (zi) · x∗i j + ∑
i′ 6=i

∑
j′

(
s j′ (zi′)− ci′ −κi′ j′

)
· x∗i′ j′ −∑

i′ 6=i
∑
j′

(
s j′ (zi′)− ci′ −κi′ j′

)
· x−i

i′ j′ ,

where {x∗i j} denotes the allocation that maximizes ∑i′∑ j′
(
s j′ (zi′)− ci′ −κi′ j′

)
given all reports of (ci′ ,κi′ j′) in the

population and {x−i
i′ j′} denotes the allocation that solves maxx∑i′ 6=i ∑ j′

(
s j′ (zi′)− ci′ −κi′ j′

)
· x−i

i′ j′ .
43This is in contrast to alternatives that could incorporate randomization, as in Lopomo et al. (2023).
44We solve for the ω j that maximize equation (1.14) given simulations of landowner (ci,κi), estimates of τ (zi,ci,κi),

calibrations of B j (zs
i ), and the allocation rule, holding ωz fixed at the status quo scoring rule.
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million per auction). Relative to the status quo rule, re-weighting ω j accounts for both heterogene-
ity in τ (zi,ci,κi) as a function of κi — for example, a landowner’s choice of a tree-related contract
reveals that her conservation is unlikely to be additional — and the fact that the full social benefits
across actions is not realized when conservation would have counterfactually occurred.

Next, we adjust the bidder asymmetry terms across observables, ωz, in equation (1.15). Displayed
in bars (5) and (6) in Figure 1.9, this change leads to a further $46 million of social welfare
gains per auction (37% of the status quo). Bar (5) first re-weights the existing characteristics in
the scoring rule, zs

i . In the status quo, asymmetry is based only on environmental sensitivity;
re-weighting ωz across zs

i based also on additionality contributes two-thirds of the social welfare
gains from adjusting the bidder asymmetry terms. The final adjustment (bar (6)) adds an additional
characteristic to the rule: an “additionality factor” τ̂ (zi). This builds on the scoring rule’s design,
which adds together many “factors” to construct a composite score of bidder characteristics.45

We calculate τ̂ (zi) by projecting τ (zi,ci,κi) on immutable characteristics of landowners already
collected by the USDA, but not all incorporated in the status quo scoring rule: deciles of soil
productivity and wind and water erosion. Then, we calculate the social-welfare maximizing score
using both zs

i and τ̂ (zi) as asymmetry terms in equation (1.15). The simple change of adding this
single “additionality factor” to the scoring rule increases social welfare by a further 12% of the
status quo.

Figure 1.9 illustrates that simple changes to the scoring rule can lead to significant social welfare
gains. In contrast to standard cost-minimizing procurement auctions, these auctions are designed
to impact conservation at lowest cost. A scoring rule that incorporates landowners’ expected ad-
ditionality balances the objectives of allocating contracts to both low cost and high social benefit,
additional landowners.

Social Welfare Under Alternative Market Sizes Beyond the allocation rule, additionality also
impacts the socially-optimal size of the market. This also contributes to the gap between bars (1)
and (2) but was ignored in the prior counterfactuals, which held the number of contract awards
constant at the status quo.

Because many landowners are not additional, the status quo quantity procured is higher than is
socially-optimal. Bar (7) in Figure 1.9 keeps the scoring rule s j (zi) of bar (6) but awards contracts
only to landowners with max j s j (zi)− ci−κi j ≥ 0. This reduction in market size increases social
welfare by a further $110 million dollars per auction.

Together, simple adjustments to both the size of the market and the scoring rule based on predicted
additionality closes the gap between the status quo (bar (1)) and the efficient allocation (bar (2))

45For more details on these factors, see an example EBI Factsheet here.
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by 41% (an increase of $284 million per auction).46 Each component of the mechanism — ad-
justed incentives across contracts, across characteristics, and the overall size of the market — is a
quantitatively important contribution to this improvement.

Mechanisms: Additionality in the Scoring Rule The alternative auctions in Figure 1.9 outper-
form the status quo by adjusting the scoring rule to reflect the social benefit of contracting, which
depends on additionality. This occurs via two channels.

First, the status quo scoring rule B j (zs
i ) over-weights asymmetry across characteristics zs

i and con-
tracts j. The heterogeneous social benefits of conservation B j (zs

i ) are not fully realized when
conservation would have counterfactually occurred. An auction that treats bidders and contracts
asymmetrically by B j (zs

i ) may not implement an efficient allocation. This relates to the social
welfare losses from pricing at B illustrated in Figure 1.7.

Second, as highlighted in Figure 1.8, bidders may be systematically heterogeneous in their ad-
ditionality, which can be exploited in the scoring rule. Adjusting the scoring rule based on het-
erogeneity in additionality — using observable characteristics and choices of contracts — more
closely aligns the allocation implemented by the auction with the socially-optimal allocation that
considers heterogeneity in both additionality and costs.

Figure 1.10 explores these two mechanisms. Figure 1.10 holds quantity constant and plots social
welfare under the status quo auction (bar (1)), a Vickrey auction with a scoring rule s j (zi) =

θ ·B j (zs
i ) for the (single) multiplier θ chosen to maximize equation (1.14) (bar (2)), and a Vickrey

auction with a scoring rule that adjusts ω j and ωz to maximize equation (1.14) (bar (3), which
replicates the auction in bar (6) in Figure 1.9). Bar (2) examines the social welfare gains achieved
with only a uniform instrument to adjust the scoring rule for additionality. Bar (3) further adjusts
ω j and ωz to reflect heterogeneously additional landowners.

Figure 1.10 demonstrates that adjusting the scoring rule based on heterogeneity in additionality
yields substantial social welfare gains of $23 million per auction (bar (3)), but that a uniform ad-
justment for additionality (bar (2)) achieves a large share of the gains relative to the status quo. An
auction that incorporates asymmetry in the social benefits of actions must also reflect the addition-
ality of landowners in its design (see bar (2)). Moreover, further adjusting asymmetry based on
heterogeneity in additionality yields further social welfare gains, equivalent to 18% of the status
quo (see bar (3)).

46Further differences between bar (7) and bar (2) reflect (i) zi that are not incorporated into the scoring rule to
avoid perverse incentives to game the rule, (ii) private landowner costs in τ (zi,ci,κi), and (iii) the functional form of
equation (1.15) relative to B j (zs

i ) · τ (zi,ci,κi).
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USDA Spending Beyond social welfare, the budgetary implications of alternative auctions may
be relevant in practice. Among implementable auctions we consider, the auction with the greatest
social welfare gains also reduces USDA spending relative to the status quo (column (7) of Table
1.5). This occurs because the status quo auction contracts with too many landowners. Reducing
the size of the market, and therefore total USDA spending, increases social welfare. Appendix
1.10.6 also evaluates social welfare with a cost of public funds, motivated by the need to finance
expenditures with distortionary taxation. Social welfare with a cost of public funds is negative
under the status quo, but becomes positive and substantial under alternative designs.

However, Table 1.5 also demonstrates that in all auctions, government spending exceeds the value
of environmental services procured, ∑i ∑ j B j (zs

i ) · τ (zi,ci,κi) · xi j. This is due to the presence of
adverse selection in the market: the marginal landowner has a higher value of τ (zi,ci,κi) than the
inframarginal landowner.

1.6.3 Offset Market Design

We conclude with the implications of supply-side adverse selection for the performance and design
of competitive (offset) markets for environmental services. We continue to isolate the effect of
supply-side adverse selection. We assume that buyers have the same full-information preferences
as the USDA and form expectations over the value of any contract given the equilibrium price(s).
We ask two questions motivated by the analysis in Section 1.6.1. First, should offset markets be
differentiated? And second, which markets risk unravelling?

The effect of differentiation on social welfare in competitive markets is ambiguous (Einav and
Finkelstein, 2011). We analyze this market design choice empirically in Figure 1.11a, restricting
analysis to the base contract. Figure 1.11a plots the percent reduction in quantities traded and
social welfare in a competitive market, relative to with socially-optimal prices, under uniform and
differentiated markets. In the uniform market, there is only a single socially-optimal price and
market-clearing condition. In the differentiated market, we project B0 (zs

i ) · τ (zi,ci,κi) onto im-
mutable observable characteristics (zs

i , soil productivity, and erosion) and then segment the market
into deciles of predicted contract value. This “certification scheme” is similar in structure to ex-
isting rating schemes in environmental markets.47 Figure 1.11a also presents social welfare per
acre-year under each of these offset market designs.

Differentiation reduces social welfare losses from adverse selection in competitive markets from
5% to less than 1% and increases social welfare by 15% overall via more efficient trades in the

47See, for example, Carlyx Global, BeZero Ratings, and Sylvera.
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market. The gains from differentiation are high even in the ex-ante ambiguous competitive mar-
ket setting, supporting on-going efforts to collect detailed information to predict additionality in
environmental markets.48

Next, we investigate which contracts can be successfully traded in competitive markets, motivated
by Figures 1.7 and 1.8c. We consider uniform markets for grass-, tree-, and habitat-related con-
tracts. Figure 1.11b plots the reduction in social welfare relative to the socially optimal uniform
price in each of these three hypothetical markets. Tree-related contracts unravel, but social welfare
losses for the remaining contracts are limited to at most 3%.

Figure 1.11 presents a relatively optimistic view of offset markets and actionable insights for mar-
ket design. We offer three ideas about features of our setting that contribute to this conclusion.
First, the eligibility requirements for the CRP are stringent enough that there is some probability
that landowners are additional even at the bottom of the contracting cost distribution. Second, has-
sle costs and long-term contracts mute the extent of adverse selection, which limits unravelling.
Finally, agricultural decisions are simple to predict, offering covariates to differentiate landowners
and increase social welfare.

1.7 Conclusion

Additionality is a central challenge to environmental market design. It undermines the appeal of
market-based mechanisms if incentives attract the least additional landowners.

This paper combines data and theory to document this potential market failure, quantify its impli-
cations for social welfare, and evaluate alternative market designs in the largest auction mechanism
for ecosystem services in the world. Linking satellite data to auction bids, we use a regression dis-
continuity design to demonstrate that only one quarter of landowners are additional. Moreover,
heterogeneity in counterfactual land use introduces adverse selection in the market. To quantify
the implications of these facts and test possible remedies, we develop and estimate a joint model
of multi-dimensional bidding and land use that incorporates adverse selection on additionality.

With socially-optimal incentives, the market can deliver social welfare gains, but the lowest cost
providers of environmental services are not always the highest social value. Re-designing the auc-
tion’s scoring rule to incorporate predicted additionality substantially outperforms the status quo,
and a simple differentiation scheme also increases social welfare in competitive offset markets.

A common market design solution to the issue of additionality is to define eligibility requirements
that restrict who and what can trade; in this paper, we propose a more flexible approach. Because

48See, for example, Google, Microsoft, and the platform NCX.
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many markets will inevitably attract landowners who are with some probability not additional,
allocation mechanisms should consider this dimension of heterogeneity in their design. We show
how auctions can be used to cost-effectively impact conservation, selecting participants based on
both expected additionality and costs, despite the existence of many landowners in the market that
are not additional. Segmenting offset markets yields social welfare gains via similar mechanisms.

Our analysis focused only on the supply-side market failure of additionality. Investigating other
features of offset markets, including demand, the incentives of platforms and certifiers that facil-
itate trade, and both of their interactions with supply-side additionality and adverse selection are
interesting and impactful avenues for future research.

More broadly, our results highlight that successful market design depends not only on market
participants’ private costs, but also on whether their behavior in the market advances a socially
desirable outcome. Developing empirical approaches to apply this idea to the design of other
markets and policy objectives is a rich and exciting area for research.
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1.9 Figures and Tables

Figure 1.1: Graphical Analysis

(a) Efficient allocation can be implemented (b) Efficient allocation cannot be implemented

(c) Inefficiency in competitive markets

Notes: Figure describes markets characterized by marginal cost (MC = F−1
C (q)) and contract value (B ·τ) curves. The horizontal axis is the share of

the population ordered by costs of contracting ci. B denotes the social benefits of ai1 = 1. B ·τ denotes the incremental social benefits of contracting
(contract value), relative to no contract, at each quantile of landowner costs of contracting. The vertical distance between the B · τ and MC curves
represents the social surplus from contracting. Upwards-sloping B · τ curves illustrate markets with adverse selection. Panel (a) documents a
population distribution in which the efficient allocation (defined in equation (1.5)) can be implemented with the socially optimal uniform price p∗

and panel (b) documents a population distribution in which it cannot. Panel (a) also demonstrates the social welfare losses from mis-pricing (at
B) (triangle EFG). Panel (c) includes a curve defining the average contract value of all landowners selecting into the market at any given price p,
E [B · τ (c) |c≤ p]. This defines the value of a contract to a price-taking buyer in a stylized competitive (offset) market. The intersection of the
MC and average contract value curves define a competitive market equilibrium price pc. In panel (c), adverse selection limits trade in competitive
markets with social welfare gains in triangle EFG that are not achieved.
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Figure 1.2: Regression Discontinuity Validity and First Stage

(a) Histogram of running variable
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(c) First stage: contracting
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Notes: Panel (a) presents a histogram of bidders’ scores in the auction relative to that auction’s win threshold, Sig−Sg, pooled across auctions. This
is the running variable for the regression discontinuity design: bidders above zero win the auction. Panels (b) and (c) present raw data and estimates
from equation (1.7). Panel (b) is estimated for r (i, t) ≤ 0 (pre-auction), and panel (c) is estimated for r (i, t) > 0 (post-auction). The outcome in
panel (b) is the share of the bidder’s land that is cropped, measured in the remote sensing data. The outcome in panel (c) is an indicator for a bidder
obtaining a CRP contract. Positive numbers on the x-axis correspond to winning scores, negative numbers correspond to losing scores. In panel (a),
each observation is a bidder, in panels (b) and (c), each observation is a bidder-year.
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Figure 1.3: The Effect of a CRP Contract on Land Use

(a) Share of land cropped
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(b) Share of land in natural vegetation
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Notes: Panels (a) and (b) present raw data and estimates from equation (1.7) for r (i, t) > 0 (post-auction). Outcomes are the share of the bidder’s
land that is cropped (a) and the share of the bidder’s land that is in natural vegetation (trees, grassland, shrubs, and wetlands) (b), both measured in
the remote sensing data. The running variable is the difference between each bidder’s score and the threshold score. Positive numbers on the x-axis
correspond to winning scores, negative numbers correspond to losing scores. Each observation is a bidder-year. Appendix Figure A.6 provides
corresponding figures with outcomes measured in the administrative data. Corresponding coefficient estimates and standard errors presented in
Table 1.2.

Figure 1.4: Regression Discontinuity Estimates of Additionality
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Notes: Figure plots coefficient estimates from equation (1.6). The outcome is the share of each bidder’s land that is cropped, measured with both
remote sensing and administrative datasets. The x-axis is the year relative to the year of each bidder’s auction: r (i, t) = t− tg(i). Positive years
correspond to post-auction years. Each point is a regression discontinuity coefficient. Dashed lines indicate the pooled post-auction treatment
effects (equation (1.7) estimated for r (i, t)> 0). The black line at 0 (τ = 0) and red line at -.35 (τ = 1) indicate the implied effect size if ai0 = 1 ∀i
and ai0 = 0 ∀i, respectively. τ = 1 represents a benchmark where all landowners are additional. This is calculated as the share of land contracting
in the MSE-optimal bandwidth (Calonico et al., 2014) used to estimate the RD. Each observation is a bidder-year. Standard errors are clustered at
the bidder level. Ten years is the full duration of a CRP contract. Corresponding coefficient estimates and standard errors presented in Table 1.2.
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Figure 1.5: Testing for Asymmetric Information
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(b) Additionality vs. bids | observables
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(c) Additionality across contracts
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(d) Observable predictors of additionality
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Notes: Figures present visual representations of estimates of equation (1.8). All regressions control for landowner characteristics in the scoring rule:
whether a bidder is in a wildlife priority zone, estimates of groundwater quality, estimates of surface water quality, estimates of wind and water
erosion (deciles), air quality impacts, and whether or not a bidder is in an air quality zone. The outcome variable in all panels is a landowner-specific
measure of additionality (1−ai0). This is calculated as the share of all fields bid into the CRP mechanism that are cropped post auction for rejected
landowners. The sample is restricted to the 2016 auction, in which 82% of bidders are rejected and the delineations of bid fields are observed.
Cropping on bid fields is measured in 2017-2020 in the remote sensing data (see Figure A.8 for corresponding figures using the administrative
data). Panel (a) is a binned scatterplot correlating the dollar bid (per acre, per year) with additionality, conditional on characteristics included in
the scoring rule. Panel (b) adds controls for interaction terms of prior land use (quartiles of share of land cropped prior to bidding and re-enrolling
CRP status) and deciles of estimated soil productivity. Panel (c) plots relative additionality by the chosen contract in the bid, relative to an omitted
category of introduced grasses. Panel (d) plots relative additionality by deciles of estimated soil productivity. Standard errors clustered at the bidder
level.
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Figure 1.6: Estimated Landowner Cost Distribution
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(c) Land use vs. revealed preference cost estimates
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Notes: Panels (a) and (b) present kernel density plots of estimates of the base cost ci (a) and top-up cost κi j (b) of contracting. Panels (a) and (b)
pool bidders across auctions. Costs are estimated using revealed preferences in optimal bidding (equation (1.10)). See Section 1.5.2 for estimation
details. Panel (c) correlates expected base costs, ci, conditional on observable characteristics zi, with land use outcomes measuring landowner
additionality in the remote sensing data. Panel (c) is restricted to the 2016 auction and the 82% of bidders who lose (see Section 1.4.2 for more
details). zi includes interactions of soil productivity, prior CRP, and prior land use. Costs are reported in dollars per acre per year.
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Figure 1.7: Empirical Graphical Analysis

Notes: Figure presents the empirical version of Figure 1.1 for the base contract. The horizontal axis is the share of the population, ordered by
contracting costs. Values are reported in dollars per acre per year. The MC curve is the inverse distribution function of the minimum cost to fulfill
the base contract. B denotes the average value of the base contract action, calculated as described in Appendix 1.10.5. B · τ denotes the incremental
value of contracting, relative to no contract, averaged at each quantile of the population distribution of the base costs of contracting. The vertical
distance between the B ·τ and MC curves represents the social surplus from contracting at each quantile of the population distribution of contracting
costs. The upwards-sloping B · τ curve illustrates the presence of adverse selection in the market. The intersection of the MC and B · τ curve
denotes the socially-optimal uniform price, p∗. Triangle CDG represents social welfare gains under the socially-optimal price. The triangle GHI
represents social welfare losses from mispricing at B. The average contract value curve calculates the average B · τ of all landowners selecting into
the market at any given price p, E[B · τ|MC ≤ p]. This defines the value of a contract to a price-taking buyer in a stylized competitive (offset)
market. The intersection of the MC and average contract value curves define a competitive market equilibrium price pc. Adverse selection limits
trade in competitive markets leading to social welfare gains that are not realized (triangle EFG).
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Figure 1.8: Empirical Graphical Analysis: Heterogeneity Across Observables and Contracts

(a) Lowest quintile soil productivity (b) Highest quintile soil productivity

(c) Tree planting and maintenance contracts

Notes: Figures presents empirical version of Figure 1.1. Panels (a) and (b) calculate the MC curve as the inverse distribution function of the
minimum cost to fulfill the base contract, split by whether landowners are in the lowest or highest quintile of soil productivity. In panel (c), the
MC curve is calculated as the inverse distribution function of the minimum cost to fulfill a tree planting and maintenance contract. The horizontal
axis is the share of the population, ordered by contracting costs for the base contract in each sub-population ((a) and (b)) and for tree planting and
maintenance contracts (c). B · τ denotes the incremental value of contracting, relative to no contract, averaged at each quantile of contracting costs
for the base contract in each sub-population ((a) and (b)) and for tree planting and maintenance contracts (c). The vertical distance between the
B ·τ and MC curves represents the social surplus from contracting at each quantile of contracting costs. p∗ denotes the socially-optimal price, set at
the intersection of the B · τ and MC curves. The average contract value curve (gray) calculates the average B · τ of all landowners selecting into the
market at any given price p, E[B · τ|MC ≤ p]. This defines the value of a contract to a price-taking buyer in a stylized competitive (offset) market.
In panel (c), the efficient allocation defined in equation (1.5) cannot be implemented. The stylized competitive market also unravels.
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Figure 1.9: Social Welfare Under Alternative Auctions
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Notes: Figure presents estimates of the social welfare gains (defined in equation (1.14)) under status quo and alternative auctions. Results reported
in million dollars per auction. All auctions impose that each landowner obtains at most one contract and that total contracts awarded cannot exceed
the status quo. Bar (1) simulates the status quo. Bar (2) calculates the social welfare gains under an efficient allocation that allocates contracts using
all zi and (ci,κi) to maximize equation (1.14). Due to adverse selection, this allocation may not be implementable. Bars (3)-(7) calculate social
welfare under alternative Vickrey auctions with scoring (see Section 1.6.2 for more details). Bars (3)-(6) hold quantity (the number of landowners
allocated contracts) constant at the status quo and change the scoring rule s j (zi) defined in equation (1.15). Bar (3) uses the existing scoring rule
s j (zi) = B j (zs

i ). Bar (4) uses a scoring rule with the social-surplus maximizing incentives across contracts (ω j). Bar (5) uses a scoring rule with the
social-surplus maximizing asymmetry across bidders using characteristics already in the scoring rule (zs

i ). Bar (6) adds an additional characteristic
to the scoring rule, a prediction of τ (zi,ci,κi) based on immutable characteristics of landowners already collected by the USDA (deciles of soil
productivity and wind and water erosion). Bar (7) uses the same scoring rule as bar (6) but reduces the number of contracts allocated to landowners:
only landowners with positive scoring-rule-implied social surplus max j s j (zi)− ci−κi j ≥ 0 are awarded contracts. See each bar’s corresponding
column in Table 1.5 for more details.
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Figure 1.10: Mechanisms: Uniform vs. Heterogeneous Scoring Rule Adjustments
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Notes: Figure presents estimates of the social welfare gains (defined in equation (1.14)) under status quo and alternative auctions. Results reported
in million dollars per auction. All auctions impose that each landowner obtains at most one contract. All auctions hold constant the total number
of landowners awarded contracts at the status quo. Bar (1) simulates the status quo. Bars (2) and (3) simulate Vickrey auctions with scoring (see
Section 1.6.2 for more details). Bar (2) uses a scoring rule s j (zs

i ) = θ ·B j (zs
i ) for a uniform multiplier θ that maximizes equation (1.14). Bar

(3) corresponds to Bar (6) in Figure 1.9: it uses the social welfare maximizing ω jand ωz using all characteristics in the rule and a prediction of
τ (zi,ci,κi) based on immutable characteristics of landowners already collected by the USDA (deciles of soil productivity and wind and water
erosion).

Figure 1.11: Offset Market Design

(a) Uniform vs. differentiated market
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Notes: Figures describe social welfare and quantities traded under a stylized competitive offset equilibrium versus under socially-optimal prices.
The competitive market equilibrium is calculated under the assumption that buyers have the same full-information preferences as the USDA and
form expectations over the value of any contract given the equilibrium price(s). Panel (a) restricts to the base contract and reports quantities traded
and social welfare under a competitive market equilibrium relative to socially-optimal prices in a uniform and a differentiated market. In the uniform
market, there is only a single socially-optimal price and market-clearing condition. In the differentiated market, the market is segmented into deciles
of predicted contract value (based on zs

i , soil productivity, and erosion). Panel (b) plots the percent reduction in social welfare under a stylized
competitive market equilibrium relative to socially-optimal prices under three different hypothetical markets, each with only one contract traded at
a uniform price. The numbers above the bars in panels (a) and (b) tabulate total social welfare (per acre-year) in each competitive market.
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Table 1.1: Summary Statistics

All agricultural land Bidders Bid fields

Remote

sensing

Admin Remote

sensing

Admin Remote

sensing

Admin

(1) (2) (3) (4) (5) (6)

Panel A. Land use

Share cropped 0.30 0.28 0.21 0.21 0.21 0.18

Share corn 0.11 0.11 0.07 0.08 0.07 0.06

Share soybean 0.11 0.10 0.06 0.07 0.07 0.07

Share fallow 0.02 0.01 0.03 0.01 0.05 0.03

Share nat. veg. or grassland 0.55 0.70 0.65

Panel B. Land characteristics

Size (acres) 160.7 250.6

(2690.7) (506.5)

Soil productivity ($/acre) 92.4 86.9

(63.2) (58.5)

Enviro sensitivity (points) 53.5 86.5

(29.8) (33.7)

Panel C. Bid characteristics

Rental rate ($/acre/year) 83.0

(56.4)

Acres bid 84.1

(136.3)

Share re-contracting 0.70

Contract action = grasses 0.67

Contract action = trees 0.12

Contract action = habitat 0.21

Share contracting 0.81

N bidders / auction 36,763

N 7,890,426 258,286 61,703

Notes: Table presents summary statistics of all agricultural landowners (columns (1)-(2)), bidding landowners (columns (3)-(4)), and bid fields
(columns (5)-(6)), defined as the delineated land area entered into the mechanism to be awarded a CRP contract (observed only for bidders in the
2016 auction). Standard deviations in parenthesis. Panel A reports land use outcomes in the remote sensing (CDL) and admin (Form 578) data.
All land use outcomes are reported for the year prior to bidding among bidders. Years in columns (1)-(2) are re-weighted to match the distribution
of bidder-years. Columns (1) and (2) includes both eligible non-bidders and ineligible land. Land use categories follow Lark et al. (2017). Crop
outcomes exclude alfalfa and hay. Soil productivity is calculated by NASS and is reported in dollars per acre. Environmental sensitivity points are
the points given for characteristics of land in the scoring rule. Rental rate is reported in dollars per acre per year and is the dollar component of
the bid in the auction. Acres bid is the total acreage entered into the auction to be awarded a CRP contract. Grasses, trees, and habitat contract
indicators are aggregated over the menu of possible contracts.
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Table 1.2: Regression Discontinuity Coefficient Estimates

Remote sensing Admin

(1) (2)

Panel A: Main outcome: share of land cropped

Pre-auction (placebo) 0.014 0.009

(0.007) (0.006)

Post-auction (pooled sign-ups) -0.075 -0.091

(0.007) (0.006)

Implied additionality 21% 26%

Post-auction (full contract duration: 2010-2020) -0.109

(0.020)

Implied additionality 31%

Panel B: Other outcomes

Corn -0.015 -0.023

(0.003) (0.003)

Soybean -0.018 -0.026

(0.003) (0.003)

Fallow -0.008 -0.011

(0.002) (0.001)

Natural vegetation or grassland 0.091

(0.007)

Panel C: Spillovers to non-bid fields

Share of non-bid fields cropped -0.001 -0.000

(0.015) (0.015)

N bidders 258,286 258,286

N bidder-years 3,099,432 1,808,002

Notes: Table presents coefficient estimates from equation (1.7) with land use outcomes measured in the remotely sensed (column (1)) and adminis-
trative (column (2)) data. All results use a local linear regression on either side of the win threshold in the MSE-optimal bandwidth (Calonico et al.,
2014). The full-contract duration specification restricts to the 2009 auction, others pool all auctions with post-period data (2009, 2011, 2012, 2013,
and 2016). The pooled post-period includes an average of 7-8 post-auction years. Natural vegetation or grassland is only observed in remotely
sensed data. Calculations of implied additionality divide the treatment effect estimates by the amount of land contracting among winning bidders in
the MSE-optimal bandwidth. Panel C estimates the effect of a CRP contract on non-bid, and therefore non-contracting, fields to test for spillovers.
This analysis is restricted to the 2016 auction. Standard errors are clustered at the bidder level.
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Table 1.3: Mean Landowner Costs of Contracting

All Landowners with above

median soil productivity

(1) (2)

Base cost (ci) 67.49 87.05

Top-up cost (κi j)

Introduced grasses (normalized) 0. 0.

Native grasses 0.11 3.38

Trees 24.41 26.65

Habitat 14.87 17.49

Rare habitat 15.33 17.98

Wildlife food plot 18.58 15.32

Pollinator habitat 18.03 17.54

Notes: Table presents estimated mean landowner costs of contracting for the base cost ci and top-up cost κi j reported in dollars per acre per year.
The cost of each contract j is defined as ci +κi j . Costs are estimated using revealed preferences in optimal bidding (equation (1.10)). See Section
1.5.2 for estimation details. Column (1) presents mean costs for all bidders across all auctions, and column (2) restricts to landowners with above
median soil productivity. See Appendix Table A.8 for a comparison to administrative data.
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Table 1.4: Additionality as a Function of Landowner Costs

Estimates of τ (zi,ci,κi)

(1) (2) (3) (4)

β : coefficient on base cost (ci) 0.0018 0.0020 0.0007 -0.0002

(0.0002) (0.0002) (0.0003) (0.0004)

α: coefficient on top-up cost (κi j)

Trees 0.0035 0.0046

(0.0002) (0.0005)

Native grasses -0.0011

(0.0006)

Habitat -0.0004

(0.0005)

Rare habitat 0.0027

(0.0007)

Wildlife food plot 0.0031

(0.0006)

Pollinator habitat 0.0010

(0.0005)

Includes zs
i � � � �

Includes prior land use and soil prod. zi � � �

Notes: Table presents select coefficient estimates of τ (zi,ci,κi) (equation (1.12)). Coefficients measure how additionality varies with a $1 per acre,
per year change in costs. Positive coefficients indicate a positive correlation between costs of contracting and additionality, or adverse selection
in the market. Parameter estimates obtained via the Method of Simulated Moments estimator described in Section 1.5.2. This estimator matches
moments of land use in the remote sensing data (for losing bidders in the 2016 auction) and bids given simulated (ci,κi) and optimal bidding in
equation (1.10). All specifications include flexible controls for the components of the scoring rule excluding landowners’ Wildlife Priority Zone and
Air Quality Zone status. Columns (2)-(4) control for the 32 cells of soil productivity, prior CRP status, and prior cropping status that parameterize
bidder costs. Standard errors are calculated using 100 bootstrap draws and do not (yet) account for variance in the Step 2 estimates.
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Table 1.5: Outcomes Under Alternative Auctions

Status quo Efficient

allocation

Vickrey auctions with scoring

Status quo

rule

Re-weight

contracts

(ω j)

Re-weight

zs
i (ωz)

Add τ̂(zi)

(incl. zi not

in status

quo rule)

Reduce

quantity

(1) (2) (3) (4) (5) (6) (7)

Panel A. Welfare and spending (million $ per auction):

Social welfare 126 820 121 254 285 300 410

USDA spending 1,323 2,033 1,760 1,703 1,724 936

Landowner surplus 546 906 1,176 1,127 1,147 580

Environmental value 902 1,239 1,130 838 861 876 766

Panel B. Other outcomes

Additionality | contract 0.206 0.424 0.199 0.200 0.209 0.213 0.215

Share awarded contract 0.81 0.55 0.81 0.81 0.81 0.81 0.70

Notes: Table presents results under current and alternative auctions. Panel A tabulates social welfare (equation (1.14)), USDA spending, landowner
surplus, and environmental value ∑i ∑ j B j (zs

i ) ·τ (zi,ci,κi) ·xi j in million dollars per auction. Panel B tabulates average additionality of contracting
landowners and the share of landowners with a contract. All auctions impose that each landowner obtains at most one contract and that total
contracts awarded cannot exceed the status quo. Column (1) simulates the status quo. Column (2) simulates an efficient allocation that allocates
contracts using all zi and (ci,κi) to maximize equation (1.14). Due to adverse selection, this allocation may not be implementable. Columns (3)-(7)
simulate alternative Vickrey auctions with scoring (see Section 1.6.2 for more details). Columns (3)-(6) hold quantity (the number of landowners
allocated contracts) constant at the status quo and change the scoring rule s j (zi) defined in equation (1.15). Column (3) uses the existing scoring
rule s j (zi) = B j (zs

i ). Column (4) uses a scoring rule with the social-surplus maximizing incentives across contracts (ω j). Column (5) uses a
scoring rule with the social-surplus maximizing asymmetry across bidders using characteristics already in the scoring rule (zs

i ). Column (6) adds
an additional characteristic to the scoring rule, a prediction of τ (zi,ci,κi) using immutable characteristics of landowners already collected by the
USDA but not all included in the status quo scoring rule (deciles of soil productivity and wind and water erosion). Column (7) uses the same scoring
rule as column (6) but reduces the number of contracts allocated to landowners: only landowners with positive scoring-rule-implied social surplus
max j s j (zi)− ci−κi j ≥ 0 are awarded contracts. Each column corresponds to a bar in Figure 1.9.
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1.10 Appendix

1.10.1 Institutional Appendix: The CRP Mechanism

The scoring rule depends on characteristics of the land, the conservation action defined in the con-
tract, and the dollar component of the bid (the bid rental rate). We describe the details associated
with each of these components below. The details of the scoring rule are published each year in
EBI Factsheets.49

Land characteristics The characteristics that influence the scoring rule include:

• Whether a bidder is in a Wildlife Priority Zone (WPZ), defined high priority wildlife
geographic areas. 30 points.

• Whether a bidder is in a Water Quality Zone (WQZ), areas with high value to improving
ground or surface water quality. 30 points.

• Groundwater quality: an evaluation of the predominant soils, potential leaching of pesti-
cides and nutrients into groundwater, and the impact to people who rely on groundwater as
a primary source of drinking water. Continuous score: 0 to 25 points.

• Surface water quality: an evaluation of the amount of sediment (and associated nutrients)
that may be delivered into streams and other water courses. Continuous score: 0 to 45 points.

• Erosion potential: Continuous score of 0 to 100 points depending on the Erodibility Index.

• Air quality: an evaluation of the air quality improvements by reducing airborne dust and
particulate caused by wind erosion from cropland. Continuous score of 0 to 30 points de-
pending on wind speed, wind direction, and the duration of wind events and soil erodibility.

• Whether a bidder is in an Air Quality Zone (AQZ). 5 points.

These characteristics depend on a bidder’s location and not their bid, i.e. they determine bidder
asymmetry in the scoring rule. These characteristics are known for every agricultural field in the
US.

49See an EBI Factsheet for an example.
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Heterogeneous contracts defined by conservation actions Conservation actions can be grouped
into two categories: a primary cover, described in Table A.1, which covers the total area offered
into the CRP, and an (optional) additional upgrade action, described in Table A.2, which can be
offered in addition to the primary cover on a smaller area. In total, there are 36 possible contracts:
12 primary covers interacted with three upgrade cover options (including no upgrade).

Table A.1: Contract Action Choices: Primary Covers

Short name Description

Grasses 1 Permanent introduced grasses and legumes (CP1): Existing stand of one to three species or planting new
stand of two to three species of an introduced grass species

Grasses 2 Permanent introduced grasses and legumes (CP1): Existing stand or planted mixture (minimum of four
species) of at least 3 introduced grasses and at least one forb or legume species best suited for wildlife in
the area.

Grasses 3 Permanent native grasses and legumes (CP2): Existing stand (minimum of one to three species) or
planting mixed stand (minimum of three species) of at least two native grass species at least one forb or
legume species beneficial to wildlife.

Grasses 4 Permanent native grasses and legumes (CP2): Existing stand or planting mixed stand (minimum of five
species) of at least 3 native grasses and at least one shrub, forb, or legume species best suited for wildlife
in the area.

Trees 1 Tree planting (softwoods) (CP3): Southern pines, northern conifers, or western pines – solid stand of
pines/conifers/softwoods (existing, according to state developed standards, or planted at more than 550
(southern pines), 850 (northern conifers), or 650 (western pines) trees per acre).

Trees 2 Tree planting (softwoods) (CP3): Southern pines, northern conifers, or western pines –
pines/confiers/softwoods existing or planted at a rate of 500-550 (southern pines), 750-850 (northern
conifers), or 550-650 (western pines) per acre depending on the site index (state-developed standards) with
10-20% openings managed to a CP4D wildlife cover.

Trees 3 Hardwood tree planting (CP3A): Existing or planting solid stand of nonmast producing hardwood species.
Trees 4 Hardwood tree planting (CP3A): Existing or planting solid stand of single hard mast producing species.
Trees 5 Hardwood tree planting (CP3A): Existing or planting mixed stand (three or more species) or hardwood

best suited for wildlife in the area or existing or planting stand of longleaf pine or atlantic white cedar –
planted at rates appropriate for the site index.

Habitat 1 Permanent wildlife habitat, noneasement (CP4D): Existing stand or planting mixed stand (minimum of
four species) of either grasses, trees, shrubs, forbs, or legumes planted in mixes, blocks, or strips best
suited for various wildlife species in the area. A wildlife conservation plan must be developed with the
participant.

Habitat 2 Permanent wildlife habitat, noneasement (CP4D): Existing stand or planting mixed stand (minimum of
five species) or either predominantly native species including grasses, forbs, legumes, shrubs, or trees
planted in mixes, blocks, or strips best suited to providing wildlife habitat. Only native grasses are
authorized. A wildlife conservation plan must be developed with the participant.

Habitat 3 Rare and declining habitat restoration (CP25): Existing stand or seeding or planting will be best suited for
wildlife in the area. Plant species selections will be based upon Ecological Site Description data.

Notes: Table describes the menu of primary cover actions.
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Table A.2: Contract Action Choices: Upgrades

Short name Description

No upgrade Primary cover only
Wildlife food
plot

Wildlife food plots are small plantings in a larger area

Pollinator
habitat

Existing stand or planting (minimum of .5 acres) of a diverse mix of multiple species suited for pollinators

Notes: Table describes the menu of upgrade actions.

We obtain the points associated with each of the contract options, defined by the actions in Tables
A.1 and A.2 from the EBI Fact Sheets. The point values assigned to the different contracts can
vary across bidders based on whether or not a bidder is in a Wildlife Priority Zone (WPZ).

Bid rental rate The scoring rule is non-linear in ri. The existence of bid caps make some choices
infeasible if ri > ri, where ri denotes the i-specific bid cap. The scoring rule also includes non-
linearities based on the amount a bidder bids below the bid cap with kinks at 10% and 15% below
the bid cap.50 The weight on this component is announced only after bids are collected, but it has
remained essentially constant throughout our sample period, so we treat it as known.

An example menu The mechanism implies a menu of payments for each contract at each score.
These menus differ by observable characteristics of landowners due to asymmetry in the existing
rule. Table A.3 describes an example menu.

50We observe bunching at the kink points, suggesting that bidders understand the scoring rule and make sophisti-
cated choices in the mechanism.
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Table A.3: Payments (for a Target Score) and Market Shares Across Contracts

Average

payment

at

threshold

score

Market share Average

payment

at

threshold

score

Market share Average

payment

at

threshold

score

Market share

No upgrade + wildlife flood plot + pollinator habitat

Intro Grasses 1 28.63 0.140 35.21 0.015 52.91 0.007

Intro Grasses 2 74.30 0.104 77.86 0.022 86.00 0.019

Native Grasses 1 43.64 0.067 49.37 0.005 64.68 0.009

Native Grasses 2 81.00 0.201 83.59 0.023 90.34 0.056

Trees 1 65.13 0.039 69.44 0.003 79.54 0.000

Trees 2 94.73 0.020 96.45 0.003 101.47 0.001

Trees 3 73.29 0.012 76.52 0.001 85.06 0.000

Trees 4 79.54 0.002 82.40 0.000 89.65 0.000

Trees 5 98.14 0.029 99.83 0.003 104.71 0.002

Habitat 1 75.29 0.032 78.72 0.006 86.60 0.001

Habitat 2 81.73 0.039 84.25 0.007 90.84 0.014

Rare Habitat 93.07 0.077 94.82 0.009 99.91 0.025

Notes: Table presents the menu of all 36 possible contracts, split into 12 primary covers and three upgrade options. Table reports payments across
contracts, calculated as the rental rate per acre per year to reach a given score (held fixed in this table at the threshold score, S) with a given contract.
Payments vary across bidders with heterogeneous zs

i ; this table calculates the averages across all bidders. Table also reports the market shares of
each contract, pooled across auctions.
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1.10.2 Data Appendix

Agricultural Units: Tracts and Fields Figure A.1 provides an illustrative example of the vari-
ous agricultural land units.

All agricultural land is the US is divided into fields, or Common Land Units, by the USDA. A
field is defined as the smallest unit of land that has: (i) a permanent, contiguous boundary, (ii)
a common land cover and land management, and (iii) a common owner.51 There are 37,480,917
fields in the US (as of 2016), with an average size of 33.82 acres. Each field, by definition, has a
single land use.

Figure A.1: Example: Tract, Fields, and Bid Fields

Notes: Figure explains the various geographic units in our dataset. The blue outline is a single tract: this is the unit of landowner (bidder) in our
analysis. This tract contains six fields, these are administrative delineations of a tract, each with a single land use. The green shaded area represents
an example area bid into the CRP. This could follow field boundaries (as for field 4) or cut into fields (as for field 3).

A tract is a collection of fields under one common ownership that is operated as a farm or part of
a farm (a tract is a landowner, or bidder, in our setting). The average tract includes 4.75 fields.
Each tract can submit at most one bid into a CRP auction. This bid can include any subset of a
tract’s fields. A bid is not constrained to bid only entire fields; in principle, a bidder can bid any
subset of their land, regardless of field delineations. In practice, a large share of bids follow field
boundaries, as illustrated by Figure A.2. In our analyses, we therefore treat bid fields as defining
the land offered into the mechanism.

51See the Common Land Unit Information Sheet published by the USDA for more details.
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Our dataset includes an identifier and the geolocation of each of the bidding tracts, and their subset
fields, for all auctions. We only observe the identifiers of the bid fields in 2016.

Figure A.2: Share of Bid Fields Bid into the Mechanism

Notes: Figure shows a histogram of the share of the land of the bid fields that are bid into the CRP (the shaded green area as a share of the total area
of fields 3 and 4 in Figure A.1). The mass point at one indicates that the vast majority of bidders bid the entire field.

Remote Sensing Data (CDL) Our first source of land use data is the Cropland Data Layer (CDL)
from 2009 to 2020. The CDL is derived from annual satellite imagery at a 30m by 30m resolution
(approximately one quarter acre) for the entire contiguous US. The dataset classifies each pixel
into over 50 crop categories and over 20 non-crop categories. The CDL is produced by the Na-
tional Agricultural Statistics Service (NASS), and is trained on administrative data submitted to
the USDA for crop insurance purposes (Form 578, discussed in more detail below). The CDL has
been used in prior economics research studying agriculture and land use (Scott, 2013; Hagerty,
2022).52

Our primary analysis aggregates CDL classifications into super-classes of crop versus non-crop,
following (Lark et al., 2017). Also following Lark et al. (2017), our crop classification excludes
alfalfa, hay, fallow, and idle cropland. The super-class accuracy of the CDL is high with > 95%
average producer’s (classified as cropped when truly cropped) and user’s (truly cropped when
classified as cropped) accuracy in the years 2008-2016 (Lark et al., 2017). Despite this high super-
class accuracy, remote sensing classifications are subject to measurement error in classification
(Alix-Garcia and Millimet, 2022; Torchiana et al., 2022), particularly when analyzing land use
transitions. Moreover, in order to improve accuracy, some states in some years use prior years’

52See https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php for more details and
Metadata.
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CDL as an input into the training algorithm, providing a further source of bias stemming from the
classification algorithm.

We merge the CDL to a shapefile of all agricultural fields in the US, which we can then aggregate
to landowners (tracts) using USDA identifiers. We merge the CDL data to the geocoded location
of the bidder, time-stamped at the point of bidding.

Calculating land use outcomes at the tract level as either the share of pixels that fall into the
crop super-class, or a weighted average of field-level (binary) cropping indicators produce similar
results. We use the former in our main specifications.

Form 578 Administrative Data Our second source of data (from Form 578) is new to economics
research. It is the administrative data submitted to the USDA that the CDL is trained on. The
data consist of annual field-level reports of total acreage cropped in detailed crop categories and
enrollment in USDA programs. Though Form 578 is self-reported, crop insurance payouts depend
on these reports. Unlike the CDL, which has coverage over the entire US, field-level data is only
submitted if there is an incentive to do so, i.e. if it is cropped and covered by crop insurance.
We assume that all non-reporting fields are not cropped. This is the primary limitation of the
administrative data relative to the CDL.

We merge the Form 578 administrative data to bidders based on field and tract identifiers. We
construct a panel that tracks changes in field identifiers over time using their geolocation.

NAIP Imagery Our final dataset is derived from the National Agriculture Imagery Program
(NAIP) collected via Google Earth Engine. The NAIP is administered through the Forest Service
Agency (FSA) of the USDA, and collects 0.6-1m resolution images of all agricultural land during
growing season. We obtain NAIP images for enrolled land (the highlighted green area in Figure
A.1) to assess compliance with CRP rules. We use high-resolution photographs as classification
error in the derived (CDL) data product would mechanically bias toward finding non-compliance.
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Figure A.3: Sample Images

(a) Enrolled field (b) Cropped field

Notes: Example images for classification. For compliance, neither of these are actual images of CRP enrolled fields.

Validating Compliance To assess compliance, we hired and trained two MIT undergraduates
(the “reviewers”) to classify high resolution aerial photographs (NAIP images) of fields at 1m
resolution (see Figure A.3 for examples). We focus on the 2016 auction and images taken between
2017 and 2021. Before asking the reviewers to classify any images, we provided them with a test
set of hundreds of images of cropped and uncropped fields across the US. The reviewers used this
“test set” to familiarize themselves with the visual patterns of cropped fields (see Figure A.3b). We
then provided each of the reviewers with over 1,000 images of CRP enrolled fields and hundreds of
placebo cropped fields as attention checks. The reviewers were blind to whether the images were
of CRP enrolled fields or placebo cropped fields. Each of the two reviewers were provided with
the same images.

Table A.4 presents results for the classification exercise. We restrict to the 83% of CRP images
that the reviewers agreed upon for our assessment of compliance to minimize the potential for
classification error. We find only 5% of fields to be out of compliance in all post-period years. Once
we drop the two “transition” years from 2017-2018, we find even lower rates of non-compliance,
and reject rates of non-compliance above 3%. We attribute the difference between columns (1) and
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(2) to be driven by the fact that fields appear different when they are transitioning out of cropland,
e.g. rows from row cropping may still be visible as new vegetation grows in. While not reported,
rates of cropping are substantially higher, at approximately 40%, on placebo cropped fields; the
reviewers were making meaningful classifications. We note, however, that this number is far below
100%. This is because we instructed the reviewers to be conservative in their assessment of non-
compliance, operating under the (reasonable) null hypothesis that the program is in fact enforced.

Table A.4: Validation of Compliance: ai1 = 1 ∀i

All post-period years Drop first two years
(1) (2)

Share of enrolled fields classified as cropped 0.054 0.024
(0.008) (0.0085)

Upper bound of 95% CI 0.070 0.034
N fields classified (with agreement) 925 842
Rate of agreement across reviewers 0.824 0.863

Notes: Table presents results from an exercise classifying aerial photographs of contracted fields as cropped or non-cropped among two reviewers,
who also reviewed images of non-CRP fields and were blind to the distinction. Classification focuses on the 2016 auction. Column (1) includes
photographs from 2017-2021. Column (2) includes only photographs from 2019-2021. Crop classifications are based on only fields in which the
two reviewers agree (which occurred for 82-86% of fields). Fields more likely to be flagged as non-compliant (based on remote sensing data) were
over-sampled, to be as conservative as possible.

This exercise only studies compliance on the base action, land retirement, not the top-up actions,
which we cannot observe. We thus use this assessment of compliance to make an inference about
the overall compliance regime across all actions.

81



1.10.3 Supplemental Figures and Tables

Figure A.4: Spillovers: Cropping Effects on Non-Bid Fields

(a) Remote sensing
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Notes: Panels (a) and (b) present raw data and estimates from equation (1.7) for r (i, t)> 0 (post-auction). Regression is estimated at the field level,
restricting to non-bid fields for bidding landowners. Estimates are restricted to the 2016 auction where delineations of bid and non-bid fields are
observed. Land-use outcomes are measured as the share of the bidding land that is cropped using the remote sensing data (a) and administrative
data (b). The running variable is the difference between each bidder’s score and the threshold score. Positive numbers on the x-axis correspond to
winning scores, negative numbers correspond to losing scores. Each observation is a bidder-year. Corresponding coefficient estimates and standard
errors presented in Table 1.2.
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Figure A.5: Additional RD Plots: Remote-Sensing Data

(a) Cropping corn
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(b) Copping soybeans
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(c) Fallow
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Notes: Figure presents raw data and estimates from equation (1.7) for r (i, t)> 0 (post-auction). Land-use outcomes are measured using crop classi-
fications in the remote sensing data. The running variable is the difference between each bidder’s score and the threshold score. Positive numbers on
the x-axis correspond to winning scores, negative numbers correspond to losing scores. Each observation is a bidder-year. Corresponding coefficient
estimates and standard errors presented in Table 1.2.
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Figure A.6: Additional RD Plots: Admin Data
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(b) Cropping corn
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(c) Cropping soybeans
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(d) Fallow
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Notes: Figure presents raw data and estimates from equation (1.7) for r (i, t) > 0 (post-auction). Land-use outcomes are measured using crop
classifications in the Form 578 data reported to the USDA. The running variable is the difference between each bidder’s score and the threshold
score. Positive numbers on the x-axis correspond to winning scores, negative numbers correspond to losing scores. Each observation is a bidder-
year. Corresponding coefficient estimates and standard errors presented in Table 1.2.
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Figure A.7: Rebidding Hazard
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Notes: Figure plots the share of losing bidders who have rebid at least once in the years following an index auction, split by all bidders (beige) and
successful bidders (blue).

Table A.5: RD Estimates: By Win Threshold of Bid Rental Rate for Base Contract

Remote-sensing Admin

(1) (2)

Quartile 1 threshold bid (lowest) -0.039 -0.054

(0.013) (0.013)

Quartile 2 threshold bid -0.059 -0.068

(0.012) (0.012)

Quartile 3 threshold bid -0.031 -0.042

(0.012) (0.013)

Quartile 4 threshold bid (highest) -0.075 -0.098

(0.015) (0.015)

Notes: Table presents pooled RD coefficients (Equation (1.7) for r (i, t) > 0 (post-auction) split by the bid rental rate required to achieve the
threshold score with the base contract. This parameterizes heterogeneity in the location of the discontinuity across auctions and variation within
auctions across bidders (based on zs

i ). The outcome is the share of a bidder’s land that is cropped, measured in the remotely sensed data. Standard
errors clustered at the tract level.

85



Table A.6: RD Coefficient Estimates | Bid ≥ Five Acres of Land

Remote sensing Admin

(1) (2)

Panel A: Main outcome: share of land cropped

Pre-sign-up (placebo) 0.016 0.014

(0.007) (0.006)

Post-period (pooled sign-ups) -0.076 -0.095

(0.007) (0.006)

Post-period (full contract duration: 2010-2020) -0.117

(0.020)

Panel B: Other outcomes

Corn -0.016 -0.023

(0.003) (0.003)

Soybean -0.021 -0.027

(0.003) (0.003)

Fallow -0.009 -0.011

(0.002) (0.001)

Natural vegetation or grassland 0.097

(0.007)

Panel C: Spillovers to non-offered fields

Share of non-offered fields cropped -0.001 -0.000

(0.015) (0.015)

N bidders 236,593 236,593

N bidder-years 2,839,116 1,656,151

Notes: Table presents coefficient estimates from equation (1.7) with land use outcomes measured in the remotely sensed (column (1)) and adminis-
trative (column (2)) data, restricted to bidders who bid more then five acres into the mechanism (following Lark et al. (2017)). All results use a local
linear regression on either side of the win threshold in the MSE-optimal bandwidth (Calonico et al., 2014). The full-contract duration specification
restricts to the 2009 auction, others pool all auctions with post-period data (2009, 2011, 2012, 2013, and 2016). The pooled post-period includes an
average of 7-8 post-auction years. Natural vegetation or grassland is only observed in remotely sensed data. Calculations of implied additionality
divide the treatment effect estimates by the amount of land contracting among winning bidders in the MSE-optimal bandwidth. Panel C estimates
the effect of a CRP contract on non-bid, and therefore non-contracting, fields to test for spillovers. This analysis is restricted to the 2016 auction.
Standard errors are clustered at the bidder level.
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Figure A.8: Testing for Asymmetric Information, Admin Data
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(b) Additionality vs. bids | observables
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(c) Additionality across contracts
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(d) Observable predictors of additionality
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Notes: Figures present visual representations of estimates of equation (1.8). All regressions control for landowner characteristics in the scoring rule:
whether a bidder is in a wildlife priority zone, estimates of groundwater quality, estimates of surface water quality, estimates of wind and water
erosion (deciles), air quality impacts, and whether or not a bidder is in a air quality zone. The outcome variable in all panels is a landowner-specific
measure of additionality (1−ai0). This is calculated as the share of all fields bid into the CRP mechanism that are cropped post auction for rejected
landowners. The sample is restricted to the 2016 auction, in which 82% of bidders are rejected and the delineations of bid fields are observed.
Cropping on bid fields is measured in 2017-2020 in the administrative data. Panel (a) is a binned scatterplot correlating the dollar bid (per acre, per
year) with additionality, conditional on characteristics included in the scoring rule. Panel (b) adds controls for interaction terms of prior land use
(quartiles of share of land cropped prior to bidding and re-enrolling CRP status) and deciles of estimated soil productivity. Panel (c) plots relative
additionality by the chosen contract in the bid, relative to an omitted category of introduced grasses. Panel (d) plots relative additionality by deciles
of estimated soil productivity. Standard errors clustered at the bidder level.

1.10.4 Model and Estimation Details

Information

Quantity uncertainty Figure A.9 provides empirical support for the uncertainty in quantity
cleared based on the acreage limit of the auction (determined by the Farm Bill). The 2013 and
2016 auctions had very different quantity thresholds, and thus very different threshold scores —
denoted by the dashed lines in blue and beige — but the cumulative distribution functions (CDFs)
of bidder scores are similar.
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Figure A.9: CDF of Scores versus Winning Thresholds: 2013 versus 2016
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Notes: Figure presents ex-post win thresholds and cumulative distribution functions (CDFs) of ex-ante score distributions for the 2013 and 2016
auctions.

Identification Figure A.10 presents a graphical identification argument in the simple case with
only two contract choices (one normalized to have κ = 0) and a quasi-linear scoring rule. s−1 (S∗,x)

describes the payment a bidder can receive to achieve score S∗ with action x (see Table A.3 for an
illustration of this function).

The choice to bid S∗ and x1 under scoring rule s defines the blue line segment containing the true
parameters c and κ . S∗ can be inverted as in Guerre et al. (2000a) to point identify c+ κ (the
line containing the blue line segment in Figure A.10). The observation that x1 was chosen (not
x0) to reach S∗, given the different payoffs associated with x0 and x1 in the scoring rule, bounds
the magnitude of κ , defining the line segment. If κ were higher than the horizontal line in Figure
A.10, it would have been optimal to reach score S∗ with x0 instead of x1.

Variation in the scoring rule that shifts the payoffs to x1 versus x0, i.e. from s to ŝ, traces out
the density of bidder costs as bidders’ optimal choices change in response to the variation in the
scoring rule. For example, the vertical dashed line documents a bidder who changes her optimal
bid to x0 with Ŝ∗ under the new rule.

This argument extends to non-linearities in the scoring rule, a larger menu of contracts, and the
fact that scores can only be integers. See (Agarwal et al., 2023) for more details.
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Figure A.10: Graphical Identification Argument

Notes: Figure presents a graphical identification argument.

As discussed in the main text, the final component of the model, τ (zi,ci,κi), is identified by also
observing ai0 jointly with optimal bids (including as they change with the variation from s to ŝ

described in Figure A.10).

Figure A.10 clarifies the need for variation in the scoring rule to trace out the distribution of c and
κ . Figure A.11 describes this variation in our context.

Figure A.11: Sources of Variation in the Scoring Rule
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(b) Mid-Mechanism Policy Change
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Notes: Figure presents sources of policy variation in the scoring rule that yield variation in payments across contracts differentiated by top-up
conservation actions. Panel (a) plots average action points awarded for a set of “treated” actions, actions for which after the 2011 auction WPZ
bidders no longer got WPZ points, and “untreated” actions, whose points remained the same, and the same average action points for non-WPZ
bidders. Panel (b) plots the average rental rate that would be received for a target score (illustrated using the threshold score) among bidders under
the interim mechanism before the introduction of Climate Smart Practice Incentives, and in the final mechanism after their introduction, for each of
the twelve primary covers. G indicates grasses, T indicates trees, H indicates habitats.
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Estimation

Step 0: Constructing the Scoring Rule We only observe scores for chosen bids bi, so we con-
struct the function s(bi,zs

i ) from the EBI Factsheets. Figure A.12 confirms that our reconstruction
performs well: at observed actions, our scoring-rule-implied required bid rental rate to achieve the
score chosen in the data predicts the observed bid rental rate with an R2 of over 0.99.

Figure A.12: True versus Predicted Bid Rental Rate at Observed Scores and Contracts
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Notes: Figure presents a scatter plot of true versus predicted bid rental rates at observed contract and score choices to validate the construction of
s(bi,zs

i ).

Step 1: Obtain Bidder Beliefs via Simulation Our resampling procedure to simulate the prob-
ability of winning at any score, G(S) follows Hortaçsu (2000); Hortaçsu and McAdams (2010).
Specifically, we:

1. Fit a Beta distribution to the observed distribution of acreage thresholds across auctions. For
this step, we use additional historic data on auctions starting in 1999. This provides us with
12 auctions.

2. Fit a Beta distribution to the observed distribution of number of opposing bidders across
auctions. For this step, we again use additional historic data on auctions starting in 1999.
This provides us with 12 auctions.

3. Draw an acreage threshold from the distribution fit in Step 1 and the number of opposing
bidders, N, in Step 2. Then, for each auction g, sample with replacement N bidders from the
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empirical distribution of bidders in that auction. Given the joint distribution of scores and
acreage amounts among the N resampled bidders, and the drawn acreage threshold, find the
winning score threshold S.

4. Repeat Step 3 to obtain an auction specific probability of winning at any given score Gg(S).

Bidders form expectations about the distribution of competing scores without knowledge of their
competitors’ identities or characteristics, consistent with the large and decentralized bidding pro-
cess, so Gg(S) is the same for all bidders. Figure A.13 plots the output of our simulation procedure
across all auctions.

Figure A.13: Probability of Winning at Score S
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Notes: Figure presents CDFs of the simulated distribution of win probabilities at a given score across auctions.

Step 2: Estimate Fc,κ |z Our estimation procedure is as follows:

1. Construct a proposal distribution. We begin by constructing a proposal distribution from
which to draw proposal (ci,κi) draws. We obtain our proposal distribution by estimating
a simplified version of the model. Bidders choose a score using only their expectations of
their κi j draws, then given that score, choose an optimal contract. In this model, estimation
of κi j and ci can be separated into a discrete choice problem and an inversion. We obtain
parameter estimates from this simplified model, then set our proposal distribution to be inde-
pendent normals with the estimated means and variances of this simplified model (inflating
the variance by 25%).
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2. Draw from proposal and solve the bidder’s problem. Following the approach of Acker-
berg (2009), we use a change of variables to draw simulations of

(
ck

i ,κ
k
i
)

from the proposal
distribution and solve the bidder’s problem in equation (1.10) for each bidder and each simu-
lation draw. Bidders can only bid integer scores, so to solve equation (1.10), we search over
all feasible score-contract combinations among integers in the support of observed scores.
This change of variables allows us to solve the bidder’s problem only N×K times, once for
each bidder and each simulation draw, instead of N×K×R times, for each evaluation of the
objective function (R times).

3. Coarsen choice probabilities. Because the number of possible bids is large (on the order of
10,000 choices), we face the challenge that the probability of simulating each bid observed
in the data is low. We address this challenge by coarsening the bidder’s solution obtained
in Step 2. We coarsen to the cartesian product of (i) deciles of the scoring rule and (ii) the
five dimensions of p j when u j is the no upgrade option, plus the two upgrade options. Let
b̃∗i =

(
S̃i, x̃i

)
denote the optimal coarsened bid observed in the data.

4. Reweight simulation draws. We can then construct the importance sampling estimator by
re-weighting simulation draws. The likelihood of observing the coarsened choice in the data,
b̃∗i =

(
S̃i, x̃i

)
, given a parameter guess θ , is:

Li =
1
K ∑1

(
b̃∗i = b̃∗ki |

(
ck

i ,κ
k
i

)) p
((

ck
i ,κ

k
i
)
|θ
)

g
((

ck
i ,κ

k
i
)) , (1.17)

where b̃∗ki is the coarsened optimal bid given simulation draw
(
ck

i ,κ
k
i
)
, the solution to the

bidder’s problem in equation (1.10), and the coarsening described in Step 3. Equation (1.17)

then re-weights simulation draws by
p((ck

i ,κ
k
i )|θ)

g((ck
i ,κ

k
i ))

, where p
((

ck
i ,κ

k
i
)
|θ
)

is the probability of

observing simulation draw
(
ck

i ,κ
k
i
)

given parameter guess θ , and g
((

ck
i ,κ

k
i
))

the probability
of observing

(
ck

i ,κ
k
i
)

given the proposal distribution from Step 1.

5. Find θ to maximize the log likelihood. We suppressed dependence in (1.17) on zi. We
estimate θ separately for each of the 32 cells of observable heterogeneity for a sample of
1,000 bidders in each cell in each auction (due to computational constraints on the USDA
servers). An auxiliary benefit of the importance sampling approach of Ackerberg (2009) is
that it yields a differentiable objective function.

6. Repeat. We repeat Steps 2-5 several times, using estimates from the solution to Step 5 as
the new proposal distribution. Our final estimates use 10,000 simulation draws to mitigate
simulation bias (Train, 2009).
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Step 3: Estimate τ (zi,ci,κi) Our final step involves estimating the conditional expectation
function τ (zi,ci,κi) = E [1−ai0 |zi,ci,κi] = π · zi +β · ci +α ·κ i. We match model implied mo-
ments of additionality to observed moments of additionality, 1−ai0, among bidders who lose the
auction. We search for θ τ = (π,β ,α) that minimizes ĝ(θ τ)′Aĝ(θ τ) for weight matrix A and
ĝ(θ τ) = Ê

[
mi− 1

K ∑k mi
(
θ τ |ck

i ,κ
k
i
)]

, where Ê denotes the sample expectation, for mi equal to:

• Additionality at the award threshold: (1−ai0) ·1 [S−b < s(b∗i ,zs
i )< S] for bandwidth b.

• Additionality by observable characteristics: (1−ai0) ·1 [s(b∗i ,zs
i )< S] · zi.

• Covariance between additionality and chosen scores: (1−ai0) · s(b∗i ,zs
i ) ·1 [s(b∗i ,zs

i )< S].

• Additionality within chosen contracts: (1−ai0) ·1
[
xi j = 1

]
·1 [s(b∗i ,zs

i )< S].

Our estimation approach follows the following steps:

1. Draws simulations
(
ck

i ,κ
k
i
)

from Fc,κ |z estimated in Step 2.

2. Calculate optimal bids b∗i given
(
ck

i ,κ
k
i
)

using equation (1.10).

3. Calculate mi
(
θ τ |ck

i ,κ
k
i
)

by replacing 1− ai0 with π · zi + β · ci +α ·κ i and observed bids
with simulated optimal bids for each simulation draw k and parameter guess θ τ .

4. Minimize the objective ĝ(θ τ)′Aĝ(θ τ).

We use the two-step optimal weight matrix for the matrix A.

Because we require an observation of bid fields to calculate 1−ai0, we estimate τ (zi,ci,κi) using
only the auction where we observe bid fields (2016). Our primary estimates use the remote-sensing
data from 2017-2020 to measure 1−ai0. We assume that the relationships estimated in τ (zi,ci,κi)

in this auction can be extrapolated to the other auctions in our sample, and that τ (zi,ci,κi) can
be estimated in only the three years following the auction. This may seem unappealing given the
transition period in Figure 1.4, but we note that 1− ai0 is calculated among losing bidders, not
those transitioning into land retirement.

As discussed in the main text, we require instruments that shift s(b∗i ,zs
i ) but that are conditionally

independent of ai0. We use landowners’ Wildlife Priority Zone and Air Quality Zone status as
instruments. We conduct a test to provide additional support for this assumption. Specifically, we
estimate the simplified version of the model described in Step 1 of our Step 2 estimator, in which
we can point identify ci with an inversion. We show in Figure A.14 that cropping outcomes are
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independent of the score after controlling for ci and the remaining observables in τ (zi,ci,κi). This
suggests that the residual variation in the score is conditionally independent of ai0.

Figure A.14: Residualized Correlation Between Scores and Cropping
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Notes: Figure presents the relationship between a binary indictor for cropping, residualized of observable characteristics, a point-identified ci
estimate from an alternative model, and scoring rule characteristics except for Wildlife Priority Zone and Air Quality Zone. Estimated among losing
bidders in the 2016 auction only.

We calculate standard errors via bootstrapping. Our final procedure will bootstrap over the entire
estimation procedure to incorporate estimation error in earlier steps. The current standard errors
do not incorporate estimation error in (ci,κi).
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Table A.7: Fc,κ |z Parameter Estimates (Select zi)

Former CRP = 0 Former CRP = 1

Prior crop Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Soil prod. Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

(1) (2) (3) (4) (5) (6) (7) (8)

ci

Mean 31.65 37.51 66.35 135.97 36.55 42.90 66.85 126.27

(0.02) (0.04) (0.05) (0.06) (0.02) (0.03) (0.05) (0.06)

Log σc 1.60 2.77 3.53 3.61 1.16 2.60 3.47 3.89

(0.004) (0.002) (0.001) (0.001) (0.004) (0.002) (0.001) (0.001)

κi j

Means

Native grasses 0.70 -4.46 3.96 -0.61 -2.59 -4.76 4.87 2.31

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

Trees 28.57 27.53 30.11 34.51 15.85 19.25 23.77 30.67

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Habitat 17.25 12.71 16.82 22.01 13.96 11.76 15.94 12.92

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Rare habitat 17.73 15.63 17.97 10.05 18.30 12.96 22.57 19.60

(0.04) (0.04) (0.03) (0.03) (0.05) (0.04) (0.04) (0.03)

Wildlife food plot 23.77 23.07 12.69 14.24 25.66 18.65 14.45 16.24

(0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

Pollinator habitat 16.72 10.81 14.12 18.00 22.04 18.68 18.27 17.40

(0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

Log σκ 2.70 2.86 2.81 2.76 2.85 2.84 2.83 2.81

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Notes: Table presents presents parameter estimates for 8 cells of zi. Standard errors calculated using the inverse of the negative Hessian, calculated
numerically. Standard errors do not account for simulation error or the estimation error in the first step estimator of G(S).
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Figure A.15: Model Fit
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Notes: Figures summarize model fit by comparing simulated choices of contracts, bids, and scores to the data.

Table A.8: Comparison Between Estimated and Administrative Cost Estimates

Estimates Median admin cost Average admin cost

(1) (2) (3)

Tree primary covers (rel. to grasses) 24.36 26.46 73.15

Habitat primary covers (rel. to grasses) 15.05 2.67 3.30

Notes: Table presents average revealed preference estimates of costs of aggregate primary cover categories, relative to grasses (column 1), compared
to administrative data collected on the costs of these actions by the USDA (columns 2 and 3).

1.10.5 Valuing Benefits

We assume that the weights in the scoring rule B j (zs
i ) reflect the relative social benefits (in dollars)

across j and zs
i , assuming ai0 = 0 for all i. The mechanism implicitly makes trade-offs in the

scoring rule that monetize relative preferences across contracts and characteristics.
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Using this logic requires two assumptions. First, we require the assumption that ai0 = 0 for all i,
motivated by Claassen et al. (2018), who write: Benefit-cost indices are used to rank applications

for acceptance in all major USDA conservation programs... Existing indices, however, implicitly

assume full additionality. Second, we require that the weights in the scoring rule are not distorted
to reduce expenditures (Che, 1993). There is no evidence to support this behavior (Ribaudo et al.,
2001), and moreover, the USDA values transfers to agricultural landowners. We assume that the
USDA maximizes social welfare by announcing its preferences in the scoring rule.

However, the USDA revealed-preferred values of B j (zs
i ) may not necessarily align with the true

environmental benefits for a variety of reasons, e.g. political concerns (Ribaudo et al., 2001). We
choose to take this USDA-revealed-preferred approach, versus calibrating B j (zs

i ) from an external
integrated assessments model,53 to focus on additionality as the primary source of social welfare
losses.

To calculate these scoring-rule implied relative valuations, we note that scoring rule is separable in
the actions incentivized by the heterogeneous contracts and the bid ($) rental rate

s(bi,zs
i ) = sa (xi,zs

i )︸ ︷︷ ︸
action points

+ sr (ri)︸ ︷︷ ︸
bid rental rate points

(1.18)

and construct a quasi-linear approximation to the scoring rule to obtain relative willingness to pay.
The scoring rule departs from quasi-linearity because of kinked incentives in points bidders receive
as a percentage of their bidcap. We “quasi-linearize” the scoring rule by taking the average of s′r (ri)

in the region without the added percentage points bonus and the region with the percentage point
bonus (at the median bidcap value).54

Using our “quasi-linearized” approximation to the scoring rule, we know how the USDA trades off
higher costs with heterogeneous environmental benefits across contracts j and observable charac-
teristics zs

i . However, the scoring rule is not directly informative about the level of social benefits.
We obtain this using estimates of the value of the CRP from the literature. We assume that all
impacts of the CRP accrue only over the contract period.

We use following values of the CRP from the literature. Our baseline estimates take the average
across these three studies.

53See https://naturalcapitalproject.stanford.edu/software/invest for an example.
54The fact that different bidders face different scoring rules based on their bidcap does not reflect differential valu-

ation of environmental benefits across bidders.
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1. Our first estimate sums the recreational,55 public works,56 and air quality benefits57 from
Feather et al. (1999) and adds estimates of the value of greenhouse gas reductions from
sequestered CO2 (over the 10-year contract) and reduced fuel and fertilizer use58 monetized
at $43 per metric ton. This leads to an overall estimated value of the CRP of $98.34 per
acre, per year. This is likely to be an under-estimate because biodiversity is only valued
insofar as it provides recreational benefits, and this estimate does not include water quality
improvements from reduced run-off.

2. Our second estimate takes the valuation of the CRP from Hansen (2007a), and adds estimates
of the value of greenhouse gas reductions from sequestered CO2 (over the 10-year contract)
and reduced fuel and fertilizer use, which then equals $255.70, per acre, per year.

3. Our third and fourth estimate take a conservative and generous value of the non-GHG CRP
benefits from Johnson et al. (2016a) and adds estimates of the value of greenhouse gas re-
ductions from sequestered CO2 (over the 10-year contract) and reduced fuel and fertilizer
use. This leads to estimates of $367.96 and $456.04, per acre, per year. These may be an
over-estimate because benefits are estimated in only one geographic area, which may have
more environmentally sensitive land.

The description above highlights the difficulties of monetizing the value of the all of the environ-
mental benefits of the CRP, both in terms of quantifying all of the potential environmental benefits.
We emphasize that our focus is not on obtaining estimates of B j (zs

i ), but rather on τ (zi,ci,κi);
results can be recalculated for any alternative valuation of B j (zs

i ). Quantifying the environmental
value of ecosystem services is an important complementary area of research.

1.10.6 Additional Counterfactuals

Cost of Public Funds Figure A.16 considers the same auctions presented in Figure 1.9, but
evaluates social welfare with a cost of funds λ = 0.15. Under this framework, 15% of all USDA
spending is considered deadweight loss, motivated by the social costs of financing expenditures via
distortionary taxation. With a cost of funds, the status quo auction reduces social welfare. How-

55Includes sport-fishing, small-game hunting, noncompetitive viewing, and waterfowl hunting.
56Includes cost savings associated with reduced maintenance of roadside ditches, navigation channels, water treat-

ment facilities, municipal water uses, flood damage, and water storage.
57Includes reduced health risks and cleaning costs associated with blowing dust.
58See https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/EPAS/

natural-resouces-analysis/nra-landing-index/2017-files/Environmental_Benefits_of_the_
US_CRP_2017_draft.pdf.
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ever, social welfare gains become positive once the auction is designed to consider additionality.
In bar (7), social welfare gains are large at $270 million per auction.

Figure A.16 evaluates auctions using the same scoring rules as in Figure 1.9. With weights ω j and
ωz re-optimized to reduce government spending, social welfare gains would be higher.

Figure A.16: Social Welfare Under Alternative Auctions: Cost of Funds
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Notes: Figure presents estimates of the social welfare gains (defined in equation (1.14) with a cost of funds λ = 0.15) under status quo and
alternative auctions. Results reported in million dollars per auction. All auctions impose that each landowner obtains at most one contract and
that total contracts awarded cannot exceed the status quo. Bar (1) simulates the status quo. Bar (2) calculates the social welfare gains under an
efficient allocation that allocates contracts using all zi and (ci,κi) to maximize equation (1.14). Due to adverse selection, this allocation may not be
implementable. Bars (3)-(7) calculate social welfare under alternative Vickrey auctions with scoring (see Section 1.6.2 for more details). Bars (3)-
(6) hold quantity (the number of landowners allocated contracts) constant at the status quo and change the scoring rule s j (zi) defined in equation
(1.15). Bar (3) uses the existing scoring rule s j (zi) = B j (zs

i ). Bar (4) uses a scoring rule with the social-surplus maximizing incentives across
contracts (ω j). Bar (5) uses a scoring rule with the social-surplus maximizing asymmetry across bidders using characteristics already in the scoring
rule (zs

i ). Bar (6) adds an additional characteristic to the scoring rule, a prediction of τ (zi,ci,κi) based on immutable characteristics of landowners
already collected by the USDA (deciles of soil productivity and wind and water erosion). Bar (7) uses the same scoring rule as bar (6) but reduces
the number of contracts allocated to landowners: only landowners with positive scoring-rule-implied social surplus max j s j (zi)− ci−κi j ≥ 0 are
awarded contracts. See each bar’s corresponding column in Table 1.5 for more details.

Top-Actions not Affected by Additionality For all analyses beyond those restricted to the base
contract, we require an assumption about how additionality impacts the social value derived from
the top-up actions that differentiate the contracts in the mechanism. This is due to fundamental data
limitations (see Section 1.3.2). Our primary specification defines the social benefit of contracting
as B j (zs

i ) · τ (zi,ci,κi). In this specification, no social benefits are generated when a landowner
is not additional. This could be either because, as with land retirement, top-up actions (or close
substitutes) would have occurred even absent a CRP contract. It could also be motivated by an
assumption that land retirement and the top-up actions are complements in the USDA’s valuation
of contracting. We view this assumption as reasonable for many of the important actions being
incentivized, e.g. grassland and tree maintenance.

In this section, we consider an alternative assumption in which the incremental actions incentivized
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by the contracts are always additional. Specifically, we consider an alternative valuation of con-
tracts equal to B0 (zs

i ) · τ (zi,ci,κi)+B j (zs
i ), where B0 (zs

i ) is the social benefit of the base action
and B j (zs

i ) is the incremental social benefit of the top-up action beyond the base action. This could
be motivated by a scenario in which contracting impacted the specific species mix, which we as-
sume the USDA values at B j (zs

i ), even if it did not impact land retirement. Under this assumption,
over one third of the total social surplus at stake is not impacted by additionality at all. This makes
correctly incentivizing the top-up actions — whose relative valuations are derived solely from
monetizing the scoring rule — matter substantially to the performance of the mechanism. This is
another reason to favor our baseline assumption over this alternative.

Figure A.17: Social Welfare Under Alternative Auctions: Alternative Top-Up Assumption
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Notes: Figure presents estimates of the social welfare gains (defined in equation (1.14), but replacing B j (zs
i ) ·τ (zi,ci,κi) with B0 (zs

i ) ·τ (zi,ci,κi)+
B j (zs

i ) where B0 (zs
i ) is the social benefit of the base action and B j (zs

i ) is the incremental value of the top-up action) under status quo and alternative
auctions. Results reported in million dollars per auction. All auctions impose that each landowner obtains at most one contract and that total contracts
awarded cannot exceed the status quo. Bar (1) simulates the status quo. Bar (2) calculates the social welfare gains under an efficient allocation that
allocates contracts using all zi and (ci,κi) to maximize equation (1.14). Due to adverse selection, this allocation may not be implementable. Bars
(3)-(7) calculate social welfare under alternative Vickrey auctions with scoring (see Section 1.6.2 for more details). Bars (3)-(6) hold quantity (the
number of landowners allocated contracts) constant at the status quo and change the scoring rule s j (zi) defined in equation (1.15). Bar (3) uses the
existing scoring rule s j (zi) = B j (zs

i ). Bar (4) uses a scoring rule with the social-surplus maximizing incentives across contracts (ω j). Bar (5) uses
a scoring rule with the social-surplus maximizing asymmetry across bidders using characteristics already in the scoring rule (zs

i ). Bar (6) adds an
additional characteristic to the scoring rule, a prediction of τ (zi,ci,κi) based on immutable characteristics of landowners already collected by the
USDA (deciles of soil productivity and wind and water erosion). Bar (7) uses the same scoring rule as bar (6) but reduces the number of contracts
allocated to landowners: only landowners with positive scoring-rule-implied social surplus max j s j (zi)− ci−κi j ≥ 0 are awarded contracts.

Figure A.17 re-creates Figure 1.9 under this alternative assumption. Social welfare under the status
quo is higher, but the status quo still achieves less than half of the social welfare gains under the
efficient allocation. The biggest difference between Figures 1.9 and A.17 is the large social welfare
gains from the switch to the VCG mechanism, holding the scoring rule constant (bar (3)). This
is because the Vickrey auction with scoring using the status quo rule now efficiently incentivizes
choices across contracts. Because the top-up actions represent a large share of social welfare gains
at stake in the mechanism, incentivizing them efficiently is important for the auction’s performance.
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Adjusting the mechanism for heterogeneity in additionality is still quantitatively important: mov-
ing from bar (3) to bar (6) increases social welfare by 7% of the status quo, or 15% of the gains of
the improvement between bar (1) and bar (6). Also as in our baseline estimates, quantity procured
is higher than is socially optimal. Reducing quantity to reflect the many landowners who are not
additional increases social welfare by a further 13% of the status quo social welfare gains.

We emphasize that the exercise of Figure A.17 is not to document that results are quantitatively
the same under this alternative assumption versus our baseline assumption. The assumptions are
very different, so naturally lead to some different quantitative implications. Instead, we highlight
that the insights from our baseline assumption are quantitatively relevant even when a large share
of the surplus at stake in the mechanism (B j (zs

i )) is not impacted by additionality.

Figure A.18: Alternative Assumption: Offset Market Design Across Contracts
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Notes: Figure plots the percent reduction in social welfare under a stylized competitive market equilibrium relative to socially-optimal prices under
three different hypothetical markets, each with only one contract traded at a uniform price. The numbers above the bars in panels (a) and (b) tabulate
total social welfare (per acre-year) in each competitive market. The competitive market equilibrium is calculated under the assumption that buyers
have the same full-information preferences as the USDA and form expectations over the value of any contract given the equilibrium price(s). In this
figure, we assume that B0 (zs

i ) · τ (zi,ci,κi)+B j (zs
i ), where B0 (zs

i ) is the social benefit of the base action and B j (zs
i ) is the incremental value of the

top-up action, instead of our baseline assumption of B j (zs
i ) · τ (zi,ci,κi).

We also examine how this alternative assumption impacts our analysis of competitive offset market
design. Most of the analysis in the main text is focused on the base contract (e.g. Figures 1.7 and
1.11a), so is unaffected by our assumptions about top-up actions. However, our analysis in Figure
1.11b is affected. Figure A.18 re-creates Figure 1.11b under this section’s alternative assumption
about top-up actions. Figure A.18 documents social welfare losses from adverse selection, but
markets for tree planting and maintenance contracts no longer unravel. This occurs because the
social value from B j (zs

i ) is generated regardless of additionality, propping up the market. While
we think that our baseline assumption likely holds, this exercise is informative of an alternative
lever for market design. Offset markets can bundle additional benefits (often termed “co-benefits”)
into the contract that are unaffected by additionality. These benefits not only provide additional
social value, but can also prevent market unravelling due to adverse selection.
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Chapter 2

Waiting or Paying for Healthcare: Evidence
from the Veterans Health Administration

2.1 Introduction

Many goods and services are allocated at below-market-clearing prices, sacrificing efficiency in
the interest of equity (Tobin, 1970; Weitzman, 1977). This trade-off is particularly acute among
healthcare systems worldwide, which were designed with explicit equity considerations that pre-
clude rationing by price (Reinhardt, 1997; Cutler, 2002a).1 However, in the presence of scarcity,
due to budget or capacity constraints, alternative rationing mechanisms must emerge to determine
access to care. In healthcare, wait times for care often serve as this substitute (Cutler, 2002a; Rein-
hardt, 2007, 2019) and represent a major barrier to care in most OECD countries (OECD, 2020).
Many countries have thus made the choice, either explicitly or implicitly, that allocating healthcare
via wait times is preferable to doing so with a price mechanism.2

The choice of rationing mechanism — in practice, waiting versus paying on the margin — is a

1For example, the Beveridge Commission, which led to the creation of the National Health Service (NHS) in the
UK stated:

“From the standpoint of Social Security, a health service providing full preventive and curative treatment of every
kind to every citizen without exceptions, without remuneration limits and without an economic barrier at any point to
delay recourse to it, is the ideal plan.”

Similar ideas were included in the Canada Health Act of 1984:
“It is hereby declared that the primary objective of Canadian health care policy is to protect, promote, and restore

the physical and mental well-being of residents of Canda and to facilitate reasonable access to health services without
financial or other barriers.”

2This choice is particularly explicit in a recent (2022) case before the Supreme Court of British Columbia in
Canada, in which the court ruled that even though the “public system had failed to provide timely medical treatment”
paying for healthcare to avoid a queue is not in “accordance with principles of fundamental justice.” See https:
//www.bccourts.ca/jdb-txt/ca/22/02/2022BCCA0245.htm for more details.
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fundamental question of international healthcare market design. However, empirical research on
the implications of alternative rationing mechanisms has been limited by both scarce data and the
challenge of conducting welfare analysis in settings where consumers are not paying on the margin.

In this paper, I investigate the efficiency and distributional implications of rationing access to care
via wait times versus prices. I also examine the performance of second-best policy instruments
that attempt to manage rationing costs while still imposing strong restrictions on the use of price
to ration access to care. I focus on the setting of waiting for outpatient care at the Veterans Health
Administration (VA) in the United States. The VA combines unusually rich data on wait times with
a major policy intervention designed to address rationing costs, which induced variation in both
wait times and prices.

The VA offers an ideal empirical setting for four reasons. First, in addition to being of substantial
policy interest in the US, providing care to over nine million veteran enrollees, the VA context
is similar to the international comparisons that motivate the debate over rationing mechanisms in
healthcare. Copayments are regulated at low — often zero — rates, and the market for outpatient
care instead clears on wait times. Second, the Veterans Access, Choice, and Accountability Act
of 2014 (the “Choice Act”), which made certain veterans eligible to receive subsidies for non-VA
providers, provides a large-scale policy change that shifts prices, and in equilibrium, wait times.
In addition to providing rare variation in both the efficient (prices) and inefficient (wait times)
market-clearing mechanisms, this class of policy intervention is a common form of “managed
rationing,” with similar interventions across the globe.3 Third, VA administrative data is derived
from electronic health records that integrate with scheduling systems to document wait times for
care. Fourth, I am able to assemble a comprehensive dataset linking utilization across VA and
non-VA providers to analyze choices — and thus, conduct revealed preference welfare analysis in
a rationed goods context — in response to the Choice Act variation.

I begin by leveraging the eligibility conditions for the Choice Act in two sets of of difference-in-
difference designs. First, I examine the direct effects of the policy, which made veterans eligible
to obtain care at non-VA, or “community” providers, at (the lower) VA copayment rates, if they
lived more than forty miles from their closest VA clinic, lived in a state without a VA hospital,
or needed to wait over thirty days for care. I focus on the forty-mile threshold and document,
consistent with prior work (Rose et al., 2021; Saruya et al., 2023), that veterans increase community
outpatient utilization and overall outpatient spending in response to the policy. Approximately
50% of the increase in community utilization is driven by substitution from VA care, and 50% is
an increase in overall utilization. This analysis highlights that (1) veterans are sensitive to prices,

3See OECD (2020) for Portugal and Denmark, Propper et al. (2008) for the UK, Ringard et al. (2016) for Norway,
and the website of the agency that manages such a program in Chile.
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as choices change in response to the increased subsidy for community care, (2) the policy achieved
its intended effect of increasing access to care among the directly eligible, but at a cost of increased
spending, and (3) substitution away from the VA could, in theory, lead to positive externalities on
other veterans via reduced wait times.

I next examine whether this policy-induced substitution away from the VA achieved the policy’s
second goal of alleviating capacity constraints on congested clinics and reducing wait times in
equilibrium. I test for this using clinic- and market-level exposure designs, with exposure de-
termined by the share of pre-period patients who would have been eligible for the Choice Act
subsidies. I document evidence of equilibrium effects on wait times: moving from the 10th to the
90th percentile of clinic exposure reduces wait times by between 5 and 13 days. These equilibrium
effects are critical for policy analysis, as all veterans benefit from the policy via reductions in wait
time, regardless of eligibility. Moreover, the equilibrium effects on wait times allow me to use the
policy to provide exogenous variation in both of the rationing mechanisms of interest: within a
market, changes in eligibility isolate changes in price, while conditional on any given consumer’s
eligibility status, the cross-product share of others who are eligible isolates variation in wait times.

I use these two sources of variation to describe the screening properties of the two rationing mech-
anisms. This is a key descriptive exercise as the welfare and allocative effects of the two regimes
depend on heterogeneity in willingness-to-pay and willingness-to-wait. I first document evidence
consistent with the equity motive to relinquish a price mechanism: lower income and sicker veter-
ans are substantially more responsive to the Choice Act-induced price change than higher income
veterans. This presents the tension for a planner designing a healthcare system with preferences for
redistributing to lower income, sicker veterans. But while the choice to relinquish a price mecha-
nism is intentional, its substitute — wait times — arises endogenously instead of through careful
design (Cutler, 2002a), with unknown screening properties. I document qualitatively similar pat-
terns of screening along the two rationing mechanisms: lower income and sicker veterans are also
more likely to be screened out at higher wait times. These similar qualitative patterns of screening
place a bound on the extent to which rationing via wait time can be a useful redistributive tool for
a planner, but are consistent with both a meaningful equity-efficiency trade-off and a scenario in
which status quo rationing regimes are adverse to both efficiency and distributional goals.

To quantify the allocative effects, efficiency costs, and any redistribution of surplus across the
two rationing mechanisms, I move beyond descriptive analyses to estimate the joint distribution
of willingness-to-wait and willingness-to-pay. In the second half of the paper, I develop and esti-
mate a model of clinic choice and queuing for primary care providers in order to obtain this joint
distribution. In the model, wait times arise endogenously in response to veteran preferences and
capacity constraints. Veterans make decisions over if and where to receive care, across VA and
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community options, trading off observed and unobserved clinic characteristics, wait times, and
prices. I assume VA clinics are capacity constrained with wait times generated via a First-Come-
First-Served queuing protocol, while community providers are uncapacity constrained. I use the
Choice Act policy variation to account for endogeneity in both wait times and prices with similar
empirical strategies and under similar assumptions as in the reduced-form policy analysis.

I estimate that veterans are responsive to both prices and wait times, with wait time elasticities
approximately three times as large as price elasticities. The average veteran has a cost of delay
— the amount a veteran would be willing to pay to move an appointment one day earlier — of
approximately $2.50 per day with substantial dispersion around this average ($0.93 at the 10th
percentile to $3.64 at the 90th percentile). This is a key parameter of interest that could not be
obtained from descriptive analyses alone: it governs both the magnitude of the efficiency costs of
waiting and any redistribution of surplus. I document that, despite the qualitatively similar patterns
of screening, higher income, healthier veterans have the highest costs of delay (in dollars). Put
differently, wait times implicitly discriminate in favor of lower socio-economic status veterans.

I use the estimated preferences to examine counterfactual allocations under alternative rationing
regimes. I focus on comparing the polar cases of the status quo rationed regime, where wait
times clear the market at very low prices, versus a counterfactual in which prices adjust flexibly
to achieve zero wait times, holding total VA capacity fixed. Under the counterfactual price-based
regime, veterans would be required to pay an average of $78 (approximately 20% of costs) per
primary care visit, versus less than $5 under the status quo. The binding price controls in the status
quo have a substantial impact on allocations: 16% of veterans who would have used VA care under
the rationed regime would not under the price regime, and these veterans are substantially lower
income, sicker, and older.

I use a revealed preference approach to quantify the efficiency and distributional effects of these
descriptive patterns. I define an efficient benchmark, subject to available capacity, as a regime
that maximizes money-metric surplus. Relative to this benchmark, rationing imposes substan-
tial efficiency costs equivalent to 24% of achievable surplus, due to both deadweight loss from
“money burnt” in costly screening via waiting (70%) and allocative distortions away from the high-
est willingness-to-pay consumers (30%). However, despite the wait-based regime’s large costs on
average, over 50% of veterans, who are lower income, sicker, and older than the overall population,
prefer status quo rationing by waiting.

My estimates allow me to qualitatively evaluate the trade-off between efficiency and redistribution
facing a planner. Though a planner’s redistributive preferences are inherently unknown, I show that
rationing is an extremely inefficient form of redistribution, destroying over $5 of surplus for every
$1 gain for the winners under the status quo. This is inefficient both relative to the tax schedule
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(Hendren, 2020), and in absolute terms: switching to a price mechanism can achieve close to a
Pareto improvement even with the blunt instrument of uniform transfers. This finding is driven
by the basic descriptive patterns of screening: because the two instruments screen on qualitatively
similar dimensions, the rationing regime imposes large deadweight losses from the costly screen
of wait times for any limited socially desirable redistribution of surplus.

Finally, I compare the gains from changes in the allocation mechanism to “managed rationing”
policies observed in practice, including the Choice Act. Not only does the Choice Act not ap-
proach the gains of a change in rationing mechanism (reducing wait times by increasing prices),
it reduces overall welfare, as consumer surplus gains do not outweigh the increase in costs. This
occurs because (1) veterans are not willing to pay the full cost of care, and (2) the policy is poorly
targeted, as the policy provides a uniform subsidy for veterans with heterogeneous externalities
depending on their substitution patterns (Diamond, 1973). By contrast, a small, feasible targeted
copayment increase at the VA, an improvement on both dimensions, dominates the Choice Act. It
raises consumer surplus — concentrated among the lower income veterans who are not targeted
by the copay increase — despite increasing prices, and generates revenue, instead of increasing
costs. Though this policy falls far short of the gains from eliminating price controls altogether, its
performance underscores the primary conclusion of this paper: relaxing price controls can lead to
large welfare gains, even when considering the distributional concerns that motivate them.

Related Literature This paper contributes an empirical application to two related theory lit-
eratures in market design and public finance. In market design, I draw on both (1) theoretical
work investigating the efficiency (Bulow and Klemperer, 2012; Che et al., 2013) and redistributive
(Weitzman, 1977; Dworczak et al., 2021a; Akbarpour et al., 2022) implications of price controls
and (2), a distinct literature on money-burning mechanisms generally (Hartline and Roughgarden,
2008; Condorelli, 2012; Yang, 2022; Dworczak, 2022) and equilibria in wait times, specifically
(Leshno, 2022). Second, I contribute to the classic public finance theory on the use of ordeals
to achieve targeting or redistributive goals (Nichols et al., 1971; Nichols and Zeckhauser, 1982;
Besley and Coate, 1992) and benchmark the performance of the ordeal against a price mechanism
with transfers (Zeckhauser, 2021).

My empirical analysis, which focuses on allocative effects of alternative rationing mechanisms,
combines and builds on both a large, recent literature examining the screening properties of ordeals
(Alatas et al., 2016; Dupas et al., 2016; Deshpande and Li, 2019; Finkelstein and Notowidigdo,
2019; Brot-Goldberg et al., 2023) and a more limited literature analyzing the allocative effects of
price controls (Glaeser and Luttmer, 2003; Davis and Kilian, 2011; Ryan and Sudarshan, 2022).
In my setting, ordeals arise endogenously to capacity constraints, and I quantify the allocative ef-
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fects, redistributive properties, and deadweight loss jointly via revealed preference, as in Waldinger
(2021) and Lieber and Lockwood (2019). Relative to these papers, I investigate a distinct but cen-
tral trade-off: the use of an efficient versus an inefficient rationing mechanism to target a transfer.

My preference specification also connects to a literature on ride-hail that estimates preferences
over efficient (prices) and inefficient (wait times) market clearing mechanisms jointly (Buchholz
et al., 2020; Castillo, 2022; Fréchette et al., 2019). Similar to these papers, the key welfare object
of interest is a willingness-to-pay to reduce wait times, which can only be obtained by observing
and quantifying delay and dollar trade-offs.

Most specifically, my focus on wait times at the VA and the Choice Act policy contribute to liter-
atures on demand responses to wait times for healthcare (Besley et al., 1999; Martin and Smith,
1999; Pizer and Prentice, 2011a,b; Yee et al., 2022b), quality of care at the VA (Chan et al., 2022a),
the Choice Act specifically (Rose et al., 2021; Saruya et al., 2023), and the impact of subsidies for
private care on public sector hospitals, more generally (Propper et al., 2008; Cooper et al., 2018).

2.2 Conceptual Framework

In this section, I present a stylized equilibrium framework to illustrate the welfare consequences of
alternative rationing mechanisms in healthcare. The framework also illustrates the core empirical
questions and challenges that will motivate the structure of my empirical analysis.

Demand There exists a unit mass of consumers, indexed by i, each obtaining utility from the
separable consumption of healthcare and all other goods (c). Utility from healthcare is given by
hi− γiw, where hi indicates an individual’s value for healthcare services today, and γi captures i’s
costs of waiting w days for a visit. γi incorporates the myriad reasons why a consumer may dislike
waiting for care: physical discomfort, anxiety, or a reduced ability to work, further reductions in
health capital, or a preference to be seen immediately. In addition to healthcare, consumers value
the consumption of all other goods with an increasing and concave function u(c). I normalize the
price of all other consumption to one.

Given price p and wait time w for care, consumer i solves:

max
x∈{0,1},c

(hi− γiw) · x+u(c) s.t. x · p+ c = yi (2.1)

where x ∈ {0,1} denotes whether to forgo or consume care, and yi is i’s income. Define xi (p,w)

as i’s (unit) demand for care and vi (xi (p,w) , p,w) as i’s indirect utility at any (p,w) combination.
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Total demand in the market is given by D(p,w) =
∫

xi (p,w) f (i)di. For each individual i, define
the dollar-denominated cost of waiting Ci(w) as the price at which i is indifferent between waiting
w and paying Ci(w) for x = 1.4

Supply and Equilibrium As in my empirical application, I assume care is provided by a strictly
capacity- (or budget-) constrained social planner, with supply κ < 1. Waiting times w are gen-
erated anonymously via a First-Come-First-Served queuing mechanism. Also consistent with my
empirical application, I assume that κ is sufficiently low such that D(0,0) > κ . In equilibrium
D(p,w) = κ , with a continuum of (p,w) combinations each determining an equilibrium. I focus
attention on the polar case used in practice, (0,w∗), and a flexible pricing benchmark, (p∗,0).

Social welfare Fairness and redistribution are often the motivation for price controls and the
subsequent use of an alternative mechanism to ration scarce capacity. To capture this, I define
social welfare at any (p,w) equilibrium:

SW (p,w) =
∫

gi vi (xi (p,w) , p,w) f (i)di+gG pκ (2.2)

where gi denote welfare weights, or the value that a social planner assigns to the welfare of indi-
vidual i. The term gG modulates the value of any revenue collected. I take capacity κ as given
(consistent with the assumption of strict capacity constraints) and focus on the allocation problem
facing a social planner.

In the spirit of Saez and Stantcheva (2016), gi could theoretically encompass any societal concern
for fairness that motivates relinquishing a price mechanism. In my empirical application, I will
focus in particular on the distributional implications of the choice of rationing mechanism along
income and health status.

The change in welfare between the (0,w∗) and the (p∗,0) regimes can be decomposed as follows:

SW (0,w∗)−SW (p∗,0) =
∫

gi

vi (xi (0,w∗) ,0,w∗)− vi (xi (p∗,0) ,0,w∗)︸ ︷︷ ︸
change in allocation

+

vi (xi (p∗,0) ,0,w∗)− vi (xi (p∗,0) , p∗,0)︸ ︷︷ ︸
change in payoff | allocation

 f (i)di−gG p∗κ︸ ︷︷ ︸
revenue

(2.3)

4Specifically, Ci(w) is implicitly defined by vi (xi (Ci(w),0) ,Ci(w),0) = vi (xi (0,w) ,0,w).
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The first term highlights that, because the two allocation mechanisms yield different demand
curves, changing the mechanism will shift the set of individuals who obtain versus forego care.
The second arises because, even conditional on an allocation, the different demand curves will
lead to differences in consumer surplus. The final term illustrates that a price mechanism gen-
erates transfers between consumers and the government (who collects revenue), whereas waiting
is pure social waste. With a complete set of transfers available, allocating care to the highest
willingness-to-pay individuals maximizes social surplus, regardless of gi (Kaldor, 1939; Hicks,
1939). This allocation, which is achieved by the price mechanism, is the efficient benchmark.

Figure 2.1 illustrates both the efficiency and distributional consequences of the two regimes by
plotting (example) demand curves and cost curves induced by the different mechanisms. The line
AC represents the demand (WTP) curve. By contrast, the line AB plots the demand curve induced
by a waiting time mechanism in money-metric (WTP) space: it plots the willingness-to-pay among
all consumers with willingness-to-wait above the market-clearing waiting time, w∗. The line AB
must lie (weakly) below the line AC, and the area between these curves represents the allocative
efficiency loss from rationing by waiting. Second, while the price mechanism merely involves
splitting surplus between consumers (the area above p∗) and the government (the area below p∗),
the waiting time mechanism induces a cost C(w∗) for those who wait. The area underneath this
curve is pure deadweight loss.

Figure 2.1 also illustrates the distributional consequences of the two instruments. Example con-
sumer j obtains care, and positive surplus, under the waiting time mechanism where he would not
have under the price mechanism. Example consumer i obtains care under both regimes, but obtains
higher consumer surplus under the waiting regime versus the price regime. Others lose: the entire
region between the curve AC and the curve AB, represent consumers who are displaced from care
under the waiting time regime.

Although the highest money-metric surplus achievable occurs with a price mechanism, the alterna-
tive rationing regime redistributes consumption and surplus across consumers, potentially toward
high gi types. Thus, a planner (potentially) faces a trade-off between maximizing overall (money-
metric) efficiency and redistributing surplus to high gi types (a notion of equity). The existence and
slope of this trade-off depend on the magnitude of efficiency losses and the extent of redistribution
across types. This in turn depends on the joint distribution of willingness-to-pay, willingness-to-
wait, and characteristics that may influence social welfare weights gi, such as income or health
status. This joint distribution will be my key empirical object of interest.

Estimating this joint distribution is typically hindered by three challenges. First, almost by defi-
nition, consumers are not paying on the margin for goods when they are rationed without prices.
Second, money-burning activities — in this case, waiting — are infrequently recorded in standard
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datasets, making it difficult to quantify the surplus dissipated to arrive at a given allocation. Finally,
as wait times are determined in equilibrium, even if observed, they are subject to the same simul-
taneity concerns that present the core challenges to demand estimation in standard markets. In the
next section, I discuss the VA setting and data, with particular emphasis on the unique features of
the setting that allow me to overcome these three challenges.

2.3 Setting and Data

2.3.1 The Veterans Health Administration

The Veterans Health Administration (VHA, or VA) of the Department of Veterans Affairs is the
largest integrated healthcare system in the United States. The system serves over 9 million veterans
with a budget of over $80 billion (Department of Veterans Affairs, 2023). The VA has historically
provided the vast majority of inpatient and outpatient care at 170 VA hospitals and over 1,000
VA community-based outpatient clinics across the United States. However, in recent years, the
VA has also financed an increasing amount of care for VA enrollees at non-VA, or “community,”
providers. I focus specifically on outpatient care, with a particular emphasis on primary care, as
these are settings where wait times and access to care are of particular concern at the VA (Yee et
al., 2022a,c; 113th Congress, 2014; 115th Congress, 2018) and other settings (Mark, 2023).

Eligible veterans5 pay no premiums for access to VA care, but may be obligated to pay copayments.
Three quarters of veterans pay no copayments at all for outpatient care. Approximately 25% of
veterans pay $15 and $50 for primary and specialty outpatient care, respectively. Whether or
not a veteran pays copayments depends on their assigned priority group, which depends on a
veteran’s service-connected disabilities, service history, and income. Many veterans use the VA in
combination with other sources of coverage. Approximately half of veterans are dually enrolled in
Medicare.

Due to the combination of budget and capacity constraints and regulated copayments, the market
for outpatient care at the VA clears on wait times to access care (Yee et al., 2022a). Wait times,
and their impact on veterans’ access to care, has been the subject of concern and policy activity at
the VA for over two decades (U. S. Government Accountability Office, 2001, 2012, 2016, 2019;
113th Congress, 2014; 115th Congress, 2018).

5Veterans are eligible to enroll in the VHA if they served in the active military, naval, or air service and were not
dishonorably discharged.
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The Veterans Choice and Accountability Act of 2014 I focus on the policy context of the Vet-
erans Access, Choice, and Accountability Act of 2014 (the “Choice Act”). Motivated by concerns
that veterans were unable to obtain care in a timely manner, the Choice Act dramatically expanded
subsidized access to outpatient care at non-VA, or “community,” providers. Eligible veterans could
obtain care at community providers paying VA copayment rates (zero, or $15-$50, depending on
priority group). These providers were then paid Medicare rates by the VA. Veterans were eligible
if they lived over 40 miles from their nearest clinic, lived in a state without a VA hospital (Alaska,
Hawaii, or New Hampshire), or needed to wait over thirty days to obtain an outpatient appointment
at a nearby clinic.

A key goal of the Choice Act was to alleviate capacity constraints at the VA via two channels. The
first channel was the direct expansion in access for eligible veterans, who experienced a reduction
in the out-of-pocket price for community providers. The second channel was the equilibrium effect
of reduced wait times for everybody as eligible veterans substituted away from the VA.

In theory, the Choice Act policy therefore provides both variation in prices and wait times, ex-
actly the type of variation necessary to estimate the joint distribution of willingness-to-wait and
willingness-to-pay, the key objects in the framework in Section 2.2. Beyond its instrumental use,
the Choice Act provides a rich laboratory to analyze second-best policy. At the VA, this policy
prompted a a major shift in the delivery of care: in 2018, eligibility was expanded under the MIS-
SION Act, and today, approximately 20% of the VA budget is dedicated to financing non-VA care
(Department of Veterans Affairs, 2023). Beyond the VA, the broad class of policies offering (tar-
geted) subsidies for private utilization is a common second-best policy tool to alleviate congestion
among public sector healthcare providers.

2.3.2 Data

I assemble a comprehensive dataset describing VA enrollees and their VA and non-VA utilization.
Throughout the paper, I will refer to utilization at non-VA providers as community utilization
(the VA terminology). My primary analysis sample includes all enrollees from fiscal years 2011-
2017 from the ADUSH (Assistant Deputy Under Secretary for Health) file. This file includes
demographics such as age, priority group, income measured via VA means tests, date of death,
and summary measures of utilization, as well as veterans’ exact residential address and whether it
grants them distance-eligibility under Choice for all VA-enrolled veterans.

I measure VA utilization, as well as additional enrollee-level characteristics, using all data recorded
in electronic health records (EHR) at clinical encounters at all VA hospitals and clinics.6 A crucial

6This data is recorded in the VA’s Corporate Data Warehouse (CDW).
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advantage of this data is that the EHR integrates with the appointment scheduling system, allowing
me to measure wait times. Specifically, I measure wait times as the number of days between the
date of an appointment request and the appointment itself (Yee et al., 2022a; Chartock, 2023).
These data are unavailable in commonly used claims datasets, which only record the date of service
and not the date of request.

Despite the existence of records documenting the number of days between an appointment request
and the appointment itself, constructing the appropriate measure of wait times presents several
challenges. First, wait times are only recorded if an individual makes an appointment. I construct
the menu of wait times facing each patient based on average clinic wait times facing all patients
who obtained an appointment at that clinic within a given time period. Second, this aggregation
presents its own challenge, as the distribution of observed wait times may be selected. I address
this with a supply-side queuing model, discussed in more detail in Section 2.5.4. A final threat
to measurement occurs if appointments are scheduled far in advance of when the appointment
is actually desired. In my sample period, scheduling appointments over 90 days in advance was
prohibited, reducing dramatically the extent of follow-up appointments that erroneously appear as
long wait times. I also follow previous work (Yee et al., 2022a; Pizer and Prentice, 2011b) and
assess the robustness of my results to wait times constructed using only new patients.

I supplement the data on VA utilization with multiple sources describing community utilization.
First, I use all authorizations (internal documentation) and claims (payments to providers) for care
financed by the VA at community providers. Second, for the 36% of veterans who are dually
enrolled in Traditional Medicare (TM), I link the universe of Medicare claims to VA utilization.
For these veterans, I am able to characterize the complete extent of healthcare consumption across
VA and community providers.

While less crucial than the datasets above, I also use estimates of average VA costs produced by the
Health Economics Resource Center (HERC).7 Together with the claims data, these cost estimates
allow me to characterize spending across VA and community care.

Summary statistics (enrollees) Table 2.1 presents summary statistics of enrollee characteristics
and utilization for the entire enrollee population (column (1)) the population that is dually eligible
for Traditional Medicare (TM), where I observe the universe of community utilization (column
(2)), and all veterans, split by whether veterans are distance-eligible for Choice (column (3))
versus ineligible (column (4)). I compare the TM sample to the overall sample because the TMs
offer a unique advantage in data completeness that will make them a useful subset in a number of

7These data calculate encounter-level VA utilization by using Medicare relative value weights to distribute aggre-
gate clinic-by-category VA costs.
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analyses. I include the split by distance eligibility because comparing the utilization patterns of
these two groups will play a key role in my empirical strategy, described in more detail in Section
2.4.

Table 2.1 documents that the VA population is atypical in some dimensions and more representative
in others. The VA population skews male (over 90%) and old. The average enrollee income, which
is measured using means tests conducted throughout a veteran’s enrollment at the VA, is lower than
the U.S. median over this time period (approximately $56,000 as of 2015 for the US a whole versus
$30,204 for VA enrollees), with substantial dispersion in income in the population. The variation
in socioeconomic status within the VA population makes it a relevant setting to study efficiency
and distributional trade-offs in healthcare design. The majority of veterans pay no copayments for
outpatient care.

Many veterans have other sources of coverage. This presents both a challenge and an opportunity.
The challenge is that, for some veterans with supplemental coverage, I do not observe their universe
of healthcare consumption. The opportunity is that for a substantial subsample — those dually
enrolled in Traditional Medicare (column (2)) — I can observe veterans making choices both
within the VA and across VA and community care as prices and wait times vary.

Spending per veteran at the VA is $5,148, with the average veteran obtaining 7.5 outpatient visits
and one primary care visit annually at the VA. These averages mask substantial heterogeneity:
61.5% of enrolled veterans in a given year do not engage with the VA at all. Distance-eligible
veterans engage with the VA less than their non-distance-eligible counterparts, but still a substantial
amount, as veterans are willing to travel long distances for care.

In the TM sample (column (2)), VA utilization is slightly higher than the overall population, while
total utilization, incorporating both VA and community care, is substantially higher. This in part
reflects differences in data completeness: outside of the TM sample, I only observe VA-financed
community utilization. High levels of utilization, particularly in the complete TM sample, reflect
the fact that the VA population has high rates of disability and therefore high medical needs. Many
veterans use both VA and non-VA care: 24% of all TM dual-eligibles saw both a VA and a non-VA
primary care provider in the same year, and 50% saw both a VA and non-VA primary care provider
at one point in the sample period.

Summary statistics (clinics) Figure 2.2 presents histograms to summarize key clinic-level vari-
ables for the 1,128 clinics in my sample: wait times and Choice exposure, for all specialties and
for primary care. I focus on primary care specifically because these wait time measures focus on
a more uniform “product” and have been used and validated in prior work at the VA (Yee et al.,
2022a). Primary care care will thus also be the focus of this paper’s equilibrium analysis.
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Figures 2.2a and 2.2b present histograms of clinic-level wait times, calculated as the average wait
time among requested appointments in a given clinic and quarter, for all specialties and for primary
care.8 Most wait times are between two to six weeks, with a right tail.

Figures 2.2c and 2.2d plot a measure of the distribution of each clinic’s “exposure” to the Choice
Act policy, or the extent to which the policy could impact equilibrium congestion, for all specialties
and for primary care. Specifically, Figures 2.2c and 2.2d plot the distribution of the share of visits
that satisfied the Choice Act eligibility requirements at each clinic for each specialty preceding
the Act’s enactment. Figures 2.2c and 2.2d documents dispersion in exposure, with some clinics
substantially “exposed” to the Choice policy.9

2.4 Choice Act Policy Analysis: Shifts in p and w

2.4.1 Empirical Strategies: Estimating Direct (p) and Equilibrium (w) Ef-
fects

My empirical strategies exploit the Choice Act eligibility requirements in series of difference-in-
difference designs.

Direct effects To analyze the direct effect of the policy, I compare eligible veterans, who expe-
rienced a reduction in price for community providers to ineligible veterans, around the policy’s
introduction. My main empirical strategy leverages the distance eligibility requirement in the fol-
lowing enrollee-level event study specification:

yit = ∑
τ 6=2014

βt ·1{t = τ} ·40Milesi +40Milesi + εit (2.4)

where 40Milesi is an indicator for whether enrollee i lives more than 40 miles from her closest
clinic and βt are the event study coefficients of interest on years (t) relative to the introduction of

8I discuss this aggregation, the potential for selection in this measure if appointments are rejected at high waiting
times, and how I address this selection issue to avoid bias in my quantitive estimates of preferences over waiting times
in Section 2.5.4. For the purposes of simple, descriptive analyses of waiting times, in this section I present simple
averages, noting this possibility for selection.

9It is worth noting that the measurement of waiting times in Figures 2.2a and 2.2b and Figures 2.2c and 2.2d do not
correspond exactly. This is because Choice Act wait-time eligibility is based upon a patient’s “desired date,” which
I do not use to characterize wait times except for measuring Choice eligibility, as it has been demonstrated to be
subject to manipulation by clinics (U. S. Government Accountability Office, 2012). This choice follows prior research
analyzing wait times at the VA (Yee et al., 2022b,a; Pizer and Prentice, 2011a).
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Choice. The policy was enacted starting in Fiscal Year (FY) 2015, and I normalize the FY 2014
coefficient to be equal to zero. Outcomes yit include a range of utilization and clinic choice-related
outcomes. My main analysis focuses on veterans within a 10 mile window around the 40 mile
threshold. In Appendix Table B.2, I also present results that include interaction terms for closest
clinic (for which eligibility is determined) and year controls, θ j(i)t , to isolate the change in direct
eligibility, or change in p, from market-level effects on wait times (discussed in more detail below).
I cluster standard errors at the enrollee-level.

In this section, I focus on the reduced form effect of the policy, rather than instrumenting for
price directly because veterans may face heterogeneous prices in the absence of the Choice policy
depending on their other sources of coverage. When I want to interpret the Choice variation more
precisely as a change in price of a specific magnitude to quantify enrollee price-responsiveness, I
will restrict the sample to directly address this heterogeneity.

I also summarize results in a pooled difference-in-difference specification:

yit = β ·1{t > 2014} ·40Milesi +40Milesi + εit (2.5)

I focus on the distance eligibility condition, as this is a permanent policy change that applies to all
types of outpatient care. The wait-time eligibility condition is time varying and market-specific,
based on equilibrium wait times and the category of care sought. In Appendix 2.10.1, I discuss
how I use the wait time eligibility conditions in a similar difference-in-difference analysis using
variation in eligibility across markets and over time.

Equilibrium effects To examine the potential for equilibrium effects of the policy on wait times,
I leverage variation in the distribution of eligible veterans across clinics and markets. Specifically
I use the variation in pre-Choice exposure, illustrated in Figures 2.2c and 2.2d, in a market- and
clinic-level exposure event study design:

w jt = ∑
τ 6=2014

ηt ·1{t = τ} ·ShareEligPre j +φ j +χt + ε jt (2.6)

where w jt denotes the wait time for a given market (HRR by specialty) or clinic j in year t,
ShareEligPre j is the pre-period share of visits that would have been eligible under Choice, and
φ j and χt are market or clinic fixed effects (depending on the specification) and time fixed effects,
respectively. The coefficients ηt capture the relative time paths of wait times for more exposed
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versus less exposed clinics. I cluster standard errors at the market or clinic level, depending on the
specification.

The intuition for Equation 2.6 is that clinics with more Choice-eligible potential consumers may
face a larger decrease in demand than clinics with fewer choice-eligible potential consumers, and
thus may have shorter wait times in equilibrium as a result of the policy.10 Whether or not this is
indeed the case depends on the substitution patterns of veterans in response to the policy, which I
will investigate in the analysis of the directly eligible. I focus only on equilibrium effects on VA
clinics. The VA population is small relative to the market as a whole, making equilibrium effects
outside the VA unlikely.

As with the direct effects, I also summarize the impact of the policy’s equilibrium effects on wait
times in a difference-in-difference design

w jt = η ·1{t > 2014} ·ShareEligPre j +φ j +χt + ε jt (2.7)

pooling together all pre- and post-policy years.

2.4.2 Results: Direct Effects

Effects on choices, utilization, and spending Figure 2.3 plots event study coefficients from
Equation 2.4 and Table 2.2 reports coefficient estimates from the pooled difference-in-difference
specification in Equation 2.5. For clarity, I will continue to refer to all utilization at non-VA
providers as “community” utilization (to use the VA terminology) and all utilization at VA providers
as VA utilization.

Figure 2.3a plots the increase in total visits at community providers per year for eligible veterans,
relative to ineligible veterans in the same market. The policy did indeed influence choices: eligible
veterans, who experienced a decrease in out of pocket payments at community providers, obtain
more care at community providers.

One complication with the interpretation of Figure 2.3a is that absent data on non-VA financed care,
the patterns in Figure 2.3a could be consistent with either a behavioral response to prices or simply
a change in financing for the same choices. Figure 2.3b rules out a simple change in financing:
I plot total community utilization for the TM sample, where I observe the universe of utilization.

10Using cross-product or cross-market variation in treatment exposure is a common strategy to test for equilibrium
effects (Crépon et al., 2013; Egger et al., 2022).
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Figure 2.3a and Figure 2.3b show similar patterns. These two results demonstrate that the Choice-
induced reduction in prices for community providers increased consumption of community care.
After a ramp-up period, by 2017, this increase in visits represents a 3-6% increase as a share of
total pre-period community utilization.

Figure 2.3c demonstrates that approximately 50% of the increase in community utilization is driven
by substitution away from the VA. The remaining 50% represents an increase in overall utilization
(Figure 2.3d) corresponding to an increase in total VA spending of approximately $28 per eligible
enrollee per year (Figure 2.3e).

Together these results demonstrate three facts. First, veterans are responsive to prices, increasing
their utilization of community providers when faced with a decrease in their price. Second, this
translates to an overall increases in utilization, achieving one of the policy’s goals of increasing
access to care for the directly eligible, but at an increased cost to the VA. And third, some veterans
substituted away from the VA, potentially exerting positive externalities on other veterans at the
congested VA facilities. I test this directly in Section 2.4.3.

Additional results Table 2.2 presents coefficient estimates of Equation 2.5, for both the whole
sample and the TM sample.11 Table 2.2 shows similar patterns regardless of the method of measur-
ing utilization: visits, relative value units (RVUs), or spending. Table 2.2 also presents additional
results on the characteristics of chosen clinics. Veterans substitute toward less congested and closer
clinics, decreasing their total wait and and travel times for care.

Appendix Table B.1 investigates the impacts of the policy — both directly and via equilibrium
reductions in congestion — on veteran health. I find no detectable impact on mortality or inpatient
admissions. This motivates my revealed preference approach, as the welfare effects of changes to
outpatient utilization is better reflected in measures of consumer surplus than in coarse measure-
ments of health like mortality. Table B.2 demonstrates the robustness of the results to including
closest clinic by time fixed effects, which ensures that that I am comparing the same enrollees on
either side of the 40-mile threshold. Results are similar.

Appendix 2.10.1 also includes results exploiting the wait-time eligibility conditions. These results
document similar increases in private utilization at the clinic level, but no decrease in overall VA
utilization, consistent with the assumption that wait times arise due to capacity constraints at the
VA.

11The full set of event study figures, including Figure 2.3 replicated for the TM sample, is presented in Appendix
??.
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Heterogeneity To examine heterogeneous responses to p and, later, to w, I zoom in on the market
for primary care. This yields the benefits of (1) making comparisons conditioning on a uniform
set of products and prices, and (2) focusing on a domain where wait times are particularly well-
measured. Appendix Figure B.3 plots the event study figures of Figure 2.3, focusing on primary
care specifically, and documents similar patterns as in Figure 2.3.12

To investigate heterogeneity in responsiveness to p, I estimate Equation 2.4, split by income (above
versus below median recorded income) and health status (above versus below median prior utiliza-
tion). I focus on community primary care visits as the outcome of interest; the goal is to test
whether utilization of community care responds to the change in price differently across demo-
graphic sub-groups.13 These estimates are presented in Figure 2.4.

Figure 2.4 demonstrates that poorer, sicker veterans increase community utilization more in re-
sponse to the change in price induced by the policy. This is the the primary equity or redistributive
concern when allocating healthcare with a price mechanism: lower income consumers are often the
most responsive to prices. This pattern is common across product markets, but presents a dilemma
to a social planner with redistributive or fairness concerns in healthcare markets, as it highlights
that raising prices will screen out lower socio-economic status consumers (Weitzman, 1977).

2.4.3 Results: Equilibrium Effects on w

Next, I turn to analyzing the effects of the policy on equilibrium wait times. Figure 2.3c demon-
strates that a substantial share of eligible veterans substitute away from VA care when eligible for
Choice. This presents the possibility that the policy could benefit all veterans, including those who
are ineligible or inframarginal, via reductions in equilibrium clinic wait times.

Figure 2.5 plots coefficient estimates of Equation 2.6 to test this idea directly. I analyze the effect of
Choice on wait times across all specialties and geographies (HRRs) (Figure 2.5a), and for primary
care specifically at the HRR-level (Figure 2.5b) and the clinic level (Figure 2.5c). Coefficients in
Figure 2.5 are scaled to represent a move from the 10th to the 90th percentile of the clinic exposure
distribution. Figure 2.5 shows that the policy did indeed achieve its second goal of reducing con-
gestion at the VA: wait times decreased by 13 days across all specialties and by 5 days in primary
care, at the most exposed (90th percentile), relative to the least exposed (10th percentile), markets

12Substitution out of VA care is lower than overall, which is consistent with the smaller effects on wait times
documented in Figure 2.5.

13In service of this aim, I also restrict the sample to be a population of veterans facing the same Choice-induced
price change to interpret the effects as heterogeneity in price responsiveness, not heterogeneity in price changes.
Specifically, I focus on the sample of Traditional Medicare veterans without a Medigap plan. I observe veterans’
alternative insurance coverage because it is statutorily required for veterans to report this information to the VA.
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and clinics. This is a 15-30% reduction in wait times based on the pre-period average of 34 days
(primary care) and 43 days (overall). Appendix Figure B.4 also shows reductions in new patient
wait times, a commonly used measure in prior work (Yee et al., 2022a; Pizer and Prentice, 2011b).

Heterogeneity While the motivation for price controls in healthcare is clear from policy dis-
cussion and substantiated by Figure 2.4, the substitute allocation mechanism is often determined
endogenously rather than explicitly designed (Cutler, 2002a). It is unclear whether veterans’ costs
of waiting, γi, provide screening properties that are relatively advantageous to a social planner.

I investigate this by examining differential demand responses to the changes in wait time induced
by the Choice Act. This is slightly more complicated than the analysis of heterogeneous effects on
price because markets will experience different changes in wait times depending on their demo-
graphic composition. To address this, I estimate the following clinic-level two-stage-least-squares
estimator:

w jt = θ · zjt +φ
w
j +χ

w
t + ε jt (2.8)

ln(sd
jt) = β ·w jt +φ

s
j +χ

s
t +ν jt (2.9)

where zjt are instruments for Choice exposure,
(

φ w
j ,φ

s
j

)
and

(
χw

j ,χ
s
j

)
are market or clinic fixed

effects and time fixed effects, and ln(sd
jt) is the log market share of clinic j among demographic

group d of non-Choice eligible veterans. I again zoom in on only the market for primary care.

The first stage equation, Equation 2.8, is a more general version of the difference-in-difference
estimator discussed in Section 2.4.1 with a first stage illustrated in Figure 2.5. However, instead of
parameterizing exposure as a continuous interaction, zjt = 1{t > 2014}·ShareEligPre j, which was
amenable to event-study plots in Figure 2.5, I parameterize zjt more flexibly as deciles of Choice
eligibility exposure interacted with a post-2014 indicator. These instruments increase power for
the more demanding task of examining heterogeneous demand responses to the equilibrium effects
of the policy on wait times, while still isolating only the policy variation summarized in Figure 2.5.

Table 2.3 presents results. Perhaps surprisingly, Table 2.3 documents similar patterns of screening
along income and health status as the price mechanism. Lower income veterans are more likely
to reduce their utilization at a given clinic j due to high wait times at j than their higher income
counterparts. Table 2.3 documents similar (adverse screening) patterns along measures of health
capital, as proxied by lagged utilization.

Appendix Figure B.5 documents that these same screening patterns are replicated when using
all panel variation in wait times in the sample, further supporting the conclusion of qualitatively
similar patterns of screening across the two instruments.
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2.4.4 Discussion

The reduced form analysis of the Choice Act yields insights both for the analysis of the two ra-
tioning mechanisms of interest and for understanding the performance of the Choice Act policy.
First, veteran choices are responsive to both wait times and prices with qualitatively similar screen-
ing patterns. Second, the Choice Act benefited veterans both directly, through reduced prices, and
indirectly, through reduced congestion, at an increased cost to the VA.

However, the analysis also leaves key questions unanswered. Making any inferences about alloca-
tions under alternative regimes or the efficiency or distributional consequences of waiting versus
prices is complicated by the fact that I am not measuring and comparing willingness-to-pay and
willingness-to-wait directly. Moreover, the welfare effects of the the Choice Act, and its perfor-
mance relative to alternative policies, is ambiguous as it depends on veterans’ willingness-to-pay
to reduce wait times.

To this aim, the combined results in Section 2.4.2 and Figure 2.5 also demonstrate why the Choice
Act provides an ideal policy setting to answer precisely these fundamental welfare questions about
the choice of rationing mechanisms in healthcare. Obtaining the joint distribution of willingness-
to-wait and willingness-to-pay requires a setting with exogenous variation in both prices and wait
times. As the results above demonstrate, the Choice Act provides precisely this context. Within a
given market, differences in eligibility isolate variation in prices. Across markets, conditional on
eligibility, the share of others who are eligible shifts wait times.

In the next section, I will develop a model that uses the Choice Act variation to quantify the
allocative, efficiency, and distributional effects of the two mechanisms, investigate the (ambiguous)
welfare effects of the Choice Act, and compare it to alternative policy counterfactuals.

2.5 Clinic Choice Model

In this section, I develop a model of consumer demand for primary care in the presence of capacity
constraints. Consumers make decisions over if and where to receive care, across VA and commu-
nity options, as a function of observable characteristics, including travel time, wait time, and out
of pocket prices, and unobserved shocks. VA clinics are subject to capacity constraints, and wait
times arise endogenously to excess demand. I describe how I use the Choice Act policy variation
to estimate heterogeneous preferences over characteristics of clinics, wait times, and out of pocket
prices.

This model captures the consumer choice problem over a menu of options that vary along both
prices and wait times, allowing me to simultaneously make use of all dimensions of the Choice
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Act variation. The key outputs will be the joint distribution of willingness-to-wait and willingness-
to-pay, which as discussed in the context of the stylized model in Section 2.2, is the key structural
object for welfare and policy counterfactuals.

2.5.1 Demand

The utility for consumer i in market m choosing primary care clinic j in quarter t is given by the
following random utility specification:

ui jmt = β
′
itX j︸ ︷︷ ︸

prefs over clinics

+ θidi j︸︷︷︸
travel costs

+ γiw jt︸︷︷︸
waiting costs

+ αi p jmt︸ ︷︷ ︸
price sensitivity

+ ξ jmt︸︷︷︸
demand shock

+ εi jmt︸︷︷︸
i.i.d. pref shock

(2.10)

with the value of the outside option to obtain no primary care normalized to zero. The key aspect
of this demand specification is that consumers have preferences over both the efficient (p) and
inefficient (w) market-clearing mechanisms.14

I define the geographic extent of markets as Hospital Referral Regions (HRRs) and define a market
m as a subset of an HRR in which all veterans face the same vector of prices across clinics over
time. I use a relatively large geographic healthcare market — there are 306 HRRs in the US —
to capture the sparsity of VA clinics and the fact that veterans travel long distances for care.15

Specifically, a market m is defined by a geography g (HRR) and an out-of-pocket payment class
o. Because some veterans pay copayments and some do not, and distance-eligible veterans faced
changes in the prices of community care under the Choice Act, while non-distance eligibles in the
same HRR did not, there is within-HRR variation in prices that I segment into distinct markets.16

As in the stylized set-up in Section 2.2, consumers have preferences over waiting times parameter-
ized by γi. The term αi p jmt represents a local approximation to the more general utility function in
Section 2.2.

14This model abstracts away from consumer search, a phenomenon that may be important if consumers need to
learn about the vector of wait times for clinics in their choice set. A few institutional features ameliorate this concern.
First, when veterans call to schedule an appointment, they work with a scheduler, who can give them information
about the options available to them. Second, a website is available for veterans to observe average wait times at each
clinic: see https://www.accesstocare.va.gov/PWT/SearchWaitTimes.

15I define geographies as HRRs, as opposed to the more fine market definition of Hospital Service Area, HSA,
of which there are 3,436, but only 1,128 VA clinics in my sample. See https://data.dartmouthatlas.org/
downloads/methods/geogappdx.pdf for more information about the construction of these commonly used health-
care market definitions.

16This is why prices are indexed by jmt and wait times just by jt. There is cross-market variation in prices for
the same clinic due to different out-of-pocket classes, o. There is no cross-market variation in wait times because all
consumers face the same vector of w jt within a geography, and each product is unique to a geography.
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I parameterize heterogeneous preferences over care characteristics with β ′itX j and θidi j, which cap-
tures distaste for traveling to obtain care. I also allow preferences to depend on two unobservables:
ξ jmt , an unobserved demand shock common to all i for a given clinic-market-quarter, and εi jmt , a
Type 1 Extreme Value idiosyncratic preference shock.

Consumers, or veteran enrollees, choose among all VA clinics and community providers in their
HRRs, as well as the outside option of no care. VA clinics are well-defined, but the universe of po-
tential community primary care providers is vast. I instead aggregate all community providers into
3,436 Hospital Service Area (HSA)-level — a much finer geographic market which typically con-
tains only a single hospital — community providers to tractably capture consumer choice among
geographically differentiated VA and community providers.

2.5.2 Supply

I treat VA providers and community providers asymmetrically.

VA providers For all VA clinics, I assume strict capacity constraints at observed levels of uti-
lization κ jt , measured as the number of primary care visits per quarter. The assumption of strict
capacity constraints has only a very limited impact on my estimation strategy or counterfactual
results: it simply disciplines the set of counterfactuals to consider only changes that hold the total
number of VA visits constant.

I assume that wait times are generated via a First-Come-First-Served (FCFS) protocol, or that all
potential consumers are treated identically in the queueing mechanism.17 This is a much more
substantive assumption, as it limits the extent to which wait times may be tailored to different
consumer types.

I provide two pieces of evidence to substantiate this assumption. First, I have intentionally chosen
a setting — primary care — where scope for prioritization is less likely,18 and conversations with
VA medical professionals support the assumption as an approximation to reality.19 Second, the
conclusions of these conversations are supported in the data. I show in Appendix Figure B.5 that
the covariance between the clinic-level wait times of chosen clinics and patient characteristics

17Specifically, within each quarter, I assume consumers randomly arrive to the market, observe the menu of waiting
times at each clinic, and enter their most preferred queue.

18Other healthcare settings offer rich environments to study prioritization in queues, e.g. the system of triage in
emergency departments, where triage scores are explicitly recorded. Examining the efficiency of these prioritization
rules in this much richer setting is an exciting area of future work to shed light on these questions of prioritization.

19Patients are encouraged to seek other care (at other locations) if they face particularly urgent needs, rather than
jump the queue.
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is robust to flexibly “risk-adjusting” clinic wait times based on the composition of patients that
generate the underlying patient-level wait times.20 This indicates that patterns of heterogeneity are
dominated by demand-side choices — what I will attribute these patterns to — rather than supply-
side differentiation, which is absorbed in the risk-adjustment step. Further, both of these patterns
are consistent with screening patterns based on quasi-experimental shifts in wait times, presented
in Table 2.3.

Community providers I assume community providers are un-capacity-constrained and provide
care at constant marginal cost equal to Medicare Fee-For-Service rates. Community providers
therefore can (1) provide care at zero wait times, and (2) absorb any changes in patient demand for
community care as a result of VA policy changes. The first assumption is motivated primarily by
data constraints: data on wait times at the VA are excellent, but extremely limited elsewhere. The
second assumption is reasonable as the VA population is small relative to the overall population in
an HRR and VA policy will not have substantive equilibrium effects on the whole market.

2.5.3 Equilibrium

Prices are regulated and the vector of VA wait times adjusts so that the following equilibrium
condition holds:

κ jt = ∑
i

exp
(
β ′itX j +θidi j + γiw jt +αi p jmt +ξ jmt

)
1+Σ j′∈Jm exp

(
β ′itX j +θidi j + γiw jt +αi p jmt +ξ jmt

) (2.11)

for j ∈J VA
m , or the set of VA clinics in each market.

2.5.4 Estimation

Endogeneity and identification I face two sources of endogeneity when estimating the prefer-
ences in Equation 2.10. First, E

[
w jtξ jmt

]
6= 0. This form of endogeneity follows directly from

Equation 2.11, as wait times are determined in equilibrium in response to demand shocks, ξ jmt .
This is the classic simultaneity problem faced in all markets. It impacts w jt instead of p jmt because
in this setting, wait times flexibly adjust in equilibrium, while prices are regulated.

20I note that this is an overstatement of supply-side prioritization, because in the presence of stochastic fluctuations
in wait times, the “risk-adjustment” step will purge variation from both any supply-side prioritization and selection
due to demand-side preferences.
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Despite the fact that prices are regulated, I still face the concern that E
[
p jmtξ jmt

]
6= 0 for the vari-

ation in prices that exists in my setting. This is because, absent the Choice Act, all of the variation
in prices is derived from cross-sectional variation across markets — veterans who pay copayments
versus those who do not, either due to priority group or Medigap policies21— and across products
— VA versus community providers. If there are unobservable differences in preferences across
markets or products, this will lead to bias in αi.

I use the Choice Act policy variation to address both sources of endogeneity. First, the direct effects
of the policy, presented in Section 2.4.2, provides exogenous variation in p jmt for community
providers. Specifically, letting superscripts VA and C denote VA and community care, respectively,
I parameterize preferences over clinic characteristics Xj as

β
′
itX j = β

VA
i +β

C
i +ψ

VA
o +ψ

C
o +χ

VA
t +χ

C
t +φ j (2.12)

where
(
βVA

i ,βC
i
)

capture heterogeneous preferences over VA and community care,
(
ψVA

o ,ψC
o
)

capture differences in preferences across out-of-pocket payment classes for VA and community
care (in theory nested within i but included separately for clarity),

(
χVA

t ,χC
t
)

capture time ef-
fects in preferences over VA and community care, and φ j are clinic fixed effects. I impose that
E
[
p jmtξ jmt |ψVA

o ,ψC
o ,χ

VA
t ,χC

t ,φ j
]
= 0, isolating variation in prices coming only from the Choice

Act policy change, as controlling for
(
ψVA

o ,ψC
o ,χ

VA
t ,χC

t ,φ j
)

shuts down all other (cross-sectional)
sources of price variation. This is a similar difference-in-difference identification strategy as in
the related reduced form analysis in Section 2.4. Figure 2.6 plots the variation in the price of
community care across the out-of-pocket payment classes o. This corresponds to the first stage
of the reduced form event study effects of the policy in Section 2.4 for the product (primary care)
and consumers (TM dual-eligibles) in my estimation sample. In my baseline specification, I use
variation in prices from both wait time eligibility and distance eligibility conditions.

Second, I use the cross-product exposure to the Choice Act among VA clinics, presented in Section
2.4.3, to instrument for wait times at VA clinics.22 Specifically, I impose the moment condition
E
[
zjtξ jmt

]
= 0, where zjt are Choice eligibility instruments as in Equation 2.8. The idea of this

instrument is similar to a Waldfogel (2003) IV, where the demand of other consumers in a market
impact the wait times facing each individual consumer in equilibrium. In contrast to a standard
Waldfogel (2003) IV, I use policy-induced changes in the choices of other consumers as my instru-
ment.

Individual-level variation in distance to each of the clinics in a market provides additional variation

21Medigap policies cover the 20% coinsurance rate that Medicare beneficiaries must pay out of pocket for outpatient
visits.

22Wait times at all community clinics are zero and therefore not endogenous.
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to identify heterogeneity in consumer preferences over prices and wait times. Depending on where
consumers are located relative to the menu of options, they face different trade-offs between prices,
wait times, and other clinic characteristics. Under the additional assumption that E

[
di jξ jmt

]
= 0,

I use distance as an additional instrument to “trace-out” preferences over characteristics, w jt , and
p jmt without requiring functional form extrapolations beyond the support of changes induced by
the Choice Act (Berry and Haile, 2022). The assumption of E

[
di jξ jmt

]
= 0 is commonly made in

demand estimation exercises in healthcare. In fact, many estimates of healthcare demand invoke
this assumption and measure willingness-to-pay in “travel” instead of “dollar” units (e.g. Einav et
al. (2016)).

Selection In Equation 2.10, I treat wait times like “prices” at the product-by-quarter level. In
reality, wait times are a stochastic process with daily fluctuations due to the random arrival of
patients to the market within each quarter (Leshno, 2022; Ashlagi et al., 2022). Incorporating
these day-to-day fluctuations is outside the scope of my model, however, the inherent stochasticity
of wait times presents a potential selection problem in aggregation. Specifically, if consumers are
more likely to decline an appointment when arriving (randomly, within t) to the market on days
with high wait times, my measurement of w jt will be selected and biased downward.

I address this issue by using my supply-side model to generate an unselected distribution of wait
times. Specifically, if on any given day t̃ at any given provider, I observe no appointments being
made, I assume that appointments available (and made) at date t̃ + 1 were available at date t̃.
Appendix 2.10.2 provides more information. In particular, Appendix Figure B.6 recreates Figure
2.5, plotting the equilibrium effects of the policy on both the raw mean and the unselected measure
of wait times. Results are similar.

Estimation procedure I parameterize heterogeneity in
(
βVA

i ,βC
i ,θi,γi,αi

)
as a function of vet-

eran age bins, income bins (based on quartiles of the income distribution), VA priority group, and
lagged utilization bins (based on quartiles of total VA spending in the prior year). I include an
indicator for past use of the VA to capture cross-system inertia. Define

(
βVA

0 ,βC
0 ,θ0,γ0,α0

)
as the

parameters corresponding to the (arbitrarily normalized) base group, and let
(
βVA

b ,βC
b ,θb,γb,αb

)
denote the parameter vector, relative to the base group, for all other bins b of observable hetero-
geneity. I subdivide the non-idiosyncratic component of utility into:

β
′
itX j +φ j + γ0w jt +α0 p jmt +ξ jmt︸ ︷︷ ︸

δ jmt : common to all in jmt

+∑
b

β
VA
b +β

C
b + γbw jt +αb p jmt +(θ0 +θb)di j︸ ︷︷ ︸

λi jmt : individual specific parameters

(2.13)
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I then use a slightly-modified version of the two-step estimation approach of Goolsbee and Petrin
(2004) to estimate the parameters in the random utility specification in 2.10. In a first step, I es-
timate the heterogeneity parameters in λi jmt via maximum likelihood including fixed effects for
δ jmt . To ease computational constraints, I first estimate λi jmt on a random sample of markets and
time periods, estimating λi jmt and δ jmt jointly via maximum likelihood.23 Then, given λ̂i jmt , I loop
over markets to estimate δ̂ jmt by matching market shares exactly. In the second step, I estimate the
parameters in δ jmt via IV, using instruments for Choice exposure (i.e. imposing the moment con-
dition E

[
z jtξ jmt

]
= 0) and variation in prices from Choice conditional on

(
ψVA

o ,ψC
o ,χ

VA
t ,χC

t ,φ j
)
.

I estimate parameters on one pre-period year (2013) and one post-period year (2017), intended to
capture the effect of Choice after the ramp-up period documented in Figure 2.3. I employ this esti-
mation strategy on the sample of veterans dually enrolled in Traditional Medicare. In this sample, I
observe the universe of consumption decisions in all time periods across VA and community care.

2.5.5 Estimates

No heterogeneity I first present results with no preference heterogeneity beyond the out-of-
pocket payment class heterogeneity in δ jmt . This allows me to present interpretable parameter
results — average preferences, rather than preferences for a normalized group — from a simple
regression, with the outcome of δ jmt = ln

(
s jmt
)
− ln(s0mt) (Berry, 1994). The structure of the dis-

crete Choice set-up thus allows me to estimate preferences over both prices and wait times jointly
using the Choice Act variation in a simple and interpretable regression. I use this simplified model
to illustrate these responses and the performance of the Choice Act instrument in Table 2.4.

Column (1) presents results from a panel regression, estimating α from Choice Act variation in
prices but γ from all within-clinic variation, residualized of overall time trends in VA and commu-
nity care. Column (1) documents a negative coefficient on price that implies an average elasticity
of demand to a given clinic of -0.30. The average estimated elasticity to a given clinic is slightly
higher than both estimates of price elasticities for individual hospitals for inpatient care (Prager,
2020) and the price elasticity for total outpatient care estimated in Chandra et al. (2010a). These
comparisons appear reasonable given the differences in setting (outpatient versus inpatient) and
elasticities (overall versus product-level).

The coefficient on wait times (γ) in column (1) however, is positive and insignificant. This may

23I take this random sample to avoid needing to jointly search over the thousands of δ jmt for each parameter guess
given limited computational power. Sampling at the market level captures heterogeneity parameters without introduc-
ing bias from zero market shares from small samples. I am currently using a 4% random sample (which, for 9,000,000
enrolled veterans and 8 quarters still includes a very large number of choice instances). I plan to increase this sample
until computation burdens become too severe.
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lead a researcher to (incorrectly) infer that waiting is not costly to consumers and therefore imposes
no efficiency costs.

In column (2), I instrument for w jt using the same z jt as in the 2SLS exercise in Section 2.4, using
deciles of Choice exposure. When instrumented, γ becomes negative – consistent with Table 2.3
– and moreover, I estimate that (at prices and wait times in my sample) veterans are three times
as elastic to wait times as to prices. This underscores the highly endogenous nature of wait times,
as they adjust extremely flexibly to demand shocks, and the need for instruments. In column
(3), I use a continuous interaction between exposure share and post-Choice in a just-identified
specification. I find very similar results, though slightly less precise, providing reassurance that no
one parameterization of Choice exposure is driving results.

Table 2.4 also presents an estimate of the ($) cost of delay, γ

α
, of approximately $2.50. This means

that the average veteran would be willing to pay approximately $2.50 to move an appointment
at the same clinic one day sooner. This object, denoted by C(w) in the more general conceptual
framework in Section 2.2, is the key welfare object of interest. Its magnitude governs the welfare
costs of rationing, and its distribution, the redistribution of surplus.

Adding heterogeneity Figure 2.7a plots the distribution of γi
αi

after incorporating heterogeneity
and documents substantial dispersion.24 The status quo waiting-based rationing regime is implic-
itly price discriminating in favor of those with low costs of waiting γi

αi
and against those with high

γi
αi

. Appendix Table B.4 provides a detailed description of the heterogeneity parameter estimates
underlying γi

αi
using the two-step estimation procedure described in the previous section.

Figure 2.7b shows that the costs of delay are increasing in income, implying that rationing “price-
discriminates” in favor of lower income consumers. The pattern on health status is slightly more
mixed: while on average, waiting costs are lower for sicker veterans (proxied by utilization), the
relationship is U-shaped, reflecting the fact that the sickest veterans find waiting particularly costly.

The patterns in Figure 2.7 relate to the raw patterns of screening in Section 2.4. Section 2.4
documented qualitatively similar screening patterns on the two instruments, and indeed, that is
reflected in a positive correlation between αi and γi, shown in Appendix Figure B.7. However,
these descriptive patterns were limited by the fact that I was not comparing willingness-to-wait and

24I note that for the approximately 38% of veterans who have no prior history using the VA (at all, i.e. not just
for primary care), I estimate that they are essentially completely inelastic (with zero, or small positive coefficients)
on price. This is unsurprising, as VA care and VA policy changes may simply not be under consideration for these
veterans. Rather than imposing that all veterans have negative αi and including these veterans at negative αi very close
to zero, I simply exclude them from estimates of γi

αi
and counterfactuals. Essentially, I assume that these veterans are

inert to any VA counterfactuals, which seems to be a reasonable assumption. After excluding these veterans, 100% of
the consumer types in my sample have a negative cost of waiting, and less than 2% have a non-negative αi.
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willingness-to-pay directly. The results in the previous section were confounded by preferences for
care and the fact that veterans were potentially substituting on different margins of both the outside
option and to other care. The model presented and estimated in this section allows me to account
for those multiple margins explicitly. In doing so, and in the process, incorporating additional
variation from the geographic distribution of veterans and clinics, I am able to quantify how the
distribution of willingness-to-pay and willingness-to-wait diverge, illustrated in Figure 2.7.

2.6 Alternative Rationing Mechanisms, Welfare, and Policy Coun-
terfactuals

In this Section, I quantify the efficiency and distributional properties of the two rationing mech-
anisms in equilibrium and assess where the use of rationing via wait times places a planner on a
efficiency-redistributive frontier (if on the frontier at all). I also return to the Choice Act policy
context and use my estimates to quantify the (ambiguous) welfare effects of the Choice Act and
alternative policies. A key feature of my analysis is to compare the effects of commonly used
policies to manage rationing costs to shifts in the allocation mechanism altogether.

2.6.1 Alternative Rationing Mechanisms

I examine the allocative, efficiency, and distributional effects of the status quo rationing regime,
where care is allocated via wait times at approximately zero prices, relative to a benchmark in
which care can be obtained immediately with no waits, subject to a price (the efficient benchmark).
In these counterfactual exercises, I hold total utilization at the VA constant (i.e. I impose the
assumption of strict capacity constraints), and simply change the allocation mechanism. I thus
focus on allocative effects alone, without taking a stand on whether total VA capacity is too high or
too low. Specifically, for any given vector of VA wait times (prices), I search for a vector of prices
(wait times) such that the equilibrium condition in Equation 2.11 holds. There exists an infinite
number of equilibria along combinations of (p,w). In counterfactuals, I fix one instrument and
search for another, yielding a JVA

gt -dimensional system of equations with a JVA
gt -dimensional vector

of unknowns for each geography g and time t.

I simulate counterfactual outcomes over the entire analysis period (pre- and post-Choice). My
results therefore capture the average effects of the two rationing mechanisms under the two policy
regimes. I analyze the contribution of the Choice policy to consumer welfare in Section 2.6.2.
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My counterfactual analyses only focus on the sub-set of Traditional Medicare dual-eligibles that I
use to estimate preferences in Equation 2.10. These analyses should thus be interpreted as exercises
in which this population is the only population of interest, or that choices in this population are
identical to choices in the overall population. The focus on this (substantial) sub-set of consumers
is unlikely to change the qualitative conclusions, as over three-quarters of veterans also have al-
ternative sources of insurance coverage and both demographics and VA utilization are generally
similar across these two populations (see Table 2.1).

Positive analysis I begin by presenting positive effects on equilibrium prices and allocations
without (yet) imposing a normative assumption that choices reveal value. These counterfactuals
only require that my estimates accurately describe the choices that veterans make in response
to prices and wait times. Table 2.5 presents results. Column (1) presents wait times, prices,
and allocations under the status quo waiting-based regime, and column (2) presents these same
outcomes while imposing zero waits and instead allowing prices to flexibly adjust in response to
demand and capacity constraints κ jt .

Table 2.5 illustrates that prices would have to be almost $80 on average to achieve zero wait times,
about 20% of estimates of the VA cost of service. This value is larger than any outpatient copay-
ments the VA currently charges, with a maximum of $50 for specialty care for certain veterans.
Though the waiting costs imposed on veterans are substantial, these costs are not being collected
as revenue, as would the $78 per visit under a price regime.

Table 2.5 also demonstrates substantial allocative effects across the two regimes. Slightly fewer
veterans obtain any care at all under the price regime. This is flexible to adjust, even in the presence
of strict capacity constraints at the VA, because of the opportunity to substitute to community care
as well as the outside option of no care. As a share of the total number of veterans receiving care
under the status quo regime, 4% of all veterans are displaced out of any care, and 16% are displaced
out of VA care — with an equivalent, different set of 16% of veterans substituting in. These results
highlight that the two rationing regimes may induce substantially different distributions of access
to care and consumer surplus.

Panel C of Table 2.5 presents descriptive evidence of the distributional effects of the alternative
rationing regimes. The average consumer receiving VA care under the wait-time rationing regime is
over 4% lower income, 4% sicker (as proxied by lagged costs), and 1% older than those who would
obtain VA care under the price regime. These patterns still exist, but are less strong, for veterans
receiving any care at all, after accounting for substitution to community care. Even without any
normative framework, these results present the core trade-off facing a planner, perhaps offering
an explanation as to the varied use of these two regimes around the world. The price regime
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allocates a scarce commodity to those who value it, while generating revenue. The waiting time
regime, though strictly money burning, changes the landscape of access to care in favor of lower
socio-economic status, and thus likely higher gi, individuals.

Quantifying welfare effects Table 2.6 quantifies the efficiency and redistributive effects of the
two regimes described in Table 2.5. Column (1) presents the decomposition of the welfare effects
of status quo rationing, relative to a price regime from Equation 2.3 in Section 2.2. I conduct
this decomposition using a standard money-metric welfare framework that puts equal weight on
consumer surplus and revenue collected. Put differently, column (1) evaluates the welfare costs of
rationing under a Kaldor (1939)-Hicks (1939) efficiency criterion.

Consumer surplus is $57.25 lower (per veteran, per year) under the rationed regime versus a price
regime. This is driven by a combination of allocative effects (60%), as care is not being allocated
to those who value it the most, and by a price discrimination effect, as waiting is more costly for
inframarginals than for the marginal consumer (30%). This price discrimination effect comes from
the fact that waiting is differentially costly for sicker veterans who are more likely to have very
high value for the VA (i.e. the C(w∗) curve in Figure 2.1 is upwards- not downwards-sloping).

An additional $62.90 per veteran, per year is further lost from a lack of recouped revenue. This
is due to the fact that waiting is a costly screen, and therefore pure social waste. Together, the
combined efficiency cost of the status quo rationing regime is $113, or 24% of achievable surplus.
This is a substantial efficiency cost that must be weighed against any redistributive motives for
imposing rationing.

Columns (2) and (3) of Table 2.6 examine the redistribution of surplus directly. I find that although
consumer surplus is on average over $57 lower under a price regime, more than half of veterans
(55%) prefer the status quo wait time regime. This finding underscores why the choice of rationing
regimes in healthcare is so controversial in practice: the choice of one over another generates
substantial winners and losers. Moreover, those who prefer the status quo rationing regime are
starkly different than those who do not: they are substantially poorer, sicker, and older. Table 2.6
thus quantifies the core equity-efficiency trade-off in the choice of rationing mechanism: waiting
destroys 24% of surplus, but in the process redistributes substantially — both in terms of welfare,
and in terms of access to care (Table 2.5) — to seemingly high gi individuals.

Characterizing an efficiency-redistributive trade-off How should one characterize or bench-
mark the magnitude of this trade-off? Knowledge of a planner’s preference for redistribution in
this specific context is inherently unknown. In this sub-section, I offer two methods of quantifying
the magnitude of this trade-off.
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Inverse optimum weights from the tax schedule First, I compare the cost of transferring $1
from an individual who prefers the price regime (column (3) of Table 2.6) to an individual who
prefers the rationed regime (column (2) of Table 2.6) to the costs of transferring $1 from the
richest to the poorest person in society via the current tax schedule. This “inverse optimum”
approach takes values of gi inferred from the tax schedule, or alternatively, compares the efficiency
of redistribution occurring in this context to redistribution that occurs via the tax schedule. This
approach modifies the standard Kaldor (1939)-Hicks (1939) notion of efficiency to incorporate the
feasibility of transfers, i.e. that it is costly to transfer from the rich to the poor. Note that this
comparison is already conservative in favor of the wait time regime as it considers only changes in
consumer surplus. This is relaxed in the following exercise, which incorporates revenue.

Hendren (2020) calculates these inverse optimum welfare weights from the status quo US tax
schedule and finds that the differences in these weights is bounded above by two. Put differently,
it always costs less than $2 to transfer $1 from a person at the top of the income distribution to a
person at the bottom. In comparison, the redistribution that occurs via the status quo waiting-based
rationing mechanism, relative to a price-mechanism, destroys over $5 of consumer surplus when
transferring $1 from the losers (column (3)) to the winners (column (2)). This suggests that, even
without accounting for revenue, the social planner must place substantially more weight on either
(1) equality in healthcare consumption than equality in income, or (2) redistribution between these
two groups than between the richest and poorest person in society, for the use of rationing by wait
times to be preferred.

Welfare after revenue redistribution The analysis using inverse optimum weights ignored dif-
ferences in revenue generated by the mechanism. A second way to characterize the trade-off is to
consider what share of the population is better off under the status quo rationing regime, relative
to a price mechanism, after redistributing revenue. In this setting, as in many others, a government
entity is providing the healthcare services — and thus would collect the revenue — so it is feasible
to assume that this revenue could in theory be redistributed back into the population.

In Table 2.7, I calculate the share of veterans better off under the status quo, relative to a price
mechanism, after redistributing revenue, modulating the value of government revenue between
zero and one. At worst, all revenue is burned, and at best, I considers a scenario in which the gov-
ernment can only redistribute with the blunt instrument of uniform transfers. Table 2.7 documents
that even in a regime where 50% of revenue is lost upon collection, only 10% of veterans prefer the
wait time regime after redistributing this revenue. This number drops to 5% and 3%, respectively,
under 75% and 100% redistribution of revenue. This exercise highlights that even with only blunt
instruments available to a planner — at best uniform transfers — the lost revenue is so substantial
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relative to the magnitude of expected welfare differences that the planner can achieve close to a
Pareto improvement.

This exercise underscores the importance of considering alternative revenue-generating mecha-
nisms among the class of screening instruments available to a social planner. The classic idea of a
Nichols and Zeckhauser (1982) ordeal-screen is that the screen can potentially better target a trans-
fer to individuals who value that transfer. Of course, this begs the question not only of whether
the ordeal screen achieves more favorable targeting than an alternative mechanism, for example,
a consumption tax on the in-kind transfer, but whether this favorable targeting outweighs any lost
revenue due to the imposition of a screen that is pure social waste. While this point is not new
(Olken, 2016), few papers have quantified the lost surplus directly in order to weigh it against
alternative instruments to target a transfer.

Discussion The two exercises above lead to the same qualitative conclusion. Though there is
a meaningful trade-off between efficiency and distributional concerns in the planner’s choice of
rationing mechanism, the efficiency losses from rationing are so large that they likely outweigh
any potential redistributive benefits. Of course, a planner may still choose to use a wait-time-based
rationing mechanism if the planner places very high value on the distribution of surplus that is
achieved by this rationing mechanism in this specific dimension of consumption. The purpose of
this section — and a primary contribution of this paper — is simply to document that the slope
of the trade-off facing a planner is steep: efficiency losses are very large, relative to redistributive
benefits.

Why is this case? The key pattern in the data that drives this conclusion is that prices and wait
times screen on qualitatively similar dimensions. Because of this, wait times generate substantial
deadweight loss without a sufficiently large enough reallocation of surplus. Moreover, waiting
costs for inframarginals are high, such that for any (socially desirable) change in allocation that the
waiting-based rationing mechanism yields, it induces large deadweight losses among those who
are not changing their behavior.

Due to the large welfare losses from rationing, a natural question to ask is: given the ubiquity of
rationing in practice, can welfare costs can be managed by effective “managed rationing” policies,
such as the Choice Act?

2.6.2 Policy analysis: Choice versus Alternative Policies

In addition to providing the variation necessary to answer the key welfare questions of this paper,
the Choice Act provides a useful laboratory to examine common second-best policies to manage
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rationing costs. The welfare effects of the Choice Act are ambiguous: Figure 2.3e documented that
total spending increased, while Figure 2.5 documented that wait times decreased. The preference
estimates obtained using the Choice Act variation now provide an opportunity to trade-off these
opposing forces and examine the performance of this large change to VA policy.

Table 2.8 examines the welfare effects of the Choice Act and alternative policies, and benchmarks
the effects of these policy changes against the effects of eliminating wait times altogether by ra-
tioning by a price mechanism instead. I tabulate changes in consumer surplus, government revenue,
and their sum.

Column (1) tabulates the gains from switching to a price mechanism, reproducing the results from
the previous section. Column (2) examines the welfare effects of the Choice Act. While the Choice
Act unambiguously increased consumer surplus — it made both directly eligible and ineligible
veterans better off — this increase is not enough to outweigh the increase in costs. The Choice
Act was thus welfare-decreasing overall. Expansions in Choice-style policy, either via later factual
expansions, including the MISSION Act, and counterfactual expansions to everybody, have the
same effect — increases in costs outweigh the increase in consumer surplus.

The Choice Act and similar expansions of subsidized community care increase costs more than
the gains in consumer surplus for two reasons. First, as the positive counterfactuals in Table 2.5
illustrated, the marginal consumer at the VA was only willing to pay 20% of the cost of care, so
increases in “effective” capacity via further subsidizing the outside option, brought “prices” further
from, instead of closer to, social marginal cost. Put differently, the market failure driving rationing
costs at the VA, which motivated the policy change, was not insufficient capacity of VA care, but
rather an inefficient mechanism to allocate that capacity.

Second, the Choice Act policy is poorly targeted: all veterans receive the same subsidy for com-
munity care, regardless of their externality on others using the VA (Diamond, 1973). Veterans
are treated identically by the policy regardless of whether they substitute away from the VA, and
generate a positive externality from reducing congestion, or from no care, which has no such pos-
itive externality. As Figure 2.3 documents, for every person that substitutes away from the VA and
alleviates congestion, one person substitutes from the outside option, increasing spending by more
than their value of the service.

While the specific conclusion that the Choice Act policy increased costs more than benefits is
unique to this setting, the challenge of designing policies with heterogeneous consumption exter-
nalities is a broader challenge to health policy designers implementing similar programs to reduce
public sector queues. Subsidizing private care offers flexibility, relative to expanding public capac-
ity, but heterogeneity in consumers’ substitution patterns can complicate the design of the private
subsidy. Policies that either (1) target subsidies based on (expected) substitution patterns, or (2)
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increase (targeted) prices directly on the congested good, can increase welfare relative to a uniform
or poorly targeted subsidy for private care.

Column (5) investigates the performance of this second class of policies in the form of a small,
targeted copay increase at the VA. In 2001, copayments for primary care were decreased from
slightly over $50 to $15. Column (5) investigates the effect of switching copayments to $50 — ap-
proximately 2001 levels — for only the 25% of veterans who already pay copayments. This group
of veterans is on average substantially higher income than the veterans who are not obligated to
pay copayments (median income of $44,127 versus $23,120). This copay increase increases con-
sumer surplus by substantially more than any of the Choice Act policies despite increasing prices

for some veterans. This is because levying the price increase on the congested good is much more
effective at reducing congestion externalities and wait times in equilibrium. And because copay-
ments are targeted at veterans who are on average higher socio-economic status than those who
are not obligated to pay copayments, this policy disproportionately benefits low-income veterans.
Finally, this policy generates revenue, rather than increasing costs.

Small, targeted copayment increases can thus increase welfare substantially, while still maintain-
ing distributional objectives. Relaxing a planner’s desire to relinquish a price mechanism entirely
— in a feasible manner — can thus generate much larger gains than other second-best policies that
manage rationing costs without relaxing this constraint. However, Table 2.8 also documents that
the gains from even this most effective policy are dwarfed by changing the allocation mechanism
altogether, which yields welfare gains that are almost an order of magnitude larger. Thus, pol-
icy designers must think carefully about whether price controls, in the presence of endogenously
arising queues for care, achieve equity goals that outweigh their efficiency costs. The analysis
in this paper suggests that they likely do not. Of course, more sophisticated non-price allocation
mechanisms than the simple queuing used in practice could change this calculus.

2.7 Conclusion

This paper studies the efficiency and distributional consequences of the choice of healthcare ra-
tioning mechanism and analyzes policy in the presence of price controls and capacity constraints.
I focus specifically on the two most commonly used and debated demand-side rationing mech-
anisms: prices and wait times. I leverage the rich data and policy environment of the VA and
the Choice Act to make progress on questions that have previously been severely limited by data
constraints and the challenge of conducting welfare analysis for rationed goods. I combine quasi-
experimental variation and careful policy analysis with an equilibrium model to examine welfare
trade-offs and policy counterfactuals.
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I begin by analyzing the effects of the Choice Act, and document that the policy increased access
to care via both reductions in prices for eligible veterans and wait times in equilibrium. I show that
veterans are responsive to both rationing mechanisms, and that these two rationing mechanisms
screen on qualitatively similar dimensions.

To evaluate the efficiency and distributional consequences of the rationing mechanisms of interest,
I use this variation to estimate a model of clinic choice and queuing for primary care. I conduct
counterfactuals that hold VA capacity constant and change the method of allocating care. The
two regimes lead to meaningful differences in allocations. I find that a planner may face a trade-off
between efficiency and allocating healthcare to lower income, sicker consumers, but that this trade-
off is steep, destroying substantial surplus for any (potentially) socially desirable reallocation.
Because of this, I document that feasible copayment increases substantially improve upon the
status quo Choice Act policy.

Many healthcare systems across the globe have elected to eliminate financial barriers to care. How-
ever, in the presence of capacity constraints, other barriers, typically wait times, have emerged.
Carefully evaluating the distinct consequences of these two mechanisms is essential to understand-
ing whether the choice to ration access to care via wait times is advantageous or detrimental to
a policymaker’s goals. The results in this paper suggest that rationing via wait times imposes
efficiency costs that likely substantially hinder a policymaker’s objectives. Investigating the per-
formance of other domains of non-market allocation in healthcare presents an exciting avenue for
future research.

135



2.8 References

113th Congress, “Veterans Access, Choice, and Accountability Act of 2014,” 2014.

115th Congress, “Maintaining Internal Systems and Strengthening Integrated Outside Networks
(MISSION) Act of 2018,” 2018.

Akbarpour, Mohammad, Piotr Dworczak, and Scott Duke Kominers, “Redistributive Alloca-
tion Mechanisms,” June 2022.

Alatas, Vivi, Abhijit Banerjee, Rema Hanna, Benjamin A. Olken, Ririn Purnamasari, and
Matthew Wai-Poi, “Self-Targeting: Evidence from a Field Experiment in Indonesia,” Journal
of Political Economy, April 2016, 124 (2), 371–427. Publisher: The University of Chicago
Press.

Ashlagi, Itai, Jacob Leshno, Pengyu Qian, and Amin Saberi, “Price Discovery in Waiting
Lists,” August 2022.

Berry, Steven T., “Estimating Discrete-Choice Models of Product Differentiation,” The RAND
Journal of Economics, 1994, 25 (2), 242–262. Publisher: [RAND Corporation, Wiley].

and , “Nonparametric Identification of Differentiated Products Demand Using Micro Data,”
April 2022. arXiv:2204.06637 [econ].

Besley, Timothy and Stephen Coate, “Workfare versus Welfare: Incentive Arguments for Work
Requirements in Poverty-Alleviation Programs,” The American Economic Review, 1992, 82 (1),
249–261. Publisher: American Economic Association.

, John Hall, and Ian Preston, “The demand for private health insurance: do waiting lists mat-
ter?,” Journal of Public Economics, 1999, 72 (2), 155–181. Publisher: Elsevier.

, Samantha Burn, Timothy Layton, and Boris Vabson, “Rationing Medicine Through Bu-
reaucracy: Authorization Restrictions in Medicare,” January 2023.

Buchholz, Nicholas, Laura Doval, Jakub Kastl, Filip Matějka, and Tobias Salz, “The Value of
Time: Evidence From Auctioned Cab Rides,” May 2020.

Bulow, Jeremy and Paul Klemperer, “Regulated Prices, Rent Seeking, and Consumer Surplus,”
Journal of Political Economy, 2012, 120 (1), 160–186. Publisher: The University of Chicago
Press.

C., Jr Chan David, David Card, and Lowell Taylor, “Is There a VA Advantage? Evidence from
Dually Eligible Veterans,” February 2022.

Castillo, Juan Camilo, “Who Benefits from Surge Pricing?,” August 2022.

, Jonathan Gruber, and Robin McKnight, “Patient Cost-Sharing and Hospitalization Offsets
in the Elderly,” American Economic Review, March 2010, 100 (1), 193–213.

136



Chartock, Benjamin L., “Quality Disclosure, Demand, and Congestion: Evidence from Physician
Ratings,” February 2023.

, Ian Gale, and Jinwoo Kim, “Assigning Resources to Budget-Constrained Agents,” The Re-
view of Economic Studies, January 2013, 80 (1), 73–107.

Condorelli, Daniele, “What money can’t buy: Efficient mechanism design with costly signals,”
Games and Economic Behavior, July 2012, 75 (2), 613–624.

Cooper, Zack, Stephen Gibbons, and Matthew Skellern, “Does competition from private surgi-
cal centres improve public hospitals’ performance? Evidence from the English National Health
Service,” Journal of Public Economics, October 2018, 166, 63–80.

Crépon, Bruno, Esther Duflo, Marc Gurgand, Roland Rathelot, and Philippe Zamora, “Do
Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized
Experiment *,” The Quarterly Journal of Economics, May 2013, 128 (2), 531–580.

Cutler, David M., “Equality, Efficiency, and Market Fundamentals: The Dynamics of Interna-
tional Medical-Care Reform,” Journal of Economic Literature, September 2002, 40 (3), 881–
906.

Davis, Lucas W. and Lutz Kilian, “The Allocative Cost of Price Ceilings in the U.S. Residential
Market for Natural Gas,” Journal of Political Economy, April 2011, 119 (2), 212–241. Publisher:
The University of Chicago Press.

Department of Veterans Affairs, “FY 2024 Budget Submission: Budget in Brief,” Technical
Report 2023.

Deshpande, Manasi and Yue Li, “Who Is Screened Out? Application Costs and the Targeting of
Disability Programs,” American Economic Journal: Economic Policy, November 2019, 11 (4),
213–248.

Diamond, Peter, “Consumption Externalities and Imperfect Corrective Pricing,” Bell Journal of
Economics, 1973, 4 (2), 526–538. Publisher: The RAND Corporation.

Dupas, Pascaline, Vivian Hoffmann, Michael Kremer, and Alix Peterson Zwane, “Target-
ing health subsidies through a nonprice mechanism: A randomized controlled trial in Kenya,”
Science, August 2016, 353 (6302), 889–895. Publisher: American Association for the Advance-
ment of Science.

Dworczak, Piotr, “Equity-efficiency trade-off in quasi-linear environments,” GRAPE Working
Papers, 2022. Number: 70 Publisher: GRAPE Group for Research in Applied Economics.

, Scott Duke Kominers, and Mohammad Akbarpour, “Redistribution Through Markets,”
Econometrica, 2021, 89 (4), 1665–1698.

Egger, Dennis, Johannes Haushofer, Edward Miguel, Paul Niehaus, and
Michael Walker, “General Equilibrium Effects of Cash Transfers: Experimen-
tal Evidence From Kenya,” Econometrica, 2022, 90 (6), 2603–2643. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA17945.

137



Einav, Liran, Amy Finkelstein, and Heidi Williams, “Paying on the margin for medical care:
Evidence from breast cancer treatments,” American Economic Journal. Economic Policy, Febru-
ary 2016, 8 (1), 52–79.

and Matthew J Notowidigdo, “Take-Up and Targeting: Experimental Evidence from SNAP*,”
The Quarterly Journal of Economics, August 2019, 134 (3), 1505–1556.

Fréchette, Guillaume R., Alessandro Lizzeri, and Tobias Salz, “Frictions in a Competitive,
Regulated Market: Evidence from Taxis,” American Economic Review, August 2019, 109 (8),
2954–2992.

Glaeser, Edward L. and Erzo F. P. Luttmer, “The Misallocation of Housing Under Rent Con-
trol,” American Economic Review, September 2003, 93 (4), 1027–1046.

Goolsbee, Austan and Amil Petrin, “The Consumer Gains from Direct Broadcast Satel-
lites and the Competition with Cable TV,” Econometrica, 2004, 72 (2), 351–381. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0262.2004.00494.x.

Hartline, Jason D. and Tim Roughgarden, “Optimal mechanism design and money burning,”
in “Proceedings of the fortieth annual ACM symposium on Theory of computing” STOC ’08
Association for Computing Machinery New York, NY, USA May 2008, pp. 75–84.

Hendren, Nathaniel, “Measuring economic efficiency using inverse-optimum weights,” Journal
of Public Economics, July 2020, 187, 104198.

Hicks, J. R., “The Foundations of Welfare Economics,” The Economic Journal, 1939, 49 (196),
696–712. Publisher: [Royal Economic Society, Wiley].

Kaldor, Nicholas, “Welfare Propositions of Economics and Interpersonal Comparisons of Utility,”
The Economic Journal, 1939, 49 (195), 549–552. Publisher: [Royal Economic Society, Wiley].

Leshno, Jacob D., “Dynamic Matching in Overloaded Waiting Lists,” American Economic Re-
view, December 2022, 112 (12), 3876–3910.

and Lee M. Lockwood, “Targeting with In-Kind Transfers: Evidence from Medicaid Home
Care,” American Economic Review, April 2019, 109 (4), 1461–1485.

Mark, Nathaniel, “Access to Care in Equilibrium,” 2023.

Martin, Stephen and Peter C. Smith, “Rationing by waiting lists: an empirical investigation,”
Journal of Public Economics, January 1999, 71 (1), 141–164.

Nichols, Albert L. and Richard J. Zeckhauser, “Targeting Transfers through Restrictions on
Recipients,” The American Economic Review, 1982, 72 (2), 372–377. Publisher: American
Economic Association.

Nichols, D., E. Smolensky, and T. N. Tideman, “Discrimination by Waiting Time in Merit
Goods,” The American Economic Review, 1971, 61 (3), 312–323. Publisher: American Eco-
nomic Association.

138



OECD, “Waiting Times for Health Services: Next in Line,” Technical Report May 2020.

Olken, Benjamin A., “Hassles versus prices,” Science (New York, N.Y.), August 2016, 353 (6302),
864–865.

Pizer, Steven D. and Julia C. Prentice, “Time is money: outpatient waiting times and health
insurance choices of elderly veterans in the United States,” Journal of Health Economics, 2011,
30 (4), 626–636. Publisher: Elsevier.

and , “What are the consequences of waiting for health care in the veteran population?,”
Journal of General Internal Medicine, 2011, 26 (2), 676–682. Publisher: Springer.

Prager, Elena, “Healthcare Demand under Simple Prices: Evidence from Tiered Hospital Net-
works,” American Economic Journal: Applied Economics, October 2020, 12 (4), 196–223.

Propper, Carol, Simon Burgess, and Denise Gossage, “Competition and Quality: Evidence from
the NHS Internal Market 1991–9*,” The Economic Journal, 2008, 118 (525), 138–170. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0297.2007.02107.x.

Reinhardt, Uwe, Priced Out: The Economic and Ethical Costs of American Health Care, Prince-
ton University Press, 2019.

Reinhardt, Uwe E., “Wanted: A Clearly Articulated Social Ethic for American Health Care,”
JAMA, November 1997, 278 (17), 1446–1447.

, “Keeping Health Care Afloat: The United States versus Canda,” Milken Institute Review, 2007,
Second Quarter.

Ringard, Ånen, Ingrid Sperre Saunes, and Anna Sagan, “The 2015 hospital treatment choice
reform in Norway: Continuity or change?,” Health Policy, April 2016, 120 (4), 350–355.

Rose, Liam, Marion Aouad, Laura Graham, Lena Schoemaker, and Todd Wagner, “Associ-
ation of Expanded Health Care Networks With Utilization Among Veterans Affairs Enrollees,”
JAMA Network Open, October 2021, 4 (10), e2131141.

Ryan, Nicholas and Anant Sudarshan, “Rationing the Commons,” Journal of Political Economy,
January 2022, 130 (1), 210–257. Publisher: The University of Chicago Press.

Saez, Emmanuel and Stefanie Stantcheva, “Generalized Social Marginal Welfare Weights for
Optimal Tax Theory,” American Economic Review, January 2016, 106 (1), 24–45.

Saruya, Hiroki, Todd Wagner, and Diana Zhu, “Complementing Public Care with Private: Evi-
dence from Veterans Choice Act,” January 2023.

Tobin, James, “On Limiting the Domain of Inequality,” The Journal of Law & Economics, 1970,
13 (2), 263–277. Publisher: [University of Chicago Press, Booth School of Business, University
of Chicago, University of Chicago Law School].

Train, Kenneth E., Discrete Choice Methods with Simulation, 2nd edition ed., Cambridge ; New
York: Cambridge University Press, June 2009.

139



U. S. Government Accountability Office, “VA Health Care: More National Action Needed to
Reduce Waiting Times, but Some Clinics Have Made Progress,” Technical Report August 2001.

, “VA Health Care: Reliability of Reported Outpatient Medical Appointment Wait Times and
Scheduling Oversight Need Improvement,” Technical Report December 2012.

, “VA Health Care: Actions Needed to Improve Newly Enrolled Veterans’ Access to Primary
Care,” Technical Report March 2016.

, “Veterans Health Care: Opportunities Remain to Improve Appointment Scheduling within VA
and through Community Care,” Technical Report July 2019.

Waldfogel, Joel, “Preference Externalities: An Empirical Study of Who Benefits Whom in
Differentiated-Product Markets,” The RAND Journal of Economics, 2003, 34 (3), 557–568. Pub-
lisher: [RAND Corporation, Wiley].

Waldinger, Daniel, “Targeting In-Kind Transfers through Market Design: A Revealed Preference
Analysis of Public Housing Allocation,” American Economic Review, August 2021, 111 (8),
2660–2696.

Weitzman, Martin L., “Is the Price System or Rationing More Effective in Getting a Commodity
to Those Who Need it Most?,” The Bell Journal of Economics, 1977, 8 (2), 517–524. Publisher:
[RAND Corporation, Wiley].

Yang, Frank, “Costly Multidimensional Screening,” August 2022.

Yee, Christine A., Kyle Barr, Taeko Minegishi, Austin Frakt, and Steven D. Pizer, “Provider
supply and access to primary care,” Health Economics, 2022. Publisher: Wiley Online Library.

, Yevgeniy Feyman, and Steven D. Pizer, “Dually-enrolled patients choose providers with
lower wait times: Budgetary implications for the VHA,” Health Services Research, 2022. Pub-
lisher: Wiley Online Library.

Yee, Christine, Sivagaminathan Palani, Kyle Barr, and Steven D. Pizer, “Provider Supply and
Access to Specialty Care,” December 2022.

Zeckhauser, Richard, “Strategic sorting: the role of ordeals in health care,” Economics & Philos-
ophy, March 2021, 37 (1), 64–81. Publisher: Cambridge University Press.

140



2.9 Figures and Tables

Figure 2.1: Conceptual framework: graphical illustration

Notes: Figure presents a graphical illustration of the efficiency effects and opportunities for redistribution of surplus
under a price-based mechanism and a wait-time-based mechanism. The area between curves AC and AB represents
the allocative efficiency loss from rationing by waiting. The curve GB calculates the average cost of waiting at each
point along the curve AB; the area underneath the curve GB represents the deadweight loss. Example individual
j switches from obtaining no care under the price regime to obtaining care under the wait time regime. Example
individual i obtains care under both but achieves different levels of consumer surplus. κ represents available capacity,
taken as given. These curves are simply examples for illustration: the curve C(w∗) could be upward sloping, flat, or
non-monotonic, with alternative distributions of preferences, and the curves AC and AB could lie closer or further
from each other.
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Figure 2.2: Clinic-level Summary Statistics
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Notes: Figure presents histograms of average wait times and Choice exposure for all outpatient specialties and primary
care, both calculated in the pre-Choice (2010-2014) period. Wait times are calculated as the average time between the
request date and visit date among all appointments (completed or cancelled) in a clinic in a quarter. Exposure is
calculated as the share of visits in a clinic and specialty for which the patient is distance eligible (lives over 40 miles
from their closest clinic or in a state without a VA hospital) or wait-time eligible (has a wait time, based on the patient’s
desired or clinically indicated date, of over 30 days). Sample includes 1,128 clinics.
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Figure 2.3: Effect of Choice Eligibility on Utilization
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Notes: Figure presents event study coefficient estimates from Equation 2.4. In sub-figure (a) the outcome is all
community outpatient visits per year, estimated on the whole sample. In sub-figure (b), I restrict to the population of
veterans dually eligible for TM, where I observe the complete universe of utilization. Sub-figure (c), (d), and (e) plot
VA visits, total visits (VA + community), and total VA spending in the whole sample, respectively. Total VA spending
is calculated based on per-visit cost estimates at the VA from HERC and claims for VA-financed community care.
Estimates restricted to a sample living 10 miles from the 40 mile eligibility threshold.
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Figure 2.4: Heterogeneity on Responses to p
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Notes: Figure presents event study coefficient estimates from Equation 2.4 with the outcome equal to community
primary care visits, split by whether a veteran is above versus below median income (a) and health status (b), where
health status is measured by the total VA spending in the prior year. The sample is restricted to a sub-set of veterans
who face the same prices: TMs without a Medigap plan choosing primary care. Sample restricted to enrollees living
within a 10 mile window of the 40 mile threshold.
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Figure 2.5: Effect of Choice Exposure on Wait Times

(a) HRR-by-specialty level (b) HRR-level, primary care

(c) Clinic-level, primary care

Notes: Figure presents event study coefficient estimates from Equation 2.6 with pooled difference in-difference esti-
mates (from Equation 2.7) presented on the graph with standard errors clustered at the market-by-specialty (a), market
(b), or clinic (c) level). Sub-figure (a) calculates effects on wait times across all markets and specialties, sub-figure
(b) calculates effects on wait times at the geographic market level (HRR) for primary care only, and sub-figure (c)
calculates effects on wait times at the clinic-level. Coefficients are scaled to represent a move from the 10th to the 90th
percentile in the pre-period share eligible distribution.
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Figure 2.6: Variation in p
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Notes: Figure presents variation in prices for community care among the different out of pocket payment classes for
the TM sample. The out of pocket price for TMs without Medigap is calculated as the median out of pocket payment
for primary care. Medigap prices are set to zero because the vast majority of Medigap policies held by VA enrollees
include essentially no outpatient cost-sharing. I observe veterans’ Medigap status because they report this information
to the VA.
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Figure 2.7: Distribution of the cost of delay, Ci(w) =
γi
αi

(a) Kernel density plot
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Notes: Figures summarize estimates of γi
αi

from the two-step estimation procedure described in Section 2.5.4 with
variation in prices coming from the Choice Act and waiting time instrumented using deciles of Choice exposure
interacted with a post Choice indicator. Sub-figure (a) plots a kernel density plot of γi

αi
, or the cost of delay. Sub-

figures (b) and (c) correlate γi
αi

with log income and lagged utilization (a proxy for health status) in binned scatterplots.
I exclude veterans who do not engage with the VA at all in the preceding year.
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Table 2.1: Enrollee-level Summary Statistics

All Dually-
eligible for

TM

Distance-
eligible for

Choice

Not
distance-

eligible for
Choice

(1) (2) (3) (4)

Panel A. Veteran characteristics
Age 61.9 73.2 63.9 61.7

(17.1) (10.7) (16.2) (17.2)
Share male 0.927 0.970 0.944 0.925
Income 36,862 39,070 35,000 37,033

(29,638) (29,138) (27,294) (29,838)
Share paying copays 0.293 0.348 0.289 0.294
Share with any supplemental insurance 0.758 1.000 0.779 0.756
Share with Traditional Medicare 0.361 1.000 0.452 0.353
Panel B. Annual utilization
VA spending 5,148 6,207 4,714 5,188

(18,726) (22,007) (16,073) (18,945)
VA outpatient visits 7.54 8.46 6.25 7.66

(13.96) (14.54) (11.12) (14.20)
Total outpatient visits 12.15 19.17 12.03 12.16

(24.02) (30.82) (22.39) (24.17)
VA primary care visits 1.02 1.15 1.03 1.02

(1.61) (1.70) (1.55) (1.62)
Total primary care visits 2.31 4.38 2.49 2.29

(4.89) (6.29) (5.12) (4.86)
Share with both VA and non-VA primary care visit

In same year 0.114 0.244 0.149 0.110
Ever 0.311 0.512 0.403 0.303

N enrollees 11,329,529 5,231,539 1,274,957 10,619,494
N enrollee-years 64,944,118 23,458,147 5,420,656 58,756,964

Notes: Table presents summary statistics from the veteran enrollee sample from 2011-2017. Column (1) includes all
veterans, column (2) includes only veterans who are dually eligible for Traditional Medicare, for whom I observe all
of their community utilization, column (3) includes only veterans whose home address is over forty miles from the
closest VA clinic, and column (4) includes veterans who live closer than forty miles from their VA clinic. Income
is averaged across all means-tests conducted from 2000-2019 and presented in 2015 USD. VA spending tabulates all
spending by the VA per enrollee-year. Outpatient visits and primary care visits tabulate the number of outpatient and
primary encounters per enrollee-year at the VA, and across VA and community care (total).
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Table 2.2: Coefficient Estimates: Direct Effects

All TM dual eligibles sample
2014 mean Coefficient

estimate
2014 mean Coefficient

estimate
(1) (2) (3) (4)

Panel A. Utilization
Community visits (all) 5.475 0.235 10.457 0.177

(0.033) (0.067)
Community spending (VA-financed) 302.25 69.85 346.77 67.37

(5.52) (9.40)
Visits at VA clinics 6.181 -0.082 6.861 -0.086

(0.020) (0.031)
RVUs as VA clinics 1779.26 -26.92 1981.03 -20.71

(8.50) (14.42)
Spending at VA clinics 2440.32 -42.03 2696.07 -32.99

(11.51) (18.36)
Total visits (VA + community) 11.69 0.150 17.32 0.091

(0.041) (0.076)
Total VA-financed spending 2742.57 27.82 3042.83 34.38

(13.35) (21.59)
Panel B. Clinic characteristics
Wait time 38.53 -2.25 41.19 -2.65

(0.10) (0.15)
Distance (miles) 54.12 -1.28 54.36 -1.15

(0.06) (0.08)

Notes: Table presents coefficient estimates from Equation 2.5, for the whole sample (column (2)) and for the TM
sample (column (4)) for whom the universe of community utilization is observed. Columns (1) and (3) present the
year -1 (2014) mean in each sample for interpretation. Community visits (all) indicate all visits at non-VA providers
across VA and Medicare financing. Community spending (VA-financed) indicates community spending that is VA
(not Medicare) financed. RVUs at VA clinics is a measure of utilization in which procedures are weighted identically
to Medicare. VA spending is attributed to specific visits from accounting data by HERC. Total visits (VA + all
community) captures all visits at VA and non-VA providers across VA and Medicare financing. Total VA financed
spending include all VA spending across VA clinics and community care. Wait time and drive time indicate the
average wait time and drive time patients experience conditional on receiving any care, across VA and community
options, where community wait times are calculated based on the time between authorization and visit, and VA wait
times are calculated as described in the main text. Robust standard errors in parenthesis clustered at the enrollee level.
All utilization outcomes are for outpatient care.
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Table 2.3: Heterogeneity in Responses to w

By income By health status
All Poorer (below

medium)
Richer (above

medium)
Sicker
(above
median

utilization)

Healthier
(below
median

utilization)
(1) (2) (3) (4) (6)

Coefficient estimate -0.008 -0.010 -0.008 -0.012 -0.008
(0.002) (0.001) (0.001) (0.001) (0.001)

Notes: Table presents coefficient estimates the clinic-level 2SLS specification in Equation 2.8 for everyone, and split
by below vs above income, and below versus above median prior VA utilization (as a proxy for health status). The
dependent variable is the log of the market share of each clinic among Choice-ineligible veterans in a given demo-
graphic group. Market shares calculated using HRRs as market definitions. Instruments are deciles of choice exposure
interacted with a post indicator. First stage F-statistic = 16. Regressions are weighted by the market size of each
demographic group across HRRs. Robust standard errors in parenthesis.

Table 2.4: Parameter Estimates of γ and α: No Heterogeneity

δ jmt = ln(s jmt)− ln(s0 jmt)

OLS IV deciles
exposure

IV contin-
uous

exposure
(1) (2) (3)

γ : coefficient on wait time 0.0004 -0.0198 -0.0194
(0.0003) (0.0021) (0.0052)

α : coefficient on price -0.0079 -0.0079 -0.0079
(0.0004) (0.0004) (0.0004)

γ

α
: cost of delay ($/day) -0.05 2.52 2.47

(0.037) (0.23) (0.66)
Clinic fixed effects (φ j) � � �
Time fixed effects for VA and community care

(
χVA

t ,χC
t
)

� � �
Average elasticity w.r.t. w 0.017 -0.932 -0.913
Average elasticity w.r.t. p -0.296 -0.294 -0.294

Notes: Table presents parameter estimates from a simplified version of Equation 2.10, ln(s jmt)− ln(s0 jmt) = ψVA
o +

ψC
o + χVA

t + χC
t +φ j + γ0w jt +α0 p jmt + ξ jmt , with variation in prices coming from the Choice Act. In column (1), I

use all residual variation variation in wait times. In column (2), I instrument for wait time using interaction between
deciles of exposure share and a post indicator (first stage F-statistic = 43). In column (3), I instead use a continuous
interaction (first stage F-statistic = 69). Figure 2.5 provides a visual representation of the the first stage. Elasticities are
calculated for each clinic with non-zero prices or wait times. Robust standard errors in parenthesis. Standard errors on
the cost of delay calculated via the delta method.
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Table 2.5: Counterfactuals: Status Quo Waiting Regime vs. Market-Clearing Prices

Status quo Price regime
w-regime

(1) (2)

Panel A. Prices and wait times
Median clinic wait (VA) 40.84 0
Median copay charged (VA) 5.04 78.41
as a share of cost of service 0.01 0.20

Panel B. Changes in allocations
Obtained care in quarter 0.42 0.41
Share displaced relative to s.q.
out of VA care 0.16
out of any care 0.04
Panel C. Characteristics of veterans receiving care
VA care
Log income 10.31 10.35
Log health costs 8.36 8.32
Age 71.49 70.75
Any care
Log income 10.63 10.64
Log health costs 7.91 7.90
Age 74.75 74.56

Notes: Table presents status quo (column (1)) and counterfactual (column (2)) prices, wait times, and allocations
spanning the pre-Choice and post-Choice period. In column (2), I search for a vector of VA prices (uniform at each
clinic in each quarter) that reach an equilibrium (given by Equation 2.11) with no wait times for the same period,
keeping total VA utilization constant. Wait times and prices vary across clinics and time based on excess demand: this
table reports the median. Panel C reports the average characteristics of consumers served at the VA, or at all, including
VA and community care, under the two regimes.
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Table 2.6: Welfare Effects of Waiting Regime vs. Market-Clearing Prices

∆: status quo (waiting) - price regime

All ∆CS > 0 ∆CS < 0
(1) (2) (3)

∆ consumer surplus ($ per veteran, per year) -57.25 18.37 -150.46
From change in allocation -34.28

From change in payoff | allocation -22.98
Revenue -62.90
Total difference in welfare -112.95
∆ as a share of total achievable surplus (%) 24
Pop share 0.55 0.45
Log income 10.23 10.58
Log health util 8.05 7.89
Age 73.77 71.67

Notes: Table presents changes in welfare per enrollee, per year from the status quo rationing regime, relative to a
counterfactual equilibrium in which VA care can be obtained immediately with no wait, at a price per clinic that
is uniform across veterans in a market and time period (the counterfactual presented in column (2) of Table 2.5).
Column (1) presents changes in consumer surplus, decomposed into changes in allocative efficiency and changes in
payoff conditional on allocation, and revenue. Columns (2) and (3) split the sample into those who prefer the status
quo wait-time rationed regime (column (2)) and those who prefer a price regime (column (3)) and presents consumer
surplus and characteristics among those two groups. Consumer surplus calculated using the log-sum formula (Train,
2009).

Table 2.7: Evaluating the Efficiency-Redistribution Trade-off

Share of revenue redistributed
0 0.25 0.5 0.75 1

Share better off under waiting regime after transfer 0.55 0.21 0.10 0.05 0.03

Notes: Table presents the share of veterans who are better off under the status quo waiting regime after accounting for
redistributed revenue, modulating the extent of redistribution between zero (all revenue is burnt) and one, where all
revenue is uniformly redistributed lump-sum. Share better off determined by consumer surplus calculated using the
log-sum formula (Train, 2009).
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Table 2.8: The Performance of Policy Instruments

Price
mech.

Choice Expand to
MISSION

Expand to
everyone

Copay ↑
from $15

to $50
(1) (2) (3) (4) (5)

All differences are relative to the status quo
∆ CS ($ per veteran, per year) 57.25 1.93 4.28 7.63 11.50
∆ Revenue - Costs 62.90 -3.22 -7.61 -17.59 2.52
∆ Welfare 122.95 -1.84 -4.72 -6.56 14.40

Notes: Table presents consumer surplus, government revenue net of costs, and total welfare (adding CS and revenue)
under the price mechanism (column (1), re-created from Table 2.6) and factual and counterfactual policies, relative
to the status quo. Column (2) presents the welfare effects of the Choice Act, column (3) considers the expansion
in eligibility requirements under the MISSION Act of 2018 (115th Congress, 2018), and column (4) subsidizes ev-
eryone. Column (5) increases copayments from $15 to $50 (undoing a policy change in 2001 that reduced primary
care copayments from just over $50 to $15) for the 25% of veterans who are already obligated to pay copayments.
Consumer surplus calculated using the log-sum formula (Train, 2009).
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2.10 Appendix

2.10.1 Additional Analyses of the Choice Act

Figure B.1: Effect of Choice Eligibility on Utilization, TM Sample
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Notes: Notes: Figure presents event study coefficient estimates from Equation 2.4, estimated on on the TM sample. In
sub-figure (a) the outcome is all community outpatient visits per year. Sub-figure (b), (c), and (d) plot VA visits, total
visits (VA + community), and total VA spending. Total VA spending is calculated based on per-visit cost estimates
at the VA from HERC and claims for VA-financed community care. Estimates restricted to a sample living 10 miles
from the 40 mile eligibility threshold.
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Figure B.2: Effects of Choice on Characteristics of Chosen Clinic
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Notes: Figures present event study coefficients from Equation 2.4 with the outcomes equal to the average wait time (a)
and travel distance (b) at the VA and across VA and community care. Wait times at community care are determined by
the time between the authorization for community care and the date of the visit. Wait times for VA visits are calculated
as described in the main text. Effects estimated on the whole sample of enrollees living 10 miles from the 40 mile
eligibility threshold.

Figure B.3: Effect of Choice Eligibility on Primary Care Utilization
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Notes: Figure presents event study coefficient estimates from Equation 2.4 for primary care specifically. In sub-figure
(a) the outcome is all community outpatient visits per year, and in sub-figure (b) I plot VA visits. Effects estimated on
the whole sample of enrollees living 10 miles from the 40 mile eligibility threshold.
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Figure B.4: Equilibrium Effects: New Patient Wait Times
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Notes: Figure replicates Figure 2.5c, calculating wait times only for new patients. The figure excludes 2011 and 2012
because patients are defined as new based on having no visits in two-year look back period.
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Figure B.5: Screening Effects of w: Full panel
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Notes: Figure plots the covariance between the wait times at a clinic and the characteristics of patients seeking visits
at that clinic, residualized of clinic and market-by-time fixed effects. Figures (a) and (b) use the raw average wait time,
while figures (c) and (d) first residualize the wait times for each visit on the patient characteristics for a given visit and
take the average of that residualized measure. The positive covariance between wait times and income indicates that
at higher wait times, lower income veterans are less likely to choose a given clinic. The negative relationship between
prior utilization and wait times indicates that at higher wait times, sicker (as proxied by lower VA spending) veterans
are less likely to choose a given clinic. These patterns are consistent with the patterns documented using only the
Choice Act variation in Section 2.4.3.
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Table B.1: Effects on Mortality and Inpatient Admissions

Direct effects Equilibrium effects
10-mile window Market-level, inelig. only

(1) (2)

Log(mortality) -0.012 0.361
(0.026) (0.199)

Log(inpatient admits) -0.031 -0.294
(-0.030) (0.185)

Year FEs � �
Closest PC-site FEs �
Market FEs �

Notes: Table presents results from Equation 2.5 (column (1)), aggregating observations to the closest-VA clinic by
year level. The outcome is equal to log mortality and log inpatient admissions. Column (2) estimates Equation 2.7,
with the outcome equal to log mortality and log inpatient admissions, among only ineligibles to investigate equilibrium
effects on health.
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Table B.2: Direct effect of Choice: Robustness

All TMs
Baseline Include

closest
clinic x

year
effects

Baseline Include
closest
clinic x

year
effects

(1) (2) (3) (4)

Panel A. Utilization
Community visits (all) 0.235 0.149 0.177 0.108

(0.033) (0.036) (0.067) (0.072)
Community spending (VA
-financed)

69.85 55.77 67.37 50.63

(5.52) (5.71) (9.40) (9.73)
Visits at VA clinics -0.082 -0.097 -0.086 -0.070

(0.020) (0.022) (0.031) (0.033)
RVUs as VA clinics -26.92 -41.29 -20.71 -31.43

(8.50) (9.05) (14.42) (15.27)
Spending at VA clinics -42.03 -47.50 -32.99 -29.02

(11.51) (12.48) (18.36) (19.88)
Total visits (VA + community) 0.150 0.074 0.091 0.037

(0.041) (0.045) (0.076) (0.081)
Total VA-financed spending 27.82 8.27 34.38 21.62

(13.35) (14.37) (21.59) (23.18)
Panel B. Clinic characteristics
Wait time -2.25 -0.75 -2.65 -0.81

(0.10) (0.09) (0.15) (0.15)
Distance (miles) -1.28 -0.84 -1.15 -0.77

(0.06) (0.05) (0.08) (0.08)

Notes: Table presents coefficient estimates from Equation 2.5, for the whole sample (columns (1) and (2)) and for
the TM sample (columns (3) and (4)) for whom the universe of community utilization is observed. Table presents
robustness to including closest clinic by year fixed effects (columns (2) and (4)). Community visits (all) indicate all
visits at non-VA providers across VA and Medicare financing. Community spending (VA-financed) indicates commu-
nity spending that is VA (not Medicare) financed. RVUs at VA clinics is a measure of utilization in which procedures
are weighted identically to Medicare. VA spending is attributed to specific visits from accounting data by HERC.
Total visits (VA + all community) captures all visits at VA and non-VA providers across VA and Medicare financing.
Total VA financed spending include all VA spending across VA clinics and community care. Wait time and drive time
indicate the average wait time and drive time patients experience conditional on receiving any care, across VA and
community options, where community wait times are calculated based on the time between authorization and visit,
and VA wait times are calculated as described in the main text. Robust standard errors in parenthesis clustered at the
enrollee level.
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Wait time eligibility analysis Unlike distance eligibility, which impacts all care for all time peri-
ods in the post period, wait time eligibility is determined based on endogenous market conditions,
making it harder to analyze cleanly. Despite this, I use the variation from the wait time eligibility
condition under Choice with the following specification:

ygst = β1{WaitEliggst}+θgs + τt + εgst (2.14)

at the geography g (HRR), specialty s, and quarter t level. WaitEliggst is an indicator for whether a
given geography, specialty, and time is wait time eligible, θgs capture specialty by geography fixed
effects, and τt capture quarter fixed effects. This specification captures differences in outcomes ygst

in time periods and markets in which patients are wait-time eligible, relative to overall time trends
and levels in the market. My two primary outcomes are interest are VA authorizations for commu-
nity care, internal VA documentation that indicates that a patient is allowed to obtain community
care, and VA utilization in a given specialty, market, and quarter. I focus on authorizations instead
of claims because authorizations are more amenable to accurately capturing specialty categoriza-
tions, as both authorizations and VA utilization use the same method of specialty classification.
This classification differs from information contained in the claims data. Authorizations under-
state the extent of utilization relative to claims because authorizations cover a period of time in
which multiple visits may occur. Community utilization in Table B.3 is therefore not comparable
to Table 2.2 in magnitudes. The primary purpose of this exercise is to examine qualitative patterns.

Table B.3 documents that community authorizations do indeed increase in wait time eligible quar-
ters, but that this is not accompanied by a reduction in VA visits. This is consistent with the
hypothesis that the VA is capacity constrained, as the ability to substitute to community care does
not reduce overall utilization at VA clinics.

Table B.3: Wait Time Eligibility Results

Coefficient estimate

Community care authorizations / quarter 0.0010
(0.0000)

VA visits / quarter 0.0004
(0.0002)

Notes: Figure presents results from Equation 2.14 at the specialty, geography, and quarter level. Community care is
measured in authorizations, not visits. Authorizations generally encompass multiple visits. Robust standard errors in
parenthesis.
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2.10.2 Model Details

Generating an unselected distribution of w jt To generate an unselected distribution of waiting
times w jt , I zoom in to the smallest unit of analysis to be as conservative as possible: the doctor
by day level. For every day and at every physician where I do not observe an appointments made,
I assume that the appointment date of the first subsequent appointment with that physician was
available to any arriving patient at the initial index date. This is consistent with a First-Come-First-
Served protocol, but would be violated if physicians tailored wait times to specific patients.

If a physician does not have any subsequent appointments for 90 days, I consider that physician
unavailable. I then take the average all “augmented” wait times across physicians and days within a
clinic to obtain the unselected distribution of wait times. Figure B.6 re-creates Figure 2.5c for both
the raw mean and the adjusted “unselected” distribution of wait times and shows similar results.

Figure B.6: Effects of Choice exposure on the raw mean and unselected wait times
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Notes: Figure plots coefficients from Equation 2.6 using both raw averages and the constructed unselected distribution
of wait times, described above.
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Figure B.7: Correlation Between γi and αi

-.0
15

-.0
1

-.0
05

0
.0

05
α i

-.025 -.02 -.015 -.01 -.005 0
γi

Notes: Table presents binned scatterplot of the estimated relationship between γi (cost of waiting) and αi (price sensi-
tivity).
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Table B.4: Parameter Estimates: Heterogeneity

Prefs for

VA

Prefs for

community

Distance Wait times Prices

(1) (2) (3) (4) (5)

Age bin 2 0.144 0.523 -0.011 0.002 0.002

(0.223) (0.161) (0.007) (0.003) (0.005)

Age bin 3 0.336 0.786 -0.009 0.003 -0.008

(0.206) (0.149) (0.007) (0.003) (0.005)

Age bin 4 0.433 1.172 -0.014 0.003 -0.006

(0.198) (0.143) (0.006) (0.003) (0.005)

Income bin 2 0.127 0.278 -0.010 0.001 0.002

(0.145) (0.089) (0.005) (0.003) (0.003)

Income bin 3 0.026 0.489 -0.013 0.005 0.004

(0.174) (0.095) (0.006) (0.003) (0.004)

Income bin 4 -0.065 0.407 -0.015 0.004 0.007

(0.201) (0.099) (0.007) (0.004) (0.004)

Income bin 5 -0.339 0.351 -0.019 0.004 0.003

(0.218) (0.101) (0.007) (0.004) (0.004)

Missing income -0.209 0.421 -0.022 0.003 0.000

(0.119) (0.071) (0.004) (0.002) (0.003)

Prior util. bin 2 0.367 -0.260 0.008 -0.000 -0.005

(0.083) (0.042) (0.003) (0.001) (0.002)

Prior util. bin 3 0.430 -0.522 0.018 -0.000 -0.012

(0.082) (0.044) (0.003) (0.001) (0.002)

Prior util. bin 4 0.499 -0.824 0.030 -0.002 -0.006

(0.084) (0.047) (0.003) (0.001) (0.002)

No prior VA util. -2.311 -0.028 -0.006 0.009 0.008

(0.128) (0.040) (0.003) (0.002) (0.001)

New enrollee -0.727 -0.216 0.006 0.008 0.012

(0.172) (0.079) (0.005) (0.003) (0.003)

Priority 2 -0.271 -0.118 -0.000 0.002 0.001

(0.100) (0.051) (0.003) (0.001) (0.002)

Priority 3 -0.143 -0.092 -0.007 0.001 -0.004

(0.085) (0.043) (0.003) (0.001) (0.002)

Priority 4 -0.550 -0.157 0.002 -0.001 -0.004

(0.128) (0.066) (0.004) (0.002) (0.003)

Priority 5 -0.402 -0.242 -0.006 0.003 -0.009

(0.086) (0.044) (0.003) (0.001) (0.002)

Priority 6 -0.259 -0.117 -0.010 0.003 -0.009

(0.148) (0.069) (0.005) (0.002) (0.002)

Notes: Table presents parameter estimates of heterogeneity parameters. Low age bins imply low ages. Low income
bins imply low income. Low lagged utilization bins imply low utilization.
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Chapter 3

The Effects of Floodplain Regulation on
Housing Markets

3.1 Introduction

Floods cause an estimated $32 billion in damages per year, making them the costliest form of nat-
ural disaster in the United States (Wing et al., 2022). These losses are expected to grow by 25%
by 2050, reflecting both an increase in flood hazard due to climate change and a concentration of
population growth in risky locations (Wing et al., 2022). A central concern among policymakers
and economists is that these trends are driven by a wedge between social and private values for
flood safety (Kydland and Prescott, 1977; Coate, 1995; Ben-Shahar and Logue, 2016). Indeed, a
large body of work has documented that private incentives to reduce flood risk are muted by both
misperceptions of that risk and expectations of government aid (Gallagher, 2014; Kousky et al.,
2018a; Davlasheridze and Miao, 2019; Mulder, 2021; Bakkensen and Barrage, 2022; Landry et
al., 2021a; Wagner, 2022; Hsiao, 2023). To correct these market frictions, policymakers demar-
cate especially risky locations as “Special Flood Hazard Areas” (SFHAs) and regulate them more
strictly. Inside the SFHA, developers are required to build elevated homes, and homeowners face
a flood insurance purchase mandate and higher flood insurance prices.1

This paper investigates the impact of floodplain regulation on the location of new construction,
housing prices, estimated flood damages, and social welfare. The effect of this coarse policy on
welfare is ambiguous, as it might not reduce damages more than the costs it imposes via distortions

1The policy instrument of creating a binary distinction of “floodplain” or not and imposing both insurance and
building requirements is not unique to the United States. EU countries and Australia also manage flood risk via the
creation of flood maps that influence both flood insurance and building codes (de Moel et al., 2009; Golnaraghi et al.,
2020).
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in the housing market. In this paper, we study the extent to which floodplain regulation reduces
flood damages via both the location and flood-safe adaptation of construction, and we weigh these
benefits against the costs of that regulation. We do so by studying effects around the boundaries of
the regulated area and around the date of the policy’s introduction. We then embed these empirical
results in a model of residential choices and construction to estimate the market-wide effects of
floodplain regulation and investigate the welfare impacts of current and counterfactual policies.

To conduct our analysis, we assemble a new comprehensive and spatially-granular dataset to de-
scribe regulation, real estate development, and flood risk in Florida over a 40-year time horizon.
Florida is both populous and flood-prone, with 45% of land currently designated as a high-risk
flood zone. Our dataset combines maps of historic flood zone extents, granular remote-sensing-
based measures of historic and current development, administrative data describing house prices
and attributes, and the flood risk profile of current and counterfactual development, generated from
a hydrological model. Importantly, this dataset extends to the first maps delineating regulated ar-
eas, which we digitized from archival scans. This allows us to study the policy’s effect on long-run
development and confirm the validity of our empirical approach. And because our dataset de-
tails both adaptation status and location decisions, as well as how flood damages vary along these
margins, we are able to comprehensively measure the policy’s effect on flood risk.

We use two complementary empirical strategies — a spatial regression discontinuity and an event
study around the regulation’s implementation — to characterize the policy’s risk reduction effects
along two margins: reduced construction and mandatory adaptation in risky areas. Our spatial
regression discontinuity design compares current development and house prices on either side of
the regulatory boundary delineated at the time of the policy’s introduction in the 1970s and 1980s.
Our analysis relies on the assumption that flood risk and other amenities are smooth through these
initial regulatory boundaries. While unlikely to hold in modern maps, this assumption is reasonable
for the original maps because mapping technologies were rudimentary and homeowners lacked the
ability to influence the initial regulatory boundaries.2 Importantly, we validate this assumption by
demonstrating smoothness in pre-period land use through the historic boundaries. We document
that the modern-day share of developed land is 9% lower just inside the regulated area, highlighting
the potential for the policy to reduce damages by shifting construction out of risky areas. This
decrease in new construction is not accompanied by a reduction in prices – if anything, prices are
slightly higher just inside the regulated area – indicating that floodplain regulation imposes costs
on developers, which they at least partially pass through to consumers.

We also document reduced damages on the intensive margin via building standards that impose
2After the initial maps were drawn, landowners could deregulate developed parts of their properties either by

petitioning to correct a mistake or physically elevating land to reduce its risk. Since maps are updated over time, this
behavior produces a negative correlation between development and floodplain designation in modern flood maps.
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mandatory adaptation of houses built in the floodplain. Building on Wagner (2022), we exploit
the sharp timing of the policy’s introduction in an event study design. We document that building
standards reduce average flood damages by 55%, or 3% of average home value. Though build-
ing standards generate social value via reduced damages, we also show that homeowners do not
privately value this reduction in flood risk. This result is consistent with prior work documenting
a large wedge between social and private valuations of flood risk, implying scope for welfare-
improving intervention. It also suggests that the increase in price across the regulatory boundary
is attributable to construction costs, not differences in willingness-to-pay for adapted homes.

Together, our empirical results yield four facts. First, floodplain regulation suppresses construction
in high-risk areas. Second, the policy’s adaptation mandate binds, reducing flood risk. Third, the
cost of mandating adaptation is large enough that the price effect of the resulting inward shift of
housing supply dominates at the boundary. Fourth, our setting exhibits a wedge between private
and social valuations for flood safety, yielding the potential for the policy to improve social wel-
fare. However, these results alone are insufficient to quantify the total effect of the policy on either
damages or social welfare. The policy’s effects depend on the location of counterfactual develop-
ment: both risk and amenities vary across space. And due to the large size of the regulated area,
house prices in unregulated locations may be affected, impacting relative incentives to develop
across space and housing prices and consumer welfare market-wide. A complete welfare analy-
sis of status quo or alternative policy designs requires quantifying both benefits via market-wide
reductions in flood risk and costs via distortions in the housing market.

We therefore specify and estimate a model of residential choice and real estate development. In
our model, individuals maximize utility when choosing census-tract-by-flood-zone locations, as a
function of prices, floodplain status, and location characteristics including unobserved amenities.
Developers build houses when doing so is more profitable than the outside option of land use; hous-
ing profits depend on housing prices and construction costs, which include a cost of compliance
with flood-safe building codes. Our quasi-experimental results inform our model and estimation
strategy. Because the event study estimates imply that homeowners are unwilling to pay for flood
safety, developers of housing do not expend costs to adapt absent policy intervention. We esti-
mate effects of floodplain designation on consumer choices and construction costs by matching
the spatial discontinuity estimates around the regulatory boundaries.

We first use the model to quantify the policy’s impact on expected flood damages. We find that the
policy reduces expected flood damages by 62%, or approximately $3.5 billion per county. Both
the extensive-margin location channel and intensive-margin adaptation channel are quantitatively
important. The gains from mandatory flood-safe construction in regulated areas account for the
majority, or 84%, of this reduction. The policy’s incentive to build new houses in safer areas
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contributes the remaining 16%. Risk reductions are driven by effects on both the demand for and
supply of housing. Our parameter estimates imply that building standards increase construction
costs by 24%. Consumers are willing to pay 27% more for an equivalent house to avoid living in
a regulated area.

We conclude by developing a normative framework that allows us to estimate and compare social
welfare under current and counterfactual policies. We define social welfare as the sum of con-
sumer surplus, producer surplus, government revenue from each policy, and uninternalized flood
damages, due either to internalities or externalities. Because the wedge between private and social
valuation of flood risk could be due to misperceptions, our welfare framework allows consumers’
decision and experienced utility to diverge (Allcott and Taubinsky, 2015). We contrast the status

quo policy regime against both an unregulated benchmark and a first-best corrective tax in the
spirit of Pigou (1920) equal to the social cost of flooding, which varies by location and adaptation
status. This corrective tax is not only a useful theoretical benchmark, but a plausible extension of
recent policy changes which have introduced more property-specific granularity in flood insurance
premiums.3

The current policy achieves approximately the socially-efficient degree of damage reductions and
improves social welfare substantially relative to an unregulated benchmark, an increase of $5,919
per newly-developed house. However, these social welfare gains are 27% lower than under a first-
best corrective tax. The current policy imposes distortions in the housing market it attempts to
correct, relying more on adaptation and less on relocation than is socially-optimal. In some regu-
lated but relatively safe areas, mandating adaptation is costlier than its benefits, while in the riskiest
locations, development is still inefficiently high despite strong disincentives to build. Motivated by
this shortcoming, we propose a simple change to the current policy: improved targeting of regu-
lated areas. By imposing regulation only in locations where the benefits of mandating adaptation
exceed costs, fewer locations are regulated and fewer homes are adapted, but flood risk levels re-
main similar to under the status quo. When well-targeted, the simple binary regulation can achieve
94% of first-best social welfare gains, or $7,567 per newly-developed house.

Our work contributes to several literatures. Most directly, we contribute to a literature analyzing
regulations designed to reduce damages from floods and other natural disasters, including effects
on house prices (e.g. Hino and Burke (2021); see Beltrán et al. (2018) for a survey) and in-
place adaptation (Mulder, 2021; Baylis and Boomhower, 2021a; Wagner, 2022). We build on this
literature, first, by jointly studying the impacts of floodplain regulation on both the location and
type of construction, which together determine flood damages.4 Furthermore, we contribute by

3See The Congressional Research Service for an overview of this policy change and The National Flood Insurance
Program for more details.

4This complements work studying the effects of related policies on population flows, including the introduction
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developing an equilibrium framework to trade off the damage-reducing benefits and regulatory
costs of current and counterfactual policy designs.

We also contribute to a literature documenting frictions in mitigating or adapting to climate risk
(Annan and Schlenker, 2015; Deryugina and Kirwan, 2018; Kousky et al., 2018a; Mulder, 2021;
Bakkensen and Barrage, 2022; Wagner, 2022; Baylis and Boomhower, 2023; Hsiao, 2023; Balboni,
2024). Beyond documenting frictions, we investigate the extent to which status quo second-best
corrective policy can reduce resulting social welfare losses. In doing so, we relate to other work
studying such policies, addressing internalities or externalities in other settings with coarse labels
(e.g. Barahona et al. (2023)) and standards and attribute-based regulation (e.g. Ito and Sallee
(2018); Kellogg (2020); Jacobsen et al. (2020, 2023)).

Methodologically, we relate to other work embedding boundary discontinuity designs in discrete
choice frameworks (Bayer et al., 2007; Turner et al., 2014; Song, 2021; Anagol et al., 2023). Our
model also incorporates recent estimates of location-specific supply elasticities from Baum-Snow
and Han (2023) to characterize equilibrium changes in housing supply, as in Almagro et al. (2023).

The next section describes the institutional details of the National Flood Insurance Program, in-
cluding the regulations imposed inside the SFHA and the process of generating flood maps that
distinguish between SFHA and non-SFHA land. Section 3.3 describes our setting — the state of
Florida — and data. In Section 3.4, we present quasi-experimental evidence of the causal effects
of SFHA designation. We specify and estimate our equilibrium model of the housing market in
Section 3.5. Section 3.6 simulates distributions of development and prices and discusses welfare
under factual and counterfactual policies. In Section 3.7, we conclude.

3.2 Institutional Background

3.2.1 The National Flood Insurance Program and Special Flood Hazard Ar-
eas

Congress established the National Flood Insurance Program (NFIP) in 1968 in response to high
flood losses and a perception that lackluster local regulation permitted excessive construction in
high-risk areas (Burby, 2001). Today, the NFIP, administered by the Federal Emergency Manage-
ment Authority (FEMA), remains the primary provider of flood risk protection and regulator of
floodplain development in the United States. The NFIP underwrites over 90% of flood insurance

of the National Flood Insurance Program (NFIP) (Peralta and Scott, 2024) and Home Seller Disclosure Requirements
(Lee, 2022).
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policies, creates the most widely-used measures of flood risk through its flood mapping process,
and sets construction standards for buildings in areas mapped as high risk (Kousky et al., 2018b).

After the NFIP was established in 1968, the program was rolled out to communities throughout
the country in the late 1970s and 1980s.5 When a community joined the NFIP, it obtained a
Flood Insurance Rate Map (FIRM), produced by the NFIP using a hydrological study. After the
FIRM was produced, developers of new buildings in specific areas had to comply with flood safety
regulations, and flood insurance became available to homeowners.

In both the initial FIRM and subsequent, updated flood maps, an important distinction for both
insurance policies and floodplain regulation is between areas that are determined to be high-risk,
known as Special Flood Hazard Areas (SFHAs), and those that are not. In this paper, we will refer
to the SFHA as the “flood zone.” All new construction and substantial home improvements in the
flood zone must comply with building regulations that require that a home’s lowest floor lie above
the Base Flood Elevation (BFE).6 In the flood zone, some homeowners face a flood insurance
mandate and all homeowners face higher flood insurance prices for otherwise-equivalent houses.7

Approximately 50% of homeowners in the flood zone hold a flood insurance policy, compared to
2% outside of the flood zone (Bradt et al., 2021). In Florida, annual flood insurance premiums
inside the flood zone cost twice as much as outside the flood zone: $820 compared to $435.

Throughout the United States, 10% of land8 and 6% of properties are in the flood zone (First
Street Foundation, 2020). Due to both climate change and population growth, the share of the US
population at a level of risk that triggers SFHA classification is expected to rise from 13% to 15%
by 2050 (Wing et al., 2018). This makes flood-zone-induced building requirements one of the most
common forms of zoning regulation in the U.S., comparable to minimum lot area requirements,
which apply to an estimated 16% of single-family homes (Song, 2021).

3.2.2 The Flood Mapping Process

Our spatial regression discontinuity approach relies on the assumption that flood zone delineation
is a coarsening of a continuous measure of flood risk and does not follow the contours of true
discontinuities in flood risk or other amenities. The validity of this assumption relies on the details

5Communities are geographic units specific to the NFIP. They are generally municipalities or unincorporated areas
of a county.

6While popular images of elevated houses commonly show those on posts or piles, this adaptation tends to appear
only in close proximity to the coast, where wave action can destroy walls. In the mostly inland areas we study, enclosed
elevated foundations are more common. This approach allows garages and unfinished basements to be constructed at
ground level. See Figure C.1 for an example of a house with an elevated foundation.

7Homeowners with federally-backed mortgages are legally required to purchase flood insurance.
8Authors’ calculations using 2017 flood maps.
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of the mapping technology. In our specific context, there is substantial scope for imprecision in the
historic boundaries we exploit.

The accuracy of a flood map depends on both the accuracy of the estimates of land elevation and
the accuracy of the hydraulic model which simulates the amount of excess water in a flood event
(National Research Council, 2009). Historically, engineers estimated land elevation based on US
Geological Service contour lines, which suffer absolute elevation error on the order of meters.9

After floodwater heights have been mapped, the floodplain is delineated by transforming vertical
flood elevation profiles into horizontal floodplain boundaries. Because the same elevation of flood-
waters yields a much wider floodplain in flat than steep areas, the floodplain boundary delineation
is four to five times more uncertain in flat areas, such as Florida, compared to hillier areas (Na-
tional Research Council, 2009). The floodplains of inland Florida are particularly uncertain since
their drainage is dominated by shallow water flow, an atypical landscape for which FEMA does
not specify hydrology and hydraulics guidelines.

After the construction of the initial flood map, FEMA is required to update these maps every 5
years to account for improved mapping technology and changes in development that may impact
flood risk (National Research Council, 2009). In practice they are often updated much less fre-
quently: as of 2017, more than 50% of maps were more than 5 years old (U. S. Office of Inspector
General, 2017). In between official remapping cycles, property owners can request map amend-
ments to correct inaccuracies (National Research Council, 2009) or petition for a map carve-out if
homeowners have physically changed the land elevation (e.g. by adding dirt, called “fill”).10

3.3 Setting and Data

Our empirical context is the state of Florida, one of the most flood-prone and populous states in the
United States. This makes it an ideal setting to study how floodplain regulation impacts housing
markets and disaster damages. Nearly 50% of land and 19% of homes in Florida are located in
the flood zone, underscoring the relevance of this form of regulation for real estate development
across the state. (First Street Foundation, 2020). Florida alone accounts for 35% of the nation’s
NFIP policies.11 We bring together four primary sources of data to conduct our analysis.

9Today, LiDAR technology has improved the accuracy of land elevation models. Powerful computing has also
improved the precision of hydraulic modeling over time.

10According to a floodplain manager in Florida, in the early years of the program the scale of paper maps meant
that fill-based carve-outs of the flood zone had to be at least 6 acres (personal communication). Because of this
requirement, most houses did not find it cost-effective to pursue a carve-out. More recently, the adoption of digital
maps has enabled these carve-outs at a smaller scale, and they have subsequently become more common.

11See Lingle and Kousky (2018) and https://nfipservices.floodsmart.gov//reports-flood-insurance-data for details.
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Digitized Historic and Current Flood Maps Our analysis is organized around archival scans
of early flood maps that we digitized for parts of eleven counties.12 We aimed to collect the first
Flood Insurance Rate Maps (FIRMs) ever drawn. In a few instances, constraints on the availability
or formatting of these first maps made this impossible. In these cases, we were able to digitize
maps that were drawn only a few years later. All but two of the 120 panels we digitized became
effective between 1977 and 1984. Appendix 3.10.2 describes the sample selection process in more
detail.

Figure 3.1a presents an excerpt of these digitized flood maps. Figure 3.1b shows the geographic
coverage of our digitized sample. While budget constraints prohibited digitizing the entire state of
Florida, we are able to obtain good coverage of most major population centers. Table 3.1 illustrates
that our sample covers 10.5% of the land mass in Florida, but 14% of all homes, reflecting the fact
that our digitized areas are more developed and populous than average.

We pair our newly-digitized historic flood maps with snapshots of flood maps for the whole state
from 1996 and 2017. In our digitized counties, 32% of land is in the flood zone.

Satellite-Derived Land Use Data Figure 3.1a demonstrates that the floodplain distinctions are
detailed, necessitating spatially-granular data on land use to study outcomes on either side of the
boundary. We use two datasets to measure land use at two points in time. The first is US Geological
Survey data on land use patterns contemporaneous to the time the original maps were drawn. This
dataset consists of a 30x30 meter raster describing land use and land cover as belonging to one
of nine mutually exclusive meta-categories, including urban/built-up land, agriculture, wetland,
and water.13 The categories were determined based on high-altitude photographs taken between
1971 and 1982 (1976 is the median and mode image date). We define “developed” land in this
data as land falling into the “urban/built-up” category, which includes land used for residential,
commercial, industrial, or transportation purposes. For current land use, we employ the National
Land Cover Database (NLCD) from 2016, which classifies Landsat remote sensing imagery into
similar categories of land cover, also in a 30x30 meter grid. Our main category of interest, “devel-
oped”, indicates land that is covered by a mixture of constructed materials and mostly-lawn-grass
vegetation.

Table 3.1 panel A presents land use summary statistics for the state of Florida and our digitized

12These archival scans were downloaded from FEMA’s Map Service Center
https://msc.fema.gov/portal/advanceSearch. In order to maximize power, we prioritized areas with substantial
new development over the last 40 years. Our estimates on development when expressed in levels may therefore
generalize less well to other settings, but this choice will not affect results expressed as a percentage of new
development.

13Across Florida, the median number of raster grid cells per census tract is about 4900.
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subsample. Commensurate with Florida’s population boom between 1980 and 2020,14 Table 3.1
illustrates that development increased substantially both statewide (2.6x) and in our sample of
interest (2.5x).

Parcel Characteristics and NFIP Policies and Claims Data from the Florida Department of
Revenue property tax records from 2005 to 2020 provide detailed information about structures,
including sales prices and parcel outlines and location. We precisely geolocate the exact location
of any buildings on each parcel using Microsoft’s open-source building footprints dataset.15 In
Table 3.1 panel C we summarize average home prices statewide and in our sample of interest. We
also obtain historical data on home prices from the 1980 Census (Manson et al., 2021). We use
data from NFIP claims and policies from 2010 to 2018 to provide information about flood damages
for insured structures.

Flood Risk Model To assess the risk profile of development across policy regimes, we draw
on spatially-granular estimates of flood risk from a third-party hydrological model. This model
is produced by the First Street Foundation, a nonprofit organization devoted to quantifying and
communicating climate risks. First Street aims to improve on government-issued risk assessments,
which have been criticized for being out-of-date and inaccurate (Wing et al., 2022).16 First Street
takes into account sources of flooding that NFIP maps ignore (e.g. rainfall), provides estimates
for areas that FEMA had not been able to survey, and accounts for sea level rise due to climate
change (First Street Foundation, 2020). Although First Street’s model does not employ the “gold
standard” of surveying that FEMA uses in the highest-risk locations, their validation exercises
have achieved 80-90% flood extent similarity with historical observations and they are considered
to “fus[e] the accuracy of local studies with the spatial continuity of large-scale models” (Wing
et al., 2022). Nationally, First Street’s model estimates that NFIP flood maps identify only 60%
of areas that face a 1% chance of flooding every year (First Street Foundation, 2020). In Florida
this discrepancy is smaller, but First Street and FEMA disagree about the exact location of risk.
Appendix Table C.1 tabulates the discrepancies between FEMA’s flood maps and the First Street
model in our sample, showing that more than one-fifth of parcels are categorized differently by
FEMA and First Street.

14Between 1980 and 2020, Florida’s population more than doubled from 9.75 million to 21.5 million (US Census
Bureau, 2022).

15This dataset is also derived from satellite imagery, mostly captured in 2019. See
https://github.com/microsoft/USBuildingFootprints for more details.

16These criticisms regularly appear in the national media, see e.g., here and here.
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3.4 Quasi-Experimental Evidence

We begin our analysis by describing the effects of flood zone designation on flood risk, which
could occur both by shifting construction away from high risk areas and by mandating adaptation
through building standards in those risky areas. In this section, we employ a spatial regression
discontinuity design around the regulatory boundary to study the policy’s impact on the location
of new construction and perform an event study around the introduction of the policy to study its
effect on flood damages among built structures.

3.4.1 Spatial RD Around the Boundaries of Regulation

Our spatial regression discontinuity design compares current development and house prices on
either side of the historic regulatory boundary to investigate the extent to which floodplain reg-
ulations reduce construction in risky areas. We also use our boundary discontinuity to compare
differences in home prices in regulated versus unregulated areas. In the context of our model,
these two equilibrium points – prices and quantities inside and outside the regulated areas at the
boundary – will later allow us to estimate the effects of floodplain regulations on consumers’ resi-
dential choices and developers’ construction costs.

Empirical Strategy Estimating the effect of flood zone designation on new construction presents
two challenges. First, flood zone designation could be correlated with unobserved amenities, such
as coastal access or views. Indeed, Table 3.1 indicates that land inside the flood zone is more likely
to be water or wetlands and is closer to the coast. Second, flood zone designation may be endoge-
nous to real estate construction, as the mapping process allows homeowners to deregulate parts of
their properties by petitioning for map corrections or “filling” in dirt to elevate the land. Inside
the flood zone, homeowners who are correctly mapped have an incentive to elevate their house to
“escape” the flood zone. Homeowners who were incorrectly mapped have an incentive to petition
FEMA to correct a mistake that overstates a home’s risk. Meanwhile, owners of undeveloped land
face no such incentives. Appendix Table C.2 shows direct evidence of such reverse causality: land
that was developed as of 2004 is more likely to be remapped out of a floodplain in the next map
revision than land that was undeveloped. This endogenous amendment process would lead to a
mechanical negative correlation between development status and flood zone status that is unrelated
to the causal effect of interest.

We address these two challenges with a spatial regression discontinuity design that leverages the
first flood maps drawn in the late 1970s and early 1980s. The historic maps address concerns
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about reverse causality, since homeowner petitions and reactive adaptations were not reflected
in the original maps: amendments and endogenous adaptation happen only after the maps are
drawn. The regression discontinuity addresses omitted variables bias by leveraging the coarse
classification of the flood zone and the assumption that unobservable characteristics of the land
evolve smoothly through the historical flood zone boundary. We probe this identifying assumption
by examining land use outcomes before or contemporaneous to the drawing of these initial flood
maps.

The boundary discontinuity design examines how outcomes at each 30x30m pixel vary as a func-
tion of the distance to the flood zone boundary. Specifically, we estimate

yi = β1{di > 0}+ f (di)+ γ j(i)+ εi, (3.1)

where yi is a characteristic of pixel i and di is the perpendicular distance from each pixel i to the
nearest flood zone boundary, with positive values indicating that the pixel is located inside the
flood zone. Our coefficient of interest is β , the magnitude of the discontinuity at the boundary.
In our baseline specification, f (di) are local linear functions allowed to differ on either side of
the boundary.17 Finally, since boundaries in this setting do not have natural segments, we include
census tract fixed effects γ j(i) as a substitute for boundary fixed effects. We cluster standard errors
at the census tract level to allow for spatial correlation in the error term.

For each outcome, we compute the MSE-optimal bandwidth proposed by Calonico et al. (2014)
and estimate equation 3.1 on land within that distance of a flood zone boundary. Following pre-
vious work, we exclude boundaries that trace a body of water (Dell, 2010). Columns 4 and 5 of
Table 3.1 present summary statistics for our boundary estimation sample: land close to a boundary
is more developed than areas further from the boundary. Appendix Figure C.2 plots a histogram of
the number of pixels in our estimation sample across distance-to-boundary bins.

Results We discuss our results in the context of an intent-to-treat framework: the treatment of
interest is the initial flood zone designation, which may evolve over time. This is motivated by our
focus on the effects of floodplain regulation on long-run adaptation to flood risk. Appendix Figure
C.3 documents the evolution of the relationship between initial designation and floodplain status
over time.

17Results are similar under alternative specifications of f (di). Columns 3 and 4 of Table 3.2 illustrate robustness
to alternative specifications. We observe similar effect sizes on both quantities developed and prices with a linear
function of the running variable estimated on a fixed bandwidth or a fourth-order polynomial.
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Exogeneity of Boundaries To validate our identifying assumptions, we check for smoothness in
land use through the regulatory boundaries prior to flood zone designation.18 If preexisting ameni-
ties differed discontinuously across the boundary, or if boundaries were drawn around the contours
of existing development, we would observe discontinuous patterns in development around the flood
zone boundary. We test this by estimating equation 3.1 with yi equal to pre-period development.
Figure 3.2a shows that pre-period development is smooth across the boundary, and the estimated
coefficient, reported in Table 3.2, is small.19 This test supports our hypothesis that the institutional
details of the initial mapping process provide a compelling setting in which to conduct a boundary
discontinuity analysis.

Development Falls in the Flood Zone By 2016, we see a sharp discontinuity in development
at the SFHA boundary, as shown in Figure 3.2b. Table 3.2 reports the estimated level shift at
the boundary (β̂ ), which indicates that land just inside the SFHA is 3.8 percentage points less
likely to be developed than land just outside the SFHA. This effect is substantial: it is 9% of
the outside-SFHA mean level of development and it represents an 18% reduction as a share of
total new development occurring between 1980 and 2016 just outside the SFHA.20 The effect is
driven by single family homes, which make up the majority of residences (87%) in our sample.
This effect indicates both the potential for substantial reductions in flood damages via reduced
building in risky areas and the possibility of costs imposed on developers or consumers that yield
this behavioral response.

Prices Increase in the Flood Zone The effects of floodplain regulation on house prices are
ex-ante ambiguous. On the one hand, by suppressing demand for regulated houses, flood zone
designation could push prices down. On the other hand, by requiring developers to employ costlier
construction methods, flood zone designation could push prices up. Figure 3.3, which plots the
estimated coefficients for the sales price outcome, indicates that supply must shift inward sub-
stantially as a result of the policy: though we observe a large decrease in development, prices are
non-decreasing through the boundary. In fact, our point estimates suggest that house prices are
6.7% higher inside the flood zone, indicating that the construction costs imposed in the floodplain

18Our land use data was collected via aerial photographs between 1971 and 1982, while the flood maps were drawn
between 1977 and 1984. Most aerial photographs were taken during or before 1976, before any of the maps were
drawn. While it is possible that some aerial photographs were taken after the maps had been drawn, we will interpret
these land use outcomes as a pre-period. Land use evolves slowly and the worst-case scenario is that the photographs
were taken five years after the drawing of the map.

19Appendix Figure C.4 and Table C.3 examine smoothness in other pre-period land use outcomes.
20Table 3.2 Panel B shows that these results are robust to alternative definitions of development, including the share

of land covered by a building footprint.
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dominate any negative demand effect driven by mandatory flood insurance, higher flood insurance
prices, or any salience or risk perception effects of living in a flood zone.21

Our evidence suggests that this positive price effect should be interpreted as an inward shift in
supply. We rule out other competing explanations: changes in willingness to pay for housing
characteristics – including house adaptation — and changes in amenities. In Appendix Table
C.4 and Figure C.5, we demonstrate that prices increase for houses built both before and after
the introduction of the regulation, and price increases persist when we control for compositional
changes via polynomials in square footage and lot area and indicators for county-by-sale-month
and year built. Furthermore, Panel B and Appendix Figure C.6 show that single-family housing
square footage, the main housing quality measure we observe in the property tax records, exhibits
only a marginal increase across the boundary in houses built after the regulation.22 To rule out
changes in amenities across the flood zone boundary, column 5 of Table 3.2 shows that our results
are robust to excluding areas close to the coast, complementing the pre-period smoothness test in
Figure 3.2a.

Testing for Heterogeneity Across Risk Levels We observe our baseline pattern — sharp reduc-
tions in development without commensurate decreases in prices at the SFHA boundary — across
levels of flood risk. We leverage the fact that the SFHA boundaries cut across a distribution of
flood risk levels, measured using estimates from the First Street hydrological model. Appendix
Figure C.7 replicates our main regression discontinuity plots, split by land in census tracts with
below- versus above-median flood risk.23 Beyond qualitatively similar patterns, the magnitude of
the reduction as a share of new development is quantitatively similar across these two samples:
18% in lower-risk tracts versus 16% in higher-risk tracts. Price effects in both samples are noisy,
but positive. These results are consistent with the policy’s design as a coarse, binary instrument.

21This finding contrasts with recent work that has found flood zone designation decreases house prices, e.g. Hino
and Burke (2021). That work exploits map updates, capturing short-term demand effects. We study the effect of flood
zone designation over 40 years. This long-run setting allows supply to respond to mandatory building codes, leading
to an increase in prices that offsets short-run reductions based on demand effects alone.

22We note that there is a positive, albeit not statistically-significant, point estimate on the outcome of log square
footage in post-regulation houses. However, because controlling for square footage does not eliminate (or reduce)
the point estimates of SFHA designation on sales price, we remain comfortable interpreting our results as an inward
shift in supply. Ruling out compositional changes in housing characteristics is a simplification to focus on the primary
housing attribute of interest, adaptation status.

23Flood risk is measured as the depth of the 100-year flood in a grid cell’s 1980-era census tract. In our analysis
sample, the median depth is 1.05 feet.
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3.4.2 Event Study Around the Introduction of Building Standards

The preceding results indicate that regulations impose a cost on new home construction that shifts
supply inward. In this section, we investigate whether these regulations also reduce damages via
impacts on built homes, and if so, whether consumers are willing to pay for this attribute.

Empirical Strategy Following Wagner (2022), we exploit the fact that a community had to adopt
flood-safe building standards at the time it enrolled in the National Flood Insurance Program, but
not before. This suggests an event-study design, in which we regress our outcomes of interest
against the year a house was built relative to community enrollment within the flood zone. We
estimate the following specifications for all counties in Florida:

m jbt = Σrβr1
{

r = b− e j
}
+ γ j + ε jbt (3.2)

pi = Σrβr1
{

r = bi− e j(i)
}
+ γ j(i)+ εi

where m jbt measures insurance payouts per dollar of coverage in policy year t, for homes in census
tract j, built in year b, pi is the log sales price of house i, r is the construction year relative to the
year of NFIP enrollment of the census tract (e j), and γ j are census tract fixed effects.24 The model
is estimated at the census tract j by house construction year b by policy year t level for insurance
claims (line 1) and at the house i level for house prices (line 2).25

Our baseline specification in equation 3.2 relies on the sharp change in outcomes in the year the
building standards are introduced (similar in spirit to an RD). Appendix Figure C.8 replicates the
analysis and finds similar results in a difference-in-differences specification that includes controls
for construction year.

We also estimate the following pooled specification, among houses built in a ten-year window
around NFIP enrollment:

m jbt = α +βPost jb +νr jb +ηr jbPost jb + γ j + ε jbt (3.3)

pi = α +βPosti +νri +ηriPosti + γ j(i)+ εi

24Census tracts are smaller than communities.
25Because individual claims cannot be linked to individual policies, we aggregate from the house to the census-

tract-by-flood-zone-by-relative-year-built level for outcomes related to insurance payouts or policies. Appendix 3.10.3
describes the construction of the datasets used in this analysis in more detail and Appendix Table C.5 presents summary
statistics.
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where Post indicates houses constructed in or after the year of the community’s NFIP enrollment
(r≥ 0). We cluster standard errors in all specifications at the census tract level. Under the assump-
tion that the year of construction was not manipulated, β indicates the causal effect of building
standards.26

Results Figure 3.4 presents the coefficient estimates on relative year from the event study spec-
ification (equation 3.2). Variable means and regression coefficients from the pooled specification
(equation 3.3) are presented in Table 3.3.

Building Standards Reduce Flood Damages Figure 3.4a shows that the introduction of build-
ing standards causes insurance payouts to fall by $1.60 per $1000 of coverage (Table 3.3). This
accompanies a sharp increase in reported house elevation in flood insurance policies, as mandated
by the regulation (Appendix Figure C.9a). The $1.60 (per $1000 of coverage) reduction repre-
sents a 55% decrease in expected flood damages (on a pre-period mean of $2.93), highlighting that
building standards generate substantial social benefits in expected damage reduction. At average
coverage levels, this reduction in expected flood damages is equal to 3% of the average home value
(using a 5% discount rate).

The reductions in damages following the introduction of building standards are largest in high-risk
locations. We conduct the event study analysis separately by the flood risk of the census tract,
either measured via the First Street hydrological model or via flood insurance payouts. Appendix
Table C.6 shows that locations with high baseline risk experience larger reductions in damages (in
levels).

House Prices are Unchanged Despite Lower Damages Despite their higher social value, houses
that are compliant with the building standards do not command a higher price than non-adapted
houses (Figure 3.4b). The point estimate on log prices is -0.007 (Table 3.3), and the upper bound
of the confidence interval reflects only one third of the reduction in expected damages. This result
implies that homeowners are unwilling to pay for reductions in risk, as long as all other house
attributes remain constant (see Appendix 3.10.3 for a stylized model). This is plausible in our
setting, as homes are typically adapted by adding fill below the house while keeping the structure
constant.

We conduct a series of empirical tests to probe the conclusion that consumers are unwilling to pay
for flood safety. First, we confirm that the null house price effect does not mask price declines

26Appendix Figure C.10 shows no bunching of house construction in the years prior to NFIP enrollment, ruling out
such manipulation.
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generated by changes in other house attributes. We show in Appendix Figure C.11 that the null
effect on price is robust to controlling flexibly for observable housing characteristics, including
polynomials in parcel size and total living area and fixed effects for county-by-month-of-sale and
year of construction. We also investigate the possibility that the existence of stairs on adapted
houses may be a confounding disamenity by testing whether the observed result is concentrated
among consumers with a strong distaste for stairs. We proxy for this heterogeneity by splitting
the sample across census tracts with an above- versus below-median elderly population. We find
no evidence of this confounding disamenity (see Appendix Table C.7). Second, we show that
the null effect on price is not driven by a failure of insurance prices to reflect changes in risk, as
premiums for adapted homes incorporate at least 75% of the reduction in risk (Appendix Figure
C.9b). Finally, we show similar effects on price across locations with varying flood risk (Appendix
Table C.6).

This result therefore confirms existing work documenting a wedge between social and private valu-
ations of flood risk (Gallagher, 2014; Kousky et al., 2018a; Mulder, 2021; Bakkensen and Barrage,
2022; Wagner, 2022). The fact that safe houses provide no private value to consumers indicates
the presence of frictions, including behavioral frictions such as risk misperception or moral hazard
from consumer expectations of government aid in case of disaster (or both). Regardless of the
source, this wedge between private and social value will yield construction of inefficiently-risky
houses — both in their type (adapted versus not) and location — absent regulation.

3.5 An Equilibrium Model of the Housing Market

The quasi-experimental results indicate that the current policy affects both flood damages and reg-
ulatory costs, and may improve social welfare. Floodplain regulation suppresses construction and
requires flood-safe building in high-risk areas. The policy therefore potentially decreases damages
on both extensive and intensive margins of construction. However, our results also indicate that
the costs of building standards are substantial, since flood zone designation substantially decreases
new construction without a commensurate fall in price. Finally, building standards reduce dam-
ages, but consumers are not willing to pay more for houses with lower flood risk, suggesting a role
for policy to correct inefficient risk exposure.

While informative, these results alone are insufficient to quantify the total effect of the policy on
either damages or overall welfare. The policy’s effects depend on the location of counterfactual
construction: if the regulation shifts construction to equally-risky areas, damages will not fall.
Counterfactual risk depends on the joint distribution of risk and amenities, since more-desirable
locations will attract more counterfactual construction. Additionally, the large size of the regulated
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area — nearly one-third of all land in our sample is currently designated as a flood zone — may
lead to equilibrium price effects in unregulated locations. Higher demand and consequently higher
prices outside the flood zone could then reduce the relative incentive to build in safe, unregulated
areas and also reduce consumer surplus market-wide. Finally, we require a model to quantify
the regulation’s costs to developers and consumers. To account for counterfactual location and
spillover effects, quantify the regulation’s costs, and compare welfare across current and counter-
factual policies, we specify and estimate a model of residential choice and real estate development.

Our model’s key parameters of interest describe how flood zone designation shifts the demand
for and supply of housing in each location, capturing how consumers and developers trade off
home prices and living or building in a regulated area. Both of our empirical exercises inform our
model. We use our event study estimates that consumers are unwilling to pay for adaptation to
simplify the model: consumers choose only among differentiated locations and developers do not
endogenously supply adapted homes. We use our cross-boundary changes in prices and quantities
from our RD analysis as moments to estimate the effect of flood zone designation on consumer
choices and construction costs.

3.5.1 Residential Choice

Motivated by the result in Section 3.4.2 that consumers are indifferent between adapted (post-
standards) and non-adapted (pre-standards) homes, we model consumers as choosing among uni-
form homes across differentiated locations. We further assume that consumers do not privately
value differences in flood risk when deciding between houses, consistent with prior work and with
the results in Section 3.4.2. Each individual i makes a discrete choice of where to live within market
m, which we take to be a county.27 Locations are differentiated goods characterized by tract j and
flood zone designation status z. Census tracts are small geographic units of analysis: the average
county in Florida has 63 census tracts, each containing roughly 1,600 residential structures.

Following the standard discrete choice framework of Berry et al. (1995), we write the indirect
utility of individual i living in location jz as:

ui jz = α
D p jz +φSFHAz +X jzβ +ξ jz + εi jz (3.4)

where p jz is the log price of housing in location jz,28 φSFHAz indicates flood zone status, X jz is

27In Florida, counties are large but tend to only contain one major city and commuting zone.
28The price p jz is for the bundle of housing that a consumer purchases, which includes both the structure and the

land on which the structure is built.
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a vector of observed housing characteristics,29 ξ jz are unobserved amenities, and εi jz is an i.i.d.
preference shock, distributed according to a Type 1 Extreme Value Distribution. Modeling the
effect of the flood zone as an indicator captures the binary nature of the regulation — in versus

out of the flood zone — and is consistent with our evidence documenting similar effects across
locations with heterogeneous levels of risk.

A large body of work suggests that misperceptions likely drive consumers’ failure to internalize
flood risk (Mulder, 2021; Bakkensen and Barrage, 2022; Wagner, 2022). This complicates in-
terpretation of φSFHAz if it debiases consumers, as SFHA status may influence choices without
imposing a utility cost. Following Allcott and Taubinsky (2015), we will refer to equation 3.4 as
a consumer’s decision utility, which is not necessarily her experienced utility. While equation 3.4
alone is sufficient for estimation and to characterize the effects of the policy on housing market
outcomes, normative evaluation requires an assumption about the welfare-relevance of φSFHAz.
We return to this issue in Section 3.6.

Individuals choose the location jz that maximizes their decision utility within a market m. The
fraction of individuals choosing to live in location jz is:

s jz =
exp(αD p jz +φSFHAz +X jzβ +ξ jz)

Σ j′∈Jm,z′∈{0,1} exp(αD p j′z′+φSFHAz′+X j′z′β +ξ j′z′)
. (3.5)

3.5.2 Housing Supply

Our model of housing supply is designed to simply and flexibly capture heterogeneity in housing
supply elasticities across locations. Each tract-zone pair is composed of L jz plots, each of which
could either be developed into a house or used for some outside option (e.g. agriculture). The value
of the outside option for plot g is denoted cg (for opportunity cost) and is distributed Normally with
a mean and standard deviation that varies by census tract j: cg∼N(µ j,σ

2
j ). Developers make static

decisions about whether to develop at two points in time: before the regulations are imposed (t = 0)
and after they are imposed (t = 1).

The value of developing a house in period t depends on the (log) price pt
jz for which it could sell,

which varies by location and time, and the cost to build the house η t
jz, which also varies by location

and time and increases by a constant amount ψ when the house is adapted. A house’s adaptation
status is determined exogenously by building standards and varies by location (SFHA versus not)

29Observed housing characteristics include the share of residences that are single-family houses, the average age
of residential buildings, the average square feet of land and living area for residential parcels, the share of buildings
ranked “average,” “high,” or “superior” quality, and the share of parcels that are residential, commercial, industrial,
agricultural, or open space.
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and time (pre- versus post-regulations).30

The development decision for an undeveloped plot g in time period t is given by

Dt
g = 1{pt

jz ≥ cg +ψEt
jz +η

t
jz} (3.6)

where Dt
g = 1 indicates that a plot of land is developed and Et

jz indicates whether or not houses
built in location jz are adapted in period t. Let Φ() denote the Normal Cumulative Distribution
Function. The share of land developed at the end of time t = 1 is

Φ

(
p1

jz−ψE1
jz−µ j−η1

jz

σ j

)
. (3.7)

3.5.3 Equilibrium

In equilibrium, the quantity of housing supplied in each location equals the number of individuals
choosing to live there:

L jzΦ

(
p1

jz−ψE1
jz−µ j−η1

jz

σ j

)
= Q jz = Nms jz (3.8)

where L jz is the total amount of land in location jz, Q jz is the quantity of developed land in jz, and
Nm is the number of households in the market.

3.5.4 Estimation

Demand We use the standard inversion to estimate 3.4 from observed market shares:31

ln(s jz)− ln(s0m) = δ jz = α
D p jz +φSFHAz +X jzβ +ξ jz (3.9)

30In some locations, a majority of houses built in the flood zone before the introduction of building standards appear
to be elevated above the minimum required level, as reported in NFIP policies. This is concentrated in locations
where the base flood elevation is very low, indicating that these homes are likely measured as adapted despite being
built under standard construction practices. To be conservative, we assume these houses are adapted even in the
unregulated benchmark.

31We construct the empirical market shares using

ŝ jz =
Q2016

jz

∑ j′∈Jm,z′∈{0,1}Q2016
j′z′

where Q2016
jz is the total amount of developed land in geography jz.
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where s0m is the market share of an arbitrary geography within each market that we have normal-
ized to be utility 0.

Because amenities ξ jz may be correlated with both SFHAz and prices p jz, simply estimating equa-
tion 3.9 via OLS would yield biased estimates. These correlations arise because flood zone status
may coincide with other amenities, like coastal access (biasing φ ). In equilibrium, higher-amenity
locations will command higher prices (biasing αD).

We address the possible correlation between amenities ξ jz and SFHAz using our boundary discon-
tinuity design, which isolates the causal effect of SFHA designation. In the boundary discontinuity
analysis, we assume that as distance to the boundary approaches zero, amenities ξ jz are constant on
either side of the boundary, and thus independent of SFHA status. We therefore construct moments
to match the cross-boundary differences we document in the RD analysis.

To address the possible correlation between amenities ξ jz and prices p jz, we construct instruments
for p jz that exploit variation in the characteristics of other locations within the market, excluding
areas surrounding each location jz. The characteristics of distant houses in the same housing
market influence prices in location jz in equilibrium, but do not directly affect the utility provided
by a house in location jz.32 Our instruments include averages of observable characteristics X jz of
locations in the same housing market that are located more than 3 miles away from geography jz,
weighted by land area. Following Bayer et al. (2007); Calder-Wang (2021); and Almagro et al.
(2023), we also construct a price vector p̃ jz that rationalizes market shares under no unobserved
amenities (i.e., setting ξ jz = 0), using the equilibrium conditions to capture the price impact of the
observable attribute space.

Discussion We estimate the floodplain effect on consumer choices (φ) using observations close
to the boundary. We assume that φ is constant across regulated areas. The most salient information
provided (in a flood zone versus not) and regulations imposed (insurance mandate) are consistent
across the floodplain. Although the exact insurance premium may vary within the flood zone, flood
zone (SFHA) status is an important determinant of premiums. Moreover, we observe qualitatively
similar patterns across boundaries in locations with heterogeneous risk (Appendix Figure C.7).
However, to the extent that the true flood zone effect on demand is larger in higher-risk areas than
at the flood zone boundary, ours will be an underestimate.

We have imposed the assumption that consumers do not respond to expected flood damages. If this
assumption is incorrect, any increases in flood expenses to which consumers do react will load onto
the flood zone term if they change discretely at the boundary (e.g. through insurance premiums)

32Because each location is a small share of the market, we assume that prices in location jz do not in turn affect
characteristics of houses constructed in other locations.
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or onto the unobserved amenity terms ξ jz if they do not change discretely at the boundary. Under-
estimating consumer responsiveness to risk would lead us to overstate the gains from regulation
in our normative analysis, but would not impact any conclusions about the positive effects of the
policy on construction, damages, or house prices.

Supply We assume that flood zone designation affects supply only via building standards man-
dating adaptation. However, estimating ψ is still challenging, as flood zone status SFHAz may be
correlated with construction costs η jz, like the presence of wetlands. As with demand, we address
this challenge by constructing moments to match the cross-boundary differences in the regression
discontinuity analysis.

To capture heterogeneity in housing supply elasticities across tracts, we match estimates of tract-
specific supply elasticities from Baum-Snow and Han (2023), which are estimated in the same
locations as our setting. These estimates allows us to capture realistic patterns of within-market
heterogeneity in supply elasticities, e.g. that housing supply in urban, coastal areas is more inelastic
than inland, suburban or rural areas.

Estimation Details Estimation proceeds in two steps. First, in a preliminary step we calibrate
µ j and σ j based on estimates from Baum-Snow and Han (2023). Then, we estimate the remaining
parameters via the Generalized Method of Moments (GMM) using two sets of moment conditions.
The first set are regulatory boundary moments. These moments require that cross-boundary differ-
ences in price (β p,2016) and pre-period (β q,1980) and post-period (β q,2016) development shares at
the boundaries match the coefficient estimates in the spatial regression discontinuity analysis. We
operationalize this requirement by constructing moments restricted to a window around the regu-
latory boundary (100 feet). Even within this narrow window, average amenities and construction
costs across the boundary may diverge from the differences at the limit. Because of this, we con-
struct moment conditions that directly target the regression discontinuity estimates from Section
3.4.1 while allowing for mean differences across the boundary in the 100-foot window. The second
set of moments are based on the exogeneity of instruments p̃ jz, average characteristics X j′z′ of dis-
tant locations in the same market, and own-location characteristics X jz. Appendix 3.10.3 specifies
these moment conditions, provides more details about the estimation procedure, discusses the data
used for estimation, and assesses model fit.

Parameter Estimates Table 3.4 presents select parameter estimates with standard errors in paren-
theses.33 We estimate that αD (price elasticity of demand) is approximately -1.3, in line with other

33Appendix Table C.9 presents parameter estimates under alternative assumptions about supply elasticities and
alternate values of boundary discontinuity estimates.

184



estimates (Song, 2021). Flood zone status is disliked by consumers (negative φ ) and imposes costs
on developers (positive ψ): consumers are willing to pay 27% more to avoid living in a floodplain,
and it costs developers 24% more to build a compliant home. Intuitively, we arrive at these numbers
by rationalizing the changes in quantity and price around the regulatory boundary with estimates
of how consumers trade off home prices with other attributes and housing supply elasticities.

The result that consumers are willing to pay 27% more to avoid floodplain regulations is at the high
end of a range of recent estimates, which find floodplain discounts ranging from 1 to 28% (Indaco
et al., 2019; Gibson and Mullins, 2020; Hino and Burke, 2021; Lee, 2022).34 This difference could
be attributed to our setting: residents living in flood-prone Florida may be particularly sensitive to
signals of risk as awareness of climate change grows. Nevertheless, a 27% premium on avoiding
the floodplain exceeds the risk difference between the floodplain and unregulated areas, equal to
11% of average house price. Flood zone designation may cause consumers to over-update beliefs
about risk, as the policy does not communicate risks in terms of expected damages. There may
also be hassle costs associated with complying with floodplain regulations that could contribute to
this estimated effect.

The estimated 24% increase in construction costs is also large, but within the plausible (albeit
wide) range of estimates of the effect of building codes and zoning regulations on construction
costs: from 5% to 42% (Listokin and Hattis, 2005; Emrath, 2021; Song, 2021). The wide varia-
tion reflects both differences in strategies to estimate regulatory costs and variation in the types of
regulations imposed. Yet, our informal interviews indicated that a 24% increase in costs is reason-
able. For example, the minimum elevation requirement may necessitate a stem wall, which can
add $100,000 to the cost of a new build. The results in Section 3.4.2, combined with estimates of
average forward-looking risk levels from our hydrological model, indicate that mandating adapta-
tion reduces expected flood damages by 5% of home value. On average, the benefits of mandatory
adaptation are less than costs. However, this comparison masks substantial heterogeneity across
locations within the flood zone: mandating adaptation in the highest-risk areas will generate social
value, but in safer ones, will incur net social costs (see Appendix Table C.6).

3.6 Model-Informed Estimates

We use our estimates to quantify the benefits and costs of status quo regulation and alternative pol-
icy designs. First, we investigate the impact of floodplain regulation by simulating an equilibrium
with versus without the status quo policy. Then, we compare the performance of the observed

34A meta-analysis (Beltrán et al., 2018) finds an even wider range of a 75.5% discount to a 61% premium.
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policy to a counterfactual first-best that imposes corrective taxes in the spirit of Pigou (1920)
on consumers equal to the present discounted value of expected damages in each tract-by-flood-
zone.35 Finally, we propose and evaluate a change in the targeting of the status quo policy, holding
the binary policy design constant while changing the location of the regulated areas. Motivated by
our estimates that imposing adaptation may only be socially-optimal in the highest risk locations,
this counterfactual restricts regulation to locations where the risk-reducing benefits of mandating
adaptation exceed costs.

For each factual and counterfactual policy — determined by flood zone designation SFHAz and
taxes τ jz — we search for a price vector Pc f

jz and adaptation status E2016
jz that equates housing

supply and demand in each location:

L jzΦ

 ln
(

Pc f
jz

)
−ψE2016

jz −µ j−η2016
jz

σ j

=

Nm

exp
(

αD ln
(

Pc f
jz + τ jz

)
+φSFHAz +X jzβ +ξ jz

)
Σ j′∈Jm,z′∈{0,1} exp

(
αD ln

(
Pc f

j′z′+ τ j′z′
)
+φSFHAz′+X j′z′β +ξ j′z′

) (3.10)

given our estimated parameters and values of ξ jz and η jz.36 Under the status quo policy, τ jz is
equal to 0 and houses are adapted when it is mandated in the flood zone. Under the unregulated
benchmark (no policy), SFHAz = 0 and τ jz = 0. In this scenario, there exists no requirement to
adapt to a minimum standard, and consumers face no disincentives to locate in risky areas (e.g. an
insurance mandate or higher insurance premiums). Under the corrective taxation policy, SFHAz =

0 and taxes vary with both location and adaptation status. Homes are endogenously adapted in
locations where it is socially-efficient to do so, that is, where the gains from lower tax rates on
an adapted house exceed the difference in construction costs. Solving equation 3.10 generates
counterfactual prices and quantities of development in each of the locations jz. Counterfactuals
assume a closed city, or that the 2016 population in each county is held constant at observed levels.

We quantify the magnitude of flood-risk reduction across counterfactuals — the policy’s intended
goal. We also decompose the risk reduction due to building in safer areas versus mandated
adaptation-in-place in risky areas. This risk quantification exercise relies on both hydrological-
model-based estimates of flood risk by location and our estimates from Section 3.4.2 on the risk-

35This policy could be implemented as mandatory flood insurance with actuarially-fair rates at the property level.
Over the course of this research project, the National Flood Insurance Program has moved the program in this direction
— from a very coarse to a more granular pricing scheme. However, even under this recent policy change, prices likely
will not increase to reflect the level of damages estimated by First Street Foundation, and adaptation will continue to
be mandated in all areas demarcated as flood zones.

36We take the housing stock as of 1980 as given and hold it constant across counterfactuals.
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reducing benefits of the imposed building standards.37 Consistent with our results in Appendix
Table C.6 showing larger damage reductions in higher-risk areas, we assume that the effect of
building standards (mandated adaptation) on flood damages is proportional to the level of flood
risk of each location. Appendix 3.10.4 describes how we compute expected damages in further
detail.

Quantifying the risk-reducing benefits of each policy does not require a normative welfare frame-
work. In Section 3.6.2, we will add further assumptions in order to calculate the social welfare
impacts of observed and counterfactual policies.

3.6.1 Effects on Flood Damages

Table 3.5 presents results. Relative to a counterfactual without the policy, status quo floodplain
regulation (column 2) almost triples the number of new flood-adapted houses. It also reduces the
number of homes built in regulated areas by 17%, reallocating more than 180,000 houses out of
the regulated floodplain. Note that this effect is (slightly) smaller than the boundary discontinuity
estimate (an 18% reduction in new construction). This difference is due to two factors, both of
which motivate our use of a model to extrapolate our reduced-form results to counterfactual out-
comes. First, with the model we account for the market-wide distribution of amenities. At the
boundary, amenities are identical, but at the market level, amenities are correlated with regulation
status. This leads the boundary discontinuity analysis to over-estimate the policy’s total effect.
Second, because such a large share of Florida is at risk of flooding, regulations have market-wide
price effects that undermine the risk-reducing effect of the policy. As Table 3.5 illustrates, prices
outside of the regulated area increase as consumers substitute to unregulated areas.

The policy achieves its goal of reducing flood damages by $8,737 per newly-developed house, a
62% reduction in damages. The gains from adapted construction mandated via building standards
account for 84% of this reduction, while incentivizing construction in safer areas contributes the
remaining 16%. These damage reductions are substantial, both in absolute numbers (a decrease in
$3.8 billion of expected damages per county), and in comparison to alternative policy instruments:
the number of homes relocated in just these eleven counties exceeds the total number of houses
removed from risky areas by the NFIP’s home buyouts program across the entire nation (Frank,

37We use this external measure of flood risk rather than the FEMA flood maps for a few reasons. First, the FEMA
flood maps have received extensive criticism for being out-of-date and backwards-looking and for failing to include
certain important components of flood risk, e.g. pluvial (rainfall) risk. The First Street model incorporates climate
change predictions as well as all major flood drivers in a novel peer-reviewed approach. Second, the First Street
flood risk estimates provide granular estimates of the average annual loss for each parcel. First Street’s estimates are
increasingly used in economics research as an independent assessment of flood risk (Bradt et al., 2021; Mulder, 2021;
Sastry, 2021).
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2020a).

The damage reductions due to the policy approximate the first-best benchmark, implemented via
the corrective tax policy (column 3). However, the damage reductions under the tax policy are
achieved with fewer distortions in the housing market: 43% as many houses are relocated out of
the designated floodplain and 35% as many houses are adapted. Relative to the status quo policy,
a corrective tax achieves the same damage reductions by incentivizing less adaptation overall, but
simultaneously setting stronger incentives to suppress development in the highest-risk locations
(see Figure 3.5). A better-targeted counterfactual policy (column 4) approximates the first-best
policy’s substantial reduction in damages with fewer housing market distortions, allowing more
construction in moderately-risky areas. The targeted policy regulates fewer locations and achieves
a greater share of damage reductions from relocation (19%) by restricting regulations to only the
highest-risk locations.

These findings suggest that status quo regulations generate the intended benefits of substantial
reductions in expected flood damages. However, an important question is the extent to which
the costs of housing market distortions offset the policy’s benefits under each counterfactual, and
whether these same benefits could be achieved with smaller distortions.

3.6.2 Effects on Social Welfare

In this section, we develop a welfare framework that allows us to quantify the policy’s costs and
compare these costs against the estimated benefits discussed in Section 3.6.1. Based on results
— in both our setting and others — that consumers do not internalize flood risk in their housing
decisions, we define social welfare as the sum of consumer surplus, producer surplus, govern-
ment revenue raised,38 and uninternalized expected flood damages. Expected flood damages are
included in the calculation of social welfare despite the fact that consumers do not appear to value
them because they impose social costs, either onto the government (externalities) or onto the con-
sumers themselves (internalities).

To calculate consumer surplus, we must make an assumption about the normative interpretation of
the effect of floodplain status on consumer choices. Does φSFHAz represent real costs or simply
a change in expectations about flood risk? A large body of work suggests that misperceptions
likely drive consumers’ failure to internalize flood risk (Gallagher, 2014; Mulder, 2021; Bakkensen
and Barrage, 2022; Wagner, 2022).39 Therefore, we assume in our baseline calculations that the

38Floodplain regulations impose higher flood insurance premiums and therefore have a revenue impact that must be
incorporated in social welfare calculations.

39See Wagner (2022) for a discussion about the likely contribution of misperceptions relative to other frictions in
explaining observed consumer choices in the face of flood risk.
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magnitude of φ in excess of the financial costs of living in a regulated area (via increased insurance
prices) is not welfare-relevant, and is instead de-biasing as in Allcott and Taubinsky (2015). This
would be incorrect if flood zone status imposed substantial hassle or psychic costs on consumers.
While we think that the magnitude of these costs is likely to be small, we also report results under
the assumption that φ is fully welfare-relevant and represents costs imposed upon consumers.

We report results in Table 3.6, comparing social welfare under the observed regulation and coun-
terfactual policies to the unregulated benchmark.40 In our baseline specification, status quo flood-
plain regulation achieves over $28 billion of social welfare gains in our setting, or $5,919 per
newly-developed house. Because of the wedge between the private and social value of flood risk,
risk would be inefficiently-high in the absence of any policy intervention. However, the social
welfare effects of the status quo policy are theoretically ambiguous, as the risk-reducing benefits
need not exceed the costs imposed via distortions in the housing market. We find positive and
substantial social welfare gains, as the policy corrects inefficient exposure to flood risk. The policy
would need to impose substantial deadweight loss via the demand cost φ — imposing hassles four
times the magnitude of financial costs of living in a flood zone — to overturn the result that the
status quo policy leads to a net increase in social welfare.

Despite achieving the socially-optimal degree of damage reduction, the status quo policy intro-
duces distortions that reduce its total social welfare gains, which fall 27% short of the first-best
outcome implemented by the corrective tax policy. This reflects the patterns documented in Ta-
ble 3.5. The damage reductions achieved under the status quo policy impose substantially more
distortions than the corrective tax: yielding too little construction and inefficient adaptation in
moderately-risky areas, while still permitting too much construction in the riskiest locations.

While the corrective tax implements the first-best, it involves substantial changes to policy design
that may be challenging to implement in practice. We conclude by assessing whether there are
simple changes that can improve upon the status quo: is the 27% shortcoming, relative to the
first-best, driven by the limitations of regulating continuous flood risk with a binary instrument,
or can improvements be achieved with better targeting of regulated areas? In columns 4 and 6,
we explore a simple “remapping,” imposing regulations only in areas where the social benefits
from adaptation exceed costs (corresponding to column 4 of Table 3.5). When well-targeted, the
simple policy design can achieve 94% of first-best social welfare gains, equivalent to $7,567 per
newly-developed house.

40We compute per-person consumer surplus in each market as CSi = − 1
αD lnΣ j,z exp(αD p jz +φF SFHAz +X jzβ +

ξ jz), where φF reflects our estimate that the PDV of insurance premiums amounts to about 5% of average house price
(for our baseline specification). We define producer surplus as the integral of price minus costs for those who develop
in the post-period. We compute compensating variation for both producer and consumer surplus to account for the fact
that prices are modeled in logs. See Appendix 3.10.5 for more details.
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3.7 Conclusion

For over 40 years, floodplain regulations have influenced housing markets, with limited evidence
on their costs or benefits. This paper combines a spatial regression discontinuity analysis of flood-
plain boundaries, an event study of the introduction of flood-safe building standards, and a model
of the housing market to investigate the effects of floodplain regulations on the location of con-
struction, housing prices, expected damages, and social welfare.

Local to the regulatory boundary, floodplain regulation decreases construction and increases house
prices. Flood-safe building standards reduce flood damages by 3% of house value, but these reduc-
tions are not privately valued by consumers. Using a model to interpret these results, we find that
floodplain regulation in Florida reduces damages by 62% and achieves large social welfare gains.

Our results stand in contrast to common critiques of the National Flood Insurance Program, which
argue that it promotes inefficiently high development in risky areas (e.g. Ben-Shahar and Logue
(2016)). We find instead that the status quo policy leads to approximately efficient levels of flood
risk and achieves substantial social welfare gains. Despite these gains, however, there is scope for
further improvement, achieved by simple remappings of regulated areas that implement over 90%
of first-best social welfare gains.

Our results come with caveats and directions for future work. Our model is static, and regulating
durable construction in the face of evolving flood risk may involve additional unmodeled consid-
erations. And while we provide evidence suggesting that consumers do not internalize flood risk,
more work is needed to precisely identify the source of this friction.

Our findings have important implications for policies to promote the resilience of cities in the face
of sea level rise and other climate-change-induced increases in flooding. Policy proposals (e.g. for
home buyouts) focus largely on the benefit of reduced risk. However, as we highlight, equivalent
risk reductions can entail substantially different costs. When designed to balance these benefits and
costs, even simple, existing policy instruments can promote efficient adaptation to climate change.
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3.9 Figures and Tables

Figure 3.1: Digitized Flood Maps

(a) Digitized Map of Miami (1978) (b) Coverage of Digitized Maps

Notes: Figure (a) shows an example of a historical flood map in Miami. Flood zones are depicted in blue. Figure (b) displays the coverage of our
digitized sample.

Figure 3.2: Spatial Regression Discontinuity Estimates: Development

(a) Pre-Period Share Developed (about 1980) (b) Share Developed in 2016

Notes: Figures present spatial regression discontinuity plots with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Sub-figure (a) plots the share of land that was
developed as of the late 1970s and early 1980s, and sub-figure (b) plots the share of land developed as of 2016. Plotted points are binned averages
of grid-cell-level observations. Estimates are residualized of census tract fixed effects.
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Figure 3.3: Spatial Regression Discontinuity Estimates: Prices

(a) Log Single Family Sale Price (2005-2020)

Notes: Figure presents spatial regression discontinuity plot with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Outcome is log sales prices of arms-length sales for
single-family homes that sold between 2005 and 2020. Plotted points are binned averages of grid-cell-level observations. Estimates are residualized
of census tract fixed effects.

Figure 3.4: Event Study Estimates: The Effect of Building Standards

(a) Damages
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(b) Log Sale Price
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Notes: Figures present coefficients on bins of year built relative to the year of a community’s enrollment in the National Flood Insurance Program
(at which time building standards began to be imposed on newly-constructed housing), from equation 3.2. Sample is restricted to single-family
residences inside the flood zone. Sub-figure (a) shows insurance payouts from 2010 to 2018 as a share of total dollars of coverage (estimated using
the specification in line 1 of equation 3.2). Sub-figure (b) shows the log sale price in 2010 dollars between 2005 and 2020 (estimated using the
specification in line 2 of equation 3.2). Coefficients in sub-figure (a) are estimated at the policy-year by census-tract by year-built level, weighted
by the number of policies. Coefficients in sub-figure (b) are estimated at the house level, unweighted. Standard errors are clustered at the census
tract level.
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Figure 3.5: Expected new annual damages by risk bin: status quo vs. first-best tax policy
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Notes: Figure plots total expected annual damages of newly-constructed houses by risk bin under the observed policy and counterfactual first-best
corrective tax policy. Sample includes both flood zone and non-flood-zone land.
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Table 3.1: Summary Statistics

Florida Digitized map sample Boundary sample

Outside

historic

SFHA

Inside

historic

SFHA

Outside

historic

SFHA

Inside

historic

SFHA

(1) (2) (3) (4) (5)

Panel A. Development

Share developed in 1980 0.056 0.116 0.124 0.243 0.178

Share developed in 2016 0.145 0.313 0.243 0.473 0.313

Single family homes 5,175,979 552,230 191,507 159,607 80,218

Single family share of structures 0.662 0.749 0.739 0.734 0.747

Share post-FIRM 0.616 0.606 0.520 0.478 0.429

Panel B. Other characteristics

Share wetlands 0.348 0.205 0.449 0.101 0.343

Share water 0.069 0.015 0.163 0.011 0.098

Distance to coast (miles) 10.7 7.9 6.4 7.7 7.9

Panel C. House Prices (Median)

Price (1980) 47,459 48,198 46,912

Price (2005-2020) 167,233 177,673 274,065 188,148 252,935

Price (single family, 2005-2020) 182,452 179,419 298,716 190,204 277,492

Panel D. Risk

FEMA flood maps

Land share in SFHA as of 1996 0.345 0.040 0.739 0.061 0.707

Land share in SFHA as of 2017 0.450 0.106 0.720 0.130 0.664

First Street risk measures

Land share w. ≥ 1% risk of flooding 0.447 0.425 0.582 0.240 0.573

Land share w. substantial flood risk 0.153 0.065 0.225 0.061 0.223

Total area (square miles) 58,257 4,169 1,978 746 553

Notes: Table displays summary statistics for the entire state of Florida, the geographic area covered by the digitized flood maps, and a sample
restricted to 2,000 feet on either side of the flood zone boundary. Median house price in 1980 is a population-weighted census tract average of
1980 Census estimates of the average value of owner-occupied single family housing, tabulated in 1980 dollars. Median house price (2005-2020)
tabulates the median sales price, in 2010 dollars, of houses sold between 2005 and 2020. For houses sold multiple times, we take the average
transaction price across sales. House prices from 2005 to 2020 are derived from administrative sales records from the state of Florida and are
restricted to arms length sales. Substantial flood risk is defined as areas with an estimated 100-year flood depth above two feet.
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Table 3.2: Spatial Regression Discontinuity Estimates

Local linear Fourth-order

polynomial

Local linear

Outside flood

zone mean

Triangular

kernel,

optimal

bandwidth

Rectangular

kernel,

constant

bandwidth

Excl. coastal

areas

(1) (2) (3) (4) (5)

Panel A. Historical land use

Share (of land) developed in 1980 0.189 -0.005 -0.004 -0.003 -0.005

(0.002) (0.002) (0.002) (0.002)

542,302 642,720 3,027,326 543,594

Panel B. Modern land use

Share (of land) developed in 2016 0.411 -0.038 -0.044 -0.042 -0.035

(0.005) (0.005) (0.005) (0.005)

323,362 642,720 3,027,326 277,662

Share covered by a building footprint 0.238 -0.025 -0.026 -0.029 -0.023

(0.004) (0.004) (0.004) (0.004)

382,470 642,720 3,027,326 332,234

Share covered by a single family home 0.090 -0.010 -0.013 -0.015 -0.009

(0.003) (0.002) (0.003) (0.003)

371,202 642,720 3,027,326 309,866

Share covered by wetlands 0.145 0.072 0.096 0.110 0.075

(0.006) (0.007) (0.007) (0.007)

221,336 642,720 3,027,326 187,032

Panel C. Prices

Log house price 12.278 0.065 0.063 0.064 0.052

(0.019) (0.021) (0.022) (0.023)

59,341 35,493 186,171 44,298

Log single-family house price 12.241 0.064 0.060 0.055 0.058

(0.015) (0.019) (0.018) (0.019)

52,605 27,984 146,989 28,263

Notes: Table displays estimates of equation 3.1. Outside-of-flood-zone means are calculated within 50 feet of the boundary. Column 2 estimates the
MSE-optimal RD bandwidth from Calonico et al. (2014) and fits a local linear regression within that bandwidth using a triangular kernel. Column
3 estimates linear regressions separately on either side of the cutoff, with each point equally weighted within 250 feet of the boundary. Column 4
estimates a fourth order polynomial separately on either side of the boundary, restricted to a window of 2,000 feet on either side of the boundary.
Column 5 replicates Column 2, but excluding land less than one mile from the coast. All discontinuities are estimated on the historic boundaries
and exclude boundaries that trace a body of water. Observations are grid cells. Robust standard errors (in parentheses) are clustered at the census
tract level. Sample sizes are included below each standard error.
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Table 3.3: The Effect of Building Standards: Event Study Coefficient Estimates

Mean in flood zone,

Pre-FIRM

Event study

(1) (2)

Variable

Insurance payouts (per $1000 of coverage) $2.93 $-1.60

(0.40)

225,998

Log house price (sold 2005-2020, in 2010 $) 12.21 -0.007

(0.009)

173,458

Notes: Table presents variable means and coefficient estimates from equation 3.3 on insurance payouts and log house prices. Insurance payout data
come from residential National Flood Insurance Program policies from 2010-2018. Price data come from residential sales prices in 2005-2020.
Coefficients with insurance payouts as the outcome are estimated at the policy-year by census-tract by year-built level, weighted by the number of
policies. Coefficients with log house price as the outcome are estimated at the house level. Sample includes all single-family residences in Florida.
Standard errors (in parentheses) are clustered at the census tract level. Sample size of each regression is listed below standard errors.

Table 3.4: Selected Parameter Estimates

Supply

Cost of adaptation (ψ) 0.243

(0.037)

Demand

Coefficient on SFHA (φ ) -0.367

(0.097)

Coefficient on log price (αD) -1.344

(0.222)

WTP to avoid SFHA (φ/αD) 0.273

Notes: Table presents coefficient estimates in household preferences and housing supply, estimated via two-step GMM (see Appendix 3.10.3 for
more details). Standard errors are in parentheses.
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Table 3.5: Counterfactuals: Housing Market Outcomes

Outcome Level Change Relative to Unregulated

Counterfactual

Unregulated Current

Policy

Corrective

Tax

Improved

Targeting

(1) (2) (3) (4)

New dev on land regulated in current policy

Approximate N Houses 1,047,291 -181,453 -78,899 -68,890

-17.3% -7.5% -6.6%

New dev on all land

Approximate N Houses 4,736,719 0 0 0

Number of Adapted Houses 302,349 563,489 198,556 206,070

186% 66% 68%

Per-house NPV of adaptation-based damages $14,216 $-7,298 $-7,006 $-7,006

(locations held at unreg. benchmark) -51.3% -49.3% -49.3%

Per-house NPV of all damages $14,216 $-8,737 $-9,032 $-8,619

(incorporate counterf. locations) -61.5% -63.5% -60.6%

563,489 198,511 206,091

Price

Inside observed SFHA $255,002 $7,112 $-9,564 $-2,061

2.8% -3.8% -0.8%

Outside observed SFHA $166,522 $12,251 $3,622 $3,199

7.4% 2.2% 1.9%

Overall $186,841 $9,097 $-182 $1,242

4.9% -0.1% 0.7%

Notes: Table presents estimates of counterfactual outcomes using baseline parameter estimates. Outcomes for the observed policy, corrective tax,
and improved targeting counterfactuals are presented in differences from the modeled outcomes under the unregulated benchmark. Percentage
differences from the unregulated benchmark are presented below the level differences. N houses is defined by assuming that each developed pixel
is equivalent to one house. “Land regulated in current policy” is the area designated as the flood zone in the original flood maps. “Per-house NPV
of all damages” is the net present value of damages for newly-built houses divided by the number of all newly-built houses. Areas in our sample
counties without digitized historic flood maps are assigned their flood zone status as of 1996, which we estimate overlaps with historic flood zone
status in 90% of cases. Prices are weighted by total developed area. The unregulated counterfactual sets SFHAz = 0 everywhere. The corrective
tax counterfactual sets SFHAz = 0 everywhere and imposes taxes equal to expected flood damages, conditional on socially-optimal adaptation
choices. The improved targeting counterfactual sets SFHAz = 1 only in the locations where it is socially-optimal to adapt. “Adaptation-based
damages” compute expected damages under counterfactual adaptation decisions, holding location constant at location choice as modeled under the
unregulated benchmark. “All damages” computes damages under counterfactual adaptation and location decisions.
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Table 3.6: Counterfactuals: Social Welfare

Outcome

(Millions of $)

Level Change Relative to Unregulated Counterfactual

Non-financial demand cost

not welfare-relevant

Non-financial demand

cost welfare-relevant

Unregulated Current

Policy

Corrective

Tax

Improved

Targeting

Current

Policy

Improved

Targeting

(1) (2) (3) (4) (5) (6)

Producer Surplus 13,704 4,956 5,513 13,704 5,513

Consumer Surplus -39,398 -32,163 -14,147 -68,284 -25,221

Expected Flood Damages 68,161 -42,211 -43,577 -41,631 -42,211 -41,631

Government Revenue 3,415 11,519 21,778 2,858 11,519 2,858

Social Welfare 28,036 38,148 35,855 -850 24,781

Notes: Table presents estimates of counterfactual outcomes using baseline parameter estimates. Outcomes are in millions of 2010 dollars. The
unregulated counterfactual sets SFHAz = 0 everywhere. Column 1 presents levels under theunregulated benchmark (excluded for producer and
consumer surplus). Columns 2-4 present results under the assumption that the magnitude of φ in excess of the financial costs of SFHA designation
(via increased premiums) is not welfare-relevant. Columns 5-6 present results under the alternative assumption that it is. See main text for a
discussion. Columns 2 and 5 present the social welfare effects of the observed policy. Column 3 presents the social welfare effects of the first-best
corrective tax counterfactual, which sets SFHAz = 0 everywhere and imposes taxes equal to expected flood damages; homes are adapted when it is
socially-optimal to do so. Columns 4 and 6 describe a limited version of the current policy which is better-targeted: only locations where the social
benefits of adaptation exceed the costs are designated as SFHAs. Government revenue indicates revenue from insurance premiums and taxes.

202



3.10 Appendix

3.10.1 Appendix Tables and Figures

Figure C.1: Building Satisfying Adaptation Requirements in Naples, FL

Notes: Figure shows a flood-safe house in Collier County, Florida. At this location, flood zone regulations require the bottom of the lowest
(non-basement) floor to be elevated to 10 feet above sea level.

Figure C.2: Histogram of Distance to Flood Zone Boundary
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Notes: Figure presents histograms of distance to boundary. Sub-figure (a) shows land observations, at the grid-cell level, and sub-figure (b) shows
home sales observations. Distance to boundary is in feet, with positive distance indicating being inside the flood zone. Excludes boundaries that
trace a body of water and pixels that overlap with the boundary (leading to the dip at zero).
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Figure C.3: Spatial Regression Discontinuity Estimates: Current Flood Zone Status

(a) Share of Land in 1996 Flood Zone (b) Share of Land in 2017 Flood Zone

Notes: Figure presents spatial regression discontinuity plots with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Sub-figure (a) plots the share of land in the 1996 flood
zone, and sub-figure (b) plots the share of land in the 2017 flood zone. Plotted points are binned averages of grid-cell-level observations. Estimates
are residualized of census tract fixed effects.
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Figure C.4: Spatial Regression Discontinuity Estimates: Other Pre-Period Land Use

(a) Wetlands (b) Water

(c) Agriculture (d) Forest

Notes: Figure presents spatial regression discontinuity plots with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. All land use outcomes are measured as of the late
1970s and early 1980s. Plotted points are binned averages of grid-cell-level observations. Estimates are residualized of census tract fixed effects.
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Figure C.5: Spatial Regression Discontinuity Estimates: House Price Net of Attributes
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Notes: Figure presents spatial regression discontinuity plot with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Outcome is the residual from a regression of log sales
prices of residential properties on polynomials in lot size and living area, indicators for construction year, and indicators for county-by-sale-month.
Plotted points are binned averages of grid-cell-level observations. Estimates are also residualized of census tract fixed effects.

Figure C.6: Spatial Regression Discontinuity Estimates: Log Sq. Footage

(a) All single-family residential parcels (b) Post-FIRM single-family residential parcels

Notes: Figure presents spatial regression discontinuity plots with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Outcome is log square footage of homes in two
samples: (a) single family houses and (b) and single-family houses built after the introduction of building standards (post-FIRM). Plotted points are
binned averages of grid-cell-level observations. Estimates are residualized of census tract fixed effects.
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Figure C.7: Spatial Regression Discontinuity Estimates: Effects By Flood Risk Level

(a) Development in 2016, Low Risk (b) Development in 2016, High Risk

(c) Log Single-Family House Price, Low Risk (d) Log Single-Family House Price, High Risk

Notes: Figure presents spatial regression discontinuity plots with a local linear fit on either side of the flood zone boundary (equation 3.1). Distance
to boundary is measured in feet, with positive distance indicating being inside the flood zone. Sub-figures (a) and (b) plot the share of land developed
as of 2016. Sub-figures (c) and (d) plot log sales prices of arms-length sales for single-family homes with structures that sold between 2005 and
2020. Flood risk is calculated at the (1980) census tract level based on the First Street Foundation hydrological model. High-risk denotes an
above-median census tract and low-risk denotes a below-median census tract in our sample. Plotted points are binned averages of grid-cell-level
observations. Estimates are residualized of census tract fixed effects.
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Figure C.8: Introduction of Building Standards: Difference-in-Difference Estimates
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Notes: Figures present coefficients from the difference-in-difference specification comparing houses built before and after the year of building
standards introduction, inside and outside of the flood zone (equation 3.12). The Sun-Abraham eventstudyinteract package is used to account for
potential heterogeneity in treatment effects across cohorts (Sun, 2021). The effect of regulation is estimated as the average of the year-specific
coefficient estimates from years 0-5, less the average of the year-specific estimates from years -6 to -2. Sample is restricted to single-family
residences. Sub-figure (a) shows insurance payouts from 2010 to 2018 as a share of total dollars of coverage, aggregated to the policy-year by
census-tract by year-built level, and weighted by number of policies. Sub-figure (b) shows the log sale price in 2010 dollars between 2005 and 2020
in each census tract, estimated at the house level. Standard errors are clustered at the census tract level.

Figure C.9: Introduction of Building Standards: Other Outcomes

(a) Share Elevated to Minimum Required Level
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Notes: Figures present coefficients on bins of year built relative to the year of a community’s enrollment in the National Flood Insurance Program
(at which time building standards began to be imposed on newly-constructed housing) from equation 3.2. Sample is restricted to single-family
residences inside the flood zone. Sub-figure (a) shows elevation status reported in National Flood Insurance Policies policies from 2010 to 2018,
and sub-figure (b) shows policy cost from 2010 to 2018 as a share of total dollars of coverage (both estimated using the specification in line 1 of
equation 3.2). Estimates are estimated at the policy-year by census-tract by year-built level, weighted by the number of policies. Standard errors are
clustered at the census tract level.
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Figure C.10: Introduction of Building Standards: Histogram of Effective Year Built
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Notes: Figures present histograms of the year houses were built relative to the year building codes were introduced, both inside and outside the
flood zone (SFHA).

Figure C.11: Introduction of Building Standards: Residualized Log Sales Price
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Notes: Figure presents coefficients on bins of year built relative to the year of a community’s enrollment in the National Flood Insurance Program
(at which time building standards began to be imposed on newly-constructed housing), estimated from equation 3.2 (line 2). Outcome is log sales
price, residualized of fourth-degree polynomials in parcel size and total living area, and county-by-sale-month and year built fixed effects. Sample
is restricted to properties inside the flood zone.
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Figure C.12: Model Fit: Housing Supply Model Reliance on Structural Error Terms
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Notes: Figure presents prices that rationalize observed development shares using just the estimated supply curve, without estimated idiosyncratic
construction costs. Figure presents the prices in 2016 that would rationalize the observed quantities of development, using the estimated parameters
(µ j,σ j,ψ) and observed adaptation decisions, if the model omitted η t

jz.

Figure C.13: Areas considered for digitization

Notes: Figure depicts the top 16 counties with most development in Florida, divided into equal-area quadrants.
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Table C.1: Discrepancies Between Flood Zone Status and the First Street Model

Equal weight to each

developed pixel

Weighted by number of

parcels

Inside NFIP

flood zone

(SFHA)

Outside

NFIP flood

zone

(SFHA)

Inside NFIP

flood zone

(SFHA)

Outside

NFIP flood

zone

(SFHA)

(1) (2) (3) (4)

Inside First Street 100 year floodplain 0.188 0.136 0.277 0.104

Outside First Street 100 year floodplain 0.093 0.583 0.136 0.484

Notes: Table calculates the share of all buildings in our eleven counties of interest that fall into each of the four mutually exclusive categories of
National Flood Insurance Program flood zone status by modern-day (2017) First Street floodplain status, in our 11 counties of interest. Both “flood
zone” categories designate areas that have been determined to be in a 100 year floodplain (i.e. they have a greater than 1 percent chance of flooding
per year) by either First Street or the National Flood Insurance Program. Columns (1) and (2) tabulate the share of pixels covered by a building
footprint that are in each category. Columns (3) and (4) tabulate the number of parcels (accounting for multiple parcels on the same pixel).

Table C.2: Share Mapped Out of Flood Zone by Land Use

Share of initial flood zone

land that is mapped out

Any Developed 0.230

Developed - Open 0.160

Developed - Low 0.224

Developed - Mid 0.282

Developed - High 0.351

Wetlands 0.004

Water 0.003

Cultivated 0.068

Other Land Use 0.059

Notes: Table presents the share of the land inside the flood zone in 2004 that is remapped out of the flood zone in the next remapping, split by land
use category in 2004. Sample is restricted to Marion and Dade Counties, because these were the two counties in our sample that experienced zero
remappings between 1996 and 2004 and one remapping between 2004 and 2016. This restriction is motivated by data availability for both map
updates and land use outcomes. Land use in 2004 is from the NLCD.
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Table C.3: Spatial Regression Discontinuity Estimates: Other Land Use Outcomes (1980)

Local linear Fourth-order

polynomial

Local linear

Outside flood

zone mean

Triangular

kernel,

optimal

bandwidth

Rectangular

kernel,

constant

bandwidth

Excl. coastal

areas

(1) (2) (3) (4) (5)

Wetlands 0.098 0.020 0.017 0.006 0.021

(0.003) (0.003) (0.004) (0.004)

479,659 642,720 3,027,326 436,080

Water 0.017 0.011 0.010 0.004 0.010

(0.002) (0.002) (0.003) (0.002)

518,899 642,720 3,027,326 446,653

Agriculture 0.301 -0.014 -0.014 -0.006 -0.016

(0.003) (0.003) (0.004) (0.004)

567,993 642,720 3,027,326 429,803

Forest 0.223 -0.006 -0.006 -0.003 -0.007

(0.003) (0.002) (0.003) (0.003)

809,732 642,720 3,027,326 656,567

Notes: Table displays estimates of equation 3.1. Outside-of-flood-zone means are calculated within 50 feet of the boundary. Column 2 estimates the
MSE-optimal RD bandwidth from Calonico et al. (2014) and fits a local linear regression within that bandwidth using a triangular kernel. Column
3 estimates linear regressions separately on either side of the cutoff, with each point equally weighted within 250 feet of the boundary. Column 4
estimates a fourth order polynomial separately on either side of the boundary, restricted to a window of 2,000 feet on either side of the boundary.
Column 5 replicates Column 2, but excluding land less than one mile from the coast. All discontinuities are estimated on the historic boundaries
and exclude boundaries that trace a body of water. Observations are grid cells. Robust standard errors (in parentheses) are clustered at the census
tract level. Sample sizes are included below each standard error.
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Table C.4: Spatial Regression Discontinuity Estimates: Other Sale Price Estimates

Local linear Fourth-

order

polynomial

Local linear

Outside

flood zone

mean

Triangular

kernel,

optimal

bandwidth

Rectangular

kernel,

constant

bandwidth

Excl.

coastal

areas

(1) (2) (3) (4) (5)

Panel A. Log sale price of single-family homes

Baseline 12.2 0.064 0.060 0.055 0.058

(0.015) (0.019) (0.018) (0.019)

52,605 27,984 146,989 28,263

Residualized of characteristics 11.1 0.139 0.108 0.092 0.163

(0.054) (0.069) (0.066) (0.061)

17,228 9,095 44,006 10,621

Built pre-regulations (pre-FIRM) 12.0 0.093 0.091 0.064 0.083

(0.027) (0.031) (0.030) (0.036)

17,671 10,178 57,037 9,046

Built post-regulations (post-FIRM) 12.5 0.040 0.043 0.035 0.050

(0.020) (0.025) (0.024) (0.023)

28,735 13,147 64,723 17,275

Panel B. Log square footage

Single-family homes 7.9 0.018 0.019 0.024 0.014

(0.009) (0.009) (0.010) (0.012)

64,134 49,876 263,945 38,592

Single-family homes built post-regulations 8.1 0.015 0.010 0.023 0.008

(post-FIRM) (0.012) (0.014) (0.013) (0.014)

32,176 21,306 104,509 23,285

Notes: Table displays estimates of equation 3.1. Outside-of-flood-zone means are calculated within 50 feet of the boundary. Column 2 estimates the
MSE-optimal RD bandwidth from Calonico et al. (2014) and fits a local linear regression within that bandwidth using a triangular kernel. Column
3 estimates linear regressions separately on either side of the cutoff, with each point equally weighted within 250 feet of the boundary. Column 4
estimates a fourth order polynomial separately on either side of the boundary, restricted to a window of 2,000 feet on either side of the boundary.
Column 5 replicates Column 2, but excluding land less than one mile from the coast. All discontinuities are estimated on the historic boundaries
and exclude boundaries that trace a body of water. Observations are grid cells. Robust standard errors (in parentheses) are clustered at the census
tract level. Sample sizes are included below each standard error.
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Table C.5: Summary Statistics: Building Standards Event Study Sample

Inside flood zone Outside flood zone

Variable Pre-Enrollment Post-Enrollment Pre-Enrollment Post-Enrollment

(1) (2) (3) (4)

Share elevated to minimum level 0.562 0.927

Building coverage $188,970 $203,384 $200,232 $203,867

Contents coverage $42,963 $51,360 $78,908 $80,500

Policy cost $1,058 $658 $438 $433

Payout $444 $187 $240 $222

N policy-years 598,961 618,265 236,628 391,829

House price (2010 $) $263,253 $307,565 $166,752 $188,521

N house sales 69,976 103,620 147,663 304,083

Notes: Table presents variable means in the estimation sample for the analysis of the effect of building codes on elevation, insurance payouts,
premiums, and house prices. Elevation, payout, and cost data come from residential NFIP policies from 2010-2018. Price data come from
residential sales prices in 2005-2020. We use all single-family residences in Florida. Sample is restricted to houses constructed +/- 10 years around
NFIP enrollment.
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Table C.6: Effects of Building Standards: Heterogeneity by Flood Risk

Low-risk High-risk

Mean in

flood

zone,

Pre-

FIRM

Event

study

Difference-

in-

Differences

Mean in

flood

zone,

Pre-

FIRM

Event

study

Difference-

in-

Differences

(1) (2) (3) (4) (5) (6)

Panel A. Risk Measured by First Street

Variable

Insurance payouts (per $1000 of coverage) $0.74 $-0.55 $-0.66 $3.36 $-1.54 $-1.33

(0.22) (0.18) (1.11) (0.45)

N 54,237 117,302 64,569 111,251

Log house price (sold 2005-2020, 2010 $) 12.09 -0.021 -0.045 12.28 -0.010 -0.005

(0.022) (0.017) (0.017) (0.016)

N 34,832 205,023 53,902 123,547

Panel B. Risk Measured by Insurance Payouts

Variable

Insurance payouts (per $1000 of coverage) $0.10 $-0.05 $-0.03 $7.62 $-4.62 $-3.95

(0.02) (0.02) (1.09) (0.75)

N 92,237 170,537 89,494 168,763

Log house price (sold 2005-2020, 2010 $) 12.29 -0.019 -0.047 12.21 -0.009 0.009

(0.013) (0.013) (0.017) (0.001)

N 94,052 224,630 54,869 218,414

Notes: Table presents variable means and coefficient estimates from Eqs. 3.3 and 3.12 on insurance payouts and log house price, split by the risk
level of the census tract. Insurance payout data come from residential National Flood Insurance Program policies from 2010-2018. Price data come
from residential sales prices in 2005-2020. Coefficients with insurance payouts as the outcome are estimated at the policy-year by census-tract
by year built level, weighted by the number of policies. Coefficients with log house price as the outcome are estimated at the house level. The
difference-in-difference estimates are estimated as the average of the year-specific coefficient estimates of Eq. 3.12 from years 0-5, less the average
of the year-specific estimates from years -6 to -2. Sample includes all single-family residences in Florida. Standard errors (in parentheses) are
clustered at the census tract level. In Panel A, census tracts are categorized by whether the census tract’s estimated 100-year-flood depth based on
the First Street hydrological model falls below (low-risk) or above (high-risk) the median in our sample. In Panel B, census tracts are categorized
by whether census tracts have below (low-risk) or above (high-risk) median levels of insurance payouts, conditional on the census tract having any
payout event.
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Table C.7: Effects of Building Standards: Interacted with Share Elderly

Threshold for “elderly”:

Outcome: Log house price 65+ 75+ 85+

(1) (2) (3)

Post-FIRM -0.025 -0.027 -0.015

(0.015) (0.014) (0.015)

Post-FIRM x Above Median Share Elderly 0.028 0.030 0.011

(0.019) (0.019) (0.019)

Difference 0.053 0.057 0.026

(0.032) (0.031) (0.032)

Notes: Table presents variable means and coefficients estimated from Equation 3.3 from the event-study analyses of NFIP enrollment on house
price. Price data come from residential sales prices in 2005-2020. Indicator for whether a census tract exceeds the overall median share elderly uses
data from the 2014-2018 American Community Survey. Sample includes all single-family residences in Florida, restricted to the SFHA. Standard
errors are clustered at the census tract level.

Table C.8: Summary Statistics: Model Estimation Sample

Whole Sample Balanced Boundary Sample

Outside Flood

Zone

Inside Flood

Zone

Outside Flood

Zone

Inside Flood

Zone

(1) (2) (3) (4)

Share developed, 1980 0.65 0.49 0.57 0.50

N developed gridcells, 1980 2,120 886 93 74

Share developed, 2016 0.84 0.68 0.81 0.73

N developed gridcells, 2016 5,831 1,964 239 178

Share elevated pre-regulation 0.00 0.39 0.00 0.45

Share elevated post-regulation 0.00 1.00 0.00 1.00

Home price, 1980 $46,428 $51,389 $49,757 $49,757

Home price, 2017 $206,984 $300,546 $238,114 $283,941

First Street Flood Risk 0.08 0.34 0.09 0.25

First Street AAL (2021) 0.0005 0.0042 0.0007 0.0020

First Street AAL (2051) 0.0013 0.0083 0.0019 0.0046

First-Street future-adjusted AAL 0.0009 0.0063 0.0013 0.0033

N gridcells 20,293 11,251 538 503

N observations 1,043 803 255 255

Notes: Table presents summary statistics of the aggregated sample at the tract-zone-boundary proximity level, used for model estimation and
counterfactuals. Columns 1 and 2 describe the whole sample. Columns 3 and 4 describe the subset of the sample used for constructing the boundary
regression discontinuity moments. This subset is restricted to paired inside/outside flood zone observations that are within 100 feet of a boundary.
Each observation has the same weight regardless of share developed. First Street Flood Risk is the share of observations with an annual risk of
flooding more than 2 feet greater than 1%. First Street AAL is the expected Average Annual Losses (as a share of parcel value), calculated using
the First Street Foundation model under the “middle” scenario for future flood risk projections.
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Table C.9: Estimated Parameters, Alternative Specifications

Baseline 0 price

effect

0 price

effect,

1/2

quantity

effect

Supply

Elast + 1

SD

(1) (2) (3) (4)

Supply

Cost of adaptation (ψ) 0.243 0.242 0.141 0.197

(0.037) (0.037) (0.037) (0.027)

Demand

Coefficient on SFHA (φ ) -0.367 -0.454 -0.430 -0.374

(0.097) (0.095) (0.095) (0.096)

Coefficient on log price (αD) -1.344 -1.378 -1.405 -1.337

(0.222) (0.220) (0.220) (0.222)

WTP to avoid SFHA (φ/αD) 0.273 0.330 0.306 0.280

Notes: Table presents parameter estimates of our main parameters under alternate assumptions. Column 1 is the baseline (reported in Table 3.4).
Column 2 imposes no price effect instead of the price increase estimate used in the baseline. Column 3 additionally assesses the sensitivity to cutting
our quantity estimate in half. Column 4 calibrates supply parameters using the baseline estimates of census-tract level supply elasticities plus one
standard deviation of the estimates in Baum-Snow and Han (2023). Standard errors (in parentheses) generated from the analytic GMM formula.

3.10.2 Data Appendix

Selecting Counties to Digitize The historic flood maps are available online in a series of scanned
images. These maps are organized first by county and then by “community,” which can be as small
as a village or as large as all unincorporated areas of a county. Each community is mapped in a
series of tiles. Tiles vary in size and amount of land covered. Because we faced a fixed per-tile
digitization cost and had a limited budget, our goal was to select the fewest number of tiles that give
the most useful variation. In particular, we wanted to ensure we digitized tiles that saw substantial
development between the 1980s and present day, but focused on sufficiently large areas to avoid
any concerns about selecting on an endogenous outcome.

Our process for selecting maps was as follows:

Step 1. Select the top 15 counties with the largest quantity of newly-developed land, according to
our digitized land use data.41

Step 2. Divide each county into equal-area quadrants. An illustration of the quadrants is shown in
Figure C.13.

41We restricted to the top 15 counties because each county requires substantial effort to evaluate (manually deter-
mining the location of each tile in order to assign it to a quadrant).

217



Step 3. For each quadrant, compute total area of new development.

Step 4. For each quadrant, count the number of tiles that overlap it.

Step 5. For each quadrant, compute the total area of new development per tiles that would need to
be mapped.

Step 6. Sort quadrants by area of new development per tile and drop quadrants with the lowest
value until budget constraint is met.

The final sample included 120 tiles from 11 different counties (21 quadrants). An alternative
procedure, in which we first dropped all quadrants with more than ten tiles, and then selected the
quadrants with largest total area of new development, yielded a very similar set of quadrants.

Computing Distance to Boundaries We compute the distance from each grid cell to the closest
point on a flood zone boundary that is not within 100 feet of the border of a body of water. We drop
grid cells that fall within 2 miles of county boundaries to avoid including flood zone boundaries
that overlap county boundaries.

3.10.3 NFIP Enrollment Event Study: Additional Material

Data Restrictions We restrict to residential policies on single-family homes and drop any poli-
cies whose coverage exceeds statutory caps. We measure payouts as the total claims paid out for
building and contents insurance. We measure policy cost as the total of the premium and other
fees. We measure elevation using an indicator of whether a house’s elevation exceeds the base
flood elevation (BFE).42 By definition, this variable is not available outside the floodplain since
these areas are assumed to be above the base flood elevation. Inside the floodplain, it is available in
about half of pre-period (unregulated) houses and almost 100% of post-period (regulated) houses.
We measure a house as elevated if the measured difference between lowest floor elevation and BFE
is greater than or equal to 0. We assume that if the elevation is missing, the house is not elevated.

Determining NFIP Enrollment Year We define the year of each community’s NFIP enroll-
ment, and therefore the year in which floodplain regulations were imposed, using data on NFIP
policies from 2010 to 2018. We use the fact that policies have an indicator for whether the house
was built post-FIRM to construct the year of NFIP enrollment at the census tract level. Because
enrollment occurred at the community level, and a community is generally larger than a census

42The Base Flood Elevation measures the height of the flood that has a greater than 1% chance of happening every
year.
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tract, characterizing year of enrollment at the census tract level is unlikely to introduce substantial
inaccuracies. We define the year of enrollment as the first year within a census tract in which over
50% of homes are coded as post-FIRM. We restrict to census tracts with at least 25 distinct years
of construction to avoid classifying the enrollment year based on noise.

Testing for Confounding Disamenities Section 3.4.2 finds that despite reduced flood risk, flood-
safe houses are not more expensive than comparable non-adapted houses. One possible explanation
for this result is that adaptation, specifically elevating to a minimum level, may introduce stairs,
which could be a disamenity for homeowners. To test this, we note that elderly homeowners are
most likely to find stairs a disamenity. We therefore split the analysis into tracts with above- and
below-median share of elderly adults.43 We estimate:

y jbt = β1Post jb +β2Post jb×Elderly j +ν1r jb +ν2r jb×Elderly j (3.11)

+η1r jbPost jb +η2r jbPost jb×Elderly j + γ j + ε jbt

which replicates equation 3.3, but introduces interaction terms between all relative construction
year terms and Elderly j (an indicator for above-median-elderly-share in each census tract).

Results are displayed in Table C.7. If anything, the effect of building code regulation on house
prices is higher for more-elderly tracts, rather than lower, but the differences across age groups are
not statistically-significant. We view this as suggestive that a dislike for stairs is not confounding
our interpretation of our baseline event study estimates.

Difference-in-Difference Specification We expand on our event-study strategy in Section 3.4.2
using the fact that building standards were imposed for houses built inside the flood zone but not
for houses built outside of it.44 Building on equation 3.2, we estimate the following specification:

m jzbt = Σrβr1{r = b− e j}×SFHAz +Σrγr1{r = b− e j}+λb + γ jz + ε jzbt (3.12)

pi = Σrβr1{r = bi− ei}×SFHAz(i)+Σrγr1{r = bi− ei}+λb(i)+ γ j(i)z(i)+ εi

where now z indicates flood-zone, γ jz are tract-by-flood-zone fixed effects and λb(i) indicates year-
of-construction fixed effects. We cluster standard errors at the census tract level. For outcomes

43Using data from the 2014-2018 ACS, we compute the share of population in each census tract that is above 65,
75, or 85. We then define a tract as above-median for each age cutoff if it exceeds the median census tract share above
that cutoff across the state.

44We use the never-treated units outside of the flood zone to avoid bias in two-way fixed effects estimators, following
Sun and Abraham (2021a).
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related to insurance claims and policies, we weight each location by the number of policies. Figure
C.8 presents results. Results are qualitatively and quantitatively similar to the analysis in Section
3.4.2 of the main text.

Stylized Model of WTP for Adaptation Suppose that houses are either adapted (A) or non-
adapted (B), with a fixed supply of each. Denote c as the (total lifetime) savings from living in an
adapted house (c < 0 indicates savings) and ρ as the share of savings that are internalized by the
home-buyer. Let pA and pB be the respective house prices (in levels).

Suppose uiA = α(pA+ρc)+εiA and uiB = α pB where εiA is distributed i.i.d Type 1 Extreme Value.
This specification embeds the assumption that consumers only care about adaptation through its
effects on risk. The share of consumers purchasing an adapted house is

sA =
exp(α(pA− pB +ρc))

1+ exp(α(pA− pB +ρc))
. (3.13)

Rearranging terms:

ρ =
1
c

(
1
α

ln
(

sA

1− sA

)
− (pA− pB)

)
. (3.14)

We assume that α =−1 and take sA = 0.8 based on the market share of post-FIRM houses in 2016,
and set c =−6398 based on our estimates.

An estimate of no price difference between adapted and non-adapted houses yields an internal-
ized share ρ of approximately zero. The upper end of the 95% confidence interval (estimated in
Table 3.3) is a price increase of 1.06%, leading to an implied ρ = 0.36. Thus, we can reject that
consumers internalize more 36% of the expected reduction in flood damages.

Model Estimation Details

Calibration of Supply Elasticities We use as our starting point estimates produced by Baum-
Snow and Han (2023) (BSH) for land development elasticities at the census tract level, estimated
between 2001 and 2011. The supply elasticities BSH estimate are derived from the following
relationship

α
S
j = β0 +β1ShareDev j +β2DistCBD j +β3Flat% j + ε j (3.15)

which relates the supply elasticity to the share of the census tract that is developed, the distance
from the census tract to the center business district (CBD), and the share of the census tract that is
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not steep-sloped. The share of land in the census tract that is developed (ShareDev j) is measured
in 2001.

The fact that elasticities are estimated from 2001-2010 means that these supply elasticities will
likely underestimate supply elasticities in our sample, and differentially so for census tracts that
became more developed between 1980 and 2001 as more developed areas have fewer attractive
plots on which to build.

We therefore adjust our estimates of αS
j to accord with 1980s development shares as follows:

1. Estimate equation 3.15 with 2004 development shares, as well as the same DistCBD j and
Flat% j used in the original BSH estimates.

2. Predict α̂S
j using the estimated coefficients from (1) and our measures of 1980s development

shares.

3. Replace any negative elasticities with the smallest nonnegative elasticity in our eleven-
county sample.

We use the approach above instead of directly using BSH’s estimates of β1, β2, and β3 because we
measure development slightly differently than BSH.

We then translate our adjusted measures of αS
j into an implied tract-level µ j and σ j for each census

tract. Again, to be consistent with the BSH estimates, we estimate µ j and σ j treating census tracts
as uniform, i.e. not differentiating across flood zones, as this is the level at which the supply
elasticities are estimated. We first compute the decrease in share developed in each census tract that
would be implied by the BSH elasticities for a price decrease of 10%: q̃ j = q2016

j −αS
j (0.1p2016

j ),
and use:

σ j =
−0.1p2016

j

Φ−1(q̃ j)−Φ−1(q2016
j )

(3.16)

µ j = p2016
j −Φ

−1(q2016
j )σ j (3.17)

to obtain census-tract level estimates of µ j and σ j (note that because we are matching µ j and σ j to
the BHS estimates at the census tract level, we ignore η jz and E jz).

Then, we build on this matching exercise by allowing the supply of housing to differ by (1) adap-
tation status (ψE jz), detailed in the following section, and (2) by a shifter η jz, which we obtain,
given estimates of φ , as η jz = p2016

jz −ψE jz−µ j−Φ−1(q2016
jz )σ j.
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Moment Condition Details

Moments Based on the Exogeneity of Building and Land Characteristics The moments based
on the exogeneity of building and land characteristics are as follows:45

E
[
ξ jzX jz

]
= 0 E

[
ξ jzX̃ jz

]
= 0 E

[
ξ jz p̃ jz

]
= 0 (3.18)

for a vector X̃ jz that averages the observable characteristics X jz of locations in the same housing
market that are located more than 3 miles away from geography jz, weighted by land area, and a
price vector p̃ jz that rationalizes market shares under no unobserved amenities (i.e., setting ξ jz = 0).

Boundary Moments: Demand We construct moments to match our spatial regression disconti-
nuity (RD) analysis around the regulatory boundaries. To operationalize this, we first subdivide the
tract-zone pairs into tract-zone-band observations, where band b ∈ {close, f ar} indicates whether
an observation is within K feet from a floodplain boundary. Ideally, we would like to construct
moments E[ξ jzbSFHAz1{b = close}] = 0, taking K → 0. This captures the RD assumption that
as the boundary is approached, amenities become uncorrelated with flood zone status. However,
taking K→ 0 has practical challenges, namely a lack of sufficient observations.

We address this challenge by constructing moments that match our RD estimates in Section 3.4.1
directly. First, we define K = 100 feet. Then, in order to capture the fact that within a 100-foot
boundary, mean amenities may still differ inside and outside the flood zone, we add a boundary-
SFHA fixed effect, ∆DSFHAzb. We redefine unobserved amenities as ξ̃ jzb = δ jzb−

(
αD p jzb +φSFHAz +X jzbβ +∆DSFHAzb

)
,

where φSFHAz is the causal effect of regulation on choices and ∆DSFHAzb is the average dif-
ference in amenities between SFHA and non-SFHA locations within 100 feet of the flood zone
boundary. Then, we define the following moments to exactly match the RD estimates:

E

[(
1

αD

(
δ j1b−δ j0b−φ −∆

D)−β
p,2016

)
1{b = close}

]
= 0 (3.19)

E

[
ξ̃ jzbSFHAz1{b = close}

]
= 0 (3.20)

E

[
ξ̃ jzb1{b = close}

]
= 0 (3.21)

45We include a constant term in X jz.
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where β p,2016 is the RD effect on price. These moments are only calculated for observations close
to the flood zone boundary where there is a balanced pair (i.e. an observation both inside and
outside the SFHA in the same tract).46

Boundary Moments: Supply We follow a similar approach for supply-side moments, construct-
ing moments that match our RD estimates in Section 3.4.1 directly. In order to capture the fact that
within a 100-foot boundary, mean construction costs may still differ in the SFHA, versus not,
we add a boundary-SFHA fixed effect, ∆S,tSFHAzb. We redefine unobserved construction costs
as η̃ t

jzb = pt
j1b−ψEt

j1− µ j−∆S,tSFHAzb− µ t
b, where ψEt

j1 is the causal effect of regulation on
construction costs, ∆S,tSFHAzb is the average difference in construction costs between SFHA and
non-SFHA locations within 100 feet of the flood zone boundary, and µ t

b is a mean shifter in the
boundary sample. Then, we define the following moments to exactly match the RD estimates:

E

[
Φ

(
p1980

j1 −ψE1980
j1 −µ j− η̃1980

j1 −µ1980
b

σ j

)
− (3.22)

Φ

(
p1980

j0 −ψE1980
j0 −µ j− η̃1980

j0 −µ1980
b

σ j

)
−β

q,1980

]
= 0

E

[
Φ

(
p2016

j1 −ψE2016
j1 −µ j− η̃2016

j1 −µ2016
b

σ j

)
− (3.23)

Φ

(
p2016

j0 −ψE2016
j0 −µ j− η̃2016

j0 −µ2016
b

σ j

)
−β

q,2016

]
= 0

E

[
η̃

1980
jzb SFHAz1{b = close}

]
= 0 (3.24)

E

[
η̃

2016
jzb SFHAz1{b = close}

]
= 0 (3.25)

E

[
η̃

1980
jzb 1{b = close}

]
= 0 (3.26)

E

[
η̃

2016
jzb 1{b = close}= 0

]
(3.27)

46We also include a boundary sample fixed effect in X jzb.
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for estimated RD effects on the share of land that is developed in the pre-period, β q,1980, and the
post-period, β q,2016. All moments are calculated for observations close to the flood zone boundary
where there is a balanced pair (i.e. an observation both inside and outside the SFHA in the same
tract).

Estimation and Data Details Using the moments specified above, we obtain parameter esti-
mates with two-step optimal GMM and calculate standard errors analytically.

We measure p2016
jz as the log of the median sales price for single-family homes from 2014-2019

based on the location of the building footprint. We measure p1980
jz as the log of the median value of

owner-occupied non-condominium housing units from the 1980 Census. House prices from 1980
are not available at the flood zone level. Because flood zones did not exist in the pre-period we as-
sume that the price does not differ between flood zones within a Census tract. We measure quantity
of developed land in 1980 and 2016 as the number of gridcells that are categorized as developed in
the 1980 and 2016 land-use datasets.47 We base our adaptation indicator on a measure of elevation
from NFIP policy data, as discussed in Appendix 3.10.3. We define a tract as adapted if more than
50% of insured houses in that tract are elevated. Where we do not observe elevation (including all
non-flood-zone tracts), we assume adaptation only occurred when required by regulation. When
historic flood zone status is unavailable because of the limited reach of our digitized maps, we
use the 1996 flood zone status to calculate market shares, but we restrict to historic maps for the
boundary moments.

Appendix Table C.8 presents summary statistics for the model estimation sample. A larger share
of our estimation sample is developed than the sample used in Section 3.4, but house prices and
flood risk are similar.

Model Fit The structural error terms
(

ξ jz,η
t
jz

)
allow our model to achieve a perfect fit to the

observed data. However, given that we calibrate µ j and σ j in our model of housing supply from
external estimates, we would like to assess fit in our context. To do so, we investigate the extent to
which we rely on these structural error terms for model fit. We conduct this exercise in Figure C.12,
where we plot observed price in 2016 against the modeled prices that would rationalize observed
market shares in each year, if we omitted the structural error terms. This exercise isolates the fit
of our model of housing supply, as we calculate model-implied prices using our estimated supply
parameters. Figure C.12 demonstrates a strong correlation between model-generated and observed

47To account for the fact that some locations jz have no developed land in 1980, we calculate share developed q jz =
(Q jz +1)/L jz in those locations. Also, in the spirit of Burchfield et al. (2006) we correct for potentially mismeasured
growth by measuring the number of developed cells in 1980 as the minimum of the observed number of developed
cells in the location in 1980 and the number measured in 2016.
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prices, indicating our supply curve is reasonable. Of course, the inclusion of the structural error
terms mechanically improves the model fit.

3.10.4 Expected Damages Calculations

We define flood risk using data from the First Street Flood Lab estimates of Average Annual Loss
(AAL). AAL expresses expected annual damages as a share of house price. These data come from
parcel-specific estimates (as opposed to the raw hazard layer) that combine the raw hazard layer
(which generates the parcel-specific inundation depth) with the output of an engineering damage
model. The damage model takes as inputs a number of features of the structure, including its
market value, number of stories and units, and foundation type, and calculates damages using the
HAZUS-MH methodology. The HAZUS-MH methodology was developed for FEMA to calculate
estimated damages from natural disasters and is based on a set of depth-damage curves collected
from FEMA’s Federal Insurance and Mitigation Administration (FIMA) and the USACE Institute
for Water Resources (USACE-IWR).48 Average annual loss is expected to grow over time; we
assume risk increases linearly from the estimated 2021 risk to the estimated 2051 risk and then
stays constant at the 2051 risk for all future years. Wherever First Street did not provide an AAL
estimate but did provide a Flood Factor (another measure of risk), we assumed the AAL was 0.

Expected damages are computed as the product of number of newly-developed gridcells and the
PDV of expected damage under a given counterfactual. The expected damage is computed as
0.7×PObs

jz ×AAL jz×MCF
jz (E2016

jz ), where PObs
jz is the observed (level) price of a house and AAL jz

is the observed average annual loss.49 The term MCF
jz is a multiplier that accounts for differences

in adaptation in each counterfactual. We assume that if an observation was adapted in the pre-
period it will be adapted in the post-period for all counterfactuals. Otherwise, houses that are
not observed to be adapted in the post-period but are adapted in a counterfactual will experience
55% lower damages in that counterfactual. This is based on our estimates of the average effect of
building code adoption on damages in our event study analysis in Table 3.3 and our heterogeneity
analysis in Appendix Table C.6 that indicates that damage reductions are proportional to baseline
risk. A similar calculation applies to houses that are observed to be adapted but are counterfactually
non-adapted.

We compute two measures of damages:

DAll = 1.05
.05 NCFDCF

DAdapt = 1.05
.05 NURDCF

48See First Street Foundation (2021) for more details.
49This 70% factor was recommended by First Street, who provided the underlying AAL data.
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where NCF denotes the number of newly-developed gridcells under counterfactual CF , NUR de-
notes the number of newly-developed gridcells under the unregulated benchmark, and DCF denotes
the PDV of expected damage under counterfactual CF . The first measure (“all damages”) measures
total expected damages by multiplying the counterfactual number of newly-developed houses in
each area by the expected damages in that counterfactual. The second measure (“adaptation-based
damages”) holds the number of houses in each location constant at the unregulated benchmark and
only changes the expected damage in each location. We then compute per-house damages by di-
viding the total expected damages of each type by the number of newly-developed houses (which
is constant across counterfactuals).

3.10.5 Welfare Calculation Details

We compute consumer surplus differences in each counterfactual scenario relative to the unregu-
lated benchmark. Following Small and Rosen (1981), we calculate per-person consumer surplus
in each market m as:

CSi =
−1
αD lnΣ j∈Jm,z∈{0,1} exp(αD p jz +φSFHA jz +X jzβ +ξ jz) (3.28)

where j denotes census tract and z indicates flood zone status. For each market, we compute the
change in level price required to make per-person consumer surplus in the counterfactual equivalent
to that of the same market in the unregulated benchmark. That is, we solve for ∆PCF

m such that

ln
(

Σ j∈Jm,z∈{0,1} exp(αD pNoSFHA
jz +X jzβ +ξ jz)

)
=

ln
(

Σ j,z exp(αD ln(PCF
jz + τ

CF
jz +∆PCF

m )+φSFHACF
jz +X jzβ +ξ jz)

)
(3.29)

where PCF
jz is the house price in levels in the counterfactual of interest, τCF

jz is the tax in levels,
SFHACF

jz indicates the SFHA designation in the counterfactual of interest, and pNoSFHA
jz is the

house price in logs in the unregulated benchmark. The total consumer surplus associated with new
development is then ∆CSCF = ΣmNm∆PCF

m , where Nm denotes the number of new houses in each
county m.

We compute producer surplus differences as compensating variation for all developers who did not
develop in the pre-period. That is, we solve for ∆PCF

jz such that
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∫ q1

q0

(
exp(pNoSFHA

jz )− exp(σ ∗Φ
−1(q̃)+ψE0

jz +η
1
jz)
)

dq̃ = (3.30)∫ q1

q0

(
exp(pCF

jz )−∆PCF
jz − exp(σ ∗Φ

−1(q̃)+ψECF
jz +η

1
jz)
)

dq̃+
∫ 1

q1

(
−∆PCF

jz

)
d

where pCF
jz is the log house price in the counterfactual of interest, ECF

jz indicates whether the house
is adapted under the counterfactual, E0

jz indicates whether the house is adapted in the absence of
regulation, pNoSFHA

jz is the house price in logs in the unregulated benchmark, q0 is the share of plots
developed as of the end of the pre-period, and q1 is the share of plots developed as of the end of
the post-period. We then compute total change in producer surplus by multiplying by the number
of gridcells in each location L jz and summing across locations.

We compute government revenue from the tax policy by adding up all taxes levied on newly-
developed houses. We compute government revenue under the flood zone policy by estimating
the total amount of insurance premiums. Using our flood insurance policy data, we assume that
policies inside the flood zone cost $1484 per year and policies outside the flood zone cost $572
per year. Applying back-of-envelope calculations to recent estimates of take-up in Florida (Lingle
and Kousky, 2018) and inside and outside the floodplain nationally (Bradt et al., 2021), we assume
take-up is 45% inside the flood zone, 6% outside the flood zone in high-risk areas (areas with
positive probability of flooding more than 2 feet in the 100-year flood), and 0% outside the flood
zone in low-risk areas. As with the tax revenue, we calculate premium revenue only for new
development.
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