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ABSTRACT

This thesis contains 3 chapters, each of which explores the implications of partial disclosure
in a different context. As disclosures affect the beliefs of key actors in each scenario, optimal
information design is an important consideration, and I try to characterize it and identify
potential pitfalls in each case.

Chapter 1 considers the disclosure problem of a sender with a large dataset of hard
evidence. A sender may have an incentive to drop observations before submitting the data to
receivers in order to persuade them to take a favorable action. I predict which observations
the sender discloses using a model with a continuum of data, and show that this model
approximates the outcomes with large, multi-variable datasets. In the receiver’s preferred
equilibrium, the sender’s strategy relies on imitation: they submit evidence that imitates
the natural distribution under a more desirable target state. As a result, it is enough for
an experiment to record data on outcomes that maximally distinguish higher states. I
characterize these strategies and show that senders with little data or a favorable state fully
disclose their data, but still suffer from the receiver’s skepticism, and therefore are worse-off
than they are under full information. On the other hand, senders with large datasets can
benefit from voluntary disclosure by dropping observations under low states.

In Chapter 2, my coauthors1 and I study the Federal Reserve’s problem of disclosing the
models it uses in supervisory stress tests of large banks. Banks argue that nondisclosure leads
to inefficiencies stemming from uncertainty, but regulators are concerned that full disclosure
can lead to banks gaming the system. We formalize the intuition behind this trade-off in a
stylized model where both the regulator and banks have imperfect, private “models" about
a risky asset, and the regulator uses its own model to ‘stress test’ the investment. We
show that if the regulator uses its model to test the banks’ investment, full disclosure is
suboptimal, and the regulator may benefit from hiding the model when the bank’s model

1My coauthors are Marc de la Barrera and Bumsoo Kim. We each contributed to the core results and
writing of this paper; I would like to thank Marc for initiating a discussion of the Fed’s stress testing policies,
and Bumsoo for his considerable contribution to and encouragement on this project as part of his 2nd year
paper.
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is more precise than the regulator’s own model. The key idea is that hiding the regulator’s
model forces the bank to guess it using the bank’s own models, effectively eliciting the bank’s
private information. We also show that if the regulator can fine-tune disclosure policies, the
regulator can approximately enforce banks to take the first-best action, through an intuition
closely related to the Cremer and McLean (1988) information rent extraction result.

Finally, in Chapter 3 I return to signaling via hard evidence, and analyze communica-
tion through a piece of verifiable evidence when the receiver/decision maker is uncertain
about where the sender’s preferred action lies in relation to their own, that is, the sender’s
relative bias. In contrast to the known-preference case, fully informative communication
is impossible, even when the receiver is certain the sender is informed. The main novelty
is that receivers cannot distinguish between senders of opposite preferences who pool by
withholding their information when it is unfavorable. Two opposing patterns of partial dis-
closure emerge. When senders are biased relative to receivers, but just as state-sensitive,
nondisclosure is driven by senders with extreme preferences, who choose to withhold slightly
unfavorable evidence. The reverse, however, occurs when senders are state-insensitive.
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Chapter 1

Inference from Selectively Disclosed Data

1.1 Introduction
Many decisions – including technology adoption, regulatory approval, and research grant-
making – are based on self-disclosed data. The datasets used can often be very large, on
the order of tens of thousands of trials for drug approval, and often hundreds of thousands
of datapoints about locations and sales in merger cases. In and of themselves, big datasets
may paint an accurate picture of reality, but this becomes less clear if the sender can disclose
them strategically. Oftentimes, it is easier to verify that submitted data are real than that
they are complete, in which case deciding which observations are admissible to include in
the dataset is largely at the sender’s discretion, even in the presence of mandatory disclosure
norms.

We want to understand the role that disclosed data play in strategic communication
between the sender and the decision-maker when receivers have uncertainty about the un-
derlying dataset from which the sender extracted the submitted data. We consider the case
of a sender with state-independent motives to persuade the receiver towards a particular ac-
tion, and a receiver who observes a dataset the sender discloses, but interprets it with partial
skepticism that the data are incomplete. Equilibrium play between the sender and receiver
involves the sender submitting data as “proof" that the receiver should take a favorable ac-
tion, and the receiver evaluating how persuasive the proof is depending on how likely it is
sent by a sender with less persuasive data who has trimmed some discouraging observations.
This can be modeled under the framework of an evidence game in which senders that have
access to datasets with weakly more observations of each outcome can always mimic senders
with fewer observations. A special case, in which senders either have or do not have access
to a single data point, with probability known to the receiver, is already well-understood
(Dye 1985), and demonstrates that senders can manipulate the receiver by disclosing nothing
when the evidence is sufficiently poor.
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Our primary innovation is to characterize disclosure in the opposite extreme, when datasets
contain many observations. We propose a continuous-data model of the asymptotic distri-
bution over potential datasets of the sender that depends on two things: the true state
of the world that generates the data, and a random variable that describes the amount of
data the sender collects. The continuum assumption captures the fact that empirical distri-
butions are approximately deterministic in the limit with large numbers, and allows us to
eliminate uncertainty over the randomness of draws, which makes the model more tractable
than directly modeling large, finite N . Instead, we show that the outcome we characterize
in the continuous model describes the limit outcome of communication in finite-data games
as N → ∞.

In addition to an extensive list of observations, a second characteristic feature of “big"
data is a large outcome space. This motivates the novel use of a framework that encompasses
general statistical settings, including those in which outcome and state spaces are large and
the relationship between them complex. In particular, we place essentially no restrictions on
the state-contingent data distribution. In general, unlike in a “good news-bad news" model of
data, the ranking of states and the shape of their data-generating distributions endogenously
affects the interpretation of different outcomes, and context determines whether data take
on a positive or negative connotation.

Indeed, our first main result, Prop. 1, is a sufficiency result that says that in the receiver-
optimal partial pooling equilibrium outcome, the state-contingent experimental outcome
distribution affects the information transmitted only through a handful of key features: what
matters are the observations of outcomes with the greatest likelihood ratio under a better
vs. a worse state. Strikingly, since the distribution of data that distinguishes one state from
another depends solely on the relative probabilities of likelihood ratio-maximizing outcomes,
a receiver who wants to distinguish a relatively small number of states with many observations
of high-dimensional data can do just as well restricting the dataset to only retain information
about these outcomes. When state-contingent distributions of experimental outcomes satisfy
the monotone likelihood ratio property (MLRP), we return to the case of only one “good
news" outcome, and distinguishing it from other outcomes is sufficient to support receiver-
optimal communication.

Our second result, Theorem 2, characterizes an “imitation" equilibrium implementation of
the receiver-optimal equilibrium outcome, in which senders always show the receiver a dataset
that can correspond to a naturally-generated dataset, so that on path, the receiver always
places positive probability on the event that the sender is sending all their data. However,
the receiver also infers from some datasets that the sender has with positive probability
observed data corresponding to a different state than the revealed data suggest, but has
dropped observations in order to imitate a more favorable distribution. When MLRP fails,
it is important for the imitating sender to send a large-enough mass of realizations of a
certain outcome, but not too much. The resulting outcome benefits senders under low states
with more data at the expense of senders with less data in high states, since the former
pool with the latter. The extent of pooling depends on the receiver’s uncertainty about the
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sender’s data collection capabilities: the greater the variance in the receiver’s belief about
how much data the sender starts out with, the more senders can profitably imitate other
senders, with outcomes converging to the full-information one as uncertainty vanishes.

In section 1.3.1, we provide an algorithm to accompany the characterization that con-
structs the limit game equilibrium outcomes using a top-down logic: senders with more data
receive weakly greater payoffs, and we can construct the payoff frontiers of the continuous
payoff function by specifying the burden of proof, or how much data of a given state’s dis-
tribution a sender needs, to induce a particular belief in the receiver. The algorithm is
applicable to any number of states and to any datasets with finite support, and we illustrate
it with representative 2 and 3 state examples.

Finally, we turn to governing interactions in which the sender can resort to strategic omis-
sion, and show that two intuitive classes of information interventions can be effective: exper-
imental design that tailors the set of observed outcomes to the set of states that the receiver
wishes to distinguish, and public information provision to inform the receiver about ex-ante
opaque aspects of the data generating process. The former has implications for research and
testing guidelines, while the latter offers a formal channel through which decision-making
depends on transparency in research practices.

1.1.1 Related literature

Strategic disclosure has been studied since the work of Grossman (1981) and Milgrom (1981),
which showed that full disclosure is the unique outcome when receivers know that the sender
wishes to prove the value of a good is high using verifiable information that they could
choose to disclose. The assumption that receivers know the sender is informed is crucial to
this benchmark, as Dye (1985) and Jung and Kwon (1988) show. They consider a case in
which the sender has access to a single, real-valued piece of evidence with interior probability
p ∈ (0, 1), and shows that only senders for whom the evidence exceeds a threshold will
choose to disclose it, with the rest withholding it in order to pool with those senders who
lack evidence altogether. Shin (1994, 2003) shows that in the case where senders have an
uncertain endowment of good news and bad news, the fact that senders withhold bad enough
evidence implies a “sanitation equilibrium", in which all bad news is disposed of.

We extend these results by considering evidence structures with large, multidimensonal
datasets. In our data-based setting, evidence is neither exogenously good nor bad, but the
receiver draws inferences statistically, based on knowledge of the relationship between rele-
vant state-parameters and the distributions of data they generate. The setting we consider
encompasses the settings above, and captures a special case of more abstract evidence games
of the type considered by Green and Laffont (1986), Okuno-Fujiwara et al. (1990), Hart et al.
(2017), and Glazer and Rubinstein (2006). The main focus in those settings has been on elic-
iting good outcomes for the receiver with receiver-optimal mechanisms and equilibria with
full revelation, and we follow in this spirit by fully characterizing a receiver-optimal partial
pooling equilibrium in the game we study. Hart et al. (2017) in particular is foundational to
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our equilibrium selection criterion. Their observation that the optimal deterministic mech-
anism, the receiver-optimal equilibrium, and the unique truth-leaning equilibrium all yield
the same outcome generalizes straightforwardly to our setting.1

Rappoport (2022) and Jiang (2022) use an iterative algorithm to solve for truth-leaning
equilibrium outcomes in finite evidence games, but it is computationally demanding to use
it in games with large type spaces, and therefore infeasible to directly compute the large-N
limit of outcomes in the strategic disclosure of finite datasets. Our approach is instead to
use a continuous-data approximation to solve for asymptotic outcomes without explicitly
computing outcomes of finite-data games, and to show that it is exactly the big-data limit
outcome.

Only one other paper that we know of, by Dzuida (2011), uses a continuous measure
of evidence to solve for communication with verifiable evidence. Unlike our model, hers
considers evidence with a continuum of states but a binary “good news-bad news" outcome
structure, and assumes there is a positive likelihood of a behavioral, honest type of the sender.
The existence of the honest type, along with imposing continuity of payoffs in reported
outcomes, selects an equilibrium resembling the truth-leaning one. As in our paper, providing
interior amounts of negative evidence can be optimal in otherwise sanitation-like equilibria.
We show that in the absence of honest types but with large outcome spaces, this can come
about for a novel reason – sending interior amounts of observations of some outcomes can be
necessary to simultaneously imitate desirable types while ruling out undesirable ones, and
can be strictly preferable to sending less or more data.

We also relate to a broader literature about the optimal collection and disclosure of evi-
dence, that considers costly (Migrow and Severinov (2022)) and dynamic evidence acquisition
(Felgenhauer and Schulte 2014, Henry and Ottaviani 2019), sender-optimal disclosure mech-
anisms (Haghtalab et al. 2022), and discretionary disclosure after test or information design
(Shiskin 2022, Dasgupta et al. 2022). Several papers use a restricted notion of evidence but
are also explicitly concerned with the effect of allowing sample selection: Fishman and Hag-
gerty (1990) and Di Tillio et al. (2021) study the case in which only a subset of observations
are disclosed, and give conditions under which it is better that an informant have discretion
over which data are selected.

Finally, there is a small literature of empirical findings about common patterns of vol-
untary disclosure. Some work in econometrics by Simonsohn et al. (2014), Andrews and
Kasy (2019) and others studies the bias that arises from a range of exogenous patterns of
selective reporting, and describes inference procedures that correct for it. In addition, a
small body of experimental work studies how subjects disclose evidence when incentivized
to persuade receivers in the lab. Jin et al. (2021) finds evidence that receivers’ inferences are

1The optimal mechanism equivalence result has been noted by others, including Glazer and Rubinstein
(2006), Sher (2011), and Ben-Porath et al. (2019), who show that the fact that commitment is not necessary
for the optimum is robust to other settings, in particular with binary actions and multiple senders with
type-dependent preferences.
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often biased by accounting insufficiently for the sender’s nondisclosure, and Li and Schipper
(2020) shows that senders are also biased towards naive, truthful behavior. Both suggest
that these behaviors are consistent with an initial lack of higher-order sophistication that is
remedied, to some extent, by experience. On the other hand, Osun and Ozbay (2021) suggest
that in a binary-type evidence game, senders’ disclosure policies and receivers’ commitment
policies differ from those predicted by Hart et al. (2017) in ways consistent with a common
understanding that senders are inherently averse to lying.

1.2 Model
States and payoffs. There is a sender (S), who wishes to communicate to a receiver (R)
about an unknown state of the world, θ ∈ Θ = {θ1, . . . , θJ}. The sender and receiver share
a common prior β0(·) over Θ. We assume that the receiver takes an action ar ∈ R and that
θ1, . . . , θJ are real numbers ordered with θj ≤ θj+1, representing the optimal action for the
receiver under each state, if it was known with certainty. The sender’s payoff is simply (a
monotone function of) ar;2 in short, regardless of their type, they want to induce the receiver
to take the highest action possible.

Finally, we assume the receiver has an expected utility that is differentiable and single-
peaked at the action that matches their expectation of the value of θ, that is, that for any
belief β ∈ ∆Θ, the receiver’s expected payoff Eβ[ur(a)] is single-peaked at ar(β) = Eβ[θ].3
We work with the sender’s indirect utility as a function of the receiver’s beliefs, which induces
them to maximize the receiver’s posterior expectation of θ:

us(β) = Eβ[θ]. (1.1)

For example, when the receiver is a policymaker, states can represent the true optimal policy.
While the policymaker might be uncertain, they wish to enact a policy that matches the
optimal policy in expectation, while the sender wishes for them to take as high an action as
possible.

Evidence. The private information of the sender comes in the form of hard evidence about
the state of the world. In particular, the sender has access to a dataset of observations drawn
from a finite set of outcomes, D = {1, . . . , D}. The underlying data-generating distribution
is state-contingent: under state θj, the observations are i.i.d. draws from distribution fj.

We model the amount of data the sender has access to as a mass, µ ∈ [0, 1], that repre-
sents the fraction of total potential data that the sender can access, and has a continuous

2Because the receiver will always play a pure strategy, the sender’s problem is unchanged if their payoffs
are rescaled through a monotone mapping.

3The assumption of single-peakedness is necessary to identify the receiver-optimal equilibrium and the
receiver-optimal mechanism.
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Figure 1.1: A feasible type and a feasible message.

distribution, g, that is state-independent4, supported on [0, 1] with g(1) = 0, and infinitely
left-differentiable5. The continuum assumption models big datasets in which the large num-
ber of draws essentially removes all uncertainty about the impact of randomly realized out-
comes on the sender’s dataset: conditional on state θj, the empirical distribution of data the
sender observes is certain to be fj, and µ does not affect the distribution of their evidence,
only the amount of it. In other words, with probability 1, a sender with a mass µ of data
under state θj observes the dataset t = µfj. Any nonzero measure of data fully informs
the sender of the state, and the set of possible complete datasets and types of the sender is
T = [0, 1]×Θ.

The receiver, on the other hand, is uninformed about how much data the sender has.
Their prior belief about the sender’s type is given by the density

q(µfj) = β0(θj)g(µ). (1.2)

Messaging and inference. Senders can choose a subset of observations from their dataset
to submit to the receiver. We assume total flexibility in the choice of subset:

Assumption 1. The sender can send any message m ∈ M = [0, 1] ×∆D that is a subset
of their dataset (m⊆̃µfj), where

m⊆̃µfj ⇔ m(d) ≤ µfj(d) ∀d ∈ D.

That is, a sender can drop an arbitrary mass of observations from their data, and then
show the remaining ones to the receiver. By dropping observations, they can arbitrarily
alter the relative frequencies of each outcome in the submitted dataset in order to imitate

4For simplicity of exposition, we focus on the case in which their belief about µ conditional on θ is given
by a probability density g that is independent of θ, although most results hold identically for cases in which
the distribution of µ is state-specific.

5The assumption that g has a vanishing right tail ensures that it is continuous on R+ while being supported
on [0, 1], and simplifies the equilibrium construction: specifically, it ensures that the equilibrium payoffs are
continuous in µ.
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any distribution. However, this is costly in that it reduces the size of the submitted dataset,
which is observable.

We have that M ⊃ T : the message space contains the set of all possible complete datasets,
but also a D-dimensional set of other datasets that could be disclosed to the receiver after
excluding part of their dataset. For any set of messages M , define the upper set U(M) to be
the set of types that can send a message in M , and for any set of types T , define the lower
set L(T ) as the set of messages that some t ∈ T can send.

Call the disclosure game with these parameters G(Θ,D, β0, {fj}Jj=1, G). Upon observing
the sender’s message, the receiver updates their belief about the sender’s type to q(t|m), and
then forms a new belief about the state,

β(θj|m) =

∑J
j=1

∫ 1

µ=0
q(µfj|m)θj∑J

j=1

∫ 1

µ=0
q(µfj|m)

. (1.3)

1.2.1 Equilibrium

The sender plays a messaging strategy σ∗ : T → ∆M, knowing which the receiver infers
the content of message they receive. As usual, the equilibrium we consider will be a Perfect
Bayesian Equilibrium (Fudenberg and Tirole 1970), that is, β∗(·|m) must be consistent
with the sender’s strategy σ∗, and the sender must optimize, so σ∗(m|t) > 0 only if m ∈
argmaxm′∈L(t) Eβ(·|m′)[θ].

Call the map from types to payoffs, uσ∗(t), the outcome of the equilibrium.6 In the
perfectly separating outcome, the sender obtains a payoff of θ. As in Milgrom (1981),
Grossman (1981), and Dye (1985), when g is a degenerate distribution such that µ is known
to the receiver, then all attempts to mislead the receiver unravel, and the fully separating
outcome obtains in every PBE. When g and all fj have full support, there is partial pooling
in every PBE. However, PBE are often not unique, and in this case, there may be multiple
β∗, differing on off-path messages, that are consistent with σ∗, and the game generically has
multiple, non-payoff-equivalent PBE outcomes. Any message that can be played by some
type of sender under a state θj ≥ Eβ0 [θ] is played on-path in some PBE.

Intuition suggests that the game is fundamentally one of imitation: senders tailor their
data to increase the receiver’s belief that the state is a higher one, and they can only do so
by imitating the datasets submitted by higher-state types, who themselves may be imitating
others or trying to distinguish themselves as well as possible from lower-state types. One
way to imitate a higher-state type of sender is to try to prove you have all the data that
they would, and no more – that is, to imitate their complete dataset. We define an imitation
equilibrium to capture the idea that sender masquerades as other type by imitating their full
datasets.

6This is a departure from the usual definition of an outcome of an extensive-form game, but consistent
with the definition in Hart et al. (2017) and Rappoport (2022). It describes the action the receiver plays
after communicating with each type, and so describes the consequences of communication in the game.
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Definition 1.2.1. (σ∗, β∗) is an imitation equilibrium if it is an equilibrium, and under σ∗,

a. Every on-path message is in T ,

b. Type µfj plays m ̸= µfj if and only if θj < maxm′∈L(t) Eβ∗(·|m′)[θ], and otherwise reports
their full dataset.

In other words, with an imitation messaging strategy every type of the sender either fully
reveals their data or imitates another type’s full dataset, and they only consider the latter
if it could give them a better payoff than letting the receiver be fully informed of the state.

Why do we focus on these equilibria? Imitation equilibria are truth-leaning, as first
defined by Hart et al. (2017) in the context of general evidence games with finite types. The
idea applies identically in this setting. Formally, given a base game G, for ϵ = (ϵt, ϵt|t)t∈T ,
let a game Gϵ be the game with an identical type set and type distribution, but with two
differences. First, type t’s payoffs to playing t are perturbed by ϵt, so that t’s payoff to
playing t is Eβ(·|t)[θ] + ϵt. Secondly, type t plays t with at least probability ϵt|t – i.e. with
probability ϵt|t a sender with dataset t is a commitment type that plays their full dataset
regardless of whether doing so is optimal, while with probability 1 − ϵt|t type t is strategic.
A truth-leaning equilibrium is an equilibrium of the base game that can be obtained as a
limit of equilibria of ϵ-perturbed games as ϵ → 0.

While truth-leaning equilibrium strategies capture a sender’s slight bias towards truth-
telling, the truth-leaning equilibrium outcome has desirable properties in its own right. When
the receiver’s expected payoffs are single-peaked in their action, the truth-leaning equilibrium
outcome is also receiver-optimal, and is the outcome of the optimal mechanism when the
receiver can commit to a single action as a response to each message. This is well-known
in the finite case studied by Hart et al. (2017), and continues to be true in the continuous
model that we study. It is also the only equilibrium outcome robust to a slightly stronger
version of a credible announcement (Matthews et al. 1991). We say that under equilibrium
σ∗ a collection T of types of the sender can benefit from an inclusive credible announcement
if there is a set of messages such that T is comprised of every type that 1) finds some
message in the set feasible and 2) weakly benefits from the receiver updating that their type
is in T from the prior, relative to the receiver’s equilibrium inference; and there is at least
one type in T that strictly benefits.7 Robustness to such announcements means that the
equilibrium survives even if senders are able to override the receiver’s beliefs by proposing
sensible reinterpretations of messages, and can coordinate to do so; it rules out, for example,
play that is “stuck" in a bad equilibrium due to immalleable off-path beliefs. For a deeper
discussion of these refinements, see Hart et al. (2017) and Appendix A.2.

Claim 1. Imitation equilibrium messaging strategies are the truth-leaning equilibrium mes-
saging strategies of G. Imitation equilibrium outcomes are:

7The departure from the usual credible announcement is that the collection of types making the announc-
ment must also contain all types who are indifferent between participating in the announcement and their
equilibrium payoff.
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• Receiver-optimal among equilibria and deterministic mechanisms;

• The unique inclusive announcement-proof equilibrium outcomes.

1.2.2 Examples

A binary-state testing problem

A sender (a product designer) wishes to prove the quality of an innovation by submitting
test data to a receiver (the CEO). The innovation may improve on an existing product or
not: its contribution to the profitability of the product is either high or low (Θ = {θH , θL})
with θH = 1 and θL = 0. The sender persuades the receiver that the quality is high by
submitting results from a limited trial where the outcomes are 1 = Don’t click ad , 2 =
Click ad but don’t purchase, and 3 = Click ad and purchase. It is commonly known that in
the two states of the world, the true likelihood of each outcome is as follows:

j fj(1) fj(2) fj(3)
θH 1/2 1/5 3/10
θL 13/20 3/20 1/5

Table 1.1: The generating distribution of outcomes under states θH and θL.

Imitation implies that every on-path message either contains data distributed like fH or
like fL, which the receiver can interpret as a claim that “the state is θH" or “the state is θL",
respectively. But since the sender strictly prefers the receiver to believe the state is θH with
higher probability, there is no reason to imitate fL. Indeed, part 1.2.1(b) of the definition of
an imitation equilibrium ensures that the only on-path messages take the form µfH , since
no posterior belief of the receiver is worse for the sender than full certainty that θ = θL.

Additionally, the sender chooses an amount of data to send, which the receiver can inter-
pret as an amount of support to back up their claim. The sender’s true dataset determines
whether they are able to submit more or less data that fits the distribution, and it is optimal
for the receiver distinguish them along this margin to encourage partial separation. When
evidence is generated as in Table 1.1, the sender can send m = µfH if and only if the true
data are µ′fH with µ′ ≥ µ, or µ′fL with µ′ ≥ 3

2
µ. The distinguishability factor of 3

2
reflects

the relative advantage to a sender under θH of imitating fH , and comes from the fact that in
order to be able to submit enough observations of outcome 3 to imitate µfH , a sender under
θL must start with 3

2
as much data.

As a naive first guess, suppose that the sender’s strategy is to always send the maximum
possible amount of data that is distributed like fH .

mmax(µfH) = µfH , mmax(µfL) =
2

3
µfL. (1.4)
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(a) Posterior beliefs when g is triangular (b) Posterior beliefs when g is double-triangular

Figure 1.2: Inferences from message m = µfH in the binary-state example.

Consider the uniform prior β0(θH) =
1
2

and a data-mass distribution that is “triangular",

g(µ) = 2− 4|x− 1/2|.

The receiver’s inference upon receiving a message mmax = µfH , plotted by the solid line in
Figure 1.2(a), is

ρmax(µ) =


1, µ ≥ 2/3
4−4µ

10−13µ
, µ ∈ [1/2, 2/3)

4µ
6−5µ

, µ ∈ [1/3, 1/2)
4
13
, µ < 1/3.

To visualize how the receiver constructs the posterior inference, observe that the density of
senders who send a message µfH for a µ for whom the true state is θH and θM are g(µ) and
3g(3µ/2)

2
, which are plotted as two dotted lines. Their ratio is the likelihood ratio of the high

vs. the low state given message µfH .

Observation 1. ρmax depends only on β0, g, and the distinguishability factor.

In other words, the distinguishability of fH from fL is a sufficient statistic for both
distributions that captures their implications for inferences under the naive strategy. In fact,
we can verify that the naive messaging strategy in eq. 1.4 supports an equilibrium, under
the assumption that any off-path messages feasible for some low-state type of the sender
are evidence of the low state. More generally, the naive strategy is the unique imitation
equilibrium strategy whenever it induces monotone inferences from the receiver.

In some cases, ρmax(µ) is nonmonotone, such as when µ takes the “double triangular"
distribution

g(µ) =

{
2− 8|x− 1/4|, x ∈ [0, 1/2]

2− 8|x− 3/4|, x ∈ (1/2, 1].

If all types of the sender send the maximal mass of data imitating fH , then the message 1/2fH
makes the receiver more pessimistic than the message 1/3fH , and incentive compatibility
fails because a sender who was to send the former would choose to send the latter instead.
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This is easily fixed, however, if, within a pooling interval, all types of the sender still imitate
fH , but send less than the maximal mass. The dashed line in Figure 1.2(b) shows that the
receiver’s inferences given all messages in an interval can be equalized this way, so that the
unique equilibrium inference is instead an ironed version of ρmax(µ).8

Remark. In this example, data on outcome 3 is the limiting factor that restricts the state-
θL sender from providing more data to support “the state is θH". Data on the remaining
outcomes does not matter. There are several things one could do with the remaining outcomes
that would not change the results of disclosure:

1. Merge them, i.e., design an experiment that does not distinguish between outcomes 1
and 2, and let the sender self-disclose raw data generated from the simplified experi-
ment.

2. Delete them, i.e. allow the sender to report only observations of outcome 3, while
leaving no option to input instances of outcomes 1 and 2.

Finding the determinants of distinguishability therefore points out ways to lighten the burden
of data transmitted while retaining the same information under cherrypicking.

A 3-state extension

Now suppose there is a 3rd possible state for the innovation that corresponds to adding a
new feature that makes consumers very willing to explore the product, but not much more
likely to purchase it (i.e., the product goes viral). It is represented by the state θM . The
medium-quality innovation yields a different joint distribution of views and purchases; to
summarize, the distributions of the same 3 outcomes under all states are given by Table 1.2.

j fj(1) fj(2) fj(3)
H 1/2 1/5 3/10
M 3/10 19/40 9/40
L 13/20 3/20 1/5

Table 1.2: Data-generating distributions under states θH , θM and θL

8The ironing process can be described as follows. If all types that would send m = µfH for some µ ∈ [µ, µ̄]
were pooled, the receiver’s inference given the pool would be

p(µ, µ̄) =

∫ µ̄

µ
g(µ)dµ∫ µ̄

µ

(
g(µ) + 3g(3µ/2)

2

)
dµ

.

Given some µ∗ at which ρmax(µ) is decreasing, we can find µ < µ∗ < µ̄, such that either ρmax(µ) is increasing
at both µ and µ̄, and ρ(µ) = ρ(µ̄) = p(µ, µ̄); or µ = 0 and ρmax(µ) is increasing at µ̄ with ρ(µ̄) = p(µ, µ̄);
or, µ̄ = 0 and ρmax(µ) is increasing at µ with ρ(µ) = p(µ, µ̄). There is a pair (µ, µ̄) satisfying these criteria
that are closest to µ∗, and they are the endpoints of the ironing interval.
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Consider first the problem of a sender who knows that θ = θL. There are now 2 distribu-
tions that they can imitate: fM and fH . On the other hand, a sender for whom θ = θM may
wish to imitate is fH , but never fL. It takes at least 5

4
µfL and 19

6
µfL to imitate µfM and µfH ,

respectively, and 5
3
µfM to imitate µfH . We can now keep track of three distinguishability

factors, rL(M) = 19
6
, rL(H) = 3

2
, and rM(H) = 5

3
.

Relative to the binary-state case, solving for the equilibrium when |Θ| ≥ 3 involves an ex-
tra step: understanding which state a sender will choose to target in imitation. Nevertheless,
construction can proceed from the top down. First observe that types µfH with µ > 1

rL(H)

can separate and obtain a payoff of θH . We then ask which types of senders obtain a payoff
v ∈ (θM , θH). For this restricted set of payoff frontiers, it suffices to consider imitating fH
only, since no message imitating fM can yield a payoff greater than θM . Similarly to the
binary-state case, in this regime the receiver can conjecture that the sender “imitates as
much of fH as possible", and restore monotonicity if needed by ironing. For payoff frontiers
corresponding to v < θM , one of two things is possible. If the state is θM and the sender
has enough data to separate from all other types that cannot obtain v > θM by imitating
fH , then they play their full dataset and separate. Otherwise, unless the state is θL, the
sender plays their full dataset, but their full dataset is imitated by some type for whom the
state is low, and who plays a strategy that mixes between imitating fH and fL. Figure 1.3
summarizes how the three distinguishability factors rL(M), rL(H), and rM(H) determine
the equilibrium: it projects all types onto a space that summarizes how imitable fH and
fM are, as the vertical and horizontal dimensions, and shows their imitation strategies and
payoffs in equilibrium. Note that distinguishability between θH and the other two states is
supported by outcome 3, while distinguishability between θM and θL is supported by out-
come 2. An immediate consequence is that data on both outcomes are necessary to support
the receiver-optimal equilibrium. The multiplicity of disclosed outcomes can lead to other,
novel features.

Observation 2. When |Θ| ≥ 3, sending observations of multiple outcomes may be necessary
to support the receiver-optimal equilibrium. In addition, the equilibrium can have additional
features that are not possible when |Θ| = 2 or |D| = 2:

• An interior mass of observations of some outcomes may be strictly optimal.

• Keeping µ constant, the sender can receive greater payoffs under a lower state.

As an example of the first point, suppose that uσ∗(µfH) is strictly increasing in µ. For µ
close to 1, consider type µfL imitating 2

3
µfH by sending a mass 1

3
µ of observations of outcome

1. Sending a greater mass would rule out the type 2
3
µfH that it wants to imitate, but sending

less would rule in types like (10
9
−ϵ)µfM , which would worsen the receiver’s inference from the

message. For the second point, observe that the type µfL obtains a greater payoff than the
type µfM when µ = 1: the former can imitate 2

3
µfH , while the latter can only imitate 1

2
µfH .

In this case, the true state determines a sender’s welfare not directly through the receiver’s
best response to it, but through the relative advantage it confers in matching better states
on observables.
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Figure 1.3: Equilibrium imitation strategy under the data-generating distribution in Table
1.2

A final novelty of the pooling equilibrium with 3, and indeed more, states is that the sender
will separate and fully inform the receiver of the state only if they possess an intermediate
amount of data – ignoring the best and worst state, under θM there is a temptation to drop
evidence with too much data, and an inability to distinguish oneself from imitators when
too little data is acquired.

1.3 Construction and characterization
This section characterizes the imitation equilibrium, constructs it, and shows that it is
essentially unique. The imitation equilibrium is distinguished among equilibria by the fact
that in it, worse types imitate better types (condition 1.2.1b). This is directly reflected in
the structure of the receiver’s beliefs once they receive an on-path message m: the best case
for any message is that the receiver takes it literally to be the sender’s full dataset, while any
skepticism that this is true negatively affects their inferences. Any off-path dataset m ∈ T
might as well be taken literally,

q∗(·|m) = 1m for all off path m ∈ T , (1.5)

and is off path not because the receiver’s inferences are “artificially depressed" but because
imitating some other dataset is strictly preferred for the type t = m. Therefore, the sender
benefits from selective disclosure if and only if they lie – there are no imitation equilibria
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that increase the payoff of truthful senders relative to their payoff when the receiver is fully
informed. On the other hand, truthful senders can suffer – since other senders can dishonestly
imitate them, the receiver can be skeptical of their dataset even if they tell the truth.

In addition, for any dataset not resembling some raw dataset, m ̸∈ T , there are off-path
beliefs

q∗(·|m) = q∗(t| argmin
t′⊇m, t′∈T

Eβ(·|σ∗(t′))[θ]) for all m ∈ M \ T , (1.6)

and given these beliefs, senders never benefit from playing a dataset that the receiver knows
for sure to be incomplete. Because of this, an observer of the interaction between senders
and receivers would not be able to tell if senders are strategically omitting data simply by
looking at the distributions of the published data – some prior about how much data the
sender ought to have is necessary to know if observations are being dropped.

We have established that, in an imitation equilibrium, a sender’s ability to positively
influence the receiver depends on the extent to which they can imitate another state. In
turn, this depends on the mass of their own dataset, µ, and the extent to which fk can be
distinguished from fj, which is given by

rj(k) = max
d∈D

fk(d)

fj(d)
.

This distinguishability factor rj(k) is a measure of the comparative advantage to a sender
under state θk to reporting a dataset distributed like fk, relative to a sender under state
θj.9 It can be interpreted to mean that “under state θj, a sender would need rj(k) times as
much data to imitate µfk than under θk". A sharp feature of the continuum model is that
pairwise distinguishability comparisons fully suffice to summarize the impact of the shape of
generating distributions {fj}Jj=1 on the imitation equilibrium outcome.

Proposition 1 (Sufficiency). Two games G and G ′ must yield the same outcome if they
share the same state space Θ and priors β0 and G, and for all j and k,

max
d∈D

fk(d)

fj(d)
≡ rj(k) = r′j(k) ≡ max

d′∈D′

f ′
k(d

′)

f ′
j(d

′)
.

In other words, even if D is very large, {fj}Jj=1 only affect the menu of possible beneficial
manipulations through a select set of summary statistics, which are each supported by a single
point in D. We will delay discussion of the comparative statics of distinguishability, as well
as their implications for optimal experimental design, to section 1.5. In the present section,
we leverage these factors to complete our characterization of the imitation equilibrium. All
equilibrium outcomes can be described by a vector-valued function û(µ) = (ûj(µ))

J
j=1, with

µ̂j(µ) = uσ(µfj). The imitation equilibrium outcome has an even simpler description: each
9Equivalently, we can consider its inverse, 1

rj(k)
, an imitability factor that describes how easily fk is

imitated under state θj .
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sender’s messaging problem can be simplified down to the choice of a weakly better state to
imitate, k ∈ {j, . . . , J}, and an amount µ of that state’s distribution to send – “as much as
possible" is always weakly optimal, though, as with ironing in example 1.2.2, may not be
the only strategy played in equilibrium. Since û describes the payoff under every state to
every µ, its inverse µ̂, defined as

µ̂j(u) = min{µ : ûj(µ) ≥ u},

describes a burden of proof in order to achieve payoff u, and what is necessary is that a type
t can provide at least a measure µ̂k(u) of distribution fk, where θk ≥ u. Crucially, fixing the
pairwise distinguishability factors, optimality of the sender’s imitation strategy amounts to
saying that a sender that achieves payoff u via imitation is either truthful with θj ≥ u or
imitates another state θk > u in the set

Aj(µ) =

{
θk : k ∈ argmax

k>j
ûk

(
µ

rj(k)

)}
.

Theorem 2 (Existence and uniqueness). There there exists an essentially10 unique imitation
equilibrium, implemented by a vector-valued burden of proof function µ̂ : [0, θJ ] → RJ with
outcome û such that

1. ûj(µ) is continuous and (weakly) increasing in µ for all j.

2. σ∗(µfj) is supported on
{
µ′fk : µ

′ = µ̂k

(
ûk

(
µ

rj(k)

))
and θk ∈ Aj(µ)

}
.

1.3.1 Construction of the equilibrium

In the Appendix, we give the details of the step-by-step construction of σ∗ in general. But to
capture the main idea, consider a minimal setup that illustrates the forces at play. Suppose
we face the problem of constructing µ̂(v) for v ∈ [θJ−1, θJ ], assuming that µ̂(θJ−1) is known.
Fig. 1.4 shows that a typical type space can be projected onto 2 dimensions: one dimension
describes the ability of each type to imitate fJ , given by µ

rj(J)
, and the other dimension

describes their ability to imitate fJ−1, given by µ
rj(J−1)

. We can plot senders with all possible
amounts of data under a given state as a ray when we describe the type space this way.
Since any v > θJ−1 is obtained through imitating one of these two types, this description is
sufficient to determine the imitation strategies used to obtain this subset of responses from
the receiver.

The burden-of-proof vector lies in the same space and describes two simple things: which
of the two states each type imitates, and what the highest action is that they can induce
the receiver to take by doing so. A couple of observations allow us to identify the unique
continuation of µ̂(v) at and to the left of any v∗ whenever µ̂(v) is already known for all
v > v∗.

10β∗ is uniquely determined, and σ∗ is uniquely determined up to payoff-irrelevant mixing probabilities.
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Figure 1.4: Example of µ̂(v) equalizing payoffs to imitating each state.
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Taking the higher payoff frontiers to be fixed, focus on the set of types unable to meet
any component of µ̂(v) for any v > v∗. There may exist within this set a self-separating set
of positive measure that can pool with each other to induce action v∗. Fig. 1.4(b) shows
that if so, µ̂(v) is discontinuous at v∗, since the equilibrium construction then immediately
pools these types and assigns them all a payoff of v∗. Otherwise, µ̂(v∗) = limϵ→0 µ̂(v

∗ + ϵ).

The key fact is that given µ̂(v∗), it is always possible to exactly specify µ̂(v) for v in
some, possibly small, nonempty interval (v∗ − ∆, v∗). Consider first the case in which all
types in the v∗-payoff frontier strictly prefer to imitate either fJ or fJ−1. When µ̂j(v

∗)fj
imitates distribution fJ , then all types µfj with µ close to µ̂j(v

∗) behave likewise, and the
same is true for those imitating distribution fJ−1. In other words, the payoff frontiers are
locally determined because imitation strategies are fixed, up the amount of data submitted.
Panel (a) of Fig. 1.4 shows that µ̂(v) then follows along the path of equivalent payoffs from
imitating either state, and is continuous, due to the continuity of g.

A second possibility is that for some j, type µ̂j(v
∗)fj may indeed be indifferent between

imitating fJ and fJ−1, and mixes between the two with interior probability. Locally, for µ
close to µj(v

∗), the types µfj must also be indifferent, and so for a set of values v ≈ v∗, µ̂(v)
coincides with the set of types under state θj that achieve the corresponding payoff. For all
state-θj senders obtaining a payoff in this range, the mixed strategy played equalizes payoffs
to imitating each of the two highest states. Fig. 1.4(c) shows that if σ( µ

rj(J)
fJ |µfj) increases

too quickly, this fails to hold, since then payoffs to imitating θJ decrease quickly relative to
those to imitating θJ−1, and (d) shows that payoffs to imitating θJ decrease too quickly in
the opposite case. There is, then, a unique continuation of the mixed strategy that respects
the restriction on µ̂, and it is continuous due to the continuity of g.

When there are more than 2 candidate states to imitate, the construction is slightly more
complicated in that there may be more than one state under which types are indifferent across
distributions to imitate, and a given type may be indifferent between imitating more than
2 different states. Nevertheless, the idea is the same. It is always possible to construct an
interval of frontiers and their associated equilibrium strategies, given knowledge of higher-
payoff frontiers. The construction technique then proceeds interval-by-interval, where we
note that each interval formed in a step of the process is nonempty but may be small: it
may be necessary to switch from handling the problem as in the first case to handling it as
in the second case, and vice versa, multiple times as the algorithm proceeds to successively
lower payoff frontiers.

1.3.2 A separation theorem

Let us return briefly to the matter of why the imitation outcome stands out from other
equilibrium outcomes. It turns out that, although we can construct the imitation equi-
librium payoff frontiers iteratively, we can also characterize them each individually, and
independently of the remainder of the equilibrium. Put simply, imitation equilibrium payoff
frontiers universally divide the type space into a greater-value upper region and a lesser-value
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lower region, and they are the only frontiers to do so.

We start with some definitions.

Definition 1.3.1. An upper pool of payoff frontier µ̂(v) is a set

T̄ = U(µ̂(v)) \ U(M)

for some collection of messages M .

Definition 1.3.2. A lower pool of of payoff frontier µ̂(v) is a set

T = U(M) \ U(µ̂(v))

for some collection of messages M .

An upper pool consists of all types above the payoff frontier µ̂(v) but below some other
frontier, while a lower pool consists of types below it but above another frontier.

We define the pooled value of any set of types, upool(T ), to be the receiver’s expectation
of the state given that the sender’s type is in the set T , and state the separation theorem:

Theorem 3 (Separation). For any nonempty upper pool T̄ and lower pool T of µ̂(v),

upool(T̄ ) ≥ v > upool(T ).

In other words, upper pools are weakly improving and lower pools are strictly worsening
— for any subset of T that is bounded by two frontiers and contains µ̂(v), the value of the
part above µ̂(v) is at least v, while the value of the part below is less than v.11

The fact that upper pools are improving is a consequence of the conditions of imitation
equilibria: the property holds because in each group of senders who send the same message
under σ∗, only those with worse-than-average values can be truncated by excluding U(M).
On the other hand, the equilibrium we construct has worsening lower pools because in it,
any potentially self-separating pool of senders below limϵ→0 µ̂(v+ ϵ) that achieves a value of
at least v must lie above the frontier µ̂(v).

These properties guarantee uniqueness of the imitation equilibrium outcome if we use
them to compare outcomes under σ∗ and another PBE, σ. If the outcome under σ differs
from that under σ∗, then worsening lower pools under σ∗ imply that there is a frontier
with a worsening upper pool under σ. Moreover, the only frontiers in T that satisfy either
property are the frontiers of σ∗. Given any prospective frontier and its associated payoff,
checking either of these properties in isolation is enough to verify that it shows up in the
imitation equilibrium, and may in some cases be easier than constructing the entire imitation
equilibrium outcome.

11The former inequality is weak and the latter strict because we have defined the imitation payoff frontiers
such that, when there are multiple types µfk that all achieve v, µ̂k(v) is the lowest such µ.
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The separation theorem is a general result — it also applies to finite evidence games,
where it is related to the “downward biased” characterization of Rappoport (2022). In all
these cases, worsening lower pools rules out credible inclusive announcements, and improving
upper pools turns out to imply that no other equilibrium is credible inclusive announcement-
proof.

1.4 Comparative statics
All imitation outcomes share some concrete features. Here, we present comparative statics
of the sender’s reports in µ, of the sender’s welfare with respect to the receiver’s prior belief
about θ and µ, and of separation as V ar[µ] → 0. We begin with a corollary to Theorem 2.

Corollary (to Thm. 2). Under σ∗, there are thresholds z∗j > z∗∗j for each state such that:

• Whenever the sender’s type is µfj with µ > z∗j , the sender masquerades as a higher
type, and receives a payoff ûj(µ) > θj.

• Whenever µ ∈ (z∗∗j , z∗j ], the sender is honest and the receiver knows it upon receiving
the data: ûj(µ) = θj.

• Whenever µ ≤ z∗∗j , the sender is honest, but the receiver believes they are a worse type
with positive probability, and ûj(µ) < θj.

We can think of senders with µ > z∗j as high-data senders, with enough data to benefit
from manipulating their data against the receiver’s uncertainty about their data endowment.
The costs of voluntary disclosure are borne by low-data senders, those with µ < z∗∗j , who
the receiver is skeptical of even when they are truthful. These thresholds vary by j, and in
particular, z∗1 = 0 and z∗J = 1. However, they need not be monotone in j.

The potential presence of an intermediate, full-information interval between disjoint upper
and lower partial-pooling intervals when we fix θ and vary µ is a novel feature of these
equilibria that occurs when there are multiple imitated states with different distinguishing
outcomes. It is a consequence of the fact that it requires a strictly greater amount of data to
benefit from imitating a different state than it does to send one’s full dataset and discourage
all imitators. The structure of pooling and separation contrasts with strategies in binary-
state models of voluntary disclosure, or in models with ordered outcomes. In those cases,
full separation only occurs at the very top, that is, for types with a maximal state and a
maximal amount of evidence (see, for example, Dye (1985) and Dzuida (2011)). We show
that this doesn’t have to be true in general: although they remain able to separate, types
with the most evidence are often more tempted to pool with others.

Partial pooling occurs in the receiver-optimal equilibria in our model because uncertainty
about µ makes it impossible for lower-data, higher-state senders to separate from higher-
data, lower-state senders. In the absence of uncertainty about µ (that is, if µ is commonly
known to the sender and the receiver) the disclosure game is a case of the games studied
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by Grossman (1981) and Milgrom (1981), in which unraveling occurs. The distribution of µ
in our model, while assumed to be nondegenerate, can be arbitrarily close to a point mass,
and outcomes converge to the full-information outcome as the receiver’s uncertainty about
µ vanishes.

Claim 2. As V ar[µ] → 0, we have Pr(|ûj(µ)− θj| > ϵ) → 0 for all j.

This should be unsurprising: when the receiver knows µ quite well, any dataset with fewer-
than-expected observations is quite suspicious and is heavily discounted, and this limits the
returns to omitting data.

1.4.1 Complementarity with public information

Next, we show that public information can complement voluntary disclosure. As a pre-
liminary, observe that the receiver is worse off given uncertainty about either the payoff-
relevant state, or its relation to the experiment. Suppose that there are any two games
G(Θ,D, β0, {fj}Jj=1, G) and G ′(Θ′,D, β′

0, {f ′
j′}Jj′=1, G) that have the same outcome space D

and data-mass distribution G, 12 but describe different sets of possible states. If the receiver
knows that the true state might be in Θ or Θ′, but is uncertain of which and has prior α,
1 − α, respectively, of the likelihood of each case, then they can be modeled as playing a
third game, Guc, in which the set of states is Θuc = Θ

⋃
Θ′ with each state retaining its

data-generating distribution. Their prior over Θuc is given by

βuc
0 (θj) = αβ0(θj) for θj ∈ Θ, βuc

0 (θ′j′) = (1− α)β0(θ
′
j′) for θ′j′ ∈ Θ′.

Claim 3. The receiver’s expected payoff in Guc conditional on θ ∈ Θ is less than their
expected payoff in G, and strictly so if there is a type of the sender with state in Θ for which
the outcomes differ in the two games.

Greater ex-ante uncertainty, in any of a number of dimensions, is generally worse for the
receiver. When the receiver suffers from not knowing whether the state is in Θ or Θ′, it is
because a state θj′ ∈ Θ′ differs from a state θj ∈ Θ for one or more of the following reasons:

1. Its numerical value is different;

2. The prior likelihood that the receiver assigns to it is different, β0(θj) ̸= β′
0(θj′);

3. The distribution of data it generates is different, fj ̸= f ′
j′ .

Applying Claim 3 to the first case shows that the receiver is worse off when they un-
derstand the set of possible states of the world corresponding to different distributions of
experimental outcomes, but are uncertain about the optimal action to take even with full

12We prove the claim that follows in a more general setup, in which the the games need not have the
same data-mass distribution and the distribution of µ can be state-contingent, that is, the two games have
state-contingent data mass distributions {Gj}Jj=1, G′

j′}J
′

j=1, respectively.
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knowledge of the distribution of the data. In the second case, we see that having an incorrect
prior about the state of the world cannot benefit the receiver in expectation.

The third case is perhaps the most interesting: it captures a receiver’s uncertainty about
the distribution of outcomes conditional on the true, payoff-relevant state. We illustrate how
this could play out in the context of our previous example (Ex. 1.2.2), by expanding the
state space to include not only Θ = {θH , θL}, but also Θ′ = {θH′ , θL′}, where θ′H and θ′L
are analogous to θH and θL, respectively, except that they represent data generated from
a different, high-demand test market in which the rate of both views and sales is elevated
relative to the baseline. Suppose that this difference in the test market does not affect the
receiver’s optimal action, so θH′ = 1 and θL′ = 0.

In addition, we consider randomizing impressions 50/50 to a control arm to the exper-
iment, in which viewers are shown an original, unmodified version of the product instead.
This replicates the format of an A/B test, and can allow the receiver to identify the the test
market’s demand conditions by observing how the original version of the product would have
performed. Table 1.3 shows a scenario in which, the absence of controls, state θH and θL′ are
not distinguishable, even given a full dataset, since they generate identical data. However,
with controls, θ is once again identified.

Control Treatment
j fj(1) fj(2) fj(3) fj(4) fj(5) fj(6)

Low demand H 0.325 0.075 0.10 0.25 0.10 0.15
L 0.325 0.075 0.10 0.325 0.075 0.10

High demand H’ 0.25 0.10 0.15 0.1625 0.1375 0.20
L’ 0.25 0.10 0.15 0.25 0.10 0.15

Table 1.3: Generating distribution of data in an A/B testing example with an uncertain test
market.

When the sender can cherrypick the data, adding the control does not fully mitigate the
effect of uncertainty between Θ and Θ′. It is almost immediate to see, for example, that if
the receiver places 50% probability each on the event sthat the state is in Θ and Θ′, then
there is a smaller range of messages from which they can verify that the state is θH . If
the sender sends m = µfH for µ ∈ (2/3, 10/13), a sender with mass µ′ ∈ (8/9, 1) of data
distributed like fL′ could also have sent such a message, even though there is nobody type
could have done so under state θL. Indeed, in this case, the receiver’s uncertainty about the
test market makes them strictly worse off.

Put differently, the receiver would always at least weakly benefit from observing a signal
ϕ that tells them whether the game is G or G ′, and this is true of any finite public signal.
A signal that is not informative about θ per se may still be valuable alongside voluntarily
disclosed data if it informs the receiver about how to interpret the data, and the signal need
not be fully informative about any aspect of the experiment to yield a strict benefit.
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Claim 4. Let ϕ be a finite-valued public signal that is only informative about D and {fj}Jj=1.
It strictly benefits the receiver for some prior β0 if and only if two distinct realizations ϕ̂ and
ϕ̂′ induce games G and G ′ such that argmaxd

fk(d)
fj(d)

̸= argmaxd
f ′
k(d)

f ′
j(d)

for some k > j.

These kinds of signals complement disclosed data by making the receiver less susceptible
to manipulations of their auxiliary beliefs through data omission. They might pertain to any
jointly estimated covariates. In addition to resolving the baseline uncertainty captured in the
example, public signals might also give information about the space of underlying outcomes,
the likelihood of randomization to treatment or control groups, or the composition of the trial
population – these types of information all improve the usefulness of voluntarily disclosed
experimental data.

1.4.2 Impact of beliefs on the sender

When the receiver’s belief about the ex-ante probability of a given state θj increases relative
to others, the receiver’s skepticism weakly increases for all messages that yield a higher payoff
to the sender than full certainty of that state. The reverse is true of all messages that yield
a lower payoff than θj. An increase in the probability of θj therefore “pulls" the receiver’s
action towards θj given any message, which has the consequence of decreasing ex-post payoffs
for all types of the sender that would originally have achieved ûj(µ) ≥ θj, and increasing
them if originally, ûj(µ) ≤ θj.

To formalize this, let G be a disclosure game with prior β0 about θ and G ′ be a game
that is identical except for the prior β′

0 which differs from β0, with β′
0(θj) > β0(θj) and

β0(θk)
β0(θk′ )

=
β′
0(θk)

β′
0(θk′ )

for all other k, k′.

Claim 5. Suppose that û, û′ are imitation equilibrium outcomes of G and G ′, respectively.
Then ûj′(µ) ≥ ûj′(µ) whenever ûj′(µ) ≥ θj, and ûj′(µ) ≤ ûj′(µ) whenever ûj′(µ) ≤ θj.

Lastly, we point out that MLRP shifts in the receiver’s beliefs have a monotone impact
on the sender’s welfare. Simply put, every type of the sender benefits from a monotone
likelihood ratio shift in the receiver’s belief about the state, and suffers from a monotone
likelihood ratio shift in their belief about the data-mass distribution. Intuitively, an upwards
shift in the prior distribution in θ makes the receiver more willing to believe a claim that
the state is high, and we show this formally in Appendix A.2. Such a shift unambiguously
benefits the sender both conditional their realized dataset, and ex-ante. On the other hand,
when the receiver expects µ to be greater, they are more skeptical : they infer a greater
likelihood that a given message may have been selected from a larger dataset.13

Claim 6. If two disclosure games G and G ′ are identical except for priors β0 ≤MLRP β′
0 and

13Rappoport (2022)’s result can be used to show that the latter holds in finite-data games viewed as
an instance of an abstract evidence game, and a similar argument shows that this is directly true in the
continuum.
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g ≥MLRP g′, then
ûj(µ) ≤ û′

j(µ) ∀µfj ∈ T .

1.5 Experimental design
Our results highlight that the quality of the information the receiver obtains depends on
how the data-generating process distinguishes states. This section focuses on interventions
that aim to maximize distinguishability, and proposes a framework for optimally designing
experiments to allow the receiver to extract payoff-relevant information from the sender
through voluntary disclosure. In our model, an experiment is the data-generating process
that provides the sender with their raw dataset, and is captured by a tuple E = (D, {fj}Jj=1)
consisting of the space of reported outcomes and the generating distribution of data over
them. We assume that the remaining primitives of the game – state space, payoffs, and
priors – are fixed, and consider the effect of varying the experiment that the sender observes.

A key fact is that whenever an experiment makes states pairwise more distinguishable,
the receiver’s welfare improves. Intuitively, increasing distinguishability allows higher-state
types to separate themselves more effectively from lower-state types who would imitate them.
The resulting equilibrium does not better separate every type from every other type – indeed
there are types that would play different messages under one experiment that would play
the same message in the other, in both directions – but, given the receiver’s single-peaked
expected utility, the more distinguishing experiment always makes the receiver better able
to target the optimal action.14

Proposition 4 (Improvement). Suppose two experiments E and E ′ yield imitation equilib-
rium actions a and a′, respectively.

• If r′j(k) ≥ rj(k) for all k > j, then Ea,θ[ur(a)] ≤ Ea′,θ[ur(a
′)].

• If, in addition, r′j(k) > rj(k) for some j, k such that there is some µfj imitating µ̂fk
under the imitation equilibrium with experiment E, then Ea,θ[ur(a)] < Ea′,θ[ur(a

′)].

In fact, by making a state arbitrarily distinguishable from others, we can guarantee that
a sender under that state elicits at least their full-information action with high probability:
the imitation equilibrium guarantees that . In the limit as all states become highly distin-
guishable, the receiver also approximately attains their full information payoff. On the other
hand, if all states are negligibly distinguishable, the receiver learns essentially nothing, even
as the sender is fully informed.

14The proof that distinguishability improves payoffs uses the fact that a mechanism designer that takes
a sender’s submitted dataset as a report is weakly more constrained by a sender’s ability to deviate to
sending a false dataset if the experiment has poor distinguishability. If the receiver does not have single-
peaked preferences, then the imitation equilibrium outcome and the outcome of the optimal mechanism
do not necessarily coincide, and increasing distinguishability may force the receiver to take a higher action
after observing a message that few low-state types can imitate, when they would instead like to commit to
responding to it with a lower action.
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Claim 7. With very high and very low distinguishability, outcomes approach those under
full information and no information, respectively: for all ϵ, δ > 0,

• There exists R < ∞ such that if rj(k) > R for all j < k, then Pr(|ûk(µ)− θk| > ϵ) < δ

• There exists R̄ > 1 such that if rj(k) < R̄ for all j < k, then Pr(|ûk(µ) − Eβ0 [θ]| >
ϵ) < δ

where the likelihood is taken over realizations of µ.15

One way to better distinguish two states is to undertake a more detailed experiment.
Without changing the experimental technology – that is, the underlying likelihood of events
under different states – a researcher could investigate and record a more detailed set of
outcomes in order to obtain finer data. To formalize this, suppose there is an existing
outcome space D, and consider a notion of a more elaborate outcome space D′ that the
researcher can obtain by splintering an existing outcome into multiple sub-outcomes to track.

Definition 1.5.1. If there are two experiments E = (D, {fj}Jj=1) and E ′ = (D′, {f ′
j}Jj=1) and

a partition P = {Pd}d∈D of D′ such that∑
d′∈Pd

f ′
j(d

′) = fj(d)

for all d in D, then E ′ splinters the outcome space of E and E merges the outcome space of
E ′.

Immediately, we observe that for all θj and θk,

max
d′∈Pd

f ′
k(d

′)

f ′
j(d

′)
≥ fk(d)

fj(d)
,

and so rj(k) ≥ r′j(k) whenever D′ splinters D.

Claim 8. Splintering the outcome space weakly improves the receiver’s expected payoff.

In some cases, there is a most elaborate possible experiment E∗, i.e., one that is a splin-
tering of every other possible experiment. Suppose that costs and constraints on gathering,
storing, and transmitting data are negligible. Then it is optimal for a designer who acts
on behalf of the receiver to choose the most elaborate possible experiment. If instead the
sender chooses the experiment, then the receiver should, if possible, incentivize the sender to
choose the most detailed experiment by committing to accept nothing else. Since they follow
a simple rule of thumb, these recommendations don’t require detailed knowledge of the true
data-generating process, and would be easy for even an uninformed designer to implement.

On the other hand, in practice there is often no binding limit to the number of ways that an
experiment can be refined and complicated, at ever increasing cost. Despite the fact it never

15Despite the fact that R̄ < R, we use this notation because R̄ is an upper bound and R is a lower bound
on the distinguishability sufficient for each case.
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hurts, further splintering a dataset does not always strictly improve distinguishability. With
precise information about the data-generating process, Proposition 1 allows us to identify
instances when it is without loss to the receiver to merge outcomes relative to E∗.

Proposition 5 (Merging). Suppose that E∗ = (D∗, {f ∗
j }Jj=1). Let S∗ =

⋃
j<k argmaxd

f∗
k (d)

f∗
j (d)

.
Then merging all outcomes in D∗ \ S∗ does not change the imitation equilibrium outcome.

The set S∗ consists of all outcomes that maximally distinguish one state from another.
Mmerging other outcomes is without loss because S∗ is sufficient to maximize every distin-
guishability factor in {rj(k)}j<k. We are left, generically, with a minimal experiment that
suffices to reveal as much payoff-relevant information as possible to the receiver robustly over
all possible priors.

Claim 9 (Minimality). Fix ur, Θ, and g, suppose that E is obtained from E∗ by merging
S∗ and that E ′ merges some outcomes in E, and suppose that argmaxd

f∗
k (d)

f∗
j (d)

is unique for all
j < k.

Then there exists β0 such that the receiver is strictly better off with E than with E ′.

This simplification of the experiment can be quite drastic, and in some familiar cases,
including the case of a binary state space or an outcome space ordered by the monotone
likelihood ratio property (MLRP), S∗ is a singleton with only one “good news" outcome that
maximally distinguishes higher states from lower ones, while all other outcomes in D∗ can
be merged and essentially ignored.16 Formally, we say that D∗ satisfies MLRP with respect
to {f ∗

j }Jj=1 if, for any j < k and d < d′,

f ∗
k (d

′)

f ∗
j (d

′)
>

f ∗
k (d)

f ∗
j (d)

.

It is straightforward to see that MLRP implies that S∗ comprises of the single maximal
element in D∗.

Even when J > 2, some degree of dimensionality reduction is often possible, especially if
J << |D∗|. In general, |S∗| ≤ J(J−1)

2
. The 3-state example 1.2.2 gives an instance in which

this bound is tight because the maximizer, argmaxd
fk(d)
fj(d)

, is unique for all pairs j < k.

Corollary (to Prop. 5). The minimal optimal experiment tracks at most J(J−1)
2

+1 outcomes,
and furthermore, if D∗ satisfies MLRP with respect to {f ∗

j }Jj=1, then a binary outcome space
suffices.

16The imitation equilibrium in these cases has the same outcome as a sanitation equilibrium (Shin (2003))
in which the sender only reports observations of the outcome in S∗, and omits all others; however, it differs
in that imitating senders generally report a positive mass of observations of these outcomes anyways, with
no impact on the receiver’s inferences.
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1.6 Relationship to finite data
In the big picture, the purpose of modeling communication in this stylized, continuous-data
disclosure game is to understand how senders will volunteer data in real-world disclosure
settings, in which datasets are always finite. The comparative statics of section 1.4 and the
experimental design implications of the previous section depend on the fact that datasets
are well-described by µ and fj, which is exactly true only in the continuum, but nearly
true with large N in such a way that those results approximately carry over. This section
makes precise the finite-data settings that we aim to approximate, and describes how the
continuous-data model captures their regularities in the limit.

We model a sender who has access to a finite dataset of n i.i.d. observations drawn
from D according to the state-contingent distribution fj. The size of the sender’s dataset
is upper-bounded by N , but the sender may have access to n < N observations as well,
and the receiver is uninformed about how much data the sender has. Nature’s sequence of
moves in drawing the sender’s dataset is: 1) draw the state, θj, according to prior β0; 2)
draw the number of observations, n, from distribution GN ; 3) for each of the n datapoints,
draw their realized value i.i.d. from fθ. Call the disclosure game with these parameters
GN(Θ,D, β0, {fj}Jj=1, G). The data mass distributions GN(·) capture the receiver’s uncer-
tainty about how much raw evidence the sender has, prior to selecting observations to reveal:
for example, there may be uncertainty about the number of total trials in an experiment, or
the number of trials out of N attempted that survived the entire trial period.

The sender’s dataset is the empirical probability mass function t = 1
N
(t1, . . . , tD), where td

is the number of observations of outcome d and n(t) =
∑D

d=1 td is the number of observations
they get. They are able to send any subset of their dataset as a message to the receiver,
where

m⊆̃t ⇔ md ≤ td ∀d ∈ D.

In summary, the type space is TN =
⋃N

n=0 Dn, with type distribution

qN(t) =
n(t)!

ΠD
d=1td!

∑
j′

β0(θj′)gN(n(t))Π
D
d=1fj′(d)

td ,

and the message space MN is identical to the space of types.

When datasets are finite, the sender’s dataset does not perfectly inform them about the
state: when fj all have full support, any state is possible after observing any dataset. The
likelihood of θj given that the raw dataset is t is

πN(θj|t) =
β0(θj)gN(n(t))Π

D
d=1fj(d)

td∑
j′ β0(θj′)gN(n(t))ΠD

d=1fj′(d)
td
,

and so, when the receiver observes a message and updates their belief about the sender’s
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type to qN(t|m), their posterior about the state updates to

β(θj|m) =

∑
t∈TN qN(t|m)πN(θj|t)∑

t∈TN qN(t|m)
. (1.7)

We highlight that the distribution of datasets in the finite-data setting converges to the
distribution of datasets in a continuous-data model. In particular, g(µ) represents the like-
lihood of obtaining a fraction µ of total potential data under state j, and analogously, n

N
is

the fraction of total data available to the sender in the finite-data game. We can study a
sequence of games such that as N increases, NGN(

n
N
) →unif. G(µ), and note that if so, the

type distributions also converge uniformly: qN →unif. q.

Definition 1.6.1. G(Θ,D, β0, {fj}Jj=1, G) is the limit game for a sequence of finite-data
games
{GN(Θ,D, β0, {fj}Jj=1, GN)}∞N=1 if NGN(

n
N
) →unif. G(µ).

Despite the fact that the type distributions converge, the type space TN is drastically
different from T : in particular, TN ∼ MN and both approximately span a D-dimensional
space of datasets for large N , while T is only 2-dimensional, as every dataset is described by
µ and θ. While datasets far away from T , that have distributions unlike the data-generating
distribution in any state, become vanishingly unlikely as N grows large, they are never
impossible except in the limit; this is why the continuum model is much easier to work with.

It remains possible to describe an imitation equilibrium and a truth-leaning equilibrium in
the finite-data setting. The finite-data model is a special case of the evidence model in Hart
et al. (2017) and Rappoport (2022). The former shows that truth-leaning equilibria exist
and are unique and receiver-optimal in the finite-type setting, and also that they are always
outcome-equivalent to imitation equilibria, although it does not guarantee that the strategies
are equivalent. The latter includes an iterative algorithm to compute these equilibria; the
number of steps is, however, exponential in |TN |, and as far as we can tell, there is no obvious
way to obtain a significantly more efficient closed-form solution.

We can instead establish that the imitation equilibrium of the continuous-data model gives
a perfect approximation to the limit outcome of communication in truth-leaning equilibria
of finite-data games as GN converge.17 To make the comparison, the notion of an outcome
should be extended across type spaces. There is a global data space [0, 1]×∆D, invariant to
N , that contains T1, . . . and T as long as they all share a space of observations. Recall that
uσ∗(t), the outcome of the game for type t, is their payoff from the best feasible message
given equilibrium beliefs. If t ∈ [0, 1] × ∆D, it need not also be in the literal type set for
the outcome to be well-defined, since we can already infer whether t can feasibly send a

17We state the definition of convergence and the theorem below in terms of N = 1, 2, . . . rather than an
arbitrary sequence of dataset sizes N1, N2, . . . only for the sake of notational brevity. The theorem applies
just as well to any sequence of games {GNi

}∞i=1 of increasing dataset size with uniformly convergent data
distributions, since any such sequence is a subsequence of a convergent sequence of games {GN}∞N=1.

39



message from the subset relation on [0, 1]×∆D. The outcome to the hypothetical type can
be understood as a thought experiment: “if the receiver believes we are playing a game with
equilibrium σ∗ or σ∗

N , and my dataset is t, what is the best payoff I can attain, even if t is
inconsistent with the receiver’s perceived game?"

Definition 1.6.2. A sequence of equilibria (σ1, σ2, . . .) of games {GN(Θ,D, β,{fj}Jj=1, GN)}∞N=1

has outcomes that converge to the outcome of an equilibrium σ of the limit infinite-data game
G(Θ,D, β,{fj}Jj=1, G) if the payoffs uσ∗

N
(t) converge uniformly to uσ∗(t) over types in T .

Theorem 6. If G is the limit game for finite-data games G1,G2, . . . with N = 1, 2, . . . re-
spectively, then the truth-leaning equilibrium outcomes in G1,G2, . . . converge to the imitation
equilibrium outcome of G.

Outcome convergence shows that it’s reasonable to use the limit game to describe the
distribution of actions the receiver takes after the sender discloses a large dataset, as well as
the mapping from the truth to the receiver’s inferences. At a high level, the proof follows
from the convergence of type distributions TN to T , and from the separation theorem, which
holds as well in truth-leaning equilibria of finite-data games. Appendix A.5 gives the formal
argument and shows that the limit equivalence result partially extends to strategies, in
addition to outcomes.

In addition, outcome convergence shows that previous sections’ results on comparative
statics and experimental design hold approximately for large finite datasets. When the num-
ber of observations is finite, splintering the data always leads to a strict improvement in the
receiver’s welfare, even when the outcome space already contains S∗ and thus distinguishes
the states as well as possible. However, in this case, the magnitude of the improvement
vanishes and is negligible for large N . While merging non-distinguishing outcomes is only
sharply optimal in the continuum, the convergence result guarantees us that it remains an
actionable recommendation, yielding, in practice, nearly-optimal information to the receiver
with minimally cumbersome datasets.

1.7 Conclusion
Inference under selective disclosure depends on an understanding of how data are generated,
and how senders report – or omit – it. This paper underscores the simplicity of a receiver-
optimal equilibrium reporting strategy for the sender: claim a possibly inflated state, and
provide a large-enough body of evidence that supports it by mimicking the distribution of
data it implies. Given their behavior, voluntary disclosure benefits precisely those senders
who engage in strategic omission – those with a large amount of data or a low state – and
worsens outcomes for those who are imitated – those who have less data, or a more desirable
state to imitate.

Even when datasets are large enough to guarantee the sender is fully informed, strategic
omission and uncertainty about exactly how much data the sender had mean that only
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muddled information will reach the receiver. However, in the absence of direct ways to
monitor the sender’s true data, a planner can nevertheless design the underlying experiment
to elicit more informative disclosures. For large-enough datasets, the quality of evidence
an experiment provides to the receiver is contingent only on how well its most informative
outcomes distinguish one state from another state. In many cases, this sharp fact of big data
gives the designer a way to restrict to a lower-dimensional dataset, without loss of efficiency.

This work suggests several compelling directions for future research. One concerns vol-
untary disclosure with endogenous, costly data acquisition. For example, we would like to
know how a sender might acquire data in order to persuade through voluntary disclosures.
We conjecture that, if having more data benefits senders strategically regardless of its infor-
mational value, then data might be systematically over-collected precisely when it is cheap
and plentiful. Another direction would consider the incentive effects of voluntary disclosure
for agents: for example, some high-value ideas may see little investment because it is hard to
distinguish success in realizing those ideas from success in other objectives based on evidence.
Finally, there is a line of work that brings these questions closer to the ground by consid-
ering how they manifest in the structured data-generating processes commonly assumed in
statistical or econometric models, for instance in logit and probit treatment effects models,
or in linear models with Gaussian error. Doing so could help guide practitioners on what
strategic omission looks like in those settings, and when it most undermines the value of
research.
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Chapter 2

Model (Non)-disclosure in Supervisory
Stress Tests

2.1 Introduction
Every year, the Federal Reserve Bank performs a stress test on major banks and financial
institutions in the US to assess the financial stability of the system under the Dodd-Frank
Act. These stress tests are loss projections computed by the Fed given theoretical scenarios
and the banks’ balance sheet. The Federal Reserve Bank reveals parts, but not all, of the
mapping (‘model’) from scenarios and balance sheets to loss projections, and this creates a
tension in model disclosure, which this paper seeks to investigate.

Risk managers claim that not knowing the model parameters the Fed is using adds further
risk to their decisions. On top of the underlying risk any financial action has, they must
project how this will affect the stress test results. Under that view, banks do not know the
regulatory cost of risk, and this regulatory uncertainty induces banks to make inefficient
decisions, such as excessively reducing lending (Gissler et al. (2016)).

On the other hand, the regulators are concerned of potential dangers of revealing the
stress test models. According to the Federal Reserve’s memo,1 there are three reasons to not
keep the test model parameters and assumptions transparent:

1. Gaming the system: “Firms could [..] make modifications to their businesses that
change the results of the stress test without changing the risks they face."

2. Correlation: “[Full disclosure] could increase correlation in asset holdings [..] making
the financial system more vulnerable."

1https://www.govinfo.gov/content/pkg/FR-2017-12-15/pdf/2017-26856.pdf. Retrieved May 13, 2020.
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3. Model Monoculture: “Full disclosure could incentivize banks to simply use models sim-
ilar to the Federal Reserve’s, rather than build their own capacity to identify, measure,
and manage risk."

The Federal Reserve’s concern on gaming the system and model monoculture motivate
our stylized model. In our framework, both the Fed and banks have imperfect information
(‘models’) about the underlying state regarding a risky asset, and banks take actions (‘in-
vestments’) which affect the Fed’s payoffs. The Fed cares more about systemic risk or the
possibility of a financial crisis than individual banks; we highlight this by assuming that the
bank would always like to invest in a risky asset, while the regulator’s utility (‘social welfare’)
is such that the regulator wants the bank to invest only in good states. The Fed’s private
information corresponds to the Fed’s model and information about the economy, which the
Fed uses to ‘test’ the bank’s investments under stress, and debates whether to release more
or less information about.

In this setup, the trade-off is as follows. The Federal Reserve can give banks more in-
formation about the models they use for the test, which would help the banks make more
efficient decisions. At the same time, giving more information about these models could
incentivize banks to simply use those models to assess their actions, instead of using their
own models. Under this trade-off, what is the optimal disclosure policy for the Fed?

In our stylized model, there is a regulator and a bank, each with private, imperfect in-
formation about the riskiness of an asset. The regulator can ‘punish’ banks for making
investments in ‘bad’ assets determined by its own model, but can choose to disclose addi-
tional information about the punishment to affect the beliefs and the action of the bank. In a
theoretical sense, our setup is a mixture of both optimal mechanism design and information
design (a la Bergemann and Morris (2016a)): the principal can design punishments, as well
as disclose information.

The model we propose concisely captures the trade-off in disclosing more information.
Disclosing more information reduces the variance in the bank’s decision problem, allowing
a more informed decision; at the same time, disclosing more information allows the bank
to optimize their action with respect to the regulator’s punishment without using their own
information. If the regulator fully discloses its model, banks already know everything about
the punishment, and can expose themselves to (socially) excessive risk as long as they can
pass the regulator’s stress test. Facing such a trade-off, what is the optimal disclosure policy
for the regulator?

Our answer is as follows. We first show that the regulator fully disclosing everything is
not first-best, because the bank will game the test, investing in the risky asset if they can pass
the test, even if their private information indicate significant risk. Then we show that even
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when the regulator is restricted to a binary choice between full disclosure to no disclosure,
not disclosing any information can outperform fully disclosing if the bank has more precise
information than the regulator (Proposition 7). Next, if the regulator can choose arbitrary
partial disclosure policies, the regulator can fine-tune a disclosure policy to approximate the
first-best - make the bank choose the socially optimal action, incorporating both the regu-
lator and the bank’s private information, which is impossible in both full and no disclosure
settings (Proposition 9). We discuss the implications of this proposition.

2.1.1 Relevant Literature

This paper contributes to a strand of literature in stress test design, especially on the ques-
tion of disclosure in stress tests. Recent developments in the question of stress test disclosure
include Goldstein and Leitner (2018) which study the disclosure problem of stress tests to
agents with heterogeneous beliefs, Parlatore and Philippon (2018) which study the design of
stress scenarios, Inostroza and Pavan (2020) which cast the coordination problem of receivers
into a global game with private information, and Parlasca (2019) studying the time inconsis-
tency problem in stress testing. The Handbook of Financial Stress Testing by Farmer et al.
(2022) include several chapters dedicated to stress test design and disclosure, most notably
Goldstein and Leitner (2022) which overview the literature of stress test disclosure.

Most of the papers in the literature of stress test disclosure concern the disclosure of stress
test results to investors and its implications, after the stress test takes place. On the other
hand, the disclosure problem and the trade-offs we study are regarding the disclosure of
stress test model to banks. The paper that explicitly studies the question of model disclosure
is Leitner and Williams (2022), which is the first paper to provide a unified framework to
study disclosure of regulators’ stress test models, which we build on. The main departure
we have from their framework is that their paper implicitly assumes that the banks have an
asymmetric informational advantage about the state: everything that the regulator knows
is an obfuscation, or a garbling of what the banks know.

Instead, our framework considers the possibility that the banks may not be fully informed,
or that the regulator may have some informational advantage over banks. We believe this is
a more reasonable assumption that leads to different conclusions. Indeed, the Federal reserve
does seem to have some informational advantages over individual banks: (1) macro-variables
that the Fed would pay attention to, more than individual banks2 (2) systemic risk that
aggregates information reported from all banks; each bank knows its own position, but it’s
only the Fed that knows and takes into account each bank’s position in the market. This is

2Former Boston Fed President Eric Rosengren: “We asked BofA to tell us their exposure to subprime
mortgages.. they had no idea”
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relevant to supervisory stress tests since any such informational advantage the Fed has will
be used in conducting the stress tests.

If the banks are not fully informed, by releasing information about the underlying state,
the regulator can provide guidance to help agents make a more informed decision, which can
be beneficial for everyone. By excluding this effect, Leitner and Williams (2022) conclude the
regulator should never fully disclose their information. We clarify in Proposition 7 that the
regulator does not want to disclose if and only if it believes that the banks are more informed.
In both papers, the regulator can do better by partially disclosing its information. However,
we expand the disclosure policies in Section 2.4, show how the regulator can achieve the first
best outcome with sufficient flexibility on the information structure: notably, we show that
approximating the first-best outcome is possible by a disclosure structure that almost fully
discloses the regulator’s information.

From a theoretical standpoint, our modeling framework relates to information disclosure
in mechanism design. Our setup can be considered as a partially informed principal having
the ability to design incentives and choose the amount of private information it wants to
disclose, to a partially informed agent. Supervisory stress tests have this characteristic and
we use it as an application to contribute to this literature at large.

The question of whether a principal with private information should fully disclose any
information she has is of considerable interest, yet the literature gives mixed answers. In
auction environments, Milgrom and Weber (1982) and Ottaviani and Prat (2001) discover
the linkage principle and argue that the seller has incentive to fully reveal any information
related with the buyer’s valuation. On the other hand, it is well known in the persuasion
literature (Kamenica and Gentzkow (2011a), Bergemann and Morris (2016a), Bergemann
and Morris (2016b)) that an information designer can benefit from not fully disclosing, and
instead randomizing over information structures.

In standard Bayesian persuasion literature, the payoff structures are exogenously given.
On the other hand, standard literature on principal-agent problems feature a principal given
a fixed information structure and choosing the optimal contract satisfying incentive compat-
ibility constraints. The question of our paper involves endogenizing both the payoffs and the
information by allowing the principal to design mechanisms as well as a disclosure policy to
induce a certain action. Thus this paper most closely relates to the literature on information
disclosure in mechanism design where the principal controls the private information agents
learn beyond their initial private information. Developments in this literature include Eso
and Szentes (2007), Bergemann and Pesendorfer (2007), Li and Shi (2017), Yamashita (2018)
and Krähmer (2020).
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There are two main differences between our paper and the aforementioned literature on
disclosure and mechanism design. First, the previous papers analyze the case where either
the agent or the principal with private information, while our paper concerns the case where
both the principal and the agent have private, imperfect information. This matters for two
reasons: first, in our setup, the principal discloses her private, imperfect information about
the underlying state, whereas previous work assumes that the principal discloses information
about the underlying state itself: thus the meaning of full disclosure differs in their setting
and ours. This distinction is critical, since our setup has a trivial solution once we assume
the principal has perfect information. The second difference is that previous papers concern
mechanism design environments with transfers from the agent to the principal, while we con-
sider principal-agent problems where the principal can punish the agent, but the disutility
to the agent from punishment does not translate into gains for the principal. We believe
our assumptions are closer to reality in studying financial stress tests, where a regulator has
imperfect information and wants to influence an agent’s action using punishments based on
this imperfect information.

Our paper highlights the principal’s gains from garbling information by keeping the agent
guessing using his own private information, which is correlated with the underlying state
and the principal’s information. This intuition is closely related to the literature on surplus
extraction through correlation, building on the seminal result of Crémer and McLean (1988)
which shows that for any (quasi-linear) utility function and a finite type space, if the agents’
signals are correlated, there exists a mechanism that extracts all the surplus. McAfee and
Reny (1992) prove this result in a continuum; Rahman (2012) generalizes this result to ar-
bitrary type spaces. The main argument in Cremer-McLean is to use other bidders’ bids
that are correlated with each bidder’s valuation to construct payoffs, to make each bidder
effectively report their own value. In a similar vein, the main strategy of a principal with the
power to arbitrarily disclose her information and design arbitrary punishments is to use her
own information, which is correlated with the agent’s information: by making the agent guess
the principal’s information, the principal can effectively elicit the agent’s private information.

A contribution we make to the surplus extraction literature is providing a real-life appli-
cation to the Cremer-McLean surplus extraction result. While a celebrated result in theory,
applying Cremer-McLean’s main insight of “taking advantage of correlations to extract infor-
mation rent" in practice is difficult: Milgrom (2004) has described the full surplus extraction
result as “nothing that is found in practice and reminds us of how important it is to check the
practical reasonableness of solutions suggested by a model before implementing any prac-
tical policy based on the model." Our setup and argument gives a practical application of
a principal taking advantage of correlation structures in information, by “keeping the agent
guessing" about the principal’s private information. Proposition 9 extends to suggest the
optimality of partial disclosure and the advantages in using the correlation in information
to the principal’s benefit.
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Our result is also relevant to the distinction between “omniscient persuasion" and “public
persuasion" (Bergemann and Morris (2016b)). We show that with carefully designed infor-
mation structures and incentives, public persuasion can allow the sender to achieve utility
arbitrarily close to that from omniscient persuasion. In public persuasion setups, incentive
compatibility constraints restrict the set of attainable payoffs for the principal. Our paper
analyzes the case where the principal cannot elicit the agent’s private information through
standard contracts because the principal is tied to only making binary ‘punishment’ deci-
sions. We show that in such circumstances, randomizing on the principal’s own information
allows her to elicit the agent’s private information.

2.2 Model Setup
There is a bank and a regulator. The bank can choose between two actions: invest in a
risky asset or a safe asset. While both the bank and the regulator know the payoff of the
safe asset, both the bank and the regulator only have private, imperfect information about
the payoff of the risky asset. The regulator can choose two objects of interest: a stress test,
which is an assessment of the expected performance of the risky asset in a given scenario,
conducted using what the regulator knows; and a disclosure policy about what the regulator
knows. The formal model specifications are laid out below.

Agents and Fundamentals. The economy consists of a bank (B) and a regulator (Fed,
F)3. The bank can choose between two actions: invest in a risky asset or a safe asset. The
payoff from investing in the safe asset is known; we normalize it to zero for both the bank and
the regulator. The payoff of the risky asset depends on the realization of a random variable
ω ∈ Ω ⊆ R. We call ω the underlying state of the risky asset. The bank’s payoff from
the risky asset is uB(ω), which are the private gains of investing in the risky asset (relative
to the safe asset). Assume uB(ω) is bounded over Ω, so that utility obtainable in the best
possible state is ūB < ∞. The regulator’s payoff is uF (ω), which can be considered as the
social welfare associated with the risky asset, which the regulator, as a constrained social
planner, seeks to maximize.

There is a conflict of interest: the bank always prefers the risky asset to the safe asset,
while the regulator regulator prefers the risky asset only if the underlying state is good (safe).
Formally,

Assumption 2. uF is an increasing function of ω, and there is a ω0 such that uF (ω) ≥ 0

3The model naturally extends to multiple banks; we keep it to one bank for clarity. We discuss this
extension in Section 2.5.
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iff ω ≥ ω0.

Assumption 3. uB is an increasing function of ω and uB(ω) ≥ 0 for all ω.

Assumptions 2 and 3 highlight the main conflict of interest: the bank wants to invest
even in risky states, whereas the Fed wants the bank to invest only in good states. This is
the only assumption we make – we don’t make any structural or parametric assumptions
about the payoff function.4 The following example previews the types of situation we are
interested in:

Example. Assume there is a financial crisis with probability p. Let Rg be the (known)
gross return of a risky asset when there is no crisis, and ω be the bank’s return of the asset
when the financial crisis occurs. Let uB(ω) = (1− p)Rg + pω− 1, uF (ω) = (1− p)Rg + pω−
pL − 1. The assumption uB(ω) ≥ 0 highlights the fact that the banks want to invest even
when the return in the bad state is low, indicating a higher willingness to take risk and/or
moral hazard associated with the Fed put; whereas the regulator is more concerned about
the macroeconomic costs, including having to bail out such banks, and externalities from
financial crisis (Caballero Simsek 2013).

This example generalizes to any adequate interpretation to an uncertainty regarding a
risky asset: ω could denote Value-at-Risk, beta, or quality outstanding bonds. Depending
on the level of risk aversion, we can construct an appropriate utility function for both the
regulator and the bank.

Information (Model). Both the regulator and the bank have their own private ‘models’
of ω. Formally, we assume that both the regulator and the bank have a common prior ω ∼ f
on the underlying state, and their private model of ω is an imperfect signal on ω.5 The
regulator’s model of ω is represented by a signal sF ∈ SF ⊂ R drawn from a distribution
with CDF FsF (·|ω) and density fsF (·|ω), and the bank’s model of ω is represented by a signal
sB ∈ SB ⊂ R, drawn from a distribution with CDF FsB(·|ω) and density fsB(·|ω). A natural
interpretation of sF , sB is model-implied values of ω.

Here the prior f captures any common knowledge between the regulator and the bank,
while sF , sB capture what the regulator and the bank respectively know about the underlying
state, represented in their models. We assume that the bank observes sB and the regulator
observes sF before the bank makes its investment decision (hence a “model" of the risky asset

4The assumption that uB(ω) ≥ 0 for all ω highlight the bank’s stronger desire to invest, or some form of
moral hazard in the banks’ belief that they will be rescued by a bailout when the underlying state turns out
to be bad (such as a financial crisis). It also helps simplify our analysis.

5The common prior assumption is not essential; the regulator and bank can agree to disagree on a different
prior. As long as the heterogeneous prior is common knowledge, our analysis follows through.
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before the returns are realized). We call sF (resp. sB) the regulator (resp. bank)’s informa-
tion or signal. In practice, the FED model to asses losses from bank’s positions is comprised
of several regression equations per loan proftolio with unknown coefficients, estimated with
previous data.

We do not impose parametric forms on the distributions, but we assume that both the
regulator and bank are more likely to observe higher signals when the state ω is higher:

Assumption 4. sF |ω and sB|ω satisfy monotone likelihood ratio property (MLRP): for any
ω1 > ω2, both fsF (s|ω1)/fsF (s|ω2) and fsB(s|ω1)/fsB(s|ω2) are strictly increasing in s.

This ensures that both the regulator and the bank is more likely to observe higher signals
when the underlying state is larger; moreover, if the bank sees a higher signal, the regulator’s
signal is likely to be higher too (and vice versa).

As we pointed out in the introduction, this formulation implicitly assumes that the Fed’s
model of ω contains some information of intrinsic value that the bank does not know (cap-
tured by sF ). This departs from previous work such as Leitner and Williams (2020) where the
bank’s private information is clearly superior to the regulator’s6. We believe our assumption
that the regulator and banks independently have some nonoverlapping private information
is realistic, and delivers crisp implications based on the relative ‘quality’ of information and
models that the regulator and banks may have.

Stress test. After the bank makes its investment decision, the regulator conducts a su-
pervisory stress test to determine whether to pass or fail the bank. Investments in safe assets
always pass the test. If the bank invests in the risky asset, the regulator uses its private
information to ‘test’ the investment. Specifically, the bank’s investment passes the regula-
tor’s stress test if and only if the regulator’s private information sF is above some threshold
s∗. In practice, this threshold could represent model-implied threshold Value-at-Risk in ad-
verse scenarios, or minimum capital requirements. The regulator chooses and announces this
threshold s∗ before the bank and Fed observe sF , sB.

Assigning a threshold rule on sF for supervisory stress tests highlight the idea that su-
pervisory stress tests are the regulator testing whether the risky investment is safe enough
under an adverse scenario, using its own models and parameters, as opposed to using the
bank’s own assessments of their investments. Indeed, sF encapsulates all of the regulator’s
private information that it uses to estimate or evaluate ω. Thus it is natural to interpret sF
as an output of the regulator’s model it uses to test the bank’s risky investment, or a key
coefficient/parameter in the regulator’s model.7

6In Leitner and Williams (2020), the regulator’s information is a strict garbling of the bank’s information.
7The debate around disclosure of the Federal Reserve’s Dodd-Frank Act Stress Tests is centered on
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We can interpret s∗ as the strictness of the test – with a higher s∗, the regulator is less
likely to give a pass to a risky investment, so the test is stricter.

Failure. If the bank invests in the risky asset and fails the test, a private cost c is incurred
to the bank. We call (s∗, c) the stress test structure.

Multiple interpretations for this cost exist in this context – one is a cost to the bank
from “failure" being publicly announced to the market; this would lead to a decline in the
market’s confidence to the bank, incurring costs such as stock price declines (Flannery, Hir-
tle, Kovner). Another is direct transaction costs associated with having to liquidate assets.
Yet another can be a direct “punishment" imposed by the Fed, such as restrictions on share
repurchases or dividends, cease-and-desist orders to correct practices in risk management,
or even penalty fees. All of these punishments have been used by the Federal Reserve in
conducting the Dodd-Frank Act Stress Test (DFAST).

Note that the aforementioned interpretations are ambiguous as to whether the regulator
may have control of c. It seems that under some interpretations (direct punishments/reg-
ulations or intensity of signalling to the market), the Fed may have some control over the
magnitude of the cost, whereas it seems too strong to assume that the Fed can fine-tune c.
In this paper, We explore the case when c is exogenous, and discuss the case where the Fed
can set c optimally.

We can interpret c as the harshness of the test: a higher c implies that the costs of
failing the test are harsher on banks.

Final payoffs. After the stress test and punishments, the payoffs are as follows. If the
bank invests in the safe asset, the regulator and the bank’s payoffs are 0. If the bank invests
in the risky asset and passes the stress test, it receives payoff uB(ω) and the regulator re-
ceives payoff uF (ω). If the bank invests in the risky asset and fails the stress test, it receives
payoff uB(ω)− c and the regulator receives payoff uF (ω).

Disclosure. The main question we seek to answer is whether the regulator should reveal
its “model" sF to the bank. We analyze this in a Bayesian persuasion framework as in Ka-
menica and Gentzkow (2011): the regulator can partially disclose information about sF by
committing to an information structure that provides the bank with signals about sF . In
the supervisory stress test framework, this corresponds to giving some, but not all, of the

revealing the coefficients of regressions that the Fed uses to estimate losses.
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parameters and model specifications that the Fed uses in estimating ω.

Formally, before observing sF , the regulator discloses information about sF by committing
to a disclosure policy (M,π) that consists of a set M of messages and conditional distribu-
tions π : SF → ∆(M), where πsF ∈ ∆(M) denotes the distribution of messages conditional
on sF . An equivalent way to state the definition of π is as follows: after observing sF , the
regulator generates a message m about sF according to m|sF ∼ πsF and reveal m to the
bank. This message m captures (partial) information about the regulator’s model that it
discloses to the banks.

Two benchmark information structures are full disclosure corresponding to πfull
sF

= δsF ,
the point mass on sF , and no disclosure corresponding to πno

sF = δm, the point mass on some
m independent of sF : the regulator sends the same message m for any sF , disclosing no
information about sF .

Timing. The timing of the model is as follows:

1. (Ex-ante stage) The regulator chooses a disclosure policy π about sF and a punishment
threshold s∗, and publicly announces it.

2. (Interim stage) The regulator observes sF , and the bank observes sB.
3. (Disclosure stage) The regulator discloses m ∼ πsF to the bank, and the bank updates

its posterior on ω and sF .
4. Knowing sB and m, the bank decides whether or not to invest in the risky asset.
5. If the bank decides to invest and sF < s∗, the bank fails the test.

Problem. The regulator and the bank’s problem is given as follows.

• Bank’s problem. The bank decides whether or not to invest in the risky asset,
knowing the bank’s own signal sB and the regulator’s message m. Given sB,m, the
bank believes investing in the risky asset will pass the stress test with probability
q = P [sF > s∗|sB,m]. Then the bank invests if and only if

E[uB(ω)|sB,m]− (1− q)c ≥ 0 (2.1)

Note that q is increasing in sB, and uB(ω) is monotonic in ω, so the expectation is
increasing in sB. Thus given m, the bank invests if and only if sB ≥ sB∗(m, c) for some
sB∗.

• Regulator’s problem. The regulator chooses s∗ (stress test threshold), pi (disclosure
policy) in the ex-ante stage (before observing sF ) to maximize

Eω,sF ,sB ,m[u
F (ω)] (2.2)

where the expectation is over all possible realizations of ω, sF , sB and m.
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The actual realization of ω is irrelevant to the regulator or the bank’s decision problem,
as the decision happens before the realization. This is natural in our context: any decision
related to investment in risky assets, including supervisory stress tests and punishments,
cannot depend on the actual payoff of the risky asset. We define the equilibrium as:

Definition 2.2.1. (Equilibrium) An equilibrium is a disclosure policy π : SF → ∆(M),
stress test threshold s∗, and action chosen by the bank (invest in safe or risky asset) such
that the regulator and bank each solve their optimization problem.

First-best action for the regulator. Given information µ about ω, the regulator wants
the bank to invest in the risky asset if and only if E[uF (ω)|µ] ≥ 0. There are two sets of
information available in the market: sF known by the regulator and sB known by the bank.
Thus the first-best action is to invest iff

E[uF (ω)|sF , sB] ≥ 0.

This takes into account both the information that the regulator and bank knows. Note that
the expectation is increasing in both sF and sB, by Assumption 4.

Call the set of signals SFB = {(sF , sB)|E[uF (ω)|sF , sB] ≥ 0}; this is the set of real-
izations of information for which the regulator wants the bank to invest. Also denote by
UF (sF , sB) = E[uF (R)|sF , sB] the expected utility of the regulator when the bank invests
in the risky asset, when the Fed knows sF and the bank knows sB. We seek to answer the
following questions:
Research Question. Should the regulator reveal sF to the bank prior to the investment?
Can hiding, or garbling and partially revealing the regulator’s model/information be welfare
enhancing than fully disclosing it? How strict should the stress test be, and how does this
depend on the fundamentals?

2.3 Full vs. No Disclosure when banks want to pass
In this section, we compare between two disclosure policies: full disclosure where the regula-
tor reveals sF fully to the bank, and no disclosure where the regulator reveals no information
about sF to the bank. Restricting the regulator to this binary choice allows us to concisely
deliver the intuition that disclosure may hurt the regulator because the banks would rely
less on their own private information in investment decisions and just follow the supervisory
stress tests. Moreover, this is not a gross simplification – if the regulator cannot credibly com-
mit to more complicated disclosure policies, the only choices would be to reveal or not reveal.

For simplicity, we assume that banks always want to pass the stress test:

53



Assumption 5. There is some c0 > ūB that lower bounds the minimum possible punishment
that the Fed can carry out conditional on failure.

Since punishment outweighs any possible benefit to the bank from investing, banks will
never invest in an asset if they are certain it will result in stress test failure.

2.3.1 Full Disclosure

When the Fed fully discloses sF , the bank knows exactly when it will pass or fail the test.
Thus the expected utility from investing in the risky asset is

UB,FD(sB, sF ) =

{
E[uB(ω)|sB, sF ] > 0 if sF ≥ s∗

E[uB(ω)|sB, sF ]− c < 0 if sF < s∗

As mentioned before, the cost of failing the stress test is assumed to be high, i.e. c ≥
E[uB(ω)|sB] for any sB. The bank will invest if and only if sF ≥ s∗, i.e. if it knows the
Fed’s signal is high enough that it passes the test. The regulator’s ex-ante utility from full
disclosure with threshold s∗ is

UF,FD(s∗) = E[UF (sF , sB)|sF > s∗]Pr(sF > s∗) =

∫
sF≥s∗

UF (sF , sB)dF (sF )

The optimal threshold s∗FD is the unique solution to E[UF (sF , sB)|sF = s∗FD] = 0. The
reason why full disclosure cannot achieve the first-best for the regulator is clear; the bank
would always invest if they knew they would pass the test, even if their information sB

suggests that the social welfare resulting from the investment is low. This is to say, the bank
“games the system" when the Fed’s signal is high enough to allow them to comfortably pass.

2.3.2 No disclosure

On the other hand, assume that the regulator discloses nothing about sF . The bank’s utility
from investing in the risky asset is

UB,ND(sB) = E[uB(ω)|sB]− (1− q)c

where q = P [sF ≥ s∗|sB] is now the bank’s estimate of the probability of passing the
stress test: the bank needs to “guess" the test results using its information sB. Since q and
E[uB(ω)|sB] are both increasing in sB, UB,ND(sB) is increasing in sB, there is sB∗(s∗, c) such
that bank will invest iff sB ≥ sB∗(s∗, c).

Thus the set of signals where the bank invests in the risky asset and passes the test is
given by

SND(s∗) = {(sF , sB)|sB ≥ sB∗(s∗, c)}.
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The mapping s∗ → sB∗(s∗, c) is increasing in s∗ and c; if the test is stricter or harsher,
the bank would need a higher signal to invest. Thus sB∗(s∗, c) is invertible with respect to
s∗, and for a fixed c, we can define s∗(sB∗) be the value of s∗ that implements sB∗

We let
UF,ND(s∗) = E[UF (sF , sB)|sB ≥ sB∗(s∗, c)]

be the regulator’s payoff when it chooses the bank’s threshold sB∗. Let UND∗ = maxsB∗ UF,ND(sB∗)
be the highest payoff to the regulator. The optimal policy satisfies E[UF (sF , sB)|sB =
sB∗(s∗, c)] = 0.

The reason why no disclosure cannot achieve the first-best for the regulator is different
now; as the bank does not know sF , the bank is not fully informed. This clarifies the trade-off
with disclosure: full disclosure makes the banks more informed, but at the same time, opens
the door for the banks to game the system, investing even when the bank’s assessment is bad
(sF high, sB low).

Comparative statics

The payoff to the Fed under the optimal full-disclosure threshold, U∗FD = UF,FD(s∗FD), is
unaffected by the distribution of the bank’s signal, and increases with the informativeness
of the Fed’s signal. To see the former, observe that the bank’s decision is independent of its
own signal. Note, for the latter, that if a signal sF ′ is Blackwell more informative than sF ,
then sF = sF

′
+ ϵ where ϵ is a noise term distributed Fϵ(ϵ|sF

′
).8 If the optimal threshold

under signal structure sF is s∗, then under sF ′ the regulator could mimic expected outcomes
under sF by randomizing whether to allow banks to invest, and using an interior probability

pF (sF
′
) = 1− Fϵ(s

∗ − sF
′|sF ′

)

of announcing to banks that they will be allowed to pass the stress test even if they invest in
the risky asset. However, because there is a uniquely optimal cutoff under sF ′, and elsewhere
it is either strictly optimal to invest or strictly optimal not to invest given sF , randomization
is suboptimal. The Fed therefore does strictly better by passing banks above the cutoff and
failing them below, which it can enact when playing optimally with the more-informative
signal sF ′, but not under the less-informative sF .

On the other hand, the Fed’s payoff under the no-disclosure threshold depends only on the
informativeness of the bank’s signal. Here, a more informative signal for the bank is better.
The argument is similar to the previous case: since s∗ determines the outcome through sB∗,
the implied cutoff in the bank’s private signal that determines whether they invest or not,

8We assume that the garbling preserves monotonicity of returns to investing in sF ; if not, then a cutoff
rule may no longer be optimal.
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and UF,ND depends only on sB∗ and the joint distribution of sB and ω. If sB = sB
′
+ ϵ with

ϵ ∼ F (ϵ|sB ′
), then the outcome of the optimal policy sB

∗ under sB is equivalent to having
the bank that observes sB

′ randomize, and invest with probability

pB(sB
′
) = 1− Fϵ(s

B∗ − sB
′|sB ′

).

Again, because the Fed’s expected payoff from investment is also strictly increasing in the
bank’s signal, randomization is suboptimal everywhere except the optimal cutoff, and it is
better for the Fed if the bank plays their best response to s∗′ using their more informative
signal sB ′.

2.3.3 Full disclosure vs no disclosure

Which of the two regimes is preferred? The benefit of full disclosure is that the bank is more
informed in its decision about ω, but it comes at a cost – namely, the bank overinvests in
states where it knows it’ll pass the test, and may underinvest when it knows it’ll fail the
test. On the other hand, without disclosure, the bank’s investment decision is made only
using its information, so some information is lost.

The comparative statics in the previous section show that full disclosure improves when
the Fed has a precise signal, while no disclosure improves when the bank’s signal is more
informative. It follows that which regime is better depends on “whose model is better", i.e.,
on the relative precision of sF and sB.

Proposition 7. Suppose the regulator chooses between full disclosure (FD) and no disclosure
(ND), and c is exogenously given and fixed.

1. Fix sF . If UFD∗ > UND∗ under sB, then the same is true for all sB ′ that are garblings
of sB. In other words, full disclosure becomes more attractive to the Fed as the bank’s
model worsens.

2. Fix sB. If UFD∗ > UND∗ under sF , then the same is true for all sF ′ that are Blackwell
more informative than sB – when the Fed’s own model improves, full disclosure becomes
more attractive.

3. If sF is a garbling of sB, then no disclosure is better than full disclosure. If sB is a
garbling of sF , then full disclosure outperforms no disclosure.

Essentially, the Fed would like to disclose its model ONLY if its information is precise
enough so that the Fed benefits from dictating the investment. Otherwise, it should hide its
model, in order to prevent banks, which have more valuable information about tail-end risks,
from discarding their own predictions, and to make banks leverage their own information in
the Fed’s favor by guessing the Fed’s model.9

9The intuition resembles that of Cremer and McLean (1985): as long as the Fed’s signal is not fully known

56



Proposition 7 clarifies to us that if there’s any motivation for the regulator to disclose
information, it is not because the regulator believes the banks are better equipped to make
investment decisions and wants to delegate the decision to the bank. Rather, the regulator
would like to fully disclose only if it believes that its own models are more accurate than
the banks, to provide guidance, or make binding recommendations on investment decisions
based on the regulator’s model. This may have been true in the first few years following the
Great Recession, when there was good reason to believe that banks themselves did not have
sufficient capacity to identify systemic risk.

On the other hand, in more recent times, where it is generally believed that banks employ
more sophisticated models and may have some proprietary information that allows them to
have a more precise estimate of risk, the fact that banks have better models may actually
incentivize the regulator to hide information, precisely because the regulator does not want
banks to overinvest in risky assets that pass the regulator’s test. In our framework, it is
precisely because the regulator believes banks may have better private information that
they hide the regulator’s information, as the regulator wants to align the bank’s interests
with social welfare, while ensuring that the bank uses its private information.

2.3.4 Comparative statics on strictness and harshness

We investigate some comparative statics on fundamentals of interest – such as the passing
threshold s∗ (‘strictness’), cost of failure c (‘harshness’), and how they relate to the disclosure
policy. We test predictions such as the following:

1. If the regulator discloses information, the regulator would have to make the tests
stricter (“minimum required capital levels would need to be materially increased") to
counteract gaming. This was suggested by former Fed governor Tarullo (2017).10

2. If the cost of punishment is higher to the banks, the test should be less strict.

We first show that the first prediction need not necessarily be true. Formally, if s∗FD is
the regulator’s optimal threshold under full disclosure, and s∗ND(c) is the regulator’s optimal
threshold under no disclosure, the statement is equivalent to sFD∗ > s∗ND(c). However, as
we show in the appendix, this is not necessarily true: it depends on the specific information
structure, and what investment threshold the regulator wants to induce the bank to use in
the case of no disclosure.

On the other hand, we have seen from the analysis of the full and no disclosure case that
the second proposition is true for no disclosure, but not for full disclosure. Indeed, under
no disclosure, a higher c is accompanied by a lower s∗. That is, if the cost of failure is

to the bank, it is correlated with the bank’s own model, and this correlation can be exploited to make the
bank use its private information in a way that best benefits the Fed.

10See: https://www.federalreserve.gov/newsevents/speech/tarullo20170404a.htm
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harsher, the regulator responds by making the test less strict ; if the cost of failure is lower,
the regulator makes the test harder to pass. On the other hand, under full disclosure, as
long as the cost of failing the stress test is high enough so that no bank would voluntarily
fail the test with probability 1 (Assumption 5), the optimal threshold s∗FD is simply given
by E[UF (sF , sB)|sF = s∗FD] = 0. As such, the trade-off between strictness and harshness
exists only when the regulator hides information about the test.

2.3.5 Punishment flexibility

In Section 2.2, we discussed the possibility that the regulator may be able to choose the
harshness of punishment c, through either sending stronger messages about the investment’s
riskiness, or directly choosing which punishment to levy (freezing / coercing to sell assets,
fining for failure etc.) What happens if the regulator chooses c optimally, in either full dis-
closure or no disclosure? We briefly discuss the intuition here.

Under full disclosure, as we have seen in the above section, as long as the punishment c
is large enough, the bank’s investment decision solely depends on s∗, the threshold set by
the regulator; banks will invest if and only if they know they will pass the test, as no bank
will intentionally fail the test. Thus under Assumption 5, there is no gains from punishment
flexibility. Instead, if we allow the regulator to set punishment c low so that some banks may
intentionally fail the test and invest in risky assets, this may strictly benefit the regulator,
because the banks who would be willing to take the risk are selected to be the ones whose
models implied a better state; so the regulator’s utility can improve if the regulator allows
some banks to fail. However, allowing some bavnks to intentionally fail is unrealistic – most
notably, market participants learning failure is a strong enough disincentive sets a lower
bouind for c, so it is likely that many banks to not want to intentionally fail the test.

Under no disclosure, choosing c and choosing s∗ are dual in the sense that both are tools
to affect the bank’s investment threshold sB∗(c, s∗); we have seen above that a higher c
(harsher) is associated with a lower s∗ (less strict). As such, the ability to choose c does not
affect the optimal policy. Thus, under both full disclosure and no disclosure, the regulator’s
capacity to choose c does not significantly affect our analysis.

2.4 Partial Disclosure
We now assess the optimality of partial disclosure policies, where the regulator can commit
to providing some information about its private information about the state of the world. In
this setup, the regulator, upon observing its private signal sF , can choose to disclose partial
information about sF , without fully disclosing it. As mentioned in Section 2.2, we model
this as the regulator choosing a disclosure policy (M,π) before observing sF such that, upon
observing sF , the bank discloses m ∼ πsF . The bank updates its posterior of the state ω and
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the regulator’s private signal sF using m and makes its investment decision.

Under this ‘middle ground’ between full disclosure and no disclosure, how much better
can the regulator perform? We argue here that fine-tuning the disclosure policy is sufficient
to be arbitrarily close to the first-best, as long as the harshness c is sufficiently large.

2.4.1 The bank and the regulator’s problem

Suppose regulator chooses the strictness s∗ and the disclosure policy (M,π). Upon seeing
sF , the Fed discloses m ∼ πsF . The bank, upon observing m, will form posteriors on ω and
sF given sB and m: ω̂ ∼ (ω|sB,m) and ŝF ∼ (sF |sB,m). Given this information, the bank
will invest if and only if

UB(sB,m) = E[uB(ω)|sB,m]− (1− P [sF > s∗|sB,m])c ≥ 0

This expected utility is increasing in sB. As such, the bank invests if and only if sB ≥
sB∗(m, c) for some mapping sB∗. Since the utility is decreasing in c, this mapping sB∗ is
clearly increasing in c; the banks need a higher signal to invest in a risky asset when the
punishment is harsher. The dependence on m is trickier because we have no guarantee that
m is monotonic - for example, the regulator may want to pool extremely good signals with
extremely bad signals. But if we rule out such disclosure policies, we have a monotonicity
result:

Lemma 8. Suppose that the regulator’s disclosure policy m|sF satisfies MLRP: for sF1 >
sF2 , f(m|sF1 )/f(m|sF2 ) is increasing in m. Then the bank’s expected utility UB(sB,m) is
increasing in m, so sB∗(m, c) is decreasing in m.

The regulator needs to construct a disclosure policy (M,π) and s∗ to maximize ex-ante
utility

Eω,sF ,sB ,m[u
F (ω)]

Recall that the first-best action that the regulator would like the bank to take is to invest
in the risky asset iff

E[uF (ω)|sF , sB] ≥ 0

Since sF |ω and sB|ω both satisfy MLRP, the left-hand side is increasing in sF , sB. So there
exists some decreasing sB,FB(sF ) such that the first-best action is for the bank to invest if
and only if sB ≥ sB,FB(sF ).

From this formulation we clearly see the trade-offs of disclosure. Under full disclosure,
the bank’s decision rule sB∗ ≥ sB∗(m, c) will depend exclusively on m = sF , and not on
sB. With less disclosure, however, the bank’s decision rule sB∗ ≥ sB∗(m, c) will be noisy
compared to the first-best sB,FB(sF ) since m is not sF , and when the noise is sufficiently
large, the banks will just rely on sB to make the decision.
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2.4.2 Approximating the first-best

The natural question is: can the regulator choose disclosure policy (M,π) and stress test
s∗ such that sB ≥ sB,FB(sF ) and sB ≥ sB∗(m, c) are identical, or close enough? In this
subsection, we show that if c is sufficiently large (or if the regulator can choose c), the
regulator can design a stress test such that the regulator can induce the banks to approximate
the first-best action that incorporates the signals of both the regulator and the bank. Thus
this is clearly a strict improvement over full disclosure – when the bank can game the test –
and over no disclosure – when the bank’s action depends only on its signal.

Proposition 9. Suppose the regulator can choose any information structure to partially
disclose its signal. Then the regulator can design a disclosure policy with infinitesimal noise
to approximate the “efficient investment" decision that incorporates both the information
known by the regulator and the bank. Formally, for any ϵ > 0, the Fed can choose the stress
test (s∗, c) and a disclosure policy π such that the bank, after observing m will invest in the
risky asset if and only if sB ≥ sB∗(m, c), and this action satisfies

E[uF (ω)1sB≥sB∗ ] > UFB − ε

where UFB is the first-best utility of the regulator, and the expectation on the left-hand side
is taken over all signal and message realizations.

An intuition for the proof of the proposition is as follows. For each bank with a signal sB,
the regulator sets up a disclosure policy such that the regulator almost fully discloses their
model sF , and almost all of the banks pass the test, but there is always a small probability of
failing the test, and the conditional probability of failure is larger when the bank sees a lower
message (‘higher probability that the Fed believes the investment is risky’). The regulator
fine-tunes the disclosure policy (M,π) such that the bank’s ‘threshold signal’ sB∗(m) after
seeing the regulator’s message m closely approximates the welfare-maximizing investment
threshold.

Specifically, the regulator chooses the disclosure policy (M,π), cost of failure c, and
passing threshold s∗ such that:

• M = SF : the set of messages is simply the set of private signals of the regulator.

• πsF = (1−ϵ(sF ))δsF +ϵsFU(SF ): the disclosure policy fully reveals sF with probability
1− ϵ(sF ), but the message may be garbled with some noise with full support, so that
the banks can never be 100% sure they will pass the test.

• Construct the ‘noise probabilities’ ϵ(sF ) to be small enough so that the disclosed mes-
sage m is almost always equal to sF , but upon seeing any message m, there is a
probability p(m, sB) such that the bank fails the test.

• Set c high, and fine-tune the probabilities p(m, sB) (using ϵ(sF )) such that sB∗(m, c) is
sufficiently close to sB,FB(m), which is sufficiently close to sB,FB(sF ) as long as ϵ(sF )
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is small enough.

A rigorous construction and proof of approximate optimality is given in the appendix.

This result highlights the main benefit of partially disclosing. The regulator wants the
bank to ‘guess’ the regulator’s signal sF using sB, because guessing elicits the bank’s private
information; however, hiding information is inherently costly as it creates additional noise,
when the regulator’s goal is to match the bank’s actions with the information that both the
regulator and banks know. But by disclosing almost everything but leaving a small noise, the
regulator can keep the benefits of ‘not disclosing’ – eliciting the bank’s private information
and preventing gaming the system – while keeping almost all of the benefits from disclosing
– allowing banks to make a more informed decision in investments.

This result too, is in line with the Federal Reserve’s actual policy regarding disclosure in
the Dodd-Frank Act Stress Test (DFAST). The Fed is increasingly disclosing more informa-
tion because it “helps financial institutions [..] understand the capital implications of changes
to their business activities, such as acquiring or selling a portfolio of assets," at the same time
cautioning against full disclosure because “doing so could permit firms to reverse-engineer
the stress test." Disclosing most, but not all, of the relevant models of the stress test allows
the regulator to reap most of the benefits associated with disclosing, while keeping enough
uncertainty to shut down the perils associated with disclosure.

In the limit when our disclosure policy approximates the first-best (ε → 0), we have
that: banks almost fully know the regulator’s information (P [m = sF ] → 1), the banks are
punished harshly (c → ∞), but the test is not strict (P [sF ≤ s∗] → 0), and the bank’s
investment decision, conditional on the message, is the first-best investment decision. Our
result is suggestive that the regulator disclosing more information is associated with a harsher
test (Section 2.3.4), and if the regulator can choose between strictness and harshness (Sec-
tion 2.3.5), it is better to make the test harsh (punish severely) but not strict (punish only
a few banks); however, since our result shows one way to approximate first-best but doesn’t
show that it is the only way, other disclosure policies and punishments may be able to ap-
proximate the first-best as well.

However, there are two caveats in applying the insights from this proposition in reality:

1. The optimal disclosure policy may be difficult to implement in practice. To approx-
imate the first-best, the regulator has to add an infinitesimally small probability of
‘failure,’ and fine-tune the probabilities so that the bank with signal sB finds it exactly
indifferent between investing and not investing at sB = sB∗(m, c). While the Federal
Reserve definitely has some signaling capacity, it may be unrealistic to assume that
the Federal Reserve can fine-tune the message to this extent.
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2. The possibility of misspecification makes our result less robust. Our first-best approx-
imation result assumes that the regulator is fully aware of the information acquisition
structure of itself and the bank, and the banks fully know and believe the complicated
disclosure policy and updates accurately in a Bayesian manner. If the regulator is mis-
specified in any of these steps, combining a small noise with large punishments could
lead to very inefficient outcomes.

As such, Proposition 9 should not be taken literally, and should be considered as a bench-
mark that highlights the substance – hiding some information is always better than revealing
all information, whereas hiding too much information is going to hurt social welfare. At the
same time, the intuition the proposition suggests – as long as the regulator does not disclose
its private information fully, more disclosure could be socially beneficial if it is accommodated
by an appropriate punishment – is quite relevant in the stress test context.

2.5 Discussion and extensions
In this section, we discuss the implications of our main propositions and their intuition, and
discuss possible extensions of our framework.

1. What if there is a social cost of banks failing the stress test that the regulator must
account for? We assumed for simplicity that the regulator does not internalize the cost
of punishment that is incurred to bank as a result of failing the stress test. If such
social welfare costs of punishment exist, no disclosure will be relatively worse than full
disclosure compared to our initial analysis, as under no disclosure some banks may still
invest and get punished, while under full disclosure no bank will ever voluntarily invest
knowing it will be punished. However, if the social cost is not as large as the private
costs to banks (which include management changes, ban on additional transactions,
etc.), it may still be the case that no disclosure outperforms full disclosure. Moreover,
partial disclosure strictly dominates both full and no disclosure.

2. A natural extension would be to add multiple banks which make independent invest-
ment decisions. If the regulator has multiple banks, each with their own ‘models’ sBi ,
then the disclosure problem becomes whether or not to disclose a common sF to mul-
tiple banks with their own sBi . In such a scenario, we immediately see that there is
stronger incentive for the regulator to not fully disclose, as each bank using their own
information would likely lead to a better outcome than every bank blindly investing
the maximum according to the stress test rule. This can be formalized if the reg-
ulator has a specific aversion to banks’ actions being correlated – either investment
is multidimensional and there is some correlation disutility, or the regulator’s social
welfare function dislikes banks’ investment thresholds being too close to one another.
This highlights the concern expressed by the Federal Reserve against disclosing: “[Full
disclosure] could increase correlation in asset holdings [..] making the financial system
more vulnerable."
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3. In a similar vein, to make our stylized model more realistic, we may treat investment
and ‘models’ as multidimensional objects. This would clarify the ‘information’ in the
disclosure problem as parameters in question as specific coefficients into the regulator’s
‘stress test’ model, and make explicit some of the goals of the regulator (decrease the
correlation across banks – low beta) versus the bank (increase correlation with market
– high beta). In this case, there’s an additional layer of optimal disclosure that can be
discussed – the optimal number of dimensions that the regulator may disclose. This
can be naturally interpreted as the number of coefficients to disclose in actual stress
tests conducted by the Federal Reserve.

4. Endogenizing information acquisition by the banks. Another existing concern by the
Federal Reserve argument against model disclosure is that “full disclosure could incen-
tivize banks to simply use models similar to the Federal Reserve’s, rather than build
their own capacity to identify, measure, and manage risk." What if banks’ draw sB is
not drawn from an exogenous distribution, but banks could invest in knowing a more
precise sB, through some information acquisition that is more costly in the precision
of the draw? If the regulator fully discloses, then banks will never invest in knowing a
better sB. Hiding the regulator’s model sF would incentivize banks to “do their own
research" to pass the stress test, hence investing in their own, independent models,
and therefore also improves the outcomes of less relative to more disclosure. This al-
lows room for investigating the optimal level of disclosure, if banks investing in their
capacity comes with a social cost.

5. The paper focuses its analysis on supervisory stress tests in the financial sector, but the
intuition and logic naturally extends to any environment where a regulator has imper-
fect information about an underlying state and wants to influence an agent’s action by
assessing and punishing agents’ actions through her imperfect information. Applying
our analysis to scenarios such as traffic cameras, law enforcement, or firm-employee re-
lationships can explain why intentional obfuscations/garblings exist in many principal-
agent relationships with private information.11

2.6 Conclusion
Should the Federal Reserve disclose its stress test models to banks? To shed light on this
question, we propose a stylized model where a regulator and bank has private information
about the state of a risky asset, and the regulator uses its own information to test the
investment. Our framework incorporates the main trade-off of disclosure: disclosure allows
banks to make a more informed decision, but at the same time, allows banks to game the test.

Our main contribution is highlighting the possibility of the regulator to elicit the banks’
11A previous version of this paper titled ‘Optimal Disclosure in Principal-Agent Problems with Imperfect

Information’ discusses this in more detail.
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private information by hiding the regulator’s private information used for the stress tests,
and keeping the banks guessing about this information. Our first result comparing full dis-
closure to no disclosure highlights this intuition: we show that no disclosure can be better
than full disclosure if banks hold better information.

Our second result shows that if the regulator can commit to arbitrarily complex disclo-
sure policies, the regulator can choose a disclosure policy that reveals almost everything, but
leaves a small noise, and fine-tune this so that the bank’s investment action is arbitrarily
close to the socially optimal investment decision, and combining this with a sufficiently harsh
punishment.

The second result may shed some light on the Federal Reserve’s strategies in recent years,
where they release more information on the crucial parameters and modeling structures, but
keep some parts opaque, and punishment for failing the test is severe enough such that no
major bank voluntarily fails the test. However, at the same time, the second result relies
on fine-tuning information disclosure and committing to them; it should be thought of as
a benchmark, and not too literally. When the regulator lacks commitment power, it may
make more sense to think of the regulator’s question as choosing between full disclosure and
no disclosure, whence we are back to our initial framework in which the signals’ relative
informativeness matters.

While we lay out our intuition for the main trade-off of gaming the system, our model is
stylized in nature, and cannot answer quantitative policy questions on stress test disclosure
by itself. A natural next step will be to build a close-to-reality model of stress test design
by following the literature, such as Parlatore and Philippon (2018) or Parlasca (2019) with
multiple banks, each endowed with their own private information and making investment
decisions, and the regulator deciding ‘how much’ information to disclose. Such a quantitative
model will be able to guide policymakers on the ‘optimal stress test model disclosure’ debate.
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Chapter 3

Nondisclosure with Conflicting Motives

3.1 Introduction
Why do people have differing beliefs about issues that appear, to an informed audience, to
be all but settled with hard evidence? One explanation is that people with access to evidence
don’t always disclose it, but instead choose to lie by omission to influence others.

Folk wisdom, however, states that hiding information doesn’t work if audiences anticipate
what’s being hidden. Grossman (1981) and Milgrom (1981) provide a classic argument that
if the evidence-holder always wants to influence the receiver’s action up, then only senders
with the lowest signals will consider hiding them, and because of adverse selection, senders
can’t benefit from silence.

To bridge a gap between this result and the many examples of nondisclosure in the world,
this paper explores the possibility that receivers don’t know how the sender wants to influence
them: they are uncertain about the direction of the sender’s preference misalignment. There
are a few reasons why this might be the case. First, a receiver may know the identity of
the sender, but be uncertain about their preferences on a given issue, either because the
issue or the sender herself is unfamiliar. Alternatively, a receiver may not know the sender’s
identity at all, only that they come from a population of possible informants with different
preferences.

My main observation is that, when the receiver doesn’t know which direction the sender
would like them to bias their action towards relative to their private optimum, then the
sender’s disclosure policy will never fully unravel. This is because of bidirectional pooling :
senders with opposite kinds of preferences and evidence on opposite sides of the status quo
both end up withholding their information, each relying on the possibility of the other to
prevent the receiver from catching on to the nature of the omission. The best the receiver
can do in response is take an intermediate action that does well in expectation. In contrast,
when the sender’s desired direction of influence is known, full disclosure occurs.
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Under bidirectional pooling equilibria, the sender discloses some signals, but not others.
Their disclosure policies order signal values, and under some additional conditions, the set
of sender-preference types, into two-sided spectra with increasingly influential signals and
increasingly biased preference types relative to a central signal and central type. Disclosure
near the center differs from disclosure at the extremes. Strikingly, two opposite patterns of
disclosure arise depending on how much more sensitive the receiver is to the state than the
sender. When the receiver and the sender care about the state equally, a sender finds it
worthwhile to share highly impactful information, but nudges receivers in the direction of
their private bias by omitting details that slightly contradict it. On the other hand, when the
receiver’s preferred action is significantly more responsive to the state, the sender is reluctant
to share big news, because they don’t want the receiver to overadjust; instead, they try to
influence receivers to take their preferred action by disclosing minor evidence in its favor.

The comparative statics of disclosure from these two cases straddle debates about the
importance of heterogeneous perspectives to informative communication. In the first case,
greater differences in preferences discourage communication, while in the second, a diversity
of perspectives is necessary for unconventional truths to get across.

These results give a framework by which the power to disseminate or withhold facts allows
idiosyncratic preferences to affect public outcomes. It is applicable to several important
real-world examples. One is media ownership: multiple studies agree that content put forth
by media outlets changes with ownership in ways that are consistent with a change in their
biased agenda (Gentzkow and Shapiro (2010), Baum and Zhukov (2018)). My results suggest
that if media companies are biased relative to the true state of the world but still wish their
reports to move with it, then they will all agree on the most essential headlines, but differently
biased companies may differ in their coverage by selectively skipping unfavorable minutiae.
On the other hand, if they have a state-independent preference for eliciting certain beliefs,
then they are reluctant to share any big news, and will instead select their coverage over
minor facts that do not generate much “swing".

This paper is laid out as follows. Section 2 gives the main framework of a disclosure model
with sender preference uncertainty. Section 3 shows that with enough preference variation,
bidirectional pooling equilibria occur. Section 4 discusses the form of the disclosure policy
and comparative statics under two main cases. Section 5 works out an example, Section
6 considers the assumptions distinguishing my results from full disclosure, and Section 7
concludes.

3.1.1 Literature review

Models of disclosure typically involve senders who choose to disclose verifiable signals to re-
ceivers, who then act upon the information. Classically, in applications such as the quality-
signalling problem, imperfect information between the parties lies along a single dimension,
that is, the sender’s private signal about some shared, payoff-relevant state. Because the
sender always wants to influence the receiver’s action up, there is adverse selection into
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withholding. Any pooling strategies unravel, leading to full disclosure in equilibrium (Mil-
grom (1981), Grossman (1981)). A general statement of these results, from Okuno-Fujiwara
et al. (1990), is that whenever each sender’s utility is always strictly increasing (i.e. positive
monotone) in each receiver’s beliefs about their signal, all state-relevant private information
will be revealed.

Strands of the literature have pointed out the possibility of imperfect disclosure when
receivers are uncertain about more than the sender’s payoff-relevant signal. Dye (1985)
observed that, if observers are uncertain about a manager’s endowment of information, then
those with unfavorable evidence can profitably pool with the uninformed. For the sake
of comparison, we could frame the focus of this paper as uncertainty about what kind of
sender holds useful information, under certainty that the information exists. Banerjee and
Somanathan (2001) consider voice in organizations, starting with a model of binary disclosure
in which informants may have different priors about the promise of a project. However, in
their model, all communication is unidirectional, since the verifiable signal itself is always
good news. My paper departs from their binary state/single signal framework and focuses on
settings with a continuum of signals and states, and bidirectional communication; however,
it shares their focus on the effects of sender heterogeneity.

Also related to the idea of pooling under multidimensional sender heterogeneity are models
of costly signaling with privately-known costs (Frankel and Kartik (2019), Esteban and Ray
(2006)). There, an informed party with known preferences observes a natural state, as well
as their private cost of distorting the decision-maker’s perception of the state. Similarly to
the sender-specific preferences in this paper, distortion costs are not directly payoff-relevant
to the decision-maker, but they confound reports of the state, so that uncertainty about the
state remains at the time that decisions are made.

Some more distantly related discussions of cheap talk and partial provability are never-
theless interesting in the context of this problem. Chakraborty and Harbaugh (2010) show
that, when there are N dimensions in a message, at most one dimension is payoff-relevant to
a sender with fixed preferences, therefore they and the receiver can find an N−1 dimensional
subspace of common interest on which they can communicate informatively in a cheap talk
game. This paper considers something of an opposite case, in which the feasible message
is restricted to a single dimension, while the sender’s payoff depends on multidimensional
information, and shows that this restricts the informativeness of communication. Among
models of partial provability, Seidmann and Winter (1997) show that while generically equi-
libria are partially informative, full revelation occurs when each verifiable subset of types –
analogous to a message in my setting – admits a worst-case type, which no other type in
that subset wishes to masquerade as. In my setting, sufficient richness of sender preferences
and compactness of the signal set precludes the existence of a worst-case type for the empty
message.

67



3.2 Model
I focus on a simple disclosure model with one sender and one receiver, who both aim to
maximize their expected utility under utility functions

us(θ, x, ar), ur(θ, ar).

Payoffs for both players can be directly influenced only through the receiver’s action, ar ∈ R.

The state of the world, θ ∈ R, is unknown, but both players know that its distribution
is f(θ). Conditional on the state, a signal m is drawn at the start of the game from the
distribution h(m|θ).

Assumption 6. The marginal distribution of the signal,
∫
θ
h(m|θ) · f(θ)dθ, is continuously

supported on a bounded interval [m, m̄].

Finally, the sender has a privately-known preference type x ∼ g(x) ∈ [x, x̄], with com-
monly known distribution independent of f(θ).1 For the main body of this paper I assume
that g(x) is not a degenerate (point) distribution, but I reconsider this possibility, and its
relation to full disclosure results, in the last section.

Assumption 7. The receiver is uncertain about the sender’s type: g(x) is not supported on
a single point.

Though inconsequential in this one-shot model, the underlying idea is that x is intrinsic
and known well ahead of time, while m is a signal drawn at the beginning of the game. To
reflect this, I will refer to x as simply the sender’s type, and when referring to a particular
sender, I mean a sender endowed with a type x. To avoid confusion, the sender’s full set of
private information (x,m) (which is what “type" refers to elsewhere in the literature) will
instead be called a scenario henceforth in this paper.

3.2.1 Timing and actions.

First, the sender’s type is drawn, and they learn it. Then, nature draws a state and a signal
conditional on it. The sender observes the signal and chooses whether to disclose the signal
to the receiver, or to withhold it. I interpret the signal as a piece of hard evidence that
can be passed on costlessly to the receiver, and means the same thing to both players. The
sender’s preference type, on the other hand, is not verifiable, and the sender cannot engage
in cheap talk or in any other way influence the receiver’s belief about it. Neither the sender
nor the receiver has commitment power. Observing only what the sender has passed along,
the receiver chooses an action. To summarize, the timing is as follows:

0. x, θ, and m are realized. The sender is given x, and observes m.
1Everything will extend to the case where x has unbounded support, as well, but I have chosen to keep

x bounded here for ease of exposition.
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1. The sender sends a message m̃(x,m) to the receiver. They may choose between sending
their signal as-is (m̃ = m), or withholding it (m̃ = ∅).

2. The receiver observes the message if there was one. They form a Bayesian posterior
on the state, which is β(θ|∅) if they saw no message (m̃ = ∅), and h̃(θ|m) if they saw
a message m̃ = m.

3. The receiver chooses their action ar(m̃), and payoffs are realized.

3.2.2 Notation and assumptions.

Let a∗r,i(·) denote an optimal choice of ar from the perspective of player i. That is,

a∗r,r(θ) ∈ argmaxE[ur(θ, a)] a∗r,s(θ, x) ∈ argmaxE[us(θ, x, a)].

I often write a posterior β as an argument in utility function u or maximizer a∗, in place
of θ. It is shorthand for taking the expectation over θ given β, e.g.

ur(β, ar) = E[ur(θ, ar)|β] a∗r,r(β) ∈ argmax
a

E[ur(θ, a)|β].

This notation is natural because the state of the world enters the game only through the
expectations induced by the signal. Thus, the signal is a “sufficient statistic" with respect
to the state and players’ strategies, and it is abstractly without loss to take utility functions
over realized signals, instead of those over states, as primitives of the model.

In order to impose necessary structure on the basic setup above, I assume that preferences
are continuous, differentiable in the action, single-peaked, and ordered in m and x.

Assumption 8. Continuity and differentiability:

us(θ, x, ar) and ur(θ, ar) are continuous in all arguments, and differentiable in ar.

Assumption 9. Quasiconcavity with increasing peaks (QCIP):

us(m,x, ar) and ur(m, ar) are strictly quasiconcave in ar, with peaks a∗r,s(β, x) strictly
increasing in x, and a∗r,r(h̃(θ|m)) strictly increasing over the family m ∈ [m, m̄].

QCIP means that the utility functions of sender and receiver are both single-peaked, and
are ordered with increasing peaks over the possible beliefs induced by signals (for the receiver)
and preference types (for the sender), holding the other fixed. Single-peakedness is a common
assumption, and increasing peaks is a standard way to order single-peaked functions. The
order applies only to the peaks, and preferences are not necessarily well-ordered elsewhere.
In particular, this condition does not necessarily imply single crossing differences (SCD),
which says that for arbitrary actions a′ > a, a “higher type" (with higher signal or preference
type) will have relatively higher utility for a′ rather than a whenever a lower type does.
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In fact, Quah and Strulovici (2009) observe that among single-peaked functions, increasing
peaks is strictly weaker than SCD, and equivalent to the interval dominance order.

Following the notational discussion above, I assume QCIP directly on the signal-dependent
expected utility functions. It can be replaced with an equivalent assumption over the original
state-dependent utility functions us(θ, x, ar) and ur(θ, ar) as long as:

1. h̃(θ|m) satisfies the monotone likelihood ratio property, which is sufficient to guarantee
a strong set order on the optima.

2. Strict single-peakedness of us, ur is preserved when expectations are taken over h̃(θ|m),
for all m.

The second condition can often be checked by hand. It is satisfied for a fairly inclusive range
of common functional forms. Some useful categories of utility functions and signal structures
satisfying (2) are:

• The signal perfectly conveys the state, m = θ.

• Conditional distribution h̃(θ|m) is strictly single-peaked for all m, and θ is a shifter of
the utility functions, i.e. for some increasing functions γs, γr,

us(θ, x, a+∆) = us(θ − γs(∆), x, a), ur(θ, a+∆) = ur(θ − γr(∆), a).

The solution concept I consider is a perfect Bayesian equilibrium (PBE) in pure strategies
for the receiver. I will show later that such equilibria always exist here.

PBE is the concept used in most signalling games, including by Grossman and Milgrom
for the unraveling result, and in the partial provability literature. In my model, any PBE
is pinned down by a single object, which is the receiver’s empty-message belief β(θ|∅). The
sender best-responds to a given empty-message posterior by choosing between inducing the
action the receiver takes upon seeing the true signal, or the one induced by β(θ|∅). Being in
a PBE requires that the empty-message posterior be consistent with the state distribution
conditional on an empty message, induced by the sender’s best response.

Imposing that the receiver play a pure strategy is usually without loss, since under a
generic utility function and belief distribution, there will be a single action that maximizes
their expected utility. Furthermore, QCIP ensures a single optimal action for the receiver
when the signal is revealed to them. However, since my other assumptions will not rule out
that there can be a tie for the receiver’s expected utility maximizer under the no-message
posterior, and my approach relies on the receiver choosing one specific action, in that case, I
will force a pure action. This assumption is quite realistic in the direct application to single
receivers, since most people don’t consciously randomize. It may be less reasonable when
the “receiver" stands for the aggregate of a large population, but even then, since at least
one pure strategy equilibrium exists, and additional equilibria relying on randomization will
be knife’s-edge and difficult to sustain, it seems natural to focus on the former.
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3.3 Bidirectional pooling
Does the sender always disclose their evidence? In this section, I argue that if the set of pos-
sible preferences contain ones that oppose each other under any beliefs for the receiver, then
full disclosure never occurs. Formally, the key idea of uncertainty over opposing preferences
is a combination of Assumption 6, which establishes type-uncertainty, and Assumption 10
below, which ensures that senders’ preferences are sufficiently opposed to rule out full un-
raveling of nondisclosure.

Assumption 10. Bidirectional sender bias (BSB):

min
m

[
a∗r,s(β(θ|m), x)

]
< a∗r,r(m) and a∗r,r(m̄) < max

m

[
a∗r,s(β(m), x̄)

]
.

In words, BSB means that the most extreme actions that could be optimal for the sender,
over all type and signal realizations, are more extreme than the most extreme optimal actions
for the receiver. It captures a strong notion of opposing biases between senders in different
scenarios: the receiver is sure that no matter the action they plans to take, there are some
scenarios in which the sender wishes it higher, and others in which the sender wishes it lower.

Theorem 10. Assume that us and ur are continuous in all arguments, differentiable in ar,
and QCIP and BSB are satisfied. Then any signaling equilibrium features a∗r,r(β(θ|∅)) ∈(
a∗r,r(h̃(θ|m)), a∗r,r(h̃(θ|m̄))

)
, with a positive probability of withholding both “high" signals

(a∗r,r(β(θ|∅)) < a∗r,r(h̃(θ|m))) and “low" signals (a∗r,r(β(θ|∅)) > a∗r,r(h̃(θ|m))). All sender
types, except possibly one, withhold under some signal realizations.

In Figure 3.1, we have Gray area = {(a∗r,s(x,m),m) : x ∈ [x, x̄],m ∈ [m, m̄]}.
Red area = {(a∗r,s(x,m),m) : a∗r,r(m̂) ∈ (a∗r,s(x,m), a∗r,r(m)) or (a∗r,r(m), a∗r,s(x,m))}.
In equilibrium, m̂ ∈ (m, m̄), and the sender’s best response entails pooling towards m̂ from
either side. In particular, senders in the red regions will always withhold the signal. Unlike
in Grossman and Milgrom, there cannot be a corner posterior given the empty message. If
m̂ = m, then the sender would best respond by withholding some higher signals, violating
belief consistency.

The only type of sender who may never find it worthwhile to withhold any signal is one
who prefers the receiver to take action a∗r,r(β̃(θ|∅)) exactly when their true signal would
induce r to take that action anyways.

For a full proof of the theorem, please see the appendix. Here, I will explain the intuition,
which is simple. First, fixing the sender’s strategy, the receiver’s beliefs are also fixed, and
their strategy is determined: they play a∗r,r(β(θ|m̃)). There is a signal, m̂ ∈ [m, m̄], such
that the action taken by the receiver upon seeing the signal m̂ is the same as the action
taken under m̃ = ∅: a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)). This signal functions as an endogenously
determined “center", the benchmark to which impactful news will be contrasted. It is the
status quo not because it represents receivers’ prior beliefs, but because it represents the
posterior under silence, which can be quite different.
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(a) a∗r,s(m̂, x) < a∗r,r(m̂) < a∗r,s(m̂, x̄)
(Pooling)

(b) a∗r,r(m̂) < a∗r,s(m̂, x) < a∗r,s(m̂, x̄)
(Pooling)

Figure 3.1: Outcomes under disclosure and nondisclosure for different configurations of m̂.

Recall from our discussion of the model that m̂ fixes the equilibrium. To see that any
equilibrium will satisfy Theorem 10, observe that under single-peakedness, if a∗r,s(m,x) >
a∗r,r(m̂) > a∗r,r(m) or a∗r,s(m,x) < a∗r,r(m̂) < a∗r,r(m), then the sender’s strict optimal action is
to withhold the signal. It will be helpful to refer to Figure 3.1, where such scenarios appear
in red. They are given by the intersection between the 2nd & 4th quadrants of the plane
centered on (m̂, a∗r,r(m̂)) and the gray area representing the set of possible (signal, sender-
optimal action) pairs. Importantly, the assumptions above don’t suffice to pin down the
entire set of scenarios under which nondisclosure is the sender’s best move, but the region
just described will constitute a strict subset of such scenarios.

It is not hard to see that under BSB, the red region must have positive measure over
g(x)

∫
θ
h(m|θ)f(θ)dθ, and, more importantly, there is a spread over the true value of m

across the region. Technical assumption 6 prevents the receiver from taking on beliefs that
have probability 0 ex ante and that almost every sender wants to avoid.2 Thus, senders
withhold signals with positive probability, and whenever they do, the receiver is uncertain
about the true signal realization.

Single-peakedness also implies that whenever the receiver’s belief is consistent and not a
singleton, there are both types of senders who prefer to withhold signals above m̂ and ones
who withhold signals below. Observing that senders’ optimal-action curves are functions

2If the domain of m were unbounded, and the receiver’s belief b(m|∅) allowed to be supported on its
closure, then under families of preferences in which the receiver’s optimal action varies unboundedly with
the message and the sender’s utility becomes unboundedly negative with distance from their optimal action,
a point belief on m = ∞ or m = −∞ would be self-sustaining, due to infinite losses from withholding any
finite realization of m. Thus, fully informative equilibria are once again possible. Similar issues arise when
m lies in an open interval.
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bounded within the gray region of Figure 3.1, it’s clear that the only type of sender who
may never wish to withhold any signal is the one whose optimal action curve passes through
(m̂, a∗r,r(m̂)).

Finally, note that while m̂ characterizes the equilibrium strategies of sender and receiver
uniquely up to indifference, the equilibrium need not be unique, as there may be multiple
equilibrium values of m̂ that give rise to distinct strategy profiles. An equilibrium in pure
strategies for the receiver does always exist, however: a simple intermediate value theorem
argument, in conjunction with BSB, shows that a function that takes in m̂ and outputs the
implied posterior m̂ from the sender’s BR has a fixed point in (m, m̄).3

3.4 Who withholds information, and when?
The discussion above makes it clear that most types of senders disclose some signals, and
withhold others. I now examine which signals each sender withholds, and how that affects
the kinds of information that make it through to the receiver. The end result of these
comparisons is a set of comparative statics over senders’ propensity to communicate and
signals’ likelihoods of being transmitted, depending on their extremeness relative to special
“central" signals and types.

3.4.1 Sender-type monotonicity of disclosure

Are senders more likely to hide impactful information the more it contradicts their bias?
Intuition suggests so. By withholding their signal, the sender “corrects" a misalignment
between their preferences and the receiver’s by letting the receiver carry on with a belief that
is slanted relative to the truth, from the sender’s point of view. Senders with increasingly
extreme low types should be willing to withhold an increasingly large set of signals higher
than m̂, and senders with increasingly high types should more often withhold signals lower
than m̂. For the rest of the paper, I will assume single crossing differences, under which this
prediction is easy to verify:

Assumption 11. Single crossing differences (SCD) in x: For all m, x < x′, and
ar < a′r,

us(h̃(θ|m), x, a′r)− us(h̃(θ|m), x, ar) ≥ (>) 0

=⇒ us(h̃(θ|m), x′, a′r)− us(h̃(θ|m), x′, ar) ≥ (>) 0.
(3.1)

3Let m̂BR(·) be an operator taking in a hypothetical value of m̂ and outputting the new value of m̂
that would represent the receiver’s no-message posterior after one round of best responding by the sender.
Because the sender’s best response is continuous in m̂, and the receiver’s posterior is continuous in the sender’s
strategy, m̂BR is continuous in m̂. By the argument used to prove Theorem 10, under BSB m̂BR(m)−m > 0
and m̂BR(m̄)− m̄ < 0; therefore, m̂BR has at least one fixed point in [m, m̄].
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Figure 3.2: SCD guarantees that if a type x is at least indifferent between m̂ and m > m̂,
then a type x′ < x will certainly prefer m̂, and thus withholds m for sure.

Single crossing differences in x means that if, between a lower action and a higher one,
the utility of a sender of lower type is higher for the lower action than for the higher action,
then the same is true of the higher type.

Proposition 11. If, in addition to the assumptions of Theorem 10, us satisfies SCD, then
the propensity to withhold signals in order to induce a given slant is monotone in sender
type: for all m such that a∗r,r(h̃(θ|m)) > (<)a∗r,r(β(θ|∅)), whenever a sender of type x chooses
to withhold m, so do all senders of type x′ < (>)x.

Proof. Defining m̂ as in the proof of the previous theorem, observe that for all m < m̂, SCD
in x directly implies that if a type x prefers m̂ to m, then a type x′ > x does as well, and
similarly for m > m̂ and x′ < x.

Proposition 11 states that under single crossing differences, the order on senders’ types
perfectly captures the (weak) inclusion order on both the set of signals m < m̂ that they
benefit from withholding, and the set of signals m > m̂ that they benefit from disclosing.

Without single crossing differences, there exist counterexamples to this proposition. The
reason is that, even if under a given signal m type x′ has a preferred action closer to
a∗r,r(h̃(θ|m̂)) and further from a∗r,r(h̃(θ|m)) than type x, a change in the shape of the rest of
the curve may mean that type x′ gets greater utility than type x from disclosing m, and less
from withholding.
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Figure 3.3: Sender’s strategy is characterized by nondisclosure in one region, and disclosure
in two.

3.4.2 Disclosure policies by type

I now look at disclosure choices within types. Given m̂, a full characterization of the disclo-
sure policy for each type is possible.

A few more definitions will be helpful. In particular, since there is a 1-to-1 mapping
between disclosed signals and receiver-optimal actions, it will be useful to view the sender’s
problem as hypothetically maximizing their utility over all possible messages, subject to the
disclosure constraint that only m̂ and m are actually feasible. Taking as given the receiver’s
strategy, in the first period the sender chooses a message as if maximizing directly over m̃
the utility function

vs(m,x, m̃) := us(m,x, a∗r,r(β(θ|m̃))).

The function vs will take on the properties of us; in particular, it is single-peaked in m̃.
Furthermore, if the sender’s choice of message was unrestricted, there would be a unique
sender-optimal message

m̃∗(x,m) := argmax
m̃

vs(m,x, m̃).

Finally, each sender has a “breakeven message" as a function of true signal m.
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Definition 3.4.1. A breakeven message m=(m,x) for the sender is the furthest-away al-
ternative signal that, if sent, would allow the sender to receive at least the same utility as
disclosing their true signal:

m=(m,x) =


min(m ∈ [m, m̄] : vs(m,x,m′) ≥ vs(m,x,m)) if m > m̃∗(x,m)

max(m ∈ [m, m̄] : vs(m,x,m′) ≥ vs(m,x,m)) if m < m̃∗(x,m)

m if m = m̃∗(x,m)

In Figure 3.3, the value of obfuscating evidence in a given scenario (x,m), when m̂ lies in
one of 3 regions.

A. Withholding influences beliefs in the wrong direction ⇒ disclosure.

B. Profitable nondisclosure.

C. Withholding overcorrects in the direction of bias ⇒ disclosure.

Single-peakedness of vs(m,x, ·) implies that an alternative hypothetical message is pre-
ferred to m if and only if it lies between m and m=(m,x). Figure 3.3 shows why: when m̂
lies towards m̃∗(x,m) relative to m, nondisclosure directionally favors the sender’s bias, but
if it is to the other side of m̃=(x,m), then the omission goes too far.

Therefore, fixing m̂, the sender’s strategy, up to indifference at the boundaries, is

m̃(m,x) =


∅ if m ≤ m=(m,x) and m̂ ∈ [m,m=(m,x)]

or m ≥ m=(m,x) and m̂ ∈ [m=(m,x),m]

m otherwise.
(3.2)

Figures 3.4a and 3.4b give examples of this concept. Fixing a sender, the intersection of
m̃ = m̂ with the purple region between the true and breakeven messages gives the set of
signals the sender will withhold.

3.4.3 Monotone breakeven message

When m= is well-behaved, we can make fairly straightforward predictions about what kinds
of signals senders disclose. The multi-segmented policy of Figure 3.4b occurs because the
breakeven message in that case is nonmonotone, which can occur when the shape of the
sender’s utility function or the amount of misalignment with the receiver is highly state-
dependent. On the other hand, when the breakeven message is monotone, strategies involving
a single interval of nondisclosure will be the only possible outcome.

Proposition 12 (Montone breakeven message). In addition to previous assumptions, if for
all x, m̃=(m,x) is strictly increasing in m, then
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(a) Monotonicity of the breakeven message
implies an interval withholding strategy.

(b) An optimal strategy for the sender when
the breakeven message is not monotone in m.

Figure 3.4: Breakeven messages plotted against true signals.

• There is x̂ such that the sender of type x̂ is indifferent between disclosing or withholding
m̂ and discloses everything else.

• As x increases from x̂, senders withhold an increasing interval of signals [m∗, m̂], and
as x decreases from x̂, senders withhold an increasing interval of signals [m̂,m∗].

On the other hand, if for all x, m̃=(m,x) is strictly decreasing in m, then

• There is x̂ such that the sender of type x̂ is indifferent between disclosing or withholding
m̂ and withholds everything else.

• As x increases from x̂, senders disclose an increasing interval of signals [m∗, m̂], and
as x decreases from x̂, senders disclose an increasing interval of signals [m̂,m∗].

Figure 3.4a illustrates the concept. Intuitively, when m=(·, x) is monotone increasing, the
threshold for overshooting the sender’s bias is increasing in the realized signal, while the
reverse holds when it is monotone decreasing. Loosely speaking, the sender’s and receiver’s
interests are relatively aligned when m+(·, x) is increasing, whereas they are misaligned when
it is decreasing. Neither implies, nor is implied by single crossing differences or QCIP.

Both the positive and negative monotone cases fit some simple cases. Positive monotonic-
ity in m+(·, x) tends to occur when senders are misaligned due to simple bias. Formally, I
define a simple bias setting to be one in which the sender’s utility function is simply shifted
relative to the receiver’s by a bias function ω increasing in x:

us(θ, x, ar) = ur(θ, ar − ω(x)).
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The breakeven message will always be positive monotone when preference misalignment takes
the form of simple bias and:

1. us is symmetric about a∗r,s(m,x), or

2. m shifts us and ur together: there is a single increasing function γ such that

us(m,x, a+∆) = us(m− γ(∆), x, a), ur(m, a+∆) = ur(m− γ(∆), a).

Bias, symmetry, and signals as shifters are all common in models of policy targeting and
principal-agent models of delegation with communication.

On the other hand, an important class of problems for which the breakeven message is
negative monotone is that in which the sender’s preferences are completely state-independent.
That is, senders could be completely dogmatic, or the state could be payoff-relevant only
to receivers, even though the sender cares about the realized outcome. Examples include
lobbyists and interest groups, or strict ideologues.

Section 6 gives an example of monotone increasing m+(·, x) in a situation with pure bias,
symmetry, and a state-matching motive, as well as an example with negative MBM when
the sender is very insensitive to the state, relative to the receiver.

3.4.4 Comparative statics under monotonicity

Having established settings in which positive- and negative-monotone in m+(·, x) are reason-
able assumptions, I turn to highlight some comparative statics of the probability of disclosure
in these cases. Observe that signals and types are very much bidirectional, with the “center"
of each bidirectional spectrum naturally defined by m̂ and x̂, respectively. Symmetry across
the center means that the most interesting comparative statics will be about extremeness, or
distance from the center, rather than about high vs. low signals or types. In what follows, I
assume without much loss that indifferent senders always choose disclosure.4

The first set of comparative statics concern the communicativeness of senders. There is
exactly one central type x̂, who can be considered a pure centrist. Under positive montonicity,
this type’s interests are aligned enough with the receiver’s to want to disclose everything (even
though their preferences and the receiver’s generally differ). With a negative montonicity,
the centrist’s interests are not particularly aligned with the receiver’s, nor do they have a
particular interest in championing a cause; thus, they never disclose anything. As a corollary
of Prop. 11, the total probability of disclosure is monotone with distance from x to either
side:

Corollary. When m+(·, x) is monotone increasing, the sender’s total probability of disclosing
a signal is quasiconcave in x and maximized at x̂.

4This does not change the set of equilibria, nor their properties
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When m+(·, x) is monotone decreasing, the sender’s total probability of disclosing a signal
is quasiconvex in x and minimized at x̂.

So, in cases where senders’ and receivers’ misalignment approximates a simple bias, ex-
treme senders are, on the whole, less likely to disclose a message. Fixing receivers’ beliefs, a
greater spread in the distribution of sender types decreases the amount of communication.
On the other hand, when senders’ preferences are less state-sensitive than the audience’s, only
extreme types are willing to share influential information, and more dispersed preferences
lead to a greater flow of information.

The contrast between these two cases relates to a debate about the positive or negative
impacts of diverse values. A common thought is that polarization can jam communication.
Many issues for the receiver, such as decreased trust or lack of common ground, contribute,
but the positive-monotone example supports the idea that the extreme sender’s reluctance
to communicate also plays a role. The pattern under the negative-monotone example, on the
other hand, echoes an argument in favor of pluralism made by Banerjee and Somanathan
(2001).5 There, a greater variety in types is associated with more communication, because
it takes an agreeably biased sender to support the transmission of any major news – strong
partisan bases are necessary to bring truths to light.

It matters not just that different senders can be more or less forthcoming, but also that
some signals may be disclosed more often than others. Abstracting away from the realiza-
tion of senders’ types, differential transmissibility of signals directly determines welfare and
outcomes on the receiver side. A corollary of Proposition 12 is that:

Corollary. When m+(·, x) is monotone increasing, a signal’s total probability of being dis-
closed is quasiconvex in m except at m̂, where it is 1. As m ↑ m̂ or m ↓ m̂, the probability
of disclosure decreases.

When m+(·, x) is monotone decreasing, a signal’s total probability of being disclosed is
quasiconcave in m and maximized at m̂.

More extreme signals are more transmissible under positive monotonicity because senders
disclose all bias-favoring signals. An interpretation of this is that bigger news is more likely
to travel because everyone agrees on the importance of publicizing it, whereas biased sources
are all too happy to sway audiences by fudging the small stuff. The contrasting prediction
under negative monotonicity is that extreme signals are less likely to be transmitted through
disclosure. They are too influential, and must be withheld for fear of causing the receiver to
overreact.

The preceding discussion of conditions for positive and negative monotone breakeven
messages suggests that one distinguishing factor is the sender’s state-sensitivity relative to

5Banerjee and Somanathan’s verifiable communication model actually satisfies conditions for a positive
monotone breakeven message, but their signals are unidirectional by design, and for them, an extreme sender
is one who has a private desire to support a project, which corresponds in my model to a higher, not a more
misaligned, type.
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the receiver. With a specific setting in mind, this distinction can help settle the debate both
about the transmissibility of extreme signals and about extreme senders’ communicativeness.

3.5 Example: policy platforms.
Following the discussion of equilibrium policies, I provide an illustrative example. Suppose
that a receiver follows a member of the press (sender) on Twitter, and would, in an upcoming
election, like to support one of a continuum of government spending policies, which range
from very austere (-1) to very expansionary (1). There is a factor, θ ∼ U [−1, 1], that
influences the optimal level of government spending, but it is unknown to both agents. The
sender is affected by what the receiver does through its impact on the outcome of the election.
In addition, each agent may be in a position to benefit privately from government programs,
or to suffer from higher taxes, so I model their utilities as a quadratic loss function

us(θ, x, ar) = −(ar − θ − x)2, ur(θ, ar) = −(ar − cθ)2.

with the sender’s private preference parameter x uniform on [−1, 1]. Finally, suppose that
the sender has access to briefing with information relevant to θ that can be summarized as
a signal m ∼ U [θ − ϵ, θ + ϵ], and may disclose it verifiably.

The utility functions in this example satisfy continuity, differentiability, and BSB; the
distributions satisfy Assumptions 6 and 7, and both jointly satisfy QCIP and SCD. Thus,
there will be bidirectional pooling and an ordering of disclosure in sender types. When c < 2,
the breakeven message exhibits positive monotonicity, and when c > 2, it exhibits negative
monotonicity.

I solve for the full disclosure policy to illustrate the outstanding characteristics of each
case, starting with a description of the best response of the receiver and sender when the
other side’s strategy is fixed.

Receiver’s decision: a∗r,r(m̃) = cµ(θ|m̃), where the mean posterior message is either, if
m̃ = m,

µ(θ|m) =


m, m ∈ [−1 + ϵ, 1− ϵ]
1+m−ϵ

2
, m ∈ [1− ϵ, 1 + ϵ]

−1+m+ϵ
2

, m ∈ [−1− ϵ,−1 + ϵ]

or, if the message is empty, µ(θ|∅) =
∫ x̄

x

∫ m̄

m
1m̃(x,m)=∅µ(θ|m)dmdx.

Sender’s decision: Fix the mean posterior upon seeing nothing, µ(θ|∅). Then

m̃(x,m) =


∅ if x > 0 and µ(θ|∅)− µ(θ|m) ∈ [0, 2x

c
]

or x < 0 and µ(θ|∅)− µ(θ|m) ∈ [2x
c
, 0]

m else.
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Figure 3.5: c = 1

The belief µ(θ|∅) is determined in equilibrium, and fully characterizes the equilibrium
actions through the above best responses.

Claim 10. For all c, the unique equilibrium consistent with a Bayesian receiver is given by
the above actions and µ(θ|∅) = 0.

Figure 3.5 shows when the sender chooses to disclose or withhold signals when c = 1.
This is a “pure bias" setting in which senders and receivers are equally sensitive to the
state, but the sender’s preferences are offset from the receiver’s based on private preferences.
Withholding occurs in the shaded area.

In contrast, when c > 1 the sender is more moderate relative to the receiver, introducing
a new dimension of misalignment between the players that varies with the magnitude of the
signal m. The case c = 2 is liminal, and disclosure policies are particularly simple here:
senders disclose everything aligned with their bias, and hide everything opposed. When the
sender is much less sensitive to the state than the receiver, i.e. c > 2, we approach the case
where, relative to the receiver, the sender is almost state-agnostic: extreme signals are rarely
revealed, and only the most extreme senders are willing to disclose them.

We can contrast this outcome with those possible when the receiver is certain about how
the sender wishes to influence them:
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Figure 3.6: c = 2 Figure 3.7: c = 3

Claim 11. If, in this example, the sign of the sender’s preference type x is known, then in
the unique equilibrium when 0 < c < 2, the sender’s messages are fully separated according
to the realized signal.

Knowledge of sender type alone does not guarantee full disclosure, and in particular,
Claim 11 is not true if c > 2: as Claim 13 in the following section will show, monotone-
increasing m=(·, x) sufficient to guarantee full disclosure under sender-type certainty, but
it turns out monotone-decreasing m=(·, x) is not sufficient for either full disclosure or full
nondisclosure.6

3.6 Full separation with unidirectionality or certainty
The main way in which my model departs from the literature is by assuming that senders’
preferences are both uncertain and bidirectional. Plenty of models assume the opposite, and
obtain full disclosure. A well-known result allowing some variation in sender preferences
by type is the monotonicity theorem of Okuno-Fujiwara et al. (1990), which states that
full disclosure is the unique possible outcome whenever senders’ utilities are monotone in
the receiver’s beliefs over the entire space of scenarios. Though intuitive, this theorem is
not a particularly good fit to settings in which senders’ preferences have a single peak in
the interior of the action space. More applicable is the idea from Seidmann and Winter
(1997) that full disclosure is a possible outcome if and only if each possible message admits
a different “worst-case" scenario, which senders in no other scenario would like to pretend to
be. Their logic applied here shows that if BSB fails dramatically, in that the sender-optimal

6Partial disclosure strategies are possible under negative monotonicity.
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action is either always greater or always less than the receiver-optimal action in any scenario,
then full disclosure is the unique outcome.

Claim 12. If for all m, x, a∗r,r(h̃(m)) < (a∗r,s(h̃(m), x)), then m̂ = m, and in the unique
equilibrium the sender reveals fully reveals their signal by choosing m̃ = m under all signal
realizations. A similar argument holds when a∗r,r(h̃(m)) > maxx(a

∗
r,s(h̃(m), x)).

What happens if, instead, the sender’s bias could go either way, but is deterministic given
their signal, with the mapping from signal to preferred action known by the receiver? Because
misalignment between the sender’s and receiver’s preferences depends on the state, this in
and of itself does not guarantee full disclosure. Nevertheless, when m+(·, x) is monotone-
increasing, all equilibria are fully revealing (and such an equilibrium exists).

Claim 13. If x is known to the receiver, and the breakeven message is positive monotone,
then an equilibrium exists, and in any equilibrium m is fully revealed.

3.7 Conclusion
Can a sender with unknown objectives and access to hard evidence influence others through
their choice to disclose or withhold evidence? The answer depends on how the audience
updates their beliefs under nondisclosure. This paper shows that when a sender could poten-
tially have either of two opposing biases, receivers can’t fully back out the sender’s evidence
or their identity. Therefore, relative to a symmetric information benchmark, ownership of
evidence benefits the sender by allowing them to withhold some unfavorable news. In cases
where senders and receivers are similarly sensitive to the state, but senders have a state-
independent bias, strong signals tend to be revealed, whereas weak ones are often hidden,
especially by heavily biased sources. Alternatively, when senders are agnostic to the state,
they avoid disclosing strong signals unless also strongly biased.

A couple of extensions of this model are straightforward. I have considered preference
uncertainty, and Dye (1985) considers imperfect disclosure under uncertainty about infor-
mation endowments. If there is uncertainty about both, then imperfect disclosure will still
occur, and nondisclosing senders will pool with both informed senders under opposite sce-
narios, and the uninformed. The set of equilibria will differ from that without uncertainty
in informedness, but the form of equilibrium and comparative statics will follow what I have
outlined in this paper: the intuition is that information endowment uncertainty changes the
posterior under silence, but it doesn’t change informed senders’ best responses conditional
on the center.

Another potential addition is receiver-preference uncertainty. Among other things, al-
lowing receivers’ preferences to vary is natural in an anonymous setting where neither the
sender nor the receiver’s identity is known. Passing articles over the internet is a nice ex-
ample of this. When receivers’ preferences aggregate into a utility function satisfying the
single-receiver conditions, my conclusions carry over immediately. In some work omitted
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here, I show that when receiver types are well-ordered and each type’s expected utility de-
pends on the state only through its expectation, pooling is also guaranteed under similar
conditions.

Directions for future work include evaluating the impact of certain assumptions. I have
assumed no cheap talk about the sender’s preferences, but in practice communication about
preferences may sometimes be possible, and may alter disclosure. In addition, signals may
be divisible, allowing the sender some freedom in the degree of disclosure beyond a binary
choice. I’ve also assumed that senders’ preference types are payoff-irrelevant to the receiver,
but they could instead be thought of as a payoff-relevant signal that cannot be disclosed in
a game of multidimensional communication. Finally, although many instances of disclosure,
such as those in a courtroom, or regarding the viability of a short-term opportunity, are well
approximated by a one-shot game, some relationships between informants and audiences
are long-lived. In these repeated games, persistent uncertainty about preferences may be
less sustainable, but it would be interesting to explore the possibility that senders may still
exercise some power by building a reputation.
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Appendix A

for “Inference from selectively disclosed
data"

A.1 Construction of the imitation equilibrium
We will prove that Theorem 2 holds in a more general case with potentially state-contingent,
rather than state-independent, data-mass distributions. Describe a game in this general
setting by G(Θ,D, β0, {fj}Jj=1, d{Gj}Jj=1) where Gj describes the distribution of µ under
state j. The model we describe in the main text corresponds to the case in which Gj = G
for all j.

Theorem 13. Suppose that g1, . . . , gJ , the densities of µ under states θ1, . . . , θJ , respectively,
are continuous on R and supported on [0, 1]. There exists a unique imitation equilibrium
outcome, implemented by a vector-valued burden of proof function µ̂(u) : [0, θJ ] → RJ with
inverse ûk(µ) such that

1. ûj(µ) is continuous and (weakly) increasing in µ for all j.

2. σ∗(µfj) is supported on {µ′fk : µ
′ = µ̂k(ûk(µ/rj(k))) and θk ∈ Aj(µ)}.

To outline the argument, we first prove the existence of a imitation equilibrium by con-
struction. Then we prove the separation theorem, which we use to show uniqueness.

Recall that ûk(µ) is the equilibrium payoff to sending the message µfk.

We construct ûk(µ) that is monotone increasing in µ – this implies that it must be almost-
everywhere differentiable. Since it is also continuous, it is completely determined by its
derivative over the points at which the derivative exists. To avoid confusion, we focus on the
left derivative of ûk, which we denote by û−

k and, analogously to the top-down construction
of the finite-data equilibrium, we construct the payoff function starting from the top down,
starting from the frontier v = θJ .
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Recall that rj(k) = maxd∈D
fk(d)
fj(d)

is the ratio of the amount of data necessary to imitate a
certain amount of fk under state j to the amount necessary under state k, and

Aj(µ) =

{
θk : k ∈ argmax

k>j
ûk

(
µ

rj(k)

)}
.

is the set of states that type µfj finds it weakly optimal to target given µ̂.

The range of ûk(µk) is [0, θk] since no type of higher state ever targets state θk, so payoffs
to targeting θk cannot exceed θk itself.

Define
S(v) = {θk : θk > v}

to be the set of states under which the receiver optimally takes an action that yields the
sender a payoff greater than v. Then µ̂k(v) < ∞ iff θk ∈ S(v), and since play is supported
on {µ̂k(uk(µ/rj(k)))fk : θk ∈ Aj(µ)} and σ(µ̂k(u)fk|µ̂k(u)fk) = 1, S(v) is exactly the set of
states that are targeted by some type under σ to obtain a payoff of v.

Given a burden of proof vector µ̂(v) = (µ̂k(v))θk∈S(v), the associated frontier consists of
all types that are just able to meet some component of µ̂(v) with no slack, that is, all types
µ̃jfj such that

rj(k)µ̃j = µ̂k(v) for some θk ∈ S(v), and ̸ ∃θk′ ∈ S(v) s.t. rj(k
′)µ̃j > µ̂k′(v). (A.1)

Given a particular burden of proof function µ̂, the implied frontier for payoff v is µ̃(v|µ̂) =
(µ̃1, . . . , µ̃l−1, µ̂l(v), . . . , µ̂J(v)) if S(v) = {θl, . . . , θ̂J} where µ̃1, . . . , µ̃l−1 satisfy eq. ??.

Let the set of states under which some type of sender obtains payoff v and finds it weakly
optimal to target state θk be

τ optµ̂ (θk, v) = {θj : fk ∈ Aj(µ̃j(v|µ̂))

and let the set of states such that some type of sender obtains payoff v by targeting a state
θk with strictly positive probability under σ be

τ suppµ̂ (θk, v) = {θj : µ̂k(v)fk ∈ supp σ(·|µfj) for some µ}.

Of course, τ suppµ̂ (θk, v) ⊆ τ optµ̂ (θk, v).

For convenience of notation, we extend the definitions of these set-valued functions to
any set of inputs (rather than a single input) by letting the function of the set be the union
of the function applied to each individual element of the input set: thus for every set S of
states, τ optµ̂ (S, v) =

⋃
θk∈S τ

opt
µ̂ (θk, v) and τ suppµ̂ (S, v) =

⋃
θk∈S τ

supp
µ̂ (θk, v), and for every set

ω ⊆ [0, 1], we let Aj(ω) =
⋃

µ∈ω Aj(µ).
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Additionally, we define the expectation of the state under the (receiver’s) belief that the
the sender is a type that receives v under µ̂ and finds it weakly optimal to target a state in
S as follows.

Vµ̂(S, µ̂(v)) =

∑
θj∈τsuppµ̂ (S,v) β0(θj)θjg

j(µ̃j[µ̂(v)])
dµ̃j [µ̂(v)]

dv∑
θj∈τsuppµ̂ (S,v) β0(θj)gj(µ̃j[µ̂(v)])

dµ̃j [µ̂(v)]

dv

.

In contrast, the expectation of the state under the receiver’s true belief over θ conditional
on knowing that the sender has sent some message that yields payoff v and targets a state
in S is

Wµ̂(S, v|σ) =

∑
θj∈τoptµ̂ (S,v) β0(θj)θjg

j(µ̃j[µ̂(v)])
dµ̃j [µ̂(v)]

dv
σ({µ̂kfk}θk∈S|µ̃j[µ̂(v)]fj)∑

θj∈τoptµ̂ (S,v) β0(θj)gj(µ̃j[µ̂(v)])
dµ̃j [µ̂(v)]

dv
σ({µ̂kfk}θk∈S|µ̃j[µ̂(v)]fj)

= v. (A.2)

For any partial strategy σ̂ that gives mixing probabilities between the messages µ̂ki(v)f ,
the payoff Wµ̂(S, v|σ̂(v)) is always weakly greater than Vµ̂(S, v). The two are equal exactly
when all types obtaining payoff v that find it weakly optimal to target a state in M do so
with probability 1.

Fix a frontier µ̂(v), where θl−1 < v ≤ θl. It will be useful to define an undirected graph
H(v) on S(v) by adding an edge between θk and θk′ if and only if τ optµ̂ (θk, v)

⋂
τ optµ̂ (θk′ , v) ̸= ∅,

that is, if there is some type that finds it optimal to target either state θk or state θk′ , and
is indifferent between the two. Let C be the collection of connected components of H(v).

We use the following algorithm to partition S(v) at a given frontier µ̂(v).

Algorithm: This algorithm calculates the payoffs to targeting a state in S(v) at frontier
µ̂(v) when all types that do not obtain higher payoffs than v and who can target some
µ̂k(v)fk, θk ∈ S(v) target the highest-payoff of these messages among those that they can,
and assigns states θk to the same partition element if, across them, µ̂k(v)fk must result in the
same payoff, and for α close to 1, αµ̂k(v)fk must also result in the same payoff, so that for
states under which types at the frontier are indifferent between such messages, they remain
so for nearby frontiers.

First, note that if σ is such that, when there is a collection of states Σ ⊆ S(v) such that,
over an interval of payoffs, there always exists between any 2 states in Σ a path of other
states in Σ such that there are types that mix with interior probability between any two
successive states, then for all θk, θk′ ∈ Σ,

rj(k)

rj(k′)
=

µ̂k(u)

µ̂k′(u)
=

dµ̂k(u)
du

dµ̂k′ (u)
du

(
=

dûk′ (µ̂k′ (u))
dµ

dûk(µ̂k(u))
dµ

)
(A.3)

for all u in the interval of payoffs and for all j that target some state in Σ at the frontier
µ̂(u).
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We define

∆n(Σ, α̂) =
dn

dαn

∑
θj∈τsuppµ̂ (Σ,v) β0(θj)θjg (αµ̃j[µ̂(v)]) µ̃j[µ̂(v)]∑
θj∈τsuppµ̂ (Σ,v) β0(θj)g (αµ̃j[µ̂(v)]) µ̃j[µ̂(v)]

∣∣∣∣∣
α=α̂

.

This is equal to the nth derivative of the payoff to the set of senders in states that target a
state in Σ with positive probability at frontier µ̂(v), that have an amount α̂µ̃j[µ̂(v)] of data,
when we assume that eq. A.3 holds over Σ.

Start with a collection of assigned partition elements, A0 = ∅, and a collection of sets of
unassigned states, C0 = C. Given An and Cn, initialize An+1 = Cn+1 = ∅, and, taking each
set S ∈ Cn sequentially, proceed as follows:

1. Take all subsets Σ ⊆ S and calculate ∆0(Σ, 1). Tiebreak any with the same value
by ∆1(Σ, 1),∆2(Σ, 1), . . ., successively, and take the largest subset Σ that is maximal.
Label it with τ suppµ̂ (Σ, v), and add it to An+1.

Note that this implies that duk(µ̂k(v))
dµk

= ∆1(Σ,1)
µ̂k(v)

when equation A.3 holds for θk, θk′ ∈ Σ

over [v − ϵ, v], ϵ > 0.

2. Take S \Σ, and let C(S) be the collection of connected components of the graph on S
constructed analogously to H(v). Add C(S) to Cn+1 (i.e. augment Cn+1 as the union
of itself and C(S)).

3. Repeat on An+1 and Cn+1 until Cn+1 = ∅.

Putatively, if senders of types αµ̃j[µ̂(v)]fj for some θj ∈ τ suppµ̂ (v) pooled with each other,
then payoffs are equal to

ûk(αµ̂k(v)) = vΣ(α, µ̂(v)) ≡

∑
θj∈τsuppµ̂ (Σ,v) β0(θj)θjg (αµ̃j[µ̂(v)]) µ̃j[µ̂(v)]∑
θj∈τsuppµ̂ (Σ,v) β0(θj)g (αµ̃j[µ̂(v)]) µ̃j[µ̂(v)]

∣∣∣∣∣
α=α̂

,

which is continuous in α because g is continuous everywhere in (0, 1].1 The burden-of-proof
function for v ≤ v is then given by

µput
Σ (v) ≡ {v−1

Σ (v, µ̂(v))µ̂k(v)fk}θk∈S(v),

where v−1
Σ (v, µ̂(v)) is the inverse of vΣ(·, µ̂(v)).

The reason that a partition element is a subset of targetable states in which all messages
must achieve the same payoff at the is that, since Σ is a maximal highest-value subset over
those that do not already have a higher value, it is either partitionable into smaller subsets,
each of which also achieves the same value, or not; but in either case, in each minimal subset
that achieves the maximal value, there is a path of messages between any two messages

1It is important that g(1) = 0, since this ensures that gj is continuous at µ = 1.
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in the subset such that, in the targeting strategy, some type mixes with strictly positive
probability between any two adjoining messages. The reason for this is that, for any smaller
subset Σ′ ⊂ Σ̂, we have that Vµ̂(Σ

′, µ̂(v)) < Vµ̂(Σ̂, µ̂(v)) if Σ is a minimal subset that
achieves the maximal value. Since the expectation of the state conditional on knowing the
message played is in Σ̂ is at least Vµ̂(Σ̂, µ̂(v)), there must be some message that yields payoff
at least Vµ̂(Σ, µ̂(v)). But since there is no message, and indeed no proper subset of messages
in Σ̂ that achieve payoff Vµ̂(Σ, µ̂(v)) if all types that can play one of them do, it must be
that for any subset, there is a type that can play some message in the subset but plays a
message outside the subset with positive probability.

The reason the same holds true in frontiers to the left of µ̂(v) is that, if ∆0(Σ, 1) is
uniquely maximal, then ∆0(Σ, α) is still greater than ∆0(Σ

′, 1) for any Σ′ and α sufficiently
close to 1. So, in any state under which senders target a state in Σ at µ̂(v), it remains
optimal for them to do so for α close to 1, assuming the putative payoffs above. In addition,
the putative payoffs are feasible, because every subset of Σ has lower value. If tiebroken by
∆1,∆2, and so on, then although ∆0(Σ, 1) is not uniquely maximal, Σ does maximize ∆(·, 1)
immediately to the left of µ̂(v).

We will use the partition constructed by the algorithm to construct the equilibrium in
chunks. For consistency, we want the following condition:

Condition 1. The value of each partition element constructed using the algorithm is the
same, and is equal to v.

Under this condition, there is a partial strategy σ̂ on each partition element such that
Wµ̂(θk, v|σ̂) = v for all states θk in the partition element, and furthermore, there is no partial
strategy on a subset of messages in that partition element such that all messages in the subset
result in the same payoff that is greater than v.

If Condition 1 holds at µ̂(v) and Σ is the partition constructed using the algorithm at
µ̂(v), then there exists some ϵ > 0 such that, for all v ∈ [v − ϵ, v], Condition 1 holds for
the frontier {v−1

Σ (v, µ̂(v))µ̂k(v)fk}θk∈S(v). To show this, observe the following claim, which
follows directly from statement of the condition and from continuity of vΣ(α, µ̂(v)):

Claim 14. Let the set of types that target a state in Σ and achieve a payoff of v under µput
Σ

be τ putΣ (v).

If Condition 1 holds at µ̂(v), then if there exists no v′ ∈ (v, v] such that either

1. There is a type t ∈ τ putΣ (v′) such that t can imitate a higher-value state, i.e. there exists
partition element such that Σ′ v−1

Σ′ (v′′, µ̂(v))µ̂k(v)fk⊆̃t for some v′′ > v′

2. There is a partition element Σ with a subset Σ′ ⊆ Σ such that vΣ′(v−1
Σ (v′, µ̂(v)), µ̂(v)) >

v′,

then Condition 1 continues to hold at v̂.
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Note that, because for any partition element Σ′ ̸= Σ either v−1
Σ′ (v, µ̂(v))µ̂k(v)fk ˜̸⊆t, or

∆n(Σ
′, 1) < ∆n(Σ, 1) for some n such that ∆i(Σ

′, 1) = ∆i(Σ, 1) for all i < n, the continuity of
vΣ(α, µ̂(v)) implies that for v close to v (1) cannot not hold. Again by continuity, (2) cannot
hold for v close to v because for all Σ′ ⊆ Σ, vΣ′(v−1

Σ (v, µ̂(v)), µ̂(v)) ≤ v and ∆n(Σ
′, 1) <

∆n(Σ, 1) for some n such that ∆i(Σ
′, 1) = ∆i(Σ, 1) for all i < n.

We will use this to construct the equilibrium in segments over which Condition 1 holds,
and re-construct partitions using the algorithm in at most countably many points at which
either (1) or (2) holds. For every reasonable example we can think of, the number of such
points (and thus steps in the construction) is not just countable, but finite.

Now we turn to constructing larger pooling sets when there is a positive-measure set
of types that can achieve the frontier payoff. Given that types support their play on
{µ̂k(uk(µ/rj(k)))fk : θk ∈ Aj(µ)}, and ûk(µk) is increasing, all types capable of sending
a message in {µ̂j(v)fj}Jj=1 achieve a payoff of at least v. We define the set of types that are
incapable of sending a message in {µ̂j(v)fj}Jj=1, but capable of sending a message in set M ,
as T (v,M). We will denote the payoff to the sender of the receiver knowing they are one of
a set of types that has positive probability measure under the receiver’s prior as U(T ), and
in particular,

U(T (v,M)) =

∑J
j=1 β0(θj)θj max(maxk≥l(G

j( µ̂k(v)
rj(k)

))−min{Gj(µ) : ∃m ∈ M s.t. m⊆̃µfj}, 0)∑J
j=1 β0(θj)max(maxk≥l(Gj( µ̂k(v)

rj(k)
))−min{Gj(µ) : ∃m ∈ M s.t. m⊆̃µfj}, 0)

.

Note that supM U(T (v,M)) ≥ v, because limα→1 U(T (v, αµ̂)) = v. If there is a positive-
measure type set T (v,M) that achieves the value supM U(T (v,M)), then take the largest
such set and call it T̂max

µ̂ (v). Then the following hold:

1. If there exists a set T (v,M) that achieves the value supM U(T (v,M)), then there is a
unique largest set that does so, and so T̂max

µ̂ (v) is well-defined.

2. Whenever T̂max
µ̂ (v) exists, there exist µl, . . . , µJ such that T̂max

µ̂ (v) = T (v, {µlfl, . . . , µJfJ}).

3. Whenever T̂max
µ̂ (v) exists, there exists a partial strategy σ̂ : T̂max

µ̂ (v) → M = {µlfl, . . . , µJfJ}
such that the payoff to any message m ∈ M given that senders in T̂max

µ̂ (v) play accord-
ing to σ̂ is Ûµ̂(v).

The first point follows from the fact that, unless the union of two such sets yields payoff at
least Ûµ̂(v), then their intersection – which corresponds to the pool of types implemented
by a different message set – yields strictly greater payoff. To see the 2nd point, simply take
µk to be the minimum amount of data distributed fk such that the dataset still contains a
message in M , for each k ≥ l, and note that the resulting set of types is a subset of T (v,M)
that has a smaller mass of types θj, j < l but the same mass of types θk, k ≥ l. Since
U(T (v,M)) ≥ v ≥ θl−1, this can only improve the payoff to the pool. The last point comes
from the fact that, if T̂max

µ̂ (v) is a maximum-payoff pool, then for each subset S ⊆ M , the
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payoff to the pool implemented by S is no greater than U(T̂max
µ̂ (v)), which is sufficient to

ensure that σ̂ exists. In addition, U(T (v,M)) is absolutely continuous with respect to every
component of µ̂(v) and each µk.

Lemma 14. If T̂max
µ̂ (v) exists, then Condition 1 is satisfied by the burden of proof vector

M = {µlfl, . . . , µJfJ} such that T̂max
µ̂ (v) = T (v,M).

Proof. Suppose not; then one of two cases is true:

1. There is a collection of states Σ ⊂ S(v) such that Vµ̂(Σ,M) > v.

Then, since Vµ̂(Σ, α(µkfk)
J
k=l) is continuous in α, there is α < 1 such that Vµ̂(Σ, α(µkfk)

J
k=l) >

v for all α ∈ [α, 1]. Consider an alternative type set, T (Mα,Σ, v) where Mα,Σ includes
the messages µkfk for θk ∈ S(v) \ Σ, and the messages αµkfk for θk ∈ Σ.

For α small enough, the set of types in T (Mα,Σ, v) \ T (M, v) includes exactly those in
frontiers (αM)1α=α that find it weakly optimal to target a state in Σ. So, the expectation
of the state given that the sender’s type is in T (Mα,Σ, v) \ T (M, v) exceeds v, and so
T (Mα,Σ, v) is higher-payoff than T (M, v), contradicting that T (M, v) = T̂max

µ̂ (v).

2. There is a element of the partition, Σ′ ⊂ S(v), such that Vµ̂(Σ
′,M) > v.

Then WLOG let Σ′ be the lowest-value element of the partition. Similarly to the above,
since Vµ̂(Σ, α(µkfk)

J
k=l) is continuous in α, there is ᾱ > 1 such that Vµ̂(Σ, α(µkfk)

J
k=l) <

v for all α ∈ [1, ᾱ]. Consider an alternative type set, T (Mᾱ,Σ′ , v) where Mᾱ,Σ′ includes
the messages µkfk for θk ∈ S(v) \ Σ′, and the messages ᾱµkfk for θk ∈ Σ′.

For ᾱ small enough, the set of types in T (M, v) \ T (Mᾱ,Σ
′) includes exactly those

in frontiers (αM)ᾱα=1 that find it weakly optimal to target a state in Σ. Then the
expectation of the state given that the sender’s type is in T (M, v) \ T (Mᾱ,Σ

′) is less
than v, so the expectation given that the type is in T (Mᾱ,Σ

′) exceeds v, contradicting
that T (M, v) = T̂max

µ̂ (v).

Since neither case is possible, M , taken as the payoff frontier corresponding to v, must satisfy
Condition 1.

The iterative algorithm to construct the equilibrium of 2 starts from the highest-potential-
payoff senders and creates payoff frontiers that satisfy Condition 1. It proceeds as follows:

1. Start with l = J and µ̂J(θJ) = 1.

2. For each l, construct frontiers µ̂k(v) as follows:

(a) Start at v = θl and burden-of-proof vector µ̂(θl), as constructed from the previous
step. For all v > θl, let µ̂(v) be as already constructed. Define

µ̌l(θl) = max{µ : ∃j < l s.t. µ̃j[µ̂(θl)] ≥ µ},
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and rewrite µ̂(θl) = (µ̌l(θl), µ̂l+1(θl), . . . , µ̂J(θl)). Proceed as below to rewrite µ̂(v)
for v < θl:

(b) Fix S = {θk}Jk=l. Given the frontier µ̂(v), check if T̂max
µ̂ (v) exists, and if so, find

M = {µlfl, . . . , µJfJ} that implements T̂max
µ̂ (v) and rewrite µ̂(v) = M .

(c) At µ̂(v), using the algorithm, partition S into subsets of states, and calculate
vΣ(α, µ̂(v)) for all α ∈ [0, 1] for each subset. Take the lowest-value frontier,
µ̂(v′), under putative payoffs vΣ(α, µ̂(v)) such that the conditions of Claim 14
are satisfied and such that T̂max

µ̂ (v′′) does not exist for any v′′ ∈ (v′, v], and assign
strategies according to Algorithm 2 between µ̂(v) and the new frontier µ̂(v′).

(d) Set v = v′ and set µ̂(v′) as the new frontier, and repeat the above 2 steps until
v′ = 0.

3. Repeat the above steps for each l in descending order until l = 1, and fix the resulting
µ̂.

The existence of an imitation equilibrium, and the monotonicity of ûk, follow directly from
this construction. Continuity of ûk also follows from this construction. The value of ûk is
defined on series of closed intervals on each of which it is continuous – vΣ(α, µ) is continuous
in α, and ûk(µ) is constant for µfk ∈ T (v,M). Together, these cover the domain of uk, that
is, [0, 1], and they overlap only at their endpoints, at which they coincide.
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A.2 Properties of σ∗

Here, we prove a collection of results about the structure of the imitation equilibrium. We
begin by showing the separation theorem holds, which we use to show that uσ∗ is unique.
We then proceed to give proofs of other results in sections 1.2 and 1.4.

A.2.1 Proof of separation theorem and uniqueness

First, we prove the separation theorem. It has 2 parts, which we will prove as lemmas. We
start by proving that upper pools are improving:

Lemma 15. If M is a collection of messages and {µ̃j(v)fj}Jj=1 is the frontier of types achiev-
ing a payoff of at least v under σ∗, where θi < v ≤ θi+1, then

Eq[θ|t ∈ U({µ
j
fj}Jj=1) \ U(M)] ≥ v

whenever U({µ̃jfj}Jj=1) \ U(M) is nonempty.

Proof of Lemma. Denote T (v,M) = U({µ̃jfj}Jj=1) \ U(M). Let (µ̄1, . . . , µ̄i; µ̄i+1, . . . , µ̄J) be
the minimum masses of data distributed like f1, . . . , fi; fi+1, . . . , fJ , respectively, necessary
to send some message in M . Then

Eq[θ|t ∈ T (v,M)] =

∑J
j=1 β0(θj)θj(G

j(µ̄j)−Gj(µ̃j))∑J
j=1 β0(θj)(Gj(µ̄j)−Gj(µ̃j))

.

If (µ̄i+1, . . . , µ̄J) ≤ (µ̃i+1, . . . , µ̃J) pointwise, then T (v,M) is empty. Otherwise, let the
states j1, . . . , jA be the maximal set such that (µ̄j1 , . . . , µ̄jA) > (µ̃j1 , . . . , µ̃jA) pointwise. Call
the set of types that send µ′fja with positive probability under σ∗ by τ suppσ∗ (µ′fja), and let
θ(t) refer to the state corresponding to the distribution of dataset t. Denote by σ̂v the partial
strategy, restricting to types in T (v,M), where those types play as they do in σ∗, and assume
that the receiver knows the sender is in T (v,M) and playing according to this strategy.

Let ϕσ∗ be a joint density over types and messages induced by σ∗, so that for type t = µfj
and message m = µ̃fj̃a , we can define

ϕ(t,m) = gj(µrj(j̃))σ
∗(m|t)β0(θj)rθj(j

′)

to be the density on the event that the sender is type t and plays message m, when t plays m
with positive probability. In the case when payoffs under uσ∗ are strictly increasing at µ′fja ,
each sender who plays µ′fja is randomizing between at most a finite number of messages
in their mixed strategy, one corresponding to each state that is weakly optimal for them to
imitate. Thus, they play each message in the support of their strategy with strictly positive
probability, rather than randomizing with some density over a continuum of messages; ϕ
therefore fully captures the distribution of play for senders playing µ′fja .
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When payoffs are strictly increasing at µ′fja , we know that for every µ′fja that is in
T (v,M) and is on-path in σ∗, the receiver’s inference when they know the sender’s type is
in T (v,M) in addition to knowing they played message µ′fja is weakly better than if they
only know µ′fja was the message played. Formally,

Eq[θ|µ′fja ] =

∑
t∈τsupp

σ∗ (µ′fja )
⋂

T (v,M) θ(t)ϕ(t, µ
′fja))∑

t∈τsupp
σ∗ (µ′fja )

⋂
T (v,M) ϕ(t, µ

′fja)

≥
∑

t∈τsupp
σ∗ (µ′fja )

θ(t)ϕ(t, µ′fja)∑
t∈τsupp

σ∗ (µ′fja ))
ϕ(t, µ′fja)

≥ v

(A.4)

where the first inequality comes from the fact that θja ≥ v > θ(t) whenever θ(t) ̸= θja , and
µ′fja ∈ T (v,M) only if all types that play it under σ∗ are also in T (v,M).

Since, of course, payoffs under uσ∗ may not be strictly increasing at every µ′fja in T (v,M),
we have to separately consider the case in which they are constant, i.e. the case where there
are positive-measure pools T of senders achieving the same payoff v′ > v under σ∗ with
T
⋂

T (v,M) nonempty. Then let M ′ be the set of messages that implements the pool, and

Eσ̂v [θ|m ∈ M ′] = Eσ̂v [θ|t ∈ T
⋂

T (v,M)].

The value of T \ T (v,M) is equal to the value of T
⋂

U(M), which is no more than v′

since T = T̂max
µ̂ (v′), and so it contains no subsets of higher value. Therefore, Eσ̂v [v(θ)|t ∈

T
⋂

T (v,M)] ≥ v′ ≥ v.

Then, taking the total expectation over both cases, the expectation of θ given that the
sender’s type is in T (v,M) is a weighted average of Eσ̂v [θ|µ′fja ] over on-path messages µ′fja
in T (v,M) in which the payoff is strictly decreasing; and the value over positive-measure sets
of equal payoff. We have shown that each component is no less than v, and so the weighted
average is also at least v.

Next we prove that the imitation equilibrium we construct has worsening lower pools.
This is relatively simple.

Lemma 16. If M is a collection of messages and {µ̃j(v)fj}Jj=1 is the frontier of types achiev-
ing a payoff of at least v under σ∗, where θi < v ≤ θi+1, then

Eq[θ|t ∈ U(M) \ U({µ̃jfj}Jj=1)] < v

whenever U(M) \ U({µ̃jfj}Jj=1) is nonempty.

Proof. If there was a payoff frontier µ̂(v) that had a nonempty, weakly improving lower pool
lower-bounded by messages M , then there is a frontier µ̂(w) ̸= M for some w ≥ v such that

upool(U(M) \ U(µ̂(w))) = w.
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The construction algorithm rules this out, because if indeed the payoff frontiers above µ̂(w)
are correctly constructed, then it would next set µ̂(w) = M .

Finally, we show that the constructed equilibrium outcome is the only imitation equilib-
rium outcome, and thus that the imitation equilibrium outcome is unique.

Proof. Let the constructed equilibrium be σ∗, and let σ be an alternative equilibrium, with
a different outcome. We aim to show that σ∗ does not have improving upper pools, and
therefore cannot be an imitation equilibrium.

To see this, let M represent the frontier of messages that are used to achieve payoff v in
σ. Worsening lower pools under σ∗ imply that upool(U(M) \U(µ̂(v))) ≤ v, implying that M
has a worsening upper pool. Since M is a payoff frontier of σ, the alternative equilibrium σ
does not have improving upper pools, and is therefore not an imitation equilibrium.

A.2.2 Proof of results in Section 1.2

Next, we formally show that the imitation equilibrium satisfies the 3 selection criteria that
we discuss in Section 1.2: credible inclusive announcement-proofness, truth-leaning, and
receiver-optimality.

First we discuss a way in which the imitation equilibrium outcome arises from optimal be-
havior for the sender. The concept of optimality we use, inclusive announcement-proofness,
refines PBE by requiring that there is no self-separating set of sender types who could weakly
improve their payoffs by announcing a strategy that uses some set of messages differently
than they are used in the baseline equilibrium.

Definition A.2.1. Given an outcome uσ∗, a set of types T has a credible inclusive an-
nouncement that they will play a strategy σ̂M supported over message set M for payoff v
if

• σ̂M : M × T → R is such that
∑

t∈T σ̂M(m|t) = 1 for all m ∈ M ,
∑

m∈M σ̂M(m|t) = 1
for all t ∈ T , and Eβσ̂M

(·|m)[θ] = v for all m ∈ M .

• T = {t ∈ U(M) : uσ∗(t)}, and there is some t ∈ T with uσ(t) < v.

A very closely-related notion, that we take the name from, is the idea of a credible
announcement, from Matthews et al. (1991). There is, however, a subtle difference, which
is that in a credible announcement, T = {t ∈ U(M) : uσ∗(t) ≤ v}

⋃
S where S ⊆ {t ∈

U(M) : uσ∗(t) = v}. Thus what we use is an “inclusive" notion of a credible announcement
in that the set of announcing types must include all who weakly prefer to participate; it
is stronger to claim there exists an credible inclusive announcement than that there exists
a credible announcement, and correspondingly, inclusive announcement-proofness is weaker
than announcement-proofness. In fact, there may exist no announcement-proof equilibrium
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at all in the game we study, while there always exists exactly one inclusive announcement-
proof equilibrium outcome.

Claim 15. In G, the unique inclusive announcement-proof equilibrium outcome is the imi-
tation equilibrium outcome.

Proof. For any equilibrium σ with a different outcome than the imitation-equilibrium out-
come σ∗, there is some v such that the v-payoff frontier under σ differs from that under σ∗,
and such that some types that achieve a payoff of v or greater under σ∗ achieve a payoff no
more than v under σ. Lemma 15 ensures that when all such types pool, the expected value
of the state is at least v. Then, from the continuity of ûj(µ), there exists some v′ < v such
that when the set of all types that achieve a payoff of at least v′ under σ∗, but a payoff of no
more than v under σ, is pooled, the expected value of the state is exactly v. Starting from
equilibrium σ, this set of types has a credible inclusive announcement that yields a payoff of
v to each type, and so σ is not inclusive announcement-proof.

On the other hand, any credible announcement relative to baseline equilibrium σ∗ requires
the existence of some v and set of messages M such that there exists a pool of types

T = {t ∈ U(M) : uσ∗(t) ≤ v}

such that E[θ|t ∈ T ] = v, with at least one type t′ ∈ T such that uσ∗(t′) < v. Since T contains
all types t⊃̃t′ with uσ∗(t) ≤ v, we know T is a set of positive measure. The construction
algorithm for σ∗, however, rules out the presence of any such set T , since if all frontiers for
payoffs in (v, θJ ] are correctly constructed, then all types in T must be pooled under σ∗ and
must obtain a payoff of v exactly.

We prove that truth-leaning equilibria and imitation equilibria coincide in G, that the im-
itation equilibrium outcome is unique, and that it is the optimal outcome of communication
under commitment for the receiver.

Claim 16. Every imitation equilibrium of G is a truth-leaning equilibrium of G.

Proof. We take the 2 perturbations separately. First, perturb the likelihood of honest com-
mitment types by a sequence with ϵkt|t = ϵk → 0. There exists an equilibrium uσ∗

ϵk
of Gϵk in

which strategies of non-commitment types are identical to the imitation equilibrium strate-
gies in a game G̃ϵk under which

q(µfj) =

{
β0(θj)(g(µ)−ϵk)

1−ϵk
∑

i βi(1−Gi(µ̂i(θi))
, µ ≥ µ̂j(θj)

β0(θi)g(µ)
1−ϵk

∑
i βi(1−Gi(µ̂j(θi))

, µ < µ̂j(θj).

Under the metric induced by the L2 norm, the set of equilibrium strategies is compact, and
payoffs in G̃ϵ are continuous in ϵ, so the limit point as k → ∞ of the imitation equilibria
of G̃ϵk must also be an equilibrium of G. It is easy to verify that it must also satisfy the
conditions in 1.2.1, so it is the imitation equilibrium of G.
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Now, for fixed ϵk, consider in addition the perturbation of payoffs by an additional payoff
bump ν to a truthful report. When ν < minj,k |θk−θj|, there exists an equilibrium σ∗

ϵk,ν
that is

identical to the equilibrium uσ∗
ϵk

specified above, except for types µfj with uσ∗
ϵk

∈ (θj, θj+ν),
who instead play the truth with positive probability. In particular, for a given message µ′fk
that yields a payoff in (θj, θj + ν) and is played by µfj under σ∗

ϵk
, the probability that it

is played by µfj in the equilibrium of the further-perturbed game is 0 if the expected state
over types playing µ′fk for whom the state is not θj is no greater than θj + ν, and otherwise,
the probability that µfj plays µfk is exactly such that the payoff to playing µfk is θj + ν, so
that µfj is indifferent between playing message µ′fk and revealing all their data. As ν → 0,
the set of affected types shrinks towards a measure-0 set, and so these equilibria converge to
uσ∗

ϵk
as ν → 0.

Finally, given the equilibria {σ∗
ϵk,νj

} for ϵk → 0, νj → 0, diagonalize by taking, for every
k, some jk such that ||σ∗

ϵk,νjk
−σ∗

ϵk
|| < 1

k
, and observe that then the sequence of perturbations

(ϵt|t = ϵk∀t, ϵt = νjk∀t)∞k=1 yields equilibria that converge to σ∗.

Claim 17. Every truth-leaning equilibrium in G is an imitation equilibrium of G.

Proof. If t’s dataset is off-path then the receiver plays a best response to the belief 1t upon
seeing t. This suffices to show that every truth-leaning equilibrium messaging strategy σ is
a best response to qσ, as defined by eq. A.5:

qσ∗(t|m) :=


q(t)σ∗(m|t)∑

t∈TN
q(t)σ∗(m|t) for on-path m,

1m for off-path m ∈ TN

qσ∗(t| argmin
t′⊇m, t′∈TN

Eβ(·|σ∗(t′))[θ]) for off-path m ∈ MN \ TN .

(A.5)

For part a), note that if a message m is on-path in σ, then there exists K1 such that for
all k > K1, m is on-path in σ∗

ϵk
. For every k, however, all on-path messages are in T , since

if m is on-path and m ̸∈ T , then there is a type t = µfj with θj > uσ∗
ϵk
(m) that plays m,

and t itself is not played as a message on path by any non-commitment types. But then
Eβσ∗

ϵk
(·|t)[θ] = Eπ(·|t)[θ] ≥ Eβσ∗

ϵk
(·|m)[θ], leading to a contradiction. Hence, all on-path m must

be in T .

To prove that a truth-leaning equilibrium messaging strategy satisfies c), suppose there
is t such that Eπ(·|t)[θ] > maxm⊆̃t Eβσ(·|m)[θ] but σ(t|t) < 1.

. We will show that there is no sequence of perturbations {ϵkt , ϵkt|t}∞k=1 → 0 such that
equilibria of the associated perturbed games Gk converge to σ. Start by supposing for the
sake of contradiction that there is. First, we know t must be on path in σ. If σk is an
equilibrium of game Gk with ϵkt > 0, there cannot t′ ̸= t such that σk(t|t′) > 0, otherwise
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Eβ
σk (·|t)[θ] ≥ maxt′⊂̃t Eβ

σk (·|t′)[θ] and so Eβ
σk (·|t)[θ] + ϵkt > maxt′⊂̃t Eβ

σk (·|t′)[θ] and we would
have to have σk(t|t) = 1. Then, likewise, in the limit σ, we must have σ(t|t′) = 0 for all t′.
Since t is on-path in σ, it must be that σ(t|t) ∈ (0, 1).

Take a type t′′ ̸= t such that σ(t′′|t) > 0. We know that there exists K such that for
all k > K, σk(t′′|t) > 0 as well. Then whenever k > K, Eπ(·|t) + ϵkt = Eβ

σk (·|t′′)[θ]. Because
σk → σ, we have that

lim
k→∞

Eβ
σk (·|t′′)[θ] = Eβσ(·|t′′)[θ] = max

m⊆̃t
Eβσ(·|m)[θ].

But this contradicts that Eπ(·|t)[θ] > maxm⊆̃t Eβσ(·|m)[θ] and

lim
k→∞

Eβ
σk (·|t′′)[θ] = lim

k→∞
Eπ(·|t) + ϵkt = Eπ(·|t).

To show that b) holds, note that for any k, if t is on-path and played by some t′ ̸= t,
then σk(t|t) = 1. By c), Eπ(·|t′) ≤ Eβ

σk (·|t), but if t also plays t and Eπ(·|t) < Eβ
σk (·|t), then

the receiver cannot Bayesian. On the other hand, if t is on-path and only t plays t, then we
must have Eπ(·|t) = Eβ

σk (·|t).

Finally, closely following the idea in Hart et al. (2017), we show that the imitation equi-
librium outcome is the outcome of the optimal pure-strategy mechanism, that is, the best
outcome the receiver can achieve when they can commit to a pure action as a response to
the message the sender sends. The revelation principle shows that it suffices to look at direct
mechanisms, in which the sender truthfully reports their type and the receiver commits to a
deterministic response to the sender’s reported type.

A mechanism under which type t elicits the action a(t) is implementable if it satisfies IC:

t⊆̃t′ ⇒ a(t′) ≥ a(t). (IC)

Claim 18. The imitation equilibrium outcome is the optimal outcome for the receiver under
commitment to pure strategies.

To prove this claim, first define Tµfk be the set of types that imitate µfk under σ∗,
including µfk itself. We start with a lemma.

Lemma 17. There always exists an imitation equilibrium σ∗ such that Tµfk is finite for every
µfk ∈ T .

Proof of Lemma 17. First, for any imitation equilibrium, if {t : uσ∗(t) = uσ∗(µfk)} is a
measure-0 set, since then it is necessarily true that at most one type under each state lies
in the same payoff frontier as µfk under σ∗, and thus at most one type under each state
imitates it.
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Now consider the case in which there is a positive-measure set of senders who achieve the
payoff u∗ = uσ∗(µfk), where we have θl ≤ uσ∗(µfk) < θl+1. We know that there exists a way
to divide the types by which state they imitate, and with what probability, given by sets
Sl+1, . . . , SJ and any imitation equilibrium σ∗, such that∑

t∈Sj
θ(t)q(t)

∫ infv>u∗ µ̂j(v)

µ̂j(u∗)
σ∗(µfj|t)dµ∑

t∈Sj
q(t)

∫ infv>u∗ µ̂j(v)

µ̂j(u∗)
σ∗(µfj|t)dµ

= u∗

and for all µ∗ ∈ (µ̂j(u
∗), infv>u∗ µ̂j(v)),∑

t∈Sj :t⊇̃µ∗ θ(t)q(t)
∫ infv>u∗ µ̂j(v)

µ̂j(u∗)
σ∗(µfj|t)dµ∑

t∈Sj :t⊃̃µ∗ q(t)
∫ infv>u∗ µ̂j(v)

µ̂j(u∗)
σ∗(µfj|t)dµ

≤ u∗.

But it is always feasible to reorder the imitation strategy to construct σ∗∗ such that Sl+1, . . . , SJ

are unchanged, but if µ1fj imitates µ′
1fi and µ2fj imitates µ′

2fi, with µ1 > µ2, then µ′
1 > µ′

2

also. That is, conditional on imitating the same state, higher-data senders always imitate
types with more data under σ∗∗. Then any type is imitated by either a single type or an
interval of types under any other state; the latter is ruled out by the fact that it would result
in a payoff no more than θl to the message. Once again, since there is a finite set of states,
this ensures that each type is imitated by at most a finite set of other types.

Proof of Claim 18. Suppose A to be the subset of types in T that are imitated under the
imitation equilibrium σ∗, and suppose that σ∗ is an imitation equilibrium in which each type
is imitated by a finite set of other types, which exists by the previous lemma. Given µfj ∈ A,
let Tµfj be the set of types that play µfj under σ∗, including µfj itself. Define a distribution
over Tµfj ,

qµfj(t) =
q(t)σ(µfj|t)∑

t∈Tµfj
q(t)σ(µfj|t)

,

which is the probability of type t conditional on the message µfj.

Call the optimal direct mechanism a∗, that responds with the action a∗(t) after receiving
the report t. It must satisfy IC across any subset of types, T ⊆ T , but let us consider instead
w, the solution to a relaxed local problem where we impose that IC must hold only between
t, t′ ∈ Tµfj when types are distributed according to qµfj . We will show that for all t ∈ Tµfj ,
we have w(t) = Eqµfj

[θ], and that taking this solution across all µfj ∈ A assigns a response
for the receiver to all t ∈ T while preserving global IC, and therefore gives the optimal direct
mechanism.

We know that w(µfj) ≤ w(t) for all t ∈ Tµfj . Let Sµfj = {t ∈ Tµfj : w(t) = w(µfj)}.
First, note that if Sµfj = Tµfj , then we optimally have w(t) = Eqµfj

[θ] for all t ∈ T . This
leaves us to rule out that w(t) ̸= w(t′) for some t, t′ ∈ Tµfj .
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We rule out that w(µfj) ≥ Eqµfj
[θ] and w(t) ̸= w(µfj) for some t ∈ Tµfj , due to the fact

that the receiver can then improve their payoff while preserving IC by instead responding to
every type with w(µfj). Next, we rule out that w(µfj) < Eqµfj

[θ] and w(t) ̸= v(µfj) for some
t ∈ Tµfj , since then it is possible to instead respond to every t such that w(t) = w(µfj) with
mint∈Tµfj

\S w(t), and, by single-peakedness of the receiver’s payoff function, this improves
the receiver’s payoff.

This suffices to show that w corresponds exactly to the outcome of the imitation equi-
librium for all t ∈ Tµfj , regardless of the choice of µfj ∈ A. As w optimizes the receiver’s
payoff under a weaker set of IC constraints than a∗, we know that the imitation equilib-
rium outcome is at least as good as a∗ for the receiver; the reverse statement is immediate
since every equilibrium outcome is implementable with commitment, and so the two are
identical.

Corollary (to Claim 18). The imitation equilibrium outcome is the receiver-optimal equilib-
rium outcome.

Proof. In every equilibrium σ, the receiver has a unique best response to each message, given
by the action

ar(β(·|m))) = Eβ(·|m)[θ].

Any type of the sender therefore has an optimal feasible message to send that results in a
unique optimal action that they can induce the receiver to take given the receiver’s inference
function. Any equilibrium outcome can therefore be implemented by the receiver through
a direct mechanism that responds to every type with a deterministic message, and so there
is no equilibrium that increases the receiver’s payoff relative to the optimal pure-strategy
mechanism outcome that is also the imitation equilibrium outcome.

A.2.3 Proof of results in section 1.4

Convergence to full-information outcome as V ar(g) → 0

Proof of Claim 2. We show that given any infinite sequence of games with data-mass dis-
tributions g1, g2, . . . on [0, 1] with a fixed mean and variances V ar1, V ar2, . . . → 0, that are
identical in the set of states and their ex-ante distribution, the payoff to a sender conditional
on the state converges in probability to their full-information payoff.

In order to do so, we show that for any δ and ϵ, there exists L such that for all l ≥ L, the
distribution gl is such that Pr[uσ∗(µ, θk) < θk − δ] < ϵ under every state.

Define the mean of µ to be µ̄, and

B = max
j ̸=k

1

rj(k)
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so that for any two states j and k, the difference between the amount of the state-k distri-
bution that the mean type under state k has and the amount the mean type under state j
has is µ̄(1−B).

Suppose that the variance of µ under density gL is less than ∆2ϵ2, where ∆ > 0 is an
arbitrary parameter. Then there can be at most a probability ϵ2 that the state is k and the
sender has less than µ̄ −∆ data distributed like fk. A sender under state j has more than
µ̄−∆
B

data with probability no more than ∆2ϵ2B2

(µ̄(1−B)−∆)2
.

Recall that whenever uσ∗(µ, θ) < θ, the type with dataset µfθ is truthful in equilibrium.
So, if under state θk we have Pr[uσ∗(µ, θ) < θ− δ] ≥ ϵ, then the type with µ = G−1(ϵ) must
obtain payoff less than θ − δ, and so must all types with less data, and all such types must
be truthful. But the total mass of all types not in state k that can pool with types with
µ ∈ [G−1(ϵ2), G−1(ϵ)] cannot exceed

(J − 1)(1− β0(θk))
∆2ϵ2B2

(µ̄(1−B)−∆)2

and so the payoff to type G−1(ϵ)fk cannot be less than

ϵ(1− ϵ)θk

ϵ(1− ϵ) + (J − 1)(1− β0(θk))
∆2ϵ2B2

(µ̄(1−B)−∆)2

which, for small enough ∆, must be at least θk − δ. Since there is always L large enough
that V arL < ϵ2∆2, we are done.

All that remains is to note that, since the ex-ante expected payoff must always be Eβ0 [θ],
this lower bound on the probability of payoffs less than the full-information payoffs implies
a corresponding upper bound on payoffs exceeding the full-information payoffs, and so we
obtain convergence of the distribution of payoffs, state-by-state, to those in the outcome
where the receiver knows the truth.

Comparative statics of welfare with respect to β0(θj)

Proof of Claim 5. First, let M(v) be the frontier of types that attain payoff v under G and
let M ′(v) be the frontier of types that do so under G ′. Let q be the distribution of types in
G and q′ be the type distribution for G ′.

Let v ≥ θj. Suppose for the sake of contradiction that U(M ′) \ U(M) is nonempty. By
Lemma 15, in the game G ′,

Eq′ [θ|t ∈ U(M ′) \ U(M)] ≥ v.

But we also have Eq[θ|t ∈ U(M ′) \ U(M)] ≥ Eq′ [θ|t ∈ U(M ′) \ U(M)]. So then Eq′ [θ|t ∈
U(M ′) \ U(M)] ≥ v, but then the construction algorithm in game G, if it ever reached M ,
would instead set M ′ as a frontier for payoff v, and so this is impossible.
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Similarly, let v ≤ θj. As with the above, we observe that if U(M) \ U(M ′) is nonempty,
then

Eq[θ|t ∈ U(M) \ U(M ′)] ≥ v,

but since Eq′ [θ|t ∈ U(M) \ U(M ′)] ≥ Eq[θ|t ∈ U(M) \ U(M ′)], this implies that Eq[θ|t ∈
U(M) \ U(M ′)] ≥ v, which is likewise impossible by the algorithm.
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A.3 Results on experimental design
Proposition 18. Suppose that two games G and G ′ are identical except for their space of
outcomes D and D′ and the generating distributions of data under each state, {fj}Jj=1 and
{f ′

j}Jj=1, and let σ∗ and σ∗′ be their respective imitation equilibria.

If the rj(k) ≥ r′j(k) for all j, k, then the receiver’s payoff is greater under σ∗ than under
σ∗′.

Proof. Under game G, there exists a (pure-strategy) mechanism that implements the outcome
of σ∗′ . To see this, note that the outcome of σ∗′ is also the outcome of v′, the optimal
mechanism for the receiver in G ′, which respects the IC constraints that can be rewritten as

v′(µfj) ≥ v′(
µ

rj(k)
fk) ∀µ, j, k and v′(µ1fj) ≥ v′(µ2fj) ∀j, µ1 > µ2. (IC-G ′)

On the other hand, in order to be implementable in G, v′ need only respect the IC constraints

v′(µfj) ≥ v′(
µ

rj(k)
fk) ∀µ, j, k and v′(µ1fj) ≥ v′(µ2fj) ∀j, µ1 > µ2, (IC-G)

which are weaker.

Since v′ is implementable in G, the outcome of the optimal mechanism, and therefore the
imitation equilibrium, in G gives at least a weak improvement over v′ for the receiver.
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A.4 Properties of truth-leaning equilibria with finite data
Claim 19. In any finite-data game GN , the unique inclusive announcement-proof equilibrium
outcome is the truth-leaning equilibrium outcome.

To show that the truth-leaning equilibrium outcome is inclusive announcement-proof in
finite-data games, I construct it, using the algorithm from Rappoport, which I summarize
here. In short, the equilibrium is constructed by iteratively choosing a frontier of types such
that the set of types “above" the frontier, in the sense of being able to imitate some frontier
type, yields as favorable a belief as possible.

Algorithm (Finite N). First, define for any type set T the subset of types T+(M) =
T
⋂

U(M) as the set of types in T that are capable of sending some message in message set
M , and define upool(T ) to be the payoff to the sender if the receiver knows only that their
type must be in T .

1. Let T1 = TN , and find the set of messages M1 ⊆ T1 that maximizes the payoff to a
pool consisting of the set of senders in T1 who can send at least one message in it:

M1 ∈ arg max
M⊆T1

upool(T
+
1 (M)).

If there are multiple such pools, then we take their union, which is also such a pool.

2. For s = 2 onwards, restrict the set of types to Ts = Ts−1 \ T+
s−1(Ms−1), and find (the

union of)
Ms ∈ arg max

M∈Ts

upool(T
+
s (M)).

3. Continue until Ts \ T+
s (Ms) = ∅. Given each set Ms, there always exists a mixed

strategy profile σM
pool defined over types in T+

1 (M) such that each message in M yields
the same payoff under the receiver’s induced beliefs from σM

pool.2 Define σ∗ by σ∗(m|t) =
σ̂Ms
pool(m|t) where Ms is the pool containing m.

Proof. (Unique credible inclusive announcement-proof outcome). By construction, there is
no credible inclusive announcement, since such an announcement would constitute a bet-
ter set of types than the one constructed at some step of the algorithm; this violates the
optimality of the pool of types constructed in each step. No other outcome is immune: if
uσ∗

alt
̸= uσ∗ , then there exists a v such that the set of pools achieving a payoff greater than v

is identical in uσ∗
alt

and uσ∗ , but the pool of types T achieving payoff v under uσ∗ is a strict
superset of that under uσ∗

alt
. Then types in T can make a credible inclusive announcement

that they will play as they do in σ∗.

2Otherwise, the worst possible payoff to particular message in M over all strategy profiles over Ms is
better than the best possible payoff to some other message; then there always exists M ⊂ Ms such that
T+
s (M) > T+

s (Ms).
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A.5 Proof of convergence to imitation equilibrium as N →
∞

Here, we first use the separation theorem to prove that outcomes uσ∗
N

converge to uσ∗ in
a convergent sequence of games; then, we state a corresponding result that describes the
extent to which the sender’s messaging strategy also converges, and we give a proof.

To prove Theorem 6, we first introduce some notation. Let payoff frontiers in GN under
a truth-leaning equilibrium σ∗

N be given by M̂N(v) — that is,

M̂N(v) = {t ∈ TN : uσ∗
N
(t) ≥ v, ̸ ∃t′ ∈ TN w/ t′⊂̂t and uσ∗

N
(t′) ≥ v}.

Let a translation of MN(v) to the restricted limit type space T be µ̂N(v), where

µ̂N
j (v) = {µ ∈ [0, 1] : uσ∗

N
(µfj) ≥ v, and uσ∗

N
(µ′fj) < v ∀µ′ < µ}.

Finally, let

upool,N(T ) =

∑
t∈T qN(t)Eπ(·|t)[θ]∑

t∈T qN(t)

be the analog of upool for finite game GN . We first give a lemma that shows that average
values in the finite game converge to those in the continuous-µ game within upper and lower
pools.

Lemma 19. Fix some ϵ > 0 and δ > 0. We aim to show that there exists large-enough
N̂(ϵ, δ) such that for N > N̂(ϵ, δ), we can ensure that neither U(µ̂(v+ ϵ)) \UN(M̂N(v)) nor
UN(M̂N(v)) \ U(µ̂(v − ϵ)) contain more than a measure δ of types in T .

Proof of Lemma 19. Fix an integer n. The Glivenko-Cantelli theorem implies that there is
a bound on the probability that supd |

∑d
x=1 t(x) −

n
N
Fj(d)| > η conditional on |t| = n and

the true state being θj that decreases to 0 for large n, irrespective of N . Because data have a
discrete distribution, this implies a similar bound on the empirical probability mass function.
Before proceeding further, we formalize the implications for the problem at hand.

It is helpful to formally define a neighborhood of {µfj : µ ∈ [0, 1]} in TN . For η > 0,
define

Sj
N(η) = {t ∈ TN : ∃θ s.t. sup

d
|t(d)− |t|fθ(d)| ≤ η}.

This is the set of datasets in TN that differ from some type in T for which the state is θj by
no more than a fraction η of observations of each outcome. Furthermore, taking any lower
bound k∗ ∈ (0, 1], let Sj

N(η, k
∗) be the set Sj

N(η)
⋂
{t : |t| ≥ Nk∗} of all datasets in the

neighborhood that contain at least a fraction k∗ of total possible observations.

We can ensure that, if we know that the state is θ = thetaj and the number of observations
of the data the sender observes is n > Nk∗, then the likelihood that their type lies in Sj

N(η, k
∗)

is close to 1 for all η as long as N is sufficiently large. Furthermore, if η is small enough for a
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given value of k∗, then Sj
N(η, k

∗) are disjoint. There is a sufficient upper-bound to the value
of η that achieves this, η̃(k∗) = minj,j′ maxd k

fj(d)−fj′ (d)

2
.

For any desired likelihoods l1 > 0 and l2 > 0, and any error rates ξ1 > 0 and ξ2 > 0,
there exists a uniform bound Ñ(k∗, η, l1, l2, ξ1, ξ2) such that as long as k > k∗ and N >
Ñ(k∗, η, l1, l2, ξ1, ξ2), with η ≤ η̃(k∗),

a) Pr(t ∈ Sj
N(η, k

∗)|θ = θj, n = Nk) ≥ 1− l1

b) Pr(t ∈ Sj
N(η, k

∗)|θ ̸= θj, n = Nk) < l2 for any k > k∗

c) |EπN (·|t)[θ]− θj| ≤ ξ1 for all t ∈ Sj
N(η, k

∗)

d) |(GN(Nk)−GN(Nk′))− (G(k)−G(k′))| < ξ2| for all 0 ≤ k′ ≤ k ≤ 1.

Part (a) follows directly from the Glivenko-Cantelli theorem. Part (b) follows from applying
part (a) to j′ ̸= j, although the bound could certainly be tightened more. Part (c) follows
from both the previous parts and the fact that the set of possible values of θ is finite. Part
(d) follows from the convergence of G1, . . . , to G.

Now we can bound the average value of U(µ̂(v + ϵ)) \ UN(M̂(v)) in TN .

Let us start with types in Sj
N(η, k)

⋂
U(µ̂(v + ϵ)) \ UN(M̂(v)). In T , we know that

U(µ̂(v + ϵ)) \ UN(M̂(v)) contains µfj for µ ∈ [µ̂j(v + ϵ), µ̂N
j (v)]. Recall that |D| = D, and

define R = maxj,d,d′
fj(d)

fj(d′)
. We know that for all k ∈ [µ̂j(v + ϵ) + DRη, µ̂N

j (v) − DRη], if
t ∈ Sj

N(η, k) and |t| = Nk then t ∈ Sj
N(η, k)

⋂
U(µ̂(v + ϵ)) \ UN(M̂N(v)). This is true

because:

• If t ∈ Sj
N(η, k), then the nearest type µfj ∈ T differs by adding or deleting at most a

mass η of observations of each outcome.

• As a result, the type (k + DRη)fj can imitate t, and the type (k − DRη)fj can be
imitated by t.

• Therefore, if, in addition, k ∈ [µ̂j(v + ϵ) +RDη, µ̂N
j (v)−RDη], then t ∈ U(µ̂(v + ϵ)) \

UN(M̂N(v)).

Likewise, unless k ∈ [µ̂j(v + ϵ) − DRη, µ̂N
j (v) + DRη], if t ∈ Sj

N(η, k) and |t| = Nk then
t ̸∈ Sj

N(η, k)
⋂

U(µ̂(v + ϵ)) \ UN(M̂N(v)).

The probability that the raw dataset in GN lies in U(µ̂(v + ϵ)) \ UN(M̂N(v)) is therefore
lower-bounded by

β0(θj)(1− l1)[G(µ̂N
j (v) +RDη(k∗))−G(µ̂j(v + ϵ)−RDη(k∗))− 2ξ2]−GN(k

∗N)

and upper-bounded by

β0(θj)[G(µ̂N
j (v)−RDη(k∗))−G(µ̂j(v + ϵ) +RDη(k∗)) + 2ξ2] + l2
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whenever N > Ñ(k∗, η, l1, l2, ξ1, ξ2).

In addition, we can define the upper bound b̄ = maxµ g(µ) because g is continuous on a
compact interval. Then if

J∑
j=1

[G(µ̂N
j (v))−G(µ̂j(v + ϵ))] ≥ δ,

a crude lower bound on the average value of types in U(µ̂(v + ϵ)) \ UN(M̂N(v)) under the
finite-game type distribution qN is∑J

j=1[β0(θj)(1− l1)[G(µ̂N
j (v) +RDη)−G(µ̂j(v + ϵ)−RDη)− 2ξ2]−G(k)− ξ2](θj − ξ)

β0(θj)[G(µ̂N
j (v)−RDη)−G(µ̂j(v + ϵ) +RDη) + 2ξ2] + l2

≤ δ(v − ξ)− l1 − 2b̄RDη −G(k)− 3ξ2
δ + l2 + l1 + 2b̄RDη + 2ξ2

≡ LB(k∗, η, l1, l2, ξ1, ξ2|δ)
(A.6)

as long as N > Ñ(k∗, η, l1, l2, ξ1, ξ2). Note that this bound is independent of v, that is, it
applies uniformly to all payoff frontiers.

We have that

lim
N→∞

min
k∗,η,l1,l2,ξ1,ξ2:

Ñ(k∗,η,l1,l2,ξ1,ξ2)≤N

LB(η, k∗, l1, l2, ξ1, ξ2|δ) =
∑J

j=1[G(µ̂N
j (v))−G(µ̂j(v + ϵ))]θj∑J

j=1[G(µ̂N
j (v))−G(µ̂j(v + ϵ))]

≥ v + ϵ,

by the separation theorem applied to types in U(µ̂(v+ϵ))\UN(M̂N(v)) under the continuous-
data type distribution q. But we also know by applying the separation theorem that the
average value of types in U(µ̂(v + ϵ)) \ UN(M̂N(v)) under the finite-game type distribution
qN is no more than v. Then there exists large-enough N̂+(ϵ, δ) such that for N > N̂+(ϵ, δ),
the above bound ensures that for any v, the set U(µ̂(v + ϵ)) \ UN(M̂N(v)) does not contain
more than a measure δ of types in T .

We can show, using a completely symmetric argument, that there also exists large-enough
N̂−(ϵ, δ) such that for N > N̂−(ϵ, δ), the set UN(M̂N(v))\U(µ̂(v− ϵ)) does not contain more
than a measure δ of types in T , regardless of v. Rather than lower-bounding the average
value of all types in UN(M̂N(v)) \ U(µ̂(v − ϵ)) under qN , we upper-bound it and show that
given fixed δ, for large N it is less than ϵ greater than the value of the same set of types
evaluated under type distribution q. This shows that it has average value less than v, and
fails the separation theorem for the finite game.

Next, we use the the lemma to prove the theorem.
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Proof of Theorem 6. There is an upper bound ∆̄ = maxµ,j
dûj(µ)

dµ
on the rate of change of

payoffs in µ under σ∗.

In addition, for every y > 0, there is some C(y) = minµ,j β0(θj)(G(µ)−G(µ−y)) > 0 with
limx→0C

−1(x) = 0, which shows that upper-bounding the measure of an interval [µ − y, µ]
of measures of types under state θj with respect to prior distribution q also upper-bounds y
itself.

Then we know that for a type µfj ∈ T with uσ∗((µ+ C−1δ)fj) = v, we have

uσ∗
N
(µfj) ≤ uσ∗((µ+ C−1δ)fj) + ϵ ≤ uσ∗(µfj) + C−1(δ)∆̄ + ϵ

and likewise

uσ∗
N
(µfj) ≥ uσ∗((µ− C−1δ)fj)− ϵ ≥ uσ∗(µfj)− C−1(δ)∆̄− ϵ

for all N > N̂(ϵ, δ).

We can take
min

δ,ϵ:N>N̂(ϵ,δ)
C−1(δ)∆̄ + ϵ

to be the bound on the difference between uσ∗(t)−u∗
σ∗
N
(t), and it shrinks to 0 as N → ∞.

A.5.1 Strategic convergence

Proposition 20. Suppose that {GN}∞N=1 converge to G∞. Then for all p∗, ρ, η > 0, there is
N(p∗, η) such that for all N > N(p∗, η), conditional on |uσ∗

N
(t) − θk| > η for all k, there is

at least probability 1 − p∗ that t sends a message with (sup norm) distance at most δ from
some t∞ ∈ T∞ that is on-path in σ∗

∞ and such that |uσ∗
N
(t)− uσ∗

∞(t∞)| ≤ ρ.

This is a partial characterization of large-N equilibrium strategies, saying that among
types that obtain payoff bounded away by an arbitrarily small amount from the rewards
to certainty about any particular state, the likelihood of playing a message close to their
optimal message under limit-game beliefs is very high when there is plentiful access to data.
In other words, these types play imitation-like strategies. This follows from the convergence
theorem, since in truth-leaning equilibrium a type that receives payoff less than its full-
information payoff always discloses its full dataset, so types with uσ∗

N
(t) << Eπ(·|t)[θ] tell the

truth; convergence of outcomes implies that they receive payoffs similar to those obtained by
nearby types in T∞ under βσ∗

∞ , and convergence of the type distribution implies that most
such senders are indeed near some type in T∞. In aggregate a similar set of imitators must
pool with such senders as the set of imitators pooling with better-state senders in σ∗

∞, which
means that types with uσ∗

N
(t) >> Eπ(·|t)[θ] play messages close to T∞ with high probability.

The caveat is that when |Eβσ∗
N
(·|m)[θ] − θk| is small for some k, then there may be no

significant mass of senders playing m to earn a payoff much greater or much less than their
full-information payoff, which makes it hard to apply the technique of matching imitators
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to the imitated, though we do not have a counterexample for this case. From Corollary
1.4, we know that there is a positive-measure set of types that receive payoffs close to their
full-information payoffs in σ∗

∞, and the proposition does not pin down the large-N limit of
equilibrium strategies of types close to them, but generically, besides these, the set of types
excluded from the proposition is measure-0.3

Proof of Prop. 20. Define mσ∗
N
(t) to be the realization of the message played when the

sender’s type is t – formally, mσ∗
N
(t) is a random variable with outcomes in MN whose

distribution is given by the equilibrium strategy σ∗
N(·|t).

Define AN(x,∆; ϵ) to be the set of types t ∈ TN

⋂
T (ϵ) such that uσ∗

N
(t) > Eπ(·|t)[θ], and

uσ∗
N
(t) ∈ (x, x+∆].

Define BN(x,∆; ϵ) to be the set of types t′ ∈ TN

⋂
T (ϵ) with uσ∗

N
(t′) < Eπ(·|t)[θ], and

uσ∗
N
(t′) ∈ (x, x+∆].

Define X(η, ξ, ω) = {x ∈
[
maxj ûj(ξ) + ω, uσ∗(fθJ )

)
: mink |uσ∗

N
(t)− θk| > η}.

For small enough η, ξ and ω, X(η, ξ, ω) is nonempty. On the other hand, AN(x,∆; ϵ) and
BN(x,∆; ϵ) may be empty, in particular for small N . However, for x ∈ X(η, ξ, ω), there is
large-enough N∗ so that they are nonempty for all N > N∗. Continuity of uσ∗(µfj) ensures
there is positive-measure set of types in T with uσ∗

infty
(t) ∈ [x, x + ∆]; the bound away

from θk for all k ensures that some such types have uσ∗
infty

(t)− Eπ(·|t)[θ] ≥ η and some have
uσ∗

i nfty
(t) ≤ Eπ(·|t)[θ] < −η, and so there is a positive-measure set of types nearby with the

same properties under σ∗
N in TN for large-enough N .

We first prove a claim.

Claim 20. If {σ∗
N}∞N=1 are truth-leaning equilibria of games GN that converge to limit game G

with imitation equilibrium σ∗, then for any η > 0, ξ > 0, ω > 0 and p > 0, there exists ϵ̄ > 0
and ∆̄ > 0 such that, for all x ∈ X(η, ξ, ω), the probability conditional on t ∈ AN(x,∆; ϵ)
that mσ∗

N
(t) ∈ BN(x,∆; ϵ) is at least 1− p in the limit as N → 0 for all ϵ < ϵ̄ and ∆ < ∆̄.

Proof of Claim 20. Expanding out the realization of mσ∗
N
(t), this is equivalent to saying that

for given η > 0, ξ > 0, ω > 0, p > 0, there exists ∆̄ > 0 and ϵ̄ > 0 so that for all ∆ < ∆̄ and
ϵ < ϵ̄,

lim
N→∞

∑
t∈AN (x,∆;ϵ)

[
qN(t)

∑
t′∈BN (x,∆;ϵ) σ

∗
N(t

′|t)
]

∑
t∈AN (x,∆;ϵ) qN(t)

≥ 1− p.

for all x ∈ X(η, ξ, ω).
3Genericity here can be with respect to perturbations in β0 or θ1, . . . , θJ .
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We have that for any ξ > 0, ω > 0,

lim
ϵ→0

lim
N→∞

min
θj

max
t∈TN

⋂
T (ϵ):uσ∗

N
(t)≥maxj ûj(ξ)+ω

|θj − Eπ(·|t)[θ]| = 0.

Thus for any ν > 0, ω > 0 and ξ > 0, there exist small-enough ϵ̄(ν, ξ, ω) > 0 and large-enough
N(ν, ξ, ω, ϵ) defined for ϵ < ϵ̄(ν, ξ) such that minθj maxt∈TN

⋂
T (ϵ):uσ∗

N
(t)≥maxj ûj(ξ)+ω |θj−Eπ(·|t)| <

ν for all ϵ < ϵ̄(ν, ξ, ω), N > N(ν, ξ, ω, ϵ).

If we take ∆ < η/3 and ν < η/3, then whenever |θk − Eπ(·|t)| < ν for some k and
uσ∗

N
(t) ∈ [x, x + ∆] for x in X(η, ξ, ω), we have that |uσ∗

N
(t) − Eπ(·|t)| > η/3. In particular,

uσ∗
N
(t) ̸= Eπ(·|t), so, for any x ∈ X(η, ξ, ω), and for any ∆, ν < η/3 and any ξ, ω and

ϵ < ϵ̄(ν, ξ, ω), N > N(ν, ξ, ω, ϵ),

AN(x,∆; ϵ)
⋃

BN(x,∆; ϵ) = {t ∈ T (ϵ)
⋂

TN : uσ∗
N
(t) ∈ (x, x+∆]}.

In addition, the uniform convergence of outcomes on T and of the type distribution
conditional on each state ensures that for all ϵ, ξ,∆, and for all x ≥ maxj ûj(ξ) + ω,

lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t)Eπ(·|t)[θ] =
∑
θj<θk

θjβ0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))] (A.7)

and
lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t) =
∑
θj<θk

β0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))] (A.8)

and likewise

lim
N→∞

∑
t∈BN (x,∆;ϵ)

q(t)Eπ(·|t)[θ] =
∑
θj>θk

θjβ0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))] (A.9)

and
lim

N→∞

∑
t∈BN (x,∆;ϵ)

q(t) =
∑
θj>θk

β0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))]. (A.10)

Supposing that x ∈ X(η, ξ, ω) for some θk, and ϵ < ϵ̄(ν, ξ, ω), and ∆, ν < η/3, we know from
the above that

x ≤
∑

θj
θjβ0(θj)[G

j(µ̂j(x+∆))−Gj(µ̂j(x))]∑
θj
β0(θj)[Gj(µ̂j(x+∆))−Gj(µ̂j(x))]

= lim
N→∞

∑
t∈BN (x,∆;ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈AN (x,∆;ϵ) q(t)Eπ(·|t)[θ]∑

t∈BN (x,∆;ϵ) q(t) +
∑

t∈AN (x,∆;ϵ) q(t)

(A.11)
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On the other hand,

x+∆

≥ lim
N→∞

∑
t∈BN (x,∆;ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈AN (x,∆;ϵ)

[
q(t)Eπ(·|t)[θ]

∑
t′∈BN (x,∆;ϵ) σ

∗
N(t

′|t)
]

∑
t∈BN (x,∆;ϵ) q(t) +

∑
t∈AN (x,∆;ϵ)

[
q(t)

∑
t′∈BN (x,∆;ϵ) σ

∗
N(t

′|t)
]

= lim
N→∞

∑
θj
θjβ0(θj)[G

j(µ̂j(x+∆))−Gj(µ̂j(x))]−
∑

t∈AN (x,∆;ϵ) q(t)Eπ(·|t)[θ]
∑

t′∈BN (x,∆;ϵ)(1− σ∗
N(t|t′))∑

θj
β0(θj)[Gj(µ̂j(x+∆))−Gj(µ̂j(x))]−

∑
t∈AN (x,∆;ϵ) q(t)

∑
t′∈BN (x,∆;ϵ)(1− σ∗

N(t|t′))
.

(A.12)

But, we know that Eπ(·|t)[θ] < uσ∗
N
(t) − η/3 ≤ x + ∆ − η/3 for any t ∈ AN(x,∆; ϵ). Then,

combining, we have

0 ≤(x+∆)

∑
θj

β0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))]− lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N(t|t′))


− x

∑
θj

β0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))]

− lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t)Eπ(·|t)[θ]
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N(t|t′))

≤∆

∑
θj

β0(θj)[G
j(µ̂j(x+∆))−Gj(µ̂j(x))]


− [(x+∆)− (x+∆− η/3)] lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N(t|t′))

= lim
N→∞

∆

 ∑
t∈AN (x,∆;ϵ)

⋃
BN (x,∆;ϵ)

q(t)

− η

3
lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N(t|t′)).

(A.13)

Finally, since

lim
N→∞

∑
t∈AN (x,∆;ϵ)

⋃
BN (x,∆;ϵ) Eπ(·|t)[θ]q(t)∑

t∈AN (x,∆;ϵ)
⋃

BN (x,∆;ϵ) q(t)
≤ x+∆,

we have ∑
t∈BN (x,∆;ϵ)

(θk+1 − x−∆)q(t) ≤
∑

t∈AN (x,∆;ϵ)

(x+∆− θ1)q(t)

and so ∑
t∈AN (x,∆;ϵ) q(t)∑
t∈BN (x,∆;ϵ) q(t)

≥ η/3

θJ
.
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From the above and eq. A.13, we have

lim
N→∞

∑
t∈AN (x,∆;ϵ)

[
qN(t)

∑
t′∈BN (x,∆;ϵ)(1− σ∗

N(t
′|t))

]
∑

t∈AN (x,∆;ϵ) qN(t)
≤ ∆(θJ + η)

(η/3)2
.

Then for given p, ξ, ω, η, and ν < η/3 and ϵ < ϵ̄(ν, ξ, ω), as long as ∆ ≤ pη2

9(θJ+η)
, we have

lim
N→∞

∑
t∈AN (x,∆;ϵ,ξ)

[
qN(t)

∑
t′∈BN (x,∆;ϵ,ξ) σ

∗
N(t

′|t)
]

∑
t∈AN (x,∆;ϵ,ξ) qN(t)

≥ 1− p

and this bound is independent of x. So, letting ϵ̄ = ϵ̄(η/3, ξ, ω) and ∆̄ = pη2

9(θJ+η)
, we have

proven the claim.

Next, let u = ûj(0), where the choice of j for the definition does not matter. Suppose the
following condition holds for some positive η:

Condition 1. mink |θk − u| > η and there is ξ̃ > 0 such that Gj(ξ̃) > 0 for all j, and
ûj(ξ̃) = u for some j.

This says that a sender with a positive amount ξ̃ of distribution fj gets the same payoff
as the sender with no data, and that that payoff is bounded away from any θj by η. When
showing that senders must play similarly under σ∗

N in the limit as the average dataset becomes
large, we consider separately the small fraction of senders that, by chance, receive very little
data, i.e. those with |t| ≤ ξ, and in this case

lim
ξ→0

lim
ω→0

min{µ : ∃j s.t. ûj(µ) > ξ + ω} > 0,

and there is a positive-measure set of types that may be pooled with those low-data senders.

Let us prove a similar claim to the previous one.

Claim 21. If there exists η such that condition 1 holds, then for given p > 0, there exists
ϵ̄ > 0 such that for ϵ < ϵ̄, if we define

S(ξ, ω, ϵ) = {t ∈ TN

⋂
T (ϵ) : |t| ≤ ξ and uσ∗

N
(t) ∈ (x, x+∆]},

then letting aN(ξ, ω, ϵ) = AN(u−ω, 2ω; ϵ)\S(ξ, ω, ϵ) and bN(ξ, ω, ϵ) = BN(u−ω, 2ω; ϵ)
⋃

S(ξ, ω, ϵ),
we have

lim
ξ→0

lim
ω→0

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

[
qN(t)

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N(t

′|t)
]

∑
t∈aN (ξ,ω,ϵ) qN(t)

≥ 1− p.

112



Proof of Claim 21. To start, note that in this case, we have for all ξ > 0 that

lim
ϵ→0

lim
N→0

min
θj

max
t:|t|≤ξ

|θj − Eπ(·|t)[θ]| = 0.

Then for all t ∈ aN(ξ, ω, ϵ), there is some ϵ̄′(η, ξ) and N ′(η, ξ, ϵ) so that for all ϵ < ϵ̄′(η, ξ)
and N > N ′(η, ξ, ϵ), we have uσ∗

N
(t)− Eπ(·|t)[θ] ≥ η/3.

We know that

u− ω ≤ lim
N→∞

∑
t∈bN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈aN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ]∑

t∈bN (ξ,ω,ϵ) q(t) +
∑

t∈aN (ξ,ω,ϵ) q(t)

=

∑
θj
θjβ0(θj)G

j(µ̂j(u+ ω))∑
θj
β0(θj)Gj(µ̂j(u+ ω))

(A.14)

and

u+ ω ≥ lim
N→∞

∑
t∈bN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈aN (ξ,ω,ϵ)

[
q(t)Eπ(·|t)[θ]

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N(t

′|t)
]

∑
t∈bN (ξ,ω,ϵ) q(t) +

∑
t∈aN (ξ,ω,ϵ)

[
q(t)

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N(t

′|t)
]

= lim
N→∞

∑
θj
θjβ0(θj)G

j(µ̂j(u+ ω))−
∑

t∈aN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ]
∑

t′∈bN (ξ,ω,ϵ)(1− σ∗
N(t|t′))∑

θj
β0(θj)Gj(µ̂j(u+ ω))−

∑
t∈aN (ξ,ω,ϵ) q(t)

∑
t′∈bN (ξ,ω,ϵ)(1− σ∗

N(t|t′))
.

(A.15)

Then, just as in eq. A.13, we have when ϵ < ϵ̄′(η, ξ, ω) that

lim
N→∞

2ω

 ∑
t∈aN (ξ,ω,ϵ)

⋃
bN (ξ,ω,ϵ)

q(t)

− η

3
lim

N→∞

∑
t∈aN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N(t|t′)) ≥ 0.

Since there is some j such that ûj(ξ̃) = u, we have the bound

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

qN(t) ≥ β0(θj)[G
j(ξ̃)−Gj(ξ)].

So, we have that

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

[
qN(t)

∑
t′∈bN (ξ,ω,ϵ)(1− σ∗

N(t
′|t))

]
∑

t∈aN (ξ,ω,ϵ) qN(t)
≤ 2ω(1 + β0(θj)[G

j(ξ̃)−Gj(ξ)])

β0(θj)[Gj(ξ̃)−Gj(ξ)]η/3
.

This implies the claim.

Finally, we use these claims to prove the proposition.
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For any δ and ρ, there are ξ∗, ϵ∗ > 0 and N∗ such that for all ξ < ξ∗, ϵ < ϵ∗, N > N∗(ϵ, ξ),
and ω > 0, any t′ is in either BN(x,∆; ϵ) for some ∆ and x > ξ + ω, or in bN(ξ, ω, ϵ) if it is
at most a distance δ away from some t ∈ T with |uσ∗(t)− uσ∗

N
(t′)| ≤ ρ.

In particular, find l such that θl ≤ ū < θl+1, and then for any K we can construct the
collection of sets {

BN

(
ξ + ω + k

θl − (ξ + ω)

K
,
θl − (ξ + ω)

K
; ϵ

)}K−1

k=0

and{
BN

(
θj−1 + η + k

θj − η − (θj−1 + η)

K
,
θj − η − (θj−1 + η)

K
; ϵ

)}K

k=0

, for all j > l,

essentially partitioning the imitated senders by the payoffs they receive, into intervals that
are disjoint, cover all attained payoffs except [0, ξ + ω] and the intervals [θj − η, θj + η) and
are arbitrarily small as K → ∞.

Let C(N,K, ξ, ω, η; ϵ) be the collection that is the union of these collections, and also
includes, if condition 1 holds for η, the set bN(ξ, ω, ϵ). Call the elements of C(N,K, ξ, ω, η; ϵ)
by C1(N,K, ξ, ω, η; ϵ), . . . , CI(N,K, ξ, ω, η; ϵ).

Likewise, we can construct the collection of sets{
AN

(
ξ + ω + k

θl − (ξ + ω)

K
,
θl − (ξ + ω)

K
; ϵ

)}K−1

k=0

and{
AN

(
θj−1 + η + k

θj − η − (θj−1 + η)

K
,
θj − η − (θj−1 + η)

K
; ϵ

)}K

k=0

, for all j > l,

which are corresponding sets of imitating types; let D(N,K, ξ, ω, η; ϵ) be the collection
containing these as well as aN(ξ, ω, ϵ) if condition 1 holds for η. Call the elements of
D(N,K, ξ, ω, η; ϵ) by D1(N,K, ξ, ω, η; ϵ), . . . , DI(N,K, ξ, ω, η; ϵ).

The proposition follows from proving that the ex-ante probability that the sender imitates
some t′ that is in an element of C(N,K, ξ, ω, η; ϵ) converges to 1 in the large N limit and in
the limit as K → ∞ and ϵ, ω, ξ, η → 0.

To see this, first observe that, from the above two claims, if we define

LB(N,K, ξ, ω, η; ϵ) = min
i

Pr(mσ∗
N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)|t ∈ Di(N,K, ξ, ω, η; ϵ)),

then limξ→0 limω→0 limK→∞ limϵ→0 limN→∞ UB(N,K, ξ, ω, η; ϵ) = 1; note that this is a uni-
form bound over all i.
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Then, letting T denote a set of types that is an element of C(N,K, ξ, ω, η; ϵ), we have

Pr

mσ∗
N
(t) ∈ [

⋃
CN (K,ξ,ω,η;ϵ)

T ]

∣∣∣∣min
k

|uσ∗
N
(t)− θk| > η


≥

I∑
i=1

[
Pr
(
t ∈ Di(N,K, ξ, ω, η; ϵ)|min

k
|uσ∗

N
(t)− θk| > η

)
· Pr(mσ∗

N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)|t ∈ Di(N,K, ξ, ω, η; ϵ))

+ Pr(mσ∗
N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)

∣∣∣∣min
k

|uσ∗
N
(t)− θk| > η)

]

≥ Pr(t ∈
⋃

iDi(N,K, ξ, ω, η; ϵ))LB(N,K, ξ, ω, η; ϵ) + Pr(t ∈
⋃

i Ci(N,K, ξ, ω, η; ϵ))

Pr(mink |uσ∗
N
(t)− θk| > η)

.

(A.16)

Since limξ→0 limω→0 limK→∞ limϵ→0 limN→∞ PR(t ∈
⋃

i[Di(N,K, ξ, ω, η; ϵ)
⋃
Di(N,K, ξ, ω, η; ϵ)]) =

Pr(mink |uσ∗
N
(t)− θk > η), we have

lim
ξ→0

lim
ω→0

lim
K→∞

lim
ϵ→0

lim
N→∞

Pr(t ∈
⋃

iDi(N,K, ξ, ω, η; ϵ))LB(N,K, ξ, ω, η; ϵ) + Pr(t ∈
⋃

i Ci(N,K, ξ, ω, η; ϵ))

Pr(mink |uσ∗
N
(t)− θk| > η)

= 1

(A.17)

for all η, thus proving the proposition.
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Appendix B

for “Model (non)-disclosure in
supervisory stress tests"

B.0.1 Proofs of propositions

Lemma. Assume two random variables v, w are given such that v|w satisfies MLRP; that
is, if w1 > w2, f(v|w1)/f(v|w2) is increasing in v. Then w|v satisfies MLRP too.

(In words: if I get to see v first, upon seeing higher v, I expect a higher w. Then, if I get
to see w first, upon seeing higher w, I expect a higher w.)

Proof. For any v1 > v2 and w1 > w2, by v|w MLRP, we have f(v1|w1)/f(v1|w2) > f(v2|w1)/f(v2|w2).
Rearrange to obtain f(v1|w1)/f(v2|w1) > f(v1|w2)/f(v2|w2)

Then by Bayes rule (we use p to denote unconditional distributions), we have

f(w1|v1)
f(w1|v2)

=
f(v1|w1)p(w1)/p(v1)

f(v2|w1)p(w1)/p(v2)

=
f(v1|w1)

f(v2|w1)

p(v2)

p(v1)

>
f(v1|w2)

f(v2|w2)

p(v2)

p(v1)

=
f(v1|w2)p(w2)/p(v1)

f(v2|w2)p(w2)/p(v2)
=

f(w2|v1)
f(w2|v2)

Since this holds for any v1 > v2 and w1 > w2, w|v satisfies MLRP.

Proposition 9. Suppose the regulator can choose any information structure to partially
disclose its signal. Then the regulator can design a disclosure policy with infinitesimal noise
to approximate the “efficient investment" decision that incorporates both the information
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known by the regulator and the bank. Formally, for any ϵ > 0, the Fed can choose the stress
test (s∗, c) and a disclosure policy π such that the bank, after observing m will invest in the
risky asset if and only if sB ≥ sB∗(m, c), and this action satisfies

UPD = E[uF (ω)1sB≥sB∗ ] > UFB − ϵ

where UFB is the first-best utility of the regulator, and the expectation on the left-hand side
is the expected regulator’s utility (social welfare) under the partial disclosure policy, taken
over all signal and message realizations.

Proof. Fix an ϵ > 0; we claim that there exists a partial disclosure policy achieving utility
> UFB − ϵ. We proceed in the following steps.

Step 1. We approximate the signal space into a discrete space; with a close enough
approximation with large number of elements N , the distributions should converge to the
distribution in continuum, and the difference in ex-ante utility from the discrete signal space
and continuous signal space should differ by an infinitesimal amount.

Specifically, we assume that discrete signals dF , dB|ω are drawn from {s1, s2, · · · , s2N} ⊂
S, such that P (dF = si|ω) = P (sF ≤ si|ω) − P (sF ≤ si−1|ω), and the endpoints are
P (dF = s1|ω) = P (sF ≤ s1), P (dF = si|ω) = 1 − P (sF |ω), and analogously for sB

′. This
should naturally define the posterior distributions dF |dB and ω|dB. Define s0 = −∞ and
s2N+1 = +∞.

Moreover, we choose s1, · · · , sn such that the ex-ante probabilities max(P (dF ≤ sn), P (dB ≤
sn) < δ for some δ sufficiently small: the first n signals in the discrete space happen with
small probability. These correspond to ‘fail’ signals. We can choose sN+1, · · · , s2N arbitrarily,
as long as they converge to the continuous distribution as N → ∞. Let them be distributed
of equal probability.

Step 2. Define the “optimal bank threshold" under dF = sN+i for each i.

Specifically, for each i ∈ {1, 2, · · · , n}, given dF = sN+i, choose the smallest j for which
E[uF (ω)|dF = si, d

B = sj] ≥ 0. Then by monotonicity, this sj is the smallest bank’s signal
for which the regulator would like the bank to invest. Denote this sj = sB∗(sN+i): then by
definition, bank investing iff dB ≥ sB∗(dF ) is the first-best investment rule.

Step 3. We define the disclosure structure π : m|dF and the punishment threshold s∗ and
c as follows:

1. Define the threshold s∗ to be sn: banks fail the test and are punished iff dF ≤ sN . This
would guarantee ex-ante that only δ of the banks are punished.

2. Define the disclosure policy π as follows:

• Upon observing dF = si (i ≥ N + 1), send message m = si: reveal dF fully.
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• Upon observing dF = si (i < N), send message m = si with probability 1 − ϵi
and send m = sN+i with probability ϵi, where max[ϵi] < ϵ.

From this we immediately see that m = dF with ex-ante probability ≥ 1− ϵ.

3. For each i, choose c sufficiently large and ϵi < ϵ such that bank with signal dB =
sB∗(sN+i) and seeing message m = sN+i gets expected utility ϵ′ from investing in risky
asset; banks will never invest if seeing signal m ≤ sN .

The equation defining c, ϵi is

ϵ′ =E[uB(ω)|dB = sB∗(sN+i),m = sN+i]− cP [dF ≤ sN |dB = sB∗(sN+i),m = sN+i]

=P [dF = sN+i|dB,m = sN+i]E[uB(ω)|dB = sB∗(sN+i), d
F = sN+i]

+ P [dF = si|dB = sB∗(sN+i),m = sN+i]E[uB(ω)|dB = sB∗(sN+i), d
F = si]

− cP [dF = si|dB = sB∗(sN+i),m = sN+i]

Write q(ϵi) = P[dF = si|dB = sB∗(sN+i),m = sN+i]. This is the posterior probability that
a bank fails the test when it receives message m = sN+i and has signal sB∗(sN+i). Also write
ui1 = E[uB(ω)|dB = sB∗(sN+i), d

F = sN+i] and ui2 = E[uB(ω)|dB = sB∗(sN+i), d
F = si].

Then the above equation is simplified to:

ϵ′ = (1− q(ϵi))ui1 + q(ϵi)ui2 − q(ϵi)c

Now q(ϵi) is a continuous function on ϵi and q(ϵi) → 0 as ϵi → 0. So for sufficiently large
c, there is some q(ϵi) ≪ 1 that satisfy this equation, and we can set max ϵi < ϵ if c is large
enough.

Send ϵ′ → 0 first, the bank’s investment rule is: upon seeing m = sN+i, invest if and only
if dB ≥ sB∗(m) = sB∗(sN+i). Banks will be punished with probability δ; and d̄ and m are
identical with probability at least 1− ϵ.

As ϵ → 0 (and c → ∞), m = dF with probability almost 1, and the bank’s investment
rule dB ≥ sB∗(m) is identical to the first-best rule.
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Appendix C

for “Nondisclosure with conflicting
motives"

Proof of Theorem 10. First, since us(θ, x, ar) and ur(θ, ar) are continuous in all arguments,
as is h̃(θ|m), the expected utilities us(h̃(θ|m), x, ar) and ur(h̃(θ|m), ar) are also continuous
in all arguments. Since they are single-peaked, the peaks a∗r,s(h̃(θ|m), x) and a∗r,r(h̃(θ|m))
are continuous in m and x as well.

Lemma 21. Suppose that b(m|∅) is supported on a subset of [c, d]. Then a∗r,r(β(θ|c)) ≤
a∗r,r(β(θ|∅)) ≤ a∗r,r(β(θ|d)), with strict inequality if b(m|∅) is not a point mass.

Proof. Consider the derivative of the receiver’s expected utility with respect to their ac-
tion under message ∅ given that their belief is b(m|∅). At a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)), the
derivative should be 0. But, for any c′ < c or d′ > d,

∂

∂ar
ur(β(θ|∅), ar)

∣∣
a∗r,r(h̃(θ|c′))

=

∫
m

∂

∂ar
ur(h̃(θ|m), ar)|a∗r,r(h̃(θ|c′))b(m|∅)dm > 0,

∂

∂ar
ur(β(θ|∅), ar)

∣∣
a∗r,r(h̃(θ|d′))

=

∫
m

∂

∂ar
ur(h̃(θ|m), ar)|a∗r,r(h̃(θ|d′))b(m|∅)dm < 0,

and this is true even for c′ = c and d′ = d if β(θ|∅) is not a point distribution.

Fix a putative posterior, β(θ|∅), for the receiver given the empty message. Observe that
there is an posterior on m given ∅, which can be denoted b(m|∅), with support on a subset
of [m, m̄], and

β(θ|∅) =
∫
m

h̃(θ|m)b(m|∅)dm.
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Then a∗r,r(β(θ|∅)) ∈ [a∗r,r(h̃(θ|m)), a∗r,r(h̃(θ|m̄))] by Lemma 21. The crucial step in the
proof is to observe that, by intermediate value theorem, there exists m̂ ∈ [m, m̄] such that
a∗r,r(β(θ|∅)) = a∗r,r(h̃(θ|m̂)).

The following steps show that in equilibrium m̂ must induce senders to pool via nondis-
closure.

1. Fixing m̂, define the sets

Ā(m̂) := {(x,m) : a∗r,s(h̃(θ|m), x) > a∗r,r(h̃(θ|m̂))},

A(m̂) := {(x,m) : a∗r,s(h̃(θ|m), x) < a∗r,r(h̃(θ|m̂)).

2. Then define
B̄(m̂) := Ā(m̂))

⋂
{(x,m) : m < m̂},

B(m̂) := A(m̂))
⋂

{(x,m) : m > m̂}.

Both are the intersection of open sets, thus also open.

3. If (x,m) ∈ B̄(m̂)
⋃

B(m̂), then by single-peakedness the sender prefers a∗r,r(h̃(θ|m̂)) to
a∗r,r(h̃(θ|m)), and would like to withhold m instead of disclosing it.

4. Whenever B̄(m̂)
⋃

B̄(m) is nonempty, {m : (x,m) ∈ B̄(m̂)
⋃
B(m̂)} must therefore be

in the support of b(m|∅), and b(m|∅) has positive measure over it.

5. Because g(x) is not a point distribution, there always exists either x such that a∗r,s(h̃(θ|m̂), x) >

a∗r,r(h̃(θ|m̂)) or x such that a∗r,s(h̃(θ|m̂), x) < a∗r,r(h̃(θ|m̂)).

If m̂ ∈ (m, m̄), then the former implies that B̄(m̂) is nonempty, and the latter implies
B(m̂) is nonempty.

6. Alternatively, if m̂ = m̄ or m̂ = m, then BSB implies that B̄(m̂) or B(m̂) are nonempty,
respectively.

This suffices to show that all equilibria must feature pooling: there is a positive measure of
signals which senders, depending on their type, have a positive probability of withholding.

As an addendum to point 6, observe that if the receiver’s belief is represented by m̂ = m̄,
then the sender’s BR induces her to withhold some signals m < m̂, but no signals m > m̂
(since such signals do not exist), which is inconsistent with the original belief. A similar
observation holds if m̂ = m. Thus, in equilibrium it must be that m̂ ∈ (m, m̄). By Lemma
21, since b(m|∅) is not a singleton, it places positive probability on elements to either side
of m̂.

Finally, given m̂, there is at most one sender type that satisfies a∗r,s(h̃(θ|m̂), x) = a∗r,r(h̃(θ|m̂)).
Any type x with a∗r,s(h̃(θ|m̂), x) > a∗r,r(h̃(θ|m̂)) will withhold for some set of signals m < m̂,
and any x with a∗r,s(h̃(θ|m̂), x) < a∗r,r(h̃(θ|m̂)) will withhold for some m > m̂.
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Proof of Claim 12. Consider the case in which a∗r,r(h̃(m)) < a∗r,s(h̃(m), x) for all m. When-
ever m̂ < m, the sender prefers to send m, because a∗r,r(h̃(m̂)) < a∗r,r(h̃(m)) < a∗r,s(h̃(m), x).
However, whenever m̂ ̸= m, for every type x there exists a positive measure of m < m̂ such
that a∗r,r(h̃(m)) < a∗r,r(h̃(m̂)) < a∗r,s(h̃(m), x). Therefore, if m̂ ̸= m, all withholding occurs
for m < m̂, which gives a contradiction.

When m̂ = m, once again if m > m̂, no sender wishes to withhold. Thus, senders may
only withhold if m = m̂, which is consistent with m̂ representing the receiver’s posterior,
and results in full separation of signals.

Proof of Claim 13. This claim follows directly from the fact that, under MBM, whenever
the sender withholds, he withholds an interval of signals to one side or the other of m̂. The
sender cannot pool with other sender types, so if the sender attempts to withhold a nonempty
interval of signals, the receiver should, as part of their best response, nontrivially update
m̂. Thus, m̂ represents a fixed point of the two players’ strategies only if the sender never
withholds, which may be the case either when m̂ ∈ {m, m̄} or when m=(m̂, x) = m̂.1

Proof of Prop. 12. Since utilities are single-peaked, the sender weakly prefers to withhold
whenever m̂ is inside [m=(m,x),m] or [m,m=(m,x)].

Fix x. The breakeven message m=(m,x) is strictly increasing in m, so there is a single
signal M at which m=(x,M) = m̂. For all m < M , m=(m,x) < m̂; for all m > M ,
m=(m,x) > m̂. Thus, either M < m̂, and m̂ ∈ [m,m=(x,m)] iff m ∈ [M, m̂]; or, M > m̂,
and then m̂ ∈ [m=(x,m),m] iff m ∈ [m̂,M ].

1Visually, this is to say that m̂ must be either on one of the boundaries or at one of the nodes at which
m and m=(m,x) intersect in Figure 3.4a.
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