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ABSTRACT

Climate change stands as one of the most urgent challenge of our generation. Devastat-

ing floods in Pakistan, heartbreaking earthquakes in Turkey, and unprecedented wildfires

in Canada. For over a century, meteorology has traditionally relied on solving dynamical

equations; however, machine learning (ML) is now emerging as a transformative force. This

thesis explores how to use machine learning and optimization methods to address issues

around climate change adaptation and sustainable development.

The first part of the thesis centers around the development of multimodal machine learn-

ing frameworks for extreme weather forecasting. The multimodal ML approach integrates

diverse sources and modalities of data, including text-based language, images, tabular time

series, etc. We showcase the effectiveness of such an approach through two distinct case

studies in extreme weather forecasting: in Chapter 2, a short-term hurricane forecast with a

12-hour lead time, and in Chapter 3, a long-term flood risk assessment model. Our contri-

bution include the development of a generalizable multimodal ML framework to facilitate a

wide range of prediction tasks in the field of meteorology and beyond. Notably, our hurricane

forecasting models demonstrate performance comparable to the National Hurricane Center’s

top models for 24-hour intensity and track forecasts.
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ML-driven weather forecasting models offer two distinct advantages over traditional dynam-

ical models: significant reductions in computational time thus enabling real-time, location-

specific predictions, and the ability to develop long-term risk models for proactive disaster

mitigation rather than reactive responses. Therefore, in the second part of the thesis, we

delve into two application domains to envision the transformative force in addressing climate

change induced challenges. In Chapter 4, we introduce an Adaptive Robust Optimization

(ARO) framework for designing insurance policies, combining historical and anticipatory

risks obtained by machine learning models. In Chapter 5, we develop a real-time machine

learning framework for wind forecasting, aimed at adjusting factory production levels to

minimize air pollution and its impact on surrounding urban areas. In partnership with OCP

Group, the world’s largest phosphate producer, our algorithm is now fully integrated into

operational systems and reduces hazardous emission impact by 33-47% annually.

Thesis supervisor: Dimitris J. Bertsimas

Title: Associate Dean for the Master of Business Analytics

Professor of Operations Research
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Chapter 1

Introduction

Climate change stands as one of most urgent challenges of our generation. Globally, we are

exepriencing more extreme weather conditions in recent years: devastating floods in Pak-

istan, heartbreaking earthquakes in Turkey, and unprecedented wildfires in Canada. Miti-

gating measures to slow down the changing climate are critical, but how to adapt to a more

extreme climate regime is a pressing and critical problem our society confronts.

Central to climate adaptation efforts is the capacity to accurately predict weather condi-

tions, thereby enhancing preparedness. This pursuit dates back to the dawn of civilization.

Circa 340 B.C., the Greek philosopher Aristotle documented in his work Meteorologica early

theories on the formation of rain and clouds through the observation of weather patterns.

Fast forward to the early 20th century, with improved scientific understanding of the physical

laws governing earth’s atmosphere, the field of dynamical modeling was born and has ever

since been the primary method underlying modern meteorology. Today, meteorology is yet

undergoing another transformation with the integration of machine learning (ML), drawing

upon ancient pattern recognition methodologies enhanced by vast datasets and advanced

data processing techniques.

This thesis navigates the question of how machine learning and optimization methods can be

employed to foster adaptation, build resilience, and support sustainable development in the

context of climate change. We showcase various works where machine learning and optimiza-
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tion techniques have been applied to tackle climate adaptation and sustainability challenges.

Specifically, we have developed multimodal machine learning models that integrate diverse

data formats — ranging from imagery and textual data to tabular datasets — for weather

forecasting, covering both short-term hurricane forecasts and long-term extreme weather

risk models. The promising predictive capabilities of these ML models have the potential to

revolutionize numerous industries. For instance, we have designed an adaptive robust op-

timization framework for disaster insurance, incorporating ML-derived risks. Furthermore,

we have derived a data-driven operating scheme for weather-dependent industrial operations

in order to mitigate the impact of airborne pollutants from factories on surrounding urban

areas. Through these examples, the thesis highlights the transformative power of machine

learning in redefining industries through data-drieven decision-making processes.

1.1 Organization

Broadly speaking the thesis is organized into two categories: the methodological component

of multimodal machine learning and its the applications in addressing issues around climate

adaptation and sustainable development. The former proceeds by exploring the synthesis

of data from a variety formats and sources applied to forecast the weather, spanning from

tabular-based time series, image-based satellite data, and text-based language data. The

latter focuses on decision-making applications utilizing the novel machine learning driven

extreme weather forecasting models.

1.1.1 Multimodal Machine Learning

Multimodal learning is an intuitive way of making inference. Drawing on the analogy of

an ancient Indian parable depicted in Figure 1.1, where each blind man touches a different

part of an elephant and only through the holistic integration of their perceptions can they

form an accurate picture of the animal. This analogy underscores the essence of multimodal

machine learning, which integrates diverse insights from various sources and modalities to

enhance prediction processes. This section of the thesis seeks to explore how multimodal

machine learning can be leveraged to improve the forecasting capabilities of extreme weather
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events.

Broadly speaking, meteorological data is categorized into three main types: imagery based

satellite observation data, tabular time series historical data, and text based descriptive

data. In this part of the thesis, we showcase the effectiveness of a multimodal approach

through two distinct case studies in extreme weather forecasting: a short-term hurricane

forecast with a 12-hour lead time and a long-term flood risk assessment model. We delve

into various methods of integrating subsets of these data types and applying diverse data

processing techniques. These works affirm the feasibility and promise of leveraging machine

learning for predicting extreme weather events over both short and long durations. Moreover,

they highlight the superiority of multimodal approaches over single-modal machine learning

approach. The papers that compose this section are Hurricane Forecasting: A Multimodal

Machine Learning Approach [1] and Global Flood Prediction: A Multimodal Machine Learn-

ing Approach [2]. As climate change leads to more frequent natural disasters, we hope these

works would advance the role of machine learning in developing accurate and reliable risk

models.

Figure 1.1: Illustration of blind men touching an elephant.
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1.1.2 Applications around Climate Change Adaptation

Machine learning weather forecasting models offer two key advantages over traditional dy-

namical models: significant reductions in computational time — from hours to mere seconds

— thus enabling real-time, location-specific predictions, also known as "nowcasting", and

the ability to develop long-term risk models for proactive disaster mitigation rather than

reactive responses. These long-term risk models have the potential to revolutionize many

sectors, including infrastructure planning, insurance, urban development, and sustainable

energy management, among others.

Therefore, the latter part of this thesis is dedicated to exploring the application of innovative

machine learning-driven weather models to address issues around climate change adaptation

and sustainable development. The first work introduces an adaptive robust optimization

framework for catastrophe insurance that leverages long-term machine learning risk assess-

ments. The second work outlines a real-time machine learning framework for wind forecast-

ing, aimed at adjusting factory production levels to minimize air pollution and its impact

on surrounding urban areas. This project was conducted in collaboration with the OCP

group and has been implemented in their Safi manufacturing plant since December 2022.

The papers that compose this section of the thesis are Catastrophe Insurance: An Adaptive

Robust Optimization Approach [3] and Reducing Air Pollution Through Machine Learning

[4].

1.2 Structure and Contributions

A chapter by chapter description of the thesis is as follows:

Chapter 2 Introduces the multimodal machine learning model to hurricane forecasting.

The task comprises of 12-hour ahead forecasting for two tasks: intensity and track. Re-

sults suggest that machine learning approach produce highly comparable results to leading

dynamical models. The main advantage being short deployment time - once models are

trained, deployment take seconds with much less computational requirement.
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This is joint work with Léonard Boussioux, Théo Guénais, and Dimitris Bertimas, and

appears in Weather and Forecasting [1].

Chapter 3 Extends the multimodal machine learning approach to obtain long-term flood

risk models, and further incorporates language-based text description data. We combine

geographical information about locations through text data with tabular time series. The

work exhibits a generalizable approach to deploy machine learning models for long-term alert

system for extreme weathers, such as draughts, wildfires, etc.

This is joint work with Dimitris Bertsimas, and appears as a workshop paper in ICLR [2].

Chapter 4 Develops an adaptive robust optimization framework for catastrophe insurance

scheme. We construct robust uncertainty sets using machine learning driven risk models and

historical data. Results show that among tested optimization models, ARO models with con-

servative parameter values to achieve superiority in both effectiveness and efficiency. Overall,

this optimization approach offers versatility and generalizability, making it adaptable to a

variety of natural disaster scenarios, such as wildfires, droughts, etc.

This is joint work with Dimitris Bertsimas, and is under review at Management Science [3].

Chapter 5 Develops a near-term predictive-and-prescriptive framework to regulate in-

dustrial operations, that emits air-borne pollutants, through machine learning enhanced

near-term wind forecasting models. We have successfully implemented our framework in

collaboration with OCP Group’s phosphate production site near the city of Safi. Results

show that our machine learning algorithm significantly reduced forecasting errors, leading to

reduced air pollution impact as well as increased planning visibility.

This is joint work with Léonard Boussioux, Dimitris Bertsimas, and our industry collabora-

tors at OCP Group. The work is under review at MSOM [4].
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Chapter 6 Summarizes the major threads of the thesis and provides some closing remarks.
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Chapter 2

Hurricane Forecasting:

A Novel Multimodal Machine Learning

Framework

This chapter describes a novel machine learning (ML) framework for tropical cyclone in-

tensity and track forecasting, combining multiple ML techniques and utilizing diverse data

sources. Our multimodal framework, called Hurricast, efficiently combines spatial-temporal

data with statistical data by extracting features with deep-learning encoder-decoder archi-

tectures and predicting with gradient-boosted trees. We evaluate our models in the North

Atlantic and Eastern Pacific basins on 2016-2019 for 24-hour lead time track and intensity

forecasts and show they achieve comparable mean absolute error and skill to current opera-

tional forecast models while computing in seconds. Furthermore, the inclusion of Hurricast

into an operational forecast consensus model could improve over the National Hurricane

Center’s official forecast, thus highlighting the complementary properties with existing ap-

proaches. In summary, our work demonstrates that utilizing machine learning techniques to

combine different data sources can lead to new opportunities in tropical cyclone forecasting.
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2.1 Introduction

A tropical cyclone (TC) is a low-pressure system originating from tropical or subtropical

waters and develops by drawing energy from the sea. It is characterized by a warm core,

organized deep convection, and a closed surface wind circulation about a well-defined center.

Every year, tropical cyclones cause hundreds of deaths and billions of dollars of damage to

households and businesses [5]. Therefore, producing an accurate prediction for TC track and

intensity with sufficient lead time is critical to undertake life-saving measures.

The forecasting task encompasses the track, intensity, size, structure of TCs, and associated

storm surges, rainfall, and tornadoes. Most forecasting models focus on producing track

(trajectory) forecasts and intensity forecasts, i.e., intensity measures such as the maximum

sustained wind speed in a particular time interval. Current operational TC forecasts can

be classified into dynamical models, statistical models, and statistical-dynamical models

[6]. Dynamical models, also known as numerical models, utilize powerful supercomputers

to simulate atmospheric fields’ evolution using dynamical and thermodynamical equations

[7]. Statistical models approximate historical relationships between storm behavior and

storm-specific features and, in general, do not explicitly consider the physical process [8],

[9]. Statistical-dynamical models use statistical techniques but further include atmospheric

variables provided by dynamical models [10]. Lastly, ensemble models combine the forecasts

made by multiple runs of a single model [6]. Moreover, consensus models typically combine

individual operational forecasts with a simple or weighted average [6], [11]–[13].

In addition, recent developments in Deep Learning (DL) enable Machine Learning (ML) mod-

els to employ multiple data processing techniques to process and combine information from a

wide range of sources and create sophisticated architectures to model spatial-temporal rela-

tionships. Several studies have demonstrated the use of Recurrent Neural Networks (RNNs)

to predict TC trajectory based on historical data [14]–[16]. Convolutional Neural Networks

(CNNs) have also been applied to process reanalysis data and satellite data for track fore-

casting [17]–[19] and storm intensification forecasting [20], [21].
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This chapter introduces a machine learning framework called Hurricast (HUML) for both

intensity and track forecasting by combining several data sources using deep learning archi-

tectures and gradient-boosted trees.

Our contributions are three-fold:

1. We present novel multimodal1 machine learning techniques for TC intensity and track

predictions by combining distinct forecasting methodologies to utilize multiple indi-

vidual data sources. Our Hurricast framework employs XGBoost models to make

predictions using statistical features based on historical data and spatial-temporal fea-

tures extracted with deep learning encoder-decoder architectures from atmospheric

reanalysis maps.

2. Evaluating in the North Atlantic and Eastern Pacific basins, we demonstrate that our

machine learning models produce comparable results to currently operational models

for 24-hour lead time for both intensity and track forecasting tasks.

3. Based on our testing, adding one machine learning model as an input to a consensus

model can improve the performance, suggesting the potential for incorporating machine

learning approaches for hurricane forecasting.

The chapter is structured as follows: Section 2.2 describes the data used in the scope of

this study; Section 2.3 explains the operational principles underlying our machine learning

models; Section 2.4 describes the experiments conducted; Section 2.5 deals with conclusions

from the results and validates the effectiveness of our framework. Finally, Section 2.6 dis-

cusses limitations and future work needed for the potential operational deployment of such

ML approaches.
1Multimodality in machine learning refers to the simultaneous use of different data formats, including,

for example, tabular data, images, time series, free text, audio.
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2.2 Data

In this study, we employ three kinds of data dated since 1980: historical storm data, re-

analysis maps, and operational forecast data. We use all storms from the seven TC basins

since 1980 that reach 34 kt maximum intensity at some time, i.e., are classified at least as a

tropical storm, and where more than 60 h of data are available after they reached the speed

of 34 kt for the first time. Table 2.1 summarises the TCs distribution in each basin included

in our data.

Table 2.1: Number of TCs meeting our selection criteria from the dataset. We show for each
basin and storm category: from Tropical Storm (TS) to Hurricanes of category 1 to 5. We
also report the total number of 3-hour interval cases we used from each basin.

Basin TC Category Total TC Total Cases
TS 1 2 3 4 5

Eastern North Pacific (EP) 109 112 57 59 100 14 451 20,970
North Atlantic (NA) 108 96 46 42 46 17 355 18,468
North Indian (NI) 36 13 10 6 8 1 74 2,540
South Atlantic (SA) 1 1 0 0 0 0 2 16
Southwest Indian (SI) 179 96 73 71 28 0 447 25,538
Southern Pacific (SP) 117 76 38 45 15 1 292 13,319
Western North Pacific (WP) 422 240 158 128 29 1 978 53,148

All Basins 972 634 382 351 226 34 2,599 133,999

2.2.1 Historical Storm Data Set

We obtained historical storm data from the National Oceanic and Atmospheric Adminis-

tration through the post-season storm analysis dataset IBTrACS [22]. Among the available

features, we have selected time, latitude, longitude, and minimum pressure at the center

of the TC, distance-to-land, translation speed of the TC, direction of the TC, TC type

(disturbance, tropical, extra-tropical, etc.), basin (North-Atlantic, Eastern Pacific, Western

Pacific, etc), and maximum sustained wind speed from the WMO agency (or from the re-

gional agency when not available). Our overall feature choice is consistent with previous
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statistical forecasting approaches [10], [19], [23]. In this chapter, we will refer to this data as

statistical data (see Table 5.3).

The IBTrACS dataset interpolates some features to a 3-hour frequency from the original

6-hour recording frequency. It provides a spline interpolation of the position features (e.g.,

latitude and longitude) and a linear interpolation of the features not related to position

(wind speed, pressure reported by regional agencies). However, the WMO wind speed and

pressure were not interpolated by IBTrACS and we interpolated them linearly to match the

3-hour frequency.

We processed statistical data through several steps before inputting it into machine learning

models. First, we treated the categorical features using the one-hot encoding technique: for

a specific categorical feature, we converted each possible category as an additional binary

feature, with 1 indicating the sample belongs to this category and 0 otherwise. We encoded

the basin and the nature of the TC as one-hot features. Second, we encoded cyclical features

using cosine and sine transformations to avoid singularities at endpoints. Features processed

using this smoothing technique include date, latitude, longitude, and storm direction2.

We also engineer two additional features per time-step to capture first-order dynamical ef-

fects: the latitude and longitude displacements in degrees between two consecutive steps.

Finally, the maximum sustained wind speed feature reported can have different averaging

policies depending on the specific reporting agency: 1-minute for US basins and 10-minute

for other WMO Regional Specialized Meteorological Centres. We adjust all averaging time

periods to 1-minute by dividing the 10-minute values by 0.93 as recommended by [24].

2.2.2 Reanalysis Maps

In our work, we used the extensive ERA5 reanalysis data set [25] developed by the European

Centre for Medium-Range Weather Forecasts (ECWMF). ERA5 provides hourly estimates
2For example, we encoded the latitude value by cos(π · lat

180 ) and sin(π · lat
180 ) and the date value by

cos(2π · date
365 ) and sin(2π · date

365 ).
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Table 2.2: List of features included in our statistical data.

Feature Range Unit Type Processing Description
Latitude [-90.000,

90.000]
deg
north

numerical spline interpola-
tion by IBTrACS,
standardize

Latitude of the center of the hurri-
cane.

Longitude [-180.000,
180.000]

deg east numerical spline interpola-
tion by IBTrACS,
standardize

Longitude of the center of the hurri-
cane.

WMO
Wind

[10, 165] knots numerical linear interpola-
tion, conversion to
1-min, standard-
ize

Maximum sustained wind speed from
the WMO agency for the current lo-
cation.

WMO
Pressure

[880, 1022] mb numerical linear interpola-
tion, standardize

Wind pressure from the WMO
agency for the current location.

Distance
to Land

[0, 4821] km numerical standardize Distance to land from the current po-
sition. The IBTrACS land mask in-
cludes islands larger than 1400 km2.

Storm
Speed

[0, 69] knots numerical standardize Translation speed of the system as
calculated from the positions in lati-
tude and longitude.

Storm
Direc-
tion

[0, 360] deg numerical cosine & sine en-
coding

Translation direction of the system,
as calculated from the positions,
pointing in degrees east of north.

Storm
Displace-
ment
Latitude

[-2.68,
3.13]

deg numerical standardize Engineered feature, indicating lati-
tude change since the last time step
(3 hours ago).

Storm
Displace-
ment
Longi-
tude

[-3.83,
4.28]

deg numerical standardize Engineered feature, indicating longi-
tude change since the last time step
(3 hours ago).

Basin [NA, EP,
WP, NI,
SI, SP, SA]

N/A categorical one-hot encoding Basins include: NA - North Atlantic,
EP - Eastern North Pacific, WP -
Western North Pacific, NI - North In-
dian, SI - South Indian, SP - South-
ern Pacific, SA - South Atlantic

Storm
Type

[DS, TS,
ET, SS,
MX]

N/A categorical one-hot encoding Storm types include: DS - Distur-
bance, TS - Tropical, ET - Ex-
tratropical, SS - Subtropical, NR -
Not reported, MX - Mixture (contra-
dicting nature reports from different
agencies)
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of a large number of atmospheric, land, and oceanic climate variables. The data cover the

Earth on a 30km grid and resolve the atmosphere using 137 levels from the surface up to a

height of 80km.

We extracted (25° × 25°) maps centered at the storm locations across time, given by the

IBTrACS dataset described previously, of resolution 1°×1°, i.e., each cell corresponds to one

degree of latitude and longitude, offering a sufficient frame size to capture the entire storm.

We obtained nine reanalysis maps for each TC time step, corresponding to three different

features (geopotential height z, zonal component of the wind u, meridional component of

the wind v) at three pressure levels (225, 500, 700 hPa), as illustrated in Figure 2.1. We

chose the three features to incorporate physical information which would influence the TC

evolution, and this choice is motivated by previous literature in applying ML techniques to

process reanalysis maps [19], [20], [26].

As a remark, we acknowledge two main limitations from using reanalysis maps for TC

forecasting. First, since they are reanalysis products, they are not available in real-time

and thus significantly hinder operational use. Second, they have deficiencies in representing

tropical cyclones [27]–[29]; for instance, with large TC sizes particularly being underestimated

[29].

2.2.3 Operational Forecast Models

We obtained operational forecast data from the Automated Tropical Cyclone Forecasting

(ATCF) data set, maintained by the National Hurricane Center (NHC) [30], [31]. The

ATCF data contains historical forecasts by operational models used by the NHC for its

official forecasting for tropical cyclones and subtropical cyclones in the North Atlantic and

Eastern Pacific basins. To compare the performance of our models with a benchmark, we

selected the strongest operational forecasts with a sufficient number of cases concurrently

available: including DSHP, GFSO, HWRF, FSSE, and OFCL for the intensity forecast;

CLP5, HWRF, GFSO, AEMN, FSSE, and OFCL for the track forecast (see detailed list in

Table 2.3). We extracted the forecast data using the Tropycal Python package [32].
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Figure 2.1: Representation of the nine reanalysis maps repeatedly extracted for each time
step, corresponding to three different features (geopotential height z, zonal component of the
wind u, meridional component of the wind v) at three pressure levels (225, 500, 700 hPa).
Each map is of size 25◦×25◦, centered on the TC center location, and each pixel corresponds
to the average field value at the given latitude and longitude degree.

Table 2.3: Summary of all operational forecast models included in our benchmark.

Model ID Model name or type Model type Forecast
CLP5 CLIPER5 Climatology and Persistence Statistical (baseline) Track
Decay-SHIPS Decay Statistical Hurricane Intensity Statistical-dynamical Intensity

Prediction Scheme
GFSO Global Forecast System model Multi-layer global dynamical Track, Intensity
HWRF Hurricane Weather Research and Multi-layer regional dynamical Track, Intensity

Forecasting model
AEMN GFS Ensemble Mean Forecast Ensemble Track
FSSE Florida State Super Ensemble Corrected consensus Track, Intensity
OFCL Official NHC Forecast Consensus Track, Intensity
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2.3 Methodology

Our Hurricast framework makes predictions based on time-series data with different formats:

three-dimensional vision-based reanalysis maps and one-dimensional historical storm data

consisting of numerical and categorical features. The problem of simultaneously using dif-

ferent types of data is broadly known as multimodal learning in the field of machine learning.

Overall, we adopt a three-step approach to combine the multiple data sources. We first

extract a one-dimensional feature representation (embedding) from each reanalysis maps se-

quence. Second, we concatenate this one-dimensional embedding with the statistical data to

form a one-dimensional vector. Third, we make our predictions using gradient-boosted tree

XGBoost models [33] trained on the selected features.

At a given time step (forecasting case), we perform two 24-hour lead time forecasting tasks:

intensity prediction, i.e., predicting the maximum sustained wind speed at a 24-hour lead

time; and displacement prediction, i.e., the latitude and longitude storm displacement in

degrees between given time and forward 24-hour time. Figure 2.2 illustrates the three-step

pipeline.

To perform the feature extraction in Step 1, we have experimented with two computer vision

techniques to obtain the reanalysis maps embeddings: (1) encoder-decoder neural networks

and (2) tensor decomposition methods. The former is a supervised learning method; for each

input, we use an associated prediction target to train the network. On the other hand, tensor

decomposition is an unsupervised method; there is no specific labeled prediction target, and

instead, embeddings are drawn directly from the patterns within the data.
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Figure 2.2: Representation of our multimodal machine learning framework using the two data
sources: statistical and reanalysis maps. During Step 1, we extract embeddings from the
reanalysis maps. In particular, we use encoder-decoder architectures or tensor decomposition
to obtain a one-dimensional representation. During Step 2, we concatenate the statistical
data with the features extracted from the reanalysis maps. During Step 3, we train one
XGBoost model for each of the prediction tasks: intensity in 24 h, latitude displacement in
24 h, and longitude displacement in 24 h.

2.3.1 Feature Extraction

Encoder - Decoder Architectures

The encoder-decoder neural network architecture refers to a general type of deep learning

architecture consisting of two components: an encoder, which maps the input data into a

latent space; and a decoder, which maps the latent space embeddings into predictions. It is

well-suited to deal with multimodal data as different types of neural network layers can be

adapted to distinct modalities.

In our work, the encoder component consists of a Convolutional Neural Network (CNN), a

successful computer vision technique to process imagery data [34]–[36].

We compare two decoder variations. The first one relies on Gated Recurrent Units (GRU)

[37], a well-suited recurrent neural network to model temporal dynamic behavior in sequential
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data. The second one uses Transformers [38], a state-of-the-art architecture for sequential

data. While the GRU model the temporal aspect through a recurrence mechanism, the

Transformers utilize attention mechanisms and positional encoding [38], [39] to model long-

range dependencies.

First, we train the encoder-decoder architectures using standard backpropagation to update

the weights parameterizing the models [40], [41]. We use a mean squared error loss with

either an intensity or track objective and add an L2 regularization penalty on the network’s

weights. We then freeze the encoder-decoder’s weights when training is completed.

To perform feature extraction from a given input sequence of reanalysis maps and statis-

tical data, we pass them through the whole frozen encoder-decoder, except the last fully-

connected layer (see Figures 2.3 and 2.4). The second fully connected layer after the GRU

or the pooling layer after the Transformer output a vector of relatively small size, e.g.,

128 features, to compress information and provide predictive features. This vector consti-

tutes our one-dimensional reanalysis maps embedding that we extract from the initial 45,000

(8× 9× 25× 25) features forming the spatial-temporal input. The motivation is that since

the encoder-decoder acquired intensity or track prediction skills during training, it should

capture relevant reanalysis maps information in the embeddings. Using these internal fea-

tures as input to an external model is a method inspired by transfer learning and distillation,

generally efficient in visual imagery [42]–[45].

Figures 2.3 and 2.4 illustrate the encoder-decoder architectures. More details on all compo-

nents are given in Appendix.

Tensor Decomposition

We also explored tensor decomposition methods as a means of feature extraction. The

motivation of using tensor decomposition is to represent high-dimensional data using low

dimension features. We use the Tucker decomposition definition throughout this work, also

known as the higher-order singular value decomposition. In contrast to the aforementioned
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Figure 2.3: Schematic of our CNN-encoder GRU-decoder network for an 8-time step TC
sequence. At each time step, we utilize the CNN to produce a one-dimensional representation
of the reanalysis maps. Then, we concatenate these embeddings with the corresponding
statistical features to create a sequence of inputs fed sequentially to the GRU. At each
time step, the GRU outputs a hidden state passed to the next time step. Finally, we
concatenate all the successive hidden states and pass them through three fully connected
layers to predict intensity or track with a 24-hour lead time. We finally extract our spatial-
temporal embeddings as the output of the second fully connected layer.

neural network-based feature processing techniques, tensor decomposition is an unsupervised

extraction technique, meaning features are not learned with respect to specific prediction tar-

gets.

At each time step, we treated past reanalysis maps over past time steps as a four-dimensional

tensor of size 8× 9× 25× 25 (corresponding to 8 past time steps of 9 reanalysis maps of size

25 pixels by 25 pixels). We used the core tensor obtained from the Tucker decomposition

as extracted features after flattening it. We decomposed the tensor using the multilinear

singular value decomposition (SVD) method, which is computationally efficient [46].

The size of the core tensor, i.e., the Tucker rank of the decomposition, is a hyperparameter

to be tuned. Based on validation, the Tucker rank is tuned to size 3×5×3×3. More details
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Figure 2.4: Schematic of our CNN-encoder Transformer-decoder network for an 8-time step
TC sequence. At each time step, we utilize the CNN to produce a one-dimensional representa-
tion of the reanalysis maps. Then, we concatenate these embeddings with the corresponding
statistical features to create a sequence of inputs fed as a whole to the Transformer. The
Transformer outputs a new 8-timestep sequence that we average (pool) feature-wise and then
feed into one fully connected layer to predict intensity or track with a 24-hour lead time. We
finally extract our spatial-temporal embeddings as the output of the pooling layer.

on tensor decomposition methodology can be found in the Appendix.

2.3.2 Forecasting Models

During step 2, we concatenated features from relevant data sources to form a one-dimensional

input vector corresponding to each forecasting case.

First, we reshaped the statistical data sequence corresponding to the fixed window size of past

observations into a one-dimensional vector. Then, we concatenated it to the one-dimensional

reanalysis maps embeddings obtained with one of the feature extraction techniques.

During step 3, we used XGBoost models for the track and intensity forecasts. XGBoost
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is a gradient-boosted tree-based model widely used in the machine learning community for

superior modeling skills and efficient computation time. We compared several other machine

learning models during the experimentation phase, including Linear Models, Support Vec-

tor Machines, Decision Trees, Random Forests, Feed-forward Neural Networks, and found

XGBoost to be generally the most performing.

2.3.3 Summary of Models

This section lists all the forecast models tested and retained and summarizes the method-

ologies employed in Table 2.4.

Table 2.4: Summary of the various versions of the Hurricast framework for which we report
results. Models differ in architecture and data used and are named based on these two
characteristics.

N◦ Name Data Used ML Methods
1 HUML-(stat, xgb) Statistical XGBoost
2 HUML-(stat/viz, xgb/td) Statistical, Vision embeddings XGBoost, Feature extraction with tensor decomposition
3 HUML-(stat/viz, xgb/cnn/gru) Statistical, Vision embeddings XGBoost, Feature extraction with CNN, GRU
4 HUML-(stat/viz, xgb/cnn/transfo) Statistical, Vision embeddings XGBoost, Feature extraction with CNN, Transformers
5 HUML-ensemble Models 1-4 forecasts ElasticNet
6 HUML/OP-average Operational forecasts, Simple average

HUML-(stat/viz, xgb/cnn/transfo)

Models 1-4 are variations of the three-step framework described in Figure 2.2, with the vari-

ation of input data source or processing technique. Model 1, HUML-(stat, xgb), has the

simplest form, utilizing only statistical data. Models 2-4 utilize statistical and vision data

and are referred to as multimodal models. They differ on the extraction technique used

on the reanalysis maps. Model 2, HUML-(stat/viz, xgb/td), uses vision features extracted

with tensor decomposition technique. In contrast, Models 3 and 4 utilize vision features ex-

tracted with the encoder-decoder, with GRU and Transformer decoders, respectively. Model

5, HUML-ensemble is a weighted consensus model of Models 1 to 4. The weights given to

each model are optimized using ElasticNet. Model 6 is a simple average consensus of a few

operational forecasts models used by the NHC and our Model 4, HUML-(stat/viz, xgb/cn-

n/transfo). We use Model 6 to explore whether the Hurricast framework can benefit current

operational forecasts by comparing its inclusion as a member model.
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2.4 Experiments

2.4.1 Evaluation Metrics

To evaluate our intensity forecasts’ performance, we computed the mean absolute error

(MAE) on the predicted 1-minute maximum sustained wind speed in 24 hours, as provided

by the NHC for the North Atlantic and Eastern Pacific basins, defined as:

MAE :=
1

N

N∑
i=1

∣∣∣ytrue
i − ypred

i

∣∣∣ ,
where N is the number of predictions, ypred

i the predicted forecast intensity with a 24-hour

lead time and ytrue
i the ground-truth 1-min maximum sustained wind speed value given by

the WMO agency.

We computed the mean geographical distance error in kilometers between the actual position

and the predicted position in 24 hours to evaluate our track forecasts’ performance, using the

Haversine formula. The Haversine metric (see Appendix for the exact formula) calculates

the great-circle distance between two points — i.e., the shortest distance between these two

points over the Earth’s surface.

We also report the MAE error standard deviation and the forecast skills, using Decay-SHIPS

and CLP5 as the baselines for intensity and track, respectively.

2.4.2 Training, Validation and Testing Protocol

We separated the data set into training (80% of the data), validation (10% of the data), and

testing (10% of the data). The training set ranges from 1980 to 2011, the validation set from

2012 to 2015, and the test set from 2016 to 2019. Within each set, we treated all samples

independently.

The test set comprises all the TC cases between 2016 and 2019 from the NA and EP basins
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where the operational forecast predictions are concurrently available as benchmarks. We

compare all models on the same cases.

We use data from all basins during training and validation, but we only report performance

on the North Atlantic and Eastern Pacific basins, where we have operational forecast data

available.

The precise validation-testing methodology and hyperparameter tuning strategy are detailed

in Appendix.

2.4.3 Computational Resources

Our code is available at https://github.com/leobix/hurricast. We used Python 3.6 [47] and

we coded neural networks using Pytorch [48]. We trained all our models using one Tesla

V100 GPU and 6 CPU cores. Typically, our encoder-decoders trained within an hour, reach-

ing the best validation performance after 30 epochs. XGBoost models trained within two

minutes. When making a new prediction at test time, the whole model (feature extraction

+ XGBoost) runs within a couple of seconds, which shows practical interest for deployment.

The bottleneck lies in the acquisition of the reanalysis maps only. We further discuss this

point in Section 2.6.2.6.1.

2.5 Results

2.5.1 Standalone machine learning models produce a comparable

performance to operational models.

For 24-hour lead time track forecasting, as shown in Table 2.5, the best Hurricast model,

HUML-(stat/viz, xgb/cnn/transfo), has a skill with respect to CLP5 of 40% on the EP

basin. In comparison, HWRF has a skill of 45% and GFSO 46%. On the NA basin, HUML-

(stat/viz, xgb/cnn/transfo) has a skill of 46%, compared to 63% for HWRF and 65% for

GFSO.
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For 24-hour lead time intensity forecasting, as shown in Table 2.6, the multimodal Hurric-

ast models have a better MAE and lower standard deviation in errors than Decay-SHIPS,

HWRF, and GFSO in the EP basin. In particular, our best model, HUML-(stat/viz, xg-

b/cnn/transfo), outperforms Decay-SHIPS by 12% and HWRF by 3% in MAE. In the NA

basin, HUML-(stat/viz, xgb/cnn/transfo) underperforms Decay-SHIPS by 2% and HWRF

by 7% but has a lower error standard deviation.

These results highlight that machine learning approaches can emerge as a new methodology

to currently existing forecasting methodologies in the field. In addition, we believe there is

potential for improvement if given more available data sources.

Table 2.5: Mean absolute error (MAE), forecast skill with respect to CLP5, and standard
deviation of the error (Error sd) of standalone Hurricast models and operational forecasts
on the same test set between 2016 and 2019, for 24-hour lead time track forecasting task.
Bold values highlight the best performance in each category.

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 837 cases Comparison on 899 cases

MAE (km) Skill (%) Error sd (km) MAE (km) Skill (%) Error sd (km)
Hurricast HUML-(stat, xgb) 81 33 47 144 28 108
(HUML) HUML-(stat/viz, xgb/td) 81 33 47 140 30 108
Methods HUML-(stat/viz, xgb/cnn/gru) 72 40 43 111 45 79

HUML-(stat/viz, xgb/cnn/transfo) 72 40 43 109 46 71
Standalone CLP5 121 0 67 201 0 149
Operational HWRF 67 45 42 75 63 49
Forecasts GFSO 65 46 45 71 65 54

AEMN 60 50 37 73 64 55

Table 2.6: Mean absolute error (MAE), forecast skill with respect to Decay-SHIPS, and
standard deviation of the error (Error sd) of standalone Hurricast models and operational
forecasts on the same test set between 2016 and 2019, for 24-hour lead time intensity fore-
casting task. Bold values highlight the best performance in each category.

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 877 cases Comparison on 899 cases

MAE (kt) Skill (%) Error sd (kt) MAE (kt) Skill (%) Error sd (kt)
Hurricast HUML-(stat, xgb) 10.6 9.4 10.5 10.7 −4.9 9.3
(HUML) HUML-(stat/viz, xgb/td) 10.6 9.4 10.4 10.6 −3.9 9.2
Methods HUML-(stat/viz, xgb/cnn/gru) 10.3 12.0 10.0 10.8 −5.9 9.2

HUML-(stat/viz, xgb/cnn/transfo) 10.3 12.0 9.8 10.4 −2.0 8.8
Standalone GFSO 15.7 −34.2 14.7 14.2 -39.2 14.1
Operational Decay-SHIPS 11.7 0.0 10.4 10.2 0.0 9.3
Forecasts HWRF 10.6 9.4 11.0 9.7 4.9 9.0
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2.5.2 Machine learning models bring additional insights to consen-

sus models.

Consensus models often produce better performance than individual models by averaging out

errors and biases. Hence we conducted testing for two consensus models: HUML-ensemble is

the weighted average of all individual Hurricast variations; HUML/OP-consensus is a simple

average of HUML-(stat/viz, xgb/cnn/transfo) and the other standalone operational models

included in our benchmark.

As shown in Tables 2.7 and 2.8, HUML-ensemble consistently improves upon the best per-

forming Hurricast variation in terms of MAE, showcasing the possibility of building practical

ensembles from machine learning models.

Moreover, OP-average consensus is the equal-weighted average of available operational fore-

casts. We constructed the HUML/OP-average consensus with the additional inclusion of the

HUML-(stat/viz, xgb/cnn/transfo) model. Results show that the inclusion of our machine

learning model brings value into the consensus for both track and intensity tasks. In ad-

dition, HUML/OP-average produces lower MAE and standard deviation under our testing

scope than the NHC’s official forecast OFCL for 24-hour lead time.

In particular, in our 24-hour lead time testing scope, in terms of intensity MAE, HUML/OP-

average outperforms OFCL by 8% on the EP basin and 2% on the NA basin. In track MAE,

HUML/OP-average outperforms OFCL by 7% on the EP basin and 14% on the NA basin.

As a remark, we do not consider the computational time lag of operational model forecasts

in our experiments. Computational time varies and can take several hours for dynamical

models. Nevertheless, these results highlight the complementary benefits of machine learning

models to operational models.

44



Table 2.7: Mean absolute error (MAE), forecast skill with respect to CLP5, and standard
deviation of the error (Error sd) of consensus models compared with NHC’s official model
OFCL on the same test set between 2016 and 2019 for track forecasting task. Bold values
highlight the best performance in each category.

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 837 cases Comparison on 899 cases

MAE (km) Skill (%) Error sd (km) MAE (km) Skill (%) Error sd (km)
Hurricast HUML-(stat/viz, xgb/cnn/transfo) 72 40 43 109 46 71
Methods HUML-ensemble 68 44 41 107 47 76

Operational FSSE 56 54 47 69 66 53
Forecasts OFCL 54 55 33 71 65 56
Consensus OP-average consensus 55 55 37 64 68 48

Models HUML/OP-average consensus 50 59 32 61 70 42

Table 2.8: Mean absolute error (MAE), forecast skill with respect to Decay-SHIPS, and
standard deviation of the error (Error sd) of consensus models compared with NHC’s official
model OFCL on the same test set between 2016 and 2019 for intensity forecasting task. Bold
values highlight the best performance in each category.

Eastern Pacific Basin North Atlantic Basin
Model Type Model Name Comparison on 877 cases Comparison on 899 cases

MAE (kt) Skill (%) Error sd (kt) MAE (kt) Skill (%) Error sd (kt)
Hurricast HUML-(stat/viz, xgb/cnn/transfo) 10.3 12.0 9.8 10.4 -2.0 8.8
Methods HUML-ensemble 10.2 12.8 9.9 10.2 0.0 8.9

Operational FSSE 9.7 17.1 9.5 8.5 16.7 7.8
Forecasts OFCL 10.0 14.5 10.1 8.5 16.7 8.1
Consensus OP-average consensus 9.6 17.9 9.7 8.5 16.7 7.9

Models HUML/OP-average consensus 9.2 21.4 9.0 8.3 18.6 7.6

2.5.3 A multimodal approach leads to more accurate forecasts than

using single data sources.

As shown in Tables 2.5 and 2.6, for both track and intensity forecasts, multimodal models

achieve higher accuracy and lower standard deviation than the model using only statistical

data.

The deep-learning feature extraction methods outperform the tensor-decomposition-based

approach. This is not surprising as our encoder-decoders trained with a supervised learning

objective, which means extracted features are tailored for the particular downstream pre-

diction task. Tensor decomposition is, however, advantageously label-agnostic but did not

extract features with enough predictive information to improve the performance.
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2.6 Limitations and Extensions

2.6.1 The Use of Reanalysis Maps

A significant limitation of reanalysis maps is the computation time for construction, as they

are assimilated based on observational data. Thus, although our models can compute fore-

casts in seconds, the dependence on reanalysis maps is a bottleneck in real-time forecasting.

Therefore, a natural extension for effective deployment is to train our models using real-time

observational data or field forecasts from powerful dynamical models such as HWRF. Since

dynamical models are constantly updated with improved physics, higher resolution, and

fixed bugs, reforecast products (e.g., [49]) should be well-suited for training our encoder-

decoders. Nevertheless, we hope our framework could provide guidance and reference to

build operational machine learning models in the future.

2.6.2 Incorporate Additional Data

Under the scope of this work, we used nine reanalysis maps per time step, corresponding to

the geopotential height (z), the zonal (u) and meridional (v) component of the wind fields

from three pressure levels. One natural extension is to include additional features, such

as the sea-surface temperature, the temperature, and the relative humidity, and include

information from more vertical levels to potentially improve model performance.

In addition, one could include more data sources, such as satellite and radar data. Notably,

we highlight the flexibility of our framework that can easily incorporate new data: we can

adopt different feature extraction architectures and then append or substitute extracted

features in the XGBoost forecasting model accordingly.

2.6.3 Longer-Term Forecasts

We conducted our experiments for 24-hour lead time predictions to demonstrate the poten-

tial of ML techniques in hurricane forecasting tasks. However, experiments on longer-term

forecasts are needed before deploying such approaches. For example, the official NHC fore-
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cast provides guidance for up to 5 days. Nevertheless, our framework can be extended to

longer lead-time forecasts. In particular, we recommend extending the input window size

(from current 24-hour) as our models can process arbitrary long input sequences.

2.7 Conclusion

This study demonstrates a novel multimodal machine learning framework for tropical cyclone

intensity and track forecasting utilizing historical storm data and meteorological reanalysis

data. We present a three-step pipeline to combine multiple machine learning approaches,

consisting of (1) deep feature extraction, (2) concatenation of all processed features, (3)

prediction. We demonstrate that a successful combination of deep learning techniques and

gradient-boosted trees can achieve strong predictions for both track and intensity forecasts,

producing comparable results to current operational forecast models, especially in the in-

tensity task. We acknowledge that the unavailability of real-time reanalysis data poses a

challenge for operational use, and suggest future work to extend our framework with other

operational data sources.

We demonstrate that multimodal encoder-decoder architectures can successfully serve as a

spatial-temporal feature extractor for downstream prediction tasks. In particular, this is

also the first successful application of a Transformer-decoder architecture in tropical cyclone

forecasting.

Furthermore, we show that consensus models that include our machine learning model could

benefit the NHC’s official forecast for both intensity and track, thus demonstrating the po-

tential value of developing machine learning approaches as a new branch methodology for

tropical cyclone forecasting.

Moreover, once trained, our models run in seconds, showing practical interest for real-time

forecast, the bottleneck lying only in the data acquisition. We propose extensions and guid-

ance for effective real-world deployment.
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In conclusion, our work demonstrates that machine learning can provide valuable additions

to the field of tropical cyclone forecasting. We hope this work opens the door for further use

of machine learning in meteorological forecasting.
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Chapter 3

Global Flood Prediction:

A Multimodal Machine Learning

Approach

This chapter presents a novel multimodal machine learning approach for multi-year global

flood risk prediction, combining geographical information and historical natural disaster

dataset. Our multimodal framework employs state-of-the-art processing techniques to ex-

tract embeddings from each data modality, including text-based geographical data and

tabular-based time-series data. Experiments demonstrate that a multimodal approach, that

is combining text and statistical data, outperforms a single-modality approach. Our most

advanced architecture, employing embeddings extracted using transfer learning upon Distil-

Bert model, achieves 75%-77% ROCAUC score in predicting the next 1-5 year flooding event

in historically flooded locations. This chapter demonstrates the potentials of using machine

learning for long-term planning in natural disaster management.

3.1 Introduction

A disastrous flood in 2022 left one third of the land in Pakistan underwater for over four

months, affecting 33 million people in the country and causing over 30 billion US dollars of

damage [50]. Globally, floods cost billions of dollars each year and inflict massive damage to
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human life, infrastructure, agriculture, and industrial activities. Most concerningly, studies

suggest climate change impacts lead to drastically increasing flooding risks globally in both

frequency and scale [51], [52]. Therefore, it is crucial to develop both short-term and long-

term predictions for flood events to mitigate damage.

Most established models for flood prediction use physical models to simulate hydrological

dynamics. [53] provides a technical review of large-scale hydrodynamical models employed

in various continents. The most advanced models take into consideration terrain data, water

flow data, river networks [54]. To combine insights from individual models and reduce er-

rors, most forecasting agencies, such as the pan-European Flood Awareness System (EFAS),

employ an ensemble of predictions across many individual hydrological models to produce

probabilistic forecasts [55].

Physical models dominate short-term flood prediction space; however, they lack forecasting

capabilities for a longer horizon due to escalating simulation errors. To address this need,

machine learning can emerge as a powerful tool to offer a predictive perspective. [56] provides

an extensive literature review on the recent ML approaches. Most early works of machine

learning approaches are based on a single modality of data, such as rainfall and water level

data [57]–[59], or remote-sensing dataset such as satellite and radars to capture real-time

high resolution rain gauges [54], [60]. Multimodal machine learning, referring to models that

employ more than one modality of data such as tabular, imagery, text, or other formats, have

been recently applied for flood detection purposes. For instance, [61] combines hydrological

information with twitter data to detect and monitor flood.

This chapter presents a multimodal machine learning approach combining for global multi-

year flood prediction. To the best of our knowledge, this is the first machine learning flood

prediction model at the global scale and on a multi-year horizon. In addition, it is the

first time text-based data has been applied to flood prediction. Our main contributions are

three-fold:

1. A novel multimodal framework to incorporate text-based geographical information

to complement time-series statistical features for global flood prediction. We employ
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state-of-the art large natural language processing techniques, including fine-tuning and

transfer learning on pre-trained BERT models.

2. Our experiments show strong results for multi-year flood risk forecasting, with the

strongest model achieving 75%-77% ROCAUC score in the next 1-5 year flooding pre-

diction. In addition, we show that multimodal models, combining text with statistical

data, outperform single-modal models using only statistical data.

3. Our framework can be generalised to other natural disaster forecasting tasks such as

the wildfires, earthquakes, droughts, and extreme weather events. Thus, this chapter

suggests a promising direction in long-term preparation for natural disaster manage-

ment.

3.2 Data

Historical Flood Data. We use the Geocoded Disasters (GDIS) dataset, which includes

geocoded information on 9,924 unique natural disasters occurred globally between 1960 and

2018 [62]. In addition, we linked this dataset with the EM-DAT dataset to add additional

economic information such as damage estimation [63]. Natural disasters include floods,

storms (typhoons, monsoons etc.), earthquakes, landslides (wet and dry), droughts, volcanic

activity and extreme temperatures events. Floods account for 43% of all the incidents in

this dataset, followed by storms at 29%, and earthquakes at 11%. Detailed distribution can

be found in table 3.1 below.

In this project, we restrict forecasting locations to those with historical flooding event. We

use the date, latitude, longitude, location (given as the name of the location), and if available,

damage cost from this dataset. We divide the earth into 1◦ by 1◦ grid, corresponding to about

100km by 100km squares. Using the latitude and longitude information, we compute a ‘grid

id’ for each natural disaster from the GDIS dataset. Overall, there are 2852 unique grid

locations in the dataset with a recorded historical natural disaster.
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Table 3.1: Distribution of each natural disaster as a percentage of total disaster incidents in
the dataset across from all years.

Natural Disaster Percentage
Flood 0.430
Storm 0.290

Earthquake 0.110
Landslide 0.060

Extreme temperature 0.050
Drought 0.040

Volcanic activity 0.020

Geographical Data. To incorporate the geographical information of each location, we

use open-source Wikipedia website’s Geographical section, which contain text-based geo-

graphical description of certain areas, as shown in Figure 3.1 as an example for the ‘Boston’

Wikipedia page. To obtain the geographical information, we use the ‘location’ data from

the GDIS dataset for each grid id, then use the Wikipedia-API to obtain the text from the

Geographical section for each location [64]. To deal with the noise in the data, since some

locations have different names on Wikipedia, we search over synonyms for each location. For

those location Wikipedia pages without Geography section, we use the Summary section.

Among 2852 unique grid ids, we collected text-based information for 2775 grid ids, and fill

the remainder grid ids as ‘missing’.

Figure 3.1: Example ‘Geography’ section of the Boston Wikipedia page.

3.3 Methodology

The overall goal is to predict next 1 to 5 years of flood risk using a multimodal approach.

The framework adopts a three-step approach to combine distinct data formats and sources.
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Figure 3.2 illustrates the overall three-step framework. More details of the training and

testing protocol can be found in the Appendix.

1. We gather different sources and modalities of data, which are a) tabular-based historical

natural disaster data and b) text-based geographical data from Wikipedia pages.

2. We perform feature processing individually for each data modality, and obtain a one-

dimensional feature representation (embeddings) respectively.

3. We concatenate feature embeddings from different modalities and perform feature sec-

tions, before making next-N-year flood event predictions using gradient boosted tree

(XGBoost) models for binary classification task. Prediction target 1 indicates a flood

in the next N years, 0 otherwise.

Historical Flood Data
(Statistical)

Geographical Data
(Text)

Statistical Feature 
Engineering

Transformer-Based 
Embedding Extraction

Concatenation in Feature Space

Downstream Prediction: next N years of flooding risk

Step I

Step II

Step III

Text-Processing Architectures:
1. Pre-trained DistilBert
2. Fine-tuned DistilBert
3. Transfer-learning on DistilBert 

+ dimensionality reduction

Downstream Prediction Models

Figure 3.2: Three-step framework to combine statistical data with text-based data. The
transformer-based text data embedding extraction contains three types of architectures.

3.3.1 Statistical Feature Processing

We use the GDIS dataset to process historical statistics of natural disasters. In particular, for

each grid id, we aggregate statistical features into yearly basis uisng only the current year’s

natural disaster statistics. In particular, we summarize the ‘count’ ‘binary’ and ‘damage

cost’ feature during the year for each natural disaster: ‘flood’, ‘storm’, ‘earthquake’, ‘extreme

temperature’, ‘landslide’, ‘volcanic activity’, ‘drought’, ‘mass movement (dry)’. The ‘damage

cost’ feature corresponds to the insurance amount claimed by the natural disaster, which is
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intended as a proxy to reflect the severity of the natural disaster. In total, the statistical

features contain 24 features. Additionally, we record the ‘year’ feature as numerical feature.

3.3.2 Text Feature Processing

For each location, we use the Geography section from the Wikipedia page using the location

name. This information is given as text, and each location is associated with a paragraph of

geographical information description. Under the scope of this chapter, we experiment with

pre-trained large language model DistilBert, a distilled version of the BERT model, which

offers good performance whilst faster to train and fine-tune [65]. The two main challenges

are: a) DistilBert model is trained on a large set of generic texts, whilst we would like to

adapt it to encode geographical information specifically; b) feature extraction is performed

on a token-by-token basis, whilst we require embeddings corresponding to a paragraph of

sentences. In summary, we experiment with three distinct architectures.

1. The original DistilBert. As proposed by [66], we use the second last layer of hidden

states and taking the average of embedding tokens across from all words in the sentence

to obtain the paragraph embedding.

2. Fine-tuned version of the DistilBert model. We fine-tune the DistilBertForSequence-

Classification model using binary classification labels with 1 indicating the location has

more than two historical floods, and 0 indicating the location has less or equal to two

historical floods. The motivation is to fine-tune DistilBert embeddings specifically for

flood prediction. Then we pool token embeddings by taking the average of the second

last layer.

3. Transfer learning and dimensionality reduction. We add an additional linear layer of

dimension (796, 32) with a sigmoid activation function. The classification labels are

the same as in the second approach, and we use the 32 vector as extracted embeddings.

During the training process, parameters from the pre-trained model are frozen, and the

training only learns parameters from the linear layer. Similarly as above, we compute

paragraph embeddings by taking the average of the 32-vector embeddings for each

token.
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Model Description
Baseline Predicts the next N years of flood outcome as the same

current year flood outcome. I.e., if there is a flood oc-
curring at the forecasting year, then the model predicts
1 for the forecasting year.

Statistical Using only statistical features processed using the GDIS
dataset, and we experiment with XGBoost and Logistic
Regression as downstream classi

DistilBert Avg Using the pre-trained DistilBert model, and taking the
average embedding of the second last layer across all to-
kens to form paragraph embedding, contactenated with
statistical features.

Finetune Avg Using the fine-tuned version of DistilBert model, taking
the average embedding of the second last layer across
all tokens to form paragraph embedding, contactenated
with statistical features.

Transfer Learning Using the transfer learning and dimensionality reduc-
tion architecture, taking the average embedding of the
32-dimension embedding across all tokens to form para-
graph embedding, contatenated with statistical fea-
tures.

Table 3.2: A list of all models experimented within the scope of this chapter, models defer
in data sources and architectures.

3.4 Training and Testing Protocol

In Step II, for the fine-tuning and transfer learning of transformer-based feature extraction

models, we split the text dataset (which contains 2852 locations with associated Wikipedia

text data) into training and validation set with 70% randomly selected samples as the train-

ing set. Models are trained using SGD with Adam optimiser. Both fine-tuning and transfer

learning are trained on 3 epochs.

In Step III, for the training and testing of the downstream binary classification task of flood-

ing risk, we separate the data into 70% training and 30% testing. For each model, we perform

3-fold cross validation on the grid search to perform hyperparameter tuning with AUC score

as the scoring metric. we record the following evaluation merics: accuracy, balanced accu-
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racy, ROCAUC score, and F1 score.

Finally, prediction targets are constructed using the GDIS datasets, which records all major

flood between 1960 - 2019 globally. For each grid id for a particular year, we process the

current year information from the GDIS dataset combined with geographical text-based in-

formation, and predict next 1-5 years of flooding risk. Since there is no historical dependence

in each sample, we shuffle and split the entire dataset into training (70%) and testing (30%).

The training and fine-tuning of DistilBert models are conducted on Google Colab with 1

GPU computing power. The training and parameter search on classification tasks are con-

ducted using the MIT SuperCloud cluster with 1 GPU computing power [67].

As a remark, due to the rarity of natural disaster occurrence, we face a significant data

imbalance challenge: the majority of the grids would not have a flood incidence and, thus,

the positive prediction case is less than 0.1% for the entire dataset. To address this issue, we

filter to select grid ids with at least 2 historical flood incidents, and perform prediction tasks

on those selected grid ids. This filtering criterion is based on the assumption that some grid

locations are not prone to flooding risk. Among 2852 unique grids, 881 grids are selected.

3.5 Results

Table 3.2 lists out all models deferring in architectures and data sources experimented under

the scope of this chapter. Table 3.3 contains out-of-sample binary classification performance

from various models for the next 1,2,5 year flood prediction horizon on the selected 818 grid

locations. In summary, a multimodal approach demonstrates the strongest performance,

achieving 70% - 75% ROCAUC score. Training and testing sets are randomly selected at

70% and 30%.

We construct a deterministic baseline model which predicts the next N years of flood outcome

as the same current year flood outcome. This approach aims to mark previously flooded re-
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gion as high risk, which is similar to the flood risk mapping procedure employed by agencies

such as FEMA.

Due to high class imbalance, metrics such as ROCAUC and balanced accuracy scores are

more objective than accuracy scores in evaluating prediction capabilities. We observe that

a single-modality model employing only statistical features outperforms the baseline model

by around 35% in ROCAUC score and around 25% in balanced accuracy, underperforms the

baseline by around 23% in accuracy score. Among multimodal approaches, the strongest

architecture combines statistical features with text features obtained using transfer learning

upon DistilBert model. This architecture improves upon the baseline model by around 42%

in ROCAUC score, 25% in balanced accuracy,and underperforms the baseline by around 13%

in accuracy score. Finally, other multimodal architectures, such as using directly pre-trained

DistilBert or finetuned DistilBert does not improve the performance from a single-modality

approach.

Among multimodal models which employ additional text data, features obtained using trans-

fer learning and dimensionality reduction layer gives the most performing results, improve

around 5% across various evaluation metrics from the baseline statistical model.

In general, we observe that adding pre-trained DistilBert embeddings does not show an

imporvement on the model performance. Finetuning is helpful in obtaining more meaningful

embedding towards the flood prediction task.

3.6 Conclusion

This chapter presents a multimodal machine learning framework for global flood risk forecast-

ing combining statistical natural disaster dataset with text-based geographical information.

We have employed state-of-the-art natural language processing tools to encode geographical

information given by text-based data from Wikipedia. And the multimodal framework pro-

posed can successfully extract information from text data to complement statistical data. In
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Horizon Metric Baseline Statistical Multimodal
(N=26) DistilBert (N=795) Finetune (N=795) Transfer (N=61)

1-year

rocauc 0.544 0.742 0.734 0.758 0.772
f1 0.545 0.519 0.527 0.554 0.558
acc 0.895 0.707 0.747 0.783 0.783

acc balanced 0.544 0.681 0.640 0.664 0.675

2-year

rocauc 0.534 0.726 0.724 0.756 0.764
f1 0.536 0.502 0.525 0.559 0.560
acc 0.889 0.664 0.742 0.782 0.781

acc balanced 0.534 0.676 0.627 0.664 0.668

5-year

rocauc 0.539 0.715 0.726 0.749 0.767
f1 0.541 0.501 0.522 0.545 0.557
acc 0.892 0.668 0.724 0.758 0.764

acc balanced 0.539 0.664 0.641 0.658 0.682

Table 3.3: Out-of-sample performance for the next 1,2,5 years of flood risk prediction task.
Baseline model predicts the same outcome as current year outcome. Multimodal models
employs statistical features and text embeddings extracted using various architectures. We
record the number of total features employed (N) in each approach given in brackets. We
report ROCAUC score, accuracy, F1 score, and balanced accuracy.

particular, transfer learning based on DistilBert models shows strong results in forecasting

capabilities. As a remark, this chapter only experiments with flood prediction, the general

framework could be applied to other natural disaster forecasting tasks such as the wildfires,

earthquakes, droughts, extreme weather events. This work shows promising experimental

results in the strong performance of a machine learning approach towards flood risk fore-

casting. With further work and more experimentation, a machine learning approach could

emerge as a powerful means for medium-to-long term natural disaster risks forecasting.

3.6.1 Future Work

The demonstrated effectiveness of the multimodal machine learning approach in flood pre-

diction not only highlights its current successes but also paves the way for expansive future

research and development. The potential areas for this continued exploration include:

• Bringing additional insights from hydrological models and other physically based mod-

els. Since flooding is by nature a physical phenomenon, I would like to incorporate

further climate and hydrological features into the model. I intend to apply time-series

techniques to process these temporal features.

• Incorporate radar and remote sensing data to include more granular climate-related
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features. In intend to employ computer vision processing techniques to process imagery

based data, and investigate imagery as an additional modality to the data sources.

• Interpretability and explainability of the models and features. I intend to conduct

some analysis into understanding which features are related to flooding risks, which

could serve to improve the credibiltiy of machine learning models and provide valuable

insights for monitoring purposes.

• Finally, a useful extension of work is to use global dataset to train local models to

perform near-term prediction. Long-term models are useful for resource allocation

purposes. Near-term forecasting models can be valuable for local agencies to alert

stakeholders and undertake life-saving actions.
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Chapter 4

Catastrophe Insurance Pricing:

An Adaptive Robust Optimization

Approach

The escalating frequency and severity of natural disasters, exacerbated by climate change,

underscore the critical role of insurance in facilitating recovery and promoting investments

in risk reduction. This chapter introduces a novel Adaptive Robust Optimization (ARO)

framework tailored for the calculation of catastrophe insurance premiums, with a case study

applied to the United States National Flood Insurance Program (NFIP). To the best of our

knowledge, it is the first time an ARO approach has been applied to for disaster insurance

pricing. Our methodology is designed to protect against both historical and emerging risks,

the latter predicted by advanced machine learning models, thus directly incorporating am-

plified risks induced by climate change. Using the US flood insurance data as a case study,

optimization models demonstrate effectiveness in covering losses and produce surpluses, with

a smooth balance transition through parameter fine-tuning. Among tested optimization

models, results show ARO models with conservative parameter values to achieve superiority

in both effectiveness and efficiency. Overall, the optimization framework offers versatility

and generalizability, making it adaptable to a variety of natural disaster scenarios, such as

wildfires, droughts, etc. this chapter not only advances the field of insurance premium mod-

eling but also serves as a vital tool for policymakers and stakeholders in building resilience
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Figure 4.1: Number of major disasters globally since 1900, maintained by the EM-DAT
database [63]. A disaster is defined as an event which overwhelms local capacity, necessitating
a request to the national or international level for external assistance. Disasters include:
flood, storm, earthquake, drought, landslide, extreme temperature, wildfire, volcanic activity,
mass movement (dry), glacial lake outburst, fog, etc.

to the growing risks of natural catastrophes.

4.1 Introduction

Global climate change causes serious consequences in climate variability and weather ex-

tremes, which could lead to more frequent and costly natural disasters worldwide [68]. As

shown in Figure 4.1, the number of disasters worldwide has increased tremendously during

the last decades. Enhanced risks for catastrophic events, such as tropical cyclones, draughts,

floods, heatwaves, can inflict severe damage and losses on individuals, businesses, commu-

nities, and the entire society. It is crucial to mitigate disaster risks and facilitate climate

change adaptation [69]. The International Panel on Climate Change (IPCC) has empha-

sized the need for financial instruments for disaster risk management and climate change

adaptation [70]. Catastrophe insurance emerges as a crucial risk management tool, offering

financial support in recovery and incentivizing investments for mitigating efforts.
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Catastrophe insurance, also known as disaster insurance, focuses on large-scale, low-frequency

events that have the potential to cause widespread damage. This form of insurance typically

covers disasters such as hurricanes, earthquakes, floods, terrorist acts, and pandemics. The

rarity of such catastrophic events complicates the insurance process, as traditional actuarial

methods fall short, often due to a lack of comprehensive historical data. Compounding this

challenge, climate change is leading to more regular and destructive climate-related catastro-

phes, which traditional reliance on historical data alone tends to underestimate. In contrast

to conventional insurance policies that spread risks across insured individuals, catastrophe in-

surance confronts a temporal problem of matching of regular influx of annual premiums with

the irregular and unforeseeable distribution of payouts for losses. In the United States, catas-

trophe insurance has historically been managed predominantly through national programs.

The National Flood Insurance Program (NFIP), for example, is the principal provider for

flood insurance in the country, covering more than 95% of the underwriting risks [71]. How-

ever, the NFIP’s actuarial effectiveness has been the subject of scrutiny, with the program

operating at a significant deficit—19 billion US dollars as of 2023—highlighting the need

for reform in the structuring of such insurance schemes [72]. The entry of private insurers

into the catastrophe coverage market has been deemed crucial, yet the inherent complexi-

ties associated with rare events have led to minimal participation from private entities [73].

Indeed, many private insurers are withdrawing from regions deemed “uninsurable", due to

escalating risks from climate change [74].

In this work, we present an Adaptive Robust Optimization (ARO) framework for catastrophe

insurance premium pricing designed to protect against uncertain losses. To the best of our

knowledge, this is the first work using an ARO approach to set disaster insurance premiums.

We develop the framework and implement it to flood insurance using the National Flood

Insurance Program (NFIP) data. The main contributions are three-fold:

• We introduce a Robust Optimization (RO) framework for pricing catastrophe insurance

premiums, incorporating both historical data and machine learning predictions. We

propose two distinct uncertainty sets to model losses: one retrospective, grounded in

historical loss distributions, and the other prospective, utilizing risk estimates derived
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from machine learning predictions. We further extend to Adaptive Robust Optimiza-

tion (ARO) framework linking premiums with realized losses.

• We apply our ARO framework to US flood insurance using data from the National

Flood Insurance Program from 1975 to 2022. Using training data, we parameterize op-

timization models and train our own machine learning risk models, and evaluate model

performance using out-of-sample testing data. Optimization models demonstrate capa-

bilities in effectively covering losses whilst offering the adaptability to policy-makers’

risk tolerance and level of conservatism. In particular, we recommend policy mak-

ers to choose an ARO model, with conservative parameter values, to achieve superior

performance in both effectiveness and efficiency in covering losses.

• We highlight the adaptability and generalizability of our framework, suggesting the

potential application of an ARO approach to pricing a wide range of catastrophic

events, such as wildfires, droughts, extreme weather events.

The structure of the paper is as follows. In Section 2, we review the relevant literature. In

Section 3 we introduce the problem and outline the Robust Optimization (RO) and Adaptive

Robust Optimizaiton (ARO) framework. In Section 4, we demonstrate the application of

our framework through a case study on flood insurance in the United States. We explain

the model parameter estimation and details on the machine learning risk prediction model.

In Section 4, we discuss results from our models against two baselines: historical NFIP

premiums and Cumulative Moving Average (CMA) scheme. Finally, we draw conclusions in

Section 5.

4.2 Literature Review

This work is related to the catastrophe modeling literature, often abbreviated at CAT mod-

eling. It is a pivotal method for assessing and managing risks associated with extreme events

employed by insurance companies. [75] offers a comprehensive analysis of how catastrophe

models are employed for risk assessment and management purposes. Most CAT models are

proprietary, with AIR Worldwide, Risk Management Solutions (RMS), and EQECAT being
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the major players in the private sector; and the open-source HAZUS model developed by

FEMA [76]. One major challenge of the CAT modeling approach lies in the lack of historical

data due to the rarity of the events, and thus standard actuarial techniques fail to capture

tail-event risks. In addition, catastrophe modeling depends on scenario simulations, which

can be both numerous and lead to largely varying outcomes. How to combine different“what-

if" scenarios remains a challenge to decision makers [77]. Our paper illustrates the promise

of an optimization-based approach to model uncertain losses and climate risks directly, thus

offering transparency and offer greater robustness against rare events.

Our work is also related to the literature of disaster management. Many works have fo-

cused the problem of general resource allocations to different programs or regions under a

given budget constraint [78]–[80]. [81] discusses fund allocation for flash flood reduction,

and [82] further incorporates the use of insurance premiums as a source of funding. As

highlighted by [77], the critical issue in insurance policy lies in the need for decision-making

robustness in the face of climate change’s uncertainties. There is also growing work on us-

ing robust optimization in disaster relief management to deal with uncertainties [83], [84].

Few works discuss the use of optimization for catastrophe insurance pricing directly, [85]

applies stochastic optimization to the Dutch Flood insurance scheme, and [86] discusses an

integrated catastrophe management approach by incorporating CAT models with stochastic

optimization methods. Our study fills in the gap by proposing a robust optimization frame-

work by modeling uncertain losses and integrating machine learning forecast risks to address

the increasing unpredictability of weather events driven by climate change.

Finally, this chapter broadly belongs to the climate finance literature, and see [87] for a

comprehensive overview. [88], [89] examine the public policy implications in funding climate

change adapation. It is critical to design new tools to financially manage weather risks. [90]

discusses the role of insurance sector in decreasing the vulnerability of human and natural

systems. [91], [92] propose the use of municipal bonds to finance natural disasters. [93]

considers insuring climate change induced risks across broad business spectrum. Our paper

adds to the literature by proposing a new design of the weather-related insurance contract
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to manage weather risk.

4.3 Optimization Framework for Catastrophe Insurance

In this section, we introduce the problem and present the Robust Optimization (RO) and

Adaptive Robust Optimizaiton (ARO) frameworks.

4.3.1 Robust Optimization

Robust Optimization (RO) is a useful methodology for handling optimization problems with

uncertain data [94]. It has been applied to address uncertainties in various fields, includ-

ing operations research, engineering, and finance. Consider a generic linear programming

problem

min
x

{
cTx | Ax ≤ b

}
,

where c ∈ Rn,b ∈ Rm and A ∈ Rm×Rn. Robust Optimization addresses the problem where

data (c, A,b) are uncertain, but are known to reside in an uncertainty set U . Based on prior

information or assumptions, we construct the uncertainty set U to express the uncertainties

in data. We are addressing a family of problems for each realization of (c,A,b) ∈ U .

Therefore, we can reformulate the problem into its Robust Counter part

min
x

{
cTx | Ax ≤ b ∀(c,A,b) ∈ U

}
.

4.3.2 Nominal Formulation

We consider setting insurance premiums for N locations for the insurance period of T years,

which we denote with variable pi,t, where i = 1, . . . , N , t = 1, . . . , T . We are given his-

torical losses for each location for each year in the past T0 years, which we denote with

l̄i,t, where i = 1, . . . , N , t = 1, . . . , T0. We assume that the future losses for each location

i n the insurance period of T years with li,t, i = 1, . . . , N , t = 1, . . . , T . Note that this

quantity is unknown, but we assume the knowledge of it to introduce a simple deterministic

LP formulation to introduce the basic requirements and set up the generic framework. In
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the next subsections, we expand on how to model this uncertain quantity through Robust

Optimization framework.

We formulate an LP model to set insurance premium price. The objective function is to

minimize the overall premium collected, or the least required premium needed. In addition,

to model the consumer behavior that as we increase premium price less consumers are willing

to purchase the insurance product, we introduce a damping function f : R → {0, 1}, a

monotonically decreasing function representing decline in demand due to higher premiums.

Details of the choice of the damping function will be discussed later in Section 4.2.2. The

overall objective is as follows

min
pi,t

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t. (4.1)

We require the premium price to cover projected losses with an additional buffer amount,

denoted by δ, which is set at constant for each location. Thus we require

T∑
t=1

f(pi,t) ∗ pi,t −
T∑
t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ]. (4.2)

In addition, we impose a constraint to require premiums collected over consecutive years to

vary slowly, in order to prevent drastic changes in insurance premiums

|pi,t − pi,t−1| ≤ γ1, i ∈ [N ], t ∈ [T ]. (4.3)

Variables pi,t should be positive, for each location i for each period t

pi,t ∈ R+, i ∈ [N ], t ∈ [T ]. (4.4)

4.3.3 Robust Optimization Formulation

In the nominal formulation, we assume the knowledge of projected loss for each of the future

period. However, this quantity is unknown and highly uncertain. In this subsection, we

expand on how to construct uncertainty sets to describe this quantity.
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The overall optimization formulation is the same as before, except for constraint 4.3, where

we require the inequality to hold for all losses in the uncertainty set

T∑
t=1

f(pi,t) ∗ pi,t −
T∑
t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ], ∀li,t ∈ U . (4.5)

We propose two uncertainty sets to model the uncertainties of the future losses: with Central

Limit Theorem (CLT) and with Machine Learning driven risks.

Uncertainty Set from Central Limit Theorem

Based on the assumption that for each specific location, future flooding losses follow the

distribution of historical losses. We adopt the central limit theorem (CLT) to form the

uncertainty set as discussed in [95]. Formally, for a fixed location i, Li,t, t ∈ [T ] are indepen-

dent, identically distributed random variables with mean l̄i and standard deviation σ̄i, where

l̄i, σ̄i are historical mean and standard deviation for location i. We assume the uncertain

quantities Li,t take values such that

∣∣∣∣∣
T∑
t=1

Li,t − T · l̄i

∣∣∣∣∣ ≤ γ2 · σi

√
n, (4.6)

where γ2 is a small constant to denote how close future losses distribution should deviation

from the normal distribution. In other words, we describe the uncertain quantities Li,t as

values in the uncertainty set

UCLT
i =

{
(li,1, . . . , li,T ) :

|
∑T

t=1 li,t − l̄i|
σi

√
T

≤ γ2

}
, (4.7)

where l̄i, σi can be computed for each location i using historical data. The larger we set γ2,

the more conservative the optimization model, and higher premiums will be. As a remark, we

derive one uncertainty set for each location using the historical mean and standard deviation

for that location to acomodate different flooding risk profiles. We derive the uncertainty sets

separately for each location UCLT
i .
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Uncertainty Set from Machine Learning Risk Models

In addition, suppose we have some information on how future losses should be, which could

be informed by risk models. We can formulate such model predictions as uncertainty sets.

One way of obtaining such risk prediction is through machine learning models, as recent

advances in ML models demonstrate capabilities for models to predict accurate multi-year

forecasts. In this work, we build machine learning models to obtain flooding risks, see greater

details in the next section. Nevertheless, one can obtain such risk predictions from physical-

based models, or other alternative approaches.

We define a major flood event to be flood incurring loss over a threshold loss level Θ. Suppose

we have model predictions for the risk that at location i, the probability of having one flood

event in the next k years to be qi,k. Then we can express the model prediction as

P

(
k∑

t=1

zi,t = 1

)
= qi,k, (4.8)

where zi,t ∈ {0, 1} are binary variables denoting if there is a major flood at location i at

time t. By modeling such, we assume having more than one major event is negligible for

reasonable k. Since model predictions are probabilistic predictions which can have errors,

and we want to be conservative and protect against suffering potential huge losses. Thus,

assuming actual incidence of having a major flood is close to the model predictions, we can

express zi,t as random variables taking values in an uncertainty set as

U =

{
zi,t : |

k∑
t=1

zi,t − qi,k| ≤ ϵ,

k∑
t=1

zi,t ≤ 1

}
, (4.9)

where the constant ϵ is a parameter to indicate how close we believe the model predictions

are to actual probabilities. The larger the value, the less confident and more conservative

our model will be. Therefore, linking variables zi,t to li,t, and assuming the future losses

will be bounded by the expected value coming from suffering a major flood, we model the

uncertainty set of the future loss for each location i as follows
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UML
i =

{
zi,t, li,t :

k∑
t=1

li,t ≤ Θ ·
k∑

t=1

zi,t, |
k∑

t=1

zi,t − qi,k| ≤ ϵ,

k∑
t=1

zi,t ≤ 1

}
. (4.10)

The Robust Counterpart

Combining uncertainty sets from Central Limit Theorem and from Machine Learning risk

models, the robust optimization formulation of the problem is as follows

min
pi,t

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑
t=1

f(pi,t) ∗ li,t ≥ δ, ∀li,t, zi,t ∈ UCLT
i , li,t ∈ UML

i , i ∈ [N ],

||pi,t − pi,t−1|| ≤ γ1, i ∈ [N ], t ∈ [T ],

pi,t ∈ R+, zi,t ∈ {0, 1}, i ∈ [N ], t ∈ [T ].

(4.11)

Since the uncertain occurs only in one constraint, we can write Problem 4.11 as a min-max

problem

min
pi,t

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑
t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ],

||pi,t − pi,t−1|| ≤ γ1, i ∈ [N ], t ∈ [T ],

li,t ∈ UCLT
i , i ∈ [N ]

li,t, zi,t ∈ UML
i , i ∈ [N ],

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(4.12)
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Next, we consider the inner problem

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
T∑
t=1

f(pi,t) ∗ li,t ≥ δ, i ∈ [N ],

li,t ∈ UCLT ,

li,t, zi,t ∈ UML,

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(4.13)

For the inner problem, we can treat pi,t as constants, thus the inenr problem can be simplified

to

max
li,t,zi,t∈U

N∑
i=1

T∑
t=1

li,t

li,t ∈ UCLT ,

li,t, zi,t ∈ UML,

pi,t ∈ R+, zi,t ∈ {0, 1} i ∈ [N ], t ∈ [T ].

(4.14)

Note that the uncertainty set is composed of two separate uncertainty sets UCLT and UML.

We can thus decompose the inner problem into two subproblems, and the objective of the

original problem takes the maximum of the two subproblems. Solving each subproblem

separately, we can then plug back the analytical solution from each subproblem back to the

original problem.
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Proposition. The overall min-max problem is equivalent to

min
pi,t

T∑
i,t

f(pi,t) ∗ pi,t

T∑
t=1

f(pi,t) ∗ pi,t −
1

T

T∑
t=1

f(pi,t) ∗ LCLT
i ≥ δ, ∀i ∈ [N ],

k∑
t=1

f(pi,t) ∗ pi,t −
1

k

k∑
t=1

f(pi,t) ∗ LML
i ≥ δ, ∀i ∈ [N ],

||pi,t − pi,t−1|| ≤ γ1, ∀i ∈ [N ], t ∈ [T ],

(4.15)

where

LCLT
i = T · l̄i + γ2 · σi

√
T , (4.16)

LML
i = Θ ·min{1, qi,k + ϵ}. (4.17)

As a remark, we take the average "damping" over losses li,t because we solve for the optimal∑
t li,t.

Proof. Consider the first subproblem

max
li,t

N∑
i=1

T∑
t=1

li,t

|
T∑
t=1

li,t − T · l̄i| ≤ γ2 · σi

√
T ∀i ∈ [N ],

li,t ∈ R+,

(4.18)

looking at the constraint, we can take out |·| since we are maximizing over li,t, and rearranging

terms

T∑
t=1

li,t ≤ T · l̄i + γ2 · σi

√
T ∀i ∈ [N ], (4.19)
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and optimality is achieved at equality, we can solve for i.e., l∗i,t s.t.

T∑
t=1

li,t = T · l̄i + γ2 · σi

√
T ∀i ∈ [N ]. (4.20)

Hence we can compute for all location i ∈ [N ], and denote the analytical solution to the first

subproblem as LCLT
i

LCLT
i :=

T∑
t=1

l∗i,t = T · l̄i + γ2 · σi

√
T
√

(T1 − T0). (4.21)

Consider now the second subproblem

max
li,tzi,t

N∑
i=1

T∑
t=1

li,t

k∑
t=1

li,t ≤ Θ ·
k∑

t=1

zi,t,

|
k∑

t=1

zi,t − qi,k| ≤ ϵ,

k∑
t=1

zi,t ≤ 1,

li,t ∈ R+, zi,t ∈ {0, 1}.

(4.22)

Without loss of generality, we relax zi,t to take continuous value zi,t ∈ [0, 1], because we

can treat
∑k

i zi,t as one variable taking continuous values in [0, 1]. Thus looking at the

constraints concerning zi,t, and take out | · | since we are maximizing over zi,t, we get z∗i,t

achieve optimality at
k∑

t=1

z∗i,t = min{1, qi,k + ϵ}, (4.23)

which gives l∗i,t at optimality at
k∑

t=1

l∗i,t = Θ ·
k∑

t=1

z∗i,t. (4.24)

Combining with the solution from the first subproblem given by equation 4.21 we have the
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sum of future loss for each location given as follows

T∑
t=1

l∗i,t = T · l̄i + γ2 · σi

√
T , (4.25)

k∑
t=1

l∗i,t = Θ ·min{1, qi,k + ϵ}, (4.26)

where the first equality bounds the entire future period T , the second equality bounds the

period depending on machine learning model’s risk forecast horizon k. As a remark, we can

have multiple risk models for different forecasting horizons.

4.3.4 Choices of demand damping function f(p)

Recall that to model the behavioral aspect that as insurance premium increase there is less

demand for it, we introduce the damping function f(p) : R → {0, 1} into the constraint. To

preserve the convexity property of the overall problem, we model the behavior using piece-

wise linear functions under the scope of this work. In the next section, we explain in greater

detail on the estimation using NFIP data, as well as sensitivity analysis on the choice of the

function.

As a remark, as we damp demand, we correspondingly damp the covered loss in the con-

straint. Since the inner problem gives the the overall loss over the forecasting period T , i.e.,

LCLT
i gives the maximum loss deduced from the uncertainty set over period T , we have taken

the corresponding damping term to be the average over T periods, i.e., 1
T

∑T
t=1 f(pi,t).

4.3.5 Adaptive Robust Optimization Formulation

This section discusses how to the RO framework with adaptive robust optimization tech-

niques, enabling premium adjustments based on actual loss experiences. We let the premiums

depend on realized losses using affine decision rules, as proposed in Chapter 7 of [95]. This

approach not only refines premium pricing accuracy but also ensures a responsive and eq-

uitable insurance mechanism against the backdrop of unpredictable catastrophic events. In
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particular, we let premiums depend on loss from the previous time step as follows

pi,t =

αi,1, for t = 1

αi,t + βi,t · li,t−1, for t = 2, . . . , T

(4.27)

where premium for location i at time period t is determined by a linear combination of

parameters. Specifically, for the first time period, the premium is set to a base value αi,1;

for subsequent periods, the premium is adjusted based on the loss li,t−1, experienced in the

previous period, with αi,t and βi,t new variables to be optimized over.

Throughout this section, we consider the simplified robust optimization problem from the

original problem, by dropping the demand-damping to allow the derivation of a robust

counter part. As discussed later in the sensitivity analysis in Section 4.5.1, the demand

damping term does not materially influence the premium outcome. Thus the problem we

consider is given as follows

min
pi,t

N∑
i=1

T∑
t=1

pi,t

T∑
t=1

pi,t −
T∑
t=1

li,t ≥ δ, ∀li,t ∈ UCLT
i , i ∈ [N ],

||pi,t − pi,t−1|| ≤ γ1, i ∈ [N ], t ∈ [T ],

pi,t ∈ R+, zi,t ∈ {0, 1}, i ∈ [N ], t ∈ [T ].

(4.28)

Recall that this optimization problem aims to minimize the total premiums over all locations

and time periods while ensuring that the cumulative premium exceeds the cumulative losses

by at least a margin of δ. Note that in this formulation, we impose slowly varying constraint

on αi,t, instead of pi,t as in the previous formulation, because pi,t is now depending on un-

certain variables li,t.

Similar as before, noticing that the constraints for each location i is independent of other lo-

cations, and thus minimizing the aggregated premium is the same as minimizing the premium
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for each location. Therefore we can decompose the problem by solving for each location i the

ARO problem independently. In addition, noticing that the objective function now depends

on uncertain variable li,t, we therefore use the epigraph formulation as discussed in Chapter

2 of the book [95] to move all variables containing uncertain variables into constraints. We

arrive at the following ARO formulation for one location i

min
αi,t,βi,t

Ω (4.29)

T∑
t=1

pi,t ≤ Ω, ∀li,t ∈ UCLT
i , (4.30)

T∑
t=1

pi,t −
T∑
t=1

li,t ≥ δ, ∀li,t ∈ UCLT
i , (4.31)

||αi,t − αi,t−1|| ≤ γ3, t = 2, . . . , T, (4.32)

||βi,t − βi,t−1|| ≤ γ4, t = 2, . . . , T, (4.33)

pi,t ≥ 0, t = 1, . . . , T, ∀li,t ∈ UCLT
i ., (4.34)

where pi,t is a quantity that depends on the uncertain losses given by equation 4.27. Next,

we derive the robust counter part by taking the RC for each constraint, that depends on

uncertain variable li,t, independently.

First, consider constraint give by inequality 4.30, substituting pi,t with αi,t, βi,t which now

depends on the uncertain variable li,t. We rewrite the constraint as follows

T∑
t=1

αi,t +
T∑
t=2

βi,t · li,t−1 ≤ Ω, ∀li,t ∈ UCLT
i , (4.35)

which is is equivalent to

T∑
t=1

αi,t + max
li,t∈UCLT

i

{
T∑
t=2

βi,t · li,t−1

}
≤ Ω. (4.36)

Consider now the inner maximization problem using the explicit expression for UCLT
i , we

76



have a LP problem in li,t

max
li,t

T∑
t=2

βi,t · li,t−1

T∑
t=1

li,t ≤ T̄i + γ2 · σi ·
√
T ,

−
T∑
t=1

li,t ≤ −T̄i + γ2 · σi ·
√
T .

(4.37)

The inner problem thus satisfies strong duality. Notice that the uncertainty set is given in

polyhedron form, we can thus take the dual by introducing dual variables s11, s
1
2, and arrive

at the following form

min
s11,s

1
2

2∑
j=1

cjs
1
j

s11 − s12 ≥ βt, ∀t = 2, . . . , T,

s11 − s12 ≥ 0,

s11, s
1
2 ≥ 0.

(4.38)

By strong duality, the inner maximization problem has the same objective value of the dual

minimization problem. Using the dual expression, constraint 4.30 becomes

T∑
t=1

αi,t +min
s11,s

1
2

2∑
j=1

cjsj ≤ Ω

s11 − s12 ≥ βi,t, ∀t = 2, . . . , T,

s11 − s12 ≥ 0,

s11, s
1
2 ≥ 0.

Note that we can take away the minimization term because if any feasible s11, s
1
2 satisfies this

constraint, the minimum also does.
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Second, consider constraint give by inequality 4.31, which ensurs premiums cover losses

T∑
t=1

pi,t −
T∑
t=1

li,t ≥ δ, ∀li,t ∈ UCLT
i . (4.39)

Multiplying both sides by −1, we have

T∑
t=1

li,t −
T∑
t=1

pit ≤ −δ. (4.40)

Substituting li,t with αi,t and βi,t

T∑
t=1

li,t −

[
T∑
t=1

αi,t +
T∑
t=2

βi,tli,t−1

]
≤ −δ, (4.41)

re-arranging terms to collect all the uncertain terms li,t

−
T∑
t=1

αi,t +

[
li,1 +

T∑
t=2

(1− βi,t)li,t

]
≤ −δ, (4.42)

we finally arrive at

−
T∑
t=1

αi,t + max
li,t∈UCLT

i

{
li,1 +

T∑
t=2

(1− βi,t)li,t

}
≤ −δ. (4.43)

Consider now the inner maximization problem, which is once again a LP in li,t

max
li,t

li,1 +
T∑
t=2

(1− βi,t) · li,t

T∑
t=1

li,t ≤ T̄i + γ2 · σi ·
√
T ,

−
T∑
t=1

li,t ≤ −T̄i + γ2 · σi ·
√
T .

(4.44)

Similar as before, by strong duality, the dual is given as a minimization problem in dual
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variables s21, s
2
2

min
s21,s

2
2

2∑
j=1

cjs
2
j

s21 − s22 ≥ 1− βi,t, ∀t = 2, . . . , T,

s21 − s22 ≥ 1,

s21, s
2
2 ≥ 0.

(4.45)

Therefore constraint 4.31 becomes

−
T∑
t=1

αi,t +
∑
j

cjs
2
j ≤ −δ,

s21 − s22 ≥ 1− βi,t, ∀t = 2, . . . , T,

s21 − s22 ≥ 1,

s21, s
2
2 ≥ 0.

(4.46)

Finally, we consider the positivity constraint as given by inequality 4.34

pi,t ≥ 0, ∀t ∈ [T ], ∀li,t ∈ UCLT (4.47)

substituting pi,t with αi,t, βi,t, the constraint is equivalent to

αi,t + βi,t · li,t−1 ≥ 0, ∀t ∈ [T ], ∀li,t ∈ UCLT (4.48)

Since for each time t, we have one separate constraint. Therefore, considering this constraint

for some t

αi,t + βi,t · li,t−1 ≥ 0, ∀li,t ∈ UCLT .

Multiplying both sides by −1 and rearranging terms, we have

−αi,t + max
li,t∈U

{−βi,t · li,t−1} ≤ 0.
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Similar as before, we consider the inner maximization problem

max
li,t∈U

−βi,t · li,t−1, (4.49)

which has strong duality, with dual given for each t in dual variables s3,t1 , s3,t2 as

min
s3,t1 ,s3,t2

∑
j

cjs
3,t
j

s3,t1 − s3,t2 ≥ −βi,t,

s3,t1 − s3,t2 ≥ 0,

s3,t1 , s3,t2 ≥ 0.

(4.50)

Thus the positivity constraint for some t becomes

αi,t +
∑
j

cjs
3,t
j ≤ 0

s3,t1 − s3,t2 ≥ −βi,t,

s3,t1 − s3,t2 ≥ 0,

s3,t1 , s3,t2 ≥ 0.

(4.51)

Thus, the overall robust counter part of the ARO formulation is given as follows

min
αi,t,βi,t

Ω (4.52)

with epigraph constraint

T∑
t=1

αi,t +min
s11,s

1
2

2∑
j=1

cjsj ≤ Ω,

s11 − s12 ≥ βi,t, ∀t = 2, . . . , T,

s11 − s12 ≥ 0,

s11, s
1
2 ≥ 0.

(4.53)
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With loss coverage constraint

−
T∑
t=1

αi,t +
∑
j

cjs
2
j ≤ −δ,

s21 − s22 ≥ 1− βi,t, ∀t = 2, . . . , T,

s21 − s22 ≥ 1,

s21, s
2
2 ≥ 0.

(4.54)

With positivity constraint

αi,t +
∑
j

cjs
3,t
j ≤ 0,

s3,t1 − s3,t2 ≥ −βi,t

s3,t1 − s3,t2 ≥ 0,

s3,t1 , s3,t2 ≥ 0.

(4.55)

With slowly varying constraint

||αi,t − αi,t−1|| ≤ γ3, t = 2, . . . , T,

||βi,t − βi,t−1|| ≤ γ4, t = 2, . . . , T.
(4.56)

4.4 Case Study for US National Flood Insurance

In this section, we demonstrate the application of our framework through a case study on

flood insurance in the United States. We explain the model parameter estimation and details

on the training of machine learning risk predictions.

4.4.1 Data

We used two redacted datasets from the National Flood Insurance Program (NFIP) on claims

and policies respectively. Both data sets are created and maintained by Federal Emergency

Management Agency (FEMA). The claims transaction data provide details on NFIP claims
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transactions across from all states in the United States [96]. This dataset consist of 2570089

lines of claim transactions ranging, dated from 1970. Due to limited data availability in the

early years, we included data from 1975 to 2022.

For this study, we aggregate data into state level on an annual basis, and have used the fol-

lowing features: date (’dateOfLoss’), state, claim amount (’amountPaidOnBuildingClaim’).

Additionally, data from ’MP’ (Northern Mariana Islands), ’AS’ (American Samoa), ’GU’

(Guam), and ’DC’ (District of Columbia) have been omitted due to their limited data

records. As a result, our cleaned dataset encompasses information from 52 jurisdictions

over 48 years, including 50 U.S. states, alongside two territories recognized as island states:

the U.S. Virgin Islands and Puerto Rico, enhancing the geographical breadth of our study..

The policy premium data contains 228664 lines of data, covering 54 states and 6704 unique

zip codes, and contains policies from 2009 to 2022 [97]. We use the policy data as a bench-

mark to compare model performance between last ten years of testing period from 2013 to

2022. Similar to the claims data, we aggregated data into state level on an annual basis, and

have used the following features: state (’propertyState’), date (’policyTeminationDate’) and

premium (’totalInsurancePremiumOfThePolicy’).

In this work, we consider setting insurance premium at state level on an annual basis. We

consider setting the premium for the last 10 years, from 2013 to 2022. We trained machine

learning models using data from 1975 to 2012, to derive risks in the testing period from 2013

to 2022. We used machine learning derived risks as parameter input for the optimization

model, and drive premiums using the RO framework.

4.4.2 Optimization Model Parameter Estimation

Recall from equation 4.16, to compute LCLT
i we need to compute the historical mean and

variance for each state. We use the training data from 1975 to 2012 to estimate optimization

model parameter to avoid data spoilage in the testing data set. We compute the historical

mean and standard deviation for all states on an annual basis. Table B.1 in the appendix
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exhibits the historical mean and variance for the top 10 most costly states.

In this work, we model the demand sensitivity to insurance premium through a piece-wise

linear demand function. We estimate the decline rate using historical data from several

states. We include Figure B.1 and B.2 in the appendix showing the scatter plot of number of

policy holders in a year against the mean policy premium of that state at that year. Different

states have different degrees of sensitivity to price, but in general we observe a downward

trend of decline in policy holder number as a function of increased price. For the illustrative

purpose of this work, we do not specify different sensitivity in different states, but use the

same demand damping function across all states.

We use the following piece-wise linear demand damping function to model demand damping

f(p) =


1, if p ≤ P0 ;

1−m · (p− P0), if p ≥ P0 and f(p) ≥ cmin ;

cmin, otherwise.

(4.57)

where P0 is the minimum premium at which demand damping starts to occur, and cmin is

the minimum fraction of demand. In this work, we choose P0 to be 1
10

· Pmax
hist , a fraction of

maximum historical premium ever charged. We choose cmin to be 0.2 representing at least

20% of the total demand is preserved regardless of price. We experimented with different

demand damping rate: m = 1/Pmax
hist . We include Figure B.3 in the appendix to illustrate

several choices of the demand damping curve.

4.4.3 Machine Learning Model

The goal of the machine learning model is to obtain the risk measure qi,k, denoting the risk

of major flooding event occurrence in the next k years at state i, in the machine learning risk

uncertainty 4.10. Recall that we denote a major flooding event as the total state-level loss

surpassing a certain threshold in the next 1-K years, and obtain the probabilistic prediction

result obtained from the binary machine learning task.
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Specifically, we train machine learning models to predict future annual losses exceeding spe-

cific thresholds, based on both current and past losses, across three different threshold levels

and time frames. We train binary classification models to predict the target, with 1 indi-

cating for a particular state at a particular year, the state will suffer an annual loss passing

through the threshold Θ in the next 1 to K years. We have experimented with three threshold

values, corresponding to 90th, 95th and 99th percentile annual claim amount values across

all states over all training data, corresponding to USD 18,558,788, USD 50,688,672 and USD

321,903,271. In addition, we have experimented with three K values, corresponding to 3, 5,

10 years respectively. A detailed explanation of the data processing, feature construction,

and model training methodology is provided in the appendix.

Table B.3 record out of sample prediction results using testing data, corresponding to data

between 2012 to 2022. We treat data in the testing period on a rolling basis, and we drop

the years where we do not have target data, i.e., in year 2019, we predict for K=3 but not

for K = 5 or 10. We remark that accuracy is generally higher for longer forecasting horizons.

This is likely due to the following reasons: first, longer forecasting horizon lead to higher

probability of flood, which leads to more balanced data; second, we have less testing samples.

Finally, we use the probabilistic prediction results for each state at each testing year qi,k as

input to construct uncertainty sets for the robust optimization model as given by equation

4.17.

4.5 Results

We implement three types of robust optimization models, with linearly decreasing demand

damping and machine learning risk forecasts. In addition, we implement the adaptive robust

optimization model. We compare results against two baseline policy premiums.

• Historical premiums charged for each state, which is referred to as ‘hist’.

• Cumulative moving average loss up to that year, which we refer to as ‘CMA’. We
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Scores 3 Years 5 Years 10 Years
logreg xgb logreg xgb logreg xgb

90% Threshold
auc 0.743 0.776 0.763 0.808 0.767 0.912
f1 0.630 0.665 0.593 0.735 0.621 0.817

accu 0.693 0.675 0.632 0.736 0.623 0.830
accu_bl 0.625 0.706 0.605 0.753 0.641 0.809
precision 0.407 0.457 0.520 0.625 0.658 0.777

recall 0.437 0.793 0.362 0.901 0.500 0.967
95% Threshold

auc 0.818 0.871 0.818 0.897 0.794 0.921
f1 0.684 0.673 0.700 0.744 0.764 0.763

accu 0.856 0.781 0.808 0.792 0.830 0.774
accu_bl 0.665 0.742 0.699 0.829 0.736 0.820
precision 0.300 0.306 0.368 0.460 0.595 0.560

recall 0.391 0.688 0.516 0.891 0.500 0.938
99% Threshold

auc 0.920 0.945 0.922 0.956 0.952 0.992
f1 0.704 0.687 0.737 0.771 0.835 0.906

accu 0.910 0.950 0.909 0.943 0.925 0.962
accu_bl 0.809 0.646 0.786 0.731 0.958 0.979
precision 0.253 0.215 0.313 0.380 0.556 0.714

recall 0.696 0.304 0.640 0.480 1.000 1.000

Table 4.1: Consolidated out-of-sample accuracy for percentile threshold predictions at 90%,
95%, and 99%, across different time horizons using logistic regression (logreg) and XGBoost
(xgb) models.

compute the cumulative moving average loss as follows

pCMA
i,t =

1

t

t∑
t′=0

i,t′ . (4.58)

An overall summary of models implemented can be found in Table 4.2 below.

We evaluate performance during the testing period, the last ten years of available data in

the NFIP data set between 2013 to 2022. For the rest of the section, we choose γ1 to be

50000, and δ to be 10000. We also undertake a sensitivity analysis to assess the impact of

our model’s parameter selections. Overall, we evaluate our model performance using the

following two criteria:
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Model Name Description
Hist Uses the historical level of insurance premium collected

by the NFIP program, relying on past data to set future
premiums without adjustment for future uncertainties.

CMA Employs a cumulative moving average to compute insur-
ance premiums using historical losses, aiming for stabil-
ity through past data analysis.

RO1 Implements robust optimization with a CLT (Central
Limit Theorem) uncertainty set, focusing on mitigating
risk within a specific range of uncertainty based on sta-
tistical theory.

RO2 Extends robust optimization by incorporating both CLT
and ML (Machine Learning) uncertainty sets, aiming
for a comprehensive approach to risk management by
leveraging advanced analytics.

ARO Adaptive robust optimization that dynamically adjusts
insurance premiums in response to changing conditions
and uncertainties, optimizing strategies over time to
minimize risk.

Table 4.2: Summary of models for insurance premium calculation

• Effectiveness: to evaluate the effectiveness of models to cover losses at a state level.

We count the number of insolvent states, i.e., the cumulative premium collected over

the testing period does not cover cumulative claim losses.

• Efficiency: to ensure models are charging reasonable levels of premiums to cover losses,

we evaluate the overall surplus (or deficit) level as well as the absolute deviation from

actual losses to evaluate models’ capabilities in realistically assessing risks.

4.5.1 Sensitivity Analysis

We examine the model sensitivity to parameter choices in our model. Specifically, we ex-

amine the effect of the value of γ2 and the demand damping rate m. Recall that γ2 is the

parameter controlling how conservative the CLT uncertainty set given by equation 4.16, and

the demand damping rate controls how fast demand declines in response to increase in price

given by equation 4.57. To examine the overall performance of the premium, we compute

86



the cumulative surplus S across all states over the testing period as follows

S(γ2) =
N∑
i=1

T1∑
t=1

pi,t −
N∑
i=1

T1∑
t=1

lacti,t . (4.59)

Figure 4.2 shows the level of surplus as a function of different γ2, with different demand

damping rate. The two dotted line shows the constant surplus computed by two baselines:

using the actual premiums collected during this period and the CMA rule. We observe that

both baselines incur a loss over the testing period, with historical premiums resulting in

about 20 billion loss, and CMA rule resulting in 8 million loss.

We let γ2 to take values between 0 and 1.5 at a stepsize of 0.1, and resolve the optimization

model at each γ2 value, and compute the sum of surplus across all states across testing years.

γ2 = 0 corresponding to convex optimization without uncertainty, and γ2 = 1.5 with the

maximum degree of uncertainty. As we increase the value of γ2, the size of the uncertainty

set increases, and the model becomes more conservative resulting in surplus as expected.

We remark that the surplus breaks even when γ2 takes value between 0.6 and 0.7. And we

observe a smooth increase in surplus as γ2 increases.

In addition, we experiment with three demand damping rates: no damping, m1 = 1/Pmax
hist ,

m2 = 1/(2 ∗ Pmax
hist ), with m2 damps twice as fast as m1. Similar as above, we experiment

with varying γ2 corresponding to the different demand damping rates. We observe that the

choice of demand damping is less significant compared with the variation of γ2.

4.5.2 Effectiveness

Evaluating the effectiveness of insurance schemes in covering losses is crucial, particularly

through the lens of insolvency rates. Therefore, we consider the insolvency status at a state

level, where the cumulative premium fails to cover the cumulative loss, as an indicator of a

scheme’s financial resilience and risk management efficiency. Our analysis spans the 2013 -

2022 testing period, corresponding the the last ten years of data, and focuses on the impact

of γ2, a parameter which significantly influences model outcomes. As detailed in Table 4.3,
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Figure 4.2: Surplus (or loss) computed during 2012 to 2022 across all states when vary
different levels of γ2. Two dotted lines demonstrate the level of surplus from two baseline
models: historical surplus calculated from the actual premiums collected, cma surplus is
computed using the cumulative moving average.

we explore the effects of varying γ2 values, from 0 to 2 in increments of 0.2, on the number

of insolvent states induced by each model.

Note that the performance of the Historical and CMA schemes is invariant to changes in

γ2. Specifically, the CMA approach results in 36 insolvent states, outperforming the His-

torical scheme, which results in insolvency across all states. This outcome underscores the

limitations of relying solely on past data for setting future premiums. In contrast, both the

RO and ARO schemes exhibit increased conservatism—and consequently, fewer insolvent

states—with higher γ2 values. This is because γ2 directly relates to the size of the CLT

uncertainty set, as specified by equation 4.16, where larger γ2 values necessitate higher pre-

mium values to mitigate risk.

This mechanism within the RO framework affords decision-makers the flexibility to adjust

the conservatism of their models based on risk tolerance and financial strategy. Among the

evaluated schemes, the RO2 model, which integrates both CLT and ML uncertainty sets,
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consistently achieves the lowest number of insolvent states for a given γ2 level. This perfor-

mance is followed closely by the ARO scheme and the RO1 model. Such findings highlight

the nuanced balance between risk management and financial sustainability, illustrating the

advanced capabilities of RO2 and ARO in navigating the complexities of insurance premium

optimization under uncertainty.

γ2 ARO RO1 RO2 CMA Hist
0.0 36.0 36.0 32.0 36.0 52.0
0.2 30.0 32.0 28.0 36.0 52.0
0.4 26.0 26.0 23.0 36.0 52.0
0.6 25.0 26.0 23.0 36.0 52.0
0.8 22.0 23.0 20.0 36.0 52.0
1.0 21.0 22.0 20.0 36.0 52.0
1.2 19.0 21.0 19.0 36.0 52.0
1.4 16.0 18.0 16.0 36.0 52.0
1.6 15.0 15.0 14.0 36.0 52.0
1.8 13.0 13.0 12.0 36.0 52.0
2.0 12.0 12.0 11.0 36.0 52.0

Table 4.3: The number of insolvent states during the testing period based on different
methods. In total we test over 52 states, which are the 50 US states with additionally
Puerto Rico and the US virgin islands.

4.5.3 Efficiency

In addition, we consider the efficiency of the models by considering the surplus and deficit

level, as well as the absolute deviation from the actual loss incurred. This is to ensure models

are not over-charging states, and pricing premiums correctly align with risks.

Table 4.4 exhibits the overall surplus (or deficit) level and the absolute deviation level across

all states over the testing period. We compute the overall absolute deviation across all states

over the testing period from the actual loss, which is an indicator of how well models are

able to trace the risks. We compute AD as a function of γ2 as follows

AD(γ2) =
N∑
i=1

T1∑
t=1

|pi,t − lacti,t |. (4.60)
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First, we observe that Historical premiums significantly undercharges over the testing pe-

riod, resulting in 19 billion losses, and CMA rule results in 8 million losses. This suggests

historical levels are insufficient to cover future losses. Similar as before, we observe as γ2

increases, RO and ARO schemes increase the level of conservatism and reaches more surplus.

In particular, comparing the two RO models, RO2 scheme is more conservative than RO1,

albeit not significantly, as expected. Because RO2 contains the additioanl ML uncertainty

set. With same level of γ2, we observe that ARO achieves the surplus the slower than RO

schemes. Especially when γ2 reaches the level of 1.4, ARO scheme increases premiums much

slower than RO schemes, which increases at a constant rate with increasing γ2. Figure 4.3

illustrates the efficient frontier illustrating the trade-off between the number of insolvent

states versus the surplus (or deficit) achieved during the testing period.

The superiority of the ARO scheme over RO scheme is reinforced when looking at the ab-

solute deviation metric. We observe that the level of error using the ARO scheme is more

stable than both RO schemes. The stability of ARO scheme makes it desirable for policy-

makers, as the scheme offers great robustness against insolvency with the least premium

charged when chosen a high level of γ2. In conclusion, the results underscore the ARO and

RO models’ superior performance in managing uncertainty and adapting to changing risk

profiles, highlighting their potential for enhancing catastrophe insurance premium pricing

strategies. Figure 4.4 illustrates the trade-off between the number of insolvent states versus

the absolute deviation during the testing period.
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γ2 ARO RO1 RO2 CMA Hist
S/D A/D S/D A/D S/D A/D S/D A/D S/D A/D

0.0 −9.23e9 2.26e10 −9.27e9 2.25e10 −9.16e9 2.26e10 −8.31e9 2.30e10 −1.98e10 1.98e10
0.2 −5.88e9 2.47e10 −6.50e9 2.42e10 −6.41e9 2.42e10 −8.31e9 2.30e10 −1.98e10 1.98e10
0.4 −3.56e9 2.65e10 −3.73e9 2.59e10 −3.67e9 2.59e10 −8.31e9 2.30e10 −1.98e10 1.98e10
0.6 −1.80e9 2.78e10 −0.96e9 2.77e10 −0.92e9 2.77e10 −8.31e9 2.30e10 −1.98e10 1.98e10
0.8 −0.46e9 2.88e10 1.80e9 2.95e10 1.84e9 2.95e10 −8.31e9 2.30e10 −1.98e10 1.98e10
1.0 0.55e9 2.96e10 4.57e9 3.13e10 4.60e9 3.13e10 −8.31e9 2.30e10 −1.98e10 1.98e10
1.2 1.41e9 3.03e10 7.34e9 3.32e10 7.37e9 3.32e10 −8.31e9 2.30e10 −1.98e10 1.98e10
1.4 2.16e9 3.09e10 10.11e9 3.53e10 10.14e9 3.53e10 −8.31e9 2.30e10 −1.98e10 1.98e10
1.6 2.78e9 3.13e10 12.88e9 3.74e10 12.90e9 3.74e10 −8.31e9 2.30e10 −1.98e10 1.98e10
1.8 3.32e9 3.18e10 15.64e9 3.96e10 15.67e9 3.96e10 −8.31e9 2.30e10 −1.98e10 1.98e10
2.0 3.82e9 3.21e10 18.41e9 4.17e10 18.43e9 4.17e10 −8.31e9 2.30e10 −1.98e10 1.98e10

Table 4.4: Condensed table showing surplus/deficit (S/D) and absolute deviation (A/D)
across different γ2 levels for ARO, RO1, RO2, CMA, and Hist.

Figure 4.3: Scatter plot visualizing the efficient frontier, showing how different values of
γ2 affect the number of insolvent states (x-axis) and the total surplus (or deficit) (y-axis)
computed as the total premium charged minus actual loss over the testing period. Note that
CMA and Hist are plotted as static points because their values do not change with varying
γ2 values.

4.6 Conclusion

In conclusion, we present a Robust Optimization (RO) framework to catastrophe insurance

premium pricing. We first present a nominal linear optimization formulation to introduce

the problem of setting insurance prices for rare catastrophe events, and present a robust opti-
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Figure 4.4: Scatter plot visualizing the efficient frontier, showing how different values of
γ2 affect the number of insolvent states (x-axis) and the total absolute deviation (y-axis)
computed as the absolute value of the difference between premium charged and actual losses
over the testing period. Note that CMA and Hist are plotted as static points because their
values do not change with varying γ2 values. The plot demonstrates that ARO achieves
higher efficiency with lower absolute deviation at high γ2 values, highlighting its better
performance under these conditions.

mization formulation with two distinct uncertainty sets. The Central Limit Theorem (CLT)

uncertainty set protects against deviations from historical losses, and the Machine Learning

(ML) uncertainty set to incorporate predicted risks. We derive the robust counter part by

solving the inner problem in closed form, and present a convex optimization re-formulation.

In addition, we extned the RO framework to an Adaptive Robust Optimization (ARO) model,

enabling premium adjustments based on actual loss experiences through linear decision rules.

We applied the framework to the US flood insurance and evaluate our performance against

two baseline benchmarks: the US National Flood Insurnace Program (NFIP) premiums and

CMA premiums. We employed historical data from 1975 to 2012 to construct the uncertainty

sets and train machine learning models, and we used the last ten years of available NFIP

data to evaluate RO insurance scheme against the two benchmarks: the actual historical

premium policies and premiums derived from cumulative moving average (CMA) rules. We
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demonstrate the superiority of an ARO approach in two metrics: effectiveness and efficiency.

First, optimization-based models are able to effectively cover losses, achieving a smooth tran-

sition from high number of insolvent states to a low number, thus granting policy providers

the discretion to determine the desired insolvency level. Second, optimization-based models

are capable of efficiently charge premiums, resulting in a smooth transition from deficit to

surplus balance depending on model parameter value. In particular, we recommend pol-

icy makers to use an ARO model, with conservative parameter values, to achieve superior

performance in both effectiveness and efficiency, resulting in achieving simultaneously low

insolvent rate and relatively low premiums charged.

We emphasize the versatility and broad applicability of our framework. This underscores

the possibility of employing the ARO approach not just in the context of flood insurance,

but also in pricing various catastrophic events such as wildfires, droughts, and other extreme

weather conditions. The adaptability of our model suggests it could be a valuable tool in

diverse scenarios, offering insights into risk assessment and pricing strategies across different

disaster types.
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Chapter 5

Reducing Air Pollution through Machine

Learning

This chapter presents a data-driven approach to mitigate the effects of air pollution from

industrial plants on nearby cities by linking operational decisions with weather conditions.

Our predictive and prescriptive framework links operational decisions to weather forecasts to

effectively minimize the impact of air pollution in industrial settings. The predictive compo-

nent of our framework employs various machine learning models, such as gradient-boosted

tree-based models and ensemble methods, for time series forecasting. The prescriptive com-

ponent utilizes interpretable optimal policy trees and explores the effect of different trade-offs

ratios.

We have successfully implemented our framework at OCP Group’s phosphate production

site near the city of Safi. Our deployed algorithm significantly reduced forecasting errors,

ranging between 38-52% for less than 12-hour lead time and 14-46% for 12 to 48-hour lead

time compared to official weather forecasts. This work aims to provide a pathway to explore

sustainable industrial development by linking operational decisions with data-driven weather

forecasting capabilities, and a similar framework can be applied in other scenarios where

weather plays a role in the management of operational decisions.
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5.1 Introduction

Sustainable industrial development is an important issue shared by many countries. The

trade-offs between economic activities, environmental pollution, and public health must be

managed attentively. Studies show that urbanization and industrialization have released

many environmental toxins into the atmosphere over the last 200 years [98]–[100]. In partic-

ular, emissions from chemical power plants can pose significant health risks to those living

in the surrounding area [101], [102]. Therefore, there is a pressing need to develop technolo-

gies and infrastructures to simultaneously achieve economic objectives and environmental

preservation.

Air pollution is one of the leading causes of health risks due to industrial activities, according

to [103], 3.3 million people die pre-maturely every year globally. The WHO and other health

organizations continuously emphasize the importance of monitoring and managing air qual-

ity to mitigate these risks. The interplay between airborne pollutants and meteorological

conditions is a critical factor in determining the air quality of urban areas and its subsequent

impact on human health. This intricate interaction between industrial emissions, wind pat-

terns, and urban meteorological conditions underscores the complex challenge of managing

air quality and protecting public health in densely populated regions.

As data availability and computing methods continue to advance, there has been growing

interest in applying machine learning techniques to air pollution management. Previous

research has primarily focused on predicting the health consequences of pollution exposure

[104]. Additionally, various studies have attempted to forecast air pollution, air quality, and

airborne particle concentrations using data such as satellite imagery, weather data, and air

quality monitoring data [105]–[109]. Despite these efforts, there remains a lack of literature

connecting air pollution prediction to decision-making and mitigation actions. Earlier works

on technology-aided tools to reduce pollution include [110], which discusses a mathematical

formulation and algorithm for controlling air pollution using weather forecasts and numerical

models to minimize control-related costs, and [111], which proposes a decision support tool
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to find optimal Best Management Practice locations for minimizing diffuse surface water

pollution.

This work tackles the critical issue of urban air pollution management by proposing a novel

plant operation scheduling methodology that leverages machine learning and optimization.

Our predictive and prescriptive framework links operational decisions to weather forecasts

to effectively minimize the impact of air pollution in industrial settings. To the best of our

knowledge, our work is the first attempt to reduce industrial air pollution through machine

learning. In addition, the framework is implemented and currently operational on the Safi

production site of the OCP group in Morocco. In summary, our contributions are three-fold:

• A data-driven pollution framework incorporating two components: (i) a machine learning-

enhanced weather forecasting system that utilizes onsite sensors and official forecasts

(ii) an optimization-based operational decision recommendation system optimizing the

trade-off between potential pollution risk and operational loss.

• The predictive component of our framework has been deployed at our industrial part-

ner OCP’s internal management system and guides production planning in real-time

production rate since July 2021. Since implementation, our machine learning-enhanced

forecasts significantly improved accuracy: we reduced the next 12-hour wind forecast-

ing errors by 38-52% and the next 12 to 48-hour errors by 14-46%. In addition, our

optimization-based operational decision framework is shown to reduce potential pol-

luting cases by 33-47% while achieving 40-63% operational savings.

• Our work offers a case study of achieving sustainable industrial activities through

enhanced data-driven meteorological forecasts in interplay of weather conditions and

industrial activities. We hope to inspire future work applying machine learning driven

meteorology for industrial development which depends on meteorological conditions.
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5.2 Methodology

In urban areas located nearby factories emitting airbourn pollutants, wind conditions play

a critical role in the dynamic determining the concentration of pollutants like particulate

matter, nitrogen oxides, and sulfur dioxide produced by industrial processes. When winds

are directed towards urban areas from industrial zones, they can carry a higher load of

pollutants, significantly worsening air quality. Conversely, favorable wind conditions can

disperse these pollutants, mitigating their impact. However, in scenarios of low wind speeds

or temperature inversions, pollutants tend to accumulate, particularly in urban areas with

the urban heat island effect, leading to higher concentrations of harmful substances and in-

creased exposure for the population.

This study proposes a data-driven framework to reduce the impact of air pollution from

industrial plants on nearby cities by responsively adapting production levels based on wind

speed and direction. Our pipeline encompasses two parts: i) machine learning algorithms

producing more accurate and frequent wind forecasts by combining official weather data and

onsite real-time sensory data to aid short-to-medium term factory and personnel planning;

ii) an optimization-based framework to recommend real-time optimal operational decisions

taking into account the various forecasts from the machine learning models. Figure 5.2 il-

lustrates our overarching methodology.

5.2.1 Case Study on Safi

The Safi city in Morocco has more than 300,000 residents, and is located 10km northeast

of a large phosphate manufacturing plant operated by the OCP group. The OCP Group is

world’s largest phosphate producer, accounting for more than 30% of global production of

phosphate, an important ingredient for agricultural fertilizer. However, phosphate produc-

tion releases harmful airborne substances such as sulfur dioxide (SO2), sulfur trioxide (SO3),

hydrogen sulfide (H2S), and hydrogen fluoride (HF), as well as fine and coarse dust, which
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Figure 5.1: Predictive and prescriptive approach to plant operations scheduling.

can pose serious health risks such as respiratory diseases and cancer [112].

To reduce the air pollution impact from industrial activities, the Safi site set up a monitor-

ing procedure with responsive production rates — and consequently airborne emissions —

depending on the meteorological conditions. However, there are two main challenges of such

an attempt. Firstly, there is a significant gap gap between official meteorological forecasts

and real-time conditions, thus leading to unnecessary and costly production shutdowns or

missed dangerous weather conditions. The national weather forecasts are frequently inac-

curate because they are calculated at a regional level and come with a 5 to 7-hour lag-time

due to the long computational costs of dynamical weather forecasts. Secondly, the process

is highly manual and depends on the expertise and experience of operators to make advance

scheduling according to weather forecasts. The lack of transparency and error tracking make

the process hard to improve.

In this work, we apply our predictve-and-prescriptive framework using on-site data to im-
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prove the operations of the Safi site.

5.2.2 The Previous Operational Procedure at Safi

The OCP group is the world’s largest phosphate producer, controlling 75% of the world’s

phosphate reserves and accounting for more than 30% of global production. The OCP Safi

site was established in the 1970s to produce various phosphates for export. However, fertil-

izer production is a known contributor to air pollution, releasing harmful airborne substances

such as sulfur dioxide (SO2), sulfur trioxide (SO3), hydrogen sulfide (H2S), and hydrogen

fluoride (HF), as well as fine and coarse dust, which can pose serious health risks such as

respiratory diseases and cancer [112]. The site is located 10 km southwest of the Safi city cen-

ter, with more than 300,000 residents. Due to the geographical location, weather conditions

play a critical role in air pollution dispersion. Depending on the wind speed and direction,

airborne pollution can be carried into Safi, thus posing a threat to public health and bring-

ing high respiratory and ocular discomfort. In 2013, the site set up a monitoring procedure

to reduce the amount of air pollution in the city with responsive production rates — and

consequently airborne emissions — depending on the meteorological weather forecasts and

real-time on-site wind monitoring system. This procedure schedules production rates and

personnel based on next-day weather forecasts. It uses real-time wind monitoring systems

to adjust in dangerous weather conditions, ensuring the safety of the surrounding community.

Before this work, the main bottleneck of the procedure was the gap between meteorological

forecasts and real-time conditions, thus leading to unnecessary and costly production shut-

downs or missed dangerous weather conditions, leading to negative health outcomes. The

operators in the Safi production site received operational weather forecasts from the national

meteorological agency every 12 hours for the next 48 hours. However, these forecasts are

frequently inaccurate because they are calculated at a regional level and come with a 5 to

7-hour lag-time due to the long computational costs of dynamical weather forecasts. As a

result, planning activities had no access to real-time forecast information and were sensitive

to uncertain weather conditions.

100



Operational decisions with human-in-the-loop

XGBoostDecision Tree

Ensemble model 
predictions

…

Forecast 
data

Real-time 
sensor data

Part I: Predictive

Optimal 
Policy Tree 

training

Model 
recommendations

Part II: Prescriptive

Wind speed & direction 
model predictions

Data processing 
& model training

48-hour plant operations 
and personnel scheduling Real-time adjustments

Figure 5.2: Predictive and prescriptive approach to plant operations scheduling.

This study aims to develop a data-driven framework to reduce the impact of air pollution

from industrial plants on nearby cities by responsively adapting production levels based on

wind speed and direction. Our pipeline encompasses two parts: i) machine learning algo-

rithms producing more accurate and frequent wind forecasts by combining official weather

data and onsite real-time sensory data to aid short-to-medium term factory and personnel

planning; ii) an optimization-based framework to recommend real-time optimal operational

decisions taking into account the various forecasts from the machine learning models. Figure

5.2 illustrates our overarching methodology.

5.2.3 Scenario Definition

To categorize different wind scenarios and subsequent polltion dispersion impacts for the Safi

site, we developed a warning system to categorize weather conditions into several scenarios.

Scenarios are differentiated as either favorable (S1, S2, S2b, S3) or dangerous (S3b, S4)

based on wind speed and direction, as outlined in Table 5.1. This categorization accounts
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for five wind speed buckets and three wind direction buckets, providing detailed guidance on

production rates for each scenario. A dangerous scenario is characterized by low wind speed

combined with an unfavorable wind direction, which results in pollutants being directed to-

ward and lingering in the city (see illustration in Figure 5.3). Based on the real-time and

predicted scenarios, operational decisions are made to reduce air pollution according to the

action rules outlined in Table 5.2.

Wind Favorable Wind Direction Very Unfavorable Wind Direction Unfavorable Wind Direction
Speed NW, N-NW, N, N-NE, NE, E-NE, E S-SW, S, S-SE E-SE, SE, SW, W-SW, W, W-NW
(m.s−1) 0◦ − 101.25◦ & 303.75◦ − 0◦ 146.25◦− 213.75◦ 101.25◦ − 146.25◦ & 213.75◦ − 303.75◦

V < 0.5 S3 a S4 S4
0.5 ≤ V < 1 S2 S3 b S2 b
1 < V ≤ 2 S1 S3 b S2 b
2 < V ≤ 4 S1 S3 b S2
4 < V S1 S1 S1

Table 5.1: Scenario definitions based on wind speed and direction, accounting for five wind
speed buckets and three wind direction buckets. Scenarios are differentiated as either favor-
able (S1, S2, S2b, S3a) or dangerous (S3b, S4).

Scenario Underlying Scenario Characteristics Public Health Consequences
Type Scenarios

Favorable S1, S2, S2b, S3 High wind speed and/or favorable wind direction Limited
Dangerous S3b, S4 Low wind speed and unfavorable wind direction Pollutants directed toward and lingering in city

Table 5.2: Categorization of scenarios as favorable and dangerous based on wind speed and
direction.

5.2.4 Predictive Methodology

We employ machine learning models to produce accurate hourly wind forecasts by integrating

official weather data and onsite real-time sensory data to aid short-to-medium factory and

personnel planning. We used data from the Safi site as a case study, and the success in this

framework led to an implementation and integration of our algorithm into the the OCP Safi

internal system. Our forecasts have been guiding their operational planning since July 2021.

This successful implementation serves as a model for other factories seeking to improve their

sustainability efforts and reduce their environmental impact.
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Figure 5.3: Wind direction and wind speed determine the dissemination of pollutants. Winds
coming from the South with low speeds are the most dangerous conditions.

Data Processing We combined two datasets to make predictions: the official regional

weather forecast data and real-time weather measurement data collected with on-site sensors.

Data used in this study range from July 2015 to March 2022.

Official forecasts are received twice daily, around 6:00 am (GMT) and 6:00 pm (GMT) from

the Moroccan National Meteorological Department. These forecasts are produced by tradi-

tional dynamical models with initial conditions and often take 5-7 hours of computational

time. They provide hourly values for the next 48 hours for wind speed, wind direction,

humidity, solar irradiance, and temperature at the Safi site. We call this model the baseline

model in the rest of the paper. The on-site sensors measure the same five weather features

(wind speed, wind direction, humidity, solar irradiance, and temperature) at one-minute

intervals.

We first imputed the missing values caused by electronic or server malfunctions with linear

interpolation. We then averaged the measurement data over one-hour intervals. We used the

arithmetic average for the humidity, solar irradiance, and temperature, and the vector aver-

age technique [113] for wind speed and direction (e.g., the vector average of a southerly and
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a northerly wind of 5 m.s−1 gives a mean wind speed of 0 m.s−1 because there is no resultant

wind speed). We encoded the wind direction using the cosine and sine transformations to

avoid singularities at endpoints due to the cyclical nature of the feature.

Training data creation We transformed the time-series data into a standard tabular

form to train traditional machine-learning models. To make wind predictions at time t for

the hour t + h, we concatenated the present and past 48 hours of weather measurement

features at each time step into a vector. Then, we appended the following features: the

latest operational forecast available at time t for wind speed, wind direction, pluviometry,

and solar irradiance; the cosine and sine of the day and the hour corresponding to time t.

Table 5.3 summarizes the 304 features and associated processing techniques.

Feature Description Processing Technique Initial Number of
Feature Range features

Wind speed Vector average 0.00 - 14.20 m.s−1 49
Wind direction Vector average, cos/sin encoding [0, 360]◦ 49× 2
Solar irradiance Arithmetic average 0.0 - 978.4 W.m−2 49
Temperature Arithmetic average 4.8 - 46.7◦C 49
Pluviometry Arithmetic average 0.0 - 17.2 mm 49
Day of the year Cos/sin encoding 1 - 365 2
Hour of the day Cos/sin encoding 0 - 23 2
Official forecast for wind speed 0.0 - 16.5 m.s−1 1
Official forecast for wind direction Cos/sin encoding [0, 360]◦ 2
Official forecast for pluviometry 0.0 - 20.8 mm 1
Official forecast for solar irradiance 0 - 1074 W.m−2 1
Official forecast for temperature 3.2 - 43.1◦C 1

Table 5.3: Table recording all the features and processing techniques. The number of features
obtained accounts for concatenating the past 48-hour values.

Model Training For the prediction task, we trained five different types of machine learn-

ing models to predict wind speed and direction, including Elastic Net, Decision Trees, Ran-

dom Forest, LightGBM, and XGBoost. To handle the cyclical property for wind direction,

we predicted the cosine and sine of the angle instead of the raw angle degree. Predictions

are then converted back into scenario predictions using Table 5.1. We trained one model for

each lead time between 1 and 48 hours ahead, i.e., 48× 3 regression models for wind speed,

cosine, and sine of wind direction. We performed hyperparameter tuning for each model
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using the validation set as explained later in Section 5.2.6.

In addition, we trained ensemble models to predict wind speed and direction for every lead

time using predictions from these previous individual machine-learning models. Ensemble

modeling is a well-established technique to leverage the strengths and limitations of multiple

models and benefit from their diversity. The principle is to combine the predictions of the

forecasting models available to obtain a more accurate, stable, and robust predictor. In our

case, we used the stacking [114] concept and tried several ensemblers, including decision trees,

regularized linear regression, and gradient-boosted trees. Elastic Net regression performed

the best, and we considered it our final ensemble model technique.

5.2.5 Prescriptive Methodology

As the second component and to acknowledge the errors in machine learning driven fore-

casts, we developed an optimization-based decision recommendation system to determine

the most optimal decision in real-time given the forecasts made by the different machine

learning models. We employed Optimal Policy Trees (OPT) [115] to determine the most op-

timal decision in real-time given the forecasts made by the different machine learning models.

The prescriptive approach employs observational data of the form {(xi, yi, zi)}. Each ob-

servation i consists of features xi ∈ R18 (the ensemble members’ predictions), an applied

prescription zi ∈ {0, 1} (reduce plant production or not), and an observed outcome yi ∈ R

(real-world costs associated with the decision). Our prescriptive task is determining the

optimal policy that, given the features x, prescribes the treatment z that results in the best

outcome y. The prescription involves choosing between one of two available decisions, either

to reduce production or not.

Table 5.4 outlines the reward matrix used to train the Optimal Policy Tree and quantifies

the costs associated with false positives and false negatives. First, no cost is incurred if

the forecasted scenario and actual conditions are favorable. When the plant operates at

reduced levels as a conservative measure after forecasting a dangerous scenario, the factory
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Forecasted Actual Cost Decision Public Health
Scenario Scenario (USD) Outcome Impact
Favorable Favorable 0 Full level production Low
Dangerous Favorable 2000 Reduced level production + anti-odor injection Low
Dangerous Dangerous 2000 Reduced level production + anti-odor injection Low
Favorable Dangerous 4000 - 20000 Full production before urgent shutdown + anti-odor injection High

Table 5.4: Reward matrix for training the Optimal Policy Trees based upon forecasted and
actual weather conditions.

incurs a loss of earnings of $2,000 per hour due to decreased production and the expenses of

injecting odor control chemicals to minimize unpleasant odors in the surrounding area. On

the other hand, the failure to forecast a dangerous scenario leads to the plant operating at

a normal level and polluting the nearby city when the weather conditions turn dangerous.

Afterward, the plant operators must shut down production urgently and inject odor control

chemicals. We propose evaluating various public health costs ranging from $2,000 to $18,000.

This parameter yields differing trade-offs between pollution and costs and can be determined

based on the decision-makers’ conservatism and risk aversion level.

5.2.6 Training Protocol

The data covers August 2015 to March 2022, totaling 43,952 hourly samples. The data set

was divided into training (60%), validation (20%), and testing (20%) sets. The validation

set was used to tune the hyperparameters of the machine-learning models. The ensemble

models and optimal policy tree parameters were 5-fold cross-validated on the predictions

made on the validation set. All models were evaluated on the unseen test set corresponding

to the real-world deployment phase.

Software Tools We used Python 3.8 [47] and the scikit-learn package [116] to implement

all machine learning models. We used the Python package InterpretableAI [117] to train

Optimal Policy Trees.
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Model Hyperparameters Values
Elastic Net regularization α coefficient 0.2, 0.4, 0.6, 0.8, 1

ℓ1 ratio 0.5, 0.7
Decision Trees maximum tree depth 5, 6, 7, 8, 9, 10

minimum samples per split 3, 5, 7
minimum samples per leaf 4, 6

Random Forest bootstrap True, False
number of estimators 100, 150
maximum tree depth 5, 6
min samples split 4, 6

LightGBM number of leaves 31, 60
maximum tree depth 4, 6
learning rate 0.1, 0.3
lambda ℓ1 0, 1

XGBoost number of estimators 100, 150
maximum tree depth 4, 6
learning rate 0.1, 0.3

Elastic Net Ensemble regularization α coefficient 0.2, 0.4, 0.6, 0.8, 1
ℓ1 ratio 0, 0.25, 0.5, 0.75, 1.0

Table 5.5: Hyperparameters searched for our models.

5.3 Results

This section reports the results of the two components of the framework: predictive and pre-

scriptive. We have successfully implemented the predictive component on machine learning-

based wind forecasts since December 2020, and we are currently implementing the pre-

scriptive component on operational decision-making recommendations. As such, we report

real-world deployment results for the predictive component and back-tested results for the

prescriptive component.

5.3.1 Predictive Methodology Results

Tables 5.6 and 5.7 report the results of the wind speed and wind direction forecasting tasks

for all the regression models we deployed at the Safi site: the baseline model, Elastic Net,

Decision Tree, Random Forest, Light GBM, XGBoost, and the Elastic Net ensemble model.

For each wind prediction task, we report the mean absolute error (MAE) and the expected

shortfall at 85%, corresponding to the average error on the worst 15% samples. The baseline
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model refers to the weather forecast guidance from the Moroccan Meteorological Department.

All machine learning models generally improve upon the baseline model, with XGBoost and

Light GBM achieving the lowest errors. In addition, the ensemble model further improves

the MAE and expected shortfall, especially in near-term horizons. Looking at speed pre-

diction, for less than 12-hour lead time, the best-performing machine learning approaches

can outperform the baseline model by 40-50% in both metrics. For longer-term predictions

with more than a 12-hour horizon, the best-performing machine learning approaches can

outperform the baseline model by 20-30%. We observe a similar trend for angle prediction:

machine learning approaches can achieve 30-50% improvement upon the baseline model for

less than 12-hour lead time predictions and 10-20% improvement for longer lead time pre-

dictions.

In addition, we observe that the ensemble model outperforms the best single machine learning

model consistently across tasks and error measures. The advantage of an ensemble model

is especially strong for less than 12-hour lead time predictions. The ensemble model can

achieve 0-8% MAE reduction depending on the specific lead time (except for a slightly worse

performance on the longer-term expected shortfall for speed).

Lead Time Metric Baseline Elastic Net Decision Tree Random Forest LightGBM XGBoost Ensemble
1 0.96 0.54 0.56 0.53 0.49 0.49 0.48
2 1.05 0.71 0.76 0.71 0.64 0.65 0.63
3 1.18 0.80 0.85 0.8 0.72 0.72 0.70
6 MAE 1.61 0.91 0.97 0.91 0.85 0.85 0.84
12 (m.s−1) 1.94 1.0 1.05 0.99 0.96 0.96 0.94
24 1.37 1.07 1.11 1.08 1.06 1.06 1.04
36 2.13 1.17 1.20 1.17 1.16 1.16 1.15
48 1.57 1.17 1.22 1.18 1.17 1.17 1.17
1 2.37 1.40 1.48 1.36 1.27 1.28 1.26
2 2.60 1.80 1.95 1.77 1.63 1.65 1.61
3 Expected 2.94 2.01 2.16 1.99 1.81 1.82 1.78
6 Shortfall 3.82 2.27 2.45 2.25 2.15 2.14 2.14
12 85% 4.55 2.48 2.64 2.44 2.38 2.40 2.39
24 3.51 2.61 2.77 2.60 2.58 2.58 2.59
36 4.93 2.79 2.89 2.76 2.75 2.75 2.77
48 4.03 2.80 2.95 2.79 2.78 2.78 2.81

Table 5.6: Beta test results on the test set for wind speed prediction for all models. We
record the MAE and expected shortfall at 85% level for different lead times ranging from 1
hour to 48 hours.
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Lead Time Metric Baseline Elastic Net Decision Tree Random Forest LightGBM XGBoost Ensemble
1 25 26 14 13 12 13 12
2 26 31 20 18 17 17 16
3 29 35 23 21 19 19 18
6 MAE 41 40 29 28 24 24 24
12 (m.s−1) 58 43 35 33 31 31 30
24 42 45 40 38 37 38 36
36 70 49 45 42 42 42 41
48 52 48 47 44 44 44 42
1 73 82 59 53 51 51 51
2 79 103 77 72 68 68 68
3 Expected 89 117 90 83 76 75 74
6 Shortfall 115 132 108 107 94 95 95
12 85% 136 138 127 125 117 117 117
24 127 143 138 135 134 135 132
36 155 148 145 140 140 140 140
48 145 148 146 143 143 143 143

Table 5.7: Beta test results on the test set for wind direction prediction for all models. We
record the MAE and expected shortfall at 85% level for different lead times ranging from 1
hour to 48 hours.

5.3.2 Prescriptive Methodology Results

Table 5.8 compares the performance of several models for recommending binary hourly ac-

tions (anticipating dangerous conditions or maintaining production levels). It includes the

baseline model, the previous Elastic Net ensemble model, and a series of Optimal Pol-

icy Trees (OPT) with different health costs associated with false negatives (-4000, -6000,

-10000, -15000, and -20000). Recall that the health cost used to train OPTs is a parameter

to tune conservatism towards pollution of our models: a higher cost leads to more cautious

care towards recommending operation at normal levels. Table 5.8 reports the number of

false positives and false negatives for each model. A false positive refers to when the plant

operates with reduced production levels and undertakes actions to mitigate the odor impact,

while in reality, these actions are unnecessary. A false positive is therefore associated with

a loss of $2000 corresponding to the anti-odor injection costs and consequences of reduced

production. On the other hand, a false negative refers to when the plant is operating at

normal levels, while in reality, weather conditions are unfavorable, and pollution is carried

to the city, leading to an air pollution incident.

As a remark, since the implementation of this component is underway, and we do not track

the actual decisions undertaken by operators, we showcase back-testing results using the
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baseline model as a benchmark. We simulate decisions using forecasts from the baseline and

ensemble models and translate them into decisions using Table 5.1. The actual decisions can

deviate from the simulated decisions because operators make decisions based on forecasts

and expertise.

In general, our framework can lead to reductions in both false positives and false negatives.

Specifically, looking at Optimal Policy Tree models, different choices of health cost lead to

different levels of conservatism, which gives the modeler the space to explore the trade-off

between cost savings and pollution mitigation goals. As the health cost increases, false neg-

atives decrease, and false positives increase. Comparing the OPT models with the baseline

model shows that the OPT models have overall better performance, as they have lower health

costs and fewer false positives.

Model Health Cost False Positives False Negatives Cost savings Pollution Reduction
Baseline 288 110 0% 0%
Ensemble 51 133 82% -21%

-4000 20 113 93% -3%
Optimal -6000 32 102 89% 7%
Policy -10000 106 74 63% 33%
Tree -15000 174 58 40% 47%

-20000 282 38 2% 65%

Table 5.8: Performance of three families of models for recommending actions. We include
the baseline model, the Elastic Net ensemble, and a series of optimal policy trees trained
with different health costs associated with false negatives.

In addition, the OPTs provide interpretable insights on how the different ensemble members

are used to prescribe, as illustrated by Figure 5.4 below. In particular, we notice that a

simple tree like the one corresponding to choosing a health cost of $15,000 (tree on the right

below) can reduce pollution emissions during dangerous scenarios by 47% and save 40% of

the unnecessary costs. Conveniently, it also relies on only three ensemble members: XGBoost

and Elastic Net predicting speed, and Random Forest predicting the cosine component of the

wind direction. It also suggests that different ensemble members capture different aspects

of the data and together make better recommendations.

110



Figure 5.4: Optimal policy trees trained using a health cost of $10,000 (left) and $15,000
(right). The trees illustrate an interpretable decision-making process to arrive at certain
recommended decisions (prescription options). Prescribe x1 corresponds to maintaining
production rate while Prescribe x2 corresponds to reducing plant operations and injecting
odor control chemicals.

Qualitative Feedback from Real-World Implementation

Our collaboration with OCP’s software development team has seamlessly integrated our

weather forecasts into the company’s internal system (see Figure 5.5). As of July 2021, the

site manager and plant operators have been utilizing the forecasts produced by our frame-

work through a simple user interface. They check the hourly forecasts before scheduling

production shutdowns, leading to a significant reduction in production downtime.

Qualitative feedback from production managers has indicated that our forecasts are substan-

tially more accurate than official weather forecasts and provide valuable real-time updates

that are particularly advantageous during winter when wind conditions are more unpre-

dictable. This has improved factory planning and resource allocation, allowing for more
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Figure 5.5: Screenshot of the software platform used by the plant operators in Safi. Our
model predictions for the next 3 hours are displayed on the upper left, while the baseline
model is displayed on the upper right. Below, the operator can check the real-time 1-min
measurements of the previous 30 minutes to adapt decisions.

efficient production, better personnel scheduling, and cost savings for the company.

The successful implementation of our framework at OCP Safi is a testament to our approach’s

effectiveness in optimizing factory operations. We believe that utilizing our framework has

the potential to advance how factories approach planning and resource allocation, ultimately

leading to improved sustainability efforts and environmental impact reduction.

5.4 Conclusion

In conclusion, our study introduces a novel and data-driven solution to mitigate the harmful

effects of air pollution caused by industrial plants in urban areas. We provide a compre-

hensive solution for managing industrial operations and weather-related risks by combining

advanced weather forecasting and decision-making models. Our framework, which incorpo-

rates both predictive and prescriptive machine learning models, was successfully implemented

at the OCP Safi production site, resulting in improved forecasting accuracy and decision-

making efficiency. Given the crucial role of weather in industrial environmental impact, we
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believe that our approach can be adapted and effectively applied in similar settings.

Our framework has demonstrated its value in managing air pollution in chemical produc-

tion sites, and the results achieved at the OCP Safi site hold the potential to inspire a

more sustainable and responsible chemical production industry globally. The flexibility and

adaptability of our approach enable its core components of data enhancement, real-time

monitoring, and prescriptive models to be universally applied to different chemical facto-

ries. Although each production site presents unique challenges, our data-driven approach

can be customized to meet the needs and conditions of each location. Utilizing the latest

advancements in weather forecasting and data analysis, we aim to assist factories in effec-

tively managing air pollution and promoting the safety and well-being of the surrounding

communities.
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Chapter 6

Conclusion

In this dissertation, we embark on a journey to explore ways of leveraging machine learning

and optimization methods to navigate the challenges related to climate change adaptation

and sustainable development. We harness the power of machine learning to enhance our

predictive capabilities for extreme weather conditions, and thereby combine with decision-

making tools to develop robust preparatory and adaptive strategies.

Structured into two principal segments, this thesis comprises the methodological component

of machine learning frameworks for extreme weather forecasting and the subsequent applica-

tions towards climate adaptation and sustainable development goals. The initial chapters are

dedicated to the development of a generalizable multimodal machine learning framework to

synthesize diverse data formats, ranging from satellite imagery, tabular time series datasets

to textual descriptions, in order to enhance weather forecasting capabilities. Specifically,

Chapter 2 focuses on applying the framework to predict hurricanes with a 12-hour lead time

by integrating satellite and tabular time series data, while Chapter 3 further expands to

include text data for long-term flood risk assessments.

These methodological investigations not only extend the frontiers of our predictive capa-

bilities but also shed light on enhancing decision-making processes across a multitude of

sectors. Therefore, the subsequent chapters pivot towards the pragmatic deployment of

these advanced weather models in devising strategies for climate change adaptation. In
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chapter 4, we integrate machine learning-driven risks using an adaptive robust optimization

framework for catastrophe insurance pricing, and demonstrate the efficiency using US Na-

tional Flood Insurance data. In chapter 5, we develop a data-driven framework, employing

machine learning models for near-term wind prediction, to reduce air pollution impact from

industrial operations to surround urban areas.

This body of work represents a critical junction in the application of machine learning with

the field of meteorology, facilitating a data-driven paradigm shift towards enhanced resilience

against the challenges posed by climate change. These innovations hold profound implica-

tions across numerous sectors, encompassing infrastructure planning, urban development,

insurance, and sustainable energy management, among others. Yet, this dissertation merely

scratches the surface of potential advancements. Looking forward, there is a vast landscape

of opportunities to expand upon.

I believe that Artificial Intelligence (AI) will fundamentall change our relationship with the

weather. As we look to the future, it becomes increasingly clear that adapting our societal

frameworks and operational methodologies to the ever-evolving climate is not just a necessity

but an imperative for sustainable growth. I am committed to advancing technological solu-

tions that not only facilitate climate change adaptation but also propel us towards enduring

sustainable development.
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Appendix A

Appendix for Chapter 2

A.1 Encoder-Decoder Architectures

A.1.1 Overall Architecture and Mechanisms

The CNN-encoder At each time step, we feed the nine reanalysis maps into the CNN-

encoder, which produces one-dimensional embeddings. The CNN-encoder consists of three

convolutional layers, with ReLU activation and MaxPool layers in between, followed by two

fully connected layers.

Next, we concatenate the reanalysis maps embeddings with processed statistical data corre-

sponding to the same time step. At this point, data is still sequentially structured as 8 time

steps to be passed on to the decoder.

The GRU-Decoder Our GRU-decoder consists of two unidirectional layers. The data

sequence embedded by the encoder is fed sequentially in chronological order into the GRU-

decoder. For each time step, the GRU-decoder outputs a hidden state representing a “mem-

ory” of the previous time steps. Finally, a track or intensity prediction is made based upon

these hidden states concatenated all together and given as input to fully-connected layers

(see Figure 2.3).
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The Transformer-Decoder Conversely to the GRU-decoder, we feed the sequence as

a whole into the Transformer-decoder. The time-sequential aspect is lost since attention

mechanisms allow each hidden representation to attend holistically to the other hidden rep-

resentations. Therefore, we add a positional encoding token at each timestep-input, following

standard practices [38]. This token represents the relative position of a time-step within the

sequence and re-introduces some information about the inherent sequential aspect of the

data and experimentally improves performance.

Then, we use two Transformer layers that transform the 8 time steps (of size 142) into an

8-timestep sequence with similar dimensions. To obtain a unique representation of the se-

quence, we average the output sequence feature-wise into a one-dimensional vector, following

standard practices. Finally, a track or intensity prediction is made based upon this averaged

vector input into one fully-connected layer (see Figure 2.4).

Loss function The network is trained using an objective function L based on a mean-

squared-error loss on the variable of interest (maximum sustained wind speed or TC dis-

placement) added to an L2 regularization term on the weights of the network:

L :=
1

N

N∑
i=1

(
ytrue
i − ypred

i

)2
+ λ

∑
l

∑
k,j

W
[l]2
k,j ,

where N is the number of predictions, ypred
i the predicted forecast intensity or latitude-

longitude displacements with a lead time of 24 h, ytrue
i the ground-truth values, λ a regular-

ization parameter chosen by validation, W [l] the weights of the l-th layer of the network. We

minimize this loss function using the Adam optimizer [118].

A.1.2 Technical Details on the CNN-Encoder GRU-Decoder Net-

work

We provide more formal and precise explanations of our encoder-decoder architectures.

CNN-encoder GRU-decoder architecture details Let t the instant when we want to

make a 24-hour lead time prediction. Let xviz
t ∈ R8×9×25×25 be the corresponding spatial-
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temporal input of the CNN, where 8 is the number of past time steps in the sequence, 9 is

the number of pressure levels times the number of features maps, 25◦ × 25◦ is the pixel size

of each reanalysis map. Let xstat
t ∈ R8×31 be the corresponding statistical data, where 8 is

the number of time steps in the sequence, and 31 the number of features available at each

time step.

First, xviz
t is embedded by the CNN into xemb

t ∈ R8×128 where 8 is the number of time steps

in the sequence, 128 is the dimension of the embedding space. Figure A1 provides an illus-

tration of this embedding process by the CNN-encoder.

Let i ∈ {0, . . . , 7} be the corresponding index of the time step in the sequence t. At each

time step ti of the sequence, the CNN embedding xemb
ti

is concatenated with the statistical

data xstat
ti

and processed as

hti := GRU(hti−1
, [xemb

ti
,xstat

ti
]),

with ht0 = 0, hti ∈ R128,∀i. [·, ·] means concatenation of the two vectors along the column

axis, to keep a one-dimensional vector.

Finally, we concatenate ht0 ,ht1 , . . . ,ht7 to obtain a one-dimensional vector xhidden
t of size

8 · 128 = 1024 and pass this vector into a series of 3 fully connected linear layers, of input-

output size: (1024, 512); (512, 128); (128,c), where c = 2 for track forecast task and and

c = 1 for intensity task. The final layer makes the prediction.

To extract the spatial-temporal embedded features, we use the output of the second fully con-

nected layer, of dimension 128. Therefore, this technique allows to reduce 8·9·25·25 = 45, 000

features into 128 predictive features that can be input into our XGBoost models.

For each convolutional layer of the CNN, we use the following parameters: kernel size = 3,

stride = 1, padding = 0. For each MaxPool layer, we use the following parameters: kernel
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Conv 1 
+ 

BatchNorm
+ 

ReLU

Conv 2 
+ 

BatchNorm
+

ReLU
+

MaxPool

Conv 3 
+ 

BatchNorm
+

ReLU
+

MaxPool

Dense 1
+ 

BatchNorm
+

ReLU

Dense 2
+ 

BatchNorm
+

ReLU

64×23×23

3×3×25×25

64×10×10

256×4×4

1×576

1×128

Figure A.1: Representation of our CNN-encoder. We use 3 convolutional layers, with batch
normalization, ReLU and MaxPool in between. We use fully connected (dense) layers to
obtain in the end a one-dimensional vector xemb

ti
.

size = 2, stride = 2, padding = 0.

The CNN-encoder architecture is inspired from [19]. The combination with the GRU-decoder

or Transformer-decoder and the feature extraction is a contribution of our work.

A.1.3 Technical Details on the Transformer-Decoder Architecture

As with the CNN-encoder GRU-decoder network, the spatial-temporal inputs are processed

and concatenated with the statistical data to obtain a sequence of input [xemb
ti

,xstat
ti

], ∀i ∈

{0, ..., 7}. As suggested by [38], we add to each [xemb
ti

,xstat
ti

] input a positional encoding Pi

token in order to provide some information about the relative position i within the sequence.

We eventually obtain x = [xemb
ti

,xstat
ti

] + Pi which is being processed by the Transformer’s

layers. In this work, we use Pi,2j = sin(i/100002j/d)and Pi,2j+1 = cos(i/100002j/d), where
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i is the position in the sequence, j the dimension and d the dimension of the model, in

our case 142. A layer is composed of a multi-head attention transformation followed by a

fully-connected layer, similar to the Transformer’s encoder presented in [38].

We used self-attention layers (i.e., Q = K = V ), specifically 2 layers with 2 heads, the

model’s dimension dk being fixed to 142 and the feedforward dimension set to 128.

We then averaged the outputs of our Transformer ht0 , . . . ,ht7 feature-wise to obtain the final

representation of the sequence.

A.2 Tucker Decomposition for Tensors

The multilinear singular value decomposition (SVD) expresses a tensor A as a small core

tensor S multiplied by a set of unitary matrices. The size of the core tensor, denoted by

[k1, . . . kN ], defines the rank of the tensor.

Formally, the multilinear decomposition can be expressed as:

A = S ×1 U
(1) ×2 · · · ×N U (N),

where A ∈ RI1×I2×···×IN ,

S ∈ Rk1×k2×···×kN ,

U (i) ∈ RIi×ki ,

where each U (i) is a unitary matrix, i.e., its conjugate transpose is its inverse U (i)∗U (i) =

U (i)U (i)∗ = I, and the mode-n product, denoted by A ×n U , denotes the multiplication

operation of a tensor A ∈ RI1×I2×···×IN by a matrix U ∈ RIn×Jn . Figure A2 exhibits a

geometric representation of the Tucker decomposition applied to a three-dimensional tensor

A, which is decomposed as a smaller core tensor S and projection maps U i
i=1,2,3. It can be
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viewed as a slice-wise matrix product along n-th dimension. Formally:

(A×n U)i1...jn...iN =
∑
in

ai1...in...iNujnin

.

Figure A.2: Illustration of the tensor decomposition of a 3 dimensional tensor. Tensor A is
the original tensor, which is approximated through Tucker decomposition using a core tensor
tensor S and three linear projection maps along each axis U (1), U (2), U (3).

Analogous to truncated SVD, we can reduce the dimensionality of tensor A by artificially

truncating the core tensor S and corresponding U (i). For instance, given a 4-dimensional

tensor of TC maps, we can decide to reduce the tensor to any desired rank by keeping

only the desired size of core tensor S. For instance, to reduce TC tensor data into rank

3× 5× 3× 3, we first perform multilinear SVD, such that S reflects descending order of the

singular values, and then truncate S by keeping only the first 3× 5× 3× 3 entries, denoted

by S ′, and the first 3 columns of each of U (i), denoted by U ′(i). Finally, a compressed tensor

A′ can be expressed as:

A′ = S ′ ×1 U
′(1) ×2 · · · ×N U ′(N).
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Finally, we flatten the truncated core tensor S ′ into a vector, which is treated as the extracted

vision features in order to train the XGBoost model.

A.3 Experiment Details

A.3.1 Testing Methodology

We employed the validation set to perform hyperparameter tuning. Then, we retrained the

models on the training and validation set combined using the best combination of hyperpa-

rameters. We then evaluate our models’ performance on the test set.

We report the performance obtained on the NA and EP test set with each method for 24-

hour lead time for both intensity and track forecasts. As a remark, in reality, there is often a

time lag when operational models become available. Such lag is shorter for statistical models

but longer for dynamical models (up to several hours) because of expensive computational

time. Due to the lag time variability, we do not consider such lag in our comparisons with

operational models. In other words, we neglect the time lag for all models and compare model

results assuming all forecasts compute instantaneously. We hope to provide an overall sense

of the predictive power of our methodology, although we acknowledge that using reanalysis

maps data is not possible in real-time. We discussed this bottleneck in section 2.6.

A.3.2 The Specific Protocol for HUML-ensemble

For the HUML-ensemble model, we used the HUML models 1-4 trained on the training set

only (i.e., data until 2011). We then used their forecasts on the unseen validation set (2012

to 2015) and their forecasts on the unseen test set (2016 to 2019) as the training and testing

data for the ensemble. The goal is to understand how each model behaves with respect to

the others on unseen data. We cross-validated the ElasticNet parameters on the 2012-2015

HUML forecasts and we finally tested on the same cases as before using the best hyperpa-

rameter combination found.
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A.3.3 Hyperparameter Tuning

We distinguish five categories of hyperparameters to tune: (1) the data-related features, (2)

the neural-network related features, (3) the tensor decomposition-related features, (4) the

tree-based method related features, (5) the consensus models-related features.

Data-related features

The data-related features include the area covered by the reanalysis maps (grid size) and

the number of historical time steps of data to use for each forecast. We tune these features

by comparing the 24-hour lead time forecast performance of the encoder-decoders for each

different hyperparameter configuration.

We found that using eight past time steps (i.e., up to 21 hours in the past) and a grid size

of 25 × 25 degrees for the reanalysis maps was the best combination. We also found that

standardizing the vision and statistical data — i.e., rescaling each feature to mean 0 and

standard deviation 1 — yielded better results than normalizing — i.e., rescaling each feature

to the [0, 1] range.

Neural network-related features

The neural network-related features include the optimizer, the architecture itself, the batch

size during training, and the loss function’s regularizer.

The best results were obtained using a batch size of 64, a λ regularization term of 0.01, and

the encoder-decoder architectures described previously. Regarding the optimizer, we use

Adam [118] with a learning rate of 10−3 for the intensity forecast and 4 · 10−4 for the track

forecast.

Tensor decomposition features

The tensor decomposition algorithm includes the choice of the core tensor size, i.e., the

compressed size of the original tensor. Recall that the original tensor size is 8× 9× 25× 25.
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Based on empirical testing, we found using a small tensor size of 3×5×3×3 yielded the best

performance when compressed reanalysis maps are included as features in XGBoost models.

Tree-based method features

Based on empirical testing, we found XGBoost models consistently outperforming Decision

Trees and Random Forests or other ML methods such as Support Vector Machines, Regu-

larized Linear Regression and Multi-Layer Perceptrons. XGBoost trains also fast which is a

considerable advantage for heavy hyperparameter search. Therefore, we selected XGBoost

as the core model for prediction.

Then, there is variability in the best combinations of hyperparameters depending on each task

(track or intensity), basin (NA or EP) or data sources to use (statistical, various reanalysis

maps embeddings). However, these particular features were typically important and were

the best in the following ranges: maximum depth of the trees (between 6 and 9), number of

estimators (between 100 and 300), learning rate (between 0.03 and 0.15), subsample (between

0.6 and 0.9), column sampling by tree (between 0.7 and 1), minimum child by tree (between

1 and 5).

Consensus-models-related features

We tested different kinds of consensus models on the HUML forecasts, including ElasticNet

[119], tree-based models, and multi-layer perceptrons (MLPs) as meta-learners. MLPs had

similar performance with ElasticNet, but since they are less interpretable and stable, Elas-

ticNet is the strongest ensembler candidate and our final choice for HUML-ensemble. We

tune the L1/L2 ratio between 0 and 1 and the regularization penalty between 10−4 and 10.
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A.3.4 Metrics

Haversine Formula

Formally, the Haversine distance between one pair of predicted point and actual point,

denoted by d, is calculated by:

d = 2R arcsin
(√

α
)
, where ,

α = sin2

(
ϕ̂− ϕ

2

)
+ cos

(
ϕ̂
)
cos (ϕ) sin2

(
λ̂− λ

2

)
,

where (ϕ, λ) are the actual latitude and longitude of one data point, (ϕ̂, λ̂) are the predicted

latitude and longitude, and R is Earth’s radius, approximated to be the mean radius at 6,371

km.

Skill

Skill represents a normalization of the forecast error against a standard or baseline. We

computed the skill sf of a forecast f following [6]:

sf (%) = 100 · eb − ef
eb

,

where eb is the error of the baseline model and ef is the error of the forecast being evaluated.

Skill is positive when the forecast error is smaller than the error from the baseline.
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Appendix B

Appendix for Chapter 4

B.1 Optimization Model Parameter Estimation

In this section, we expand on how to estimate parameters for the optimization model.

B.1.1 Computing LCLT
i

Recall from equation 4.16, to compute LCLT
i we need to compute the historical mean and

variance for each state. Table B.1 in the appendix exhibiting historical mean and standard

deviation for the top 10 most costly states, computed on the annual basis.

State Max Mean Std Median
LA 3,763,390 45,084 58,467 20,583
TX 8,973,270 44,046 65,420 19,801
NJ 4,022,518 32,727 58,000 13,042
NY 9,467,720 35,725 74,510 13,306
FL 9,100,033 25,351 63,809 8,052
MS 10,000,000 46,603 94,924 14,823
NC 1,294,678 21,725 41,345 7,992
PA 1,889,793 19,040 41,943 6,939
AL 4,900,000 28,059 95,474 8,466
SC 1,764,000 25,574 43,752 10,088

Table B.1: Statistics of top 10 most costly states in the US, including maximum annual
claim loss, mean, standard deviation and median.
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B.1.2 Demand Damping

In this work, we model the demand sensitivity to insurance premium through a piece-wise

linear demand function. We estimate the decline rate using historical data from several

states. Figures B.1 and B.2 below shows the scatter plot of number of policy holders in

a year against the mean policy premium of that state at that year. Different states have

different degrees of sensitivity to price, but in general we observe a downward trend of decline

in policy holder number as a function of increased price. For the illustrative purpose of this

work, we do not specify different sensitivity in different states, but use the same demand

damping function across all states.

Figure B.1: (a) Demand damping estima-
tion for Louisiana state (LA).

Figure B.2: (b) Demand damping estima-
tion for New York state (NY).
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Figure B.3: Different piece-wise linear demand damping curves corresponding to different
rate of decline.

B.2 Training Protocol of Machine Learning Models

B.2.1 Data Processing

Our dataset spans from 1975 to 2022. We exclude any claims lacking a specified claim

amount to ensure the integrity of our analysis. Additionally, data from ’MP’ (Northern

Mariana Islands), ’AS’ (American Samoa), ’GU’ (Guam), and ’DC’ (District of Columbia)

have been omitted due to their limited data records. As a result, our cleaned dataset en-

compasses information from 52 jurisdictions over 48 years. This includes all 50 U.S. states,

alongside two territories recognized as island states: the U.S. Virgin Islands and Puerto Rico,

enhancing the geographical breadth of our study.

To construct the machine learning model, first, we aggregate data to state and annual level.

The index of the data is two levels: state and year. For missing data, we performed linear

interpolation within each state using previous and later years. Then for each state at a

particular year, we construct the following features: state (categorical), current year annual

loss, past 1-5 years annual loss. Current and past year losses are numerical features, where

as state (categorical) feature is treated with one-hot encoding.
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We train binary classification models to predict the target, with 1 indicating for a particular

state at a particular year, the state will suffer an annual loss passing through the threshold Θ

in the next 1 to K years. We have experimented with three threshold values, corresponding to

90th, 95th and 99th percentile annual claim amount values across all states over all training

data, corresponding to USD 18,558,788, USD 50,688,672 and USD 321,903,271. In addition,

we have experimented with three K values, corresponding to 3, 5, 10 years respectively.

B.2.2 Training and Testing Protocols

We split the data set chronologically into training period from 1975 to 2011, and testing

period from 2012 to 2022. We experiment with two standard machine learning models, lo-

gistic regression and XGBoost. We employed 3-fold cross validation to search for the best

parameters for each type of models. The search space for hyperparameter tuning can be

found in Table B.2 below.

Model Hyperparameters Values
XGBoost number of estimators 100, 150

maximum tree depth 4, 6
learning rate 0.1, 0.3

Logistic Regression C 0, 0.2, 0.4, 0.6, 0.8, 1
penalty L1, L2

Table B.2: Hyperparameters searched for our models.

B.2.3 Detailed Prediction Results

Figure B.4 illustrates machine learning predicted risks for all states surpassing 90th percentile

flooding risk within the next 5-year time frame on 2016. For each state, we produce one

prediction for each year over the testing period, for each threshold, and for 3-year, 5-year,

10-year time frames. Table B.3 record out of sample prediction results using testing data,

corresponding to data between 2012 to 2022. We treat data in the testing period on a rolling

basis, and we drop the years where we do not have target data, i.e., in year 2019, we predict
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Figure B.4: Map illustrating machine learning (ML) predicted risks for all states surpassing
90th-percentile flooding risk within a 5-year time frame from 2016. Regions are color-coded,
with darker shades indicating a higher probability of predicted risks.

for K=3 but not for K = 5 or 10. We remark that accuracy is generally higher for longer

forecasting horizons. This is likely due to the following reasons: first, longer forecasting

horizon lead to higher probability of flood, which leads to more balanced data; second, we

have less testing samples. We use the probabilistic prediction results for each state at each

testing year qi,k as input to construct uncertainty sets for the robust optimization model as

given by equation 4.17.

B.2.4 Computational resources

The source codes for this study, implemented in Julia 1.7 and Python 3.9, are publicly

accessible at [repository link]. The convex optimization problems were solved using Ipopt

and Gurobi solvers, with machine learning models trained on a local machine with 4 Intel

CPUs on a Macbook Pro personal computer. Comprehensive documentation detailing the

methodology and specific parameters can be found in the repository’s code comments.
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Scores 3 Years 5 Years 10 Years
logreg xgb logreg xgb logreg xgb

90% Threshold
auc 0.743 0.776 0.763 0.808 0.767 0.912
f1 0.630 0.665 0.593 0.735 0.621 0.817

accu 0.693 0.675 0.632 0.736 0.623 0.830
accu_bl 0.625 0.706 0.605 0.753 0.641 0.809
precision 0.407 0.457 0.520 0.625 0.658 0.777

recall 0.437 0.793 0.362 0.901 0.500 0.967
95% Threshold

auc 0.818 0.871 0.818 0.897 0.794 0.921
f1 0.684 0.673 0.700 0.744 0.764 0.763

accu 0.856 0.781 0.808 0.792 0.830 0.774
accu_bl 0.665 0.742 0.699 0.829 0.736 0.820
precision 0.300 0.306 0.368 0.460 0.595 0.560

recall 0.391 0.688 0.516 0.891 0.500 0.938
99% Threshold

auc 0.920 0.945 0.922 0.956 0.952 0.992
f1 0.704 0.687 0.737 0.771 0.835 0.906

accu 0.910 0.950 0.909 0.943 0.925 0.962
accu_bl 0.809 0.646 0.786 0.731 0.958 0.979
precision 0.253 0.215 0.313 0.380 0.556 0.714

recall 0.696 0.304 0.640 0.480 1.000 1.000

Table B.3: Consolidated out-of-sample accuracy for percentile threshold predictions at 90%,
95%, and 99%, across different time horizons using logistic regression (logreg) and XGBoost
(xgb) models.
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