
Automating Heterogeneous Parallelism in Numerical
Differential Equations

by

Utkarsh
B.Tech. (Double Major), Indian Institute of Technology Kanpur (2022)

Submitted to the Center of Computational Science and Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTATIONAL SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Utkarsh. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Utkarsh
Center of Computational Science and Engineering
May 20, 2024

Certified by: Alan Edelman
Professor of Applied Mathematics, Thesis Supervisor

Accepted by: Youssef M. Marzouk
Professor of Aeronautics and Astronautics
Co-Director, Center for Computational Science and Engineering

2

Automating Heterogeneous Parallelism in Numerical Differential
Equations

by

Utkarsh

Submitted to the Center of Computational Science and Engineering
on May 20, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTATIONAL SCIENCE AND ENGINEERING

ABSTRACT

Scientific computing is an amalgamation of numerical methods and computer science.
Developments in numerical analysis have allowed stable and accurate numerical schemes,
whereas computer algorithms have been successfully adopted to standard multicore systems
of today, enabling parallelism. Combining efficient numerical algorithms with efficient paral-
lelism presents a challenge mainly due to the independent development of these fields and is,
therefore, typically solved on a domain-specific basis by domain experts. The development
of general-purpose tools that integrate parallelism into algorithms, accessible through high-
level languages, signifies the future direction for addressing computational demands across
various domains.

This thesis work represents a culmination of efforts in general-purpose parallel numerical
algorithms for solving differential equations. We make them accessible by choosing the
Julia programming language to implement the high-level framework. Solving differential
equations appears to be an intrinsically serial process due to progressive time-stepping that
proves challenging to parallelize. Most of the approaches are linked to two broad categories;
The first is the parallelism of the solver operations by making each solve faster, and the
latter is the parallelism between the solves, i.e., solving multiple batches at a time. We
automate the parallelization process in both these domains while keeping the algorithms
general-purpose. Parallelization with different hardware accelerators, such as CPUs and
GPUs, is also investigated.

Parallelism for sufficiently large stiff ODEs is traditionally linked to the parallelization of
the matrix factorization stage. However, these methods still need to overcome the threading
overhead for ODEs having less than approximately 200 states. We propose implementing
adaptive-order, adaptive time-stepping stiff ODE solvers such as extrapolation methods,
which can parallelize a single instance of an ODE solve even for small ODEs.

The other need for parallelization of ODE solvers arises from solving ODEs for batches
of data, a typical workflow in inverse problems, global sensitivity analysis, and uncertainty
quantification. Traditionally, GPU-accelerated ODE solvers were specially developed for
high-dimensional PDE systems, which can be easily adapted for batched ODE solvers. The
approach for parallelization is to convert an array-based ODE solver to work with GPU-based
arrays. These approaches have shortcomings, such as implicit synchronization of time steps
for all the ODEs and GPU overheads. We propose that these approaches can be improved

3

significantly where GPU acceleration for ODE solvers is device-agnostic, general-purpose,
and accessible from a high-level language.

Thesis supervisor: Alan Edelman
Title: Professor of Applied Mathematics

4

Acknowledgments

I am deeply grateful to everyone who supported and contributed to the completion of my
master’s thesis. Their invaluable assistance, encouragement, and guidance made this research
possible.

I am especially grateful to my advisors, Prof. Alan Edelman and Dr. Chris Rackauckas.
Alan has always encouraged me to think deeply about problems and helped me emphasize
effective communication in my work, shaping me into a better researcher. Chris has been
my supporter and motivator for the past several years, and I am always indebted to him for
giving me the opportunity to collaborate with him. I hope to continue to carry his trust and
faith in me. Their encouragement, subject expertise, and constructive criticism formed the
foundation of this thesis.

I am also thankful to my peers at Julia Lab and MIT CSAIL. Engaging in discussions
about technical computing helped me expand my horizons of knowledge, while their cama-
raderie and banter provided a necessary work-life balance. I would also like to thank my
friends from the broader MIT community, who made this place feel like home with their
presence.

I would like to extend my heartfelt gratitude to my parents, my mother, Soni, and
my father, Vinod Kumar, whose unwavering support and indomitable spirit have been the
foundation of my achievements. My father has always provided me with the best resources
and encouragement to step into academia, while my mother has consistently supported my
decisions with love. They have been constant pillars of support and motivation. I always
cherish my time with my sister, Prachi Rajput, whose encouragement and companionship I
deeply miss.

Lastly, I would like to thank everyone who has contributed to my work in any way
possible. Completing this thesis would not have been possible without your support, faith in
my abilities, and dedication. I also wish to thank the Almighty for maintaining their grace
and blessings throughout this journey.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Originality of the Work . 16

1.1.1 Publications . 16
1.2 Outline of the Thesis . 17

2 Theory 19
2.1 Numerical Methods for Differential Equations 19

2.1.1 Non-stiff Ordinary Differential Equations (ODEs) 19
2.1.2 Stiff Ordinary Differential Equations 20

2.2 Extrapolation Methods . 21
2.2.1 Explicit Methods . 22
2.2.2 Implicit Methods . 23
2.2.3 Stochastic Differential Equations (SDEs) 25

3 Parallelism in Differential Equations 27
3.1 Within-step Parallelism . 27
3.2 Parallel-in-time (PIT) Methods . 28
3.3 GPU Computing for Differential Equations 28

3.3.1 Implicit Parallelism . 28
3.3.2 Batched Evaluation . 28

4 Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary
Differential Equations 31
4.1 Introduction . 31
4.2 Extrapolation Methods . 33

4.2.1 Adaptive time-stepping and order of algorithms 33

7

4.3 Parallelization of the Algorithm . 34
4.3.1 Choosing Subdividing Sequences for Static Load Balancing 34
4.3.2 Parallelization of the LU Factorization 34

4.4 Benchmark Results . 35
4.4.1 Establishing Implementation Efficiency 35
4.4.2 State-Of-The-Art Performance for Small Stiff ODE Systems 35

4.5 Discussion . 36

5 Automated Translation and Accelerated Solving of Differential Equations
on Multiple GPU Platforms 41
5.1 Introduction . 41
5.2 Related Work . 42
5.3 The GPU ecosystem in Julia and cross-platform GPGPU programming . . . 43

5.3.1 Supporting multiple GPU platforms 44
5.3.2 Abstractions for kernel programming 44

5.4 Massively Data-Parallel GPU Solving of Independent ODE Systems 45
5.4.1 EnsembleGPUArray: Accelerating Ensemble ODEs with GPU Array

Parallelism . 45
5.4.2 EnsembleGPUKernel: Accelerating Ensemble of ODEs with specialized

kernel generation for entire ODE integration 48
5.5 Benchmarks and Case studies . 52

5.5.1 Setup . 52
5.5.2 Establishing efficiency of solving ODE ensembles with GPU over CPU 52
5.5.3 Solving billions of ODEs together: Scaling EnsembleGPUKernel with

MPI . 54
5.5.4 Comparison with other GPU-accelerated ODE programs 54
5.5.5 Vendor agnosticism with performance: Comparison with several GPU

platforms . 56
5.5.6 Event handling and automatic differentiation 58
5.5.7 Texture memory interpolation . 59
5.5.8 Accelerating stochastic processes with GPUs 60

5.6 Discussion . 62

6 DiffEqGPU.jl: GPU-acceleration routines for DifferentialEquations.jl and
broader SciML ecosystem 65
6.1 Setting up DiffEqGPU.jl . 65
6.2 API . 66
6.3 Composability . 66

7 Conclusion 71
7.1 Future works . 71

A Parallel Extrapolation Methods 73
A.0.1 Models . 73
A.0.2 Benchmarks . 76

8

References 79

9

10

List of Figures

4.1 Benchmark on the 100 linear ODE problem [A.0.2]. 36
4.2 Benchmark on ROBER Problem with low tolerances [A.0.2]. 37
4.3 Benchmark on Orego Problem with low tolerances [A.0.2]. 37
4.4 Benchmark on Hires Problem with low tolerances [A.0.2]. 38
4.5 Benchmark on Pollution Problem with low tolerances [A.0.2]. 38
4.6 Benchmark on QSP model with low tolerances [A.0.2]. 39

5.1 Overview of the automated translating and solving of differential equations
for GPUs for massively data-parallel problems. The solid lines indicate the
code flow, whereas the dashed lines indicate the extension interactions. . . . 46

5.2 The EnsembleGPUArray flowchart. 47
5.3 The EnsembleGPUKernel flowchart. 49
5.4 A comparison of time for an ODE solve for CPU vs. GPU. The EnsembleG-

PUKernel performs the best with up to 100× acceleration and a lower cutoff
to take advantage of parallelism. 53

5.5 A comparison of the time of an ODE solve for CPU vs. GPU. The Ensem-
bleGPUKernel performs the best with up to 100× acceleration and a lower
cutoff to take advantage of parallelism. 54

5.6 A comparison of the time for an ODE solve with other programs with fixed
time-stepping. EnsembleGPUKernel is able to reach and sometimes outper-
form speed of light measure (MPGOS) and is approximately faster by 20–100×
in comparison to JAX and 100–200× for PyTorch. 55

5.7 A comparison of the time for an ODE solve for with other programs with
adaptive time-stepping. EnsembleGPUKernel is able to reach and sometimes
outperform speed of light measure (MPGOS) and approximately faster by
20–100× in comparison to JAX. 56

5.8 A comparison of the time for a stiff ODE solve with other programs with
adaptive time-stepping. EnsembleGPUKernel is faster than JAX and Ensem-
bleGPUArray by approximately 76–130×. 58

5.9 A comparison of the time for an ODE solve for fixed time-stepping, measured
on different GPU platforms. The non-stiff ODE solver GPUTsit5 is used here.
We measure the time (lower the better) versus the number of parallel solves.
Here, the NVIDIA GPUs perform the best owing to the most-optimized library
and matured ecosystem with JuliaGPU. 59

11

5.10 A comparison of of the time for an ODE solve for adaptive time-stepping,
measured on different GPU platforms. The stiff ODE solver GPURosenbrock23
is used here. We measure the time (lower the better) versus the number of
parallel solves. Here, the NVIDIA GPUs perform the best owing to the most-
optimized library and matured ecosystem with JuliaGPU. 60

5.11 A simulation of bouncing ball problem on GPU. The blue trajectory is the
displacement and the red trajectory is the velocity, across time. This demon-
strates the ability to inject code within ODEs via callbacks. 61

5.12 The parameter parallel simulation time for the linear SDE defined in Section
5.5.8 (lower the better). The GPU parallelism supercedes CPU parallelism at
about 1000 trajectories. 62

5.13 An example simulation plot of the system vs. time. The model is written with
Catalyst.jl and automatically works with GPU solvers, showcasing the ability
to simulate complex models seamlessly on GPU. 63

5.14 The parameter parallel simulation time (lower the better) of the SDE sim-
ulation of Figure 5.13. Overall, the comparison showcases the scalability of
speedups of using GPUs instead of CPUs, having suitable gains for trajectories
as small as 1000. 63

12

List of Tables

5.1 Summary of mean slowdowns of ODE integrators, benchmarking on stiff prob-
lems with different hardware (lower the better) 53

5.2 A summary of the range of slowdowns of the benchmarks in Figures 5.6 and
5.7 (lower is better), with results compiled on a desktop GPU. The slowdowns
are computed by varying the number of trajectories. The Julia-based solvers
achieve the best acceleration on average. 57

5.3 A summary of the range of slowdowns of the benchmarks in Figures 5.6 and
5.7 (lower the better), with results compiled on a server GPU. The slowdowns
are computed by varying the number of trajectories. The Julia-based solvers
achieve the best acceleration on average. 57

5.4 A summary of the range of slowdowns of the benchmarks in Figure 5.8 (lower
the better), with results compiled on a server GPU for stiff ODEs. The slow-
downs are computed by varying the number of trajectories. The Julia-based
solvers achieve the best acceleration on average. 57

6.1 Backend choices available in DiffEqGPU. 65

A.1 Tuned parameters for 100 Linear ODEs . 76
A.2 Tuned parameters for ROBER . 76
A.3 Tuned parameters for OREGO . 77
A.4 Tuned parameters for HIRES . 77
A.5 Tuned parameters for POLLU . 77
A.6 Tuned parameters for QSP Model . 78

13

14

Chapter 1

Introduction

Differential equations are fundamental to nearly all scientific research. Advances in scientific
computing have enabled the large-scale simulation of these equations on computers. Effi-
ciently scaling these techniques necessitates leveraging parallel computing, which has driven
significant scientific discoveries in fields such as Biology, Physics, and Artificial Intelligence
[1]–[4]. Despite the success of parallelism in enabling large-scale models and exascale simu-
lations, many scientists and practitioners face barriers to adoption due to two main reasons:

1. They often lack access to the necessary parallel computing resources, typically working
with standard x86 computers or, at best, modest GPUs.

2. Efficient utilization of these techniques requires technical expertise, which may be
beyond the grasp of those who are less technically savvy.

Integrating parallelism with differential equation solvers is particularly challenging due to
the inherently serial nature of the time-stepping integration procedure. Accelerating the sim-
ulation of Ordinary Differential Equations (ODEs) generally requires either the development
of faster and more stable numerical methods or the use of special techniques within existing
ODE solvers to exploit hardware parallelism. A common application in scientific computing
involves solving large-scale ODE systems, which arise from the semi-discretization of Partial
Differential Equations (PDEs), biological models, and ensemble problems.

Large-scale ODE systems are often parallelized using array-based approaches, such as
broadcasts and GPU kernels for non-stiff systems and through matrix factorization for stiff
systems. However, parallel computing remains unoptimized and often inaccessible for mod-
els that cannot overcome multi-threading overheads. These models, which are prevalent in
the scientific community, are typically low-dimensional and expensive to simulate. Paral-
lelism can significantly accelerate the forward pass of these models. One way to achieve
this is through within-step parallelism, where special numerical methods are designed to
allow parallel computation [5]–[7]. Another form of parallelism arises from ensemble simu-
lations, where the same model is simulated for different initial conditions and parameters.
This is useful for tasks such as global sensitivity analysis, uncertainty quantification, and
inverse design [8]–[10]. However, parallel computing and numerical methods have historically
been developed in isolation, often leading to trade-offs between computational efficiency and
numerical accuracy.

15

This sets up our task: "How can we efficiently enable parallel computing with efficient
numerical methods?" This thesis addresses this challenge through a two-step approach to
overcome the barriers to adoption identified above.

First, we optimize specialized numerical methods, particularly extrapolation methods in
ODEs, to enable parallelism for relatively smaller models with fewer than 200 states [5],
[11]. This approach is detailed in Chapter 4. We unify heterogeneous acceleration by gen-
erating specialized GPU custom kernels for ODE solvers to address the need for parallelism
in ensemble simulations. These custom kernels are 20 to 100 times faster than high-level
approaches in popular Machine Learning libraries [12], [13]. We discuss our approach in
detail and the suitability of the Julia programming language [14] for this task in Chapter 5.

Secondly, We automate this approach by developing or integrating open-source software
such as DiffEqGPU.jl [15] and DifferentialEquations.jl [16] that allows the same high-level
code to leverage parallelism with heterogeneous compute (CPUs and GPUs) without signifi-
cant overheads, thus maintaining performance and composability. By building upon previous
work and integrating these solutions, we aim to make efficient parallel computing and nu-
merical methods accessible and practical for a wider range of users.

1.1 Originality of the Work

The works presented here are original works of the author or done in collaboration with oth-
ers. The material presented here has been derived from the manuscripts that have appeared
as pre-print, published at either a conference or a journal by the author, or the works of
others which are duly cited.

1.1.1 Publications

This thesis contains works from these manuscripts published by the author in reverse chrono-
logical order:

• Automated Translation and Accelerated Solving of Differential Equations
on Multiple GPU Platforms [15]
Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich,
Adam R Gerlach, Alan Edelman, George Barbastathis, Richard D Braatz, Christopher
Rackauckas
Computer Methods in Applied Mechanics and Engineering

• Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary Dif-
ferential Equations [7]
Utkarsh, Chris Elrod, Yingbo Ma, Konstantin Althaus, Christopher Rackauckas
IEEE High-Performance Extreme Computing Conference (HPEC)

[15] was written and published during my Masters at MIT. [7] was also published during
my time at MIT; however, the project was started before I joined MIT. A chapter for [7] has
been included in the thesis to provide a complete story and motivation for [15], both of which
are algorithms to parallelize solving of differential equations efficiently. [15] builds up on the
different parallelization perspectives, which would lack coherence without the mention of [7].

16

1.2 Outline of the Thesis

The outline of this thesis is as follows:

1. Chapter 2 provides relevant background on numerical simulation of Ordinary and
Stochastic Differential Equations.

2. Chapter 3 introduces ways to achieve parallelism in numerical methods, with greater
emphasis on differential equation solvers.

3. Chapter 4 describes a way to parallelize a single ODE solve for low-dimensional stiff
and non-stiff systems.

4. In Chapter 5, we address the other need for parallelism in differential equations, such as
solving them in batches for different initial conditions or parameters. We demonstrate
a performant, composable, and vendor-agnostic method that is orders of magnitude
faster than current high-level implementations.

5. Chapter 6 highlights the development of open-source package, DiffEqGPU.jl, for GPU-
based ODE solvers.

6. Chapter 7 concludes our thesis and provides some ideas for future work.

17

18

Chapter 2

Theory

2.1 Numerical Methods for Differential Equations

2.1.1 Non-stiff Ordinary Differential Equations (ODEs)

ODEs are models given by the evolution equation:

du

dt
= f(u, p, t), (2.1)

with the initial condition u(t0) = u0 over the time span (t0, tf), where u is the solution, p is the
parameter, t is time, t0 is the initial time, and tf is the final time. In the subsequent sections
of this article, the parameter p is omitted from the formulation to avoid confusion as it is
not an important part of our numerical methods and algorithms. There exist many different
methods for numerically solving ODEs [11], [17], though generally the most performant
method is determined by a property known as the stiffness of the ODE, which is related to
the pseudo-spectra of the Jacobian [18], [19].

One of the most common classes of solvers for ODE software are explicit Runge-Kutta
methods [20], [21]. These methods are specified by a coefficient tableau {A, b, c}, with "s"
stages and order "k", where k ≤ s. It produces the approximation for un = u(t0+nh) which
is the solution at the current time step tn, h is the time step (tn+1 = tn + h), where h is the
time-step, as

ks = f

(
un +

s∑
i=1

as,iki, t+ csh

)
(2.2)

un+1 = un + h

s∑
i=1

biki (2.3)

Some examples of Runge-Kutta methods include dopri5 [22] and MATLAB’s ODE suite
ode45 [23].

For adaptive step-size control, the Runge-Kutta methods require an extra computation as
ũ(t+h) = u(t)+h

∑s
i=1 b̃iki, where b̃i are another linear combiners, which approximates the

solution by one order less than the original solution. The local error estimate can be written

19

as E = ∥ũ(t+ h)− u(t+ h)∥ [11], [24]. Adaptivity ensures that error remains below certain
tolerance, and these tolerances are absolute (atol) and relative (rtol). Mathematically, the
proportion of error against tolerance is

q =

∥∥∥∥ E

atol + rtol ·max{|u(t)|, |u(t+ h)|}

∥∥∥∥ . (2.4)

The step-size h is accepted for q < 1; otherwise, h is reduced and a new step is attempted.
The new step-size in Runge-Kutta methods is proposed through proportional-integral control
(PI-control) via hnew = ηqβ2

n−1q
β1
n h, where β1, β2 are tuned parameters [11], qn−1 is the previous

proportion error, and η is the safety factor.

2.1.2 Stiff Ordinary Differential Equations

Rosenbrock Methods

There exist various numerical methods for solving stiff ODEs [17], [23]. One of the most
common algorithms used in various ODE solver packages, e.g., Julia, MATLAB, is known as
the Rosenbrock method [17], [23], [25], [26]. The general formulas of an s-stage Rosenbrock
method is given by

ki =hf

(
un +

i−1∑
j=1

αijkj, tn + αih

)
+ βih

2∂f

∂t
(un, tn) + h

∂f

∂u
(un, tn)

i∑
j=1

βijkj, (2.5)

un+1 = un +
s∑

j=1

δjkj, (2.6)

where un is the solution at the current time step tn, un+1 is the solution at the next time
step tn+1, h is the time step (tn+1 = tn + h), αij, βij, δj are the coefficients, and

αi =
i−1∑
j=1

αij, (2.7)

βi =
i∑

j=1

βij. (2.8)

The Rosenbrock-type methods are ideally suited for GPU compilation because they are
devoid of the typical Newton’s method performed per step in stiff ODE integrators [17]. The
Newton’s method requires multiple linear solves and is computationally expensive due to
repeated Jacobian calculation due to no reuse of previous matrix factorizations. Rosenbrock
methods only require one Jacobian evaluation and have a constant number of linear solves
per step, where the matrix factorization can be cached to achieve O(N2) computational
cost of the linear solves, where N is the dimension of the ODE. Since GPUs are efficient
in performing multiple small tasks in parallel, Rosenbrock methods are expected to achieve
massive speedups on GPUs in ensemble simulations.

20

Diagonally Implicit Runge-Kutta Methods

Another class of algorithms considered in this work is the Diagonally Implicit Runge-Kutta
(DIRK) methods. The computation of a single step is given by

ki = f

(
un + h

i∑
j=1

aijκj, tn + cih

)
, (2.9)

un+1 = un + h

s∑
i=1

biκi, (2.10)

where aij, bi, and cj are the scalar constants. The class of DIRK methods considered in
our benchmarking is the Explicit Singly Diagonal Implicit Runge-Kutta (ESDIRK) meth-
ods. ESDIRK methods are characterized by a11 = 0 and ai,i = µ, for some constant µ.
Particularly, we are interested in Kvaerno methods, a class of A-L stable stiffly-accurate
ESDIRK method [27]. The methods are suitable for benchmarking comparison as these are
only available methods in other open-source software such as in Diffrax [28].

2.2 Extrapolation Methods

The extrapolation methods are variable-order and variable-step methods which generate
higher precision approximations of ODE solutions computed at different time step-sizes. For
the N th current order of the algorithm, we generate f(u, p, t+ dt) at the current time-step
dt for each order from 1 to N . For the approximation at t + dt, the algorithm chooses a
subdividing sequence which discretizes into further fixed smaller steps between t and t+ dt.
Choosing a sequence of the form:

n1 < n2 < n3 < n4 < · · · < nN (2.11)

Generates internal step-sizes h1 > h2 > h3 > h4 > · · · > hN by hi =
dt
ni

. The subdividing
sequences vary with order, having smaller time-steps in higher orders for finer resolution. The
algorithm chosen for this is suitably an efficient implicit/explicit method between t and t+dt
is of pth order.

The tabulation of 1st N th calculations generate starting-stage of extrapolation computa-
tion, denoted by:

uhi
(t+ dt) = Ti,1

i = j, j − 1, j − 2, · · · , j − k + 1.
(2.12)

Extrapolation methods use the interpolating polynomial

p(h) = ũ− eph
p − ep+1h

p+1 − · · · − ep+k−2h
p+k−2 (2.13)

such that p(hi) = Ti,1 to obtain a higher order approximation by extrapolating the step size
h to 0. Concretely, we define Tj,k := p(0) = ũ = u(t+ dt) +O(dtp+k). In order to find ũ, we

21

can solve the linear system of k variables and k equations formed by equations (2.12) and
(2.13). This conveniently generates an array of approximations with different orders which
allows simple estimates of local error and order variability techniques:

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

· · · · · · · · · · · ·

Aitken-Neville’s algorithm uses Lagrange polynomial interpolation formulae [29], [30] to
make: (2.13):

Tj,k+1 = Tj,k +
Tj,k − Tj−1,k

nj

nj−k
− 1

(2.14)

Finally, the N th order is u(t+ dt) = TN,N .
As shown in (2.11), the subdividing sequence should be positive and strictly increasing.

Common choices are:

1. Harmonic [31]: n = 1, 2, 3, 4, 5, 6, 7, 8 . . .

2. Romberg [32]: n = 1, 2, 4, 8, 16, 32, 64, 128, 256 . . .

3. Bulrisch [32], [33]: n = 1, 2, 3, 4, 6, 8, 12, 16 . . .

The "Harmonic" sequence generates the most efficient load balancing and utilization of
multi-threading in parallel computing which is discussed more in Section III.

2.2.1 Explicit Methods

Extrapolation Midpoint Deuflhard and HairerWanner

Both the algorithms use explicit midpoint method for internal step-size computations. The
representation used here is in the two-step form, which makes the algorithm symmetric and
has even powers in asymptotic expansion [34]

uhi
(t0) = u0

uhi
(t1) = u0 + hif(u0, p, t0)

uhi
(tn) = uhi

(tn−2) + 2hif(uhi
(tn−1), p, tn−1)

(2.15)

The difference between them arises from the step-sizing controllers. The ExtrapolationMid-
pointDeufhard is based on the Deuflhard’s DIFEX1 [31] adaptivity behaviour and Extrapo-
lationMidpointHairerWanner is based on Hairer’s ODEX [11] adaptivity behaviour.

22

The extrapolation is performed using barycentric formula which based on the lagrange
barycentric interpolation [35]. The interpolation polynomial is given by:

wj =
∏

i=1:N+1,i ̸=j

1

n−2
j − n−2

i

ρ(h) =
∏

i=1:N+1

h− n−2
i

p(h) = ρ(h)
N+1∑
j=1

wj

h− nj
−2

Tj,1

(2.16)

Extrapolating the limit h → 0, we get:

u(t+ dt) = ρ(0)
N+1∑
j=1

wj

−nj
−2

Tj,1 (2.17)

Where wj are the extrapolation weights, ρ(0) are the extrapolation coefficients and nj denotes
the subdividing sequence.

The choice for baryentric formula instead of Aitken-Neville is mainly due to reduced
computation cost of ODE solution at each time-step [36]. The extrapolation weights wj and
coefficients ρ(0) can be easily computed and stored as tableau’s. The yields the computation
cost to be O(N2

max) for the precomputation where Nmax is the maximal order than can be
achieved by the method.The extrapolation method of order N generates a method of error
in order of 2(N + 1) [11], [36].

It can be analysed that computational cost of with Aitken-Neville for TN,N is O(N2d)
(d(1 + 2 + · · ·+N) = O(N2d)), where N is the extrapolation order and d is the dimension
of the u [36]. The computation cost of (2.17) is simply O(Nd) (a linear combination all Tj,1

across d dimensions) [36].

Numerical Stability and Analysis: In comparison The numerical performance follows
similar behaviour as that of Aitken-Neville in the subdividing sequences of Romberg and
Bulrisch, where the absolute error decreases as extrapolation order q increases [37]. However,
in the harmonic sequence, the numerical stability in both cases of extrapolation remains up-
to as much as up-to 15 order and then it diverges [36].

2.2.2 Implicit Methods

We will consider implicit methods as basis for internal step-size calculation using subdividing
sequences in extrapolation methods. They are widely used for solving stiff ODEs (maybe
write more why implicit methods are suited for it).

23

Implicit Euler Extrapolation

The ImplicitEulerExtrapolation uses the Linearly-Implicit Euler Method for internal step-
sizing. Mathematically:

(I − hiJ)(uhi
(tn+1)− uhi

(tn)) = hf(uhi
(tn), p, tn)

∴ uhi
(tn+1) = uhi

(tn) + (I − hiJ)
−1hf(uhi

(tn+1), p, tn)
(2.18)

where I and J ≈ ∂f(uhi
,p,t)

∂uhi
is the Rd×d identity and jacobian matrix respectively. Clearly, the

method is non-symmetrical and consequently would have non-even powers of h global error
expansion. The methods are A(α) stable with α ≈ 90o [17]. The extrapolation scheme used
is Aitken-Neville (2.14).

Implicit Euler Barycentric Extrapolation

We experimented with barycentric formulas [35] to replace extrapolation algorithm in Im-
plicitEulerExtrapolaton. Since there are no even powers in global error expansion, the
barycentric formula [35] needs to changed as follows:

wj =
∏

i=1:N+1,i ̸=j

1

n−1
j − n−1

i

ρ(h) =
∏

i=1:N+1

h− n−1
i

p(h) = ρ(h)
N+1∑
j=1

wj

h− nj
−1

Tj,1

(2.19)

Extrapolating the limit h → 0, we get:

u(t+ dt) = ρ(0)
N+1∑
j=1

wj

−nj
−1

Tj,1 (2.20)

Consequently, the extrapolation method of order N generates a method of error in order of
N + 1.

Implicit Hairer Wanner Extrapolation

For implicit extrapolation, symmetric methods would be beneficial to provide higher order
approximations. The naive suitable candidate is the trapezoidal rule, but the resulting
method is not stiffly stable and hence undesirable for solving stiff ODEs [38], [11].

G. Bader and P. Deuflhard [39], [31] developed the linearly-implicit midpoint rule with
Gragg’s smoothing [40], [41] as extension of popular Gragg-Bulirsch-Stoer (GBS) [33] method.
The algorithm is given by:

(I − hiJ)(uhi
(t1)− u0) = hif(u0, p, t0)

(uhi
(tn+1)− uhi

(tn)) = (uhi
(tn)− uhi

(tn−1))

+ 2(I − hiJ)
−1hif(uhi

(tn), p, tn)

− 2(I − hiJ)
−1(uhi

(tn)− uhi
(tn−1))

(2.21)

24

Followed by Gragg’s Smoothing [40], [41]:

t = t0 + 2nhi

Tj,1 = Shi
(t) =

uhi
(2n+ 1) + uhi

(2n− 1)

2

(2.22)

The Gragg’s smoothing [40], [41] implementation in OrdinaryDiffEq.jl 1 improved the stabil-
ity of algorithm resulting in lower f evaluations, time steps and linear solves. Consequently,
it increased the accuracy and speed of the solvers.

The extrapolation scheme used is similar to extrapolation midpoint methods, namely the
barycentric formula [35] (2.17). One of the trade-offs for the increased stability from Gragg’s
smoothing [40], [41] is the reduced order of error for the extrapolation method. As stated
earlier, the barycentic formula provides and error of order 2(N + 1) which gets reduced to
2(N + 1)− 1 = 2N + 1 in the case of Implicit Hairer Wanner Extrapolation [11], [39]. The
algorithm requires to use even subdividing sequence and hence we are using multiples of 4 of
the common sequences in the implementation. Furthermore, the convergence tests for these
methods2 are written in the test suite of OrdinaryDiffEq.jl.

2.2.3 Stochastic Differential Equations (SDEs)

SDEs are extensions of ODEs which include inherent randomness. SDEs are used as models
in many domains such as quantitative finance [42], [43], systems biology [44], and simulation
of chemical reaction networks [45]. SDEs are formally defined as

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (2.23)

where Wt is a wiener process and dWt is a Gaussian random variable Wt+dt−Wt ∼ N (0, dt),
where N (0, dt) is the normal distribution with zero mean and variance dt [46]. The general
interest is in ensembles of SDE solutions for the purpose of calculating moments or simple
analytical functions of moments, such as the mean and variance of the solution, and thus
SDEs are a particularly strong application for ensemble parallelization of the solution pro-
cess. For this reason, methods which have accelerated convergence for the calculation of
the moments, known as high weak order solvers, have gained traction in the literature as a
potentially performant method for numerically analyzing such solutions. One such class of
methods are the stochastic explicit "s" stage Runge-Kutta methods:

ηj = X̃t + h

s∑
j=1

λjia(ηj, t + µjh) +
m∑
k=1

∆W̃ k
n

s∑
j=1

λk
jib(ηj, t + µjh), j = 1, . . . , s,

X̃t+h = X̃t + h

s∑
j=1

αja(ηj, t + µjh) +
m∑
k=1

∆W̃ k
n

s∑
j=1

βk
j b(ηj, t + µjh) + R,

1https://github.com/SciML/OrdinaryDiffEq.jl/pull/1212
2https://github.com/SciML/OrdinaryDiffEq.jl/blob/master/test/algconvergence/ode_extrapolation_

tests.jl

25

https://github.com/SciML/OrdinaryDiffEq.jl/pull/1212
https://github.com/SciML/OrdinaryDiffEq.jl/blob/master/test/algconvergence/ode_extrapolation_tests.jl
https://github.com/SciML/OrdinaryDiffEq.jl/blob/master/test/algconvergence/ode_extrapolation_tests.jl

where αj, β
k
j , µj, λij, γ

k
ij are the constants that define the particular stochastic Runge-Kutta

method and R is the fit term [46], [47]. Adaptive time-stepping techniques using similar
rejection sampling and PI-controller approaches to ODEs have been adapted to SDE solver
software [48].

26

Chapter 3

Parallelism in Differential Equations

Numerical methods for solving differential equations exploit parallelism at different levels.
Briefly, the levels of parallelism in hardware exist as:

1. Instruction-Level Parallelism (ILP)

2. Data-Level Parallelism

(a) Single Instruction Multiple Data (SIMD)

(b) Graphics Processing Units (GPUs)

3. Thread-Level Parallelism

This thesis will mainly focus on some ideas for Thread-Level Parallelism and GPUs, and
the treatment for other types of parallelism is out of the scope of the thesis.

3.1 Within-step Parallelism

Step parallelism in the context of solving ODEs involves executing different stages or steps
of the numerical solution process concurrently. This can significantly speed up the compu-
tation, especially for large-scale problems or systems of ODEs. Avenues for parallelism exist
in Runge-Kutta methods, where the stage evaluation depends on f(u, p, t) and can some-
what be parallelized. For explicit Runge-Kutta methods, later stages often depend on the
results of earlier stages, which limits parallelism. However, within each stage, there might
be opportunities for parallel computations, especially for systems of ODEs [49]. A common
solver available widely is PETSc, which provides tools for parallel computation, including
support for parallel Runge-Kutta methods [50]. Similarly, there exist avenues of parallelism
in extrapolation methods [5], [6], which we will describe in Chapter 4 in greater detail.

In the context of stiff systems, the most computationally expensive part is the linear solve.
Matrix factorization provides efficient computation of the inverse, which scales at O(N3).
Hence, most of the parallelization is linked to parallel factorization, commonly provided by
LAPACK [51]. LAPACK routines are structured to maximize the use of the Basic Linear
Algebra Subprograms (BLAS) for their computations. Specifically, LAPACK is initially

27

designed to leverage Level 3 BLAS—Fortran subprogram specifications for various types of
matrix multiplication. The coarse granularity of Level 3 BLAS operations enhances efficiency
on many high-performance computers, especially when manufacturers provide specially op-
timized implementations. These optimized implementations are sufficient for within-step
parallelism, especially for large systems, where the multi-threading overhead is amortized.

3.2 Parallel-in-time (PIT) Methods

Parallel-in-time (PIT) methods [52], [53] are a type of time-parallel technique that can help
ODEs solve cases by simultaneously stepping the ODE at multiple time points. The basic
idea of PIT methods revolves around splitting a large time interval of integration, where
these splits, i.e., small time intervals, can be solved in parallel. This is followed by iterative
correction of the solutions until convergence. Briefly, the method consists of two key solvers:
Coarse and Fine solver. The coarse solver is responsible for generating initial approximations
and is relatively fast, however being less accurate. A projection to a more accurate solution is
computed using a fine solver, which is trivially more computationally expensive. The method
scales with the number of processors available and is suitable for integrating large-time scales.

3.3 GPU Computing for Differential Equations

Graphics Processing Units (GPUs) differ remarkably from CPUs, and hence, avenues for
parallelism are somewhat specific and restricted. GPUs follow the Single Threaded Multiple
Thread (SIMT) form of parallelism, where there are thousands of workers capable of per-
forming relatively less complex and similar tasks on a thread. Broadly, there two different
ways to accelerate differential equations with GPUs:

3.3.1 Implicit Parallelism

In the context of ODEs, implicit parallelism occurs when the vector field, i.e., the RHS or
the f(u, p, t) is relatively expensive to compute. The caveat in this parallelization is that ‘f‘
needs to be very structured, i.e., constructs used to compute f have efficient parallelization
algorithms, such as matrix-matrix multiplication. A very common example, in this case, is
the evaluation of neural networks in Neural ODEs [3], which has a trivial parallel forward-
pass evaluation. Another more relevant example of scientific computing is the evaluation of
semi-discretized PDEs, which results in large ODEs and has the structure to exploit due to
the semi-linear form.

3.3.2 Batched Evaluation

Another need for parallelism arises from ensemble simulations, where the ODE is required
to evaluate different initial conditions or parameters. The pre-requisite of a huge number of
states is not necessary here, as parallelization acts on the independent evaluation of the ODE.
Traditionally, GPU-accelerated ODE solvers were specially developed for high-dimensional

28

PDE systems. They can be easily adapted for batched ODE solvers. The approach for
parallelization was to convert an array-based ODE solver to work with GPU-based arrays.
PDE cases have completely different performance characteristics than the GPU ensemble
cases since they focus on solving one big (structured) ODE rather than many small ODEs.
However, the tooling required to support the GPU acceleration of PDE cases is the same as
what is required for the synchronized ensemble form, which is the reason why major ODE
solver libraries that focus heavily on PDE support (Sundials [54]) end up supporting the GPU
ensembling through the array approach (which then results in the downsides noted above).
However, as we will showcase in Chapter 5 ; one should use completely separate approaches
(the kernel generation) as otherwise, there will be a massive loss to performance since the
inherent synchronization of the array-based methods is only optimized (and required) in the
PDE case.

29

30

Chapter 4

Parallelizing Explicit and Implicit
Extrapolation Methods for Ordinary
Differential Equations

4.1 Introduction

The numerical approximation of ordinary differential equations (ODEs) is a naturally serial
time stepping process, meaning that methods for parallelizing the solution of such ODEs
requires either tricks or alternative solvers in order to exploit parallelism. The most common
domain, and one of the most common applications in scientific computing, is the parallel
solution of large-scale systems of ODEs (systems of millions or more equations) which arise
from the semi-discretization of partial differential equations. For such cases, the size of
the system allows for parallel efficiency to be achieved by parallelizing some of the most
expensive computations, such as implicit parallelism of BLAS [55]/LAPACK [51], sparse
linear solvers, or preconditioner computations, on compute clusters and with heterogeneous
GPU+CPU compute. Commonly used open source softwares such as Sundials [54] and
DifferentialEquations.jl [16] help users automate the parallelism in such cases. However, for
this manuscript we look in the opposite direction at parallelism for small systems of ODEs
(< 200).

Parallel computing on small systems of equations comes with a separate set of challenges,
namely that computations can easily become dominated by overhead. For this reason, most
software for accelerating the parallel solution of ODEs focus on the parallelization of gen-
erating ensembles of solutions, i.e. generating the solution to a small system of ODEs over
a set of parameters or initial conditions. Examples of this include the ensembles interface
in DifferentialEquations.jl [16]. However, in many cases the ensemble form may not be easy
to exploit. One key example is in parameter estimation or model calibration routines which
are typically done with some gradient-based optimization technique and requires one real-
ization of the model at a given parameter before advancing. Given questions on the Julia
[14] Discourse demonstrate that the vast majority of users both typically solve < 200 ODE
systems and have multi-core compute available (e.g. Core i5/i7 chips with 2-16 processors),
investigated whether the most standard ODE solve cases could benefit from some form of

31

parallelism.
Prior research has developed a large amount of theory around potential solvers for such

problems which fall into the categories of parallel-in-time (PIT) methods and within-step
parallelism methods [56]. Parallel-in-time methods address the issue by effectively stepping
the ODE at multiple time points simultaneously, similar to the ensemble approach, and
impose a nonlinear system constraint to relax the initial conditions of the future points to
arrive at a sufficiently smooth solution. An open source software for PIT methods, XBraid,
does exist but focuses on large compute hardware [57]. Documents from the XBraid tutorials
[58] estimate current PIT methods outperform classical solvers at ∼ 256 cores1, making
them impractical for standard compute hardware. Thus while PIT methods are a promising
direction for accelerating ODE solving for the exascale computers targeted by the XBraid
project [57], these methods do not suffice for the ≤ 16 core nature of standard consumer
computing devices.

However, promising prior results exist within the within-step parallelism research. Nowak
1998 parallelized the implicit extrapolation methods and showed that the parallelization did
improve performance [5], though its tests did not compare against multithreaded (sparse)
factorizations like is seen in modern suites such as UMFPACK [59] in SuiteSparse [60], no
comparison was made against optimized solver softwares such as CVODE [54] or LSODA
[61], and no open source implementation exists for this method. Additionally, Ketcheson
(2014) [6] demonstrated that within-step parallel extrapolation methods for non-stiff ODEs
can outperform dop853, an efficient high-order Runge-Kutta method [11] . Two notable
issues with this study are that (a) no optimized open source software exists for this method
for further investigation, (b) the study did not investigate whether such techniques could be
useful for stiff ODEs, which tend to be the most common type of ODEs for many applications
from biology and chemistry to engineering models. These results highlight that it may be
possible to achieve state-of-the-art (SOA) performance by exploiting parallelism, though no
software is readily available.

In this work we build off of the prior work in within-method parallel extrapolation to build
an open source software in Julia [14] targeting < 200 ODE systems on standard compute
architectures. We demonstrate that this new solver is the most efficient solver for this
class of equations when high accuracy is necessary, and demonstrate this with benchmarks
that include many methods from DifferentialEquations.jl [16], SUNDIALS [54] (CVODE),
LSODA [61], and more. To the best of our knowledge, this is the first demonstration that
a within-step parallel solver can be the most efficient method for this typical ODE and
hardware combination.

This chapter borrows its contents from previously appeared publication: Utkarsh, C.
Elrod, Y. Ma, K. Althaus and C. Rackauckas, "Parallelizing Explicit and Implicit Extrap-
olation Methods for Ordinary Differential Equations," 2022 IEEE High Performance Ex-
treme Computing Conference (HPEC), Waltham, MA, USA, 2022, pp. 1-9, doi: 10.1109/H-
PEC55821.2022.9926357. [7]

1Private correspondences and tests with DifferentialEquations.jl also confirm a similar cutoff point with
PIT methods

32

4.2 Extrapolation Methods

Our exposition of extrapolation methods largely follows that of Hairer I [11] and II [17], and
[36]. Take the ODE:

u′ = f(u, p, t), (4.1)

with some known initial condition u(t0) = u0 over a time span t ∈ (t0, tf). Extrapolation
methods essentially create a series of approximations of u(t + dt) with cheaper numerical
algorithms such as explicit and implicit euler. These approximations are computed for differ-
ent "internal step-sizes" denoted as T1,j with h = dt

nj
∀j = 1, . . . , N , where N is the current

approximation order. From these set of computation points, we compute interpolation poly-
nomial which essentially allows us to extrapolate to the limit h → 0, to compute N th order
approximation for the u(t+ dt). The process creates a tableau of the form:

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

· · · · · · · · · · · ·

Where we extrapolate to get u(t+ dt) = TN,N with the standard theory of interpolation
polynomials [35]. We refer the reader to the Section 2.2 in Chapter 2, which discusses
extrapolation methods for ODEs in greater detail.

4.2.1 Adaptive time-stepping and order of algorithms

The methods follow a comprehensive step-sizing and order selection strategy. The adaptive
time-stepping is mostly followed on the lines of Hairer’s ODEX [11] adaptivity behaviour.
The error at kth order is expressed as:

errk = ∥Tk,k−1 − Tk,k∥ (4.2)

For the optimal order selection, the computation relies on the "work calculation" which is
stage-number Ak per step-size hk, Ak

hk
.

The stage-number includes the no. of f(u, p, t) RHS function evaluations, jacobian matrix
evaluation, and forward and backward substitutions. These are pre-computed according the
subdividing sequence and stored as a cache. More details about these calculations can
be found here.2 These work calculations form the basis of order-selection. The order-
selection is restricted between the window (k − 1, k + 1) and appropriate conditions are
passed to convergence monitor. Briefly describing, it checks the convergence in the window
and subsequently accepts the order which has the most significant work reduction during
increasing/decreasing the order and error < 1. Detailed description can be found at order
and step-size control in [11].

2https://github.com/utkarsh530/DiffEqBenchmarks/blob/master/Extrapolation_Methods/
Extrapolation_Methods.pdf

33

https://github.com/utkarsh530/DiffEqBenchmarks/blob/master/Extrapolation_Methods/Extrapolation_Methods.pdf
https://github.com/utkarsh530/DiffEqBenchmarks/blob/master/Extrapolation_Methods/Extrapolation_Methods.pdf

4.3 Parallelization of the Algorithm

4.3.1 Choosing Subdividing Sequences for Static Load Balancing

The exploit of parallelism arises from the computation of Tj,1. k evaluations of Tj,1 are done
to find the solution u(t+ dt). These evaluations are independent and are thus parallelizable.
However, because of the small systems being investigated, dynamic load balancing overheads
are much too high to be relied upon and thus we tailored the parallelism implementation
to make use of a static load balancing scheme as follows. Each Tj,1 requires nj calls to the
function f , and if the method is implicit then there is an additional nj back substitutions
and one LU factorization. While for sufficiently large systems the LU-factorization is the
dominant cost due to its O(n3) growth for an n ODE system, in the < 200 ODE regime with
our BLAS [55]/LAPACK [51] implementations3 we find that this cost is close enough to the
cost of a back substitution that we can roughly assume Tj,1 requires nj “work units” in both
the implicit and explicit cases method cases.

If we consider the multiples of harmonic subdividing sequence is 2, 4, 6, 8, 10, 12, ...
then the computation of Tj,1 needs 2j work. Because Tk,k is a numerical approximation
of order p = 2k we can simply give each Tj,1 a processor if k processors are available.
The tasks would not finish simultaneously due to different amount of work. With Multiple
Instruction and Multiple Data Stream (MIMD) processors, multiple computations can be
loaded to one processor to calculate say T1,1 and Tk−1,1 on a single processor, resulting in
2+2(k−1) = 2k function evaluations . Consequently, each processor would contain Tj,1 and
Tk−j,1 computations and we require k

2
processors. This is an effective load-balancing and all

processes would finish simultaneously due to an approximately constant amount of work per
chunk.

Julia provides compose-able task-based parallelism. To take advantage of the regularity
of our work and this optimized static schedule, we avoid some of the overheads associated
with this model such as task-creation and scheduling by using Polyester.jl’s [62] @batch
macro, which allows us to run our computation on long-lived tasks that can remain active
with a spin-lock between workloads, thereby avoiding the need for rescheduling. We note
that this load-balancing is not as simple in sequences of Romberg and Bulirsch, and thus in
those cases we multi-thread computations over constant p processors only. For this reason,
the homonic subdividing sequence is preferred for performance in our implementation.

4.3.2 Parallelization of the LU Factorization

One of the most important ways multi-threading is commonly used within implicit solvers is
within the LU factorization. The LU factorization is multi-threaded due to expensive O(N3)
complexity. For Jacobian matrices smaller than 100 × 100, commonly used BLAS/LA-
PACK implementations such as OpenBLAS, MKL, and RecursiveFactorization.jl are unable
to achieve good parallel performance. However, the implicit extrapolation methods require
solving linear systems with respect to I−hiJ for each sub-time step hi. Thus for the within-
method parallel implicit extrapolation implementation we manually disabled the internal LU

3RecursiveFactorization.jl notably outperforms OpenBLAS in this regime.

34

factorization multi-threading and parallelized the LU factorization step by multi-threading
the computation of this ensemble of LU factorizations. If the chosen order is sufficiently then
a large number of hi would be chosen and thus parallel efficiency would be achieved even for
small matrices. In the results this will be seen as the lower tolerance solutions naturally re-
quire higher order methods, and this is the regime where the implicit extrapolation methods
demonstrably become SOA.

4.4 Benchmark Results

The benchmarks we use work-precision diagrams to allow simultaneous comparisons between
speed and accuracy. Accuracy is computed against reference solutions at 10−14 tolerance.
All benchmarks were computed on a AMD EPYC 7513 32-Core processor ran at 8 threads4.

4.4.1 Establishing Implementation Efficiency

To establish these methods as efficient versions of extrapolation methods, we benchmarked
these new implementations against standard optimized extrapolation implementations. The
most widely used optimized implementations of extrapolation methods come from Hairer’s
FORTRAN suite [63], with ODEX [11] as a GBS [33] extrapolation method and SEULEX as
a linear implicit Euler method. Figure 4.1 illustrates that our implementation outperforms
the ODEX [11] FORTRAN method by 6x on the 100 Independent Linear ODEs problem.
And similar to what was shown in Ketcheson 2014 [6], we see that the parallelized ex-
trapolation methods were able to outperform the dop853 high order Runge-Kutta method
implementation of Hairer by around 4x (they saw closer to 2x). However, when we com-
pare the explicit extrapolation methods against newer optimized Runge-Kutta methods like
Verner’s efficient 9th order method [64], we only matched the SOA5, which we suspect is
due to the explicit methods being able to exploit less parallelism than the implicit variants.
Thus for the rest of the benchmarks we focused on the implicit extrapolation methods. In
Figure 4.2 we benchmarked the implicit extrapolation methods against the Hairer SEULEX
[63] implementation on the ROBER [65] problem and demonstrated an average of 4x accel-
eration over the Hairer implementations, establishing the efficiency of this implementation
of the algorithm.

4.4.2 State-Of-The-Art Performance for Small Stiff ODE Systems

To evaluate performance of extrapolation methods, we benchmarked the parallel implicit
extrapolation implementations on the following set of standard test problems [17]:

1. the Robertson equation [65], 3 ODEs
4While more threads were available, we did not find more threads to be beneficial to accelerating these

computations.
5In the shown Figure 4.1, the methods are approximately 1.5x faster, though on this random linear ODE

benchmark, different random conditions lead to different performance results, averaging around 0.8x-2x,
making the speedup generally insignificant

35

Figure 4.1: Benchmark on the 100 linear ODE problem [A.0.2].

2. Orego (Oregonator) [66], [67], 3 ODEs

3. Hires [68], 8 ODEs

4. Pollution [69], 20 ODEs

5. QSP [70], 109 ODEs

Figures 2-6 show the Work-Precision Diagrams with each of the respective problems with
low tolerances. Implicit Euler Extrapolation outperforms other solvers with lower times
at equivalent errors. However, very small systems (3-7 ODEs) show a disadvantage when
threading is enabled, indicating that overhead is not overcome at this size, but the non-
threaded version still achieves SOA by about 2x over the next best methods (Rodas4 and
radau) and matching lsoda on HIRES. By 20 ODEs, the multi-threaded form becomes more
efficient and is the SOA algorithm by roughly 2.5x. But by the 109 ODEs of the QSP
model, the multi-threaded form is noticeably more efficient than the non-multithreaded and
the extrapolation methods outperformed lsoda BDF and CVODE’s BDF method by about
2x. Together these results show the implicit extrapolation methods as SOA for small ODE
systems, with a lower bound on when multi-threading is beneficial.

4.5 Discussion

If one follows the tutorial coding examples for the most common differential equation solver
suites in high-level languages (R’s deSolve [71], Python’s SciPy [72] , Julia’s DifferentialE-
quations.jl [16], MATLAB’s ODE Suite [73]), the vast majority of users in common case
of < 200 ODEs will receive no parallel acceleration even though parallel hardware is read-
ily available6. In this manuscript we have demonstrated how the theory of within-method

6Unless the f function is sufficiently expensive, like when it is a neural network evaluation

36

Figure 4.2: Benchmark on ROBER Problem with low tolerances [A.0.2].

Figure 4.3: Benchmark on Orego Problem with low tolerances [A.0.2].

parallel extrapolation methods can be used to build a method which achieves SOA for the
high accuracy approximation regime on this typical ODE case. We distribute this method
as open source software: existing users of DifferentialEquations.jl [16] can make use of this
technique with no changes to their code beyond the characters for the algorithm choice. As
such, this is the first demonstration the authors know of for automated acceleration of ODE
solves on typical small-scale ODEs using parallel acceleration.7

Lastly, the extrapolation methods were chosen as the foundation because their arbitrary
order allows the methods to easily adapt the number of parallel compute chunks to different
core counts. This implementation and manuscript statically batched the compute in a way
that is independent of the specific core count, leading to generality in the resulting method.

7The codes can be found at:
https://github.com/utkarsh530/ParallelExBenchmarks.jl

37

https://github.com/utkarsh530/ParallelExBenchmarks.jl

Figure 4.4: Benchmark on Hires Problem with low tolerances [A.0.2].

Figure 4.5: Benchmark on Pollution Problem with low tolerances [A.0.2].

38

Figure 4.6: Benchmark on QSP model with low tolerances [A.0.2].

39

40

Chapter 5

Automated Translation and Accelerated
Solving of Differential Equations on
Multiple GPU Platforms

5.1 Introduction

Solving ensembles of the same differential equation with different choices of parameters and
initial conditions is common in many technical computing scenarios such as solving inverse
problems [74], performing uncertainty quantification [8], [9], [75], and calculating global
sensitivity analysis [9], [10]. While such a naturally parallel problem lends itself to being well-
suited for acceleration via GPU hardware, the programming requirements have traditionally
been a barrier to the adoption of GPU-parallel solvers by scientists and engineers who are
less programming savvy. The core difficulty of targeting GPUs with general ODE solver
software is that the definition of the ODE is a function given by the user. Thus, high-level
ODE solver software has generally consisted of higher-order functions which take as input a
function written in a high-level language such as MATLAB [23], Python (SciPy [72]), or Julia
(DifferentialEquations.jl [26]) to reduce the barrier to entry for scientists and engineers. In
order to target GPUs, previous software such as MPGOS [76] has required users to rewrite
their models in a kernel language such as CUDA C++, which has thus traditionally kept
optimized GPU usage out of reach for many scientists. In order to get around this barrier,
some software for general GPU-based ODE solving in high-level languages has targeted array-
based interfaces such as found in machine learning libraries like PyTorch [77] and JAX [12].
However, we demonstrate in this manuscript that such an approach is orders of magnitude
less performant than generating model-specific ODE solver kernels.

In this manuscript, we demonstrate a performant, composable, and vendor-agnostic
method for model-specific kernel generation to solve massively parallel ensembles of ordi-
nary differential equations (ODEs) and stochastic differential equations (SDEs) on GPUs.
The ODE solvers support both stiff and non-stiff ODEs, allowing a wide range of compatibil-
ity with different classes of models. Our software transforms code that targets a widely used
differential equation solver library in a high-level language (Julia’s DifferentialEquations.jl
[26]) and automatically generates optimized GPU kernels without requiring code changes

41

by the end user. We demonstrate an array-based parallelism approach and an automated
kernel generation approach, which give a trade-off in extensibility and performance. We
demonstrate that the kernel generation achieves state-of-the-art performance by on average
outperforming hand-optimized CUDA-C++ kernels provided by MPGOS, and performing
20–100× faster than the vectorized map (vmap) approach implemented in JAX and Py-
Torch. We showcase the vendor-agnostic aspect of our approach by benchmarking the results
on many major GPU vendors’ cards like NVIDIA, AMD, Intel (oneAPI), and Apple Sili-
con (Metal) and demonstrate the composability with MPI to enable distributed multi-GPU
workflows. We show that these solvers are fully featured, supporting event handling, forward
and reverse (adjoint) automatic differentiation, and incorporation of datasets via the GPU’s
texture memory. Together, this software allows scientists to target all major GPU platforms
without loss of performance.To summarize, the key contributions of this manuscript are:

• A feature-rich open-source library of massively parallel GPU ODE and SDE solvers
without trading the high-level interface and performance, allowing composability with
the rest of the numerical computing ecosystem.

• According to the author’s knowledge, the first known implementation to be completely
vendor-agnostic provides a roadmap of the required groundwork for numerical software
to achieve vendor-agnosticism.

• Increased the performance of GPU parallelized stiff ODE solvers, which is enabled by
leveraging and extending automatic differentiation for GPUs by static compilation.

• Multiple algorithm choices lead to insights in performance engineering for the prob-
lem: We showcase that traditional parallelization of numerical solvers such as LSODA,
which are known to be performant for large ODEs, are orders of magnitude slower at
solving multiple and small ODEs together on GPUs due to their heavy use of branching
behavior. Alternative methods (Rosenbrock methods) are thus demonstrated as more
suitable for the use of ensemble GPU parallelism.

This chapter borrows its contents from previously appeared publication: Utkarsh, U.,
Churavy, V., Ma, Y., Besard, T., Srisuma, P., Gymnich, T., Gerlach, A.R., Edelman, A.,
Barbastathis, G., Braatz, R.D. and Rackauckas, C., 2024. Automated translation and accel-
erated solving of differential equations on multiple GPU platforms. Computer Methods in
Applied Mechanics and Engineering, 419, p.116591 [15].

5.2 Related Work

While researchers have used GPUs to accelerate computations extensively in applications
including molecular simulation, biological systems, and physics [78]–[81], these implementa-
tions are generally CUDA kernels written for the specific models and thus are not general
ODE solver software. In order to simplify the targeting of GPUs with general ODE solver
software, previous attempts have generally targeted hardware using array abstraction frame-
works such as ArrayFire [82], Thrust [83], VexCL [84], JAX [12], and PyTorch [77]. These

42

frameworks allow the user to adapt code written on high-level array abstractions and gener-
ate a highly optimized code to backends such as OpenCL [85] and CUDA [86]. Boost’s odeint
[87]–[89] allows direct calls to ODE solvers that, without any modification, work with GPU
backends such as CUDA and OpenCL. JAX’s Diffrax [28] generates solvers for ensembles of
ODEs on GPUs via JAX’s vectorized map functionality (vmap). PyTorch’s torchdiffeq [3]
allows the defining of ensembles of ODEs directly with GPU-based arrays, although their
vmap provided by functorch support with ODEs is still primitive as of April 2023.

Recent results have demonstrated that using array-based abstractions for generating
GPU-parallel ODE ensemble solvers greatly lags in performance compared to the state of
the art. In particular, MPGOS [76] demonstrated that ODEINT was 10–100× slower than
purpose-written ODE solver kernels written in CUDA. In order to achieve this performance,
MPGOS requires that the user write CUDA C++ kernels for the ODE definitions, which are
then compiled into the solver to reduce the kernel call overhead. Similar results were seen
with culsoda [78], a CUDA translation of the widely used LSODE solver [90], [91], which
was similarly limited due to requiring ODE models to be written in CUDA and compiled
into the kernels.

5.3 The GPU ecosystem in Julia and cross-platform GPGPU
programming

Using high-level languages to program hardware accelerators traditionally means either using
a library approach or a domain-specific-language (DSL) approach. The library approach
focuses on providing array abstractions to call optimized high-level operators written and
optimized in another language. Prime examples of this approach are ArrayFire [82] and
CuNumpy [92]. Often these systems provide some mechanism of user extendability, but often
it is in terms of the underlying system language and not the host language. DSL approaches,
such as JAX [12], embed a new language into the host language that provides domain-specific
concepts and limits expressibility to a subset of operations that are representable by the DSL.
This requires the user to rewrite their application in ways that are compatible with the DSL.

Compiling a high-level language directly to hardware accelerators like GPUs is challenging
because these languages often rely on accessing the run-time library, managed memory and
garbage collection, interpreted execution, and other constructs that are difficult to use on
GPUs or are even in conflict with the hardware design. Numba [93] and JuliaGPU [94]
retarget a subset of the language for execution on hardware accelerators. In contrast to
Numba, which is a reimplementation of Python, JuliaGPU repurposes Julia’s existing CPU-
oriented compiler for the purpose of generating code for GPUs.

Over time this has allowed the subset of the language that is directly executable on
the GPU to grow and provide the basis for an effective, performant, and highly accessible
programming model for GPUs. This model spans from low-level GPU kernel programming
with direct access to advanced hardware features to the high-level array abstractions [95]
provided by Julia.

43

5.3.1 Supporting multiple GPU platforms

Originally JuliaGPU only supported hardware accelerators by NVIDIA (CUDA). As hy-
pothesized [94], the same approach could be extended to target other hardware platforms.
Instead of re-implementing a full-fledged compiler for each new platform, the common infras-
tructure pieces were abstracted into a single unified compiler interface GPUCompiler.jl [96]
and a unified array interface GPUArrays.jl [97]. Despite its name, GPUCompiler.jl is not
limited to only GPU platforms and is also used to target non-GPU accelerators and specific
CPU platforms.

With GPUCompiler.jl offering reusable functionality to configure the Julia compiler and
LLVM providing the ability to generate high-quality machine code, Julia is well-positioned to
target different accelerator platforms. Most major GPU platforms are supported: CUDA.jl [94]
for NVIDIA GPUs using the CUDA toolkit, AMDGPU.jl [98] for AMD GPUs through
ROCm, oneAPI.jl [99] for Intel GPUs with oneAPI, and Metal.jl [100] for Apple M-series
GPUs with the Metal libraries. These backends are relatively simple and can be developed
and maintained by small teams. Meanwhile, other languages and frameworks often struggle
to provide native support for all but the most popular platforms. In the case of Python,
for example, adding a Numba backend involves significant effort, and as such, Apple GPUs
are not yet supported.1 Similarly, as of May 2023, JAX does not support AMD 2 or Apple
GPUs 3, because it requires special support in the Accelerated Linear Algebra (XLA) com-
piler. Unless there is sizable traction, scientific computing with these languages is not able
to leverage different GPU vendors where that could have been beneficial for, e.g., HPC and
AI/ML workloads [101], [102].

To facilitate working with multiple GPU platforms, Julia offers a powerful array abstrac-
tion that makes it possible to write generic code. The abstractions are implemented by each
backend, either using native kernels or by reusing existing functionality. For performance
reasons, common operations such as matrix multiplication are implemented by dispatching
to vendor-specific libraries such as CUBLAS for NVIDIA GPUs and Metal’s Performance
Shaders for Apple GPUs. Higher-order operations such as map, broadcast, and reduce
are implemented using native kernels. This makes it possible to compose them with user
code, often obviating the need for custom kernels. Work by Besard et al. [95] has shown
that this makes it possible to quickly prototype code for multiple platforms while achieving
good performance. To achieve maximum performance, important operations can still be
specialized using custom kernels that are optimized for the platform at hand and include
application-specific knowledge.

5.3.2 Abstractions for kernel programming

Even though Julia supports multiple GPU platforms, it can quickly become cumbersome
to write compatible kernels for each one. For example, kernels need to adhere to specific
device APIs that are offered by the platform. With a variety of device backends available,
a programmer’s dream is to write one kernel that can be instantiated and launched for any

1https://github.com/numba/numba/issues/5706
2https://github.com/google/jax/issues/2012
3https://github.com/google/jax/issues/8074

44

https://github.com/numba/numba/issues/5706
https://github.com/google/jax/issues/2012
https://github.com/google/jax/issues/8074

device backend without modifications of the higher-level code, all without sacrificing perfor-
mance. In Julia, this is possible with the KernelAbstractions.jl [103] package, which provides
a macro-based dialect that hides the intricacies of vendor-specific GPU programming. Ker-
nels can then be instantiated for different hardware accelerators, including CPUs and GPUs.
For GPUs, full support is provided for NVIDIA (CUDA), AMD (ROCm), Intel (oneAPI),
and Apple (Metal). For the GPU ODE solvers presented in this article, KernelAbstractions.jl
is used to target these different backends, essentially from the same high-level kernel code.

The development of the GPU ecosystem was not a separate effort rather, DiffEqGPU.jl
has been one of the driving projects of the Julia GPU ecosystem since the inception of the new
approaches (GPUCompiler.jl and KernelAbstractions.jl) in 2019. As such, the developers of
those tools are co-authors of this work, as this is the first application that displays the full
vendor-agnostic feature set that the tooling aims to provide.

5.4 Massively Data-Parallel GPU Solving of Independent
ODE Systems

This article considers two approaches for parallelizing ensemble problems on GPUs, both of
them automatically translating and compiling the differential equation. The first approach is
easily extensible, compatible with any existing solver, and relies on GPU vectorization. This
approach is similar to the other high-level software we described in the introduction, and we
will show that this approach is not performance optimal and has significant overheads. The
second strategy reduces this overhead by generating custom GPU kernels, requiring numer-
ical methods to be programmed within it. A brief overview of the automation is depicted
in Figure 5.1. Both of the programs are composable with Julia’s SciML [26] ecosystem,
where users can write models compatible with standard SciML tools such as DifferentialE-
quations.jl, and DiffEqGPU.jl will automatically generate the functions which can be invoked
from within a GPU kernel. Moreover, SciML is composed of polyglot tools allowing use of
its libraries from other languages such as R, allowing even the use of our GPU-accelerated
solvers from other programming languages.4

5.4.1 EnsembleGPUArray: Accelerating Ensemble ODEs with GPU
Array Parallelism

Identifying parallelism and problem construction

For an ODE with n states, m parameters, and N required simulations with different param-
eters, there exist n×N states to keep track of. This problem can be formulated as solving
one ODE

dU

dt
= F (U, P, t) (5.1)

4https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html

45

https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html

Figure 5.1: Overview of the automated translating and solving of differential equations for
GPUs for massively data-parallel problems. The solid lines indicate the code flow, whereas
the dashed lines indicate the extension interactions.

where

U =

u11 u12 · · · u1N

u21 u22 · · · u2N
...

...
un1 un2 · · · unN

n×N

, (5.2)

P =

p11 p12 · · · p1N
p21 p22 · · · p2N
...

...
pm1 pm2 · · · pmN

m×N

, (5.3)

F =
[
f(u, p1:m,1, t) · · · f(u, p1:m,N , t)

]
n×N

, (5.4)

and p1:m,j denotes the jth column of the P matrix. In this form, we can parallelize the
computation over GPU threads, where each thread only accesses and updates the column of
U in parallel. This allows the computation of the quantities which depend on U to happen
in parallel. When solving ODEs, these quantities are generally the right-hand side (RHS) of
ODE f , the Jacobian J , and even the event handling (callbacks). We perform these array-
based computations by calling the functions within custom-written GPU kernels, updating
each column of the U asynchronously.

Translating ODE solves over GPU using KernelAbstractions.jl

In order to fully leverage the GPU ecosystem in Julia, several changes were made to it to
allow DiffEqGPU.jl to have seamless performance and composability. Changes such as the
generalization of SciML kernels from CUDA-specific to backend-agnostic, launch parameters

46

Figure 5.2: The EnsembleGPUArray flowchart.

tuning, and delivering usability of newer backends such as Apple metal are some of the
initiatives to make this work a reality, which in turn is helping the broader community.
Hence, our work provides a roadmap for how others can achieve true vendor agnosticism and
the reality of the work necessary.

The GPU kernels are written using KernelAbstractions.jl [103], which allows for the
instantiation of the GPU kernels for multiple backends. KernelAbstractions.jl performs a
limited form of auto-tuning by optimizing the launch parameters for occupancy. Since these
kernels have a high residency, preferring a launch across many blocks has been shown to be
beneficial. We instantiate the kernels with the problem defined as normal Julia functions
that the kernel is specialized upon. Using a Just-In-Time (JIT) compilation approach, we
thus generate a new kernel where the solver and the problem definition are co-optimized.

After calculating the dependents on U is completed, synchronization is required to cal-
culate the next step of the integration. EnsembleGPUArray essentially parallelizes the oper-
ation involving the state U within the single time step of the ODE integration. This simple
approach allows composability and easy integration with the vast collection of numerical
integration solvers in DifferentialEquations.jl [26]. An option to simultaneously offload a
subset of the solutions to the CPUs provides additional flexibility to the user to leverage the
CPU cores. Moreover, users can take advantage of the multiple GPUs over clusters to per-
form the simulations of the ensemble problems via this tutorial.5 Figure 5.2 is an overview
of the process.

Batched LU: Accelerating Ensemble of Stiff ODEs

Stiff ODE solvers require repeatedly solving the linear system W−1b where W = −γI + J ,
γ is a constant real number, and J is the Jacobian matrix of the RHS of the ODE. The W

5https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/

47

https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/

matrix of the batched ODE problem in Section 5.4.1 has a block diagonal structure:

W =

−γI + J1

−γI + J2
. . .

−γI + JN

 , (5.5)

where (Jk)ij =
∂f i

∂ujk
. The block diagonal system can be efficiently solved by computing the

LU factorization, and forward, and backward substitutions of each block of W in the GPU
kernel.

Drawbacks of the Array Ensemble Approach

The main drawback of this approach is that each array operation inside of the ODE solver re-
quires a separate GPU kernel launch. However, in explicit Runge-Kutta methods as described
in Sections 2.1.1 and 2.2.3, most of the operations are linear combinations and column-wise
parallel applications of the ODE model f , and are thus O(N) operations. Array-based GPU
DSLs are typically designed to be used with O(N3) operations which are common in neural
network applications (such as matrix multiplication) in order to more easily saturate the
kernels to overcome the overhead of kernel launch. While the ODE solvers are written in a
form that automatically fuses the linear combinations to reduce the total number of kernel
calls, thus reducing the overall cost [104], we will see in the later benchmarks (Section 5.5.2)
that each of the array-ensemble GPU ODE solvers has a high fixed cost due to the total
overhead of kernel launching.

In addition, the parallel array computations of each step of the solver method need to be
completed before proceeding to the next time step of the integration. Adaptive time-stepping
in ODEs allows variable time steps according to the local variation in the ODE integration,
allowing optimal time-stepping. Trivially, the ODE can have different time-stepping behavior
for other parameters, as they form part of the "forcing" function f(u, p, t). The implicit
synchronization of the parallel computations necessitates the same time-stepping for all the
trajectories by virtue of solving all trajectories as a single ODE.

5.4.2 EnsembleGPUKernel: Accelerating Ensemble of ODEs with spe-
cialized kernel generation for entire ODE integration

The EnsembleGPUArray requires multiple kernel launches within a time step, which causes
large overheads due to the numerous load and storage operations to global memory. In order
to completely eliminate the overhead of kernel launches, a separate implementation denoted
EnsembleGPUKernel generates a single model-specific kernel for the full ODE integration.
For stiff ODEs, the Jacobian can be calculated with Automatic Differentiation (AD) invoked
within the kernels. Each thread accesses the data-augmented ODE to analyze, and the
solving of all the ODEs is completely asynchronous. The process is briefly outlined in Figure
5.3 and an example is given in Listing 1.

The approach described seems deceptively simple but requires clever maneuvers to suc-
cessfully compile the kernel on GPU. Allocating arrays within GPU kernels is not possible,

48

Figure 5.3: The EnsembleGPUKernel flowchart.

1 @kernel function tsit5_kernel(@Const(probs), _us, _ts, dt)
2 # Get the thread index
3 i = @index(Global, Linear)
4 # get the problem for this thread
5 prob = @inbounds probs[i]
6 # get the input/output arrays for this thread
7 ts = @inbounds view(_ts, :, i)
8 us = @inbounds view(_us, :, i)
9 # Setting up initial conditions and integrator

10 integrator = init(...)
11 # Perform ODE integration until completion
12 while cur_time < final_time
13 step!(integrator, ts, us)
14 savevalues!(integrator, ts, us)
15 end
16 # Perform post-processing
17 ...
18 end

Listing 1: Example of the kernel performing ODE integration

49

as Julia’s CUDA.jl does not support dynamic memory allocation on the GPU. However,
solving ODEs requires storing intermediate computations, normally using array allocations.
The vast features of DifferentialEquations.jl rely on operations such as broadcast operations,
dynamic allocations, and dynamic function invocation – most of which are GPU incompati-
ble. The solution is to fully stack allocate all intermediate arrays and to perform the ODE
integration within a custom GPU kernel implementing the numerical integration procedure.
This restricts the user to the set of the already defined ODE solvers in the package and
requires simple versions of the ODE solvers to be manually written as GPU kernels.

Kernel-Specialized ODE Solvers

The ODE solvers that are currently available with EnsembleGPUKernel are:

• GPUTsit5: A custom GPU-kernelized implementation of Tsitouras’ 5th-order solver, a
Runge-Kutta 5(4) order method [105]. Serves as a go-to choice for solving non-stiff
ODEs. Performs well for medium to high tolerances. More efficient and precise than
the popular Dormand-Price 5(4) [11] Runge-Kutta pair, which is a common default
solver choice in packages such as MATLAB [23] and torchdiffeq [3]. Has free 4th-order
interpolation support.

• GPUVern7: A custom GPU-kernelized implementation of Verner’s 7th-order solver, a
Runge-Kutta 7(6) order method [64]. Performs best at medium and low tolerances.
Has a 7th-order lazy interpolation scheme.

• GPUVern9: A custom GPU-kernelized implementation of Verner’s 9th-order solver, a
Runge-Kutta 9(8) order pair [64]. Performs best at extremely low tolerances. Has a
9th-order lazy interpolation scheme.

• GPURosenbrock23: A custom GPU-kernelized implementation of an order 2/3 L-Stable
Rosenbrock-W method [17], [23], [25]. Is good for very stiff equations with oscillations
at high tolerances. Employs a second-order stiff-aware interpolation. Also supports
Differential Algebraic Equations (DAEs) in mass-matrix form, i.e., M du

dt
= f(u, p, t),

where M is the mass matrix.

• GPURodas4: A custom GPU-kernelized implementation of a fourth-order A-stable stiffly
stable Rosenbrock method [17], [25]. Is suitable for problems at medium tolerances.
Employs a third-order stiff-aware interpolation.

• GPURodas5P: A custom GPU-kernelized implementation of a fifth-order A-stable stiffly
stable Rosenbrock method [25], [106]. Is suitable for problems at medium tolerances.
Employs a fourth-order stiff-aware interpolation which has better stability in the adap-
tive time-stepping embedding.

These choices are based on the SciMLBenchmarks, which has extensive comparisons between
ODE solvers.6 For stiff ODEs, the Rosenbrock-type methods are ideally suited for GPU
compilation because they are devoid of the typical Newton’s method performed per step

6https://docs.sciml.ai/SciMLBenchmarksOutput/stable/

50

https://docs.sciml.ai/SciMLBenchmarksOutput/stable/

in stiff ODE integrators [17]. On CPU, implicit ODE solvers achieve top performance by
using the property that the inverted Jacobian of Newton’s method does not need to be
exact, and thus efficient integrators such as CVODE [54] and those in DifferentialEquations.jl
adaptively reuse the same Jacobian factorization from multiple time steps. For sufficiently
large equations, this trades the O(N3) factorization operation for more iterations of Newton’s
method with the same inverse factor and thus O(N2) linear solves. However, these properties
do not transfer well to the GPU setting since (a) branching within a GPU warp is resolved
such that every concurrent solve requires the same number of iterations, thus leading to more
linear solves than necessary for most of the systems at each step and (b) the systems are
sufficiently small so that the factorization is not the dominating factor in the compute cost.

Rosenbrock methods only require one Jacobian evaluation and have a constant number of
linear solves per step, where the matrix factorization can be cached to a single factorization
per time step. This more static integration procedure is also compensated by higher stage
order (i.e., convergence rate on highly stiff ODEs and DAEs) and smaller leading truncation
error coefficients, effectively leading to less steps being required to reach the same error. For
this reason, Rosenbrock methods are the most efficient solver on CPU for sufficiently small
ODEs (approximately less than 20), competitive until the LU-factorization cost becomes
dominant (around 100 ODEs). Some prior research has shown results with ODE extrapola-
tion methods where the LU factorization does not have the dominating cost and hence no
suitable gains from its parallelization other than parallelizing multiple computations of LU
[7].

Integration of automatic differentiation: Automatic differentiation is a way to compute
exact derivatives of mathematical computer programs [107]. With the change to high-order
Rosenbrock methods, having accurate Jacobians (non-finite difference) is a necessary require-
ment for Rosenbrock methods to achieve high-order convergence [17]. Thus, while previous
LSODA approaches could get away with finite difference approximations through the relax-
ation in nonlinear solver steps, our approach, which would be more GPU performant due
to the greatly reduced branching, requires mixing this automatic differentiation to achieve
full accuracy and performance. Integration of solvers is done with forward-mode automatic
differentiation within a GPU kernel. In particular, we extended the LU factorization in the
nonlinear solve step to statically compile seamlessly for arbitrary size of the ODE.

Given the extra advantages of the GPU and the fact that the embarrassingly parallel con-
text is limited to this size of systems, we will see that Rosenbrock methods are outperformed
by the Newton-based stiff ODE solvers quite handily.

Kernel-Specialized SDE solvers

Currently, DiffEqGPU.jl only supports fixed time-stepping in SDEs with EnsembleGPUKernel.

• GPUEM: A custom GPU-kernelized fixed time-step implementation of Euler-Maruyama
method [46]. Supports diagonal and non-diagonal noise.

• GPUSIEA: A custom GPU-kernelized fixed time-step implementation of weak order 2.0
[108], stochastic generalization of midpoint method. Supports only diagonal noise.

51

5.5 Benchmarks and Case studies

5.5.1 Setup

To compare different available open-source programs with GPU-accelerated ODE solvers,
we benchmark them with several NVIDIA GPUs: one being a typical compute node GPU,
Tesla V100, and the other being a high-end desktop GPU, Quadro RTX 5000. Performance
comparison of the kernel-based ODE solvers with different GPU vendors is also carried out.
Except for Apple having an integrated GPU, we use dedicated desktop GPUs. For NVIDIA,
we benchmark on Quadro RTX 5000 (11.15 TFLOPS), Vega 64 for AMD (10.54 TFLOPS),
A770 (19.66 TFLOPS) for Intel, and M1 Max (10.4 TFLOPS) for Apple. The DE problems
involve single precision (Float32) on GPUs. The CPU benchmarks are executed using double
precision (Float64), and are timed on an Intel Xeon Gold 6248 CPU @ 2.50GHz with 16
enabled threads. Using double precision on CPUs is faster than the single precision for our
use-case and processor.

To facilitate the seamless transition from CPU to GPU without requiring any modifica-
tions to the original code, EnsembleGPUKernel was developed to mimic the SciML ensemble
interface. Nevertheless, this GPU-aspect-hiding approach always passes the problem to the
GPU and returns the result to the CPU, reducing overall performance. To avoid conversion
overheads and for a fair comparison among other software, we developed a lower-level API7
that closely resembles other APIs. The timings for each software only report time spent
solving the ensemble ODE. The benchmarking literature discusses the topic of reporting
times for benchmarking and uses the minimum as an approximation of the ideal value, the
least noisy measurement. Hence, the timings for the programs written in Julia are measured
using BenchmarkTools.jl, taking the best timing. The Julia-based benchmarks were tested
on DiffEqGPU.jl 1.26, CUDA.jl 4.0, oneAPI.jl 1.0, and Metal.jl 0.2.0, all using Julia 1.8.
The test with AMD GPUs was done with AMDGPU.jl 0.4.8, using Julia 1.9-beta3.

The timings script for MPGOS has been borrowed from their available open-source
codes.8 They have been tested with CUDA toolkit 11.6 and C++ 11. The programs
are run at least ten times for JAX and PyTorch. The JAX-based programs are run on
0.4.1 with Diffrax 0.2.2. Programs based on PyTorch are tested with PyTorch nightly
2.0.0.dev20230202, and a custom installation of torchdiffeq to extend support to vmap is
used.9 Both programs are tested on Python 3.9. The complete benchmark suite can be
found at https://github.com/utkarsh530/GPUODEBenchmarks.

5.5.2 Establishing efficiency of solving ODE ensembles with GPU
over CPU

Prior researches [76], [89] demonstrate that solving low-dimensional ODEs over parameters
and initial conditions (massively parallel) exposes superior parallelism in GPUs over CPUs.
The benchmarking is performed on GPUs with single precision and CPU multithreading with

7https://docs.sciml.ai/DiffEqGPU/dev/tutorials/lower_level_api/
8https://github.com/nnagyd/ode_solver_tests
9https://github.com/utkarsh530/torchdiffeq/tree/u/vmap

52

https://github.com/utkarsh530/GPUODEBenchmarks
https://docs.sciml.ai/DiffEqGPU/dev/tutorials/lower_level_api/
https://github.com/nnagyd/ode_solver_tests
https://github.com/utkarsh530/torchdiffeq/tree/u/vmap

Table 5.1: Summary of mean slowdowns of ODE integrators, benchmarking on stiff problems
with different hardware (lower the better)

Time-stepping GPU (Kernel) GPU (Array) CPU

Adaptive (Nonstiff) 1.0× 48.2× 22.2×
Fixed (Nonstiff) 1.0× 377.6× 110.3×
Adaptive (Stiff) 1.0× 180.0× 132.3×

double precision to take advantage of respective optimized floating point math. Indeed, the
EnsembleGPUKernel supports our claim of lower overhead compared to EnsembleGPUArray
and being up to 100× faster. For the benchmark problem GPU parallelism becomes superior
to CPU parallelism at approximately 100–1000 trajectories (Figure 5.4). The solver used to
benchmark the Lorenz Attractor [109] is Tsitouras’ 5(4) Runge-Kutta method [105], both
with adaptive and fixed time-stepping. Similarly, we also perform the benchmarking of stiff
ODE integrators with the Robertson equation[65], using the Rosenbrock23 methods [25].
Figure 5.5 showcases the performance of the solvers. Table 5.1 lists the relative slowdowns
of both non-stiff and stiff ODE integrators obtained using EnsembleGPUKernel.

Figure 5.4: A comparison of time for an ODE solve for CPU vs. GPU. The EnsembleGPUK-
ernel performs the best with up to 100× acceleration and a lower cutoff to take advantage
of parallelism.

GPU performance at < 1000 trajectories: Massive parallel simulations are needed
to utilize GPU cores and amortize overhead costs fully. Figure 5.4 shows that overheads
are essentially constant regardless of thread count. In this range, the computations are
not latency hiding; one essentially measures the kernel launch time. Hence, one would not
expect superior GPU parallelism in comparison to CPU at lower trajectories because CPUs
are usually free of these overheads.

53

Figure 5.5: A comparison of the time of an ODE solve for CPU vs. GPU. The Ensem-
bleGPUKernel performs the best with up to 100× acceleration and a lower cutoff to take
advantage of parallelism.

5.5.3 Solving billions of ODEs together: Scaling EnsembleGPUKernel
with MPI

The Message Passing Interface (MPI) [110], [111] can be directly used with Julia using
MPI.jl [112]. Additionally, there exists support for CUDA by using a CUDA-aware MPI
backend. As a testimonial of scalability, 2,147,483,648 (∼2 billion) ODE solutions on the
Lorenz problem were calculated using eight V100 GPU cluster nodes, in which seven GPUs
amounting to 35,840 CUDA cores explicitly performed the computation of approximately 306
million ODEs. The wall-clock time of this simulation was approximately 50 seconds, which
includes other latencies such as package loading, compilation, and GC times. The runtime
of the MPI call (creating buffers and transferring arrays to GPUs) and solving ODEs was
around 13 seconds. The runtime of only the ODE solve of 306 million trajectories was
around 1.6 seconds.10 We also note in our observations that the methods are scalable, and
are limited by the global memory of the GPU required for storing the solutions, which can
be roughly calculated by calculating the memory requirements of the number of time-points
required multiplied by the different number of parameters in the simulation. Subsequently,
the methods are prophesied to scale well with multiple nodes in a cluster.

5.5.4 Comparison with other GPU-accelerated ODE programs

Selecting the problem for fair benchmarking on different implementations of GPU-based
solvers is a task in itself, owing to the different use cases, motivations, and optimizations of

10These latencies could be reduced by using a GPU with larger memory or a multi-GPU per node, which
was not done in our demonstration due to hardware availability.

54

these libraries. Choosing systems with low-dimensional ODEs, such as the Lorenz equation,
is a suitable candidate owing to the simplicity f(u, p, t) of definition, which alludes to any
optimizations in calculating f(u, p, t). The right-hand side solely involves additions/sub-
tractions and multiplications, in which each floating-point operation will be interpreted as a
complete FMA (Fused Multiply Accumulate) instruction. For our benchmarking purposes,
σ = 10.0, γ = 8

3
, and ρ in the Lorenz equation [109] is uniformly varied from (0.0, 21.0)

generating N instances of independent, parallel ODE solves, which is also the number of
trajectories in DiffEqGPU.jl API.

Figure 5.6: A comparison of the time for an ODE solve with other programs with fixed
time-stepping. EnsembleGPUKernel is able to reach and sometimes outperform speed of
light measure (MPGOS) and is approximately faster by 20–100× in comparison to JAX and
100–200× for PyTorch.

The results for fixed and adaptive time-stepping are shown in separate Figures 5.6 and 5.7
for equitable comparison. There is not any common ODE solver between these packages, so
we use methods belonging to the class of 4th, 5th order Runge-Kutta methods, which perform
similarly in the benchmarks [26]. "Tsit5" was used in both Julia and JAX, "Cash-Karp"
for MPGOS, and "Dopri5" for PyTorch. Fixed time-stepping implicitly assures a constant
work/thread, which is ideal for GPUs. However, adaptive time-stepping within ODE inte-
grators adjusts time steps to ensure stability and error control. This generally results in
faster ODE integration times than fixed time-stepping, but may cause thread divergence as
effectively different time-stepping across threads, eventually amounting to contrasting work
per thread. The slowdown of different packages with respect to our implementation with
different NVIDIA GPUs is listed in Tables 5.2 and 5.3. While our solvers are able to reach
and sometimes outperform speed of light measure (C++, MPGOS), we observe a greater
acceleration of approximately 20–100× in comparison to JAX and 100–200× for PyTorch,
both of which rely on vectorized map style of parallelism. The authors were not able to
compile adaptive time-stepping results for PyTorch, as vmap currently does not support all

55

the internal operations required by the PyTorch code base. Notably, the array abstraction
parallelism approach of PyTorch and JAX performs similarly to the demonstrated efficiency
of EnsembleGPUArray, providing clear evidence that the performance difference is due to the
fundamental approach itself and not due to efficiencies or inefficiencies in the implementation
of the approach.

Figure 5.7: A comparison of the time for an ODE solve for with other programs with
adaptive time-stepping. EnsembleGPUKernel is able to reach and sometimes outperform
speed of light measure (MPGOS) and approximately faster by 20–100× in comparison to
JAX.

Similarly, we benchmark the solvers with stiff ODEs. A usual test case for stiff ODEs
is the Robertson equation [65], which models a chemical reaction between three species.
The rate of the reactions varies at drastically different time scales, which subsequently gives
rise to the stiffness characteristic of the problem. We also additionally benchmark with an
other massively parallel stiff ODE solver, ginSODA [113], which uses Python as a front-
end for their CUDA-C++ kernels. Figure 5.8 summarizes the benchmarks when compared
with JAX, Julia’s EnsembleGPUArray, and ginSODA. The performance trend remains con-
gruent with non-stiff ODE problems, indicating an average speed-up of 76–130× for JAX,
129–280× for Julia’s EnsembleGPUArray, and 170–409× for ginSODA. According to the au-
thor’s knowledge, the stiff ODE solvers are the first most extensive and the state-of-the-art
massively parallel kernel-based solvers available for GPU acceleration.

5.5.5 Vendor agnosticism with performance: Comparison with sev-
eral GPU platforms

With vendor-agnostic GPU kernel generation, researchers can choose major GPU backends
with ease. Our benchmarks in Figure 5.9 demonstrate that overhead is minimal in our
ODE solvers and users can expect performance one-to-one with mentioned Floating Point

56

Table 5.2: A summary of the range of slowdowns of the benchmarks in Figures 5.6 and 5.7
(lower is better), with results compiled on a desktop GPU. The slowdowns are computed by
varying the number of trajectories. The Julia-based solvers achieve the best acceleration on
average.

Software
Time-stepping Fixed Adaptive

DiffEqGPU.jl (Julia) 1.0× 1.0×
MPGOS (C++) 2.2–5.3× 0.5–2.3×
Diffrax (JAX) 88.9–274.0× 28.0–124.0×

torchdiffeq (PyTorch) 196.4–3617.7× —

Table 5.3: A summary of the range of slowdowns of the benchmarks in Figures 5.6 and 5.7
(lower the better), with results compiled on a server GPU. The slowdowns are computed by
varying the number of trajectories. The Julia-based solvers achieve the best acceleration on
average.

Software
Time-stepping Fixed Adaptive

DiffEqGPU.jl (Julia) 1.0× 1.0×
MPGOS (C++) 0.6–10.0× 0.6–6.9×
Diffrax (JAX) 57.4–322.3× 30.2–46.8×

torchdiffeq (PyTorch) 98.8–3693.9× —

Table 5.4: A summary of the range of slowdowns of the benchmarks in Figure 5.8 (lower the
better), with results compiled on a server GPU for stiff ODEs. The slowdowns are computed
by varying the number of trajectories. The Julia-based solvers achieve the best acceleration
on average.

Software
Time-stepping Adaptive

EnsembleGPUKernel (Rodas5P) 1.0×
EnsembleGPUKernel (Kvaerno5) 0.85–1.0×

EnsembleGPUKernel (Rosenbrock23) 1.2–1.6×
EnsembleGPUArray (Kvaerno5) 129.1–279.9×

Diffrax (Kvaerno5) 76.6–130.0×
ginSODA (LSODA) 170.4–409.4×

57

Figure 5.8: A comparison of the time for a stiff ODE solve with other programs with adap-
tive time-stepping. EnsembleGPUKernel is faster than JAX and EnsembleGPUArray by
approximately 76–130×.

Operations per Second (FLOPS) in GPUs mentioned in the Section 5.5.1. To elude other
performance impacts such as thread divergence and equitable selection of the dimension of
the ODE, we simulate the Lorenz problem with fixed time-stepping. We run the benchmarks
on major vendors: NVIDIA, AMD, Intel, and Apple. The peak flops are listed in Section
5.5.1. To our knowledge, this is the first showcase of GPU-parallel software for solving DEs
that supports more than NVIDIA GPUs.

5.5.6 Event handling and automatic differentiation

Software for simulating dynamical systems allows for injecting discontinuous events and
termination of integration with a specified criterion causing discontinuities within the inte-
gration. Event handling in differential equations is used to produce non-differentiable points
in continuous dynamical systems. Mathematically, an event within an ODE can be speci-
fied as a tuple of functions, g, h ("condition" and "affect"), where satisfying the "condition"
g(u, p, t) = 0 triggers the "affect" h(u, p, t), changing u, t or terminating the integration. As
a demonstration of event capabilities with EnsembleGPUArray and EnsembleGPUKernel, we
demonstrate the famous surface-ball collision (bouncing ball) dynamics simulated on GPUs
in Figure 5.11.

Additionally, the GPU kernels are automatic differentiation (AD) compatible, both with
forward with reverse mode, allowing for GPU-parallel forward and adjoint sensitivity anal-
ysis. Tutorials in the library demonstrate the usage of AD for parameter estimation with
minibatching.11

11https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-
with-DiffEqGPU

58

https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-with-DiffEqGPU
https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-with-DiffEqGPU

Figure 5.9: A comparison of the time for an ODE solve for fixed time-stepping, measured on
different GPU platforms. The non-stiff ODE solver GPUTsit5 is used here. We measure the
time (lower the better) versus the number of parallel solves. Here, the NVIDIA GPUs perform
the best owing to the most-optimized library and matured ecosystem with JuliaGPU.

1 // Building textured memory of the dataset
2 texture = CuTexture(CuTextureArray(dataset))
3 // Passing the textured memory as parameter of the problem
4 prob = ODEProblem(f_rhs, u0, tspan, (p, texture))
5 // Performing the solve, with 0 CPU offloading.
6 sol = solve(prob, alg, EnsembleGPUKernel(0), ...)

Listing 2: An outline of using texture memory with DifferentialEquations.jl

5.5.7 Texture memory interpolation

As the mathematical model used to simulate a dynamical system is oftentimes a low-fidelity
approximation of the true physical phenomena, practitioners often account for non-modeled
behavior via lookup tables and interpolation of datasets. These datasets may be derived from
real-world experimentation and/or higher-fidelity simulation. For cases where the interpolant
is a function of the system state, interpolation is required at each time step for each system
in the ensemble. A simple example of this is the above bouncing ball problem, extended to
include drag forces imparted on the ball via the interpolation of a spatially varying wind
field. Furthermore, a user may need to interpolate digital terrain elevation data for ground
collision event handling, in which the textured memory defined in Listing 2 can be used.

In addition to exploiting parallelism for time-stepping as described above, GPU texture
memory can be leveraged when interpolation is required with multiple benefits. In particular,
for NVIDIA GPUs, texture memory provides interpolation, nearest-neighbor search, and
automatic boundary handling for the cost of a single memory read. Benchmarking with

59

Figure 5.10: A comparison of of the time for an ODE solve for adaptive time-stepping,
measured on different GPU platforms. The stiff ODE solver GPURosenbrock23 is used here.
We measure the time (lower the better) versus the number of parallel solves. Here, the
NVIDIA GPUs perform the best owing to the most-optimized library and matured ecosystem
with JuliaGPU.

texture memory results in 2× faster simulation, when we replace a compute-bound operation
such as interpolation on GPU with texture-memory.

Furthermore, texture memory is advantageous for situations where the memory access
pattern is not known a priori, which is often the case for state-dependent interpolation.
Texture memory, however, requires uniformly spaced data.

5.5.8 Accelerating stochastic processes with GPUs

The expectation of SDE solutions is a key metric in many model analyses due to the ran-
domness of the simulation process. Such a calculation is generally done through Monte
Carlo estimation via generating many trajectories of SDE solution, typically requiring tens
of thousands of trajectories for suitable convergence due to the O(

√
N) convergence rate

to the expectation. The generation of these trajectories is independent of each other, thus
fitting the form of ensemble parallelism with the same initial condition and parameter values,
with the only difference being the seed supplied to the Pseudorandom Number Generator
(PRNG).

Asset Price Model in Quantitative Finance

As a rudimentary example, we examine the ensemble simulation of a linear SDE, popu-
larly known as Geometric Brownian Motion (GBM), which is the common Black-Scholes
model used in asset pricing in quantitative finance [42], [43]. The benchmarks in Figure
5.12 demonstrate that simulations on GPU are faster than CPU on average by 8×. GPU

60

Figure 5.11: A simulation of bouncing ball problem on GPU. The blue trajectory is the
displacement and the red trajectory is the velocity, across time. This demonstrates the
ability to inject code within ODEs via callbacks.

parallelism dominates CPU parallelism over approximately 1000 trajectories. We note that
the decreased performance difference from the ODE case is likely due to the less optimized
implementation of the kernel PRNG implementations.

Stochastic Chemical Reaction Networks

Additionally, we benchmark the SDE solvers over a real case study of Chemical Reaction
Networks (CRN) generated when microorganisms such as bacteria respond to stimuli, which
causes a change in its gene expression through sigma factors [114]. These biological pro-
cesses are inherently noisy in nature, and it is simulated by transforming the CRN to an
SDE via the Chemical Langevin Equation (CLE) [45]. The non-dimensionalized model has
notably 4 states, 8 Wiener noise variables, and 6 parameters, making it suitable for our case
study as our GPU DE solvers are suited for problems with low-dimensional states. The
simulation of the process on the GPU in shown in Figure 5.13. The benchmark investigates
the generation of trajectories of solutions for different parameters akin to parameter sweeps,
which are widely used in parameter estimation and uncertainty quantification. Each of the
parameters is uniformly sampled and the set of the Cartesian products of parameters is sim-
ulated, generating approximately >1,000,000 unique trajectories. The benchmarks shown in
Figure 5.14 quantitatively shows that our GPU implementation for SDEs is 4.5× faster than
multithreading over a CPU, averaged over different trajectories.

61

Figure 5.12: The parameter parallel simulation time for the linear SDE defined in Section
5.5.8 (lower the better). The GPU parallelism supercedes CPU parallelism at about 1000
trajectories.

5.6 Discussion

We have demonstrated that many programs written for standard CPU usage of DifferentialE-
quations.jl can be retargeted to GPUs via DiffEqGPU.jl and achieve state-of-the-art (SOA)
performance without requiring changes to user code. This solution democratizes the SOA
by not requiring scientists and engineers to learn CUDA C++ in order to achieve top perfor-
mance. One key result of the paper is that we demonstrate that all approaches which used
array abstraction GPU parallelism, PyTorch, JAX, and EnsembleGPUArray, achieve similar
performance and are orders of magnitude less efficient than the kernel generation approach of
EnsembleGPUKernel and MPGOS. This suggests that the performance difference is due to a
limitation of the array abstraction parallelization formulation, and demonstrates a concrete
application where kernel generation is required for achieving SOA. It has previously been
noted that “machine learning systems are stuck in a rut” where many deep learning archi-
tectures are designed to only use the kernels included by current machine learning libraries
(PyTorch and JAX) [115]. Our results further this thesis by demonstrating that orders
of magnitude performance improvements can only be achieved by leaving the constrained
array-based DSL of pre-defined kernels imposed by such deep learning frameworks.

62

Figure 5.13: An example simulation plot of the system vs. time. The model is written with
Catalyst.jl and automatically works with GPU solvers, showcasing the ability to simulate
complex models seamlessly on GPU.

Figure 5.14: The parameter parallel simulation time (lower the better) of the SDE simulation
of Figure 5.13. Overall, the comparison showcases the scalability of speedups of using GPUs
instead of CPUs, having suitable gains for trajectories as small as 1000.

63

64

Chapter 6

DiffEqGPU.jl: GPU-acceleration
routines for DifferentialEquations.jl and
broader SciML ecosystem

DiffEqGPU.jl is an open-source Julia package that provides GPU acceleration for solving
differential equations. The process for GPU acceleration is completely automated, where the
user provides a high-level function for the differential equation, and the package automatically
generates suitable kernels that are amenable to GPU compilation. Moreover, the same high-
level code can target different hardware accelerators, such as CPUs and GPUs, and even to
different GPU backends. Currently, the platform supports a variety of GPU backends listed
in Table 6.1. Our work thus provides a roadmap for how others can achieve true vendor
agnosticism and the reality of the work necessary. This work presents Julia’s first portable
GPU application that supports all four relevant GPU vendors. This was achieved by doing
the groundwork to make it possible, i.e., improving the JuliaGPU stack (adding backends,
fixing bugs, etc.).

GPU Manufacturer GPU Kernel Language Julia Support Language 3 Backend
NVIDIA CUDA CUDA.jl CUDABackend()
AMD ROCm AMDGPU.jl ROCBackend()
Intel oneAPI oneAPI.jl oneAPIBackend()

Apple M-Series Metal Metal.jl MetalBackend()

Table 6.1: Backend choices available in DiffEqGPU.

6.1 Setting up DiffEqGPU.jl

Installing backends

The user must install the GPU backend library to test the DiffEqGPU.jl-related code.

julia> using Pkg
julia> #Run either of them

65

https://github.com/SciML/DiffEqGPU.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/oneAPI.jl
https://github.com/JuliaGPU/Metal.jl

julia> Pkg.add("CUDA") # NVIDIA GPUs
julia> Pkg.add("AMDGPU") #AMD GPUs
julia> Pkg.add("oneAPI") #Intel GPUs
julia> Pkg.add("Metal") #Apple M series GPUs

Testing DiffEqGPU.jl

DiffEqGPU.jl is a test suite that regularly checks functionality by testing features such
as multiple backend support, event handling, and automatic differentiation. To test the
functionality, one can follow the below instructions. The user needs to specify the "backend,"
for example, "CUDA" for NVIDIA, "AMDGPU" for AMD, "oneAPI" for Intel, and "Metal"
for Apple GPUs. The estimated time of completion is 20 minutes.

$ julia --project=.
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.precompile()

Finally, test the package with this command

$ backend="CUDA"
$ julia --project=. test_DiffEqGPU.jl $backend

6.2 API

The API of DiffEqGPU.jl is based on Julia’s SciML ecosystem. It conveniently allows the user
to work with SciML API and automatically leverage GPU acceleration. We demonstrate an
example in showcasing the GPU acceleration of an ODE with parameter-parallel simulations
in Listing 3.

6.3 Composability

DiffEqGPU.jl enables composability with the rest of the SciML ecosystem. This means most
of the features work on the box: Automatic Differentiation, High-level modeling via Model-
ingToolkit.jl [116], and differential equation solvers from OrdinaryDiffEq.jl. We showcase
an example in Listing 4 that allows composability from ModelingToolkit.jl to allow GPU
acceleration of parameter-parallel sweeps of a Chemical Reaction Network with Catalyst.jl
[117].

1 using Catalyst, Plots, StochasticDiffEq, StaticArrays, CUDA
2

3 @show ARGS
4 #settings
5

66

1 using DiffEqGPU, OrdinaryDiffEq, StaticArrays, CUDA
2

3 function lorenz(u, p, t)
4 du1 = p[1] * (u[2] - u[1])
5 du2 = u[1] * (p[2] - u[3]) - u[2]
6 du3 = u[1] * u[2] -p[3] * u[3]
7 return SVector{3}(du1, du2, du3)
8 end
9

10 u0 = @SVector [1.0f0; 0.0f0; 0.0f0]
11 tspan = (0.0f0, 10.0f0)
12 p = @SVector [10.0f0, 28.0f0, 8 / 3.0f0]
13 prob = ODEProblem{false}(lorenz, u0, tspan, p)
14 prob_func = (prob, i, repeat) -> remake(prob, p = (@SVector rand(Float32, 3)) .* p)
15 monteprob = EnsembleProblem(prob, prob_func = prob_func, safetycopy = false)
16

17 sol = solve(monteprob, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()),
18 trajectories = 10_000)

Listing 3: Code example for accelerating ensemble simulation using DiffEqGPU.jl.

6 N = 10
7

8 ### Example 4: Ensemble SDE simulations (varioous parameter values) at steady state
behaviours of 4 variable CRN (Generalised bacterial stress response model).
###

↪→

↪→

9

10 ## Credits: Torkel Loman
11

12 # Declare the model (using Catalyst).
13 σGen_system = @reaction_network begin
14 (v0 + (S * σ)^n / ((S * σ)^n + (D * A3)^n + 1), 1.0), ∅ ↔ σ

15 (σ / τ, 1 / τ), ∅ ↔ A1
16 (A1 / τ, 1 / τ), ∅ ↔ A2
17 (A2 / τ, 1 / τ), ∅ ↔ A3
18 end S D τ v0 n η
19

20 # Declares the parameter values.
21 σGen_parameters = [:S => 2.3, :D => 5.0, :τ => 10.0, :v0 => 0.1, :n => 3, :η =>

0.1]↪→

22

23 # Set ensemble parameter values.
24 S_grid = Float32.(10 .^ (range(-1.0, stop = 2, length = N)))
25 D_grid = Float32.(10 .^ (range(-1, stop = 2, length = N)))
26 τ_grid = Float32[0.1, 0.15, 0.20, 0.30, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 7.50,

10.0,↪→

67

27 15.0, 20.0, 30.0, 50.0, 75.0, 100.0][1:2:19]
28 v0_grid = Float32[0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.15, 0.20]
29 n_grid = Float32[2.0, 3.0, 4.0]
30 η_grid = Float32[0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
31

32 parameters = collect(Iterators.product(S_grid, D_grid, τ_grid, v0_grid, n_grid,
η_grid));↪→

33

34 numberOfParameters = length(parameters)
35

36 @show numberOfParameters
37

38 function σGen_p_func(prob, i, repeat)
39 for parameter in parameters
40 remake(prob; p = SVector{6, T1}(parameter))
41 end
42 end
43

44 # Declare initial condition.
45 σGen_u0 = [:σ => 0.1, :A1 => 0.1, :A2 => 0.1, :A3 => 0.1] # (for some S values, the

system will start far away from the steady state).↪→

46

47 # Create EnsembleProblem.
48 σGen_sprob = SDEProblem(σGen_system, σGen_u0, (0.0, 1000.0), σGen_parameters,
49 noise_scaling = (@parameters η)[1])
50

51 ### Experimentation
52 sys = modelingtoolkitize(σGen_sprob)
53 T1 = Float32
54 prob = SDEProblem{false}(sys, SVector{length(σGen_sprob.u0), T1}(σGen_sprob.u0),
55 Float32.(σGen_sprob.tspan),
56 SVector{length(σGen_sprob.p), T1}(σGen_sprob.p),
57 noise_rate_prototype = SMatrix{
58

size(σGen_sprob.noise_rate_prototype)...,↪→

59

T1}(σGen_sprob.noise_rate_prototype))↪→

60

61 using DiffEqGPU
62

63 # parameter as cartesian product of the ranges, initial condition as [v0,v0,v0,v0]
64 function prob_func(prob, i, repeat)
65 remake(prob; p = SVector{6, T1}(parameters[i]...),
66 u0 = SVector{4, T1}(parameters[i][4], parameters[i][4],

parameters[i][4],↪→

67 parameters[i][4]))
68 end

68

69

70 eprob = EnsembleProblem(prob, prob_func = prob_func, safetycopy = false)
71

72 saveat = T1(0.0f0):T1(1.0f0):T1(1000.0f0)
73 dt = T1(0.1f0)
74

75 esol = solve(eprob, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()); trajectories
= numberOfParameters)↪→

Listing 4: Code example for demonstrating composability to GPU acceleration for reaction
models using DiffEqGPU.jl.

69

70

Chapter 7

Conclusion

Parallel computing faces two significant challenges today. Firstly, many algorithms are in-
herently complex. As a result, there is often a divide between experts in numerical analysis,
who focus on developing efficient algorithms, and those in computer science, who specialize in
parallelizing algorithms. This distinction is evident in fields like ODE solving, where projects
such as XBraid [57] from the exascale initiative utilize parallel-in-time integrators. However,
these integrators do not exhibit improved performance until utilizing 256 or more cores.
While XBraid may not feature an optimal algorithm, parallelizing is relatively easy. The
second challenge lies in the integration of effective parallelism with robust algorithms. This
task is inherently intricate and typically resolved on a domain-by-domain basis. Examples
include the development of climate models like General Circulation Models (GCMs) [118] and
molecular dynamics codes like AMBER [119]. However, these codes are often specialized,
opaque, and time-consuming to develop, lacking versatility across different domains. We
identified the need for general-purpose differential equation solvers for users where efficient
parallelism should be easily accessible.

In this thesis, we demonstrated two general-purpose methods for parallelizing differential
equation solvers. We demonstrated algorithms for within-step parallelism by parallelizing
extrapolation methods, resulting in the first general-purpose, extensively benchmarked, and
open-source implementation. The GPU-based ODE solvers for solving ensemble problems
present Julia’s first portable GPU application that supports all four relevant GPU vendors.
This was achieved by doing the groundwork to make it possible, i.e., improving the JuliaGPU
stack (adding back-ends, fixing bugs, etc.). Our work thus provides a roadmap for how others
can achieve true vendor agnosticism and the reality of the work necessary.

7.1 Future works

As noted in Chapter 4, Extrapolation methods are generally inefficient in comparison to
other methods such as Rosenbrock [120] or SDIRK [121] methods. In none of the numerous
stiff ODE benchmarks by Hairer II [17] or the SciML suite1 do the implicit extrapolation
methods achieve SOA performance. Thus, while the parallelization done here was able to
achieve SOA, even better results could likely be obtained by developing parallel Rosenbrock

1https://github.com/SciML/SciMLBenchmarks.jl

71

[120] or SDIRK [121] methods (using theory described in [56]) and implementing them using
our parallelization techniques. This would have the trade-off of being tied to a specific core
count but could achieve better performance through tableau optimization.

Based on Chapter 5, there are opportunities for improvements with EnsembleGPUKernel.
For example, while using stack-allocated arrays provides a workaround to using arrays inside
GPU kernels, they are unsuitable for higher-dimensional problems due to the limited memory
of static allocations. The model might compile, but there might not be any realizable
speedups. Flexibility in supporting mutation within the ODE function can also be extended.
This could be achieved using mutable static arrays, which require special tricks to compile
them with the GPU kernels. The user is also limited in terms of using features such as
broadcast and calls to BLAS. Support for other differential equation problems, such as
differential-algebraic equations (DAEs) and stiff SDEs, remains an area of contribution.
Experimental support exists for event handling; however, some callbacks can generate GPU-
incompatible code due to limitations in the Julia compiler. Improvements to the compiler’s
escape analysis and effects modeling are currently being implemented, and are expected to
resolve this issue.

Notably, the work of incorporating parallelism into efficient numerical methods can be
extended to model calibration routines such as parameter estimation of differential equa-
tions. As a first step toward that goal, we want to address the limitation in training high-
fidelity models currently done by gradient-based optimizers by handling only one solution
at a time. A potential solution involves developing specialized global optimization tools,
like multi-start methods or evolutionary approaches, leveraging GPU ensembles for search
exploration. Given the highly non-convex landscapes of many ODE optimization problems,
efficient GPU-accelerated global optimization is crucial in domains like pharmacometrics,
chemical engineering, and robotics. I aim to contribute to this field by creating optimization
libraries and solvers that exploit GPU-batched evaluations, enabling rapid global optimiza-
tion where only local optimization was previously tractable. [122] showcased some early
results by combining Particle Swarm Optimization (PSO) [123] with the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [124], for non-convex optimization
problems. We aim to follow up on this work and demonstrate the combining efficient paral-
lelism with numerical optimization methods.

72

Appendix A

Parallel Extrapolation Methods

A.0.1 Models

The first test problem is the ROBER Problem:

dy1
dt

= −k1y1 + k3y2y3,

dy2
dt

= k1y1 +−k2y
2
2 − k3y2y3,

dy3
dt

= k2y
2
2.

(A.1)

The initial conditions are y = [1.0, 0.0, 0.0] and k = (0.04, 3e7, 1e4). The time span for
integration is t = (0.0 s, 1e5 s).[65], [17] The second test problem is OREGO:

dy1
dt

= −k1(y2 + y1(1− k2y1 − y2)), (A.2)

dy2
dt

=
y3 − (1 + y1)y2

k1
, (A.3)

dy3
dt

= k3(y1 − y3). (A.4)

73

The initial conditions are y = [1.0, 2.0, 3.0] and k = (77.27, 8.375 × 10−6, 0.161). The time
span for integration is t = (0.0 s, 30.0 s). The third test problem is HIRES:

dy1
dt

= −1.71y1 + 0.43y2 + 8.32y3 + 0.0007, (A.5)

dy2
dt

= 1.71y1 − 8.75y2, (A.6)

dy3
dt

= −10.03y3 + 0.43y4 + 0.035y5, (A.7)

dy4
dt

= 8.32y2 + 1.71y3 − 1.12y4, (A.8)

dy5
dt

= −1.745y5 + 0.43y6 + 0.43y7, (A.9)

dy6
dt

= −280.0y6y8 + 0.69y4 (A.10)

+ 1.71y5 − 0.43y6 + 0.69y7, (A.11)
dy7
dt

= 280.0y6y8 − 1.81y7, (A.12)

dy8
dt

= −280.0y6y8 + 1.81y7. (A.13)

The initial conditions are:

y = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0057]. (A.14)

74

The time span for integration is t = (0.0 s, 321.8122 s). The fourth test problem is POLLU:
dy1
dt

= −k1y1 − k10y11y1 − k14y1y6 − k23y1y4 (A.15)

− k24y19y1 + k2y2y4 + k3y5y2 + k9y11y2 (A.16)
+ k11y13 + k12y10y2 + k22y19 + k25y20, (A.17)

dy2
dt

= −k2y2y4 − k3y5y2 − k9y11y2 − k12y10y2 (A.18)

+ k1y1 + k21y19, (A.19)
dy3
dt

= −k15y3 + k1y1 + k17y4 + k19y16 + k22y19, (A.20)

dy4
dt

= −k2y2y4 − k16y4 − k17y4 − k23y1y4 + k15y3, (A.21)

dy5
dt

= −k3y5y2 + 2k4y7 + k6y7y6 + k7u9 (A.22)

+ k13y14 + k20y17y6, (A.23)
dy6
dt

= −k6y7y6 − k8y9y6 − k14y1y6 − k20y17y6 (A.24)

+ k3y5y2 + 2k18u16, (A.25)
dy7
dt

= −k4y7 − k5y7 − k6y7y6 + k13y14, (A.26)

dy8
dt

= k4y7 + k5y7 + k6y7y6 + k7y9, (A.27)

dy9
dt

= −k7y9 − k8y9y6, (A.28)

dy10
dt

= −k12y10y2 + k7y9 + k9y11y2, (A.29)

dy11
dt

= −k9y11y2 − k10y11y1 + k8y9y6 + k11y13, (A.30)

dy12
dt

= k9y11y2, (A.31)

dy13
dt

= −k11y13 + k10y11y1, (A.32)

dy14
dt

= −k13y14 + k12y10y2, (A.33)

dy15
dt

= k14y1y6, (A.34)

dy16
dt

= −k18y16 − k19y16 + k16y4. (A.35)

dy17
dt

= −k20y17y6, (A.36)

dy18
dt

= k20y17y6, (A.37)

dy19
dt

= −k21y19 − k22y19 − k24y19y1 + k23y1y4 + k25y20, (A.38)

dy20
dt

= −k25y20 + k24y19y1. (A.39)
75

k =[0.35, 26.6, 12300.0, 0.00086, 0.00082, 15000.0,

0.00013, 24000.0, 16500.0, 9000.0, 0.022, 12000.0, 1.88,

16300.0, 4.8e6, 0.00035, 0.0175, 1.0e8, 4.44e11,

1240.0, 2.1, 5.78, 0.0474, 1780.0, 3.12].

y =[0.0, 0.2, 0.0, 0.04, 0.0, 0.0, 0.1, 0.3, 0.017, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007, 0.0, 0.0, 0.0].

The time span for integration is t = (0.0 s, 60.0 s).
The QSP model is "BIOMD0000000452 QSP Model, Bidkhori2012 - normal EGFR sig-

nalling" [70] from BioModels Database [125]. This is a Systems Biology Markup Model
(SBML) [126], parsed using SBMLToolkit.jl and Catalyst.jl [16], [116]. It notably has 109
states and 188 parameters

A.0.2 Benchmarks

100 Linear ODEs

The test tolerances for the solvers in the benchmark Fig. 4.1 are relative tolerances in the
range of (10−7, 10−13) and corresponding absolute tolerances are (10−10, 10−16).

Table A.1: Tuned parameters for 100 Linear ODEs

Extrapolation Method/Order minimum initial maximum
Midpoint Deuflhard 5 10 11

Midpoint Hairer Wanner 5 10 11

Rober

The test tolerances for the solvers in the benchmark Fig. 4.2 are relative tolerances in the
range of (10−7, 10−9) and corresponding absolute tolerances are (10−10, 10−12). The integrator
used for reference tolerance at 10−14 is CVODE_BDF [54]. The parameters for the solvers
are tuned to these settings:

Table A.2: Tuned parameters for ROBER

Extrapolation Method/Order minimum initial maximum
Implicit Euler 3 5 12

Implicit Euler Barycentric 4 5 12
Implicit Hairer Wanner 2 5 10

Orego

The test tolerances for the solvers in the benchmark Fig. 4.3 are relative tolerances in the
range of (10−7, 10−9) and corresponding absolute tolerances are (10−10, 10−12). The integrator

76

used for reference tolerance at 10−14 is Rodas5 [17]. The parameters for the solvers are tuned
to these settings:

Table A.3: Tuned parameters for OREGO

Extrapolation Method/Order minimum initial maximum
Implicit Euler 3 4 12

Implicit Euler Barycentric 3 4 12
Implicit Hairer Wanner 2 5 10

Hires

The test tolerances for the solvers in the benchmark Fig. 4.4 are relative tolerances in the
range of (10−7, 10−9) and corresponding absolute tolerances are (10−10, 10−12). The integrator
used for reference tolerance at 10−14 is Rodas5 [17]. The parameters for the solvers are tuned
to these settings:

Table A.4: Tuned parameters for HIRES

Extrapolation Method/Order minimum initial maximum
Implicit Euler 4 7 12

Implicit Euler Barycentric 4 7 12
Implicit Hairer Wanner 3 6 10

POLLUTION

The test tolerances for the solvers in the benchmark Fig. 4.5 are relative tolerances in
the range of (10−8, 10−10) and corresponding absolute tolerances are (10−10, 10−13). The
integrator used for reference tolerance at 10−14 is CVODE_BDF [54]. The parameters for
the solvers are tuned to these settings:

Table A.5: Tuned parameters for POLLU

Extrapolation Method/Order minimum initial maximum
Implicit Euler 5 6 12

Implicit Euler Barycentric 5 6 12
Implicit Hairer Wanner 3 6 10

77

QSP Model

The test tolerances for the solvers in the benchmark Fig. 4.6 are relative tolerances in the
range of (10−6, 10−10) and corresponding absolute tolerances are (10−9, 10−13). The integrator
used for reference tolerance at 10−14 is CVODE_BDF [54]. The parameters for the solvers
are tuned to these settings:

Table A.6: Tuned parameters for QSP Model

Extrapolation Method/Order minimum initial maximum
Implicit Euler 8 9 12

Implicit Euler Barycentric 7 8 12
Implicit Hairer Wanner 2 5 10

78

References

[1] D. S. Jones, M. Plank, and B. D. Sleeman, Differential equations and mathematical
biology. Chapman and Hall/CRC, 2009.

[2] R. Courant and D. Hilbert, Methods of mathematical physics: partial differential equa-
tions. John Wiley & Sons, 2008.

[3] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations,” Advances in Neural Information Processing systems, vol. 31,
2018.

[4] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A.
Ramadhan, and A. Edelman, “Universal differential equations for scientific machine
learning,” arXiv preprint arXiv:2001.04385, 2020.

[5] U. Nowak, R. Ehrig, and L. Oeverdieck, “Parallel extrapolation methods and their ap-
plication in chemical engineering,” in International Conference on High-Performance
Computing and Networking, Springer, 1998, pp. 419–428.

[6] D. Ketcheson and U. bin Waheed, “A comparison of high-order explicit runge–kutta,
extrapolation, and deferred correction methods in serial and parallel,” Communica-
tions in Applied Mathematics and Computational Science, vol. 9, no. 2, pp. 175–200,
2014.

[7] Utkarsh, C. Elrod, Y. Ma, K. Althaus, and C. Rackauckas, “Parallelizing explicit and
implicit extrapolation methods for ordinary differential equations,” in IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA, USA: IEEE,
2022, pp. 1–9. doi: 10.1109/HPEC55821.2022.9926357.

[8] C. Kühn, C. Wierling, A. Kühn, E. Klipp, G. Panopoulou, H. Lehrach, and A. J.
Poustka, “Monte carlo analysis of an ode model of the sea urchin endomesoderm
network,” BMC Systems Biology, vol. 3, p. 83, 2009.

[9] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, “A methodology for performing
global uncertainty and sensitivity analysis in systems biology,” Journal of Theoretical
Biology, vol. 254, no. 1, pp. 178–196, 2008.

[10] B. Iooss and P. Lemaitre, “A review on global sensitivity analysis methods,” in Uncer-
tainty Management in Simulation-Optimization of Complex Systems: Algorithms and
Applications, G. Dellino and C. Meloni, Eds., 1 vols., Boston, MA: Springer, 2015,
pp. 101–122.

79

https://doi.org/10.1109/HPEC55821.2022.9926357

[11] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I:
Nonstiff Problems. Berlin, Heidelberg: Springer, Jan. 1993, vol. 8, isbn: 978-3-540-
56670-0. doi: 10.1007/978-3-540-78862-1.

[12] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transformations of
Python+NumPy programs, version 0.3.13, Github, 2018. url: http://github.com/
google/jax.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[15] U. Utkarsh, V. Churavy, Y. Ma, T. Besard, T. Gymnich, A. R. Gerlach, A. Edelman,
and C. Rackauckas, “Automated translation and accelerated solving of differential
equations on multiple GPU platforms,” arXiv preprint arXiv:2304.06835, 2023.

[16] C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia,” Journal of Open Research Soft-
ware, vol. 5, no. 1, 2017.

[17] E. Hairer and G. Peters, Solving Ordinary Differential Equations II. Berlin Heidelberg:
Springer, 1991.

[18] L. F. Shampine and S. Thompson, “Stiff systems,” Scholarpedia, vol. 2, no. 3, p. 2855,
2007.

[19] D. J. Higham and L. N. Trefethen, “Stiffness of odes,” BIT Numerical Mathematics,
vol. 33, pp. 285–303, 1993.

[20] C. Runge, “Über die numerische auflösung von differentialgleichungen,” Mathematis-
che Annalen, vol. 46, no. 2, pp. 167–178, 1895.

[21] W. Kutta, “Beitrag zur näherungsweisen integration totaler differentialgleichungen,”
Ph.D. dissertation, Ludwig Maximilian University of Munich, Germany, 1901.

[22] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,”
Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[23] L. F. Shampine and M. W. Reichelt, “The matlab ode suite,” SIAM Journal on
Scientific Computing, vol. 18, no. 1, pp. 1–22, 1997. doi: 10.1137/S1064827594276424.

[24] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. Philadelphia, PA, USA: SIAM, 1998, vol. 61.

[25] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of
differential equations,” The Computer Journal, vol. 5, no. 4, pp. 329–330, 1963. doi:
10.1093/comjnl/5.4.329.

[26] C. Rackauckas and Q. Nie, “Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia,” The Journal of Open Research
Software, vol. 5, no. 1, 2017. doi: 10.5334/jors.151.

80

https://doi.org/10.1007/978-3-540-78862-1
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1093/comjnl/5.4.329
https://doi.org/10.5334/jors.151

[27] A. Kværnø, “Singly diagonally implicit runge–kutta methods with an explicit first
stage,” BIT Numerical Mathematics, vol. 44, no. 3, pp. 489–502, 2004.

[28] P. Kidger, “On Neural Differential Equations,” Ph.D. dissertation, University of Ox-
ford, 2021.

[29] A. Aitken, “On interpolation by iteration of proportional parts, without the use of
differences,” Proceedings of the Edinburgh Mathematical Society, vol. 3, no. 1, pp. 56–
76, 1932.

[30] E. H. Neville, Iterative interpolation. St. Joseph’s IS Press, 1934.

[31] P. Deuflhard, “Order and stepsize control in extrapolation methods,” Numerische
Mathematik, vol. 41, no. 3, pp. 399–422, 1983.

[32] W. Romberg, “Vereinfachte numerische integration,” Norske Vid. Selsk. Forh., vol. 28,
pp. 30–36, 1955.

[33] R. Bulirsch and J. Stoer, “Numerical treatment of ordinary differential equations by
extrapolation methods,” Numerische Mathematik, vol. 8, no. 1, pp. 1–13, 1966.

[34] H. J. Stetter, “Symmetric two-step algorithms for ordinary differential equations,”
Computing, vol. 5, no. 3, pp. 267–280, 1970.

[35] J.-P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,” SIAM review,
vol. 46, no. 3, pp. 501–517, 2004.

[36] K. Althaus, Theory and implementation of the adaptive explicit midpoint rule includ-
ing order and stepsize control, 2018. url: https://github.com/AlthausKonstantin/
Extrapolation/blob/master/Bachelor%20Theseis.pdf.

[37] M. Webb, L. N. Trefethen, and P. Gonnet, “Stability of barycentric interpolation
formulas for extrapolation,” SIAM Journal on Scientific Computing, vol. 34, no. 6,
A3009–A3015, 2012.

[38] G. G. Dahlquist, “A special stability problem for linear multistep methods,” BIT
Numerical Mathematics, vol. 3, no. 1, pp. 27–43, 1963.

[39] G. Bader and P. Deuflhard, “A semi-implicit mid-point rule for stiff systems of or-
dinary differential equations,” Numerische Mathematik, vol. 41, no. 3, pp. 373–398,
1983.

[40] W. B. Gragg, “Repeated extrapolation to the limit in the numerical solution of or-
dinary differential equations.,” CALIFORNIA UNIV LOS ANGELES, Tech. Rep.,
1964.

[41] B. Lindberg, “On smoothing and extrapolation for the trapezoidal rule,” BIT, vol. 11,
no. 1, pp. 29–52, Mar. 1971. doi: 10.1007/bf01935326. url: https://doi.org/10.1007%
2Fbf01935326.

[42] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal
of Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[43] R. C. Merton, “Theory of rational option pricing,” The Bell Journal of Economics
and Management Science, vol. 1, pp. 141–183, 1973.

81

https://github.com/AlthausKonstantin/Extrapolation/blob/master/Bachelor%20Theseis.pdf
https://github.com/AlthausKonstantin/Extrapolation/blob/master/Bachelor%20Theseis.pdf
https://doi.org/10.1007/bf01935326
https://doi.org/10.1007%2Fbf01935326
https://doi.org/10.1007%2Fbf01935326

[44] D. J. Wilkinson, Stochastic modelling for systems biology. Boca Raton, FL, USA:
CRC Press, 2018.

[45] D. T. Gillespie, “The chemical langevin equation,” The Journal of Chemical Physics,
vol. 113, no. 1, pp. 297–306, 2000.

[46] P. E. Kloeden and E. Platen, Stochastic Differential Equations. Berlin Heidelberg:
Springer, 1992.

[47] A. Tocino and R. Ardanuy, “Runge–kutta methods for numerical solution of stochastic
differential equations,” Journal of Computational and Applied Mathematics, vol. 138,
no. 2, pp. 219–241, 2002.

[48] C. Rackauckas and Q. Nie, “Stability-optimized high order methods and stiffness de-
tection for pathwise stiff stochastic differential equations,” in IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, USA: IEEE, 2020, pp. 1–8.

[49] A. Iserles and S. Nørsett, “On the theory of parallel runge—kutta methods,” IMA
Journal of numerical Analysis, vol. 10, no. 4, pp. 463–488, 1990.

[50] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. Gropp, et al., “Petsc users manual,” 2019.

[51] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK users’ guide. SIAM,
1999.

[52] M. J. Gander and S. Vandewalle, “Analysis of the parareal time-parallel time-integration
method,” SIAM Journal on Scientific Computing, vol. 29, no. 2, pp. 556–578, 2007.

[53] Y. Maday and G. Turinici, “A parareal in time procedure for the control of partial
differential equations,” Comptes Rendus Mathematique, vol. 335, no. 4, pp. 387–392,
2002.

[54] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, “SUNDIALS,” ACM Transactions on Mathematical Software,
vol. 31, no. 3, pp. 363–396, Sep. 2005. doi: 10.1145/1089014.1089020. url: https:
//doi.org/10.1145%2F1089014.1089020.

[55] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level 3 basic
linear algebra subprograms,” ACM Transactions on Mathematical Software (TOMS),
vol. 16, no. 1, pp. 1–17, 1990.

[56] K. Burrage, Parallel and sequential methods for ordinary differential equations. Claren-
don Press, 1995.

[57] X. Team, XBraid: Parallel multigrid in time, http://llnl.gov/casc/xbraid, 2013.

[58] J. Schroder and R. Falgout, “Xbraid tutorial,” in 18th Copper Mountain Conference
on Multigrid Methods, Colorado: Colorado, 2017.

[59] T. A. Davis, “Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal
method,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2,
pp. 196–199, 2004.

82

https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145%2F1089014.1089020
https://doi.org/10.1145%2F1089014.1089020
http://llnl.gov/casc/xbraid

[60] T. Davis, W. Hager, and I. Duff, “Suitesparse,” URL: faculty. cse. tamu. edu/davis/-
suitesparse. html, 2014.

[61] L. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of
ordinary differential equations,” SIAM journal on scientific and statistical computing,
vol. 4, no. 1, pp. 136–148, 1983.

[62] C. Elrod, Polyester.jl, https://github.com/JuliaSIMD/Polyester.jl, 2021.

[63] E. Hairer, Fortran and matlab codes, 2004.

[64] J. H. Verner, “Numerically optimal runge–kutta pairs with interpolants,” Numerical
Algorithms, vol. 53, no. 2, pp. 383–396, 2010.

[65] H. H. Robertson, “Numerical integration of systems of stiff ordinary differential equa-
tions with special structure,” IMA Journal of Applied Mathematics, vol. 18, no. 2,
pp. 249–263, 1976.

[66] A. M. Zhabotinsky, “Belousov-zhabotinsky reaction,” Scholarpedia, vol. 2, no. 9,
p. 1435, 2007.

[67] R. J. Field and R. M. Noyes, “Oscillations in chemical systems. iv. limit cycle behavior
in a model of a real chemical reaction,” The Journal of Chemical Physics, vol. 60, no. 5,
pp. 1877–1884, 1974.

[68] E. Schäfer, “A new approach to explain the “high irradiance responses” of photomor-
phogenesis on the basis of phytochrome,” Journal of Mathematical Biology, vol. 2,
no. 1, pp. 41–56, 1975.

[69] J. G. Verwer, “Gauss–seidel iteration for stiff odes from chemical kinetics,” SIAM
Journal on Scientific Computing, vol. 15, no. 5, pp. 1243–1250, 1994.

[70] G. Bidkhori, A. Moeini, and A. Masoudi-Nejad, “Modeling of tumor progression in
nsclc and intrinsic resistance to tki in loss of pten expression,” PloS one, vol. 7, no. 10,
e48004, 2012.

[71] K. Soetaert, T. Petzoldt, and R. W. Setzer, “Solving differential equations in r: Pack-
age desolve,” Journal of statistical software, vol. 33, pp. 1–25, 2010.

[72] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., “Scipy 1.0: Fundamental
algorithms for scientific computing in python,” Nature Methods, vol. 17, no. 3, pp. 261–
272, 2020.

[73] L. F. Shampine and M. W. Reichelt, “The matlab ode suite,” SIAM Journal on
Scientific Computing, vol. 18, no. 1, pp. 1–22, 1997.

[74] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation.
Philadelphia: SIAM, 2005.

[75] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American
Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[76] F. Hegedűs, “Program package mpgos: Challenges and solutions during the integra-
tion of a large number of independent ode systems using gpus,” Communications in
Nonlinear Science and Numerical Simulation, vol. 97, p. 105 732, 2021.

83

https://github.com/JuliaSIMD/Polyester.jl

[77] X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. K. Duvenaud, “Scalable gradients and
variational inference for stochastic differential equations,” in Symposium on Advances
in Approximate Bayesian Inference, PMLR, -: PMLR, 2020, pp. 1–28.

[78] Y. Zhou, J. Liepe, X. Sheng, M. P. H. Stumpf, and C. Barnes, “Gpu accelerated
biochemical network simulation,” Bioinformatics, vol. 27, no. 6, pp. 874–876, 2011.

[79] M. Fernando, D. Neilsen, E. Hirschmann, Y. Zlochower, H. Sundar, O. Ghattas, and
G. Biros, “A gpu-accelerated amr solver for gravitational wave propagation,” in SC22:
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC), IEEE Computer Society, Dallas, Texas: IEEE, 2022, pp. 1078–1092.

[80] T. Zhao, S. De, B. Chen, J. Stokes, and S. Veerapaneni, “Overcoming barriers to scal-
ability in variational quantum monte carlo,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’21, St. Louis, Missouri: Association for Computing Machinery, 2021, pp. –, isbn:
9781450384421. doi: 10 . 1145/3458817 .3476219. url: https : //doi . org/10 .1145/
3458817.3476219.

[81] S. Le Grand, A. W. Götz, and R. C. Walker, “Spfp: Speed without compromise—a
mixed precision model for gpu accelerated molecular dynamics simulations,” Com-
puter Physics Communications, vol. 184, no. 2, pp. 374–380, 2013.

[82] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrishnan, K. Patel, and
J. Melonakos, “Arrayfire: A gpu acceleration platform,” in Modeling and simulation
for defense systems and applications VII, SPIE, vol. 8403, Baltimore, Maryland, USA:
SPIE, 2012, pp. 49–56.

[83] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for CUDA,” in
GPU Computing Gems, Jade edition, Boston: Elsevier, 2012, pp. 359–371.

[84] D. Demidov, Vexcl: Vector expression template library for OpenCL, 2012.

[85] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for
heterogeneous computing systems,” Computing in Science & Engineering, vol. 12,
no. 3, p. 66, 2010.

[86] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with CUDA: Is CUDA the parallel programming model that application developers
have been waiting for?” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[87] K. Ahnert and M. Mulansky, “Odeint–solving ordinary differential equations in c++,”
in AIP Conference Proceedings, American Institute of Physics, vol. 1389, Halkidiki,
Greece: American Institute of Physics, 2011, pp. 1586–1589.

[88] K. Ahnert, D. Demidov, and M. Mulansky, “Solving ordinary differential equations
on GPUs,” Numerical Computations with GPUs, vol. 1, pp. 125–157, 2014.

[89] D. Nagy, L. Plavecz, and F. Hegedűs, “The art of solving a large number of non-stiff,
low-dimensional ordinary differential equation systems on gpus and cpus,” Commu-
nications in Nonlinear Science and Numerical Simulation, vol. 112, p. 106 521, 2022.

84

https://doi.org/10.1145/3458817.3476219
https://doi.org/10.1145/3458817.3476219
https://doi.org/10.1145/3458817.3476219

[90] A. C. Hindmarsh, “Odepack, a systemized collection of ode solvers,” in Scientific
Computing, R. S. Stepleman, Ed., 1 vols., Amsterdam: North-Holland, 1983, pp. 55–
64.

[91] A. C. Hindmarsh and L. R. Petzold, “Algorithms and software for ordinary differen-
tial equations and differential-algebraic equations, part ii: Higher-order methods and
software packages,” Computers in Physics, vol. 9, no. 2, pp. 148–155, 1995.

[92] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy: A numpy-compatible
library for nvidia gpu calculations,” in Proceedings of Workshop on Machine Learn-
ing Systems (LearningSys) in The Thirty-first Annual Conference on Neural Infor-
mation Processing Systems, Long Beach, CA, USA: NIPS, 2017, pp. –. url: http:
//learningsys.org/nips17/assets/papers/paper_16.pdf.

[93] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit compiler,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
ser. LLVM ’15, New York, NY, USA: Association for Computing Machinery, Nov.
2015, pp. 1–6, isbn: 9781450340052. doi: 10 . 1145/2833157 .2833162. url: https :
//doi.org/10.1145/2833157.2833162.

[94] T. Besard, C. Foket, and B. De Sutter, “Effective extensible programming: Unleashing
Julia on GPUs,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 4, pp. 827–841, 2018.

[95] T. Besard, V. Churavy, A. Edelman, and B. De Sutter, “Rapid software prototyp-
ing for heterogeneous and distributed platforms,” Advances in Engineering Software,
vol. 132, pp. 29–46, 2019.

[96] T. Besard, Juliagpu/gpucompiler.jl: V1.8.0, version v0.18.0, Github, Mar. 2023. doi:
10.5281/zenodo.7807140. url: https://doi.org/10.5281/zenodo.7807140.

[97] T. Besard, Juliagpu/gpuarrays.jl: V8.6.4, version v8.6.4, Github, Mar. 2023. doi:
10.5281/zenodo.7807091. url: https://doi.org/10.5281/zenodo.7807091.

[98] J. Samaroo, V. Churavy, A. Smirnov, et al., Juliagpu/amdgpu.jl: V0.4.8, version v0.4.8,
Github, Feb. 2023. doi: 10.5281/zenodo.7641665. url: https://doi.org/10.5281/
zenodo.7641665.

[99] T. Besard, Oneapi.jl, version v1.1.0, Github, Mar. 2023. doi: 10.5281/zenodo.7789142.
url: https://doi.org/10.5281/zenodo.7789142.

[100] T. Besard and M. Hawkins, Metal.jl, version v0.3.0, If you use this software, please
cite it as below., Github, Mar. 2023. doi: 10 . 5281/zenodo . 7789146. url: https :
//doi.org/10.5281/zenodo.7789146.

[101] K. Obenschain, D. Schwer, and A. Sharma, Initial assessment of the amd mi50 gpgpus
for scientific and machine learning applications, Research poster presented at ISC
High Performance 2020, 2020.

[102] C. Brown, A. Abdelfattah, S. Tomov, and J. Dongarra, “Design, optimization, and
benchmarking of dense linear algebra algorithms on amd gpus,” in IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Waltham, MA, USA: IEEE, 2020,
pp. 1–7.

85

http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.5281/zenodo.7807140
https://doi.org/10.5281/zenodo.7807140
https://doi.org/10.5281/zenodo.7807091
https://doi.org/10.5281/zenodo.7807091
https://doi.org/10.5281/zenodo.7641665
https://doi.org/10.5281/zenodo.7641665
https://doi.org/10.5281/zenodo.7641665
https://doi.org/10.5281/zenodo.7789142
https://doi.org/10.5281/zenodo.7789142
https://doi.org/10.5281/zenodo.7789146
https://doi.org/10.5281/zenodo.7789146
https://doi.org/10.5281/zenodo.7789146

[103] V. Churavy, D. Aluthge, J. Samaroo, et al., Juliagpu/kernelabstractions.jl: V0.9.1,
version v0.9.1, JuliaGPU, Mar. 2023. doi: 10 . 5281/zenodo . 7770454. url: https :
//doi.org/10.5281/zenodo.7770454.

[104] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for better power
efficiency on multithreaded gpu,” in IEEE/ACM International Conference on Green
Computing and Communications & International Conference on Cyber, Physical and
Social Computing, IEEE, Hangzhou, China: IEEE, 2010, pp. 344–350.

[105] C. Tsitouras, “Runge–kutta pairs of order 5 (4) satisfying only the first column sim-
plifying assumption,” Computers & Mathematics with Applications, vol. 62, no. 2,
pp. 770–775, 2011.

[106] G. Steinebach, “Construction of rosenbrock–wanner method rodas5p and numerical
benchmarks within the julia differential equations package,” BIT Numerical Mathe-
matics, vol. 63, no. 2, p. 27, 2023. doi: 10.1007/s10543-023-00967-x.

[107] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, Automatic differen-
tiation of algorithms: from simulation to optimization. Springer Science & Business
Media, 2002.

[108] A. Tocino and J. Vigo-Aguiar, “Weak second order conditions for stochastic runge–
kutta methods,” SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 507–523,
2002.

[109] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of Atmospheric Sciences,
vol. 20, no. 2, pp. 130–141, 1963.

[110] D. W. Walker and J. J. Dongarra, “MPI: A standard message passing interface,”
Supercomputer, vol. 12, pp. 56–68, 1996.

[111] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V.
Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., “Open MPI: Goals, concept,
and design of a next generation MPI implementation,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface: 11th European PVM/MPI Users’
Group Meeting Budapest, Hungary, September 19-22, 2004. Proceedings 11, Springer,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 97–104.

[112] S. Byrne, L. C. Wilcox, and V. Churavy, “Mpi.jl: Julia bindings for the message pass-
ing interface,” in Proceedings of the JuliaCon Conferences, vol. 1, Online: JuliaCon,
2021, p. 68.

[113] M. S. Nobile, P. Cazzaniga, D. Besozzi, and G. Mauri, “Ginsoda: Massive parallel
integration of stiff ode systems on gpus,” The Journal of Supercomputing, vol. 75,
no. 12, pp. 7844–7856, 2019.

[114] T. Loman, “How bacteria tune mixed positive/negative feedback loops to generate
diverse gene expression dynamics,” Ph.D. dissertation, University of Cambridge, U.K.,
2022.

86

https://doi.org/10.5281/zenodo.7770454
https://doi.org/10.5281/zenodo.7770454
https://doi.org/10.5281/zenodo.7770454
https://doi.org/10.1007/s10543-023-00967-x

[115] P. Barham and M. Isard, “Machine learning systems are stuck in a rut,” in Proceedings
of the Workshop on Hot Topics in Operating Systems, ser. HotOS ’19, Bertinoro, Italy:
Association for Computing Machinery, 2019, pp. 177–183, isbn: 9781450367271. doi:
10.1145/3317550.3321441. url: https://doi.org/10.1145/3317550.3321441.

[116] Y. Ma, S. Gowda, R. Anantharaman, C. Laughman, V. Shah, and C. Rackauckas,
Modelingtoolkit: A composable graph transformation system for equation-based mod-
eling, 2021. arXiv: 2103.05244 [cs.MS].

[117] T. Loman, Y. Ma, V. Ilin, S. Gowda, N. Korsbo, N. Yewale, C. V. Rackauckas, and
S. A. Isaacson, “Catalyst: Fast biochemical modeling with julia,” bioRxiv, pp. 2022–
07, 2022.

[118] S. L. Grotch and M. C. MacCracken, “The use of general circulation models to predict
regional climatic change,” Journal of climate, vol. 4, no. 3, pp. 286–303, 1991.

[119] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S.
DeBolt, D. Ferguson, G. Seibel, and P. Kollman, “Amber, a package of computer pro-
grams for applying molecular mechanics, normal mode analysis, molecular dynamics
and free energy calculations to simulate the structural and energetic properties of
molecules,” Computer Physics Communications, vol. 91, no. 1-3, pp. 1–41, 1995.

[120] H. Rosenbrock, “Some general implicit processes for the numerical solution of differ-
ential equations,” The Computer Journal, vol. 5, no. 4, pp. 329–330, 1963.

[121] R. Alexander, “Diagonally implicit runge–kutta methods for stiff ode’s,” SIAM Jour-
nal on Numerical Analysis, vol. 14, no. 6, pp. 1006–1021, 1977.

[122] Utkarsh, V. K. Dixit, J. Samaroo, A. Pal, A. Edelman, and C. V. Rackauckas, “Effi-
cient GPU-accelerated global optimization for inverse problems,” in ICLR 2024 Work-
shop on AI4DifferentialEquations In Science, 2024. url: https://openreview.net/
forum?id=nD10o1ge97.

[123] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95
- International Conference on Neural Networks, vol. 4, 1995, 1942–1948 vol.4. doi:
10.1109/ICNN.1995.488968.

[124] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale opti-
mization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[125] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E.
He, A. Henry, M. I. Stefan, et al., “Biomodels database: An enhanced, curated and
annotated resource for published quantitative kinetic models,” BMC systems biology,
vol. 4, no. 1, pp. 1–14, 2010.

[126] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, et al., “The systems biology markup
language (sbml): A medium for representation and exchange of biochemical network
models,” Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

87

https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://arxiv.org/abs/2103.05244
https://openreview.net/forum?id=nD10o1ge97
https://openreview.net/forum?id=nD10o1ge97
https://doi.org/10.1109/ICNN.1995.488968

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Originality of the Work
	1.1.1 Publications

	1.2 Outline of the Thesis

	2 Theory
	2.1 Numerical Methods for Differential Equations
	2.1.1 Non-stiff Ordinary Differential Equations (ODEs)
	2.1.2 Stiff Ordinary Differential Equations

	2.2 Extrapolation Methods
	2.2.1 Explicit Methods
	2.2.2 Implicit Methods
	2.2.3 Stochastic Differential Equations (SDEs)

	3 Parallelism in Differential Equations
	3.1 Within-step Parallelism
	3.2 Parallel-in-time (PIT) Methods
	3.3 GPU Computing for Differential Equations
	3.3.1 Implicit Parallelism
	3.3.2 Batched Evaluation

	4 Parallelizing Explicit and Implicit Extrapolation Methods for Ordinary Differential Equations
	4.1 Introduction
	4.2 Extrapolation Methods
	4.2.1 Adaptive time-stepping and order of algorithms

	4.3 Parallelization of the Algorithm
	4.3.1 Choosing Subdividing Sequences for Static Load Balancing
	4.3.2 Parallelization of the LU Factorization

	4.4 Benchmark Results
	4.4.1 Establishing Implementation Efficiency
	4.4.2 State-Of-The-Art Performance for Small Stiff ODE Systems

	4.5 Discussion

	5 Automated Translation and Accelerated Solving of Differential Equations on Multiple GPU Platforms
	5.1 Introduction
	5.2 Related Work
	5.3 The GPU ecosystem in Julia and cross-platform GPGPU programming
	5.3.1 Supporting multiple GPU platforms
	5.3.2 Abstractions for kernel programming

	5.4 Massively Data-Parallel GPU Solving of Independent ODE Systems
	5.4.1 EnsembleGPUArray: Accelerating Ensemble ODEs with GPU Array Parallelism
	5.4.2 EnsembleGPUKernel: Accelerating Ensemble of ODEs with specialized kernel generation for entire ODE integration

	5.5 Benchmarks and Case studies
	5.5.1 Setup
	5.5.2 Establishing efficiency of solving ODE ensembles with GPU over CPU
	5.5.3 Solving billions of ODEs together: Scaling EnsembleGPUKernel with MPI
	5.5.4 Comparison with other GPU-accelerated ODE programs
	5.5.5 Vendor agnosticism with performance: Comparison with several GPU platforms
	5.5.6 Event handling and automatic differentiation
	5.5.7 Texture memory interpolation
	5.5.8 Accelerating stochastic processes with GPUs

	5.6 Discussion

	6 DiffEqGPU.jl: GPU-acceleration routines for DifferentialEquations.jl and broader SciML ecosystem
	6.1 Setting up DiffEqGPU.jl
	6.2 API
	6.3 Composability

	7 Conclusion
	7.1 Future works

	A Parallel Extrapolation Methods
	A.0.1 Models
	A.0.2 Benchmarks

	References

