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ABSTRACT

Sustainable operations has transformed in the past decade, as interest from consumers,
companies and regulators has increased. There has been a growing excitement and necessity
to leverage the large-scale data collected to improve the modelling and decision making
around sustainable operations. In this thesis, we introduce new methodologies to support
data-driven sustainable operations, and in specific deal with topics around electric vehicles
and the COVID-19 pandemic.

In Chapter 2, we consider the problem of electric vehicles (EVs) as distributed storage for
the electric grid. While electric vehicles can act as batteries supporting both the home and
the electric grid consumption, uncertainty around car usage must be accounted for before
they can be used in practice. We introduce a driver behavior-focused dynamic optimization
for the charging and discharging of electric vehicles. We characterize policies that are inter-
pretable to drivers to address distrust of automatized discharging of car batteries and prove
analytically the regimes under which such policies are optimal. Finally, we work closely with
an American EV manufacturer to show the dollar and carbon footprint that can be expected
to be saved from discharging based on driving behavior. We do this by clustering drivers
based on their driving behavior to derive probability distributions of when and how much
drivers use their car to feed into the dynamic optimization.

We further develop the challenge of data-driven decision making in sustainability through
Chapter 3. Rather than learning probability distributions as in Chapter 2, we introduce a de-
terministic approach in which a tree-ensemble model, specifically a random forest, forecasts
how much drivers use their EV. This gives rise to a challenge from the predict-then-optimize
literature around the tractability of optimizations in which an objective function is deter-
mined by a tree ensemble model. In this chapter we introduce an Upper Bounding Method
for Optimizing over Tree Ensemble Models, UMOTEM. We demonstrate the scalability of
UMOTEM, showing it grows linearly with regard to both the number of trees in the ensem-
ble as well as those trees’ depth. This is a strong improvement over comparable formulations
which grow exponentially. We also bound the optimality gap introduced through the ap-
proximation, characterizing it using features of the random forest such as leaf separation
and in-sample error. We computationally compare our approximation to similar methods,
demonstrating that the algorithm captures over 90% of optimality in 2% of the runtime
for publicly available datasets. Finally, we demonstrate the use of UMOTEM through two
case studies. First, we take the same case as Chapter 2, and show how UMOTEM can be

3



leveraged to optimize the charging and discharging of EVs. Second, we work closely with Or-
acle Retail to apply UMOTEM to promotion scheduling in order to determine an optimally
markdown strategy for a fashion retailer.

In the final chapter of this thesis, we address data-driven decision making in one of the
other major operational challenges to affect the globe, the COVID-19 pandemic. We develop
a SIR-based model that can account for multiple waves. This model is agnostic to what drives
the new waves (new variants, behavior changes, government policies, etc.) but takes a data-
driven approach to identify when infection rates change. We prove analytical guarantees on
how fast new waves can be detected. When modelling COVID-19, we show a new wave can
be expected to be flagged within half a week. We also show strong computational results on
COVID-19, demonstrating improvement over top COVID-19 forecasting models used by the
CDC.

Thesis supervisor: Georgia Perakis
Title: John C Head III Dean (Interim), MIT Sloan School of Management
Professor, Operations Management, Operations Research & Statistics
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Chapter 1

Introduction

1.1 Motivation

The United Nation identified 17 goals as part of its 2030 Agenda for Sustainable Develop-
ment [1]. These goals are intended to “recognize that ending poverty and other deprivations
must go hand-in-hand with strategies that improve health and education, reduce inequal-
ity, and spur economic growth – all while tackling climate change and working to preserve
our oceans and forests”. Among several other initiatives, these goals include good health
and well-being, affordable and clean energy, climate action and decent work and economic
growth. It is exactly this framework that we aim to make actionable through developing
data-driven decision making tools that enable sustainable operations. We focus on two spe-
cific areas within this thesis. First we will discuss affordable and clean energy by exploring
the potential of the vehicle-to-grid market. Second we will deal with the operational chal-
lenges around good health and well-being during the global crisis of the COVID-19 pandemic.
Drawing insights from close collaborations with industry partners such as an American EV
Manufacturer, Oracle and the Center for Disease Control, we show a tangible impact on
sustainable decision making in a variety of contexts.

Regarding clean energy and climate action, we are at a point of unprecedented investment
in green technology. In 2022, global investments in decarbonizing energy surpassed $1 trillion,
nearly doubling our investment in 2019 and for the first time reaching equivalence with our
investment in supporting fossil fuel supply [2]. In the United States, the Inflation Reduction
Act committed over $369 billion towards energy security and reducing climate impact [3].
This interest has only been matched from the industry perspective: “92 percent of executives
say that new businesses built in the next five years will address sustainability to some
extent—and 42 percent expect to put sustainability at the center of their new businesses’
value proposition” [4]. A significant role will be played by renewable energy generators
and the electric grid during these investments, as clean energy is the base upon which a
lot of green technology rests. However, with these unprecedented investments rise new and
exciting operations management challenges. Specifically, as we move towards more renewable
resources, the ability to produce electricity in time with demand diminishes. Instead, rises
a need for energy storage or the ability to produce electricity when renewables allow and
store it for when demand needs it later. Electric Vehicles (EVs) have been discussed as a
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way of providing a distributed energy storage resource to the electric grid, allowing for a
new market to emerge from vehicle discharging. Amidst this excitement about a potential
new market, there has been interest in understanding exactly how much capacity EVs have
to offer the grid.

In the realm of health and well-being, one of the greatest challenges in recent years has
been the COVID-19 pandemic. COVID-19 led to widespread illness, hospitalizations, and
deaths globally. It strained healthcare systems, causing shortages of medical supplies and
hospital resources. The pandemic exacerbated mental health issues due to social isolation,
anxiety about the virus, grief from loss of loved ones, and economic stressors such as job loss.
Beyond the phsyical and mental health impact, it had significant economic consequences as
well. Global supply chains faced disruptions due to factory closures, transportation restric-
tions, and increased demand for certain goods such as personal protective equipment (PPE)
and medical supplies. Small businesses, restaurants, and other establishments faced closures
or significant revenue losses due to lockdowns and reduced consumer spending. It became
important to be able to understand and predict new waves of COVID-19 so that individu-
als, businesses and policy-makers could respond accordingly. From helping epidemiologists
and public health officials understand the transmission dynamics of the virus, to providing
decision-makers with valuable insights into the potential impact of different policy inter-
ventions, to forecasting the trajectory of the pandemic and anticipating future waves of
infections, operational modelling played a significant role in the response to COVID-19.

In parallel with this interest in sustainable operations, both regarding clean energy and
healthcare, there has been growing excitement around using large data to drive decision
making. Organizations have become increasingly reliant on data from their operations and
customers to determine forecasts and decisions. When planning, businesses often engage
in a two step process, first forecasting what will happen in the future and then second,
using these forecasts to optimize decisions. However, the quality of the decisions eventually
made, and their real world outcomes, are wholly dependent on the caliber of the predictive
models built. Even if an optimization method is able to find the true optimal point when the
objective function is determined by a model, the usefulness of this solution will be negligible
if the model’s representation of the real world is poor. It is for this reason that there has
been a large push in research to understand how cutting edge methods can be used as
inputs when optimizing decisions. This thesis focuses on data-driven modeling to uncover
patterns and behaviors essential for informed decision-making. Beyond modeling, the thesis
explores the integration of these models into optimization frameworks to determine optimal
strategies. Analytical proofs validate the robustness and generalizability of the proposed
models, ensuring their applicability across diverse contexts. By bridging the gap between
technical methodologies and real-world business needs, this thesis offers an approach to
tackling the operational challenges of sustainability-focused businesses in today’s dynamic
marketplace.

1.2 Contributions

The main contribution of this thesis is developing methods for making data-driven decisions
in sustainable operations. This is achieved through a focus on methodological work which
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pairs new algorithms with analytical theory to show generalizability and close collaboration
with partners in industry to quantify impact.

In terms of methodology, this thesis introduces three novel algorithms for incorporating
the wealth of available data into optimal decision making via machine learning models.
All three models address settings where there is access to high-volume, granular data but
there is uncertainty in how to filter or transform the data to inform decisions in a tractable
way. In Chapter 2, we discuss a clustering approach to subset the drivers into relevant
groups and learn probability distributions on consumer behavior. This allows us to reduce
information on a specific driver to relevant clusters, and we validate the number of clusters
through testing. In Chapter 3, we deal with tree ensemble models, a category of machine
learning models, and introduce an approximation algorithm that can tractably solve objective
functions determined by these tree ensembles. In Chapter 4, we model how the granular data
on new COVID-19 cases and deaths can be used to identify when a new wave is starting.
In doing so we create an algorithmic solution to not just flagging new waves but also to
determining when COVID-19 infection data is too outdated to be considered when training
models for the current wave of the infection.

In addition to introducing these methods, we are able to guarantee properties on these
models that make them widely applicable to other settings. Specifically, in Chapter 2,
we guarantee that policies produced by the model will be first interpretable, specifically
following a two-threshold policy and second, tractable to solve, showing that the optimization
solution can be found in closed form. In Chapter 3, we bound the expected optimality gap
of the approximation algorithm based on features of the random forest to show under what
setting the algorithm will perform well. Specifically we demonstrate that as separation
between predicted values and in-sample accuracy increases, the expected optimality gap of
the approximation will decrease. Finally in Chapter 4, we prove how long it should take to
identify new waves of COVID-19, and for the parameters of the 2020 pandemic, show that
it should take less than a week.

Finally we work closely with industry collaborators to quantify the impact of the work.
This verifies that the practical relevance of the work. We do not just identify an application
where the model’s performance is strong but collaborate closely with industry partners to
make sure that the outputs of the algorithm give tangible insights and recommendations to
decision makers to improve their process. In Chapters 2 and 3, we work closely with an
American EV manufacturer to assess how much capacity EVs have to potentially power a
home or give back to the grid. This has been used to evaluate the potential of the vehicle
discharging market and determine investments. Through this we show that EV drivers can
save between $41-$95 in 12 days. In Chapter 3, we also discuss a case study with Oracle
Retail where the model is used to determine promotion markdowns for a fashion retailer.
We show an optimal discount strategy could improve store revenue by 12-13% in a 21 week
horizon. In Chapter 4, we compare the results of the multiwave model against top models
submitted to the CDC. We demonstrate that the multiwave model, with an out-of-sample
error of 7-8%, significantly improves upon the original epidemiology model, which had an
out-of-sample error of 27-31%. We also outperform top CDC forecasting models, especially
as a new wave begins.

The organization of the thesis is as follows. In Chapter 2, we develop an optimization and
guarantees for how to optimize the charging/discharging of EVs in the distributed electricity
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storage market of vehicle-to-grid. In Chapter 3, we propose an algorithm for tractably
optimizing when objectives are determined by tree ensemble models and discuss examples in
electric vehicles and retail promotions. In Chapter 4, we propose a multiwave epidemiology
model for flagging and modelling new epidemic waves. The chapters of this thesis are self-
contained and can be read in any order.
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Chapter 2

The Role of Driver Behavior and
Interpretability in the Vehicle-to-Grid
Market

2.1 Introduction

In the coming decades, two major changes are expected to affect the electric grid network.
First, we expect a growing investment in decarbonizing the grid. In 2022, global investments
in decarbonizing energy surpassed $1 trillion, nearly doubling the investment in 2019. For the
first time these investments were equivalent to the investment supporting fossil fuel supply.
This growth is only expected to accelerate, as demand for wind and solar increases and
governments enact regulation to ease the transition. The second change is the automotive
industry’s transition from Internal Combustion Engines to Electric Vehicles (EVs). The
demand for EVs has shot up exponentially, with year over year growth going from 4% between
2020 and 2021, to 14% between 2021 and 2022 to a forecasted 35% between 2022 and 2023 [5].
This demand has only been matched by automotive companies, as manufacturers promise to
transition their fleets to fully EV. Both Ford and Stellantis forecast that their American fleet
will be at least 40% EVs by 2030 [6], [7]. General Motors has promised that they will sell
only zero emission vehicles by 2035 [8]. While promising, both of these changes pose risks to
the electric grid network. Specifically, as the electric grid network becomes less dependent on
carbon-based sources, and instead replaces general generation with renewables, the ability
to match supply of electricity with demand decreases.

Instead what rises in importance is storage, that is, the ability to create energy when
renewables allow and store it for when demand requires it later. The supply and demand
mismatch is very costly for the electric grid, as carbon-based generators must compensate
the fluctuating demand with generation in order to match the new variability of the net
demand (demand without solar or wind production) curve. In addition, the cost of flexible
generation is reflected in the price of energy, making increased renewable portfolios expensive
for consumers [9]. Other concerns about greater reliance on renewables include oversupply
risk, where renewable generators which were planned to have lower generation unexpectedly
produce at higher capacity resulting in price volatility and reliability costs. Experts also
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expect challenges around frequency management if the grid is dependent on renewables as
the primary source of electricity generation. In frequency management, utility companies
manage the load on the grid to hold a consistent Hertz in the electricity through granular
control of the supply. As dependency on renewables increases, this kind of minute control
decreases leading to concerns about frequency reliability. However, if the grid supported
large-scale storage, these problems could be directly addressed as during the times the grid
is oversupplied, the energy could be directed towards storage and when it is under-supplied,
the energy can be pulled from storage. Furthermore, by pulling from storage the grid could
maintain its granular control of the grid’s frequency.

However, supporting storage at the scale the grid would need is a costly proposition.
Therefore, in this work we consider EVs as a form of distributed storage for the electric
grid, when EVs are stationary and plugged in the grid. Selling energy from an EV’s battery
to the grid, commonly called vehicle-to-grid (V2G), or giving energy from the vehicle to
the home to reduce demand referred to as vehicle-to-home (V2H) is a proposed market
that has yet to appear in the US at scale. Nevertheless, this is of significant interest to
both utility companies and regulators. For example, in Spring 2023, California considered
requiring all electric vehicles sold in the state to be required to have V2G capabilities built
in [10]. Despite this interest, there are still outstanding questions on how large the V2G
market is expected to be. For example, a significant concern is if enough EVs will be
attached to the grid during the times when the grid needs storage or if these EVs will
have enough energy in their battery to support the grid. Furthermore, drivers purchase
EVs to use them as personal vehicles first and foremost. Two significant questions in this
field are how can the car be discharged to support the grid given uncertainty around how the
driver will use their vehicle? And how can we generate charging and discharging policies
that are easy to communicate and trustworthy to drivers? In this work we address these
questions by proposing and analyzing a dynamic programming (DP) model which controls
the charging and discharging of electric vehicles. We take a driver-focused perspective,
optimizing when the car should charge/discharge to serve driver interests regarding their
profit, carbon footprint, driving ability and range anxiety. This is because, as a privately
owned vehicle, the driver’s needs must be satisfied for them to participate in the market.
We then aggregate independent individual-level optimizations to size the total potential of
the market. We learn using actual deidentified data from our industry collaborator (a large
EV manufacturer) probability distributions for driver usage, and use these as transition
probabilities in the DP. Through this work, we propose policies that are easy to communicate
to drivers and have structures that can be considered reliable. Through our partnership with
a large American EV manufacturer, we use their deidentified driver data to quantify what
these policies are for drivers and demonstrate dollar and carbon benefits to the drivers. More
generally, this close collaboration aims to help our industry collaborator to assess how much
capacity EVs have to potentially power a home or give back to the grid.

2.1.1 Contributions

In what follows, we highlight the contributions of this work in more detail:

• We introduce a driver-focused dynamic optimization model that incorpo-
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rates the EV charging and discharging behavior: We take a driver-centric view
in this optimization and formulate a DP that allows for both the charging and dis-
charging of EVs while accounting for uncertainty around driver behavior. We include
as part of our objective and constraints concerns around having enough energy in the
EV for emergency driving and departing with less than necessary charge. We explicitly
value how much the driver uses their car.

• We characterize policies that can be understandable to drivers: We address
driver distrust of discharging by guaranteeing that policies are easy to communicate.
We quantify this by defining policies which have a monotonic relationship between the
recommended quantity to charge/discharge and the charge level of the car. As a result,
drivers can see exactly at what charge level and time their car’s policy will switch from
charging to discharging.

• We analytically prove the monotonicity of the policies that the DP gives
rise to: We guarantee parameter regimes under which the DP policies are monotonic
and can be found in closed form. As part of this work, we show that the required
parameters directly reflect the optimization’s focus on supporting the drivers’ car us-
age. We validate our theorem’s assumptions through actual deidentified data from our
industry collaborator and confirm that these assumptions indeed hold in practice.

• We quantify the impact in terms of dollar and carbon benefit: We work closely
with a large American EV manufacturer to cluster their drivers into subgroups from
which driver behavior probability distributions can be learned to use in the DP. As
part of this we show that eight clusters of driver behavior are cohesive and provide
clear patterns for car usage. We then show what is the dollar and carbon impact
of discharging on each of these clusters, with on average $95 dollars and the carbon
equivalent of 91.1 gallons of gasoline saved in 12 days.

2.2 Literature Review

In this section, we provide a brief review of the related literature for V2G, energy storage
and load management for the grid, and EV charging. While existing literature has analyzed
the problem from the utility’s perspective of load management or storage, as well as from
a fleet owner of EVs, to the best of our knowledge this is the first work that has taken an
individual driver’s perspective on how much drivers can offer the grid outside of their daily
driving needs. This is also the first work to accomplish this using deidentified individual EV
driver data from a collaboration with a large American EV manufacturer.

Vehicle-to-Grid:
V2G is still an emerging market, with only a couple of pilots occurring around the United

States as of 2023. As such the literature around the capacity, levers, marketing and impact
of V2G is still emerging. However, forecasting the potential of the V2G market has already
begun both in literature and in practice. From a broad forecast of V2G capabilities, [11]
describe the stages of V2G capabilities as both the market share and technical sophistication
of V2G management increase. More concretely, [12] model the economics of V2G from the
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perspective of an aggregator of a fleet of EVs, where contract parameters, such as how long
the car will be attached to the grid, or the car’s usage when it is away is fully known,
demonstrating an estimated profit to drivers of $132 to $177 annually (translated to USD
from the euro). [13] also optimizes V2G charging and discharging, assuming drivers provide
knowledge of departure times when joining the charging system. [14] propose a heuristic to
the optimization, where they assume the car will be used from 8 AM to 5 PM, and as a result,
no charging is allowed during this window. Their model assumes that the car needs at the
start of the day, 8 AM, to be fully charged, resulting in an estimated profit to the driver of
$140 to $250 annually. [15] formulate a two-stage stochastic integer program to optimize EV
fleet planning to support carsharing and V2G with the remaining capacity. Similarly, [16]
considers the business case where the main purpose of the fleet is car rental and remaining
capacity is offered to the grid in V2G. By comparison, we tackle this V2G management
problem without assuming deterministic knowledge of driver usage or departure time. Unlike
cases where an EV fleet owner controls how much of its inventory is used for carsharing or
rental, we analyze the case where the aggregator does not control driver behavior and hence
usage.

EV Charging:
Closely related to the field of V2G is EV battery charging and management, as timing

charging is half of the V2G operations. [17] consider the chemical nature of lithium-ion
batteries, the current standard for EV batteries, and model optimal management for safety
and battery lifetime while also giving insights into the challenges of estimating a battery’s
state of charge. [18] models scheduling vehicle charging from the perspective of the elec-
tric charging service provider under stochastic EV arrivals to the system. [19] optimizes a
charging policy for system operator of an on-demand transportation fleet while taking into
account demand, fleet size and spatial considerations. [20] propose a smart charging model
in which utility companies announce charging cost/time pair options in order to help with
load management and show both cost and emissions savings that result from such business
models. [21] tackle how to charge an EV fleet to make EV carsharing profitable. [22] use
spatial pricing of electricity to manage the load EVs place on the electric grid. [23] model
how an aggregator can negotiate on behalf of individual drivers for cheaper charging regimes.

Stationary Storage:
The optimization regime for charging and discharging under V2G we propose in this

chapter, is similar to the stationary storage (SS) model, in which stationary batteries are
used either by individual consumers or larger utility firms to support electric needs. Unlike
V2G in which battery storage is an ancillary benefit to the vehicle, which is primarily a
means for transportation, SS units are purchased for the purpose of storing energy. [24]
consider off-grid use cases, namely found when consumers are remote, and understand ap-
propriate investment in renewables and storage, with back up carbon-based generation. [25]
create a storage control policy and analyze how utility companies should invest in storage
capabilities alongside renewable energy (wind and solar) and flexible generators (natural
gas). [26] propose a model for storage owners to bid in the day-ahead energy markets while
maintaining capacity for the intraday market. [27] propose a dynamic programming model
for coordinating energy storage when there is uncertainty about renewable supple, energy
prices and energy demand. The main challenge we have to account for compared to these
works is uncertainty about when the car will be attached and how much energy to hold in
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reserve for the vehicles normal driving. SS units naturally are available all the time, while
EVs as storage have significantly more uncertainty.

As stated at the beginning of this section, we bring actual deidentified driver data from
an EV manufacturer to be able to model individual EV driver behavior. In doing so we can
take a driver centric approach to the challenge of V2G when EVs are privately owned (as
compared to the case when EVs are controlled by a single fleet owner). As a result we are
able to propose a model formulation and optimal policies that can be easily communicated
to drivers and directly incorporporate their driving patterns to serve their car usage first
and foremost and then within remaining capacity, serve the grid.

2.3 Model Formulation

Individual drivers cannot just offer energy to the grid through V2G just when it is conve-
nient for them. There needs to be some central coordinator (decision maker) for when cars
discharge helping control the market and negotiating with utility companies for the prices
the cars discharge at. This role can be played by the utility companies themselves, EV
manufacturers or another market operator, who is offering vehicle-to-grid profit opportuni-
ties to the drivers and controls if and when an EV discharges energy. As a result, in this
section, we will introduce a dynamic programming formulation from the point of view of the
central decision maker which will incorporate the charging and discharging driver behavior
of an EV’s battery. Our formulation takes into account two stakeholders, the driver and the
central decision maker, making decisions during T time periods. The driver owns the EV
and wishes to first use their EV as a vehicle, but within their remaining capacity, use their
EV to earn or save money by V2X (here V2X refers to the combined market of V2G and
V2H). The driver will not change their driving behavior to earn or save more money and
does not want any V2X decisions to significantly impact their driving behavior (that is, driv-
ing needs). The central decision maker, such as the car manufacturer or a utility company,
acts on the driver’s behalf by having aligned incentives (namely the central decision maker
also aims for the EV to be used first as vehicle and then under remaining capacity allow the
driver to earn or save money). They control the charging and discharging of the vehicle when
the vehicle is attached to the grid. Nevertheless, it is important to note that the central
decision maker does not have information on exactly what driving decisions the driver will
make. As a result, we do not consider a bilevel optimization formulation because the central
decision maker and the driver’s incentives are aligned. At each time period, t = 1, . . . , T ,
the following sequence of events occurs:

• If the car is attached to the grid:

– At the start of the time period, the central decision maker decides whether to
charge or discharge the car’s battery during the time period.

– At the end of the time period, the driver chooses whether to remain at the grid
or depart from the grid.

• If the car is away from the grid:
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– At the start of the time period, the driver decides how much to discharge their
car during that time period.

– At the end of the time period, the driver chooses whether to remain away from
the grid or return to it.

The central decision maker, while acting on behalf of and for the benefit of the driver, does
not have direct information on the driver’s choices during these T time periods. This means
that when the central decision maker develops an optimal charging or discharging policy,
they do not know with certainty if the driver will leave at the end of the time period, or
how much the driver will use the car when away. However, they do have access to data with
which to estimate the probability of these decisions occurring.

The main input to this optimization model is data on when drivers depart and reattach
to the grid and how much of their battery they use when they are away from the grid. This
is then used to calculate transition probabilities for what drivers do at the end of each time
period and how much they discharge when away from the grid. We take as input pricing data
on how much it costs to charge the EV, the price energy can be sold back to the grid and
the price the home uses to pay for electricity. We also bring in data on the CO2 produced
to generate electricity at each time step. The main parameters of the optimization are Cmin,
the minimum charge level the car must be at before we can discharge, λR a penalty on how
much the driver cares about being carbon neutral, λmin,t the penalty for being below Cmin

when attached to the grid, λmax,t the penalty for being below fully charged when attached
to the grid, λtime,t the temporal discount drivers have of future time steps, and β a linear
utility on driving. Finally, the output of our proposed optimization model is a policy for
the central decision maker for how much to charge or discharge to home or the grid for
each time step and charge level. The policy implicitly affects driver behavior, as choosing to
charge/discharge the vehicle will affect the charge level of the car, in turn influencing how
much the driver uses the vehicle.

The states of our proposed dynamic programming model are the charge level, c, the time
t, and whether or not the car is attached to the grid, j. We assume discrete charge level
buckets for tractability. For simplicity of notation, we assume c is integer defined between
0 and the maximum battery value Cmax. Nevertheless, this can be generalized to different
sized buckets. In this setting j is a binary variable, in which if j = 0 then the car is not
attached to the grid and if j = 1 the car is attached to the grid. Thus the optimization
formulation needs to use estimates of pc,t,j, namely, of the probability the driver attaches to
the grid at charge c and time t, given that it started the time period t either attached to the
grid j = 1 or away from the grid j = 0. The optimization also needs to use estimates qγ,c,t,
which represent the probability that the driver uses γ of its battery given the car starts away
from the grid at time t and at charge level c. Both pc,t,j and qγ,c,t are estimated empirically
from data.

Given these estimations that are inputs to the formulation, in what follows we will de-
scribe the dynamic optimization formulation in detail. The main decision variable is x, that
represents the amount to either charge or discharge in terms of the car battery. We define
xcharge as the amount of energy purchased to charge the battery, xV2H, as the amount of
energy given to run the home and xV2G as the amount of energy sold back to the grid. For
ease of notation, we will define xcharge as negative, as the driver needs to pay for the energy.
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Conversely, xV2H and xV2G will be positive variables, as the driver earns money with each of
these quantities.

We define the price for making these decisions as w. wcharge
t is the price paid at time t to

charge one unit of x. Similarly, wV2H
t is the amount saved from running the home off of the

car’s battery at time t while wV2G
t is the amount earned from selling a unit of x to the grid

at time t. Therefore, the amount of money spent, saved or earned at time t can be described
as xchargewcharge

t + xV2HwV2H
t + xV2GwV2G

t . It is worth noting, that these prices implicitly
incorporate the price of charging/discharging as well as the cost or fee of the action.

We also consider the possible carbon benefit of deciding to charge or discharge at time
t. We define rt as the amount of carbon used to produce a unit of energy x at time t and
the parameter λR as the drivers sensitivity to being carbon neutral. A larger λR indicates
a more sensitive driver, meaning they would rather charge when carbon production is low
and discharge when carbon production is high. We account for the carbon benefit as part of
the price of charging or discharging so that the monetary and carbon benefit of the central

decision maker’s choices can be described as−xcharge
(
wcharge

t + λRrt

)
+xV2H

(
wV2H

t + λRrt
)
+

xV2G
(
wV2G

t + λRrt
)
. For ease of notation we abbreviate the equation by defining the set of

option categories A := {charge, V2G, V2H} and writing the profit and carbon benefit as:∑
a∈A

xa (wa
t + λRrt) . (2.1)

The optimization’s decision must account for factors other than just pure monetary and
carbon benefit. We define Cmax as the maximum value for the battery and Cmin as the
minimum necessary charge needed in the battery before the optimization can discharge the
battery. We define the parameter λmax,t as the driver’s aversion to being less than fully
charged at time t and λmin,t as the driver’s aversion to being less than minimum charged
at time t. The idea behind λmax,t is that some drivers will have a strong preference to
being higher charged, while with λmin,t, some drivers there is a strong preference to just
being reasonably charged. We assume a linear utility to being at higher charge levels and
mathematically represent this by penalizing being at charge level c at time t as:

−λmax,t (Cmax − c)− λmin,t (Cmin − c)+ . (2.2)

Finally the optimization must take into account the value of possible next states. Let
V (sc,t,j) represent the value of being at charge level c, time t, and attached to the grid or
not, j. Let E [Vj (sc,t+1)] represent the expected value of the next states, given that the car
is ending time period t with charge c and attached to the grid j, but there is uncertainty if at
the next step they will remain either attached to the grid or away. At time t and charge level
c, the optimization decides how much to charge or discharge the car,

∑
a∈A x

a. This means
that at the end of the time period, when the driver is deciding whether to depart or remain
attached, they are doing so at charge level c −

∑
a∈A x

a and time t. The expected value of
the next possible states, E

[
V1
(
sc−∑a∈A xa,t+1

)]
, is the probability the car remains attached

to the grid at this new charge level (pc−∑a∈A xa,t,1) times the value of having remained plus
the probability the car departs (1 − pc−

∑
a∈A xa,t,1) times the value starting the next time

state away from the grid, or mathematically:
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E
[
V1
(
sc−

∑
a∈A xa,t+1

)]
= pc−

∑
a∈A xa,t,1V

(
sc−

∑
a∈A xa,t+1,1

)
+
(
1− pc−∑a∈A xa,t,1

)
V
(
sc−

∑
a∈A xa,t+1,0

)
.(2.3)

Temporal discounting also must be accounted for. Drivers are more concerned with the
current time step, both in terms of dollar profit and whether the car is charged enough, than
potential future earnings. So we add a discount to the future time step by multiplying the
expectation by 1

λtime,t
.

Therefore, we can define the optimization’s objective as the sum of these different pieces.
The value of making the optimal decision at time t and charge c when attached to the grid,
is by definition V (sc,t,1) which gives rise to:
V (sc,t,1) = maxx

∑
a∈A x

a (wa
t + λRrt)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+ + 1

λtime,t
E
[
V1
(
sc−∑a∈A xa,t+1

)]
.(2.4)

Naturally, the optimization is constrained in several directions. First, offered capacity to
the home or the grid must be less than the amount of energy in the car’s battery:

xV2H + xV2G ≤ c.

The car cannot both charge and discharge during the same time step:

xcharge ≤ Cmax (1− r) ,
xV2H + xV2G ≤ Cmaxr,

r ∈ {0, 1}.

If the decision is to discharge, then the charge level at the next stage cannot be below
Cmin. This prevents the optimization from driving the car battery so low that the driver
cannot use the car in the case of an emergency:

c−
∑
a∈A

xa ≥ Cminr

The car’s battery in the next stage cannot exceed maximum charge:

c−
∑
a∈A

xa ≤ Cmax.

Any quantity offered the grid must be positive, and conversely we will define the quantity
of energy for charging as negative:

xV2H, xV2G ≥ 0,

xcharge ≤ 0.

The car’s charging or discharging cannot exceed the maximum rate for the port. We
define the maximum charging rate as Xcharge

max and the maximum discharging rate as XV2X
max

xcharge ≥ −Xcharge
max ,

xV2H + xV2G ≤ XV2X
max .

We now present these constraints together with the objective function to define our
proposed dynamic optimization formulation in full. In doing so, we combine a few constraints
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to simplify the presentation of the formulation:

max
x

∑
a∈A

xa (wa
t + λRrt)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+

+
1

λtime,t

E
[
V1
(
sc−

∑
a∈A xa,t+1

)]
s.t. xV2H + xV2G ≤ c,

xcharge ≥ −Xcharge
max (1− r) ,

xV2H + xV2G ≤ XV2X
max r,

Cminr ≤ c−
∑
a∈A

xa

c−
∑
a∈A

xa ≤ Cmax,

xV2H, xV2G ≥ 0,

xcharge ≤ 0,

xV2H, xV2G, xcharge ∈ Z,
r ∈ {0, 1}.

(2.5)

For the sake of guaranteeing structural properties of the solution, we relax the constraint
Cminr ≤ c−

∑
a∈A x

a into the objective with constant λc:

V (sc,t,1) = max
x

∑
a∈A

xa (wa
t + λRrt)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+

+
1

λtime,t

E
[
V1
(
sc−

∑
a∈A xa,t+1

)]
+ λc

(
c−

∑
a∈A

xa

)
s.t. xV2H + xV2G ≤ c,

xcharge ≥ −Xcharge
max (1− r) ,

xV2H + xV2G ≤ XV2X
max r,

c−
∑
a∈A

xa ≤ Cmax,

xV2H, xV2G ≥ 0,

xcharge ≤ 0,

xV2H, xV2G, xcharge ∈ Z,
r ∈ {0, 1}.

(2.6)

In Section 2.4 we will show how to select λc so that Cminr ≤ c −
∑

a∈A x
a is guaranteed to

hold.
Formulation (2.6) defines the Bellman equation for if the car starts the time step attached

to the grid. However, when the car starts the time step away from the grid, we consider a
different Bellman equation. When the car is away from the grid, there is no decision that
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the optimization makes with regard to charging or discharging. Instead the driver uses an
unknown amount, γ, of its battery with probability qγ,c,t. Let the maximum the car’s battery
can discharge be γmax. The driver will end the time step with charge c− γ, at which point
they have some probability of returning to the grid (pc−γ,t,0) or remaining away. We once
again account for temporal discounting using λtime. The value in terms of next states of
having discharged gamma is:

1

λtime,t

E [V0 (sc−γ,t+1)] =
1

λtime,t

(pc−γ,t,0V (sc−γ,t+1,1) + (1− pc−γ,t,0)V (sc−γ,t+1,0)) .

It is also important to account for the value of having used γ of the car’s battery. Oth-
erwise the optimization would endeavor to minimize driving with the car in a way that does
not serve the driver. We incorporate the linear utility a driver receives from driving as: βtγ.
This results in the following value function for being away from the grid at charge level c
and time t:

V (sc,t,0) =

γmax∑
γ=0

qγ,c,t

(
1

λtime,t

E [V0 (sc−γ,t+1)] + βtγ

)
(2.7)

For the rest of the chapter we will assume a linear utility for driving, but we note that
any increasing function bt(γ) could be used.

We define the value of the final time step, T , as 0 for all charge levels of the car. These
values, along with the value functions (2.6) and (2.7) define the DP. In the next section we
analyze the properties of the DP to define regimes under which the solution to the DP is
tractable and implementable.

2.4 Structural Properties of the DP Policies

We start this section by discussing the selection of the optimization’s parameters λmax,t and
βt. The selection of these parameters can guarantee that the expected value of the states,
E [Vj (sc,t)], is non-decreasing and concave in the charge level c across all time steps t. We
then prove that if the value function is non-decreasing and concave, then all optimal solutions
to the optimization will be monotonic in terms of the charge level, a necessary property for
the optimization to be implemented in service of drivers. Finally, we will leverage the
concave nature of the objective function along with the monotonic property of the solution
to provide a closed form solution to the optimization formulation. This will allow us to
establish interesting insights.

The need for E [Vj (sc,t)] to be non-decreasing and concave is intuitive. A non-decreasing
function indicates that it should always be valuable to the driver to charge up to a higher
charge state, and this should be weighted against the price of charging to determine if
charging is the optimal decision. Furthermore, there is diminishing returns on the higher
charge levels. Namely, it should be more important to charge at a low state (such as charging
from 40% to 55%) than it is to charge at the higher levels (such as charging from 85% to
100%). This indicates that the value of the next states should also be concave.

There are several reasons why naive parameter selection might result in these properties
being violated by the value function. For example, if βt is not selected correctly, then a
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car left unused at 40% for several hours because its charge level is too low to be used is
considered more valuable to the optimization than a car that was charged up to 55%, used
by its driver and then returned back to the grid at 10%. In this chapter, we control λmax,t,
the penalty for being less than fully charged when attached to the grid, and βt, the value of
having used the car’s battery when driving, in order to appropriately weight the importance
of driving behavior.

In order to guarantee monotonic policies and concave expected value functions, we need
some structure on the driver behavior decisions of EVs. We start by defining concave stochas-
tic dominant distributions, a necessary property for driver usage. The property of concave
stochastic dominance holds across a set of random variables Γc if first order stochastic domi-
nance [28] holds for the distributions for every c and c+1 and if the cumulative distributions
are concave in c (i.e., P (Γc+1,t ≤ γ) − P (Γc,t ≤ γ) ≤ P (Γc,t ≤ γ) − P (Γc−1,t ≤ γ) ∀γ).
Concave stochastic dominant distributions have some “ideal” distribution that the set ap-
proaches as the index c increases. In the case of the distribution of driving usage, this can
be thought of as if there is a driving behavior the driver wishes to achieve with a trip. If
they have the charge level to achieve it, they will and if not they will get as close as possible.

We now introduce three assumptions on the distributions learned on driver behavior:

1. The probability of being at the grid is lower at higher charge (pc,t,j ≥ pc+1,t,j).

2. The probability of being at the grid has a second derivative that is smaller than the
value function in terms of magnitude:

−2pc,t,j + pc+1,t,j + pc−1,t,j

pc,t,j
≤2V (sc,t,1)− V (sc+1,t,1)− V (sc−1,t,1)

V (sc,t,1)

and

2pc,t,j − pc+1,t,j − pc−1,t,j

1− pc,t,j
≤2V (sc,t+1,0)− V (sc+1,t+1,0)− V (sc−1,t+1,0)

V (sc,t+1,0)

− 2 (V (sc+1,t+1,0)− V (sc,t+1,0)) (pc,t,j − pc+1,t,j)

(1− pc,t,j)V (sc,t+1,0)

− 2 (V (sc,t+1,0)− V (sc−1,t+1,0)) (pc−1,t,j − pc,t,j)
(1− pc,t,j)V (sc,t+1,0)

.

3. A driver’s car usage, qγ,c,t is concave stochastic dominant across charge level c

These assumptions on the behavior of drivers are reasonable (as we discuss below) and
hold for the data from our industry collaborator. The first assumption says that as the
charge in the car increases, the probability of departure also increases. This assumption
makes sense, as the charge in the car affects how much usage a driver can get out of it, so
the driver is likely to wait for a higher charge before departing.

The second assumption says that the probabilities have a small second derivative over the
charge level. In practice we use linear regression to learn the probability of being attached
or away from the grid. As a result, the probabilities have a second derivative of 0, ensuring
that Assumption 2 holds in the model.

We illustrate how Assumptions 1 and 2 hold in our industry collaborator’s data using
Figure 2.3 in Section 2.5.
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The third and final assumption is that the usage when the cars are away is concavely
stochastic dominant. When calculating this distribution in practice, there is a challenge of
data sparsity when calculating how drivers’ usage varies by charge level. For example, while
cars attached to the grid at 4AM appear at a variety of charge levels in the data, there are
already so few cars in use at 4AM that further splitting by charge level results in significant
missing values. Therefore, when we learn these distributions for EV usage in Section 2.5, we
learn distributions without separating data by charge level. This means that qγ,c,t learned
in Section 2.5 is the same for all c, for a given driver. While less than ideal in terms of data
quality, it does guarantee that Assumption 3 will hold.

Using these assumptions, Theorem 2.4 establishes regimes of λmax,t and βt, that allow us
to characterize the optimal solution and establish structural properties. Finally, we propose
an algorithm to solve the optimization formulation.

Let V (sc,t,j) be the expected value of starting time step t with charge c where the driver
is either attached to the grid, j = 1, or away from the grid, j = 0. We define pc,t,j as the
probability the driver attaches to the grid at charge c and time t, given that they started
the time period t either attached to the grid j = 1 or away from the grid j = 0. We further
define qγ,c,t as the probability that the driver uses γ of its battery given the car starts away
from the grid at time t and charge c. If Assumptions 1-3 hold, then:

1. For a given time t, we can guarantee that the expected value for all states,
E [Vj (sc,t)] = pc,t,jV (sc,t+1,1) + (1− pc,t,j)V (sc,t+1,0) is non-decreasing and concave in
c, for the following choice of parameters:

λmax,t ≥
pc,t,1 − pc+1,t,1

pc+1,t,1

V ∗
c,t, ∀c ∈ [0, . . . , Cmax]

where

V ∗
c,t =X

V2X
max

(
max

(
wV2G

t , wV2H
t

)
+ λRrt − λc

)
+

1

λtime,t

E
[
V1

(
smin(c+Xcharge

max ,100),t+1

)]
.

and

βt ≥
1

λtime,t

(E [V0 (sc+1,t+1)]− E [V0 (sc,t+1)]) ∀c ∈ [0, . . . , Cmax − 1]

2. The DP can be solved in closed form and the optimal solution of the DP is monotonic
in terms of the charge level c.

The values for both λmax,t and βt help intuitively translate the driver utility to a monetary
value. In the case of λmax,t, there are two components to its bound. First there is pc,t,1−pc+1,t,1

pc,t,1
,

this represents the driver’s sensitivity to the charge level. If the probability of the driver
leaving varies greatly by charge level for a particular time, then this term will be high.
However, if the driver is insensitive to the charge level, such as possibly when they are leaving
for work, then this term will be small. The sensitivity to the charge level is then multiplied

by V ∗
c,t = XV2X

max

(
max

(
wV2G

t , wV2H
t

)
+ λRrt − λc

)
+ 1

λtime,t
E
[
V1

(
smin(c+Xcharge

max ,100),t+1

)]
, which

upper bounds the maximum possible dollar value to be earned at time t, thus normalizing the
sensitivity to the dollar value. Therefore, λmax,t allows us to translate the driver’s sensitivity
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to being at higher charge to a dollar value that can be compared to the rest of the objective
function’s terms.

βt similarly translates driver behavior to a value that the optimization formulation can
use. βt ≥ 1

λtime,t
(E [V0 (sc+1,t+1)]− E [V0 (sc,t+1)]) , ∀c ∈ [0, . . . , Cmax − 1], which means that

the linear utility the driver gets from using their car is greater than the value they lose in
the next steps from discharging the battery. This has to be the case or else the driver would
never use the car, and the optimization in turn would try to minimize the amount of driving
the driver engages in. Appropriately setting βt means that the optimization values the car
being used as a car more highly than it being used as a battery.

Before we present the proof of Theorem 2.4 in detail, we first present some intuition
behind the key ideas of the proof. To prove the first part of Theorem 1, we use Step 1 in
order to break E [Vj (sc,t)] into its two components, pc,t,jV (sc,t+1,1) and (1− pc,t,j)V (sc,t+1,0),
for which we show that both of these terms are non-decreasing and concave separately. In
doing so, we guarantee that their sum is also non-decreasing and concave. As part of Step 1
we also present the optimal solution in closed form. Then in Step 2 of the proof we use this
solution and show that it is monotonic in terms of charge level c. Next we present the proof
in detail.

Proof of Theorem 2.4: We assume that V (sc,t+1,j) is non-negative for all c. This holds
without loss of generality as we can add minc V (sc,t+1,j) to all values of the function. We
start by proving that the E [Vj (sc,t)] is non-decreasing and concave. This is proved in Step
2.4.

Under the assumptions of Theorem 2.4, we construct λmax,t and βt so that E [Vj (sc,t)] is
non-decreasing and concave. The proof of this step follows from the fact that E [Vj (sc,t)]
can be written as pc,t,jV (sc,t+1,1) + (1− pc,t,j)V (sc,t+1,0). Namely, it equals the probability
the car remains attached to the grid times the value of remaining attached to the grid in
the next time step plus the probability of being away from the grid times the value of being
away from the grid at the next step. In the final stage T , we have that V (sc,T,j) = 0. This
makes E [Vj (sc,T )] = 0, regardless of the transition probabilities. Thus in the final stage,
E [Vj (sc,t)] is non-decreasing and concave in c. The proof will follow by induction. We will
start by assuming that E [Vj (sc,t+2)] is non-decreasing and concave and prove this is also
true for time step t+ 1. We establish the result of Step 1 in four parts as follows:

• Step 1.1: pc,t,jV (sc,t+1,1) is non-decreasing

• Step 1.2: (1− pc,t,j)V (sc,t+1,0) is non-decreasing

• Step 1.3: pc,t,jV (sc,t+1,1) is concave

• Step 1.4: (1− pc,t,j)V (sc,t+1,0) concave

Step 1.1 pc,t,jV (sc,t+1,1) is non-decreasing
We start by establishing that V (sc,t+1,1) is non-decreasing in c. V (sc,t+1,1) by defini-
tion is the objective value in Formulation (2.6). The charge level c plays a role in a few
places in the formulation. The first place is in the objective function, −λmax,t (Cmax − c) −
λmin,t (Cmin − c)++λc

(
c−

∑
a∈A x

a
)
. As these are penalties for being at lower charge, these

naturally will result in higher objective payoffs for higher values of c. We also observe that
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even if λmax,t = λmin,t = λc = 0, V (sc,t+1,1) would still be non-decreasing in c. There are two
constraints which have c: xV2H + xV2G ≤ cs and c−

∑
a∈A x

a ≤ Cmax. In x
V2H + xV2G ≤ cs,

the feasible region is larger for the problem with charge level c + 1 relative to the problem
with charge level c. The final use of c is in constraint c−

∑
a∈A x

a ≤ Cmax, which represents
the battery’s maximum capacity. Any solution for a problem at charge level c in which
this constraint is active, means that the optimization is paying to charge up to maximum
capacity. In such a case, charge level c + 1 can achieve the same solution, but will pay less
to reach maximum capacity because it will be starting at a higher charge. Therefore, this
implies that V (sc+1,t+1,1) is an upper bound on V (sc,t+1,1), even if λmax,t = λmin,t = λ = 0.

For pc,t,jV (sc,t+1,1) to be non-decreasing in c means that

pc+1,t,jV (sc+1,t+1,1)− pc,t,jV (sc,t+1,1) ≥ 0

. Let x∗c,t,1 be the optimal solution to Formulation (2.6) that achieves value V (sc,t,1).

pc+1,t,jV (sc+1,t+1,1)− pc,t,jV (sc,t+1,1)

= pc+1,t,j

(∑
a∈A

x∗ac+1,t,1 (w
a
t + λRrt)− λmax,t (Cmax − c− 1)− λmin,t (Cmin − c− 1)

+
1

λtime,t

E
[
V1

(
sc+1−

∑
a∈A x∗a

c+1,t,1,t+1

)]
+ λc

(
c+ 1−

∑
a∈A

x∗ac+1,t,1

))

− pc,t,j

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt)− λmax,t (Cmax − c)− λmin,t (Cmin − c)

+
1

λtime,t

E
[
V1

(
sc−∑a∈A x∗a

c,t+1,1,t+1

)]
+ λc

(
c−

∑
a∈A

x∗ac,t,1

))

≥ pc+1,t,j

(∑
a∈A

x∗ac+1,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c− 1)− λmin,t (Cmin − c− 1)

+
1

λtime,t

E
[
V1

(
sc+1−

∑
a∈A x∗a

c+1,t,1,t+1

)]
+ λc (c+ 1)

)
− pc,t,j

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)− λmin,t (Cmin − c)

+
1

λtime,t

E
[
V1

(
sc−∑a∈A x∗a

c,t+1,1,t+1

)]
+ λc (c)

)
≥ pc+1,t,j

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c− 1)− λmin,t (Cmin − c− 1)+

+
1

λtime,t

E
[
V1

(
sc−

∑
a∈A x∗a

c,t,1,t+1

)]
+ λc (c+ 1)

)
− pc,t,j

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+
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+
1

λtime,t

E
[
V1

(
sc−

∑
a∈A x∗a

c,t+1,1,t+1

)]
+ λc (c)

)
= (pc+1,t,j − pc,t,j)

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+

+λc (c) +
1

λtime,t

E
[
V1

(
sc−∑a∈A x∗a

c,t+1,1,t+1

)])
+ pc+1,t,j (λmax,t + λmin,t + λc)

≥ (pc+1,t,j − pc,t,j)

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)− λmin,t (Cmin − c)+

+λc (c) +
1

λtime,t

E
[
V1

(
sc−

∑
a∈A x∗a

c,t+1,1,t+1

)])
+ pc+1,t,j

(
pc,t,1 − pc+1,t,1

pc+1,t,1

V ∗
c,t

)
= (pc,t,j − pc+1,t,j)

(
V ∗
c,t −

(∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)

−λmin,t (Cmin − c)+ + λc (c) +
1

λtime,t

E
[
V1

(
sc−

∑
a∈A x∗a

c,t+1,1,t+1

)]))

= (pc,t,j − pc+1,t,j)

(
XV2X

max

(
max

(
wV2G

t , wV2H
t

)
+ λRrt − λc

)
+

1

λtime,t

E
[
V1

(
smin(c+Xcharge

max ,100),t+1

)](∑
a∈A

x∗ac,t,1 (w
a
t + λRrt − λc)− λmax,t (Cmax − c)

−λmin,t (Cmin − c)+ +
1

λtime,t

E
[
V1

(
sc−∑a∈A x∗a

c,t+1,1,t+1

)]))
≥ 0

The first equality follows from the definition of V (sc,t+1,1). The first inequality comes
from the observation that because the V (sc+1,t+1,1) is an upper bound for V (sc,t+1,1) (re-
gardless of the λ-penalties), then∑

a∈A

x∗ac+1,t,1 (w
a
t + λRrt) +

1

λtime,t

E
[
V1

(
sc+1−

∑
a∈A x∗a

c+1,t,1,t+1

)]
+ λc

(
c+ 1−

∑
a∈A

x∗ac+1,t,1

)

≥
∑
a∈A

x∗ac,t,1 (w
a
t + λRrt) +

1

λtime,t

E
[
V1

(
sc−

∑
a∈A x∗a

c,t,1,t+1

)]
+ λc

(
c+ 1−

∑
a∈A

x∗ac,t,1

)
.

The second inequality comes from Theorem 2.4 as λmax,t ≥ pc,t,1−pc+1,t,1

pc,t,1
V ∗
c,t and the def-

inition of λmin,t ≥ 0 and λc ≥ 0. The final inequality comes from the observation that,
XV2X

max

(
max

(
wV2G

t , wV2H
t

)
+ λRrt − λc

)
is an upper bound on

∑
a∈A x

∗a
c,t,1 (w

a
t + λRrt − λc),

E
[
V1

(
smin(c+Xcharge

max ,100),t+1

)]
is an upper bound on E

[
V1

(
sc−

∑
a∈A x∗a

c,t+1,1,t+1

)]
and that

pc,t,j is decreasing in c.
Step 1.2 (1− pc,t,j)V (sc,t+1,0) is non-decreasing
We observe that both (1− pc,t,j) and V (sc,t+1,0) are non-negative and by Assumption 1,
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(1− pc,t,j) is non-decreasing. Therefore, all that is needed for (1− pc,t,j)V (sc,t+1,0) to be
non-decreasing, is that V (sc,t+1,0) is non-decreasing.

Let us define function gt(γ) =
1

λtime,t
E [V0 (sc−γ,t+1)] + βtγ. Then we can write the value

function as, V (sc,t+1,0) =
∑γmax

γ=0 qγ,c,t+1

(
1

λtime,t
E [V0 (c−γ,t+2)] + βt+1γ

)
= Eγ [gt+1(Γc,t+1)].

For clarification we note that Eγ [gt+1(Γc,t+1)] is an expectation over the discharge usage
while the car is away, while E [V0 (sc−γ,t+2)] is the expectation over whether the car will be
at the grid or away at the next time step.

From Theorem 2.4,

βt+1 ≥
1

λtime,t+1

(E [V0 (sc+1,t+2)]− E [V0 (sc,t+2)]) , ∀c ∈ [0, . . . , Cmax − 1]

, which makes gt+1(γ) an increasing function. Thus V (sc,t+1,0) is the expectation of an
increasing function on a random variable, Γc,t+1, the car’s discharge during the time period.
From [28], we have if random variable Xc+1 first order stochastic dominates Xc, then for
any increasing function f(x), E [f(Xc+1)] ≥ E [f(Xc)]. From Assumption 3, we have that
Γc+1,t+1 dominates Γc,t+1, therefore we have that Eγ [gt+1(Γc+1,t+1)] ≥ Eγ [gt+1(Γc,t+1)], which
by definition means that V (sc+1,t+1,0) ≥ V (sc,t+1,0).
Step 1.3 pc,t,jV (sc,t+1,1) is concave
We start by proving that V (sc,t+1,1) is a concave function. We do this by characterizing the
optimal solution to Formulation (2.6), and then by showing the objective function of these
solutions is concave in state c. We start by defining the optimal solution, then proving its
optimality and then demonstrating concavity of the objective function.

Optimal Solution: We observe that we will never engage in both V2G and V2H during
the same time period. Let us assume first that wV2G

t+1 ≥ wV2H
t+1 . A solution that has both

xV2G > 0 and xV2H > 0 will always be less than or equal to a policy that only engages in
xV2G. This is because xV2G and xV2H are subject to the same constraints, so any allocation
to xV2H can instead be assigned to xV2G for an improved solution in terms of the objective.
The reverse holds true for if wV2H

t+1 ≥ wV2G
t+1 . Therefore, for simplicity we will refer to xV2X

t+1 as
the allocation to either V2G or V2H in time period t+ 1 and wV2X

t+1 = max
(
wV2HG

t+1 , wV2H
t+1

)
.

First calculate c∗charge and c∗V2X. These represent the threshold above or below which it
is optimal to either charge or discharge. c∗charge is defined the charge level such that:

wcharge
t+1 + λRrt+1 − λc >

1

λtime,t+1

(
E
[
V1
(
sc∗charge+1,t+2

)]
− E

[
V1
(
sc∗charge,t+2

)])
and

wcharge
t+1 + λRrt+1 − λc ≤

1

λtime,t+1

(
E
[
V1
(
sc∗charge,t+2

)]
− E

[
V1
(
sc∗charge−1,t+2

)])
.

Similarly, we calculate c∗V2X such that:

wV2X
t+1 + λRrt+1 − λc ≥

1

λtime,t+1

(
E
[
V1
(
sc∗V2X+1,t+2

)]
− E

[
V1
(
sc∗V2X,t+2

)])
and

wV2X
t+1 + λRrt+1 − λc <

1

λtime,t+1

(
E
[
V1
(
sc∗V2X,t+2

)]
− E

[
V1
(
sc∗V2X−1,t+2

)])
.
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We observe that as long as λc ≥ wV2X
t+1 +λRrt+1− 1

λtime,t
(E [V1 (sCmin,t+2)]− E [V1 (sCmin−1,t+2)]),

it will always be optimal for c∗V2X > Cmin, which will guarantee that the constraint Cminr ≤
c−

∑
a∈A x

a holds.
Due to the fact that E [V1 (sc,t+2)] is concave, namely its intervals, E [V1 (sc+1,t+2)] −

E [V1 (sc,t+2)], is non-increasing, there will only be one charge level that satisfies each of
these conditions.

If c∗charge ≤ c∗V2X, which will occur if wcharge
t+1 ≥ max

(
wV2HG

t+1 , wV2H
t+1

)
, then the optimal

decision is:

x∗chargec,t+1,1 = −min
(
c∗charge − c,Xcharge

max

)
, x∗V 2X

c,t+1,1 = 0, if c < c∗charge

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = 0, if c∗charge ≤ c ≤ c∗V2X

(2.8)

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = min

(
c− c∗V2X, XV2X

max

)
, if c∗V2X < c

If c∗charge > c∗V2X, then we first calculate, c∗switch as the minimum value of c between
c∗V2X and c∗charge such that:

−min
(
c∗charge − c,Xcharge

max

) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
sc+min(c∗charge−c,Xcharge

max ),t+2

)]
(2.9)

≤ min
(
c− c∗V2X, XV2X

max

) (
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1
(
sc−min(c−c∗V2X,XV2X

max ),t+2

)]
(2.10)

Equation (2.9) represents the optimal payoff for charging at c while equation (2.10) is
the optimal payoff for discharging. c∗switch is the first time the policy for discharging has a
payoff higher than the policy for charging.

Then we define the optimal decision as:

x∗chargec,t+1,1 = −min
(
c∗charge − c,Xcharge

max

)
, x∗V 2X

c,t+1,1 = 0, if c < c∗switch

(2.11)

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = min

(
c− c∗V2X, XV2X

max

)
, if c∗switch ≥ c

Proof of Optimality: Please see Appendix A.1.
Concavity of the Optimal Objective Value in terms of the Charge Level: Given

that we have the optimal solution of the optimization, we can then derive the objective value
of the solution, V (sc,t+1,1) and then its first derivative. We start by calculating V (sc,t+1,1)
based on c by directly plugging the solution into the objective value.

We first consider the case of c∗charge ≤ c∗V2X, for which we calculate the value of the
objective function, V (sc,t+1,1). For the sake of completeness, we assume that Cmin = 0, as
the most conservative value the constant can take:

−Xcharge
max

(
wcharge

t+1 + λRrt+1 − λc
)
− λmax,t (Cmax − c) +

1

λtime,t+1

E
[
V1

(
sc+Xcharge

max ,t+2

)]
+ λcc, if c < c∗charge −Xcharge

max

−
(
c∗charge − c

) (
wcharge

t+1 + λRrt+1 − λc
)
− λmax,t (Cmax − c) +

1

λtime,t+1

E
[
V1
(
sc∗charge,t+2

)]
+ λcc, if c∗charge −Xcharge

max ≤ c < c∗charge

− λmax,t (Cmax − c) +
1

λtime,t+1

E [V1 (sc,t+2)] + λcc, if c∗charge ≤ c ≤ c∗V2X

(
c− c∗V2X

) (
wV2X

t+1 + λRrt+1 − λc
)
− λmax,t (Cmax − c) +

1

λtime,t+1

E
[
V1
(
sc∗V2X,t+2

)]
+ λc (c) , if c∗V2X < c ≤ c∗V2X +XV2X

max

XV2X
max

(
wcharge

t+1 + λRrt+1 − λc
)
− λmax,t (Cmax − c) +

1

λtime,t+1

E
[
V1
(
sc−XV2X

max ,t+2

)]
+ λc (c) , if c∗V2X +XV2X

max < c
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We can observe the following relationship V (sc,t+1,1)− V (sc−1,t+1,1) as c increases:

λmax,t + λc +
1

λtime,t+1

(
E
[
V1

(
sc+Xcharge

max ,t+2

)]
− E

[
V1

(
sc−1+Xcharge

max ,t+2

)])
if c ≤ c∗charge −Xcharge

max

≥ λmax,t + λc +
1

λtime,t+1

(
E
[
V1
(
sc∗charge,t+2

)]
− E

[
V1
(
sc∗charge−1,t+2

)](
≥ λmax,t + wcharge

t+1 + λRrt+1

≥ λmax,t + λc +
1

λtime,t+1

(
E
[
V1
(
sc∗charge+1,t+2

)]
− E

[
V1
(
sc∗charge,t+2

)])
≥ λmax,t + λc +

1

λtime,t+1

(E [V1 (sc,t+2)]− E [V1 (sc−1,t+2)]) if c∗charge < c ≤ c∗V2X

≥ λmax,t + λc +
1

λtime,t+1

(
E
[
V1
(
sc∗V2X,t+2

)]
− E

[
V1
(
sc∗V2X−1,t+2

)])
≥ λmax,t + wV2X

t+1 + λRrt+1

≥ λmax,t + λc +
1

λtime,t+1

(
E
[
V1
(
sc∗V2X+1,t+2

)]
− E

[
V1
(
sc∗V2X,t+2

)])
≥ λmax,t + λc +

1

λtime,t+1

(
E
[
V1
(
sc−XV2X

max ,t+2

)]
− E

[
V1
(
sc−XV2X

max ,t+2

)])
if c∗V2X +XV2X

max < c

Because V (sc,t+1,1) − V (sc−1,t+1,1) is non-increasing, we have concavity for V (sc,t+1,1)
if c∗charge ≤ c∗V2X. The extension to the case of c∗charge > c∗V2X is straightforward as the
solutions follow the same structure as the c∗charge ≤ c∗V2X case.

We now prove that pc,t,jV (sc,t+1,1) is concave. Once again we do this by showing that
2pc,t,jV (sc,t+1,1)− pc−1,t,jV (sc−1,t+1,1)− pc+1,t,jV (sc+1,t+1,1) ≥ 0.

2pc,t,jV (sc,t+1,1)− pc−1,t,jV (sc−1,t+1,1)− pc+1,t,jV (sc+1,t+1,1)

= pc,t,j (2V (sc,t+1,1)− V (sc−1,t+1,1)− V (sc+1,t+1,1)) + pc,t,jV (sc−1,t+1,1) + pc,t,jV (sc+1,t+1,1)

− pc−1,t,jV (sc−1,t+1,1)− pc+1,t,jV (sc+1,t+1,1)

≥ V (sc,t+1,1) (−2pc,t,j + pc+1,t,j + pc−1,t,j)) + pc,t,jV (sc−1,t+1,1) + pc,t,jV (sc+1,t+1,1)

− pc−1,t,jV (sc−1,t+1,1)− pc+1,t,jV (sc+1,t+1,1)

= V (sc,t+1,1) (−2pc,t,j + pc+1,t,j + pc−1,t,j)) + V (sc−1,t+1,1) (pc,t,j − pc−1,t,j)

+ V (sc+1,t+1,1) (pc,t,j − pc+1,t,j)

= (V (sc,t+1,1)− V (sc−1,t+1,1)) (pc−1,t,j − pc,t,j) + (V (sc+1,t+1,1)− V (sc,t+1,1)) (pc,t,j − pc+1,t,j)

≥ 0

The first inequality comes from Assumption 1 on the relationship between the second deriva-
tives of pc,t,j and V (sc,t+1,1). The second inequality comes from the fact that we assume that
pc,t,j is non-increasing and prove that V (sc,t+1,1) is non-decreasing.
Step 1.4 (1− pc,t,j)V (sc,t+1,0) is concave
We start by proving that V (sc,t+1,0) is concave. To do this we first establish that if a set
of random variables Xc are concave stochastic dominant, which means that Xc+1 first-order
stochastic dominates Xc for all c in the set and P (Xc+1 > x)− P (Xc > x) ≤ P (Xc > x)−
P (Xc−1 > x) for all c and x, then any increasing function, f(x) applied to Xc will have the
property E [f (Xc+1)]−E [f (Xc)] ≤ E [f (Xc)]−E [f (Xc−1)]. This follows very close to how
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[28] established that if X first order stochastic dominates Y , then for an increasing function
f it holds that E[f(X)] ≥ E[f(Y )].

We can rewrite P (Xc+1 > x)− P (Xc > x) ≤ P (Xc > x)− P (Xc−1 > x) as:

E [1U (Xc+1)]− E [1U (Xc)] ≤ E [1U (Xc)]− E [1U (Xc−1)] for all U ⊆ (−∞,∞)

where 1 is the indicator function and U represents an upper set.
If this holds, then it follows that:(

E

[
m∑
i=1

ai1Ui
(Xc+1)

]
− b

)
−

(
E

[
m∑
i=1

ai1Ui
(Xc)

]
− b

)

≤

(
E

[
m∑
i=1

ai1Ui
(Xc)

]
− b

)
−

(
E

[
m∑
i=1

ai1Ui
(Xc−1)

]
− b

)
for all ai ≥ 0, i = 1, 2, . . . ,m, b ∈ (−∞,∞) and m ≥ 0. For any increasing function, f(x)
we can define ai, Ui and b such that as m goes to infinity, we have that E [

∑m
i=1 ai1Ui

(X)]
converges to E [f(X)]. Therefore we have that

E [f (Xc+1)]− E [f (Xc)] ≤ E [f (Xc)]− E [f (Xc−1)] .

In 1.2, when we establish that V (sc,t+1,0) is increasing, we establish

V (sc,t+1,0) = Eγ [gt+1(Γc,t+1)] ,

where gt+1(γ) is an increasing function. Since gt+1(γ) is an increasing function and that the
driver’s car usage, Γc,t+1 is concave stochastic dominant as defined above, we have that

Eγ [gt+1(Γc+1,t+1)]− Eγ [gt+1(Γc,t+1)] ≤ Eγ [gt+1(Γc,t+1)]− Eγ [gt+1(Γc−1,t+1)]

which by definition makes V (sc,t+1,0) concave in c.
We now establish that (1− pc,t,j)V (sc,t+1,0) is concave.

2 (1− pc,t,j)V (sc,t+1,0)− (1− pc−1,t,j)V (sc−1,t+1,0)− (1− pc+1,t,j)V (sc+1,t+1,0)

= V (sc,t+1,0) (2 (1− pc,t,j)− (1− pc−1,t,j)− (1− pc+1,t,j)) + (1− pc−1,t,j)V (sc,t+1,0)

+ (1− pc+1,t,j)V (sc,t+1,0)− (1− pc−1,t,j)V (sc−1,t+1,0)− (1− pc+1,t,j)V (sc+1,t+1,0)

= V (sc,t+1,0) (−2pc,t,j + pc−1,t,j + pc+1,t,j) + (1− pc−1,t,j) (V (sc,t+1,0)− V (sc−1,t+1,0))

+ (1− pc+1,t,j) (V (sc,t+1,0)− V (sc+1,t+1,0))

≥ (1− pc,t,j) (−2V (sc,t+1,0) + V (sc+1,t+1,0) + V (sc−1,t+1,0))

+ 2 (V (sc+1,t+1,0)− V (sc,t+1,0)) (pc,t,j − pc+1,t,j) + 2 (V (sc,t+1,0)

−V (sc−1,t+1,0)) (pc−1,t,j − pc,t,j) + (1− pc−1,t,j) (V (sc,t+1,0)− V (sc−1,t+1,0))

+ (1− pc+1,t,j) (V (sc,t+1,0)− V (sc+1,t+1,0))

= −pc,t,j (−2V (sc,t+1,0) + V (sc+1,t+1,0) + V (sc−1,t+1,0))

+ 2 (V (sc+1,t+1,0)− V (sc,t+1,0)) (pc,t,j − pc+1,t,j) + 2 (V (sc,t+1,0)− V (sc−1,t+1,0)) (pc−1,t,j

−pc,t,j)− pc−1,t,j (V (sc,t+1,0)− V (sc−1,t+1,0))− pc+1,t,j (V (sc,t+1,0)− V (sc+1,t+1,0))

= 0
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With this we have that pc,t,jV (sc,t+1,1) and (1− pc,t,j)V (sc,t+1,0) are both non-decreasing
and concave. The sum of two non-decreasing and concave functions, maintain these two
properties. Therefore, we have established that E [Vj (sc,t)] is non-decreasing and concave.

We can solve the DP in closed form. The optimal solution to the DP is monotonic in
terms of the charge level c.

We prove this inductively. The solution to the DP, given that in the next time step, we
assume by induction that the solution is non-decreasing and concave implies the following:
If c∗charge ≤ c∗V2X, then the optimal decision is:

x∗chargec,t+1,1 = −min
(
c∗charge − c,Xcharge

max

)
, x∗V 2X

c,t+1,1 = 0, if c < c∗charge

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = 0, if c∗charge ≤ c ≤ c∗V2X

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = min

(
c− c∗V2X, XV2X

max

)
, if c∗V2X < c

If c∗charge > c∗V2X, then we define the optimal decision as:

x∗chargec,t+1,1 = −min
(
c∗charge − c,Xcharge

max

)
, x∗V 2X

c,t+1,1 = 0, if c < c∗switch

x∗chargec,t+1,1 = 0, x∗V 2X
c,t+1,1 = min

(
c− c∗V2X, XV2X

max

)
, if c∗switch ≥ c

We prove the optimality of this solution in Part 1.3 of Step 2.4. We observe that as
c increases in these solutions, x∗chargec,t+1,1 is strictly non-increasing and x∗V 2X

c,t+1,1 is strictly non-
decreasing, guaranteeing monotonic behavior.

We observe that the structure of the solutions the DP gives rise to make them easy to
communicate to drivers and also as a result, easier to be trusted. These policies have a
two-threshold structure to them. If the driver is below a minimum level (determined by
either c∗charge or c∗switch) then the car is charged up to the threshold. If the driver is a
above a sufficient level (determined by c∗switch or c∗V2X), then the car is discharged down
to the threshold. These thresholds can be explained to customers that are interested in
understanding when and why their car is being charged or discharged. They are easily
trusted not only due to their simplicity but also because their value can be loosely justified
in terms of the price of charging/discharging and the driver’s own behavior. Furthermore,
this structure of policy opens the markets to opportunities for interaction where drivers
could be provided calculated thresholds and given flexibility to readjust them based on
their own preferences. These changes can then be reincorporated into the system for future
interactions. We have a closed form relationship between the thresholds, c∗charge, c∗V2X or
c∗switch, and the parameters of the optimization. If the driver prefers a different threshold,
we can recalculate λmax and λc to make their preferred threshold optimal, or if the required
value for λmax is outside the regime where policies are monotonic, we know we need to relearn
probabilities around the driver’s behavior.

In using such a structure we aim to provide drivers with clearly explained policies that
they can trust. Often times we think that simple, interpretable policies that can be easily
understood by consumers require the optimality of the solution to be compromised. However
in this case we find that by ensuring that the value function of the next states is concave, a
necessary property for the optimization to serve driver behavior, we are also able to achieve
a simple policy that drivers can buy into. By making sure that the optimization is tuned
to drivers’ sensitivity around charge level at departure and driving utility, we are able to
achieve simple optimal solutions.
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Finally, computing the solution in closed form makes sense once we consider the fact that
for a given decision (either to charge or discharge) the objective function becomes concave.
It is simple to calculate the optimal decision based on the feasible region and the peak of
the concave objective function, allowing us to solve the DP in a scalable manner.

2.5 Computational Results

In this section we discuss how the results in this chapter apply in practice through our close
collaboration with a large American EV manufacturer. We first discuss the data we use on
driver behavior, centered in a major American city during January and February 2021, the
resulting policies of the DP and the implications for larger profit and carbon benefit.

In order to learn driver data we start from deidentified telemetry data gathered from the
EV manufacturer’s electric vehicles. The telemetry data records the approximate location
of the car along with what mode it is in (driving, parked, charging, etc) and battery charge
level. We use this to first calculate each vehicle’s most common parking location, which we
consider their main charging location and the place where we have opportunity to engage
with charging/discharging optimization. We limit the dataset down to vehicles that made
trips in January and February 2021. For this dataset, for each driver and every hour in
the dataset we calculate the distance the driver drove during that hour and the number
of minutes they spent at their most common parking location. After long discussions with
experts at the EV manufacturer, we consider the time a driver spends at their most common
parking location as their on-grid time, regardless of if the driver is actually charging during
this time. In doing so, we aim to capture total time that they could be charging/discharging
under a V2X pilot program rather than their current charging behavior.

The dataset has 48 columns, 24 representing the driver’s average distance driven for each
hour of the day and 24 for the driver’s average on grid minutes for each hour. As a result
we use a time step of an hour for all modelling. This dataset is then clustered into eight
groups with KNN. We did sensitivity testing around the number of clusters to use, but eight
consistently had the strongest performance in terms of silhouette score, as shown in Figure
2.1.

Figure 2.1: Silhouette score testing for number of clusters

These eight clusters are summarized in Figure 2.2, in which we plot for each cluster its
average distance driven and minutes spent on the grid across the hours in a day. We also
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Figure 2.2: Driver clusters: Average distance driven and minutes spent on grid over the day

characterize each cluster as follows, working left to right, top to bottom:

• Cluster 1, Commuters: This represents 3% of the data. The drivers in this cluster
park at the beginning of the day and at the end, while when they are away seem to
drive mostly in the morning and in the afternoon, with a lull during normal working
hours

• Cluster 2, Parkers: This represents 25% of the data. The drivers in this cluster
have very little driving and high on-grid minutes implying they on-average use their
car sparingly, such as might be seen with work from home drivers

• Cluster 3, Morning Parkers: This represents 16% of the data. The drivers in this
cluster have normal during day driving, but tend to park their car at their base in the
morning, while having inconsistent evening parking

• Cluster 4, Away Parkers: This represents 15% of the data. The drivers in this
cluster tend to park their car inconsistently in the same location, such as might be
seen with street parkers

• Cluster 5, Afternoon Parkers: This represents 5% of the data. The drivers in this
cluster have normal during day driving, but tend to park their car at their base in the
evening while having inconsistent morning parking

• Cluster 6, Nightime or at-Work Commuters:. This represents 9% of the data.
The drivers in this cluster exhibit similar driving behavior to commuters with peaks in
the morning and afternoon, but tend to park most consistently during working hours,
as might be seen with nightime workers or street parkers who commute to work

• Cluster 7, Evening Parkers: This represents 7% of the data. The drivers in this
cluster show similar behavior to the afternoon parkers (Cluster 5) but with a stronger
driving usage peak in the evening and consistent parking only after 8PM
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• Cluster 8, Light Users:. This represents 10% of the data. The drivers in this cluster
exhibit normal day driving and have high on-grid minutes both in the morning and
evening.

We use these clusters to derive transition probabilities for our proposed DP formulation.
The distribution of kilometers driven are translated directly to charge dispensed to learn the
distribution of usage when the car is away, namely to calculate qγ,c,t, the probability that the
driver uses γ of its battery given the car starts away from the grid at time t and charge c.
The on grid minutes are used to calculate the probability the car leaves/returns to the grid.
If the on grid minutes equals 60 for a given hour, then the driver is considered to have spent
the hour on the grid. If it is less than 60, then the car is considered to have spent the hour
away from the grid. This is a conservative estimate, meant to help create a lower bound
on the potential capacity EVs have. We then learn the conditional probability for a given
cluster using a linear regression, for pc,t,j, the probability the driver remains or returns to the
grid at charge c and time t, given that it started the time period t either attached to the grid
j = 1 or away from the grid j = 0. We illustrate pc,t,1 the probability driver remains attached
to the grid, given they are currently attached to the grid, for each of the Clusters 1-8 (left to
right, top to bottom) in Figure 2.3. We see that the probabilities uphold Assumptions 1 and
2 of Theorem 2.4. First there is a strict hierarchy, in the probabilities, as the charge level
of the car increases, their probability of remaining on grid decreases. Second, for any given
cluster and time step, the probability of remaining on grid has a linear spread, showing no
second derivative. We also see that the probabilities logically reflect the driving patterns
we see from Figure 2.2. For example, Cluster 1, Commuters, have decreasing probabilities
of remaining on grid leading into 10AM, just as their on grid minutes are going down and
driving distances are going up. For Cluster 2, Parkers, their probability of remaining on grid
is higher than any other cluster, never dropping below 80%.

We get data on charging of EV pricing from PG&E, utility provider in California, on its
time of use pricing. This assumes the EV pays the same amount to charge as the driver
pays to run any appliance in their home. This time of use price is also used for the price of
giving energy to the home, because this is what the driver is saving by running the home off
of the car rather than buying energy from PG&E. We get data on V2G, for selling energy
back to the grid based on CAISO wholesale energy price. This is the price that generators
are paid to provide energy to the grid. In using this price, we assume that the driver is
paid at the same rate as a generator, which is a lower bound on the actual price drivers can
expect. It is worth noting that the wholesale price is very volatile. This volatility stems from
the unpredictability of energy given at a specific time and can be leveraged to generate a
profit. For example, the spike seen on February 17, 2021 at 3PM is not repeated every day,
but most days reflect some level of price spikes depending on energy needs. Finally, we get
the tons of CO2 produced per kWh in California from the EPA, which provides this data
publicly. For the sake of this example, we show this pricing for February 17, 2021 in Figure
2.4.

We set the parameters of the DP as follows. First we consider a single day period, where
the last hour of the day, 11PM to midnight is the final period of the DP. For the final
period, we set the terminal payoffs as zero. We discretize the charge level of the battery
into percentages with 2% intervales, making 0-2%, 2-4%, ..., 98-100% discrete charge level
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Figure 2.3: Driver clusters: Probability of remaining on grid in next hour given currently on
grid

buckets. The maximum charge/discharge allowed for a given hour is 16%, which we learned
as reasonable from the data. We set Cmin as 40%. We assume the driver is purely a profit
maximizer, making λR = 0. We penalize being below Cmin by setting λmin = 15. Finally we
scale the temporal constant with λmax, λtime,t = 2.5λmax, which we settled on after testing a
few different parameters.

We first summarize the policy results across all clusters. We show the results in terms
of the dollar value and carbon benefit earned in expectation by each cluster on February
17, 2021. In order to avoid accounting for the end of horizon sell-off, we only consider the
dollar value and carbon benefit earned during 1AM-7PM. Table 2.1 shows the dollar value
of the policy in expectation, while Table 2.2 shows the tons of CO2 saved/consumed from
the policy. As expected, Cluster 2 has the highest monetary benefit for engaging with V2X,
as it has the most on grid minutes, especially in the morning when the V2X prices spiked
above charging. We also see that there is always a benefit to starting the day attached to
the grid, rather than away, because then the optimization has the opportunity to use its
policy. The biggest discrepancy between away and attached happens for Cluster 4, which
makes sense because if the EV leaves the grid, it is unlikely to return. To contextualize the
carbon benefit of tons of C02 consumed/saved, it is worth noting that, 0.01 tons of C02 is
equivalent to 25.6 miles driven by a gasoline-powered passenger vehicle or 1.1 gallons of gas
consumed.

For a more intuitive analysis of how these results are achieved, we plot the exact policy
decisions from the DP for when the EV is attached to the grid for a few of the clusters,
specifically Clusters 2, 4 and 6 to show a sampling of the results. The heatmaps are plotted
in Figure 2.5, with the x-axis showing the hour of the day, and the y-axis showing the charge
bucket with the top row being the 98-100% and the bottom row being 0-2%. A positive
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Figure 2.4: Pricing and CO2 production for February 17, 2021

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
Starting Charge Level

Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached
8-10% -30.15 -28.79 -22.55 -22.40 -28.12 -28.02 -3.89 -23.43 -29.97 -21.04 -25.78 -16.55 -13.86 -29.15 -29.99 -30.01
18-20% -26.72 -24.70 -19.23 -13.89 -25.07 -22.22 -3.57 -21.65 -27.58 -13.63 -24.07 -13.44 -13.14 -26.28 -26.70 -24.31
28-30% -22.33 -19.77 -14.74 -10.49 -20.67 -17.33 -3.12 -18.20 -24.43 -10.59 -21.45 -8.98 -12.23 -23.40 -21.97 -20.91
38-40% -18.85 -14.54 -8.94 -8.76 -16.89 -12.70 -2.63 -13.79 -21.02 -7.43 -18.42 -3.86 -11.32 -19.98 -17.86 -17.51
48-50% -13.12 -11.32 -5.15 -3.06 -11.32 -9.30 -2.16 -8.80 -17.46 -4.20 -15.35 -0.96 -10.47 -16.29 -14.37 -11.41
58-60% -9.85 -6.68 -2.42 3.15 -7.38 -4.29 -1.69 -5.26 -13.82 -0.98 -12.30 1.81 -9.58 -12.89 -11.00 -7.62
68-70% -5.60 -0.85 4.29 6.55 -3.24 0.99 -1.23 -1.86 -10.08 2.36 -9.26 4.66 -8.49 -8.63 -5.43 -3.82
78-80% -0.45 1.94 7.85 9.93 1.61 4.39 -0.76 3.89 -6.15 5.74 -6.19 7.53 -7.06 -3.07 -1.40 -0.42
88-90% 3.06 5.59 11.58 16.43 5.87 7.79 -0.28 7.11 -2.17 9.68 -3.10 10.63 -5.30 0.79 2.17 2.98
98-100% 7.67 8.99 16.61 19.83 9.62 11.19 0.17 10.51 1.87 13.08 0.01 14.03 -3.18 4.19 5.56 6.38

Table 2.1: Expected monetary benefit/cost to optimal policy for 1AM-7PM on February 17,
2021

policy value means that the EV is discharging the battery to earn money, with a maximum
of 16% discharge. A policy value of 0 means that the policy is to do nothing. A negative
policy value means that the EV is spending money to charge the battery, with a maximum
of 16%. We note that policies are very different for each cluster. Cluster 2, is the parking
drivers who have low probabilities of leaving the grid. Therefore, when V2G pricing spikes
above the price to charge, we engage deeply in discharging the battery in order to earn
money on selling energy back to the grid before charging back up. There is then an end of
horizon sell-off in the final period. Cluster 4, is the Away Parkers, who have low probabilities
of being on grid or remaining on grid. For these drivers, the policy recommends charging
up to an appropriate charge level because the drivers have a high probability of leaving at
any given hour. For Cluster 6, the policy is very similar to Cluster 4, however during 7AM
to 1PM, when the car has high probability of being attached and not leaving, we focus on
charging as much as possible to prepare for departure. In this way we see how the DP both
serves driver behavior based on the distribution of the cluster, but also aims to help the
driver earn through V2X when the opportunity is available. We also observe that all these
polices are very interpretable. If drivers are interested, there can be communicated a clear
charge level for each hour of the day for which the optimization will aim to charge/discharge
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
Starting Charge Level

Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached Away Attached
8-10% 0.0070 0.0110 0.0111 0.0104 0.0071 0.0066 -0.0006 0.0006 -0.0010 0.0568 0.0728 0.1660 -0.0015 0.0017 0.0305 0.0303
18-20% 0.0026 0.0322 0.0112 0.0536 0.0073 0.0453 -0.0006 -0.0001 0.0009 0.0942 0.0746 0.1649 -0.0015 0.0013 0.0305 0.0700
28-30% 0.0177 0.0476 0.0306 0.0536 0.0241 0.0389 -0.0005 -0.0001 0.0020 0.0930 0.0774 0.1761 -0.0013 0.0010 0.0541 0.0700
38-40% 0.0300 0.0393 0.0426 0.0464 0.0236 0.0497 -0.0004 0.0178 0.0029 0.0923 0.0808 0.1949 -0.0010 0.0116 0.0667 0.0700
48-50% 0.0518 0.0792 0.0480 0.0860 0.0412 0.0497 -0.0003 0.0467 0.0039 0.0918 0.0835 0.1917 -0.0007 0.0266 0.0688 0.1146
58-60% 0.0545 0.0780 0.0447 0.0896 0.0457 0.0691 -0.0001 0.0322 0.0048 0.0912 0.0854 0.1877 -0.0005 0.0266 0.0692 0.1210
68-70% 0.0739 0.0748 0.0744 0.0896 0.0651 0.0853 0.0001 0.0375 0.0060 0.0910 0.0868 0.1846 -0.0005 0.0356 0.1061 0.1055
78-80% 0.0814 0.1089 0.0806 0.1321 0.0689 0.0853 0.0003 0.0756 0.0078 0.0909 0.0879 0.1817 -0.0004 0.0581 0.1041 0.1055
88-90% 0.0865 0.1190 0.0835 0.1406 0.0769 0.0853 0.0008 0.0797 0.0098 0.0951 0.0889 0.1799 -0.0004 0.0643 0.1057 0.1055
98-100% 0.1048 0.1190 0.1115 0.1406 0.0807 0.0853 0.0020 0.0797 0.0121 0.0951 0.0898 0.1799 -0.0004 0.0643 0.1039 0.1055

Table 2.2: Expected carbon benefit/cost to optimal policy for 1AM-7PM on February 17,
2021

(a) Cluster 2 (b) Cluster 4 (c) Cluster 6

Figure 2.5: DP policy for charging and discharging the EV on February 17, 2021

to, and this charge level can be directly tied to the price for charging/discharging or the the
driver’s own expected behavior. This allows for clear opportunity to earn driver trust as
an implemented version of the program could allow drivers to manually change the target
charge/discharge rate if they wished to be more or less conservative.

We aggregate potential over the course of a test set of February 16-28, 2021. During this
12-day period, we create policies for each day, such as is shown for February 17, 2021 above
and then link the policies by holding the charge constant if the car is attached (neither
charging nor discharging) between 10PM and midnight, to prevent falling prey to end of
horizon sell off. Thus, if the driver ends the day attached to the grid, they begin the
subsequent day at the charge level we left off at 10PM the night before. We summarize
the results of the test set in Table 2.3. Both dollar and carbon benefit are highest for
clusters that (1) have high on grid minutes, (2) end the day attached to the grid and (3)
have low EV usage, while the highest dollar and carbon costs are found in clusters that
represent the opposite behavior. We see that even the pure profit maximizer still has a
positive carbon benefit, regardless of cluster. This is because price and carbon production
are highly correlated in the current electric market, and thus someone trying minimize the
cost they pay will implicitly also be minimizing the carbon they consume. When we take
a weighted average, based on the size of the test set, the savings are $95 per vehicle from
engaging in the vehicle to grid market and a carbon benefit of 0.81 tons of CO2. This is a
carbon benefit equivalent to 2,076 miles driven by the average gas powered car, 91.1 gallons
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of gasoline consumed, 0.102 of a homes annual energy usage or 13.4 tree samplings grown
for 10 years, all achieved in just 12 days.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Monetary Carbon Monetary Carbon Monetary Carbon Monetary Carbon Monetary Carbon Monetary Carbon Monetary Carbon Monetary Carbon

131.97 1.34 208.86 1.08 -17.81 0.33 -8.98 0.01 182.46 1.00 -95.72 0.37 124.36 1.57 169.64 1.40

Table 2.3: Expected monetary and carbon benefit/cost to optimal policy for February 16-28,
2021

2.6 Conclusions

In conclusion this chapter addresses both individual EV driver behavior and how this can
connect to the grid by proposing a vehicle-to-grid and a vehicle-to-home dynamic optimiza-
tion model which controls how much EVs charge and discharge. In this chapter, we have
taken a driver-centric focus in our proposed optimization model by introducing an objective
and constraints that value drivers using their vehicle and incorporate driver behavior. We
establish analytical results showing that our policies are easy to communicate and reliable.
In doing so we understand the close relationship driver behavior has with how we define the
parameters of the optimization. Specifically, we discuss how driver’s sensitivity to departing
at lower charge levels and driving utility must be directly incorporated into the optimization
in order for the policy to serve the EV’s ideal driving. While usually optimality must be
sacrificed for simplicity, in this setting we show that optimal policies are easy to communi-
cate. When we compute these policies in practice using real driver data, we see that drivers
have a lot to gain from participating in discharging markets. On average, there is potential
to save $95 from discharging. We also see that even pure profit maximizers, engaging in
discharging markets have a net carbon benefit. The V2G and V2H market is still emerging,
and in the coming years we will learn exactly how drivers react to battery discharging and
if the proposed dollar and carbon impact are enough for drivers to engage in such programs.
However work such as this is necessary to build driver trust and build formulations which
put the driver needs at the forefront of the market.
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Chapter 3

UMOTEM: Upper Bounding Method
for Optimizing over Tree Ensemble
Models

3.1 Introduction

When using predictive models to make prescriptive recommendations, better predictive mod-
els will result in better outcomes in the real world. For this reason, decision makers are inter-
ested in using their most accurate forecasts when optimizing decisions. When the objective
of an optimization model is determined by a model’s forecast, it is typically more tractable
to optimize it when the model itself is linear or parametric. The optimization problem gets
increasingly difficult when the optimization formulation uses more complex machine learning
models. Forecasts from machine learning models might be more accurate but they are often
highly nonlinear and difficult to tractably optimize over, especially when the optimization
involves constraints. It is for this reason that recent research (such as [29]–[33]) has fo-
cused on different methods for tractably incorporating trained machine learning models into
optimization formulations.

Specifically in this chapter, we will focus on tree ensemble methods, such as Random
Forests and XGBoost, and how their outputs can be used as inputs for the objective function
of an optimization model. Tree ensemble models are a categorization of machine learning
models which aggregate single decision trees, such as CART [34], into a single prediction.
Tree ensembles usually fall into one of two categorizations: bagging or boosting. In the case
of bagging, the weak learner decision trees are generated using different sampled subsets
of the data and their predictions are then ensembled together for the final prediction. For
boosting, decision trees are generated sequentially so that each new tree models the error
of the previous level. These models are extremely popular for their strong predictive power
and robustness against over-fitting. This makes these models ideal for forecasting, but their
aggregate and black box nature means that using their predictions to make decisions can
be difficult. Because tree ensembles aggregate decision trees, their predictive function is a
complex piece-wise constant function. A small change in one of the features can result in
either no change in the aggregate model’s prediction, if the end leaf nodes stay the same,
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or a significant change, if the leaf nodes switch. This creates a non-convex function that is
difficult to optimize over. Most optimization formulations for this type of problem require an
exponentially growing number of binary variables with respect to tree depth, which causes
tractability issues when optimizing over objectives that come from tree ensembles even for
a reasonable scale.

In this work we propose UMOTEM, an Upper Bounding Method for Optimizing over
Tree Ensemble Methods. UMOTEM leverages knowledge known when the underlying trees
of the ensemble model are being built to iteratively optimize down the layers of the trees.
This results in an approximation of the true optimization in which only a single branch of
each tree is traced. This means that UMOTEM scales well, with the number of necessary
binary variables growing only linearly with regard to both depth and number of trees in
the ensemble. The formulation is generalize-able, with the flexibility to account for various
additional business constraints and parallel or hyperplane trees. UMOTEM can also be
used to jointly predict and optimize. Rather than training the entire ensemble forest and
then optimizing over it, UMOTEM can be combined with the predictive phase of decision
making so that only the branch of each tree that has the potential to be optimal is built
out. This would not change the optimality of the algorithm but would improve the run-
time, as the entire forest would not need to be trained, but rather only the branch of
each tree UMOTEM considers optimal. We bound the optimality gap of the UMOTEM
approximation in expectation and show that there is a relationship between the quality of
the prediction model and the quality of the prescription. The smaller the tree ensemble
model’s in-sample error, the smaller the expected optimality gap of UMOTEM’s solution.
This further emphasizes how better predictive models result in better real world outcomes.

3.1.1 Contributions

Our main contribution through this work is the introduction of UMOTEM, an upper bound-
ing method for optimizing over tree ensemble models in a tractable and scalable manner. In
more detail:

• We introduce UMOTEM, an Upper Bounding Method for Optimizing over
Tree Ensemble Methods: UMOTEM is an algorithm that at each step considers
a small scale Mixed Integer Optimization (MIO) which finds the near optimal feature
vector that maximizes (or minimizes) a payoff determined by the prediction of a tree
ensemble model. Unlike many of its peers in the literature, UMOTEM’s binary vari-
ables grow only linearly with regards to both the tree depth (dmax) and the number
of trees (T ), resulting in a very tractable formulation. The small scale MIO from
UMOTEM has O(T ) binary variable and is repeated O(dmax) times, an improvement
over its peers which have O(2dmaxT ) binary variables.

• We show how UMOTEM can also be used to jointly predict and optimize:
UMOTEM can be combined with the prediction stage of decision making to improve
runtime. Most methods require the entire tree ensemble model to be trained before
optimization. However, UMOTEM due to its structure, allows us to combine it with
the training phase of the tree ensemble so that only the branch which UMOTEM
“suspects” to be optimal gets built. This will not affect the optimality of the solution
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found by UMOTEM. As a result, the UMOTEM method allows tree ensembles to be
jointly trained and optimized over in a scalable manner even for large datasets.

• We bound the optimality gap introduced by UMOTEM in expectation:
Because UMOTEM is an approximation method, it can result in an optimality gap.
However, we bound this value in expectation and show in the case of well-learned
(as defined in Section 3.4) tree ensembles, UMOTEM is expected to do very well.
Specifically, we show that as the in-sample error decreases relative to the separation
between leaf payoff, UMOTEM’s optimality gap also decreases. As a result, more
accurate predictive models result in better real world outcomes.

• We show strong computational results compared to similar methods: We
compare UMOTEM’s performance to true optimality on several different publicly avail-
able machine learning datasets, covering a wide range of applications. These datasets
come from the University of California Irvine machine learning repository and publicly
available R packages. We show that UMOTEM is able to consistently reach near opti-
mality (over 90%, and in many cases over 98%) while still scaling linearly. For example,
UMOTEM can capture 98% of optimality in 2% of the runtime for some models (see
the Concrete dataset in Section 3.5.1).

• We demonstrate the use of UMOTEM in a case study where other methods
do not scale: Through our collaboration with an American EV manufacturer and
the Oracle Retail group, we tackle two case studies highlighting real business cases
where the scale of the problems are such that exact optimization methods do not
scale to these settings when a random forest is used to predict demand. We apply
UMOTEM in these settings to show strong improvements over business practices and
other policies. Specifically for the case of the EV manufacturer looking to estimate the
size of the discharging market, we show that compared to the baseline policy, drivers
can save $41.1 and the CO2 equivalent of 667 miles driven by a gas powered car in two
weeks from engaging in the discharging market. For the retail case study, we optimize
discounts for fashion items over a 21 week time horizon to maximize revenue and show
an improvement of 12-13% in terms of revenue.

3.2 Literature Review

In recent years, there has been a significant increase in research on how predictive tools can
be incorporated into prescriptive tasks. Researchers are interested in how machine learning
models can be used as an input function in the objective when optimizing decisions. In this
work, we focus on how to optimize over tree ensemble models, and therefore touch upon
a few different areas of research. Specifically we discuss research on tree ensemble models
themselves, optimization methods over various predictive tasks, and finally research that
discusses optimization of types of tree ensembles.

Tree ensemble models combine the best of tree modelling structure with the robustness
and accuracy of ensembling. Popular in practice because of their high performance, there
has been a lot of development in different types of tree ensemble models. At their core, tree
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ensemble models use many “weak learner” decision trees that are then aggregated together
to form a single prediction. Among the most popular are Random Forest [35] and XGBoost
[36]. Random Forests build their weak learners by sampling the input data which builds
the trees. XGBoost is a variant on the gradient boosting strategy, in which trees are built
sequentially with each additional one targeting the residuals of the previous. These two
models are just the tip of the iceberg. Other tree ensemble models include AdaBoost [37]
and LightGBM [38]. For a more thorough survey of tree ensemble models, we direct interest
readers to [39]. We build on this work by showing how these types of models can be used
as inputs to prescriptive tasks. The only requirement for our work is that the tree ensemble
model must have the weak learners be decision trees and the method of aggregating the weak
learners should take on some form of a weighted sum. This weighted sum is the case for
the most popular methods of tree ensemble models, including but not limited to Random
Forest, gradient boosting machines (such as XGBoost and LightGBM), and AdaBoost.

Additionally, there has also been focus in the literature on how predictive tasks, especially
machine learning models, can be used as inputs into prescriptive tasks. This stems from
a natural need, as decision makers are interested in using their high-quality forecasting
models to improve decision making. [29] optimize chemotherapy regimes for cancer using a
ridge regression as input to predict outcomes of clinical trials. [30] incorporate a log-linear
regression of demand into their optimization of promotion vehicles. [40] and [41] optimize
revenue with a ranking-based choice model. Neural networks, as one of the cutting edge
forms of machine learning, have been the focus of a lot of research. [42]–[47] have all worked
to incorporate them into the objective of optimization formulations. [48] in particular use the
eventual prescriptive decision of the optimization as a factor in the evaluation of a model’s
statistical validity.

Specifically regarding tree ensemble methods, such as the aforementioned Random For-
est or XGBoost, being incorporated into optimization, a few different methods have been
explored. [31] formulate an optimization where the objective function coefficients are de-
termined by a Random Forest. They do this by precalculating the coefficients through the
Random Forest in advance for every permutation of the variables. In doing so, [31] avoid
many of the computational challenges that come from directly encoding the Random Forest
into the optimization formulation. However while this works well for the pricing problem
considered in [31], this approach is less efficient when there are many variables that are
being optimized, for which the decision maker would need to forecast for all possible com-
binations of their realizations. [32] and [33] both discuss methods for incorporating the tree
structure of the model directly into the optimization formulation. Both formulate a version
of a mixed-integer optimization that represents the splits of the trees in the constraints of
the model, but this requires an exponential number of binary variables as the trees grow
in depth. For scalability purposes, these papers approximate either the depth of the tree
ensemble or the breadth (that is, in the latter case, they sample only a handful number of
trees). UMOTEM is an approximation of these MIOs with better tractability properties.
We discuss these two methods in greater detail in Section 3.3.1 and compare how UMOTEM
performs regarding both runtime growth and computational performance throughout the
chapter. There are other recent works in this area, for example, [49] extend the work of [32]
to the case of product assortment optimization and show that a stronger formulation can be
achieved through aggregating constraints over products. [50] draw the connection between
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multilinear optimization and optimization over tree ensembles. [50] use this to create tighter
formulations and show when the problem can be reduced to polynomial-sized formulations
(rather than exponential). [51] accomplish two main tasks: first, they show how to optimize
when the objective function is the sum between a function on the output of a boosted tree
model and a convex penalty term and second, they help reduce the scale of the optimization
by introducing a branch-and-bound methodology. While they solve a more complex prob-
lem with the convex penalty term, they do not provide guarantees on scaling or analytically
bound the expected optimality gap. Our work also touches upon a wide range of end-to-end
literature where the tree ensemble model is used as part of a larger process. [52] introduce
a framework for training machine learning models with the subsequent optimization task in
mind. More specific to decision trees, [53], adjust the training process for ensemble forests,
specifically split selection, to account for the downstream optimization and improve the op-
timality of the end-result. Unlike these works, this work keeps the prediction quality the
same, but shows how when tree ensembles are being used for optimization, UMOTEM can
be employed to save on training time by only building out the branch that is expected to be
optimal.

3.3 UMOTEM

We start by describing two different formulations of the MIO which optimize an objective
function determined by an tree ensemble model. One formulation is proposed by [32], and
another by [33]. These formulations are largely equivalent in terms of optimality. In the rest
of the chapter, we will refer to the MIO described by [32] or [33] as the true MIO or exact
MIO because both formulations achieve full optimality while UMOTEM is an approximation
of this MIO. We expand upon our discussion in Section 3.2 on their limitations in terms of
scalability, which we address through UMOTEM. Both papers also propose approximations
for their exact MIOs, which we address analytically (end of Section 3.4) and computationally
(Section 3.5.1). One key advantage of UMOTEM over other approximation methods is that
UMOTEM does not require the practitioner to select an approximation level, which if mis-
selected, has the potential to give rise to suboptimal results. In this section, we first describe
the single-tree version of UMOTEM before finally introducing the full ensemble forest version
of UMOTEM. We assume in this work that the feasible region UMOTEM is optimizing over
is bounded. We also assume that the tree ensemble uses a weighted aggregation method and
the underlying trees of the ensembles use parallel splits.

The main challenge for directly incorporating ensemble forests into an optimization for-
mulation, and hence the need for approximations like UMOTEM, comes from the binary
nature of the trees themselves. Decision trees, such as those found in models like CART,
Random Forest, or XGBoost, ask a series of questions with a yes/no outcome in order to
make a final prediction. At each interior node, i, of tree, t, there is a linear condition of the
form: (ati)

⊤x ≥ bti. If x satisfies this linear condition, then the model moves to the left child
of the tree, and if x fails the condition, the model moves to the right child. This iterative
process continues until a leaf or terminal node is reached, at which point the model produces
a prediction for feature vector x. Each leaf node, j, in tree, t, has a payoff St

j associated
with it. This payoff is usually either the average of the dependent variable, y, of all training
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data points which end up in node j, or some function on this average. In order to help with
occasionally dense notation, we introduce a concrete example in Figure 3.1. Here we show
a three tree Random Forest, of max depth two, that uses synthetic retail data to predict
sales. There are two features used to create this forest: full Price and Discount. The Price
variable here is the price before the discount is applied. In this case, if x is a feature vector
with Discount = 0.3 and Price = 19, this means that this item had a full price of $19 and a
discount offer of 30% off. Following the splits of tree 1, x would thus end up in leaf node n1

5.
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Figure 3.1: Sample Random Forest 1

3.3.1 The MIO Formulations for True Optimality

We define the following elements of the tree ensemble model. The ensemble consists of T
trees, where each tree has weight wt in the final prediction. Let m be the minimum leaf size
of the trees, which is specified when the ensemble forest is trained. N t defines the set of
interior nodes in tree t, and Lt defines the set of leaf nodes in tree t. Each node i ∈ N t has
a split criterion (ati)

⊤x ≥ bti, a parent node pti, a left child node lti, and a right child node rti .
From the example in Figure 3.1, we would have T = 3, and because it is a random forest,
wt =

1
T
= 1

3
. For Tree 1, N1 = {n1

1, n
1
2} and L1 = {n1

3, n
1
4, n

1
5}. If we consider node n1

2, its
parent node is p12 = n1

1, its left child is l12 = n1
4, and its right child is r12 = n1

5.
We start by describing the formulation introduced by [32]. Here, one assumes that all

the splits of the tree are parallel. This means that the vector ati is all zeros except for a
single one. A single feature is considered for each split. Then one can rewrite (ati)

⊤x ≥ bti
as xp(i) ≥ bti, where p(i) specifies which feature is being considered in interior node i. For
example, when looking at the sample Random Forest in Figure 3.1, p(n1

1) = Discount.
We can then group all interior nodes across the trees by which feature is being considered

in the split. We can define P as the set of all features which are split on within the tree
ensemble. For each feature p ∈ P , we can define Bp to be the ordered set of all split
points in the ensemble. Let Kp = |Bp| be the number of unique split points across the
ensemble that use feature p. Bp is characterized such that for any bp,k ∈ Bp, there exists
some node i such that its split criterion is xp ≥ bp,k. Because the set is ordered, we have that
bp,1 < bp,2 < · · · < bp,Kp . bp,k will be the kth smallest split point for feature p. We define the
function C(i) = {j}, so that for node i it identifies the index j so that the split criterion of
node i can be written as xp(i) ≥ bp(i),C(i) = bp(i),j. If we consider the sample forest, we would
have that P = {Price,Discount}, BPrice = {19, 20}, BDiscount = {0.1, 0.2, 0.25}, KPrice = 2,
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and KDiscount = 3. If we consider node n1
1, we have that C(n1

1) = 3. Therefore, we can
represent the split criterion of node n1

1 as xp(n1
1)
≥ bp(n1

1),C(n1
1)
, or xDiscount ≥ bDiscount,3 = 0.25.

We also define for every interior node i in the ensemble, left(i) and right(i). left(i) is
the set of all leaf nodes which are descendants of the left child of node i, while right(i) is
the set of all leaf nodes which are descendants of the right child of node i. If x ends up in a
leaf node j ∈ left(i), then it is known that the criterion of node i is satisfied by x, while if
x ends up in a leaf node j ∈ right(i), then it is known that the criterion of node i is failed
by x. As an example, for the sample random forest, we have that left(n1

1) = {n1
4, n

1
5} and

right(n1
1) = {n1

3}.
With this notation we can begin reviewing a formulation for the exact MIO for this

problem. This formulation starts by defining binary variables v to determine which leaf
node a feature vector, x ends up in. vt,j are only defined for the leaf nodes j in trees t.
vt,j = 1 if and only if solution x resides in leaf j of tree t. [32] also defines binary variable z
to specify the optimal range of the solution x, by describing which splits of the ensemble are
satisfied or have failed. Binary variable zp,k = 1 if for feature p, the value of x is greater than
or equal to the kth split point in Bp, and 0 otherwise. For example, if zPrice,1 = 0, zPrice,2 = 0
then we know that xPrice < 19. If zPrice,1 = 1, zPrice,2 = 0 then 19 ≤ xPrice < 20. And finally,
if zPrice,1 = 1, zPrice,2 = 1 then 20 ≤ xPrice. This is enough to specify which leaves the features
vector x will end in and what the prediction of the tree ensemble model will be.

First we start with the objective function. The objective of the MIO is to find a feature
vector x which maximizes the payoff of the leaf it ends up in: maxz,v

∑T
t=1

∑
j∈Lt wtvt,jS

t
j.

For each tree we have to end in one and only one leaf:
∑

j∈Lt vt,j = 1.
To enforce split constraints we leverage left(i) and right(i). If we fail the split constraint

at node i, then we know that we cannot end up in any of the leaves which descend from
the left child (ie

∑
j∈left(i) vt,j = 0). We also know that if we fail the split constraint of

node i, then zp(i),C(i) = 0. Similarly, if we satisfy the split constraint, then we cannot end
up in any of the leaves which descend from the right child (ie

∑
j∈right(i) vt,j = 0), and

zp(i),C(i) = 1. In order to enforce this relationship, we introduce the following constraints:∑
j∈left(i) vt,j ≤ zp(i),C(i) and

∑
j∈right(i) vt,j ≤ 1− zp(i),C(i).

If we satisfy the jth constraint of feature p, then we know that x ≥ bp,j ≥ bp,j−1 ≥ · · · ≥
bp,1. Thus if zp,j+1 = 1 then it must be true that zp,j = 1: zp,j ≥ zp,j+1.

Finally, we need z to be binary and v ≥ 0. Putting this all together gives rise to the
following MIO formulation (please see [32] for more details and for the case where features
are categorical):
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max
z,v

T∑
t=1

∑
j∈Lt

wtvt,jS
t
j

s.t.
∑
j∈Lt

vt,j = 1, ∀t ∈ {1, . . . , T}

∑
j∈left(i)

vt,j ≤ zp(i),C(i), ∀t ∈ {1, . . . , T}, i ∈ N t

∑
j∈right(i)

vt,j ≤ 1− zp(i),C(i), ∀t ∈ {1, . . . , T}, i ∈ N t

zp,j ≥ zp,j+1, ∀p ∈ P , j ∈ {1, . . . , Kp − 1}
zp,j ∈ {0, 1}, ∀p ∈ P , j ∈ {1, . . . , Kp}
vt,i ≥ 0 ∀t ∈ {1, . . . , T}, i ∈ Lt

(3.1)

For illustrative purposes, we include Formulation (B.1) in the Appendix. Formulation
(B.1) is a concrete realization of Formulation (3.1) for the forest shown in Figure 3.1.

An alternative way of formulating the same problem is proposed by [33]. While Formu-
lation (3.1) used binary variables z to determine which leaf x ended in, this formulation uses
binary variables q. In order to represent whether x satisfies the split criterion of node i in
tree t, [33] define the binary variable qti,j. q

t
i,j = 1 if and only if in tree t feature vector x lies

in a descendent of node j and if node j is a direct child node (either left or right) of node i.
We can use q to start building the objective function and constraints of the true MIO.

We start again with the objective funtion. In this formulation, for a given tree, the payoff
can be calculated as

∑
j∈Lt qtpj ,jS

t
j. We then sum this over all trees, weighted by wt, to get

the objective function: maxx,q
∑T

t=1

∑
j∈Lt wtq

t
pj ,j
St
j.

One needs to enforce that the variables q accurately represent which leaf x ends up in. In
order to do this, the formulation needs to enforce the split criterion of all the interior nodes.
For interior node i, if (ati)

⊤x ≥ bti then qi,li = 1. Similarly if (ati)
⊤x ≤ bti then qi,ri = 1. The

paper accomplishes this by introducing big-M constraints: (ati)
⊤x +M(1 − qti,li) ≥ bti and

(ati)
⊤x−M(1− qti,ri) ≤ bti.
This needs to be paired with genealogy or flow constraints. Namely, if x exists in a leaf

descendent of node i (ie qtpi,i = 1), then it must exist in a descendent of one of i’s children
(qti,li = 1 or qti,ri = 1). If x does not exist in a leaf descendent of node i (qtpi,i = 0), then it
cannot exist in a descendent of either of its children (qti,li = qti,ri = 0). Therefore, one needs
to also include the following constraint: qtpi,i = qti,li + qti,ri .

In addition, x must end up in one of the leaf nodes of tree t:
∑

j∈Lt qtpj ,j = 1.
Finally, one may wish to enforce any other relevant business constraints: Ax = f .
When one puts all these pieces together, Formulation (B.2) as shown in the Appendix,

rises. This formulation was originally introduced by [33]. For illustrative purposes, we
also include Formulation (B.3) in the Appendix. Formulation (B.3) is a specific example of
Formulation (B.2) for the forest shown in Figure 3.1.

The main limitation of both Formulations (3.1) and (B.2) are the binary variables zp,j
in Formulation (3.1) and qi,j in Formulation (B.2). Each new interior node can require
a new set of binary variables. As the depth of the tree increases, the number of needed

54



binary variables increases exponentially. Even for just the illustrative sample forest we show
in Figure 3.1 with merely three trees and max depth two, Formulation (B.2) requires 12
binary variables, and Formulation (3.1) requires 5. Tractability is particularly challenging
when applying this formulation to Random Forest models because one of the premises of the
model is that its trees are not pruned (or shortened), so Random Forest trees can become
rather deep. For example, even for a dataset that is less than 200 data points, the average
tree depth in a forest can be over 10. With a forest of 500 trees, this could easily result in
over 500,000 binary variables. Overall, it can be very difficult to run these formulations for
most reasonably sized ensemble forests.

3.3.2 Upper Bound Function for a Single Tree

It is with this in mind that we begin to introduce UMOTEM. Rather than optimizing all
levels of the tree at once, we introduce a method that iteratively optimizes each level of the
trees in an ensemble. The key idea behind UMOTEM is to only use the information available
up to depth d to decide whether the optimal leaf is a descendent of the left or right child of
a node at depth d. We only explore the branch that we suspect to have the optimal leaf,
resulting in us only tracing a single branch through a tree. This linearizes the exponential
growth of variables in the optimization formulation. In this section, we start with a single
tree without additional constraints for ease of exposition, and then expand to the full tree
ensemble model with additional constraints in Section 3.3.3.

Let us first consider node i in a decision tree. The goal is to determine, from all the
leaves which are a descendant of node i, whether the leaf with the highest payoff descends
from the left branch or right branch. Any leaf to come from this node i will be limited by
the data first passed to node i by the higher levels of the tree and filtered out by the interior
nodes that are descendants of node i. We can use this data passed to node i and the split
criterion of node i, to calculate an upper bound on the payoff of the best leaf. We will refer
to this upper bound as the UB function for short. We define ui,L and ui,R as the value of the
UB function for the left and right children of node i. We calculate the UB function of a node
as the average of the top m payoffs to fall to either child node, where m is the minimum leaf
size of the tree. By calculating the UB function, we approximate whether the left or right
branch of node i has the highest leaf value.

Mathematically we calculate this by first defining the set D to be the set of all training
data points which fall into node i. For example, in the sample forest in Figure 3.1, the data
which is passed to node n1

2 is all the data used to train tree 1 that satisfies the split criterion
of node n1

1. We let yk : k ∈ D represent the dependent variable of data point k in the set D.
We denote the order statistic to be y(k), such that y(1) ≥ y(2) ≥ y(3) ≥ . . . . This means that
y(1) is the highest dependent value passed through node i, y(2) is the second highest and so
on. Given this, we can define the UB function as:

u =
m∑
k=1

1

m
y(k):k∈D. (3.2)

It is safe to consider this as an upper bound of the possible leaf values because any leaf
descendent of node i will be limited to the data points in D. u captures essentially what
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happens if the top payoffs all end up in a leaf and nothing else, marking it as the best possible
payoff value a leaf of node i could have. This calculation of the UB function requires no
knowledge of the tree beyond information on the node itself and can be pre-calculated when
the tree is being built.

Again, we refer to the sample forest introduced in Figure 3.1 as a concrete example, and
focus on Tree 1. Let us assume Tree 1 was built on a dataset of ten data points, shown in
Table 3.1, and with a minimum leaf size of 3. This means that all leaves of the tree must
have at least 3 data points in them. Knowledge of the entire tree would make it clear that
the optimal leaf is n1

3. However, at depth 0, the algorithm is considering only information
available to us at node n1

1 to determine if the optimal leaf is a descendent of n1
2 or n

1
3. All ten

data points fall into the root node, n1
1, and we can split the data based on the split criterion

for n1
1, namely Discount ≥ 0.25. Based on this we know that data points 1-6 will pass to

node n1
2 and data points 7-10 will pass to node n1

3. For Tree 1, where m = 3, we would have
that u11,L = 2+2+7

3
= 3.6 and u11,R = 4+4+5

3
= 4.3. Based on this model, one would assume

the leaf with the highest payoff is a descendent of the right branch of node n1
1.

While for simplicity of exposition we will continue using this version of the upper bound
method, the exact formulation for u can be adjusted based on the decision maker’s prefer-
ences. For example, one of the criticisms of most tree-based regressions is that they produce
point estimates, which can be easily skewed by outliers. If the decision maker is interested
in being robust against such error, they can remove outliers of the set before calculating the
average. In such a case u11,L would be 2+2+1

3
= 1.6. Another example of the flexibility would

be the case where the decision maker is interested in hedging against the worst case scenario.
In this case they are trying to maximize the payoff of the worst possible leaf that could come
from the branch. In such a scenario u would be the average of the smallest payoffs in the
branch, or

∑|D|
k=|D|−m+1

1
m
y(k):k∈D and thus u11,L = 0+0+1

3
= 0.3 and u11,R = 4+4+3

3
= 3.6. In this

way the upper bound method leverages the learning of the tree ensemble methods, namely
how to separate out the feature space into areas of different payoff but incorporates more
flexibility when optimizing over the forests to allow for more objectives.

Table 3.1: Synthetic training data for Tree 1

Data ID Price Discount Sales Leaf Node
1 21 0.3 0 n1

4

2 24 0.5 2 n1
4

3 22 0.3 1 n1
4

4 19 0.4 0 n1
5

5 15 0.3 2 n1
5

6 18 0.5 7 n1
5

7 20 0 4 n1
3

8 17 0.1 4 n1
3

9 22 0.2 5 n1
3

10 16 0 3 n1
3

This is enough to approximate the single tree optimization when there are no additional
constraints. The optimization would select whether to move to the left or right child of node
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i based on the following optimization, pulled from Formulation (3.1):

max
z,v

(vLui,L + vRui,R)

s.t. vL + vR = 1

vL ≤ zp(i),C(i)

vR ≤ 1− zp(i),C(i)

zp(i),C(i) ∈ 0, 1

vL, vR ≥ 0

(3.3)

It is worth noting that unlike Formulation (3.1), which has binary variables and con-
straints for every split point in the feature space, Formulation (3.3) only has one binary
variable, representing whether to go left or right.

For a single tree, the node pointer ni would start at the root node. Then the binary
variable zp(i),C(i), and by extension vL and vR would indicate whether the pointer i should
move to the left or right child node. If vL = 1 the ni would point to the left child, otherwise
ni would point to the right child and Formulation (3.3) would be run again. The process
would repeat until ni pointed towards a leaf node, which would indicate an optimal solution.
This process would trace only a single branch of the tree.

This algorithm has a linear growth in terms of binary variables. Even though the number
of nodes in a tree of depth d is worst case 2d− 1, meaning that Formulations such (3.1) and
(B.2) would scale similarly, UMOTEM would in the worst case use only d binary variables
(one binary variable for each iteration of the algorithm).

While for the sake of exposition, we stick to the version of UMOTEM in which we
greedily iterate one level of the tree at the time, this is not a requirement of the algorithm.
It is possible to consider more levels of the tree at once. For example, one can consider
a two-level iteration in which the algorithm considers whether to go left or right on the
first two levels of the tree and pick which of it’s (at most) four “grandchildren” nodes to
move to, and then iterate from there, considering the next two levels. The trade-off to
consider is that the more levels of the tree optimized at once, the more likely UMOTEM is
to find optimality. However, as the number of levels considered in one iteration increases, the
tractability decreases. This can be considered on a trade off curve. At one extreme is one-
depth UMOTEM, as outlined in this section of the chapter. It is the most tractable but with
the highest risk of suboptimality. At the other extreme is the exact MIO which considers
all levels of the tree at once. It guarantees optimality, but has the highest tractability risk.
In between these points lie the different depths of iteration, creating an efficient frontier
of the best optimality/time that can be achieved. We expand upon this idea in Section
3.5.1, where we plot this curve for one of the datasets. We now introduce the multi-tree or
ensemble version of UMOTEM.

3.3.3 UB Function for Tree Ensembles

The expansion to ensemble models is fairly straight-forward at this stage. Rather than
optimizing a single level of a single tree and repeating until a leaf node is reached, UMOTEM
optimizes one level of all trees at the same time and iterates until it reaches a leaf node in all
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trees. The key for doing this is maintaining feasibility. If at depth d, the algorithm chooses
to satisfy a split criterion (ati)

⊤x ≥ bti, then when the algorithm moves to depth d + 1 and
beyond, it needs to know that all future versions of decision variable x still satisfies the split
constraint (ati)

⊤x ≥ bti.
For example, consider if in the sample Random Forest in Figure 3.1, at depth 0, the

optimization decides that it should satisfy interior nodes n1
1 and n3

1 and fail to satisfy node
n2
1. At the next level it would be evaluating nodes n1

2, n
2
3 and n3

2. n
2
3 is a leaf node so that

is not a concern, but if it is considering whether to go left or right on nodes n1
2 and n

3
2, then

the algorithm needs to have stored the decision of previous nodes. Given it does not satisfy
the constraint of n2

1, Price ≥ 19, it must by definition then also not satisfy the constraint of
node n1

2, Price ≥ 20.
One way of storing these requirements would be at each iteration of the algorithm adding

constraints for whether each split node is satisfied or failed. However, the number of con-
straints this would result in would be quite burdensome as the algorithm gets deeper in the
tree. Instead we use box constraints to store the split criterion the algorithm has chosen
to satisfy or fail. Box constraints would store the maximum and minimum value of the
feasible region for each feature. The benefit of box constraints are that they are simple and
easy to store. Rather than adding two new constraints for every tree at every iteration,
tractability is maintained because there will only be two constraints for each feature at all
iterations. This simplification is possible because in the case of parallel split trees, these
maximum and minimum constraints are enough to summarize the split constraints for each
feature. For example, in the case of the example from the previous paragraph, where the
optimization chooses to not satisfy the split constraints of both nodes n2

1 and n
1
2, then rather

than adding both the constraints Price ≤ 19 and Price ≤ 20 to the optimization problem,
the box constraints would just store Price ≤ 19. The box constraints effectively summarize
the requirements on the split node constraints and are easy to learn. The process of learning
the box constraints is explained in Step 2 of the UMOTEM formulation.

While in this chapter we focus on parallel split trees, it is worth noting that UMOTEM
can be easily extended to the case of hyper-plane trees. Hyper-plane trees are trees where
split constraints are built off of multiple features. In this case the algorithm can either add
all the split constraints at each iteration or approximate the polytope-shaped feasible region
introduced by hyper-plane splits with box constraints. The benefit of adding all the split
constraints is that it will be an exact representation of the feasible region at each iteration
of the algorithm. Box constraints will only be an approximation of this feasible region, but
their benefit is guaranteed tractability. However, for the rest of this work we will focus on
the case of parallel splits, as these trees are the most common weak learners for tree ensemble
models.

UMOTEM can be summarised in three steps. We initialize xmin and xmax, the upper
and lower bounds for the box constraints, as the initial bounds of the feature set. We also
initialize the node pointer i to the root node of every tree t in the ensemble. We define B̂p as
the set of splits in the nodes i across all trees, along with xmin,p and xmax,p. Like before we

define K̂p = |B̂p|. While the original Bp would grow with the number of splits in the forest,

K̂p ≤ T + 2 (one split for each node in each tree, plus xmin and xmax), is only defined for
a single level of the forest and thus is significantly smaller. We initialize the set of trees to
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optimize over, T , as all the trees in the forest.
1. Optimize for One Level For nodes nt

i that we are considering, we evaluate based
on the UB function whether we want to move to the left or right child. The objective is to
maximize the payoff, as estimated through the UB function. Therefore the objective function
becomes: maxz,v

∑
t∈T wt

(
vt,Lu

t
it,L

+ vt,Ru
t
it,R

)
.

As was the case for Formulation (3.1), v represents whether we move to the left or right
child of node ni and z defines the optimal feature vector which will maximize the payoff.

Binary variable v needs to accurately represent whether we move to left or right child of
node i in tree t based on the value of z: vt,L ≤ zp(it),C(it) and vt,R ≤ 1− zp(it),C(it).

We need to pick the left or right branch of node i of tree t, therefore, we enforce: vt,L +
vt,R = 1.

As before, if we satisfy the jth constraint of feature p, then we know that x ≥ bp,j ≥
bp,j−1 ≥ · · · ≥ bp,1. Thus if zp,j+1 = 1 then it must be true that zp,j = 1: zp,j ≥ zp,j+1.

We need to enforce feasibility. To do this, we find the jmax
p and jmin

p such that bp,jmax
p

=
xmax,p and bp,jmin

p
= xmin,p. We then enforce that zp,jmax

p
= 0 (we have to be less than xmax)

and zp,jmin
p

= 1 (we have to be greater than xmin).
Finally we need z to be binary and v to be non-negative: zp,j ∈ {0, 1} and vt,L, vt,R ≥ 0.
When we put all these constraints together we get, where index it refers to the node

being pointed at by nt
i:

max
z,v

∑
t∈T

wt

(
vt,Lu

t
it,L + vt,Ru

t
it,R

)
s.t. vt,L ≤ zp(it),C(it), ∀t ∈ T

vt,R ≤ 1− zp(it),C(it), ∀t ∈ T
vt,L + vt,R = 1, ∀t ∈ T
zp,j ≥ zp,j+1, ∀p ∈ P , j ∈ {1, . . . , K̂p − 1}
zp,jmax

p
= 0, ∀p ∈ P

zp,jmin
p

= 1, ∀p ∈ P

zp,j ∈ {0, 1}, ∀p ∈ P , j ∈ {1, . . . , K̂p}
vt,L, vt,R ≥ 0, ∀t ∈ T .

(3.4)

The solution to Formulation (3.4) suggests whether it is more optimal to move to node
nt
i’s left or right child. It also provides a sample feature representation z which guarantees

the selections of left or right children are feasible. It is worth noting that while we use the
formulation from [32], we can replace the formulation with almost any of the other proposed
exact versions of the tree ensemble MIO using only the constraints and variables for a single
depth. All that is required is the ability to replace the leaf payoffs with the calculated upper
bounds, to add the box feasibility constraints and only include the constraints which pertain
to the nodes in T .

2. Update Optimal Feasible Region Before we move down in depth, we need to first
update the box constraints which limit our feasible region, based on whether the algorithm
has decided to move left or right in each tree. Specifically, for each feature p ∈ P , Formulation
(3.4) provides z, which tells us if the optimal solution fails or satisfies each of the split
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constraints of the node. For feature p, we find the j∗min
p such that it is largest j such that

zp,j = 1. Then we define a new xmin,p = bp,j∗min
p

. Similarly, we find j∗max
p such that it is

smallest j such that zp,j = 0 and define xmax,p = bp,j∗max
p

.
3. Update Node Pointers The final step of the algorithm is to update the pointer of

nt
i. As with the single tree example, if vt,L = 1 then the pointer would move to the left child

and if vt,R = 1 then the pointer would move to the right child. If the new nt
i points to a leaf

node, then its tree t is removed from the set of trees to optimize over, T . When the pointers
all point to leaf nodes, or in other words when the set T is empty, the algorithm terminates.

We write this process more formally in Algorithm 1.

Algorithm 1 UMOTEM
T ← {1 . . . T} ▷ Start with all trees to be optimized
nt
i ← nt

1 ∀t ∈ T ▷ Start at the root node
Initialize xmin and xmax

while |T | > 0 do ▷ End when there are no more trees to optimize
Optimize for One Level:

Initialize B̂p ▷ Create the ordered set of nt
i splits, xmin and xmax

Run Formulation (3.4)
Update Optimal Feasible Region:
for p ∈ P do

j∗max
p = min

j:zp,j=0
j ▷ Find the smallest split the optimization fails

j∗min
p = max

j:zp,j=1
j ▷ Find the smallest split the optimization satisfies

xmax,p ←bp,j∗max
p

xmin,p ←bp,j∗min
p

end for
Update Node Pointers:
for t ∈ T do

if vt,L = 1 then
nt
i ← nt

li
▷ Move to the left child of node i

else
nt
i ← nt

ri ▷ Move to the right child of node i
end if
if nt

i ∈ Lt then ▷ If in a leaf node, remove t from optimization set
T ← T \ {t}

end if
end for

end while

The key benefit of UMOTEM as described by Algorithm 1 is that the number of binary
variables grows linearly in terms of both the number of trees and tree depth. This stems
from the fact that the algorithm traces only a single branch of each tree when optimizing.
The first optimization in an iteration of UMOTEM, Formulation (3.4), consists of at most
T +2 binary variables (zp,j). The upper bound on the number of iterations of the algorithm
is the maximum depth of the trees in the forest. If we define the depth of the deepest tree
as dmax, then it follows that UMOTEM will involve at most (T + 2)dmax binary variables.
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This is better than other approximation methods proposed for this problem because it does
not require exponentially-growing binary variables.

It is worth noting that because UMOTEM explores only a single branch of each tree and
only makes its decision based on information available to the node it is at, it is possible to
combine the predict and optimize steps of the decision making process. Rather than training
an ensemble tree model and then optimizing it using UMOTEM, it is possible to build the
trees and optimize the branches at the same time. This algorithm would involve, for each
level of each tree, the following steps:

1. Determine if the node is a leaf node. If not, continue on to step 2.

2. Select the split criterion for the node

3. Use UMOTEM to determine whether to build out the left or right child node and move
to this node

4. Repeat steps 1-3 until a leaf node is reached

The resulting forest would be an ensemble of “trees” in which only a single branch is fully
fleshed out. This branch for each tree would be the branch where decision makers would
expect the optimal solution to lie. The result of this process would yield the same solution as
the solution found by Algorithm 1. However because this process would involve only building
out a single branch for each tree rather than the full forest, this can lead to improvements
in the time it takes to build and optimize tree ensemble models. Please see Section 3.5.1
for computational results showing the benefit of jointly predicting and optimizing. This is
important because runtime is often the main restriction when building tree ensemble models
like random forests, as these models can be take a long time to train. For models that are
only built to then optimize over, combining the training and optimizing process in such a
manner would allow for tractability gains over large datasets and tree ensembles. In the next
section we discuss the quality of UMOTEM’s optimality gap in expectation.

3.4 Bounds on the Quality of Approximation for Ran-

dom Forests

In this section we bound the expected loss from using UMOTEM. This loss is calculated in
terms of the value of the objective function when compared to the true MIO formulation
specifically for random forests. We do this by analyzing the expected difference between the
solution found by the exact MIO and the optimal solution at each iteration of UMOTEM’s
algorithm. We define this bound in terms of two features of the random forest: the quality of
the in-sample fit and how disparate the payoffs of the top leaves in the forest are. This makes
intuitive sense because if the forest is very well learned (ie small in-sample error), it will be
easier for UMOTEM to find the optimal solution. Similarly, if the difference between the
payoffs of the top leaves is large, especially compared to the in-sample error, then UMOTEM
will be more likely to find the optimal solution. The proof follows by first showing that as
the number of trees goes to infinity, both the UB function and the random forest prediction
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function converge almost surely to expected functions over the “average” tree. We then show
that these expected functions differ from each other by a finite, quantifiable amount. Finally
we use this result to calculate the expectation by integrating over the CDF of the difference
between functions.

1. Optimality Gap Definition To accomplish this we start by defining three functions:
h(x), ud(x), and h∗d(x). h(x) is the random forest prediction function for a feature vector
x. For any data point xk with realized payoff yk in the training set, we can also write
yk = h(xk) + ϵk, where ϵk is the error term. ud(x) is what the UB function estimates as the
upper-bound of the prediction for feature vector x at depth d of the random forest. We index
by the depth because at each iteration of the algorithm, as we move deeper into the tree, this
estimate will change. Finally h∗d(x) represents the highest prediction that can be achieved
by feature vector x at depth d. At depth d, we do not yet know exactly which leaves feature
vector x will end in, but we can define h∗d(x) as the best possible payoff among the leaves
that are children of the node that contains x at depth d. We define each of these functions
for the forest as a whole, but we also define the functions for individual trees, t: ht(x), u

d
t (x)

and h∗dt (x).
To illustrate the difference between these functions, we again reference the sample forest

in Figure 3.1. We assume for the rest of this section that we want to optimize the sales with
respect to the discount rate for an item whose price is set to $19. At depth one, or during
the first iteration of UMOTEM, udt (x) and h

∗d
t (x) would be approximated as Figure 3.2.

Tree 1 Tree 2 Tree 3

Discount
≥ 0.25

Price
≥ 19

Discount
≥ 0.2

h∗11 = 3
u11 = 3.6

h∗11 = 4
u11 = 4.3

h∗12 = 2
u12 = 2.8

h∗12 = 5
u12 = 6.1

h∗11 = 4
u13 = 4

h∗11 = 3
u13 = 3.5

Figure 3.2: Depth 1 Approximation of Sample Random Forest 1

For this section we assume that the data lies in a bounded set and the random forest
is well-learned. Here we use the term well-learned to imply that the expectation of the
in-sample error is zero. This means that for any data point xk with payoff yk, it can be
described as its prediction in the random forest plus a bounded noise term: yk = h(xk) + ϵk.
Because the data is bounded, the noise term is also bounded between [−δ, δ], where δ is
the magnitude of the largest in-sample error. As the random forest is well learned, we also
assume that E[ϵk] = 0.

We define x∗du as the optimal solution when optimizing with ud(x) as the objective func-
tion. Similarly, we define x∗dh as the optimal solution when optimizing with h∗d(x) as the
objective function. For a dataset with feature matrix X and outcome vector Y , and a ran-
dom forest with N trees, we aim to bound: EX,Y

[
h∗d(x∗du )− h∗d(x∗dh )|ud(∗)

]
. Namely, we

optimize the difference in terms of the best payoff between the solution found from optimiz-
ing along ud(x) and h∗d(x), given knowledge of the entire function ud(∗). This represents
the bound as it would be calculated in practice because we will have full knowledge of the
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UB function, ud(∗), and seek to understand what our optimality gap uncertainty is. It is
worth noting that if ud(x) = h∗d(x), then the payoff found by UMOTEM would be the same
as the true MIO, because at each iteration the algorithm would pick the true optimal child
branch to go to. We estimate EX,Y

[
h∗d(x∗du )− h∗d(x∗dh )

]
rather than EX,Y

[
h(x∗du )− h(x∗dh )

]
because we wish to evaluate the quality of the decision made at depth d. For example, if we
consider the sample forest shown in Figure 3.1, in Tree 3, it matters whether the Discount
variable is greater or less than 0.2 because this decides whether we go to the left or right
child of the root node. It does not matter, however whether or not the optimization selects
the Discount variable to be between 0.2 and 0.1 or less than 0.1. Whether the Discount
variable is greater or less than 0.1 will be considered at the next iteration of the algorithm
if the right branch of the tree is explored.

2. Random Forest Characteristics In order to bound the optimality gap, we consider
two features of the random forest.

Leaf Separation: First we consider how disparate the highest leaves of the forest are.
This matters because if the payoffs of the top branches are very different from each other,
especially relative to the in-sample error, the lower the optimality gap is expected to be.
This is because the stronger the separation between branches, the more likely it is that
UMOTEM explores the correct branches of the forest. For example, compare the depth one
approximation shown in Figure 3.2, with the one shown in Figure 3.3. Even though the
differences between u1 and h∗1 are greater, the scale of the differences between the branches
means that UMOTEM is likely to end up at the optimal solution. This is because even
though ud is not the same as h∗d, the separation between the leaves means that ud will still
accurately indicate whether the algorithm should explore the left or right branch of the tree.
We quantify this by defining xk

∗d
u as a point in the kth highest payoff region of ud(x). For

example, in Sample Random Forest 1 from Figure 3.2, when optimizing along the Discount
variable, x1

∗1
u would be between 0.2 and 0.25, x2

∗1
u would be less than 0.2, and x3

∗1
u would be

greater than 0.25. We can then evaluate how disparate the top payoffs of UB estimate are
by calculating ud(x1

∗d
u ) − ud(x2∗du ). For Sample Random Forest 1 from Figure 3.2 at depth

1, this would be 0.17, while for Sample Random Forest 2 from Figure 3.3, it would be 16.3.

Tree 1 Tree 2 Tree 3

Discount
≥ 0.25

Price
≥ 19

Discount
≥ 0.2

h∗11 =
100

u11 = 103

h∗11 = 52
u11 = 54

h∗12 = 43
u12 = 49

h∗12 = 75
u12 = 100

h∗13 =
104

u13 = 112

h∗13 = 53
u13 = 58

Figure 3.3: Depth 1 Approximation of Sample Random Forest 2

In-Sample Error: The second feature of the random forest that is relevant to the
optimality gap is the size of the in-sample error. Two aspects are relevant, first the largest
possible magnitude of the error term ϵ, which is δ, but also the expected size of the largest
errors. Specifically, for the iteration of the algorithm at depth d, what matters is the size
of the largest errors in the branches being considered to create the UB estimate. When
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creating the estimate of udt (x), we average the payoffs of the m highest data points in tree
t of the branch below depth d containing x. The larger these errors, the farther udt (x) is
expected to be from h∗dt (x). It is worth noting that if there is no in-sample error (δ = 0),
then ud(x) = h∗d(x) and there will be no optimality gap. We begin to formally state
this relationship by first defining Dd

t (x) as the set of training data points which fall into
descendent leaves of the node containing x at depth d. We define ϵ(k) as the order statistic
on the noise term, or the kth largest ϵ. Then we can say that our confidence in the UB
estimate of ud(x) is highly correlated with the size of ϵ(k):k∈Dd

t (x)
. More concretely, because

the UB estimate consists of the m largest data points in a region, where m is the minimum
leaf size of the random forest, our largest expected error on udt (x) can be approximated by
1
m

∑m
k=1 ϵ(k):k∈Dd

t (x)
. The larger this term, the more likely the UB function is to select the

less optimal branch to explore, and thus, the higher the expected optimality gap.
3. Bounds on Sub-Optimality Gap Given the leaf separation and in-sample error

of the random forest, udt (x
1∗d
u ), udt (x

2∗d
u ), δ, and 1

m

∑m
k=1 ϵ(k):k∈Dd

t (x)
, we can now state the

bound on our optimality gap. As the intuition above confirms, in the optimality gap, we
have that as udt (x

1∗d
u )− udt (x2

∗d
u ) grows, the bound on the optimality gap in expectation gets

smaller. Similarly, as δ and 1
m

∑m
k=1 ϵ(k):k∈Dd

t (x)
get smaller, the bound on the optimality gap

in expectation also shrinks. We state this relationship formally in Theorem 3.4:
Let udt (x) and h

∗d
t (x) be the upper bound estimate and highest prediction value respec-

tively of feature vector x for tree t at depth d. We define the optimal solution when optimizing
with objective function ud(x) as x∗du . Similarly, we define x∗dh as the optimal solution when
optimizing with objective function h∗d(x). Let EΘ indicate the expectation over the random
sample which generates the trees in the random forest and let EX,Y indicate the expectation
over the X, Y feature and payoff space. Let m be the minimum leaf size in the forest. We
define ϵdt,(k) as ϵ(k):k∈Dd

t (x)
or the kth largest noise term of error ϵ in the set of points, Dd

t (x),
which fall into children leaves of the node containing x at depth d of tree t. ϵ is bounded
in [−δ, δ]. Finally, we define xk

∗d
u as a point in the kth most optimal region of ud(x) so that

x1
∗d

u has the highest value of ud(x) and x2
∗d

u has the second highest. Then it follows that:

1. As the number of trees goes to infinity, the optimality gap, EX,Y

[
h∗d(x∗du )− h∗d(x∗dh )|ud(∗)

]
,

is bounded from below almost surely by:

−
∫ 0

−δ

exp


−

2


The separation in estimated UB values︷ ︸︸ ︷
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
−

Expected size of the largest errors︷ ︸︸ ︷
E

[
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]]
−b


2

δ2︸︷︷︸
Maximum in-sample error


db

2. For a finite forest of size T , the optimality gap, EX,Y

[
h∗d(x∗du )− h∗d(x∗dh )|ud(∗)

]
, is

bounded from below by:
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−
∫ 0

−δ

exp

−2
(

1
T

∑T
t=1

(
udt (x

1∗d
u )
)
− 1

T

∑T
t=1

(
udt (x

2∗d
u )
)
− E

[
1

mT

∑m
k=1

∑T
t=1

(
ϵdt,(k)

)]
− b
)2

δ2

 db.

Theorem 3.4 provides a worst case bound on the loss we experience by using the UB ap-
proximation function rather than the true objective function at each iteration of UMOTEM.
This bound is dependent on the two key characteristics of the random forest that we have
discussed. First, the larger the separation between the estimated UB values of different
regions, the more confident we are that there will be a low optimality gap. This is intuitive
because if the top estimates of UB values are very different, especially relative to the maxi-
mum error of the points, δ, then it is likely we have selected the optimal region to explore.
Second, the better the wellness of fit of the random forest, the more confident we are in the
solution found by UMOTEM. This is represented both by the expected size of the largest
errors in the nominator and the maximum possible error represented in the denominator.
The smaller either of these values, the smaller the expected optimality loss.

Proof of Theorem 3.4:
We start by showing that as the number of trees in the forest goes to infinity, the pre-

diction of the random forest and the UB function converge almost surely to an expected
function representing the average tree. This is proved in Step 3.4.

Let h∗dt (x) be the highest prediction value feature vector x can achieve from depth d in
tree t. Let udt (x) be the upper bound estimate of the y value from tree t on feature vector
x at depth d. Let EΘ indicate expectation over the random sample which generates the
trees in the random forest. Then as the number of trees in the forest, T , goes to infinity,
1
T

∑
t∈T h

∗d
t (x) goes almost surely to EΘ

[
h∗dΘ (x)

]
and 1

T

∑
t∈T u

d
t (x) goes almost surely to

EΘ

[
udΘ(x)

]
.

The proof follows directly from [35] where instead of evaluating the convergence of the
random forest prediction h(x), we evaluate the highest prediction at depth d, h∗d(x), and
the UB estimate ud(x). However, for the sake of completeness, we provide the proof in the
Appendix.

Step 3.4 shows convergence to an expectation; however there is also a relationship between
h∗d(x) and ud(x), and by extension EΘ

[
h∗dΘ (x)

]
and EΘ

[
udΘ(x)

]
. By definition, we have that

h∗d(x) ≤ ud(x) ∀x, because the UB function ud(x) uses the top m data points from the
region which x falls into to make the estimate, and there are at least m data points defining
h∗d(x) from the same region. As its lowest value, ud(x) will just use the same points that
define h∗d(x). We can also bound ud(x) from above when we consider that the highest value
it can possibly take is h∗d(x)+f(ϵ) where f(ϵ) is some function on the in-sample noise term.
This is because the data points which create ud(x) can only deviate from their leaf’s payoff
by ϵ. We formalize these upper and lower bounds on EΘ

[
udΘ(x)

]
in Step 3.4.

Let udt (x) and h
∗d
t (x) be the upper bound estimate and highest prediction value of feature

vector x respectively for tree t at depth d. Let the subscript Θ indicate expectation over the
random sample which generates the trees in the random forest. Let m be the minimum leaf
size in the forest and we define ϵdt,(k) as ϵ(k):k∈Dd

t (x)
, or that is the kth largest noise term, ϵ, in

the set of points, Dd
t (x), which fall into children leaves of the node containing x at depth d

of tree t. Then we have:
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EΘ

[
h∗dΘ (x)

]
≤ EΘ

[
udΘ(x)

]
≤ EΘ

[
h∗dΘ (x)

]
+

1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
. (3.5)

From our initial assumption, every data point in the training set can be described as its
prediction from the random forest plus some noise: yk = h(xk) + ϵk, where E[ϵk] = 0 and
ϵk ∈ [−δ, δ]. Because the upper bound at depth d does not know the specific leaf for which
x falls into, it takes the top m points from the union of leaves which stem from the node at
depth d which contains x. Let Dd

t (x) be the set of all points considered to build tree t which
fall into a child leaf of the node at depth d which contains x.

Therefore the upper bound function can be described as:

udt (x) =
1

m

m∑
k=1

y(k):k∈Dd
t (x)

=
1

m

m∑
k=1

h
(
x(k):k∈Dd

t (x)

)
+ ϵ(k):k∈Dd

t (x)
.

The subscript (k) denotes the order statistic, indicating that we are averaging over the
m largest payoffs in set Dd

t (x). We can upper and lower bound this amount.
The lower bound for this function is straightforward. By definition, it cannot be less than

payoff of the highest leaf which stems from the node containing x at depth d. Therefore we
have: udt (x) ≥ h∗dt (x). When we take the limit of both sides as the number of trees goes to
infinity, we also have: EΘ

[
udΘ(x)

]
≥ EΘ

[
h∗dΘ (x)

]
.

We can take an upper bound as follows:

udt (x) =
1

m

m∑
k=1

h
(
x(k):k∈Dd

t (x)

)
+ ϵ(k):k∈Dd

t (x)

≤ 1

m

m∑
k=1

h∗d(x) + ϵ(k):k∈Dd
t (x)

= h∗d(x) +
1

m

m∑
k=1

ϵ(k):k∈Dd
t (x)

.

The first inequality comes from the fact that the highest random forest prediction that can
be achieved for points in Dd

t (x) is by definition h∗d(x). As the number of trees goes to
infinity, we have:

EΘ

[
udΘ(x)

]
≤ lim

T→∞

(
h∗(x) +

1

m

m∑
k=1

1

T

T∑
t=1

ϵ(k):k∈Dd
t (x)

)

= EΘ [h∗Θ (x)] +
1

m

m∑
k=1

lim
T→∞

1

T

T∑
i=1

(
ϵ(k):k∈Dd

t (x)

)
.

We have that 1
T

∑T
t=1

(
ϵ(k):k∈Dd

t (x)

)
converges almost surely to EΘ

[
ϵ(k):k∈Dd

Θ(x)

]
. This

follows directly from the proof of Step 3.4, but rather than taking j as the average across the
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hyper-rectangle, it is the kth largest noise term. This gives us: EΘ

[
udΘ(x)

]
≤ EΘ [h∗Θ (x)] +

1
m

∑m
k=1EΘ

[
ϵ(k):k∈Dd

Θ(x)

]
.

For ease of notation we will define EΘ

[
ϵdΘ,(k)

]
as EΘ

[
ϵ(k):k∈Dd

Θ(x)

]
, giving us the equation.

Step 3.4 demonstrates that the difference between EΘ

[
h∗dΘ (x)

]
and EΘ

[
udΘ(x)

]
is at most

1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
. This makes sense because the upper bound is limited by the in-sample

error. The smaller the ϵ, the closer the upper bound will be to the true value of the highest
leaf. Using this relationship, we can bound the optimality gap EX,Y

[
h∗d(x∗du )− h∗d(x∗dh )|ud(∗)

]
as the number of trees goes to infinity, or EX,Y

[
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
|ud(∗)

]
.

EX,Y

[
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
|ud(∗)

]
= −

∫ 0

−∞
P
(
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
≤ b|ud(∗)

)
db

≥ −
∫ 0

−∞
P

(
EΘ

[
udΘ(x

∗d
u )
]
− 1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
− EΘ

[
udΘ(x

∗d
h )
]
≤ b|ud(∗)

)
db

≥ −
∫ 0

−δ

P

(
EΘ

[
udΘ(x

∗d
u )
]
− 1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
− EΘ

[
udΘ(x

∗d
h )
]
≤ b|ud(∗)

)
db

We obtain the first equality from the fact that this expectation is strictly non-positive.
This is because by definition the optimal solution from the upper bound on the random forest
prediction cannot be greater than the true optimal solution. Given this, we have that for any
non-positive random variable X with CDF F (x), the following holds: EX = −

∫ 0

−∞ F (x)dx.
We obtain the first inequality from taking the worst case scenario (ie the case where

the probability will be the highest), which is when EΘ

[
h∗dΘ (x∗du )

]
is as small as possible

and EΘ

[
h∗dΘ (x∗dh )

]
is as large as possible. We use Step 3.4 to obtain that EΘ

[
h∗dΘ (x∗du )

]
≥

EΘ

[
udΘ(x

∗d
u )
]
− 1

m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
, where EΘ

[
ϵdΘ,(k)

]
is EΘ

[
ϵ(k):k∈Dd

Θ(x∗d
u )

]
. Similarly, we use

Step 3.4 to obtain EΘ

[
h∗dΘ (x∗dh )

]
≤ EΘ

[
udΘ(x

∗d
h )
]
.

We obtain the second inequality from noting that the minimum value that EΘ

[
udΘ(x

∗d
u )
]
−

1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
−EΘ

[
udΘ(x

∗d
h )
]
can take is−δ. This is because by definition EΘ

[
udΘ(x

∗d
u )
]
−

EΘ

[
udΘ(x

∗d
h )
]
≥ 0 and − 1

m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
≥ −δ. Therefore if b < −δ, this probability be-

comes 0. We then need to only integrate the probability from −δ to 0.
Given that we have knowledge of the entire UB function and the only source of random-

ness is 1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
, we pull all the constants of the equation to the right side of the

inequality. We now want to find a lower bound on EΘ

[
udΘ(x

∗d
u )
]
− EΘ

[
udΘ(x

∗d
h )
]
− b. We

start by sorting the possible optimal solutions of the function ud(x). Let xk
∗d

u be a point in
the kth most optimal region of ud(x). We have that x1

∗d
u and x∗du are synonymous. If x∗dh also

pointed to the same region as x1
∗d

u , then there would be no optimality gap because the UB
estimate of the best branch to explore and the best random forest leaf would be in the same
region. Instead we have the highest probability for an optimality gap when x∗dh falls into the
region characterized by x2

∗d
u . Therefore, the inequality can be rewritten when we substitute
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x1
∗d

u as x∗du and bound x∗dh with x2
∗d

u . We use ud(∗) to represent knowledge of the entire UB
function.

= −
∫ 0

−δ

P

(
EΘ

[
udΘ(x

∗d
u )
]
− 1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
− EΘ

[
udΘ(x

∗d
h )
]
≤ b|ud(∗)

)
db

= −
∫ 0

−δ

P

(
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
≥ EΘ

[
udΘ(x

∗d
u )
]
− EΘ

[
udΘ(x

∗d
h )
]
− b|ud(∗)

)
db

≥ −
∫ 0

−δ

P

(
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]
≥ EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− b

)
db

We then apply the monotonic function f(x) = exp(τx), where τ is a positive constant
to make both sides of the inequality non-negative. Because both sides are of the probability
inequality are non-negative, we can apply Markov’s inequality to obtain the last inequality:

= −
∫ 0

−δ

P

(
exp

(
τ
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

])
≥ exp

(
τ
(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− b
)))

db

≥ −
∫ 0

−δ

E
[
exp

(
τ 1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

])]
exp

(
τ
(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− b
))db.

The random variable 1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]
is bounded between 0 and δ because each of the ϵ

terms are at most δ and we know the sum as a whole is strictly non-negative. Therefore,
we can use Hoeffding’s lemma to bound the nominator of the fraction. We then bring the
denominator of the fraction up into the exponent:

−
∫ 0

−δ

E
[
exp

(
τ 1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

])]
exp

(
τ
(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− b
))db

≥ −
∫ 0

−δ

exp
(
τE
[

1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]]
+ τ2δ2

8

)
exp

(
τ
(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− b
))db

= −
∫ 0

−δ

exp

(
τ 2δ2

8
− τ

(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− E

[
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]]
− b

))
db.

Therefore, we have that, for all positive values of τ , we have:

EX,Y

[
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
|ud(∗)

]
≥ −

∫ 0

−δ

exp

(
τ 2δ2

8
− τ

(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− E

[
1

m

m∑
k=1

EΘ

[
ϵdΘ,(k)

]]
− b

))
db.
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We find the tightest bound possible by minimizing the RHS over τ to obtain:

EX,Y

[
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
|ud(∗)

]
≥ −

∫ 0

−δ

exp

−2
(
EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
− E

[
1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]]
− b
)2

δ2

 db.

The second part of the theorem follows from the same proof, but without first taking the
limit as the number of trees goes to infinity. The rest of the proof follows similarly.

We can also plot the bound in terms of each of its components to see the quality of
the bound for different settings. In Figures 3.4a, 3.4b, and 3.4c we show how the opti-
mality gap changes for different values of the difference in top leaves (ie EΘ

[
udΘ(x

1∗d
u )
]
−

EΘ

[
udΘ(x

2∗d
u )
]
), the maximum in-sample error (ie δ), and the expectation of the top m errors

(ie E
[

1
m

∑m
k=1EΘ

[
ϵdΘ,(k)

]]
) respectively. Unless the value is changing over the x-axis, we

assume that in this forest, the difference between the top leaves is 10, the maximum error is
10, and the expectation of the top m errors is 3.5. We see that as the difference in the top
leaves increases or as the maximum error decreases, the optimality gap drops off sharply.
The drop off is not as steep for the expectation of the top m errors, but as the expectation
of the errors decreases, so does the optimality bound.

Figure 3.4: Optimality Gap over different features of the random forest
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The structure on Theorem 3.4 also allows us to gain insights into what specific situations
UMOTEM is guaranteed to reach optimality. The first scenario, where UMOTEM is guar-
anteed to have no optimality gap, is the ideal situation where a tree is perfectly learned.
This is because, when a tree is perfectly learned, the UB function will directly reflect the
true predictive function of the random forest. Therefore, the UB function will always in-
dicate correctly whether the optimal leaf lies in the left or right child branch, resulting in
UMOTEM always resulting in optimality. This is proved in Corollary 3.4:

When the trees in an ensemble are perfectly learned, meaning there is no in-sample error,
then UMOTEM finds an optimal solution.

Proof of Corollary 3.4: In the case where there is no in-sample error for the trees making
up the ensemble, then δ, the size of the largest error will be zero. This means that for any
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depth d and point i, 0 = −δ ≤ ϵdi ≤ δ = 0, meaning that all ϵ = 0. In this case it follows
Step 2 of the Proof of Theorem 3.4, that EΘ

[
h∗dΘ (x)

]
≤ EΘ

[
udΘ(x)

]
≤ EΘ

[
h∗dΘ (x)

]
, meaning

that EΘ

[
h∗dΘ (x)

]
= EΘ

[
udΘ(x)

]
. Because both UMOTEM and the true MIO are subject to

the same constraints, and they are now optimizing along the same objective function, we
will have that x∗du will be in the same child leaf as x∗dh , meaning there will be no optimality
gap.

The second scenario that is of interest is when the size of the in-sample error is less than
the separation between the top regions of the upper bound function. In this case, again we
will have that the optimality gap is equal to zero. This is because if the error is less than
the separation, then while the UB function will most likely not directly equal the random
forest prediction function, the probability that the UB function will indicate a leaf different
than what is optimal is still zero. This is discussed in Corollary 3.4.

Let udt (x) and h
∗d
t (x) be the upper bound estimate and highest prediction value respec-

tively of feature vector x for tree t at depth d. We define xk
∗d

u as a point in the kth most
optimal region of ud(x), so that x1

∗d
u has the highest value of ud(x) and x2

∗d
u has the second

highest. Finally let ϵi be the in-sample error of data point i. ϵ lies in [−δ, δ]. Then UMOTEM
will not have an optimality gap if: δ ≤ udt

(
x1

∗d
u

)
− udt

(
x2

∗d
u

)
.

Proof of Corollary 3.4: We have that if δ ≤ udt
(
x1

∗d
u

)
−udt

(
x2

∗d
u

)
then, as we consider the

case when the number of trees goes to infinity, we will also have that δ ≤ EΘ

[
udΘ(x

1∗d
u )
]
−

EΘ

[
udΘ(x

2∗d
u )
]
.

During the proof of Theorem 3.4, we show that the optimality gap,
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]
− EΘ
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h∗dΘ (x∗dh )

]
|ud(∗)

]
, is bounded by:
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However, we have that ϵdΘ,(k) ≤ δ ≤ EΘ

[
udΘ(x

1∗d
u )
]
− EΘ

[
udΘ(x

2∗d
u )
]
, for all ϵ, which means

the probability in the equation above comes out to be zero. This means that:

EX,Y

[
EΘ

[
h∗dΘ (x∗du )

]
− EΘ

[
h∗dΘ (x∗dh )

]
|ud(∗)

]
= 0,

resulting in no loss from using the UB function, or in other words, no optimality gap.
We see in these cases where either the error is less than the separation between the

top regions of the upper bound function, such as when the trees are perfectly learned, the
bound is tight. From this we not only bound the optimality gap in expectation of our
approximation, but we also gain some insight into which situations UMOTEM is expected
to perform well, or even obtain perfect optimality. In particular, we see that there is a close
tie between the quality of the predictive model and the quality of the prescriptive decision.
The better trained the ensemble model, or in other words, the smaller the in-sample error,
the more confident we are that UMOTEM has found optimality. This is different from the
bounds provided by the approximations in [32] and [33]. Both approximations have analytical
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Figure 3.5: Analytical and realized optimality gap

guarantees, however they decay as leaf separation increases and have no dependency on how
well the model fits the data. Therefore, when leaf payoffs are clustered close together or when
the in-sample error is high, then either the depth approximation from [32] or the sampling
approximation from [33] would have a better analytical guarantee. However, when stakes
are higher and there is significant leaf separation, or when the model better fits the data,
then UMOTEM will exhibit the better optimality gap.

We show this more visually using synthetic data. Here we generate data from an un-
derlying tree structure across five features, with leaf payoffs ranging between -250 and 250.
Noise is generated from a normal distribution with mean zero and added to the labels. As
the variance of the noise is increased, the maximum in-sample error (δ), the analytical bound
derived from Theorem 3.4, and the realized optimality gap of UMOTEM are all tracked. The
results are plotted in Figure 3.5. Each generated version of the data has two correspond-
ing points on the graph. These points are aligned vertically because they share the same
maximum in-sample error (δ). First, in red, is the analytical bound for the data and the
model built on it. This is calculated using Theorem 3.4 and the specific features of the data
(such as maximum in-sample error). The second point, in blue, is the realized optimality
gap, again as a fraction of optimality, found when UMOTEM was run on the dataset. We
see that when the maximum in-sample error (δ) is small, the bound is tight. In the next
section we will discuss how UMOTEM performs in practice with computational results.

3.5 Results from the Data

3.5.1 General Machine Learning Datasets

In this section we describe our computational results which show how UMOTEM performs
in practice. In order to test the algorithm we build several sets of random forests to optimize
over. All models and formulations are built in the Julia programming language. The random
forests are created using the package DecisionTree. Trees in the random forest are built
with a minimum node size of 5, and considering one third of the available features and all
the data points. Optimization formulations are written using JuMP (Julia for Mathematical
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Programming) and solved using Gurobi.
In this section we specifically compare two approaches to optimizing over a random forest.

First we implement Formulations (3.1) and (B.2), introduced by [32] and [33] as a baseline
for what true optimality and time to solve would be. We then compare this to UMOTEM
and the Predict and Optimize formulation both in terms of optimality found and runtime.
We test the algorithms on three publicly available datasets, from the University of California
Irvine machine learning repository and R packages, detailed below:

• Solubility: [54], [55] Predict a compound’s solubility.
Features: 228, Data Points: 951, Average Tree Depth: 17

• Concrete: [56] Predict the compressive strength of concrete formulations.
Features: 9, Data Points: 1,030, Average Tree Depth: 15

• Wine: [57] Predict the quality of Portuguese red wines.
Features: 12, Data Points: 4,898, Average Tree Depth: 18

For each of these datasets, we solve the unconstrained optimization to find a feature
vector x which maximizes the prediction of the random forest. We vary the number of trees
from 10 to 500 to show how each formulation grows with the size of the forest. For each
dataset and forest size we evaluate:

• S∗
MIO: the value of the optimal objective function found by Formulation (3.1) and (B.2).

This is the benchmark for true optimality

• S∗
UMOTEM: the value of the optimal objective function found by UMOTEM

• Opt. Gap: The optimality gap as defined by 100% ∗ S∗
MIO−S∗

UMOTEM

S∗
MIO

, the percentage

difference between the solution found by UMOTEM and true optimality

• Time (Mǐsić): the time (in seconds) to solve the MIO, Formulation (3.1), using the
proposed Benders Decomposition from [32]

• Time (Biggs et al.): the time (in seconds) to solve the MIO, Formulation (B.2), using
the proposed Benders Decomposition from [33]

• Time (UMOTEM): the time (in seconds) to solve UMOTEM

• Time (Pred. and Opt.): the time (in seconds) to solve Predict and Optimize formula-
tion

In cases where the formulation was too large for the system’s memory to compute, we label
both the objective function and time as NA.

Table 3.2 summarizes how UMOTEM and Formulations (3.1) and (B.2) compare both
in optimality and time to solve. For the full set of results, please see Tables B.1, B.2 and
B.3 in the Appendix. We see that across the board, UMOTEM and Predict and Optimize
reach near optimality in nearly negligible amounts of time compared to the true MIO. We
see the linearity of the number of binary variables in UMOTEM’s formulation reflected in
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Dataset # trees S∗
MIO S∗

UMOTEM Opt. Gap Time
(Mǐsić)

Time
(Biggs et al.)

Time
(UMOTEM)

Time
(Pred. and Opt.)

Solubility

100 1.13 1.12 0.8% 28.35 NA 3.89 2.68
200 1.13 1.11 1.2% 50.98 NA 8.85 6.70
300 1.13 1.12 0.7% 100.98 NA 12.11 8.40
400 1.13 1.11 0.9% 136.00 NA 14.56 9.02
500 1.12 1.11 1.0% 273.53 NA 20.07 12.95

Concrete

100 78.25 76.83 1.8% 14.31 454.15 0.42 0.22
200 78.21 76.78 1.8% 28.35 NA 0.92 0.39
300 78.20 76.72 1.9% 44.40 NA 1.30 0.49
400 78.26 76.72 2.0% 51.48 NA 1.47 0.67
500 78.26 76.83 1.8% 83.58 NA 1.89 0.83

Wine

100 7.37 6.69 9.2% 149.70 NA 0.85 0.31
200 7.37 6.71 9.0% 271.79 NA 1.62 0.77
300 7.37 6.78 8.1% 503.57 NA 2.44 0.93
400 7.36 6.75 8.2% 989.18 NA 2.98 1.16
500 7.36 6.81 7.5% 1216.24 NA 4.83 1.54

Table 3.2: Objective function value and times

its runtime compared to the exact MIO formulation. While Formulations (3.1) and (B.2)
have rapid growth in time to run, UMOTEM runs in fractions of seconds.

Both [32] and [33] propose approximations to their MIOs. Specifically [32] suggest to
only consider node split constraints up to some depth d, while [33] suggest sampling a subset
of the ensemble for the optimization. We compare to a 30% level approximation in Table
3.3. For the depth approximation in [32], an approximation of 30% means the optimization
considers only splits which are of depth dmax ∗ 0.3 or less. For the sampling approximation
in [33], an approximation of 30% means the optimization samples 30% of the forest. We
catalogue the following:

• S∗
DA 30%: the value of the solution found by the depth approximation of 30% from [32]

• S∗
SA 30%: the value of the solution found by the sampling approximation of 30% from

[33]

• Opt GapDA 30%: The optimality gap as defined by 100% ∗ S∗
MIO−S∗

DA 30%

S∗
MIO

, the percentage

difference between the solution found by the depth approx and true optimality

• Opt GapSA 30%: The optimality gap as defined by 100% ∗ S∗
MIO−S∗

SA 30%

S∗
MIO

, the percentage

difference between the solution found by the sampling approx and true optimality

• TimeDA 30%: the time (in seconds) to solve the depth approximation at 30%

• TimeSA 30%: the time (in seconds) to solve the sampling approximation at 30%

We show more in-depth comparisons against these approximations for all datasets in
Tables B.4-B.15 in the Appendix. What we find is that while the approximations have the
potential to provide high-quality tractable solutions, they have risk of producing sub-optimal
solutions if the approximation level is mis-selected. When we compare to UMOTEM, we
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see that UMOTEM is often able run faster while providing a solution of equal quality if not
better than either approximation. While an approximation of a higher level (such as 50% or
80%) would also produce higher results, the higher the approximation the closer it will scale
to the original MIO, risking tractability challenges. The challenge for these approximations
is selecting the level of approximation. It is also worth noting that we implemented both the
original proposed approximation and the approximation with Bender’s Decomposition. For
both cases, the original approximations do not scale to forests of reasonable size and it is
only with Bender’s Decomposition are we able to get the results we show in Tables 3.2 and
3.3.

Dataset # trees S∗
DA 30% S∗

SA 30% Opt GapDA 30% Opt GapSA 30% TimeDA 30% TimeSA 30%

Solubility

100 -4.13 0.47 467.2% 58.6% 12.77 2367.50
200 -4.05 NA 459.7% - 14.11 NA
300 -3.96 NA 451.7% - 16.92 NA
400 -0.75 NA 166.6% - 27.24 NA
500 -0.64 NA 156.9% - 26.53 NA

Concrete

100 53.97 77.27 31.0% 1.3% 7.58 35.36
200 48.52 78.21 38.0% 0.0% 9.57 121.37
300 42.27 78.12 45.9% 0.1% 11.58 186.10
400 50.50 78.00 35.5% 0.3% 13.19 589.37
500 54.68 78.13 30.1% 0.2% 12.85 2090.88

Wine

100 5.54 7.19 24.7% 2.3% 9.88 2940.74
200 5.84 NA 20.8% - 12.99 NA
300 6.39 NA 13.3% - 11.99 NA
400 6.39 NA 13.2% - 16.03 NA
500 6.05 NA 17.8% - 17.10 NA

Table 3.3: Objective function value and times of approximations

We show the comparison against all levels of the approximation on the Solubility dataset
in Figures 3.6 and 3.7. In Figure 3.6 we see that depth approximations of 50% or higher
perform comparably to UMOTEM and the true MIO in finding optimality, however once
approximations hit this level of depth their runtimes start increasing rapidly. In Figure 3.7,
we see similarly that as the sampling approximation level increases, so does the quality of
the solution found. However, very few sampling approximations scale up to a reasonable
sized forest, and those that do have a weaker performance than UMOTEM.

Figure 3.6: Solubility objective and runtimes of UMOTEM and the depth approx. by [32]
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Figure 3.7: Solubility objective and runtimes of UMOTEM and the sampling approx. by
[33]

Finally, the structure of UMOTEM allows to extend the method and consider optimizing
over multiple depths at each iteration. As described at the end of Section 3.3.2, UMOTEM
could consider instead of one level rather two, three or more levels at each iteration. The
tradeoff created in this case is between optimality and runtime. As more depths are con-
sidered at each level of UMOTEM, the chances of optimality increases even further but at
the price of tractability which deteriorates. We plot this trade off in Figure 3.8 for the
wine dataset at 500 trees. For a zoomed version of the plot, please check Figure B.1 in
the Appendix. The wine dataset was selected because, as one of the more difficult datasets
for UMOTEM to optimize over, the trade-off with depth becomes clear. We have plotted
in black both UMOTEM at one depth (in the left side of the graph), which has the low-
est optimality achieved (at 7.5% optimality gap) but also fastest runtime, and the exact
MIO as found by Formulation (3.1) with Benders Decomposition (in the right corner of the
graph), which achieves optimality but with a longer runtime. In between, we plot instances
of UMOTEM that consider more depths at each iteration, showing the efficient frontier of
time/optimality for this forest. We observe that for depths less than 6, increasing the depth
has an impact on the optimality achieved without significantly affecting runtime. Never-
theless, after that (e.g. after depth of 6), the objective function value found continues to
improve until it reaches optimality, but runtime is impacted. It is also worth noting that
after depth 10, there is significant randomness in how long the algorithm takes, even though
all reach approximate optimality, which is why depths of UMOTEM 12, 14, 15, 18, 21 and
23 take longer than the exact MIO.

Figure 3.8: Wine, 500 trees: objective and runtimes of UMOTEM for different depth itera-
tions
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3.5.2 EV Case Study

In this section we return to the application from Chapter 2. Similar to Chapter 2, we work
directly with a large American EV manufacturer to create a deterministic forecast of driver
usage using a random forest and under this model, optimize the charging and discharging of
EVs.

The data we use to build the forecast of drivers is the same as Section 2.5. Specifically,
we pull deindentified telemetry data, which records the approximate location of the car, its
mode (if it is driving, parked, charging, etc.), and battery charge level. We randomly select
1,852 EV vehicles that made trips in January and February 2021 within a major American
city. Each row in the dataset represents one vehicle and one hour. Features for the dataset
include data and time features (day of week, date, hour), location (at county level), vehicle
information (make and model) and charge level. We also engineer lag features, such as if
the car was parked in the previous time step. We then split the data into training and
testing such that training is January 1, 2021 to February 15, 2021 and testing is February
16 to February 28, 2021. The training set is then used to create a model that forecasts the
distance in kilometers the car drives during the hour. Using this set of features, we train
several models, including two linear models, one neural network and two tree ensembles
models, and evaluate out-of-sample MAE. MAE is a measure of prediction error, such that
the lower the value the more accurate the model. MAE can be calculated as:

MAE =
1

P

P∑
t=1

|At − Pt|

Where here P is the number of data points being evaluated, At is the actual value of the
data point t amd Pt is the model’s prediction of data point t. We show the accuracy of the
models in Table 3.4

Model Out-of-sample MAE
Linear Regression 2.443
Ridge Regression 1.820
Multilayer Perceptron Neural Network 1.126
XGBoost 0.983
Random Forest 0.789

Table 3.4: Model out-of-sample MAE for distance driven (km)

The tree ensembles perform the strongest of the set, with the Random Forest having the
highest out-of-sample accuracy. We assume that if the vehicle’s forecasted driving is within
an epsilon of zero, then the car is parked, and more specifically parked in a location where it
could charge or discharge back to a residential building or the grid. This assumption is based
on discussions with industry experts from our collaborators who expect that by the time the
vehicle-to-grid market emerges, charging locations will be widely abundant. Furthermore,
industry experts are interested in sizing the potential of the market when, even if the car
is parked in a public lot, there is the option of discharging to the local buildings (such as a
driver’s office space, mall, grocery store, etc.).
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We optimize the charging and discharging of the EV in the testset using the random forest
forecast of the vehicle’s driving. In addition to the tree constraints required by the structure
of the Random Forest, there are several business constraints that must be accounted for to
create a reasonable charging/discharging policy. These constraints are very similar to those
in Formulation (2.5), however they are adapted to account for the nature of the Random
Forest prediction.

Due to the deterministic, point-prediction forecast of the model, we no longer need a
dynamic programming formulation. Instead we consider all timesteps of the testset at once.
Let G be the number of time-steps in the horizon, which we are optimizing over. Let variable
og represent if the car departs from the grid at time g, how far from full the car is. Given this,
we can create the objective function to be the sum across all time steps, of the monetary and
carbon benefit of charging/discharging, the penalty for departing less than full, the linear
benefit for using the vehicle and finally a penalty on the final time step to prevent end of
horizon sell off. All these pieces come directly from the logic discussed in Chapter 2. The
objective can be represented as follows:

max
x,q,o

G∑
g=1

(β
T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j︸ ︷︷ ︸

predicted distance driven

+
∑
a∈A

xa,g
(
pag + λRrg

)
︸ ︷︷ ︸
monetary and carbon benefit

!

− λmaxog︸ ︷︷ ︸
penalty for departing less than full

− λmaxxcharge level,G︸ ︷︷ ︸
final timestep penalty

Where a ∈ {charge, V2G, V2H} represents the different decisions we can make, xg,a repre-
sents the decision to charge/discharge at time g, pag is the price at which we charge/discharge
and rg is the carbon impact of this decision.

This objective is subject to several constraints. Let ψg represent if the car is attached to
the grid at time g. We first need to ensure that if the prediction from the model is greater
than zero then ψg is 0 and if the prediction from the model is 0 then, ψg is 1:

T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j ≤ Cmax (1− ψg)

Cmax

T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j ≥ 1− ψg

If the car is not attached to the grid (ie ψg = 0), then the car cannot charge or discharge.
This means for all a ∈ {charge, V2G, V2H}:

xa,g ≤ Cmaxψg

In order to penalize when the vehicle leaves the grid, we add variable ϕg. ϕg = 1 if the car
was attached at time g − 1 and is not attached at time g. By the nature of the penalties in
the objective, the optimization will try and force ϕg to be zero whenever possible. Therefore
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we only need to guarantee that if ψg−1 = 1 and ψg = 0, then ϕg = 1. We enforce this through
constraint:

ϕg ≥ ψg−1 − ψg

We then add constraints so that og = 0 unless the car departs at time g, in which case it
equals Cmax−xcharge,g. Similar to ϕ, the optimization will try to make o as small as possible:

og ≤ Cmax − xcharge,g + Cmax ∗ (1− ϕg)

og ≥ Cmax − xcharge,g − Cmax ∗ (1− ϕg)

og ≥ 0

We introduce variable xcharge diff,g to represent the amount the car’s battery changes at
time g. If the car is attached to the grid, then this amount is how much the car charges/dis-
charges:

xcharge diff,g ≤
∑
a∈A

xa,g + Cmax (1− ψg)

xcharge diff,g ≥
∑
a∈A

xa,g − Cmax (1− ψg)

If the car is away from the grid, then this is the amount the car discharges from driving.
We make this value be the minimum of the amount the model predicts and the amount of
the charge in the battery. It is worth noting that the latter case is rare, but included to
hedge against noisy predictions:

xcharge diff,g ≤
∑
a∈A

Ŝg + Cmaxψg

xcharge diff,g ≥
∑
a∈A

Ŝg − Cmaxψg

xcharge level,g −
T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j ≤ Cmax (1− ηg)

−xcharge level,g +
T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j ≤ Cmaxηg

Ŝg ≤ xcharge level,g + Cmax (1− ηg)
Ŝg ≥ xcharge level,g − Cmax (1− ηg)

Ŝg ≤
T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j + Cmaxηg

Ŝg ≥
T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j − Cmaxηg
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We ensure that charge level in the next time step, is the charge level in this time step
minus however much has been discharged:

xcharge level,g+1 = xcharge level,g − xcharge diff,g

Finally we ensure all the other properties of a reasonable policy discussed in Section 2.3.
Specifically we have that we cannot discharge more energy than what is in the car’s battery,
we cannot charge and discharge at the same time, we cannot discharge below some minimum
charge level Cmin, we cannot charge above the battery’s max level Cmax and that there is a
maximum charging/discharging rate Xa

max:

xV2H,g + xV2G,g ≤ xcharge level,g,

xcharge,g ≥ −Xcharge
max (1− rg) ,

xV2H,g + xV2G,g ≤ XV2Xmaxrg,

Cminrg ≤ xcharge level,g −
∑
a∈A

xa,g

xcharge level,g −
∑
a∈A

xa,g ≤ Cmax,

xV2H,g, xV2G,g ≥ 0,

xcharge,g ≤ 0,

rg ∈ {0, 1}.

These constraints can be added to Formulation (B.2) to create the exact MIO, which
we then approximate using UMOTEM. Unfortunately, Formulation (B.2) does not scale to
the size and business constraints of this scenario. In addition to the significant business
constraints which are necessary to make a reasonable policy, the optimization is also run
overall time steps in the horizon. This means that to run this optimization for every hour in
just a day, it would require 24 forests to be embedded into the optimization. This means that
we do not have the exact MIO to compare to the optimality of solution found to. Instead we
compare to two other policies. First we compare to what is happening in the original policy.
This would be if the discharging market doesn’t exist, and cars only charged up when the
car attached to the grid. We also compare against a policy proposed by [14]. This policy
does not model what drivers are going to do, but instead assumes that all cars depart from
the grid at 8AM, return to the grid at 5PM and use 34.1% of its battery when the car is
away. This is a reasonable benchmark because it shows us what the market size estimates
would be with conservative estimates of driver behavior rather than granular forecasting.

In Table 3.5 we compare the three policies using two metrics. We first show what the
expected dollar savings would be when averaged across all 1,852 drivers in the 12 day test
set. We then compare the policies regarding to the CO2 consumed/saved from using each
policy.

We see that under the original policy drivers would have spent $23.9 charging their car
over the 12 day test set. While [14] gives improvement over this baseline, using UMOTEM
savings can be as high as $17.2, a $41.1 improvement over baseline. In terms of CO2 benefit,
we see that under the original policy, drivers would have consumed 0.15 tons of CO2, but
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Policy Monetary Benefit ($) Carbon Benefit (tons of CO2)
Original -23.90 -0.15
Policy from [14] -0.80 -0.02
UMOTEM 17.20 0.11

Table 3.5: Model out-of-sample MAE for distance driven (km)

with UMOTEM the market is estimated to save 0.11 tons of CO2. This is 0.26 tons of CO2
saved over baseline in just two weeks, which translates to 667 miles driven by a gas powered
car, 3.3% of a home’s annual energy consumption or 4.3 trees grown for 10 years.

3.5.3 Retail Case Study

While in Section 3.5.1, we applied UMOTEM on general machine learning datasets, in this
section we discuss an application in fashion promotions. We work with Oracle Retail to
test our optimization process to improve a retailer’s existing promotion schedule. We start
by describing the underlying fashion data and the predictive Random Forest, before then
applying UMOTEM to optimize promotions.

We worked directly with Oracle Retail to optimize promotions for a large American fash-
ion retailer which caters to young men and women. The retailer has 550+ stores across the
United States and Puerto Rico, with total revenue over $1.5 billion a year. The transaction
data we use was collected over 106 weeks from four stores in Utah for sales around women’s
tops. Each transaction is associated with a store location, item ID, date of purchase, regular
price of the item, and the price that was paid. The item identification also has a product
hierarchy associated with it that provides style and color. To prevent biases from sparsity,
we aggregate data to the store level across customers, week level across days and product
class across different styles and color. In addition we supplement this data with demographic
and market data. Specifically for each store we add census data on the age, race and gen-
der of the population in the area. For each week, we add the SP Retail Select Industry
Index, which represents companies in the retail segment of industry and the stock price of
the fashion retailer itself. This was intended to represent market trends regarding general
retail spending and attitudes towards the fashion company. To this data we also engineered
several lag and seasonal trend variables to represent how price around the item had changed
over time.

For this dataset we use the first 85 weeks as training, on which we build a random
forest model to predict sales. The random forest has 200 trees, with a max depth of 20
and minimum leaf size of 10 data points. The random forest was built using the package
DecisionTree in Julia. We evaluate the random forest model using WMAPE, a weighted
measure of prediction error. The weight of each prediction error depends on the volume of
demand, and the lower the score the better. WMAPE is calculated as follows: WMAPE =

1∑K
k=1 Ak

∑K
k=1Ak

∣∣∣Ak−Pk

Ak

∣∣∣, where for a dataset of K points, vector A represents the actual

demand and P the predicted demand. Predictions are aggregated up to product class to
calculate WMAPE. We compare the random forest both to the baseline and customer trends
model presented in [58]. The baseline model had an out-of-sample WMAPE of 0.4322 and
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the customer trends model had a WMAPE of 0.3636. By comparison, the random forest for
the same data had a WMAPE of 0.3465, a 19.8% improvement over baseline and a 4.7%
improvement over the customer trends model.

We then optimize the promotion schedule, for a single item and store over the weeks of
the promotion horizon, using UMOTEM and the trained random forest to maximize revenue
over the time horizon, and compare the new policy to the fashion retailer’s current policy.
We are also subject to a few business constraints, which require the optimization formulation
to have the flexibility to include non-parallel (or hyperplane) constraints. Therefore we base
the formulation of UMOTEM for this section on Formulation (B.2). The promotions offered
must be part of a set of permissible discounts, referred to as the discount ladder, R. There
is also a limit on the maximum number of discounts that can be offered over the horizon.

In order to formulate this, let there be G time-steps in the schedule’s horizon. Here
the promotion horizon is the out-of-sample test set of 21 weeks. The objective, which is to
maximize revenue generated by an item, can be represented as follows:

max
x,q

G∑
g=1

T∑
t=1

∑
j∈Lt

wtq
t
g,pj ,j

St
j︸ ︷︷ ︸

predicted sales

xg,Regular Pricexg,Discount︸ ︷︷ ︸
price paid after discount

where xg is the feature vector of the item at time g and the function S is the random forest’s
demand prediction for leaf j. The binary variable q is now also indexed by time step g to
represent whether feature vector xg ends up in leaf j. While the item’s regular price is not a
decision variable and can be replaced by a constant, the item’s discount is the main decision
variable, so we linearize by introducing binary variable µt

g,r,j to represent if discount r ∈ R is
offered at time g and if xs lands in leaf j of tree t. µt

s,r,j = 1 if both of these things are true
and 0 otherwise. Then the objective function becomes where p is a constant to represent the
item’s regular price: maxx,µ,q p

∑G
g=1

∑
r∈R r

∑T
t=1wt

∑
j∈Lt St

jµ
t
g,r,j.

All the normal constraints of the tree from Formulation (B.2) are also enforced, but we
have the following additional constraints. First the discount of the item must be from the
discount ladder. We introduce binary variable αg,r which will be 1 if at time g, discount
r is offered, xg,Discount =

∑
r∈R rαg,r and at each time step, one discount can be offered∑

r∈R αg,r = 1.
Next, if q indicates that xg does not fall into leaf j, then so must µ:

∑
r∈R µ

t
g,r,j ≤ qtg,pj ,j.

If α indicates that xg does not have discount r, then so must µ: µt
g,r,j ≤ αg,r.

For each time step g, xg falls into one of the leaves of tree t and have a discount from
the discount ladder (one of the options being no discount):

∑
r∈R

∑
j∈Lt µt

g,r,j = 1. Finally
to restrict that there are at most Rmax discounts offered over the time horizon, we have:∑G

g=1

∑
r∈R αg,r ≤ Rmax.

These constraints and the objective can be added in to Formulation (B.2) to form the
exact MIO that we are optimizing or into UMOTEM for the approximation. Similar to the
previous section, the exact MIO does not scale to this size, creating the need for approxi-
mations like UMOTEM. This is because rather than optimizing over just one ensemble tree
model, the formulation requires optimizing over G, here 21, ensemble tree models at the
same time so that cross time period effects can be taken into account (for example effects
of discount changes on lag variables or constraints on the maximum promotions offered over
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the time horizon). In an environment where optimizing over a single ensemble tree model
is a challenge, optimizing over multiple at the same time becomes a significant issue. We
only have UMOTEM’s optimal promotion schedule to compare with the retailer’s promotion
strategy. To see the impact of UMOTEM’s optimized promotion policy, we compare three
different policies: the retailer’s original policy, the optimized promotions from UMOTEM
where there isn’t a restriction on the maximum number of promotions (the maximum num-
ber of promotions equals the time horizon) and the optimized promotions from UMOTEM
where promotions can only be offered half of the time (the maximum number of promotions
equals half of the time horizon). For each of these policies, we evaluate the prediction of
the random forest for the expected revenue. The results are shown in Figure 3.9 and can be
summarised as follows:

• The predicted revenue from the random forest for the retailer’s policy is 9.22M. This
is often done through large discounts that drive up sales but can undercut revenue
generated. Under the retailers original policy, the average customer only paid 65% of
regular price on their fashion items. All other policies will be compared to this one.

• The predicted revenue under the optimized policy when there isn’t a restriction on the
number of promotions is 10.43M. This exhibits a 13.2% improvement over the retailer’s
policy. This policy consists of less discounts offered, so as to not undermine the overall
revenue. We see that using UMOTEM, even though it is an approximation of the exact
MIO, still shows improvement in terms of revenue performance. In this setting, where
the exact MIO is not tractable on the data and scale of the problem, UMOTEM can
direct the retailer to more optimal policies.

• The predicted revenue under the optimized policy when the maximum number of pro-
motions for an item is restricted to half the time horizon is 10.35M. This exhibits
a 12.2% improvement over the baseline. We see there isn’t a strong impact on the
optimal revenue from a stronger restriction on the number of promotions. This is
because the policy found by UMOTEM both in this scenario and in the one where
there is no maximum restriction, both use promotions sparingly for maximum impact.
This results in a policy where strong sales are still generated but the discounts do not
undercut the revenue generated.

Figure 3.9: Revenues for different promotion policies
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3.6 Conclusions

Through this work we have proposed a new approximation for optimizing along tree ensemble
models. While vast amounts of data availability have allowed for dramatic improvement and
sophistication in forecasting models, the exact way they are incorporated into optimization
methods is an area of interest. In the case of tree ensemble models, there have been several
formulations which maximize an objective function dependent on their output. However
most of these proposed works face tractability concerns, because they include exponentially
growing binary variables. There are also proposed approximations of these formulations
but very few address the exponential growth in binary variables, or if they do, they still
fail to provide theoretical guarantees on the quality of the approximation. By comparison,
in this work we have done both. We introduce UMOTEM, an Upper Bounding Method
for Optimizing over Tree Ensemble Methods. We demonstrate that UMOTEM has linearly-
growing binary variables. We also show analytically the expected optimality gap and describe
under what scenarios the approximation method is expected to do well, namely when the in-
sample error is small or the separation between payoffs is large. Finally, we show UMOTEM
performs well in practice on several publicly available machine learning datasets, an EV case
study and a retail case study.
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Chapter 4

COVID-19: A Multiwave SIR Based
Model for Learning Waves

4.1 Introduction

COVID-19 is an infectious disease caused by acute respiratory syndrome (SARS-CoV-2) [59].
Although the disease was first identified in 2019 in Wuhan, Central China, since then, it has
quickly spread globally, resulting in an international health crisis, also often referred to as the
2019–20 coronavirus pandemic ([60], [61]). A major contributor to the rapid spread of the
disease in 2020 was the combination of limited testing resources, an un-quantified proportion
of asymptomatic cases ([62]), and the lack of a vaccine or specific antiviral treatment. On
January 21, 2020 the United States identified its first confirmed case of COVID-19 ([63]) and
since then, the disease has spread rapidly through the country resulting in major economic
and social change. This has included but is not limited to, nearly 442,000 dead in just the
United States as of February 1, 2021, massive unemployment, reaching as high as 14.7% in
April 2020 ([64]), a decrease in GDP of 31.7% for the second quarter of 2020 ([65]), and
massive societal change as nearly 42% of the United States’ labor shifted to work from home
([66]).

A significant driver of this economic and social change has been the lack of widespread
pharmaceutical interventions that would slow the spread of the disease. Even as vaccines are
being administered across the country, most states have prioritized healthcare professionals,
high risk civilians and essential workers. As such, government, companies and leaders have
had to turn to other prevention measures to slow the disease among the larger population.
Methods for intervention have included social distancing, work from home mandates, limits
on the size of public gatherings and mask requirements. These interventions proved effective
at first, curbing the first wave of COVID-19 cases in April 2020. However when many of these
measures were rolled back and people grew tired of quarantine practices in late spring and
early summer of 2020, cases surged in a second, significantly larger wave. This pattern was
repeated again in the fall and winter of 2020, as the return of students to school combined
with the many end of year holidays created a massive spike in cases at the end of the year.
This spike continued to drive higher with each successive winter holiday, Thanksgiving,
Christmas and New Years, until January 8th, when the wave reached its height ([67]). This
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has been particularly challenging because the traditional epidemiology SIR model, upon
which most of the modelling efforts have been based, only captures single waves.

For COVID-19 and for many other epidemics, modelling a single wave will not be able to
capture the nature of the disease. The problem is further complicated by the many different
possible drivers of waves (e.g. behavioral changes, medical practices, disease evolution). In
practice it will often be impractical to try and capture all the different drivers that could
affect changes on the epidemic through data. For example, if it seems like a new wave is
starting, is this wave driven by behavior changes, such as people becoming more social? Have
people’s willingness to comply with mask mandates or social distancing changed? Is it due
to changes in temperature or environment that’s making the disease more infectious? Is it
due to a new variant of the disease emerging? Some of these features can be incorporated in
the model (e.g. mobility, temperature) but others are hard to quantify on a timely basis (e.g.
new variants, compliance with restrictions). Furthermore, to incorporate all features that
could possibly affect the disease will create a model that is first, difficult to learn parameters
for, and second, hard to generalize as the model will only be applicable to the epidemic it is
built for.

In this chapter, originally published in 2021, we propose a highly generalizable extension
on the Susceptible-Infected-Recovered or SIR-based model (SIR and its many additional
compartment extensions, such as the SIRD, SEIR and SIRS) which allows the traditional
epidemiology models to accurately identify and capture multiple waves. The model’s ability
to detect new waves isn’t dependent on expert advice to know key drivers of infections or
data availability of these drivers. We show that in cases where changes in the nature of the
epidemic have resulted in multiple waves, our model is able to appropriately identify and
characterize these multiple waves. We then describe an algorithm that is able to learn the
multiwave SIR model and prove that the algorithm will identify a change in infection rate
and characterize how quickly the identification will occur. Finally, we show experimentally
how the multiwave model allows for higher predictive accuracy and conclude with how this
work can improve operations and supply chain management during a pandemic.

4.2 Contributions

Our main contribution through this work is introducing a multiwave SIR model and es-
tablishing guarantees on the rate of learning. Furthermore, we demonstrate significant im-
provements in forecasting of the COVID-19 pandemic for the different states in the US. We
summarise our contributions as follows:

• We introduce the multiwave SIR-based Models: We develop a SIR-based model
that is able to account for multiple waves regardless of the waves’ drivers. The model is
driven by the reality of multiple waves in cases experienced by many states across the
United States and the world and investigates an area of SIR epidemiological modelling
that has been largely under-explored.

• We propose an algorithm to learn the model from data: We introduce a
dynamic method for learning the waves of an epidemic that requires no priors on the
number of waves in the data or the infection/recovery rate of each wave, that would

86



have been hard to know in advance. The algorithm combines traditional probabilistic
methods for learning SIR models with a martingale framework for detecting change
points in data streams. The proposed algorithm is fast, scalable and works with live
data streams.

• We give theoretical guarantees on how fast we can detect new waves: We
leverage the martingale framework to create bounds on how fast we expect to detect a
new wave of an epidemic. The bound is dependent on the parameters of the model, the
population size and difference in infection rates between subsequent waves. Specifically
for the parameters we use when modelling COVID-19, we show that we expect to flag
a new wave within half of a week.

• We show strong computational results on COVID-19 data: We show how the
multiwave model is able to create significant improvement in terms of forecasted in-
fection accuracy. We describe how this multiwave SIR model can be adapted into a
multiwave SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) model and outper-
form the original SEIRD in in-sample fit and out-of-sample accuracy. We demonstrate
that this performance is comparable with top COVID-19 forecasting models used by
the CDC. The SEIRD model is used because of its wider popularity. Furthermore, it
is more expressive because of larger number of compartments in the model.

4.3 Literature Review

Since the onset of COVID-19 pandemic, there has been a renewed interest in the modeling
and analysis of epidemiological models in the operations community. Since in the current
chapter we consider both predictive and prescriptive problems based on epidemiological
models, we briefly discuss relevant studies from both aspects in what follows.

The SIR epidemic model forms the basis the multiwave modeling used in the current
chapter. It is a compartmental epidemiological model that was first used by [68]. Compart-
mental models consider mathematical modeling of infectious diseases in which the overall
population is divided into different compartments, for example, Susceptible, Infectious and
Recovered (SIR). Differential equations are then used to model the transition of the pop-
ulation from one compartment to another. Since its introduction, the SIR compartmental
model has been extended and analyzed in various forms. One such extension known as the
SEIRD model considers further compartmentalization of the population into two extra com-
partments of the exposed (E) and the deceased (D) population. Various other extensions
have been considered and we refer the interested readers to [69] for a detailed discussion.

Compartmental epidemiological models crucially rely on important model parameters
such as infection rate, transmission rate and others. Very few studies focus on the problem
of estimating these parameters from data. [70] consider the problem of identification and es-
timation of the SIR model parameters and develop algorithms to estimate model parameters
using a least-squares methodology. Similarly, [71] proposes a robust parameter estimation
technique that uses goodness of fit on out-of-sample data to estimate the SIR model param-
eters. Others like [72] use media coverage to augment the SIR model and then show how
to estimate different model parameters. More recently [73] analyze the limits of SIR model
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parameter estimation and in-turn prove that no unbiased estimator can provide accurate es-
timates of the model parameter until observing enough of the pandemic. The current work
is complimentary to these studies since it focuses on understanding how to model and detect
multiple waves of a pandemic.

The chapter is also related to change point detection in the context of epidemiological
models. Change point detection is a widely studied topic in varied fields including statis-
tics, finance and most recently in operations and demand forecasting. For a brief overview
of the various applications and techniques used for change point detection, we refer the
interested readers to the survey paper by [74]. Our approach most closely resembles that
of probabilistic methods where the central assumption is that the sequence of observations
may be divided into non-overlapping state partitions, and the data from each partition is
sampled i.i.d from an underlying distribution (adams2007bayesian). [75] consider a general
time series process with a change point that needs to be detected and recover mini-max
and Bayesian formulations and guarantees for how fast the wave can be detected. While
similar in spirit, the authors’ model differs from the model of the current chapter in multiple
ways. First, they consider a Bayesian framework where the change point itself has a prior
distribution. Second, and more importantly, the authors assume that the observations are
i.i.d. and the distribution parameters shifts after the change point. Contrasting this to the
current chapter, the observations in our case are cases (deaths) which are not i.i.d. because
of the underlying compartmental model that governs the dynamics of the system. As such
the analysis depends on carefully modeling a martingale process from the observed cases
(deaths) that is then analyzed using large deviations theory. Since the current chapter
focuses on an epidemiological application, we discuss the relevant papers in this application
domain in more detail. [76] consider the problem of estimating not just the start, but also
the end of a pandemic using change point detection methods. Since they still focus on a
single wave, our work differs considerably from theirs. More recently, [77] focus on detecting
multiple waves of a pandemic using a Bayesian Poisson segmented regression model. While
our work and theirs both focus on being able to flag change points in the pandemic and then
training SIR parameters that only vary at the change point, the method of detection differs
greatly. Specifically, [77] detect waves all at once, resulting in a process that requires knowl-
edge of subsequent waves in order to characterize and model a specific wave. Our method
models waves in sequential fashion that allows for wave detection in real-time. Similarly,
[78] show how to estimate change points in a pandemic in the presence of noisy observations.
The chapter uses a log-likelihood method along with modeling of a background parameter
to estimate change points in the epidemic. We set ourselves apart from these works, first by
proposing a real-time method of detecting when a wave is occurring by tracking when the
predictive power of the SIR model suddenly deteriorates and proving theoretically we will
be able to detect a new wave within approximately half of a week.

There have been a considerable effort from the research community to analyze the disease
evolution of the COVID-19 pandemic. See for example, [79]–[85], amongst various others.
These studies aim at developing both analytical as well as data-driven tools to understand
the pandemic. [86] provides a brief overview of machine learning based studies for prediction.
Nevertheless, none of these studies focus on developing analytical tools for analyzing multiple
waves of the pandemic, the focus of the current work. Recent works have also focused on
modeling multiple waves of the pandemic using compartmental models. [87] consider a
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multiwave SIR model that extends the SIR model proposed by the same authors. The
model captures the effect of lock-downs by incorporating a time changing parameter in the
underlying model that causes the number of infections to go down once a lock-down is
imposed. More generally, [88] consider a Bayesian Hierarchical Model to infer the effect of
different interventions on the number of infections over time. Similarly [89] also focus on
known changes in model parameters related to known interventions that drive changes in
the pandemic case counts. Finally, [90] use wavelet theory and machine learning to directly
fit wavelet models to estimate cases. All the aforementioned studies assume that the time
of the change in parameters is known and is not learnt from the data. We focus on the
case when the parameters of the underlying model shift, but not necessarily due to known
interventions. Hence, our estimation problem becomes considerably harder. Furthermore,
we also provide analytical guarantees on the learning rate of the change point, providing
analytical justification to the modeling framework.

Researchers have also focused on empirically quantfying the effect of different interven-
tions on the spread of the pandemic. For example, [91] quantify the impact of mobility
restriction in Wuhan on the containment and delay in the spread of the virus, [92] focus on
the effect of the shelter in place order in California, and [93] discuss the role of diffusion on
an individual’s ability to self isolate and find that income and internet access are correlated
with an individuals ability to self isolate. Similarly, [94] provide evidence on the drivers of
the early US pandemic using a compartmental model and find that the main drivers are
population density and static characteristics of the state. Others, such as [88] consider a
renewal process to model the number of infected individuals and consider six different levels
of intervention which directly impact the reproduction number in the SIR models. While the
above cited studies focus on measuring the effect of specific interventions on the spread of
the pandemic, the current work focuses on the estimation of general shifts that are agnostic
to what could be driving that change, regardless of whether it is changes in government
intervention, mobility or new variant.

Finally, there has also been a considerable upsurge in operations management related
prescriptive studies related to the COVID-19 pandemic. For example, [95] focus on optimal
allocation of vaccines with limited supply. In contrast, [96] focuses on developing optimal
targeted lockdown policies to control the spread of disease in a population. [97] creates a
decision support tool for both governments and individuals to aid in various decision making
problems during the pandemic. Finally, [98] study the impact of COVID-19 on supply
chain credit risk. Similarly, [99] study the impact of the pandemic of gig economy and find
substantial differential impact of the pandemic across different groups. Furthermore, [100]
focus on finding the impact of government interventions on the spread of the pandemic.
The current chapter instead focuses on the problem of optimally allocating testing capacity
over different time periods to maximize detection of the virus amongst different population
groups: symptomatic, asymptomatic and contact-tracing.
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4.4 A Multiwave SIR-based Model

4.4.1 Intuition and Model Preliminaries:

We first describe the original SIR model upon which we are building the proposed multiwave
model. We then describe the 2-wave SIR model and finally, discuss the multiwave SIR model.
Compartmental epidemiology models, such as the original SIR model, are based on the idea
that a given population experiencing an epidemic can be grouped into sub-groups or com-
partments that can be then used to characterize the spread of the disease. The original SIR
model [68] has three such compartments: susceptible, infected and recovered. People move
from being susceptible (S) to the epidemic, to becoming infected (I) and finally recovering
(R), hence the name SIR. The order of the letters in the name often indicate the flow of
the population through the compartments. Because the entire population is split into these
compartments the size of the total population can be found by summing the size of each
individual compartment. The SIR is considered the simplest of the compartmental epidemi-
ology models, but most of the extensions are based on this foundation. A few examples of
popular extensions include accounting for populations that deceased rather than recovered
(SIRD), instances where people lose immunity and move from recovered to susceptible again
(SIRS) and a compartment for people exposed to the disease but not yet infectious (SEIR).
Movement between compartments in the SIR model is determined by the size of each com-
partment and two parameters, the infection rate β and recovery rate γ. The SIR model is
governed by 3 equations, where at time t, St is the size of the susceptible population, It is
the size of the infected population, Rt is the size of the recovered population and N is the
total population (N = St + It +Rt):

St+1 = St −
βStIt
N

, It+1 = It +
βStIt
N
− γIt, Rt+1 = γIt (4.1)

By the nature of these equations, the original SIR model assumes that once the infected
population has started to decline, it will not increase again. N , β and γ are constants
and because the differential of the susceptible population is non-positive the susceptible
population will never get bigger. Therefore, if the infected population has started to decline,
indicating that βSI

N
− γI < 0 then as the size of the susceptible population continues to fall,

βS
N

will only continue to get smaller ensuring that the differential of the infected population
remains negative. This suggests that the traditional SIR model will always predict that once
a single wave has occurred, the disease will die out. Unfortunately, a single wave has not
been the case in most regions around the United States and in many other countries.

In the 2-wave SIR model we start with the original SIR model. However, in this new
model, there is a time T1, when wave 1 ends and wave 2 starts, where the infection and
recovery rates change from β1 and γ1 to β2 and γ2. As we discuss in Section 3, our algorithm
learns when this time T1 occurs. The number of individuals in each compartment remains
the same, but at time T1+1 the system is characterized by new parameters, β2 and γ2. Thus
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the 2-wave model can be characterized by the following 3 equations:

St+1 =

{
St − β1StIt

N
t ≤ T1

St − β2StIt
N

T1 < t

It+1 =

{
It +

β1StIt
N
− γ1It t ≤ T1

It +
β2StIt

N
− γ2It T1 < t

Rt+1 =

{
Rt + γ1It t ≤ T1

Rt + γ2It T1 < t

(4.2)

Intuitively, T1 can be thought of as the time of the onset of the second wave. At time T1,
some behavior about the population has changed resulting in a different rate of infection or
recovery and we re-calibrate the model accordingly. For example, in states where government
restrictions were lifted resulting in a second wave, β1 would represent the infection rate when
government measures were in place, T1 would correspond with the lifting of restriction and
β2 would be the unconstrained rate of disease spread.

While we showed previously that the original SIR model is unable to model multiple
waves, this model will be flexible enough to capture two waves. If time T1 falls after the first
peak, then even when β1SI

N
− γ1I < 0 as it would be after the first peak, as long as neither

the susceptible nor infected populations are zero, either β2 and γ2 can make the differential
positive again. In this case the model will predict two waves for the infection.

When we consider a single change point T1 then the model will consider, at most, two
waves. However we can extend the model to multiple waves by considering multiple change
points. If we wish to model n̄ waves, we can consider change points, T1, T2, ..., Tn̄−1, and
corresponding parameters β1, γ1, β2, γ2, ..., βn̄, γn̄. We will discuss in Section 4.4.3 how to
determine the number of waves dynamically as the disease evolves.

There are two parts to learning the parameters of the multiwave SIR model. One, we
need to detect the change points, T1, T2, ... in order to segment the epidemic into waves. Two,
for each wave, we need to learn the parameters for the SIR model. We propose a dynamic
approach to learning both the change points and the infection/recovery rates. We assume
in our training data we have for daily information on, i(t), the number of new cases, and
r(t), the number of recovered cases on each day t. Given this data, we calculate the starting
condition of the wave, either from the initial conditions of the epidemic or the end conditions
of the previously modeled wave. Using the initial conditions and the data up to day t, we
learn the “best” parameters for the wave happening. Then, based on these parameters, we
evaluate whether a change point has occurred, indicating a new wave has started. If a new
wave has not happened then we move on to the next day, updating our assessment of the
parameters. If a new wave has started we record the population compartments on day t as
the initial conditions of the new wave.

4.4.2 SIR Parameters

For a given wave n, the parameters are only dependent on the initial conditions of the wave
(number of susceptible, infected and recovered at the start of the wave) and data recorded
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during the wave. We don’t need to know any information about the subsequent waves to
learn these parameters. At the start of an epidemic, we can learn the first wave parameters
directly from the data on new infection/recoveries. For each wave thereafter, training occurs
sequentially. We use the learned parameters to help detect new waves and if a new wave is
flagged, we use the end conditions of the wave we are in as the initial conditions of the new
wave so that we can learn the new wave’s parameters.

For the single wave model, it has been shown that learning the infection rate and re-
covery rate can occur quickly. The number of new infections/recovered can be modelled
as a Poisson distribution and can be solved for directly using initial conditions and data
(li2018parameter). Consider wave n that starts at time Tn−1 and ends at time Tn and assume
the n−1 previous waves have been modelled. Then we would have already modelled the initial
conditions, STn−1 and ITn−1 and previous literature (li2018parameter, hong2020estimation)
shows that we can estimate the paramters of wave n as:

β̂t
n =

∑Tn

t=Tn−1
i(t)∑Tn

t=Tn−1

St−1It−1

N

, γ̂tn =

∑Tn

t=Tn−1
r(t)∑Tn

t=Tn−1
It−1

(4.3)

where

St−1 = STn−1 −
t∑

u=Tn−1

i(u), It−1 = ITn−1 +
t∑

u=Tn−1

i(t)−
t∑

u=Tn−1

r(t) (4.4)

Nevertheless, the estimation process does not always produce the most accurate results in
practice, so the estimates for β̂t

n and γ̂tn need to be further optimized. As a result, we use
the above as a warm start in a maximum likelihood estimation procedure. Note that we do
not need any information on future waves to estimate the parameters of the current wave.

4.4.3 Change points

Before discussing change points, it is worth first explicitly defining what a “wave” is. For
the sake of our model we will define a wave as a section of time when the dynamics of the
epidemic are relatively stable such that constant parameters in the SIR model are able to
describe the spread of the disease. This means that the errors of a well tuned SIR model
should just be noise, without a trend to them. A new wave is said to have happened when
the dynamics of the underlying epidemic have changed such that the trained parameters are
no longer able to describe the epidemic. The key to wave detection then becomes identifying
when the errors of the model are no longer just noise but rather represent a shift in the
underlying infection rate. To accomplish this, we apply a martingale framework in time-
varying data streams (ho2005martingale) to the infection/recovery rate of the SIR model.
In particular, the approach follows three key steps:

1. First we define an error score per time period (Zt) based on weighted error in predictions
to estimate how strange or unusual a data point is.

2. Using these error scores over a time scale, we define a p-value (pt) that undergoes a
distributional shift, whenever there is a change point in the underlying time series.
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3. Finally, using the p-values, we define a martingale sequence and use a threshold test
to check if the martingale has shifted away significantly. This threshold test is used to
flag a new wave in the time series.

We note that while similar in spirit, the approach differs considerably from existing change
point detection methods. Whereas most change point papers assume access to a stream of
observations that are sampled i.i.d (see for example, [75], [101]–[103]), the observations in the
current chapter are COVID-19 cases (deaths) which are not i.i.d. because of the underlying
compartmental model that governs the dynamics of the system. As such the analysis depends
on carefully modeling a martingale process from the observed cases (deaths) that is then
analyzed using large deviations theory.

Error scores: First, we consider how the model looks when a new wave has not started.
Let us assume again that waves 1 . . . n− 1 have been modeled, and we are considering wave
n which begins on day Tn−1 and ends on day Tn. On each day t ∈ [Tn−1, Tn], we calculate
our best estimate of wave n’s infection rate, β̂t

n and predict our estimate of the number of

new infections, ît =
β̂t
nStIt
N

. We can use the weighted error on this prediction, Zt =
|ît−it|√
StIt

,
to understand how strange or unusual a new data point is. During the same wave, these
errors should be identically distributed. Intuitively, this is because as long as we have a
good estimate of the infection rate, the data points are all part of the same wave and after
we weight to account for changing susceptible/infection levels, we have no prior on any
days being more or less prone to error. We make the following technical assumption on the
estimation error of the individual wave parameters, to quantify the effect of estimation error
on time to detect waves.

Let β̂t
n denote the estimate of the infection rate of the underlying wave n at time step t.

Then, ∃δ ≥ 0 such that

|β̂t
n − βn| =

δ√
StIt

,

where St and It denote the susceptible and infected population at time t. The assumption
above ensures that the error in the estimation of the wave parameters are bounded as a func-
tion of the compartmental model parameters, St and It. δ is the estimation error parameter
that is large when the estimation of the underlying infection rate is not accurate and small
otherwise. Note that we only assume the existence of such δ but not its knowledge for the
proposed change point detection method to work.

We show next that the error scores constructed above follow an important property: they
are exchangeable within a wave. That is, they are i.i.d. Note that the same does not hold
for the observed sequence of cases (deaths).

The weighted sequence of errors within the same wave,{
Zt =

|ît − it|√
StIt

: Tn−1 ≤ t ≤ Tn

}

∀n is exchangeable, i.e. the joint distribution p(ZTn−1 , ..., ZTn) does not change under any
permutation of the indexes. Proof: See Appendix C.1.

We call this sequence of errors the strangeness scores of the data points.
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Exchangeability of the strangeness scores no longer holds true when a new wave has
begun. Let us consider the days Tn−1 to Tn+1 where a new wave begins at time Tn. Then
the error between Tn−1 and Tn will be exchangeable, but this won’t be true after Tn. We
expect the error to go up because the infection rate has changed and we will be using the
infection rate from wave n to model what’s happening in wave n + 1. Thus we can test
whether a new wave has started by checking exchangeability, which consists largely of two
steps (vovk2003testing). First we calculate a p-value measuring the proportion of previous
instances that had errors equal to or bigger than the current data point.

Calculating p-values and defining a martingale sequence: Let pt be defined as the
following:

pt =

∑t
u=Tn−1

1Zu≥Zt

t− Tn−1

. (4.5)

As long as the underlying error remains exchangeable, then pt is distributed uniformly in
[0, 1] (vovk2003testing). However when the next wave hits, we expect pt to drop closer to 0
for a while, on account of larger estimation error.

The key then becomes determining when pt is no longer uniformly distributed. We do
this by creating a martingale Mt, using a sensitivity parameter s

Mt =
t∏

u=Tn−1

s

1− exp(−s)
exp(−spu) (4.6)

where the martingale is initialized at some value, M0. It is worth noting that Mt =
Mt−1

s
1−exp(−s)

exp(−spt). First this shows that it is not necessary to store the entire his-
tory of pt. Second, it helps demonstrate that as long as pt is uniformly distributed, Mt is a
martingale because,

E[Mt|Mt−1] =Mt−1E

[
s

1− exp(−s)
exp(−spt)

]
=Mt−1 .

As long as pt is uniformly distributed, we expect Mt to remain around M0. However, when
pt drops, Mt will rapidly grow signaling a wave has occurred. In general the only selection
requirement for s is that it must be positive, but the larger s is, the more sensitive Mt is to
changes in infection rate. In our experiments we have found s = 2.1 is a reasonable value
for this parameter allowing the model to be sensitive to wave changes without overflagging.

We use a threshold test in order to determine whenMt has deviated significantly far away
from M0 (ho2005martingale, vovk2003testing). Note that to ensure that the martingale is
not too sensitive with respect to initial estimates of the parameters, wheneverMt drops below
1, we reset the strangeness scores and martingale. We set a threshold, λ > M0, and next
define the concept of λ-detectable waves. [λ-Detectable Waves] Let Mt be the martingale
sequence defined as before. Then, a wave is λ-detectable if there exists some time t within
the length of the wave, such that Mt > λ.

Notice that ifMt > λ, then we have detected a new wave and we reset the martingale and
strangeness scores, and begin learning the parameters of the new wave. The challenge is to
determine values for λ that are large enough that we are not overly sensitive to white noise
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but small enough so that we can quickly identify new waves, without missing anything. In
the following sections we will characterize the expected time that it takes for this approach
of using martingales to identify new waves based on the relationship between s, λ, M0 and
the other attributes of the epidemic.

4.5 Finite Sample Guarantees: how fast do we detect

a new wave?

In this section we discuss the expected time it takes to flag a λ-detectable wave in the
model. We start by first demonstrating that when a new wave hits, the martingale, Mt,
becomes a submartingale and characterize the rate of growth of the submartingale. We then
use the growth rate along with optional stopping theorem to prove bounds on the expected
detection time. For the rest of this section, we will focus on the case when a new wave results
in increasing daily new cases. This assumption is only made for analytical tractability and we
note that the multiwave model works for all new waves. Furthermore, it is in this situation
when the number of cases are going up that rapid wave detection is most relevant.

Let us say that wave n+ 1 has just kicked off but the model has not flagged it yet. This
means that the martingale would be still considering all the data from wave n, which went
from time Tn−1 to Tn, along with all the data from the new wave.

When the n + 1 wave hits at Tn, Mt becomes a submartingale. This is because when a
new wave occurs, pt is no longer uniform. The model will still be making predictions based
on wave n, but the new infections will be driven by the parameters of wave n + 1. This
will result in higher strangeness scores, Zt, which are the weighted difference between the
predicted and actual new infections, causing pt to skew closer to 0. When this happens,

E
[

s
1−exp(−s)

exp(−spt)
]
> 1, causing Mt to become a submartingale. Mt will be expected

to grow until it hits λ, flagging a new wave. Theorem 4.5 introduces a lower bound on the
growth rate of the submartingale which we use to estimate how long it will take Mt to hit
the threshold.

Consider a λ-detectable wave that starts at Tn, and assume submartingale, Mt < λ
for t > Tn, so that a wave n + 1 has occurred but a new wave has not been flagged
yet. Let s be the martingale’s sensitivity parameter, βn represent the infection param-
eter of wave n and St, It, and N be the susceptible, infected and total populations re-
spectively. Then the submartingale’s expected growth on day t can be bounded as:

E[Mt|Mt−1] ≥

Mt−1

s exp

(
−s
(√

2π
StIt

exp

(
−1

4

(|βn−βn+1|− δ√
StIt

)2

max(βn,βn+1)
StIt
N

)
+ 0.5

))
1− exp(−s)

(
1 + s0.5

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
Proof: See Appendix C.1. Theorem 4.5 shows that the growth rate is largest for days

right after a change point has happened. It is here, when t is small and the martingale is
growing the fastest, that we are most likely to detect the new wave. The farther t gets, the
smaller the growth rate of the martingale becomes.
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Given that the wave is just starting, Theorem 4.5 shows us that beyond the model pa-
rameters, the speed at whichMt grows is largely dependent on (1) the proportional difference
between the infection rates of wave n and n+1, and (2) the size of susceptible/infected pop-
ulations. This makes sense intuitively. We would expect that if the infection rates between
waves changes dramatically, the model should quickly identify a new wave has occurred. Fur-
thermore, if there is a large susceptible/infected population relative to the total population,
changes in infection rate will be amplified making new waves easier to flag.

To prove Theorem 4.5 we first use the martingale formulation to analyze the structure of
the growth rate of the martingale in terms of other problem parameters in Proposition 4.5.
Then we characterize the relationship of the strangeness scores in the new wave (Lemma
4.5) and between the new wave and old wave (Lemma 4.5) to prove Theorem 4.5.

First, we recall that if we let t be sometime after the wave n + 1 has started and recall

that Zu = |îu−iu|√
SuIu

. Let u1 be a time in wave n, then the P (Zu1 > Zt) is the probability that
the weighted error in the wave n is greater than the weighted error in wave n+1. Similarly if
u2 is a time in wave n+1 such that u2 < t, P (Zu2 > Zt) is the probability that the weighted
error earlier in wave n+ 1 is greater than the weighted error later in the wave at time t.

Let t be a day in wave n + 1 so that t > Tn. Let qn represent the probability that the
strangeness score, Z, on a day in wave n is higher than the strangeness score on day t and let
qn+1 be the probability that the strangeness score on a day before t in wave n+ 1 is higher
than the strangeness score on day t, we have:

E[Mt|Mt−1] ≥Mt−1
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
Proof: See Appendix C.1.

Notice that to analyze the growth rate of the martingale, we now need to upper bound
probabilities qn and qn+1. We focus on upper bounding these two quantities next. We start
by stating Lemma 4.5 that upper bounds qn+1.

Let qn+1 = P (Zu2 ≥ Zt), for Tn < u2 < t or the probability that the strangeness score on
a day before t in wave n+ 1 is higher than the strangeness score on day t. Then qn+1 ≤ 0.5
Proof: See Appendix C.1.

Lemma 4.5 provides a coarse upper bound on qn+1. In Lemma 4.5 we provide a stronger
bound on qn by leveraging the fact that the errors will increase when the new wave hits
because we will be using an infection rate from wave n to predict for wave n+ 1.

Let qn = P (Zu1 ≥ Zt), for u1 ∈ [Tn−1, Tn] and t > Tn or the probability that the
strangeness score on a day in wave n is higher than the strangeness score on day t, which is
in wave n+ 1. Then

qn ≤
√

2π

StIt
exp

(
−1

4

(|βn − βn+1| − δ√
StIt

)2

max(βn, βn+1)

StIt
N

)
Proof: See Appendix C.1.
The proof of Lemma 4.5 follows by integrating over all possible weighted error scores in

predicting cases on day t and using Chernoff bound to upper bound the probability estimates.
Notice that the upper-bound on qn in Lemma 4.5, and by extension the lower-bound on

the martinagale growth rate, grows with both the proportional difference in infection rate
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between the waves and the size of the population. It is worth noting, as demonstrated by this
bound, that it will be hard to identify changes in infection rate when either the susceptible
population, St, is low, meaning everyone has either had COVID-19 or been vaccinated, or
when the infected population, It, is low, which usually happens when an epidemic is just
starting or about to end.

In Theorem 4.5, we use this growth rate from Theorem 4.5 to create an upper bound on
the expected time it will take the submartingale to hit the threshold.

For any wave n, let c be a constant such that StIt
N
≥ c > 0 for all Tn ≤ t ≤ Tn+1. Then,

if the length of the wave is such that,

Tn − Tn−1 >
λ−M0 +

s2 exp

(
−s

(√
2π
Nc

exp

(
− 1

4

(|βn−βn+1|−
δ√
Nc

)2

max(βn,βn+1)
c

)
+0.5

))
4(1−exp(−s))

s exp

(
−s

(√
2π
Nc

exp

(
− 1

4

(|βn−βn+1|−
δ√
Nc

)2

max(βn,βn+1)
c

)
+0.5

))
1−exp(−s)

(
1 + s

4

)
− 1

then we can define T as the time the model successfully detects the new wave and we have
that

E[T − Tn] ≤
m1 −

√
m2

1 − 4m2(Tn − Tn−1)(λ−M0)

2m2

,

where

m1 =

s exp
(
−s
(√

2π
Nc

exp

(
−1

4

(|βn−βn+1|− δ√
Nc

)2

max(βn,βn+1)
c

)
+ 0.5

))
1− exp(−s)

(
1 +

s

2
− s

4(Tn − Tn−1)

)
− 1

 (Tn − Tn−1)

m2 =

s2 exp

(
−s(

√
2π
Nc

exp

(
−1

4

(|βn−βn+1|− δ√
Nc

)2

max(βn,βn+1)
c

)
+ 0.5)

)
4(1− exp(−s))

Proof: See Appendix C.1.
Theorem 4.5 provides an upper bound on our expected time to flag a new wave. As we

would expect, the upper bound is first driven by the submartingale’s sensitivity parameter
and the threshold at which we flag a new wave. Second, as with the growth rate, the time
till wave detection is driven by the length of waves, the proportional difference in infection
rates and the size of the population. As all of these get bigger, the sooner the model expects
to detect a new wave.

To prove Theorem 4.5, we first create a new variable Ht based on Mt which we show to
be a submartingale, and use optional stopping theorem on Ht to find the upper bound on the
expected time till detection. We won’t be able to solve for the expected time till detection
directly, but we can use an iterative method to solve for tighter and tighter bounds on the
time till detection until we get Theorem 4.5.

Let us define a new submartingale (see Lemma C.1 in Appendix C.1 for a formal proof)
for t ≥ Tn, where as before qn represent the probability that the strangeness score, Z, on a
day in wave n is higher than the strangeness score on day t and qn+1 is the probability that
the strangeness score on a day before t in wave n+1 is higher than the strangeness score on
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day t:

Ht =Mt −
t∑

u=Tn+1

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (u− Tn)
Tn − Tn−1

)
− 1

)
.

Let T be the stopping time, the first time that Mt ≥ λ, or the time when the new wave
is flagged by the model and our estimate of Tn. We recall that by definition, a wave is
λ-detectable if Mt hits λ within the length of a wave (where the length of the nth wave
is Tn+1 − Tn). Therefore we have that T − Tn ≤ Tn − Tn−1. From this we can say that
E[T − Tn] ≤ m(Tn − Tn−1) where m ∈ [0, 1]. Then the bound is finding the smallest value
for m which can hold.

We do this by considering optional stopping theorem, given that Ht is a submartingale.
We next check to see if T , the time we flag a new wave, and Ht satisfy the requirements of
optional stopping theorem, namely that T is finite almost surely and Hmin(t,T ) is bounded
(williams1991probability). We start by showing that T is finite almost surely.

For all t ≥ 0, there exists some Tλ and ϵ > 0 such that: P (T ≤ t+ Tλ) ≥ ϵ. Proof: See
Appendix C.1.

Given Lemma 4.5, we have that P (T < ∞) = 1 (williams1991probability). Next we
check if Hmin(t,T ) is bounded, such that there exists a b such that |Hmin(t,T )| ≤ b. This is
straightforward to check because |Hmin(t,T )| ≤ |Mmin(t,T )| ≤ λ. So we can set b = λ and we
satisfy the second requirement of optional stopping theorem. Applying optional stopping
theorem allows us to prove Theorem 4.5.

For our modelling purposes, we have been using s = 2.1,M0 = 203, λ = 205. Given
that qn+1 = 0.5 and when the population is large enough, as is almost always the case when
modelling state or county-level COVID-19 populations, qn becomes negligible. As long as
the length of wave (ie Tn − Tn−1) is greater than 8 days then we have that iterative process
for m holds. Practically for COVID-19 modelling, this is rarely an issue. However when
the model is applied to epidemics with quick, short waves, users need be certain to set the
threshold λ close enough to M0 that this is not an issue.

In Table 4.1 we characterize what the bound looks like in terms of wave length. Choosing
the parametric values described in Table 4.1, we find that the expected time to detect a new
wave in half a week or less.

Table 4.1: Upper bound on expected time till detection, given that s = 2.1,M0 = 203, λ =
205 and c is significantly large

Wave Length E[T − Tn] bound
Upper bound on the expected time to detect a new wave in days

10 4.04
15 3.40
20 3.20
25 3.10

Other epidemiological models: In this work we relax the assumption that parameters
of the compartmental epidemiology model are constant, however we inherit the remaining
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assumptions of the SIR model. For most of these assumptions there are known ways of relax-
ing them, largely by increasing the number of compartments in the model. The multiwave
variation is easily extendable to these variations of compartmental modelling, for example,
the computational section of the chapter uses a SEIRD model. The analytical results can
also be extended easily. In particular, we argue that under the SEIRD model, the only thing
that changes in the proof is the way we define the weighted error of the model. We define

Zt =
|êt−et|√

StIt
instead of Zt =

|̂it−it|√
StIt

where et is the number of new people in the exposed state,

and êt the estimated number of new people in the exposed state. The Recovered (R) and
Dead (D) states do not affect the results at all, as what happens to people after leaving the
(I) state is irrelevant in the martingale. The rest of the proof and the subsequent results
remain unchanged. It is worth noting that the time till detection and ease of learning will
vary with the number of compartments. Below we list the main assumptions imposed by the
traditional SIR model, how they can be relaxed and accounted for in multiwave model:

• All members of the population are equally susceptible: Due to different demo-
graphic effects on the likelihood of contracting COVID-19, plus differences in behaviors
which can reduce an individual’s risk (social distancing, quarantining, mask-wearing,
etc.), not everyone is equally susceptible. This is less of an issue when modelling at
state level because differences in individual behavior can be averaged across the the
population. This creates a relatively close approximation for high-level predictions.
However if this method were to be applied to smaller populations or where differ-
ences are more stark, differences in susceptibility can be accounted for by splitting the
susceptible population further into sub-groups based on their levels of susceptibility.

• All members of the population have equal rates of recovery: Similar to the
discussion above we’ve seen this does not hold true across demographics but can be
accounted for by including multiple infected compartments that differentiate different
rates of recovery.

• Complete immunity is inferred by recovering from the disease: There has
been evidence that this does not hold, as there have been reported cases of people
contracting COVID-19 multiple times, especially as new variants of the disease crop up.
The SIRS model is designed to account for this by allowing the recovered population
to move back to susceptible at some rate. As long as this recovery rate can be learned
or modelled, such that the size of the susceptible population is still known, this does
not affect the analytical results we present in this chapter.

• The population is closed (no births, deaths - other than that caused by
the disease - or migration): Almost all regional populations are not closed. Even
in cases where a country is able to lock borders, births and deaths will change the
population. When working with state populations, this is less of an issue because the
scale of births/deaths/migration is very small compared to the state population. For
example, births would only increase the susceptible population by approximately 1.1%
and deaths would decrease the population by 0.8% in the United States, thus not really
affecting the COVID-19 forecasts. However for small populations where births, deaths
or migrations make a difference, rates of incoming and outgoing populations can be
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accounted for. As long as the model is able to track these changes and can calculate
the number of susceptible/infected people, then it will not affect the multiwave model.

• All infections/recoveries are detectable: The SIR model assumes that all move-
ment between compartments (from Susceptible to Infected or from Infected to Recov-
ered) is detectable. This means that there are no asymptomatic cases or testing gaps.
Modelling with the SIR when data is incomplete is one of the major challenges of the
COVID-19 pandemic. Asymptomatic cases and insufficient testing can be accounted
for by adding an asymptomatic compartment and modelling assumptions around the
proportion of asymptomatic cases. It would be difficult to detect waves affecting only
the asymptomatic carriers, but the martingale wave detection approach can be applied
to the symptomatic cases in the same manner as described in the SIR model.

4.6 Results from the Data

In this section we describe our forecasting efforts using the multiwave SEIRD model for
different states in the United States. Specifically we discuss the data collected, the prediction
process and finally the model’s performance in comparison with the original SEIRD model.
We note that the SEIRD model is used because of its wider popularity. Furthermore, it is
more expressive because of larger number of compartments in the model.

We used data from the John Hopkins Coronavirus Resource Center (jhu) on daily COVID-
19 cumulative cases and deaths. The JHU COVID-19 dataset is one the primary sources
for COVID-19 case data in the United States but it does not provide reliable information
on active or recovered populations. From the JHU cumulative data, we created an active
cases feature using a 14-day rolling sum of the cumulative cases (ie active COVID-19 cases
were people who tested positive within the past 14 days) and a recovered cases feature
by assuming that everyone who tested positive for COVID-19 but isn’t an active case or
deceased, has recovered. Specifically we show two sets of results for this chapter. The first
set is on models trained on state-level data between April 12, 2020 and September 1, 2020
and then compared out-of-sample results on September 2, 2020 through October 1, 2020.
The second set is similar, state-level models but trained up to January 15, 2021 and evaluated
out-of-sample on results between January 16, 2021 and February 15, 2021.

Given a region, either state or county, and it’s active, deceased and recovered populations
we trained an SEIRD model and multiwave SEIRD model. We chose to implement an SEIRD
model rather than SIR for two reasons. First, because the incubation period for COVID-19
plays a significant role in it’s spread, it was important to include an “exposed” population.
Second, unfortunately part of COVID-19’s severity is its fatality rate and COIVD-19 deaths
are closely tracked. However, this meant we could use the reliability of the deceased popu-
lation data to train the model more accurately. In practice, the multiwave SEIRD model is
very similar to the multiwave SIR model. Waves are detected in the exact same way, however
when training populations and parameters in the wave we use an SEIRD model rather than
SIR.

For our results we use the original SEIRD model as a benchmark for our multiwave
SEIRD. The SEIRD model is the most commonly used model for understanding and pre-
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dicting new cases of COVID-19. The original SEIRD model is equivalent to a single-wave
multiwave SEIRD model. This means that in states where we do not detect multiple waves,
the two models will be exactly the same. However in cases where multiple waves have oc-
curred, the SEIRD provides a comparison for if the multiwave SEIRD is able to better fit
the data.

We describe the out-of-sample prediction performance of the SEIRD and multiwave
SEIRD models using mean absolute percentage error (MAPE). MAPE is a measure of pre-
diction error such that the lower the value, the more accurate the model. It can be calculated
as:

MAPE =
1

P

P∑
t=1

|At − Pt|
At

Where here P is the number of data points being evaluated, At is the actual value of the
data point t amd Pt is the model’s prediction of data point t. We measure the MAPEs of
the cumulative infected cases predictions over the course of a month (September 2, 2020 -
October 1, 2020 or January 16, 2021 - February 15, 2021, depending on the training set).

Table 4.2: MAPEs comparing SEIRD and multiwave SEIRD model performance aggregated
to region

Trained till Sept 01, 2020 Trained till Jan 15, 2021
Region SEIRD Multiwave SEIRD SEIRD Multiwave SEIRD
Northeast 7.6% 3.9% 24.4% 11.6%
Southeast 30.9% 7.0% 13.9% 10.8%
Midwest 12.8% 6.3% 73.5% 5.8%
West 33.4% 18.1% 17.3% 5.6%
Southwest 99.1% 5.6% 17.6% 3.5%
USA 27.0% 8.4% 31.4% 7.4%

In Table 4.2 we compare the MAPEs of the SEIRD and multiwave SEIRD models,
grouped by regions of the United States. Both models were trained at state-level, but pre-
dictions are aggregated to region level to show national trends. For full state-level MAPEs
see Table 4.3.

These results align with the context of what was happening in the United States over the
summer and winter of 2020. For the summer of 2020, much of the country had experienced
a summer second-wave of COVID-19, which is why on average the multiwave SEIRD model
trained up September 1, 2020 brings down the MAPEs by 18.6%. However the experience of
second-waves was not the same across the country. The Southeast, Southwest and West were
hit the hardest by the summer second-wave, particularly in states like California, Arizona,
Texas and Florida. Therefore it makes sense that the most modelling improvement is seen
in these regions. By comparison, the Northeast and the Midwest had very little change over
the summer, which is why there is slight but not dramatic improvement in these regions.

The trend over the winter of 2020 is slightly different. Almost all states across the
United States experienced a wave. Between the return to school, Thanksgiving, Christmas
and New Years, there was a dramatic wave that hit in the last quarter of 2020, in most states

101



far exceeding the initial wave. We see therefore that the multiwave SEIRD demonstrates
approximately similar improvement across regions.

Figure 4.1: SEIRD and multiwave SEIRD in-sample and out-of-sample prediction in Florida,
California, Texas and Massachusetts when trained up to Sept 01, 2020

We further illustrate the results of the multiwave SEIRD model by examining the in-
sample fit and out-of-sample error in specific states which we know to have experienced
multiple waves. For example, consider the states of Arizona, California, Florida and Mas-
sachusetts. In Figure 4.1 we see the comparative fit on active cases of the SEIRD and
multiwave SEIRD models trained up to September 1, 2020, with the vertical line separating
in-sample and out-of-sample predictions. We use vertical green dotted lines to show when the
multiwave SEIRD model flagged a new wave. In all of the states, the SEIRD model strug-
gles to match the in-sample fit, because the structure of the original SEIRD model forces
it to average between waves. The curve of a single wave cannot fit the multiwave nature
of the data, so the SEIRD model alternates between underestimating and overestimating
in-sample and this results in very inaccurate out-of-sample values. However, the multiwave
SEIRD model is able to more closely match the in-sample data, which results in far more
accurate out-of-sample predictions.

This pattern repeats itself in most of the states where multiple waves occur and over
time. For example, Figures 4.2 shows how the multiwave SEIRD handles the wave that
happened at the end of 2020, with results from the models trained up until January 15, 2021.
Across states the SEIRD is unable to capture the multiple waves, once again alternating
between underestimating and overestimating to average the waves into something that does
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Table 4.3: MAPEs comparing SEIRD and multiwave SEIRD model performance at state
level

Trained till Sept 01, 2020 Trained till Jan 15, 2021
Region SEIRD Multiwave SEIRD SEIRD Multiwave SEIRD
Alabama 42.6% 6.8% 12.8% 4.7%
Alaska 56.7% 14.5% 40.3% 9.8%
Arizona 66.8% 4.0% 35.1% 2.6%
Arkansas 30.8% 2.6% 4.3% 4.4%
California 41.1% 3.2% 15.6% 1.8%
Colorado 3.6% 13.8% 8.4% 11.7%
Connecticut 8.3% 7.2% 29.4% 4.7%
Delaware 8.7% 5.8% 22.3% 26.4%
District of Columbia 8.5% 1.3% 25.1% 4.6%
Florida 70.7% 3.7% 21.9% 7.5%
Georgia 30.9% 0.9% 17.2% 5.2%
Hawaii 15.4% 104.4% 6.7% 6.1%
Idaho 58.3% 3.2% 18.0% 3.2%
Illinois 19.1% 2.9% 6.4% 1.2%
Indiana 9.5% 1.7% 6.3% 5.2%
Iowa 11.8% 11.2% 21.3% 5.7%
Kansas 2.6% 1.1% 14.2% 2.1%
Kentucky 2.8% 7.0% 7.4% 5.1%
Louisiana 37.1% 18.4% 15.2% 12.5%
Maine 1.2% 3.1% 18.4% 20.3%
Maryland 4.6% 5.9% 15.9% 10.0%
Massachusetts 10.9% 1.1% 35.3% 29.0%
Michigan 14.2% 0.6% 8.3% 21.9%
Minnesota 5.2% 4.7% 33.8% 16.5%
Mississippi 31.9% 6.3% 10.0% 8.5%
Missouri 6.9% 13.3% 21.1% 3.6%
Montana 47.7% 19.2% 30.5% 3.0%
Nebraska 13.1% 6.8% 16.3% 2.3%
Nevada 53.5% 7.3% 4.9% 1.5%
New Hampshire 4.6% 5.9% 20.2% 34.8%
New Jersey 9.3% 1.1% 30.5% 1.0%
New Mexico 243.8% 2.8% 11.4% 5.7%
New York 7.4% 0.6% 38.6% 1.9%
North Carolina 29.2% 11.3% 15.7% 1.5%
North Dakota 23.7% 16.9% 686.5% 2.0%
Ohio 5.9% 6.0% 4.5% 4.1%
Oklahoma 29.5% 10.6% 6.9% 3.5%
Oregon 36.5% 2.4% 14.7% 2.4%
Pennsylvania 10.3% 3.6% 15.2% 1.2%
Rhode Island 15.7% 10.3% 22.7% 1.3%
South Carolina 52.3% 7.1% 27.6% 9.3%
South Dakota 34.0% 2.7% 30.7% 1.6%
Tennessee 34.7% 0.7% 4.7% 2.2%
Texas 56.1% 4.9% 16.8% 2.0%
Utah 23.7% 9.7% 12.8% 3.3%
Vermont 2.0% 0.6% 19.3% 3.9%
Virginia 2.2% 0.7% 19.7% 12.0%
Washington 26.6% 0.8% 4.3% 14.9%
West Virginia 5.2% 18.9% 9.6% 22.8%
Wisconsin 7.8% 7.4% 32.8% 3.7%
Wyoming 4.3% 21.0% 33.9% 3.4%
USA 27.0% 8.4% 31.4% 7.4%
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not describe the actual nature of the pandemic. By comparison, the multiwave SEIRD is
again able to more closely match actual cases in-sample. Out of sample, even though the
multiwave SEIRD tends towards over-prediction by the end of the test set because it hasn’t
learned that wave from the winter holidays is dying off by mid-February, it is still far more
accurate then the SEIRD.

Figure 4.2: SEIRD and multiwave SEIRD in-sample and out-of-sample prediction in Florida,
California, Texas and Massachusetts when trained up to January 15, 2021

It is this structured flexibility of the multiwave SEIRD model that allows it to vastly
improve the SEIRD model. By accounting for the multiple waves being experienced in the
United States, correctly detecting when they occur and allowing the model to change its
parameters accordingly, the multiwave SEIRD model is able to fit the rise and fall of cases
in-sample for accurate out-of-sample predictions. Similar graphs for all predicted regions
can be found in Appendix C.2.1 and Appendix C.2.2.

It is worth noting that the model detects many waves. For example, in California in the
January 15 model, the model flags 12 waves. This is a function of the selected lambda, in this
case 205. In this work we present results from selecting lambda based on theoretical results
(detection time under a week). For practitioners who are looking to maximize accuracy, we
recommend using a validation set to tune the hyper-parameter lambda. The higher lambda
is, the less sensitive the model will be to changes in infection rate and thus the less waves it
is likely to detect. For example in California, if lambda was increased to 225 or 250, there
would have been 8 detected waves and if lambda went up to 275, there would have been
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5 detected waves. Table C.2 in Appendix C.3, shows the relationship between lambda, the
number of detected waves and Out-of-Sample MAPEs for all modelled regions.

Another way to understand how the multiwave model forecasts COVID-19 cases is to
analyze the relationship between the detected infection rates for each wave, β̂t

n and the mo-
bility during that time. The multiwave model has the ability to detect shifts in infection rate.
This change in infection rate could be due to different government interventions (e.g. mask
mandates, work from home orders, restaurant/bar closings, gathering size limits), changes
in behavior from the population (e.g. compliance with government interventions, resuming
or limiting long-distance travel), or epidemiology-based differences (e.g. vaccinations, new
variants, transmission rate’s dependence on temperature). Intuitively, the infection rates for
the detected waves, β̂t

n would correlate with several of these drivers.
In order to analyze this relationship we compiled data on population mobility, govern-

ment intervention, weather and holidays. We utilized Google mobility data which tracked
relative changes in mobility for a state in different types of locations (https://www.gstatic.
com/covid19/mobility/Global Mobility Report.csv). Categories for these mobility scores
were retail and recreation, grocery and pharmacy, parks, transit stations, workplaces and
residential. This was combined with state-level social distancing policies gathered from
COVID19StatePolicy Github repository which tracks government mandates that might affect
social distancing and COVID-19 transmission (https://github.com/COVID19StatePolicy).
Examples of tracked policies include emergency declarations, gathering restrictions, school/-
workplace/restaurant/bar closures and public mask mandates. We also used historical
weather data from National Climatic Data Center (NCDC) of National Oceanic and At-
mospheric Administration (NOAA) to get regional temperatures (ftp.ncdc.noaa.gov) and
manually flagged relavent holidays that could affect COVID-19 spread (e.g. Memorial day,
Fourth of July, Thanksgiving, Christmas and New Years).

For each state, we created a regularized linear regression using lasso to predict β̂t
n, the

infection rate found by the multiwave model, using the features we compiled (mobility, gov-
ernment measures, temperature and holiday). The regression needed to be highly regularized
because there is strong correlation between all of these features. We see the results of the
regression for all states in Table C.1 in Appendix C.3 and summarized in Table 4.4.

Table 4.4: Summary across States of In-Sample and Out-of-Sample R-squared for Lasso
Predicting Infection Rates

In-Sample R-squared Out-of-Sample R-squared
First Quartile 0.61 0.49
Average 0.68 0.59
Third Quartile 0.78 0.70

With an average out-of-sample R-squared of 0.59, we find that many of the predictors
(mobility, government intervention, etc.) can be used in predicting the prevailing infection
rate estimated by the multiwave model. This shows another evidence of the correctness of
the epidemiological model learnt by the multiwave model.
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4.6.1 Benchmark with CDC Models

The multiwave SEIRD model is not only strong when considered against the original SEIRD
model. We can also analyze these computational results in comparison with the wealth
of other COVID-19 forecasting that has been undertaken in 2020. The Center for Disease
Control (CDC) has acted as one of the major players in collecting, evaluating and dissemi-
nating COVID-19 forecasts for cases and deaths. Models that are submitted to the CDC are
considered some of the top models in the country. With over 50 models submitted, stem-
ming from academia and industry, these models have a variety of structures and learning
processes. Those that follow the epidemiology compartmental structure often significantly
change the basic SIR or SEIRD model to account for many sub-groups (with some citing
over 10 compartments) or make the model’s parameters a function of data, such as mobility
and government interventions, to help improve accuracy. While this creates strong compu-
tational results, it means that these models often struggle to generalize or provide analytical
guarantees. By comparison, the multiwave SEIRD model, sticks to the 5 compartments
described in the name and does not incorporate additional features beyond daily COVID-19
cases and deaths. This simplicity is maintained intentionally to allow for strong and inter-
pretable analytical results in addition to computational results. Despite this fact, we find
that the multiwave SEIRD model performs strongly compared to the models uploaded to
the CDC. It is because of this strong computational performance that the multiwave SEIRD
model is part of the ensemble predictive model, MIT-CASSANDRA, one of the submitted
models to the CDC and a component of the CDC’s ensemble forecast.

In order to compare with CDC models, we simulated the process for submissions to the
CDC. Teams must submit models on Monday, and thus only have data up to the Monday of
each week, and give predictions for the number of new weekly cases for the next four Fridays.
The CDC uses a variety of forecasts, but the primary one is weekly new cases for the United
States. Because the SEIRD model is trained at state level and makes daily predictions, we
aggregated predictions across the states and days of each week to get incident cases at the
national level. Here we show two sample comparisons, the first for models trained up till
October 19, 2020 with predictions for October 24, 2020, October 31, 2020, November 7, 2020
and November 14, 2020. The second sample is for models trained up till January 18, 2021
with predictions for January 23, 2021, January 30, 2021, February 6, 2021 and February 13,
2021. We see the results of this comparison in Table 4.5 and Table 4.6.

We show these same results visually to highlight the progress of the multiwave SEIRD
model’s performance over time. In Figure 4.3 we plot the MAPEs of the CDC models and
the multiwave SEIRD over the four week predictions. We see in Figure 4.3a the results
for predictions made for October/November 2020, the multiwave SEIRD starts out in the
middle of the pack in terms of accuracy, but by the end of the forecast is one of the top
performing models. This is because the end of October marked the start of the massive
wave that hit the United States over the course of the 2020 fall/winter. Due to its wave
detection process and epidemiology structure, the multiwave SEIRD model is able to flag a
wave is starting and model the exponential growth in cases. This can be seen clearly when
we plot the prediction of the October 19, 2020 model against the true cases and CDC’s
ensemble prediction in Figure 4.4a. The ensemble prediction is the CDC’s best estimate of
what is going to happen, after considering all of the submitted CDC models, and represents
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10/24/2020 10/31/2020 11/7/2020 11/14/2020
MAPE Rank MAPE Rank MAPE Rank MAPE Rank

CU-scenario high 0.163 6 0.160 3 0.209 2 0.267 1
Karlen-pypm 0.135 4 0.154 2 0.237 3 0.303 2
CU-nochange 0.166 9 0.179 7 0.250 4 0.304 3
Multiwave SEIRD 0.206 14 0.209 9 0.274 7 0.321 4
CU-scenario mid 0.164 7 0.170 4 0.259 5 0.345 5
CU-select 0.164 8 0.170 5 0.259 6 0.345 6
JHU CSSE-DECOM 0.196 12 0.228 11 0.323 10 0.403 7
LNQ-ens1 0.150 5 0.198 8 0.309 8 0.405 8
UMich-RidgeTfReg 0.188 11 0.230 12 0.332 12 0.418 9
RobertWalraven-ESG 0.114 3 0.178 6 0.311 9 0.423 10
CU-scenario low 0.173 10 0.213 10 0.326 11 0.431 11
JHUAPL-Bucky 0.239 17 0.280 14 0.372 13 0.446 12
JCB-PRM 0.237 16 0.280 15 0.377 15 0.461 13
COVIDhub-baseline 0.199 13 0.262 13 0.375 14 0.465 14
COVIDhub-ensemble 0.230 15 0.295 16 0.405 16 0.493 15
...
TTU-squider 0.614 24 0.656 23 0.718 23 0.767 22

Table 4.5: Multiwave SEIRD and CDC models trained up till October 19, 2020 forecast
error and model rank for national weekly incident cases of COVID-19

its official forecast. We see that the CDC ensemble model predicts a flat curve for new cases,
having not picked up yet on the scale of the new wave, while the multiwave SEIRD has
begun to model the exponential growth.

The predictions made on January 18, 2021 are a little more interesting. Here we see
that all the models are struggling to forecast what is going to happen, with MAPES for all
models unusually high. The United States was at a tipping point and it was possible the
cases would continue to grow or start dying off. This is clearly shown when we look at the
state-level predictions in Figure 4.2. Some states have already begun to pivot down and
cases have started dying off, but other states look like they were going to grow. For the

(a) Predictions made on Oct 19, 2020 (b) Predictions made on Jan 18, 2021

Figure 4.3: Multiwave SEIRD and CDC models forecast error for national weekly incident
cases of COVID-19
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1/23/2021 1/30/2021 2/6/2021 2/13/2021
Model MAPE Rank MAPE Rank MAPE Rank MAPE Rank
UCLA-SuEIR 0.019 1 0.139 3 0.235 3 0.332 3
Multiwave SEIRD 0.030 2 0.148 4 0.303 4 0.466 6
TTU-squider 0.055 3 0.071 2 0.098 1 0.126 1
JHU IDD-CovidSP 0.101 4 0.001 1 0.141 2 0.283 2
LANL-GrowthRate 0.106 5 0.198 5 0.327 6 0.476 7
LNQ-ens1 0.126 6 0.202 6 0.313 5 0.433 4
JHU CSSE-DECOM 0.172 7 0.291 7 0.430 8 0.584 9
Geneva-DetGrowth 0.229 8 - - - - - -
Google Harvard-CPF 0.242 9 0.439 20 0.585 19 0.851 21
COVIDhub-baseline 0.266 10 0.363 11 0.493 11 0.644 12
Karlen-pypm 0.272 11 0.367 12 0.494 12 0.637 11
RobertWalraven-ESG 0.274 12 0.318 8 0.386 7 0.465 5
COVIDhub-ensemble 0.287 13 0.358 10 0.477 10 0.613 10
JHUAPL-Bucky 0.297 14 0.355 9 0.441 9 0.536 8
CU-nochange 0.309 15 0.393 13 0.550 15 0.726 16
...
UCSB-ACTS 0.551 25 0.719 24 0.934 24 1.177 23

Table 4.6: Multiwave SEIRD and CDC models trained up till January 18, 2021 forecast
error and model rank for national weekly incident cases of COVID-19

multiwave SEIRD model, this means that some states have forecasts that show exponential
decay, while others continue to show exponential growth. We can see this tension in the
national forecasts made by the multiwave SEIRD in Figure 4.4b, as the forecasts show some
drop, but then growth again. However, because the SEIRD model is able to flag that the
wave was dying off in enough states, it starts off closer to the truth in the first week of
predictions, and this translates to strong performance across the rest of the weeks, resulting
in the multiwave SEIRD model being among the most accurate models during this time, as
shown in Figure 4.3b.

(a) Predictions made on Oct 19, 2020 (b) Predictions made on Jan 18, 2021

Figure 4.4: Multiwave SEIRD and CDC ensemble forecasts for national incident cases of
COVID-19

108



4.7 Conclusions

The COVID-19 pandemic has shown us that disease transmission is not determined just by
how contagious a virus is. Population behavior and mitigation strategies play a major role
in how quickly a disease spreads. Because of this it is not enough to just model a virus’s
contagion and assume that population behavior remains constant. The multiwave SIR model
creates a basis for understanding, modelling and predicting when epidemics are driven by
human nature as much as a virus’s transmission rate.

The multiwave SIR model accounts for the multiple waves of COVID-19 seen in the
United States. The model provides a framework for detecting when a new wave is occurring,
and allows the epidemiology model the flexibility to adjust for new waves. The detection
process is theoretically proven to be rigorous, namely quick to pick up on new waves. Ex-
perimentally, the multiwave SIR model shows significant improvement over it’s single wave
counterpart. In regions that have experienced multiple waves, the multiwave SIR model
is not forced to average between them like the original SIR model, but rather can match
each wave for its infection/transmission/recovery rates. This results in significantly better
in-sample fit and out-of-sample accuracy.

Forecasting the COVID-19 evolution, and specifically the occurrences of new waves, is
critical in managing operations and supply chains through the pandemic. Identifying and
forecasting COVID-19 waves is crucial in answering three major supply-chain related ques-
tions for manufacturers, retail companies, restaurants, and healthcare organizations: (i)
What products and resources should these organizations supply?, (ii) How should these orga-
nizations structure their supply chain in times of pandemic?, (iii) What medium should these
organizations use to sell or distribute their products?. Or alternatively, (i) What to supply?,
(ii) How to supply?, and (iii) How to distribute?

1. What to supply? : the first point is about shifting priorities and changing customer
behavior. New waves appearing trigger a panic-buying behavior. As a result, there
is a demand surge for many essential supplies such as groceries or hygiene products
at common point-of-sale locations ([104]). Being able to correctly predict new waves
in particular locations allows organizations such as retailers to anticipate this demand
surge and provide enough supply to avoid letting the hoarding behavior put the most
vulnerable people at risk. This is also true in a healthcare setting, when hospitals in
different locations experience a demand surge in resources like ventilators when a new
wave of COVID-19 hits ([97]), requiring a rapid shift in the way these resources are
allocated.

2. How to supply? : additionally, the supply chain during a pandemic should satisfy two
main criteria: safety and flexibility. For the former, recent research such as [105] and
[106] shows how the COVID-19 spread impacts the supply chain through the safety
measures, and how to make these safety measures evolve accordingly. For the latter,
as governments tighten or loosen the COVID-19 restrictions according to new waves
appearing, forecasting models with high predictive power such as the multiwave SIR
allows specific businesses such as restaurants to anticipate the re-opening and closure
of their activities. Thanks to that, these businesses can plan the dependant supply
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chains subsequently, e.g., by prioritizing diversification or limiting large inventories of
perishables when a new wave is approaching. Finally, there have been a lot of literature
on resource allocation during pandemics based on these dynamics, whether it is for
general resources ([107]) or vaccine for examples ([108]), where similar predictions are
used in optimization-based models.

3. How to distribute? : last but not least, as online retail jumped to $26.7 trillion in 2020,
up 4% from the previous year ([109]), fuelled by COVID-19, retailers, for example
in clothing or home furniture, need to be able to accommodate different distribution
channels. The supply chain should shift to online retail during lock-downs and when
new waves appear, and allow the safe re-opening of brick-and-mortar stores when
restrictions are loosened and demand for in-person shopping increases.

This allows us to conclude that the multiwave SIR model, combined with the right
optimization framework, can be used to drive meaningful real-world impact.
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Chapter 5

Conclusions

Through this thesis, our objective is to translate goals around sustainable operations into
practical decisions by creating data-driven decision-making tools. This thesis delves into the
operational management challenges faced by organizations striving to operate competitively
within markets while facing sustainable challenges such as increasing renewable energy and
epidemic waves.

First we tackle the issue of affordable and clean energy and climate action by refining
estimates on the potential of the vehicle-to-grid market. If this market proves fruitful it will
help encourage adoption of EVs as vehicles become a source of passive income and allow
for greater reliance on sustainable sources of energy as we increase the supply of energy
storage to the grid. We do this by introducing a dynamic optimization with a focus on
driver-behavior. This model leverages real deidentified driver data to take an individual
driver’s perspective on how much they can discharge out of their usual driving behavior. We
guarantee for this setting that resulting policies serve driver behavior and are interpretable to
it’s users. Specifically we prove that policies will follow a two-threshold structure that can be
easily communicated to drivers. Finally we work closely with an American EV manufacturer
to quantify the impact of the market in terms of both monetary savings as well as CO2
savings.

Second, we tackle the problem of optimizing when objectives are determined by a tree
ensemble model. This is relevant for decision makers that are looking to leverage their
granular, accurate and deterministic tree models to make more optimal decisions. For this we
propose the general approximation method UMOTEM, which is able to solve optimizations
determined by tree ensemble models in a tractable manner. Specifically we show that the
number of binary variables will grow linearly rather than exponentially. We are also able to
bound the optimality gap of the approximation. We show that the model is able to perform
strongly on a variety of publicly available datasets. We also bring the issue back to the
sustainable goals of clean energy and climate action, by discussing an EV case study where
we show the power of UMOTEM in estimating the potential size of the vehicle discharging
market. We also contribute to business growth by showing how UMOTEM can be used in a
retail case study to plan markdown promotions for a fashion retailer.

Finally, we contribute to the wealth of operations research around the COVID-19 pan-
demic. Specifically we introduce a way of modelling the multiple waves of the disease while
remaining agnostic to the specific drivers of the new wave. This is particularly important

111



as we saw during the COVID-19 pandemic, decision makers would often have to respond
to changes in the disease without fully understanding what was causing the change. The
multiwave SIR model proposed pairs the traditional epidemiology model with a martingale
framework to flag new waves. We prove that the model will be able to flag new waves of
COVID-19 in less than a week. We also compare the model to other cutting-edge methods
and show that it among the top performers of models submitted to the CDC.

This thesis aims to contribute to the literature on data-driven decision making in sustain-
able operations. Through this work and our close collaboration with industry partners, we
aid decision makers through fact based modelling to improve sustainable practices in both
literature and practice.
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Appendix A

Proofs and Figures of Chapter 2

A.1 Proofs

Proof of Optimality: We prove this case by case. Constants in the objective, resulting
in a linear slope regarding charge level, will not affect the concavity of the solution, so for
simplicity of notation we will ignore the λmax,t+1 (Cmax − c)−λmin,t+1 (Cmin − c)++λcc terms
in the objective in this section.

Case 1: c < c∗charge ≤ c∗V2X: We first observe that in this scenario the policy of discharg-
ing is dominated by doing nothing. Discharging down to ĉ < c would result in an objective
of (c− ĉ)

(
wV2X

t+1 + λRrt+1 − λc
)
+ 1

λtime,t+1
E [V1 (sĉ,t+2)]. We show that this is less than the

value of doing nothing: 1
λtime,t+1

E [V1 (sc,t+2)]:

1

λtime,t+1

E [V1 (sc,t+2)]− (c− ĉ)
(
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E [V1 (sĉ,t+2)]

≥ (c− ĉ) 1

λtime,t+1

(E [V1 (sc,t+2)]− E [V1 (sc−1,t+2)])− (c− ĉ)
(
wV2X

t+1 + λRrt+1 − λc
)

= (c− ĉ)
(

1

λtime,t+1

E [V1 (sc,t+2)]−
1

λtime,t+1

E [V1 (sc−1,t+2)]− wV2X
t+1 − λRrt+1 + λc

)
≥ (c− ĉ)

(
1

λtime,t+1

E
[
V1
(
sc∗V2X,t+2

)]
− 1

λtime,t+1

E
[
V1
(
sc∗V2X−1,t+2

)]
− wV2X

t+1 − λRrt+1 + λc

)
≥ 0

The first and second inequalities comes from the concavity of E [V1 (sĉ,t+2)] while the last
comes from the definition of c∗V2X.

Given that discharging is sub-optimal the only other policy remaining is charging or
doing nothing. In such a scenario the objective of the optimization becomes concave for the
decision variable x∗chargec,t+1,1 :

x∗chargec,t+1,1

(
wcharge

t+1 + λRrt+1 − λc
)
−λmax,t+1 (Cmax − c)−λmin,t+1 (Cmin − c)++

1

λtime,t+1

E
[
V1

(
sc−x∗charge

c,t+1,1 ,t+2

)]
+λcc.

As a concave function we find its maximum when the first derivative is zero. This is at
c∗charge by its definition. Therefore the optimal policy is to get as close to c∗charge as possible:
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−min
(
c∗charge − c,Xcharge

max

)
. We have to take the minimum because we are constrained to

charging at most Xcharge
max .

Case 2: c∗charge ≤ c ≤ c∗V2X: We continue to observe that it does not make sense to
discharge the battery. The proof of this follows the same as the previous Case 1.

We next observe that in this scenario it also does not make sense to charge. Charging up to

ĉ > c would result in an objective of − (ĉ− c)
(
wcharge

t+1 + λRrt+1 − λc
)
+ 1

λtime,t+1
E [V1 (sĉ,t+2)].

We show that this is less than the value of doing nothing: 1
λtime,t+1

E [V1 (sc,t+2)]:

1

λtime,t+1

E [V1 (sc,t+2)] + (ĉ− c)
(
wcharge

t+1 + λRrt+1 − λc
)
− 1

λtime,t+1

E [V1 (sĉ,t+2)]

≥ (ĉ− c)
(
wcharge

t+1 + λRrt+1 − λc
)
− (ĉ− c) 1

λtime,t+1

(E [V1 (sc+1,t+2)]− E [V1 (sc,t+2)])

= (ĉ− c)
(
wcharge

t+1 + λRrt+1 − λc −
1

λtime,t+1

(
E [V1 (sc+1,t+2)]−

1

λtime,t+1

E [V1 (sc,t+2)]

))
≥ (ĉ− c)

(
wcharge

t+1 + λRrt+1 − λc −
1

λtime,t+1

(
E
[
V1
(
sc∗charge+1,t+2

)]
− 1

λtime,t+1

E
[
V1
(
sc∗charge,t+2

)]))
≥ 0

As before, the first and second inequalities comes from the concavity of E [V1 (sĉ,t+2)]
while the last comes from the definition of c∗V2X.

Case 3: c∗charge ≤ c∗V2X < c: Like the previous scenario, we observe that it does not
make sense to charge. The proof of this follows directly as the previous Case 2.

Given that charging is sub-optimal the only other policy remaining is V2X or doing noth-
ing. In such a scenario the objective of the optimization becomes concave for the decision
variable x∗V 2X

c,t+1,1: x∗V 2X
c,t+1,1

(
wV2X

t + λRrt − λc
)
− λmax,t (Cmax − c)− λmin,t (Cmin − c) + 1

λtime,t+1
E
[
V1

(
sc−x∗V 2X

c,t+1,1,t+2

)]
+ λcc.

As a concave function we find its maximum when the first derivative is zero. This is at
c∗V2X by its definition. Therefore the optimal policy is to get as close to c∗V2X as possi-
ble: −min

(
c− c∗V2X, XV2X

max

)
. We have to take the minimum because we are constrained to

charging at most XV2X
max .

We now consider the scenario where c∗charge > c∗V2X.
Case 4: c < c∗V2X ≤ c∗switch ≤ c∗charge: This case is exactly the same as Case 1. Doing

nothing dominates discharging, and charging dominates doing nothing. The proof for this
scenario follows exactly as Case 1.

Case 5: c∗V2X ≤ c < c∗switch ≤ c∗charge: This challenge with this scenario is that there are
states where both charging and discharging dominate over doing nothing. Thus we define
c∗switch as the first time discharging as a policy dominates over charging. We note that
the optimal charging policy at c is min

(
c∗charge − c,Xcharge

max

)
. This is because the objective

function for charging is concave, and the function’s argmax, c∗charge is higher than c. Using
this optimal charging policy would result in an objective of

−
(
min

(
c∗charge − c,Xcharge

max

)) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗charge,c+Xcharge

max ),t+2

)]
+λcc.

Similarly the optimal discharging policy is min
(
c− c∗V2X, XV2X

max

)
as the argmax for dis-

charging, c∗V2X is less than c. The optimal discharging policy would result in an objective of(
min

(
c− c∗V2X, XV2X

max

)) (
wV2X

t+1 + λRrt+1 − λc
)
+ 1

λtime,t+1
E
[
V1
(
smax(c∗V2X,c−XV2X

max ),t+2

)]
+λc (c).
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Therefore we define c∗switch as the minimum value between c∗V2X and c∗charge such that:

−min
(
c∗charge − c∗switch, Xcharge

max

) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗charge,c∗switch+Xcharge

max ),t+2

)]
≤ min

(
c∗switch − c∗V2X, XV2X

max

) (
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗V2X,c∗switch−XV2X

max ),t+2

)]
.

If c∗V2X ≤ c < c∗switch, then by definition, we have that

−min
(
c∗charge − c,Xcharge

max

) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
sc+min(c∗charge−c,Xcharge

max ),t+2

)]
> min

(
c− c∗V2X, XV2X

max

) (
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1
(
sc−min(c−c∗V2X,XV2X

max ),t+2

)]
.

and so the optimal policy is to charge.
Case 6: c∗V2X ≤ c∗switch ≤ c < c∗charge: Here we show that after the policy switches

from charging to discharging, the policy will not switch back. Like in Case 5, we note that
the optimal charging policy at c is min

(
c∗charge − c,Xcharge

max

)
and has an objective value of

−
(
min

(
c∗charge − c,Xcharge

max

)) (
wcharge

t+1 + λRrt+1 − λc
)
+ 1

λtime,t+1
E
[
V1

(
smin(c∗charge,c+Xcharge

max ),t+2

)]
.

Similarly the optimal discharging policy is min
(
c− c∗V2X, XV2X

max

)
and has an objective value

of
(
min

(
c− c∗V2X, XV2X

max

)) (
wV2X

t+1 + λRrt+1 − λc
)
+ 1

λtime,t+1
E
[
V1
(
smax(c∗V2X,c−XV2X

max ),t+2

)]
. Here

we show that the discharging policy dominates the charging policy:

(
min

(
c− c∗V2X, XV2X

max

)) (
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1
(
smax(c∗V2X,c−XV2X

max ),t+2

)]
−
(
−
(
min

(
c∗charge − c,Xcharge

max

)) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗charge,c+Xcharge

max ),t+2

)])
≥ min

(
c∗switch − c∗V2X, XV2X

max

) (
wV2X

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗V2X,c∗switch−XV2X

max ),t+2

)]
−
(
−min

(
c∗charge − c∗switch, Xcharge

max

) (
wcharge

t+1 + λRrt+1 − λc
)
+

1

λtime,t+1

E
[
V1

(
smin(c∗charge,c∗switch+Xcharge

max ),t+2

)])
≥ 0

The first inequality comes from the concavity of both the charging policy and discharging
policy. In the case of charging, moving from c to c∗switch moves the value farther away from
the argmax of the function, c∗charge, reducing the value of the objective. Conversely in the
case of discharging, moving from c to c∗switch moves the value to the argmax of the function,
c∗V2X, increasing the value of the objective. The second inequality comes from the definition
of c∗switch.

Because discharging dominates we therefore follow the optimal discharging policy in Case
6.

Case 7: c∗V2X ≤ c∗switch ≤ c∗charge ≤ c: This case is indistinguishable from Case 3, and
therefore follows the same policy and proof.

We finally note that the resulting policies from Cases 4-7 can combine and simplify down.
This is because the policy in Cases 4 and 5 are the same and the policy in Cases 6 and 7 are
the same. This results in the policy described in Equation 2.11.
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Appendix B

Proofs and Figures of Chapter 3

B.1 Formulations

Formulation (3.1) for the Sample Forest in Figure 3.1
For this example we assume that we are maximizing expected sales, so the payoff St

j is just
the sales of leaf j without any additional business constraints.

max
z,y

1

3
(3y1,3 + 1y1,4 + 2y1,5 + 2y2,2 + 5y2,3 + 2y3,4 + 4y3,5 + 3y3,6 + 1y3,7)

s.t. y1,3 + y1,4 + y1,5 = 1

y2,2 + y2,3 = 1

y3,4 + y3,5 + y3,6 + y3,7 = 1

y1,4 + y1,5 ≤ zDiscount,3

y1,3 ≤ 1− zDiscount,3

y1,4 ≤ zPrice,1

y1,5 ≤ 1− zPrice,1
y2,2 ≤ zPrice,2

y2,3 ≤ 1− zPrice,2
y3,4 + y3,5 ≤ zDiscount,2

y3,6 + y3, 7 ≤ 1− zDiscount,2

y3,4 ≤ zPrice,1

y3,5 ≤ 1− zPrice,1
y3,6 ≤ zDiscount,1

y3,7 ≤ 1− zDiscount,1

zPrice,1 ≥ zPrice,2

zDiscount,1 ≥ zDiscount,2

zDiscount,2 ≥ zDiscount,3

zPrice,1, zPrice,2, zDiscount,1, zDiscount,2, zDiscount,3 ∈ {0, 1}
y1,3, y1,4, y1,5, y2,2, y2,3, y3,4, y3,5, y3,6, y3,7 ≥ 0

(B.1)
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Formulation for the exact MIO as proposed by [33]

max
x,q

T∑
t=1

∑
j∈Lt

wtq
t
pj ,j
St
j

s.t. (ati)
⊤x+M(1− qti,li) ≥ bti, ∀t ∈ {1, . . . , T}, i ∈ N t

(ati)
⊤x−M(1− qti,ri) ≤ bti, ∀t ∈ {1, . . . , T}, i ∈ N t

qtpi,i = qti,li + qti,ri , ∀t ∈ {1, . . . , T}, i ∈ N t∑
j∈Lt

qtpj ,j = 1, ∀t ∈ {1, . . . , T}

Ax ≤ f

qtpi,i, q
t
i,li
, qti,ri ∈ 0, 1 ∀t ∈ {1, . . . , T}, i ∈ N t

(B.2)
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Formulation (B.2) for the Sample Forest in Figure 3.1
Again, we assume that we are maximizing expected sales, so the payoff St

j is just the sales
of leaf j without any additional business constraints.

max
x,q

1

3

(
3q11,3 + 1q12,4 + 2q12,5 + 2q21,2 + 5q21,3 + 2q32,4 + 4q32,5 + 3q33,6 + 1q33,7

)
s.t. xdiscount +M(1− q11,2) ≥ 0.25

xdiscount −M(1− q11,3) ≤ 0.25

xprice +M(1− q12,4) ≥ 20

xprice −M(1− q12,5) ≤ 20

xprice +M(1− q21,2) ≥ 19

xprice −M(1− q21,3) ≤ 19

xdiscount +M(1− q31,2) ≥ 0.2

xdiscount −M(1− q31,3) ≤ 0.2

xprice +M(1− q32,4) ≥ 21

xprice −M(1− q32,5) ≤ 21

xdiscount +M(1− q33,6) ≥ 0.1

xdiscount −M(1− q33,7) ≤ 0.1

1 = q11,2 + q11,3

q11,2 = q12,4 + q12,5

1 = q21,2 + q21,3

1 = q31,2 + q31,3

q31,2 = q32,4 + q32,5

q31,3 = q33,6 + q33,7

q11,3 + q12,4 + q12,5 = 1,

q32,4 + q32,5 + q33,6 + q33,7 = 1,

q11,2, q
1
1,3, q

1
2,4, q

1
2,5, q

2
1,2, q

2
1,3, q

3
1,2, q

3
1,3, q

3
2,4, q

3
2,5, q

3
3,6, q

3
3,7 ∈ 0, 1

(B.3)
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B.2 Zoomed in Graph

Figure B.1: Wine, 500 trees: objective and runtimes of UMOTEM for different depth itera-
tions
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B.3 Proofs

Proof of Step 3.4
For a given tree t in the random forest, the set of x such that h∗dt (x) = j is a set of

hyper-rectangles. This is because a “leaf” of the tree is described as a hyper-rectangle region
of the feature space, and within a leaf a constant prediction value is assigned. This holds
for all the trees in the random forest. For all the trees in the forest we can define a finite
number of unions of hyper-rectangles, S1, . . . SK such that if x ∈ Sk, then there is a tree t
such that h∗dt (x) = j. We can definite a function ϕ(i) = k if {x : h∗dt (x) = j} = Sk

We define Nk as the number of times that ϕ(i) = k in the first N trees. Then:

1

N

N∑
t=1

1(ht(x)=j) =
1

N

K∑
k=1

Nk1(x∈Sk)

In doing this, we move from averaging over the trees, to averaging over unions of hyper-
rectangles. For Nk

N
we have:

Nk

N
=

1

N

N∑
n=1

1(ϕ(i)=k)

Which by law of large numbers, converges almost surely to PΘ (ϕ(i) = k)
We have then that the best leaf predictive function of the random forest converges as the

number of trees grows to:

h∗d(x) =
1

N

N∑
t

h∗dt (x)

=
1

N

N∑
t

∫ ∞

−∞
j1(h∗d

t (x)=j)dj

=

∫ ∞

−∞
j
1

N

K∑
k=1

Nk1(x∈Sk)dj

→
∫ ∞

−∞
j

K∑
k=1

PΘ(ϕ(Θ) = k)1(x∈Sk)dj

=

∫ ∞

−∞
jPΘ(h

∗d
Θ (x) = j)dj

= EΘ

[
h∗dΘ (x)

]
For the upper bound function, it like the random forest prediction is a constant prediction

across the entire hyper-rectangle, but is calculated from only the top m values rather than
all the data points in the hyper-rectangle. Therefore, there are a finite number of unions of
hyper-rectangles, R1, . . . , RK such that j is the upper bound estimate for the training inputs
in Rk. The rest of the proof follows directly from [35].
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B.4 Tables

In the section below we present a series of computational comparisons between the exact
MIOs presented by [32] and [33], their approximations and UMOTEM. Specifically Tables
B.1, B.2 and B.3 show the full version of the Table 3.2, comparing the MIOs with UMOTEM
and the predict and optimize method in terms of optimal objective and runtime. The sub-
sequent tables provide more granular comparisons against the depth approximation method
presented in [32] and the sampling approximation presented in [33]. If the results are listed
as ‘-’ then the approximation did not make sense (such as a 10% approximation when the
maximum depth is 4). We see that if the approximation is selected correctly, the depth and
sampling approximations often preform comparably to the exact MIO in terms of objective
value. However if they are mis-selected, they risk producing sub-optimal recommendations.
By comparison, UMOTEM is able to run consistently and produce reliable results even as
the number of trees in the forest grows to 500 trees, the standard base parameter for number
of trees in programs like R.
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# trees S∗
MIO S∗

UMOTEM Opt. Gap Time
(Mǐsić)

Time
(Biggs et al.)

Time
(UMOTEM)

Time
(Pred. and Opt.)

10 1.16 1.16 0.0% 8.80 170.44 0.60 0.32
20 1.15 1.14 0.7% 10.05 430.88 1.01 0.58
30 1.12 1.12 0.3% 11.38 845.16 1.82 1.80
40 1.12 1.11 0.3% 17.40 NA 2.08 1.82
50 1.12 1.11 0.5% 17.77 NA 2.07 1.43
60 1.12 1.11 0.9% 17.97 NA 2.62 1.68
70 1.12 1.10 0.9% 18.95 NA 2.92 1.91
80 1.12 1.11 1.0% 21.34 NA 3.57 2.42
90 1.12 1.11 0.9% 21.71 NA 3.90 4.36
100 1.13 1.12 0.8% 28.35 NA 3.89 2.68
110 1.13 1.12 1.0% 28.11 NA 4.24 2.56
120 1.13 1.12 1.1% 30.40 NA 4.45 2.75
130 1.13 1.12 1.0% 32.02 NA 5.72 4.08
140 1.13 1.12 0.9% 37.07 NA 6.13 3.93
150 1.13 1.12 1.0% 47.66 NA 6.10 3.95
160 1.13 1.11 1.1% 33.91 NA 6.45 3.97
170 1.13 1.11 1.4% 46.48 NA 6.55 3.91
180 1.13 1.11 1.2% 46.40 NA 7.51 5.52
190 1.13 1.12 1.2% 51.89 NA 8.44 6.23
200 1.13 1.11 1.2% 50.98 NA 8.85 6.70
210 1.12 1.11 1.0% 58.90 NA 9.34 6.87
220 1.12 1.11 0.9% 63.48 NA 9.83 7.61
230 1.12 1.11 0.9% 67.62 NA 9.92 7.70
240 1.13 1.12 0.8% 61.13 NA 9.42 6.81
250 1.13 1.12 1.0% 63.72 NA 9.85 6.48
260 1.13 1.12 1.0% 76.51 NA 10.34 7.59
270 1.13 1.12 0.9% 71.29 NA 10.93 7.09
280 1.13 1.12 0.8% 79.50 NA 10.72 7.44
290 1.13 1.12 0.7% 72.89 NA 11.59 7.69
300 1.13 1.12 0.7% 100.98 NA 12.11 8.40
310 1.12 1.12 0.7% 84.23 NA 12.83 9.12
320 1.12 1.12 0.7% 78.76 NA 13.09 8.59
330 1.13 1.11 1.1% 100.26 NA 13.91 9.80
340 1.13 1.11 1.2% 82.58 NA 12.85 8.48
350 1.13 1.11 1.1% 88.34 NA 14.61 9.85
360 1.13 1.11 1.1% 86.12 NA 14.87 10.76
370 1.13 1.11 1.0% 144.62 NA 15.11 10.65
380 1.13 1.12 1.0% 135.74 NA 14.58 9.86
390 1.13 1.11 1.0% 163.63 NA 14.08 8.72
400 1.13 1.11 0.9% 136.00 NA 14.56 9.02
410 1.13 1.12 0.9% 175.69 NA 14.88 9.45
420 1.12 1.11 0.9% 126.56 NA 17.94 11.39
430 1.13 1.11 0.9% 168.93 NA 17.31 11.64
440 1.12 1.11 0.9% 363.95 NA 18.74 11.78
450 1.12 1.11 0.9% 162.43 NA 19.21 12.35
460 1.12 1.11 0.9% 234.65 NA 19.69 12.72
470 1.12 1.11 1.0% 157.78 NA 20.19 12.95
480 1.13 1.11 1.0% 336.14 NA 19.45 11.89
490 1.12 1.11 1.0% 162.12 NA 19.72 12.50
500 1.12 1.11 1.0% 273.53 NA 20.07 12.95

Table B.1: Solubility Dataset: Objective function value and times
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# trees S∗
MIO S∗

UMOTEM Opt. Gap Time
(Mǐsić)

Time
(Biggs et al.)

Time
(UMOTEM)

Time
(Pred. and Opt.)

10 78.62 78.62 0.0% 8.23 12.68 0.06 0.09
20 78.49 77.01 1.9% 9.98 27.85 0.13 0.05
30 78.39 76.75 2.1% 9.13 27.64 0.21 0.09
40 78.32 76.91 1.8% 10.83 57.30 0.23 0.09
50 78.36 77.12 1.6% 12.45 52.46 0.22 0.12
60 78.23 76.92 1.7% 11.12 175.75 0.28 0.11
70 78.30 76.93 1.8% 12.55 188.95 0.31 0.14
80 78.29 76.64 2.1% 13.98 204.79 0.38 0.15
90 78.27 76.75 1.9% 14.74 322.96 0.41 0.22
100 78.25 76.83 1.8% 14.31 454.15 0.42 0.22
110 78.28 76.80 1.9% 15.20 335.95 0.48 0.20
120 78.23 76.73 1.9% 16.11 661.49 0.46 0.22
130 78.21 76.69 2.0% 17.49 837.14 0.57 0.30
140 78.14 76.54 2.0% 19.59 908.61 1.66 0.29
150 78.11 76.61 1.9% 20.96 NA 0.67 0.30
160 78.18 76.65 2.0% 24.38 NA 0.71 0.34
170 78.18 76.68 1.9% 26.33 NA 0.76 0.28
180 78.19 76.71 1.9% 28.18 NA 0.75 0.39
190 78.21 76.79 1.8% 26.14 NA 1.04 0.44
200 78.21 76.78 1.8% 28.35 NA 0.92 0.39
210 78.21 76.83 1.8% 25.71 NA 0.88 0.39
220 78.23 76.89 1.7% 32.50 NA 1.10 0.48
230 78.24 76.86 1.8% 34.31 NA 1.03 0.47
240 78.25 76.90 1.7% 28.93 NA 0.86 0.40
250 78.22 76.77 1.8% 30.65 NA 0.90 0.42
260 78.23 76.82 1.8% 36.22 NA 0.94 0.39
270 78.21 76.76 1.8% 31.94 NA 0.96 0.46
280 78.21 76.76 1.9% 41.29 NA 1.20 0.50
290 78.22 76.72 1.9% 34.33 NA 1.23 0.56
300 78.20 76.72 1.9% 44.40 NA 1.30 0.49
310 78.21 76.70 1.9% 35.24 NA 1.38 0.65
320 78.22 76.74 1.9% 36.40 NA 1.42 0.55
330 78.24 76.76 1.9% 36.27 NA 1.42 0.65
340 78.24 76.77 1.9% 40.35 NA 1.28 0.54
350 78.24 76.73 1.9% 51.22 NA 1.46 0.63
360 78.26 76.78 1.9% 51.94 NA 1.60 0.70
370 78.26 76.81 1.9% 46.78 NA 1.51 0.72
380 78.26 76.80 1.9% 60.73 NA 2.83 0.67
390 78.25 76.79 1.9% 51.59 NA 1.45 0.63
400 78.26 76.72 2.0% 51.48 NA 1.47 0.67
410 78.27 76.75 1.9% 58.34 NA 1.55 0.69
420 78.26 76.76 1.9% 60.99 NA 1.61 0.75
430 78.24 76.76 1.9% 55.50 NA 1.67 0.80
440 78.24 76.78 1.9% 58.07 NA 1.70 0.76
450 78.25 76.80 1.9% 59.42 NA 1.75 0.85
460 78.26 76.83 1.8% 65.71 NA 1.85 0.81
470 78.27 76.83 1.8% 56.90 NA 1.86 0.90
480 78.26 76.83 1.8% 62.20 NA 1.78 0.85
490 78.26 76.83 1.8% 70.14 NA 1.82 0.87
500 78.26 76.83 1.8% 83.58 NA 1.89 0.83

Table B.2: Concrete Dataset: Objective function value and times
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# trees S∗
MIO S∗

UMOTEM Opt. Gap Time
(Mǐsić)

Time
(Biggs et al.)

Time
(UMOTEM)

Time
(Pred. and Opt.)

10 7.43 6.69 10.1% 19.03 430.14 0.09 0.05
20 7.45 6.60 11.5% 27.90 NA 0.17 0.14
30 7.42 6.74 9.2% 51.05 NA 0.33 0.17
40 7.42 6.77 8.8% 52.25 NA 0.39 0.21
50 7.41 6.76 8.8% 59.61 NA 0.38 0.18
60 7.38 6.75 8.5% 74.04 NA 0.51 0.22
70 7.37 6.65 9.8% 99.74 NA 0.55 0.27
80 7.38 6.63 10.1% 101.49 NA 0.76 0.34
90 7.36 6.72 8.7% 160.62 NA 0.81 0.30
100 7.37 6.69 9.2% 149.70 NA 0.85 0.31
110 7.37 6.67 9.4% 148.24 NA 0.85 0.36
120 7.36 6.68 9.3% 150.39 NA 0.93 0.36
130 7.36 6.71 8.9% 190.65 NA 1.18 2.57
140 7.36 6.69 9.1% 283.68 NA 1.12 0.47
150 7.36 6.69 9.1% 239.16 NA 1.13 0.49
160 7.37 6.70 9.0% 275.28 NA 1.32 0.55
170 7.37 6.69 9.3% 256.81 NA 1.30 0.53
180 7.37 6.70 9.2% 286.65 NA 2.00 0.67
190 7.37 6.71 8.9% 309.63 NA 1.44 0.71
200 7.37 6.71 9.0% 271.79 NA 1.62 0.77
210 7.38 6.72 9.0% 313.02 NA 1.64 0.80
220 7.38 6.70 9.2% 311.98 NA 1.74 0.87
230 7.38 6.72 8.9% 483.85 NA 1.97 0.74
240 7.37 6.77 8.1% 410.55 NA 1.70 0.66
250 7.38 6.76 8.4% 407.12 NA 1.78 0.74
260 7.37 6.76 8.3% 516.57 NA 1.83 0.78
270 7.37 6.77 8.2% 424.92 NA 1.91 0.78
280 7.37 6.76 8.3% 529.45 NA 2.14 0.84
290 7.37 6.77 8.2% 489.21 NA 2.28 0.96
300 7.37 6.78 8.1% 503.57 NA 2.44 0.93
310 7.37 6.77 8.1% 624.52 NA 2.68 1.01
320 7.37 6.78 8.0% 687.43 NA 2.75 1.21
330 7.37 6.76 8.3% 470.36 NA 2.82 1.20
340 7.37 6.76 8.3% 552.13 NA 2.63 1.06
350 7.36 6.75 8.3% 725.11 NA 3.00 1.17
360 7.36 6.75 8.3% 616.68 NA 3.02 1.32
370 7.36 6.75 8.2% 623.33 NA 3.28 1.22
380 7.36 6.76 8.2% 922.70 NA 3.11 1.21
390 7.36 6.75 8.2% 1044.48 NA 2.93 1.15
400 7.36 6.75 8.2% 989.18 NA 2.98 1.16
410 7.36 6.76 8.1% 1024.08 NA 3.10 1.24
420 7.36 6.76 8.1% 1026.23 NA 3.23 1.36
430 7.36 6.76 8.1% 1161.09 NA 3.31 1.54
440 7.36 6.77 8.0% 1256.51 NA 3.50 1.41
450 7.36 6.77 8.0% 1188.74 NA 3.43 1.44
460 7.36 6.77 8.0% 1196.92 NA 3.56 2.59
470 7.36 6.83 7.2% 828.52 NA 3.64 1.44
480 7.36 6.84 7.1% 1220.30 NA 3.54 1.49
490 7.36 6.80 7.6% 1255.77 NA 3.60 1.54
500 7.36 6.81 7.5% 1216.24 NA 4.83 1.54

Table B.3: Wine Dataset: Objective function value and times
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 -3.41 -3.41 -3.51 -1.66 0.60 1.02 1.09 1.16 1.16 1.16 1.16
20 -4.14 -4.14 -3.44 -0.23 0.59 1.03 1.14 1.15 1.15 1.15 1.14
30 -4.30 -4.30 -3.40 -0.41 0.57 1.10 1.12 1.12 1.12 1.12 1.12
40 -4.26 -4.26 -3.24 -0.40 0.76 1.12 1.12 1.12 1.12 1.12 1.11
50 -4.42 -4.42 -3.44 -0.69 0.83 1.02 1.12 1.12 1.12 1.12 1.11
60 -4.32 -4.32 -3.42 -0.61 1.06 1.11 1.12 1.12 1.12 1.12 1.11
70 -4.21 -4.21 -3.31 -0.22 0.97 1.11 1.12 1.12 1.12 1.12 1.10
80 -4.23 -4.23 -3.35 -0.26 1.08 1.11 1.12 1.12 1.12 1.12 1.11
90 -4.31 -4.31 -4.04 -0.33 1.08 1.12 1.12 1.12 1.12 1.12 1.11
100 -4.41 -4.41 -4.13 -0.36 1.10 1.13 1.13 1.13 1.13 1.13 1.12
110 -4.43 -4.43 -3.76 -0.28 1.10 1.13 1.13 1.13 1.13 1.13 1.12
120 -4.46 -4.46 -3.44 -0.07 1.10 1.13 1.13 1.13 1.13 1.13 1.12
130 -4.52 -4.52 -4.08 0.13 1.08 1.13 1.13 1.13 1.13 1.13 1.12
140 -4.48 -4.48 -4.12 -0.23 1.07 1.12 1.13 1.13 1.13 1.13 1.12
150 -4.54 -4.54 -4.09 -0.23 1.10 1.11 1.13 1.13 1.13 1.13 1.12
160 -4.63 -4.63 -4.09 -0.14 1.09 1.11 1.13 1.13 1.13 1.13 1.11
170 -4.54 -4.54 -4.20 0.00 1.08 1.11 1.13 1.13 1.13 1.13 1.11
180 -4.51 -4.51 -4.20 0.04 1.09 1.12 1.13 1.13 1.13 1.13 1.11
190 -4.53 -4.53 -4.04 0.00 1.08 1.12 1.13 1.13 1.13 1.13 1.12
200 -4.50 -4.50 -4.05 -0.26 1.09 1.12 1.13 1.13 1.13 1.13 1.11
210 -4.41 -4.41 -4.07 0.10 1.09 1.12 1.12 1.12 1.12 1.12 1.11
220 -4.36 -4.36 -4.08 -0.38 1.11 1.12 1.12 1.12 1.12 1.12 1.11
230 -4.36 -4.36 -4.05 -0.35 1.11 1.12 1.12 1.12 1.12 1.12 1.11
240 -4.37 -4.37 -4.05 0.67 1.10 1.12 1.13 1.13 1.13 1.13 1.12
250 -4.41 -4.41 -4.06 0.55 1.10 1.12 1.13 1.13 1.13 1.13 1.12
260 -4.43 -4.43 -3.96 0.39 1.10 1.12 1.13 1.13 1.13 1.13 1.12
270 -4.40 -4.40 -3.95 0.41 1.09 1.11 1.13 1.13 1.13 1.13 1.12
280 -4.45 -4.45 -3.96 0.69 1.09 1.12 1.13 1.13 1.13 1.13 1.12
290 -4.48 -4.48 -3.94 0.45 1.07 1.12 1.13 1.13 1.13 1.13 1.12
300 -4.51 -4.51 -3.96 0.69 1.08 1.12 1.13 1.13 1.13 1.13 1.12
310 -4.49 -4.49 -3.94 0.65 1.09 1.12 1.12 1.12 1.12 1.12 1.12
320 -4.52 -4.52 -3.95 0.41 1.08 1.12 1.12 1.12 1.12 1.12 1.12
330 -4.55 -4.55 -3.63 0.41 1.09 1.13 1.13 1.13 1.13 1.13 1.11
340 -4.59 -4.59 -3.61 0.88 1.10 1.13 1.13 1.13 1.13 1.13 1.11
350 -4.58 -4.58 -3.61 0.83 1.10 1.13 1.13 1.13 1.13 1.13 1.11
360 -4.57 -4.57 -3.60 0.82 1.10 1.13 1.13 1.13 1.13 1.13 1.11
370 -4.57 -4.57 -0.66 0.75 1.12 1.13 1.13 1.13 1.13 1.13 1.11
380 -4.56 -4.56 -0.66 0.90 1.12 1.13 1.13 1.13 1.13 1.13 1.12
390 -4.54 -4.54 -0.67 0.83 1.12 1.13 1.13 1.13 1.13 1.13 1.11
400 -4.54 -4.54 -0.75 0.82 1.10 1.13 1.13 1.13 1.13 1.13 1.11
410 -4.57 -4.57 -0.73 0.94 1.11 1.13 1.13 1.13 1.13 1.13 1.12
420 -4.57 -4.57 -0.72 0.58 1.11 1.12 1.12 1.12 1.12 1.12 1.11
430 -4.58 -4.58 -0.64 0.83 1.11 1.12 1.13 1.13 1.13 1.13 1.11
440 -4.60 -4.60 -0.66 0.93 1.12 1.12 1.12 1.12 1.12 1.12 1.11
450 -4.60 -4.60 -0.66 0.57 1.12 1.12 1.12 1.12 1.12 1.12 1.11
460 -4.62 -4.62 -0.69 0.69 1.12 1.12 1.12 1.12 1.12 1.12 1.11
470 -4.61 -4.61 -0.66 0.61 1.12 1.12 1.12 1.12 1.12 1.12 1.11
480 -4.63 -4.63 -0.66 0.77 1.12 1.13 1.13 1.13 1.13 1.13 1.11
490 -4.61 -4.61 -0.64 0.96 1.12 1.12 1.12 1.12 1.12 1.12 1.11
500 -4.63 -4.63 -0.64 0.71 1.11 1.12 1.12 1.12 1.12 1.12 1.11

Table B.4: Solubility Dataset: Optimal objective found by [32]’s depth approximations
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 -3.05 -1.05 -0.33 0.41 0.75 0.75 0.75 0.99 1.12 1.16 1.16
20 -0.56 -0.07 -0.03 0.01 0.08 0.54 0.74 0.91 1.12 1.15 1.14
30 -0.86 -0.01 0.36 0.32 0.40 0.73 0.87 0.92 1.10 1.12 1.12
40 -0.44 0.20 0.49 0.56 0.63 0.96 NA 1.06 1.12 1.12 1.11
50 -0.48 -0.01 0.40 0.58 0.96 0.96 0.97 1.01 1.06 1.12 1.11
60 -0.60 -0.10 0.22 0.57 0.58 0.77 0.80 0.90 NA 1.12 1.11
70 -0.68 -0.10 0.13 NA 0.68 0.68 0.83 NA NA 1.12 1.10
80 -0.52 0.00 NA 0.69 1.00 1.00 1.00 1.05 1.09 1.12 1.11
90 -0.73 NA 0.38 0.60 NA NA NA NA NA 1.12 1.11
100 NA 0.20 0.47 0.62 NA NA NA NA NA 1.13 1.12
110 -0.89 -0.06 NA NA NA NA NA NA NA 1.13 1.12
120 0.09 0.60 0.72 0.86 NA NA NA NA NA 1.13 1.12
130 NA NA NA NA NA NA NA NA NA 1.13 1.12
140 -0.13 0.36 NA NA NA NA NA NA NA 1.13 1.12
150 NA NA NA NA NA NA NA NA NA 1.13 1.12
160 NA NA NA NA NA NA NA NA NA 1.13 1.11
170 0.41 NA NA NA NA NA NA NA NA 1.13 1.11
180 NA NA NA NA NA NA NA NA NA 1.13 1.11
190 -0.34 0.47 NA NA NA NA NA NA NA 1.13 1.12
200 NA 0.60 NA NA NA NA NA NA NA 1.13 1.11
210 NA NA NA NA NA NA NA NA NA 1.12 1.11
220 0.19 NA NA NA NA NA NA NA NA 1.12 1.11
230 NA NA NA NA NA NA NA NA NA 1.12 1.11
240 NA NA NA NA NA NA NA NA NA 1.13 1.12
250 NA NA NA NA NA NA NA NA NA 1.13 1.12
260 -0.07 NA NA NA NA NA NA NA NA 1.13 1.12
270 0.26 NA NA NA NA NA NA NA NA 1.13 1.12
280 0.23 NA NA NA NA NA NA NA NA 1.13 1.12
290 NA NA NA NA NA NA NA NA NA 1.13 1.12
300 NA NA NA NA NA NA NA NA NA 1.13 1.12
310 NA NA NA NA NA NA NA NA NA 1.12 1.12
320 NA NA NA NA NA NA NA NA NA 1.12 1.12
330 0.39 0.78 0.91 NA NA NA NA NA NA 1.13 1.11
340 NA NA NA NA NA NA NA NA NA 1.13 1.11
350 NA NA NA NA NA NA NA NA NA 1.13 1.11
360 NA NA NA NA NA NA NA NA NA 1.13 1.11
370 NA NA NA NA NA NA NA NA NA 1.13 1.11
380 NA NA NA NA NA NA NA NA NA 1.13 1.12
390 NA 0.86 NA NA NA NA NA NA NA 1.13 1.11
400 NA NA NA NA NA NA NA NA NA 1.13 1.11
410 NA NA NA NA NA NA NA NA NA 1.13 1.12
420 0.37 NA NA NA NA NA NA NA NA 1.12 1.11
430 NA NA NA NA NA NA NA NA NA 1.13 1.11
440 0.70 NA NA NA NA NA NA NA NA 1.12 1.11
450 0.56 NA NA NA NA NA NA NA NA 1.12 1.11
460 NA NA NA NA NA NA NA NA NA 1.12 1.11
470 0.70 NA NA NA NA NA NA NA NA 1.12 1.11
480 NA NA NA NA NA NA NA NA NA 1.13 1.11
490 0.64 NA NA NA NA NA NA NA NA 1.12 1.11
500 NA NA NA NA NA NA NA NA NA 1.12 1.11

Table B.5: Solubility Dataset: Optimal objective found by [33]’s sample approximations
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 - 51.35 51.35 33.89 65.95 55.53 70.38 75.48 78.62 78.62 78.62
20 - 55.94 55.94 62.07 65.94 63.57 77.56 77.56 78.49 78.49 77.01
30 - 55.30 55.30 62.94 67.19 73.15 77.76 77.76 78.39 78.39 76.75
40 - 57.41 57.41 63.60 69.63 76.59 78.32 78.32 78.32 78.32 76.91
50 - 56.37 56.37 63.42 63.69 76.08 78.36 78.36 78.36 78.36 77.12
60 - 55.38 55.38 63.60 73.86 76.71 78.23 78.23 78.23 78.23 76.92
70 - 54.19 54.19 66.16 72.03 76.48 78.30 78.30 78.30 78.30 76.93
80 - 54.11 54.11 62.02 73.71 78.14 78.29 78.29 78.29 78.29 76.64
90 - 54.56 54.56 61.98 73.94 75.86 78.27 78.27 78.27 78.27 76.75
100 - 53.97 53.97 64.23 77.81 78.25 78.25 78.25 78.25 78.25 76.83
110 - 54.42 54.42 64.28 77.00 78.28 78.28 78.28 78.28 78.28 76.80
120 - 54.39 54.39 63.86 76.84 78.11 78.23 78.23 78.23 78.23 76.73
130 - 54.70 54.70 63.58 75.52 78.11 78.21 78.21 78.21 78.21 76.69
140 - 54.08 54.08 63.14 75.81 78.14 78.14 78.14 78.14 78.14 76.54
150 53.84 53.84 48.36 61.54 78.11 78.11 78.11 78.11 78.11 78.11 76.61
160 53.78 53.78 48.43 63.18 78.03 78.18 78.18 78.18 78.18 78.18 76.65
170 53.71 53.71 48.57 65.55 78.10 78.18 78.18 78.18 78.18 78.18 76.68
180 53.97 53.97 48.53 65.74 78.01 78.19 78.19 78.19 78.19 78.19 76.71
190 54.06 54.06 48.52 65.98 78.10 78.21 78.21 78.21 78.21 78.21 76.79
200 53.94 53.94 48.52 62.79 78.09 78.21 78.21 78.21 78.21 78.21 76.78
210 53.88 53.88 48.70 62.92 78.09 78.21 78.21 78.21 78.21 78.21 76.83
220 53.77 53.77 48.72 62.51 78.12 78.23 78.23 78.23 78.23 78.23 76.89
230 53.85 53.85 48.91 65.13 78.18 78.24 78.24 78.24 78.24 78.24 76.86
240 53.93 53.93 48.67 65.03 78.15 78.25 78.25 78.25 78.25 78.25 76.90
250 53.96 53.96 48.53 62.93 78.16 78.22 78.22 78.22 78.22 78.22 76.77
260 54.21 54.21 48.48 62.66 78.13 78.23 78.23 78.23 78.23 78.23 76.82
270 54.28 54.28 48.50 62.38 78.17 78.21 78.21 78.21 78.21 78.21 76.76
280 54.38 54.38 48.41 63.05 78.18 78.21 78.21 78.21 78.21 78.21 76.76
290 54.54 54.54 42.41 61.56 78.22 78.22 78.22 78.22 78.22 78.22 76.72
300 54.39 54.39 42.27 62.48 78.20 78.20 78.20 78.20 78.20 78.20 76.72
310 54.46 54.46 42.37 61.20 78.18 78.21 78.21 78.21 78.21 78.21 76.70
320 54.47 54.47 42.43 61.54 78.19 78.22 78.22 78.22 78.22 78.22 76.74
330 54.40 54.40 42.45 62.57 78.21 78.24 78.24 78.24 78.24 78.24 76.76
340 54.81 54.81 61.48 62.33 78.21 78.24 78.24 78.24 78.24 78.24 76.77
350 54.60 54.60 61.38 62.26 78.24 78.24 78.24 78.24 78.24 78.24 76.73
360 54.75 54.75 61.38 76.42 78.15 78.26 78.26 78.26 78.26 78.26 76.78
370 54.48 54.48 49.24 75.18 78.20 78.26 78.26 78.26 78.26 78.26 76.81
380 54.32 54.32 53.78 75.20 78.20 78.26 78.26 78.26 78.26 78.26 76.80
390 54.16 54.16 51.97 63.88 78.13 78.25 78.25 78.25 78.25 78.25 76.79
400 54.16 54.16 50.50 63.82 78.15 78.26 78.26 78.26 78.26 78.26 76.72
410 54.19 54.19 50.49 63.87 78.08 78.27 78.27 78.27 78.27 78.27 76.75
420 54.17 54.17 51.80 75.05 78.08 78.26 78.26 78.26 78.26 78.26 76.76
430 54.10 54.10 51.04 62.70 78.13 78.24 78.24 78.24 78.24 78.24 76.76
440 54.24 54.24 51.93 64.80 78.14 78.24 78.24 78.24 78.24 78.24 76.78
450 54.28 54.28 51.03 63.89 78.15 78.25 78.25 78.25 78.25 78.25 76.80
460 54.43 54.43 51.11 74.52 78.16 78.26 78.26 78.26 78.26 78.26 76.83
470 54.39 54.39 55.25 74.53 78.17 78.27 78.27 78.27 78.27 78.27 76.83
480 54.45 54.45 51.82 75.41 78.17 78.26 78.26 78.26 78.26 78.26 76.83
490 54.33 54.33 54.70 75.38 78.17 78.26 78.26 78.26 78.26 78.26 76.83
500 54.34 54.34 54.68 76.22 78.16 78.26 78.26 78.26 78.26 78.26 76.83

Table B.6: Concrete Dataset: Optimal objective found by [32]’s depth approximations
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 73.73 73.73 73.70 75.48 75.48 75.48 78.62 78.62 78.62 78.62 78.62
20 71.49 71.53 73.62 75.71 75.71 75.71 78.49 78.49 78.49 78.49 77.01
30 62.40 68.55 75.03 75.07 74.81 77.74 77.74 77.74 78.39 78.39 76.75
40 72.16 72.16 75.00 77.39 77.88 77.53 77.83 77.83 78.32 78.32 76.91
50 70.17 74.50 74.75 75.62 77.44 78.36 78.36 78.36 78.36 78.36 77.12
60 72.56 75.32 76.27 75.95 75.95 75.95 77.51 78.23 78.23 78.23 76.92
70 65.21 73.00 76.97 78.02 78.02 78.02 78.30 78.30 78.30 78.30 76.93
80 74.32 75.76 77.06 76.59 76.90 77.82 77.82 78.29 78.29 78.29 76.64
90 73.48 76.37 78.00 78.00 77.47 78.00 78.00 78.00 78.00 78.27 76.75
100 71.86 75.14 77.27 77.27 78.01 77.64 77.88 78.25 78.25 78.25 76.83
110 73.88 77.78 78.28 78.28 78.28 78.28 78.28 78.28 78.28 78.28 76.80
120 74.81 76.00 77.13 77.33 78.11 78.23 78.23 78.23 78.23 78.23 76.73
130 77.92 77.92 77.92 77.92 77.92 77.92 78.11 78.21 78.21 78.21 76.69
140 67.59 75.88 77.87 77.87 78.04 78.04 78.04 78.14 78.14 78.14 76.54
150 76.01 77.27 77.95 77.95 77.95 78.11 78.11 78.11 78.11 78.11 76.61
160 75.63 77.94 77.94 77.94 77.94 77.94 78.03 78.03 78.18 78.18 76.65
170 77.13 77.96 78.04 78.04 78.04 78.18 78.18 NA NA 78.18 76.68
180 74.28 78.11 78.19 78.19 78.19 78.19 78.19 78.19 NA 78.19 76.71
190 77.81 78.09 78.09 78.09 78.09 78.09 78.09 78.09 NA 78.21 76.79
200 71.93 78.08 78.21 78.21 78.21 78.21 78.21 78.21 78.21 78.21 76.78
210 77.89 77.67 78.09 NA NA 78.09 NA NA NA 78.21 76.83
220 77.33 78.06 78.06 78.17 78.17 78.17 78.23 78.23 78.23 78.23 76.89
230 77.44 78.07 78.07 78.07 78.07 78.18 78.24 78.24 78.24 78.24 76.86
240 76.74 78.09 78.09 78.09 78.19 78.19 78.25 78.25 78.25 78.25 76.90
250 76.80 77.68 77.96 78.16 78.16 78.16 NA NA NA 78.22 76.77
260 77.24 77.49 78.08 77.70 NA NA NA NA NA 78.23 76.82
270 77.57 78.04 NA 78.04 78.04 78.04 NA NA NA 78.21 76.76
280 75.99 76.72 77.97 77.97 NA NA 78.21 NA NA 78.21 76.76
290 77.04 78.14 78.14 78.14 NA NA 78.18 NA NA 78.22 76.72
300 76.82 78.12 78.12 78.12 78.12 NA 78.12 78.20 78.20 78.20 76.72
310 77.43 77.50 78.06 78.06 78.21 78.21 78.21 NA NA 78.21 76.70
320 77.48 78.05 78.19 78.19 78.19 NA NA NA NA 78.22 76.74
330 75.62 78.07 78.21 NA NA NA NA NA NA 78.24 76.76
340 76.42 77.00 NA NA NA 78.21 NA NA NA 78.24 76.77
350 77.23 77.29 78.15 78.15 NA 78.24 NA NA NA 78.24 76.73
360 77.92 NA 77.92 78.10 NA NA NA NA NA 78.26 76.78
370 76.91 78.20 78.20 78.20 NA NA NA NA NA 78.26 76.81
380 77.11 78.05 78.05 78.05 NA NA NA NA NA 78.26 76.80
390 77.63 77.63 78.03 78.19 NA NA NA NA 78.25 78.25 76.79
400 77.40 77.84 78.00 78.00 NA NA NA NA NA 78.26 76.72
410 77.43 78.01 78.01 78.17 78.27 NA NA NA NA 78.27 76.75
420 76.66 78.05 78.10 NA NA NA NA NA NA 78.26 76.76
430 76.90 78.04 78.04 78.09 78.24 78.24 NA NA NA 78.24 76.76
440 77.07 78.19 78.24 78.24 NA NA NA NA NA 78.24 76.78
450 77.50 78.20 78.20 NA NA NA NA NA NA 78.25 76.80
460 77.74 77.79 78.03 78.09 NA NA NA NA NA 78.26 76.83
470 77.98 77.98 78.27 78.27 NA NA NA NA NA 78.27 76.83
480 77.85 NA 78.22 78.22 NA NA NA NA NA 78.26 76.83
490 78.22 NA 78.22 NA NA NA NA 78.26 NA 78.26 76.83
500 77.37 77.98 78.13 78.21 78.21 78.21 NA NA NA 78.26 76.83

Table B.7: Concrete Dataset: Optimal objective found by [33]’s sample approximations
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 6.02 6.02 6.03 5.99 5.85 7.21 7.38 7.43 7.43 7.43 6.69
20 5.87 5.87 5.99 6.21 6.74 7.30 7.39 7.45 7.45 7.45 6.60
30 5.64 5.64 5.25 6.39 6.80 7.35 7.38 7.42 7.42 7.42 6.74
40 5.65 5.65 5.43 5.94 7.02 7.31 7.42 7.42 7.42 7.42 6.77
50 5.65 5.65 5.47 6.19 6.96 7.34 7.41 7.41 7.41 7.41 6.76
60 5.57 5.57 5.56 6.55 7.05 7.34 7.35 7.38 7.38 7.38 6.75
70 5.56 5.56 5.60 6.54 7.18 7.29 7.36 7.36 7.37 7.37 6.65
80 5.59 5.59 5.64 6.50 6.97 7.28 7.37 7.37 7.38 7.38 6.63
90 5.54 5.54 5.63 6.40 7.23 7.29 7.34 7.36 7.36 7.36 6.72
100 5.51 5.51 5.54 5.74 7.23 7.35 7.35 7.37 7.37 7.37 6.69
110 5.51 5.51 5.54 6.46 7.02 7.32 7.36 7.37 7.37 7.37 6.67
120 5.52 5.52 5.92 6.48 6.86 7.33 7.36 7.36 7.36 7.36 6.68
130 5.50 5.50 5.95 6.85 7.21 7.36 7.36 7.36 7.36 7.36 6.71
140 5.51 5.51 6.57 6.64 7.30 7.36 7.36 7.36 7.36 7.36 6.69
150 5.50 5.50 6.13 6.95 7.19 7.36 7.36 7.36 7.36 7.36 6.69
160 5.52 5.52 6.53 7.00 7.33 7.37 7.37 7.37 7.37 7.37 6.70
170 5.49 5.49 6.29 6.79 7.29 7.37 7.37 7.37 7.37 7.37 6.69
180 5.50 5.50 6.30 6.98 7.29 7.37 7.37 7.37 7.37 7.37 6.70
190 5.49 5.49 6.32 6.88 7.26 7.37 7.37 7.37 7.37 7.37 6.71
200 5.52 5.52 5.84 6.70 7.30 7.37 7.37 7.37 7.37 7.37 6.71
210 5.52 5.52 6.22 6.93 7.34 7.37 7.37 7.38 7.38 7.38 6.72
220 5.52 5.52 6.25 7.08 7.32 7.38 7.38 7.38 7.38 7.38 6.70
230 5.53 5.53 6.41 7.07 7.35 7.38 7.37 7.38 7.38 7.38 6.72
240 5.52 5.52 6.53 6.78 7.34 7.37 7.37 7.37 7.37 7.37 6.77
250 5.53 5.53 6.40 7.17 7.32 7.38 7.37 7.38 7.38 7.38 6.76
260 5.54 5.54 6.28 7.16 7.35 7.37 7.37 7.37 7.37 7.37 6.76
270 5.55 5.55 6.17 7.18 7.35 7.37 7.37 7.37 7.37 7.37 6.77
280 5.56 5.56 6.21 7.10 7.35 7.37 7.37 7.37 7.37 7.37 6.76
290 5.56 5.56 6.39 7.20 7.36 7.37 7.37 7.37 7.37 7.37 6.77
300 5.54 5.54 6.39 7.17 7.36 7.35 7.37 7.37 7.37 7.37 6.78
310 5.55 5.55 6.49 7.17 7.36 7.37 7.37 7.37 7.37 7.37 6.77
320 5.55 5.55 5.80 7.21 7.28 7.37 7.37 7.37 7.37 7.37 6.78
330 5.55 5.55 6.17 7.23 7.30 7.37 7.37 7.37 7.37 7.37 6.76
340 5.55 5.55 6.02 7.21 7.32 7.37 7.37 7.37 7.37 7.37 6.76
350 5.55 5.55 6.23 7.21 7.36 7.36 7.36 7.36 7.36 7.36 6.75
360 5.55 5.55 6.22 7.20 7.35 7.35 7.36 7.36 7.36 7.36 6.75
370 5.54 5.54 5.95 7.20 7.34 7.36 7.36 7.36 7.36 7.36 6.75
380 5.55 5.55 6.10 7.20 7.35 7.36 7.36 7.36 7.36 7.36 6.76
390 5.54 5.54 6.34 7.11 7.32 7.36 7.36 7.36 7.36 7.36 6.75
400 5.54 5.54 6.39 7.10 7.36 7.36 7.36 7.36 7.36 7.36 6.75
410 5.54 5.54 6.38 7.05 7.35 7.36 7.36 7.36 7.36 7.36 6.76
420 5.53 5.53 5.98 6.82 7.34 7.36 7.36 7.36 7.36 7.36 6.76
430 5.54 5.54 6.19 7.25 7.34 7.34 7.36 7.36 7.36 7.36 6.76
440 5.53 5.53 6.16 7.24 7.34 7.34 7.36 7.36 7.36 7.36 6.77
450 5.53 5.53 5.55 7.19 7.34 7.36 7.36 7.36 7.36 7.36 6.77
460 5.53 5.53 6.16 7.19 7.31 7.35 7.36 7.36 7.36 7.36 6.77
470 5.53 5.53 6.02 7.25 7.35 7.36 7.36 7.36 7.36 7.36 6.83
480 5.53 5.53 6.06 7.24 7.35 7.36 7.36 7.36 7.36 7.36 6.84
490 5.53 5.53 6.25 7.26 7.34 7.36 7.36 7.36 7.36 7.36 6.80
500 5.53 5.53 6.05 7.26 7.33 7.35 7.36 7.36 7.36 7.36 6.81

Table B.8: Wine Dataset: Optimal objective found by [32]’s depth approximations
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# trees
Approximation Level

S∗
MIO S∗

UMOTEM10% 20% 30% 40% 50% 60% 70% 80% 90%
10 6.16 6.50 7.17 7.39 7.26 7.40 7.40 7.40 7.40 7.43 6.69
20 6.56 7.01 7.04 7.29 7.29 7.29 7.45 7.45 7.45 7.45 6.60
30 6.81 7.09 7.09 7.37 7.37 7.37 7.38 7.41 NA 7.42 6.74
40 6.99 6.96 7.03 7.21 7.29 7.37 7.37 7.39 7.40 7.42 6.77
50 6.93 7.20 NA 7.30 7.36 7.34 NA NA NA 7.41 6.76
60 7.06 7.12 7.21 7.28 7.29 7.35 7.35 NA NA 7.38 6.75
70 7.12 7.23 7.19 NA 7.25 7.30 7.33 NA NA 7.37 6.65
80 7.08 7.23 7.27 7.28 7.31 7.32 7.36 7.36 NA 7.38 6.63
90 7.00 7.14 7.27 7.28 NA NA NA NA NA 7.36 6.72
100 NA 7.17 7.19 NA 7.27 7.34 NA NA NA 7.37 6.69
110 6.96 NA NA NA NA NA NA NA NA 7.37 6.67
120 6.91 7.25 7.30 7.32 7.33 7.34 NA NA NA 7.36 6.68
130 NA NA NA NA NA NA NA NA NA 7.36 6.71
140 7.10 NA NA NA NA NA NA NA NA 7.36 6.69
150 7.05 NA NA NA NA NA NA NA NA 7.36 6.69
160 NA 7.29 NA NA NA NA NA NA NA 7.37 6.70
170 NA NA NA NA NA NA NA NA NA 7.37 6.69
180 7.19 NA NA NA NA NA NA NA NA 7.37 6.70
190 NA NA NA NA NA NA NA NA NA 7.37 6.71
200 7.14 NA NA NA NA NA NA NA NA 7.37 6.71
210 7.09 NA NA NA NA NA NA NA NA 7.38 6.72
220 7.19 NA NA NA NA NA NA NA NA 7.38 6.70
230 NA NA NA NA NA NA NA NA NA 7.38 6.72
240 NA NA NA NA NA NA NA NA NA 7.37 6.77
250 NA NA NA NA NA NA NA NA NA 7.38 6.76
260 NA NA NA NA NA NA NA NA NA 7.37 6.76
270 NA NA NA NA NA NA NA NA NA 7.37 6.77
280 NA NA NA NA NA NA NA NA NA 7.37 6.76
290 NA NA NA NA NA NA NA NA NA 7.37 6.77
300 NA NA NA NA NA NA NA NA NA 7.37 6.78
310 NA NA NA NA NA NA NA NA NA 7.37 6.77
320 NA NA NA NA NA NA NA NA NA 7.37 6.78
330 NA NA NA NA NA NA NA NA NA 7.37 6.76
340 NA NA NA NA NA NA NA NA NA 7.37 6.76
350 NA NA NA NA NA NA NA NA NA 7.36 6.75
360 NA NA NA NA NA NA NA NA NA 7.36 6.75
370 NA NA NA NA NA NA NA NA NA 7.36 6.75
380 NA NA NA NA NA NA NA NA NA 7.36 6.76
390 NA NA NA NA NA NA NA NA NA 7.36 6.75
400 NA NA NA NA NA NA NA NA NA 7.36 6.75
410 NA NA NA NA NA NA NA NA NA 7.36 6.76
420 NA NA NA NA NA NA NA NA NA 7.36 6.76
430 NA NA NA NA NA NA NA NA NA 7.36 6.76
440 NA NA NA NA NA NA NA NA NA 7.36 6.77
450 NA NA NA NA NA NA NA NA NA 7.36 6.77
460 NA NA NA NA NA NA NA NA NA 7.36 6.77
470 NA NA NA NA NA NA NA NA NA 7.36 6.83
480 NA NA NA NA NA NA NA NA NA 7.36 6.84
490 NA NA NA NA NA NA NA NA NA 7.36 6.80
500 NA NA NA NA NA NA NA NA NA 7.36 6.81

Table B.9: Wine Dataset: Optimal objective found by [33]’s sample approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 8.26 7.18 8.99 7.83 8.49 8.72 8.79 8.92 9.01
20 7.35 7.46 8.26 8.33 11.22 9.51 9.83 10.11 10.21
30 7.63 7.74 8.62 9.09 12.21 11.01 12.54 12.41 12.23
40 7.80 9.00 9.07 9.57 11.81 13.31 17.56 17.61 18.92
50 10.08 9.99 11.37 12.00 16.85 18.90 13.54 19.09 22.22
60 8.87 10.49 11.46 12.99 16.61 19.48 15.81 19.57 17.64
70 8.77 10.51 10.28 13.86 17.74 24.36 19.38 22.86 18.49
80 9.30 11.03 10.37 12.40 20.82 20.04 20.93 21.37 18.45
90 11.19 9.13 11.86 14.80 20.39 26.00 22.78 23.67 22.27
100 9.07 11.14 12.77 13.18 23.31 27.29 27.06 23.20 25.07
110 9.62 11.41 10.89 16.09 21.41 23.09 23.73 26.45 22.38
120 11.59 9.70 11.48 23.45 24.44 25.60 25.47 24.83 24.57
130 9.64 10.04 11.71 22.85 27.23 26.31 39.99 27.91 29.54
140 10.05 10.35 11.96 18.78 23.81 32.47 32.37 31.23 31.71
150 10.50 10.51 12.66 17.04 27.55 34.45 30.38 43.17 43.03
160 10.40 10.94 12.99 17.94 27.42 30.08 34.00 34.28 32.21
170 10.53 12.19 13.95 19.33 31.76 33.88 39.85 38.89 42.15
180 11.64 12.61 14.28 18.06 33.64 33.90 38.84 38.60 42.53
190 11.65 11.68 13.78 21.10 32.16 34.24 48.23 44.50 44.78
200 11.54 11.87 14.11 24.34 36.15 43.87 40.69 46.30 50.71
210 11.72 12.00 13.94 21.91 32.98 43.60 42.73 43.65 52.35
220 12.19 11.98 14.67 21.57 39.83 46.90 41.12 49.31 51.39
230 12.03 12.73 15.86 20.57 40.37 45.09 54.88 53.86 53.99
240 12.37 12.62 14.64 36.72 43.23 41.18 43.38 42.80 49.34
250 12.06 12.29 15.21 41.51 40.13 47.55 45.59 49.17 49.33
260 12.42 12.79 15.07 39.70 50.62 45.74 54.08 54.91 61.25
270 12.38 12.75 15.79 40.72 44.43 43.91 49.51 50.08 50.59
280 12.31 12.70 16.45 46.51 42.42 50.08 51.88 54.99 57.26
290 12.83 12.95 17.08 57.54 47.98 45.61 49.64 57.18 53.30
300 12.92 13.20 16.92 44.95 44.42 45.20 64.61 67.33 71.06
310 13.00 13.21 17.31 44.03 52.99 57.07 53.90 55.43 58.15
320 13.18 14.25 18.44 44.37 52.07 65.58 53.40 55.64 58.59
330 14.61 13.78 18.61 53.47 50.48 61.46 58.42 72.71 73.08
340 14.01 15.24 18.74 32.83 45.56 64.23 69.42 63.27 61.66
350 14.59 14.58 19.46 55.35 49.72 64.42 75.93 65.21 69.12
360 14.66 15.02 19.23 47.65 43.43 50.55 63.95 75.56 61.29
370 15.58 14.44 22.33 47.63 51.15 65.62 77.89 76.68 82.06
380 14.77 15.17 23.25 38.07 55.52 65.64 62.12 66.98 77.63
390 15.15 16.61 22.97 51.44 62.93 71.36 65.43 75.22 82.16
400 14.82 15.79 27.24 66.51 60.44 65.56 64.69 68.81 81.27
410 15.10 15.55 27.23 58.02 60.04 65.58 63.78 68.57 76.29
420 16.89 15.67 27.43 90.59 59.58 68.67 71.95 68.77 77.13
430 15.73 16.01 24.62 56.51 66.82 74.09 84.21 81.18 86.87
440 15.79 15.96 27.22 70.87 68.87 66.62 77.91 81.28 91.12
450 16.20 15.70 27.22 85.77 66.23 82.14 80.92 85.82 91.77
460 17.25 16.24 25.89 68.39 71.14 75.82 84.99 90.42 99.12
470 16.25 16.97 25.87 67.02 68.38 73.53 85.07 91.06 92.99
480 16.80 16.56 25.46 50.17 77.88 88.44 79.00 85.18 89.73
490 17.26 16.96 25.25 61.13 77.32 77.87 80.73 93.46 95.70
500 17.75 17.65 26.53 87.48 72.85 81.31 87.43 103.66 112.63

Table B.10: Solubility Dataset: Runtimes of [32]’s depth approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 9.67 11.15 24.80 28.60 48.48 54.42 93.93 104.58 135.03
20 11.83 36.71 78.29 129.21 156.59 226.79 250.10 246.63 255.36
30 13.37 73.11 99.52 210.86 236.17 246.60 532.12 518.48 825.85
40 50.50 78.12 217.79 278.45 367.86 375.55 NA 814.44 1027.44
50 16.17 171.43 252.70 307.00 324.22 680.97 1209.57 1055.21 1334.71
60 16.65 102.78 175.06 212.08 235.49 1162.65 1281.80 1833.20 NA
70 67.40 111.99 485.61 NA 1234.45 1016.78 3750.17 NA NA
80 30.58 333.40 NA 903.64 1018.15 1525.14 1860.83 2398.59 2922.37
90 217.02 NA 725.11 829.09 NA NA NA NA NA
100 NA 1223.45 2367.50 2886.98 NA NA NA NA NA
110 81.69 453.46 NA NA NA NA NA NA NA
120 306.31 625.72 1159.73 1673.34 NA NA NA NA NA
130 NA NA NA NA NA NA NA NA NA
140 61.23 629.63 NA NA NA NA NA NA NA
150 NA NA NA NA NA NA NA NA NA
160 NA NA NA NA NA NA NA NA NA
170 37.93 NA NA NA NA NA NA NA NA
180 NA NA NA NA NA NA NA NA NA
190 133.44 544.48 NA NA NA NA NA NA NA
200 NA 808.31 NA NA NA NA NA NA NA
210 NA NA NA NA NA NA NA NA NA
220 104.92 NA NA NA NA NA NA NA NA
230 NA NA NA NA NA NA NA NA NA
240 NA NA NA NA NA NA NA NA NA
250 NA NA NA NA NA NA NA NA NA
260 312.45 NA NA NA NA NA NA NA NA
270 341.87 NA NA NA NA NA NA NA NA
280 956.86 NA NA NA NA NA NA NA NA
290 NA NA NA NA NA NA NA NA NA
300 NA NA NA NA NA NA NA NA NA
310 NA NA NA NA NA NA NA NA NA
320 NA NA NA NA NA NA NA NA NA
330 702.80 1773.14 2138.75 NA NA NA NA NA NA
340 NA NA NA NA NA NA NA NA NA
350 NA NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA NA
370 NA NA NA NA NA NA NA NA NA
380 NA NA NA NA NA NA NA NA NA
390 NA 5974.07 NA NA NA NA NA NA NA
400 NA NA NA NA NA NA NA NA NA
410 NA NA NA NA NA NA NA NA NA
420 2594.10 NA NA NA NA NA NA NA NA
430 NA NA NA NA NA NA NA NA NA
440 1600.20 NA NA NA NA NA NA NA NA
450 3422.48 NA NA NA NA NA NA NA NA
460 NA NA NA NA NA NA NA NA NA
470 740.43 NA NA NA NA NA NA NA NA
480 NA NA NA NA NA NA NA NA NA
490 713.00 NA NA NA NA NA NA NA NA
500 NA NA NA NA NA NA NA NA NA

Table B.11: Solubility Dataset: Runtimes of [33]’s sampling approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 - 7.29 7.02 7.60 7.42 7.94 7.99 8.14 8.56
20 - 7.32 6.97 7.70 7.98 7.90 10.11 10.29 11.44
30 - 7.32 7.02 7.72 8.16 8.26 9.21 9.49 9.24
40 - 7.09 7.36 7.89 7.97 9.00 10.22 10.21 10.57
50 - 7.07 7.54 7.98 8.41 10.19 10.61 10.79 11.44
60 - 7.43 7.57 7.99 9.84 10.72 11.37 11.62 11.87
70 - 7.44 7.32 8.55 9.87 10.83 13.73 12.80 12.90
80 - 7.24 7.31 8.21 10.01 11.42 13.09 12.80 13.16
90 - 7.40 7.53 8.37 11.07 11.20 13.04 13.68 14.04
100 - 7.53 7.58 8.58 10.89 11.88 14.01 14.63 14.90
110 - 7.66 7.42 8.98 11.39 11.87 14.23 15.58 15.97
120 - 7.43 7.55 8.55 12.41 13.50 15.38 18.10 16.65
130 - 7.59 7.62 8.73 12.97 13.82 15.83 17.08 17.50
140 - 7.46 7.68 8.93 13.86 14.92 18.03 18.47 18.12
150 7.37 7.52 8.67 13.44 16.13 18.80 21.16 20.40 21.46
160 7.65 7.60 9.22 15.05 15.98 19.56 21.73 21.54 21.69
170 7.38 7.91 9.17 12.64 17.15 21.69 20.70 21.27 20.79
180 7.55 7.56 9.32 14.77 17.17 20.13 21.48 22.49 22.05
190 7.35 7.70 9.39 18.86 17.84 21.57 24.09 23.03 22.93
200 7.36 7.93 9.57 15.54 19.06 25.62 23.88 26.26 27.02
210 7.62 7.84 9.58 15.42 20.81 22.77 24.68 24.62 25.32
220 7.52 7.74 9.74 14.15 18.64 27.41 27.01 26.14 26.10
230 7.59 7.79 10.81 18.02 20.58 31.06 29.40 26.86 29.61
240 7.57 8.92 9.94 18.34 24.72 27.88 31.72 30.64 28.84
250 8.61 7.95 10.85 17.03 21.87 26.71 30.77 29.39 29.47
260 7.73 8.43 11.33 15.96 23.62 29.25 32.57 33.38 35.78
270 8.26 8.29 10.32 21.95 22.43 27.84 30.61 30.97 31.38
280 7.73 8.14 11.02 19.61 25.24 28.61 31.84 34.90 35.23
290 7.69 8.21 10.63 17.90 25.53 29.73 35.49 33.15 33.51
300 7.82 8.13 11.58 18.16 23.60 32.32 36.07 39.13 41.65
310 7.81 9.05 10.88 24.94 27.83 31.61 36.98 35.13 36.74
320 7.75 8.70 10.98 27.05 27.85 37.72 35.33 35.48 35.95
330 7.85 8.19 11.05 21.21 25.09 33.39 39.03 36.70 37.74
340 8.84 8.20 11.72 23.75 28.72 41.75 41.48 39.38 43.21
350 7.86 9.49 11.79 23.08 31.85 36.94 38.25 46.89 44.54
360 9.14 8.48 10.48 21.53 27.60 36.12 47.16 45.42 45.43
370 8.12 8.30 14.20 22.98 27.78 44.29 47.12 46.24 49.69
380 7.93 9.53 12.64 20.39 30.99 45.42 40.96 50.33 51.22
390 9.27 9.70 11.78 28.02 30.14 43.51 52.49 48.88 54.00
400 9.42 9.16 13.19 24.77 32.83 44.92 52.77 49.55 54.28
410 9.49 8.40 13.37 25.59 31.39 40.48 48.90 50.85 54.21
420 9.41 8.44 11.83 31.61 31.09 46.38 50.96 52.13 52.50
430 8.22 8.93 12.03 35.12 31.76 42.83 51.70 53.60 53.44
440 8.13 8.65 12.12 31.37 37.40 47.77 52.43 59.80 55.68
450 10.01 8.56 12.32 31.52 32.93 44.03 54.05 55.72 56.14
460 8.22 8.74 12.40 27.51 33.85 49.85 55.88 56.85 57.48
470 8.38 8.79 12.43 24.20 34.74 52.58 56.74 57.91 58.94
480 8.37 9.37 12.64 30.24 35.30 52.41 58.39 60.95 61.97
490 9.14 8.79 12.70 29.94 37.68 53.06 61.57 64.08 60.63
500 9.52 10.12 12.85 28.80 39.65 49.64 60.05 60.63 64.04

Table B.12: Concrete Dataset: Runtimes of [32]’s depth approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 8.73 9.26 13.33 12.47 13.78 14.50 11.57 15.32 15.82
20 11.27 9.85 11.38 17.33 17.09 19.11 13.65 17.38 17.85
30 9.95 14.59 13.85 17.49 24.42 22.55 26.71 24.72 27.83
40 13.44 13.32 16.83 24.99 21.71 23.02 24.57 27.63 44.67
50 10.87 18.31 19.55 23.04 24.34 26.31 45.24 39.21 48.41
60 11.36 16.12 19.59 40.74 135.18 110.60 118.87 128.19 105.39
70 22.30 17.66 28.00 36.71 51.90 52.97 72.25 140.85 186.74
80 19.52 28.65 42.23 112.94 47.93 92.89 155.91 139.26 97.63
90 16.93 20.06 25.30 64.33 79.10 118.13 195.59 101.65 266.98
100 18.14 27.15 35.36 47.52 116.25 177.16 130.24 178.46 275.86
110 19.35 27.22 55.97 43.08 56.13 58.67 100.82 98.79 300.99
120 23.50 49.76 70.12 69.71 173.02 86.05 76.51 257.33 330.32
130 18.14 38.10 78.64 72.60 60.68 170.01 166.30 316.08 449.87
140 16.62 28.57 118.89 94.45 203.92 196.19 484.79 382.72 529.71
150 20.75 80.91 67.59 127.02 819.29 1347.97 1306.40 1679.08 2328.01
160 29.27 48.22 89.49 166.07 289.01 287.91 304.07 568.99 559.94
170 19.95 295.89 726.91 852.73 1148.62 1519.99 1883.67 NA NA
180 24.48 50.66 99.30 165.60 268.71 1902.40 1881.57 2490.90 NA
190 24.53 106.95 835.14 1044.39 1483.80 1791.81 2248.39 2876.57 NA
200 27.92 53.86 121.37 196.75 467.20 551.70 397.89 796.17 3189.27
210 198.82 441.27 1025.73 NA NA 2080.16 NA NA NA
220 22.25 78.78 88.60 179.81 494.87 671.88 651.35 1138.89 1388.76
230 30.35 51.83 335.46 436.49 715.24 897.72 1220.37 1220.83 3761.16
240 33.17 212.54 283.33 537.31 743.35 1023.56 1018.66 1544.26 2078.70
250 30.46 114.09 203.79 364.76 309.49 640.69 NA NA NA
260 63.91 119.80 174.80 1188.12 NA NA NA NA NA
270 63.17 197.64 NA 1811.23 2008.74 2218.59 NA NA NA
280 41.91 169.41 254.46 469.84 NA NA 3296.56 NA NA
290 41.43 103.01 291.51 1718.85 NA NA 3488.51 NA NA
300 39.94 112.15 186.10 599.71 956.47 NA 1841.03 2631.08 4814.39
310 48.64 124.82 325.17 598.14 1014.85 1224.01 1154.91 NA NA
320 73.24 263.72 315.20 786.04 1007.63 NA NA NA NA
330 51.46 1021.28 1527.57 NA NA NA NA NA NA
340 66.17 343.14 NA NA NA 3563.53 NA NA NA
350 153.84 349.15 428.30 928.57 NA 1520.00 NA NA NA
360 464.43 NA 1648.78 2246.87 NA NA NA NA NA
370 143.49 405.09 744.16 2328.35 NA NA NA NA NA
380 59.62 296.92 529.75 717.44 NA NA NA NA NA
390 510.95 1083.23 1372.90 2960.74 NA NA NA NA 7055.02
400 95.51 231.87 589.37 2818.48 NA NA NA NA NA
410 48.94 351.90 366.05 986.29 1498.57 NA NA NA NA
420 110.06 358.71 1016.11 NA NA NA NA NA NA
430 136.36 414.48 1041.15 1071.61 1835.11 2222.55 NA NA NA
440 184.71 143.50 557.92 1006.94 NA NA NA NA NA
450 144.40 689.40 1165.70 NA NA NA NA NA NA
460 75.51 349.55 647.03 1347.26 NA NA NA NA NA
470 130.04 488.45 591.98 1191.30 NA NA NA NA NA
480 162.73 NA 1086.74 1572.86 NA NA NA NA NA
490 706.72 NA 2048.95 NA NA NA NA 6791.25 NA
500 250.88 1230.94 2090.88 3037.14 3956.66 5693.66 NA NA NA

Table B.13: Concrete Dataset: Runtimes of [33]’s sampling approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 7.46 7.81 9.24 8.33 8.93 8.63 9.93 21.13 28.31
20 7.10 8.89 7.75 8.28 9.42 18.34 20.86 17.05 29.64
30 8.17 8.41 8.67 8.21 15.96 34.84 43.48 55.26 48.99
40 7.55 8.93 9.88 11.04 19.54 36.74 59.44 52.18 53.13
50 8.77 8.42 8.83 10.03 18.39 45.31 66.07 49.15 61.97
60 9.21 8.34 9.09 10.65 33.40 43.35 80.20 90.60 79.89
70 8.33 9.05 9.47 10.12 29.86 85.01 128.28 81.05 93.06
80 8.20 9.01 9.23 12.50 42.33 114.52 122.50 111.48 108.06
90 8.81 8.98 9.50 11.67 32.15 71.29 158.20 135.51 162.28
100 8.84 8.26 9.88 11.20 47.65 84.32 177.97 104.09 136.22
110 8.93 8.59 10.39 10.61 47.37 87.08 125.47 187.03 153.24
120 8.63 7.89 8.50 11.60 36.60 129.00 127.43 152.27 199.19
130 8.71 8.24 10.08 18.88 99.51 155.50 176.60 205.97 178.34
140 8.96 8.57 10.02 20.88 66.42 235.07 210.07 195.79 223.91
150 8.29 9.27 9.98 14.57 102.13 159.40 139.32 228.00 174.45
160 8.63 9.62 10.94 22.67 110.94 146.15 181.94 247.60 264.02
170 8.59 9.69 10.04 22.45 86.62 148.18 173.62 233.42 231.00
180 8.62 8.77 10.59 17.77 116.93 157.68 178.74 260.05 252.50
190 8.86 8.83 11.56 18.82 82.96 187.35 293.42 286.54 278.43
200 8.69 9.16 12.99 22.96 127.20 177.11 234.36 247.73 239.96
210 8.13 9.07 13.56 18.18 83.79 253.28 255.83 327.44 259.50
220 8.86 8.44 13.41 21.46 91.14 190.93 309.75 274.79 285.00
230 8.74 8.33 11.01 19.21 102.50 164.80 201.90 263.76 272.24
240 8.10 8.29 11.45 26.34 104.09 263.59 332.13 309.62 337.84
250 8.91 8.45 11.06 22.56 133.54 322.62 349.14 378.64 384.65
260 9.61 9.41 11.31 22.67 112.10 294.94 446.12 386.10 445.51
270 8.44 9.79 13.08 24.97 120.01 310.61 385.65 424.22 366.16
280 8.51 8.70 12.79 24.92 151.70 288.70 385.33 405.60 444.43
290 9.08 8.71 11.65 28.17 146.41 331.33 390.85 415.99 466.28
300 8.78 9.19 11.99 29.20 131.36 327.91 541.82 439.60 428.74
310 8.91 8.88 13.44 34.21 128.09 427.07 595.81 537.88 520.80
320 8.97 9.74 17.30 27.93 234.20 506.85 474.60 406.83 616.62
330 9.31 8.93 18.06 35.98 174.44 384.53 475.07 462.11 420.01
340 9.45 9.01 17.35 32.51 231.79 496.46 668.32 390.23 448.84
350 9.40 9.00 16.48 33.33 225.25 574.38 485.06 717.97 498.00
360 8.79 10.01 16.09 37.81 183.64 388.63 484.59 449.99 491.94
370 8.97 9.88 15.67 38.33 216.92 430.68 604.53 531.45 562.86
380 9.61 9.90 13.49 33.46 229.88 560.49 551.72 835.65 795.88
390 9.53 9.86 15.52 42.01 257.21 461.89 870.14 749.19 926.18
400 9.60 9.95 16.03 39.82 376.47 470.90 830.38 864.26 825.96
410 9.65 9.99 17.62 46.04 238.70 673.08 925.45 944.72 950.24
420 9.03 9.14 22.60 46.42 284.13 732.23 950.95 960.92 911.77
430 9.97 10.25 15.67 49.87 231.48 864.95 940.84 1065.40 1062.24
440 9.78 10.71 17.94 46.83 294.87 994.43 1097.23 1065.68 1113.59
450 9.89 10.14 18.62 38.25 249.92 706.52 1011.14 978.42 1101.15
460 9.80 10.09 15.44 32.71 395.76 795.28 948.41 1094.30 1178.36
470 9.99 10.36 18.94 42.14 404.64 677.84 1124.71 1184.06 1036.77
480 10.09 10.42 20.73 34.83 257.99 849.74 945.48 1135.34 1085.56
490 9.92 10.49 17.20 51.61 322.10 817.17 1069.67 1421.99 1278.90
500 9.33 10.51 17.10 46.66 256.21 943.14 1473.89 1201.16 1080.92

Table B.14: Wine Dataset: Runtimes of [32]’s depth approximations
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# trees
Approximation Level

10% 20% 30% 40% 50% 60% 70% 80% 90%
10 10.12 27.86 33.89 23.03 22.36 33.31 126.28 153.80 176.57
20 18.51 27.61 71.96 728.03 827.19 902.79 1466.86 1363.49 1778.97
30 32.07 35.86 37.97 77.39 268.62 683.39 2432.21 3112.18 NA
40 24.34 76.29 123.11 189.24 2608.89 2982.73 3991.36 4103.35 5585.68
50 268.34 1404.66 NA 3049.95 3891.69 4208.42 NA NA NA
60 29.54 201.49 284.70 197.19 349.61 6033.12 6449.31 NA NA
70 70.97 219.95 419.23 NA 4217.45 6136.51 6972.27 NA NA
80 56.16 217.28 213.73 574.26 2651.09 3367.99 3851.38 4020.50 NA
90 126.98 793.15 1438.34 2191.92 NA NA NA NA NA
100 NA 1589.83 2940.74 NA 4381.19 6805.26 NA NA NA
110 103.86 NA NA NA NA NA NA NA NA
120 173.27 1495.36 2167.12 3154.28 4119.08 5007.18 NA NA NA
130 NA NA NA NA NA NA NA NA NA
140 654.44 NA NA NA NA NA NA NA NA
150 121.31 NA NA NA NA NA NA NA NA
160 NA 4937.85 NA NA NA NA NA NA NA
170 NA NA NA NA NA NA NA NA NA
180 844.27 NA NA NA NA NA NA NA NA
190 NA NA NA NA NA NA NA NA NA
200 497.43 NA NA NA NA NA NA NA NA
210 440.14 NA NA NA NA NA NA NA NA
220 1077.39 NA NA NA NA NA NA NA NA
230 NA NA NA NA NA NA NA NA NA
240 NA NA NA NA NA NA NA NA NA
250 NA NA NA NA NA NA NA NA NA
260 NA NA NA NA NA NA NA NA NA
270 NA NA NA NA NA NA NA NA NA
280 NA NA NA NA NA NA NA NA NA
290 NA NA NA NA NA NA NA NA NA
300 NA NA NA NA NA NA NA NA NA
310 NA NA NA NA NA NA NA NA NA
320 NA NA NA NA NA NA NA NA NA
330 NA NA NA NA NA NA NA NA NA
340 NA NA NA NA NA NA NA NA NA
350 NA NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA NA
370 NA NA NA NA NA NA NA NA NA
380 NA NA NA NA NA NA NA NA NA
390 NA NA NA NA NA NA NA NA NA
400 NA NA NA NA NA NA NA NA NA
410 NA NA NA NA NA NA NA NA NA
420 NA NA NA NA NA NA NA NA NA
430 NA NA NA NA NA NA NA NA NA
440 NA NA NA NA NA NA NA NA NA
450 NA NA NA NA NA NA NA NA NA
460 NA NA NA NA NA NA NA NA NA
470 NA NA NA NA NA NA NA NA NA
480 NA NA NA NA NA NA NA NA NA
490 NA NA NA NA NA NA NA NA NA
500 NA NA NA NA NA NA NA NA NA

Table B.15: Wine Dataset: Runtimes of [33]’s sampling approximations
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Appendix C

Proofs and Figures of Chapter 4

C.1 Proofs of analytical results

Proof of Proposition 4.4.3 When the susceptible population is large enough (greater than
100), the number of daily new infections it is considered independent Poisson random vari-
able with parameter βnStIt

N
(li2018parameter, hong2020estimation). With populations at the

county or state level, we can approximate the Poisson distribution with N
(
βnStIt

N
, βnStIt

N

)
. If

it ∼ N
(
βnStIt

N
, βnStIt

N

)
then it−ît√

StIt
∼ N

(√
StIt
N

(
βn − β̂t

n

)
, βn

N

)
Because we have |β̂t

n − βn| =
δ√
StIt

, |it−ît|√
StIt
∼ N

(
δ
N
, βn

N

)
making Zt identically distributed within the same wave. Because

the sequence of Zt is independent and identically distributed, it is exchangeable
Proof of Proposition 4.5: Consider martingale Mt and note that

E[Mt|Mt−1] =Mt−1E

[
s

1− exp(−s)
exp (−spt)

]
≥Mt−1

s

1− exp(−s)
exp (−sE[pt])

=Mt−1
s

1− exp(−s)
exp

(
−sE

[∑t
u=Tn−1

1Zu≥Zt

t− Tn−1

])

=Mt−1
s

1− exp(−s)
exp

− s

t− Tn−1

E

 Tn∑
u1=Tn−1

1Zu1≥Zt +
t∑

u2=(Tn+1)

1Zu2≥Zt


=Mt−1

s

1− exp(−s)
exp

(
− s

t− Tn−1

E [B1 +B2]

)
The inequality above follows simply from Jensen’s inequality, while the subsequent equality

is directly the definition of pt =
∑t

u=Tn−1
1Zu≥Zt

t−Tn−1
. Next, we split the sum of indicator variables

within the expectation into two parts. The first sum is the days during wave n where the
predicted error was higher than the error for day t, which is part of wave n+ 1. The second
sum is the days during wave n+ 1, where the error on that day is higher than on day t. We
can consider these two sums as independent binomial distributions. The first binomial, B1,
is distributed as B(Tn− Tn−1, P (Zu1 ≥ Zt)), where Tn− Tn−1 is the number of days in wave
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n. The second binomial, B2, is distributed as B(t− Tn, P (Zu2 ≥ Zt)).

E[Mt|Mt−1] ≥Mt−1
s

1− exp(−s)
exp

(
−s
(
(Tn − Tn−1)qn + (t− Tn)qn+1

t− Tn−1

))
(C.1)

=Mt−1
s

1− exp(−s)
exp

(
−sqn

Tn − Tn−1

t− Tn−1

)
exp

(
−sqn+1

t− Tn−1

t− Tn−1

)
exp

(
−sqn+1

Tn−1 − Tn
t− Tn−1

)
(C.2)

≥Mt−1
s exp (−s(qn + qn+1))

1− exp(−s)
exp

(
sqn+1(Tn − Tn−1)

t− Tn−1

)
(C.3)

≥Mt−1
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 +

sqn+1(Tn − Tn−1)

t− Tn−1

)
(C.4)

≥Mt−1
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
(C.5)

By definition we have that qn = P (Zu1 ≥ Zt) and qn+1 = P (Zu2 ≥ Zt), which we
substitute in when we take the expectation of both binomials. (C.4) follows since exp(x) ≥
1+ x. Finally, (C.5) follows by taking the first derivative of the convex function and finding
the tangent line at Tn.

Proof of Lemma 4.5 When daily cases are increasing in a wave, then we have that Su2Iu2 ≤
StIt. We have from the proof of Proposition 4.4.3 that

Zt ∼ N
(√

StIt
N
|βn+1 − β̂n|,

βn+1

N

)
Because we are using an estimate of infection rate from wave n to predict for wave n + 1.
Similarly, we have that

Zu2 ∼ N

(√
Su2Iu2

N
|βn+1 − β̂n|,

βn+1

N

)

From this we can see that Zt and Zu2 are similarly distributed but Zt has an expectation
with a higher magnitude. If we defined another variable, Zt2 which has the same distribution
as Zu2 , then we would have that P (Zu2 ≥ Zt) ≤ P (Zu2 ≥ Zt2) = 0.5

St ∗ (1− N
R0∗St

) ≥ It
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Proof of Lemma 4.5: First let’s assume that βn ≤ βn+1

P (Zu1 ≥ Zt)

= P

(
|̂iu1 − iu1|√
Su1Iu1

≥ |ît − it|√
StIt

)

=

∫ ∞

0

P

(
|̂iu1 − iu1|√
Su1Iu1

≥ x

)
P

(
|ît − it|√
StIt

= x

)
dx

=

∫ ∞

0

P (|̂iu1 − iu1| ≥
√
Su1Iu1x)P (|ît − it| =

√
StItx)dx

≤
∫ ∞

0

P (|̂iu1 − iu1 | ≥
√
Su1Iu1x) ∗ 2P (it = ît +

√
StItx)dx

=
2√
StIt

∫ ∞
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P

(
|̂iu1 − iu1| ≥ (x− ît)

√
Su1Iu1

StIt

)
P (it = x)dx

=
2√
StIt

∫ ∞

ît

P

(
|(̂iu1 − E[iu1 ]) + (E[iu1 ]− iu1)| ≥ (x− ît)

√
Su1Iu1

StIt

)
P (it = x)dx

≤ 2√
StIt

∫ ∞

ît

P

(
|̂iu1 − E[iu1 ]|+ |E[iu1 ]− iu1| ≥ (x− ît)

√
Su1Iu1

StIt

)
P (it = x)dx

≤ 2√
StIt

∫ ∞

ît

P

(
|E[iu1 ]− iu1 | ≥ (x− ît)

√
Su1Iu1

StIt
− δ
√
Su1Iu1

N

)
P (it = x)dx

=
2√
StIt

∫ ∞

ît

P

(
|E[iu1 ]− iu1| ≥

(
x− ît −

δ
√
StIt
N

)√
Su1Iu1

StIt

)
P (it = x)dx

We start with the definition of Z, and use the fact that the number of cases on a given
day can be approximated with a Normal distribution, N (βSI

N
, βSI

N
). We assume that the

new infection rate is higher than the previous wave. This means that we are more likely to
underestimate the number of new cases than overestimate when using the infection rate of
the old wave, ie

P (it = ît +
√
StItx) + P (it = ît −

√
StItx) ≤ 2P (it = ît +

√
StItx).

We can then use Chernoff bound ([110]) to get an upperbound on

P

(
|E[iu1 ]− iu1| ≥

(
x− ît −

δ
√
StIt
N

)√
Su1Iu1

StIt

)
because iu1 is normally distributed. For the sake of notation, we define

(µ, σ2) := (
βn+1StIt

N
,
βn+1StIt

N
)

, so that it ∼ N (µ, σ2). We also note that by definition, iu1 ∼ N (
βnSu1Iu1

N
,
βnSu1Iu1

N
) and

ît =
βnStIt

N
, which implies that

Su1Iu1
var[iu1 ]StIt

= N
βnStIt

= 1
ît
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P (Zu1 ≥ Zt)

≤ 2√
StIt

∫ ∞

ît

2 exp

−
(
x− ît − δ

√
StIt
N

)2
2var[iu1 ]

Su1Iu1

StIt

 1

σ
√
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−1

2

(
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=
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(
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√
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√
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The last inequality came from the fact we assumed that the infection rate of the new wave
βn ≤ βn+1, this means that ît = βnStIt

N
≤ βn+1StIt

N
= E[it] = σ2. Because exp(−1

x
) has a
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positive derivative as long as x > 0, we can say, exp(−1
ît
) ≤ exp(−1

σ2 )

=
4

σ
√
StIt
√
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Second, let’s assume that βn ≥ βn+1. This inequality follows very closely the previous
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case when βn ≤ βn+1 so we focus on highlighting where the proof differs.

P (Zu1 ≥ Zt)

= P

(
|̂iu1 − iu1|√
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)

≤
∫ ∞
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√
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√
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∫ ît

−∞
P

(
|̂iu1 − iu1| ≥ (ît − x)

√
Su1Iu1

StIt

)
P (it = x)dx
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P
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√
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)
P (it = x)dx

Here, we assume that the new infection rate is lower than the previous wave. This means
that we are more likely to overestimate the number of new cases than underestimate when
using the infection rate of the old wave, ie P (it = ît +

√
StItx) + P (it = ît −

√
StItx) ≤

2P (it = ît −
√
StItx).

Like before, we can then use Chernoff bound (matni2019tutorial) to get an upperbound

on P

(
|E[iu1 ]− iu1| ≥

(
ît − x− δ

√
StIt
N

)√
Su1Iu1
StIt

)
because iu1 is normally distributed. For

the sake of notation, we define (µ, σ2) := (βn+1StIt
N

, βn+1StIt
N

), so that it ∼ N (µ, σ2).
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The last inequality came from the fact we assumed that the infection rate of the new wave
βn ≥ βn+1, this means that ît = βnStIt

N
≥ βn+1StIt

N
= E[it] = σ2. Because exp(−1

x
) has a
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positive derivative as long as x > 0, we can say, exp(−1
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) ≥ exp(−1
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=
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We see that the final bound on P (Zu1 ≥ Zt) if βn ≥ βn+1 has a very similar final structure
as that if the infection rate is increasing. Therefore, we can summarize the bound as:

P (Zu1 ≥ Zt) ≤
√

2π

StIt
exp
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4
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)2
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)

Proof of Theorem 4.5: Recall from Proposition 4.5,

E[Mt|Mt−1] ≥Mt−1
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
Substituting upper bounds on qn (Lemma 4.5) and qn+1 (Lemma 4.5), we get that

E[Mt|Mt−1] ≥

Mt−1

s exp

(
−s
(√

2π
StIt

exp

(
−1

4

(|βn−βn+1|− δ√
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)2
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StIt
N

)
+ 0.5

))
1− exp(−s)

(
1 + s0.5

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
.

This proves the final result.
Ht is a submartingale
Proof of Lemma C.1:

• E[|Ht|] ≤ ∞: Mt is a submartigale and Ht is a finite shift on Mt

• Ht is based on only randomness generated by time t: The only variability in Ht comes
from Mt

• E[Ht|Ht−1] ≥ Ht−1:

145



E[Ht|Ht−1]
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1 + sqn+1

(Tn − Tn−1)− (t− Tn)
Tn − Tn−1

)
− 1

)
−

t∑
u=Tn+1

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (u− Tn)
Tn − Tn−1

)
− 1

)

=Mt−1 −
t−1∑

u=Tn+1

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (u− Tn)
Tn − Tn−1

)
− 1

)
= Ht−1

Proof of Lemma 4.5. For all t, there exists a strictly greater than 0 probability, ϵ that
the next Tλ data points are the strangest that the model has seen (ie each one is stranger
than everything that’s come before it). Then the p-scores for these points will be:

{pt, pt+1, ..., pt+Tλ
} =

{
1

t
,

1

t+ 1
, . . . ,

1

t+ Tλ

}
≥
{
1

1
,
1

2
, . . . ,

1

Tλ

}

Then, MTλ
≥Mt−1

(
s

1−exp(−s)

)Tλ∏Tλ

i=1

(
exp(− s

i
)
)
.

The function
(

s
1−exp(−s)

)Tλ∏Tλ

i=1

(
exp(− s

i
)
)
grows with Tλ, so we pick an integer high

enough that
(

s
1−exp(−s)

)Tλ∏Tλ

i=1

(
exp(− s

i
)
)
> λ. Given thatMt−1 ≥ 1, then if the martingale

grows at such a rate, it will hit λ before t+ Tλ, meaning that P (T ≤ t+ Tλ) ≥ ϵ.
Proof of Theorem 4.5: Recall that the nth wave starts at time Tn. Then, by optional

stopping theorem, we have that
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E[HTn ] ≤ E[HT ]

E[MTn ] ≤ E

[
MT −

T∑
u=Tn+1

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (u− Tn)
Tn − Tn−1

)
− 1

)]

M0 ≤ λ− E

[
T∑

u=Tn+1

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1

(Tn − Tn−1)− (u− Tn)
Tn − Tn−1

)
− 1

)]

M0 − λ ≤ −
(
s exp (−s(qn + qn+1))

1− exp(−s)
(1 + sqn+1)− 1

)
E[T − Tn]

+
s2 exp (−s(qn + qn+1)) qn+1

1− exp(−s)
E

[
T∑

u=Tn+1

(u− Tn)
Tn − Tn−1

]

= −
(
s exp (−s(qn + qn+1))

1− exp(−s)
(1 + sqn+1)− 1

)
E[T − Tn] +

s2 exp (−s(qn + qn+1)) qn+1

(1− exp(−s))(Tn − Tn−1)
E

[
T−Tn∑
u=1

u

]

= −
(
s exp (−s(qn + qn+1))

1− exp(−s)
(1 + sqn+1)− 1

)
E[T − Tn]

+
s2 exp (−s(qn + qn+1)) qn+1

(1− exp(−s))(Tn − Tn−1)
E

[
(T − Tn)(T − Tn + 1)

2

]
≤ −

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1 −

sqn+1

2(Tn − Tn−1)

)
− 1

)
E[T − Tn]

+
s2 exp (−s(qn + qn+1)) qn+1

2(1− exp(−s))(Tn − Tn−1)
E
[
(m(T − Tn))2

]
= −

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1 −

sqn+1

2(Tn − Tn−1)

)
− 1

)
E[T − Tn]

+
s2 exp (−s(qn + qn+1)) qn+1

2(1− exp(−s))
(Tn − Tn−1)m

2

E[T − Tn] ≤
λ−M0 +

s2 exp(−s(qn+qn+1))qn+1

2(1−exp(−s))
(Tn − Tn−1)m

2(
s exp(−s(qn+qn+1))

1−exp(−s)

(
1 + sqn+1 − sqn+1

2(Tn−Tn−1)

)
− 1
)

We have by definition of a λ-detectable wave that E[T − Tn] ≤ m(Tn − Tn−1), for some
m ≤ 1. We can substitute m = 1 in to the equation above to get a tighter bound on the
expected time till detection than E[T − Tn] ≤ Tn − Tn−1. We can use the tighter bound to
find a new value of m and iterate. This would result in finding smaller and smaller values of
m until we have that:

m(Tn − Tn−1) =
λ−M0 +

s2 exp(−s(qn+qn+1))qn+1

2(1−exp(−s))
(Tn − Tn−1)m

2(
s exp(−s(qn+qn+1))

1−exp(−s)

(
1 + sqn+1 − sqn+1

2(Tn−Tn−1)

)
− 1
)

This is a simple quadratic in terms of m, which we can solve to find that:

m =
m1 ±

√
m2

1 − 4m2(λ−M0)

2m2
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where:

m1 =

(
s exp (−s(qn + qn+1))

1− exp(−s)

(
1 + sqn+1 −

sqn+1

2(Tn − Tn−1)

)
− 1

)
(Tn − Tn−1)

m2 =
s2 exp (−s(qn + qn+1)) qn+1

2(1− exp(−s))
(Tn − Tn−1)

As long as
m1+
√

m2
1−4m2(λ−M0)

2m2
> 1 then the wave iterative substitution process for m

holds (ie when you takem = 1, the bound provided by optional stopping theorem is smaller).
Translating this we have that λ−M0 < m1−m2, which we can put into terms of wave length
as:

Tn − Tn−1 >
λ−M0 +

s2 exp(−s(qn+qn+1))qn+1

2(1−exp(−s))

s exp(−s(qn+qn+1))
1−exp(−s)

(
1 + sqn+1

2

)
− 1

In this case, we can take m =
m1−
√

m2
1−4m2(λ−M0)

2m2
. By substituting all the parameters in,

we can write the bound for detection as:

E[T − Tn] ≤
m1 −

√
m2

1 − 4m2(Tn − Tn−1)(λ−M0)

2m2

where:

m1 =

s exp
(
−s
(√

2π
Nc

exp

(
−1

4

(|βn−βn+1|− δ√
Nc

)2

max(βn,βn+1)
c

)
+ 0.5

))
1− exp(−s)

(
1 +

s

2
− s

4(Tn − Tn−1)

)
− 1

 (Tn − Tn−1)

m2 =

s2 exp

(
−s(

√
2π
Nc

exp

(
−1

4

(|βn−βn+1|− δ√
Nc

)2

max(βn,βn+1)
c

)
+ 0.5)

)
4(1− exp(−s))

c is a constant such that StIt
N
≥ c for all t in waves n and n + 1, thus proving Theorem

4.5.

C.2 Graphs

C.2.1 September 01, 2020 Figures
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Figure C.1: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
A-K states when trained up to September 1, 2020
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Figure C.2: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
L-O states when trained up to September 1, 2020
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Figure C.3: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
O-Z states when trained up to September 1, 2020
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C.2.2 January 15, 2021 Figures

Figure C.4: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
A-K states when trained up to January 15, 2021
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Figure C.5: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
L-O states when trained up to January 15, 2021
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Figure C.6: SEIRD and multipeak SEIRD in-sample and out-of-sample predictions in the
O-Z states when trained up to January 15, 2021

C.3 Tables
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Table C.1: In-Sample and Out-of-Sample R-squared for Lasso Predicting Infection Rates

State In-Sample R-squared Out-of-Sample R-squared
Alabama 0.75 0.66
Alaska 0.65 0.52
Arizona 0.85 0.63
Arkansas 0.62 0.49
California 0.80 0.78
Colorado 0.64 0.52
Connecticut 0.73 0.73
Delaware 0.64 0.61
District of Columbia 0.43 0.39
Florida 0.62 0.75
Idaho 0.67 0.54
Illinois 0.60 0.50
Indiana 0.64 0.56
Iowa 0.71 0.67
Kansas 0.69 0.66
Kentucky 0.44 0.33
Louisiana 0.66 0.40
Maine 0.69 0.37
Maryland 0.40 0.43
Massachusetts 0.55 0.42
Michigan 0.77 0.72
Minnesota 0.79 0.68
Mississippi 0.78 0.53
Missouri 0.85 0.75
Montana 0.87 0.81
Nebraska 0.52 0.38
Nevada 0.47 0.55
New Hampshire 0.71 0.62
New Jersey 0.59 0.44
New Mexico 0.80 0.73
New York 0.94 0.89
North Carolina 0.54 0.06
North Dakota 0.95 0.93
Ohio 0.54 0.62
Oklahoma 0.43 0.34
Oregon 0.78 0.69
Pennsylvania 0.82 0.74
Rhode Island 0.80 0.70
South Carolina 0.82 0.75
South Dakota 0.75 0.75
Tennessee 0.66 0.55
Texas 0.32 0.38
Utah 0.68 0.56
Vermont 0.61 0.32
Virginia 0.78 0.62
Washington 0.76 0.69
West Virginia 0.83 0.69
Wisconsin 0.73 0.60
Wyoming 0.70 0.63
Average 0.68 0.59
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Table C.2: Number of Detected Waves and Out-of-Sample MAPEs for the multiwave SEIRD
models trained up to January 15, 2021 with different lambdas

state lambda Number of Detected Waves Out-of-Sample MAPE

Alabama

205 10.0 0.05
225 11.0 0.05
250 6.0 0.79
250 6.0 1.00
300 6.0 0.52

Alaska

205 11.0 0.10
225 10.0 0.04
250 10.0 0.04
250 11.0 0.01
300 8.0 0.08

Arizona

205 8.0 0.03
225 9.0 0.07
250 6.0 2.59
250 6.0 2.59
300 8.0 0.12

Arkansas

205 13.0 0.04
225 11.0 0.05
250 7.0 0.11
250 9.0 0.04
300 7.0 0.05

California

205 12.0 0.02
225 8.0 0.02
250 8.0 0.02
250 5.0 0.02
300 5.0 0.02

Colorado

205 7.0 0.12
225 7.0 0.13
250 7.0 0.13
250 5.0 0.14
300 6.0 0.09

Connecticut

205 10.0 0.05
225 8.0 0.02
250 8.0 0.02
250 8.0 0.02
300 8.0 0.02

Delaware

205 7.0 0.26
225 7.0 0.26
250 6.0 0.01
250 6.0 0.01
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300 6.0 0.01

District of Columbia

205 11.0 0.05
225 10.0 0.03
250 6.0 0.06
250 6.0 0.06
300 6.0 0.06

Florida

205 9.0 0.08
225 9.0 0.04
250 8.0 0.04
250 8.0 0.04
300 8.0 0.05

Georgia

205 9.0 0.23
225 7.0 0.03
250 4.0 0.05
250 4.0 0.05
300 4.0 0.05

Hawaii

205 11.0 0.06
225 11.0 0.06
250 10.0 0.09
250 8.0 0.09
300 8.0 0.09

Idaho

205 11.0 0.03
225 11.0 0.03
250 10.0 0.03
250 8.0 0.03
300 7.0 0.04

Illinois

205 11.0 0.01
225 10.0 0.05
250 5.0 0.17
250 7.0 0.01
300 8.0 0.01

Indiana

205 11.0 0.05
225 10.0 0.10
250 6.0 0.05
250 6.0 0.05
300 5.0 0.18

Iowa

205 9.0 0.06
225 11.0 0.07
250 11.0 0.00
250 9.0 0.06
300 5.0 0.07

Kansas

205 13.0 0.02
225 10.0 0.02
250 12.0 0.07
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250 12.0 0.07
300 10.0 0.07

Kentucky

205 11.0 0.05
225 7.0 0.09
250 8.0 0.03
250 4.0 0.08
300 4.0 0.08

Louisiana

205 12.0 0.12
225 8.0 0.05
250 6.0 0.02
250 6.0 0.02
300 8.0 0.16

Maine

205 12.0 0.20
225 11.0 0.20
250 8.0 0.04
250 8.0 0.04
300 8.0 0.04

Maryland

205 10.0 0.10
225 8.0 0.09
250 7.0 0.01
250 4.0 0.10
300 4.0 0.10

Massachusetts

205 9.0 0.29
225 8.0 0.28
250 10.0 0.02
250 7.0 0.28
300 7.0 0.27

Michigan

205 10.0 0.22
225 12.0 0.31
250 9.0 0.31
250 11.0 0.01
300 9.0 0.04

Minnesota

205 11.0 0.17
225 10.0 0.15
250 8.0 0.16
250 6.0 0.15
300 6.0 0.15

Mississippi

205 8.0 0.08
225 9.0 0.08
250 9.0 0.08
250 7.0 0.14
300 6.0 0.15

Missouri

205 10.0 0.04
225 7.0 0.05
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250 10.0 0.07
250 6.0 0.05
300 6.0 0.06

Montana

205 7.0 0.03
225 8.0 0.03
250 9.0 0.08
250 9.0 0.08
300 9.0 0.08

Nebraska

205 12.0 0.02
225 12.0 0.03
250 8.0 0.09
250 9.0 0.03
300 7.0 0.03

Nevada

205 11.0 0.01
225 11.0 0.01
250 7.0 0.29
250 8.0 0.01
300 6.0 0.12

New Hampshire

205 9.0 0.35
225 7.0 0.35
250 6.0 0.34
250 6.0 0.34
300 7.0 0.34

New Jersey

205 10.0 0.01
225 7.0 0.01
250 7.0 0.18
250 6.0 0.01
300 6.0 0.01

New Mexico

205 11.0 0.06
225 6.0 0.03
250 6.0 0.03
250 4.0 0.13
300 5.0 0.01

New York

205 8.0 0.02
225 15.0 0.13
250 6.0 0.02
250 7.0 0.24
300 12.0 0.05

North Carolina

205 10.0 0.01
225 6.0 0.03
250 8.0 0.02
250 6.0 0.14
300 8.0 0.05

North Dakota

205 9.0 0.02
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225 10.0 0.02
250 10.0 0.02
250 8.0 0.03
300 8.0 0.13

Ohio

205 10.0 0.04
225 11.0 0.06
250 7.0 0.21
250 7.0 0.21
300 8.0 0.21

Oklahoma

205 8.0 0.04
225 8.0 0.03
250 7.0 0.10
250 7.0 0.10
300 7.0 0.10

Oregon

205 12.0 0.02
225 10.0 0.01
250 10.0 0.01
250 10.0 0.08
300 9.0 0.09

Pennsylvania

205 12.0 0.01
225 12.0 0.03
250 8.0 0.05
250 10.0 0.08
300 10.0 0.08

Rhode Island

205 7.0 0.01
225 6.0 0.06
250 6.0 0.06
250 4.0 0.07
300 4.0 0.07

South Carolina

205 7.0 0.09
225 11.0 0.06
250 8.0 0.07
250 8.0 0.07
300 6.0 0.22

South Dakota

205 9.0 0.02
225 9.0 0.01
250 9.0 0.01
250 9.0 0.01
300 7.0 20.60

Tennessee

205 6.0 0.02
225 5.0 0.15
250 5.0 0.15
250 6.0 0.17
300 4.0 0.18
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Texas

205 10.0 0.02
225 9.0 0.02
250 9.0 0.02
250 9.0 0.05
300 6.0 0.02

Utah

205 11.0 0.03
225 13.0 0.02
250 7.0 0.04
250 6.0 0.03
300 6.0 0.03

Vermont

205 14.0 0.04
225 10.0 0.06
250 8.0 0.12
250 8.0 0.12
300 7.0 0.05

Virginia

205 9.0 0.12
225 11.0 0.12
250 8.0 0.12
250 7.0 0.12
300 6.0 0.04

Washington

205 11.0 0.15
225 8.0 0.14
250 9.0 0.10
250 6.0 0.05
300 4.0 0.18

West Virginia

205 7.0 0.23
225 5.0 0.23
250 5.0 0.23
250 5.0 0.23
300 6.0 0.24

Wisconsin

205 7.0 0.04
225 7.0 0.04
250 7.0 0.02
250 6.0 0.02
300 5.0 0.09

Wyoming

205 9.0 0.03
225 5.0 0.07
250 5.0 0.08
250 6.0 0.09
300 7.0 0.09
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