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ABSTRACT

With the advancement of machine learning models and the rapid increase in their range
of applications, learning algorithms should not only have the capacity to learn complex
tasks, but also be resilient to imperfect data, all while being resource efficient. This thesis
explores trade-offs between these three core challenges in statistical learning theory. We aim
to understand the limits of learning algorithms across a wide range of machine learning and
optimization settings, with the goal of providing adaptable, robust, and efficient learning
algorithms for decision-making.

In Part I of this thesis, we study the limits of learning with respect to generalizability and
data assumptions following the universal learning framework. In universal learning, we seek
general algorithms that have convergence guarantees for any objective task without structural
restrictions. While this cannot be achieved without conditions on the training data, we
show that in general this can be performed beyond standard statistical assumptions. More
generally, we aim to characterize provably-minimal assumptions for which universal learning
can be performed, and to provide algorithms that learn under these minimal assumptions.
After giving a detailed overview of the framework and a summary of our results in Chapter 2,
we investigate universal learnability across a wide range of machine learning settings: full-
feedback in realizable online learning (Chapter 3), supervised learning with arbitrary or
adversarial noise (Chapter 4); partial-feedback in standard contextual bandits (Chapter 5)
and, as a first step towards more complex reinforcement learning settings, contextual bandits
with non-stationary or adversarial rewards (Chapter 6).

We investigate the impact of resource constraints in Part II, specifically of memory con-
straints in convex optimization. The efficiency of optimization algorithms is typically mea-
sured through the number of calls to a first-order oracle which provides value and gradient
information on the function, aptly referred to as oracle-complexity. However, this may not be
the only bottleneck; understanding the trade-offs with the usage of resources such as mem-
ory could pave the way for more practical optimization algorithms. Following this reasoning,
we make advancements in characterizing achievable regions for optimization algorithms in
the oracle-complexity/memory landscape. In Chapter 7 we show that full memory is neces-
sary to achieve the optimal oracle-complexity for deterministic algorithms; hence, classical
cutting-plane methods are Pareto-optimal in the oracle-complexity/memory trade-off. On
the positive side, we provide memory-efficient algorithms in Chapter 8 for high-accuracy
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regimes (sub-polynomial in the dimension). In exponential-accuracy regimes, these algo-
rithms strictly improve the oracle-complexity of gradient descent while preserving the same
optimal memory usage. These algorithms can in fact be used for the more general feasibility
problem for which we give improved lower-bound trade-offs in Chapter 9. These results
imply that in standard accuracy regimes (polynomial in the dimension), gradient descent
is also Pareto-optimal and reveal a phase transition for the oracle-complexity of memory-
constrained algorithms.

Thesis supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science
Co-Director, Operations Research Center
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Chapter 1

Introduction

1.1 General Motivation

With the rapid advancement of machine learning (ML) and the increasing reliance on auto-
mated decision-making, a major challenge in statistical learning is to design learning algo-
rithms that are not only efficient but also enjoy performance guarantees for large classes of
problem instances. This is especially relevant as ML tools are being used in high-stakes do-
mains where errors can have serious consequences. Additionally, the task to be learned may
be very complex, and the data used to train these algorithms may be unstructured or even
adversarially corrupted. In this thesis, we touch upon the following three major challenges.

Generalizability. To deploy a machine learning model for new applications, we need to
ensure that it can learn large classes of tasks. As machine learning has evolved, data-driven
models have shown that they can handle increasingly more complex problems, reaching
amazing levels of performance in tasks such as generating images, videos, or language. To
learn such complex tasks, choosing a good learning model is a crucial and challenging step.
On one hand, more complex learning models—often characterized by a larger number of
training parameters—can represent more complex decision functions. However, classical
issues such as overfitting may also need to be taken into account.

The standard approach in statistical learning theory is to first choose a set of functions,
also called a function class. We then aim to achieve performance comparable to the best
function within this class for the specific problem at hand. For the aforementioned ML
models, a natural choice of function class is simply the class of functions that can be rep-
resented by the model. As a concrete example, in linear regression one aims to learn the
best fit within the function class of linear predictors. Of course, having guarantees for larger
function classes is more desirable since the algorithm can then tackle more general classes
of problems.

Data resilience. Real-world data is often far from ideal; available data can be highly noisy,
unstructured, correlated, or even adversarially corrupted. To provide theoretical guarantees
on learning algorithms, assumptions on the data generating process are however necessary.
For instance, algorithms may require the observed data to be representative of, or reasonably
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cover the class of instances on which it is tested: we would not expect an algorithm to perform
well on instances for which it never observed any similar data. As another simple example, if
the data contains too many adversarial corruptions, the task of recovering the true patterns
in the underlying problem may be impossible.

The most classical data assumption from far is that each available example was generated
from independent and identically distributed (i.i.d.) processes. This assumption has been
instrumental in achieving learning guarantees, in fact the analysis for the i.i.d. case sometimes
can be lifted to relaxations of the i.i.d. assumption for data processes, such as processes with
mixing, stationary, or ergodic properties. Going beyond the i.i.d. data assumptions and
learning in adversarial environments has hence become an important question in statistical
learning, under the umbrella terms of data robustness or data resilience.

Resource efficiency. Large-scale automated decision-making faces various bottlenecks,
including standard computational considerations such as runtime, memory usage, and energy
consumption, as well as societal and ethical concerns, among others. While the traditional
measure of algorithms’ efficiency largely remains runtime or computational complexity, un-
derstanding the impact of the other practical constraints has become increasingly important
in recent research. In this thesis, memory usage will be a key focus area, given its significant
role in large-scale optimization, in particular during model training.

The overarching goal of this thesis is to explore the fundamental limits of learning along
these objectives in optimization and statistical learning. A recurrent theme will be to under-
stand the trade-offs between these challenges, which in turn guides the design of algorithms.
We divide this thesis into two main parts, which are briefly summarized below. Within
Part I, Chapter 3 is based on the works [Bla22; BCH22; BC22], Chapter 4 is based on
[BJ23], Chapter 5 is based on [BHJ22], and Chapter 6 is based on [BHJ23]. Within Part II,
Chapter 7 is based on [BZJ23], Chapter 8 is based on [BZJ24], and Chapter 9 is based on
[Bla24].

1.2 Universal Learning

In Part I, we study the limits of learning with respect to both generalizability and data
assumptions. This framework was introduced by [Han21a] to study learning under minimal
assumptions. A detailed overview of the motivation, framework, and results is given in
Chapter 2.

It is well understood that positive guarantees for learning cannot be achieved both with-
out restrictions on generalizability (arbitrarily general target tasks) and without data as-
sumptions (adversarial data). Previous works exhibited a fundamental trade-off between
these two objectives. On one extreme, learning with adversarial data can only be performed
for restricted function classes: typically those that have finite so-called Littlestone dimension
[Lit88]. In particular, this does not give any positive results even if the function class only
contains linear functions. Instead, one can make assumptions on the data-generating process
to account for richer benchmark function classes. Among many other important results, it
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is known that under i.i.d. data, one can efficiently learn finite VC dimension function classes
[VC71], which encompasses linear function classes.

Universal learning lies at the other extreme and aims to provide learning guarantees
without any prior assumption on the form of the target task. The goal is therefore to have
algorithms that are fully general and can learn any arbitrary target decision function, arbi-
trarily complex though it may be. While this of course a very strong objective, achieving
consistency results is still possible: the decisions of the algorithm converge to the optimal
decisions. In fact, early works already showed that for i.i.d. data and say binary classifica-
tion, such universal consistency results can be achieved with very simple nearest-neighbor
algorithms [CH67; Sto77; DGL13]. Subsequent works also succeeded in generalizing these
results for stationary ergodic processes [Orn78; Alg92; MYG96; GL02; Nob03]. Our goal is
to understand the provably-minimal assumptions on the data-generating processes for which
this learning guarantee can still be achieved.

1.2.1 Universal Realizable Online Learning

In Chapter 3, we focus on the simplest model for sequential prediction tasks, in which a
learner iteratively observes a context Xt ∈ X containing any form of information about the
new instance, makes a prediction Ŷt about the corresponding value, and finally observes
the true value Yt ∈ Y which can be used to update its future predictions. In the realizable
setting, we assume that the responses do not have any noise, that is, there is some prediction
function f ⋆ that perfectly describes the responses Yt = f ⋆(Xt). In this context, the goal is
to converge to the optimal predictions, which is measured in terms of average loss between
predictions Ŷt and true values Yt. Such predictions are said to be consistent, and an algorithm
is universally consistent if its predictions are consistent for any underlying optimal prediction
function f ⋆. This simplified model will be our starting point for studying universal learning,
in which, no assumptions are made on the specific learning target f ⋆. As mentioned above,
prior works showed that for bounded losses, universal consistency was possible in this setting
for i.i.d. context sequences (Xt)t≥1 or even stationary ergodic.

To understand the minimal data assumptions, we first provide a necessary and sufficient
characterization of the class of processes for which universal learning is possible. For the
main case of bounded losses, we refer to this class of processes as Sublinear Measurable Visits
(SMV), which is very general and significantly generalizes stationary ergodic processes and
other classical statistical assumptions. It intuitively asks that the process (Xt)t≥1 does not
explore too many different regions of the instance space. Second, we provide algorithms that
can ensure universal consistency under these provably-minimal data assumptions: these are
called optimistically universal. In the previous case of bounded losses, we provide a sim-
ple variant of the 1-Nearest-Neighbor (1NN) algorithm, which we call 2-Capped-1-Nearest-
Neighbor (2C1NN), that is optimistically universal: it simply performs (1NN) on a restricted
dataset by deleting points that have been used twice as nearest neighbor representatives. This
rather small modification allows the algorithm to be universally consistent under all SMV
processes and for general metric context and value spaces X and Y .
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1.2.2 Universal Regression with Adversarial Responses

In Chapter 4, we turn to the case where responses are noisy, arbitrarily correlated, or even ad-
versarial, which encompasses to the standard supervised learning setting or non-parametric
regression. Here, we also provide a complete characterization of learnable processes X and
give optimistically universal algorithms. Unlike in the noiseless case, the class of learn-
able processes here depends on the value space Y , unveiling a fundamental dichotomy. For
most applications such as classification (|Y| < ∞), regression (Y = R), or compact value
spaces Y , learnable processes for noiseless responses and arbitrarily correlated/adversarial
responses coincide. Thus, in these cases, generalizing our results to noisy supervised learning
comes at no additional cost: we combine the 2C1NN algorithm with sparsity and robustness
techniques to overcome adversarial noise. For pathological value spaces Y , however, such a
generalization gap may exist and can be quantified. Intuitively, these correspond to value
spaces for which even the mean-estimation problem of supervised learning without contexts
(X = {0}), cannot be solved to a fixed precision in a finite number of iterations. In that case,
a more standard algorithm akin to empirical risk minimization is optimistically universal.
These results significantly generalize seminal works on consistency for non-i.i.d. data that
assumed ergodic stationarity or high-order moments of the responses [GO07].

1.2.3 Contextual Bandits and Optimistically Universal Learning

We investigate machine learning settings with partial feedback in Chapter 5. We focus on the
contextual bandit setting, which is fundamental in sequential data-driven decision-making.
This line of work could serve as a stepping stone for the study of universal learning in more
general settings. In the contextual bandit problem, a decision-maker iteratively observes a
context xt ∈ X , selects an action at ∈ A, and then receives a reward rt as a result of the
context and action. For instance, a store may serve a sequence of customers, provide a list
of product recommendations to each customer, and receive a reward if the recommendation
leads to a purchase. The standard model for rewards in contextual bandits is that rewards,
conditioned on the context and selected action, follow a fixed and time-invariant conditional
probability distribution. The literature on universal learning in partial feedback settings
is surprisingly sparse. In particular, prior to our work, it was unknown whether universal
consistency in contextual bandits was possible even for finite actions and i.i.d. contexts
(Xt)t≥1, that is, whether we can provide an algorithm that would converge to the optimal
policy in hindsight irrespective of how complex this target policy may be.

We provide optimistically universal algorithms in this stationary contextual bandit set-
ting. The characterization of universally learnable processes here follows a trichotomy:
whether the action space A is finite, countably infinite, or uncountable. Of particular inter-
est, for finite action spaces A, data processes SMV that were learnable with the full feedback
of supervised learning can still be universally learned with the partial feedback of contextual
bandits, which gives consistent algorithms under significantly weaker and provably-minimal
assumptions on contexts compared to previous literature.
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1.2.4 Adversarial Contextual Bandits

In Chapter 6, we challenge the classical stationarity assumption for contextual bandits. It
is well understood indeed that environments may be non-stationary, or even adversarial in
some applications. As a first important step towards more complex non-stationary machine
learning settings such as reinforcement learning, we study in this chapter non-stationary
rewards in contextual bandits.

Quite surprisingly, non-stationarity prohibits the existence of optimistically universal al-
gorithms in contextual bandits for the main case of finite action spaces A and generic context
spaces (including in particular all uncountable Polish spaces). This strongly contrasts with
the full-feedback supervised learning setting from Chapters 3 and 4, where going from inde-
pendent to adversarial rewards comes at no additional cost. Due to the need for exploration
in contextual bandits, algorithms should balance between two very different strategies (1)
generalization: rewards observed for all previous contexts provide information at the pop-
ulation level; and (2) personalization: specific contexts of interest may diverge significantly
from the population and require individually tailored actions. On the conceptual level, these
two objectives are incompatible in the face of non-stationarity without prior knowledge of
the context process.

On the positive side, given sufficient prior knowledge on the distribution of contexts
(Xt)t≥1, we can still provide algorithms that find the right trade-off between generalization
and personalization to achieve universal consistency. In fact, the class of universally learnable
processes is still extremely large, beyond i.i.d. or ergodic processes, but it is in general strictly
smaller than for contextual bandits with stationary rewards.

1.3 Memory Constraints in Optimization

We investigated in Part I the limits of learning with respect to generalizability and data
assumptions, irrespective of the specific implementation of these algorithms. However, re-
source efficiency is also critical for practical implementations. In Part II, we specifically
investigate the impact of memory in convex optimization.

The efficiency of optimization algorithms is most commonly analyzed through the lens of
oracle complexity, which is the number of calls to an oracle (a black box that provides infor-
mation about the function to optimize) needed for an algorithm to output an approximate
solution within a desired tolerance error. With growing problem sizes, oracle complexity may
not be the only bottleneck for optimization; in particular, practical constraints motivated
the study of memory usage in algorithms and communication for decentralized optimization.

First-order convex optimization exemplifies memory usage challenges. Consider mini-
mizing Lipschitz (non-smooth) convex functions on the d-dimensional unit ball to precision
ϵ ≤ 1/

√
d, with access to a function value and gradient oracle. Two classes of algorithms

are used to solve this problem in the literature. (1) Cutting-plane methods such as the
center-of-mass method achieve the optimal oracle complexity O(d ln 1

ϵ
). However, these are

rarely used in high-dimensional applications and are often seen as impractical: cutting-plane
methods require a large runtime per iteration. Moreover, these methods need to store all
previously observed gradients, which requires at least a quadratic bit memory Θ(d2 ln 1

ϵ
).
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(2) Gradient descent methods, on the other hand, are arguably the most convenient and
commonly used methods. They only require storing and updating a few vectors, requiring
O(d ln 1

ϵ
) bit memory and runtime per iteration. As a major downside, however, their oracle

complexity of O(1/ϵ2) is suboptimal.
This raises several natural questions. Can these algorithms be improved? More precisely,

what is the trade-off between oracle complexity and memory usage? Here, we aim to provide
some answers for convex optimization and related problems. For a concise summary of known
results on the topic, we refer to Section 1.3.4.

1.3.1 Quadratic Memory is Necessary for Optimal Query Complex-
ity in Convex Optimization

In Chapter 7, we start by showing some impossibility results in the oracle-complexity /
memory landscape. We show that the full memory of cuttings planes is in fact necessary to
achieve the optimal oracle complexity, at least for deterministic algorithms. Precisely, we
show that for any δ ∈ [0, 1], any deterministic algorithm for convex optimization requires at
least d2−δ memory or make Ω̃(d1+δ/3) oracle queries. The information-theoretic proof tech-
niques build upon the work of [Mar+22] who first provided lower-bound trade-offs showing
that having both optimal oracle complexity and optimal memory usage was impossible. We
recall that because the optimal oracle complexity without memory constraints is O(d ln 1

ϵ
),

storing all gradient oracle information up to reasonable precision only requires O(d2 ln2 1
ϵ
)1

bits of memory, that is quadratic memory in the dimension d. Hence, our result implies that
for deterministic algorithms, any non-trivial memory constraint (δ > 0) strictly worsens the
oracle complexity. In particular, cutting-plane methods such as the center-of-mass method
are Pareto-optimal in the query-complexity/memory trade-off.

1.3.2 Memory-Constrained Algorithms for Convex Optimization

In the previous Chapter 7, we provided a lower-bound trade-off between oracle complexity
and memory usage. These are impossibility results, which in particular leave open the major
question of whether it is possible to improve over cutting planes or gradient descent. This
is precisely the purpose of Chapter 8 in which we provide memory-efficient algorithms. Our
proof techniques also generalize to the related feasibility problem in which one aims to find a
point within a convex feasible set included in the unit d-dimensional ball, having only access
to a separation oracle. This oracle either reports that a query point is already within the
feasible set or provides a hyperplane that separates the query from the feasible set. For the
feasibility problem with accuracy ϵ, we assume that the feasible set contains a ball of radius
ϵ. One can easily check that this generalizes the convex optimization problem, where the
gradient oracle can be used as a separation oracle for the feasible set of ϵ-minimizers.

The class of algorithms we introduce recursively use cutting-plane methods as subroutines
on smaller-dimensional subproblems. For any parameter p ∈ [d] which specifies the depth
of the recursive construction, the algorithm requires O(d2

p
ln 1

ϵ
) bits of memory and makes

1An extra ln 1
ϵ factor can be removed by restricting the search space using John’s ellipsoid theorem, which

gives exactly the memory O(d2 ln 1
ϵ required for cutting-plane methods.
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(C d
p
ln 1

ϵ
)p oracle calls for some constant C > 1. In particular, p = 1 exactly corresponds to

the standard cutting plane methods. In the sub-polynomial regime ln 1
ϵ
≫ ln d, this class of

algorithms provides a positive trade-off between cutting-planes and gradient-descent; to the
best of our knowledge these are the first class of algorithms that are non-Pareto-dominated by
the two classical optimization algorithms in any regime with ϵ ≤ 1/

√
d. Importantly, in the

exponential regime ϵ ≤ d−Ω(d), our algorithm with p = d achieves the optimal memory usage
and strictly improves the oracle-complexity of gradient descent from O(1/ϵ2) to (C ln 1

ϵ
)d.

1.3.3 Gradient Descent is Pareto-Optimal in the Oracle Complexity
and Memory Trade-off for Feasibility Problems

The previous chapters left open two major questions. First, can we improve over gradient
descent in standard accuracy regimes (outside the exponential regime ϵ ≤ d−Ω(d))? Gradient
descent is arguably the most commonly used method in practice, hence understanding the
form of the memory trade-off near gradient descent is an important question to address.
Second, while the lower bounds of Chapter 7 demonstrated the advantage of having larger
memory, their separation in oracle complexity is very mild (at most an extra factor O(d)
compared to the optimal oracle complexity). In particular, they do not show any dependency
in the accuracy ϵ, which contrasts with the oracle complexity of gradient descent O(1/ϵ2).
A natural question is therefore to understand what is the dependency in ϵ for the oracle-
complexity of memory-constrained algorithms. In particular, given that cutting planes only
exhibit a logarithmic dependency O(d ln 1

ϵ
), can we escape a polynomial dependency in ϵ

under memory constraints?
In Chapter 9 we give improved lower-bound trade-offs for the feasibility problem to answer

these two questions. Precisely, we show that to solve feasibility problems with accuracy
ϵ ≥ e−d

o(1) , any deterministic algorithm either uses d1+δ bits of memory or must make at
least 1/(d0.01δϵ2

1−δ
1+1.01δ

−o(1)) oracle queries, for any δ ∈ [0, 1]. We prove similar (albeit weaker)
results for randomized algorithms which imply that gradient descent is Pareto-optimal in
the oracle complexity/memory trade-off. Further, the oracle complexity for deterministic
algorithms is always polynomial in 1/ϵ if the algorithm has less than quadratic memory in d:
this reveals a phase transition since with quadratic O(d2 ln 1

ϵ
) memory, the oracle complexity

of cutting plane methods is only logarithmic in 1/ϵ.

1.3.4 Summary of Known Results in Oracle-Complexity/Memory
Trade-offs in Convex Optimization

As a concise summary for this oracle-complexity/memory usage landscape in convex opti-
mization and feasibility problems, we give illustrations of the currently known trade-offs.

High-dimensional regime ϵ ≥ 1/
√
d. In this regime, there is no trade-off between oracle-

complexity and memory since gradient descent is already known to be optimal in oracle-
complexity, even with the right constant factor [Nes03]. This regime corresponds to the case
when the number of iterations is smaller than the dimension and will not be our focus here.
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Figure 1.1: Oracle-complexity/memory trade-offs for convex optimization and the feasibility
problem for the standard accuracy regime 1/

√
d ≥ ϵ ≥ e−d

o(1) . The red (resp. pink) regions
correspond to lower-bound regions that are not achievable by randomized (resp. determinis-
tic) algorithms. Lower-bound regions that only hold for the feasibility problem are dashed.
The green regions correspond to upper-bound regions that are achievable by (deterministic)
algorithms for both the feasibility problem and convex optimization. References for each
region are given in Section 1.3.4.

Standard accuracy regime 1/
√
d ≥ ϵ ≥ e−d

o(1). The most standard setting to study
oracle-complexity/memory trade-offs is when the accuracy ϵ is not exponentially small in
the dimension d; here we will consider that ϵ ≥ e−d

o(1) . Fig. 1.1, summarizes both upper and
lower bound trade-offs that were developed in [Mar+22; CP23] and in this thesis. Here the
notation Ω̃ hides poly-logarithmic factors in d. We start with the lower bounds.

L1 The optimal oracle complexity for convex optimization (a fortiori for the feasibility
problem) is Θ(d ln 1

ϵ
) [NY83].

L2 The optimal memory usage is Θ(d ln 1
ϵ
) bits. This is in fact necessary even just to

represent the output x⋆ of the algorithm with the desired accuracy ϵ, which can be
proved with a simple covering argument [WS19].

L3 In a breakthrough, [Mar+22] showed the first lower-bound trade-off. Any algorithm
for convex optimization uses d1+δ bits of memory or has oracle-complexity Ω̃(d4/3(1−δ)),
for any δ ∈ [0, 1/4]. Hence it is impossible to have both optimal memory usage and
oracle-complexity.

24



L4 In Chapter 7 we show that any deterministic algorithm for convex optimization uses
at least d1+δ bits of memory or has oracle-complexity Ω̃(d4/3−δ/3), for any δ ∈ [0, 1].
Hence, quadratic memory in the dimension d is necessary to have the optimal oracle-
complexity for deterministic algorithms.

L5 [CP23] showed that any randomized algorithm for convex optimization uses at least
d1+δ bits of memory or has oracle-complexity Ω̃(d7/6−δ/6−o(1)) whenever ϵ ≤ e− ln5 d, for
any δ ∈ [0, 1]. Hence, in this regime, quadratic memory is also necessary for randomized
algorithms to have the optimal oracle-complexity.

• All previous lower-bounds can be adapted to include a factor ln 1
ϵ

so that they always
give non-trivial trade-offs, as we show in Chapter 8.

L6 Previous lower bounds held for convex optimization, hence a fortiori for the feasibility
problem. For this harder problem, we give improved query lower bounds in Chapter 9.
Any deterministic algorithm solving the feasibility problem uses d1+δ bits of memory
or has oracle-complexity 1/

(
d0.01δϵ2

1−δ
1+1.01δ

−o(1)
)
, for any δ ∈ [0, 1]. In particular, the

oracle-complexity of gradient descent is necessary to have the optimal memory usage.

L7 In Chapter 9, we also show that any randomized algorithm solving the feasibility
problem uses d1+δ bits of memory or has oracle-complexity 1/

(
d2δϵ2(1−4δ)−o(1)), for any

δ ∈ [0, 1/4].

We then turn to the upper-bounds, that is, known algorithms for convex optimization or
the feasibility problem.

U1 Gradient descent has optimal memory usage of Θ(d ln 1
ϵ
) bits but has suboptimal

O(1/ϵ2) oracle-complexity. It solves convex optimization, but also the feasibility prob-
lem which is perhaps less well-known: the vanilla algorithm with step-size ϵ converges
with the same guarantees as for convex optimization.

U1 Cutting-plane methods use O(d2 ln 1
ϵ
) bits of memory but have the optimal oracle-

complexity of O(d ln 1
ϵ
). These are by nature designed to solve feasibility problems,

hence a fortiori convex optimization problems as well.

U3 We introduce in Chapter 8 algorithms that provide some non-trivial trade-off between
gradient descent and cutting-plane methods when ln 1

ϵ
≫ ln d. The memory improve-

ment depends on the accuracy. The memory required is divided by at most a factor
ln 1

ϵ
/ ln d and is more significant for smaller values of the tolerance accuracy ϵ.

Exponential accuracy regime. We next turn to the exponential regime ϵ ≤ d−Ω(d), for
which the upper-bound trade-off for the algorithms we introduce in Chapter 8 have different
implications, which are represented in Fig. 1.2. The most significant differences are for the
upper bounds. The upper bounds U1 and U2 are unchanged.
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Figure 1.2: Oracle-complexity/memory trade-offs for convex optimization and the feasibility
problem for the exponential accuracy regime ϵ ≤ e−d

Ω(d) . The red (resp. pink) regions cor-
respond to lower-bound regions that are not achievable by randomized (resp. deterministic)
algorithms. The green regions correspond to upper-bound regions that are achievable by
(deterministic) algorithms for both the feasibility problem and convex optimization. Refer-
ences for each region are given in Section 1.3.4.

U3 In the exponential regime, the proposed algorithms from Chapter 8 strictly improve
over gradient descent. This shows that gradient descent is not Pareto-optimal in that
regime: we can improve its oracle-complexity from 1/ϵ2 to (C ln 1

ϵ
)d for some universal

constant C > 0.

As for the lower-bound trade-offs, they all hold in the exponential regime except for L6
and L7. Indeed, these cannot hold since gradient descent is not Pareto-optimal anymore. We
believe however that these could be adapted using the tools given in Chapter 8 to include
dependencies in ln 1

ϵ
for lower-bounds. In particular, it may be possible to give lower-bounds

for the query-complexity of algorithms with optimal memory O(d ln 1
ϵ
) of the form (c1 ln

1
ϵ
)c2d

for some constants c1, c2 > 0. This would match the format of the upper-bound (C ln 1
ϵ
)d

which we provide in Chapter 8.
Strictly speaking, there is some gap between the standard regime ϵ ≥ e−d

o(1) and this
exponential regime ϵ ≤ d−Ω(d). In this case, the upper-bound U3 also holds but does not
strictly improve over gradient descent. All lower-bounds L1 to L7 also hold but L6 and L7
do not reach gradient descent exactly. We refer to Chapter 9 for detailed bounds.
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Part I

Universal Learning
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Chapter 2

An Overview of Universal Learning

In this first chapter, we present a collection of results building a theory of universal learning
for machine learning as first introduced by [Han21a]. In statistical learning theory, a major
goal is to provide algorithms that can learn efficiently from observed data with provable
performance guarantees for large classes of problem instances. Universal learning studies the
fundamental question of learnability under provably minimal assumptions. Precisely, one
aims to (1) precisely understand minimal assumptions on the problem instances necessary
for learning, and (2) give algorithms with guarantees under these minimal assumptions.

2.1 A Gentle Introduction

The present section is meant to serve as a reader-friendly introduction to the universal
learning framework. We give some context and motivation, and present the main questions.

2.1.1 Background on statistical learning.

To make this discussion more concrete, we present the universal learning approach for the
sequential forecasting task which is a core building block for learning problems. As we will
see, the framework naturally extends to more complex machine learning settings. In sequen-
tial forecasting, a learner iteratively makes predictions about a sequence of values Y1, Y2, . . .
within a value space Y , for instance predicting tomorrow’s weather or future stock prices. To
make its prediction, the learner typically has some side information Xt in some space X , that
hopefully is somewhat related to the value to be predicted Yt. These are commonly referred
to as covariates or contexts. In the weather forecasting example, covariates could include
anything from pressure, temperature, humidity measurements, typical weather outcomes for
that time of the year, among others. To summarize, at every time step t ≥ 1, the learner has
to make a prediction Ŷt about the value Yt using only the present context Xt and historical
data, that is, past values Y1, . . . , Yt−1 and past contexts X1, . . . , Xt−1.

To evaluate the performance of a learner, we use a loss function ℓ that measures the
discrepancy ℓ(Yt, Ŷt) between true and predicted values at any iteration. Then, ideally,
one would aim to learn a (near-)optimal prediction function X → Y that given a context
minimizes the expected loss. To give a useful example, in real-valued regression, a common
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choice of loss function is the 2-norm ℓ(Yt, Ŷt) = |Yt − Ŷt|2. Further assuming that the
context-value pairs (Xt, Yt)t≥1 are independent identically distributed (i.i.d.), under some
integrability conditions, the optimal prediction function is the Bayes predictor x ∈ X 7→
EY |X [Y | X = x].

Two classes of problem restrictions. Considering the range of applications in which
forecasting tasks arise, unsurprisingly, this problem has been extensively studied in the online
learning and regression literature. To have any positive results on the problem, however, some
assumptions about the problem are necessary. In particular, standard approaches make the
following two classes of ad-hoc restrictions.

1. Instead of comparing the performance of the algorithm to the optimal predictions,
one compares the algorithm to a pre-specified set of benchmark prediction functions
F = {f : X → Y}, also called a hypothesis class. As an example, in linear regression,
the hypothesis class exactly corresponds to linear predictors f . Similarly, when training
a machine learning model, the function class F that one aims to compete with is exactly
prescribed by the form of the model, e.g., support vector machine separators, boosting
tree functions, neural network functions, etc.

This benchmark approach is sometimes referred to as the agnostic setting, in contrast
with the realizable or noiseless setting in which one makes the significantly stronger
assumption that the values Yt are generated from the context Xt exactly through some
function f ⋆ within the function class F , so that Yt = f ⋆(Xt) for all t ≥ 1.

2. Assumptions are made on the data generating process for the context sequence X =
(Xt)t≥1 so that the past observed instances are sufficiently informative on future in-
stances. The predominant assumption in the literature is that the contexts are i.i.d. but
other assumptions such as ergodicity or stationarity can also be used. Similarly, as-
sumptions can be made on how value process Y = (Yt)t≥1 is generated with respect
to the contexts X. As described above, assuming that (Xt, Yt)t≥1 are together i.i.d. is
common in regression settings.

To give an example of how such restrictions can be leveraged for learning, we give a brief
overview of a central result in the Probably Approximately Correct (PAC) setting which was
first introduced by [Val84]. This central framework in statistical learning will be useful to
remember when introducing the universal learning framework.

PAC learning. Consider the binary classification setting where Y = {0, 1} and the loss is
the 0− 1 loss, that is, our goal is simply to minimize the number of classification mistakes.
As introduced above, we fix some hypothesis class F = {f : X → {0, 1}}. We also assume
that the context-value pairs (Xt, Yt) are together i.i.d. according to some joint distribution
D on X × Y unknown to the algorithm. The goal in PAC learning is, given T samples of
D, to output a prediction function ĥ : X → {0, 1} such that with good probability 1 − δ
(probably), the proposed prediction function performs as well as the best function within the
hypothesis class F (correct) up to an additional small fraction of mistakes ϵ (approximately).
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As it turns out, whether this can be achieved without prior knowledge of D depends on
the Vapnik-Chervonenkis (VC) dimension of the function class F , which is a combinatorial
complexity measure of the class. Its precise definition is not crucial for our present discussion
but we give its definition here for completeness. We say that a finite set S ⊂ X is shattered
by F if all 2|S| functions S → {0, 1} can be obtained by restricting some function from
f ∈ F to the set S. The VC dimension of F is then the maximum cardinality of a set
shattered by F . For instance in linear regression, the function class of affine separators
x ∈ Rk → 1[a⊤x ≥ b] has VC dimension k + 1. A central result in PAC learning is the
following [VC71; SB14].

Theorem 2.1 (Fundamental Theorem of Statistical Learning, quantitive version)). Fix a
hypothesis class F with VC dimension d < ∞. There is some algorithm such that having
access to T i.i.d. samples from any distribution D on X × Y, outputs a hypothesis ĥ such
that for any δ, ϵ > 0, with probability at least 1− δ,

P(X,Y )∼D[ĥ(X) ̸= Y ] ≤ inf
f∈F

P(X,Y )∼D[f(X) ̸= Y ] + C

√
d+ log(1/δ)

T
,

for some universal constant C > 0.

In particular, the excess loss compared to the best baseline within the hypothesis class
decays to 0 as the number of samples T grows. The above result is tight up to constant
factors in the excess loss term. Further, it is known that for a given benchmark hypothesis
class F , having finite VC dimension is necessary to have algorithms with vanishing excess
loss. This fact that VC dimension characterizes PAC learnability is also known as the
qualitative version of Theorem 2.1. Importantly, the algorithm that achieves the desired
excess loss bound from Theorem 2.1 is arguably the simplest learning algorithm, Empirical
Risk Minimization (ERM). It simply outputs the function f ∈ F that had the smallest
in-sample loss, computed with the T available samples.

Of course, many generalizations of this result are possible in the loss function, the value
spaces, or the considered setting. Our goal here is simply to give a brief overview of a useful
framework that exemplifies both standard restrictions (1) on the class of functions F to
compare the performance of the algorithm against, and (2) on the context sequence that is
here supposed i.i.d. together with the values.

Trade-offs between assumptions in statistical learning. Ideally, one would like to
use a benchmark function class F as large as possible so that we compare the performance
of the algorithm to functions closer to the optimal predictions. However, one expects the
guarantees to be weaker for larger benchmark function classes, since the learning objective
is more demanding. This is exemplified in Theorem 2.1 which shows how the excess loss
guarantee deteriorates as the VC dimension of the function class grows for the PAC learning
setting. Similarly, other complexity measures for function classes have been extensively
studied to quantify such trade-offs in other settings.

Alternatively, one could aim to understand the limits of learnability, that is what are
minimal assumptions for learning guarantees to still be achievable. In particular, we aim to
understand in which ways can we relax the two types of restrictions on benchmark function
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classes and data-generating processes. Answers to this question reveal a fundamental trade-
off between these two types of assumptions.

1. No assumptions on X. On one extreme, consider the case when no assumptions
are made on the context-generating process X. This corresponds to the adversarial
case in which an adversary can select contexts adaptively on the algorithm predictions
[Lit88; LW94; CL06; BPS09; RST15a; Alo+21]. This setting is known to be quite
restrictive. Even in the simpler realizable setting for binary classification Y = {0, 1}, a
classic result from [Lit88] showed that to have a decaying average number of mistakes,
the considered function class F should have finite Littlestone dimension, in which
case the number of mistakes is in fact bounded by this dimension LDim(F).1 In the
agnostic case, the number of mistakes can be bounded by O(

√
LDim(F)T ) [BPS09;

Alo+21]. This combinatorial complexity measure is much more restrictive than the VC
dimension, for instance even 1-dimension threshold functions have infinite Littlestone
dimension. A fortiori, linear regression with adversarial contexts is impossible.

2. Assumptions on both X and F . To learn beyond finite Littlestone dimension
function classes, many assumptions on X have therefore been proposed. As men-
tioned above, most works assume that the sequence of context-value pairs (Xt, Yt)t≥1 is
i.i.d.This is the classical setting for parametric and non-parametric regression [Gyö+02;
Was06] for which extensive results are known for various types of function class es-
timators, including but not limited to kennel smoothing, local polynomials [Tsy09],
smoothing splines [DD78; GS93; Wah90], reproducing kernel Hilbert spaces [SS02;
Wah90] or wavelets [Mal99]. In the PAC learning setting, learning is possible ex-
actly for function classes with finite VC dimension d, with tight excess loss bounds
of O(

√
(d+ log(1/δ)T ) for the agnostic case [VC71] as shown in Theorem 2.1, and

O(d+log(1/δ)) for the realizable case [Vap82; Blu+89; HLW94; Han16]. Beyond PAC
learning, many other joint assumptions on the data generating process X and classes
of functions relating contexts to values have been considered, including [Rya06; UB13;
Bou+21].

3. No function class restrictions: universal learning. Sitting at the other extreme
of the trade-off, this third category is what we loosely refer to as universal learning.
This corresponds to a setting in which the dependency between the covariates and the
corresponding values can be arbitrary. We give separately a more in-depth overview
of the universal learning literature.

2.1.2 Previous results in universal learning.

In universal learning, all assumptions on the prediction function to be learned are lifted.
Hence, the goal becomes to understand which assumptions on the context-generating process
can be used to preserve learning guarantees.

1The Littlestone dimension is defined as the maximal depth of a full binary tree with inner nodes labeled
by contexts in X and such that for every path from the root to a leaf there is a function in class f ∈ F that
evaluated on each inner node context evaluates to 0 (resp. 1) if the path follows the left (resp. right) child.
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Universal learning with i.i.d. contexts. Initial works on universal learning considered
the case of i.i.d. context sequences X. The first early in this direction showed that for binary
classification Y = {0, 1} in Euclidean context spaces and for the realizable case, we can
achieve a sublinear number of errors for any target value function f ⋆ : X → {0, 1} [CH67;
Sto77; DGL13]. Algorithms that achieve this property are said to be universally consistent :
consistent because they eventually learn the true prediction function, and universal because
they achieve the desired property irrespective of how complex the true prediction function
may be. As it turns out, in this realizable setting, in Euclidean context space, the simple
1-nearest neighbor algorithm is already universally consistent [CH67; Sto77; DGL13].

We spell out this seminal result for the sake of clarity. We still consider the sequential
binary classification prediction problem but further assume that the sequence X is i.i.d. and
that the values are given via Yt = f ⋆(Xt) at every time step, which corresponds to noiseless
responses. Importantly, no assumptions are made on f ⋆ other than it is measurable. At
every iteration, the k-nearest neighbor works as follows: given a current context Xt and past
historical data (Xt′ , Yt′)t′<t, it first computes the k nearest neighbors of Xt within the past
contexts (with the ambient metric of X ), say Xt1 , . . . , Xtk , then outputs the majority vote
over their values Yt1 , . . . , Ytk . Then, for any i.i.d. sequence X on X = Rd and irrespective of
the target f ⋆ : X → {0, 1}, the predictions Ŷt of the 1-nearest neighbor algorithm satisfy

lim
T→∞

1

T

T∑
t=1

1[Ŷt ̸= f ⋆(Xt)] = 0, (a.s).

Beyond the realizable case, for i.i.d. context-value pairs (Xt, Yt)t≥1 according to some dis-
tribution D on X ×Y , [Dev+94] showed that the kt-nearest neighbor rule with kt/ log t→∞
and kt/t→ 0 is also consistent in the agnostic setting under mild integrability assumptions.
In this noisy setting, one cannot possibly reach a zero average error rate. The minimum
error sometimes referred to as the Bayes risk is defined as

RD := inf
f :X→Y

E(X,Y )∼D [ℓ(f(Xt), Yt)] ,

where the infimum is taken over all measurable functions. In the binary classification setting,
the optimal risk is simply RD = EX min {P(Y = 1 | X),P(Y = 0 | X)} . The goal here is then
to reach the minimal Bayes risk, that is, ensure that

lim
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt) = RD, (a.s).

Both previous results were tailored to Euclidean context spaces. More recently, [Han+21;
GW21] showed that these consistency results can be extended to general separable metric
spaces, that is, admit a countable and dense set. In fact, [Han+21] shows that universal
consistency under i.i.d. contexts is possible exactly for context metric spaces X that are
essentially-separable2, a notion that slightly generalizes separable spaces. For our discussion,
working with separable context spaces will be largely enough. Following these results, [TK22]
showed how to generalize these results beyond binary classification for general separable value
spaces Y and under sufficient integrability conditions on the coupling distribution D.

2A metric space (X , ρ) is essentially-separable if for every probability measure µ on the Borel measure
induced by ρ, there is a subspace X ′ ⊆ X with full measure µ(X ′) = 1 and such that (X ′, ρ) is separable.
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Qualitative comparison to PAC learning. The previous discussion essentially shows
that under i.i.d. contexts, universal learning can always be achieved. A few remarks are in
order before moving to non-i.i.d. contexts. In the PAC learning setting, we saw that learning
was only possible if the benchmark function class had finite VC dimension. On the other
hand, in the universal learning framework, we seek guarantees compared to the optimal
prediction functions, say the Bayes predictor if it exists. We stress that the nature of the
results in the universal learning setting is, however, very different. While PAC learning gives
error bounds for a fixed sample horizon and for the worst-case learning distribution D; in
universal learning, one first fixes the learning distribution D, then as the number of samples
T grows for that distribution, one aims to have asymptotic convergence. In particular, this
takes advantage of the fact that the worst-case learning distribution for t1 samples may not be
the worst-case distribution for t2 > t1 samples. The previous universality results precisely
show that for every distribution, given enough samples one can reach the optimal Bayes
risk. Since giving uniform convergence rates is impossible without imposing restrictions on
the target prediction functions considered, the universality results that we present here are
therefore very asymptotic in nature.

Additionally, we note that the idea of first fixing the learning problem and then mak-
ing the number of samples grow proved useful to obtain much faster rates of convergence
[Bou+21] than in PAC learning where the worst-case learning problem depends on the num-
ber of samples.

Universal learning beyond i.i.d. contexts. Going beyond i.i.d. processes, the notion
of universal consistency needs to be slightly adapted, since a minimal risk as in the i.i.d. case
may not necessarily exist. We recall that the main goal of universal learning is to unrestrict
the class of benchmark functions. That is, we want to ensure that eventually the predictions
of the algorithm Ŷt perform at least as well as those of any prediction function f : X → Y .
Hence, in its strongest form, our objective is to ensure

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 0, (a.s.), ∀f : X → Y .

Non-i.i.d. context sequences have also been extensively studied in the literature. These
works use relaxations of the i.i.d. assumption, including mixing conditions [SHS09; LKS06;
Rou88; Col84; Irl97], stationary ergodicity [Orn78; Alg92; MYG96; GL02; Nob03], or certain
forms of law of large numbers [MKN99; GG09; SHS09], to achieve similar universality results.
We note however that most of these assumptions are relaxations that in essence still allow
to use technical tools from the i.i.d. case to generalize the universality results. In particular,
these assumptions on the context-generating process are still ad-hoc: there are possibly many
other choices of classes of processes for which universal learning can be performed. To give
an example, one could imagine that stochastic processes that alternate between different
(in finite number) distributions should still be learnable, although these would neither be
stationary nor ergodic. Understanding which are the fundamental and exact assumptions
required for learning is precisely the goal of the so-called optimistic learning framework.
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2.1.3 Optimistic learning: Minimal assumptions for learning

[Han21a] was the first to introduce a systematic framework to understand learning with
minimal assumptions. Instead of using ad-hoc relaxations of the i.i.d. assumption that still
allow to preserve technical parts of the analysis for the i.i.d. case, [Han21a] proposed the
much more ambitious goal of characterizing the provably-minimal assumptions for which
universal learning is achievable, that is, understanding when universal learning is possible.
This corresponds to characterizing the following class of universally learnable stochastic
processes

C := {processes X : ∃ an universally consistent algorithm provided the contexts follow X}.

To give an example, consider the simplest realizable setting, in which we assume that the
values are always given as Yt = f ⋆(Xt) for some unknown true prediction function f ⋆. Then,
we can explicit the definition of universally learnable processes above as follows.

C =

{
processes X : ∃ an algorithm such that ∀f ⋆ : X → Y , lim

T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt) = 0

}
.

In particular, we saw previously that i.i.d. and stationary ergodic processes belong to
C. On the other hand, in general, not all stochastic processes are universally learnable. We
give here a useful example to understand the difficulties in universal learning. Consider the
simplest realizable binary classification setting Y = {0, 1} and suppose that the context space
is simply X = N. The deterministic process (Xt = t)t≥1 is not universally learnable. The
reason is rather simple. At the t-th iteration, an algorithm only has access to the value of
the function f ⋆ on {1, . . . , t− 1}. But because we impose no conditions on the true function
f ⋆, these do not give any information on the value f ⋆(t) ∈ {0, 1}. Hence, no prediction is
better than a random guess and the algorithm incurs a large average loss. Generalizing this
example, we see that for any infinite context space X , deterministic processes that regularly
visit new contexts will not be universally learnable either.

By definition, there is no hope of having universally consistent algorithms if the context
process X falls outside of the universally learnable processes C. Assuming that X ∈ C is
therefore the provably-minimal assumption that one could hope to have positive results for.
This leads us to our next question of interest that was succinctly stated in [Han21a] as: Can
we learn whenever learning is possible? Precisely, we would like to provide algorithms that
universally learn under this minimal assumption X ∈ C that universal learning is achievable.
For reasons that we will explain shortly, these are called optimistically universal algorithms.
If these exist, which is not obvious a priori, then these algorithms are the most general
possible in universal learning. In particular, they enjoy the strong property that for any
process X, if they are not universally consistent, then no other algorithm would be either.

To make the definition of optimistically universal algorithms clear, we emphasize that
compared to the definition of universally learnable processes C there is a key interversion
in quantifiers. For a process X to be universally learnable it suffices that there is some
algorithm, tailored for X, that is universally consistent under X. On the other hand, an
optimistically universal algorithm must be universally consistent under every such process.
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The optimist’s decision theory [Han21a]. The framework that was just introduced is
part of a much more general—almost philosophical—form of reasoning that was introduced
and named by [Han21a] as the optimist’s decision theory. Imagine that we have fixed some
sort of objective O, which can be a learning guarantee such as consistency or specific conver-
gence rates, but potentially much more general. The minimal assumption to apprehend the
task is that it is at least possible to solve it with some (unknown) methodology. Of course,
not all tasks may be solvable, just as not all stochastic processes are universally learnable.
Further, checking whether a specific task is solvable likely cannot be practically checked;
deciding to apprehend the task is mostly a leap of faith. Hence this minimal assumption
is aptly called the optimist’s assumption. We are then interested in finding methodologies
that solve all tasks for which the objective O can be possibly achieved. These are precisely
optimistic methodologies that only rely on the optimist’s assumption.

In our specific universal learning setting, the objective O is universal consistency, and
optimistic methodologies are exactly optimistically universal algorithms.

2.1.4 Other universal learning settings

We presented the universal learning framework for online sequential prediction, but this can
be generalized to many other machine learning models. In particular, we will also investigate
contextual bandit settings for which the type of feedback is weaker than in regression settings.
Beyond online learning, [Han21a] also characterized universal learnability for inductive and
self-adaptive learning, two variants of the online learning setting. In online learning, the
algorithm can indefinitely update its predictions based on observed data. Instead, in the
inductive learning setting, the algorithm observes T samples (Xt, Yt)t≤T and then has to
commit to a prediction function for all future iterations. We evaluate the performance of the
algorithm as the number of available samples T grows to infinity. The self-adaptive setting
lies in between the inductive and online learning: the algorithm also observes T samples
(Xt, Yt)t≤T and can also adapt to the following sequence of covariates XT+1, XT+2, · · · , but
not to the values YT+1, YT+2, · · · . We refer to [Han21a] for a detailed presentation of the
known results for universal learning in these alternative learning settings.

2.2 Summary of Known Results in Universal Learning

In this section, we present the currently known results on universal online learning. These
span three classical machine learning settings: realizable or noiseless settings, regression
with arbitrary noise settings, and contextual bandit settings. Quite surprisingly, for most
of these settings, we can give precise answers to the two main questions described above:
(1) What is the class of universally learnable processes? (2) Can we construct optimistically
universal algorithms, if they exist? As a brief preview, universal consistency can indeed
be achieved for very general classes of processes, well beyond i.i.d. or stationary ergodic
processes. Further, with the notable exception of adversarial contextual bandits, we can
always give optimistically universal learning algorithms. In other terms, we can indeed learn
whenever learning is possible.
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2.2.1 Formal setup

We now formally present the universal learning setup. We mostly take the viewpoint of
regression settings which were also used as motivation in the previous section, however,
most of this setup will be shared for the contextual bandit setting as well.

Context and value space. The context space (X , ρ) is a general separable metric space
taken with its Borel topology B induced by ρ. We recall that separability means that there
exists a countable set that is dense with respect to the ambient metric. Similarly, the value
space (Y , | · |) can be any separable metric space. The loss ℓ : Y2 → [0,∞) can be more
general than the ambient metric | · | but some assumptions are still required.

Definition 2.1 (Near-metrics and generalized-metrics). We say that a function ℓ : Y2 →
[0,∞) is a near-metric if it is (1) symmetric: ℓ(y1, y2) = ℓ(y2, y1) for all y1, y2 ∈ Y; (2)
positive: ℓ(y1, y2) = 0 if and only if y1 = y2; and (3) satisfies the following relaxed triangular
inequality,

∀y1, y2, y3 ∈ Y , ℓ(y1, y3) ≤ cℓ(ℓ(y2, y1) + ℓ(y2, y3)).

We say that a function ℓ : Y2 → [0,∞) is a generalized-metric if it is (1) symmetric, (2)
positive, and (3) satisfies the following slightly stronger relaxed triangular inequality,

∀ϵ > 0,∃Cϵ ≥ 0,∀y1, y2, y3 ∈ Y , ℓ(y1, y3) ≤ (1 + ϵ)ℓ(y2, y1) + Cϵℓ(y2, y3).

Unless mentioned otherwise, we suppose that ℓ is a near-metric. For regression settings,
this may not be sufficient and we will then assume that the loss is a generalized-metric. The
main point is that both are general enough to include p-losses: ℓ = | · |p for any p > 0, that
are ubiquitous in machine learning. We denote by ℓ̄ := supy1,y2∈Y ℓ(y1, y2) the loss function
supremum and say that the loss is bounded if ℓ̄ < ∞. As we will see this will be the main
case of interest for universal learning.

Online learning setup. We consider the following sequential learning problem. At every
step t ≥ 1, the learner observes a new instance Xt ∈ X , predicts a value Ŷt ∈ Y then receives
some form of observation Ot ∈ O. In the realizable and regression settings, the learner
observes exactly the true value Ot = Yt and the observation space is simply the value space
O = Y . We keep this level of generality in the observations because in contextual bandits,
the observation is of a different nature: we only get to observe a reward Ot = rt typically
in O = [0,∞). More importantly, the algorithm can only use the observed history to make
its predictions. So far we use the term algorithm for simplicity. We note however that we
allow the predictions to be as complex as desired: computability will not be a concern here
although the algorithms we will propose will be somewhat implementable. Hence, we use
the preferred term learning rule from now on.

Definition 2.2 (Learning rule). A learning rule is a sequence f· = (ft)t≥1 of possibly ran-
domized measurable functions ft : X t−1×Ot−1×X → Y. The value selected at time t by the
learning rule is Ŷt = ft((Xs)s≤t−1, (Os)s≤t−1, Xt).
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Consistency with general data generating processes. Since we are interested in gen-
eral data-generating processes, we model the sequence of contexts X := (Xt)t≥1 and values
Y := (Yt)t≥1 as general stochastic processes on (X , ρ) and (Y , ℓ) respectively. Depending
on the learning setup, the model for how the responses Y and observations O = (Ot)t≥1

are related to the contexts X can be quite different. This will be formally defined within
the corresponding Sections 2.2.2 to 2.2.5 below. To give an example, in realizable online
learning, we assume that Ot = Yt = f ⋆(Xt) for all t ≥ 1 where f ⋆ : X → Y is some arbitrary
measurable function. For convenience, we will use the notation X≤t = (Xt′)t′≤t to denote the
first t elements of the stochastic process.

We last formally define our learning objective. We specifically focus on consistent learning
rules that achieve low long-run average loss compared to any fixed prediction function. Of
course, many other objectives are possible, but consistency is perhaps the most fundamental
property that reasonable algorithms should possess for learning. Precisely, we ask that the
predictions of the algorithm always have vanishing excess loss compared to any measurable
prediction function.

Definition 2.3 (Consistency). Let (X,Y,O) be a stochastic process on X × Y × O, where
O = (Ot)t≥1 are the learner’s feedback observations. Let f· be a learning rule and denote by
Ŷt = ft(X≤t−1,O≤t−1, Xt) its prediction at time t ≥ 1.

We say that f· is consistent under (X,Y) if for any measurable function g : X → Y,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(g(Xt), Yt) ≤ 0, (a.s.).

This notion generalizes the standard notions of consistency that we mentioned in the
introduction. In the simplest realizable setting, this exactly asks for the average loss of the
learner to decay to 0; in the classical regression setting when (Xt, Yt)t≥1 is i.i.d., this asks for
the average loss to converge to the minimum Bayes risk.

2.2.2 Realizable (noiseless) learning

This is perhaps the simplest and classical setting in online learning. The main realizability
assumption is that there is some underlying true function f ⋆ : X → Y that perfectly fits the
data. Hence, at every iteration t ≥ 1, the learner exactly observes the true value which is
computed as Ot = Yt = f ⋆(Xt). In particular, the responses are noiseless.

Our goal in universal learning is to provide learning rules that are consistent whatever
the true underlying function f ⋆, irrespective of how complex it may be. This leads us to the
following definition of universal consistency.

Definition 2.4 (Universal consistency (realizable case)). Let X be a stochastic process on X
and f· a learning rule. We say that f· is universally consistent under X if for any measurable
function f ⋆ : X → Y, the learning rule f· is consistent for the contexts X and values Yt =
f ⋆(Xt) for t ≥ 1, equivalently,

lim
T→∞

1

T

T∑
t=1

ℓ(Ŷt, f
⋆(Xt)) = 0, (a.s.),
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where Ŷt = ft(X≤t−1, (f
⋆(Xt′))t′≤t−1, Xt) is the prediction made at time t.

We next define the set Soul3 (Strong Online Universal Learning) of universally learnable
processes for which universal consistency can be achieved by some learning rule.

Soul := {processes X : ∃ learning rule f· universally consistent under X} .

Remark 2.1. In the naming of Soul, the term “strong” refers to the fact that we seek
consistency guarantees in the almost sure sense. It is possible to study the universal learning
questions for the weaker objective of consistency in expectation. The intuitions of the results
are mostly the same however, hence we will only present results for strong consistency here.

We are interested in learning rules that achieve universal consistency whenever possible.

Definition 2.5 (Optimistically universal learning rules). A learning rule f· is optimistically
universal if it is universally consistent under all processes X ∈ Soul.

Bounded losses. We are now ready to present the results for realizable online learning.
We first introduce the class of process that will characterize Soul. We refer to this condition
as SMV (Sub-linear Measurable Visits). Intuitively, it asks that for any measurable partition
of the input space X , the process X only visits a sublinear number of its regions.

Condition SMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X such that⋃∞
k=1Ak = X , (every countable measurable partition),

|{k ≥ 1 : Ak ∩ X≤T ̸= ∅}| = o(T ), (a.s.).

By abuse of notation, let SMV be the collection of processes X satisfying this condition.

Here the intersection Ak∩X≤T ̸= ∅ simply checks whether Ak has been previously visited
during the first T iterations: X≤T should rather be interpreted as {X1, . . . , XT}. While this
may not be completely obvious, this is a very general class of processes, that includes i.i.d.,
stationary, ergodic processes but also significantly generalizes these.

Our main result for the realizable case is that SMV characterizes Soul at least for
bounded losses and we can also give optimistically universal learning rules.

Theorem 2.2 (Bounded losses [Bla22]). Fix a separable metric space (X , ρ), and a separable
near-metric space (Y , ℓ) with bounded loss ℓ̄ := supy1,y2 ℓ(y1, y2) < ∞. Then Soul = SMV
and a simple algorithm called 2C1NN (2-Capped-1-Nearest-Neighbor) is optimistically uni-
versal.

The algorithm 2C1NN is a simple variant of the classical 1-Nearest-Neighbor (1NN)
algorithm, which performs 1NN over a restricted dataset. More precisely, it is designed to
ensure that the number of times each datapoint is used as a nearest neighbor is capped by 2:
once a datapoint Xt has been used as a nearest neighbor twice, it is deleted from the training
dataset. For context, although in Euclidean context spaces X = Rd the 1NN algorithm is

3Throughout this document, we use the small-caps font style to denote universally learnable classes.
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universally consistent [CH67; Sto77; DGL13] for i.i.d. processes X, it is not optimistically
universal. In fact, this would be the case for all other kNN algorithms even for X = [0, 1].

Further, kNN methods were known to fail in non-Euclidean spaces: a classical construc-
tion that can be found in [CG06] showed that in some infinite-dimensional subspaces there
exists a distribution µ and a measurable set A such that µ(A) = 1/2, but locally, the set A
is “invisible” the kNN algorithms:

lim
ϵ→0

µ {A ∩B(x; ϵ)}
µ {B(x; ϵ)}

= 0, for µ-almost every x ∈ X .

Here B(x; ϵ) = {x′ ∈ X : ρ(x, x′) ≤ ϵ} is the closed ball centered at x of radius ϵ. At
a very high level, the 2C1NN algorithm circumvents these problematic cases by deleting
problematic data points regularly.

Unbounded losses. As it turns out, universal learning for unbounded losses is very re-
strictive. Because the losses can be arbitrarily large, making even a single mistake can be
fatal if our goal is to have a vanishing average loss. The class of processes that arises in this
case are FS (Finite Support) processes that only visit a finite number of distinct contexts.

Condition FS. The process X satisfies |{x ∈ X : {x} ∩ X ̸= ∅}| <∞ (a.s.). By abuse of
notation let FS be the collection of processes satisfying this condition.

Note that in this noiseless setting, learning under X ∈ FS processes is straightforward:
it suffices to memorize the values observed for each distinct context. This memorization
algorithm only incurs a finite number of mistakes because of the FS property, hence will be
consistent. The main result is that FS characterizes Soul, that is, we cannot universally
learn beyond these processes.

Theorem 2.3 (Unbounded losses [Han21a; BCH22]). Fix a separable metric space (X , ρ),
and a separable near-metric space (Y , ℓ) with unbounded loss ℓ̄ := supy1,y2 ℓ(y1, y2) = ∞.
Then Soul = FS and memorization is optimistically universal.

This is a rather negative result since FS processes are extremely restrictive. Most
i.i.d. processes (for non-atomic distributions) never visit the same context twice hence univer-
sal learning with unbounded losses would be impossible for these. Alleviating this negative
result with added integrability assumptions is however possible as we will later see.

2.2.3 Regression: standard supervised learning

We now consider general regression settings in which the observation at time t is still the true
value Yt, but without making the realizable assumption. Contrary to the noiseless setting in
which we assumed that ℓ was a near-metric, we need here to assume that it is a generalized-
metric, which is slightly stronger (see Definition 2.1). The framework is general enough
to incorporate arbitrary correlations between the context sequence X and the responses Y:
we allow the pair (X,Y) to be a general stochastic process on the product space X × Y .
These correspond to the arbitrarily-dependent responses defined by [Han22]. We can also
allow the responses to be adversarial, that is the value Yt can also depend on the past

40



predictions Ŷt′ for t′ < t and any internal randomness used to construct these. We refer
to Chapter 4 for the exact definitions dealing with measure-theoretic concerns. In either
case, the universal learning characterizations turn out to be the same for both adversarial
and arbitrarily-dependent responses. We will refer to the corresponding processes (X,Y) as
an adversarial process. In this context, the same definition of universal consistency as in
Definition 2.4 becomes the following, as per the definition of consistency from Definition 2.3.

Definition 2.6 (Universal consistency (general regression)). Let X be a stochastic process
on X and f· a learning rule. We say that f· is universally consistent under X for adversarial
responses if it is consistent under any adversarial process (X̃,Y) with X̃ ∼ X.

Similarly as in the realizable case, the set of universally learnable processes Solar
(Strong universal Online Learning with Adversarial Responses) is defined as

Solar = {processes X : ∃ learning rule f· universally consistent under X}

and we have the same definition for optimistically universal learning rules as in Definition 2.5
by simply replacing Soul with Solar.

In this setting, we can again characterize exactly the class of learnable processes Solar.
Conveniently, in most cases this turns out to still be SMV, hence learning under adversar-
ial responses came at no expense compared to learning with noiseless responses for which
Soul = SMV. However, in some pathological regression settings, we may not be able to
universally learn under all SMV processes. In these cases, a new condition CS (Continu-
ous Submeasure) arises. For a context process X and any measurable set A ∈ B of X , let
µ̂X(A) := lim supT→∞

1
T

∑T
t=1 1[Xt ∈ A] be the long-run proportion of times the process

visits A. The condition asks that E[µ̂X(·)] is a continuous sub-measure as follows.

Condition CS. For every decreasing sequence {Ak}∞k=1 of measurable sets in X with Ak ↓ ∅,

E[µ̂X(Ak)] −→
k→∞

0.

By abuse of notation, let CS denote the collection of processes X satisfying this condition.

This condition, while more restrictive than SMV, is still very general and includes all i.i.d.,
stationary, or ergodic processes. As a remark, these turned out to be the characterization
of universally learnable processes in noiseless inductive and self-adaptive learning [Han21a]
which we briefly mentioned in Section 2.1.4.

The alternative whether Solar = SMV or Solar = CS only depends on the value
space (Y , ℓ), but not on the context space X . We call the property that characterizes this
alternative F-TiME (Finite-Time Mean Estimation). It essentially asks that estimating the
mean (or rather the Fréchet mean) of a sequence can be done in an online fashion to any
arbitrary precision in finite time.

Property F-TiME. For any η > 0, there exists a horizon time Tη ≥ 1, an online learning
rule g≤Tη such that for any y := (yt)

Tη
t=1 of values in Y and any value y ∈ Y, we have

1

Tη
E

[
Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

]
≤ η.
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While this property may be quite difficult to interpret, it is satisfied by most reasonable
value spaces that would be considered for regression. In particular, any totally-bounded
space (Y , | · |) satisfies F-TiME. Some non-totally-bounded spaces may also satisfy it, with
the notable example of classification with a countably infinite number of classes and the
standard 0− 1 loss: (Y , ℓ) := (N, ℓ01).

We can now present the characterization for Solar. As in the realizable case, there is
also always an optimistically universal learning rule, although it is in general much more
complicated than 2C1NN.

Theorem 2.4 (Adversarial regression [BJ23]). Fix a separable metric space (X , ρ) and a
separable generalized-metric space (Y , ℓ) such that the loss ℓ is bounded.

• If (Y , ℓ) satisfies F-TiME. Then, Solar = SMV.

• If (Y , ℓ) does not satisfy F-TiME. Then, Solar = CS.

Further, in all cases there is an optimistically universal learning rule.

We do not cover the unbounded loss case here: we saw in the noiseless case that it was
already very restrictive, this is a fortiori true for adversarial regression. As it turns out,
in some cases, even under FS processes universal learning for adversarial responses may
be impossible. The alternative is indeed either Solar = FS or Solar = ∅. We refer to
Chapter 4 for further details.

Learning with unbounded losses with integrability responses. Although we mainly
presented negative results for the unbounded loss case, we can recover positive results from
the bounded loss case by adding assumptions on the form of the rewards. We propose the
following empirical integrability condition on the rewards.

Definition 2.7 (Empirical integrability). A process Y = (Yt)t≥1 is empirically integrable if
there exists y0 ∈ Y such that for any ϵ > 0, almost surely there exists M ≥ 0 for which

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

In some sense, this is a necessary assumption for learning in unbounded value spaces.
For instance, if the process Y was i.i.d., this exactly asks that ℓ(y0, Y1) has finite expectation
which is somewhat necessary to learn in standard supervised learning settings. Also, if ℓ is
bounded, the response process Y is automatically empirically integrable.

If we restrict the adversary to select response processes that are empirically integrable,
we can define universally learnable processes in the same way as before and recover all results
from bounded losses in Theorem 2.4.

At this point, we have a relatively complete picture of the universal learning landscape
for full-feedback settings in which the observations Ot coincide exactly with the true values
Yt. These results are summarized in Table 2.1.
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Learning
setting Bounded loss Unbounded loss

Unbounded loss with
empirically integrable

responses
Noiseless
responses Soul = SMV Soul = FS Identical to

bounded loss
Adversarial

(or arbitrary)
responses

Does (Y , ℓ) satisfy F-TiME?{
Yes Solar = SMV
No Solar = CS

Is ME achievable?{
Yes Solar = FS
No Solar = ∅

Identical to
bounded loss

Table 2.1: Universally learnable processes for full-feedback online learning (ME = Mean
Estimation, see Chapter 4).

2.2.4 Contextual bandits with stationary rewards

We now switch gears and turn to partial-feedback learning settings, in which the learner does
not observe the true value at each iteration. In particular, we focus on the contextual bandit
problem is one of the core problems in this area of sequential decision-making. The main
difference with the sequential prediction problem that we considered in the previous sections
is that the only feedback is the reward of the selected prediction. In the bandit context, it is
more common to talk about selected actions rather than selected prediction, hence we will
use this terminology from now on and write A instead of Y for the action space.

The formal setup is as follows: a learner iteratively observes a context Xt ∈ X , selects
an action at ∈ A, then receives a potentially stochastic reward rt ∈ [0,∞) that depends
on the context and selected action. This falls into the framework that was introduced in
Section 2.2.1, where the observation is precisely the reward Ot = rt and the observation space
is O = [0,∞). This key difference that the learner only observes the reward of their action
has some important practical and theoretical implications. On the practical side, it typically
allows us to model a broader range of applications: for instance in clinical trials, one aims
to learn the optimal personalized treatments but at each trial, one only gathers information
about the treatment that was prescribed to the patient. On the theoretical side, partial
feedback typically induces a fundamental trade-off between exploration and exploitation: it
is sometimes beneficial to explore certain actions in the hope that they yield high rewards,
rather than simply selecting the action that historically performed best.

Reward generating process. The classical model assumption for the rewards is that
there is some underlying time-invariant conditional distribution that generates the rewards
rt conditionally on the selected action at and the context Xt for t ≥ 1. Precisely, we assume
that the rewards rt for t ≥ 1 are independent and follow a common conditional distribution
rt | at, xt ∼ Pr|a,X . For convenience, we let r̄(a, x) := Er|Pr|a,x [r | a, x] denote the immediate
expected reward. As in the full-feedback setting, the main case of interest is when rewards
are bounded and we will therefore assume that the rewards fall in [0, 1].

Universal consistency. In this contextual bandit setting, our goal is to ensure that the
algorithm converges to optimal actions given the contexts in order to maximize the re-
wards. Intuitively, such an optimal policy selects for the context x ∈ X an action in
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argmaxa∈A r̄(a, x). In practice, if the action space A is infinite, this may not be well-defined.
Instead, the natural objective is to have algorithms that have low excess loss compared to
any fixed measurable policy f : X → A, which exactly matches the consistency definition
Definition 2.3. Universally consistent algorithms are then naturally defined as follows.

Definition 2.8 (Universal consistency (contextual bandits)). Let X be a stochastic process
on X and f· a learning rule. We say that f· is universally consistent under X for stationary
contextual bandits if for any conditional distribution Pr|x,a of the rewards, f· is consistent
under X and rewards generated via Pr|x,a.

The class of universally learnable processes Socb (Strong Online Contextual Bandits)
are then defined as

Socb := {processes X : ∃ learning rule f· universally consistent under X} ,

and optimistically universal learning rules are defined as in Definition 2.5 by replacing Soul
with Socb.

While in the full-feedback case, previous works showed that i.i.d. processes and even
stationary-ergodic were universally learnable, we were not aware of previous works that
showed that even i.i.d. processes were universally learnable for contextual bandits with say
finite action sets A. Fortunately, we can still give precise characterizations of Socb. This
time, the characterization of learnable processes Socb exhibits a trichotomy that depends
on the action space A: whether it is finite, countably infinite, or uncountable. The main
result is the following.

Theorem 2.5 (Contextual bandits [BHJ22]). Fix a separable metric space (X , ρ) and a
separable metrizable action space A. For bounded rewards,

• If A is finite and |A| ≥ 2, then Socb = SMV.

• If A is countably infinite, then Socb = CS.

• If A is an uncountable separable metrizable Borel space, then Socb = ∅.

Further, in all cases, there is an optimistically universal learning rule.

Note that if the action space is finite, which corresponds to the classical contextual bandit
setting, then we can still universally learn under all SMV processes. In particular, going from
noiseless responses in the full-feedback to the partial-feedback of contextual bandits came
at no cost for universal learning. On the other hand, if the action space is infinite, there is
a big gap between the full-feedback case in which learning under CS processes was always
possible, and the partial-feedback case in which universal learning is never possible. Indeed,
because the reward is partial, the algorithm needs to explore for good actions but if these
are uncountable, it may not even have time to explore all of these.

As should be expected, this “curse of exploration” can be significantly alleviated if we
add some continuity assumptions to the contextual bandit model. A convenient condition is
uniform-continuity, defined below. The metric on A is denoted by d.
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Definition 2.9 (Uniformly-continuous rewards). We say that the reward mechanism r ∼
Pr|a,x is uniformly-continuous if for any ϵ > 0 there exists ∆(ϵ) > 0 with

∀x ∈ X ,∀a, a′ ∈ A, d(a, a′) ≤ ∆(ϵ)⇒ |r̄(a, x)− r̄(a′, x)| ≤ ϵ.

Under this uniform continuity assumption, we can recover universal learning under the
very large classes of processes CS and SMV. This is summarized in the following result which
shows that the dichotomy becomes whether (A, d) is totally-bounded or not.

Theorem 2.6 (Contextual bandits with uniformly-continuous bounded rewards [BHJ22]).
Fix a separable metric space (X , ρ) and a metric action space (A, d). For bounded rewards,

• If A is totally-bounded and |A| ≥ 2, then Socb = SMV.

• If A is non-totally-bounded, then Socb = CS.

Further, in all cases, there is an optimistically universal learning rule.

2.2.5 Adversarial contextual bandits

The major assumption in the previous contextual bandit setting was that the rewards were
generated according to some underlying conditional distribution Pr|a,x. While this is the
most standard assumption in the contextual bandit literature, it is well understood that in
practical implementations, reward mechanisms can evolve over time, potentially adversarially
and depending on the learner’s actions. In this section, we investigate the much more general
adversarial rewards in contextual bandits. This should be interpreted as a first significant
step towards more general learning frameworks such as reinforcement learning where the
evolution of the reward mechanism depends on the past history. Unlike any of the settings
we previously considered, we will see that giving optimistically universal algorithms for
adversarial contextual bandits is in fact impossible. However, universal learning is still in
general achievable for general processes beyond i.i.d. and stationary ergodic processes.

Before diving into more details, we first need to properly define the non-stationary reward
models. In addition to stationary rewards, many choices are possible and we only highlight
three standard non-stationarity models. Memoryless rewards are the mildest form of gener-
alization from stationary rewards: these are non-adaptive and simply shift distributions over
time. On the other hand, oblivious rewards may depend on the specific sequence of observed
contexts X≤t, while online rewards are fully adaptive: these may additionally depend on
the specific actions and rewards of the algorithm. These are formally defined below.

Definition 2.10 (Reward models). The reward mechanism is said to be

• stationary if there is a conditional distribution Pr|a,x such that the rewards (rt)t≥1 given
their selected action at and context Xt are independent and follow Pr|a,x

• memoryless if there are conditional distributions (Pr|a,x,t)t≥1 such that (rt)t≥1 given
their selected action at and context Xt are independent for t ≥ 1 and respectively
follow Pr|a,x,t
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• oblivious if there are conditional distributions (Pr|a,x≤t
)t≥1 such that rt given the selected

action at and the past contexts X≤t, follows Pr|a,x≤t

• online if there are conditional distributions (Pr|a≤t,x≤t,r≤t−1
)t≥1 such that rt given the

sequence of selected actions a≤t and the sequence of contexts X≤t and received rewards
r≤t−1, follows Pr|a≤t,x≤t,r≤t−1

.

Having fixed the reward model, as in the case of stationary contextual bandits (Defini-
tion 2.8), we can define the notion of universal consistency under some process X for each
reward model. A learning rule is universally consistent under X if for any form of rewards
within the specified reward model, it is consistent under X and for these rewards as per Def-
inition 2.3. We then denote by Soabmodel (Strong Online Adversarial contextual Bandits)
the set of universally learnable processes for adversarial contextual bandits within a specified
model model ∈ {stationary,memoryless, oblivious, online}:

Soabmodel := {processes X : ∃ learning rule f· universally consistent
for model rewards under X}.

For instance, for stationary rewards, we have exactly Soabstationary = Socb, which we
covered in the previous section. Of course, the more general the reward, model, the harder
the universal learning objective becomes. Hence, we have

Soabonline ⊆ Soaboblivious ⊆ Soabmemoryless ⊆ Soabstationary.

Our main result for adversarial contextual bandits is that in the main case of interest when
the action set A is finite, for generic context spaces X , there never exists an optimistically
universal learning rule. This holds whenever X admits some non-atomic probability measure,
which includes for instance any uncountable Polish space. The other cases when A is infinite
are somewhat closer to the case of stationary rewards, in fact under the strongest form of
online rewards, we can still universally learn under the same class of stochastic processes X.

Theorem 2.7 (Adversarial contextual bandits). Fix a separable metric space (X , ρ) and a
metrizable action space A. For bounded rewards,

1. If A is finite and |A| ≥ 2,

• If X admits a non-atomic probability measure, there do not exist optimistically
universal learning rules for any non-stationary reward model from Definition 2.10.

• Otherwise, there exists an optimistically universal learning rule for all reward
models from Definition 2.10 and Soabonline = Soabstationary = SMV.

2. If A is countably infinite, there exists an optimistically universal learning rule for all
reward models from Definition 2.10 and Soabonline = Soabstationary = CS.

3. Let A be an uncountable separable metrizable Borel space, then universal learning is
never achievable and Soabonline = Soabstationary = ∅.
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Learning setting Unrestricted rewards Uniformly-continuous
rewards

Bounded rewards
Finite A: SMV
Countably infinite A: CS
Uncountable A: ∅

Totally-bounded A: SMV
Non-totally-bounded A: CS

Unbounded rewards Countable A: FS
Uncountable A: ∅ FS

Table 2.2: Universally learnable processes for stationary contextual bandits

Learning
setting Unrestricted rewards Uniformly-continuous

rewards

Bounded
rewards

Finite A, X with non-
atomic proba. measure: CS ⊊ C ⊊ SMV

Finite A, X without non-
atomic proba. measure: SMV

Countably infinite A: CS
Uncountable A: ∅

Totally-
bounded A:

same as for
bounded rewards

and finite A
Non-totally-
bounded A: CS

Unbounded
rewards

Countable A: FS
Uncountable A: ∅ FS

Table 2.3: Universally learnable processes C for adversarial contextual bandits

We focus on action spaces A and suppose that X has a non-atomic probability measure,
which is arguably the most interesting case for adversarial contextual bandits. Although
the previous results show that optimistic learning is impossible, this does not mean that
universal learning is impossible. We can show that one can still achieve universal consistency
under very general classes of processes (in fact, beyond CS processes). Instead, the above
impossibility result implies that a learner needs more initial information about the process
X to achieve universal consistency: the optimist’s assumption alone is not sufficient. At a
very high level, a learner cannot distinguish between using a strategy at the population level
(using all historical data) or at the individual level (using historical data only from instances
very similar to the current context Xt).

Characterizing the exact class of universally learnable process for adversarial rewards
Soab in this case turns out to be quite challenging. In fact, for non-stationary reward models,
the class strictly lies somewhere in between CS and SMV. We give a full characterization
of Soabonline for fully adaptive rewards in Chapter 6 as well as necessary and sufficient
conditions for the other models, but the corresponding classes of processes significantly
depart from the definition of CS of SMV and we will not give detailed results here for the
sake of simplicity.

This concludes our overview of the universal results for contextual bandits. These are
summarized in Tables 2.2 and 2.3. For completeness, we also added all results corresponding
to unbounded rewards with and without uniform-continuity assumptions. As in the station-
ary contextual bandit case, uniform-continuity allows the recovery of all the positive results
from the bounded reward case. Studying universal learning for other more complex partial-
feedback machine learning settings is certainly possible. In fact, all results can be directly
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lifted to finite-horizon episodic Reinforcement Learning (RL) in which a learner evolves in
a finite-horizon Markov decision process at each iteration, by viewing the RL problem as a
contextual bandit problem on a larger state and action space.
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Chapter 3

Universal Realizable Online Learning

3.1 Introduction

In this chapter, we study universal learning in the realizable setting, as defined in the overview
Chapter 2. We consider the fundamental question of learnability and generalizability for
online learning. In this framework, a learner is sequentially given input points X := (Xt)t≥0

from a general separable metric instance space (X , ρ) and observes the corresponding values
Y := (Yt)t≥0 from a separable near-metric value space (Y , ℓ). The learner’s goal is to predict
the values before their observation. The input points are given according to some stochastic
process X on X and we assume that the process Y is generated from X in a noiseless fashion,
i.e., that there exists an unknown measurable function f ∗ : X → Y such that Yt = f ∗(Xt)
for all t ≥ 0. At time step t, the learner outputs a prediction Ŷt based solely on the historical
data (Xu, Yu)u<t and the new input point Xt. We wish to obtain low long-run average
errors 1

t

∑
u≤t ℓ(Yu, Ŷu). Specifically, we consider two types of consistency: strong consistency

is achieved when the average error converges to 0 almost surely; and weak consistency is
achieved when the expected average error converges to 0. We are interested in universal
online learning, in which we ask for consistency for any unknown measurable target function
f ∗. In this framework, the two main questions are (1), to characterize the input processes
X for which universal consistency is achievable, and (2), if possible, provide a learning rule
which would guarantee universal consistency whenever such objective is achievable. For a
detailed discussion of the general motivation for universal learning and related work, we refer
to Section 2.1.

3.1.1 Contributions

In this chapter, we settle these universal learning questions. Of particular interest, we show
that there exist, and explicitly provide optimistically universal learning rules for general
online learning. Further, in the more interesting case of bounded losses, universal learning
can be achieved under very large classes of processes, well beyond say i.i.d. or stationary
ergodic processes, which significantly generalized prior works. The contributions can be
summarized as follows.

• For bounded losses, we propose a class of learning rule kC1NN for k ≥ 2, which
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we prove are strongly and weakly optimistically universal for general separable metric
instance spaces (X , ρ) and separable near-metric value spaces (Y , ℓ) with bounded loss.
These learning rules are simple variants of the classical 1-nearest neighbor (1NN). They
essentially perform 1NN on a restricted dataset by deleting any input point from the
historical dataset whenever it has been used as nearest neighbor at least k times. We
also show that any (kt)t−nearest neighbor fails to be optimistically universal under
very mild conditions on the sequence (kt)t even for very simple input spaces X e.g.
Euclidean spaces. Finally, we give a complete characterization of processes admitting
strong and weak universal learning. This closes the questions on universal online
learning stated as open problems in [Han21b].

• For unbounded losses, we show that the only learnable processes are those that almost
surely contain only a finite number of distinct elements. As a result, a simple memo-
rization algorithm suffices to be optimistically universal, which simply remembers all
past data points (Xs, Ys), s < t, and if the new Xt satisfies Xt = Xs for some s < t, it
predicts Ys. If X has only a finite number of distinct elements, then clearly this strat-
egy has only finitely many non-zero losses, and hence would be universally consistent.
This result is rather negative, however, since it implies that universal learning with
unbounded losses is quite restrictive.

3.1.2 Organization of the chapter.

The rest of this chapter is organized as follows. In Section 3.2, we recall the universal
learning formal setup and present the two main questions of this topic. The main results
are then stated in Section 3.3. We next first focus on bounded losses. In Section 3.4 we
focus on nearest neighbor learning rules and show that they are not universally consistent,
by constructing learnable processes for which nearest neighbor methods fail. This example
gives motivation for the 2C1NN learning rule, constructed in Section 3.5, and then show that
it is optimistically universal for binary classification and in the simpler case of X = [0, 1].
The generalization to any separable metrizable context space is done in Section 3.6. Last,
to go from binary classification to any general value space, we design a general-purpose
reduction in Section 3.7. Altogether, this provides a complete characterization of the set of
learnable processes for strong universal learning with bounded losses. We then turn to weak
universal learning in Section 3.8. We then turn to unbounded losses and prove our results
in Section 3.9, in this case, strong and weak learning coincide.

3.2 Formal Setup and Preliminaries

Instance and value space. In this chapter, we follow the general framework of online
learning where one observes an input sequence X = (Xt)t≥1 of points in a separable metric
instance space (X , ρ), together with their corresponding target values Y = (Yt)t≥1 coming
from a separable near-metric value space (Y , ℓ). We recall from Definition 2.1 that the
loss ℓ : Y2 → [0,∞) is said to be a near-metric if it is symmetric ℓ(y1, y2) = ℓ(y2, y1),
satisfies ℓ(y1, y2) = 0 if and only if y1 = y2, and also satisfies a relaxed triangle inequality
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∀y1, y2, y3 ∈ Y3 : ℓ(y1, y3) ≤ cℓ(ℓ(y2, y1)+ℓ(y2, y3)), where cℓ is a fixed constant. Note that all
metrics are near-metrics with cℓ = 1. As an important example for regression, the squared
loss is near-metric with cℓ = 2. We denote by ℓ̄ := supy1,y2∈Y ℓ(y1, y2) the loss function
supremum.

Input and output processes. In an effort to study non-i.i.d. processes, the input se-
quence of points is a general stochastic process on the Borel space (X ,B) induced by a
metric ρ. This is a major difference with a majority of the relevant statistical learning liter-
ature imposing ad-hoc hypothesis on X. We consider a noiseless setting in which the output
values Y are generated from X through an unknown measurable function f ∗ : X → Y such
that Yt = f ∗(Xt) for all t ≥ 1.

Online learning and consistency. In online learning, the learning process is sequential:
at time t ≥ 1, one observes a new input data-point Xt and outputs a prediction Ŷt based
solely on the historical data (X≤t−1,Y≤t−1) and the new covariate Xt. We measure the
performance of the learning rule through the loss function ℓ. Strong consistency is achieved
when the algorithm obtains asymptotic average loss 0 almost surely. Alternatively, a learning
rule is weakly consistent when it guarantees 0 asymptotic average loss in expectation. We
now formally write these notions. A learning rule is a sequence f· = {ft}∞t=1 of measurable
functions with f1 : X → Y and ft : X t−1 × Y t−1 × X → Y for t ≥ 2. Given a history
(Xi, Yi)i<t and a new input point Xt, the rule f· makes the prediction ft(X<t,Y<t, Xt) for Yt
and t ≥ 2. For simplicity, for t = 1 we may also use the notation f1(X<1,Y<1, X1) instead
of f1(Xt). As an important example, the memorization learning rule {ft}∞t=1 is defined as
follows:

ft((xi)i<t, (yi)i<t, xt) =

{
yi if xt = xi,

y0 if xt ̸∈ {xi}i<t,

where y0 ∈ Y is some arbitrary default response. We write the average loss at time T as

LX(f·, f
∗;T ) :=

1

T

T∑
t=1

ℓ(ft(X<t,Y<t, Xt), f
∗(Xt)).

We aim to minimize the long-run average loss. The online learning rule f· is strongly consis-
tent under the input process X and for the target function f ∗ when LX(f., f

∗;T )→ 0 (a.s.).
For simplicity, we define LX(f., f

∗) = lim supT→∞ LX(f·, f
∗;T ). Therefore, the above condi-

tion can be rewritten as LX(f·, f
∗) = 0 (a.s.). We also consider weak learning: similarly, f·

is weakly consistent under X and for f ∗ when ELX(f·, f
∗;T )→ 0.

Universal consistency and optimistically universal learning rules. Following the
work of [Han21a], we are interested in learning rules that achieve strong (resp. weak) con-
sistency under a specific input sequence X for all measurable target functions f ∗ : X → Y .
Such learning rules are said to be strongly (resp. weakly) universally consistent under X.
We define Soul as the set of all stochastic processes X for which strong universal online
learning is achievable by some learning rule. Similarly, we denote by Woul the set of all
processes X that admit weak universal online learning. These sets may depend on the setup
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(X , ρ), (Y , ℓ) so we will specify Soul(X ,ρ),(Y,ℓ) and Woul(X ,ρ),(Y,ℓ) when the spaces are not
clear from the context. In this framework, two main areas of research are (1) characterizing
the sets Soul (resp. Woul) for a given setup in terms of the properties of the stochastic
process X, and (2) identifying learning rules which are strongly (resp. weakly) universally
consistent for any input process X in Soul (resp. Woul), i.e. that achieve strong (resp.
weak) universal consistency whenever it is possible. These are called optimistically universal
learning rules.

Prior work for bounded losses. In the present chapter we first focus on the bounded loss
case i.e. ℓ̄ <∞, for which both questions prior to this work. Further, this is the main case of
interest for universal online learning since contrary to the unbounded case, for bounded losses,
it is known that the set of learnable processes Soul contains in particular all i.i.d. processes
[Han21a]. In fact, the simple 1-nearest neighbor (1NN) learning rule achieves strong (and
weak) universal consistency for all i.i.d. processes X in for the Euclidean space X = Rd

[Dev+94]. It is even known that the (kt)t-neighbor algorithm ((kt)tNN) with kt/ log t→∞
and kt/t→ 0 achieves Bayes minimal risk in the noisy setting for large classes of input spaces
X [CD14]. This implies in particular that kNN achieves strong universal consistency in our
noiseless setting for these input spaces. However, it was an open question whether there
exist simple input spaces X—e.g. Euclidean spaces—for which some kNN algorithms would
be optimistically universal. In other terms, does there exist an input process X such that
1NN fails to achieve consistency for some target function f ∗ but universal consistency would
still be achieved by some other—more sophisticated—learning rule? No characterization of
Soul was known either, although [Han21a] proposed a necessary condition for belonging to
Soul and conjectured that it is also sufficient. We refer to this condition as SMV (Sublinear
Measurable Visits). Intuitively, it asks that for any measurable partition of the input space
X , the process X only visits a sublinear number of its regions. Note that this condition does
not depend on the choice of output setup (Y , ℓ). We recall its definition from Condition SMV.

Condition SMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X such that⋃∞
k=1Ak = X , (every countable measurable partition),

|{k ≥ 1 : Ak ∩ X≤T ̸= ∅}| = o(T ), (a.s.).

By abuse of notation, let SMV be the collection of processes X satisfying this condition.

For the weak setting we can define a similar condition WSMV (weak sub-linear measur-
able visits).

Condition WSMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X with⋃∞
k=1Ak = X , (every countable measurable partition),

E[|{k ∈ N : Ak ∩ X<T ̸= ∅}|] = o(T ).

By abuse of notation, let WSMV be the collection of processes X satisfying this condition.

[Han21a] showed that these conditions are necessary for strong and weak universal learn-
ing.
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Proposition 3.1 ([Han21a]). For any separable Borel space X and separable near-metric
output setting (Y , ℓ) with 0 < ℓ̄ < ∞ we have Soul(X ,ρ),(Y,ℓ) ⊂ SMV(X ,ρ) and we have that
Woul(X ,ρ),(Y,ℓ) ⊂WSMV(X ,ρ).

The intuition should be rather clear: whenever the process X explores for the first time
a new region Ak, an algorithm has no prior information about the true value on this region,
hence will incur at least an error 1

2
in expectation. If the conditions SMV (resp. WSMV) are

not satisfied by X, then the corresponding rate of exploration will by hypothesis be linear,
which means that the algorithm makes a linear number of mistakes and is as a result, not
universally consistent.

However, it was an open question whether SMV (resp. WSMV) is also a sufficient condi-
tion for strong (resp. weak) universal learning. Together with the question of the existence
of an optimistically universal learning rule, these are the main objectives for universal online
learning. These questions are posed in the COLT 2021 open problems [Han21b], which we
now formally restate.

Question 3.1 ([Han21b]). Does there exist an optimistically universal online learning algo-
rithm? (in either the weak or strong sense)

Question 3.2 ([Han21b]). Is SMV (resp. WSMV) equal to the set of all X such that strong
(resp. weak) universal online learning is possible under X?

It is important to note that these questions are easily solved in the case where X is
countable [Han21a]. Therefore, the main interest is to answer these questions for any un-
countable X . In fact, [Han21b] even announced a $5000 (resp. $1000) reward for solving
Question 3.1 (resp. Question 3.2) for the Euclidean X = Rd case. Both questions will be
solved in Section 3.5.1 for X = [0, 1] specifically. This is a rather general case because its
extension to all standard Borel spaces X is immediate through an equivalence result from
Kuratowski of all uncountable standard Borel spaces. For instance, this solves the question
for all Euclidean spaces Rd for d ≥ 1. Most importantly, the special case X = [0, 1] allows
for a simplified exposition and provides all useful intuitions. The complete result holds for
all separable Borel spaces and is presented in Section 3.6.

Prior work for unbounded losses. In the case of unbounded losses ℓ, the existence of
an optimistically universal online learning rule was settled by [Han21a].

This work also expresses a condition which characterizes the family of processes X that
admit the existence of universally consistent online learning rules for any (and all) unbounded
losses. However, the definition of the optimistically universal learning rule given in that work,
the proof that it satisfies this property, and also the proofs establishing that the proposed
condition indeed characterizes the relevant family of processes, are actually quite complex.
For instance, the learning rule involves identifying a function contained in a certain countable
function class F̃ , satisfying constraints on its losses relative to various other values, and the
proof proceeds via arguing that there exists a choice of F̃ that is dense in the set of all
measurable functions, in a sense relevant to learning under every X satisfying the condition.
However, [Han21a] also poses an interesting open question regarding a potential dramatic
simplification of this theory. The essential question is the following:
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Question 3.3 ([Han21b]). For unbounded losses, is it true that there exist universally con-
sistent online learning rules under X if and only if X almost surely has a finite number of
distinct elements?

We refer to the above simple condition as the Finite Support (FS) condition, which we
recall the definition from Condition FS.

Condition FS. The process X satisfies |{x ∈ X : {x} ∩ X ̸= ∅}| <∞ (a.s.). By abuse of
notation let FS be the collection of processes satisfying this condition.

Notations. For any sequence x, we will use the following notations when analyzing finite
time horizons: x≤t := {x1, ..., xt} and x<t := {x1, ..., xt−1} for simplicity. For a metric space
(X , ρ), a point x ∈ X and r ≥ 0, we denote by Bρ(x, r) := {x′ ∈ X , ρ(x, x′) < r} the open
ball centered in x of radius r, and Sρ(x, r) = {x′ ∈ X , ρ(x, x′) = r} the sphere centered in x
of radius r. We might omit the metric ρ in subscript if there is no ambiguity. We also denote
by ℓ01 the indicator loss function, i.e., ℓ01(i, j) = 1(i ̸= j). Since it is a metric, it is also a
near-metric with cℓ = 1. For simplicity, we will use the same notation ℓ01 irrespective of the
output space Y . For any measurable set A, we denote by 1A the function 1A(·) := 1·∈A. We
will denote by | · | any norm on R. Recall that all norms are equivalent on finite dimensional
spaces, hence the topology induced by these metrics is identical. When the space (X , ρ) is
obvious from the context, we may reduce the notation Soul(X ,ρ),(Y,ℓ) to Soul(Y,ℓ). We may
also omit the loss ℓ when there is no ambiguity.

3.3 Main Results

We start with the case of bounded losses. We first show that the simple nearest neighbor rule
(1NN) is not optimistically universal. The proof generalizes to general (kt)t-nearest neighbor
algorithms under very mild assumptions on (kt)t.

Theorem 3.1. The (kt)t−nearest neighbor learning rule is not strongly optimistically uni-
versal for the input space X = [0, 1] with usual topology and for binary classification, for any
sequence (kt)t such that kt = o

(
t

(log t)1+δ

)
for any δ > 0.

This is obtained by constructing a specific process X ∈ Soul([0,1],|·|),({0,1},ℓ01) under which
nearest neighbor is not universally consistent. Intuitively, 1NN fails on the process because
certain “bad” data points are used an arbitrarily large number of times as nearest neighbor
for future input points and hence, induce a large number of mistakes for 1NN. To resolve
this issue, we propose a new learning rule 2-Capped-1-Nearest-Neighbor (2C1NN), a variant
of the classical 1NN, designed to ensure that the number of times each datapoint is used as
nearest neighbor is capped by 2. Specifically, once a datapoint Xt has been used as nearest
neighbor twice, it is deleted from the training dataset. We show that this is an optimistically
universal learning rule for both strong universal learning and weak universal learning.

Theorem 3.2. For any separable Borel space X , and any separable near-metric output
setting (Y , ℓ) with bounded loss, i.e., supy1,y2 ℓ(y1, y2) < ∞, 2C1NN is a strongly (resp.
weakly) optimistically universal learning rule.
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More generally, we can define learning rules kC1NN for any k ≥ 2. The proof further
shows that all kC1NN is optimistically universal for any k ≥ 2. Further, we give a charac-
terization of the processes admitting strong and weak universal learning.

Theorem 3.3. For any separable Borel space X , and any separable near-metric output
setting (Y , ℓ) with 0 < supy1,y2 ℓ(y1, y2) <∞, we have

Soul(X ,ρ),(Y,ℓ) = SMV(X ,ρ) and Woul(X ,ρ),(Y,ℓ) = WSMV(X ,ρ).

If supy1,y2 ℓ(y1, y2) = 0, then the loss is identically null. Therefore, all stochastic processes
are strongly and weakly learnable.

It is worth noting that although the sets Soul and Woul differ—the set of weakly
learnable processes Woul is larger than the set of strongly learnable processes Soul—
the same learning rule 2C1NN is optimistically universal in both strong and weak settings.
Theorem 3.2 and Theorem 3.3 close the two open questions of the existence of an optimisti-
cally universal learning rule and a characterization of the set of learnable input sequences,
formulated in [Han21b].

We next turn to unbounded losses and answer the corresponding open question with the
positive. Our main result for unbounded losses can then be stated as follows.

Theorem 3.4. For X any separable metric space and ℓ any unbounded loss, Soul = FS.
Further, the memorization learning rule is optimistically universal.

Altogether, these results give a complete picture of universal learning in this realizable
setting: we can always provide an optimistically universal learning rule and characterize the
class of universally learnable processes: while these are quite restrictive for unbounded losses,
in the more standard learning setting of bounded losses, we show that universal learning can
be achieved well beyond say i.i.d. or stationary ergodic processes.

3.4 On Nearest Neighbor Consistency

Going back to the bounded loss case, a natural candidate for good learning rules in gen-
eral spaces are the nearest neighbor algorithms. We recall that the (kt)t−nearest neighbor
((kt)tNN) learning rule, at step t, considers the closest kt neighbors to the new input point
and follows the majority vote to make its prediction. Indeed, in the Euclidean space, 1NN
is universally consistent under all i.i.d. processes [Dev+94]. Further, (kt)tNN learning rules
with kt/ log t → ∞ and kt/t → 0 are also universally consistent under i.i.d. processes for
smooth classes of input spaces X [CD14]. However, it is known that there exist separable
input spaces for which no (kt)tNN algorithm achieves universal consistency [CG06]. In this
section, we show that (kt)tNN learning rules are not optimistically universal even on the
interval X = [0, 1].

Theorem 3.1. The (kt)t−nearest neighbor learning rule is not strongly optimistically uni-
versal for the input space X = [0, 1] with usual topology and for binary classification, for any
sequence (kt)t such that kt = o

(
t

(log t)1+δ

)
for any δ > 0.

55



As a direct consequence, (kt)t−nearest neighbors are not optimistically universal for
any input spaces X such that there exists a measurable injection [0, 1] → X and for any
output setting (Y , ℓ) with bounded loss and at least two distinct values y1, y2 ∈ Y such
that ℓ(y1, y2) > 0. In particular, this shows that (kt)tNN algorithms are not optimistically
universal in Euclidean spaces. To prove Theorem 3.1, we first define the set of processes
with convergent relative frequencies CRF as the set of processes X such that ∀A ∈ B,

lim
T→∞

1

T

T∑
t=1

1A(Xt) exists (a.s.).

We then explicitly construct a process X(1) ∈ CRF on which (kt)t−nearest neighbor fails.
Because convergent relative frequencies processes are learnable CRF ⊂ Soul [Han21a], this
shows that (kt)tNN is not optimistically universal for the online learning setting. Note that
we have CRF ⊊ Soul for any infinite space X . As a remark, it was already known that the
self-adaptive/inductive nearest neighbor learning rule is not optimistically universal for the
self-adaptive setting [Han21a] (Section 3.2). Inductive learning differs from online learning
in that the learner has access to a fixed historical dataset (Xt, Yt)t<T and from time T has to
commit to a (non-adaptive) learning rule. Self-adaptive learning is an intermediate setting
between inductive learning and online learning where the learner can be adaptive on observed
instances (Xt)t≥T but not the values (Yt)t≥T . Hence, the self-adaptive/inductive nearest
neighbor learning rule corresponds to performing nearest neighbor with the fixed dataset
(Xu, Yu)u<T for any t ≥ T . The performance of this learning rule is taken as a double limit:
first as t→∞, then as T →∞. We refer to [Han21a] for details on these settings. Similarly
to the set Soul, we can define the set Sual of processes X admitting strong universal
learning in the self-adaptive setting. The proof that self-adaptive nearest neighbor is not
optimistically universal is also constructive but not relevant for the online setting because
it relies on a completely different process X(2) ∈ Sual under which self-adaptive 1-nearest
neighbor fails but online learning 1-nearest neighbor is universally consistent. Indeed, the
set of learnable processes for online learning is larger than the set of learnable processes for
self-adaptive learning Sual ⊂ Soul, and strictly larger whenever X is infinite [Han21a].

Proof of Theorem 3.1 Let δ > 0 and a sequence kt = o
(

t
(log t)1+δ

)
. To show that (kt)t−NN

is not optimistically universal, we construct a process X ∈ Soul on which (kt)t−NN has
asymptotic error rate 1. We denote by Dp := { i

2p
, 0 ≤ i ≤ 2p, i odd} the set of dyadics of

order p i.e. with reduced denominator 2p, and D for the set of dyadics. Let ϵ > 0 such that
1+2ϵ
1−2ϵ

< 1 + δ
2
. Then pose for k ≥ 1,

nk = ⌊ek
1/2−ϵ⌋, dk = min

(⌊
nk

(log nk)1+δ

⌋
, nk+1 − nk − 1

)
, pk = 4k.

First note that nk+1 − nk ∼
(
1
2
− ϵ
)

nk

k1/2+ϵ ∼
(
1
2
− ϵ
)

nk

(lognk)
1/2+ϵ
1/2−ϵ

therefore we obtain

dk = o

(
nk

(log nk)1+δ/2

)
= o(nk+1 − nk).
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Also, for k large enough, dk =
⌊

nk

(lognk)1+δ

⌋
. We now construct a process X on X . Let

(Uk)k≥1 be an i.i.d. sequence of uniforms U([0, 1]) and (Dk)k≥1 a sequence of independent
random variables—also independent of (Uk)k—such that Dk ∼ U(Dpk). Additionally, we
denote by Dk,i the i−th closest dyadic of order pk to Dk. For instance, Dk,1 = Dk, and
|Dk,i − Dk| ≤ i

2pk−1 . For intuition, if Dk is not close to the boundary of [0, 1], we have
Dk,i = Dk + (−1)i · ⌊i/2⌋

2pk
. We now define the process X as follows for any k ≥ 1,

Xnk+i = Dk,i+1, 0 ≤ i ≤ dk and Xnk+dk+j = Dk +
Uk −Dk

2nk4j
, 1 ≤ j < nk+1 − nk − dk.

We first prove that (kt)t−NN is not consistent for the function f ∗ = 1D. For any k ≥ 1,

P
[
min
t<nk

|Xt −Dk| <
1

2nk

]
≤
∑
t<nk

P
[
Xt −

1

2nk
< Dk < Xt +

1

2nk

]
≤ 2nk

2nk
,

because nk ≤ pk. Now note that for all k ≥ 1 and 0 ≤ i ≤ dk we have Xnk+i ∈ Dpk , while
almost surely, all other random variables do not fall in D. Then, denote by E the event of
probability 1 where X does not visit D except for times nk + i for k ≥ 1 and 0 ≤ i ≤ dk. In
other words,

E := {Xnk+i /∈ D, k ≥ 1, dk < i < nk+1 − nk}

and P(E) = 1. We also denote by Ak the event Ak := {mint<nk
|Xt − Dk| ≥ 2−nk} and Bk

the event Bk := {|Uk − Dk| ≥ 2−k}. We have P(Bck) ≤ 2−k+1 and we showed previously
P(Ack) ≤

2nk

2nk
. Now note that dk

2pk−1 = o( 1

2nk+2nk+1+k+1 ). Therefore, let k0 such that for any
k ≥ k0, dk

2pk−1 ≤ 1

2nk+2nk+1+k+1 . Then, for any k ≥ k0, on the event Ak ∩ Bk ∩ E , for any
1 ≤ j < nk+1 − nk − dk, the dk + 1 nearest neighbors of Xnk+dk+j are exactly the points
{Xnk+i = Dk,i+1, 0 ≤ i ≤ dk}. Indeed,

|Xnk+dk+j −Dk,i| ≤ |Xnk+dk+j −Dk|+
dk

2pk−1
≤ 1

2nk4j
+

1

2nk+2j
<

1

2nk+2j−1
.

Further, for all t < nk,

|Xnk+dk+j −Xt| ≥ |Dk −Xt| − |Xnk+dk+j −Dk| ≥
1

2nk
− 1

2nk+2
>

1

2nk+2j−1
.

and finally, for 1 ≤ j′ < j and any 0 ≤ i ≤ dk, we have

|Xnk+dk+j −Xnk+dk+j′| ≥ |Xnk+dk+j −Xnk+dk+j−1| = 3 · |Uk −Dk|
2nk+2j

≥ |Xnk+dk+j −Dk|+ 2 · 1

2nk+2j+k

≥ |Xnk+dk+j −Dk|+ 2 · dk
2pk−1

> |Xnk+dk+j −Dk|+ |Dk −Dk,i|
≥ |Xnk+dk+j −Dk,i|.
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We now observe that

max
nk+dk+1≤t<nk+1

kt = o

(
nk+1

(log nk)1+δ

)
= o(dk).

Therefore, let k1 such that for any k ≥ k1, and any 1 ≤ j < nk+1 − nk − dk, we have
knk+dk+j ≤ dk. Now for any k ≥ max(k0, k1), on the event Ak ∩ Bk ∩ E , (kt)tNN makes an
error in the prediction of all Xnk+dk+j for 1 ≤ j < nk+1−nk−dk since its kt closest neighbors
are in the set {Xnk+i = Dk,i+1, 0 ≤ i ≤ dk} which all have value 1D(Xnk+i) = 1 instead of
1D(Xnk+dk+j) = 0.

Last, note that the frequency of the times of the form nk + i for k ≥ 1 and 0 ≤ i ≤
dk vanishes to 0, because dk = o(nk+1 − nk) and nk+1 ∼ nk. Therefore, on the event
E ∩ ∪k′≥1

⋂
k≥k′(Ak ∩ Bk), the learning rule (kt)tNN has error rate LX((kt)tNN, f

∗) = 1.
Now note that P[E ∩ Ack ∩ Bck] ≤ 2−k+1 + 2nk

2nk
. Because we have

∑
n≥1 2

−n+1 < ∞ and∑
n≥1

2n
2n

< ∞, the Borel-Cantelli lemma implies P[E ∩ ∪k′≥1

⋂
k≥k′(Ak ∩ Bk)] = 1. To

summarize, with probability one, (kt)tNN has error rate 1 hence is not consistent for process
X and target function f ∗ = 1D. This ends the proof that (kt)tNN is not universally consistent
for process X.

We now show that X ∈ Soul by showing that in fact X ∈ CRF. Let A ⊂ [0, 1]. We
will show that the frequencies of falling in A converge almost surely to µ(A) where µ is the
Lebesgue measure. We introduce the random variables

Yk =

nk+1−nk−1∑
i=0

1A(Xnk+i).

Again, for k ≥ 1, and 1 ≤ j < nk+1 − nk − dk, Xnk+dk+j is an absolutely continuous random
variable with density f(x) = 1

2pk−1

∑2pk−1−1
l=0 fl(x) where fl(x) corresponds to the conditional

density to Dk =
2l+1
2pk

=: dl, i.e.

fl(x) = 2nk4j · 1
(
x ∈

[
dl −

dl
2nk4j

, dl +
1− dl
2nk4j

])
But x ∈

[
dl − dl

2nk4i
, dl +

1−dl
2nk4i

]
i.if

2pk−1(x− 1

2nk 4i
)

1− 1

2nk 4i
− 1

2
≤ l ≤ 2pk−1x

1− 1

2nk 4i
− 1

2
. Therefore, the number

N(x) of non-zero terms in the sum f(x) = 1
2pk−1

∑2pk−1−1
l=0 fl(x) is

2pk−1−nk−2i

1− 1
2nk4i

− 1 ≤ N(x) ≤ 2pk−1−nk−2i

1− 1
2nk4i

+ 1

Hence, ∣∣∣∣f(x)− 1

1− 1
2nk4i

∣∣∣∣ = ∣∣∣∣2nk4iN(x)

2pk−1
− 1

1− 1
2nk4i

∣∣∣∣ ≤ 1

2pk−1−nk−2i
.

Finally, we obtain

|P(Xnk+dk+j ∈ A)− µ(A)| ≤
1

2pk−1−nk−2j
+

1

2nk+2j − 1
.
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Therefore,

|EYk − (nk+1 − nk)µ(A)| ≤
dk∑
i=0

|P(Xnk+i ∈ A)− µ(A)|+
nk+1−nk−dk−1∑

j=1

P(Xnk+dk+j ∈ A)

≤ dk + 1 +
nk+1 − nk
2pk−2nk+1

+
nk+1 − nk
2nk − 1

≤ dk + C

where C ≥ 1 is some universal constant, given that nk+1−nk

2pk−2nk+1
→ 0 and nk+1−nk

2nk−1
→ 0 as

k → ∞. Now note that because Yk is a sum of nk+1 − nk random variables bounded by 1,
then

V ar(Yk) ≤ (nk+1 − nk)2 = O
(
n2
k+1

k1+2ϵ

)
.

Therefore,
∑

k≥1
V ar(Yk)

(nk+1−1)2
<∞. Further, we can note that the random variables (Yk)k≥1 are

together independent. Thus, by Kolmogorov’s Convergence Criteria, we obtain

k∑
l=1

Yl − EYl
nk+1 − 1

→ 0 (a.s.)

We then apply Kronecker’s lemma which gives

ϵk :=

∑k
l=1 Yl − EYl
nk+1 − 1

→ 0 (a.s.)

We now compute,∣∣∣∣∣ 1

nk+1 − 1

nk+1−1∑
t=1

1A(Xt)− µ(A)

∣∣∣∣∣ = 1

nk+1 − 1

∣∣∣∣∣
k∑
l=1

Yl − (nk+1 − nk)µ(A)

∣∣∣∣∣
=

1

nk+1 − 1

∣∣∣∣∣(nk+1 − 1)ϵk +
k∑
l=1

EYl − (nk+1 − nk)µ(A)

∣∣∣∣∣
≤ ϵk +

Ck +
∑k

l=1 dl
nk+1 − 1

.

Because k
nk+1−1

→ 0 and
∑k

l=1 dl = o(nk+1 − 1), we obtain 1
nk+1−1

∑nk+1−1
t=1 1A(Xt) →

µ(A) (a.s.). We complete the proof by noting that for any nk ≤ T < nk+1,

1

nk+1 − 1

nk−1∑
t=1

1A(Xt) ≤
1

T

T∑
t=1

1A(Xt) ≤
1

nk − 1

nk+1−1∑
t=1

1A(Xt),

and that nk−1
nk+1−1

→ 1 as k →∞. Therefore 1
T

∑T
t=1 1A(Xt)→ µ(A) (a.s.). This shows that

X ∈ CRF. Because CRF ⊂ Soul [Han21a], this ends the proof of the theorem. ■
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Output: Predictions Ŷt = kC1NNt(X<t,Y<t, Xt) for t ≤ T
Ŷ1 := 0
D2 := {1}
n1 ← 0
t← 2
while t ≤ T do

if exists u < t such that Xu = Xt then
Ŷt := Yu
Dt+1 := Dt

else
ϕ(t) := argminu∈Dt ρ(Xt, Xu)
Ŷt := Yϕ(t)
nϕ(t) ← nϕ(t) + 1
nt ← 0
if nϕ(t) = k then
Dt+1 := (Dt \ {ϕ(t)}) ∪ {t}

else
Dt+1 := Dt ∪ {t}

end
end
t← t+ 1

end
Algorithm 3.1: kC1NN learning rule

3.5 An Optimistically Universal Learning Rule

In this section, we present an optimistically universal algorithm and give a characterization of
Soul. We start by defining our new learning rule k−Capped 1−Nearest Neighbor (kC1NN)
for any k ≥ 2. This is a simple variant of the traditional 1NN learning rule where kC1NN
performs the 1NN learning rule over a reduced training set. Recall that in the 1NN learning
rule, we assign to the new input Xt the value of the nearest neighbor YNN(t) where NN(t) =
argminu<t ρ(Xt, Xu). We refer to the input point XNN(t) as the representant of the input
value Xt. In the kC1NN learning rule, we keep in memory the number of times nt each point
Xt is used as a representant for following input data and cap this value at k. Precisely, at
each step t we update the dataset Dt ⊂ {u, u < t} containing the indices of data points on
which 1NN may be performed. To do so, when nu reaches k for some u < t, we delete u from
the current dataset Dt. At each iteration, if the input Xt has already been visited, we use
simple memorization to predict Yt, we do not update the values (nu)u<t and do not include
t in the dataset Dt+1. Otherwise, kC1NN performs the 1NN learning rule on the current
dataset (Xu, Yu)u∈Dt , where ties can be broken arbitrarily for instance with minimum index,
and updates (nu)u∈Dt and the dataset accordingly. In the following, we denote by ϕ(t) the
index of the representant used for Xt, i.e. of its closest neighbor within the dataset Dt. The
rule is formally described in Algorithm 3.1.
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In Section 3.4 we presented a process X on which nearest neighbor fails. The main reason
for this failure is that some specific input points Xt can be used an arbitrarily large number
of times as representant for future points, thereby inducing a large number of prediction
errors. The learning rule kC1NN is designed precisely to tackle this issue by ensuring that
any datapoint Xt for t ≥ 1 is used at most k times as representant, i.e., |{u > t : ϕ(u) =
t}| ≤ k. The goal of this section is to show that 2C1NN is optimistically universal for
general separable Borel instance space (X , ρ) and near-metric separable value space (Y , ℓ)
with bounded loss. To provide a simpler exposition of the result, we now show that kC1NN
is in fact optimistically universal for k ≥ 4 starting with X = [0, 1]. This will in turn give
the result for general standard Borel space as shown in Section 3.5.2 and already provides
all the intuitions necessary for the general case presented in Section 3.6.

3.5.1 Universal online learning for contexts in [0, 1]

We consider the case X = [0, 1] and for binary classification in this section and show
that 4C1NN is optimistically universal for this input space. To do so, we prove that
4C1NN is universally consistent under all processes in SMV([0,1],|·|) which yields SMV([0,1],|·|) ⊂
Soul([0,1],|·|),({0,1},ℓ01). Together with Proposition 3.1, this will show Soul([0,1],|·|),({0,1},ℓ01) =
SMV([0,1],|·|) and as a result, that 4C1NN is optimistically universal. As a first step, we focus
on the simple function f ∗ represented by the fixed interval [0, 1/2] in the binary classification
setting, and show that 4C1NN is consistent under any input process for this target function.

Proposition 3.2. Let X = [0, 1] with the usual topology. We consider the binary classifica-
tion setting Y = {0, 1} with ℓ01 binary loss. Under any input process X ∈ SMV([0,1],|·|), the
learning rule 4C1NN is strongly consistent for the target function f ∗ = 1[0,1/2].

Proof We reason by the contrapositive and suppose that 4C1NN is not consistent on f ∗. We
will show that the process X disproves the SMV([0,1],|·|) condition by considering the partition
P of X defined by{

1

2

}
∪
⋃
k≥1

[
1

2
− 1

2k
;
1

2
− 1

2(k + 1)

)
∪
⋃
k≥1

(
1

2
+

1

2(k + 1)
;
1

2
+

1

2k

]
.

Precisely, we will show that the process does not visit a sublinear number of sets of this
partition with nonzero probability.

Because 4C1NN is not consistent, δ := P(LX(4C1NN, f
∗) > 0) > 0. Define

A := {LX(4C1NN, f
∗) > 0}.

We now consider a specific realization x = (xt)t≥0 of the process X falling in the event A.
Note that x is not random anymore. We now show that x does not visit a sublinear number
of sets in the partition P . By construction ϵ := Lx(4C1NN, f

∗) > 0. We now denote by
(tk)k≥1 the increasing sequence of all times when 4C1NN makes an error in the prediction of
f ∗(xt). Now define an increasing sequence of times (Tl)l≥1 such that

1

Tl

Tl∑
t=1

ℓ01(4C1NN(x<t,y<t, xt), f
∗(xt)) >

ϵ

2
.
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For any l ≥ 1 consider the last index k = max{u, tu ≤ Tl} when 4C1NN makes a mistake.
Then we obtain k > ϵ

2
Tl ≥ ϵ

2
tk. Considering the fact that (Tl)l≥1 is an increasing unbounded

sequence we therefore obtain an increasing sequence of indices (kl)l≥1 such that tkl <
2kl
ϵ

.
At an iteration where the new input xt has not been previously visited we will denote

by ϕ(t) the index of the nearest neighbor of the current dataset in the 4C1NN learning
rule. Now let l ≥ 1. We focus on the time tkl . Consider the tree G where nodes are times
T := {t, t ≤ tkl , xt /∈ {xu, u < t}} for which a new input was visited, where the parent
relations are given by (t, ϕ(t)) for t ∈ T \{1}. In other words, we construct the tree in which
a new input is linked to its representant which was used to derive the target prediction. Note
that by definition of the 4C1NN learning rule, each node has at most 4 children and a node
is not in the dataset at time tkl when it has exactly 4 children.

By symmetry, we will suppose without loss of generality that the majority of input points
on which 4C1NN made a mistake belong to the first half [0, 1

2
] i.e.

|{t ≤ tkl , ℓ01(4C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ [0, 1/2]}| ≥ kl

2

or equivalently,
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣ ≥ kl
2
.

Let us now consider the subgraph G̃ given by restricting G only to nodes in the first
half-space [0, 1/2] which are mapped to the true value 1 i.e. on times {t ∈ T , xt ≤ 1

2
}.

In this subgraph, the only times with no parent are times tk with k ≤ kl and xtk ≤ 1
2

and
possibly time t = 1. Indeed, if a time in G̃ has a parent ϕ(t) in G̃, the prediction of 4C1NN
for xt returned the correct answer 1. The converse is also true except for the root time t = 1
which has no parent in G. Therefore, G̃ is a collection of disjoint trees with roots times
{tk, k ≤ kl, xtk ≤ 1

2
} (and possibly t = 1). For a given time tk with k ≤ kl and xtk ≤ 1

2
, we

will denote by Tk the corresponding tree in G̃ with root tk. We say that the Tk is a good tree
if all times t ∈ Tk of this tree are parent in G to at most 1 time from the second half-space
(1
2
, 1] i.e. if

∀t ∈ Tk,
∣∣∣∣{u ≤ tkl , ϕ(u) = t, xu >

1

2

}∣∣∣∣ ≤ 1.

We denote by G = {k ≤ kl, xtk ≤ 1
2
, Tk good} the set of indices of good trees. By opposition,

we will say that a tree is bad otherwise. We now give a simple upper bound on Nbad the num-
ber of bad trees. Note that for any time t ∈ Tk of a tree, times in

{
u ≤ tkl , ϕ(u) = t, xu >

1
2

}
are when 4C1NN makes a mistake on the second-half (1

2
, 1]. Therefore,

∑
k≤kl, xtk≤

1
2

∑
t∈Tk

∣∣∣∣{u < tkl , ϕ(u) = t, xu >
1

2

}∣∣∣∣ ≤ ∣∣∣∣{k ≤ kl, xtk >
1

2

}∣∣∣∣ ≤ kl
2

because by hypothesis
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣ ≥ kl
2
. Therefore, since each bad tree contains a

node which is parent to at least 2 times of mistake in (1
2
, 1], we obtain

Nbad ≤
∑

k≤kl, xtk≤
1
2

∑
t∈Tk

1

2

∣∣∣∣{u < tkl , ϕ(u) = t, xu >
1

2

}∣∣∣∣ ≤ kl
4
.
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Thus, the number of good trees is |G| =
∣∣{k ≤ kl, xtk ≤ 1

2

}∣∣−Nbad ≥ kl
4
. We now focus on

good trees only and analyze their relation with the final dataset Dtkl . Precisely, for a good
tree Tk, denote Vk = Tk ∩ Dtkl the set of times which are present in the final dataset and
belong to the tree induced by error time tk. One can note that the sets {xu, u ∈ Vk}k∈G are
totally ordered:

∀k1 < k2 ∈ G, ∀t1 ∈ Tk1 , ∀t2 ∈ Tk2 , xt1 < xt2 .

This can be shown by observing that at each iteration t of 4C1NN, the following invariant is
conserved: the sets {xu, u ∈ Tk ∩ Dt}k∈{l∈G, tl≤t} are totally ordered. The induction follows
from the fact that when a new input point is visited, 4C1NN performs the 1NN learning
rule on the current dataset Dl. Therefore, either the sets {xu, u ∈ Tk ∩ Dt}k∈{l∈G, tl≤t} are
conserved, or a new point is added when t = tk for some k ≤ kl which forms its own tree and
is closest to (1

2
, 1] than all other sets {xu, u ∈ Tk ∩ Dt}k∈{l∈G, tl≤t}, or a new point is added

to an existing tree Tk in which case it should be closer to some time of Tk ∩ Dt than any
time in Tk−1 ∩ Dt or Tk+1 ∩ Dt—if Tk−1 or Tk+1 exist. Additionally, a time may be removed
which is still consistent with the invariant. Last, we observe that these sets never run empty
because a time is removed only when at least 3 other points were added to the same set.

We now reason by induction to show that the sets {xu, u ∈ Vk}k∈G are also well
separated—in a multiplicative way. Let us order the good trees by G = {g1 < . . . < g|G|}
and start with tree Tg1 . Consider any leaf of this tree and the corresponding path to the
root pl → pl−1 → p0 = tg1 and define x1 = min1≤i≤l xpi . By construction, any point on
this path is being replaced by its parent. Therefore, at any step of the algorithm 4C1NN
at least one point on this path is available in the dataset Dt for any t ≥ tg1—for instance
the last time pi such that pi ≤ t. This point x1 provides a lower bound for the maximum
point in {xu, u ∈ Tg1 ∩ Dt} which in turn will provide a lower bound for all points in
{xu, u ∈ Tg2 ∩ Dt}.

Let us now turn to Tg2 . By construction, in a good tree Tk, a time t ∈ Tk which is not in
the final dataset Dtkl must be parent to at least 3 other times within Tk. Therefore, until the
minimal depth of an available time Vg2 = Tg2 ∩Dtkl in the current dataset Dtkl , each node of
the tree Tg2 has at least 3 parents which correspond necessarily to times t > tg2 . Therefore,
the minimal depth d(g2) of an available time Vk in the current dataset satisfies

d(g2)−1∑
i=0

3i ≤ |Tg2 | ≤ tkl .

Therefore d(g2) ≤ log3(2tkl + 1) ≤ log3 tkl . Now consider the specific path from this node in
Vg2 of minimal depth to the root tg2 . Denote this path pd(g2) → pd(g2)−1 → p0 = tg2 . Each arc
of this path represents the fact that at the corresponding iteration pi of 4C1NN, the parent
xpi−1

was closer from xpi than any other point of the current dataset Dpi , in particular any
point of {xu, u ∈ Tg1 ∩ Dpi}. This gives |xpi−1

− xpi | ≤ |x1 − xpi−1
| = xpi−1

− x1 because we
have xpi−1

, xpi > x1. Therefore we obtain

xpi−1
≥ x1 + xpi

2
.

Indeed, if this were not the case we would have |xpi−1
− xpi | = xpi − xpi−1

> xpi−1
− x1.

Similarly, considering the fact that 4C1NN makes a mistake at time tg2 , the parent of tg2
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satisfies xϕ(tg2 ) >
1
2

which yields xtg2 ≥
x1+xϕ(tg2 )

2
≥ x1+ 1

2

2
. Hence, for any 0 ≤ i ≤ d(g2),

xpi ≥ x1
(
1− 1

2i

)
+
xtg2
2i
≥ x1 +

xtg2 − x
1

2d(g2)
≥ x1 +

(
1

2
− x1

)
t
− log 2

log 3

kl
.

Again, at every iteration t ≥ tg2 of 4C1NN, at least one of the points xpi is available in
the dataset Dt—for instance the last xpi such that pi ≤ t. By total ordering, this x2 :=
min0≤i≤d(g2) xpi provides a lower bound for all points {xu, u ∈ Tg3 ∩ Dt} whenever t ≥ tg3 .
Hence, the lower bound x2 acts as a new barrier: the equivalent of x1 for the above argument
with Tg2 .

For clarity, we precise the next iteration of the induction for Tg3 . The minimal depth
d(g3) of an available time Vg3 satisfies d(g3) ≤ log3(tkl− tg3 +1)+1 using the same argument
as above. Now consider the corresponding path in Tg3 from this minimal depth node to
the root pd(g3) → . . . → p0 = tg3 . By definition of the 4C1NN learning rule, the parent
xpi−1

was closer to xpi than any point of {xu, u ∈ Tg2 ∩ Dt}. By the previous step of
the induction, we know that the maximum value of this set is at least x2. Therefore, we
obtain |xpi−1

− xpi | ≤ |x2 − xpi | = xpi − x2. We recall that we also have xpi−1
≥ x2 and

xpi ≥ x2. The same argument as above gives xpi ≥
x2+xpi−1

2
. Further, we obtain similarly

xtg3 ≥
x2+xϕ(tg3 )

2
≥ x2+ 1

2

2
. Hence, for all 0 ≤ i ≤ d(g3),

xpi ≥ x2 +
xtg3 − x

2

2d(g3)
≥ x2 +

(
1

2
− x2

)
t
− log 2

log 3

kl
.

We denote x3 := min0≤i≤d(g3) xpi , which now acts as a lower barrier for the tree Tg4 and we
can apply the induction.

We complete this induction for Tg3 , . . . , Tg|G| . This creates a sequence of distinct visited

input points (xi)1≤i≤|G| with xi ≤ 1
2

such that for any 1 ≤ i < |G|, xi+1 ≥ xi+
(
1
2
− xi

)
t
− log 2

log 3

kl
i.e.

1

2
− xi+1 ≤

(
1

2
− xi

)(
1− t

− log 2
log 3

kl

)
.

In particular, we can observe that 0 ≤ x1 < x2 < . . . < x|G| ≤ 1
2
. Further, recalling that we

have tkl <
2kl
ϵ

, we get

log

(
1

2
− xi+1

)
− log

(
1

2
− xi

)
≤ log

(
1− t

− log 2
log 3

kl

)
≤ −t

− log 2
log 3

kl
≤ −

(
ϵ

2kl

) log 2
log 3

,

for any 1 ≤ i ≤ |G| − 1. We will now argue that most of these points xi fall in distinct sets
of the type [ak, ak+1) where ak := 1

2
− 1

2k
for k ≥ 1. We observe that for any k ≥ 1, we

have by concavity log
(
1
2
− ak+1

)
− log

(
1
2
− ak

)
= log

(
1− 1

k+1

)
≥ − log 2

k+1
. Therefore, with

k0 =

⌈
log 2 ·

(
2kl
ϵ

) log 2
log 3

⌉
, for any k ≥ k0 we have

log

(
1

2
− ak+1

)
− log

(
1

2
− ak

)
> −

(
ϵ

2kl

) log 2
log 3

.
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Therefore, for any 1 ≤ i ≤ |G| − 1 such that xi > ak0 , xi and xi+1 would lie in different
sets of the type [ak, ak+1), k ≥ 1. In fact because the sequence (xi)1≤i≤|G| is increasing, if
xi

∗
> ak0 then all points (xi)i∗≤i≤|G| lie in distinct sets of the type [ak, ak+1), k ≥ 1. Recall

that |G| ≥ kl
4
. Denote i∗ = ⌊kl

8
⌋. Because (kl)l≥1 is an increasing sequence, we have

log

(
1

2
− xi∗

)
≤ log

(
1

2

)
− (i∗ − 1)

(
ϵ

2kl

) log 2
log 3

∼
l→∞
−cϵk

1− log 2
log 3

l ,

where cϵ := 1
8

(
ϵ
2

) log 2
log 3 is a constant. Therefore,

log

(
1

2
− ak0

)
= − log(2k0) ∼

l→∞
− log 2

log 3
log kl = o

(
log

(
1

2
− xi∗

))
which shows that for some constant l0 and any l ≥ l0 we have ak0 < xi

∗
< 1

2
. Hence, for

any l ≥ l0, all the points (xi)i∗≤i≤|G| lie in distinct sets of the partition and there are at least
|G| − kl

8
≥ kl

8
such points. Therefore, for any l ≥ l0,

|{P ∈ P , P ∩ x≤tkl ̸= ∅}| ≥
kl
8
≥ ϵ

16
tkl .

Because tkl →∞ as l→∞, this shows that |{P ∈ P , P ∩x<T ̸= ∅}| ≠ o(T ). Because this
holds for any realization of the event A, we obtained

P(|{P ∈ P , P ∩ X<T ̸= ∅}| = o(T )) ≤ P(Ac) = 1− δ < 1.

This shows that X /∈ SMV([0,1],|·|) and ends the proof of the proposition. ■ Note that using

the same proof, we observe that the result from Proposition 3.2 holds for all learning rules
kC1NN with k ≥ 4.

We are now ready to prove that 4C1NN is universally consistent under processes of
SMV([0,1],|·|) for the binary classification setting. Intuitively, we analyze the set of functions
on which 4C1NN is consistent under a fixed process X ∈ SMV([0,1],|·|) and show that this is
a σ-algebra. Proposition 3.2 will be useful to show that this σ-algebra contains all intervals
and as a result is the complete Borel σ-algebra B i.e. 4C1NN is universally consistent under
X.

Theorem 3.5. Let X = [0, 1] with the usual topology B. For the binary classification setting,
the learning rule 4C1NN is universally consistent for all processes X ∈ SMV([0,1],|·|).

Proof let X ∈ SMV([0,1],|·|). We will show that 4C1NN is universally consistent on X by
considering the set SX of functions for which it is consistent. More precisely, since Y = {0, 1}
in the binary setting, all target functions can be described as f=

1Af∗ whereAf∗ = f<−1>({1})
is a measurable set. In the following, we will refer interchangeably to the function f ∗ or the
set Af∗ , and define SX using the corresponding sets:

SX := {A ∈ B, LX(4C1NN,1A) = 0 (a.s.)}

By construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will
show that S satisfies the following properties
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• ∅ ∈ SX and SX contains all intervals [0, s) with 0 < s ≤ 1,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃
i≥1Ai ∈ SX (stable to σ−additivity

for disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals of
X = [0, 1]. Recall that by definition, B is the smallest σ−algebra containing open intervals.
Therefore we get B ⊂ SX which proves the theorem. We now show the four properties.

We start by showing the invariance to complementary. Note that 4C1NN is invariant to
labels and that the loss ℓ01 is symmetric. Therefore, if it achieves consistency for 1A it also
achieves consistency for 1Ac . Indeed, at each step, 4C1NN will use the same representant
for the prediction hence for any t ≥ 0,

ℓ01(4C1NN(x<t,1x<t∈A, xt),1xt∈A) = ℓ01(4C1NN(x<t,1x<t∈Ac , xt),1xt∈Ac).

4C1NN is clearly consistent for f ∗ = 0. Therefore ∅ ∈ SX. Now let 0 < s ≤ 1. We will
show that [0, s) ∈ SX. Proposition 3.2 shows that [0, 1

2
] ∈ SX. In fact, one can note that the

same proof shows that [0, 1
2
) ∈ SX. Further, for any 0 < s ≤ 1 using the same proof with the

following partition centered in s,

{s} ∪
⋃
k≥1

[
s

(
1− 1

k

)
; s

(
1− 1

k + 1

))
∪
⋃
k≥1

(
s+

1− s
k + 1

; s+
1− s
k

]
shows that [0, s], [0, s) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint
sets of SX. We denote A :=

⋃
i≥1Ai. We consider the target function f ∗ = 1A. There are

two types of statistical errors: errors of type 1 correspond to Xt ∈ A and a predicted value 0
while type 2 errors correspond to Xt /∈ A and a predicted value 1. We then write the average
loss in the following way,

1

T

T∑
t=1

ℓ01(4C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A,

where the first term corresponds to type 1 errors and the second term corresponds to type
2 errors.

We suppose by contradiction that P(LX(4C1NN, f
∗) > 0) := δ > 0 Therefore, there

exists ϵ > 0 such that P(LX(4C1NN, f
∗) > ϵ) ≥ δ

2
. We denote this event by A :=

{LX(4C1NN, f
∗) > ϵ}. We first analyze the errors induced by one set Ai only. We have

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) ≤ 1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈Ai

+ 1Xt /∈Ai
1Xϕ(t)∈Ai

)

=
1

T

T∑
t=1

ℓ01(4C1NN(X<t,1X<t∈Ai
, Xt),1Xt∈Ai

).
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Then, because 4C1NN is consistent for 1Ai
, we have

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)→ 0 (a.s.).

We take ϵi = ϵ
4·2i and δi = δ

8·2i . The above equation gives

P

[⋃
t0≥1

⋂
T≥t0

{
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) < ϵi

}]
= 1.

Therefore, let T i such that

P

 ⋂
T≥T i

{
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) < ϵi

} ≥ 1− δi.

We will denote by Ei this event. We now consider the scale of the process X≤T i when falling
in Ai, by introducing ηi > 0 such that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

|Xt1 −Xt2| > ηi

 ≥ 1− δi.

We denote by Fi this event. By the union bound, we have P(
⋃
i≥1 Eci ∪

⋃
i≥1F ci ) ≤

δ
4
.

Therefore, we obtain P(A ∩
⋂
i≥1 Ei ∩

⋂
i≥1Fi) ≥ P(A) − P(

⋃
i≥1 Eci ∪

⋃
i≥1F ci ) ≥

δ
4
. We

now construct a partition P obtained by subdividing each set Ai according to scale ηi. For
simplicity, we use the notation Ni = ⌊ 1

ηi
⌋ and construct the partition given of X = [0, 1]

given by

P : Ac ∪
⋃
i≥1

{
([Niηi, 1] ∩ Ai) ∪

Ni−1⋃
j=0

([jηi, (j + 1)ηi) ∩ Ai)

}
.

Let us now consider a realization of x of X in the event A∩
⋂
i≥1 Ei ∩

⋂
i≥1Fi. The sequence

x is now not random anymore. Our goal is to show that x does not visit a sublinear number
of sets in the partition P .

By construction, the event A is satisfied, therefore there exists an increasing sequence
of times (tk)k≥1 such that for any k ≥ 1, 1

tk

∑tk
t=1 ℓ01(4C1NN(x<t,1x<t∈A, xt),1xt∈A) >

ϵ
2
.

Therefore, we obtain for any k ≥ 1,

∑
i≥1

1

tk

tk∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) >
ϵ

2
.

Also, because the events Ei are met, we have

∑
i≥1; tk≥T i

1

tk

tk∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) <
∑

i≥1,tk≥T i

ϵi ≤
ϵ

4
.
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Combining the two above equations gives

1

tk

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) >
ϵ

4
. (3.1)

We now consider the set of times such that an input point fell into the set Ai with T i > tk,
either creating a mistake in the prediction of 4C1NN or inducing a later mistake within time
horizon tk: T :=

⋃
i≥1; T i>tk

Ti where

Ti :=
{
t ≤ tk, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ tk s.t. ϕ(u) = t, xu /∈ A

)}
.

We now show that all points xt for t ∈ T fall in distinct sets of the partition P . Indeed,
because the sets Ai are disjoint, it suffices to check that for any i ≥ 1 such that T i > tk, the
points xt for t ∈ Ti fall in distinct of the following sets

[Niηi, 1] ∩ Ai, [jηi, (j + 1)ηi) ∩ Ai, 0 ≤ j ≤ Ni − 1.

Note that for any t1 < t2 ∈ Ti we have xt1 , xt2 ∈ Ai and xt1 ̸= xt2 . Indeed, we cannot have
xt2 = xt1 otherwise 4C1NN would make no mistake at time t2 and xt2 would induce no future
mistake either (recall that if an input point was already visited, we use simple memorization
for the prediction and do not add it to the dataset). Therefore, because the event Fi is
satisfied, for any t1 < t2 ∈ Ti we have |xt1 − xt2| > ηi. Hence xt1 and xt2 lie in different sets
among [Niηi, 1] ∩ Ai or [jηi, (j + 1)ηi) ∩ Ai for 0 ≤ j ≤ Ni − 1. This shows that all points
{xt, t ∈ T } lie in different sets of the partition P . Therefore,

|{P ∈ P , P ∩ x≤tk ̸= ∅}| ≥ |T |.

We now lower bound |T |, which will uncover the main interest of the learning rule 4C1NN.
Intuitively, this learning rule prohibits a single input point xt to induce a large number of
mistakes in the learning process. Indeed, any input point incurs at most 1 + 4 = 5 mistakes
while this number of mistakes incurred by a single point can potentially by unbounded for
the traditional 1NN learning rule. We now formalize this intuition.

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

)

=

tk∑
t=1

∑
i≥1; tk<T i

(
1xt∈Ai

1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1xt∈Ai
1ϕ(u)=t

)

=
∑

i≥1; T i>tk

∑
t≤tk, xt∈Ai

(
1xϕ(t) /∈A +

∑
t<u≤tk

1xu /∈A1ϕ(u)=t

)
≤

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

5max
(
1xϕ(t) /∈A,1xu /∈A1ϕ(u)=t, t < u ≤ tk

)
= 5|T |
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where in the last inequality we used the fact that a given time t can have at most 4 children
i.e. |{u > t, ϕ(u) = t}| ≤ 4 with the 4C1NN learning rule. We now use Eq (3.1) to obtain

|{P ∈ P , P ∩ x≤tk ̸= ∅}| ≥ |T | ≥
ϵ

20
tk.

This holds for any k ≥ 1. Therefore, because tk →∞ as k →∞ we get |{P ∈ P , P ∩x≤T ̸=
∅}| ≠ o(T ). Finally, this holds for any realization of X in the event A ∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi.

Therefore,

P(|{P ∈ P , P ∩ x≤T ̸= ∅}| = o(T )) ≤ P

[(
A ∩

⋂
i≥1

Ei ∩
⋂
i≥1

Fi

)c]
≤ 1− δ

4
< 1.

Therefore, X /∈ SMV([0,1],|·|) which contradicts the hypothesis. This concludes the proof that

LX(4C1NN,1·∈A) = 0 (a.s.),

and hence, SX satisfies the σ−additivity property for disjoint sets.
Note that the choice of disjoint sets for the proof of σ−additivity was made for conve-

nience so that the partition defined is not too complex. However to complete the proof of
the σ−additivity of SX, we have to prove that we can take unions of sets. Let A1, A2 ∈ SX.
We consider A = A1 ∪ A2 and f ∗(·) = 1·∈A. Using the same arguments as above, we still
have for T ≥ 1,

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)→ 0 (a.s.).

for i ∈ {1, 2}. But note that for any T ≥ 1,

1

T

T∑
t=1

ℓ01(4C1NN(X<t,Y<t, Xt), f
∗(Xt))

=
1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A

≤ 1

T

T∑
t=1

(1Xt∈A1 + 1Xt∈A2)1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A(1Xϕ(t)∈A1 + 1Xϕ(t)∈A2)

=
2∑
i=1

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

).

Therefore we obtain directly LX(4C1NN,1·∈A) = 0 (a.s.). This shows that A1 ∪ A2 ∈ SX
and ends the proof of the theorem. ■ As an immediate consequence of Theorem 3.5 and

Proposition 3.1, we obtain the following results.

Theorem 3.6. We have Soul([0,1],|·|),({0,1},ℓ01) = SMV([0,1],|·|). Further, in this setting for
X = [0, 1] with usual measure, and for binary classification, 4C1NN is an optimistically
universal learning rule.
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3.5.2 Generalization to standard Borel input spaces.

The specific choice of input space X = [0, 1] was in fact not very restrictive. Indeed, any
standard Borel input space X can be reduced to either [0, 1] or a countable set through the
Kuratowski theorem. We recall that two standard Borel spaces i.e. complete separable Borel
spaces, are Borel isomorphic if there exists a measurable bijection between them.

Theorem 3.7 (Kuratowski’s theorem). Any standard Borel space X is Borel isomorphic to
one of (1) R, (2) N or (3) a finite space.

This classical result can be found for example in [Kec12] (Section 15.B). Using this two
reductions, we can generalize Theorem 3.6 to any standard Borel space X .

Corollary 3.1. For any standard Borel space X and binary classification, we have that
Soul(X ,ρ),(Y,ℓ) = SMV(X ,ρ). Further, there exists an optimistically universal learning rule.

Proof The results are already known when X is countable and in these cases, memorization
is an optimistically universal learning rule [Han21a]. We now fix a standard Borel space X ,
Borel isomorphic to R and as a result Borel isomorphic to [0, 1]. Let g : X → [0, 1] be a
measurable bijection and a process X ∈ SMV(X ,ρ). Note that the process g(X) := (g(Xt))t≥1

belongs to SMV([0,1],|·|) by bi-measurability of g. We can construct the learning rule f· for
value setting X and binary classification such that for any x≤t ∈ X t and y<t ∈ {0, 1}t−1 we
define ft(x<t, y<t, xt) = 4C1NN t(g(x<t), y<t, g(xt)). By construction, for target function f ∗ :
X → {0, 1} this learning rule under X has same losses as 4C1NN under g(X) for the target
function f ∗ ◦ g−1. Therefore, f· is universally consistent under X which yields SMV(X ,ρ) ⊂
Soul(X ,ρ),({0,1},ℓ01). Using Proposition 3.1 we have Soul(X ,ρ),({0,1},ℓ01) = SMV(X ,ρ). We can
also end the proof by noting that f· is an optimistically universal learning rule. ■

Although quite intuitive and direct, this generalization has two limitations. First, it
only applies to standard Borel spaces instead of general separable Borel spaces. Second, it
does not provide a practical optimistically universal rule in general. Indeed, the constructed
optimistically universal learning rule in Corollary 3.1 uses a bimeasurable bijection between
X and [0, 1]—in the non-trivial case where X is Borel isomorphic to R—which can be very
complex and non-intuitive. For instance, the constructed learning rule for [0, 1]2 is not
4C1NN but instead a complex learning rule using a measurable bijection [0, 1]→ [0, 1]2. In
the next section we solve these two issues by showing that 2C1NN is optimistically universal
in the general case.

3.6 Generalization to All Borel Context Spaces

In this section, we extend Corollary 3.1 to general binary classification, where X is a sepa-
rable Borel space. This will then be used to prove the result for general output settings
using a reduction technique described in Section 3.7. We show that 2C1NN is in fact
always optimistically universal using the following proof structure. We first start with
the case of binary classification ({0, 1}, ℓ01). Specifically, we show that 2C1NN is uni-
versally consistent for binary classification under all processes in SMV(X ,ρ) which yields
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x

Bρ(x, r)

xp2

xp1

xp0

xq1
xq0

l

≤ l

≤ ρ(xq1 , xp1)

≤ ρ(xq0 , xp1)

Figure 3.1: Illustration for Lemma 3.1 for d = 2 and f = 1, where the order of appearance
is p0 < q0 < p1 < q1 < p2. The arrows represent the relations of nodes within the tree G,
e.g., Ŷp1 = Yp0 . If the end points xp2 and xq1 are close, then so are the beginning points xp0
and xq0 . The proof by induction is summarized by the upper bounds in red.

SMV(X ,ρ) ⊂ Soul(X ,ρ),({0,1},ℓ01). Together with Proposition 3.1, this shows that we have in
fact an equality SMV(X ,ρ) = Soul(X ,ρ),({0,1},ℓ01) and as a result, that 2C1NN is optimistically
universal.

We start by showing that under any process in SMV(X ,ρ), 2C1NN is consistent on func-
tions representing balls of the metric ρ.

Proposition 3.3. Let (X ,B) be a separable Borel space constructed from the metric ρ. We
consider the binary classification setting Y = {0, 1} and the ℓ01 binary loss. For any input
process X ∈ SMV(X ,ρ), for any x ∈ X , and r > 0, the learning rule 2C1NN is consistent for
the target function f ∗ = 1Bρ(x,r).

To prove this result, we introduce a tree structure G for the 2C1NN algorithm on times
t such that each new input is linked to its representant which was used to derive the target
prediction. Times t corresponding to instances Xt that were previously visited are therefore
not considered in this tree. Precisely, we consider parent relations given by (t, ϕ(t)) for all
times t such that a new input Xt was visited—i.e. memorization was not performed directly.
By definition of the 2C1NN learning rule, no time t ∈ G has more than 2 children. Further,
for any t, t′ ∈ G, if the time t′ < t is not present in dataset Dt, it has exactly 2 children. The
proof uses the following lemma.

Lemma 3.1. Consider two distinct paths pd → pd−1 → . . . → p1 → p0 and qf → qf−1 →
. . . → q1 → q0 i.e. ϕ(pi) = pi−1 for 1 ≤ i ≤ d and ϕ(qi) = qi−1 for 1 ≤ i ≤ f . Suppose
p0 < q0 and that there exists t ≥ max(pd, qf ) such that pd, qf ∈ Dt (in other words the two
end times are in some final dataset). Then, with v(0) := max{0 ≤ i ≤ d, pi < q0} we have

ρ(xpv(0) , xq0) ≤ 2f+d+1ρ(xpd , xqf ) and ρ(xpv(0) , xpd) ≤ 2f+d+1ρ(xpd , xqf ).

Proof Define

v(j) := max{0 ≤ i ≤ d, pi < qj}, j = 0, . . . , f.
u(i) := max{0 ≤ j ≤ f, qj < pi}, i = v(0) + 1, . . . , d,
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Now observe that for any v(0) + 1 ≤ i ≤ d, we have qu(i) ∈ Dpi i.e. the datapoint qu(i) is
available in the current dataset. Indeed, it is possibly removed after all of its children have
been revealed, in particular qu(i)+1 if it exists. By definition of u(i), even if qu(i)+1 exists, it
has not yet been revealed since pi < qu(i)+1. Therefore, we have ρ(xpi , xpi−1

) ≤ ρ(xpi , xqu(i)).
Similarly, we have for all 1 ≤ j ≤ f , ρ(xqj , xqj−1

) ≤ ρ(xqj , xpv(j)). We now take v0+1 ≤ i < d.
We have qu(i) < pv(u(i))+1 < . . . < pi < qu(i)+1 < . . . < qu(i+1) < pi+1 (where some terms
might not exist). Therefore,

ρ(xpi , xqu(i)) ≤ ρ(xpi , xpi+1
) + ρ(xpi+1

, xqu(i+1)
) + ρ(xqu(i) , xqu(i+1)

)

≤ 2ρ(xpi+1
, xqu(i+1)

) +

u(i+1)−1∑
w=u(i)

ρ(xqw , xqw+1)

≤ 2ρ(xpi+1
, xqu(i+1)

) +

u(i+1)−1∑
w=u(i)

ρ(xpi , xqw+1)

where in the last inequality, we used the fact that for all u(i) ≤ w ≤ u(i + 1) − 1, we have
v(w + 1) = i. Now observe that for any u(i) + 1 ≤ w ≤ u(i+ 1)− 1,

ρ(xpi , xqw) ≤ ρ(xpi , xqw+1) + ρ(xqw , xqw+1) ≤ 2ρ(xpi , xqw+1).

Therefore we have by induction ρ(xpi , xqw) ≤ 2u(i+1)−wρ(xpi , xqu(i+1)
). which yields

ρ(xpi , xqu(i)) ≤ 2ρ(xpi+1
, xqu(i+1)

) + (2u(i+1)−u(i) − 1)ρ(xpi , xqu(i+1)
).

Finally, we observe that ρ(xpi , xqu(i+1)
) ≤ ρ(xpi , xpi+1

) + ρ(xpi+1
, xqu(i+1)

) ≤ 2ρ(xpi+1
, xqu(i+1)

).
Hence,

ρ(xpi , xqu(i)) ≤ 2u(i+1)−u(i)+1ρ(xpi+1
, xqu(i+1)

).

By recursion, this yields

ρ(xpv(0)+1
, xqu(v(0)+1)

) ≤ 2u(d)−u(v(0)+1)+(d−v(0)−1)ρ(xpd , xqu(d)).

We now relate the quantity ρ(xpv(0)+1
, xqu(v(0)+1)

) (resp. ρ(xpd , xqu(d))) to ρ(xpv(0) , xq0) (resp.
ρ(xpd , xqd)). We have by construction pv(0) < q0 < q1 < . . . < qu(v(0)+1) < pv(0)+1. Therefore,
similarly to before,

ρ(xpv(0) , xq0) ≤ ρ(xpv(0) , xpv(0)+1
) + ρ(xpv(0)+1

, xqu(v(0)+1)
) +

u(v(0)+1)−1∑
w=0

ρ(xqw , xqw+1)

≤ 2ρ(xpv(0)+1
, xqu(v(0)+1)

) +

u(v(0)+1)∑
w=1

ρ(xpv(0) , xqw).

But ρ(xpv(0) , xqw) ≤ ρ(xpv(0) , xqw+1) + ρ(xqw , xqw+1) ≤ 2ρ(xpv(0) , xqw+1). Hence ρ(xpv(0) , xqw) ≤
2u(v(0)+1)−wρ(xpv(0) , xqu(v(0)+1)

) ≤ 2u(v(0)+1)−w+1ρ(xpv(0)+1
, xqu(v(0)+1)

). Then,

ρ(xpv(0) , xq0) ≤ 2u(v(0)+1)+1ρ(xpv(0)+1
, xqu(v(0)+1)

) ≤ 2u(d)+(d−v(0))ρ(xpd , xqu(d)).
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Finally, we have qu(d) < pd < qu(d)+1 < . . . < qf . Then,

ρ(xpd , xqu(d)) ≤
f−1∑

w=u(d)

ρ(xqw , xqw+1) + ρ(xpd , xqf )

≤
f−1∑

w=u(d)

ρ(xpd , xqw+1) + ρ(xpd , xqf ).

Again, note that for u(d)+1 ≤ w ≤ f−2, we have ρ(xpd , xqw) ≤ ρ(xpd , xqw+1)+ρ(xqw , xqw+1) ≤
2ρ(xpd , xqw+1). Hence, ρ(xpd , xqw) ≤ 2f−wρ(xpd , xqf ) and we obtain

ρ(xpd , xqu(d)) ≤ (2f−u(d) − 1)ρ(xpd , xqf ) + ρ(xpd , xqf ) = 2f−u(d)ρ(xpd , xqf ).

Putting everything together yields

ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ).

Finally, we compute

ρ(xpv(0) , xpd) ≤
d∑

i=v(0)+1

ρ(xpi−1
, xpi)

≤
d∑

i=v(0)+1

ρ(xpi , xqu(i))

≤
d∑

i=v(0)+1

2u(d)−u(i)+d−iρ(xpd , xqu(d))

≤
d∑

i=v(0)+1

2u(d)−u(v(0)+1)+d−iρ(xpd , xqu(d))

≤ 2u(d)−u(v(0)+1)+d−v(0)ρ(xpd , xqu(d))

≤ 2f−u(v(0)+1)+d−v(0)ρ(xpd , xqf )

≤ 2f+dρ(xpd , xqf ).

This ends the proof of the lemma. ■

We are now ready to show that 2C1NN is consistent on functions representing balls of
the metric ρ, under any process in SMV(X ,ρ).

Proof of Proposition 3.3 We fix x̄ ∈ X , r > 0 and f ∗ = 1B(x̄,r). We reason by the
contrapositive and suppose that 2C1NN is not consistent on f ∗. We will show that the
process X disproves the SMV(X ,ρ) condition by considering a partition for which, the process
X does not visit a sublinear number of sets with nonzero probability.

Because 2C1NN is not consistent, δ := P(LX(2C1NN, f
∗) > 0) > 0. Therefore, there

exists 0 < ϵ ≤ 1 such that P(LX(2C1NN, f
∗) > ϵ) > δ

2
. Denote A := {LX(2C1NN, f

∗) > ϵ}.
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We therefore have P(A) > δ
2
. We now define a partition P . Because X is separable, there

exists a sequence (xi)i≥1 of elements of X which is dense i.e.

∀x ∈ X , inf
i≥1

ρ(x, xi) = 0.

We focus for now on the sphere S(x̄, r) and for any τ > 0 we take (Pi(τ))i≥1 the sequence
of sets included in S(x̄, r) defined by

Pi(τ) :=
(
S(x̄, r) ∩B(xi, τ)

)
\

( ⋃
1≤j<i

B(xj, τ)

)
.

These sets are disjoint. Further, they partition S(x̄, r). Indeed, if x ∈ S(x̄, r), let i ≥ 1 such
that ρ(x, xi) ≤ τ . Then, x ∈ S(x̄, r) ∩B(xi, τ) ⊂

⋃
j≤i P

τ
j . We now pose

τl := cϵ ·
r

2l+1
,

for l ≥ 1, where cϵ := 1

2·225/ϵ
is a constant dependant on ϵ only. We also pose τ0 = r. Then,

because X ∈ SMV(X ,ρ), the process visits a sublinear number of sets of Pi(τl) almost surely.
Therefore, there exists an increasing sequence (nl)l≥1 such that for any l ≥ 1,

P
[
∀n ≥ nl, |{i, Pi(τl) ∩ X<n ̸= ∅}| ≤

ϵ

27
n
]
≥ 1− δ

2 · 2l+2
and nl+1 ≥

26

ϵ
nl

We denote by El this event. Thus, P[El] ≤ δ
2·2l+2 . Now, for any l ≥ 1, we now construct

µl > 0 such that

P
[

min
i<j≤nl, Xi ̸=Xj

ρ(Xi, Xj) > µl

]
≥ 1− δ

2 · 2l+2
.

We denote this event by Fl. Thus P[Fl] ≤ δ
2·2l+2 . Note that the sequence (µl)l≥1 is non-

increasing. We now define radiuses (zi)i≥1 as follows:

zi =

{
µli+1 if ρ(xi, x̄) < r, where r

2li+1 < r − ρ(xi, x̄) ≤ r
2li

0 if ρ(xi, x̄) ≥ r,

and consider the sets Ri := B(xi, zi) ∩
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
. We construct

Pi := Ri \

(⋃
k<i

Rk

)
,

for i ≥ 1. As shown in the following lemma, (Pi)i≥1 forms a partition of B(x̄, r).

Lemma 3.2. (Pi)i≥1 forms a partition of B(x̄, r).

We now define a second partition. We start by defining a sequence of radiuses (ri)i≥1 as
follows

ri =


cϵ inf
x: ρ(x,x̄)≤r

ρ(xi, x) if ρ(xi, x̄) > r,

cϵ inf
x: ρ(x,x̄)≥r

ρ(xi, x) if ρ(xi, x̄) < r,

0 if ρ(xi, x̄) = r.
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We consider the sets (Ai)i≥0 given by A0 = S(x̄, r) and for i ≥ 1,

Ai = B(xi, ri) \

( ⋃
1≤j<i

B(xj, rj)

)
.

We now show that these sets form a partition in the following lemma.

Lemma 3.3. (Ai)i≥0 forms a partition of X .

We now formally consider the product partition of (Pi)i≥1 and (Ai)i≥0 i.e.

Q :
⋃

i≥0, Ai⊂B(x̄,r)

⋃
j≥1

(Ai ∩ Pj) ∪
⋃

i≥0, Ai⊂X\B(x̄,r)

Ai.

where we used the fact that sets Ai satisfy either Ai ⊂ B(x̄, r) or Ai ⊂ X \ B(x̄, r). We
will show that this partition disproves the SMV(X ,ρ) hypothesis on X. In practice, we will
either prove that the process visits many sets from partition (Ai)i≥0 or (Pi)i≥1 and use the
fact that the same analysis would work for Q, the product partition as well.

We now consider a specific realization x = (xt)t≥0 of the process X falling in the event
A
⋂
l≥1(El ∩ Fl). This event has probability

P

[
A
⋂
l≥1

(El ∩ Fl)

]
≥ P[A]−

∑
l≥1

(P[Ecl ] + P[F cl ]) ≥
δ

2
− δ

4
=
δ

4
.

Note that x is not random anymore. We now show that x does not visit a sublinear number
of sets in the partition Q.

We now denote by (tk)k≥1 the increasing sequence of all times when 2C1NN makes an
error in the prediction of f ∗(xt). Because the event A is satisfied, Lx(2C1NN, f

∗) > ϵ,
therefore, we can define an increasing sequence of times (Tl)l≥1 such that

1

Tl

Tl∑
t=1

ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) >

ϵ

2
.

For any l ≥ 1 consider the last index k = max{u, tu ≤ Tl} when 2C1NN makes a mistake.
Then we obtain k > ϵ

2
Tl ≥ ϵ

2
tk. Considering the fact that (Tl)l≥1 is an increasing unbounded

sequence we therefore obtain an increasing sequence of indices (kl)l≥1 such that tkl <
2kl
ϵ

.
At an iteration where the new input xt has not been previously visited we will denote

by ϕ(t) the index of the nearest neighbor of the current dataset in the 2C1NN learning
rule. Now let l ≥ 1. We focus on the time tkl . Consider the tree G where nodes are times
T := {t, t ≤ tkl , xt /∈ {xu, u < t}} for which a new input was visited, where the parent
relations are given by (t, ϕ(t)) for t ∈ T \{1}. In other words, we construct the tree in which
a new input is linked to its representant which was used to derive the target prediction. Note
that by definition of the 2C1NN learning rule, each node has at most 2 children and a node
is not in the dataset at time tkl when it has exactly 2 children.
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Step 1. We now suppose that the majority of input points on which 2C1NN made a mistake
belong to B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ B(x̄, r)}| ≥ kl

2
,

or equivalently |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2
.

Let us now consider the subgraph G̃ given by restricting G only to nodes in the ball
B(x̄, r)—which are mapped to the true value 1—i.e. on times {t ∈ T , xt ∈ B(x̄, r)}. In
this subgraph, the only times with no parent are times tk with k ≤ kl and xtk ∈ B(x̄, r)
and possibly time t = 1. Indeed, if a time in G̃ has a parent ϕ(t) in G̃, the prediction of
2C1NN for xt returned the correct answer 1. The converse is also true except for the root
time t = 1 which has no parent in G. Therefore, G̃ is a collection of disjoint trees with roots
times {tk, k ≤ kl, xtk ∈ B(x̄, r)}—and possibly t = 1 if x1 ∈ B(x̄, r). For a given time tk
with k ≤ kl and xtk ∈ B(x̄, r), we will denote by Tk the corresponding tree in G̃ with root
tk. We will say that the Tk is a good tree if all times t ∈ Tk of this tree are parent in G to at
most 1 time from X \B(x̄, r) i.e. if

∀t ∈ Tk, |{u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ 1.

We denote by G = {k ≤ kl, xtk ∈ B(x̄, r), Tk good} the set of indices of good trees. By op-
position, we will say that a tree is bad otherwise. We now give a simple upper bound on Nbad

the number of bad trees. Note that for any t ∈ Tk, times in {u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}
are times when 2C1NN makes a mistake on X \B(x̄, r). Therefore,∑

k≤kl, xtk∈B(x̄,r)

∑
t∈Tk

|{u < tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ |{k ≤ tkl , ρ(xtk , x̄) ≥ r}| ≤ kl
2

because by hypothesis |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2
. Therefore, since each bad tree contains

a node which is parent to at least 2 times of mistake in X \B(x̄, r), we obtain

Nbad ≤
∑

k≤kl, xtk∈B(x̄,r)

∑
t∈Tk

1

2
|{u < tkl , ϕ(u) = t, ρ(xu, x̄) ≥ r}| ≤ kl

4
.

Thus, the number of good trees is |G| ≥ |{k ≤ kl, xtk ∈ B(x̄, r)}| − Nbad ≥ kl
4
. Now note

that trees are disjoint, therefore,
∑

k∈G |Tk| ≤ tkl <
2kl
ϵ
. Therefore,∑

k∈G

1|Tk|≤ 16
ϵ
= |G| −

∑
k∈G

1|Tk|> 16
ϵ
> |G| − ϵ

16

∑
k∈G

|Tk| ≥
kl
8
.

We will say that a tree |Tk| is sparse if it is good and has at most ϵ
16

nodes. With S :=

{k ∈ G, |Tk| ≤ 16
ϵ
} the set of sparse trees, the above equation we have |S| ≥ kl

8
. We now

focus only on sparse trees Tk for k ∈ S and analyze their relation with the final dataset Dtkl .
Precisely, for a sparse tree Tk, denote Vk = Tk ∩ Dtkl the set of times which are present in
the final dataset and belong to the tree induced by error time tk. Because each node of Tk
and not present in Dtkl has at least 1 children in T , we note that Vk ̸= ∅. We now consider
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the path from a node of Vk to the root tk. We denote by d(k) the depth of this node in Vk
and denote the path by pkd(k) → pkd(k)−1 → pk0 = tk where pkd(k) ∈ Vk. Then we have,

d(k) ≤ |Tk| − 1 ≤ 16

ϵ
− 1.

Each arc of this path represents the fact that at the corresponding iteration pki of 2C1NN, the
parent xpki−1

was closer from xpki than any other point of the current dataset Dpki . We will now
show that all the points {pkd(k), k ∈ S} fall in distinct sets of the partition (Ai)i≥0. Suppose
by contradiction that we have k1 ̸= k2 ∈ S falling into the same set Ai. Note that because
x
p
k1
d(k1)

, x
p
k2
d(k2)

∈ B(x̄, r), we obtain Ai ∩ B(x̄, r) ̸= ∅. However, the partition (Ai)i≥0 was

constructed so that sets are included totally in eitherB(x̄, r), S(x̄, r) or {x ∈ X , ρ(x, x̄) > r}.
Therefore, we obtain Ai ⊂ B(x̄, r) and xi ∈ B(x̄, r). We can now apply Lemma 3.1 to
pk1d(k1) → pk1d(k1)−1 → . . . → pk10 and pk2d(k2) → pk2d(k2)−1 → . . . → pk20 —which we write by
convenience pd → pd−1 → . . . → p1 → p0 and qf → qf−1 → . . . → q1 → q0—assuming
without loss of generality that p0 < q0. Therefore, ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d+1ri

and ρ(xpv(0) , xpd) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d+1ri. But recall that these two paths come from
sparse trees, so d, f ≤ 16

ϵ
− 1. Hence, 2f+d+1 ≤ 1

2
22

5/ϵ = 1
4cϵ

. Let us now consider xϕ(q0) the
point which induced a mistake in the prediction of xq0 , i.e. ρ(xϕ(q0), x̄) ≥ r. Then,

ρ(xq0 , xϕ(q0)) ≥ ρ(xϕ(q0), x
i)− ρ(xi, xpd)− ρ(xpd , xpv(0))− ρ(xpv(0) , xq0)

≥ ri

cϵ
− ri − ri

4cϵ
− ri

4cϵ

≥ ri

4cϵ

where in the last inequality we used the fact that cϵ < 1
4
. Recall that we also proved

ρ(xpv(0) , xq0) ≤
ri

4cϵ
< ρ(xq0 , xϕ(q0)). However, datapoint xpv(0) is available in dataset Dq0 .

This contradicts the fact that xϕ(t) was chosen as representant for xq0 . This ends the proof
that all the points {pkd(k), k ∈ S} fall in distinct sets of the partition (Ai)i≥0. Therefore,

|{i, Ai ∩ x≤tkl ̸= ∅}| ≥ |S| ≥
kl
8
≥ ϵ

16
tkl .

Step 2. We now turn to the case when the majority of input points on which 2C1NN made
a mistake are not in the ball B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, ρ(xt, x̄) ≥ r}| ≥ kl

2
,

or equivalently |{k ≤ kl, ρ(xtk , x̄) ≥ r}| ≥ kl
2
. Similarly as the previous case, we consider

the graph G̃ given by restricting G only to nodes outside the ball B(x̄, r) i.e. on times
{t ∈ T , ρ(xt, x̄) ≥ r}. Again, G̃ is a collection of disjoint trees with root times {tk, k ≤
kl, ρ(xtk , x̄) ≥ r} (and possibly t = 1). We denote Tk the corresponding tree of G̃ rooted in
tk. Similarly to above, a tree is sparse if

∀t ∈ Tk, |{u ≤ tkl , ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.
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If S = {k ≤ kl, ; ρ(xtk , x̄) ≥ r, Tk sparse} denotes the set of sparse trees, the same proof as
above shows that |S| ≥ kl

8
. Again, for any k ∈ S, if d(k) denotes the depth of some node

from Vk := Tk ∩Dtkl in Tk we have d(k) ≤ 16
ϵ
− 1. For each k ∈ S we consider the path from

this node of Vk to the root tk: pkd(k) → pkd(k)−1 → . . . → pk0 = tk where pkd(k) ∈ Vk. The same
proof as above shows that all the points {pkd(k), k ∈ S, ρ(xpkd(k) , x̄) > r} lie in distinct sets of
the partition (Ai)i≥0.

Indeed, let pd → pd−1 → . . .→ p1 → p0 and qf → qf−1 → . . .→ q1 → q0 two such paths
with ρ(xpd , x̄) > r and ρ(xqf , x̄) > r and suppose by contradiction that xpd , xqf ∈ Ai for some
i ≥ 0. Necessarily, i ≥ 1 and ρ(xi, x̄) > r. Lemma 3.1 gives again ρ(xpv(0) , xq0), ρ(xpv(0) , xpd) ≤
2f+dρ(xpd , xqf ) ≤ 2f+d+1ri ≤ ri

4cϵ
. Then, if xϕ(q0) is the point that induced a mistake in the

prediction of xq0 , we have ρ(xϕ(q0), x̄) < r. Using the definition of ri we obtain the same
computations

ρ(xq0 , xϕ(q0)) ≥ ρ(xϕ(q0), x
i)− ρ(xi, xpd)− ρ(xpd , xpv(0))− ρ(xpv(0) , xq0) ≥

ri

4cϵ
> ρ(xpv(0) , xq0)

which contradicts the fact that xϕ(q0) was used as representant for xq0 . This ends the proof
that all the points {pkd(k), k ∈ S, ρ(xpkd(k) , x̄) > r} lie in distinct sets of the partition (Ai)i≥0.

Suppose |{k ∈ S, ρ(xpk
d(k)
, x̄) > r}| ≥ |S|

2
, then we have

|{i, Ai ∩ x≤tkl ̸= ∅}| ≥ |{k ∈ S, ρ(xpkd(k) , x̄) > r}| ≥ |S|
2
≥ kl

16
≥ ϵ

32
tkl .

Step 3. In this last step, we suppose again that the majority of input points on which
2C1NN made a mistake are not in the ball B(x̄, r) and that |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| < |S|

2
.

Therefore, we obtain

|{k ∈ S, ρ(xpk
d(k)
, x̄) = r}| = |S| − |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| ≥ |S|

2
≥ kl

16
≥ ϵ

32
tkl .

We will now make use of the partition (Pi)i≥1. Because (nu)u≥1 is an increasing sequence, let
u ≥ 1 such that nu+1 ≤ tkl ≤ nu+2 (we can suppose without loss of generality that tk0 > n2).
Note that we have nu ≤ ϵ

26
nu+1 ≤ ϵ

26
tkl . Let us now analyze the process between times nu

and tkl . In particular, we are interested in the indices T = {k ∈ S, ρ(xpk
d(k)
, x̄) = r} and

times Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. In particular, we have

|Uu| ≥ |{k ∈ S, ρ(xpk
d(k)
, x̄) = r}| − nu ≥

ϵ

32
tkl −

ϵ

26
tkl =

ϵ

26
tkl .

Because the event Eu is met, we have

|{i, Pi(τu) ∩ xUu ̸= ∅}| ≤ |{i, Pi(τu) ∩ x≤tkl ̸= ∅}| ≤
ϵ

27
tkl .

Note that xUu ⊂ S(x̄, r). Therefore, each of the points in xUu falls into one of the sets
(Pi(τu))i≥1. Let i ≥ 1 such that the set Pi(τu) was visited by xUu and consider Ti = {k ∈
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T, xpk
d(k)
∈ Ai}. We will show that at least |Ti| − 1 of the points {xϕ(tk), k ∈ Ti} fall in

B(x̄, r) \B(x̄, r − r
2u+2 ).

To do so, let k1, k2 ∈ Ti. Similarly as above, for simplicity, we will refer to the path
pk1d(k1) → pk1d(k1)−1 → . . . → pk10 (resp. pk2d(k2) → pk2d(k2)−1 → . . . → pk20 ) as pd → pd−1 → . . . →
p1 → p0 (resp. qf → qf−1 → . . . → q1 → q0), and assume without loss of generality that
p0 < q0. Note that by hypothesis, k1, k2 ∈ Ti, therefore, ρ(xpd , xi), ρ(xqf , xi) ≤ τu Then,
using the above computations yields

ρ(xpv(0) , xq0) ≤ 2f+dρ(xpd , xqf ) ≤ 2f+d(ρ(xpd , x
i) + ρ(xqf , x

i)) ≤ 2f+d+1τu ≤
τu
4cϵ

,

where in the last inequality we used the fact that f, d ≤ 16
ϵ
− 1 hence 2f+d+1 ≤ 1

4cϵ
. Now by

definition of a representant, we obtain

ρ(xϕ(q0), xq0) ≤ ρ(xpv(0) , xq0) ≤
r

8 · 2u
.

Therefore, ρ(xϕ(q0), x̄) ≥ ρ(xq0 , x̄)−ρ(xϕ(q0), xq0) ≥ r− r
8·2u . Because xϕ(q0) induced a mistake

in the prediction for xq0 we have xϕ(q0) ∈ B(x̄, r). Now order Ti = {k1 < . . . < k|Ti|}. We then
have tk1 < . . . < tk|Ti| . The argument above then shows that for any 2 ≤ j ≤ |Ti|, we have
xϕ(tkj ) ∈ B(x̄, r)\B(x̄, r− r

2u+3 ). Therefore, defining T ′ := {k ∈ T, r− r
2u+3 ≤ ρ(xϕ(tk), x̄) < r}

we obtain
|T ′| ≥ |Uu| − |{i, Pi(τu) ∩ xUu ̸= ∅}| ≥

ϵ

27
tkl .

We will now show that all the points in {xtk , k ∈ T ′} lie in distinct sets of (Pi)i≥1. Note
that because we have tkl ≤ nu+2 and because the event Fu+2 is met, we have that for any
p, q ∈ T ′ that ρ(xϕ(tp), xϕ(tq)) > µu+2. Now suppose by contradiction that xϕ(tp), xϕ(tq) ∈ Pi
for some i ≥ 1. Then, with li such that r − r

2li
≤ ρ(xi, x̄) < r − r

2li+1 we have that

xϕ(tp), xϕ(tq) ∈
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
But we know that ρ(xϕ(tp), x̄) ≥ r− r

2u+3 . Therefore we obtain r− r
2li+2 > r− r

2u+3 and hence
li ≥ u+ 1. Recall that Pi ⊂ B(xi, µli+1). Therefore, we obtain

ρ(xϕ(tp), xϕ(tq)) ≤ µli+1 ≤ µu+2,

which contradicts the fact that ρ(xtp , xtq) > µu+2. This ends the proof that all points of
{xtk , k ∈ T ′} lie in distinct subsets of (Pi)i≥1. Now we obtain

|{i, Pi ∩ x≤tkl ̸= ∅}| ≥ |T
′| ≥ ϵ

27
tkl .

Step 4. In conclusion, in all cases, we obtain

|{Q ∈ Q, Q ∩ x≤tkl ̸= ∅}| ≥ max(|{i, Ai ∩ x≤tkl ̸= ∅}|, |{i, Pi ∩ x≤tkl ̸= ∅}|) ≥
ϵ

27
tkl .
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Because this is true for all l ≥ 1 and tkl is an increasing sequence, we conclude that x
disproves the SMV(X ,ρ) condition forQ. Recall that this holds whenever the eventA

⋂
l≥1(El∩

Fl) is met. Thus,

P[|{Q ∈ Q, Q ∩ X<T}| = o(T )] ≤ 1− P[A
⋂
l≥1

(El ∩ Fl)] ≤ 1− δ

4
< 1.

This shows that X /∈ SMV(X ,ρ) which is absurd. Therefore 2C1NN is consistent on f ∗. This
ends the proof of the proposition. ■

We can now show that 2C1NN is optimistically universal for the binary classification
setting, with a similar proof structure to Theorem 3.5. Precisely, we show that under any
process X ∈ SMV(X ,ρ), the functions on which it is consistent form a σ−algebra which
contains all balls, and as a consequence all Borel sets.

Theorem 3.8. Let (X ,B) be a separable Borel space. For the binary classification setting,
the learning rule 2C1NN is universally consistent for all processes X ∈ SMV(X ,ρ).

Proof Let X ∈ SMV(X ,ρ). We will show that 2C1NN is universally consistent on X by
considering the set SX of functions for which it is consistent. More precisely, since Y = {0, 1}
in the binary setting, all target functions can be described as f ∗ = 1Af∗ where Af∗ =
f<−1>({1}). We define SX using the corresponding sets:

SX := {A ∈ B, LX(2C1NN,1·∈A) = 0 (a.s.)}

By construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will
show that S satisfies the following properties

• ∅ ∈ SX and SX contains all balls B(x, r) with x ∈ X and r ≥ 0,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃
i≥1Ai ∈ SX (stable to σ−additivity

for disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals of X .
Recall that by definition, B is the smallest σ−algebra containing open intervals. Therefore
we get B ⊂ SX which proves the theorem. We now show the four properties.

The invariance to complementary and to finite union can be shown with the same proof
as Theorem 3.5. Further, we clearly have ∅ ∈ SX. Now let x ∈ X and r ≥ 0, Proposition 3.3
shows that B(x, r) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint
sets of SX. We denote A :=

⋃
i≥1Ai. We consider the target function f ∗ = 1A. We write the

average loss in the following way,

1

T

T∑
t=1

ℓ01(2C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A.
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where the first term corresponds to type 1 errors and the second term corresponds to type
2 errors.

We suppose by contradiction that P(LX(2C1NN, f
∗) > 0) := δ > 0 Therefore, there

exists ϵ > 0 such that P(LX(2C1NN, f
∗) > ϵ) ≥ δ

2
. We denote this event by A :=

{LX(2C1NN, f
∗) > ϵ}. We first analyze the errors induced by one set Ai only. We have

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) ≤ 1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈Ai

+ 1Xt /∈Ai
1Xϕ(t)∈Ai

)

=
1

T

T∑
t=1

ℓ01(2C1NN(X<t,1X<t∈Ai
, Xt),1Xt∈Ai

).

Then, because 2C1NN is consistent for 1·∈Ai
, we get

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)→ 0 (a.s.).

We take ϵi = ϵ
4·2i . The above equation gives T i such that

P

 ⋂
T≥T i

{
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) < ϵi

} ≥ 1− δ

8 · 2i
.

We will denote by Ei this event. We now consider the scale of the process X≤T i when falling
in Ai, by introducing ηi > 0 such that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

ρ(Xt1 , Xt2) > ηi

 ≥ 1− δ

8 · 2i
.

We denote by Fi this event. By the union bound, we have P(
⋃
i≥1 Eci ∪

⋃
i≥1F ci ) ≤

δ
4
.

Therefore, we obtain P(A∩
⋂
i≥1 Ei ∩

⋂
i≥1Fi) ≥ P(A)− P(

⋃
i≥1 Eci ∪

⋃
i≥1F ci ) ≥

δ
4
. We now

construct a partition P obtained by subdividing each set Ai according to scale ηi. Because X
is separable, there exists a sequence of points (xj)j≥1 in X such that ∀x ∈ X , infj≥1 ρ(x, x

j) =
0. We construct the following partition of X given by

P : Ac ∪
⋃
i≥1

⋃
j≥1

{(
B
(
xj,

ηi
2

)
∩ Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

)}
.

Let us now consider a realization of x of X in the event A∩
⋂
i≥1 Ei ∩

⋂
i≥1Fi. The sequence

x is now not random anymore. Our goal is to show that x does not visit a sublinear number
of sets in the partition P .

By construction, the event A is satisfied, therefore there exists an increasing sequence
of times (tk)k≥1 such that for any k ≥ 1, 1

tk

∑tk
t=1 ℓ01(2C1NN(x<t,1x<t∈A, xt),1xt∈A) >

ϵ
2
.

Therefore, we obtain for any k ≥ 1,∑
i≥1

1

tk

tk∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) >
ϵ

2
.
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Also, because the events Ei are met, we have∑
i≥1; tk≥T i

1

tk

tk∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) <
∑

i≥1,tk≥T i

ϵi ≤
ϵ

4
.

Combining the two above equations gives

1

tk

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) >
ϵ

4
. (3.2)

We now consider the set of times such that an input point fell into the set Ai with T i > tk,
either creating a mistake in the prediction of 4C1NN or inducing a later mistake within time
horizon tk: T :=

⋃
i≥1; T i>tk

Ti where

Ti :=
{
t ≤ tk, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ tk s.t. ϕ(u) = t, xu /∈ A

)}
.

We now show that all points xt for t ∈ T fall in distinct sets of the partition P . Indeed,
because the sets Ai are disjoint, it suffices to check that for any i ≥ 1 such that T i > tk, the
points xt for t ∈ Ti fall in distinct of the following sets

Pi,j :=
(
B
(
xj,

ηi
2

)
∩ Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

)
, j ≥ 1.

Note that for any t1 < t2 ∈ Ti we have xt1 , xt2 ∈ Ai and xt1 ̸= xt2 . Indeed, we cannot have
xt2 = xt1 otherwise 2C1NN would make no mistake at time t2 and xt2 would induce no future
mistake either (recall that if an input point was already visited, we use simple memorization
for the prediction and do not add it to the dataset). Therefore, because the event Fi is
satisfied, for any t1 < t2 ∈ Ti we have ρ(xt1 , xt2) > ηi. Now suppose that xt1 , xt2 fall in the
same set Pi,j for j ≥ 1, then we have ρ(xt1 , xt2) ≤ ρ(xi, xt1)+ρ(x

i, xt2) < ηi, which is absurd.
Therefore, all points {xt, t ∈ T } lie in different sets of the partition P . Therefore,

|{P ∈ P , P ∩ x≤tk ̸= ∅}| ≥ |T |.

We now lower bound |T |, which will uncover the main interest of the learning rule 2C1NN.
Intuitively, any input point incurs at most 1 + 2 = 3 mistakes, contrary to the traditional
1NN learning rule. We now formalize this intuition.

tk∑
t=1

∑
i≥1; tk<T i

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

)

=

tk∑
t=1

∑
i≥1; tk<T i

(
1xt∈Ai

1xϕ(t) /∈A +
∑

t<u≤tk

1xu /∈A1xt∈Ai
1ϕ(u)=t

)

=
∑

i≥1; T i>tk

∑
t≤tk, xt∈Ai

(
1xϕ(t) /∈A +

∑
t<u≤tk

1xu /∈A1ϕ(u)=t

)
≤

∑
i≥1; T i>tk

∑
t≤tk, xt∈Ai

3max
(
1xϕ(t) /∈A,1xu /∈A1ϕ(u)=t, t < u ≤ tk

)
= 3|T |
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where in the last inequality we used the fact that a given time t can have at most 2 children
i.e. |{u > t, ϕ(u) = t}| ≤ 2 with the 2C1NN learning rule. We now use Eq (3.2) to obtain

|{P ∈ P , P ∩ x≤tk ̸= ∅}| ≥ |T | ≥
ϵ

12
tk.

This holds for any k ≥ 1. Therefore, because tk →∞ as k →∞ we get |{P ∈ P , P ∩x≤T ̸=
∅}| ≠ o(T ). Finally, this holds for any realization of X in the event A ∩

⋂
i≥1 Ei ∩

⋂
i≥1Fi.

Therefore,

P(|{P ∈ P , P ∩ x≤T ̸= ∅}| = o(T )) ≤ P

[(
A ∩

⋂
i≥1

Ei ∩
⋂
i≥1

Fi

)c]
≤ 1− δ

4
< 1.

Therefore, X /∈ SMV(X ,ρ) which contradicts the hypothesis. This concludes the proof that

LX(2C1NN,1A) = 0 (a.s.),

and hence, SX satisfies the disjoint σ−additivity property. This ends the proof of the theorem.
■

In particular, Theorem 3.8 shows that SMV(X ,ρ) ⊂ Soul(X ,ρ),([0,1],ℓ01). Together with
Proposition 3.1, this shows that the set of learnable processes for binary classification is
exactly SMV(X ,ρ). As a result, 2C1NN is optimistically universal for binary classification.

3.6.1 Missing proofs from Proposition 3.3

Lemma 3.2. (Pi)i≥1 forms a partition of B(x̄, r).

Proof These sets are clearly disjoint. Now let x ∈ B(x̄, r) and consider j ≥ 0 such that
r

2j+1 < r − ρ(x, x̄) ≤ r
2j

. Then, let i ≥ 1 such that

ρ(xi, x) < min
(
µj+1, r −

r

2j+1
− ρ(x, x̄), ρ(x, x̄)− r + r

2j−1

)
.

We have ρ(xi, x̄) ≤ ρ(xi, x) + ρ(x, x̄) < r − r
2j+1 , hence r − r

2li
< r − r

2j+1 i.e. li ≤ j.
Then, we obtain ρ(xi, x) < µj+1 ≤ µli+1 which gives x ∈ B(xi, zi). Last, we observe that
ρ(xi, x̄) ≥ ρ(x, x̄) − ρ(xi, x̄) > r − r

2j−1 . Therefore, r − r
2li+1 > r − r

2j−1 i.e. li + 1 ≥ j.
Therefore, we have

ρ(x, x̄) < r − r

2j+1
≤ r − r

2li+2
,

which shows x ∈ Ri =
⋃
k≤i Pk. This ends the proof that (Pi)i≥1 forms a partition of B(x̄, r).

■

Lemma 3.3. (Ai)i≥0 forms a partition of X .

Proof We start by proving that the sets are disjoint. By construction, if 1 ≤ j < i, we have
Ai ⊂ B(xj, rj), therefore Ai ∩ Aj = ∅ by construction. Further, for i ≥ 1, if ρ(xi, x̄) > r, we
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first note that ri > 0. Indeed, if ri = 0, then there exists a sequence of points xj for j ≥ 1
such that ρ(xj, x̄) ≤ r and ρ(xi, xj)→ 0 as j →∞. By triangle inequality,

ρ(xi, x̄) ≤ ρ(xi, xj) + ρ(xj, x̄) ≤ ρ(xi, xj) + r.

This holds for any j ≥ 1, therefore we obtain ρ(xi, x̄) ≤ r which contradicts our hypothesis.
Therefore ri > 0. Further, we have ri < infx: ρ(x,x̄)≤r ρ(x

i, x). Therefore, for any x ∈ A0 =
S(x̄, r), we have ρ(xi, x) > ri which implies x /∈ B(xi, ri). Hence, A0 ∩ Ai = ∅. Now if
ρ(xi, x̄) < r we show again that ri > 0. Similarly, if this is not the case, we have a sequence
xj for j ≥ 1 such that ρ(xj, x̄) ≥ r and ρ(xi, xj)→ 0 as j →∞. Then, observing that

ρ(xi, x̄) ≥ ρ(xi, xj)− ρ(xi, xj) ≥ r − ρ(xi, xj).

This holds for any j ≥ 1, therefore we obtain ρ(xi, x̄) ≥ r which contradicts our hypothesis.
This shows ri > 0. Now for x ∈ A0, we have by construction ri < ρ(xi, x) which gives x /∈ Ai.
Hence A0 ∩ Ai = ∅. Finally, if ρ(xi, x̄) = r, we have ri = 0 so Ai = ∅ and we obtain direly
A0 ∩ Ai = ∅. This ends the proof that for any 0 ≤ i < j, we have Ai ∩ Aj = ∅.

We now prove that ∪i≥0Ai = X . Let x ∈ X . If ρ(x, x̄) = r then x ∈ A0. If ρ(x, x̄) >
r (resp. ρ(x, x̄) < r), using the same arguments as above, we can show that we have
inf x̃: ρ(x̃,x̄)≤r ρ(x, x̃) > 0 (resp. inf x̃: ρ(x̃,x̄)≥r ρ(x, x̃) > 0). Therefore, we let i ≥ 1 so that we
obtain ρ(xi, x) < 1

1+ 2
cϵ

inf x̃: ρ(x̃,x̄)≤r ρ(x, x̃) (resp. ρ(xi, x) < 1
1+ 2

cϵ

inf x̃: ρ(x̃,x̄)≥r ρ(x, x̃)). This

is possible because the sequence (xi)i≥1 is dense in X . Then, we have for any x̃ such that
ρ(x̃, x̄) ≤ r (resp. ρ(x̃, x̄) ≥ r),

ρ(xi, x̃) ≥ ρ(x, x̃)− ρ(xi, x) >
(
1 +

2

cϵ
− 1

)
ρ(xi, x) =

2

cϵ
ρ(xi, x).

Therefore, ri ≥ 2ρ(xi, x) > ρ(xi, x) which gives x ∈ B(xi, ri). Now note that
⋃

1≤j≤iAi =⋃
1≤j≤iB(xi, ri), therefore we obtain x ∈

⋃
1≤j≤iAi. This ends the proof that (Ai)i≥0 forms

a partition of X . ■

3.7 Reduction from General Value Spaces to the Binary
Classification Case

In the previous sections, we showed that 2C1NN is optimistically universal and Soul = SMV
for binary classification. Our goal here is to show that the choice of binary classification is
in fact not restrictive and we aim to show that the set Soul of input processes X admitting
universal learning is invariant to the choice of value space subject to the loss being bounded.
Specifically, to show that Soul(Y,ℓ) ⊂ Soul(Y ′,ℓ′), one aims to construct a universally consis-
tent learning rule for (Y ′, ℓ′) from a universally consistent learning rule for (Y , ℓ) under any
fixed process X ∈ Soul(Y,ℓ).

3.7.1 Prior reductions to classification settings

We first recall two important known inclusions that hold for any bounded loss setup (Y , ℓ).
The first result compares the general setting to binary classification.
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Proposition 3.4 ([Han21a]). For any separable near-metric space (Y , ℓ) with 0 < ℓ̄ <∞,

Soul(Y,ℓ) ⊂ Soul({0,1},ℓ01).

This shows that binary classification is in essence the easiest setting: whenever universal
online learning is achievable for some setting (Y , ℓ), the learning rule that works on this
setting should be able to perform binary classification (note that we simply require Y to
contain at least two elements). We give a formal proof for the sake of completeness, and we
note that it does not require the boundedness of ℓ.

Proof Let y0, y1 ∈ Y such that ℓ(y0, y1) := δ > 0. It suffices to observe that measurable
functions X → {0, 1} can be mapped to the measurable functions X → {y0, y1} by composing
with the simple mapping ϕ such that ϕ(i) = yi for i ∈ {0, 1}. Consider a sequence X ∈
Soul(Y,ℓ) and let f· be a universal learner for X, we will show that X ∈ Soul({0,1},ℓ01) by
using this learner to perform binary classification. We define the learning rule f̂· = (f̂t)t≥1

as follows, for any x≤t ∈ X t and y<t ∈ {0, 1}t−1,

f̂t(x<t, y<t, xt) :=

{
0 if ℓ(ft(x<t, ϕ(y)<t, xt), y0) ≤ ℓ(ft(x<t, ϕ(y)<t, xt), y

1)

1 otherwise.

where we used the notation ϕ(y) := (ϕ(yt))t≥1. Note that by relaxed triangle inequality,

ℓ01(f̂t(x<t, y<t, xt), yt) ≤ 1[ℓ(ft(x<t, ϕ(y)<t, xt), ϕ(yt)) ≥ ℓ(ft(x<t, ϕ(y)<t, xt), ϕ(1− yt))]

≤ 1[ℓ(ft(x<t, ϕ(y)<t, xt), ϕ(yt)) ≥
cℓ
2
δ]

≤ 2

cℓδ
ℓ(ft(x<t, ϕ(y)<t, xt), ϕ(yt)).

Then, for any measurable function f ∗ : X → {0, 1} we have

L({0,1},ℓ01)
X (f̂·, f

∗) ≤ 2

cℓδ
L(Y,ℓ)

X (f·, ϕ ◦ f ∗),

which by universal consistency of f· shows that L({0,1},ℓ01)
X (f̂·, f

∗) = 0 almost surely. Hence,
f̂· is a universal learner for the process X for the setting ({0, 1}, ℓ01) i.e. X ∈ Soul({0,1},ℓ01).
■

In the same spirit, we now recall that any process X admitting strong universal online
learning for countable classification (N, ℓ01) admits strong universal online learning on any
separable value space (Y , ℓ). Hence, countable classification is in essence the hardest setting.

Theorem 3.9 ([Han21a]). For any separable near-metric space (Y , ℓ) with 0 < ℓ̄ <∞,

Soul(N,ℓ01) ⊂ Soul(Y,ℓ).

A proof of this theorem is given in ([Han21a] Theorem 45). It uses a number of interme-
diary lemmas that are not introduced in this chapter. Instead, we provide novel arguments
that greatly simplify the proof and that will have practical use in Section 3.4.
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Proof We fix a process X ∈ Soul(N,ℓ0,1), and let fN
· be the corresponding strongly consistent

learning rule. By separability, there exists a dense countable sequence (yi)i≥1 of Y i.e. such
that ∀y ∈ Y : infi∈N ℓ(y

i, y) = 0. Following [Han21a], given a prediction task on (Y , ℓ) and
ϵ > 0, we reduce it to a countable classification using the function hϵ : y ∈ Y 7→ inf{i ∈ N :
ℓ(yi, y) < ϵ} ∈ N. This allows to define the ϵ-learning rule f ϵ· as follows: given x≤t ∈ X t and
y<t ∈ Y t−1,

f ϵt (x≤t, y<t, xt) = yf
N
t (x≤t,hϵ(y<t),xt).

By construction, at each step if the prediction on hϵ is successful, the loss of f ϵt is at most ϵ.
If the prediction of hϵ fails, we can upper bound the loss by ℓ̄:

ℓ(f ϵt (x≤t, y<t, xt), yt) ≤ ϵ+ ℓ̄ · ℓ01(fN
t (x≤t, hϵ(y)<t, xt), hϵ(y)t)

where hϵ(y) := (hϵ(yt))t≥1. Therefore, for any target measurable function f ∗ : X → Y , we
obtain L(Y,ℓ)

X (f ϵ· , f
∗;T ) ≤ ϵ+ ℓL(N,ℓ01)

X (f ϵ· , hϵ ◦ f ∗;T ), where L(N,ℓ01)
X (f ϵ· , hϵ ◦ f ∗;T )→ 0 (a.s.).

Unfortunately, using the learning rule f ϵ· only ensures L(Y,ℓ)
X (f ϵ· , f

∗) ≤ ϵ almost surely. Thus,
the final learning rule will use the learning rules f ϵk· for a sequence of ϵk decreasing to 0 e.g.
ϵk = 2−k. Intuitively, each learning rule f ϵk· with prediction yi effectively predicts that the
output yt belongs to the set Bϵki := Bℓ(y

i, ϵk) \
⋃

1≤j<iBℓ(y
j, ϵk) where we used the notation

Bℓ(y, ϵ) = {y′ ∈ Y , ℓ(y, y′) < ϵ} for the “ball" induced by the loss ℓ. We now consider
the learning rule on (Y , ℓ) denoted f̂

(Y,ℓ)
· which successively checks consistency of these set

predictions f ϵ1· , f ϵ2· etc. and outputs a point ŷ ∈ Y close to the consistent intersection of
these sets. Formally,

f̂
(Y,ℓ)
t (x≤t, y<t, xt) = f

ϵp̂
t (x≤t, y<t, xt) for p̂ = max

{
1 ≤ p ≤ t,

⋂
1≤k≤p

Bϵk
f
ϵk
t (x≤t,y<t,xt)

̸= ∅

}
.

In this definition, the upper bound p̂ ≤ t is put for simplicity only to ensure that there is a
finite maximum. We can now show that this learning rule is universally consistent.

Let k ≥ 1. Note that if the predictions at step t ≥ k of f ϵlt were correct for all 1 ≤ l ≤ k,
then the true output yt belongs to each set prediction yt ∈

⋂
1≤l≤k B

ϵl
f
ϵl
t (x≤t,y<t,xt)

, thus p̂ ≥ k.
Now let any ȳ ∈

⋂
1≤l≤p̂ B

ϵl
f
ϵl
t (x≤t,y<t,xt)

, by relaxed triangle inequality we would have

ℓ(f̂
(Y,ℓ)
t (x≤t, y<t, xt), yt) ≤ cℓ(ℓ(f̂

(Y,ℓ)
t (x≤t, y<t, xt), ȳ) + ℓ(yt, ȳ)) ≤ cℓ(ϵp̂ + ϵk) ≤ 2cℓϵk.

Hence,

ℓ(f̂
(Y,ℓ)
t (x≤t, y<t, xt), yt) ≤ 2cℓϵk + ℓ̄ ·

k∑
l=1

ℓ01(f
N
t (x≤t, hϵk(y)<t, xt), hϵk(y)t),

and for any measurable function f ∗ : X → Y , we have L(Y,ℓ)
X (f

(Y,ℓ)
· , f ∗) ≤ 2cℓϵk (a.s.). By

union bound, almost surely this holds for any k ≥ 1 simultaneously. Therefore, almost surely
L(Y,ℓ)

X (f
(Y,ℓ)
· , f ∗) = 0 and the learning rule f (Y,ℓ)

· is universally consistent. ■ The results of

[Han21a] offer more details that are not required in the rest of the chapter but can be found
in Section 3.7.2.
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For any near-metric space (Y , ℓ), the inclusions Soul(N,ℓ01) ⊂ Soul(Y,ℓ) ⊂ Soul({0,1},ℓ01)
given in Proposition 3.4 and Theorem 3.9 do not answer whether Soul(Y,ℓ01) is invariant to
the setup when the loss is bounded. The remaining question is whether Soul({0,1},ℓ01) ⊂
Soul(N,ℓ01) holds or not. We answer positively to this question in the next section, thereby
providing a solution to the following open question.

Question 3.4 ([Han21a]). Is the set Soul invariant to the specification of (Y , ℓ), subject to
(Y , ℓ) being separable with 0 < ℓ̄ <∞?

Remarks on Question 3.4. In words, the open question asks whether any universal
learning task is achievable whenever universal binary classification is possible. In order to
answer affirmatively it would suffice to show that the countable classification setting can be
reduced to the binary classification setting. Given a process X admitting universal learning
for binary classification and a countable classification task f ∗ : X → N, a natural idea would
be to solve separately each of the binary classification tasks f ∗,i(·) = 1(f ∗(·) = i) for i ∈ N
and to merge the results together. This proof technique works when f ∗ takes only a finite
number of values, giving rise to the following lemma.

Lemma 3.4. For any k ≥ 2, Soul([k],ℓ01) = Soul({0,1},ℓ01).

Proof By Proposition 3.4, it suffices to prove that any process X ∈ Soul({0,1},ℓ01) admits
universal learning in the setup ([k], ℓ01). To learn an unknown function f ∗ : X → [k],
it suffices to learn the k individual binary functions which predict each class: f ∗,i(·) :=
1(f ∗(·) = i) where i ∈ [k]. Given a universal learner f· for X for binary classification, We
can therefore consider a universal learner for k−multiclass classification f̂· which follows the
prediction of f· for all functions f i as follows: for any x≤t ∈ X t and y<t ∈ [k]t−1 we pose
f̂t(x<t, y<t, xt) := argmax1≤i≤k ft(x<t,1(y = i)<t, xt) where 1(y = i)<t denotes the sequence
1(yt′ = i)t′≤t. We can note that this learner makes a mistake only if f· made a mistake in
the prediction of at least one of the functions f ∗,i for 1 ≤ i ≤ k. Thus,

L([k],ℓ01)
X (f̂·, f

∗) ≤
k∑
i=1

L({0,1},ℓ01)
X (f·, f

∗,i).

Then, L([k],ℓ01)
X (f̂·, f

∗) = 0 almost surely by universal consistence of f· which shows that f̂· is
optimistically universal for X and k−multiclass classification. ■

Unfortunately, the proof technique used to show that finitely-many classification reduces
to binary classification does not extend to countably-many classification. Indeed, the rate of
convergence of the average loss on the tasks f ∗,i(·) = 1(f ∗(·) = i) is not uniform across i ∈ N.
Thus, although we can wait for the convergence of a fixed number of these predictors—say
the predictions for functions f ∗,1, . . . , f ∗,k—we do not have any guarantee on the average
losses of the predictions for the next functions f ∗,i for i > k. Essentially, we can only
guarantee low average loss for a finite number of predictors which use binary classification.

Our proof differs substantially from this approach by considering instead a very large
set of predictors—uncountably many. However, we introduce a probability distribution on
these predictors, which allows to have guarantees on the average loss for the predictor with
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high probability on both the stochastic process X and the predictor. More precisely, instead
of learning the individual label i, f ∗,i(·) = 1(f ∗(·) = i), we use predictors of sets of labels
σ ∈ P(N) as follows: f ∗

σ(·) = 1(f ∗(·) ∈ σ). We can now introduce a uniform distribution
for the variable σ and test the hypothesis f ∗(xt) = i by analysing the probability (in σ) of
the prediction for f ∗

σ to be consistent with this hypothesis i.e. f ∗
σ(xt) = 1 if f ∗(xt) ∈ σ and

f ∗
σ(xt) = 0 if f ∗(xt) /∈ σ. Intuitively, for the right hypothesis i∗ = yt, this probability will

be close to 1, while for a wrong hypothesis i∗ ̸= yt consistency either results from errors in
the predictors, or that both i, i∗ ∈ σ or both i, i∗ /∈ σ which happens with probability 1/2.
This discrepancy in probability will allow to discriminate which is the true hypothesis with
sublinear number of mistakes.

3.7.2 Additional background on prior reductions

In the core of the chapter, we presented the two inclusions Soul(N,ℓ01) ⊂ Soul(Y,ℓ) ⊂
Soul({0,1},ℓ01) shown in [Han21a] for general bounded loss settings (Y , ℓ) (Proposition 3.4
and Theorem 3.9). The results of [Han21a] offer more details which are not useful for this
chapter but give perspective on previous state of the art as well as useful intuitions. Specif-
ically, the set Soul(Y,ℓ) only depends on whether the value space (Y , ℓ) is totally bounded.
We say that (Y , ℓ) is totally bounded if it can be covered by a finite number of ϵ−balls, i.e.
∀ϵ > 0,∃Yϵ ⊂ Y s.t. #Yϵ < ∞ and supy∈Y infy∈Yϵ ℓ(yϵ, y) ≤ ϵ. Note that ({0, 1}, ℓ01) is
totally bounded whereas (N, ℓ01) is not. [Han21a] proved that any setup could be reduced
to these two cases.

Theorem 3.10 ([Han21a]). For any separable near-metric space (Y , ℓ) with 0 < ℓ̄ <∞,

• If Y is totally bounded, Soul(Y,ℓ) = Soul({0,1},ℓ01),

• If Y is not totally bounded, Soul(Y,ℓ) = Soul(N,ℓ01).

We will now give some intuition on the first point, which reduces the totally bounded
setting to k−multiclass classification for k ≥ 2. Finite multiclass classification can then be
reduced to binary classification through Lemma 3.4. It will be useful to keep in mind the
proof technique of this reduction for our main result, though it will reveal insufficient to
reduce (N, ℓ01) to binary classification.

Sketch of proof of Theorem 3.10. By Theorem 3.9, we know that for any general
setting, (Y , ℓ) we have Soul(N,ℓ01) ⊂ Soul(Y,ℓ). The question is now, in which cases can
we further reduce the setting to binary classification? Assume that in the construction of
the proof of Theorem 3.9, the partition (Bϵi )i≥1 of Y into balls of size at most ϵ > 0 can
always be made finite. Then, we are able to construct an universally consistent learning
rule from universally consistent rules for finitely-many classification, which is equivalent to
universal consistence for binary classification by Lemma 3.4. Thus, we obtain the alternative
Soul(Y,ℓ) = Soul({0,1},ℓ01).

If this is not the case, there exists ϵ > 0 and an infinite—countable— sequence (yk)k≥1

in Y which is ϵ−separated i.e. such that ℓ(yi, yj) ≥ ϵ for any i ̸= j. Using the mapping
ϕ : N → Y defined by ϕ(i) = yk for all k ≥ 1 similarly to the construction in the proof
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of Proposition 3.4, from a universal learner f· for (Y , ℓ) we construct a learning rule f̂· for
(N, ℓ01), such that for any measurable function f ∗ : X → N,

L(N,ℓ01)
X (f̂·, f

∗) ≤ 2

cℓϵ
L(Y,ℓ)

X (f·, ϕ ◦ f ∗),

which shows that almost surely, L(N,ℓ01)
X (f̂·, f

∗) = 0. Therefore, any sequence which admits
universal learning for (Y , ℓ) must admit universal learning for (N, ℓ01) i.e. Soul(Y,ℓ) ⊂
Soul(N,ℓ01). This ends the alternative of the theorem.

3.7.3 Final reduction from countably-infinite classification to bi-
nary classification

The last step of the core reduction is to show that countably-infinite classification is no
harder than binary classification.

Theorem 3.11. Soul({0,1},ℓ01) ⊂ Soul(N,ℓ01).

Proof Suppose you have a process X ∈ Soul{0,1}. We want to show that there exists some
universal learner for the input process X and the setting (N, ℓ01). Denote by f· := {ft}∞t=1

the universal learner in the binary classification setting ({0, 1}, ℓ01) for sequence X and by
f ∗ : X → N the unknown function to learn. For some subsets of outputs S ⊂ N we will
consider learning the binary valued function f ∗

S(·) = 1(f ∗(·) ∈ S).
Specifically, we introduce a random set σ ⊂ N defined on the product topology of inde-

pendent Bernoullis. Let (Bj)j≥0 a sequence of i.i.d. Bernoulli B(1/2), we define σ = {j ≥ 1 :
Bj = 1}. Based on learning the functions f ∗

σ we now define a statistical test which we will
use to define a learning rule for the countable classification. Precisely, given a time t ≥ 0,
define for all i ∈ N,

pt(x<t, y<t, xt; i)

:=
Pσ [ft(x<t,1(y ∈ σ)<t, xt) = 1 | i ∈ σ] + Pσ [ft(x<t,1(y ∈ σ)<t, xt) = 0 | i /∈ σ]

2
.

where we slightly abuse notations and write 1(y ∈ σ) to denote (1(yt ∈ σ))t≥1. Intuitively,
pt(X<t,Y<t, Xt; i) gives the proportion of subsets σ for which the hypothesis f ∗(Xt) = i
would be consistent with the prediction on the model trained to predict f ∗

σ(Xt). We first
note that although the definition of pt(x<t, y<t, xt; i) involves computing expectations over
the product measure for σ, its computation can be made practical by considering the values
of Bj for observed values j, i.e. j ∈ {yt′ : t′ < t} := Y . Indeed, we can conveniently write
pt(x<t, y<t, xt; i) as

pt(x<t, y<t, xt; i) =
1

2|Y|

∑
(bj)j∈Y∈{0,1}|Y|

P[ft(x<t, (byt′ )t′<t, xt) = 1]1(bi = 1)

+ P[ft(x<t, (byt′ )t′<t, xt) = 0]1(bi = 0),
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where the probability is taken on the possible randomness of the learning rule only. As a
result, the function pt(·, ·, ·; ·) can be practically computed and is also measurable.

Note that if the learning rule f· had no errors we would have a simple discrimination as
follows

Pσ [f ∗
σ(Xt) = 1 | i ∈ σ] + Pσ [f ∗

σ(Xt) = 0 | i /∈ σ]
2

=

{
1 if f ∗(Xt) = i,

1/2 otherwise.

We are now ready to define a learning rule f̂ := {f̂t}∞t=1 for countable classification as follows

f̂t(x<t, y<t, xt) :=

min
i∈N

{
i : pt(x<t, y<t, xt; i) >

3

4

}
if ∃i ∈ N, pt(x<t, y<t, xt; i) > 3

4

0 otherwise.

This is a valid measurable learning rule as a result of the measurability of pt(·, ·, ·; ·) for all
t ≥ 1. We now show that the learning rule f̂ is universally consistent. By hypothesis of binary
classification universal consistency, for any subset S ∈ P(N), we have PX[LX(f·, f

∗
S;T ) −→

T

0] = 1. Because this result is true for any subset S, we get

PX,σ

[
LX(f·, f

∗
σ ;T ) −−−→

T→∞
0
]
= 1

where the randomness is taken on both X and σ – and potentially the learning process f·.
Therefore, we have

Pσ
[
LX(f·, f

∗
σ ;T ) −−−→

T→∞
0
]
= 1, a.s. in X

Denote by E this event of probability 1. We will show that on this event, the learning rule
is consistent. We now fix an input trajectory X falling in E which we denote by x = (xt)

∞
t=0

to make clear that there is no randomness on the trajectory anymore – one can think of a
deterministic process. We additionally denote y = (yt)

∞
t=0 := (f ∗(xt))

∞
t=0 for simplicity.

By construction, for any ϵ > 0 we have

Pσ [Lx(f·, f ∗
σ ; t) ≤ ϵ, ∀t ≥ T ] −−−→

T→∞
1

We can then define for any ϵ a time Tϵ ≥ 0 such that

Pσ [Lx(f·, f ∗
σ ; t) ≤ ϵ, ∀t ≥ Tϵ] ≥

7

8
.

We define the event Aϵ = {Lx(f·, f ∗
σ ; t) ≤ ϵ, ∀t ≥ Tϵ}. An important remark is that both

Tϵ and the event Aϵ are dependent on the specific trajectory x: the learning rate of our rule
depends on the realization of the input trajectory. We will show that from time Tϵ, the error
rate of f̂ is at most 8ϵ. Let t ≥ 0 and i∗t = f ∗(xt) be the true (random) value that we want
to predict. We have for the true value i∗t ,

pt(x<t, y<t, xt; i
∗
t )

= 1− Pσ [ft(x<t, f ∗
σ(x<t), xt) = 0 | i∗t ∈ σ] + Pσ [ft(x<t, f ∗

σ(x<t), xt) = 1 | i∗t /∈ σ]
2

≥ 1− Pσ[Āϵ]− Eσ
[(
1ft(x<t,f∗σ(x<t),xt)=0,i∗t∈σ + 1ft(x<t,f∗σ(x<t),xt)=1,i∗t /∈σ

)
1Aϵ

]
≥ 1− 1

8
− Eσ [ℓ(ft(x<t, f ∗

σ(x<t), xt), f
∗
σ(xt))1Aϵ ]
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However, for any i ̸= i∗t ,

pt(x<t, y<t, xt; i)

=
Pσ [ft(x<t, f ∗

σ(x<t), xt) = 1 | i ∈ σ] + Pσ [ft(x<t, f ∗
σ(x<t), xt) = 0 | i /∈ σ]

2

≤ 1

2
+ Eσ

[
1ft(x<t,f∗σ(x<t),xt)=1,i∈σ,i∗t /∈σ + 1ft(x<t,f∗σ(x<t),xt)=0,i/∈σ,i∗t∈σ

]
≤ 1

2
+ Pσ[Āϵ] + Eσ

[
(1ft(x<t,f∗σ(x<t),xt)=1,i∈σ,i∗t /∈σ + 1ft(x<t,f∗σ(x<t),xt)=0,i/∈σ,i∗t∈σ)1Aϵ

]
≤ 1

2
+

1

8
+ Eσ [ℓ(ft(x<t, f ∗

σ(x<t), xt), f
∗
σ(xt))1Aϵ ]

Note that the term et := Eσ [ℓ(ft(x<t, f ∗
σ(x<t), xt), f

∗
σ(xt))1Aϵ ] is a simple scalar. Therefore,

by the previous estimates on pt, whenever et < 1
8
, the learning rule classifies the new input

point correctly: 1f̂t(x<t,y<t,xt )̸=i∗t
≤ 1et≥ 1

8
. We will now show that the bad event et ≥ 1

8
only

happens with sublinear rate in t. By construction, in Aϵ, for any t ≥ Tϵ,

1

t

t∑
u=1

ℓ(ft(x<t, f
∗
σ(x<t), xt), f

∗
σ(xt)) ≤ ϵ.

Therefore, for any t ≥ Tϵ, we have

1

t

T∑
u=1

eu =
1

t

t∑
u=1

Eσ [ℓ(ft(x<t, f ∗
σ(x<t), xt), f

∗
σ(xt))1Aϵ ] ≤ ϵ.

The loss of our learning rule on trajectory x now satisfies for all t ≥ Tϵ,

Lx(f̂·, f ∗; t) =
1

t

t∑
u=1

1f̂u(x<u,y<u,xu )̸=i∗u
≤ 1

t

t∑
u=1

1eu≥ 1
8
≤ 8

t

t∑
u=1

eu ≤ 8ϵ.

Thus, Lx(f̂·, f ∗) ≤ 8ϵ. Taking ϵ > 0 arbitrarily small shows that Lx(f̂·, f ∗) = 0 and hence,
the learning rule is consistent on trajectory x. Therefore, f̂· is consistent on the event E for
the input sequence X, which has probability 1. To summarize, LX(f̂·, f

∗) = 0 (a.s.) for any
measurable function f ∗, showing that f̂· is universally consistent and thus X ∈ SoulN. This
ends the proof of the theorem. ■

Together with Theorem 3.9, this result closes the conjecture formulated in [Han21a] by
showing that the set of universally learnable sequences Soul is invariant with respect to the
setting (Y , ℓ) when the loss is bounded.

Theorem 3.12. For any separable near-metric space (Y , ℓ) with 0 < ℓ̄ < ∞, we have
Soul(X ,ρ,Y,ℓ) = Soul(X ,ρ,{0,1},ℓ01).

In particular, to characterize the set Soul it suffices to focus on universal binary classifi-
cation. Further, the reduction is constructive and in the proof of Theorem 3.9 and Proposi-
tion 3.4 all learning rules were constructed independently from the stochastic process X. We
can check that this in turn provides a construction of an optimistically universal learning rule
for any setting (Y , ℓ) given an optimistically universal learning rule for binary classification.
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Theorem 3.13. The existence of an optimistically universal learning rule is invariant to
the output space (Y , ℓ) when 0 < ℓ̄ < ∞. In particular, provided an optimistically uni-
versal learning rule for binary classification ({0, 1}, ℓ01) one can construct an optimistically
universal learning rule for a general setup (Y , ℓ) with 0 < ℓ̄ <∞.

Proof We start by supposing that there exists an optimistically universal learning rule
f
{0,1}
· for the binary classification setting, and now construct an optimistically universal

learning rule for a general setting (Y , ℓ) satisfying 0 < ℓ̄ < ∞. This results from the fact
that the construction in the proofs of both Theorem 3.11 and Theorem 3.9 are invariant to
X. Precisely, we first construct an optimistically universal learning rule for countably-many
classification as given in the proof of Theorem 3.9. With

pt(x<t, y<t, xt; i) :=
1

2

(
Pσ
[
f
{0,1}
t (x<t,1(y ∈ σ)<t, xt) = 1 | i ∈ σ

]
+ Pσ

[
f
{0,1}
t (x<t,1(y ∈ σ)<t, xt) = 0 | i /∈ σ

])
,

we define

fN
t (x<t, y<t, xt) :=

min
i∈N

{
i, pt(x<t, y<t, xt; i) >

3

4

}
if ∃i ∈ N, pt(x<t, y<t, xt; i) > 3

4

0 otherwise.

By construction, and Theorem 3.11, fN
· is an optimistically universal learning rule for (N, ℓ01).

We now use the construction given by Theorem 3.9 to get an optimistically universal learning
rule f (Y,ℓ)

· for (Y , ℓ). Define a sequence (yi)i≥1 dense in Y with respect to ℓ. For k ≥ 1 and
ϵk = 2−k, we define the functions hk(y) = inf{i ≥ 1, l(yi, y) < ϵk} and construct the learning
rules fk· by

fkt (x<t, y<t, xt) = yf
N
t (x<t,hk(y<t),xt).

Denoting by Bℓ(y, ϵ) = {y′ ∈ Y , ℓ(y, y′) < ϵ} and Bki := Bℓ(yi, ϵk) \
⋃

1≤j<iBℓ(yi, ϵk), we now
define our final learning rule

f
(Y,ℓ)
t (x≤t, y<t, xt) = f p̂t (x≤t, y<t, xt) for p̂ = max

{
1 ≤ p ≤ t,

⋂
1≤k≤p

Bkfkt (x≤t,y<t,xt)
̸= ∅

}
,

which is invariant to the process X, hence optimistically universal by the proof of Theo-
rem 3.9.

We now show the converse. Suppose there exists some setting (Y , ℓ) with 0 < ℓ̄ < ∞
admitting an optimistically universal learner f (Y,ℓ)

· . We will construct an optimistically
universal learning rule for binary classification using the proof of Proposition 3.4. Let y0, y1 ∈
Y such that ℓ(y0, y1) > 0 and consider the function defined by ϕ(i) = yi for i ∈ {0, 1}. We
now construct a learning rule f {0,1}

· for binary classification as follows

f
{0,1}
t (x<t, y<t, xt) :=

{
0 if ℓ(f (Y,ℓ)

t (x<t, ϕ(y)<t, xt), y
0) ≤ ℓ(f

(Y,ℓ)
t (x<t, ϕ(y)<t, xt), y

1)

1 otherwise.

This learning rule is invariant to X, hence optimistically universal by the proof of Proposi-
tion 3.4. This ends the proof of the theorem. ■
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3.7.4 Learning rules preserved by the reduction

Though its definition is little abstruse, the countable classification learning rule that is
derived from the proof of Theorem 3.9 leaves many learning rules unchanged. In particular,
the following proposition shows that learning rules based on a representant which depends
only on the historical input sequence e.g. nearest neighbor rule, are transported by our
construction.

Proposition 3.5. Let {ft}∞t=1 be a learning rule defined by representant function ϕ(t) ∈
{1, ..., t− 1} which at step t only depends on (x1, .., xt) as follows,

ft(x<t, y<t, xt) = yϕ(t).

Note that this learning rule can be defined for any output setting (Y , ℓ). If {ft}∞t=1 is univer-
sally consistent on a process X for binary classification, it is also universally consistent on
X for any separable near-metric setting (Y , ℓ) with bounded loss.

Proof We first show that the learning rule f· = {ft}∞t=1 is transported by our construction
in Theorem 3.11 for classification with countable number of classes. In the rest of the proof,
we will denote by ϕ(·) the representant function of f·. With

pt(x<t, y<t, xt; i) :=
1

2
(Pσ [ft(x<t,1(y ∈ σ)<t, xt) = 1 | i ∈ σ]

+ Pσ [ft(x<t,1(y ∈ σ)<t, xt) = 0 | i /∈ σ]) ,

we define our learning rule fN
· := {fN

t }∞t=1 for countably-many classification as in Theo-
rem 3.11:

fN
t (x<t, y<t, xt) :=

min
i∈N

{
i, pt(x<t, y<t, xt; i) >

3

4

}
if ∃i ∈ N, pt(x<t, y<t, xt; i) > 3

4

0 otherwise.

We now show that fN
· is in fact defined with a similar representant function. Indeed,

pt(x<t, y<t, xt; i) =
Pσ
[
1(yϕ(t) ∈ σ) = 1 | i ∈ σ

]
+ Pσ

[
1(yϕ(t) ∈ σ) = 0 | i /∈ σ

]
2

=

{
1 if yϕ(t) = i
1
2

if yϕ(t) ̸= i

Therefore, we obtain fN
t (x<t, y<t, xt) = yϕ(t), which shows that fN

· = f· i.e. that the learning
rule f· is transported by the construction.

We now fix a separable near-metric space (Y , ℓ) and a process X such that f· is universally
consistent for binary classification. By the above arguments, Theorem 3.11 shows that f· is
also universally consistent for countable classification. We now aim to show that f· on (Y , ℓ)
is universally consistent on X. Let f ∗ be a measurable target function and ϵ > 0. We take
a sequence (yi)i≥1 dense on Y with respect to ℓ and construct the function h(y) = inf{i ≥
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1, ℓ(yi, y) < ϵ}. Then, yft(x<t,hk(y<t),xt) = yh(yϕ(t)). Hence, if ft(x<t, h(y<t), xt) = h(yt) we
obtain yh(yϕ(t)) = yh(yt). Therefore, we can write

ℓ(yϕ(t), yt) ≤ ℓ̄ · 1ft(x<t,h(y<t),xt )̸=h(yt) + ℓ(yϕ(t), yt)1ft(x<t,h(y<t),xt)=h(yt)

≤ ℓ̄ · 1ft(x<t,h(y<t),xt )̸=h(yt) + cℓ(ℓ(yϕ(t), y
h(yϕ(t))) + ℓ(yh(yt), yt))

≤ ℓ̄ · ℓ01(ft(x<t, h(y<t), xt), h(yt)) + 2cℓϵ.

This yields LX(f·, f
∗;T ) ≤ ℓ̄LX(f·, h◦f ∗;T )+2cℓϵ. Because f· is universally consistent for the

setting (N, ℓ01), it is in particular consistent for target function h ◦ f ∗ : X → N. Therefore,
lim supT LX(f·, f

∗;T ) ≤ 2cℓϵ, (a.s.). This is valid for ϵk = 2−k for all k ≥ 1. Therefore, by
union bound, LX(f·, f

∗;T )→ 0, (a.s.), which ends the proof that f· is universally consistent
on X for the setting (Y , ℓ). ■

We are now ready to apply these general reduction results to the kC1NN algorithms that
we constructed in Section 3.5 and showed were optimistically universal for binary classifica-
tion in Section 3.6. Indeed, these learning rules exactly use representants, and can therefore
be rewritten as in Proposition 3.5. Together with Theorem 3.12 we obtain a full character-
ization of the set of processes admitting strong universal learning for general value spaces
and obtain that 2C1NN is optimistically universal for general input and output spaces.

Corollary 3.2. For any separable Borel space X and any separable near-metric space (Y , ℓ)
with 0 < ℓ̄ < ∞, we have Soul(X ,ρ),(Y,ℓ) = SMV(X ,ρ). Further, 2C1NN is an optimistically
universal learning rule.

Note that the case ℓ̄ = 0 can be treated separately: in this case all processes X are
learnable and any learning rule is optimistically universal. The same proofs imply that the
learning rules kC1NN are also optimistically universal for any k ≥ 2. As a remark, one can
note that 2C1NN is the simplest algorithm of this class which is optimistically universal.
Indeed, 1C1NN systematically deletes the previous points from the dataset and as a result,
at any time, the dataset Dt is a singleton. Hence, 1C1NN is not optimistically universal.

3.8 Weak Universal Learning

We now turn to weak universal learning. In this section, we show that the results for the
characterization of learnable processes and the existence of optimistically universal learning
rules for the strong setting can also be adapted to the weak setting. Although the set of
learnable processes differ—Soul ⊂ Woul in general and Soul ⊊ Woul whenever X is
infinite [Han21a]—we show that the same learning rule 2C1NN is optimistically universal
in the weak setting. We recall the necessary condition WSMV for weak learnability for
near-metric separable value spaces (Y , ℓ) with 0 < ℓ̄ <∞.

Condition WSMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X with⋃∞
k=1Ak = X , (every countable measurable partition), E[|{k ∈ N : Ak ∩ X<T ̸= ∅}|] = o(T ).

Similarly to the strong consistency case, we will show that WSMV(X ,ρ) is also suffi-
cient for weak universal consistency. Note that whenever X is infinite we have SMV(X ,ρ) ⊊
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WSMV(X ,ρ). We start by adapting Proposition 3.3 for the weak setting by showing that
2C1NN is weakly consistent on balls under any process X ∈WSMV(X ,ρ).

Proposition 3.6. Let (X ,B) be a separable Borel space constructed from some metric ρ.
We consider the binary classification setting Y = {0, 1} and the ℓ01 binary loss. For any
input process X ∈WSMV(X ,ρ), for any x ∈ X , and r > 0, the learning rule 2C1NN is weakly
consistent for the target function f ∗ = 1Bρ(x,r).

Proof The proof uses a similar structure to the proof of Proposition 3.3. We fix x̄ ∈ X ,
r > 0 and f ∗(·) = 1B(x̄,r). We reason by the contrapositive and suppose that 2C1NN is
not weakly consistent on f ∗. We will show that the process X disproves the WSMV(X ,ρ)
condition.

Because 2C1NN is not weakly consistent for f ∗, there exists ϵ and an increasing sequence
of times (Tl)l≥1 such that for any l ≥ 1,

ELX(f·, f
∗;Tl) ≥ ϵTl.

We now define a partition P . Because X is separable, there exists a sequence (xi)i≥1 of
elements of X which is dense. We focus for now on the sphere S(x̄, r) and for any τ > 0 we
take (Pi(τ))i≥1 the sequence of sets included in S(x̄, r) defined by

Pi(τ) :=
(
S(x̄, r) ∩B(xi, τ)

)
\

( ⋃
1≤j<i

B(xj, τ)

)
.

These sets form a partition of S(x̄, r) as shown in the proof of Proposition 3.3. We now pose
τl := cϵ · r

2l+1 , for l ≥ 1, where cϵ := 1

2·225/ϵ
is a constant dependant on ϵ only. We also pose

τ0 = r. Then, because X ∈WSMV(X ,ρ), the expected number of sets visited of Pi(τl) tends
to 0. Therefore, there exists an increasing sequence (nl)l≥1 such that for any l ≥ 1,

∀n ≥ nl, E[|{i, Pi(τl) ∩ X<n ̸= ∅}|] ≤
ϵ2

210
n and nl+1 ≥

26

ϵ
nl

Now, for any l ≥ 1, we now construct µl > 0 such that

P
[

min
i<j≤nl, Xi ̸=Xj

ρ(Xi, Xj) > µl

]
≥ 1− ϵ

2l+3
.

We denote by Fl this event. Therefore P[F cl ] ≤ ϵ
2l+3 . Note that the sequence (µl)l≥1 is

non-increasing. We now define radiuses (zi)i≥1 as follows:

zi =

{
µli+1 if ρ(xi, x̄) < r, where r

2li+1 < r − ρ(xi, x̄) ≤ r
2li

0 if ρ(xi, x̄) ≥ r,

and consider the sets Ri := B(xi, zi) ∩
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
. We construct Pi :=

Ri \
(⋃

k<iRk

)
, for i ≥ 1. By Lemma 3.2, (Pi)i≥1 forms a partition of B(x̄, r). We now
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define a second partition (Ai)i≥1 similarly as in the proof of Proposition 3.3. We start by
defining a sequence of radiuses (ri)i≥1 as follows

ri =


cϵ inf
x: ρ(x,x̄)≤r

ρ(xi, x) if ρ(xi, x̄) > r,

cϵ inf
x: ρ(x,x̄)≥r

ρ(xi, x) if ρ(xi, x̄) < r,

0 if ρ(xi, x̄) = r,

and consider the sets (Ai)i≥0 given by A0 = S(x̄, r) and for i ≥ 1, Ai = B(xi, ri) \(⋃
1≤j<iB(xj, rj)

)
. By Lemma 3.3, this forms a partition of X . We now formally con-

sider the product partition of (Pi)i≥1 and (Ai)i≥0 i.e.

Q :
⋃

i≥0, Ai⊂B(x̄,r)

⋃
j≥1

(Ai ∩ Pj) ∪
⋃

i≥0, Ai⊂X\B(x̄,r)

Ai.

where we used the fact that sets Ai satisfy either Ai ⊂ B(x̄, r) or Ai ⊂ X \B(x̄, r). We will
show that this partition disproves the WSMV(X ,ρ) hypothesis on X.

We now fix l0 ≥ 1 such that Tl0 ≥ n2 and consider l ≥ l0. We focus on time Tl. Define
the event A := {LX(f·, f

∗;Tl) ≥ ϵ
2
Tl}. Note that we have

ELX(f·, f
∗;Tl) ≤

ϵ

2
Tl + P[A]Tl.

Therefore, P[A] ≥ ϵ
2
. Also, because (nu)u≥1 is an increasing sequence, let u ≥ 1 such that

nu+1 ≤ Tl ≤ nu+2. We define the event E = {|{i Pi(τu)∩X≤Tl ̸= ∅}| ≤ ϵ
27
Tl}. Then, we have

by construction
ϵ2

210
Tl ≥ E|{i Pi(τu) ∩ X≤Tl ̸= ∅}| ≥

ϵ

27
TlP[Ec].

Therefore, we have P[Ec] ≤ ϵ
8
. Consider a specific realization x = (xt)t≥0 of the process X

falling in the event A ∩ E ∩
⋂
l≥1Fl. This event has probability

P

[
A ∩ E ∩

⋂
l≥1

Fl

]
≥ P[A]− P[Ec]−

∑
l≥1

P[F cl ] ≥
ϵ

2
− ϵ

8
− ϵ

8
=
ϵ

4
.

Note that x is not random anymore. We now show that x visits a large number of sets in
the partition Q. We now denote by (tk)k≥1 the increasing sequence of all times when 2C1NN
makes an error in the prediction of f ∗(xt). Define kl such the last time of error before Tl i.e.
kl = max{k ≥ 1, tk ≤ Tl}. By construction, because A is met we have kl ≥ ϵ

2
Tl.

At an iteration where the new input xt has not been previously visited we will denote by
ϕ(t) the index of the nearest neighbor of the current dataset in the 2C1NN learning rule. Now
let l ≥ 1. Consider the tree G where nodes are times T := {t, t ≤ Tl, xt /∈ {xu, u < t}} for
which a new input was visited, where the parent relations are given by (t, ϕ(t)) for t ∈ T \{1}.
Again, each node has at most 2 children and a node is not in the dataset at time Tl when it
has exactly 2 children.
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Step 1. We now suppose that the majority of input points on which 2C1NN made a mistake
belong to the B(x̄, r) i.e.

|{t ≤ Tl, ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, xt ∈ B(x̄, r)}| ≥ kl

2
,

or equivalently |{k ≤ kl, xtk ∈ B(x̄, r)}| ≥ kl
2
.

Let us now consider the subgraph G̃ given by restricting G only to nodes in the the ball
B(x̄, r) which are mapped to the true value 1 i.e. on times {t ∈ T , xt ∈ B(x̄, r)}. As in
the proof of Proposition 3.3, G̃ is a collection of disjoint trees with roots times {tk, k ≤
kl, xtk ∈ B(x̄, r)}—and possibly t = 1 if x1 ∈ B(x̄, r). For a given time tk with k ≤ kl and
xtk ∈ B(x̄, r), denote Tk the corresponding tree in G̃ with root tk. We will say that the tree
Tk is sparse if

∀t ∈ Tk, |{u ≤ Tl, ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.

We denote by S = {k ≤ kl, ρ(xtk , x̄) < r, Tk sparse} the set of sparse trees. Similarly as
in the proof of Proposition 3.3, we have |S| ≥ kl

8
. We now focus only on sparse trees Tk for

k ∈ S and analyze their relation with the final dataset DTl+1. Precisely, for a sparse tree Tk,
denote Vk = Tk ∩ DTl+1 the set of times which are present in the final dataset and belong
to the tree induced by error time tk. Because each node of Tk and not present in DTl+1 has
at least 1 children in T , we note that Vk ̸= ∅. We now consider the path from a node of
Vk to the root tk. We denote by d(k) the depth of this node in Vk and denote the path by
pkd(k) → pkd(k)−1 → pk0 = tk where pkd(k) ∈ Vk. Then we have, d(k) ≤ |Tk| − 1 ≤ 16

ϵ
− 1. The

same arguments as in the proof of Proposition 3.3 show that all the points {pkd(k), k ∈ S}
fall in distinct sets of the partition (Ai)i≥0. Therefore,

|{i, Ai ∩ x≤Tl ̸= ∅}| ≥ |S| ≥
kl
8
≥ ϵ

16
Tl.

Step 2. We now turn to the case when the majority of input points on which 2C1NN made
a mistake are not in the ball B(x̄, r) i.e.

|{t ≤ tkl , ℓ01(2C1NN(x<t,y<t, xt), f
∗(xt)) = 1, ρ(xt, x̄) ≥ r}| ≥ kl

2
,

or equivalently |{k ≤ kl, ρ(xtk , x̄) ≥ r}| ≥ kl
2
. Similarly as the previous case, we consider

the graph G̃ given by restricting G only to nodes outside the ball B(x̄, r) i.e. on times
{t ∈ T , ρ(xt, x̄) ≥ r}. Again, G̃ is a collection of disjoint trees with root times {tk, k ≤
kl, ρ(xtk , x̄) ≥ r}—and possibly t = 1. We denote Tk the corresponding tree of G̃ rooted in
tk. Similarly to above, a tree is sparse if

∀t ∈ Tk, |{u ≤ Tl, ϕ(u) = t, ρ(xu, x̄) < r}| ≤ 1 and |Tk| ≤
16

ϵ
.

If S = {k ≤ kl, ; ρ(xtk , x̄) ≥ r, Tk sparse} denotes the set of sparse trees, the same proof as
above shows that |S| ≥ kl

8
. Again, for any k ∈ S, if d(k) denotes the depth of some node
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from Vk := Tk ∩Dtkl in Tk we have d(k) ≤ 16
ϵ
− 1. For each k ∈ S we consider the path from

this node of Vk to the root tk: pkd(k) → pkd(k)−1 → . . . → pk0 = tk where pkd(k) ∈ Vk. The same
proof as above shows that all the points {pkd(k), k ∈ S, ρ(xpkd(k) , x̄) > r} lie in distinct sets of

the partition (Ai)i≥0. Suppose |{k ∈ S, ρ(xpk
d(k)
, x̄) > r}| ≥ |S|

2
, then we have

|{i, Ai ∩ x≤Tl ̸= ∅}| ≥ |{k ∈ S, ρ(xpkd(k) , x̄) > r}| ≥ |S|
2
≥ kl

16
≥ ϵ

32
Tl.

Step 3. In this last step, we suppose again that the majority of input points on which
2C1NN made a mistake are not in the ball B(x̄, r) and that |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| < |S|

2
.

Therefore, we obtain

|{k ∈ S, ρ(xpk
d(k)
, x̄) = r}| = |S| − |{k ∈ S, ρ(xpk

d(k)
, x̄) > r}| ≥ |S|

2
≥ kl

16
≥ ϵ

32
Tl.

We will now make use of the partition (Pi)i≥1. Recall that u ≥ 1 was defined such that nu+1 ≤
Tl ≤ nu+2. Note that we have nu ≤ ϵ

26
nu+1 ≤ ϵ

26
Tl. Let us now analyze the process between

times nu and Tl. In particular, we are interested in the indices T = {k ∈ S, ρ(xpk
d(k)
, x̄) = r}

and times Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. We have

|Uu| ≥ |{k ∈ S, ρ(xpk
d(k)
, x̄) = r}| − nu ≥

ϵ

32
Tl −

ϵ

26
Tl =

ϵ

26
Tl.

Because the event Eu is met, we have

|{i, Pi(τu) ∩ xUu ̸= ∅}| ≤ |{i, Pi(τu) ∩ x≤Tl ̸= ∅}| ≤
ϵ

27
Tl.

The same arguments as in the proof of Proposition 3.3 show that defining T ′ := {k ∈
T, r − r

2u+2 ≤ ρ(xtk , x̄) < r} we obtain

|T ′| ≥ |Uu| − |{i, Pi(τu) ∩ xUu ̸= ∅}| ≥
ϵ

27
Tl.

We will now show that all the points in {xtk , k ∈ T ′} lie in distinct sets of (Pi)i≥1. Note
that because we have Tl ≤ nu+2 and because the event Fu+2 is met, we have that for any
p, q ∈ T ′ that ρ(xϕ(tp), xϕ(tq)) > µu+2. Now suppose by contradiction that xϕ(tp), xϕ(tq) ∈ Pi
for some i ≥ 1. Then, with li such that r − r

2li
≤ ρ(xi, x̄) < r − r

2li+1 we have that

xϕ(tp), xϕ(tq) ∈
{
x ∈ X : ρ(x, x̄) < r − r

2li+2

}
But we know that ρ(xϕ(tp), x̄) ≥ r− r

2u+2 . Therefore we obtain r− r
2li+2 > r− r

2u+2 and hence
li ≥ u+1. Recall that Pi ⊂ B(xi, µli+1). Therefore, we obtain ρ(xϕ(tp), xϕ(tq)) ≤ µli+1 ≤ µu+2,
which contradicts the fact that ρ(xϕ(tp), xϕ(tq)) > µu+2. This ends the proof that all points of
{xϕ(tk), k ∈ T ′} lie in distinct subsets of (Pi)i≥1. Now we obtain

|{i, Pi ∩ x≤Tl ̸= ∅}| ≥ |T ′| ≥ ϵ

27
Tl.
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Step 4. In conclusion, in all cases, we obtain

|{Q ∈ Q, Q ∩ x≤Tl ̸= ∅}| ≥ max(|{i, Ai ∩ x≤Tl ̸= ∅}|, |{i, Pi ∩ x≤Tl ̸= ∅}|) ≥
ϵ

27
Tl.

Recall that this holds for any realization x in the event A ∩ E ∩
⋂
l≥1Fl. Therefore,

E[|{Q ∈ Q, Q ∩ X≤Tl ̸= ∅}|] ≥ P

[
A ∩ E ∩

⋂
l≥1

Fl

]
ϵ

27
Tl ≥

ϵ2

29
Tl.

Because this is true for all l ≥ l0 and Tl is an increasing sequence, we conclude that X /∈
WSMV(X ,ρ) which is absurd. Therefore 2C1NN is consistent on f ∗. ■

We then show that 2C1NN is weakly consistent under processes of WSMV(X ,ρ) for binary
classification adapting the proof of Theorem 3.8.

Theorem 3.14. Let (X ,B) be a separable Borel space constructed from the metric ρ. For
the binary classification setting, the learning rule 2C1NN is weakly universally consistent for
all processes X ∈WSMV(X ,ρ).

Proof Again, we follow a similar proof to that of Theorem 3.8. Let X ∈ WSMV(X ,ρ) and
consider the set SX of functions for which it is weakly consistent

SX := {A ∈ B, ELX(2C1NN,1A)→ 0}.

By construction we have SX ⊂ B. The goal is to show that in fact SX = B. To do so, we will
show that S satisfies the following properties

• ∅ ∈ SX and SX contains all balls B(x, r) with x ∈ X and r ≥ 0,

• if A ∈ SX then Ac ∈ SX (stable to complementary),

• if (Ai)i≥1 is a sequence of disjoint sets of SX, then
⋃
i≥1Ai ∈ SX (stable to σ−additivity

for disjoint sets),

• if A,B ∈ SX, then A ∪B ∈ SX (stable to union).

Together, these properties show that SX is a σ−algebra that contains all open intervals of
X . The invariance to complementary is again due to the fact that 2C1NN is invariant to
relabeling. Further, we clearly have ∅ ∈ SX. Now let x ∈ X and r ≥ 0, Proposition 3.3
shows that B(x, r) ∈ SX.

We now turn to the σ−additivity for disjoint sets. Let (Ai)i≥1 is a sequence of disjoint
sets of SX. We denote A :=

⋃
i≥1Ai. We consider the target function f ∗ = 1A. We write the

average loss in the following way,

1

T

T∑
t=1

ℓ01(2C1NN(X<t,Y<t, Xt), f
∗(Xt)) =

1

T

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
1

T

T∑
t=1

1Xt /∈A1Xϕ(t)∈A.

We suppose by contradiction that 2C1NN is not weakly consistent on f ∗. Then there exists
ϵ > 0 and an increasing sequence of times (Tl)l≥1 such that ELX(2C1NN, f

∗;Tl) ≥ ϵTl. We
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first analyze the errors induced by one set Ai only. Simililarly to the proof of Theorem 3.8
we have

1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) ≤ 1

T

T∑
t=1

ℓ01(2C1NN(X<t,1X<t∈Ai
, Xt),1Xt∈Ai

).

Then, because 2C1NN is consistent for 1·∈Ai
, we get

E

[
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)

]
→ 0.

We take ϵi = ϵ
4·2i and T i such that

∀T ≥ T i, E

[
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)

]
<
ϵ2i
2
.

We now consider the scale of the process X≤T i when falling in Ai, by introducing ηi > 0 such
that

P

 min
t1,t2≤T i; Xt1 ,Xt2∈Ai;

Xt1 ̸=Xt2

ρ(Xt1 , Xt2) > ηi

 ≥ 1− ϵi
2
.

We denote by Fi this event. Thus, P[F ci ] ≤ ϵi
2
. We now construct a partition P obtained

by subdividing each set Ai according to scale ηi. Because X is separable, there exists a
sequence of points (xj)j≥1 in X such that ∀x ∈ X , infj≥1 ρ(x, x

j) = 0. We construct the
following partition of X given by

P : Ac ∪
⋃
i≥1

⋃
j≥1

{(
B
(
xj,

ηi
2

)
∩ Ai

)
\
⋃
k<j

B
(
xk,

ηi
2

)}
.

We now fix l ≥ 1 and consider the event A := {LX(2C1NN, f
∗;Tl) ≥ ϵ

2
}. Note that

ϵTl ≤ ELX(2C1NN, f
∗;Tl) ≤

ϵ

2
Tl + P[A]Tl,

which gives P[A] ≥ ϵ
2
. We also define the following event

Ei =

{
1

Tl

Tl∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

) < ϵi

}
,

for any i ∈ I := {i ≥ 1, Tl ≥ T i}. Then, we have

ϵ2i
2
≥ E

[
1

Tl

Tl∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)

]
≥ ϵiP[Eci ],

which yields P[Eci ] ≤ ϵi
2
. We will now focus on the event A ∩

⋂
i∈I Ei ∩

⋂
i≥1Fi, which has

probability P[A∩
⋂
i∈I Ei ∩

⋂
i≥1Fi] ≥ P(A)−

∑
i∈I P[Eci ]−

∑
i≥1 P[F ci ] ≥

ϵ
2
− ϵ

4
= ϵ

4
. Let us

100



now consider a realization of x of X in the event A ∩
⋂
i∈I Ei ∩

⋂
i≥1Fi. The sequence x is

now not random anymore. We will show that x does visits a linear number of sets in the
partition P .

Because the event A is met, we have

∑
i≥1

1

Tl

Tl∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) ≥ ϵ

2
.

Also, because the events Ei are met, we have

∑
i∈I

1

Tl

Tl∑
t=1

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) ≤
∑
i∈I

ϵi ≤
ϵ

4
.

Combining the two above equations gives

1

Tl

Tl∑
t=1

∑
i/∈I

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) >
ϵ

4
. (3.3)

We now consider the set of times such that an input point fell into the set Ai with i /∈ I,
either creating a mistake in the prediction of 4C1NN or inducing a later mistake within time
horizon Tl: T :=

⋃
i/∈I Ti where

Ti :=
{
t ≤ Tl, xt ∈ Ai,

(
xϕ(t) /∈ A or ∃t < u ≤ Tl s.t. ϕ(u) = t, xu /∈ A

)}
.

Because the events Fi are met, the same arguments as in the proof of Theorem 3.8 show
that all points xt for t ∈ T fall in distinct sets of the partition P , i.e. |{P ∈ P , P ∩ x≤tk ̸=
∅}| ≥ |T |. We also obtain with the same arguments

tk∑
t=1

∑
i/∈I

(1xt∈Ai
1xϕ(t) /∈A + 1xt /∈A1xϕ(t)∈Ai

) ≤ 3|T |.

We now use Eq (3.3) to obtain |{P ∈ P , P ∩ x≤tk ̸= ∅}| ≥ |T | ≥ ϵ
12
Tl. Therefore, because

this holds for any realization in A ∩
⋂
i∈I Ei ∩

⋂
i≥1Fi we obtain

E[|{P ∈ P , P ∩ X≤Tl ̸= ∅}|] ≥ P

[
A ∩

⋂
i∈I

Ei ∩
⋂
i≥1

Fi

]
ϵ

12
Tl ≥

ϵ2

48
Tl.

This holds for any l ≥ 1. Therefore, because (Tl)l≥1 is an increasing sequence, this shows that
X /∈ WSMV(X ,ρ) which contradicts the hypothesis. This concludes the proof that A ∈ SX
and hence, SX satisfies the disjoint σ−additivity property.

We now show that SX is invariant to finite unions. Let A1, A2 ∈ SX. We consider
A = A1 ∪A2 and f ∗(·) = 1·∈A. Using the same arguments as above, we still have for T ≥ 1,

E

[
1

T

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

)

]
→ 0.
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for i ∈ {1, 2}. But note that for any T ≥ 1,

LX(2C1NN, f
∗;T ) =

T∑
t=1

1Xt∈A1Xϕ(t) /∈A +
T∑
t=1

1Xt /∈A1Xϕ(t)∈A

≤
T∑
t=1

(1Xt∈A1 + 1Xt∈A2)1Xϕ(t) /∈A +
T∑
t=1

1Xt /∈A(1Xϕ(t)∈A1 + 1Xϕ(t)∈A2)

=
2∑
i=1

T∑
t=1

(1Xt∈Ai
1Xϕ(t) /∈A + 1Xt /∈A1Xϕ(t)∈Ai

).

Therefore we obtain directly E
[
1
T
LX(2C1NN, f

∗;T )
]
→ 0. This shows that A1 ∪ A2 ∈ SX

and ends the proof of the theorem. ■

Finally, we turn to the case of a bounded separable output setting (Y , ℓ) and show that
2C1NN is weakly optimistically universal. In the case of weak learning, the reduction from
any separable bounded output setting does not require a sophisticated argument as in the
proof of Theorem 3.12, and can be made using the dominated convergence theorem.

Theorem 3.15. Let (X ,B) be a separable Borel space constructed from the metric ρ. The
learning rule 2C1NN is weakly universally consistent for all processes X ∈ WSMV(X ,ρ) and
any separable bounded output setting (Y , ℓ).

Proof We fix an output setting (Y , ℓ) and let X ∈WSMV(X ,ρ). We will show that 2C1NN
is weakly universally consistent on X for (Y , ℓ).

We first start by showing that it is weakly universally consistent for classification with
countable number of classes (N, ℓ01). We fix a target function f ∗ : X → N. For any i ∈ N
we define the binary function f ∗

i := 1(f ∗(·) = i). We define

Li(T ) :=
T∑
t=1

1f∗(xt)=iℓ01(f
∗(xϕ(t)), f

∗(xt))

for all i ≥ 0. Then,

Li(T ) =
1

T

T∑
t=1

1f∗(xt)=iℓ01(f
∗
i (xϕ(t)), f

∗
i (xt)) ≤ LX(2C1NN, f

∗
i ;T )

Therefore, because 2C1NN is weakly universally consistent for binary classification from
Theorem 3.14, we have ELX(2C1NN, f

∗
i ;T ) → 0, hence ELi(T ) → 0 for all i ≥ 0. Since

Li(T ) ≥ 0 and
∑

i≥0 Li(T ) = LX(2C1NN, f
∗;T ) ≤ 1, we can apply the dominated conver-

gence theorem and obtain
ELX(2C1NN, f

∗;T )→ 0,

which proves that 2C1NN is weakly universally consistent for classification with countable
number of classes.
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We now turn to the general setting (Y , ℓ). Let (yi)i≥1 be a a dense sequence on Y with
respect to ℓ, let ϵ > 0 and consider the function h(y) := inf{i ≥ 1 : ℓ(yi, y) < ϵ}. Then, we
have

ℓ(yϕ(t), yt) ≤ ℓ̄ · 1h(yϕ(t) ̸=h(yt) + ℓ(yϕ(t),yt)1h(yϕ(t)=h(yt)

≤ ℓ̄ · ℓ011h◦f∗(xϕ(t) )̸=h◦f∗(xt) + cℓ(ℓ(yϕ(t), y
h(yϕ(t))) + ℓ(yh(yt), yt))

≤ ℓ̄ · ℓ011h◦f∗(xϕ(t) )̸=h◦f∗(xt) + 2cℓϵ.

This yields LX(2C1NN, f
∗;T ) ≤ ℓ̄LX(2C1NN, h ◦ f ∗;T ) + 2cℓϵ. Because 2C1NN is weakly

universally consistent for countably-many classification, we have ELX(2C1NN, h ◦ f ∗;T )→
0. Therefore, we obtain

lim sup
T

ELX(2C1NN, f
∗;T ) ≤ 2cℓϵ.

This holds for any ϵ > 0 therefore, ELX(2C1NN, f
∗;T ) → 0, which ends the proof that

2C1NN is weakly universally consistent on X for the setting (Y , ℓ). ■

As an immediate consequence, we have WSMV(X ,ρ) ⊂ Woul(X ,ρ),(Y,ℓ). Together with
Proposition 3.1 we obtain a complete characterization for weak learnable processes and show
that 2C1NN is weakly optimistically universal for general output value spaces.

Corollary 3.3. For any separable Borel space (X ,B), and every separable near metric space
(Y , ℓ) with 0 < ℓ̄ < ∞ we have Woul(X ,ρ),(Y,ℓ) = WSMV(X ,ρ). In particular, Soul is
invariant from the output setup. Further, 2C1NN is weakly optimistically universal.

This completely closes the main questions on universal online learning with bounded
losses from [Han21a; Han21b] as we have now proved Theorem 3.2 and Theorem 3.3 (Corol-
laries 3.2 and 3.3).

3.9 Universal Learning with Unbounded Losses

3.9.1 Prior works on universal learning with bounded losses

In the case of unbounded losses the two main questions of (1) characterizing the family Soul
in terms of properties of the stochastic process X, and (2), identifying particular learning
rules that are optimistically universal, were already settled. Specifically, [Han21a] shows that,
for any unbounded loss, there exists optimistically universal online learning rules. Moreover,
[Han21a] also expresses a condition which characterizes the family Soul. The condition
requires that, for every countable measurable partition of X , the process X visits a finite
number of cells almost surely. This will be referred to as the “finite measurable visits" (FMV)
condition:

Condition FMV. For every disjoint sequence {Ak}∞k=1 in B with ∪∞k=1Ak = X (i.e., every
countable measurable partition),

#{k ∈ N : Ak ∩ X ̸= ∅} <∞ (a.s).

By abuse of notation, let FMV denote the set of all processes X satisfying this condition.
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It is worth noting, however, that the specification and analysis of the optimistically
universal learning rule in [Han21a], and the proof that Condition FMV indeed characterizes
Soul, are all quite complicated. For instance, the algorithm and its analysis directly rely on
a construction of a countable dense subset of the set of measurable functions, under a metric
appropriate to learning with unbounded losses. The learning algorithm then solves a sequence
of constraint satisfaction problems specified in terms of this countable dense set of functions,
to select one such function as its predictor. It is therefore desirable to simplify the theory,
not only for practical reasons, but also to help us to intuitively understand the varieties of
processes that admit universally consistent learners, and to clarify what kinds of learning
rules can be optimistically universal. Toward this end, [Han21a] poses an important open
question regarding a potential simplification: is Soul characterized by Condition FS? The
main contribution of the present section is showing that indeed this is true (Theorem 3.4).
This fact allows us to dramatically simplify the entire theory of universally consistent online
learning with unbounded losses. Several simplifications are immediate from this:

1. This provides a new, stronger characterization of Soul.

2. The proof establishing FS = Soul is significantly simpler than the original proof that
FMV = Soul.

3. The equivalence FS = Soul immediately implies that the simple memorization rule
is optimistically universal. This contrasts with the complicated construction used in
the optimistically universal learner of [Han21a], which solves a sequence of constraint
satisfaction problems in terms of a countable dense set of measurable functions.

At first glance, one might think that the class Soul and its characterization should
somehow depend on the specific setup given by (X , ρ), Y and ℓ. However, as [Han21a]
showed (and as is implied by our Theorem 3.4), this dependency is very mild. In particular,
the existence of an optimistically universal learning rule does not depend on the choice of
(Y , ℓ) as long as the loss is unbounded: supy,y′∈Y ℓ(y, y

′) = ∞. Moreover, our results will
hold for any separable metric space (X , ρ).

Outline of the proof. The essential strategy of the proof relies on the fact that FS ⊂
Soul ⊂ FMV. The left inclusion is rather obvious. Indeed, if X contains a finite number of
distinct values (a.s.), even the simple memorization learning rule is universally consistent.
For the sake of thoroughness, we include a brief proof of this observation in Section 3.9.2.
The second inclusion, that Soul ⊂ FMV, was shown by [Han21a] as part of the proof that
Soul = FMV. Given these inclusions FS ⊂ Soul ⊂ FMV, what remains is establishing
that FMV = FS. Establishing this equivalence is the main technical contribution of this
section (Theorem 3.17). Its proof relies on constructing random measurable partitions of the
space X . We now turn to discussing the details of each of these components.

3.9.2 Sufficient and necessary condition for universally learnable
processes

We begin with the easiest of the claimed inclusions: namely, FS ⊂ Soul. Recall that
condition FS corresponds to having a finite number of values almost surely, i.e. #X <
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∞ (a.s.). While it may be rather obvious that all such processes admit a strong universal
learning rule (i.e., they belong to Soul), for the sake of thoroughness we present a simple
proof of this fact.

Proposition 3.7. FS ⊂ Soul. In particular, the memorization rule is universally consistent
under every X ∈ FS.

Proof We will show that the memorization learning rule is universally consistent under
every X that takes a finite number of values almost surely. We can formally prove this result
as follows. Let X ∈ FS be a given stochastic process and let {ft}∞t=1 be the memorization
learning rule defined earlier. Observe that, for any measurable target function f ∗ : X → Y ,
the (random) quantity M = maxt∈N ℓ(y0, f

∗(Xt)) is always finite (a.s.), as it is a maximum
over a finite set: M < ∞ (a.s.). Now observe that the memorization rule makes at most
#X errors, each of value at most M. Therefore, 0 ≤ L̂X(f., f

∗, T ) ≤ 1
T
M ·#X −→

T→∞
0, (a.s.).

■

An important remark is that this condition is not testable: there does not exists a con-
sistent hypothesis test for FS. In other terms it is not possible to decide from the stream of
input data X whether the process satisfies FS or not. Formally, a hypothesis test refers to a
sequence of possibly random decision functions t̂n : X → {0, 1}. We then say that a test is
consistent for a class of processes C if for any process X, t̂n(X≤n)→ 1X∈C in probability.

Proposition 3.8. If X is infinite, there is no consistent hypothesis test for condition FS.

Proof This is a consequence from Theorem 3.4 and the fact that there is no consistent hy-
pothesis test for Soul when X is infinite, shown in [Han21a, Theorem 59]. For completeness,
we provide a direct and simplified proof below.

Since X infinite, let {xi}i≥0 a sequence of distinct points of X . Let {t̂n}n≥0 be a hy-
pothesis test for condition FS. We suppose by contradiction that {t̂n} is consistent and aim
to construct a sequence X on which it fails. Following a proof construction introduced in
[Han21a, Theorem 47], we construct a (deterministic) process which fools the test by alter-
natively switching between two modes: constant Xt = x0 or visiting points of the distinct
sequence Xt = xt. Let n0 = 0 and X0 = x0. We construct the sequences X and (ni)i≥0 by
induction. Suppose we have constructed nt for 0 ≤ t ≤ k − 1 and Xt for 0 ≤ t ≤ nk−1.

• If k is even, consider the deterministic process Y such that Yt = Xt for t ≤ nk−1 and
Yt = x0 for t > nk−1. Because {t̂n} is consistent, we can define an index nk > nk−1

such that P(t̂nk
(Y≤nk

) = 1) > 3
4
.

• If k odd, consider the deterministic process Y such that Yt = Xt for t ≤ nk−1 and
Yt = xt for t > nk−1. Similarly, let nk > nk−1 such that P(t̂nk

(Y≤nk
) = 0) > 3

4
.

We then set Xt = Yt for nk−1 < nk. Note that for all k ≥ 0, P(t̂n2k
(X≤n2k

) = 1) > 3
4

and P(t̂n2k+1
(X≤n2k+1

) = 1) < 1
4
. Then, t̂n(X≤n) does not converge in probability and the

hypothesis test {t̂n} is not consistent. This ends the proof of the proposition. ■

This justifies the terminology “optimistic" in optimistically universal learning rule in
the sense that belonging to the set of sequences for which universal learning is achievable,
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which we will prove is equal to FS, is a non-testable assumption. We now recall a necessary
condition for a stochastic process X to admit strong universal online learning. It was shown
that condition FMV, which requires that X will only visit a finite number of zones for all given
countable measurable partitions of X , is necessary for universal learning; we also include the
proof for the sake of completeness.

Theorem 3.16 ([Han21a]). Soul ⊂ FMV.

Proof Let X be a stochastic process that does not satisfy FMV and fn be a learning rule,
we aim to show that this learning rule cannot be universally consistent. By hypothesis, there
exists a finite measurable partition {Ak}∞k=1 in B such that X visits an infinite number of the
Ak with probability p > 0. We denote by A this event. We call F the class of measurable
functions f : X → Y that takes constant values on each of the Ak. We will show that some
objective function f ∗ ∈ F cannot be learnt by fn.

First, let us define τk the first instant at which X attains Ak.

τk =

{
min{t ∈ N : Xt ∈ Ak} if Ak ∩ X ̸= ∅
0 otherwise.

We also define a deterministic quantity Tk ∈ N that upper bounds the τk with high proba-
bility, i.e.

P(τk ≤ Tk) > 1− 2−k, ∀k ≥ 1.

By the Borel Cantelli lemma, since
∑

k P(τk > Tk) < ∞, almost surely there exists κ ∈ N
such that τk ≤ Tk for k ≥ κ. We will denote E this event. We now sample f ∗ randomly from
F as follows:

f ∗(x ∈ Ak) =

{
yk,0 with proba 1/2,

yk,1 with proba 1/2,

where yk,1 and yk,0 are selected such that ℓ(yk,1, yk,0) ≥ 2cℓTk (recalling that cℓ denotes the
constant from the relaxed triangle inequality satisfied by ℓ). Note that taking the expectation
over the randomness in f ∗ allows to write:

sup
g∈F

EX(LX(f., g)) ≥ Ef∗,X(LX(f., f
∗)). (3.4)

We first prove a lower bound on the right term. Conditionally on A ∩ E , observe that
for any k ≥ κ, (X<τk ,Y<τk) provides no information on f ∗(Xτk). Then, the average of
the corresponding prediction error satisfies E(ℓ(fτk(X<τk ,Y<τk , Xτk), f

∗(Xτk)) ≥ Tk ≥ τk,
where we used the fact that ℓ satisfies the relaxed triangle inequality. Thus, in A ∩ E ,
Ef∗(LX(f., f

∗, τk)) ≥ 1 for any k ≥ κ, hence by Fatou’s lemma

Ef∗(LX(f., f
∗)) ≥ lim sup

t∈N
Ef∗(LX(f., f

∗, τk)) ≥ 1.

Therefore, PX(Ef∗(LX(f., f
∗)) ≥ 1) ≥ P(A ∩ E) = p, which yields Ef∗,X(LX(f., f

∗)) ≥ p.
Eq (3.4) then shows that there exists g ∈ F such that EX(LX(f., g)) > 0, hence LX(f., g) > 0
with nonzero probability. This ends the proof of the result. ■
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In summary, we have the inclusions FS ⊂ Soul ⊂ FMV. This allows for a concise
expression of the conjecture formulated by [Han21a] (which, in light of the result of [Han21a]
that Soul = FMV, is equivalent to the formulation of the problem stated earlier).

Question 3.5 ([Han21a]). Is it true that FMV = FS?

We will prove that this equality holds for all separable metric spaces X . This in turn
implies that Soul = FS and therefore ensures that “memorization", which we already saw is
universally consistent for all processes in FS (Proposition 3.7), is an optimistically universal
learning rule. The solution to the question will be detailed in Section 3.9.3 and generalised
to all separable metric spaces in Section 3.9.4. We conclude this section by giving some
additional inspiration for the proofs that will follow.

Remarks on Question 3.5. In words, the question asked is whether the set of countable
measurable partitions is sufficiently large to separate all stochastic processes that take an
infinite number of values.

It was already observed by [Han21a] that when X is countable or when X is deterministic,
FS and FMV are equal. However, both these setups come with a natural partition: if X is
countable, {{x} : x ∈ X} becomes a countable measurable partition of X , and when X is
deterministic {{x} : {x} ∩ X ̸= ∅} ∪ {X \ X} will also isolate all the different values taken
by X.

In the uncountable case, for instance when X = R, we aim to define a partition {Ak}∞k=1

that scatters the space. We want to minimize the chance that two values taken by the
process, say Xt ̸= Xt′ , fall in the same Ak. A classical and tempting way to build such a
partition would be using the axiom of choice [Vit05; Ste85]. Define the equivalence relation
x ∼Q y ⇐⇒ x − y ∈ Q, where Q can be enumerated Q = {q1, q2, ...}. Now for each
of the equivalence classes of the form {x} + Q, choose one representer. Denote by A the
set of all representers and observe that {A + {q}}q∈Q makes a countable partition of R.
Note that two different values of X, say Xt ̸= Xt′ , fall in the same equivalence class only
if Xt − Xt′ was chosen as a representer. This event could be made very rare if we were to
shift all representers by a uniform random variable, or to choose the representer at random
within their class of equivalence. The reason why this does not prove the result is that the
corresponding partition {Ak}∞k=1 is not measurable.

Another idea to create such a random partition {Ak}∞k=1 would be to assign each x ∈ R
to a set Ak(x) where the index k(x) ∈ N is chosen independently at random following an
exponential law E(1

2
): P(k(x) = k) = 1

2k
. The indices {k(X1), k(X2), ...} to which the

elements of the sequence X = {X1, X2, ...} are assigned, are almost surely unbounded when
#X = +∞, disproving condition FMV. We will refer to this construction as the partition P
as it will later be a useful inspiration. Unfortunately, as such, P not define a proper partition
because the sets Ak are not measurable in general. To solve this issue, instead of defining
point-wise random sets, we will use countable union of small intervals. Depending on the
scale of the process X, these sets will give same behaviour as the parts of P . We will make
this idea more precise in the following paragraph.

We first recall a construction of dense open sets of R with measure at most ϵ > 0. Follow-
ing a classical argument, one can consider the union of open intervals ∪i≥1

(
qi − ϵ

2i
, qi +

ϵ
2i

)
,
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where {q1, q2, ...} are i.i.d. sampled from some probability density of full support. If we de-
note the remainders Rk = ∪i≥k

(
qi − ϵ

2i
, qi +

ϵ
2i

)
and consider the partition {Ak}∞k=0 defined

by Ak = Rk \Rk+1 where R0 = R, one could hope that any sequence X taking infinite values
will visit an infinite number of the Ak. In fact, this is true if the convergence rate of X is
not too fast but not in the general case. We will therefore use a decay rate adapted to the
process X through a parameter δk defined as follows,

δk = min
{
|x− y|

∣∣∣x, y ∈ X≤N ,#X≤N ≥ 22k+2
}
.

A key intuition is that the first k distinct points visited by X have scale δk. Thus, a remainder
Ri of smaller scale – such that the length of the intervals defining Ri is ≪ δk – will appear
uniformly random to the first k distinct inputs, similarly to the point-wise random sets from
the partition P introduced above.

Technical result. We prove the equivalence of FS and FMV therefore guaranteeing that
memorization is an optimistically universal learning rule in the unbounded setup. The
following result represents the technical contribution of this section.

Theorem 3.17. For any separable metric space (X , ρ), FMV = FS.

Together with Proposition 3.7 and Theorem 3.16, this implies the main Theorem 3.4.

3.9.3 Proof of the characterization for X = [0, 1]

In this section, we prove the result for X = [0, 1], as it provides a direct and simple con-
struction. The proof will then be generalised to all separable metric spaces in Section 3.9.4.

Proposition 3.9. If X = [0, 1] with its usual topology, FMV = FS.

Proof The inclusion FS ⊂ FMV is a direct observation, therefore we focus on proving
that FMV ⊂ FS. Let X be a stochastic process which does not satisfy FS. The goal is to
construct a countable measurable partition {Ak}∞k=1 of X which disproves condition FMV,
i.e. such that {k ∈ N : Ak ∩ X ̸= ∅} is infinite with nonzero probability. Denote by A the
event that X takes an infinite number of values, i.e. A = {#X = +∞}. We have assumed
that P(A) > 0 and will condition on A for the rest of the proof. For k ∈ N, define Nk ∈ N
such that,

P
(
#X≤Nk

≥ 1

µ2
k

∣∣∣∣A) ≥ 1− 1

2k+1
, where µk :=

1

2k+1
.

Note that Nk is a deterministic quantity that only depends on the process X. It is well
defined because P

(
#X≤N ≥ 1

µ2k

∣∣∣A)→N→∞ 1 since X takes an infinite number of values in
A. Now also define 0 < δk <

1
2k+1 satisfying:

P
(

min
1≤i,j≤Nk,Xi ̸=Xj

|Xi −Xj| > δk

∣∣∣∣A) ≥ 1− 1

2k+1
.
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Let Ek be the intersection of the two events above, we have by union bound: P (Ek | A) ≥
1− 1

2k
, where Ek can be written as

Ek : #X≤Nk
>

1

µ2
k

and ∀x ̸= y ∈ X≤Nk
, |x− y| > δk.

We are now ready to construct the partition. Let q = (qi)i≥1 be an i.i.d. sequence of
independent uniforms sampled from U([0, 1]). Define B0 = [0, 1] and for k ≥ 1,

Bk =
⋃

ik−1<i≤ik

[
qi −

δk
2
, qi +

δk
2

]
,

where (ik)k≥0 satisfies i0 = 0 and ik = ik−1 + ⌈µkδk ⌉. Note that the Borel measure of Bk is
roughly µk: µ(Bk) ≤ µk + δk. We use the remainders Rk = [0, 1] ∩

⋃
l≥k Bl to define the

partition {Ak}∞k=−1 as follows:

Ak = Rk \Rk+1, k ≥ 0

and A−1 =
⋂
k≥0Rk. The sets {Ak}∞k=−1 define a proper partition of X since A−1 contains

elements that appear infinitely often in {Bk}k≥0 while for any k ≥ 0, Ak contains elements
that appear for the last time in the sequence {Bl}k≥0 in Bk. This covers the whole space X
because by construction B0 = X . The interest of this (random) construction lies in the two
following lemmas.

Lemma 3.5. For any finite (deterministic) S ⊂ [0, 1] with #S > 1
µ2k

and ∀x ̸= y ∈ S, |x −
y| > δk,

P(Bk ∩ S = ∅) ≤ e−2k+1

.

Lemma 3.6. For any countable (deterministic) S ⊂ [0, 1], A−1 ∩ S = ∅, (a.s.)

We will now show that with probability P(A), the partition {Ak}∞k=−1 disproves the
condition FMV, in other terms that X visits an infinite number of sets of the partition.
Recall that the randomness is now both in terms of the stochastic process X and the partition
generated from q. We have that,

P(Bk ∩ X = ∅ | A) ≤ (1− P(Ek|A)) + P(Bk ∩ X≤Nk
= ∅ | Ek,A) ≤

1

2k
+ e−2k+1

,

where in the last inequality we applied Lemma 3.5 to the set X≤Nk
which has cardinality at

least 1
µ2k

in Ek. We can now apply the first Borel-Cantelli lemma to the sequence of events
{Bk ∩ X = ∅} conditionally on A, which shows that almost surely only a finite number of
these events are satisfied. Hence, conditionally on A, there exists almost surely κ ∈ N such
that for every k ≥ κ, the sequence X visits Bk. Further, by Lemma 3.6, with probability 1,
X does not visit A−1. Therefore, conditionnally on A, the sequence almost surely visits an
infinite number of sets of the partition {Ak}∞k=−1. In summary,

Pq,X(#{k ∈ N : Ak ∩ X ̸= ∅} = +∞) ≥ P(A).
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Thus, there exists a deterministic choice of q yielding a partition {Ak}∞k=−1 such that:

PX(#{k ∈ N, Ak ∩ X ̸= ∅} = +∞) ≥ P(A) > 0.

This shows the claim of the theorem. ■

It remains to give the missing proof of the two Lemmas 3.5 and 3.6.

Proof of Lemma 3.5 Note that the randomness of X does not intervene in this lemma. The
probability law P only accounts for the randomness of the partition through the variables
q = (qi)i≥1. We enumerate S = {x1, ..., xT} where T = #S ≥ 1

µ2k
.

P(Bk ∩ S = ∅) = P(x1 /∈ Bk)
T∏
t=2

P(xt /∈ Bk|x1, . . . , xt−1 /∈ Bk).

For the sake of simplicity we will use the notation B(x, δ) = [x− δ, x+ δ]. Note that events
{xi /∈ Bk} are negatively correlated. Indeed,

P(xt /∈ Bk | x1, . . . , xt−1 /∈ Bk) =

ik∏
i=ik−1+1

P

[
qi /∈ B

(
xt,

δk
2

) ∣∣∣∣∣qi /∈ ⋃
1≤l≤t−1

B

(
xl,

δk
2

)]

=

ik∏
i=ik−1+1

P
[
q̃i /∈ B

(
xt,

δk
2

)]

where q̃i ∼ U(J) with J := X \
⋃

1≤l≤t−1B(xl,
δk
2
). Because |xt−xl| > δk for all 1 ≤ l ≤ t−1,

we have B(xt,
δk
2
) ⊂ J . Thus,

P(xt /∈ Bk|x1, . . . , xt−1 /∈ Bk) =

ik∏
i=ik−1+1

(
1− δk

µ(J)

)
≤

ik∏
i=ik−1+1

(1− δk) = P(xt /∈ Bk).

Using the negative correlation, we have that

P(Bk ∩ S = ∅) ≤
T∏
t=1

P(x1 /∈ Bk) = (1− δk)T (ik−ik−1) ≤ (1− δk)
1

µkδk ≤ e
− 1

µk = e−2k+1

.

This ends the proof of the lemma. ■

Proof of Lemma 3.6 We start by proving that for a given x ∈ R, x /∈ A−1 a.s. For k ≥ 1
we have,

P(x ∈ Bk) ≤
⌈
µk
δk

⌉
δk ≤

(
µk
δk

+ 1

)
δk ≤ µk + δk ≤

1

2k
.

Therefore, P(x ∈ Rk) ≤ 1
2k−1 . This shows that P(x ∈ A−1) ≤ P(x ∈

⋂
k Rk) = 0. Taking the

union over all countable random variables in S, we have P(A−1 ∩ S ̸= ∅) = 0. ■
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Extension to all standard Borel spaces. Before we move on to proving the main
theorem in the most general framework of separable metric spaces, observe that the proof for
X = [0, 1] easily extends to all standard Borel space by Kuratowski’s theorem, in particular
for instance to X = Rd. Kuratowski’s theorem states that if X is an uncountable standard
Borel space it is isomorphic to [0, 1] with the Euclidean distance, meaning that there exists a
measurable bijection f : X → [0, 1]. Let X = (Xi)i≥0 be a stochastic process on X satisfying
FMV. Then, because f is measurable, X̃ := (f(Xi))i≥0 is a stochastic process on [0, 1] which
satisfies FMV. By Proposition 3.9, X̃ satisfies FS. Thus, because f is bijective, X also
satisfies FS.

3.9.4 Extension to General Separable Metric Spaces

The original proof of Soul = FMV by [Han21a] holds for any separable metric space (X , ρ).
In this section, we extend the proof above to hold in this more-general case as well, thus
completely answering the question from Question 3.5 in full generality, and completing the
proof of Theorem 3.4. For the remainder of this section, we let (X , ρ) denote a non-empty
separable metric space, and we take as the set B of measurable subsets of X the Borel
σ-algebra generated by the topology induced by ρ.

Theorem 3.17 (Restated) For any separable metric space (X , ρ), FMV = FS.

The main components of the proof are analogous to those for standard Borel spaces, with
a few important changes: most importantly, the following lemma.

Lemma 3.7. For any X satisfying condition FMV, for any δ, ϵ > 0 and m0 ∈ N, there
exists Mϵ,δ ∈ N with Mϵ,δ ≥ m0, and a sequence Gϵ,δ = {Gϵ,δ

1 , . . . , G
ϵ,δ
Mϵ,δ
} in B such that

every distinct i, j ∈ {1, . . . ,Mϵ,δ} satisfy Gϵ,δ
i ∩G

ϵ,δ
j = ∅, and every i ∈ {1, . . . ,Mϵ,δ} satisfies

supx,x′∈Gϵ,δ
i
ρ(x, x′) ≤ δ, and such that

P

X ∩

X \ Mϵ,δ⋃
i=1

Gϵ,δ
i

 ̸= ∅
 < ϵ.

In other words, Gϵ,δ is a sequence of disjoint measurable sets of diameter at most δ, which
cover all of the points in X with probability 1− ϵ.

Proof Let X̃ ⊆ X be a countable dense subset: that is, supx∈X inf x̃∈X̃ ρ(x̃, x) = 0. Enumer-
ate X̃ as {x̃1, x̃2, . . . , }. Let Gϵ,δ

1 = {x : ρ(x, x̃1) ≤ δ/2}, and for integers k ≥ 2 inductively
define Gϵ,δ

k = {x : ρ(x, x̃k) ≤ δ/2} \
⋃k−1
k′=1G

ϵ,δ
k′ . In particular, this collection {Gϵ,δ

k : k ∈ N}
forms a countable partition of X into measurable subsets of diameter at most δ (by the
triangle inequality). Now let X be any process satisfying FMV. It remains only to show
there exists a finite Mϵ,δ ∈ N satisfying the claim. Let M̂ = max{k : X ∩ Gϵ,δ

k ̸= ∅}, or
M̂ =∞ if there is no maximum. By hypothesis, P(M̂ <∞) = 1. Since the event {M̂ > M}
is non-increasing in M , limM→∞ P(M̂ > M) = P(M̂ = ∞) = 0. Thus, ∃Mϵ,δ ∈ N with
Mϵ,δ ≥ m0 such that P(M̂ > Mϵ,δ) < ϵ. In other words, P(∃k > Mϵ,δ : X ∩ Gϵ,δ

k ̸= ∅) < ϵ.
Since {Gϵ,δ

k : k ∈ N} is a partition of X , this implies the claim in the lemma. ■
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We are now ready for the main proof.

Proof of Theorem 3.17 Since condition FS clearly implies condition FMV, we focus on
showing FMV ⊂ FS. Let X be any process satisfying condition FMV, and for the sake of
obtaining a contradiction, suppose that condition FS fails: that is, there is an event A with
P(A) > 0, on which #{x ∈ X : X ∩ {x} ≠ ∅} =∞.

For each k ∈ N, let Nk ∈ N be such that

P
(
#X≤Nk

≥ 22k+2
∣∣A) ≥ 1− 1

2k+2
,

and let δk > 0 be such that

P
(

min
i,j≤Nk:Xi ̸=Xj

ρ(Xi, Xj) > δk

∣∣∣∣A) ≥ 1− 1

2k+3
.

Let Sk = {x ∈ X : X≤Nk
∩ {x} ≠ ∅} and let ϵk = 1

2k+3 . Let Gϵk,δk and Mϵk,δk be as in
Lemma 3.7, with m0 = 2k+2.

Let Ek denote the event that #X≤Nk
≥ 22k+2, mini,j≤Nk:Xi ̸=Xj

ρ(Xi, Xj) > δk, and X ∩(
X \

⋃
Gϵk,δk

)
= ∅ all hold simultaneously. In particular, by the union bound, P(Ek|A) ≥

1− 2−k−1.
For each k ∈ N, let bk =

⌈
2−k−2Mϵk,δk

⌉
, and let Qk

1, . . . , Q
k
bk

be independent uniform
samples from Gϵk,δk (also independent across k and independent from X). Then let Bk =⋃bk
i=1Q

k
i . For each k ∈ N, let Rk =

⋃
ℓ≥k Bℓ. Also let A−1 =

⋂
k∈NRk and for each k ∈ N,

let Ak = Rk \ Rk+1, and A0 = X \ R1. We will show that (with non-zero probability) the
countable measurable partition {Ak : k ∈ N ∪ {−1, 0}} violates the condition FMV, thus
obtaining a contradiction.

Now note that, on the event Ek, every x ∈ Sk is in a distinct set Gϵk,δk
i ∈ Gϵk,δk : that is,

by definition of Ek, every x ∈ Sk is in some Gϵk,δk
i ∈ Gϵk,δk , and since each Gϵk,δk

i has diameter
at most δk, while every distinct x, x′ ∈ Sk are δk-separated (on event Ek), no two elements
of Sk can be in the same Gϵk,δk

i . Therefore, on the event Ek we have that

P(Bk ∩ Sk = ∅|X) = P
(
Qk

1 ∩ Sk = ∅
∣∣X)bk =

(
1− |Sk|

Mϵk,δk

)bk
≤ e−|Sk|bk/Mϵk,δk ≤ e−2k ,

where the last inequality is based on the definition of bk and the fact that |Sk| ≥ 22k+2 on
the event Ek. Thus, on the event

⋂
k∈N Ek,

∞∑
k=1

P(Bk ∩ Sk = ∅|X) ≤
∞∑
k=1

e−2k <∞.

By the Borel-Cantelli lemma, this implies that there is an event E ′ of probability one, such
that on E ′ ∩

⋂
k∈N Ek, there exists κ ∈ N such that every k ≥ κ satisfies Bk ∩ Sk ̸= ∅, and

hence also X∩Rk ̸= ∅. Now, if X∩A−1 = ∅, this would further imply that |{k ∈ N : X∩Ak ̸=
∅}| =∞.

We next turn to showing that X∩A−1 = ∅ (a.s.). For any t, k ∈ N, by the union bound,
P(Xt ∈ Bk) ≤ bk

Mϵk,δk

≤ 2−k−1 (recalling that Mϵk,δk ≥ 2k+2, so that bk ≤ 2−k−1Mϵk,δk). By

112



the union bound, this further implies any t, k ∈ N satisfy P(Xt ∈ Rk) ≤
∑

ℓ≥k P(Xt ∈ Bℓ) ≤∑
ℓ≥k 2

−ℓ−1 = 2−k. Thus, P(Xt ∈ A−1) = P
(
Xt ∈

⋂
k∈NRk

)
≤ limk→∞ P(Xt ∈ Rk) = 0. By

the union bound, P(X ∩ A−1 ̸= ∅) = 0. Thus, there is an event E ′′ of probability one, on
which X ∩ A−1 = ∅.

Altogether, we have that on the event E ′ ∩ E ′′ ∩
⋂
k∈N Ek, |{k ∈ N : X ∩ Ak ̸= ∅}| = ∞.

Since P(E ′) = P(E ′′) = 1, and

P

(⋂
k∈N

Ek

)
≥ P

(
A ∩

⋂
k∈N

Ek

)
≥ P(A)−

∑
k∈N

P(A) (1− P(Ek|A))

≥ P(A)−
∑
k∈N

P(A)2−k−1 =
1

2
P(A),

by the union bound we have P
(
E ′ ∩ E ′′ ∩

⋂
k∈N Ek

)
≥ 1

2
P(A) > 0. In particular, this implies

P(|{k ∈ N : X ∩ Ak ̸= ∅}| =∞) > 0. Moreover, by the law of total probability,

P(|{k ∈ N : X ∩ Ak ̸= ∅}| =∞) = E
[
P
(
|{k ∈ N : X ∩ Ak ̸= ∅}| =∞

∣∣∣{Ak : k ∈ N}
)]
,

and hence (since X is independent of the random partition {Ak : k ∈ N ∪ {−1, 0}}), there
exists a deterministic choice of a partition {Âk : k ∈ N ∪ {−1, 0}} such that

P
(
|{k ∈ N ∪ {−1, 0} : X ∩ Âk ̸= ∅}| =∞

)
> 0,

contradicting condition FMV. This completes the proof. ■

3.9.5 Consequences on inductive and self-adaptive learning

Along with optimistically universal online learning, [Han21a] identifies two other learning
setups, namely inductive learning and self-adaptive learning.

Inductive learning. An inductive learning rule {ft}∞t=1 is a sequence of measurable func-
tions ft : X t−1×Y t−1×X → Y such that given training data (X<t,Y<t) and input point Xt′

with t′ > t outputs prediction ft(X<t,Y<t, Xt′). Its performance is measured in terms of,

LX(ft, f
∗; t) = lim sup

T→∞

1

T

t+T∑
t′=t

ℓ(ft(X<t,Y<t, Xt′), f
∗(Xt′)).

Let Suil denote the set of all processes X that admit strong universal inductive learning:
i.e., for which there exists an inductive learning rule {ft} such that for every measurable
f ∗ : X → Y , LX(ft, f

∗; t) → 0 (a.s.). Note that the difference between an online learning
rule and its inductive counterpart is that the latter will be fixed for an infinite horizon. It
was therefore shown by [Han21a] that Suil ⊂ Soul.
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Self adaptive learning rule. A self-adaptive learning rule {ft1,t2}∞t1≤t2 is a sequence of
measurable functions ft1,t2 : X t2−1×Y t1−1×X → Y such that given training data (X<t2 ,Y<t1)
and input point Xt2 it performs prediction ft1,t2(X<t2 ,Y<t1 , Xt2). Its performance is measured
in terms of

LX(ft1,·, f
∗; t1) = lim sup

T→∞

1

T

t1+T∑
t2=t1

ℓ(ft1,t2(X<t2 ,Y<t1 , Xt2), f
∗(Xt2)).

Let Sual denote the set of all processes X that admit strong universal self-adaptive learning:
i.e., for which there exists a self-adaptive learning rule {ft1,t2} such that for every measurable
f ∗ : X → Y , LX(ft1,·, f

∗; t1) → 0 (a.s.). Note that self-adaptive learning rules are more
expressive than inductive learning rules for they have access to additional unlabeled data,
like in the semi-supervised learning setup studied in the literature [CSZ09], yet are still less
powerful than online learning rules which would also have access to the respective labels. It
was therefore shown by [Han21a] that Suil ⊂ Sual ⊂ Soul.

Consequence of Theorem 3.17. For unbounded losses, [Han21a] shows that Suil =
Sual = Soul. However, once again this proof relied on the aforementioned complicated
arguments. But in light of our proof that Soul = FS, it becomes immediately apparent that
Suil = Sual = Soul and that these classes all admit memorization as an optimistically
universal learning rule (merely noting that FS ⊂ Suil, since for any X ∈ FS, the inductive
loss of the memorization rule ft becomes zero once t exceeds the index of the last novel
data point). This greatly simplifies the proof of these equivalences compared to the original
proof of [Han21a]. Note that while these three setups turn out to be equivalent when the
loss is unbounded, interesting distinctions do exist in the bounded case for which [Han21a]
proved that there exists an optimistically universal self-adaptive learning rule (which surpris-
ingly is necessarily different from nearest-neighbor), but no optimistically universal inductive
learning rule.

3.10 Conclusion

In this chapter, we characterized universal learning in the realizable setting. Of particular
interest, we provided a strong and weak optimistically universal learning rule 2C1NN for
bounded losses, which is a simple variant of the nearest neighbor algorithm. We further gave
a characterization of the processes admitting strong or weak universal learning.

For bounded losses, a major takeaway is that online learning can be performed well be-
yond standard statistical assumptions such as stationarity or ergodicity. On the other hand,
we saw that the case of unbounded losses is very restrictive. It would be interesting to
bridge the gap between these two cases by considering restricted universal learning. Specifi-
cally, by adding a constraint on the target functions—for example, moment constraints are
fairly common in the literature [Gyö+02; GO07]—one could hope to recover the large set of
learnable processes Soul characterized in this chapter, even for the unbounded loss case.

In our setting, we assume that the values are generated from the stochastic process X
through a target function f ∗ and without noise. Another interesting line of research would
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be to add noise to the value process Y. This relates to the Bayes consistency literature in
which an objective is to reach the minimal risk, known as the Bayes minimal risk; instead of
obtaining exact consistency i.e. vanishing average error rate as considered in this chapter. A
possible direction would be to find mild independence conditions on the noise—generalizing
the i.i.d. setting [TK22]—so that there exist learning rules which are Bayes universally con-
sistent under a large set of processes X.

Following these two directions, we study universal learning with adversarial noise in the
following Chapter 4.

115



116



Chapter 4

Universal Regression with Adversarial
Responses

4.1 Introduction

We study the classical statistical problem of metric-valued regression. Given an instance
metric space (X , ρX ) and a value metric space (Y , ρY) with a loss ℓ, one observes instances
in X and aims to predict the corresponding values in Y . The learning procedure follows
an iterative process where successively, the learner is given an instance Xt and predicts
the value Yt based on the historical samples and the new instance. The learner’s goal is
to minimize the loss of its predictions Ŷt compared to the true value Yt. In particular,
Y = {0, 1} (resp. Y = {0, . . . , k}) with 0-1 loss corresponds to binary (resp. multiclass)
classification while Y = R corresponds to the classical regression setting. Motivated by
the increase of new types of data in numerous data analysis applications— e.g., data lying
on spherical spaces [Cha89; MJM00], manifolds [Shi+09; Dav+10; Fle13], Hilbert spaces
[Zai+19], Hadamard spaces [LM21]—we will study the case where both instances and value
spaces are general separable metric spaces. This general setting adopted in the literature
on universal learning includes and extends the specific classification and regression settings
mentioned above. In this context, we model the stream of data as a general stochastic
process (X,Y) := (Xt, Yt)t≥1, and are interested in consistent predictions that have vanishing
average excess loss compared to any fixed measurable predictor functions f : X → Y , i.e.,
1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) → 0 (a.s.). Naturally, one would hope that the algorithm

converges for a large class of value functions. Thus, we are interested in universally consistent
learning rules that are consistent irrespective of the value process Y.

The i.i.d. version of this problem where one assumes that the sequence (X,Y) is i.i.d. has
been extensively studied. A classical result is that for binary classification in Euclidean
spaces, k−nearest neighbor (kNN) with k/ lnT →∞ and k/T → 0 is universally consistent
under mild assumptions on the distribution of (X1, Y1) [Sto77; Dev+94; DGL13]. These
results were then extended to a broader class of spaces [DGL13; Gyö+02] and more recently,
[Han+21; GW21; CK22] provided universally consistent algorithms for any essentially sepa-
rable metric space X which are precisely those for which universal consistency is achievable
for i.i.d. pairs (Xt, Yt)t≥1 of instances and responses. In parallel, a significant line of work
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aimed to obtain such results in non-i.i.d. settings, notably relaxations of the i.i.d. assump-
tions such as stationary ergodic processes [MYG96; GLM99; Gyö+02] or processes satisfying
the law of large numbers [MKN99; GG09; SHS09].

Optimistic universal learning. We aim to understand which are the minimal assump-
tions on the data sequences for which universal consistency is still achievable. As such, we
follow the optimistic decision theory [Han21a] which formalizes the paradigm of “learning
whenever learning is possible". Precisely, the provably minimal assumption for a given ob-
jective is that this task is achievable, or in other words that learning is possible. The goal
then becomes to 1. characterize for which settings this objective is achievable and 2. if
possible, provide learning rules that achieve this objective whenever it is achievable. These
are called optimistically universal learning rules and enjoy the convenient property that if
they failed the objective, any other algorithms would fail as well.

This is precisely the paradigm that we used to sutdy minimal assumptions in the realizable
case in Chapter 3. This is the online learning setting in which we assume that there exists
an unknown underlying function f ∗ : X → Y such that Yt = f ∗(Xt). We recall that in this
setting, the two questions described above were recently settled. For bounded losses, a simple
variant of the nearest neighbor algorithm is optimistically universal and learnable processes
are significantly larger than stationary processes. On the other hand, for unbounded losses,
universal regression is extremely restrictive since the only learnable processes are those which
visit a finite number of points almost surely. In this chapter, we tackle the general non-
realizable setting. As an initial result, for bounded losses, [Han22] proposed an algorithm that
achieves universal consistency for a large class of processes X, which intuitively asks that the
sub-measure induced by empirical visits of the input sequence be continuous (Condition CS).
There is however a significant gap between the proposed condition and the learnable processes
in the bounded noiseless setting (Condition SMV). [Han22] then left open the question of
identifying the precise provably-minimal conditions to achieve consistency, and whether there
exists an optimistically universal learning rule.

Adversarial responses and related works in learning with experts. The consistency
results in [Han22] hold for arbitrary value processes Y, arbitrarily correlated to the instance
process X. We consider the slightly more general adversarial responses and show that we
can obtain the same results as for adversarial processes, without any generalizability cost.
Formally, adversarial responses can not only arbitrarily depend on the instance sequence X,
but may also depend on past predictions and past randomness used by the learner. This is a
non-trivial generalization for randomized algorithms—note that randomization is necessary
to obtain guarantees for general online learning problems [BC+12; Sli+19]. There is a rich
theory for arbitrary or adversarial responses Y when the reference functions f ∗ : X → Y
are restricted to specific function classes F . As a classical example, for the noiseless bi-
nary classification setting, there exist learning rules which guarantee a finite number of
mistakes for arbitrary sequences X, if and only if the class F has finite Littlestone dimen-
sion [Lit88]. Other restrictions on the function class have been considered [CL06; BPS09;
RST15b]. Universal learning diverges from this line of work by imposing no restrictions
on function classes—namely all measurable functions—but instead restricting instance pro-
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cesses X to the optimistic set where universal consistency is achievable. Nevertheless, the
algorithms we introduce for adversarial responses use as subroutine the traditional exponen-
tially weighted forecaster for learning with expert advice from the online learning literature,
also known as the Hedge algorithm [LW94; Ces+97b; FS97].

4.1.1 Contributions

In this chapter, we provide answers to two fundamental questions in universal regression.
First, we exactly characterize the set of processes we call learnable. These are instance
processes X for which universal learning is possible, i.e., consistency is achieved for every
process (Xt, Yt)t≥1 with covariate sequence X. Second, we provide optimistically universal
learning rules, i.e., a unique algorithm that achieves universal consistency for all processes
X for which this is achievable by some learning rule. The specific answers to these questions
depend on the value space and loss (Y , ℓ) as detailed below.

Universal learning with empirically integrable responses. We introduce a mild
moment-type assumption on the responses Y, namely empirical integrability, that roughly
asks that one can bound the tails of the empirical first moment of Y. We then proceed
to analyze the processes for which learning adversarial responses guaranteed to satisfy this
assumption, is achievable. The answer depends on a property of the value space and loss
(Y , ℓ) which we denote F-TiME.

• If every ball Bℓ(y, r) of (Y , ℓ) satisfies the F-TiME property, the class of processes X
for which universal consistency under adversarial empirically integrable responses may
be achieved is the so-called Sublinear Measurable Visits (SMV) class. This coincides
with the class of processes that admits universal learning for bounded losses in the
realizable setting (noiseless responses, see Chapter 3). In particular, this shows that
for value spaces with bounded losses satisfying F-TiME, one can extend consistency
results from the realizable setting to the adversarial one at no generalizability cost.

• Otherwise, the classes of processes X for which one can achieve universal consistency
for empirically integrable responses is a smaller class called Continuous Submeasure
(CS). This is a condition that was already considered by [Han22], which showed that
for bounded metric losses, one can achieve universal learning under CS processes. Our
results show that whenever the F-TiME condition is not satisfied for bounded losses,
CS is also a necessary condition for universal learning.

Also, in both cases, we give an optimistically universal learning rule, that is implicit for the
first case—it uses as subroutine the learning rule for mean-estimation—and explicit for the
second. These results resolve an open question from [Han22].

Intuitively, the property F-TiME asks that, for any fixed tolerance ϵ > 0, there is a
learning rule that solves the analogous prediction problem without covariates X—mean-
estimation—in finite time within the tolerance ϵ. This property is satisfied for “reasonable”
value spaces, e.g., totally-bounded spaces or countably-many-classes classification (N, ℓ01),
but we also provide an explicit example of bounded metric space that does not satisfy this
condition.
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To motivate the introduction of the empirical integrability condition we show that a
weaker moment-type assumption on responses—that lim supT→∞

1
T

∑T
t=1 ℓ(y0, Yt) <∞ (a.s.)

for some y0 ∈ Y—is not sufficient to extend the results from the bounded loss case to un-
bounded losses, resolving an open question from the universal learning literature. Further,
empirical integrability is essentially necessary to obtain consistency results: it is automati-
cally satisfied if the loss is bounded and for the i.i.d. setting it exactly asks that responses
Y have finite first moment.

As a direct implication of this work, finite second moment E[Y 2] is sufficient to achieve
consistency for stationary ergodic processes. This result relaxes the conditions of all past
works to the best of our knowledge, which required finite fourth moment E[Y 4] [GO07].

Universal learning with unrestricted responses. For completeness, we also charac-
terize the set of learnable processes without assuming empirical integrability on responses.
Since the two notions coincide for bounded losses, we focus on unbounded losses. While
there always exists an optimistically universal learning rule, the precise class of universally
learnable processes depends on an alternative involving the mean-estimation problem. Ei-
ther mean-estimation on (Y , ℓ) is impossible and universal learning is never achievable, or
universal learning is achievable for processes that only visit a finite number of distinct points,
a property called Finite Support (FS). Along the way, we show that mean-estimation with
adversarial responses is always possible for metric losses, a result of independent interest.

4.1.2 Organization of the chapter

After presenting the learning framework and definitions in Section 4.2, we describe in Sec-
tion 4.3 our main results. Although these are stated for general value spaces under the
empirical integrability constraint, the proofs build upon the bounded loss case. We follow
this proof structure: in Section 4.4 we consider totally-bounded value spaces for which we
can give explicit optimistically universal learning rules, in Section 4.5 we consider general
bounded loss spaces. We then turn to unbounded and mean estimation in Section 4.6. Last,
in Section 4.7 we introduce the empirical integrability and prove our general results for un-
bounded losses. We conclude discuss open directions in Section 4.8. We give the complete
proofs from Sections 4.4 to 4.7 in the appendix Sections 4.9 to 4.12 respectively.

4.2 Formal setup

We use the same framework for universal learning as introduced in Chapter 4. We briefly
recall the setup here.

Instance and value spaces. Consider a separable metric instance space (X , ρX ) equipped
with its Borel σ−algebra B, and a separable metric value space (Y , ρY) given with a loss ℓ. We
recall that a metric space is separable if it contains a dense countable set. Unless mentioned
otherwise, we suppose that the loss ℓ is a generalized-metric on Y as per Definition 2.1. That
is, it is symmetric, positive, and satisfies the following relaxed inequality: for any 0 < ϵ ≤ 1,
there exists a constant cℓϵ such that for all y1, y2, y3 ∈ Y , ℓ(y1, y2) ≤ (1+ϵ)ℓ(y1, y3)+c

ℓ
ϵℓ(y2, y3).
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An important example for machine learning of generalized metrics are powers of metrics,
i.e., there exists α ≥ 1 such that the loss is ℓ = (ρY)

α (e.g. see [EJ20, Lemma 2.3]). As
a remark, all of the results in this work can be generalized to essentially separable metric
instance spaces, a condition introduced by [Han+21] which was shown to be the largest
class of metric spaces for which learning possible. However, for the sake of exposition, we
restrict ourselves to separable metric spaces. We denote ℓ̄ := supy1,y2∈Y ℓ(y1, y2). In the first
Sections 4.4 and 4.5 of this work, we suppose that the loss ℓ is bounded, i.e., ℓ̄ < ∞. The
case of unbounded losses is addressed in the next Sections 4.6 and 4.7. We also recall the
notion of near-metrics (Definition 2.1 for which we will provide some results. We say that ℓ
is a near-metric on Y if it is symmetric, positive, and it satisfies a relaxed triangle inequality
ℓ(y1, y2) ≤ cℓ(ℓ(y1, y3) + ℓ(y2, y3)) where cℓ is a finite constant.

Online learning on adversarial responses. We consider the standard online learning
framework where at step t ≥ 1, one observes a new instance Xt ∈ X and predicts a value
Ŷt ∈ Y based on the past history (Xu, Yu)u≤t−1 and the new instance Xt only. The learning
rule may be randomized, where the private randomness used at each iteration t is drawn
from a fixed probability space R and independent of the data generation process used to
generate Yt. This is the same framework as introduced in Chapter 2, however, we need to
carefully explicit the form of the randomness which will be important to define adversarial
responses.

Definition 4.1. An online learning rule is a sequence f· := {ft, Rt}t≥1 of measurable func-
tions ft : R×X t−1 × Y t−1 ×X → Y together with a distribution Rt on R.

The prediction at time t of the learning rule f· is ft(rt; (Xu)≤t−1, (Yu)≤t−1, Xt) where
rt ∼ Rt is independent of the new value Xt and the past history (Xu, Yu)≤t. For simplicity,
we may omit the internal randomness rt and write directly ft : X t−1 × Y t−1 × X → Y . We
are interested in general data-generating processes. To this means, a possible very general
choice of instances and values are general stochastic processes (X,Y) := {(Xt, Yt)}t≥1 on the
product space X×Y . This corresponds to the arbitrarily dependent responses under instance
processes X [Han22]. In this chapter, we consider the slightly more general adversarial
responses where the value Yt is also allowed to depend on the past private randomness
(ru)u≤t−1 used by the learning rule f·.

Definition 4.2. Let X = (Xt)t≥1 be a stochastic process on X . An adversarial response
mechanism on X is a stochastic process {(X̃t,Yt)}t≥1 where X̃t ∈ X , Yt = Yt(· | ·) is a
Markov kernel from Rt−1 to Y, and (X̃t)t≥1 has same distribution as X.

For a given learning rule f·, having observed the sampled randomness r1, . . . , rt−1 ∈ R
used by the learning rule before time t, the target value at time t is Yt = Yt(r1, . . . , rt−1).
Again, for simplicity, we will refer to the adversarial response mechanism as Y, which allows
us to view the data generating process as a usual stochastic process on X ×Y . Of course, if
the learning rule is deterministic, adversarial responses are equivalent to arbitrary dependent
responses as in [Han22], but this is not necessarily the case for general randomized algorithms.
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Empirically integrable responses. We introduce a novel assumption on the responses,
namely empirical integrability.

Definition 4.3. A process (Yt)t≥1 is empirically integrable if there exists y0 ∈ Y such that
for any ϵ > 0, almost surely there exists M ≥ 0 for which

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

Unless mentioned otherwise, we will focus on the case where responses satisfy this prop-
erty. This is a mild assumption on the responses. Indeed, it is worth noting that this
condition is always satisfied if the loss ℓ is bounded. Further, if for some y0 ∈ Y , ℓ(y0, Yt)
admits moments of order p > 1, the empirical integrability condition is also satisfied.

Universal consistency. In this general setting, we are interested in online learning rules
which achieve low long-run average loss compared to any fixed prediction function for general
adversarial mechanisms. Given a learning rule f· and an adversarial process (X,Y), for any
measurable function f ∗ : X → Y , we denote the long-run average excess loss as

L(X,Y)(f·, f
∗) := lim sup

T→∞

1

T

T∑
t=1

(ℓ(ft(X≤t−1,Y≤t−1, Xt), Yt)− ℓ(f ∗(Xt), Yt)) .

We can then define the notion of consistency which asks that the excess loss compared to
any measurable function vanishes to zero.

Definition 4.4. Let (X,Y) be an adversarial process and f· a learning rule. f· is consistent
under (X,Y) if for any measurable function f ∗ : X → Y, we have L(X,Y)(f·, f

∗) ≤ 0, (a.s.).

For example, if (X,Y) is an i.i.d. process on X ×Y following a distribution µ where µ has
a finite first-order moment, achieving consistency is equivalent to reaching the optimal risk
R∗ := inff∗ E(X,Y )∼µ [ℓ(f

∗(X), Y )] , where the infimum is taken over all measurable functions
f ∗ : X → Y . As introduced in [Han21a; Han22], consistency against all measurable function
is the natural extension of consistency for i.i.d. processes (X,Y) to non-i.i.d. settings. The
goal of universal learning is to design learning rules that are consistent for any adversarial
process Y that is empirically integrable.

Definition 4.5. Let X be a stochastic process on X and f· a learning rule. f· is universally
consistent under X for empirically integrable adversarial responses if for any adversarial
process (X̃,Y) with X̃ ∼ X and such that Y is empirically integrable, f· is consistent.

Optimistic universal learning. Given this regression setup, we define Solar (Strong
universal Online Learning with Adversarial Responses) as the set of processes X for which
universal consistency with adversarial responses is achievable,

Solar = {X : ∃f· universally consistent learning rule under X
for empirically integrable adversarial responses}.
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Note that this learning rule is allowed to depend on the process X. Similarly, in the
realizable (noiseless) setting, one can define the set Soul (Strong Online Universal Learning)
of processes for which there exists a learning rule that is universally consistent for realizable
responses when the loss is bounded (and hence, the empirical integrability condition is always
satisfied). Of course, Solar ⊂ Soul. We are then interested in learning rules that would
achieve universal consistency whenever possible.

Definition 4.6. A learning rule f· is optimistically universal for adversarial regression with
empirically integrable responses if it is universally consistent under all X ∈ Solar for ad-
versarial empirically integrable responses.

Similarly, we say that a learning rule is optimistically universal for noiseless regression if it
is universally consistent under all X ∈ Soul for noiseless responses when the loss is bounded.
In this general framework, the main interests of optimistic learning are 1. identifying the
set of learnable processes with adversarial responses Solar, 2. determining whether there
exists an optimistically universal learning rule, and 3. constructing one if it exists.

4.3 Main results

We introduce some conditions on stochastic processes. For any process X on X , given any
measurable set A ∈ B of X , let µ̂X(A) := lim supT→∞

1
T

∑T
t=1 1A(Xt). We consider the

condition CS (Continuous Sub-measure) which we recall from Condition CS.

Condition CS. For every decreasing sequence {Ak}∞k=1 of measurable sets in X with Ak ↓ ∅,
E[µ̂X(Ak)] −→

k→∞
0.

It is known that this condition is equivalent to E[µ̂X(·)] being a continuous sub-measure
[Han21a], hence the adopted name CS. Importantly, CS processes contain in particular
i.i.d., stationary ergodic or stationary processes. We now introduce a second condition
SMV (Sublinear Measurable Visits) which asks that for any partition, the process X visits a
sublinear number of sets of the partition. We recall its definition from Condition SMV.

Condition SMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X such that⋃∞
k=1Ak = X , (every countable measurable partition), |{k ≥ 1 : Ak ∩ X≤T ̸= ∅}| =

o(T ), (a.s.).

This condition is significantly weaker and allows to consider a larger family of processes
CS ⊂ SMV, with CS ⊊ SMV whenever X is infinite [Han21a]. Note that these sets depend
on the instance space (X , ρX ). This dependence is omitted for simplicity. We first consider
bounded losses. In the noiseless case, where there exists some unknown measurable function
f ∗ : X → Y such that the stochastic process Y is given as Yt = f ∗(Xt) for all t ≥ 1, we showed
in Chapter 3 that learnable processes are exactly Soul = SMV for bounded losses. We also
introduced a learning rule 2-Capped-1-Nearest-Neighbor (2C1NN), variant of the classical
1NN algorithm, which is optimistically universal in the noiseless case for bounded losses.
Interestingly, we show that this same learning rule is universally consistent for unbounded
losses in the noiseless setting with empirically integrable responses.
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Theorem 4.1. Let (Y , ℓ) be a separable near-metric space. Then, 2C1NN is optimistically
universal in the noiseless setting with empirically integrable responses, i.e., for all processes
X ∈ SMV and for all measurable target functions f ∗ : X → Y such that (f ∗(Xt))t≥1 is
empirically integrable, L(X,(f∗(Xt))t≥1)(2C1NN, f

∗) = 0 (a.s.).

In general, one has Solar ⊂ SMV. It was posed as a question whether we could recover
the complete set SMV for learning under adversarial—or arbitrary—processes [Han22].

Question 4.1 ([Han22]). For bounded losses, does there exist an online learning rule that is
universally consistent for arbitrary responses under all processes X ∈ SMV(= Soul)?

We answer this question with an alternative. Depending on the bounded value space
(Y , ℓ), either Solar = SMV or Solar = CS, but in both cases there exists an optimistically
universal learning rule. We now recall the definition of the Property F-TiME (Finite-Time
Mean Estimation) on the value space (Y , ℓ) which characterizes this alternative.

Property F-TiME. For any η > 0, there exists a horizon time Tη ≥ 1, an online learning
rule g≤Tη such that for any y := (yt)

Tη
t=1 of values in Y and any value y ∈ Y, we have

1

Tη
E

[
Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

]
≤ η.

We are now ready to state our main results for bounded value spaces. The first result
shows that if the value space satisfies the above property locally, we can universally learn all
the processes in Soul even under adversarial responses.

Theorem 4.2. Suppose that any ball of (Y , ℓ), Bℓ(y, r) satisfies F-TiME. Then, Solar =
SMV and there exists an optimistically universal learning rule f· for adversarial regression
with empirically integrable responses., i.e., such that for any stochastic process (X,Y) on
X ×Y with X ∈ SMV and Y empirically integrable, for any measurable function f : X → Y
we have L(X,Y)(f·, f

∗) ≤ 0, (a.s.).

F-TiME defines a non-trivial alternative, and an explicit construction of a non-F-TiME
bounded metric space (Y , ρY) is given in Section 4.5.1 with Y = N. Nevertheless, F-TiME
is satisfied by a large class of spaces, e.g., any totally-bounded metric space and countable
classification (Y , ℓ) = (N, ℓ01) satisfy F-TiME. Hence, we can universally learn all Soul
processes with adversarial responses, for countable classification (the empirical integrability
condition is automatically satisfied because the loss is bounded). If F-TiME is not satisfied
locally, we have the following result which shows that learning under CS is still possible but
universal learning beyond CS processes cannot be achieved.

Theorem 4.3. Suppose that there exists a ball Bℓ(y, r) of (Y , ℓ) that does not satisfy F-TiME.
Then, Solar = CS and there exists an optimistically universal learning rule f· for adversar-
ial regression with empirically integrable responses., i.e., such that for any stochastic process
(X,Y) on (X ,Y) with X ∈ CS and Y empirically integrable, then, for any measurable func-
tion f : X → Y we have L(X,Y)(f·, f

∗) ≤ 0, (a.s.).
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For metric losses ℓ = ρY , it was already known [Han22] that universal learning under
adversarial responses under all processes in CS is achievable by some learning rule. Hence,
Theorem 4.3 implies that this learning rule is automatically optimistically universal for
adversarial regression for all metric value spaces with bounded loss which do not satisfy
F-TiME. However, our result is stronger in that consistency holds for any generalized-
metric ℓ, in particular power of a metric losses ℓ = ραY , α ≥ 1, and for unbounded value
spaces.

Remark 4.1. As a direct consequence of Theorems 4.2 and 4.3, for stationary ergodic pro-
cesses, finite second moment of the values E[Y 2] < ∞ suffices for consistency, in agree-
ment with the known results for the i.i.d. setting. This relaxes the fourth-moment conditions
E[Y 4] <∞ proposed in the literature [GO07].

We now consider removing the empirical integrability assumption. As mentioned above,
for bounded losses this assumption is automatically satisfied, hence Theorems 4.2 and 4.3
apply directly, with a simplified alternative: whether (Y , ℓ) satisfies F-TiME.

Corollary 4.1. Suppose that ℓ is bounded.

• If (Y , ℓ) satisfies F-TiME. Then, Solar = SMV(= Soul).

• If (Y , ℓ) does not satisfy F-TiME. Then, Solar = CS.

Further, an optimistically universal learning rule for adversarial regression always exists,
i.e., achieving universal consistency with adversarial responses under any X ∈ Solar.

It remains to analyze the case of unbounded losses without empirical integrability as-
sumption on the responses. To avoid confusions, we denote by Solar-u the set of processes
that admit universal learning with adversarial (unrestricted) responses. Unfortunately, even
in the noiseless setting, universal learning is extremely restrictive in that case. Specifically,
in Chapter 3 we showed that the set of universally learnable processes Soul for noiseless
responses is reduced to the set FS (Finite Support) of processes that visit a finite number of
different points almost surely. We briefly recall its formal definition from Condition FS.

Condition FS. The process X satisfies |{x ∈ X : {x} ∩ X ̸= ∅}| <∞ (a.s.).

We show that in the adversarial setting we still have Solar-u = FS when ℓ is a metric:
we can solve the fundamental problem of mean estimation where one sequentially makes
predictions of a sequence Y of values in (Y , ℓ) and aims to have a better long-run average
loss than any fixed value. If responses Y are i.i.d. this is the Fréchet means estimation
problem [EJ20; Sch22; Jaf22; BJ22]. Our main result on mean estimation holds in general
spaces and is of independent interest.

Theorem 4.4. Let (Y , ℓ) be a separable metric space. There exists an online learning rule
f· that is universally consistent for adversarial mean estimation, i.e., for any adversarial
process Y on Y, almost surely, for all y ∈ Y,

lim sup
T→∞

1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y, Yt)) ≤ 0.
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Learning
setting Bounded loss Unbounded loss

Unbounded loss with
empirically integrable

responses
Noiseless
responses Soul = SMV [Chapter 3] Soul = FS [Chapter 3] Identical to

bounded loss [Chapter 4]

Adversarial
(or arbitrary)

responses

Solar ⊃ CS (metric loss) [Han22]
Does (Y , ℓ) satisfy F-TiME?{

Yes Solar = SMV
No Solar = CS

[Chapter 4]

Is ME achievable?{
Yes Solar-u = FS
No Solar-u = ∅

[Chapter 4]
Identical to
bounded loss [Chapter 4]

Table 4.1: Characterization of learnable instance processes in universal consistency (ME =
Mean Estimation).

Further, we show that for powers of metric we may have Solar-u = ∅. Specifically, for
real-valued regression with Euclidean norm and loss | · |α and α > 1, adversarial regression
or mean estimation are not achievable. We then show that we have an alternative: either
mean estimation with adversarial responses is achievable, Solar-u = FS and we have an
optimistically universal learning rule; or mean estimation is not achievable and Solar-u = ∅.
Thus, even in the best case scenario for unbounded losses, Solar-u = FS, which is already
extremely restrictive. A natural question is whether imposing moment conditions on the
responses would allow recovering the large set SMV as learnable processes instead, which is
formalized as follows.

Question 4.2 ([BCH22]). For unbounded losses ℓ, does there exist an online learning rule f·
which is consistent under every X ∈ SMV, for every measurable function f ∗ : X → Y such
that there exists y0 ∈ Y with lim supT→∞

1
T

∑T
t=1 ℓ(y0, f

∗(Xt)) <∞ (a.s.), i.e., such that we
have LX(f·, f

∗) = 0 (a.s.)?

We answer negatively to this question. Under this first-moment condition, universal
learning under all SMV processes is not achievable even in this noiseless case. We show
the stronger statement that noiseless universal learning under all processes having pointwise
convergent relative frequencies—which are included in CS—is not achievable. However,
under the empirical integrability condition introduced above we are able to recover all positive
results from bounded losses.

Tables 4.1 and 4.2 summarize known results in the literature and our contributions. As
a reminder, FS ⊂ CS ⊂ SMV in general, and FS ⊊ CS ⊊ SMV whenever X is infinite
[Han21a].

1In this chapter, an algorithm is optimistically universal if it is universally consistent for all processes
under which universal learning is possible in the considered setting. OptiNet, Proto-NN, and MedNet are
optimistically universal in another sense, their guarantees hold in all metric spaces for which universal learning
with i.i.d. pairs of instances and responses is achievable: essentially separable spaces (X , ρX ) [Han+21]. Our
learning rules also enjoy this second optimistic property.
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Learning
setting Loss (and response/setting constraints) Learning rule

Guarantees
for which

processes X?

Optimist.
universal? Reference

I.i.d. Finite or countable class., 01-loss OptiNet i.i.d. No [Han+21]
responses Real-valued regression + integrable Proto-NN i.i.d. No [GW21]

Metric loss + integrable MedNet i.i.d. No [CK22]
Noiseless Bounded loss 2C1NN SMV Yes [Chapter 3]
responses Unbounded loss Memorization FS Yes [Chapter 3]

(realizable) Unbounded + EI 2C1NN SMV Yes [Chapter 4]
Bounded loss + metric loss Hedge-variant CS Not always [Han22]
Bounded loss + F-TiME (1 + δ)C1NN-hedged SMV Yes [Chapter 4]

Adversarial Bounded loss + not F-TiME Hedge-variant 2 CS Yes [Chapter 4]
(or arbitrary) Unbounded loss + ME ME-algorithm FS Yes [Chapter 4]

responses Unbounded loss + not ME N/A ∅ N/A [Chapter 4]
Unbounded + EI + local F-TiME EI-(1 + δ)C1NN-hedged SMV Yes [Chapter 4]
Unbounded + EI + not local F-TiME EI-Hedge-variant CS Yes [Chapter 4]

Table 4.2: Proposed learning rules for universal consistency (ME = Mean Estimation and
EI = Empirical Integrability).1

4.4 An optimistically universal learning rule for totally-
bounded value spaces

We start our analysis of universal learning under adversarial responses with totally-bounded
value spaces, for which we can give simple and explicit algorithms. Hence, we suppose in
this section that the value space (Y , ℓ) is totally-bounded, i.e., for any ϵ > 0 there exists
a finite ϵ−net Yϵ of Y such that for any y ∈ Y , there exists y′ ∈ Yϵ with ℓ(y, y′) < ϵ. In
particular, a totally-bounded space is necessarily bounded and separable. The goal of this
section is to show that for such value spaces, adversarial universal regression is achievable
for all processes in SMV as in the noiseless setting (the empirical integrability assumption
is automatically satisfied in this context). Further, we explicitly construct an optimistically
universal learning rule for adversarial responses.

We recall that in the noiseless setting, the 2C1NN learning rule achieves universal consis-
tency for all SMV processes as shown in Chapter 3. At each iteration t, This rule performs
the nearest neighbor rule over a restricted dataset instead of the complete history X≤t−1.
The dataset is updated by keeping track of the number of times each point Xu was used as
nearest neighbor. This number is then capped at 2 by deleting from the current dataset any
point which has been used twice as representative. Unfortunately, this learning rule is not
optimistically universal for adversarial responses. More generally, [CK22] noted that any
learning rule which only outputs observed historical values cannot be consistent, even in the
simplest case of X = {0} and i.i.d. responses Y. For instance, take Y = B̄(0, 1) the closed
ball of radius 1 in the plane R2 with the euclidean loss, consider the points A,B,C ∈ Y
representing the equilateral triangle e2ikπ/3 for k = 0, 1, 2, and let Y be an i.i.d. process
following the distribution which visits A, B or C with probability 1

3
. Predictions within ob-

served values, i.e., A,B or C, incur an average loss of 2
3

√
3 > 1 where 1 is the loss obtained

with the fixed value (0, 0).
To construct an optimistically universal learning rule for adversarial responses, we first

generalize a result from Chapter 3. Instead of the 2C1NN learning rule, we use (1+ δ)C1NN
rules for δ > 0 arbitrarily small. Similarly as in 2C1NN, each new input Xt is associated to a
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representative ϕ(t) used for the prediction Ŷt = Yϕ(t). In the (1+ δ)C1NN rule, each point is
used as a representative at most twice with probability δ and at most once with probability
1− δ. In order to have this behavior irrespective of the process X, which can be thought of
been chosen by a (limited) adversary within the Soul processes, the information of whether
a point can allow for 1 or 2 children is only revealed when necessary. Specifically, at any step
t ≥ 1, the algorithm initiates a search for a representative ϕ(t). It successively tries to use the
nearest neighbor of Xt within the current dataset and uses it as a representative if allowed
by the maximum number of children that this point can have. However, the information
whether a potential representative u can have at most 1 or 2 children is revealed only when
u already has one child.

• If u allows for 2 children, it will be used as final representative ϕ(t).

• Otherwise, u is deleted from the dataset and the search for a representative continues.

The rule is formally described in Algorithm 4.1, where ȳ ∈ Y is an arbitrary value, and the
maximum number of children that a point Xt can have is represented by 1 + Ut. In this
formulation, all Bernoulli B(δ) samples are drawn independently of the past history. Note
that if δ = 1, the (1 + δ)C1NN learning rule coincides with the 2C1NN learning rule.

Theorem 4.5. Fix δ > 0. For any separable Borel space (X ,B) and any separable near-
metric output setting (Y , ℓ) with bounded loss, in the noiseless setting, (1 + δ)C1NN is opti-
mistically universal.

We now construct our algorithm. This learning rule uses a collection of algorithms f ϵ·
which each yield an asymptotic error at most a constant factor from ϵ

1
α+1 . Now fix ϵ > 0

and let Yϵ be a finite ϵ−net of Y for ℓ. Recall that we denote by ℓ̄ the supremum loss. We
pose

Tϵ :=

⌈
ℓ̄2 ln |Yϵ|

2ϵ2

⌉
and δϵ :=

ϵ

2Tϵ
.

The quantity Tϵ will be the horizon window used by our learning rule to make its prediction
using the (1+δϵ)C1NN learning rule. Precisely, let ϕ be the representative function from the
(1 + δϵ)C1NN learning rule. Note that this representative function ϕ(t) is defined only for
times t where a new instanceXt is revealed, otherwise (1+δϵ)C1NN uses simple memorization
Ŷt = Yu. For simplicity, we will denote by N = {t : ∀u < t,Xu ̸= Xt} these times of new
instances. For t ∈ N , we denote by d(t) the depth of time t within the graph constructed
by (1 + δϵ)C1NN, and define the horizon Lt = d(t) mod Tϵ. Intuitively, the learning rule f ϵ·
performs the classical Hedge algorithm [CL06] on clusters of times that are close within the
graph ϕ. Precisely, we define the equivalence relation between times as follows:

t1
ϕ∼ t2 ⇐⇒


ϕLu1 (u1) = ϕLu2 (u2) and |{u < ti : Xu = Xti}| ≤ Tϵ

ϵ
, i = 1, 2

or
Xt1 = Xt2 and |{u < ti : Xu = Xt1}| > Tϵ

ϵ
, i = 1, 2,

where ui = min{u : Xu = Xti} is the first occurrence of the considered instance point Xti .
Hence, multiple occurrences of the same instance value fall in the same cluster and for new
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Output: Predictions Ŷt = (1 + δ)C1NNt(X<t,Y<t, Xt) for t ≤ T
Ŷ1 := ȳ // Arbitrary prediction at t = 1
D2 ← {1}; n1 ← 0; // Initialisation
for t = 2, . . . , T do

if exists u < t such that Xu = Xt then
Ŷt := Yu

else
continue← True // Begin search for available representative ϕ(t)
while continue do

ϕ(t)← min {l ∈ argminu∈Dt ρX (Xt, Xu)}
if nϕ(t) = 0 then // Candidate representative has no children
Dt+1 ← Dt ∪ {t}
continue← False

else // Candidate representative has one child
Uϕ(t) ∼ B(δ)
if Uϕ(t) = 0 then
Dt ← Dt \ {ϕ(t)}

else
Dt+1 ← (Dt \ {ϕ(t)}) ∪ {t}
continue← False

end
end
Ŷt := Yϕ(t)
nϕ(t) ← nϕ(t) + 1
nt ← 0

end
Algorithm 4.1: The (1 + δ)C1NN learning rule

instance points times t ∈ N , all times of a given cluster share the same ancestor up to
generation at most Tϵ − 1. Additionally, a cluster is dedicated to instance points that have
a significant number of duplicates. To make its prediction at time t, f ϵ· performs the Hedge

algorithm based on values observed on its current cluster {u ≤ t : u
ϕ∼ t}. Let ηϵ :=

√
8 ln |Yϵ|
ℓ̄2Tϵ

and define the losses Lty =
∑

u<t:u
ϕ∼t
ℓ(Yu, y). The learning rule f ϵt (X≤t−1,Y≤t−1, Xt) outputs

a random value in Yϵ independently from the past history with

P(Ŷt(ϵ) = y) =
e−ηϵL

t
y∑

z∈Yϵ
e−ηϵLt

z
, y ∈ Yϵ,

where, for simplicity, we denoted Ŷt(ϵ) the prediction given by the learning rule f ϵ· at time t.
Having constructed the learning rules f ϵ· , we are now ready to define our final learning rule

f·. Let ϵi = 2−i for all i ≥ 0. Intuitively, it aims to select the best prediction within the rules
f ϵi· . If there were a finite number of such predictors, we could directly use the algorithms for
learning with experts from the literature [CL06]. Instead, we introduce these predictors one
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Input: Historical samples (Xt, Yt)t<T and new input point XT ,
Representatives ϕϵ(·) and depths dϵ(·) constructed iteratively within

(1 + δϵ)C1NN.
Output: Predictions Ŷt(ϵ) = f ϵt (X<t,Y<t, Xt) for t ≤ T
Yϵ an ϵ−net of Y
Tϵ :=

⌈
ℓ̄2 ln |Yϵ|

2ϵ2

⌉
, ηϵ :=

√
8 ln |Yϵ|
ℓ̄2Tϵ

for t = 1, . . . , T do
Lty =

∑
u<t:u

ϕϵ∼t
ℓ(Yu, y), y ∈ Yϵ // Losses on the cluster given by ϕϵ

pt(y) =
exp(−ηϵLty)∑
z∈Yϵ

exp(−ηϵLtz)
, y ∈ Yϵ

Ŷt ∼ pt

end
Algorithm 4.2: The f ϵ· learning rule

Input: Historical samples (Xt, Yt)t<T and new input point XT ,
Predictions Ŷ·(ϵi) from the learning rules f ϵi· .

Output: Predictions Ŷt for t ≤ T
w0,0 = 1, ti := ⌈ei⌉, i ≥ 0

It = {i ≤ ln t}, ηt =
√

ln t
t
, t ≥ 1

for t = 1, . . . , T do
Lt−1,i :=

∑t−1
s=ti

ℓ(Ŷs(ϵi), Ys), L̂t−1,i :=
∑t−1

s=ti
ℓ̂s, i ∈ It

wt−1,i = eηt(L̂t−1,i−Lt−1,i)

pt(i) =
wt−1,i∑
j∈It wt−1,j

ît ∼ pt(·) // model selection
Ŷt = Ŷt(ϵi)

ℓ̂t :=
∑

i∈It
wt−1,iℓ(Ŷt(ϵi),Yt)∑
i∈It

wt−1,i
.

end
Algorithm 4.3: An optimistically universal learning rule for totally bounded spaces

at a time: at step t ≥ 1 we only consider the indices It := {i ≤ ln t}. We then compute an
estimate L̂t−1,i of the loss incurred by each predictor f ϵi· for i ∈ It and select a random index
ît independent from the past history from an exponentially-weighted distribution based on
the estimates L̂t−1,i. The final output of our learning rule is Ŷt := Ŷt(ϵî). The complete
algorithm is formally described in Algorithm 4.3. The following lemma quantifies the loss of
the rule f· compared to the best rule f ϵi· .

Lemma 4.1. Almost surely, there exists t̂ ≥ 0 such that

∀t ≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷt, Yt) ≤
t∑

s=ti

ℓ(Ŷt(ϵi), Yt) + (2 + ℓ̄+ ℓ̄2)
√
t ln t.
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We are now ready to show that Algorithm 4.3 is universally consistent under SMV pro-
cesses.

Theorem 4.6. Suppose that (Y , ℓ) is totally-bounded. There exists an online learning rule
f· which is universally consistent for adversarial responses under any process X ∈ SMV(=
Soul), i.e., for any process (X,Y) on (X ,Y) with adversarial response, such that X ∈ SMV,
then for any measurable function f : X → Y, we have L(X,Y)(f·, f) ≤ 0, (a.s.).

Proof sketch. First observe that Lemma 4.1 allows us to combine predictors f ϵ· : if indi-
vidually they perform well, Algorithm 4.3 achieves the best long-term average excess loss
among them. We then proceed to show that f ϵ· has low average error in the long run. First,
(1 + δϵ)C1NN is universally consistent on SMV processes in the noiseless setting by Theo-
rem 4.5. This intuitively shows that for noiseless functions, the value at time ϕϵ(t) provides
a good representative for the value at time t. Extrapolating this argument, we show that
if two times are close (for the graph metric) within the graph formed by ϕϵ, they will have
close values for any fixed function in the long run. As a result, times in the same cluster
defined by ϕϵ∼ share similar values in the long run. The f ϵ· rule precisely aims to learn the
best predictor by cluster using the classical Hedge algorithm. Because it can only ensure
low regret compared to a finite number of options, we use ϵ-nets of the value space Y . The
reason why we need to have (1 + δϵ)C1NN instead of the known 2C1NN algorithm is that
for a given time T , we need to ensure low excess error even though some clusters might not
be completed. Because the tree formed by ϕϵ resembles a (1 + δϵ)-branching process, the
fraction of times which belong to unfinished clusters is only a small fraction ϵT of the T
times, hence does not affect the average long-term excess error significantly. Altogether, we
show that f ϵ· has O(ϵ

1
α+1 ) long-term average excess error compared to any fixed function for

any SMV process, which ends the proof.

As a result, SMV ⊂ Solar for totally-bounded value spaces. Recalling that for bounded
values SMV = Soul (Chapter 3), i.e., processes X /∈ SMV are not universally learnable even
in the noiseless setting, we have Solar ⊂ SMV. Thus we obtain a complete characterization
of the processes which admit universal learning with adversarial responses: Solar = SMV.
Further, the proposed learning rule is optimistically universal for adversarial regression.

Corollary 4.2. Suppose that (Y , ℓ) is totally-bounded. Then, Solar = SMV, and there
exists an optimistically universal learning rule for adversarial regression, i.e., which achieves
universal consistency with adversarial responses under any process X ∈ Solar.

This is a first step towards the more general Theorem 4.10. Indeed, one can note that
F-TiME is satisfied by any totally-bounded value space: given a fixed error tolerance η > 0,
consider a finite η

2
−net Yη/2 of Y . Because this is a finite set, we can perform the classical

Hedge algorithm [CL06] to have Θ(
√
T ln |Yη/2|) regret compared to the best fixed value of

Yη/2. For example, if α = 1, posing Tη = Θ( 4
η2
ln |Yη/2|) enables to have a regret at most η

2
Tη

compared to any fixed value of Yη/2, hence regret at most ηTη compared to any value of Y .
This achieves F-TiME, taking a deterministic time τη := Tη.
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4.5 Characterization of learnable processes for bounded
losses

While Section 4.4 focused on totally-bounded value spaces, the goal of this section is to
give a full characterization of the set Solar of processes for which adversarial regression is
achievable and provide optimistically universal algorithms, for any bounded value space.

4.5.1 Negative result for non-totally-bounded spaces

Although for all bounded value spaces (Y , ℓ), noiseless universal learning is achievable on
all SMV(= Soul) processes, this is not the case for adversarial regression in non-totally-
bounded spaces. We show in this section that extending Corollary 4.2 to any bounded value
space is impossible: the set of learnable processes for adversarial regression may be reduced
to CS only, instead of SMV.

Theorem 4.7. Let (X ,B) a separable Borel metrizable space. There exists a separable
metric value space (Y , ℓ) with bounded loss such that the following holds: for any process
X /∈ CS, universal learning under X for arbitrary responses is not achievable. Precisely, for
any learning rule f·, there exists a process Y on Y, a measurable function f ∗ : X → Y and
ϵ > 0 such that with non-zero probability L(X,Y)(f·, f

∗) ≥ ϵ.

In the proof, we explicitly construct a bounded metric space that does not satisfy F-TiME.
More precisely, we choose Y = N = {i ≥ 0} and a specific metric loss ℓ with values in {0, 1

2
, 1}.

For any k ≥ 1, we pose nk := 2k(k − 1) + 2k − 1 and define the sets

Ik := {nk, nk + 1, . . . , nk + 4k − 1} and Jk := {nk + 4k, nk + 4k + 1, . . . , nk+1 − 1}.

These sets are constructed so that |Ik| = 4k, |Jk| = 2k for all k ≥ 1, and together with
{0}, they form a partition of N. We now construct the loss ℓ. We pose ℓ(i, j) = 1i=j for all
i, j ∈ N unless there is k ≥ 1 such that (i, j) ∈ Ik × Jk or (j, i) ∈ Ik × Jk. It now remains
to define the loss ℓ(i, j) for all i ∈ Ik and j ∈ Jk. Note that for any j ∈ Jk, we have that
j − nk − 4k ∈ {0, . . . , 2k − 1}. Hence we will use their binary representation which we write
as j−nk−4k = {bk−1

j . . . b1jb
0
j}2 =

∑k−1
u=0 b

u
j 2

u where b0j , b1j , . . . , b
k−1
j ∈ {0, 1} are binary digits.

Finally, we pose

ℓ(nk + 4u, j) = ℓ(nk + 4u+ 1, j) =
1 + buj

2
,

ℓ(nk + 4u+ 2, j) = ℓ(nk + 4u+ 3, j) =
2− buj

2
,

for all u ∈ {0, 1, . . . , k − 1} and j ∈ Jk.

Proof sketch. This value space does not belong to F-TiME because for any algorithm and
horizon time k, there is a sequence of length k of elements in Ik with yu = nk+4(u−1)+2bu+cu
for 1 ≤ u ≤ k and bu, cu ∈ {0, 1}, such that the algorithm incurs an average excess loss 1

4
per

iteration compared to some fixed element of Jk. To find such a sequence, we sample randomly

132



and independently Bernoulli variables bu, cu ∼ B(12). In hindsight, the best predictor of the
sequence is nk+4k+ j, where j = b1 · · · bk in binary representation. However, the algorithm
only observes these bits in an online fashion: at time t it incurs an excess loss cost if it
guesses an element of Ik because it has probability at most 1

4
of finding yt. And if it predicts

an element of Jk, it cannot know in advance the correct t-th bit to choose in their binary
representation.

We then proceed to show that for this space Solar = CS ⊊ Soul. To do so, we show
that for processes X /∈ CS there exists a sequence of disjoint measurable sets {Bp}p≥1 and
increasing times (tp)p≥1 and ϵ > 0 such that with non-zero probability,

∀p ≥ 1, X≤tp−1 ∩Bp = ∅ and ∃tp−1 < t ≤ tp :
1

t

t∑
t′=1

1Bp(Xt′) ≥ ϵ.

On this event, an online algorithm does not receive any information for instances in Bp before
time tp−1. We then construct responses by (tp−1, tp]. During this period and for contexts
in Bp, we choose the same difficult-to-predict sequence of values as above for k = tp − tp−1.
On the other hand, because the sets Bp are disjoint, there exists a measurable function f ∗

that selects the best action in hindsight for each set Bp. Intuitively, within horizon tp, the
algorithm cannot gather enough information to achieve lower average excess error than ϵ

4

compared to f ∗, which shows that it is not universally consistent.

Although learning beyond CS is impossible in this case, there still exists an optimistically
universal learning rule for adversarial responses. Indeed, the main result of [Han22] shows
that for any bounded value space, there exists a learning rule which is consistent under all
CS processes for arbitrary responses (when ℓ is a metric, i.e., α = 1).

Theorem 4.8 ([Han22]). Suppose that (Y , ℓ) is metric and ℓ is bounded. Then, there exists
an online learning rule f· which is universally consistent for arbitrary responses under any
process X ∈ CS, i.e., such that for any stochastic process (X,Y) on (X ,Y) with X ∈ CS,
then for any measurable function f : X → Y, we have L(X,Y)(f·, f) ≤ 0, (a.s.).

The proof of this theorem given in [Han22] extends to adversarial responses. However,
we defer the argument because we will later prove Theorem 4.3 which also holds for any
generalized-metric loss and unbounded losses in Section 4.7. This shows that for any sep-
arable metric space (X , ρX ), there exists a metric value space for which the learning rule
proposed in [Han22] was already optimistically universal.

4.5.2 Adversarial regression for classification with a countable num-
ber of classes

Although we showed in the last section that adversarial regression under all SMV processes is
not achievable for some non-totally-bounded spaces, we will show that there exist non-totally-
bounded value spaces for which we can recover Solar = SMV. Precisely, we consider the
case of classification with countable number of classes (N, ℓ01), with 0−1 loss ℓ01(i, j) = 1i ̸=j.
The goal of this section is to prove that in this case, we can learn arbitrary responses under
any Soul process. The main difficulty with non-totally-bounded classification is that we
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cannot apply traditional online learning tools because ϵ−nets may be infinite. Hence, we
first show a result that allows us to perform online learning with an infinite number of experts
in the context of countable classification.

Lemma 4.2. Let t0 ≥ 1. There exists an online learning rule f· such that for any sequence
y := (yi)

T
i≥1 of values in N, we have that for T ≥ t0

T∑
t=1

E[ℓ01(ft(y≤t−1), yt)] ≤ min
y∈N

T∑
t=1

ℓ01(y, yt) + 1 + ln 2

√
t0

2 ln t0
+

√
ln t0
2t0

(t0 + T ),

and with probability 1− δ,

T∑
t=1

E[1ft(y≤t−1)=yt ] ≥ max
y∈N

T∑
t=1

1y=yt − 1− ln 2

√
t0

2 ln t0
−
√

ln t0
2t0

(t0 + T )−
√

2T ln
1

δ
.

Proof sketch. We adapt the classical Hedge algorithm, which in its standard form can
only ensure sublinear regret compared to a fixed set of values. Instead, we only consider
a small subset of candidate values that is enlarged occasionally with previously observed
values y ∈ Y≤t. This formalizes the intuition that even though there are a priori an infinite
number of candidate values (N), it is reasonable to only focus on values with high frequency
in the observed sequence Y≤t: if the next value yt+1 is not in this set, the algorithm incurs a
loss 1, which would also be incurred by the best fixed predictor until time t+1 in hindsight.

We can therefore adapt the learning rules f ϵ· from Section 4.4 by replacing the Hedge
algorithm with the algorithm from Lemma 4.2. Further adapting parameters, we obtain our
main result for countable classification.

Theorem 4.9. Let (X ,B) be a separable Borel metrizable space. There exists an online
learning rule f· which is universally consistent for adversarial responses under any process
X ∈ SMV for countable classification, i.e., such that for any adversarial process (X,Y) on
(X ,N) with X ∈ SMV, for any measurable function f ∗ : X → N, we have that L(X,Y)(f·, f

∗) ≤
0, (a.s.).

4.5.3 A characterization of universal regression with bounded losses

The last two Sections 4.5.1 and 4.5.2 gave examples of non-totally-bounded value spaces for
which we obtain respectively Solar = CS or Solar = SMV. In this section, we prove
that there is an underlying alternative, defined by F-TiME, which enables us to precisely
characterize the set Solar of learnable processes for adversarial regression.

When F-TiME is satisfied by the value space, similarly to the case of countable classi-
fication, we recover Solar = SMV and there exists an optimistically universal rule. The
corresponding algorithm follows the same general structure as the learning rule provided in
Section 4.4 for totally-bounded-spaces, however, the learning rules f ϵ· need to be significantly
modified. First, the Hedge algorithm should be replaced by the learning rule g≤tϵ provided
by the F-TiME property. Second, as the horizon time tϵ of this learning rule is bounded, the
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Input: Historical samples (Xt, Yt)t<T and new input point XT ,
Learning rule for finite-time mean estimation gϵ≤tϵ , Tϵ = ⌈

tϵ
ϵ
⌉, δϵ := ϵ

2Tϵ
.

Representatives ϕϵ(·) constructed iteratively within (1 + δϵ)C1NN.
Output: Predictions Ŷt(ϵ) = f ϵt (X<t,Y<t, Xt) for t ≤ T
for t = 1, . . . , T do
C(t) = {u < t : u

ϕϵ∼ t}
if C(t) = ∅ then Lt = 0 and initialize learner gϵ,t· ;
else

ψ(t) = max C(t)
if Lψ(t) < tϵ − 1 then Lt = Lψ(t) + 1 ;
else Lt = 0 and initialize learner gϵ,t· ;

end
Ŷt = g

ϵ,ψLt (t)
Lt+1

(
{yψLt+1−u(t)}Lt

u=1

)
end
Algorithm 4.4: The modified f ϵ· learning rule for value spaces (Y , ℓ) satisfying F-TiME.
When initializing a learner gϵ,t· for finite-time mean estimation, its internal randomness
is sampled independently from the past.

clusters of points on which it is applied have to be adapted: we cannot simply use clusters
by distance in the graph defined by the (1 + δϵ)C1NN algorithm. Instead, we construct
clusters of smaller size tϵ among these larger graph-based clusters.

More precisely, we take the horizon time tϵ and the learning rule gϵ≤tϵ satisfying the
condition imposed by the assumption on (Y , ℓ). Then, let Tϵ = ⌈ tϵϵ ⌉. Similarly as before,
we then define δϵ := ϵ

2Tϵ
and let ϕ be the representative function from the (1 + δϵ)C1NN

learning rule. Then, we introduce the same equivalence relation between times ϕ∼, which
induces clusters of times. We define a sequence of i.i.d. copies gϵ,t· of the learning rule gϵ· for
all t ≥ 1. This means that the randomness used within these learning rules is i.i.d, and the
copy gϵ,t· should be sampled only at time t, independently of the past history. Predictions
are then made by blocks of size tϵ within the same cluster: at time t, let u1 < . . . < uLt < t
be the elements of the current block. If the block does not contain tϵ elements yet, we use
gϵ,u1Lt+1 for the prediction at time t. Otherwise, we start a new block and use gϵ,t1 . Hence,
letting ψ(t) = max C(t) be the last time in the same cluster as t (as defined by ϕϵ) and Lt
the size of the current block of t without counting t, we now define the learning rule f ϵ· such
that for any sequence x, y,

f ϵt (x≤t−1,y≤t−1, xt) := g
ϵ,ψLt (t)
Lt+1

(
{yψLt+1−u(t)}Lt

u=1

)
.

The complete learning rule is given in Algorithm 4.4. The learning rules f ϵ· are then combined
into a single learning rule as in the original algorithm for totally-bounded spaces, following
the same procedure given in Algorithm 4.3. We then show that it is universally consistent
under SMV processes using same arguments as for Theorem 4.6.

Theorem 4.10. Suppose that ℓ is bounded and (Y , ℓ) satisfies F-TiME. Then, Solar =
SMV(= Soul) and there exists an optimistically universal learning rule for adversarial re-
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gression, i.e., which achieves universal consistency with adversarial responses under any
process X ∈ SMV.

We are now interested in value spaces (Y , ℓ) which do not satisfy F-TiME. We will show
that in this case, Solar is reduced to the processes CS. We first introduce a second property
on value spaces as follows.

Property 2. For any η > 0, there exists a horizon time Tη ≥ 1 and an online learning rule
g≤τ where τ is a random time with 1 ≤ τ ≤ Tη such that for any y := (yt)

Tη
t=1 of values in Y

and any value y ∈ Y, we have

E

[
1

τ

τ∑
t=1

(ℓ(gt(y≤t−1), yt)− ℓ(y, yt))

]
≤ η.

Remark 4.2. The random time τ may depend on the possible randomness of the learning
rule g·, but it does not depend on any of the values y1, y2, . . . on which the learning rule g·
may be tested. Intuitively, the learning rule uses some randomness which is first privately
sampled and may be used by τ . This randomness is never explicitly revealed to the adversary
choosing the values y, but only implicitly through the realizations of the predictions.

Lemma 4.3. Property F-TiME is equivalent to Property 2.

Using this second property, we can then show that when F-TiME is not satisfied, universal
consistency outside CS under adversarial responses is not achievable. In the proof, we only
use stochastic processes (X,Y), hence the same result holds if we only considered universal
consistency under arbitrary responses.

Theorem 4.11. Suppose that ℓ is bounded and (Y , ℓ) does not satisfy F-TiME. Then,
Solar = CS and there exists an optimistically universal learning rule for adversarial regres-
sion, i.e., which achieves universal consistency with adversarial responses under any process
X ∈ CS.

Proof sketch. First, from Theorem 4.8 we already have CS ⊂ Solar. The main difficulty
is to prove that one cannot universally learn any process X /∈ CS. To do so, we re-use the
property derived in the proof of Theorem 4.7 that for non-CS processes, one can find a
disjoint sequence of sets {Bp}p≥1, an increasing times (tp)p≥1 and ϵ > 0 such that with non-
zero probability for all p ≥ 1, the process X never visits Bp before time tp−1 and at some
point between times tp−1+1 and tp, the set Bp has been visited a proportion ϵ of times. Now
(Y , ℓ) does not satisfy F-TiME, hence does not satisfy Property 2 by Lemma 4.3 for some
constant η > 0. Then, for p ≥ 1, during period (tp−1, tp], we define the values Ytp−1<·≤tp when
the instance process visits Bp as a sequence ytp−1<·≤tp such that the algorithm has average
excess loss at least η whenever X visits Bp, compared to a fixed value y∗p ∈ Y . We note that
the randomized version of F-TiME given by Lemma 4.3 is important because we do not know
in advance when, between tp−1 and tp, Bp has been visited a fraction ϵ of times: potentially,
this time is random and there is a huge gap (exponential or more) between tp−1 and tp. On
the constructed stochastic process Y, the algorithm does not have vanishing average excess
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loss compared to the function equal to y∗p on Bp. This proves that no algorithm is universally
consistent on X.

This completes the proof of Corollary 4.1 and closes our study of universal learning with
adversarial responses for bounded value spaces. Notably, there always exists an optimistically
universal learning rule, however, this rule highly depends on the value space.

• If (Y , ℓ) satisfies F-TiME, we can learn all SMV = Soul processes. The proposed
learning rule of Theorem 4.10 is implicit in general. Indeed, to construct it one first
needs to find an online learning rule for mean estimation with finite horizon as described
by property F-TiME, which is then used as a subroutine in the optimistically universal
learning rule for adversarial regression. We showed however that for totally-bounded
value spaces, this learning rule can be explicited using ϵ−nets.

• If the value space does not satisfy F-TiME, we can only learn CS processes and there
is an inherent gap between noiseless online learning and regression. We propose a
learning rule in Section 4.7 which is optimistically universal—see Theorem 4.3. This
rule is inspired by the proposed algorithm of [Han22] which is optimistically universal
for metric losses α = 1.

These two classes of learning rules use very different techniques. Specifically, under processes
X ∈ CS, [Han21a] showed that there exists a countable set F of measurable functions
f : X → Y which is “dense” within the space of all measurable functions along the realizations
f(Xt). We refer to Section 4.7 for a precise description of this density notion. Hence,
under process X, we can approximate f ∗ by functions in F with arbitrary long-run average
precision. However, such property is impossible to obtain for any process X ∈ SMV \ CS:
no process X /∈ CS admits a “dense” countable sequence of measurable functions. Thus, to
learn processes SMV for value spaces satisfying F-TiME, a fundamentally different learning
rule than that proposed by [Han21a] or [Han22] was needed.

4.6 Adversarial universal learning for unbounded losses

We now turn to the case of unbounded losses, i.e., value spaces (Y , ℓ) with ℓ̄ = ∞. In
this section, we consider universal learning without empirical integrability constraints, for
which we introduced the notation Solar-u as the set of processes that admit universal
learning (we recall that for bounded losses such distinction was unnecessary). In this case,
and for more general near-metrics, we showed in Chapter 3 that Soul = FS. In other
terms, for unbounded losses, the learnable processes in the noiseless setting necessarily visit
a finite number of distinct instance points of X almost surely. Thus, universal learning on
unbounded value spaces is very restrictive and in particular, Solar-u ⊂ FS. We will show
that either Solar-u = FS or Solar-u = ∅.

4.6.1 Adversarial regression for metric losses

In this section, we focus on metric losses ℓ, i.e., α = 1. In this case, we show that we
always have the equality Solar-u = FS and that we can provide an optimistically universal
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Input: Historical samples (Yt)t<T
Output: Predictions Ŷt for t ≤ T
(yi)i≥0 dense sequence in Y
It := {i ≤ ln t : ℓ(y0, yi) ≤ ln t}, ηt := 1

4
√
t
, t ≥ 1; ti = ⌈max(ei, eℓ(y

0,yi))⌉, i ≥ 0

w0,0 := 1, Ŷ1 = y0 // Initialisation
for t = 2, . . . , T do

Lt−1,i =
∑t−1

s=ti
ℓ(yi, Ys), L̂t−1,i =

∑t−1
s=ti

ℓ̂s, i ∈ It
wt−1,i := exp(ηt(L̂t−1,i − Lt−1,i)), i ∈ It
pt(i) =

wt−1,i∑
j∈It

wt−1,j
, i ∈ It

Ŷt ∼ pt(·) // Prediction

ℓ̂t :=
∑

j∈It
wt−1,jℓ(y

j ,Yt)∑
j∈It

wt−1,j

end
Algorithm 4.5: The mean estimation algorithm.

learning rule. To do so, we first consider the fundamental estimation problem where one
observes values Y from a general separable metric value space and aims to sequentially
predict a value Ŷt in order to minimize the long-run average loss. We refer to this problem
as the mean estimation problem, which is equivalent to regression for the instance space
X = {0}. For instance, in the specific case of i.i.d. processes Y, mean estimation is exactly
the problem of Fréchet mean estimation for distributions on Y . We show that even for
adversarial processes Y, we can achieve sublinear regret compared to the best single value
prediction, even for unbounded value spaces (Y , ℓ).

If the space were finite, then we could use traditional Hedge algorithms [CL06]. Instead,
given a separable value space, we have access to a dense countable sequence of values. We
then select the best prediction among this dense sequence by introducing the values of the
sequence one at a time, similarly to the argument we used in Lemma 4.1. The learning rule
for mean estimation is described in Algorithm 4.5.

Theorem 4.4. Let (Y , ℓ) be a separable metric space. There exists an online learning rule
f· that is universally consistent for adversarial mean estimation, i.e., for any adversarial
process Y on Y, almost surely, for all y ∈ Y,

lim sup
T→∞

1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y, Yt)) ≤ 0.

Remark 4.3. The above result guarantees that on the same event of probability one, the
proposed learning rule achieves sublinear regret compared to any fixed value prediction. This
was not the case for universal regression where, instead, for every fixed measurable function
f : X → Y, with probability one our learning rules achieved sublinear regret. This stems es-
sentially from the fact that there exists a dense countable set of values Y, but in general, there
does not exist a countable set of measurable functions which are dense within all measurable
functions in infinity norm.
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We now return to the general regression problem on unbounded spaces. A simple learning
rule would be to run in parallel the learning rule gx for mean estimation on each distinct
observed x ∈ X , i.e., on the sub-process Y{t:Xt=x}. As a consequence of Theorem 4.4 we can
show that this learning rule is universally consistent on FS processes.

Corollary 4.3. Suppose that (Y , ℓ) is an unbounded metric space. Then, Solar-u = FS(=
Soul) and there exists an optimistically universal learning rule for adversarial regression,
i.e., which achieves universal consistency with adversarial responses under any process X ∈
FS.

4.6.2 Negative result for real-valued adversarial regression with loss
ℓ = | · |α with α > 1

Unfortunately, one cannot extend Corollary 4.3 to losses that are powers of metrics in general.
Even in the classical setting of real-valued regression Y = R with Euclidean norm, we
show that adversarial regression with any loss ℓ = | · |α for α > 1 is not achievable, i.e.,
Solar-u = ∅.

Theorem 4.12. Let α > 1. For the Euclidean value space (R, | · |) and loss ℓ = | · |α we
obtain Solar-u = ∅. In particular, there does not exist a consistent learning rule for mean
estimation on R with squared loss for adversarial responses.

Proof sketch. The reason why mean estimation with adversarial responses is impossible
for α > 1 but possible for α = 1 is that for α > 1, predicting a value off by 1 unit of the best
value in hindsight can yield unbounded excess loss for that specific prediction. In particular,
we consider a sequence of values of the form Y b

t = Mtbt where (Mt)t≥1 is a fixed sequence
growing super-exponentially in t, and b = (bt) is an i.i.d. Rademacher random variables
in {±1}. The sequence (Mt)t≥1 is constructed so that if the prediction Ŷt and true value
Yt have different signs Ŷt · Yt ≤ 0, the excess loss of the algorithm compared to the value
sign(Y b

t ) = sign(bt) is (super-)linear in t. Because the algorithm cannot know in advance
the sign of bt, there is a realization in which it makes an infinite number of mistakes and as
a result has non-zero long-term excess loss compared to the value 1 or −1.

The above of this result also shows that the same negative result holds more generally
for unbounded metric value spaces which have some “symmetry”. The main ingredients for
this negative result were having a point from which there exist arbitrary far values from
symmetric directions. In particular, this holds for a discretized value space (N, | · |) with
Euclidean metric, and any Euclidean space Rd with d ≥ 1.

4.6.3 An alternative for adversarial regression for unbounded losses

In the two previous sections, we gave examples of losses for which Solar-u = ∅ or we have
Solar-u = FS. The following simple result is that this is the only alternative and that
Solar-u = FS is equivalent to achieving consistency for mean estimation with adversarial
responses.
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Proposition 4.1. Let (Y , ρY) be a separable metric value space. Suppose that there exists
an online learning rule g· which is consistent for mean estimation with adversarial responses
for the generalized-metric loss ℓ, i.e., for any adversarial process Y on (Y , ℓ), we have for
any y∗ ∈ Y,

lim sup
1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt)) ≤ 0, (a.s),

then Solar-u = FS and there exists an optimistically universal learning rule for adversarial
regression. Otherwise, Solar-u = ∅.

Remark 4.4. There exists separable metric value spaces (Y , ρY) for which powers of metrics
losses still yield Solar-u = FS. For instance, consider (Y , ρY) = (R,

√
| · |2), where | · |2

denotes the Euclidean metric. One can check that this defines a metric on Y and for any
loss ℓ = ραY with α ≤ 2, we have Solar-u = FS. However, for α > 2, Solar-u = ∅.

4.7 Adversarial universal online learning with moment
constraints

In the previous section, we showed that learnable processes for adversarial regression are
only in FS, i.e., visit a finite number of instance points. This shows that universal learning
without restrictions on the adversarial responses Y is extremely restrictive. For instance, it
does not contain i.i.d. processes. A natural question is whether adding mild constraints on
the process Y would allow recovering the same results for unbounded losses as for bounded
losses from Sections 4.4 and 4.5. This question also arises in noiseless regression since the set
of learnable processes is reduced from Soul = SMV for bounded losses to Soul = FS for
unbounded losses. Hence, a natural question is whether having finite long-run empirical first-
order moments would be sufficient to recover learnability in SMV (Question 4.2). Precisely,
in this question, the following constraint on noiseless processes Y = f ∗(X) was introduced:
there exists y0 ∈ Y with

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt)) <∞ (a.s.).

The question now becomes whether there exists an online learning rule which would be con-
sistent under all X ∈ SMV processes for any noiseless responses Y = f ∗(X) with f ∗ satisfying
the above first-moment condition. We show that such an objective is not achievable whenever
X is infinite—if X is finite, any process X on X is automatically FS and hence learnable in
a noiseless or adversarial setting. In fact, under this first-order moment condition, we show
the stronger statement that learning under all processes X which admit pointwise convergent
relative frequencies (CRF) is impossible even in this noiseless setting.

Condition 4.1. CRF For any measurable set A ∈ B, limT→∞
1
T

∑T
t=1 1A(Xt) exists almost

surely.
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[Han21a] showed that CRF ⊂ CS. In particular, CRF ⊂ SMV. We show the following
negative result on learning under CRF processes for noiseless regression under first-order
moment constraint, which holds for unbounded near-metric spaces (Y , ℓ).

Theorem 4.13. Suppose that X is infinite and that (Y , ℓ) is an unbounded separable near-
metric space. There does not exist an online learning rule which would be consistent under
all processes X ∈ CRF for all measurable target functions f ∗ : X → Y such that there exists
y0 ∈ Y with

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt)) <∞ (a.s.).

Proof sketch. We consider a sequence of values (yk)k≥0 such that ℓ(y0, yk) diverges as
k → ∞, then let (tk)k≥1 be a sequence of times such that tk ≈

∑
k′≤k ℓ(y0, yk). Next, let

(xk)k≥0 be a sequence of distinct points. We construct a process X such that Xt = x0
except at sparse times (tk)k≥1 for which Xtk = xk. Because tk has a super-linear growth,
X visits a sublinear number of distinct points and we can show that it satisfies the CRF
property. Now for a random binary sequence b = (bk)kk≥1 we consider the function f ∗

b which
is equal to y0 except at points xk for k ≥ 1 where f ∗

b (xk) = y01[bk = 0] + yk1[bk = 1].
With these classes of functions, the algorithm cannot know in advance at time tk whether
to predict y0 or yk and incurs a loss O(ℓ(y0, yk)) in average as a result. Therefore, at time
tk, a total loss O(

∑
k′≤k ℓ(y0, yk)) = O(tk) is incurred compared to f ∗

b . On the other hand,
by the construction of the sequence (tk)k≥1, 1

T

∑T
t=1 ℓ(y0, f

∗
b (Xt)) ≤ 1

T

∑
tk≤T ℓ(y0, yk) stays

bounded. Thus the learning rule is not consistent under all target functions satisfying the
specified moment constraint.

Theorem 4.13 answers negatively to Question 4.2. A natural question is whether another
meaningful constraint on responses can be applied to obtain positive results under large
classes of processes on X . To this means, we introduced the slightly stronger empirical
integrability condition. We recall that an (adversarial) process Y is empirically integrable if
and only if there exists y0 ∈ Y such that for any ϵ > 0, almost surely there exists M ≥ 0
with

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

Note that the threshold M may be dependent on the adversarial process Y, but the guar-
antee should hold for any choice of predictions (in the case of adaptive adversaries). This is
essentially the mildest condition on the sequence Y for which we can still obtain results. For
example, if the loss is bounded, this constraint is automatically satisfied using M > ℓ̄. More
importantly, note that any process Y which has bounded higher-than-first moments, i.e., such
that there exists p > 1 and y0 ∈ Y such that lim supT→∞

1
T

∑T
t=1 ℓ

p(y0, Yt) < ∞, (a.s.),
is empirically integrable. Further, for stationary processes Y, having bounded first mo-
ment E[ℓ(y0, Y1)] < ∞ is exactly being empirically integrable. Indeed, by the strong law of
large numbers, almost surely lim supT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥M = E[ℓ(y0, Y1)1ℓ(y0,Y1)≥M ].

Therefore, empirical integrability is a direct consequence of the dominated convergence the-
orem.
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Lemma 4.4. Let Y an stationary process on Y which has bounded first moment, i.e., there
exists y0 ∈ Y such that E[ℓ(y0, Y1)] <∞. Then, Y is empirically integrable.

Proof Let Y an stationary process and y0 ∈ Y with E[ℓ(y0, Y1)] <∞. Then, by the domi-
nated convergence theorem we have E[ℓ(y0, Y1)1ℓ(y0,Y1)≥M ]→ 0 as M →∞. Hence, for ϵ > 0,
there existsMϵ such that E[ℓ(y0, Y1)1ℓ(y0,Y1)≥M ] ≤ ϵ. Then, the sequence (ℓ(y0, Yt)1ℓ(y0,Yt)≥M)t
is still stationary. hence, by the law of large numbers, almost surely,

lim
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ = E[ℓ(y0, Y1)1ℓ(y0,Y1)≥Mϵ ] ≤ ϵ.

This ends the proof that Y is empirically integrable. ■

The goal of this section is to show that under this moment constraint, we can recover all
results from Chapter 3, [Han22] and this chapter in Sections 4.4 and 4.5, even for unbounded
value spaces, leading up to Theorems 4.2 and 4.3. We will use the following simple equivalent
formulation for empirical integrability.

Lemma 4.5. A process Y is empirically integrable if and only if there exists y0 ∈ Y such
that almost surely, for any ϵ > 0 there exists M > 0 with

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

General strategy. First, the empirical integrability condition holds for some y0 ∈ Y
if and only if it holds for all y0 ∈ Y . Thus, we can fix y0 ∈ Y independently of the
instance or value process. Next, we define the restriction function ϕM : Y → Y such
that ϕM(y) = y if ℓ(y0, y) < M and ϕM(y) = y0 otherwise. This function has values
in the bounded set Bℓ(y0,M). Thus, we can apply our learning rules for the bounded
loss case to learn the restricted values YM = (ϕM(Yt))t≥1. If we use these predictions to
learn Y, the excess loss compared to a fixed function mostly results from the restriction
lim supT→∞

1
T

∑T
t=1 ℓ(Yt, ϕM(Yt)) = lim supT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥M . This excess can

then be bounded with the empirical integrability condition at y0. We then combine the
resulting predictors for M ≥ 1 using Lemma 4.1. While this general strategy allows to use
learning rules for the bounded loss case as subroutine to solve the unbounded loss case with
empirical integrability constraint, we can adapt it to each case to simplify the algorithms.

4.7.1 Noiseless universal learning with moment condition

We first apply this strategy to the noiseless case. In Chapter 3 we showed that the 2C1NN
learning rule achieves universal consistency on all SMV processes for bounded value spaces.
Instead of using the 2C1NN learning rule as subroutine as described in the strategy above,
we show that we can readily use 2C1NN for empirically integrable noiseless responses in
unbounded value spaces, as stated in Theorem 4.1.

To prove this result, first observe that 2C1NN trained on the responses Y = (f ∗(Xt))t≥1

or the restricted responses (ϕM ◦f ∗(Xt))t≥1 gives the same prediction at time t provided that
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the representative ϕ(t) satisfied ℓ(y0, Yϕ(t)) < M . By construction of the 2C1NN learning
rule, points can be used as representatives at most twice. Hence, up to a factor 2, times
when the predictions on unrestricted and restricted responses differ, can be associated with
times when ℓ(y0, Yt) ≥ M . As a result, we show that the empirical integrability condition
can be applied to bound the excess loss resulting from the difference between unrestricted
and restricted responses.

4.7.2 Adversarial regression with moment condition under CS pro-
cesses

We now turn to adversarial regression under CS processes. [Han22] showed that regres-
sion for arbitrary responses under all CS processes is achievable in bounded value spaces.
We generalize this result to unbounded losses and to adversarial responses with empirical
integrability constraint using the general strategy. In particular, our learning rule is also
optimistically universal for adversarial regression for all bounded value spaces which do not
satisfy F-TiME. Now consider the general case and suppose that there exists a ball Bℓ(y, r)
which does not satisfy F-TiME, Theorem 4.11 shows that universal learning for values falling
in Bℓ(y, r) cannot be achieved for processes X /∈ CS. Now because Bℓ(y, r) is bounded, re-
sponses restricted to this set satisfy the empirical integrability constraint. In particular,
this shows that the condition CS is also necessary for universal learning with adversarial
responses with empirical integrability. Altogether, this proves Theorem 4.3.

This generalizes the main results from [Han22] to unbounded non-metric losses and from
[CK22] to non-metric losses, arbitrary responses and CS instance processes X. Indeed, they
consider bounded first moment conditions on i.i.d. responses, which are empirically integrable
by Lemma 4.4. Further, as a direct consequence of Theorem 4.3 and Lemma 4.4, we can
significantly relax the conditions for universal consistency on stationary ergodic processes
found in the literature. Precisely, [GO07] showed that for regression with squared loss,
under the assumption E[Y 4

1 ] < ∞, consistency on stationary ergodic processes is possible.
We can relax this result to bounded second moments, matching the standard results for
i.i.d. processes.

Corollary 4.4. Let (Y , ℓ) = (R, | · |2). The learning rule of Theorem 4.3 is consistent on
any stationary ergodic process (Xt, Yt)t≥1 with E[Y 2

1 ] <∞.

4.7.3 Adversarial regression with moment condition under SMV
processes

Last, we generalize our result Theorem 4.10 for value spaces satisfying F-TiME, to unbounded
value spaces, with the same moment condition on responses using the general strategy. In
order to apply Theorem 4.10 to bounded balls of the value space, we now ask that all balls
Bℓ(y, r) in the value space (Y , ℓ) satisfy F-TiME. This proves Theorem 4.2.

Theorems 4.2 and 4.3 completely characterize learnability for adversarial regression with
moment condition. Namely, if the value space (Y , ℓ) is such that any bounded ball satisfies
F-TiME (resp. there exists a ball Bℓ(y, r) that disproves F-TiME), Theorem 4.2 (resp.
Theorem 4.3) gives an optimistic learning rule which achieves consistency under all processes
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in SMV (resp. CS). This ends our analysis of adversarial regression for unbounded value
spaces.

4.8 Conclusion

In this work, we provided a characterization of learnability for universal learning in the
regression setting, for a class of generalized-metric losses satisfying specific relaxed triangle
inequality identities, which contains powers of metrics ℓ = ραY for α ≥ 1. A natural question
would be whether one can generalize these results to larger classes of losses, e.g. non-
symmetric losses which may appear in classical machine learning problems.

The present work also has some implications for adversarial contextual bandits. Specifi-
cally, one may consider the case of a learner who receives partial information on the reward-
s/losses as opposed to the traditional regression setting where the response is completely
revealed at each iteration. In the latter case, the learner can for instance compute the loss
of all values with respect to the response realization. On the other hand, in the contextual
bandits framework, the reward/loss is revealed only for the pulled arm—or equivalently the
prediction of the learner. In these partial information settings, exploration then becomes
necessary. This is precisely the direction that we pursue in Chapters 5 and 6.

4.9 Appendix A: Proofs of Section 4.4

4.9.1 Proof of Theorem 4.5

In this section, we prove that for any δ > 0, the (1 + δ)C1NN learning rule is optimistically
universal for the noiseless setting. The proof follows the same structure as the proof of the
result Chapter 3 which shows that 2C1NN is optimistically universal. We first focus on the
binary classification setting and show that the learning rule (1 + δ)C1NN is consistent on
functions representing open balls.

Proposition 4.2. Fix 0 < δ ≤ 1. Let (X ,B) be a separable Borel space constructed from the
metric ρX . We consider the binary classification setting Y = {0, 1} and the ℓ01 binary loss.
For any input process X ∈ SMV, for any x ∈ X , and r > 0, the learning rule (1 + δ)C1NN
is consistent for the target function f ∗ = 1BρX (x,r).

Proof We fix x̄ ∈ X , r > 0 and f ∗ = 1B(x̄,r). We reason by the contrapositive and suppose
that (1 + δ)C1NN is not consistent on f ∗. Then, η := P(LX((1 + δ)C1NN, f ∗) > 0) > 0.
Therefore, there exists 0 < ϵ ≤ 1 such that P(LX((1 + δ)C1NN, f ∗) > ϵ) > η

2
. Denote by

A := {LX((1+δ)C1NN, f
∗) > ϵ}. this event of probability at least η

2
. Because X is separable,

let (xi)i≥1 a dense sequence of X . We consider the same partition (Pi)i≥1 of B(x̄, r) and the
partition (Ai)i≥0 of X as in the original proof in Chapter 3 (Proposition 3.3), but with the
constant cϵ := 1

2·228/(ϵδ)
and changing the construction of the sequence (nl)l≥1 so that for all

l ≥ 1

P
[
∀n ≥ nl, |{i, Pi(τl) ∩ X<n ̸= ∅}| ≤

ϵδ

210
n

]
≥ 1− δ

2 · 2l+2
and nl+1 ≥

29

ϵδ
nl.
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Last, consider the product partition of (Pi)i≥1 and (Ai)i≥0 which we denote Q. Similarly,
we define the same events El,Fl for l ≥ 1. We aim to show that with nonzero probability, X
does not visit a sublinear number of sets of Q.

We now denote by (tk)k≥1 the increasing sequence of all (random) times when (1+δ)C1NN
makes an error in the prediction of f ∗(Xt). Because the event A is satisfied, Lx((1 +
δ)C1NN, f ∗) > ϵ, we can construct an increasing sequence of indices (kl)l≥1 such that
tkl <

2kl
ϵ

. For any t ≥ 2, we will denote by ϕ(t) the (random) index of the representative
chosen by the (1 + δ)C1NN learning rule. Now let l ≥ 1. Consider the tree G where nodes
are times T := {t ≤ tkl} within horizon tkl , where the parent relations are given by (t, ϕ(t))
for t ∈ T \ {1}. In other words, we construct the tree in which the parent of each new input
is its representative. Note that by construction of the (1 + δ)C1NN learning rule, each node
has at most 2 children.

Step 1

In this step, we consider the case when the majority of input points on which (1 + δ)C1NN
made a mistake belong to B(x̄, r), i.e., |{k ≤ kl, Xtk ∈ B(x̄, r)}| ≥ kl

2
. We denote H1 this

event. Let us now consider the subgraph G̃ given by restricting G only to nodes in the ball
B(x̄, r)—which are mapped to the true value 1—i.e., on times T := {t ≤ tkl , Xt ∈ B(x̄, r)}.
In this subgraph, the only times with no parent are times tk with k ≤ kl and Xtk ∈ B(x̄, r),
and possibly time t = 1. Therefore, G̃ is a collection of disjoint trees with roots times
{tk, k ≤ kl, xtk ∈ B(x̄, r)}, and possibly t = 1 if X1 ∈ B(x̄, r). For a given time tk with
k ≤ kl and Xtk ∈ B(x̄, r), we denote by Tk the corresponding tree in G̃ with root tk. We
now introduce the notion of good trees. We say that Tk is a good tree if Tk ∩ Dtkl+1 ̸= ∅,
i.e., the tree survived until the last dataset. Conversely a tree is bad if all its nodes were
deleted before time tkl + 1. We denote the set of good and bad trees by G = {k : Tk good}
and B = {k : Tk bad}. In particular, we have |G| + |B| = |{k ≤ kl, Xtk ∈ B(x̄, r)}| ≥ kl/2.
We aim to upper bound the number of bad trees. We now focus on trees Tk which induced
a future first mistake, i.e., such that {l ∈ Tk|∃u ≤ tkl : ϕ(u) = l, ρX (Xl, x̄) ≥ r and ∀v <
u, ϕ(v) ̸= l} ≠ ∅. We denote the corresponding minimum time lk = min{l ∈ Tk | ∃u ≤ tkl :
ϕ(u) = l, ρX (Xl, x̄) ≥ r,∀v < u, ϕ(v) ̸= l}. The terminology first mistake refers to the fact
that the first time which used l as representative corresponded to a mistake, as opposed to
l already having a children Xu ∈ B(x̄, r) which continues descendents of l within the tree
Tk. Note that bad trees necessarily induce a future first mistake—otherwise, this tree would
survive. For each of these times lk two scenarios are possible.

1. The value Ulk was never revealed within horizon tkl : as a result lk ∈ Dtkl+1.

2. The value Ulk was revealed within horizon tkl . Then, Ulk we revealed using a time t for
which lk was a potential representative. This scenario has two cases:

(a) ρX (Xt, x̄) < r. If used as representative ϕ(t) = lk, then lk would not have induced
a mistake in the prediction of Yt.

(b) ρX (Xt, x̄) ≥ r. If used as representative ϕ(t) = lk, then lk would have induced a
mistake in the prediction of Yt.
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In the case 2.a), if the point is used as representative ϕ(t) = lk and if the correspond-
ing tree Tk was bad, at least another future mistake is induced by Tk—otherwise this
tree would survive. We consider times lk for which the value was revealed, which cor-
responds to the only possible scenario for bad trees. We denote the corresponding set
K := {k : Ulk revealed within horizon tkl}. We now consider the sequence ka1 , . . . kaα con-
taining all indices of K for which scenario 2.a) was followed, ordered by chronological order
for the reveal of Ulka

i
, i.e., Ulka1 was the first item of scenario 2.a) to be revealed, then Ulka2

etc. until Ulkaα . Similarly, we construct the sequence kb1, . . . kbβ of indices in K corresponding
to scenario 2.b), ordered by order for the reveal of Ul

kb
i

. We now consider the events

B :=

{
α + β ≤ kl

2
− klδ

32

}
, C :=


min(α,⌈kl/8⌉)∑

i=1

Ulka
i
≥ klδ

16

 ,

D :=


min(β,⌈kl/8⌉)∑

i=1

Ul
kb
i

≥ klδ

16

 .

We now show that for l > 16, under the event

Mkl := H1 ∩ [B ∪ ({α ≥ ⌈kl/8⌉} ∩ C) ∪ ({α < ⌈kl/8⌉} ∩ D)] ,

we have that |G| ≥ klδ
32

. Suppose that Mkl is met. First note that because a bad tree can
only fall into scenarios 2.a) or 2.b) we have |B| ≤ α + β. Hence |G| ≥ kl

2
− α − β because

of H1. Thus, the result holds directly if B is satisfied. We can now suppose that Bc is
satisfied, i.e., α + β > kl

2
− klδ

32
. Now suppose that α ≥ ⌈kl/8⌉ and C are also satisfied. For

all indices such that Ulka
i
= 1, i.e., we fall in case 2.a) and lkai is used as representative, the

corresponding tree Tkai would need to induce at least an additional mistake to be bad. Recall
that in total at most kl/2 mistakes are induced by points of T . Also, by definition of the
set K, α + β mistakes are already induced by the times tk for k ∈ K. These corresponded
to the future first mistakes for all times {lk : k ∈ K}. Hence, we obtain

|G| ≥
α∑
i=1

Ulka
i
−
(
kl
2
− α− β

)
≥ klδ

16
− klδ

32
=
klδ

32
.

Now consider the case whereH1, Bc, α < ⌈kl/8⌉ and D are met. In particular, because l > 16
we have kl > 16 hence kl

2
− klδ

32
≥ 2⌈kl/8⌉. Thus, because of Bc we have β > kl

2
− klδ

32
− α ≥

⌈kl/8⌉. Now observe that for all indices such that Ul
kb
i

= 1, the time lk induced two mistakes.
Therefore, counting the total number of mistakes we obtain

kl
2
≥ α + β +

β∑
i=1

Ul
kb
i

≥ kl
2
− klδ

32
+
klδ

16

which is impossible. This ends the proof that underMkl we have |G| ≥ klδ
32

.
We now aim to lower bound the probability of this event. To do so, we first upper bound

the probability of the event {α ≥ ⌈kl/8⌉} ∩ Cc. We introduce a process (Zi)
⌈kl/8⌉
i=1 such that
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for all i ≤ max(α, ⌈kl/8⌉), Zi = Ulka
i
− δ and Zi = 0 for α < i ≤ ⌈kl/8⌉. Because of the

specific ordering chosen ka1 , . . . , kaα, this process is a sequence of martingale differences, with
values bounded by 1 in absolute value. Therefore, for l > 16 the Azuma-Hoeffing inequality
yields

P

⌈kl/8⌉∑
i=1

Zi ≤ −
klδ

16

 ≤ e
− k2l δ

2

2·162(kl/8+1) ≤ e−
klδ

2

27 .

But on the event {α ≥ ⌈kl/8⌉} ∩ Cc we have precisely

⌈kl/8⌉∑
i=1

Zi =

min(α,⌈kl/8⌉)∑
i=1

Ulka
i
− ⌈kl/8⌉δ ≤

klδ

16
− ⌈kl/8⌉δ ≤ −

klδ

16
.

Therefore P[Cc ∩ {α ≥ ⌈kl/8⌉}] ≤ P
[∑⌈kl/8⌉

i=1 Zi ≤ −klδ
16

]
≤ e−klδ

2/27 . Similarly we obtain

P[Dc ∩ {β ≥ ⌈kl/8⌉}] ≤ e−klδ
2/27 . Finally we write for any l > 16,

P[H1 \Mkl ] = P[H1 ∩ Bc ∩ ({α < ⌈kl/8⌉} ∪ Cc) ∩ ({α ≥ ⌈kl/8⌉} ∪ Dc)]
= P[H1 ∩ Bc ∩ [({α < ⌈kl/8⌉} ∩ Dc) ∪ ({α ≥ ⌈kl/8⌉} ∩ Cc)]]
≤ P[Cc ∩ {α ≥ ⌈kl/8⌉}] + P[Dc ∩ {α < ⌈kl/8⌉} ∩ Bc]
≤ P[Cc ∩ {α ≥ ⌈kl/8⌉}] + P[Dc ∩ {β ≥ ⌈kl/8⌉}]

≤ 2e−
klδ

2

27 .

In particular, we obtain

P
[{
|G| ≥ klδ

32

}
∩H1

]
≥ P[Mkl ] ≥ P[H1]− 2e−

klδ
2

27 .

Step 2

We now consider the opposite case, when a majority of mistakes are made outside B(x̄, r),
i.e., |{k ≤ kl, Xtk ∈ B(x̄, r)}| < kl

2
, which corresponds to the event Hc

1. Similarly, we
consider the subgraph G̃ given by restricting G only to nodes outside the ball B(x̄, r), i.e.,
on times T := {t ≤ tkl , ρX (Xt, x̄) ≥ r)}. Again, G̃ is a collection of disjoint trees with
roots times {tk, k ≤ kl, ρX (Xtk , x̄) ≥ r)}—and possibly t = 1. For a given time tk with
k ≤ kl and ρX (Xtk , x̄) ≥ r, we denote by Tk the corresponding tree in G̃ with root tk.
Similarly to the previous case, Tk is a good tree if Tk ∩ Dtkl+1 ̸= ∅ and bad otherwise.
We denote the set of good and bad trees by G = {k : Tk good}. We can again focus on
trees Tk which induced a future first mistake, i.e., such that {l ∈ Tk|∃u ≤ tkl : ϕ(u) =
l, ρX (Xl, x̄) < r and ∀v < u, ϕ(v) ̸= l} ≠ ∅ and more specifically their minimum time
lk = min{l ∈ Tk | ∃u ≤ tkl : ϕ(u) = l, ρX (Xl, x̄) < r, ∀v < u, ϕ(v) ̸= l}. The same analysis as
above shows that

P
[{
|G| ≥ klδ

32

}
∩Hc

1

]
≥ P[Hc

1]− 2e−
klδ

2

27 .
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Therefore, if G denotes more generally the set of good trees (where we follow the correspond-
ing case 1 or 2) we finally obtain that for any l > 16,

P
[
|G| ≥ klδ

32

]
≥ 1− 4e−

klδ
2

27 .

We denote by M̃kl this event. By Borel-Cantelli lemma, almost surely, there exists l̂ such
that for any l ≥ l̂, the event M̃kl is satisfied. We denote M :=

⋃
l≥1

⋂
l′≥l M̃kl this event

of probability one. The aim is to show that on the event A ∩M ∩
⋂
l≥1(El ∩ Fl), which

has probability at least η
4
, X disproves the SMV condition. In the following, we consider a

specific realization x of the process X falling in the event A ∩M∩
⋂
l≥1(El ∩ Fl)—x is not

random anymore. Let l̂ be the index given by the event M such that for any l ≥ l̂, Mkl

holds. We consider l ≥ l̂ and successively consider different cases in which the realization x
may fall.

• In the first case, we suppose that a majority of mistakes were made in B(x̄, r), i.e.,
that we fell into event H1 similarly to Step 1. Because the event M̃kl is satisfied we
have |G| ≥ klδ

25
. Now note that trees are disjoint, therefore,

∑
k∈G |Tk| ≤ tkl <

2kl
ϵ
.

Therefore,∑
k∈G

1|Tk|≤ 27

ϵδ

= |G| −
∑
k∈G

1|Tk|> 27

ϵδ

> |G| − ϵδ

27

∑
k∈G

|Tk| ≥
klδ

25
− klδ

26
=
klδ

26
.

We will say that a tree |Tk| is sparse if it is good and has at most 27

ϵδ
nodes. With

S := {k ∈ G, |Tk| ≤ 27

ϵδ
} the set of sparse trees, the above equation yields |S| ≥ klδ

26
.

The same arguments as in Proposition 3.3 give

|{i, Ai ∩ x≤tkl ̸= ∅}| ≥ |S| ≥
klδ

26
≥ ϵδ

27
tkl .

The only difference is that we chose cϵ so that 22·
27

ϵδ
−1 ≤ 1

4cϵ
as needed in the original

proof.

• We now turn to the case when the majority of input points on which (1 + δ)C1NN
made a mistake are not in the ball B(x̄, r), similarly to Step 2. Using the same notion
of sparse tree S := {k ∈ G, |Tk| ≤ 27

ϵδ
}, we have again |S| ≥ klδ

26
. We use the same

arguments as in the original proof. Suppose |{k ∈ S, ρX (xpk
d(k)
, x̄) > r}| ≥ |S|

2
, then we

have

|{i, Ai ∩ x≤tkl ̸= ∅}| ≥ |{k ∈ S, ρX (xpkd(k) , x̄) > r}| ≥ |S|
2
≥ klδ

27
≥ ϵδ

28
tkl .

Step 3

In this last step, we suppose again that the majority of input points on which (1 + δ)C1NN
made a mistake are not in the ball B(x̄, r) but that |{k ∈ S, ρX (xpk

d(k)
, x̄) > r}| < |S|

2
.

Therefore, we obtain

|{k ∈ S, ρX (xpk
d(k)
, x̄) = r}| = |S| − |{k ∈ S, ρX (xpk

d(k)
, x̄) > r}| ≥ |S|

2
≥ klδ

27
≥ ϵδ

28
tkl .
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We will now make use of the partition (Pi)i≥1. Because (nu)u≥1 is an increasing sequence, let
u ≥ 1 such that nu+1 ≤ tkl ≤ nu+2 (we can suppose without loss of generality that tk0 > n2).
Note that we have nu ≤ ϵδ

29
nu+1 ≤ ϵδ

29
tkl . Let us now analyze the process between times nu

and tkl . In particular, we are interested in the indices T = {k ∈ S, ρX (xpk
d(k)
, x̄) = r} and

times Uu = {pkd(k) : nu < pkd(k) ≤ kl, k ∈ T}. In particular, we have

|Uu| ≥ |{k ∈ S, ρX (xpk
d(k)
, x̄) = r}| − nu ≥

ϵδ

28
tkl −

ϵδ

29
tkl =

ϵδ

29
tkl .

Defining T ′ := {k ∈ T, r − r
2u+3 ≤ ρX (xϕ(tk), x̄) < r}, the same arguments as in the original

proof yield

|{i, Pi ∩ x≤tkl ̸= ∅}| ≥ |T
′| ≥ |Uu| − |{i, Pi(τu) ∩ xUu ̸= ∅}| ≥

ϵδ

29
tkl −

ϵδ

210
tkl =

ϵδ

210
tkl .

Step 4

In conclusion, in all cases, we obtain

|{Q ∈ Q, Q ∩ x≤tkl ̸= ∅}| ≥ max(|{i, Ai ∩ x≤tkl ̸= ∅}|, |{i, Pi ∩ x≤tkl ̸= ∅}|) ≥
ϵδ

210
tkl .

Because this is true for all l ≥ l̂ and tkl is an increasing sequence, we conclude that x disproves
the SMV condition for Q. Recall that this holds whenever the event A∩M∩

⋂
l≥1(El ∩Fl)

is met. Thus,

P[|{Q ∈ Q, Q ∩ X<T}| = o(T )] ≤ 1− P

[
A ∩M∩

⋂
l≥1

(El ∩ Fl)

]
≤ 1− η

4
< 1.

This shows that X /∈ SMV which is absurd. Therefore (1+ δ)C1NN is consistent on f ∗. This
ends the proof of the proposition. ■

Using the fact that in the (1 + δ)C1NN learning rule, no time t can have more than 2
children, as the 2C1NN rule, we obtain with the same proof as in Chapter 3 (Theorem 3.8)
the following proposition.

Proposition 4.3. Fix 0 < δ ≤ 1. Let (X ,B) be a separable Borel space. For the binary
classification setting, the learning rule (1+δ)C1NN is universally consistent for all processes
X ∈ SMV.

Finally, we use the reduction in Proposition 3.5 from Chapter 3 which gives a reduction
from any near-metric bounded value space to binary classification.

Proposition 4.4. If (1 + δ)C1NN is universally consistent under a process X for binary
classification, it is also universally consistent under X for any separable near-metric setting
(Y , ℓ) with bounded loss.

Together with Proposition 4.3, Proposition 4.4 ends the proof of Theorem 4.5.
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4.9.2 Proof of Theorem 4.6

Let 0 < ϵ ≤ 1. We first analyze the prediction of the learning rule f ϵ· . In the rest of the proof,
we denote ℓ̄(Ŷt(ϵ), Yt) :=

∑
y∈Yϵ

P(Ŷt(ϵ) = y)ℓ(y, Yt) the immediate expected loss at each
iteration. The learning rule was constructed so that we perform exactly the classical Hedge
/ exponentially weighted average forecaster on each cluster of times C(t) = {u ≤ t : u

ϕ∼ t}.
As a result [CL06] (Theorem 2.2), we have that for any t ≥ 1,

1

ℓ̄

∑
u∈C(t)

ℓ̄(Ŷu(ϵ), Yu) ≤
1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y, Yu) +
ln |Yϵ|
ℓ̄ηϵ

+
|C(t)|ℓ̄ηϵ

8

≤ 1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y, Yu) +

√
ln |Yϵ|
8Tϵ

(Tϵ + |C(t)|)

≤ 1

ℓ̄
min
y∈Yϵ

∑
u∈C(t)

ℓ(y, Yu) +
ϵ

ℓ̄
max(Tϵ, |C(t)|)

Now consider a horizon T ≥ 1, and enumerate all the clusters C1(T ), . . . , Cp(T )(T ) at horizon
T , i.e. the classes of equivalence of ϕ among the times {t ≤ T}. Note that if a cluster
i ≤ p has |Ci(T )| < Tϵ, then either it must contain a time t ∈ N which is a leaf of the
tree formed by ϕ until time T , or it is a cluster of duplicates of an instance Xu which has
already had Tϵ

ϵ
occurrences. As a result, the times falling into such clusters of duplicates

with less than Tϵ members form at most a proportion ϵ of the total T times. Denote by
Ai := {t ≤ T : t ∈ N , |{u ≤ T : ϕ(u) = t}| = i} times which have excactly i children for
i ∈ {0, 1, 2}. Note that no time can have more than 2 children. In particular A0 is the set
of leaves. Then, by summing the above equations we obtain

T∑
t=1

ℓ̄(Ŷt(ϵ), Yt) ≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + ϵmax(Tϵ, |Ci(T )|)


≤

p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + ϵT + Tϵ|{1 ≤ i ≤ p : |Ci(T )| < Tϵ}|

≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + ϵT + Tϵ|A0|+ ϵTϵ,

where in the last inequality we used the fact that all clusters with |Ci(T )| < Tϵ contain a
leaf from A0, which is therefore distinct for each such cluster. Now note that by counting
the number of edges of the tree structure we obtain 1

2
(3|A2| + 2|A1| + |A0| − 1) = T − 1 =

|A0|+|A1|+|A2|−1, where the−1 on the left-hand side accounts for the root of this tree which
does not have a parent. Hence we obtain |A0| = |A2|+1. Further, |A2| ≤ |{t ≤ T : Ut = 1}|
which follows a binomial distribution B(T, δϵ). Therefore, using the Chernoff bound, with

150



probability 1− e−Tδϵ/3 we have

T∑
t=1

ℓ̄(Ŷt(ϵ), Yt) ≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + 2ϵT + Tϵ(1 + 2Tδϵ)

≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + Tϵ + 3ϵT.

We now observe that the sequence {ℓ(Ŷt(ϵ), Yt)− ℓ̄(Ŷt(ϵ), Yt)}T≥1 is a sequence of martingale
differences bounded by ℓ̄ in absolute value. Hence, the Hoeffding-Azuma inequality yields
that for any T ≥ 1, with probability 1− 1

T 2 − e−Tδϵ/3,

T∑
t=1

ℓ(Ŷt(ϵ), Yt) ≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + Tϵ + 3ϵT + 2ℓ̄
√
T lnT .

Because
∑

T≥1
1
T 2 +e

−Tδϵ/3 <∞ the Borel-Cantelli lemma implies that with probability one,
there exists a time T̂ such that

∀T ≥ T̂ ,
T∑
t=1

ℓ(Ŷt(ϵ), Yt) ≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + Tϵ + 2ℓ̄
√
T lnT + 3ϵT.

We denote by Eϵ this event. We are now ready to analyze the risk of the learning rule f ϵ· . Let
f : X → Y a measurable function to which we compare the prediction of f ϵ· . By Theorem 4.5,
the rule (1+ δϵ)C1NN is optimistically universal in the noiseless setting. Therefore, because
X ∈ Soul we have in particular

1

T

T∑
t=1

ℓ((1 + δϵ)C1NNt(X≤t−1, f(X≤t−1), Xt), f(Xt))→ 0 (a.s.),

i.e., almost surely, 1
T

∑
t≤T,t∈N ℓ(f(Xϕ(t)), f(Xt))→ 0 — the times corresponding to duplicate

instances incur a 0 loss by memorization. We denote by Fϵ this event of probability one. We
write for any u = 1, . . . , Tϵ − 1,∑

t≤T,t∈N

ℓ(f(Xϕu(t)), f(Xt))

≤ cℓ1
∑

t≤T,t∈N

ℓ(f(Xϕu−1(t)), f(Xt)) + 2
∑

t≤T,t∈N

ℓ(f(Xϕl(t)), f(Xϕu−1(t)))

≤ cℓ1
∑

t≤T,t∈N

ℓ(f(Xϕu−1(t)), f(Xt))

+ 2
∑

t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt)) · |{l ≤ T : ϕu−1(l) = t}|

≤ cℓ1
∑

t≤T,t∈N

ℓ(f(Xϕu−1(t)), f(Xt)) + 2u
∑

t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))
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where we used the fact that times have at most 2 children. Therefore, iterating the above
equations, we obtain that on Fϵ, for any u = 1, . . . , Tϵ − 1

1

T

∑
t≤T,t∈N

ℓ(f(Xϕu(t)), f(Xt)) ≤

(
u∑
k=1

(cℓ1)
u−k2k

)
1

T

∑
t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))

≤ u2u(cℓ1)
u

T

∑
t≤T,t∈N

ℓ(f(Xϕ(t)), f(Xt))→ 0.

In the rest of the proof, for any y ∈ Y , we will denote by yϵ a value in the ϵ−net Yϵ such
that ℓ(y, yϵ) ≤ ϵ. We now pose µϵ = min{0 < µ ≤ 1 : cℓµ ≤ 1√

ϵ
} if the corresponding set

is non-empty and µϵ = 1 otherwise. Note that because cℓµ is non-increasing in µ, we have
µϵ −→ϵ→0 0. Finally, for any cluster Ci(T ), let ti = min{u ∈ Ci(T )}. Putting everything
together, on the event Eϵ ∩ Fϵ, for any T ≥ T̂ , we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt) ≤
p(T )∑
i=1

min
y∈Yϵ

∑
u∈Ci(T )

ℓ(y, Yu) + Tϵ + 2ℓ̄
√
T lnT + 3ϵT

≤
p(T )∑
i=1

∑
u∈Ci(T )

ℓ(f(Xti)
ϵ, Yu) + Tϵℓ̄+ 2ℓ̄

√
T lnT + 3ϵT

≤
p(T )∑
i=1

∑
u∈Ci(T )

[cℓµϵℓ(f(Xti)
ϵ, f(Xti)) + (cℓµϵ)

2ℓ(f(Xti), f(Xu))

+ (1 + µϵ)
2ℓ(f(Xu), Yu)] + Tϵℓ̄+ 2ℓ̄

√
T lnT + 3ϵT

≤ (1 + µϵ)
2

T∑
t=1

ℓ(f(Xt), Yt) + (cℓµϵ)
2Tϵ
ϵ

Tϵ−1∑
u=1

∑
t≤T,t∈N

ℓ(f(Xt), f(Xϕu(t)))

+ Tϵℓ̄+ 2ℓ̄
√
T lnT + (3 + cℓµϵ)ϵT

≤
T∑
t=1

ℓ(f(Xt), Yt) +
(cℓµϵ)

2Tϵ

ϵ

Tϵ−1∑
u=1

∑
t≤T,t∈N

ℓ(f(Xt), f(Xϕu(t)))

+ Tϵℓ̄+ 2ℓ̄
√
T lnT + (3ϵ+ ϵcℓµϵ + 3µϵ)T,

where in the third inequality we used the generalized-metric loss identity twice, and in the
fourth inequality we used the fact that clusters containing distinct instances have at most
Tϵ
ϵ

duplicates of each instance. Hence, for any ϵ < (cℓ1)
−2, on the event Eϵ ∩ Fϵ, we obtain

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt(ϵ), Yt)− ℓ(f(Xt), Yt) ≤ 3ϵ+ ϵcℓµϵ + 3µϵ ≤ 3ϵ+
√
ϵ+ 3µϵ,

where µϵ −→ϵ→0 0. We now denote δϵ := 2ϵ +
√
ϵ + 3µϵ and i0 = ⌈2 ln c

ℓ
1

ln 2
⌉. We now turn to

the final learning rule and show that by using the predictions of the rules f ϵi· for i ≥ 0, it
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achieves zero risk. First, by the union bound, on the event
⋂
i≥0 Eϵi ∩Fϵi of probability one,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) ≤ δϵi , ∀i ≥ i0.

Now define H the event probability one according to Lemma 4.1 such that there exists t̂ for
which

∀t ≥ t̂, ∀i ∈ It,
t∑

s=ti

ℓ(Ŷt, Yt) ≤
t∑

s=ti

ℓ(Ŷt(ϵi), Yt) + (2 + ℓ̄+ ℓ̄2)
√
t ln t.

In the rest of the proof we will suppose that the event H∩
⋂
i≥0 Eϵi ∩ Fϵi is met. Let i ≥ i0.

For any T ≥ max(t̂, ti), we have

1

T

T∑
t=1

ℓ(Ŷt, Yt)−ℓ(f(Xt), Yt) ≤
ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

≤ ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) + (2 + ℓ̄+ ℓ̄2)

√
lnT

T

≤ 1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) +
2ti
T
ℓ̄+ (2 + ℓ̄+ ℓ̄2)

√
lnT

T
.

Therefore we obtain lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ δϵi . Because this holds for

any i ≥ i0 on the event H∩
⋂
i≥0 Eϵi ∩Fϵi of probability one, and δϵi → 0 for i→∞, we have

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 0.

This ends the proof of the theorem.

4.9.3 Proof of Lemma 4.1

We first introduce the following helper lemma which can be found in [CL06].

Lemma 4.6 ([CL06]). For all N ≥ 2, for all β ≥ α ≥ 0 and for all d1, . . . , dN ≥ 0 such that∑N
i=1 e

−αdi ≥ 1,

ln

∑N
i=1 e

−αdi∑N
i=1 e

−βdi
≤ β − α

α
lnN.

We are now ready to compare the predictions of the learning rule f· to the predictions of
the rules f ϵ· .

For any t ≥ 0, we define the instantaneous regret rt,i = ℓ̂t−ℓ(Ŷt(ϵi), Yt). We first note that
|rt,i| ≤ ℓ̄. We now define w′

t−1,i := eηt−1(L̂t−1,i−Lt−1,i). We also introduce Wt−1 =
∑

i∈It wt−1,i
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and W ′
t−1 =

∑
i∈It−1

w′
t−1,i. We denote the index kt ∈ It such that L̂t,kt−Lt,kt = maxi∈It L̂t,i−

Lt,i. Then we write

1

ηt
ln
wt−1,kt−1

Wt−1

− 1

ηt+1

ln
wt,kt
Wt

=

(
1

ηt+1

− 1

ηt

)
ln

Wt

wt,kt
+

1

ηt
ln
Wt/wt,kt
W ′
t/w

′
t,kt

+
1

ηt
ln
wt−1,kt−1

w′
t,kt

+
1

ηt
ln

W ′
t

Wt−1

.

By construction, we have ln Wt

wt,kt
≤ ln |It| ≤ ln(1 + ln t). Further, we have that

1

ηt
ln
Wt/wt,kt
W ′
t/w

′
t,kt

=
1

ηt
ln

∑
i∈It+1

eηt+1(L̂t,i−Lt,i−L̂t,kt
+Lt,kt

)∑
i∈It e

ηt(L̂t,i−Lt,i−L̂t,kt
+Lt,kt

)

=
1

ηt
ln

∑
i∈It+1

wt,i∑
i∈It wt,i

+
1

ηt
ln

∑
i∈It+1

eηt+1(L̂t,i−Lt,i−L̂t,kt
+Lt,kt

)∑
i∈It+1

eηt(L̂t,i−Lt,i−L̂t,kt
+Lt,kt

)

≤ 1

ηt
ln

∑
i∈It+1

wt,i∑
i∈It wt,i

+
1

ηt

(
ηt − ηt+1

ηt+1

)
ln |It+1|

≤ |It+1| − |It|
ηt
∑

i∈It wt,i
+

(
1

ηt+1

− 1

ηt

)
ln(1 + ln(t+ 1)),

where in the first inequality we applied Lemma 4.6. We also have

1

ηt
ln
wt−1,kt−1

w′
t,kt

= (L̂t−1,kt−1 − Lt−1,kt−1)− (L̂t,kt , Lt,kt).

Last, because |rt,i| ≤ ℓ̄ for all i ∈ It, we can use Hoeffding’s lemma to obtain

1

ηt
ln

W ′
t

Wt−1

=
1

ηt
ln
∑
i∈It

wt−1,i

Wt−1

eηtrt,i ≤ 1

ηt

(
ηt
∑
i∈It

rt,i
wt−1,i

Wt−1

+
η2t (2ℓ̄)

2

8

)
=

1

2
ηtℓ̄

2.

Putting everything together gives

1

ηt
ln
wt−1,kt−1

Wt−1

− 1

ηt+1

ln
wt,kt
Wt

≤ 2

(
1

ηt+1

− 1

ηt

)
ln(1 + ln(t+ 1)) +

|It+1| − |It|
ηt
∑

i∈It wt,i

+ (L̂t−1,kt−1 − Lt−1,kt−1)− (L̂t,kt − Lt,kt) +
1

2
ηtℓ̄

2. (4.1)

First suppose that we have
∑

i∈It wt,i ≤ 1. Then either kt ∈ It+1 \ It in which case L̂t,kt −
Lt,kt = 0, or we have directly

L̂t,kt − Lt,kt ≤
1

ηt+1

ln

[∑
i∈It

wt,i

]
≤ 0.
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Otherwise, let t′ = min{1 ≤ s ≤ t : ∀s ≤ s′ ≤ t,
∑

i∈Is′
ws′,i ≥ 1}. We sum Eq (4.1) for

s = t′, . . . , t which gives

1

η1
ln
wt′−1,kt′−1

Wt′−1

− 1

ηt+1

ln
wt,kt
Wt

≤ 2

ηt+1

ln(1 + ln(t+ 1)) +
|It+1|
ηt

+ (L̂t′−1,kt′−1
− Lt′−1,kt′−1

)− (L̂t,kt − Lt,kt) +
ℓ̄2

2

t∑
s=t′

ηs.

Note that we have wt,kt

Wt
≤ 1 and

wt′−1,kt′−1

Wt′−1
≥ 1

|It′−1|
≥ 1

1+ln t
. Also, assuming t′ ≥ 2, since∑

i∈It′−1
wt′−1,i < 1, we have for any i ∈ It′−1 that L̂t′−1,i − Lt′−1,i ≤ 0, hence L̂t′−1,kt′−1

−
Lt′−1,kt′−1

≤ 0. If t′ = 1 we have directly L̂0,k0 − L0,k0 = 0. Finally, using the fact that∑t
s=1

1√
s
≤ 2
√
t, we obtain

L̂t,kt − Lt,kt ≤ ln(1 + ln(t+ 1))

(
1 + 2

√
t+ 1

ln(t+ 1)

)
+ (1 + ln(t+ 1))

√
t

ln t
+ ℓ̄2
√
t ln t

≤ (3/2 + ℓ̄2)
√
t ln t,

for all t ≥ t0 where t0 is a fixed constant. This in turn implies that for all t ≥ t0 and i ∈ It,
we have L̂t,i − Lt,i ≤ (3/2 + ℓ̄2)

√
t ln t. Now note that |ℓ(Ŷt, Yt)− ℓ̂t| ≤ ℓ̄. Hence, we can use

Hoeffding-Azuma inequality for the variables ℓ(Ŷt, Yt)− ℓ̂t that form a sequence of martingale

differences to obtain P
[∑t

s=ti
ℓ(Ŷs, Ys) > L̂t,i + u

]
≤ e−

2u2

tℓ̄2 . Hence, for t ≥ t0 and i ∈ It, with
probability 1− δ, we have

t∑
s=ti

ℓ(Ŷs, Ys) ≤ L̂t,i + ℓ̄

√
t

2
ln

1

δ
≤ Lt,i + (3/2 + ℓ̄2)

√
t ln t+ ℓ̄

√
t

2
ln

1

δ
.

Therefore, since |It| ≤ 1+ ln t, by union bound with probability 1− 1
t2

we obtain that for all
i ∈ It,

t∑
s=ti

ℓ(Ŷs, Ys) ≤ Lt,i + (3/2 + ℓ̄2)
√
t ln t+ ℓ̄

√
t

2
ln(1 + ln t) + ℓ̄

√
t ln t ≤ (2 + ℓ̄+ ℓ̄2)

√
t ln t,

for all t ≥ t1 where t1 ≥ t0 is a fixed constant. The Borel-Cantelli lemma implies that almost
surely, there exists t̂ ≥ 0 such that

∀t ≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys) ≤ Lt,i + (2 + ℓ̄+ ℓ̄2)
√
t ln t.

This ends the proof of the lemma.
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4.10 Appendix B: Proofs of Section 4.4

4.10.1 Proof of Theorem 4.7

We start by checking that with the defined loss (N, ℓ) is indeed a metric space (N, ℓ). We
only have to check that the triangular inequality is satisfied, the other properties of a metric
being directly satisfied. By construction, the loss has values in {0, 1

2
, 1}. Now let i, j, k ∈

N. The triangular inequality ℓ(i, j) ≤ ℓ(i, k) + ℓ(k, j) is directly satisfied if two of these
indices are equal. Therefore, we can suppose that they are all distinct and as a result
ℓ(i, j), ℓ(i, k), ℓ(k, j) ∈ {1

2
, 1}. Therefore

ℓ(i, j) ≤ 1 ≤ ℓ(i, k) + ℓ(k, j),

which ends the proof that ℓ is a metric.
Now let (X ,B) be a separable metrizable Borel space. Let X /∈ CS. We aim to show that

universal online learning under adversarial responses is not achievable under X. Because
X /∈ CS, there exists a sequence of decreasing measurable sets {Ai}i≥1 with Ai ↓ ∅ such that
E[µ̂X(Ai)] does not converge to 0 for i→∞. In particular, there exist ϵ > 0 and an increasing
subsequence (il)l≥1 such that E[µ̂X(Ail)] ≥ ϵ for all l ≥ 1. We now denote Bl := Ail \ Ail+1

for any l ≥ 1. Then {Bl}l≥1 forms a sequence of disjoint measurable sets such that

E

[
µ̂X

(⋃
l′≥l

Bl′

)]
≥ ϵ, l ≥ 1.

Therefore, for any l ≥ 1 because E
[
µ̂X
(⋃

l′≥lBl′
)]
≤ P

[
µ̂X
(⋃

l′≥lBl′
)
≥ ϵ

2

]
+ ϵ

2
we obtain

P

[
µ̂X

(⋃
l′≥l

Bl′

)
≥ ϵ

2

]
≥ ϵ

2
.

Now because µ̂ is increasing we obtain

P

[
µ̂X

(⋃
l′≥l

Bl′

)
≥ ϵ

2
,∀l ≥ 1

]
= lim

L→∞
P

[
µ̂X

(⋃
l′≥l

Bl′

)
≥ ϵ

2
, 1 ≤ l ≤ L

]

= lim
L→∞

P

[
µ̂X

(⋃
l′≥L

Bl′

)
≥ ϵ

2

]
≥ ϵ

2
.

We will denote by A this event in which for all l ≥ 1, we have µ̂X
(⋃

l′≥lBl′
)
≥ ϵ

2
. Under the

event A, for any l, t0 ≥ 1, there always exists t1 > t0 such that 1
t1

∑t1

t=1 1
⋃

l′≥lBl′
(Xt) ≥ 3ϵ

8
.

We construct a sequence of times (tp)p≥1 and indices (lp)p≥1, (up)p≥1 by induction as follows.
We first pose u0 = t0 = 0. Now assume that for p ≥ 1, the time tp−1 and index up−1 are
defined. We first construct an index lp > up−1 such that

P

X≤tp−1 ∩

⋃
l≥lp

Bl

 ̸= ∅
 ≤ ϵ

2p+3
.
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We will denote by Ep the complementary of this event. Note that finding such index lp is
possible because the considered events {X≤tp−1 ∩

(⋃
l′≥lBl′

)
̸= ∅} are decreasing as l > up−1

increases and we have

⋂
l>up−1

{
X≤tp−1 ∩

(⋃
l′≥l

Bl′

)
̸= ∅

}
=

X≤tp−1 ∩

 ⋂
l>up−1

⋃
l′≥l

Bl′

 ̸= ∅
 = ∅.

We then construct tp > tp−1 such that

P

Ac ∪ ⋃
tp−1<t≤tp

{
1

t

t∑
u=1

1
⋃

l≥lp
Bl
(Xu) ≥

3ϵ

8

} ≥ 1− ϵ

2p+4
.

This is also possible because A ⊂
⋃
t> 8

ϵ
tp−1

{
1
t

∑t
u=1 1

⋃
l≥lp

Bl
(Xu) ≥ 3ϵ

8

}
. Last, we can now

construct up ≥ lp such that

P

Ac ∪ ⋃
tp−1<t≤tp

{
1

t

t∑
u=1

1
⋃

lp≤l≤up
Bl
(Xu) ≥

ϵ

4

} ≥ 1− ϵ

2p+3
,

which is possible using similar arguments as above. We denote Fp this event. This ends the
recursive construction of times tp and indices lp for all p ≥ 1. Note that by construction,
P[Ecp],P[F cp ] ≤ ϵ

2p+3 . Hence, by union bound, the event A ∩
⋂
p≥1(Ep ∩ Fp) has probability

P[A ∩
⋂
p≥1(Ep ∩ Fp)] ≥ P[A] − ϵ

4
≥ ϵ

4
. To simplify the rest of the proof, we denote B̃p =⋃

lp≤l≤up Bl for any p ≥ 1. Also, for any t1 ≤ t2, we denote by

Np(t1, t2) =

t2∑
t=t1

1B̃p
(Xt)

the number of times that set B̃p has been visited between times t1 and t2.
We now fix a learning rule f· and construct a process Y for which consistency will not be

achieved on the event A ∩
⋂
p≥1(Ep ∩ Fp). Precisely, we first construct a family of processes

Yb indexed by a sequence of binary digits b = (bi)i≥1. The process Yb is defined such that
for any p ≥ 1, and for all tp−1 < t ≤ tp,

Y b
t :=


ntp + 4up(t) + 2bi(p,up(t)) + bi(p,up(t))+1 if Xt ∈ B̃p,

ntp′ + 4tp′ + {bi(p′,tp′−1) . . . bi(p′,1)bi(p′,0)}2 if Xt ∈ B̃p′ , p
′ < p,

0 otherwise,

where we denoted up(t) = Np(tp−1 + 1, t− 1) and posed for any p ≥ 1 and u ≥ 1:

i(p, u) = 2
∑
p′<p

tp′ + 2u.

Note in particular that conditionally on X, Yb is deterministic: it does not depends on the
random predictions of the learning rule. Because we always have Np(tp−1 + 1, t − 1) ≤ tp
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for any t ≤ tp, the process is designed so that we have Y b
t ∈ Itp if Xt ∈ B̃p and tp−1 <

t ≤ tp. Further, for tp−1 < t ≤ tp, if Xt ∈
⋃
p′<p B̃p′ then Y b

t ∈ Jtp′ . We now consider an
i.i.d. Bernoulli B(1

2
) sequence of random bits b independent from the process X—and any

learning rule predictions. We analyze the responses of the learning rule for responses Yb.
We first fix a realization x of the process X, which falls in the event A∩

⋂
p≥1(Ep ∩Fp). For

any p ≥ 1 we define Tp := {tp−1 < t ≤ tp : xt ∈ B̃p}. For simplicity of notation, for any
t ∈ Tp we denote i(t) = i(p, up(t)). We will also denote Ŷt := ft(x<t,Yb

<t, xt). Last, denote
by rt the possible randomness used by the learning rule ft at time t. For any t ∈ Tp, we have

Eb,rℓ(Ŷt, Y
b
t ) = E{bi(p′,u′),bi(p′,u′)+1, p

′≤p,u′≤tp′}∪{rt′ ,t′≤t}ℓ(Ŷt, Y
b
t )

= E
[
Ebi(t),bi(t)+1

ℓ(Ŷt, Y
b
t )
∣∣∣ bi(t′), bi(t′)+1, t

′ < t, t′ ∈ Tp; bi, i < i(p, 0); rt′ , t
′ ≤ t

]
= E

[
Ebi(t),bi(t)+1

ℓ(Ŷt, Y
b
t )
∣∣∣ Ŷt]

= EŶt

[
1

4

3∑
m=0

ℓ(Ŷt, ntp + 4up(t) +m)

]

= EŶt

[
1Ŷt /∈{ntp+4up(t)+m,0≤m≤3}∪Jtp +

3

4
1Ŷt∈{ntp+4up(t)+m,0≤m≤3} +

3

4
1Ŷt∈Jtp

]
≥ 3

4
.

where in the last equality, we used the fact that if j ∈ Jk(t) then by construction ℓ(j, ntp +
4up(t)) = ℓ(j, ntp + 4up(t) + 1), ℓ(j, ntp + 4up(t) + 2) = ℓ(j, ntp + 4up(t) + 3), and {ℓ(j, ntp +
4up(t)), ℓ(j, ntp + 4up(t) + 2)} = {1

2
, 1}. Summing all equations, we obtain for any tp−1 <

T ≤ tp,

Eb,r

[
T∑
t=1

ℓ(ft(x<t,Yb
<t, xt), Y

b
t )

]
≥ 3

4

∑
p′<p

|Tp′ |+
3

4
|Tp ∩ {t ≤ T}|.

This holds for all p ≥ 1. Let us now compare this loss to the best prediction of a fixed mea-
surable function. Specifically, for any binary sequence b, we consider the following function
f b : X → N:

f b(x) =

{
ntp + 4tp + {bi(p,tp−1) . . . bi(p,1)bi(p,0)}2 if x ∈ B̃p

0 if x /∈
⋃
p≥1 B̃p.

Now let tp−1 < t ≤ tp and p ≥ 1. If xt ∈
⋃
p′<p B̃p′ we have fb(xt) = Y b

t , hence ℓ(fb(xt), Y
b
t ) =

0. Now if Xt ∈ B̃p by construction we have ℓ(fb(xt), Y
b
t ) =

1
2
. Finally, observe that because

the event Ep+1 is satisfied by x there does not exist tp−1 < t ≤ tp such that t ∈
⋃
p′>p B̃p′ ⊂⋃

l≥lp+1
Bl. As a result, we have ℓ(fb(xt), Y

b
t ) = 1

2
1t∈Tp for any tp−1 < t ≤ tp. Thus, we

obtain for any tp−1 < T ≤ tp,

Eb,r

[
T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ 1

4

∑
p′≤p

|Tp′ |+
1

4
|Tp ∩ {t ≤ T}| ≥ 1

4
|Tp ∩ {t ≤ T}|.
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Recall that the event Fp is satisfied by x for any p ≥ 1. Therefore, there exists a time
tp−1 < Tp ≤ tp such that

∑Tp
t=1 1B̃p

(xt) ≥ ϵTp
4
. Then, note that because the event Ep is

satisfied, we have
∑tp−1

t=1 1B̃p
(xt) = 0. Therefore, we obtain |Tp ∩ {t ≤ Tp}| ≥ ϵTp

4
, and as a

result,

Eb,r

[
1

Tp

Tp∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ ϵ

16
.

Because this holds for any p ≥ 1 and as p → ∞ we have Tp → ∞, we can now use Fatou
lemma which yields

Eb,r

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ ϵ

16
.

This holds for any realization in A ∩
⋂
p≥1(Ep ∩ Fp) which we recall has probability at least

ϵ
4
. Therefore we finally obtain

Eb,r,X

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(fb(Xt), Y

b
t )

]
≥ ϵ2

26
.

As a result, there exists a specific realization of b which we denote b such that

Er,X

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Y
b
t )− ℓ(f b(Xt), Y

b
t )

]
≥ ϵ2

26
,

which shows that with nonzero probability lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Y

b
t )− ℓ(f b(Xt), Y

b
t ) > 0.

This ends the proof of the theorem. As a remark, one can note that the construction of our
bad example Yb is a deterministic function of X: it is independent from the realizations of
the randomness used by the learning rule.

4.10.2 Proof of Lemma 4.2

We first construct our online learning algorithm, which is a simple variant of the classical
exponential forecaster. We first define a step η :=

√
2 ln t0/t0. At time t = 1 we always

predict 0. For time step t ≥ 2, we define the set St−1 := {y ∈ N,
∑t−1

u=1 1y=yu > 0} the set of
values which have been visited. Then, we construct weights for all y ∈ N such that

wy,t−1 =

{
eη

∑t−1
u=1 1y=yu , y ∈ St−1

0 otherwise,

and output a randomized prediction independent of the past history such that

P(ŷt = y) =
wy,t−1∑

y′∈Nwy′,t−1

.

This defines a proper online learning rule. Note that the denominator is well defined since
wy,t−1 is non-zero only for values in St−1, which contains at most t − 1 elements. We now
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define the expected success at time 1 ≤ t ≤ T as ŝt :=
wyt,t−1∑
y∈N wy,t−1

1yt∈St . Note that ŝt =
E[1ft(y≤t−1)=yt ]. We first show that we have

T∑
t=1

ŝt ≥ max
y∈N

T∑
t=1

1y=yt −
√
T lnT.

To do so, we analyze the quantity Wt :=
1
η
ln
(∑

y∈St
eη

∑t
u=1(1y=yu−ŝu)

)
. Let 2 ≤ t ≤ T .

Supposing that yt ∈ St−1, i.e., St = St−1, we define the operator Φ : x ∈ R|St−1| 7→
1
η
ln
(∑

y∈St−1
eηxy

)
and use the Taylor expansion of Φ to obtain

Wt =
1

η
ln

 ∑
y∈St−1

eη
∑t−1

u=1(1y=yu−ŝu)+η(1y=yt−ŝt)


= Wt−1 +

∑
y∈St−1

(1y=yt − ŝt)
eη

∑t−1
u=1 1y=yu∑

y′∈St−1
eη

∑t−1
u=1 1y′=yu

+
1

2

∑
y1,y2∈St−1

∂2Φ

∂xy1∂xy2

∣∣∣∣
ξ

(1y1=yu − ŝu)(1y2=yu − ŝu)

= Wt−1 +
1

2

∑
y1,y2∈St−1

∂2Φ

∂xy1∂xy2

∣∣∣∣
ξ

(1y1=yt − ŝu)(1y2=yt − ŝu)

≤ Wt−1 +
1

2

∑
y∈St−1

ηeηξy∑
y′∈St−1

eηξy′
(1y=yt − ŝu)2

≤ Wt−1 +
η

2
,

for some vector ξ ∈ R|St−1|, where in the last inequality we used the fact |1y=yt − ŝu| ≤ 1.

We now suppose that yt /∈ St−1 and Wt−1 ≥ 1 +
ln 2+2 ln 1

η

η
. In that case, eηWt = eηWt−1 +

eη(1−
∑t−1

u=1 ŝu). Hence, we obtain

Wt = Wt−1 +
ln
(
1 + eη(1−Wt−1−

∑t−1
u=1 ŝu)

)
η

≤ Wt−1 +
eη(1−Wt−1)

η
≤ Wt−1 +

η

2
.

Now let l = max{1} ∪
{
1 ≤ t ≤ T : Wt < 1 +

ln 2+2 ln 1
η

η

}
. Note that for any l < t ≤ T the

above arguments yield Wt ≤ Wt−1 +
η
2
. As a result, noting that W1 ≤ 1, we finally obtain

WT ≤ Wl + η
T − l
2
≤ 1 +

ln 2 + 2 ln 1
η

η
+ η

T

2
≤ 1 + ln 2

√
t0

2 ln t0
+

√
ln t0
2t0

(t0 + T ).

Therefore, for any y ∈ ST , we have

T∑
t=1

(1y=yt − ŝt) ≤ WT ≤ 1 + ln 2

√
t0

2 ln t0
+

√
ln t0
2t0

(t0 + T ).
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In particular, this shows that

T∑
t=1

ŝt ≥ max
y∈ST

T∑
t=1

1y=yt − 1− ln 2

√
t0

2 ln t0
−
√

ln t0
2t0

(t0 + T ).

Now note that if y /∈ ST , then
∑T

t=1 1y=yt = 0, which yields

max
y∈ST

T∑
t=1

1y=yt = max
y∈N

T∑
t=1

1y=yt .

For the sake of conciseness, we will now denote by ŷt the prediction of the online learning
rule at time t. We observe that the variables 1ŷt=yt − ŝt for 1 ≤ t ≤ T form a sequence of
martingale differences. Further, |1ŷt=yt− ŝt| ≤ 1. Therefore, the Hoeffding-Azuma inequality
shows that with probability 1− δ,

T∑
t=1

(1ŷt=yt − ŝt) ≥ −
√
2T ln

1

δ
.

Putting everything together yields that with probability 1− δ,

T∑
t=1

1ŷt=yt ≥
T∑
t=1

ŝt −
√

2T ln
1

δ

≥ max
y∈N

T∑
t=1

1y=yt − 1− ln 2

√
t0

2 ln t0
−
√

ln t0
2t0

(t0 + T )−
√

2T ln
1

δ
.

This ends the proof of the lemma.

4.10.3 Proof of Theorem 4.9

We use a similar learning rule to the one constructed in Section 4.4 for totally-bounded
spaces. We only make a slight modification of the learning rules f ϵ· . Precisely, we pose for
0 < ϵ ≤ 1,

Tϵ :=

⌈
24 · 32(1 + ln 1

ϵ
)

ϵ2

⌉
and δϵ :=

ϵ

2Tϵ
.

Then, let ϕ be the representative function from the (1 + δϵ)C1NN learning rule. Similarly
as for the ϵ−approximation learning rule from Section 4.4, we consider the same equivalence
relation ϕ∼ on times to define clusters. The learning rule then performs its prediction based
on the values observed on the corresponding cluster using the learning rule from Lemma 4.2
using t0 = Tϵ. Precisely, let ηϵ :=

√
2 lnTϵ/Tϵ and define the weights wy,t = e

ηϵ
∑

u<t:u
ϕ
∼t

1(Yu=y)

for all y ∈ S̃ := {y′ ∈ N :
∑

u<t:u
ϕ∼t
1(Yu = y′) > 0} and wy,t = 0 otherwise. The learning

rule f ϵt (X≤t−1,Y≤t−1, Xt) outputs a random value in N independent of the past history such
that

P(Ŷt = y) =
wy,t∑

y′∈Nwy′,t
, y ∈ N.
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The final learning rule f· is then defined similarly as before from the learning rules f ϵ· for
ϵ > 0. Therefore, Lemma 4.1 still holds. Also, using the same notations as in the proof of
Theorem 4.6, Lemma 4.2 implies that for any t ≥ 1, we can write for any t ≥ 1 on the cluster
C(t) = {u < t : u

ϕ∼ t},

∑
u∈C(t)

ℓ̄01(Ŷu(ϵ), Yu) ≤ min
y∈N

∑
u∈C(t)

ℓ01(y, Yu) + 1 + ln 2

√
Tϵ

2 lnTϵ
+

√
lnTϵ
2Tϵ

(Tϵ + |C(t)|)

≤ min
y∈N

∑
u∈C(t)

ℓ01(y, Yu) +

(
1

Tϵ
+

ln 2√
2Tϵ lnTϵ

+

√
2 lnTϵ
Tϵ

)
max(Tϵ, |C(t)|)

≤ min
y∈N

∑
u∈C(t)

ℓ01(y, Yu) +
( ϵ
3
+
ϵ

3
+
ϵ

3

)
max(Tϵ, |C(t)|)

= min
y∈N

∑
u∈C(t)

ℓ01(y, Yu) + ϵmax(Tϵ, |C(t)|)

Therefore, the same proof of Theorem 4.6 holds by replacing all ϵ−nets Yϵ directly by N.
The martingale argument still holds since the learning rule used is indeed online. This ends
the proof of this theorem.

4.10.4 Proof of Theorem 4.10

We first need the following simple result which intuitively shows that we can assume that
the predictions of the learning rule for mean estimation gϵ≤tϵ are unrelated for t = 1, . . . , tϵ.

Lemma 4.7. Let (Y , ℓ) satisfying F-TiME. For any η > 0, there exists a horizon time
Tη ≥ 1, an online learning rule g≤Tη such that for any y := (yt)

Tη
t=1 of values in Y and any

value y ∈ Y, we have

1

Tη
E

[
Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

]
≤ η,

and such that the random variables gt(y≤t−1) are independent.

Proof Fix η > 0, Tη ≥ 1 and g≤Tη such that this online learning rule satisfies the condition
from F-TiME for η > 0. We consider the following learning rule g̃·. For any t ≥ 1 and
y ∈ Y t−1,

g̃t(y≤t−1) = gtt(y≤t−1),

where (gt· ) are i.i.d. samples of the learning rule g·. By construction, we still have that for
any sequence yTη ∈ YTη ,

1

Tη
E

[
Tη∑
t=1

ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt)

]
=

1

Tη
E

[
Tη∑
t=1

ℓ(gt(y≤t−1), yt)− ℓ(y, yt)

]
≤ η.

This ends the proof of the lemma. ■
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From now on, by Lemma 4.7, we will suppose without loss of generality that the learning
rule gϵ has predictions that are independent at each step (conditionally on the observed
values). For simplicity, we refer to the prediction of the defined learning rule f· (resp. f ϵ· )
at time t as Ŷt (resp. Ŷt(ϵ)). We now show that is optimistically universal for arbitrary
responses. By construction of the learning rule f·, Lemma 4.1 still holds. Therefore, we only
have to focus on the learning rules f ϵ· and prove that we obtain similar results as before. Let
T ≥ 1 and denote by Ai := {t ≤ T : |{u ≤ T : ϕ(u) = t}| = i} the set of times which have
exactly i children within horizon T for i = 0, 1, 2. Then, we define

BT = {t ≤ T : Lt = 0 and |{t < u ≤ T : u
ϕ∼ t}| ≥ tϵ},

i.e., times that start a new learning block and such that there are at least tϵ future times
falling in their cluster within horizon T . Note that the function ψ defines a parent-relation
(similarly to ϕ, but defined for all times t ≥ 1). To simplify notations, for any t ∈ BT , we
denote tu the ψ−children of t at generation u− 1 for 1 ≤ u ≤ tϵ, i.e., we have ψu−1(tu) = t
for all 1 ≤ u ≤ tϵ. In particular t = t1. By construction, blocks have length at most tϵ. More
precisely, the block started at any t ∈ BT has had time to finish completely, hence has length
exactly tϵ. By construction of the indices Lt, the blocks {tu, 1 ≤ u ≤ tϵ}, for t ∈ BT , are all
disjoint. This implies in particular |BT |tϵ ≤ T . We first analyze the predictions along these
blocks and for any t ∈ BT and y ∈ Y , we pose δt(y) := 1

tϵ

∑tϵ
u=1

(
ℓ(Ŷtu , Ytu)− ℓ(y, Ytu)− ϵ

)
.

Now by construction of the learning rule f ϵ· , we have

tϵδt(y
t) =

tϵ∑
u=1

(
ℓ(gϵ,tu ({Ytl}u−1

l=1 ), Ytu)− ℓ(y
t, Ytu)

)
− ϵtϵ.

Next, for any t ≤ tϵ and sequence y≤t−1 and value y ∈ Y , we write ℓ̄(gϵt(y≤t−1), y) :=
E [ℓ(gϵt(y≤t−1), y)] . Now by hypothesis on the learning rule gϵ≤tϵ ,

1

tϵ

tϵ∑
u=1

ℓ̄(Ŷtu , Ytu)− ℓ(yt, Ytu) ≤ ϵ. (4.2)

Now consider the following sequence (ℓ(Ŷtu , Ytu) − ℓ̄(Ŷtu , Ytu))t∈BT ,1≤u≤s(t). Because of the
definition of the learning rule, which uses i.i.d. copies of the learning rule gϵ· , if we order the
former sequence by increasing order of tu, we obtain a sequence of martingale differences.
We can continue this sequence by zeros to ensure that it has length exactly T . As a result,
we obtain a sequence of T martingale differences, which are all bounded by ℓ̄ in absolute
value. Now, the Azuma-Hoeffding inequality implies that for δ > 0, with probability 1− δ,
we have ∑

t∈BT

tϵ∑
u=1

ℓ(Ŷtu , Ytu) ≤
∑
t∈BT

tϵ∑
u=1

ℓ̄(Ŷtu , Ytu) + ℓ̄

√
2T ln

1

δ
.

Thus, using Eq (4.2), with probability at least 1− δ,

∑
t∈BT

tϵδt(y
t) ≤ ℓ̄

√
2T ln

1

δ
. (4.3)
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We also denote T =
⋃
t∈BT
{tu, 1 ≤ u ≤ tϵ} the union of all blocks within horizon T . This

set contains all times t ≤ T except bad times close to the last times of their corresponding
cluster {u ≤ T : u

ϕ∼ t}. Precisely, these are times t such that |{t < u ≤ T : u
ϕ∼ t}| < tϵ−Lt.

As a result, there are at most tϵ such times for each cluster. Using the same arguments as in
the proof of Theorem 4.6, if we consider only clusters of duplicates (i.e., the cluster started
for a specific instance which has high number of duplicates), the corresponding bad times
contribute to a proportion ≤ tϵ

Tϵ/ϵ
≤ ϵ2 of times. Now consider clusters that have at least

Tϵ times. Their bad times contribute to a proportion ≤ tϵ
Tϵ
≤ ϵ of times. Last, we need to

account for clusters of size < Tϵ which necessarily contain leaves of the tree ϕ: there are at
most |A0| such clusters. By the Chernoff bound, with probability at least 1 − e−Tδϵ/3 we
have

T − |T | ≤ (ϵ2 + ϵ)T + |A0|tϵ ≤ tϵ + (ϵ2 + ϵ+ 2δϵtϵ)T ≤ tϵ + 3ϵT.

By the Borel-Cantelli lemma, because
∑

T≥1 e
−Tδϵ/3 <∞, almost surely there exists a time

T̂ such that for T ≥ T̂ we have T − |T | ≤ tϵ + 3ϵT . We denote by Eϵ this event. Then, on
the event Eϵ, for any T ≥ T̂ and for any sequence of values (yt)t≥1 we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt) ≤
∑
t∈BT

tϵ∑
u=1

ℓ(Ŷtu , Ytu) + (T − |T |)ℓ̄

≤
∑
t∈BT

tϵ∑
u=1

ℓ(yt, Ytu) +
∑
t∈BT

tϵδt(y
t) + ϵ|BT |tϵ + tϵℓ̄+ 3ϵT

≤
∑
t∈BT

tϵ∑
u=1

ℓ(yt, Ytu) +
∑
t∈BT

tϵδt(y
t) + tϵℓ̄+ 4ϵT.

Now let f : X → Y be a measurable function to which we compare f ϵ· . By Theorem 4.5,
because (1+ δϵ)C1NN is optimistically universal without noise and X ∈ Soul, almost surely
1
T

∑T
t=1 ℓ(f(Xϕ(t)), f(Xt))→ 0. We denote by Fϵ this event of probability one. The proof of

Theorem 4.6 shows that on Fϵ, for any 0 ≤ u ≤ Tϵ − 1 we have

1

T

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt))→ 0.

We let yt = f(Xt) for all t ≥ 1. Then, recalling that for any t ∈ BT , we have t = ϕu−1(tu),
on the event Eϵ, for any T ≥ T̂ we have

T∑
t=1

ℓ(Ŷt(ϵ), Yt)

≤
∑
t∈BT

tϵ∑
u=1

(
(1 + ϵ)ℓ(f(Xtu), Ytu) + cℓϵℓ(f(Xt), f(Xtu))

)
+
∑
t∈BT

tϵδt(y
t) + tϵℓ̄+ 4ϵT

≤
T∑
t=1

ℓ(f(Xt), Yt) + cℓϵ
Tϵ
ϵ

Tϵ−1∑
u=0

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt)) +
∑
t∈BT

tϵδφ(t)(y
t) + tϵℓ̄+ 5ϵT,
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where in the first inequality we used the generalized-metric loss identity, and in the sec-
ond inequality we used the fact that cluster with distinct instance values have at most Tϵ

ϵ

duplicates of each instance. Next, using Eq (4.3), with probability 1− 1
T 2 , we have∑

t∈BT

tϵδt(y
t) ≤ 2ℓ̄

√
T lnT .

Because
∑

T≥1
1
T 2 < 0, the Borel-Cantelli lemma implies that on an event Gϵ of probability

one, there exists T̂2 such that for all T ≥ T̂2 the above inequality holds. As a result, on the
event Eϵ ∩ Fϵ ∩ Gϵ we obtain for any T ≥ max(T̂ , T̂2) that

T∑
t=1

ℓ(Ŷt(ϵ), Yt) ≤
T∑
t=1

ℓ(f(Xt), Yt) +
cℓϵTϵ
ϵ

Tϵ−1∑
u=0

T∑
t=1

ℓ(f(Xϕu(t)), f(Xt))

+ 2ℓ̄
√
T lnT + tϵℓ̄+ 5ϵT.

where 1
T

∑Tϵ−1
u=0

∑T
t=1 ℓ(f(Xϕu(t)), f(Xt)) → 0 because the event Fϵ is met. Therefore, we

obtain that on the event Eϵ ∩ Fϵ ∩ Gϵ of probability one,

lim sup
T→∞

1

T

T∑
t=1

[
ℓ(Ŷt(ϵ), Yt)− ℓ(f(Xt), Yt)

]
≤ 5ϵ,

i.e., almost surely, the learning rule f ϵ· achieves risk at most 5ϵ compared to the fixed function
f . By union bound, on the event

⋂
i≥0(Eϵi ∩ Fϵi ∩ Gϵi) of probability one we have that

lim sup
T→∞

1

T

T∑
t=1

[
ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt)

]
≤ 5ϵi, ∀i ≥ 0.

The rest of the proof uses similar arguments as in the proof of Theorem 4.6. Precisely, let
H be the almost sure event of Lemma 4.1 such that there exists t̂ for which

∀t ≥ t̂, ∀i ∈ It,
t∑

s=ti

ℓ(Ŷt, Yt) ≤
t∑

s=ti

ℓ(Ŷt(ϵi), Yt) + (2 + ℓ̄+ ℓ̄2)
√
t ln t.

In the rest of the proof we will suppose that the event H∩
⋂
i≥0(Eϵi ∩Fϵi ∩Gϵi) of probability

one is met. Let i ≥ 0. For all t ≥ max(t̂, ti) we have

1

T

T∑
t=1

ℓ(Ŷt, Yt)−ℓ(f(Xt), Yt) ≤
ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

≤ ti
T
ℓ̄+

1

T

T∑
t=ti

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) + (2 + ℓ̄+ ℓ̄2)

√
lnT

T

≤ 1

T

T∑
t=1

ℓ(Ŷt(ϵi), Yt)− ℓ(f(Xt), Yt) +
2ti
T
ℓ̄+ (2 + ℓ̄+ ℓ̄2)

√
lnT

T
.

165



Therefore we obtain lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 5ϵi. Because this holds for

any i ≥ 0 we finally obtain

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 0.

As a result, f· is universally consistent for adversarial responses under all Soul processes.
Hence, Solar = Soul and f· is in fact optimistically universal. This ends the proof of the
theorem.

4.10.5 Proof of Lemma 4.3

We first note that with the same horizon time Tη, we have that F-TiME implies Property
2. We now show that Property 2 implies F-TiME. Let (Y , ℓ) satisfying Property 2. We now
fix η > 0 and let T, g≤τ such that for any y := (yt)

T
t=1 of values in Y and any value y ∈ Y ,

we have

E

[
1

τ

τ∑
t=1

(ℓ(gt(y≤t−1), yt)− ℓ(y, yt))

]
≤ η.

We now construct a random time 1 ≤ τ̃ ≤ T such that P[τ̃ = t] = P[τ=t]
tE[1/τ ] for all 1 ≤ t ≤ T .

This indeed defines a proper random variable because
∑T

t=1
P[τ=t]
tE[1/τ ] = 1. Let Supp(τ) := {1 ≤

t ≤ T : P[τ = t] > 0} be the support of τ . For any t ∈ Supp(τ), we denote by gt≤t the
learning rule obtained by conditioning g≤τ on the event {τ = t}, i.e., gt≤t = g≤τ |τ = t. More
precisely, recall that τ only uses the randomness of gt. It is not an online random time.
Hence, a practical way to simulate gt≤t for all t ∈ Supp(τ) is to first draw an i.i.d. sequence
of learning rules (gi,≤τi)i≥1. Then, for each t ∈ Supp(τ) we select the randomness which first
satisfies τ = t. Specifically, we define the time it = min{i : τi = t} for all t ∈ Supp(τ). With
probability one, these times are finite for all t ∈ Supp(τ). Denote this event E . Then, letting
ȳ ∈ Y be an arbitrary fixed value, for all 1 ≤ t ≤ T we pose

gt≤t =

{
git,≤t if E is met,
ȳ≤t otherwise,

t ∈ Supp(τ) and gt≤t = ȳ≤t, t /∈ Supp(τ).

where ȳ≤t denotes the learning rules which always outputs value ȳ for all steps u ≤ t.
Intuitively, gt≤t has the same distribution as g≤τ conditioned on the event {τ = t}. We are
now ready to define a new learning rule g̃≤τ̃ , by g̃≤τ̃ := gτ̃≤τ̃ . Noting that for any t /∈ Supp(τ)
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we have P[τ̃ = t] = 0, we can write

E

[
τ∑
t=1

(ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt))− ητ

]

=
T∑
t=1

P[τ̃ = t]E

[
t∑

u=1

(ℓ(g̃u(y≤u−1), yu)− ℓ(y, yu))− ηt

∣∣∣∣∣ τ̃ = t

]

=
∑

t∈Supp(τ)

P[τ̃ = t]E

[
t∑

u=1

(ℓ(g̃u(y≤u−1), yu)− ℓ(y, yu))− ηt

∣∣∣∣∣ τ̃ = t, E

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(ℓ(git,u(y≤u−1), yu)− ℓ(y, yu))− η

∣∣∣∣∣ τ̃ = t, E

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(ℓ(git,u(y≤u−1), yu)− ℓ(y, yu))− η

]

=
1

E[1/τ ]
∑

t∈Supp(τ)

P[τ = t]E

[
1

t

t∑
u=1

(ℓ(gu(y≤u−1), yu)− ℓ(y, yu))− η

∣∣∣∣∣ τ = t

]

=
1

E[1/τ ]
E

[
1

τ

τ∑
t=1

(ℓ(gt(y≤t−1), yt)− ℓ(y, yt))− η

]
≤ 0.

where in the second and fourth equality we used the fact that P[E ] = 1. As a result, there
exists a learning rule g̃≤τ̃ such that 1 ≤ τ̃ ≤ Tη, and for any y≤Tη ∈ YTη and y ∈ Y one has

E

[
τ̃∑
t=1

(ℓ(g̃t(y≤t−1), yt)− ℓ(y, yt))− ητ̃

]
≤ 0.

We now pose T ′
η = ⌈Tη/η⌉ and draw an i.i.d. sequence of learning rules (g̃i≤τ̃i)i≥1. Denote

θi =
∑

j<i τ̃i with the convention θ1 = 0. We are now ready to define a learning rule h≤T ′
η

as
follows. For any 1 ≤ t ≤ T ′

η and y≤t ∈ Y t,

ht(y≤t−1) = g̃i≤t−θi((yt′)θi<t′≤t−1), θi < t ≤ θi+1, i ≥ 1.

In other words, the learning rule performs independent learning rules g̃≤τ̃ and when the
time horizon τ̃ is reached, we re-initialize the learning rule with a new randomness. Now let
y≤T ′

η
∈ YT ′

η and y ∈ Y . We denote by î = max{i ≥ 1, θi ≤ t}, the index of the last learning

167



rule which had time to finish completely. Then, because τ̃î ≤ Tη,

E

 T ′
η∑

t=1

(ℓ(ht(y≤t−1), yt)− ℓ(y, yt))− 2ηT ′
η


≤ E

∑
i≤î

τ̃i∑
t=1

(ℓ(g̃it−θi(yθi<·≤t−1), yt)− ℓ(y, yt))− ηT ′
η

− ηT ′
η + Tη

≤ E

∑
i≤î

(
τ̃i∑
t=1

(ℓ(g̃it−θi(yθi<·≤t−1), yt)− ℓ(y, yt))− ητ̃i

) .
We now analyze the last term. First, note that by construction, the sequence{

Sj :=
∑
j≤i

(
τ̃j∑
t=1

(ℓ(g̃jt−θj(yθj<·≤t−1), yt)− ℓ(y, yt))− ητ̃j

)}
j≥1

is a super-martingale. Now, note that î ≤ 1 + T ′
η since for all i, θi =

∑
j<i τi ≥ i − 1. As a

result, î is bounded, is a stopping time for the considered filtration (after finishing period î
we stop if and only we exceed time T ′

η) and we can apply Doob’s optimal sampling theorem
to obtain E[Sî] ≤ 0. Thus, combining the above equations gives

1

T ′
η

E

 T ′
η∑

t=1

(ℓ(ht(y≤t−1), yt)− ℓ(y, yt))

 ≤ 2η.

Because this holds for all η > 0, F-TiME is satisfied. This ends the proof of the lemma.

4.10.6 Proof of Lemma 4.11

We first prove that adversarial regression for processes outside of CS is not achievable.
Precisely, we show that for any X /∈ CS, for any online learning rule f·, there exists a process
Y on Y , a measurable function f ∗ : X → Y and δ > 0 such that with non-zero probability
L(X,Y)(f·, f

∗) > δ.
Because F-TiME is not satisfied by (Y , ℓ), by Lemma 4.3, Property 2 is not satisfied

either. Hence, we can fix η > 0 such that for any horizon T ≥ 1 and any online learning rule
g≤τ with 1 ≤ τ ≤ T , there exist a sequence y := (yt)

T
t=1 of values in Y and a value y such

that

E

[
1

τ

τ∑
t=1

(ℓ(gt(y≤t−1), yt)− ℓ(y, yt))

]
> η,

as in the assumption of the space (Y , ℓ). Let X /∈ CS. The proof of Theorem 4.7 shows
that there exist 0 < ϵ < 1, a sequence of disjoint measurable sets {Bp}p≥1 and a sequence of
times (tp)p≥0 with t0 = 0 and such that with µ := max(1, 8ℓ̄

ϵη
), for any p ≥ 1, tp > µtp−1, and
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defining the events

Ep =

{
X≤tp−1 ∩

(⋃
p′≥p

Bp

)
= ∅

}
and Fp :=

⋃
µtp−1<t≤tp

{
1

t

t∑
u=1

1Bp(Xu) ≥
ϵ

4

}
,

we have P[
⋂
p≥1(Ep ∩ Fp)] ≥

ϵ
4
. We now fix a learning rule f· and construct a “bad” process

Y recursively. Fix ȳ ∈ Y an arbitrary value. We start by defining the random variables
Np(t) =

∑t
u=tp−1+1 1Bp(Xu) for any p ≥ 1. We now construct (deterministic) values yp and

sequences (yup )
tp
u=1 for all p ≥ 1, of values in Y . Suppose we have already constructed the

values yq as well as the sequences (yuq )
tq
u=1 for all q < p. We will now construct yp and (yup )

tp
u=1.

Assuming that the event Ep ∩ Fp is met, there exists µtp−1 < t ≤ tp such that

Np(t) =
t∑

u=tp−1+1

1Bp(Xu) =
t∑

u=1

1Bp(Xu) ≥
ϵ

4
t,

where in the first equality we used the fact that on Ep, the process X≤tp−1 does not visit Bp.
In the rest of the construction, we will denote

Tp =

{
min{µtp−1 < t ≤ tp : Np(t) ≥ ϵ

4
t} if Ep ∩ Fp is met.

tp otherwise.

Now consider the process Yt≤tp−1(X) defined as follows. For any 1 ≤ q < p we pose

Yt(X) =


y
Nq(t)
q if t ≤ Tq and Xt ∈ Bq,

yq if t > Tq and Xt ∈ Bq,

yq′ if Xt ∈ Bq′ , q
′ < q,

ȳ otherwise,

tq−1 < t ≤ tq.

Similarly, for M ≥ 1 and given any sequence {ỹi}Mi=1, we define the following process
Ytp−1<u≤tp

(
X, {ỹi}Mi=1

)
by

Yu
(
X, {ỹi}Mi=q1

)
=


ỹmin(Np(u),M) if Xt ∈ Bp,

yq if Xt ∈ Bq, q < p,

ȳ otherwise.

We now construct a learning rule gp· . First, we define the event B :=
⋂
p≥1(Ep ∩ Fp). We

will denote by X̃ = X|B a sampling of the process X on the event B which has probability
at least ϵ

4
. For instance we draw i.i.d. samplings following the same distribution as X then

select the process which first falls into B. We are now ready to define a learning rule (gpu)u≤τ
where τ is a random time. To do so, we first draw a sample X̃ which is now fixed for the
learning rule gp· . We define the stopping time as τ = Np(Tp). Finally, for all 1 ≤ u ≤ τ , and
any sequence of values ỹ≤u−1, we pose

gpu(ỹ≤u−1) = fTp(u)

(
X̃≤Tp(u)−1,

{
Y≤tp−1(X̃),Ytp−1<u≤Tp(u)−1

(
X̃, {ỹi}u−1

i=1

)}
, X̃Tp(u)

)
,
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where we used the notation Tp(u) := min{tp−1 < t′ ≤ tp : Np(t) = u} for the time of the u−th
visit of Bp, which exists because u ≤ τ = Np(Tp) ≤ Np(tp) since the event B is satisfied by
X̃. Note that the prediction of the rule gp· is random because of the dependence on X̃. Also,
observe that the random time τ is bounded by 1 ≤ τ ≤ Tp ≤ tp. Therefore, by hypothesis
on the value space (Y , ℓ), there exists a sequence {yup}

tp
u=1 and a value yp ∈ Y such that

E

[
1

τ

τ∑
u=1

(
ℓ(gpu(yp

≤u−1), yup )− ℓ(yp, yup )
)]
≥ η.

This ends the recursive construction of the values yp and the sequences (yup )
tp
u=1 for all p ≥ 1.

We are now ready to define the process Y(X), using a similar construction as before. For
any p ≥ 1 we define

Yt(X) =


y
Np(t)
p if t ≤ Tp and Xt ∈ Bp,

yp if t > Tp and Xt ∈ Bp,

yq if Xt ∈ Bq, q < p,

ȳ otherwise,

tp−1 < t ≤ tp.

We also define a function f ∗ : X → Y by

f ∗(x) =

{
yp if x ∈ Bp,

ȳ otherwise.

This function is simple hence measurable. From now, we will suppose that the event B
is met. For simplicity, we will denote by Ŷt := ft(X≤t−1,Y≤t−1, Xt) the prediction of the
learning rule at time t. For any p ≥ 1, because Ep ∩ Fp is met, for all 1 ≤ u ≤ Np(Tp), we
have tp−1 < Tp(u) ≤ Tp, and XTp(u) ∈ Bp. Hence, by construction, we have ŶTq(u) = yuq and
we can write

Tp∑
t=1

ℓ(Ŷt, Yt) ≥
Tp∑

t=tp−1+1

ℓ(Ŷt, Yt)

≥
Np(Tp)∑
u=1

ℓ(ŶTp(u), YTp(u))

=
τ∑
u=1

ℓ(fTp(u)
(
X≤Tp(u)−1,Y≤Tp(u)−1, XTp(u)

)
, yup ).

Now note that because the construction was similar to the construction of gp· , we have
Y≤Tp(u)−1 =

{
Y≤tp−1(X),Ytp−1<t≤Tp(u)−1

(
X, {yip}u−1

i=1

)}
, i.e., ŶTp(u) coincides with the predic-

tion gpu({yip}u−1
i=1 ) provided that gpu precisely used the realization X. Hence, conditioned on B
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for all u ≤ τp, ŶTp(u) has the same distribution as gpu(y≤u−1
p ). Therefore we obtain

E

[
1

τ

Tp∑
t=1

ℓ(Ŷt, Yt)−
1

τ

τ∑
u=1

ℓ(yp, y
u
p )

∣∣∣∣∣B
]
≥ E

[
1

τ

τ∑
u=1

(
ℓ(gpu(ŶTp(u), y

u
p )− ℓ(yp, yup )

)∣∣∣∣∣B
]

= E

[
1

τ

τ∑
u=1

(
ℓ(gpu(y

≤u−1
p ), yup )− ℓ(yp, yup )

)]
≥ η.

We now turn to the loss obtained by the simple function f ∗. By construction, assuming that
the event B is met, we have

Tp∑
t=1

ℓ(f ∗(Xt), Yt) ≤ ℓ̄tp−1 +

Np(Tp)∑
u=1

ℓ(f ∗(XTp(u)), y
u
p ) = ℓ̄tp−1 +

τ∑
u=1

ℓ(yp, y
u
p ).

Recalling that Tp > µtp−1 ≥ 8ℓ̄
ϵη
tp−1 and noting that τ = Np(Tp) ≥ ϵ

4
Tp, we obtain

E

[
sup

tp−1<T≤tp

1

T

T∑
t=1

(ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt))

∣∣∣∣∣B
]

≥ E

[
τ

Tp

1

τ

(
T∑
t=1

ℓ(Ŷt, Yt)−
τ∑
u=1

ℓ(yp, y
u
p )

)
− ℓ̄ tp−1

Tp

∣∣∣∣∣B
]

≥ ϵ

4
E

[
1

τ

Tp∑
t=1

ℓ(Ŷt, Yt)−
1

τ

τ∑
u=1

ℓ(yp, y
u
p )

∣∣∣∣∣B
]
− ϵη

8

≥ ϵη

8
.

Because this holds for any p ≥ 1, Fatou lemma yields

E

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

]

≥ E

[
lim sup
T→∞

1

T

T∑
t=1

(ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt))

∣∣∣∣∣B
]
P[B]

≥ ϵ2η

32
.

Hence, we do note have almost surely lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) ≤ 0. This

shows that X /∈ Solar, which in turn implies Solar ⊂ CS. This ends the proof that
Solar ⊂ CS. The proof that CS ⊂ Solar and the construction of an optimistically
universal learning rule for adversarial regression is deferred to Section 4.7 where we give a
stronger result which also holds for unbounded losses. Note that generalizing Theorem 4.8
to adversarial responses already shows that CS ⊂ Solar and provides an optimistically
universal learning rule when the loss ℓ is a metric.
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4.11 Appendix C: Proofs of Section 4.6

4.11.1 Proof of Theorem 4.4

We first show that there exists t1 ≥ 1 such that for any t ≥ t1, with high probability, for all
i ∈ It,

t∑
s=ti

ℓ(Ŷs, Ys) ≤ Lt,i + 3 ln2 t
√
t.

For any t ≥ 0, note that we have ℓ̂t = E[ℓ(Ŷt, Yt) | Y≤t]. We define the instantaneous regret
rt,i = ℓ̂t − ℓ(yi, Yt). We now define w′

t−1,i := eηt−1(L̂t−1,i−Lt−1,i) and pose Wt−1 =
∑

i∈It wt−1,i

and W ′
t−1 =

∑
i∈It−1

w′
t−1,i, i.e., which induces the most regret. We also denote the index

kt ∈ It such that L̂t,kt − Lt,kt = maxi∈It L̂t,i − Lt,i. We first note that for any i, j ∈ It, we
have ℓ(yi, Yt)− ℓ(yj, Yt) ≤ ℓ(yi, y0) + ℓ(y0, yj) ≤ 2 ln t. Therefore, we also have |rt,i| ≤ 2 ln t.
Hence, we can apply Hoeffding’s lemma to obtain

1

ηt
ln

W ′
t

Wt−1

=
1

ηt
ln
∑
i∈It

wt−1,i

Wt−1

eηtrt,i ≤ 1

ηt

(
ηt
∑
i∈It

rt,i
wt−1,i

Wt−1

+
η2t (4 ln t)

2

8

)
= 2ηt ln

2 t.

The same computations as in the proof of Lemma 4.1 then show that

1

ηt
ln
wt−1,kt−1

Wt−1

− 1

ηt+1

ln
wt,kt
Wt

≤ 2

(
1

ηt+1

− 1

ηt

)
ln(1 + ln(t+ 1)) +

|It+1| − |It|
ηt
∑

i∈It wt,i

+ (L̂t−1,kt−1 − Lt−1,kt−1)− (L̂t,kt − Lt,kt) + 2ηt ln
2 t. (4.4)

First suppose that we have
∑

i∈It wt,i ≤ 1. Similarly to Lemma 4.1, we obtain L̂t,kt−Lt,kt ≤ 0.
Otherwise, let t′ = min{1 ≤ s ≤ t : ∀s ≤ s′ ≤ t,

∑
i∈Is′

ws′,i ≥ 1}. We sum Eq (4.4) for
s = t′, . . . , t which gives

1

η1
ln
wt′−1,kt′−1

Wt′−1

− 1

ηt+1

ln
wt,kt
Wt

≤ 2

ηt+1

ln(1 + ln(t+ 1)) +
|It+1|
ηt

+ (L̂t′−1,kt′−1
− Lt′−1,kt′−1

)− (L̂t,kt − Lt,kt) + 2
t∑

s=t′

ηs ln
2 s.

Similarly as in Lemma 4.1, we have wt,kt

Wt
≤ 1,

wt′−1,kt′−1

Wt′−1
≥ 1

1+ln t
and L̂t′−1,kt′−1

−Lt′−1,kt′−1
≤ 0.

Finally, using the fact that
∑t

s=1
1√
s
≤ 2
√
t, we obtain

L̂t,kt − Lt,kt ≤ ln(1 + ln(t+ 1))(4 + 8
√
t+ 1) + 4(1 + ln(t+ 1))

√
t+ ln2 t

√
t ≤ 2 ln2 t

√
t,

for all t ≥ t0 where t0 is a fixed constant, and as a result, for all t ≥ t0 and i ∈ It, we have
L̂t,i − Lt,i ≤ 2 ln2 t

√
t.

Now note that |ℓ(Ŷt, Yt) − E[ℓ(Ŷt, Yt) | Y≤t]| ≤ 2 ln t because for all i ∈ It, we have
ℓ(yi, y0) ≤ ln t. Hence, we can apply Hoeffding-Azuma inequality to the variables ℓ(Ŷt, Yt)−ℓ̂t
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that form a sequence of differences of a martingale, which yields

P

[
t∑

s=ti

ℓ(Ŷs, Ys) > L̂t,i + u

]
≤ e−

u2

8t ln2 t .

Hence, for t ≥ t0 and i ∈ It, with probability 1− δ, we have

t∑
s=ti

ℓ(Ŷs, Ys) ≤ L̂t,i + ln t

√
2t ln

1

δ
≤ Lt,i + 2 ln2 t

√
t+ ln t

√
2t ln

1

δ
.

Therefore, since |It| ≤ 1+ ln t, by union bound with probability 1− 1
t2

we obtain that for all
i ∈ It,

t∑
s=ti

ℓ(Ŷs, Ys) ≤ Lt,i + 2 ln2 t
√
t+ ln t

√
2t ln(1 + ln t) + ln t

√
4t ln t ≤ 3 ln2 t

√
t

for all t ≥ t1 where t1 ≥ t0 is a fixed constant. Now because
∑

t≥1
1
t2
<∞, the Borel-Cantelli

lemma implies that almost surely, there exists t̂ ≥ 0 such that

∀t ≥ t̂, ∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ys) ≤ Lt,i + 3 ln2 t
√
t.

We denote by A this event. Now let y ∈ Y , ϵ > 0 and consider i ≥ 0 such that ℓ(yi, y) < ϵ.
On the event A, we have for all t ≥ max(t̂, ti),

t∑
s=ti

ℓ(Ŷs, Ys) ≤
t∑

s=ti

ℓ(yi, Ys) + 3 ln2 t
√
t ≤

t∑
s=ti

ℓ(y, Ys) + ϵt+ 3 ln2 t
√
t.

Therefore, lim supt→∞
1
t

∑t
s=1

(
ℓ(Ŷs, Ys)− ℓ(y, Ys)

)
≤ ϵ on A. Because this holds for any

ϵ > 0 we finally obtain lim supt→∞
1
t

∑t
s=1

(
ℓ(Ŷs, Ys)− ℓ(y, Ys)

)
≤ 0 on the event A of

probability one, which holds for all y ∈ Y simultaneously. This ends the proof of the
theorem.

4.11.2 Proof of Corollary 4.3

We denote by g· the learning rule on values Y for mean estimation described in Theorem 4.4.
Because processes in X ∈ FS visit only finite number of different instance points in X almost
surely, we can simply perform the learning rule g· on each sub-process Y{t:Xt=x} separately
for any x ∈ X . Note that the learning rule g· does not explicitely re-use past randomness for
its prediction. Hence, we will not specify that the randomness used for all learning rules—
for each x visited by X—should be independent. Let us formally describe our learning
rule. Consider a sequence x≤t−1 of instances in X and y≤t−1 of values in Y . We denote by
St−1 = {x : x≤t−1 ∩ {x} ≠ ∅} the support of x≤t−1. Further, for any x ∈ St−1, we denote
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Nt−1(x) =
∑

u≤t−1 1xu=x the number of times that the specific instance x was visited by the
sequence x≤t−1. Last, for any x ∈ St−1, we denote yx≤N(x) the values y{u≤t:Xu=x} obtained
when the instance was precisely x in the sequence x≤t−1, ordered by increasing time u. We
are now ready to define our learning rule ft at time t. Given a new instance point xt, we
pose

ft(x≤t−1,y≤t−1, xt) =

{
gNt−1(x)+1(y

x
≤Nt−1(x)

) if xt ∈ St−1,

g1(∅) otherwise.

Recall that for any u ≥ 1, gu uses some randomness. The only subtlety is that at each
iteration t ≥ 1 of the learning rule f·, the randomness used by the subroutine call to g·
should be independent from the past history. We now show that f· is universally consistent
for adversarial regression under all processes X ∈ FS.

Let X ∈ FS. For simplicity, we will denote by Ŷt the prediction of the learning rule f·
at time t. We denote S = {x : {x} ∩ X ̸= ∅} the random support of X. By hypothesis, we
have |S| < ∞ with probability one. Denote by E this event. We now consider a specific
realization x of X falling in the event E . Then, S is a fixed set. We also denote S̃ := {x ∈
S : limt→∞Nt(x) = ∞} the instances which are visited an infinite number of times by the
sequence x. Now, we can write for any function f : X → Y ,

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(f(xt), Yt)

)
=
∑
x∈S

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
≤
∑
s∈S\S̃

ℓ̄|{t ≥ 1 : xt = x}|+
∑
s∈S̃

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
.

Now, because the randomness in g· was taken independently from the past at each iteration,
we can apply directly Theorem 4.4. For all x ∈ S̃, with probability one, for all yx ∈ Y ,

lim sup
t′→∞

1

t′

t′∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(yx, Yu)

)
≤ 0.

We denote by Ex this event. Then, on the event
⋂
x∈S̃ Ex of probability one, we have for any

measurable function f : X → Y ,

lim sup
T→∞

1

T

(
ℓ(Ŷt, Yt)− ℓ(f(xt), Yt)

)
≤
∑
s∈S̃

lim sup
T→∞

1

T

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
≤
∑
s∈S̃

lim sup
T→∞

1

Nt(x)

Nt(x)∑
u=1

(
ℓ(gu(Yx

≤u−1), Y
x
u )− ℓ(f(x), Yu)

)
≤ 0.

As a result, averaging on realisations of X, we obtain that with probability one, we have that
L(X,Y)(f·, f) ≤ 0 for all measurable functions f : X → Y . Note that this is stronger than
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the notion of universal consistency which we defined in Section 3.2, where we ask that for
all measurable function f : X → Y , we have almost surely L(X,Y)(f·, f) ≤ 0. In particular,
this shows that FS ⊂ Solar-u. As result Solar-u = FS and f· is optimistically universal.
This ends the proof of the result.

4.11.3 Proof of Theorem 4.12

We first show that mean-estimation is not achievable. To do so, let f· be a learning rule.
For simplicity, we will denote by Ŷt its prediction at step t. We aim to construct a process
Y on R and a value y∗ ∈ R such that with non-zero probability we have

lim sup
T→∞

1

T

T∑
t=1

ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt) > 0.

We now pose β := 2α
α−1

> 2. For any sequence b := (bt)t≥1 in {−1, 1}, we consider the
following process Yb such that for any t ≥ 1 we have Y b

t = 2β
t
bt. Let B := (Bt)t≥1 be an

i.i.d. sequence of Rademacher random variables, i.e., such that B1 = 1 (resp. B1 = −1) with
probability 1

2
. We consider the random variables et := 1Ŷt·Yt≤0 which intuitively correspond

to flags for large mistakes of the learning rule f· at time t. Because f· is an online learning
rule, we have

E[et | Y≤t−1] = EŶt
[
EBt [1Ŷt·Yt≤0 | Ŷt]

]
= EŶt

[
1Ŷt=0 +

1

2
1Ŷt ̸=0

]
≥ 1

2
.

where the expectation EŶt refers to the expectation on the randomness of the rule ft. As a
result, the random variables et− 1

2
form a sequence of differences of a sub-martingale bounded

by 1
2

in absolute value. By the Azuma-Hoeffding inequality, we obtain P
[∑T

t=1 et ≤
T
4

]
≤

e−T/8. Because
∑

t≥1 e
−t/8 < ∞, the Borel-Cantelli lemma implies that on an event E of

probability one, we have lim supT→∞
1
T

∑T
t=1 et ≥

1
4
. As a result, there exists a specific

realization b ofB such that on an event Ẽ of probability one, we have lim supT→∞
1
T

∑T
t=1 et ≥

1
4
. Note that the sequence Yb is now deterministic. Then, writing et = et1Yt>0 + et1Yt<0, we

obtain

lim sup
T→∞

1

T

T∑
t=1

et1Yt>0 + lim sup
T→∞

1

T

T∑
t=1

et1Yt<0 ≥
1

4
.

Without loss of generality, we can suppose that lim supT→∞
1
T

∑T
t=1 1Ŷt·Yt≤01Yt>0 ≥ 1

8
. We

now pose y∗ = 1. In the other case, we pose y∗ = −1. We now compute for any T ≥ 1 such
that Ŷt · Yt ≤ 0 and Yt > 0,

1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt)) ≥
ℓ(0, 2β

T
)− ℓ(1, 2βT

)

T
− 1

T

T−1∑
t=1

ℓ(1,−2βt

).

=
α

T
2(α−1)βT

+O

(
1

T
2(α−2)βT

)
− 2α(1+β

T−1)

=
α

T
22αβ

T−1

(1 + o(1)).
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Because, by construction lim supT→∞
1
T

∑T
t=1 1Ŷt·Yt≤01Yt>0 ≥ 1

8
, we obtain

lim sup
1

T

T∑
t=1

(ℓ(ft(Y≤t−1), Yt)− ℓ(y∗, Yt)) =∞,

on the event Ẽ of probability one. This end the proof that mean-estimation is not achievable.
Because mean-estimation is the easiest regression setting, this directly implies Solar-u = ∅.
Formally, let X a process on X . and f· a learning rule for regression. We consider the same
processes YB where B is i.i.d. Rademacher and independent from X. The same proof shows
that there exists a realization b for which we have almost surely L(X,Y)(f·, f

∗ := y∗) = ∞,
where f ∗ = y∗ denotes the constant function equal to y∗ where y∗ ∈ R is the value constructed
as above. Hence, X /∈ Solar-u, and as a result, Solar-u = ∅.

4.11.4 Proof of Proposition 4.1

Suppose that there exists an online learning rule g· for mean-estimation. In the proof of
Corollary 4.3, instead of using the learning rule for mean-estimation for metric losses in-
troduced in Theorem 4.4, we can use the learning rule g· to construct the learning rule f·
for adversarial regression on FS instance processes, which simply performs f· separately on
each subprocess Yt:Xt=x with the same instance x ∈ X for all visited x ∈ X in the process
X. The same proof shows that because almost surely X visits a finite number of different
instances, f· is universally consistent under any process X ∈ FS. Hence, FS ⊂ Solar-u.
Because Solar-u ⊂ Soul = FS, we obtain directly Solar-u = FS and f· is optimistically
universal.

On the other hand, if mean-estimation with adversarial responses is not achievable, we
can use similar arguments as for the proof of Theorem 4.12. Let f· a learning rule for
regression, and consider the following learning rule g· for mean-estimation. We first draw a
process X̃ with same distribution as X. Then, we pose

gt(y≤t−1) := ft(X̃≤t−1,y≤t−1, X̃t).

Then, because mean-estimation is not achievable, there exists an adversarial process Y on
(Y , ℓ) such that with non-zero probability,

lim sup
1

T

T∑
t=1

(ℓ(gt(Y≤t−1), Yt)− ℓ(y∗, Yt)) > 0.

Then, we obtain that with non-zero probability, L(X̃,Y) > 0. Hence, f· is not universally
consistent. Note that the “bad” process Y is not correlated with X̃ in this construction.

4.12 Appendix D: Proofs of Section 4.7

4.12.1 Proof of Theorem 4.13

Let (xk)k≥0 a sequence of distinct points of X . Now fix a value y0 ∈ Y and construct
a sequence of values y1k, y2k for k ≥ 1 such that ℓ(y1k, y2k) ≥ cℓ2

k+1. Because ℓ(y1k, y
2
k) ≤
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cℓℓ(y0, y
1
k) + cℓℓ(y0, y

2
k), there exists ik ∈ {1, 2} such that ℓ(y0, yikk ) ≥ 2k. For simplicity, we

will now write yk := yikk for all k ≥ 1. We define

tk =

⌊
k∑
l=1

ℓ(y0, yl)

⌋
.

This forms an increasing sequence of times because tk+1− tk ≥ ℓ(y0, yk+1) ≥ 1. Consider the
deterministic process X that visits xk at time tk and x0 otherwise, i.e., such that

Xt =

{
xk if t = tk,

x0 otherwise.

The process X visits X \{x0} a sublinear number of times. Hence we have for any measurable
set A:

lim
T→∞

1

T

T∑
t=1

1A(Xt) =

{
1 if x0 ∈ A
0 otherwise.

As a result, X ∈ CRF. We will now show that universal learning under X with the first
moment condition on the responses is not achievable. For any sequence b := (bk)k≥1 of
binary variables bk ∈ {0, 1}, we define the function f ∗

b : X → Y such that

f ∗
b (x

k) =

{
y0 if bk = 0,

yk otherwise,
k ≥ 0 and f ∗

b (x) = y0 if x /∈ {xk, k ≥ 0}.

These functions are simple, hence measurable. We will first show that for any binary sequence
b, the function f ∗

b satisfies the moment condition on the target functions. Indeed, we note
that for any T ≥ t1, with k := max{l ≥ 1 : tl ≤ T}, we have

1

T

T∑
t=1

ℓ(y0, f
∗
b (Xt)) ≤

1

T

k∑
l=1

ℓ(y0, yk) ≤
tk + 1

T
≤ T + 1

T
.

Therefore, lim supT→∞
1
T

∑T
t=1 ℓ(y0, f

∗
b (Xt)) ≤ 1. We now consider any online learning rule f·.

Let B = (Bk)k≥1 be an i.i.d. sequence of Bernoulli variables independent from the learning
rule randomness. For any k ≥ 1, denoting by Ŷtk := ftk(X≤tk−1, f

∗
B(X≤tk−1), Xtk) we have

EBk
ℓ(Ŷtk , f

∗
B(Xtk)) =

ℓ(Ŷtk , y0) + ℓ(Ŷtk , yk)

2
≥ 1

2cℓ
ℓ(y0, yk).

In particular, taking the expectation over both B and the learning rule, we obtain

E

[
1

tk

tk∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1), Xt), f

∗
B(Xt))

]
≥ 1

2cℓtk

k∑
l=1

ℓ(y0, yk) ≥
1

2cℓ
.
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As a result, using Fatou’s lemma we obtain

E

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1), Xt), f

∗
B(Xt))

]

≥ lim sup
T→∞

E

[
1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1), Xt), f

∗
B(Xt))

]
≥ 1

2cℓ
.

Therefore, the learning rule f· is not consistent under X for all target functions of the
form f ∗

b for some sequence of binary variables b. Indeed, otherwise for all binary sequence
b = (bk)k≥1, we would have EX

[
lim supT→∞

1
T

∑T
t=1 ℓ(ft(X≤t−1, f

∗
b (X≤t−1), Xt), f

∗
b (Xt))

]
= 0

and as a result

EBEX

[
lim sup
T→∞

1

T

T∑
t=1

ℓ(ft(X≤t−1, f
∗
B(X≤t−1), Xt), f

∗
B(Xt))

]
= 0.

This ends the proof of the theorem.

4.12.2 Proof of Lemma 4.5

It suffices to prove that empirical integrability implies the latter property. We pose ϵi = 2−i

for any i ≥ 0. By definition, there exists an event Ei of probability one such that on Ei we
have

∃Mi ≥ 0, lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥Mi
≤ ϵi.

As a result, on
⋂
i≥0 Ei of probability one, we obtain

∀ϵ > 0,∃M :=M⌈log2 1
ϵ
⌉ ≥ 0, lim sup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M ≤ ϵ.

This ends the proof of the lemma.

4.12.3 Proof of Theorem 4.1

Let X ∈ Soul and f ∗ : X → Y such that f ∗(X) is empirically integrable. By Lemma 4.5,
there exists some value y0 ∈ Y such that on an event A of probability one, for all ϵ > 0 there
exists Mϵ ≥ 0 such that

lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))≥Mϵ ≤ ϵ.
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For any M ≥ 1 we define the function f ∗
M by

f ∗
M(x) =

{
f ∗(x) if ℓ(y0, f ∗(x)) ≤M,

y0 otherwise.

We know that 2C1NN is optimistically universal in the noiseless setting for bounded losses.
Therefore, restricting the study to the output space (Bℓ(y0,M), ℓ) we obtain that 2C1NN is
consistent for f ∗

M under X, i.e.

lim sup
T→∞

1

T

T∑
t=1

ℓ(2C1NNt(Xt−1, f
∗
M(X≤t−1), Xt), f

∗
M(Xt)) = 0 (a.s.).

For any t ≥ 1, we denote ϕ(t) the representative used by the 2C1NN learning rule. We
denote EM the above event such that lim supT→∞

1
T

∑T
t=1 ℓ(f

∗
M(Xϕ(t)), f

∗
M(Xt)) = 0. We now

write for any T ≥ 1 and M ≥ 1,

1

T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗(Xt)) ≤

c2ℓ
T

T∑
t=1

ℓ(f ∗
M(Xϕ(t)), f

∗
M(Xt)) +

c2ℓ
T

T∑
t=1

ℓ(f ∗(Xt), f
∗
M(Xt))

+
cℓ
T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗
M(Xϕ(t))).

We now note that by construction of the 2C1NN learning rule,

1

T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗
M(Xϕ(t))) =

1

T

T∑
u=1

ℓ(f ∗(Xu), f
∗
M(Xu))|{u < t ≤ T : ϕ(t) = u}|

≤ 2

T

T∑
t=1

ℓ(f ∗(Xt), f
∗
M(Xt)).

Hence, we obtain

1

T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗(Xt)) ≤

c2ℓ
T

T∑
t=1

ℓ(f ∗
M(Xϕ(t)), f

∗
M(Xt))

+
cℓ(2 + cℓ)

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))>M .

As a result, on the event A ∩
⋂
M≥1 EM of probability one, for any M ≥ 1, we obtain

lim sup
T→∞

1

T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗(Xt))

≤ cℓ(2 + cℓ) lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, f
∗(Xt))1ℓ(y0,f∗(Xt))≥M .
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In particular, if ϵ > 0 we can apply this result with M := ⌈Mϵ⌉, which shows that
lim supT→∞

1
T

∑T
t=1 ℓ(f

∗(Xϕ(t)), f
∗(Xt)) ≤ cℓ(2 + cℓ)ϵ. Because this holds for any ϵ > 0

we finally obtain that on the event A ∩
⋂
M≥1 EM we have

lim sup
T→∞

1

T

T∑
t=1

ℓ(f ∗(Xϕ(t)), f
∗(Xt)) = 0.

This ends the proof of the theorem.

4.12.4 Proof of Theorem 4.3

We first define the learning rule. Using Lemma 23 of [Han21a], let T ⊂ B a countable set
such that for all X ∈ CS, A ⊂ B we have

inf
G∈T

E[µ̂X(G△ A)] = 0.

Now let (yi)i≥0 be a dense sequence in Y . For any k ≥ 0, any indices l1, . . . , lk ∈ N and any
sets A1, . . . , Ak ∈ T , we define the function f{l1,...,lk},{A1,...,Ak} : X → Y as

f{l1,...,lk},{A1,...,Ak}(x) = ymax{0≤j≤k: x∈Aj}

where A0 = X . These functions are simple hence measurable. Because the set of such
functions is countable, we enumerate these functions as f 0, f 1 . . . Without loss of generality,
we suppose that f 0 = y0. For any i ≥ 0, we denote ki ≥ 0, {li1, . . . , liki} and {Ai1, . . . , Aiki}
such that f i was defined as f i := f{li1,...,lik},{Ai

1,...,A
i
k}. We now define a sequence of sets (It)t≥1

of indices and a sequence of sets (Ft)t≥1 of measurable functions by sϵ := 1/(2 + cℓ1),

It := {i ≤ ln t : ℓ(yl
i
p , y0) ≤ sϵ ln t, ∀1 ≤ p ≤ ki} and Ft := {f i : i ∈ It}.

Then, clearly It is finite and
⋃
t≥1 It = N. For any i ≥ 0, we define ti = min{t : i ∈ It}.

We are now ready to construct our learning rule. Let ηt = 1
ln t

√
t
. Fix any sequences (xt)t≥1

in X and (yt)t≥1 in Y . At step t ≥ 1, after observing the values xi for 1 ≤ i ≤ t and yi for
1 ≤ i ≤ t − 1, we define for any i ∈ It the loss Lt−1,i :=

∑t−1
s=ti

ℓ(f i(xs), ys). For any M ≥ 1
we define the function ϕM : Y → Y such that

ϕM(y) =

{
y if ℓ(y, y0) < M,

y0 otherwise.

We now construct construct some weights wt,i for t ≥ 1 and i ∈ It recursively in the following
way. Note that I1 = {0}. Therefore, we pose w0,0 = 1. Now let t ≥ 2 and suppose that
ws−1,i have been constructed for all 1 ≤ s ≤ t− 1. We define

ℓ̂s :=

∑
j∈Is ws−1,jℓ(f

j(xs), ϕsϵ ln s(ys))∑
j∈Is ws−1,j
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Output: Predictions Ŷt for t ≤ T
Construct the sequence of measurable functions {f i, i ≥ 0} with f i = f{li1,...,lik},{Ai

1,...,A
i
k}

It := {i ≤ ln t, ℓ(yl
i
p , y0) ≤ sϵ ln t, ∀1 ≤ p ≤ ki},Ft := {f i, i ∈ It}, ηt := 1

ln t
√
t
, t ≥ 1

ti = min{t : i ∈ It}, i ≥ 0
w0,0 := 1, Ŷ1 = y0(= f 0(X0)) // Initialisation
for t = 2, . . . , T do

Lt−1,i =
∑t−1

s=ti
ℓ(f i(Xs), ϕsϵ ln t(Ys)), L̂t−1,i =

∑t−1
s=ti

ℓ̂s, i ∈ It
wt−1,i := exp(ηt(L̂t−1,i − Lt−1,i)), i ∈ It
pt(i) =

wt−1,i∑
j∈It

wt−1,j
, i ∈ It

ît ∼ pt(·) // Function selection
Ŷt = f ît(Xt)

ℓ̂t :=
∑

j∈It
wt−1,jℓ(f

j(Xs),ϕsϵ ln t(Yt)∑
j∈It

wt−1,j

end
Algorithm 4.6: A learning rule for adversarial empirically integrable responses under
CS processes.

and for any i ∈ It we note L̂t−1,i :=
∑t−1

s=ti
ℓ̂s. In particular, if ti = t we have L̂t−1,i = Lt−1,i =

0. The weights at time t are constructed as wt−1,i := eηt(L̂t−1,i−Lt−1,i) for any i ∈ It. Last, let
{̂it}t≥1 a sequence of independent random N−valued variables such that

P(̂it = i) =
wt−1,i∑
j∈It wt−1,j

, i ∈ It.

Finally, the prediction is defined as ŷt := f ît(xt). The learning rule is summarized in Algo-
rithm 4.6.

For simplicity, we will refer to the predictions of the learning rule as (Ŷt)t≥1. Now consider
a process (X,Y) with X ∈ CS and such that Y is empirically integrable. By Lemma 4.5, there
exists y0 ∈ Y such that on an event A of probability one, for any ϵ > 0, there exists Mϵ ≥ 0
with lim supT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ ≤ ϵ. We will now denote Ỹ the process defined

by Ỹt = ϕsϵ ln t(Yt) for all t ≥ 1. Then, for any i ∈ It, note that using the generalized-metric
loss identity we have

0 ≤ ℓ(f i(xt), Ỹt) ≤ 2ℓ(f i(xt), y
0) + cℓ1ℓ(y

0, Ỹt) ≤ 2 ln t,

by construction of the set It. As a result, for any i, j ∈ It, we obtain |ℓ(f i(xt), Ỹ M
t ) −

ℓ(f j(xt) − Ỹ M
t )| ≤ 2 ln t. Hence, we can use the same proof as for Theorem 4.4 and show

that almost surely, there exists t̂ ≥ 1 such that

∀t ≥ t̂,∀i ∈ It,
t∑

s=ti

ℓ(Ŷs, Ỹ
M
s ) ≤ Lt,i + 3 ln2 t

√
t.

We denote by B this event. Now let f : X → Y to which we compare the predictions of
our learning rule. For any M ≥ 1, the function ϕM ◦ f is measurable and has values in the
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ball Bℓ(y0,M) where the loss is bounded by (2+ cℓ1)M . Hence, by Lemma 24 from [Han21a]
because X ∈ C1 we have

inf
i≥0

E
[
µ̂X(ℓ(ϕM ◦ f(·), f i(·)))

]
= 0.

Now for any k ≥ 0, let ik ≥ 0 such that E [µ̂X(ℓ(ϕM ◦ f(·), f ik(·)))] < 2−2k. By Markov
inequality, we have

P
[
µ̂X(ℓ(ϕM ◦ f(·), f ik(·)))

]
< 2−k] ≥ 1− 2−k.

Because
∑

k 2
−k < ∞, the Borel-Cantelli lemma implies that almost surely there exists k̂

such that for any k ≥ k̂, the above inequality is met. We denote EM this event. On the
event B ∩ EM of probability one, for k ≥ k̂ and any T ≥ max(tik , t̂) we have for any ϵ > 0,

1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

)
=

1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(f ik(Xt), Ỹt) +
1

T

T∑
t=1

ℓ(f ik(Xt), Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

≤ 1

T

tik−1∑
t=1

ℓ(Ŷt, Ỹt) +
1

T

 T∑
t=tik

ℓ(Ŷt, Ỹt)− LT,ik

+
ϵ

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)

+
cℓϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt))

≤ 2 ln tik
T

+
3 ln2 T√

T
+ ϵcℓ1M +

2ϵ

T

T∑
t=1

ℓ(y0, Ỹt) +
cℓϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt))

≤ 2 ln tik
T

+
3 ln2 T√

T
+ ϵcℓ1M +

2ϵ

T

T∑
t=1

ℓ(y0, Yt) +
cℓϵ
T

T∑
t=1

ℓ(f ik(Xt), ϕM ◦ f(Xt)),

where in the last inequality we used the inequality ℓ(y0, Ỹt) ≤ ℓ(y0, Yt) by construction of
Ỹt = ϕsϵ ln t(Yt). Now on the event A, we have

Z1 := lim sup
T→∞

1

T

T∑
t=1

ℓ(y0, Yt) ≤ cℓ1ℓ(y0, y
0) + 2 lim sup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)

≤ cℓ1ℓ(y0, y
0) + 2M1 + 2 lim sup

T→∞

1

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M1

≤ cℓ1ℓ(y0, y
0) + 2(M1 + 1) := Z̄1 <∞.

Thus, on the event A ∩ B ∩ EM , for any k ≥ k̂ we have for any ϵ > 0,

lim sup
T

1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ ϵcℓ1M + 2ϵZ̄1 +
cℓϵ
2k
.
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Let δ > 0. Now taking ϵ = δ
cℓ1M+2Z̄1

, we obtain that on the event A ∩ B ∩ EM , for

any k ≥ k̂, we have lim supT
1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ δ + cℓϵ

2k
. This yields

lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ δ. Because this holds for any δ > 0 we

obtain lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Ỹt) − ℓ(ϕM ◦ f(Xt), Ỹt)) ≤ 0. Finally, on the event A ∩ B ∩⋂∞

M=1 EM of probability one, we have

lim sup
T→∞

1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

)
≤ 0, ∀M ≥ 1,

where M is an integer. We now observe that on the event A, the same guarantee for y0 also
holds for y0. Indeed, let ϵ. For M̃ϵ := 2(Mϵ/3 + cℓ1ℓ(y

0, y0)) + cℓ1ℓ(y0, y
0) we have

1

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M̃ϵ

≤ cℓ1ℓ(y
0, y0)

1

T

T∑
t=1

1ℓ(y0,Yt)≥M̃ϵ
+

2

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥M̃ϵ

≤ cℓ1ℓ(y
0, y0)

1

T

T∑
t=1

1ℓ(y0,Yt)≥(M̃ϵ−cℓ1ℓ(y0,y0))/2
+

2

T

T∑
T=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥(M̃ϵ−cℓ1ℓ(y0,y0))/2

≤ 3

T

T∑
t=1

ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ/3

Hence, we obtain lim supT→∞
1
T

∑T
T=1 ℓ(y

0, Yt)1ℓ(y0,Yt)≥M̃ϵ
≤ ϵ. We now write

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)− ℓ(f(Xt), Yt)

≤ 1

T

T∑
t=1

(
ℓ(y0, Yt)− ℓ(f(Xt), Yt)

)
1ℓ(f(Xt),y0)≥M1ℓ(Yt,y0)≤ln t

+
1

T

T∑
t=1

(
ℓ(f(Xt), y

0)− ℓ(f(Xt), Yt)
)
1ℓ(f(Xt),y0)≤M1ℓ(Yt,y0)≥sϵ ln t

≤ 1

T

T∑
t=1

(
(1 + cℓ1/2)ℓ(y

0, Yt)− ℓ(f(Xt), y
0)/2

)
1ℓ(f(Xt),y0)≥M

+
1

T

T∑
t=1

(
(1 + cℓ1/2)ℓ(f(Xt), y

0)− ℓ(y0, Yt)/2
)
1ℓ(f(Xt),y0)≤M1ℓ(Yt,y0)≥sϵ ln t

≤ 1 + cℓ1/2

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥M/(2+cℓ1)
+

(1 + cℓ1/2)M exp
{
2(1 + cℓ1/2)/s

ϵM
}

T
.

As a result, on the event A ∩ B ∩
⋂∞
M=1 EM , for any M ≥ 1,

lim sup
T→∞

1

T

T∑
t=1

ℓ(ϕM ◦f(Xt), Ỹt)−ℓ(f(Xt), Yt) ≤ lim sup
T→∞

1 + cℓ1/2

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥M/(2+cℓ1)
.
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Last, we compute

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) =
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, y0)

)
1ℓ(Yt,y0)≥sϵ ln t

≤ 1

T

T∑
t=1

(
2ℓ(Ŷt, y

0) + cℓ1ℓ(Yt, y
0)
)
1ℓ(Yt,y0)≥sϵ ln t

≤ 1

T

T∑
t=1

(
ln t+ cℓ1ℓ(Yt, y

0)
)
1ℓ(Yt,y0)≥sϵ ln t

≤ cℓ1 + 1/sϵ

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥sϵ ln t.

Note that for any ϵ > 0, we have on the event A that for any M ≥ 1,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥sϵ ln t ≤ lim sup

T→∞

1

T

T∑
t≥eM/sϵ

ℓ(Yt, y
0)1ℓ(Yt,y0)≥M

= lim sup
T→∞

1

T

T∑
t=1

ℓ(Yt, y
0)1ℓ(Yt,y0)≥M .

Hence, because this holds for any M ≥ 1, if ϵ > 0 we can apply this to the integer M := ⌈M̃ϵ⌉
which yields lim supT→∞

1
T

∑T
t=1 ℓ(Yt, y

0)1ℓ(Yt,y0)≥sϵ ln t ≤ ϵ. This holds for any ϵ > 0. Hence
we obtain on the event A that lim supT→∞

1
T

∑T
t=1 ℓ(Yt, y

0)1ℓ(Yt,y0)≥sϵ ln t ≤ 0, which implies
that lim supT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) ≤ 0. Putting everything together, we obtain on

A ∩ B ∩
⋂∞
M=1 EM that for any M ≥ 1,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)

+ lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Ỹt)− ℓ(ϕM ◦ f(Xt), Ỹt)

+ lim sup
T→∞

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), Ỹt)− ℓ(f(Xt), Yt)

≤ lim sup
T→∞

1 + cℓ1/2

T

T∑
t=1

ℓ(y0, Yt)1ℓ(Yt,y0)≥M(2+cℓ1)
.

Because this holds for all M ≥ 1, we can again apply this result to M := ⌈M̃ϵ⌉ which yields
lim supT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt)−ℓ(f(Xt), Yt) ≤ ϵ. This holds for any ϵ > 0. Therefore, we finally

obtain on the eventA∩B∩
⋂∞
M=1 EM of probability one, one has lim supT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt)−

ℓ(f(Xt), Yt) ≤ 0. This ends the proof that Algorithm 4.6 is universally consistent under CS
processes for adversarial empirically integrable responses. Now because there exists a ball
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Bℓ(y, r) of (Y , ℓ) that does not satisfy F-TiME, from Theorem 4.11, universal learning with
responses restricted on this ball cannot be achieved for processes X /∈ CS. However, these
responses are empirically integrable because they are bounded. Hence, CS is still necessary
for universal learning with adversarial empirically integrable responses. Thus Solar = CS
and the provided learning rule is optimistically universal. This ends the proof of the theorem.

4.12.5 Proof of Theorem 4.2

Fix (X , ρX ) and a value space (Y , ℓ) such that any ball satisfies F-TiME We now construct
our learning rule. Let ȳ ∈ Y be an arbitrary value. For any M ≥ 1, because Bℓ(ȳ,M) is
bounded and satisfies F-TiME, there exists an optimistically universal learning rule fM· for
value space (Bℓ(y0,M), ℓ). For any M ≥ 1, we define the function ϕM : Y → Y defined by
restricting the space to the ball Bℓ(ȳ,M) as follows

ϕM(y) :=

{
y if ℓ(y, ȳ) < M

ȳ otherwise.

For simplicity, we will denote by Ŷ M
t := fMt (X≤t−1, ϕM(Y)≤t−1, Xt) the prediction of fM·

at time t for the responses which are restricted to the ball Bℓ(ȳ,M). We now combine
these predictors using online learning into a final learning rule f·. Specifically, we define
It := {0 ≤ M ≤ sϵ ln t} for all t ≥ 1. We also denote tM = ⌈e(2+cℓ1)M⌉ for M ≥ 0 and pose
ηt =

1
4
√
t
. Let sϵ := 1/(2 + cℓ1). For any M ∈ It, we define

Lt−1,M :=
t−1∑
s=tM

ℓ(Ŷ M
s , ϕsϵ ln s(Ys)).

For simplicity, we will denote by Ỹ the process defined by Ỹt = ϕsϵ ln t(Yt) for all t ≥ 1. We
now construct recursive weights as w0,0 = 1 and for t ≥ 2 we pose for all 1 ≤ s ≤ t− 1

l̂s :=

∑
M∈Is ws−1,Mℓ(Ŷ

M
s , Ỹs)∑

M∈Is ws−1,M

.

Now for any M ∈ It we note L̂t−1,M :=
∑t−1

s=tM
ℓ̂s, and pose wt−1,M := eηt(L̂t−1,M−Lt−1,M ). We

then choose a random index M̂t independent from the past history such that

P(M̂t =M) :=
wt−1,M∑

M ′∈It wt−1,M ′
, M ∈ It.

The output the learning rule is ft(X≤t−1,Y≤t−1, Xt) := Ŷ M̂t
t . For simplicity, we will denote

by Ŷt := ft(X≤t−1,Y≤t−1, Xt) the prediction of f· at time t. This ends the construction of
our learning rule which is summarized in Algorithm 4.7.

Now let (X,Y) be such that X ∈ Soul and Y empirically integrable. By Lemma 4.5,
there exists some value y0 ∈ Y such that on an event A of probability one, we have for any
ϵ, a threshold Mϵ ≥ 0 with lim supT→∞

1
T

∑T
t=1 ℓ(y0, Yt)1ℓ(y0,Yt)≥Mϵ ≤ ϵ. We fix a measurable
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Input: Historical samples (Xt, Yt)t<T and new input point XT

Optimistically universal learning rule fM· for value space Bℓ(y0,M), ℓ), where
y0 ∈ Y fixed.
Output: Predictions Ŷt for t ≤ T
It := {0 ≤M ≤ sϵ ln t}, ηt := 1

4
√
t
, t ≥ 1

tM = ⌈e(2+cℓ1)M⌉,M ≥ 0
w0,0 := 1, Ŷ1 = y0(= f 0(X0)) // Initialisation
for t = 2, . . . , T do

Lt−1,M =
∑t−1

s=tM
ℓ(fMs (X≤s−1, ϕM(Y)≤s−1, Xs), ϕsϵ ln s(Ys)), L̂t−1,M =∑t−1

s=tM
ℓ̂s, M ∈ It

wt−1,M := exp(ηt(L̂t−1,M − Lt−1,M)), M ∈ It
pt(M) =

wt−1,M∑
M′∈It

wt−1,M′
, M ∈ It

M̂t ∼ pt(·) // Model selection

Ŷt = f M̂t
t (X≤t−1, ϕM(Y)≤t−1, Xt)

ℓ̂t :=

∑
j∈It

wt−1,jℓ(f
M
t (X≤t−1,ϕM (Y)≤t−1,Xt),ϕcℓ1 ln t

(Yt)∑
j∈It

wt−1,j

end
Algorithm 4.7: A learning rule for adversarial empirically integrable responses under
SMV processes for value spaces (Y , ℓ) such that any ball satisfies F-TiME.

function f : X → Y . Also, for any t ≥ 1 and M ∈ It we have 0 ≤ ℓ(Ŷ M
t , Ỹt) ≤ 2ℓ(Ŷ M

t , ȳ) +
cℓ1ℓ(Ỹt, ȳ) ≤ ln t. As a result, for any M,M ′ ∈ It we have |ℓ(Ŷ M

t , Ỹt) − ℓ(Ŷ M ′
t , Ỹt)| ≤ ln t.

Because |It| ≤ 1 + ln t for all t ≥ 1, the same proof as Theorem 4.4 shows that on an event
B of probability one, there exists t̂ ≥ 0 such that

∀t ≥ t̂, ∀M ∈ It,
t∑

s=tM

ℓ(Ŷt, Ỹt) ≤
t∑

s=tM

ℓ(Ŷ M
t , Ỹt) + 3 ln2 t

√
t.

Further, we know that fM· is Bayes optimistically universal for value space (Bℓ(ȳ,M), ℓ). In
particular, because X ∈ Soul and ϕM ◦ f : X → Bℓ(ȳ,M), we have

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷ M
t , ϕM(Yt))− ℓ(ϕM ◦ f(Xt), ϕM(Yt)) ≤ 0 (a.s.).

For simplicity, we introduce δMT := 1
T

∑T
t=1 ℓ(Ŷ

M
t , ϕM(Yt)) − ℓ(ϕM ◦ f(Xt), ϕM(Yt)) and

define EM as the event of probability one where the above inequality is satisfied, i.e.,
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lim supT→∞ δMT ≤ 0. Because we always have ℓ(Ŷt, ȳ) ≤ sϵ ln t, we can write

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) =
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, ȳ)

)
1ℓ(Yt,ȳ)≥sϵ ln t

≤ 1

T

T∑
t=1

(
2ℓ(Ŷt, ȳ) + cℓ1ℓ(Yt, ȳ)

)
1ℓ(Yt,ȳ)≥sϵ ln t

≤ 2 + cℓ1
T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥sϵ ln t.

The proof of Theorem 4.3 shows that on the event A,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥sϵ ln t ≤ 0,

which implies lim supT→∞
1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt) ≤ 0. Now let M ≥ 1. We write

1

T

T∑
t=1

ℓ(Ŷ M
t , Ỹt)− ℓ(Ŷ M

t , ϕM(Yt))

≤ 1

T

tM−1∑
t=1

ℓ(Ŷ M
t , Ỹt) +

1

T

T∑
t=tM

(
ℓ(Ŷ M

t , Yt)− ℓ(Ŷ M
t , ȳ)

)
1M≤ℓ(Yt,ȳ)<sϵ ln t

≤ tM(2M + cℓ1s
ϵ ln tM)

T
+

1

T

T∑
t=1

(
2ℓ(Ŷ M

t , ȳ) + cℓ1ℓ(Yt, ȳ)
)
1ℓ(Yt,ȳ)≥M

≤ tM(2M + cℓ1s
ϵ ln tM)

T
+

2 + cℓ1
T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .

Hence, we obtain

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷ M
t , Ỹt)− ℓ(Ŷ M

t , ϕM(Yt)) ≤ lim sup
T→∞

2 + cℓ1
T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .
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Finally, we compute

1

T

T∑
t=1

ℓ(ϕM ◦ f(Xt), ϕM(Yt))− ℓ(f(Xt), Yt)

≤ 1

T

T∑
t=1

(ℓ(ȳ, Yt)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤M

+
1

T

T∑
t=1

(ℓ(f(Xt), ȳ)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≤M1ℓ(Yt,ȳ)≥M

≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥M/(2+cℓ1)
+
M

T

T∑
t=1

1ℓ(Yt,ȳ)≥M

+
1

T

T∑
t=1

(ℓ(ȳ, Yt)− ℓ(f(Xt), Yt))1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤M/(2+cℓ1)

≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥M/(2+cℓ1)
+

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M

+
1

T

T∑
t=1

(
(1 + cℓ1/2)ℓ(ȳ, Yt)− ℓ(f(Xt), ȳ)/2

)
1ℓ(f(Xt),ȳ)≥M1ℓ(Yt,ȳ)≤M/(2+cℓ1)

≤ 1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥M/(2+cℓ1)
+

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M .

We now put all these estimates together. On the event A ∩ B ∩
⋂∞
M=1 EM , for any M ≥ 1

and t ≥ max(t̂, tM) we can write

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤
1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)

)
+

1

T

T∑
t=1

(
ℓ(Ŷt, Ỹt)− ℓ(Ŷ M

t , Ỹt)
)
+

1

T

T∑
t=1

(
ℓ(Ŷ M

t , Ỹt)− ℓ(Ŷ M
t , ϕM(Yt))

)
+ δMT

+
1

T

T∑
t=1

(ℓ(ϕM ◦ f(Xt), ϕM(Yt))− ℓ(f(Xt), Yt))

≤ 1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(Ŷt, Ỹt)

)
+

3 ln2 T√
T

+
1

T

T∑
t=1

(
ℓ(Ŷ M

t , Ỹt)− ℓ(Ŷ M
t , ϕM(Yt))

)
+ δMT +

1

T

T∑
t=1

(ℓ(ϕM ◦ f(Xt), ϕM(Yt))− ℓ(f(Xt), Yt)) .
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Thus, we obtain on the event A ∩ B ∩
⋂∞
M=1 EM , for any M ≥ 1,

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ lim sup
T→∞

1

T

T∑
t=1

ℓ(ȳ, Yt)1ℓ(Yt,ȳ)≥M/(2+cℓ1)

+ (3 + cℓ1) lim sup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M

On the event A, the same arguments as in the proof of Theorem 4.3 show that we have same
guarantees for y0 as for ȳ, i.e., for any ϵ > 0, there exists M̃ϵ such that

lim sup
T→∞

1

T

T∑
t=1

ℓ(Yt, ȳ)1ℓ(Yt,ȳ)≥M̃ϵ
≤ ϵ.

Therefore, for any ϵ > 0, we can apply the above equation to M := (2 + cℓ1)Mϵ +Mϵ/(3+cℓ1)

to obtain

lim sup
T→∞

1

T

T∑
t=1

ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 2ϵ.

Because this holds for all ϵ > 0, we can in finally get

lim sup
T→∞

1

T

T∑
t=1

(
ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt)

)
≤ 0,

on the event A ∩ E ∩
⋂
M≥1FM of probability one. This ends the proof of the theorem.
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Chapter 5

Contextual Bandits and Optimistically
Universal Learning

5.1 Introduction

The contextual bandit setting is one of the core problems in sequential statistical decision-
making. Abstractly, in this setting, a learner (or decision maker) interacts with a reward
mechanism iteratively. At each iteration, the learner observes a context (or covariate vector)
x ∈ X , selects an arm (or action) a ∈ A to perform, then receives a (potentially stochastic)
reward depending on the context and selected action. For example, a store may serve a
sequence of customers, for each provide a list of product recommendations, and receive
a reward if the recommendation leads to a purchase. The key distinctions between the
contextual bandit setting and standard supervised learning (or regression) are that (1) the
learner’s objective is to obtain a near-maximum average reward over time (rather than
merely estimating the reward conditional means), and (2) the learner only observes the
reward corresponding to the arm it chose. These aspects introduce a fundamental trade-off
between exploration and exploitation. That is, while some arms may have high estimated
reward values, other arms may have higher uncertainty in their rewards and in particular
uncertainty about whether they would yield an even higher reward: selecting such arms may
provide information about the potential for higher future rewards.

Universal consistency. In the contextual bandit setting, a learner is consistent if it has
sublinear regret compared to the best policy in hindsight, or equivalently if its average
reward converges to the maximum-possible average reward obtained with an optimal policy.
Formally, if ât denotes the action selected at time t, an algorithm is consistent if for any
policy π⋆ : X → A,

lim sup
T→∞

1

T

T∑
t=1

rt(π
⋆(Xt))− rt(ât) ≤ 0, (a.s.),

where rt(a) is the reward obtained at time t by selecting action a, and X = (Xt)t≥1 is the
context sequence. Naturally, one aims for learning procedures consistent under a broad
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class of problem instances. In this chapter, we consider the strongest form of consistency:
universal consistency which asks that a learning rule achieves consistency for any underlying
mechanism generating (rt)t≥1.

The equivalent notion can be defined for the full-feedback case which we studied in
Chapters 3 and 4: for a stream of data (X,Y) = (Xt, Yt)t≥1 of instances modeled as a
stochastic process on X × Y , a learning rule with predictions Ŷt is consistent if it has van-
ishing excess error compared to any fixed measurable predictor function f : X → Y , i.e.,
lim supT→∞

1
T

∑T
t=1 ℓ(Ŷt, Yt)− ℓ(f(Xt), Yt) ≤ 0 (a.s.). An algorithm is universally consistent

if it is consistent irrespective of the generating process for the values Y from the instances X.
In this standard full-feedback setting, many works established universal consistency, starting
with [Sto77] who proved universal consistency for a broad family of local average estimators.
We refer to Chapter 2 for a thorough literature review. In the previous sections we showed
that we can characterize provably-minimal assumptions for this setting using the optimisti-
cally universal framework [Han21a], succinctly summarized as “learning whenever learning
is possible”, which we briefly recall here.

Optimistically universal learning. The idea is to identify the minimal assumption on
the data sequence X sufficient for universal consistency to be possible. Such an assumption
is both necessary and sufficient, and therefore amounts to merely assuming that universally
consistent learning is possible: aptly named the optimist’s assumption. For any process X
satisfying this minimal assumption, by definition there must exist a universally consistent
learning rule possibly dependent on X. The interesting question is whether the optimist’s
assumption alone is sufficient: that is, whether there exists a single learning rule that is
universally consistent for every process X satisfying the optimist’s assumption. Such a
learning rule is said to be optimistically universal.

The study of optimistic universal learning for full-feedback proved particularly fruitful as
we showed in Chapters 3 and 4. In particular, we can characterize the class of universally
learnable processes, which is under mild assumptions very general (beyond i.i.d. or stationary
ergodic processes). Further, we were always able to provide optimistically universal learning
rules.

Universal learning with partial feedback. The contextual-bandit formulation was first
introduced for one-armed bandits [Woo79; Sar91] in a rather restricted setting. Since then,
progress has been made to investigate stochastic contextual bandits under parametric as-
sumptions [WKP05; LZ07; GZ09; BC+12; AC16; RS16]. In the non-parametric setting,
advances have been made to obtain minimax guarantees under smoothness conditions and
margin assumptions on rewards [LPP09; RZ10; Sli11; PR13; GJ18; RMB18].

However, to the best of our knowledge, no prior works establish universal consistency
even under all i.i.d. data sequences, i.e., consistency in the non-parametric setting without
further assumptions. As such, the present work is also the first to propose such results
and corresponding universally consistent learning rules. Closest to this work is the result
from [YZ02] which shows that if rewards are continuous in the contexts, strong consistency
can be achieved with familiar non-parametric methods, for Euclidean context spaces. Our
work significantly generalizes this result to unrestricted reward mechanisms, separable metric
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action and context spaces, and non-i.i.d. data.
Non-i.i.d. context data has also been widely studied in the literature. Examples include

customers’ profile distribution, which may change depending on seasonal patterns, or the
extension of clinical trials to new populations. In these cases, the distribution of contexts
x changes while the underlying conditional distribution remains unchanged, a phenomenon
known as covariate-shift. Such formalism was adopted in works on domain adaptation for
classification [Sug+07; Gre+09; BU12]. Moreover, several works have also considered dis-
tributional shifts in both contexts and responses for bandit problems, in both parametric
[BGZ14; Luo+18; WIW18; Che+19] and non-parametric settings [SK21].

5.1.1 Summary of the chapter

We study optimistically universal learning in standard contextual bandits [Sli+19; LS20].
Precisely, we assume that there exists a time-invariant conditional probability distribution
Pr|a,x such that the reward rt is sampled according to Pr|a=at,x=Xt where at (resp. Xt) is
the selected action (resp. observed context) at time t, independently from the past history.
We are interested in online learning, where the learner may observe all past rewards rt′ and
contexts Xt′ , t′ < t, when choosing its action at given the context Xt. We aim to achieve
average reward 1

T

∑T
t=1 rt that is competitive with any fixed policy X → A as T → ∞.

Our results show that consistency is achievable under large classes of context processes and
without assumptions about the probability distribution Pr|a,x. In particular, to the best of
our knowledge, this is the first work giving algorithms consistent under any such contextual
bandit instance with finite action spaces and i.i.d. contexts. Our results go well beyond this
standard setting and are summarized below.

Bounded unrestricted rewards We first focus on the classical assumption of bounded
rewards and show there always exists an optimistically universal learning rule. Our approach
is to first characterize which processes X admit universally consistent learning rules, then
use this characterization to inform the design of a learning rule, which will be universally
consistent under every such process. This turns out to require three separate cases: A finite,
A countably infinite, and A uncountably infinite. Each of these cases gives rise to a differ-
ent characterization of the set of processes X under which universally consistent learning is
possible for contextual bandits, a fact which itself is of independent interest. Moreover, each
of these sets of processes corresponds to known families of processes from the past literature
on optimistically universal learning. When A is finite, the set of processes admitting uni-
versal consistency for contextual bandits is equivalent to the family of processes admitting
universally consistent online learning with full supervision: Condition SMV. While this ap-
pears natural, interestingly this is not the case when A is countably infinite. In that case,
the set of processes admitting universal learning for contextual bandits is equivalent to the
family of processes admitting universally consistent inductive learning with full supervision:
Condition CS, which is more restrictive than SMV. Finally, when A is uncountably infinite,
universal learning can never be achieved. We note that both CS and SMV are very general
classes of processes, encompassing in particular i.i.d., ergodic, and stationary processes.
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Bounded rewards under continuity assumptions For unrestricted rewards, although
large classes of non-i.i.d. processes (CS or SMV) admit universal learning for countable ac-
tion spaces, the answer for uncountable action spaces is disappointing: universal consistency
is impossible. However, we show that under continuity assumptions on the rewards, one can
recover positive results for general action spaces. Further, in all cases, we provide optimisti-
cally universal learning rules. First, under the assumption that rewards are continuous, the
characterization of processes admitting universal consistency now requires only two cases.
If the action space is finite, the set of processes admitting universal learning remains un-
changed and is SMV. On the other hand, if the action space is infinite, this set becomes
CS, irrespective of whether the action space was countably or uncountably infinite. Second,
we consider a stronger assumption of uniform continuity on the rewards, in which the mod-
ulus of continuity of the expected reward in the actions r̄(·, x) for x ∈ X are uniform over
the context space X . Under this assumption, universal learning under the more general set
of processes SMV becomes possible for a significantly larger class of action spaces, namely
totally-bounded action spaces. Otherwise, universal learning is achievable exactly on CS
processes.

Unbounded rewards Last, we characterize and give optimistically universal learning
rules the most general case of unbounded rewards. Even with full supervision, universal
consistency for unbounded losses is known to be very restrictive. This is possible only for
processes visiting only a finite number of distinct instances in X : Condition FS. For con-
textual bandits, in the standard case of unrestricted rewards, we show that there is a simple
dichotomy: if the action space is countable then the set of processes admitting universal
learning is still FS; however, if the action space is uncountably infinite, universal learning
can never be achieved. Nevertheless, under continuity assumptions on the rewards, universal
learning can always be achieved under FS processes.

5.1.2 Overview of probability-theoretic contributions

In this chapter, we make use of the conditions CS, SMV, and FS on stochastic processes
from the universal learning literature to characterize the set of processes admitting universal
learning. Along the way to establishing these results, another significant contribution of this
chapter is establishing new equivalent characterizations of the families CS and SMV, crucial
for the design of our optimistically universal algorithms. In particular, we establish a new
connection between these two families: proving that SMV can essentially be characterized
by processes that would be in CS if we were to replace duplicate values in the sequence X
by some default value x0. As a result, SMV processes differ from CS processes only through
duplicates: if a process X is guaranteed to never visit the same context with probability one
(e.g. i.i.d. processes with density) the properties CS and SMV are equivalent. This fact
has further interesting implications, such as a new technique for the design of optimistically
universal learning rules for online learning with full supervision; this gives alternative opti-
mistically universal learning rules to the modified nearest neighbor algorithm 2C1NN that
we introduced in Chapter 3. The new approach suggested in the present chapter is instead
based on model selection techniques, in the spirit of structural risk minimization [Han21a].
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5.1.3 Overview of algorithmic techniques

We present an overview of the optimistically universal learning rule for finite action sets,
Algorithm 5.5, which encompasses the main algorithmic innovation in this chapter. We use
the property that SMV processes without duplicates satisfy the CS property (Proposition 5.1)
to separate times into two classes: points not appearing often recently and points which have
many duplicates recently.

1. For the points in the first category, which behave as CS processes, we use an approach
similar to structural risk minimization: we aim to achieve sublinear regret compared
to a constructed countable set of policies that is empirically dense. To do so, we use
a restarting technique introduced in [Han21a]: we use classical bandit algorithms as a
subroutine to achieve sublinear regret compared to a fixed finite number of policies, and
occasionally restart the bandit learner to gradually increase the number of competing
policies considered.

2. For the points in the second category, we use a completely different strategy. Intu-
itively, these correspond to instances with many duplicates in the recent past, hence
it is advantageous to assign each frequent instance an independent bandit learner.
In particular, this specific bandit learner is tailored to that point’s rewards only and
completely disregards historical data from other points.

Interestingly, we can interpret the general strategy as balancing a trade-off between gen-
eralization and personalization. The first strategy aims to find a policy that performs well at
an aggregate level for points with few duplicates. On the other hand, the algorithm performs
pure personalization for specific points that have many recent repetitions. This schematic
presentation hides many details. To obtain vanishing excess error compared to the optimal
policy, the algorithm needs to balance the generalization/personalization trade-off carefully.
In effect, we allow for a cap of M of duplicates for each instance in the recent past to be
treated with the generalization strategy and adaptively increase this cap. To adaptively
increase this cap, the algorithm occasionally uses “exploration” times to estimate the perfor-
mance of each strategy, and decides to increase the cap based on these estimates. Last, to
have decisions robust to non-stationarity in the sequence of contexts, the algorithm selects
actions based on recent data: the learning procedure is broken down by periods that contain
a given proportion of the past data, and this proportion adaptively decays to 0.

5.1.4 Outline of the chapter

After giving the definitions and main results in Section 5.2, we provide in Section 5.3 new
characterizations of stochastic process classes as well as base algorithms, used to construct
our learning rules. With these tools, we study optimistic learning with bounded rewards for
finite (Section 5.4) countably infinite (Section 5.5), and uncountable (Section 5.6) action sets.
We then show that universal learning can be achieved on larger classes of processes under
continuity assumptions on the rewards in Section 5.7. Last, we treat the more restrictive case
of unbounded rewards in Section 5.8 and give remaining proofs in the appendix Section 5.9.
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5.2 Preliminaries and Main Results

5.2.1 Formal setup and problem formulation

The goal of this chapter is to study the general framework of contextual bandits in an online
setting. Given a separable metrizable Borel context space (X ,B) and a separable metrizable
Borel action space A, the learner interacts with the contextual bandit at each iteration t ≥ 1
of the learning process in the following fashion. First, the learner observes a context Xt ∈ X ,
then selects an action ât ∈ A based on the past history only. As a result of the action, the
learner receives a reward rt. We will suppose for the most part that the rewards are bounded
rt ∈ [0, R] = R for some known R ≥ 0. Without loss of generality we take R = 1. Crucially,
the learning rule can only use the past history, as defined below.

Definition 5.1 (Learning rule). A learning rule is a sequence f· = (ft)t≥1 of possibly ran-
domized measurable functions ft : X t−1 ×Rt−1 × X → A. The action selected at time t by
the learning rule is ât = ft((Xs)s≤t−1, (rs)s≤t−1, Xt).

We now describe the standard contextual bandit model. We suppose that the contexts
are generated from a stochastic process X = (Xt)t∈N on X . Further, we assume that rewards
are sampled from a distribution conditionally on the context and actions. Formally, there is
a time-invariant conditional distribution Pr|a,x such that the rewards (rt)t≥1 are conditionally
independent given their respective selected action at and observed context xt, and follow this
conditional distribution: (rt | at, xt)t≥1

iid.∼ Pr|a,x. To emphasize the conditional dependence
of rt on the actions and context, we denote rt(a, x) (resp. rt(a)) the reward at time t, had
the selected action been a ∈ A and the observed context x ∈ X (resp. when the context
at time t is clear). Further, by abuse of notation, we will refer to a reward mechanism r
as a random variable r ∼ Pr|a,x. We use the notation r̄(a, x) = E[r | a, x] to denote the
expected reward for any a ∈ A and x ∈ X . For unbounded rewards, we assume that the
random variable r(a, x) is integrable for any (a, x) ∈ A× X . We consider three settings for
the reward mechanism r: unrestricted, continuous, and uniformly-continuous. For the two
last settings defined below, we suppose that A is a separable metric space with metric d.

Definition 5.2. The reward mechanism r is continuous if for any x ∈ X , the immediate
expected reward function r̄(·, x) : A → [0, 1] is continuous.
The reward mechanism r is uniformly-continuous if for any ϵ > 0 there exists ∆(ϵ) > 0 with

∀x ∈ X ,∀a, a′ ∈ A, d(a, a′) ≤ ∆(ϵ)⇒ |r̄(a, x)− r̄(a′, x)| ≤ ϵ.

Our goal is to design algorithms that intuitively converge to the optimal policy π∗ : X →
A that selects for any context x ∈ X an optimal arm in argmaxa∈A r̄(a, x). Such an optimal
policy π∗ is well-defined for finite A; however, for infinite A, this may no longer be the case.
Instead, to be fully general, we ask that the regret of the algorithm be sublinear compared
to any fixed measurable policy π∗ : X → A. We are then interested in learning rules that
are consistent irrespective of the unknown reward mechanism r, i.e., that always converges
to a (near-)optimal policy.
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Definition 5.3 (Consistency and universal consistency). Let X be a stochastic process on
X , r a reward mechanism, and f· a learning rule. Denote by (ât)t≥1 it’s selected actions. We
say that f· is consistent under X with rewards r if for any measurable policy π∗ : X → A,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤ 0, (a.s.).

The rule f· is universally consistent under X if it is consistent for any reward mechanism r.

Intuitively, universal learning rules are the most general possible: standard approaches
in contextual bandits consider a specific family of reward functions for which they obtain
guarantees, while in universal learning, the set of rewards considered is unrestricted. This
is of course a very strong objective and unfortunately, universal consistency is not always
achievable. For a simple example, on X = N, under the process X = (t)t≥1, there does
not exist any universally consistent learning rule because the best action in hindsight at the
context t may be completely unrelated to that from previously observed contexts t′ < t. Two
natural questions then arise. First, for which stochastic processes is universal consistency
possible? And second, which algorithms are universally consistent for all such stochastic
processes? This latter property is particularly appealing, as it means the learning rule
is provably universally consistent given only the assumption that universal consistency is
possible under the given process (it “learns whenever learning is possible”); this is the minimal
assumption on the process under which one could hope to prove universal consistency. Such
learning rules are called optimistically universal, as defined formally below.

Definition 5.4 (Optimistically universal learning rule). Let Socb be the set of processes X
on X such that there exists a learning rule universally consistent under X. We say that a
learning rule f· is optimistically universal if it is universally consistent under every process
X ∈ Socb.

Similarly, let Socb-C (resp. Socb-Uc) be the set of processes admitting universally
consistent learning under continuous (resp. uniformly-continuous) rewards and define op-
timistically universal learning rule for continuous (resp. uniformly-continuous) rewards ac-
cordingly.

In this chapter, we answer the questions raised above by (1) characterizing the set of
processes Socb admitting universally consistent learners, and (2) proving that there indeed
exist optimistically universal learning rules and providing explicit definitions of such learners.

5.2.2 Useful classes of stochastic processes

The conditions that will arise in our universal learning characterizations are the same as
those introduced in Chapters 2 to 4. We briefly recall these. Let us first start with some
notation. For any stochastic process X = (Xt)t≥1, we denote X≤t = (Xs)s≤t for any t ≥ 1. We
also introduce the empirical limsup frequency µ̂X via µ̂X(A) = lim supT→∞

1
T

∑T
t=1 1A(Xt)

for any A ∈ B. µ̂X(A) quantifies the asymptotic proportion of points falling in A. The first
class of processes we defined in Condition CS are those for which E[µ̂X(·)] forms a continuous
sub-measure.
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Condition CS. For every decreasing sequence {Ak}∞k=1 of measurable sets in X with Ak ↓ ∅,
E[µ̂X(Ak)] −→

k→∞
0.

This family CS of processes is very large and includes i.i.d. processes, all stationary
processes, and in fact all processes satisfying the law of large numbers— that is, for any
A ∈ B, the limit limT→∞

1
T

∑T
t=1 1A(Xt) exists almost surely [Han21a]. It also includes

many non-stationary processes [Han21a]. Algorithmic details on how this condition is
useful for learning are deferred to Section 5.3.2. We next introduce an even more general
class of processes, Condition SMV which asks that the process visits a sublinear number of
sets from any countable measurable partition of X .

Condition SMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X such that⋃∞
k=1Ak = X , (every countable measurable partition), |{k ≥ 1 : Ak ∩ X≤T ̸= ∅}| =

o(T ), (a.s.).

It is known [Han21a] that CS ⊂ SMV. Therefore, both conditions CS and SMV encom-
pass large classes of processes and generalize standard assumptions on processes as described
above. To briefly explain why CS ⊂ SMV, at a high level, if X visits new disjoint regions
Ak linearly often, then the tail union set Bk =

⋃
l≥k Al is visited linearly often, for all k,

which violates CS since Bk ↓ ∅. The opposite inclusion does not hold when X is infinite
[Han21a]: for instance, we may exhibit a deterministic process (Xl)l≥1 ∈ SMV \ CS taking
Xl = x⌈

√
l⌉ for any sequence xi of distinct points. Last, we introduce a significantly smaller

class of processes, based on a condition asking that the process only visits a finite number
of distinct points.

Condition FS. The process X satisfies |{x ∈ X : {x} ∩ X ̸= ∅}| <∞ (a.s.).

This condition is rather restrictive and only appears in our characterizations of universal
learning under unbounded rewards. It does not include i.i.d. processes in general: for spaces
X admitting a non-atomic measure µ, an i.i.d. process X i.i.d.∼ µ almost surely does not visit
the same point twice (e.g., the uniform distribution on [0, 1]). We can also directly check
FS ⊂ CS since for Ak ↓ ∅, the condition FS ensures that with probability one, there exists
an index k̂ such that Ak̂ is never visited.

5.2.3 Main results

We now present our main results. We show that the set of processes admitting universal
learning Socb corresponds to one of the classes FS ⊂ CS ⊂ SMV and depends only on
the action set A. A summary of the characterizations is provided in Table 5.1. We also
give optimistically universal learning rules for each case (see Sections 5.4 to 5.7). In the
main setting of bounded rewards, the relevant distinctions are whether A is finite, countably
infinite, or uncountable.

Theorem 5.1 (Unrestricted bounded rewards). Let X be a separable metrizable Borel context
space and A an action space. Then,

• If A is finite and |A| ≥ 2, then Socb = SMV.
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Bounded rewards

Unrestricted rewards Continuous rewards Uniformly-continuous
rewards

Finite: SMV
Countably infinite: CS
Uncountable: ∅

Finite: SMV
Infinite: CS

Totally-bounded: SMV
Non-totally-bounded: CS

Unbounded rewards Countable: FS
Uncountable: ∅ FS FS

Table 5.1: Characterization of learnable instance processes for universal learning in contex-
tual bandits depending on properties of the action space A.

• If A is countably infinite, then Socb = CS.

• If A is an uncountable separable metrizable Borel space, then Socb = ∅.

In all cases, there is an optimistically universal learning rule.

The proof spans Section 5.4 for finite, Section 5.5 for countably infinite, and Section 5.6
for uncountable action spaces. Recall that X ∈ SMV is necessary to achieve universal learn-
ing under X even in the simplest online learning setting with full-feedback and noiseless
values (see Chapter 3). Therefore, Theorem 5.1 shows that universal consistency for contex-
tual bandits is achievable for finite action sets at no extra cost compared to full-feedback. For
countably infinite action spaces, the situation is more nuanced, as we find the more-restrictive
condition CS is necessary; the class CS is known to characterize universal learnability for
full-feedback in certain variants of the learning setting, such as inductive learning [Han21a]
and online learning with adversarial responses under certain loss functions (see Chapter 4),
so that the online contextual bandit problem with countably infinite action spaces is essen-
tially of equivalent difficulty to these. On the other hand, in uncountable action spaces,
universal consistency is not achievable. A natural question then becomes whether under
mild assumptions on the rewards one can recover the large classes of processes CS or SMV
for universal learning. In particular, if we assume that (A, d) is a separable metric space
and first consider the case of continuous rewards, we show that the set Socb-C of processes
admitting universal consistency is equal CS for infinite A.

Theorem 5.2 (Continuous bounded rewards). Let X be a separable metrizable Borel context
space and (A, d) a separable metric action space. Then,

• If A is finite and |A| ≥ 2, then Socb-C = SMV.

• If A is infinite, then Socb-C = CS.

In all cases, there is an optimistically universal learning rule for continuous rewards.

The proof is given in Section 5.7.1. As a result, under the continuity assumption, one
recovers the set of processes CS for infinite action spaces. However, it is not sufficient to
recover the largest set SMV which is necessary even in the noiseless full-feedback setting.
However, if we consider the stronger assumption that rewards are uniformly-continuous, then
we show that one can recover the full set of processes SMV for universally consistent learn-
ing under all totally-bounded action spaces for the class Socb-Uc of universally learnable
processes for uniformly-continuous rewards.
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Theorem 5.3 (Uniformly-continuous bounded rewards). Let X be a separable metrizable
Borel context space and (A, d) a separable metric action space. Then,

• If A is totally-bounded and |A| ≥ 2, then Socb-Uc = SMV.

• If A is non-totally-bounded, then Socb-Uc = CS.

In all cases, there is an optimistically universal learning rule for uniformly-continuous re-
wards.

The proof is given in Section 5.7.2. Last, we consider unbounded rewards in R = [0,∞).
In Chapter 3, we showed that even in the simplest noiseless full-feedback case, FS is necessary
for universal learning with unbounded rewards. We show that universal learning under FS
processes is generally still possible for contextual bandits but find that neither continuity
nor uniform continuity assumptions are sufficient to extend beyond FS. The proof of the
result below is given in Section 5.8.

Theorem 5.4 (Unbounded rewards). Let X be a separable metrizable Borel context space
and (A, d) a separable metric action space.

• If A is countable, and |A| ≥ 2, then Socb = FS. If A is uncountable, then Socb = ∅.

• For any A with |A| ≥ 2, Socb-C = Socb-Uc = FS.

In all cases, there is an optimistically universal learning rule for all the rewards models.

5.3 Base Ingredients for the Proofs and Algorithms

5.3.1 Equivalent characterizations of stochastic process classes

We give new characterizations of the classes CS and SMV, which are central to our proofs,
and also of independent interest. We first show that X /∈ CS if and only if we can construct
a measurable partition visited linearly by the process up to a known maximum number of
duplicated instances for each set of the partition.

Lemma 5.1. X /∈ CS if and only if the following holds: there exists a disjoint sequence
{Bi}∞i=1 of measurable subsets of X with

⋃
i∈N

Bi = X , and a sequence Ni in N such that,

letting it be the unique i ∈ N with Xt ∈ Bi, with probability strictly greater than zero,

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit| < Nit ] > 0.

Intuitively, this characterization shows that for X /∈ CS, there is an infinite number of
regions that are each sparsely visited by the process, but still together form a significant
proportion of times. Thanks to this property, we show that universal learning beyond CS
processes is impossible for infinite action spaces. When choosing an action for a context
Xt in a region Bi which was encountered fewer than a bounded number Ni of times before,
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the learner is not able to guess an optimal action within an infinite number of possibilities.
Hence, one can construct rewards such that this happens for the first Ni visits of Bi, for all
i ≥ 1 with high probability. Because these represent a constant proportion of all times as
per Lemma 5.1, the algorithm is not consistent.

Next, we give a new characterization of SMV processes, revealing a fascinating new
expression of the relation between CS and SMV. We consider sparsified stochastic processes
which may take their defined values on a subset of possibly random (X-dependent) times
T ⊂ N instead of the complete set of times N, and fill the remaining times with any fixed
“dummy” value x∅ /∈ X . Specifically, for any process X = (Xt)t≥1 and X-dependent random
set T ⊆ N, define the stochastic process XT = (XT

t )t≥1 on X ∪{x∅} (extending the σ-algebra
appropriately) by

XT
t =

{
Xt if t ∈ T
x∅ otherwise

.

The purpose of this sparsified process is that the times t /∈ T have Xt replaced by a non-value
x∅, which therefore does not contribute to empirical frequencies in µ̂XT (A) for sets A ⊆ X .
This modification leads to an extended definition of CS for sparsified processes with the same
definition as in Condition CS. That is, for a process X and an X-dependent T , we say that
XT ∈ CS if every monotone sequence Ak of measurable subsets of X with Ak ↓ ∅ satisfies
lim
k→∞

E[µ̂XT (Ak)] = 0, or equivalently,

lim
k→∞

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T

1Ak
(Xt)

]
= 0.

As an important remark, this set of extended CS stochastic processes can be larger than
the processes X with (Xt)t∈T ∈ CS. For instance, on X = N, consider the process (Xt = t)t≥1,
and T = {tk : k ≥ 1} for an increasing sequence tk with tk/k → ∞. We can easily check
that XT ∈ CS, but the process (Xtk)k≥1 does not belong to CS—the sets Ak = {n ≥ k} for
k ≥ 1 disprove the condition.

The following result shows that SMV is equivalent to such an extended variant of CS,
for appropriate choices of T : namely, those forcing a bounded number of duplicate values.

Proposition 5.1. Let X be a stochastic process on X , and for M ≥ 1, define an X-dependent
set

T ≤M =

{
t ≥ 1 :

∑
t′≤t

1[Xt′ = Xt] ≤M

}
,

the set of times which are duplicates with index at most M . In particular, T ≤1 is the set of
all times of first appearances of values. Similarly, T <M = T ≤M−1 for M ≥ 2. For brevity,
we introduce the shorthand notation X(≤M) = XT ≤M . The following are equivalent.

1. X ∈ SMV.

2. X(≤1) ∈ CS.
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3. For all M ≥ 1, X(≤M) ∈ CS.

In other words, denoting by µ̂(≤M)

X (A) = lim supT→∞
1
T

∑
t≤T,t∈T ≤M 1A(Xt), the result

shows that X ∈ SMV if and only if E[µ̂(≤1)

X (·)] is a continuous submeasure. This result implies
that the main difference between CS and SMV processes lies in the multiple occurrences
of values. This fundamental connection between SMV and CS had not previously been
identified in the literature, and in addition to being central to our analysis below, is also of
independent interest. In particular, if X never visits the same value twice almost surely, as
is the case of i.i.d. processes with densities, then X ∈ CS if and only if X ∈ SMV. We give a
simple process X ∈ SMV \CS that exemplifies this distinction. Let (xk)k≥1 be a sequence of
distinct points in X . Let X be the deterministic sequence that visits x1 once, then x2 twice,
etc., so that Xt = xk with k(k−1)/2 < t ≤ k(k+1)/2. This process is not in CS because the
sets Ak = {xl, l ≥ k} are visited with asymptotic rate 1. However, it visits new points from
the sequence (xk)k≥1 at a sublinear rate, hence X ∈ SMV. Intuitively, learning under this
process should be possible (for finite action spaces) because each point xk is visited k times,
hence a standard bandit learner assigned to xk would yield an average regret of the order
1/
√
k on these times. This pure personalization approach can be proved to be universally

consistent in this example.

Impact of duplicates for learning contextual bandits. Given that SMV processes
become CS if one replaces all duplicates by an arbitrary context x∅, one may wonder why
duplicates should add complexity to the problem. On one hand, having duplicates can be
helpful for the learner since it has access to more information on a single instance and can
therefore personalize actions to this instance. On the other hand, the consistency objective
is less forgiving: if the learner does not identify a satisfactory action for a point with many
duplicates, the regret incurred is proportional to the number of duplicates. Precisely, the
learner faces the following dilemma: either (1) the optimal action for an instance with many
duplicates is very distinct from similar instances in X, in which case personalization is ben-
eficial; or (2) the optimal action is similar to that for similar instances in X, in which case it
is more beneficial to rely on generalization, using an action observed to yield high rewards
among such similar instances (analogous to familiar learning principles from contextual ban-
dits with i.i.d. contexts). The learner does not know a priori which of these two scenarios
a particular instance falls in, and incurs a significant regret if it uses the wrong strategy.
Eventually, the algorithm should switch to generalization for instances duplicated at most
a fixed number M of times, since a personalized bandit incurs a small but non-zero regret
(roughly

√
M), which is unacceptable if there are Ω(T ) such instance in the process. On

the other hand, for instances duplicated an unbounded number of times, the personalization
strategy may sometimes be preferable. Deciding when to switch between personalization
and generalization is therefore a crucial challenge in the design of a universally consistent
learner under SMV processes.

Implications for the full feedback setting. As a consequence of Proposition 5.1, we
obtain new major insights on the noiseless full-feedback setting. In this setting, an online
learner sequentially observes an instance Xt ∈ X , predicts a value Ŷt ∈ Y then observes
the true value Yt = f ∗(Xt) for some unknown measurable function f ∗ : X → Y . The goal
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is to find learning rules satisfying 1
T

∑T
t=1 ℓ(Yt, Ŷt) → 0 (a.s.), where ℓ is a given near-

metric on Y (i.e., a loss function), for any f ∗. For this setting, [Han21a] gave an algorithm
combining the Hedge algorithm and a “dense” countable family of measurable functions,
universally consistent under CS processes. In Chapter 3, we then gave a simple 1-nearest-
neighbor-based algorithm named 2C1NN and showed that it is universally consistent under
SMV processes, which are also necessary for universal learning [Han21a]. Proposition 5.1
directly implies that combining the original algorithm from [Han21a] on first-appearances
of each value Xt, i.e., on times T ≤1, with memorization for previously observed instances,
also yields an optimistically universal learning rule. Unfortunately, such a direct argument
does not extend to the setting of noisy responses Yt from Chapter 4, where the values Yt
may not come from a fixed measurable function f ∗(Xt). In such cases, the trade-off between
generalization and personalization is again crucial.

5.3.2 Algorithms for learning with experts

We give the main ingredients that will be used as sub-routines in our algorithms. We
start by recalling the classic EXP3 algorithm [Aue+02] for multi-armed bandits, and the
corresponding guarantee on its regret. The EXP3 algorithm is designed for the general
(adversarial) K-armed bandit setting: i.e., where there is no context, and the rewards rt(a) ∈
[0, 1] at time t for arm a ∈ {a1, . . . , aK} are set by an adversary with knowledge of the
algorithm and its choices of arms â1, . . . , ât−1, but without knowledge of the algorithm’s
randomness regarding its next choice of arm ât. This repeats for a total of T rounds, and
we are interested in the regret compared to the best fixed choice of arm ai in hindsight. The
EXP3 algorithm initializes a distribution p1 uniform over {a1, . . . , aK} and values Lai = 0
(∀i ≤ K); for each round t = 1, 2, . . . , T , it samples its choice ât ∼ pt, updates Lât ←
Lât + (1− rt(ât))/pt(ât), and defines pt+1(ai) ∝ e−ηtLai , where ηt is a prespecified value. The
following describes a known performance guarantee for this algorithm.

Theorem 5.5 (Expected regret of EXP3 [BC+12]). If EXP3 is run with parameters ηt =√
lnK
tK

on a multi-armed bandit with K arms, then it satisfies the following “pseudo-regret”
guarantee:

max
i∈[K]

E

[
T∑
t=1

rt(ai)

]
− E

[
T∑
t=1

rt(ât)

]
≤ 2
√
TK lnK.

We will also need an algorithm for adversarial multi-armed bandits guaranteeing a regret
bound holding with high probability 1− δ, and moreover having no explicit dependence on
δ or T . Such an algorithm, called EXP3.IX, was proposed by [Neu15]. The algorithm is
identical to the description of EXP3 above, except that the update to Lât is now given as
Lât ← Lât + (1 − rt(ât))/(pt(ât) + γt), where γt is a prespecified value. [Neu15] establishes
the following result, taking ηt = 2γt =

√
lnK
tK

.

Theorem 5.6 (High-probability regret of EXP3.IX [Neu15]). For adversarial bandits with
K arms, EXP3.IX satisfies that, for any δ ∈ (0, 1) and T ≥ 1, with probability at least 1− δ,

max
i∈[K]

T∑
t=1

(rt(ai)− rt(ât)) ≤ 4
√
KT lnK +

(
2

√
KT

lnK
+ 1

)
ln

2

δ
.
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For our purposes, it will always suffice to use a simplified version of this result: there
exists a universal constant c > 0 such that, for any δ ∈ (0, 1/2], with probability at least
1− δ,

max
i∈[K]

T∑
t=1

(rt(ai)− rt(ât)) ≤ c
√
KT lnK ln

1

δ
,

This has the following corollary which allows one to consider a countable family of experts
asymptotically, based on an argument from [Han22, Corollary 4]. We use the same con-
struction to design an algorithm EXPINF for learning with a countably infinite number of
“experts” (where an expert Ei, in this context, provides a suggested action Ei,t ∈ A on each
round t, before the learner chooses its action ât). The original proof of [Han22] extended
the Hedge algorithm [Ces+97a] to an infinite number of experts in the full-feedback setting,
but the argument remains valid (with only superficial changes) when applied with EXP3.IX
in the bandit-feedback setting. Precisely, we use an increasing sequence of times (Ti)i≥1

such that the learning rule performs an independent EXP3.IX algorithm during each period
[Ti, Ti+1). During this period, the EXP3.IX learner is run with i arms consisting of the
experts Ek for k ≤ i. Choosing Ti =

∑
j<i j

3 = i2(i+1)2

4
yields the following bounds.

Corollary 5.1. There is an online learning rule EXPINF using bandit feedback such that
for any countably infinite set of experts {E1, E2, . . .} (possibly randomized), for any T ≥ 1
and 0 < δ ≤ 1

2
, with probability at least 1− δ,

max
1≤i≤T 1/8

T∑
t=1

(rt(Ei,t)− rt(ât)) ≤ cT 3/4
√
lnT ln

T

δ
.

where c > 0 is a universal constant. Further, with probability one on the learning and the
experts, there exists T̂ such that for any T ≥ 1,

max
1≤i≤T 1/8

T∑
t=1

(rt(Ei,t)− rt(ât)) ≤ T̂ + cT 3/4(lnT )3/2.

Proof Denote by (Ti =
∑

j<i j
3)i≥1 the restarting times used in the definition of EXPINF,

and by ât its selected action at time t. Theorem 5.6 implies that for any i ≥ 1, with
probability at least 0 < δ < 1

2
,

max
1≤j≤i

Ti+1−1∑
t=Ti

rt(Ej,t)− rt(ât) ≤ c
√
i(Ti+1 − Ti) ln i ln

1

δ
= ci2

√
ln i ln

1

δ
.

Now fix T ≥ 1 and δ > 0. Let i ≥ 0 such that Ti+1 ≤ T < Ti+2. Then summing the above
equations gives that with probability at least δ,

max
1≤j≤T 1/8

T∑
t=1

rt(Ej,t)− rt(ât) ≤ T⌈T 1/8⌉ + (T − Ti+1) +

Ti+1−1∑
t=T⌈T1/8⌉

rt(Ei,t)− rt(ât)

≤ T⌈T 1/8⌉ + (i+ 1) + c
i(i+ 1)(2i+ 1)

6

√
ln i ln

i

δ
.
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Now note that i ∼
√
2T 1/4 and T⌈T 1/8⌉ ∼

√
T
4

as T →∞. Therefore, there exists a universal
constant c̃ such that for all T ≥ 1, the right-hand term is upper bounded by c̃T 3/4

√
lnT ln T

δ
.

This ends the proof of the first claim.
Now for any T ≥ 1, using the probabilities of error δT = 1

T 2 which are summable, the
Borel-Cantelli lemma implies that on an event of probability one, there exists T̂ such that
for any T ≥ T̂ ,

max
1≤j≤T 1/8

T∑
t=1

rt(Ej,t)− rt(ât) ≤ c̃T 3/4
√
lnT ln(T 3) = 3c̃T 3/4

√
lnT lnT,

which ends the proof of the second claim by redefining the constant c > 0. ■

We briefly describe the implications of the algorithm EXPINF for learning under CS
processes. A result from [Han21a, Lemma 24] showed that under CS processes there exists a
sequence of policies that are dense (under Eµ̂X) within all measurable policies. Moreover, due
to the relation between SMV and CS established in Proposition 5.1 above, we can directly
infer this fact for the processes X(≤M) for X ∈ SMV (for any finite M). This is summarized
in the following lemma.

Lemma 5.2 ([Han21a] Lemma 24). Let X be a separable metrizable Borel space and A a
countable action space. There exists a sequence Π = (πl)l≥1 of measurable policies πl : X →
A such that for every X ∈ CS and measurable policy π⋆ : X → A,

inf
l≥1

E
[
µ̂X
({
x : πl(x) ̸= π⋆(x)

})]
= inf

l≥1
E

[
lim sup
T→∞

1

T

T∑
t=1

1[πl(Xt) ̸= π⋆(Xt)]

]
= 0.

Moreover, for every X ∈ SMV and finite M ≥ 1,

inf
l≥1

E
[
µ̂X(≤M)

({
x ∈ X : πl(x) ̸= π⋆(x)

})]
= 0.

As a result, under CS processes, one can restrict to a countable set of policies Π instead of
all measurable policies. Plugging in this set of policies as the set of experts in EXPINF yields
a universally consistent learning rule for CS processes (and naturally leads to a strategy for
achieving sublinear regret on the T ≤M times in X(≤M) for X ∈ SMV). A full proof is given
in Section 5.5.

5.4 Finite Action Spaces

In this section, we assume that the action space A is finite and we show that in this case,
the set of processes X admitting universal learning is exactly SMV. In other words, we can
recover the same processes that admit universal learning in the full-feedback setting. We
start by showing that the SMV condition is necessary for universal consistency, which is a
direct consequence of its necessity in the full-feedback case [Han21a].

Theorem 5.7. If 2 ≤ |A| < ∞, X ∈ SMV is necessary for universal consistency: Socb ⊂
SMV.
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Proof In the full-information feedback setting, [Han21a, Theorem 37] showed that X ∈ SMV
is necessary for universal learning even for noiseless responses in binary classification. We will
present a simple reduction from the full-feedback to the partial-feedback setting. Precisely,
let a0, a1 ∈ A be two distinct actions. To any measurable function f : X → {0, 1} we
associate a deterministic reward function rf : X ×A → [0, 1] as follows

rf (x, a) = f(x)1[a = a1] + (1− f(x))1[a = a0], x ∈ X , a ∈ A.

Note that any action a ∈ A \ {a0, a1} always has reward 0. Now suppose that for a process
X there exists a universally consistent learning rule f· for contextual bandits. Then, we can
consider the following learning rule for the complete-feedback setting, recursively defined as

f̃t(x≤t−1,y≤t−1, xt) = 1[ft(x≤t−1, (1[f̃i(x≤i−1,y≤i−1, xi) = yi])i≤t−1, xt) = a1].

for any t ≥ 1, x≤t ∈ X t−1 and y≤t−1 ∈ {0, 1}t−1. We now show that f̃· is universally
consistent for the noiseless full-feedback setting. For any measurable function f : X → {0, 1},
the learning rule f· is consistent for the rewards rf . In particular, if we denote by ât the
action selected by f· at time t, using the measurable policy πf : x ∈ X 7→ a01[f(x) =
0] + a11[f(x) = 1] ∈ A which always selects the best action we obtain

lim sup
T→∞

1

T

T∑
t=1

rt(πf (Xt))− rt(ât) = lim sup
T→∞

1

T

T∑
t=1

1[ât ̸= πf (Xt)] ≤ 0, (a.s.).

Now consider the actions ât selected under X and rewards rf and denote by Ỹt the prediction
of f̃· at time t under X and values Yt = f(Xt) for t ≥ 1. By construction, for any t ≥ 1,
we have 1[ât ̸= πf (Xt)] ≥ 1[Ỹt ̸= f(Xt)]. Then, almost surely 1

T

∑T
t=1 1[Ỹt ̸= f(Xt)] −→

n→∞
0.

This shows that f̃· is universally consistent for noiseless responses in binary classification,
hence X ∈ SMV, which completes the proof. ■

Before providing our optimistically universally consistent learning rule, we provide some
intuition on the algorithmic challenges and a brief overview of our algorithm structure.

Limitations of generalization-based strategies. As mentioned in Section 5.3.2, for CS
processes, one can use a traditional generalization-based approach via the EXPINF algorithm
with a dense set of policies, to achieve universal consistency. This strategy, in which one
selects a set of policies Π and ensures low regret for an increasing number of policies within Π
is insufficient for SMV processes. First, observe that Π must be countable. Further, if M(T )
is the number of policies considered at time T , one should have logM(T ) = o(T ) to ensure
sublinear regret, because the regret of standard expert bandit strategies (e.g. EXP4) for T
steps typically scales as

√
T logM(T ). Unfortunately, it can be shown that the processes

that admit a countable empirically dense set Π of policies as per Lemma 5.2 are exactly CS
processes. Further, the constraint logM(T ) = o(T ) is also prohibitive. For instance one can
design a deterministic SMV process as follows: let (xk)k≥1 a sequence of distinct points in X ,
and (dk)k≥1 a non-decreasing sequence of integers to be chosen later. We consider the process
X that successively visits xk duplicated dk times. The process belongs to SMV whenever
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the number of duplicates diverges, which ensures that the number of visited distinct points
k(T ) after T steps is sublinear. The sublinear rate of k(T ) can, however, be arbitrarily
slow. For a sufficiently slow diverging sequence (dk)k≥1, one can have logM(T ) = o(k(T )).
Then, the set of considered policies is not large enough to contain a significant fraction of
relevant policies—at the high level, all functions {xk, k ≤ k(T )} → A are relevant policies.
As a result, this approach cannot be universally consistent even for all deterministic SMV
processes.

Limitations of personalization-based strategies. A natural strategy for deterministic
SMV processes is pure personalization, that is assigning an independent bandit learner to
each distinct context observed. This strategy is only consistent if the number of duplicates
generally diverges so that the average regret incurred by each independent bandit learner
decays to 0. Unfortunately, this is of course not the case for all SMV processes, for instance,
i.i.d. processes may never visit the same point twice. For all these processes, one cannot
disregard the information provided by neighboring contexts and needs a more population-
level approach.

Overview of the optimistically universal algorithm structure. To overcome the
challenges of naïve approaches, we aim to balance both strategies mentioned above. The
strategy heavily relies on Proposition 5.1, which states that for SMV processes X, if one fixes
a maximum cap M for the number of duplicates, the resulting sparsified process X(≤M) is
CS. As a result, one can safely use the generalization-based approach for the T ≤M times
in the duplicate-capped processes X(≤M). Because the number of duplicates can be arbi-
trarily large, one needs to consider these processes for arbitrarily large values of M . For
reasons to be detailed later, we consider values M from the sequence {4p, p ≥ 0}. In-
stead of considering overlapping times T ≤4p , we instead introduce disjoint families of times
T <4p+1 \T <4p , i.e., times corresponding to duplicates of index falling in the interval [4p, 4p+1).
These will be called times of category p, and the corresponding sparsified process denoted
as X(p) = XT <4p+1\T <4p .

As a result of this procedure, we decompose a process X ∈ SMV into a countable set
of sparsified processes (X(p))p≥0, one for each category of times. The key observation is
that while the generalization strategy (strategy 1) would achieve sublinear regret on the
T <4p+1 \ T <4p times of each one of them X(p) because of their CS property, a learner does
not know in advance their rate of convergence. The individual convergence for X(p) can
be arbitrarily slow, and because there is an infinite set of such sparsified processes for p ≥
0, using the generalization-based strategy for all of them may not be consistent. On the
other hand, for high values of p, one has access to many duplicates, hence, using a pure
personalization approach (strategy 0) on X(p) yields a low average regret. This average
regret is guaranteed by classical bandit guarantees (at least in expectation), hence is “safe”.
However, it is non-negligible: the bandit learner has access to fewer than 4p+1 duplicates,
hence one should expect an average regret of at least 1/2p+1. Eventually, one should therefore
use strategy 1 to be consistent. Fortunately, because of the choice of sequences for M , the
safe average regret of strategy 0 decays sufficiently quickly as p increases. This allows for
the following overall strategy for the process X(p):
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Always: Estimate the performance of strategy 1 compared to strategy 0. This is done by using
sparse exploration times, designed solely to estimate the rewards obtained by each
strategy.

Step 1: Use strategy 0 by default, which safely ensures relatively low average regret—at most
1/cp for some universal constant c > 1.

Step 2: Whenever strategy 1 is estimated to have similar performance as strategy 0, we switch
to strategy 1.

Step 3: If strategy 1 shows worse estimated performance than strategy 0 at some point, we
switch to strategy 0 for an extended period and then go back to Step 1.

We briefly mention some implementation difficulties. First, we aim to estimate the per-
formance of strategies. As opposed to experts, these strategies are adaptive algorithms, hence
standard importance sampling techniques are not sufficient to yield adequate estimators. To
estimate strategy 0, which assigns bandit learners to each context, we instead need to ran-
domly assign a context and all its duplicates for the estimation of the reward of strategy 0,
and use the reward of a bandit learner on these duplicates to estimate the performance of
the complete strategy 0. As a result, we always ensure that duplicates from the same con-
text are assigned the same purpose: times dedicated to estimating the performance of either
strategy 0 or strategy 1, or non-exploration times. We note that this is not necessary for
estimating the performance of strategy 1 since it is essentially a combination of experts—it
is sufficient to estimate the performance of each hypothesis policy in strategy 1. However,
this is also necessary to ensure that one does not affect the performance of the algorithm on
non-exploration times when strategy 0 was selected.

Second, we give some intuition for Step 3. We recall that the performance of strategy 1
is “uncertain” in that one does not know in advance when its excess average regret converges
to 0. In particular, although strategy 1 is estimated to have better performance at a given
period, this may not be the case in future times. The algorithm needs to detect such failures
in performance to not incur significant excess loss, and quickly switch to strategy 0 again.
To compensate for the mistake when the algorithm used strategy 1 when strategy 0 had a
higher reward, we ensure that the algorithm then uses the safe strategy 0 for a sufficiently
“long time”, before considering switching to strategy 1 again.

Last, the estimation and implementation of these strategies require adequate scheduling.
To do so, we partition times into periods, estimate the performance during each period, and
select the strategy 0 or 1 for the next period. Because our objective is the average regret,
the natural scale is exponential. Roughly speaking, we partition the space according to
sequences of the form (1 + αp)

q
q≥1 so that each period similarly affects the average regret

objective—roughly between −αp and αp. Conversely, there is little advantage in using finer
partitions (e.g. polynomial), since the average reward of the strategies can only be non-
trivially modified through periods of such exponential sizes. As p grows, these periods are
more refined so that the estimation process is faster, which is needed for Step 3: roughly
speaking, we decrease the term αp as p grows.
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Detailed exposition of the algorithm. We now formally present our learning rule for
contextual bandits, which we will next show is universally consistent under any SMV process.
This learning rule has different behavior depending on the number of past duplicates for
each context. Precisely, for any time t, we compute a corresponding category p such that the
number of past occurrences of Xt belongs in the interval [4p, 4p+1). The learning rule will
treat times from different categories completely separately. The formal definition is given by
the function below

Category(t,X≤t) =

⌊
log4

(∑
t′≤t

1[Xt′ = Xt]

)⌋
.

For convenience we may write Category(t) instead of Category(t,X≤t). Further, for a
given category p, the algorithm will proceed by periods [T qp , T q+1

p ) defined as follows. For any
p ≥ 0 and q ≥ p2p, we define the times T qp = 2k + i

2p
2k, where q = k2p + i with 0 ≤ i < 2p.

Note that the sequence (T qp )q has an exponential behaviour with rate between 2−p−1 and 2−p.
We will refer to [T qp , T

q+1
p ) as the period q for category p. Let Period(t) be the function that

returns the index q such that T qp ≤ t < T q+1
p where p is the category of t. An illustration of

these category and period constructions is given in Fig. 5.1.
Now let (πl)l≥1 be a sequence of measurable functions from X to A that are dense within

measurable functions under CS processes, as given by Lemma 5.2. Intuitively, the learning
rule combines two strategies: strategy 0 which applies a separate EXP3 algorithm to each
distinct instance, and strategy 1 which performs the best policy within a subset of the policies
(πl)l≥1. To know which strategy to apply, the learning rule estimates the counterfactual loss
of strategy i, using classical importance sampling on some allocated exploration times for
strategy i. In exploitation times, the learning rule uses these estimates to perform the best
strategy.

We first define the procedure AssignPurpose which takes as input a time t and de-
termines whether this time will be used for exploration of strategy 0 (output 0), strategy
1 (output 1), or exploitation (output 2). Intuitively, AssignPurpose selects exploration
times randomly with small probability while ensuring that times t, t′ from the same cate-
gory p, period q, and that are duplicates Xt = Xt′ are assigned the same output, hence will
serve for the same exploration or exploitation purpose. The algorithm is formally defined in
Algorithm 5.1.

Next, we define the subroutine Explore(i; t) that will be called on exploration times
t for strategy i. We start with i = 0. The subroutine updates an estimator R̂0

p(q) of the
loss that would be incurred by using strategy 0 for all times in category p during period q.
Explore(0, ·) is defined formally in Algorithm 5.2.

Then, we define Explore(1, ·). It updates an estimator R̂l
p(q) of the loss that would

have been incurred using the policy πl for all times in category p during period q, for all
l ≥ 1. Because there is an infinite number of such policies, they are introduced sequentially
in the estimation process. Explore is defined formally in Algorithm 5.3.

The estimates R̂l
p(q) updated by Explore are then used to select the strategy to perform

on exploitation times. For any category p ≥ 0, before starting phase q, the learning rule
commits to performing strategy Pp(q) ∈ {0, 1}, for times of that phase q for category p. The
choice of strategy Pp(q) is performed by a subroutine SelectStrategy which applies an
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Figure 5.1: Illustration of the functions Category and Period. The plot represents a
sequence of contexts, where different contexts are represented by different markers (#, □,
♦, ⋆, △, 3, and ■). Times in category p have a total number of past duplicates falling
in [4p, 4p+1), as represented by the horizontal dashed lines. For each category p, times are
grouped along periods, represented by the vertical dotted lines. These periods follow an
exponential scale (T qp )q≥1 that is refined as the category p increases. For p = 0, the periods
start at powers of 2, while periods for category p are twice more refined than periods from
category p+1. For convenience, we represented periods [T qp , T q+1

p ) only starting from q ≥ 2p

as shown by the vertical dashed lines—for q < 2p, these periods are not integral and would
not contain any times anyway.

Input: time t, X≤t, Category(t′) for t′ ≤ t, AssignPurpose(t′) for t′ < t.
Output: AssignPurpose(t) ∈ {0, 1, 2}.
p = Category(t); q = Period(t)
if exists t′ < t with Category(t′) = p; Period(t′) = q and Xt = Xt′ then // Not the
first occurrence of Xt in current period

Return AssignPurpose(t′)
else // First occurrence of Xt in current period

pt = 1/(2t1/4), Ut ∼ U([0, 1])
if Ut ≤ pt then Return 0 // Exploration for strategy 0;
else if pt < Ut ≤ 2pt then Return 1 // Exploration for strategy 1;
else Return 2 // Exploitation;

end
Algorithm 5.1: AssignPurpose

ηp = O(2−p/2) average reward penalty for strategy 0 then select the strategy that obtained
the highest adjusted estimated reward during the previous period. This penalty is used to
favor strategy 1 since it should eventually be used instead of strategy 0, as discussed in the
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Input: time t, X≤t, Category(t′) for t′ ≤ t, rewards r<t, R̂0
p(q) for p ≥ 0, q ≥ p2p.

Output: Selects action ât and updates R̂0
p(q) for p = Category(t), q = Period(t).

p = Category(t), q = Period(t)
St = {t′ < t : Category(t′) = p,Period(t′) = q,Xt′ = Xt}
ât = EXP3A(âSt , rSt)
Receive reward rt
Let t′ = minSt // First occurrence of Xt

R̂0
p(q)← R̂0

p(q) +
rt
pt′

// Update estimate R̂0
p(q)

Algorithm 5.2: Explore(0; ·)

Input: time t, X≤t, Category(t′) for t′ ≤ t, rewards r<t, R̂l
p(q) for

l ≥ 1, p ≥ 0, q ≥ p2p.
Output: Selects action ât and updates R̂l

p(q) for p = Category(t), q = Period(t).
p = Category(t), q = Period(t), k = ⌊log2 t⌋
lt = U({1, . . . , k}) // Uniform exploration
ât = πlt(Xt)
Receive reward rt
t′ = min{s < t : Category(s) = p,Period(s) = q,Xs = Xt} // First occurrence
of Xt

R̂l
p(q)← R̂l

p(q) +
k
pt′
rt1[l = lt], 1 ≤ l ≤ k // Update estimate R̂lt

p (q)

Algorithm 5.3: Explore(1; ·)

overview of the algorithm. Last, if during the current period q, strategy 0 obtained the
highest adjusted reward, we select this strategy for the future periods q < q′ ≤ q + p2p.
This ensures that if by mistake the rule selected Pp(q) = 1, the loss incurred during this
period is mitigated for the next strategy selection: the current performance until time T q+1

is negligible up to a small average loss starting from time T q+2p+1
p . The construction of

SelectStrategy is detailed in Algorithm 5.4.
We are now ready to define the learning rule for stochastic rewards. On exploration times,

the learning rule calls the subroutine Explore, and on exploitation times, the learning rule
performs the corresponding strategy Pp(q) for times in category p during phase q. The
construction of the learning rule is detailed in Algorithm 5.5.

The main result of this section is that this learning rule is optimistically universal.

Theorem 5.8. Let X be a metrizable separable Borel space and A be a finite action set.
There exists an optimistically universal learning rule (Algorithm 5.5) and the learnable pro-
cesses are Socb = SMV.

Proof We will denote by ât the action selected by the learning rule at time t. For any
p ≥ 0, we define the set Tp of times in category p as follows

Tp =

{
t ≥ 1 : 4p ≤

∑
t′≤t

1[Xt′ = Xt] < 4p+1

}
,
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Input: Category p, phase q, variable states R̂l
p(t) for t < T q+1

p

Output: Selects strategy Pp(r) for some future phases r > q.

ηp = 10

√
|A| ln |A|
2p/4

, k = ⌊log2 T qp ⌋
if Pp(q + 1) has not been defined yet then

if R̂0
p(q)− ηp(T q+1

p − T qp ) ≥ max
1≤l≤k

R̂l
p(q) then

Pp(q′) = 0, q < q′ ≤ q + p2p // perform strategy 0 until current
performance is negligible up to a O(2−p) average loss

else
Pp(q + 1) = 1

end
end

Algorithm 5.4: SelectStrategy

i.e. the set of times which correspond to duplicates with index in [4p, 4p+1). We also define

T exp,ip = {t ≥ 232p : AssignPurpose(t) = i}, i ∈ {0, 1},
T̃p = {t ≥ 232p : AssignPurpose(t) = 2},

the set of exploration times for strategy i in category p, and exploitation times in category
p, respectively. For convenience, we also define Tp(q) = Tp ∩ [T qp , T

q+1
p ) times in category p

and phase q. Last, we define Ap(q) = |Tp(q) ∩ (T exp,0p ∪ T exp,1p )| the number of exploration
times in period q for category p.

Now fix a process X ∈ SMV and let r be a reward mechanism on A×X . We recall the no-
tation r̄(·, ·) = E[r(·, ·)] for the average reward. We aim to show that f· is consistent under X
for the rewards given by r. We first define the policy π∗ given by π∗(x) = argmaxa∈A r̄(a, x),
where ties are broken by the lexicographic rule. This function is measurable given that
A is finite. Further, it is an optimal policy in the sense that for any measurable function
π : X → A and any x ∈ X , r̄(π(x), x) ≤ r̄(π∗(x), x).

For p ≥ 0, we first analyze the reward estimates R̂l
p(q) for q ≥ p2p+5 (T p2p+5

p = 232p) and
l ≥ 0. First note that the exploration times T exp,0p and T exp,1p were constructed precisely
so that times corresponding to the same instance and within the same period, fall in the
same set T exp,0p , T exp,1p , or T̃p. For simplicity, we will write Xp(q) = {Xt, t ∈ Tp(q)} the set
of visited instances during period q of category p, and for x ∈ Xp(q) we denote tp(q;x) =
min{t ∈ Tp(q) : Xt = x} the first time of occurrence of x in period q. Then, we can write

R̂0
p(q) =

∑
x∈Xp(q)

1[Utp(q;x) ≤ ptp(q;x)]

ptp(q;x)

∑
t∈Tp(q),Xt=x

r̃t

where r̃t is the reward at time t that would have been obtained by performing strategy 0
during period q, i.e., assigning an independent EXP3 learner for each different instance in
this period. We compare R̂0

p(T ) to the average reward obtained by the optimal policy π∗,

R̄∗
p(q) :=

∑
t∈Tp(q)

r̄(π∗(Xt), Xt).
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R̂l
p = 0, l ≥ 0, p ≥ 0; Pp(p2p+5) = 0, p ≥ 0 // Initialization

for t ≥ 1 do
Observe context Xt

p = Category(t), q = Period(t)
if t < 232p then // Initially perform strategy 0 without period
restriction
St = {t′ < t : Category(t′) = p,Xt′ = Xt}
ât = EXP3A(âSt , rSt)

else if i := AssignPurpose(t) ≤ 1 then
Explore(i; t)

else // Perform strategy Pp(q)
if Pp(q) = 0 then

St = {t′ < t : Category(t′) = p,Period(t′) = q,Xt′ = Xt}
ât = EXP3A(âSt , rSt)

else
k = ⌊log2 T qp ⌋
St = {t′ < t : Category(t′) = p,Period(t′) = q,AssignPurpose(t′) = 2}
lt = EXP3.IX{1,...,k} (lSt , rSt) // Select policy πlt

ât = πlt(Xt)
end
Receive reward rt

end
E = {(p′, q′) : q′ ≥ p′2p

′+5, t = T q
′+1

p′ − 1}
for (p′, q′) ∈ E do

SelectStrategy(p′, q′) // At the end of a phase [T q
′

p′ , T
q′−1
p′ ), select

strategy for future phases
end

end
Algorithm 5.5: An optimistically universal learning rule for stochastic rewards

Observe that conditionally on X, the terms in the sum of R̂0
p(q) are independent. For any

x ∈ Xp(q), let R̄0
p(q;x) = E[

∑
t∈Tp(q),Xt=x

r̃t | X], the average reward obtained by strategy 0

on the instance x. We will use the notation Np(q;x) = |{t ∈ Tp(q), Xt = x}| ≤ 4p+1 for the
number of occurrences of the instance x within Tp. Note that∣∣∣∣∣∣1[Utp(q;x) ≤ ptp(q;x)]

ptp(q;x)

∑
t∈Tp(q),Xt=x

r̃t

∣∣∣∣∣∣ ≤ Np(q;x)

ptp(q;x)
≤ 22p+3(T q+1

p )1/4,

and that |Xp(q)| ≤ T q+1
p

22p
since by definition of Tp each instance has already occurred 4p times.

As a result, we can apply Hoeffding’s inequality to obtain

P

∣∣∣∣∣∣R̂0
p(q)−

∑
x∈Xp(q)

R̄0
p(q;x)

∣∣∣∣∣∣ ≤ (T q+1
p )

7
8 | X

 ≥ 1− 2 exp

(
−
(T q+1

p )1/4

22p+5

)
:= 1− 2p1(p, q)
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Now applying Theorem 5.5 to each pseudo-regret R̄0
p(q;x) yields∑

x∈Xp(q)

R̄0
p(q;x)

≥ R̄∗
p(q)− 2

√
|A| ln |A|

2p/2
(T q+1

p − T qp )− 2
√
|A| ln |A|

∑
x∈Xp(q),Np(q;x)≤2p/2

Np(q;x)

≥ R̄∗
p(q)− 2

√
|A| ln |A|
2p/4

(T q+1
p − T qp )− 2

√
|A| ln |A|2

p/2

4p
T q+1
p

≥ R̄∗
p(q)− 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp ).

where in the third inequality, we used the fact that instances appearing in Tp before T q+1
p are

visited at least 4p times before horizon T q+1
p , by construction of Tp; and in the last inequality

we used 2−p−1T q+1
p ≤ T q+1

p − T qp ≤ 2−pT qp . Also, note that R̄∗
p(q) ≥

∑
x∈Xp(q)

R̄0
p(q;x). As a

result, taking the expectation over X, we obtain that with probability at least 1− 2p1(p, q),∣∣∣R̂0
p(q)− R̄∗

p(q)
∣∣∣ ≤ (T q+1

p )
7
8 + 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp ). (5.1)

Now consider the quantity R̃0
p(q), the reward that would be obtained for exploitation times

on period q if strategy 0 was applied. We have

R̃0
p(q) =

∑
x∈Xp(q)

∑
t∈Tp(q),Xt=x,t∈T̃p

r̃t ≥
∑

x∈Xp(q)

∑
t∈Tp(q),Xt=x

r̃t − Ap(q).

Similarly as above, using Hoeffding’s inequality, we have

P

 ∑
x∈Xp(q)

∑
t∈Tp(q),Xt=x

r̃t ≥
∑

x∈Xp(q)

R̄0
p(q;x)− (T q+1

p )3/4

 ≥ 1− e−
√

T
q+1
p

22p+3 := 1− p2(p, q).

As a result, with probability 1− p2(p, q), we have

R̃0
p(q) ≥ R̄∗

p(q)− 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp )− (T q+1

p )3/4 − Ap(q). (5.2)

We now turn to the estimates R̂l
p(q) for l ≥ 1. Note that the estimation of Rl

p(q) only
starts at time 2l. Hence, we can consider k(q) = ⌊log2 T qp ⌋ = ⌊

q
2p
⌋ and observe that during

period q, the only estimates R̂l
p(q) that are considered are for 1 ≤ l ≤ k(q). Therefore,

similarly as for the estimates R̂0
p(q), we can write for q ≥ p2p+5 and 1 ≤ l ≤ k(q),

R̂l
p(q) =

∑
x∈Xp(q)

1[ptp(q;x) < Utp(q;x) ≤ 2ptp(q;x)]

ptp(q;x)

∑
t∈Tp(q)Xt=x

k(t)1[l = lt]r(π
l(x), x),
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where k(t) is the number of policies πl tested at time t, i.e. k(t) = ⌊log2 t⌋. Conditionally
on X and U we can apply Hoeffding’s inequality to obtain

P

∣∣∣∣∣∣R̂l
p(q)−

∑
x∈Xp(q)

∑
t∈Tp(q),Xt=x

1[ptp(q;x) < Utp(q;x) ≤ 2ptp(q;x)]

ptp(q;x)
r̄(πl(x), x)

∣∣∣∣∣∣ ≤ (T q+1
p )7/8 | X,U


≥ 1− 2e

− 2(T
q+1
p )7/4

(T
q+1
p −T

q
p )4(log2 T

q+1
p )2
√

T
q+1
p ≥ 1− 2e

− 2p(T
q+1
p )1/4

4(log2 T
q+1
p )2 := 1− 2p3(p, q).

For convenience, let us denote by R̂l
p,bis(q) the sum in the above inequality. We also define

R̄l
p(q) =

∑
t∈Tp(q) r̄(π

l(Xt), Xt) the expected reward of policy l on period q. Now, as before,
we have

0 ≤
∑

t∈Tp(q),Xt=x

1[ptp(q;x) < Utp(q;x) ≤ 2ptp(q;x)]

ptp(q;x)
r̄(πl(x), x) ≤ Np(q;x)

ptp(q;x)
≤ 22p+3(T q+1

p )1/4.

As a result, conditionally on X, Hoeffding’s inequality yields

P[|R̂l
p,bis(q)− R̄l

p(q)| ≤ (T q+1
p )7/8 | X] ≥ 1− 2p1(p, q).

Thus, with probability at least 1− 2p1(p, q)− 2p3(p, q) we have

|R̂l
p(q)− R̄l

p(q)| ≤ (T q+1
p )7/8. (5.3)

Next, we consider the quantity R̃1
p(q), the reward that would have been obtained for ex-

ploitation times on period q if strategy 1 was applied. Then, using Theorem 5.6, we have
with probability at least 1− e−(T q+1

p )1/4 := 1− p4(p, q),

max
1≤l≤k(q)

∑
t∈Tp(q)∩T̃p

rt(π
l(Xt), Xt)− R̃1

p(q)

≤ c

√
k(q) ln k(q)(T q+1

p − T qp )(T q+1
p )1/4 ≤ c(T q+1

p )3/4 lnT q+1
p .

As a result, we have

R̃1
p(q) ≥ max

1≤l≤k(q)

∑
t∈Tp(q)

rt(π
l(Xt), Xt)− c(T q+1

p )3/4 lnT q+1
p − Ap(q).

By Hoeffding’s inequality, for 1 ≤ l ≤ k(q), with probability at least 1 − e−2p
√
T q+1
p :=

1− p5(p, q), ∑
t∈Tp(q)

rt(π
l(Xt), Xt) ≥ R̄l

p(q)− (T q+1
p )3/4.

Hence, with probability 1− p4(p, q)− k(q)p5(p, q) we have

R̃1
p(q) ≥ max

1≤l≤k(q)
R̄l
p(q)− (T q+1

p )3/4 − c(T q+1
p )3/4 lnT q+1

p − Ap(q). (5.4)
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We will also need the quantity R̃1
p(q;T ) for T qp ≤ T < T q+1

p which is the reward that would
have been obtained for exploitation times from T qp to T . The same arguments as above show
that with probability at least 1− p4(p, q)− k(q)p5(p, q) we have

R̃1
p(q;T ) ≥ max

1≤l≤k(q)

∑
t∈Tp(q),t≤T

r̄(πl(Xt), Xt) − (T q+1
p )3/4 − c(T q+1

p )3/4 lnT q+1
p − Ap(q). (5.5)

Last, we now bound the exploration terms Ap(q) to show that exploration times are neg-
ligible. Writing Ap(q) =

∑
x∈Xp(q)

1[Utp(q;x) ≤ 2ptp(q;x)]Np(q;x), and because Np(q;x)

tp(q;x)1/4
≤

22p+2(T q+1
p )1/4, using Hoeffding’s inequality we obtain that with probability at least 1 −

e−
(T

q+1
p )1/4

22p+3 := 1− p6(p, q),

Ap(q) ≤
∑

x∈Xp(q)

Np(q;x)

tp(q;x)1/4
+ (T q+1

p )7/8 ≤
T q+1
p − T qp
(T qp )1/4

+ (T q+1
p )7/8 ≤ 2(T q+1

p )7/8. (5.6)

Now recalling that k(q) ≤ q
2p

, we have that∑
p≥0

∑
q≥p2p+5

2p1(p, q) + p2(p, q) + p6(p, q) + k(q)(2p1(p, q) + 2p3(p, q))

+ (p4(p, q) + k(q)p5(p, q))(1 + T q+1
p − T qp ) <∞.

As a result, the Borel-Cantelli lemma implies that on an event E of probability one, there
exists T̂1 such that for any p ≥ 0, q ≥ p2p+5 Eq (5.1), (5.2), (5.4) and (5.6) are satisfied, and
(5.3) is satisfied for q ≥ l, p2p+5, and Eq (5.5) is satisfied for T qp ≤ T < T q+1

p .
We are now ready to prove the universal consistency of the learning rule. First, we

pose ϵp = 2

√
|A| ln |A|
2p/4

and aim to show that the average error made by the learning rule on
Tp is O(ϵp) uniformly over time. Note in particular that

∑
p≥0 ϵp < ∞. For any T ≥ 1,

we define Rp(T ) =
∑

t≤T,t∈Tp rt the reward obtained by the learning rule, and R̄∗
p(T ) =∑

t≤T,t∈Tp r̄(π
∗(Xt), Xt) the reward obtained by the optimal policy. To do so, we first start

by analyzing the regret on the first period [1, 232p) where there is no exploration and the
learning rule uses EXP3.IX learners on each new instance. For T < 232p let Xp(T ) :=
{Xt, t ∈ Tp, t ≤ T}. Note that |Xp(T )| ≤ T

4p
by definition of Tp. For x ∈ Xp(T ), let

Np(T ;x) = |{t ≤ T, t ∈ Tp, Xt = x}| ≤ 22p+2 and R̄0
p(T ;x) := E[

∑
t≤T,t∈Tp,Xt=x

r̃t | X] where
r̃t is the reward obtained if we used strategy 0. Now by Theorem 5.6, for every x ∈ Xp(T ),
with probability at least 1− e−p2T 1/27 , we have∑

t≤T,t∈Tp(T ),Xt=x

rt(π
∗(x), x)−Rp(T ) ≤ cpT 1/27

√
|A| ln |A|Np(T ;x)
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As a result, with probability at least 1− Te−p2T 1/27

:= 1− p7(p, T ),∑
t≤T,t∈Tp

rt(π
∗(x), x)− rt ≤

2p

4p
T +

∑
x∈Xp(T ),Np(T ;x)≥2p

∑
t≤T,t∈Tp,Xt=x

rt(π
∗(x), x)− rt

≤ T

2p
+ cp

√
|A| ln |A|T 1/27

∑
x∈Xp(T ),Np(T ;x)≥2p

√
Np(T ;x)

≤ T

2p
+ cp

√
|A| ln |A|T 1/27 T

2p/2
≤ T

2p
+
c

2

√
|A| ln |A|T 1−1/27 log2 T,

where in the last inequality, we used 22p ≤ T < 232p, thus 2p/2 ≥ T 1/64. Then, by Hoeffding’s
inequality, we have with probability 1− e−2p2

√
T := 1− p8(p, T ),∑

t≤T,t∈Tp

rt(π
∗(x), x) ≥ R̄∗

p(T )−
log2 T

2
T 3/4.

Finally, with probability at least 1− p7(p, T )− p8(p, T ), we obtain

Rp(T ) ≥ R̄∗
p(T )−

1 + c

2

√
|A| ln |A|T 1−1/27 log2 T −

T

2p
. (5.7)

Noting that
∑

p≥0

∑
T≥1 p7(p, T ) + p8(p, T ) < ∞, the Borel-Cantelli lemma implies that on

an event F of probability one, there exists T̂2 such that for all T ≥ T̂2, and p ≥ 0 such that
T < 232p, Eq (5.7) holds. We will now suppose that the event E ∩ F of probability one is
met. Next we consider the case of T ≥ 232p, and let q0 ≥ p2p+5 such that T q0p ≤ T < T q0+1

p .
Let

S0
p :=

{
p2p+5 ≤ q < q0 : R̂

0
p(q)− ηp(T q+1

p − T qp ) ≥ max
1≤l≤k(q)

R̂k
p(q)

}
,

the set of phases where the learning rule estimated that strategy 0 performed better than
strategy 1. Next, let P ip = {p2p+5 ≤ q < q0 : Pp(q) = i} the set of phases where the learning
rule performed strategy i for i ∈ {0, 1}. An important observation is that for two phases
q1 < q2 ∈ S0

p ∩ P1
p , if strategy 1 should not have been performed, then q2 > q1 + p2p. In

particular, we have T q1p ≤ 2−pT q2p , hence T q1+1
p − T q1p ≤ 2−p(T q2+1

p − T q2p ). This allows to
dissipate errors made during phases where the algorithm performs strategy 1 by mistake.
Precisely, using a descending induction we obtain

∑
q∈S0

p∩P1
p

T q+1
p − T qp ≤

T q0p − T q0−1
p

1− 2−p
≤ 2 · 2−pT q0p ≤ 2−p+1T ≤ 2ϵpT.

On all other phases P0
p ∪ (P1

p \ S0
p ), the performance of the learning rule is close to having
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performed strategy 0 on all phases. Indeed, using Eq (5.4) we obtain∑
q∈(P1

p\S0
p)

R̃1
p(q) ≥

∑
q∈(P1

p\S0
p)

max
l=1,...,k(q)

R̄l
p(q)− (T q+1

p )3/4 − c(T q+1
p )3/4 lnT q+1

p − Ap(q)

≥
∑

q∈(P1
p\S0

p)

max
l=1,...,k(q)

R̂l
p(q)−

∑
q<q0

(
4(T q+1

p )7/8 + c(T q+1
p )3/4 lnT q+1

p

)
≥

∑
q∈(P1

p\S0
p)

R̂0
p(q)− ηpT q0p − 4(4 + c lnT q0p )T 15/16

≥
∑

q∈(P1
p\S0

p)

R̄∗
p(q)− ηpT − 3ϵpT − 4(5 + c lnT )T 15/16.

In the second inequality, we used Eq (5.3) and in the third inequality, we used the definition
of S0

p and the identities
∑

q≤q0(T
q
p )

7/8 ≤ (T q0p )7/8 2p

1−2−7/8 ≤ 2p+2(T q0p )7/8 ≤ 4T 15/16. In the last
inequality, we used Eq (5.1). Next, using Eq (5.2) we have directly∑

q∈P0
p

R̃0
p(q) ≥

∑
q∈P0

p

R̄∗
p(q)− 3ϵpT − 3 · 4T 15/16.

Combining the two above inequalities and observing that ηp = 5ϵp gives∑
232p≤t<T q0

p ,t∈Tp

rt ≥
∑
q∈P0

p

R̃0
p(q) +

∑
q∈P1\S0

R̃1
p(q)

≥
∑

q∈P0
p∪(P1

p\S0
p)

R̄∗
p(q)− 11ϵpT − (32 + 4c lnT )T 15/16

≥
∑

p2p+5≤q<q0

R̄∗
p(q)−

∑
q∈S0

p∩P1
p

(T q+1
p − T qp )− 11ϵpT − (32 + 4c lnT )T 15/16

≥
∑

p2p+5≤q<q0

R̄∗
p(q)− 13ϵpT − (32 + 4c lnT )T 15/16.

Now recalling the former estimate of Rp(T ) for T < 232p, we obtain

Rp(T ) ≥ Rp(2
32p − 1) +

∑
232p≤t<T q0

p ,t∈Tp

rt

≥ R̄∗
p(T )− 2

T

2p
− 1 + c

2

√
|A| ln |A|T 1−1/27 log2 T − 13ϵpT − (32 + 4c lnT )T 15/16

≥ R̄∗
p(T )−

1 + c

2

√
|A| ln |A|T 1−1/27 log2 T − (32 + 4c lnT )T 15/16 − 15ϵpT

where the term T
2p

comes from the fact that T − (T q0p −1) ≤ T q0+1
p −T q0p ≤ T

2p
. Now note that

if t ∈ Tp, there were at least 4p duplicates, hence t ≥ 4p. As a result, we can always suppose
without loss of generality that T ≥ 4p. Combining with the case T < 232p, we obtain that
for all T ≥ max(T̂1, T̂2), p ≥ 0 with t ≥ 4p,

Rp(T ) ≥ R̄∗
p(T )− (33 + 5c)

√
|A| ln |A|T 1−1/27 log2 T − 15ϵpT. (5.8)
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This ends the proof that on times Tp, the learning rule has an average error at most O(ϵp)
on the event E ∩ F . Because

∑
p≥0 ϵp < ∞, we can afford to converge on each set Tp to

the optimal policy independently. Fix 0 < ϵ ≤ 1, δ > 0 and let p0 such that
∑

p≥p0 ϵp <
ϵ
15

.
Because X ∈ SMV, by Proposition 5.1, X≤4p0 ∈ CS. As a result, because the sequence of
policies (πl)l is dense under CS processes, there exists l0 ≥ 1 such that

E

lim sup
T→∞

1

T

∑
t≤T,t∈T ≤4p0

1[π∗(Xt) ̸= πl0(Xt)]

 ≤ ϵδ

22p0+2p0
.

Then, by the dominated convergence theorem, there exists T0 such that

E

 sup
T≥T0

1

T

∑
t≤T,t∈T ≤4p0

1[π∗(Xt) ̸= πl0(Xt)]

 ≤ ϵδ

22p0+1p0
.

Thus, on an event Bδ of probability at least 1− δ, by the Markov inequality, for all T ≥ T0,∑
t≤T,t∈T ≤4p0

1[π∗(Xt) ̸= πl0(Xt)] ≤
ϵ

22p0+1p0
T.

In particular, the above equation holds if we replace T ≤4p0 by Tp for any p < p0. Now
suppose that the event E ∩ F ∩ Bδ of probability at least 1 − δ is met. For any p < p0 and
q ≥ p2p+5 such that T qp ≥ T̂ := max(T̂1, T̂2, 2

l0 , 232p0), because T qp ≥ 2l0 , we have

max
1≤l≤k(q)

R̂k
p(q) ≥ R̂l0

p (q) ≥ R̄l0
p (q)− (T q+1

p )7/8

≥ R̄∗
p(q)− (T q+1

p )7/8 −
∑

t∈Tp(q)

1[π∗(Xt) ̸= πl0(Xt)]

≥ R̂0
p(q)− 2(T q+1

p )7/8 − 3ϵp(T
q+1
p − T qp )− 2−2p−1T q+1

p

≥ R̂0
p(q)− 2(T q+1

p )7/8 − 4ϵp(T
q+1
p − T qp ).

where in the second inequality we used Eq (5.3) and in the fourth we used Eq (5.1). In the
last inequality, we used 2−p−1T q+1

p ≤ T q+1
p −T qp . Now let T1 such that 2T 7/8 < ϵp

2p+1T for any
T ≥ T1. Then, for any p < p0 and q ≥ p2p+5 such that T qp ≥ T̃ := max(T̂ , T1), we have

max
1≤l≤k(q)

R̂k
p(q) > R̂0

p(q)− 5ϵp(T
q+1
p − T qp ),

which implies Pp(q + 1) = 1 since ηp = 5ϵp if Pp(q + 1) was not already defined. In other
terms, starting from time 2p0T̃ , the learning rule always chooses strategy 1 for categories
p < p0. We now bound the error of the learning rule on Tp for p < p0. Let q̃ such that
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T q̃−1
p ≤ 2p0T̃ < T q̂p . For any T ≥ 2p0T̃ and q(T ) such that T q(T )p ≤ T < T

q(T )+1
p , we can write

Rp(T )− R̄∗
p(T ) ≥

∑
q̃<q<q(T )

(R̃1
p(q)− R̄∗

p(q)) + R̃1
p(q(T ), T )−

∑
t∈Tp(q),t≤T

r̄(π∗(Xt), Xt)

− 2p0T̃ −
∑
q<q(T )

Ap(q)

≥
∑

q̃<q<q(T )

(Rl0
p (q)− R̄∗

p(q))−
∑

t∈Tp(q),t≤T

1[π∗(Xt) ̸= πl0(Xt)]− 2p0T̃

−
∑
q≤q(T )

(2Ap(q) + (T q+1
p )3/4 + c(T q+1

p )3/4 lnT q+1
p )

≥ −
∑

t≤T,t∈Tp

1[π∗(Xt) ̸= πl0(Xt)]− 2p0T̃ − 4(3 + c)(T q(T )+1
p )15/16 lnT q(T )+1

p

≥ −2p0T̃ − 16(3 + c)T 15/16 lnT − ϵ

2p0p0
T.

where in the second inequality we applied Eq (5.4) and Eq (5.5), and in the third inequality,
we used

∑
q≤q(T )(T

q+1
p − T qp )3/4 ≤ 4(T

q(T )+1
p )7/8 proved earlier. As a result, we can write∑

p<p0

R̄∗
p(T )−Rp(T ) ≤ p02

p0T̃ + 16p0(3 + c)T 15/16 lnT + ϵT.

Now because the events E ,F are met, using Eq (5.8), we also have for T ≥ T̃∑
p≥p0

R̄∗
p(T )−Rp(T ) =

∑
p0≤p<log4 T

R̄∗
p(T )−Rp(T )

≤ (17 + 3c)
√
|A| ln |A|T 1−1/27(log2 T )

2 + 15
∑
p≥p0

ϵp · T

≤ (17 + 3c)
√
|A| ln |A|T 1−1/27(log2 T )

2 + ϵT

Summing the two above inequalities gives

T∑
t=1

r̄(π∗(Xt), Xt)− rt

≤ p02
p0T̃ + 16p0(3+c)T

15/16 lnT + (17 + 3c)
√
|A| ln |A|T 1−1/27(log2 T )

2 + 2ϵT.

As a result, on the event E ∩ F ∩ G ∩ Bδ of probability at least 1− δ, we have

lim sup
T→∞

1

T

T∑
t=1

r̄(π∗(Xt), Xt)− rt ≤ 2ϵ.

Because this holds for any δ > 0 and 0 < ϵ < 1, this shows that almost surely, we have
lim supT→∞

1
T

∑T
t=1 r̄(π

∗(Xt), Xt) − rt ≤ 0. We denote by D this event. We now formally
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show that the learning rule is universally consistent. Let π : X → A be a measurable
function. First, by the Hoeffding inequality, we have for T ≥ 1,

P

[∣∣∣∣∣
T∑
t=1

rt(π(Xt), Xt)− r̄t(π(Xt), Xt)

∣∣∣∣∣ ≤ T 3/4

]
1− e−2

√
T .

As a result, the Borel-Cantelli lemma implies that on an event H of probability one, there
exists T̂4 such that for all T ≥ T̂4, |

∑T
t=1 rt(π(Xt), Xt) − r̄t(π(Xt), Xt)| ≤ T 3/4. Then, on

D ∩H of probability one, for any T ≥ T̂4 we have

T∑
t=1

r(π(Xt), Xt)− rt ≤
T∑
t=1

r̄(π(Xt), Xt)− rt + T 3/4 ≤
T∑
t=1

r̄(π∗(Xt), Xt)− rt + T 3/4.

Thus, lim supT→∞
∑T

t=1 r̄(π(Xt), Xt) − rt ≤ 0. This ends the proof that the learning rule is
universally consistent under any SMV process. Now recall that SMV is a necessary condition
for universal learning by Theorem 5.7. Hence, the set of learnable processes is exactly
Socb = SMV and the learning rule is optimistically universal. ■

5.5 Countably Infinite Action Spaces

We next turn to the case where the action space is infinite |A| = ∞ but countable. The
goal of this section is to show that the set of processes admitting universal learning now
becomes CS. This contrasts with the full-feedback setting where in Chapter 4, we showed
that universal learning is optimistically achievable under SMV processes when a property
F-TiME on the value space (Y , ℓ) is satisfied. Intuitively, this asks that mean-estimation
is possible in finite time for any prescribed error tolerance. Of interest to the discussion
of this section for a countable number of actions, we previously showed that countably-
infinite classification (Y , ℓ) = (N, ℓ01) satisfies the F-TiME property and, their learning rule
is universally consistent under SMV processes even under noisy and adversarial responses.

For countable action sets, there is a simple optimistically universal learning rule defined
as follows. From [Han21a, Lemma 24], because A is countable, the 0 − 1 loss on A is a
separable metric, thus, there exists a dense countable set Π = (πl)l≥1 of measurable policies
as described in Lemma 5.2. For every X ∈ CS and every measurable π⋆ : X → A, we have

E
[
inf
π∈Π

µ̂X({x : π(x) ̸= π⋆(x)})
]
≤ inf

π∈Π
E [µ̂X({x : π(x) ̸= π⋆(x)})] = 0,

which implies in particular that almost surely, infπ∈Π µ̂X({x : π(x) ̸= π⋆(x)}) = 0. For any X,
we consider the countable set of experts {E1, E2, . . .} such that Ei,t = πi(Xt). Our learning
rule then applies EXPINF from Corollary 5.1 with this family of experts.

Theorem 5.9. Let X be a separable Borel-metrizable space and A a countable infinite action
set. Then, there is an optimistically universal learning rule and the set of learnable processes
is Socb = CS.
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Proof We start by showing that the learning rule defined above is universally consistent
on any X ∈ CS process. This proof is essentially identical to that of [Han22, Theorem 1].
Indeed, denoting by ât the action selected by the learning rule at time t, Corollary 5.1 implies
that on an event E of probability one, for any π ∈ Π, we have

lim sup
T→∞

1

T

T∑
t=1

rt(π(Xt))− rt(ât) ≤ 0.

Now fix a measurable policy π⋆ : X → A. For any π ∈ Π, because the rewards lie in [0, 1],
on E ,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât)

≤ µ̂X({x : π(x) ̸= π∗(x)}) + lim sup
T→∞

1

T

T∑
t=1

rt(π(Xt))− rt(ât)

≤ µ̂X({x : π(x) ̸= π∗(x)}).
Also, by construction of the countable set Π, on an event F of probability one, we have
infπ∈Π µ̂X({x : π(x) ̸= π⋆(x)}) = 0. Thus, on E ∩ F , the above inequality shows that
lim supT→∞

1
T

∑T
t=1 rt(π

∗(Xt))− rt(ât) ≤ 0. Hence, the learning rule is universally consistent
under CS processes with adversarial responses.

Next, we show that the condition X ∈ CS is necessary for the existence of a universally
consistent learning rule, even for function learning. Let X be any process with X /∈ CS.
By Lemma 5.1, there exists a sequence {Bi}∞i=1 of disjoint measurable subsets of X with⋃
i∈N

Bi = X , and a sequence {Ni}∞i=1 in N such that, on a σ(X)-measurable event E0 of

probability strictly greater than zero,

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit| < Nit ] > 0,

where it is the unique i ∈ N with Xt ∈ Bi.
Next, we define the function f ⋆. Enumerate A = {a1, a2, . . .}, and for each i ∈ N, let

Ai = {a1, . . . , a2Ni
}. For each i ∈ N, let a⋆i be an element of Ai. Denote by ā = {a⋆i }i∈N. Then

for each i ∈ N and each x ∈ Bi, define f ⋆ā (x, a) = 1[a = a⋆i ]. Also define a⋆i as Uniform(Ai)
(independent over i and all independent of X and the randomness of the learning rule), and
ā = {a⋆i }i∈N. Then for any learning rule f̂t, denoting by ât its actions when f ⋆ = f ⋆ā is as
constructed above, we have

sup
ā

E

[
lim sup
T→∞

1

T

T∑
t=1

(
sup
a∈A

rt(a)− rt(ât)
)∣∣∣∣∣ā = ā

]
= sup

ā
E

[
lim sup
T→∞

1

T

T∑
t=1

1[ât ̸= ait ]

∣∣∣∣∣ā = ā

]

≥ E

[
lim sup
T→∞

1

T

T∑
t=1

1[ât ̸= ait ]

]

≥ E

[
1E0 · lim sup

T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ]1[ât ̸= ait ]

]
.
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By the law of total expectation, this last expression above equals

E

[
1E0 · E

[
lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ]1[ât ̸= ait ]

∣∣∣∣∣X, f̂·
]]

,

where conditioning on f̂· indicates we condition on the independent randomness of the learn-
ing rule. Since the average is bounded for any fixed T , Fatou’s lemma, together with the
fact that 1[|X<t ∩Bit | < Nit ] is σ(X)-measurable, imply the expression above is at least

E

[
1E0 · lim sup

T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ]P
(
ât ̸= ait

∣∣∣X, f̂·)] . (5.9)

Let N̂t = |X≤t ∩ Bit| and Ât = {ât′ : t′ ≤ t, it′ = it}. Note that, conditioned on f̂· and
X, the probability that ait ∈ Ât is at most N̂t

1
|Ait |

= N̂t

2Nit
. In particular, if N̂t ≤ Nit , the

conditional probability (given f̂· and X) that ât ̸= ait is at least 1− N̂t

2Nit
≥ 1

2
. Thus, (5.9) is

no smaller than

E

[
1E0 · lim sup

T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ] ·
1

2

]
. (5.10)

By definition of the event E0, there is a nonzero probability that

1E0 · lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ] > 0,

and since the quantity on the left-hand side is non-negative, this further implies the expec-
tation in (5.10) is also strictly greater than zero.

Altogether, this implies there exists a (non-random) choice of ā such that, choosing
f ⋆ = f ⋆ā , the actions ât made by the learning rule f̂t satisfy

E

[
lim sup
T→∞

1

T

T∑
t=1

(
sup
a∈A

rt(a)− rt(â)
)]

> 0,

and since the quantity in the expectation is non-negative, this further implies that for this
choice of f ⋆, with non-zero probability,

lim sup
T→∞

1

T

T∑
t=1

(
sup
a∈A

rt(a)− rt(â)
)
> 0.

Thus, f̂t is not universally consistent for function learning. Since this holds for any choice of
learning rule f̂·, this completes the proof. ■
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5.6 Uncountable Action Spaces

We next consider the case of uncountable action spaces. In this section, we assume that A
is an uncountable separable Borel metrizable space. In this case, we will show that universal
consistency is impossible even in the simplest setting where rewards are deterministic, i.e.,
rt(a) = f ∗(Xt, a) for some unknown measurable function f ∗ : X ×A → [0, 1]. The argument
is based on a dichotomy depending on whether there exists a non-atomic probability measure
µ on A, i.e., such that for all a ∈ A, we have µ({x}) = 0. If this is not the case, we will
need the following simple result which states that any stochastic process X takes values in a
countable set Supp(X) almost surely.

Lemma 5.3. Let X be a metrizable separable Borel space such that there does not exist a
non-atomic probability measure on X . Then, for any random variable X on X there exists
a countable set Supp(X) ⊂ X such that almost surely, X ∈ Supp(X). Similarly, for any
stochastic process X on X there exists a countable set Supp(X) ⊂ X such that almost surely
∀t ≥ 1, Xt ∈ Supp(X).

Proof Fix X such a space and let X be a random variable on X . Let Supp(X) = {x ∈
X : P[X = x] > 0}. Suppose by contradiction that P[X /∈ Supp(X)] > 0 and denote E the
corresponding event. Because P[E ] > 0 we can consider a random variable Y ∼ X|E . For
instance take (Xi)i≥1 an i.i.d. process following the distribution of X, fix x0 ∈ X a fixed
arbitrary instance, and pose

Y =

{
Xk̂ if {i ≥ 1 : Xi /∈ Supp(X)} ≠ ∅, k̂ = min{i ≥ 1 : Xi /∈ Supp(X)},
x0 otherwise.

Because the first time k such that Xk /∈ Supp(X) is a geometric variable G(1 − P[E ]), the
event F = {∃i ≥ 1 : Xi /∈ Supp(X)} has probability one. We now show that Y is non-atomic.
First, observe that Y /∈ Supp(X). Then, if x ∈ X /∈ Supp(X), we have

P[Y = x] = P[{Y = x} ∩ F ] = P[{Xk̂ = x} ∩ F ] ≤ P

[⋃
i≥1

{Xi = x}

]
≤
∑
i≥1

P[Xi = x] = 0.

where in the first equality we used the fact that P[F c] = 0. Therefore Y is non-atomic
which contradicts the hypothesis on X . As a result, almost surely X ∈ Supp(X). It now
suffices to check that Supp(X) is countable, which is guaranteed by the identity 1 = P[X ∈
Supp(X)] =

∑
x∈Supp(X) P[X = x], since each term of the sum is positive. This ends the

proof of the first claim.
Now let X be a stochastic process on X and define Supp(X) =

⋃
t≥1 Supp(Xt). Then

Supp(X) is countable as a countable union of countable sets and

P[∃t ≥ 1 : Xt /∈ Supp(X)] ≤
∑
t≥1

P[Xt /∈ Supp(X)] ≤
∑
t≥1

P[Xt /∈ Supp(Xt)] = 0.

This ends the proof of the lemma. ■

We are now ready to show that no process admits universal learning for uncountable
action sets.
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Theorem 5.10. If A is an uncountable separable Borel metrizable space, then there does
not exist any X admitting universal consistency for measurable function learning.

Proof Fix a learning rule f· and for any a∗ ∈ A, we define the reward function f ∗
a∗(x, a) =

1[a = a∗] for x ∈ X , a ∈ A. We also define the policy πa∗ : x ∈ X 7→ a∗ ∈ A. We first
consider the case where there exists a non-atomic probability measure µ on A. Then, for
any t ≥ 1, and consider the case where a∗ is sampled from the distribution µ independently
from the process X and the randomness of the learning rule. Then we have

Pa∗∼µ[ft(X<t, (0)<t, Xt) = a∗] = EX,ft [Pa∗∼µ(ft(X<t, (0)<t, Xt) = a∗)] = 0.

Denote by Et this event. Then, by the union bound, P[
⋂
t≥1 Et] = 1. The law of total

probability implies that there exists a deterministic choice of a∗ such that

P[∀t ≥ 1, ft(X<t, (0)<t, Xt) ̸= a∗] = 1,

where the probability is taken over X and the randomness of the learning rule.
Now suppose that there does not exist non-atomic probability measures on A. From

Lemma 5.3, for any probability measure µ on A, we can construct a countable set Supp(µ) ⊂
X such that µ(Supp(µ)) = 1. Now consider the set

S =
⋃
t≥1

Supp(ft(X≤t−1, (0)≤t−1, Xt)).

Then, S is countable as the union of countable sets. SinceA is uncountable, let a∗ ∈ A\S. By
construction, on an event of probability one, for all t ≥ 1, we have ft(X≤t−1, (0)≤t−1, Xt) ̸= a∗.

In both cases, we found an action a∗ ∈ A such that on an event E of probability one over
X and the randomness of the learning rule, having received 0 reward in the past history at
time step t, the learning rule does not select a∗, hence receives reward 0 at time t as well.
Thus, by induction, denoting by ât the action selected by the learning rule at time t for
reward f ∗

a∗ , we have E ⊂ {∀t ≥ 1, ât ̸= a∗}. Thus, on E ,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) = 1.

Because E has probability one, this shows that f· is not universally consistent. ■

5.7 Universal Learning under Continuity Assumptions

In Section 5.6 we showed that for general uncountable separable metric action spaces, without
further assumptions on the rewards, one cannot achieve universal consistency. The goal of
this section is to show that adding mild continuity assumptions on the rewards enables
universal consistency under a large family of processes.
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5.7.1 Continuous rewards

In this section, we suppose that the rewards are continuous as defined in Definition 5.2, and
show that universal consistency on CS processes is still achievable. For bounded separable
metric action spaces (Ã, d̃), [Han21a] showed that there is countable set of measurable policies
Π such that for any measurable π∗ : X → Ã and X ∈ CS,

inf
π∈Π

E

[
lim sup
T→∞

1

T

T∑
t=1

d̃(π∗(Xt), π(Xt))

]
= 0.

In general, the action space (A, d) is unbounded, however, (A, d∧ 1) is a separable bounded
metric space on which we can apply the above result. This provides a countable set of
measurable policies Π such that for any measurable π∗ : X → A and X ∈ CS,

inf
π∈Π

E

[
lim sup
T→∞

1

T

T∑
t=1

d̃(π∗(Xt), π(Xt)) ∧ 1

]
= 0.

From this observation, we can get the following lemma.

Lemma 5.4. Let X be a separable metrizable Borel space and (A, d) be a separable metric
space. For any measurable function π∗ : X → A, on an event of probability one, for all
i ≥ 1, there exists πi ∈ Π such that

lim sup
T→∞

1

T

T∑
t=1

1[d(π∗(Xt), π
i(Xt)) ≥ 2−i] ≤ 2−i,

and for all π ∈ {πi : i ≥ 1} ∪ {π∗}, 1
T

∑
t≤T rt(π(Xt))− r̄t(π(Xt))→ 0.

Proof By construction of the countable set of policies Π, for any i ≥ 1, there exists πi ∈ Π
such that

E

[
lim sup
T→∞

1

T

T∑
t=1

d(π∗(Xt), π
i(Xt)) ∧ 1

]
≤ 2−3i.

Then, Markov’s inequality implies that with probability at least 1− 2−i.

lim sup
T→∞

1

T

T∑
t=1

d(π∗(Xt), π
i(Xt)) ∧ 1 ≤ 2−2i.

Applying Markov’s inequality a second time, we obtain

lim sup
T→∞

1

T

T∑
t=1

1[d(π∗(Xt), π
i(Xt)) ≥ 2−i] ≤ 2i lim sup

T→∞

1

T

T∑
t=1

d(π∗(Xt), π
i(Xt)) ∧ 1 ≤ 2−i.

The Borel-Cantelli lemma implies that on an event E of probability one, for i sufficiently
large, there exists πi ∈ Π with lim supT→∞

1
T

∑T
t=1 1[d(π

∗(Xt), π
i(Xt)) ≥ 2−i] ≤ 2−i. This
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implies that this is the case for all i ≥ 1. For any i ≥ 1, Azuma’s inequality implies that
with probability at least 1− 4e−2i

√
T , we have∣∣∣∣∣

T∑
t=1

rt(π
i(Xt))− r̄t(πi(Xt))

∣∣∣∣∣ ,
∣∣∣∣∣
T∑
t=1

rt(π
∗(Xt))− r̄t(π∗(Xt))

∣∣∣∣∣ ≤ 2iT 3/4.

Because
∑

T≥1

∑
i≥1 e

−2i
√
T < ∞, the Borel-Cantelli lemma implies that on an event F of

probability one, for all i ≥ 1, 1
T

∑
t≤T rt(π

i(Xt)) − r̄t(π
i(Xt)) → 0 and similarly for π∗.

Therefore, on the event E ∩ F of probability one, all events are satisfied, which ends the
proof of the lemma. ■

Using Lemma 5.4, we will show that the EXPINF algorithm over the set of policies Π is
optimistically universal for continuous rewards.

Theorem 5.11. Let (A, d) be an infinite separable metric space. Then, EXPINF is opti-
mistically universal for continuous rewards, and the set of learnable processes Socb-C = CS
for continuous rewards.

Proof We start by showing that EXPINF is universally consistent under continuous re-
wards under CS processes. Let X ∈ CS and continuous rewards (rt)t and let π∗ : X → A
be measurable policy. We denote E the event on which the guarantee for EXPINF of Corol-
lary 5.1 holds. For convenience, we also note ât the action selected by the learning rule at
time t. For any x ∈ X , and ϵ > 0, we define

∆ϵ(x) = sup
a∈A:d(a,π∗(x))≤ϵ

|r̄(a, x)− r̄(π∗(x), x)|.

Next, fix δ > 0, and for any ϵ > 0, let A(ϵ, δ) = {x ∈ X : ∆ϵ(x) ≥ δ}. Note that for any
x ∈ X , by continuity of r̄(·, x), for any δ > 0,

⋂
ϵ>0A(ϵ, δ) = ∅. By Lemma 5.4, on an event

F of probability one, for any i ≥ 1, there exists πi ∈ Π such that

lim sup
T→∞

1

T

T∑
t=1

1[d(π∗(Xt), π
i(Xt) ≥ 2−i] ≤ 2−i,

1
T

∑
t≤T rt(π

i(Xt)− r̄t(πi(Xt))→ 0 and similarly for π∗. As a result, on F , for any i ≥ 1,

lim sup
T→∞

1

T

∑
t≤T

rt(π
∗(Xt), Xt)− rt(πi(Xt), Xt)

≤ µ̂X(A(2
−i, δ)) + 2−i + lim sup

T→∞

1

T

∑
t≤T,

d(π∗(Xt),πi(Xt))<2−i

∆2−i (Xt)<δ

r̄t(π
∗(Xt), Xt)− r̄t(πi(Xt), Xt)

≤ µ̂X(A(2
−i, δ)) + 2−i + δ.

Because X ∈ CS and A(2−i, δ) ↓ ∅, on an event G(δ) of probability one, we have that
µ̂X(A(2

−i, δ)) −→
i→∞

0. Last, let δj = 2−j for any j ≥ 0. On the event E ∩ F ∩
⋂
j≥0 G(δj) of
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probability one, combining Corollary 5.1 together with the above inequality implies that for
any j ≥ 0,

lim sup
T→∞

1

T

∑
t≤T

rt(π
∗(Xt), Xt)− rt(ât, Xt) ≤ δj.

Thus, lim supT→∞
1
T

∑
t≤T rt(π

∗(Xt), Xt) − rt(ât, Xt) ≤ 0 (a.s.), which shows that EXPINF
is universally consistent under X. This ends the proof of the theorem.

We now show that CS is necessary for universal consistency. The proof is analogous to
that of Theorem 5.9 in which we proved that for unrestricted rewards on countably infinite
action sets, CS is necessary for universal learning. Suppose that X ∈ CS and let f· be a
learning rule. Using the same arguments, there exist a partition of X in measurable sets
{Bi}i≥1 and a sequence {Ni}i≥1 of integers such that with non-zero probability,

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit| < Nit ] > 0,

where it is the index such that Xt ∈ Bi. As in the original proof, let {ai, i ≥ 1} be a sequence
of distinct actions and let Ai = {a1, . . . , a2Ni

} for i ≥ 1. We also define ϵi = mina̸=a′∈Ai
d(a, a′)

the minimum distance within Ai actions. For any sequence ā = {a∗i }i∈N where a∗i ∈ Ai for
i ≥ 1, we define a deterministic reward r∗ā with

r∗ā(a, x) = max

(
1− 2d(a, a∗i )

ϵi
, 0

)
,

for any x ∈ Bi, which defines a proper measurable continuous reward. We also define the
rewards r̃∗ā(a, x) = 1[a = a∗i ] for a ∈ A and x ∈ Bi. We now define the learning rule f̃·
which at each step t computes the action â chosen by the learning rule f·, selects the action
ãt := argmina′∈Ai

d(â, a′) where i ≥ 1 is the unique index with Xt ∈ Bi, receives a reward
rt, then reports the reward max

(
1− 2d(â,ã)

ϵi
, 0
)
, which will be then used by f· for future

action selections. Note that on Bi, the rewards r∗ā were defined so that they are identically
zero outside of the balls Bd(a, ϵi) for a ∈ Ai. These are disjoint, so the report of reward
given by f̃· to its internal run of f· coincides exactly with what f· would have received by
selecting action â instead of ã. Further, one can observe that selecting one of the nearest
elements within Ai always increases the reward because the balls Bd(a, ϵi) for a ∈ Ai are
disjoint. Therefore, f̃· always receives a higher reward than f· at any step. Now observe that
f̃· always observes a reward in {0, 1}. Hence, for any choice of ā, at any step t, f̃t has the
same rewards on r∗ā as it would have obtained on the rewards r̃∗ā. Therefore,

lim sup
T→∞

1

T

T∑
t=1

(
sup
a∈A

r∗ā,t(a)− r∗ā,t(ât)
)
≥ lim sup

T→∞

1

T

T∑
t=1

(
sup
a∈A

r∗ā,t(a)− r∗ā,t(ãt)
)

= lim sup
T→∞

1

T

T∑
t=1

(
sup
a∈A

r̃∗ā,t(a)− r̃∗ā,t(ãt)
)
,

where ât (resp. ãt) denotes the action selected by f· (resp. f̃·) at time t. However, the
proof of Theorem 5.9 precisely shows that there exists a choice of ā such that with non-
zero probability, lim supT→∞

1
T

∑T
t=1

(
supa∈A r̃

∗
ā,t(a)− r̃∗ā,t(ãt)

)
> 0. Now observe that the
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measurable function π(x) = a∗i where x ∈ Bi always selects the best action. This shows
that f· is not consistent on rewards r∗ā, hence not universally consistent. Thus, X /∈ Socb-C
which completes the proof of the theorem. ■

5.7.2 Uniformly-continuous rewards

In the last section, we showed that adding a continuity constraint on the rewards allowed
us to learn CS processes even when the action space A is infinite. Unfortunately, this
additional assumption on the rewards is not sufficient to obtain universal consistency on the
more general class of processes SMV. In this section, we strengthen the assumptions on the
rewards, supposing they are uniformly-continuous in the actions (Definition 5.2).

We start by giving necessary conditions for uniformly-continuous rewards. To do so, we
will need the following simple reduction, showing that some necessary conditions provided
in the unrestricted rewards case can be used in the uniformly-continuous setting as well.

Lemma 5.5. Let (A, d) be a separable metric space. Let S ⊂ A with mina,a′∈S d(a, a
′) > 0.

Then, Socb-Uc(A) ⊂ Socb(S).

Proof Intuitively, we restrict the problem on A to the actions S. Formally, let η =
1
3
mina,a′∈S d(a, a

′) and observe that any reward function r : S → [0, r̄] can be extended to a
uniformly-continuous function F (r) : X → A as follows.

F (r)(a) = max

(
0,max

a′∈S
r(a′)− d(a, a′) r̄

η

)
, a ∈ A.

Note that this function is r̄
η
−Lipschitz, hence uniformly-continuous—in the case where re-

wards are stochastic, we can still apply this transformation at the realization level. Further,
the sets Bd(a

′, η) for a′ ∈ S are all disjoint by triangular inequality. Thus, for all a′ ∈ S, we
have F (r)(a′) = r(a′). We now describe the reduction from uniformly-continuous rewards on
A to unrestricted rewards on S. Let X ∈ Socb(A) and we denote by ât the action selected
at time t by a universally consistent learner f· under X for uniformly-continuous rewards
on A. We now construct a learning rule for unrestricted rewards on S. First, for a ∈ A,
denote by NNS(a) = argmina′∈S d(a, a

′) the index of the nearest neighbor of a in S where
ties are broken arbitrarily, e.g., by lexicographic order (necessarily, S is countable because
A is separable). We consider the learning rule which selects the actions NNS(ât), i.e.,

fSt (x≤t−1, r≤t−1, xt) = NNS(ft(x≤t−1, r≤t−1, xt))

for all x≤t ∈ X t and r≤t−1 ∈ [0, r̄]t−1. We aim to show that fS· is universally consistent under
X for unrestricted rewards on S. Fix any reward mechanism r on the action space S. We
consider the reward mechanism r̃ on the action space A as follows,

r̃t(a, x) = F (r(· | x))(a),

for any a ∈ A. Note that the mechanism r̃ only depends on the nearest neighbor of selected
actions. Denote ãt the corresponding selected action. Observe that by construction of the
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functional F , for any t ≥ 1, r̃t(ãt) ≥ r̃t(ât). Thus, by monotonicity, fS· is also consistent on
reward mechanism r̃. Now note that f̃· only selects actions within S and receives the same
rewards that would have been observed by running the learning rule on reward mechanism
r. As a result, fS· is also consistent for reward r. This ends the proof that it is universally
consistent under X and hence X ∈ Socb(S). This ends the proof of the lemma. ■

As a direct consequence of Lemma 5.5 and the results from previous sections, we can use
the necessary conditions from the unrestricted reward setting by changing the terms “finite
action set” (resp. “countably infinite action set”) into “totally-bounded action set” (resp.
“non-totally-bounded action set”).

Corollary 5.2. Let A be a non-totally-bounded metric space. Then, Socb-Uc ⊂ CS. Let
A be a totally-bounded metric space with |A| > 2. Then, Socb-Uc ⊂ SMV.

We now turn to sufficient conditions and show that we can recover the results from the
unrestricted case as well. For non-totally-bounded value spaces, the EXPINF learning rule
from Theorem 5.11 is already universally consistent under CS processes, which is a necessary
condition by Corollary 5.2. As a result, imposing the uniformly-continuous assumption on
the rewards does not improve the set of learnable processes.

Theorem 5.12. Let X be a separable Borel metrizable space and A a non-totally-bounded
metric space. Then, Socb-Uc = CS.

Next, we consider totally-bounded action spaces and generalize the learning rule for
stochastic rewards in finite action spaces. Recall that this learning rule associates to each
time a category p = Category(t), based on the number of previous occurrences of Xt, and
works separately on each category. Within each category, the algorithm balances between
two strategies: strategy 0 which uses independent EXP3 learners for each distinct instance,
and strategy 1 which performs EXPINF. We adapt the algorithm in the following way. First,
the EXP3 learners from strategy 0 search for the best action within A(δp), an δp−net of A
where δp will be defined carefully. Note that since A is possibly infinite, restricting strategy
0 to finite action sets is necessary. However, we aim for arbitrary precision, hence we will
have δp → 0 as p → ∞. Second, for strategy 1, we use the countable set of functions Π
defined as for the EXPINF algorithm in Theorem 5.11.

Theorem 5.13. Let A be a totally-bounded metric space. Then, there exists an optimisti-
cally universal learning rule for uniformly-continuous rewards, and learnable processes are
Socb-Uc = SMV.

Proof We first define the new learning rule. Category and AssignPurpose are left un-
changed. We will use the countable set of policies Π = {πl, l ≥ 1} as in the continuous case
in Lemma 5.4, for Explore(1; ·), and Algorithm 5.5. Further, in Explore(0; ·) and Algo-

rithm 5.5, EXP3A is replaced by EXP3A(δp). Finally, in SelectStrategy, ηp = 10

√
|A| ln |A|
2p/4

is replaced by ηp = 10

√
|A(δp)| ln |A(δp)|

2p/4
, where we will define δp shortly. In the original proof

of the universal consistency of the algorithm, we showed that the average error of the

learning rule on category p, Tp is O(ϵ̃p) where ϵ̃p = 2

√
|A| ln |A|
2p/4

. Similarly, we now define
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ϵp := 2

√
|A(δp)| ln |A(δp)|

2p/4
. A key feature of the proof is that since we had

∑
p ϵ̃p < ∞, the

learner can afford to converge on each set Tp separately. We mimic this behavior by choosing
δp such that

∑
p ϵp <∞. Precisely, we pose

δp = min{2−i : |A(2−i)| ln |A(2−i)| ≤ 2p/4}.

As a result, we obtain directly ϵp ≤ 2−1−p/8 which is summable, and δp → 0 as p→∞.
We now show that this learning rule is universally consistent under processes X ∈ SMV

by adapting the proof of Theorem 5.8. Fix r a reward mechanism. For every ϵ > 0, there
exists ∆(ϵ) such that

∀x ∈ X ,∀a, a′ ∈ A, d(a, a′) ≤ ∆(ϵ)⇒ |r̄(a, x)− r̄(a′, x)| ≤ ϵ.

For every δ > 0, we will also define ϵ(δ) = 2 inf{ϵ > 0 : ∆(ϵ) ≥ δ}. By uniform-continuity,
ϵ(δ)→ 0 as δ → 0 and because of the factor 2, we have

∀x ∈ X ,∀a, a′ ∈ A, d(a, a′) ≤ δ ⇒ |r̄(a, x)− r̄(a′, x)| ≤ ϵ(δ).

Now observe that in the original proof, the probabilistic bounds pi(p, q) for 1 ≤ i ≤ 8
do not depend on the cardinality of the action set. Therefore, on the same event E ∩ F of
probability one, Eq (5.1), (5.2), (5.3), (5.4), (5.5) and (5.6) hold starting from some time
T̂ , for the intended values of p, q, T . The only difference, however, is that in strategy 0, we
perform EXP3 over the restricted action set A(δp). As a result, for any x ∈ X , we have

max
a∈A(δp)

r̄(a, x) ≥ max
a∈A

r̄(a, x)− ϵ(δp).

As a result, Eq (5.1) should be replaced with

R̂0
p(q) ≥ R̄∗

p(q)− (T q+1
p )

7
8 − 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp )− ϵ(δp)|Tp(q)|

R̂0
p(q) ≤ R̄∗

p(q)− (T q+1
p )

7
8 − 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp ).

Note that the additional term ϵ(δp)|Tp(q)| is not present in the upper bound because searching
over A (in R̄∗

p(q)) is always better than searching over A(δp) (in R̂0
p(q)). Similarly, Eq (5.2)

should be replaced with

R̃0
p(q) ≥ R̄∗

p(q)− 6

√
|A| ln |A|
2p/4

(T q+1
p − T qp )− (T q+1

p )3/4 − Ap(q)− ϵ(δp)|Tp(q)|.

Similarly, the adapted Eq (5.7) becomes

Rp(T ) ≥ R̄∗
p(T )−

1 + c

2

√
|A| ln |A|T 1−1/27 log2 T −

T

2p
− ϵ(δp)|Tp ∩ {t ≤ T}|.

Furthering the same bounds, Eq (5.8) becomes

Rp(T ) ≥ R̄∗
p(T )− (33 + 5c)

√
|A| ln |A|T 1−1/27 log2 T − 15ϵpT − 2ϵ(δp)|Tp ∩ {t ≤ T}|.
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We are now ready to prove the universal consistency of our learning rule. Fix 0 < ϵ < 1,
and as in the original proof, let p0 such that

∑
p≥p0 ϵp <

ϵ
15

, because
∑

p ϵp <∞. Again, we
have X≤4p0 ∈ CS and as a result, we can apply Lemma 5.4. As a result, on an event H of
probability one, for all ϵ > 0, there exists i(ϵ) ≥ 1 such that 2−i(ϵ) ≤ ∆(ϵ), ϵ and πi(ϵ) ∈ Π
such that

lim sup
T→∞

1

T

∑
t≤T,t∈T ≤4p0

r̄t(π
∗(Xt))− r̄t(πi(Xt))

≤ lim sup
T→∞

1

T

∑
t≤T,t∈T ≤4p0

1[d(π∗(Xt), π
i(ϵ)(Xt) ≥ 2−i(ϵ)]

+ lim sup
T→∞

1

T

∑
t≤T,t∈T ≤4p0

(r̄t(π
∗(Xt))− r̄t(πi(ϵ)(Xt)))1[d(π

∗(Xt), π
i(ϵ)(Xt) ≤ ∆(ϵ)]

≤ 2−i(ϵ) + ϵ ≤ 2ϵ,

where π∗ denotes the optimal policy. We define the events E ,F as in the original proof. In
the rest of the proof, we will now suppose that the event E ∩ F ∩ H of probability one is
satisfied. On this event, because the parameter ϵ > 0 was arbitrary in the above derivations,
there exists l0 ≥ 1 (random index) such that

lim sup
T→∞

1

T

∑
t≤T,t∈T ≤4p0

r̄t(π
∗(Xt))− r̄t(πl0(Xt)) ≤

ϵ

22p0+2
.

Following the same arguments as in the original proof, for p < p0, and T qp sufficiently
large, we need to adapt the following estimates.

max
1≤l≤k(q)

R̂k
p(q) ≥ R̂l0

p (q)

≥ R̄l0
p (q)− (T q+1

p )7/8

≥ R̄∗
p(q)− (T q+1

p )7/8 −
∑

t∈Tp(q)

(rt(π
∗(Xt))− r̄t(πl0(Xt)))

≥ R̂0
p(q)− 2(T q+1

p )7/8 − 3ϵp(T
q+1
p − T qp )−

∑
t∈Tp(q)

rt(π
∗(Xt))− r̄t(πl0(Xt)).

Then, observe that

lim sup
q→∞

2(T q+1
p )7/8 + 3ϵp(T

q+1
p − T qp ) +

∑
t∈Tp(q) rt(π

∗(Xt))− r̄t(πl0(Xt))

T q+1
p − T qp

≤ 4ϵp < ηp.

Thus, as in the original proof, starting from some time T̃ , the learning rule always chooses
strategy 1 over strategy 0 for all categories p ≤ p0.

We continue the same arguments to obtain for p < p0 and T ≥ 2p0T̃ ,

Rp(T )− R̄∗
p(T ) ≥ −2p0T̃ − 16(3 + c)T 15/16 lnT −

∑
t≤T,t∈Tp

r̄t(π
∗(Xt))− r̄t(πl0(Xt)),
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which yields∑
p<p0

R̄∗
p(T )−Rp(T ) ≤ p02

p0T̃ + 16p0(3 + c)T 15/16 lnT +
∑
t≤T

r̄t(π
∗(Xt))− r̄t(πl0(Xt)).

Noting that lim supT→∞
1
T

∑
t≤T r̄t(π

∗(Xt))−r̄t(πl0(Xt)) ≤ ϵ, from there, the same arguments
show that the learning rule is universally consistent. ■

To summarize, with the uniform-continuity assumption we have generalized all results
from the unrestricted rewards case, with a corresponding dichotomy on A of whether it is
totally-bounded or non-totally-bounded.

5.8 Unbounded Rewards

In this last section, we allow for unbounded rewards R = [0,∞) and start with the unre-
stricted rewards setting—no continuity assumption. Recall that in this setting, we assume
that for any context x ∈ X and action a ∈ A, the random variable r(a, x) is integrable so
that the immediate expected reward is well defined.

When A is uncountable, we showed that even for bounded rewards, no process X admits
universal learning. Therefore, we will focus on the case when A is finite or countably infinite,
and show that FS determines whether universal consistency is possible. Moreover, a simple
variant of EXPINF suffices for optimistically universal learning as follows. Enumerate A =
{a1, a2, . . . , a|A|} (or A = {a1, a2, . . .} for countably infinite A) and for any observed instance
x ∈ X , we run an independent EXPINF where the experts of the sequence are the constant
policies equal to ai for 1 ≤ i ≤ |A|, i.e., the expert Ei always selects action ai.
Theorem 5.14. Let A be a countable action set with |A| ≥ 2. Then, there is an opti-
mistically universal learning rule and the set of learnable processes admitting universal is
FS.

The fact that FS characterizes universal learning was already the case in the noiseless
full-feedback setting as we saw in Chapter 3, hence Theorem 5.14 shows that for unrestricted
rewards, we can achieve universal learning in the partial feedback setting without general-
ization cost.
Proof First, even in the full-information feedback setting, we showed in Chapter 3 that
X ∈ FS is necessary for universal consistency. A fortiori in the bandit setting, this condition
is still necessary Socb ⊂ FS.

We now show that the learning rule defined above is universally consistent under FS
processes. For simplicity, we denote by ât the action selected by the learning rule at time
t. Fix X ∈ FS and define S = {x ∈ X : X ∩ {x} ≠ ∅} the support of the process. By
definition of FS, almost surely, |S| < ∞. We denote by E this event of probability one.
Next, for any x ∈ S, we define T (x) = {t : Xt = x} and let S̃ = {x ∈ S : |T (x)| = ∞}
the set of points which are visited an infinite number of times. Recall that the learning rule
performs an independent EXPINF subroutine on the times T (x) for all x ∈ S. As a result,
by Corollary 5.1, for any x ∈ S̃, with probability one, for all a ∈ A,

lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(a)− rt(ât) ≤ 0.
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Now observe that S̃ is countable. Hence, by the union bound, on an event F of probability
one, for all x ∈ S̃ and a ∈ A, we have

lim sup
T→∞

1

T

∑
t≤T,t∈T (x)

rt(a)− rt(ât) ≤ lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t≤T,t∈T (x)

rt(a)− rt(ât) ≤ 0.

In the rest of the proof, we suppose that E ∩ F is met. On E , there exists T̂ = 1 + max{t :
Xt = x, x ∈ S \ S̃} such that for any T ≥ T̂ , we have Xt ∈ S̃. Then, for any policy
π∗ : X → A, and T ≥ 1, we have

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤

∑
t≤T̂

rt(π
∗(Xt)) +

∑
x∈S̃

∑
t≤T,t∈T (x)

rt(a)− rt(ât).

As a result, because F is met,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤

∑
x∈S̃

lim sup
T→∞

1

T

∑
t≤T,t∈T (x)

rt(a)− rt(ât) ≤ 0.

using the fact that P[E ∩ F ] = 1, we proved that the learning rule is universally consistent
under any FS process. This ends the proof of the theorem. ■

The last remaining question is whether this very restrictive set of processes FS can be
improved under the continuity and uniform-continuity assumptions from Definition 5.2.

Unfortunately, we show that this is not the case for continuous rewards, however, the
continuity assumption allows us to achieve universal consistency on FS processes even on
uncountable action spaces. Recall that by Theorem 5.10, universal consistency was not
achievable for uncountable spaces in the unrestricted reward case.

Theorem 5.15. Let X be a separable metrizable Borel space and (A, d) be a separable metric
space with |A| ≥ 2. Then, there is an optimistically universal learning rule for continuous
unbounded rewards and the set of learnable processes for universal learning with continuous
unbounded rewards is FS.

Proof In the case of countable action set A with |A| ≥ 2, Theorem 5.14 already showed
that FS is sufficient for universal learning under continuous unbounded rewards. Therefore,
it remains to show that in the case of uncountable action space, FS is still sufficient for
universal learning. More precisely, we will show that the same learning rule which assigns
a distinct EXPINF learner to each distinct instance of X as defined in Theorem 5.14 is still
universally consistent under FS processes. The only difference is that we run the learners
EXPINF on a dense sequence of actions (ai)i≥1 of the complete action set A which may be
uncountable. Let X ∈ FS. We use the same notations as in the original proof of Theorem 5.14
for the support S = {x ∈ X : X ∩ {x} ≠ ∅}, the event E = {|S| <∞}, T (x) = {t : Xt = x}
for x ∈ S and S̃ = {x ∈ S : |T (x)| =∞}. By Corollary 5.1, for any x ∈ S̃, with probability
one, for all i ≥ 1, we have now

lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(ai)− rt(ât) ≤ 0.
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Let a ∈ A and ϵ > 0, because (ai)i≥1 is dense in A and the immediate reward is continuous,
there exists i(ϵ) such that |r̄(ai(ϵ)) − r̄(a)| ≤ ϵ. Now observe that by the union bound, for
any x ∈ S̃, with probability one, by the law of large numbers, one has for all i ≥ 1,

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(ai) −→
T→∞

r̄t(ai),

and similarly for a. As a result, for any x ∈ S̃, with probability one, for any ϵ > 0,

lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(a)− rt(ât)

≤ r̄(a)− r̄(ai(ϵ)) + lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(ai(ϵ))− rt(ât)

≤ ϵ.

As a result, we showed that for any x ∈ S̃, and any a ∈ A, with probability one,

lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t∈T (x),t≤T

rt(a)− rt(ât) ≤ 0.

Now fix π∗ : X → A a measurable policy. Because S̃ is countable, by the union bound, on
an event F of probability one, for all x ∈ S̃, we have

lim sup
T→∞

1

T

∑
t≤T,t∈T (x)

rt(π
∗(x))− rt(ât)

≤ lim sup
T→∞

1

|T (x) ∩ {t ≤ T}|
∑

t≤T,t∈T (x)

rt(π
∗(x))− rt(ât) ≤ 0.

Then, the same arguments as in the original proof show that on E ∩ F , for any T ≥ 1, one
has

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤

∑
x∈S̃

lim sup
T→∞

1

T

∑
t≤T,t∈T (x)

rt(a)− rt(ât) ≤ 0.

Thus, the learning rule is universally consistent under FS processes.
We now show that X ∈ FS is still necessary for universal learning with continuous rewards.

For the unrestricted reward case, this is a direct consequence of our results in Section 3.9
from Chapter 3, which we now adapt for continuous rewards. First, for any X /∈ FS, we
showed there that there exists a disjoint measurable partition {Bi}∞i=1 such that with non-
zero probability, |{i : X∩Bi ̸= ∅}| =∞ on an event E0. Then, we constructed a sequence of
times Ti for i ≥ 1 such that on an event E of probability one, for sufficiently large indices i,
τi := min{0}∪{t : Xt ∈ Bi} ≤ Ti. Now fix two distinct actions a0, a1 ∈ A, let ϵ = d(a0,a1)

3
and

fix a learning rule f·. We denote by ât its selected action at time t. Consider the following
rewards

rU (a, x) = max

(
0, Ti

(
1−

d(a, aUj
)

ϵ

))
, x ∈ Bj, (5.11)
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for any binary sequence U . Now suppose that they were sampled from an i.i.d. sequence of
Bernoullis B(1

2
), independent of the process X and the randomness of the learning rule. Now

observe that for any i ≥ 1 such that τi ≤ Ti, with probability at least 1
2

independently of the
past, we have âτi /∈ B(aUj

, ϵ), which implies maxa∈A r
U
τi
(a) − rUτi (âτi) ≥ Ti. From there, the

same arguments as in the original proof show that with probability one, this event occurs
infinitely often and E is met, which by the law of total probability implies that there exists a
deterministic choice of values for U = (Uj)j≥1 such that on the corresponding deterministic
(hence stationary) rewards, the learning rule is not consistent on E0 ∩ E which has non-zero
probability. This shows that X does not admit universal learning even in the simplest case
of deterministic continuous rewards. ■

Last, we investigate the case of uniformly-continuous unrestricted rewards. Unfortu-
nately, the uniform continuity assumption over the immediate expected rewards does not
provide any advantage over the continuity assumption.

Proposition 5.2. Let X be a separable metrizable Borel space and A be a separable metric
space with |A| ≥ 2. Then, the set of learnable processes for universal learning with uniformly-
continuous unbounded rewards is FS.

Proof It suffices to show that the FS condition is still necessary for universal learning
under uniformly-continuous rewards since the sufficiency is guaranteed by Theorem 5.15.
We adapt the proof of the necessity of FS in the continuous unbounded reward case. Let
X /∈ FS and suppose that there exists a universally consistent learning rule f· under X for
uniformly-continuous unbounded rewards. We use the same notations as in the proof of
Theorem 5.15. We now define a sequence (Mi)i≥1 recursively such that M1 = 2T1 and for
any i ≥ 1, Mi+1 = 2Ti+1 + 4Ti+1

∑
j≤iMj. Then, consider the following stochastic rewards

r(a, x) =

Mi

(
1 + d(a,a0)∧d(a0,a1)

d(a0,a1)

)
w.p. 1

2
,

Mi

(
1− d(a,a0)∧d(a0,a1)

d(a0,a1)

)
w.p. 1

2
.

x ∈ Bi, i ≥ 1.

These rewards are uniformly-continuous because for any x ∈ X , the expected immediate
reward is r̄(a, x) = 0 for all a ∈ A. Now for u ∈ {0, 1}, define the constant policy πu : x ∈
X 7→ au ∈ A. Denote by ât the action selected by the learning rule at time t. Because it is
consistent under the rewards mechanism given by r, using π0, π1 and the union bound, we
have that almost surely, for any u ∈ {0, 1},

lim sup
T→∞

1

T

T∑
t=1

rt(au, Xt)− rt(ât, Xt) ≤ 0. (5.12)

Now recall that on the event E0 of non-zero probability, we have |{i : X ∩ Bi ̸= ∅}| = ∞.
In other terms, |{i : τi > 0}| = ∞. We then define the random sequence of indices (ik)k≥1

such that on Ec0 , ik = 0 for all k ≥ 1 and on E0, the indices are defined recursively such that
i1 = argmini≥1,τi>0 τi and for k ≥ 1, we have ik+1 = argmini>ik,τi>0 τi. The argmin are well
defined because on E0, all the times τi for i ∈ {j ≥ 1 : τj > 0} are distinct. As a result,
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by the construction of the recursion, on E0, the sequence (ik)k≥1 is an increasing sequence of
times and for all k ≥ 1, we have

{i : X<τik
∩Bi ̸= ∅} = {i : 0 < τi < τik} ⊂ {1 ≤ i < ik}.

Now recall that on the event E of probability one, there exists î ≥ 1 such that for any i ≥ î,
we have τi := min{0}∪{t : Xt ∈ Bi} ≤ Ti. Therefore, on E0∩E , letting k̂ = min{k : ik ≥ î},
we have that for k ≥ k̂, and u ∈ {0, 1}

τik−1∑
t=1

rt(au, Xt)− rt(ât, Xt) ≥
∑

i:X<τik
∩Bi ̸=∅

∑
t<τik ,Xt∈Bi

(−2Mi)

≥ −2
∑
i<ik

TikMi

≥ −Mik

2
+ Tik .

Now observe that on the event E0 ∩ E which has non-zero probability, if d(âτik , a0) ≥
d(a0,a1)

2
and the reward on Bik at time τik is in its negative alternative, i.e., r(a, x) =

Mi

(
1− d(a,a0)∧d(a0,a1)

d(a0,a1)

)
, we have

1

τik

τik∑
t=1

rt(a0, Xt)− rt(ât, Xt) ≥
1

τik

(
Mik

2
− Mik

2
+ Tik

)
≥ 1.

Now by construction, the negative alternative occurs with probability 1
2
, independently from

the past history and the complete process X. As a result, for any k ≥ 1, we have

P

[
1

τik

τik∑
t=1

rt(a0, Xt)− rt(ât, Xt) ≥ 1 | E0, E , k ≥ k̂, d(âτik , a0) ≥
d(a0, a1)

2

]
≥ 1

2
. (5.13)

Similarly, one can check that on the event E0 ∩ E , if d(âτik , a0) <
d(a0,a1)

2
and the reward on

Bik at time τik is in its positive alternative, we have

1

τik

τik∑
t=1

rt(a1, Xt)− rt(ât, Xt) ≥
1

τik

(
Mi

2
− Mik

2
+ Tik

)
≥ 1.

As a result, the same arguments as above give

P

[
1

τik

τik∑
t=1

rt(a1, Xt)− rt(ât, Xt) ≥ 1 | E0, E , k ≥ k̂, d(âτik , a0) <
d(a0, a1)

2

]
≥ 1

2
. (5.14)

Finally, define for any T ≥ 1 the event

FT =

{
1

T

T∑
t=1

rt(a0, Xt)− rt(ât, Xt) ≥ 1

}
∪

{
1

T

T∑
t=1

rt(a1, Xt)− rt(ât, Xt) ≥ 1

}
.
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We obtain for any k ≥ 1,

P[Fτik | E0, E , k ≥ k̂]

≥ P
[
Fτik | E0, E , k ≥ k̂, d(âτik , a0) ≥

d(a0, a1)

2

]
P
[
d(âτik , a0) ≥

d(a0, a1)

2
| E0, E , k ≥ k̂

]
+ P

[
Fτik | E0, E , k ≥ k̂, d(âτik , a0) <

d(a0, a1)

2

]
P
[
d(âτik , a0) <

d(a0, a1)

2
| E0, E , k ≥ k̂

]
≥ 1

2
P
[
d(âτik , a0) ≥

d(a0, a1)

2
| E0, E , k ≥ k̂

]
+

1

2
P
[
d(âτik , a0) <

d(a0, a1)

2
| E0, E , k ≥ k̂

]
=

1

2
,

where in the second inequality we used Eq (5.13) and Eq (5.14). As a result, using Fatou’s
lemma

P[Fτikoccurs for infinitely many k ≥ 1 | E0, E ] ≥ lim sup
k≥1

P[Fτik | E0, E ]

≥ 1

2
lim sup
k≥1

P[k ≥ k̂ | E0, E ] =
1

2
,

where in the last inequality, we used the dominated convergence theorem given that on the
event E , k̂ <∞. As a result, we showed that

P

[
∃u ∈ {0, 1}, lim sup

T→∞

1

T

T∑
t=1

rt(au, Xt)− rt(ât, Xt) ≥ 1 | E0, E

]
≥ 1

2
.

However, because P[E ∩ E0] = P[E0] > 0, Eq (5.12) shows that

P

[
∀u ∈ {0, 1}, lim sup

T→∞

1

T

T∑
t=1

rt(au, Xt)− rt(ât, Xt) ≥ 1 | E0, E

]
= 1,

which contradicts the previous inequality. This shows that the learning rule was not consis-
tent under the rewards (rt)t, hence not universally consistent under X. This shows that FS
is necessary for universal learning and completes the proof. ■

5.9 Appendix

We first give the proofs of the characterizations for the classes of stochastic processes CS
and SMV.

5.9.1 Proof of Lemma 5.1

Suppose X /∈ CS. By [Han21a, Lemma 14], there exists a disjoint sequence {Bi}∞i=1 of
measurable subsets of X such that, on an event E0 of probability strictly great than 0, it
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holds that

lim
j→∞

µ̂X

(⋃
i≥j

Bi

)
> 0.

Without loss of generality, we may suppose B1 = X \
⋃
i>1

Bi so that
⋃
i∈N

Bi = X . Define a

random variable α as

α = lim
j→∞

µ̂X

(⋃
i≥j

Bi

)
.

Inductively define sequences Tk, Jk in N as follows. Let T0 = 0 and J0 = 1. For each
k ∈ N, suppose Tk−1 and Jk−1 are defined, elements of N, and define Tk and Jk as follows.
Note that, by definition of µ̂X, there exists an X-dependent random variable τk ∈ N with
τk > Tk−1 such that

1

τk

∣∣∣∣∣∣X≤τk ∩
⋃

i≥Jk−1

Bi

∣∣∣∣∣∣ ≥ (1/2)µ̂X

 ⋃
i≥Jk−1

Bi

 .

Moreover, by monotonicity of µ̂X(·), the right-hand side is no smaller than α/2. Let Tk ∈ N
be any finite non-random value such that

P(τk > Tk) < P(E0)2−k−2.

Next note that, since the sets Bi are disjoint, there exists a finite X-dependent random
variable jk ∈ N with jk > Jk−1 such that

X≤Tk ∩
⋃
i≥jk

Bi = ∅.

Let Jk ∈ N be any finite non-random value such that

P(jk > Jk) < P(E0)2−k−2.

In particular, on the event that jk ≤ Jk, it holds that

X≤Tk ∩
⋃
i≥Jk

Bi = ∅,

which implies that
X≤Tk ∩

⋃
i≥Jk−1

Bi = X≤Tk ∩
⋃

Jk−1≤i<Jk

Bi.

Thus, if both events τk ≤ Tk and jk ≤ Jk hold, it must be that

1

τk

∣∣∣∣∣∣X≤τk ∩
⋃

Jk−1≤i<Jk

Bi

∣∣∣∣∣∣ ≥ α/2,
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or equivalently,
1

τk

τk∑
t=1

1[it ∈ {Jk−1 ≤ i < Jk}] ≥ α/2. (5.15)

This completes the inductive definition of the sequences Tk and Jk.
To specify the Ni values, for each k ∈ N and i ∈ {Jk−1, . . . , Jk− 1}, define Ni = Tk. Note

that the event E1 = E0 ∩
⋂
k∈N
{τk ≤ Tk} ∩ {jk ≤ Jk} has a probability of at least

P(E0)−
∑
k∈N

P(E0)2−k−1 = P(E0)/2 > 0

by the union bound. On the event E1, (5.15) holds for every k ∈ N. Since τk ≤ Tk on E1,
we also trivially have that every i ∈ {Jk−1, . . . , Jk − 1} and t ∈ [τk] satisfy |X<t ∩ Bi| < t ≤
Tk = Ni. Together, these facts imply that on E1, every k ∈ N satisfies

1

τk

τk∑
t=1

1[|X<t ∩Bit | < Nit ] ≥ α/2.

Since we also have α > 0 on the event E1, and since Tk is strictly increasing, and τk > Tk−1

implies τk →∞ as k →∞, altogether we have that on the event E1,

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ]

≥ lim sup
k→∞

1

τk

τk∑
t=1

1[|X<t ∩Bit | < Nit ] ≥ α/2 > 0.

We establish the final claim that such a result is not possible for X ∈ CS, as follows. Fix
any X ∈ CS. For any disjoint sequence Bi of measurable subsets of X , and any sequence
Ni ∈ N, define Cn =

⋃
{Bi : Ni > n}, and note that Cn ↓ ∅. For every n ∈ N, we have

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < Nit ] (5.16)

≤ lim sup
T→∞

1

T

T∑
t=1

(1[|X<t ∩Bit | < n] + 1[Nit > n])

≤

(
lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < n]

)
+ µ̂X(Cn) .

For any m ∈ N, any t ≥ m has 1[|X<t ∩Bit | < n] ≤ 1[|X<m ∩Bit | < n], so that

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < n]

≤ lim sup
T→∞

m

T
+

1

T

T∑
t=1

1[|X<m ∩Bit | < n] = µ̂X

(⋃
{Bi : |X<m ∩Bi| < n}

)
.
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Since the first expression above has no dependence on m, the conclusion remains valid in
the limit of m→∞, so that

lim sup
T→∞

1

T

T∑
t=1

1[|X<t ∩Bit | < n] ≤ lim
m→∞

µ̂X

(⋃
{Bi : |X<m ∩Bi| < n}

)
,

which equals zero almost surely (by Lemmas 13 and 14 of [Han21a]). Altogether, for any
n ∈ N, with probability one, (5.16) is at most µ̂X(Cn). Again, since (5.16) has no dependence
on n, this inequality remains valid in the limit as n→∞, so that with probability one, (5.16)
is at most

lim
n→∞

µ̂X(Cn) ,

which equals zero almost surely (by Lemma 13 of [Han21a]). The conclusion that (5.16)
equals zero almost surely follows by the union bound.

5.9.2 Proof of Proposition 5.1

We start by showing (2) ⇒ (1). Suppose that a process X is not in SMV. We aim to show
that X disproves the second property. Because X /∈ SMV, there exists a sequence of disjoint
measurable sets (Bi)i≥1, ϵ, δ > 0 such that with probability δ > 0

lim sup
T→∞

|{i : X≤T ∩Bi ̸= ∅}|
T

≥ ϵ.

Denote by A this event, and consider the sets Ai =
⋃
j≥iBi for i ≥ 1. Now fix i ≥ 1. For

any T ≥ 1, we have∑
t≤T,t∈T ≤1

1Ai
(Xt) = |Ai ∩ X≤T | ≥ |{j ≥ i : Bj ∩ X≤T ̸= ∅}| ≥ |{j : X≤T ∩Bj ̸= ∅}| − (i− 1),

where in the first inequality we used the fact that the Bj are disjoint for all j ≥ i, but included
within Ai. As a result, on the event A we have lim supT→∞

1
T

∑
t≤T,t∈T ≤1 1Ai

(Xt) ≥ ϵ. Hence,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T ≤1

1Ai
(Xt)

 ≥ ϵP[A] = ϵδ.

This holds for all i ≥ 1 but Ai ↓ ∅, which shows that X does not satisfy property (2).
To prove (1) ⇒ (2), now suppose that property (2) is not satisfied by X. We aim to

show that X /∈ SMV. Then, there exists a sequence of measurable sets Ai ↓ ∅, ϵ > 0 and an
increasing sequence of indices (ik)k≥1 such that for all k ≥ 1

E
[
lim sup
T→∞

|Aik ∩ X≤T |
T

]
≥ ϵ.

Because the sets Ai are decreasing and the quantity within the expectation is increasing in
the set A, this shows that for all i ≥ 1, we have E

[
lim supT→∞

|Ai∩X≤T |
T

]
≥ ϵ. Therefore, for
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any i ≥ 1 because E
[
lim supT→∞

|Ai∩X≤T |
T

]
≤ P

[
lim supT→∞

|Ai∩X≤T |
T

≥ ϵ
2

]
+ ϵ

2
we obtain for

all i ≥ 1

P
[
lim sup
T→∞

|Ai ∩ X≤T |
T

≥ ϵ

2

]
≥ ϵ

2
.

Again, because the inner quantity is increasing in the set A, we obtain

P
[
lim sup
T→∞

|Ai ∩ X≤T |
T

≥ ϵ

2
,∀i ≥ 1

]
= lim

I→∞
P
[
lim sup
T→∞

|Ai ∩ X≤T |
T

≥ ϵ

2
, 1 ≤ i ≤ I

]
= lim

I→∞
P
[
lim sup
T→∞

|AI ∩ X≤T |
T

≥ ϵ

2

]
≥ ϵ

2
.

We will denote by H this event in which for all i ≥ 1, we have lim supT→∞
|Ai∩X≤T |

T
≥ ϵ

2
.

Under the event H, for any i, t0 ≥ 1, there always exists t1 > t0 such that
|Ai∩X≤t1 |

t1
≥ ϵ

4
. We

construct a sequence of times (tp)p≥1 and indices (ip)p≥1, (up)p≥1 by induction as follows. We
first pose i1 = t0 = 0. Now assume that for p ≥ 1, the time tp−1 and index ip are defined.
Let tp > tp−1 such that

P

Hc ∪
⋃

tp−1<t≤tp

{
|Aip ∩ X≤t|

t
≥ ϵ

4

} ≥ 1− ϵ

2p+3
.

This is also possible because H ⊂
⋃
t>tp−1

{
|Aip∩X≤t|

t
≥ ϵ

4

}
. Last, let ip+1 > ip such that

P[Aip+1 ∩ X≤tp ̸= ∅] ≤ ϵ
2p+3 which is possible since Au ↓ ∅ as u → ∞. We denote Ep this

event. Then,

P

Hc ∪
⋃

tp−1<t≤tp

{ |(Aip \ Aip+1) ∩ X≤t|
t

≥ ϵ

4

}
≥ P

Ep ∩Hc ∪
⋃

tp−1<t≤tp

{
|Aip ∩ X≤t|

t
≥ ϵ

4

} ≥ 1− ϵ

2p+2
.

We denote Fp this event. This ends the recursive construction of times tp and indices ip
for all p ≥ 1. Note that by construction, P[F cp ] ≤ ϵ

2p+2 . Hence, by union bound, the event
H ∩

⋂
p≥1Fp has probability P[H ∩

⋂
p≥1Fp] ≥ P[H] − ϵ

4
≥ ϵ

4
. For conciseness, denote

Bp = Aip \ Aip+1 . On the event H ∩
⋂
p≥1Fp we showed that for all p ≥ 1, there exists

tp−1 < t ≤ tp such that |Bp ∩ X≤t| ≥ ϵ
4
t, and (Bp)p≥1 is a sequence of disjoint measurable

sets.
Now for any p ≥ 1, we will construct a countable partition of Bp that separates all points

falling in Bp within time horizon tp. Let δp > 0 such that

P
[

min
u,v≤tp:Xu ̸=Xv

ρ(Xu, Xv) ≤ δp

]
≤ ϵ

2p+3
.
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We denote by Gp the complementary of this event. Note that P[
⋃
p≥1 Gcp] ≤

ϵ
8
. As a result,

the event I := H∩
⋂
p≥1(Fp∩Gp) has probability at least ϵ

8
. We will show that in this event,

X disproves the SMV condition. Precisely, let (xi)i≥1 a dense sequence of X . We will denote
the balls of X by B(x, r) = {x′ : ρ(x, x′) < r}. Define the following partition of X ,

P(δ) : Pi(δ) = B(xi, δ) \
⋃
j<i

B(xj, δ).

Finally, for any p, i ≥ 1, define P p
i := Pi(δp) ∩Bp. We can note that

⋃
i≥1 P

p
i = Bp. Further,

the sets (Bp
i )i,p≥1 are all disjoint, and form a countable sequence. However, on the event I,

for every p ≥ 1, there exists a time tp−1 < t ≤ tp such that |Bp ∩ X≤t| ≥ ϵ
4
t. But because

the event Gp is satisfied, all the points falling in Bp within horizon t ≤ tp are separated by
at least δp, hence fall in distinct sets Bp

i . As a result,

|{i ≥ 1 : P p
i ∩ X≤t ̸= ∅}| ≥ |Bp ∩ X≤t| ≥

ϵ

4
t.

This shows that on the event I, for every p ≥ 1, there exists t > tp−1 such that |{i, p ≥ 1 :
P p
i ∩ X≤t ̸= ∅}| ≥ ϵ

4
t, and as a result

lim sup
T→∞

|{i, p ≥ 1 : P p
i ∩ X≤T ̸= ∅}|
T

≥ ϵ

4
.

The fact that P[I] ≥ ϵ
8

ends the proof that X /∈ SMV, and that the first proposition is
equivalent to SMV.

We now show the equivalence (2) ⇔ (3). We clearly have (3) ⇒ (2). Now suppose that
X satisfies (2). Let M > 1 and A be a measurable set. Then, for any T ≥ 1, we have

1

T

∑
t≤T,t∈T ≤M

1A(Xt) ≤M
|A ∩ X≤t|

T
=
M

T

∑
t≤T,t∈T ≤1

1A(Xt).

Because (Xt)t∈T ≤1 ∈ CS, we obtain as a result (Xt)t∈T ≤M ∈ CS using the definition. This
ends the proof of the proposition.
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Chapter 6

Adversarial Contextual Bandits

6.1 Introduction

The previous Chapter 5 studied the fundamental question of learnability for contextual ban-
dits under the standard stationarity assumption for the rewards. This classical assumption
in the contextual bandit literature is that the underlying dependency between rewards, con-
texts and actions of the learner, is invariant over time. In the present chapter, we challenge
this assumption and provide some characterizations of universal learning in non-stationary
environements. This is captured by the adversarial contextual bandit framework which can
be seen as a crucial step towards mode complex non-stationary machine learning frameworks
such as reinforcement learning.

The universal learning framework we use in this chapter is the same as the one introduced
in Chapters 2 and 5 for contextual bandits. We briefly recall the setup here, and specify
the differences between stationary and non-stationary reward environments. The contextual
bandit setting is a central problem in statistical decision-making. This setting models the
interaction between a learner or decision maker, and a reward mechanism. At each iteration
of the learning process, the learner observes a context x ∈ X (also known as covariate in the
statistical learning literature), then selects an action a ∈ A to perform. The decision maker
then receives a reward based on the context and selected action, which can then be used to
perform informed future actions. The major difference with the standard supervised learning
framework is that the learner can only observe the reward of the selected action, referred
to as partial feedback, instead of the full-feedback case of supervised learning in which a
learner can directly compute the reward (or loss) of non-selected actions. New phenomena
arise from these characteristics, including the well-known exploration/exploitation trade-off:
algorithms should balance between exploiting known high-reward actions and exploring new
actions that potentially could yield higher rewards.

Universal consistency. We focus on the foundational notion of consistency. In the con-
textual bandit context, a learner is consistent if its long-term excess regret vanishes. Contexts
are modeled by a stochastic process X = (Xt)t≥1. If ât is the selected action and rt the reward
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function at time t, we ask that for any measurable policy π∗,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤ 0 (a.s.).

As shown in the above equation, we follow a traditional regret analysis, where we compare the
learner to a fixed policy (static regret) as opposed to switching regret where the comparison
policy may also change. For generality, one commonly aims to design algorithms that ensure
consistency for a large class of instances. We consider the strongest notion of universal
consistency, introduced in [Han21a], which asks that a learning rule is consistent for any
possible reward mechanism for (rt)t≥1, within a specified reward model.

A simple example of reward model is the stationary reward model: rewards rt are given
by a time-invariant conditional distribution Pr|x,a, conditioned on the current context Xt

and the selected action ât. In this model, a learning rule is universally consistent if for any
conditional distribution Pr|x,a—any stationary rewards—the algorithm is consistent. This
was precisely the model studied in Chapter 5. In the present chapter, we go beyond by
considering diverse models of non-stationary and adversarial reward mechanisms.

The notion of universal consistency was mostly studied in the full-feedback supervised
learning framework in which observes a stream of data (Xt, Yt)t≥1, makes predictions Ŷt at
each step, and receives rewards (losses) according to some loss measuring the discrepancy
between predictions and true values Yt. The main difference with contextual bandits is
that the knowledge of Yt allows to compute losses for any previous prediction, whereas in
contextual bandits, we only receive reward information for the only action selected at that
time period. This full-feedback setting corresponds to standard supervised learning and
was thoroughly studied in the literature; which we reviewed in Chapter 2. In Chapters 3
and 4 we in fact characterized provably-minimal assumptions for universal learning for this
full-feedback setting using the optimistic learning framework.

Optimistic learning. In this framework, the minimal assumptions are precisely those
that allow for the existence of a universally consistent learning rule. First, this corresponds
to characterizing the set of universally learnable processes Soab (Strong Online Adversarial
Bandits) below,

Soab = {processes X : ∃ learning rule f· such that
∀ rewards within a given model, f· is consistent}.

Second, we search for algorithms that learn under these minimal assumptions, i.e., that are
universally consistent under all processes where this is possible (X ∈ Soab). These are called
optimistically universal procedures. These optimistically universal rules, if they exist, are as
general as one could hope for: they enjoy the strong property that for any given process X,
if they fail to be universally consistent, then no other algorithm would be either. We refer
to Chapter 2 for more in-depth motivation and overview of the optimistic framework.

Universal learning in contextual bandits. While the literature on universal learning
in the case of full feedbacks is very extensive, it is surprisingly sparse for partial feedbacks.
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Previous works mostly investigated stochastic contextual bandits under important structural
assumptions on rewards, such as smoothness or margin conditions. Closest to universal
learning, in which one relaxes assumptions on the reward mechanism, [YZ02] showed that
for continuous rewards in the contexts, strong consistency can be achieved with traditional
non-parametric methods, for Euclidean context spaces. In Chapter 5, we gave the first results
for contextual bandits on universal consistency per se. We focused on stationary rewards—
the underlying reward mechanism is invariant over time—and showed in particular that for
the main case of interest—finite action spaces A—universal consistency is achievable under
the same class of processes as for the noiseless full-feedback case (Condition SMV). Contrary
to previous literature, the proposed learning rules are consistent without any assumptions
on the rewards, on general spaces, and under large classes of non-i.i.d. contexts. Further, we
showed that optimistically universal learning rules always exist for stationary bandits.

The present work challenges the stationarity assumption from Chapter 5. In particular,
this does not allow for changes in the underlying reward mechanism, a behavior ubiquitous
in current applications. It is well-known that the distribution of contexts and rewards can
shift over time, such as seasonal changes in consumer behavior, and can be adversarial. Our
analysis mainly focuses on two models for the strength of the adversary: oblivious rewards
for which the reward mechanism can depend on the past context history, but not the past
actions of the learner; and the strongest online rewards for which the rewards can be adaptive
on past contexts and selected actions. This study shows that having adversarial rewards—as
opposed to stationary rewards—plays a crucial role in the fundamental limits of learnability
for contextual bandits, and represents a significant advancement in the general analysis of
more intricate decision-making processes, such as reinforcement learning.

Related literature on contextual bandits and non-stationarity. The concept of con-
textual bandits was first introduced in a limited context for single-armed bandits [Woo79;
Sar91]. Since then, considerable effort has been made to generalize the framework and pro-
vide efficient methods under important structural assumptions on the rewards. Most of the
literature considered parametric assumptions [WKP05; LZ07; GZ09; BC+12; AC16; RS16],
but substantial progress has also been achieved in the non-parametric setting towards obtain-
ing minimax guarantees under smoothness (e.g., Lipschitz) conditions or margin assumptions
[LPP09; RZ10; Sli11; PR13], with further refinements including [GJ18; RMB18].

While the above-cited works mostly focus on i.i.d. data, the non-stationary case has also
been studied in the literature. The fact that the reward distribution can change over time
has been widely acknowledged in the established parametric setting for contextual bandits,
and has been explored under various models including [BGZ14; HMB15; KA16; Luo+18;
LLS18; WIW18; Che+19]. The non-parametric case, more relevant to our work has also been
considered for Lipschitz rewards and margin conditions [Sli11; SK21]. We note, however,
that these works often consider non-static regret, where the baseline is also non-stationary,
while we focus on the excess regret compared to fixed policies.

6.1.1 Summary of the present work

We mainly focus on bounded rewards. Our first main result shows that in the main case of
interest of finite action spaces A and separable metrizable spaces X admitting a non-atomic
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probability measure, optimistic universal learning is impossible, even under the weakest ad-
versarial model which we call memoryless : rewards conditionally on their selected action
and context are independent but may follow different conditional distributions. This im-
plies that adapting algorithms for specific context processes is necessary to ensure universal
learning. This is the first example of such a phenomenon for online learning, for which pre-
viously considered settings always admitted optimistically universal learning rules, including
realizable (noiseless) supervised learning (Chapter 3), arbitrarily noisy or adversarial re-
wards in supervised learning (Chapter 4), and stationary contextual bandits (Chapter 5).
Intuitively, personalization and generalization are incompatible for contextual bandits with
non-stationary rewards.

Next, we study universally learnable processes for various adversarial reward models. On
the negative side, we show that in the main case of interest, the set of learnable processes
for stationary contextual bandits or supervised learning given by Condition SMV, is no
longer fully learnable even for memoryless rewards: learning with adversarial rewards is
fundamentally more difficult. This comes as a surprising result since SMV processes admitted
universal learning in all previous learning settings. We further identify novel necessary and
sufficient conditions, involving intricate behavior of duplicates in the context process. In
particular, for memoryless, oblivious, and online rewards, the set of learnable processes is
strictly between SMV and the smaller class given by Condition CS. For this same case of
interest, we give an exact characterization of these learnable processes for online rewards:
this characterization involves a sort of convergence rate of the instance process towards its
limit distribution. Given the knowledge of this rate, universal learning is achievable with a
learning rule that we provide; on the other hand, without a priori knowledge on this rate,
universal learning is impossible since optimistic universal learning is not achievable. While
we leave the exact characterization for memoryless and oblivious rewards as an open question
for finite action spaces A and context spaces admitting a non-atomic probability measure,
our characterizations in all other cases are complete.

Last, we give extensions of the above results, when the rewards are unbounded or satisfy
some regularity constraints, namely uniform continuity.

6.1.2 New classes of stochastic processes and measure-theoretic
techniques for learning theory.

We identify novel classes of processes that arise in the characterization of learnable processes.
In the main case of interest, we give a new condition C4 that is necessary for oblivious rewards,
these can be dependent on the past context history, but only on the selected action at the
current time t. Informally, while SMV processes only require that the process visits only a
sublinear number of sets from any countable partition of the context space X , the necessary
condition C4 requires this sublinear behavior to be uniform spatially in X .

On the positive side, we introduce a novel sufficient condition C5 under which universal
learning is possible, with CS ⊊ C5 in general. Intuitively, this asks that there is a specific rate
at which we can add duplicates while still preserving the CS behavior. With the knowledge
of the correct rate to add duplicates, we can design universally consistent algorithms. This
should be related to the property observed in Proposition 5.1 from Chapter 5, that if we
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were to replace all duplicates with an arbitrary value x0 ∈ X , SMV processes would belong
to CS. The C5 property provides an intermediary condition. Further, we show that C5 is
also necessary for online rewards, the strongest reward model that we consider, in which
rewards can be dependent on the past history of contexts and selected actions. As a result,
the condition C5 is an exact characterization of universally learnable processes for online
rewards.

Last, in an attempt to bridge the gap C5 ⊊ C4 remaining for oblivious rewards, we pro-
pose a new condition C6 on processes, that is necessary for universal learning. At a high
level, this condition constrains non-asymptotic large deviations from the empirical distribu-
tion of contexts. In the general case of context spaces X admitting non-atomic probability
distributions, we have C5 ⊂ C6 ⊊ C4. This shows that further uniform continuity than the C4
condition is necessary.

6.1.3 Outline of the chapter

In Section 6.2, we present the main definitions and some useful contextual bandit algorithms.
Our main results as well as the novel classes of stochastic processes are presented in Sec-
tion 6.3. We characterize when there exist optimistically universal learning rules or not in
Section 6.4 and give necessary and sufficient conditions for universal learning in Section 6.5.
Model extensions including continuity assumptions on the rewards are covered in Section 6.6.

6.2 Preliminaries

Let (X ,B) be a separable metrizable Borel context space and A a separable metrizable Borel
action space A. When considering continuity assumptions, we suppose that A is given with
a metric d. For countable action spaces, we use the discrete topology. We are interested in
the following sequential contextual bandit framework: at step t ≥ 1, the learner observes
a context Xt ∈ X , then selects an action ât ∈ A and last, receives a reward rt ∈ R which
may be stochastic. Unless mentioned otherwise, we suppose that the rewards are bounded
R = [0, r̄] and that the upper bound r̄ is known. Hence, without loss of generality, we may
pose r̄ = 1. The learner is online and as such, can only use the current history to select the
action ât.

Definition 6.1 (Learning rule). A learning rule is a sequence f· = (ft)t≥1 of possibly ran-
domized measurable functions ft : X t−1 × Rt−1 × X → A. The action selected at t is
ât = ft((Xs)s≤t−1, (rs)s≤t−1, Xt).

We now precise the data generation process. We suppose that the contexts X = (Xt)t≥1

are generated from a general stochastic process. To define the rewards, (rt)t≥1, many models
for the underlying reward mechanism are possible. In Chapter 5, we considered the case
of stationary rewards when the rewards follow a conditional distribution Pr|a,x conditionally
on the selected action ât and the context Xt at the current time t ≥ 1. We consider the
considerably more general case of adversarial rewards. Of particular interest to the discussion
of this chapter will be 1. oblivious rewards which correspond to the case when the learner
plays a game against an adversary oblivious to the player’s actions and 2. online rewards
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when the adversary can choose rewards depending on the complete history of contexts,
selected actions and received rewards. For a stochastic process X, we will use the notation
X≤t = (Xt′)t′≤t. Also, for a measurable set A ∈ B, we will use the shorthand X ∩ A = {Xt :
Xt ∈ A, t ≥ 1}.

Definition 6.2 (Reward models). The reward mechanism is said to be

• stationary (stat.) if there is a conditional distribution Pr|a,x such that the rewards
(rt)t≥1 given their selected action at and context Xt are independent and follow Pr|a,x

• memoryless if there are conditional distributions (Pr|a,x,t)t≥1 such that (rt)t≥1 given
their selected action at and context Xt are independent for t ≥ 1 and respectively
follow Pr|a,x,t

• oblivious if there are conditional distributions (Pr|a,x≤t
)t≥1 such that rt given the selected

action at and the past contexts X≤t, follows Pr|a,x≤t

• online if there are conditional distributions (Pr|a≤t,x≤t,r≤t−1
)t≥1 such that rt given the

sequence of selected actions a≤t and the sequence of contexts X≤t and received rewards
r≤t−1, follows Pr|a≤t,x≤t,r≤t−1

.

We refer to all the models except for the stationary one as adversarial. To emphasize
the dependence of the reward in the selected action and the conditional distributions, we
may write rt(a | Xt), rt(a | X≤t), rt(a | X), and rt(a | a≤t−1,X≤t, r≤t) for the corresponding
reward models. When the conditioning is clear from context, we may simply write rt(a) for
the reward if action a is selected. The general goal in contextual bandits is to discover or
approximate an optimal policy π∗ : X → A if it exists. For adversarial rewards, there may
not exist a single optimal policy π∗. Instead, we aim for consistent algorithms that have
sublinear regret compared to any fixed measurable policy.

Definition 6.3 (Consistency and universal consistency). Let X be a stochastic process on
X , (rt)t≥1 be a reward mechanism and f· be a learning rule. Denote by (ât)t≥1 its selected
actions. We say that f· is consistent under X with rewards r if for any measurable policy
π∗ : X → A,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) ≤ 0, (a.s.).

We say that f· is universally consistent for a given reward model if it is consistent under X
with any reward within the considered reward model.

Even in the simplest case of full-feedback noiseless learning [Han21a], universal consis-
tency is not always achievable. For instance, if the process X visits a distinct instance at
each step the learner, the information gathered on previous instances X≤t−1 does not provide
information on the rewards for instance Xt. We are then interested in understanding the
set of processes X on X for which universal learning is possible. More practically, we aim
to provide optimistically universally consistent learning rules which, if they exist, would be
universally consistent whenever this is possible.
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Definition 6.4 (Optimistically universal learning rule). For a given reward model that we
write model ∈ {stat,memoryless, oblivious, prescient, online}, we define

Soabmodel = {X : ∃ learning rule universally consistent for model rewards under X}.

We say that a learning rule f· is optimistically universal for the reward model if it is
universally consistent under any process X ∈ Soabmodel for that reward model.

In general Soabonline ⊂ Soaboblivious ⊂ Soabmemoryless ⊂ Soabstat.

6.2.1 Two main classes of stochastic processes

We briefly recall the definitions of Condition CS and Condition SMV on stochastic processes
arising in our characterizations of learnable processes, which we introduced in Chapter 2.
Given a stochastic process X on X , we first define the limit submeasure µ̂X̃ as follows. For
any A ∈ B, µ̂X̃(A) = lim supT→∞

1
T

∑
t≤T,t∈T 1A(Xt). Intuitively, this quantifies the (limsup)

proportion of times that the process visits a set A ∈ B. The first condition of stochastic
processes that we introduce essentially asks that the expected empirical limsup frequency is
a continuous sub-measure on B.

Condition CS. For every decreasing sequence {Ak}∞k=1 of measurable sets in X with Ak ↓ ∅,
E[µ̂X(Ak)] −→

k→∞
0.

This condition is useful for learning because, intuitively, it shows that one can empirically
disregard the behavior of a policy on “small” sets. This then allows for an approach akin
to empirical risk minimization to achieve universal consistency. We refer to Section 5.3.2
for a detailed exposition of the algorithmic details. For our purposes, and as introduced in
Chapter 5, we will need to use the previous condition on sparsified stochastic processes which
may take their defined values on a subset of possibly random times T ⊆ N instead of the
complete set of times N, and fill the remaining times with any fixed “dummy” value x∅ /∈ X .
Precisely, given a process X = (Xt)t≥1 and an X-dependent random set T ⊆ N, we define
the sparsified process XT on X ∪ {x∅} via XT

t = Xt if t ∈ T and Xt = x∅ otherwise. The
purpose of the non-value x∅ is that times t ∈ T do not contribute to empirical frequences in
µ̂XT (A) for sets A ⊆ X . This leads to an extended definition of CS for sparsified processes
with the same definition as in Condition CS: that is, XT ∈ CS if for every monotone sequence
Ak ↓ ∅ of measurable sets Ak ∈ B, we have lim

k→∞
E[µ̂XT (Ak)] = 0.

The next condition asks that X visits a sublinear number of sets of any measurable
partition of X .

Condition SMV. For every disjoint sequence {Ak}∞k=1 of measurable sets of X such that⋃∞
k=1Ak = X , (every countable measurable partition), |{k ≥ 1 : Ak ∩ X≤T ̸= ∅}| =

o(T ), (a.s.).

Intuitively, this condition asks that the process does not keep exploring completely differ-
ent regions of the space X . It is known that even in the noiseless full-feedback setting, SMV
is a necessary condition for universal learning [Han21a] since intuitively, the past history
does not provide any information on newly visited regions for a learner. In fact, this is also
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a sufficient condition for the noiseless full-feedback setting as we showed in Chapter 3. Both
classes CS ⊂ SMV defined above are very general classes of processes; they both include in
particular i.i.d. or stationary ergodic processes.

6.2.2 Useful algorithms

We will use as subroutines in particular the same two algorithmic ingredients as in Chapter 5,
which we briefly recall here. We refer to Section 5.3.2 for a detailed description and discussion
of these algorithms. First, we will use the algorithm EXP3.IX proposed by [Neu15] for regret
bounds with high probability in adversarial bandits, which builds upon the classic EXP3
algorithm of [Aue+02]. We restate the performance of the algorithm has the following
guarantee for an adequate choice of parameters.

Theorem 5.6 (High-probability regret of EXP3.IX [Neu15]). For adversarial bandits with
K arms, EXP3.IX satisfies that, for any δ ∈ (0, 1) and T ≥ 1, with probability at least 1− δ,

max
i∈[K]

T∑
t=1

(rt(ai)− rt(ât)) ≤ 4
√
KT lnK +

(
2

√
KT

lnK
+ 1

)
ln

2

δ
.

We will always use a very simplified version of this result: there exists a universal constant
c > 0 such that

max
i∈[K]

T∑
t=1

(rt(ai)− rt(ât)) ≤ c
√
KT lnK ln

1

δ
,

with probability 1− δ for δ ≤ 1
2
.

Second, we use the EXPINF algorithm from Chapter 5 which uses EXP3.IX as a subrou-
tine to achieve sublinear regret compared to an infinite countable sequence of experts. We
restate the corresponding regret bounds.

Corollary 5.1. There is an online learning rule EXPINF using bandit feedback such that
for any countably infinite set of experts {E1, E2, . . .} (possibly randomized), for any T ≥ 1
and 0 < δ ≤ 1

2
, with probability at least 1− δ,

max
1≤i≤T 1/8

T∑
t=1

(rt(Ei,t)− rt(ât)) ≤ cT 3/4
√
lnT ln

T

δ
.

where c > 0 is a universal constant. Further, with probability one on the learning and the
experts, there exists T̂ such that for any T ≥ 1,

max
1≤i≤T 1/8

T∑
t=1

(rt(Ei,t)− rt(ât)) ≤ T̂ + cT 3/4(lnT )3/2.

The latter result is particularly useful to achieve universal consistency under CS processes
for countable action spaces. It is known [Han21a, Lemma 24] that there exists a sequence
(πl)l≥1 of policies π : X → A that are “empirically dense” within all measurable policies
X → A, for CS processes (see Lemma 6.4 for a formal statement). Then, using this sequence
of policies as the expert set for EXPINF yields a universally consistent learning rule under CS
processes. This strategy is akin to more traditional empirical risk-minimization approaches
in that one aims to fit the best policy within a pre-selected set of policies.
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6.3 Statement of Results

Our first main result is that for contextual bandits with adversarial rewards, for generic
metric spaces X—that admit a non-atomic probability measure, e.g., any uncountable Polish
space—there never exists an optimistically universal learning rule. On the other hand, if X
does not admit a non-atomic probability measure, optimistic learning is possible.
Theorem 6.1. Let X be a separable metrizable Borel space.

1. Let A be a finite action space with |A| ≥ 2.

• If X admits a non-atomic probability measure, there does not exist an optimisti-
cally universal learning rule for any adversarial reward model considered in Defi-
nition 6.2 (i.e., all except stationary).

• Otherwise, there exists an optimistically universal learning rule for all reward
models from Definition 6.2 and Soabonline = Soabstat = SMV.

2. Let A be a countably infinite action space, there exists an optimistically universal learn-
ing rule for all reward models from Definition 6.2 and Soabonline = Soabstat = CS.

3. Let A be an uncountable separable metrizable Borel space, then universal learning is
never achievable and Soabonline = Soabstat = ∅.

The question of whether optimistic learning is possible for finite action spaces is an-
swered in Section 6.4. The case of infinite action spaces is treated in Section 6.6.1. Thus,
Theorem 6.1 is a concatenation of Theorems 6.4 and 6.5 and Section 6.6.1.

The fact that optimistic learning is impossible in the main case of finite action space
and spaces X admitting a non-atomic probability measure comes in stark contrast with all
learning frameworks that have been studied in the universal learning literature. Namely,
for the noiseless full-feedback (Chapter 3), noisy/adversarial full-feedback (Chapter 4) and
stationary partial-feedback (Chapter 5) learning frameworks, analysis showed that there
always existed an optimistically universal learning rule. Precisely, the optimistically universal
learning rule for stationary contextual bandits in finite action spaces provided in Chapter 5
combined two strategies:

• A strategy 0, which treats each distinct context completely separately by assigning a
distinct bandit subroutine to each new instance. Informally, this corresponds to learn-
ing the optimal action for each new context without gathering population information.

• A strategy 1, in which the learning rule views context in an aggregate fashion: it tries
to fit the policy that performed best on the complete historical data using learning-
with-experts subroutines, from a set of pre-defined policies, akin to empirical risk-
minimization approaches.

The procedure to combine these strategies estimates their performance, to implement the
best strategy during pre-defined periods. We show that for adversarial rewards, balancing
these two strategies is impossible. In particular, an adversarial reward mechanism can fool
the estimation procedure by changing behavior between the estimation period and the im-
plementation period. We provide some intuition of the nature of this impossibility result
below.
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Proof sketch for the non-existence of optimistically universal learning rules when
A is finite. The proof involves several major steps. First, one needs to show that uni-
versal learning is achievable for a large class of processes. In particular, we show that
deterministic SMV processes are learnable, where SMV is the characterization of learnable
processes for supervised learning or stationary contextual bandits. This is achieved by as-
signing each distinct instance a multi-armed bandit learner designed to learn the best action
for this instance, which corresponds to pure personalization (strategy 0). Next, we argue
that CS processes—the characterization of learnable processes for countable action spaces A
in stationary contextual bandits—can be learned with the same structural risk minimization
approach introduced in Chapter 5 for stationary contextual bandits, which corresponds to
generalization (strategy 1).

The main challenge is to show that one cannot universally learn both classes of processes
(deterministic SMV and CS) with a unique algorithm. At the high level, we show that by
contradiction, personalization and generalization are incompatible. We consider a CS-like
algorithm, where instances are i.i.d. during a phase, then the same sequence is repeated
many times. The reward is identical for each duplicate and has the following behavior: one
safe action a2 always has a relatively high reward (3/4), and an uncertain action a1 has
a random reward (Bernoulli B(1/2)). We then show that because of the CS property, the
algorithm needs to follow the safe action to be consistent: if it explores the uncertain action
too often, the incurred loss is significant. More precisely, we show that the exploration rate
of the unsafe action a2 decays to 0. Once the algorithm reaches a certain threshold, we
stop the stochastic process and consider a realization of the uncertain rewards and CS-like
process. Once these are taken as deterministic, the optimal policy would be to use the action
a2 when it has a high reward, which the algorithm did not perform. Repeating this process
inductively with a decaying threshold, we can show that on a deterministic SMV process,
the algorithm is not universally consistent.

This negative result also provides another proof that model selection is impossible for
contextual bandits. A formulation of this question was posed as a COLT 2020 open problem
[FKL20]. The impossibility of model selection was then recently proved first with a switching
bandit problem [MZ21]. Our results show this general impossibility in a completely different
context. More precisely, Proposition 6.1 below shows that universal consistency up to a fixed
error tolerance ϵ > 0 is always achievable under SMV processes (which were necessary for
universal learning even in the stationary case in Chapter 5). However, Theorem 6.1 implies
that combining these learning rules for decaying ϵ to achieve vanishing excess error is not
possible in general. The proof is given in Section 6.5.3.

Proposition 6.1. Let X be a separable metrizable Borel space and A a finite action space.
For any ϵ > 0, there exists a learning rule f ϵ· such that for any process X ∈ SMV and
adversarial reward mechanism (rt)t≥1, for any measurable policy π∗ : X → A,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât(ϵ)) ≤ ϵ, (a.s.),

where ât(ϵ) denotes the action selected by the learning rule at time t.
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Theorem 6.1 provides the characterizations of universally learnable processes in all cases
except the main case of interest when A is finite and X admits a non-atomic probability
measure. Giving exact characterizations for this case is rather complex and in the following,
we only give necessary conditions and sufficient conditions. These require the introduction
of novel classes of stochastic processes for online learning.

6.3.1 Additional classes of stochastic processes

We first recall a significantly stronger assumption from Condition FS asking that the process
only visits a finite number of distinct points. This very restrictive condition will only arise
for unbounded rewards R = [0,∞).

Condition FS. The process X satisfies |{x ∈ X : {x} ∩ X ̸= ∅}| <∞ (a.s.).

We then introduce two novel conditions on stochastic processes. Before doing so, we need
to introduce some exponential time scales. Intuitively, for α > 0, the exponential time scale
at rate α is the sequence of times given by T k(α) ≈ ⌊(1+α)k⌋ for k ≥ 0. For convenience, we
will instead consider for all integers i ≥ 0 the sequence of times T ki = ⌊2u(1 + v2−i)⌋ where
k = u2i + v and u ≥ 0, 0 ≤ v < 2i are integers. In particular, u = ⌊k2−i⌋ and v = k mod 2i.
These times have an exponential behavior with rate oscillating between 2−i−1 and 2−i but
conveniently, they form periods [T ki , T

k+1
i ) which become finer as i increases. For t ≥ 1, we

then define ki(t) as the index k such that t ∈ [T ki , T
k+1
i ). This allows us to consider the set

of times t such that Xt is the first appearance of the instance on its period,

T i = {t ≥ 1 : ∀T ki(t)i ≤ t′ < t,Xt′ ̸= Xt}.

By construction, note that T i ⊂ T i+1 for all i ≥ 0. We are now ready to define the next
condition which intuitively asks that the corresponding sparsified process has a CS behavior
uniformly in all exponential scales.

Condition 4. For any sequence of disjoint measurable sets (Ai)i≥1 of X , we have

lim
i→∞

E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Ai
(Xt)

 = 0.

Denote by C4 the set of all processes X satisfying this condition.

Then, we define the next condition which asks that there exists a rate to include decreas-
ing exponential scales while conserving the CS property.

Condition 5. There exists an increasing sequence of integers (Ti)i≥0 such that letting

T =
⋃
i≥0

T i ∩ {t ≥ Ti},

we have XT ∈ CS. Denote by C5 the set of all processes X satisfying this condition.
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We now introduce two new conditions on stochastic processes which we will show are
necessary for some of the considered reward models. These build upon the definition of C4
processes. Before introducing them, we need to analyze large deviations of the empirical
measure in extended CS processes. The next lemma intuitively shows that for an extended
process XT ∈ CS, for large enough time steps, one can bound the deviations of the empirical
measure of a set A ∈ B compared to the limit sub-measure µ̂X(A) uniformly in the set A.

Lemma 6.1. Let X be a stochastic process on X and T some X-dependent random times
such that XT ∈ CS. Then, for any ϵ > 0, there exists Tϵ ≥ 1 and δ > 0 such that for any
measurable set A ∈ B,

E[µ̂XT (A)] ≤ δ =⇒ E

[
sup
T≥Tϵ

1

T

∑
t≤T,t∈T

1A(Xt)

]
≤ ϵ.

The proof is given in Section 6.5.1. Now consider a process X ∈ C4. For any integer
p ≥ 0, the definition of C4 implies Xp := XT p ∈ CS. Indeed, the sets T i are increasing in
i ≥ 0, hence for i ≥ p one has T p ⊂ T i. As a result, the condition C4 implies that for any
disjoint measurable sets (Ai)i≥1, one has E[µ̂Xp(Ai)] = E[lim supT→∞

∑
t≤T,t∈T p 1Ai

(Xt)]→ 0
as i→∞. Now for any ϵ > 0 and T ≥ 1, we define

δp(ϵ;T ) := sup

{
0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup

l
E[µ̂Xl(A)] ≤ δ,

∀τ ≥ T online stopping time, E

[
1

2τ

∑
τ≤t<2τ,t∈T p

1A(Xt)

]
≤ ϵ

}
,

where the τ is a stopping time with respect to the filtration generated by the instance process
X. In particular, τ can be seen as an online procedure that decides when to count the number
of instances of Xp falling in the considered set A. Note that δp(ϵ;T ) satisfies the property
that for all measurable set A satisfying supl E[µ̂Xl(A)] ≤ δp(ϵ;T ) and any stopping time
τ ≥ T ,

E

[
1

2τ

∑
τ≤t<2τ,t∈T p

1A(Xt)

]
≤ ϵ,

which can be checked for all sets A ∈ B separately. Next, the quantity δp(ϵ;T ) is non-
decreasing in T . Further, as a direct application of Lemma 6.1, because Xp ∈ CS, there
exists T p(ϵ) ≥ 1 and δ > 0 such that for T ≥ T p(ϵ), we have δp(ϵ;T ) ≥ δ. As a result,
we have δp(ϵ) := limT→∞ δp(ϵ;T ) ≥ δ > 0. Also, the quantity δp(ϵ;T ) is non-increasing in
p since the sets T p are non-decreasing with p. Thus, δp(ϵ) is also non-increasing in p. We
are now ready to introduce the condition on stochastic processes based on the limit of the
quantities δp(ϵ).

Condition 6. X ∈ C4 and for any ϵ > 0, we have limp→∞ δp(ϵ) > 0. Denote by C6 the set of
all processes X satisfying this condition.

Intuitively, this asks that the maximum deviations are also bounded in p, hence C6 pro-
cesses have more regularity than general C4 processes. However, the maximum deviations
are limited by the fact that they should be discernible through an online stopping time τ .
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Learning setting
Stationary contextual bandits

[Chapter 5]
Contextual bandits with

adversarial rewards [Chapter 6]

Soabstat OL? Necessary and sufficient
conditions on Soab

OL?

Finite A, |A| ≥ 2, X with
non-atomic proba. measure SMV Yes CS ⊊ C5 ⊂ Soab ⊊ SMV

C5 = Soabonline ⊂ Soaboblivious ⊂ C6
No

Finite A, |A| ≥ 2, X without
non-atomic proba. measure SMV Yes Soab = SMV Yes

Countably infinite A CS Yes Soab = CS Yes
Uncountable A ∅ N/A Soab = ∅ N/A

Table 6.1: Characterization of learnable processes for universal learning in contextual ban-
dits, depending on the action space A, context space X , and reward model. When the model
is not specified, Soab refers to any of the considered models. OL? = Is optimistic learning
possible?

The following inclusions hold FS ⊂ CS ⊂ C5 ⊂ C6 ⊂ C4 ⊂ SMV. Indeed, the inclusion
FS ⊂ CS is known [Han21a]. CS ⊂ C5 and C6 ⊂ C4 are immediate from the definition of Con-
dition 5 and Condition 6 respectively. The inclusion C4 ⊂ SMV is shown in Proposition 6.6.
Last, the fact that for oblivious rewards, C6 is necessary (Theorem 6.8) and C5 is sufficient
(Theorem 6.12) shows that C5 ⊂ C6.

6.3.2 Necessary and sufficient conditions for universal learning

Our second main contribution is giving necessary and sufficient conditions for universal
learning with adversarial rewards, which are summarized in Section 6.3.1. In addition to
characterizations from Theorem 6.1, we have the following.

Theorem 6.2. Let X be a separable metrizable Borel space admitting a non-atomic prob-
ability measure and A a finite action space with |A| ≥ 2. Then CS ⊊ C5 = Soabonline ⊂
Soaboblivious ⊂ Soabmemoryless ⊊ SMV. Further, Soaboblivious ⊂ C6 ⊊ SMV.

These results are proved in Section 6.5. The fact that Soabmemoryless ⊊ SMV is proved
in Theorem 6.7. Soaboblivious ⊂ C6 is proved in Theorem 6.8 while C6 ⊊ SMV comes from
Theorem 6.7 and the fact that C6 ⊂ C4 (Theorem 6.9 further gives an example of processes
in C4 \ C6). Soabonline ⊂ C5 is proved in Theorem 6.11 and CS ⊊ C5 ⊂ Soabonline is proved
in Theorem 6.12 and Proposition 6.7. Here is the overview of relations we show between
the classes of processes: for X admitting non-atomic probability measures, CS ⊊ C5 ⊂ C6 ⊊
C4 ⊊ SMV. We provide below an overview of the techniques we use to prove this result.

Proof techniques and intuitions. We start with the necessary conditions. To give
intuitions, we focus on the weaker necessary condition Soaboblivious ⊂ C4. This also follows
the order of arguments in the complete proof. Condition C4 requires that the process visits
a sublinear number of sets from any countable partition, uniformly in all exponential time
scales T i for i ≥ 1. When this is not satisfied by a process X, one can take advantage
of these discrepancies between time scales with adversarial rewards to obtain a somewhat
similar personalization/generalization incompatibility phenomenon as the one described for
the non-existence of optimistically universal learning rules. More precisely, if X /∈ C4, there
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exist disjoint sets (Aj)j≥1 with the following behavior: the set Aj is visited infinitely often
with a constant fraction of times for some time scale T i(j). One can then consider similar
oblivious rewards as before: the rewards are identical on duplicates but with one safe and
one uncertain option. The safe action always has a reward 3/4 while the uncertain action
has a reward sampled from a Bernoulli B(1/2). To avoid a constant error rate, for each set
Ai, eventually, the algorithm’s exploration rate of the uncertain action decays to 0. Once
this rate is sufficiently small, we stop the process and consider a specific realization of the
rewards. Since the rewards are now deterministic, the optimal policy on Aj selects the
uncertain action when beneficial, yielding a non-negligible improvement in average reward
compared to the algorithm. Because the sets Aj are disjoint, we can repeat this argument
for the decreasing scales of exponential times T i(j) and concatenate the obtained policies.
Compared to the concatenated policy, the algorithm incurs non-negligible regret infinitely
often for the constructed rewards, and the algorithm is not universally consistent as a result.
We omitted for simplicity details including the fact that during each constructed phase, no
information on the rewards of future local space zones should be revealed. This can be
achieved with oblivious rewards thanks to their dependence on the past history of contexts,
but would not be possible with stationary rewards. This was expected since for stationary
rewards, we showed in Chapter 5 that universal learning under all SMV processes is possible,
hence C4 is not necessary.

For sufficient conditions, we show that universal learning is possible under C5 processes
with adversarial rewards. This condition asks that there exist an adequate rate to add
duplicates (within the exponential time scales T i), that still conserves the CS property: the
set T of times from Condition 5. For all points in this set T , we can use the structural
risk minimization approach (strategy 1) since these points still have CS behavior. For the
remaining duplicates, we use pure personalization by assigning a bandit learner to each
distinct instance (strategy 0). A caveat with this approach is that strategy 0 performs
well when a single instance has many duplicates, while T only accounts for points with
one duplicate per period within the current exponential time scale. To solve this issue, our
complete learning rule uses batching techniques to appropriately balance strategies 0 and
1 (morally allowing for an increasing number of duplicates per period with respect to the
exponential scales given by T ). We note that it heavily relies on the knowledge of the correct
rate to add duplicates for X, as expected given that optimistically universal learning rules
do not exist.

In particular, our characterization is complete for the strongest online rewards, unlike
for memoryless and oblivious rewards. We believe that C5 ⊊ C6 in general. The proof of
Theorem 6.8 for the necessity of C6 for oblivious rewards can be tightened given a stronger
reward model in which the reward adversary can additionally take into account the complete
sequence X—instead of the revealed contexts to the learner X≤t. We refer to this reward
model as prescient rewards (see Definition 6.5 for a formal definition) and show that in this
case, a stronger C7 condition is necessary (Theorem 6.10). We leave open the question of
whether C5 = C7. If this were true, then we also have an exact characterization for prescient
rewards.

Our findings are summarized in Table 1, which also compares learnable processes for
stationary and adversarial contextual bandits. We leave open the exact characterization
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of learnable processes for memoryless and oblivious rewards in finite action spaces A and
context spaces admitting a non-atomic probability measure.

Open question: Let X be a separable metrizable Borel space admitting a non-atomic prob-
ability measure and A a finite action space with |A| ≥ 2. What is an exact characterization
of Soabmemoryless or Soaboblivious?

Finally, we also give results in a setting where we assume that rewards are unbounded.
We answer the same questions: What are the learnable processes for which universal learning
is possible, and can we obtain optimistically universal learning rules? We use a subscript
Soabunbounded to specify that we consider the case of unbounded rewards. We show that in
that case, results are identical to the case of stationary contextual bandits.

Proposition 6.2. Let X be a separable metrizable Borel space and consider unbounded
rewards. For all reward models,

• if A is countable, Soabunbounded = FS. Further, there is an optimistically universal
learning rule,

• if A is uncountable, universal learning is never achievable.

The proof is given in Section 6.6.2. Last, we extend our results to rewards with additional
regularity assumptions. For a given metric d on A, we suppose that they are uniformly-
continuous, generalizing a notion introduced in Chapter 5.

Let (A, d) be a separable metric space. The reward mechanism (rt)t≥1 is uniformly-
continuous if for any ϵ > 0, there exists ∆(ϵ) > 0 such that

∀t ≥ 1,∀(x≤t,a≤t−1, r≤t−1) ∈ X t ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ϵ)⇒ |E[rt(a)− rt(a′) | X≤t = x≤t,a≤t−1, r≤t−1]| ≤ ϵ,

For uniformly-continuous rewards, we use a reduction to the case of rewards without
regularity assumptions, which we refer to as unrestricted rewards. Then, we recover the same
results for uniformly-continuous rewards, in totally-bounded (resp. non-totally-bounded)
action spaces as for unrestricted rewards in finite (resp. countably infinite) action spaces. We
adopt the notation Soab-Uc to emphasize that we consider uniformly-continuous rewards.

Theorem 6.3. Let X be a metrizable Borel space and select a model within model ∈
{memoryless, oblivious, online}.

• If A is a totally-bounded metric space, all properties for Soabmodel for finite action
spaces described in Theorem 6.2 hold for Soab-Ucmodel. Further, there is an opti-
mistically universal learning rule for uniformly-continuous rewards if and only if there
is one for finite action spaces for unrestricted rewards as in Theorem 6.1.

• If A is a non-totally-bounded metric space, all properties for Soabmodel for countable
action spaces described in Theorem 6.1 hold for Soab-Ucmodel. Further, there is always
an optimistically universal learning rule for uniformly-continuous rewards.
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This result is proved in Section 6.6.3 and is a concatenation of Proposition 6.8 for nec-
essary conditions and Theorem 6.13 and Theorem 6.14 for sufficient conditions for universal
learning.

6.4 Existence or Non-Existence of an Optimistically Uni-
versal Learning Rule

In this section, we ask the question of whether there exists an optimistically universal learning
rule for finite action spaces. In fact, in all the frameworks considered for universal learning—
noiseless (Chapter 3) or noisy/adversarial responses (Chapter 4) in the full-feedback setting
and stationary partial-feedback responses (Chapter 5)—analysis showed that optimistically
universal learning always existed. However, the learning rule provided in Chapter 5 for
stationary rewards under SMV processes heavily relies on the assumption that the rewards
are stationary to make good estimates of the performance of different learning strategies. In
particular, one can easily check that this learning rule would not be universally consistent
under adversarial rewards even in the weakest memoryless setting. Instead, we will show that
for contextual bandits with adversarial rewards, in general, there do not exist optimistically
universal learning rules.

To do so, we first need to argue that the set of learnable processes even in the online
setting Soabonline contains a reasonably large class of processes. We first show that using
the EXP3.IX algorithm for adversarial bandits [Neu15] as a subroutine yields a universally
consistent learning rule for processes X which visit a sublinear number of distinct instances.

Proposition 6.3. Let X be a metrizable separable Borel space and A a finite action space.
There exists a learning rule which is universally consistent for online rewards under any
process X satisfying |{x ∈ X : {x} ∩ X≤T ̸= ∅}| = o(T ) (a.s.).

Proof Consider the learning rule f· that simply performs independent copies of the EXP3.IX
algorithm in parallel, so that each distinct instance visited is assigned a EXP3.IX. More
precisely, for any t ≥ 1, instances x≤t and observed rewards r≤t−1, we define

ft(x≤t−1, r≤t−1, xt) = EXP3.IX(âSt , rSt),

where St = {t′ < t : xt′ = xt} is the set of times that xt was visited previously and ât′
denotes the action selected at time t′ for t′ < t. We now show that this learning rule is
universally consistent on any process X which visits a sublinear number of distinct instances
almost surely. For simplicity, we denote ât the action selected by f· at time t. Let X such
that almost surely, 1

T
|{x ∈ X : {x} ∩ X≤T ̸= ∅}| → 0. Denote by E this event, and for any

T ≥ 1 we define ϵ(T ) = 1
T
|{x ∈ X : {x} ∩ X≤T ̸= ∅}| and ST = {x ∈ X : {x} ∩ X≤T ̸= ∅},

hence |ST | = Tϵ(T ). Further, for any x ∈ ST we pose TT (x) = {t ≤ T : Xt = x}. Let
H0(T ) = {x ∈ ST : |TT (x)| < 1√

ϵ(T )
}, H1(T ) = {x ∈ ST : 1√

ϵ(T )
≤ |TT (x)| < ln2 T} and

H2(T ) = {x ∈ ST : |TT (x)| ≥ ln2 T}, so that ST = H0(T ) ∪H1(T ) ∪H2(T ). Note that∑
x∈H0(T )

∑
t∈TT (x)

rt(π(Xt))− rt(ât) ≤
|H0(T )|√
ϵ(T )

≤
√
ϵ(T )T.
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Now fix a measurable policy π : X → A. Then,∑
x∈H2(T )

∑
t∈TT (x)

rt(π(Xt))− rt(ât) ≤
∑

x∈H2(T )

max
a∈A

∑
t∈TT (x)

(rt(a)− rt(ât)).

Now recall that for any x ∈ ST , on TT (x) the algorithm EXP3.IX was performed. As a result,
by Theorem 5.6, conditionally on the realization X, for any x ∈ H2(T ), with probability
1− 1

T 3 , conditionally on X,

max
a∈A

∑
t∈TT (x)

(rt(a)− rt(ât)) ≤ 3c
√
|A||TT (x)| ln |A| lnT ≤ |TT (x)| · 3c

√
|A| ln |A|
lnT

.

Noting that |H2(T )| ≤ T , we obtain by the union bound that (conditionally on X) with with
probability 1− 1

T 2 ,

∑
x∈H2(T )

max
a∈A

∑
t∈TT (x)

(rt(a)− rt(ât)) ≤ 3c

√
|A| ln |A|
lnT

∑
x∈H2(T )

|TT (x)| ≤ 3c
√
|A| ln |A| T

lnT
.

We denote by FT the event when the above equation holds. We have P[FT ] ≥ 1− 1
T 2 where

the probability is also taken over X. We now turn to points in H1(T ) for which we need
to go back to the proof of Theorem 5.6 from [Neu15]. Taking the same notations as in the
original proof, for u ≥ 1, let ηu = 2γu =

√
ln |A|
|A|u , and for any t ≥ 1, a ∈ A denote by pt,a the

probability that the learning rule selects action a at time t, and let ℓt,a = 1 − rt(a). Next,
let u(t) = |{s ≤ t : Xs = Xt}| and pose ℓ̃t,a = 1−rt(a)

pt,a+γu
1[ât = a]. Using the derivations of the

proof of Theorem 5.6, for any x ∈ ST , writing TT (x) = {t1(x), . . . , t|TT (x)|}, for any a′ ∈ A,

|TT (x)|∑
u=1

(
ℓtu,â − ℓ̃tu,a′

)
≤ ln |A|
η|TT (x)|

+

|TT (x)|∑
u=1

ηu
∑
a∈A

ℓ̃tu,a.

Summing these equations with a′ = π(x), we obtain∑
x∈H1(T )

∑
t∈TT (x)

(1− ℓ̃t,π(Xt))− rt(ât) ≤
∑

x∈H1(T )

√
|A| ln |A||TT (x)|+

∑
x∈H1(T )

∑
t∈TT (x)

ηu(t)
∑
a∈A

ℓ̃t,a.

Now let for any a ∈ A, conditionally on X, the sequence (
∑

x∈H1(T ′)

∑
t∈TT ′ (x) ηu(t)(ℓ̃t,a −

ℓt,a))T ′≤T is a super-martingale (the immediate expected value of ℓ̃t,a is pu(t)
pu(t)+γu(t)

ℓt,a) and each

increment is upper-bounded by 2 in absolute value: 0 ≤ ηu(t)ℓ̃t,a ≤ ηu(t)
ℓt,a

pu(t),a+γu(t)
≤ ηu(t)

γu(t)
≤ 2.

Therefore, Azuma’s inequality implies

P

 ∑
x∈H1(T )

∑
t∈TT (x)

ηu(t)
∑
a∈A

(ℓ̃t,a − ℓt,a) ≤ 4T 3/4 | X

 ≥ 1− e−2
√
T .
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Similarly, because 0 ≤ ℓ̃t,a ≤ 1
γu(t)

= 2
√

|A|u(t)
ln |A| , we have

P

 ∑
x∈H1(T )

∑
t∈TT (x)

∑
a∈A

(ℓ̃t,π(Xt) − ℓt,π(Xt)) ≤ 4

√
|A|
ln |A|

T 3/4 lnT | X

 ≥ 1− e−2
√
T .

As a result, on an event GT of probability at least 1− (1 + |A|)e−2
√
T , we have∑

x∈H1(T )

∑
t∈TT (x)

rt(π(Xt))− rt(ât) ≤
∑

x∈H1(T )

√
|A| ln |A||TT (x)|+

∑
x∈H1(T )

∑
t∈TT (x)

ηu(t)
∑
a∈A

ℓt,a

+ 4

√
|A|
ln |A|

T 3/4 lnT + 4T 3/4

≤
∑

x∈H1(T )

√
|A| ln |A||TT (x)|+

∑
x∈H1(T )

|A|
∑

t∈TT (x)

ηu(t)

+ 4

√
|A|
ln |A|

T 3/4 lnT + 4T 3/4

≤
∑

x∈H1(T )

3
√
|A| ln |A||TT (x)|+ 8

√
|A|T 3/4 lnT

≤ 3
√
|A| ln |A|ϵ(T )1/4T + 8

√
|A|T 3/4 lnT.

Combining all our estimates, we showed that on FT ∩ GT ,∑
t≤T

rt(π(Xt))−rt(ât) ≤ 8|A|T 3/4 lnT +3c
√
|A| ln |A| T

lnT
+(
√
ϵ(T )+3

√
|A| ln |A|ϵ(T )1/4)T

Now note that
∑

T≥1 P[F cT ] + P[GcT ] <∞. Hence, the Borel-Cantelli lemma implies that on
an event A of probability one, there exists T̂ ≥ 1 such that for any T ≥ T̂ , the event FT ∩GT
is satisfied. As a result, on the event E ∩ A, since ϵ(T )→ 0, we obtain

lim sup
T→∞

1

T

T∑
t=1

rt(π(Xt))− rt(ât) ≤ 0.

By union bound, E ∩ A has probability one, hence we proved that the learning rule f· is
universally consistent on X. This ends the proof of the proposition. ■

As a simple consequence of Proposition 6.3, deterministic SMV processes are always
universally learnable even in the online rewards setting.

Proposition 6.4. Let X be a metrizable separable Borel space and A a finite action space.
There exists a learning rule that is universally consistent for any deterministic process X ∈
SMV under online rewards.

Proof We first show that any deterministic process X ∈ SMV visits a sublinear number of
distinct instances almost surely. Denote ST = {Xt : t ≤ T} the set of visited instances until
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time T and let S =
⋃
T→∞ ST . Then, {x}x∈S forms a countable sequence of disjoint sets.

Hence, by the SMV property and because X is deterministic, we have that

|{x : {x} ∩ X≤T ̸= ∅}| = |St| = |{x ∈ S : {x} ∩ X≤T ̸= ∅}| = o(T ), (a.s.).

Hence, by Proposition 6.3, the learning rule which performs EXP3.IX independently for
each distinct visited instance is universally consistent under X. This ends the proof of the
proposition. ■

Next, we argue that CS processes are also universally learnable in the online rewards
setting. In the case of countable action sets A, in Chapter 5 we gave a universally consistent
learning rule EXPINF under CS processes using Corollary 5.1. Precisely, the learning rule
uses a result from [Han21a] showing that there exists a countable set of policies Π = {πi :
X → A, i ≥ 1} that is empirically dense within measurable policies under any CS process. As
a result, to yield a universally consistent learning rule under CS processes, it suffices to have
a learning rule with sublinear regret compared to any policy π ∈ Π. The algorithm EXPINF
achieves this property using restarted EXP3.IX subroutines with a slowly increasing finite
set of experts from the sequence Π. Because the subroutines EXP3.IX have guarantees in
the adversarial bandit framework, EXPINF directly inherits this guarantee and is a result
universally consistent under CS processes for online rewards. Thus, CS ⊂ Soabonline.

We are now ready to show that for spaces X on which there exists a non-atomic proba-
bility measure on the space X , there does not exist any optimistically universally consistent
learning rule. Precisely, we show that there is no learning rule that is universally consistent
both on CS and deterministic SMV processes. Note that most context spaces X of interest
would admit a non-atomic probability measure, in particular any uncountable Polish space.

Theorem 6.4. Let X a metrizable separable Borel space such that there exists a non-atomic
probability measure µ on X , i.e., such that µ({x}) = 0 for all x ∈ X . If A is a finite action
space with |A| ≥ 2, then there does not exist an optimistically universal learning rule for
memoryless rewards (a fortiori for oblivious, prescient, or online rewards).

Proof We fix a1, a2 ∈ A two distinct actions. Suppose that there exists an optimistically
universal learning rule f·. For simplicity, we will denote by ât the action chosen by this
learning rule at step t. We will construct a deterministic process X ∈ SMV and rewards rt
for which f· does not achieve universal consistency.

We construct the process X and rewards (rt)t≥1 recursively. Let ϵk = 2−k for k ≥ 1. The
process and rewards are constructed together with times Tk such that a significant regret is
incurred to the learner between times Tk and Tk+1 for all k ≥ 1. We pose T0 = 0. We are
now ready to start the induction. Suppose that we have already defined Tl for l < k and
the deterministic process X≤Tk−1

as well as the deterministic rewards rt for t ≥ Tk−1. Let
Z = (Zi)i≥1 be an i.i.d. sequence on X with distribution µ. Pose T i = (1+i)!

ϵk
Tk−1 for i ≥ 0

and ki = ϵkT
i (= (1 + i)!Tk−1), ni =

∑
j<i kj for i ≥ 0. Letting x̄ ∈ X an arbitrary instance,

we now consider the following process X̃:
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X̃t =


Xt, t ≤ Tk−1,

x̄, Tk−1 < t < T 0,

Zni+l, t = T i + p · ki + l, 0 ≤ p < 1
ϵk
, 0 ≤ l < ki, i ≥ 0,

x̄, 2T i ≤ t < T i+1, i ≥ 0.

The process is deterministic until time T 0. From this point, the process is constructed by
periods, where period i ≥ 0 corresponds to times T i ≤ t < T i+1 = (1 + i)T i. Each period i
has a first phase T i ≤ t < 2T i composed of 1

ϵk
sub-phases of length ki = ϵkT

i on which the
process repeats exactly. We can therefore focus on the first sub-phase T i ≤ t < T i(1 + ϵk),
which is constructed as an i.i.d. process following distribution µ independent from the past
samples. In the second phase of period i for 2T i ≤ T i+1 the process is idle equal to x̄. This
ends the construction of the process X̃.

We now argue that X̃ ∈ CS. Indeed, note that forgetting about the part for t ≤ T 0, and
idle phases where the process visits x̄ only, this process takes values from an i.i.d. process Z
and each value is duplicated 1

ϵk
times throughout the whole process. Formally, let (Ap)p≥1

be a decreasing sequence of measurable sets with Ap ↓ ∅. Then for any T i < T ≤ T i+1 with
i ≥ 1 we have, for p sufficiently large so that x̄ /∈ Ap,

1

T

T∑
t=1

1Ap(X̃t) ≤
2T i−1

T i
+

1

ϵkT i

ni+ki−1∑
l=ni

1Ap(Zl)

≤ 2

1 + i
+
ni + ki
ki

1

ni + ki

ni+ki−1∑
l=0

1Ap(Zl).

Last, we note that ni+ki
ki
→ 1 as i → ∞. As a result, we obtain µ̂X̃(Ap) ≤ µ̂Z(Ap). Because

Z ∈ CS, we have E[µ̂Z(Ap)]→ 0 as p→∞, which proves E[µ̂X̃(Ap)]→ 0 as well. This ends
the proof that X̃ ∈ CS.

We now construct rewards. Before doing so, for any i ≥ 0, let δi such that

P
[

min
1≤u<v<ni+1

ρ(Zi, Zj) ≤ δi

]
≤ 2−i−2.

This is possible because µ is non-atomic, as a result with probability one, all Zk for k ≥ 1
are distinct. Then, by the union bound, with probability at least 1− 1

2
= 1

2
, for all i ≥ 0 we

have
min

1≤u<v<ni+1

ρ(Zu, Zv) > δi.

We denote by E the event where the above inequality holds for all i ≥ 1 and all u ≥ 1, Zu ̸= x̄.
Because µ is non-atomic, we still have P[E ] ≥ 1

2
. We now construct a partition of X as follows.

Let (xk)k be a dense sequence of X . We denote by B(x, r) = {x′ ∈ X , ρ(x, x′) < r} the ball
centered at x of radius r > 0. For any k ≥ 1 and δ > 0 let Pk(δ) = B(xk, δ) \

⋃
l<k B(xl, δ).

Then, (Pk(δ))k forms a partition of X . For any δ > 0 and sequence b = (bk)k≥1 in {0, 1} we
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consider the following deterministic rewards

rδ,b(a | x) =


bk a = a1, x ∈ Pk(δ),
3
4

a = a2,

0 a /∈ {a1, a2}.

Now for any sequence of binary sequences b = (bi)i≥0 where bi = (bik)k≥1, we will consider the
memoryless rewards rb defined as follows. The deterministic rewards rt being constructed for
t ≤ Tk−1, we pose rbt = rt for t ≤ Tk−1. For all idle phases, i.e., Tk−1 < t < T 0 or 2T i ≤ T i+1

for i ≥ 0, we pose rbt = 0. Last, for any i ≥ 0 and T i ≤ t < 2T i we pose rbt = rδi,bi . Now
let b be a random sequence such that all bi are independent i.i.d. Bernoulli B(1

2
) sequences

in {0, 1}. On the event E , all new instances fall in distinct sets of the partitions defining
the rewards. Hence, with this perspective, the reward of the action a2 is always 3

4
while

on the event E , for each new instance value, the reward of a1 is a random Bernoulli B(1
2
).

Intuitively, for a specific instance x, if the learner has not yet explored the arm a1, selecting
a1 incurs an average regret 1

4
compared to selecting the fixed arm a2. We will then argue

that there is a time Tk and a realization of X̃≤Tk and rewards, such that on this realization,
the regret compared to the best actions for each instance in hindsight is significantly large.
We now formalize these ideas.

Because X̃ is a CS process, there exists a universally consistent learning rule under X̃.
Then, because f· is optimistically universal, it is universally consistent under X̃. Now fix a
specific realization of the sequences in b, considering the policy which always plays action
a2, i.e. π0 : x ∈ X 7→ a2 ∈ A, we have

lim sup
T→∞

1

T

T∑
t=1

rbt (a2 | Xt)− rbt (ât | Xt) ≤ 0, (a.s.).

In particular, since P[E ] ≥ 1
2
, we have

E

[
lim sup
T→∞

1

T

T∑
t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E ,b

]
≤ 0.

As a result, taking the expectation over b then applying Fatou’s lemma gives

lim sup
T→∞

E

[
1

T

T∑
t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E

]
≤ 0.

Now let αk := 1
16·41/ϵk . In particular, there exists i ≥ 4

αk
such that for all T ≥ T i,

E

[
1

T

T∑
t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E

]
≤ αk

4
. (6.1)

For simplicity, we may write rbt (a) instead of rbt (a | x), when it is clear from context that
x = Xt. We now focus on period [T i, 2T i) and denote by S ip := {T i + (p − 1) · ϵkT i ≤ t <
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T i + p · ϵkT i} the sub-phase p for 1 ≤ p ≤ 1
ϵk

of this period. Also note by Aip the number of
new exploration steps for arm a1 during S ip, i.e., times when the learner selected a1 for an
instance that had not previously been explored

Aip = {t ∈ S ip : ât = a1,∀1 ≤ q < p : ât+(q−p)ϵkT i ̸= a1}, Aip = |Aip|.

We show by induction that E[Aip | E ] ≤ 4p+1αkT
i for all 1 ≤ p ≤ 1

ϵk
. Let 1 ≤ p ≤ 1

ϵk
. Suppose

that the result was shown for 1 ≤ q < p (if p = 1 this is directly satisfied). We have

E

T i(1+pϵk)−1∑
t=1

rbt (a2)− rbt (ât) | E


≥ −2T i−1 + E

 T i(1+pϵk)−1∑
t=T i(1+(p−1)ϵk)

(rbt (a2)− rbt (ât))1Ai
p
(t)−

∑
q<p

(p+ 1− q)Aiq
4

| E


= −2T i−1 −

∑
q<p

p+ 1− q
4

E[Aiq | E ]

+ E

 T i(1+pϵk)−1∑
t=T i(1+(p−1)ϵk)

1Ai
p
(t)E[rbt (a2)− rbt (ât)|t ∈ Aip, E ]

∣∣∣∣∣∣ E


where in the first inequality we discard times from phase S ip for which an exploration of the
corresponding instance during phases S i1, . . .S ip−1: these yield a regret least (3/4−1) = −1/4
compared to the fixed arm a2. For each instance newly explored during phase S iq, i.e. t ∈ S iq,
it affects potentially the (p+ 1− q) next times with the same instance in phases S iq, . . . ,S ip.
Now, note that all elements in b are together independent, and independent from the process
X, in particular, independent from E . As a result, the rewards at a time Aip are independent
of the past because Xt visits a set of the partition (Pk(δi))k which has never been visited.
Thus, we have

E[rbt (a2)− rbt (ât)|t ∈ Ap, E ] =
3

4
− 0 + 1

2
=

1

4
.

Combining the above estimates with Eq (6.1) then gives

− 2T i−1 − 1

4

∑
q<p

(p+ 1− q)E[Aiq | E ] +
1

4
E[Aip | E ] ≤ E

T i(1+pϵk)−1∑
t=1

rbt (a2)− rbt (ât) | E


≤ αk

4
T i(1 + pϵk) ≤

αk
2
T i.
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Thus,

E[Aip | E ] ≤
(

8

1 + i
+ 2αk

)
T i +

∑
q<p

(p+ 1− q)E[Aiq | E ]

≤ 4αkT
i

(
1 +

p−1∑
q=1

(p+ 1− q)4q
)

≤ 4αkT
i

(
1 +

p−1∑
q=1

2p−q4q

)
= 4αkT

i (1 + 2p(2p − 1)) ≤ 4p+1αkT
i.

This completes the induction.
For any time t, denote a∗t = argmaxa∈A r

b
t (a) the optimal arm in hindsight. Note that

a∗t ∈ {a1, a2}. We lower bound the regret of the learner compared to the best action in
hindsight until time T i+1. To do so, define B =

⋃1/ϵk
p=1 {t ∈ S ip : ∀1 ≤ q ≤ p, t+ (q − p)ϵkT i /∈

Aiq} the set of times t such that the learner never explored a1 on the present and past
appearances of the instance Xt. We also define C = {T i ≤ t < 2T i : a∗t = a1} the set of
times when a1 was the optimal action. One can observe that for any time in B, because no
exploration on a1 was performed up for the corresponding instance Xt in the past history,
P[t ∈ C|t ∈ B, E ] = 1

2
. Hence, if t ∈ B∩C ∩E , the learner incurs a regret at least 1

4
compared

to the best arm a∗t = a1. Therefore,

E

2T i−1∑
t=1

rbt (a
∗
t )− rbt (ât) | E

 ≥ 1

4
E

[∑
t∈B

1C(t) | E

]
=

1

8
E[|B| | E ].

where by construction, we have |B|+
∑1/ϵk

p=1

(
1
ϵk
− p+ 1

)
Aip = 2T i − T i = T i. As a result,

E

2T i−1∑
t=1

rbt (a
∗
t )− rbt (ât) | E

 ≥ T i

8
− αk

2
T i

1/ϵk∑
p=1

(
1

ϵk
− p+ 1

)
4p

≥ T i

8
− αkT i41/ϵk

≥ T i

16
≥ 2T i − 1

32
.

Hence, there exists a realization of instances X<2T i ≤ X̃<2T i falling in E and of rewards
(rt)<2T i such that the regret compared to the best action in hindsight for on this specific
instance sequence and for these rewards is at least T i

16
. We then pose Tk := 2T i − 1, and

use the realization X≤Tk , (rt)≤Tk for the deterministic process X≤Tk and (rt)t≤Tk . We recall
that by construction, the realizations are consistent with the previously constructed process
X≤Tk−1

and rewards (rt)≤Tk−1
. Further, to each new instance between times T i and 2T i − 1

corresponded the best action in hindsight: this gives a collection of pairs (x, a) where x ∈ X
is an instance visited by the deterministic process X between times T i and 2T i − 1 and
a ∈ {a1, a2} is the corresponding best action. Let Dk denote this collection. This ends the
recursive construction of the deterministic process X and rewards.
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Because we enforced that the samples of µ be always distinct and different from x̄ across
the construction of X, the countable collection

⋃
k≥1Dk of pairs instance/optimal-action

never contains pairs with the same instance x. Hence, we can consider the following mea-
surable policy π∗ : X → A defined by

π∗(x) =

{
a if (x, a) ∈

⋃
k≥1Dk,

a2 otherwise.

This policy always performs the optimal action in hindsight. Hence by construction, for any
k ≥ 1,

E

[
1

Tk

Tk∑
t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]
≥ 1

32
,

where ât refers to the learner’s decisions on the constructed process X and rewards (rt)t≥1.
Note that the expectation is taken only with respect to the learner’s randomness given that
X and (rt)t≥1 are deterministic. Because the above equation holds for all k ≥ 1 and (Tk)k≥1

is an increasing sequence of times, we have

E

[
lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât)

]
≥ lim sup

T→∞
E

[
1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât)

]
≥ 1

32
,

where we used Fatou’s lemma. This proves that f· is not universally consistent on X.
We now show that X ∈ SMV. It suffices to check that it visits a sublinear number

of distinct points—this is also necessary since X is deterministic. For t ≥ 1, denote by
Nt the number of distinct instances visited by the process X≤t. Fix k ≥ 1. The process
X≤Tk being constructed from the process X̃≤Tk above, we re-use the same notations. Let
i ≥ 1 such that Tk = 2T i − 1. For 1 ≤ j ≤ i and T j ≤ t < min(T j+1, Tk) we have
Nt ≤ Tk−1 + 1 + nj + kj ≤ 1 + ϵkT

0 + 2kj ≤ 1 + 3ϵkT
j ≤ 1 + 3ϵkt. (The additional 1

accounts for x̄.) For Tk−1 < t < T 0, we have Nt ≤ 1 +Ntk−1
≤ 2 + 3ϵk−1t. As a result for all

Tk−1 < t ≤ Tk we have
Nt ≤ 2 + 3ϵk−1t.

Because ϵk → 0 as k → ∞, we obtain that Nt

t
→ 0 as t → ∞. This shows that X ∈ SMV.

Because X is deterministic and in SMV, Proposition 6.4 shows that there exists a universally
consistent learning rule on X. However, f· is not universally consistent under X which
contradicts the hypothesis. This ends the proof that there does not exist an optimistically
universal learning rule. ■

We now turn to the case of spaces X which do not have a non-atomic measure and show
that in this case, the learning rule for processes visiting a sublinear number of distinct in-
stances in Proposition 6.3 is an optimistically universal learning rule for all settings including
online rewards.

Theorem 6.5. Let X be a metrizable separable Borel space such that there does not exist
a non-atomic probability measure on X , and A a finite action space. Then, learnable pro-
cesses are exactly Soabstat = Soabonline = SMV and there exists an optimistically universal
learning rule for all settings.
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Proof We show that any process X ∈ SMV visits a sublinear number of distinct instances
almost surely. Fix X ∈ SMV. Using Lemma 5.3 from Chapter 5, because X does not admit a
non-atomic probability measure, there exists a countable set Supp(X) such that on an event
E of probability one, for all t ≥ 1, Xt ∈ Supp(X). Then consider the sequence ({x})x∈Supp(X)
of disjoint measurable sets of X . Applying the SMV property of X to this sequence yields
|{x ∈ Supp(X) : {x} ∩ X≤T}| = o(T ), (a.s.). We denote by F the corresponding event of
probability one. By union bound P[E ∩ F ] = 1. Now on the event E , for any T ≥ 1 we have

|{x ∈ X : {x} ∩ X≤T ̸= ∅}| = |{x ∈ Supp(X) : {x} ∩ X≤T}|.

As a result, on the event E ∩ F we have |{x ∈ X : {x} ∩ X≤T ̸= ∅}| = o(T ), which proves
the claim that SMV visit a sublinear number of distinct instances almost surely. As a
result, the learning rule f· from Proposition 6.3 which simply performs independent copies
of the EXP3.IX algorithm for each distinct visited instance is universally consistent under
all processes X ∈ SMV. Now recall that in the stationary case, the condition SMV is already
necessary for universal learning. This condition is already necessary for universal learning
in the noiseless full-feedback setting [Han21a]. As a result, Soabonline ⊂ Soabstat = SMV.
Therefore, universally learnable processes are exactly SMV even in the online rewards setting
and f· is optimistically universal, which completes the proof. ■

6.5 Universally Learnable Processes for Context Spaces
with Non-Atomic Probability Measures

6.5.1 Necessary conditions on learnable processes

In the previous section, we showed that for spaces X that do not have non-atomic probability
measures, the set of learnable processes is exactly SMV, independently of the learning setting.
Here, we focus on the remaining case of universal learning for spaces X that admit a non-
atomic probability measure for adversarial rewards and aim to understand which processes
admit universal learning. We focus here on necessary conditions; sufficient conditions are
given in the next section.

Condition C4 is necessary for universal learning with oblivious rewards

We quickly recall the definition of condition C4. For an integer i ≥ 0 and any k ≥ 1, we define
T ki = ⌊2u(1 + v2−i)⌋ where k = u2i + v and u ≥ 0, 0 ≤ v < 2i are integers. In particular,
u = ⌊k2−i⌋ and v = k mod 2i. These times form periods [T ki , T

k+1
i ) which become finer as

i increases. Then consider the set of times t such that Xt is the first appearance of the
instance on its period,

T i = {t ≥ 1 : T ki ≤ t < T k+1
i , ∀T ki ≤ t′ < t,Xt′ ̸= Xt}.

We note that the sets T p are increasing with p. We recall that C4 is defined as follows.
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Condition 4. For any sequence of disjoint measurable sets (Ai)i≥1 of X , we have

lim
i→∞

E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Ai
(Xt)

 = 0.

Denote by C4 the set of all processes X satisfying this condition.

We first give an alternative definition of C4 which will be useful in the next results.

Proposition 6.5. Let X be a metrizable separable Borel space and X a stochastic process
on X . The following are equivalent.

• X ∈ C4,

• For any sequence of decreasing measurable sets (Ai)i≥1 with Ai ↓ ∅,

sup
p≥0

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Ai
(Xt)

]
−→
i→∞

0.

• For any sequence of decreasing measurable sets (Ai)i≥1 with Ai ↓ ∅,

E

[
sup
p≥0

lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Ai
(Xt)

]
−→
i→∞

0.

Proof Suppose that the second proposition is not satisfied. We aim to show that X /∈ C4.
By hypothesis, there exists measurable sets Ai ↓ ∅, ϵ > 0, and an increasing sequence of
indices (ip)p≥1 such that

sup
l≥0

E

lim sup
T→∞

1

T

∑
t≤T,t∈T l

1Aip
(Xt)

 ≥ ϵ.

Now let i ≥ 1 and p ≥ 1 such that ip ≥ i. We observe that because Aip ⊂ Ai,

sup
l≥0

E

lim sup
T→∞

1

T

∑
t≤T,t∈T l

1Ai
(Xt)

 ≥ sup
l≥0

E

lim sup
T→∞

1

T

∑
t≤T,t∈T l

1Aip
(Xt)

 ≥ ϵ.

Hence, for any i ≥ 1, there exists p(i) > 0 such that

E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i)

1Ai
(Xt)

 ≥ ϵ

2
.
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Case 1. We consider a first case where there exists ηi > 0 such that for any j ≥ i,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i)

1Aj
(Xt)

 ≥ ηi.

For simplicity, we will write T k = T kp(i). We will also drop the indices i of p(i) and ηi for
conciseness. We now construct by induction a sequence of indices (k(l))l≥0 together with
indices (j(l))l≥0 with k(0) = 1, j(0) = i and such that for any l ≥ 1,

E

[
sup

Tk(l−1)<T≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)

]
≥ η

2
.

Suppose that we have already constructed j(0), . . . , j(l−1) and k(0), . . . , k(l−1). Note that

E

[
sup

T>Tk(l−1)

1

T

∑
t≤T,t∈T p

1Aj(l−1)
(Xt)

]
≥ E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Aj(l−1)
(Xt)

]
≥ η.

Therefore, by the dominated convergence theorem, there exists k(l) > k(l − 1) such that

E

[
sup

Tk(l−1)<t≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)
(Xt)

]
≥ 3η

4
.

Now because Ai ↓ ∅, there exists j(l) > j(l− 1) such that P[Aj(l) ∩X≤Tk(l) = ∅] ≥ 1− η
4
. Let

us denote by E this event. Then,

E

[
sup

Tk(l−1)<t≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)

]

≥ E

[
1[E ] sup

Tk(l−1)<t≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)

]

= E

[
1[E ] sup

Tk(l−1)<t≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)
(Xt)

]

≥ E

[
sup

Tk(l−1)<t≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)
(Xt)

]
− η

4
≥ η

2
.

This ends the construction of the indices k(l) and j(l) for l ≥ 1. Now for any u ≥ 1, let
Su = {l ≥ 1 : l ≡ 2u−1 mod 2u}. The main remark is that Su is infinite for all u ≥ 1 and
they are all disjoint. We then pose Bu =

⋃
l∈Su

Aj(l−1) \ Aj(l). Because all Su are disjoint,
this implies that the sets (Bu)u are also disjoint. Then, using Fatou’s lemma together with
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the fact that all Su are infinite, we obtain

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Bu(Xt)

]
≥ lim sup

k∈Su

E

[
sup

Tk(l−1)<T≤Tk(l)

1

T

∑
t≤T,t∈T p

1Bu(Xt)

]

≥ lim sup
k∈Su

E

[
sup

Tk(l−1)<T≤Tk(l)

1

T

∑
t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)

]
≥ η

2
.

We obtain therefore for any u ≥ p

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T u

1Bu(Xt)

]
≥ E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Bu(Xt)

]
≥ η

2
.

This ends the proof that X /∈ C4.

Case 2. Recalling that the sets (Ai)i are decreasing, we can now suppose that for all i ≥ 1,
one has E

[
lim supT→∞

1
T

∑
t≤T,t∈T p(i) 1Aj

(Xt)
]
→ 0 as j →∞. We now construct a sequence

of indices (i(u))u≥1 as follows such that i(1) = 1 and for any u ≥ 1,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u))

1Ai(u)\Ai(u+1)
(Xt)

 ≥ ϵ

4
.

Suppose we have constructed i(u). Then, by the hypothesis of this case, there exists i(u+1) >
i(u) such that

E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u))

1Ai(u+1)
(Xt)

 ≤ ϵ

4
.

Now note that

ϵ

2
≤ E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u))

1Ai(u)
(Xt)

 ≤ E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u))

1Ai(u)\Ai(u+1)
(Xt)


+ E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u))

1Ai(u+1)
(Xt)

 .
As a result, the induction at step p is complete. We then define a sequence of measurable
sets (Bj)j≥1 such that for any u ≥ 1, Bp(i(u)) = Ai(u) − Ai(u+1), and for all other indices
j /∈ {p(i(u)), u ≥ 1} we set Bj = ∅. All these sets are disjoint, and we have for any u ≥ 1,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T p(i(u)

1Bp(i(u))
(Xt)

 ≥ ϵ

4
.
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Therefore, X /∈ C4.
We now show that if X satisfies the second property, then X ∈ C4. Let (Ai)i be a sequence

of disjoint measurable sets, and define Bi =
⋃
j≥iAj. Then,

0 ≤ E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Ai
(Xt)

 ≤ E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Bi
(Xt)


≤ sup

p≥0
E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Bi
(Xt)

]
.

Hence, sinceBi ↓ ∅, the second property shows that E
[
lim supT→∞

1
T

∑
t≤T,t∈T i 1Ai

(Xt)
]
→ 0

as i→∞.
Now for any Borel set A, by the dominated convergence theorem and the fact that the

sets T p are increasing for p ≥ 0, we obtain

lim
p→∞

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1A(Xt)

]
= E

[
lim
p→∞

lim sup
T→∞

1

T

∑
t≤T,t∈T p

1A(Xt)

]
,

where both terms are bounded by 1. In other terms,

sup
p≥0

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1A(Xt)

]
= E

[
sup
p≥0

lim sup
T→∞

1

T

∑
t≤T,t∈T p

1A(Xt)

]
.

As a result, the second and third conditions of the proposition are equivalent. ■

The main result of this section is that the C4 condition is necessary for universal learning
with oblivious rewards.

Theorem 6.6. Let X be a metrizable separable Borel space, and a finite action space A with
|A| ≥ 2. Then, Soaboblivious ⊂ C4.

Proof Fix, a1, a2 ∈ A two distinct actions. By contradiction, let X /∈ C4 and f· a universally
consistent learning rule under X for oblivious rewards. For simplicity, we will denote by ât
the action selected by the learning rule at time t. By hypothesis, let (Ai)i≥1 be a sequence
of disjoint measurable sets and 0 < ϵ ≤ 1 such that

lim sup
i→∞

E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Ai
(Xt)

 ≥ ϵ.

Then, there exists an increasing sequence (j(i))i≥1 such that for any p ≥ 1,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T j(i)

1Aj(i)
(Xt)

 ≥ ϵ

2
.
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We write I = {j(i), i ≥ 1}. Without loss of generality, we can suppose Aj = ∅ if j ∈ I.
We now construct recursively rewards (rt)t≥1 on which this algorithm is not consistent, as
well as a policy π∗ : X → A compared to which the algorithm has high regret. The reward
functions and policy are constructed recursively together with an increasing sequence of
times (T p)p∈I such that after the p−th iteration of the construction process, the rewards
rt for t ≤ T p have been defined such that rt(· | x≤t) = 0 if x /∈

⋃
i<pAi, the policy π∗(·)

is defined on
⋃
i<pAi and always the best action in hindsight until T p−1. For p = j(p′),

suppose that we have performed p′ − 1 iterations of this construction and have constructed
the times T j(1), . . . , T j(p′−1). For convenience, let αp = 2−p−1 and define Kp =

⌈
2
αp

log 26

ϵ

⌉
,

βp = ϵ
210(1+2αp)

(Kp−1)Kp4Kp
, K̃p =

⌈
2
αp

log 8
βp

⌉
and Mp = max( 8

ϵαp
, (1 + 2αp)

Kp+K̃p). We first
construct by induction an increasing sequence of indices (k(l))l≥0 with k(0) = min{k ≥ 2p :

T kp > MpT
j(p′−1)} and such that for any l ≥ 1, T k(l)p > MpT

k(l−1)
p and

E

[
max

MpT
k(l−1)
p <T≤Tk(l)

p

1

T

∑
t≤T,t∈T p

1Ap(Xt)

]
≥ ϵ

4
.

To do so, suppose that we have constructed k(l′) for 0 ≤ l′ < l. Note that

E

[
sup

T>MpT
k(l−1)
p

1

T

∑
t≤T,t∈T p

1Ap(Xt)

]
≥ E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T p

1Ap(Xt)

]
≥ ϵ

2
.

Then, by dominated convergence theorem, there exists k(l) > k(l − 1) such that T k(l)p >

MpT
k(l−1)
p and

E

[
max

MpT
k(l−1)
p <T≤Tk(l)

p

1

T

∑
t≤T,t∈T p

1Ap(Xt)

]
≥ E

[
sup

T>MpT
k(l−1)
p

1

T

∑
t≤T,t∈T p

1Ap(Xt)

]
− ϵ

4
≥ ϵ

4
.

This ends the construction of the sequence (k(l))l≥0. We then denote by k̂(l) the index of a
phase (T k−1

p , T kp ] where the max is attained, i.e.

k̂(l) = argmax
k≤k(l)

(
max

MpT
k(l−1)
p ,Tk−1

p <T≤Tk
p

1

T

∑
t≤T,t∈T p

1Ap(Xt)

)
.

Ties can be broken in alphabetical order. Because T kp ≤ 2T k−1
p , we have in particular,

E

 1

T
k̂(l)
p

∑
t≤T k̂(l)

p ,t∈T p

1Ap(Xt)

 ≥ ϵ

8
.

Now for any l ≥ 1, let δl such that

P

[
min

1≤t,t′≤Tk(l)
p ,Xt ̸=Xt′

ρ(Xt, Xt′) ≤ δl

]
≤ ϵ

2l+10
.
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Then, let E be the event when for all l ≥ 1, we have min
1≤t,t′≤Tk(l)

p ,Xt ̸=Xt′
ρ(Xt, Xt′) > δl. By

the union bound, P[E ] ≥ 1− ϵ
210

. As a result, we have

E

 1

T
k̂(l)
p

∑
t≤T k̂(l)

p ,t∈T p

1Ap(Xt) | E

 ≥ ϵ

16
. (6.2)

Now for δ > 0 and u ≥ 1, define the sets Pu(δ) = (Ap ∩B(xu, δ)) \
⋃
v<uB(xv, δ) which form

a partition of Ap. For any δ > 0 and sequence b = (bu)u≥1 in {0, 1} we consider the following
deterministic rewards

rδ,b(a | x) =


bu a = a1, x ∈ Pu(δ),
3
4

a = a2,

0 a /∈ {a1, a2},
if x ∈ Ap, rδ,b(· | x) = 0 if x /∈ Ap.

For any sequence of binary sequences b = (bk)k≥0 where bk = (bku)u≥1, and binary sequence
c = (ck)k≥0 we construct the rewards rb,c as follows. For t ≤ T j(p

′−1) we pose rb,ct = rt so that
the rewards rb,c coincide with those constructed by induction so far. For T j(p′−1) < t ≤ T

k(0)
p

we pose rb,ct = 0. For t > T
k(0)
p let l ≥ 1 such that T k(l−1)

p < t ≤ T
k(l)
p and k > k(0) such

that T k−1
p < t ≤ T kp . Then, we pose

rb,ct (a | x≤t) =


0 ∃t′ ≤ T

k(l−1)
p : xt′ = xt

0 o.w. ck = 0,

rδl,bl(a | xt) o.w. ck = 1,∀T k−1
p < t′ < t : xt′ ̸= xt,

0 o.w. ck = 1,∃T k−1
p < t′ < t : xt′ = xt,

for a ∈ A, x≤t ∈ X t. Note that these rewards coincide with the rewards that have been
constructed by induction so far. Now let b be generated such that all bk are independent
i.i.d. Bernoulli B(1

2
) random sequences in {0, 1}, and c is also an independent i.i.d. B(1

2
)

process. The sequence is used to delete some periods (T k−1
p , T kp ]. Precisely, for any l ≥ 1,

we consider the following event where we deleted the periods between k̂(l) −Kp − K̃p and
k̂(l)−Kp but did not delete periods after this phase until period k̂(l),

Fpl =
⋂

k̂(l)−Kp−K̃p<k≤k̂(l)−Kp

{ck = 0} ∩
⋂

k̂(l)−Kp<k≤k̂(l)

{ck = 1}.

One can note that the events Fpl for l ≥ 1 are together independent. Indeed, k̂(l) ≤ k(l) and
T
k̂(l)
p > MpT

k(l−1) ≥ (1 + 2αp)
Kp+K̃pT k(l−1), which yields k̂(l) > k(l − 1) + Kp + K̃p. As a

result, the indices of c considered in the events Fp all lie in distinct intervals (k(l− 1), k(l)],
hence their independence. Further, we have P[Fpl ] = 2−Kp−K̃p . Then, the Borel-Cantelli
implies that on an event Fp of probability one, there is an infinite number of l ≥ 1 such that
Fpl is satisfied.

Next, define π0 : x ∈ X 7→ a2 ∈ A, the policy which always selects arm a2. Fix
any realization of b and c. Because f· is universally consistent for oblivious rewards, it
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has in particular sublinear regret compared to π0 under rewards rb,c, i.e., almost surely
lim supT→∞

1
T

∑T
t=1 r

b,c
t (a2 | Xt) − rb,ct (ât | Xt)) ≤ 0. Now observe that the event Fp only

depends on c and X and is in particular independent from b. Therefore, P[E ∩ Fp | b] =
P[E ∩ Fp] ≥ 1− ϵ

210
, where we used P[Fp] = 1. Therefore,

E

[
lim sup
T→∞

1

T

T∑
t=1

rb,ct (a2 | X≤t)− rb,ct (ât | X≤t) | E ,Fp,b

]
≤ 0.

For conciseness, we will omit the terms X≤t in the rest of the proof. We then take the
expectation over b and c. Thus, by the dominated convergence theorem, there exists l0 ≥ 1
such that

E

 sup
T>T

k(l0)
p

1

T

T∑
t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp
 ≤ βp

8
.

On the event Fp, there exists l̂ > l0 such that the event Fp
l̂

is met. For convenience, we take
l̂ as the minimum index satisfying these conditions. Then, we have

E

 sup
T

k̂(l̂)−Kp
p <T≤T k̂(l̂)

p

1

T

T∑
t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp


≤ E

 sup
T

k(l̂−1)
p <T≤Tk(l̂)

p

1

T

T∑
t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp
 ≤ βp

8
.

Now let lp such that P[l̂ ≤ lp | Fp] ≥ 1
2
. Then,

E

 sup
T

k̂(l̂)−Kp
p <T≤T k̂(l̂)

p

1

T

T∑
t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp, l̂ ≤ lp

 ≤ βp
4
. (6.3)

For conciseness, we will write k̂ for k̂(l̂), let Gp = E ∩ Fp ∩ {l̂ ≤ lp}. We now use similar
arguments as in the proof of Theorem 6.4, to show that the learning rule incurs a large
regret compared to the best action in hindsight, before time T k̂p . We focus on the period

(T
k̂−Kp
p , T k̂p ], which we decompose using the sets

Sq = {T k̂−Kp−1+q
p < t ≤ T k̂−Kp+q

p : Xt ∈ Ap} ∩ T p, 1 ≤ q ≤ Kp.

We also define Eq the number of new exploration steps for arm a1 during Sq,

Expq :={
t ∈ Sq : ât = a1 and ∀t′ ∈

⋃
q′<q

Sq′ : Xt′ = Xt, ât′ ̸= a1

}
\ {t : ∃t′ ≤ T k̂−K̃p

p , Xt′ = Xt},
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and Eq = |Expq|. We now show by induction on i that E
[
Eq

T k̂
p

| Gp
]
≤ (1 + 2αp)

(q−1)Kp4q+1βp

for all 1 ≤ q ≤ Kp. Suppose that this is shown for all 1 < q′ < q. Recalling that on the
event Gp, for any T k̂−Kp−K̃p

p < t ≤ T
k̂−Kp
p we have rb,ct = 0, we can use the same arguments

as in Theorem 6.4 to obtain

E

 1

T
k̂−Kp+q
p

T
k̂−Kp+q
p∑
t=1

rb,ct (a2)− rb,ct (ât) | Gp


≥ −E

[
T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp
]
+

q∑
q′=1

E

 1

T
k̂−Kp+q
p

T
k̂−Kp+q′
p∑

t=T
k̂−Kp−1+q′
p +1

rb,ct (a2)− rb,ct (ât) | Gp


= −E

[
T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp
]
+

q∑
q′=1

E

 1

T
k̂−Kp+q
p

∑
t∈Sq′

rb,ct (a2)− rb,ct (ât) | Gp


≥ −(1 + q)E

[
T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp
]
−
∑
q′<q

q + 1− q′

4
E

[
Eq′

T
k̂−Kp
p

| Gp
]

+ E

 1

T k̂p

T
k̂−Kp+q
p∑

t=T
k̂−Kp−1+q
p +1

1Expq(t)(r
b,c
t (a2)− rb,ct (ât)) | Gp

 ,
where the additional terms −T k̂−K̃p

p compared to the computations in Theorem 6.4 are due to
the fact that in Expq we also discard times of instances that were visited before T k̂−K̃p , and
that in a single period Sq, there are no duplicates. Now for any T k̂−Kp−1+q < t ≤ T k̂−Kp+q

such that a pure exploration was performed t ∈ Expq, we have

E[rb,ct (a2)− rb,ct (ât) | t ∈ Expq,Gp, k̂] =
3

4
− 0 + 1

2
=

1

4
,

because Xt visits a set of the partition (Pu(δk̂−Kp+q
))u which has never been visited in the

past, hence, the reward of a1 on this set is equally likely to be 0 or 1 (depending on b),
and Gp is independent of b. Also, using the inequality log(1 + z) ≥ z

2
for 0 ≤ z ≤ 1 we

obtain T
k̂−K̃p
p ≤ (1 + αp)

−K̃p(1 + T
k̂−Kp
p ) ≤ βp

8
(1 + T

k̂−Kp
p ) ≤ βp

4
T
k̂−Kp
p . Lastly, T k̂−Kp

p ≥
T k̂p /(1 + 2αp)

Kp . Combining these results with Eq (6.3) yields

βp
4
≥ −(1 + q)

βp
4
− 1

4

∑
q′<q

(q + 1− q′)(1 + 2αp)
KpE

[
Eq′

T k̂p
| Gp

]
+

1

4
E

[
Eq

T k̂p
| Gp

]
.

277



Thus,

E

[
Eq

T k̂p
| Gp

]
≤ (2 + q)βp + (1 + 2αp)

Kp
∑
q′<q

(q + 1− q′)E

[
Eq′

T k̂p
| Gp

]

≤ (1 + 2αp)
(q−1)Kpβp

(
2 + q + 4

q−1∑
q′=1

(q + 1− q′)4q′
)

≤ (1 + 2αp)
(q−1)Kp4q+1βp.

This completes the induction. Now for any t ≥ 1, denote by a∗t = argmaxa∈A r
b,c
t (a | X≤t)

the optimal action in hindsight. In particular, a∗t ∈ {a1, a2}. Now define

B =

K0⋃
q=1

{
t ∈ Sq : ∀t′ ∈

⋃
q′<q

Sq′ : Xt′ = Xt, t /∈ Expq′
}
.

These are times such that we never explored the action a2. In particular, on Gp, the learner
incurs an average regret of at least 1

8
on these times since action a2 would be optimal with

probability 1
2

with a reward excess 1
4

over action a1. Therefore,

E

 1

T k̂p

T k̂
p∑

t=1

rb,ct (a∗t )− r
b,c
t (ât) | Gp

 ≥ E

 1

T k̂p

∑
T

k̂−Kp
p <t≤T k̂

p

rb,ct (a∗t )− r
b,c
t (ât) | Gp


≥ 1

8
E

[
|B|
T k̂p
| Gp

]
.

Now denote by T ∗
p = |{t ≤ T k̂p : Xt ∈ Ap}∩T p|. Recall that because Fp and l̂ are independent

from E , by Eq (6.2), we have E
[
T ∗
p

T k̂
p

| Gp
]

=
[
T ∗
p

T k̂
p

| E
]
≥ ϵ

16
. By construction, we have

|B|+
∑Kp

q=1(Kp − q + 1)Eq +KpT
k̂−Kp−K̃p
p ≥ T ∗

p − T
k̂−Kp
p . Thus,

E

 1

T k̂p

T k̂
p∑

t=1

rb,ct (a∗t )− r
b,c
t (ât) | Gp

 ≥ ϵ

27
− Kp

4
E

[
T
k̂−Kp−K̃p
p

T k̂p

]

− βp
2

Kp∑
q=1

(Kp − q + 1)(1 + 2αp)
(q−1)Kp4q

≥ ϵ

27
− βpKp

16
− βp

2
(1 + 2αp)

(Kp−1)Kp4Kp+1

≥ ϵ

28
.

Recall that by construction P[l̂ ≤ lp | Fp] ≥ 1
2
. Also, P[Fp] = 1 and both these events are

independent from E , hence , letting T p = T
k(lp)
p we have

E

[
sup

T p−1<T≤T p

1

T

T∑
t=1

rb,ct (a∗t )− r
b,c
t (ât) | E

]
≥ 1

2
E

 1

T k̂p

T k̂
p∑

t=1

rb,ct (a∗t )− r
b,c
t (ât) | Gp

 ≥ ϵ

29
.
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This ends the construction of the sequence T p. Then, for any binary sequences b and c
we introduce slightly different rewards (r̃b,ct )t≤T p as follows: for t ≤ T j(p

′−1), r̃b,ct = rt, for
T j(p

′−1) < t ≤ T
k(0)
p let r̃b,ct = 0. For t > T

k(0)
p let l ≥ 1 such that T k(l−1)

p < t ≤ T
k(l)
p and

k > k(0) such that T k−1
p < t ≤ T kp . Then, we pose

r̃b,ct (a | x≤t) =


0 ∃t′ ≤ T

k(l−1)
p : xt′ = xt

0 o.w. ck = 0,

rδlp ,b(a | xt) o.w. ck = 1,∀T k−1
p < t′ < t : xt′ ̸= xt,

0 o.w. ck = 1,∃T k−1
p < t′ < t : xt′ = xt,

for a ∈ A, x≤t ∈ X t. The only difference with the previous oblivious rewards is that we use
the same reward function rδlp ,b across phases (T

k(l−1)
p , T

k(l)
p ] for l ≤ lp. Then, consider the

following policy,

πb(x) =


a1 if bu = 1, x ∈ Pu(δlp) ∩ Ap,
a2 if bu = 0, x ∈ Pu(δlp) ∩ Ap
π∗(x) if x ∈

⋃
i<pAi

a1 if x /∈
⋃
i≤pAi.

Note that by induction hypothesis on the rewards rt for t ≤ T j(p
′−1), using the rewards r̃b,r,

πb always selects the best action in hindsight for times t ≤ T j(p
′−1). Also, by construction,

πb also selects the best action in hindsight for times T j(p′−1) < t ≤ T p.
Similarly to before, suppose that b, c are generated as independent i.i.d. B(1

2
) processes.

We now argue that on the event E , the learning process with rewards rb,c until T p is stochas-
tically equivalent to the learning process with rewards r̃b,c until T p. Indeed, these rewards
only differ in that for different periods (T

k(l−1)
p , T

k(l)
p ], we may have reward rδl,bl instead of

rδlp ,b. However, on the event E , new instances always fall in portions where the reward of
a1 is still B(1

2
) conditionally on the currently available history. This holds for both reward

sequences. Further, duplicates can only affect rewards during the same period (T
k(l−1)
p , T

k(l)
p ]

by construction—if xt is a duplicate from a previous period, the reward function is 0. Hence,
even though for rb,c, we have distinct sequences bl, these are all consistent with a single
sequence b based on a finer partition at scale δlp . Precisely, we have

Eb,c

[
EX,â

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

r̃b,ct (πb(Xt))− r̃b,c(ât) | E

]]

= EX

[
Eb,cEâ

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

r̃b,ct (a∗t ))− r̃b,c(ât) | X, E

]
| E

]

= EX

[
Eb,cEâ

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

rb,ct (a∗t )− rb,c(ât) | X, E

]
| E

]

= E

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

rb,ct (a∗t )− rb,c(ât) | E

]
≥ ϵ

29
.
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As a result, there exists a specific realization of b and c such that

EX,â

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

r̃b,ct (πb(Xt))− r̃b,c(ât) | E

]
≥ ϵ

29
.

Hence, because P[Ec] ≤ ϵ
210

, we obtain

EX,â

[
sup

T j(p′−1)<T≤T p

1

T

T∑
t=1

r̃b,ct (πb(Xt))− r̃b,c(ât)

]
≥ ϵ

29

(
1− ϵ

210

)
− ϵ

210
≥ ϵ

211
.

Now for all t ≤ T p we pose rt = r̃b,ct , and complete the definition of π∗ by setting π∗(x) =
πb(x) on

⋃
i≤pAi. Note that these definitions are consistent with the previously constructed

rewards and the actions selected by the policy on
⋃
i<pAi. This ends the recursive construc-

tion of the rewards r = (rt)t≥1 and the policy π∗ on
⋃
i≥1Ai. We close the definition of π∗

by setting π∗(x) = a1 for x /∈
⋃
i≥1Ai arbitrarily. The constructed policy π∗ is measurable

because it is measurable on each Ai for i ≥ 1.
We now analyze the regret of the algorithm compared to π∗ for the rewards (rt)t. First,

note that the rewards are deterministic and that π∗ is the optimal policy, i.e., which always
selects the best arm in hindsight. Also, if b, c denote the realizations used in the iteration
p = j(p′) of the above recursion, for any t ≤ T p we have rt = r̃b,ct . As a result,

E

[
sup

T j(p′−1)<T≤T j(p′)

1

T

T∑
t=1

rt(π
b(Xt))− rt(ât)

]
≥ ϵ

211
.

Now by Fatou’s lemma, we have

E

[
lim sup
T→∞

1

T

T∑
t=1

rt(π
b(Xt))− rt(ât)

]

= E

[
lim sup
p′→∞

sup
T j(p′−1)

< T ≤ T j(p
′) 1

T

T∑
t=1

rt(π
b(Xt))− rt(ât)

]

≥ lim sup
p→∞

E

[
sup

T j(p′−1)

< T ≤ T j(p
′) 1

T

T∑
t=1

rt(π
b(Xt))− rt(ât)

]
≥ ϵ

211
.

As a result, f· is not consistent on the oblivious rewards (rt)t under X, which contradicts the
hypothesis that f· is universally consistent under X. This ends the proof. ■

Recall that the condition SMV is necessary for universal learning because this is already
the case for noiseless online learning [Han21a] and is also sufficient for universal learning in
noiseless online learning (Chapter 3), online learning with adversarial responses (Chapter 4)
and stationary contextual bandits (Chapter 5). In the next proposition, we show that our
new necessary condition C4 is stronger than SMV.
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Proposition 6.6. Let X be a metrizable separable Borel space. Then, C4 ⊂ SMV.

Proof Suppose that X /∈ SMV, then there exists a sequence of disjoint sets (Ai)i≥1 and
ϵ > 0 such that E[lim supT→∞

1
T
|{i ≥ 1, Ai ∩ X≤T ̸= ∅}|] ≥ ϵ. We now let Bi =

⋃
j≥iAj. We

define T̄ = {t ≥ 1 : ∀t′ < t,Xt′ ̸= Xt} the set of new instances times. Then, for any i ≥ 1,

E

lim sup
T→∞

1

T

∑
t≤T,t∈T i

1Bi
(Xt)

 ≥ E

lim sup
T→∞

1

T

∑
t≤T,t∈T̄

1Bi
(Xt)


≥ E

[
lim sup
T→∞

|{j ≥ i : Aj ∩ X≤T ̸= ∅}|
T

]
= E

[
lim sup
T→∞

|{j ≥ 1 : Aj ∩ X≤T ̸= ∅}|
T

]
≥ ϵ.

This holds for all i ≥ 1 and Bi ↓ ∅. Hence, the second property of Proposition 6.5 implies
X /∈ C4. ■

Further, C4 is a strictly stronger condition than SMV provided that X admits a non-
atomic probability measure. More precisely, in the next result, we explicitly construct a
process X ∈ SMV \ C4 which does not admit universal learning even in the memoryless
setting. As a result, for memoryless, oblivious, prescient, and online rewards, one cannot
universally learn all SMV processes, while this was achievable for stationary rewards. Thus
having adversarial partial feedback on the losses of each action strictly reduces the set of
learnable processes Soabonline ⊂ Soaboblivious ⊂ Soabmemoryless ⊊ SMV.

Theorem 6.7. Let X be a metrizable separable Borel space such that there exists a non-
atomic probability measure on X , and a finite action space A with |A| ≥ 2. Then, C4 ⊊ SMV
and the set of learnable processes also satisfies Soabmemoryless ⊊ SMV.

Before proving this result, we present a lemma that allows to have a countable sequence
of non-atomic measures with disjoint support.

Lemma 6.2. Let X be a metrizable separable Borel space such that there exists a non-atomic
probability measure on X . Then, there exists a sequence of disjoint non-empty measurable
sets (Ai)i≥0 and probability measures (νi)i≥0 on X such that νi(Ai) = 1.

Proof Let ρ denote the metric on X . First, let (xi)i≥1 be a dense sequence on X . For
any x ∈ X and r > 0 we denote by B(x, r) = {x′ ∈ X : ρ(x, x′) < δ} the open ball
centered at x of radius r. Then, for any δ > 0, we define the partition P(δ) = (Pi(δ))i≥1 by
Pi(δ) = B(xi, δ) \

⋃
j<iB(xj, δ).

Let µ−1 a non-atomic probability measure on X . We construct the disjoint measures and
sets recursively. We pose B0 = X . Suppose for p ≥ 1 that we have constructed disjoint
sets (Ai)i≤p−1, disjoint with Bp−1, as well as non-atomic probability measures (νi)i≤p−1 and
µp−1 satisfying νi(Ai) = 1 for i ≤ p − 1 and µp−1(Bp−1) = 1. Now let Z1, Z2 ∼ µp−1 two
independent random variables with distribution µp−1. Because µp−1 is non-atomic, Z1 ̸= Z2

almost surely. Thus, there exists δp > 0 such that P[ρ(Z1, Z2) ≤ δp] ≤ 1
2
. As a result,
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with probability at least 1
2
, Z1 and Z2 fall in distinct sets of the partition P(δp). Hence,

there exists at least two indices i < j such that P[Z1 ∈ Pi(δp)],P[Z2 ∈ Pj(δp)] > 0. We
then pose Ap = Bp−1 ∩ Pi(δp) and Bp = Bp−1 ∩ Pj(δp). Because µp−1(Bp−1) = 1, we
have µp−1(Ap) = µp−1(Pi(δp)) > 0. Similarly, µp−1(Bp) > 0. Hence, we can consider the
probability measure νp of µp−1 conditionally on Ap (i.e. νp(A) =

µp−1(A∩Ap)

µp−1(Ap)
for all measurable

A). Similarly, let µp the probability measure of µp−1 conditionally on Bp. Both are non-
atomic because the original measure µp−1 is non-atomic. This ends the recursion and the
proof of the lemma. ■ We are now ready to prove the theorem.

Proof of Theorem 6.7 Fix a1, a2 ∈ A two distinct actions. Let (xi)i≥1 be a dense
sequence of X and denote by B(x, r) denotes the open ball centered at x ∈ X with radius
r > 0. Using Lemma 6.2, let (Ai)i≥0 disjoint measurable sets together with non-atomic
probability measures (νi)i≥0 such that νi(Ai) = 1. We then fix x0 ∈ A0 (we will not use the
set A0 any further and from now will only reason on the sets (Ai)i≥1) and for i ≥ 1, we define
Si = {k ≥ 1 : k ≡ 2i−1 mod 2i}. Then let Zi for i ≥ 1 be independent processes where Zi is
an i.i.d. process following the distribution νi. We now construct a process X on X . For any
k ≥ 1, let Tk = 2kk!, ni = 2⌊log2 i⌋ for i ≥ 1, and lk =

∑
l∈Si,l<k

Tk
ni

, where k ≡ 2i−1 mod 2i.
For any t ≥ 1, we pose

Xt =

{
Zi
lk+r

if Tk ≤ t < 2Tk, k ≡ 2i−1 mod 2i, t− Tk ≡ r mod Tk
ni
, 1 ≤ r ≤ Tk

ni
,

x0 otherwise.

This ends the construction of X. We now argue that X ∈ SMV. Let (Bl)l≥1 be a sequence
of disjoint measurable sets of X . Because Zi is an i.i.d. process for any i ≥ 1, the event Ei
where |{l : Zi≤T ∩ Bl ̸= ∅}| = o(T ) has probability one. Now define E =

⋂
i≥1 Ei, which has

probability one by the union bound. Fix ϵ > 0 and i∗ = ⌈2
ϵ
⌉ so that ϵ ≤ 1

ni∗
. On the event E

for any i ≤ i∗ there exists Ti such that for any T ≥ Ti we have |{l : Zi≤T ∩ Bl ̸= ∅}| ≤ ϵ
2i
T .

Now let T 0 = maxi≤i∗ Tini. Then, on E , for any T ≥ T 0,

|{l : X≤T ∩Bl ̸= ∅}| ≤ 1 +
i∗∑
i=1

|{l : Zi≤⌊T/ni⌋ ∩Bl ̸= ∅}|

+ |{l : ∃t ≤ T : Xt ∈ Bl, Tk ≤ t < 2Tk, k ≡ 0 mod 2i
∗}|

≤ 1 + ϵT + |{Xt, t ≤ T, Tk ≤ t < 2Tk, k ≡ 0 mod 2i
∗}|

≤ 1 + ϵT +
T

ni∗
+

T

ni∗

≤ 3ϵT + 1.

In the first inequality, the additional 1 is due to the visit of x0, and in the third inequality,
we used the fact that in a phase i > i∗, each point is duplicated ni ≥ ni∗ times. This yields
a term T

ni∗
. The second term T

ni∗
in the third inequality is due to boundary effects for times

close to T , the worst-case scenarios being attained for T of the form Tk(1 +
1
ni
). As a result,

on E , we have lim supT→∞
1
T
|{l : X≤T ∩ Bl ̸= ∅}| ≤ 3ϵ, which holds for any ϵ > 0. Thus,

1
T
|{l : X≤T ∩Bl ̸= ∅}| → 0 on E , which ends the proof that X ∈ SMV.
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We now show that there does not exist a universally consistent algorithm under X for
memoryless rewards. One can easily check that X /∈ C4, since for any i ≥ 1, we have

E

lim sup
T→∞

1

T

∑
t≤T,t∈T ⌊log2 i⌋

1Ai
(Xt)

 ≥ E

lim sup
k→∞

1Si
(k)

2Tk

∑
t≤2Tk,t∈T ⌊log2 i⌋

1Ai
(Xt)


≥ E

[
lim sup
k→∞

1Si
(k)

2

]
≥ 1

2
.

This already shows that Soabonline ⊂ Soaboblivious ⊂ C4 ⊊ SMV. However, we will show
a stronger statement that X /∈ Soabmemoryless. The proof uses the same techniques as
Theorem 6.6, but leverages the fact that the phases Si are deterministic and instances from
previous phases [Tk, 2Tk) do not appear in future phases. By contradiction, suppose that f· is
a universally consistent learning rule. We will refer to its decision at time t as ât for simplicity.
We will construct recursively rewards (rt)t≥1 on which this algorithm is not consistent, as
well as a policy π∗ : X → A compared to which the algorithm has high regret. The rewards
and policy are constructed recursively together with an increasing sequence of times (T p)p≥1

and indices (ip)p≥1 with i1 = 1 such that after the p−th iteration of the construction process,
the rewards rt(a | ·) have been defined for all t ≤ T p and the policy π∗(·) has been defined⋃
i<ip

Ai. The rewards will be deterministic and stationary, hence we may omit the subscript
t. Suppose that we have performed p − 1 iterations of this construction for p ≥ 1. We
will drop the subscripts p for simplicity and simply assume that we have defined the reward
r(a | ·) and the value of the policy π∗(·) on

⋃
j<iAj for some i ≥ 1 (i = ip). We now

construct the rewards on Ai. To do so, we will first introduce other memoryless rewards.
For any k ∈ Si, because νi is non-atomic, there exists δk such that

P

 min
1≤u<v≤lk+

Tk
ni

ρ(Zi
u, Z

i
v) ≤ δk

 ≤ 2−k−5.

Then, let E i be the event when for all k ∈ Si, we have min
1≤u<v≤lk+

Tk
ni

ρ(Zi
u, Z

i
v) > δk,

and Zi takes values in Ai only—this is almost sure since νi(Ai) = 1. By the union bound,
P[E i] ≥ 1− 1

32
. Now for δ > 0 and u ≥ 1, define the sets Pu(δ) = (Ai∩B(xu, δ))\

⋃
v<uB(xv, δ)

which form a partition of Ai. For any δ > 0 and sequence b = (bu)u≥1 in {0, 1} we consider
the following deterministic rewards

rδ,b(a | x) =


bu a = a1, x ∈ Pu(δ),
3
4

a = a2,

0 a /∈ {a1, a2},
if x ∈ Ai, rδ,b(a | x) = r(a | x) if x ∈

⋃
j<i

Aj,

and rδ,b(· | x) = 0 if x /∈
⋃
j≤i. Now for any sequence of binary sequences b = (bk)k∈Si

where
bk = (bku)u≥1, we will consider the memoryless rewards rb defined as follows. For any t ≥ 2,
let k ≥ 1 such that T k ≤ t < T k+1, and k′ = min{l ∈ Si : l ≥ k}. We pose rbt = rδk′ ,bk

′ ,
and rb1 = rb2 . Now let b be generated such that all bi are independent i.i.d. Bernoulli
B(1

2
) random sequences in {0, 1}. Next, define π0 : x ∈ X 7→ a2 ∈ A, the policy which
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always selects arm a2. Now fix any realization of rb. Because f· is universally consistent for
memoryless rewards, it has in particular sublinear regret compared to π0 under rewards rb,
i.e., almost surely lim supT→∞

1
T

∑T
t=1 r

b
t (a2 | Xt) − rbt (ât | Xt)) ≤ 0. The same arguments

as in Theorem 6.4 with Fatou’s lemma give

lim sup
T→∞

E

[
1

T

T∑
t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E i
]
≤ 0,

where the expectation is now also taken over b. Therefore, with αi :=
1

16·4ni
, there exists t0

such that for all T ≥ t0, we have E
[
1
T

∑T
t=1 r

b
t (a2 | Xt)− rbt (ât | Xt) | E i

]
≤ αi

4
. In particular,

there exists k ∈ Si such that k ≥ 4
αi

and Tk ≥ t0 and the above inequality holds for all
Tk ≤ T < 2Tk. Then, using the same arguments as in the proof of Theorem 6.4, if a∗t denotes
the best action in hindsight at time t, we have

E

[
2Tk−1∑
t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | E i

]
≥ Tk

16
.

For any binary sequence b, we will write for conciseness rb = rδk,b. We also define the
following policy, restricted to instances in Ai:

πb : x ∈ Ai 7→

{
a1 if bu = 1, x ∈ Pu(δk),
a2 if bu = 0, x ∈ Pu(δk).

Now consider the case where b is an i.i.d. sequence of Bernoullis B(1
2
). We argue that on

the event E i, the learning process before time 2Tk− 1 and under rewards rb is stochastically
equivalent to the learning under stationary rewards rb := (rb)t≥1 before 2Tk − 1. Precisely,
we have

Eb∼B( 1
2
)

[
EX,â

[
2Tk−1∑
t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | E i
]]

= EX

[
Eb∼B( 1

2
)Eâ

[
2Tk−1∑
t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | X, E i
]
| E i
]

= EX

[
EbEâ

[
2Tk−1∑
t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | X, E i

]
| E i
]

= E

[
2Tk−1∑
t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | E i

]

≥ Tk
16
,

where in the second inequality we used the fact that on the event E i, until time 2Tk − 1 all
distinct instances in Ai fall in distinct sets of the partition (Pu(δk))u: for both rewards rb
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and rb, the reward on a new instance Ai is independent of the past and has the distribution
B(1

2
) for action a1 and deterministic 3

4
for action a2. As a result, there exists a specific

realization of b such that

EX,â

[
2Tk−1∑
t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | E i
]
≥ Tk

16
.

Hence, because P[(E i)c] ≤ 1
32

, we obtain

EX,â

[
2Tk−1∑
t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt)

]
≥ Tk

16

(
1− 1

32

)
− Tk

32
≥ 2Tk − 1

27
.

Now denote T p = 2Tk − 1, and let ip+1 = 1 + max{j ≥ i : ∃l ∈ Si, Tl ≤ T i} = 1 + max{j ≥
i : T2j−1 ≤ T i}. The index ip+1 is chosen so that until time T p, the process X has not visited⋃
j≥ip Aj yet. Note that this index is well defined since Tk → ∞ as k → ∞. We then pose

r(· | x) = rb(· | x) for all x ∈
⋃
i≤j<ip+1

Aj. In particular, we have r(a | x) = 0 for all
x ∈

⋃
ip<j<ip+1

Aj. Then pose

π∗(x) =

{
πb(x) x ∈ Ai
a2 x ∈

⋃
i<j<ip+1 Aj.

This ends the recursive construction of the reward r and the policy π∗, i.e., we have con-
structed r(· | x) and π∗(x) for all x ∈

⋃
i≥1Ai. We end the definition of the rewards by posing

rt(· | x) = 0 and π∗(x) = a2 if x /∈
⋃
i≥1Ai. Note that (rt)t≥1 forms a valid sequence of

rewards since by construction on each Ai they are deterministic. Similarly, π∗ is measurable
because it is measurable on each Ai.

We now analyze the regret of the algorithm compared to π∗ for the rewards (rt)t. First,
note that the rewards are deterministic and time-independent, and that π∗ is the optimal
policy, i.e., which always selects the best arm in hindsight. Then, for any p ≥ 1, we have

r(· | x) = rb(· | x), ∀x ∈ X \
⋃

i≥ip+1

Ai.

where rb denotes the rewards defined at the p-th iteration of the construction process. Now
recall that by construction, the sets Ai visited by the process X≤T p all satisfy i < ip+1, which
is the first index for which the rewards would differ. As a result, we have

E

[
1

T p

T p∑
t=1

r(π∗(Xt) | Xt)− r(ât | Xt)

]
≥ E

 1

T p

T p∑
t=(Tp+1)/2

r(π∗(Xt) | Xt)− r(ât | Xt)


= E

 1

T p

T p∑
t=(Tp+1)/2

rb(πb(Xt) | Xt)− rb(ât | Xt)


≥ 1

27
,
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where in the first inequality we used the fact that π∗ always selects the best action in
hindsight. Because this holds for any p ≥ 1, we can use Fatou’s lemma to obtain

E

[
lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]

≥ lim sup
T→∞

E

[
1

T

T∑
t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]
≥ 1

27
.

As a result, f· is not consistent on the stationary rewards (r)t under X, which ends the proof
of the theorem. ■

A tighter necessary condition C6 for oblivious rewards

This section proves that C6 is necessary for stochastic processes, which is tighter than the
family C4. We first prove the lemma on large deviations of the empirical measure in extended
CS processes.
Proof of Lemma 6.1 Let ϵ > 0 and suppose by contradiction that for all T ≥ 1 and δ > 0
there exists a measurable set A(δ;T ) such that E[µ̂XT (A(δ;T ))] ≤ δ and

E

[
sup
T ′>T

1

T ′

∑
t≤T ′,t∈T

1A(δ;T )(Xt)

]
> ϵ.

We now construct by induction a sequence of sets (Ai)i≥1 together with times (Ti)i≥0 such that
T0 = 0. Now suppose that we have constructed Ti−1 for i ≥ 1. We take Ai = A(ϵ2−i−2;Ti−1).
Then, because E[µ̂XT (Ai)] ≤ ϵ2−i−2, by the dominated convergence theorem, there exists
Ti > Ti−1 such that

E

[
sup
T>Ti

1

T

∑
t≤T,t∈T

1Ai
(Xt)

]
≤ ϵ

2i+1
.

This ends the construction of the sequences. For any i ≥ 1, let Bi = Ai \
⋃
j<iAj and note

that

E

[
sup

T>Ti−1

1

T

∑
t≤T,t∈T

1Ai
(Xt)

]

≤ E

[
sup

T>Ti−1

1

T

∑
t≤T,t∈T

1Bi
(Xt)

]
+
∑
j<i

E

[
sup

T>Ti−1

1

T

∑
t≤T,t∈T

1Aj
(Xt)

]

≤ E

[
sup

T>Ti−1

1

T

∑
t≤T,t∈T

1Bi
(Xt)

]
+
∑
j<i

E

[
sup
T>Tj

1

T

∑
t≤T,t∈T

1Aj
(Xt)

]

≤ E

[
sup

T>Ti−1

1

T

∑
t≤T,t∈T

1Bi
(Xt)

]
+
ϵ

2
.
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By construction E
[
supT>Ti−1

1
T

∑
t≤T,t∈T 1Ai

(Xt)
]
> ϵ. Hence, letting Ci =

⋃
j≥iBj, we

obtain that for any j ≥ i,

E

[
sup
T>Tj

1

T

∑
t≤T,t∈T

1Ci
(Xt)

]
≥ E

[
sup
T>Tj

1

T

∑
t≤T,t∈T

1Bj+1
(Xt)

]
≥ ϵ

2
.

As a result, by the dominated convergence theorem we have E[µ̂XT (Ci)] ≥ ϵ
2
. Further, all

sets Bi are disjoint. But Ci ↓ ∅, which contradicts the hypothesis that XT ∈ CS. This ends
the proof of the lemma. ■

We recall the necessary definitions to introduce condition C6. For a process X ∈ C4, any
ϵ > 0 and T ≥ 1,

δp(ϵ;T ) := sup

{
0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup

l
E[µ̂Xl(A)] ≤ δ,

∀τ ≥ T online stopping time, E

[
1

2τ

∑
τ≤t<2τ,t∈T p

1A(Xt)

]
≤ ϵ

}
,

and δp(ϵ) := limT→∞ δp(ϵ;T ) > 0. We recall condition C6.

Condition 6. X ∈ C4 and for any ϵ > 0, we have limp→∞ δp(ϵ) > 0. Denote by C6 the set of
all processes X satisfying this condition.

The main result of this section is that this condition is necessary for oblivious rewards.

Theorem 6.8. Let X be a metrizable separable Borel space, and a finite action space A with
|A| ≥ 2. Then, Soaboblivious ⊂ C6.

Proof Fix X ∈ C4\C6. By hypothesis, there exists ϵ > 0 such that δp(ϵ)→ 0 as p→∞. Let
(p(i))i≥1 be the set of increasing indices such that δp(i)(ϵ) ≤ ϵ2−i−3. Similarly to the proof
of Theorem 6.6, we suppose by contradiction that there is a universally consistent learning
rule f· under X and we will construct by induction some rewards on which the learning rule
is not consistent. We will denote by ât the action selected by the learning rule at time t.
Precisely, suppose that we have performed i − 1 iterations of the construction process for
some i ≥ 1, and have constructed times T 1, . . . , T i−1 as well as rewards (rt)t≤T i−1 , disjoint
sets A1, . . . , Ai−1 satisfying

sup
l

E[µ̂Xl(Aj)] ≤ ϵ2−j−2

for all j < i, and a policy π∗ on
⋃
j<iA

i. We will now focus on the times T p(i). For
convenience, in the rest of the proof, when clear from context, we will write p instead of p(i).

First, by hypothesis, for any 1 ≤ j < i, we have E[µ̂Xp(Aj)] ≤ ϵ2−j−2. Thus, by the
dominated convergence theorem, there exists t(j) such that

E

[
sup
T≥t(j)

1

T

∑
t≤T,t∈T p

1Aj(Xt)

]
≤ ϵ

2j+1
.
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Therefore, summing these equations yields

E

[
sup

T≥maxj<i t(j)

1

T

∑
t≤T,t∈T p

1⋃
j<i A

j(Xt)

]
≤ ϵ

2
.

We define T̃ i−1 = max(T i−1, t(1), . . . , t(i − 1)). Now by construction, δp(i)(ϵ) ≤ ϵ2−i−3.
Therefore, there exists T0 ≥ T̃ i−1 such that for any T ≥ T0, we have δp(ϵ;T ) ≤ ϵ2−i−2. Now
for T ≥ T0, let Ai(T ) ∈ B and τ i(T ) ≥ T be a stopping time such that

sup
l

E[µ̂Xl(Ai(T ))] ≤ ϵ2−i−2 and E

 1

2τ i(T )

∑
τ i(T )≤t<2τ i(T ),t∈T p

1Ai(T )(Xt)

 > ϵ.

Last, let U(T ) be such that
P[2τ i(T ) > U(T )] ≥ ϵ

2T+10
.

Then, by the union bound, with probability at least 1−ϵ2−10, for all T ≥ T0, we have 2τ i(T ) ≤
U(T ). Denote by H this event. Next, let ki = 2p + 1, αi = 2−p−1, βi = ϵ

210(1+2αi)(ki−1)ki4ki
,

K̃i =
⌈

2
αi
log 8

βi

⌉
andMi = max((1+2αi)

K̃i , 2
10

ϵ
). We first construct by induction of increasing

times (T (l))l≥0 with T (0) = MiT0 and T (l) ≥ MiU(T (l − 1)). For convenience, we use
the notation τ il = τ i(T (l)), Ail = Ai(T (l)) \

⋃
1≤j<iA

j for l ≥ 0. Then, by construction,
τ i(T (l)) ≥MiU(T (l − 1)) and

E

 1

2τ il

∑
τ il≤t<2τ il ,t∈T p

1Ai
l
(Xt)


≥ E

 1

2τ il

∑
τ il≤t<2τ il ,t∈T p

1Ai(T (l))(Xt)

− E

 1

2τ il

∑
τ il≤t<2τ il ,t∈T p

1⋃
j<i A

j(Xt)


> ϵ− E

[
sup

T≥T̃ i−1

1

T

∑
t≤T,t∈T p

1⋃
j<i A

j(Xt)

]
>
ϵ

2
.

For any l ≥ 1, let δl > 0 such that

P
[

min
1≤t,t′≤U(T (l)),Xt ̸=Xt′

ρ(Xt, Xt′) ≤ δl

]
≤ ϵ

2l+10
.

Let E be the event when for all l ≥ 1, we have min1≤t,t′≤U(T (l)),Xt ̸=Xt′
ρ(Xt, Xt′) > δl and

H is satisfied. By the union bound, P[E ] ≥ 1 − ϵ
29

. We now construct similar rewards
to those in the proof of Theorem 6.6. Then, for any δ > 0 and u ≥ 1, define the sets
Pu(δ) = B(xu, δ) \

⋃
v<uB(xv, δ) where (xu)u≥1 is a dense sequence of X , which form a
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partition of X . For any binary sequence b = (bu)u≥1 in {0, 1} define the deterministic
rewards

rδ,b;l(a | x) =


bu1x∈Ai

l
a = a1, x ∈ Pu(δ),

3
4
1x∈Ai

l
a = a2,

0 a /∈ {a1, a2}.

Next, for any sequence of binary sequences b := (bl)l≥1, we construct the deterministic
rewards rb as follows. First, for t ≤ T i−1, rbt = rt the rewards already constructed. Also,
for T i−1 < t ≤ U(T (0)), we pose rbt = 0. Next, observe that τ il is an online stopping time.
Therefore, for any l ≥ 0, U(T (l−1)) < t < τ il or 2τ il ≤ t ≤ U(T (l)), we pose rbt = 0. Finally,
for τ il ≤ t < 2τ il , U(T (l)) and k such that T k−1

p < t ≤ T kp , we pose

rbt (a | x≤t) =


0 ∃t′ ≤ U(T (l − 1)) : xt′ = xt,

0 o.w., ∃T k−1
p < t′ ≤ t : xt′ = xt,

rδl,bl;l(a | xt) o.w., ∀T k−1
p < t′ ≤ t : xt′ ̸= xt,

for any a ∈ A and x≤t ∈ X t. Now generate b as independent i.i.d. Bernoulli B(1
2
) processes.

We now compare the predictions of the learning rule to the constant policy which selects
action a2. Because the learning rule is consistent under any rewards rb for any realization
b, and because P[E ] > 0, taking the expectation over b, we obtain

E

[
lim sup
T→∞

1

T

T∑
t=1

rbt (a2)− rbt (ât) | E

]
≤ 0.

Next, we use the dominated convergence theorem to find li ≥ 1 such that

E

[
sup

T≥T (li)/2

1

T

T∑
t=1

rbt (a2)− rbt (ât) | E

]
≤ βp

4
.

We now define Ai = Aili , T
i = U(T (li)) and focus on the period [τ il , 2τ

i
l ). Let k̂ = max{k :

τ il ≥ T kp }. Then, [τ il , 2τ il ) ⊂ [T k̂p , T
k̂+2p+1
p ) and we construct the following sets

Sq = {T k̂+q−1
p < t ≤ T k̂+qp : Xt ∈ Ai} ∩ T p, 1 ≤ q ≤ 2p + 1 = ki. (6.4)

We also define Expq as the exploration steps of arm a1 during Sq.

Expq =

{
t ∈ Sq : ât = a1 and ∀t′ ∈

⋃
q′<q

Sq′ : Xt′ = Xt, ât′ ̸= a1

}
\ {t : ∃t′ ≤ U(T (li − 1)), Xt′ = Xt},

and Eq = |Expq|. The same arguments as in Theorem 6.6 show that for all 1 ≤ q ≤ k1, we

have E
[

Eq

T
k̂+ki
p

| E
]
≤ 4q+1(1 + 2αi)

(ki−1)kiβp. For any t ≥ 1, let a∗t be the optimal action in

hindsight and define

Bq =
⋃
q≤q̂

{
t ∈ Sq : ∀t′ ∈

⋃
q′<q

Sq′ : Xt′ = Xt, t /∈ Expq′
}
,
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the times such that we never explored action a2, before time T k̂+qp . As in the proof of
Theorem 6.6, for times in B, the learner incurs an average regret of at least 1

8
. Therefore,

E

 1

T k̂+kip

T
k̂+ki
p∑
t=1

rbt (a
∗
t )− rbt (ât) | E

 ≥ 1

8
E

[
|Bq|
T k̂+kip

| E

]
.

Finally, let T ∗
p = |{t ≤ T k̂+kip : Xt ∈ Ai} ∩ T p|. Noting that we have E

[
T ∗
p

T
k̂+ki
p

| E
]
≥

1
2
E
[
T ∗
p

2τ il
| E
]
≥ ϵ

4
≥ ϵ

16
, the same arguments as in the original proof give directly

E

 1

T k̂+kip

T
k̂+ki
p∑
t=1

rbt (a
∗
t )− rbt (ât) | E

 ≥ ϵ

28
.

As a result, there exists a realization of b such that the above equation holds for this specific
realization. We then pose rt = rbt for all t ≤ T i and define a policy πi on Ai as follows,

πi(x) =

{
a1 if blu = 1, x ∈ Pu(δli) ∩ Ai,
a2 if blu = 0, x ∈ Pu(δli) ∩ Ai.

for any x ∈ Ai, which is possible because Ai is disjoint from
⋃
j<iA

j. Now observe that the
policy selects the best action in hindsight during the interval [T (li), U(T (li)), irrespective of
how it is defined outside of Ai. As a result, we have

E

[
sup

T i−1<T≤T i

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât) | E

]

≥ E

 1

T k̂+ki

T k̂+ki∑
t=1

rbt (π
∗(Xt))− rbt (ât) | E


≥ E

−2U(T (li − 1))

T k̂+ki
+

1

T k̂+ki

T k̂+ki∑
t=1

rbt (a
∗
t )− rbt (ât) | E


≥ − 2

Mi

+
ϵ

28

≥ ϵ

29
.

This ends the recursive construction of the rewards. We close the definition of π∗ by setting
π∗(x) = a1 for x /∈

⋃
i≥1A

i arbitrarily. The constructed policy is measurable and we showed
that for all i ≥ 1,

E

[
sup

T i−1<T≤T i

1

T

T∑
t=1

rt(π
∗(Xt))− rt(ât)

]
≥ ϵ

29
.
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Using Fatou’s lemma, this shows that E
[
lim supT→∞

1
T

∑T
t=1 r̃t(π

∗(Xt))− r̃t(ât)
]
≥ ϵ

29
. This

ends the proof that f· is not universally consistent under X and ends the proof of the theorem.
■

We now give an example of process X ∈ C4 \ C6.

Theorem 6.9. For X = [0, 1] with usual topology, C6 ⊊ C4.

Proof We construct a process X on [0, 1] by phases [2l, 2l+1) for l ≥ 0. We set X1 = 0
arbitrarily and divide phases by categories Sp = {l ≥ 1 : l ≡ 2p−1 mod 2p} for any p ≥ 1.
Next, for any l ∈ Sp, let

Ap(l) =
⋃

0≤i<2l

[
i2p

2p+l
,
i2p + 1

2p+l

]
.

Importantly, Ap(l) has Lebesgue measure 2−p. Next, noting that l ≥ 2p−1 ≥ p, for 2l ≤ t <
2l+1 we define

Xt =

{
Ut(Ap(l)) 2l ≤ t < 2l + 2l−p,

Xt′ t ≥ 2l + 2l−p, 2l ≤ t′ < 2l + 2l−p, t′ ≡ t mod 2l−p

where Ut(Ap(l)) denotes a uniform random variable on Ap(l) independent from all past
random variables. The process on Sp is constructed so that it has 2p duplicates. This ends
the construction of X.

We now show that X ∈ C4. For convenience, for any l ≥ 1, let p(l) be the index such that
l ∈ Sp(l). Next, let Xp := (Xt)t∈T p for p ≥ 0. we will show the stronger statement that for
any measurable set A ∈ B, we have µ̂Xp(A) ≤ µ(A) (a.s.), where µ is the Lebesgue measure.
To do so, fix A ∈ B and ϵ > 0. Since A is Lebesgue measurable, there exists a sequence of
disjoint intervals (Ik)k≥0 within X = [0, 1] such that A ⊂

⋃
k≥0 Ik and∑

k≥0

ℓ(Ik) ≤ µ(A) + ϵ,

where ℓ(I) is the length of an interval I. Then, let k0 such that
∑

k≥k0 Ik ≤
ϵ2

2p+1 and pose
ℓ0 = mink<k0 ℓ(Ik). Then, for any l ≥ max(2, log2

k0
ϵ
) := l0, with l ∈ Sq,

µ(A ∩ Aq(l))
µ(Aq(l))

≤
∑
k<k0

µ(Ik ∩ Aq(l))
µ(Aq(l))

+ 2qµ

(⋃
k≥k0

Ik

)
≤
∑
k<k0

(ℓ(Ik) + 2−l) + ϵ22q−p−1

≤ µ(A) + 2ϵ+ ϵ22q−p−1.

Let q0 = p + log2
1
ϵ
. For any l ≥ l0 with l ∈

⋃
q<q0

Sq, we have µ(A∩Aq(l))

µ(Aq(l))
≤ µ(A) + 3ϵ. Now

for any l ≥ l0, if l ∈
⋃
q<q0

Sq, Hoeffding’s inequality implies that for any l ≤ r ≤ 2l−q,

P

 ∑
2l≤t<2l+r

1A(Xt) ≤ r(µ(A) + 4ϵ)

 ≥ 1− e−2ϵ2r2 ≥ 1− e−2ϵ2lr.
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Note that we always have 2l−q ≥ l since l ≥ 2q−1 and l ≥ 2. In particular, because we have∑
r≥1

∑
l≥1 e

−2ϵ2lr <∞, on an event E(ϵ) of probability one, there exists l̂ ≥ l0 such that the
above equation holds for all l ≥ l̂ with l ∈

⋃
q<q0

Sq and l ≤ r ≤ 2l−q. Then, for T ≥ 2l̂,
letting l(T ) ≥ 1 such that 2l(T ) ≤ T < 2l(T )+1, we have∑
t≤T,t∈T p

1A(Xt) =
∑
l<l(T )

min(2p(l), 2p)
∑

2l≤t<2l+2l−p(l)

1A(Xt) +
∑

2l(T )≤t≤T,t∈T p

1A(Xt)

≤
∑
l<l(T )

ϵ2l1[p(l) ≥ q0] + 2l̂ +
∑

l̂≤l<l(T )

2l(µ(A) + 4ϵ)1[p(l) < q0]

ϵ2l(T )1[p(l(T )) ≥ q0] + [(T − 2l(T ) + 1)(µ(A) + 4ϵ) + l(T )]1[p(l(T )) < q0]

≤ 2l̂ + l(T ) + 2ϵ2l(T ) + (µ(A) + 4ϵ)T

≤ 2l̂ + log2 T + (µ(A) + 6ϵ)T.

where in the first inequality, we used the fact that for q ≥ q0, 2p ≤ ϵ2q. Further, the
additional term l(T ) comes from the fact that the estimates on E(ϵ) held for r ≥ l: writing
T = 2l(T )+u2l(T )−p(l(T ))+v, we first use E(ϵ) with r = 2l(T )−p(l(T )), then with r = max(v, l(T )).
As a result, on E(ϵ), we have µ̂Xp(A) ≤ µ(A)+6ϵ. Thus, on

⋂
j≥0 E(2−j) of probability one, we

have µ̂Xp(A) ≤ µ(A), and this holds for all p ≥ 1 and A ∈ B. Using this property, verifying
the C4 condition is straightforward. For disjoint measurable sets Ai, we have E[µ̂Xi(Ai)] ≤
µ(Ai)→ 0 because

∑
i µ(Ai) ≤ 1.

We now show that X /∈ C6. First, on an event F of probability one, all samples Ut(Ap(l))
are distinct. As a result, on F , except for the intended duplicates, all instances of X are
distinct. Thus, for any l ∈ Sp, and any 2l ≤ t < 2l+1, we have t ∈ T p. Hence, on F ,

1

2l+1

∑
2l≤t<2l+1,t∈T p

1Ap(l)(Xt) ≥
2l

2l+1
=

1

2
.

In particular, this implies that

E

 1

2l+1

∑
2l≤t<2l+1,t∈T p

1Ap(l)(Xt)

 ≥ 1

2
.

However, E[µ̂Xp(Ap(l))] = µ(Ap(l)) = 2−p. Therefore, using the trivial stopping time τ = 2l,
we showed δp(1/2; 2l) ≤ 2−p. Because this holds for all l ∈ Sp which is infinite, we have
δp(1/2) ≤ 2−p. Thus, δp(1/2)→ 0 as p→∞. This shows that X /∈ C6, which ends the proof
of the theorem. ■

Further tightened necessary condition C7 for prescient rewards

A more natural condition on processes than C6 would be one that does not involve these
stopping times τ . In particular, for a process X ∈ C4, we can define instead for any ϵ > 0
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and T ≥ 1,

δ̄p(ϵ;T ) := sup

{
0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup

l
E[µ̂Xl(A)] ≤ δ,

E

[
sup
T ′≥T

1

T

∑
t≤T,t∈T p

1A(Xt)

]
≤ ϵ

}
.

As before, δ̄p(ϵ;T ) is non-decreasing in T and δ̄p(ϵ) := limT→∞ δp(ϵ;T ) > 0. We can then
observe that δ̄p(ϵ) is non-increasing. Similarly to C6, we can then define the following condi-
tion.

Condition 7. X ∈ C4 and for any ϵ > 0, we have limp→∞ δ̄p(ϵ) > 0. Denote by C7 the set of
all processes X satisfying this condition.

As a simple remark, we have the inclusion C7 ⊂ C6, since if for any given process X ∈ C4,
set A ∈ B and online stopping time τ ≥ T ,

E

[
1

2τ

∑
τ≤t<2τ,t∈T p

1A(Xt)

]
≤ E

[
sup
T ′≥T

1

T

∑
t≤T,t∈T p

1A(Xt)

]
.

Unfortunately, for oblivious rewards, we were unable to prove that C7 is a necessary
condition. Indeed, for a process X ∈ C4, time T ≥ 1 and ϵ > 0, if

E

[
sup
T ′≥T

1

T

∑
t≤T,t∈T p

1A(Xt)

]
> ϵ, (6.5)

it is in general not true that there exists an online stopping time τ ≥ T such that

E

[
1

2τ

∑
τ≤t<2τ,t∈T p

1A(Xt)

]
> ηϵ, (6.6)

even for a fixed multiplicative tolerance 0 < η < 1, which should be independent of ϵ >
0. Thus, it seems unlikely that C6 = C7 in general for spaces X admitting a non-atomic
probability measure.

However, if one considers a stronger type of adversary, we can show that C7 becomes
necessary for universal learning. Precisely, one can introduce prescient rewards, that are
stronger than oblivious rewards in that rewards are allowed to depend on the complete
sequence X instead of the revealed contexts to the learner X≤t at step t. Formally, these are
defined as follows.

Definition 6.5 (Reward models). The reward mechanism is said to be prescient if there
are conditional distributions (Pr|a,xt′≥1

)t≥1 such that rt given the selected action at and the
sequence of contexts X, follows Pr|a,xt′≥1

.
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In this model, given a process X ∈ C4, a time T ≥ 1 and ϵ > 0 satisfying Eq (6.5), finding
a time τ ≥ T (measurable with respect to the sigma-algebra σ(X), i.e., conditionally on X)
such that Eq (6.6) is satisfied becomes trivial even with η = 1. Therefore, the same proof
as for Theorem 6.8 shows that the last condition on stochastic processes is necessary for
prescient rewards.

Theorem 6.10. Let X be a metrizable separable Borel space, and a finite action space A
with |A| ≥ 2. Then, Soabprescient ⊂ C7.

Condition C5 is necessary for universal learning with online rewards

In this section, we show that condition C5 is necessary for universal learning with online
rewards, tightening the result on the necessity of condition C6 from the previous section. In
fact, in Section 6.5.2 we show that C5 is also sufficient, which together with the result from
this section shows that C5 exactly characterizes universally learnable processes for online
rewards. We recall that this is the strongest reward model that we consider in this chapter
and allows the reward adversary to also take into account the past actions selected by the
learner. We first briefly recall the definition of condition C5.

Condition 5. There exists an increasing sequence of integers (Ti)i≥0 such that letting

T =
⋃
i≥0

T i ∩ {t ≥ Ti},

we have XT ∈ CS. Denote by C5 the set of all processes X satisfying this condition.

Before proving our main result, we need the following lemma that gives an equivalent
formulation of the class of processes C5. Intuitively, it shows that if X /∈ C5, for any tentative
rate to add duplicates—yielding the extended process X̃—we can uniformly lower-bound the
proportion of failure for the CS condition.

Lemma 6.3. Let X be a metrizable separable Borel space and X a stochastic process on X .
The following are equivalent.

• X ∈ C5,

• For any ϵ > 0, there exists an increasing sequence of integers (Ti)i≥0 such that letting
T =

⋃
i≥0 T i∩{t ≥ Ti}, for any sequence {Ak}k≥1 of measurable sets of X with Ak ↓ ∅,

lim
k→∞

E[µ̂(Xt)t∈T (Ak)] ≤ ϵ.

Proof By definition of the condition C5, it is immediate that X ∈ C5 implies the second
proposition. It remains to prove the converse. We then suppose that X satisfies the second
proposition. Denote by (Ti(l))i≥0 the sequence obtained from the proposition by setting
ϵ = 2−l. Now defining

Ti = max
j≤i

Ti(j),
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it then suffices to argue that the sequence (Ti)i≥0 satisfies the requirements for the C5 condi-
tion. We write T =

⋃
i≥0 T i ∩ {t ≥ Ti} and T (l) =

⋃
i≥0 T i ∩ {t ≥ Ti(l)} for any l ≥ 0. Now

fix l ≥ 0, and note that for any i ≥ l, one has Ti ≥ Ti(l). As a result,⋃
i≥l

T i ∩ {t ≥ Ti} ⊂
⋃
i≥l

T i ∩ {t ≥ Ti(l)}.

Next, note that because the sets T i are increasing in i, we have T \
⋃
i≥l T i ∩ {t ≥ Ti} ⊂

{t < Tl}. Therefore, for any measurable set A ∈ B, one has

µ̂(Xt)t∈T (A) = lim sup
T→∞

1

T

∑
t≤T,t∈T

1A(Xt) ≤ lim sup
T→∞

Tl
T

+
1

T

∑
t≤T,t∈T (l)

1A(Xt) = µ̂(Xt)t∈T (l)
(A).

Thus, for any sequence of measurable sets Ak ↓ ∅, one has

lim
k→∞

E[µ̂(Xt)t∈T (Ak)] ≤ lim
k→∞

E[µ̂(Xt)t∈T (l)
(Ak)] ≤ 2−l.

Because this holds for all l ≥ 0, we obtain limk→∞ E[µ̂(Xt)t∈T (Ak)] = 0 and the lemma is
proved. ■

We are now ready to prove the following theorem.

Theorem 6.11. Let X be a metrizable separable Borel space, and a finite action space A
with |A| ≥ 2. Then, Soabonline ⊂ C5.

Proof Fix X /∈ C5. If X /∈ C4, we already proved that (even for oblivious rewards) universal
learning is not achievable. Therefore, we suppose that X ∈ C4 and suppose by contradiction
that there is a universally consistent learning rule f· under X. We will construct by induction
some online rewards on which the learning rule is not consistent. For convenience, we denote
by ât the action selected by the learning rule at time t. Last, since |A| ≥ 2, we can fix
a1 ̸= a2 ∈ A two arbitrary actions. These will be the only used actions for our constructions,
all other actions a ∈ A \ {a1, a2} will have zero rewards at all times.

We start by constructing rewards that will depend on the actions of the learning rule.
By Lemma 6.3, we can fix ϵ such that for any increasing sequence (Ti)i≥0, letting T =⋃
i≥0 T i ∩ {t ≥ Ti}, there exists a sequence of sets Ak ↓ ∅ such that

E[µ̂(Xt)t∈T (Ak)] ≥ ϵ, ∀k ≥ 0.

Here we used that the sequence of sets is decreasing so that E[µ̂(Xt)t∈T (Ak)] is decreasing in
i.

The end rewards are constructed by induction: at the phase p of the construction, the
rewards r⋆t have been constructed for all t < T ⋆p for some time T ⋆p = 2R

⋆
p . Further, we have

defined some disjoint sets B1, . . . , Bp, increasing times T ⋆1 , . . . , T ⋆p−1, and a policy π(p) such
that π(p)(x) = a2 for all x /∈ B1 ∪ · · ·Bp, and for any p′ ≤ p,

E

[
max

T ⋆
p′−1

≤T<T ⋆
p′

1

T

T∑
t=1

r⋆t (π
(p)(Xt))− r⋆t (ât)

]
≥ ϵ

16
+

ϵ

2p+10
, (6.7)
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where we used the notation T ⋆0 = 0. Last, at phase p we have also constructed a sequence of
increasing indices (Qp(i))i≥0 with Qp(i) ≥ 4i such that with T (p) =

⋃
i≥0 T i ∩ {t ≥ 2Qp(i)},

one has

E

sup
T≥1

1

T

∑
t≤T,t∈T (p)

1Bp′
(Xt)

 ≤ ϵ

2p′+10
, p′ ≤ p. (6.8)

For instance, for p = 0 we can simply take Q0(i) = 2i for all i ≥ 0. We then suppose that
we completed phase p ≥ 0 and proceed with the induction to construct the set Bp+1, time
T ⋆p+1 and rewards r⋆t until time T ⋆p+1.

Before doing so, we need to construct an auxiliary reward process. These rewards have
the following behavior. Before T ⋆p = 2R

⋆
p , these are constructed identically as the rewards r⋆.

Then, at time t ≥ 2R
⋆
p , either the rewards are always zero and this is called an inactive time;

or the time is active, in which case the “safe” action a2 always receives a reward 3/4, and
the “uncertain” action a1 receives a reward that can either be 0 or 1 with equal probability.
We say that the learning rule explores at an active time t if it selects action a1. At the high
level, the rewards proceed by period and tentatively activate the times from T i for some
i ≥ 0. If the learning rule performs too many explorations, the trial fails and we instead aim
to activate fewer times from T j for j < i. We construct the rewards inductively by period
[2r, 2r+1) for r ≥ r0. Each of these periods will be associated with a level i(r) ≥ 0, which
roughly corresponds to the fact that the active times during period r were times in T i(r). We
also denote by St the set of active times up until time t (included). The formal procedure
to define the online rewards is given in Algorithm 6.1, where rt(a) denotes the reward for
action a defined by the procedure at time t, for t ≥ 1.

Let S =
⋃
t≥1 St be the set of all active times. We first give some properties on the learning

procedure starting from time T ⋆p . As a first step, we show that the learner cannot make
better predictions than the simple policy π0 : x ∈ X 7→ a2 ∈ A. Precisely, we show that the
quantities rt(ât)−rt(a2)+1t∈S1ât ̸=a2/4 for t ≥ T ⋆p form the increments of a super-martingale
with respect to the filtration σ(X≤t, â≤t, r≤t−1). First, note that whether t is active, i.e.,
t ∈ S only requires the knowledge of X≤t and the actions â≤t, hence is measurable with
respect to the given filtration. Next, if t is inactive, all rewards are zero. We now consider
active times. Denote by u(t) the time of the first occurrence of Xt starting from T ⋆p , i.e.,
u(t) = min{T ⋆p ≤ u ≤ t : Xt = Xu}. Then, if t is active, rt(a1) − rt(a2) = Bu(t) − 3/4.
Moreover, by construction, the learning rule has not queried a1 for any previous active time
u within the same period as t such that Xt = Xu. However, these are the only times when Bt′

affected the rewards. As a result, all rewards that the learning rule has received before time
t are independent of Bu(t) (whether t is active or not). This shows that Bu(t) is independent
from X≤t, â≤t and r≤t−1 together. As a result,

E[rt(ât)− rt(a2)+1t∈S1ât ̸=a2/4 | X≤t, â≤t, r≤t−1]

= 1t∈S(−1/2 · 1ât /∈{a1,a2} + 1ât=a1E[Bu(t) − 1/2 | X≤t, â≤t, r≤t−1])

= −1/2 · 1t∈S1ât /∈{a1,a2} ≤ 0.

This ends the proof that (rt(ât)− rt(a2)+1t∈S1ât ̸=a2/4)t≥T ⋆
p

form the increments of a super-
martingale, and these are bounded in absolute value by one. Azuma-Hoeffding’s inequality
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Let (Bt)t≥1 be an i.i.d. B(1
2
) sequence

for t = 1, . . . , T ⋆p − 1 do
Observe context Xt

Define rt(a) = r⋆t (a) for all a ∈ A
Observe action selected by learner ât

end
Initialize i(R⋆

p) = 0 and let ST ⋆
p−1 = ∅

for r ≥ R⋆
p do

for t = 2r, . . . , 2r+1 − 1 do
Observe context Xt

if t /∈ T i(r) then
Define rt(a) = 0 for all a ∈ A and St = St−1

else if ∀T ⋆p ≤ t′ < t, Xt′ ̸= Xt then

Define rt(a) =


Bt a = a1
3
4

a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∃T ⋆p ≤ t′ < t such that Xt = Xt′, t′ ∈ St−1 and ât′ = a1 then

Define rt(a) = 0 for all a ∈ A and St = St−1

else
Define rt(a) = rt′(a) for all a ∈ A where t′ < t, Xt = Xt′ and t′ ∈ St−1

St ← St−1 ∪ {t}
end
Observe action selected by learner ât
while 1

t

∑t
u=T ⋆

p
1u∈St1âu ̸=a2 ≥ 1

22i(r)(i(r)+1)
do i(r)← max(0, i(r)− 1) ;

end
Define i(r + 1) = min{i(r) + 1, k} where k is such that Qp(k) ≤ r + 1 < Qp(k + 1)

end
Algorithm 6.1: Procedure to define the online rewards

then implies for any T ≥ T ⋆p ,

P

 T∑
t=T ⋆

p

rt(ât)− rt(a2) ≥ 2T 3/4 − 1

4

T∑
t=T ⋆

p

1t∈S1ât ̸=a2

 ≤ e−2
√
T .

Borel-Cantelli’s lemma then implies that on an event E of probability one, there exists T̂ ≥ T ⋆p
such that for any T ≥ T̂ ,

T∑
t=T ⋆

p

rt(ât)− rt(a2) < 2T 3/4 − 1

4

T∑
t=T ⋆

p

1t∈S1ât ̸=a2 .

We now focus on the level i(r) at each period. Note that this quantity is updated by
the procedure along the learning process: it starts at i(r − 1) + 1 (or 0 if r = r0) at the
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beginning of the period [2r, 2r+1), then can only decrease during the period. Starting from
the end of the period 2r+1, the level i(r) is never updated again. To avoid any confusion, we
denote by I(r) this final value of i(r) once the period is completed. We aim to prove that the
level at each period i(r) eventually diverges to infinity. Fix j ≥ 0. Because f· is universally
consistent under X, it has in particular vanishing excess error compared to π0. Hence, we
have

P

[
lim sup
T→∞

1

T

T∑
t=1

rt(a2)− rt(ât) ≥
1

22j+4(j + 1)

]
= 0.

As a result, by the dominated convergence theorem there exists tj ≥ 1 such that

P

[
sup
T≥tj

1

T

T∑
t=1

rt(a2)− rt(ât) ≥
1

22j+4(j + 1)

]
≤ ϵ

2j+10
.

We denote by Fj the complement event. Next, because E has full probability, there exists
t′j such that

P

 T∑
t=T ⋆

p

rt(ât)− rt(a2) < 2T 3/4 − 1

4

T∑
t=T ⋆

p

1t∈S1ât ̸=a2 , ∀T ≥ t′j

 ≤ ϵ

2j+10
.

We denote by Ej the complement event. Now, we define an integer Rj ≥ R⋆
p such that

2Rj−j ≥ max(tj, t
′
j, 2

8j+16(j + 1)4, 22j+4(j + 1)T ⋆p , 2
Qp(j)). Using the previous two equations

shows that on Ej ∩ Fj of probability at most 1− ϵ
2j+9 , for all T ≥ 2Rj−j,

1

T

T∑
t=T ⋆

p

1t∈S1t̸=a2 <
4

T

∑
t<T ⋆

p

(rt(ât)− rt(a2)) +
8

T 1/4
+

1

22j+2(j + 1)

≤
4T ⋆p
T

+
8

T 1/4
+

1

22j+2(j + 1)
≤ 1

22j(j + 1)
.

Also, for any r ≥ Rj − j, one has r ≥ Qp(j) so that the quantities I(r) can freely increase
until they reach j from when the quantities i(r) are always lower bounded by j. In particular,
using the union bound, we obtain

P
[
∀j ≥ 0, inf

r≥Rj

I(r) ≥ j

]
≥ P

[⋂
j≥0

Ej ∩ Fj

]
≥ 1− ϵ

28
.

We denote by F = {∀j ≥ 0, infr≥Rj
I(r) ≥ j} the corresponding event.

We are now ready to show that f· is not universally consistent. Because X /∈ C5, with
T =

⋃
i≥0 T i ∩ {t ≥ 2Rj}, there exists a measurable sets Ak ↓ ∅ such that for all k ≥ 1 we

have E[µ̂(Xt)t∈T (Ak)] ≥ ϵ. Now because Ak ↓ ∅, we have

0 ≤ lim
k+→∞

P
(
∃t < T ⋆p : Xt ∈ Ak

)
≤
∑
t<T ⋆

p

lim
k→∞

P(Xt ∈ Ak) = 0.
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Also, because X ∈ C4, by Proposition 6.5 we have

lim
k→∞

E
[
sup
i≥0

µ̂(Xt)t∈T i
(Ak)

]
= 0.

As a result, there exists l ≥ 1 such that

E
[
sup
i≥0

µ̂(Xt)t∈T i
(Al)

]
≤ ϵ

2p+11
and P

(
∃t < T ⋆p : Xt ∈ Ak

)
≤ ϵ

2p+11
. (6.9)

We fix this index l in the rest of the proof. Let L⋆p be an integer such that L⋆p ≥ max(R⋆
p +

10 − log2 ϵ, R10−log2 ϵ, 4(log2(Cϵ) + 10 − log2 ϵ)), where Cϵ =
√
2 ln 8

ϵ
. Now by construction,

since we have E[µ̂(Xt)t∈T (Al)] ≥ ϵ, we have in particular

E

[
sup
T≥2L

⋆
p

1

T

∑
t≤T,t∈T

1Al
(Xt)

]
≥ ϵ.

Thus, by the dominated convergence theorem, there exists an integer R⋆
p+1 > 2L

⋆
p such that

E

[
max

2L
⋆
p≤T<2

R⋆
p+1

1

T

∑
t≤T,t∈T

1Al
(Xt)

]
≥ ϵ

2
. (6.10)

We define T ⋆p+1 = 2R
⋆
p+1 . As a second step, we show that during the learning process until

time T ⋆p+1, for a large proportion of active times t for which Xt ∈ Al, the optimal arm in
hindsight is a1. Precisely, we aim to show that

E

[
max

2L
⋆
p≤T<T ⋆

p+1

1

T

∑
t≤T,t∈S

1Al
(Xt) ·Bu(t)

]
≥ ϵ

8
.

To prove this, we reason conditionally on X. Define

T̂ = argmax
2L

⋆
p≤T<T ⋆

p+1

1

T

∑
t≤T,t∈T

1Al
(Xt).

Also, let Exp = {T ⋆p ≤ t ≤ T̂ : t ∈ S, Xt ∈ Al, ât = a1} the set of “exploration” times on
Al when the learning rule selected action a1 without prior knowledge on the value Bu(t) for
active time t. For any exploration time t ∈ Exp, we also define N(t) = |{T ⋆p ≤ t′ ≤ t : t ∈
S, Xt′ = Xt}| the number of active occurrences of Xt before the exploration at t. Note that
after the exploration, new duplicates of Xt will never be active anymore. Last, denote by
Unexp = (Al ∩ {Xt, T

⋆
p ≤ t ≤ T̂}) \ {Xt, t ∈ Exp} the set of points in Al that were left

unexplored until horizon T̂ . As above, for x ∈ Unexp, we denote by N(x) = |{T ⋆p ≤ t ≤ T̂ :

t ∈ S, Xt′ = x| the number of active occurrences of x until T̂ . Also, by abuse of notation,
for any x ∈ Unexp, we denote u(x) = min{T ⋆p ≤ t ≤ T̂ : Xt = x} the first occurrence of
Xt. Conditionally on the realization of X (which as a result makes T̂ deterministic), the
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sequence (1t∈ExpN(t)(Bu(t) − 1
2
))T ⋆

p≤t≤T̂ followed by the sequence (N(x)(Bu(x) − 1
2
))x∈Unexp

form the increments of a martingale with filtration given by the σ-algebras σ(X, â≤t, r≤t−1).
Indeed, conditionally on X, the past history â≤t−1, r≤t−1 and the selected action ât, at an
exploration time t ∈ Exp, the value Bu(t) is independent of X and has never been revealed
yet, hence is independent of the history as well. Similarly, for unrevealed points x ∈ Unexp,
the variables Bu(x) are together independent and also independent from X and the history
â≤T̂ , r≤T̂ . The final term of the described martingale writes

T̂∑
t=T ⋆

p

1t∈ExpN(t)

(
Bu(t) −

1

2

)
+

∑
x∈Unexp

N(x)

(
Bu(x) −

1

2

)

=
T̂∑

t=T ⋆
p

1t∈S1Al
(Xt)

(
Bu(t) −

1

2

)
.

We now bound these increments. For any R⋆
p ≤ r < R⋆

p+1, during the period [2r, 2r+1), one
has S ∩ [2r, 2r+1) ⊂ T k, where k is such that Qp(k) ≤ r < Qp(k + 1). Now recall that
Qp(k) ≥ 4k so that the number of active duplicates for a given point x during period r is at
most 2k ≤ 2r/4. Hence, if T̂ ∈ [2r̂, 2r̂+1), the number of active duplicates of any point until
T̂ satisfies

max
t∈Exp

N(t), max
x∈Unexp

N(x) ≤
r̂∑

r=r0

2r/4 ≤ 2r/4

1− 2−1/4
≤ T̂ 1/4

21/4 − 1
≤ 6T̂ 1/4.

In particular, all increments of the constructed martingale have elements norm bounded by
the above value. Azuma-Hoeffding’s inequality then yields

P

 T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)

(
Bu(t) −

1

2

)
≤ −CϵT̂ 3/4 | X

 ≤ ϵ

8
.

Let G be the complement event, i.e., the event when
∑T̂

t=T ⋆
p
1t∈S1Al

(Xt)
(
Bu(t) − 1

2

)
>

−CϵT̂ 3/4. Then, using Eq (6.10) we obtain

E

1F∩G

T̂

∑
t≤T̂ ,t∈T

1Al
(Xt)

 ≥ E

 1

T̂

∑
t≤T̂ ,t∈T

1Al
(Xt)

−P[F ]−P[G] ≥ ϵ

2
− ϵ

8
− ϵ

8
=
ϵ

4
. (6.11)

As a last step, we show that under F ∩ G, the learning rule incurs significant regret
compared to the best action in hindsight for times with contexts falling in Al. On F ∩ G,

1

T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)Bu(t) ≥

1

2T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)−

Cϵ

T̂ 1/4
≥ 1

2T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)−

ϵ

210
.

We used T̂ ≥ 2L
⋆
p in the last inequality. We now aim to compare the right-hand side of the

last inequality to 1

T̂

∑
T ⋆
p≤t≤T̂ ,t∈T

1Al
(Xt). Because F is satisfied, T \ S the set of inactive
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times that are counted within T only contains times t such that there exists t′ < t with
t′ ∈ S when the learning rule performed an exploration (see Algorithm 6.1). Thus,

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt) ≥

∑
t≤T̂ ,t∈T

1Al
(Xt)− T ⋆p −

∑
t∈Exp

|{t < t′ ≤ T̂ , t′ ∈ T \ S, Xt′ = Xt}|.

Letting ĵ be the integer such that Rĵ ≤ R̂ < Rĵ+1, i.e., 2Rĵ ≤ T̂ < 2Rĵ+1 , we observe that∑
t∈Exp

|{t < t′ ≤ T̂ , t′ ∈ T \ S, Xt′ = Xt}|

≤ 2R̂−ĵ +
∑
t∈Exp

|{2R̂−ĵ, t < t′ ≤ T̂ , t′ ∈ T ĵ, Xt′ = Xt}|

≤ 2R̂−ĵ + |Exp|2ĵ(ĵ + 1)

≤ T̂

2ĵ−1
+ |Exp|2ĵ(ĵ + 1).

where we used the fact that because (Rj)j≥1 is increasing, each distinct point is duplicated
at most 2ĵ times in any period T ∩ [2r, 2r+1) with r < Rĵ+1. Next, because F is satisfied we
have in particular I(R̂) ≥ ĵ, implying that at time T̂ , we had the guarantee

|Exp|
T̂
≤ 1

T̂

T̂∑
u=T ⋆

p

1u∈S1âu ̸=a2 <
1

22I(R̂)(I(R̂) + 1)
≤ 1

22ĵ(ĵ + 1)
.

Combining the previous four equations and the fact that T̂ ≥ 2L
⋆
p shows that on F ∩ G one

has

1

T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)Bu(t) ≥

1

2T̂

∑
t≤T̂ ,t∈T

1Al
(Xt)−

ϵ

210
−
T ⋆p

2T̂
− 1

2ĵ
− 1

2ĵ+1

≥ 1

2T̂

∑
t≤T̂ ,t∈T

1Al
(Xt)−

ϵ

28
.

In the last inequality, we used ĵ ≥ 10− log2 ϵ, a consequence of T̂ ≥ 2L
⋆
p . We are now ready

to compare the reward of the learning rule to the best action in hindsight for times t such
that Xt ∈ Al. Precisely, consider the following actions a⋆t : at an active time t ∈ S and
Xt ∈ Al, we pose a⋆t = a1 if Bu(t) = 1 and a⋆t = a2 otherwise. For any other active time
t ∈ S and Xt /∈ Al, we pose a⋆t = a2 (which is in that case not necessarily the best action in
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hindsight). First note that

1

T̂

T̂∑
t=T ⋆

p

1Al
(Xt)(rt(a

⋆
t )− rt(ât)) =

1

T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)

(
3 +Bu(t)

4
− rt(ât)

)

≥ 1

4T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)1t/∈ExpBu(t)

≥ 1

4T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)Bu(t) −

1

4T̂

T̂∑
t=T ⋆

p

1t∈Exp1Al
(Xt).

Also, note that

1

T̂

T̂∑
t=T ⋆

p

1Ac
l
(Xt)(rt(a

⋆
t )− rt(ât)) ≥

1

T̂

T̂∑
t=T ⋆

p

1t∈S1Ac
l
(Xt)

(
3

4
− rt(ât)

)

≥ − 1

4T̂

T̂∑
t=T ⋆

p

1t∈Exp1Ac
l
(Xt).

Combining the two previous equations shows that on F ∩ G,

1

T̂

T̂∑
t=T ⋆

p

rt(a
⋆
t )− rt(ât) ≥

1

4T̂

T̂∑
t=T ⋆

p

1t∈S1Al
(Xt)Bu(t) −

|Exp|
4T̂

≥ 1

2T̂

∑
t≤T̂ ,t∈T

1Al
(Xt)−

ϵ

27
.

Combining this with Eq (6.11) shows that

E

[
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rt(a
⋆
t )− rt(ât)

]
≥ E

 1

T̂

T̂∑
t=T ⋆

p

rt(a
⋆
t )− rt(ât)−

T ⋆p

T̂

 ≥ ϵ

8
− ϵ

210
− ϵ

27
.

(6.12)
As a last step before defining new rewards, we introduce the scale δl > 0 such that

P

[
min

1≤t,t′<2
R⋆
p+1 ,Xt ̸=Xt′

ρ(Xt, Xt′) ≤ δl

]
≤ ϵ

210
.

We denote by H the complement event.
We are now ready to introduce the new online rewards. To do so, we first need to

introduce some notations for partitions of the space X . Let (xu)u≥1 be a dense sequence
in X . We define the sets Pu = (Al ∩ B(xu, δl)) \

⋃
v<uB(xu, δl) for u ≥ 1. We can easily

check that the sequence of measurable sets (Pu)u≥1 forms a partition of Al, and that each
set Pu has diameter at most δl. For any binary sequence b = (bu)u≥1, we define online
rewards that follow the same structure as defined with the procedure from Algorithm 6.1,
with the difference that rewards rbt , at any active time t ∈ S with Xt ∈ Pu for some u ≥ 1,
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Input: Binary sequence b
Let (Bt)t≥1 be an i.i.d. B(1

2
) sequence

for t = 1, . . . , T ⋆p − 1 do
Observe context Xt

Define rt(a) = r⋆t (a) for all a ∈ A
Observe action selected by learner ât

end
Initialize i(R⋆

p) = 0 and let ST ⋆
p−1 = ∅

for r = R⋆
p, . . . , R

⋆
p+1 − 1 do

for t = 2r, . . . , 2r+1 − 1 do
Observe context Xt

if t /∈ T i(r) then
Let rbt (a) = 0 for all a ∈ A and St = St−1

else if ∀Tp⋆ ≤ t′ < t, Xt′ ̸= Xt; Xt ∈ Pu for some u ≥ 1 then

Let rbt (a) =


bu a = a1
3
4

a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∀Tp⋆ ≤ t′ < t, Xt′ ̸= Xt then

Let rbt (a) =


Bt a = a1
3
4

a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∃Tp⋆ ≤ t′ < t such that Xt = Xt′, t′ ∈ St−1 and ât′ = a1 then

Let rbt (a) = 0 for all a ∈ A and St = St−1

else
Define rbt (a) = rt′(a) for all a ∈ A where t′ < t, Xt = Xt′ and t′ ∈ St−1

St ← St−1 ∪ {t}
end
Observe action selected by learner ât
while 1

t

∑t
u=T ⋆

p
1u∈St1âu ̸=a2 ≥ 2−2i(r) do i(r)← max(0, i(r)− 1) ;

end
Define i(r + 1) = min{i(r) + 1, k} where k is such that Qp(k) ≤ r < Qp(k + 1)

end

Algorithm 6.2: Procedure to define the online rewards rb<T ⋆
p+1

are constructed using the binary value bu instead of the random binary variable Bu(t) where
u(t) = min{T ⋆p ≤ u ≤ t : Xt = Xu}. The procedure to construct the rewards rb until time
T ⋆p+1 is given in Algorithm 6.2.

Consider the case when the binary sequence b is sampled as an i.i.d. B(1
2
) process. We

argue that under the event H, these rewards rb from Algorithm 6.2 are not distinguishable
from the rewards r from Algorithm 6.1. First, observe that they share the same overall
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structure, the only difference is that when needed to define rewards rbt at an active time
t ∈ S, one may use bu instead of Bt, where u is such that Xt ∈ Pu. Recall that bu is by
hypothesis sampled as bu ∼ B(12) as Bt and further, under the event H, all distinct points
from X<T ⋆

p+1
falling within Al are at distance at least δl. We only use bu for rbt when Xt ∈ Pu.

Therefore, under H, one has {t′ < t : Xt ∈ Pu} = ∅. This shows that the variable bu was
never observed before time t and as a result, is not distinguishable from a true random binary
variable Bt ∼ B(12). In particular, under H, the rewards rb when b i.i.d.∼ B(1

2
), yield the same

selected actions as the rewards r from Algorithm 6.1. Now for any binary sequence b, we
define the policy

πb(x) =


a1 if bku = 1, x ∈ Pu,
a2 if bku = 0, x ∈ Pu,
a2 if x /∈ Al.

By construction, these are constructed exactly similarly to the best action in hindsight a⋆t
for contexts falling in Al as defined previously. Therefore,

E
b
i.i.d.∼ B( 1

2
)

[
EX,a

(
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rbt (π
b(Xt))− rbt (ât)

)]

≥ P[H] · EX|G

[
E

b
i.i.d.∼ B( 1

2
),a

(
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rbt (π
b(Xt))− rbt (ât)

)
| X,G

]

= P[H] · EX|G

[
Ea

(
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rt(a
⋆
t )− rt(ât)

)
| X,G

]

≥ EX,a

[
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rt(a
⋆
t )− rt(ât)

]
− P[Hc] ≥ ϵ

8
− ϵ

26
.

In particular, there exists a realization b such that

E

 max
T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=T ⋆

p

rbt (π
b(Xt))− rbt (ât)

 ≥ ϵ

8
− ϵ

26
. (6.13)

We fix this realization of b in the rest of the proof. We are now ready to close the induction
by letting Bp+1 := Al \ (B1 ∪ . . . ∪ Bp) and defining the policy π(p+1) so as to be consistent
with the selected actions of π(p) on B1, . . . , Bp. We pose

π(p+1)(x) =

{
π(p) if x ∈ B1 ∪ . . . ∪Bp,

πb otherwise.

Observe that by construction, π(p+1)(x) = a2 for all x /∈ B1 ∪ . . . ∪ Bp+1. Next, we define
the rewards r⋆t to be exactly rbt for any t < T ⋆p+1. Note that by the construction given
in Algorithm 6.2, these rewards are consistent with the rewards r⋆t that had already been
constructed for t < T ⋆p . In the rest of the proof, we show that these satisfy the induction
requirements.
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We first check that the fact that π(p+1) differs from π(p) on Al does not affect significantly
the guarantees of the constructed rewards until time T ⋆p . Indeed, for any T < T ⋆p ,∣∣∣∣∣

T∑
t=1

r⋆t (π
(p+1))− r⋆t (π(p))

∣∣∣∣∣ ≤ |{t ≤ T : Xt ∈ Al}| ≤ T1∃t≤T :Xt∈Al
,

so that, using Eq (6.7) and Eq (6.9), for any p′ ≤ p,

E

[
max

T ⋆
p′−1

≤T<T ⋆
p′

1

T

T∑
t=1

r⋆t (π
(p+1)(Xt))− r⋆t (ât)

]

≥ E

[
max

T ⋆
p′−1

≤T<T ⋆
p′

1

T

T∑
t=1

r⋆t (π
(p+1)(Xt))− r⋆t (ât)

]
− P(∃t < T ⋆p : Xt ∈ Al)

≥ ϵ

16
+

ϵ

2p+10
− ϵ

2p+11
≥ ϵ

16
+

ϵ

2p+11
.

Now we check that the guarantee also holds for p′ = p+1. First, recall that by construction of
Algorithm 6.2, for any r ≥ R⋆

p, one has that i(r) ≤ k where k is such that Qp(k) ≤ r < Qp(k+
1). In particular, the active times during the corresponding period satisfy S∩[2r, 2r+1) ⊂ T k.
As a result, we obtain S ⊂ T (p), where we recall that T (p) :=

⋃
i≥0 T i ∩ {t ≥ 2Qp(i)}. Then,

because π(p+1) only differs from πb on B1 ∪ . . . ∪Bp, for any T ⋆p ≤ T < T ⋆p+1,

1

T

T∑
t=1

rbt (π
b(Xt))− rbt (π(p+1)(Xt)) ≤

1

T

∑
t≤T,t∈S

(rbt (π
b(Xt))− rbt (π(p+1)(Xt)))

≤ 1

T

∑
t≤T,t∈T (p)

p∑
p′=1

1Bp′
(Xt)

≤
p∑

p′=1

sup
T≥1

1

T

∑
t≤T,t∈T (p)

1Bp′
(Xt).

Therefore, combining Eq (6.13) and the induction hypothesis Eq (6.8), we obtain

E

[
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rbt (π
(p+1)(Xt))− rbt (ât)

]

≥ E

[
max

T ⋆
p≤T<T ⋆

p+1

1

T

T∑
t=1

rbt (π
b(Xt))− rbt (ât)

]
−

p∑
p′=1

E

sup
T≥1

1

T

∑
t≤T,t∈T (p)

1Bp′
(Xt)


≥ ϵ

8
− ϵ

26
− ϵ

210
≥ ϵ

16
+

ϵ

2p+10
.

The last step consists of constructing the increasing indices Qp+1(i) for i ≥ 0. By the
dominated convergence theorem, for any i ≥ 0, there exists T̃i ≥ 1 such that

E

 sup
T≥T̃i

1

T

∑
t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)

 ≤ ϵ

2p+12+i
.
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We then define by induction the sequence of integers Qp+1(i) that satisfy the following
two properties. First, Qp+1(0) ≥ max(Qp(0), log2 T̃0), second, for all i ≥ 1, Qp+1(i) ≥
max(Qp(i), log2 T̃i, Qp+1(i − 1)). In particular, the sequence is increasing and the above
equation shows that

E

 sup
T≥2Qp+1(i)

1

T

∑
t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)

 ≤ ϵ

2p+12+i
. (6.14)

Now letting T (p+1) =
⋃
i≥0 T i ∩ {t ≥ 2Qp+1(i)}, we note that

sup
T≥1

1

T

∑
t≤T,t∈T (p+1)

1Bp+1(Xt) = sup
i≥0

sup
2Qp+1(i)≤T<2Qp+1(i+1)

1

T

∑
t≤T,t∈T (p+1)

1Bp+1(Xt)

≤ sup
i≥0

sup
2Qp+1(i)≤T<2Qp+1(i+1)

1

T

∑
t≤T,t∈T i

1Bp+1(Xt).

As a result,

E

sup
T≥1

1

T

∑
t≤T,t∈T (p+1)

1Bp+1(Xt)


≤ E

[
sup
i≥0

µ̂(Xt)t∈T i
(Bp+1)

]
+
∑
i≥0

E

 sup
T≥2Qp+1(i)

1

T

∑
t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)


≤ sup

i≥0
E
[
µ̂(Xt)t∈T i

(Bp+1)
]
+

ϵ

2p+11
≤ ϵ

2p+10
.

In the second inequality we used Eq (6.14), and in the third inequality, we used Eq (6.9).
Finally, because for all i ≥ 0, one has Qp+1(i) ≥ Qp(i), we have directly T (p) ⊂ T (p+1), which
shows that for all p′ ≤ p, we still have

E

sup
T≥1

1

T

∑
t≤T,t∈T (p+1)

1Bp′
(Xt)

 ≤ ϵ

2p′+10
, p′ ≤ p.

This ends the inductive construction of the rewards r⋆.
The last step of the proof is to show that f· is not universally consistent under X for

these online rewards r⋆. Having constructed the sequence of sets (Bp)p≥1, we let π⋆ be the
policy defined by

π⋆(x) =

{
π(p)(x) if x ∈ Bp,

a2 otherwise.

Recall that the sequence of policies π(p) for p ≥ 1 was constructed so that they are consistent:
π(p′) for p′ ≥ p ≥ 1 all coincide on Ap. Further, all π(p) coincide on (

⋃
p≥1Bp)

c on which they
select a2. Now fix p ≥ 1. Because the rewards are also constructed to be consistent over
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time, if ât denotes the selected action at time t for rewards r⋆, the induction implies that
for all p′ ≥ p one has

E

[
max

T ⋆
p−1≤T<T ⋆

p

1

T

T∑
t=1

r⋆t (π
(p′)(Xt))− r⋆t (ât)

]
≥ ϵ

16
. (6.15)

As a result, because π(p′) and π⋆ coincide everywhere except on
⋃
q>p′ Bq, we have for any

T ⋆p−1 ≤ T < T ⋆p ,

1

T

T∑
t=1

r⋆t (π
⋆(Xt))− r⋆t (ât) ≥

1

T

T∑
t=1

r⋆t (π
(p′)(Xt))− r⋆t (ât)− 1

(
∃t < t⋆p : Xt ∈

⋃
q>p′ Bq

)
.

Because the sets (Bp)p≥1 are all disjoint, we have P
(
∃t < t⋆p : Xt ∈

⋃
q>p′ Bq

)
→ 0 as p′ →∞.

Thus, using Eq (6.15) yields

E

[
max

T ⋆
p−1≤T<T ⋆

p

1

T

T∑
t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]
≥ ϵ

16
.

Because this holds for all p ≥ 1, Fatou’s lemma implies

E

[
lim sup
T→∞

1

T

T∑
t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]
≥ lim sup

p→∞
E

[
max

T ⋆
p−1≤T<T ⋆

p

1

T

T∑
t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]
≥ ϵ

16
.

As a result, the learning rule is not universally consistent under X, which ends the proof of
the theorem. ■

6.5.2 A sufficient condition on learnable processes

In this section, we show that C5 is sufficient universal learning for all reward models. We
recall that the condition C5 asks that there exists an increasing sequence (Ti)i≥0 such that
XT ∈ CS where T =

⋃
i≥0 T i ∩{t ≥ Ti} is obtained by adding the times T i according to the

rate given by (Ti)i≥0.
It is straightforward to see CS ⊂ C5 since for any X ∈ CS, one can take any arbitrary

sequence, for instance, Ti = i for i ≥ 0, and satisfy property C5. Before showing that C5
is a sufficient condition for universal learning with online rewards, we state a known result
showing that for CS processes, there is a countable sequence of policies that is empirically
dense within all measurable policies.

Lemma 6.4 ([Han21a] Lemma 24). Let A be a countable action space and X a separable
metrizable Borel space. There exists a countable sequence of measurable policies (πl)l≥1 from
X to A such that for any extended process XT ∈ CS, and any measurable policy π : X → A,

inf
l≥1

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T

1[πl(Xt) ̸= π(Xt)]

]
= 0.
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We are now ready to prove the sufficiency of C5.

Theorem 6.12. Let X be a metrizable separable Borel space and A a finite action space.
Then, C5 ⊂ Soabonline.

Proof Let X ∈ C5, and (Ti)i≥0 such that letting T =
⋃
i≥0 T i ∩ {t ≥ Ti} we have XT ∈ CS.

We suppose that Ti = 2u(i) for some indices u(i) increasing in i. This is without loss of
generality because one could take T̃i = min{2s, 2s ≥ Ti} and still have an extended CS
process in the definition of XT (a slower sequence (Ti)i only reduces considered points, hence
does not impact the CS property). We may also suppose that u(i) ≥ 2i. Also, letting

ηi =
√

8 ln(i+1)
2i

for i ≥ 0, we suppose that u(i) ≥ ηi2
i+5. Last, we suppose that u(0) = 0

which again can be done without loss of generality since the CS property is not affected by
the behavior of the process on the first T0 times. Hence, T0 = 1.

Similarly to the algorithm that we proposed for stationary rewards in Chapter 5, the
learning rule associates a category p to each time t and acts separately on each category.
To do so, the algorithm first computes the phase of t as follows: Phase(t) is the unique
integer i such that Ti ≤ t < Ti+1. Then, we define the stage Stage(t) := ⌊log2 t⌋ = l
so that t ∈ [2l, 2l+1), and the period k = Period(t) as the unique integer k such that
T l2

i+k
i ≤ t < T l2

i+k+1
i where i = Phase(t). (Recall that T l2ii = 2l). We will refer to

[T l2
i+k

i , T l2
i+k+1

i ) as period k of stage l of phase i. The category of t is then defined in terms
of the number of occurrences of Xt within its period.

Category(t,X≤t) :=

log4 t∑
t′=T l2i+k

i

1[Xt′ = Xt]

 ,
where i = Phase(t), l = Stage(t), k = Period(t). For conciseness, we will omit the
argument X≤t of the function in the rest of the proof. In words, category p contains duplicates
with indices in [4p, 4p+1) within the periods defined by T . Now using Lemma 6.4, let (πl)l≥1

be a sequence of dense functions from X to A within measurable functions under extended
CS processes. The learning rule acts separately on times from different categories. We now
fix a category p and only consider points from this category. Essentially, between times Ti
and Ti+1, the learning rule performs the Hedge algorithm for learning with experts to select
between the strategies j for 1 ≤ j ≤ i, which apply πj and a strategy 0 which assigns a
different EXP3.IX learner to each new instance within each period at scale i.

Precisely, during an initial phase [1, 2u(16p)), the learning rule only applies strategy 0.
Then, let l ≥ u(16p) and u(i) ≤ l < u(i+1), we define the learning rule on stage [2l, 2l+1) as
follows. For 0 ≤ k < 2i, before period k of stage l, we construct probabilities Pp(l, k; j) for
j = 0, . . . , i. These will be probabilities of exploration for each strategy. At the first phase
k = 0 we initialize at the uniform distribution Pp(l, 0; j) =

1
i+1

. During period k, each new
time of category p is assigned a strategy ĵ(t) sampled independently from the past according
to probabilities Pp(l, k; ·). Duplicates of Xt within the same category and period are also
assigned the same strategy ĵ(t). The learning rule then performs the assigned strategy: for
ĵ = 0, it performs an EXP3.IX algorithm and for 1 ≤ ĵ ≤ i, it applies the policy πĵ. At the

308



ηi =
√

8 ln(i+1)
2i

, i ≥ 0 // learning rates for Hedge
r̂jp(l, 0) = 0, Pp(l, 0; j) =

1
i+1
, p, l, j ≥ 0 // initialization

for t ≥ 1 do
Observe context Xt

i = Phase(t), l = Stage(t), k = Period(t), p = Category(t),
St = {t′ ∈ [T l2

i+k
i , t) : Category(t′) = p,Xt′ = Xt}

if t < 2u(16p) then // initially play strategy 0
ât = EXP3.IXA(âSt , rSt)

else
if St = ∅ then ĵ(t) ∼ Pp(l, k; ·) // select strategy ĵ(t)

else ĵ(t) = ĵ(minSt)
if ĵ(t) = 0 then ât = EXP3.IXA(âSt , rSt) // play strategy ĵ(t)

else ât = πĵ(t)(Xt)
end
Receive reward rt
if l ≥ u(16p), t = T l2

i+k+1
i − 1 then // update probabilities

r̂p(l, k+1; j) = r̂(l, k; j)+ 1
2l−i

∑
t∈[T l2i+k

i ,T l2i+k+1
i )

1[Category(t)=p,ĵ(t)=j]
Pp(l,k;j)

rt, 0 ≤ j ≤ i

Pp(l, k + 1; j) = exp(ηir̂p(l,k+1;j))∑i
j′=0 exp(ηir̂p(l,k+1;j′))

, 0 ≤ j ≤ i

end
end

Algorithm 6.3: Learning rule for C5 processes on times Tp

end of the phase, the learning rule computes the average reward obtained by each strategy,

r̃p(l, k; j) :=
1

2l−i

∑
T l2i+k
i ≤t<T l2i+k+1

i

1[Category(t) = p, ĵ(t) = j]

Pp(l, k; j)
rt,

and r̂p(l, k + 1; j) =
∑

0≤k′≤k r̃p(l, k
′; j) the cumulative average reward of strategy j. These

rewards are then used to define the probabilities for the next phase Pp(l, k + 1; ·) using the
exponentially weighted averages.

Pp(l, k + 1; j) =
exp(ηir̂p(l, k + 1; j))∑i
j′=0 exp(ηir̂p(l, k + 1; j′))

,

where ηi =
√

8 ln(i+1)
2i

is the parameter of the Hedge algorithm for 2i steps. The detailed
algorithm is given in Algorithm 6.3.

We now show that this is a universally consistent algorithm for X. We first introduce
some notations. For p ≥ 0,

Tp :=
⋃
i≥1

[Ti, Ti+1) ∩

t ≥ 1 : T ki ≤ t < T k+1
i , 4p ≤

t∑
t′=Tk

i

1[Xt′ = Xt] < 4p+1

 ,
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is the set of times in category p. We will also denote Xp := (Xt)t∈T p . In this setting,
the rewards are independent of the selected actions of the learner. First, note that the
constructed rewards r̂p(l, k; j) are estimates of the average reward that would have been
obtained by strategy j during period k of stage l. For convenience, we denote Tp(k, l) =

[T l2
i+k, T l2

i+k+1) ∩ Tp. We denote by Rp(l, k; j) the reward that would have been obtained
had we selected always ĵ = j on this period, and rp(l, k; j) = Rp(l,k;j)

2l−i the average reward
of strategy j for 0 ≤ j ≤ i. For example, for strategy 1 ≤ j ≤ i we have Rp(l, k; j) =∑

t∈Tp(l,k) rt(π
j(Xt)). Let Xp(l, k) = {Xt, t ∈ Tp(k, l)} the set of visited instances during this

period. For x ∈ Xp(l, k) we denote tp(l, k;x) = min{t ∈ Tp(k, l) : Xt = x} the first time of
occurrence of x during this period, and Np(l, k;x) = |{t ∈ Tp(l, k) : Xt = x}| its number of
occurrences. Let 0 ≤ j ≤ i. We use Hoeffding’s inequality conditionally on X and Pp(l, k; j),
to obtain

P

∣∣∣∣∣∣
∑

x∈Xp(l,k)

1[ĵ(t) = j]
∑

t∈Tp(l,k),Xt=x

rt − Pp(l, k; j)Rp(l, k; j)

∣∣∣∣∣∣
≥ Pp(l, k; j)4

p+12
3
4
(l−i) | X, Pp(l, k; j)

]
≤ 2 exp

(
−2Pp(l, k; j)

223/2(l−i)

|Xp(l, k)|

)
≤ 2 exp

(
−2 23/2(l−i)

(i+ 1)2eηi2i+1|Xp(l, k)|

)
.

Now by construction of Tp(l, k), each instance of Xp(l, k) has at least 4p duplicates within
the same period. Hence |Xp(l, k)| ≤ 2l−i

4p
. As a result, dividing the inner inequality by

Pp(l, k; j)2
l−i, we obtain for l ≥ u(16p), with probability at least 1− 2 exp(− 22p+(l−i)/2

(i+1)2eηi2
i+1 ) :=

1− p1(l, k; p),

|r̂p(l, k; j)− rp(l, k; j)| <
4p+1

2(l−i)/4
≤ 4

2l/16
, (6.16)

where in the last inequality we used l ≥ u(i) ≥ 2i and l ≥ u(16p) ≥ 32p. We now focus on the
rewards for strategy 0. For any t ∈ Tp(l, k) we denote by r̃t the reward that would have been
obtained had we selected strategy 0 for time t, i.e. ĵ(tp(l, k;Xt)) = 0. In particular, we have
Rp(l, k; 0) =

∑
t∈Tp(l,k) r̃t. Let π∗ : X → A be a measurable policy, we now compare Rp(l, k; 0)

to the rewards obtained by the policy π∗ on Tp(l, k). Intuitively, we wish to apply Theorem 5.6
independently for each EXP3.IX algorithm corresponding to elements of Xp(l, k). However,
these runs are not independent for general adaptive adversaries. Therefore, we will need to
go back to the standard analysis of EXP3.IX. Using the same notations as in this analysis,
for t ∈ Tp(l, k), denote u(t) = |{t′ ≤ t : t′ ∈ Tp(l, k), Xt′ = Xt}| the index of t for its

corresponding EXP3.IX learner. Let ηu = 2γu =
√

ln |A|
u|A| be the parameters used by the

learner at step u. Also, denote by pt,a the probability that the EXP3.IX learner chose a ∈ A
at time t. Further, for a ∈ A denote by ℓt,a = 1− rt(a) and ℓ̃t,a =

ℓt,a
pt,a+γu(t)

1[a selected]. We
keep in mind that the term “selected” refers to the selection of the EXP3.IX algorithm, but
not necessarily the selection of our learning rule, which potentially did not apply strategy 0
at that time. To avoid confusion, for t ∈ Tp(l, k), denote ãt the action that would be selected
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by the EXP3.IX learner at time t. Last, we define

Ap(l, k) =
∑

t∈Tp(l,k)

ℓ̃t,π∗(Xt) − ℓt,π∗(Xt) and Bp(l, k) =
∑

t∈Tp(l,k)

∑
a∈A

ηu(t)(ℓ̃t,a − ℓt,a).

Then, the same arguments as in Proposition 6.3 give∑
t∈Tp(l,k)

rt(π
∗(Xt))− rt(ãt) ≤ Ap(l, k) +Bp(l, k) +

∑
x∈Xp(l,k)

3
√
|A| ln |A|Np(l, k;x)

≤ Ap(l, k) +Bp(l, k) + 3
√
|A| ln |A|4p+1|Xp(l, k)|

≤ Ap(l, k) +Bp(l, k) + 6
√
|A| ln |A|2−p2l−i,

where in the last inequality, we used the fact that |Xp(l, k)| ≤ 2l−i

4p
. Now similarly to Propo-

sition 6.3, note that conditionally on X, the increments of Ap(l, k) and Bp(l, k) form a

super-martingale with increments upper bounded by 2
√

|A|4p+1

ln |A| and 2|A|
√

|A|4p+1

ln |A| respec-
tively. Thus, Azuma’s inequality implies

P[Ap(l, k) ≤ 8p|A|2p+
3
4
(l−i) | X] ≥ 1− e−2p22(l−i)/2

,

P[Bp(l, k) ≤ 8p|A|22p+
3
4
(l−i) | X] ≥ 1− e−2p22(l−i)/2

.

Thus, denoting δp = 6

√
|A| ln |A|
2p

, for any l ≥ 2i, u(16p), with probability at least 1 −
2e−2p22(l−i)/2

:= 1− p2(l, k; p), we have

Rp(l, k; 0) ≥
∑

t∈Tp(l,k)

rt(π
∗(Xt))− 16|A|22−i215l/16 − δp2l−i. (6.17)

In the first phase where l < u(16p), we will need to proceed differently. Let T init =
⋃
p≥0{t ∈

Tp : t < 2u(16p)}. Observe that in these times, the learning uses a distinct EXP3.IX learner
for each new instance within each category and period. In Proposition 6.3 we showed that
this learning rule is universally consistent under processes visiting a sublinear number of
distinct instances almost surely. We now show that this is the case for the process (Xt)t∈T init

where for any t, t′ ∈ T init, we view Xt and Xt′ as duplicates if and only if Xt = Xt′ and
they have same category and period. For l ≥ 1, let p(l) denote the index p such that
u(16p) ≤ l < u(16(p + 1)) and i(l) be the index i such that u(i) ≤ l < u(i + 1). Fix T ≥ 1
and let l ≥ 0 such that 2l ≤ T < 2l+1. We now count the number of distinct instances N(T )
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of (Xt)t∈T init before time T . To do so, we distinguish whether t ≤ 2l/2 or t > 2l/2 as follows,

N(T ) ≤
∑
p≥0

∑
l′≤u(16p),l

∑
k

|Xp(l′, k)| ≤ 2l/2 +
∑
p≥p( l

2
)

∑
l
2
≤l′≤l

∑
k

|Xp(l′, k)|

≤ 2l/2 +
∑
p≥p( l

2
)

∑
l
2
≤l′≤l

∑
k

2l
′−i(l′)

4p

≤ 2l/2 +
∑
p≥p( l

2
)

2l+1

4p

≤ 2l/2 +
2l+1

4p(l/2)−1

≤
√
T +

8T

4p(log4(T ))
= o(T ).

Now let π∗ : X → A be a measurable policy. Because of the above estimate, Proposition 6.3
implies that on an event E of probability one,

lim sup
T→∞

1

T

∑
t≤T,t∈T init

rt(π
∗(Xt))− rt ≤ 0.

Now recall that l ≥ u(i) ≥ 2i, ηi2
i+5, hence 2(l−i)/2

eηi2
i+1 ≥ 2l/4−ηi2

i+2 ≥ 2l/8. As a result,∑
p≥0

∑
l≥32p

∑
k

(i+ 1)p1(l, k; p) + p2(l, k; p) <∞.

Then, the Borel-Cantelli lemma implies that on an event F of probability one, there exists l̂
such that for all p ≥ 0, l ≥ max(l̂, u(16p)) Eq (6.16) holds, for all p ≥ 0 and l ≥ l̂, Eq (6.17)
holds, and E is satisfied. We suppose that this event is met in the rest of the proof.

The probabilities Pp(l, k; j) are chosen according to the Hedge algorithm. As a result, we
have that for any l ≥ max(l̂, u(16p)), 0 ≤ k < 2i,

max
0≤j≤i

∑
k′≤k

r̂p(l, k; j)−
∑
k′≤k

i∑
j=0

Pp(l, k; j)r̂p(l, k; j) ≤
ln(i+ 1)

ηi
+

(k + 1)ηi
8

.

We then use Eq (6.16) and k + 1 ≤ 2i to obtain

max
0≤j≤i

∑
k′≤k

rp(l, k; j)−
∑
k′≤k

i∑
j=0

Pp(l, k; j)r̂p(l, k; j) ≤ 2i
4

2l/16
+
ηi
4
2i

As a result,
max
0≤j≤i

∑
k′≤k

Rp(l, k; j)−
∑
k′≤k

∑
t∈Tp(l,k)

rt ≤ 4 · 215l/16 + ηi
4
2l. (6.18)
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Now because l ≥ u(16p), we have i ≥ 16p, we have∑
0≤k′≤k

∑
t∈Tp(l,k′)

rt ≥
∑

0≤k′≤k

Rp(l, k
′; 0)− 4 · 215l/16 − η16p

4
2l

≥
∑

0≤k′≤k

∑
t∈Tp(l,k)

rt(π
∗(Xt))− 20|A|2215l/16 −

(
δp +

η16p
4

)
2l,

where in the second inequality we used Eq (6.17). Therefore, summing these equations, for
any T ≥ 2l̂, 2u(16p),∑

2u(16p)<t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂ + c|A|2T 15/16 + 2

(
δp +

η16p
4

)
T, (6.19)

where c = 20
1−2−15/16 . An important remark is that

∑
p≥0(δp +

η16p
4
) <∞, which will allow us

to consider only a finite number of p ≥ 0 when comparing the performance of the learning
rule compared to π∗.

Before doing so, we show that for all p ≥ 0, we have Xp = XTp ∈ CS. By definition,
letting T =

⋃
i≥0 T i ∩ {t ≥ Ti}, we have that XT =∈ CS. Then note that each instance

of [T ki , T
k+1
i ) ∩ Tp has at least one duplicate in [T ki , T

k+1
i ) ∩ T and to each instance of

[T ki , T
k+1
i ) ∩ T corresponds at most 4p+1 duplicates in [T ki , T

k+1
i ) ∩ Tp. As a result, for any

set A ∈ B, we have µ̂Xp(A) ≤ 4p+1µ̂XT (A), which yields E[µ̂Xp(A)] ≤ 4p+1E[µ̂XT (A)]. Using
the definition of extended CS processes ends the proof that Xp ∈ CS for all p ≥ 0.

Now let ϵ > 0 and p0 such that
∑

p≥p0(δp +
η16p
4
) < ϵ. Recall that if t ∈ Tp, we have

t ≥ 4p. Therefore, summing Eq (6.19) gives∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− rt ≤

∑
p0≤p≤log4 T

∑
2u(16p)≤t<T,t∈Tp

rt(π(Xt))− rt

≤ 2l̂ log4 T + c|A|2T 15/16 log4 T + ϵT.

We now treat the case of p < p0. Because Xp ∈ CS, by Lemma 6.4, there exists rp ≥ 1 such
that

E

lim sup
T→∞

1

T

∑
t≤T,t∈Tp

1[π∗(Xt) ̸= πrp(Xt)]

 ≤ ϵ2

2p20
.

By dominated convergence theorem, let lp such that

E

 sup
T≥2l

p

1

T

∑
t≤T,t∈Tp

1[π∗(Xt) ̸= πrp(Xt)]

 ≤ ϵ2

p20
.

Using the Markov inequality, we have

P

 sup
T≥2l

p

1

T

∑
t≤T,t∈Tp

1[π∗(Xt) ̸= πrp(Xt)] ≥
ϵ

p0

 ≤ ϵ

p0
.
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By union bound, on an event G of probability at least 1 − ϵ, for all p < p0 and T ≥ 2l
p ,

we have
∑

t≤T,t∈Tp 1[π(Xt) ̸= πrp(Xt)] <
ϵ
p0
T . Next, let l0 = max(u(rp), lp, p < p0). Thus,

any phase l ≥ l0, has rp ≤ i for all p < p0. Last, let i0 such that ηi0 ≤ 2 ϵ
p0

. On the event
E ∩F ∩G, for p < p0, for any l ≥ l̂1 := max(l0, 32p0, u(i0), l̂) and 0 ≤ k < 2i, Eq (6.18) yields∑

2l≤t<T l2i+k+1
i ,t∈Tp

rt(π
rp(Xt))− rt ≤ 4 · 215l/16 + ηi

4
2l ≤ 4 · 215l/16 + ϵ

2p0
2l

As a result, for T ≥ 1, letting i(T ), l(T ) the indices i, l such that 2u(i) ≤ T < 2u(i+1) and
2l ≤ T < 2l+1, on E ∩ F ∩ G,∑

p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂1 + 2−i(T )T +

∑
p<p0

∑
t<T,t∈Tp

1[π∗(Xt) ̸= πrp(Xt)]

+
∑
p<p0

∑
l̂1≤l′≤l

(
4 · 215l′/16 + ϵ

2p0
2l

′
)

≤ 2l̂1 + 2−i(T )T + ϵT + cp0T
15/16 + ϵT.

Finally, putting everything together, for T sufficiently large, we have∑
t≤T

rt(π
∗(Xt))− rt ≤

∑
t∈T init,t≤T

r̄t(π
∗(Xt))− rt +

∑
p≥0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt

≤ 2l̂1+1 log4 T + 2−i(T )T + c(|A|2 + p0)T
15/16 log4 T + 3ϵT +

∑
t∈T init,t≤T

rt(π
∗(Xt))− rt,

which shows that on E ∩ F ∩ G,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt ≤ 3ϵ.

We denote by (x)+ = max(0, x) the positive part. Recall that P[E ∩ F ∩ G] ≥ 1− ϵ. Thus,

E

[(
lim sup
T→∞

1

T

T∑
t=1

rt(π(Xt))− rt

)
+

]
≤ 4ϵ.

Because this holds for any ϵ > 0, almost surely, lim supT→∞
1
T

∑T
t=1 rt(π(Xt))−rt ≤ 0. Thus,

the learning rule is universally consistent on X. This ends the proof. ■

To the best of our knowledge, while we believe that for general spaces X with non-atomic
probability measures, one may have a gap C5 ⊊ C6, it seems plausible that C5 = C7. As a
consequence, this would imply that we have an exact characterization for processes admitting
universal learning with prescient rewards Soabprescient = C5 = C7.
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Comparison to a more natural condition C8. In the rest of this section, we compare
condition C5 to another potentially more natural sufficient condition. In Proposition 5.1 from
Chapter 5, we showed that given any X ∈ SMV process, only allowing for a finite number of
duplicates in X yields an extended CS process. Precisely, for any M , letting

T ≤M =

{
t ≥ 1 :

∑
t′≤t

1[Xt′ = Xt] ≤M

}
,

be the set of times corresponding to duplicates having index at most M , we have that
XT ≤M ∈ CS. However, if one does not restrict the maximum number of duplicates, one
loses the extended CS property. A natural condition on stochastic processes would therefore
be that for some increasing rate of maximum number of duplicates, the CS property is
conserved. For any process X, we denote the occurrence count as Nt(x) =

∑t
i=1 1[Xt = x]

for all x ∈ X . Then, the condition on stochastic processes can be formally defined as follows.

Condition 8. There exists an increasing function Ψ : N → N with Ψ(T ) → ∞ as T → ∞
such that for any sequence of measurable sets Ai ∈ B for i ≥ 1 with Ai ↓ ∅,

E

[
lim sup
T→∞

1

T

T∑
t=1

1Ai
(Xt)1Nt(Xt)≤Ψ(T )

]
→ 0.

Although this condition is indeed sufficient for universal learning, we show that the more
involved C5 class of processes is larger, and strictly larger whenever X admits a non-atomic
probability measure.

Proposition 6.7. Let X be a metrizable separable Borel space, then C8 ⊂ C5. Further, if
there exists a non-atomic probability measure on X , then C8 ⊊ C5.

Proof We first show C8 ⊂ C5. Indeed, suppose that X ∈ C8, then there exists Ψ : N → N
increasing to infinity such that for any measurable sets Ak ↓ ∅, we have

E

lim sup
T→∞

1

T

∑
t≤T,Nt(Xt)≤Ψ(T )

1Ak
(Xt)

 −→
k→∞

0.

Now let Ti ≥ 1 such that Ψ(Ti) ≥ 1 + i2i. We now show that (Ti)i satisfies the condition
of condition C5. Let T =

⋃
i≥0 T i ∩ {t ≥ Ti}, and Ak ↓ ∅. For any T ≥ 1, we denote

X (T ) = {Xt, t ≤ T} the set of visited instances. Now fix k ≥ 0. Then, for T ≥ Tk, let i ≥ k
such that Ti ≤ T < Ti+1,

1

T

∑
t≤T,t∈T

1Ak
(Xt) ≤

1

2k
+

1

T

∑
2−kT<t≤T,t∈T

1Ak
(Xt)

=
1

2k
+

1

T

∑
x∈X (T )∩Ak

|{2−kT < t ≤ T, t ∈ T : Xt = x}|.
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In T , we accept at most one duplicate per phase. Because Ti ≤ T < Ti+1, the interval
[2−kT, T ] intersects at most 1 + k2i phases. Thus, for any x ∈ X (T ), |{2−kT < t ≤ T, t ∈
T : Xt = x}| ≤ 1 + k2i ≤ 1 + i2i ≤ Ψ(T ). Thus, for any T ≥ Tk,

1

T

∑
t≤T,t∈T

1Ak
(Xt) ≤

1

2k
+

1

T

∑
x∈X (T )∩Ak

min(|{t ≤ T : Xt = x}|,Ψ(T ))

=
1

2k
+

1

T

∑
t≤T,Nt(Xt)≤Ψ(T )

1Ak
(Xt).

Using the hypothesis on Ψ applied to Ak ↓ ∅ yields

E

[
lim sup
T→∞

1

T

∑
t≤T,t∈T

1Ak
(Xt)

]
−→
k→∞

0.

Hence, this shows that XT ∈ CS and X ∈ C5.
Next, suppose that there exists a non-atomic probability measure on X . We will construct

explicitly a process X ∈ C5\C8. By Lemma 6.2, there exists a sequence of disjoint measurable
sets (Ai)i≥0 together with non-atomic probability measures (νi)i≥0 such that νi(Ai) = 1. We
now fix x0 ∈ A0 an arbitrary instance (we will not use the set A0 any further) and define
subsets of indices as follows, Si = {k ≥ 1 : k ≡ 2i−1 mod 2i}. Note that the sets (Si)i≥1 form a
partition of N. We now introduce independent processes Zi for i ≥ 1 such that Zi = (Zi

t)t≥1

is an i.i.d. process with distribution νi. Last, for all i ≥ 1 we denote ni = 2⌊log2 i⌋. Now
consider the following process X where X1 = x0 and for any t ≥ 1,

Xt = Zi
⌊ t
ni

⌋, 2k ≤ t < 2k+1, k ≡ 2i−1 mod 2i.

When the process is in phase i, it corresponds to an i.i.d. process on Ai which is duplicated ni
times. Note that we used ni duplicates instead of i so that each point is duplicated exactly
ni times (we do not have boundary issues at the end of the phase). We now show that
X /∈ C8. Let Ψ : N → N an increasing function with Ψ(T ) → ∞ as T → ∞. For i ≥ 1, we
first construct an increasing sequence of times Ti such that Ψ(Ti) > ni. Then, for any k ≥ 1,
consider times T k = k2i+2i−1 which belong to Si. Then, consider the event Fi such that the
process Zi only takes distinct values in Ai. Note that P[Fi] = 1 because the νi is non-atomic
and νi(Ai) = 1. Then, on Fi, by construction, we have for any k ≥ 0, with T k ≥ Ti,

1

2T k − 1

2Tk−1∑
t=1

1Ai
(Xt)1Nt(Xt)≤Ψ(2Tk−1) ≥

1

2T k

2Tk−1∑
t=Tk

1Ai
(Xt)1Nt(Xt)≤ni

=
1

2T k

2Tk−1∑
t=Tk

1Ai
(Xt)

≥ T k

2T k − 1
.
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Hence, on the event Fi, we have lim supT→∞
1
T

∑T
i=1 1Ai

(Xt)1Nt(Xt)≤Ψ(T ) ≥ 1
2
. Because

P[Fi] = 1, we obtain

E

[
lim sup
T→∞

1

T

T∑
i=1

1Ai
(Xt)1Nt(Xt)≤Ψ(T )

]
≥ 1

2
.

Now consider Bi =
⋃
j≥iAi. Then, we have Bi ↓ ∅ and for any i ≥ 1,

E

[
lim sup
T→∞

1

T

T∑
i=1

1Bi
(Xt)1Nt(Xt)≤Ψ(T )

]
≥ E

[
lim sup
T→∞

1

T

T∑
i=1

1Ai
(Xt)1Nt(Xt)≤Ψ(T )

]
≥ 1

2
.

As a result, X /∈ C8.
We now show that X ∈ C5. To do so, we first prove that X ∈ SMV. Let (Bl)l≥1 be a

sequence of disjoint measurable sets. Because Zi are i.i.d. processes, we have Zi ∈ SMV. In
particular, on an event Ei of probability one, we have

|{l : Zi≤T ∩Bl ̸= ∅}| = o(T ).

Now consider the event E =
⋂
i≥1 Ei. This has probability one by the union bound. Let ϵ > 0

and i∗ = ⌈2
ϵ
⌉. In particular, we have 1

ni∗
≤ ϵ. On the event E , for any i ≤ i∗, there exist Ti

such that for all T ≥ Ti,
|{l : Zi≤T ∩Bl ̸= ∅}| ≤

ϵ

2i
T.

Now consider T 0 = maxi≤i∗ Tini. Then, for any T ≥ T 0, we have

|{l : X≤T ∩Bl ̸= ∅}| ≤
i∗∑
i=1

|{l : Zi≤⌊T/ni⌋ ∩Bl ̸= ∅}|

+ |{l : ∃t ≤ T : Xt ∈ Bl, 2
k ≤ t < 2k+1, k ≡ 0 mod 2i

∗}|
≤ ϵT + |{Xt, t ≤ T, 2k ≤ t < 2k+1, k ≡ 0 mod 2i

∗}|

≤ ϵT + 2
T

ni∗
,

where in the last inequality we used the fact that in a phase i > i∗, each point is duplicated
ni ≥ ni∗ times. As a result, on the event E , we have

lim sup
|{l : X≤T ∩Bl ̸= ∅}|

T
≤ 3ϵ.

Because this holds for all ϵ > 0, we obtain that on E , |{l : X≤T ∩ Bl ̸= ∅}| = o(T ). Because
E has probability one, this ends the proof that X ∈ SMV. Now consider the following times
Tj = 4j for j ≥ 0 and define T =

⋃
j≥0 T j ∩ {t ≥ Ti}. We aim to show XT ∈ CS. First,

note that for any j ≥ 0, the phases [2k, 2k+1) contained in [Tj, Tj+1) satisfy k ≤ 2j + 1.
Let i(j) = 1 + log2(2j + 1). We have k ∈

⋃
i≤i(j) Si, which implies that each instance Xt

is duplicated consecutively at most ni(j) times in X within [Tj, tj+1). However, the sections
defined by T have length at least 2−jTj = 2j. Further, all the phases were constructed so
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that there are no boundary issues: if ni(j) ≤ 2j, then T does not contain any duplicates
during the period [Tj, Tj+1). Because ni(j) ≤ i(j) = o(2j), there exists j0 ≥ 0 such that T
does not contain any duplicate on [Tj0 ,∞). Let T (0) = {t ≥ 1 : Nt(Xt) = 1} the set of first
appearances. Then, for any A ∈ B and T ≥ 1,∑

t≤T,t∈T

1A(Xt) ≤ Tj0 +
∑

t≤T,t∈T (0)

1A(Xt).

Now because X ∈ SMV, we have XT (0) ∈ CS which implies XT ∈ CS by the above inequality.
This ends the proof of the proposition. ■

6.5.3 Universal learning with fixed excess error tolerance

In this section, we show that as an application of the methods developed in Chapter 5 and
in this chapter, achieving a fixed excess regret ϵ > 0 is always possible for SMV processes.
This is stated in Proposition 6.1. We first need to recall a result from Chapter 5 showing
that SMV processes without duplicates are CS extended processes.

Proposition 5.1. Let X be a stochastic process on X , and for M ≥ 1, define an X-dependent
set

T ≤M =

{
t ≥ 1 :

∑
t′≤t

1[Xt′ = Xt] ≤M

}
,

the set of times which are duplicates with index at most M . In particular, T ≤1 is the set of
all times of first appearances of values. Similarly, T <M = T ≤M−1 for M ≥ 2. For brevity,
we introduce the shorthand notation X(≤M) = XT ≤M . The following are equivalent.

1. X ∈ SMV.

2. X(≤1) ∈ CS.

3. For all M ≥ 1, X(≤M) ∈ CS.

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 We first describe the algorithm that depends on a parameter
M ≥ 1 which we will fix later. We use the notation T ≤M from Proposition 5.1 for the
set of times that are duplicates having index at most M . Note that whether t ∈ T M or
t /∈ T M can be decided in an online manner. Next we fix a sequence Π = (πl)l≥1 of policies
that are dense within extended CS processes from Lemma 6.4. The learning rule f· simply
performs the EXPINF strategy on the sequence Π for times in T ≤M and for other times
performs independent copies of the EXP3.IX algorithm in parallel for each distinct instance.
Formally, for any t ≥ 1, instances x≤t and observed rewards r≤t−1, we define

ft(x≤t−1, r≤t−1, xt) =

{
EXPINF(xUt , âUt , rUt , xt) if t ∈ T M

EXP3.IXA(âSt , rSt) o.w.
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where Ut = {t′ ≤ t − 1 : t ∈ T M} and St = {t′ < t : xt = xt′ , t
′ ∈ T M} and ât′ denotes the

action selected at time t′ ≤ t− 1.
Let X ∈ SMV. We now prove that this learning rule achieves low excess error compared

to a fixed measurable policy π∗ : X → A. We denote by ât(M) its selected action at time
t. First, by Proposition 5.1, XT M ∈ CS. Further, as discussed in Section 6.5.2, the same
proof of universal consistency of EXPINF under CS processes for stationary rewards given
in Chapter 5 shows that EXPINF is universally consistent under CS extended processes for
adversarial rewards. This is a consequence of the fact that the regret guarantee of EXP3.IX
(Theorem 5.6) holds for adversarial rewards as well. Thus, on an event E of probability one,

lim sup
T→∞

1

T

∑
t≤T,t∈T M

rt(π
∗(Xt))− rt(ât(M)) ≤ 0.

Next, similarly to the proof of Proposition 6.3, let ϵ(T ) = 1
T
|{Xt : t ≤ T, t /∈ T M}|. The

same proof as in Proposition 6.3 shows that on an event F of probability one, for all T ≥ 1,

1

T

∑
t≤T,t/∈T M

rt(π
∗(Xt))− rt(ât(M))

≤ 8|A| lnT
T 1/4

+ 3c
√
|A| ln |A| 1

lnT
+
√
ϵ(T ) + 3

√
|A| ln |A|ϵ(T )1/4.

Note that to each element of {Xt : t ≤ T, t /∈ T M} correspond least M duplicates in T M so
that ϵ(T ) ≤ 1

M
. As a result, combining the two previous equations yields on the event E ∩F

of probability one,

lim sup
T→∞

1

T

∑
t≤T,t∈T M

rt(π
∗(Xt))− rt(ât(M)) ≤ 4

√
|A| ln |A|
M1/4

.

Thus, taking M ≥ 44|A|2 ln2 |A|ϵ−4 gives a learning rule with the desired ϵ excess error
almost surely. This ends the proof of the proposition. ■

6.6 Model Extensions

6.6.1 Infinite action spaces

The previous sections focused on the case of finite action spaces. For infinite action spaces,
we argue that as a direct consequence of the analysis of the stationary case in Chapter 5, one
can obtain a characterization of learnable processes and the same optimistically universal
learning rules.

For countably infinite action spaces, we showed in Chapter 5 that EXPINF performed
with the countable sequence of dense policies given by Lemma 6.4 is universally consistent
under CS processes with stationary rewards, and that CS is necessary. As discussed in Sec-
tions 6.5.2 and 6.5.3, the same arguments as in Chapter 5 show that EXPINF is universally
consistent under CS processes for adversarial rewards as well. Further, since adversarial
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rewards generalize stationary rewards, CS is still necessary for universal learning. Thus,
Soabonline = Soabprescient = Soaboblivious = Soabmemoryless = Soabstat = CS and EXPINF
is optimistically universal in all reward settings.

For uncountable separable metrizable Borel action spaces A, even for stationary re-
wards, universal learning is impossible as we showed in Chapter 5. Hence, Soabonline =
Soabprescient = Soaboblivious = Soabmemoryless = Soabstat = ∅.

6.6.2 Unbounded rewards

We now turn to the case of unbounded rewards R = [0,∞). We further suppose that
for any t ≥ 1, and history x ∈ X∞,a≤t ∈ At, r≤t−1 ∈ Rt−1, the random variable rt(at |
X = x, â≤t−1 = a≤t−1, r(â)≤t−1 = r≤t−1) is integrable so that the immediate expected
reward is well defined. Again, in this case, adversarial rewards yield the same results as
stationary rewards. Clearly, for uncountable separable metrizable Borel action spaces, under
unbounded rewards, universal learning is still impossible Soabunboundedonline = Soabunboundedprescient =

Soabunboundedoblivious = Soabunboundedmemoryless = Soabunboundedstat = ∅, because this was already the case for
bounded rewards.

For countable action spaces A, condition FS is necessary even under the full-feedback
noiseless setting (Chapter 3), hence necessary for contextual bandits as well. Also, in Chap-
ter 5, we proposed the algorithm that runs an independent EXPINF learner on each distinct
context instance, which is universally consistent under FS processes. As in the previous sec-
tion, this guarantee still holds for adversarial rewards, and FS is still necessary for universal
learning. Therefore, Soabunboundedonline = Soabunboundedprescient = Soabunboundedoblivious = Soabunboundedmemoryless =

Soabunboundedstat = FS.

6.6.3 Uniformly-continuous rewards

We assume that the rewards are bounded again. In the previous sections, we showed that
for finite action sets, universal learning is possibly under large classes of processes, namely
at least on C5 processes. However, for countable action sets, this is reduced to CS, and
for uncountable action sets, universal learning is not achievable. Therefore, imposing no
constraints on the rewards is too restrictive for universal learning in the last cases. Here,
we investigate the case when A is a separable metric space given with a metric d, and the
rewards are uniformly-continuous. Crucially, the modulus of continuity should be uniformly
bounded over time as well. We recall the definition of uniformly-continuous rewards.

Let (A, d) be a separable metric space. The reward mechanism (rt)t≥1 is uniformly-
continuous if for any ϵ > 0, there exists ∆(ϵ) > 0 such that

∀t ≥ 1,∀(x≤t,a≤t−1, r≤t−1) ∈ X t ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ϵ)⇒ |E[rt(a)− rt(a′) | X≤t = x≤t,a≤t−1, r≤t−1]| ≤ ϵ,

In the definition, the expectation is taken over the rewards’ randomness, in the event
when the context sequence until t is exactly x≤t, the learner selected actions a≤t−1 and
received rewards r≤t−1 in the first t− 1 steps. For instance, for stationary rewards, only xt
is relevant in this expectation, while for online rewards, x≤t,a≤t−1, r≤t−1 may be relevant.
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The above definition is not written for prescient rewards for simplicity. For these, we need
to condition on the complete sequence X:

∀t ≥ 1,∀(x,a≤t−1, r≤t−1) ∈ X∞ ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ϵ)⇒ |E[rt(a)− rt(a′) | X = x,a≤t−1, r≤t−1]| ≤ ϵ.

As in the case of unrestricted rewards, we consider the set of processes Soab-Ucsetting admit-
ting universal learning for uniformly-continuous rewards under any chosen reward setting.
The uniform-continuity assumption defined above generalizes the corresponding assumption
proposed in Chapter 5 for stationary rewards. There, we also proposed a weaker continuity
assumption on the immediate expected rewards, however, similarly as in Section 6.6.1 one
can easily check that with this reward assumption, adversarial settings give the same results
as the stationary case.

The goal of this section is to show that under the mild uniform-continuity assumption on
the rewards, when the action space is totally-bounded, one can recover all the results from
the finite action space case. We first start by showing that the derived necessary conditions
still hold. To do so, we will use the following reduction lemma.

Lemma 6.5. Let X be a metrizable separable Borel space and let (A, d) be a separable metric
space. Let S ⊂ A such that mina,a′∈S d(a, a

′) > 0. Then, we have Soab-Ucsetting(A) ⊂
Soabsetting(S) for any setting ∈ {stat,memoryless, oblivious, prescient, online}.

Further, if there is a learning rule for uniformly continuous rewards in A that is univer-
sally consistent under a set of processes C̃ on X , there is also a learning rule for unrestricted
rewards in S that is universally consistent under all C̃ processes.

Proof The first claim was proven in Chapter 5 for the specific case of stationary rewards.
There, we showed that the case of uniformly-continuous rewards on A is at least harder
than the unrestricted rewards on S through a simple reduction. Here, we show that the
reduction can be extended to adversarial rewards as well. Denote η = 1

3
mina,a′∈S d(a, a

′).
Any realization r : S → [0, 1] can be extended to a 1/η-Lipschitz function F (r) : X → A by

F (r)(a) = max

(
0,max

a′∈S
r(a′)− d(a, a′) r̄

η

)
, a ∈ A.

Then, a general reward mechanism (rt)t≥1 on S can be extended to a reward mechanism on
A such that for any realization, rt : a ∈ A → [0, 1] is 1/η-Lipschitz. Hence, the mechanism
(rt)t≥1 is uniformly-continuous. From now, the same arguments as in the proof of Lemma 5.5
from Chapter 5 show that the reduction holds and that Soab-Ucsetting(A) ⊂ Soabsetting
for the considered setting. Intuitively, since for any realization, rt : a ∈ A → [0, 1] has zero
value outside of the balls Bd(a, η) for a ∈ S, that on the ball Bd(a, η) for a ∈ S, the action
a has maximum reward, and that these balls are disjoint, without loss of generality, one can
assume that a universally consistent learning rule always selects actions in S under these
rewards, in which case, the problem becomes equivalent to having unrestricted rewards on
the action set S. The formal learning rule reduction is defined in the original proof, and
one can check that the reduction is invariant in the process X. Hence, this also proves the
second claim of the lemma. ■
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This lemma allows to use the necessary conditions for the unrestricted reward set-
ting by changing the terms “finite action set” (resp. “countably infinite action set”) into
“totally-bounded action set” (resp. “non-totally-bounded action set”). The second claim of
Lemma 6.5 will be useful to show that no optimistically universal learning exists for adver-
sarial uniformly-continuous rewards either. More precisely, the following result is a direct
consequence of the first claim of Lemma 6.5.

Proposition 6.8. Let X be a metrizable separable Borel space and let A be a non-totally-
bounded metric space. Then, for any reward setting, Soab-Uc ⊂ CS.

Let A be a totally-bounded metric space with |A| > 2. Then, for any reward setting,
Soab-Uc ⊂ SMV. Further, if X admits a non-atomic probability measure, we have that
Soab-Ucmemoryless ⊊ SMV, Soab-Ucoblivious ⊂ C6 and Soab-Ucprescient ⊂ C7.

We now show that we can recover the sufficient conditions from previous sections as well.
For uniformly-continuous rewards, we can show that there exists a countable set of dense
policies under extended CS processes, as was the case for unrestricted rewards and countable
action sets.

Lemma 6.6. Let A be a separable metric space. There is a countable set of measurable
policies Π such that for any extended process XT ∈ CS, any measurable policy π∗ : X → A,
and any uniformly-continuous possibly stochastic rewards (rt)t, with probability one over the
rewards, {

infπ∈Π lim supT→∞
1
T

∑
t≤T,t∈T rt(π

∗(Xt))− rt(π(Xt)) ≤ 0,

infπ∈Π lim supT→∞
1
T

∑
t≤T,t∈T r̄t(π

∗(Xt))− r̄t(π(Xt)) ≤ 0,

where r̄t = Ert is the immediate average reward.

Proof For any ϵ > 0, let ∆(ϵ) be the ϵ−modulus of continuity of the sequence of rewards
(r̄t)t. By Lemma 5.4 from Chapter 5 (and with a straightforward adaptation for extended
processes), on an event E of probability one, for any i ≥ 1, there exists πi ∈ Π such that
lim supT→∞

1
T

∑
t≤T,t∈T 1[d(π

∗(Xt), π
i(Xt)) ≥ 2−i] ≤ 2−i, and for all i ≥ 1, we have that

1
T

∑
t≤T,t∈T rt(π

i(Xt)) − r̄t(π
i(Xt)) → 0 and similarly for π∗, where r̄t is the immediate

expected reward at time t. We now suppose that this event is met. Let ϵ > 0, let i ≥ 1 such
that 2−i ≤ ∆(ϵ). Then,∑

t≤T,t∈T

r̄t(π
∗(Xt))− r̄t(πi(Xt)) ≤

∑
t≤T,t∈T

(r̄t(π
∗(Xt))− r̄t(πi(Xt)))1d(πi(x),π∗(x))<∆(ϵ)

+
∑

t≤T,t∈T

1d(π(x),π∗(x))≥2−i

≤ ϵT +
∑

t≤T,t∈T

1d(π(x),π∗(x))≥2−i .

As a result, lim supT→∞
1
T

∑
t≤T,t∈T r̄t(π

∗(Xt))− r̄t(πi(Xt)) ≤ ϵ+∆(ϵ). Further, because the
event E is satisfied, lim supT→∞

1
T

∑
t≤T,t∈T rt(π

∗(Xt)) − rt(πi(Xt)) ≤ ϵ + ∆(ϵ). This holds
for any ϵ > 0. Now because ∆(ϵ)→ 0 as ϵ→ 0, we proved that on E ,{

infπ∈Π lim supT→∞
1
T

∑
t≤T,t∈T rt(π

∗(Xt))− rt(π(Xt)) ≤ 0,

infπ∈Π lim supT→∞
1
T

∑
t≤T,t∈T r̄t(π

∗(Xt))− r̄t(π(Xt)) ≤ 0.
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This ends the proof of the lemma. ■

We are now ready to generalize our algorithms from previous sections, using Π as a
countable set of functions that are dense within all policies in the uniformly-continuous
rewards context. First, note that using EXPINF directly with the countable family described
in Lemma 6.6 is universally consistent on all CS processes. This shows that we always have
CS ⊂ Soab-Uc for all models. In particular, together with Proposition 6.8, this shows
that for non-totally-bounded metric action spaces A, we have Soab-Uc = CS for all reward
models.

Next, we turn to the case of finite action spaces and context spaces X that do not admit
a non-atomic measure. In this case, we showed that the algorithm that simply uses different
EXP3.IX for each distinct instance is optimistically universal. In the case of uniformly-
continuous rewards, we can replace EXP3.IX with EXPINF over a countable set of actions.
This yields an optimistically universal learning rule for any totally-bounded action spaces
A.

Theorem 6.13. Let X be a metrizable separable Borel space that does not admit a non-
atomic probability measure. Let A be a totally-bounded metric space. Then, there exists an
optimistically universal learning rule for uniformly-continuous rewards (in any setting) and
learnable processes are exactly Soab-Ucstat = Soab-Uconline = SMV.

Proof We first describe the learning rule. For any ϵ > 0, letA(ϵ) be an ϵ−net ofA. By abuse
of notation, for any a ∈ A, we use the same notation a for the expert which selects action a at
all time steps. Now consider the countable set of experts

⋃
i≥1A(2−i) = {a1, a2, . . .}, where

the sets are concatenated by increasing order of index i. Now consider the learning rule that
uses a distinct EXPINF over this set of experts, for each distinct instance. Formally, the
learning rule is

ft(x≤t−1, r≤t−1, xt) = EXPINF(âSt , rSt)

where St = {t′ < t : xt′ = xt} is the set of times that xt was visited previously and ât′ denotes
the action selected at time t′ for t′ < t. We now show that this learning rule is universally
consistent on all SMV processes for uniformly bounded rewards. In the proof of Theorem 6.5
we showed that for spaces X that do not admit a non-atomic probability measure, any SMV
process visits a sublinear number of distinct instances almost surely. Therefore, for X ∈ SMV,
on an event E of probability one, we have |{x ∈ X : {x} ∩X≤T ̸= ∅}| = o(T ). It now suffices
to adapt the proof of Proposition 6.3. Let (rt)t be a uniformly continuous reward mechanism.
For ϵ > 0, let ∆(ϵ) > 0 its ϵ−modulus of continuity. We keep the same notations as in the
proof of Proposition 6.3. Let ST = {x : {x} ∩ X≤T ̸= ∅}, ϵ(T ) = |ST |

T
and for x ∈ ST , let

TT (x) = {t ≤ T : Xt = x}. Further, for any x ∈ ST we pose TT (x) = {t ≤ T : Xt = x}.
Let H0(T ) = {x ∈ ST : |TT (x)| < 1√

ϵ(T )
}, H1(T ) = {x ∈ ST : 1√

ϵ(T )
≤ |TT (x)| < ln8 T} and

H2(T ) = {x ∈ ST : |TT (x)| ≥ ln8 T}. Now let π : X → A be a measurable policy. We still
have

1

T

∑
x∈H0(T )

|TT (x)| ≤
√
ϵ(T ).

Next, we turn to points x ∈ H2(T ). By Corollary 5.1, conditionally on the realization X, for
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any x ∈ H2(T ), with probability at least 1− 1
T 3 ,

max
i≤lnT

∑
t∈TT (x)

rt(ai)− rt(ât) ≤ 4c|TT (x)|3/4(lnT )3/2 ≤ 4c
|TT (x)|√

lnT
.

Therefore, since |H2(T )| ≤ T , by union bound, with probability at least 1− 1
T 2 := 1−p2(T ),∑

x∈H2(T )

max
i≤lnT

∑
t∈TT (x)

rt(ai)− rt(ât) ≤ 4c
T√
lnT

.

We then treat points in H1(T ) for which we will need to go back to the proof of the regret
bounds for EXPINF and the underlying EXP3.IX algorithm which is used as a subroutine.
First, we recall the structure of EXPINF. Let i(k) =

∑
r<k r

3. It works by periods [i(k) +
1, i(k)+k3) on which a new EXP3.IX learner finds the best expert within the first k experts
in the sequence provided to EXPINF. We will refer to this as period k. As useful inequalities,
we have k4

4
≤ i(k) ≤ (k+1)4

4
. Let k0 = ⌈ϵ(T )−1/8⌉ and focus on a period k for k ≥ k0 of an

EXPINF run. We denote by âu the action selected at horizon u by EXPINF. Following the
same arguments as in Proposition 6.3 and the analysis of EXP3.IX in [Neu15], for any j ≤ k0

k3∑
u=1

(ℓu,âi(k)+u
− ℓ̃u,aj) ≤

ln k

ηk3
+

k3∑
u=1

ηu

k∑
i=1

ℓ̃u,ai .

As a result,

k3∑
u=1

ℓu,âi(k)+u
− ℓu,aj ≤ 3

√
k ln k · k3 +

k3∑
u=1

(ℓ̃u,aj − ℓu,aj) +
k3∑
u=1

k∑
i=1

ηu(ℓ̃u,aj − ℓu,aj)

Now for any a ∈ A, let a(k0) = argmin1≤i≤k0 d(a, ai) the nearest neighbor of a where ties are
broken alphabetically. We will sum this inequality for all EXPINF runs for x ∈ H1(T ), and
periods k ≥ k0 that were completed, i.e. |TT (x)| ≥ i(k + 1), taking aj = π(x)(k0). Before
doing so, note that

∑
k′≤k

√
3(k′)4 ln k′ ≤ (k+1)3

√
ln k ≤ 4i(k+1)3/4

√
ln i(k + 1). Further,

for simplicity, denote by A(T ) (resp. B(T )) the sum that is obtained after summing all
the terms

∑k3

u=1(ℓ̃u,aj − ℓu,aj) (resp.
∑k3

u=1

∑k
i=1 ηu(ℓ̃u,aj − ℓu,aj)). Using these notations, we

obtain∑
x∈H1(T )

∑
t∈TT (x)

rt(π(Xt)
(k0))− rt(ât)

≤
∑

x∈H1(T )

(
k40
4

+ 4|TT (x)|3/4 + 4|TT (x)|3/4
√

3 ln |TT (x)|
)
+ A(T ) +B(T ).

where in the first inequality, k40
4

accounts for the first k0 initial periods and 4|TT (x)|3/4
accounts for the last phase which potentially was not completed. Now recall that for each
x ∈ H1(T ), ϵ(T )−1/2 ≤ |TT (x)| < ln8 T . Let n0 ≥ 1 such that for any n ≥ n0, 8n3/4

√
3 lnn ≤
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n7/8. Since on the event E , we have ϵ(T )→ 0, there exists an index T̂ such that for T ≥ T̂ ,
ϵ(T )−1/2 ≥ n0. Therefore, on E , for T ≥ T̂ we have∑

x∈H1(T )

(
k40
4

+ 20|TT (x)|3/4 + |TT (x)|3
√
3 ln |TT (x)|

)
≤ 2
√
ϵ(T )T +

∑
x∈H1(T )

|TT (x)|7/8

≤ (2
√
ϵ(T ) + ϵ(T )1/16)T.

Next, using the same arguments as in the proof of Proposition 6.3, observe that conditionally
on X, (A(T ′))T ′≤T is a super-martingale, with increments bounded in absolute value by

2
√

k·k3
ln k
≤ 2k2 ≤ 4

√
i(k + 1) ≤ 4 ln4 T . Therefore, Azuma’s inequality implies that

P[A(T ) ≤ 8T 3/4 ln4 T | X] ≥ 1− e−2
√
T .

Similarly, (B(T ′))T ′≤T is a super-martingale, with increments bounded in absolute value by

2k
√

k·k3
ln k
≤ 8i(k + 1) ≤ 8 ln8 T . Therefore,

P[B(T ) ≤ 16T 3/4 ln8 T | X] ≥ 1− e−2
√
T .

Therefore, by the Borel-Cantelli lemma, on an event G of probability one, we have that
lim supT→∞

1
T
(A(T )+B(T )) ≤ 0. Finally, let j(T ) = min(ϵ(T )−1/8, lnT ). Putting everything

together, we proved that on E ∩ F ∩ G, for T ≥ T̂ ,
1

T

∑
t≤T

rt(π(Xt)
(j(T )))− rt(ât) ≤ 3

√
ϵ(T ) + ϵ(T )1/16 +

4c√
lnT

+
1

T
(A(T ) +B(T )).

In particular, this shows that on E ∩ F ∩ G,

lim sup
T→∞

1

T

∑
t≤T

rt(π(Xt)
(j(T )))− rt(ât) ≤ 0.

Now using Hoeffding’s bound, with probability at least 1− 2e−2
√
T , we have∣∣∣∣∣

T∑
t=1

rt(π(Xt)
(j(T )))− r̄t(π(Xt)

(j(T )))

∣∣∣∣∣ ≤ 2T 3/4.

We have the same bound for π. Therefore, the Borel-Cantelli lemma implies that on an event
H of probability one, 1

T

∑T
t=1 rt(π(Xt)

(j(T ))) − r̄t(π(Xt)
(j(T ))) → 0 and 1

T

∑T
t=1 rt(π(Xt)) −

r̄t(π(Xt))→ 0. We now suppose that E ∩ F ∩ G ∩H is met.
Now fix ϵ > 0. Let k0 such that 2−k0 ≤ ∆(ϵ). Because E is met, ϵ(T )→ 0 and j(T )→∞.

Thus, there exists T̃ ≥ T̂ such that for any T ≥ T̃ , ϵ(T ) ≤ n−2
0 and A(2−k0) ⊂ {ai, j ≤ j(T )}.

Now for T ≥ T̃ and any a ∈ A, we have d(a, a(j(T ))) ≤ ∆(ϵ). As a result, using H,

lim sup
T→∞

1

T

T∑
t=1

rt(π(Xt))− rt(ât) ≤ lim sup
T→∞

1

T

T∑
t=1

r̄t(π(Xt))− r̄t(π(Xt)
(j(T )))

≤ lim sup
T→∞

T̃

T
+ ϵ

≤ ϵ.
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In the second inequality, we used the uniform-continuity assumption on the rewards and the
fact that for T ≥ T̃ , d(π(Xt), π(Xt)

(j(T ))) ≤ mina∈A(2−k0 ) d(a, π(Xt)) ≤ 2−k0 ≤ ∆(ϵ). Because
this holds for any ϵ > 0 and E ∩F ∩G ∩H has probability one, this proves that the learning
rule is universally consistent under X. Then, the learning rule is universally consistent under
any SMV process. By Proposition 6.8, this shows that the learnable processes are exactly
SMV and that this is an optimistically universal learning rule. This ends the proof of the
theorem. ■

The last algorithms needed to be adapted to the uniformly-continuous rewards setting
are the algorithms for C5 processes in finite action spaces. Precisely, we will show that
for totally-bounded metric action spaces A, the set of learnable processes for uniformly-
continuous adversarial rewards contains C5 processes. Recall that the class of constructed
algorithms in Theorem 6.12 proceed separately on different categories of times. The category
of t is defined based on the number of duplicates of Xt within its associated period. For
each category of times, the learning rule performs a form of Hedge algorithm to perform the
best strategy among strategy 0 which simply assigns a different EXP3.IX learner to distinct
instances from the period; and strategy j for j ≥ 1 which selected actions according to a fixed
policy πj, where Π̃ = {πl, l ≥ 1} was a dense set of policies within extended CS processes.

We make the following modifications to these learning rules. First, we replace Π̃ with the
countable set Π of measurable policies that are dense in the uniformly-continuous rewards
setting, as given by Lemma 6.6. Second, for every category p, strategy 0 will use EXP3.IX
learners from A(γp), a γp−nets of A, where γp is to be defined. With these modifications,
we obtain the following result.

Theorem 6.14. Let X be a metrizable separable Borel space and let A be a totally-bounded
metric space. Then, C5 ⊂ Soab-Uconline.

Proof Fix X ∈ C5 and let (Ti)i≥0 such that with T =
⋃
i≥0 T i∩{t ≥ Ti}, we have XT ∈ CS.

We first define how we modify the learning rule from Theorem 6.12 for this process. The
functions Phase, Stage, Period, Category are left unchanged. In the initial phase when
t < 2u(16p), we replace EXP3.IXA with EXPINF run with the dense sequence of A with the
specific order described in the previous Theorem 6.13. We briefly recap the procedure. Let
A(ϵ) be an ϵ−net of A. We consider the sequence of experts

⋃
i≥1A(2−i) where we confuse

a ∈ A with the constant policy equal to a and we concatenate the nets by increasing order
of index i. EXPINF is then run with this sequence of experts. Next, we enumerate Π =
{πl, l ≥ 1} and use these policies as well for the learning rule (strategies j ≥ 1). Last, when
playing strategy 0 after the initial phase, we replace EXP3.IXA with EXP3.IXA(γp), where

γp will be defined shortly. In the original proof, we defined δp := 6

√
|A| ln |A|
2p

, ηi :=
√

8 ln(i+1)
2i

and showed that the average error of the learning rule on Tp outside of the initial phase is
O(δp+ η16p

4
). Then,

∑
p≥0(δp+

η16p
4
) <∞ allowed the learner to converge separately on each

Tp. We now replace δp with δp := 4
√

|A(γp)| ln |A(γp)|
2p

and choose γp such that
∑

p δp <∞. We
pose

γp = min{2−i : |A(2−i)| ln |A(2−i)| ≤ 2p/4}.
Thus, we still have

∑
p δp < ∞ and γp → 0. We now show that the modified learning rule

is universally consistent under online uniformly-continuous rewards on A. Fix (rt)t such a
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reward mechanism and for ϵ > 0, let ∆(ϵ) the ϵ−modulus of continuity of the sequence of
immediate rewards. As in the original proof of Theorem 6.12, let T init =

⋃
p≥0{t ∈ Tp :

t < 2u(16p)} be the initial phase. The process (Xt)t∈T init still visits a sublinear number of
distinct instances almost surely, where we say that two instances t, t′ ∈ T init are duplicates
if and only if they have same category, period and Xt = Xt′ . As a result, in the proof of
Theorem 6.13, we showed that for any π∗ : X → A, on an event E of probability one,

lim sup
T→∞

1

T

∑
t≤T,t∈T init

rt(π
∗(Xt))− rt ≤ 0.

We then turn to non-initial phases and adapt the original proof of Theorem 6.12. For any
a ∈ A, we denote a(γ) = argmina′∈A(γ) d(a, a

′), the nearest neighbor of a within the γ−net
where ties are broken alphabetically. Keeping the same event F , Eq (6.16) is unchanged and
Eq (6.17) becomes

Rp(l, k; 0) ≥
∑

t∈Tp(l,k)

rt(π
∗(Xt)

(γp))− 16|A(γp)|22−i215l/16 − δp2l−i.

Eq (6.18) is left unchanged. For p ≥ 0, let ϵ(p) = min{2−i : γp ≤ ∆(2−i)}. Note that because
γp → 0, we have ϵ(p)→ 0 as p→∞. Following the same arguments as in the original proof
and noting that |A(γp)| ≤ 2p/4, Eq (6.19) is replaced by∑

2u(16p)<t≤T,t∈Tp

rt(π
∗(Xt)

(γp))− rt ≤ 2l̂ + c2p/2T 15/16 +
(
δp +

η16p
4

)
T

≤ 2l̂ + cT 31/32 +
(
δp +

η16p
4

)
.

Now fix ϵ > 0, and let p0 such that
∑

p≥p0(δp+
η16p
4
) < ϵ and ϵ(p0) < ϵ. Following the original

arguments,∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt)

(γp))− rt ≤ 2l̂ log4 T + cT 31/32 log4 T + ϵT.

Now using Azuma’s inequality, with probability at least 1− 4e−2
√
T , we have∣∣∣∣∣∣

∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt)

(γp))− r̄t(π∗(Xt)
(γp))

∣∣∣∣∣∣ ≤ 2T 3/4

∣∣∣∣∣∣
∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− r̄t(π∗(Xt))

∣∣∣∣∣∣ ≤ 2T 3/4.

Therefore, using Borel-Cantelli, on an event G of probability one, there exists T̂1 such that
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for T ≥ T̂1, the above two equations hold. Then, on E ∩ F ∩ G, for T sufficiently large,∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂ log4 T + cT 31/32 log4 T + ϵT + 4T 3/4

+
∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

r̄t(π
∗(Xt))− r̄t(π∗(Xt)

(γp))

≤ 2l̂ log4 T + 4T 3/4 + cT 31/32 log4 T + 2ϵT,

where in the last inequality we used the uniform continuity of the immediate expected
rewards since for p ≥ p0, one has γp ≤ γp0 ≤ ∆(ϵ(p0)) ≤ ∆(ϵ). This implies that on the
event E ∩ F ∩ G,

lim sup
T→∞

1

T

∑
p≥p0

∑
2u(16p)≤t<T,t∈Tp

rt(π(Xt))− rt ≤ 2ϵ.

Now for p < p0, by Lemma 6.6, on an event Hp of probability one, there exists lp such that

lim sup
T→∞

1

T

∑
t≤T,t∈Tp

rt(π
∗(Xt))− rt(πlp(Xt)) ≤

ϵ

p0
.

Following the arguments in the proof of Theorem 6.12, on the event E ∩ F ∩ G ∩
⋂
p<p0
Hp

of probability one, for T large enough,∑
p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤

∑
p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt(πlp(Xt))

+
∑
p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
lp(Xt))− rt

≤
∑
p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt(πlp(Xt))

+ 2l̂1 + 2−i(T )T + cp0T
15/16 + ϵT.

As a result,

lim sup
T→∞

1

T

∑
p<p0

∑
2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2ϵ.

Combining all the estimates together, we proved that on E ∩F ∩G ∩
⋂
p<p0
Hp of probability

one,

lim sup
T→∞

1

T

T∑
t=1

rt(π
∗(Xt))− rt ≤ 4ϵ.

This holds for all ϵ > 0. The same arguments as in the original proof conclude that the
learning rule is universally consistent under X. This ends the proof of the theorem. ■

As a summary, we generalized all results from the case of the unrestricted reward to
uniformly-continuous rewards with the corresponding assumptions on action spaces.
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Part II

Memory Constraints in Optimization
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Chapter 7

Quadratic Memory is Necessary for
Optimal Query Complexity in Convex
Optimization

7.1 Introduction

We consider the canonical problem of first-order convex optimization in which one aims to
minimize a convex function f : Rd → R with access to an oracle that for any query x returns
(f(x),∇f(x)) the value of the function and a subgradient of f at x. Arguably, this is one of
the most fundamental problems in optimization, mathematical programming and machine
learning.

A classical question is how many oracle queries are required to find an ϵ-approximate
minimizer for any 1-Lipschitz convex functions f : Rd → R over the unit ball. We denote
by Bd(x, r) = {x′ ∈ Rd : ∥x − x′∥2 ≤ r} the ball centered in x of radius r. There exist
methods that given first-order oracle access only need O(d log 1/ϵ) queries and this query
complexity is worst-case optimal [NY83] when ϵ ≪ 1/

√
d. Known methods achieving the

optimal O(d log 1/ϵ) query complexity fall in the broad class of cutting plane methods,
that build upon the well-known ellipsoid method [YN76b; Sho77] which uses O(d2 log 1/ϵ)
queries. These include the inscribed ellipsoid [Tar88; Nes89], volumetric center or Vaidya’s
method [AV95; Vai96], approximate center-of-mass via sampling techniques [Lev65; BV04]
and recent improvements [LSW15; Jia+20]. Unfortunately, all these methods suffer from at
least Ω(d3 log 1/ϵ) time complexity and further require storing all subgradients, or at least
an ellipsoid in Rd, therefore at least Ω(d2 log 1/ϵ) bits of memory. These limitations are
prohibitive for large-scale optimization, hence cutting plane methods are viewed as rather
impractical and less frequently used for high-dimensional applications. On the other hand,
the simplest, perhaps most commonly used and practical gradient descent requires O(1/ϵ2)
queries, which is not optimal for ϵ ≪ 1/

√
d, but only needs O(d) time per query and

O(d log 1/ϵ) memory.
A natural question is whether one can preserve the optimal query lower bounds from

cutting-plane methods with simpler methods, for instance, inspired by gradient descent
techniques. Such hope is largely motivated by the fact that in many different theoretical set-
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tings, cutting plane methods have achieved state-of-the-art runtimes including semidefinite
programming [Ans00; LSW15], submodular optimization [McC05; GLS12; LSW15; Jia21] or
equilibrium computation [PR08; JL11]. Towards this goal, [WS19] first posed this question
in terms of query complexity / memory trade-off: given a certain number of bits of memory,
which query complexity is achievable? While cutting planes methods require Ω(d2 log 1/ϵ)
memory, gradient descent only requires storing one vector and as a result, uses O(d log 1/ϵ)
memory, which is information-theoretically optimal [WS19]1. Understanding this trade-off
could pave the way for the design of more efficient methods in convex optimization.

The first result in this direction was provided in [Mar+22], where they showed that it
is impossible to be both optimal in query complexity and in memory. Specifically, any
potentially randomized algorithm that uses at most d1.25−δ memory must make at least
Ω̃(d1+4/3δ) queries. Thus, a super-linear amount of memory d1.25 is required to achieve
the optimal rate of convergence (that is achieved by algorithms using more than quadratic
memory). However, this leaves open the fundamental question of whether one can improve
over the memory of cutting-plane methods while keeping optimal query complexity.

Question 7.1 (COLT 2019 [WS19]). Is it possible for a first-order algorithm that uses
at most O(d2−δ) bits of memory to achieve query complexity Õ(d polylog 1/ϵ) when d =
Ω(logc 1/ϵ) but d = o(1/ϵc) for all c > 0?

In this chapter, building upon the techniques introduced in [Mar+22], we provide a
negative answer to this question: quadratic memory is necessary to achieve optimal query
complexity with deterministic algorithms. As a result, cutting plane methods including
the standard center-of-mass algorithm are Pareto-optimal up to logarithmic factors within
the query complexity / memory trade-off. Our main result for convex optimization is the
following.

Theorem 7.1. For ϵ = 1/d4 and any δ ∈ [0, 1], a deterministic first-order algorithm guar-
anteed to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses at
least d2−δ bits or makes Ω̃(d1+δ/3) queries.

A key component of cutting plane methods is that they merely rely on the subgradient
information at each query to restrict the search space. As a result, these can be used to solve
the larger class of feasibility problems that are essential in mathematical programming and
optimization. In a feasibility problem, one aims to find an ϵ-approximation of an unknown
vector x⋆, and has access to a separation oracle. For any query x, the separation oracle either
returns a separating hyperplane g from x to Bd(x

⋆, ϵ)—such that ⟨g,x − z⟩ > 0 for any
z ∈ Bd(x

⋆, ϵ)—or signals that ∥x− x⋆∥ ≤ ϵ. This class of problems is broader than convex
optimization since the negative subgradient always provides a separating hyperplane from a
suboptimal query to the optimal set. Hence, feasibility and convex minimization problem are
closely related and it is often the case that obtaining query lower bounds for the feasibility
problem simplifies the analysis while still providing key insights for the more restrictive
convex optimization problem [NY83; Nes03]. Thus, a similar fundamental question is to
understand the query complexity / memory trade-off for the feasibility problem. As noted
above, any lower bound for convex optimization yields the same lower bound for the feasibility
problem. Here, we can significantly improve over the previous trade-off.

1Ω(d log 1/ϵ) bits of memory are already required just to represent the answer to the optimization problem.
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Figure 7.1: Mamroy and oracle-complexity trade-offs for minimizing 1-Lipschitz convex func-
tions over the unit ball (adapted from [WS19; Mar+22]). The dashed pink (resp. green)
region corresponds to historical information-theoretic lower bounds (resp. upper bounds) on
the memory and query-complexity. The solid pink region corresponds to the recent lower
bound trade-off from [Mar+22], which holds for randomized algorithms. In our work, we
show that the solid red region is not achievable for any deterministic algorithm. For the
feasibility problem, we also show that the dashed red region is not achievable either for any
deterministic algorithm.

Theorem 7.2. For ϵ = 1/(48d2
√
d) and any δ ∈ [0, 1], a deterministic algorithm guaranteed

to solve the feasibility problem over the unit ball with ϵ accuracy uses at least d2−δ bits of
memory or makes at least Ω̃(d1+δ) queries.

7.1.1 Literature review

Recently, there has been a series of studies exploring the trade-offs between sample complex-
ity and memory constraints for learning problems, such as linear regression [SD15; SSV19],
principal component analysis (PCA) [MCJ13], learning under the statistical query model
[SVW16] and other general learning problems [Bro+21; BBS22; MM17; MM18; BOY18;
GRT18; KRT17; DS18; DKS19].

For parity problems that meet certain spectral (mixing) requirements, [Raz18] that an
exponential number of random samples is needed if the memory is sub-quadratic. Subse-
quently, similar trade-offs have then been obtained for various other discrete learning prob-
lems [Raz17; MM17; KRT17; MM18; BOY18; GRT18] (finite concept class). For continuous
problems, [SSV19] was the first work to show sample complexity / memory lower bounds
in the case of linear regression, building upon a computation tree argument introduced in
[Raz17]. They show that for accuracy ϵ ≤ 1/dO(log d), sub-quadratic memory algorithms
require O(d log log 1/ϵ), instead of d samples with full quadratic memory.

It should also be pointed out that [DKS19] studied linear prediction problems under the
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streaming model by analyzing the Approximate Null-Vector Problem (ANVP). Both ANVP
and the Orthogonal Vector Game proposed in [Mar+22] (which we build upon in this work)
aim at finding vectors that lie approximately in the null space of a stream of vectors, but
under different settings. A major difference is that ANVP considers a streaming setting
whereas in the Orthogonal Vector Game (and the game introduced in this work), the player
has access to the complete input in the beginning, then fixes a memory-constrained message
based on the input.

In contrast to learning with random samples, there is limited understanding of the
memory-constrained optimization and feasibility problems. [NYD83] demonstrated that, in
the absence of memory constraints, finding an ϵ-approximate solution for Lipschitz convex
functions requires Ω(d log 1/ϵ) queries, which can be achieved by the center-of-mass method
using O(d2 log2 1/ϵ) bits of memory. At the other extreme, gradient descent needs Ω(1/ϵ2)
queries but only O(d log 1/ϵ) bits of memory, the minimum memory needed to represent a
solution. These two extreme cases are represented by dashed pink “impossible region” and
dashed green “achievable region” in Fig. 7.1. Since then, [Mar+22] showed that there is a
trade-off between memory and query for convex optimization: it is impossible to be both
optimal in query complexity and memory. Their lower bound is represented by the solid
pink “impossible region” in Fig. 7.1. In this chapter, we significantly improve these results
to match the quadratic upper bound of cutting plane methods. Additionally, there has been
recent progress in the study of query complexity for randomized algorithms [WS16; WS17],
and communication complexity for convex optimization in the distributed setting [AS15;
Woo+21].

On the algorithmic side, the afore-mentioned methods that achieve O(poly(d)) query
complexity [YN76b; Sho77; Tar88; Nes89; AV95; Vai96; Lev65; BV04; LSW15; Jia+20]
all require at least Ω(d2 log 1/ϵ) bits of memory. There is also significant literature on
memory-efficient optimization algorithms, including in particular the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [Noc80; LN89]. However, the convergence
behavior for even the original BFGS on non-smooth convex objectives is still a challenging,
open question [LO13].

Comparison with [Mar+22] Our proof techniques build upon those from [Mar+22]. We
follow the proof strategy that they introduced to derive lower bounds for the memory/query
complexity. Below, we delineate which ideas and techniques are borrowed from [Mar+22]
and which are the novel elements that we introduce. Details on these proof elements are
given in Section 7.2.1.

First, [Mar+22] define a class of difficult functions for convex optimization of the following
form

max

{
∥Ax∥∞ − η0, η1

(
max
i≤N

v⊤i x− iγ
)}

, (7.1)

where A ∼ U({±1}d/2×d) is a matrix with ±1 entries sampled uniformly, and the vectors
vi ∼ U(d−1/2{±1}d) are sampled independently, uniformly within the rescaled hypercube.
To give intuition on this class, the term ∥Ax∥∞ − η0 acts as barrier : in order to observe
subgradients from the other term, one needs to use queries x that are approximately within
the nullspace of A. The second term maxi≤N v

⊤
i x− iγ is the “Nemirovski” function, which
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was used in previous works [Nem94; BS18; Bub+19] to obtain lower bounds in parallel convex
optimization. At a high level, the limitation in the lower bounds from [Mar+22] comes from
the fact that one is limited in the number N of vectors v1, . . . ,vN that can be used in the
Nemirovski function. To resolve this issue, we introduce adaptivity within the choice of a
modified Nemirovski function. At a high level, we choose the vectors v1, . . . ,vN depending
on the queries of the algorithm which allows to fit in more terms. In turn, this allows to
improve the lower bounds.

As a second step, [Mar+22] relate the optimization problem on the defined class of
functions to an Orthogonal Vector Game. In this game, the goal is to find vectors that are
approximately orthogonal to a matrixA with access to row queries ofA. The argument is as
follows: because of the barrier term ∥Ax∥∞−η0, optimizing the Nemirovski function requires
exploring independent directions of the nullspace of A, which is performed at informative
queries. With our new class of functions, we can adapt this logic. However, the adaptivity
in the vectors vi provides information to the learner on A in addition to the queried rows of
A. We therefore need to modify the game by introducing an Orthogonal Vector Game with
Hints, where hints encapsulate this extra information.

For the last step, [Mar+22] give an information-theoretic argument to provide a query
complexity lower bound on the defined Orthogonal Vector Game. We show that a similar
argument holds for our modified game. The main added difficulty resides in bounding the
information leakage from the hints, and we show that these provide no more information
than the memory itself.

As a last remark, the lower bounds provided in [Mar+22] hold for randomized algorithms,
while the adaptivity of our procedure only applies to deterministic algorithms.

7.1.2 Outline of the chapter

In Section 7.2, we formally define our setup and give a brief overview of our proof techniques.
The complete proof of Theorem 7.1 for convex optimization is given in Section 7.3. In
Section 7.4 we consider the feasibility problem and prove Theorem 7.2. Technical lemmas
are proved in the appendix in Section 7.5.

7.2 Formal setup and overview of techniques

Standard results in oracle complexity give the minimal number of queries for algorithms
to solve a given problem. However, this does not account for possible restrictions on the
memory available to the algorithm. In this work, we are interested in the trade-off between
memory and query complexity for both convex optimization and the feasibility problem. Our
results apply to a large class of memory-constrained algorithms. We give below a general
definition of the memory constraint for algorithms with access to an oracle O : S → R
taking as input a query q ∈ S and returning a response O(q) ∈ R.

Definition 7.1 (M -bit memory-constrained deterministic algorithm). Let O : S → R be
an oracle. An M-bit memory-constrained deterministic algorithm is specified by a query
function ψquery : {0, 1}M → S and an update function ψupdate : {0, 1}M × S ×R → {0, 1}M .
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The algorithm starts with the memory state Memory0 = 0M and iteratively makes queries to
the oracle. At iteration t, it makes the query qt = ψquery(Memoryt−1) to the oracle, receives
the response rt = O(qt) then updates its memory Memoryt = ψupdate(Memoryt−1, qt, rt).

The algorithm can stop making queries at any iteration and the last query is its final
output. Notice that the memory constraint applies only between each query but not for
internal computations: the computation of the update ψupdate and the query ψquery can
potentially use unlimited memory. This is a rather weak memory constraint on the algo-
rithm; a fortiori, our negative results also apply to stronger notions of memory-constrained
algorithms. In Definition 7.1, we ask the query and update functions to be time-invariant,
which in our context is without loss of generality: any M -bit algorithm using T queries
with time-dependent query and update functions [WS19; Mar+22] can be turned into an
(M + ⌈log T ⌉)-bit time-invariant algorithm by storing the iteration number t as part of the
memory. The query lower bounds we provide are at most T ≤ poly(d). Hence, an additional
log T = O(log d) bits to the memory size M does not affect our main results, Theorems 7.1
and 7.2.

We use the above described framework to study the interplay between query complexity
and memory for two fundamental problems in optimization and machine learning.

Convex optimization. We first consider convex optimization in which one aims to mini-
mize a 1-Lipschitz convex function f : Bd(0, 1)→ R on the unit ball. The goal is to output a
point x̃ ∈ Bd(0, 1) such that f(x̃) ≤ minx∈Bd(0,1) f(x)+ ϵ, referred to as ϵ-approximate solu-
tions. The optimization algorithm has access to a first order oracle OCO : Bd(0, 1)→ R×Rd,
which for any query x returns the couple (f(x), ∂f(x)) where ∂f(x) is a subgradient of f
at the query point x.

Feasibility problem. Second, we consider the trade-off between memory and query com-
plexity for the feasibility problem, where the goal is to find an element x̃ ∈ Q for a convex
set Q ⊂ Bd(0, 1). Instead of a first-order oracle, the algorithm has access to a separation
oracle OF : Bd(0, 1) → {Success} ∪ Rd. For any query x ∈ Bd(0, 1), the separation oracle
either returns Success reporting that x ∈ Q, or provides a separating vector g ∈ Rd, i.e.,
such that for all x′ ∈ Q,

⟨g,x− x′⟩ > 0.

We say that an algorithm solves the feasibility problem with accuracy ϵ > 0 if it can solve
any feasibility problem for which the successful set contains a ball of radius ϵ, i.e., such that
there exists x⋆ ∈ Bd(0, 1) satisfying Bd(x

⋆, ϵ) ⊂ Q.
The feasibility problem is at least as hard as convex optimization in the following sense:

an algorithm that solves the feasibility problem with accuracy ϵ/L can be used to solve L-
Lipschitz convex optimization problems by feeding the subgradients from first-order queries
to the algorithm as separating hyperplanes. Alternatively, from any 1-Lipschitz function f
one can derive a feasibility problem, where the feasibility set is Q = {x ∈ Bd(0, 1), f(x) ≤
f ⋆ + ϵ} and the separating oracle at x /∈ Q is a subgradient ∂f(x) at x.
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Remark 7.1. Although we consider the case of constrained optimization, one can efficiently
reduce the problem of approximate Lipschitz convex optimization over the unit ball to uncon-
strained approximate Lipschitz convex optimization [Mar+22]. Hence, our results also apply
to the latter setting at the expense of losing poly(d) factors in the necessary accuracy ϵ in
Theorem 7.1. For the feasibility problem, there is no loss, Theorem 7.2 applies directly for
the unconstrained feasibility setting.

7.2.1 Overview of proof techniques and innovations

We prove the two main Theorems 7.1 and 7.2 with similar techniques, hence for concise-
ness, we only give here the main ideas used to derive lower bounds for convex optimization.
Although our proof borrows techniques from [Mar+22], we introduce key innovations in-
volving adaptivity to improve the lower bounds up to the maximum quadratic memory for
deterministic algorithms—up to logarithmic factors. We recall, however, that the bounds
in [Mar+22] hold for randomized algorithms as well. In the proofs, we aim to optimize the
dependence of the parameters in d. Constants, however, are not necessarily optimized.

An adaptive optimization procedure. At the high level, we design an optimization
procedure which for any algorithm constructs a hard family of convex functions adaptively
on its queries. To be precise, the procedure constructs functions from the following family
of convex functions with appropriately chosen parameters η, γ1, γ2, pmax, lp, δ:

FA,v(x) = max

{
∥Ax∥∞ − η, ηv⊤0 x, η

(
max

p≤pmax,l≤lp
v⊤p,lx− pγ1 − lγ2

)}
. (7.2)

We take A ∼ U({±1}n×d) and v0 ∼ U(Dδ) uniformly sampled in the beginning, where
Dδ ⊂ Sd−1 is a (finite) discretization of the sphere. The first term ∥Ax∥∞ − η acts as a
barrier term: in order to observe subgradients from the other terms, one needs the query
x to satisfy ∥Ax∥∞ ≤ 2η. These are called informative queries as introduced in [Mar+22].
Hence, informative queries must lie approximately in the orthogonal space to the lines of A.
The second term ηv⊤0 x ensures that queries with low objective (in particular with objective
at most −ηγ1/2) have norm bounded away from 0. Thus, these queries, once renormalized,
will still belong approximately to the nullspace of A denoted Ker(A).

The adaptivity to the algorithm is captured in the third term, which is constructed
along the optimization process. This construction proceeds by periods p = 1, 2, . . . , pmax
designed so that during each period p, the algorithm is forced to visit a subspace of Ker(A)
of dimension k. To do so, we iteratively construct vectors vp,1, . . .vp,lp as follows. Suppose
that at the beginning of step t of period p, one has defined vectors vp,1, . . . ,vp,l.

• The procedure first evaluates the explored subspace of the algorithm during this period.
In practice, the procedure keeps in memory exploratory queries xip,1 , . . . ,xip,r during
period p up to time t. The exploratory subspace is then Span(xip,1 , . . . ,xip,r).

• If a query with a sufficiently low objective is queried, we sample a new vector vp,l+1

which is approximately orthogonal to the exploratory subspace. The corresponding
new term in the objective is v⊤p,l+1x− pγ1 − (l + 1)γ2.
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Once this new term is added to the objective, the algorithm is constrained to make queries
with an additional component along the direction −vp,l+1. Since this vector is approximately
orthogonal to all previous queries, this forces the algorithm to query vectors linearly inde-
pendent from all previous queries in period p. The period then ends once the dimension
of the exploratory subspace reaches k, having defined lp vectors vp,1, . . . ,vp,lp . As discussed
above, the exploratory subspace must increase dimension for any additional such vector.
Thus, after lp ≤ k vectors, period p ends.

The constructed family of convex functions in Eq (7.2) is similar to the family described
in Eq (7.1) that were considered in [Mar+22]. However, by sampling the vectors vp,l adap-
tively, the optimization procedure is able to fit in more terms, thereby providing a significant
improvement in the lower bounds.

Benefits of adaptivity. We now expand on how the adaptive terms allow improving the
lower bound of [Mar+22] to match the quadratic upper bound of cutting plane methods.
The limitation in the functions of the form Eq (7.1) comes from the fact that the offset in
the Nemirovski function is γ = Ω(

√
k log d/d). This offset is necessary to ensure that with

high probability, 1: subgradients v1, . . . ,vN are discovered exactly in this order and 2: that
any query which visits a new vector vi must not lie in the subspace formed by the last k
last informative vectors. Indeed, for the last claim, from high-dimensional concentration,
for a random unit vector v and a k dimensional subspace E, ∥PE(v)∥ = Θ(

√
k log d/d).

This offset is not necessary for our procedure, since by construction, at each period, a k-
dimensional subspace of Ker(A) is forced to be explored. As a result, we can take γ1 =
Θ(
√
log d/d). This offset is still necessary to ensure that vectors vp,l are discovered in their

order of construction (lexicographic order on (p, l)) with high probability.

An Orthogonal Vector Game with Hints. The next step of the proof involves linking
the optimization of the above-mentioned constructed functions with an Orthogonal Vector
Game with Hints. Similarly to the game introduced by [Mar+22], the goal for the player is
to find k linearly-independent vectors approximatively in Ker(A). To do so, the player can
access an M -bit message Message and make m queries, where M = ckd for a small constant
c > 0. In the game introduced by [Mar+22], the queries are lines of the matrix A. They
then show that to find k dimensions of Ker(A), where A is taken uniformly at random
A ∼ {±1}d/2×d, (nearly) all the lines of A must be queried. The argument is information-
theoretic: each new dimension of Ker(A) must be (approximately) orthogonal to all lines of
A. Hence, this provides additional mutual information O(k) for every line of A, including
the d/2−m lines that were not observed through queries. This extra information on A can
only be explained by the message, which has M bits. Hence, M ≥ O(k)(d/2−m). Setting
the constant c > 0 appropriately, this shows that m = Ω(d).

In our case, the optimization procedure ensures that the algorithm needs to explore k
dimensions of Ker(A) in each period. However, each query yields a response from the
optimization oracle that can either be a line of A (corresponding to the term ∥Ax∥∞ − η
of Eq (7.2)) or v0 (term ηv⊤0 x of Eq (7.2)), or previously defined vectors vp,′l,′ . Since
the vectors vp′,l′ have been constructed adaptively on the queries of the algorithm, which
themselves may depend on lines ofA, during a period p, responses vp′,l′ for p′ < p are a source
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of information leakage for A from previous periods. As a result, the query lower bound on
the game introduced by [Mar+22] is not sufficient for our purposes. Instead, we introduce
an Orthogonal Vector Game with Hints, where hints correspond exactly to these vectors
vp′,l′ from previous periods. Informally, the game corresponds to a simulation of one of the
periods of the optimization procedure: for each query x, the oracle returns the subgradient
that would have been returned in the optimization procedure, up to minor details.

Bounding the information leakage. Once the link is settled, the goal is to prove lower
bounds on the number of queries needed to solve the Orthogonal Vector Game with Hints.
The main difficulty is to bound the information leakage from these hints. We recall that hints
are of the form vp′,l′ , which have been constructed adaptively on the queries of the algorithm
during period p′. In particular, these contain information on the lines of A queried during
period p′ < p, which may be complementary with those queried during period p. If this total
information leakage through the hints yields a mutual information with Ker(A) significantly
higher than that of the M bits of Message, obtained lower bounds cannot possibly reflect any
trade-off with memory constraints. It is therefore essential to obtain information leakage at
most Õ(M) = Õ(dk).

To solve this issue, we introduce a discretization Dδ of the unit sphere where the vectors
vp,l take value. Next, we show that each individual vector vp′,l′ from previous periods can
only provide information Õ(k) on the matrix A. To have an intuition on this, note that
for any (at most) k vectors x1, . . . ,xk, the volume of the subset of the unit sphere Sd−1 of
vectors approximately orthogonal to x1, . . . ,xk, say S(x1, . . . ,xk) = {y ∈ Sd−1 : |y⊤xi| ≤
d−3, i ≤ k} is qk = Ω(1/d3k). Hence, since the vector v is roughly taken uniformly at random
within Dδ ∩ S(x1, . . . ,xk), we can show that the mutual information of v with the initial
vectors x1, . . . ,xk is at most O(− log qk) = O(k log d). As a result, even if m = d, the total
information leakage through the vectors vp′,l′ from previous periods, is at most O(kd log d).
The formal proof involves an anti-concentration bounds on the distance of a random unit
vector to a linear subspace of dimension k, as well as a more involved discretization procedure
than the one presented above. In summary, by introducing adaptive functions through
the optimization procedure, we show that the same memory-sample trade-off holds for the
Orthogonal Vector Game with Hints and the game without hints introduced in [Mar+22],
up to logarithmic factors.

7.3 Memory-constrained convex optimization

To prove our results we need to use discretizations of the unit sphere Sd−1, which we construct
by first partitioning Sd−1 into N(δ) = (O(1)/δ)d regions of equal area and diameter at most
δ, i.e. Vδ = {Vi(δ), i ∈ [N(δ)]}. Here δ > 0 is taken as parameter. The existence of this
construcition is guaranteed by the following lemma.

Lemma 7.1 ([FS02] Lemma 21). For any 0 < δ < π/2, the sphere Sd−1 can be partitioned
into N(δ) = (O(1)/δ)d equal volume cells, each of diameter at most δ.

Then we take one point as the representative of each region, i.e. Dδ = {bi(δ), i ∈
[N(δ)]} ⊂ Sd−1, where for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ). With these notations we define the
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discretization function ϕδ such that for any x ∈ Sd−1, ϕδ(x) = bi(δ) where x ∈ Vi(δ).

7.3.1 Definition of the difficult class of optimization problems

In this section we present the class of functions that we use to prove our lower bounds.
Throughout the chapter, we pose n = ⌈d/4⌉. We first define some useful functions. For any
A ∈ Rn×d, we define gA as follows

gA(x) = aimin
, imin = min{i ∈ [n], |a⊤

i x| = ∥Ax∥∞}.

With this function we can define a subgradient function for x 7→ ∥Ax∥∞,

g̃A(x) = ϵgA(x), ϵ = sign(gA(x)
⊤x).

We are now ready to introduce the class of functions which we use for our lower bounds.
These are of the following form.

FA,v(x) = max

{
∥Ax∥∞ − η, ηv⊤0 x, η

(
max
p≤pmax

max
l≤lp

v⊤p,lx− pγ1 − lγ2
)}

.

Here, A ∈ {±1}n×d is a matrix. Also, v0 and the terms vp,l are vectors in Rd. More precisely,
these vectors will lie in the discretization Dδ for δ = 1/d3. We postpone the definition of
pmax and lp for p ≤ pmax. Last, we use the following choice for the remaining parameters:

η = 2/d3, γ1 = 12
√

log d
d

and γ2 = γ1
4d

. For convenience, we also define the functions

FA(x) = max{∥Ax∥∞ − η, ηv⊤0 x}

FA,v,p,l(x) = max

{
∥Ax∥∞ − η, ηv⊤0 x, η

(
max

(p′,l′)≤lex(p,l),l′≤lp′
v⊤p′,l′x− p′γ1 − l′γ2

)}
,

with the convention FA,v,1,0 = FA. The functions FA,v,p,l will encapsulate the current state of
the function to be minimized: it will be updated adaptively on the queries of the algorithm.
We also define a subgradient function for FA,v,p,l by first favoring lines of A, then vectors
from v in case of ties, as follows,

∂FA,v,p,l(x) =


g̃A(xt) if FA,v,l,p(x) = ∥Ax∥∞ − η,
ηv0 otherwise and if FA,v,l,p(x) = ηv⊤0 x,

ηvp,l otherwise and if (p, l) = argmax(p′,l′)≤lex(p,l)
v⊤p′,l′x− p′γ1 − l′γ2.

In the last case, ties are broken by lexicographic order. We also pose ∂FA,v = ∂FA,v,pmax,lpmax
.

We consider a so-called optimization procedure described in Procedure 7.1, which will
construct the sequence of vectors v = (vp,l) adaptively on the responses of the considered
algorithm. Throughout this section, we use a parameter 1 ≤ k ≤ d/3 − 1 — which will
be taken as k = Θ̃(M/d) where M is the memory of the algorithm — and let pmax be the
largest number which satisfies the following constraint.

pmax ≤ min{cd,1(d− 1)/k, cd,2(d/k)
1/3 − 1}, (7.3)
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Input: d, k, pmax, algorithm alg

Part 1: Procedure to adaptively construct v;
1 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).;
2 Initialize the memory of alg to 0 and let p = 1, r = l = 0.;
3 for t ≥ 1 do
4 if t > d2 then Set (P,L) = (p, l) and break the for loop ;
5 Run alg with current memory to obtain a query xt;
6 if FA(xt) > η then // Non-informative query
7 return (∥Axt∥∞ − η, g̃A(xt)) as response to alg.
8 else // Informative query
9 if r ≤ k − 1 and FA,v,p,l(xt) ≤ −ηγ1/2 and ∥PSpan(xip,r′

,r′≤r)⊥(xt)∥/∥xt∥ ≥ γ2
4

then
10 Set ip,r+1 = t and increment r ← r + 1.
11 if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and r < k then
12 Compute Gram-Schmidt decomposition bp,1, . . . , bp,r of xip,1 , . . . ,xip,r .;
13 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p,r′z| ≤ d−3,∀r′ ≤ r}.;
14 Define vp,l+1 = ϕδ(yp,l+1) and increment l← l + 1.
15 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) and p+ 1 ≤ pmax then
16 Set lp = l and ip+1,1 = t.;
17 Compute the Gram-Schmidt decomposition bp+1,1 of xip+1,1 .;
18 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p+1,1z| ≤ d−3}.;
19 Define vp+1,1 = ϕδ(yp+1,1), increment p← p+ 1 and reset l = r = 1.
20 else if FA,v,p,l(xt) < −η(pγ1 + lγ2 + γ2/2) then// End of the construction
21 Set lpmax = l, ipmax+1,1 = t.;
22 Set (P,L) = (pmax, l) and break the for loop.
23 return (FA,v,p,l(xt),∂FA,v,p,l(xt)) as response to alg.
24 end

Part 2: Procedure once v, P , L are constructed;
25 for t′ ≥ t do return (FA,v,P,L(xt′), ∂FA,v,P,L(xt′)) as response to the query xt′ ;

Procedure 7.1: The optimization procedure for algorithm alg

where cd,1 = 1/(902 log2 d) and cd,2 = 1/(81 log2/3 d).
The optimization procedure is described in Procedure 7.1. First, we sample independently

A ∼ U({±1}n×d) and v0 ∼ U(Dδ). The matrix A and vector v0 are then fixed for the rest of
the learning procedure. Next, we describe the adaptive procedure to return subgradients. It
proceeds by periods, until pmax periods are completed, unless the total number of iterations
reaches d2, in which case the construction procedure ends as well. First, we say that a
query is informative if FA(x) ≤ η. The procedure proceeds by periods p ∈ [pmax] and in
each period constructs the vectors vp,1, . . . ,vp,k iteratively. We are now ready to describe
the procedure at time t when the new query xt is queried. Let p ≥ 1 be the index of the
current period and vp,1, . . . ,vp,l be the vectors of this period constructed so far: the first
period is p = 1 and we allow l = 0 here. As will be seen in the construction, we always have
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l ≥ 1 except at the very beginning for which we use the notation FA,v,1,0 = FA. Together
with these vectors, the oracle keeps in memory indices ip,1, . . . , ip,r with r ≤ k of exploratory
queries. The constructed vectors from previous periods are vp′,l′ for p′ < p and l′ ≤ lp′ .

1. If xt is not informative, i.e. FA(xt) > η, then procedure returns (∥Axt∥∞−η, g̃A(xt)).

2. Otherwise, we follow the next steps. If r ≤ k − 1 and

FA,v,p,l(xt) ≤ −
ηγ1
2

and
∥PSpan(xip,r′

,r′≤r)⊥(xt)∥

∥xt∥
≥ γ2

4
,

we set ip,r+1 = t and increment r. In this case, we say that xt is exploratory. Next,

(a) Recalling that FA,v,p,l is constructed so far, if FA,v,p,l(xt) ≥ η(−pγ1− lγ2− γ2/2),
we do not do anything.

(b) Otherwise, and if r < k, let bp,1, . . . , bp,r be the result from the Gram-Schmidt
decomposition of xip,1 , . . . ,xip,r . Then, let yp,l+1 be a sample of the distribution
obtained via yp,l+1 ∼ U(Sd−1 ∩

{
z ∈ Rd : |b⊤p,r′z| ≤ 1

d3
, ∀r′ ≤ r

}
). We then pose

vp,l+1 = ϕδ(yp,l+1). Having defined this new vector, we increment l.
(c) Otherwise, if r = k, this ends period p. We write the total number of vectors

defined during period p as lp := l. If p + 1 ≤ pmax, period p + 1 starts from
t = ip+1,1. Similarly to above, let bp+1,1 be the result of the Gram-Schmidt
procedure on xp+1,1, and we sample yp+1,1 according to a uniform distribution
yp+1,1 ∼ U(Sd−1 ∩

{
z ∈ Rd : |b⊤p+1,1z| ≤ 1

d3

}
). Then, we pose vp+1,1 = ϕδ(yp+1,1),

increment p, and reset l = r = 1.

After these steps, with the current values of p and l, we return to the algorithm
(FA,v,p,l(xt), ∂FA,v,l,p(xt)).

If we finish the last period p = pmax, or if we reach a total number of iterations d2, the
construction phase of the function ends. In both cases, let us denote by P,L the last defined
period and vector vP,L. In particular, we have p ≤ pmax From now on, the final function to
optimize is FA,v,P,L and the oracle is a standard first-order oracle for this function, using the
subgradient function ∂FA,v,P,L.

7.3.2 Sketch of proof for Theorem 7.1

Throughout the proof of the main results, we will use concentration bounds relegated to the
appendix in Section 7.5.1. We first relate Procedure 7.1 to the standard convex optimization
problem and prove query lower bounds under memory constraints for this procedure. Before
doing so, we formally define what we mean by solving this optimization procedure.

Definition 7.2. Let alg be an algorithm for convex optimization. We say that an algorithm
alg is successful for the optimization procedure with probability q ∈ [0, 1] and accuracy ϵ > 0,
if taking A ∼ U({±1}n×d), running alg with the responses given by the procedure, and
denoting by x⋆(alg) the final answer returned by alg, with probability at least q over the
randomness of A and of the procedure, one has

FA,v,P,L(x
⋆(alg)) ≤ min

x∈Bd(0,1)
FA,v,P,L(x) + ϵ.
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The optimization procedure is designed such that with probability at least 1−C
√
log d/d2,

the procedure returns responses that are consistent with a first-order oracle of the function
FA,v,P,L where vP,L is the last vector to have been defined.

Proposition 7.1. Let A ∈ {±1}n×d and v0 ∈ Dδ. On an event E of probability at least
1 − C

√
log d/d2 on the randomness of the procedure for some universal constant C > 0,

all responses of the optimization procedure are consistent with a first-order oracle for the
function FA,v,P,L: for any t ≥ 1, if (ft, gt) is the response of the procedure at time t for query
xt, then ft = FA,v,P,L(xt) and gt = ∂FA,v,P,L(xt).

Now observe that for any constructed vectors v, the function FA,v,P,L is
√
d-Lipschitz.

As a result, if there exists an algorithm for convex optimization that guarantees precision ϵ
for 1-Lipschitz functions, by rescaling, there exists an algorithm alg which is successful for
the optimization procedure with probability 1−C

√
log d/d2 and precision ϵ

√
d. In the next

proposition, we show that to be successful, such an algorithm needs to properly define the
complete function FA,v, i.e., to complete all periods until pmax.

Proposition 7.2. Let alg be a successful algorithm for the optimization procedure with prob-
ability q ∈ [0, 1] and precision η/(2

√
d). Suppose that alg performs at most d2 queries during

the optimization procedure. Then when running alg with the responses of the optimization
procedure, alg succeeds and ends the period pmax with probability at least q − C

√
log d/d for

some universal constant C > 0.

Next, we introduce an Orthogonal Vector Game with Hints, Game 7.2, where the main
difference with the game introduced in [Mar+22] is that the player can provide additional
hints. Using Proposition 7.2, we prove that solving the optimization procedure implies
solving Game 7.2.

Proposition 7.3. Let m ≤ d. Suppose that there is an M-bit algorithm that is successful
for the optimization procedure with probability q for accuracy ϵ = η/(2

√
d) and uses at most

mpmax queries. Then, there is an algorithm for Game 7.2 for parameters (d, k,m,M, α =
2η
γ1
, β = γ2

4
), for which the Player wins with probability at least q − C

√
log d/d for some

universal constant C > 0.

Last, we give a m = Ω̃(d) query lower bound for Game 7.2.

Proposition 7.4. Let k ≥ 20M+3d log(2d)+1
cHn

. And let 0 < α, β ≤ 1 such that α(
√
d/β)5/4 ≤ 1

2
.

If the Player wins the Orthogonal Vector Game with Hints (Game 7.2) with probability at
least 1/2, then m ≥ cH

8(30 log d+cH)
d.

Putting everything together, we prove our main result.

Proof of Theorem 7.1 We set n = ⌈d/4⌉ and k = ⌈20M+3d log(2d)+1
cHn

⌉. By Proposition 7.1,
with probability at least 1−C

√
log d/d2, the procedure is consistent with a first-order oracle

for convex optimization. Hence, since the functions FA,v,P,L are
√
d-Lipschitz, any M -bit

algorithm guaranteed to solve convex optimization within accuracy ϵ = η/(2d) = 1/d4 for
1-Lipschitz functions, yields an algorithm that is successful for the optimization procedure
with probability at least 1−C

√
log d/d2 and precision ϵ

√
d = η/(2

√
d). Suppose that it uses
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Input: d, k, m, M , α, β
1 Oracle: Set n← ⌊d/4⌋, sample A ∼ U({±1}n×d).;
2 Player: Observe A;
3 for l ∈ [d] do
4 Player: Based on A and any previous queries and responses, submit at most k

vectors xl,1, . . . ,xl,rl .;
5 Oracle: Perform the Gram-Schmidt decomposition bl,1, . . . , bl,rl of xl,1, . . . ,xl,rl .

Then, sample a vector yl ∈ Sd−1 according to a uniform distribution
U(Sd−1 ∩ {z ∈ Rd : ∀r ≤ rl, |b⊤l,rz| ≤ d−3}). As response to the query, return
vl = ϕδ(yl) to the player.

6 end
7 Player: Based on A, all previous queries and responses, store an M -bit message

Message.;
8 Player: Based on A, all previous queries and responses, submit a function
g : Bd(0, 1)→ ({aj, j ≤ n} ∪ {vl, l ≤ d})× [d2] to the Oracle.

9 for i ∈ [m] do
10 Player: Based on Message, any previous queries x1, . . . ,xi−1 and responses

g1, . . . , gi−1 from this loop phase, submit a query xi ∈ Rd.;
11 Oracle: As the response to query zi, return gi = g(zi).
12 end
13 Player: Based on all queries and responses from this phase {zi, gi, i ∈ [m]}, and on

Message, return some vectors y1, . . . ,yk to the oracle.;
14 The player wins if the returned vectors have unit norm and satisfy for all i ∈ [k]

1. ∥Ayi∥∞ ≤ α

2. ∥PSpan(y1,...,yi−1)⊥(yi)∥2 ≥ β.

Game 7.2: Orthogonal Vector Game with Hints

at most Q queries. Then, by Proposition 7.3, there is a strategy for Game 7.2 for parameters
(d, k, ⌈Q/pmax⌉ + 1,M, α = 2η

γ1
, β = γ2

4
) in which the Player wins with probability at least

1− C ′√log d/d. For d large enough, this probability is at least 1/2. Further, 2η
γ1

(
4
√
d

γ2

)5/4
≤

(4/3)5/4

3
ηd3 ≤ 1

2
. Hence, by Proposition 7.4, one has ⌈Q/pmax⌉ + 1 ≥ cH

8(30 log d+cH)
d. Because

one has pmax = Θ((d/k)1/3 log−2/3 d), this implies

Q = Ω

(
(d/k)1/3d

log5/3 d

)
= Ω

(
d5/3

(M + log d)1/3 log5/3 d

)
.

In particular, if M = d1+δ for δ ∈ [0, 1], the number of queries is Q = Ω̃(d1+(1−δ)/3). ■

In the rest of this section, we give all the remaining details and proofs leading up to
Theorem 7.1.
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7.3.3 Properties and validity of the optimization procedure

We begin with a simple lemma showing that during each period p at most lp ≤ k vectors
vp,1, . . . ,vp,lp are constructed.

Lemma 7.2. At any time of the construction procedure, l ≤ r. In particular, since r ≤ k,
we have lp ≤ k for all periods p ≤ pmax.

Proof Fix a period p. We prove this by induction. The claim is satisfied for any l = 1 when
p ≥ 2 since in this case, at the first time t = ip,1 of the period p we also construct the first
vector vp,1. For p = 1, note that the first informative query t that falls in scenarios (2b) or
(2c) is exploratory. Indeed, in these cases we have FA,v,1,0(xt) < η(−γ1 − γ2/2) ≤ −ηγ1/2,
and the second criterion for an exploratory query is immediate ∥PSpan(xi1,r′

,r′≤0)(xt)∥ = 0

since no indices i1,r have been defined yet.
We now suppose that the claim holds for l − 1 ≥ 1. Let tp,l be the time when vp,l is

constructed and ip,1, . . . , ip,r the indices constructed until the beginning of iteration tp,l. If
a new index ip,r′ was constructed in times (tp,l−1, tp,l) then the claim holds immediately.
Suppose that this is not the case. Note that tp,l falls in scenario (2b) which means in
particular that

η(v⊤p,l−1xtp,l − pγ1 − (l − 1)γ2) ≤ FA,v,p,l−1(xtp,l) < η(−pγ1 − (l − 1)γ2 − γ2/2).

As a result,
|y⊤
p,l−1xtp,l | ≥ |v⊤p,l−1xtp,l | − δ >

γ2
2
− δ.

Next, when r ≥ l − 1 is the number of indices constructed so far, we decompose yp,l−1 =
α1bp,1 + . . . + αrbp,r + ỹp,l−1 where ỹp,l−1 ∈ Span(xip,r′ , r

′ ≤ r)⊥. Since by construction of
yp,l−1 one has |αr′| ≤ d−3 for all r′ ≤ r, we have

∥ỹp,l−1 − yp,l−1∥ ≤
√
r

d3
≤ 1

d2
√
d
.

Therefore,

∥PSpan(xip,r′
,r′≤r)⊥(xtp,l)∥ ≥ |ỹ⊤

p,l−1xtp,l | ≥ |y⊤
p,l−1xtp,l | −

1

d2
√
d
>
γ2
2
− 1

d2
√
d
− δ ≥ γ2

4
.

As a result, tp,l is exploratory, hence ip,r+1 = tp,l. This ends the proof of the recursion and
the lemma. ■

We recall that P and L denote the last defined period and vector vP,L. From Lemma 7.2,
we have in particular P ≤ pmax and L ≤ k. The next step involves showing that with high
probability, the returned values and vectors returned by the above procedure are consistent
with a first-order oracle for minimizing the function FA,v,P,L, as stated in Proposition 7.1.

Proof of Proposition 7.1 Consider a given iteration t. We aim to show that we have
(ft, gt) = (FA,v,P,L(xt), ∂FA,v,P,L(xt)). By construction, if t ≥ d2, the result is immediate.
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Now suppose t ≤ d2. We first consider the case when xt is non-informative (1). By definition,
FA(xt) > η. Since for any (p, l) ≤lex (P,L) one has |v⊤p,lxt| ≤ ∥vp,l∥∥xt∥ ≤ 1, we have

FA,v,P,L(xt) = max

{
FA(xt), η

(
max

(p,l)≤lex(P,L)
v⊤p,lx− pγ1 − lγ2

)}
= FA(xt).

As a result, the response of the procedure for xt is consistent with FA,v,P,L and the re-
turned subgradient is g̃A(xt) = ∂FA,v,P,L(xt). Therefore, it suffices to focus on informative
queries (2). We will denote by tp,l the index of the iteration when vp,l has been defined,
for (p, l) ≤lex (P,L). Consider a specific couple (p, l) ≤lex (P,L), and let r denote the
number of constructed indices on or before tp,l. Let bp,1, . . . , bp,r the corresponding vectors
resulting from the Gram-Schmidt procedure on xip,1 , . . . ,xip,r . Then, conditionally on the
history until time tp,l, the vector vp,l was defined as vp,l = ϕδ(yp,l), where yp,l is sampled as
∼ U(Sd−1∩{z ∈ Rd : |b⊤p,r′z| ≤ d−3, ∀r′ ≤ r}). As a result, from Lemma 7.5, for any t ≤ tp,l,
we have

P

(
|x⊤

t vp,l| ≥ 3

√
2 log d

d
+

2

d2

)
≤ 6
√
2 log d

d6
.

We then define the following event

E =
⋂

(p,l)≤lex(P,L)

⋂
t≤tp,l

{
|x⊤

t vp,l| < 3

√
2 log d

d
+

2

d2

}
,

which by the union bound has probability P(E) ≥ 1 − 3
√
2 log d/d2. We are now ready to

show that the construction procedure is consistent with optimizing FA,v,P,L on the event
E . As seen before, we can suppose that xt is informative (2). Using the same notations as
before, because E is met, for any p < p′ ≤ P and l′ ≤ lp′ , we have for d ≥ 2,

v⊤p′,l′xt − p′γ1 − l′γ2 < 3

√
2 log d

d
+

1

d
− pγ1 − γ1 ≤ −pγ1 −

γ1
2
≤ −pγ1 − dγ2 −

γ2
2
,

where we used 3
√
2 + 1 ≤ 6 and 2dγ2 ≤ γ1/2. As a result, we obtain that

max
(p′,l′)≤lex(P,L),p′>p

v⊤p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 −
γ2
2
.

Next, we consider the case of vectors vp,l′ where l ≤ l′ ≤ lp and tp,l′ ≥ t (this also includes
the case when we defined vp,l at time t = tp,l). We write l̃ for the smallest such index l. As a
remark, l̃ ∈ {l, l+1}. Note that if such indices exist, this means that before starting iteration
t, the procedure has not yet reached r = k. There are two cases. If xt was exploratory, we
have t = ip,r hence ∥PSpan(bp,r′ ,r′≤r)⊤(xt)∥ = 0. If xt is not exploratory, either

∥PSpan(bp,r′ ,r′≤r)⊤(xt)∥ <
γ2
4
∥xt∥ ≤

γ2
4
, (7.4)

or we have FA,v,p,l(xt) > −ηγ1/2. We start with the last scenario when FA,v,p,l(xt) > −ηγ1/2.
Then, on E , one has

max
(p,l)<lex(p′,l′)≤lex(P,L)

v⊤p′,l′xt − p′γ1 − l′γ2 ≤ −γ1 + 3

√
2 log d

d
+

1

d
≤ γ1

2
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As a result, this shows that FA,v,P,L(xt) = FA,v,p,l(xt). Hence using a first-order oracle from
FA,v,l,p at xt is already consistent with FA,v,P,L. Thus, for whichever step (2a), (2b) or (2c)
is performed, since these can only increase the knowledge on v, the response given by the
construction procedure is consistent with minimizing FA,v.

It remains to treat the first two scenarios in which we always have Eq (7.4). In particular,
when writing xt = α1bp,1 + . . . + αrbp,r + x̃t where x̃t = PSpan(bp,r′ ,r′≤r)⊥(xt), we have
∥x̃t∥ < γ2

4
. As a result, for l̃ ≤ l′ ≤ lp, one has for

|v⊤p,l′xt| ≤ |y⊤
p,l′xt|+ δ ≤ |α1||y⊤

p,l′bp,1|+ . . .+ |αr||y⊤
p,l′bp,r|+ ∥x̃t∥+ δ

< ∥α∥1
1

d3
+
γ2
4

+ δ

≤ γ2
4

+
1

d2
√
d
+

1

d3
≤ γ2

2
,

where in the last inequality we used d ≥ 3. As a result, provided that l̃ exists, this shows
that

max
l̃≤l′≤lp

v⊤p,l′xt − pγ1 − l′γ2 = v⊤p,l̃xt − pγ1 − l̃γ2 < −pγ1 − l̃γ2 +
γ2
2
. (7.5)

On the other hand, if t = ip+1,1, the same reasoning works for t viewing it as in period p+1,
which shows for this case that

max
l′≤lp+1

v⊤p+1,l′xt − (p+ 1)γ1 − l′γ2 = v⊤p+1,1xt − (p+ 1)γ1 − γ2 < −(p+ 1)γ1 −
γ2
2
. (7.6)

As a conclusion of these estimates, we showed that on E , we have

FA,v,P,L(xt) = max
{
FA,v,p,l(xt), η(v

⊤
p′,l′xt − p′γ1 − l′γ2)

}
:= F̃A,v,t(xt)

where (p′, l′) is the very next vector that is defined after starting iteration t (potentially,
it has tp′,l′ = t if we defined a vector at this time). It then suffices to check that the
value and vector returned by the procedure are consistent with the right-hand side. By
construction, if we constructed vp′,l′ at step t: case (2b) or (2c), then the procedure directly
uses a first-order oracle for F̃A,v,t. Further, by construction of the subgradients since they
break ties lexicographically in (p, l), the returned subgradient is exactly ∂FA,v,P,L(xt). It
remains to check that this is the case when no vector vp′,l′ is defined at step t: case (2a).
This corresponds to the case when FA,v,p,l(xt) ≥ η(−pγ1− lγ2−γ/2). In this case, the upper
bound estimates from Eq (7.5) and Eq (7.6) imply that

v⊤p′,l′xt − p′γ1 − l′γ2 < −pγ1 − lγ2 − γ/2,

and as a result, FA,v,P,L(xt) = FA,v,p,l(xt). Therefore, using a first-order oracle of FA,v,p,l

at xt is valid, and the break of ties of the subgradient of F̃A,v,t is the same as the break of
ties of ∂FA,v,P,L(xt). This ends the proof that on E the procedure gives responses consistent
with an optimization oracle for FA,v,P,L with subgradient function ∂FA,v,P,L. Because P(E) ≥
1− C

√
log d/d2 for some constant C > 0, this ends the proof of the proposition. ■

Last, we provide an upper bound on the optimal value of FA,v,P,L.
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Proposition 7.5. Let A ∼ U({±1}n×d) and v0 ∼ U(Dδ). For any algorithm alg for convex
optimization, let v be the resulting set of vectors constructed by the randomized procedure.
With probability at least 1− C

√
log d/d over the randomness of A, v0 and v, we have

min
x∈Bd(0,1)

FA,v(x) ≤ −
η

30
√

(kpmax + 1) log d
,

for some universal constant C > 0.

Proof For simplicity, let us enumerate all the constructed vectors v1, . . . ,vlmax by order of
construction. Hence, lmax ≤ pmaxk. We use the same enumeration for y1, . . . ,ylmax . Next,
let Cd =

√
40(lmax + 1) log d and consider the following vector,

x̄ = − 1

Cd

lmax∑
l=0

PSpan(ai,i≤n)⊥(vl).

In particular, note that we included v0 in the sum. For convenience, we write PA⊥ instead
of PSpan(ai,i≤n)⊥ . Also, for convenience let us define zl =

∑
l′≤l PA⊥(vl). Fix an index

1 ≤ l ≤ lmax. Then, by Lemma 7.5, with t0 :=
√

6 log d
d

+ 2
d2

, we have

P
(
|PA⊥(vl+1)

⊤zl| > t0∥zl∥
)
= P

(
|v⊤l+1PA⊥(zl)| > t0∥zl∥

)
≤ P

(
|v⊤l+1PA⊥(zl)| > t0∥PA⊥(zl)∥

)
≤ 2
√
6 log d

d2
.

Similarly, we have that

P
(
|v⊤l+1zl| > t0∥zl∥

)
≤ 2
√
6 log d

d2
.

We consider the event E =
⋂
l≤lmax

{|v⊤l zl−1|, |PA⊥(vl)
⊤zl−1| ≤ t0∥zl∥}, which since lmax ≤ d,

by the union bound has probability at least 1− 4
√
6 log d/d. Then, on E , for any l < lmax,

∥zl+1∥2 ≤ ∥zl∥2 + ∥PA⊥(vl+1)∥2 + 2|PA⊥(vl+1)
⊤zl| ≤ ∥zl∥2 + 1 + 2t0∥zl∥.

We now prove by induction that ∥zl∥2 ≤ 40 log d · (l + 1), which is clearly true for z0 since
∥z0∥ = ∥PA⊥(v0)∥ ≤ ∥v0∥ ≤ 1. Suppose this is true for l < lmax. Then, using the above

equation and the fact that t0 ≤ 3
√

log d
d

for d ≥ 4,

∥zl+1∥2 ≤ 40 log d · (l + 1) + 1 + 6
√
40 log d

√
l + 1

d
≤ 40 log d · (l + 2),

where we used lmax + 1 ≤ d, which completes the induction. In particular, on E , we have
that ∥x̄∥ ≤ 1. Also, observe that by construction x̄ ∈ Span(ai, i ≤ n)⊥ so that ∥Ax̄∥∞ = 0.
Next, for any 0 ≤ l ≤ lmax, we have

v⊤l x̄ = −v
⊤
l zlmax

Cd
= − 1

Cd

(
∥PA⊥(vl)∥2 + v⊤l zl−1 +

∑
l<l′≤lmax

v⊤l PA⊥(vl′)

)
.
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We will give estimates on each term of the above equation. First, if the indices ip,1, . . . , ip,r
were defined before defining vl, we denote ỹ = PSpan(xip,r′

,r′≤r)⊥(yl), the component of yl
which is perpendicular to the explored space at that time. Then, we can write yl = αl1bp,1+
. . .+ αlrbp,1 + ỹl, and note that

∥ỹl∥ =
√
∥yl∥ − (αl1)

2 − . . .− (αlr)
2 ≥

√
1− k

d6
≥ 1− 1

d5
.

Then, we have

∥PA⊥(vl)∥ ≥ ∥PA⊥(yl)∥ − δ
≥ ∥PSpan(ai,i≤n, bp,r′ ,r≤r′)⊥(yl)∥ − δ
= ∥PSpan(ai,i≤n, bp,r′ ,r≤r′)⊥(ỹl)∥ − δ

≥
∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r′≤r)⊥ ( ỹl

∥ỹl∥

)∥∥∥∥− 1

d5
− δ.

As a result, since δ = d−3, this shows that

∥PA⊥(vl)∥2 ≥
∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r′≤r)⊥ ( ỹl

∥ỹl∥

)∥∥∥∥2 − 2δ.

Now observe that dim(Span(ai, i ≤ n, bp,r′ , r
′ ≤ r)⊥) ≥ d− n− k, while ỹl

∥ỹl∥
is a uniformly

random unit vector in Span(bp,r′ , r ≤ r′)⊥. Therefore, using Proposition 7.10 we obtain for
t < 1,

P
(
∥PA⊥(vl)∥2 + 2δ − d− n− k

d
≤ −t

)
≤ P

(∥∥∥∥PSpan(ai,i≤n, bp,r′ ,r′≤r)⊥ ( ỹl
∥ỹl∥

)∥∥∥∥2 − d− n− k
d

≤ −t

)
≤ e−(d−k)t2 .

As a result since d− n− k ≥ d/2, we obtain

P

(
∥PA⊥(vl)∥2 ≤

1

2
− 2

√
log d

d
− 2δ

)
≤ 1

d2
.

Nwxt, define F =
⋂
l≤lmax

{∥PA⊥(vl)∥2 ≥ 1
2
− 2
√

log d
d
− 2δ}, which since lmax+1 ≤ d and by

the union bound has probability at least P(F) ≥ 1 − 1/d. Next, we turn to the last term.
For any 0 ≤ l < lmax, we focus on the sequence (

∑l+u
l′=l+1 v

⊤
l PA⊤(yl′))1≤u≤lmax−l and first note

that this is a martingale. These increments are symmetric (because yl′ is symmetric) even

conditionally on A and vl,yl, . . . ,yl′−1. Next, let t1 = 2
√

3 log d
d

+ 2
d2

. Note that for d ≥ 4,

we have t1 ≤ 4
√

log d
d

. Further, by Lemma 7.5,

P(|v⊤l PA⊤(yl′)| > t1) = P(|PA⊤(vl)
⊤yl′| > t1) ≤

4
√
3 log d

d4
,
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where we used the fact that PA⊥ is a projection. Let Gl =
⋂
l<l′≤lmax

{|v⊤l PA⊤(vl′)| ≤ t1},
which by the union bound has probability P(Gl) ≥ 1− 4

√
3 log d/d3. Next, we define Il,u =

(v⊤l PA⊤(yl+u)∧t1)∨(−t1), the increments capped at absolute value t1. Because v⊤l PA⊤(yl+u)
is symmetric, so is Il,u. As a result, these are bounded increments of a martingale, to which
we can apply the Azuma-Hoeffding inequality.

P

(∣∣∣∣∣
lmax−l∑
u=1

Il,u

∣∣∣∣∣ ≤ 2t1
√
(lmax − l) log d

)
≥ 1− 2

d2
.

We denote by Hl this event. Observe that on Gl, the increments Il,u and v⊤l PA⊤(yl+u)
coincide for all 1 ≤ u ≤ lmax − l. As a result, on Gl ∩Hl we obtain∣∣∣∣∣ ∑

l<l′≤lmax

v⊤l PA⊥(vl′)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
l<l′≤lmax

v⊤l PA⊥(yl′)

∣∣∣∣∣+ (lmax − 1)δ

≤

∣∣∣∣∣
lmax−l∑
u=1

Il,u

∣∣∣∣∣+ (d− 2)δ

≤ 2t1
√
lmax log d+ (d− 2)δ.

Then, on the event E ∩ F ∩
⋂
l≤lmax

Gl ∩Hl, for any 1 ≤ l ≤ lmax one has

v⊤l zlmax ≥
1

2
− 2

√
log d

d
− t0∥zl∥ − 2t1

√
lmax log d−

1

d2

≥ 1

2
− 2

√
log d

d
− 3 log d

√
40
lmax + 1

d
− 8 log d

√
lmax
d
− 1

d2

≥ 1

2
− 30 log d

√
lmax + 1

d

≥ 1

6
,

where in the last inequalities we used the fact that lmax ≤ kpmax ≤ cd,1d − 1 where cd,1 =
1

902 log2 d
as per Eq (7.3). As a result, we obtain that on E ∩ F ∩

⋂
l≤lmax

Gl ∩ Hl, which has
probability at most 1− C

√
log d/d for some constant C > 0,

max
p≤pmax,l≤k

v⊤p,lx̄ ≤ −
1

6Cd
≤ − 1

40
√

(kpmax + 1) log d
.

Since ∥Ax̄∥∞ = 0, and η ≥ η

40
√

(kpmax+1) log d
, this shows that

FA,v(x̄) ≤ −
η

40
√
(kpmax + 1) log d

.

This ends the proof of the proposition. ■
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7.3.4 Reduction from convex optimization to the optimization pro-
cedure

Next, we prove Proposition 7.2 which shows that to be successful for the optimization pro-
cedure, an algorithm needs to properly define the function FA,v, i.e., to complete all periods
until pmax.

Proof of Proposition 7.2 Let x⋆(alg) = xT denote the final answer of alg when run with
the optimization procedure. By hypothesis, we have T ≤ d2. As before, let P ≤ pmax and
L ≤ k be the indices such that the last vector constructed by the optimization procedure is
vP,L. Let E be the event when alg run on the optimization procedure does not end period
pmax. We focus on E and consider two cases.

First, suppose that T > tP,L, i.e., the last vector was not constructed at time T . As a
result, this means that xT corresponds either to a non-informative query—scenario (1)—in
which case FA,v,P,L(xT ) ≥ FA(xT ) ≥ η, or this means that FA,v,P,L(xt) ≥ η(−Pγ1 − Lγ2 −
γ/2)—scenario (2a).

Second, we suppose that T = tP,L, i.e., the last vector was constructed at time T . Then,
by construction of vP,L and yP,L, we have indices iP,1, . . . , iP,r ≤ T such that with the Gram-
Schmidt decomposition bP,1, . . . , bP,r of xiP,1

, . . . ,xiP,r
, we have |b⊤p,r′yP,L| ≤ d−3 for all r′ ≤ r.

In particular, writing xT = α1bP,1 + . . . + αrbP,r + x̃T , where x̃T ∈ Span(xiP,r′
, r′ ≤ r)⊥,

either we have iP,r = T , in which case x̃T = 0, or xT was not exploratory in which case we
directly have FA,v,P,L(xT ) ≥ FA,v,P,L−1(xT ) > −ηγ1/2, or we have ∥x̃T∥ < ∥xT∥γ2/4 ≤ γ2/4.
For all remaining cases to consider, we obtain

|v⊤P,LxT | ≤ |y⊤
P,LxT |+ δ ≤ ∥α∥1

d3
+ ∥x̃T∥+ δ ≤ 1

d3
+

1

d2
√
d
+
γ2
4
<
γ2
2
.

In the last inequality, we used d ≥ 4. This shows that FA,v,P,L(xT ) ≥ η(−Pγ1−Lγ2−γ2/2).
As a result, in all cases this shows that FA,v,P,L(x

⋆(alg)) ≥ η(−Pγ1−Lγ2−γ2/2) ≥ −η(pmax+
1)γ1. Now define the event

F =

{
min

x∈Bd(0,1)
FA,v(x) ≤ −

η

40
√

(kpmax + 1) log d

}
.

By Proposition 7.5 we have P(F) ≥ 1− C
√
log d/d. From Eq (7.3),

(pmax + 1)3/2 ≤ 1

60γ1
√
k log d

.

Thus,

(pmax + 1)γ1 ≤
1

60
√
k(pmax + 1) log d

≤ 1

60
√
(kpmax + 1) log d

Then, since FA,v,P,L ≤ FA,v, this shows that on E ∩ F ,

FA,v,P,L(x
⋆(alg)) ≥ −η(pmax + 1)γ1 ≥ min

x∈Bd(0,1)
FA,v(x) +

η

120
√
(kpmax + 1) log d

> min
x∈Bd(0,1)

FA,v,P,L(x) +
η

2
√
d
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where in the last inequality, we used kpmax ≤ cd,1d−1. As a result, letting G be the event when
alg succeeds for precision ϵ = η/(2

√
d). By hypothesis, P(G) ≥ q. By the above equations,

one has E ∩F ∩G = ∅. Therefore, P(G∩Ec) ≥ P(G)−P(G∩E ∩F)−P(F c) ≥ q−C
√
log d/d.

This ends the proof of the proposition. ■

7.3.5 Reduction of the optimization procedure to the Orthogonal
Vector Game with Hints

Using the result from Proposition 7.2, we show that solving the optimization procedure
implies solving the Orthogonal Game with Hints with high probability.

Proof of Proposition 7.3 Let alg be an M -bit algorithm solving the feasibility problem
with mpmax queries with probability at least q. Below, we describe the strategy for Game
7.2.

In the first part of the strategy, the player observes A. First, submit an empty query
to the Oracle to obtain a vector v0, which as a result is uniformly distributed among Dδ.
We then proceed to simulate the optimization procedure for alg using parameters A and v0
(lines 3-6 of Game 7.2). Precisely, whenever a new vector vp,l needs to be defined according
to the optimization procedure, the player submits the corresponding vectors xip,1 , . . . ,xip,r
to the oracle and receives in return a vector which defines vp,l. In this manner, the player
simulates exactly the optimization procedure. In all cases, the number of queries in this first
phase is at most 1 + kpmax ≤ d. For the remaining queries to perform, the player can query
whichever vectors, these will not be used in the rest of the strategy. If the simulation did not
end period pmax, the complete procedure fails. We now describe the rest of the procedure
when period pmax was ended. During the simulation, the algorithm records the time ip,1
when period p started for all p ≤ pmax+1. Recall that for pmax+1, we only define ipmax+1,1,
this is the time that ends period pmax. By hypothesis, ipmax+1,1 ≤ mpmax. As a result, there
must be a period p ≤ pmax which uses at most m queries: ip+1,1 − ip,1 ≤ m. We define the
memory Message to be the memory of alg just before starting iteration ip,1, at the beginning
of period p (line 7 of Game 7.2). Next, since the period pmax was ended, the vectors vp,l for
p ≤ pmax, l ≤ lp were all defined. The player can therefore submit the function gA,v to the
Oracle (line 8 of Game 7.2) as follows,

gA,v : x 7→


(gA(x), 1) if FA,v(x) = ∥Ax∥∞ − η,
(v0, 2) otherwise and if FA,v(x) = ηv⊤0 x,

(vp,l, 2 + (p− 1)k + l) otherwise and if
(p, l) = argmax

(p′,l′)≤lex(pmax,lpmax )

v⊤p′,l′x− pγ1 − lγ2.

(7.7)

Intuitively, the first component of gA,v gives the subgradient ∂FA,v to the following two
exceptions: we always return ai instead of ±ai and we return v0 (resp. vp,l) instead of ηv0
(resp. ηvp,l). The second term of gA,v has values in [2+pmaxk]. Hence, since 2+pmaxk ≤ d2,
the function gA,v takes values in ({aj, j ≤ n} ∪ {vl, l ≤ d})× [d2].

The strategy then proceeds to play the Orthogonal Vector Game in a second part (lines
9-12 of Game 7.2) and use the responses of the Oracle to simulate the run of alg for the
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optimization procedure in period p. To do so, we set the memory state of the algorithm alg
to be Message. Then, for the next m iterations we proceed as follows. At iteration i of the
process, we run alg with its current state to obtain a new query zi which is then submitted
to the oracle of the Orthogonal Vector Game, to get a response (gi, si). We then use this
response to simulate the response that was given by the optimization procedure in the first
phase, computing (vi, g̃i) as follows

(vi, g̃i) =


(|g⊤i zi| − η, sign(g⊤i zi)gi) si = 1,

(ηg⊤i zi, ηgi) si = 2,

(η(g⊤i zi − pγ1 − lγ2), ηgi) si = 2 + (p− 1)k + l, p ≤ pmax, 1 ≤ l ≤ k.

(7.8)

We can easily check that in all cases, vi = FA,v(zi) and that g̃i = ∂FA,v(zi). We then pass
(vi, g̃i) as response to alg for the query zi so it can update its state. Further, having defined
i1 = 1, the player can keep track of exploratory queries by checking whether

vi ≤ −
ηγ1
2

and
∥PSpan(zir′ ,r′≤r)⊥(zi)∥

∥zi∥
≥ γ2

4
,

where i1, . . . , ir are the indices defined so far. We perform m such iterations unless alg stops
and use the last remaining queries arbitrarily. Next, we check if the last index ik was defined.
If not, we pose ik = m+1 and let zm+1 be the next query of alg. The final returned vectors
are zi1

∥zi1∥
, . . . ,

zik
∥zik∥

. This ends the description of the player’s strategy.
We now show that the player wins with good probability. First, since alg makes at most

mpmax ≤ d2 queries, by Proposition 7.2, on an event E of probability at least q−C
√
log d/d,

alg succeeds and ends the period pmax. On E , by construction, the first phase of the strategy
does not fail. Next, we show that in the second phase (lines 9-12 of Game 7.2), the queried
vectors coincide exactly with the queried vectors from the corresponding period p in the first
phase (lines 3-6 of Game 7.2). To do so, we only need to check that the responses provided
to alg coincide with the response given by the optimization procedure. First, recall that on
E , all periods are completed, hence FA,v,P,L = FA,v. Next, by Proposition 7.1, the responses
of the procedure are consistent with optimizing FA,v,P,L and subgradients ∂FA,v,P,L on an
event F of probability at least 1−C ′√log d/d2. Therefore, on E ∩F , it suffices to check that
the responses provided to alg are consistent with FA,v, which we already noted: at every
step i, (vi, g̃i) = (FA,v(zi), ∂FA,v(zi)). This proves that the responses and queries coincide
exactly with those given by the optimization procedure on E ∩ F .

Next, by construction, the chosen phase p had at most m iterations. Thus, on E ∩ F ,
among z1, . . . ,zm+1, we have the vectors xip,1 , . . . ,xip,k . Further, if ik was not defined during
part 2 of the strategy, this means that ik = m + 1, as defined in the player’s strategy (line
21-22 of Algorithm 7.3). As a result, for all u ≤ k, we have ziu = xip,u . We now show that
the returned vectors

xip,1

∥xip,1
∥ , . . . ,

xip,k

∥xip,k
∥ are successful for Game 7.2. First, because ip,1, . . . , ip,k

are exploratory queries, we have directly for u ≤ k,

∥PSpan(xip,v ,v<u)
⊥(xip,u)∥

∥xip,u∥
≥ γ2

4
.
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Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A;
1 Initialize the memory of alg to be 0.;
2 Submit ∅ to the Oracle and use the response as v0.;
3 Run alg with the optimization procedure knowing A and v0 until the first exploratory

query xi1,1 .
4 for p ∈ [pmax] do
5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step. ;
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If

alg stopped before, return the strategy fails. When needed to sample a unit
vector vp′,l′ , submit vectors xip′,1 , . . .xip′,r′ to the Oracle where ip′,1, . . . , ip′,r′ are the
exploratory queries defined at that stage. We use the corresponding response of the
Oracle as vp′,l′ .;

7 if ip+1,1 − ip,1 ≤ m then
8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;
11 if Message has not been defined yet then return The strategy fails;
12 Submit gA,v to the Oracle as defined in Eq (7.7).;

Part 2: Strategy to make queries;
13 Set the memory state of alg to be Message and define i1 = 1, r = 1.;
14 for i ∈ [m] do
15 Run alg with current memory to obtain a query zi.;
16 Submit zi to the Oracle from Game 7.2, to get response (gi, si).;
17 Compute (vi, g̃i) using zi, gi and si as defined in Eq (7.8) and pass (vi, g̃i) as

response to alg.;
18 if vi ≤ −ηγ1/2 and ∥PSpan(zir′ ,r′≤r)⊥(zi)∥/∥zi∥ ≥

γ2
4

then
19 Set ir+1 = i and increment r ← r + 1.
20 end

Part 3: Strategy to return vectors;
21 if index ik has not been defined yet then
22 With the current memory of alg find a new query zm+1 and set ik = m+ 1.;

23 return
{

zi1
∥zi1∥

, . . . ,
zik

∥zik∥

}
to the Oracle.

Algorithm 7.3: Strategy of the Player for the Orthogonal Vector Game with Hints

Next, if l is the index of the last constructed vector vp,l before ip,u in the optimization
procedure, one has FA,v,p,l(xip,u) ≤ −ηγ1/2. Therefore, ∥Axip,u∥∞ ≤ FA,v,p,l(xip,u) + η ≤ η.
Further, ηv⊤0 xip,u ≤ FA,v,p,l(xip,u) ≤ −ηγ1/2. This proves that ∥xip,u∥ ≥ γ1/2. Putting the
previous two inequalities together yields

∥Axip,u∥∞
∥xip,u∥

≤ 2η

γ1
.
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As a result, this shows that the returned vectors are successful for Game 7.2 for the desired
parameters α = 2η/γ1 and β = γ2/4. Thus, the player wins on E ∩F , which has probability
at least q − (C + C ′)

√
log d/d2 by the union bound. This ends the proof of the proposition.

■

7.3.6 Query lower bound for the Orthogonal Vector Game with
Hints

Before proving a lower bound on the necessary number of queries for Game 7.2, we need to
introduce two results. The first one is a known concentration result for vectors in the hyper-
cube. It shows that for a uniform vector in the hypercube, being approximately orthogonal
to k orthonormal vectors has exponentially small probability in k.

Lemma 7.3 ([Mar+22]). Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix
Z = [z1, . . . ,zk] ∈ Rd×k with orthonormal columns,

P(∥Z⊤h∥∞ ≤ t) ≤ 2−cHk.

We will also need an anti-concentration bound for random vectors, which intuitively
provides a lower bound for the previous concentration result. The following lemma shows
that for a uniformly random unit vector, being orthogonal to k orthonormal vectors is still
achievable with exponentially small probability in k.

Lemma 7.4. Let k < d and x1, . . . ,xk be k orthonormal vectors. Then,

Py∼U(Sd−1)

(
|x⊤

i y| ≤
1

d3
,∀i ≤ k

)
≥ 1

ed−4d3k
.

Proof Let y ∼ U(Sd−1) be a uniformly random unit vector. Then, for i < k and any
y1, . . . , yi−1 such that |y1|, . . . , |yi−1| ≤ 1

d3
, we have

P
(
|yi| ≤

1

d3
| y1, . . . , yi−1

)
= Pu∼U(Sd−i)

(
|u1| ≤

1

d3
√

1− (y21 + . . .+ y2i−1)

)

≥
∫ 1/d3

0
(1− y2)(d−i−1)/2dy∫ 1

0
(1− y2)(d−i−1)/2dy

≥ (1− d−6)d/2

d3
≥ e−d

−5

d3
,

where in the last equation we used d ≥ 2. Therefore, we can show by induction that
P(|yi| ≤ 1/d3,∀i ≤ k) ≥ e−kd−5

d3k
. Thus, by isometry this shows that

P
(
|x⊤

i y| ≤
1

d3
, ∀i ≤ k

)
≥ 1

ed−4d3k
.

This ends the proof of the lemma. ■
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We are now ready to prove the query lower bound for Game 7.2 given in Proposition 7.4.
Precisely, we show that for an appropriate choice of parameters, one needs m = Ω̃(d) queries.
The proof is closely inspired from the arguments given in [Mar+22]. The main added diffi-
culty arises from bounding the information leakage of the provided hints. As such, our goal
is to show that these do not provide more information than the message itself.

Proof of Proposition 7.4 We first define some notations. Let Y = [y1, . . . ,yk] be the
matrix storing the final outputs from the algorithm. Next, for the responses of the oracle
(g1, s1), . . . , (gm, sm), we first store all the scalar responses in a vector c = [s1, . . . , sm]. We
then focus on the responses g1, . . . , gm. Let G̃ denote the matrix containing these responses
of the oracle which are lines of A. Let G be the matrix containing unique columns from G̃,
augmented with rows of A so that it has exactly m columns which are all different rows of
A. Last, let A′ be the matrix A once the rows from G are removed. Next, let Ṽ be a matrix
containing the responses of the oracle which are vectors vl, ordered by increasing index l. As
before, let V be the matrix Ṽ where we only conserve unique columns and append it with
additional vectors vl so that V has exactly m columns. We denote by w1, . . . ,wm these
vectors, and recall that they are vectors vl ordered by increasing order of index l. Last, we
define a vector j of indices such that j(i) contains the information of which column of the
matrices G or V corresponds gi. Precisely, if gi is a line a from A, we set j(i) = j where
j is the index of the column from G corresponding to a. Otherwise, if j is the index of the
column from V corresponding to gi, we set j(i) = m+ j.

Next, we argue that Y is a deterministic function of Message, the matrices G, V and
the vector of indices j and c. First, c provides the scalar responses directly. For the d-
dimensional component of the responses, first, note that from G, V and j one can easily
recover the vectors g1, . . . , gm. Next, using the algorithm for the second section of the Or-
thogonal Vector Game with Hints set with initial memory Message and the vectors g1, . . . , gm
as responses of the oracle, one can inductively compute the queries x1, . . . ,xm. Last, Y is
a deterministic function of xi, gi, i ∈ [m] and Message. This ends the claim that there is a
function ϕ such that Y = ϕ(Message,G,V , j, c). By the data processing inequality,

I(A′;Y | G,V , j, c) ≤ I(A′;Message | G,V , j, c) ≤ H(Message | G,V , j, c) ≤M. (7.9)

In the last inequality we used the fact that Message uses at most M bits. We have that

I(A′;Y | G,V , j, c) = H(A′ | G,V , j, c)−H(A′ | Y ,G,V , j, c). (7.10)

In the next steps we bound the two terms. We start with the second term of the right
hand side of Eq (7.10) using similar arguments to the proof given in [Mar+22]. Let E be
the event when the Player succeeds at Game 7.2. Consider the case when Y is a winning
matrix. Then we have ∥Ayi∥∞ ≤ α for all i ≤ k. As a result, any line a of A′ satisfies
∥Y ⊤a∥∞ ≤ α. Further, we have that ∥PSpan(yj ,j<i)⊥(yi)∥ ≤ β for all i ≤ k. By Lemma 7.6,
there exist ⌈k/5⌉ orthonormal vectors Z = [z1, . . . ,z⌈k/5⌉] such that for any x ∈ Rd one has

∥Z⊤x∥∞ ≤
(√

d
β

)5/4
∥Y ⊤x∥∞. In particular, all lines a of A′ satisfy

∥Z⊤a∥∞ ≤

(√
d

β

)5/4

α ≤ 1

2
,
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where we used the hypothesis in the parameters α and β. By Lemma 7.3, one has∣∣∣∣{a ∈ {±1}d : ∥Z⊤a∥∞ ≤
1

2

}∣∣∣∣ ≤ 2dPh∼U({±1}d)

(
∥Z⊤h∥∞ ≤

1

2

)
≤ 2d−cH⌈k/5⌉.

Therefore, we proved that if Y ′ is a winning vector, H(A′ | Y = Y ′) ≤ (n−m)(d− cHk/5).
Otherwise, if Y ′ loses, we can directly use H(A′ | Y = Y ′) ≤ (n −m)d. Combining these
equations gives

H(A′ | Y ,G,V , j, c) ≤ H(A′ | Y )

≤ P(Ec)(n−m)d+ P(E)(n−m)(d− cHk/5)
≤ (n−m)(d− P(E)cHk/5).

Next, we turn to the first term of the right-hand side of Eq (7.10).

H(A′ | G,V , j, c) = H(A | G,V , j, c) = H(A | V )− I(A;G, j, c | V )

≥ H(A | V )−H(G, j, c)

≥ H(A | V )−md−m log(2m)−m log(d2)

= H(A)− I(A;V )−md− 3m log(2d)

= (n−m)d− 3m log(2d)− I(A;V ).

In the second inequality, we use the fact that G uses md bits and j can be stored with
m log(2m) bits. By the chain rule,

I(A;V ) =
∑
i≤m

I(A;wi | w1, . . . ,wi−1).

Next, if wi = vl, recalling that the vectors wi′ = vl′ are ordered by increasing index of l′,
we have

I(A;wi | w1, . . . ,wi−1) = H(wi | w1, . . . ,wi−1)−H(wi | A,w1, . . . ,wi)

≤ H(wi)−H(wi | A,w1, . . . ,wi,xl,1, . . . ,xl,rl)

= log |Dδ| −H(wi | xl,1, . . . ,xl,rl).

In the last equality, we used the fact that if bl,1, . . . , bl,rl are the resulting vectors from the
Gram-Schmidt decomposition of xl,1, . . . ,xl,rl , yl is generated uniformly in Sd−1 ∩{y : ∀r ≤
rl, |b⊤l,ry| ≤ d−3} independently from the past history, and vl = ϕδ(yl). By Lemma 7.4, we
know that

Pz∼U(Sd−1)

(
∀r ≤ rl, |b⊤l,rz| ≤ d−3

)
≥ 1

ed−4d3k
.

As a result, for any bj(δ) ∈ Dδ, one has

P(wi = bj(δ) | xl,1, . . . ,xl,rl) ≤
Pz∼U(Sd−1)(z ∈ Vj(δ))

Pz∼U(Sd−1)

(
∀r ≤ rl, |b⊤l,rz| ≤ d−3

) ≤ ed
−4
d3k

|Dδ|
,

where we used the fact that each cell has the same area. In particular, this shows that

H(wi | xl,1, . . . ,xl,rl) = Eb∼wi|xl,1,...,xl,rl
[− log pwi|xl,1,...,xl,rl

(b)] ≥ log

(
|Dδ|

ed−4d3k

)
.
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Hence,
I(A;wi | w1, . . . ,wi−1) ≤ 3k log d+ d−4 log e.

Putting everything together gives

I(A′;Y | G,V , j)
≥ (n−m)d− 3m log(2d)− 3km log d− 2md−4 − (n−m)(d− P(E)cHk/5)

≥ cH
10
k(n−m)− 3km log d− 1− 3d log(2d),

where in the last equation we used d ≥ 2. Together with Eq (7.9), this implies

m ≥ cHkn/10−M − 1− 3d log(2d)

k(3 log d+ cH/10)
.

As a result, since k ≥ 20M+3d log(2d)+1
cHn

and n ≥ d/4, we obtain

m ≥ cHn

60 log d+ 2cH
≥ cH

8(30 log d+ cH)
d.

This ends the proof of the proposition. ■

7.4 Memory-constrained feasibility problem

In this section, we prove the lower bound from Theorem 7.2 for the feasibility problem.

7.4.1 Defining the feasibility procedure

Similarly to Section 7.3, we pose n = ⌈d/4⌉. Also, for any matrix A ∈ {±1}n×d, we use
the same functions gA and g̃A. We use similar techniques as those we introduced for the
optimization problem. However, since in this case, the separation oracle only returns a sep-
arating hyperplane, without any value considerations of an underlying function, Procedure
7.1 can be drastically simplified, which leads to improved lower bounds.

Let η0 = 1/(24d2), η1 = 1
2
√
d
, δ = 1/d3, and k ≤ d/3 − n be a parameter. Last, let

pmax = ⌊(cd,1d− 1)/(k − 1)⌋, where cd,1 is the same quantity as in Eq (7.3). The feasibility
procedure is defined in Procedure 7.4. The oracle first randomly samples A ∼ U({±1}n×d)
and v0 ∼ U(Dδ). This matrix and vector are then fixed in the rest of the procedure.
Whenever the player queries a point x such that ∥Ax∥∞ > η0 (resp. v⊤0 x > −η1), the
oracle returns g̃A(x) (resp. v0). All other queries are called informative queries. With
this definition, it remains to define the separation oracle on informative queries. The oracle
proceeds by periods in which the behavior is different. In each period p, the oracle constructs
vectors vp,1, . . . ,vp,k−1 inductively and keeps in memory some queries ip,1, . . . , ip,k that will
be called exploratory. The first informative query t will be the first exploratory query and
starts period 1.

Given a new query xt,
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1. If ∥Ax∥∞ > η0, the oracle returns g̃A(xt).

2. If v⊤0 xt > −η1, the oracle returns v0.

3. If xt was queried in the past sequence, the oracle returns the same vector that was
returned previously.

4. Otherwise, let p be the index of the current period and let vp,1, . . . ,vp,l be the vec-
tors from the current period constructed so far, together with their corresponding
exploratory queries ip,1 . . . , ip,l < t. Potentially, if p = 1 one may not have defined any
such vectors at the beginning of time t. In this case, let l = 0.

(a) If max1≤l′≤l v
⊤
p,l′xt > −η1 (with the convention max∅ = −∞), the oracle returns

vp,l′ where l′ = argmaxl≤r v
⊤
p,lxt. Ties are broken alphabetically.

(b) Otherwise, if l < k − 1, we first define ip,l+1 = t. Then, let bp,1, . . . , bp,l+1 be
the result from the Gram-Schmidt decomposition of xip,1 , . . . ,xip,l+1

and let yp,l+1

be a sample of the distribution obtained by the uniform distribution yp,l+1 ∼
U(Sd−1 ∩

{
z ∈ Rd : |b⊤p,rz| ≤ 1

d3
,∀r ≤ l + 1

}
). We then pose vp,l+1 = ϕδ(yp,l+1).

Having defined this new vector, the oracle returns vp,l+1. We then increment l.

(c) Otherwise, if l = k, we define ip,k = ip+1,1 = t. If p + 1 ≤ pmax, this starts the
next period p+1. As above, let bp+1,1 be the result of the Gram-Schmidt decom-
position of xip+1,1 and sample yp+1,1 according to a uniform yp+1,1 ∼ U(Sd−1 ∩{
z ∈ Rd : |b⊤p+1,1z| ≤ 1

d3

}
). We then pose vp+1,1 = ϕδ(yp+1,1) and the oracle re-

turns vp+1,1. We can then increment p and reset l = 1.

The above construction ends when the period pmax is finished. At this point, the oracle has
defined the vectors vp,l for all p ≤ pmax and l ≤ k. We then define the successful set as

QA,v =

{
x ∈ Bd(0, 1) : ∥Ax∥∞ ≤ η0,v

⊤
0 x ≤ −η1, max

p≤pmax,l≤k−1
v⊤p,lx ≤ −η1

}
.

From now on, the procedure uses any separation oracle for QA,v as responses to the algo-
rithm, while making sure to be consistent with previous oracle reponses if a query is exactly
duplicated. We next define what we mean by solving the above feasibility procedure.

Definition 7.3. Let alg be an algorithm for the feasibility problem. When running alg with
the responses of the feasibility procedure, we denote by v the set of constructed vectors and
x⋆(alg) the final answer returned by alg. We say that an algorithm alg is successful for the
feasibility procedure with probability q ∈ [0, 1], if taking A ∼ U({±1}n×d), with probability at
least q over the randomness of A and of the procedure, x⋆(alg) ∈ QA,v.

In the rest of this section, we first relate this feasibility procedure to the standard feasi-
bility problem, then prove query lower bounds to solve the feasibility procedure.
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Input: d, k, pmax, algorithm alg

1 Sample A ∼ U({±1}n×d) and v0 ∼ U(Dδ).;
2 Initialize the memory of alg to 0 and let p = 1, l = 0.;
3 for t ≥ 1 do
4 Run alg with current memory to obtain a query xt;
5 if ∥Axt∥ > η0 then return g̃A(xt) as response to alg ;
6 else if v⊤0 xt > −η1 then return v0 as response to alg ;
7 else if Query xt was made in the past then return the same vector that was

returned for xt ;
8 else
9 if max1≤l′≤l v

⊤
p,l′xt > −η1 then

10 return vp,l′ where l′ = argmaxl≤r v
⊤
p,lxt.

11 else if l < k − 1 then
12 Let ip,l+1 = t and compute Gram-Schmidt decomposition bp,1, . . . , bp,l+1 of

xip,1 , . . . ,xip,l+1
.;

13 Sample yp,l+1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p,l′z| ≤ d−3,∀l′ ≤ l + 1} and
define vp,l+1 = ϕδ(yp,l+1).;

14 return vp,l+1 as response to alg and increment l← l + 1.
15 else if p+ 1 ≤ pmax then
16 Set ip,k =, ip+1,1 = t and compute the Gram-Schmidt decomposition bp+1,1 of

xip+1,1 .;
17 Sample yp+1,1 uniformly on Sd−1 ∩ {z ∈ Rd : |b⊤p+1,1z| ≤ d−3} and define

vp+1,1 = ϕδ(yp+1,1).
18 return vp+1,1 as response to alg, increment p← p+ 1 and reset l = 1.
19 else Set ipmax,k = t and break the for loop;
20 end

21 for t′ ≥ t do Use any separation oracle for QA,v consistent with previous responses ;
Procedure 7.4: The feasibility procedure for algorithm alg

7.4.2 Reduction from the feasibility problem to the feasibility pro-
cedure

In the next proposition, we check that the above procedure indeed corresponds to a valid
feasibility problem.

Proposition 7.6. On an event of probability at least 1−C
√
log d/d, the procedure described

above is a valid feasibility problem. More precisely, the following hold.

• There exists x̄ ∈ Bd(0, 1) such that ∥Ax̄∥∞ = 0, v⊤0 x̄ ≤ −4η1, and

max
p≤pmax,l≤k−1

v⊤p,lx̄ ≤ −4η1.

• Let ϵ = min{η0/
√
d, η1}/2. Then, Bd

(
x̄− ϵ x̄

∥x̄∥ , ϵ
)
⊆ Bd(0, 1) ∩Bd(x̄, 2ϵ) ⊆ QA,v.
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• Throughout the run of the feasibility problem, the separation oracle always returned a
valid cut, i.e., for any iteration t, if xt denotes the query and gt is the returned vector
from the oracle, one has

∀x ∈ QA,v, ⟨gt,xt − x⟩ > 0.

Further, responses are consistent: if xt = xt′, the responses of the procedure at times
t and t′ coincide.

Proof We use a similar proof to that of Proposition 7.5. For convenience, we rename
vp,l = v(p−1)(k−1)+l. Also, let lmax = pmax(k − 1) ≤ cd,1d − 1. Next, let Cd =

√
40lmax log d.

We define the vector

x̄ = − 1

Cd

lmax∑
l=0

PSpan(ai,i≤n)⊥(vl).

Since lmax ≤ pmax(k − 1) ≤ cd,1d− 1, the same arguments as in the proof of Proposition 7.5
show that on an event E of probability at least 1− C

√
log d/d, we have ∥x̄∥ ≤ 1 and

max
0≤l≤lmax

v⊤l x̄ ≤ −
1

40
√

(lmax + 1) log d
≤ − 2√

d
= −4η1,

where in the second inequality we used lmax ≤ cd,1d−1. By construction, one has ∥Ax̄∥∞ = 0.
This ends the proof of the first claim of the proposition. We then turn to the second claim,
which is immediate from the fact that x 7→ ∥Ax∥∞ is

√
d-Lipschitz and both x 7→ v⊤0 x

and x 7→ maxp≤pmax,l≤k v
⊤
p,lx are 1-Lipschitz. Therefore, Bd(x̄ − ϵx̄/∥x̄∥, ϵ) ⊆ Bd(0, 1) ∩

Bd(x̄, 2ϵ) ⊂ QA,v. It remains to check that the third claim is satisfied. It suffices to check that
this is the case during the construction phase of the feasibility procedure. By construction
of QA,v ⊂ {x : ∥Ax∥∞ ≤ η0}.

Hence, it suffices to check that for informative queries xt, the returned vectors gt are valid
separation hyperplanes. By construction, these can only be either v0 or vp,l for p ≤ pmax,
l ≤ k − 1. We denote by w this vector. Let t′ be the first time xt was queried. There
are two cases. Either w was not constructed at time t′, in which case, by construction this
means that we are in scenario (2) or (4a). Both cases imply w⊤xt > −η1. Hence, w which
is returned by the procedure is a valid separation hyperplane. Now suppose that w = vp,l
was constructed at time t′—scenarios (4b) or (4c). By construction, one has |b⊤p,ryp,l| ≤ d−3

for all r ≤ l. Decomposing xt = xip,l = αbp,1 + . . .+ αlbp,l, we obtain

|x⊤
t yp,l| ≤

∥α∥1
d3
≤ 1

d2
√
d
.

As a result, y⊤
p,lxt ≥ −1/(d2

√
d). Because vp,l = ϕδ(yp,l), we have ∥vp,l − yp,l∥ ≤ δ. Hence,

for any d ≥ 2,
w⊤xt ≥ −1/(d2

√
d)− δ > −η1.

Hence, w was a valid separation hyperplane. The last claim that the responses of the
procedure are consistent over time is a direct consequence from its construction. This ends
the proof of the proposition. ■

As a simple consequence of this result, solving the feasibility problem is harder than
solving the feasibility procedure with high probability.

361



Proposition 7.7. Let alg be an algorithm that solves the feasibility problem with accu-
racy ϵ = 1/(48d2

√
d). Then, it solves the feasibility procedure with probability at least

1− C
√
log d/d.

Proof Let E be the event of probability at least 1−C
√
log d/d defined in Proposition 7.6.

We show that on E , alg solves the feasibility procedure. On E , the feasibility procedure
emulates is a valid feasibility oracle. Further, on E , the successful set contains a closed ball
of radius ϵ. As a result, on E , alg finds a solution to the feasibility problem emulated by the
procedure. ■

Next, we show that it is necessary to finish the pmax periods to solve the feasibility
procedure.

Proposition 7.8. Fix an algorithm alg. Then, if E denotes the event when alg succeeds and
B denotes the event when the procedure ends period pmax with alg, then E ⊆ B.

Proof Consider the case when the period pmax was not ended. Let x⋆ denote the last query
performed by alg. We consider the scenario in which x⋆ fell. Let t be the first time when alg
submitted query x⋆. For any of the scenarios (1), (2), or (4a), by construction of QA,v, we
already have xt /∈ QA,v. It remains to check scenarios (4b) and (4c) for which the procedure
constructs a new vector vp,l, where p is the index of the period of t and ip,1, . . . , ip,l = t are
the previous exploratory queries in period p. We decompose xt = xip,l = α1bp,1 + αlbp,l. By
construction,

|x⊤
t yp,l| = |x⊤

ip,l
yp,l| ≤

∥α∥1
d3
≤ 1

d2
√
d
.

As a result, x⊤
t vp,l ≥ −|x⊤

t yp,l| − δ ≥ −d−2.5 − d−3 > −η1, for any d ≥ 2. Thus, xt = x⋆ /∈
QA,v. This shows that in order to succeed at the feasibility procedure, an algorithm needs
to end all pmax periods. ■

7.4.3 Reduction to the Orthogonal Vector Game with Hints.

The remaining piece of our argument is to show that solving the feasibility procedure is
harder than solving the Orthogonal Vector Game with Hints, Game 7.2.

Proposition 7.9. Let A ∼ U({±1}n×d). If there exists an M-bit algorithm that solves the
feasibility problem described above using mpmax queries with probability at least q over the
randomness of the algorithm, choice of A and the randomness of the separation oracle, then
there is an algorithm for Game 7.2 for parameters (d, k,m,M, α = η0

η1
, β = η1

2
), for which the

Player wins with probability at least q over the randomness of the player’s strategy and A.

Proof Let alg be an M -bit algorithm solving the feasibility problem with mpmax queries
with probability at least q. In Algorithm 7.5, we describe the strategy of the player in Game
7.2.

In the first part of the strategy, the player observesA. Then they proceed to simulate the
feasibility problem with alg using parameters A. When needed to sample a vector vp,l (resp.
v0), the player submits the corresponding queries xip,1 , . . . ,xip,l (resp. ∅) useful to define
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Input: d, k, pmax, m, algorithm alg

Part 1: Strategy to store Message knowing A;
1 Initialize the memory of alg to be 0.;
2 Submit ∅ to the Oracle and use the response as v0.;
3 Run alg with the optimization procedure knowing A and v0 until the first exploratory

query xi1,1 .
4 for p ∈ [pmax] do
5 Let Memoryp be the current memory state of alg and ip,1 the current iteration step. ;
6 Run alg with the feasibility procedure until period p ends at iteration step ip+1,1. If

alg stopped before, return the strategy fails. When needed to sample a unit
vector vp′,l′ , submit vectors xip′,1 , . . .xip′,l′ to the Oracle. We use the corresponding
response of the Oracle as vp′,l′ .;

7 if ip+1,1 − ip,1 ≤ m then
8 Set Message = Memoryp
9 end

10 for Remaining queries to perform to Oracle do Submit arbitrary query, e.g. ∅ ;
11 if Message has not been defined yet then return The strategy fails;
12 Submit g̃A,v to the Oracle as defined in Eq (7.11).;

Part 2: Strategy to make queries;
13 Set the memory state of alg to be Message.;
14 for i ∈ [m] do
15 Run alg with current memory to obtain a query zi.;
16 Submit zi to the Oracle from Game 7.2, to get response (gi, si).;
17 Compute g̃i using zi, gi and si as defined in Eq (7.12) and pass g̃i as response to

alg.;
18 end

Part 3: Strategy to return vectors;
19 for l ∈ [k] do Set il to be the index i of the first query zi for which si = l, if it exists ;
20 if index ik has not been defined yet then
21 With the current memory of alg find a new query zm+1 and set ik = m+ 1.;

22 return
{

zi1
∥zi1∥

, . . . ,
zik

∥zik∥

}
to the Oracle.

Algorithm 7.5: Strategy of the Player for the Orthogonal Vector Game with Hints

vp,l. The player then takes the response given by the Oracle as that vector vp,l (resp. v0),
which simulates exactly a run of the feasibility procedure. Further, since 1+pmax(k−1) ≤ d,
the player does not run out of queries. Importantly, during the run, the player keeps track
of the length ip,k − ip,1 of period p. The first time we encounter a period p with length at
most m, we set Message = Memoryp, the memory state of alg at the beginning of period p. If
there is no such period, the strategy fails. Also, if alg stopped before ending period pmax, the
strategy fails. Next, the algorithm submits the following function g̃A,v to the Oracle. Since
the responses of the feasibility procedure are consistent over time, we adopt the following
notation. For a previously queried vector x of alg, we denote g(x) the vector which was
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returned to alg during the first part (lines 3-9 of Algorithm 7.5).

g̃A,v : x 7→


(0, 1) if x was never queried in the first part,
(ai, 1) ow. and if g(x) ∈ {±ai}, i ≤ n,

(v0, 2) ow. and if g(x) = v0,
(vp′,l′ , 2 + l′1p′=p + k1p′=p+1,l′=1) ow. if g(x) = vp′,l′ , p′ ≤ pmax, l ≤ k − 1.

(7.11)
Intuitively, the first component of g̃ gives the returned vector in the first period, at the
exception that we always return ai instead of {±ai}. The second term has values in [2+k ≤
d2]. Hence, the submitted function is valid.

Next, in the second part of the algorithm, the player proceeds to simulate a run the
feasibility procedure with alg on period p. To do so, we first set the memory state of alg
to Message. Each new query zi is submitted to the Oracle of Game 7.2 to get a response
(gi, si). Then, we compute g̃i as follows

g̃i =

{
gi if si ≥ 2,

sign(g⊤i zi)gi if si = 1.
(7.12)

One can easily check that g̃i corresponds exactly to the response that was passed to alg in
the first part of the strategy. The player then passes g̃i to alg so that it can update its
state. We repeat this process for m steps. Further, the player can also keep track of the
exploratory queries: the index il of the first response satisfying si = 2+ l for l ≤ k− 1 (resp.
si = 2+ k)is the exploratory query which led to the construction of vp,l (resp. vp+1,1) in the
first part. Last, we check if the last index ik was defined. If not, we pose ik = m+ 1 and let
zm+1 be the next query of alg with the current memory. The player then returns the vectors
zi1

∥zi1∥
, . . . ,

zik
∥zik∥

. This ends the description of the player’s strategy.
By Proposition 7.8, on an event E of probability at least q, the algorithm alg succeeds

and ends period pmax. As a result, similarly as in the proof of Proposition 7.3, since alg
makes at most mpmax queries, and there are pmax periods, there must be a period of length at
most m. Hence the strategy never fails at this phase of the player’s strategy on the event E .
Further, we already checked that in the second phase, the vectors g̃i passed to alg coincide
exactly with the responses passed to alg in the first part. Thus, this shows that during
the second part, the player simulates exactly the run of the feasibility problem on period
p. More precisely, the queries coincide with the queries in the feasibility problem at times
ip,1, . . . ,min{ip,k, ip,1+m−1}. Because the first part succeeded on E , we have ip,k ≤ ip,0+m.
Therefore, if ik has not yet been defined, this means that we had ip,k = ip,1 +m. Hence, the
next query with the current memory zm+1 is exactly the query xip,k for the feasibility problem.
This shows that the vectors zi1 , . . . ,zik coincide exactly with the vectors xip,1 , . . . ,xip,k when
running alg on the feasibility problem in the first part.

We now show that the returned vectors are successful for Game 7.2. By construction,
xip,1 , . . . ,xip,k are all informative. In particular, ∥Axip,l∥∞ ≤ η0 for all 1 ≤ l ≤ k. Further,
these queries did not fall in scenario (2), hence v⊤0 xip,l < −η1, which implies ∥xip,l∥ > η1 for
all l ≤ k. As a result,

∥Axip,l∥∞
∥xip,l∥

≤ η0
η1
.
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Next fix l ≤ k − 1. By construction of yp,l,

∥PSpan(xip,l′
,l′≤l)(yp,l)∥2 =

∑
l′≤l

|b⊤p,l′yp,l|2 ≤
k

d6
≤ 1

d5
.

Hence,

∥vp,l − PSpan(xip,l′
,l′≤l)⊥(yp,l)∥ ≤ ∥PSpan(xip,l′

,l′≤l)(yp,l)∥+ δ ≤ 1

d5
+ δ.

As a result, since x⊤
p,l+1vp,l < −η1, we have

∥PSpan(xip,l′
,l′≤l)⊥(xp,l+1)∥ ≥ |x⊤

p,l+1PSpan(xip,l′
,l′≤l)⊥(yp,l)∥ > η1 −

1

d5
− δ ≥ η1

2
.

This shows that the returned vectors
xip,1

∥xip,1
∥ , . . . ,

xip,k

∥xip,k
∥ are successful for Game 7.2 with

parameters α = η0
η1

and β = η1
2
. This ends the proof that strategy succeeds on E for these

parameters, which ends the proof of the proposition. ■

We are now ready to prove the main result.

Proof of Theorem 7.2 Suppose that there is an algorithm alg for solving the feasibility
problem to optimality ϵ = 1/(48d2

√
d) with memory M and at most Q queries. Let k =

⌈20M+3d log(2d)+1
cHn

⌉. By Proposition 7.7, it solves the feasibility procedure with parameter
k with probability at least 1 − C

√
log d/d. By Proposition 7.9 there is an algorithm for

Game 7.2 that wins with probability 1/3 with m = ⌈Q/pmax⌉ and paraeters α = η0/η1 and
β = η1/2. We check that

α

(√
d

β

)5/4

≤ 12d2η0 =
1

2
.

Hence, by Proposition 7.4, we have

m ≥ cH
8(30 log d+ cH)

d.

This shows that

Q ≥ Ω

(
pmax

d

log d

)
= Ω

(
d2

k log3 d

)
= Ω

(
d3

(M + log d) log3 d

)
.

This implies that for a memory M = d2−δ with 0 ≤ δ ≤ 1 the number of queries is Q =
Ω̃(d1+δ). ■

7.5 Appendix

7.5.1 Concentration bounds

The following result gives concentration bounds for the norm of the projection of a random
unit vector onto linear subspaces.
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Proposition 7.10. Let P be a projection in Rd of rank r and let x ∈ Rd be a random vector
sampled uniformly on the unit sphere x ∼ U(Sd−1). Then, for every t > 0,

max
{
P
(
∥P (x)∥2 − r

d
≥ t
)
,P
(
∥P (x)∥2 − r

d
≤ −t

)}
≤ e−dt

2

.

Further, if r = 1 and d ≥ 2,

P

(
∥P (x)∥ ≥

√
t

d− 1

)
≤ 2
√
te−t/2.

Proof First, by isometry, we can assume that P is the projection onto the coordinate
vectors e1, . . . er. Then, let y ∼ N (0, 1) be a normal vector. Note that x = y

∥y∥ ∼ U(S
d−1).

Further,

∥x∥2 ≥ r

d
+ t ⇐⇒

(
1− r

d
− t
) r∑
i=1

y2i ≥
(r
d
+ t
) d∑
i=r+1

y2i .

Note that Z1 =
∑r

i=1 y
2
i and Z2 =

∑d
i=r+1 y

2
i are two independent random chi squared

variables of parameters r and d − r respectively. Recalling that the moment generating
function of Z ∼ χ2(k) is E[esZ ] = (1− 2s)−k/2 for s < 1/2. Therefore, for any

− 1

2(r/d+ t)
< s <

1

2(1− r/d− t)
, (7.13)

one has

P
(
∥P (x)∥2 − r

d
≥ t
)
≤ E

[
exp

(
s
(
1− r

d
− t
)
Z1 − s

(r
d
+ t
)
Z2

)]
=

[
1− 2s

(
1− r

d
− t
)]−r/2[

1− 2s
(
r
d
+ t
)]−(d−r)/2 .

Let s = 1
2

(
1−r/d

1−r/d−t −
r/d
r/d+t

)
, which satisfies Eq (7.13). The previous equation readily yields

P
(∣∣∣∥P (x)∥2 − r

d

∣∣∣ ≥ t
)
≤ exp

(
−d
2
dKL

(r
d
;
r

d
+ t
))
≤ e−dt

2

.

In the last inequality we used Pinsker’s inequality dKL(r/d; r/d + t) ≥ 2δ(B(r/d),B(d/r +
t))2 = 2t2, where B(q) is the Bernoulli distribution of parameter q. Replacing P with Id−P
and r with d− r gives the other inequality

P
(
∥P (x)∥2 − r

d
≤ −t

)
≤ e−dt

2

.

This gives first claim. For the second claim, supposing that r = 1 < d, from the above
equation, we have

P
(
∥P (x)∥2 ≥ t

d

)
≤ exp

(
−d
2
dKL

(
1

d
;
t

d

))
=
√
t

(
1− t

d

1− 1
d

)(d−1)/2

≤
√
2te−t(d−1)/(2d).
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Thus,

P
(
∥P (x)∥2 ≥ t

d− 1

)
≤
√

2(d− 1)

d

√
te−t/2,

which ends the proof of the proposition. ■

Next, we need the following lemma which gives a concentration inequality for discretized
samples in Dd and approximately perpendicular to k ≤ d/3− 1 vectors.

Lemma 7.5. Let 0 ≤ k ≤ d/3−1 and x1, . . . ,xk ∈ Bd(0, 1) be k orthonormal vectors in the
unit ball, and x ∈ Bd(0, 1). Denote by µ the distribution on the unit sphere corresponding to
the uniform distribution y ∼ U(Sd−1 ∩ {w ∈ Rd : |x⊤

i w| ≤ d−3,∀i ≤ k}). Let y ∼ µ. Then,
for t ≥ 2,

P

(
|x⊤y| ≥

√
t

d
+

1

d2

)
≤ 2
√
te−t/3.

Further, let δ ≤ 1 and z = ϕδ(y). Then for t ≥ 4,

P

(
|x⊤z| ≥

√
t

d
+

1

d2
+ δ

)
≤ 2
√
te−t/3.

Proof We use the same notations as above and denote by E = {|x⊤
i y| ≤ d−3, ∀i ≤ k}

the event considered and y ∼ µ. We decompose y = α1x1 + . . . + αkxk + y′, where
y′ ∈ Span(xi, i ≤ k)⊥ := E. Note that y′

∥y′∥ is a uniformly random unit vector in E. As a
result, using Proposition 7.10, we obtain for any t ≥ 2,

P

(
|x⊤y′| ≥

√
t

d− k − 1

)
= P

(
|PE(x)⊤y′| ≥

√
t

d− k − 1

)
≤ 2
√
te−t/2.

Also, because by definition of µ, we have |αi| ≤ d−3 for all i ≤ k, we obtain |x⊤y| ≤
k
d3

+ |x⊤y′| ≤ 1
d2

+ |x⊤y′|. As a result, using the fact that d − k − 1 ≥ 2d/3, the previous
equation shows that

P

(
|x⊤y| ≥

√
3t

2d
+

1

d2

)
≤ P

(
|x⊤y′| ≥

√
t

d− k − 1

)
≤ 2
√
te−t/2.

Next, we use the fact that ∥z − y∥ = ∥ϕδ(y)− y∥ ≤ δ to obtain

P

(
|x⊤z| ≥

√
t

d
+

1

d2
+ δ

)
≤ P

(
|x⊤y| ≥

√
t

d
+

1

d2

)
≤ 2
√
te−t/3.

This ends the proof of the lemma. ■
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7.5.2 Robustly-independent vectors

The following lemma serves the same purpose as [Mar+22, Lemma 34]. Namely, from suc-
cessful vectors of the Game 7.2, it allows to recover an orthonormal basis that is still approx-
imately in the nullspace of A. The following version gives a stronger version that improves
the dependence in d of our chosen parameters.

Lemma 7.6. Let δ ∈ (0, 1] and suppose that we have r ≤ d unit norm vectors y1, . . . ,yr ∈
Rd. Suppose that for any i ≤ k,

∥PSpan(yj ,j<i)⊥(yi)∥ ≥ δ.

Let Y = [y1, . . . ,yr] and s ≥ 2. There exists ⌈r/s⌉ orthonormal vectors Z = [z1, . . . ,z⌈r/s⌉]
such that for any a ∈ Rd,

∥Z⊤a∥∞ ≤

(√
d

δ

)s/(s−1)

∥Y ⊤a∥∞.

Proof Let B = (b1, . . . , br) be the orthonormal basis given by the Gram-Schmidt de-
composition of y1, . . . ,yr. By definition of the Gram-Schmidt decomposition, we can write
Y = BC where C is an upper-triangular matrix. Further, its diagonal is exactly given via
diag(∥PSpan(yl′ ,l

′<l)⊥(yl)∥, l ≤ r). Hence,

det(Y ) = det(C) =
∏
l≤r

∥PSpan(yl′ ,l
′<l)⊥(yl)∥ ≥ δr.

We then introduce the singular value decomposition Y = Udiag(σ1, . . . , σr)V
⊤, where U ∈

Rd×r and V ∈ Rr×r have orthonormal columns, and σ1 ≥ . . . ≥ σr. Next, for any vector
z ∈ Rd, since the columns of Y have unit norm,

∥Y z∥2 ≤
∑
l≤r

|zl|∥yl∥2 ≤ ∥z∥1 ≤
√
d∥z∥2.

In the last inequality we used Cauchy-Schwartz. Therefore, all singular values of Y are
upper bounded by σ1 ≤

√
d. Thus, with r′ = ⌈r/s⌉

δr ≤ det(Y ) =
r∏
l=1

σl ≤ d(r
′−1)/2σr−r

′+1
r′ ≤ dr/2sσ

(s−1)r/s
r′ ,

so that σr′ ≥ δs/(s−1)/d1/(2s). We are ready to define the new vectors. We pose for all i ≤ r′,
zi = ui the i-th column of U . These correspond to the r′ largest singular values of Y and
are orthonormal by construction. Then, for any i ≤ r′, we also have zi = ui = 1

σi
Y vi where

vi is the i-th column of V . Hence, for any a ∈ Rd,

|z⊤i a| =
1

σi
|v⊤i Y ⊤a| ≤ ∥vi∥1

σi
∥Y ⊤a∥∞ ≤

d1/2+1/(2s)

δs/(s−1)
∥Y ⊤a∥∞.

This ends the proof of the lemma. ■
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Chapter 8

Memory-Constrained Algorithms for
Convex Optimization

8.1 Introduction

Optimization algorithms are ubiquitous in machine learning, from solving simple regressions
to training neural networks. Their essential roles have motivated numerous studies on their
efficiencies, which are usually analyzed through the lens of oracle-complexity: given an oracle
(such as function value, or subgradient oracle), how many calls to the oracle are needed for
an algorithm to output an approximate optimal solution? [NYD83]. However, ever-growing
problem sizes have shown an inadequacy in considering only the oracle-complexity, and have
motivated the study of the trade-off between oracle-complexity and other resources such as
memory [WS19; Mar+22] and communication [LLZ20; Red+16; SSZ14; Smi+17; Mot+13;
ZDW12; Wan+18; WWS17].

In this work, we study the oracle-complexity/memory trade-off for first-order non-smooth
convex optimization, and the closely related feasibility problem, with a focus on developing
memory efficient (deterministic) algorithms. Since [WS19] formally posed as open problem
the question of characterizing this trade-off, there have been exciting results showing what is
impossible: for convex optimization in Rd, [Mar+22] shows that any randomized algorithm
with d1.25−δ bits of memory needs at least Ω̃(d1+4δ/3) queries, and we showed in Chapter 7
that this can be improved for deterministic algorithms to d1−δ bits of memory or Ω̃(d1+δ/3)
queries; in addition we showed that for the feasibility problem with a separation oracle, any
algorithm which uses d2−δ bits of memory needs at least Ω̃(d1+δ) queries.

Despite these recent results on the lower bounds, all known first-order convex optimiza-
tion algorithms that output an ϵ-suboptimal point fall into two categories: those that have
quadratic memory in the dimension d but can potentially achieve the optimal O(d ln 1

ϵ
)

query complexity, as represented by the center-of-mass method, and those that have O( 1
ϵ2
)

query complexity but only need the optimal O(d ln 1
ϵ
) bits of memory, as represented by the

classical gradient descent [WS19]. In addition, the above-mentioned memory bounds apply
only between queries, and in particular the center-of-mass method [WS19] is allowed to use
infinite memory during computations.

We propose a family of memory-constrained algorithms for the stronger feasibility prob-
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lem in which one aims to find a point within a set Q containing a ball of radius ϵ, with
access to a separation oracle. In particular, this can be used for convex optimization since
the subgradient information provides a separation vector. Our algorithms use O(d2

p
ln 1

ϵ
) bits

of memory (including during computations) and O((C d
p
ln 1

ϵ
)p) queries for some universal

constant C ≥ 1, and a parameter p ∈ [d] that can be chosen by the user. Intuitively, in the
context of convex optimization, the algorithms are based on the idea that for any function
f(x,y) convex in the pair (x,y), the partial minimum miny f(x,y) as a function of x is
still convex and, using a variant of Vaidya’s method proposed in [LSW15], our algorithm can
approximate subgradients for that function miny f(x,y), thereby turning an optimization
problem with variables (x,y) to one with just x. This idea, applied recursively with the vari-
ables divided into p blocks, gives our family of algorithms and the above-mentioned memory
and query complexity. The main algorithmic contribution is in how we design the recursive
dimension reduction procedure: a technical step of the design and analysis is to ensure that
the necessary precision for recursive computations can be achieved using low memory. Last,
our algorithms account for memory usage throughout computations, as opposed to simply
between calls to the gradient oracle, which was the traditional approach in the literature.

When p = 1, our algorithm is a memory-constrained version of Vaidya’s method [Vai96;
LSW15], and improves over the center-of-mass [WS19] method by a factor of ln 1

ϵ
in terms

of memory while having optimal oracle-complexity. The improvements provided by our
algorithms are more significant in regimes when ϵ is very small in the dimension d: increasing
the parameter p can further reduce the memory usage of Vaidya’s method (p = 1) by a factor
ln 1

ϵ
/ ln d, while still improving over the oracle-complexity of gradient descent. In particular,

in a regime ln 1
ϵ
= poly(ln d), these memory improvements are only in terms of ln d factors.

However, in sub-polynomial regimes with potentially ln 1
ϵ
= dc for some constant c > 0, these

provide polynomial improvements to the memory of standard cutting-plane methods.
As a summary, this chapter makes the following contributions.

• Our class of algorithms provides a trade-off between memory-usage and the oracle-
complexity whenever ln 1

ϵ
≫ ln d. Further, taking p = 1 improves the memory-usage

from center-of-mass [WS19] by a factor ln 1
ϵ
, while preserving the optimal oracle-

complexity.

• For ln 1
ϵ
≥ Ω(d ln d), our algorithm with p = d is the first known algorithm that

outperforms gradient descent in terms of the oracle-complexity, but still maintains the
optimal O(d ln 1

ϵ
) memory usage.

• We show how to obtain a ln 1
ϵ

dependence in the known lower-bound trade-offs from
[Mar+22] and Chapter 7, confirming that the oracle-complexity/memory trade-off is
necessary for any regime ϵ ≲ 1√

d
.

8.2 Setup and Preliminaries

In this section, we precise the formal setup for our results. We follow the framework intro-
duced in [WS19], to define the memory constraint on algorithms with access to an oracle
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O : S → R which takes as input a query q ∈ S and outputs a response O(q) ∈ R. Here, the
algorithm is constrained to update an internal M -bit memory between queries to the oracle.

Definition 8.1 (M -bit memory-constrained algorithm [WS19; Mar+22]). Let O : S → R be
an oracle. An M-bit memory-constrained algorithm is specified by a query function ψquery :
{0, 1}M → S and an update function ψupdate : {0, 1}M × S × R → {0, 1}M . The algorithm
starts with the memory state Memory0 = 0M and iteratively makes queries to the oracle. At
iteration t, it makes the query qt = ψquery(Memoryt−1) to the oracle, receives the response
rt = O(qt) then updates its memory Memoryt = ψupdate(Memoryt−1, qt, rt).

The algorithm can stop at any iteration and the last query is its final output. Importantly,
this model does not enforce constraints on the memory usage during the computation of
ψupdate and ψquery. This is ensured in the stronger notion of a memory-constrained algorithm
with computations. These are precisely algorithms that have constrained memory including
for computations, with the only specificity that they need a decoder function ϕ to make
queries to the oracle from their bit memory, and a discretization function ψ to write a
discretized response into the algorithm’s memory.

Definition 8.2 (M -bit memory-constrained algorithm with computations). Let O : S → R
be an oracle. We suppose that we are given a decoding function ϕ : {0, 1}⋆ → S and a
discretization function ψ : R×N→ {0, 1}⋆ such that ψ(r, n) ∈ {0, 1}n for all r ∈ R. An M-
bit memory-constrained algorithm with computations is only allowed to use an M-bit memory
in {0, 1}M even during computations. The algorithm has three special memory placements
Q,N,R. Say the contents of Q and N are q and n respectively. To make a query, R must
contain at least n bits. The algorithm submits q to the encoder which then submits the query
ϕ(q) to the oracle. If r = O(ϕ(q)) is the oracle response, the discretization function then
writes ψ(r, n) in the placement R.

Feasibility problem. In this problem, the goal is to find a point x ∈ Q, where Q ⊂ Cd :=
[−1, 1]d is a convex set. We choose the cube [−1, 1]d as prior bound for convenience in our
later algorithms, but the choice of norm for this prior ball can be arbitrary and does not affect
our results. The algorithm has access to a separation oracle OS : Cd → {Success} ∪Rd, such
that for a query x ∈ Rd either returns Success if x ∈ Q, or a separating hyperplane g ∈ Rd,
i.e., such that g⊤x < g⊤x′ for any x′ ∈ Q. We suppose that the separating hyperplanes
are normalized, ∥g∥2 = 1. An algorithm solves the feasibility problem with accuracy ϵ if the
algorithm is successful for any feasibility problem such that Q contains an ϵ-ball Bd(x

⋆, ϵ)
for x⋆ ∈ Cd.

As an important remark, this formulation asks that the separation oracle is consistent
over time: when queried at the exact same point x, the oracle always returns the same
separation vector. In this context, we can use the natural decoding function ϕ which takes
as input d sequences of bits and outputs the vector with coordinates given by the sequences
interpreted in base 2. Similarly, the natural discretization function ψ takes as input the
separation hyperplane g and outputs a discretized version up to the desired accuracy. From
now, we can omit these implementation details and consider that the algorithm can query
the oracle for discretized queries x, up to specified rounding errors.
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Remark 8.1. An algorithm for the feasibility problem with accuracy ϵ/(2
√
d) can be used for

first-order convex optimization. Suppose one aims to minimize a 1-Lipschitz convex function
f over the unit ball, and output an ϵ-suboptimal solution, i.e., find a point x such that
f(x) ≤ miny∈Bd(0,1) f(y)+ ϵ. A separation oracle for Q = {x : f(x) ≤ miny∈Bd(0,1) f(y)+ ϵ}
is given at a query x by the subgradient information from the first-order oracle: − ∂f(x)

∥∂f(x)∥ .
Its computation can also be carried out memory-efficiently up to rounding errors since if
∥∂f(x)∥ ≤ ϵ/(2

√
d), the algorithm can return x and already has the guarantee that x is

an ϵ-suboptimal solution (Cd has diameter 2
√
d). Notice that because f is 1-Lipschitz, Q

contains a ball of radius ϵ/(2
√
d) (the factor 1/(2

√
d) is due to potential boundary issues).

Hence, it suffices to run the algorithm for the feasibility problem while keeping in memory
the queried point with best function value.

8.2.1 Known trade-offs between oracle-complexity and memory

Known lower-bound trade-offs. All known lower bounds apply to the more general class
of memory-constrained algorithms without computational constraints given in Definition 8.1.
[NYD83] first showed that O(d ln 1

ϵ
) queries are needed for solving convex optimization to

ensure that one finds an ϵ-suboptimal solution. Further, O(d ln 1
ϵ
) bits of memory are needed

even just to output a solution in the unit ball with ϵ accuracy [WS19]. These historical lower
bounds apply in particular to the feasibility problem and are represented in the pictures of
Fig. 8.1 as the dashed pink region.

More recently, [Mar+22] showed that achieving both optimal oracle-complexity and op-
timal memory is impossible for convex optimization. They show that a possibly randomized
algorithm with d1.25−δ bits of memory makes at least Ω̃(d1+4δ/3) queries. We extended thi
result for deterministic algorithms in Chapter 7 showing that a deterministic algorithm
with d1−δ bits of memory makes Ω̃(d1+δ/3) queries. For the feasibility problem, we gave an
improved trade-off: any deterministic algorithm with d2−δ bits of memory makes Ω̃(d1+δ)
queries. These trade-offs are represented in the left picture of Fig. 8.1 as the pink, red, and
purple solid region, respectively. Using a clever and more careful analysis,[CP23] showed
that similar lower bounds can be carried out for deterministic algorithms as well.

Known upper-bound trade-offs. Prior to this work, to the best of our knowledge only
two algorithms were known in the oracle-complexity/memory landscape. First, cutting-
plane algorithms achieve the optimal oracle-complexity O(d ln 1

ϵ
) but use quadratic memory.

The memory-constrained (MC) center-of-mass method analyzed in [WS19] uses in particular
O(d2 ln2 1

ϵ
) memory. Instead, if one uses Vaidya’s method which only needs to store O(d)

cuts instead of O(d ln 1
ϵ
), we show that one can achieve O(d2 ln 1

ϵ
) memory. These algo-

rithms only use the separation oracle and hence apply to both convex optimization and the
feasibility problem. On the other hand, the memory-constrained gradient descent for convex
optimization [WS19] uses the optimal O(d ln 1

ϵ
) memory but makes O( 1

ϵ2
) iterations. While

the analysis in [WS19] is only carried for convex optimization, we can give a modified proof
showing that gradient descent can also be used for the feasibility problem.
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8.2.2 Other related works

Vaidya’s method [Vai96; RM95; Ans97; Ans98] and the variant [LSW15] that we use in our
algorithms, belong to the family of cutting-plane methods. Perhaps the simplest example of
an algorithm in this family is the center-of-mass method, which achieves the optimalO(d ln 1

ϵ
)

oracle-complexity but is computationally intractable, and the only known random walk-based
implementation [BV04] has computational complexity O(d7 ln 1

ϵ
). Another example is the

ellipsoid method, which has suboptimal O(d2 ln 1
ϵ
) query complexity, but has an improved

computational complexity O(d4 ln 1
ϵ
). [Bub15] pointed out that Vaidya’s method achieves

the best of both worlds by sharing the O(d ln 1
ϵ
) optimal query complexity of the center-of-

mass, and achieving a computational complexity of O(d1+ω ln 1
ϵ
)1. In a major breakthrough,

this computational complexity was improved to O(d3 ln3 1
ϵ
) in [LSW15], then to O(d3 ln 1

ϵ
)

in [Jia+20]. We refer to [Bub15; LSW15; Jia+20] for more detailed comparisons of these
algorithms.

Another popular convex optimization algorithm that requires quadratic memory is the
Broyden– Fletcher– Goldfarb– Shanno (BFGS) algorithm [Sha70; Bro70; Fle70; Gol70],
which stores an approximated inverse Hessian matrix as gradient preconditioner. Several
works aimed to reduce the memory usage of BFGS; in particular, the limited memory BFGS
(L-BFGS) stores a few vectors instead of the entire approximated inverse Hessian matrix
[Noc80; LN89]. However, it is still an open question whether even the original BFGS con-
verges for non-smooth convex objectives [LO13].

Lying at the other extreme of the oracle-complexity/memory trade-off is gradient descent,
which achieves the optimal memory usage but requires significantly more queries than center-
of-mass or Vaidya’s method in the regime ϵ ≲ 1√

d
. There is a rich literature of works

aiming to speed up gradient descent, such as the optimized gradient method [DT14; DF14],
Nesterov’s Acceleration [Nes83], the triple momentum method [SFL17], geometric descent
[BLS15], quadratic averaging [DFR18], the information-theoretic exact method [TD23], or
Big-Step-Little-Step method [Kel+22]. Interested readers can find a comprehensive survey
on acceleration methods in [dST21]. However, these acceleration methods usually require
additional smoothness or strong convexity assumptions (or both) on the objective function,
due to the known Ω( 1

ϵ2
) query lower bound in the large-scale regime ϵ ≳ 1√

d
for any first

order method where the query points lie in the span of the subgradients of previous query
points [Nes03].

Besides accelerating gradient descent, researchers have investigated more efficient ways to
leverage subgradients obtained in previous iterations. Of interest are bundle methods [BN05;
Lan15; LNN95], that have found a wide range of applications [Teo+10; LSV07]. In their
simplest form, they minimize the sum of the maximum of linear lower bounds constructed
using past oracle queries, and a regularization term penalizing the distance from the current
iteration variable. Although the theoretical convergence rate of the bundle method is the
same as that of gradient descent, in practice, bundle methods can benefit from previous
information and substantially outperform gradient descent [BN05].

Our works are focused on high-accuracy regimes, when the accuracy ϵ is sub-polynomial.
We note that for their lower-bound result on randomized algorithms, [CP23] also required

1ω < 2.373 is the exponent of matrix multiplication
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sub-polynomial accuracies, which raises the question whether this is a general phenomenon
for the study of memory-constrained algorithms in convex optimization. This also relates
our work to the study of low-dimensional problems—or even constant dimension—which has
been investigated in the literature [Vav93; BM20].

Last, the increasing size of optimization problems has also motivated the development
of communication-efficient optimization algorithms in distributed settings such as [LLZ20;
Red+16; SSZ14; Smi+17; Mot+13; ZDW12; Wan+18; WWS17]. Moreover, recent works
have explored the trade-off between sample complexity and memory/communication com-
plexity for learning problems under the streaming model, with notable contributions includ-
ing [Bra+16; DKS19; DS18; Raz17; SSV19; MM17].

8.2.3 Outline of the chapter

In Section 8.3 we state our main results, in particular, we give the oracle-complexity and
memory guarantees of our algorithms. In Section 8.4, we describe our algorithms without
taking into account computational concerns and prove our memory and oracle-complexity
guarantees. We our method without computational concerns, which already provides the
main ideas. We then prove our complete results including computational concerns in Sec-
tion 8.5. While previous lower-bounds results for oracle-complexity/memory trade-offs did
not include any dependency in the accuracy ϵ, we give a general method in Section 8.6 to
add a dependency ln 1

ϵ
for both the oracle-complexity and memory usage. We conclude in

Section 8.7. The proof of the query-complexity of gradient descent for feasibility problems
is included in Section 8.8 for completeness.

8.3 Main Results

We first check that the memory-constrained gradient descent method solves feasibility prob-
lems. This was known for convex optimization [WS19] and the same algorithm with a
modified proof gives the following result. For completeness, the proof is given in Section 8.8.

Proposition 8.1. The memory-constrained gradient descent algorithm solves the feasibility
problem with accuracy ϵ ≤ 1√

d
using O(d ln 1

ϵ
) bits of memory and O( 1

ϵ2
) separation oracle

calls.

Our main contribution is a class of algorithms based on Vaidya’s cutting-plane method
that provide a query-complexity / memory trade-off for optimization in Rd. More precisely,
we show the following, where ω < 2.373 is the exponent of matrix multiplication, such that
multiplying two n× n matrices runs in O(nω) time.

Theorem 8.1. For any 1 ≤ p ≤ d, there is a deterministic first-order algorithm that solves
the feasibility problem in dimension d for accuracy ϵ ≤ 1√

d
, using O(d2

p
ln 1

ϵ
) bits of mem-

ory (including during computations), with O((C d
p
ln 1

ϵ
)p) calls to the separation oracle, and

computational complexity O((C(d
p
)1+ω ln 1

ϵ
)p), where C ≥ 1 is a universal constant.

For simplicity, in Section 8.4, we describe algorithms that achieve this trade-off with-
out computation concerns (Definition 8.1), which already provide the main elements of our
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method. The proof of oracle-complexity and memory usage is given in Section 8.4.3. In
Section 8.5, we consider computational constraints and give corresponding algorithms using
the cutting-plane method of [LSW15].

To better understand the implications of Theorem 8.1, it is useful to compare the provided
class of algorithms to the two algorithms known in the oracle-complexity/memory trade-
off landscape: the memory-constrained center-of-mass method and the memory-constrained
gradient descent [WS19].

For p = 1, our resulting procedure, which is essentially a memory-constrained Vaidya’s
algorithm, has optimal oracle-complexity O(d ln 1

ϵ
) and uses O(d2 ln 1

ϵ
) bits of memory. This

improves by a ln 1
ϵ

factor the memory usage of the center-of-mass-based algorithm provided
in [WS19], which used O(d2 ln2 1

ϵ
) memory and had the same optimal oracle-complexity.

Next, we recall that the memory-constrained gradient descent method used the optimal
number O(d ln 1

ϵ
) bits of memory (including for computations), and a sub-optimal O( 1

ϵ2
)

oracle-complexity. While the memory of our algorithms decreases with p, their oracle-
complexity is exponential in p. This significantly restricts the values of p for which the
oracle-complexity is improved over that of gradient descent. The range of application of
Theorem 8.1 is given in the next result, where ∨ and ∧ represent maximum and minimum
respectively.

Corollary 8.1. The algorithms given in Theorem 8.1 effectively provide a trade-off for p ≤
O( ln

1
ϵ

ln d
∧ d). Precisely, this provides a trade-off between

• using O(d2 ln 1
ϵ
) memory with optimal O(d ln 1

ϵ
) oracle-complexity, and

• using O(d2 ln d ∨ d ln 1
ϵ
) memory with O( 1

ϵ2
∧ (C ln 1

ϵ
)d) oracle-complexity.

Importantly, for ϵ ≤ 1
dΩ(d) , taking p = d yields an algorithm that uses the optimal memory

O(d ln 1
ϵ
) and has an improved query complexity over gradient descent. In this regime of

small (virtually constant) dimension, for the same memory usage, gradient descent has a
query complexity that is polynomial in ϵ, O( 1

ϵ2
), while our algorithm has poly-logarithmic

dependence in ϵ, Od(lnd 1
ϵ
), where Od hides an exponential constant in d. It remains open

whether this lnd 1
ϵ

dependence in the oracle-complexity is necessary. To the best of our
knowledge, this is the first example of an algorithm that improves over gradient descent while
keeping its optimal memory usage in any regime where ϵ ≤ 1√

d
. While this improvement

holds only in the exponential regime ϵ ≤ 1
dO(d) , Theorem 8.1 still provides a non-trivial trade-

off whenever ln 1
ϵ
≫ ln d, and improves over the known memory-constrained center-of-mass

in the standard regime ϵ ≤ 1√
d

[WS19]. Fig. 8.1 depicts the trade-offs in the two regimes
mentioned earlier.

Last, we note that the lower-bound trade-offs presented in [Mar+22] and in Chapter 7
do not show a dependence in the accuracy ϵ. Especially in the regime when ln 1

ϵ
≫ ln d, this

yields sub-optimal lower bounds (in fact even in the regime ϵ = 1/poly(d), our more careful
analysis improves the lower bound on the memory by a ln d factor). We show with simple
arguments that one can extend their results to include a ln 1

ϵ
factor for both memory and

query complexity. Fig. 8.1 presented these improved lower bounds.

Theorem 8.2. For ϵ ≤ 1/poly(d) and any δ ∈ [0, 1] (the notation Ω̃ hides lnO(1) d factors),
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Figure 8.1: Trade-offs between available memory and first-order oracle-complexity for the
feasibility problem over the unit ball. MC=Memory-constrained. GD=Gradient Descent.
The left picture corresponds to the regime ϵ≫ d−Ω(d) and ϵ ≤ 1/poly(d) and the right picture
represents the regime ϵ ≤ d−O(d). For both figures, the dashed pink "L" (resp. green inverted
"L") region corresponds to historical lower (resp. upper) bounds for randomized algorithms.
The solid pink (resp. red) lower bound trade-off is due to [Mar+22] (resp. Chapter 7) for
randomized algorithms (resp. deterministic algorithms). The purple region is a lower bound
trade-off for the feasibility problem for accuracy ϵ and deterministic algorithms we gave
in Chapter 7. All these lower-bound trade-offs are represented with their ln 1

ϵ
dependence

(Theorem 8.2). We use memory-constrained Vaidya’s method to gain a factor ln 1
ϵ

in memory
compared to memory-constrained center-of-mass [WS19], which gives the light green region,
and a class of algorithms represented in dark green, that allows trading query-complexity for
an extra ln 1

ϵ
/ ln d factor saved in memory (Theorem 8.1). The dark green dashed region in

the left figure emphasizes that the area covered by our class of algorithms depends highly on
the regime for the accuracy ϵ: the resulting improvement in memory is more significant as
ϵ is smaller. In the regime when ϵ ≤ d−O(d) (right figure), our class of algorithms improves
over the oracle-complexity of gradient descent while keeping the optimal memory O(d ln 1

ϵ
).

1. any (randomized) algorithm guaranteed to minimize 1-Lipschitz convex functions over
the unit ball with accuracy ϵ uses d5/4−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+4δ/3 ln 1

ϵ
)

queries,

2. any deterministic algorithm guaranteed to minimize 1-Lipschitz convex functions over
the unit ball with accuracy ϵ uses d2−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+δ/3 ln 1

ϵ
)

queries,

3. any deterministic algorithm guaranteed to solve the feasibility problem over the unit
ball with accuracy ϵ uses d2−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+δ ln 1

ϵ
) queries.
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The proof is given in Section 8.6 and the arguments therein could readily be used to
exhibit the ln 1

ϵ
dependence of potential future works improving over these lower bounds

trade-offs.

Sketch of proof. At a high level, the results from [Mar+22] and Chapter 7 both used a
barrier term ∥Ax∥∞ where A has Θ(d) rows: if an algorithm does not have enough memory,
A cannot be fully stored which in turn incurs a sub-optimal oracle-complexity. To achieve
a ln 1

ϵ
improvement in memory (Section 8.6.1), we modify the sampling of rows of A, from

uniform on vertices of the hypercube to uniform in an ϵ-net. The proof can then be adapted
accordingly. Last, one can improve the oracle-complexity by a ln 1

ϵ
/ ln d factor (Section 8.6.2)

using a standard rescaling argument [NYD83].

8.4 Feasibility Problem Without Computations

In this section, we present a class of algorithms that are memory-constrained according to
Definition 8.1 and achieve the desired memory and oracle-complexity bounds. We emphasize
that the memory constraint is only applied between calls to the oracle and as a result, the
algorithm is allowed infinite computation memory and computation power between calls to
the oracle.

We start by defining discretization functions that will be used in our algorithms. For
ξ > 0 and x ∈ [−1, 1], we pose Discretize1(x, ξ) = sign(x) · ξ⌊|x|/ξ⌋. Next, we define the
discretization Discretized for general dimensions d ≥ 1. For any x ∈ C and ξ > 0,

Discretized(x, ξ) =
(
Discretize1

(
x1, ξ/

√
d
)
, . . . ,Discretize1

(
xd, ξ/

√
d
))

.

One can easily check that for any x ∈ C,

∥x− Discretized(x, ξ)∥ ≤ ξ and ∥Discretized(x, ξ)∥ ≤ ∥x∥. (8.1)

Further, to represent any output of Discretized(·, ξ), one needs at most d ln 2
√
d
ξ

= O(d ln d
ξ
)

bits.

8.4.1 Memory-constrained Vaidya’s method

Our algorithm recursively uses Vaidya’s cutting-plane method [Vai96] and subsequent works
expanding on this method. We briefly describe the method. Given a polyhedron P = {x :
Ax ≥ b}, we define si(x) = a⊤

i x − bi and Sx = diag(si(x), i ∈ [d]). We will also use the
shorthand Ax = S

−1
x A. The volumetric barrier is defined as

VA,b(x) =
1

2
ln det(A⊤

xAx).

At each step, Vaidya’s method queries the volumetric center of the polyhedron, which is the
point minimizing the volumetric barrier. For convenience, we denote by VolumetricCenter
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this function, i.e., for any A ∈ Rm×d and b ∈ Rd defining a non-empty polyhedron P = {x :
Ax ≥ b},

VolumetricCenter(A, b) = arg min
x:Ax>b

VA,b(x).

When the polyhedron is unbounded, we can for instance take VolumetricCenter(A, b) =
0. Vaidya’s method makes use of leverage scores for each constraint i of the polyhedron,
defined as σi = (AxH

−1A⊤
x )i,i, where H = A⊤

xAx. We are now ready to define the update
procedure for the polyhedron considered by Vaidya’s volumetric method. We denote by Pt
the polyhedron stored in memory after making t queries. The method keeps in memory the
constraints defining the current polyhedron and the iteration index k when these constraints
were added, which will be necessary for our next procedures. Hence, the polyhedron will be
stored in the form Pt = {(ki,ai, bi), i ∈ [m]}, and the associated constraints are given via
{x : Ax ≥ b} where A⊤ = [a1, . . . ,am] and b⊤ = [b1, . . . , bm]. By abuse of notation, we will
write VolumetricCenter(P) for the volumetric center of the polyhedron VolumetricCenter(A, b)
where A and b define the constraints stored in P .

Initially, the polyhedron is simply Cd, these constraints are given−1 index for convenience,
and they will not play a role in the next steps. At each iteration, if the constraint i ∈ [m]
with minimum leverage score σi falls below a given threshold σmin, it is removed from the
polyhedron. Otherwise, we query the volumetric center of the current polyhedron and add
the separation hyperplane as a constraint to the polyhedron. We bound the number of
iterations of the procedure by

T (δ, d) =

⌈
c · d

(
1.4 ln

1

δ
+ 2 ln d+ 2 ln(1 + 1/σmin)

)⌉
,

where σmin and c are parameters that will be fixed shortly. Instead of making a call directly
to the oracle OS, we instead suppose that one has access to an oracle O : Id → Rd where
Id = (Z × Rd+1)⋆ has exactly the shape of the memory storing the information from the
polyhedron. This form of oracle is used in our recursive calls to Vaidya’s method. For
example, such an oracle can simply be O : P ∈ Id 7→ OS(VolumetricCenter(P)). Last, in our
recursive method, we will not assume that oracle responses are normalized. As a result, we
specify that if the norm of the response is too small, we can stop the algorithm. We assume
however that the oracle already returns discretized vectors, which will be ensured in the
following procedures. The cutting-plane algorithm is formally described in Algorithm 8.1.
With an appropriate choice of parameters, this procedure finds an approximate solution of
feasibility problems. We base the constants from [Ans98].

Lemma 8.1. Fix σmin = 0.04 and c = 1
0.0014

≈ 715. Let δ, ξ ∈ (0, 1) and O : Id → Rd.
Write P = {(ki,ai, bi), i ∈ [m]} as the output of Algorithm 8.1 run with O, δ and ξ. Then,

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cd

m∑
i=1

λi(a
⊤
i y − bi) = max

x∈Cd
min
i∈[m]

(a⊤
i x− bi) ≤ δ.

Proof We first consider the case when the algorithm terminates because of a query g =
O(Pt) such that ∥g∥ ≤ δ/(2

√
d). Then, for any x ∈ Cd, one directly has

g⊤x− b ≤ g⊤(x− ω) ≤ 2
√
d∥g∥ ≤ δ.
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Input: O : Id → Rd, δ, ξ ∈ (0, 1)
1 Let Tmax = T (δ, d) and initialize P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t = 0, . . . , Tmax do
3 if {x : Ax ≥ b} = ∅ then return Pt;
4 if mini∈[m] σi < σmin then
5 Pt+1 = Pt \ {(kj,aj, bj)} where j ∈ argmini∈[m] σi
6 else if ω := VolumetricCenter(Pt) /∈ Cd then
7 Pt+1 = Pt ∪ {(−1,−sign(ωj)ej,−1)} where j ∈ [d] has |ωj| > 1
8 else
9 g = O(Pt) and b = ξ

⌈
g⊤ω
ξ

⌉
, where ω = VolumetricCenter(Pt)

10 Pt+1 = Pt ∪ {(t, g, b)}
11 if ∥g∥ ≤ δ then return Pt+1 ;
12 end
13 return PTmax+1.

Algorithm 8.1: Memory-constrained Vaidya’s volumetric method

where ω is the volumetric center of the resulting polyhedron. In the second inequality we
used the fact that ω ∈ Cd, otherwise the algorithm would not have terminated at that step.

We next turn to the other cases and start by showing that the output polyhedron does
not contain a ball of radius δ. This is immediate if the algorithm terminated because the
polyhedron was empty. We then suppose this was not the case, and follow the same proof as
given in [Ans98]. Algorithm 8.1 and the one provided in [Ans98] coincide when removing a
constraint of the polyhedron. Hence, it suffices to consider the case when we add a constraint.
We use the notation Ã⊤ = [A⊤,a⊤

m+1], b̃⊤ = [b⊤, bm+1] for the updated matrix A and vector
b after adding the constraint. We also denote ω = VolumetricCenter(A, b) (resp. ω̃ =
VolumetricCenter(Ã, b̃)) the volumetric center of the polyhedron before (resp. after) adding
the constraint. Next, we consider the vector (b′)⊤ = [b⊤,a⊤

m+1ω], which would have been
obtained if the cut was performed at ω exactly. We then denote ω′ = VolumetricCenter(Ã, b′).
Then proof of [Ans98] shows that

VÃ,b′(ω
′) ≥ VA,b(ω) + 0.0340.

We now observe that by construction, we have b̃m+1 ≥ a⊤
m+1ω, so that the polyhedron

associated to (Ã, b̃) is more constrained than the one associated to (Ã, b′). As a result, we
have VÃ,b̃(x) ≥ VÃ,b′(x), for any x ∈ Rd such that Ãx ≥ b̃. Therefore,

VÃ,b̃(ω̃) ≥ VÃ,b′(ω̃) ≥ VÃ,b′(ω
′) ≥ VA,b(ω) + 0.0340.

This ends the modifications in the proof of [Ans98]. With the notations of this work, we
still have ∆V + = 0.340 and ∆V − = 0.326, so that ∆V = 0.0014. Then, because c = 1

∆V
,

the same proof shows that the procedure is successful for precision δ: the final polyhedron
(A, b) returned by Algorithm 8.1 does not contains a ball of radius > δ. As a result, whether
the algorithm performed all Tmax iterations or not, {x : Ax ≥ b} does not contain a ball of
radius > δ′, where A and b define the constraints stored in the output P . Now letting m be
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the objective value of the right optimization problem, there exists x ∈ Cd such that for all
t ≤ T , g⊤t (x− ct) ≥ m. Therefore, for any x′ ∈ Bd(x,m) one has

∀i ∈ [m],a⊤
i x

′ − bi ≥ m+ a⊤
t (x

′ − x) ≥ m− ∥x′ − x∥ ≥ 0.

In the last inequality we used ∥at∥ ≤ 1. This implies that the polyhedron contains Bd(x,m).
Hence, m ≤ δ.

This ends the proof of the right inequality. The left equality is a direct application of
strong duality for linear programming. ■

From now, we use the parameters σmin = 0.04 and c = 1/0.0014 as in Lemma 8.1. Since
the memory of both Vaidya’s method and center-of-mass consists primarily of the constraints,
we recall an important feature of Vaidya’s method that the number of constraints at any
time is O(d).

Lemma 8.2 ([Vai96; Ans97; Ans98]). At any time while running Algorithm 8.1, the number
of constraints of the current polyhedron is at most d

σmin
+ 1.

8.4.2 A recursive algorithm

We write Cm+n = Cm × Cn and aim to apply Vaidya’s method to the first m coordinates.
To do so, we need to approximate a separation oracle on these m coordinates only, which
corresponds to giving separation hyperplanes with small values for the last n coordinates.
This can be achieved using the following auxiliary linear program. For P ∈ In, we define

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cn

m∑
i=1

λi(a
⊤
i y − bi), m = |P| (Paux(P))

where as before, A and b define the constraints stored in P . The procedure to obtain an
approximate separation oracle on the first n coordinates Cn is given in Algorithm 8.2 and
using Lemma 8.1 we can show that this procedure provides approximate separation vectors
for the first n coordinates.

The next step involves using this approximation recursively. We write d =
∑p

i=1 ki, and
interpret Cd as Ck1 × · · · × Ckp . In particular, for x ∈ Cd, we write x = (x1, . . . ,xp) where
xi ∈ Cki for i ∈ [p]. Applying Algorithm 8.2 recursively, we can obtain an approximate
separation oracle for the first i coordinates Ck1 × · · · × Cki . However, storing such separation
vectors would be too memory-expensive, e.g., for i = p, that would correspond to storing
the separation hyperplanes from the oracle OS directly. Instead, given j ∈ [i], Algorithm 8.3
recursively computes the xj component of an approximate separation oracle for the first i
variables (x1, . . . ,xi), via the procedure ApproxOracle(i, j).

We can then use ApproxOracleδ,ξ,OS
(1, 1, ·) to solve the original problem with the memory-

constrained Vaidya’s method. In Section 8.4.3, we show that taking δ = ϵ
4d

and ξ = σminϵ
32d5/2

achieves the desired oracle-complexity and memory usage. The final algorithm is given in
Algorithm 8.4.
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Input: δ, ξ, Ox : In → Rm and Oy : In → Rn

1 Run Algorithm 8.1 with δ, ξ and Oy to obtain polyhedron P⋆
2 Solve Paux(P⋆) to get a solution λ⋆
3 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)
4 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]} and u = 0 ∈ Rm

5 for t = 0, 1, . . . ,maxi ki do
6 if t = k⋆i for some i ∈ [m] then
7 gx = Ox(Pt)
8 u← Discretizem(u+ λ⋆igx, ξ)

9 Update Pt to get Pt+1 as in Algorithm 8.1
10 end
11 return u

Algorithm 8.2: ApproxSeparationVectorδ,ξ(Ox, Oy)

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, P(r) ∈ Ikr for r ∈ [i], OS : Cd → Rd

1 if i = p then
2 xr = VolumetricCenter(Ar, br) where (Ar, br) defines the constraints stored in P(r)

for r ∈ [p]
3 (g1, . . . , gp) = OS(x1, . . . ,xp)
4 return Discretizekj(gj, ξ)

5 end
6 Define Ox : Iki+1

→ Rkj as ApproxOracleδ,ξ,Of
(i+ 1, j,P(1), , . . . ,P(i), ·)

7 Define Oy : Iki+1
→ Rki+1 as ApproxOracleδ,ξ,Of

(i+ 1, i+ 1,P(1), . . . ,P(i), ·)
8 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 8.3: ApproxOracleδ,ξ,OS
(i, j,P(1), . . . ,P(i))

A geometric illustration of the recursive step. In Figure 8.2, we give a 2-dimensional
feasibility problem with target p∗ = (p∗1, p

∗
2) and two blocks (i.e. p = 2) as an illustration of

our recursive approach (Algorithm 8.2) to construct an approximate separating hyperplane
for a “reduced” problem.

Suppose at a step of the Algorithm 8.4, the current value of the x1 coordinate is c. We
aim to find an approximate separating hyperplane between x1 = p∗1 and x1 = c. Algorithm
8.2 first runs Algorithm 8.1 (i.e. the memory-constrained Vaidya) to find two separating
hyperplanes (the two blue hyperplanes). Lemma 8.1 then guarantees the existence of a
convex combination of the 2 blue hyperplanes – the red hyperplane– which is approximately
parallel to the x2-axis and thus can serve as an approximate separating hyperplane between

Input: δ, ξ, and OS : Cd → Rd a separation oracle
Check: Throughout the algorithm, if OS returned Success to a query x, return x

1 Run Algorithm 8.1 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS
(1, 1, ·)

Algorithm 8.4: Memory-constrained algorithm for convex optimization
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x1

x2

x1 = cx1 = p∗1

p∗

Figure 8.2: Intuition for the recursive procedure in Algorithm 8.4. Using the separation hy-
perplanes (blue) found by Algorithm 8.1, i.e., the memory-constrained Vaidya, it constructs
an approximate separation hyperplane (red) between x1 = c and the target x1 = p∗1.

x1 = p∗1 and x1 = c.

Intuitions on Algorithm 8.4 At the high level, the algorithm recursively runs Vaidya’s
method Algorithm 8.1 for each level of computation i ∈ [p]. Since each run of Algorithm 8.4
requires O(d

p
ln 1

ϵ
) queries, the total number of calls to the oracle, which is exponential in the

number of levels, is O(O(d
p
ln 1

ϵ
)p). As for the memory usage, the algorithm mainly needs

to keep in memory the constraints defining the polyhedrons at each level i ∈ [p]. From
Lemma 8.2, each polyhedron only requires O(d

p
) constraints that each require O(d

p
ln 1

ϵ
) bits

of memory. Hence, the total memory needed is O(d2
p
ln 1

ϵ
). The main difficulty lies in showing

that the algorithm is successful. To do so, we need to show that the precision in the suc-
cessive approximated separation oracles Algorithm 8.2 is sufficient. To avoid an exponential
dependence of the approximation error in p—which would be prohibitive for the memory
usage of our method—each run of Vaidya’s method Algorithm 8.1 is run for more iterations
than the precision of the separation vectors would classically allow. To give intuition, if
the separation oracle came from a convex optimization subgradient oracle for a function f ,
the iterates at a level i do not converge to the true “minimizer” of minxi

f (i)(x1, . . . ,xi),
where f (i)(·) = minxi+1,...,xp f(·,xi+1, . . . ,xp), but instead converge to a close enough point
while still providing meaningful approximate subgradients at the higher level i− 1 (in Algo-
rithm 8.2).

8.4.3 Proof of the oracle-complexity and memory usage of Algo-
rithm 8.4 without computation concerns

We first describe the recursive calls of Algorithm 8.3 in more detail. To do so, consider
running the procedure ApproxOracle(i, j,P(1), . . . ,P(i)) where i < p, which corresponds to
running Algorithm 8.2 for specific oracles. We say that this is a level-i run. Then, the
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algorithm performs at most 2T (δ, ki+1) calls to ApproxOracle(i + 1, i + 1,P(1), . . . ,P(i), ·),
where the factor 2 comes from the fact that Vaidya’s method Algorithm 8.1 is effectively run
twice in Algorithm 8.2. The solution to (Paux(P)) has as many components as constraints in
the last polyhedron, which is at most ki+1

σmin
+1 by Lemma 8.2. Hence, the number of calls to

ApproxOracle(i+ 1, j,P(1), . . . ,P(i), ·) is at most ki+1

σmin
+ 1. In total, that is O(ki+1 ln

1
δ
) calls

to the level i+ 1 of the recursion.
We next aim to understand the output of running ApproxOracle(1, 1,P(1)). We denote

by λ(P(1)) the solution Paux(P⋆) computed at l.2 of the first call to Algorithm 8.2, where
P⋆ is the output polyhedron of the first call to Algorithm 8.1. Denote by S(P(1)) the
set of indices of coordinates from λ(P(1)) for which the procedure performed a call to
ApproxOracle(2, 1,P(1), ·). In other words, S(P(1)) contains the indices of all coordinates
of λ(P(1)), except those for which the corresponding query lay outside of the unit cube, or
the initial constraints of the cube. For any index l ∈ S(P(1)), let P(2)

l denote the state of
the current polyhedron (Pt in l.7 of Algorithm 8.2) when that call was performed. Up to
discretization issues, the output of the complete procedure is∑

l∈S(P(1))

λl(P(1))ApproxOracle(2, 1,P(1),P(2)
l ).

We continue in the recursion, defining λ(P(1),P(2)
l ) and S(P(1),P(2)

l ) for all l ∈ S(P(1)),
until we have defined all vectors of the form λ(P(1),P(2)

l2
, . . . ,P(r)

lr
) and all sets of the form

S(P(1),P(2)
l2
, . . . ,P(r)

lr
) for i+1 ≤ r ≤ p− 1. To simplify the notation and emphasize that all

these polyhedra depend on the recursive computation path, we adopt the notation

λl2,...,lr+1 := λlr+1(P(1),P(2)
l2
, . . . ,P(r)

lr
)

S l2,...,lr := S(P(1),P(2)
l2
, . . . ,P(r)

lr
)

We recall that these polyhedron are kept in memory to query their volumetric center. For ease
of notation, we write x1 = VolumetricCenter(P(1)), and write cl2,...,lr = VolumetricCenter(P(r)

lr
)

for 2 ≤ r ≤ p, where l2, . . . , lr−1 were the indices from the computation path leading up to
P(r)
lr

. Last, we write OS = (OS,1, . . . , OS,p), where OS,i : Cd → Rki is the “xi” component of
OS, for all i ∈ [p].

With these notations, we show that the output of ApproxOracle(i, j,P(1),P(2)
l2
, . . . ,P(i)

li
)

is approximately equal to the vector

G(i, j,x1, c
l2 , . . . , cl2,...,li)

:=
∑

li+1∈S, li+2∈Sli+1 ,

... , lp∈Sli+1,...,lp−1

λli+1λli+1,li+2 · · ·λli+1,...,lp ·OS,j(x1, c
l2 , . . . , cl2,...,lp),

with the convention that for i = p,

G(p, j,x1, c
l2 , . . . , cl2,...,lp) := OS,j(x1, c

l2 , . . . , cl2,...,lp).

The corresponding computation tree is represented in Fig. 8.3. For convenience, we omitted
the term j = 1.
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G(1)

G(2,c1)

λ1

. . . G(2,cl2)

G(3,cl2 ,cl2,1)

λl2,1

. . . G(3,cl2 ,cl2,l3)

G(p− 1,cl2 , . . . ,cl2...,lp−1)

OS,j(c
l2 , . . . ,cl2,...,lp−1,1)

λl2,...,lp−1,1

. . . OS,j(c
l2 , . . . ,cl2,...,lp)

λl2,...,lp

. . . OS,j(c
l2 , . . . ,cl2,...,lp−1,mp)

λl2,...,lp−1,mp

...

λl2,l3

. . . G(3,cl2 ,cl2,m3)

λl2,m3

λl2

. . . G(2,cm2)

λm2

Figure 8.3: Computation tree representing the recursive calls to ApproxOracle starting from
the calls to ApproxOracle(1, 1, ·) from Algorithm 8.4

We start the analysis with a simple result showing that if the oracle OS returns separation
vectors of norm bounded by one, then the responses from ApproxOracle also lie in the unit
ball.

Lemma 8.3. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd.
Suppose that OS takes values in the unit ball. For any s ∈ [i] let P(s)

ls
∈ Iks represent a

bounded polyhedrons with VolumetricCenter(P(s)
ls

) ∈ Cks. Then, one has

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥ ≤ 1.

Proof We prove this by simple induction on i. For convenience, we define the point
xk = VolumetricCenter(P(k)

lk
). If i = p, we have

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥ = ∥Discretizekj(OS,j(x1, . . . ,xp), ξ)∥
≤ ∥OS,j(x1, . . . ,xp)∥ ≤ 1,

where in the first inequality we used Eq (8.1) and in the second inequality we used the
fact that OS(x1, . . . ,xp) has norm at most one. Now suppose that the result holds for
i + 1 ≤ p. Then by construction, the output ApproxOracleδ,ξ,OS

(i, j,P(1)
l1
, . . . ,P(i)

li
) is the

result of iterative discretizations. Using Eq (8.1) and the previously defined notations, we
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obtain

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)∥

≤

∥∥∥∥∥∥
∑

li+1∈Sl1,...,li

λl2,...,liApproxOracleδ,ξ,OS
(i+ 1, j,P(1)

l1
, . . . ,P(i)

li
,P(i+1)

li+1
)

∥∥∥∥∥∥ ≤ 1.

In the last inequality, we used the induction hypothesis together with
∑

li+1
λl2,...,li+1 ≤ 1

using Eq (8.1). This ends the induction and the proof. ■

We are now ready to compare the output of Algorithm 8.3 to G(i, j,x1, c
l2 , . . . , cl2,...,li).

Lemma 8.4. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd.
Suppose that OS takes values in the unit ball. For any s ∈ [i] let P(s)

ls
∈ Iks represent a

bounded polyhedron with VolumetricCenter(P(s)
ls

) ∈ Cks. Denote xr = c(P(r)
lr

) for r ∈ [i].
Then,

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)∥ ≤

4

σmin
dξ.

Proof We prove by simple induction on i that

∥ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)∥

≤
(
1 +

2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)
ξ.

First, for i = p, the result is immediate since the discretization is with precision ξ (l.4
of Algorithm 8.3). Now suppose that this is the case for i ≤ p and any valid values of
other parameters. For conciseness, we write G = (P(1)

l1
, . . . ,P(i−1)

li−1
). Next, recall that by

Lemma 8.2, |S l2,...,li−1| ≤ ki
σmin

+1. Hence, the discretizations due to l.8 of Algorithm 8.2 can
affect the estimate for at most that number of rounds. Then, we have∥∥∥∥∥∥ApproxOracleδ,ξ,OS

(i− 1, j,G)−
∑

li∈Sl2,...,li−1

λ̃l2,...,liApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥∥∥∥∥∥
≤
(

ki
σmin

+ 1

)
ξ,

where λ̃l2,...,li are the discretized coefficients that are used during the computation l.8 of
Algorithm 8.2. Now using Lemma 8.3, we have∥∥∥∥∥∥

∑
li∈Sl2,...,li−1

(λ̃l2,...,li − λl2,...,li)ApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥∥∥∥∥∥
≤ ∥λ̃li+1,...,li−1 − λli+1,...,li−1∥1 ≤

(
ki
σmin

+ 1

)
ξ.
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In the last inequality we used the fact that λ has at most ki
σmin

+ 1 non-zero coefficients. As
a result, using the induction for each term of the sum, and the fact that

∑
li
λl2,...,li ≤ 1, we

obtain

∥ApproxOracleδ,ξ,Of
(i− 1, j,G)−G(i− 1, j,x1, . . . ,xi−1)∥

≤
(
1 +

2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)
ξ +

(
2ki
σmin

+ 2

)
ξ,

which completes the induction. Noting that ki+1+. . .+kp ≤ k1+. . .+kp ≤ d and p−i ≤ d−1
ends the proof. ■

Next, we show that the outputs of Algorithm 8.3 provide approximate separation hyper-
planes for the first i coordinates (x1, . . . ,xi).

Lemma 8.5. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → Rd

for accuracy ϵ > 0. Suppose that OS takes values in the unit ball Bd(0, 1). For any s ∈ [i]

let P(s)
ls
∈ Iks represent a bounded polyhedron with VolumetricCenter(P(s)

ls
) ∈ Cks. Denote

xr = c(P(r)
lr

) for r ∈ [i]. Suppose that when running ApproxOracleδ,ξ,OS
(i, i,P(1)

l1
, . . . ,P(i)

li
),

no successful vector was queried. Then, any vector x⋆ = (x⋆1, . . . ,x
⋆
p) ∈ Cd such that Bd(x

⋆, ϵ)
is contained in the successful set satisfies

∑
r∈[i]

ApproxOracleδ,ξ,OS
(i, r,P(1)

l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ϵ− 8d5/2

σmin
ξ − dδ.

Proof For i ≤ r ≤ p and j ≤ r, we use the notation

g
li+1,...,lr
j = ApproxOracleδ,ξ,OS

(r, j,P(1)
l1
, . . . ,P(r)

lr
).

Using Lemma 8.4, we always have for j ∈ [r],

∥gli+1,...,lr
j −G(r, j,x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lr)∥ ≤ 4d

σmin
ξ. (8.2)

Also, observe that by Lemma 8.3 the recursive outputs of ApproxOracle always have norm
bounded by one.

Next, let T li+1,...,lr−1 be the set of indices corresponding to coordinates of λli+1,...,lr−1 for
which the procedure ApproxOracle did not call for a level-r computation. These correspond
to 1. constraints from the initial cube P0, or 2. cases when the volumetric center was out
of the unit cube (l.6-7 of Algorithm 8.1) and as a result, the index of the added constraint
was −1 instead of the current iteration index t. Similarly as above, for any t ∈ T li+1,...,lr−1 ,
we denote by gli+1,...,lr−1,t

r the corresponding vector at. We recall that by construction, this
vector is of the form ±ej for some j ∈ [kr]. Then, from Lemma 8.1, since the responses of
the oracle always have norm bounded by one, for all yr ∈ Ckr ,∑

lr∈Sli+1,...,lr−1∪T li+1,...,lr−1

λli+1,...,lr(gli+1,...,lr
r )⊤(yr − cli+1,...,lr) ≤ δ. (8.3)
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For conciseness, we use the shorthand (S ∪ T )li+1,...,lr−1 := S li+1,...,lr−1 ∪ T li+1,...,lr−1 , which
contains all indices from coordinates of λli+1,...,lr−1 . In particular,∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr = 1. (8.4)

We now proceed to estimate the precision of the vectors G(i, j,x1, . . . ,xi) as approximate
separation hyperplanes for coordinates (x1, . . . ,xi). Let x⋆ ∈ Cd such that Bd(x

⋆, ϵ) is within
the successful set. Then, for any choice of li+1 ∈ S, . . . , lp ∈ S li+1,...,lp−1 , since we did not
query a successful vector, we have for all z ∈ Bd(x

⋆, ϵ),

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(z − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ 0.

As a result, because the responses from OS have unit norm,

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ ϵ. (8.5)

Now write x⋆ = (x⋆1, . . . ,x
⋆
p). In addition to the previous equation, for li+1 ∈ S, . . . , lr−1 ∈

S li+1,...,lr−2 and any lr ∈ T li+1,...,lr−1 , one has (g
li+1,...,lr
r )⊤x⋆r + 1 ≥ ϵ, because x⋆ is within

the cube Cd and at least at distance ϵ from the constraints of the cube. Similarly as when
lr ∈ S li+1,...,lr−1 , for any lr ∈ T li+1,...,lr−1 we denote by cli+1,...,lr the volumetric center of the
polyhedron P(r)

lr
along the corresponding computation path, if lr corresponded to an added

constraints when cli+1,...,lr /∈ Ckr . Otherwise, if lr corresponded to the constraint a = ±ej
of the initial cube, we pose cli+1,...,lr = −a. Now by construction, in both cases one has
(g

li+1,...,lr
r )⊤cli+1,...,lr ≤ −1 (l.7 of Algorithm 8.1). Thus,

(gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr) ≥ ϵ. (8.6)

Recalling Eq (8.4), we then sum all equations of the form Eq (8.5) and Eq (8.6) along the
computation path, to obtain

(A) :=
∑

li+1∈S,...,
lp∈Sli+1,...,lp−1

λli+1 · · ·λli+1,...,lp

·OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp))

+
∑

i+1≤r≤p

∑
li+1∈S,...,lr−1∈Sli+1,...,lr−2 ,

lr∈T li+1,...,lr−1

λli+1 · · ·λli+1,...,lr · (gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr) ≥ ϵ.

Now using the convention

G(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr) := gli+1,...,lr

r , lr ∈ T li+1,...,lr−1 ,

for any li+1 ∈ S, . . . , lr−1 ∈ S li+1,...,lr−2 , we can write

(A) =
∑
r≤i

G(i, r,x1, . . . ,xi)
⊤(x⋆r − xr) +

∑
i+1≤r≤p

∑
li+1∈S,...,

lr−1∈Sli+1,...,lr−2

λli+1 . . . λli+1,...,lr−1

×
∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lrG(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr)⊤(x⋆r − cli+1,...,lr).
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We next relate the terms G to the output of ApproxOracle. For simplicity, let us write
G = (P(1)

l1
, . . . ,P(i)

li
), which by abuse of notation was assimilated to (x1, . . . ,xi). Recall that

by construction and hypothesis, all points where the oracle was queried belong to Cd, so
that for instance ∥x⋆r − cli+1,...,lr∥ ≤ 2

√
kr ≤ 2

√
d for any lr ∈ S li+1,...,lr−1 . Using the above

equations together with Eq (8.2) and Lemma 8.4 gives

ϵ ≤
∑
r≤i

[
ApproxOracleδ,ξ,Of

(i, r,G)⊤(x⋆r − xr) +
8d3/2

σmin
ξ

]
+

∑
i+1≤r≤p

∑
li+1∈S,...,

lr−1∈Sli+1,...,lr−2

λli+1 · · ·λli+1,...,lr−1

∑
lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr

[
(gli+1,...,lr

r )⊤(x⋆r − cli+1,...,lr) +
8d3/2

σmin
ξ

]

≤ 8pd3/2

σmin
ξ + (p− i)δ +

∑
r≤i

ApproxOracleδ,ξ,Of
(i, r,G)⊤(x⋆r − xr)

where in the second inequality, we used Eq (8.3). Using p ≤ d, this ends the proof of the
lemma. ■

We are now ready to show that Algorithm 8.4 is a valid algorithm for convex optimization.

Theorem 8.3. Let ϵ ∈ (0, 1) and OS : Cd → Rd be a separation oracle such that the
successful set contains a ball of radius ϵ. Pose δ = ϵ

4d
and ξ = σminϵ

32d5/2
. Next, let p ≥ 1 and

k1, . . . , kp ≤ ⌈dp⌉ such that k1 + . . . + kp = d. With these parameters, Algorithm 8.4 finds
a successful vector with (C d

p
ln d

ϵ
)p queries and using memory O(d2

p
ln d

ϵ
), for some universal

constant C > 0.

Proof Suppose by contradiction that Algorithm 8.4 never queried a successful point. Then,
with the chosen parameters, Lemma 8.5 shows that, for any vector x⋆ = (x⋆1, . . . ,x

⋆
p) such

that Bd(x
⋆, ϵ) is within the successful set, with the same notations, one has∑

r≤i

ApproxOracleδ,ξ,OS
(i, r,P(1)

l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ϵ− 8d5/2

σmin
ξ − dδ ≥ ϵ

2
.

Now denote by (at, bt) the constraints that were added at any time during the run of Algo-
rithm 8.1 when using the oracle ApproxOracle with i = j = 1. The previous equation shows
that for all such constraints,

a⊤
t x

⋆
1 − bt ≥ a⊤

t (x
⋆
1 − ωt)− ξ ≥

ϵ

2
− ξ,

where ωt is the volumetric center of the polyhedron at time t during Vaidya’s method
Algorithm 8.1. Now, since the algorithm terminated, by Lemma 8.1, we have that

min
t
(a⊤

t x
⋆
1 − bt) ≤ δ.

This is absurd since δ + ξ < ϵ
2
. This ends the proof that Algorithm 8.4 finds a successful

vector.
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We now estimate its oracle-complexity and memory usage. First, recall that a run of
ApproxOracle of level i makes O(ki+1 ln

1
δ
) calls to level-(i + 1) runs of ApproxOracle. As a

result, the oracle-complexity Qd(ϵ; k1, . . . , kp) satisfies

Qd(ϵ; k1, . . . , kp) =

(
Ck1 ln

1

δ

)
× . . .×

(
Ckp ln

1

δ

)
≤
(
C ′d

p
log

d

ϵ

)p
for some universal constants C,C ′ ≥ 2.

We now turn to the memory of the algorithm. For each level i ∈ [p] of runs for
ApproxOracle, we keep memory placements for

1. the value j(i) of the corresponding call to ApproxOracle(i, j(i), ·) (for l.6-7 of Algo-
rithm 8.3): O(ln d) bits,

2. the iteration number t(i) during the run of Algorithm 8.1 or within Algorithm 8.2:
O(ln(ki ln 1

δ
)) bits

3. the polyhedron constraints contained in the state of P(i): O(ki × ki ln 1
ξ
) bits,

4. potentially, already computed dual variables λ⋆ and their corresponding vector of con-
straint indices k⋆ (l.3 of Algorithm 8.2): O(ki × ln 1

ξ
) bits,

5. the working vector u(i) (updated l.8 of Algorithm 8.2): O(ki ln 1
ξ
) bits.

The memory structure is summarized in Table 8.1.
We can then check that this memory is sufficient to run Algorithm 8.4. An important

point is that for any run of ApproxOracle(i, j, ·), in Algorithm 8.2, after running Vaidya’s
method Algorithm 8.1 and storing the dual variables λ⋆ and corresponding indices k⋆ within
their placements (k⋆(i),λ⋆(i)) (l.1-3 of Algorithm 8.2), the iteration index t(i) and polyhedron
P(i) memory placements are reset and can be used again for the second run of Vaidya’s
method (l.4-10 of Algorithm 8.2). During this second run, the vector u is stored in its
corresponding memory placement u(i) and updated along the algorithm. Once this run is
finished, the output of ApproxOracle(i, j, ·) is readily available in the placement u(i). For
i = p, the algorithm does not need to wait for the output of a level-(i+ 1) computation and
can directly use the j(p)-th component of the returned separation vector from the oracle OS.
As a result, the number of bits of memory used throughout the algorithm is at most

M =

p∑
i=1

O
(
k2i ln

1

ξ

)
= O

(
d2

p
ln
d

ϵ

)
.

This ends the proof of the theorem. ■

We can already give the useful range for p for our algorithms, which will also apply to
the case with computational-memory constraints Section 8.5.

Proof of Corollary 8.1 Suppose ϵ ≥ 1
dd

. Then, for some pmax = Θ(
C ln 1

ϵ

2 ln d
) ≤ d, the

algorithm from Theorem 8.1 yields a O( 1
ϵ2
) oracle-complexity. On the other hand, if ϵ ≤ 1

dd
,

we can take pmax = d, which gives an oracle-complexity O((C ln 1
ϵ
)d). ■
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i 1 . . . p

j j(1) j(p)

Iteration index t(1) t(p)

Polyhedron P(1) =


k1,a1, b1
k2,a2, b2
. . .

km,am, bm

 P(p)

Computed
dual variables (k⋆(1),λ⋆(1)) =

k⋆1, λ⋆1k⋆2, λ
⋆
2

. . .

 (k⋆(p),λ⋆(p))

Working
separation vector u(1) u(p)

Table 8.1: Memory structure for Algorithm 8.4

8.5 Feasibility Problem With Computations

In the last section we gave the main ideas that allow reducing the storage memory. However,
Algorithm 8.4 does not account for memory constraints in computations as per Definition 8.2.
For instance, computing the volumetric center VolumetricCenter(P) already requires infinite
memory for infinite precision. More importantly, even if one discretizes the queries, the
necessary precision and computational power may be prohibitive with the classical Vaidya’s
method Algorithm 8.1. Even finding a feasible point in the polyhedron (let alone the volu-
metric center) using only the constraints is itself computationally intensive. There has been
significant work to make Vaidya’s method computationally tractable [Vai96; Ans97; Ans98].
These works address the issue of computational tractability, but the memory issue is still
present. Indeed, the precision depends among other parameters on the condition number
of the matrix H in order to compute the leverage scores σi for i ∈ [m], which may not be
well-conditioned. Second, to avoid memory overflow, we also need to ensure that the points
queried have bounded norm, which is again not a priori guaranteed in the original version
Algorithm 8.1.

To solve these issues and also give a computationally-efficient algorithm, the cutting-plane
subroutine Algorithm 8.1 needs to be modified. In particular, the volumetric barrier needs
to include regularization terms. Fortunately, these have already been studied in [LSW15]. In
a major breakthrough, this work gave a cutting-plane algorithm with O(d3 lnO(1) d

ϵ
) runtime

complexity, improving over the seminal work from Vaidya and subsequent works which had
O(d1+ω lnO(1) d

ϵ
) runtime complexity, where O(dω) is the computational complexity of matrix

multiplication. To achieve this result, they introduce various regularizing terms together
with the logarithmic barrier. While the main motivation of [LSW15] was computational
complexity, as a side effect, these regularization terms also ensure that computations can be
carried with efficient memory. We then use their method as a subroutine.

For the sake of exposition and conciseness, we describe a simplified version of their
method, that is also deterministic. This comes at the expense of a suboptimal running time
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O(d1+ω lnO(1) 1
ϵ
). We recall that our main concern is in memory usage rather than achieving

the optimal runtime. The main technicality of this section is to show that their simplified
method is numerically stable, and we emphasize that the original algorithm could also be
shown to be numerically stable with similar techniques, leading to a time improvement from
Õ(d1+ω) to Õ(d3). The memory usage, however, would not be improved.

8.5.1 A memory-efficient Vaidya’s method for computations

Fix a polyhedron P = {x : Ax ≥ b}. Using the same notations as for Vaidya’s method
in Section 8.4.1, we define the new leverage scores ψ(x)i = (Ax(A

⊤
xAx + λI)−1A⊤

x )i,i and
Ψ(x) = diag(ψ(x)). Let µ(x) = mini ψ(x)i. Last, let Q(x) = A⊤

x (ceI + Ψ(x))Ax + λI,
where ce > 0 is a constant parameter to be defined. In [LSW15], they consider minimizing
the volumetric-analytic hybrid barrier function

p(x) = −ce
m∑
i=1

ln si(x) +
1

2
ln det(A⊤

xAx + λI) +
λ

2
∥x∥22.

We can check [LSW15] that

∇p(x) = −A⊤
x (ce · 1+ψ(x)) + λx,

where 1 is the vector of ones. The following procedure gives a way to minimize this function
efficiently given a good starting point.

Input: Initial point x(0) ∈ P = {x : Ax ≥ b}
Input: Number of iterations r > 0
Given: ∥∇p(x(0))∥Q(x(0))−1 ≤ 1

100

√
ce + µ(x(0)) := η.

1 for k = 1 to r do
2 if ∥∇p(x(k−1))∥Q(x(0))−1 ≤ 2(1− 1

64
)rη then Break;

3 x(k) = x(k−1) − 1
8
Q(x(0))−1∇p(x(k−1))

4 end
Output: x(k)

Algorithm 8.5: x(r) = Centering(x(0), r)

We then present their simplified cutting-plane method.
In both Algorithm 8.5 and Algorithm 8.6, notice that the updates require to compute in

particular the leverage scores ψ(x), which can be computed in O(dω) time using their for-
mula. To achieve the O(d3 lnO(1) 1

ϵ
) computational complexity, an amortized computational

cost O(d2) is needed. The algorithm from [LSW15] achieves this through various careful
techniques aiming to update estimates of these leverage scores. The above cutting-plane
algorithm is exactly that of [LSW15] when these estimates are always exact (i.e. recom-
puted at each iteration), which yields the dω−2 overhead time complexity. In particular, the
original proof of convergence and correctness of [LSW15] directly applies to this simplified
algorithm.

It remains to check whether one can implement this algorithm with efficient memory,
corresponding to checking this method’s numerical stability.
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Input: ϵ, δ > 0 and a separation oracle O : Cd → Rd

Check: Throughout the algorithm, if si(x(t)) < 2ϵ for some i then return (Pt,x(t))
1 Initialize x(0) = 0 and P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t ≥ 0 do
3 if mini∈[m] ψ(x

(t))i ≤ cd then
4 Pt+1 = Pt \ {(kj,aj, bj)} where j ∈ argmini∈[m] ψ(x

(t))i
5 else
6 if x(t) /∈ Cd then a = −sign(xi)ei where i ∈ argminj∈[d] |x(t)j | ;
7 else a = O(x(t)) ;

8 Let b = a⊤x(t) − c−1/2
a

√
a⊤(A⊤S−2

x(t)
A+ λI)−1a

9 Pt+1 = Pt ∪ {(t,a, b)}
10 x(t+1) = Centering(x(t), 200, c∆)

11 end
Algorithm 8.6: An efficient cutting-plane method, simplified from [LSW15]

Lemma 8.6. Suppose that each iterate of the centering Algorithm 8.5, ∥∇p(x(k−1))∥Q(x(0))−1

is computed up to precision (1 − 1
64
)rη (l.2), and x(k) is computed up to an error ζ(k) with

∥ζ(k)∥Q(x(0)) ≤ 1
210r

(1− 1
64
)rη (l.3).

Then, Algorithm 8.5 outputs x(k) such that ∥∇p(x(k))∥Q−1(x(k)) ≤ 3(1 − 1
64
)rη and all

iterates computed during the procedure satisfy ∥S−1
x(0)

(s(x(t))− s(x(0)))∥2 ≤ 1
10

.

Proof As mentioned above, without computation errors, the result from [LSW15] would
apply directly. Here, we simply adapt the proof to the case with computational errors to
show that it still applies. Denote Q = Q(x(0)) for convenience. Let η = 1

100

√
ce + µ(x(0)).

We prove by induction that ∥x(t) − x(0)∥Q ≤ 9η, ∥∇p(x(t))∥Q−1 ≤ (1 − 1
64
)tη for all t ≤ r.

For a given iteration t, denote x̃(t+1) = x(k−1) − 1
8
Q−1∇p(x(k−1)) the result of the exact

computation. The same arguments as in the original proof give ∥x̃(t+1) − x(0)∥Q ≤ 9η, and

∥∇p(x̃(t+1))∥Q−1 ≤
(
1− 1

32

)
∥∇p(x(t))∥Q−1 .

Now because ∥x̃(t+1)−x(t+1)∥Q ≤ η, we have ∥x̃(t+1)−x(0)∥Q, ∥x(t+1)−x(0)∥Q ≤ 10η, so that
[LSW15, Lemma 11] gives ∇2p(y(u)) ⪯ 8Q(y(u)) ⪯ 16Q, where y(u) = x(t+1) + u(x̃(t+1) −
x(t+1) for u ∈ [0, 1]. Thus,

∥∇p(x̃(t+1))−∇p(x(t+1))∥Q−1 ≤
∥∥∥∥∫ 1

0

∇2p(y(u))(x̃(t+1) − x(t+1))

∥∥∥∥
Q−1

≤ 16∥x̃(t+1) − x(t+1)∥Q.

Now by construction of the procedure, if the algorithm performed iteration t + 1, we have
∥∇p(x(t))∥Q−1 ≥ (1− 1

64
)rη. Combining this with the fact that ∥x̃(t+1)−x(t+1)∥Q ≤ 1

210r
(1−
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1
64
)rη, obtain

∥∇p(x(t+1))∥Q−1 ≤ ∥∇p(x̃(t+1))−∇p(x(t+1))∥Q−1 + ∥∇p(x̃(t+1))∥Q−1

≤
(
1− 1

64

)
∥∇p(x(t))∥Q−1 .

We now write

∥x(t+1) − x(0)∥Q ≤
t∑

k=0

∥x̃(k+1) − x(k+1)∥Q +
1

8
∥Q−1∇p(x(k))∥Q

≤ η +
1

8

∞∑
i=0

(
1− 1

64

)i
η ≤ 9η.

The induction is now complete. When the algorithm stops, either the r steps were performed,
in which case the induction already shows that ∥∇p(x(r))∥Q−1 ≤ (1 − 1

64
)rη. Otherwise, if

the algorithm terminates at iteration k, because ∥∇p(x(k))∥Q−1 was computed to precision
(1− 1

64
)rη, we have (see l.2 of Algorithm 8.5)

∥∇p(x(k))∥Q−1 ≤ 2

(
1− 1

64

)r
η +

(
1− 1

64

)r
η = 3

(
1− 1

64

)r
η.

The same argument as in the original proof shows that at each iteration t,

∥S−1
x(0)

(s(x(t))− s(x(0)))∥2 = ∥x(t) − x(0)∥A⊤S−2

x(0)
A ≤

∥x(t) − x(0)∥Q√
µ(x(0)) + ce

≤ 1

10
.

This ends the proof of the lemma. ■

Because of rounding errors, Lemma 8.6 has an extra factor 3 compared to the original
guarantee in [LSW15, Lemma 14]. To achieve the same guarantee, it suffices to perform
70 ≥ ln(3)/ ln(1/(1 − 1

64
)) additional centering procedures at most. hence, instead of per-

forming 200 centering procedures during the cutting plane method, we perform 270 (l.10 of
Algorithm 8.6). We next turn to the numerical stability of the main Algorithm 8.6.

Lemma 8.7. Suppose that throughout the algorithm, when checking the stopping criterion
mini∈[m] si(x) < 2ϵ, the quantities si(x) were computed with accuracy ϵ. Suppose that at
each iteration of Algorithm 8.6, the leverage scores ψ(x(t)) are computed up to multiplicative
precision c∆/4 (l.3), that when a constraint is added, the response of the oracle a (l.7) is
stored perfectly but b (l.8) is computed up to precision Ω( ϵ√

n
). Further suppose that the

centering Algorithm 8.5 is run with numerical approximations according to the assumptions
in Lemma 8.6. Then, all guarantees for the original algorithm in [LSW15] hold, up to a
factor 3 for ϵ.

Proof We start with the termination criterion. Given the requirement on the computational
accuracy, we know that the final output x satisfies mini∈[m] si(x) ≤ 3ϵ. Further, during the
algorithm, if it does not stop, then one has mini∈[m] si(x) ≥ ϵ, which is precisely the guarantee
of the original algorithm in [LSW15].
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We next turn to the computation of the leverage scores in l.4. In the original algorithm,
only a c∆-estimate is computed. Precisely, one computes a vector w(t) such that for all
i ∈ [d], ψ(x(t))i ≤ wi ≤ (1 + c∆)ψ(x

(t))i, then deletes a constraint when mini∈[m(t)]w
(t)
i ≤ cd.

In the adapted algorithm, let ψ̃(x(t))i denote the computed leverage scores for i ∈ [d]. By
assumption, we have

(1− c∆/4)ψ(x(t))i ≤ ψ̃(x(t))i ≤ (1 + c∆/4)ψ(x
(t))i.

Up to re-defining the constant cd as (1 − c∆/4)cd, ψ̃(x(t)) is precisely within the guaran-
tee bounds of the algorithm. For the accuracy on the separation oracle response and the
second-term value b, [LSW15] emphasizes that the algorithm always changes constraints by
a δ amount where δ = Ω( ϵ√

d
) so that an inexact separation oracle with accuracy Ω( ϵ√

d
)

suffices. Therefore, storing an Ω( ϵ√
d
) accuracy of the second term keeps the guarantees of

the algorithm. Last, we checked in Lemma 8.6 that the centering procedure Algorithm 8.5
satisfies all the requirements needed in the original proof [LSW15]. ■

For our recursive method, we need an efficient cutting-plane method that also provides a
proof (certificate) of convergence. This is also provided by [LSW15] that provide a proof that
the feasible region has small width in one of the directions ai of the returned polyhedron.

Input: ϵ > 0 and a separation oracle O : Cd → Rd

1 Run Algorithm 8.6 to obtain a polyhedron P and a feasible point x
2 x⋆ = Centering(x, 64 ln 2

ϵ
, c∆)

3 λi =
ce+ψi(x

⋆)
si(x⋆)

(∑
j
ce+ψj(x

⋆)

sj(x⋆)

)−1

for all i
Output: (P ,x⋆, (λi)i)

Algorithm 8.7: Cutting-plane algorithm with certified optimality

Lemma 8.8. [LSW15, Lemma 28] Let (P ,x, (λi)i) be the output of Algorithm 8.7. Then,
x is feasible, ∥x∥2 ≤ 3

√
d, λj ≥ 0 for all j and

∑
i λi = 1. Further,∥∥∥∥∥∑

i

λiai

∥∥∥∥∥
2

= O
(
ϵ
√
d ln

d

ϵ

)
, and

∑
i

λi(a
⊤
i x− bj) ≤ O

(
dϵ ln

d

ϵ

)
.

We are now ready to show that Algorithm 8.6 can be implemented with efficient memory
and also provides a proof of the convergence of the algorithm.

Proposition 8.2. Provided that the output of the oracle are vectors discretized to precision
poly( ϵ

d
) and have norm at most 1, Algorithm 8.7 can be implemented with O(d2 ln d

ϵ
) bits of

memory to output a certified optimal point according to Lemma 8.8. The algorithm performs
O(d ln d

ϵ
) calls to the separation oracle and runs in O(d1+ω lnO(1) d

ϵ
) time.

Proof We already checked the numerical stability of Algorithm 8.6 in Lemma 8.7. It
remains to check the next steps of the algorithm. The centering procedure is stable again via
Lemma 8.6. It also suffices to compute the coefficients λj up to accuracy O(ϵ/(

√
d) ln(d/ϵ))

to keep the guarantees desired since by construction all vectors ai have norm at most one.
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It now remains to show that the algorithm can be implemented with efficient memory. We
recall that at any point during the algorithm, the polyhedron P has at most O(d) constraints
[LSW15, Lemma 22]. Hence, since we assumed that each vector ai composing a constraint
is discretized to precision poly( ϵ

d
), we can store the polyhedron constraints with O(d2 ln d

ϵ
)

bits of memory. The second terms b are computed up to precision Ω(ϵ/
√
d) hence only use

O(d ln d
ϵ
) bits of memory. The algorithm also keeps the current iterate x(t) in memory. These

are all bounded throughout the memory ∥x(t)∥2 = O(
√
d) [LSW15, Lemma 23], hence only

require O(d ln d
ϵ
) bits of memory for the desired accuracy.

Next, the distances to the constraints are bounded at any step of the algorithm: si(x(t)) ≤
O(
√
d) [LSW15, Lemma 24], hence computing si(x(t)) to the required accuracy is memory-

efficient. Recall that from the termination criterion, except for the last point, any point
x during the algorithm satisfies si(x) ≥ ϵ for all constraints i ∈ [m]. In particular, this
bounds the eigenvalues of Q since λI ⪯ Q(x) ⪯ (λ + m(ce + 1)/ϵ2)I. Thus, the matrix
is sufficiently well-conditioned to achieve the accuracy guarantees from Lemma 8.6 using
O(d2 ln d

ϵ
) memory during matrix inversions (and matrix multiplications). Similarly, for

the computation of leverage scores, we use Ψ(x) = diag(Ax(A
⊤
xAx + λI)−1A⊤

x ), where
λI ⪯ A⊤

xAx + λI ⪯ (λ + mϵ−2)I. This same matrix inversion appears when computing
the second term of an added constraint. Overall, all linear algebra operations are well
conditioned and implementable with required accuracy with O(d2 ln d

ϵ
) memory. Using fast

matrix multiplication, all these operations can be performed in Õ(dω) time per iteration of
the cutting-plane algorithm since these methods are also known to be numerically stable
[DDH07]. Thus, the total time complexity is O(d1+ω lnO(1) d

ϵ
). The oracle-complexity still

has optimal O(d ln d
ϵ
) oracle-complexity as in the original algorithm. ■

Up to changing ϵ to c · ϵ/(d ln d
ϵ
), the described algorithm finds constraints given by ai

and bi, i ∈ [m] returned by the normalized separation oracle, coefficients λi, i ∈ [m], and a
feasible point x⋆ such that for any vector in the unit cube, z ∈ Cd, one has

min
i∈[m]

a⊤
i z − bi ≤

∑
i∈[m]

λi(a
⊤
i z − bi) ≤

∑
i∈[m]

λai

⊤

(x⋆ − z) +
∑
i∈[m]

λi(a
⊤
i x

⋆ − bi) ≤ ϵ.

This effectively replaces Lemma 8.1.

8.5.2 Merging Algorithm 8.7 within the recursive algorithm

Algorithms 8.2 to 8.4 from the recursive procedure need to be slightly adapted to the new
format of the cutting-plane method’s output. In particular, the oracles do not take as input
polyhedrons (and eventually query their volumetric center as before), but directly take as
input an point (which is an approximate volumetric center).

The same proof as for Algorithm 8.4 shows that Algorithm 8.10 run with the parameters
in Theorem 8.3 also outputs a successful vector using the same oracle-complexity. We only
need to analyze the memory usage in more detail.

Proof of Theorem 8.1 As mentioned above, we will check that Algorithm 8.10 with
the same parameters δ = ϵ

4d
and ξ = σminϵ

32d5/2
as in Theorem 8.3 satisfies the desired require-

395



Input: δ, ξ, Ox : Cn → Rm and Oy : Cn → Rn

1 Run Algorithm 8.7 with parameter c · δ/(d ln d
δ
), ξ and Oy to obtain (P⋆,x⋆,λ)

2 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)

3 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]}, x(0) = 0 and let u = 0 ∈ Rm

4 for t = 0, 1, . . . ,maxi ki do
5 if t = k⋆i for some i ∈ [m] then
6 gx = Ox(x

(t))
7 u← Discretizem(u+ λ⋆igx, ξ)

8 Update Pt to get Pt+1, and x(t) to get x(t+1) as in Algorithm 8.6
9 end

10 return u
Algorithm 8.8: ApproxSeparationVectorδ,ξ(Ox, Oy)

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, x(r) ∈ Ckr for r ∈ [i], OS : Cd → Rd

1 if i = p then
2 (g1, . . . , gp) = OS(x1, . . . ,xp)
3 return Discretizekj(gj, ξ)

4 end
5 Define Ox : Cki+1

→ Rkj as ApproxOracleδ,ξ,Of
(i+ 1, j,x(1), , . . . ,x(i), ·)

6 Define Oy : Cki+1
→ Rki+1 as ApproxOracleδ,ξ,Of

(i+ 1, i+ 1,x(1), . . . ,x(i), ·)
7 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 8.9: ApproxOracleδ,ξ,OS
(i, j,x(1), . . . ,x(i))

ments. We have already checked its correctness and oracle-complexity. Using the same argu-
ments, the computational complexity is of the form O(O(ComplexityCuttingPlanes)p) where
ComplexityCuttingPlanes is the computational complexity of the cutting-plane method used,
i.e., here of Algorithm 8.7. Hence, the computational complexity is O((C(d/p)1+ω lnO(1) d

ϵ
)p)

for some universal constant C ≥ 2. We now turn to the memory. In addition to the memory
of Algorithm 8.4, described in Table 8.1, we need

1. a placement for all i ∈ [p] for the current iterate x(i): O(ki ln 1
ξ
) bits,

2. a placement for computations, that is shared for all layers (used to compute leverage
scores, centering procedures, etc. By Proposition 8.2, since the vectors are always
discretized to precision ξ, this requires O(maxi∈[p] k

2
i ln

d
ϵ
) bits,

3. the placement Q to perform queries is the concatenation of all of the placements
(x(1), . . . ,x(p)): no additional bits needed.

4. a placement N to store the precision needed for the oracle responses: O(ln 1
ξ
) bits

5. a placement R to receive the oracle responses: O(d ln 1
ξ
) bits.

The new memory structure is summarized in Table 8.2.
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Input: δ, ξ, and OS : Cd → Rd a separation oracle
Check: Throughout the algorithm, if OS returned Success to a query x, return x

1 Run Algorithm 8.6 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS
(1, 1, ·)

Algorithm 8.10: Memory-constrained algorithm for convex optimization

With the same arguments as in the original proof of Theorem 8.3, this memory is sufficient
to run the algorithm and perform computations, thanks to the computation placement. The
total number of bits used throughout the algorithm remains the same, O(d2

p
ln d

ϵ
). This ends

the proof of the theorem. ■

i 1 . . . p Oracle response Precision

j j(1) j(p) R = (R1, . . . , Rp) N

Iteration index t(1) t(p)

Polyhedron P(1) =


k1,a1, b1
k2,a2, b2
. . .

km,am, bm

 P(p)

Computation
memory

Current
iterate x(1) x(p)

Computed
dual variables (k⋆,λ⋆) =

k⋆1, λ⋆1k⋆2, λ
⋆
2

. . .

 (k⋆(p),λ⋆(p))

Working
separation vector u(1) u(p)

Table 8.2: Memory structure for Algorithm 8.10

8.6 Improved Oracle-Complexity/Memory Lower-Bound
Trade-offs

We recall the three oracle-complexity/memory lower-bound trade-offs known in the litera-
ture.

1. First, [Mar+22] showed that any (including randomized) algorithm for convex opti-
mization uses d1.25−δ memory or makes Ω̃(d1+4δ/3) queries.

2. Then, in Chapter 7 we showed that any deterministic algorithm for convex optimization
uses d2−δ memory or makes Ω̃(d1+δ/3) queries.

3. Last, we also showed in Chapter 7 that any deterministic algorithm for the feasibility
problem uses d2−δ memory or makes Ω̃(d1+δ) queries.
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Although these works mainly focused on the regime ϵ = 1/poly(d) and as a result ln 1
ϵ
=

O(ln d), neither of these lower bounds have an explicit dependence in ϵ. This can lead
to sub-optimal lower bounds whenever ln 1

ϵ
≫ ln d. Furthermore, in the exponential regime

ϵ ≤ 1
2O(d) , these results do not effectively give useful lower bounds. Indeed, in this regime, one

has d2 = O(d ln 1
ϵ
) and as a result, the lower bounds provided are weaker than the classical

Ω(d ln 1
ϵ
) lower bounds for oracle-complexity [NYD83] and memory [WS19]. In particular,

in this exponential regime, these results fail to show that there is any trade-off between
oracle-complexity and memory.

In this section, we aim to explicit the dependence in ϵ of these lower-bounds. We show
with simple modifications and additional arguments that one can roughly multiply these
oracle-complexity and memory lower bounds by a factor ln 1

ϵ
each. We split the proofs in

two. First we give arguments to improve the memory dependence by a factor ln 1
ϵ
, which

is achieved by modifying the sampling of the rows of the matrix A defining a wall term
common to the functions considered in the lower bound proofs from [Mar+22] or Chapter 7.
Then we show how to improve the oracle-complexity dependence by an additional ln 1

ϵ
/ ln d

factor, via a standard rescaling argument.

8.6.1 Improving the memory lower bound

We start with some concentration results on random vectors. [Mar+22] gave the following
result for random vectors in the hypercube.

Lemma 8.9 ([Mar+22]). Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix
Z = [z1, . . . ,zk] ∈ Rd×k with orthonormal columns,

P(∥Z⊤h∥∞ ≤ t) ≤ 2−cHk.

Instead, we will need a similar concentration result for random unit vectors in the unit
sphere.

Lemma 8.10. Let k ≤ d and x1, . . . ,xk be k orthonormal vectors, and ζ ≤ 1.

Py∼U(Sd−1)

(
|x⊤

i y| ≤
ζ√
d
, i ∈ [k]

)
≤
(

2√
π
ζ

)k
≤ (
√
2ζ)k.

Proof First, by isometry, we can suppose that the orthonormal vectors are simply e1, . . . , ek.
We now prove the result by induction on d. For d = 1, the result holds directly. Fix d ≥ 2,
and 1 ≤ k < d. Then, if Sn is the surface area of Sn the n-dimensional sphere, then

P
(
|y1| ≤

ζ√
d

)
≤ Sd−2

Sd−1

2ζ√
d
=

2ζ√
πd

Γ(d/2)

Γ(d/2− 1/2)
≤ 2√

π
ζ. (8.7)

Conditionally on the value of y1, the vector (y2, . . . , yd) follows a uniform distribution on the
(d− 2)-sphere of radius

√
1− y21. Then,

P
(
|yi| ≤

ζ√
d
, 2 ≤ i ≤ k | y1

)
= Pz∼U(Sd−2)

(
|zi| ≤

ζ√
d(1− y21)

, 2 ≤ i ≤ k

)
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Now recall that since |x1| ≤ 1/
√
d, we have d(1−x21) ≥ d−1. Therefore, using the induction,

P
(
|yi| ≤

ζ√
d
, 2 ≤ i ≤ k | y1

)
≤ Pz∼U(Sd−2)

(
|zi| ≤

ζ√
d− 1

, 2 ≤ i ≤ k

)
≤
(

2ζ√
π

)k−1

.

Combining this equation with Eq (8.7) ends the proof. ■

We next use the following lemma to partition the unit sphere Sd−1.

Lemma 8.11 ([FS02] Lemma 21). For any 0 < δ < π/2, the sphere Sd−1 can be partitioned
into N(δ) = (O(1)/δ)d equal volume cells, each of diameter at most δ.

Following the notation from Chapter 7, we denote by Vδ = {Vi(δ), i ∈ [N(δ)]} the
corresponding partition, and consider a set of representatives Dδ = {bi(δ), i ∈ [N(δ)]} ⊂
Sd−1 such that for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ). With these notations we can define the
discretization function ϕδ as follows

ϕδ(x) = bi(δ), x ∈ Vi(δ).

We then denote by Uδ the distribution of ϕδ(z) where z ∼ U(Sd−1) is sampled uniformly on
the sphere. Note that because the cells of Vδ have equal volume, Uδ is simply the uniform
distribution on the discretization Dδ.

We are now ready to give the modifications necessary to the proofs, to include a factor ln 1
ϵ

for the necessary memory. For their lower bounds, [Mar+22] exhibit a distribution of convex
functions that are hard to optimize. Building upon their work in Chapter 7 we constructed
classes of convex functions that are hard to optimize, but that also depend adaptively on the
considered optimization algorithm. For both, the functions considered a barrier term of the
form ∥Ax∥∞, whereA is a matrix of ≈ d/2 rows that are independently drawn as uniform on
the hypercube U({±1}d). The argument shows that memorizing A is necessary to a certain
extent. As a result, the lower bounds can only apply for a memory of at most O(d2) bits,
which is sufficient to memorize such a binary matrix. Instead, we draw rows independently
according to the distribution Uδ, where δ ≈ ϵ. We explicit the corresponding adaptations for
each known trade-off. We start with the lower bounds from Chapter 7 for ease of exposition;
although these build upon those of [Mar+22], their parametrization makes the adaptation
more straightforward.

Lower bound of Chapter 7 for convex optimization and deterministic algorithms

For this lower bound, we use the exact same form of functions as they introduced,

max

{
∥Ax∥∞ − η, ηv⊤0 x, η

(
max

p≤pmax,l≤lp
v⊤p,lx− pγ1 − lγ2

)}
,

with the difference that rows of A are take i.i.d. distributed according to Uδ′ instead of
U({±1}d). As a remark, they use n = ⌈d/4⌉ rows forA. Except for η, we keep all parameters
γ1, γ2, etc as in the original proof, and we will take δ′ = ϵ and η = 2

√
dϵ. The reason why

we introduced δ′ instead of δ is that the original construction also needs the discretization
ϕδ. This is used during the optimization procedure which constructs adaptively this class of
functions, and only needs δ = poly(1/d) instead of δ of order ϵ.
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Theorem 8.4. For ϵ ≤ 1/(2d4.5) and any δ ∈ [0, 1], a deterministic first-order algorithm
guaranteed to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses
at least d2−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+δ/3) queries.

With the changes defined above, we can easily check that all results from Chapter 7 which
reduce convex optimization to the optimization procedure, then the optimization procedure
to the Orthogonal Vector Game with Hints (OVGH), Game 7.2 from Chapter 7, are not
affected by our changes. The only modifications to perform are to the proof of query lower
bound for the OVGH, Proposition 7.4 from Chapter 7. We emphasize that the distribution
of A is changed in the optimization procedure but also in OVGH as a result.

Proposition 8.3. Let k ≥ 20 M+3d log(2d)+1

n log2(
√
2(ζ+δ′

√
d))−1 . Let 0 < α, β ≤ 1 such that α(

√
d/β)5/4 ≤

ζ/
√
d where ζ ≤ 1. If the Player wins the adapted OVGH with probability at least 1/2, then

m ≥ 1
8
(1 + 30 log2 d

log2(
√
2(ζ+δ′

√
d))−1 )

−1d.

Proof We use the same proof and only highlight the modifications. The proof is unchanged
until the step when the concentration result Lemma 8.9 is used. Instead, we use Lemma 8.10.
With the same notations as in the original proof, we constructed ⌈k/5⌉ orthonormal vec-
tors Z = [z1, . . . ,z⌈k/5⌉] such that all rows a of A′ (which is A up to some observed and
unimportant rows) one has

∥Z⊤a∥∞ ≤
ζ√
d
.

Next, by Lemma 8.10, we have∣∣∣∣{a ∈ Dδ′ : ∥Z⊤a∥∞ ≤
ζ√
d

}∣∣∣∣ ≤ |Dδ′| · Pa∼Uδ′

(
∥Z⊤a∥∞ ≤

ζ√
d

)
≤ |Dδ′| · Pz∼U(Sd−1)

(
∥Z⊤z∥∞ ≤

ζ√
d
+ δ′

)
≤ |Dδ′| ·

(√
2(ζ + δ′

√
d)
)⌈k/5⌉

.

Hence, using the same arguments as in the original proof, we obtain

H(A′ | Y ) ≤ (n−m)

(
log2 |Dδ′ |+ P(E) · k

5
log2

(√
2(ζ + δ′

√
d)
))

,

where E is the event when the algorithm succeeds at the OVGH game. In the next step, we
need to bound H(A | V )−H(G, j, c) where V stores hints received throughout the game,
G stores observed rows of A during the game, and j, c are auxiliary variables. The latter
can be treated as in the original proof. We obtain

H(A | V )−H(G, j, c) ≥ H(A)−H(G)− I(A;V )− 3m log2(2d)

≥ (n−m) log2 |Dδ′| − 3m log2(2d)− I(A,V ).

Now the same arguments as in the original proof show that we still have I(A,V ) ≤
3km log2 d+ 1, and that as a result, if M is the number of bits stored in memory,

M ≥ k

10
log2

(
1√

2(ζ + δ′
√
d)

)
(n−m)− 3km log2 d− 1− 3d log2(2d).

400



Then, with the same arguments as in the original proof, we can conclude. ■

We are now ready to prove Theorem 8.4. With the parameter

k = ⌈20 M + 3d log(2d) + 1

n log2(
√
2(ϵd4/2 + δ′

√
d))−1

⌉

and the same arguments, we show that an algorithm solving the convex optimization up to
precision η/(2

√
d) = ϵ yields an algorithm solving the OVGH where the parameters α = 2η

γ1
and β = γ2

4
satisfy

α

(√
d

β

)5/4

≤ ηd3

4
=
d3.5ϵ

2
.

We can then apply Proposition 8.3 with ζ = d4ϵ/2. Hence, if Q is the maximum number of
queries of the convex optimization algorithm, we obtain

⌈Q/pmax⌉+ 1 ≥ 1

8

(
1 +

30 log2 d

log2
1
d4ϵ
− 1/2

)−1

d ≥ d

8 · 61
,

where in the last inequality we used ϵ ≤ 1/(2d4.5). As a result, with the same arguments, we
obtain

Q = Ω

(
d5/3 ln1/3 1

ϵ

(M + ln d)1/3 ln2/3 d

)
.

This ends the proof of Theorem 8.4.

Lower bound ofChapter 7 for feasibility problems and deterministic algorithms

We improve the memory dependence by showing the following result.

Theorem 8.5. For ϵ = 1/(48d3) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to
solve the feasibility problem over the unit ball with ϵ accuracy uses at least d2−δ ln 1

ϵ
bits of

memory or makes at least Ω̃(d1+δ) queries.

We use the exact same class of feasibility problems and only change the parameter η0
which constrained successful points to satisfy ∥Ax∥∞ ≤ η0, as well as the rows of A that
are sampled i.i.d. from Uδ. The other parameter η1 = 1/(2

√
d) is unchanged. We also take

δ′ = ϵ. Because the rows of A are already normalized, we can take η0 = ϵ directly. Then,
the same proof as in Chapter 7 shows that if an algorithm solves feasibility problems with
accuracy ϵ, there is an algorithm for OVGH for parameters α = η/η1 and β = η1/2. Then,
we have α(

√
d/β)5/4 ≤ 12d2η0 and we can apply Proposition 8.3 with ζ = 12d2.5η0 = 12d2.5ϵ.

Similar computations as above then show that m ≥ d/(8 · 61), with k = Θ(M+ln d
d ln 1

ϵ

), so that
the query lower bound finally becomes

Q ≥ Ω

(
d3 ln 1

ϵ

(M + ln d) ln2 d

)
.
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Remark 8.2. The more careful analysis—involving the discretization Dδ of the unit sphere
at scale δ instead of the hypercube {±1}d—allowed to add a ln 1

ϵ
factor to the final query

lower bound but also an additional ln d factor for both convex-optimization and feasibility-
problem results. Indeed, the improved Proposition 8.3 shows that the OVGH with adequate
parameters requires O(d) queries, instead of O(d/ ln d) in Proposition 7.4 from Chapter 7. At
a high level, each hint queried brings information O(d ln d) but memorizing a binary matrix
A ∈ {±1}⌈d/4⌉×d only requires d2 bits of memory: hence the query lower bound is limited to
O(d/ ln d). Instead, memorizing the matrix A where each row lies in Dδ requires Θ(d2 ln 1

ϵ
)

memory, hence querying d hints (total information O(d2 ln d)) is not prohibitive for the lower
bound.

Lower bound of [Mar+22] for convex optimization and randomized algorithms

We aim to improve the result to obtain the following.

Theorem 8.6. For ϵ ≤ 1/d4 and any δ ∈ [0, 1], any (potentially randomized) algorithm
guaranteed to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses
at least d1.25−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+4δ/3) queries.

The distribution considered in [Mar+22] is given by the functions

1

d6
max

{
d5∥Ax∥∞ − 1,max

i∈[N ]
(v⊤i x− iγ)

}
,

where N ≤ d is a parameter, A has ⌊d/2⌋ rows drawn i.i.d. from U({±1}d), and the vectors
vi are drawn i.i.d. from the rescaled hypercube vi ∼ U(d−1/2{±1}d). We adapt the class of
functions by simply changing pre-factors as follows

µmax

{
1

µ
∥Ax∥∞ − 1,max

i∈[N ]
(v⊤i x− iγ)

}
, (8.8)

where A has the same number of rows but they are draw i.i.d. from Uδ, and δ, µ > 0 are
parameters to specify. We use the notation µ instead of η as in the previous sections because
[Mar+22] already use a parameter η which in our context can be interpreted as η = 1/(µ

√
d).

We choose the parameters µ = 16
√
dϵ and δ′ = ϵ.

Again, as for the previous sections, the original proof can be directly used to show that
if an algorithm is guaranteed to find a µ

16
√
N
(≥ ϵ)-suboptimal point for the above function

class, there is an algorithm that wins at their Orthogonal Vector Game (OVG) [Mar+22,
Game 1], with the only difference that the parameter d−4 (l.8 of OVG) is replaced by

√
dµ.

OVG requires the output to be robustly-independent (defined in [Mar+22]) and effectively
corresponds to β = 1/d2 in OVGH. As a result, there is a successful algorithm for the OVGH
with parameters α =

√
dµ and β = 1/d2 and that even completely ignores the hints. Hence,

we can now directly use Proposition 8.3 with ζ = d1+25/16µ (from the assumption ϵ ≤ d−4

we have ζ ≤ 1/
√
d). This shows that with the adequate choice of k = Θ(M+d ln d

d ln 1
ϵ

), the query
lower bound is Ω(d).
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Putting things together, a potentially randomized algorithm for convex optimization that
uses M memory makes at least the following number of queries

Q ≥ Ω

(
Nd

k

)
= Ω

(
d4/3

ln1/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

8.6.2 Proof sketch for improving the query-complexity lower bound

We now turn to improving the query-complexity lower bound by a factor ln 1
ϵ

ln d
. At the high

level, the idea is to replicate these constructed “difficult” class of functions at ln 1
ϵ

ln d
different

scales or levels, similarly to the manner that the historical Ω(d ln 1
ϵ
) lower bound is obtained

for convex optimization [NYD83]. This argument is relatively standard and we only give
details in the context of improving the bound from [Mar+22] for randomized algorithms
in convex optimization for conciseness. This result uses a simpler class of functions, which
greatly eases the exposition. We first present the construction with 2 levels, then present
the generalization to p = Θ(

ln 1
ϵ

ln d
) levels. For convenience, we write

Q(ϵ;M,d) = Ω

(
d4/3

ln1/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

This is the query lower bound given in Theorem 8.7 for convex optimization algorithms with
memory M that optimize the defined class of functions (Eq (8.8)) to accuracy ϵ.

Construction of a bi-level class of functions FA,v1,v2 to optimize

In the lower-bound proof, [Mar+22] introduce the point

x̄ = − 1

2
√
N

∑
i∈[N ]

PA⊥(vi),

where PA⊥ is the projection onto the orthogonal space to the rows of A. They show that
with failure probability at most 2/d, x̄ has good function value

FA,v(x̄) := µmax

{
1

µ
∥Ax̄∥∞ − 1,max

i∈[N ]
(v⊤i x̄− iγ)

}
≤ − µ

8
√
N
.

This is shown in [Mar+22, Lemma 25]. On the other hand, from Theorem 8.6, during the
first

Q1 = Q(ϵ;M,d)

queries of any algorithm, with probability at least 1/3, all queries are at least µ/(16
√
N)-

suboptimal compared to x̄ in function value [Mar+22, Theorem 28, Lemma 14 and Theorem
16]. Precisely, if FA,v is the sampled function to optimize, with probability at least 1/3,

FA,v(xt) ≥ FA,v(x̄) +
µ

16
√
N
≥ FA,v(x̄) +

µ

16
√
d
, ∀t ≤ Q1.
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x

GA,v1(x)

x̄

µξ2
3

GA,v1(x̄)

+µξ2
3 (1 + ∥x− x̄∥2)

ξ2
3

µξ2 · 2ξ29 GA,v1(x̄) +
µξ2
3 +

µξ22
18

+
µξ22
54 maxi∈[N ]

(
v⊤2,i

(
x−x̄
ξ2/9

)
− iγ

)

Figure 8.4: Representation of the procedure to rescale the optimization function.

As a result, we can replicate the term maxi∈[N ](v
⊤
i x− iγ) at a smaller scale within the ball

Bd(x̄, 1/(16
√
d)). For convenience, we introduce ξ2 = 1/(16

√
d) which will be the scale of

the duplicate function. We separate the wall term ∥Ax∥∞ − µ for convenience. Hence, we
define

GA,v1(x) := µmax
i∈[N ]

(
v⊤1,ix− iγ

)
GA,v1,v2(x) := max{GA,v(1)(x), GA,v1(x̄) +

µξ2
3
·

max

{
1 + ∥x− x̄∥2, 1 +

ξ2
6
+
ξ2
18

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)}}
An illustration of the construction is given in Fig. 8.4. The resulting optimization functions
are given by adding the wall term:

FA,v1(x) = max {∥Ax∥∞ − µ,GA,v1(x)}
FA,v1,v2(x) = max {∥Ax∥∞ − µ,GA,v1,v2(x)}

We first explain the choice of parameters. First observe that since ∥Ax̄∥ = 0, we have
GA,v1(x̄) = FA,v1(x̄). We can then check that for all x ∈ Bd(0, 1),

GA,v1,v2(x) ≤ max

{
GA,v1(x), GA,v1(x̄) +

2

3
µξ2

}
. (8.9)

Further, for any x ∈ Bd(x̄, ξ2/3), since FA,v1 is 1-Lipschitz, we can easily check that

GA,v1,v2(x)−GA,v1(x̄)

=
µξ2
3

max

{
1 + ∥x− x̄∥2, 1 +

ξ2
6
+
ξ2
18

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)}
≤ 2

3
µξ2.

Thus, GA,v1,v2(x) does not coincide with GA,v1(x) on Bd(x̄, ξ2/3). Then, the ∥x− x̄∥2 term
ensures that any minimizer of GA,v1,v2 is contained within the closed ball Bd(x̄, ξ2/3). Also,
to obtain a µξ2/3-suboptimal solution of FA,v1,v2 , the algorithm needs to find what would
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be a µξ2-suboptimal solution of FA,v1 , while receiving the same response as when optimizing
the latter. Next, for any x ∈ Bd(x̄, ξ2/9), the term maxi∈[N ]

(
v⊤2,i

(
x−x̄
ξ2/9

)
− iγ

)
lies in [−1, 1].

Hence, we can check that for x ∈ Bd(x̄, ξ2/9),

GA,v1,v2(x) = GA,v1(x̄) +
µξ2
3

+
µξ22
18

+
µξ22
54

max
i∈[N ]

(
v⊤2,i

(
x− x̄
ξ2/9

)
− iγ

)
. (8.10)

We now argue that FA,v1,v2 acts as a duplicate function. Until the algorithm reaches a
point with function value at most GA,v1(x̄) + µξ2, the optimization algorithm only receives
responses consistent with the function FA,v1 by Eq (8.9). Next, all minimizers of FA,v1,v2

are contained in Bd(x̄, ξ2/3), which was the goal of introducing the term in ∥x− x̄∥2. As a
result, optimizing FA,v1,v2 on this ball is equivalent to minimizing

F̃A,v2(y) = max

{
∥Ay∥∞ − µ2, c2 + ν2max

i∈[N ]
(v⊤2,iy − iγ), c′2 + ν ′2∥y∥

}
, y ∈ Bd(0, 3),

where y = x−x̄
ξ2/9

. The function has been rescaled by a factor ξ2/9 compared to FA,v1,v2 so
that µ2 =

9µ
ξ2

, ν2 = µξ2
6

, ν ′2 = 6µ, c2 = 9
ξ2
GA,v1(x̄) + 3µ+ µξ2

2
, and c′2 =

9
ξ2
GA,v1(x̄) + 3µ. By

Eq (8.10), the two first terms of F̃A,v1 are preponderant for y ∈ Bd(0, 1).
The form of F̃A,v2 is very similar to the original form of functions

FA,v2 = max

{
∥Ay∥∞ − µ′

1, µ
′
2max
i∈[N ]

(v⊤2,iy − iγ)
}
,

In fact, the same proof structure for the query-complexity/memory lower-bound can be
applied in this case. The main difference is that originally one had µ′

1 = µ′
2; here we would

instead have µ′
1 = µ2 + c2 = Θ(µ/ξ2) and µ′

2 = ν2 = Θ(µξ2). Intuitively, this corresponds to
increasing the accuracy to Θ(ϵξ22)—a factor ξ2 is due to the fact that F̃A,v2 was rescaled by a
factor ξ2/9 compared to FA,v1,v2 , and a second factor ξ2 is due to the fact that within F̃A,v2 ,
we have µ′

2 = Θ(µξ2)—while the query lower bound is similar to that obtained for Θ(ϵ/ξ2).
As a result, during the first

Q2 = Q

(
Θ

(
ϵ

ξ2

)
;M,d

)
queries of any algorithm optimizing F̃A,v2 , with probability at least 1/3 on the sample of A
and v2, all queries are at least Θ(ϵξ2)-suboptimal compared to

ȳ = − 1

2
√
N

∑
i∈[N ]

PA⊥(v2,i).

We are now ready to give lower bounds on the queries of an algorithm minimizing FA,v1,v2

to accuracy Θ(ϵξ22). Let T2 be the index of the first query with function value at most
GA,v1(x̄) + µξ2. We already checked that before that query, all responses of the oracle are
consistent with minimizing FA,v1 , hence on an event E1 of probability at least 1/3, one has
T2 ≥ Q1. Next, consider the hypothetical case when at time T2, the algorithm is also given
the information of x̄ and is allowed to store this vector. Given this information, optimizing
FA,v1,v2 reduces to optimizing F̃A,v2 since we already know that the minimum is achieved
within Bd(x̄, ξ2/3). Further, any query outside of this ball either
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• returns a vector v1,i which does not give any useful information for the minimization
(v1 and v2 are sampled independently and x̄ is given),

• or returns a row from A, as covered by the original proof.

Hence, on an event E2 of probability at least 1/3, even with the extra information of x̄, during
the next Q2 queries starting from T2, the algorithm does not query a Θ(µξ32)−suboptimal
solution to FA,v1,v2 . This holds a fortiori for the model when the algorithm is not given x̄
at time T2.

Recursive construction of a p-level class of functions FA,v1,...,vp

Similarly as in the last section, one can inductively construct the sequence of functions FA,v1 ,
FA,v1,v2 , FA,v1,v2,v3 , etc. Formally, the induction is constructed as follows: let (vp)p≥1 be an
i.i.d. sequence of N i.i.d. vectors (vk,i)i∈[N ] sampled from the rescaled hypercube d−1/2{±1}d.
Next, we pose

GA,v1(x) = µ(1)max
i∈[N ]

(
v⊤1,i

(
x− x̄(1)

s(1)

)
− iγ

)
,

where µ(1) = µ, x̄(1) = 0 and s(1) = 1. For k ≥ 1, we pose

x̄(k+1) = x̄(k) − s(k)

2
√
N

∑
i∈[N ]

PA⊥(vk,i), and F (k) := GA,v1,...,vk
(x̄(k)) + µ(k)ξk+1,

for a certain parameter ξk+1 to be specified. We then define the next level as

GA,v1,...,vk+1
(x) := max

{
GA,v1,...,vk

(x), GA,v1,...,vk
(x̄(k+1)) +

µ(k)ξk+1

3
·

max

{
1 +
∥x− x̄(k+1)∥2

s(k)
, 1 +

ξk+1

6
+
ξk+1

18
max
i∈[N ]

(
v⊤k+1,i

(
x− x̄(k+1)

s(k)ξk+1/9

)
− iγ

)}}
.

We then pose µ(k+1) := µ(k)ξ2k+1/54 and s(k+1) := s(k)ξk+1/9, which closes the induction. The
optimization functions are defined simply as

FA,v1,...,vk+1
(x) = max

{
∥Ax∥∞ − µ,GA,v1,...,vk+1

(x)
}
.

We checked before that we can use ξ2 = 1/(16
√
d). For general k ≥ 0, given that the form

of the function slightly changes to incorporate the absolute term (see F̃A,v2), this constant
may differ slightly. In any case, one has ξk = Θ(1/

√
d). Now fix a construction level p ≥ 1

and for any k ∈ [p], let Tk be the first time that a point with function value at most F (k) is
queried. For convenience let T0 = 0. Using the same arguments as above recursively, we can
show that on an event Ek with probability at least 1/3,

Tk − Tk−1 ≥ Qk = Q
(
Θ
( µ

s(k)

)
;M,d

)
Next note that the sequence F (k) is decreasing and by construction, if one finds a µ(p)ξp+1-
suboptimal point of FA,v1,...,vp , then this point has value at most F (p). As a result, for an
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algorithm that finds a µ(p)ξp+1-suboptimal point, the times T0, . . . , Tp are all well defined
and non-decreasing. We recall that µ = Θ(

√
dϵ). Therefore, we can still have µ/s(p) ≤

√
ϵ

and µ(p)ξp+1 ≥ ϵ2 for p = Θ(
ln 1

ϵ

ln d
). Combining these observations, we showed that when

optimizing the functions FA,v1,...,vp to accuracy Θ(µ(p)ξp+1) = Ω(ϵ2), the total number of
queries Q satisfies

E[Q] ≥ 1

3

∑
k∈[p]

Qk ≥
p

3
Q(
√
ϵ;M,d) = Θ

(
d4/3 ln 1

ϵ

ln4/3 d

(
d ln 1

ϵ

M + d ln d

)4/3
)
.

Changing ϵ to ϵ2 proves the desired result.

Theorem 8.7. For ϵ ≤ 1/d8 and any δ ∈ [0, 1], any (potentially randomized) algorithm
guaranteed to minimize 1-Lipschitz convex functions over the unit ball with ϵ accuracy uses
at least d1.25−δ ln 1

ϵ
bits of memory or makes Ω̃(d1+4δ/3 ln 1

ϵ
) queries.

The same recursive construction can be applied to the results from Theorems 8.4 and 8.5
to improve their oracle-complexity lower bounds by a factor ln 1

ϵ

ln d
, albeit with added techni-

calities due to the adaptivity of their class of functions. This yields Theorem 8.2.

8.7 Discussion and Conclusion

To the best of our knowledge, this work is the first to provide some positive trade-off between
oracle-complexity and memory-usage for convex optimization or the feasibility problem, as
opposed to lower-bound impossibility results from [Mar+22] or Chapter 7. Our trade-offs
are more significant in a high accuracy regime: when ln 1

ϵ
≈ dc, for c > 0 our trade-offs

are polynomial, while the improvements when ln 1
ϵ
= poly(ln d) are only in ln d factors. A

natural open direction [WS19] is whether there exist algorithms with polynomial trade-offs in
that case. We also show that in the exponential regime ln 1

ϵ
≥ Ω(d ln d), gradient descent is

not Pareto-optimal. Instead, one can keep the optimal memory and decrease the dependence
in ϵ of the oracle-complexity from 1

ϵ2
to (ln 1

ϵ
)d. The question of whether the exponential

dependence in d is necessary is left open. Last, our algorithms rely on the consistency of the
oracle, which allows re-computations. While this is a classical assumption, gradient descent
and classical cutting-plane methods do not need it; removing this assumption could be an
interesting research direction (potentially, this could also yield stronger lower bounds).

8.8 Appendix: Memory-Constrained Gradient Descent
for the Feasibility Problem

In this section, we prove a simple result showing that memory-constrained gradient descent
applies to the feasibility problem. We adapt the algorithm described in [WS19].

We now prove that this memory-constrained gradient descent gives the desired result of
Proposition 8.1.
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Input: Number of iterations T , computation accuracy η ≤ 1, target accuracy ϵ ≤ 1
1 Initialize: x = 0;
2 for t = 0, . . . , T do
3 Query the oracle at x
4 if x successful then return x;
5 Receive a separation vector g with accuracy η
6 Update x as x− ϵg up to accuracy η
7 end
8 return x

Algorithm 8.11: Memory-constrained gradient descent

Proof of Proposition 8.1 Denote by xt the state of x at iteration t, and gt (resp.
g̃t) the separation oracle without rounding errors (resp. with rounding errors) at xt. By
construction,

∥xt+1 − (xt + ϵg̃t)∥ ≤ η and ∥g̃t − gt∥ ≤ η. (8.11)

As a result, recalling that ∥gt∥ = 1,

∥xt+1−x⋆∥2 ≤ (∥xt+ϵg̃t−x⋆∥+η)2 ≤ (∥xt+ϵgt−x⋆∥+(1+ϵ)η)2 ≤ ∥xt+ϵgt−x⋆∥2+20η.

By assumption, Q contains a ball Bd(x
⋆, ϵ) for x⋆ ∈ Bd(0, 1). Then, because gt separates xt

from Bd(x
⋆, ϵ), one has g⊤t (x⋆ − xt) ≥ ϵ. Therefore,

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 + 2ϵg⊤t (xt − x⋆) + ϵ2∥gt∥2 + 20η

≤ ∥xt − x⋆∥2 − ϵ2 + 20η.

Then, take η = ϵ2/40 and T = 8
ϵ2

. If iteration T was performed, we have using the previous
equation

∥xT − x⋆∥2 ≤ ∥x0 − x⋆∥2 −
ϵ2

2
T ≤ 4− ϵ2

2
T ≤ 0.

Hence, xT is an ϵ-suboptimal solution.
We now turn to the memory usage of gradient descent. It only needs to store x and g

up to the desired accuracy η = O(ϵ2). Hence, this storage and the internal computations
can be done with O(d ln d

ϵ
) memory. Because we suppose that ϵ ≤ 1√

d
, this gives the desired

result. ■
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Chapter 9

Gradient Descent is Pareto-Optimal in
the Oracle Complexity and Memory
Trade-off for Feasibility Problems

9.1 Introduction

We consider the feasibility problem in which one has access to a separation oracle for a convex
set contained in the unit ball Q ⊂ Bd(0, 1) := {x ∈ Rd, ∥x∥2 ≤ 1} and aims to find a point
x ∈ Q. For the feasibility problem with accuracy ϵ we assume that Q contains a Euclidean
ball of radius ϵ. The feasibility problem is arguably one of the most fundamental problems
in optimization and mathematical programming. For reference, the feasibility problem is
tightly related to the standard non-smooth convex optimization problem [NY83; Nes03] in
which one aims to minimize Lipschitz smooth functions having access to a first-order oracle:
the gradient information can be used as a separation oracle from the set of minimizers. Both
setups have served as key building blocks for numerous other problems in optimization,
computer science, and machine learning.

The efficiency of algorithms for feasibility problems is classically measured by either their
time complexity or their oracle complexity, that is, the number of calls to the oracles needed
to provide a solution. Both have been extensively studied in the literature: in the regime
ϵ ≤ 1/

√
d the textbook answer is that Θ(d ln 1/ϵ) oracle calls are necessary [NY83] and these

are achieved by the broad class of cutting plane methods, which build upon the seminal
ellipsoid method [YN76a; Kha80]. While the ellipsoid method has suboptimal O(d2 ln 1/ϵ)
oracle complexity, subsequent works including the inscribed ellipsoid [Tar88; Nes89], the
celebrated volumetric center or Vaidya’s method [AV95; Vai96; Ans97], or random walk
based methods [Lev65; BV04] achieve the optimal O(d ln 1/ϵ) oracle complexity. In terms
of runtime, in a remarkable tour-de-force [LSW15; Jia+20] improved upon previous best-
known O(d1+ω ln 1/ϵ)1 complexity of Vaidya’s method and showed that cutting planes can
be implemented with O(d3 ln 1/ϵ) time complexity.

In practice, however, cutting planes are seldom used for large-dimensional applications
and are rather viewed as impractical. While they achieve the optimal oracle complexity, these

1ω < 2.373 denotes the exponent of matrix multiplication
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typically require storing all previous oracle responses, or at the very least, a summary matrix
that uses Ω(d2 ln 1/ϵ) bits of memory and needs to be updated at each iteration (amortized
Ω(d2) runtime per iteration). Instead, gradient-descent-based methods are often preferred
for their practicality. These only keep in memory a few vectors, hence use only O(d ln 1/ϵ)
bits and O(d ln 1/ϵ) runtime per iteration, but require O(1/ϵ2) oracle queries which is largely
suboptimal for ϵ ≪ 1/

√
d. These observations, as well as other practical implementation

concerns, motivated the study of trade-offs between the oracle complexity and other resources
such as memory usage [WS19; Mar+22; CP23] or communication [LLZ20; Red+16; SSZ14;
Smi+17; Mot+13; ZDW12; Wan+18; WWS17].

Previous results on oracle complexity/memory trade-offs for convex optimiza-
tion and feasibility problems. Understanding the trade-offs between oracle complexity
and memory usage was first formally posed as a COLT 2019 open problem in [WS19] in
the convex optimization setup. Quite surprisingly, in the standard regime 1√

d
≥ ϵ ≥ e−d

o(1) ,
gradient descent and cutting planes are still the only two known algorithms in the ora-
cle complexity/memory trade-off for both the feasibility problem and first-order Lipschitz
convex optimization. Other methods have been proposed for other optimization settings
to reduce memory usage including limited-memory Broyden– Fletcher– Goldfarb– Shanno
(BFGS) methods [Noc80; LN89], conjugate gradient methods [FR64; HZ06], Newton meth-
ods variants [PW17; RM19], or custom stepsize schedules [DVR23; AP23], however these do
not improve in memory usage or oracle complexity upon gradient descent or cutting-planes
in our problem setting. However, for super-exponential regimes, in Chapter 8 we proposed
recursive cutting-plane algorithms that provide some trade-off between memory and oracle
complexity, and in particular strictly improve over gradient descent whenever ϵ ≤ e−Ω(d ln d).

More advances were made on impossibility results. [Mar+22] made the first breakthrough
by showing that having both optimal oracle complexity O(d ln 1/ϵ) and optimal O(d ln 1/ϵ)-
bit memory is impossible: any algorithm either uses d1+δ memory or makes Ω̃(d4/3(1−δ))
oracle calls, for any δ ∈ [0, 1/4]. This result was then improved in Chapter 7 and in [CP23]
to show that having optimal oracle complexity is impossible whenever one has less memory
than cutting planes: for δ ∈ [0, 1], any deterministic (resp. randomized) first-order convex
optimization algorithm uses d1+δ memory or makes Ω̃(d4/3−δ/3) queries (resp. Ω(d7/6−δ/6−o(1))
queries if ϵ ≤ e− ln5 d). All these previous query lower bounds were proved for convex op-
timization. For the more general feasibility problem, the query lower bound can be further
improved to Ω̃(d2−δ) for deterministic algorithms as we showed in Chapter 7.

Our contribution. While the previous query lower bounds demonstrated the advantage of
having larger memory, their separation in oracle complexity is very mild: the oracle complex-
ity of memory-constrained algorithms is lower bounded to be d times more than the optimal
complexity O(d ln 1/ϵ)2. This significantly contrasts with the oracle complexity O(1/ϵ2) of
gradient descent which is arbitrarily suboptimal for small accuracies ϵ. In particular, the
question of whether there exists linear-memory algorithms with only logarithmic dependency
ln 1/ϵ for their oracle complexity remained open. Given that gradient descent is most com-

2In fact, the lower bound trade-offs in [Mar+22; CP23] or in Chapter 7 do not include any dependency in
ϵ. However, in Chapter 8 we noted that all previous lower bounds can be modified to add the ln 1/ϵ factor
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monly used and arguably more practical than cutting-planes, understanding whether it can
be improved in the oracle complexity/memory trade-off is an important question to address.

In this work, we provide some answers to the following questions for the feasibility prob-
lem. (1) Can we improve the query complexity of gradient descent while keeping its optimal
memory usage? This question was asked as one of the COLT 2019 open problems of [WS19]
for convex optimization. (2) What is the dependency in ϵ for the oracle complexity of
memory-constrained algorithms? Our first result for deterministic algorithms is summarized
below, where o(1) refers to a function of d vanishing as d→∞.

Theorem 9.1. Fix α ∈ (0, 1]. Let d be a sufficiently large integer (depending on α) and 1√
d
≥

ϵ ≥ e−d
o(1). Then, for any δ ∈ [0, 1], any deterministic algorithm solving feasibility problems

up to accuracy ϵ either uses M = d1+δ bits of memory or makes at least 1/
(
dαδϵ2·

1−δ
1+(1+α)δ

−o(1)
)

queries.

For randomized algorithms, we have the following.

Theorem 9.2. Let d be a sufficiently large integer and 1√
d
≥ ϵ ≥ e−d

o(1). Then, for any
δ ∈ [0, 1/4], any randomized algorithm solving feasibility problems up to accuracy ϵ with prob-
ability at least 9

10
either uses M = d1+δ bits of memory or makes at least 1/

(
d2δϵ2(1−4δ)−o(1))

queries.

Fig. 9.1 provides a visualization of these trade-offs and a comparison to previous results.
As a result, gradient descent is Pareto-optimal (up to a factor d) in the trade-off between
oracle complexity and memory usage for the feasibility problem. In other words, having
optimal memory usage requires suffering the worst-case dependency 1/ϵ2 for the oracle com-
plexity. Further, our results also reveal a sharp phase transition for the oracle complexity
of memory-constrained algorithms: deterministic algorithms that have less than quadratic
memory in the dimension d suffer a factor polynomial in 1/ϵ in their oracle complexity. In
contrast, we recall that using quadratic memory O(d2 ln 1/ϵ), cutting plane methods achieve
a logarithmic dependency in 1/ϵ for the oracle complexity: O(d ln 1/ϵ). For randomized
algorithms, however, our result only implies that if an algorithm has less than d5/4 memory
it suffers a factor polynomial in 1/ϵ in their oracle complexity.

We stress that since the feasibility problem generalizes the convex optimization setup,
lower bound trade-offs for feasibility problems do not imply lower bound trade-offs for convex
optimization, while the converse holds. We hope, however, that the techniques developed in
this work can lead to future results for convex optimization.

On the tightness of the results. Theorems 9.1 and 9.2 are simplified versions of the more
precise lower bound results in Theorems 9.8 and 9.12 respectively. These explicit the term
o(1) in the exponent of our lower bounds, which is of order ln ln d ∨ ln

ln(1/ϵ)
ln d

ln d
, and also provide

lower bound trade-offs in exponential regimes when ϵ = e−d
c , that degrade gracefully as c > 0

grows. While our lower bounds are likely not perfectly tight, our results in Chapter 8 showed
that some dependency in ln ln(1/ϵ)

ln d
/ ln d in the query lower bound exponents is necessary, since

they provide memory-constrained algorithms for exponential regimes. In particular, when
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Figure 9.1: Trade-offs between available memory and oracle complexity for the feasibil-
ity problem with accuracy ϵ in dimension d, in the regime 1√

d
≥ ϵ ≥ e−d

o(1) (adapted
from [WS19]). The dashed pink (resp. green) region corresponds to historical information-
theoretic lower bounds (resp. upper bounds). The region 1 and 2 correspond to the lower
bound trade-offs from [Mar+22] and [CP23] respectively for randomized algorithms. The
region 3 corresponds to the lower bound from Chapter 7 for deterministic algorithms. In
this work, we show that the red (resp. pink) solid region is not achievable for deterministic
(resp. randomized) algorithms.

ϵ ≤ e−Ω(d ln d) we achieved query complexity (O(ln 1/ϵ))d with the optimal O(d ln 1/ϵ)-bit
memory. Hence in this regime, lower bounds cannot be polynomial in 1/ϵ anymore.

The bounds for the deterministic case depend on a parameter α ∈ (0, 1]. An inspec-
tion of the complete bound from Theorem 9.8 shows that in Theorem 9.1 one can take
α = ω(ln ln d/ ln d). This term is due to our analysis of a probing game described in Sec-
tion 9.3. Improving the bounds for this game to delete this term may be possible; we refer
to Section 9.3 for more details.

Additional works on learning with memory constraints. The impact of memory
constraints on learning problems has received much attention in the past years. For parity
learning, [Raz17] first proved that an exponential number of queries is necessary if the
memory is sub-quadratic. Similar results were then obtained for other parity problems
[KRT17; MM17; Raz18; MM18; BOY18; GRT18; GRT19; Gar+21]. Trade-offs between
memory usage and sample complexity were also studied for linear regression [SD15; SSV19],
principal component analysis (PCA) [MCJ13], learning under the statistical query model
[SVW16], minimizing regret in online learning [PZ23; PR23; Sri+22] and other general
learning problems [Bro+21; BBS22].
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9.1.1 Outline of the chapter

We formalize the setup and give preliminary definitions in Section 9.2 then give an overview
of the proof structure and main technical contributions in Section 9.3. We mainly give
details for the deterministic case (Theorem 9.1) but discuss additional proof components for
the randomized case (Theorem 9.2) in Section 9.3.4. We then prove our lower bound trade-off
for deterministic algorithms in Section 9.4 and for randomized algorithms in Section 9.5.

9.2 Formal Setup and Notations

We aim to study the trade-off between memory usage and query complexity for the feasibility
problem over the unit ball Bd(0, 1). The goal is to find an element x ∈ Q for a convex set
Q ⊂ Bd(0, 1) having access to a separation oracle OQ : Bd(0, 1) → Rd ∪ {Success} such
that for any query x ∈ Bd(0, 1), the oracle either returns Success if x ∈ Q or provides a
separating hyperplane g ∈ Rd for Q, i.e., such that

∀x′ ∈ Q, g⊤(x′ − x) < 0.

The oracle is allowed to be randomized and potentially iteration-dependent (sometimes re-
ferred to as oblivious). For the feasibility problem with accuracy ϵ > 0, we assume that
the set Q contains a ball of radius ϵ and ϵ is known to the algorithm. We note that other
works sometimes consider a stronger version of the feasibility problem in which the algorithm
either finds a feasible point x ∈ Q or proves that Q does not contain a ball of size ϵ [LSW15;
Jia+20]. Our impossibility results hence also apply to this setting as well.

We next formally define M -bit memory-constrained algorithms given a query space S
and a response space R. Intuitively, these can only store M bits of memory between each
oracle call.

Definition 9.1 (Memory-constrained algorithm). An M-bit memory-constrained determin-
istic algorithm is specified by query functions ψquery,t : {0, 1}M → S and update functions
ψupdate,t : {0, 1}M × S ×R → {0, 1}M for t ≥ 1. At the beginning of the feasibility problem,
the algorithm starts with the memory state Memory0 = 0M . At each iteration t ≥ 1, it makes
the query xt = ψquery,t(Memoryt−1), receives a response rt ∈ R from a separation oracle, then
updates its memory state Memoryt = ψupdate,t(Memoryt−1,xt, rt).

For M-bit memory-constrained randomized algorithms, the query and update functions
can additionally use fresh randomness at every iteration.

For the feasibility problem, we have in particular S = Bd(0, 1) and R = Rd ∪ {Success}.
Note that the defined notion of memory constraint is quite mild. Indeed, the algorithm is
not memory-constrained for the computation of the query and update functions and can
potentially use unlimited memory and randomness for these; the constraint only applies
between iterations. A fortiori, our lower bounds also apply to stronger notions of memory
constraints.
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Notations. For any x ∈ Rd and r ≥ 0, we denote by Bd(x, r) = {x′ ∈ Rd : ∥x−x′∥2 ≤ 1}
the ball centered at x and of radius r. We denote the unit sphere by Sd−1 = {x : ∥x∥2 = 1}
By default, the norm ∥ · ∥ refers to the Euclidean norm. For any integer n ≥ 1, we use
the shorthand [n] = {1, . . . , n}. We denote e := (1, 0, . . . , 0) ∈ Rd and write Id for the
identity matrix in Rd. We use the notation Span(·) to denote the subspace spanned by
considered vectors or subspaces. For a subspace E, ProjE denotes the orthogonal projection
onto E. For a finite set S, we denote by U(S) the uniform distribution over S. Last, for
d ≥ k ≥ 1, to simplify the wording, a randomi uniform k-dimensional subspace of Rd always
refers to a k-dimensional subspace sampled according to the normalized Haar measure over
the Grassmannian Grk(Rd).

9.3 Technical Overview of the Proofs

In this section, we mainly give an overview of the proof of Theorem 9.1. The result for ran-
domized algorithms Theorem 9.2 follows the same structure with a few differences discussed
in Section 9.3.4.

9.3.1 Challenges for having ϵ-dependent query lower bounds

We first start by discussing the challenges in improving the lower bounds from previous works
[Mar+22; CP23] or from Chapter 7. To make our discussion more concrete, we use as an
example the construction of [Mar+22] who first introduced proof techniques to obtain query
complexity/memory lower bounds, and explain the challenges to extend their construction
and have stronger lower bounds. The constructions from the subsequent work from Chapter 7
or [CP23] use very similar classes of functions and hence present similar challenges. [Mar+22]
defined the following hard class of functions to optimize

FA,v1,...,vN
(x) := max

{
∥Ax∥∞ − η, δ

(
max
i≤N

v⊤i x− iγ
)}

, (9.1)

whereA ∼ U({±1}d/2×d) is sampled with i.i.d. binary entries, the vectors vi
i.i.d.∼ U( 1√

d
{±1}d)

are sampled i.i.d. from the rescaled hypercube, and γ, δ, η ≪ 1 are fixed parameters. We
briefly give some intuition for why this class is hard to optimize for memory-constrained
algorithms.

The first term ∥Ax∥∞−η acts as a barrier wall term: in order to observe the second term
of the function which has been scaled by a small constant δ, one needs to query vectors x
that are approximately orthogonal toA. On the other hand, the second term is a Nemirovski
function [Nem94; BS18; Bub+19] that was used for lower bounds in parallel optimization and
enforces the following behavior: with high probability an optimization algorithm observes
the vectors v1, . . . ,vN in this order and needs to query “robustly-independent” queries to
observe these. A major step of the proof is then to show that finding many queries that are
(1) approximately orthogonal to A and (2) robustly-independent, requires re-querying Ω(d)
of the rows of A. This is done by proving query lower bounds on an Orthogonal Vector
Game that simulates this process. At the high level, one only receives subgradients that
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are rows of A one at a time, while findings vectors that are approximately orthogonal to A
requires information on all of its rows.

A possible hope to improve the query lower bounds is to repeat this construction recur-
sively at different depths, for example sampling other matrices Ap for p ∈ [P ] and adding
a term δ(p)(∥Apx∥∞ − η(p)) to Eq (9.1). This gives rise to a few major challenges. First,
for the recursive argument to work, one needs to ensure that the algorithm has to explore
many robustly-independent queries at each depth. While this is ensured by the Nemirovski
function (because it guides the queries in the direction of vectors −vi sequentially) for the
last layer, this is not true for any term of the form ∥Ax∥∞ − η: a randomly generated
low-dimensional subspace can easily observe all rows of A through subgradients. Intuitively,
a random l dimensional subspace cuts a hypercube [−1, 1]d through all faces even if l ≪ d
(potentially logarithmic in d). Conversely, the Nemirovski function does not enforce queries
to be within a nullspace of a large incompressible random matrix. Further, once the vectors
v1, . . . ,vm have been observed, querying them again poses no difficulty (without having to
query robustly-independent vectors): assuming we can find a point x̂ at the intersection of
the affine maps for which v⊤i x̂ − iγ is roughly equal for all i ∈ [N ], it suffices to randomly
query points in the close neighborhood of x̂ to observe all vectors v1, . . . ,vN again.

In our proof, we still use a recursive argument to give lower bounds and build upon these
proof techniques, however, the construction of the hard instances will need to be significantly
modified.

9.3.2 Construction of the hard class of feasibility problems

The construction uses P ≥ 2 layers and our goal is to show that solving the constructed
feasibility problems requires an exponential number of queries in this depth P . We sample
P i.i.d. uniform d̃-dimensional linear subspaces E1, . . . , EP of Rd where d̃ = ⌈d/(2P )⌉. The
feasible set is defined for some parameters 0 < δ1 < . . . < δP via

QE1,...,EP
:= Bd(0, 1) ∩

{
x : e⊤x ≤ −1

2

}
∩
⋂
p∈[P ]

{
x : ∥ProjEp

(x)∥ ≤ δp

}
. (9.2)

Hence, the goal of the algorithm is to query vectors approximately perpendicular to all
subspaces E1, . . . , EP . The first constraint e⊤x ≤ −1

2
is included only to ensure that the

algorithm does not query vectors with small norm. The parameters δp are chosen to be
exponentially small in P − p via δp = δP/µ

P−p for a factor 1 ≤ µ = O(d3/2). The choice of
the factor µ is crucial: it needs to be chosen as small as possible to maximize the number of
layers P in the construction while still emulating a feasibility problem with given accuracy
ϵ.

We now introduce the procedure to construct our separation oracles, which are designed
to reveal information on subspaces Ep with smallest possible index p ∈ [P ]. For a sequence
of linear subspaces V1, . . . , Vr of Rd that we refer to as probing subspaces, we introduce the
following function which roughly serves as a separation oracle for Span(V1, . . . , Vr)⊥.

gV1,...,Vr(x; δ) :=

{
ProjV (x)

∥ProjV (x)∥ if ∥ProjV (x)∥ > δ,

Success otherwise,
where V = Span(Vi, i ∈ [r]). (9.3)
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In practice, all probing subspaces will have the same fixed dimension l = O(ln d), except for
the last layer for p = P for which we need to finely tune this dimension parameter lP for
the tightness of our results. We ignore this detail in the present overview. We introduce an
adaptive feasibility procedure (see Procedure 9.3) with the following structure. For each level
p ∈ [P ] we keep some probing subspaces V (p)

1 , V
(p)
2 , . . .. These are sampled uniformly within l-

dimensional subspaces of Ep and are designed to “probe” for the query being approximately
perpendicular to the complete space Ep. Because they have dimension l = O(ln d) ≪ d̃,
they each reveal little information about Ep. On the other hand, they may not perfectly
probe for the query being perpendicular to Ep since they have much lower dimension than Ep.
Fortunately, we show these fail only with small probability for adequate choice of parameters
(see Lemma 9.2).

Before describing the procedure, we define exploratory queries at some depth p ∈ [P ].
These are denoted y(p)

i for i ∈ [np] where np is the number of current depth-p exploratory
queries.

Definition 9.2 (Exploratory queries). Given previous exploratory queries y(p)
i and probing

subspaces V (p)
i for p ∈ [P ], i ∈ [np], we say that x ∈ Bd(0, 1) is a depth-p exploratory query

if:

1. e⊤x ≤ −1
2
,

2. the query passed all probes from levels q ≤ p, that is g
V

(q)
1 ,...,V

(q)
nq

(x; δq) = Success.
Equivalently,

∥Proj
Span(V

(q)
i ,i∈[nq ])

(x)∥ ≤ δq, q ∈ [p] (9.4)

3. and it is robustly-independent from all previous depth-p exploratory queries,

∥Proj
Span(y

(p)
r ,r≤np)⊥

(x)∥ ≥ δp. (9.5)

The probing subspaces are updated throughout the procedure. Whenever a new depth-p
exploratory query is made, we sample a new l-dimensional linear subspace V (p)

np+1 uniformly
in Ep unless there were already np = k such subspaces for some fixed parameter k ∈ [d̃]. In
that case, we reset all exploratory queries at depth depths q ≤ p, pose nq = 1, and sample
new subspaces V (q)

1 for q ∈ [p]. For each level p, denoting by V (p) := (V
(p)
1 , . . . , V

(p)
np ) the list

of current depth-p probing subspaces, we define the oracle as follows

OV (1),...,V (P )(x) :=


e if e⊤x > −1

2

gV (p) (x; δp) if gV (p) (x; δp) ̸= Success

and p = min {q ∈ [P ], gV (q) (x; δq) ̸= Success}
Success otherwise.

(9.6)

The final procedure first tries to use the above oracle, then turns to some arbitrary separation
oracle for QE1,...,EP

when the previous oracle returns Success. When the procedure returns
a vector of the form gV (p)(x; δp) for some p ∈ [P ], we say that x was a depth-p query. We
can then check that with high probability, this procedure forms a valid adaptive feasibility
problem for accuracy ϵ = δ1/2 (Lemma 9.1).
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9.3.3 Structure of the proof for deterministic algorithms.

For all p ∈ [P ], we refer to a depth-p period as the interval of time between two consecutive
times when the depth-p probing subspaces were reset. We first introduce a depth-p game
(Game 9.4) that emulates the run of the procedure for a given depth-p period, the main
difference being that the goal of the algorithm is not to query a feasible point in QE1,...,EP

anymore, but to make k depth-p exploratory queries. This makes the problem more sym-
metric in the number of layers p ∈ [P ] which will help for a recursive query lower bound
argument.

Properties of probing subspaces. We show that the depth-p probing subspaces are a
good proxy for testing orthogonality to Ep. This is formalized with the notion of proper
periods (see Definition 9.3) during which if the algorithm performed a depth-p′ query xt
with p′ > p—hence passed the probes at level p—it satisfies ∥ProjEp

(xt)∥ ≤ ηp for some
parameter ηp ≥ δp as small as possible. We show in Lemma 9.2 that periods are indeed
proper with high probability if we take ηp = Ω(

√
d̃kαδp) for any fixed α ∈ (0, 1]. The proof

of this result is one of the main technicalities of the present work and uses a reduction to
the following Probing Game.

Input: dimension d, response dimension l, number of exploratory queries k, objective
ρ > 0

1 Oracle: Sample independent uniform l-dimensional subspaces V1, . . . , Vk in Rd.
2 for i ∈ [k] do
3 Player: Based on responses Vj, j < i, submit query yi ∈ Rd

4 Oracle: return Vi to the player
5 end
6 Player wins if for any i ∈ [k] there exists a vector z ∈ Span(yj, j ∈ [i]) such that

∥ProjSpan(Vj ,j∈[i])(z)∥ ≤ ρ and ∥z∥ = 1.

Game 9.1: Probing game

Our goal is to show that no player can win at this game with reasonable probability. In
this game, the player needs to output k robustly-independent queries that are perpendicular
to the probing spaces. Because these only span at most k dimensions, if the probing subspaces
had dimension l = Ω(k) we could easily prove the desired result (from high-dimensional
concentration results akin to the Johnson–Lindenstrauss lemma). This is prohibitive for
the tightness of our results, however. In fact, for our result for randomized algorithms, we
are constrained to this suboptimal choice of parameters, which is one of the reasons why
the lower bound trade-off from Theorem 9.2 does not extend to full quadratic memory d2.
Instead, we show that l = O(ln d) are sufficient to ensure that Game 9.1 is impossible with
high probability (Theorem 9.5), which is used for the deterministic case. This requires the
following result for adaptive random matrices.
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Theorem 9.3. Let C ≥ 2 be an integer and m = Cn. Let M ∈ Rn×m be a random matrix
such that all coordinates Mi,j in the upper-triangle j > (i− 1)C are together i.i.d. Gaussians
N (0, 1). Further, suppose that for any i ∈ [n], the Gaussian components Mu,v for v >
(u−1)C with v > C(i−1) are together independent from the sub-matrix (Mu,v)u∈[i],v∈[C(i−1)].
Then for any α ∈ (0, 1], if C ≥ Cα lnn, we have

P

(
σ1(M) <

1

6

√
C

nα

)
≤ 3e−C/16.

Here Cα = (C2/α)
ln 2/α for some universal constant C2 ≥ 8.

As a remark, even for the case when the matrix is exactly upper-triangular, that is,
Mi,j = 0 for all j ≤ (i − 1)C, we are not aware of probabilistic lower bounds on the
smallest singular value. Note that this matrix is upper-triangular on a rectangle instead
of a square, which is non-standard. We state the corresponding result for upper-triangular
rectangular matrices in Corollary 9.1, which may be of independent interest. For square
matrices, previous works showed that the smallest singular value is exponentially small in
the dimension n [VT98], which is prohibitive for our purposes. Alternatively, [RZ16] give
bounds when the i.i.d. Gaussian part of the matrix is broadly connected, a notion similar to
graph expansion properties. However, these assumptions are not satisfied if that Gaussian
part corresponds to the upper triangle, for which some nodes are sparsely connected. Further,
here we potentially allow the coordinates in the lower-triangle to be adaptive in a subset of
coordinates in the upper-triangle. We are not aware of prior works that give singular values
lower bounds for adaptive components on non-i.i.d. parts, as opposed to simply deterministic
components as considered in [RZ16].

We briefly discuss the tightness of Theorem 9.3. We suspect that the extra factor nα in
the denominator for the bound of σ1(M ) may be superfluous. One can easily check that the
best bound one could hope for here is σ1(M) = Ω(

√
C). This extra factor nα is the reason for

the term α in the query lower bound from Theorem 9.1, hence shaving off this factor would
directly improve our lower bounds trade-offs. The success probability (exponentially small
in C, but not in n) is however tight, and experimentally it seems that having C = Ω(lnn) is
also necessary.

Query lower bounds for an Orthogonal Subspace Game. In the construction of
the adaptive feasibility procedure (Procedure 9.3) we reset all exploratory queries and prob-
ing subspaces for depths p′ ≤ p whenever k depth-p queries are performed. This gives a
nested structure to periods: a depth-p period is a union of depth-(p − 1) periods. We then
show that we can reduce the run of a depth-p period to the following Orthogonal Subspace
Game 9.2 for appropriate choice of parameters, provided that all contained depth-(p − 1)
periods are proper. This game is heavily inspired by the Orthogonal Vector Game introduced
in [Mar+22].

We prove a query lower bound Ω(d) for this game if the player does not have sufficient
memory and needs to find too many robustly-independent vectors.
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Input: dimensions d, d̃; memory M ; number of robustly-independent vectors k;
number of queries m; parameters β, γ

1 Oracle: Sample a uniform d̃-dimensional subspace E in Rd and v1, . . . ,vm
i.i.d.∼ U(Sd∩E)

2 Player: Observe E and v1, . . . ,vm, and store an M -bit message Message about these
3 Oracle: Send samples v1, . . . ,vm to player
4 Player: Based on Message and v1, . . . ,vm only, return unit norm vectors y1, . . . ,yk
5 The player wins if for all i ∈ [k]

1. ∥ProjE(yi)∥ ≤ β

2. ∥ProjSpan(y1,...,yi−1)⊥(yi)∥ ≥ γ.

Game 9.2: Orthogonal Subspace Game

Theorem 9.4. Let d ≥ 8, C ≥ 1, and 0 < β, γ ≤ 1 such that γ/β ≥ 12
√
kd/d̃. Suppose

that d̃
4
≥ k ≥ 50CM+2

d̃
ln

√
d
γ

. If the player wins the Orthogonal Subspace Game 9.2 with

probability at least 1/C, then m ≥ d̃
2
.

For our lower bounds to reach the query complexity 1/ϵ2 of gradient descent, we need
the parameter choices of Theorem 9.4 to be tight. In particular, the robustly-independent
parameter γ is allowed to be roughly of the same order of magnitude as the orthogonality
parameter δ. Previous works required at least a factor

√
d between these two parameters.

For intuition, having the constraint γ/β ≥ dc for some constant c ≥ 0 would at best yield a
lower bound query complexity of 1/ϵ2/(1+2c) even for linear memory d.

Reduction from the feasibility procedure to the Orthogonal Subspace Game. We
briefly explain the reduction from running a depth-p period of the feasibility game to the
Orthogonal Subspace Game 9.2. This will also clarify why query lower bounds heavily rely
on the constraint for γ/β from Theorem 9.4. In this context, finding exploratory queries
translates into finding robustly-independent vectors (as in Eq (9.5)). Further, provided that
the corresponding depth-(p − 1) periods are proper, exploratory queries also need to be
orthogonal to the subspace Ep−1 up to the parameter ηp−1. In turn, we show that this gives
a strategy for the Orthogonal Subspace Game 9.2 for parameters (β, γ) = (2ηp−1, δp). Hence,
a lower bound on γ/β directly induces a lower bound on the factor parameter µ = δp−1/δp
on which the parameter δ1 depends exponentially.

Also, because the procedure is adaptive, responses for depth-p′ queries with p′ > p
may reveal information about the subspace Ep—this also needs to be taken into account
by the reduction. Indeed, although the subspaces Ep and Ep′ are independent, depth-p′
responses are constructed from the depth-p′ probing subspaces which are added adaptively
on previous depth-p′ exploratory queries (see Section 9.3.2), for which the algorithm can use
any information it previously had on Ep. However, we show that this information leakage is
mild and can be absorbed into a larger memory for the Orthogonal Subspace Game 9.2.
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Recursive query lower bounds. The query lower bound for Theorem 9.4 then implies
that the algorithm must complete many depth-(p − 1) periods within a depth-p period
(Lemma 9.6). By simulating one of these depth-(p−1) periods, we show that from a strategy
for depth-p periods that performs Tp queries we can construct a strategy for depth-(p − 1)
periods that uses at most Tp−1 ≈ lk

d̃
Tp (Lemma 9.7). Applying this result recursively reduces

the number of allowed queries exponentially with the depth P . Selecting the parameters k
and P appropriately gives the query lower bound from Theorem 9.1 for memory-constrained
algorithms.

9.3.4 Other proof components for randomized algorithms

For randomized algorithms we cannot construct an adaptive feasibility procedure. In par-
ticular, we cannot add a new probing subspace whenever a new exploratory query was per-
formed. Instead, we construct an oblivious iteration-dependent oracle and resample probing
subspaces regularly (see formal definition in Eq (9.37)) hoping that for most periods the
algorithm did not have time to perform k exploratory queries.

This has a few main implications. First, we cannot use the convenient dimension l =
O(ln d) for probing subspaces anymore because this heavily relied on the structure of the
Probing Game 9.1, for which we sample a new probing subspace just after every new direction
is explored. Instead, the probing subspaces V (p)

1 , . . . , V
(p)
k need to be present at all times in

the oracle and kept constant within a depth-p period. Second, we still need to ensure that
the algorithm discovers the probing subspaces in the exact order V (p)

1 , . . . , V
(p)
k . Hence we

use for each one of these a slightly different orthogonality tolerance parameter. Precisely,
instead of using the oracle gV1,...,Vk as in the deterministic case, we define

IV1,...,Vr(x; δ) =
{
i ∈ [k] : ∥ProjVi(x)∥ > δi

}
.

for some parameter δ = (δ1 > . . . > δk) and use the following oracle

g̃V1,...,Vr(x; δ) :=

{ ProjVi (x)
∥ProjVi (x)∥

if IV1,...,Vk(x; δ) ̸= ∅ and i = min IV1,...,Vk(x; δ),
Success otherwise.

The main idea is that while the algorithm does not query vectors slightly orthogonal to V1,
it cannot see V2, and so on. Unfortunately, concentration bounds only ensure that this is
true if the dimension l of the probing subspaces is sufficiently large. In practice, we need
l = Ω(k ln d). Third and last, as it turns out, we cannot ensure that for all depth-(p − 1)
periods within a given depth-p period, the probing subspaces were good proxies for being
orthogonal to Ep−1. In fact, this will most of the time be false. However, given the index of
the depth-(p−1) that was improper, we show that the algorithm does perform k exploratory
queries during this period. This still gives the desired recursive argument at the expense of
giving the algorithm some extra power to select which period to play. As a consequence, the
probing subspaces in the played period are not distributed uniformly among l-dimensional
subspaces of Ep anymore. To resolve this issue, we adapt the Orthogonal Subspace Game 9.2
to include this additional degree of liberty of the player (see Game 9.14) and show that the
query lower bounds still hold (Theorem 9.9).
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9.4 Query Complexity / Memory Trade-offs for Deter-
ministic Algorithms

9.4.1 Definition of the feasibility procedure

We give here the detailed construction for the hard class of feasibility problems. We mainly
specify the parameters that were already introduced in Section 9.3.2. Fix the parameter
P ≥ 2 for the depth of the nested construction. We assume throughout this chapter that
d ≥ 40P . We sample P uniformly random d̃-dimensional linear subspaces Ep of Rd where
d := ⌊d/(2P )⌋. Note that with our choice of parameters (d ≥ 40P ) we have in particular
d̃ ≥ d

3P
. We next introduce a parameter k ∈ [d̃] and fix α ∈ (0, 1) a constant that will define

the sharpness of the Pareto-frontier (the smaller α, the stronger the lower bounds, but these
would apply for larger dimensions). Next, we define

l :=
⌈
16 ln(32d2P ) ∨ Cα ln k

⌉
, (9.7)

for some constant Cα = (O(1/α))ln 2/α that only depends on α and that will formally be
introduced in Theorem 9.3. For the last layer P , we use an extra-parameter lP ∈ [d̃] such
that lP ≥ l. For convenience, we then define lp = l for all p ∈ [P − 1]. It remains to define
some parameters ηp for p ∈ [P ] that will quantify the precision needed for the algorithm at
depth p. For the tightness of our results, we need to define the last layer P with different
parameters, as follows:

ηP :=
1

10

√
d̃

d
and µP := 600

√
dk1+α

lP
.

For p ∈ [P − 1], we let

ηp :=
ηP/µP
µP−p−1

where µ := 600

√
dk1+α

l
. (9.8)

The orthogonality parameters δ1, . . . , δP are then defined as

δp :=
ηp
36

√
lp

d̃kα
, p ∈ [P − 1]. (9.9)

Note that at this point, the three main remaining parameters are the depth P , the dimension
lP at the last layer, and k which will serve as the maximum number of exploratory queries
within a period. Also, note that if lP = l, then the last layer for p = P is constructed
identically as the other ones.

Given these parameters, the feasible set QE1,...,EP
is given as in Eq (9.2). For any probing

subspaces V1, . . . , Vr, we recall the form of the function gV1,...,Vr(·; δ) from Eq (9.3). Next, we
recall the definition of depth-p exploratory queries for p ∈ [P ] from Definition 9.2. Intuitively,
these are queries that pass probes for all depths q < p and are robustly-independent from
previous depth-p exploratory queries. We recall the notation np for the number of depth-p
exploratory queries. These are denoted by y(p)

1 , . . . ,y
(p)
np .
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Input: depth P ; dimensions d, d̃, l1. . . . , lP ; number of exploratory queries k; algorithm
alg

1 Sample independently E1, . . . , EP , uniform d̃-dimensional subspaces of Rd

2 Initialize np ← 0 for p ∈ [P ] and set memory of alg to 0
3 while alg has not queried a successful point (in QE1,...,EP

) do
4 Run alg with current memory to obtain query x
5 for p ∈ [P ] do
6 if x is a depth-p exploratory query, i.e., satisfies Eq (9.4) and (9.5) then
7 if np < k then
8 np ← np + 1

9 y
(p)
np ← x and sample V (p)

np a uniform lp-dimensional subspace of Ep
10 else
11 Reset nq ← 1 for q ∈ [p]

12 y
(q)
1 ← x and sample V (q)

1 a uniform lq-dimensional subspace of Eq for
q ∈ [p]

13 end
14 if OV (x) ̸= Success then return OV (x) as response to alg;
15 else return OE1,...,EP

(x) as response to alg;
16 end

Procedure 9.3: Adaptive separation oracle for optimization algorithm alg

We are now ready to introduce the complete procedure to construct the adaptive sepa-
ration oracles, which is formally detailed in Procedure 9.3. The procedure has P ≥ 1 levels,
each of which is associated to a d̃-dimensional subspace E1, . . . , EP that one needs to query
perpendicular queries to. Whenever a new depth-p exploratory query is made, we sample a
new lp-dimensional linear subspace V (p)

np+1 uniformly in Ep unless there were already np = k
such subspaces. In that case, we reset all exploratory queries at depth p as well as all depths
q ≤ p, we pose nq = 1, and sample new subspaces V (q)

1 . We recall that lp = l except for
p = P . For each level we denote by V (p) := (V

(p)
1 , . . . , V

(p)
np ) the list of current linear sub-

spaces at depth p. We next recall the form of the oracle OV (1),...,V (P ) from Eq (9.6). When
this oracle returns a vector of the form gV (p)(x; δp) for some p ∈ [P ], we say that x was a
depth-p query. For simplicity, we may use the shorthand OV (x) where V = (V (1), . . . ,V (P ))
is the collection of the previous sequences when there is no ambiguity.

Note that O(E1),...,(EP ) is a valid separation oracle for QE1,...,EP
. By abuse of notation, we

will simply write it as OE1,...,EP
. Indeed, we can check that

OE1,...,EP
(x) =


e if e⊤x > −1

2
ProjEp

(x)

∥ProjEp
(x)∥ if ∥ProjEp

(x)∥ > δp and p = min
{
q ∈ [P ], ∥ProjEq

(x)∥ > δq

}
Success otherwise.

We will fall back to this simple separation oracle for QE1,...,EP
whenever the oracles from

OV (1),...,V (P ) return Success (lines 14-15 of Procedure 9.3).
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We first check that Procedure 9.3 indeed corresponds to a valid run for a feasibility
problem and specify its corresponding accuracy parameter.

Lemma 9.1. If P ≥ 2 and d ≥ 40P , then with probability at least 1 − e−d/40 over the
randomness of E1, . . . , EP , the set QE1,...,EP

contains a ball of radius δ1/2 and all responses
of the procedure are valid separating hyperplanes for this feasible set.

Proof Note that OV either returns Success or outputs a separating hyperplane for QE1,...,EP
.

When OV outputs Success, the procedure instead uses an arbitrary valid separation oracle
OE1,...,EP

(line 15 of Procedure 9.3). We now bound the accuracy parameter ϵ. Because
E1 . . . , EP are sampled uniformly randomly, on an event E of probability one, they are
all linearly independent. Hence Span(Ep, p ∈ [P ])⊥ has dimension d − d̃P ≥ d/2 and
this space is uniformly randomly distributed. In particular, Lemma 9.14 implies that with
f := ProjSpan(Ep,p∈[P ])⊥(e),

P
(
∥f∥ ≤ 1

2
+

1

40

)
≤ P

∥f∥ ≤
√
d− d̃P
d

(
1− 1√

5

) ≤ e−(d−d̃P )/20 ≤ e−d/40.

Denote by F the complement of this event in which ∥f∥ > 1
2
+ 1

40
. Then, under E ∩F which

has probability at least 1− e−d/72,

Bd(0, 1) ∩Bd (f , δ1 ∧ 1/40) ⊂ QE1,...,EP
.

Note that δ1 ≤ 1/240. Hence the left-hand side is simply Bd(0, 1) ∩Bd(f , δ1). Now because
f ∈ Bd(0, 1), this intersection contains a ball of radius δ1/2. ■

9.4.2 Construction of the feasibility game for all depths

Before trying to prove query lower bounds for memory-constrained algorithms under the
feasibility Procedure 9.3, we first define a few concepts. For any p ∈ [P ], we recall that a
depth-p period as the interval [t1, t2) between two consecutive times t1 < t2 when np was
reset—we consider that it was also reset at time t = 1. Except for time t = 1, the reset
happens at lines 11-12 of Procedure 9.3. Note that at the beginning of a period, all probing
subspaces V (p)

i for i ∈ [k] are also reset (they will be overwritten during the period). We say
that the period [t1, . . . , t2) is complete if during this period the algorithm queried k depth-p
exploratory queries, or equivalently, if at any time during this period one had np = k.

The query lower bound proof uses an induction argument on the depth p ∈ [P ]. Precisely,
we aim to show a lower bound on the number of iterations needed to complete a period for
some depth p ∈ [P ]. To do so, instead of working directly with Procedure 9.3, we prove lower
bounds on the following Depth-p Game 9.4 for p ∈ [P ]. Intuitively, it emulates the run of
a completed depth-p period from the original feasibility procedure except for the following
main points.

1. We allow the learner to have access to some initial memory about the subspaces
E1, . . . , EP . This intuitively makes it simpler for the player.
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Input: game depth p ∈ [P ]; number of exploratory queries k; dimensions d, d̃,
l1, . . . , lP ; M -bit memory algorithm alg; number queries Tmax

1 Oracle: Sample independently E1, . . . , EP , uniform d̃-dimensional linear subspaces of
Rd and for i ∈ [P − p] sample k uniform lp+i-dimensional subspaces of Ep+i: V

(p+i)
j for

j ∈ [k]

2 Player: Observe E1, . . . , EP and V (p+i)
j for i ∈ [P − p], j ∈ [k]. Submit to oracle an

M -bit message Message, and for all i ∈ [P − p] submit an integer np+i ∈ [k] and
vectors y(p+i)

j ∈ Rd for j ∈ [np+i]

3 Oracle: Initialize memory of alg to Message. Set np′ ← 0 for p′ ∈ [p] and for i ∈ [P − p],
and np+i as submitted by player. Reset probing subspaces V (p+i)

j for i ∈ [P − p] and
j > np+i

4 Oracle: for t ∈ [Tmax] do
5 Run alg with current memory to get query xt
6 Update exploratory queries y(p′)

i and subspaces V (p′)
i for p′ ∈ [P ], i ∈ [np′ ] as in

Procedure 9.3 and return gt = OV (xt) as response to alg
7 if np was reset because a deeper period was completed (np ← 1 in line 12 of

Procedure 9.3) then player loses, end game;
8 if np = k then player wins. end game;
9 end

10 Player loses
Game 9.4: Depth-p Feasibility Game

2. The learner can also submit some vectors y(p+i)
j for i ∈ [P−p] that emulate exploratory

queries for deeper depths than p.

3. The objective is not to find a point in the feasible set QE1,...,EP
anymore, but simply to

complete the depth-p period, that is, make k depth-p exploratory queries. Note that
the player loses if a deeper period was completed (line 7 of Game 9.4). Hence, during
a winning run, no depth-p′ periods with p′ > p were completed.

4. The player has a maximum number of calls to the separation oracle available Tmax.

Note that the role of the player here is only to submit the message Message and exploratory
queries for depths p′ > p to the oracle, in addition to providing a M -bit memory algorithm
alg. In the second part of Game 9.4, the oracle directly emulates a run of a depth-p period
of Procedure 9.3 (without needing input from the player). We will also use the term depth-q
period for q ∈ [p] for this game. One of the interests of the third point is to make the
problem symmetric in terms of the objectives at depth p ∈ [P ], which will help implement
our recursive query lower bound argument.
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9.4.3 Properties of the probing subspaces

The probing subspaces V (q)
i at any level q ∈ [P ] are designed to “probe” for the query x being

close to the perpendicular space to Eq. Precisely, the first step of the proof is to show that if
a query xt passed probes at level q, then with high probability it satisfied ∥ProjEp

(xt)∥ ≤ ηp.
To prove this formally, we introduce the Probing Game 9.1. It mimics Procedure 9.3 but
focuses on exploratory queries at a single layer. We recall its definition here for the sake of
exposition.

Input: dimension d, response dimension l, number of exploratory queries k, objective
ρ > 0

1 Oracle: Sample independent uniform l-dimensional subspaces V1, . . . , Vk in Rd.
2 for i ∈ [k] do
3 Player: Based on responses Vj, j < i, submit query yi ∈ Rd

4 Oracle: return Vi to the player
5 end
6 Player wins if for any i ∈ [k] there exists a vector z ∈ Span(yj, j ∈ [i]) such that

∥ProjSpan(Vj ,j∈[i])(z)∥ ≤ ρ and ∥z∥ = 1.

Game 9.1: Probing Game

Our goal is to give a bound on the probability of success of any strategy for Game 9.1.
To do so, we need to prove the Theorem 9.3 which essentially bounds the smallest singular
value of random matrices for which the upper triangle components are all i.i.d. standard
normal random variables. We start by proving the result in the case when the lower triangle
is identically zero, which may be of independent interest.

Corollary 9.1. Let C ≥ 2 be an integer and m = Cn. Let M ∈ Rn×m be the random matrix
such that all coordinates Mi,j in the upper-triangle j > (i− 1)C are together i.i.d. Gaussians
N (0, 1) and the lower triangle is zero, that is Mi,j = 0 for j ≤ (i − 1)C. Then for any
α ∈ (0, 1], if C ≥ Cα lnn, we have

P

(
σ1(M) <

1

6

√
C

nα

)
≤ 3e−C/16.

Here Cα = (C2/α)
ln 2/α for some universal constant C2 ≥ 8.

Proof We use an ϵ-net argument to prove this result. However, we will need to construct
the argument for various scales of ϵ because of the non-homogeneity of the triangular matrix
M . First, we can upper bound the maximum singular value of M directly as follows (see
e.g. [Ver20, Theorem 4.4.5] or [Tao23, Exercise 2.3.3]),

P(∥M∥op > C1

√
Cn) ≤ e−Cn

for some universal constant C1 ≥ 1. For convenience, let us write

M (i) := (Mu,v)u∈[i,n],v∈[1+C(i−1),Cn], i ∈ [n].
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Applying the above result implies that

P(∥M(i)∥op > C1

√
C(n− i+ 1)) ≤ e−C(n−i+1), i ∈ [n].

In particular, the event

E =
⋂
i∈[n]

{
∥M (i)∥op ≤ C1

√
C(n− i+ 1)

}
(9.10)

satisfies P(Ec) ≤
∑

i∈[n] e
−C(n−i+1) ≤ 2e−C because C ≥ ln(2). Next, let ϵ = 1/(6nC1) and

fix a constant α ∈ (0, 1). For any i ∈ [n], we construct an ϵ-net Σi of all unit vectors which
have non-zero coordinates in [i, n], that is Sd−1 ∩ {x : ∀j < i, xj = 0}. For any x ∈ Sd−1

note that

∥M⊤x∥2 ∼
n∑
i=1

Yi · ∥(xj)j∈[i]∥2,

where Y1, . . . , Yn
i.i.d.∼ χ2(C) are i.i.d. chi-squared random variables. Hence, for and i ∈ [n],

together with Lemma 9.13 this shows that

P

∥M⊤x∥ < 1

2

√
C(n− i+ 1)

∑
j∈[i]

x2j

 ≤ P

(
n∑
j=i

Yj <
C(n− i+ 1)

4

)
≤ e−C(n−i+1)/8.

In the last inequality, we used the fact that
∑n

j=i Yi ∼ χ2(C(n − i + 1)) hence has the
distribution of the squared norm of a Gaussian N (0, In−i+1). Next, because Σi is an ϵ-net
of a sphere of dimension n − i + 1 (restricted to the last n − i + 1 coordinates) there is a
universal constant C2 ≥ 1 such that |Σ(i)| ≤ (C2/ϵ)

n−i+1 (e.g. see [Tao23, Lemma 2.3.4]. For
any i ∈ [n], we write l(i) = 1∨(n−Lα(n−i+1)+1) for a constant integer Lα ≥ 2(C1/α)

ln 2/α

to be fixed later. Note that by construction we always have n − l(i) + 1 ≤ Lα(n − i + 1).
Finally, we define the event

F =
⋂
i∈[n]

⋂
x∈Σl(i)

∥M⊤x∥ ≥ 1

2

√
C(n− i+ 1)

∑
j∈[i]

x2j

 .

Provided that eC/16 ≥ 2(C2/ϵ)
Lα the union bound implies

P(F c) ≤
n∑
i=1

|Σl(i)|e−C(n−i+1)/8 ≤
n∑
i=1

(
CLα

2

ϵLαeC/8

)n−i+1

≤ e−C/16.

We note that the equation eC/16 ≥ 2(C2/ϵ)
Lα is equivalent to C/16 ≥ Lα ln(6C1C2

√
n)+ln 2,

which is satisfied whenever C ≥ C3Lα lnn for some universal constant C3 ≥ 16. We suppose
that this is the case from now on and that the event E ∩ F is satisfied.

We now construct a sequence of growing indices as follows. For all k ≤ ⌊log2(n)⌋−1 := k0,
we let ik := n− 2k + 1 for k < k0. For any x ∈ Sd−1, we define

k(x) := arg max
k∈{0,...,k0}

eαkf(k;x) where f(k;x) := (n− ik + 1)
∑
j∈[ik]

x2j .
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Note that because i0 = n, the inner maximization problem has value at least
∑

j∈[n] x
2
j = 1.

Also, for any k ≥ k(x), we have

f(k;x) ≤ e−α(k−k(x))f(k(x);x). (9.11)

We will also use the shortcut l(x) = l(ik(x)). Let x̂ be the nearest neighbor of x in Σl(x),
that is the nearest neighbor of the vector y = (xj1j≥l(x))j∈[n]. By construction of the ϵ-
nets we have ∥y − x̂∥ ≤ ϵ. Now observe that x − y only has non-zero values for the first
l(x)− 1 coordinates. We let r(x) be the index such that ir(x)+1 < l(x)− 1 ≤ ir(x) (with the
convention ik0+1 = 0). We decompose x − y as the linear sum of vectors for r ∈ [r(x), k0]
such that the r-th vector only has non-zero values for coordinates in (ir+1, ir]. Then, using
the triangular inequality

∥M⊤x∥ ≥ ∥M⊤x̂∥ − ∥M⊤(y − x̂)∥ −
k0∑

r=r(x)

∥M⊤(xj1ir+1<j≤ir∧(l(x)−1))j∈[n]∥ (9.12)

≥ ∥M⊤x̂∥ − ϵ∥M(l(x))⊤∥op −
k0∑

r=r(x)

∥M (ir)∥op
√∑

j∈[ir]

x2j (9.13)

≥ ∥M⊤x̂∥ − C1ϵ
√
Cn− C1

k0∑
r=r(x)

√
C · f(r;x). (9.14)

In the last inequality we used Eq (9.10). We start by treating the second term containing ϵ.
We recall that the inner maximization problem defining k(x) has value at least 1, so that

f(k(x);x) ≥ e−αk(x) ≥ e−αk0 ≥ n−α. (9.15)

As a result, recalling that α ∈ (0, 1], we have

C1ϵ
√
Cn ≤ 1

6

√
C

n
≤
√
C · f(k(x);x)

6
. (9.16)

Next, by Eq (9.11) we have

k0∑
r=r(x)

√
f(r;x) ≤

√
f(k(x);x)

k0∑
r=r(x)

e−α(r−k(x))/2 ≤ e−α(r(x)−k(x))/2

1− e−α/2
√
f(k(x);x)

≤ 4

α
e−α(r(x)−k(x))/2

√
f(k(x);x).

In the last inequality, we used the fact that α ∈ (0, 1) and that e−x ≤ 1−x/2 for all x ∈ [0, 1].
Next, recall that ir(x)+1 < l(x) − 1. Hence, either l(x) = 1 in which case the sum above is
empty, or we have

2r(x)+1 = n− ir(x)+1 + 1 ≥ n− l(x) + 1 = Lα(n− ik(x) + 1) = Lα2
k(x).
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As a result, r(x) − k(x) ≥ log2 Lα − 1. We now select Lα to be the minimum integer for
which log2 Lα − 1 ≥ 2 ln(24C1/α)

α
. In turn, this implies

C1

k0∑
r=r(x)

√
C · f(r;x) ≤

√
C · f(k(x);x)

6
. (9.17)

Putting together Eq (9.14), (9.16), (9.17) we obtained

∥M⊤x∥ ≥ ∥M⊤x̂∥ − 1

3

√
C · f(k(x);x) ≥ 1

6

√
C · f(k(x);x) ≥ 1

6

√
C

nα
.

where in the second inequality, we used the event F and the last inequality used Eq (9.15).
In summary, we showed that if C ≥ C2Lα lnn, then

P

(
σ1(M) ≥ 1

6

√
C

nα

)
≥ P(E ∩ F) ≥ 1− 3e−C/16.

This ends the proof of the result. ■

We are now ready to prove Theorem 9.3 which generalizes Corollary 9.1 to some cases
when the lower triangle can be dependent on the upper triangle.

Proof of Theorem 9.3 The main part of the proof reduces the problem to the case when
the lower-triangle is identically zero. To do so, let x ∼ U(Sn−1) be a random unit vector
independent of M . We aim to lower bound ∥M⊤x∥. Let us define some notations for
sub-matrices and subvectors of M as follows for any i ∈ [n],

M (i) := (Mu,v)u∈[i],v∈[Ci]

N (i) := (Mu,v)u∈[i],v∈[C(i−1)]

a(i) := (Mi,v)v∈[C(i−1)],

A(i) := (Mu,v)u∈[i],v∈[C(i−1)+1,Ci].

For a visual representation of these submatrices, we have the following nested construction

M (i) =
M (i−1)

A(i)

a(i)⊤

= [N (i),A(i)] , i ∈ [n]

and M (n) =M . For now, fix i ∈ [2, n]. We consider any realization of the matrix N (i), that
is, of the matrix M (i−1) and the vector a(i). Then,

N (i)⊤N (i) =M (i−1)⊤M (i−1) + a(i)a(i)⊤ ⪰M (i−1)⊤M (i−1). (9.18)

Next, let 0 ≤ σ1 ≤ . . . ≤ σi be the singular values of the matrix N(i). We also define

Ñ (i) := [M (i−1)⊤,0C(i−1),1]
⊤,
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which is exactly the matrix N (i) if we had a(i) = 0, and let 0 ≤ σ̃1 ≤ . . . ≤ σ̃i be the
singular values of Ñ (i). Then, Eq (9.18) implies that for all j ∈ [i], one has σ̃j ≥ σj. After
constructing the singular value decomposition of the two matrices N (i) and Ñ (i), this shows
that there exists an orthogonal matrix U (i) ∈ Oi such that

∥N (i)⊤x(i)∥ ≥ ∥Ñ (i)⊤(U (i)x(i))∥, ∀x(i) ∈ Ri.

Finally, defining the matrix

M̃ (i) = [Ñ (i),U (i)A(i)] =
M (i−1)

U (i)A(i)

0
, (9.19)

we obtained that
∥M (i)⊤x(i)∥ ≥ ∥M̃ (i)⊤(U (i)x(i))∥, ∀x(i) ∈ Ri.

We now make a few simple remarks. First, the uniform distribution on Si−1 is invariant
by the rotation U (i), hence x(i) ∼ U(Si−1) implies U (i)x(i) ∼ U(Si−1). Next, by isometry
of Gaussian vectors, conditionally on N (i), the matrix Ã(i) := U (i)A(i) is still distributed
exactly as a matrix with i.i.d. N (0, 1) entries. In turn, ∥Ã(i)⊤(U (i)x(i))∥2 is still distributed
as a chi-squares χ2(C) independent from N (i), just as for ∥A(i)⊤x(i))∥2. As a summary
of the past arguments, using the notation ⪰st for stochastic dominance we obtained for
x(i) ∼ U(Si−1) sampled independently from M ,

∥M (i)⊤x(i)∥2 ⪰st ∥M̃ (i)⊤x(i)∥2 = ∥M (i−1)⊤(x
(i)
j )j∈[i−1]∥2 + ∥Ã(i)⊤x(i)∥2.

As a result,
∥M (i)⊤x(i)∥2 ⪰st (1− (x

(i)
i )2)∥M (i−1)⊤x(i−1)∥2 + Yi, (9.20)

where x(i−1) ∼ U(Si−2) (can be resampled independently from x(i) if wanted) and Yi ∼ χ2(C)

is independent from M (i−1), x(i)i and x(i−1).
Using Eq (9.20) recursively constructs a sequence of random independent vectors x(i) ∼

U(Si−1) for i ∈ [n], as well as an independent sequence of i.i.d. Y1, . . . , Yn
i.i.d.∼ χ2(C) such

that for x ∼ U(Sn−1) sampled independently from M and Y1, . . . , Yn,

∥M⊤x∥2 ⪰st
n∑
i=1

Yi

n∏
j=i+1

(1− (x
(j)
j )2) ∼

n∑
i=1

Yi · ∥(xj)j∈[i]∥2. (9.21)

The last inequality holds because of the observation that if x ∼ U(Si−1), then the first i− 1
coordinates of x are distributed as a uniform vector U(Si−2) rescaled by

√
1− x2i . Next, we

construct the matrix M 0 ∈ Rn×Cn that corresponds exactly to M had the vectors a(i) been
all identically zero: all coordinates M0

i,j for j > (i−1)C are i.i.d. N (0, 1) and for j < (i−1)C
we have M0

i,j = 0. We can easily check that

∥M 0⊤x∥2 ∼
n∑
i=1

Yi · ∥(xj)j∈[i]∥2. (9.22)
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Combining this equation together with Eq (9.21) shows that

∥M⊤x∥ ⪰st ∥M 0⊤x∥, x ∼ U(Sn−1).

Hence, intuitively the worst case to lower bound the singular values ofM corresponds exactly
to the case when all the vectors a(i) were identically zero. While the previous equation
concisely expresses this idea, we need a slightly stronger statement that also characterizes
the form of the coupling between (M ,x) and (M 0, x̃) such that almost surely, ∥M⊤x∥ ≥
∥M 0⊤x̃∥. Going back to the construction of these couplings, we note that x̃ is obtained
from x by applying a sequence of rotations to some of its components—the matrices U (i)—
and these rotations only depend on M . Similarly, the matrix M 0 is coupled to M but is
independent from x (see Eq (9.19)). The last remark is crucial because it shows that having
fixed a realization for M and M 0, for x ∼ U(Sd−1) sampled independently from M we have

∥M⊤x∥ ≥ ∥M 0⊤x̃∥ ≥ σ1(M
0).

As a result, the above equation holds for almost all x ∈ Sd−1, which is sufficient to prove
that almost surely, σ1(M ) ≥ σ1(M

0). Together with the lower bound on σ1(M
0) from

Corollary 9.1 we obtain the desired result. ■

Having these random matrices results at hand, we can now give query lower bounds on
the Probing Game 9.1.

Theorem 9.5. Suppose that 4kl ≤ d and l ≥ Cα ln k for a fixed α ∈ (0, 1], where Cα is as

defined in Theorem 9.3. Let ρ ≤ 1
12

√
l

dkα
. Then, no algorithm wins at the Probing Game 9.1

with probability at least 4de−l/16.

Proof of Theorem 9.5 We start with defining some notations. We observe that for
any i ∈ [k], sampling Vi uniformly within l-dimensional subspaces of Rd is stochastically
equivalent to sampling some Gaussian vectors v(1)i , . . . ,v

(l)
i

i.i.d.∼ N (0, Id) and constructing
the subspace Span(v(r)i , r ∈ [l]). Without loss of generality, we can therefore suppose that
the probing subspaces were sampled in this way. We then define a matrix Π summarizing
all probing subspaces as follows:

Π := [v
(1)
1 , . . . ,v

(l)
1 ,v

(1)
2 , . . . ,v

(l)
2 , . . . ,v

(1)
k , . . . ,v

(l)
k ].

Next, we let x1, . . . ,xk be the sequence resulting from doing the Gram-Schmidt decomposi-
tion from y1, . . . ,yk, that is

xi =


Proj

Span(yj ,j<i)⊥ (yi)

∥Proj
Span(yj ,j<i)⊥ (yi)∥ if yi /∈ Span(yj, j < i)

0 otherwise.

Note that it is always advantageous for the player to submit a vector yi /∈ Span(yj, j < i)
so that the space Span(yj, j ∈ [i]) is as large as possible. Without loss of generality, we will
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therefore suppose that yi /∈ Span(yj, j < i) for all i ∈ [k]. In particular, x1, . . . ,xk form an
orthonormal sequence. Last, we construct the Gram matrix M ∈ Rk×lk as

M := [x1, . . . ,xk]
⊤Π.

The next part of this proof is to lower bound the smallest singular value of M . To do so,
we show that it satisfies the assumptions necessary for Theorem 9.3.

For i ∈ [k], conditionally on all xj for j ∈ [i] as well as all v(r)j for j < i and r ∈ [l],
the vectors v(r)i for r ∈ [l] are still i.i.d. Gaussian vectors N (0, Id). Now by construction,
x1, . . . ,xi form an orthonormal sequence. Hence, by isometry of the Gaussian distribution
N (0, Id), the random variables (x⊤

j v
(r)
i )j∈[i],r∈[l] are together i.i.d. and distributed as normal

random variables N (0, 1). Because this holds for all i ∈ [k], this proves that the upper-
triangular components of M are all i.i.d. normal N (0, 1). Next, for any i ∈ [k], recall that
the vectors x1, . . . ,xi are independent from all the vectors v(r)j for j ≥ i and r ∈ [l]. In
particular, this shows that all components Ma,b = x⊤

a v
(r)
b for a ≤ i, b < i and r ∈ [l] are

all independent from the normal variables Ma,b = x⊤
a v

(r)
b for a ∈ [n], b ≥ a and b ≥ i and

r ∈ [l]. This exactly shows that M satisfies all properties for Theorem 9.3. In particular,
letting M (i) = (Mu,v)u∈[i],v∈[Ci] for all i ∈ [k], this also proves that M (i) satisfies the required
conditions.

Now fix α ∈ (0, 1] and suppose that l ≥ Cα ln k. In particular, without loss of generality
l ≥ 4. Theorem 9.3 shows that the event

E :=
⋂
i∈[k]

{
σ1(M

(i)) ≥ 1

6

√
l

iα

}

has probability at least 1 − 3ke−l/16. In the last part of the proof, we show how to obtain
upper bounds on the probability of success of the player for Game 9.1 given these singular
values lower bounds. Recall that the vectors v(r)i for i ∈ [k] and r ∈ [l] are all i.i.d. Gaussians
N (0, Id). Hence, letting Π(i) be the matrix that contains the first li columns of Π (that is,
vectors v(r)j for r ∈ [l] and j ∈ [i]), by Theorem 9.14 we have

P

(
∥Π(i)∥op ≥

√
d

(
3/2 +

√
li

d

))
≤ e−d/8, i ∈ [k].

We note that for any i ∈ [k], one has li/d ≤ 1/4. We then define the event

F :=
{
∥Π(i)∥op < 2

√
d, i ∈ [k]

}
,

which has probability at least 1 − ke−d/8. On the event E ∩ F , for any i ∈ [k] and z ∈
Span(yj, j ∈ [i]), writing z =

∑
j∈[i] λjxj we have ∥z∥ = ∥λ∥ since the sequence x1, . . . ,xk

is orthonormal. As a result,

∥ProjSpan(Vj ,j∈[i])(z)∥ ≥
∥Π(i)⊤z∥
∥Π(i)∥op

=
∥(M (i))⊤λ∥
∥Π(i)∥op

>
σ1(M

(i))

2
√
d
∥z∥ ≥ 1

12

√
l

dkα
∥z∥.
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That is, under E ∩ F the player does not win for the parameter ρ = 1
12

√
l

dkα
. Last, by the

union bound, P(E ∩ F) ≥ 1− 3ke−l/16 − ke−d/8 ≥ 1− 4de−l/16. This ends the proof. ■

We next define the notion of proper period for which the probing subspaces were a good
proxy for the projection onto Eq.

Definition 9.3 (Proper periods). Let q ∈ [P ]. We say that a depth-q period starting at time
t1 is proper when for any time t ≥ t1 during this period, if xt is a depth-p′ query for p′ > q,
then

∥ProjEq
(xt)∥ ≤ ηq.

This definition can apply equally to periods from the Procedure 9.3 or the Depth-p
Game 9.4 (provided q ≤ p). By proving a reduction from running a given period to the
Probing Game 9.1, we can show that Theorem 9.5 implies most periods are proper.

Lemma 9.2. Let q ∈ [P ] (q ∈ [p] for Depth-p Game 9.4). Suppose that 4lqk ≤ d̃ and
that lq ≥ Cα ln k for some fixed constant α ∈ (0, 1]. For any index j ≥ 1, define the event
Eq(j) = {j depth-q periods were started}. If P(Eq(j)) > 0, then,

P (j-th depth-q period is proper | Eq(j)) ≥ 1− 4de−lq/16.

Proof We prove the result in the context of Game 9.4 which is the only part that will be
needed for the rest of this chapter. The exact same arguments will yield the desired result
for Procedure 9.3. We fix a strategy for Game 9.4, a period depth q ∈ [p], and a period
index J such that P(Eq(J)) > 0. Using this strategy, we construct a learning algorithm for
the Probing Game 9.1 with dimension d̃, response dimension lq, k exploratory queries.

This player strategy is detailed in Algorithm 9.5. It works by simulating a run of
Game 9.4, sampling quantities similarly as what the oracle in that game would sample
for E1, . . . , EP and the probing subspaces. More precisely, we proceed conditionally on a run
of the Game 9.4 starting J depth-q periods. For instance, this can be done by simulating
the game until this event happens (Part 1 of Algorithm 9.5). The algorithm then continues
the run of the J-th depth-q period using the probing subspaces V1, . . . , Vk provided by the
oracle of Game 9.1 (Part 2 of Algorithm 9.5). These oracle subspaces and depth-q probing
subspaces for Game 9.4 live in different spaces: in Eq ⊂ Rd for V (q)

i and Rd̃ for Vi. Hence, we
use an isometric mapping R : Rd → Rd whose image of Eq is Rd̃⊗{0}d−d̃. Letting R̃ = πd̃◦R
where πd̃ is the projection onto the first d̃ coordinates, we map any vector x ∈ Eq to the
vector R̃(x) in Rd̃. The natural inverse mapping R̃<−1> such that R̃<−1> ◦ R̃ = ProjEq

is
used to make the transfer

V
(q)
i := R̃<−1>(Vi), i ∈ [k].

One can easily check that the constructed subspaces V (q)
i for i ∈ [k] are i.i.d. uniform

lq-dimensional subspaces of Eq, which is consistent with the setup in the original Game 9.4:
using this construction instead of resampling probing subspaces is stochastically equivalent.
Note that the run of Procedure 9.3 stops either when k depth-q exploratory queries were
found, or a period of larger depth was completed. As a result, during lines 14-18 of Algo-
rithm 9.5, one only needs to construct at most k depth-q probing subspaces. In summary,
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Input: Period index J , Depth q ∈ [p]; dimensions d, d̃, l1, . . . , lP ; number of exploratory
queries k; maximum number of queries Tmax; algorithm alg for Game 9.4

Part 1: Initializing run of Procedure 9.3 conditionally on Eq(J)
1 EventNotSatisfied←true
2 while EventNotSatisfied do
3 With fresh randomness, sample independently E1, . . . , EP , uniform d̃-dim.

subspaces in Rd and for i ∈ [P − p] sample k uniform lp+i-dim. subspaces of Ep+i:
V

(p+i)
j for j ∈ [k]

4 Given all previous information, set the memory of alg to M -bit message Message and
set np+i ∈ [k] and vectors y(p+i)

j for j ∈ [np+i], for all i ∈ [P − p]; as in Game 9.4
5 Set np′ ← 0 for p′ ∈ [p] and reset subspaces V (p+i)

j for i ∈ [P − p] and j > np+i
6 for t ∈ [Tmax] do
7 Run alg with current memory to get xt. Update exploratory queries y(p′)

i and
probing subspaces V (p′)

i for p′ ∈ [P ], i ∈ [np′ ] with fresh randomness as in
Procedure 9.3, and return gt = OV (xt) as response to alg. if np was reset
because a deeper period was completed then break;

8 if nq was reset for the J-th time then
9 Rewind the state of the Procedure 9.3 variables to the exact moment when

nq was reset for the J-th time, in particular, before resampling V (q)
1

10 EventNotSatisfied←false and T ← t; break
11 end
12 end

Part 2: Continue the J-th depth-q period using oracle probing subspaces
13 Let R : Rd → Rd ∈ Od(R) be an isometry such that R(Eq) = Rd̃ ⊗ {0}d−d̃. Denote

R̃ = πd̃ ◦R which only keeps the first d̃ coordinates of R(·), and let R̃<−1> : Rd̃ → Rd

be the linear map for which R̃<−1> ◦ R̃ = ProjEq

14 for t ∈ {T, . . . , Tmax} do
15 if t ̸= T then Run alg with current memory to get xt ;
16 Update (For t = T , continue updating) exploratory queries y(p′)

i and probing
subspaces V (p′)

i for p′ ∈ [P ], i ∈ [np′ ] as in Procedure 9.3, and return gt = OV (xt)
as response to alg. Whenever needed to sample a new depth-q probing subspace
V

(q)
i for i ∈ [k], submit vector y = R̃(xt) to the oracle. Define V (q)

i := R̃<−1>(Vi)
where Vi is the oracle response. if np was reset because a deeper period was
completed then break;

17 if nq was reset during this iteration (depth-q period completed) then break;
18 end
19 if not all k queries to oracle were performed then Query y = 0 for remaining queries;

Algorithm 9.5: Strategy of the Player for the Probing Game 9.1

the algorithm never runs out of queries for Game 9.1, and queries during the run are stochas-
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tically equivalent to those from playing the initial strategy on Game 9.4.
As a result, we can apply Theorem 9.5 to the strategy from Algorithm 9.5. It shows that

on an event E of probability 1 − 4de−lq/16, the strategy loses at the Probing Game 9.1 for
parameter ρq := 1

12

√
lq

d̃kα
. We now show that on the corresponding event Ẽ (replacing the

construction of the probing subspaces using oracle subspaces line 16 of Algorithm 9.5 by a
fresh uniform sample in lq-dimensional subspaces of Eq), the depth-q period of Game 9.4 is
proper. Indeed, note that in Part 2 of Algorithm 9.5, the times t when one queries the oracle
are exactly depth-q exploration times. Let n̂q be the total number of depth-q exploratory
times during the run. The queries are exactly yi := R̃(y

(q)
i ) for i ∈ [n̂q]. On Ẽ , for any i ∈ [n̂q],

there are no vectors z ∈ Span(yj, j ∈ [i]) such that ∥z∥ = 1 and ∥ProjSpan(Vj ,j∈[i])(z)∥ ≤ ρq.

Applying the mapping R̃<−1> shows that for any vectors z ∈ Span(ProjEq
(y

(q)
j ), j ∈ [i]),

with ∥z∥ = 1, we have
∥Proj

Span(V
(q)
j ,j∈[i])(z)∥ ≥ ρq.

In other words,

ρq∥z∥ ≤ ∥Proj
Span(V

(q)
j ,j∈[i])(z)∥, z ∈ Span(ProjEq

(y
(q)
j ), j ∈ [i]). (9.23)

Now consider any depth-p′ query xt with p′ > q, during the interval of time between the
i-th depth-q exploratory query and the following one. By definition (see Eq (9.6)), it passed
all probes V (q)

1 , . . . , V
(q)
i . That is,

∥Proj
Span(V

(q)
j ,j∈[i])(xt)∥ ≤ δq. (9.24)

We also have e⊤xt ≤ −1
2

which implies ∥xt∥ ≥ 1
2
. Next, either xt was a depth-q exploratory

query, in which case, xt = y
(q)
i ; or xt does not satisfy the robustly-independent condition

Eq (9.5) (otherwise xt would be a depth-q exploratory query), that is

∥Proj
Span(y

(q)
j ,j∈[i])⊥(xt)∥ < δq. (9.25)

In both cases, Eq (9.25) is satisfied. For convenience, denote u := Proj
Span(y

(p)
j ,j∈[i])(xt).

Applying Eq (9.23) with z = ProjEq
(u) yields

ρq∥ProjEq
(u)∥ ≤ ∥Proj

Span(V
(q)
j ,j∈[i]) ◦ ProjEq

(u)∥

= ∥Proj
Span(V

(q)
j ,j∈[i])(u)∥

≤ ∥u− xt∥+ ∥Proj
Span(V

(q)
j ,j∈[i])(xt)∥

≤ δq + δq = 2δq

In the last inequality, we used Eq (9.24) and (9.25). As a result, on Ẽ , all depth-p′ queries
xt with p′ > q satisfy

∥ProjEq
(xt)∥ ≤ ∥ProjEq

(u)∥+ ∥xt − u∥ ≤
2δq
ρq

+ δp ≤
3δq
ρq
≤ ηq.

434



In the last inequality, we used the definition of δq from Eq (9.9). This shows that under
Ẽ , the J-th depth-q period was proper. We recall that the J-th depth-q run was generated
conditionally on Eq(J) (see Part 1 of Algorithm 9.5). Hence, we proved the desired result

P (J-th depth-q period is proper | Eq(J)) ≥ P(Ẽ) ≥ 1− 4de−lq/16.

This ends the proof. ■

9.4.4 Query lower bounds for the Orthogonal Subspace Game

We next show that during a depth-p period for p ≥ 2, provided that the player won and the
depth-(p − 1) periods during that interval of time were proper (which will be taken care of
via Lemma 9.2), then a memory-constrained algorithm needs to have received Ω(d̃) vectors
from the previous depth p− 1. This uses techniques from previous works on memory lower
bounds for such orthogonal vector games, starting from [Mar+22]. For our purposes, we
need a specific variant of these games, which we call the Orthogonal Subspace Game 9.2.
This simulates a generic run of Procedure 9.3 during a period at any given depth p ≥ 2. For
the sake of presentation, we recall its definition here.

Input: dimensions d, d̃; memory M ; number of robustly-independent vectors k;
number of queries m; parameters β, γ

1 Oracle: Sample a uniform d̃-dimensional subspace E in Rd and v1, . . . ,vm
i.i.d.∼ U(Sd∩E)

2 Player: Observe E and v1, . . . ,vm, and store an M -bit message Message about these
3 Oracle: Send samples v1, . . . ,vm to player
4 Player: Based on Message and v1, . . . ,vm only, return unit norm vectors y1, . . . ,yk
5 The player wins if for all i ∈ [k]

1. ∥ProjE(yi)∥ ≤ β

2. ∥ProjSpan(y1,...,yi−1)⊥(yi)∥ ≥ γ.

Game 9.2: Orthogonal Subspace Game

Our end goal is to prove a query lower bound Ω(d̃) on Game 9.2 for the player to succeed
with reasonable probability. To do so, we simplify the game further by deleting the queries
v1, . . . ,vm altogether. This yields Game 9.7.

Precisely, we show that a strategy to play the Orthogonal Subspace Game 9.2 yields a
strategy for the Simplified Orthogonal Subspace Game 9.7 for the new dimension d′ = d−m.
The following lemma formalizes this reduction.

Lemma 9.3. If there is an algorithm for the Orthogonal Subspace Game 9.2 with parame-
ters (d, d̃,M, k,m, β, γ), then there is a strategy for the Simplified Subspace Game 9.7 with
parameters (d, d̃−m,M, k, β, γ) that wins with at least the same probability.

Proof Fix a strategy for the Orthogonal Subspace Game 9.2. We define in Algorithm 9.8
a strategy for Game 9.7 for the desired parameters (d, d̃−m).
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Input: dimensions d, d̃; memory M ; number of vectors k; parameters β, γ
1 Oracle: Sample a uniform d̃-dimension linear subspace E in Rd

2 Player: Observe E and store an M -bit message Message about E
3 Player: Based on Message only, return unit norm vectors y1, . . . ,yk
4 The player wins if for all i ∈ [k]

1. ∥ProjE(yi)∥ ≤ β

2. ∥ProjSpan(y1,...,yi−1)⊥(yi)∥ ≥ γ.

Game 9.7: Simplified Orthogonal Subspace Game

The intuition is the following: E is sampled as a uniform d̃-dimensional subspace of Rd.
On the other hand, if V (resp. F ′) is a uniform m-dimensional (resp. (d̃−m)-dimensional)
subspace of Rd then the subspace V ⊕ F ′ is also distributed as a uniform d̃-dimensional
subspace of Rd. Now note that the subspace F from the oracle of Game 9.7 is distributed
exactly as a (d̃ −m)-dimensional subspace of Rd. Therefore, we can simulate the subspace
E from Game 9.2 via E = V ⊕ F . It remains to simulate v1, . . . ,vm. To do so, note that
conditionally on E := F ⊕ V , the subspace V is a uniformly random m-dimensional sub-
space of E. Similarly, for i.i.d. sampled vectors w1, . . . ,wm

i.i.d.∼ U(Sd−1 ∩ E), the space
Span(w1, . . . ,wm) is also a uniform m-dimensional subspace of E (on an event E of prob-
ability one). Last, for any m-dimensional subspace V , denote by D(V ) the conditional
distribution of (w1, . . . ,wm) conditionally on Span(wi, i ∈ [m]) = V . (Note that D(V ) does
not correspond to U(Sd ∩ V )⊗m because the vectors vi will tend to be more “orthogonal”
since they were initially sampled in a d̃-dimensional subspace E while V has only dimension
m). As a summary of the previous discussion, by sampling vectors (v1, . . . ,vm) ∼ D(V ),
conditionally on E = V ⊕ F , these are distributed exactly as i.i.d. uniform U(Sd−1 ∩ E)
samples. We can then use the following procedure to sample E and v1, . . . ,vm:

1. Let F be the (d̃−m)-dimensional subspace provided by the oracle of Game 9.7.

2. Sample a uniform m-dimensional subspace V of Rd. Sample (v1, . . . ,vm) ∼ D(V ) and
define E = V ⊕ F .

The procedure is stochastically equivalent to the setup line 1 of Game 9.2. The complete
strategy for the simplified Game 9.7 is given in Algorithm 9.8.

Now suppose that the player won at Game 9.2. Then, the outputs y1, . . . ,yk are nor-
malized and satisfy the desired robust-independence property. Further, for all i ∈ [k], we
have

∥ProjF (yi)∥ ≤ ∥ProjE(yi)∥ ≤ β.

Hence, Algorithm 9.8 wins at Game 9.7 on the same event. ■

In Game 9.7, provided that the message does not contain enough information to store
the outputs y1, . . . ,yk directly, we will show that the player cannot win with significant
probability. This should not be too surprising at this point, because the message is all the
player has access to output vectors that are roughly orthogonal to the complete space E.
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Input: dimensions d, d̃; memory M ; number of robustly-independent vectors k;
number of queries m; strategy for Game 9.2

Part 1: Construct Message
1 Receive F a (d̃−m)-dimensional subspace provided by the oracle
2 Sample a uniform m-dimensional subspace V of Rd. Sample (v1, . . . ,vm) ∼ D(V ) and

define E = V ⊕ F . Store message Message given E and v1, . . . ,vm as in Game 9.2

Part 2: Output solution vectors
3 Observe Message and resample V , v1, . . . ,vm using the same randomness as in Part 1
4 return y1, . . . ,yk, the same outputs given by the strategy for Game 9.2

Algorithm 9.8: Strategy for the Simplified Game 9.7 given a strategy for Game 9.2

Lemma 9.4. Let d ≥ 8, k ≤ d̃
2

and 0 < β, γ ≤ 1 such that γ/β ≥ 3e
√
kd/d̃. Then, the

success probability of a player for Game 9.7 for memory M satisfies

P(player wins) ≤ 25 · M + 2

d̃k
ln

√
d

γ
.

For this, we use a lemma that constructs an orthonormal sequence of vectors from
robustly-independent vectors. Versions of this property were already observed in [Mar+22,
Lemma 34], or Lemma 7.6 from Chapter 7. To obtain query lower bounds that reach the
query complexity of gradient descent 1/ϵ2, we need the tightest form of that result. The
proof is included in appendix.

Lemma 9.5. Let δ ∈ (0, 1] and y1, . . . ,yr ∈ Rd some r ≤ d unit norm vectors. Suppose that
for any i ≤ k,

∥PSpan(yj ,j<i)⊥(yi)∥ ≥ δ.

Let Y = [y1, . . . ,yr] and s ≥ 2. There exists ⌈r/s⌉ orthonormal vectors Z = [z1, . . . ,z⌈r/s⌉]
such that for any a ∈ Rd,

∥Z⊤a∥∞ ≤
(√

r

δ

)s/(s−1)

∥Y ⊤a∥∞.

Further, these can be constructed as the singular vectors of the singular value decomposition
of Y associated with the ⌈r/s⌉ largest singular values.

We are now ready to prove Lemma 9.4.

Proof of Lemma 9.4 Fix a strategy for Game 9.7 and s = 1+ln
√
d
γ

. For simplicity, without
loss of generality assume that the message Message is deterministic in E (by the law of total
probability, there is a choice of internal randomness such that running the strategy with
that randomness yields at least the same probability of success). Now denote by E the event
when the player wins and let Y = [y1, . . . ,yk] be the concatenation of the vectors output
by the player. By Lemma 9.5, we can construct an orthonormal sequence Z = [z1, . . . ,zr]
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with r = ⌈k/s⌉ such that on the event E , for all i ∈ [r] and a ∈ E with unit norm,

∥z⊤i a∥ ≤

(√
k

γ

)s/(s−1)

∥Y ⊤a∥∞ ≤

(√
k

γ

)s/(s−1)

max
j∈[k]
∥ProjE(yj)∥

≤ β

(√
k

γ

)1+ 1
s−1

≤ eβ
√
k

γ
.

In other words, we have for all i ∈ [r],

∥ProjE(zi)∥ ≤
eβ
√
k

γ
≤ 1

3

√
d̃

d
. (9.26)

We now give both an upper and lower bound on I(E,Y ) – this will lead to the result.
First, because Y is constructed from Message, the data processing inequality gives

I(E;Y ) ≤ I(E;Message) ≤ H(Message) ≤M ln 2. (9.27)

To avoid continuous/discrete issues with the mutual information, we provide the formal jus-
tification of the computation above. For anyM∈ {0, 1}M , let S(M) = {E : Message(E) =
M} the set of subspaces that lead to messageM. This is well defined because we supposed
Message to be deterministic in E. Because Y depends only on Message, we also define pY ,M
the probability mass function for Y given messageM, and pM(M) the probability to have
Message =M. Then,

I(E;Y ) :=

∫
e

∫
y

pE,Y (e,y) ln
pE,Y (e,y)

pE(e)pY (y)
dedy

=
∑

M∈{0,1}M

∫
e∈S(M)

∫
y

pE(e)pY ,M(y) ln
pY ,M(y)

pY (y)
dedy

=
∑

M∈{0,1}M
pM(M)

∫
y

pY ,M(y) ln
pY ,M(y)

pY (y)
dy

=

∫
y

dy
∑

M∈{0,1}M
pM(M)pY ,M(y) ln

pY ,M(y)∑
M′∈{0,1}M pM(M′)pY ,M′(y)

≤
∫
y

dy
∑

M∈{0,1}M
pM(M)pY ,M(y) ln

1

pM(M)
= H(M) ≤M ln 2.

In the last inequality, we used the standard inequality H(X) ≥ 0 where X is the discrete
random variable with pX(M) ∝ pM(M)pY ,M(y).

We now turn to the lower bound. Recall that from Lemma 9.5, the vectors z1, . . . ,zr are
constructed explicitely from Y = [y1, . . . ,yk] as the vectors from the r largest singular values
for the singular value decomposition of Y . As a result, by the data processing inequality,
we have

I(E;Y ) = I(E;Y ,Z) ≥ I(E;Z).
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By the chain rule,

I(E;Z) = I(E;Z,1[E ]) + I(E;1[E ])− I(E;1[E ] | Z)

≥ I(E;Z | 1[E ])−H(1[E ])
≥ P(E)EE [I(E;Z | E)]− ln 2.

Now fix a possible realization for Z. We recall that provided that the player won (E is
satisfied), the matrix Z = [z1, . . . , zr] satisfies Eq (9.26). Let C denote the set of all subspaces
E compatible with these:

C := C(Z) =

d̃-dimensional subspace F of Rd : ∥ProjF (zi)∥ ≤
1

3

√
d̃

d
, i ∈ [r]

 .

This set is measurable as the intersection of measurable sets. By the data processing in-
equality,

I(E;Z | E) ≥ I(E; C | E) = EC|E
[
D(pE|C,E ∥ pE|E)

]
Note that pE|E = pE,E/P(E) ≤ pE/P(E). Since E is satisfied, the support of pE|C,E is included
in C. Now let F be a uniformly sampled subspace of C. We obtain

D(pE|C,E ∥ pE|E) = EE|C,E

[
ln
pE|C,E

pE|E

]
≥ EE|C,E

[
ln

P(E)pF |C

pE

]
= ln

1

P(E ∈ C)
+lnP(E). (9.28)

The last step of the proof is to upper bound this probability P(E ∈ C) where here C and
Z were fixed. Without loss of generality (since the distribution of E is rotation-invariant), we
can assume that zi = ei for i ∈ [r], the first r vectors of the natural basis of Rd. Equivalently,
we can consider the setup where E = Rd̃ ⊗ {0}d−d̃ and we sample a random orthonormal
sequence Z of r vectors uniformly in Rd, which does not affect the quantity

P(E ∈ C) = P

∥ProjE(zi)∥ ≤
1

3

√
d̃

d
, i ∈ [r]

 .

We take this perspective from now. For i ∈ [r], we introduce Gi = Span(zj,ProjE(zj), j ∈
[i]). We then define

Fi = E ∩G⊥
i−1 and ai = ProjG⊥

i−1
(zi).

In particular, we have E = Span(ProjE(zj), j < i)⊕ Fi. Recall that because z1, . . . ,zr was
sampled as a uniformly rotated orthonormal sequence, conditionally on zj for j < i (and
also on ProjE(zj) for j < i, which do not bring further information on zi), the variable zi is
exactly distributed as a random uniform unit vector in Span(zj, j < i)⊥. Within this space
is included Fi ⊂ G⊥

i−1, hence we can apply Lemma 9.14 to obtain

P

(
∥ProjFi

(zi)∥ ≤

√
dim(Fi)

d− i+ 1

(
1− 1√

2

)
| zj,ProjE(zj), j < i

)
≤ e− dim(Fi)/8.
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Because r ≤ k ≤ d̃
4
, we have dim(Fi) ≥ dim(E)− dim(Gi−1) ≥ d̃− 2(r− 1) ≥ d̃

2
. Hence, the

previous equation implies

P

∥ai∥ ≤ 1

3

√
d̃

d
| zj,ProjE(zj), j < i

 ≤ e−d̃/16.

Combining this equation together with the fact that

∥ProjE(zi)∥ ≥ ∥ProjFi
(zi)∥ = ∥ProjFi

(ai)∥,

we obtained

P

∥ProjE(zi)∥ ≤
1

3

√
d̃

d
| zj,ProjE(zj), j < i

 ≤ e−d̃/16.

Because this holds for all i ∈ [r], this implies that

P(E ∈ C(Z)) ≤ e−d̃r/16.

We can then plug this bound into Eq (9.28). This finally yields

M ln 2 ≥ I(E;Y ) ≥ P(E) d̃r
16
− P(E) ln 1

P(E)
− ln 2 ≥ P(E) d̃k

16s
− ln 2− 1

e
.

In the left inequality, we recalled the information upper bound from Eq (9.27). Because we
assumed d ≥ 8, we have s ≤ 2 ln

√
d
γ

. Rearranging and simplifying ends the proof. ■

As a result, combining the reduction from the Orthogonal Subspace Game 9.2 to the
simplified Game 9.7 from Lemma 9.3, together with the query lower bound in Lemma 9.4,
we obtain the desired query lower bound for Game 9.2.
Proof of Theorem 9.4 The proof essentially consists of putting together Lemmas 9.3
and 9.4. Suppose that the player uses at most m < d̃

2
queries. By Lemma 9.3, we can use this

strategy to solve Game 9.7, where the dimension of the subspace E is dim(E) = d̃−m > d̃
2
.

Using this bound, we can check that the parameters satisfy the conditions from Lemma 9.4,
that is

k ≤ dim(E)

2
and

γ

β
≥ 3e

√
kd

dim(E)
.

As a result, we have

P(player wins) ≤ 25
M + 2

dim(E)k
ln

√
d

γ
< 50

M + 2

d̃k
ln

√
d

γ
≤ 1

C
.

This gives a contradiction and ends the proof. ■
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9.4.5 Recursive query lower bounds for the feasibility game

It remains to relate the Orthogonal Subspace Game 9.2 to the feasibility Game 9.4 to obtain
query lower bounds for the latter using Theorem 9.4. We briefly give some intuition as to
how this reduction works. Intuitively, during a run of a period of depth p from Game 9.4 the
algorithm needs to find k exploratory queries that are by definition robustly-independent
(Eq (9.5)). Using Lemma 9.2 we also show that most of the periods at depth p − 1 are
proper, hence the exploratory queries also need to be roughly orthogonal to Ep−1. We can
therefore emulate a run of Game 9.2 by taking Ep−1 = E to be the hidden random subspace.
This gives the following result.

Lemma 9.6. Let p ∈ {2, . . . , P}. Suppose that d̃
4l
≥ k ≥ 50 · (4P )M+ d

8
log2(Tmax)+3

d̃
ln

√
d
δp

. If
there exists a strategy for Game 9.4 for depth p that wins with probability at least q, then
during a run of the strategy,

P

(
at least

d̃

4lk
periods of depth p− 1 are completed

)
≥ q − 3

8P
.

Proof Fix p ∈ {2, . . . , P} and a strategy for the Depth-p Game 9.4. We construct in
Algorithm 9.9 a strategy for Game 9.2 for m =

⌈
d̃/2
⌉
− 1. It simulates a run of Game 9.4

by sampling subspaces Ep′ for p′ ̸= p − 1 and using for Ep−1 the subspace E sampled by
the oracle. The message Message, constructed in Part 1 on Algorithm 9.9, contains the
initialization for the memory of the underlying algorithm alg, as well as indications of when
are the exploratory queries for periods of depth p′ > p. In Part 2 of Algorithm 9.9, the run
of Game 9.4 is simulated once again, but without having direct access to E. Fortunately, to
compute the feasibility separation oracle from Game 9.4 (or Procedure 9.3), one only needs
to:

1. Construct uniformly sampled subspaces V (p−1)
i of E = Ep−1. This can be done directly

thanks to the vectors v1, . . . ,vm provided by the oracle in line 3 of Game 9.2. Indeed,
for any vectors z1, . . . ,zl

i.i.d.∼ U(Sd ∩ E), the distribution of Span(z1, . . . ,zl) is the
same as for a uniformly sampled l-dimensional subspace of Ep−1 = E. We therefore
use l new vectors within the list v1, . . . ,vm whenever a new probing subspace of Ep−1

is needed. (Recall that lp−1 = l since p− 1 < P .)

2. Know when queries are exploratory queries. This is important to update the number
of exploratory queries np′ for p′ ∈ [P ] which dictates the number of probing subspaces
needed. For p′ ∈ [p], this can be done directly since all depth-p′ periods start with
no exploratory queries (np′ ← 0 in line 3 of Game 9.4). Hence all previous depth-p′
exploratory queries are queried during the run Part 2, and we can test for robust-
independence (Eq (9.5)) directly. This is more problematic for depths p′ > p because
these depend on the vectors y(p′)

j for j ∈ [np′ ] defined in line 2 of Game 9.4 with
knowledge of Ep−1 = E. These contain too many bits to be included in Message.
Fortunately, we only need to store the times of these depth-p′ exploratory queries,
which sidesteps checking for robust-independence (Eq (9.5)). To know when these
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times occur, we need to simulate the complete Game 9.4 in Part 1, lines 3-11 of
Algorithm 9.9, also using the oracle samples v1, . . . ,vm that would be used in Part
2 to construct depth-(p− 1) probing subspaces.

We then define the message as Message = (Memory; t
(p+i)
j , i ∈ [P −p], j ∈ [k]) where t(p+i)j

is the time of the j-th exploratory query of depth p + i, with the convention t
(p+i)
j = −1

if there were no j depth-(p + i) exploratory queries (line 12 of Algorithm 9.9). With this
convention, we can also know exactly what was np+i for i ∈ [P − p] from the message, and
it can be stored with a number of bits of

M + ⌈(P − p)k log2(Tmax + 2)⌉ ≤M +
d

8
log2(Tmax + 2) + 1.

Here we used Pk ≤ P d̃ ≤ d
2
. In Part 2, after simulating the run from Game 9.4, the strategy

returns the (normalized) depth-p exploratory queries to the oracle (line 19).
We now show that this strategy wins with significant probability. Note that a run of

Game 9.4 ends whenever the depth-p period is finished. In particular, this ensures that
there is no overwriting of the depth-p exploratory queries, hence, there is no ambiguity when
referring to some exploratory query y(p)

i . We next let E be the event when the strategy
for Game 9.4 wins. Because E is also sampled uniformly as a d̃-dimensional subspace by
the oracle, under the corresponding event Ẽ (only changing the dependency in Ep−1 by the
dependency in E), the strategy succeeds, that is, the algorithm makes k depth-p exploratory
queries.

We apply Lemma 9.2 checking that the assumptions are satisfied: l ≥ Cα lnn from
Eq (9.7) and 4lk ≤ d̃, where d̃ is the dimension of the problem for Game 9.1 here. Hence, by
the union bound, on an event F of probability at least 1−4d(k)de−l/16, the first d(k) :=

⌊
d̃
k

⌋
periods of depth p− 1 are proper. Indeed,

P(F c) = P(∃j ∈ [d(k)] : j-th depth-(p− 1) period was started and is not proper)

≤
∑

j∈[d(k)]

P(Ep−1(j) ∩ {j-th depth-(p− 1) period is not proper}

≤
∑

j∈[d(k)]

4de−l/16P(Ep−1(j)) ≤ 4d2e−l/16.

Last, let G be the event that there are at most m
lk

periods of depth p − 1. On each period
of depth p − 1, Algorithm 9.9 only uses at most lk samples vi from the oracle: k for each
probing subspace V (p−1)

i . We note that because the algorithm stops as soon as a depth-p′

period for p′ ≥ p ends, the probing subspaces V (p−1)
i are never reset because deeper periods

ended (see line 12 of Procedure 9.3). Thus, on G, Algorithm 9.9 does not run out of oracle
samples.

On E ∩F∩G, all k depth-p exploratory queries were made during proper periods of depth
p− 1. Here we used the fact that on G, there are at most m

lk
≤ d(k) periods of depth p− 1.

By definition of proper periods (Definition 9.3), we have

∥ProjEp−1
(y

(p)
i )∥ ≤ ηp−1, i ∈ [k].
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Input: depth p, dimensions d, d̃, number of vectors k, M -bit algorithm alg for
Game 9.4 at depth p; Tmax

Part 1: Constructing the message
1 Sample independently Ep′ for p′ ∈ [P ] \ {p− 1}, uniform d̃-dimensional linear subspaces

in Rd and for i ∈ [P − p] sample k uniform l-dimensional subspaces of Ep+i: V
(p+i)
j for

j ∈ [k]
2 Observe E and set Ep−1 = E. Given all previous information, set the memory of alg to

M -bit message Memory and set np+i ∈ [k] and vectors y(p+i)
j for j ∈ [np+i], for all

i ∈ [P − p]; as in Game 9.4
3 Set np′ ← 0 for p′ ∈ [p]
4 Receive samples v1, . . . ,vm, and set sample index i← 1
5 for t ∈ [Tmax] do
6 Run alg with current memory to get xt. Update exploratory queries y(p′)

i and
probing subspaces V (p′)

i for p′ ∈ [P ], i ∈ [np′ ] as in Procedure 9.3. If np was reset
because a deeper period was completed, strategy fails: end procedure. Whenever
needed to sample a depth-(p− 1) probing subspace V (p−1)

np−1 of Ep−1 (lines 9 or 12 of
Procedure 9.3):

7 if i+ l − 1 > m then Strategy fails: end procedure;
8 else use oracle samples, set V (p−1)

np−1 := Span(vi, . . . ,vi+l−1) and i← i+ l;
9 return gt = OV (xt) as response to alg

10 if np = k then break;
11 end
12 For i ∈ [P − p] denote t(p+i)1 , . . . , t

(p+i)
np+i the times of depth-(p+ i) exploratory queries. If

these were done before t = 1 set them to 0. Store message
Message = (Memory; t

(p+i)
j , i ∈ [P − p], j ∈ [k]) (let t(p+i)j = −1 if j > np+i)

Part 2: Simulate run of Game 9.4
13 Receive samples v1, . . . ,vm from Oracle
14 Resample Ep′ for p′ ∈ [P ] \ {p− 1} using same randomness as in Part 1. Initialize

memory of alg to Memory. Set np′ ← 0 for p′ ∈ [p], and sample index i← 1
15 for t ∈ [Tmax] do
16 Run alg with current memory to get xt. Update exploratory queries and probing

subspaces exactly as in line 6, with the same randomness as in Part 1 for sampling
probing subspaces. To know whether xt is a depth-(p+ i) exploratory query for
i ∈ [P − p] (line 6 of Procedure 9.3), check whether t is within the message times
t
(p+i)
j for j ∈ [np+i]

17 Return gt = OV (xt) as response to alg. if np = k then break;
18 end

19 return normalized depth-p exploratory queries y
(p)
1

∥y(p)
1 ∥

, . . . ,
y
(p)
k

∥y(p)
k ∥

Algorithm 9.9: Strategy of the Player for the Orthogonal Subspace Game 9.2
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Now recall that exploratory queries also satisfy e⊤y(p)
i ≤ −1

2
, so that 1

2
≤ ∥y(p)

i ∥ ≤ 1 for
i ∈ [k]. As a result, the output normalized vectors ui = y

(p)
i /∥y(p)

i ∥ for i ∈ [k] satisfy

∥ProjEp−1
(u

(p)
i )∥ ≤ 2∥ProjEp−1

(y
(p)
i )∥ ≤ 2ηp−1, i ∈ [k].

Also, by construction exploratory queries are robustly-independent (Eq 9.5). Hence,

∥Proj
Span(u

(p)
j ,j<i)⊥

(u
(p)
i )∥ ≥ ∥Proj

Span(y
(p)
j ,j<i)⊥

(y
(p)
i )∥ ≥ δp, j ∈ [k].

This shows that on E ∩ F ∩ G, the algorithm wins at Game 9.2 with memory at most
M + d

8
log2(Tmax+2)+1, using m < d̃/2 queries and for the parameters (β, γ) = (2ηp−1, δp).

We now check that the assumptions for applying Theorem 9.4 are satisfied. The identity
d ≥ 8P is satisfied by assumption throughout the chapter. The only assumption that needs
to be checked is that for γ/β. Using the notation µp = µ for all p ∈ [P − 1], we now note
that

γ

β
=

δp
2ηp−1

=
µp
72

√
lp

d̃kα
=

600

72

√
kd

d̃
≥ 12

√
kd

d̃
.

Here we used the definitions Eq (9.8) and (9.9). The lower bound k from the hypothesis is
exactly the bound needed to apply Theorem 9.4 with the probability 1/(4P ). Precisely, we
have

P(E ∩ F ∩ G) ≤ P(Algorithm 9.9 wins at Game 9.2) ≤ 1

4P
.

Combining the previous statements shows that

P
(
more than

m

lk
periods of depth p− 1

)
= P(Gc)

≥ P(E ∩ F ∩ Gc) = P(E ∩ F)− P(E ∩ F ∩ G)
≥ P(E)− P(F c)− P(E ∩ F ∩ G)

≥ q − 1

4P
− 4d2e−l/16.

Because we also have l ≥ 16 ln(32d2P ) from Eq (9.7), this shows that

P
(
more than

m

lk
periods of depth p− 1

)
≥ q − 3

8P
.

In this event there are at least d̃/2
lk

periods of depth p − 1, hence at least d̃
2lk
− 1 ≥ d̃

4lk
are

complete. ■

We are now ready to state the main recursion lemma, which enables us to construct an
algorithm for Game 9.4 at depth p− 1 from an algorithm for depth p.

Lemma 9.7. Let p ∈ {2, . . . , P} and suppose that the assumptions on k from Lemma 9.6
are satisfied. Suppose that there is a strategy for Game 9.4 for depth p with T

(p)
max queries,

that uses M bits of memory and that wins with probability at least q ∈ [0, 1]. Then, there is
a strategy for Game 9.4 for depth p− 1 with

T (p−1)
max :=

32Plk

d̃
T (p)
max

queries, that uses the same memory and wins with probability at least q − 1
2P

.
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Proof Fix p ∈ {2, . . . , P} and the strategy for depth p. By Lemma 9.6, on an event E of
probability at least q − 3

8P
, there are at least K0 =

⌈
d̃
4lk

⌉
completed depth-(p− 1) periods.

The main remark is that given E1, . . . , Ep, the separation oracle from Procedure 9.3 is
defined exactly similarly for each new depth-(p − 1) period. This is the reason why we
reset all information from depths q ≤ p′ whenever a period of depth p′ ends (line 12 of
Procedure 9.3). In fact, the distribution of outcomes for the run of a depth-(p − 1) period
is completely characterized by the memory state at the beginning of that period, as well as
the exploratory queries for depths p′ > p− 1. Under E , in average, the depth-(p− 1) periods
are completed using relatively few iterations, hence we aim to simulate a depth-(p− 1) run
to solve Game 9.4 for depth p− 1. The strategy for the player is as follows:

1. Draw an index it ∼ U([K0]).

2. Run the strategy for depth p using the separating oracle from Procedure 9.3 until the
beginning of the it-th period of depth p − 1. If the procedure never finishes it − 1
depth-(p− 1) periods, the strategy fails. When needed to sample new probing spaces
for depths p′ > p− 1, use those provided by the oracle in line 1 of Game 9.4 (this was
already done for p′ > p before, now we also use these for depth p′ = p).

3. Set Memory to be the memory of the algorithm, and the exploratory queries for depths
p′ > p− 1 to be exactly as in the beginning of the it-th period of depth p− 1.

The complete strategy for Game 9.2 at depth p− 1 is described in Algorithm 9.10.
We now estimate the probability of success of this strategy for the Depth-(p−1) Game 9.4.

Notice that after the strategy submits an M -bit message and exploratory queries to the
oracle, in lines 4-9 of the Depth-(p − 1) Game 9.4, the oracle proceeds to simulate the run
of the it-th depth-(p − 1) period of Depth-p Game 9.4. Indeed, the responses obtained by
alg in the run initialized by Algorithm 9.10 are stochastically equivalent to those that were
obtained during that it-th depth-(p− 1) period because they were generated using the same
process. As a result, the final run in lines 4-9 of the Depth-(p−1) Game 9.4 is stochastically
equivalent to the last step of the following procedure:

1. Run the complete depth-p strategy for Depth-p Game 9.4.

2. Sample it ∼ U([K0]) independently from the previous run.

3. If there were no it− 1 finished depth-(p− 1) periods in the previous run, strategy fails.

4. Otherwise, Re-run the it-th depth-(p − 1) period with the exact same randomness as
in item 1, for at most T (p−1)

max iterations.

In the rest of the proof, we will prove success probabilities for this construction. Note
that on E , because K0 depth-(p − 1) periods were completed, the strategy does not fail at
step 3 and step 4 exactly implements the it-th depth-(p − 1) period of Depth-p Game 9.4.
Further, this period will be complete, given enough iterations to be finished. That is, if it
uses at most T (p−1)

max iterations, the player wins at the Depth-(p− 1) Game 9.4. We therefore
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Input: dimensions d, d̃, number of vectors k, depth p, M -bit memory algorithm alg for
Game 9.4 at depth p

Output: strategy for Game 9.4 at depth p− 1

1 Receive subspaces E1, . . . , EP and probing subspaces V (p−1+i)
j for i ∈ [P − p+ 1] and

j ∈ [k]
2 Initialize memory of alg with the same M -bit message Message and define np+i ∈ [k]

and exploratory vectors y(p+i)
j for i ∈ [np+i] for all i ∈ [P − p] as in the Depth-p

Game 9.4 (ignoring probing subspaces V (p)
j )

3 Set np′ ← 0 for p′ ∈ [p], reset probing subspaces V (p+i)
j for i ∈ [P − p] and j > np+i

4 Sample it ∼ U([K0]). Initialize EnoughPeriods←false
5 for t ∈ [T

(p)
max] do

6 Run alg with current memory to get query xt. Update exploratory queries and
probing subspaces as in Procedure 9.3 and return gt = OV (xt) as response to alg.
When needed to sample a depth-p probing subspace V (p)

j , use one provided by the
oracle in line 1 that was not yet used, and with smallest index j.

7 if np−1 was reset because of deeper periods then Strategy fails, end procedure;
8 if np−1 was reset for it-th time (counting t = 1s) then EnoughPeriods←true,

t(it)← t;
9 end

10 if EnoughPeriods then
11 Submit to the oracle the memory state Memory of alg, as well as all values of np−1+i

for i ∈ [P − p+ 1] and exploratory queries y(p−1+i)
j for j ∈ [np−1+i], i ∈ [P − p+ 1],

just before starting iteration t(it)
12 else Strategy fails, end procedure;

Algorithm 9.10: Strategy of the Player for Depth-(p−1) Game 9.4 given a strategy for
depth p

aim to bound the number of iterations length(i) needed for the i-th depth-(p − 1) period,
with the convention length(i) :=∞ if this period was never finished. We have

E[length(it) | E ] = 1

K0

K0∑
i=1

length(i) ≤ T
(p)
max

K0

.

As a result, letting F =
{
length(it) ≤ T

(p−1)
max := 8PT

(p)
max

K0

}
, we have

P(F | E) ≥ 1− 1

8P
.

In summary, on E ∩ F , Algorithm 9.10 wins at Game 9.4 at depth p− 1. Thus,

P(Algorithm 9.10 wins) ≥ P(E ∩ F) ≥
(
q − 3

8P

)(
1− 1

8P

)
≥ q − 1

2P
.
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Because T (p−1)
max ≤ 32Plk

d̃
T

(p)
max, this ends the proof of the result. ■

We now apply Lemma 9.7 recursively to progressively reduce the depth of Game 9.4.
This gives the following result.

Theorem 9.6. Let P ≥ 2, d ≥ 40P . Suppose that

c2
M + dP ln d

d
P 3 ln d ≤ k ≤ c1

d

CαP ln d
(9.29)

for some universal constants c1, c2 > 0. If a strategy for Game 9.4 for depth P uses M bits
of memory and wins with probability at least 1

2
, then it performed at least

Tmax ≥
k

2

(
d

100P 2lk

)P−1

queries.

Proof Define for any p ∈ [P ],

T (P )
max =

k

2

(
d̃

32Plk

)p−1

.

Suppose for now that the parameter k satisfies all assumptions from Lemma 9.6 for all
p ∈ {2, . . . , P}. Then, starting from a strategy for Game 9.4 at depth P and that wins
with probability q ≥ 1

2
, Lemma 9.7 iteratively constructs strategies for p ∈ [P ] for Game 9.4

at depth p with T
(p)
max iterations that wins with probability q − 1

2P
(P − p). Now to win

Game 9.4 with depth 1, one needs to make at least k queries (the exploratory queries).
Hence, no algorithm wins with such probability q − 1

2P
(P − 1) using T (1)

max queries. Recall
that d̃ ≥ d/(3P ), hence

T (P )
max ≥

k

2

(
d

100P 2lk

)P−1

.

The only remaining step is to check that all assumptions from Lemma 9.6 are satisfied.
It suffices to check that

d̃

4l
≥ k ≥ 50 · (4P )

M + d
8
log2(T

(P )
max) + 3

d̃
ln

√
d

δ1
. (9.30)

We start with the upper bound. Recalling the definition of l in Eq (9.7), we have that

d̃

4l
≥ d

12Pl
= Ω

(
d

CαP ln d

)
.

Now for the upper bound,

50 · (4P )
M + d

8
log2(T

(P )
max) + 3

d̃
ln

√
d

δ1
= O

(
M + dP ln d

d
P 3 ln d

)
.

Hence, for a choice of constants 0 < c1 < c2 that we do not specify, Eq (9.30) holds. ■
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9.4.6 Reduction from the feasibility procedure to the feasibility
game

The only step remaining is to link Procedure 9.3 to the Game 9.4 at depth P . Precisely, we
show that during a run of Procedure 9.3, many depth-P periods are completed – recall that
Game 9.4 at depth P exactly corresponds to the run of a depth-P period of Procedure 9.3.
For this, we first prove a simple query lower bound for the following game, that emulates
the discovery of the subspace EP at the last layer P .

Input: d, subspace dimension d̃, number of samples m
1 Oracle: Sample a uniformly random d̃-dimensional linear subspace E of Rd

2 Oracle: Send i.i.d. samples v1, . . . ,vm
i.i.d.∼ U(Sd−1 ∩ E) to player

3 Player: Based on v1, . . . ,vm output a unit vector y

4 The learner wins if ∥ProjE(y)∥ <
√

d̃
20d

.

Game 9.11: Kernel discovery game

We show that to win the Kernel discovery Game 9.11 with reasonable probability, one
needs Ω(d̃) queries. This is to be expected since finding orthogonal vectors to E requires
having information on the complete d̃-dimensional space.

Lemma 9.8. Let m ≤ d̃
2
≤ d

4
. No algorithm wins at Game 9.11 with probability more than

e−d̃/10.
Proof Suppose that m ≤ d̃

2
. First note that with probability one, the samples v1, . . . ,vm

are all linearly independent. Conditional on v1, . . . ,vm, the space E can be decomposed as

E = Span(v1, . . . ,vm)⊕ F
where under E , F = E ∩ Span(vi, i ∈ [m])⊥ is a uniform (d̃ −m)-dimensional subspace of
Span(vi, i ∈ [m])⊥. Now letting z = ProjSpan(vi,i∈[m])⊥(y), one has

∥z∥2 = ∥y∥2 − ∥ProjSpan(vi,i∈[m])(y)∥2 = 1− ∥y − z∥2. (9.31)

Further, provided that z ̸= 0, from the point of view of F , the vector z
∥z∥ is a random uniform

unit vector in Span(v1, . . . ,vm)⊥. Formally, Lemma 9.14 shows that

P

∥ProjF (z)∥ < ∥z∥

√
d̃−m

10(d−m)

 ≤ e−(d̃−m)/5 ≤ e−d̃/10

In the last inequality, we used m ≤ d̃
2
. We denote by F the complement of this event. Then,

under E ∩ F ,

∥ProjE(y)∥2 = ∥y − z∥2 + ∥ProjF (z)∥2

≥ ∥y − z∥2 + d̃−m
10(d−m)

∥z∥2

≥ d̃−m
10(d−m)

+ ∥y − z∥2
(
1− d̃−m

10(d−m)

)
≥ d̃

20d
.
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In the second inequality we used Eq (9.31). In summary, the player loses with probability
P(E ∩ F) ≥ 1− e−d̃/10. This ends the proof. ■

Using a reduction from Procedure 9.3 to the Kernel Discovery Game 9.11, we use the
previous query lower bound to show that to solve Procedure 9.3, the algorithm needs to
complete Ω(d/(Plk)) depth-P periods.

Lemma 9.9. Let alg be an algorithm for Procedure 9.3. Suppose that 4lPk ≤ d̃ and lP ≥ l.
Then, with probability at least 1 − 1

8P
− e−d̃/10, during the run of Procedure 9.3, there were

are least d̃
2lP k

completed periods of depth P .

Proof Similarly as in the proof of Lemma 9.6, by Lemma 9.2, we know that on an event
E of probability at least 1 − 4d2e−lP /16, the first d periods of depth P are proper. In our
context, this means that under E , if the algorithm alg was successful for Procedure 9.3
within the first d depth-P periods, then the final query xt for which OV (xt) = Success
satisfied ∥ProjEP

(xt)∥ ≤ ηP . We can therefore construct a strategy for the Kernel Discovery
Game 9.11 as follows: we simulate a run of Procedure 9.3 using EP = E the subspace
provided by the oracle. When needed to construct a new depth-P probing subspace, we use
l vectors of the sequence v1, . . . ,vm similarly as in Algorithm 9.9 for the proof of Lemma 9.6.
The strategy is formally defined in Algorithm 9.12.

Input: depth P , dimensions d, d̃, l, number of exploratory queries k, M -bit algorithm
alg, number of samples m =

⌊
d̃/2
⌋

1 Sample independently E1, . . . , EP−1, uniform d̃-dimensional subspaces of Rd

2 Initialize np ← 0 for p ∈ [P ] and set memory of alg to 0
3 Receive samples v1, . . . ,vm and set sample index i← 1
4 while alg did not receive a response Success do
5 Run alg with current memory to obtain query x. Update exploratory queries and

probing subspaces as in lines 5-13 of Procedure 9.3. Whenever needed to sample a
depth-P probing subspace V (P )

nP of EP :
6 if i+ l − 1 > m then Strategy fails: end procedure;
7 else use oracle samples, set V (P )

nP := Span(vi, . . . ,vi+l−1) and i← i+ l;
8 return OV (x) as response to alg
9 if OV (x) = Success then return x

∥x∥ to oracle, break;
10 end

Algorithm 9.12: Strategy of the Player for the Kernel Discovery Game 9.11

From the previous discussion, letting F be the event that at most n0 :=
⌊

d̃
2lP k

⌋
depth-P

periods were completed, we have that under E∩F Algorithm 9.12, needed at most lPkn0 ≤ d̃
2

samples from the oracle and the last vector vector x satisfies ∥ProjEP
(x)∥ = ∥ProjE(x)∥ ≤

ηP . Now recall that because x was successful for OV we must have e⊤x ≤ −1
2

and as a
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result ∥x∥ ≥ 1
2
. Hence, the output vector y = x

∥x∥ satisfies

∥ProjE(y)∥ ≤ 2ηP <

√
d̃

20d
.

In the last inequality, we used Eq (9.8). Hence, using Lemma 9.8, we have

P(E ∩ F) ≤ P(Algorithm 9.12 wins) ≤ e−d̃/10.

In particular,

P(F) ≤ P(Ec) + P(E ∩ F) ≤ 4d2e−lP /16 + e−d̃/10 ≤ 1

8P
+ e−d̃/10.

In the last inequality we used lP ≥ l ≥ 16 ln(32d2P ) from Eq (9.7). Because on F c there are
at last n0 + 1 ≥ d̃

2lk
completed depth-P periods, this ends the proof. ■

Lemma 9.9 shows that many depth-P periods are performed during a run of Proce-
dure 9.3. Because the depth-P Game 9.4 exactly simulates a depth-P period of Procedure 9.3,
we can combine this with our previous lower bound to obtain the following.

Theorem 9.7. Let P ≥ 2 and d ≥ 20P . Suppose that k satisfies Eq (9.29) as in Theo-
rem 9.6. Also suppose that 4lpk ≤ d̃ and lP ≥ l. If an algorithm for Procedure 9.3 uses M
bits of memory and wins making at most Tmax queries with probability at least 3

4
, then

Tmax ≥
kl

lP

(
d

100P 2lk

)P
.

Proof Lemma 9.9 plays exactly the same role as Lemma 9.6. In fact, we can easily check that
the exact same proof as for Lemma 9.7 shows that if there is an algorithm for Procedure 9.3
that uses at most Tmax queries and wins with probability at least q ≥ 3

4
, then there is a

strategy for Game 9.4 for depth P , that uses the same memory and at most

T (P )
max :=

8P

K̃0

Tmax

queries, where K̃0 = d̃
2lP k

is the number of depth-P periods guaranteed by Lemma 9.9.
Further, it wins with probability at least q− 1

8P
− e−d̃/10. The failure probability 1

8P
+ e−d̃/10

corresponds to the failure probability of Lemma 9.9. Hence this win probability is more than
1
2

since P ≥ 2 and d̃ ≥ d
2
≥ 20. By Theorem 9.6 we must have

Tmax =
d̃

16PlPk
T (P )
max ≥

d̃

16PlPk

k

2

(
d

100P 2lk

)P−1

≥ kl

lP

(
d

100P 2lk

)P
.

This ends the proof. ■

From Lemma 9.1, we know that with high probability on E1, . . . , EP , Procedure 9.3
implements a valid feasibility problem for accuracy ϵ = δ1/2. Combining this with the
previous query lower bound for Procedure 9.3 gives the desired final result for deterministic
algorithms.
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Theorem 9.8. Fix α ∈ (0, 1], d ≥ 1 and an accuracy ϵ ∈ (0, 1√
d
] such that

d ln2 d ≥
(c3
α

) ln 2
α · M

d
ln4 1

ϵ

for some universal constant c3. Then, any M-bit deterministic algorithm that solves feasi-
bility problems up to accuracy ϵ makes at least(

d

M

)α
1

ϵ2ψ(d,M,ϵ)

queries, where ψ(d,M, ϵ) =
1−ln(M

d )/ ln d
1+(1+α) ln(M

d )/ ln d
−O

(
ln

ln(1/ϵ)
ln d

ln d
+ ln ln d

ln d

)
.

Proof Roughly speaking, the proof consists in finding parameters for P and k that (1)
satisfy the assumptions to apply the query lower bound Theorem 9.7 on Procedure 9.3, (2)
for which this procedure emulates ϵ-accuracy feasibility problems with high accuracy, and
(3) that maximizes the query lower bound provided in Theorem 9.7.

First, we recall that d log2 1
2ϵ

bits of memory are necessary to solve the feasibility problem
because this is already true for optimizing 1-Lipschitz functions on the unit ball [WS19, The-
orem 5]. Without loss of generality, we therefore suppose that M ≥ d ln 1

ϵ
. For convenience,

let us define the following quantity

P̃ :=
2 ln 1

ϵ
− (1 + α) ln M

d
− (4 + 3α) ln

(
ln(1/ϵ)
ln d

+ 1
)
− 2 ln(c2 ln d)− 24

ln d+ (1 + α) ln M
d
+ 3(1 + α) ln

(
ln(1/ϵ)
ln d

+ 1
)
+ ln(c2 ln d) + 12

.

We now define the parameters P , k, and lP as

P :=
⌈
P̃
⌉
, k :=

⌈
3c2

M

d
P 3 ln d

⌉
, and lP := l ∨

( d̃

4k

)P−P̃
 .

In particular, note that P < Pmax :=
2 ln 1

ϵ

ln d
+ 1 and we directly have lP ≥ l. We also recall

that under the assumptions from Theorem 9.7, we showed that 4lk ≤ d̃. As a result, we
also have 4lPk ≤ d̃ provided that Eq (9.29) is satisfied. Now fix an algorithm alg for the
ϵ-accuracy feasibility problem that uses at most M bits of memory and uses at most Tmax
separation oracle queries. By assumption, we have

d ln d ≥
√
c3 ln

1

ϵ
.

Hence, setting c3 ≥ 202 we have that P ≤ Pmax ≤ d
20

. Assuming now that P ≥ 2, we
can apply Lemma 9.1 which shows that on an event E of probability at least 1 − e−d/40 ≥
1 − e−2 > 3

4
, Procedure 9.3 using alg emulates a valid (δ1/2)-accuracy feasibility problem.

Note that

δ1
2

=
1

720µP−2µP

√
l

dkα
=

5

6µP

√
klP
l
≥ 1

µP̃

√√√√ k

2l

(
d̃

4kµ2

)P−P̃

.
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In the inequality, we used k ≥ 3. Furthering the bounds and using P − P̃ < 1, we obtain

δ1
2
≥ 1

µP̃

√
d̃

8lµ2
≥ 1

3000µP̃
√
Pk1+α

≥ ϵ.

In the last inequality, we used the definition of P̃ , which using α ≤ 1, implies in particular

P̃ ≤
2 ln 1

ϵ
− lnPmax − (1 + α) ln(6c2

M
d
P 3
max ln d)− 2 ln(3000)

ln d+ (1 + α) ln
(
6c2

M
d
P 3
max ln d

)
− ln(16 ln d) + 2 ln(600)

≤
ln 1

ϵ
− ln(3000

√
Pk1+α)

lnµ
.

As a result, because δ1/2 ≥ ϵ, under that same event E , Procedure 9.3 terminates with
at most Tmax queries. We now check that the choice of k satisfies Eq (9.29). Note that
dP ln d ≤ 2d ln 1

ϵ
. As a result, M + dP ln d ≤ 3M and hence k directly satisfies the left-hand

side inequality of Eq (9.29). The assumption gives

d ln2 d ≥ 100Cαc2
c1

M

d
ln4 1

ϵ
.

As a result, c1 d
CαP ln d

≥ c1
d

CαPmax ln d
≥ 6c2(M/d)P 3

max ln d ≥ k. As a result, the right-hand
side is of Eq (9.29) is also satisfied. We can now apply Theorem 9.7 which gives

Tmax ≥
kl

lP

(
d

100P 2lk

)P
≥ k

(13Pl)P−P̃

(
d

100P 2lk

)P̃
≥ c2P

2(M/d) ln d

5l

(
d

100P 2lk

)P̃
=:

1

ϵ2ψ̃(d,M,ϵ)
,

where we defined ψ̃(d,M, ϵ) through the last equality. Note that the above equation always
holds, even if P < 2 (that is, P̃ ≤ 1) because in that case it is implied by Tmax ≥ d (which
is necessary even for convex optimization). We wrote the above equation for the sake of
completeness; the above computations can be simplified to

ψ̃(d,M, ϵ) =
ln M

d

2 ln 1
ϵ

+O
(
ln ln 1

ϵ

ln 1
ϵ

)
+
P̃ ln d

100P 2lk

2 ln 1
ϵ

=
ln M

d

2 ln 1
ϵ

+
ln d− ln M

d
− 1+α

2

ln d·ln M
d

ln 1
ϵ

− 4 ln ln(1/ϵ)
ln d

ln d+ (1 + α) ln M
d
+ 3(1 + α) ln ln(1/ϵ)

ln d

+O
(
ln ln d

ln d

)

≥ −
α ln M

d

2 ln 1
ϵ

+
ln d− ln M

d
− 4 ln ln(1/ϵ)

ln d

ln d+ (1 + α) ln M
d
+ 3(1 + α) ln ln(1/ϵ)

ln d

+O
(
ln ln d

ln d

)
.

This ends the proof of the theorem. ■

In the standard regime when ln 1
ϵ
≤ do(1), the query lower bound from Theorem 9.8 can

be greatly simplified, and directly implies Theorem 9.1.
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9.5 Query Complexity / Memory Trade-offs for Random-
ized Algorithms

The feasibility procedure defined in Procedure 9.3 is adaptive in the algorithm queries. As
a result, this approach fails to give query lower bounds for randomized algorithms, which is
the focus of the present section.

Although Procedure 9.3 is adaptive, note that the generated subspaces E1, . . . , EP and
probing subspaces V (p)

i for i ∈ [k] and p ∈ [P ] are not. In fact, the only source of adaptivity
comes from deciding when to add a new probing subspace for any depth p ∈ [P ]. In
Procedure 9.3 this is done when the algorithm performs a depth-p exploratory query. We
now present an alternative feasibility procedure for which the procedure oracle does not need
to know when exploratory queries are performed, at the expense of having worse query lower
bounds.

9.5.1 Definition of the hard class of feasibility problems

The subspaces E1, . . . , EP are sampled exactly as in Procedure 9.3 as independent uniform
d̃-dimensional subspaces of Rd where d̃ = ⌊d/(2P )⌋. As before, for each space Ep for p ∈ [P ]
we construct l-dimensional probing subspaces. However, given such probing subspaces say
V1, . . . , Vr for r ∈ [k], we define a different depth-p oracle. We will always assume that k ≥ 3.
Precisely, given parameters δ = (δ1, . . . , δk) ∈ (0,∞)k, we first define the set

IV1,...,Vr(x; δ) =
{
i ∈ [k] : ∥ProjVi(x)∥ > δi

}
.

The oracle is then defined as

g̃V1,...,Vr(x; δ) :=

{ ProjVi (x)
∥ProjVi (x)∥

if IV1,...,Vr(x; δ) ̸= ∅ and i = min IV1,...,Vr(x; δ),
Success otherwise.

(9.32)

Compared to gV1,...,Vr , this oracle does not combine probing subspaces by taking their span,
and prioritizes separation hyperplanes constructed from probing subspaces with the smallest
index i ∈ [k]. In the oracle, only functions g̃V1,...,Vk which have exactly k subspaces are used
– the definition for r < k subspaces will only be useful for the proof.

For each depth p ∈ [P ], we will sample k probing subspaces V (p)
1 , . . . , V

(p)
k as before: these

are i.i.d. lp-dimensional subspaces of Ep. This time, we set

lp = l :=
⌈
Ck3 ln d

⌉
, p ∈ [P − 1], (9.33)

for a universal constant C ≥ 1 introduced in Lemma 9.10. We let lP ∈ [d̃] with lP ≥ l be
a parameter as in the deterministic case. Also, these probing subspaces will be resampled
regularly throughout the feasibility procedure. We use the notation V (p) = (V

(p)
1 , . . . , V

(p)
k ),

noting that here V (p) always contains all k probing subspaces contrary to Procedure 9.3.
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Given these subspaces, the format of the oracle is similar as in Eq (9.6):

ÕV (1),...,V (P )(x) :=


e if e⊤x > −1

2

g̃V (p)(x; δ(p)) if g̃V (p)(x; δ(p)) ̸= Success

and p = min
{
q ∈ [P ], g̃V (q)(x; δ(q)) ̸= Success

}
Success otherwise.

(9.34)
Before defining the parameters δ(1), . . . , δ(P ), we first define η1, . . . , ηP as follows. First, let

ηP :=
1

10

√
d̃

d
and µP := 1200k

√
kd

lP
,

and for all p ∈ [P − 1] we let

ηp :=
ηP/µP
µP−p−1

where µ := 1200k

√
kd

l
(9.35)

We then define the orthogonality tolerance parameters as follows

δ
(p)
i :=

ηp(1− 2/k)k−i

2

√
lp

d̃
, p ∈ [P ], i ∈ [k]. (9.36)

As for the deterministic case, whenever the output of the oracle is not e nor Success,
we say that x is a depth-p query where p = min

{
q ∈ [P ], g̃V (q)(x; δ(q)) ̸= Success

}
. Except

for the probing subspaces, all other parameters are kept constant throughout the feasibility
problem. The depth-p probing subspaces are resampled independently from the past every
Tp iterations, where the sequence T1, . . . , TP is defined as

Tp :=

⌊
k

2

⌋
Np−1, p ∈ [P ], where N :=

⌊
d̃

2lk

⌋
.

We are now ready to formally define our specific separation oracle for randomized algorithms.
As in the oracle of Procedure 9.3, we use the fallback separation oracle OE1,...,EP

when
the one from Eq (9.34) returns Success. Having sampled i.i.d. d̃-dimensional subspaces
E1, . . . , EP , we independently construct for each p ∈ [P ] an i.i.d. sequence (V (p,a))a≥0 of lists
V (p,a) = (V

(p,a)
1 , . . . , V

(p,a)
k ) containing i.i.d. uniform lp-dimensional random subspaces of Ep.

To make the notations cleaner we assume that the number of iterations starts from t = 0.
We define the separation oracle for all t ≥ 0 and x ∈ Rd via

Õt(x) :=

{
Õ

V (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋)(x) if Õ
V (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋)(x) ̸= Success

OE1,...,EP
(x) otherwise.

(9.37)

This definition is stochastically equivalent to simply resampling the depth-p probing sub-
spaces V (p) every Tp iterations. We take this perspective from now on. In this context, a
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depth-p period is simply a interval of time of the form [aTp, (a+1)Tp) for some integer a ≥ 0.
Here, the feasible set is defined as

Q̃E1,...,EP
:= Bd(0, 1) ∩

{
x : e⊤x ≤ −1

2

}
∩
⋂
p∈[P ]

{
x : ∥ProjEp

(x)∥ ≤ δ
(p)
1

}
.

We now prove query lower bounds for algorithms under this separation oracle using a
similar methodology as for Procedure 9.3. To do so, we first need to slightly adjust the
notion of exploratory queries in this context. At the beginning of each depth-p period, these
are reset and we consider that there are no exploratory queries.

Definition 9.4 (Exploratory queries, randomized case). Let p ∈ [P ] and fix a depth-p period
[aTp, (a+ 1)Tp) for a ∈ {0, . . . , NP−p − 1}. Given previous exploratory queries y(p)

1 , . . . ,y
(p)
np

in this period, we say that x ∈ Bd(0, 1) is a depth-p exploratory query if

1. e⊤x ≤ −1
2
,

2. the query passed all probes from levels q < p, that is gV (q)(x; δ(q)) = Success,

3. and it is robustly-independent from all previous depth-p exploratory queries in the period

∥Proj
Span(y

(p)
r ,r≤np)⊥

(x)∥ ≥ γp :=
δ
(p)
1

4k
. (9.38)

We now introduce the feasibility game associated to the oracle which differs from the
feasibility problem with the oracles (Õt)t≥0 in the following ways.

• The player can access some initial memory about the subspaces E1, . . . , EP .

• Their goal is to perform k depth-P exploratory queries during a single depth-P period
of TP iterations. In particular, they only have a budget of TP calls to the oracle.

• They have a mild influence on the sequences of probing subspaces V(p) := (V (p,a))a≥0

for p ∈ [P ] that will be used by the oracle. Precisely, for each p ∈ [P ], the oracle
independently samples JP i.i.d. copies of these sequences V(p,1), . . . ,V(p,JP ) for a pre-
specified constant JP . The player then decides on an index ĵ ∈ [JP ] and the oracle
uses the sequences V(p,ĵ) for p ∈ [P ] to simulate the feasibility problem.

The details of the game are given in Game 9.13. Note that compared to the feasibility
Game 9.4, we do not need to introduce specific games at depth p ∈ [P ] nor introduce
exploratory queries. The reason is that because they are non-adaptive, the oracles at depth
p′ > p do not provide any information about Ep. Hence, the game at depth p ∈ [P ] can
simply be taken as the original game but with p layers instead of P .

Roughly speaking, the first step of the proof is to show that because of the construction
of the oracle g̃V (p) for p ∈ [P ] in Eq (9.32), we have the following structure during any
depth-p period with high probability. (1) The algorithm observes V (p)

1 , . . . , V
(p)
k in this exact

order and further, (2) the algorithm needs to query a new robustly independent vector to
observe a new probing subspace. These are exactly the properties needed to replace the
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Input: depth P ; dimensions d, d̃, l1, . . . , lP ; k; M -bit memory randomized algorithm
alg; resampling horizons T1, . . . , TP ; maximum index JP

1 Oracle: Sample independently E1, . . . , EP , uniform d̃-dimensional subspaces of Rd

2 Oracle: For all p ∈ [P ] sample independently JP i.i.d. sequences V(p,1), . . . ,V(p,JP ). Each
sequence V(p,j) = (V (p,j,a))a∈[0,NP−p) contains NP−p i.i.d. k-tuples
V (p,j,a) = (V

(p,j,a)
1 , . . . , V

(p,j,a)
k ) of i.i.d. lp-dimensional subspaces of Ep.

3 Player: Observe E1, . . . , EP and all sequences V(p,1), . . . ,V(p,JP ) for p ∈ [P ]. Based on
these, submit to oracle an M -bit message Message and an index ĵ ∈ [JP ]

4 Oracle: Initialize memory of alg to Message
5 Oracle: for t ∈ {0, . . . , TP − 1} do
6 Run alg with current memory to get query xt
7 if t = 0 mod Tp for any p ∈ [P ] then V (p) ← V (p,ĵ,t/Tp)

8 return gt = ÕV (1),...,V (P )(xt) as response to alg
9 end

10 Player wins if the player performed k (or more) depth-P exploratory queries
Game 9.13: Feasibility Game for randomized algorithms

step from Procedure 9.3 in which the adaptive oracle adapts to when exploratory queries are
performed. Proving this property is one of the main technicality to extend our query lower
bounds for deterministic algorithms to randomized algorithms.

Lemma 9.10. Fix p ∈ [P ] and a ∈ {0, . . . , NP−p − 1}. Suppose that lp ≥ Ck3 ln d for some
universal constant C > 0 and k ≥ 3. Then, with probability at least 1 − k2JP e−k ln d, for all
times t ∈ [aTp, (a + 1)Tp) during Game 9.13, the following hold. Let rp(t) be the number of
depth-p exploratory queries in [aTp, t]. If rp(t) ≤ k,

• the response gt is consistent to the oracle without probing subspaces V (p)
i for i > rp(t),

that is, replacing g̃V (p)(·; δ(p)) with g̃
V

(p)
1 ,...,V

(p)
rp(t)

(·; δ(p)) in Eq (9.34),

• if xt is a depth-p′ query for p′ > p, then ∥ProjEp
(xt)∥ ≤ ηp.

Here, the first bullet point exactly proves the behavior that was described above for the
sequential discovery of probing subspaces. Roughly speaking, the second bullet point shows
that periods are still mostly proper, at least before k exploratory queries are performed
during the period.

Proof of Lemma 9.10 Fix p ∈ [P ] and the period index a < NP−p. We will use the
union bound to take care of the degree of liberty ĵ ∈ [JP ]. For now, fix j ∈ [JP ] and suppose
that we had ĵ = j, that is, all probing subspaces were constructed from the sequences
V(1,j), . . . ,V(P,j).

Let i ∈ {1, . . . , k} and consider the game for which the oracle responses are constructed
exactly as in Game 9.13 except during the considered period [aTp, (a+ 1)Tp) as follows. For
the oracle response at time t ∈ [aTp, (a + 1)Tp): if rp(t) ≥ i we use the same oracle as in
Game 9.13; but if rp(t) < i, we replace V (p) with (V

(p)
1 , . . . , V

(p)
rp(t)

) – that is we ignore all
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depth-p probing subspaces V (p)
j with index j > rp(t). For convenience, let us refer to this

as Game(p, a; i). Note that Game(p, a; 1) is exactly Game 9.13. Indeed, at a given time t in
the period, if there were no previous depth-p exploratory queries either (1) xt does not pass
probes at level q < p or e⊤x > −1

2
: in this case no depth-p probing subspaces are needed to

construct the response; or (2) we have in particular ∥x∥ ≥ 1
2
≥ γp so xt is exploratory. As a

result, before the first depth-p exploratory query, having access to the depth-p subspaces is
irrelevant.

Now fix i ∈ [k−1]. Our goal is to show that with high probability, the responses returned
by Game(p, a; i) are equivalent to those of Game(p, a; i+ 1). Let Ei be the event that there
were at least i depth-p exploratory queries during the period [aTp, (a+ 1)Tp). We recall the
notations y(p)

1 ,y
(p)
2 , . . . for these exploratory queries. Note that we slightly abuse of notations

because these are the exploratory queries for Game(p, a; i) (not for Game 9.13). However,
our goal is to show that their responses coincide so under this event, all these exploratory
queries will coincide. Importantly, by construction of the oracle for Game(p, a; i), all queries
y
(p)
1 , . . . ,y

(p)
i are independent from the subspaces V (p)

s = V
(p,j,a)
s for all s ≥ i. Indeed, during

the period [aTp, (a+1)Tp+1), before receiving the response for the query y(p)
i , the oracle only

used probing subspaces V (p)
1 , . . . , V

(p)
i−1. Hence, y(p)

1 , . . . ,y
(p)
i are dependent only on those

probing subspaces. As a result, from the point of view of the spaces V (p)
j for j ≥ i, the

subspace Fi := Span(ProjEp
(y

(p)
s ), s ∈ [i]) is uniformly random. Formally, we define the

following event

Fi =
k⋂
j=i


(
1− 1

2k

)
∥x∥ ≤

√
d̃

lp
∥ProjVj(x)∥ ≤

(
1 +

1

2k

)
∥x∥, ∀x ∈ Fi

 .

By Lemma 9.15 and the union bound, we have

P(Fi | Ei) ≥ 1− k exp

(
i ln

2Cd̃k

lp
− lp

27k2

)
≥ 1− k exp

(
k ln d− lp

27k2

)
≥ 1− ke−k ln d.

Here we used lp ≥ 28Ck2 ln d and the fact that dim(Fi) ≤ i ≤ k. For convenience let ζ =
1−1/(2k)
1+1/(2k)

. Using the previous bounds, under Ei ∩ Fi, we have for any y ∈ Span(y(p)
s , p ∈ [i]),

∥ProjVi(y)∥ ≥ ζ∥ProjVj(y)∥, j ∈ {i+ 1, . . . , k}.

Now consider any time during the period t ∈ [aTp, (a + 1)Tp+1) such that np(t) = i. If xt
was not a depth-p′ query with p′ ≥ p, knowing the depth-p probing subspaces is irrelevant
to construct the oracle response. Otherwise, we have

∥Proj
Span(y

(p)
s ,s∈[i])⊥(xt)∥ < γp. (9.39)

Indeed, either xt was a depth-p exploratory query and hence xt = y
(p)
i , or it was not,

in which case the third property from Definition 9.4 must not be satisfied (because the
two first are already true since xt is a depth-p′ query with p′ ≥ p). For simplicity, write
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yt = Proj
Span(y

(p)
s ,s∈[i])(xt) and note that ∥xt − yt∥ < γp by Eq (9.39). Then, for any

i < j ≤ k,

∥ProjVi(xt)∥ > ∥ProjVi(yt)∥ − γp ≥ ζ∥ProjVj(xt)∥ − γp > ζ∥ProjVj(xt)∥ − (1 + ζ)γp.

In particular, if one has j ∈ IV1,...,Vk(xt; δ(i)) for some i+ 1 < j ≤ k, we have

∥ProjVi(xt)∥ > ζδ
(p)
j − 2γp ≥ ζδ

(p)
i+1 −

δ
(p)
1

2k
≥ δ

(p)
i

(
ζ

1− 2/k
− 1

2k

)
≥ δ

(p)
i .

In the second inequality, we use the definition of γp in Eq (9.38) and in the last inequality, we
used k ≥ 3. As a result, we also have i ∈ IV1,...,Vk(xt; δ(i)). Going back to the definition of the
depth-p oracle in Eq (9.32) shows that in all cases (whether there is some j ∈ IV1,...,Vk(xt; δ(i))
for i+ 1 < j ≤ k or not),

g̃V (p)(xt; δ
(p)) = g̃

V
(p)
1 ,...,V

(p)
i

(xt; δ
(p)),

that is, the oracle does not use the subspaces V (p)
j for j > i. In summary, under Ei ∩ Fi the

responses provided in Game(p, a; i) and Game(p, a; i+ 1) are identical.
Using the above result recursively shows that under

G :=
⋂

i∈[k−1]

Eci ∪ (Ei ∩ Fi),

the responses in Game(p, a; k) are identical to those in Game(p, a; 1) which is the original
Game 9.13 provided ĵ = j. Hence, under G and assuming ĵ = j, the first claim of the lemma
holds. The second point is a direct consequence of the previous property. For any fixed
t ∈ [aTp, (a + 1)Tp+1) write i = np(t). Under G, because the event Enp(t) ∩ Fnp(t) holds, we
have in particular √

d̃

lp
∥ProjVi(xt)∥ ≥

(
1− 1

2k

)
∥ProjEp

(xt)∥.

Hence, if xt is a depth-p′ query for p′ > p, we must have ∥ProjVi(xt)∥ ≤ δ
(p)
i , which in turns

gives

∥ProjEp
(xt)∥ ≤

δ
(p)
i

1− 1
2k

√
d̃

lp
≤ 2δ

(p)
k

√
d̃

lp
= ηp.

Hence, under G, all claims hold and we have

P(G) ≥ 1−
∑

i∈[k−1]

P(F ci | Ei) ≥ 1− k2e−k ln d.

We now recall that all the previous discussion was dependent on the choice of j ∈ [JP ].
Taking the union bound over all these choices shows that all claims from the lemma hold
with probability at least 1− k2JP e−k ln d. ■
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9.5.2 Query lower bounds for an Adapted Orthogonal Subspace
Game

By Lemma 9.10, to receive new information about Ep, the algorithm needs to find robustly-
independent queries. We next show that we can relate a run of Game 9.13 to playing an
instance of some orthogonal subspace game. However, the game needs to be adjusted to take
into account the degree of liberty from ĵ ∈ [JP ]. This yields following Adapted Orthogonal
Subspace Game 9.14.

Input: dimensions d, d̃; memory M ; number of robustly-independent vectors k;
number of queries m; parameters β, γ; maximum index J

1 Oracle: Sample a uniform d̃-dimension linear subspace E in Rd and i.i.d. vectors
v
(j)
r

i.i.d.∼ U(Sd ∩ E) for r ∈ [m] and j ∈ [J ]

2 Player: Observe E and v(j)r for all r ∈ [m] and j ∈ [J ]. Based on these, store an M -bit
message Message and an index ĵ ∈ [J ]

3 Oracle: Send samples v(ĵ)1 , . . . ,v
(ĵ)
m to player

4 Player: Based on Message and v(ĵ)1 , . . . ,v
(ĵ)
m only, return unit norm vectors y1, . . . ,yk

5 The player wins if for all i ∈ [k]

1. ∥ProjE(yi)∥ ≤ β

2. ∥ProjSpan(y1,...,yi−1)⊥(yi)∥ ≥ γ.

Game 9.14: Adapted Orthogonal Subspace Game

We first prove a query lower bound for Game 9.14 similar to Theorem 9.4.

Theorem 9.9. Let d ≥ 8, C ≥ 1, and 0 < β, γ ≤ 1 such that γ/β ≥ 3e
√
kd/d̃. Suppose

that d̃
4
≥ k ≥ 50CM+2 log2 J+3

d̃
ln

√
d
γ

. If the player wins at the Adapted Orthogonal Subspace

Game 9.14 with probability at least 1/C, then m > d̃
2
.

Proof Fix parameters satisfying the conditions of the lemma and suppose m ≤ d̃
2
. In the

previous proof for Theorem 9.4, we could directly reduce the Orthogonal Vector Game 9.2
to a simplified version (Game 9.7) in which the query vectors v1, . . . ,vm are not present
anymore. We briefly recall the construction, which is important for this proof as well.
Let E be a uniform d̃-dimensional subspace of Rd and w1, . . . ,wm

i.i.d.∼ U(Sd−1 ∩ E). For
any m-dimensional subspace V , let D(V ) be the distribution of w1, . . . ,wm conditional on
V = Span(wi, i ∈ [m]). We now propose an alternate construction for the subspace E and
the vectors w1, . . . ,wm. Instead, start by sampling a uniform m-dimensional subspace V ,
then sample (w1, . . . ,wm) ∼ D(V ). Last, let F be a uniform (d̃−m)-dimensional subspace of
Rd independent of all past random variables. We then pose E := V ⊕F . We can easily check
that the two distributions are equal, and as a result, we assumed without loss of generality
that the samples v1, . . . ,vm were sampled in that manner. This is convenient because the
space F is independent from v1, . . . ,vm. Unfortunately, this will not be the case in the
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present game for the samples v(ĵ)1 , . . . ,v
(ĵ)
k because the samples also depend on the index

ĵ ∈ [J ].
We slightly modify the construction to account for the J different batches of samples.

1. Sample E a uniform d̃-dimensional subspace of Rd

2. Independently for all j ∈ [J ], sample a m-dimensional subspace V (j) of E and sample
(v

(j)
1 , . . . ,v

(j)
k ) ∼ D(V (j)). independently from these random variables, also sample

F (j) a uniform (d̃−m)-dimensional subspace of E.

We can check that the construction of the vectors v(j)i for i ∈ [k] and j ∈ [J ] is equivalent
as that in line 1 of Game 9.14. Further, note that for any fixed j ∈ [J ], the subspaces
V (j), F (j) are independent (because E was also uniformly sampled) and sampled according
to uniform m-dimensional (resp. d̃−m-dimensional) subspaces of Rd. Also, on an event Fi
of probability one, E = V (i) ⊕ F (i). In particular, their mutual information is zero. We now
bound their mutual information for the selected index ĵ ∈ [J ] and aim to show that it is at
most O(ln J). By definition,

I(V (ĵ);F (ĵ)) =

∫
v

∫
f

pV (ĵ),F (ĵ)(v, f) ln
pV (ĵ),F (ĵ)(v, f)

pV (ĵ)(v)pF (ĵ)(f)
dvdf.

Since for any j ∈ [J ], V (j) and F (j) are independent, we have

pV (ĵ),F (ĵ)(v, f) =
∑
j∈[J ]

pV (j),F (j),ĵ(v, f, j) =
∑
j∈[J ]

pV ,F (v, f)P(ĵ = j | V (j) = v, F (j) = f)

= pV (v)pF (f)
∑
j∈[J ]

P(ĵ = j | V (j) = v, F (j) = f).

Similarly, we have

pV (ĵ)(v) = pV (v)
∑
j∈[J ]

P(ĵ = j | V (j) = v) (9.40)

pF (ĵ)(f) = pF (f)
∑
j∈[J ]

P(ĵ = j | F (j) = f). (9.41)

For convenience we introduce the following notations

PV ,F (v, f) :=
∑
j∈[J ]

P(ĵ = j | V (j) = v, F (j) = f)

PV (v) :=
∑
j∈[J ]

P(ĵ = j | V (j) = v)

PF (f) :=
∑
j∈[J ]

P(ĵ = j | F (j) = f).

Putting the previous equations together gives

I(V (ĵ);F (ĵ)) =

∫
v

∫
f

pV (ĵ),F (ĵ)(v, f) ln
PV ,F (v, f)

PV (v)PF (f)
dvdf.
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We decompose the logarithmic term on the right-hand side and bound each corresponding
term separately. We start with the term involving PV ,F (v, f). Define the random variable
j̃(v, f) on [J ] that has P(j̃(v, f) = j) = P(ĵ = j | V (j) = v, F (j) = f)/PV ,F (v, f). Because
H(j̃(v, f)) ≤ ln J for all choices of v, f we obtain∫

v

∫
f

pV (ĵ),F (ĵ)(v, f) lnPV ,F (v, f)dvdf

=

∫
v

∫
f

pV (v)pF (f)
∑
j∈[J ]

P(ĵ = j | V (j) = v, F (j) = f) lnPV ,F (v, f)dvdf

≤
∫
v

∫
f

pV (v)pF (f)
∑
j∈[J ]

P(ĵ = j | V (j) = v, F (j) = f) ln
PV ,F (v, f)

P(ĵ = j | V (j) = v, F (j) = f)
dvdf

≤ ln J

∫
v

∫
f

pV (v)pF (f)
∑
j∈[J ]

P(ĵ = j | V (j) = v, F (j) = f)dvdf = ln J.

We next turn to the term involving PV (v). Since x ln 1
x
≤ 1/e for all x ≥ 0, we have

directly ∫
v

∫
f

pV (ĵ),F (ĵ)(v, f) ln
1

PV (v)
dvdf =

∫
v

pV (ĵ)(v) ln
1

PV (v)
dv

=

∫
v

pV (v)PV (v) ln
1

PV (v)
dv ≤ 1

e
.

We similarly get the same bound for the term involving PF (f). Putting these estimates
together we finally obtain

I(V (ĵ);F (ĵ)) ≤ ln J +
2

e
≤ ln J + 1. (9.42)

From now, we use similar arguments as in the proof of Lemma 9.4. We fix s = 1 +

ln
√
d
γ

. Denote by E the event when the player wins and denote by Y = [y1, . . . ,yk] the
concatenation of the vectors output by the player. Using Lemma 9.5 and the same arguments
as in Lemma 9.4, we construct from Y an orthonormal sequence Z = [z1, . . . ,zr] with
r = ⌈k/s⌉ such that on the event E , for all i ∈ [r],

∥ProjE(zi)∥ ≤
eβ
√
k

γ
≤ 1

3

√
d̃

d
.

In particular, we have

∥ProjF (ĵ)(zi)∥ ≤ ∥ProjE(zi)∥ ≤
1

3

√
d̃

d
, i ∈ [r] (9.43)

We now give both an upper and lower bound on I(F (ĵ);Y ) by adapting the arguments
from Lemma 9.4. The data processing inequality gives

I(F (ĵ);Y ) ≤ I(F (ĵ);Message,V (ĵ)) = I(F (ĵ);V (ĵ)) + I(F (ĵ);Message | V (ĵ))

≤M ln 2 + ln J + 1.
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In the last inequality, we used the fact that Message is encoded in M bits (to avoid contin-
uous/discrete issues with the mutual information, this step can be fully formalized as done
in the proof of Lemma 9.4) and Eq (9.42).

We next turn to the lower bound. The same arguments as in Lemma 9.4 give

I(F (ĵ);Y ) ≥ P(E)EE

[
I(F (ĵ);Z | E)

]
− ln 2.

Next, denote by C the set of (d̃ −m)-dimensional subspaces F compatible with Eq (9.43),
that is

C := C(Z) =

(d̃−m)-dimensional subspace F of Rd : ∥ProjF (zi)∥ ≤
1

3

√
d̃

d
, i ∈ [r]

 .

The same arguments as in Lemma 9.4 (see Eq (9.28)) show that

I(F (ĵ);Z | E) ≥ EC|E

[
ln

1

P(F̂ (j) ∈ C)

]
+ lnP(E).

The rest of the proof of Lemma 9.4 shows that letting G be a random uniform (d̃ − m)-
dimensional subspace of Rd, for any realization of Z, we have

P(G ∈ C(Z)) ≤ e−(d̃−m)r/16.

While F (ĵ) is not distributed as a uniform (d̃−m)-dimensional subspace of Rd, we show that
is close from it. Indeed, for any choice of (d̃−m)-dimensional subspace f , by Eq (9.41) we
have

pF (ĵ)(f) = pF (f)
∑
j∈[J ]

P(ĵ = j | F (j) = f) ≤ JpF (f),

where F ∼ G is distributed a uniform (d̃ −m)-dimensional subspace of Rd. Thus, for any
realization of Z, we obtain

P(F (ĵ) ∈ C(Z)) ≤ J · P(F ∈ C(Z)) = J · P(G ∈ C(Z)) ≤ Je−(d̃−m)r/16.

Putting together all the previous equations, we obtained

M ln 2 + ln J + 1 ≥ I(F (ĵ);Y ) ≥ P(E)

(
(d̃−m)r

16
− ln J

)
− P(E) ln 1

P(E)
− ln 2

≥ P(E) d̃r
32
− ln J − ln 2− 1

e
.

As a result, using d ≥ 8 so that s ≤ 2 ln
√
d
γ

, we have

P(E) ≤ 32
M ln 2 + 2 ln J + 3 ln 2

d̃r
≤ 50

M + 2 log2 J + 3

d̃k
ln

√
d

γ
.

In the last inequality, we used the assumption on k. We obtain a contradiction, which shows
that m ≥ d̃

2
. ■
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9.5.3 Recursive lower bounds for the feasibility game and feasibility
problems

We can now start the recursive argument to give query lower bounds. Precisely, we relate
the feasibility Game 9.13 to the Adapted Orthogonal Subspace Game 9.14. The intuition
is similar as in the deterministic case except for a main subtlety. We do not restart depth-
(P − 1) periods once k exploratory queries have been performed. As a result, it may be the
case that for such a period after having found k exploratory queries, the algorithm gathers
a lot of information on the next layer P without having to perform new exploratory queries.
This is taken into account in the following result.

Lemma 9.11. Let d ≥ 8 and ζ ≥ 1. Suppose that d̃
4lP−1

≥ k ≥ 100ζM+2 log2 JP+3

d̃
ln

√
d

γP
,

that k ln d ≥ ln(2ζk2JP (N + 1)), and k ≥ 3. Also, suppose that lP , lP−1 ≥ Ck3 ln d. If
that there exists a strategy for Game 9.13 with P layers and maximum index JP that wins
with probability at least q, then there exists a strategy for Game 9.13 with P − 1 layers
that wins with probability at least q − 1

2ζ
with same parameters as the depth-P game for

(d, d̃, l, k,M, T1, . . . , TP−1) and maximum index JP−1 = NJP .

Proof Fix P ≥ 2 and a strategy for Game 9.13 with P layers. Within this proof, to simplify
the notations, we will write l instead of lP−1. In fact, this is consistent with the parameters
that were specified at the beginning of the section (lp = l for all p ∈ [P − 1]). Using this
strategy, we construct a strategy for Game 9.14 for the parameters m = Nlk ≤ d̃

2
and J = JP

and memory limit M + log2 J + 1.
The strategy for the orthogonal subspace game is described in Algorithm 9.15. Similarly

as the strategy constructed for the deterministic case (Algorithm 9.9), it uses the samples
v1, . . . ,vlkN provided by the oracle to construct the depth-(P − 1) probing subspaces using
l new vectors for each new subspace. The only subtlety is that in line 2 of Game 9.14 the
player needs to select the index ĵ ∈ [J ] guiding the samples that will be received in line 4 of
Game 9.14. The knowledge of ĵ is necessary to resample the probing subspaces for depths
p ̸= P − 1 (see line 5 of Algorithm 9.15) hence we also add it to the message. The message
can therefore be encoded into M + ⌈log2 J⌉ ≤M + log2 J + 1 bits.

We next define some events under which we will show that Algorithm 9.15 wins at
Game 9.14. We introduce the event in which the algorithm makes at most k exploratory
queries for any of the N depth-(P − 1) periods:

E =
⋂
a<N

{at most k depth-(P − 1) exploratory queries during [aTP−1, (a+ 1)TP−1)} .

Next, by Lemma 9.10 and the union bound, on an event F of probability at least 1 −
k2JP (N+1)e−k ln d, the exploration of the probing subspaces for the N depth-(P −1) periods
and the only depth-P period, all satisfy the properties listed in Lemma 9.10. In particular,
under E ∩ F , all depth-(P − 1) periods are proper in the following sense: if xt for t ∈ [TP ]
is a depth-P query then because there were at most rP−1(t) ≤ k exploratory queries in the
corresponding depth-(P − 1) period, we have

∥ProjEP−1
(xt)∥ ≤ ηP−1. (9.44)
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Input: depth P , dimensions d, d̃, number of vectors k, M -bit algorithm alg for
Game 9.13 with P layers; TP ; maximum index JP

Part 1: Construct the message and index
1 For all p ∈ [P ] \ {P − 1}, sample independently Ep a uniform d̃-dimensional linear

subspaces in Rd, and JP i.i.d. sequences V(p,1), . . . ,V(p,JP ) as in line 2 of Game 9.13
2 Observe E and vectors v(j)r for r ∈ [Nlk] and j ∈ [JP ]. Set Ep−1 = E and for all j ∈ [JP ]

let V(P−1,j) := (V (P−1,j,a))a∈[0,N) where V (P−1,j,a) := (Span(v
(j)
alk+(i−1)l+s, s ∈ [l]))i∈[k] for

a ∈ {0, . . . , N − 1}. Given all previous information, construct the M -bit message
Memory and the index ĵ ∈ [JP ] as in line 3 of Game 9.13

3 Submit to the oracle the message Message = (Memory, ĵ) and the index ĵ

Part 2: Simulate run of Game 9.13
4 Receive Message = (Memory, ĵ) and samples v(ĵ)1 , . . . ,v

(ĵ)
Nlk from Oracle. Based on the

samples, construct V(p,ĵ) from these samples as in Part 1
5 For p ∈ [P ] \ {P − 1}, resample Ep and V(p,ĵ) using same randomness as in Part 1 and

knowledge of ĵ.
6 Initialize memory of alg to Memory and run TP iterations of the feasibility problem

using V(p,ĵ) for p ∈ [P ] as in lines 5-9 of Game 9.13
7 if there were less than k depth-P exploratory queries then Strategy fails; end;

8 return normalized depth-P exploratory queries y
(P )
1

∥y(P )
1 ∥

, . . . ,
y
(P )
k

∥y(P )
k ∥

Algorithm 9.15: Strategy of the Player for the Adapted Orthogonal Subspace Game 9.14

Finally, let G be the event on which the strategy wins. Suppose that E ∩ F ∩ G is satisfied.
Because the strategy wins, we know that the oracle used the last depth-P probing subspace
V

(P )
k . Because F is satisfied, in turn, this shows that there were at least k depth-P ex-

ploratory queries. In particular, the strategy from Algorithm 9.15 does not fail. We recall
that exploratory queries y(P )

i for i ∈ [k] must satisfy ∥y(P )
i ∥ ≥ 1

2
since e⊤y(P )

i ≤ −1
2
. Then,

by Eq (9.44) writing ui := y
(P )
i /∥y(p)

i ∥ for i ∈ [k], we obtain

∥ProjE(ui)∥ = ∥ProjEP−1
(ui)∥ ≤ 2∥ProjEP−1

(y
(P )
i )∥ ≤ 2ηP−1, i ∈ [k].

Last, by definition, the exploratory queries are robustly-independent:

∥Proj
Span(u

(p)
j ,j<i)⊥

(u
(p)
i )∥ ≥ ∥Proj

Span(y
(p)
j ,j<i)⊥

(y
(p)
i )∥ ≥ γP , j ∈ [k].

In summary, on E ∩ F ∩ G, the algorithm wins at Game 9.14 using memory at most M +

log2 J + 1, m = Nlk ≤ d̃
2

queries and parameters (β, γ) = (2ηP−1, γP ). It suffices to check
that the assumptions from Theorem 9.9 are satisfied. We only need to check the bound on
γ/β. We compute

γ

β
=

γP
2ηP−1

=
δ
(p)
1

8kηP−1

≥ µ

16k

(
1− 2

k

)k−1
√
l

d̃
≥ 3e

√
kd

d̃
.
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In the last inequality, we used the fact that because k ≥ 3, we have (1−2/k)k−1 ≥ (1−2/3)2.
Combining the previous results, we obtain

P(E ∩ F ∩ G) ≤ P(Algorithm 9.15 wins at Game 9.14) ≤ 1

2ζ
.

In turn, this shows that

P(Ec) ≥ P(Ec ∩ F ∩ G) = P(F ∩ G)− P(E ∩ F ∩ F)
≥ P(G)− P(F c)− P(E ∩ F ∩ G)

≥ q − k2JP (N + 1)e−k ln d − 1

2ζ
≥ q − 1

2ζ
− 1

2ζ
= q − 1

ζ
.

The last step of the proof is to construct a strategy for Game 9.13 with P − 1 layers that
wins under the event Ec. Note that this event corresponds exactly to the case when in at
least one of the depth-(P−1) periods the algorithm performed k exploratory queries. Hence,
the strategy for P − 1 layers mainly amounts to simulating that period. This can be done
thanks to the index ĵ which precisely specifies the probing subspaces needed to simulate
that winning period. Because there were N depth-(P − 1) periods, the new index parameter
becomes JP−1 := NJP . The complete strategy is described in Algorithm 9.16 and is similar
to the one constructed for the deterministic case in Lemma 9.7 (Algorithm 9.10). The main
difference with the deterministic case is that there is no need to keep exploratory queries
for larger depths (here there is only P ) in the new strategy. Indeed, because the oracle is
non-adaptive, these deeper layers do not provide information on the other layers.

It is straightforward to check that the sequences W(p,1), . . . ,W(p,JP ) for p ∈ [P ] con-
structed in Algorithm 9.16 are identically distributed as the sequences constructed by the
oracle of Game 9.13 for P layers. By definition of E , under Ec there is a depth-(P −1) period
with k exploratory queries hence the strategy does not fail. Because of the choice of index
(ĵ − 1)N + â + 1, during the run lines 5-9 of Game 9.13 for depth P − 1, (since alg reuses
exactly the same randomness) the oracle exactly implements the â-th depth-(P − 1) period.
Hence under Ec, Algorithm 9.16 wins. This ends the proof. ■

Applying the previous result for Game 9.13 with all depths p ∈ {2, . . . , P} recursively
gives the following query lower bound.

Theorem 9.10. Let P ≥ 2 and d ≥ 40P . Suppose that lP ≥ l and

c5
M + P ln d

d
P 3 ln d ≤ k ≤ c4

(
d

P ln d

)1/4

(9.45)

for some universal constants c4, c5 > 0. If a strategy for Game 9.4 for depth P and maximum
index JP = N uses M bits of memory and wins with probability at least 1

2
, then it performed

at least

Tmax > TP ≥
k

2

(
d

12Plk

)P−1

queries.
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Input: dimensions d, d̃, number of vectors k, depth p, M -bit memory algorithm alg for
Game 9.13 for P layers; maximum index JP

Output: strategy for Game 9.13 for P − 1 layers with maximum index JP−1 = NJP

1 Receive subspaces E1, . . . , EP−1 and sequences V(p,1), . . . ,V(p,JP−1) for p ∈ [P − 1]

2 Sample EP as an independent uniform d̃-dimensional subspace of Rd and sample
i.i.d. sequences W(P,1), . . . ,W(P,JP ) as in line 2 of Game 9.13 for P layers

3 For p ∈ [P − 1], reorganize the sequences V(p,j) as follows. For j ∈ [JP ] let W(p,j) be the
concatenation of V(p,N(j−1)+1), . . . ,V(p,Nj) in that order so that W(p,j) has NP−p

elements
4 Based on all Ep and W(p,j) for j ∈ [JP ] and p ∈ [P ] initialize memory of alg to the M -bit

message Memory and store the index ĵ ∈ [JP ] as in line 3 of Game 9.13 with P layers
5 Run TP iterations of feasibility problem with alg using W(1,ĵ), . . . ,W(P,ĵ) as in lines 5-9

of Game 9.13.
6 if at most k − 1 exploratory queries for all depth-(P − 1) periods then Strategy fails;

end;
7 else
8 Let [âTP−1, (â+ 1)TP−1) be the first such depth-(P − 1) period for â ∈ [0, N)
9 Submit memory state Message of alg at the beginning of the period (just before

iteration âTP−1) and index (ĵ − 1)N + â+ 1 ∈ [JP−1]
10 end

Algorithm 9.16: Strategy of the Player for Game 9.13 with P−1 layers given a strategy
for P layers

Proof Suppose for now that the parameter k satisfies all assumptions from Lemma 9.11
for all Games 9.13 with layers p ∈ {2, . . . , P} and ζ = P . Then, starting from a strategy
for depth P , maximum index JP = N , and winning with probability q with TP queries, we
can construct a strategy for the depth-1 game with maximum index J1 = NP and wins with
probability at least q − 1

2P
(P − 1) ≥ q − P−1

2P
> 0. As in the deterministic case, to win at

Game 9.13 for depth 1 one needs at least k queries and we reach a contradiction since T1 = k
2
.

Hence, this shows that an algorithm that wins with probability at least 1
2

at Game 9.13 with
P layers and JP = N must make at least the following number of queries

Tmax > TP =
k

2
NP−1.

Now assuming that d̃ ≥ 4lk, we obtain N ≥ d̃/(4lk). Hence, using d̃ ≥ d
3P

, we obtain the
desired lower bound

Tmax >
k

2

⌊
d

12Plk

⌋P−1

.

We now check that the assumptions for Lemma 9.11 are satisfied for all games with layers
p ∈ {2, . . . , P}. It suffices to check that

d̃

4l
≥ k ≥ 100P

M + 2 log2 J1 + 3

d̃
ln

√
d

γ1
∨ ln(2Pk2J1(N + 1))

ln d
∨ 3. (9.46)
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For the upper bound, recalling the definition of l in Eq (9.33), we have that

d̃

4l
≥ d

12Pl
= Ω

(
d

k3P ln d

)
.

In particular, the left-hand-side of Eq (9.46) holds for

k ≤ Ω

((
d

P ln d

)1/4
)
.

For the upper bound, because log2 J1 ≤ P log2 d and γ1 =
δ
(1)
1

4k
, we have

100P
M + 2 log2 J1 + 3

d̃
ln

√
d

γ1
= O

(
M + P ln d

d
P 3 ln d

)
.

On the other hand, ln(2Pk2JP (N + 1)) = O(P ln d), hence the first term in the right-hand
side of Eq (9.46) dominates. As a summary, for an appropriate choice of constants c4, c5 > 0,
Eq (9.46) holds, which ends the proof. ■

The last step of the proof is to link the feasibility problem with the oracle Õt for t ≥ 0
with Game 9.13. This step is exactly similar to the deterministic case when we reduced
Procedure 9.3 to Game 9.4. By giving a reduction to the Kernel Discovery Game 9.11 we
show that an algorithm that solves the feasibility problem with the oracles Õt must solve
multiple instances of Game 9.13 with P layers.

Lemma 9.12. Let P ≥ 2 and k ≥ 3. Suppose that 4lPk ≤ d̃ and lP ≥ l. Let NP =⌊
d̃/(2lPk)

⌋
. Suppose that there is an M-bit algorithm that solves the feasibility problem

with the randomized oracles (Õt)t≥0 using at most M bits of memory and NPTP iterations,
and that finds a feasible solution with probability at least q. Then, there exists a strategy
Game 9.13 for depth P and maximum index JP = N that uses M bits of memory, TP
iterations and wins with probability at least q − k2NP e

−k ln d − e−d̃/10.

Proof Fix anM -bit feasibility algorithm alg for the randomized oracle (Õt)t≥0 satisfying the
hypothesis. We construct from this algorithm a strategy for the Kernel Discovery Game 9.11
with m = NlPk ≤ d̃

2
samples. The construction is essentially the same as that for the

deterministic case in Lemma 9.9 (Algorithm 9.12): we simulate a run of the feasibility
problem using for EP the d̃-dimensional space sampled by the oracle and using the samples
of the oracle v1, . . . ,vm to construct the depth-P probing subspaces. The strategy is given
in Algorithm 9.17.

The rest of the proof uses the same arguments as for Lemma 9.11. Define the event

E =
⋂
a<N

{at most k depth-P exploratory queries during period [aTP , (a+ 1)TP )} .

By Lemma 9.10 and the union bound, on an event F of probability at least 1− k2NP e
−k ln d,

all depth-P periods [aTP , (a+1)TP ) for a ∈ [0, NP ) satisfy the properties from Lemma 9.10.
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Input: depth P , dimensions d, d̃, l, parameter k, M -bit algorithm alg, number of
samples m = NlPk

1 Sample E1, . . . , EP−1 i.i.d. uniform d̃-dimensional subspaces of Rd and independent
sequences (V (p,a))a≥0 for p ∈ [P − 1] as in the construction of the randomized oracles
Õt.

2 Receive samples v1, . . . ,vNlP k. Let V (P,a)
i := Span(valP k+(i−1)lP+s, s ∈ [lP ]) for

i ∈ [k], a ∈ [0, N)
3 Set memory of alg to 0 and run NPTP iterations of the feasibility problem with alg and

the oracles Õ
V (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋) for t ∈ [0, NPTP )

4 if at any time t ∈ [0, NPTP ) the oracle outputs Success on query xt of alg then
5 return xt

∥xt∥ to oracle; break
6 else Strategy fails; end ;

Algorithm 9.17: Strategy of the Player for the Kernel Discovery Game 9.11

Last, let G be the event on which alg solves the feasibility problem with oracles (Õt) con-
structed using the same sequences (V (p,a))a≥0 for p ∈ [P ] as constructed in Algorithm 9.17.
Under E ∩ F , any query xt for t ∈ [0, NPTP ) that passed probes at depth P satisfies

∥ProjEP
(xt)∥ ≤ ηP .

Now note that under G, the algorithm run with the oracles Õt for t ∈ [0, NPTP ) finds a
successful query for the oracles and in particular there is some query t ∈ [0, NPTP ) which
passed all probes at all depths p ∈ [P ]:

Õ
V (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋)(xt) = Success.

Consider the first time t̂ when a query xt is successful for the oracles Õ
V (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋) .

We pose t̂ = NPTP if there is no such query. By construction, at all previous times the
responses satisfy

Õt(xt) = ÕV (1,⌊t/T1⌋),...,V (P,⌊t/TP ⌋)(xt), t < t̂.

In summary, up until this time t̂, the run in line 3 of Algorithm 9.17 is equivalent to a run
of the feasibility with the original oracles (Õt)t≥0. Hence, under E ∩ F ∩ G, the algorithm
returns the vector y := xt̂/∥xt̂∥ and we have ∥ProjEP

(xt̂)∥ ≤ ηP . The successful query also
satisfies ∥xt̂∥ ≥ 1

2
since e⊤xt̂ ≤ −1

2
. As a result, under E ∩ F ∩ G,

∥ProjE(y)∥ = ∥ProjEP
(y)∥ ≤ 2∥ProjEP

(xt̂)∥ ≤ 2ηP ≤

√
d̃

20d
.

Because m = NlPk ≤ d̃
2
, Lemma 9.8 implies

P(E ∩ F ∩ G) ≤ P(Algorithm 9.17 wins at Game 9.11) ≤ e−d̃/10.
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Hence,
P(Ec) ≥ P(G)− P(E ∩ F ∩ G)− P(F c) ≥ q − k2NP e

−k ln d − e−d̃/10.
From this, using the exact same arguments as in Lemma 9.11 (Algorithm 9.16) we can
construct a strategy for Game 9.13 with P layers and maximal index JP = NP , and wins
under the event Ec. It suffices to simulate the specific depth-P period on which alg queried
the successful vector xt̂. Note that because lP ≥ l, we have NP ≤ N . Hence, this strategy
also works if instead we have access to a larger maximal index JP = N . This ends the proof.
■

We now combine this reduction to Game 9.13 together with the query lower bound of
Theorem 9.10. This directly gives the following result.

Theorem 9.11. Let P ≥ 2 and d ≥ 20P . Suppose that k satisfies Eq (9.45) as in The-
orem 9.10. Also, suppose that 4lPk ≤ d̃ and lP ≥ l. If an algorithm solves the feasibility
problem with oracles (Õt)t≥0 using M bits of memory and at most Tmax queries with proba-
bility at least 3

4
, then

Tmax > NPTP ≥
kl

2lP

(
d

12Plk

)P
.

Proof Fix parameters satisfying Eq (9.45). Suppose that we have such an algorithm alg
for the feasibility problem with oracles (Õt)t≥0 that only uses Tmax ≤ NPTP queries and
wins with probability at least 3

4
. Because k2NP e

−k ln d + e−d̃/10 ≤ 1
4
, we can directly combine

Lemma 9.12 with Theorem 9.10 to reach a contradiction. Hence, Tmax > NPTP which ends
the proof. ■

Now, we easily check that the same proof as Lemma 9.1 shows that under the choice
of parameters, with probability at least 1 − e−d/40 over the randomness of E1, . . . , EP , the
feasible set Q̃E1,...,EP

contains a ball of radius ϵ = δ
(1)
1 /2, hence using the oracles (Õt)t≥0 is

consistent with a feasible problem with accuracy ϵ. These observations give the following
final query lower bound for memory-constrained feasibility algorithms.

Theorem 9.12. Let d ≥ 1 and an accuracy ϵ ∈ (0, 1√
d
] such that

d1/4 ln2 d ≥ c6
M

d
ln3+1/4 1

ϵ
.

for some universal constant c6 > 0. Then, any M-bit randomized algorithm that solves any
feasibility problems for accuracy ϵ with probability at least 9

10
makes at least(

d

M

)2
1

ϵ2ϕ(d,M,ϵ)

queries, where ϕ(d,M, ϵ) = 1− 4
ln M

d

ln d
−O

(
ln

ln(1/ϵ)
ln d

ln d
+ ln ln d

ln d

)
.

Proof We first define

P̃ :=
2 ln 1

ϵ
− ln

(
ln(1/ϵ)
ln d

+ 1
)
− 15

ln d+ 15
.
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We then use the following parameters,

P :=
⌊
P̃
⌋
, k :=

⌈
3c4

M

d
P 3 ln d

⌉
, and lP := l ∨

( d̃

4k

)P−P̃
 .

Note that in particular, P ≤ Pmax =
ln 1

ϵ

ln d
+ 1. Taking c6 sufficiently large, the hypothesis

constraint implies in particular d ≥ 20P .
We assume P ≥ 2 from now. The same proof as Lemma 9.1 shows that on an event E of

probability 1− e−d/40 the feasible set Q̃E1,...,EP
contains a ball of radius δ(1)1 /2. Note that

δ
(1)
1 =

(1− 2/k)k−1

20µPµP−2

√
l

d
≥ 6k3/2

µP

√
lP
l
≥ 6k

µP̃

√√√√
k

(
d̃

4kµ2

)P−P̃

,

where we used (1 − 2/k)k−1 ≥ (1 − 2/3)2 because k ≥ 3. Furthering the bounds and using
l ≥ Ck3 ln d from Eq (9.33) gives

δ
(1)
1

2
≥ 3k

2µP̃

√
d̃

µ2
≥ 1

1400µP̃

√
l

Pk
≥ 1

1400µP̃
√
P
≥ ϵ.

Next, because l ≥ Ck3 ln d, we have µ ≤ 1200
√
d/ ln d. Now P̃ was precisely chosen so that

P̃ ≤
2 ln 1

ϵ
− ln(Pmax)− 2 ln(1400)

ln d− ln ln d+ 2 ln(1200)
.

The previous equations show that under E , the oracles (Õt)t≥0 form a valid feasibility problem
for accuracy ϵ > 0. In particular, an algorithm solving feasibility problems with accuracy ϵ
with Tmax oracle calls and probability at least 9

10
would solve the feasibility problem with

oracles (Õt)t≥0 with probability at least 9
10
− P(E) ≥ 9

10
− e−d/40. Because d ≥ 40P ≥ 80,

the algorithm wins with probability at least 3
4
. We now check that the assumptions to apply

Theorem 9.11 hold. By construction of lP , we have directly lP ≥ l. Further, if Eq (9.45)) is
satisfied, we would have in particular 4lk ≤ d̃, hence we would also have 4lPk ≤ d̃. It now
suffices to check that Eq (9.45) is satisfied.

As in the proof of Theorem 9.8, without loss of generality we can assume that M ≥
2d ln 1/ϵ since this is necessary to solve even convex optimization problems. Hence, k directly
satisfies the right-hand side of Eq (9.45). Next, the assumption gives

d1/4 ln2 d ≥ 60c5
c4

M

d
ln3+1/4 1

ϵ
.

Hence, c4
(

d
P ln d

)1/4 ≥ c4

(
d

Pmax ln d

)1/4
≥ 6c5(M/d)P 3

max ln d ≥ k. As a result, the right-hand
side of Eq (9.45) holds. Then, Theorem 9.11 shows that

Tmax ≥
kl

2lP

(
d

12Plk

)P
≥ k

2(2l)P−P̃

(
d

12Plk

)P̃
≥ 1

8Ck2 ln d

(
d

12Plk

)P̃
=:

1

e2ϕ̃(d,M,ϵ)
.
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The above equation also holds even if P < 2 (that is, P̃ ≤ 1) because d iterations are
necessary even to solve convex optimization problems. We now simplify

ϕ̃(d,M, ϵ) = −
ln M

d

ln 1
ϵ

+O
(
ln ln 1

ϵ

ln 1
ϵ

)
+
P̃ ln d

12Plk

2 ln 1
ϵ

= −
ln M

d

ln 1
ϵ

+
ln d− 4 ln M

d
− 13 ln ln(1/ϵ)

ln d

ln d
+O

(
ln ln d

ln d

)
.

This ends the proof. ■

In the subexponential regime ln 1
ϵ
≤ do(1), Theorem 9.12 simplifies to Theorem 9.2.

9.6 Appendix

9.6.1 Concentration inequalities

We first state a standard result on the concentration of normal Gaussian random variables.

Lemma 9.13 (Lemma 1 [LM00]). Let n ≥ 1 and define y ∼ N (0, Idn). Then for any t ≥ 0,

P(∥y∥2 ≥ n+ 2
√
nt+ 2t) ≤ e−t,

P(∥y∥2 ≤ n− 2
√
nt) ≤ e−t.

In particular, plugging t = n/2 and t = (3/8)2n ≥ n/8 gives

P(∥y∥ ≥ 2
√
n) ≤ e−n/2,

P
(
∥y∥ ≤

√
n

2

)
≤ e−n/8.

For our work, we need the following concentration for quadratic forms.

Theorem 9.13 ([HW71; RV13]). Let x = (X1, . . . , xd) ∈ Rd be a random vector with
i.i.d. components Xi which satisfy E[Xi] = 0 and ∥Xi∥ψ2 ≤ K and let M ∈ Rd×d. Then, for
some universal constant chw > 0 and every t ≥ 0,

max
{
P
(
x⊤Mx− E[x⊤Mx] > t

)
,P
(
E[x⊤Mx]− x⊤Mx > t

)}
≤ exp

(
−chwmin

{
t2

K4∥M∥2F
,

t

K2∥M∥

})
.

We will only need a restricted version of this concentration bound, for which we can
explicit the constant chw.

Lemma 9.14. Let P be a projection matrix in Rd of rank r and let x ∈ Rd be a random
vector sampled uniformly on the unit sphere x ∼ U(Sd−1). Then, for any t > 0,

P
(
∥P (x)∥2 ≥ r

d
(1 + t)

)
≤ e−

r
8
min(t,t2),

P
(
∥P (x)∥2 ≤ r

d
(1− t)

)
≤ e−

r
4
t2 .
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Also, for t ≥ 1, we have
P
(
∥P (x)∥2 ≤ r

dt

)
≤ e−

r
2
ln(t)+ d

2e .

Proof We start with the first inequality to prove. Using the exact same arguments as in
Proposition 7.10 from Chapter 7 show that for t ≥ 0,

P
(
∥P (x)∥2 − r

d
≥ t
)
≤ exp

(
−d
2
D
(r
d
∥ r
d
+ t
))

.

Applying this bound to the projection Id − P implies the other inequality

P
(
∥P (x)∥2 − r

d
≤ −t

)
≤ exp

(
−d
2
D

(
d− r
d
∥ d− r

d
+ t

))
= exp

(
−d
2
D
(r
d
∥ r
d
− t
))

.

It only remains to bound the KL divergence. Consider the function f(x) = x ∈ [− r
d
, 1− r

d
] 7→

D( r
d
∥ r
d
+ x). Then, f ′(0) = 0 and

f ′′(x) =
r/d

(r/d+ x)2
+

1− r/d
(1− r/d− x)2

≥ r/d

(r/d+ x)2

In particular, if x ≤ 0, f ′′(x) ≥ d
r

so that Taylor’s expansion theorem directly gives f(x) ≥
dx2

2r
. Next, for |x| ≤ r

d
, we have f ′′(x) ≥ d

2r
. Hence f(x) ≥ dx2

4r
. Otherwise, if x ≥ r

d
, we have

D
(r
d
∥ r
d
+ x
)
≥
∫ x

0

r/d(x− u)
2(r/d+ u)2

du =
x

2
− r

2d
ln
r/d+ x

r/d
≥ 2− ln 2

4
x ≥ x

4
.

In the last inequality, we used ln(1 + t) ≤ ln 2
2
t for t ≥ 2. In summary, we obtained for

t ∈ [0, 1],
P
(
∥P (x)∥2 − r

d
≤ −r

d
t
)
≤ e−

rt2

4 .

And for any t ≥ 0,
P
(
∥P (x)∥2 − r

d
≥ r

d
t
)
≤ e−

r
8
min(t,t2).

We last prove the third claim of the lemma using the same equation:

P
(
∥P (x)∥2 ≤ r

dt

)
≤ exp

(
−d
2
D
(r
d
∥ r

dt

))
≤ exp

(
−d
2

(r
d
ln(t) + (1− p) ln(1− p)

))
≤ e−

r
2
ln(t)+ d

2e .

This ends the proof. ■

The previous result gives concentration bounds for the projection of a single random
vector onto a fixed subspace. We now use this result to have concentration bounds on the
projection of points from a random subspace sampled uniformly, onto a fixed subspace.
Similar bounds are certainly known, in fact, the following lemma can be viewed as a variant
of the Johnson–Lindenstrauss lemma. We include the proof for the sake of completeness.
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Lemma 9.15. Let P be a projection matrix in Rd of rank r and let E be a random s-
dimensional subspace of Rd sampled uniformly. Then, for any t ∈ (0, 1],

P

(
(1− t)∥x∥ ≤

√
d

r
∥P (x)∥ ≤ (1 + t)∥x∥, ∀x ∈ E

)
≥ 1− exp

(
s ln

Cd

rt
− rt2

32

)
,

for some universal constant c > 0.

Proof We use an ϵ-net argument. Let ϵ = t
2

√
r
d

and construct an ϵ-net Σ of the unit sphere
of E, (E ∩ Sd−1) such that each element x ∈ Σ is still distributed as a uniform random unit
vector. For instance, consider any parametrization, then rotate the whole space Q again by
some uniform rotation. Note that |Σ| ≤ (c/ϵ)s for some universal constant c > 0 (e.g. see
[Tao23, Lemma 2.3.4]). Combining Lemma 9.14, the union bound, and the observation that√
1− t ≥ 1− t and

√
1 + t ≤ 1 + t, we obtain

P

(
1− t

2
≤
√
d

r
∥P (x)∥ ≤ 1 +

t

2
, ∀x ∈ Σ

)
≥ 1− |Σ|e−rt2/32 ≥ 1− exp

(
s ln

cd

rt
− rt2

32

)
.

Denote by E this event. For unit vector y ∈ E ∩ Sd−1 there exists x ∈ Σ with ∥x− y∥ ≤ ϵ.
As a result, we also have ∥P (y)−P (x)∥ ≤ ϵ. Under E , the triangular inequality then shows
that

1− t ≤
√
d

r
∥P (x)∥ ≤ 1 + t, x ∈ E ∩ Sd−1.

For an arbitrary vector x ∈ E \{0}, we can then apply the above inequality to x/∥x∥, which
gives the desired result under E . This ends the proof. ■

Last, we need the following result which lower bounds the smallest singular value for
rectangular random matrices.

Theorem 9.14 (Theorem 2.13 [DS01]). Given m,n ∈ N with m ≤ n. Let β = m/n and
let M ∈ Rn×m be a matrix with independent Gaussian N (0, 1/n) coordinates. The singular
values s1(M ) ≤ . . . ≤ sm(M ) satisfy

max
{
P(s1(M) ≤ 1−

√
β − t),P(sm(M) ≥ 1 +

√
β + t)

}
≤ e−nt

2/2.

9.6.2 Decomposition of robustly-independent vectors

Here we give the proof of Lemma 9.5, which is essentially the same as in [Mar+22, Lemma
34] or Lemma 7.6 from Chapter 7.
Proof of Lemma 9.5 Let B = (b1, . . . , br) be the orthonormal basis given by the Gram-
Schmidt decomposition of y1, . . . ,yr. By definition of the Gram-Schmidt decomposition, we
can write Y = BC where C is an upper-triangular matrix. Further, its diagonal is exactly
diag(∥PSpan(yl′ ,l

′<l)⊥(yl)∥, l ≤ r). Hence,

det(Y ) = det(C) =
∏
l≤r

∥PSpan(yl′ ,l
′<l)⊥(yl)∥ ≥ δr.
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We now introduce the singular value decomposition Y = Udiag(σ1, . . . , σr)V
⊤, where U ∈

Rd×r and V ∈ Rr×r have orthonormal columns, and σ1 ≥ . . . ≥ σr. Next, for any vector
z ∈ Rr, since the columns of Y have unit norm,

∥Y z∥2 ≤
∑
l≤r

|zl|∥yl∥2 ≤ ∥z∥1 ≤
√
r∥z∥2.

In the last inequality we used Cauchy-Schwartz. Therefore, all singular values of Y are
upper bounded by σ1 ≤

√
r. Thus, with r′ = ⌈r/s⌉

δr ≤ det(Y ) =
r∏
l=1

σl ≤ r(r
′−1)/2σr−r

′+1
r′ ≤ rr/2sσ

(s−1)r/s
r′ ,

so that σr′ ≥ δs/(s−1)/r1/(2s). We are ready to define the new vectors. We pose for all i ≤ r′,
zi = ui the i-th column of U . These correspond to the r′ largest singular values of Y and
are orthonormal by construction. Then, for any i ≤ r′, we also have zi = ui = 1

σi
Y vi where

vi ∈ Rr is the i-th column of V . Hence, for any a ∈ Rd,

|z⊤i a| =
1

σi
|v⊤i Y ⊤a| ≤ ∥vi∥1

σi
∥Y ⊤a∥∞ ≤

r1/2+1/(2s)

δs/(s−1)
∥Y ⊤a∥∞.

This ends the proof of the lemma. ■
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