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ABSTRACT

Advanced Air Mobility (AAM) is a rapidly emerging sector in the aerospace industry
that seeks to revolutionize transportation by integrating highly automated aircraft into the
airspace. As AAM technology matures, establishing a network framework and strategic hub
locations becomes crucial for transitioning from theoretical models to practical applications
in transportation systems. This thesis investigates community-based strategies for hub place-
ment within the AAM infrastructure. More specifically, it utilizes network segmentation to
decompose a network into communities to simplify the hub selection process into more man-
ageable sub-problems. Our first contribution is the development of a specialized community
detection methodology called Directed Flow Communities (DFC), which is designed to ac-
commodate the attributes of transportation networks. Next, we conduct a case study using
the Freight Analysis Framework (FAF) dataset as a proxy for AAM demand. The empirical
investigation focuses on three key sectors: pharmaceuticals, electronics, and comprehensive
freight flows, each presenting distinct challenges and insights into the network’s structure.
The findings show the effectiveness of the community detection-based methods in unveiling
cost-efficient hub locations.
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Chapter 1

Introduction

1.1 Motivation

Advanced Air Mobility (AAM) is a rapidly emerging aerospace industry sector that aims to

integrate highly automated aircraft safely and efficiently into the national airspace. AAM

is not a single technology but rather a collection of aircraft types, including electric vertical

takeoff and landing systems, drones, and other Unmanned Aerial Vehicles (UAVs). AAM

has the potential to alter transportation by introducing new strategies for rapid medical

shipments, last-mile delivery services, the deployment of urban air taxis, and improved rural

air connectivity. As we approach the next decade, the surge in AAM is expected to result

in over 100,000 crewless flights for package delivery alone in the San Francisco Bay Area

at maturity [1]. Given this projected growth, prioritizing safety, efficiency, and seamless

integration with existing infrastructure becomes imperative.

As AAM technologies develop, their adoption in public sectors will mark a shift in how we

can access transportation. Notably, the AAM industry’s participation in global events, such

as the demonstration of the Volocopter at the Olympic Games [2], highlights its growing sig-

nificance and potential for widespread adoption. The proliferation of companies specializing

in various segments of AAM, including intra-city travel (e.g., Joby Aviation, EHang, Volo-

copter), inter-city connections (e.g., Heart Aerospace), and cargo delivery services (e.g., UPS

Flight Forward, Amazon), emphasizes the diverse applications and scalability of AAM. Im-

portantly, the utility of AAM extends beyond passenger transport to critical public services
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such as fire fighting, search-and-rescue operations, power line inspections, and the delivery

of vaccines and medical equipment. A study conducted by Dulia et al. compares existing

ground transportation with potential AAM operations in Ohio, considering factors like travel

time savings, safety cost reductions, cargo delivery efficiencies, and environmental impacts,

with findings suggesting that AAM could offer substantial benefits far outweighing its initial

costs [3].

This emerging technology raises questions about the planning and development of large-

scale AAM facilities. Central to this discourse is the consideration of how network science

and existing knowledge of transportation systems can inform the strategic design and policy

formulation for AAM infrastructure. AAM presents a rare opportunity to redesign trans-

portation networks fundamentally. As a society, we have the choice to avoid replicating in-

equalities that marred historical transportation systems. The integration of network theory

techniques, such as hub location problems and community detection, presents an intriguing

approach to devising AAM networks that are efficient, equitable, and resilient.

1.2 Background

As AAM technology matures, the development of a robust network framework and hub

placements, become crucial for transitioning from theoretical models to practical applica-

tions in transportation systems. Hubs serve as a central point in transportation networks

where traffic (whether goods, information, or passengers) is consolidated, distributed, or

switched. Hubs are foundational to the hub-and-spoke model, a system designed to optimize

routes and connections, streamlining the flow within networks [4]. By centralizing traffic,

hubs reduce operational costs associated with transportation and are crucial for achieving

economies of scale in many-to-many distribution systems. This consolidation allows for the

more efficient use of resources, as vehicles can operate at fuller capacities, and direct routes

can be minimized.

The hub location problem (HLP) involves locating hub facilities and allocating demand

nodes to hubs to route the traffic between origin–destination pairs [5]. HLPs generally

classified as NP-hard due to the computational complexity involved in finding an optimal
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solution, especially as the size of the network grows [6]. In this work, we consider the

uncapacitated multiple allocation p-hub problem, which selects a predetermined number (p)

of optimal hub locations from potential nodes in a network with no capacity limits. We

investigate the use of community detection to divide the network into distinct clusters, to

identify inherent groupings for hub positioning.

There are several factors to consider when dealing with hub location problems in trans-

portation networks. HLPs experience combinatorial explosion, as even a network with only

a moderate number of nodes can result in a large number of possible subsets, making ex-

haustive search methods impractical. Additionally, the interconnected nature of the network

makes it challenging to establish hubs as the decision to establish a hub in one location can

affect the optimal placement of other hubs. Therefore, decision-making must account for

the network’s connectivity and its impact on efficiency and costs. HLPs involve multiple ob-

jectives and constraints, such as minimizing transportation costs, maximizing service levels,

and minimizing total travel time. These competing objectives and constraints further add

to the complexity of solving the problem.

In order to address these challenges, we consider decomposing a large transportation

network in to clusters. By segmenting the network into distinct communities with dense

internal connections, we simplify the task of identifying optimal hub locations to smaller

sub-problems. This tacticly acknowledges the interactions between nodes, offering a more

context-sensitive hub selection process and aids in optimizing hub allocation by aligning with

the network’s inherent clustering.

1.3 Related Work

Hub location problems, and its ties to large industries, have been an active field of research

for several decades. The first formal studies and formulations of HLPs can be traced back to

the late 1970s and early 1980s, within the context of the airline industry’s need to optimize

their networks through hub-and-spoke systems [7]. Traditionally, hub location problems are

formulated as integer linear programming (ILP) problems with binary decision variables.

O’Kelly introduced the first formulation of the HLP in literature for single and two-hub sys-

17



tems as an optimization problem [8]. HLPs are a specialized extension of classical Facility

Location Problems (FLPs). Analogous to well-known FLPs such as the p-median, unca-

pacitated facility location, p-center, and covering problems. HLPs include variants like the

p-hub median, uncapacitated hub location, p-hub center, and hub covering problems. These

HLP variants cater differ based on assumptions regarding network topology, the allocation

of origin/destination nodes to hubs, and hub capacity constraints, among other factors. Due

to the complex nature and inherent uncertainties in hub location problems, these issues are

often addressed through stochastic analysis or heuristic techniques [9].

Transportation and shipping networks on both global and national levels are known to

exhibit community structure [10], [11]. Initial clustering or community detection has become

increasingly popular as a foundational step for optimizing hub placement in networks. Pre-

vious research by Zheng et al. [12] involved using the Girvan-Newman community detection

method [13], [14] to identify communities within networks as a preliminary step towards

optimizing hub placement. Wang et al. [15] uses K-means as a method for spatial anal-

ysis before running a heuristic based method for selecting hub placements within groups.

O’Kelly considers the placement of hubs within a network by first clustering planar nodes

into groupings that minimizes the sum of square distances between nodes, and then assigns

the centroid of the groups as a hub [16]. Peker et al. identifies optimal hub locations by

considering node centrality and demand through a spatial viewpoint [17].

Past works have independently explored the utility of specific community detection meth-

ods for preliminary community identification, but a systematic comparison across a spectrum

of community detection methods remains largely unexplored in literature.

1.4 Thesis Contributions

Our contributions in this work are as follows:

1. Community Detection in Directed, Weighted, Attributed Networks: The

first contribution is the development of a community detection methodology tailored

to transportation networks.
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2. Comparative Analysis of Community Detection Based Hub Selection: Build-

ing on the identified communities, we conduct a comparative analysis for hub place-

ments on the Freight Analysis Framework. We explore two approaches within these

communities: centrality-based, focusing on the strategic importance of nodes, and in-

teger programming-based, emphasizing mathematical optimization.

1.5 Outline

The remainder of this document is structured as follows: Chapter 2 details the methodology

behind Directed Flow Communities, a community detection approach tailored for trans-

portation networks. Chapter 3 presents a case study for hub selection, utilizing the Freight

Analysis Framework as a stand-in for Advanced Air Mobility (AAM) demand to compare

various community decomposition strategies. Finally, Chapter 4 summarizes the key find-

ings and discusses potential avenues for future research stemming from this thesis. Code,

parameters, and additional supporting figures can be found in the Appendices.
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Chapter 2

Community Detection in Network

Analysis

2.1 Background

Community detection, also known as graph partitioning or clustering, is an essential compo-

nent of network analysis. It entails identifying subgroups of nodes within a network that are

more strongly interconnected than they are connected to the rest of the network [18]. This

concept plays an important role in comprehending and interpreting the structural properties

and dynamics of complex networks [19], [20].

Directed, weighted graphs are especially significant in representing systems where not

only the connections matter but also the direction and magnitude of interactions. This

includes a wide array of systems, from biological networks [21] to social media interactions

[22] and transportation networks [23].

In the domain of transportation networks, the development and application of community

detection methods tailored to the unique intricacies of these systems remain largely unex-

plored. This gap is particularly evident when considering the three pivotal issues that are

characteristic of transportation networks: geographic location, connectivity, and dynamic

traffic patterns.

• Geographic Location: Transportation networks are inherently tied to physical ge-
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ography, where the spatial distribution of nodes and the distances between them play

critical roles in network functionality and efficiency. Traditional community detection

algorithms often overlook the geographical constraints and the physical realities of node

placements, leading to suboptimal grouping that may not be feasible or efficient in real-

world applications. A transportation-specific community detection method must incor-

porate geographic considerations, ensuring that identified communities reflect practical

constraints such as physical distances, topographical barriers, and regional boundaries.

• Connectivity: Unlike many other types of networks, the connectivity within trans-

portation networks is not merely defined by the existence of links between nodes but

also by the capacity, frequency, and reliability of these connections. Different modes

of transportation have varying levels of service, which influence the strength and sig-

nificance of connections within the network.

• Dynamic Traffic Patterns: Traffic flow within transportation networks is highly

dynamic, influenced by factors such as time of day, season, and changing economic

activities. This dynamism introduces complexity in understanding the true structure

of the network, as the significance of nodes and connections can fluctuate significantly.

2.1.1 Challenges in Directed, Weighted Networks

In directed graphs, the challenge of community detection extends beyond merely identifying

densely connected groups. It also involves understanding the directional flow of information

and discerning how this flow affects community formation and boundaries [20]. This under-

standing is critical for accurately interpreting the directional relationships and dependencies

within the network.

Many community detection algorithms optimize for specific metrics that define commu-

nities, which may not be universally applicable across all network types. This limitation

underscores the utility for more adaptable and generalized approaches that can cater to the

diverse characteristics of complex networks.

22



Figure 2.1: Example of a directed graph where there is a cyclical flow among three distinct
node groups. Traditional community detection approaches fail to detect these group. For
example, when dividing the graph into these three groups, the directed modularity measure
is zero. In contrast, when the modularity value is maximized, these flow-based communities
are lost. Figure from Lancichinetti and Fortunato [24].

2.1.2 Existing Community Detection Methods

Community detection in undirected, unweighted graphs has historically formed the founda-

tion of network analysis, with quantifiers such as modularity [25] used to identify densely con-

nected subgroups. Modularity juxtaposes the density of intracluster links with the expected

density in an equivalent random graph, providing a measure of community strength. Given

the NP-hard nature of optimizing modularity [26], which poses computational challenges in

large-scale networks, approximation algorithms have become pivotal. Notable among these

are the Louvain [27] and Leiden [28] algorithms, which offer solutions by approximating the

optimal modularity score to identify meaningful community partitions efficiently. The con-

cept of modularity has been expanded to include weighted and directed graphs [29], and has

been incorporated into the Directed Louvain algorithm [30].

Spectral clustering operates on the principle of transforming the problem of community

detection into a graph partitioning problem in a lower-dimensional space, achieved by the

spectral decomposition of the graph’s Laplacian matrix [31], [32]. This process presents

issues when encountering directed graphs, which are characterized by asymmetrical matrices
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[20]. Other traditional clustering methods include Girvan-Newman [13], [14] and hierarchical

clustering [33].

Several methods use a dynamic approach to community detection, leveraging the concept

of a random walk. In these methods, a community is a group of nodes within which a "random

walker," an entity moving from node to node following edges, is more likely to remain,

indicative of dense intra-community connections. Walktrap [34] does this by calculating

distances between nodes and merging communities with the smallest distance. Approaches

for directed graphs, such as Infomap [35] and Relaxmap [36] perform similarly, but instead

optimize for an information theoretic function known as the Map Equation.

In recent years, higher-order clustering and deep learning techniques have been explored

for community detection. Higher-order clustering goes beyond pairwise node connections,

focusing instead on the overarching patterns of connectivity, known as "motifs," to delineate

communities through motif significance [37]–[40]. Concurrently, integrating deep learning

and graph neural networks (GNNs) for community detection has also shown promise [41],

[42].

2.2 Graph Notation

A directed graph is represented as G = (V,E,w), where: V is the set of nodes, with |V |

denoting the total number of nodes, E is the set of directed edges between nodes, with |E|

representing the total number of edges. w : E → R+ is a function assigning a weight to each

edge, quantifying the strength or capacity of the interaction from the start node u to the

end node v in each edge (u, v) ∈ E.

2.3 Proposed Community Detection Method: Flow Based

Clustering

This model, Directed Flow Communities (DFC) treats the flow of mass (or information)

through a network in a manner reminiscent of dye permeating fabric. In this analogy, the

network nodes are likened to vats filled with fabric, each capable of absorbing dye, while the
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Figure 2.2: This schematic diagram represents the distribution of flow from a source node
within a directed network. The "Source" node is the origin of the mass that is being dis-
tributed through the system. The "More" node, positioned along a shorter and wider edge,
indicates substantial accumulation of flow mass, attributed to both its proximity to the
source and the greater edge weight. In contrast, the "Less" node, connected by a longer
and narrower edge and shown with a lighter color, receives less mass, due to the impact
of increased distance and reduced edge magnitude on flow attenuation. The "None" node,
isolated by its significant distance and absence of a substantial connecting edge, receives neg-
ligible mass, highlighting how edge length and network topology influence flow distribution.

edges represent the conduits through which the dye is transported between them. The edge

weights symbolize the velocity at which the dye moves, influencing the rate and pattern of

distribution across the network. Similar to how dye is dispersed through water, the distance

and material of the fabric affect how swiftly and thoroughly the dye permeates. Figure 2.2

illustrates this concept with a schematic diagram that delineates the flow from a source node

within a directed network.

DFC incorporates geographic considerations by utilizing the physical distances and spa-

tial relationships between nodes as integral components of its algorithm. By considering the

flow of traffic or goods through the network and how it traverses the geographical landscape,

DFC ensures that the communities it identifies are structurally coherent and geographically

plausible. This spatial awareness in community formation makes the method particularly

suited to transportation networks, where the physical distance between nodes significantly

impacts network dynamics and efficiency.

Through a flow-simulation-based approach, DFC accounts for both connectivity and dy-

namic traffic patterns by modeling directed and weighted edges that represent real-world
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Output: Detected CommunitiesInput: Directed Graph

x : Selected Source Nodes 
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Source Node Layer 4 ( ) 

resulting vector of flow mass values:  

Figure 2.3: Overview of Directed Flow Communities. (Left) Input: A directed graph is
initialized with designated source nodes and predefined parameters for nodes, edges, and
clustering range. (Center) Source Node Layering: Each source node undergoes a discrete
simulation over T timesteps, accumulating a mass vector sn for every node within the graph.
Flow profile represents the combined mass vectors across the network. K-Means clustering
is applied to the flow profile, which partitions nodes into communities based on similar-
ity, effectively detecting communities through their flow dynamics. (Right) Output: Final
community assignments.

transportation routes and their capacities. The algorithm simulates the movement of traffic

or goods across these routes, taking into account the directionality and volume of flow, which

are critical in understanding the functional ties between different parts of the network. This

process mirrors the utilization of transportation links, allowing DFC to adapt to the fluc-

tuations in traffic volume and the varying importance of routes under different conditions

through parameters.

2.3.1 Model Parameters

The model’s behavior in network environments is governed by a set of parameters, classified

into three primary groups that impact its performance and outcome.

• Node Parameters: Absorption Rate and Absorption Limit

The absorption rate (αr) specifies the quantity of mass a node retains at

each timestep, while the absorption limit (αℓ) defines the maximum mass

capacity a node can accommodate.

• Edge Parameters: Velocity, Length, and Decay Rate
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Velocity (w), typically denoted by edge weight, refers to the rate at which

mass travels along the edge, while length (d) represents the physical or con-

ceptual distance between two nodes. Decay rate (λ) quantifies the rate at

which mass diminishes as it moves through the edge and is generally con-

stant throughout all edges. The specific units of edge weights (w) are incon-

sequential, as they function as abstract indicators of the mass transmission

rate rather than concrete physical measurements. These parameters together

influence the transmission of mass between nodes in the network.

• Simulation Parameters: Timesteps

The number of timesteps (T ) defines the discrete intervals at which the flow

simulation state is updated.

The chosen parameters impact the model in two main aspects: spread dynamics and final

community results. Specifically, node and edge parameters are crucial in setting the pace

of the network’s flow. However, the overall structure of the network ultimately dictates the

formation and delineation of communities.

Parameters should be selected to align with the specific characteristics of the network

under study. For instance, in the context of migration studies, the edge parameters for

distance d can be adjusted to represent distances between geographic locations, and edge

velocity w can represent the total amount of migration. In supply chain and logistics, decay

rate λ can simulate the loss of goods during a shipment and absorption limit αℓ can represent

the capacity of a hub.

The proposed model parameters offer a flexible yet robust framework for understanding

and manipulating network dynamics. This model’s effectiveness is contingent on carefully

selecting its parameters, which should be tailored to the specifics of each network scenario.

This approach ensures that the model can be effectively adapted and applied to a diverse

range of network types and conditions.
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2.3.2 Flow Simulation

The mass flow simulation begins with a selected subset of nodes, wherein each node is

designated as a source for each distinct layer. In our simulation, "layering" refers to the

process of sequentially conducting individual simulation runs for each source node and then

aggregating these runs to discern community groupings. Specifically, each layer represents

the outcome of a single run with one source node. During this run, we track the flow

and absorption of mass throughout the network, originating from the source node. Once

a simulation run is complete, its results are set aside as one layer of data. This process is

repeated for each source node in the subset. After completing all individual runs, these layers

are superimposed, or "stacked," creating a comprehensive flow profile of the network’s mass

flow dynamics). Analyzing this stacked data allows us to identify patterns and interactions

between nodes, determining community groupings within the network (Figure 2.3).

Source nodes act as an infinite point of mass for the network and must have at least one

outgoing edge.

As stated in the previous section, each edge has its own characteristics (d, w, λ). These

characteristics influence how the mass travels along each edge. An upwind differential scheme

is used to solve the advection-decay equation (2.1) for calculating the inflow Cstart(e) and

outflow Cend(e) mass concentrations along each edge. This computation is performed for

each timestep dt over a total duration of T steps.

Cend(e) = Cstart(e)−
(
w(e)

d(e)
· Cstart(e) + λ(e) · Cstart(e)

)
· dt (2.1)

When mass is conveyed to a node via an edge, the node absorbs the mass Iin (2.2)

at rate αr until it reaches the absorption limit αℓ. Unabsorbed mass Iout is redistributed

proportionally to outgoing edges (2.3). In cases where a node has reached αℓ, all arriving

mass is passed along to outgoing edges.

Iin(n) =
∑

e∈Ein(n)

Cend(e) (2.2)
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Cstart(e) =
w(e)∑

e∈Eout(n)
w(e)

· Iout(n) (2.3)

Absorption and redistribution occur at each timestep dt in the simulation. Upon initiating

the run with a new source node, total absorbed values are reset to ensure a fresh start for each

simulation cycle. Additionally, this method disregards self-loops to maintain the integrity of

the simulation dynamics.

Once simulations for identified source nodes are completed, we apply K-means cluster-

ing [43] to the flow profile for community detection. When the number of communities is

unknown, an approximate range can be used to determine the optimal number of clusters,

which can be found using the elbow method or the highest silhouette score.

2.4 Validation and Testing

This section is divided into three parts. First, experiments are conducted on benchmark

synthetic graphs, detailed in Section 2.4.1, to test the model in controlled environments and

validate our method. Second, experiments on empirical graphs are presented in Section 2.4.2,

offering insights into the model’s performance in real-world scenarios. These experiments

involve comparisons against three established community detection methods: Infomap [35],

which shares flow-based properties with our model; Directed Louvain [44], a modularity-

based clustering method; and MotifCluster [39], a technique that focuses on pattern-based

clustering.

For networks with ground truth communities, normalized mutual information (NMI) and

adjusted mutual information (AMI) are used as the basis for information-theoretic measures

of clustering comparisons. NMI measures the similarity between two clustering results by

comparing the mutual information normalized by the average of the entropy of each cluster-

ing. Mathematically, NMI between two clusterings U and V is defined as:

NMI(U, V ) =
2 · I(U ;V )

H(U) +H(V )

where I(U ;V ) is the mutual information between U and V , and H(U) and H(V ) are the

entropies of U and V , respectively. NMI ranges from 0 (no mutual information) to 1 (perfect
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correlation).

AMI is a variant of NMI that adjusts for chance, correcting for the fact that random

clustering assignments could yield a non-zero mutual information [45]. The AMI is given by:

AMI(U, V ) =
I(U ;V )− E[I(U ;V )]

avg(H(U), H(V ))− E[I(U ;V )]

where E[I(U ;V )] is the expected mutual information between U and V under the null

hypothesis of independence. This adjustment makes AMI more robust in comparing cluster-

ing results, as it accounts for the possibility of random agreements. There are various other

measures for evaluating clustering performance, as discussed in comparative metric studies

[40], [45], [46], but NMI and AMI are chosen due to their extensive application and proven

reliability in community detection.

2.4.1 Synthetic Datasets

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark graphs are synthetic weighted, di-

rected networks with predefined community structures, designed to test community detec-

tion algorithms [24]. These graphs are notable for their ability to mimic real-world network

characteristics, such as power-law distributions for node degrees and community sizes. The

typical parameters for LFR benchmark graphs include a range of average node degrees,

community sizes, mixing parameters, and other structural features. These parameters can

be adjusted to create networks with varying degrees of complexity and community overlap,

allowing researchers to tailor the graphs to specific experimental needs. The flexibility in

parameter settings ensures that the LFR benchmark can closely replicate diverse real-world

network scenarios.

A key feature of LFR graphs is the mixing parameter (µ), which controls the fraction

of a node’s links that connect to nodes in other communities. This parameter adjusts the

network’s community structure, with lower values indicating clearer community boundaries

and higher values making community detection more challenging.

LFR benchmarks allow for customization of various aspects, including network size, com-

munity size distribution, and the level of community overlap. This flexibility makes LFR
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LFR Graph

(a) Input LFR graph with community ground truths. Se-
lected source nodes are circled.

Flow Simulation

(b) Flow simulations representing the accumulation of
flow from each source node, with node color intensity in-
dicating mass accumulation.

NMI = 1.0

Directed Flow Communities

(c) The output graph of detected communities with an NMI
score of 1.0.

Figure 2.4: Community Detection with Directed Flow Communities on a 50-node LFR graph.
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Figure 2.5: Graphs of community detection performance on 500-node and 1000-node LFR
benchmark graphs with varying µ parameters on Directed Louvain, Infomap and Directed
Flow Communities.

graphs a comprehensive tool for evaluating the performance of community detection algo-

rithms across different scenarios, providing insights into their effectiveness in revealing the

underlying community structure in complex networks.

Tests were systematically conducted on 500-node and 1000-node directed weighted LFR

graphs, as shown in Figure 2.5. For each distinct µ value, 100 graphs were generated. In these

tests, only the µ values were varied, while all other input parameters were kept constant. The

µ value, often referred to as the mixing parameter, modifies the strength of the community

structure within the graph. For the 500 node experiments, community size distribution was

set to 20 and 50 nodes and the degree distribution was between 35 and 75. For the 1000

node experiments, community size distribution was set to 40 and 70 nodes and the degree

distribution was between 35 and 75. Figure 2.4 showcases a demonstration of the Directed

Flow Communities method on a smaller, 50-node LFR benchmark graph.

In the range of µ values from 0.2 to 0.6, the performance of the Directed Flow Communi-

ties method was comparable to that of other methods, but a decline in its effectiveness was

observed for µ values exceeding 0.8. Notably, our method outperformed Infomap in scenarios

with µ > 0.60, but it’s performance still lagged Directed Louvain.
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Table 2.1: Comparative Results for Community Detection in the EU-Core Dataset. This
dataset represents an email communication network from a European research institution,
characterized by 42 communities (1005 nodes, 25571 edges).

EU-Core

Algorithm No. of Comms. AMI NMI % of Clustered Nodes

DFC 37 0.472 0.560 100%
Dir. Louvain 36 0.565 0.621 100%
Infomap 91 0.531 0.720 100%
Motif - Ms 42 0.330 0.331 98.2%
Motif - M3 42 0.516 0.517 77.0%
Motif - M8 42 0.345 0.338 96.9%

Table 2.2: Comparative Results for Community Detection in the Cora Dataset. The Cora
dataset is a citation network of scientific publications categorized into seven communities
(2708 nodes, 5429 edges).

Cora

Algorithm No. of Comms. AMI NMI % of Clustered Nodes

DFC 44 0.277 0.310 100%
Dir. Louvain 2707 0.000 1.0 100%
Infomap 176 0.237 0.329 100%
Motif - Ms 7 0.133 0.127 87.5%
Motif - M8 7 0.158 0.141 79.4%
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2.4.2 Empirical Datasets

To extend this research to real world directed networks, we conducted tests on two graphs

with ground truths: EU-Core [47] and Cora [48], as shown in Table 2.1 and 2.2. The EU-

Core network is composed of email data from a European research institution, capturing the

communication patterns among individuals. It features a dense connectivity structure with

each individual belonging to one of 42 departments. The Cora dataset is a citation network

consisting of scientific publications classified into one of seven classes. Each publication in

the dataset is described by a binary word vector indicating the absence or presence of the

corresponding word in a dictionary of 1,433 unique keywords. Cosine similarity was used to

transform text similarity vectors into unique edge weights [49]–[51].

The unweighted nature of the EU-Core network, coupled with the absence of addi-

tional features, offers perspective into the intuitive spread of information within a network.

However, this simplicity can lead to a reduction accuracy when detecting and evaluating

community structures using Directed Flow Communities. In the Cora Dataset, Directed

Flow Communities has a 16.87% improvement on AMI scores over Infomap.

An interesting takeaway from the comparative analysis concerns the potential inflation

of NMI scores, especially in the context of algorithms like Directed Louvain and Infomap.

In such algorithms, overestimating the number of communities can lead to high NMI scores,

falsely suggesting a higher level of accuracy in community detection than actually exists. A

more accurate representation of the scores can attained with AMI values, which account for

the agreement between clusterings that occurs purely by chance.

Unlike community detection methods that discover how many communities exist in a

given network, MotifCluster requires this value at the outset. In practice, the number of

communities must be known beforehand or estimated using a methodological approach.

Additionally, this method focuses on clustering the most strongly connected components of

a network [39]. This bias is rooted in the assumption that the most meaningful and coherent

community structures are likely to be found within these highly interconnected segments.

MotifCluster with the M3 motif was not able to find communities for the Cora dataset.
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2.5 Source Node Selection

Table 2.3: Experimental Comparison of Source Node Selection Strategies on an 802-Node
LFR Network (µ = 0.3). The table compares AMI and NMI with standard deviations
derived from 100 iterations on an LFR graph. It evaluates the efficacy of various node
selection methods for different quantities of source nodes.

(a) For 50 and 100 Source Nodes

50 Nodes 100 Nodes

Strategy AMI ±σ NMI ±σ AMI ±σ NMI ±σ

Low Btwns. 0.813 ± 0 0.820 ± 0 0.984 ± 0 0.985 ± 0
High Btwns. 0.781 ± 0 0.788 ± 0 0.882 ± 0 0.886 ± 0
Random 0.724 ± 0.169 0.773 ± 0.168 0.944 ± 0.047 0.947 ± 0.046
Hybrid 0.784 ± 0.116 0.792 ± 0.115 0.941 ± 0.042 0.944 ± 0.042

(b) For 250 and 500 Source Nodes

250 Nodes 500 Nodes

Strategy AMI ±σ NMI ±σ AMI ±σ NMI ±σ

Low Btwns. 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0
High Btwns. 0.987 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0
Random 0.994 ± 0.008 0.995 ± 0.008 0.997 ± 0.006 0.997 ± 0.006
Hybrid 0.993 ± 0.010 0.992 ± 0.011 0.998 ± 0.004 0.997 ± 0.005

In smaller networks, it is typically advantageous to apply the Directed Flow Communities

algorithm to all nodes, as the computational load is manageable. But as network size in-

creases, the processing time can become prohibitive. To maintain efficiency in larger graphs,

judiciously selecting a representative subset of nodes for analysis is recommended.

Betweenness centrality [52], [53] quantifies a node’s role as an intermediary across the

shortest paths in a graph. It is denoted as CB(v) =
∑

s ̸=v ̸=t
σst(v)
σst

, where σst represents the

total shortest paths from node s to t, and σst(v) is the count of those paths passing through

node v. This metric finds nodes critical for information flow and is helpful for selecting

source nodes in network flow simulations.

Selecting source nodes with high betweenness centrality for flow simulations often chan-

nels the flow along the network’s most central paths, potentially overemphasizing well-

connected communities and neglecting those on the periphery. This approach tends to
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highlight the network’s main arteries but can skew the detection towards larger, more visible

communities, possibly overlooking smaller, less central communities.

On the other hand, using nodes with low betweenness centrality as sources can illuminate

less conspicuous communities by tracing flow through less central pathways, offering insights

into the network’s more nuanced structures. An entirely random selection of source nodes

introduces variability, affecting the consistency of detected communities and potentially in-

troducing bias due to the stochastic nature of the selection process.

To counteract these limitations and ensure a balanced exploration of the network, one

can adopt a hybrid strategy that combines a selection of nodes characterized by high and low

betweenness centrality with nodes chosen at random. However, strategies that exclusively

select nodes with low betweenness centralities have been the most effective. Table 2.3 shows

the efficacy of different strategies within an 802-node LFR network. The table compares

strategies through AMI and NMI metrics across 50, 100, 250, and 500 source nodes.
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Chapter 3

Freight Analysis Framework Case Study

The Freight Analysis Framework (FAF) database provides comprehensive estimates of freight

movement within the United States [54]. The Bureau of Transportation Statistics, in collab-

oration with the Federal Highway Administration, compiles the FAF for 42 different types

of commodities, encompassing data across state and metropolitan regions. Data sources

include the 2017 Commodity Flow Survey (CFS), foreign trade statistics, and sector-specific

data from agriculture, extraction, utilities, construction, and other services. In this case

study, we use version 5.1 of the FAF dataset. FAF version 5.1 contains data for the base

year 2017 through to 2022, forecast year estimates (2023-2050), and state level historical

trend estimates (1997-2012).

The FAF categorizes freight data into three principal dimensions: weight, value, and

transportation activity. Freight weight is reported in thousands of tons, measuring the phys-

ical bulk of goods transported. The value of these goods is expressed in millions of dollars.

Transportation activity is quantified in millions of ton-miles. Table 3.3 is a comprehensive

representation of various commodities transported within the United States in 2017, per the

FAF dataset. In the context of AAM, the FAF dataset can serve as a proxy for future AAM

package demand. In another case study by Gunady et al., FAF is used for AAM demand

modeling [55]. In this chapter, we conduct experiments on three specific areas of the FAF

dataset.
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3.0.1 Datasets

Table 3.1: Graph Characteristics of FAF Datasets

Dataset Nodes Edges ⟨k⟩ σk λh τ r c

Pharmaceuticals 129 11192 173.51 49.27 248.33 908 -0.20 0.79
Electronics 129 16150 250.38 10.31 1161.25 325 -0.05 0.98
Total Freight 129 16496 255.75 1.00 138971.05 104 -0.02 0.99

Three sub-datasets from the FAF framework were selected for this case study. Phar-

maceuticals were chosen because their critical importance in healthcare necessitates fast,

secure, and regulated transport conditions, making them ideal for AAM adoption [56]. Elec-

tronics, a high-value commodity, are strategic investment points for AAM [3]. Lastly, an

analysis of comprehensive freight flows across all commodities was conducted to identify key

transportation corridors and regions with significant freight activity.

A graph characteristics is shown in Table 3.1. In this table, the average degree is denoted

as ⟨k⟩ and the standard deviation of node degrees is denoted as σk. The largest eigenvalue

of the adjacency matrix is denoted as λh. The mixing time, τ , estimates the time required

for a random walk to reach its steady-state distribution. The assortativity coefficient, r,

quantifies whether nodes tend to connect to others with similar degrees. If positive, this

indicates that nodes are inclined to connect to other nodes with similar degrees. Lastly,

the clustering coefficient, c, captures the likelihood that two neighbors of a node are also

neighbors themselves, reflecting the density of local clusters in the graph.

3.0.2 Assumptions

Despite current technological constraints, this analysis assumes the feasibility of long-distance

AAM flights for national-level transportation. This case study aims not only to understand

the potential of AAM in the context of existing transportation networks but also to explore

hub location problems within a more expansive framework of an entire country.
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3.1 Approach

We begin by decomposing the transportation networks into clusters. By segmenting the

network into distinct communities with dense internal connections, we simplify the task

of identifying optimal hub locations to smaller sub-problems. This tactic acknowledges the

interactions between nodes, offering a more context-sensitive hub selection process and aids in

optimizing hub allocation by aligning with the network’s inherent clustering. We then employ

eigenvector centrality, degree centrality, and integer programming to designate hubs within

each identified community for ten hubs. When community detection yields more or fewer

than ten communities, we adjust by making multiple selections from the larger communities

or excluding the smaller ones from the hub selection. Additionally, for comparative analysis,

we apply an integer programming model to find hubs on a subset of 30 nodes with the highest

degree.

To evaluate the cost-effectiveness and robustness of the hubs identified by the integer

programming (IP) approach and centrality metrics (described in Sections 3.1.3 and 3.1.4,

respectively), we undertake a comparative analysis. The nominal costs associated with all

ten hubs and scenarios where the 1, 2, 3, and 4 largest inoperative hubs were tested. A

lesser cost escalation from normal operations to scenarios with non-functional hubs suggests

greater robustness of the hub configuration. The methodology of our approach is as follows:

1. Identify 10 Hubs: For each community configuration, 10 hubs were initially selected

using methods such as integer programming and centrality metrics.

2. Select Largest Hubs: Among the selected hubs, those with the largest sum of incoming

and outgoing edge weights were identified.

3. Simulate Hub Failures: The analysis simulated failures by sequentially removing the

largest hubs from the network. Scenarios were created where 1, 2, 3, and 4 of the

largest hubs were rendered inoperative.

4. Recalculate Costs: For each failure scenario, the expected transportation costs were

recalculated. This involved determining new optimal routing paths and computing the

39



cost of freight movement across the network with the remaining operational hubs.

5. Evaluate Robustness: The robustness of each community configuration was assessed by

examining the increase in transportation costs due to the hub failures. Lower increases

in costs indicate higher robustness, as the network can maintain its efficiency and

functionality despite the loss of key hubs.

6. Compare Configurations: The cost impacts for each community configuration were

plotted to visualize and compare their robustness. The configurations with the smallest

cost increases across different failure scenarios were deemed the most robust.

3.1.1 Community Detection

Infomap, Directed Louvain, and Directed Flow Communities (DFC) are used to examine

and contrast the community structures across three sub-datasets of the Freight Analysis

Framework. The assessment of community quality will hinge on two key metrics: conduc-

tance (ϕ(S)) and the aggregate of freight flows within each community. Lower conductance

values indicate more distinct separation between communities. Equation 3.1 defines the

conductance of a subset S in a graph G.

ϕ(S) =
c(S, S̄)

min(a(S), a(S̄))
(3.1)

Where:

• c(S, S̄) is the cut size, i.e., the number of edges with one endpoint in S and the other

in S̄ = V \ S.

• a(S) is the volume of S, defined as the sum of the degrees of vertices in S.

• S̄ is the complement of S in G.

3.1.2 Hub Selection Costs

We consider the transportation costs within a traditional airline cargo hub-and-spoke net-

work, employing a cost ratio of 1:1.7:10 for different flight types, corresponding to Boeing 747
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(hub-to-hub), Boeing 767 (hub-to-spoke), and Cessna 208 Caravan (point-to-point) flights,

respectively. Despite AAM flights potentially incurring lower costs, this analysis assumes

the same cost ratio to maintain consistency with economies of scale. A script calculates and

compares the direct route cost, the cost including a single hub stop, and the cost involving

stops at two distinct hubs for each origin-destination (OD) pair, and opts for the most cost-

effective route for each pair. Table 3.2 contains the costs per nautical mile per ton for each

flight type.

Table 3.2: Cost per Nautical Mile per Ton for Different Flight Types

Flight Type Cost ($ per nautical mile per ton)

Hub-to-Hub 0.496
Hub-to-Spoke 0.858
Point-to-Point 5.154

3.1.3 Optimal Hub Selection using Integer Programming

In the uncapacitated multiple allocation p-hub problem, each node can send and receive

traffic through any hubs with no capacity limits. Yaman [57] created an IP for multiple

allocation p-hub problem, in which given a network with a set of nodes N and a set of

edgesE, let tij be the amount of traffic to be routed from node i to node j. Let dij be its

associated unit routing cost. We use a similar construction for our baseline IP but modify

the cost structure to utilize a mileage-based cost factor described in the previous section.

We define the following variables:

• tij: Represents the volume of traffic that needs to be routed from node i to node j.

• dij: Denotes the unit cost associated with routing traffic from node i to node j.

• zkk: Equals 1 if node k is designated as a hub; otherwise, it is 0.

• zik: Set to 1 if a non-hub node i is allocated to a hub node k; it is 0 if there is no

allocation.
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• fijkl: The fraction of traffic tij from node i to node j that is routed through the path

from i → k → l → j, where both k and l are hubs.

• χ, α, δ: Represents the cost factors associated with routing traffic from an origin node

to a hub (χ) between hubs (α), and from a hub to a destination node (δ), respectively.

The minimization problem is as follows:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

tij (χdik + αdkl + δdlj) fijkl (3.2)

Subject to:

∑
k∈N

zik ≤ r ∀i ∈ N (3.3)

zik ≤ zkk ∀i, k ∈ N (3.4)∑
k∈N

zkk = p (3.5)

∑
k∈N

∑
l∈N

fijkl = 1 ∀i, j ∈ N (3.6)

∑
l∈N

fijkl ≤ zik ∀i, j, k ∈ N (3.7)

∑
k∈N

fijkl ≤ zjl ∀i, j, l ∈ N (3.8)

fijkl ≥ 0 ∀i, j, k, l ∈ N (3.9)

zik ∈ {0, 1} ∀i, k ∈ N (3.10)

The model has a complexity of O(|N |4). It has O(|N |4) variables and O(|N |3) constraints

[57]. This level of complexity arises because each pair of nodes (i, j) must consider all possible

hub pairs (k, l) for routing, resulting in the quartic growth of variables with the number of

nodes. Each constraint type, such as ensuring that traffic flows through designated hubs

and satisfying hub allocation conditions, contributes to the cubic growth in the number of

constraints. Such complexity highlights the computational challenges in solving the multiple

allocation p-hub problem optimally, especially for large networks.
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3.1.4 Centrality Based Hub Selection

Centrality metrics offer a quantitative measure to identify influential nodes within a network,

each providing a unique perspective on a node’s role and importance.

Degree centrality (3.11) evaluates the prominence of a node by counting its direct

connections, emphasizing nodes with a high potential for interaction within the network[58].

The degree centrality for a node v is defined as:

CD(v) =
|{e ∈ E : v ∈ e}|

N − 1
(3.11)

Eigenvector centrality (3.12) extends the concept of degree centrality by considering

not just the quantity but the quality of connections, prioritizing nodes connected to other

influential nodes [59].

λxi =
n∑

j=1

Aijxj (3.12)

In which λ is the largest eigenvalue, xi represents the eigenvector centrality of node i, and

Aij is an element of the adjacency matrix A, indicating the presence (1) or absence (0) of a

link between nodes i and j.

The selection of centrality metrics for hub identification largely depends on the network’s

specific characteristics and the objectives of the hub location problem. Degree centrality is

most effective in dense networks where hubs are expected to handle high volumes of traffic

directly [60]. Eigenvector centrality is suited for networks where the influence of a node

is derived from its connections to other influential nodes, often applicable in hierarchical

networks [61]. In the context of HLPs, centrality-based hub selection considers the underlying

network structure and the strategic importance of nodes.

A centrality based approach can identify potential hubs that are well-connected and hold

significant influence over the flow of traffic through the network. However, one significant

limitation is the static nature of most centrality measures, which may not adequately capture

the dynamic changes in traffic patterns and network topology [62]. Additionally, reliance on

centrality metrics alone may overlook other critical factors such as geographical constraints,

necessitating a more comprehensive approach that considers a wider array of factors to
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ensure the practicality and effectiveness of the selected hubs [63]. Addressing these challenges

requires a balanced approach that combines centrality metrics with other decision-making

criteria and leverages advancements in computational methods to manage the complexity

and dynamics of transportation networks.

3.2 Results

This section presents the outcomes of comparing various hub selection methods. Details

on the community structures and configurations of hubs for each method are provided in

C. For our analysis, we chose to use 10 hubs for each configuration. Selecting 10 hubs was

well-suited for the size and distribution of the network, offering a good balance between

efficiency and computational feasibility. Additionally, this number is manageable within the

computational limits of our integer programming model, ensuring that we can obtain optimal

or near-optimal solutions without excessive computational overhead.

In the context of this case study, robustness describes the ability of the freight trans-

portation network to maintain operational efficiency when there are failures in one or more

hubs. This involves the network’s capacity to adapt to changes, reconfigure routes, and con-

tinue functioning effectively under adverse conditions. The analysis evaluates robustness by

examining the cost impact when the largest hubs are rendered inoperative, with lower cost

increases indicating higher robustness. The ability to minimize cost escalations during these

scenarios reflects the network’s capacity to withstand and recover from disruptions.
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Figure 3.1: Impact of hub removal on pharmaceutical distribution costs (in USD) for the
FAF pharmaceutical dataset, represented through various hub configurations. The graph
compares the cost changes across different configurations derived from three community
detection methods.

3.2.1 Pharmaceuticals

Figures C.2, C.3, and C.4 present the variations in community clustering derived from com-

munity detection methods applied to the Pharmaceutical dataset. Figure C.1 shows the 30

largest nodes used in the IP approach. Figure 3.1 compares the quantitative assessment

of the network’s robustness by illustrating the impact of removing the largest within each

community configuration, as per the approach described in Section 3.1. Hub configurations

are shown in Figures C.12, C.13, C.14, C.21, C.24, C.26, and C.29,.

Using Integer Programming alone resulted in the lowest initial costs. However, when

compared with the hubs chosen through the Directed Flow Communities method, combined

with degree-based hub selection, the latter’s hubs exhibited greater robustness, with only a

marginal 0.83% increase in initial costs.
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Figure 3.2: Impact of hub removal on electronics distribution costs (in USD) for the FAF
electronic dataset, represented through various hub configurations.

3.2.2 Electronics

When applying the hub selection approach to the electronics dataset, the community struc-

tures revealed through network analysis are depicted in Figures C.6 and C.7. Figure C.5

shows the 30 largest nodes used in the IP approach. The Infomap algorithm did not yield

meaningful communities for this dataset, and was omitted. Hub configurations are shown in

Figures C.15, C.16, C.25, and C.28.

Figure 3.2 presents a comparative analysis of hub configuration costs, with the directed

Louvain communities, when paired with IP hub selections, yielding the most optimal cost

implications. Leveraging IP on the 30 largest nodes emerged as the second-best approach,

highlighting the potential of scale and connectivity in influencing hub efficiency.

3.2.3 Total Freight Flows

Finally, hubs were selected using communities from the total freight flows dataset (Figures

C.9, C.11, C.10). Figure C.8 shows the 30 largest nodes used in the IP approach. Hub
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Figure 3.3: Impact of hub removal on total freight distribution costs (in USD) on the FAF
total freight flows dataset, represented through various hub configurations.

configurations are shown in Figures C.17, C.18, C.19, C.22, C.23, C.27, and C.30.

An examination of the hub costs, depicted in Figure 3.3, reveals that the hubs identified

through the Directed Flow Communities (DFC) method yielded the lowest overall costs.

3.3 Discussion

This chapter presented a case study using the Freight Analysis Framework dataset, em-

phasizing the potential of Advanced Air Mobility in transforming freight transportation in

the United States. We delved into the feasibility of employing graph analysis techniques to

deconstruct the hub selection problem within freight networks, utilizing community detec-

tion methods and centrality metrics. Through this exploration, we demonstrated how these

analytical approaches can identify highly interconnected regions and central nodes, provid-

ing a strategic framework for optimizing hub placements. This methodological blend not

only enhances our understanding of network structures but also offers actionable insights for

developing more efficient and robust transportation systems.
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In analyzing the FAF datasets, the Infomap algorithm tended to identify communities

that were more geographically dispersed. This led to the formation of clusters that resembled

outcomes typically associated with spatial analyses of hub location problems, as discussed

in studies like that by Peker et al. [17].

Notably, the Integer Programming approach, when confined to the 30 largest nodes, did

not yield promising hub configurations on the largest dataset, Total Freight Flows. This

strategy aimed to reduce computational demands by concentrating on the nodes presumed

to be most crucial. However, this approach may have overlooked essential aspects of net-

work behavior, especially those not evident in the most prominent nodes. A case in point is

the omission of Chicago, IL, as a hub (Figure 3.4). Despite being included in the 30 nodes

selected for the dataset, it was not classified as a hub in the subgraph it serves. However, in

the complete graph, the Chicago hub is a critical junction for numerous smaller nodes, dra-

matically reducing operating costs. In the smaller electronics and pharmaceutical datasets,

the IP only approach did result relatively low operating nominal operating costs, but was

less robust overall.

When applied to the pharmaceutical and total freight flow datasets, the Directed Flow

Communities method identified hub configurations that either was, or was close to, the low-

est operational costs. This indicates that DFC’s approach to community detection, which

emphasizes the direction and weight of connections, is particularly effective in pinpointing

cost-efficient hub locations within these networks. However, it’s noteworthy that the com-

munities detected by DFC exhibited higher conductivity scores compared to those identified

by other methods. Higher conductivity scores suggest that these communities might be less

tightly knit, with more connections leading outside the community. This could imply a

trade-off between cost efficiency and the internal cohesion of the communities, where DFC

optimizes for the former at the expense of the latter.
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Figure 3.4: Comparison of Two Hub Configurations for the Total Freight Flows Dataset.
(Left) Hub configuration based on integer programming from a subset of the 30 largest
hubs, resulting in a total cost of 4593.55 billion USD. (Right) Hub configuration based on
eigenvector centrality chosen from Directed Flow Communities, with a total cost of 4269.06
billion USD.
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Table 3.3: Transportation details of various commodities within the United States for the
year 2017, based on data from the Freight Analysis Framework. This table categorizes
commodities into several types and provides three key metrics for each: the total weight
transported in thousands of tons, the total value in million dollars, and the total transporta-
tion activity in million-ton/miles. Commodities listed in bold are used for experiments.

Commodity Type Thousand Tons Million Dollars Million-Ton/Miles

01 - Live animals/fish 89915.84 178546.08 16814.77
02 - Cereal grains 1322356.77 177703.64 420353.98
03 - Other ag prods. 751996.13 420512.64 266485.48
04 - Animal feed 451597.80 158859.67 130306.53
05 - Meat/seafood 106863.43 403969.25 54937.03
06 - Milled grain prods. 142043.87 214826.67 63046.35
07 - Other foodstuffs 684143.23 706454.15 247106.11
08 - Alcoholic beverages 127735.60 253394.73 39590.45
09 - Tobacco prods. 4806.68 82644.65 983.16
10 - Building stone 16518.32 7220.96 2857.84
11 - Natural sands 624132.45 12263.05 130970.67
12 - Gravel 1906165.02 20024.53 186590.19
13 - Nonmetallic minerals 294926.52 28410.62 83785.26
14 - Metallic ores 92835.58 27521.89 43247.41
15 - Coal 894422.38 35910.46 526032.47
16 - Crude petroleum 1009183.33 323139.05 534915.05
17 - Gasoline 1476339.84 785848.51 206829.03
18 - Fuel oils 1052775.27 518485.29 155154.49
19 - Natural gas 2768256.06 668100.20 581697.22
20 - Basic chemicals 483088.12 360706.42 183997.17
21 - Pharmaceuticals 23973.32 1188667.12 12162.53
22 - Fertilizers 209079.22 66628.96 64989.35
23 - Chemical prods. 146624.84 483703.02 71813.66
24 - Plastics/rubber 282014.35 825242.10 148670.32
25 - Logs 481662.84 15499.93 67309.22
26 - Wood prods. 407390.71 263818.012 115905.68
27 - Newsprint/paper 170220.68 150043.38 97505.24
28 - Paper articles 86630.80 163057.84 30013.03
29 - Printed prods. 31463.39 146338.55 13094.23
30 - Textiles/leather 63710.02 692500.73 38525.89
31 - Nonmetal min. prods. 1275292.34 275028.36 175763.07
32 - Base metals 379031.56 524097.96 137608.14
33 - Articles-base metal 161531.98 496850.38 68066.53
34 - Machinery 133006.46 1225192.17 68693.22
35 - Electronics 83059.28 1750327.30 50064.02
Total Freight Flows 19786384.60 18906784.40 5436308.30

50



Chapter 4

Conclusion

4.1 Thesis Summary

In this thesis, we considered the application of community-based hub placement strategies

within the emerging Advanced Air Mobility field. Central to this was the introduction of Di-

rected Flow Communities, a methodology designed to incorporate the geographic positioning

and flow of directed, weighted transportation networks. Through an empirical investigation

utilizing the Freight Analysis Framework dataset, this research showed the potential of Di-

rected Flow Communities and other community detection methods in unveiling strategic hub

locations.

The case study provided was a preliminary examination of the DFC method’s applica-

bility to real-world data, presenting a promising avenue for optimizing AAM infrastructure.

While the results from the case study are encouraging, suggesting the method’s potential

in identifying cost-efficient hub configurations, this represents an initial step toward valida-

tion. The process demonstrated the method’s conceptual viability and its alignment with

real-world network structures, but a more rigorous validation is essential to confirm its ef-

fectiveness comprehensively.

4.2 Future Work

Based on the results of this thesis, three directions for future research are identified:
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• Capacitated p-Hubs Problem: The current research primarily addresses the un-

capacitated p-hubs problem for simplicity. Future investigations could delve into the

capacitated variant, incorporating limitations on hub capacities to mirror real-world

constraints more accurately.

• Holistic Evaluation of Hub Placement Impact: Beyond assessing the cost impli-

cations on the network, it’s crucial to understand the broader socio-economic effects of

hub placements. Future studies could integrate demographic and socio-economic fac-

tors within the Directed Flow Communities framework. This approach would allow for

strategic hub and community placements in underserved areas, facilitating an in-depth

analysis of potential improvements in local living conditions.

• Expansion of Directed Flow Communities Validation Testing: The initial test-

ing of the Directed Flow Communities methodology has shown promise. To solidify

its validity and applicability, further testing on more extensive datasets, ranging from

10,000 to over 100,000 nodes, is recommended. This would provide a more comprehen-

sive understanding of the methodology’s scalability and performance in varied network

sizes and complexities. Additionally, more empirical testing can also aid in validating

this method.
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Appendix A

Directed Flow Communities Code

Code for the Directed Flow Communities can be found on my github repository.

A.1 Directed Flow Communities Psuedo Code

1 // Initialize network with nodes and edges

2 INITALIZE network_nodes and network_edges

3

4 // Create a variable to save layer properties to

5 CREATE layers

6

7 // Create layer for each source node

8 FOR source_node in source_nodes

9 // Set up simulation parameters and initial conditions

10 INITIALIZE simulation_parameters

11 SET source_node

12

13 // Define simulation duration

14 FOR timestep IN range(1, T+1)

15

16 // Update edge concentrations
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17 FOR edge IN network_edges

18 edge.update_step(edge.incoming_mass) // Updates edge

values

19 SET edge.outgoing_mass // Set outgoing mass for edge

20

21 // Update node values based on the incoming mass from edges

22 FOR node IN network_nodes

23 total_incoming_mass = 0

24 FOR edge IN node.incoming_edges // Sum up the outgoing

mass from all incoming edges to this node

25 total_incoming_mass += edge.outgoing_mass

26

27 // Update the node concentration

28 node.concentration = node.update_mass(total_incoming_mass

)

29

30 // Propagate the remaining node mass to outgoing edges

31 FOR edge IN node.outgoing_edges

32 // Divide the node output mass evenly among all

outgoing edges

33 // NUM(node.outgoing_edges) calculates the number of

outgoing edges from the node

34 edge.incoming_value = node.output_mass / NUM(

node.outgoing_edges)

35

36 APPEND [node.concentration for node in network_nodes] TO

layers

37

38 RUN kmeans ON layers_saves

39 RETURN community_assigments
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Appendix B

Parameters for Experiments

Tables B.1, B.2 and B.4 show parameters used by Directed Flow Communities in benchmark

graphs in Section 2.4.

Table B.1: 500 Node LFR Benchmark Parameters
µ T w ℓ αr αℓ λ no. source nodes

0.2 50 edge weight 1 1 0.4 0 200
0.3 50 edge weight 1 1 0.4 0 200
0.4 50 edge weight 1 1 0.4 0 200
0.5 25 edge weight 1 1 0.4 0 250
0.6 50 edge weight 1 1 0.4 0 250
0.7 50 edge weight 1 1 0.4 0 350
0.8 50 edge weight 1 1 0.4 0 350
0.9 50 edge weight 1 1 0.4 0 350

Table B.2: 1000 Node LFR Benchmark Parameters
µ T w ℓ αr αℓ λ no. source nodes

0.2 50 edge weight 1 1 0.4 0 250
0.3 50 edge weight 1 1 0.4 0 250
0.4 50 edge weight 1 1 0.4 0 250
0.5 50 edge weight 1 1 0.4 0 250
0.6 50 edge weight 1 1 0.25 0 250
0.7 50 edge weight 1 0.3 0.1 0 400
0.8 50 edge weight 1 0.5 0.1 0 700
0.9 50 edge weight 1 0.5 0.1 0 700
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Table B.3: Empirical Datasets Parameters
network T w ℓ αr αℓ λ no. source nodes

Cora 50 cos. sim. 1 1 0.001 0 892
Eu-Core 1000 1 1 0.5 0.001 0 750

Table B.4: FAF Datasets Parameters
network T w ℓ αr αℓ λ no. source nodes

Pharmaceuticals 100 mil-tons haversine distance 1 1e-10 2 10
Electronics 100 mil-tons haversine distance 1 1e-10 2 10

Total Freight Flows 50 mil-tons haversine distance 1 1e-5 2 50
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Appendix C

FAF Case Study - Community and Hub

Figures

This appendix complements Chapter 3 by providing figures of the community structures and

hub configurations that emerged from the Freight Analysis Framework (FAF) case study.
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(a) 30 Largest Nodes on the FAF Pharmaceutical dataset.

Figure C.1: 30 Largest Nodes identified for the FAF Pharmaceutical dataset using the Integer
programming method.
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(a) Directed Flow Communities on the FAF Pharmaceutical dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.341 395.870
1 0.409 276.879
2 0.333 974.326
3 0.369 396.826
4 0.332 1,349.861
5 0.324 15.376
6 0.307 762.337
7 0.302 316.444
8 0.312 318.321
9 0.250 61.974

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of pharmaceu-
tical traffic for each community.

Figure C.2: Connectivity and freight flow (in thousand-tons) figures representing the volume
of electronics traffic for each community
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(a) Infomap Communities on the FAF Pharmaceutical dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.207 8,202.85
1 0.323 449.161
2 0.269 746.362
3 0.258 193.983
4 0.271 1,098.183
5 0.212 318.007
6 0.347 188.425
7 0.132 24.938

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of pharmaceu-
tical traffic for each community.

Figure C.3: A visual and quantitative analysis of FAF pharmaceutical flow within the United
States using Infomap.
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(a) Directed Louvain Communities on the FAF Pharmaceutical dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.357 1,282.182
1 0.335 1,035.36
2 0.345 383.36
3 0.233 713.16
4 0.364 580.731
5 0.374 937.205
6 0.341 230.723
7 0.247 1,411.989
8 0.416 98.551

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of pharmaceu-
tical traffic for each community.

Figure C.4: A visual and quantitative analysis of FAF pharmaceutical flow within the United
States using Directed Louvain.
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(a) 30 Largest Nodes on the FAF Electronics dataset.

Figure C.5: 30 Largest Nodes identified for the FAF Electronics dataset using the Integer
programming method.
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(a) Directed Flow Communities on the FAF Electronics dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.445 579.175
1 0.325 1,702.025
2 0.339 5,542.85
3 0.35 322.716
4 0.426 193.65
5 0.422 508.258
6 0.472 333.488
7 0.408 57.926
8 0.379 139.2922
9 0.309 3,161.221

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of electronics
traffic for each community.

Figure C.6: A visual and quantitative analysis of FAF electronics flow within the United
States using Directed Flow Communities.
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(a) Directed Louvain Communities on the FAF Electronics dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.306 6,143.848
1 0.303 3,836.163
2 0.191 7,367.732
3 0.301 5,254.402
4 0.335 3,167.129
5 0.354 1,302.54
6 0.327 92.628

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of electronics
traffic for each community.

Figure C.7: A visual and quantitative analysis of FAF electronics flow within the United
States using Directed Louvain.
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(a) 30 Largest Nodes on the FAF Total Freight dataset.

Figure C.8: 30 Largest Nodes identified for the FAF Total Freight dataset using the Integer
programming method.
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(a) Directed Flow Communities on the FAF total freight flows dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.303 1,682,746.760
1 0.227 206,689.788
2 0.358 188,753.358
3 0.312 427,118.404
4 0.337 644,370.413
5 0.210 299,952.080
6 0.326 559,023.207
7 0.274 139,620.501
8 0.357 164,043.276
9 0.186 179,505.781

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of electronics
traffic for each community.

Figure C.9: A visual and quantitative analysis of FAF total freight flow within the United
States using Directed Flow Communities.
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(a) Infomap Communities on the FAF total freight flows dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.217 707,041.959
1 0.298 970,552.974
2 0.206 1,516,247.111
3 0.173 474,861.215
4 0.235 400,181.107
5 0.252 257,485.792
6 0.333 326,198.530
7 0.234 47,733.031
8 0.211 427,802.0574
9 0.200 230,297.327
10 0.149 182,103.502

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of electronics
traffic for each community.

Figure C.10: A visual and quantitative analysis of FAF total freight flow within the United
States using Infomap.
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(a) Directed Louvain Communities on the FAF total freight flows dataset.

Cluster No. Conductance ↓ Freight Flows

0 0.195 819,612.518
1 0.171 967,431.183
2 0.193 1,293,284.410
3 0.191 816,146.275
4 0.291 805,963.578
5 0.208 1,295,554.829
6 0.366 126,643.644

(b) Connectivity and freight flow (in thousand-tons) figures representing the volume of electronics
traffic for each community.

Figure C.11: A visual and quantitative analysis of FAF total freight flow within the United
States using Directed Louvain.
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Figure C.12: Directed Flow Communities pharmaceutical derived maps comparing key trans-
portation hubs across the United States.
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Figure C.13: Infomap pharmaceutical derived maps comparing key transportation hubs
across the United States.
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Figure C.14: Directed Louvain pharmaceutical derived maps comparing key transportation
hubs across the United States.
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Figure C.15: Directed Flow Communities electronics derived maps comparing key trans-
portation hubs across the United States.
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Figure C.16: Directed Louvain electronics derived maps comparing key transportation hubs
across the United States.
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Figure C.17: Directed Flow Communities total freight flow derived maps comparing key
transportation hubs across the United States.
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Figure C.18: Infomap total freight flow derived maps comparing key transportation hubs
across the United States.
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Figure C.19: Directed Louvain total freight flow derived maps comparing key transportation
hubs across the United States.
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Figure C.20: Hubs identified from Directed Flow Communities on the FAF Electronics
dataset using Integer programming.
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Figure C.21: Hubs identified from Directed Flow Communities on the FAF Pharmaceutical
dataset using Integer programming.
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(a) Directed Flow Communities hubs on the FAF Total Freight dataset using Integer programming.

Figure C.22: Hubs identified from Directed Flow Communities on the FAF Total Freight
dataset using Integer programming.
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Figure C.23: Hubs identified from Infomap communities on the FAF Total Freight dataset
using Integer programming.
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Figure C.24: Hubs identified from Infomap communities on the FAF Pharmaceutical dataset
using Integer programming.
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Figure C.25: Hubs identified from Directed Louvain Communities on the FAF Electronics
dataset using Integer programming.
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Figure C.26: Hubs identified from Directed Louvain Communities on the FAF Pharmaceu-
tical dataset using Integer programming.
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Figure C.27: Hubs identified from Directed Louvain Communities on the FAF Total Freight
dataset using Integer programming.
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Figure C.28: Hubs identified from the 30 Largest Nodes on the FAF Electronics dataset
using Integer programming.
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Figure C.29: Hubs identified from the 30 Largest Nodes on the FAF Pharmaceutical dataset
using Integer programming.
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Figure C.30: Hubs identified from the 30 Largest Nodes on the FAF Total Freight dataset
using Integer programming.
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