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DOCTOR OF PHILOSOPHY IN AUTONOMOUS SYSTEMS

ABSTRACT

This thesis presents novel approaches to vision-based autonomous exploration in under-
water environments using human-multi-robot systems, enabling robots to adapt to evolving
mission priorities learned via a human supervisor’s responses to images collected in situ. The
robots model the spatial distribution of various habitats and terrain types in the environ-
ment using semantic classes learned online, and send image queries to the supervisor to learn
which of these classes are associated with the highest concentration of targets of interest.
The robots do not require prior examples of these targets, and learn these concentration pa-
rameters online. This approach is suitable for exploration in unfamiliar environments where
unexpected phenomena are frequently discovered, such as coral reefs. A novel risk-based
online learning algorithm identifies the concentration parameters using the fewest possible
number of queries, enabling the robots to adapt quickly and reducing the operational burden
on the supervisor.

I introduce four primary contributions to address prevalent challenges in underwater ex-
ploration. Firstly, a multi-robot semantic representation matching algorithm enables inter-
robot sharing of semantic maps, generating consistent global maps with 20-60% higher qual-
ity scores than those produced by other methods. Next, we present DeepSeeColor, a novel
real-time algorithm for correcting underwater image color distortions, which achieves up to
60 Hz processing speeds, thereby enabling improved semantic mapping and target recognition
accuracy online. Thirdly, an efficient risk-based online learning algorithm ensures effective
communication between robots and human supervisors, and, while remaining computation-
ally tractable, overcomes the myopia which would cause previous algorithms to underestimate
a query’s value. Lastly, we propose a new reward model and planning algorithm tailored
for autonomous exploration, together enabling a 25-75% increase in the number of targets
of interest located when compared to baseline surveys. These experiments were conducted
with simulated robots exploring real coral reef maps and with real, ecologically meaningful
targets of interest.

Collectively, these contributions overcome key barriers to vision-based autonomous under-
water exploration, and enhance the capability of autonomous underwater vehicles to adapt
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to new and evolving mission objectives in situ. Beyond marine exploration, these contribu-
tions have value in broader applications, such as space exploration, ecosystem monitoring,
and other online learning problems.

Thesis Chair: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT

Thesis Supervisor: Yogesh Girdhar
Title: Associate Scientist in Applied Ocean Physics and Engineering, WHOI
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Glossary
Term Definition

AUV Autonomous Underwater Vehicle

ROV Remotely Operated Vehicle

Semantic Mapping The process of creating a map that uses different labels for visu-
ally distinct regions (e.g. habitats or terrain types), such that it
captures the high-level structure of an environment.

Online (or “in situ”) Refers to things that happen during a robot deployment/mission.

Online Learning A machine learning approach where a model is continuously up-
dated online as new data is collected/received, rather than being
trained in advance with a fixed dataset.

Risk-Based Learning An online learning strategy where decisions on what labelled data
to acquire next are made based on the potential impact of the new
information to reduce risk.

Regret Measures how much better a robot could have performed in a task
(i.e. how much its plan could have been).

Risk Measures the amount of regret expected to be incurred by the robot
in a task, based on its current plan and knowledge of the world.

Utility Measures how much some specific information helps to reduce risk.

Plan A sequence of actions to be taken; often, the planned trajectory of
a robot.

Policy A function that produces a plan given the robot’s current state and
understanding of the world.

Open-Loop Refers a robot following a specific plan while ignoring any further
observations.

Closed-Loop Refers to a robot following a policy that adapts the plan online in
response to new information that changes the robot’s understand-
ing of the world.

Spatiotemporal Relating to or involving both space and time.

Semantic Class Categories used in semantic mapping to differentiate between types
of terrain, objects, or other relevant features.
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Chapter 1

Introduction

Exploration plays a key role in many applications ranging from protected ecosystem moni-
toring to seeking out new life or other phenomena in extreme environments; it is an activity
carried out with the expectation of making new discoveries in these places. Sites targeted for
exploration are generally remote, unfamiliar, and/or dynamic, qualities which make novel or
unexpected discoveries more likely. For example, unusual topographical map features may
inspire a search for hydrothermal vents in unexpected parts of the deep sea [1],1 or multi-
spectral satellite imagery may suggest the presence of coral reefs along remote coasts [2],
motivating higher-resolution in situ exploration to characterize possible new species and reef
compositions [3]. Meanwhile, the routine monitoring of underwater assets or ecosystems
is often motivated by the potential discovery of emergent threats, such as invasive species,
diseases, or biofouling, which often demand immediate follow-up investigations or interven-
tions. An exploration mission begins with only an educated guess of what might be found;
one cannot be certain about what the most important priorities will be until after the mission
has started and new discoveries have been made.2

In the practices of underwater exploration, humans and robots have traditionally oc-
cupied distinct roles. Human explorers, equipped with intuition and experience, recognize
immediately when new and interesting phenomena are discovered and react by directing
their search towards them. Conversely, autonomous underwater vehicles (AUVs) typically
operate under rigid, pre-defined instructions without the capacity to react to new discoveries.
This difference highlights a significant gap: the ability to set and adapt to changing mission
priorities. The challenge lies in enabling AUVs to recognize when novel or unexpected phe-
nomena merit more directed investigation. While there has been substantial recent progress

1Large-area topographical seafloor maps can be collected at moderate resolutions with multibeam sonar
arrays, or at much lower resolution by radio mapping from satellites.

2For example, after discovering disease or biofouling, a new objective may be to determine its extent.
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in adaptive AUV exploration of scalar fields, with applications that include locating high
chemical concentrations [4] or temperature anomalies [5], there has been minimal progress
in adaptive AUV exploration based on vision or other high-dimensional sensing modalities.
The work described in this thesis has been largely motivated by the question: can we en-
able AUVs to effectively learn and adapt to dynamic mission priorities, like a
human would, in vision-based underwater exploration?

The focus on visual exploration is driven by the role of vision as one of the most
widespread and versatile sensing modalities. Visual observations in the form of images
are, for the majority of individuals, the most familiar and information-rich format for the
perception and classification of objects, organisms, and other physical phenomena. This in-
formation richness is possible due to the high dimensionality of images relative to most other
data representations, such as audio or text.3 While specialized sensors can be better suited
for some specific tasks (e.g., DNA sequencers for species identification), enabling AUVs to
perceive and adapt to visual observations helps to broadly bridge the gap between human
and robot exploration behaviors across many applications. Furthermore, while many of the
contributions to be presented in this thesis are similarly applicable to enabling adaptive mis-
sion behaviors with respect to other high-dimensional sensing modalities, vision serves as an
intuitive and familiar modality to use as an example.

Despite significant advancements in computer vision, vision-based autonomous robots
typically require example images in order to recognize and focus upon targets of interest.
The intrinsic value of new discoveries often stems from their unpredictability and uniqueness,
qualities that defy anticipation and make such discoveries challenging for robots to identify
and assess the value of autonomously. This limitation undermines the use of autonomous
robots for uncovering novel and valuable findings in uncharted environments, and has led
to the dominance of two non-autonomous robotic exploration paradigms. The first is the
use of remotely operated vehicles (ROVs), which are piloted by a human operator with a live
video feed. This approach enables the vehicle to act as an avatar of a human explorer, but is
limited to situations where high-bandwidth communications can be consistently maintained
with the vehicle; for underwater exploration, this generally requires the use of a tether, which
drastically complicates operational complexity and reduces feasible deployment areas.4

The second paradigm is autonomous surveys, where the robot follows a pre-planned
trajectory; these are often box surveys, also known as “lawnmower” patterns. Key advantages
of this paradigm are its simplicity and the ease at which it can be scaled to a multi-robot fleet

3Other high-dimensional sensing modalities (e.g. multibeam sonar) often have their observations con-
verted to and presented as color images, especially for the purposes of human analysis.

4This complexity is further compounded by simultaneous deployment of multiple vehicles.
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deployment to cover larger areas. The only decision to make is the structure of the survey;
it can be dense, covering a small area thoroughly, or sparse, spanning a wider area but with
observational gaps. Sparse surveys are superior at discovering as many new phenomena
as possible across an unknown region in a fixed amount of time because they maximize the
number of distinct domains (habitats or terrain types) surveyed. Domains such as coral reefs,
seagrass meadows, and sand bars can be tens to hundreds of meters long, while individual
corals, fish, and other potential phenomena of interest are generally found in some domains
and not others. By covering a more diverse range of domains, sparse surveys are more likely
to discover a priori unknown phenomena of interest. However, this approach also increases
the risk of merely grazing past these interesting phenomena without detailed examination,
as the AUV spends minimal time in any specific domain; in essence, optimizing a pre-
planned survey to discover any interesting phenomena inherently reduces the
chances of extensively finding many such phenomena. As such, sparse surveys must
often be followed by more targeted dense surveys the domains found to contain the most
phenomena of interest; this is inefficient and expensive, if not infeasible,5 and may fail if the
phenomena are transient or if the fleet cannot easily relocate the original site after recovery
and redeployment.

I propose a more effective behavioral paradigm for autonomous robotic explorers, which
mirrors strategies employed by human operators. The robot should begin with a sparse
survey, to cover a broad area. However, upon encountering an unfamiliar or unexpected
phenomenon, it should assess whether it is “interesting” enough to merit more thorough in-
vestigation. If so, it should transition to a denser survey around where this phenomenon was
detected, potentially using other onboard sensors or samplers for more in-depth analysis,6

before carrying on with the sparse survey to look for more phenomena of interest. Impor-
tantly, the robot should infer correlations between these interesting phenomena and broader
features that may be used to locate more of them. For example, if an invasive species is
consistently discovered in particular habitat type, such as the rocky outcroppings of a coral
reef, the robot should more thoroughly survey such habitats if the goal is to locate more of
them in order to better measure their extent.

As discussed previously, the main challenge in enabling this behavior is preparing robots
to visually recognize any “interesting” phenomenon when we cannot provide a comprehensive
set of examples of everything that would be interesting. Until the day that we can build
robots with comparable knowledge and intuition to human experts, the visual determina-

5As it often is, as an example, for large-ship operations with scheduled waypoints.
6For example, AUVs are often equipped to collect a finite number of water samples around interesting

phenomena, while the Mars Curiosity rover Sample Analysis Tool performs detailed analysis of geologic
materials using lasers [6]. These tools have costs that motivate limiting their to only high-interest targets.
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tion of targets of interest will require some degree of human-robot communication; that is,
a human-in-the-loop solution. Unfortunately, communication bandwidth tends to be very
limited in places that need to be explored; this is especially true for ocean exploration. Long-
range (> 100 m) underwater communications devices only support data transfer rates up to
around 10 kilobits per second, which is about one or two 50 kB images per minute. State
of the art underwater exploration relies on the AUV sending back infrequent, low-resolution
images, which are a very sparse subset of the complete set of observations collected. If an
image is determined, by a human supervisor, to contain a phenomenon of interest, the initial,
pre-programmed sparse survey can be modified remotely by the supervisor in an attempt
to better target this phenomenon (or, to target the habitats in which it is most likely to be
found).

This brings us to the cornerstone of this thesis: we propose that the most effective
way to handle new and evolving mission objectives in vision-based exploration is
to model the co-occurrence of targets of interest with visually distinct domains
(e.g., terrain or habitat types). Learning such co-occurrence relationships online en-
ables targeted exploration that exploits the spatial structure of these domains to efficiently
discover more targets of interest in situ, without the need for prior examples or training.
Fortunately, relatively recent developments in unsupervised spatiotemporal semantic model-
ing enable robots to autonomously categorize visually distinct and a priori unknown terrain
and habitat types without human supervision [7]–[10], as well as create semantic maps which
model the spatial distribution of these domains [11], [12]. These semantic maps tend to be
continuous and highly spatially auto-correlated, enabling some degree of interpolation and
extrapolation into regions where the robot has yet to visit [11], [12]. Henceforth, we will use
terms “semantic classes”, “domains”, and “terrain/habitat types” interchangeably.

My own journey into vision-based robotic exploration began by developing an online
learning algorithm to enable an AUV to identify which of the images it has collected would
be most useful to send back to its supervisor, assuming that the supervisor will reply back
with corresponding “interest labels” [13]. The robot uses these labels to learn a reward model
which guides it towards places where it expects to find more targets of interest. Specifically,
the robot learns which domains are most correlated with positive labels, and plans a path
that goes wherever it expects to find more of these domains (based on the extrapolated
semantic map). The utility (equivalently, risk) of an image query measures the sensitivity
of the robot’s plan to the label assigned to that query. It is large if either a positive or
negative label would cause the robot to re-evaluate some alternative plan as being much
more effective than its current plan, and small (or zero) if either label would have minimal
impact on the robot’s plan. Intuitively, learning that a phenomenon of interest is correlated

19



(or anti-correlated) with a particular domain is useless if the robot doesn’t know where to
find more of that domain, or if the only places it would still find that domain are too far
away. Instead, the robot should send image queries that could produce actionable results,
such that the supervisor’s label guides the robot towards or away from one or more domains.

This is an example of risk-based online learning, and in basic simulations it enabled a
robot explorer to locate far more targets of interest than when sending the supervisor images
selected at random, or other baseline strategies [13]. Furthermore, by directly quantifying
the utility (risk-reduction) of each query, the robot is able to decide whether it is even worth
asking. If no new label from the supervisor would cause the robot to change its plan,7 the
robot can skip making a query to mitigate the cognitive and operational burden on the
supervisor, enabling them to focus on other tasks. This is particularly beneficial for multi-
robot exploration of large areas, as it enables prioritizing query requests from multiple robots
(based on the estimated utility).

Equipped with unsupervised spatiotemporal semantic mapping systems and a risk-based
online learning algorithm to efficiently learn (over low-bandwidth) which of these classes are
most correlated with targets of interest, it would seem the pieces were in place to enable
large-scale autonomous vision-based exploration of the earth’s oceans. Unfortunately, things
are rarely so simple in the field; aside from the usual challenges of AUV operations,8 we en-
countered four practical barriers to the integration of unsupervised spatiotemporal semantic
mapping with online reward learning in real-world marine exploration. We present them
below, followed by the contributions made by this thesis to overcome them.

1.1 Problem Statements

As discussed above, we propose that autonomous vision-guided robotic explorers make use of
unsupervised spatiotemporal semantic mapping and online learning to effectively learn and
address new and evolving mission priorities. However, four key problems were identified in
the pursuit of using these technologies to enable large-scale, human-in-the-loop autonomous
exploration of the Earth’s oceans. We enumerate them below.

1. The Egocentricity of Learned Semantic Representations Prevents Multi-
Robot Collaboration.

Unsupervised semantic models learn, over time, a set of semantic representations which
describe the various terrain and habitat types (domains) that the robot has encoun-

7This may happen if, for example, the robot has only found a small number of distinct domains and
already asked several queries about each of them.

8These challenges include underwater SLAM, which continues to be an active research area [14].
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tered. These representations define the semantic classes learned by the model, and
evolve over time to reflect what the robot has seen. Accordingly, they are egocentric
(unique to the robot which produced them), and so different robots may learn simi-
lar, but not exact, semantic representations for the same domains.9 Without knowing
these correspondences, robots cannot interpret each other’s semantic maps, and each
robot needs to learn its own co-occurrence model between its own semantic classes and
targets of interest. The extra labelling required by the human supervisor for each ad-
ditional robot makes larger fleets proportionally harder to manage, while the inability
to share semantic maps prevents collaborating for greater exploration efficiency.

2. Underwater Image Distortions Degrade Learned Semantic Maps/Models.

Light attenuation and backscattering effects are much stronger underwater than in air.
This means that an object farther from an underwater camera tends to look darker,
more blue, and more “hazy” than if it were closer. As color and intensity (bright-
ness) features in images are important for automated recognition of different terrain
and habitat types, this can result in inconsistent domain classification depending on
whether a scene is viewed from close up or far away. With unsupervised semantic mod-
els, this manifests as multiple semantic classes being used to represent the same domain
(even by the same robot), thereby creating inconsistencies in the semantic map; this
makes the semantic maps harder to extrapolate and generally degrades their utility for
adaptive exploration. Furthermore, these image distortions can make it more difficult
for human supervisors to recognize the image contents, or to recognize the same type
of phenomenon in multiple images, and can thereby result in erroneous interest labels.

3. Risk-Based Online Learning Algorithms Are Either Myopic or Intractable.

The risk-based image query selection heuristic presented in [13] bears much in common
with previous Bayes’ risk criteria (e.g., [15], [16]) for POMDPs as well as knowledge-
gradient algorithms for online learning [17]. However, the one-step lookahead strategy
it uses to determine which query has the highest utility (risk reduction) is known to
be overly myopic [18], [19]. This means that it tends to underestimate the utility of a
single query, as the information gained from any single new label may be insufficient
to change the robot’s plan, even if some combination of multiple new labels could have
a significant impact. Unfortunately, the complexity of identifying the value of multiple
queries is exponential in the number of queries considered, and there are no known

9For example, one robot, operating in a part of reef where fire coral is relatively abundant, may use a
semantic representation for “reef habitats” which reflects the features of fire coral more so than the represen-
tation used by another robot operating where fire coral is more sparse.
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risk-based online learning algorithms which can efficiently approximate this value. As
robotic explorers have relatively limited computing power, they are therefore restricted
to these myopic heuristics which can select poor queries.

4. Existing Reward Models and Planners Are Ill-Suited For Risk-Based Online
Learning.

The core of risk-based online learning is considering counterfactuals : these describe
what the robot would think and do if it were given some specific new information (for
our purposes, a newly labelled query). The robot maintains a distribution over the
possible reward model parameters as part of its belief state. By generating a random
sample of responses that may be obtained for a given query, based on a (prior) belief
state, we can generate counterfactual (posterior) belief states with refined reward model
parameter distributions. The utility of a query is based on how inferior the robot’s
current plan would be when compared to the updated plan for the counterfactual
belief state. While this risk-based approach provides the many advantages outlined
previously, the computational cost of generating these counterfactuals beliefs and plans
can be significant, as updating the reward model and plan often requires complex
operations. For example, popular sampling-based path planners like MCTS [20] and
RRT [21], [22] can require substantial computational resources to perform well, while
updating even a simple probabilistic reward model can require expensive inference
algorithms. As evaluating each candidate query generally requires considering multiple
counterfactuals, we need reward models and planners that enable efficient computation
(or approximation) of these counterfactual belief states.

1.2 Contributions

This thesis proposes a novel approach to vision-based exploration: by leveraging the strengths
of unsupervised semantic mapping and online learning, we aim to bridge the gap between
static mission programming and the adaptive, intuitive decision-making that characterizes
human exploration. This research addresses the fundamental challenge of enabling robots to
autonomously identify and respond to new and evolving mission priorities in unpredictable
environments, which we accomplish by keeping a human supervisor in the loop and using
efficient, strategic with them to guide the behavior of the robot(s). Specifically, the fol-
lowing contributions are solutions to the challenges presented in the previous subsection
and, together, enable human-multi-robot collaborative vision-based exploration in marine
environments.
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1. An Algorithm For Efficient Matching of Learned Semantic Representations

We present a system that enables each robot to use a multiway matching algorithm
to efficiently identify consistent sets of matches between learned semantic classes be-
longing to different robots [23]. This enables fusing the semantic maps produced by
multiple robots to produce global maps that use a unified set of semantic classes to la-
bel every location visited by any robot. Compared to the previous state of the art [24],
the proposed solution produced 20-60% higher quality global maps; the largest im-
provements were observed when fusing many maps from many robots. The algorithm
is computationally efficient, so each robot can feasibly integrate the semantic maps
it receives by running the algorithm onboard. This system also enables the fleet to
share reward labels and coordinate queries or any other behaviors that depend on the
semantic classes or map.

Impact: This enables a shared semantic map for use across the exploration fleet, signif-
icantly enhancing the scalability and efficiency of multi-robot coordinated exploration
efforts.

2. DeepSeeColor: Realtime Adaptive Underwater Color Correction

DeepSeeColor is a novel algorithm that combines state-of-the-art underwater image
color correction techniques with the computational efficiency of deep learning frame-
works [25]. In experiments, we show that DeepSeeColor offers comparable color re-
construction performance to leading methods while being able to process images much
more rapidly, at up to 60Hz. This makes it suitable for use onboard AUVs as a pre-
processing step to enable more robust vision-based behaviors in varying underwater
conditions. In particular, this facilitates more accurate semantic mapping as well as
human recognition and labeling of visual targets of interest.

Impact: Solving the challenge of underwater image distortions is key to improving the
accuracy and reliability of semantic mapping. This directly impacts a robot’s ability
to interpret and respond to its surroundings, making exploration efforts more efficient.

3. An Efficient & Non-Myopic Risk-Based Online Learning Algorithm

We developed a general framework for risk-minimization across a wide range of prob-
lems, and incorporated an asymptotic utility (value of information) function that pro-
vides a computationally efficient solution to overcoming the myopia of previous risk-
based online learning algorithms. We first established a POMDP formulation for online
learning and used it to determine when risk-estimation is feasible. In particular, we
identified that whenever there is an efficient algorithm to produce an optimal open-loop
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plan,10 this algorithm can be used to efficiently estimate both the one-step and asymp-
totic utility of a query. The (myopic) one-step utility is equivalent to the approach
in [13], and measures the immediate value of information, while the (non-myopic)
asymptotic term guides the robot towards queries that may be useful in aggregate.

Impact: This efficient and non-myopic algorithm avoids the potential pitfalls of previ-
ous strategies, while maintaining the advantages of risk-based online learning in guiding
strategic communication.

4. An Approximate-Probabilistic Reward Model and Fast Hotspot Planner

We present a novel “beta-rate” reward model which learns a distribution over the
concentrations at which targets of interest are found in the various learned semantic
classes. These concentrations are modeled as draws from a multivariate beta distribu-
tion, for which we developed an analytical approximate update rule that enables highly
efficient construction of counterfactual posterior distributions. We further present a
simple but effective hotspot-based greedy planner which identifies the regions of the
map with the highest expected concentrations of reward, and efficiently plans dense
coverage paths over these hotspots. These models are ideal for autonomous explo-
ration, where plan quality is primarily limited by the available information, and so the
cost of using inexact posteriors and sub-optimal greedy planners is outweighed by the
improved information gathering (query selection) enabled by these models.

Impact: This novel reward model and planner are well suited to enable vision-based
autonomous exploration with risk-based online learning on even severely computation-
ally constrained robotic platforms.

1.2.1 Publications

The contributions presented in this thesis appear in multiple published works, cited below.

• The contents of Chapter 3 are adapted from S. Jamieson, K. Fathian, K. Khosoussi,
J. P. How, and Y. Girdhar, “Multi-robot distributed semantic mapping in unfamiliar
environments through online matching of learned representations,” in 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), ISSN: 2577-087X, Xi’an,
China: IEEE, May 30, 2021, pp. 8587–8593. doi: 10.1109/ICRA48506.2021.9561934.
The majority of the text, figures, code and ideas presented in this chapter were my own,
but formed and refined under the guidance of my co-authors Prof. Kaveh Fathian and

10That is, a plan which is optimal with respect to the robot’s current reward model, assuming that no
new information is later obtained/received.
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Dr. Kasra Khosoussi. Their most active role in the text was in describing the related
works and specifics of the relevant CLEAR algorithm (presented in [26]).

• The contents of Chapter 4 are adapted from S. Jamieson, J. P. How, and Y. Girdhar,
“DeepSeeColor: Realtime adaptive color correction for autonomous underwater vehicles
via deep learning methods,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), London, UK: IEEE, May 27, 2023, pp. 3095–3101. doi: 10.1109/
ICRA48891.2023.10160477. arXiv: 2303.04025[cs].

• The contents of Chapter 5, as well as some of the contents of Chapter 2, are adapted
from S. Jamieson, J. P. How, and Y. Girdhar, “Finding the optimal exploration-
exploitation trade-off online through bayesian risk estimation and minimization,” Ar-
tificial Intelligence, p. 104 096, Feb. 21, 2024, issn: 0004-3702. doi: 10.1016/j.artint.
2024.104096.

• The contents of Chapter 6 are being prepared for submission to IEEE Transactions on
Robotics in 2024 in a work jointly authored by S. Jamieson, J. P. How, and Y. Girdhar.

1.3 Overview

The remainder of the thesis is structured as follows. Chapter 2 presents background ma-
terial on autonomous robotic exploration, semantic mapping, and online learning. Chap-
ter 3 presents an approach for efficiently matching learned semantic representations online.
Chapter 4 presents the DeepSeeColor algorithm for realtime color correction of underwa-
ter imagery. Chapter 5 presents a novel online learning approach, “Endogenous Bayesian
Risk Minimization” (EBRM), and specifically the non-myopic risk-based online learning al-
gorithm AsympGreedy-EBRM. Chapter 6 presents the novel beta-rate reward model and
fast hotspot planner, as well as experiments demonstrating how these tools, in combination
with AsympGreedy-EBRM, enable autonomous explorers to find up to 75% more targets
of interest than a pre-planned survey in simulation experiments using real coral reef maps.
Finally, Chapter 7 will review the main findings and contributions of this thesis, and discuss
avenues of future work.
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Chapter 2

Background

In this chapter we present some core content and concepts that are routinely referred through-
out the thesis. As the contributions made in this thesis are quite diverse, later chapters will
supplement this with their own specific background and related works sections as required.

2.1 Motivating Multi-Robot Marine Exploration

Autonomous robotic explorers are the best solution for the exploration and sustained mon-
itoring of the vast expanse of Earth’s oceans. The exploration and monitoring of marine
environments is crucial for conservation efforts and for understanding key ecosystems un-
der threat; for example, coral reefs are perhaps the most important marine ecosystem, yet
are degrading at an alarming rate due to climate change and ocean acidification [28]–[31].
The inaccessibility of many reefs has historically prevented extensive study, while the global
nature of such anthropogenic threats has now reached even the most remote atolls [3]; as
these regions offer a rare view of relatively pristine reef ecosystems (for now) there is an
urgent need for more thorough study of them. Furthermore, exploration can lead to ground-
breaking discoveries, from species with unique medicinal properties [32]–[34] to rare mineral
resources, which has provided extensive motivation for both sea and space exploration [35]–
[40]. Other discoveries may have less immediate utility, yet still hold valuable, scientific, eco-
nomic, or cultural significance; such discoveries include unique ecosystems, unknown species,
or artifacts of historical importance [41]–[48], which each contribute to our understanding of
Earth’s diverse environments and history.

The vast scale of marine environments calls for the use of multi-robot fleets for explo-
ration, which can cover far greater areas and at higher spatiotemporal resolutions than a
single robot. Large fleets are particularly important in applications like widespread continu-
ous environmental monitoring [49], [50]. Advancements in inter-robot collaboration can help
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with these large-scale applications by enabling new capabilities and super-linear scaling of
task performance [51], however to our knowledge there is no prior work on AUV collaboration
for vision-based exploration tasks.

2.2 Spatiotemporal Semantic Mapping

Semantic mapping is a relatively young field that was initially motivated by giving robots
a spatial awareness of nearby terrains, objects, and activities [52]. Semantic maps describe
the world using a set of classes, and have been used with great effectiveness in solving many
field robotics problems such as mission summarization [10], object-based SLAM [53]–[55],
and context-aware planning [13], [56]. Great progress has been made in improving the
accuracy of semantic mapping systems by leveraging deep learning models trained on large
datasets [57]–[61]. However, most of these systems do not support a priori unknown classes,
which are an essential part of autonomous exploration.

In autonomous exploration, semantic maps serve two key purposes; the first is spatial
prediction. To collect more reward than a simple coverage path, a robot must predict what
it will observe in new locations, and plan a trajectory along which it expects to find the
most rewarding phenomena. Semantic fields have high spatial autocorrelation [11], making
this spatial prediction problem far more tractable than for images. The second purpose is
dimensionality reduction. In any particular area that a robot is deployed to explore, it will
observe images from only a small subset of the full observation space; the robot need only
approximate the supervisor’s reward function over this subdomain to direct its exploration
towards the most rewarding phenomena. Unsupervised semantic models use generally use
a small number of dimensions to represent the variety of collected inputs, so the sample
complexity of learning a function approximation over these semantic representations is far
smaller it would over the space of images; this makes it more tractable to learn with very
few examples.

Spatiotemporal topic models (STMs) [62]–[64] are a class of unsupervised learning al-
gorithms that has been specifically augmented for realtime semantic mapping in unfamiliar
environments [8], [65]. BNP-ROST is an STM that adaptively develops semantic labels on-
line as new phenomena are observed [9], and has been used for 3D semantic mapping in
bandwidth-limited environments without any pre-training [11]. STMs can create high qual-
ity semantic maps in realtime by leveraging the spatial and temporal correlations between
observations and using efficient sampling algorithms to discover good semantic representa-
tions online [11], [66]. While there has been progress in other unsupervised semantic image
segmentation approaches [67], including deep-learning based methods [68], by not leveraging
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these correlations they produce lower quality maps of large environments, and are less likely
to lead to accurate semantic map extrapolation.

In each of the following chapters, we use the STM from [11] for unsupervised semantic
modelling. In brief, this approach extracts from each image many visual words {wi}, which
are elements of a vocabulary of size V ∈ N. Through the use of corresponding depth images
(produced by a stereo camera, or structure from motion), along with the robot’s estimated
SE(3) pose and the camera intrinsics, the image coordinates of each word are projected
into world coordinates ri ∈ R3. Nearby words, in terms of world coordinates, are then
grouped into the same cell. Each cell is modelled to have some latent distribution θ over
discrete “topics”, where topic k ∈ N>0 is described by a probability distribution over the word
vocabulary, ϕk ∈ ∆V . Each θ is assumed to be generated from a spatiotemporally correlated
Dirichlet process prior, while k ∼ Categorical(θ) and wi ∼ Categorical(ϕk). For every word
wi, we sample a topic k from the posterior distribution P (k | wi) as the semantic label for the
word coordinates ri. The Dirichlet process prior permits an unbounded number of topics to
be learned over time; the number of unique topics (semantic classes) grows logarithmically
over time [13]. For more details on the parameter priors and inference procedures used,
please refer to [8], [9].1

2.3 Online Learning

The field of online learning has been strongly motivated by practical applications since the
seminal work of Thompson in the 1930s [70]. The original motivating idea of exploring the
efficacy of a discrete set of medical treatments while simultaneously exploiting the leading
treatments to save lives continues to be a research interest [71] and is an exemplar of the
ubiquitous stochastic multi-armed bandit (MAB) problem [72]. In this terminology, the
“arms” of the bandit represent, for example, different treatments. In stochastic multi-armed
bandits, an observation is generated each round from an unknown distribution specific to
the arm played that round, and the reward is the sum of the observations. Multi-armed
bandits are a good structure with which to approximate many real-world problems, and
there are a variety of successful online learning algorithms designed for them. Variations
on this structure include infinite-time and time-discounted bandits, as well as best-arm
identification.

Partial monitoring is a generalization of multi-armed bandits that allows for more gen-
eral relationships between observations and rewards [73]. Partial monitoring problems are

1An efficient implementation of this model for the Robot Operating System (ROS) [69] is publicly available
at https://gitlab.com/warplab/ros/sunshine.
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characterized by different levels of observability, which bound how well any algorithm can
perform [74], [75]. For example, the dynamic pricing problem models how adjusting the price
of a product changes profits when different customers are willing to pay different prices [76].
The lack of local observability in dynamic pricing makes some instances of this problem
fundamentally harder than bandit problems [77].

However, most real-world problems do not fit perfectly into archetypal online learning
problem (OLP) structures or the assumptions of common online learning algorithms. For
example, the objective of identifying the best treatment for an ailment from a range of options
is well modelled as best-arm identification, but this approach is detrimental to the objective
of exploiting effective dosages for the sample population [78]. Conversely, algorithms which
focus only on effectively treating patients within a sample population may fail to reach
sufficient statistical power to achieve the clinical trial’s goal of supporting the superiority of
any one specific treatment [71]. Precisely controlling the balance between such competing
objectives is not a feature of previous online learning heuristics.

2.3.1 Online Learning Algorithms and Design Principles

Decades of research into online learning problems have generated a variety of widely adopted
algorithm design principles. For example, “optimism in the face of uncertainty” [79], [80] is
the driving principle behind the popular and well-studied family of Upper Confidence Bound
algorithms, which achieve optimal asymptotic performance bounds in many OLPs [81]–[83].
Other design principles, such as “maximize the expected improvement” [84], [85] and “follow
the knowledge gradient” [17] have similarly led to the development of online learning algo-
rithms with strong guarantees and empirical results. In particular, many of these algorithms
are “no-regret”, in that the regret between of the policy grows sublinearly, so the average
regret over some horizon decays asymptotically to zero. Information-directed sampling (IDS)
is perhaps the best of the state-of-the-art strategies for long-/infinite-horizon multi-armed
bandits, and introduces novel information-theoretic techniques with strong finite-time regret
bounds [19].

The most similar online learning algorithm to the proposed Endogenous Bayesian Risk
Minimization (EBRM) strategy presented in Chapter 5 is likely the Knowledge Gradient
(KG) algorithm, which greedily chooses informative actions in order to increase the expected
performance of a simple “stop-learning” policy [17]. As such, the Greedy-EBRM approach
can be viewed as a generalization of the KG approach to incorporate additional problem
complexities and constraints. Furthermore, we extend KG principles beyond multi-armed
bandits, and produce similar results to that of knowledge-gradient optimality for monotone
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submodular value-of-information functions [86], but for broader classes of OLPs. Strate-
gies for best-arm identification include Top-Two Thompson Sampling [87], and the original
KG exploration algorithm [88], [89]. The current state-of-the-art is the Top-Two Expected
Improvement algorithm [85], which builds upon the ideas in these strategies and provides
improved performance and regret bounds.

2.3.2 Markov Decision Processes and Partial Observability

Markov Decision Processes (MDPs) [90] are a highly flexible framework that can model
a much broader range of decision problems than online learning problems. In particular,
partially observable Markov decision processes (POMDPs) [91] can describe any problem in
which there is some hidden state (set of parameters), which may change, and the conse-
quences of actions taken by an agent depend on the value of that state. The agent’s goal
is to collect reward (a performance metric), but the amount of reward collected depends
on the state; like in OLPs, the agent must generally trade-off between taking actions that
help to reveal the hidden state (explore), or actions that collect reward (exploit) [92], [93].
The solution of a (PO)MDP is a policy (strategy for choosing actions), often found with
reinforcement learning [94], [95].

The “Markovian” property of POMDPs require that the effects of an action depend only
on the current state, but the model is otherwise able to capture many kinds of complexities,
such as competing reward objectives, action costs or constraints, and complex state transition
dynamics. POMDP models have been used to develop solutions for problems as diverse as
railroad maintenance planning [96], unmanned aerial vehicle contingency management [97],
recommendation systems [98], and treatment planning for sepsis patients [99]. However,
many practitioners instead use online learning heuristic algorithms that ignore these com-
plexities. A major factor in this decision is that specifying the components of a POMDP
and computing its optimal solution tends to be tedious and computationally expensive, if
not entirely infeasible [72].

Bayes-Adaptive MDPs (BAMDPs) [100] are a subclass of POMDPs which describe prob-
lems in which a fully observable state is separate from a stationary (fixed) hidden state. In
this work, we consider all problems which can be represented by BAMDPs, with the addi-
tional constraints that the state transition following an action is deterministic given only
the observable state, while the (possibly stochastic) reward of an action depends only on
the hidden state. We formulate stochastic online learning as a fully-observable belief-space
MDP (BMDP) [91], where “belief states” represent the BAMDP observable state combined
with a probability distribution over possible hidden states. As the hidden state is stationary,
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an agent navigating a BMDP begins with a belief state which broadly distributes proba-
bility across many possible values of the hidden parameters, but moves towards one which
concentrates probability on the most likely values.

2.3.3 Risk Quantification, Decomposition, and Minimization

The risk of a policy describes the degree to which the performance of that policy may ex-
ceeded by some other policy; even if a policy may produce good results in expectation, it
may still carry substantial risk. Most autonomous agents use risk-neutral decision making,
which only considers the expected performance of a policy. However, this can lead to un-
desirable behaviours, particularly in social or safety-critical contexts. Risk quantification is
essential to developing risk-aware and risk-averse (or risk-sensitive) agents [101]–[103]. A
risk-aware agent is capable of, for example, reporting to the user when it is in a high-risk
state (i.e., a situation for which there is no low risk policy) [104]. A risk-averse agent goes
further by actively avoiding high risk states even if they would, in expectation, lead to better
outcomes [102], [103].

It is often useful to separate a policy’s risk into aleatoric and epistemic risks [105]–
[107]. The aleatoric component describes how much a strategy’s results depend on random
processes in the environment, while the epistemic component describes how much risk could
be eliminated through better knowledge of the environment [107], [108].2 Actions which
reveal information on the hidden state of the POMDP reduce epistemic risk. Conversely,
aleatoric risk cannot be avoided in OLPs, as it is constant for a fixed hidden state.

In this thesis, we consider the Bayesian online learning setting where the hidden state
is modelled as being drawn from a “prior” distribution; the Bayes’ risk of a policy is the
expected risk for a random hidden state distributed according to this prior. This setting
is explored in Bayesian reinforcement learning [94], [109], [110], and techniques have been
developed to learn risk-aware and risk-averse policies for general BAMDPs [93], [111]. How-
ever, such approaches require training a policy by running many episodic simulations of the
problem. We propose EBRM as a risk-aware solution which, like the online learning heuris-
tics discussed in Subsection 2.3.1, does not require any training, thus making it far more
convenient to use.

2Intuitively, aleatoric risk is due to the inherent unpredictability of “dice rolls”, while epistemic risk is due
to uncertainty in whether the “dice” is loaded (and how).

31



2.3.4 Online Reward Learning in Autonomous Exploration

In our formulation of autonomous exploration, the “hidden state” presented in the previous
section represents the true concentration of targets of interest within each semantic class in
the area of operations. We assume that these targets are distributed at random throughout
the environment with likelihood proportional to the these concentrations; these locations are
called the “hidden outcomes”. As the semantic maps produced by semantic mapping systems
tend to assign each location to a distribution over semantic classes, we will assume that the
probability of a target of interest being found at a particular location is a linear mixture of
the concentrations parameters based on this semantic class distribution.

The robot’s belief state contains a distribution over these possible concentration values,
as well as distributions over all other variables relevant to planning, such as its own location.
We call the belief distribution over the these concentration the robot’s “reward model”, so
the online learning process is called online reward learning.

The agent’s “policy” refers to a robotic explorer’s planner, which produces a trajectory
that the robot expects will collect as much reward as possible. Epistemic risk then describes
the sub-optimality of the robot’s planned trajectories that is due to incomplete knowledge
of these concentration values (the reward model parameters, or “hidden state”). Conversely,
the aleatoric risk measures how the random distribution of target locations could cause the
robot to fail to find many targets along its trajectory, even if it were constructed with perfect
knowledge of the true concentration parameters.
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Chapter 3

Online Matching of Learned Semantic
Representations

As discussed in Chapter 2, an important aspect of scientific exploration is that it often in-
volves large and unknown environments which would be very time consuming to cover with a
single robot. Furthermore, many marine environments, such as coral reefs and hydrothermal
vent chains, are highly dynamic and thus require both broad and frequent exploration to
monitor for changes. These issues necessitate using a team of robots working in parallel for
distributed mapping and exploration.

When learning semantic representations online using unsupervised algorithms, the learned
models are egocentric. Fig. 3.1 demonstrates how this can be an issue: one robot has learned
a different permutation of the same semantic labels (represented with colors) learned by the
other robot. In addition to the unknown permutation between corresponding labels, some
labels learned by one robot may not correspond to any label observed by another robot, or
a single label may represent the union of multiple labels learned by another robot.

Creating unified semantic maps and models is essential for fleet scalability. In particu-
lar, unifying the semantic models of individual robots enables sharing both semantic map
information as well as reward models, which map the concentrations of targets of interest
to semantic classes. Therefore, multi-robot distributed exploration with learned semantic
models requires correctly estimating the total number of distinct semantic classes across all
robots, and associating and fusing those that correspond to the same real-world domains
(habitats or terrain types).

This chapter presents a novel system for multi-robot distributed semantic mapping that
addresses the previously described issues. Each robot uses an online semantic 3D mapping
system to model its own observations and create a high quality semantic map. The robots
explore the target environment in parallel, sharing their learned semantic maps and models
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Figure 3.1: When robots develop different individual semantic models gi, they solve the
correspondences Πi into a global (shared) semantic language in order to fuse their results.
Images are from environment #2 (see Fig. 3.4).
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with each other and with the human operator whenever communication constraints permit.
Finally, a multiway matching algorithm, which can run on any robot, estimates the total
number of unique phenomena observed across the robot team, finds matches between the
same phenomena labeled differently by various robots, and fuses the local maps to obtain a
consistent global map across all robots.

The remainder of this chapter is ©2021 IEEE. Reprinted, with permission, from [23].

3.1 Related Works

Doherty et al. [24] showed that repeatedly matching the topic models of two robots with
the Hungarian algorithm [112], merging them together, and distributing the merged model
would result in both robots converging to a single set of good semantic labels, even if this
was done at a low frequency. To our knowledge, [24] is the only prior work that has explored
multi-robot distributed semantic mapping with representations learned online. The present
work improves upon [24] with a novel solution for matching many (N ≫ 2) semantic maps
that is more robust to major variations across what each robot sees, and does not rely on
distributing the merged topic model throughout the entire robot team. Eliminating the
need to distribute the merged model halves communication bandwidth usage, and makes the
approach more robust to transient connection failures.

Multiway matching algorithms are a class of data association techniques that leverage the
transitivity property (cycle consistency) to rectify wrong correspondences and construct a
unified representation from the partial and noisy observations of multiple agents. Multiway
matching leads to superior accuracy compared to classical pairwise approaches (e.g., [112]),
however it has combinatorial complexity. State-of-the-art methods consider approximations
of this problem via convex relaxations [113]–[116], spectral relaxations [117], [118], or graph
clustering [119] to obtain a solution in polynomial time. In this work we use CLEAR [26],
a spectral clustering based approach, to match topic models because it is one of the most
efficient multiway matching algorithms with leading performance in both precision and recall.

3.2 Problem Setup

Let us denote the environment to be mapped as E ⊂ R3. We partition E into a grid of
disjoint cells (boxes) B = {bi} such that E = ∪ibi. An oracle (e.g., the human operator)
could assign to each box a distribution over human-defined semantic labels ZH that represent
its semantic contents. We assume that if these boxes are sufficiently small, each box can be
effectively represented by a single dominant label. We thus define the ground truth semantic
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segmentation f : B → ZH , where f(b) ∈ ZH represents the human label for b ∈ B. The
model f and set ZH cannot be provided to the robots in advance because the operator
cannot predict everything that will be found during the mission (i.e., the set ZH is unknown
a priori), and communication bandwidth limitations prevent the operator from seeing most
of the observations until the mission is over and the robots are recovered. The goal of the
robot team is to construct a fused semantic map g : B → ZG, where ZG is a shared set
of learned semantic labels, such that g(b) is “similar” to f(b). A metric to evaluate this
similarity will be presented in Section 3.4.

We assume that the team consists of N autonomous robots. By timestep t, the nth

robot has collected its own set of localized image observations and used them to build, in an
unsupervised manner, a local semantic map gn,t : B → Zn

t , where Zn
t is the set of semantic

labels the robot has developed to describe its own observations.1 Due to the egocentricity of
unsupervised semantic mapping, robots which observe different phenomena, or the same but
in a different order, will almost certainly develop disparate semantic models, as in Fig. 3.1.
In order to construct a fused semantic map, these N unique semantic models must first be
fused to use a common set of labels. Therefore, the team must construct a set of global
semantic labels ZG

t and a set of correspondences Πt = {Πn,t : Zn
t → ZG

t }Nn=1 that translate
individual robots’ labels Zn

t into ZG
t . Given Πt, the individual semantic maps can be fused

into a single global map gt : B → ZG
t for time t (see Fig. 3.1). Each label can be computed

as gt(b) = Πn⋆
b ,t
(gn⋆

b ,t
(b)) where n⋆

b is the index of the robot that most recently visited and
observed the cell b ∈ B.

3.3 Consistent Online Topic Matching

We present an algorithm to produce a fused semantic map from semantic maps built by
robots with disparate semantic models. Consistency ensures that the fused model created
by any agent is the same across all agents, and online indicates that our algorithm will be
run during the mission whenever a new matching is required. Typically, we expect a human
operator would run our algorithm at a central node whenever they require an updated global
map, however it is computationally lightweight enough that it may be run by any robot that
has collected other robots’ semantic maps.

The stages of the proposed system are presented graphically in Fig. 3.2 and in detail by
the following subsections.

1In practice, we assume gn,t is learned from RGB-D image observations {on,τ}tτ=1 paired with estimated
camera poses {xn,τ ∈ SE(3)}tτ=1.
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Figure 3.2: Our proposed system is composed of five stages. Each robot first learns an
individual semantic model online which it uses to describe its own observations. When a
fused map is required, a topic similarity matrix is constructed by using a similarity metric
for topic descriptors to compute all pairwise similarity scores. A noisy association graph is
produced by treating each topic as a vertex and using similarities above a specified threshold
as edges. The noisy graph is rectified using the CLEAR multiway matching algorithm to
produce a consistent topic matching, which has the form of a cluster graph. These topic
matches are used to fuse the individual maps into one consistently labelled global map.

3.3.1 Online STM-Based Semantic Mapping

The proposed approach has each robot construct a spatiotemporal topic model online as the
basis for its individual semantic map, as in [11]. Nonetheless, it would be straightforward to
adapt this system to use any similar unsupervised online semantic mapping module.

While an exhaustive description of the BNP-ROST model used is left to [9], a few details
are relevant here. First, the model requires no pre-training, although it can be bootstrapped
with topics for common phenomena. Second, the model is tuned by varying the feature
vocabulary, the spatiotemporal grid cell size, and three scalar hyperparameters. Typically,
the vocabulary is domain-specific while the cell size and the scalar hyperparameters are
tuned for a specific mission.2 All robots on the same mission use the same hyperparameters.
Finally, each robot’s topic model uses a stochastic process to develop an ever-evolving set of

2While they may be tuned with a dataset representative of the target environment, these hyperparameters
encode only abstract information about the domain and thus tend to generalize well to novel environments.
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topics online based on its own visual observations. At time t the nth robot has Kn,t topics,
so Zn

t = {1, . . . , Kn,t}. Each topic zk ∈ Zn
t is characterized by a semantic “descriptor”

ϕk ∈ ∆V , a distribution over “words” in the predefined vocabulary of size V [65], where
∆V = {p ∈ RV

+ : ∥p∥1 = 1}. Each grid cell bi of the environment E is labelled with a single
maximum likelihood topic, which may change as the model evolves; thus, we will start using
the terms “topic” and “label” interchangeably.

3.3.2 Computing Topic Similarity

We require a similarity metric that measures how similar two topics are to each other in
order to identify when multiple robots have developed any semantically equivalent topics.
Since each descriptor ϕk represents a probability mass function, it is natural to consider
similarity metrics that operate on discrete probability distributions. Total Variation Distance
(TVD) [120] measures the largest possible difference in probability that two topics assign to
the same set of words. Thus, the Topic Overlap (TO),

TO(ϕ1, ϕ2) = 1− TVD(ϕ1, ϕ2), (3.3.1)

is a similarity metric that represents the total probability mass which both ϕ1 and ϕ2 assign
similarly. It can be computed using the identity TVD(ϕ1, ϕ2) =

1
2
∥ϕ1 − ϕ2∥1.

Another metric commonly used for comparing topic descriptors is Cosine Similarity
(CS) [121], which computes the cosine of the angle between two descriptors as

CS(ϕ1, ϕ2) =
ϕ1 · ϕ2

∥ϕ1∥∥ϕ2∥
. (3.3.2)

The CS metric is about as efficient to compute as TO, but assigns a higher score when ϕ1 and
ϕ2 are very similar and a lower score when they are very dissimilar. This may be preferable
because, as the stochastic nature of topic models means that the descriptors {ϕk} fluctuate
constantly, two topics with the same semantic meaning are likely to have slightly different
descriptors at any given time.

Each similarity metric presented above is symmetric and bounded by [0, 1], where a score
of 0.0 indicates two topics have no words in common, and 1.0 indicates that two topics are
exactly the same. We use the chosen similarity metric s to construct the pairwise similarity
graph, a weighted and undirected graph in which vertices are topics and edge weights are
the similarity of the adjoining vertices; it is represented in Fig. 3.2 by the topic similarity
matrix.
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Figure 3.3: This histogram shows the pairwise similarity scores across the 72 topics learned
by a fleet of 12 robots, computed using cosine similarity. The annotations highlighting the
shape of the histogram suggest an automated method of determining the similarity threshold,
which is discussed further in the main text.

3.3.3 Constructing the Noisy Association Graph

In practice, similarity metrics are “noisy” in that topics which a human would judge to
have the same semantic meaning may not have a similarity score of 1.0, and topics with
very different semantic meanings may not have a similarity of 0.0. The pairwise similarity
graph is simplified by removing edges with weights below some σ ∈ (0, 1) that represents a
sufficient level of similarity, and setting weights above σ to 1, resulting in the unweighted
noisy association graph.

In general, a good threshold σ for considering two topics to be “sufficiently similar” will
depend on factors including the similarity metric s, the topic model hyperparameters, and
the subjective opinion of the human operator. It is difficult to choose σ analytically because
the expected topic growth rate and average inter-topic similarity are complicated functions of
the topic model hyperparameters. A simple solution for choosing σ is to collect a validation
set of topics developed by robots in past missions, for which the human operator can infer
their semantic meanings, and then tune σ low enough that the algorithm merges as many
topics with the equivalent meanings as possible but high enough that it does not match
distinct topics. In the training dataset used to choose the topic model hyperparameters,3

this method was used to establish a similarity threshold of σ = 0.75, which was found to be
suitable for use with both topic similarity metrics.

3This dataset and process will be described in Section 3.4.
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While straightforward, the method for choosing σ presented above requires human anal-
ysis and is subject to personal biases (the inferred semantic meaning of various topics).
Figure 3.3 depicts a histogram of the similarity scores across a large set of matching and
non-matching topics, and suggests an automated method of determining a sufficient simi-
larity threshold. We see in the figure that the similarity scores tend to be bimodal, with
peaks near 0 (for highly dissimilar topics) and 1 (for matching topics). By modeling the
distributions of similarity scores for matching and non-matching topics, respectively, using
two unimodal distributions (e.g., beta distributions) with corresponding peaks, σ could be
computed as the value at which it is equally likely the score was generated from either dis-
tribution. In this example, it appears as though the non-matching distribution has support
between 0 and just below 0.8, while the matching distribution has support from 0.8 and
up, so a suitable threshold would be just below 0.8; this agrees well with the manually
determined threshold of 0.75.

Regardless of the method used to determine the threshold σ, it may not be obvious from
the resulting noisy association graph how many unique topics should be used in the final map,
or which sets of topics should be matched. This is because noisy associations can violate
transitivity : if we match topics 1 and 2, as well as 2 and 3, then we expect topic 1 should
have the same semantic meaning as topic 3, but for most similarity functions f (including
topic overlap and cosine similarity), f(ϕ1, ϕ2) ≥ σ ∧ f(ϕ2, ϕ3) ≥ σ ≠⇒ f(ϕ1, ϕ3) ≥ σ. This
situation raises the question of whether topic 2 should be assigned the same label as topic
1, topic 3, both, or neither; different answers can further imply different numbers of labels
in the global map. The next subsection will address these concerns by finding the “closest”
association graph which contains only consistent matches.

3.3.4 Rectifying the Noisy Association Graph

A consistent association graph, without any noise, should have the structure of a cluster
graph. A cluster graph is a set of disjoint fully-connected components, such that any two
nodes (topics) in the same component are matched and no nodes (topics) are matched
between components. The number of distinct topic labels developed by the entire robot
team should then match the number of disjoint components.

CLEAR [26] is a spectral clustering algorithm that estimates the closest cluster graph to
a noisy association graph (see Fig. 3.2), in terms of the number of edges added or removed.
A key reason for choosing CLEAR is that it is one of the fastest algorithms to perform
multiway matching with high accuracy. The Laplacian L of the noisy association graph is a
matrix defined in terms of the graph adjacency matrix A and degree matrix D as L = D−A,
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where

[A]ij =

1, s(ϕi, ϕj) ≥ σ

0, otherwise
(3.3.3)

[D]ij =


∑N

k=1[A]ik, i = j

0, otherwise
(3.3.4)

CLEAR uses a special normalization of the Laplacian based on the degree matrix plus
identity, denoted by Lnrm, to identify clusters of semantic labels in the noisy association
graph with high pairwise similarity. The number of eigenvalues of Lnrm less than 0.5 is a
robust estimate of the number of global labels, |ZG

t |. CLEAR then uses the eigenvectors of
Lnrm to find a consistent set of label correspondences Πt.

3.4 Experimental Methodology

The proposed consistent online topic matching system was evaluated using semantic mapping
experiments in two unique high-resolution 3D simulated coral reef environments produced
in the Unreal Engine [122] using the Automatic Coral Generator package [123]. A top-down
view of each simulated environment is presented in Fig. 3.4. In each experiment, a team of
12 simulated robots traversed one of the two environments and each collected 250 RGB-D
observations using the AirSim plugin [124]. AirSim also provided a ground truth semantic
segmentation for each image. Each robot was given noiseless localization information and
ran a new release of the BNP-ROST [9] spatiotemporal topic model called “Sunshine”, which
is conceptually identical to the system presented in [11] but redesigned for ease of use and
with optimized code to produce higher quality maps with less processing power. Throughout
the experiment, sets of 1 to 12 robots’ local maps were randomly chosen and fused together
using the approach described in Section 3.3. Each experiment was repeated 24 times to
control for between-run variation in the topic models produced by each robot.

The topic model hyperparameters were set using a Bayesian Optimization algorithm [125]
to find the values that resulted in the highest map quality, evaluated using a third simulated
reef environment which was similar to Environment #1. The topic model vocabulary was
the same one used in [11]. All code, instructions, hyperparameters, and datasets required to
reproduce these experiments, as well as instructions to generate similar test environments,
are available in the Sunshine repository.
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(a) Environment # 1.

(b) Environment # 2.

Figure 3.4: Top-down views of the two simulated test environments used in the experiments.
Each map is approximately 250m×250m, and contains a rich variety of coral species, seaweed,
and rocks.
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(a) In environment #1, sparser and less varied phenomena (coral species) were spread throughout
a uniformly sandy reef. The prevalence of sand in both shaded and well lit conditions tended to
cause the single robot to develop two sand topics, reducing its performance.

(b) In environment #2, more variation between robots in the phenomena (coral species) and terrains
observed meant that the Hungarian algorithm’s assumptions were violated, leading to reduced
performance compared to the proposed CLEAR-based approach.

Figure 3.5: The AMI scores between the fused maps and corresponding ground truth maps
extracted from the simulator demonstrate that the multi-robot distributed mapping system
with CLEAR-based label matching outperforms all other multi-robot approaches. Error bars
represent the 95% confidence interval of the mean score. The score of a single-robot that
explored the same total area as the corresponding fused maps is shown in red, for comparison.
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3.4.1 Evaluating Semantic Map Quality

A useful fused semantic map g(x) is one that is, at every location x, a good predictor of
the ground truth label f(x) defined by the human operator. We measure this predictive
strength using Adjusted Mutual Information (AMI) [126], a normalized variant of Mutual
Information (MI). MI represents the number of bits of information contained in one random
variable that describe another, and is defined for discrete random variables U ∈ U , V ∈ V as

MI(U, V ) =
∑
u∈U

∑
v∈V

p(u, v) log

(
p(u)p(v)

p(u, v)

)
. (3.4.1)

Given the semantic maps f and g and a finite set of cells B, we define the random
variable B as a cell chosen uniformly at random from B, and thus define the random variables
Yf = f(B) and Yg = g(B) as the robot team’s semantic label and the ground truth semantic
label for B, respectively. The joint probability of these random variables is:

p(yf , yg) =
1

|B|
∑
b∈B

1f(b)=yf∧g(b)=yg , (3.4.2)

which gives the probabilities p(yf ), p(yg) through marginalization. Denoting the entropy of
random variables Yf and Yg as H(Yf ) and H(Yg), the AMI is computed as

AMI(Yf , Yg) =
MI(Yf , Yg)− E[MI(Yf , Yg)]

max{H(Yf ), H(Yg)} − E[MI(Yf , Yg)]
. (3.4.3)

A perfect AMI score of 1 indicates that the robot team’s semantic map contains all
information required to reproduce the ground truth semantic map of the same area. Con-
versely, a score of 0 indicates that the team’s semantic map contains no more information
about the corresponding part of the ground truth map than a randomly generated map is
expected to. This is because the normalization subtracts out the expected mutual informa-
tion E[MI(Yf , Yg)] between the labelings Yf and Yg, computed according to [126]. If a fused
semantic map has a high AMI score with respect to the ground truth, then there is a con-
sistent correspondence between each semantic label used by the robot team and each label
used to produce the ground truth map. Thus, for high AMI scores, the human operator only
needs to look at a few example images for any label in the fused map in order to determine
that label’s human-interpretable meaning.
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3.4.2 Baseline Comparisons

The local maps were also fused using the ID-based matching and Hungarian matching ap-
proaches described in [24] to get baseline performance metrics. ID-based matching assumes
that every robot observed the same phenomena in the same order, and so the first topic
learned by one robot corresponds to the first topic learned by every other robot, and like-
wise for the remaining topics. The Hungarian approach only assumes that every robot
observed the same phenomena, and finds the maximum similarity permutation between the
first robot’s topics and each additional robot’s. This is a sequential, not multiway, match-
ing approach because it compares topics belonging to a pair of robots at a time instead
of considering all of the topics together. We are not aware of any previous baselines that
used a multiway matching algorithm or did not assume that every robot observed the same
phenomena.

Separate from the multi-robot experiments, a single robot was used to explore the same
environments and independently build its own semantic map. It used the same topic model
hyperparameters as the robots in the multi-agent experiment, but did not require any topic
matching or map fusion. The single robot required Nt seconds to explore the same area that
N robots explored in t seconds; the quality of the map it produced after exploring the same
area as the N fused robots is reported in the results as “Single Robot”.

3.5 Results & Discussion

Figure 3.5 shows the performance of the proposed system using CLEAR, compared to using
baseline matching solutions and to using a single robot. The performance was measured in
terms of AMI of the fused map with the ground truth semantic map produced by AirSim.
While the performance of the other matching algorithms declines as more robots are fused,
the performance of the proposed matching solution increases or stays steady. This happens
because CLEAR leverages redundant edges in the noisy association graph, added by addi-
tional robots, to help compensate for incorrect edges. The number of incorrect edges at each
vertex grows slower than the number of correct edges as topics are added, so our system is
able to find a better solution when more robots’ maps are fused.

In the first test environment, Fig. 3.5a, the fused map quality of the proposed approach
goes from about 10% lower than the semantic map produced by a single robot to about 10%
higher as more robots are fused. This is excellent performance considering that the robot
team was able to map the entire environment in 1/12th the amount of time. Compared to
the Hungarian matching approach, the proposed system achieves 23% higher AMI scores on
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(a) Ground truth segmentation. (b) Ours (CLEAR Based).

(c) Hungarian matching. (d) ID-Based matching.

Figure 3.6: Sample fused maps from each multi-robot matching approach with all 12 robots,
alongside the ground truth segmentation, for Environment #2. Note that each map has been
manually colored (1 color per label) with the same palette to ease comparison. The proposed
approach most accurately captures the variation in terrain and coral species present in each
quadrant.
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Table 3.1: Semantic Mapping Performance with 12 Robots.

Mean AMI Score (Std. Dev.)
Matching Alg. Metric Env. #1 Env. #2

ID-Based N/A 0.117 (0.035) 0.078 (0.016)
Hungarian L1 Distance 0.297 (0.006) 0.216 (0.004)

L2 Distance 0.313 (0.016) 0.253 (0.039)
Cosine Distance 0.304 (0.011) 0.203 (0.015)

CLEAR TO Similarity 0.250 (0.002) 0.341 (0.003)
Cosine Similarity 0.384 (0.006) 0.406 (0.007)

Single Robot (No Matching) 0.344 (0.026) 0.382 (0.024)

average; as shown in Fig. 3.6, this is primarily because CLEAR is better suited to recognize
when different robots have observed distinct phenomena. In the second test environment,
Fig. 3.5b, this difference was magnified as there was very little in common between what any
pair of robots observed. Table 3.1 summarizes numerical results for the map quality after
fusing all 12 local maps together with each matching algorithm and for various similarity
and distance metrics. The other figures shown used Cosine similarity for CLEAR matching
and Euclidean (L2) distance as the Hungarian cost metric.

As seen in Fig. 3.7, as the team explores environment #2 the fused map quality is mostly
constant after each robot has collected 125 images, i.e., covered half of its assigned area.
This suggests that environment #2 would be most efficiently explored using 24 robots; in
general, the optimal number will depend on the size and complexity of the environment.

The results presented are expected to generalize well to real world environments. Previ-
ous versions of BNP-ROST have demonstrated the ability to produce useful semantic maps
of real-world environments while running on real robot hardware [11]. Furthermore, the
compressed semantic maps and topic descriptors shared between robots are very small (typ-
ically around 10 to 100 kB) so they can be transmitted between robots in even severely
bandwidth-constrained environments, like the deep sea [11], [127].

3.6 Summary

In this chapter we presented a novel multi-robot distributed semantic mapping system that
produces accurate semantic maps even when fusing maps from many robots and when each
robot is building its unsupervised semantic model online with no pre-training. The proposed
topic matching approach results in 20-60% higher map quality than pairwise Hungarian
matching, with the largest gains in mapping complex and diverse environments, while also
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Figure 3.7: The fused map quality varies throughout each experiment; shown here is how the
fused map quality (AMI) changes as the robots explore environment #2. The performance
increase across all methods is caused by each robot’s topic model improving over time.

48



using less communication bandwidth than the previous state-of-the-art [24]. The fused maps
are suitable for the human operator to use for mission summarization and informative path
planning. We find that the fused maps approximate the quality of the best single-robot maps,
hence further performance increases will likely come from improving the STM-based online
semantic mapping component. The presented system for accurate topic matching over low-
bandwidth enables novel multi-robot distributed autonomous exploration capabilities, such
as cooperative-adaptive path planning and distributed reward learning, which should be
explored in future work.
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Chapter 4

Realtime Adaptive Underwater Color
Correction

The development of autonomous underwater vehicles (AUVs) has trended towards more com-
plex and adaptive vision-based behaviours, enabled by the increasing performance and energy
efficiency of onboard micro-computing resources over time. Many such behaviours, includ-
ing visual target tracking [128]–[131], adaptive exploration of benthic environments [9], [13],
[132]–[136], autonomous docking [137]–[139], and diver following [140] and assistance [141]–
[144], strongly depend on an AUV’s capability for visual perception and understanding. Un-
fortunately, underwater image quality is generally lower and more variable than the quality of
similar images taken in air, making vision-based autonomous behaviours far more challenging
to perform underwater than in other domains.

The most prominent image quality issues result from spectrally-selective light attenuation
and backscattering [145]. These phenomena cause images taken underwater to be lacking in
certain colors, typically red, and to have an excess of others, such as blue and green [145],
as seen in Figure 4.1. The magnitude of these effects is correlated with the camera’s water
depth and range to the target; objects in the image that are shallow and close to the camera
will have more of their natural color than objects that are deeper or further away. However,
the specific color distortions in an image depend also on the presence of other light sources
(e.g., the sun), and on the optical properties of the camera and the body of water in which
the image was captured.

These issues are especially problematic for autonomous exploration with learned semantic
models, as the semantic classes learned by the robot reflect the visual features it observes in
the environment. When these features are corrupted by light attenuation and backscattering,
a robot may assign different semantic classes to the same domain based on factors such as
the time of day, the depth of the robot, and the current water conditions. This produces
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inaccurate semantic maps that are more poorly correlated with targets of interest.
More broadly, the performance of computer vision algorithms for image classification

and 3D reconstruction is severely degraded by color distortions, regardless of whether those
algorithms are based on deep neural networks or on more traditional feature detection and
matching methods [146], [147]. Even learning-based systems trained to be robust to tar-
gets within some range of distances, lighting conditions, and water masses will generally not
be robust to real-world targets outside of the training distribution. This makes realtime,
adaptive, in situ color correction a necessary prerequisite for successful vision-based AUV
tasks and behaviours, especially in potentially safety-critical applications such as diver as-
sistance. This is a gap in the underwater vision field; while previous works have focused on
high-quality offline color reconstruction [148]–[153], to our knowledge no methods have been
developed specifically for realtime applications.

This chapter presents DeepSeeColor, a novel method for realtime and adaptive color
correction of images onboard an AUV. This realtime preprocessing enables more robust
execution of in situ autonomous behaviours such as object recognition and tracking, semantic
mapping, and mission summarization. DeepSeeColor improves upon the successful “Sea-
Thru” algorithm [153] in terms of computational efficiency. It achieves this improvement
through using highly efficient gradient-based optimization methods to learn the weights of
two simple convolutional neural networks, where these weights correspond to a physics-
based image formation model’s unknown parameters. This novel approach replaces far more
computationally expensive image processing operations, while leveraging GPU acceleration
and other built-in performance optimizations provided by popular deep learning frameworks.
We further present validation of DeepSeeColor on the dataset provided with [153], as well
as on a new dataset of stereo-imagery collected from AUV deployments at coral reef sites in
the US Virgin Islands.

The remainder of this chapter is ©2023 IEEE. Reprinted, with permission, from [25].

4.1 Specific Background & Related Works

4.1.1 Underwater Image Formation

A digital camera system creates images by measuring the intensity of incoming light reflected
from various targets in its lens’ field of view. Assuming the light originates from a broadband
source similar to the sun, the wavelengths of the reflected light accurately represent the
colors of the targets. A color filter array on the camera’s image sensor enables measuring
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Figure 4.1: Best viewed on a screen, in color. Images taken in underwater environments (left
column) suffer from severe loss of colors due to the combination of spectrally-selective light
attenuation and backscattering due to particles in water. This effect is more pronounced
as the distance between the camera and imaging target increases. This chapter presents
DeepSeeColor, an efficient technique to reconstruct true-color images (right column) for use
in realtime onboard decision making by an autonomous underwater vehicle.
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the intensity of light within the red, green, and blue wavelength “channels”1 at each pixel.
Regardless of wavelength, the apparent intensity of light decreases in relation to an ob-

server’s distance from its source according to the inverse-square law. However, the presence of
an intervening medium further attenuates the apparent intensity of a target through absorp-
tion and scattering. Furthermore, many media are spectrally-selective: they preferentially
attenuate some wavelengths of light over others. Water is much more spectrally-selective
than air: red light is attenuated over a distance of 1m about as much as green light is over
10m, or blue light is over 100m [154].

Backscattering is the process by which particles in the water column between the tar-
get and camera reflect light from sources other than the target into the camera. This is
particularly problematic at shallow depths (<100m), long target ranges (>1m), and in tur-
bid waters.2 At shallow depths, light from the surface (e.g., sunlight) is scattered in all
directions by tiny particulate in the water; the spectrum of this scattered light consist of
wavelengths that were not absorbed higher up in the water column, and thus tends to be
blue or blue-green. The greater the range to the target, the more intervening particulate
there is to backscatter this light into the camera; the resulting “haze” in the image makes it
more difficult to see the target, especially when it saturates the camera’s dynamic range.

We denote the intensity of light in channel c ∈ {R, G, B} emitted by the target along the
ray to pixel (i, j) in the camera image sensor as Jc(i, j), and the intensity measured by the
sensor at that pixel as Ic(i, j). Spectrally-selective light attenuation and backscattering can
be modelled together using the underwater image formation model,

Ic(i, j) = Jc(i, j)Ac(i, j) +Bc(i, j), (4.1.1)

where Ac(i, j) andBc(i, j) represent wavelength-dependent light attenuation and backscatter,
respectively. This reflects the form of models used by many works in underwater color
reconstruction [148]–[152], which take A and B to be

Ac(i, j) = exp(−ac · zi,j), (4.1.2)

Bc(i, j) = γ∞c (1− Ac(i, j)), (4.1.3)

where zi,j is the range of the target. The values of ac, γ∞c ∈ R≥0 are determined by the
camera system and environmental parameters, including as the water type, target reflectance,

1These channels are roughly defined as the wavelength ranges 575-725nm (red), 475-625nm (green), and
400-550nm (blue), respectively.

2Note “depth” refers to the vertical distance of the target from the water surface, while “range” refers to
the distance from the camera to the target.
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illumination sources, image sensor characteristics, and camera depth from the water surface,
which are, for now, all assumed to be fixed.

More recently, [155] found that Eq. (4.1.2), derived from an atmospheric dehazing model,
neglects the range-dependence of underwater light attenuation coefficient ac, and incorrectly
assumes that the coefficients governing the range-dependence of attenuation and backscat-
tering are the same. [155] presented a new model capable of capturing these complexities,

Ac(i, j) = exp(−ac(zi,j) · zi,j), (4.1.4)

Bc(i, j) = γ∞c (1− exp(−βczi,j)), (4.1.5)

with scalars γ∞c , βc ∈ R≥0 and a parametric function ac(z).3,4 This is the model used by
Sea-Thru [153] and DeepSeeColor, and will be explored further in Section 4.2.

4.1.2 Methods for Color Reconstruction

Spectrally-selective light attenuation and backscattering have been considered by underwater
color reconstruction algorithms since the seminal works of [148]–[150]. These works presented
each presented a method to estimate their respective image formation model parameters from
a single image. Given these parameter estimates, the true color of the target at pixel location
(i, j) can be reconstructed as

Jc(i, j) = Dc(i, j)Ac(i, j)
−1, (4.1.6)

where Dc(i, j) := Ic(i, j) − Bc(i, j) denotes the “direct” signal. The components of this ap-
proach to color reconstruction are depicted in Fig. 4.2. More recent works have explored
techniques for better estimating the parameters ac, γ∞c through leveraging additional infor-
mation, such as the optical properties of known water profiles [156].

Among the most relevant of prior works is [152], which recognized that leveraging an
accurate range map, which describes the distance of each pixel in an image, could better
constrain estimates of the image formation model parameters. The method was designed for
use on AUV collected data, and applied structure-from-motion estimation to generate range
maps based on the overlapping field-of-view and real-world camera displacement between
pairs of captured images [152]. This displacement was estimated using navigational infor-
mation collected by other sensors on the AUV, but estimation could be avoided by using a

3βc is most accurately modelled as a function of the range z, like ac(z), but this effect is negligible within
a fixed water type [155].

4Details on the interpretation of each parameter are given in [153].
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Figure 4.2: Examples of an input image I and corresponding range map Z (color-coded such
that blue is “close” and red is “far”), best viewed on a screen in color. The DeepSeeColor
method efficiently learns to approximate the backscatter image B and attenuation factor
image A (both shown with contrast enhanced), enabling recovery of the true-color image J .
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synchronized stereo-camera system to simultaneously capture pairs of images with a known,
fixed camera displacement.

The previously discussed methods were developed for estimating the parameters of the
traditional underwater image formation model described by Eqs. (4.1.2) and (4.1.3). Es-
timating the parameters of the improved underwater image formation model presented
in Eqs. (4.1.4) and (4.1.5) originally required the use of multiple color chart calibration
targets in situ [155]. The idea of using range maps, instead of color charts, to guide param-
eter estimation was adapted by the Sea-Thru algorithm [153], which enabled learning the
improved model parameters using only the captured image and range map.

There has also been progress in learning-based methods for color correction [157], in-
cluding for underwater imagery [158], [159]. However, these methods do not guarantee
consistency or accuracy in the color reconstruction of an image stream, or images captured
in different environmental conditions. This makes them less suitable than physics-based
color correction methods for use in supporting realtime, possibly safety-critical, autonomous
underwater behaviours.

4.1.3 AUV Vision System Considerations

Though [152] specifically explored color reconstruction for images collected by AUVs, to our
knowledge no prior works have developed robust, physics-based underwater color reconstruc-
tion methods intended to run onboard an AUV’s highly constrained computational resources
in realtime. In fact, each of the aforementioned color reconstruction methods relies on solving
optimization problems with computational complexity that is at least linear in the number
of pixels in the input image [148]–[153]. The significant computational complexity of Sea-
Thru [153], the only prior work to solve the parameters of the improved image formation
model in Eqs. (4.1.5) and (4.2.6), will be explored further in Section 4.2.

Computationally expensive methods could be acceptable if the image formation param-
eters only needed to be computed once. However, prior works have found that these image
formation parameters can change significantly in time and space due to factors including
variation in depth, lighting conditions, exposure time, turbidity, and imaging angle [153],
[155]. This demands the usage of an adaptive color correction method that is robust to
changes in lighting and other environmental parameters, and can be run in realtime on each
image as it is collected.
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4.2 The DeepSeeColor Method

DeepSeeColor estimates the backscatter and attenuation parameters of the underwater image
formation model from [155] by training two convolutional neural networks [160], depicted in
Figures 4.3 and 4.4, respectively, with self-supervised loss functions based on the captured
image I and range map Z. This training process can take advantage of deep learning
hardware accelerators increasingly found onboard autonomous platforms [161].

4.2.1 Backscatter Estimation

DeepSeeColor makes use of the same backscatter model as Sea-Thru,

B̂c(i, j) = γ∞c (1− exp(−βc · zi,j)) + ηc exp(−αc · zi,j), (4.2.1)

which corresponds to the backscatter model presented in Eq. (4.1.5) augmented with a
residual term, described in [153], characterized by two new scalar parameters ηc, αc ∈ R≥0.

Inference

DeepSeeColor performs backscatter estimation using the neural network presented in Fig. 4.3.
We define a novel nonlinear activation function, Gated Exponential Decay (GED), as

GED(x) :=

1 x ≤ 0,

exp(−x) x > 0.
(4.2.2)

We also introduce its complement, CGED(x) := 1 − GED(x). Observe that Eq. 4.2.1 can
now be rewritten as

B̂c(Z) = γ∞c · CGED(βcZ) + ηc ·GED(αcZ). (4.2.3)

With its final sigmoid activation layer removed, the network depicted in Fig. 4.3 computes
B̂c for the backscatter parameters encoded in its convolutional layers’ kernels. The operations
βcZ and αcZ for c ∈ {r, g, b} are modelled as convolutions between the tensor Z = [zi,j]

with dimensions (W,H, 1) and a kernel of shape (1, 1, 1, 3) to produce an output tensor
with dimensions (W,H, 3), where the values of the kernel elements correspond to β and α,
respectively.5 Similarly, multiplication by the coefficients in γ∞ and η can be modelled as
convolutions with kernels of dimension (1, 1, 3, 3), where each kernel is constrained to be

5Kernel shapes are given as (width, height, input channels, output channels).
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Figure 4.3: The backscatter net inputs a range map Z (visualized in color) and estimates
the corresponding backscatter image B̂. The kernel parameters in each convolutional layer
map to the parameters of the backscatter estimation model in Eq. (4.2.1).
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diagonal and thus has only 3 free parameters, resulting in the scaling of each channel by
the corresponding γ∞c or ηc. These parallel sequences of operations correspond to the top
and bottom branches of the network in Fig. 4.3, respectively. The final sigmoid layer applies
the activation function σ(x) := 1/(1 + e−x), ensuring that the backscatter estimates remain
bounded in [0, 1] regardless of any outliers in the range map.

Training

DeepSeeColor leverages the assumption from [153], [162] that in any given range interval
there are some pixels in the image which should have zero intensity. It trains the backscatter
network using a novel loss function,6

Lbs(D̂) =
∑
(i,j)

∑
c

(
max{D̂c(i, j), 0} − kmin{D̂c(i, j), 0}

)
, (4.2.4)

with hyperparameter k > 1 and D̂c := Ic − σ(B̂c).
As k →∞, optimizing Eq. (4.2.4) becomes equivalent to finding backscatter parameters

that minimize the minimum intensity of pixels at every range, while ensuring the network
never predicts that a pixel in the direct signal would have negative intensity. As k → 1,
the loss function becomes tolerant of some pixels in the direct signal being predicted to have
negative intensity, if that enables bringing more pixels closer to zero intensity. Intuitively,
larger values of k would produce more accurate backscatter estimates if the range map was
noiseless and the assumption of zero-intensity pixels at every range was satisfied, but are
also less robust to noise and outliers in the image and range map. We find empirically that
a value of k = 1000 produces accurate backscatter estimates.

For comparison, the backscatter parameters are estimated in Sea-Thru by binning the
image pixels into 10 evenly spaced range windows, and assigning the darkest 1% of pixels in
each bin to the set Ω [153]. Assuming these pixels should have zero-intensity, the backscatter
parameters are then found by solving the nonlinear optimization problem,

min
γ∞,β,η,α

∑
(i,j)∈Ω

∑
c

∣∣∣Ic(i, j)− B̂c(i, j)
∣∣∣2. (4.2.5)

Constructing Ω using a bitonic merge sort has time complexity O(NP−1 log2N) for N pixels
in the input image, when run in parallel on a processor with P ≤ N cores. In contrast,
computing the loss function in Eq. (4.2.4) and backpropagating its gradients has O(NP−1+

logP ) time complexity.
6Thanks to Dan Yang for finding an error in how this equation appeared in [25] (plus vs minus sign).
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4.2.2 Attenuation Coefficient Estimation

The attenuation coefficient function ac(z) is well approximated as a double exponential
function [153], characterized using the parameters vc, wc, xc, yc ∈ R≥0 as

ac(z) = wc exp(−vc · z) + yc exp(−xc · z). (4.2.6)

Inference

From Eqs. (4.1.4) and (4.2.6), it follows that

Ac(Z) = GED
(
Z ·
(
wc ·GED(vcZ) + yc ·GED(xcZ)

))
. (4.2.7)

Accordingly, the attenuation coefficient network depicted in Fig. 4.4 takes the same structure
as the backscatter net, except the CGED and sigmoid activation functions are replaced with
GEDs. The true-color image J is then estimated as,

Ĵc(i, j) = D̂c(i, j) · exp(ac(zi,j) · zi,j). (4.2.8)

Training

DeepSeeColor trains the attentuation network using a novel composite loss function designed
to learn attenuation coefficient parameters similar to those of the Sea-Thru method,

Lac(Ĵ ; D̂) = Lsaturation(Ĵ) + Lintensity(Ĵ) + Lvar(Ĵ ; D̂). (4.2.9)

The saturation loss penalizes over-saturating pixels in the output image, and is defined
as

Lsaturation(Ĵ) =
1

3N

∑
c

∥max{Ĵc − 1, 0}∥2,

where N is the number of pixels in Ĵ . The intensity loss penalizes image channels which
have a very low or very high average intensity, and is defined as

Lintensity(Ĵ) =
1

3

∑
c

(
1

N

∑
i,j

(
Ĵc(i, j)− 0.5

))2

.

Finally, the variation loss penalizes changing the variation in each color channel across the
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Figure 4.4: The attenuation net produces the attenuation map A from a range map Z.
The kernel parameters in each convolutional layer map to the parameters of the attenuation
coefficient function a(z) in Eq. (4.2.6).
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image, compared to the variation measured in the direct signal,

Lvar(Ĵ ; D̂) =
1

3

∑
c

(
s(Ĵc)− s(D̂c)

)2
,

where s(M) is the standard deviation of the values in M .
Minimizing the intensity loss function is similar to following the popular “gray-world”

approach to white balancing [163], except the network is constrained to modifying the at-
tenuation coefficients. This drives it to modify each channel’s coefficients in a way that
stretches contrast but biases the change towards targets far from the camera, and were thus
most attenuated. The saturation and variation losses help to avoid very large attenuation
coefficients; this is most relevant for images where attenuation has nearly eliminated a color
channel such that very large coefficients would be required to recover it. Large coefficients
cause over-saturation, and amplify noise in the input image; including the saturation and
variation losses mitigates this issue.

This training process has O(NP−1 + logP ) time complexity per training iteration when
parallelized on a processor with P ≤ N cores. Furthermore, each iteration produces a
color-corrected output image with increased quality, so the method is anytime optimal. For
comparison, the Sea-Thru algorithm finds the attenuation model parameters using the LSAC
algorithm [164] followed sequentially by a nonlinear optimization algorithm, which are each
iterative methods with O(N) time complexity per training iteration.

4.3 Experimental Results

The DeepSeeColor method has been implemented in PyTorch [165] and demonstrates strong
performance on the Sea-Thru dataset [153] and on stereo-camera imagery collected with
AUV deployments in the US Virgin Islands.

4.3.1 Sea-Thru Dataset

The Sea-Thru dataset consists of 1157 raw images, each with a corresponding range map
generated using structure-from-motion techniques [153]. DeepSeeColor was run on all of the
images available on the hosting site,7 and a sampling of the outputs are presented in Fig. 4.5.

As in [153], the accuracy of the color reconstruction is estimated using the angular error
between true gray and the grayscale patches on the color charts present in many of the

7http://csms.haifa.ac.il/profiles/tTreibitz/datasets/sea_thru/index.html
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Table 4.1: Grayscale Patch Mean Angular Error, in degrees.

Image Raw Sea-Thru DeepSeeColor (ours)

D1_3272 26 8 14

D2_3647 26 8 10

D3_4910 22 8 5

D4_0209 23 4 4

D5_3374 17/16/15/17 4/3/5/3 9/10/10/11

Average 20.25 5.375 9.125

dataset images. This angular error is computed at each grayscale patch in the color chart as

ψ(i, j) = cos−1

 ∑
c Jc(i, j)(

3 ·∑c[Jc(i, j)]
2) 1

2

. (4.3.1)

The average angular error averaged over the six grayscale patches on each color chart for
each of Sea-Thru and DeepSeeColor is presented in Table 4.1. As there is no public release
of Sea-Thru, its errors are taken directly from [153]. The table further supports that that
DeepSeeColor produces outputs with comparable quality to Sea-Thru.

The main advantage of DeepSeeColor over Sea-Thru is its fast runtime. Table 4.2 shows
the time required to update the model parameters given a new input image, for each of
Sea-Thru8 and DeepSeeColor. The test image was LFT_3374.NEF, taken from the Sea-Thru
dataset, scaled to either 1280x855 or 1920x1282 (1.1M and 2.5M, respectively), and the
results were collected on a machine equipped with an Intel(R) i9-13900K processor and
NVIDIA RTX A6000 GPU. As seen in the table, DeepSeeColor can perform updates at over
200x the rate of Sea-Thru on the CPU, and is nearly 4000x faster with GPU acceleration.
Interestingly, the update rate of GPU-accelerated DeepSeeColor is less sensitive to input
image resolution than the CPU-based methods; this is a result of the GPU processing ca-
pabilities of modern deep learning frameworks like PyTorch [165], which can process many
sections of an image in parallel.

8As there is no public release of Sea-Thru, these results were produced with the unofficial implementation
found at https://github.com/hainh/sea-thru.
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Figure 4.5: Best viewed on a screen, in color. The left column shows 10 raw images from the
Sea-Thru dataset [153]. The center column shows the corresponding images after a contrast
stretch, while the right column shows the outputs of DeepSeeColor. DeepSeeColor noticeably
outperforms contrast stretching, especially in scenes with distant targets (e.g. 3647, 3681,
and 3385), and achieves comparable performance to Sea-Thru (refer to Fig. 6 in [153] for
comparison).
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Table 4.2: Parameter Update Runtime Comparison.

# Pixels Algorithm Compute Device Parameter Update Time (s)

1.1M Sea-Thru CPU 35.044

DeepSeeColor CPU 0.169

DeepSeeColor GPU 0.012

2.5M Sea-Thru CPU 86.310

DeepSeeColor CPU 0.519

DeepSeeColor GPU 0.022

Table 4.3: DeepSeeColor Runtime Breakdown.

# Pixels Backscatter
(per iter)

Attenuation
(per iter)

Total
(per iter) Max Frequency

0.7M 6.2 ms 9.9 ms 16.1 ms 62.1 Hz

2.4M 6.4 ms 10.5 ms 16.9 ms 59.2 Hz

4.3.2 US Virgin Islands Dataset

The DeepSeeColor method was also evaluated to process imagery collected in the US Virgin
Islands by the CUREE AUV [166]. The AUV was equipped with a downwards facing color
stereo-camera, which enabled the collection of color imagery and range maps like those seen
in Figs. 4.1 and 4.2.9 The post-processed imagery has comparable quality to that generated
by Sea-Thru, but is generated at a very high rate.

As seen in Table 4.3, DeepSeeColor can perform 60 training iterations of each network
per second for this dataset, on a machine equipped with an Intel(R) Xeon E5-2630v4 and
NVIDIA RTX A6000. This update rate corresponds to performing up to 60 incremental
parameter updates per second based on a single image, or correcting up to 60 images per
second with one incremental parameter update per image. This offers flexibility for an
AUV to dedicate more processing power to training the DeepSeeColor model when imaging
conditions change and the image formation parameters need updating, and less when imaging
conditions are stable.

9Note that the range maps in this dataset used 16-bit integer ranges (in mm), while the Sea-Thru dataset
uses 32-bit floating point values (in m).
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4.4 Summary

In this chapter we presented DeepSeeColor, a novel color correction method that uses con-
volutional neural network training operations to learn the parameters of a physics-based
underwater image formation model [155]. This approach to color correction is more robust
than heuristic methods, and thus more appropriate for usage on AUVs performing safety-
critical tasks. We demonstrated DeepSeeColor on the Sea-Thru dataset [153], as well as on
images collected during field experiments in the US Virgin Islands. DeepSeeColor provides
a large improvement in terms of runtime and computational complexity when compared to
the Sea-Thru algorithm [153], while achieving comparable performance in color reconstruc-
tion. The results support that DeepSeeColor is well-suited for use in realtime preprocessing
of imagery collected by an AUV to enable more robust execution of more sophisticated
autonomous tasks.
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Chapter 5

Endogenous Bayesian Risk Minimization

As discussed in Chapter 1, we use risk-based online learning to choose image queries that
provide a robotic explorer with the most useful information for finding targets of interest.
These methods have been highly effective at various online learning tasks [13], [15]–[18],
but tend to be overly myopic by considering only the value of a single query action [19].
When the utility of any single query is close to 0, it makes it impossible to accurately
determine which one would have significant longer-term utility (i.e., in combination with
later queries). Most previous approaches limit themselves to considering only a single query
because the complexity of computing the utility of information gained from multiple queries
grows exponentially. Some prior works have attempted to mitigate this effect by considering
a limited class of extended query sequences (e.g., [18]), but remain overly myopic [19], while
new approaches abandon the key advantage of these risk-based systems to precisely quantify
the utility of a query (e.g., [19], [167]–[169]).

In this chapter I present “Endogenous Bayesian Risk Minimization” (EBRM) as an ap-
proach to developing flexible, application-specific online learning algorithms.1 In particular,
I present an efficient non-myopic risk-based online learning algorithm called AsympGreedy-
EBRM, and demonstrate that it outperforms the previous state-of-the-art across a wide
range of applications beyond autonomous exploration, from assigning candidate treatments
to patients in clinical trials (in order to maximize the number of successful treatments) to
determining the optimal price at which a vendor should sell a product.

In Chapter 6, we will apply the AsympGreedy-EBRM algorithm to query selection in
autonomous exploration. This will enable robots to learn reward models with the fewest
possible number of queries/labels, and without the myopia of previous risk-based online
learning algorithms. It will also enable directly quantifying the value of a query, such that

1The myopic algorithm I previously developed for risk-based query selection in autonomous exploration
(see [13]) is equivalent to the Greedy-EBRM algorithm which will be presented in Section 5.4.1.
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multiple robots can coordinate to determine which queries would be most useful to the fleet
as a collective, or to determine if a query is worth asking at all. This makes AsympGreedy-
EBRM a key part of our vision for human-multi-robot collaboration, in which each agent in
the system is working towards the benefit of the entire team: by learning the reward model
faster and with fewer queries, there is less input required from the human supervisor (thus
freeing them to work on other tasks) and more communication bandwidth available for other
purposes (such as sharing semantic maps).

The remainder of this chapter is ©2024 Elsevier. Reprinted, with permission, from [27].

5.1 Broader Context

There is a general trend towards autonomous decision-making in increasingly unstructured
and complex tasks and environments, as autonomous decision-making agents become increas-
ingly pervasive in many societies. Fully self-driving vehicles move passengers throughout
cities, algorithms help diagnose and prescribe treatments to ill patients, and autonomous
robots operate in environments ranging from homes and assisted-living facilities to Mars
and the deep sea. While these agents attempt to make the best decisions possible despite
limited information, decision-making under uncertainty always carries risk, and taking risks
results in an accumulation of regret over past decisions. Maximizing aggregated long-term
performance in a task is equivalent to minimizing the accumulation of this regret, and to do
so autonomous agents employ algorithms for online learning, which describe techniques for
“learning while doing”.

Practitioners often use heuristics designed to optimally solve simple, archetypal online
learning problems (OLPs) to instead solve all kinds of complex, real-world OLPs. These
heuristics generally work well when compared to naïve strategies that do not leverage in-
sights from online learning research. However, the complexities of real-world online learning
problems cannot be accounted for by simple heuristics, despite the often important role of
such complexities in determining the performance of a particular strategy. Due to their ease
of use, practitioners faced with complex and novel online learning problems often choose to
apply popular heuristics regardless, or to develop a new heuristic. This has led to a mul-
titude of heuristics, many of which must be tuned for each new problem before they can
achieve good performance. Furthermore, thorough analysis is required to determine whether
the design of a candidate heuristic conflicts with desirable behaviour for the learning agent.

The most challenging part of designing an online learning algorithm is deciding how it
will navigate the exploration-exploitation trade-off. Exploitation refers to an agent taking
an action consistent with a plan that maximizes the agent’s expected long-term task per-
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formance, where that plan is based on a model of the likelihood of possible outcomes for
each action. Finding such a plan, or a close approximation, can be achieved by a variety
of planning algorithms, however such a plan is often poorly suited to discover inaccuracies
in the model it is optimized for. Exploration is, conversely, the act of taking one or more
actions expected to reveal missing information in the model, which may thereby enable a
better (exploitative) plan to be developed for later use.

Finding and applying the correct balance between exploration and exploitation in a given
task is a key online learning challenge for both researchers and practitioners; the optimal
balance can shift for even slight changes in task, or in how task performance is defined.
For example, Figure 5.1 describes a clinical trial online learning problem based on the work
of [71]. This problem was complicated by dual objectives; the main goal of a clinical trial is to
identify the best treatment among a set of candidates, but the well-being of the participants
is also valued and thus it is preferable to assign as many of them to the best candidate
treatments as possible. Some exploration is required to identify the leading treatments,
while exploration beyond this point (i.e. continuing to assign participants to less-tested, but
seemingly inferior, treatments) is beneficial for confirming the identity of the best treatment
but is harmful to the study participants. Each online learning heuristic balances the trade-off
differently. For this particular challenge, the researchers needed to develop a new heuristic
to appropriately balance between these objectives [71].

As a result of such complexities, the field has seen the development of an overwhelming
number of online learning heuristics [17]–[19], [72], [81], [83], [85], [87], [89], [167], [168],
[170]–[176], many of which require extensive work to be tuned to a specific problem [177],
and most offering performance guarantees in only archetypal OLPs, if any. A priority for the
online learning community is to distill previous insights into an approach that is easy to use,
computationally efficient, provides performance guarantees and can model various goals and
common complexities. This work is a step in that direction, in which we present endogenous
Bayesian risk minimization (EBRM) as an approach to solve a wide range of stochastic
online learning problems efficiently, with risk (performance) bounds, and taking common
complexities into account. In experiments, the EBRM-based algorithms demonstrate lead-
ing performance even in the well-studied archetypal OLPs that previous state-of-the-art
algorithms compared against were designed for, while surpassing them to a greater degree
in more complex and realistic problems.

An agent using an EBRM algorithm begins with a base “open-loop policy”, which is the
agent’s best guess of which fixed sequence of future actions would maximize its overall task
performance as measured by some reward function. The proposed Greedy-EBRM approach
reasons about the quantity of immediately useful information each available action may pro-
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Figure 5.1: Consider a simulation where algorithms sequentially choose which of 4 candidate
treatments is administered to each of 423 patients in a clinical trial (see “Multi-Arm Trial
Setting” in [71]). The treatment with the highest empirical success rate in the trial is admin-
istered to a global patient population. The y-axis indicates the number of failed treatments
among the patients in the trial, while the x-axis shows the expected excess failure rate of the
treatment administered to the global population compared to if the true best treatment were
identified. Algorithms further left explore more, ensuring that the best performing treatment
is confidently identified, while algorithms further down exploit more, finding greater success
among the 423 trial patients. The EBRM algorithm (blue curve) optimizes this trade-off by
taking the global patient population size (annotations) into account in its parametric reward
objective. Abbreviations are defined in Subsection 5.5.1.
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vide about the hidden parameters of the online learning problem. If the total risk of taking
some action and then following an improved (posterior) policy is expected to be less than the
risk of the base (prior) policy, a Greedy-EBRM algorithm takes that action. AsympGreedy-
EBRM, the main focus of this work, is an improvement on Greedy-EBRM which ensures
asymptotic convergence to an optimal policy by taking into account the long-term value
of the information provided by each action. EBRM approaches produce agent policies tai-
lored to particular OLP specifications; thus, unlike when using heuristic approaches, the
behaviour of agent is always aligned with the OLP goals (i.e., the reward function) without
any hyperparameter tuning. We describe the EBRM approach in more detail in Section 5.4.

5.1.1 Summary of Contributions

In the remainder of this chapter, we present a mix of theoretical analysis and practical algo-
rithms that serve as the foundation for further work in applying online learning principles and
insights towards being able to efficiently solve complex real-world online learning problems.
In particular, our contributions are applicable to a wide range of stochastic online learning
problems, including problems augmented with belief-dependent rewards, time-discounted
rewards, and action feasibility criteria. Specifically, we contribute:

• The decomposition of Bayes’ risk into aleatoric, epistemic and process risks, which
bound expected regret and provide insights into the optimal exploration-exploitation
trade-off.

• The AsympGreedy-EBRM approach to online learning, which enables risk-bounded,
high performance online learning in complex OLPs while remaining computationally
tractable, and with guaranteed asymptotic convergence in problems with identifiable
hidden parameters.

• Empirical results demonstrating the superior performance of EBRM algorithms against
state-of-the-art baselines in online learning problems representative of real-world prob-
lems, including:

– multi-armed bandit optimization,

– best-arm identification,

– dynamic pricing, and

– a problem with mixed objectives, specifically rewards derived from a combination
of the agent’s actions and its posterior beliefs of the unknown problem parameters.
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• Methods to efficiently compute, across a wide range of stochastic online learning prob-
lems, online regret bounds and the expected risk and value-of-information for various
actions.

5.2 Online Learning as a Belief-Space Markov Decision

Process

We begin by formulating stochastic online learning problems (OLPs), depicted in Figure 5.2,
as belief-space Markov decision processes (BMDPs) with particular structure. We will then
discuss how the performance of a policy is measured in an OLP, and how this relates to
defining the risk of that policy.

Notation We index variables related to sequential decisions (BMDP states) using the time
t ∈ N>0. We define [K] := {1, . . . , K} for K ∈ N>0. We denote the space of probability
measures over a Borel measurable set X as P(X ), and the power set of a set X as P(X ).
The indicator function 1 is defined as 1(True) = 1 and 1(False) = 0.

5.2.1 Bayesian BMDP Formulation of Stochastic OLPs

Let X = {xt ∈ X}t∈N>0 denote the hidden outcomes of the OLP. When an agent performs
action at ∈ A at time t, it produces an observation yt = Φ(xt, at) and a reward R(xt, at),
according to known functions Φ and R. A stochastic OLP is one in which each hidden
outcome is assumed to be independently drawn from gθ ∈ GΘ, where GΘ is a family of
probability distributions over X parameterized by θ ∈ Θ; thus, the hidden outcomes are
i.i.d. given θ.

The agent’s actions are chosen by a policy π that takes into account the agent’s current
belief of the hidden parameters bt ∈ P(Θ) and an observable auxiliary state ξt ∈ Ξ. The
belief describes the likelihood of hidden parameter values, and is used to infer the expected
reward of each action. The auxiliary state indicates the time and resources available to the
agent and determines which actions are feasible. Together, these compose the agent’s belief
state, St = {bt, ξt}. The policy generates actions according to at+1 ∼ π(St).

The auxiliary state ξt contains all information relevant to the agent’s decision making,
other than the hidden parameters. For example, if actions have time or resource costs,
it indicates the agent’s remaining time or spending budget. The auxiliary state changes
according to ξt = δ(ξt−1, at); importantly, it changes deterministically given sequence of
actions. The feasibility criterion Ω(ξt) indicates which actions are available in each state, so
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Figure 5.2: The Environment (red) picks a set of hidden parameters θ. The User (blue)
specifies the learning agent’s initial state S0 = {b0, ξ0} and a policy function π that defines
the distribution from which to draw each action, such that at ∼ π(St−1). The goal is to
find a policy that maximizes the amount of reward (yellow) collected, R, which depends
on the action-outcome pairs (xt, at) for t = 1, . . . , T , and on the agent’s final state ST .
Dashed arrows represent random sampling from a probability distribution, and dotted arrows
represent omitted parts of the graph. All variables and their relationships are defined in
Table 5.1.

Table 5.1: Components of a Stochastic OLP. Vec: Vector. Dist: Distribution. Fn: Function.
Comp: Compound.

OLP Parameter Observability Type Symbol Determined by Space

Hidden Parameters Inferred Vec. θ Environment Θ

Hidden Outcomes Inferred Vec. x xt ∼ gθ X
Actions Observed Vec. a at ∼ π(St−1) A
Observations Observed Vec. y yt = Φ(xt, at) Y
Auxiliary State Observed Vec. ξ ξt = δ(ξt−1, at) Ξ

Belief Distribution Observed Dist. b Eq. (5.2.1) P(Θ)

Belief State Observed Comp. S St = {bt, ξt} S = P(Θ)× Ξ

Policy Known Fn. π User S → P(A)
State Update Fn. Known Fn. δ OLP Ξ×A → Ξ

Action Reward Fn. Known Fn. R(x, a) OLP X ×A → R

Belief Reward Fn. Known Fn. R(b) OLP P(Θ)→ R

Observation Fn. Known Fn. Φ OLP X ×A → Y
Process Model Known Fn. gθ OLP Θ→ P(X )
Feasibility Criterion Known Fn. Ω OLP Ξ→ P(A)
Discount Factor Known Scalar γ OLP γ ∈ (0, 1]
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a “feasible” policy π must satisfy Pr(at+1 ∈ Ω(ξt)) = 1 for at+1 ∼ π(St). The agent ceases
from taking further actions upon reaching a terminal state, indicated by Ω(ξt) = ∅.

The belief distribution bt characterizes the posterior likelihood of the hidden parameters
θ based on past action-observation pairs {(a1, y1), . . . , (at, yt)}. For convenience, we denote
arbitrary belief distributions as b or b′. The initial belief distribution b0(θ) is specified by the
user as a prior over the hidden parameters. The observation function Φ implicitly defines
the likelihood Pr(yt | θ, at), and so bt is given by Bayes’ law,

bt(θ) := Pr(θ | a1:t, y1:t) =
Pr(yt | θ, at)bt−1(θ)

Pr(yt | at)
. (5.2.1)

We are often interested in counterfactual belief states, which may arise when considering
a possible next outcome-action pair (x, a). Such a belief state is denoted Sx,a

t+1 = {bx,at+1, ξ
a
t+1},

with
bx,at+1(θ) =

Pr(Φ(x, a) | θ, a)bt(θ)
Pr(Φ(x, a) | a) , ξat+1 = δ(ξt, a). (5.2.2)

The components discussed thus far specify the BMDP context; the remaining part of the
specification is the BMDP goal. A variety of useful goals can be expressed through action-
based rewards accumulated as actions are taken and an information-based reward based on
the terminal belief state. Accordingly, we define the action reward R(x, a) ∈ R and belief
reward R(b) ∈ R, such that the goal is to maximize the sum,

γTR(bT ) +
T∑

τ=1

γτR(xτ , aτ ), (5.2.3)

evaluated upon reaching a terminal state ST = {bT , ξT} where Ω(ξT ) = ∅. The discount
factor γ ∈ (0, 1] specifies the degree to which earlier rewards are preferred to later rewards.
The BMDP specification requires a Markovian reward model ρ, which depends only on the
current state and action; it suffices to define,

ρ(St, a) := Ex|bt
[
R(x, a) +R(bx,at+1)1

(
Ω(ξat+1) = ∅

)]
, (5.2.4)

where bx,at+1 and ξat+1 are defined as in Eq. (5.2.2). Together, the reward model ρ and discount
factor γ formally specify the BMDP goal.
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5.2.2 Optimal Online Learning

Every policy π has an associated value function, V π(S), defined recursively by the Bellman
equation [90],

V π(St) := Ea∼π(St)

[
ρ(St, a) + Ex|bt

[
γV π(Sx,a

t+1)
]]
, (5.2.5)

Pr(x | bt) =
∫
Θ

gθ(x)bt(θ)dθ. (5.2.6)

By construction, V π(S) is equal to the terminal reward expected to be received by following
the policy π until reaching a terminal state, as computed in Eq. (5.2.3).

The calculation in Eq. (5.2.5) assumes the distribution of each observation follows from
the conditional density Pr(x | b) generating the hidden outcome x based on the previous
belief state. We also consider conditional value functions V π(St; θ) and V π(St;X), which
represent the reward achieved by the policy π for a specific θ or sequence of hidden outcomes
X respectively,

V π(St; θ) := Ea∼π(St)

[
Ex|θ

[
R(x, a) +R(bx,at+1)1

(
Ω(ξat+1) = ∅

)
+ γV π(Sx,a

t+1; θ)
]]
, (5.2.7)

V π(St;X) := Ea∼π(St)

[
R(xt+1, a) +R(b

xt+1,a
t+1 )1

(
Ω(ξat+1) = ∅

)
+ γV π(S

xt+1,a
t+1 ;X)

]
. (5.2.8)

From these definitions, it follows that V π(St) ≡ Eθ|bt [V
π(St; θ)] ≡ EX|bt [V

π(St;X)].

Types of Policies

A deterministic policy π is one that always picks the same action for a given belief state;
that is, if a ∼ π(S) then ∃a′ : Pr(a = a′) = 1. Any policy which is not deterministic is called
a stochastic policy. An open-loop policy is one for which the action distribution is a function
of only the auxiliary state ξt; that is, one for which π(S) = π(S ′) holds ∀S, S ′ such that
ξ = ξ′. Otherwise, the policy is a closed-loop policy. A policy which is both deterministic
and open-loop can be completely characterized, for a given initial belief state, by the fixed
sequence of actions that it would take from that state. We denote a deterministic open-loop
policy and its corresponding action sequence as π̂ and Aπ̂, respectively.

Policy Optimality

A b-optimal policy π⋆
b is a solution to,

π⋆
b ∈ argmax

π∈Π
V π(S0) (5.2.9)
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where Π is the set of all policies. A b-optimal policy achieves the most terminal reward
possible, in expectation, from any initial state S0, assuming that θ ∼ b0. Similarly, a θ-
optimal policy π⋆

θ and X-optimal policy π⋆
X satisfy, from the initial state S0,

π⋆
θ ∈ argmax

π∈Π
V π(S0; θ), (5.2.10)

π⋆
X ∈ argmax

π∈Π
V π(S0;X). (5.2.11)

As we assume the hidden outcomes are independently and identically distributed, it suffices
to search the set of deterministic policies in order to find a b-, θ-, or X-optimal policy for
an OLP.2

Most optimal policies are closed-loop, even if they are deterministic. However, determin-
istic open-loop policies are useful to consider as they are straightforward to describe and
analyze. In particular, later sections will often refer to “optimal deterministic open-loop
policies”, defined below.

Definition 1. An optimal deterministic open-loop (ODOL) policy π̂⋆
St

is characterized
by, where Π̂ ⊂ Π denotes the set of deterministic open-loop policies,

π̂⋆
St
∈ argmax

π̂∈Π̂
V π̂(St). (5.2.12)

5.2.3 Measuring Policy Risk

A risk function measures how much less reward is expected to be attained by one policy π1
compared to another policy π2. We define three fundamental risk functions in Table 5.2.

Risk is often defined relative to an optimal policy so that it represents a shortfall relative
to the maximum achievable reward.3 We define some Bayesian risks relative to the X- and
θ-optimal policy “families”,

r(π∥π⋆
X ;St) := EX|bt [r(π∥π⋆

X ;St, X)], (5.2.13)

r(π∥π⋆
θ ;St) := Eθ|bt [r(π∥π⋆

θ ;St, θ)]. (5.2.14)

It is important to note the abuse of notation here, where the terms π⋆
θ and π⋆

X on the left side
of each equation are not specific policies, but rather represent conceptual policies optimal

2Prior works have explored optimal online learning policies when the hidden outcomes are generated by
an adversarial process, for which stochastic policies can greatly outperform deterministic ones.

3In this case it also represents the (expected) future regret of a policy; regret is the evaluation metric for
most online learning problems. A.1 presents further discussion on the relationship between risk and regret.
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Table 5.2: Risk functions; the risk of policy π1 is defined with respect to policy π2.

Name Definition

Instance Risk r(π1∥π2;S,X) := V π2(S;X)− V π1(S;X)

Expected Risk r(π1∥π2;S, θ) := V π2(S; θ)− V π1(S; θ)

Bayesian Risk r(π1∥π2;S) := V π2(S)− V π1(S)

for any particular realization of θ and X, respectively. We can think of π⋆
θ and π⋆

X in such
contexts as “cheating” policies, which suggest actions based on information unavailable in
the belief state.

We demonstrate in Section 5.3 that insights can be made by considering the risk of a
policy with respect to the various optimal policies. Lemma 1 shows how a “hierarchy” of risk
arises from comparing a policy π against these different optimal policies.

Lemma 1. For any policy π ∈ Π and any belief state St ∈ S, we have that

r(π∥π⋆
X ;St) ≥ r(π∥π⋆

θ ;St) ≥ r(π∥π⋆
b ;St) ≥ 0.

Proof. Expand the risk functions in terms of the (conditional) value functions, express the
values of optimal policies as maximization problems based on Eqs. (5.2.9)–(5.2.11), and apply
Jensen’s inequality.

5.2.4 Exogenous and Endogenous Risk Metrics

We distinguish between exogenous and endogenous measures of a learning agent’s perfor-
mance, which characterize whether a metric is computed from only the belief state St, or
from external information.

An exogenous metric is a function that requires inputs which are not part of St. This
makes it a means of external evaluation of the performance of a policy, as it requires knowing
values of variables not provided to the learning agent. This may include the true values of
X and θ, which could be known under experimental conditions by the experimentalist or in
other settings by an “oracle”. Such a metric can be an effective tool for evaluating different
policies, but a real learning agent is unable to compute it online.

Conversely, an endogenous metric depends only on the agent’s own state estimate; that
is, it is a function of only St. As such, when an agent estimates the risk of its own policy
we refer to it as an endogenous risk estimate. These are endogenous in that they can be
computed using only St, the information available to the agent at time t. The algorithms
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contributed by this work are based on minimizing endogenous Bayesian risk online.

5.3 Online Computation of Endogenous Risks

Quantifying the risk of policies is useful for many tasks, such as identifying the best policy
from some set or providing safety and performance guarantees. This section will explain how
endogenous risk measures provide insights into the nature of an OLP and into the behaviour
of a specific policy, and will discuss the feasibility of computing the risk and value of various
classes of policies. Note that all measures of risk in this section will be endogenous, in that
X and θ are taken to be random variables distributed according to Pr(X, θ | bt).

5.3.1 Endogenous Bayesian Risk Functions

The risk of a policy, as defined in Subsection 5.2.3, is always given relative to some “reference”
policy; the choice of this reference policy offsets the risk estimate, as ∀π1, π2, π3,

r(π1∥π3;S) = r(π1∥π2;S) + r(π2∥π3;S). (5.3.1)

By choosing reference policies that are “optimal”, the risk computed can give insight into
the OLP and into policies of interest. The first, and perhaps most important, risk function
is the total Bayesian risk.

Definition 2. The total Bayes’ risk of a policy π from some belief state S is

TotalRisk(π;S) := r(π∥π⋆
X ;S).

We refer to this quantity as the “total risk” because π⋆
X is the “policy” with the highest

possible value, so the total Bayes’ risk is the largest possible risk of π. The total risk has an
intuitive interpretation: it indicates how much better an agent following some policy π could
perform if it instead made perfect use of complete information regarding all of the hidden
outcomes.

Total risk is a well-studied metric in online learning but is often challenging to compute,
and considering it in isolation conceals insights into the OLP structure, the belief state, and
the policy. The remainder of this subsection will explore a useful decomposition of the total
risk into three distinct and edifying components: the aleatoric and epistemic risks of a belief
state and the process risk of the policy.
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Aleatoric Risk

Due to the stochastic nature of the hidden outcomes X, even complete information about
the parameters θ is generally not enough for the agent to be able to achieve the maximum
possible reward. This limitation is inherent to the OLP itself, and is captured by the aleatoric
risk. The aleatoric risk thus provides insight into the difficulty of an OLP; if it is by far the
largest component of the Bayes’ risk of a policy π, then most of the risk of the policy is
due to random chance and cannot be eliminated. If this risk is unacceptably high, it may
indicate that the OLP cannot be satisfactorily solved.

Definition 3. The aleatoric risk of an OLP with parameters θ is

AleatoricRisk(θ) := r(π⋆
θ∥π⋆

X ; θ).

The aleatoric Bayes’ risk of a belief state S is accordingly defined as

AleatoricBayesRisk(S) := r(π⋆
θ∥π⋆

X ;S) = Eθ|b[AleatoricRisk(θ)].

For any parameters θ, the aleatoric risk is non-negative (see Lemma 1), showing that
even with perfect knowledge of the parameters θ, the optimal policy π⋆

θ may not achieve the
maximum possible reward. The aleatoric Bayes’ risk of St measures how much aleatoric
risk is expected to remain even after being given complete information on θ, assuming the
parameters θ were sampled from bt. Below, we provide an example of computing aleatoric
risk and aleatoric Bayes’ risk in a toy problem.

Problem 1. Suppose a coin flips heads with probability θ ∈ [0, 1] and produces hidden out-
comes in X = {Heads,Tails}. An agent has two actions A = {1, 2}, and the action reward
function is:

R(x, 1) =

1, x = Heads,

0, x = Tails.
R(x, 2) =

0, x = Heads,

1, x = Tails.

There is no belief reward or discounting, so R(b) = 0 and γ = 1. The agent plays for n
rounds, so Ω(ξt) = A for t < n and Ω(ξn) = ∅. The initial belief distribution is b0 =

Beta(1, 1).

Example 1. In Problem 1, the unique X-optimal policy is to take action 1 when xt = Heads
and action 2 when xt = Tails. An θ-optimal policy is to always take action 1 if θ > 0.5, and to
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take action 2 otherwise. It is straightforward to compute that, over n rounds, V π⋆
X (S0; θ) = n

and V π⋆
θ (S0; θ) = nmax{(1− θ), θ}. Thus AleatoricRisk(θ) = n−max{n(1− θ), nθ} and

AleatoricBayesRisk(b0) = Eθ|b0 [n− nmax{(1− θ), θ}],

=

∫ 0.5

0

(n− n(1− θ))dθ +
∫ 1

0.5

(n− nθ)dθ = n

4
.

The aleatoric risk and aleatoric Bayes’ risk for various θ and b, respectively, are shown in
Figure 5.3.

Epistemic Risk

As a learning agent gradually learns more about the hidden parameters θ, it is typically able
to improve its performance. While it can never eliminate the aleatoric risk inherent to the
OLP, this learning process reduces the epistemic (knowledge-based) risk of the belief state,
defined as follows.4

Definition 4. The epistemic risk of a belief state St is

EpistemicRisk(St) := r(π̂⋆
St
∥π⋆

θ ;St).

By Lemma 1, the epistemic risk is always non-negative. Importantly, however, the epis-
temic risk of an agent can be reduced through performing actions that lead to belief states
with better estimates of the hidden parameters. The reduction of epistemic risk to 0 depends
on the hidden parameters being identifiable.

Definition 5. Let P−−−→
t→∞

denote convergence in probability. The hidden parameters θ are
identifiable from b0 if and only if there exists an infinite sequence of actions A ∈ A∞ such
that ∀η ∈ Θ : |η − θ| > 0,

EX|θ

[
bX,A
t (η)

]
P−−−→

t→∞
0, (5.3.2)

where bX,A
t (η) is defined recursively by Bayes’s law as, with yt = Φ(X(t), A(t)) and bX,A

0 = b0,

bX,A
t (η) =

Pr(yt | θ, A(t))bX,A
t−1 (η)

Pr(yt | A(t))
. (5.3.3)

4In reinforcement learning, some works (e.g. [106], [178], [179]) refer to the epistemic risk of a learned
policy, which results from a lack of training data in the vicinity of the St. In our notation, this risk would
be denoted as r(π∥π⋆

St
;St).
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Theorem 1. Suppose the hidden parameters θ are identifiable over some infinite sequence
of actions. Then, over this sequence of actions,

EpistemicRisk(St)
P−−−→

t→∞
0. (5.3.4)

Proof. See A.4.

Theorem 1 implies that, if the belief distribution converges upon the true parameters θ,
then the difference in value between an ODOL policy π̂⋆

St
and any θ-optimal policy converges

to 0. This reflects that π̂⋆
St

generally “improves” as actions are performed and the belief state
converges. Estimates of the changes in epistemic risk that would result from various actions
are useful as they can guide the learning agent towards states where the ODOL policy π̂⋆

St
is

near-optimal; this strategy will be discussed further in Section 5.4. Example 2 demonstrates
how to compute epistemic risk in a simple OLP, while Figure 5.4 depicts how the epistemic
risk in Problem 1 varies with the belief distribution.

Example 2. In Problem 1, the deterministic open-loop-optimal policy is to choose action 1

if Eθ|b[θ] ≥ 0.5, and action 2 otherwise. For a beta belief distribution b0 = Beta(α, β) with
α, β ∈ R>0, then

Ex|b0
[
R(x, π̂⋆

S0
(S0)

]
=

max{α, β}
α + β

=⇒ V π̂⋆
S0 (S0) =

nmax{α, β}
α + β

Thus,

EpistemicRisk(Beta(α, β)) = Eθ∼Beta(α,β)[nmax{1− θ, θ}]− nmax{α, β}
α + β

The epistemic risk for various belief distribution parameters α and β is presented in Fig-
ure 5.4.

Process Risk

Lastly, the process risk of any policy π measures the excess risk of π over an ODOL policy π̂⋆
St

.
Accordingly, the process risk of any open-loop policy is non-negative, but it can be negative
with respect to a closed-loop policy. Essentially, process risk measures how much better or
worse π performs relative to the best policy that ignores any and all future observations.
This means it plays a key role in evaluating the value-of-information; if the agent can’t
manage to find any (closed-loop) policy with process risk ≪ 0, it means that there is little
value in future observations. For example, in human-in-the-loop autonomous exploration,
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Figure 5.3: Refer to Problem 1 and Example 1. Left: The aleatoric risk over θ ∈ [0, 1]
assuming n = 10 rounds, shown with three belief distribution densities. The aleatoric risk
is highest for fair coins, for which each flip result is unpredictable, and lowest for a trick
coin that always lands on one side. Right: The aleatoric Bayes’ risk of belief distributions
bt = Beta(α, β) for various α, β ∈ R>0. Observe that aleatoric Bayes’ risk increases along
the line α = β as α, β →∞.

Figure 5.4: Refer to Problem 1 and Example 2. Left: The epistemic risk for various initial
belief distributions, assuming n = 10 rounds. It is largest near the origin, for which the
belief distribution is highly uncertain about which action is optimal. Right: The contours
highlight that identifying the best action is most difficult when α ≈ β; however, in contrast
to the aleatoric Bayes’ risk (see Figure 5.3), the epistemic risk is asymptotically decreasing
as α, β →∞.
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the process risk of a policy that sends some queries to a human supervisor measures the
(negative) utility of those queries; if the process risk of that policy is near-zero, the robot
could save time, communications bandwidth, and the human’s effort by simply skipping
those queries.

Definition 6. The process risk of a policy π in some belief state St is

ProcessRisk(π;St) := r(π∥π̂⋆
St
;St).

Unlike aleatoric and epistemic risk, the process risk can be negative; specifically, the
process risk is negative for any closed-loop policy that is able to, in expectation, leverage new
observations to make better decisions than π̂⋆

St
. Suppose that the agent is following some

policy which cycles through various actions, gradually identifying the hidden parameters.
Proposition 1 shows that if the parameters are identifiable, the process risk of any other
policy the agent might consider using becomes non-negative. This represents improvement
in the ODOL policies; perhaps unsurprisingly, it indicates that once the agent has complete
information about the hidden parameters θ, the posterior ODOL policy would perform at
least as well as any closed-loop policy, including the optimal closed-loop policy.

Proposition 1. Suppose θ are identifiable through some infinite sequence of actions. Over
this sequence of actions, then ∀π ∈ Π, ∃cπ ≥ 0 such that

ProcessRisk(π;St)
P−−−→

t→∞
cπ. (5.3.5)

Furthermore, the process risk of any policy is bounded below by the process risk of π⋆
b ,

ProcessRisk(π;St) ≥ ProcessRisk(π⋆
b ;St) ∀π ∈ Π, (5.3.6)

and so, over this same sequence of actions,

V π̂⋆
St (St)

P−−−→
t→∞

V π⋆
b (St) (5.3.7)

Proof. Eq. (5.3.5) follows from expanding r(π∥π⋆
θ ;S) = EpistemicRisk(S)+ProcessRisk(π;S)

and applying Lemma 1, followed by Theorem 1, and finally the continuous mapping theorem.
Eq. (5.3.6) follows from expanding the definition of process risk and applying Lemma 1, and
then Eq. (5.3.7) follows from Eq. (5.3.5) while noting that

ProcessRisk(π⋆
b ;St) ≤ ProcessRisk(π̂⋆

St
;St) = 0
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Table 5.3: Definitions and interpretations of various endogenous Bayesian risk functions.

Risk Function Notation Key Determinant Description

Aleatoric Bayes Risk ¯̄r(π⋆
θ∥π⋆

X ;Bt) P (x | θ) Inherent OLP randomness

Epistemic Risk ¯̄r
(
π̂⋆
St
∥π⋆

θ ;Bt

)
bt Uncertainty of bt about θ

Process Risk ¯̄r
(
π∥π̂⋆

St
;Bt

)
π Relative risk of the policy π

Total Bayes’ Risk ¯̄r(π∥π⋆
X ;Bt) Cumulative risk of the above

.

Note that in Proposition 1, the sequence of actions taken is independent of the policy
π for which the risk is computed. This proposition reinforces that ODOL policies improve
over time as long as the belief distribution converges on θ; under such conditions, they
asymptotically reach the performance of even the best closed-loop policy π⋆

b .
The aleatoric, epistemic, and process risks decompose the total risk according to

TotalRisk(π;S) ≡ AleatoricBayesRisk(S) + EpistemicRisk(S) + ProcessRisk(π;S). (5.3.8)

A summary of the definition and interpretation of each risk is presented in Table 5.3. The
process risk of a policy is the only component of the total risk that depends on the policy
under consideration, π. Thus, a policy with less process risk in some state than another
policy also has less total risk than that policy. While computing the process risk of a
general policy is just as hard as computing that policy’s value, computing the process risk
of policies “similar” to the ODOL policy, such as lookahead policies, can be easier. This
provides an efficient way to compare such policies without needing to explicitly calculate
each policy’s value or total risk. This observation will be leveraged in Section 5.4 to enable
computationally efficient estimates of Bayes’ risk, and to efficiently identify the best policy
to follow from any particular belief state.

5.3.2 Computing Policy Value

Computing the risk of one policy relative to another is equivalent to comparing their re-
spective values, and the main obstacle to computing the value of a policy is the size of its
reachable belief set.

Definition 7. The reachable belief set (RBS) from an initial state S0 is the set of all
belief states that could result from some sequence of actions A ∈ ⋃∞

t=1At and observations
Y ∈ ⋃∞

t=1 Y t (where |A| = |Y |).
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Definition 8. The π-reachable belief set (π-RBS) is the smallest subset of the RBS that
contains all belief states that a learning agent following the policy π, initialized at S0, could
eventually transition into.

Definition 9. We call the reachable belief set unbounded if ∀h ∈ N>0, there exist a
sequence of actions a1:h that do not lead to a terminal state. Otherwise, the RBS is bounded
with decision horizon h, where h is the length of the longest sequence of actions that
results in a terminal state.

Whether the RBS is bounded or unbounded depends on the specification of ξ0, δ, and
Ω. Assuming discrete action and observation sets, the size of a bounded RBS with decision
horizon h is O(|A × Y|h).5 This rapid growth means it is generally impractical to compute
the value of an arbitrary policy (where the π-RBS may match the full RBS) using MDP
algorithms like value iteration; even describing an arbitrary policy requires O(|A × Y|h)
values to encode the action distribution of the policy at every reachable state. Accordingly,
we focus our analysis on policies which have a small π-RBS, or otherwise have some structure
making it tractable to compute their value; in particular, this is the case for deterministic
open-loop, m-lookahead, X-optimal, and θ-optimal policies, which will be explored in the
following subsections.

Deterministic Open-Loop Policies

We begin by defining the set of all terminating feasible action sequences from St = {bt, ξt},

A∞
Ω (ξt) =

A ∈
∞⋃
n=1

An

∣∣∣∣∣∣∣∣
ξt+τ = δ(ξt+τ−1, A(τ)) ∀τ ∈ {1, . . . , |A|},
A(τ) ∈ Ω(ξt+τ−1) ∀τ ∈ {1, . . . , |A|},
Ω(ξt+|A|) = ∅.

 (5.3.9)

A deterministic open-loop policy π̂ ∈ Π̂ takes a fixed sequence of actions Aπ̂ from state St

until reaching a terminal state, so its value is

V π̂(St) := EX|bt

γ|Aπ̂ |R
(
bX,Aπ̂

t+|Aπ̂ |

)
+

|Aπ̂ |∑
τ=1

γτR
(
X(t+ τ), Aπ̂(τ)

), (5.3.10)

where bX,A
t+|A| denotes the posterior belief distribution of the terminal state reached after

following the action sequence A with corresponding hidden outcomes X. Now, since the set
5For continuous action/observation sets, there is exponential growth in the dimensionality of the RBS.
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of all feasible deterministic open-loop policies from the state St is isomorphic with A∞
Ω (ξt),6

the value of the ODOL policy π̂⋆
St

is the solution to a maximization problem over A∞
Ω (ξt),

V π̂⋆
St (St) = max

A∈A∞
Ω (ξt)

EX|bt

γ|A|R
(
bX,A
t+|A|

)
+

|A|∑
τ=1

γτR(X(t+ τ), A(τ))

. (5.3.11)

Eq. (5.3.11) is a non-linear discrete optimization problem which may be, in general, very
challenging to solve. However, there are many conditions under which it is more tractable.
For example, most classical bandit and partial monitoring problems are formulated with some
given T ∈ N>0 such that Ω(ξt) = A, ∀t < T (and Ω(ξt) = ∅, ∀t ≥ T ) and R(bt) = 0 ∀bt. In
such problems, Eq. (5.3.11) simplifies to

V π̂⋆
St (St) =

T∑
τ=t+1

max
aτ∈A

γτEx|bt [R(x, aτ )], (5.3.12)

where the (T − t) unconstrained maximization problems can be solved independently. Sub-
section 5.3.3 will explore broader conditions under which Eq. (5.3.11) can be simplified and
solved with suitable algorithms.

Lookahead Policies

An m-step lookahead policy π is one which operates in closed-loop for m ∈ N>0 actions
before transitioning to the ODOL policy for the posterior belief state. This results in a
π-RBS of size O(|A × Y|m + |Y|h−m). The value of an m-lookahead policy is equal to the
sum of the expected action rewards over the closed loop phase and the total reward expected
to be collected by the posterior ODOL policy from the posterior belief state. This fact is
leveraged by the proposed EBRM algorithms, and will be discussed further in Section 5.4.

X-Optimal Policies

An X-optimal policy is deterministic and open-loop because the belief and action rewards
are deterministic with respect to the sequence of actions taken by the agent. The conditional
value of π⋆

X in state St given X is thus the solution of the maximization problem, with bX,A
t+|A|

6Consider that any A ∈ A∞
Ω (ξt) uniquely characterizes a feasible deterministic open-loop policy, while

any π̂ ∈ Π̂ can be represented as a fixed sequence of actions Aπ̂, and is feasible if and only if Aπ̂ ∈ A∞
Ω (ξt).
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defined as previously,

V π⋆
X (St;X) := max

A∈A∞
Ω (ξt)

γ|A|R
(
bX,A
t+|A|

)
+

|A|∑
τ=1

γτR(X(t+ τ), A(τ))

. (5.3.13)

Subsection 5.3.3 will discuss conditions under which this problem can be further simplified.
Given a means to compute the conditionl value of the X-optimal policy for a particular

realization of the hidden outcomes, its unconditional value is an expectation over the belief
distribution bt,

V π⋆
X (St) = EX|bt

[
V π⋆

X (St;X)
]
, (5.3.14)

which can be computed with sampling-based methods, even if it cannot be solved analytically.

θ-Optimal Policies

A θ-optimal policy is generally closed-loop, as despite knowing the exact distribution from
which the hidden outcomes are generated, maximizing the belief reward requires choosing
actions based on how prior observations have shaped the belief distribution. However, under
certain conditions on the belief reward function R(bt), there exists a deterministic open-loop
θ-optimal policy. These conditions will be discussed in Subsection 5.3.3, and enable efficient
computation of the conditional value function V π⋆

θ (St; θ). Given a means to compute this
conditional value, the unconditional value of π⋆

θ is given by the expectation,

V π⋆
θ (St) = Eθ|bt

[
V π⋆

θ (St; θ)
]
. (5.3.15)

5.3.3 Efficient Construction of Optimal Deterministic Open-Loop

Policies

This subsection will explore approaches to efficiently solve Eq. (5.3.11) and construct an
ODOL policy π̂⋆

St
for the belief state St, under the following simplifying assumptions.

Assumption 1 (Bounded RBS). We assume that the RBS is bounded with some decision
horizon h ∈ N>0.

Assumption 2 (Discrete Action Set). We assume that A is discrete and finite with cardi-
nality K ∈ N>0. Without further loss of generality, we can assume that A = [K].

Assumption 3 (Order-Independent Feasibility). We assume that, if A ∈ A∞
Ω (ξt) and A′ is

a permutation of A, then A′ ∈ A∞
Ω (ξt). This is equivalent to the following conditions on Ω

and δ:
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1. Ω(δ(ξ, a)) ⊆ Ω(ξ) ∀ξ, a : a ∈ Ω(ξ)

2. a2 ∈ Ω(δ(ξ, a1)) ⇐⇒ a1 ∈ Ω(δ(ξ, a2)) ∀ξ, a1, a2 : {a1, a2} ⊆ Ω(ξ)

The key result of these assumptions is that the feasibility of a deterministic open-loop
policy is determined by its action counts N ∈ NK , where an action sequence A is “consistent
with N ” if and only if

N(k) =

|A|∑
τ=1

1(A(τ) = k) ∀k ∈ [K]. (5.3.16)

For any N ∈ NK , we can easily construct an action sequence A consistent with N by
taking N(1) copies of action 1, followed by N(2) copies of action 2, and so on. If we let A′

denote any permutation of A then, by Assumption 3, A ∈ A∞
Ω (ξt) ⇐⇒ A′ ∈ A∞

Ω (ξt). We
thus define NK

Ω (ξt) ⊆ NK such that

N ∈ NK
Ω (ξt) ⇐⇒ A ∈ A∞

Ω (ξt). (5.3.17)

So, we can determine whether N ∈ NK
Ω (ξt) by constructing A and testing if A ∈ A∞

Ω (ξt).
Proposition 2 and its corollary will show that we can just as easily construct the optimal
action sequence consistent with N . First, however, we show that the expected posterior
belief reward following any action sequence N is a function of only the action counts, as seen
in Lemma 2.

Lemma 2. Let A be any action sequence consistent with N ∈ NK
Ω (ξt) from some initial state

St = {bt, ξt}, and let A′ be any permutation of A. Then,

EX|bt

[
R
(
bX,A
t+|A|

)]
= EX|bt

[
R
(
bX,A′

t+|A′|

)]
, (5.3.18)

where bX,A
t+|A| is the posterior belief distribution from the prior bt following action-observation

pairs {A(τ), Y (τ)}|A|
τ=1 where Y (τ) = Φ(X(τ), A(τ)) for each hidden outcome X(τ). For

convenience, we thus define,

R̄(N ; bt) := EX|bt

[
R
(
bX,A
t+|A|

)]
. (5.3.19)

Proof. Refer to A.4.

Proposition 2. Let k1, . . . , kK be an ordering of the elements of A such that, given St,

Ex|bt
[
R
(
x, k1

)]
≥ Ex|bt

[
R
(
x, k2

)]
≥ · · · ≥ Ex|bt

[
R
(
x, kK

)]
. (5.3.20)
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For any N ∈ NK
Ω (ξt), an optimal action sequence A⋆

N ∈ A∞
Ω (ξt) consistent with N can be

constructed by taking N(k1) copies of action k1, followed by N(k2) copies of action k2, and
so on. The policy π̂⋆

N described by A⋆
N satisfies,

V π̂⋆
N (St) ≥ V π̂(St) ∀π̂ : Aπ̂ is consistent with N. (5.3.21)

Accordingly, we define the action count optimal value function,

V̂ (N ;St) := V π̂⋆
N (St) (5.3.22)

= γnK R̄(N ; bt) +
K∑
i=1

γni−1
(
1− γN(ki)

)
1− γ Ex|bt [R(x, ki)], (5.3.23)

where n0 := 0 and ni :=
∑i

j=1N(kj), ∀i ∈ [K].7

Proof. Follows from Lemma 2 and the monotonically non-increasing weight of later action
rewards.

Corollary 1. The value of the ODOL policy π̂⋆
St

in state St is

V π̂⋆
St (St) = max

N∈NK
Ω (ξt)

V̂ (N ;St). (5.3.24)

Corollary 1 means an exhaustive search for the ODOL policy can be done by evaluating
the O(hK) elements of NK

Ω (ξt), rather than all O(Kh) sequences in A∞
Ω (ξt). This is often

an improvement as, typically, h ≫ K; however, it is still intractable for moderate to large
values of h or K. The following subsection will explore conditions in which we can mor
efficiently find the optimal action counts, through formulating it as an integer program. In
any case, once N⋆ is found, an ODOL policy can be constructed by the approach used in
Proposition 2.

Common Conditions for Integer Programming Solutions

The maximization problem in Eq. (5.3.24) is a non-linear integer program without a general
polynomial-time solution. However, for many common feasibility criteria, reward functions,
and discount factors, it can be further simplified to be efficiently solved or approximated by
existing algorithms.

The first element to consider is the feasibility criterion; most integer programming al-
gorithms permit only linear constraints on the optimization variable. This is equivalent to

7Note that limγ→1

[
γni−1

(
1− γN(ki)

)
(1− γ)−1

]
= N(ki).
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requiring that there exist a weight matrix W ∈ RM×K and budget vector c ∈ RM such
that N ∈ NK

Ω (ξt) ⇐⇒ WN ⪯ c. This requirement is satisfied for temporal and knapsack
feasibility criteria, defined below.

Definition 10. A temporal feasibility criterion is one defined as, given some horizon
T ∈ N>0,

ξ0 = 0, δ(ξt−1, at) = ξt−1 + 1, Ω(ξt) =

A, ξt < T

∅, otherwise.

Definition 11. A knapsack feasibility criterion is defined as, given a budget c ∈ R>0, a
weight vector w ∈ RK

>0, and bounds u1, . . . , uK ∈ N ∪ {+∞},

ξ0 = 0K , δ(ξt−1, a) = ξt−1 + χa, k ∈ Ω(ξt) ⇐⇒
{
⟨w, ξt⟩+ w(k) ≤ c,

and ξt(k) < uk,

where the characteristic vector χk ∈ {0, 1}K satisfies χk(i) = 1 ⇐⇒ i = k.

Next, we consider how the action reward interacts with the feasibility criterion and dis-
count factor. If action rewards are negative, the agent may be driven towards a terminal
state as quickly as possible if the feasibility criterion permits it. As this may not be desir-
able behaviour in all cases, care must be taken when defining action rewards or shifting their
values by a constant. Furthermore, negative action rewards can lead to the agent instead
seeking delays, particularly if γ < 1; if taking an action with negative expected reward is
required to satisfy the feasibility criterion, the optimal solution may precede that action with
an arbitrarily long sequence of low or zero reward actions, in order to discount it.

Lastly, we consider how the belief reward interacts with the feasibility criterion and
discount factor. As with action reward, if the belief reward can be negative, the agent
may seek out or delay termination; as belief reward is earned only at termination, care
must also be taken if actions can reduce the expected posterior belief reward. The problem
is thus simpler if the belief reward function is non-negative and adaptive monotone [180]:
∀bt,∀a, Ex|bt

[
R(bx,at+1)

]
≥ R(bt) ≥ 0. Such belief reward functions are common, as belief

rewards generally measure how much “information” has been learned about one or more
of the hidden parameters; as the hidden parameters θ are fixed, taking an action never
causes a learning agent to lose information. By Jensen’s inequality, adaptive monotonicity
is satisfied if R(b) is convex in b; such belief rewards include the negative entropy of b, and
the log generalized-precision log detΣ−1, where Σ is the covariance matrix of b. Even with a
non-negative, adaptive monotone belief reward function, termination-seeking behaviour may
arise for a discount factor γ < 1; if the agent cannot increase its terminal belief reward by a
factor of at least γ−1 with each action, it will seek out a terminal state as quickly as possible.
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Based on the issues discussed above, we assume a non-negative adaptive monotone belief
reward and either non-negative action rewards or a temporal feasibility criterion.8 Given
these assumptions, the choice of integer programming algorithm depends primarily on the
discount factor and form of the expected posterior belief reward as a function of N . For
example, efficient algorithms are known for R̄(N ; bt) that are concave and modular or sub-
modular in N .9 The contribution of action reward as a function of N is linear and modular
when γ = 1, and generally M ♮-concave [181] and submodular otherwise. A non-exhaustive
list of algorithms for efficiently solving Eq. (5.3.24) given various combinations of feasibility
criterion, belief reward, and discount factor is presented in Table 5.4. The approximation
factor measures the ratio between the value of the policy found and the value of the true
ODOL policy.

Applications to Solving θ- and X-Optimal Policies

The condition which most simplifies finding and solving the value of θ-optimal policies is an
observation-independent belief reward, such that the reward assigned to a posterior belief
distribution is a function of only the initial belief distribution and the actions taken. As a
common example, if the posterior belief distribution b is normal with covariance matrix Σ,
then a belief reward function satisfying ∃f : R(b) = f(Σ) is observation-independent. Under
this condition, finding the θ-optimal policy reduces to solving for action counts, so one of
the solvers from Table 5.4 may apply.

While there is always a deterministic open-loop X-optimal policy for a given X, the main
source of complexity in finding it and solving its value is, likewise, the belief reward function.
A strong condition which simplifies finding and solving the value of X-optimal policies is
a separable belief reward and a temporal feasibility criterion, such that ∃f : R(bx,at+1) =

R(bt) + f(x, a). The problem still cannot be reduced to solving for action counts, however
it can be simplified into O(h) univariate optimization problems.

5.4 Endogenous Bayesian Risk Minimization

We propose Endogenous Bayesian Risk Minimization (EBRM) as a general-purpose approach
to optimal online learning. The goal of an EBRM policy is to, at each belief state St, find
and imitate a policy that is optimal from that state. To make this approach computationally

8These assumptions are also driven by practical considerations as solvers for many classes of integer
programs, such as knapsack problems, typically expect non-negative objectives.

9Submodularity is equivalent to only non-positive off-diagonal elements in the Hessian of R̄(N ; bt), while
supermodularity is equivalent to only non-negative off-diagonal elements. A modular function is both sub-
modular and supermodular.

91



Table
5.4:

Solvers
for

E
q.(5.3.24)

under
com

m
on

feasibility
criteria

and
expected

beliefrew
ard

properties.

Feasibility
C

riterion
γ

R̄
(N

;b)
P

roblem
C

lass
Solver

A
pprox.

Factor
R

untim
e

C
om

plexity

Tem
poral

(0,1]
0,∀

N
C

oncave
M

axim
ization

G
reedy

1
O
(K

)

Tem
poral

1
C

oncave
&

M
odular

Separable
C

oncave
M

axim
ization

Iterative
G

reedy
1

O
(K

h
)

Tem
poral

(0,1]
M

-C
oncave

[182]
Integer

M
-C

oncave
M

axim
ization

[182]
Steepest
A

scent
[183]

1
O
(K

2h
)

Tem
poral

(0,1]
C

oncave
&

Subm
odular

M
onotone

Subm
odular

M
axim

ization
[184]

Iterative
G

reedy
1−

e −
1

O
(K

h
)

K
napsack

1
Linear

&
M

odular
(U

n-)B
ounded

K
napsack

[185]
D

ynam
ic

P
rogram

1
O
(K

h
)

K
napsack

(0,1]
0,∀

N
Subm

odular
C

ost,Sub-
m

odular
K

napsack
[186]

Iterative
G

reedy
1−

e −
1

O
(K

h
)

K
napsack

1
C

oncave
&

Subm
odular

92



tractable, we constrain our search to a small set of simple candidate policies Πt ⊂ Π. In
each state, the EBRM policy imitates the policy in Πt with the maximum value,

πebrm(St) := argmax
π∈Πt

V π(St) (5.4.1)

The set of candidate policies chosen characterizes the EBRM algorithm.
By imitating the candidate policy with the highest value in each decision step, the value

of the best candidate policy is a lower bound on the value of the EBRM policy, and the Bayes’
risk of the best candidate policy similarly upper bounds the Bayes’ risk of EBRM. Thus an
EBRM policy accumulates, in expectation, more reward than any individual candidate policy
would.

5.4.1 Greedy-EBRM: EBRM using 1-Step Lookahead Policies

Greedy-EBRM is the simple yet highly effective online learning algorithm which results from
choosing the candidate policy set composed of all deterministic 1-step lookahead policies,

Πt = {πt,a}a∈A, (5.4.2)

πt,a(St) = Take action a, observe y, proceed according to the posterior ODOL policy.
(5.4.3)

The value of a deterministic 1-step lookahead policy is therefore

V πt,a(St) = Ex|bt

[
R(x, a) + max

N∈NK
Ω (ξat+1)

γV̂
(
N ;Sx,a

t+1

)]
, (5.4.4)

where V̂ (N ;Sx,a
t+1), defined in Eq. (5.3.24), is the value of the best open-loop policy for

Sx,a
t+1 = {bx,at+1, ξ

a
t+1} consistent with action counts N . The maximization problem is equivalent

to the one in Eq. (5.3.24), but with a shorter decision horizon, so it can be calculated using
the same algorithm that found the ODOL policy. However, there is generally no closed-
form solution to the expectation of the maximum, and so the expectation often requires
sampling-based methods to compute.

Fortunately, we can use the epistemic and process risk functions to help eliminate sub-
optimal policies and obtain probabilistic bounds on the expectation in Eq. (5.4.4). First, we
observe that

π⋆
t ∈ argmax

π∈Πt

V π(St) ⇐⇒ π⋆
t ∈ argmin

π∈Πt

ProcessRisk(π;St). (5.4.5)

93



We then decompose the process risk of each πt,a into two terms: the immediate risk of a,
which represents the “opportunity cost” of choosing action a instead of following the ODOL
policy, and the expected value of information gained from the observation y which would be
generated by the action a. The relationship between these components and the process risk
is presented in 1, along with the complete specification of the Greedy-EBRM algorithm.

Algorithm 1: Greedy-EBRM
1 Given: OLP Specification
2 Input: Belief State St

3 InitialRisk(St)← AleatoricBayesRisk(St) + EpistemicRisk(St)
4 foreach a ∈ A:
5 ProcessRisk(πt,a;St)← ImmediateRisk(St, a)− γ · ExpectedVoI(St, a)
6 end foreach
7 a⋆t+1 ← argmina∈A[ProcessRisk(πt,a;St)] // Optimal action
8 Ut ← InitialRisk(St) + ProcessRisk(πt,a⋆t+1

;St) // Upper bound on
Greedy-EBRM Bayes’ risk

9 return a⋆t , Ut

We now define the immediate risk of an action a, which quantifies how much better the
current ODOL policy is expected to perform than the best deterministic open-loop policy
that begins by picking a. Equivalently, this measures how much additional regret is expected
to be incurred over the ODOL policy by being forced to take action a as the next action.
Importantly, both policies are constructed according only to the current belief state, without
considering possible observations.

Definition 12. The immediate risk of performing an action a ∈ A in a belief state St ∈ S
is defined as

ImmediateRisk(St, a) := V π̂⋆
St (St)−

(
Ex|bt [R(x, a)] + max

N∈NK
Ω (ξat+1)

Ex|bt

[
γV̂
(
N ;Sx,a

t+1

)])
.

(5.4.6)

The term on the right side of Eq. (5.4.6) represents the value of the best deterministic
open-loop policy which begins by taking action a.10 At least one of these policies is an
ODOL policy for the state St; therefore, computing all K immediate risks requires com-
puting the value of exactly K deterministic open-loop policies, and it holds ∀St, ∀a that
ImmediateRisk(St, a) ≥ 0.

10Recall that, even if the ODOL policy π̂⋆
St

would take action a at least once, it only begins with a if
a ∈ argmaxa Ex|b[R(x, a)].

94



Next, the expected value of information of an action a, defined below, measures how much
the value of an ODOL policy for the posterior state Sx,a

t+1 constructed with the additional
observation Φ(x, a) surpasses, in expectation, one that is constructed without it.

Definition 13. The expected value of information gained by performing action a in
belief state St is

ExpectedVoI(St, a) := Ex|bt

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)]
− max

N∈NK
Ω (ξat+1)

Ex|bt

[
V̂
(
N ;Sx,a

t+1

)]
.

(5.4.7)

While the expected value of information is driven by uncertainty in the belief distribution
and the amount of information gained from an observation, it is measured in units of real
reward (value). It is also closely related to epistemic risk, as shown in Lemma 3.

Lemma 3. The expected value of information is bounded according to,

0 ≤ ExpectedVoI(St, a) ≤ EpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
− Ex|bt

[
EpistemicRisk

(
Sx,a
t+1

)]
.

(5.4.8)

Proof. Refer to A.5.

The expected value of information represents the rate of convergence of the value of the
ODOL policy to the value of the θ-optimal policy, as described in Theorem 1. Together,
the expected value of information and immediate risk measure the process risk of any 1-step
lookahead policy:

ProcessRisk(πt,a;St) = ImmediateRisk(St, a)− γ · ExpectedVoI(St, a). (5.4.9)

This relationship follows algebraically from Eqs. (5.4.4), (5.4.6), and (5.4.7).
The first useful result of this analysis, presented in Proposition 3, can enable Greedy-

EBRM to disregard some candidate policies based on only their immediate risk.

Proposition 3. If the immediate risk of an action a ∈ A exceeds the epistemic risk of the
state Ex|bt

[
Sx,a
t+1

]
= {bt, ξat+1}, then πt,a is not a minimizer of the process risk. That is,

ImmediateRisk(St, a) > γEpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
=⇒ πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St).

(5.4.10)

Proof. Refer to A.5.
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Applying the bound in Proposition 3 requires, for each action a ∈ A, both the imme-
diate risk of the action and the values of the ODOL and θ-optimal policies for the state
Ex|bt

[
Sx,a
t+1

]
= {bt, ξat+1}, in order to compute the epistemic risk bound. Then, estimating

the process risk of each 1-step lookahead policy πt,a (excluding those eliminated from con-
sideration under Proposition 3) can be done using sampling-based methods to estimate the
expected value of information gained by action a. Using each sample to estimate the value
of information requires finding and computing the value of an ODOL policy, as shown in
Lemma 4.

Lemma 4. Let xi
iid∼ Pr(x | bt) be independently and identically distributed hidden outcomes

conditioned on the belief distribution bt of state St = {bt, ξt}, and define

Na
t+1 ∈ argmax

N∈NK
Ω (ξat+1)

Ex|bt

[
V̂
(
N ;Sx,a

t+1

)]
. (5.4.11)

The estimated value of information gained by action a ∈ A in this state, based on n ∈ N>0

samples, is

νa(n) :=
1

n

n∑
i=1

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sxi,a

t+1

)
− V̂

(
Na

t+1;S
xi,a
t+1

)]
. (5.4.12)

By construction it holds that νa(n) ≥ 0, and by the linearity of expectation E[νa(n)] =

ExpectedVoI(St, a).

Following from Lemma 4, the value of information has finite variance if and only if
∃σa ∈ R such that

Ex|bt

( max
N∈NK

Ω (ξat+1)
V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
− ExpectedVoI(St, a)

)2
 = σ2

a. (5.4.13)

We further call the value of information bounded by Ma ∈ R if and only if

Pr

(
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
≤Ma

)
= 1. (5.4.14)

Assuming the value of information has finite variance, Theorem 2 provides probabilistic
bounds on whether πt,a ∈ argminπ ProcessRisk(π;St). These bounds depend on the number
of samples used to estimate the value of information of each action. Corollary 2 shows how
the number of samples can be picked to reach any desired level of confidence that a policy πt,a
is sub-optimal, before rejecting it. Under the stronger condition that the value of information
is bounded, Theorem 3 provides a lower bound on the number of samples required to bound
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the expected risk of rejecting a policy πt,a to some value ϵ > 0. Proofs for these results are
provided in A.5.

Theorem 2. Suppose that for each a ∈ A, na > 0 samples have been used to estimate the
expected value of information gained by action a in the belief state St. Then, define

k ∈ argmin
a′

[
ImmediateRisk(St, a

′)− γ · νa′(na′)
]
, (5.4.15)

µa := (ImmediateRisk(St, a)− ImmediateRisk(St, k))− γ(νa(na)− νk(nk)). (5.4.16)

If the values of information gained by actions a and k have finite variances σ2
a and σ2

k,
respectively, then

µa > 0 =⇒ Pr
(
πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≥ µ2

anank

γ2(σ2
ank + σ2

kna) + µ2
anank

. (5.4.17)

Corollary 2. It follows algebraically from Theorem 2 that, ∀ϵ > 0 and ∀a : µa > 0,

nk ≥
⌈
2σ2

kγ
2(1− ϵ)
µ2
aϵ

⌉
, na ≥

⌈
2σ2

aγ
2(1− ϵ)
µ2
aϵ

⌉
=⇒ Pr

(
πt,a ∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≤ ϵ.

(5.4.18)

Theorem 3. Suppose that the value of information gained by each action a ∈ A is bounded
by Ma, and na = nk = n. Then, following the notation of Theorem 2 and Corollary 2, by
Hoeffding’s inequality [187],

Pr
(
πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≥ 1− exp

( −2nµ2
a

γ2(Ma +Mk)
2

)
. (5.4.19)

Under these assumptions, ∀ϵ > 0 and ∀a : µa > 0, if

n ≥
⌈
γ2(Ma +Mk)

2

2µ2
a

ln

(
γ(Ma +Mk)

ϵ

)⌉
(5.4.20)

then the expected risk of eliminating policy πt,a is bounded above by ϵ.

In practice, tighter bounds may be possible by taking into account the problem-specific
structure of the action count value function V̂ (N ;St). It is worth noting that while the
number of samples required to confidently reject a policy πt,a grows as µa → 0, small values
of µa indicate that the expected difference in process risk (value) compared to the best
reference policy πt,k is small, so the expected risk of rejecting πt,a may be small even if there
is a non-trivial probability that it is optimal. Furthermore, even a single sample of the
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expected value of information for each action is sufficient to provide an unbiased estimate of
the best policy in the policy set. Thus, these results are best applied in settings where risk
quantification is critical; in most cases, the number of samples is likely chosen based on the
computational resources available.

5.4.2 Overcoming the Myopia of One-Step Lookahead Policy Sets

The expected value of information for 1-step lookahead policies cannot account for the value
of information from multiple actions. Consequentially, these policies tend to have poor
performance when multiple actions must be taken in order to produce any change in the
epistemic risk; an excellent discussion of this issue with respect the Knowledge Gradient
algorithm [17] for MAB problems is presented in [19]. We present a simple instance of the
problem here.

Problem 2 (Apple Tasting). The apple tasting problem is characterized by X = {1, 2},
A = {1, 2} and

W =

[
1 0

0 1

]
, O =

[
1 0

0 0

]
,

such that R(x, a) = W (x, a) and Φ(x, a) = O(x, a). Suppose xt = 1 with probability θ ∈ [0, 1],
and bt(θ) = Beta(θ;αt, βt). If the agent takes action 1, it receives a binary observation that
it can use to update its belief distribution according to

αt+1 = αt + yt+1, βt+1 = βt + (1− yt+1).

However, if the agent takes action 2 it receives the same observation regardless of xt, and
so gains no information. There is a temporal feasibility criterion and no belief reward or
discounting.

Example 3 (Failure of Greedy-EBRM). The ODOL policy for Problem 2 is to always take
action 1 if E[θ] ≥ 0.5, and to otherwise take action 2. Suppose that at time t, the belief state
is characterized by (αt, βt) = (1, 3), so E[θ] = 0.25. If the agent takes action 1, the possible
posterior belief distribution parameters are (2, 3) or (1, 4); in either case, the posterior ODOL
policy will be unchanged as it will still hold that E[θ] < 0.5. Similarly, if the agent takes
action 2, its belief state is not updated and so the ODOL policy is unchanged. Therefore,
as the ODOL policy in every possible posterior state is unchanged, the expected value of
information from either action is zero; the agent will thus continue to select action 2 forever,
gaining no new information and incurring linear regret.11

11Note that, as applied to Problem 2, Greedy-EBRM reduces to the Knowledge Gradient algorithm [17].
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Accordingly, we present an asymptotic value of information approximation as a simple
alteration to Greedy-EBRM that guarantees, over enough decisions, convergence on the
optimal policy if the parameters θ are identifiable, as discussed in Theorem 1. This technique
is discussed in the following subsection.

AsympGreedy-EBRM: Leveraging the Asymptotic Value of Information

The main limitation of Greedy-EBRM is that the expected value of information does not
capture the value of information gained only from multiple actions. AsympGreedy-EBRM
overcomes this issue by relying on a secondary, asymptotic measure of the value of information
provided by some action. First, we introduce the Fisher information matrix Ia(θ0) corre-
sponding to action a given the parameter estimates θ0, which is defined as, with D := dim θ

and ℓ(θ | a, y) := log p(y | θ, a),

[Ia(θ0)]ij := Ey

[(
∂

∂θi
ℓ(θ | a, y)

)(
∂

∂θj
ℓ(θ | a, y)

)∣∣∣∣θ = θ0

]
, (5.4.21)

i ∈ {1, . . . , D}, (5.4.22)

j ∈ {1, . . . , D}. (5.4.23)

Informally, the matrix Ia encodes how changes in the hidden parameters change the likeli-
hood of the random variable y conditioned on an action a. There are cases where one or
more hidden parameters do not play a role in the likelihood of the observation produced by
a particular action; for example, in Problem 2, the hidden parameter does not affect the
likelihood of the observation y for a = 2. In such cases, Ia is singular. However the combined
Fisher information matrix,

IA(θ) :=
∑
a∈A

Ia(θ), (5.4.24)

is non-singular if and only if the parameters are identifiable, as defined in Subsection 5.3.1. In
fact, the Bernstein-von Mises theorem [188] implies that, if the parameters are identifiable
and every action is taken at least n ∈ N>0 times, the belief distribution converges to a
multivariate Gaussian such that

lim
n→∞

bK·n(θ)→ N
(
θ; θ⋆, n−1IA(θ⋆)−1

)
, (5.4.25)

where θ⋆ is the true value of the hidden parameters.
Importantly, the Fisher information matrices {Ia}a∈A indicate which actions provide

information, and which parameters they provide information about. Thus, even if the 1-
step expected value of information for an action a is zero, a non-zero matrix Ia (even if
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singular) indicates that the action still provides information about one or more parameters.
In fact, the Bernstein-von Mises theorem implies the asymptotic value of the information.
This concept is formalized in Theorem 4.

Theorem 4. Let Σt denote the covariance of the belief distribution bt and define θ̂t =

argmaxθ bt(θ). Suppose IA(θ̂) is non-singular, Θ = RD, and the regularity conditions of
the Bernstein-von Mises theorem are satisfied [188].12 As t → ∞, if every action is taken
at least ⌊t|A|−1⌋ times, then the epistemic risk of state St = {bt, ξt} decreases in expectation
according to

EpistemicRisk(St)− Ex|a
[
EpistemicRisk(Sx,a

t+1)
]

P−−−→
t→∞

EpistemicRisk(S̃t)− EpistemicRisk(S̃a
t+1),

(5.4.26)

b̃t = N
(
θ̂t,Σt

)
, (5.4.27)

b̃at+1 = N
(
θ̂t,
(
Σ−1

t + Ia(θ̂t)
)−1
)
, (5.4.28)

where S̃t = {b̃t, ξt} and S̃a
t+1 = {S̃a

t+1, δ(ξt, a)}.

Proof. As the number of actions tends to infinity, the relative weight of the prior goes to
zero, and so θ̂ → θ⋆ and Σt → n−1IA(θ⋆)−1; then, the theorem holds by application of
Bernstein-von Mises theorem.

We define the quantity in the right side of Eq. (5.4.26) to be the asymptotic value of
information,

AsymptoticVoI(St, a) := EpistemicRisk(S̃t)− EpistemicRisk(S̃a
t+1). (5.4.29)

The asymptotic value of information calculation assumes that the parameters θ have approx-
imately converged on their true value, and thus measures how the epistemic risk will change
as the uncertainty of the belief distribution decreases while the expectation of the parameters
stays constant. As long as the parameters are identifiable and the epistemic risk is non-zero,
the asymptotic value of information will be strictly positive, as seen in Corollary 3.

Corollary 3. If the parameters θ are identifiable, then

EpistemicRisk(St) > 0 =⇒ ∃a ∈ A : AsymptoticVoI(St, a) > 0. (5.4.30)
12Among these, the one most of note is that ∀θ ∈ Θ, we require the prior to satisfy b0(θ) > 0.
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Proof. By contradiction; if ∀a, AsymptoticVoI(St, a) = 0, then epistemic risk has converged.
By Theorem 1, the epistemic risk must then be zero, since the parameters are identifiable.

Corollary 3 implies that, for any OLP in which the parameters are identifiable, the
asymptotic value of information will guide the agent towards complete knowledge of the
parameters even if no single action is sufficient to gain useful information. Furthermore,
the asymptotic value of information is measured in units of reward (value), and parallels
the expected value of information in modelling how the epistemic risk changes as actions
are taken. We therefore introduce, in Algorithm 2, AsympGreedy-EBRM, a modification of
Greedy-EBRM for problems where the expected value information from any single action may
be zero, even if significantly more information could be gained from a bit more exploration.

Algorithm 2: AsympGreedy-EBRM
1 Given: OLP Specification
2 Input: Belief State St

3 InitialRisk(St)← AleatoricBayesRisk(St) + EpistemicRisk(St)
4 foreach a ∈ A:
5 ProcessRisk(πt,a;St)←

ImmediateRisk(St, a)− γ ·max{ExpectedVoI(St, a), AsymptoticVoI(St, a)}
6 end foreach
7 a⋆t+1 ← argmina∈A[ProcessRisk(πt,a;St)] // Optimal action
8 Ut+1 ← InitialRisk(St) + ProcessRisk(πt,a⋆t+1

;St) // Upper bound on
AsympGreedy-EBRM Bayes’ risk

9 return a⋆t+1, Ut+1

Remark 1. The assumption Θ = RD in Theorem 4 does not always hold; in this case,
while the belief distribution still converges locally to a multivariate Gaussian, it may not
be possible to compute the epistemic risk for a Gaussian belief. In such cases, a heuristic
solution is for the agent to use the original belief distribution family for the asymptotic belief
distributions, with b̃t = bt and the parameters of b̃at+1 chosen to maximize its similarity to
N (θ̂t, (Σ

−1
t + Ia(θ̂t))−1), such as by moment matching.

Other Approaches

An alternative approach to overcome the myopia of 1-step lookahead policies is to consider the
larger set of m-step lookahead policies, as for a sufficiently large m the best m-step lookahead
policy is equivalent to the optimal closed-loop policy π⋆

b .13 However the computational
complexity of finding the bestm-step lookahead policy is exponential inm. This large set can

13This occurs by m = h− 1, where h is, as previously, the decision horizon.
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be reduced to only linear lookahead policies, which consider taking the same action multiple
times but not combinations of actions; this strategy is used by the KG* algorithm [18],
however it has been shown to remain overly myopic [19].

Alternatively, one may include other non-myopic policies in the candidate policy set. The
EBRM solution outperforms any of the individual policies in the candidate policy set, so
adding more policies generally improves the EBRM solution. The challenge of this approach
is finding policies for which the value can be computed efficiently. In any case, the epistemic
and immediate risk functions can be used to lower bound the process risk of any policy, even
a stochastic one, as seen in Proposition 4.

Proposition 4. The process risk, in the belief state St ∈ S, of a policy π is bounded below
as

ProcessRisk(π;St) ≥ Ea∼π(St)

[
ImmediateRisk(St, a)− Ex|bt

[
EpistemicRisk(Sx,a

t+1)
]]
.

(5.4.31)

Proof. The process risk of an action is lower bounded by the regret incurred immediately by
action a and the minimum possible process risk of any policy in the posterior belief state.
The process risk of the posterior belief state Sx,a

t+1 is bounded below by −EpistemicRisk(Sx,a
t+1)

(refer to Lemma 5 in A.5).

5.4.3 Anytime-EBRM: AsympGreedy-EBRM for Unknown Time

Horizons

Many classical OLPs are studied in the context of an infinite time horizon with no feasibility
constraints (i.e. ∀ξ,Ω(ξ) = A), to make it easier to study the asymptotic behaviour of online
learning algorithms. This is closely related to the case of an OLP that stops randomly, where
algorithms are expected to minimize accumulated regret over any time horizon.

The AsympGreedy-EBRM algorithm cannot generally be implemented for an infinite
time horizon without discounting, since it leads to infinite risk values. So, we introduce a
modified Anytime-EBRM algorithm, which assumes that the remaining time is always equal
to the current time (i.e., that it is always “halfway done”). Thus, at time t, it considers an
artificial temporal feasibility criterion Ωt such that,

Ωt(ξ) =

A, ξ < 2t+ 1,

∅, otherwise.
(5.4.32)

102



This provides a means to study the asymptotic behaviour of the AsympGreedy-EBRM ap-
proach and how it performs without knowledge of the time horizon. We compare Anytime-
EBRM to the other EBRM algorithms and baselines in Section 5.5.

5.5 Experimental Results

In this section we explore the performance of EBRM algorithms across a range of common
benchmark OLPs as well as some novel experiments that reflect real-world applications.
Different OLPs are characterized by different specifications of the components listed in Ta-
ble 5.1.

5.5.1 Bandit Optimization and Best-Arm Identification

Stochastic multi-armed bandits are a longstanding benchmark with which to evaluate on-
line learning algorithms. The distinguishing features of stochastic MABs are presented in
Table 5.5. We will begin by evaluating AsympGreedy-EBRM algorithms alongside popular
online learning heuristics across a variety of stochastic bandits, described in Table 5.6, as well
as both archetypal OLP goals of bandit optimization and best-arm identification as described
in Table 5.7.

The defining characteristic of a bandit problem is “bandit feedback”; this refers to the
observation function Φ(xt, at) = [xt]at , which indicates that after each action the agent is
provided with only the hidden outcome corresponding to that action. The bandit optimiza-
tion (BDO) goal is to choose actions that maximize the sum of these observations; this is a
classic exploration-exploitation problem, as the agent must explore different actions before
it can begin to identify and exploit the action with the largest observation mean. The metric
for performance in bandit optimization is (exogenous) average expected regret,

t−1 ·R(Aπ
t ;S0, θ) =

1

t

t∑
τ=1

(
max
k∈[K]

Ex|θ[R(x, k)]− Ex|θ[R(x, at)]

)
.

Lower average expected regret values are better; for algorithms which are asymptotically
optimal at BDO, the average expected regret should tend to 0. The average expected regret
represents how much larger the average reward of the θ-optimal policy is than the average
reward of each online learning algorithm. For experiments in which θ ∼ b0, the terminal
regret of each algorithm is, in expectation, equal to the Bayes’ risk of that algorithm relative
to the θ-optimal policy from the initial state S0 = {b0, ξ0}. Another popular metric is average
instance regret, equal to the average expected regret plus the average aleatoric regret; the
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Table 5.5: Multi-armed bandit problems (MAB) characteristics.

OLP Component MAB Definition

Hidden Outcomes xt ∈ X ⊆ RK

Actions at ∈ A = {1, . . . , K}
Observations yt ∈ Y ⊆ R

Observation Fn. Φ(xt, at) = xt(at)

Table 5.6: OLP component specifications for various stochastic bandits.

OLP Component Gaussian Bandit Bernoulli Bandit Beta Bandit

θ Hidden Parameters µ ∈ RK µ ∈ [0, 1]K

- Known Parameters Σ ∈ RK×K (p.s.d.) None ν ∈ R>0

fθ Process Model N (µ,Σ) Bernoulli(µ) Beta(µν, (1− µ)ν)

bt Belief Distribution N
(
µ̂t, Σ̂t

)
Beta(αt, βt)

- Belief Parameters µ̂t ∈ RK , Σ̂t ∈ RK×K αt ∈ RK
>0, βt ∈ RK

>0

Table 5.7: OLP specification for bandit optimization and best-arm identification.

OLP Component Bandit Optimization Best-Arm Identification

R(xt, at) Action Reward xt,at 0

R(bt) Belief Reward 0
maxk Eµ|bt [µ(k)] = maxk µ̂t(k)

maxk P (µ(k) > µj ∀j ̸= k | bt)
γ Discount Factor (0, 1] N/A

Ω(ξ) Feasibility Criterion Temporal with horizon T ∈ N>0
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aleatoric regret is, in expectation, the same for all algorithms in an experiment.
The goal of best-arm identification (BAI) is to identify the action with the largest ob-

servation mean, without regard to which actions are taken to do so. As seen in Table 5.7,
success in this objective can be measured in two ways. The first is by maxk µ̂t(k), which rep-
resents the mean action reward of the best action identified by time t [170]. This encourages
identifying the action with the largest mean, and the penalty of identifying a different action
is proportional to the difference in their respective action reward means. We will focus on
the “Epistemic Uncertainty”,

Eµ|bt

[
max
k∈[K]

µ(k)− max
k∈[K]

µ̂k

]
,

which is directly proportional to maxk µ̂k, and represents how much the observation mean of
the true best action is expected to exceed the largest observed observation mean. As such,
this metric converges to 0 as the agent becomes increasingly certain that no action has a
larger observation mean than the best one it has identified.

Another popular metric of success in best-arm identification is the maximum probability
for which any particular action is best [85]; this metric is intuitive and representative of many
real-world problems, however it is difficult to optimize when the best n > 1 actions perform
very similarly. In fact, this metric fluctuates asymptotically if the top n actions have equal
observation means. As such it is poorly suited as a belief reward; we will, however, use it as
an evaluation metric in some experiments. Since confidence values are often very close to 1,
we display this metric in figures as “Log Uncertainty”, computed as,

ln

(
1− max

k∈[K]
P (µ(k) > µj ∀j ̸= k | bt)

)
.

AsympGreedy-EBRM Algorithms

All AsympGreedy-EBRM algorithms operate according to Algorithm 2; however, the imme-
diate risk and value of information of each action depend on the OLP specification. The
definitions of these functions for bandit optimization and best-arm identification objectives
are presented in Tables 5.8 and 5.9. We show the corresponding functions for bandit opti-
mization with Anytime-EBRM in Table 5.10. As a result of the choice of metric used for
best-arm identification, epistemic risk for both tasks differ only by a scaling that depends
on the time horizon; as such, the expected value of information and asymptotic value of
information are also similarly defined for the two problems. The key difference is that in
bandit optimization problems there is an immediate risk to taking an action with a lower
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Table 5.8: Bayes-EBRM Algorithm Components.

EBRM Function Bayes-EBRM

ImmediateRisk maxk µ̂t(k)− µ̂t(a)

EpistemicRisk (T − t)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI (T − t− 1)Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI (T − t− 1)

(
Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]
)

Table 5.9: Epi-EBRM Algorithm Components.

EBRM Function Epi-EBRM

ImmediateRisk 0

EpistemicRisk Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]

Table 5.10: Anytime-EBRM Components for Multi-Armed Bandits (MABs).

EBRM Function Anytime-EBRM

ImmediateRisk maxk µ̂t(k)− µ̂t(a)

EpistemicRisk (t+ 1)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI t · Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI t ·

(
Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]
)
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observation mean, which does not apply to best-arm identification problems.
To distinguish between AsympGreedy-EBRM algorithms for bandit optimization and

best-arm identification, we label the former as Bayes-EBRM and the latter as Epi-EBRM.
This naming convention is based on how AsympGreedy-EBRM for best-arm identification
is equivalent to a bandit optimization algorithm that chooses actions to minimize only the
posterior epistemic risk (i.e., maximize value of information). Conversely, Bayes-EBRM
chooses actions to minimizes the Bayes’ risk by identifying the 1-step lookahead candidate
policy with minimal process risk.

Baseline Algorithms

In order to provide a baseline against which to compare the EBRM algorithms, we evaluated
several reference online learning algorithms. These algorithms are presented below, in groups
distinguished by their design goals and whether they take the time horizon (for temporal
feasibility criteria) into account.

General Online Learning Algorithms These algorithms, like the EBRM algorithms,
can be applied to any OLPs which can described by the BMDP formulation presented in
Section 5.2.

• Thompson Sampling (TS; also known as Posterior Sampling) [70]: Samples a set of hid-
den parameters θ from the belief distribution bt, and then chooses at+1 to be whichever
action action is optimal (for bandit optimization) according to the sampled parame-
ters. It can be easily extended to a wide range of OLPs by instead choosing the first
action of the ODOL policy for the sampled parameters; we call this approach Gener-
alized TS. Thompson sampling, first proposed in 1933, is remarkably effective given
its simplicity [173], [189]. While classical Thompson sampling requires no tuning, re-
cent works have added hyperparameters that can be tuned for better performance on
specific bandit problems [177].

Best-Arm Identification Best-arm identification is one of the earliest fields of online
learning, and is often called “pure exploration”. Oftentimes, bandit optimization algorithms
are used with their hyperparameters tuned to encourage exploration. We consider three
dedicated BAI algorithms.

• KG Explore [89], [190]: Chooses the arm with the highest knowledge gradient. This
“gradient” represents how much the largest posterior arm mean is expected to exceed
the largest prior (current) arm mean, multiplied by the remaining time (T − t). KG
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Explore is the Greedy-EBRM algorithm for BAI, as this gradient is exactly equal the
expected value of information in Eq. (5.4.7); unlike Epi-EBRM, KG Explore does not
consider the asymptotic value of information.

• KG* Explore [18]: Improves upon KG Explore by computing the knowledge gradient
based on repeating each action m = {1, . . . , T − t} times, and chooses the m for which
the knowledge gradient weighted by m−1 is largest. This is more effective heuristic,
but expensive to compute for long time horizons [19].

• Top-Two Expected Improvement (TTEI) [85]: Operates by biasing sampling towards
the two actions with the highest mean observations; the probability that the heuristic
chooses the second-best action is controlled by a hyperparameter, but TTEI generally
works well even when this hyperparameter is set to its default value. It has demon-
strated superior performance when compared to various alternatives, including KG
Explore [85].

Finite-Time Bandit Optimization These algorithms are designed to minimize regret
in stochastic bandit optimization problems, and take into account the finite time horizon T .

• UCB-MOSS [191]: Chooses the action (arm) with the highest observation mean, with
an added bias proportional to the remaining time horizon (T − t) and inversely propor-
tional to the number of times that action has been used so far. This bias is designed to
be minimax optimal in stochastic bandit optimization problems with binary rewards.

• Knowledge Gradient (KG) [17]: The same as KG Explore, but adds the observation
mean to the gradient. KG is the Greedy-EBRM algorithm for BDO and, unlike Bayes-
EBRM, does not consider the asymptotic value of information.

• KG* [18]: The same as KG* Explore, but adds the observation mean to the gradient.
It still requires O(Kh) computations for each decision, making it expensive to compute
for long time horizons [19].

Asymptotic Bandit Optimization These algorithms are designed to incur the minimum
worst-case regret in stochastic bandit optimization problems with unknown time horizons
(including infinite horizons). Thus they are generally expected to underperform finite-time
bandit optimization algorithms when T is given.

• Double Sampling (DS) [189]: A recent improvement upon Thompson sampling that
makes modifications for a more efficient exploration-exploitation trade-off. It performs
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similarly to TS when the probability of any particular action being optimal is low,
but chooses the action with the highest observation mean when the probability of that
action being optimal is high. DS uses a variable number of samples to make each
decision, inversely proportional to its confidence in the best action.

• UCB1 [81]: Perhaps the most popular heuristic for bandit optimization problems; as an
upper confidence bound algorithm, it chooses the action with the highest observation
mean, biased by an amount that is inversely proportional to the number of times
that action has been chosen in the past. This bias is often multiplied by a scalar
hyperparameter, which can be tuned for better performance on specific OLPs; a larger
scalar encourages exploration over exploitation. Except where otherwise noted, we use
the original UCB1 algorithm for which the value of this hyperparameter is 1.

• Information Directed Sampling (IDS/V-IDS) [19]: Chooses actions by minimizing the
squared regret that the agent incurs per bit of information gained by the agent about
the optimal action. This works well across a variety of bandit optimization problems,
although it can be computationally expensive to compute the number of bits of infor-
mation expected to gained by some action; variance-based IDS (V-IDS) instead uses a
lower bound estimate of this quantity that is much more efficient to compute.

• Any-MOSS (MOSS-anytime) [192]: A variant of UCB-MOSS, this heuristic is designed
to be minimax optimal for asymptotic bandit optimization problems.

Experimental Methodology

All trials used a temporal feasibility criterion with finite horizon T ∈ N>0. Each trial is
characterized by a specific set of hidden parameters θ and hidden outcomes X. In some
experiments, the hidden parameters are fixed, while in others they were randomly gener-
ated from the prior belief distribution b0. Regardless, T hidden outcomes x1, . . . , xT were
randomly sampled from the stochastic process fθ. In each round t = 1, . . . , T of each trial,
each algorithm chose one action at, and received the observation Φ(xt, at). The same hidden
outcome xt was used to generate the observations and action rewards for all algorithms. The
number of trials varied between experiments, as some experiments required more in order
to achieve sufficiently low standard errors. All figures show 95% confidence intervals of the
mean.
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Results and Discussion

We evaluated the performance of the AsympGreedy-EBRM algorithms in a variety of nu-
merical experiments, many of which are baselines established by or based on prior works.

One of the most comprehensive comtemporary comparisons of online learning algorithms
for bandit optimization was made by Russo et al. [19]. Table 5.11 replicates their experiment
consisting of a 10-arm Bernoulli bandit with hidden parameters sampled according to µ ∼ b0,
with b0 = Beta(1, 1), and a time horizon of T = 1000. The columns show the Bayes regret
computed from 2000 trials, followed by various percentiles of Bayes regret. The algorithms
which make use of the time horizon T are listed first, with a double line separating them
from the algorithms designed for asymptotic performance.

As Bernoulli bandits with beta priors are among the simplest and most well studied OLPs,
it is unsurprising that Bayes-EBRM makes only a slight, although statistically significant,
improvement upon the previous state-of-the-art for bandit optimization in this problem.
More interestingly, it has more consistent performance than the other leading heuristics,
including KG*, IDS, and V-IDS; this is particularly noticeable in the 90th and 95th percentile
results. Anytime-EBRM performs comparably to IDS/V-IDS, demonstrating that the value
of information computed by the AsympGreedy-EBRM approach is similarly useful to the
IDS value of information function, and the performance improvement of Bayes-EBRM is
mostly driven by taking the time horizon into account. The KG heuristic has been noted to
perform particularly poorly for bandit problems with binary rewards [19].

In a similar Bernoulli bandit experiment with a time horizon of T = 104, shown in
Figure 5.5, we find that Bayes-EBRM continues to outperform the other algorithms in bandit
optimization. Similarly, for best-arm identification, Epi-EBRM achieves lower epistemic
uncertainty than any baseline algorithm. This figure demonstrates aspects of the exploration-
exploitation trade-off; in general, algorithms which focus on minimizing Bayes regret will
explore less and have higher epistemic uncertainty [170]. However, for a finite-time horizon
there is an optimal amount of exploration required to do well at bandit optimization; as seen
in Figure 5.5, Bayes-EBRM spends approximately the first 4000 turns reducing its epistemic
uncertainty, and performs worse on the bandit optimization objective than Anytime-EBRM
or DS until this point; then, it surpasses them both by exploiting its more complete knowledge
of the best action. The other algorithms all over-explore, with the UCB-based algorithms
having orders of magnitude larger Bayes regret.

We next consider a 10-arm Gaussian bandit problem with time horizon T = 1000, and b0
a zero-mean uncorrelated multivariate Gaussian distribution with unit variances. The results
are presented in Table 5.12 and in Figure 5.6. This is another archetypal online learning
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(a) Anytime-EBRM and DS over-exploit early
in each trial, while Bayes-EBRM outperforms
them by reaching the optimal level of epistemic
uncertainty before exploiting the best arm.

(b) The stark contrast in BAI performance be-
tween Epi-EBRM and KG Explore highlights
the importance of using the asymptotic value
of information to escape bad local minima.

Figure 5.5: Performance of algorithms in BDO and BAI objectives while making decisions in
a 10-arm Bernoulli bandit problem over 104 turns; lower values indicate better performance.
Shaded regions indicate 95% confidence intervals over 5000 trials.

Table 5.11: Bayes Regret. 10-arm Bernoulli Bandit, 1000 Turns. Average over 2000 trials.
(1)Results from [19].

Algorithm Mean Percentiles
10% 25% 50% 75% 90% 95%

Bayes-EBRM 17.2 ±0.3 6.9 9.0 13.2 20.1 30.7 40.6
UCB-MOSS 51.2 ±0.2 41.3 44.8 49.8 55.3 63.0 68.4

KG(1) 51.0 ±1.5 0.7 2.9 11.9 82.3 159.0 204.2
KG*(1) 18.4 ±0.6 2.9 5.4 8.7 16.3 46.9 76.6

Anytime-EBRM 19.8 ±0.4 3.6 8.6 15.9 24.7 37.9 51.4
IDS(1) 18.0 ±0.4 3.6 7.4 13.3 22.5 35.6 51.9

V-IDS(1) 18.1 ±0.4 5.2 8.1 13.5 22.3 36.5 48.8
DS 23.5 ±0.4 9.4 12.7 18.7 29.2 43.7 52.0
TS 28.4 ±0.3 13.1 17.5 25.1 35.3 47.9 56.1

Any-MOSS 53.9 ±0.2 43.7 47.7 52.1 57.9 64.5 71.6
UCB1 133.6 ±0.4 106.7 119.9 135.0 148.0 158.1 164.1
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Table 5.12: Bayes Regret. 10-arm Gaussian Bandit, 1000 Turns. Average over 5000 trials.
(1)Results from [19].

Algorithm Mean Percentiles
10% 25% 50% 75% 90% 95%

Bayes-EBRM 49.6 ±0.6 28.4 34.0 42.1 53.8 69.1 85.5
UCB-MOSS 51.2 ±0.6 29.6 34.0 40.2 50.2 71.0 107.3

KG 63.0 ±1.7 16.3 20.3 25.8 35.7 141.9 303.5
KG* 52.4 ±1.3 18.6 23.3 29.4 39.4 79.0 196.3

Anytime-EBRM 57.2 ±0.8 24.7 30.9 41.6 60.5 98.8 145.6
V-IDS(1) 58.4 ±1.7 24.0 30.3 39.2 56.3 104.6 158.1

DS 66.5 ±0.8 31.2 40.6 54.8 75.5 105.9 136.2
TS 69.5 ±0.5 39.4 48.9 61.7 81.4 106.2 125.5

Any-MOSS 58.0 ±0.8 30.8 35.1 41.3 53.8 96.4 152.2
UCB1 94.4 ±0.4 64.3 74.5 90.3 109.5 129.7 143.7

(a) KG and KG* initially over-exploit the BDO
objective, resulting in lower initial Bayes regret
but ultimately performing worse than Bayes-
EBRM and UCB-MOSS, which wait to be more
confident in the best arm before exploiting it.

(b) The upper dashed line represents 95% con-
fidence in having found the best arm, while the
lower dashed line represents 99.99% confidence.
Epi-EBRM achieves the highest confidence in
the best arm over long horizons.

Figure 5.6: Performance of algorithms in BDO and BAI objectives while making decisions in
a 10-arm Gaussian bandit problem over 1000 turns. Shaded regions indicate 95% confidence
intervals over 2000 trials.
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problem, and Bayes-EBRM again demonstrates leading performance by a small margin.14

We also experiment with varying the time horizon as in [19]. Each of the values in Table 5.13
represents the mean average instance regret over 2000 trials, so the table represents 20000
trials for each of 9 algorithms. We observe that Bayes-EBRM is the only algorithm which
performs consistently well across all time horizons; KG and V-IDS each perform similarly well
to Bayes-EBRM for short time horizons, but begin to perform much worse from T = 500.
Eventually, UCB-MOSS manages to outperform Bayes-EBRM, despite poor performance
over short time horizons.

In best-arm identification on the 10-arm Gaussian bandit problem, we find that Epi-
EBRM significantly outperforms the previous state-of-the-art beyond the first 100 turns.
TTEI performs well up to this point, but its focus on the top-two arm candidates causes it
to neglect the other 8 arms which may each still have a non-negligible chance of being the
largest.

In A.2, we present the results of additional experiments involving a 2-arm Bernoulli
bandit, a 5-arm Gaussian Bandit, and a 10-arm Beta bandit with time horizons of T = 200,
T = 100, and T = 104, respectively. These results are qualitatively similar to the previous
results, demonstrating that the AsympGreedy-EBRM algorithms match or surpass state-
of-the-art performance in bandit optimization and best-arm identification regardless of the
type of bandit, the number of arms, or the time horizon.

Hyperparameter Tuning

As noted in previous sections, some online learning heuristics have hyperparameters that
can be tuned in order to achieve better performance on specific OLPs. NoTeS is a tuning
algorithm designed specifically to optimize the hyperparameters of online learning algorithms
in order to minimize Bayes’ regret (risk) [177]. It is an iterative algorithm, which reports the
best hyperparameters found by the time it reaches a user-defined tuning budget (number
of iterations). It outperformed various baseline algorithms in being able to find the lowest
Bayes’ regret tuning in the smallest tuning budget [177].

Table 5.14 presents the average Bayes’ regret of UCB1 and TS for 2- and 10-arm Bernoulli
bandit problems with T = 200 and T = 104 respectively, alongside the results for Bayes-
EBRM, Anytime-EBRM, DS, and UCB-MOSS. Bayes-EBRM and Anytime-EBRM outper-
form UCB1 and TS in both experiments, even when the latter are tuned over 1000 iterations.
As usual, Bayes-EBRM demonstrates better performance than Anytime-EBRM by taking
the time horizon into account.

14IDS is missing from this comparison as the authors note that it is too computationally expensive, and
V-IDS achieves comparable performance [19].
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Computational Decision Complexity Comparison

Most of the baseline algorithms are designed to be fast, and use O(K) computations to
compute some simple heuristic; often, these require taking a sample from bt, or computing
functions of its mean or covariance. The exceptions are KG*, which use O(KT ) compu-
tations, and DS, which uses a tunable number of samples from bt for each decision. The
EBRM algorithms require sampling to compute the expected value of information function
for each action; in bandit problems, each action only provides information about one hidden
parameter and constructing an ODOL policy from this information has cost O(1), so the cost
of generating a sample is O(1). Thus, assuming a fixed number of samples, EBRM bandit
decisions have a time complexity of O(K). The actual decision time, however, depends heav-
ily on the cost of each sample. In practice, for bandit problems we can accurately compute
the expected value of information by using integration by quadrature at a relatively small,
fixed number of sample locations in Θ.

In Figure 5.7, we explore how the choice of the fixed number of samples used to estimate
the expected value of information for each action affects the performance and running time
of Bayes-EBRM. In general, we find that BDO performance is largely insensitive to the
number of samples used. Furthermore, unlike KG*, the time for an EBRM algorithm to
make a bandit decision is independent of the time horizon T .

5.5.2 Combined Belief- and Action- Rewards

As noted in Section 5.1, and highlighted in Figure 5.1, online learning algorithms must
balance between multiple competing OLP objectives. For all of the baseline algorithms
discussed thus far, this balance is an implicit, fixed parameter of the algorithm. However,
EBRM-based approaches are uniquely capable of achieving OLP objectives that can be
expressed as the sum of action-based and belief-based rewards which meet the conditions
described in Section 5.2. We demonstrate this by revisting the example in Figure 5.1.

Suppose there is a clinical trial to be conducted with a study group of 423 patients. The
four treatments to be tested have a priori unknown success rates, µ1 = µ2 = µ3 = 0.3 and
µ4 = 0.5. After the trial is completed, the best performing treatment will be administered to
N patients outside of the trial who are likewise awaiting treatment. The goal is to have as
many successful outcomes as possible across all 423+N patients; the Task Regret represents
the number of unsuccessful treatment outcomes. This example is adapted from the multi-arm
trial setting considered in [71].

The AsympGreedy-EBRM algorithm for this problem is trivial to design, and presented
in Table 5.15 as Task-EBRM. Note that in this example, epistemic uncertainty and instance
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(a) The quality of Bayes-EBRM decisions with
100 samples is indistinguishable from its per-
formance with only 10 in this Bernoulli bandit
problem, resulting in a single blue-green curve.

(b) The Bayes-EBRM methods for this 10-
arm Bernoulli bandit problem use comparable
amounts of computation to the non-UCB base-
lines.

(c) The quality of Bayes-EBRM decisions with
1000 samples is indistinguishable from its per-
formance with 200 in this Gaussian bandit
problem, producing a single solid blue-green
curve.

(d) Bayes-EBRM decisions with 200 samples
require a fifth as much computation time as
those with 1000 in this problem. We also see
the proportionality of the KG* decision time
to T − t.

Figure 5.7: We re-evaluate the performance of Bayes-EBRM for the Bernoulli and Gaussian
bandit experiments (each with 10-arms and T = 103) with different numbers of samples used
to estimate the expected value of information. We further report the average time for each
algorithm to make a decision as a function of the turn number.
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regret are equivalent to the x- and y-axis labels in Figure 5.1, respectively. This algorithm
is parameterized by N , and directly attempts to maximize the total number of successful
patient outcomes. ForN = 0 Task-EBRM is equivalent to Bayes-EBRM, while asN →∞ its
behaviour approaches that of Epi-EBRM. We evaluate this algorithm for various N alongside
the baseline algorithms, and present the results in Figure 5.8.

As expected, the relative performance of most algorithms varies greatly for different values
of N , while Task-EBRM consistently achieves the least task regret. For example, TTEI
performs relatively poorly even when N = 2500, but is the best of the baseline algorithms
as N →∞. Similarly, DS and Anytime-EBRM perform very well for N ≤ 500, but perform
poorly for N ≥ 2500. UCB-MOSS and Any-MOSS are the most versatile of the baseline
algorithms, but choosing either of these still results in up to three times as many unsuccessful
patient outcomes as N → ∞. In fact, by evaluating Task-EBRM at additional values of N
we find that AsympGreedy-EBRM dominates the baseline algorithms, in that for any of the
baseline algorithms, there is a value of N ≥ 0 such that Task-EBRM simultaneously achieves
both lower epistemic uncertainty and less Bayes’ regret. This is presented in Figure 5.1,
where the x-axis shows epistemic uncertainty scaled by 103. These results support that
AsympGreedy-EBRM algorithms are the superior solutions for real-world OLPs.

5.5.3 Partial Monitoring and Dynamic Pricing

Partial monitoring is a more general class of online learning than bandit optimization, and
enables the study of more interesting reward and observation models. Stochastic partial
monitoring is a specific case of the OLP structure presented in Section 5.2, characterized by
finite action and outcome sets with an “observation matrix” H and a “loss matrix” L, which
define the observation model and action rewards, respectively. The full specification, less
problem-specific components, is given in Table 5.16.

Dynamic Pricing is a prototypical partial monitoring problem which has complexities
beyond that of bandit optimization. In it, each of the K actions represent a “sales price”,
and each of the M = K hidden outcomes represents a customer’s “willingness to pay”. If
the sales price is higher than a customer’s willingness to pay, there is no sale and the agent
incurs some fixed loss c ∈ R>0. Otherwise, a sale is made, and the agent incurs a loss based
on how much lower the price was than the customer’s willingness to pay. Importantly, the
customer’s willingness to pay is never directly revealed. The dynamic pricing specification,
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Table 5.15: Task-EBRM Algorithm Components.

EBRM Component Task-EBRM

ImmediateRisk(Bt, a) maxk µ̂t(k)− µ̂t(a)

EpistemicRisk(Bt) (N + T − t)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI(Bt, a) (N + T − t− 1)Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI(Bt, a) (N + T − t− 1)Eµ|b̃at+1

[maxk µ(k)]− Eµ|b̃t [maxk µ(k)]

Table 5.16: Partial Monitoring Problem Characteristics.

OLP Component Partial Monitoring Definition

X Hidden Outcomes X = {1, . . . ,M}
A Actions A = {1, . . . , K}
Θ Hidden Parameters Θ = ∆M := {θ ∈ RM

≥0 : ∥θ∥1 = 1}
fθ Process Model Pr(x | θ) = θ(x)

Φ Observation Model Φ(x, a) = H(x, a)

- Known Parameters H ∈ YM×K

R(x, a) Action Reward R(x, a) = −L(x, a)
- Known Parameters L ∈ RM×K

R(b) Belief Reward R(b) = 0 ∀b
Ω(ξ) Feasibility Criterion Temporal with horizon T ∈ N>0
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(a) At N = 500, we see similar relative per-
formance as for the BDO objective in the
Bernoulli bandit experiment from Figure 5.5,
as Task-EBRM approximates Bayes-EBRM.

(b) At N = 2500, the lack of exploration per-
formed by DS and Anytime-EBRM relative to
Task-EBRM results in more unsuccessful out-
comes among post-trial patients.

(c) At N = 25000, the large amount of explo-
ration preferred by the UCB-based algorithms
and TTEI begins to result in relatively strong
performance.

(d) By N = 50000, we see similar relative
performance as for the BAI objective in the
Bernoulli bandit experiment from Figure 5.5,
as Task-EBRM approximates Epi-EBRM.

Figure 5.8: Performance of the AsympGreedy-EBRM and baseline algorithms on the task
described in 5.5.2, for various sizes of global patient population N . Task regret indicates the
number of failed treatments among 423 +N patients.
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of H and L is thus, as given in [193] and where “y” denotes a sale and “n” denotes no sale,

H =


y · · · · · · y
n y · · · y
... . . . . . . ...
n · · · n y

, L =


0 1 · · · K − 1

c 0 · · · K − 2
... . . . . . . ...
c · · · c 0

. (5.5.1)

Dynamic pricing is more difficult than bandit optimization because the problem is not
locally observable. In short, this means that the relative expected reward (equivalently, loss)
of some pairs of actions a1, a2 cannot be determined without taking a third action a3. This
presents an issue if a1, a2 are candidates for the best action, while a3 has much lower expected
reward. In our formulation, this is a case where the (expected) value of information of various
actions is highly correlated with their immediate risk, as the actions with low risk provide
little or no information. A more thorough analysis of the issue, and its related implications
to the difficulty of partial monitoring problems, is given by [75].

Letting µ = ⟨−L, θ⟩ and µ̂t = Eθ|bt [µ], the immediate risk, epistemic risk, EVoI and
AVoI of the AsympGreedy algorithm for dynamic pricing match those of the Bayes-EBRM
algorithm, as given in Table 5.8. The ODOL policy in any belief state is to choose the action
with the highest expected reward, argmaxk∈[K] µ̂t(k).

Experimental Methodology

To generate each dynamic pricing problem instance, we generated a hidden parameter vector
from a uniform distribution over the K-dimensional probability simplex Θ. The initial belief
distribution, however, was taken to be a normal distribution with mean E[θ] and an identity
covariance matrix IK . While this prior is unbiased, it is not the actual distribution from which
hidden parameters are drawn. We generated 5000 problem instances for each experiment,
and set the fixed cost for no sale to c = 2.

We use the BPM (Bayes-update Partial Monitoring) approach presented in [193] to gen-
erate a Gaussian posterior belief distribution following each new action-observation pair.
Samples taken from these belief distributions may lie outside of the probability simplex Θ;
in such cases, as in [193], we project these samples to the nearest point in Θ. We com-
pare against the BPM-TS algorithm presented in [193], which is the generalized Thompson
sampling strategy (discussed in Subsection 5.5.1) using the same BPM update rule.

Results and Discussion

Figures 5.9 and 5.10 show average Bayes’ regret and epistemic uncertainty for each of the
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two experiments, with time horizons T = 103 and T = 104, respectively. The results parallel
those of the bandit experiments; the Bayes- and Anytime-EBRM algorithms outperform the
baseline by effectively managing the trade-off between exploration and exploitation, balanc-
ing immediate risk with the expected and asymptotic values of information. Knowledge of
the time horizon enables Bayes-EBRM to outperform Anytime-EBRM, but the gap shrinks
over longer horizons. The Greedy-EBRM algorithm, which ignores the asymptotic value of
information, fails to sufficiently explore and incurs linear regret.

Impact of Prior Misspecification

As noted previously, the normal prior used in the dynamic pricing experiments does not
match the true uniform distribution from which the hidden parameters are drawn. To
determine the sensitivity of the algorithms to the choice of prior, we explored scaling the
prior covariance matrix to sIK , for some s > 0.

The results for s ∈ {2, 10, 0.5, 0.1} are presented in Figure 5.11. In general, the most algo-
rithms show little performance change over the wider priors s ∈ {2, 10, 0.5}, but performance
degrades when s = 0.1. This is to be expected, as a wide prior can be compensated for by
taking a few actions with high value of information, and any corresponding immediate risk
incurred has little impact over longer time horizons. Conversely, a narrow prior can cause
algorithms to underestimate the value of exploration and, in the case of EBRM, encourages
following a sub-optimal ODOL policy.
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(a) The Anytime-EBRM algorithm excels at
minimizing Bayes regret at the beginning of
each experiment, but insufficient exploration
causes it to fall behind for t > 500.

(b) By reasoning explicitly about the value
of information, Epi-EBRM reduces the agent’s
epistemic uncertainty significantly faster than
BPM-TS.

Figure 5.9: Results of the dynamic pricing experiment with T = 103. The Greedy-EBRM
algorithm fails to sufficiently explore, suffering linear regret. The Anytime-EBRM algo-
rithm, like BPM-TS, lacks knowledge of the time horizon but achieves superior performance
by explicitly reasoning about immediate risks and the expected and asymptotic values of
information. By further taking the time horizon into account, Bayes-EBRM significantly
outperforms the other methods.
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(a) While broadly similarly to the results in Fig-
ure 5.9(a), the difference in average Bayes regret
between the Anytime-EBRM and Bayes-EBRM
algorithms is reduced.

(b) While Epi-EBRM continues to most effec-
tively reduce epistemic uncertainty, as the be-
haviour of BPM-TS gradually shifts away from
exploration.

Figure 5.10: Results of the dynamic pricing experiment with T = 104.

124



(a) At s = 2, we see very similar performance
as for the baseline case s = 1 across all algo-
rithms.

(b) At s = 10, Anytime-EBRM alone shows a
noticeable increase in average regret.

(c) At s = 0.5, Anytime-EBRM and Bayes-
EBRM each have a slight increase in perfor-
mance.

(d) At s = 0.1, Anytime-EBRM and Bayes-
EBRM are both negatively impacted.

Figure 5.11: Performance of the EBRM algorithms and BPM-TS on the dynamic pricing
task for various priors, differing only in the scale of their respective covariance matrices, s.
In general, “wider” priors result in better performance than overly “tight” or “narrow” priors,
which can cause the algorithms to under-explore.
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5.6 Summary

The BMDP model in presented in Section 5.2 provides a standard way to model online
learning problems with combined action- and belief-based rewards, action-based costs and
various feasibility criterion. The notion of measuring risk with respect to X- and θ-optimal
policies as well as ODOL policies presents new ways to understand online learning problems
and analyze policies through aleatoric, epistemic, and process risks. The EBRM-approach
of searching for policies with minimal process risk has been shown to be feasible and highly
effective at solving bandit problems, with AsympGreedy-EBRM algorithms matching or
exceeding the state of the art in every experiment. The proposed approach is unique in
that deriving the immediate risk and value-of-information functions for a particular online
learning problem characterizes the AsympGreedy-EBRM algorithm for that problem.

The EBRM approach presented in this chapter represents a change in direction from
previous online learning algorithms, which were each designed for optimal performance over
some archetypal class of online learning problem and objective, to the design of an algo-
rithm that is parameterized by the online learning problem specification itself. While more
complicated, this ensures that the behavior of an EBRM algorithm is always aligned with
the task goals, and eliminates the need for hyperparameters. As such, EBRM approaches
are a highly effective compromise between POMDP solutions like reinforcement learning,
which can optimally solve complex online learning problems but often have significant setup
and computational costs, and online learning heuristics, which are easy to implement and
compute but cannot capture the complexities of specific online learning problems.

The advantages of AsympGreedy-EBRM over previous methods are particularly valuable
for use in our proposed approach to autonomous exploration from Chapter 1. Query actions
(which represent sending image to a human supervisor for labeling via some underwater com-
munications device) have energy costs and feasibility constraints, which EBRM algorithms
are able to take into account. Furthermore, as observed in Section 5.5, myopic risk-based
online learning algorithms are particularly prone to failure in cases of binary feedback (see,
e.g., KG in Figure 5.5), which is the case when requesting human labels for phenomena
of interest; by overcoming this myopia, AsympGreedy-EBRM achieves leading performance
in such problems. Lastly, by explicitly estimating the expected/asymptotic value of infor-
mation, a robotic explorer can weigh the utility of a query against the time and effort of
the human supervisor. Specifically, by assigning a “cost” for the supervisor’s time to query
actions, and assigning zero cost to skipping a query, queries will only be made if they are
sufficiently useful. Ultimately, this improves human-robot collaboration, as it avoids wasting
human time and energy, as well as communications bandwidth, on low-value queries.
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Chapter 6

Adaptive Exploration with
Risk-Minimizing Communication

This chapter presents a system for vision-based robotic exploration of unfamiliar environ-
ments with severe communication bandwidth restrictions (≲ 10 kbps) and a priori unknown
targets of interest, addressing the challenges first discussed in Chapter 1. The robot it-
eratively selects images to send to its human supervisor using the AsympGreedy-EBRM
algorithm presented in the previous chapter; the supervisor labels those images based on
whether they contain targets of interest. The robot models the co-occurrence of these tar-
gets with various semantic classes, learned online via unsupervised spatiotemporal semantic
models. To do so, it uses a novel beta-concentration probabilistic reward model, which infers
the concentration of targets of interest associated with each semantic class and can be up-
dated efficiently with new labels. The robot simultaneously extrapolates its semantic map
in order to predict where to find more targets, and uses a hotspot-based greedy planner to
cover the regions where the concentration of targets of interest is expected to be the highest.
This approach was evaluated in simulations using large maps of real coral reefs constructed
from data collected in the U.S. Virgin Islands.

Summary of Contributions

In this chapter we demonstrate what is, to our understanding, the first complete system for
human-in-the-loop adaptive visual exploration with severe communications restrictions. In
constructing this system, we integrate and build upon recent developments in unsupervised
semantic mapping, online learning, and topological path planning. Specifically, we present
the following contributions:

1. An EBRM-based query selection algorithm which optimizes the use of a severely band-
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Figure 6.1: We present an approach to maximally utilize a low-bandwidth communications
channel between a robotic explorer (left) and a remote human supervisor (upper right) for
realtime mission adaptation. The robot uses a risk-aware online learning algorithm to pick
individual images to send to the supervisor, carefully chosen such that they are representative
of the various observation classes encountered and can be used to augment the mission plan
in realtime, based on the supervisor’s feedback (lower right), for more targeted observation.
Note: Parts of this figure were generated using DALL·E 3.
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width limited communications channel for in situ mission adaptation,

2. The novel Beta-Concentration reward model, which provide interpretable mappings
from learned semantic distributions to mission objectives and can be efficiently updated
with new labels,

3. A novel two-stage hotspot-based path planner which uses an initial sparse survey to
enable semantic map extrapolation and collect a diverse set of candidate queries, and
then effectively maximizes the collection of mission-relevant observations, and

4. A comprehensive evaluation of the entire system in simulations of a robot exploring
real coral reef environments built from high-resolution maps collected in the US Virgin
Islands by a real AUV, wherein the robot collects up to 75% more useful observations
at the maximum long-distance underwater communications bandwidth rate (13.2 kbps)
and up to 50% more at the lowest rate tested (825 bps).

6.1 Related Works

Robotic explorers already serve many purposes varying from the highly specific, such as lo-
cating search and rescue targets [194]–[196], to the highly general, such as surveying the deep
ocean [197]–[199] or even other worlds [200]. At both extremes, greater autonomy has sig-
nificantly increased robotic explorers’ operational efficiency. In narrowly specified missions,
developments in autonomous sensing, perception, and modelling have enabled robots to au-
tonomously detect predefined targets of interest using a range of modalities including visual,
thermal, and chemical signatures [201]–[203]. For general mapping, the goal of maximizing
area coverage subject to obstacle avoidance and other constraints is solved by coverage-based
path planners and frontier-based exploration [204]–[207], and novelty-seeking algorithms can
draw a “curious” robot towards the most unusual phenomena in its environment [9]. In
practice, the goals and methods of exploration tend to fall between such extremes; while
a mission’s objective might begin as, for example, conducting a broad survey of a region,
observations made in situ may call for changes in the robot’s behaviour.

An autonomous robot’s behaviour is governed by its reward model. Reward models can
describe a wide variety of tasks, including a variety of “information-gathering” objectives
which are often pursued in autonomous exploration and informative path planning [132],
[136], [208]–[214]. These objectives are usually defined with respect to some scalar field(s)
that the robot is intended to explore. For example, some missions may seek to find and collect
observations at the maxima of such fields (e.g., [4]). In these examples, the robot’s behaviour

129



is driven by reducing uncertainty in its understanding of the world, while the parameters of
its reward model are known and fixed. Conversely, in the adaptive exploration problem, the
parameters that map semantic classes to reward are taken to be a priori unknown; learning
these parameters online is how the robot adapts to new mission objectives. In order to
learn a reward model online from queries, the model needs to have a very small number
of parameters [13]. Furthermore, risk-based query selection methods like AsympGreedy-
EBRM need to sample possible reward model parameters, thereby requiring that the reward
model is probabilistic and maintains a distribution over possible parameter values. As this
distribution will be updated regularly and in situ as the robot receives labels from the human
supervisor, updating this distribution must also be computationally affordable.

The degree to which a robot can efficiently exploit its knowledge of the world to collect as
much reward as possible depends on the quality of its planner. In the adaptive exploration
problem, the planner is responsible for constructing trajectories that locate as many targets
of interest as possible, based on the robot’s knowledge of the semantic map and reward
model parameters, which can together produce a reward map. Sampling based planners such
as Monte-Carlo Tree Search (MCTS) can produce arbitrarily close-to-optimal trajectories
given sufficient computation time [20], [210], [211]. However, these can be computationally
intractable for planning over long horizons; this is especially problematic when the reward
model changes significantly, requiring new trajectories to be planned from scratch. An
alternative approach is topological planning [214], which creates a graph representation of the
environment over which simple planners, such as greedy selection strategies, can produce high
quality trajectories. These are particularly effective when planning over continuous fields
which have strong topological structure [214]. Semantic maps tend to be highly spatially
correlated, making them well suited for this kind of abstraction [11], [215].

6.2 The Adaptive Exploration Problem Setup

In this section, we formalize the human-in-the-loop adaptive exploration problem. We begin
by introducing the notation used throughout this chapter. We use n ∈ N to index discrete
timesteps and t ∈ R to denote continuous time. As a subscript, n denotes the state of a
variable at time tn. We use i and j as general-purpose indices, and use ei ∈ RD to denote
the unit basis vectors with i ∈ {1, . . . , D}. The unit simplex is denoted ∆K := {p ∈ R+ :

∥p∥1 = 1} (for some K ∈ N+), and the space of probability measures over a set X is denoted
P(X ). All vectors are column vectors.

Consider a robotic explorer collecting visual images at a set of locations {xi ∈ RD}.1 The
1We typically use D = 2 as we typically expect an AUV to collect downward facing imagery while
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robot is cooperating with a remote human supervisor who, if they had complete knowledge
of the environment, could label all targets of interest by defining a function R : RD → {0, 1}.
However, in practice this function can only be evaluated at a given location x if the robot
sends an image of that location to the supervisor. In fact, these hidden labels are precisely
equivalent to the hidden outcomes described in Chapter 5, where the observation function
provides the true label yi = R(xi) for some location only if an action is taken to make an
image query from location xi. Communication bandwidth limitations limit the robot to a
small number of queries over the course of a mission.

The robot’s goal is to maximize its accumulated reward by the time the mission ends at
time T ∈ R+, where the reward is defined by the type of mission. We will focus on a type of
mission called adaptive target search, for which the robot is free to travel anywhere within
some predefined area of operations while searching for targets of interest. This matches the
general autonomous exploration paradigm presented in Chapter 1.

We assume that, at the end of the mission, the robot is recovered and offloads all of
its observations using a high-bandwidth communications link. The robot receives one unit
of reward for each distinct target of interest that it observes. That is, assuming that its
sensing radius (field of view) is γ ∈ R+, it cannot receive multiple rewards for observations
collected at locations xi and xj such that ∥xi−xj∥∞ < γ. For simplicity, we will henceforth
assume that γ = 1 so that high level path planning can be performed on a grid with discrete
coordinates x ∈ ZD wherein a reward can only be collected once at each coordinate.

We denote the planned trajectory of the robot at timestep n as τn : R → ZD, such
that τn(t) represents the planned location of the robot on the grid at time t. Note that for
t ∈ [0, tn] then τn(t) indicates the robot’s past and present locations, while for t > tn it
represents where the robot plans to be at some future time. We use Ω(τn) ⊂ ZD to denote
the set of locations visited by τn, where

Ω(τn) :=
{
x ∈ ZD

∣∣ ∃t ∈ [0, T ] : τn(t) = x
}
, (6.2.1)

and similarly define, for convenience, Xn to be the set of only previously visited locations,

Xn :=
{
x ∈ ZD

∣∣ ∃t ∈ [0, tn] : τn(t) = x
}
⊆ Ω(τn). (6.2.2)

maintaining a roughly constant altitude above the seafloor, however in some applications it may be better
to model the robot’s position in 3-dimensions.
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The total reward collected by a trajectory τn is thus

RATS(τn) :=
∑

x∈Ω(τn)

R(x). (6.2.3)

which can only be computed after the vehicle has been recovered and all observations have
been offloaded.

6.3 Online Reward Learning in Adaptive Exploration

Let us assume that the robot is equipped with a predictive spatial semantic model that
computes P (z | x), which describes the likelihood that an observation collected at x ∈ ZD

is mapped to the semantic class distribution z ∈ ∆κn , where κn denotes the number of
distinct semantic classes in use at timestep n. We do not generally expect a deterministic
relationship between the observed semantic class distributions zi and the reward labels R(xi)

at locations xi. Instead, we consider the conditional expectation E[R(x) | z], which describes
the expected reward of an observation with the semantic representation z. Given such a
model, the robot can predict the reward of an observation collected at any x ∈ ZD as

E[R(x) | x,Dn] =

∫
∆κn

E[R(x) | z]P (z | x)dz. (6.3.1)

To approximate this expectation, we must make the structural assumption that E[R(x) | z] ≈
g(z; θ) for some function g : ∆κn → R with hidden parameters θ ∈ Θ; this function is called
the reward model, and these hidden parameters are of precisely the same kind as the ones
discussed in Chapter 5. The problem can thus be framed as actively acquiring a set of
representation-label pairs Dn = {(z1, y1), . . . }, where yi = R(xi), from which to learn the
reward model parameters θ online. We assume that we can identify a reasonable prior for
these parameters, P (θ), and compute the posterior belief distribution with Bayes’ law,

bn = P (θ | Dn) =
P (Dn | θ)P (θ)

P (Dn)
. (6.3.2)

The reward model of the robot is thus defined as

E[R(x) | x,Dn] ≈
∫
Θ

∫
∆κn

g(z; θ)P (z | x)bn(θ)dzdθ. (6.3.3)

As in Chapter 5, we use Sn to denote the state of the robot at timestep n, which includes
its belief distribution bn as well as all other variables relevant to its planning procedure.
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Figure 6.2: The proposed system architecture. A query selection algorithm selects which
images to send over a low-bandwidth communications link (dashed arrow) to the human
supervisor, who responds to each image with a label indicating whether its contents are
relevant to the mission.

6.4 Proposed System Architecture

The proposed approach has five components. The first is the unsupervised vision-based se-
mantic model, which produces a set of semantic classes that distinguish the various phenom-
ena which the robot has encountered, without requiring any examples or pre-training. These
semantic classes generally represent various habitats, terrain types, or anomalies within the
environment. Next is online Bayesian interest regression, which models the co-occurrence of
the learned semantic classes with the supervisor’s reward labels to produce a reward model.
The third component is the spatial semantic model, which produces a semantic map pre-
dicting which semantic classes the robot is most likely to find in new (unvisited) locations;
this can be used in combination with the reward model to construct a scalar reward map.
The fourth is hotspot-based adaptive path planning, which identifies the regions of the re-
ward map with the highest reward concentration and plans paths which densely cover these
“hotspots”. Finally, the last component is an AsympGreedy-EBRM2 based communications
policy which is used to learn the mission objectives (i.e., the reward model) with the minimal
number of queries. The following subsections describe each component in detail.

6.4.1 Unsupervised Vision-Based Semantic Modelling

We model the world as a semantic field Zn : ZD → ∆κn over the learned semantic classes,
such that every location x ∈ ZD is associated with a semantic class distribution Zn(x).
Specifically, we make use of the spatiotemporal semantic mapping system presented in Sub-

2Refer to Chapter 5 for details.
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section 2.2 to develop learned semantic representations online without needing any prior
training or examples of the target environment.

6.4.2 Reward Model Learning

The robot routinely uses a query selection algorithm to choose a previously observed location
x ∈ Xn, and sends the human supervisor the image most representative of it; the supervisor
then provides a binary response y = R(x) indicating the relevance of the image observation
contents to the mission objectives. We define the label set Ln ⊆ Xn as the set of locations
labelled by timestep n. From the training dataset Dn, we construct the feature matrix
Φn ∈ [0, 1]|Ln|×κn and label vector yn ∈ {0, 1}|Ln|, such that

Φn =
[
Zn(x)

⊤
]
x∈Ln

, yn =
[
R(x)

]
x∈Ln

. (6.4.1)

As discussed in Subsection 6.3, we must choose a model g : ∆κn × Θ → R for which
we assume that ∃θ ∈ Θ : g(Zn(x); θ) ≈ E[R(x)] holds ∀x. There are several considerations
in choosing this model: firstly, it must be tractable to compute Eq. (6.3.3). Secondly, the
model’s sample complexity should be low, proportional to the available communications
bandwidth; this generally means that dimΘ must be small, such that a relatively few labels
are required to obtain a good estimate of the true model parameters θ ∈ Θ. Relatedly,
there must be an efficient inference algorithm to infer the posterior parameter distribution
P (θ | Dn) given P (θ | Dn−1). This is particularly important for AsympGreedy-EBRM query
selection, as it must consider many counterfactual posterior belief distributions. Lastly, it
is preferable to choose a model which is interpretable, such that the robot can describe
its model to the human supervisor in order to explain why it is sending a specific query or
choosing a specific plan; this is particularly important for building trust in the system, which
is critical in high-budget exploration use cases (e.g. exploring the deep ocean).

Logistic regression, the classical approach to problems of this type, assumes there is a
weight vector w ∈ Rκn with prior wn(k) ∼ N (0, σ2

w) such that

g(z;wn) = σ
(
w⊤

n z
)
, (6.4.2)

where σ(x) = (1−e−x)−1 is the logistic sigmoid function. The posterior belief distribution is
usually modelled as a multivariate Gaussian distribution bn(w) = P (w | Φn,yn), for which
the parameters can be solved for using techniques such as variational inference. Though
popular, we do not find this model well suited for the adaptive exploration use case. The
expectation in Eq. (6.3.3) cannot be solved analytically for this model, so computing them
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requires either approximations or sampling-based methods. Furthermore, despite the model’s
simplicity, it can require significant computation in order to fully converge on the posterior
belief distribution parameters, and they will vary depending on the weight initialization. As
an alternative, we propose a novel reward models with interpretable parameters for which
expectations and posteriors can be computed efficiently and precisely.

The Beta-Concentration Reward Model

This model assumes that each semantic class k ∈ [κn] is associated with a particular con-
centration ρn(k) ∈ [0, 1] of producing valuable observations, and the expected value of an
observation for some distribution of semantic classes is a linear mixture of these concentra-
tions,

g(z;ρn) = ρ⊤
nz. (6.4.3)

We set a Beta distribution prior on each concentration, ρn(k) ∼ Beta(α0, β0) with hyperpa-
rameters α0 > 0 and β0 > 0. We approximate the posterior belief distribution with another
Beta distribution using an analytical update rule,

ρn | Φn,yn ∼ Beta(αn,βn), (6.4.4)

αn = α0 +Φ⊤
nyn, (6.4.5)

βn = β0 +Φ⊤
n

(
1|Ln| − yn

)
, (6.4.6)

1|Ln| :=
[
1 · · · 1

]⊤
∈ R|Ln|. (6.4.7)

This update is exact if Φn ∈ {0, 1}|Ln|×κn , which corresponds to each labelled example being
representative of only a single semantic class.3 When this is not the case, the true posterior
is not analytical. However, we find that this approximate update rule works very well for
small numbers of labels, particularly when this condition is nearly satisfied (i.e., when the
robot only requests labels for observations dominated by a particular semantic class).4

A key advantage of the beta-concentration model is that it is linear in both z and ρn.
3Recall that each row of Φn is a distribution over semantic classes.
4We present a comparison of the proposed beta-concentration reward model and a traditional logistic

model trained on randomly generated data in Figure B.1, and find that the beta-concentration model per-
forms similarly well despite its substantially reduced computational complexity.
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This makes the spatial reward model separable such that Eq. (6.3.3) can be simplified as,∫
Θ

∫
∆κn

g(z;ρn)P (z | x)bn(ρn)dzdρn =

∫
Θ

∫
∆κn

ρ⊤
nz · P (z | x)bn(ρn)dzdθ (6.4.8)

= E
[
ρ⊤
n | bn

]
E[z | x] = α⊤

nE[z | x]
αn + βn

(6.4.9)

6.4.3 Semantic Map Extrapolation

As a result of the choice of beta-concentration reward model, the robot needs only to be
able to model the expected semantic distribution E[z | x] at a each location x, rather than
a distribution over semantic distributions. As such, we propose that the robot predicts the
values of the semantic map Zn at unobserved locations through simple K-nearest neighbours
extrapolation [216], [217] of locations that have been observed. The extrapolated seman-
tic map Z̃ is thus, for each location x, a simple weighted sum of that location’s nearest
neighbours,

Z̃n(x) := E[z | x] =

Zn(x), x ∈ Xn,∑
v∈N(x) w(x,v)Zn(v)∑

v∈N(x) w(x,v)
, otherwise,

(6.4.10)

where the neighbourhood N(x) contains the ν ≥ 1 distinct elements of Xn which maximize
the weighting function w(·, ·). As in [218], we set ν = 3 and inverse squared Euclidean
distance weights w(u,v) = ∥u− v∥−2

2 .
We show in Section 6.5 that, in practice, this relatively simple extrapolation approach

can often enable the robot to explore nearly as effectively as if it had access to the complete
semantic map a priori. More sophisticated extrapolation strategies exist, however, and
may provide superior performance in other environments or mission types. For example,
Gaussian-Dirichlet Random Fields (GDRF) are able to jointly learn semantic classes as well
as their spatial distribution in the world, which includes the option to learn a separate
lengthscale and spatial covariance structure for each semantic class [12], [219].

Constructing the Reward Map

The robot’s reward map Rn : ZD → [0, 1] indicates the expected reward of visiting any given
cell. We assume that the robot only receives a reward the first time it visits a cell, as the
goal is to observe as many distinct phenomena of interest as possible, so we define it to be

Rn(x) =

0, x ∈ Xn,

α⊤
n Z̃n(x)
αn+βn

, otherwise.
(6.4.11)
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6.4.4 Efficient Trajectory Planning for Adaptive Target Search

The reward map Rn indicates where the robot is expected to find the most interesting
observations; however, it is accurate only where both the extrapolated semantic map and
the reward model parameters are reliable. The extrapolated semantic map is generally
only reliable within some characteristic lengthscale r ∈ R+ of previous observations.5 Even
when the predicted semantic distributions are reliable, the variance of the reward prediction
generally depends on having queried observations with related semantic distributions.

In order to address both of these considerations, we have the robot initially track an
exploratory trajectory through the operational area, such that as much of the map is covered
within the first t1 ∈ R+ seconds. In addition to improving semantic map extrapolation, this
exploration provides a diverse and representative collection of semantic observations for the
robot to use as queries. The robot can send queries to the supervisor during this time in order
to develop its reward model. Then, it plans an exploitative trajectory that maximizes the
number of mission-relevant observations it collects from time t1 until the mission terminates
at time T ; it continues to update this trajectory as it makes new observations and queries.
We discuss both stages in more detail, below.

Stage 1 (Coarse Survey)

In this stage, the robot constructs an initial “exploratory” trajectory τ0 : [0, t1] → RD to
maximize the total area within one lengthscale r of any point along the trajectory. This can
be formulated as an optimization problem,

τ0 ∈ argmax
τ

∫
x∈(τ([0,t1])⊕Bp(r))

dx, (6.4.12)

where ⊕ denotes the Minkowski sum and Bp(r) is the Lp-ball of radius r,

Bp(r) :=
{
a ∈ RD

∣∣ ∥a∥p ≤ r
}
. (6.4.13)

Finding an optimal solution to Eq. (6.4.12) in the presence of obstacles is generally NP-
hard, however there are a wide range of algorithms that can efficiently produce near-optimal
trajectories [220]. Given a priori knowledge of obstacles, an optimal coverage trajectory can
generally be constructed from boustrophedonic paths [204], [205].

5We require that r ≫ γ in order to predict the semantic distribution of locations beyond those that have
been previously visited; we typically expect r ≥ 3γ.
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Stage 2 (Hotspot Coverage)

In this stage, the robot uses its reward map to plan “exploitative” trajectories that cover
regions expected to contain a high concentration of mission-relevant observations. We define
the robot’s “area of operations” at timestep n as X ′

n = Xn ⊕ Bp(r) (all locations within one
lengthscale of any previous observation) and denote exploitative trajectories as τn : [tn, T ]→
X ′

n. The goal is to find a trajectory τ ⋆n which approximately solves the optimization problem,

τ ⋆n ∈ argmax
τ

∑
x∈Ω(τ)

Rn(x). (6.4.14)

This is equivalent to the optimal deterministic open loop policy π̂⋆
Sn

We begin by computing the mission horizon,

hn =
v(T − tn)

γ
, (6.4.15)

where v > 0 is the maximum speed of the robot while collecting observations. The horizon
indicates the maximum number of locations that the robot could visit before the end of
the mission. We use hn to compute a reward threshold cn ∈ [0, 1] as the solution to the
optimization problem,

max
c∈[0,1]

c

s.t. hn ≤
∑
x∈X ′

n

1(Rn(x) ≥ c).
(6.4.16)

We now construct a graph (Vn, En) with vertices Vn = {x ∈ X ′
n | Rn(x) ≥ cn} and undi-

rected edges between adjacent locations, En = {(u,v) | ∥u− v∥1 = 1, (u,v) ∈ Vn}. The
connected components of the graph represent “hotspots” in the reward map; let Hn denote
the set of these connected components. We construct a sequence of hotspots, called the
meta-trajectory, τ̂n, and then construct τn to be a feasible trajectory that densely covers
these hotspots. The score of a hotspot H ∈Hn is the total reward covered by H divided by
its size and distance from the robot’s location. The score of a meta-trajectory τ̂ = {H1, . . . }
is thus

s(τ̂) =

|τ̂ |∑
i=1

∑
x∈Hi

Rn(u)

γ|Hi|+ d(Hi,Hi−1)
, (6.4.17)

d(H1,H2) = γ ·
∥∥∥∥∥∑
x∈H1

x

|H1|
−
∑
x∈H2

x

|H2|

∥∥∥∥∥, (6.4.18)

H0 = {x}, (6.4.19)
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whereH0 represents the robot’s current cell location and d(·, ·) measures the distance between
hotspot centroids. We greedily construct the meta-trajectory τ̂n by iteratively choosing the
next hotspot H to maximize the score s(τ̂ + {H}) until the trajectory length exceeds the
horizon,

|τ̂n|∑
i=1

(γ · |Hi|+ d(Hi,Hi−1)) ≥ hn. (6.4.20)

After each greedy selection, we use the 2-opt local search heuristic to optimize the ordering
of the hotspots.

Lastly, we construct the trajectory τn to densely cover the hotspots in τ̂ using any stan-
dard coverage path planner. In our experiments, we assume that the robot is operating
above any obstacles, so complete coverage can be achieved by chaining a sequence of Bous-
trophedonic coverage paths (simple lawnmower patterns), which are trivial to construct.

6.4.5 Risk-Based Online Query Selection

The optimal deterministic open loop policy for the robot state Sn is equivalent to the optimal
trajectory τ ⋆n, which our planner approximates with τn; thus, generating the ODOL policy
for a counterfactual state Sy,z

n+1, is equivalent to updating the reward model based on a new
query-label pair z, y, and then planning a trajectory for the updated (counterfactual) reward
map Ry,z

n+1, which we denote τ y,zn+1. As the approximate posterior reward model updates in
Eqs. (6.4.5) and (6.4.6) are linear, updating the reward model is extremely efficient, with

αy,z
n+1 = αn + yz, (6.4.21)

βy,z
n+1 = βn + (1− y)z. (6.4.22)

Thus, the vast majority of the time required to generate counterfactuals is in planning an
updated trajectory.

The expected value of information, as defined in Chapter 5, for a new query z is therefore

EVoI(z;Sn) = Ey|bn,z

 ∑
x∈Ω(τy,zn+1)

Ry,z
n+1(x)−

∑
x∈Ω(τn)

Ry,z
n+1(x)

. (6.4.23)

The asymptotic value of information is similarly straightforward to compute,

AVoI(z;Sn) = Eρ|bn

 ∑
x∈Ω(τ⋆ρ)

ρ⊤
n Z̃n(x)

− Eρ|b̃zn+1

 ∑
x∈Ω(τ⋆ρ)

ρ⊤
n Z̃n(x)

, (6.4.24)
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where b̃zn+1 = bµ,zn+1, with µ = α⊤
n z

αn+βn
, represents the convergence of the belief distribution such

that it has the same mean but a smaller variance, scaled based on the Fisher information
of the new query (refer to Subsection 5.4.2 for context). Defining the EVoI and AVoI func-
tions fully characterizes the AsympGreedy-EBRM algorithm for this online learning problem,
which will select queries z to maximize max{EVoI(z;Sn),AVoI(z;Sn)}.

6.5 Experimental Results

In this section we evaluate the proposed system in simulated adaptive exploration missions
of real coral reefs located around the US Virgin Islands.

6.5.1 Methodology

Our team collected two coral reef image datasets in July 2023 at the “Booby Rock”6 and
“Tektite”7 sites located nearby the Virgin Islands Environmental Resource Station (VIERS).
The images were collected with a CUREE AUV platform [166]. The datasets were post-
processed for color correction and the commercial Metashape software [222] was used to
perform bundle adjustment of the images to establish ground truth robot positioning and
to create 3D reconstructions of the sites. Top-down orthomosaics of the sites, created with
Metashape, are presented for visualization purposes in Figures 6.3 and 6.6.

We assume a robot sensing radius of 0.5 m, and discretize the sites accordingly. The
corresponding unsupervised semantic maps of the sites, using the same discretization, were
produced with the Sunshine unsupervised semantic mapping system from [11] and are de-
picted in Figures 6.4 and 6.7, respectively. These semantic maps were created using original
images, as in [11], rather than from the orthomosaics in Figures 6.3 and 6.6.

In each dataset, we segmented all Caribbean “sea fans” (genus: Gorgonia) within a subset
of images. We then used the manual segmentations to train a deep image segmentation
network [223] to segment the rest of the images in each dataset. In each image where more
than 5% of the pixels were labeled as sea fans, we marked the corresponding location as
containing a target of interest. This was used to create a ground truth reward map R(x)

for each site, which defined the responses of a simulated human supervisor to queries; these
maps are depicted in Figure B.3. An example of an image and corresponding segmentation
is presented in Figure 6.5. The goal of the simulated adaptive exploration missions was to
locate and collect images of as many of these sea fans as possible. In testing, we found that

6https://www.venturefarther.com/mapObject/MapObjectSharedInfo.action?mapObject.id=4522
7Named after the subsea habitat which was formerly present here [221].
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Figure 6.3: Booby Rock Reef. The orthomosaic above is 32 m wide by 30 m tall, and was
produced at a resolution of 1 pixel per mm2 (960MP total). The larger dark patches show
reef, while the bright regions are mostly sand. The small dark patches among the sand are
mostly rocks.
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Figure 6.4: Semantic Map of Booby Rock Reef, using 0.5 by 0.5 m grid cells (64 x 60 cells).
The chosen colors are arbitrary and represent only the largest component of the semantic
distribution at each location. Brown and yellow patches correspond best with sandy regions,
shades of blue to reef, and red to large rocks and rubble. This map was created with the
Sunshine package [11] with hyperparameters K = 8, α = 0.01, β = 1, and γ = 0.
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most of the images in the dataset remained relatively clear when reduced in size with JPEG
compression to as small as 50 kB. Example images of sizes 2 MB, 55 kB, and 30 kB are
presented in Figure B.2.

Scientific Context & Motivation Caribbean sea fans have been the subject of significant
study due to recent outbreaks of disease and parasites which target them [224]–[226]. They
are a type of soft coral, and while they most often grow within reef habitats, they can also
be found on rocks isolated in mostly sandy regions. Diseases can have a significant affect
on the appearance of Gorgonia species [226], which would make it challenging to train a
detector to robustly recognize specimens suffering from novel diseases, which are likely the
most important to discover. In effect, we simulate a human supervisor who takes an interest
in the state of the sea fans at these sites, without necessarily having planned to in advance.

We ran 1500 simulated exploration missions on each dataset, at each of 5 different band-
width levels ranging from 13.2 kbps, near the maximum speed of mid-range acoustic com-
munications (≥ 100 m) under ideal conditions, to 825 bps, which approximates the acoustic
communication bandwidth rates of deep sea vehicles. Note that these values are in bits per
second, so at the maximum data transfer rate it required about 30 s to transmit a 50 kB
(400 kbit) query and receive a response label, while at 825 bps it required 480 s (8 minutes).
We tested two different mission durations, T = 1500 and T = 3000, such that the robot was
able to make between 3 and 100 queries over the course of the mission.

We compared AsympGreedy-EBRM query selection to two baseline approaches:

• Most Recent Obs.: This query selection strategy always picks the most recently col-
lected image to send to the supervisor, whenever the previous transmission has finished.
This is equivalent to sending uniformly spaced query images from along the trajectory.8

• Semantic Diversity: This query selection strategy repeatedly cycles through the se-
mantic classes, sending the best unlabeled “exemplar” of each for labeling. The first
query will be the image observation most associated with the first semantic class, the
second with the second, and so on. Once it has queried an exemplar for each of the κn
semantic classes, it repeats from the first class, but selecting the next-best exemplars
(i.e., the best unlabeled exemplars).

Compared to the baselines, the AsympGreedy-EBRM query selection is relatively expen-
sive to compute; in particular, it requires generating counterfactual plans for each possible
query. This is not scalable, since the number of potential queries grows linearly over the
course of the mission. Accordingly, we only evaluate the AsympGreedy-EBRM algorithm

8Such transmissions are already commonly used in practice for monitoring the status of AUVs.
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Figure 6.5: Example of an image from the Tektite reef dataset containing several specimens
of Gorgonia (above), with a corresponding manual semantic segmentation (below).
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Figure 6.6: Tektite Reef. The orthomosaic above is 60 m wide by 45 m tall, and was produced
at a resolution of 1 pixel per mm2 (2.7 gigapixels total). Interpretation of the contents is
largely similar to Booby Rock Reef. There is some distortion in the lower right part of the
orthomosaic where the robot did not have dense visual coverage.
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Figure 6.7: Semantic Map of Tektite Reef, using 0.5 by 0.5 m grid cells (120 x 90 cells).
The chosen colors are arbitrary and represent only the largest component of the semantic
distribution at each location. Purple corresponds best with sand, orange with seagrass, and
the green and blue shades with reef. This map was created with the Sunshine package [11]
with hyperparameters K = 8, α = 0.01, β = 1, and γ = 0.

146



on 2 ∗ κn candidate queries. The first κn of these queries are chosen as the “exemplars”
of each semantic class, as considered by the “Semantic Diversity” query selector. The most
recent image observation9 is also evaluated, while the remaining κn−1 candidates are chosen
uniformly at random from the previously collected observations.

The initial position of the robot was randomized in each experiment. The initial coarse
survey was 42.5 meters wide by 32.5 m tall with 6 arms for the Tektite experiments, and 26
m wide by 25 m tall with 10 arms for the Booby Rock experiments. Each of these coarse
surveys was designed to take approximate 10 minutes to complete at a speed of 0.5 m s−1.
The robot had either 15 or 40 additional minutes to adaptively explore based on its learned
reward model, depending on the value of T . The robot was able to send queries throughout
the mission, so would always transmit its first observation, and would then pick the second
query from among the images collected while first one was being broadcast. Note that the
Booby Rock site map contains only 3840 cells, so the extended duration provides sufficient
time to visit over 75% of the Bobby Rock site, compared to only 28% of the Tektite site.

6.5.2 Variant Mission: Adaptive Sample Selection

We also considered a different type of mission wherein the robot is restricted to following
a pre-planned trajectory but can select specific locations along the way to collect “samples”
near targets of interest. In marine exploration, this may represent collecting a water sample
to be analyzed after vehicle recovery, or simply slowing down near a target of interest to
collect higher-resolution imagery than would typically be collected, which can enable more
detailed analysis and 3D reconstruction in later (offline) processing. Importantly, these
missions are characterized by a sample budget B ∈ N+, which limits the number of samples
which can be collected.

This type of mission is a compromise between traditional pre-planned surveys, which
provide an unbiased estimate of the distribution of various phenomena in a region, and
target search, which seeks to bias data collection towards targets of interest. We make
the same assumptions as for adaptive target search that there is no additional reward for
collecting multiple samples within some sensing radius γ, and that planning will henceforth
take place on a grid x ∈ ZD with spacing equal to γ.

We use τ to denote the pre-planned trajectory, and δn ⊂ Ω(τ) to denote the set of
locations selected for sample collection at timestep n. This set contains both the locations
which have been sampled already, as well as locations that the robot plans to sample later

9That is, the one would would be selected by the “Most Recent Obs.” query selector.
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along the trajectory. The total reward collected by a set of sample selections δn is thus

RSS(δn) :=
∑
x∈δn

R(x). (6.5.1)

We evaluated the proposed system for this sample selection mission, which required only
replacing the hotspot-based trajectory planner with a greedy sample selection procedure,
which sets δn to contain the B locations along the path with the highest expected reward.10

We set τ to consist of the initial coarse survey τ0 used by the hotspot-planner, followed
by a denser survey over the same region. For the Booby Rock experiments this denser survey
was 28.5 m wide by 26.5 m tall and had 18 arms, while for the Tektite experiments it was 50
m wide by 38 m tall and had 12 arms. Both were chosen to be sufficiently long as to exceed
the mission duration of T = 1500. The robot is not permitted to allocate any samples until
it has completed the initial coarse survey, so that it can first construct the semantic map
and send some queries to learn the reward model before making any (irrevocable) sampling
decisions.

For the experiments, we used the same reward map as for adaptive target search, meaning
that the objective was to collect samples nearby Gorgonia specimens.11 We set a budget of
B = 150 samples, and compared the improvement of autonomous sample selection with each
of the query selectors against the non-autonomous solution of simply collecting 1 sample
every 10 seconds uniformly along the pre-planned trajectory (recall that T = 1500).

6.5.3 Results & Discussion

Numerical results from all experiments are presented in Tables 6.1 and 6.2. We discuss each
experiment individually below.

Adaptive Target Search The results for the adaptive target search experiments are
presented visually in Figure 6.8. They show that the proposed system is able to locate up
to 64% more targets of interest than a pre-planned survey (Tektite Reef; T = 3000). Across
all experiments, the risk-based EBRM query selection approach scales the best as the query
response time increases (communication bandwidth decreases). This is because it effectively
prioritizes the most useful queries. Note that even at the lowest bandwidth level (825 bps),
at which it takes 8 minutes for each query, the EBRM-based adaptive target search system
is still able to locate 38% more targets of interest with only 3 queries over the course of the

10Note that the planner is constrained to keep previously collected samples in δn; it cannot choose to
ignore or discard them after collection.

11This could represent, for example, collecting water samples to inspect for pathogens.
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25 minute mission. As the response to the 3rd query is only received 1 minute before the
mission end, most of this improvement comes from careful selection of the first two queries.

Adaptive Sample Selection The results for adaptive sample selection mirror that of
adaptive target search, with the proposed system collecting up to 75% more samples at
targets of interest (Tektite Reef; T = 3000) than the non-adaptive baseline, and with the
EBRM risk-based query selector demonstrating superior performance for slow query response
times (low bandwidth levels). However, we note a failure case in the Booby Rock experiment
where the EBRM query selector performs worse with more queries (short query response
times). This is because, referring to Figure B.3, sea fans are relatively highly concentrated
within the “yellow” semantic class in the right half of the site, but not on the left. EBRM-
based query selection avoid excessive queries for semantic classes that is has already learned
concentration parameters for, but this is ineffective when these concentration values are
spatially heterogeneous, as in this case. The root of this failure is the beta-concentration
reward model, which cannot capture this heterogeneity in its parameters.

Oracle Spatial Prediction We additionally repeat the previous experiments replacing the
K-nearest neighbors spatial prediction model with an “oracle” predictor that has complete
knowledge of the semantic map a priori. This provides insight into how much better the
system might be able to perform with more sophisticated spatial prediction. These results
are presented in Figures 6.9 and 6.11, respectively. In both mission types, this complete
semantic map information provides a moderate improvement in reward collection rates.

Runtime Analyses Lastly, we investigate how the training time of the beta-concentration
reward model and runtime of the hotspot-based planner compare to baseline methods. The
baselines are logistic regression and a naïve greedy planner which greedily constructs paths
out of unit steps in the 8-connected neighborhood of the robot’s current location. We choose
this greedy planner as reference not because it works well, but because it is very computa-
tionally cheap; such greedy planners are often used for rollouts in more complex planners like
Monte Carlo Tree Search [20]. The results for each are presented in Figures 6.12 and 6.13,
respectively. They demonstrate that the analytical updates to the beta-concentration re-
ward model are orders of magnitude faster than updating a simple logistic regression model,
while the hotspot planner runs nearly as fast as a greedy planner. This is because the cost
of identifying the optimal reward threshold and creating the hotspot graph is modest, and
greedy planning over this graph produces a much better plan and with far fewer steps.
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Figure 6.8: These plots show the percentage increase in reward collected by human-robot col-
laboration in adaptive target search when compared to a fixed survey, using different query
selection algorithms. For short query response times (high communications bandwidth), all
query selectors provide similar improvements, but the EBRM risk-based query selection ap-
proach performs significantly better as the query response time increases (i.e., as bandwidth
decreases). Note that the extended duration mission T = 3000 provides enough time for a
pre-planned survey to visit 75% of the Booby Rock map, so it is unsurprising that there is
little advantage to autonomous target search in this case.
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Figure 6.9: When replacing the K-nearest neighbors spatial prediction with an oracle that
has complete knowledge of the semantic map, the improvement from using the proposed
system increases by around 25% to 50% across all experiments. The relationships between
query selectors and across query response times is largely unchanged, although the EBRM
query selector’s performance for low query response times is slightly improved relative to the
baseline selectors.
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Figure 6.10: These plots show the percentage increase in reward collected by human-robot
autonomous exploration in adaptive sample selection when compared to uniform sampling
along the pre-planned trajectory, using different query selection algorithms. The risk-based
EBRM approach makes better use of the few queries available as query response time in-
creases; interestingly, however, it performs worse than the baselines on the Booby Rock site
with many queries, because the concentration of targets of interest within the various se-
mantic classes is spatially heterogeneous; see the main text for details.

Figure 6.11: As in Figure 6.9, there is a 25 to 50% increase in reward collected when the
robots are given complete information about the semantic map in advance, while the relative
performance of the various query selectors is the same as in Figure 6.10.
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Figure 6.12: Here we compare the training time of a logistic regression model with the pro-
posed beta-concentration model. The logistic regression model was trained as in Figure B.1.
Note the log-scale; while the training time of the logistic model is not long for training once,
it makes producing dozens of counterfactual reward models quite expensive. Conversely,
the beta-concentration reward model performs similarly well but can be trained in orders of
magnitude less time.

6.6 Summary

In terms of performance, the proposed system increased the robot’s rate of finding/sampling
targets of interest by up to 64%/75% over traditional pre-planned surveys or random sam-
pling, respectively. When limited to very few queries, between 25% to nearly 100% of this
improvement came from the use of EBRM-based query selection to identify which human-
provided labels would have the greatest potential to improve the robot’s trajectory. Positive
improvements were generally found across all mission types and experiments, however the
impacts of adaptive exploration are much more significant when the area of operations is
much larger than can be covered during the mission duration, and when the patterns between
semantic classes and targets of interest are consistent across the map.

As expected, the difference between query selection strategies is insignificant at high
bandwidth levels across most experiments, where the large quantity of queries makes up
for those lacking in quality. However, the AsympGreedy-EBRM query selector is uniquely
capable of skipping queries expected to have very low values. This would save time and
effort on behalf of the human supervisor, who would otherwise be expected to answer a
proportionally higher number of queries at higher bandwidth levels, and is made possible by
the risk-based query utility measures produced by the EBRM approach.
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Figure 6.13: The hotspot based planner runtime is on approximately the same scale as a
basic greedy planner which simply chains short steps across the map. The longer tail of the
hotspot planner represents cases where a large number of small hotspots are identified,
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Chapter 7

Conclusions & Future Work

This thesis enables large-scale vision-based exploration with dynamic objectives in com-
pletely unfamiliar marine environments and with severely limited communications band-
width. It does so by presenting contributions that solve the problems associated with human-
multi-robot collaboration in such contexts, as presented in Chapter 1. We begin by reviewing
these contributions and highlighting their respective roles in improving human-multi-robot
collaborative underwater exploration.

Chapter 3 presented a solution for matching the egocentric semantic representation
learned by multiple robots, thereby enabling them to share semantic maps describing their
environment. The approach was more flexible and robust to communication failures and
bandwidth limitations than previous approaches, making it well suited as the foundation for
multi-robot collaboration in autonomous vision-based exploration.

Chapter 4 presented the DeepSeeColor algorithm for real-time color correction of un-
derwater imagery, which produces color corrected images better suited for both machine
and human analysis. In particular, it enables higher quality semantic representations to be
produced and, by extension, better semantic maps. This addresses a key practical limita-
tion in the use of unsupervised semantic models for underwater vision, and particularly for
autonomous exploration.

Chapter 5 presented a novel risk-based online learning framework, which generalizes
previous approaches and is applicable to optimal online learning across a wide range of ap-
plications. It also introduced the AsympGreedy-EBRM algorithm, which overcomes the my-
opia of most previous risk-based online learning algorithms while remaining computationally
tractable. Furthermore, AsympGreedy-EBRM is capable of handling problem complexities
such as communication costs and feasibility constraints, as well as the “cost” of a robot
interrupting a human with questions, unlike previous online learning algorithms.

Finally, Chapter 6 introduced a novel beta-concentration reward model and hotspot-based
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planner, the former of which effectively models the co-occurence relationship between learned
semantic classes and arbitrary targets of interest, while the latter enables producing high-
quality plans with minimal computation. These were designed to enable efficient generation
of counterfactuals, the basis of risk-based online learning strategies, and we demonstrated
that using these together with the AsympGreedy-EBRM algorithm to guide human-robot
communication enabled significant increases in mission effectiveness when compared to tra-
ditional methods.

The findings of Chapter 6, in particular, suggest that the proposed human-multi-robot
collaborative approach to vision-based marine exploration is ready to be tested in prac-
tice. They prove that useful semantic maps can be produced online from color corrected
images with unsupervised spatiotemporal topic models, and that useful reward models can
be learned online from few queries; together, these capabilities enable an adaptive robotic
explorer to collect up to 75% more useful data than it would with the kinds of pre-planned
surveys that are currently favored in practice. All of the algorithms presented in this thesis
are computationally efficient enough to run onboard real AUV platforms (e.g., the CUREE
vehicle [166]), and the communications bandwidths tested are representative of the data
transfer rates expected when using such platforms. In fact, the results indicate that a robotic
explorer can use a relatively small fraction of the maximum feasible underwater communi-
cations bandwidth while still achieving significant performance gains, through the careful
query selection of AsympGreedy-EBRM.

While I have not yet had the opportunity to validate this system in real-world field tri-
als, I am confident that approaches like the one proposed in this thesis will soon become
the norm for marine exploration. I further expect that many of the contributions presented
here will remain relevant as further advances are made which replace various components
of the proposed system. For example, the semantic representation matching approach from
Chapter 3 can be applied to matching representations learned by newer (e.g., deep learn-
ing based) unsupervised semantic mapping systems, while the AsympGreedy-EBRM query
selection approach described in Chapters 5 and 6 can be used alongside a wide range of al-
ternative reward models, planners, or semantic models. As practitioners build more trust in
autonomous and adaptive robotic explorers over the course of repeated successful missions,
interest in developing such alternative models and planners will likely grow towards devel-
oping more specialized and sophisticated exploration behaviors. Ultimately, more effective
human-multi-robot collaborative marine exploration can provide societal benefits through
enabling large fleets of robots to more efficiently explore and monitor the Earth’s coral reefs
and other marine environments. This will bring new discoveries to the attention of human
experts as quickly as possible, and likewise enable those experts to intervene, as necessary,
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in time to protect and preserve these critical ecosystems.
Lastly, I would like to note that the contributions of this thesis are relevant to many other

applications. For example, space exploration and subterranean exploration have many of
the same considerations as marine exploration, including dynamic mission objectives with a
priori unknown phenomena of interest and severely limited communications bandwidth. All
of the contributions (aside from DeepSeeColor) can be used to improve human-multi-robot
vision-based exploration in these environments, with few, if any, modifications. Meanwhile,
DeepSeeColor could be useful in many underwater vision systems, while AsympGreedy-
EBRM demonstrated superior performance to baseline methods in applications as ranging
from assigning patients to treatments in a multi-objective clinical trial to determining the
optimal sales price of a product. In conclusion, I am hopeful that the ideas, contributions,
and methods presented in this thesis will inform future progress in vision-based human-
multi-robot marine exploration as well as many other diverse applications across similarly
diverse fields of research.

7.1 Limitations & Future Work

There is still yet more work required to see the contributions presented in the previous
chapters make an impact in real-world autonomous underwater exploration missions. The
general lack of field validation of the preceding contributions is evidence of the significant
practical challenges in underwater autonomy. Over the course of four trips to the US Virgin
Islands for fieldwork, it was only on the most recent one which I was able to begin testing
in situ human-robot collaboration to enable adaptive mission behaviors. Thus, we have not
been able to properly characterize the human-experience component of the human-multi-
robot system.

In previous trips, a major limitation was the navigational performance of our AUV plat-
form; it struggled to reliably return to previous coordinates or track trajectories over long
distances. This is a major limitation to the autonomous behaviors presented in Chapter 6,
which all depend on predicting what the robot will see, which in turn depends on where the
robot will be. One way to improve underwater navigation is with more robust underwater
vision. Underwater camera calibration was a perennial challenge in our lab, as we exper-
imented with different camera, lenses, and ports, and most camera calibration software is
not well-tested for use with underwater vision. Many simultaneous localization and map-
ping systems perform best with high quality depth imagery, and this is particularly hard
to produce with poorly calibrated underwater cameras. This is a significant limitation of
DeepSeeColor, which relies on dense depth images in order to learn and apply the color
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reconstruction model. Some of our collaborators have recently explored improved camera
calibration models which may help to mitigate these issues [227].

Perhaps an even larger barrier than navigation was the substantial investment of time
and resources required to do vision-based underwater exploration fieldwork. As my work is
most applicable to domains such as coral reefs and the deep ocean, the murky waters off
the near-shores of Cape Cod were less than ideal testing grounds; this is one factor which
drove us towards fieldwork in the US Virgin Islands. The cost and logistical complexity
of such trips limited our time in the field, however, so our risk-minimizing strategy was to
focus on collecting datasets which could be used for a variety of simulation experiments.
While this worked out well in providing some extraordinary datasets from which we were
able to produce high-resolution 2D and 3D reef constructions (e.g., see Figures 6.3 and 6.6),
it deterred us from more ambitious autonomous experiments, which would have been more
high-risk/high-reward propositions.

In the following subsections, I provide some thoughts on future directions to enable
further progress in autonomous marine exploration.

7.1.1 Human-Robot Online Reward Learning Studies

One of the most interesting experiences I had in conducting this research was watching a
WHOI biologist use an interface I developed to respond to our AUV’s image queries, just
as described in Chapter 6. While the data from this experiment had limited utility due to
the aforementioned navigational issues,1 observing the scientist’s behavior when interacting
with the system made it easily worthwhile. For example, it was clear the robot’s request for
a query every 30 seconds was somehow both too slow and too fast; the transmission time
was long enough that the scientist would occasionally get distracted while waiting for the
next query, which in turn would cause them to delay noticing when it did arrive. Constantly
responding to the queries also interfered with their conversations and kept their attention
away from other matters.

It is clear that future work into human-multi-robot collaborative exploration must take
a deeper look at the human experience of the system. Rather than viewing the supervisor
as purely a resource, the system must consider how to make effective use of their time while
imposing a minimal cognitive and operational burden. For example, we may find that the
available bandwidth of a supervisor is even lower than the actual communications rate if they
have many competing priorities. Batching queries may be an approach to minimize context-
switching on the side of the human supervisor, as labelling many queries at once may be

1The survey data collected during this adaptive sampling selection mission was, however, useful for
constructing the Tektite reef map presented in Figure 6.6.
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a better experience than being constantly interrupted for individual requests. Determining
when and how to best engage the human supervisor is an thus a key priority for future work.

7.1.2 Large-Scale Datasets for Marine Exploration

A major challenge in developing autonomous vision-based systems for underwater exploration
was the lack of suitable simulation environments and training data. Without realistic training
data and simulation environments, it is very difficult to bridge the gap between simulated
and real-world autonomous behaviour. This was a key factor in the lack of successful field
validation; in fact, the contribution of Chapter 4 (DeepSeeColor) was largely the result of
trying to fix issues that only began to appear in real field deployments, as simulators such as
AirSim, used in Chapter 3, do not model underwater image formation, and many underwater
image datasets have been processed offline to remove such distortions. With better dataset
availability and simulators which accurately model underwater vision, more of these issues
could be discovered and resolved before disrupting real field experiments.

In Appendix C, I present some notes on existing reef datasets and their limitations.
Producing new datasets with the kinds of qualities discussed therein as missing or under-
represented would enable far more extensive and realistic simulation experiments, which
should translate into more successful real world deployments. Furthermore, large-scale,
geolocalized reef datasets with high quality imagery make it much easier for more roboticists
to contribute to the development of coral reef monitoring algorithms without needing to
have their own AUVs and travel to appropriate deployment areas, much in the same way
that datasets like KITTI [228] have enabled researchers to advance self-driving technology
without needing to have their own test vehicles.

7.1.3 Multi-Robot Coordinated Online Information Sharing

As the communication required for matching semantic models with the proposed approach
scales linearly with the number of robots, it becomes infeasible for very large fleets. This
motivates finding an alternative solution that scales sublinearly; as we do in online reward
learning with EBRM, a robot could selectively decide whether to share its semantic map
and model based on whether this information is expected to have utility for the rest of the
fleet. Accordingly, we plan to model sharing and matching semantic models as an explicit
communication action available to robots, such that they decide when to take this action
using the same risk-based strategies used for online reward learning. This action may be
considered in parallel to other types of communication, such as image queries for reward
learning.
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This leads one to imagine higher-level reasoning about risk-based inter-robot communica-
tion; for example, a robot might find that its semantic model produces stronger correlations
between semantic classes and targets of interest than those belonging to other robots. In a
risk-based communication framework, the robots could reason about the utility of merging
or even replacing their semantic models, or individual semantic representations. In effect,
this framework would create a “marketplace” of information, wherein each robot can be
constantly reasoning about which of its information may be useful to other robots (or to a
human supervisor), and about what useful information it may be able to acquire from other
robots or humans. The ability of robots to participate in this marketplace is largely enabled
by the contributions in Chapters 3 and 5.

A barrier to realizing this vision of an information marketplace is that each robot collects
far more data than it can feasibly share with the rest of the team. This motivates exploring
how individual robots can achieve one of two tasks:

1. Compactly describe what kinds of information they have available to send, or

2. Compactly describe what kinds of information they would value receiving.

Information in these contexts may include reward labels, images, semantic models, or se-
mantic maps. The compactness is critical when operating in marine environments where
bandwidth is limited; the information needs in sufficient detail to enable estimating its
value, but these tasks are not meaningful if the amount of bandwidth used to describe the
information is comparable to the bandwidth actually used for sharing it. Through success-
fully achieving either of these tasks, however, it would become feasible for robots to identify
what kinds of information can be requested, or what information is most valuable to the
team as a collective, respectively. These would enable globally optimal information sharing
subject to bandwidth constraints, wherein each robot bids on information it desires or can
provide, and bids are filled in order of value.

7.1.4 Broader Risk-Based Online Learning Directions

The successes of AsympGreedy-EBRM based algorithms across the experiments in Sec-
tion 5.5, the clinical trial experiment in Subsection 5.5.2, and the adaptive exploration
missions in Chapter 6 motivate developing EBRM algorithms for other impactful real-world
applications. Furthermore, designing new EBRM candidate policy sets, and techniques to
compute the process risk of policies beyond 1-step lookahead policies, will enable the develop-
ment of new EBRM-based algorithms that may provide further performance improvements
upon Greedy-EBRM, and represents a new direction of research in online learning theory. A
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promising initial step in this direction is the incorporation of information-directed sampling
techniques [19] and the related theoretical analyses into new techniques to estimate changes
in epistemic risk.

There are a wide variety of real-world online learning problems with complexities that
could benefit from EBRM approaches. For example, problems with continuous action spaces,
typically modelled as linear bandits, should see similar improvements through EBRM-based
algorithms. However, they introduce new computational challenges; in particular, the one-
step lookahead candidate policy set is infinite given a continuous action space, and so the
agent cannot check every policy. Developing techniques to identify the one-step lookahead
policy with minimal process risk in a continuous policy set is thus one research priority.

Action costs and cost budgets are additional problem complexities that have been the
subject of limited study but have valuable real-world applications. Sensing or communi-
cating information generally has costs, which may be based on energy used or time spent
communicating, and real-world systems have limits on these costs. EBRM-based approaches
are well suited to capture these costs and budgets in the action-based reward and feasibility
criterion, respectively. Relating back to the first proposed area of future work, EBRM-based
approaches can directly model costs or rewards associated with interacting with a human
supervisor, reflecting factors such as the cognitive load of the request or the frequency of
interactions.
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Appendix A

EBRM Examples & Proofs

A.1 Contrasting Risk and Regret

A regret function measures how much less reward was attained, in a posterior sense, by
some policy than would have been by the X-optimal policy. That is, if Aπ

t = {aπτ }tτ=1 is the
sequence of actions generated by a policy π from an initial belief state S0, and Sπ

t = {bπt , ξπt }
is the corresponding terminal belief state, then for some hidden outcomes X the instance
regret is

R(Aπ
t ;S0, X) := V π⋆

X (S0;X)−
(
γtR(bπt ) +

t∑
τ=1

γτR(xτ , a
π
τ )

)
. (A.1.1)

The expected and Bayesian regrets are similarly defined,

R(Aπ
t ;S0, θ) := EX|θ[R(Aπ

t ;S0, X)], (A.1.2)

R(Aπ
t ;S0, bt) := Eθ|bt

[
R(Aπ

t ;S0, θ)
]
. (A.1.3)

These quantities are defined with respect to a particular sequence of actions and observations
made by the agent, unlike risk which is computed based on all possible sequences of actions
the agent might perform from some initial state. The risk of a policy relative to the X-
optimal policy is therefore equal to the expected amount of regret that will be incurred by
that policy.

Once incurred, regret is “permanent”; by the Tower rule, the Bayesian regret of a sequence
of actions does not change, in expectation, due to future actions and observations:

Ex|bt

[
R(Aπ

t ;S0, b
x,a
t+1)

]
= R(Aπ

t ;S0, bt), ∀a ∈ A. (A.1.4)
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Conversely, the agent can reduce its risk (i.e., its future regret) by taking an action providing
information enabling it to make better decisions in the future.
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A.2 Additional Experiments

(a) The AsympGreedy-EBRM approaches are
highly successful at reducing the average Bayes
regret, even over relatively few trials.

(b) In this simple setting, the UCB algorithms
are nearly as effective at reducing epistemic un-
certainty as Epi-EBRM.

Figure A.1: The results of this 2-arm Bernoulli bandit experiment from [177] clearly demon-
strates the exploration-exploitation trade-off, where the algorithms with the lowest average
instance regret tend to have the higher epistemic uncertainty, and vice-versa. In particular,
observe how Bayes-EBRM rapidly switches from exploration to exploitation around t = 75
in order to maximally leverage its accumulated information over the remaining time.
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(a) The y-axis shows average sample regret, the
bandit optimization metric for which lower is
better. Asymp-EBRM has the least average
regret initially, before being overtaken by KG
and Bayes-EBRM.

(b) The y-axis shows log uncertainty; lower val-
ues indicates higher confidence in the best-arm
identification. The upper dashed line repre-
sents 95% confidence in having found the best
arm, while the lower dashed line represents
99.99% confidence.

Figure A.2: Performance of algorithms in bandit optimization and best-arm identification
while making decisions in 5-arm Gaussian Bandit problem over 100 turns. Shaded regions
indicate 95% confidence intervals over 2000 trials.
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(a) TS, DS, Asymp-EBRM and Bayes-EBRM
perform nearly identically over the first 4000
turns, after which Bayes-EBRM begins to sig-
nificantly outperform the rest.

(b) The y-axis shows epistemic uncertainty;
lower values indicate better BAI performance.
Epi-EBRM achieves the lowest epistemic uncer-
tainty across trials.

Figure A.3: Performance of algorithms in BDO and BAI objectives while making decisions
in a 10-arm Beta bandit problem over 104 turns. Shaded regions indicate 95% confidence
intervals over 2000 trials.
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A.3 Example Clinical Research Trial Scenarios

In this section we describe some theoretical clinical research scenarios to highlight the limi-
tations of existing online learning heuristics.

Problem 3 (Villar et al., [71]). Consider 423 patients sequentially assigned to various treat-
ments within a randomized controlled trial. Which assignments best address the competing
objectives of (1) maximizing the number of successful patient outcomes by assigning as many
as possible to the best treatments, and (2) achieving sufficient statistical power to detect a
significant difference between treatments?

The study which presented Problem 3 found that several leading online learning algo-
rithms each failed to balance between these two objectives [71]. This is due to their inability
to account for a second variable, like statistical power in a weighted objective (e.g. maximize
a weighted sum of statistical power and successful patient outcomes). The EBRM approach
presented in this work can directly model this type of objectives.

Problem 4. The goal of a similar trial to that in Problem 3 is to determine which treat-
ment to distribute nationally/globally to a much larger population of N patients. Which
assignments result in the highest number of successful patient outcomes across all (N +423)

patients who will receive treatments?

Problem 4 is concerned with ensuring that the treatment recommended for broad distri-
bution is the most effective one, or nearly so. This is a different metric than statistical power
or confidence, and one which is not directly targeted by any existing algorithm. Furthermore,
this problem introduces an explicit weighting; for N = 104, identifying a treatment that has
a 1% higher success rate will result in 100 more successful outcomes across the patient popu-
lation. In Section 5.5, we see that the EBRM approach results in the most successful patient
outcomes in this type of scenario, for various N . Importantly, the EBRM algorithm does
not require any “tuning” to achieve these results; it simply takes N as a parameter.

Problem 5. As an extension to Problem 4, suppose that there is are costs to enrolling
patients in the trial, and a unique cost for administering each type of treatment. What
are the optimal trial size and treatment assignments in order to maximize successful patient
outcomes given a budget constraint?

Most existing online learning heuristics lack the ability to model heterogeneous costs
across different actions (treatments). Recent work has begun to model such complexities
(e.g., [229]), however the approach required developing another heuristic which focuses on
maximizing reward per unit cost. The EBRM approach automatically takes into account
various feasibility criterion, including those driven by action costs.
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A.4 Proof of Section 5.3 Results

Proof of Theorem 1

First observe that, as a result of Eq. (5.3.2), the continuous mapping theorem [230] implies

Ex|bt [f(·)]
P−−−→

t→∞
Ex|θ[f(·)].

As the belief reward is bounded and continuous, then, also by the continuous mapping
theorem, there exists some c ∈ R such that

R(bt)
P−−−→

t→∞
c.

As the belief reward converges in probability to a constant as t→∞, we have that

EpistemicRisk(St) = Eθ|bt
[
V π⋆

θ (St; θ)
]
− V π̂⋆

t (St)

P−−−→
t→∞

∞∑
n=1

Ex|θ
[
γn−1R(x, π⋆

θ(St+n−1))
]
−

∞∑
n=1

Ex|θ
[
γn−1R(x, π̂⋆

t (St+n−1))
]

As each sum is independent of any future observations or hidden variables, they can be each
be maximized by some deterministic open-loop policy π̂ ∈ Π̂ and thus

Ex|θ[R(x, π̂
⋆
t (St))]

P−−−→
t→∞

Ex|θ[R(x, π
⋆
θ(St))].

Proof of Lemma 2

Let σ be the permutation function that satisfies A′ = σ(A), and let X ′ = σ(X) be the
corresponding permutation of X. First, we observe,

xτ
iid∼ P (x | bt) =⇒ Pr(X ′ | bt) = Pr(X | bt).

Furthermore, denoting y′τ = Φ(x′τ , a
′
τ ) and yτ = Φ(xτ , aτ ) for τ = 1, . . . , |A|,

xτ
iid∼ P (x | bt) =⇒ Pr(y′1:|A′| | θ, a′1:|A′|) = Pr

(
y1:|A| | θ, a1:|A|

)
,

=⇒ bX
′,A′

t+|A′|
(
θ
)
= bX,A

t+|A|
(
θ
)
, ∀θ ∈ Θ.

170



A.5 Proofs of Section 5.4 Results

Proof of Lemma 3

The adaptive monotonicity of R(b) and the convexity of the expectation operator imply

Ex

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)]
≥ max

N∈NK
Ω (ξat+1)

Ex

[
V̂
(
N ;Sx,a

t+1

)]
≥ max

N∈NK
Ω (ξat+1)

V̂
(
N ;Ex

[
Sx,a
t+1

])
.

The lemma follows from expanding Eq. (5.4.8) with the definition of each term and applying
this inequality.

Proof of Proposition 3

We introduce Lemma 5 to simplify the proof.

Lemma 5. The process risk of the best deterministic 1-step lookahead policy is bounded, ∀St,

−EpistemicRisk(St) ≤ min
a∈A

ProcessRisk(πt,a;St) ≤ 0. (A.5.1)

The lower bound of Lemma 5 follows from, ∀π and ∀St, (see Lemma 1)

0 ≤ r(π∥π⋆
θ ;St) = EpistemicRisk(St) + ProcessRisk(π;St).

The upper bound follows from Lemma 3, using the fact that ImmediateRisk(St, πt,a) = 0

if a = π̂⋆
St
(St). According to Lemma 5, the best 1-step lookahead policy has non-positive

process risk, but by Lemma 3,

ProcessRisk(St, a) = ImmediateRisk(St, a)− γ · ExpectedVoI(St, a)

≥ ImmediateRisk(St, a)− γ · EpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
.

The proposition follows.

Proof of Theorem 2

Consider E[µa] = ProcessRisk(πt,a;St) − ProcessRisk(πt,k;St), and by construction µa ≥ 0.
Therefore,

E[µa] > 0 =⇒ ProcessRisk(πt,k;St) < ProcessRisk(πt,a;St). (A.5.2)
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Next, Var[µa] = γ2(σ2
an

−1
a + σ2

kn
−1
k ) follows from the independence of νa(na) and νk(nk),

which are generated from IID samples of the hidden outcomes. The theorem follows from
Cantelli’s inequality [231] applied to Pr(µa − E[µa] < µa).

Proof of Theorem 3

Following from the proof of Theorem 2, observe that ∀n > 0,

max
N∈NK

Ω (ξat+1)
V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
≤Ma =⇒ νa(n) ≤Ma, (A.5.3)

=⇒ µa ≤ (ImmediateRisk(St, a)− ImmediateRisk(St, k)) + γMk,

(A.5.4)

=⇒ µa ≥ (ImmediateRisk(St, a)− ImmediateRisk(St, k))− γMa.

(A.5.5)

Next, we consider that for na = nk = n, then nµa is equal to the sum of n IID samples of
the difference in process risk between policies πt,a and πt,k,

nµa =
n∑

i=1

[
ImmediateRisk(St, a)− γ

(
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sxi,a

t+1

)
− V̂

(
Na

t+1;S
xi,a
t+1

))

−
(

ImmediateRisk(St, k)− γ
(

max
N∈NK

Ω (ξkt+1)
V̂
(
N ;Sxi,k

t+1

)
− V̂

(
Nk

t+1;S
xi,k
t+1

)))]
, (A.5.6)

with E[nµa] = n(ProcessRisk(πt,a;St) − ProcessRisk(πt,k;St)). Then, applying Hoeffding’s
inequality,

Pr(nµa − E[nµa] ≥ c) ≤ exp

( −2c2
n(γMk + γMa)2

)
. (A.5.7)

The theorem follows from taking c = nµa and recognizing that the largest amount of regret
which could be incurred by rejecting policy πt,a in favor of πt,k is γ(Ma +Mk), and the proba-
bility of incurring this regret is Pr

(
πt,a ∈ argminπ∈Πt

ProcessRisk(π;St)
)
≤ Pr(E[nµa] < 0).

172



Appendix B

Adaptive Exploration Supplemental

Figure B.1: We evaluate the loss of a logistic regression model and the proposed beta-
concentration model on data produced by the corresponding generative model of each. As
expected, each model achieves lower loss on data generated by its own generative model.
Interestingly, however, the beta-concentration model does not perform significantly worse
than the logistic model even on data generated from the logistic prior. The logistic regression
model was trained with PyTorch, using the Adam optimizer with a learning rate of 3×10−4,
and early stopping once the loss does not decrease by at least 1% over 10 gradient steps.
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Figure B.2: The same image, in its original quality (8MP) with mild JPEG compression
(2MB file size; top), reduced 8x to 1280x720 pixels (1MP) and with moderate JPEG com-
pression (55 kB file size; middle), and at the same 1280x720 resolution with extreme JPEG
compression (32.5 kB file size; bottom). The distortions in the final image significantly alter
the contents of the image, and would make it very difficult to distinguish any anomalies or
targets of interest. Accordingly, we treat 50 kB as the minimum file size for transmitting an
image query. The top image was collected by the CUREE AUV [166] at Tektite reef.

174



Figure B.3: These maps show locations in each site where a significant number of sea fans
were located. Each pixel corresponds to a 0.5 x 0.5 m patch of the benthos. Top: Booby
Rock Reef. Bottom: Tektite Reef.
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Appendix C

Coral Reef Datasets & Limitations

Large-scale coral reef datasets are invaluable for training reef monitoring robots and related
algorithms in simulation. Unfortunately, most coral reef datasets consist only of individual
photos taken from various reefs [232]–[234]. These generally provide coarse geographic coor-
dinates for locating the reef at which the images were taken, but do not localize individual
photos. While such datasets are useful for training algorithms that identify and assess in-
dividual corals, they do not provide a way to understand larger scale reef structures. Some
datasets additionally provide videos of linear transects through reefs [234], [235], which pro-
vide a limited way to understand larger reef structures; some of these are even timeseries
datasets, imaging the same reef at different dates [236]. However, these are similarly not
precisely geolocalized, which precludes making comparisons of the same reef structures at
different times. On the other hand, remote sensing datasets from satellites are precisely
localized, but have very low spatial resolution [237].

There are only a few high-resolution geolocalized coral reef datasets; for example, some
have been released by the Australian Centre for Field Robotics (ACFR) [238], [239], and by
the Sandin Lab at the University of San Diego [28], [240]. The ACFR datasets cover large
regions with moderate spatial resolution, but are not labelled. The 100 Islands Challenge
dataset from the Sandin lab images much smaller reefs, but with very high spatial reso-
lution and semantic labels. However, neither dataset provides 3D models or 3D semantic
annotations, or timeseries data of the same reefs on different dates.
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