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ABSTRACT

Insomnia—difficulty in initiating and maintaining sleep—affects a significant portion of the
global population. The mainstream adoption of wearable computing presents a unique
opportunity to study and aid sleep at an individual level. Here we introduce Zzzonic, a smart
sleep-aid application designed for smartwatches that leverages cognitive psychology and
human-computer interaction (HCI) to facilitate sleep onset by engaging users in audio tasks as
a form of intrusive thought control. A significant aspect of Zzzonic's functionality is its adaptive
control system, which estimates sleep onset latency in realtime by monitoring indicators such
as motion and user response. The system then progressively modifies the characteristics of the
audio tasks to minimize sleep onset latency. This thesis evaluates Zzzonic through a series of
user trials conducted throughout the development of the app, accessing the capacity to
predict and control sleep onset. The results indicate accurately predicting sleep onset latency
in realtime as a control signal is possible but there was no evidence indicating the system
could minimize slope onset latency. The inclusion of more indicator signals and machine
learning techniques is likely to significantly improve realtime sleep onset latency prediction.
Future work on computer-modulated intrusive thought control would benefit from the
evaluation of task design, intrusive thought indicators and identifying an adequate control
framework.
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Introduction

For a significant minority living with chronic insomnia'——to our best knowledge around 6-10%
of the global population[l]]—sleep is painfully elusive. People suffering from chronic insomnia
feel it as an impairing, detrimental and largely unresolved ailment[2]—a drag on their quality
of life.[3] This is consistent with an abundance of studies tying sleep deprivation to a decrease
in wellbeing, particularly in the context of mental health, where insomnia is frequently
observed alongside depression[4] and anxiety[5]. Some studies have even tied long-term sleep
deprivation to a decreased lifespan[6].

Insomnia is a complex condition—it can have multiple causes! and it is addressed with
multiple treatments[7]. Currently, our first-line treatment, cognitive behavioral therapy for
insomnia (CBT-1) in combination with medications), is only effective in 70-80% [7]of cases and
has drawbacks—such as accessibility and adherence. Given the degree by which persistent
sleep deprivation can degrade a person’s quality of life and the limits of our current treatment
options, this thesis is, at one level, a shot at forging a new path for intervention.

Yet, one of the most intriguing aspects about insomnia—at least to me—is just how much of a
mystery the condition can be to the people who experience it. For the most part, people with
chronic insomnia only have a vague idea of how to manage it despite consulting their
physicians®, much less an understanding of the root of their own inability to sleep.[3] Even
amongst physicians, there remains uncertainty™ and misconception™ about insomnia.

And this makes sense—given all the potential confounding factors, there is not a definitive
consensus about what causes insomnia, what determines whether a treatment will be
successful for an individual or much less what the root of an individual's sleeping difficulties is.
Take sleep hygiene—a very broad set of healthy sleeping habits—presumably holistic because
any one habit is unlikely to be a silver bullet. In at least one sense the current state of
treatment is throwing spaghetti at the wall and seeing what sticks. The need for more
customized treatments is certainly being recognized. So at a more general level, this thesis
proposes a platform to enable targeted insomnia management strategies.

The core idea behind this thesis is loosely inspired by what is likely the earliest and most widely
recognized western stereotype regarding the treatment of insomnia: counting
sheep?*——admittedly, most insomniacs are unlikely to find counting to be particularly helpful.
New Scientist boldly wrote “Sleep scientists discount sheep’™ after reporting on a popular but
frequently misinterpreted 2002 study by A. Harvey[8]. Students with symptoms of insomnia
were split into groups and asked to report their perceived sleep onset latency* after engaging
in various types of mental distraction as they fell asleep. The conclusion was that certain

"In the context of this thesis, chronic insomnia is defined by the diagnostic criteria set by the American Academy of
Sleep Medicine (AASM) in the ICSD-3-TR which requires the following conditions: 1) a person reports difficulty sleeping
2) and it results in some kind of daytime impairment 3) that occurs at least three times per week 4) over the course of
three months 5) and it is not circumstantial 6) or related to another medical condition.

2 Douglas Galbi wrote has delightful blog article describing the earliest known reference to counting sheep as a sleeping
technigue——a comical 12th century story “The King and his Story-teller” in a Latin text called Disciplina Clericalis by Petrus
Alphonsi, whose telling suggests the origin is even older.

Interestingly, counting sheep is never mentioned in the referenced study.

“ Sleep onset latency (SOL) is the term for the amount of time it takes us to fall asleep.
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https://www.zotero.org/google-docs/?WRcxJH

mental distractions actually appeared to shorten the time someone believed it took them to
fall asleep——at least temporarily——while others had no effect.

To be fair the results are not cut and dried but perhaps, like many fables——there may be
some grain of truth to “counting sheep”. There is something deeply intuitive about seeking to
unwind and relax before falling asleep——to occupy ourselves with something——even when
we are already tired. So intuitive perhaps that | would postulate it is an adaptation—a sleep
primer perhaps.

A recent study[9] identified higher concentration and diffusion of glutamate—a
neurotransmitter——in the lateral prefrontal cortex——a region of the brain that largely
manages cognitive control—in people that had engaged in high-demand cognitive work
when compared to various controls. They proposed the resources required to restore balance
constitute a metabolic cost that makes executing cognitive control more difficult. In other
words——demanding more from our brain results would result in less executive power.

From the perspective of insomnia this is a fascinating conjecture[l0]; the predominant
model[11] of insomnia basically attributes it to a deficient control of anxious thoughts. Perhaps
the very quality that someone with insomnia lacks is the quality we seek to induce by
unwinding before we sleep[12]. It evokes moments when | have gone to bed directly after a
long night of immersive work——only to be plagued by a sort of repetitive-obsessive dream
about the work itself——certainly not restful sleep.

In any case, even if it is only a learned behavior, there is something to be said about the sheer
ubiquity of our tendency to occupy ourselves with something before bed. A recent poll[13]
conducted on behalf of the American Academy of Sleep Science (AASM) reported 29% of
respondents read as part of their bedtime routines. Another AASM poll[14] reported that 80%
of Americans had lost sleep viewing social media. Losing sleep is not an inability to sleep—but
it does show that bedtime activities are not all made equal. My intuition says that somewhere
between what engages us and what relaxes us is an opportunity to facilitate sleep.

This brings us into the current state of insomnia treatment——there is strong, highly
corroborated data indicating CBT-l is effective[15]. But this should not trick us into feeling that
the problem is solved. Far from it——a significant portion——20-30%[7] of people do not
respond to treatment and for those who do there is still a significant chance of recurrence[15].

Part of this can be explained by adherence[15]—CBT-I| asks a lot from a patient that is already
fatigued in exchange for an improvement that may take some time to show. CBT-I is evolving
to address this through digital CBT-I (dCBT-I) designed to be more engaging and accessible.
But what if the treatment looked more like the very bedtime activities we seem so motivated
to seek? Oddly enough——some of the most clinically doubtful sleep aids, such as white noise
apps—are also enduringly popular.

Finally there are wearables——which have evolved into powerful computers in their own right
and are now mainstream consumer device platforms with the capacity to reach millions of
people. Given the extraordinary things deep learning is enabling and the richness of the data
wearables are privy to——wearables seem like a grossly underutilized technology.

| believe there is an opportunity where all of these converge to deliver better sleep aid at scale
and to exploit that scale to deliver better treatment.


https://www.zotero.org/google-docs/?MmdHPD
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https://www.zotero.org/google-docs/?mchM7X
https://www.zotero.org/google-docs/?0EKhd1
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https://www.zotero.org/google-docs/?ZUyTlb

Background

The Restless Mind: Pathogenesis

To understand the philosophy behind Zzzonic—in particular what the potential of a
computational approach might be—it is useful to consider insomnia's complexity and what
the current treatment options are. As mentioned previously, the prevailing pathophysiological
theory of insomnia is one of hyperarousal—that is, an abnormal state of physical and or
psychological alertness makes it difficult to fall asleep and stay asleep. Multiple models have
been proposed to explain the hyperarousal but in general they fall into two unique but
interconnected perspectives.

The most clinically prevalent, arguably, is the cognitive model[11], which primarily attributes
insomnia to intrusive thoughts, worry and rumination that induce distress—making it difficult
to relax and fall asleep. Eventually the mind becomes preoccupied with the lack of sleep itself,
it disproportionately perceives environmental disturbances and eventually internalizes an
exaggerated sense of sleep deficiency—reinforcing itself and further exacerbating real sleep
deficits.

To construct a sense for this model consider that;

I.  People with chronic insomnia most frequently attribute their sleeping difficulty to the
emotions and thoughts they have in bed[16] [3]. Corroborating this, a series of studies
by A. Harvey[17][18][19] recorded the cognitive state of people with insomnia right
before sleep and compared them to people without sleeping difficulties——they found
people with insomnia were more likely to be focused on worries, on wakefulness itself,
unpleasant imagery and——as a whole—— to perceive this time to be more distressing
and less controllable than those without insomnia. The effect of anxious presleep
cognition on our ability to fall and stay asleep has been corroborated in many
studies[12][20][21][22].

. As we will review subsequently, cognitive behavioral therapy for insomnia
(CBT-I)—which addresses our beliefs and behaviors about sleep—is currently the
most clinically effective treatment for insomnia.[7][23]

[ll. There are poorly understood paradoxes between insomnia that can be objectively
measured, insomnia that can not and differences in subjective perception of sleep
onset and sleep quality between people with insomnia and people without. [24][25],
[26][27]

IV. Finally, a consensus of studies have confirmed insomnia frequently coexists with other
mental health disorders[5][28][29]. Together these points of view indicate at least some
portion of insomnia is in the domain of the mind.

The physiological model, on the other hand, focuses on how hyperarousal springs from our
bodies—this dysfunction then leads to problems initiating and maintaining quality sleep.[30]
Some relevant considerations:

I.  Studies have determined physiological differences between those with insomnia and
those without[31].


https://www.zotero.org/google-docs/?T49iqT
https://www.zotero.org/google-docs/?vYMQye
https://www.zotero.org/google-docs/?2GnDGm
https://www.zotero.org/google-docs/?e9OdAb
https://www.zotero.org/google-docs/?pVCJV2
https://www.zotero.org/google-docs/?FSkdIi
https://www.zotero.org/google-docs/?e8fh5Y
https://www.zotero.org/google-docs/?e8fh5Y
https://www.zotero.org/google-docs/?kY2eDC
https://www.zotero.org/google-docs/?sN0rPt
https://www.zotero.org/google-docs/?EYOC6l

Il. Additionally there are people with objectively measured insomnia that have no
identifiable psychiatric conditions[32]. Together, these findings build a picture of a
condition that is also rooted in the body.

This thesis primarily focuses on the cognitive angle of insomnia and for that reason | will not
elaborate further on the existing physiological models or pharmacological aids—but in general
there is much still to understand about the biology of insomnia, and—at least for now—people
with insomnia are generally hesitant to rely on the available sleep medications.[2][33][34] In
some sense this is also true about CBT-1.[35]

In any case—the degree to which insomnia is a physical or psychological condition for most
individuals is not obvious. One unifying theory is that a physiological predisposition[36], [37]
can eventually evolve into or confound with cognitive insomnia. Sleep labs may seem like the
answer except they often® just confirm what physician and patient already know—poor sleep
guality—and sometimes they raise more questions than answers[3].

To add to the confusion there is an open guestion regarding confounding comorbidity[29],
[38]. As mentioned before insomnia frequently coexists with anxiety[39] and depression[40] as
well as other psychiatric disorders. Insomnia can be a symptom of these [41] but there is also
evidence that it can actually precipitate anxiety and depression [42][43]. Classic chicken and
the egg problem—as with before, realistically it is a little of both. A recent poll of physicians
revealed a majority identify insomnia as a secondary disorder[44]—essentially a
symptom—while clinical sleep experts disagreed—maintaining that treating insomnia as a
primary condition resulted in better outcomes for both.

There are also many types of insomnia [45] yet the distinctions are hardly used in a clinical
setting [44].

Finally, misconceptions about insomnia treatment are common. There is a well documented
and reasonable apprehension to take sleep medication[33]—but there are studies that show
that the combination of CBT-I and sleep medication can result in better remissions rates over
an extended follow up period[46]. Sleep hygiene—which is often perceived to be ineffective[2]
[35] has been proven to enhance treatment effects—but only when prescribed an integrated
component of CBT-1.[47] White noise machines on the other hand—are very popular, despite
mixed evidence, at best, of their effectiveness[48].

So it is of no surprise, at least to me, that one of the most common sentiments amongst those
living with chronic insomnia is perplexity around what insomnia is, what causes it and how to
manage it[2][3], even amongst those who have sought help[44].

Controlling Insomnia: A control systems perspective

Civen the complex dynamics of the insomnia system—the grander spirit of this thesis is the
development of a system that can study sleep at scale and transform all the confounding
variables and uncertainty of insomnia into targeted insights that not only give someone the
relief of seeing the pattern in their insomnia but also reduce the effort of managing it.

A project by Yala et. al. encapsulates this spirit—utilizing a reinforcement learning framework
to optimize personalized breast cancer screening policies that improve screening outcomes in
a way that would be too complex for a radiologist to do alone [49]. Even in the domain of sleep,

> However they remain valuable for differential diagnoses.
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https://www.zotero.org/google-docs/?1cE2oK
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Khaokaew et al. have recently explored how to combine large language models (LLMs) and
sleep data in a system called ZzzGPT to conversationally probe sleep data and provide
personalized insights tied to sleep efficiency predictions[50].

An ideal system could extend into direct control of the sleep environment. Haghayegh et al.
developed a smart mattress with a novel temperature control to improve sleep[51]—which
could help alleviate thermoregulation disorders[52] that disrupt sleep. Modeling the insomnia
system to this degree would require a significant number of people to contribute detailed
sleep data—and the best way to motivate this might be to facilitate sleep in return.

There is also research exploring control near the sleep system itself. The use of VR biofeedback
at bedtime to facilitate sleep has been explored and has shown positive results
downregulating physiological arousal. [53] A. Horowitz et al. has developed a system, Dormio,
designed to exploit the hypnagogic state in service of creativity through computer controller
tracking of biosignals and user interaction [54]. Closely related to this project is an investigation
to predict sleep onset in real-time for closed-loop sleep control in a mice model [55] as well as
an evaluation of reaction time as a useful indicator for an intrusive thought control system. [56]

Returning to the cognitive model of insomnia—if the core issue is so heftily a preoccupied
mind as we lay in bed—then presumably anything that controls negative thoughts from
inundating the mind—without significantly arousing—it might actually aid sleep. | imagine a
system that is compelling, like a puzzle, adjacent to sleep, like listening to music in bed and
highly perceptive of the sleep state

e Some studies have found playing Tetris, a game, reduced the frequency of intrusive
memories, although there were conflicting outcomes in the reduction of the related
distress[57]

e In the context of sleep the most widely cited experiments were conducted by A Harvey
et al—one study showed certain tasks seemed to improve subjective[8] measures of
sleep onset—their long-term effectiveness was uncertain.

e Another study did identify a reduction in the frequency of intrusive thoughts and
objectivel sleep onset latency.

It is safe to say that all the minimum elements that would be required to fairly assess the
potential of a system like this—administration by a third-party, natural sleep environment,
accurate real-time measures of sleep onset and intrusive thoughts—have not yet come
together.

Treatment: CBT-I

The first-line treatment for insomnia is currently cognitive behavioral therapy for insomnia[23]
[58](CBT-lI)—sometimes in conjunction with sleep medication—in one analysis 45% of patients
treated with CBT-I were able to increase their total sleep time (TST) and reduce their sleep
onset by 50%.[7] Additionally CBT-I has fewer known side effects than sleep medication and
longer lasting results than sleep medications alone [7], presumably a result of addressing a
cause for insomnia more directly.

CBT-l is a multi-component treatment that functions by attempting to replace detrimental
beliefs, conditioning and behaviors regarding sleep with education, discussion and
management strategies, typically over the course of 4-10 weeks.[47]


https://www.zotero.org/google-docs/?GqZ63o
https://www.zotero.org/google-docs/?aHhFZE
https://www.zotero.org/google-docs/?UIO4Gi
https://www.zotero.org/google-docs/?ErHSws
https://www.zotero.org/google-docs/?b4fqe3
https://www.zotero.org/google-docs/?C2Gfox
https://www.zotero.org/google-docs/?tei9oj
https://www.zotero.org/google-docs/?feZZ91
https://www.zotero.org/google-docs/?Sbnite
https://www.sciencedirect.com/science/article/pii/0005796788901398
https://www.zotero.org/google-docs/?IiRGlr
https://www.zotero.org/google-docs/?1E2XQQ
https://www.zotero.org/google-docs/?VYvwRW
https://www.zotero.org/google-docs/?1O3fde
https://www.zotero.org/google-docs/?wJTLDo

I.  Cognitive Therapy (CT)

The core objective of cognitive therapy is to identify and replace detrimental beliefs about a
person’'s capacity to fall asleep that interfere with inducing and maintaining sleep. This is an
important component of the existing treatment protocol that a theoretical, distraction-based
intervention alone would not address—for that reason we refer to distraction-based
interventions as an aid rather than a treatment. Still—much like the inclusion of medication
with CBT-I—it could conceivably improve results in conjunction with CBT-I by facilitating
adherence and positive conditioning with the sleep process.

That being said, the emergence of digital cognitive behavioral therapy for insomnia (dCBT-1) is
a natural complement that in recent studies has proven to be effective [59][60] although not
quite at the level of traditional CBT-I yet. This could be integrated into distraction-based
intervention to produce stronger outcomes. Given the current state of large language models,
it is reasonable to believe that artificial intelligence might one day allow dCBT-| to approximate
the performance of face-to-face CT at a fraction of the cost.[61][60] For example a chat based
interaction might be able to track changing beliefs over time—evaluating the effectivity of the
treatment on the fly.

II. Sleep Restriction Therapy (SRT)

This component addresses conditioning that drives people with insomnia to seek to lay in bed
longer—reinforcing detrimental beliefs about their sleep efficacy. By restricting the amount of
time a person with insomnia lays in bed to the amount that induces them to fall and stay
asleep quickly—patients can gradually reinstate confidence in their sleep efficacy.

This is probably the most problematic individual component of CBT-I for patients to adhere to
since they are already sleep-deprived.[34] This is another element of CBT-I that
distraction-based interventions would not address—but this is a natural complement for
wearable devices—which can monitor vitals to optimize bedtimes, automatically manage
bedtimes and use location data in the home to support adherence.

[1l. Stimulus Control Therapy (SCT)

SCT addresses conditioning that drives people with insomnia to engage in bedtime activities
that extend their sleep onset—such as watching TV—because they can not sleep. This in turn
prolongs their sleep onset, reinforces negative beliefs about their sleep efficacy and creates
detrimental associations with the sleep environment. In SCT patients abstain from these
activities.

This is one dimension of CBT-l that would be an inherent component of distraction-based
interventions since engagement with the system would necessarily exclude these other
activities—with the added effect of potentially being more inherently motivating given the
interactive element.

IV. Sleep Hygiene (SH)

Sleep Hygiene is a broad set of healthy sleeping habits that include things such as exercising,
regular bedtimes, conditioning the sleep environment exclusively with sleep, avoiding naps
and the consumption of substances that are known to interfere with sleep—Ilike caffeine. No
evidence has been found that prescribing these alone improves insomnia [1] perhaps because
it is difficult to adhere to [1] or because it is insufficiently targeted [1] (what works for one person

10
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might not work for another) but sleep hygiene has been shown to improve results as a
component of CBT-I [1].

One element of sleep hygiene is to engage in relaxing and somewhat monotonous activities
before bed—this would be an inherent characteristic of a distraction -based intervention.
Additionally sleep hygiene is particularly well suited for an intelligent sleep management
system that might track and support adherence as well as identify what is most and least
effective on an individual basis.

V. Relaxation Technigques

The goal of relaxation techniques is to train a patient to induce physical or mental arousal at
will via techniques such as progressive muscle relaxation and biofeedback. This is another
element a distraction-based intervention inherently addresses—with the added benefit of
being administered by an independent entity, perhaps making it easier to practice since it
does not require training or discipline.

Considering the clinical effectiveness of CBT-I there may appear to be little need for an
alternative but this is not the case. The most significant problem with CBT-l is that it does not
address the needs of a significant group of people who do not respond—approximately
20-30%[15]—and for those who do, insomnia will remerge in a follow up period in about
40-50% of cases[15]. One might imagine that:

e Perhaps some cases of insomnia are simply unrelated to a person’s mental relationship
to sleep. In this case it would be valuable to be able to identify it—allowing a person to
focus on other management strategies.

e |t might also simply represent the people who have not successfully adhered to the
treatment[15] in this case we should seek ways to make it easier for people to adhere to
CBT-I.

Finally there are problems with accessibility—it can be expensive and feel inconvenient.[60]
Adherence and accessibility are among the core elements dCBT-I strives to address. Still this is
a lot of inertia to overcome for a population already plagued by fatigue and exhaustion.

In this way a theoretical distraction-based intervention would have a strong advantage since it
is a passive solution requiring little effort on the users end while filling the natural instinct to
occupy the mind when you cannot fall asleep. It would also have the added strength of being
independent of a person's beliefs, meaning it can help prevent remissions when a person's
state of mind falters—as sleep medication does in conjunction with dCBT-I. Finally it is a
non-pharmacological approach for those that might seek it. Just like CBT-Il is a holistic set of
therapies that are stronger together than alone—it is likely that any positive effect, if any, from
a distraction-based intervention would best perform as an interpreted element of CBT-I.

Having mentioned some of the potential benefits it is important to note there also a number
of conceivable risks that will need to be evaluated:

|. Little is known about how the character of a distraction affects our thoughts—much
less its tendency to affect our sleep onset. Based on our initial testing it seems easy to
extend someone’s sleep onset by arousing them too frequently. The effect, if any, in the
other direction is unclear.

1
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Il. Even if it was effective—that benefit might not be perceptible by people who already
have distorted beliefs about sleep—failing to address the fundamental issue.

lll. Itis also conceivable that the experience itself could become an indicator of sleep onset
latency—becoming a feature for selective attention to latch onto, exacerbating
insomnia. For example, a user might learn to associate an element of the interaction
with sleep onset latency—focusing on it as a person with insomnia might detrimentally
focus on the clock.

IV. There is also the possibility of run-away effects—a particular distraction could arouse
someone—the system could respond by adjusting to their level of alertness which
could then further arouse someone until they are fully awake.

V. lIts effectiveness could also be short-lived. It is reasonable to think a person might grow
fatigued with a simple repetitive task—losing the capacity to engage and distract the
user.

| recognize an intervention of this kind is highly speculative—but | also believe forging a new
option for insomnia requires exploring uncertain and unconventional paths.

Sound Asleep: The effect of sounds on sleep

Finally—a brief note on sounds and sleep. The use of white noise as a sleep aid has grown
steadily popular since it was first introduced in the 1960s[62). A poll conducted on behalf of the
AASM in 2023 indicated that 18% of respondents reported using a white noise machine or app
when they slept[63]. Corroborating this trend, as of this writing, four of the top ten apps for iOS
in the Health & Fitness category are white noise apps.

This enduring demand for white noise sleep aids presumably means they are perceived to be
effective and in any case endorse findings about people’'s search for non-pharmacological
sleep aids. The prevailing explanation for white noise sleep aids work is that they mask
environmental noise. Indeed, a study evaluating insomniac's subjective experience found a
proportion attributed their lack of sleep to sound disturbances.[2], [48] This is not surprising
under the cognitive model of insomnia, which attributes this to disproportionate concern of
sleep disturbances via selective attention. Assuming it effectively masks noises then this would
in fact ease some of the detrimental selective attention.

Yet, evidence about the clinical effectiveness of white noise as a sleep aid measured objectively
is mixed[64]. This is also not particularly surprising since the majority of these studies have not
focused on the subjective angle of sleep—the ones that noted subjective improvements in
sleep typically reported an improvement.

Sounds may also induce physical relaxation. One randomized control trial observed that EEG
showed decreased alpha power (the predominant brainwave while lying in bed with your eyes
closed) as well as increased heart rate variability (HRV)—an indicator of decreased stress when
listening to Tibetan singing bowls when compared to performing progressive muscle
relaxation (PMR) and a control waiting list[65]—they also corroborates this noting subjective
perceptions of relaxation.

Zzzonic builds on white noise in order to create a relatively neutral soundscape as well as a
means of reaching a population that is already seeking app-based sleep aid but it does not
necessarily intend to mask noise or stimulate relaxation. Instead we assumed a good
interaction modality would allow a user to close their eyes. That being said, there appears to be
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a potentially fruitful convergence between white noise sleep aid apps, dCBT-I and
computer-controlled sleep that could be exploited to deliver easier and effective sleep aid at
scale.

The Stairway to Sleep: Breaking down and tracking the sleep onset period.

Sleep Stages

The sleep cycle—which typically lasts 90 to 110 minutes—is normally characterized by 5 stages:
wake, rapid eye movement (REM) and non-REM (N1-N3) and repeats approximately 4 to 5
times throughout the night.[66]

1. Wake—laying in bed, still, with your eyes closed is typically characterized by the
domination of alpha waves in the brain, which are associated with relaxation and
meditation. It is also associated with full muscle tone and will most likely contain the
most motion. At this stage the heart rate will stabilize around a person's resting heart
rate. This marks the start of the sleep period Zzzonic is concerned with.

2. Nl—is the lightest stage of sleep—it constitutes about 5% of total sleep time and lasts
somewhere between 1 and 5 minutes. It is not considered particularly restful. Muscle
tone is still present but it begins to decrease along with shallower breathing and a
descending heart rate. During this stage a person is still capable of responding to
stimuli but their alertness and reaction time might drop. [67] There might be some loss
in environmental awareness—notably—it does not constitute what most of us would
perceive as sleep. People with insomnia have shown a higher probability of
transitioning back fromn N2 to N1[68] and overall more time in N1 and less time in N3[69].

3. N2—is the beginning of “deep” sleep—it lasts around 25 minutes and then gets
progressive longer—constituting about 45% of sleep. Muscle tone is markedly reduced
at this stage but not completely absent. A person might still be able to respond to
stimuli but their response rates and reaction times will have probably dropped
markedly®. People in this stage grow but largely disconnected from the environment.
Heart rate and body temperature continue to drop steadily. This also constitutes what is
considered restful, restorative sleep—making it an important factor in sleep quality. A
person will most likely lose consciousness at some point during this stage. This is the
end of the portion of sleep that Zzzonic is trying to track, currently.

4. N3—the deepest stage of sleep—constitutes about 25% of total sleep time and lasts
about 20 to 40 minutes. It is composed by the predominance of low-frequency delta
waves. A person is unlikely to wake up or respond to stimulus. Along with N2 this
defines restful sleep.

5. REM—is associated with dreaming and not considered a restful stage of sleep although
it is important. It constitutes about 25% of sleep. Our brain activity at this stage is similar
to when we are awake. This first occurs after 90 minutes and lasts 10 minutes getting
progressive longer.

Polysomnography (PSG)

PSG is the gold standard of sleep staging——producing a holistic and detailed characterization
of the sleep cycle through a variety of signals from the body including EEG, eye movement,
actigraphy and heart rate. It is also relatively intrusive, removing a person from their natural
sleep environment and attaching numerous sensors, both of which can introduce bias. The
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cost and logistical complexity of PSG is a concern when thinking about highly accurate
characterization of sleep at scale.

Actigraphy and Consumer-grade wearables

Consumer-grade wearables, on the other hand are relatively cheap and accessible—if not as
precise——and have the potential to enable more natural studies that reach more people for
longer periods of time. These wearables primarily characterize sleep states using motion and
are sufficiently accurate in estimating metrics such as sleep onset latency and sleep efficiency
in Most use cases. But this is not always the case—actigraphy has a tendency to underestimate
the sleep onset latency during the early stages of sleep for example[70] .

Historically, actigraphy devices reduced the raw acceleration signal into “activity counts” to
characterize the activity level for a particular epoch, a result of hardware limitations at the time
that made storing and processing the whole signal impractical. As a result, actigraphy-based
sleep scoring algorithms have typically been limited to making binary classifications of an
epoch (sleep or awake)—so called sleep/wake algorithms—having limited information to make
the additional discriminations typically seen in polysomnographic sleep scoring. Another
implication of “activity counts” is that most widely cited actigraphy-based sleep scoring
algorithms were developed around this feature. Being device-specific, “activity counts"are
typically proprietary, with little information out there on their determination, making
actigraphy based sleep scoring algorithms rather difficult to use without one of these devices
or software. This has been a challenge for this project.

Still, many important assessments about sleep health can be made using these two states
alone. As recent as 2020, Apple's sleep-scoring algorithm only determined sleep or awake
statest. As of May 2024, Apple's actigraphy-based sleep-scoring algorithms breaks-down sleep
into “Core Sleep”, “Deep Sleep” and "REM" although it is unclear to what degree, if any, this is
enabled by the use of other signals such as heart rate. It is worth noting that in this case NI
seems to be clumped somewhere between “Awake” and “Core Sleep”, perhaps suggesting the

issues in discriminating against such a light-phase of sleep.
Behavioral Response Monitoring

Although characterizing sleep stages via interaction may seem counterintuitive, it actually has
a surprisingly early precedent. The first recorded use of auditory stimuli to characterize sleep
was in 1862, when Ernst Kohlschutter wrote Messungen der Festigkeit des Schlafes
distinguishing sleep depth by measuring differences in responsiveness to auditory stimuli.

A study from 1997 sought to evaluate the potential of behavioral response monitoring (BRM) in
identifying sleep onset latency and compare its performance to actigraphy by comparing both
to PSG. A subject would respond to audio tones or blinking lines as they fell asleep. The study
found that BRM was significantly more accurate than actigraphy—which is consistent with its
tendency to underestimate SOL. Relevantly, the BMR using audio tones resulted in more
responses and arousals prior to and during N1 than using light. The SOLs also tended to
overestimate—which is consistent with some of our own results. For the tones stimulus nights
sleep latencies shortened over successive SOLS trials although no explanation is provided for
this except that people seemed to be sleepier.[71]

More recently a team investigating brain signals that might further characterize N1 used motor
responses to auditory stimulus to investigate the relationship between behavioral responses
and brain signals. The study found that the number of responses and the reaction time of the
responses appeared to decrease in a gradual way across N1. Interestingly they also found that
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sound didn't really influence the response rate, this would imply the tasks or sound were not
producing an identifiable effect on the person—this has implications for the control
system.[67]
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Figure 1 A) Postsleep subjective rating of sleep onset latency and sleep quality. B) Presleep
survey for control. C) Start button. D) User settings.

Zzzonic Interface

Zzzonic is a smart, sleep-aid app designed for wearable devices and guided by the following
principles:

Significant evidence points to anxious pre-sleep cognition as a culprit of insomnia.

There is a mainstream market demand for wearables—these, already armed with a
growing number of sensors, have evolved into powerful computers capable of running
apps and machine learning inference independently. Advances in machine
learning—in particular deep learning—are enabling new levels of prediction, analysis
and control in the healthcare setting.

The emerging use of dCBT-I and popularity of white noise apps presents a unique
intersection to deploy an integrated digital platform for sleep-aid.

Interacting with Zzzonic goes as follows:

A user lays in bed with their smart watch and a nearby wireless audio speaker—once
comfortably tucked in—they double tap the start button (fig1C) to begin the
experience. At this point the screen goes dark and the interface goes from being
visual-touch to audio-gesture.

The system starts by presenting a user with auditory stimuli—two consecutive
instrumental notes over a white noise soundscape. These two tones constitute a “task”
of variable difficulty—the task is to select whether the second tone is higher or lower
pitched than the first—and the user is asked to respond as quickly as possible.

The user can respond by gently flicking their wrist counterclockwise or clockwise,
indicating a response of “higher" or “lower" respectively. As little as a 17° tilt is required
for a system to recognize a response. The user is free to move in bed and interact with
the system in whatever sleeping position they find most comfortable.

After a user responds, the system indicates whether the response was correct or
incorrect by playing a high-pitched or low-pitched Tibetan singing bowl sound.
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From the perspective of the user this constitutes most of the interaction except that they may
perceive the frequency of audio tasks to get faster or slower (what we refer to as cadence) and
the tones harder or easier to distinguish (what we refer to as difficulty). They will also perceive
the overall volume to increase or decrease.

The idea is to create a somewhat monotonous yet compelling focal point that a user can
restrain their mind around. Once the user is engaged in the sequence of tasks, the system
attempts to smoothly transition them into a state of unconsciousness. It does this by
increasing the intensity (the combination of cadence, difficulty and volume) if it estimates the
person is too mentally preoccupied—or by decreasing the intensity if it estimates the person is
primed to fall deeper into the sleep onset period. Once the system estimates a user is near
sleep onset it will shut off automatically—if the user ceases to respond after some time the
system will also assume the user is unconscious and shut off on its own.

Zzzonic treats the human-computer interaction as a control system, seeking to minimize
predicted sleep onset latency—itself a function of feedback signals from the body as well as
the interaction—by adjusting the available control variables—in this case cadence, difficulty
and volume. This gives it an added advantage

One way to frame the balance Zzzonic strives to strike is to consider that if a cognitive task is
too demanding the mind will be aroused and the task will prevent a person from falling asleep.
Alternatively if a task is insufficiently engaging the mind has too much room to wander and it
may not restrain cognition enough to be effective. The system must adjust the experience to
simultaneously match and drive a user’s state of sleepiness at any given point in time—and it
depends on estimating how sleepy a user is to do so.

As an interface, Zzzonic is intentionally designed to minimize arousal and closely fit into the
natural sleep system. This is why, besides a minimal visual user interface for settings and basic
control, the entire experience is a hands-free, closed-eyes interaction that can be comfortably
engaged from any position in bed. Replacing the visual modality with audio output eliminates
the need for light, which has been shown to disrupt sleep in the context of environmental light
and minimizes stimulation of the visual cortex.

Aside from the primary interaction the user has the option of providing relevant information
that may impact their sleep onset latency and sleep efficiency before a session (fig.1A) as well
as a rating of the sleep onset latency and sleep efficiency the next morning (fig.1B).
Additionally a user can choose a number of settings regarding the frequency distribution of
the white noise and duration of white noise (fig.1D). For example background noise can persist
throughout the night or be programmed to shut-off once the person has fallen asleep.

Zzzonic Predictor

Zzzonic makes periodic estimates of sleep onset latency to use as the necessary control
feedback signal. To do this the system relies on actigraphy as well as behavioral response
monitoring features derived from the interaction to predict a person’s sleepiness.

Zzzonic primarily operates when a user is still conscious enough to respond to stimuli—which
ranges from the fully awake state to somewhere within N2, when a person typically falls
completely unconscious. This range is bisected by the first and lightest stage of sleep, N1, the
typical marker of sleep onset. It encompasses N1 because a person can still respond to stimuli
at this point. This is relevant because it implies that traditional sleep staging (awake, N1, N2, N3
and REM) does not provide adequate resolution to distinguish the ~20-30 minutes prior to
unconsciousness (a nearly binary set of values—Awake, N1 and N2). For this reason, Zzzonic
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attempts to directly predict sleep onset latency rather than any discretization of the sleep
onset period?—providing a continuous measure of the user’s sleep state.

By nature of its interactivity, the Zzzonic interface can use the very responses used for intrusive
thought control to gain additional information about a user's sleepiness—which is particularly
useful in the sleep onset period since the accuracy of actigraphy based sleep staging is
typically weakest during this period. These features can serve as proxies for muscle tone or
hearing and cognitive acuity, which are known to deteriorate as a person approximates sleep
onsetl. These response-dependent indicators can be combined with response-independent
indicators readily available in many smart watches, such as actigraphy, breathing rate, heart
rate and body temperature. Additionally, Zzzonic makes note of factors such as emotional
state, stress, consumption, physical exhaustion and the sleep environment via the presleep
survey (fig.1B)—which can all play significant roles in the sleep onset outcome on any given
night.

The interactive nature of the app also enables an additional function: a lack of response from
the user is a robust signal suggesting unconsciousness and a flag for the system to shutdown.
This, along with a person's subjective perception of sleep onset (fig.1B) can be used in the
learning mechanism of the model. Finally the current implementation is an intentionally
simple linear model—meaning there is a lot of potentially upside in leveraging machine
learning.

Zzzonic Controller

The Zzzonic controller module prescribes the intensity (cadence, difficulty and volume) of the
audio tasks performing the intrusive thought control using a periodic estimate of a user's sleep
onset latency as a feedback signal. This is currently a simple rational function, designed to
make audio tasks exponentially sparse and quiet as a person grows sleepier, giving the mind
increasing space to descend into deep sleep.

A more sophisticated controller might actually try to minimize the sleep onset latency function
with a broader set of control variables—such as control of the sleep environment itself and
targeted insomnia management protocols. Additionally, the difference between a person’s
objective measures of sleep onset latency and their subjective perception of sleep onset
latency, collected via the postsleep rating (fig.1B) might be a useful feedback signal for the
controller to evaluate insomnia and counteract potential selection attention.
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Results

Experiment
Initial Experiment Design

When it comes to research on the role of distraction on sleep onset latency, the most relevant
experiments required patients to self-administer distractions and did not include an objective
measure of sleep.

Civen this, the initial goal for this project was to collect data on the relationship between
independently administered intrusive thought control and objective sleep onset latency in a
controlled manner. The goal was to control for as many factors as possible while carrying out
the experiment in as natural of an environment as possible.

For this reason, our experiment was designed with a within-subject framework (every
participant would receive the experimental condition—interactive mode—as well as two
control conditions, noise-only and silence) which allowed for control of the physiological and
psychological differences between participants. Participants would either be normal sleepers
or people self-reporting sleeping difficulties that met the requirements of transient insomnia
as defined by the AASM, which would discriminate against the effects of the various conditions
on the two groups of people—who might react differently.

Each subject would spend two nights under each condition and these would be assigned
randomly in order to control for weekday effects and the first-night effect (FNE)—which is
when sleep quality declines in an unfamiliar environment. The conditions would be
administered remotely via the same version of the app in order for the participants to sleep at
home and to reduce any effect the perception of being observed might have on their
sleep—additionally it would ensure controlled administration of the condition.

We would collect actigraphy and interaction data via the device during the interactive portion
of the sessions as well as throughout the night in addition to two short surveys. The first would
be presented remotely at the beginning of each session via the user interface—this would be
used to control for any factors that might impact the results, such as stress level, consumption
of caffeine, etc. The second was presented the next morning via the user interface to collect
and observe subjective measures of sleep quality and sleep onset latency from the previous
night.

The same actigraphy based sleep/wake classifier would be used to get a consistent and
objective measure of sleep quality and sleep onset latency based on actigraphy—which would
make precision of the algorithm less important. At the end of the study, average sleep onset
latency and average sleep efficiency across the groups would be compared for statistical
significance.

Testing
Il. After some initial testing it became clear that precise functioning of the sleep onset
latency (SOL) predictor and controller would be necessary before assessing the

potential effect of computer-modulated intrusive thought control on sleep onset
latency since an obviously dysfunctional controller would easily bias the results. For this
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reason we shifted our focus on exploring and evaluating a basic SOL predictor and
controller as a proof of concept.

This would require an ensemble of indicators. Our initial intention was to include a number of
other signals that are typically available on wearables:

I, Heart rate is a component of polysomnographic (PSG) sleep scoring. As of watchOS
10.4, Apple does not allow real-time access to heart rate measurements for commercial
apps except for use during an active workout®. With standard HealthKit privileges, the
effective sampling frequency for heart rate measurements ranged between 0.1to 1HZ, a
function of private operating system rules. The sparse and irregular sampling
introduced the potential for signal aliasing while limiting its utility as a real-time
feedback signal.

[l. HRV is also a component of PSG scoring?¥ and has the additional potential of serving
as a stress indicator—making it a good candidate for SOL prediction. For the time
being HRV could only be sampled approximately once every 4 hours.

[1l. Respiratory is another component of PSG scoring® this, in addition to Apple’s sleep own
sleep stage scoring analysis, were only available for query once the sleep session had
ended, excluding their use as a feedback signal.

Civen the current limits and the added complexity of interfacing with the HealthKit, these
variables were excluded in the scope of this project but have the potential to be included
through more clever signal processing, an exception from Apple or via another device.

From all the potential response-independent variables (heart rate, HRV, respiratory rate, sleep
analysis, motion) available on Apple Watch Series 6 and newer, we ultimately chose to focus on
motion and interaction derived features at this stage.

This consisted of evaluating three indicators we arrived at through process of elimination
during testing:

|.  Total motion—the log,, of the sum of all the magnitudes of the acceleration vectors
from triaxial acceleration measurements sampled at 50Hz within a 60 second epoch.

[I. Response latency—the time interval between the perceptible end of an audio task and
the beginning of a user's response—i.e. reaction time.

[1l. Gesture magnitude—the sum of all the magnitudes of the acceleration vectors from
triaxial acceleration measurements sampled at 50Hz within the duration of the gesture.

The indicators would be evaluated by assessing their capacity to change gradually over time in
a way that reasonably indicated a relationship to sleepiness—this was necessary since
traditional sleep scoring would not provide sufficient resolution, particularly in the initial
phases of sleep which is our concern.

We would also test the predictive and controlling functions:

I.  SOL predictor—this is composed of two functions. The first is three linear functions (one
for each indicator) that were empirically parametrized—these take a moving average of
the indicator measurement and output individual predictions of the SOL. The second
takes the three individual SOL predictions and outputs an equally weighted composite
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average. For reasons explained below this would be evaluated by determining how
closely it had managed to predict the moment someone stopped responding.

SOL controller—a rational function that takes as input the SOL prediction and outputs
an exponentially large parameter (cadence) as the SOL prediction becomes smaller,
which defines the distribution frequency of the audio tasks. Since we would not be able
to compare sleep onset latency unbiasedly across interactive and control nights, this
would be evaluated, for now, by its capacity to induce some discernible change in
“activity” in the user—i.e. sleepiness.

We had hoped to evaluate the SOL prediction using the device itself (Apple's sleep analysis)
but we eventually discovered a number of problems with this:

The most immediate being that the operating system appeared to unilaterally
terminate Zzzonic while the device was in Sleep Focus mode, which is required for
sleep analysis. In other words, we had difficulty running Zzzonic and Sleep Focus
simultaneously. It is possible efficiency improvements might make Zzzonic compatible
with Sleep Focus but we were not able to address this within the scope of the thesis.

The more general and problematic issue is that actigraphy based sleep-wake
algorithms will tend to classify user responses as awake time—resulting in a sleep onset
latency that probably lags the first appearance of N1. We confirmed this in early tests
using a Dreem Headband which is more accurate at scoring sleep than actigraphy
alone. An implementation of Oakley's algorithm consistently classified the interactive
portion of the sessions as awake yet using the Dreem Headband, we were able to
observe people fully interacting with an early version of the system in the N1 and N2
sleep stages, which is consistent with a number of studies showing people can respond
to verbal auditory stimuli while they sleep, including during N2[72]. Studies evaluating
sleep/wake algorithms have identified it is particularly insensitive during the early
moments of falling asleepl[l]. Future work needing to evaluate behavioral response
monitoring systems will benefit from relying on a second more holistic device, such the
Dreem Headband for development and evaluation.

Additionally the lack of transparency in traditional sleep/wake algorithms make it
difficult to apply the same algorithm to data from different devices. Luckily, the activity
count algorithm for certain devices has been described well in one study[73] and
implemented as a Python package which could be combined with the Oakley
algorithm to produce a usable measure of sleep onset latency and sleep efficiency for
this experiment. The Oakley algorithm was chosen since it has been shown to have
higher sensitivity for people with sleep disorders [74]. Importantly, it's been shown that
using raw accelerometer data from a different device, including the Apple Watch,
produces similar accuracy under the same “activity count” algorithms.[75] The
implication being we can reasonably expect that inputting the raw acceleration signals
from the Apple Watch will produce similar “activity counts" and sleep-awake
classifications.

Initially we assumed the moment a person stopped responding (unconsciousness)
could serve to mark sleep onset accurately, as long as the person confirmed they had
fallen asleep rather than intentionally ignoring the system once we followed up. In
practice we found this is not a particularly accurate indicator of sleep onset either since
it also significantly lagged the first appearance of N1, as confirmed by the Dreem
Headband. Nevertheless, this became the most adequate option so we adjusted our
evaluation accordingly. Still—our grander objective remains to assess the potential of a
technology like this as an intervention.

2]


https://www.zotero.org/google-docs/?1CHS0x
https://www.zotero.org/google-docs/?zDvGmJ
https://www.zotero.org/google-docs/?PkGtX7
https://www.zotero.org/google-docs/?sOxT1c

Results

It is worth noting these results are based on data that comes from multiple versions of the app
while we were iteratively building, debugging, calibrating and evaluating the prediction and
control system. Here we report the average performance of the sleep onset indicators,
predictor and controller across this entire period.

In total we captured 60 sessions of which 49 sessions were deemed valid—lasting more than
20 minutes—across multiple versions of the app (v.0.11 - v0.1.9) with an average duration of 4
hours and 12 minutes. Of these, 23 were interactive nights, with the interactive portion of the
session lasting an average of 22 minutes. 5 sessions occurred on Friday, Saturday and Sunday
nights, and 44 sessions occurred in the rest of the week.

These sessions represent 11 people, 7 male and 4 female. 7 users identified as having sleeping
difficulties and 4 users identified as having no sleeping difficulties. Although the sample size
was small, we checked for a statistically significant difference in sleep efficiency using the
control sessions of each group, showing a 20% decrease in sleep efficiency (t = 0.04) P(<0.05) in
the group with sleeping difficulties.

I Indicators

We observed two passive variables (independent of a user response) throughout all 49
sessions. Total motion was negatively correlated with the first 30 minutes of a session for the
control and insomnia groups, -0.029 (p-value <0.005) and -0.034 (p-value <0.005) respectively.
Additionally there was a clear distinction between the insomnia and control groups, with the
insomnia group having a baseline total motion of at least 7% higher than the control group.
Motion interval, which is a function of time, was positively correlated with the first 30 minutes
of a session for the control and insomnia groups.

The interactive variables (dependent on a user response) were observed throughout 23
interactive sessions. Those characterizing the motion of the gesture (magnitude of the gesture,
rotation rate of the gesture, rotation of the gesture and duration of the gesture) are functions
of one another and were negatively correlated with the progression of the audio tasks
sequence. Gesture magnitude was negatively correlated for both the insomnia and control
groups with -0.044 (p-value <0.005) and -0.024 (p-value <0.005) respectively.

Neither of the variables characterizing the cognition of the response (response latency and
response accuracy) had a significant correlation with the progression of the audio tasks
sequence. Response latency for both groups was nearly flat with -0.003 and -0.003 slopes
respectively (p-value <0.005). Response latency was also affected by a persistent bug in some
devices that was difficult to control for and might have affected the results.

Response accuracy was almost uniform across sessions of varying length for both groups. In a
few cases we observed nearly 100% accuracy for the whole session.

1R SOL Predictor

For all interactive sessions, the system shut off by means of a person ignoring the system
(involuntarily or voluntarily) rather than by reaching an estimated SOL <=5 minutes, indicating
a consistent overestimation of the SOL.

On average the model overestimated the SOL by approximately 125 minutes. The best
performing predictions within the normal range for sleep onset (10 - 30 minutes) lagged the
moment a user fell unconscious by approximately ~6 minutes, these represented people in
both control and insomnia groups.
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The same users in both the insomnia and control groups reported that the system had shut off
at the adequate moment and that experience had been generally pleasant as well as that the

controller had behaved erratically and extended their sleep unpleasantly with different
versions of the app.

I SOL Controller
No identifiable correlation between the control variables and the activity of the users emerged.

Users did report feeling like their sleep onset was extended when the cadence was too
frequent or the volume too high but made no mention of the difficulty.
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Figure 2 shows a session with an interactive duration of ~30 minutes. The blue line tracks accelerometer readings, the
vertical red lines mark the distribution of audio tasks over time, the black line marks the trajectory of the predicted
SOL over time.

Discussion

In total we were able to use data from 49 sessions—these were sessions that had not ended as
a result of the app crashing or being prematurely terminated by the operating system. Of
these 23 included an interactive portion.

The users in the insomnia group all reported having sleeping difficulties that matched the
criteria of transient insomnia. The control consisted of 4 people who identified as normal
sleepers. The average sleep efficiency for both groups was calculated across the 26 control
sessions (silence) using an implementation of the Oakley algorithm resulting in a statistically
significant lower sleep efficiency in the insomnia group compared to the control. The point of
this was to have more certainty each group actually represented their population.

Ideally, each participant would have participated equally in each condition to ensure bias
introduced from individual users was controlled for but this was not possible since persistent
bugs with the interactive mode on certain Apple Watch devices frequently terminated
sessions. Sessions were distributed as randomly as possible to control for weekday differences.
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Figure 3 shows the average response latency in seconds (thick lines) at each point in the sequence of audio tasks
across all interactive sessions for both the insomnia and control groups. The regression lines (thin lines) for the entire
distributions are also plotted. In order to get a sense for the elapsed time, the vertical line (black dashed) marks
response number 59 which approximately marked 30 minutes on average. The distribution of points (circles) for each
population is also included to get a sense for the variance.

Response Latency

Response latency—a user's reaction time to the audio task—was hypothesized to increase as a
user's drowsiness increased as investigated in similar studies.[1][67] We were unable to identify
a significant correlation with the progression of the session—even after attempting to
normalize it across sessions of varying lengths and calibration settings. This makes it the most
ambiguous of the indicators we evaluated since it appeared—in multiple individual
sessions—to progress upwards or be a weighty driver of the SOL prediction. There was also no
obvious difference in response latencies between the insomnia and control groups—other
investigations seemed to be able to infer insomnia from response latencies during the
daytime, presumably from being more tired.[76]

A key factor in interpreting the results for response latency is that it was the most recalibrated
indicator—that is, the most redefined across different versions of the app. It was also the most
affected by bugs, disqualifying at least two sessions—all of which means the results may be
noisy. Besides the uncertainty, response latency was critical in triggering the shut-off process
automatically which served as the closest estimate of sleep onset. Regarding the noise—this
has some extrinsic and intrinsic explanations.

Extrinsically—a key problem might be a poor noise-to-signal ratio—response latency typically
ranged between 0.25 and 125 seconds—which could easily be buried by noise such as
inattentiveness while the user is still tucking into bed, disproportionally slow responses as a
user learns to use the system or occasional lagging in the system’s gesture detection. Like the
rest of the indicators, response latency was particularly noisy at the beginning. Additionally
some sessions ended voluntarily—and these tended to be shorter, which would imply that
additional noise was reintroduced from a person returning to wakefulness. This is one
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explanation for why the typical trajectory of response latency is flat in the first half of the
session and then increases slightly in the second half of the session.

Response latency has a few characteristics that potentially make it intrinsically variable.
Assuming it is a good measurement of attention or focus then it is reasonable to expect that it
might vary as quickly and frequently as our thoughts. As an indicator this means we would be
particularly interested in how it has tended to change across longer periods of time as
opposed to how it has changed from moment to moment. This has a few implications:

i. If response latency is a high frequency signal then its change over time is a low
frequency signal which potentially means the indicator is vulnerable to aliasing.
Perhaps this is why it appeared to be a clearer signal to the predictor (which used a
smoothed average as input) and in the latter half of a session (where a slower cadence
of audio tasks represented a lower sampling rate of the signal) both of which effectively
work as a low-pass filter. Response latency might benefit from anti-aliasing techniques.

ii. Although less important, its potential behavior as a low frequency signal also brings
into question to what degree it might work as a feedback signal. If the required signal
duration is too long it may not function for short sessions or may even have limited use
in sessions of typical length.

Returning to its intrinsic variability—there is also the consideration that response latency is
probably a function of a number of variables that introduce variability:

i. Although we did not identify any correlations between difficulty and response latency,
it is reasonable to believe response latency would increase on average when the pitches
are harder to distinguish, either as a result of a small difference in pitch or low volume.
For our testing, difficulty was programmed to decrease as a user grew sleepier. In
theory this might cancel out any increases in response latency coming from sleepiness,
explaining its flat trajectory although our observations of response accuracy suggest
this is less likely.

ii. Individual differences in a user's hearing and cognitive acuity or interaction style could
result in a substantially different range of response latencies.

Finally, it remains possible that response latency is only a useful indicator at some yet
unknown point along a user's progression towards unconsciousness—also explaining the
tendency to increase in the second half of longer sessions.
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Figure 4 shows the average gesture magnitude in m/s? sampled at 50Hz at each point in the sequence of audio tasks
across all interactive sessions for both the insomnia and control groups (thick lines). The regression lines for the whole
distributions are also plotted [thin lines].

Gesture Magnitude, Rotation Rate, Rotation and Duration

Cesture magnitude—the strength of a user's flick of the wrist—and its correlates were the best
performing continuous indicators that could be uniguely derived from the interaction. The
hypothesis was that these served as proxies for muscle tone, which has been observed to
decrease as a person grows sleepier[77]. We consistently observed that the strength of a user’s
response as measured by these indicators dropped as the session progressed or increased
when a user became more alert—such as before a person voluntarily stopped the session.

Of these, gesture magnitude had the strongest correlation with the progress of the session
and was assumed to be the most explanatory—for this reason it was selected as the indicator.
The rest were highly correlated to gesture magnitude and assumed to be redundant. A more
sophisticated model could conceivably make better use of including them. Additionally there
may be cases where the redundancy might be useful. For example, if two users differ widely in
gesture magnitude then gesture rotation might be easier to calibrate.

The gesture magnitude typically decreased sharply within the first 5 minutes of a session
before stabilizing into a gradual descent. The initial drop probably represents the user
calibrating their own strength at the start of each session and should be considered when
setting the bounds of the indicator.

Our analysis shows the typical decrease in the strength of the response was nearly twice as fast
in the insomnia group than in the control group—the insomnia group also seemed to vary
considerably more in the strength of their responses. Given the sample size, this is probably
just an artifact of variance in the insomnia group. One explanation for the variance is that a few
users in the insomnia group participated in the testing remotely—and did not benefit from
training on how to use the system. Thus they might have been unaware they could respond
gently. There were also more people in the insomnia group, representing more potential
gesture styles.
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Figure 5 shows correlation plots for each alternative gesture indicator plotted against gesture magnitude for every
data point in the dataset.

One matter these indicators bring up is the question of to what degree muscle tone
represents physical relaxation versus sleepiness. Although connected! this could potentially
indicate a person is relaxed but not sleepy.

Response Accuracy

Response accuracy—whether a user answered the audio task correctly—was hypothesized to
decrease as a user grew tired, a proxy for the decrease in cognitive and hearing acuity that has
been observed when people grow sleepy in other settings. The tendency for the response
latency SOL to decrease does suggest some measurable degradation of cognitive acuity might
exist. Despite this, our testing found the current audio task design does not allow the use of
response accuracy as a feedback signal since there was no clear relationship with the progress
of the session.

We observed nearly perfect accuracy in sessions lasting more than 30 minutes and no general
tendency to decrease over time—despite programming the difficulty to increase if a user was
not sleepy. This indicates, at the very least, that the audio tasks did not offer a way to measure
the drops in cognitive or hearing acuity, if any, that might be useful to infer a user is sleepy.
Beyond the possibility that no measurable relationship exists, there are a few potential
explanations for the lack of variability:

I. It is possible the difficulty of the current tasks needs better calibration, currently the
minimum difference in pitch between tones is 1/12th of an octave, which might be too
easy to discriminate. Tests with an early prototype that allowed for smaller pitch
differences showed somewhat more variability in response accuracy. A separate
implication is that it can be difficult to determine if changes in response accuracy are
due to sleepiness or task difficulty—easier tasks will naturally have higher accuracies
than more difficult ones.

Il. A binary outcome (correct or incorrect) makes response accuracy a less sensitive and
more volatile feedback signal since there are no degrees of correctness. In theory a
moving average, as implemented, would improve the sensitivity but it does not appear
to be sufficient, especially as audio tasks become more sparse. Additionally, in any case
there was a fifty-fifty chance of getting it correct.
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Figure 6 [Left] shows the accuracy as a percentage of correct guesses across all sessions and groups for each audio
task in the sequence. Figure 7 [Right] shows the accuracy as a percentage of correct guesses across normalized
progress of the session.

Although the variance of the average accuracy appeared to increase with time—this effect
almost entirely disappeared once the lengths of the sessions were normalized. This is not
surprising since there were fewer long sessions. Users reported answering incorrectly when
they forgot in what direction to flick their wrist or while they were still busy tucking into bed.
This might represent a missed opportunity—it is worth considering how the task can be
reframed to gather more information. For example, one study® asked participants to identify
deviant sounds, which reduces the chances of random guesses.

Total Motion, Motion Interval

Total motion—a measure of a user’s total movement during a period of time—is a form of
standard actigraphy—and has already been thoroughly investigated™. Still, we were
interested in understanding its suitability as a feedback signal. Our testing showed our
implementation consistently decreased as the session progressed in a relatively gradual and
continuous manner—presumably tracking a person’'s tendency to move less frequently and
more gently (including breathing) as they grow tired.

The primary issue with motion generally as a feedback signal is its potential range which varies
immensely between moments of relative stillness and strong movement—making it a volatile
indicator. It also contains multiple signals at various scales—for example, the frequency of large
movements might reveal comfort levels while small movements might reveal breathing
patterns. For this reason we tracked total motion and motion interval—the time interval
between large movements—separately. Additionally we used the log,, of total motion to
attenuate large movements, since sessions were primarily composed of moments of relative
stillness.

Our tests revealed motion interval was not suitable for a few reasons:
l. It had a tendency to erroneously interpret the passing of time as sleepiness and to

change abruptly—making it an insensitive and volatile indicator.
Il. It was also a sparse measurement, providing no insights between large events.
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ll. Including both total motion and motion interval is partially redundant, since total
motion also considers the frequency of movements, particularly larger ones. This has
the effect of doubling the influence of large movements.
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Figure 8 [Left] shows the average motion interval for all sessions for each 60-second epoch, separated by group.

Figure 9 [Right] shows the average total motion for all sessions for each 60-second epoch, separated by group as well
as the regression lines for each group.

For these reasons we ultimately decided to only include total motion which already provides
continuous information and can be fed into a number of filters to focus on different signals.
Since our model largely ignores large movements, future work could investigate how to make
better use of this information.

One issue we ran into with both total motion and motion interval was calibration. Unlike the
other indicators there was significant variability in the bounds of the indicator between users,
particularly between the insomnia and control groups. For example—the lower bound of total
motion was significantly higher for the insomnia group, who tended to move more. Similarly,
the lower bound for motion interval was significantly lower for the insomnia group, who
tended to move more frequently.
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Figure 10 [Left] shows the trajectory of the average composite SOL across time as well as the SOL predictions for its
component parts [solid lines]. It also shows the average trajectory of the composite SOL and its component parts after
normalizing for the session length.

Figure 11 [Right]| plots the predicted SOL against the real SOL (the moment someone stopped responding) [red dots]
as well as the trajectory of the predicted SOL over time for the top 3 best performing sessions [black solid lines]. The
dotted lines mark the target range predicted SOL <=5 minutes AND 10 minutes < Real SOL < 30 minutes.

Sleep Onset Latency Predictor

The sleep onset latency (SOL) predictor consistently overestimated the SOL by approximately
12 minutes. Fig.10 shows the average SOL prediction broken down by component after
normalizing for the session length which plateaus at an estimated 12 minute SOL after about
12 minutes of elapsed time. Fig.11 shows 14 of interactive sessions (60%) ended with a SOL
prediction between 10 and 15 minutes.

I Indicator Calibration and Weighting

A persistent issue throughout our testing was the calibration of the indicators—as previously
discussed there were significant differences in the upper and lower bounds of each indicator
across groups, individuals and even sessions. This had the effect of saturating one or more of
the indicators and preventing the SOL from ever descending since it was an equally weighted
average of the three components.

Ideally indicators would be calibrated for each user. The most performant SOL predictions
were manually calibrated to the user—even then variability remained between nights. We
attempted to define these ranges automatically by observing some initial portion of each
session but it was difficult to characterize a user’s “sleepy” behavior with this information alone.
It seems likely that a good calibration will depend on at least a few nights of data.

It is also reasonable to believe that indicators will vary in importance throughout the progress
of a session. Dynamically adjusting the weights to emphasize their explanatory power over
time might improve performance. It is worth nothing that the information we get from a
user's response carries more “weight” when they are sleepy (i.e. it has a longer effect on the
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experience)—this is true for all response derived metrics and is perhaps a desirable feature
assuming the SOL predictions are accurate.
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Figure 12 [Left] is a modified version of Figure 11 showing the simulated performance of the model when excluding the
gesture magnitude (muscle tone) indicator. The green and red lines represent decreasing and increasing errors
respectively. The black lines show the new trajectories of the composite SOL for the top 2 best performing sessions.

Figure 13 is a modified version of Figure 1 showing the simulated performance of the model using the gesture
magnitude (muscle tone) indicator alone.

As mentioned earlier, the gesture magnitude indicator had a tendency to drop sharply at the
beginning of a session followed by an oscillating descent between 0 and 15 minutes which has
been observed in other studies tracking gestural responses[71]. The first drop probably
represents the initial adjustment period while a user calibrates how much strength a response
requires. This is consistent with the observation that gesture magnitude was the least likely to
saturate the SOL prediction—suggesting the upper bound was well above the indication
range.

Fig.4 shows this most likely constitutes the initial drop between 45 m/s*> and 2.5 m/s? still
leaving an approximate 1 m/s? of range to use as indication. Calibrating to this smaller range
does mean it may become more vulnerable to variability—future use of gesture magnitude
should consider this adjustment effect.

The observations in figure x suggest the oscillating descent is more likely to represent real
changes in muscle tone since it continues to descend rather than plateau. Gesture magnitude
appears to be the “best” indicator when used alone (fig.13), improving the SOL prediction in
almost every session of this set, some of which are brought into the target range. But this
should not necessarily be attributed to its power as an indicator alone.

I. For example, the worst performing simulated session in (fig.13) is a result of a
calibration setting that saturates the SOL prediction—one might imagine that this
might happen more frequently if the upper bound is decreased to better focus on its
sleep-related range.
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Il. Second, the simulated results are most likely underestimations of the real SOL—in a
few sessions this results in an SOL prediction that reaches the target range within 10
minutes—which is probably too early. It remains possible that gesture magnitude is a
front loaded indicator, becoming less important after 10 minutes. This would be
another explanation for its tendency to flatten out (fig.10).

. It would be valuable to investigate what the explanatory decay of each indicator is.
Alternatively, excluding gesture magnitude produced relatively little damage to the
simulated SOL predictions, implying it behaved relatively independently.
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Figure 14 [Left] is a modified version of Figure 11 showing the simulated performance of the model when excluding
the total motion indicator. The green and red lines represent decreasing and increasing errors respectively. The black
lines show the new trajectories of the composite SOL for the top 2 best performing sessions.

Figure 15 is a modified version of Figure 11 showing the simulated performance of the model using the total motion
indicator alone.

Total motion is the most likely culprit for the stagnation of the SOL predictions during testing.
Fig.14 shows the simulated results of using total motion alone, which significantly worsens the
predicted SOL for a majority of sessions. The reason for this is upper bound saturation of the
predicted SOL, which can be seen by the proximity of the resulting SOL predictions to the top
of the range as well as the new trajectories of the best session SOL prediction—which only
appear after ~7.5 minutes.

For these sessions, a significant portion of time was spent with one third of the SOL indicating
full wakefulness—this probably prevented the composite SOL frorn descending below 12
minutes. Naturally, excluding total motion improved all the sessions that were affected by this.

Our focus on small-scale motion carries the implication that significant time must pass before
total motion measurements enter the indicator range—thus it might benefit fromn dynamic
weighting. Once the indicator was in range it had a tendency to drop sharply—this was
probably a moving average effect before stabilizing into very gradual descents with little
variability which are characteristics of a good feedback signal. This brings into question to what
degree this represents breathing rate and if so, whether total motion is the best way to track it.

Finally, we observed that sufficiently large or frequent movements could bump the indicator
beyond its upper bound, abruptly re-saturating the predicted SOL—implying the log,
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transformation helped but didn't fully resolve the scale and volatility issues. This is consistent
with the observation that the total motion component of the predicted SOL tended to rise in
the second half of the session (fig.10).
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Figure 16 [Left] is a modified version of Figure 11 showing the simulated performance of the model when excluding the
response latency indicator. The green and red lines represent decreasing and increasing errors respectively. The black
lines show the new trajectories of the composite SOL for the top 2 best performing sessions. Figure 17 is a modified
version of Figure 11 showing the simulated performance of the model using the response latency indicator alone.

Civen the uncertainty around response latency, we initially suspected it might have been
behind the underperformance of the SOL predictor. As mentioned earlier, response latency
was the most difficult indicator to calibrate. This contradicted its performance as an input to
the SOL predictor which demonstrated a tendency to decrease throughout a session and data
from other studies that have used it successfully[67] —this has a few explanations:

Response latency was the most likely indicator to “bottom-out” the SOL prediction—meaning
we had trouble setting the lower bound. It spent considerable time indicating a user was
asleep in a number of sessions—this is apparent from the number of sessions that “improve” to
the minimum range in fig.17. This is a likely explanation for why its component of the SOL
quickly plateaued around 7.5 minutes on average (fig.10). This is also consistent with other
studies using reaction times, which had similar upper bounds but different lower bounds. [67]

There were sessions with more suitable calibrations that did work though—descending over
the long run—but it remained highly variable as a feedback signal. If it can be properly
calibrated, response latency would benefit from heavier smoothing as well as considering it a
low-frequency signal.

Excluding it largely worsens the performance of the model because these happen to be the
same points that were affected by total motion, attenuating the error.

Overall this demonstrates a strong need for flexible and accurate calibration of each of the

indicators in the product context. Dynamic weighting is also likely to improve the
performance—future work should investigate the explanatory decay of each indicator.
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Figure 18, 19, and 20 (Left, Center, Right) shows the variability of each indicator over time after removing the most
severely miscalibrated sessions. Plotted are the max (red), mean(black) and min(blue) values for each minute across all
sessions.

This analysis also demonstrates the most reliable performance of an SOL predictor will
probably come from an ensemble of indicators that balance their strengths and weaknesses
as a whole. It is interesting to note that the best performing sessions, such as session 40 and
48 changed minimally when one of the indicators was excluded.

Civen the performance of such a simple model, there is a lot of potential upside in integrating
more signals and employing machine learning. These results suggest real-time sleep onset
latency prediction on a wearable device is probably possible.

Moment of Unconsciousness as Sleep Onset Indicator

Finally, as mentioned in the experiment section, we observed that sleep onset, as measured by
the Dreem Headband, typically preceded the moment someone fell completely unconscious.
This has a number of curious implications—one is that this is probably another marker the
predictor has overestimated the SOL.

Ideally the system would shut off as a result of identifying the real moment of sleep onset,
necessarily this precedes the moment a person stops responding involuntarily. Yet in our tests
nearly every interactive session ended by means of unconsciousness. And despite this, we
found that users reported the system shut off at the correct moment and that the experience
was pleasant when they perceived the cadence of auditory tasks was adequate, implying the
SOL prediction error was smaller. In contrast, the same user would report the system
detrimentally extended their sleep onset when they perceived the cadence of the auditory
tasks was too fast, implying this error was larger. In other words the moment of
unconsciousness could happen with a nearly accurate or grossly inaccurate SOL estimate,
which reduces its utility as an objective measure of SOL.

Another implication is—what then, if not unconsciousness, defines the right moment to shut
off? Defining the right moment will ultimately be essential for the effectiveness of any
predictor. For example the first instance of N1 (i.e. typical sleep onset) might be too soon since
the mind may still have a chance to ruminate.

At the other end we have already observed that unconsciousness (i.e. some point between N2
and N3, inclusive) can be too late. Ideally there exists a point of no return, a threshold before
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unconsciousness beyond which it is too late for intrusive thoughts to dominate the natural tide
of sleep. Presumably it exists since people with insomnia ultimately do fall asleep, albeit with
more difficulty.

This point would also, ideally, be able to be identified via indicators. The interactive element
allows for some interesting possibilities. For example, during our testing of an early version of
the system along with the Dreem Headband, we observed that a frequent, fixed cadence
seemed to indefinitely maintain a user between wakefulness and NI, never beyond N2.
Adjusting the cadence allowed a user to enter N2.

Aside from suggesting that the right cadence is critical to avoid disrupting sleep, it also

suggests there is a cadence that marks a person's ability to fall asleep. Perhaps crossing a
similar interaction based threshold can define the right moment to shut off.
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Figure 21 is a correlation plot showing a current change in intensity
prescribed by the controller between time t, and t,.,; plotted
against the future change in activity between t,,; and t,.
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Looking at the data we were unable to identify patterns demonstrating the SOL controller was
influencing the users’' SOL in any way. Our hypothesis was that at a minimum, a discernible
increase in alertness would emerge as the controller hiked the interactive intensity—this was
the worst case scenario and a reasonable assumption given user reports.

Fig.21 is a correlation plot showing the current change in intensity prescribed by the controller
between time t, and t, ; plotted against the future change in activity between t,,; and t,. An
ideal controller would produce an X pattern, demonstrating a consistent capacity to induce an
increase or decrease in the user’s future activity by increasing or decreasing the interactive
intensity.

Our expectation was to see an accumulation of correlated points in the upper right quadrant.
Instead points were randomly spread—this was true for a number of relationships across time
(eg.t, - t,avs. t.s - t,) and after attempting to control for the heterogeneous distribution of
audio tasks over time as well as dysfunctions of the controller and predictor.

Although future intensity is a function of a user's current activity (the controller uses activity as
a feedback signal) the assumption was a user's future activity should be relatively independent
of current intensity. Still, the least weak correlations were between the mean changes of
distant points in time (e.g. t, and t..s) which probably represents the underlying tendency for
both intensity and activity to descend over time.

Overall, the controller's performance was not surprising given the number of factors it
potentially depends on, the most important being an accurate SOL prediction and a well
calibrated control protocol. Additionally, the activity metric as currently defined brings with it a
fair amount of noise—which further obfuscates the effects, if any, of the controller.

Future work should consider a less arbitrary control protocol as well additional proxies for
intrusive thoughts. It would also be valuable to study the engagement characteristics of
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different tasks and evaluate them through more precise and informative equipment, such as
EEC.

Users in both groups sometimes reported that the experience had been pleasant and that it
had not disturbed them or that it had been erratic and that it extended their sleep onset
latency . A reduced sleep onset was not mentioned.

I.  The most pertinent control factor seemed to be cadence—the distribution of audio
tasks over time—which users attributed the most interference too. For example—on a
few occasions users reported that too many audio tasks in a row had extended their
sleep onset—Dbasically preventing them from growing unconscious. Conversely, too few
audio tasks also seemed to induce a sort of arousal—a few users reported preemptively
anticipating the next task if the cadence was too slow—noting a faster cadence would
have been pleasant. Although subjective, the positive and negative association does
imply this was the most performant control factor.

Il. Volume was noticed by users but typically in a negative sense—either the volume was
too high, too low or it lasted too long. This implies thoughtful control of volume is
important since it will primarily disrupt rather than engage. Otherwise the soundscape
was described as pleasant and relaxing.

lll. The varying difficulty of the tasks was never mentioned, probably being the most
inconsequential. Our testing shows response accuracy was often uniformly
correct—implying difficulty—as currently implemented—was not a strong control
factor since it was hardly perceived. Response accuracy has been used successfully in
other studies though[67]. More complex auditory tasks might have a more noticeable
effect on the user but it is unclear whether this would be detrimental.

A number of unusual system behaviors reported by users helped us identify bugs throughout
the development process. These included pitch invariance (i.e. exhaustive repetition of the
same audio task), extreme variations in the cadence (nearly constant or very sparse audio
tasks), sudden changes in volume and sound glitches, sudden termination of the app, gesture
recognition failure and indefinitely long sessions. Most of these were acutely noted by
users—either partially or fully awakening them. Although this does not detract from the
potential efficacy of the system, it does suggest there is little room for error—the system can
easily become disruptive.

Design Considerations

Finally, our testing revealed some important insights from a design perspective. Multiple users
noted that the battery of the Apple Watch was dead or significantly drained the following
morning—and produced a sort of “range anxiety” before a session. The draining of the battery
was worse when the extended audio playback feature was set. A natural design progression
would be a wearable-smartphone hybrid, offloading the analysis and audio playback to the
smartphone while the connected wearable serves as sensor. This might also resolve the issues
with the OS based app terminations.

Additionally, in order to run Zzzonic in the background, the operating system required a
persistent Bluetooth connection. This meant users without a bluetooth speaker or those who
did not wish to disrupt a partner they were sharing the bed with were forced to use
headphones. This was described as uncomfortable and probably affects a person's capacity to
relax.
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