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Abstract

Condensation trails (contrails) are aircraft-induced ice clouds that are estimated to account for up to
50% of aviation’s climate impacts. Uncertainties in the impact of individual contrails have motivated
the development of contrail models, such as CoCiP, a 0-D rapid assessment model, and APCEMM,
a 2-D model with detailed ice microphysics.

However, there are gaps within the current contrail modeling literature. There is no model both
sufficiently fast for rapid assessment of contrail impacts and detailed in its ice microphysics modeling.
There are few studies calibrating and validating the performance of contrail models on individual
flights. The absolute and relative magnitudes of errors due to weather data uncertainty and errors
due to modeling assumptions have not been extensively studied, despite many studies relying on the
CoCiP model and the ERA5 weather data for their analyses.

This thesis addresses these gaps. The APCEMM model is optimized to achieve a decrease in run-
time by 95% and is improved with depth estimation, vertical advection, and atmospheric turbulence
modules. A set of 152 flight-attributed LIDAR cross sections is assembled to compare APCEMM
and CoCiP results against individual contrail observations on metrics such as contrail width, depth,
and optical depth. A method dubbed “ambient parameter inference”, where contrail models infer
the meteorological conditions necessary to reproduce a contrail observation, is developed to pro-
duce estimated distributions of ambient parameters. These distributions are used to analyze model
sensitivities, biases in the weather data, and errors due to weather data uncertainty and modeling
assumptions.

I find that the distributions of the wind shear and vertical humidity profile as inferred by
APCEMM have means and medians within the range of radiosonde measurements of these quan-
tities, suggesting that the model adequately accounts for the sensitivities of contrail properties to
these parameters. Compared to the APCEMM-inferred parameters, the ERA5 weather data pre-
dicts a 3.8 times higher average supersaturated layer depth and a 56% lower wind shear, suggesting
systematic biases.

CoCiP infers on average a 39% lower supersaturated layer depth and a 3.0 times higher ice
supersaturation level compared to APCEMM. Due to the APCEMM-inferred parameters’ closer
agreement with radiosonde measurements, this suggests that there may be modeling errors due to
CoCiP’s inability to resolve the contrail’s vertical profile and its lower sensitivity to relative humid-
ity. Errors in the ambient humidity data are found to possibly account for an over 100% average
absolute error in optical depth when using APCEMM, greater than the 72.5% attributable to CoCiP
modeling limitations. APCEMM is found to predict contrails with a 29.3% longer average lifetime
and a 4.34-5.92 times average higher energy forcing compared to CoCiP when using the ERA5
weather data. This suggests that inter-model disagreement is on the same order of magnitude as
the already known errors resulting from meteorological data gaps.
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Title: H.N. Slater Professor of Aeronautics and Astronautics

Thesis Supervisor: Sebastian D. Eastham
Title: Visiting Associate Professor of Aeronautics and Astronautics
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1 Introduction

Condensation trails (contrails) are line-shaped ice clouds that form behind aircraft at cruising al-

titudes through mixing of the engine exhaust and ambient air. They are estimated to account for

51% of aviation’s current effective radiative forcing (RF), a measure of climate impact [1]. Although

the overall RF of contrails as a whole is positive, individual contrails can be either warming or

cooling, and their RF contributions can vary by several orders of magnitude. Factors that affect an

individual contrail’s climate impact include the ambient meteorological conditions and the aircraft

engine emissions.

The variance in the RF of individual contrails motivates the development of models that pre-

dict the formation, evolution, and impacts of contrails. Two such models are the Contrail Cirrus

Prediction Tool (CoCiP) [2] and the Aircraft Plume Chemistry, Emissions, and Microphysics Model

(APCEMM)[3]. CoCiP is commonly used in studies evaluating contrail climate impacts [4] [5], is

fast to run, and implementations such as pycontrails [6] make the model easy to get started with.

The speed, however, comes with the disadvantage that it relies on single-equation parameterizations

for the ice physics that govern the properties and impact of the contrail. Additionally, it does not

simulate the contrail on a spatial grid and assumes that the contrail takes the shape of an ellipse,

while observations and high-fidelity simulations of contrails reveal more complex shapes [7]. Despite

these limitations of CoCiP, few attempts have been made to quantify the errors arising from these

modeling simplifications that these contrail impact studies base their results on.

The second model, APCEMM, explicitly simulates the contrail physics and was developed to

serve as a higher fidelity option for simulating contrail climate impacts. It uses a 2-D grid to simu-

late the contrail cross section, and represents the ice crystal size distribution using a binned scheme

with detailed ice microphysics. However, APCEMM has many limitations. It uses unphysical pe-

riodic boundary conditions to accommodate a spectral solver [8] that requires artificial diffusion to

stabilize, takes on the order of 2-10 hours to finish a contrail simulation compared to runtimes on the

order of 10 seconds to 1 minute for CoCiP, and fails to capture important physical phenomena that
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impact contrail behavior such as updrafts and atmospheric turbulence [9]. In addition, it assumes

a constant aspect ratio for the initial contrail plume, while CoCiP has a more informed estimate

of the initial width and depth. The contrail depth in particular is important because errors in its

estimation will propagate to errors in other key contrail properties correlated with RF impact, such

as width and optical depth [9]. Without addressing these problems with APCEMM, it is not easily

used for large-scale evaluations of contrail RF and is not a good higher fidelity benchmark for eval-

uating the accuracy of CoCiP’s parameterization-heavy approach.

Another issue with contrail models is that there have been limited efforts to validate their results

or calibrate their parameterizations with observational data. Currently, analysis comparing contrail

model outputs to observations of contrails [10] suggest that CoCiP produces contrails with properties

within the range of in-situ measurements and remote sensing observations. However, these outputs

do not compare CoCiP outputs to contrail observations on an individual basis, and the high degree

of variability in observations means that this comparison provides only a weak assessment. This

is a problem because if contrail models are to be used in contrail impact mitigation strategies for

a flight, they should be able to predict the contrail impacts of that specific flight to some level of

accuracy. In particular, the models must be shown to accurately reproduce trends due to differences

in ambient parameters. APCEMM and other contrail models have similarly been the subject of few

comparison studies.

Moreover, there are uncertainties in contrail modeling due to both the limitations of the contrail

models themselves and the weather data inputs used in the models. The output of a contrail model

can be very sensitive to the ambient conditions. The grid spacing and timesteps used in weather

data sources, such as forecast and reanalysis models, are large relative to the size and lifetime of a

typical contrail. This results in a mismatch between the fidelity of data requested by the contrail

model and that which is provided by the weather data source. There been very few attempts to

quantify the effects that systematic biases present in commonly used weather data products such as

the ERA5 reanalysis model [11] have on the outputs and accuracy of contrail models. This could be

due the number of confounding factors between the weather data error, modeling errors, and lack
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of observations and measurements paired to specific flights.

A possible method to resolve this is to infer the likely weather parameters for an observed contrail,

using a contrail model. When performed over a set of many contrails, this results in distributions of

the ambient conditions as “inferred” by the models. A comparison of these inferred distributions to

those observed by radiosonde measurements in literature can provide insight into the biases present

in the weather data and contrail models. If the inferred distributions with either model agree with

the radiosonde measurements, this provides evidence that the model physics are consistent with ob-

servations. Furthermore, any remaining error must reflect shortcomings in the model. Disagreement

between the inferred meteorological data and the reanalysis data may also indicate systematic biases

therein, and therefore avenues to address these biases. This would allow for studies where the errors

attributable to weather data uncertainty are likely reduced, allowing for a better estimate of the

errors due to modeling assumptions.

Having established these research gaps, this thesis aims to advance the contrail modeling field

in three ways. First, APCEMM is improved to run faster with more efficient numerical algorithms

and account for more physical processes that affect contrail behavior. This is for the purposes of

having a viable higher order model reference on a large-scale study. Second, observations of contrails

known to have been formed by specific flights are directly compared outputs from APCEMM and

CoCiP. This comparison is to assess the models’ abilities to replicate observations and to calibrate

parameterizations for quantities such as the initial depth. Finally, an ambient parameter inference

framework is developed to analyze 1) biases in the ERA5 weather data, 2) the differences in sensi-

tivities to input parameters between APCEMM and CoCiP, and 3) the impacts the weather data

error and modeling error each have on model estimates of contrail properties and climate impacts.

1.1 Basics of Contrail Physics

Contrails form due to the mixing of the warmer, moister engine exhaust and the cooler, drier ambi-

ent air. If the relative humidity of the plume becomes supersaturated with respect to water at any

point during the mixing process, it is believed that the excess water vapor will condense onto soot
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particles emitted from the engine exhaust. These newly formed droplets will then freeze, forming ice

crystals. This condition for contrail formation is the Schmidt-Appleman criterion (SAC) [12]. For

contrails to persist in the atmosphere after satisfying the SAC and initially forming, the ambient

relative humidity with respect to ice (RHi) must be supersaturated (greater than 100%), or else the

newly formed contrail will sublimate within minutes.

The lifetime of a contrail can be split into three phases: the jet phase, the vortex phase, and the

dispersion phase. During the jet phase, the pair of counter-rotating wingtip vortices interacts with

the exhaust plume and causes the entrainment of humid ambient air, resulting in ice crystal growth.

This process occurs on the timescale of about 10 seconds [13]. Next, the vortices descend in altitude

due to the downwards velocity they exert on each other. During this descent, a fraction of the ice

crystals will sublimate due to adiabatic heating [14].

Afterwards, the vortex structures collapse due to complex instability processes at a timescale of

about 100 seconds [13], and the contrail enters the dispersion phase. In this phase, the contrail acts

as a air mass that can expand to widths of multiple kilometers through diffusion and wind shear. It

will mix in ambient air, which causes ice particle growth if the ambient air is supersaturated with

respect to ice. It may also grow in depth due to gravitational settling of larger ice crystals out of

the contrail core, forming a “fallstreak”. The persistent contrail reaches its end of life when the ice

crystals have fallen out of the ice supersaturated layer (ISSL) of the atmosphere due to gravitational

settling or have sublimated due to the contrail air mass mixing in dry ambient air.

1.2 Factors Impacting Contrail Evolution

The evolution of a contrail is influenced by a number of atmospheric conditions and aircraft pa-

rameters. The atmospheric conditions include the RHi, the wind shear, the ISSL depth, and the

temperature. Large eddy simulations (LES) have shown that a higher RHi results in a faster rate of

ice crystal growth [7] [9] and a higher number of ice crystals surviving the vortex phase [15], both

of which are correlated to the RF impacts. A larger ISSL allows the crystals to fall for a greater
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distance without sublimating, increasing optical depth and allowing wind shear to spread the con-

trail over a farther distance. Wind shear is what primarily drives contrail expansion and increases

the rate of ice crystal growth due to spreading the contrail thin and reducing competition for water

vapor between individual ice crystals. However, its effect on contrail RF is less clear due to this

increased ice growth also making particles settle out of the contrails faster, reducing contrail lifetime

[9]. The temperature is a factor in determining the ice particle survival fraction during the vortex

phase and therefore the overall lifetime of the contrail [15].

There are other factors that may impact the evolution of a contrail. This includes the vertical

wind speed, which may counteract or hasten the settling of contrail ice particles into an ice subsat-

urated region [7]. Moreover, vertical advection causes changes in the density of air, which changes

the shape of the contrail. Atmospheric turbulence and gravity waves also affect contrail lifetime

behavior, partially from inducing a temperature fluctuation. This fluctuation causes perturbations

in the RHi field, which Lewellen (2014) found to promote the growth of larger ice particles over

smaller particles and decrease contrail lifetime [9]. Aircraft geometry and emissions parameters also

affect the evolution of a contrail. These include the soot, or non-volatile particulate matter emissions

index (EInvPM), air speed, aircraft mass, wingspan, fuel flow rate, and potentially the fuel sulfur

content [16].

1.3 Existing Contrail Models

Prior to APCEMM [3], contrail models could be categorized into the lower fidelity models, such as

CoCiP [2], and expensive LES models [7][9], which resolve the transport phenomena to very fine

spatial and temporal scales. LES models are typically used for parametric studies where sensitivities

to specific input parameters are varied, rather than with real flight track and weather data. This

is due to LES models being very computationally expensive, with a single simulation of a contrail

taking many hours or days to finish, making them less suitable for large-scale studies.

APCEMM was developed to serve as a middle ground on the fidelity spectrum between CoCiP

and LES models, providing a higher-order option compared to CoCiP for large-scale studies. It uses
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a 2-D grid, explicitly simulating the transport and mixing of the contrail while featuring a binned

ice microphysics scheme. However it has limitations making it unsuitable for that role, such as it

slow runtime, non-physical boundary conditions, and ignoring of parameters such as atmospheric

turbulence, updrafts, and the initial contrail aspect ratio.

1.4 Weather Data and Uncertainties in Contrail Modeling

A critical source of uncertainty in contrail modeling is the weather data. The most widely used

dataset is the ERA5 reanalysis pressure levels data [11], which has a vertical resolution of ap-

proximately 1 km at cruise altitudes, a spatial resolution of approximately 30 km, and a temporal

resolution of 1 hour. The data contains information about the vertical RHi profile, the wind speeds,

and the temperature, which can be used as inputs for contrail models.

This coarse spatiotemporal resolution relative to typical sizes and lifetimes of contrails along with

limitations in the weather models themselves result in uncertainties in the ambient parameters. In

particular, the vertical profile of RHi is uncertain due to the coarseness of the ERA5 grid spacing

relative to the size of ice supersaturated regions, which typically have widths on the order of 100 km

[17] and depths on the order of 500 m [18]. Furthermore, profiles of RHi may have large gradients,

making subgrid models for RHi difficult to develop and evaluate. Studies also suggest that the ERA5

model itself may have inherent biases such as over-predicting the formation of persistent contrails

[19] and underpredicting the magnitude of wind shear [20].

1.5 Current Contrail Observation and Model Validation Efforts

Existing observations of contrails include in-situ measurements of bulk contrail properties [21][22]

and remote sensing observations. In-situ measurement data play an important role in informing pa-

rameterizations of early-stage (age < 1000 s) contrail ice physics and providing points of comparison

for quantities such as ice crystal number and particle radius distributions. However, they do not

provide information on the geometry of the contrail and are primarily performed on contrails under

14



1000 seconds in age. The are some in-situ observations of aged contrails such as those observed in

the ML-CIRRUS campaign [23], but those suffer from a small sample size and a lack of information

regarding the geometry of the contrail. Remote sensing observations such as those performed by

Minnis et al. (2002) [24] during the 2001 air traffic shutdown have been able to estimate the width,

depth, and optical depth of aged contrails up to 40 km in width. However, these observations are

not attributed to individual flights, making their initial conditions difficult to evaluate.

Efforts to compare contrail model outputs to observations have been limited. Schumann et al.

(2017) shows that the CoCiP model produces a range of outputs in key bulk contrail properties

as a function of contrail age that covers the range of in situ and remote sensing observations, but

does not compare model outputs to observations on an individual contrail basis. The range of key

contrail properties such as optical depth, ice particle number, width, and depth for a contrail of a

given age can vary by orders of magnitude, so these comparisons do not provide narrow bounds on

contrail model performance and the uncertainties associated with the models. Naiman et al. (2011)

[25] compares the results of their LES simulation to these in-situ and remote sensing observations,

but the comparisons are likewise not on an individual contrail basis.

1.6 Objectives of the Thesis

Considering these research gaps in contrail modeling, this thesis aims to achieve three primary

objectives:

1. Improve the algorithmic efficiency and representation of contrail physics within APCEMM.

More specifically, APCEMM should be able to:

(i) Complete a 3-hour simulation of a contrail within 5 CPU minutes and a 10-hour simula-

tion within 60 CPU minutes.

(ii) Capture the effects of turbulence-induced temperature fluctuations and vertical advection

on contrail ice physics and lifetime.

(iii) Improve APCEMM’s parameterization for the initial contrail depth through calibration

on a set of 152 flight-attributed LIDAR observations.
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2. Evaluate the abilities of APCEMM and CoCiP to reproduce contrails in properties such as

depth, width, and optical depth on an individual contrail basis by comparing to the same

LIDAR observations.

3. Use distributions of ambient ISSL depth, wind shear, and RHi as inferred by contrail models

to study the sensitivities of models to input parameters, analyze biases in the ERA5 weather

data, and quantify differences in overall contrail RF due to weather data uncertainty and

modeling assumptions.

2 Methods

2.1 Updates to APCEMM

2.1.1 Initialization of the Contrail Plume

Preliminary comparisons of APCEMM’s estimates for contrail width and depth to the LIDAR ob-

servations confirmed that it underestimated the initial contrail depth and overestimated the initial

contrail width. CoCiP’s parameterizations of the initial width and depth are used to estimate the

aspect ratio, and the final plume area from the early plume model within APCEMM is used to then

calculate the initial width and depth. I also implement new shifting and scaling factors to operate

on the initial aspect ratio as estimated by the CoCiP method, enabling calibration using LIDAR

observations.

The depth and width used to initialize the aspect ratio, DA and WA, are defined as a shifting-

scaling operation on the depth and width the CoCiP model uses, DC and WC :

DA = AD +BD ×DC (1)

WA = AW +BW ×WC (2)

where AD, BD and AW , BW are the shifting-scaling parameters for the width and depth respectively.
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Since the initial contrail plume is assumed to be an ellipse, the initial characteristic depth and

width D0 and W0 are then:

D0 = 2×AR×
(

AP

π ×AR

) 1
2

(3)

W0 =
DA

AR
(4)

where AR is the aspect ratio defined as DA/WA and AP is the end of vortex phase plume area as

calculated by the APCEMM’s early plume model.

The ice particles from the end of the early plume model are then initialized on the grid at an

altitude calculated from APCEMM’s vortex sinking parameterization. The particles are spatially

distributed assuming a 2-D Gaussian distribution with standard deviations in the particles’ x and y

coordinates σx, σy are defined as:

σx =
W0

8
(5)

σy =
D0

8
(6)

I also experiment with the shape and ice crystal distribution of the initial plume. LES results

[7], [9] suggest that contrail plumes in the early stage (t ≤ 2000s) have complex shapes often inad-

equately represented by an ellipse. Simulations of the vortex phase show a primary and secondary

wake where ice crystals are bimodally distributed in altitude [26]. However, changing the initial

shape or vertical particle distribution did not cause significant differences in the behavior of con-

trails, with diagnostics such as the time-integrated ice mass differing by less than 5% for a 12-hour

simulation. I therefore retain the assumptions of an initially elliptical plume with a 2-D Gaussian

spatial particle distribution. The results of calibrating (AD, BD) with LIDAR observations are de-

scribed in Section 3.1

17



2.1.2 Temperature Perturbations

APCEMM is updated to simulate some effects of atmospheric turbulence and gravity waves through

the inclusion of periodic fluctuations in the ambient temperature. The 2-D temperature field T (x, y)

is perturbed, using the expressions proposed by Lewellen (2014) [9]:

T ′(x, y) = T (x, y) + ϵ1(x, y)ϵ2(x, y)Tamp (7)

where T ′(x, y) is the perturbed temperature field, ϵ1(x, y) and ϵ2(x, y) are uniform random variables

between -1 and 1 independently generated at each grid point, and Tamp is the amplitude of the

temperature perturbation. This perturbation is changed every tadd seconds in the simulation. The

magnitude of the atmospheric turbulence and gravity waves simulated depends on the selection of

Tamp and tadd, where higher Tamp and lower tadd indicate greater intensity.

The ice particle number and ice mass decrease as a function of time when the turbulent tem-

perature fluctuations are increased, as seen in Figure 1. Lewellen (2014) found that increasing the

turbulent temperature fluctuation amplitude from 0.2 K to 2 K can cause a decrease of the ice par-

ticle number at t = 2× 104 seconds by approximately an order of magnitude (i.e. 90%). APCEMM

finds a comparable decrease of 87% in the ice particle number at t = 2 × 104 seconds, with an

associated 54% reduction in the full-lifetime integrated optical depth.
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Figure 1: Effect of turbulent temperature fluctuations on ice particle number and ice mass on a
contrail. “Low Turb.” uses Tamp = 0.2 K, while “Medium Turb.” uses Tamp = 2.0 K. Both cases
use tadd = 10 min. The simulations are performed assuming RHi = 110%, shear = 0.002 s−1, T =
217 K, and EInvPM = 1014 particles / kg fuel.

For all subsequent simulations in this thesis, the temperature perturbations are turned off due to

difficulties in inferring a level of atmospheric turbulence in the ERA5 data. This adds an additional

confounding source of uncertainty that requires an in-depth analysis and would be a interesting

topic for a follow-up study. This assumption of zero temperature fluctuations leads to APCEMM

estimating higher values in optical depth, contrail lifetime, and RF. However, this does not affect

our conclusions when comparing APCEMM and CoCiP, since the CoCiP-estimated particle losses

from temperature fluctuations induced by mesoscale turbulence and gravity waves are very small,

as seen in Figure 16 in Schumann (2012) [2].

2.1.3 Changes to the Transport Solver

The spectral solver in APCEMM, while efficient, relies on non-physical periodic boundary conditions

and a fixed grid size which must be large enough to accommodate the maximum extent of the contrail.

I therefore replace it with a finite-volume scheme that uses a semi-implicit Strang operator splitting

approach [27]. The advection is solved to the half-timestep with an explicit scheme, followed by
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implicit diffusion for the full timestep, finishing with explicit advection for the last half-timestep.

The min-mod flux limiter [28] is used to calculate the ice particle and mass fluxes at the cell faces and

minimize truncation error while preserving monoticity in the ice number and volume fields. This

change in solver addresses the issues above. Additionally, this removes the expensive calculation

of the discrete Fourier transform associated with every new grid size and domain, allowing for the

introduction of algorithms that optimize APCEMM’s runtime through adaptive grid spacing and

sizing, as described below.

2.1.4 The LAGRID Algorithm

Having replaced the spectral solver, APCEMM is now free to adapt the grid spacing and domain

size every time step to the extent of the contrail and improve runtime. To achieve this, I implement

the LAGRID algorithm.

The first step is to split the grid into cells that were considered inside the contrail and cells that

were not. This tracks the contrail as an expanding control volume as processes such as diffusion,

wind shear, ice growth, and vertical advection act on the contrail. A cell is considered “inside” the

contrail boundaries if the ice particle number density in that cell is greater than 10−5 times the

maximum ice particle number density in the domain.

After simulating the transport, ice growth, and vertical advection for a given timestep, the grid

spacing ∆x, ∆y for the following timestep is computed. This spacing adapts to the size of the

horizontal and vertical extents of the contrail to ensure at least 50 cells in both directions within

the contrail and increases with the contrail size up to a maximum of ∆x = 50 m and ∆y = 7 m.

The cells considered “inside” the contrail are first remapped onto a rectangular grid with the same

width and depth dimensions as the contrail. Finally, buffers are added to the new grid to allow

the contrail to shear, diffuse and settle. The sizes of these buffers Btop, Bbot, Bleft, and Bright (in

meters) are calculated as follows:

Btop = max(100,
√
DY ∆t) (8)
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Bbot = min(300,
√
DY ∆t+ vfall∆t) (9)

Bleft =
sD∆t

2
+
√

DX∆t (10)

Bright =
sD∆t

2
+
√
DX∆t (11)

where DX ,DY are the diffusion coefficients, ∆t is the time step, s is the wind shear, D is the total

contrail depth, and vfall is the settling velocity of the largest particles in the contrail.

As seen in Figure 2 below, the LAGRID algorithm results in runtimes over 20 times faster for

a 3-hour simulation, with a runtime of 25.52 seconds compared to the 528.7 seconds required when

performing APCEMM simulations with a fixed grid size. The benefit of LAGRID decreases with

contrail age due the the contrail expanding in size, but due to earlier time savings and a coupling

between the grid domain and the contrail size, LAGRID is still 3.8 times faster than the fixed grid

method for a 10-hour simulation, with a runtime of 555.4 seconds versus 2128 seconds.

Figure 2: APCEMM runtimes with LAGRID and fixed grid methods using 8 CPU cores
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2.1.5 Vertical Advection

When the contrail is advected upwards or downwards due to the vertical wind speed, the air density

changes. This causes the contrail to expand or contract and alter its shape. These changes in the

contrail shape are accounted for by tracking the vertical and horizontal extent of each row within the

domain and remapping the grid cells to a new grid at the end of the process, as depicted in Figure

3. This remapping introduces some artificial diffusion at each time step because of the imposition

of structured grid boundaries on the new contrail shape. However, this effect can be reduced by

lowering the maximum grid spacing (∆x,∆y), and a grid independence study showed that a 12-hour

simulation using (∆x,∆y) = (50 m, 7 m) showed a less than 2% difference in time-integrated contrail

ice mass compared to the same simulation using (∆x,∆y) = (25 m, 3 m), suggesting that our choice

in (∆x,∆y) results in minimal artificial diffusion effects.

Figure 3: Illustration of the grid cell size adjustment and remapping processes for vertical advection

2.2 Calibration of Contrail Models with LIDAR Observations

2.2.1 Obtaining Flight Attributed LIDAR Extinction Cross Sections

The process for obtaining the set of flight attributed CALIOP L2 LIDAR [29] observations of contrail

cross sections involves four steps in the following order: contrail detection, flight attribution, cross

section extraction, and extinction retrieval. This process is illustrated below in Figure 4.
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Figure 4: Process for obtaining flight attributed contrail cross sections

First, a large number of contrails are detected on the GOES-16 ABI [30] geostationary satellite

imagery using a a convolutional neural network described in Meijer et al. (2022) [31]. To eliminate

false positives, these detections are then manually verified before being passed on as candidates for

flight attribution. To perform flight attributions, flight tracks are first advected using the ERA5

reanalysis wind data. In the case of an intersection of the advected flight track with a detected

contrail in geographic coordinates, the CALIOP L2 LIDAR data is scanned for an intersection with

the contrail. If a detected contrail both has an attributed flight and is covered by the LIDAR data, a

height estimation algorithm described in Meijer (2024) [32] is applied on the geostationary satellite

image of the contrail to verify that the contrail is at the same altitude as observed by the LIDAR.

This is to avoid incorrect attributions in the case that there are multiple contrails spatially close to

one another. If the estimated height shows agreement with the altitude provided by the LIDAR,

the flight attribution process is complete, and I extract the attenuated backscatter cross section of

the contrail from the LIDAR data.

However, the quantity of interest is the extinction χ of the contrail cross section, as it is needed

to compute the optical depth. The extinction is directly proportional to the attenuated backscatter

β via the LIDAR ratio S:

23



χ = Sβ (12)

This LIDAR ratio S can be extracted from the CALIOP L2 profiles using the HERA algorithm as

described in Young and Vaughan (2009) [33]. With the 2-D extinction cross section of the contrail,

a direct comparison between the LIDAR cross section and the APCEMM and CoCiP results can be

performed.

2.2.2 Metrics for Comparing Cross Sections

In order to compare two different extinction cross sections, there needs to be metrics on which the

two cross sections are compared. I choose three contrail properties as metrics: the width W , the

depth D, and the integrated optical depth (IOD) τint. Comparing the width and depth of the con-

trail facilitates the evaluation of contrail models’ abilities to reproduce contrails of similar spatial

scales to observations, while the IOD serves as a metric correlated with the ice mass and RF (i.e.

climate impact) of the contrail independent of the time of day and season.

I define the depth D as the difference between the maximum and minimum altitudes in which

there exists a point in the contrail where the extinction is greater than the 10−1 times the maximum

extinction in the contrail. The width W is defined analogously to the depth. For a 2-D extinction

field χ(x, y), the IOD τint is defined as

τint =

∫ xmax

xmin

τy dx (13)

where τy, the vertical optical depth, is defined as:

τy =

∫ ymax

ymin

χ(x, y) dy (14)

The CoCiP model does not output a 2-D extinction field, but outputs a representative dimen-

sionless contrail optical depth τcontrail and width W . For the CoCiP output, the IOD is calculated
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as the product of the width and the representative optical depth:

τint = W × τcontrail

The values of D,W, τint obtained from APCEMM and CoCiP simulations are compared to the

LIDAR measurements in a percent error sense. These percent differences will be called ϵD, ϵW , ϵτ ,

defined as follows:

ϵX = 100

∣∣∣∣XM −XL

XL

∣∣∣∣ (15)

where X is any given parameter of the contrail and the subscripts M and L refer to that for the

contrail model (i.e. APCEMM or CoCiP) output and the LIDAR observation respectively.

2.2.3 Using ERA5 Weather Data Input with APCEMM

For each flight attributed to a specific contrail captured on the CALIOP L2 LIDAR, the results

output by APCEMM are compared against the observations. The flight data (longitude, latitude,

altitude, time, heading, ground speed) are obtained through the OpenSky database. The ambient

meteorological conditions, including the temperature, wind shear, and humidity, as a function of

time are estimated by advecting the flight waypoint through the ERA5 reanalysis wind data. The

soot particle emissions index EInvPM is assumed to be 1015 particles per kg fuel.

The temperature field is linearly interpolated in both time and altitude. A single value for the

wind shear, linearly interpolated in time and altitude, is used. The humidity profile is linearly inter-

polated in time, but nearest neighbor interpolation is used for determining the vertical profile. This

is due to the prevalence of large gradients in the vertical humidity profile, as observed in radiosonde

measurements [34]. Therefore, using linear interpolation could lead to systematic underestimations

of the ISSL depth. For the first timestep, the humidity is scaled using Equation 1 in Teoh et al.

(2022) [4] to account for biases in ERA5 against ice supersaturated regions when it is known a

contrail formed. However, the humidity for subsequent timesteps, when the contrail has grown to a

more similar length scale compared to the grid spacing of ERA5, is taken directly from the ERA5

25



data.

2.2.4 Calibration of Initial Depth Estimation Parameters

The LIDAR cross sections are first employed to calibrate the initial depth estimation parameters

A,B as described in Equation 1. The contrail depth is the first metric targeted for calibration due to

its effects on the evolution of the contrail’s width and optical depth. Furthermore, the uncertainty

in the observed contrail depth from the LIDAR cross sections is limited to the vertical resolution of

the LIDAR, which is approximately 50 meters. In contrast, uncertainties in the LIDAR intersection

angle and the LIDAR ratio arising from the flight track advection and extinction retrieval processes

are not as concretely quantifiable. Therefore, the uncertainties in the widths and optical depths of

the LIDAR cross sections are likely greater than those for the depths.

The weather data input affects the results of the depth calibration due to the variability of the

ISSL depth. As such, the calibration results using two methods of weather data input are compared.

First, the simulations over all flights are performed using the ERA5 reanalysis data as-is, and A,B

are tuned to minimize the percent depth error over the sample of contrails that form. Second, a case

with constant ambient parameters is considered. RHi is set to a 110%, the temperature is set to

217K, the wind shear is set to 0.002 s−1, and the ISSL depth is set to 280 m, one half the mean ISS

layer depth as measured by radiosondes in Spichtinger et al. (2003) [18]. The optimization process

is then repeated using this input.

If there is a disagreement between the calibration results, it may suggest that there are system-

atic biases in the ERA5 humidity profiles for cases where RHi > 100%, or that variations in the

humidity profile have asymmetric effects on the resulting contrail depth. EInvPM is assumed to be

1014 particles per kg fuel for both approaches. This is a different than the typical value of 1015 in

subsequent experiments in this thesis, but since the gravitational settling timescale is long compared

to the ages of the contrails observed (typically under 1 hour), we do not expect this difference to

have a major effect on the calibration results.
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The objective of the calibration is to find a combination of (A,B) that reduces ϵD, the percent

error in contrail depth from observation averaged over all cases. For both calibration methods, a

grid search is performed, where A is varied over the domain [0, 300] with increments of 25 meters,

while B is varied over [0, 2] with increments of 0.25. The results are shown in Section 3.1.

2.3 Inferring Ambient Meteorological Parameters with Contrail Models

2.3.1 Optimization Problem

For each flight, the task of inferring the ambient conditions necessary to reproduce a contrail observa-

tion with a model is framed as an optimization problem where the objective is the minimize the loss

function L, equal to the sum of the absolute percent differences in width, depth, and IOD. This forces

the optimizer to weigh the percent errors in all three metrics equally and select the combination of

parameters that produces a contrail geometrically and optically similar to the observation.

L(DISS, s, RHi) = ϵD + ϵW + ϵτ (16)

Each iteration in the optimization process consists of three steps. Suppose that x⃗ = (D, s, q), is

the guess for the optimal parameters, where D, s, and q are the guesses for the ISSL depth, wind

shear, and RHi respectively, and that x⃗0 = (D0, s0, q0) is the guess at the start of the iteration.

First, I perform a grid search for the ISSL depth Dmin that minimizes ϵD while assuming s = s0

and q = q0. If multiple values of D yield the same local minimum ϵD, the smallest value is chosen

as Dmin. I then perform a grid search for smin, the wind shear value that minimizes ϵW while using

D = Dmin and q = q0. I perform a final grid search for qmin, the value of RHi that minimizes ϵτ

given D = Dmin and s = smin. The values (Dmin, smin, qmin) are then used as the initial guess for

the next iteration. This process is repeated until the loss function is below 1%, or the maximum

number of allowed iterations (7) is reached. The constraints on DISS, s, and RHi are [10 m, 2000

m], [0 s−1, 0.03 s−1], and [100%, 160%] respectively. Figure 5 is a simplified schematic describing

this processes, with results shown in Section 3.2.
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Figure 5: Flowchart for ambient parameter optimization

2.3.2 Analysis using Ambient Parameter Distributions

The distributions of inferred ambient parameters are then used to examine the sensitivities of

APCEMM to input parameters such as the ambient temperature T , depth estimation parameters

(A,B), and the soot particle number emissions EInvPM. The distributions illustrate the interactions

between the aforementioned input parameters and the inferred ambient ISSL depth, wind shear, and

RHi. The cases considered for this study are listed below in Table 1.

Table 1: APCEMM Cases considered for case-by-case ambient parameter optimization problem

Case Name A [m] B [-] T [K] EInvPM [#/kg]

Base 50 1 217 1015

HiTemp 50 1 222 1015

LowSoot 50 1 217 1014

HiDepth 200 0.75 217 1015

The inferred distributions are then used to analyze biases and errors in the weather data and

contrail models. Distributions from ambient parameter inference using APCEMM and CoCiP are

compared to each other, radiosonde measurements, and the ERA5 weather data. The means, me-

dians, and standard deviations of the distributions will serve as the metrics for comparison. These

distributions, with the radiosonde data as the ground truth, can be used to analyze model sensitivi-

ties (Section 3.2), biases in the ERA5 data (Section 3.3), and the relative magnitudes of errors from
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weather data uncertainty and modeling assumptions (Section 3.4).

2.4 Quantifying ERA5 Data and Modeling-Related Errors

In order to quantify errors arising from uncertainty in the ERA5 data versus errors that arise from

modeling assumptions made in lower-order models such as CoCiP, there needs to be a case where

the errors from the ERA5 data are minimized, as well as a case where errors in the weather data are

minimized. The errors when using the higher order APCEMM model with the ERA5 data serve as

a measurement of the error attributable to the weather data when using a higher order model, while

the errors from CoCiP when using the APCEMM-inferred ambient parameters is a measurement

of the error due to the modeling assumptions made in CoCiP. Table 2 below lists the simulations

performed for this analysis.

Table 2: APCEMM and CoCiP cases for quantification of modeling and weather data error. De-
scriptions of APCEMM models are the same as in Table 1.

Case Name Model Weather Data

APC-Opt APCEMM-HiDepth APCEMM-HiDepth inferred

APCHD-E5 APCEMM-HiDepth ERA5

APCB-E5 APCEMM-Base ERA5

CoCiP-E5 CoCiP ERA5

CoCiP-APCOpt CoCiP APCEMM-HiDepth inferred

For the CoCiP simulations, EInvPM is set 1015 particles per kg fuel, and the temperature set to

217 K when not using the ERA5 data. The ambient parameters as inferred by APCEMM are taken

from those inferred by the HiDepth case as described in Table 1. The results are shown in Section

3.4.

2.5 Analysis of Lifetime and Radiative Forcing Implications

Finally, the lifetime RF impacts of the contrails are evaluated with APCEMM and CoCiP using

both the ERA5 and the model-inferred ambient parameters. Table 3 describes the cases considered
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for this analysis.

Table 3: Description of cases considered for RF analysis

Case Name Model Weather Data

APCB-ERA5 APCEMM-Base ERA5

APCHD-ERA5 APCEMM-HiDepth ERA5

CoCiP-ERA5 CoCiP ERA5

APCB-Opt APCEMM-Base APCEMM-Base inferred

APCHD-Opt APCEMM-HiDepth APCEMM-HiDepth inferred

CoCiP-Opt CoCiP CoCiP inferred

CoCiP-APCOpt CoCiP APCEMM-HiDepth inferred

When using either the ERA5 or the inferred parameters, the simulation is allowed to run until the

contrails reach the end of life conditions. For the inferred parameters cases, the ambient conditions

are assumed to be constant. The CoCiP simulations end when the dimensionless optical depth is less

than 10−6, while the APCEMM simulations end when the total number of ice particles is less than

10−5 times the initial post-vortex sinking particle number. The ERA5 cases use time-dependent

meteorological data, while the ambient conditions do not vary as a function of time for the inferred

parameters cases. For the inferred parameter cases, the ambient temperature is set to 217 K and

EInvPM is set to 1015 particles per kg fuel.

The metric for comparing the RF results of the models is the energy forcing (EF) per contrail

length, defined as the integral over time of the net RF times the contrail width W :

EF =

∫ tf

t0

RFnet(t)W (t) dt

To maintain consistency, the net RF for both models at each time step is calculated using the

methods employed by CoCiP. The CoCiP shortwave and longwave radiative forcing functions require

a number of inputs that APCEMM does not directly produce: the habit weights that describe the

shapes of ice crystals, a scalar dimensionless optical depth, and a scalar volume-averaged particle
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radius. The habit weights are assumed to be the same as in CoCiP. The particle radius r and

dimensionless optical depth τ are calculated as follows:

r =
3

4π

(
V

N

)1/3

(17)

τ =
IOD

W
(18)

where V is the total ice per meter of the cross section, N is the total particle number per meter, and

W is the contrail width. Although the area-weighted radius may be possibly more representative

of the RF of the contrail, the volume-weighted ice particle radius is used to stay consistent with

CoCiP’s calculations.

3 Results and Discussion

3.1 Initial Depth Calibration with APCEMM

Calibrating the initial depth estimation parameters (A,B), as described in Equation 1, using the

constant ISSL depth and ambient parameters as described in Section 2.2.4, results in A = 50 m

and B = 1 as the optimal parameters (hereinafter the “const-optimized parameters”). In contrast,

using the ERA5 data to minimize the average percent error ϵ̄D in contrail depth yields A = 200 m

and B = 0.75 (hereinafter the “ERA5-optimized parameters”). The results of these calibrations as

compared to the default APCEMM settings of (A,B) = (0 m, 1) are shown in Figure 6.
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Figure 6: Scatter plot visualizing effects of initial depth calibration using the ERA5 data (top) and
the constant ISSL depth = 280 m (bottom). For the ERA5 case, only LIDAR data points for which
the optimized parameters formed a contrail that survived until the observed age are shown.

Both sets of optimized parameters result in an increase in predicted contrail depth and a de-

crease in ϵ̄D. APCEMM using the default initial depth parameters (A,B) = (0 m, 1) consistently

underestimates the contrail depth for both the ERA5 and constant cases, with a mean depth of 227

m with the ERA5 case and a mean of 260 m with the constant case compared to the mean LIDAR

observed depth of 331 m. Using the ERA5 data with the default (A,B) results in an ϵ̄D of 56%,

while using the ERA5 depth parameters results in an ϵ̄D of 48%. When using the constant ISS layer

depth and ambient parameters, the default version of APCEMM yields an ϵ̄D of 41%, while using

constant depth parameters results in an ϵ̄D of 37%.

However, these two different approaches with the weather data result in versions of APCEMM

that produce contrails with different initial depths. When the ISSL depth is set to a high value of 1000

m to not be a limiting factor for contrail depth, APCEMM with the ERA5-optimized parameters

produces contrails on average 64% deeper than APCEMM with the const-optimized parameters and
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100% deeper than APCEMM with the default (A,B). Figure 7 illustrates the differences in contrail

depth when using APCEMM with the different depth estimation parameters on a case with constant

RHi, shear, and a large ISSR depth of 1000 m.

Figure 7: Scatter plot of results for the simulated contrail depth against the LIDAR cross section
at the observed age using a constant RHi = 110%, ISSL depth of 1000 m, and wind shear = 0.002
s−1. Blue: LIDAR; Orange: APCEMM w/ default parameters, Green: Parameters as optimized
with ERA5 data; Red: Parameters as optimized with the constant ISSL depth case

APCEMM versions with lower values of A show a stronger correlation between contrail age and

contrail depth. The default (A,B) = (0 m, 1) case results in an R2 of 0.87 between age and depth,

while the ERA5-optimized case yields an R2 of 0.10 and the const-optimized case yields an R2 of

0.67. This result is explained by the fact that the ERA5-optimized parameters predict a higher

initial depth, so the percent difference between the initial contrail depth and the contrail depth at

some later point in time is smaller.
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The two methods of weather data input yield two versions of APCEMM that predict different

initial contrail depths. Since there is no ground truth for the RHi profile, it is difficult to say that

one version has a better estimate of the initial depth than the other, although both outperform the

original parameterization. Because the initial depth affects many contrail properties as a function

of time, the subsequent studies will utilize these two versions of APCEMM and compare the impact

of an increased initial depth on factors such as the inferred parameters using ambient parameter

inference or the lifetime radiative forcing. APCEMM with the ERA5-optimized parameters and the

const-optimized parameters are hereinafter referred to as “APCEMM-HiDepth” and “APCEMM-

Base”, respectively.

3.2 Ambient Parameters as Inferred by APCEMM and CoCiP

The distributions of the ISSL depth, wind shear, and RHi as inferred by APCEMM and CoCiP

using the ambient parameter inference framework described in Section 2.3 are illustrated in Figure

8.
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Figure 8: Distributions of the inferred ISSL depth (top), wind shear (middle), and RHi (bottom)
using CoCiP and APCEMM cases as described in Table 1. The green lines indicate the means
of the distributions, while the red lines indicate the medians. Means and medians obtained from
radiosonde measurements in literature are shown in orange.

3.2.1 APCEMM-inferred ISSL Depth

Changing the temperature or EInvPM does not significantly change the shape, median, or mean of

the distribution of APCEMM-inferred ISSL depths. If the observed contrails were of an older age,

EInvPM may play a larger role since simulations suggest that a lower EInvPM results in a faster
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settling rate [9]. However, all contrails observed were less than 3 hours old, so there is insufficient

time for contrail fallstreaks that settle for enough to cause EInvPM to make a difference.

However, the HiDepth case results in a distribution with more skewed towards lower depths, with

a lower median of 266 m compared to the 309 m of the base case despite having a similar mean of

323 m vs the 332 m of the base case. This is due to APCEMM-HiDepth having fewer cases where

it underestimates the initial contrail depth. With the base model, there are cases where APCEMM,

irrespective of the ISSL depth, is unable to reproduce a contrail due to underestimation of the initial

contrail depth. Nonetheless, the optimizer detects a small gradient relating ISSL depth and initial

contrail depth, resulting in higher values in the inferred distribution.

The mean ISSL depths show some level of agreement with radiosonde measurements in literature,

where the mean total ISSL vertical extents range from 560 [18] to 700 [35] m. If the extent of the

ISSL below the flight level is assumed to be half the total vertical extent, both the base and HiDepth

cases have their means within the the range of radiosonde measurements. The shape of the HiDepth

distribution more closely resembles those of radiosonde measurements, which are skewed towards

lower depths rather than being symmetric. However, the inferred distributions may be biased due

to the vertical resolution of the LIDAR not being able to detect contrails less than 120 m in depth.

Therefore, ISSRs less than 120 m in vertical extent are not sampled.

3.2.2 APCEMM-inferred Wind Shear

The HiDepth case results in lower inferred wind shear values, with a mean/median of 0.0057

s−1/0.0053 s−1 compared to the 0.0071 s−1/0.0060 s−1 of the base case. This is because as contrail

depth increases, the wind shear value required to produce a contrail of a given width decreases. Like

with the ISSL depth, changing the temperature or EInvPM does not significantly affect the distri-

bution of APCEMM-inferred wind shear values. This is because temperature and EInvPM primarily

affect the ice physics of the contrail rather than its short-term spatial diffusion.

36



The mean inferred wind shear values for all cases are within the ranges for measurements of

mean wind shear at cruise altitudes in literature, where studies analyzing radiosonde measurements

of wind shear [36] [20] have found average cruise altitude wind shear values of 0.005 s−1 to 0.01 s−1,

depending on the latitude.

3.2.3 APCEMM-inferred RHi

Modifying the temperature, EInvPM, and initial depth parameters all have an effect on the resulting

inferred RHi distribution. The HiTemp case infers a lower mean/median RHi of 108.5%/105.0%

compared to the 110.5%/107.1% of the base case due to more water vapor being required to reach

a specified RHi as temperature increases, resulting in a lower RHi required to achieve a specified

ice growth rate and IOD for the contrail. The LowSoot case shows an over 100% increase in av-

erage supersaturation with an increase in the mean/median inferred RHi to 122.0%/116.9%. This

is due to to contrail ice mass and optical depth having a positive correlation with the initial ice

crystal number. Therefore, a higher RHi would be required to achieve the same observed IOD in the

LowSoot case. For the HiDepth case, the mean/median inferred RHi increased to 114.6%/108.1%,

possibly due to contrails that are initially deeper having a higher fraction of their particles cut off

by extending below the limit of the ISSL, resulting in an effectively lower EInvPM.

Radiosonde measurements of ice supersaturation [37] [38] [39] suggest that median RHi for ISSLs

is between 104 to 110%. All APCEMM cases except LowSoot have their medians within this range,

and this aligns with the fact that most in-service aircraft are equipped with engines that on average

produce EInvPM approximately 1015 particles per kg fuel [40].

3.2.4 CoCiP-inferred Ambient Parameters

CoCiP infers a lower mean/median ISSL depth of 196 m/209 m compared to the 323 m/266 m as

inferred by the APCEMM HiDepth case that best matched the radiosonde observations. In the case

of CoCiP, the inferred ISSL depth is an estimate of the minimum ISSL depth required for contrail

formation rather than an estimate of the actual ISSL depth. This is because CoCiP does not con-

37



sider factors involving the vertical profile of the contrail, such as contrails being partially cut off

by ice subsaturated regions. If the ISSL depth is high enough for the contrail to persist after the

vortex phase, the CoCiP output is not a function of the ISSL depth, provided that the representative

altitude of the contrail stays in the ISSL.

In terms of inferred wind shear, CoCiP infers a higher mean/median of 0.0080 s−1/0.0060 s−1

than the 0.0071 s−1/0.0060 s−1 inferred by the APCEMM base model. This is potentially due to the

fact that the depth estimation module in CoCiP has not been calibrated on this sample of contrails.

This results in consistent underestimates of the contrail depth, which forces a higher inferred shear

to reproduce a contrail of the same width. However, averages for inferred wind shear for all models

are within the ranges observed by radiosondes, so no conclusion about whether one estimate is better

than the other can be drawn.

CoCiP infers a higher mean RHi of 131.4% compared to the 110.5% as inferred by the base

APCEMM case and the 114.6% as inferred by the HiDepth case. Furthermore, 18/152, or 11.8%

of cases reach the upper limit (RHi = 160%) of the optimization domain. The inferred distribution

does not agree with radiosonde measurements of RHi in ISSRs, which suggest that the distribution

should be skewed left with values of RHi above 130% occurring less frequently than values of RHi

between 100% and 110% [39]. This suggests that the IOD in CoCiP is less sensitive to RHi than the

IOD is in APCEMM, and that there could be sources of error arising from this lower RHi sensitivity

when using CoCiP for contrail modeling.

3.3 Biases in ERA5 Data

Figure 9 compares the distributions of ambient parameters as inferred by APCEMM and CoCiP

and as observed in the ERA5 data.
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Figure 9: Similar to Figure 8, but compares the distributions of model-inferred parameters to those
observed in the ERA5 data. Orange dotted lines show the range of means and medians in radiosonde
measurements.

Using ERA5 data as-is overestimates the ISSL depth for the 65 (of 152) cases that form a contrail

with a mean of 1262 m compared to the mean of 332 m as inferred by the APCEMM HiDepth model.

Some of this disparity can be explained by ERA5’s coarse vertical resolution of 1 km when using the

most accessible output format. However, since the RHi profile and ISSL depth is calculated using

nearest-neighbor interpolation, this does not explain why the median ISSL depth would be greater
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than one half the grid spacing. Radiosonde measurements find that most ISSLs are less than 1 km

in total vertical extent [18][37], but the ERA5 data does not agree with the measurements. Another

possible factor causing this discrepancy could be the presence of multiple ISSLs at a single geospatial

grid point. It is possible that if two ERA5 data points are 1 km apart in altitude and both points

are ice supersaturated, they may be in two separate, smaller ISSLs rather than in the same ISSL

that would be larger in vertical extent.

ERA5 is known to underestimate the magnitude of the wind shear compared to radiosonde mea-

surements [20], and this is apparent when viewing the distributions of wind shear as seen by ERA5

and as inferred by APCEMM in Figure 9. The mean ERA5-observed wind shear is 0.0025 s−1, while

the lowest mean APCEMM-inferred shear is 0.0057 s−1, suggesting a minimum underestimate by

56.1% in the average wind shear – if the APCEMM-inferred estimate is accurate.

The mean RHi as observed in the ERA5 data is 95.10%, while the mean RHi inferred by

APCEMM-Base is 110.5%. ERA5 is known to underestimate ice supersaturation when it is known

that a contrail forms; that is why implementations of CoCiP such as pycontrails allow users to select

a humidity scaling module. This difference can be visualized in Figure 9. If cases where the ERA5

RHi is less than 100% are excluded, the ERA5 mean/median observed RHi is 108.3%/105.3, which

shows agreement with the APCEMM inferences and radiosonde measurements. These results do not

imply that ERA5 underestimates RHi in the general case, only that there are large uncertainties

in the humidity data when simulating individual contrails. Agrawal et al. (2022) [19] found that

ERA5 reanalysis-driven simulations can overestimate persistent contrail formation by over 100%.

Therefore, although ERA5 shows a false negative rate of 57.2% in this study, it does not imply that

there should be a general biasing of the humidity data to force the formation of more contrails.

3.4 Quantifying Weather Data and Modeling Error

Figure 10 shows the distribution of signed percent error in contrail depth, width, and IOD when

using APCEMM and CoCiP with the cases as described in Table 2.
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Figure 10: Distributions of signed percent error in contrail width, depth, and IOD for cases listed
in Table 2. Green lines indicate the means of the distributions, while the red lines indicate the
medians. The ERA5 cases include only the flights where a contrail formed in all three models, while
the optimized cases include all flights.

3.4.1 Performance of Ambient Parameter Inference

The “APC-Opt” case, as seen in Figure 10, demonstrates that if allowed to infer the ambient pa-

rameters required to form a contrail, the APCEMM-HiDepth model can typically reproduce the
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observed contrails to a high degree of accuracy, with a median absolute percent error in depth,

width, and IOD of 1.8%, 1.0%, and 0.69% respectively. This combined with the agreement between

the radiosonde measurements in literature and the APCEMM-inferred distributions suggests that if

the ERA5 data is used as inputs for APCEMM, the resulting errors in depth, width, and IOD are

primarily attributable to errors in the ERA5 data rather than APCEMM’s simulation of the contrail

physics.

The CoCiP-inferred parameters allow the model to reproduce the contrail width and IOD with

median absolute errors of 0.82% and 1.05% respectively for the CoCiP-Opt case. However, the in-

ferred parameters do not reproduce the observed depths, with a median 53% error in contrail depth.

This implies that CoCiP has sufficient degrees of freedom to adjust the contrail width and IOD

based on the wind shear and RHi, but not to adjust the contrail depth to the ISSL depth.

3.4.2 ERA5 Data Related Errors

The results when using ERA5 rather than the inferred parameters reveal differences in model behav-

ior. For all cases where contrails formed (i.e. not including cases where one model formed a contrail,

and the others did not), APCEMM-HiDepth is the most accurate in terms of contrail depth in a

median sense, with a median/mean percent depth error of 7.17%/28.39% and a mean absolute error

of 47.9%. This is expected, as APCEMM-HiDepth uses the ERA5-optimized depth estimation pa-

rameters as derived in Section 3.1. The APCB-E5 case systematically underestimates the contrail

depth, with a median / mean percent error of -26.9%/-15.2% and a mean absolute error of 35.3%.

This suggests that when using a higher fidelity model such as APCEMM, an absolute percent depth

error on the order of 40%, biased towards either underestimation or overestimation depending on

the initial depth settings, could be attributed to errors in the ISSL depth.

All cases using the ERA5 data underestimate the width due to the systematic bias in ERA5 to-

wards lower values of wind shear. Even though the APCHD-E5 case typically overestimates contrail

depth, it underestimates contrail width with a median/mean percent width error of -36.2%/-19.5%.
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The APCB-E5 case underestimates the width more than APCHD-E5 does due to errors from un-

derestimating contrail depth carrying over and resulting in further underestimates in contrail width,

with a median/mean error of -52.0/-36.9%. Since one model overestimates and the other underes-

timates contrail depth, a bound of 20% to 37% can be placed on the average underestimation of

contrail width attributable to errors in ERA5 wind data.

Errors in the IOD do not show a consistent sign of bias towards underestimation or overesti-

mation for either APCEMM model, but the magnitudes are larger than errors in depth or width.

APCHD-E5 shows a median/mean/absolute mean IOD error of -26.8%/87.8%/164%, and APCB-E5

shows -45.7%/31.9%/124%. This large variance in IOD errors is due to the sensitivity of IOD to

RHi. This strong dependence between IOD and RHi is supported by LES studies such as Lewellen

(2014) [9], where increasing RHi from 110% to 130% increased the ice surface area, which is corre-

lated with the IOD, by up to an order of magnitude of a contrail of the same age. As the ERA5 RHi

distribution has a mean and median within the range of radiosonde measurements for ISS regions,

IOD error is less systematic than wind shear error, but on average greater in magnitude due to the

sensitivity of IOD to RHi. These results suggest that an over 100% average absolute error in IOD

when using higher fidelity models such as APCEMM can be attributed to differences between the

ERA5-observed and the actual RHi.

Other factors such as the underestimation of wind shear could contribute to the variance in IOD

error, but RHi uncertainty is the main contributor. A parameter sweep showed that the average

IOD increased by no more than 20.1% when increasing the wind shear from 0.0005 s−1 to 0.004 s−1

assuming an ISSL depth of 500 m and an RHi of 110%, while increasing RHi from 110% to 130%

assuming an ISSL depth of 500 m and a wind shear of 0.004 s−1 resulted in a 232% increase in

average IOD.

3.4.3 Errors from CoCiP Modeling Assumptions

When isolating the errors arising from CoCiP’s modeling assumptions by using the APCEMM-

inferred ambient parameters as inputs, CoCiP systematically underestimates in all three metrics of
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comparison. The depth, width, and IOD are have median/mean errors of -55.1%/-48.4%, -36.1%/-

30.1%, and -71.7%/-47.9% respectively. The IOD mean absolute error is 72.5%.

The depth being systematically underestimated is as expected, since the APCEMM-HiDepth

model is calibrated to estimate higher depths based on feedback from LIDAR observations suggest-

ing that CoCiP underestimates initial contrail depth. However, it is unclear whether CoCiP in its

current state would necessarily see improvements in its ability to accurately represent the vertical

extent of contrails if it were also tuned in favor of higher estimates of initial contrail depth. This is

due to its inability to sublimate parts of contrails that have sunk into an ice subsaturated region.

This effect is not as apparent in this comparison when the observed cross sections are all estimated

to be under 3 hours of age and the gravitational settling has not had time to take effect, but the

implications may be more significant when analyzing lifetime contrail behavior.

Like with the depth, CoCiP systematically underestimates the contrail width. This is as ex-

pected, since underestimates in contrail depth lead to underestimates in contrail width. This result

does not suggest that CoCiP is more or less sensitive to wind shear than APCEMM is.

The source of the IOD errors is likely from CoCiP’s low sensitivity to RHi compared to APCEMM.

Although factors such as underestimating contrail depth may contribute to errors in the CoCiP-

APCOpt case, the lower sensitivity to RHi becomes apparent when looking at the CoCiP-E5 IOD

error distribution as well the CoCiP-inferred RHi distribution as seen in Figure 8. The standard

deviation of the CoCiP-E5 IOD error distribution is 50.0% compared to the 256% of APCHD-E5 and

the 181% of APCB-E5, suggesting that the IOD in APCEMM could be over 3 times more sensitive

to RHi compared to the IOD in CoCiP.

This analysis of modeling versus weather data error suggests that magnitude of errors in con-

trail depth attributable to CoCiP’s modeling assumptions (∼50%) are slightly larger than those

attributable to errors in the ERA5 ISSL depth when using APCEMM (∼40%). CoCiP’s average

underestimate of width (∼30%) is within the range of APCEMM underestimates in width (∼20-
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37%) due to ERA5 data bias. Differences between these two error sources appear when analyzing

IOD error. CoCiP modeling error is more biased in that CoCiP underestimates IOD by over 70%

for more than half the cases compared to the APCEMM models’ median IOD errors that are closer

to zero. However, the absolute magnitude of the percent error attributable to modeling (∼70%) is

less than that shown by APCEMM when using the ERA5 data (∼120-160%). This is likely a result

of CoCiP’s lower sensitivity to RHi.

3.5 Energy Forcing and Lifetime Results

Figure 11 shows a comparison between the distributions of contrail lifetime and energy forcing per

contrail meter as estimated by APCEMM and CoCiP, both when using the ERA5 data and when

relying on the model-inferred ambient conditions. Only the 58/152 cases where the ERA5 data

formed a contrail in all 3 models are considered.
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Figure 11: Comparisons of net EF (top) and contrail lifetime (bottom) distributions as simulated
by APCEMM and CoCiP using the ERA5 data and with model-inferred parameters. Cases are
as described in Table 3. Green lines indicate the means of the distributions, while the red lines
indicate the medians. Only cases where the ERA5 data formed a contrail in all models are included.
The range of the EF plot is limited to (-3000, 3000) MJ/m to highlight the differences between the
distributions.

3.5.1 Using ERA5 Data

When using the ERA5 data, both APCEMM models predict a higher mean energy forcing than

CoCiP, with APCEMM-Base/APCEMM-HD predicting an average per-meter EF of 970.0/1322

MJ/m, 4.34/5.92 times the 233.4 MJ/m predicted by CoCiP. However, the median predicted EF

is actually smaller than that of CoCiP, with APCEMM-Base/APCEMM-HD predicting a median

EF of 22.9/54.0 MJ/m compared to the 59.3 MJ/m predicted by CoCiP. This implies that while

the APCEMM models do not necessarily predict a higher EF than CoCiP for the median contrail,

there are cases where APCEMM predicts a much higher EF than CoCiP does, skewing the distribu-

tion. This is apparent upon examining the standard deviation of the predicted contrail EF, where
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APCEMM-Base/APCEMM-HD shows a standard deviation 3.73/5.43 times that of CoCiP.

There a number of potential explanations for these differences. First, APCEMM, when given

the ERA5 data, predicts contrails with higher and more varied integrated optical depths due to its

higher sensitivity to RHi compared to CoCiP. IOD and contrail properties correlated with it, such

as the ice particle size distribution, are directly linked to the contrail’s RF.

Additionally, as seen in Figure 11, the APCEMM models predict longer contrail lifetimes using

the ERA5 data compared to CoCiP, with an average predicted lifetime of 6.13 hours with the base

model compared to the 4.74 hours predicted by CoCiP, a 29.3% increase. This difference stems

from the ways the two models treat the vertical RHi profile and the mixing of the contrail with the

ambient air. CoCiP only tracks the vertical position of the contrail at with one point. Therefore,

if RHi at that singular point is subsaturated, CoCiP will interpret that as the entire contrail be-

ing in subsaturated air, even though there may be parts of the contrail still in ice supersaturated

air. Moreover, CoCiP assumes that ambient air mixes throughout the contrail cross section every

time step. This may result in contrails sublimating quickly after encountering subsaturated air.

In APCEMM, where the mixing process is explicitly simulated, the parts of the contrail farthest

from the contrail core would sublimate first from the mixing of subsaturated air, slowing overall

evaporation. If the contrail is quickly advected back into an ice supersaturated region after a brief

encounter with subsaturated air, the contrail core may even survive in cases where CoCiP would

have ended the simulation.

The CoCiP-predicted average contrail EF of 223 MJ/m slightly lower than the range of regional

averages of 237-402 MJ/m reported in Teoh et al. (2023), where CoCiP was used to quantify global

contrail climate impacts. However, the difference is small enough to be explainable by the lower

sample size of in this study, given the standard deviation of 592 MJ/m for the CoCiP-predicted EF

distribution.
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3.5.2 Using Model-inferred Parameters

When using the ambient parameters as inferred by each model, the APCEMM models converge in

the EF distribution, with a 0.857%/7.88% difference in the mean/standard deviation. APCEMM

predicts a 2.59 times higher EF than CoCiP with its inferred ambient parameters. CoCiP continuing

to predict a smaller EF despite inferring higher values of RHi further suggests a lower sensitivity

between RHi and properties that affect contrail RF, such as optical depth and ice crystal size. The

convergence of the APCEMM models suggests that the contrail properties after the age of obser-

vation (typically earlier than 2 hours) possibly have a limited sensitivity to small changes in the

ISSL depth, wind shear, and RHi. Ambient parameter inference forces the two APCEMM models

to produce the same result at the time of observation, but the results are allowed to diverge after

this point in time. Nonetheless, the EF results remain similar for lifetime simulations.

The average contrail lifetime did not differ by more than 4% between using the ERA5 data and

the inferred parameters for any model. For the APCEMM models, this could suggest that using the

ERA5 data with APCEMM produces contrails of lifetimes statistically similar to cases with a fixed

RHi and ISSL depth, but a larger sample size would be required to support this claim given the

systematic differences in the ERA5 and APCEMM-inferred ISSL depth distributions. In the case of

CoCiP, the lifetimes did not significantly increase, despite the constant RHi and ISSL depth remov-

ing the potential issue of CoCiP’s instant mixing assumptions shortening lifetimes. This leaves a

few remaining explanations. CoCiP’s higher inferred values of RHi would lead to higher ice particle

growth and lower lifetimes, potentially cancelling out the gain in contrail lifetimes from having a

constant RHi and ISSL depth. Furthermore, CoCiP infers smaller ISSL depths than APCEMM,

which would exacerbate the effects of CoCiP not resolving the vertical profile of the contrail.

The results of the CoCiP-APCOpt case suggest that CoCiP is able to reproduce APCEMM’s

distribution of contrail lifetimes when given identical weather data constant in time, but still predicts

an average EF 60% smaller compared to the APCEMM models. The similar lifetimes suggest that

the cause of CoCiP’s shorter predicted lifetimes for the ERA5 case is primarily due to its mixing

assumptions. This also suggests that in addition to the shorter lifetimes with the ERA5 data,
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CoCiP’s lower sensitivities between RHi and RF-impacting contrail properties contribute to the

model estimating a smaller EF compared to APCEMM.

4 Conclusions

4.1 Summary of Thesis Findings

1. APCEMM is updated through replacing the spectral solver with a finite volume solver, the

introduction of the LAGRID algorithm, and modules that simulate the effects of initial contrail

aspect ratio, turbulent temperature fluctuations, and vertical advection. A factor of 20 (3)

improvement in runtime for a 3 (10) hour contrail simulation is observed with a total runtime

of 25.5 (555) seconds on 8 CPU cores. Turbulent fluctuations are found to cause a decrease in

the time-dependent ice particle number and mass, consistent with LES results.

2. Distributions of ISSL depth, wind shear, and RHi inferred by APCEMM show agreement

with radiosonde measurements. CoCiP infers an approximately 40% lower average ISSL depth

compared to APCEMM and radiosonde measurements due to limitations in its representation

of the contrail’s vertical profile and an approximately 3 times higher average ice supersaturation

due to the lower sensitivity of its optical depth to RHi.

3. The ERA5 data shows a 3.8 times higher average higher ISSL depth, 56.1% lower average wind

shear, and similar average RHi compared to APCEMM inferences and radiosondes for cases

where RHi > 100%.

4. Biases in the ERA5 wind shear data result in a systematic underestimate of contrail width by

19.5%-36.2% when using APCEMM. The distributions of the depth and IOD errors are more

symmetric. Errors in the IOD due to incorrect RHi data are the largest in magnitude, with an

average absolute IOD error of approximately 164% compared to the 47.8% for contrail depth

and maximum 36.2% underestimate in contrail width.

5. CoCiP’s modeling assumptions are estimated to account for an average signed percent error in

contrail depth/width/IOD of -48.4%/-30.1%/-47.9%. Possible causes for these errors include
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CoCiP uncalibrated depth estimation parameters, its inability to simulate a partially subsat-

urated vertical humidity profile, and its low sensitivity to RHi. However, this lower sensitivity

to RHi is also found to result in smaller average absolute errors in IOD when using the ERA5

data compared to APCEMM.

6. APCEMM is found to produce contrails with a 29.3% longer lifetime and a 4.34-5.92 times

higher EF per contrail length compared to CoCiP when using the ERA5 data. This could be

due to CoCiP’s low sensitivity of IOD to RHi and its limited representations of the vertical

contrail profile and the mixing of the contrail with entrained ambient air. CoCiP produces

contrails of similar lifetimes and an average 60% smaller EF compared to APCEMM when

using the APCEMM-inferred parameters, suggesting that CoCiP’s lower estimate of contrail

lifetimes is primarily due to its representation of mixing, and that the lower sensitivity to RHi

leads to lower estimates in contrail EF. Two versions of APCEMM converge in EF results if

using their inferred parameters, suggesting that contrail EF results after a certain age may

have limited sensitivities to small changes in ambient parameters.

4.2 Recommendations for Future Work

Based on the findings of this thesis, there are a number of paths in which this work can be extended,

as described below:

1. An analysis of uncertainties in contrail properties and RF due to mesoscale turbu-

lence and gravity waves. In this thesis, we assume a zero turbulent temperature fluctuation

due to difficulties in inferring values from the ERA5 weather data. This likely causes a system-

atic overestimate of contrail RF, lifetime, and IOD. Even if meteorological parameters such as

RHi and wind shear are known at a given point, there is still significant uncertainty due to

mesoscale atmospheric turbulence and gravity waves that can cause a decrease on the order

of 50% in lifetime integrated optical depth. A follow-up study quantifying the implications of

these uncertainties would provide insights into these modeling challenges beyond only the raw

weather data and the modeling assumptions.

2. Continued development of contrail modeling efforts. One avenue for improving contrail
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models is continued work on making existing contrail models represent more physical phenom-

ena that affect the lifetime behavior of a contrail. For instance, it may be interesting to see

how CoCiP could better infer the ice supersaturated layer depth if there was a module that

tracked the altitudes of the top and bottom of a contrail relative to the RHi profile, and how

that would affect the results. The model’s ice physics can potentially be calibrated to improve

its representation of optical depth as a function of RHi. Models can also be developed to ac-

count for more processes. Examples would include a heat tracer to account for the timescales

required for the contrail to reach the temperature of the ambient air, or a module accounting

for stretching of the contrail.

3. More precise calibration of contrail models. This thesis attempts to calibrate the initial

contrail depth estimation in APCEMM using the LIDAR observations. However, these efforts

may be more successful if it is possible to minimize certain uncertainties, such as the ambient

meteorological conditions. A possible scenario for this may involve in-situ measurements of

ambient meteorological conditions prior to performing test flights, which would put a smaller

bound on the ambient conditions. If it is possible to achieve a smaller uncertainty bound in

parameters such as the initial depth of a contrail given a set of meteorological conditions, it

may also benefit efforts in areas such as correcting the weather data for contrail modeling.

4. Uncertainty quantification efforts in flight and cross section attribution. This thesis

relies on comparing model results to LIDAR observations attributed to flights and take these

observations as the ground truth to compare to. In reality, there is uncertainty associated with

flight attribution due to use of the ERA5 wind data, as well as uncertainty on the contrail

age, especially for the young contrails in the sample dataset used in this thesis. There is also

uncertainty in retrieving the LIDAR ratio and therefore the extinction cross section. Extending

this analysis would allow the derivation of an upper limit on the uncertainty attributable to

factors other than the model inputs.

5. An in-depth sensitivity analysis on contrail models. This thesis showed that APCEMM

typically produces contrail with higher EF compared to CoCiP, regardless of whether the input

weather data is from ERA5 or ambient parameter inference. A followup study may examine
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how much each model reacts to changes in the model inputs and ambient parameters, and how

much difference is caused by CoCiP and APCEMM’s different representations of contrail ice

physics and mixing.
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Tina Jurkat, Stefan Kaufmann, Mareike Kenntner, Marcus Klingebiel, Thomas Klimach,
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何でもは知らないわよ。知ってることだけ
ー羽川翼ー

I don’t know everything, I just know what I know.
- Tsubasa Hanekawa
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