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ABSTRACT

First-order methods are optimization algorithms that can be described and analyzed using
the values and gradients of the functions to be minimized. These methods have become
the main workhorses for modern large-scale optimization and machine learning due to their
low iteration costs, minimal memory requirements, and dimension-independent convergence
guarantees. As the data revolution continues to unfold, the pressing demand for discovering
faster first-order methods and rigorous convergence analyses of existing first-order methods
have become the key problem in today’s big data era. To that goal, in this thesis, we make
advancements in computer-assisted design and analysis of first-order methods and related
problems.

The core contribution of this thesis is developing computer-assisted methodologies for analyz-
ing and designing first-order methods using nonconvex quadratically constrained quadratic
optimization problems (QCQPs). In this approach, the key idea involves posing the analysis
or design of first-order methods as nonconvex but practically tractable QCQPs and then
solving them to global optimality using custom spatial branch-and-bound algorithms.

In Chapter 2 of this thesis, we present Branch-and-Bound Performance Estimation Program-
ming (BnB-PEP), a unified methodology for constructing optimal first-order methods for
convex and nonconvex optimization. BnB-PEP poses the problem of finding the optimal
first-order method as a nonconvex but practically tractable QCQP and solves it to certifiable
global optimality using a customized branch-and-bound algorithm. Our customized branch-
and-bound algorithm, through exploiting specific problem structures, outperforms the latest
off-the-shelf implementations by orders of magnitude, accelerating the solution time from
hours to seconds and weeks to minutes. We apply BnB-PEP to several practically relevant
convex and nonconvex setups and obtain first-order methods with bounds that improve upon
prior state-of-the-art results. Furthermore, we use the BnB-PEP methodology to find proofs
with potential function structures, thereby systematically generating analytical convergence
proofs.
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We next propose a QCQP-based computer-assisted approach to the analysis of the worst-case
convergence of nonlinear conjugate gradient methods (NCGMs) in Chapter 3. Those methods
are known for their generally good empirical performances for large-scale optimization while
having relatively incomplete analyses. Using our computer-assisted approach, we establish
novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR)
NCGMs for smooth strongly convex minimization. In particular, we construct mathematical
proofs that establish the first non-asymptotic convergence bound for FR (which is historically
the first developed NCGM), and a much improved non-asymptotic convergence bound for
PRP. Additionally, we provide simple adversarial examples on which these methods do not
perform better than gradient descent with exact line search, leaving very little room for
improvements on the same class of problems.

In Chapter 4 of this thesis, we develop the nonconvex exterior-point optimization solver
(NExOS)—a first-order algorithm tailored to sparse and low-rank optimization problems. We
consider the problem of minimizing a convex function over a nonconvex constraint set, where
the set can be decomposed as the intersection of a compact convex set and a nonconvex set
involving sparse or low-rank constraints. Unlike the convex relaxation approaches, NExOS
finds a locally optimal point of the original problem by solving a sequence of penalized
problems with strictly decreasing penalty parameters by exploiting the nonconvex geometry.
NExOS solves each penalized problem by applying a first-order algorithm, which converges
linearly to a local minimum of the corresponding penalized formulation under regularity
conditions. Furthermore, the local minima of the penalized problems converge to a local
minimum of the original problem as the penalty parameter goes to zero. We then implement
and test NExOS on many instances from a wide variety of sparse and low-rank optimization
problems, empirically demonstrating that our algorithm outperforms specialized methods.
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Chapter 1

Introduction

Optimization problems pervade engineering, operations research, and machine learning, and

as such, finding the fastest algorithm to solve them is of paramount importance. The efficiency

of an optimization method can make a significant difference in the outcome of a problem, as

well as the feasibility of solving it in practical applications. The ability to efficiently solve

large-scale optimization problems has a direct impact on a wide range of areas, including

operations research, management science, machine learning, and many others. In addition,

optimizing the speed of an optimization method has far-reaching implications in terms of

computational resources, cost-effectiveness, and energy consumption.

For these aforementioned reasons, researchers in optimization continue to seek and develop

faster methods with better convergence rates, lower computational complexity, and enhanced

robustness. First-order methods are optimization algorithms that can be described and

analyzed using the values and gradients of the functions to be minimized. These meth-

ods have emerged as the principal tools in modern large-scale optimization and machine

learning, attributed to their low iteration costs, minimal memory requirements, and dimension-
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independent convergence guarantees. While other types of optimization methods such as

second-order methods can offer faster convergence in certain situations, they are computa-

tionally expensive and often impractical for large-scale optimization and machine learning as

these second-order methods require matrix inversion or factorization and solution of large

systems of equations. In contrast, first-order methods can handle large-scale data sets and

are amenable to distributed computing, making them well-suited for machine learning appli-

cations. Hence, discovery of new faster first-order methods along with tighter convergence

analysis of existing first-order methods can have a significant impact on the feasibility and

scalability of large-scale optimization and machine learning problems, as well as their ability

to handle real-world applications in a timely and cost-effective manner.

As a result, developing methodologies that can systematically find novel faster first-order

methods and discover tight convergence analyses of existing first-order methods is of great

importance. To that end, this thesis makes advancements in computer-assisted methodologies

for analyzing and designing first-order methods using nonconvex quadratically constrained

quadratic optimization problems (QCQPs). The key idea in this approach is to pose the

design and analysis of first-order methods as nonconvex but practically tractable QCQPs. By

solving these QCQPs to global optimality using custom spatial branch-and-bound algorithms,

we can either discover optimal first-order methods or establish tight convergence analyses for

known first-order methods from the numerical solutions to the QCQPs.

The results in chapters 2, 3, 4 are included in the papers [1–3], respectively. We next provide

a brief summary for each of the remaining chapters of this thesis below.

Chapter 2: Branch-and-Bound Performance Estimation Programming: A Unified

Methodology for Constructing Optimal Optimization Methods. In Chapter 2 of this

thesis, we present Branch-and-Bound Performance Estimation Programming (BnB-PEP), a
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unified methodology for constructing optimal first-order methods for convex and nonconvex

optimization.

About ten years ago, researchers showed that the performance of a known first-order method

can be computed exactly by solving a tractable higher-level semidefinite optimization problem

called a performance estimation problem (PEP) [4–6], and since then this framework has led

to many novel methods and analyses [7–10]. However, if the goal is instead to discover the

provably best first-order method for a given problem class, the aforementioned methodologies

encounter significant limitations. BnB-PEP overcomes those limitations by posing the

problem of finding the optimal first-order method as a nonconvex but dimension-independent

and practically tractable QCQP and solving it to certifiable global optimality using a

customized branch-and-bound algorithm. Our customized open-sourced branch-and-bound

algorithm, through exploiting specific problem structures, outperforms the latest off-the-shelf

implementations by orders of magnitude, accelerating the solution time from hours to seconds

and weeks to minutes.

We apply BnB-PEP to several practically relevant convex and nonconvex setups and obtain

first-order methods with bounds that improve upon prior state-of-the-art results. Furthermore,

we use the BnB-PEP methodology to find proofs with potential function structures, thereby

systematically generating analytical convergence proofs. Finally, we provide roughly 10,000

lines of code precisely describing and demonstrating our methodology:

https://github.com/Shuvomoy/BnB-PEP-code

Chapter 3: Nonlinear conjugate gradient methods: worst-case convergence rates via

computer-assisted analyses. We next propose a QCQP-based computer-assisted approach

to the analysis of the worst-case convergence of nonlinear conjugate gradient methods
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(NCGMs) in Chapter 3. NCGMs are a class of adaptive (stepsizes are functions of the

gradients of previous iterates) first-order algorithms, and notable NCGMs include Polak-

Ribière-Polyak (PRP) [11, 12], Fletcher-Reeves (FR) [13], Hestenes-Stiefel method [14], the

conjugate descent method due to Fletcher [15], and Dai-Yuan method [16].

In the class of NCGMs, FR and PRP play a fundamental role, as under exact line search,

the other NCGMs reduce to either PRP or FR. These NCGMs exhibit excellent empirical

performances for solving large-scale optimization problems but have barely any non-asymptotic

convergence results in spite of being more than 50 years old. In that context, we make a

two-fold contribution in Chapter 3. First, we compute non-asymptotic worst-case convergence

results along with simple counter-examples in dimension 4 for PRP and FR under exact

line search. Our convergence results are obtained by formulating the problems of computing

worst-case scenarios as nonconvex QCQPs, and then by solving them to global optimality.

Second, these computations enable us to construct mathematical proofs that establish an

improved non-asymptotic convergence bound for PRP, and, to the best of our knowledge, the

first non-asymptotic convergence bound for FR. Furthermore, the worst-case bounds for PRP

and FR obtained numerically reveal that there are simple adversarial examples on which

these methods do not perform better than gradient descent with exact line search, leaving

very little room for improvements on this class of problems. Since we demonstrate that the

convergence results of NCGMs associated with exact line search are already disappointing,

we conclude that inexact line searches, which approximate exact line search, are unlikely to

offer improvement.

We also contribute in terms of computer-assisted methodologies too in this chapter. Our

approach to computing worst-case scenarios and bounds for adaptive first-order methods

through nonconvex QCQPs advances the semidefinite programming-based PEP methodolo-

gies [4–6] developed for non-adaptive first-order methods. This contribution aligns with the
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spirit of Chapter 2, developed for devising optimal (but non-adaptive) first-order methods.

The code used to generate and validate the results in this chapter is available at:

https://github.com/Shuvomoy/NCG-PEP-code.

Chapter 4: Exterior-point Optimization for Sparse and Low-rank Optimization. In

Chapter 4 of this thesis, we present the nonconvex exterior-point optimization solver (NExOS),

which is a first-order algorithm tailored to sparse and low-rank optimization problems. Many

optimization problems of substantial current interest can be formulated as sparse or low-rank

optimization problems. Sparse optimization problems, i.e., optimization problems with

sparsity constraints have found applications in gene expression analysis [17, pp. 2–4], sparse

regression [18, pp. 155–157], signal transmission and recovery [19, 20], hierarchical sparse

polynomial regression [21], and best subset selection [22]. On the other hand low-rank

optimization problems, i.e., problems where the decision variables are low-rank matrices, have

found applications in collaborative filtering [18, pp. 279-281], design of online recommendation

systems [23, 24], bandit optimization [25], data compression [26–28], and low rank kernel

learning [29].

In many case, these sparse and low-rank optimization problems correspond to minimizing

a convex function over a nonconvex constraint set, where the set can be decomposed as

the intersection of a compact convex set and a nonconvex set involving sparse or low-rank

constraints. NExOS finds a locally optimal point of the original problem by solving a sequence

of penalized problems with strictly decreasing penalty parameters by exploiting the nonconvex

geometry of such problems. NExOS solves each penalized problem by applying a first-order

algorithm (Douglas-Rachford splitting), and we show that it converges linearly to a local

minimum of the corresponding penalized formulation under mild regularity conditions. We

also prove that the local minima of the penalized problems converge to a local minimum of
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the original problem as the penalty parameter goes to zero.

We implement NExOS in the open-source Julia package NExOS.jl and test it extensively

on many synthetic and real-world instances of different sparse and low-rank optimization

problems of substantial current interest: sparse regression problem, affine rank minimization

problem, and low-rank factor analysis problem. We demonstrate that NExOS computes

solutions very quickly, where the quality of the found solutions are competitive with or better

than specialized algorithms on various performance measures. NExOS.jl is available at:

https://github.com/Shuvomoy/NExOS.jl
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Chapter 2

Branch-and-Bound Performance

Estimation Programming: A Unified

Methodology for Constructing

Optimal Optimization Methods

2.1 Introduction

Since the pioneering work of Nesterov and Nemirovsky on accelerated gradient methods

[30] and information-based complexity [31, 32], finding efficient and optimal first-order

methods has been the focus in the study of large-scale optimization. Recently, renewed

vitality was injected into this classical line of research by the emergence of computer-assisted

methodologies following the Performance Estimation Problem (PEP) of Drori and Teboulle

[4]. The celebrated accelerated gradient method by Nesterov was improved by a constant
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factor in [8, 9, 33], and entirely novel acceleration mechanisms, distinct from Nesterov’s, have

been discovered [34–37]. These computer-assisted methodologies, roughly speaking, pose the

problem of analyzing an efficient method as a convex semidefinite program, and the convexity

provides certain algorithmic guarantees.

However, the convexity in the formulation simultaneously serves as a limitation. The

aforementioned works presented several ingenious changes of variables, relaxations, and

reformulations to retain convexity, but such efforts cover only a handful of setups. When

these techniques do not apply, the prior methodologies become inapplicable.

Contribution. This work presents the Branch-and-Bound Performance Estimation Program-

ming (BnB-PEP), a methodology for constructing optimal first-order methods for convex

and nonconvex optimization in a tractable and unified manner. We formulate the problem of

finding the optimal optimization method as a nonconvex quadratically constrained quadratic

problem (QCQP). By directly confronting the nonconvexity of the QCQPs in consideration,

BnB-PEP offers significantly more flexibility and removes the many limitations of the prior

PEP-based methodologies. We then provide a customized spatial branch-and-bound algo-

rithm that enables us to solve such QCQPs to certifiable global optimality in a practical

time scale. The customization speeds up the branch-and-bound algorithm, compared to the

latest off-the-shelf implementations, by orders of magnitude, reducing runtimes from hours to

seconds and weeks to minutes. We apply the BnB-PEP methodology to several setups for

which the prior methodologies do not apply and construct methods with bounds improving

upon prior state-of-the-art results. Finally, we use the BnB-PEP methodology to find proofs

with potential function structures, thereby systematically generating analytical convergence

proofs.
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2.1.1 Prior work

The performance estimation methodology, initiated by Drori and Teboulle [4], formulates

the worst case-performance of an optimization method as an optimization problem itself

and upper bounds this performance through a semidefinite program (SDP) “relaxation”.

Taylor, Hendrickx, and Glineur then showed that the SDP formulation is, in fact, tight (not

a relaxation) through the notion of convex interpolation [5]. Lessard, Recht, and Packard

combined the notion of the performance estimation methodology with control-theoretic

notions through their integral quadratic constraints (IQC) formulation [10]. Taylor, Van

Scoy, and Lessard then showed that IQCs could be seen as a feasible solution to performance

estimation problems finding optimal linear convergence rate through Lyapunov functions [7].

Taylor and Bach extended this observation through a methodology that uses the performance

estimation approach to find the optimal sublinear rates through potential functions [38].

This advancement in the the performance estimation methodology has led to the discovery of

many novel methods and analyses. Drori and Teboulle numerically constructed the optimized

gradient method (OGM) [4] and Kim and Fessler found its analytical description [8]. OGM

surpasses Nesterov’s fast gradient method by a constant factor and Drori showed that OGM

is exactly optimal through an exact matching complexity lower bound [39]. Drori and Taylor

constructed efficient first-order methods that utilize 1D and 3D exact line searches using a

span-search variant of the performance estimation methodology [40]. Van Scoy, Freeman, and

Lynch constructed the triple momentum method, a method that surpasses the Nesterov’s

fast gradient method for the strongly convex setup by a constant factor, using the IQC

methodology [33]. Taylor and Drori constructed the information-theoretic exact method

(ITEM), further improving upon the triple momentum method [9]. Drori and Taylor showed

that ITEM is exactly optimal through an exact matching complexity lower bound [41]. Kim
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and Fessler constructed OGM-G, which has the best known rate for reducing the gradient

magnitude in the smooth convex setup [34]. Finally, the performance estimation methodology

has also been utilized for constructing methods with inexact evaluations [42–44], analyzing

methods in the composite minimization setup [45, 46], analyzing methods with exact line

search [47], analyzing monotone operator and splitting methods [35, 36, 48, 49], and analyzing

acceleration in the mirror descent setup [50].

Prior work constructing efficient methods based on the performance estimation methodology

relies on two conceptual stages. The first stage poses the inner problem as finding the

worst-case performance of a given method and formulates the inner problem as a convex SDP

through some ingenious change of variables and SDP duality. The second stage constructs

an outer problem that minimizes the aforementioned worst-case performance as a function

of the method. An equivalent view is that the inner problem finds a convergence proof and

the outer problem finds the algorithm with the smallest (best) guarantee established by the

convergence proof of the inner problem. While the inner optimization problem is convex,

setups for which the outer minimization problem is convex are quite rare. As we detail in

§2.3.1.2, prior work circumvents this nonconvexity within the scope of convex optimization

through relaxations and heuristics. However, these prior techniques do not always apply,

especially when the underlying optimization problem is nonconvex. The setups of §2.6.2 and

§2.6.3 of this work are such examples.

2.1.2 Organization

This chapter is organized as follows. In §2.2, we present the necessary background and

describe our problem setup. In §2.3, we illustrate the BnB-PEP methodology by applying

it on a concrete problem instance of constructing the optimal fixed-step first-order method

for reducing the gradient of a strongly convex and smooth function. Our discussion up to
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§2.3.1.1 follows prior approaches, and our novel contribution starts in §2.3.1.2. In §2.4, we

present customizations of the spatial branch-and-bound algorithm that enables us to solve

the QCQPs that construct optimal optimization methods in a practical time scale. In §2.5,

we present the generalized formulation of our methodology. In §2.6, we demonstrate the

effectiveness of our methodology through several applications. In §2.6.1, we construct the

optimal gradient method without momentum for reducing function value in the smooth convex

setup and demonstrate that it outperforms the best known method without momentum. In

§2.6.2, we construct the optimal method for reducing gradient norm of smooth nonconvex

functions and demonstrate that it outperforms the prior best known method [51]. In §2.6.3,

we design an optimized first-order method with respect to a suitable potential function for

reducing the (sub)gradient norm of nonsmooth weakly convex functions and demonstrate

that it outperforms the prior best known method [52, Theorem 3.1]. Additionally, in §2.6.3.3,

we present a systematic approach to generate analytical proofs from the solutions obtained

through our methodology, extending the approach of Taylor and Bach [38] to nonconvex and

nonsmooth setups.

2.1.3 Computational setup

For scientific reproducibility, we open-source our codes to generate all the numerical results

presented in this chapter at the link:

https://github.com/Shuvomoy/BnB-PEP-code

Unless otherwise specified, we performed our numerical experiments on a laptop computer

running Windows 10 Pro with Intel Core i7-8650U CPU with 16 GB of RAM. We used

JuMP—a domain-specific modeling language for mathematical optimization embedded in the

open-source programming language Julia [53]—to model the optimization problems. Our
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proposed algorithm uses the following solvers: Mosek 9.3 [54] (free for academic use), Ipopt

3.12.11 [55] (open-source), KNITRO 13.0.0 [56] (free for academic use), and Gurobi 10 [57]

(free for academic use).

2.2 Background and problem setup

Write Rd for the underlying Euclidean space, even though our results and formulations

extend to the setup where the underlying setup is a Hilbert space [48]. Write ⟨· | ·⟩ and

∥ · ∥ to denote the standard inner product and norm on Rd. For a, b ∈N, denote [a : b] =

{a, a+ 1, a+ 2, . . . , b−1, b}. Write Rm×n for the set of m×n matrices, Sn for the set of n×n

symmetric matrices, and Sn
+ for the set of n× n positive-semidefinite matrices. We use the

standard notation ei ∈ Rd for the unit vector having a single 1 as its i-th component. Write

(· ⊙ ·) : Rd ×Rd → Rd×d to denote the symmetric outer product, that is, for any x, y ∈ Rd:

x⊙ y = 1
2
(
xy⊤ + yx⊤

)
.

We follow standard convex-analytical definitions [58–61]. A set S ⊆ Rd is convex if for any

x, y ∈ S and θ ∈ [0, 1], we have θx+ (1− θ)y ∈ S. A function f : Rd → R is convex if

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ Rd and θ ∈ (0, 1).

The abstract subdifferential of f : Rd → R at x, denoted by ∂f(x), is defined to satisfy the

following properties [62]:
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(i) If f is convex, then the abstract subdifferential is the usual convex subdifferential, i.e.,

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + ⟨g | y − x⟩, ∀ y ∈ Rn}.

(ii) If f is continuously differentiable at x, then its abstract subdifferential at x just contains

the gradient ∇f(x), i.e., ∂f(x) = {∇f(x)}.

(iii) If f attains a local minimum at x, then 0 ∈ ∂f(x).

(iv) For all y ∈ Rd and β ∈ R,

∂

(
f(·) + β

2 ∥ · −y∥
2
)

= ∂f(·) + β(· − y).

The Clarke–Rockafellar subdifferential [63, §1.2], Mordukhovich subdifferential [64, §1.3],

and Fréchet subdifferential [65, page 132] are all instances of the abstract subdifferential [62,

page 70]. Whenever we say subdifferential in this chapter, we are referring to the abstract

subdifferential. Because our analyses use only the properties of the abstract subdifferential,

our results apply to all instances of the abstract subdifferential. We write f ′(x) to denote an

element of ∂f(x).

We say a function f is L-smooth if it is differentiable everywhere and ∇f is L-Lipschitz

continuous. We say a function f is µ-strongly convex if f(·)− (µ/2)∥ · ∥2 is convex. We say a

function f is ρ-weakly convex if f + (ρ/2)∥ · ∥2 is convex. We say a function f has L-bounded

subgradients if ∥g∥ ≤ L for all g ∈ ∂f(x) and x ∈ Rd.
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2.2.1 Quadratically constrained quadratic program (QCQP)

A QCQP is defined as:

p⋆ =


minimize

x∈Rq
c⊤x+ x⊤Q0x

subject to a⊤
i x+ x⊤Qix ≤ bi, i ∈ [1 : m],

a⊤
j x+ x⊤Qjx = bj, j ∈ [m+ 1 : p],

 (2.1)

where x ∈ Rq is the decision variable. The matrices Q0, Q1, . . . , Qp ∈ Rq×q are symmetric,

but not necessarily positive-semidefinite. Therefore, this problem is nonconvex.

Practical tractability of QCQPs. The QCQP problem class is NP-hard and therefore has

no known polynomial-time algorithm [66, pp. 565–567]. However, such theoretical worst-case

intractability does not necessarily imply that specific problem instances are not practically

tractable [67, Chapter 1].

Branch-and-bound solvers have experienced astounding speedup in the past few decades.

In the last thirty years, branch-and-bound solvers for mixed-integer optimization (MIO)

problems have achieved an algorithmic speedup of approximately 1,250,000 and a hardware

speedup of approximately 1,560,000, resulting in an overall speedup factor of approximately 2

trillion [67, page 5]. While these speedup factors are for MIO and not for QCQP, the speedup

factors for QCQP solvers have followed a similar trend since the recent (2019) incorporation

of QCQPs in commercial solvers [68]. For example, in less than three years, Gurobi’s spatial

branch-and-bound algorithm has achieved a machine-independent speedup factor of 175.5

[57, 69].

This remarkable speedup has rendered previously intractable problems practically tractable.

Furthermore, one can often significantly speed up the spatial branch-and-bound algorithm
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by customizing it to exploit specific problem structure. We present such customizations for

the BnB-PEP Algorithm in §2.4 and §2.5, and demonstrate that the speedup is absolutely

essential for the BnB-PEP Algorithm to be used practically.

QCQP solvers for local and global solutions. Since QCQPs have twice-continuously

differentiable objectives and constraints, one can use interior-point solvers such as KNITRO

[56] or Ipopt [70] to compute locally optimal solutions under certain regularity conditions

[71, Theorem 4][72, §3.2]. On the other hand, one can use the spatial branch-and-bound

algorithm implemented in solvers such as Gurobi [57] to find globally optimal solutions of

nonconvex QCQPs and to certify their optimality in finite time.

2.2.2 Problem setup

Consider the unconstrained minimization problem

minimize
x∈Rd

f(x), (2.2)

where f is smooth or nonsmooth, convex or nonconvex.

For the sake of simplicity, we assume that f has a global minimizer x⋆ (not necessarily

unique). Optimization problems with further structure, such as problems with constraints

and problems whose objective are sums of functions, can also be considered. However, we

restrict our discussion to this setup of unconstrained minimization for the sake of simplicity.

Function class F . An optimization method is usually designed for a specific class of

functions. In this work, we use the BnB-PEP methodology with function classes listed

in Table 2.1. More generally, we can use the BnB-PEP methodology with quadratically

representable function classes, a notion we further discuss in §2.A.1 of the appendix at the

37



Function class Notation

L-smooth Convex (0 < L <∞) F0,L

L-smooth and µ-strongly convex (0 ≤ µ < L <∞) Fµ,L

L-smooth Nonconvex (0 < L <∞) F−L,L

ρ-weakly convex with L-bounded subgradients (ρ > 0, L > 0) Wρ,L

Table 2.1: Function classes considered in this chapter.

end of this chapter.

Fixed-step first-order method MN . We consider fixed-step first-order methods, which

include most subgradient methods and accelerated gradient methods [9]. A method is said to

be a fixed-step first-order method (FSFOM) with N steps if it takes in a function f and a

starting point x0 ∈ Rd as input and produces its iterates with:

xi = xi−1 −
i−1∑
j=0

si,jf
′(xj) (2.3)

for i ∈ [1 : N ], where f ′(xj) ∈ ∂f(xj) is a subgradient of f at xj for j ∈ [0 : N − 1]. We can

equivalently express the FSFOM (2.3) with

xi = x0 −
i−1∑
j=0

si,jf
′(xj),

where {si,j}0≤j<i≤N and {si,j}0≤j<i≤N are related by

si,j =


si,i−1, if j = i− 1,

si−1,j + si,j, if j ∈ [0 : i− 2]
(2.4)

for 0 ≤ j < i ≤ N . Write s = {si,j}0≤j<i≤N and s = {si,j}0≤j<i≤N to denote the collection

of stepsizes. The stepsizes s or s may depend on the function class F and the value of N ,
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but are otherwise predetermined. In particular, they may not depend on function values or

gradients observed throughout the method. WriteMN to denote the set of all FSFOMs with

N steps. We will soon formulate the problem of finding an optimal FSFOM in MN as an

optimization problem itself, and the stepsizes s or s will serve as the decision variables.

The notion of fixed-step linear first-order methods extend these definitions to accommodate

proximal methods and conditional gradient methods [73, pp. 118-119]. Our BnB-PEP

methodology also directly applies to these generalizations, but we restrict our discussion to

FSFOMs for the sake of simplicity.

Performance measure E and initial condition C. For notational convenience, define the

index sets

IN = {0, 1, . . . , N}, I⋆
N = {0, 1, . . . , N, ⋆}.

Throughout this chapter, we will use ⋆ as the index corresponding to the optimal point. Write

E to denote the performance measure that evaluates a method M ∈MN on a specific function

f ∈ F with a starting point x0. We require that E depends only on iterates {x0, . . . , xN}, a

globally optimal solution x⋆ to (2.2), and the values and (sub)gradients of f at the points

x0, x1, . . . , xN , x⋆. In other words, E may depend on the solution x⋆ and zero- and first-order

information the FSFOM observes, but may not depend on other unobserved information of

f . Commonly considered performance measures are

E
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
= f(xN)− f(x⋆)

or

E
(
{xi,∇f(xi), f(xi)}i∈I⋆

N

)
= ∥∇f(xN)∥2

when f is differentiable.
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To obtain a meaningful rate on the methods, we impose a suitable condition on the initial

iterate x0, which we abstractly express as

C
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
≤ 0.

Commonly considered initial conditions are

C
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
= ∥x0 − x⋆∥2 −R2

or

C
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
= f(x0)− f(x⋆)−R2,

where R > 0.

Worst-case performance R. The worst-case performance or the rate of the method

M ∈MN is obtained by maximizing E over functions in F . More formally, we define

R (M, E ,F , C)

=



maximize E
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
subject to

f ∈ F ,

x⋆ is a globally optimal solution to (2.2),

{xi}i∈[1:N ] is generated by FSFOM M with initial point x0,

C
(
{xi, f

′(xi), f(xi)}i∈I⋆
N

)
≤ 0,



(Oinner)

where f , x0, . . . , xN , and x⋆ are the decision variables. We set x⋆ = 0 and f(x⋆) = 0, which

incurs no loss of generality because the function classes in Table 2.1 and the FSFOM in

consideration are closed and invariant under shifting variables and function values.
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We will soon show that evaluating the worst-case performance of a given method M ∈MN

by solving (Oinner) can be represented as a (finite-dimensional convex) semidefinite-program.

Optimal FSFOM. An optimal FSFOM M⋆
N ∈MN for a given performance measure E over

function class F subject to the initial condition C is a solution to the following minimax

optimization problem:

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) . (Oouter)

Finding an optimal FSFOM M⋆
N ∈ MN by solving (Oouter) is, in general, a nonconvex

problem. The BnB-PEP methodology formulates (Oouter) as a (nonconvex) QCQP and solves

it to certifiable global optimality using a spatial branch-and-bound algorithm in a practically

tractable manner. In §2.3, we illustrate our methodology by describing it for a concrete

problem instance. In §2.5, we present the general form of the the methodology.

2.3 BnB-PEP for strongly convex smooth minimization

This section demonstrates the BnB-PEP methodology on a concrete instance for which prior

methodologies do not apply. The general BnB-PEP methodology is presented in §2.5.

Specifically, we find the optimal FSFOM for reducing the gradient of µ-strongly convex

L-smooth functions, with 0 ≤ µ < L ≤ ∞. In other words, we choose the function class

F = Fµ,L and performance measure E = ∥∇f(xN )∥2. Further, we choose the initial condition

C = ∥x0− x⋆∥2−R2 ≤ 0 with R > 0. Then, an optimal FSFOM is a solution of the following

instance of (Oouter):

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) .
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2.3.1 Optimal optimization method from BnB-PEP-QCQP

We formulate the outer problem as a (nonconvex) QCQP, which we refer to as the BnB-PEP-

QCQP, in the following two steps. In §2.3.1.1, we formulate the inner problem (Oinner) as a

convex SDP. This first step follows the approach of [4, 6]. Then in §2.3.1.2 formulates the

outer problem (Oouter) as a QCQP. This second step is is novel.

2.3.1.1 Formulating the inner problem (Oinner) as a convex SDP

Infinite-dimensional inner optimization problem. By setting si,j = hi,j

L
in (2.3), parame-

terize FSFOMs in MN as

xi = xi−1 −
1
L

i−1∑
j=0

hi,jf
′(xj) (2.5)

for i ∈ [1 : N ]. Write h = {hi,j}0≤j<i≤N . Then (Oinner) becomes

R(M, E ,F , C)

=



maximize ∥∇f(xN)∥2

subject to f ∈ Fµ,L,

∇f(x⋆) = 0,

xi = xi−1 − 1
L

∑i−1
j=0 hi,j∇f(xj), i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,

x⋆ = 0, f(x⋆) = 0,



(2.6)

where f, x0, . . . , xN are the decision variables. As is, f is an infinite-dimensional decision

variable.

Reparametrization from Fµ,L to F0,L−µ. Next, we use the following lemma to repa-

rameterize (Oinner), defined with function class Fµ,L, into an equivalent problem with the
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(L− µ)-smooth convex function class F0,L−µ. The benefit of the reparametrization is that

the final problem becomes more compact.

Lemma 2.1 (Reparametrization from Fµ,L to F0,L−µ [9, §3.2]). Consider f ∈ Fµ,L where

0 ≤ µ ≤ L ≤ ∞ with a minimizer x⋆. Consider an FSFOM with f and {hi,j}0≤j<i≤N as

defined in (2.5). Define f̃ := f − (µ/2)∥ · −x⋆∥2 and an array of parameters {αi,j}0≤j<i≤N

αi,j =


hi,i−1, if j = i− 1,

αi−1,j + hi,j − µ
L

∑i−1
k=j+1 hi,kαk,j, if j ∈ [0 : i− 2],

where i ∈ [1 : N ] and j ∈ [0 : i − 1]. Then (i) f̃ ∈ F0,L−µ if and only if f ∈ Fµ,L, (ii)

x⋆ ∈ argmin f̃ , and (iii) the FSFOM (2.5) is equivalent to

xi = x⋆ + (x0 − x⋆)
1− µ

L

i−1∑
j=0

αi,j

− i−1∑
j=0

αi,j

L
∇f̃(xj)

for i ∈ [1 : N ].
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Reformulated infinite-dimensional maximization problem. Using Lemma 2.1, we refor-

mulate (Oinner) as

R(M, E ,F , C)

=



maximize ∥∇f̃(xN)∥2 + µ2∥xN − x⋆∥2 + 2µ
〈
∇f̃(xN) | xN − x⋆

〉
subject to

f̃ ∈ F0,L−µ,

∇f̃(x⋆) = 0,

xi = x0
(
1− µ

L

∑i−1
j=0 αi,j

)
− 1

L

∑i−1
j=0 αi,j∇f̃(xj), i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,

x⋆ = 0, f̃(x⋆) = 0,



where f̃ , x0, . . . , xN are the decision variables. The decision variable f̃ ∈ F0,L−µ is still

infinite-dimensional. Write α = {αi,j}0≤j<i≤N .

Interpolation argument. We now convert the infinite-dimensional optimization problem

into finite-dimensional one with the following lemma.

Lemma 2.2 (F0,L-interpolation [9, Theorem 2]). Let I be an index set, and let {(xi, gi, fi)}i∈I ⊆

Rd ×Rd ×R. Let L > 0. There exists f ∈ F0,L satisfying f(xi) = fi and gi ∈ ∂f(xi) for all

i ∈ I if and only if 1

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2L∥gi − gj∥2, ∀ i, j ∈ I.

1This can be viewed as a discretization of the following condition [59, Theorem 2.1.5, Equation (2.1.10)]:
f ∈ F0,L if and only if

f(y) ≥ f(x)+⟨∇f(x) | y − x⟩+ 1
2L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.
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Finite-dimensional maximization problem. Using Lemma 2.2, reformulate (Oinner) as

R(M, E ,F , C)

=



maximize ∥gN∥2 + µ2∥xN − x⋆∥2 − 2µ ⟨gN | x⋆ − xN⟩

subject to

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2(L−µ)∥gi − gj∥2, i, j ∈ I⋆

N : i ̸= j,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0
(
1− µ

L

∑i−1
j=0 αi,j

)
− 1

L

∑i−1
j=0 αi,jgj, i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2.



(2.7)

Now, the decision variables are {xi, gi, fi}i∈I⋆
N
⊆ Rd ×Rd ×R, where I⋆

N = {0, 1, . . . , N, ⋆},

and the optimization problem is finite-dimensional, although nonconvex. To clarify, we

are applying Lemma 2.2 on f̃ ∈ F0,L−µ, rather than f ∈ Fµ,L. However, we use the

symbols {fi}i∈I⋆
N

, rather than the arguably more consistent {f̃i}i∈I⋆
N

for the sake of notational

conciseness.

Grammian formulation. Next, we formulate (Oinner) as a convex SDP. Let

H = [x0 | g0 | g1 | . . . | gN ] ∈ Rd×(N+2),

G = H⊤H ∈ SN+2
+ ,

F = [f0 | f1 | . . . | fN ] ∈ R1×(N+1).

(2.8)
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Note that rankG ≤ d. Define the following notation for selecting columns and elements of

H and F :
g⋆ = 0 ∈ RN+2, gi = ei+2 ∈ RN+2, i ∈ [0 : N ]

x0 = e1 ∈ RN+2, x⋆ = 0 ∈ RN+2,

xi = x0

1− µ

L

i−1∑
j=0

αi,j

− 1
L

i−1∑
j=0

αi,jgj ∈ RN+2, i ∈ [1 : N ]

f⋆ = 0 ∈ RN+1, fi = ei+1 ∈ RN+1, i ∈ [0 : N ].

(2.9)

This notation is defined so that

xi = Hxi, gi = Hgi, fi = F fi

for i ∈ I⋆
N . Note that xi depends on {αi,j}j∈[0:i−1] linearly for i ∈ [1 : N ]. Furthermore, for

i, j ∈ I⋆
N , define

Ai,j(α) = gj ⊙ (xi − xj) ∈ SN+2,

Bi,j(α) = (xi − xj)⊙ (xi − xj) ∈ SN+2
+ ,

Ci,j = (gi − gj)⊙ (gi − gj) ∈ SN+2
+ ,

ai,j = fj − fi ∈ RN+1.

(2.10)

Note that Ai,j(α) is affine and Bi,j(α) is quadratic as functions of {αi,j}i∈[1:N ],j∈[0,i−1]. This

notation is defined so that
⟨gj | xi − xj⟩ = trGAi,j(α),

∥xi − xj∥2 = trGBi,j(α),

∥gi − gj∥2 = trGCi,j,

(2.11)

for i, j ∈ I⋆
N .
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Using this notation, formulate (Oinner) as

R(M, E ,F , C)

=



maximize trG (CN,⋆ + µ2BN,⋆(α)− 2µA⋆,N(α))

subject to

Fai,j + trGAi,j(α) + 1
2(L−µ) trGCi,j ≤ 0, i, j ∈ I⋆

N : i ̸= j,

−G ⪯ 0, rank(G) ≤ d,

trGB0,⋆ ≤ R2,



where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. The equivalence relies

on the fact that given a G ∈ SN+2
+ satisfying rank(G) ≤ d, there exists a H ∈ Rd×(N+2) such

that G = H⊤H. The argument is further detailed in [5, §3.2]. This formulation is not yet a

convex SDP due to the rank constraint rank(G) ≤ d.

SDP representation. Next, we make the following large-scale assumption.

Assumption 2.1. We have d ≥ N + 2.

Under this assumption, the constraint rankG ≤ d becomes vacuous, since G ∈ S(N+2)
+ . We

drop the rank constraint and formulate (Oinner) as a convex SDP

R(M, E ,F , C)
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=



maximize trG (CN,⋆ + µ2BN,⋆(α)− 2µA⋆,N(α))

subject to

Fai,j + trGAi,j(α) + 1
2(L−µ) trGCi,j ≤ 0, i, j ∈ I⋆

N : i ̸= j, ▷ dual var. λi,j ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0

trGB0,⋆ ≤ R2, ▷ dual var. ν ≥ 0


(2.12)

where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. We denote the

corresponding dual variables on the right hand side of the constraints with ▷ dual var. for

later use.

We emphasize that dropping the rank constraint is not a relaxation; the optimization problem

(2.12) and its solution is independent of the dimension d, provided that the large-scale

assumption d ≥ N + 2 holds. See [5, §3.3] for further discussion.

Dualization. Next we use convex duality to formulate (Oinner), originally a maximization

problem, as a minimization problem. Take the dual of (2.12) to get

R(M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α) + 2µA⋆,N(α)+∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(α) + 1

2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,

ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,



(2.13)

48



where ν ∈ R, λ = {λi,j}i,j∈I⋆
N :i ̸=j, and Z ∈ SN+2

+ are the decision variables. (Note, we write

R rather than R here.) We call λ, ν, and Z the inner-dual variables.

By weak duality of convex SDPs, we have

R(M, E ,F , C) ≤ R(M, E ,F , C).

In convex SDPs, strong duality holds often but not always. For the sake of simplicity, we

assume strong duality holds.

Assumption 2.2. Strong duality holds between (2.12) and (2.13), i.e.,

R(M, E ,F , C) = R(M, E ,F , C).

This assumption can be removed in most cases using the line of reasoning of [74, Claim 4],

but the technique is tedious. Since strong duality for convex SDPs “usually” holds, we

argue there is little utility in pursuing this direction. Nevertheless, in a strict sense, the

assumption constitutes a gap in our mathematical arguments. We detail the implication of

this gap in §2.A.2 of the appendix. In any case, strong duality holds for “generic” FSFOMs

[5, Theorem 6], so one can safely use the BnB-PEP methodology with confidence that the

obtained FSFOM will be optimal among the “nice” generic FSFOMs.

Now we have arrived at the end of the formulation based on prior works [4, 6], and, at this

point, our formulations diverge.
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2.3.1.2 Formulating the outer problem (Oouter) as a QCQP

With (Oinner) formulated as a minimization problem, the outer optimization problem (Oouter)

becomes a joint minimization over the inner dual variables and the FSFOM parameters α.

However, the outer minimization problem is not convex in all of the variables, even though

the inner problem is.

Prior work circumvents this nonconvexity within the scope of convex optimization. Prior

work on OGM [4, 8], ITEM [9], ORC-F♭ [74, §4], and OBL-F♭ [74, §5.1] convexify (Oouter) into

an SDP through appropriate relaxations and changes of variables. The relaxation discards

certain inequalities, a process discussed in §2.4.3. Due to the relaxation, the solution FSFOM

of the relaxed SDP is not necessarily the exact optimal FSFOM. Exact optimality of OGM

[39] and ITEM [41] were proved through separate exact matching complexity lower bounds.

Even though ORC-F♭ and OBL-F♭ are optimal solutions of the relaxed SDP, they are not

optimal FSFOMs, as their guarantees are worse than that of OGM. Prior work on OGM-G

[34], M-OGM-G [75], OBL-G♭ [74], APPM [35, 36], and SM-APPM [76] formulate (Oouter)

as bi-convex optimization problems, as problems with bilinear matrix inequalities (BMIs),

after relaxations discarding certain inequalities. Although bi-convex problems (which are

nonconvex) do not have provably efficient algorithms, prior work have obtained FSFOMs

using the alternating minimization heuristic. Exact optimality of APPM and SM-APPM

were proved through separate exact matching complexity lower bounds [76]. OGM-G is

presumed but not proven to be exactly optimal. M-OGM-G and OBL-G♭ are not optimal

FSFOMs in the usual sense as their guarantees are worse than that of OGM-G. For the setups

we consider, especially the setup of §2.6.2 and §2.6.3, these prior techniques do not apply

and the optimization over the FSFOM cannot be formulated as a convex nor a bi-convex

optimization problem (to the best of our knowledge) even after appropriate relaxations.
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Formulating (Oouter) as a QCQP. The nonconvex outer optimization problem (Oouter)

minimizes over α in addition to the inner dual variables of (2.13). We confront the noncon-

vexity directly by formulating (Oouter) as a (nonconvex) QCQP and solving it with spatial

branch-and-bound algorithms. We do not discard constraints or use any relaxation. To this

end, we replace the semidefinite constraint with a quadratic constraint via the Cholesky

factorization.

Lemma 2.3 ([77, Corollary 7.2.9]). A matrix Z ∈ Sn is positive semidefinite if and only if it

has a Cholesky factorization PP⊤ = Z, where P ∈ Rn×n is lower triangular with nonnegative

diagonals.

In raw index form, the conditions of Lemma 2.3, applied to the present setup, have the

following equivalent representations:

 P is lower triangular with nonnegative diagonals,

PP⊤ = Z.



⇔


Pj,j ≥ 0, j ∈ [1 : N + 2],

Pi,j = 0, 1 ≤ i < j ≤ N + 2,∑j
k=1 Pi,kPj,k = Zi,j, 1 ≤ j ≤ i ≤ N + 2.



We now formulate (Oouter), the problem of finding an optimal FSFOM, as the following

QCQP

R⋆(MN , E ,F , C)
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=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α) + 2µA⋆,N(α)+∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(α) + 1

2(L−µ)Ci,j

)
= Z,

P is lower triangular with nonnegative diagonals,

PP⊤ = Z,

ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,



(2.14)

where λ, ν, Z, P , and α are the decision variables. We name this optimization problem the

BnB-PEP-QCQP.

2.3.2 Solving the BnB-PEP-QCQP using the BnB-PEP Algorithm

We now solve the BnB-PEP-QCQP (2.14) to certifiable optimality in a practical time scale

via the BnB-PEP Algorithm, stated as Algorithm 1. The algorithm has 3 stages: Stage 1

finds a feasible point, Stage 2 uses an interior-point solver to find a locally optimal solution,

and Stage 3 uses a spatial branch-and-bound solver to find a globally optimal solution.

Details of the BnB-PEP Algorithm. Stage 1 computes a feasible solution of (2.14) by

taking advantage of the structure that (2.13) is a convex SDP when the FSFOM is fixed. We

set the stepsize to represent gradient descent (GD)

xi = xi−1 −
1
L
∇f(xi−1), i ∈ [1 : N ]

which is a suboptimal but reasonable algorithm. By Lemma 2.1, this corresponds to αinit
i,i−1 = 1

for i ∈ [1 : N ] and αinit
i,j = 0 for j ̸= i− 1.
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Algorithm 1 BnB-PEP Algorithm: Given (µ, L,R), solves (2.14) to global optimality
Stage 1. Compute a feasible solution.

• Set αinit
i,i−1 ← 1 and αinit

i,j ← 0 for for i ∈ [1 : N ], j ̸= i− 1.
• Set α← αinit in (2.13) and solve the convex SDP. Denote the computed optimal solution

to (2.13) by {ν init, λinit, Z init}.
• Compute Cholesky decomposition Z init = P init(P init)⊤.

Stage 2. Compute a locally optimal solution by warm-starting at Stage 1 solution.
• Warm-start (2.14) with {αinit, ν init, λinit, Z init, P init} and solve it to local opti-

mality using the nonlinear interior-point method. Denote the solution by
{αlopt, ν lopt, λlopt, Z lopt, P lopt}.

Stage 3. Compute a globally optimal solution by warm-starting at Stage 2 solution.
• Warm-start (2.14) with {αlopt, ν lopt, λlopt, Z lopt, P lopt} and solve it to global optimality

using a customized spatial branch-and-bound algorithm described in §2.4. Denote the
solution by {α⋆, ν⋆, λ⋆, Z⋆, P ⋆} and the optimal objective value by p⋆.

Return: {α⋆, ν⋆, λ⋆, Z⋆, P ⋆} and p⋆.

Stage 2 computes a locally optimal solution to (2.14) using an interior-point algorithm,

warm-starting at the feasible solution corresponding to GD that was produced by Stage 1.

When a good warm-starting point is provided, interior-point algorithms can quickly converge

to a locally optimal solution [70, 78], [71, §3.3]. If the interior-point algorithm fails to converge,

we return the feasible solution from Stage 1. Fortunately, we observe that Stage 2 consistently

provides a locally optimal solution.

Stage 3 computes a globally optimal solution using a customized spatial branch-and-bound

algorithm, warm-starting at the solution produced by Stage 2. We detail our BnB-PEP-

QCQP-specific customization in §2.4. A good warm-starting point provides a tight upper

bound of the optimal value and, therefore, significantly accelerates the spatial branch-and-

bound algorithm of Stage 3. In our experience, Stage 2 often provides an excellent, even

nearly optimal, warm-starting point.

In principle, one can simply use an off-the-shelf implementation of spatial branch-and-

bound algorithm such as Gurobi [68] to solve (2.14). Spatial branch-and-bound algorithms

do compute globally optimal solutions in “finite time”, but the default implementation
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is impractically slow, as Table 2.4 illustrates. Customizing the spatial branch-and-bound

algorithm with problem-specific insights is essential, as discussed in §2.4.

Numerical results. We conduct numerical experiments on the computational environment

described in §2.1.3 with parameters µ = 0.1, L = 1, and R = 1. Due to the scale

invariance discussed in [5, §3.5], it suffices to solve the BnB-PEP-QCQP for L = 1 and

R = 1 and find the corresponding optimal stepsize vector α⋆ (or h⋆) and the associated

optimal worst-case performance measure ∥∇f(xN)∥2. More specifically, for any other L >

0 and R > 0, the new optimal stepsize vector will be scaled as α⋆/L (or h⋆/L) with

corresponding performance measure scaled as L2R2∥∇f(xN)∥2. The homogeneity relations

for other performance measures and initial conditions can be found at [5, §3.5] and [73,

§4.2.5].2 Tables 2.2 and 2.3 present the results of the BnB-PEP Algorithm. The optimal

algorithm indeed outperforms other known algorithms in terms of the worst-case performance

measure ∥∇f(xN)∥2 with initial condition ∥x0 − x⋆∥ ≤ R2. Table 2.4 presents runtimes of

the BnB-PEP Algorithm. The BnB-PEP-QCQP can be solved in a practical time scale with

the BnB-PEP Algorithm, but only when we use the customized spatial branch-and-bound

solver of §2.4.

A notable empirical observation is that the FSFOM produced by Stage 2, expected to be

locally optimal, is often globally optimal or near-optimal. In this case, Stage 3 serves mainly

to certify the global optimality of the warm-starting solution of Stage 2. This fortuitous

behavior was observed consistently in our experiments of §2.6 as well. Because Stages 1 and

2 tend to be faster than Stage 3 and because the output of Stage 2 is often globally optimal,

one can use the output of Stage 2 as a heuristic without running Stage 3. This can be useful

when the goal is to obtain a good method, and there is no need to certify that the method is
2The journal version of [5, §3.5] contained a typo in the homogeneity relations, which was later corrected

in a subsequent arXiv update https://arxiv.org/pdf/1502.05666.pdf.
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N
#

variables
#

constraints
Worst-case ∥∇f(xN )∥2

Optimal GD ITEM OGM-Fµ,L

1 20 33 0.1473 0.2244 0.6695 0.2122

2 36 56 0.0409 0.0893 0.3770 0.0835

3 57 85 0.0145 0.0449 0.1933 0.0378

4 83 120 0.005766 0.0257 0.0945 0.0178

5 114 161 0.002459 0.0159 0.0451 0.0085

10 410 456 4.89× 10−5 2.58× 10−3 1.03× 10−3 1.97× 10−4

25 2135 2241 5.42× 10−10 5.89× 10−5 5.5× 10−7 7.21× 10−8

Table 2.2: Comparison of the optimal method obtained by solving (2.14) with the
BnB-PEP Algorithm against other known methods.

optimal.

Table 2.2 compares the performance of the optimal method, obtained with the BnB-PEP

Algorithm, against GD (plain gradient desent), ITEM [9], and OGM-Fµ,L [9]. (ITEM and

OGM-Fµ,L are optimal with respect to different performance measures and therefore are

suboptimal when the goal is to reduce the gradient magnitude. The stepsizes of ITEM were

taken from page 21 of the first arXiv version of [9], and the stepsizes of OGM-Fµ,L were

taken from [9, §E.1].) We also show the total number of variables and constraints of (2.14)

that the BnB-PEP Algorithm works with after the mathematical model described in JuMP

gets converted to the MathOptInterface format [79], which is the standard data structure

for representing optimization models in JuMP.

Table 2.3 shows the globally optimal stepsizes found by the BnB-PEP Algorithm. To clarify,

we obtain the optimal α⋆ from the BnB-PEP Algorithm, solve for h⋆ with Lemma 2.1, and

present h⋆ in the table.

Table 2.4 presents the runtimes with and without the customized spatial branch-and-bound
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N h⋆

1
[

1.3837
]

2
[

1.5018
0.0494 1.5018

]

3

 1.5308
0.0889 1.7229
0.0109 0.0889 1.5308



4


1.5403
0.1038 1.7926
0.0229 0.1751 1.7926
0.003 0.0229 0.1038 1.5403



5


1.5439
0.1097 1.8187
0.0286 0.2132 1.8842
0.0069 0.0514 0.2132 1.8187
0.0009 0.0069 0.0286 0.1097 1.5439



10



1.5465
0.1141 1.8377
0.033 0.2426 1.9488
0.0107 0.0786 0.3072 1.995
0.0036 0.0265 0.1037 0.3357 2.0122
0.0012 0.009 0.0352 0.114 0.3437 2.0122
0.0004 0.003 0.0117 0.0378 0.114 0.3357 1.995
0.0001 0.0009 0.0036 0.0117 0.0352 0.1037 0.3072 1.9488

0.0 0.0002 0.0009 0.003 0.009 0.0265 0.0786 0.2426 1.8377
0.0 0.0 0.0001 0.0004 0.0012 0.0036 0.0107 0.033 0.1141 1.5465


25 See Supplementary Information or Github repository

Table 2.3: Globally optimal stepsizes obtained by solving (2.14) with the BnB-PEP
Algorithm.

56



Algorithm
BnB-PEP Algorithm runtime Off-the-shelf Gurobi runtime

on MIT SupercloudStage 1 Stage 2 Stage 3

N = 1 0.004 s 0.130 s 0.081 s 5 h 17 m

N = 2 0.007 s 0.147 s 0.110 s 1 d 3 h

N = 3 0.007 s 0.153 s 0.512 s 4 d 13 h

N = 4 0.015 s 0.192 s 4.602 s More than a week

N = 5 0.017 s 0.330 s 456.685 s More than a week

N = 10 0.26 s 2 m 37 s 1 d 22 h Does not finish in 2 weeks

N = 25 3.2 s 6 m 22 s 3 d 10 h Does not finish in 2 weeks

Table 2.4: This table compares the runtimes of the BnB-PEP Algorithm executed
on a standard laptop with the off-the-shelf spatial branch-and-bound algorithm of
Gurobi executed on MIT Supercloud for N = 1, . . . , 5, 10. For the case N = 25, both
the BnB-PEP Algorithm and off-the-shelf Gurobi were executed on MIT Supercloud.

solver of §2.4. The off-the-shelf spatial branch-and-bound algorithm of Gurobi was very slow

despite running on the MIT Supercloud Computing Cluster with 24 Intel-Xeon-Platinum-

8260 nodes (has 1152 cores) and 384 GB of RAM running Ubuntu 18.04.6 LTS with Linux

4.14.250-llgrid-10ms kernel [80]. On the other hand, our BnB-PEP Algorithm ran efficiently

on both a standard laptop and on MIT Supercloud. For N = 25, we run both the BnB-PEP

Algorithm and the off-the-shelf Gurobi on the MIT Supercloud. The cases for which the

off-the-shelf spatial branch-and-bound algorithm terminated, the results agreed with the

results of the BnB-PEP Algorithm.

2.4 Efficient implementation of the BnB-PEP Algorithm

As Table 2.4 illustrates, an off-the-shelf spatial branch-and-bound algorithm applied to

BnB-PEP-QCQP is very slow. In this section, we customize the spatial branch-and-bound

algorithm to exploit specific problem structure and obtain a speedup that enables us to run
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the BnB-PEP Algorithm on a laptop.

In §2.4.1, we briefly review the standard spatial branch-and-bound algorithm. We present

the customization that provide significant speedups in §2.4.2. In §2.4.3 we show how to

compute the effective index set of the inner-dual-variable and thereby reduce the size of the

BnB-PEP-QCQP without losing optimality.

2.4.1 How the spatial branch-and-bound algorithm solves QCQPs

We briefly review the standard spatial branch-and-bound algorithm [68, 72, 81, 82]. We

assume the optimization problem admits a finite optimal value, as this is the case in the

setups we consider.3

The spatial branch-and-bound algorithm uses a divide-and-conquer approach to solve (2.1).

The algorithm starts with the presolve phase, solving a linear relaxation of (2.1) to obtain

valid bounds l ≤ x ≤ u, with l, u ∈ Rq, that are satisfied by optimal solutions. Then the

algorithm performs branching, partitioning the feasible region of (2.1) into a finite collection

of subregions F1, . . . , FK and considering the subproblems

p⋆
k =



minimize
x∈Rq

c⊤x+ x⊤Q0x

subject to a⊤
i x+ x⊤Qix ≤ bi, i ∈ [1 : m],

a⊤
j x+ x⊤Qjx = bj, j ∈ [m+ 1 : p],

x ∈ Fk,



for k ∈ [1 : K]. The best (smallest) among the optimal values p⋆
1, . . . , p

⋆
K is p⋆, by definition.

The bounding part is about how to efficiently solve these subproblems via solving relaxations
3The setups of §2.3 and §2.6 satisfy p⋆ <∞, since any FSFOM (such as the method that has all 0 stepsizes

and therefore does not move) achieves a finite performance measure, and 0 ≤ p⋆, since the objectives are
nonnegative. In general, however, there could be pathological BnB-PEPs such that p⋆ = −∞ or p⋆ =∞.
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and how to split these subproblems into smaller subproblems if necessary; we discuss this

next.

The central idea is that, while solving a particular subproblem (also a QCQP albeit over

a smaller region) might be as hard as solving the original problem, a lower bound and an

upper bound of that subproblem is much easier to solve via linear relaxations. Using this

idea, first, at the root node of the spatial branch-and-bound tree, a linear relaxation of (2.1)

is constructed and solved, which gives a lower bound on p⋆, denoted by p⋆. The tighter

this relaxation, the closer p⋆ is to p⋆. In addition to that, the user can warm-start the

branch-and-bound algorithm by providing a known initial feasible solution to (2.1), which

gives an upper-bound on p⋆, denoted by p⋆. Efficient warm-starting procedure that exploit the

problem structure can massively speed up branch-and-bound-solvers. The branch-and-bound

algorithm during its execution keeps updating p⋆, p⋆. The difference p⋆ − p⋆ is called the

gap, and when this gap is equal to zero (or less than some tolerance ϵ) at some point of

the algorithm, we have found the globally (near-)optimal value p⋆ of (2.1) along with one

(approximately) optimal solution, and the algorithm is terminated. We next discuss how the

gap is improved over the course of the algorithm.

Once the subregions have been created, the algorithm picks an active subregion, say Fk (which

k to select can be arbitrary, though, in practice, it is usually done via different heuristics

in modern solvers), and constructs two linear optimization problems on Fk. These linear

formulations are constructed using the McCormick envelopes [83], which provide lower and

upper bounds for the quadratic objective and constraints in (2.1), whereas the the linear

constraints in (2.1) are kept unaltered. Then three types of linear cuts are added to the linear

optimization problems to remove regions that are certain to not contain any optimal solutions

[84–86]. Solving these linear optimization problems along with the cuts provides valid lower

and upper bounds on the optimal values of (2.1) for the active subregion Fk. Solving these
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linear optimization problems on Fk leads to one of the three possibilities below:

1. If the linear optimization problem associated with the lower bound is either infeasible or

has an objective value greater than the global upper bound p⋆, then Fk cannot contain

the optimal solution to (2.1). Hence, without solving the QCQP on Fk, we can discard

or prune the subregion. Such a pruned subregion becomes a permanent leaf of the

branch-and-bound tree.

2. If both the lower and upper bounds for the subregion are the same, then without

directly solving the QCQP on Fk, we have found this subproblem’s optimal solution

with optimal value p⋆
k. This optimal solution on Fk is a feasible solution to the main

problem (2.1). It is not necessary to branch on this subregion anymore, and it becomes a

permanent leaf of the search tree. If the objective value associated with this new feasible

solution leads to an improved upper bound p⋆ compared to the current incumbent, then

the feasible solution on Fk becomes the new incumbent solution. Otherwise, updating

the incumbent is not necessary and we simply proceed with the search.

3. If 1 or 2 does not happen, then the subregion Fk is partitioned into smaller subregions

by branching again, which are then added to the list of active subregions.

In addition to that, at any point, the algorithm keeps an updated value of the lower bound

on p⋆ by taking the minimum of the best objective values of all the current leaf nodes. On

the other hand, the upper bound p⋆ corresponds to the incumbent solution. As the algorithm

explores the active subregions, the gap p⋆ − p⋆ keeps getting smaller, and once it is zero or

smaller than a certain tolerance ϵ, we have found the global optimal value p⋆ of (2.1) along

with one optimal solution subject to the tolerance, and the algorithm terminates.
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2.4.2 Efficient implementation of the spatial branch-and-bound algo-

rithm

We now customize the spatial branch-and-bound algorithm to efficiently exploit problem

structure of the BnB-PEP-QCQP. Our customization of Gurobi’s branch-and-bound algorithm

[57] uses solver-independent callback functions, an interface provided by JuMP [53].

Callback functions are user-defined functions provided to the optimization solver that query or

modify the state of the optimization process of a solver. Examples of such callback functions

include providing custom heuristics to compute better feasible solutions, changing the default

branching decision of the branch-and-bound algorithm, or applying on-demand separators to

add new constraints only if they are violated by the current solution.

We discuss the generalization of our customization of the spatial branch-and-bound algorithm

for arbitrary E , F , and C in §2.5. We first present the customizations in §2.4.2.1, §2.4.2.2,

and §2.4.2.3, and then discuss the observed speedups in §2.4.2.4.

2.4.2.1 Bounds on optimal solutions

Branch and bound algorithms require bounds on the optimization variables to partition the

feasible region. If no bound information for a variable is provided in the original formulation

(2.1), then the solver obtains a bound by solving a generic linear relaxation during the presolve

phase. However, this bound can be of poor quality as a generic solver does not have any

problem-specific insight, and a loose bound can cause the solver to waste time in unimportant

regions. We show how to significantly speed up the branch-and-bound algorithm by exploiting

the structure of (2.1) to obtain tighter bounds.
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Implied linear constraints. The constraint Z = PP⊤ implies that Z is symmetric positive

semidefinite. This in turn implies

Z = Z⊤,

diag(Z) ≥ 0,

−Zi,i+Zj,j

2 ≤ Zi,j ≤ Zi,i+Zj,j

2 .

(2.15)

where diag(Z) ≥ 0 means the Zi,i ≥ 0 for i ∈ [1 : N + 2]. To explain, Z ⪰ 0 implies that

every 1× 1 principal submatrix of Z is positive-semidefinite [77, Observation 7.1.2], and this

in turn implies the second constraint. Also, Z ⪰ 0 implies that every the 2 × 2 principal

submatrix of Z is positive-semidefinite, and this in turn implies

|Zi,j| ≤
√
Zi,iZj,j ⇔ Z2

i,j ≤ Zi,iZj,j (2.16)

for i, j ∈ [1 : N + 2]. Chaining the AM-GM inequality

√
Zi,iZj,j ≤

Zi,i + Zj,j

2 ,

we get the third constraint.

While these implied constraints are indeed mathematically redundant, they are algorithmically

indispensable as they provide crucial information that the solver cannot deduce directly.

Explicitly incorporating these implied constraints provides significant speedups. Instead

of incorporating the tighter convex second-order cone (SOC) constraint (2.16), we opt for

the third linear constraint (2.15) in our BnB-PEP-QCQP formulation. This choice avoids a

slowdown in the spatial branch-and-bound algorithm, which solves only linear relaxations

at each node, as detailed in §2.4.1. The linear relaxations are derived from McCormick

convex envelopes, which are constructed without considering underlying convexity and are
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computationally expensive [72, 81, 82]. Using the SOC constraint (2.16) would result in

the spatial branch-and-bound algorithm treating it as a generic quadratic constraint and

spending extra time constructing McCormick convex envelopes for it [68, pp. 10–15]. Since

the positive semi-definiteness of Z is already modeled by the quadratic constraints Z = PP⊤,

and their associated convex envelopes are tighter than the ones for SOC constraints, the

additional SOC constraints would ultimately lead to a net slowdown. Conversely, the third

constraint in (2.15) is linear and can be directly incorporated into the linear relaxations at the

nodes without any extra processing time. These constraints differ from those automatically

generated by the McCormick convex envelopes, ultimately resulting in a speed-up due to their

low computational cost and provision of valuable bound information that is not automatically

inferred through the McCormick convex envelopes.

Variable bounds via SDP relaxation of (2.14). Next, we compute bounds Mλ, Mν , Mα,

and MZ such that
λi,j ≤Mλ, i, j ∈ I⋆

N : i ̸= j,

|Zi,j| ≤MZ , i, j ∈ [1 : N + 2],

|Pi,j| ≤MP , i, j ∈ [1 : N + 2],

|αi,j| ≤Mα, i ∈ [1 : N ], j ∈ [0 : i− 1],

ν ≤Mν ,

(2.17)

are satisfied by global minimizers of (2.14).

Let w = vec(α, ν, λ) denote the column vector stacking the elements of α, ν, and λ. Let

W = ww⊤. Then we can construct a lifted nonconvex semidefinite representation of the

constraint set of (2.14), which includes the nonconvex rank-1 constraint W = ww⊤ [87]. The

specific form is quite tedious, so we present it in §2.A.3 of the appendix. We then relax the
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rank-1 constraint W = ww⊤ to an implied convex constraint

W ⪰ ww⊤ ⇔

W w

w⊤ 1

 ⪰ 0, (2.18)

where we have used the Schur complement. Since any feasible (and optimal) solution of

(2.14) must lie in this larger relaxed convex set, we compute bounds by optimizing over this

set as follows.

The feasible point provided by Stage 1 of the BnB-PEP Algorithm establishes an upper

bound ν ≤Mν = ν init, since ν is the scaled objective function. Next, solve



maximize cλMλ + cZMZ + cαMα

subject to semidefinite relaxation of (2.14),

constraint (2.18),

λi,j ≤Mλ, i, j ∈ I⋆
N : i ̸= j,

|Zi,j| ≤MZ , i, j ∈ [1 : N + 2],

|αi,j| ≤Mα, i ∈ [1 : N ], j ∈ [0 : i− 1],

ν ≤ ν init,



(2.19)

where λ, ν, Z, α, W , Mλ ≤ ∥λ∥1, MZ ≤ trZ, and Mα ≤ ∥α∥1 are the decision variables,

with

(cλ, cZ , cα) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

to obtain Mλ, MZ , and Mα, respectively.4 (Since we restrict our search to points satisfying

ν ≤ ν init, our bounds may exclude some suboptimal feasible solutions. However, all optimal
4As a note of caution, solving (2.19) with (cλ, cZ , cα) = (1, 1, 1) does not provide a valid bound for all

Mλ, MZ , and Mα; maximizing Mλ + MZ + Mα may reduce one bound below a valid threshold to increase
another bound.
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solutions will satisfy the bound.) Finally, we set MP =
√
MZ based on

P 2
i,j ≤

i∑
k=1

P 2
i,k = Zii ≤MZ (2.20)

for all i, j ∈ [1 : N + 2].

To clarify, this approach is a relaxation in the sense that it is guaranteed to produce variable

bounds that will include all globally optimal solutions. (However, there is no guarantee on

the tightness of the bounds, so the bounds could be very loose and not useful.)

Besides computing valid bounds on the variables, we also investigated the quality of the

solutions of the SDP relaxations, for this setup and all other examples in this chapter.

Unfortunately, we found that the solutions of the SDP relaxations to be of very poor quality

in every case: the optimal value of the SDP relaxation was far from the optimal value of

the BnB-PEP-QCQP. Additionally, we observed that the SDP relaxations failed to generate

feasible solutions for the underlying BnB-PEP-QCQPs, even when we considered a rank-1

projection of the solution matrix. In other words, it was not possible to reconstruct valid

first-order methods from the solutions of the SDP relaxations.

Heuristic bounds. However, the SDP relaxation to compute the variable bounds is quite

cumbersome. Therefore, we present a simpler alternative, a heuristic that estimates the

variable bounds based on the Stage 2 solution.

The premise of the heuristic is as follows. First, we make the informal assumption that the

Stage 2 solution is near-optimal, which, again, happened very often in our experiments. In

§2.4.3, we discuss that optimal inner-dual variables λ = {λi,j}i,j∈I⋆
N :i ̸=j and Z are sometimes

not unique and that sparse λ and low-rank Z are more valuable. Following the literature

on sparse signal processing [17, §2], we promote sparsity of λ by reducing its ℓ1-norm
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∑
i,j∈I⋆

N :i ̸=j λi,j and low rank of Z by reducing its nuclear norm trZ. To do so, we need our

variable bounds to include the global solutions with the minimum ℓ1-norm of λ and minimum

nuclear norm of Z.

Based on the constraint set of (2.13), consider the following convex SDP



maximize cλ
∑

i,j∈I⋆
N :i ̸=j λi,j + cZ trZ

subject to ∑
i,j∈I⋆

N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(αlopt) + 2µA⋆,N(αlopt)+∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(αlopt) + 1

2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,

λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,

ν ≥ 0,

νR2 ≤ ν loptR2,



(2.21)

where ν, λ, and Z are the decision variables, (cλ, cZ) ∈ {(1, 0), (0, 1)}, and αlopt are ν lopt are

set to be values from the Stage 2 solution. Let M̃ be a user-defined parameter greater than 1.

With (cλ, cZ) = (1, 0), we maximize the ℓ1 norm of λ and get λhrstc. Set

Mλ = M̃ max
i,j∈I⋆

N :i ̸=j
{λhrstc

i,j }.

With (cλ, cZ) = (0, 1), we maximize the nuclear norm of Z and get Zhrstc. Set

MZ = M̃ max
i∈[1:N+2]

{Zhrstc
i,i }

based on the reasoning that (2.15) implies that every entry of Z is bounded by the maximum

66



of the diagonal entries. Set MP from MZ using (2.20). Set

Mα = 5M̃ max
0≤j<i≤N

{αlopt
i,j }.

A note of caution is that when the Stage 2 solution is far from optimal, it is unclear whether

this heuristic is even likely to produce a valid bound. When the Stage 2 solution is, in fact,

near-optimal, the heuristic should help the BnB-PEP Algorithm to find the globally optimal

solution quickly, and this is what we observe in our experiments.

Another note of caution is that the heuristic fails silently when it fails; there is no reliable

mechanism to detect whether the heuristic bounds include or exclude global solutions. After

solving (2.14) using the bounds, we verify if the solution lies within the interior of those

bounds. Furthermore, empirically we always found that the solutions computed using the

heuristic-based bound were well within the interior of the imposed bounds, though this is not

a guarantee that the associated solution is globally optimal, as there is a possibility that a

strictly better global solution lies far outside of the boundary since the BnB-PEP-QCQP is

nonconvex. Finally, in all our experiments, we additionally verified that the heuristic-based

bound produced the same optimal solutions as the SDP-based bounds.

Remark. We clarify that the heuristic bound offers no guarantee of correctness and that

the SDP relaxation, which is guaranteed to be correct, is the superior choice. However, SDP

relaxations can be cumbersome to formulate and implement. Therefore, one may first try out

the heuristic bound in a prototyping phase and then decide to implement the SDP relaxation

if the preliminary results are sufficiently interesting.
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2.4.2.2 Tighter lower bounds via lazy callback

When an incumbent or warm-starting solution is already near-optimal, i.e., when the upper

bound is already good, the work in certifying global optimality mostly lies in improving the

lower bound. Indeed, in our experiments, Stage 2 of the BnB-PEP Algorithm consistently

found near-optimal solutions, and Stage 3 spent most of its time improving the lower bound to

certify or polish the solution of Stage 2. If we can compute a good lower bound and provide it

to the spatial branch-and-bound algorithm, Stage 3 can terminate very quickly as the number

of subregions to be explored is substantially reduced. To that goal, we compute a tighter

lower bound of (2.14) via the lazy constraint callback method. Unlike normal constraints, lazy

constraints are not generated upfront but are rather generated and added one by one when

needed.

Consider a variant of (2.14), where we model Z = PP⊤ ⇔ Z ⪰ 0 equivalently as

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ RN+2.

Since this formulation uses an infinite set of linear constraints, we relax it with a finite set of

linear constraints

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ Y, (2.22)

where Y is initialized to be a randomly generated set of 2(N + 2)2 unit vectors in RN+2

following the prescription of [88, §5.1]. In (2.14), we relax Z = PP⊤ into the constraint (2.22)

and obtain a simpler QCQP. Then, update Y lazily by repeating the following steps (i)–(iii)

a finite number of times (1× 106 times in our implementation):

(i) Solve the relaxation of (2.14), where (2.22) is used instead of Z = PP⊤, to obtain Z

and a lower bound.
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(ii) Find the minimum eigenvalue eigmin(Z) and corresponding normalized eigenvector u of

Z. If eigmin(Z) ≥ 0, terminate.

(iii) If eigmin(Z) < 0, then add u to Y , i.e., add the constraint tr(Zuu⊤) ≥ 0. (Note,

tr(Zuu⊤) < 0. So the added constraint makes the current Z infeasible for the updated

relaxation (2.22).)

In step (ii), if eigmin(Z) ≥ 0, then the solution Z of the relaxation (2.22) is in fact optimal

for the original unrelaxed problem, so we terminate. We use the lazy constraint callback

interface of JuMP to implement this scheme. After adding one additional linear constraint in

step (iii), updating the solution in step (i) is efficient since Gurobi and all modern solvers

based on the simplex algorithm can quickly update a solution when one linear constraint is

added [89, pp. 205–207].

2.4.2.3 Improved upper bounds via SDP solves

As a heuristic to obtain improve upper bounds, we utilize the fact that the optimization

of (2.14) reduces to an SDP when the stepsize α is fixed. This is a structure that the

branch-and-bound solver cannot infer by itself.

When the branching process reaches a new node, we access (via a callback feature of JuMP)

the solution (αrlx, νrlx, λrlx, Zrlx, P rlx) of the relaxation and quantify its infeasibility with

merit(αrlx, νrlx, λrlx, Zrlx, P rlx)

=∥
∑

i,j∈I⋆
N :i ̸=j

λrlx
i,j ai,j∥∞ +

∥∥∥νrlxB0,⋆ − CN,⋆ − µ2BN,⋆(αrlx) + 2µA⋆,N(αrlx)
∥∥∥

∞

+ |min{eigmin(Zrlx), 0}|,
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N Mλ Mα MZ MP Mν Runtime (s)

1 1.00 2.00 1.00 1.00 0.2244 0.068

2 1.00 4.5175 1.00 1.00 0.0893 0.181

3 1.00 3.672 1.00 1.00 0.0449 0.736

4 1.00 3.5166 1.00 1.00 0.0257 3.173

5 1.00 3.7919 1.00 1.00 0.0159 11.380

Table 2.5: Valid bounds on the decision variables in (2.14) obtained via the SDP
relaxation of (2.19). The runtime describes to the total time spent compute all the
bounds of the row.

where eigmin(Zrlx) is the minimum eigenvalue of Zrlx. If

merit(αrlx, νrlx, λrlx, Zrlx, P rlx) ≤ ϵ,

then we fix the stepsize in (2.13) to αrlx and solve the convex SDP. (We take ϵ = 0.01 in

our implementation.) We submit the solution to the SDP as a heuristic solution (via a

callback feature of JuMP). If the heuristic solution improves the best upper bound p⋆, then it

is accepted by the solver, else it is rejected.

2.4.2.4 Numerical evaluation of the customizations

In our experiments, we found that that the customization of §2.4.2.1 provided the largest

speedups, §2.4.2.2 substantial speedups, and §2.4.2.3 no speedups. We further describe our

observations here.

Variable bounds of §2.4.2.1. Tables 2.5 and 2.6 show the bounds obtained through the

SDP relaxation. As an aside, we found that these valid bounds substantially improve not

only the branch-and-bound algorithm of Stage 3, but also the local solve of Stage 2.
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N Mλ Mα MZ MP Mν Runtime (s)

1 0.8789 7.6105 0.4233 0.6506 0.1473 0.082

2 0.9504 8.2597 0.1934 0.4397 0.0409 0.093

3 0.9767 9.4761 0.1009 0.3177 0.0145 0.105

4 0.9853 9.8591 0.0599 0.2448 0.005766 0.114

5 0.9886 10.3633 0.0383 0.1958 0.002459 0.121

Table 2.6: Heuristic bounds on the decision variables in (2.14) with M̃ = 1.01. The
runtime describes the total time spent compute all the bounds of the row. Compared
to the results of Table 2.5 the bounds tend to be tighter, the runtime is faster, and
the implementation is much simpler. However, there is no theoretical guarantee that
the bounds are valid.

N p⋆ p⋆ p⋆ − p⋆ Runtime (s)

1 0.1432 0.1473 0.0041 0.135

2 0.0374 0.0409 0.0035 0.232

3 0.0121 0.0145 0.0024 2.550

4 0.00178 0.005766 0.003986 72.7

5 0.000517 0.002459 0.001941 336.341

Table 2.7: Lower bound p⋆ of (2.14) computed from the lazy constraint callback
method. The upper bound p⋆ is the objective value from Stage 2 of the BnB-PEP
Algorithm.

Tighter lower bound of §2.4.2.2. Table 2.7 shows the lower-bounds for (2.14) computed

from the lazy constraint callback method. The customization produces a high quality lower

bound, which, combined with the near-optimal solution of Stage 2 of the BnB-PEP Algorithm,

enables the branch-and-bound algorithm to terminate quickly.

Improved upper bound of §2.4.2.3. In our experiments, the submitted upper bounds were

all rejected by the solver and therefore provided no speedup. This is not surprising, as it

is likely due to the warm-starting solution from Stage 2 being near-optimal. To verify this
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hypothesis, we ran Stage 3 without Stage 2. In this case, the submitted heuristic solution

was often accepted by the solver, but the overall performance was slow as Stage 3 started

from a poor warm-starting solution. We recommend that users of the BnB-PEP Algorithm

always perform Stage 2 before Stage 3. However, when the warm-starting solution is not

near-optimal, we can expect this customization to provide a speedup.

2.4.3 Structured inner-dual variables

The family solutions to (2.14) with N = 1, 2, . . . exhibits an exploitable structure: the

optimal λ⋆ is sparse and the optimal Z⋆ is low-rank. A computational benefit of this structure

is that it reduces the problem size of the BnB-PEP-QCQP. A theoretical benefit is that

the structured inner-dual variable corresponds to simpler and therefore more analytically

tractable proofs, which we seek in §2.6.3.

In this section, we describe a heuristic strategy for identifying such structure. The general

idea is to solve the problem exactly for smaller values of N , say N = 1, . . . , 5, and infer the

pattern. This heuristic is based on the expectation that the observed patterns will continue

to hold for N = 6, 7, . . . .

Sparsity pattern of λ. Denote the support of λ⋆ as

supp(λ⋆) = {(i, j) | i, j ∈ I⋆
N , i ̸= j, λ⋆

i,j > 0}.

(Note that λ⋆
i,j ≥ 0 for all i, j.) If we know supp(λ⋆) in advance, then we can simplify (2.14)

by replacing both instances of ∑
i,j∈I⋆

N :i ̸=j

λi,j(· · · )
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with ∑
(i,j)∈supp(λ⋆)

λi,j(· · · )

and obtain a smaller QCQP.

First solve (2.14) for N = 1, . . . , 5 using the BnB-PEP Algorithm. At this point, solutions

may already reveal their pattern in supp(λ⋆). However, optimal inner-dual variables for a

given FSFOM are not always unique (see [90] or Table 2.8), and, if so, the solution returned

by the spatial branch-and-bound solver will likely not be a sparse one. Therefore, following

the literature on sparse signal processing [17, §2], we promote sparsity of λ by reducing its

ℓ1-norm5 as follows



minimize ∥λ∥1 = ∑
i,j∈I⋆

N :i ̸=j λi,j

subject to νR2 ≤ p⋆,∑
i,j∈I⋆

N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α⋆) + 2µA⋆,N(α⋆)+∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(α⋆) + 1

2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,

λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,

ν ≥ 0,



(2.23)

where ν, λ, and Z ∈ SN+2
+ are the decision variables. The constraint set of (2.23) is almost

identical to (2.13), except we impose the constraint νR2 ≤ p⋆ and fix α⋆ to the optimal

stepsize computed with the BnB-PEP Algorithm. This way, our search is confined to the set

of optimal solutions to (2.14) and, with the FSFOM fixed, the problem is efficiently solved

as an SDP. Denote the solution to (2.23) by {ν⋆, λ⋆,sparse, Z⋆,sparse}. Hopefully, the optimal

λ⋆,sparse for N = 1, . . . , 5 are sparse and their structure reveals a pattern.
5One could consider further advanced approaches for promoting sparsity such as [91].
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N Optimal λ with
minimum ℓ1 norm

Optimal λ with
maximum ℓ1 norm

1 2.642 3.594

2 2.434 3.114

3 2.369 2.925

4 2.339 2.823

5 2.320 2.757

Table 2.8: Solutions to (2.23) with minimum and maximum ℓ1-norm on optimal λ
for the setup of §2.3 and §2.4. The gap demonstrates that the optimal inner-dual
variable is not unique and therefore that the ℓ1-norm minimization is necessary for
obtaining a sparse solution.

Low rank of Z. When r = rank(Z⋆) with r < n, then we can use the factorization

Z = PP⊤, where P ∈ Rn×n has n − r columns constrained to be zero. Such constraints

significantly reduce the effective size of the QCQP.

Lemma 2.4 ([92, Theorem 10.9]). A matrix Z ∈ Sn is positive semidefinite with rank r ≤ n

if and only if it has a Cholesky factorization Z = PP⊤, where P ∈ Rn×n is lower-triangular,

has r positive diagonal entries, and n− r columns containing all zero.

We solve (2.23) for N = 1, . . . , 5 and infer the rank. (In principle, one could perform a

separate nuclear norm minimization or further advanced approaches such as [93] to reduce

the rank of Z, but this was not necessary in our experiments.) In our current setup, Z⋆,sparse

has rank 1, as Table 2.9 indicates. Other optimized method throughout the literature such

as OGM, ITEM, OGM-G [4, 8, 9, 34] also have corresponding low-rank Z⋆.

For N = 6, 7, . . . , we obtain Z⋆ and P ⋆ from Stage 2 of the BnB-PEP Algorithm. If we

expect a certain value of r = rank(Z⋆), keep r columns of P ⋆ with the largest magnitude and

constrain the remaining n− r columns to be 0 in the subsequent Stage 3.
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Structured inner-dual variables represent simpler proofs. A feasible point of the dualized

problem (2.13) can be interpreted as a convergence proof combining inequalities

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2(L− µ)∥gi − gj∥2 (2.24)

for i, j ∈ I⋆
N , and the value of λ⋆

i,j corresponds to the value used in forming a weighted

combination of the inequalities [48, §3.3]. Therefore, λ⋆
i,j = 0 for some (i, j) is equivalent to

not using the corresponding inequality in the convergence proof. A sparse λ corresponds to a

proof using fewer inequalities, which tend to be simpler proofs.

On the other hand, rank(Z⋆) corresponds to the excess quadratic terms arising within a proof.

For convergence proof of FSFOMs of the form,

A ≤ B − ∥c1∥2 − . . . ∥cr∥2 ≤ B,

r = rank(Z⋆) corresponds to the number of quadratic terms {∥ci∥2}i=1,...,r, roughly speaking.

Since rank(Z⋆) corresponds to the number of excess terms to deal with in a proof, an optimal

solution Z⋆ with small rank tends to correspond to simpler proofs.

Numerical results. Table 2.9 presents supp(λ⋆,sparse), rank(Z⋆,sparse), and the non-zero

columns of P ⋆,sparse from solving the convex SDP (2.23). We use µ = 0.1, L = 1, and R = 1.

From the results, we infer the pattern

supp(λ⋆,sparse) = {(⋆, i)}i∈[0:N ] ∪ {(i, i+ 1)}i∈[0:N−1] ∪ {N, i}i∈{⋆}∪[0:N−1],

which has only 3N + 2 components compared to the (N + 2)(N + 1) of the full index set.

Furthermore, rank(Z⋆,sparse) = 1. For N = 1, . . . , 5, we verified that there are globally optimal
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N supp(λ⋆) Rank of
Z⋆,sparse

Index of
nonzero

column of
P ⋆,sparse

Runtime (s)
for solving

(2.23)

1
{(⋆, 0), (⋆, 1),
(0, 1),
(1, ⋆), (1, 0)}

1 Column # 1 0.0021

2
{(⋆, 0), (⋆, 1), (⋆, 2),
(0, 1), (1, 2),
(2, ⋆), (2, 0), (2, 1)}

1 Column # 1 0.0056

3
{(⋆, 0), (⋆, 1), (⋆, 2), (⋆, 3),
(0, 1), (1, 2), (2, 3),
(3, ⋆), (3, 0), (3, 1), (3, 2)}

1 Column # 1 0.0071

4
{(⋆, i)}i∈[0:4]∪
{(i, i + 1)}i∈[0:3]∪
{4, i}i∈{⋆}∪[0:3]

1 Column # 1 0.0097

5
{(⋆, i)}i∈[0:5]∪
{(i, i + 1)}i∈[0:4]∪
{5, i}i∈{⋆}∪[0:4]

1 Column # 1 0.0140

Table 2.9: Structure of the inner-dual variables obtained from the convex SDP (2.23).
The last column shows the runtime to solve (2.23). (Table 2.4 shows the runtime to
solve (2.14), a prerequisite for solving (2.23).)

solutions satisfying these patterns. For N = 6, 7, . . . , 25, we verified that there are locally

optimal solutions satisfying these patterns.

Discussion. Prior work on optimized FSFOMs such as OGM, ITEM, and OGM-G [4, 8,

9, 34] discard certain inequalities in their formulations. The choice of which inequality to

discard, which is equivalent to identifying supp(λ⋆), was likely carried out through ad-hoc

trial and error. As no reasoning or intuition was provided behind the choice and as the set

of discarded inequalities are different from one work to another, the process is opaque. Our

approach provides a systematic process for making this choice.

To clarify, we solve the exact, unrelaxed (2.14) with BnB-PEP Algorithm for N = 1, . . . , 5.

The methodology for N = 6, 7, . . . is a heuristic in the sense that our solution is exactly only
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under the condition that the observed sparsity pattern continues. If the pattern changes, the

QCQP becomes a relaxation, and the produced FSFOM becomes suboptimal. However, one

can be reasonably confident in the sparsity pattern as it is based on the exact solutions for

N = 1, . . . , 5.

2.5 Generalized BnB-PEP methodology

We now discuss the generalization of the BnB-PEP methodology for general E , F , and C.

Generalized BnB-PEP-QCQP. The BnB-PEP-QCQP formulation for general E , F , and C

follows steps analogous to those of §2.3.1.

(i) Infinite-dimensional inner optimization problem. Construct an infinite-dimensional

representation of (Oinner) analogous to (2.6) of §2.3.1. When x⋆ exists, set x⋆ = 0 and

f(x⋆) = 0 without loss of generality.

(ii) Interpolation argument. Using a reparametrization (if necessary) and an interpo-

lation argument, formulate the infinite-dimensional inner problem of (i) as a finite-

dimensional problem analogous to (2.7) of §2.3.1.

(iii) Grammian formulation. By introducing Grammian matrices and using a large-scale

assumption, formulate the finite-dimensional inner maximization problem of (ii) as an

SDP, analogous to the problem (2.12) in §2.3.1. When the FSOM is fixed, the SDP is

a convex optimization problem.

(iv) Dualization. Form the dual the SDP of (iii) analogous to (2.13) of §2.3.1. Assume

strong duality.

(v) Formulating (Oouter) as a QCQP. Using Lemma 2.3, replace the SDP constraint

Z ⪰ 0 of the dual SDP with Z = PP⊤, where P is lower triangular with nonnegative

diagonals. This formulates (Oouter) as a QCQP analogous to (2.14) of §2.3.1. When f

77



is nonconvex, certain cubic or trilinear terms may arise, whereas for a convex f the

nonlinear terms are bilinear or quadratic. If so, for such a nonconvex f , formulate such

terms as quadratic or bilinear constraints by introducing dummy variables, a process

illustrated in §2.6.2 and §2.6.3. We call the resultant QCQP the BnB-PEP-QCQP. The

variables of the dual SDP of (iv) are present in the BnB-PEP-QCQP, and we refer to

them as the inner-dual-variables.

Generalized BnB-PEP Algorithm. We solve the BnB-PEP-QCQP to certifiable global

optimality with the following generalized BnB-PEP Algorithm, a generalization of Algorithm

1.

• Stage 1: Compute a feasible solution. Fix the stepsizes in the dual SDP of Step

(iv) of the formulation of BnB-PEP-QCQP to a reasonable hinit and solve the resultant

convex minimization problem to obtain a feasible the BnB-PEP-QCQP. Table 2.10 lists

reasonable stepsizes.

• Stage 2: Compute a locally optimal solution by warm-starting at Stage 1

solution. Warm-start the BnB-PEP-QCQP with the feasible solution found in Stage 1

and solve the problem to local optimality using a nonlinear interior-point method.

• Stage 3: Compute a globally optimal solution by warm-starting at Stage 2

solution. Warm-start the BnB-PEP-QCQP with the locally optimal solution found

in Stage 2 and solve the problem to global optimality using a customized spatial

branch-and-bound algorithm described in the following.

Efficient implementation of the generalized BnB-PEP Algorithm. We customize the

spatial branch-and-bound algorithm to exploit specific problem structure of the generalized

BnB-PEP-QCQP. The techniques are analogous to those described in §2.4. We find bounds

on optimal solutions through implied linear constraints, SDP relaxation, and a heuristic. We
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Function
class

Fixed stepsize hinit for Stage 1 of the BnB-PEP
Algorithm

F0,L hinit
i,j =

{
1/L, if j = i− 1,

0, else,
0 ≤ j < i ≤ N.

Fµ,L Same as F0,L.

F−L,L Same as F0,L.

Wρ,L hinit
i,j =

{
Rρ
L

1√
N+1 , if j = i− 1,

0, else,
0 ≤ j < i ≤ N.

Table 2.10: Fixed stepsize vector hinit to use in step 1 of the BnB-PEP Algorithm.
For F0,∞, and Wρ,L, R>0 is the upper bound associated with the initial condition.

find tighter lower bounds via lazy callback by replacing Z = PP⊤ with

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ Y

and lazily updating Y . We improve upper bounds via SDP solves by constructing a merit

function to measure the infeasibility at the nodes of the branch-and-bound tree and solving

the convex SDP with the stepsizes fixed when the merit function value falls below some

tolerance. We exploit the structure of the inner-dual variables by observing the sparsity and

low-rank pattern for small N (e.g., N ≤ 5) and extrapolating the patterns to larger N .

2.6 Applications

In this section, we demonstrate the strength of the BnB-PEP methodology by applying it

to three setups for which the prior methodologies do not apply. Numerical experiments of

this section were performed in the computational setup described in §2.1.3. We empirically

observed that, among the two approaches of §2.4.2.1 for computing variable bounds, the

heuristic-based bounds were tighter and lead to runtimes faster by factor of 2–5 compared to
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using the SDP-based bounds. We report the faster runtimes in our tables. In all instances,

the two approaches produced the same optimal solutions.

2.6.1 Optimal gradient method without momentum

In optimization folklore, momentum is considered essential for accelerating first-order gradient

methods. Indeed, prior FSFOMs minimizing smooth convex functions such as Nesterov’s

method [30], OGM [4, 8], ITEM [9], and many others [94, 95] all achieve accelerated rates

with momentum. However, a little known fact is that simple gradient descent, without

momentum, can achieve an accelerated rate for minimizing strongly convex quadratics [96,

97]. Whether a similar acceleration without momentum is possible for convex non-quadratic

functions is not known.

In this section, we investigate whether the simple gradient descent method

xi = xi−1 −
1
L
hi−1∇f(xi−1) (GN)

with i ∈ [1 : N ] can achieve an accelerated rate for minimizing L-smooth convex functions

when the stepsize {hi}i∈[0:N−1] is chosen optimally. We denote the class of FSFOM of this

form as GN ⊂MN .

As we discuss in §2.6.1.1, it is relatively straightforward to show that the unaccelerated

O(1/k) rate cannot be surpassed if {hi}i∈[0:N−1] stays within the “standard” range (0, 2).

However, Young’s method [96] uses long steps satisfying 1 < hi < L/µ for some i to achieve

an accelerated rate for L-smooth and µ-strongly convex quadratics. The question is whether

a similar use of long steps can provide an acceleration in the smooth convex setup.
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Formally, we choose the function class

F = {f | f ∈ F0,L, f has a minimizer x⋆},

performance measure E = f(xN )− f(x⋆), and initial condition C = ∥x0− x⋆∥2−R2 ≤ 0 with

R > 0. We solve the following instance of (Oouter):

R⋆ (GN , E ,F , C) = minimize
M∈GN

R (M, E ,F , C) .

Derivation of BnB-PEP-QCQP. Following §2.5 Step (i), formulate the inner optimization

problem (Oinner) as

R (M, E ,F , C)

=



maximize f(xN)− f(x⋆)

subject to f ∈ F0,L,

∇f(x⋆) = 0,

xi = xi−1 − hi−1∇f(xi−1) i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,

x⋆ = 0, f(x⋆) = 0,



where f and x0, . . . , xN are the decision variables. Write h = {hi}i∈[0:N−1]. Following §2.5

Step (ii), use the interpolation argument to formulate the inner problem as

R (M, E ,F , C)
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=



maximize fN − f⋆

subject to

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2L
∥gi − gj∥2, i, j ∈ I⋆

N : i ̸= j,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0 − (1/L)∑i−1
j=0 hjgj, i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,



where {xi, gi, fi}i∈I⋆
N
⊆ Rd × Rd × R are the decision variables. Following §2.5 Step (iii),

implement the Grammian transformation. Define the Grammian matrices H ∈ Rd×(N+2),

G ∈ SN+2
+ , and F ∈ R1×(N+1) using the same equations in (2.8), {xi,gi, fi}i∈I⋆

N
using the

same encoding as (2.9), except for {xi}i∈[1:N ], which we define as

xi = x0 − (1/L)
i−1∑
j=0

hjgj ∈ RN+2, i ∈ [1 : N ].

Note, xi is linearly parameterized by h. The matrices Ai,j , Bi,j , Ci,j , and ai,j are the same as

in (2.10) except that they are now parameterized by h. Under the large-scale assumption

d ≥ N + 2, we equivalently formulate the inner problem as the SDP

R (M, E ,F , C)

=



maximize Fa⋆,N

subject to

Fai,j + trGAi,j(h) + 1
2L

trGCi,j ≤ 0, i, j ∈ I⋆
N : i ̸= j, ▷ dual var. λi,j ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0

trGB0,⋆ ≤ R2, ▷ dual var. ν ≥ 0


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where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. Following §2.5 Step

(iv), construct the dual:

R (M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j − a⋆,N = 0,

νB0,⋆ +∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(h) + 1

2L
Ci,j

)
= Z,

Z ⪰ 0,

ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,



where ν, λ, and Z are the decision variables. Assume that strong duality holds. Finally,

following §2.5 Step (v), use Lemma 2.3 to pose (Oouter) as the following BnB-PEP-QCQP:

R⋆ (GN , E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j − a⋆,N = 0,

νB0,⋆ +∑
i,j∈I⋆

N :i ̸=j λi,j

(
Ai,j(h) + 1

2L
Ci,j

)
= Z,

P is lower triangular with nonnegative diagonals,

PP⊤ = Z,

ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,



(2.25)

where λ, ν, Z, P , and h are the decision variables.

Numerical results. Tables 2.11 and 2.12 present the results of solving (2.25) with L = 1,

R = 1, N = 1, . . . , 5, 10, 25 using the BnB-PEP Algorithm. We compare the optimal stepsize
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Figure 2.1: Numerical results for computing locally optimal stepsizes by solving
(2.25) with the first two stages of the BnB-PEP Algorithm. Global optimality of
the stepsizes are verified for N = 1, 2, . . . , 25. (Left) Worst-case performance of
f(xN) − f⋆ vs. iteration count N . (Right) Runtimes of the BnB-PEP Algorithm
(including Stages 1 and 2 but excluding Stage 3).

N
#

variables
#

constraints
Worst-case f(xN )− f(x⋆) Runtime of the

BnB-PEP
AlgorithmOptimal

For stepsize
in [5, §4.1.1]

For stepsize
hi = 1

1 20 33 0.125 0.125 0.1667 0.03 s

2 34 56 0.065946 0.067355 0.1 0.252 s

3 54 85 0.042893 0.045364 0.0714 0.375 s

4 77 120 0.03117 0.033976 0.0555 17.602 s

5 104 161 0.024071 0.0270701 0.0454 86.904 s

10 365 456 0.010622 0.0132692 0.0238 1 d 18 h

25 1835 2241 0.0034757 0.0051754 0.0098 2 d 20 h

Table 2.11: Comparison between the performances of the optimal method obtained by
solving (2.25) with the BnB-PEP Algorithm, the method with constant normalized
stepsize hi = 1, and the method with constant normalized stepsize hi prescribed
in [5, §4.1.1]. The BnB-PEP Algorithm was executed on a standard laptop for
N = 1, 2, . . . , 10, and on MIT Supercloud for N = 25.
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N h⋆

1
[

1.5
]

2
[

1.414214
1.876768

]

3

 1.414215
2.414207
1.500001



4


1.414214
1.601232
3.005144

1.5



5


1.414214

2.0
1.414214
3.557647

1.5


10 See Supplementary Information or Github repository

25 See Supplementary Information or Github repository

Table 2.12: Globally optimal stepsizes obtained by solving (2.25) with the BnB-PEP
Algorithm.
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with the constant normalized stepsize hi = 1 for all i, which is known to be optimal among

hi ∈ (0, 1] [98, Corollary 2.8, Theorem 2.9], and constant normalized stepsize h satisfying

1
2Nh+ 1 = (1− h)2N , (2.26)

which is conjectured by Taylor, Hendrickx, and Glineur to be the optimal constant normalized

stepsize [5, §4.1.1]. The stepsizes presented in Table 2.12 are certified to be globally optimal.

Interestingly, we observe that the locally optimal stepsizes obtained at Stage 2, denoted by

hlopt, were already near-optimal.

This observation motivates us to apply just the first two stages of the BnB-PEP Algorithm

for N upto 50. In Figure 2.1, we again compare the performance guarantees of the locally

optimal stepsizes hlopt with that of the constant normalized stepsizes hi = 1 and the constant

normalized stepsizes hi satisfying (2.26). We verified global optimality of these stepsizes

hlopt for N = 1, . . . , 25. While hlopt for N = 26, . . . , 50 are not certifiably globally optimal

(although we suspect that they are near-optimal), their computed performances are certifiably

accurate.

Figure 2.1 shows that the computed stepsizes hlopt outperforms both constant stepsizes.

Figure 2.2 presents a linear fit of the rate in the log-log scale. The fit 0.156/N1.178 indicates

that the asymptotic rate may be faster than O(1/k).

Figure 2.3 shows hlopt for N = 5, 10, 25, 50. The optimal stepsizes hlopt for N = 1, 2, . . . , 50

(global optimality verified for N = 1, 2, . . . , 25) are provided as Supplementary Information

and as a data file at:

https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/stpszs.jl
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However, finding an analytical form of the computed stepsizes seems difficult. Therefore, we

leave inconclusive the question of whether acceleration without momentum is possible.
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Figure 2.2: Fitting the worst-case performance of f(xN)− f⋆ corresponding to the
locally optimal stepsizes obtained by solving (2.25) with the first two stages of the
BnB-PEP Algorithm yields 0.156/N1.178. The asymptotic rate may be faster than
O(1/k).

2.6.1.1 Acceleration is impossible without long steps

Consider the univariate functions

f1(x) =


LR

2Nh+1 |x| −
LR2

2(2Nh+1)2 if |x| ≥ R
2Nh+1

L
2x

2 otherwise

f2(x) = L

2 x
2,

which are L-smooth convex functions minimized at x⋆ = 0.

Consider gradient descent xi = xi−1 − (hi−1/L)∇fj(xi−1) where for j = 1, 2 and i ∈ [1 : N ]

with starting point x0 = R. For the sake of simplicity, consider the constant stepsize hi = h

for all i ∈ [0 : N − 1]. It is straightforward to check that the objective values at iteration N
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Figure 2.3: Locally optimal stepsizes hlopt vs. iteration number for N = 5, 10, 25, 50
with L = 1. These optimized methods utilize long steps hi > 2/L for some i, much
alike how Young’s method [96] uses long steps satisfying 1 < hi < L/µ for some i to
achieve an accelerated rate for L-smooth and µ-strongly convex quadratics.
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are

f1(xN) = LR2

2
1

2Nh+ 1 (for 0 ≤ h ≤ 2)

f2(xN) = LR2

2 (1− h)2.

The analysis of f1 shows that acceleration, if possible, would require the algorithm to take

long steps exceeding the range h < 2. On the other hand, the analysis of f2 shows that the

constant-step gradient descent cannot use a stepsize exceeding h < 2 as otherwise one gets

divergence.

For the general case when hi is not constant, a similar line of reasoning with f1 shows that

acceleration without momentum is possible only if {hi}i∈[0:N−1] exceeds hi < 2 for some

i ∈ [0 : N−1]. The reasoning and the counter examples f1 and f2 are based on [4, Theorem 2]

and [5, §4.1.1].

2.6.2 Optimal method for reducing gradient of smooth nonconvex

functions

In this section, we construct an optimal FSFOM for decreasing the gradient of L-smooth

nonconvex functions. Formally, we choose the function class

F = {f | f ∈ F−L,L, f has a global minimizer x⋆},

performance measure6

E = min
i∈[0:N ]

∥∇f(xi)∥2,

6In the nonconvex setup, performance measures such as f(xN )− f(x⋆) or ∥∇f(xN )∥2 may not converge
to zero as N →∞ [52, page 3, paragraph 2][99, Remark after Theorem 1].
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and initial condition C = f(x0)−f(x⋆)− (1/2)R2 ≤ 0 with R > 0. We parameterize FSFOMs

in MN as

xi = xi−1 −
i−1∑
j=0

hi,j

L
∇f(xj) = x0 −

i−1∑
j=0

hi,j

L
∇f(xj), (2.27)

for i ∈ [1 : N ]. We solve the following instance of (Oouter):

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) .

Derivation of BnB-PEP-QCQP. Following §2.5 Step (i), formulate the inner optimization

problem (Oinner) as

R (M, E ,F , C)

=



maximize mini∈[0:N ] ∥∇f(xi)∥2

subject to f ∈ F−L,L

f(x) ≥ f(x⋆), for all x ∈ Rd,

xi = x0 − 1
L

∑i−1
j=0 hi,j∇f(xj) i ∈ [1 : N ],

f(x0)− f(x⋆) ≤ R2,

x⋆ = 0, f(x⋆) = 0,



where f and x0, . . . , xN are the decision variables. Write h = {hi,j}0≤j<i≤N . To follow the

interpolation argument of §2.5 Step (ii), we use the following interpolation result.

Lemma 2.5 (Interpolation inequality for F−L,L). Let I be a finite index set, and let

{(xi, gi, fi)}i∈I∪{⋆} ⊆ Rd × Rd × R. Let L > 0. There exists f ∈ F−L,L satisfying

f(x) ≥ f(x⋆) = f⋆ for all x ∈ Rd, f(xi) = fi for all i ∈ I, and gi = ∇f(xi) for all
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i ∈ I if and only if 7

fi ≥ fj −
L

4 ∥xi − xj∥2 + 1
2 ⟨gi + gj | xi − xj⟩+ 1

4L∥gi − gj∥2, ∀ i, j ∈ I ∪ {⋆},

f⋆ ≤ fi −
1

2L∥gi∥2, ∀ i ∈ I,

g⋆ = 0.

Proof. The result follows from translating [99, Theorem 7] into the form of [6, Theorem 3.10].

(Note that journal version of [6, Theorem 3.10] has a sign error that was corrected in its

updated arXiv version.)

Now formulate the inner problem as

R (M, E ,F , C)

=



maximize t

subject to

t ≤ ∥∇f(xi)∥2, i ∈ [0 : N ],

fi ≥ fj − L
4 ∥xi − xj∥2 + 1

2 ⟨gi + gj | xi − xj⟩+ 1
4L
∥gi − gj∥2, i, j ∈ I⋆

N : i ̸= j,

f⋆ ≤ fi − 1
2L
∥gi∥2, i ∈ [0 : N ],

g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0 − 1
L

∑i−1
j=0 hi,j∇f(xj), i ∈ [1 : N ],

f0 − f⋆ ≤ R2,



where {xi, gi, fi}i∈IN
⊆ Rd×Rd×R and t ∈ R are the decision variables. Following §2.5 Step

7The first condition can be viewed as a discretization of the following condition [6, Theorem 3.10]:
f ∈ F−L,L if and only if

f(y) ≥ f(x)− L

4 ∥x− y∥2 + 1
2 ⟨∇f(x) +∇f(y) | y − x⟩+ 1

4L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.
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(iii), implement the Grammian transformation. Define the Grammian matrices H ∈ Rd×(N+2),

G ∈ SN+2
+ , and F ∈ R1×(N+1) using the same equations in (2.8), {xi,gi, fi}i∈I⋆

N
using the

same encoding as (2.9), except for {xi}i∈[1:N ], which we define as

xi = x0 −
1
L

i−1∑
j=0

hi,jgj ∈ RN+2, i ∈ [1 : N ].

Note, xi is linearly parameterized by h. The matrices Bi,j, Ci,j, and ai,j are the same as in

(2.10) except that they are now parameterized by h. For i, j ∈ I⋆
N , define

Ãi,j(h) = (gi + gj)⊙ (xi − xj),

so that

trGÃi,j(h) = ⟨gi + gj | xi − xj⟩

holds. Under the large-scale assumption d ≥ N + 2, we equivalently formulate the inner

problem as the SDP:

R (M, E ,F , C)

=



maximize t

subject to

t ≤ trGCi,⋆, i ∈ [0 : N ] ▷ dual var. ηi ≥ 0

Fai,j − L
4 trGBi,j(h) + 1

2 trGÃi,j(h) + 1
4L

trGCi,j ≤ 0, i, j ∈ I⋆
N : i ̸= j, ▷ dual var. λi,j ≥ 0

Fai,⋆ + 1
2L

trGCi,⋆ ≤ 0, i ∈ [0 : N ], ▷ dual var. τi ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0

Fa⋆,0 ≤ R2, ▷ dual var. ν ≥ 0



where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. Following §2.5 Step
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(iv), construct the dual:

R (M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j +∑
i∈I⋆

N
τiai,⋆ + νa⋆,0 = 0,

−∑i∈[0:N ] ηiCi,⋆ +∑
i,j∈I⋆

N :i ̸=j λi,j

(
−L

4Bi,j(h) + 1
2Ãi,j(h) + 1

4L
Ci,j

)
+ 1

2L

∑
i∈[0:N ] τiCi,⋆ = Z,∑

i∈[0:N ] ηi = 1,

Z ⪰ 0,

ν ≥ 0, τi ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,

ηi ≥ 0, i ∈ [0 : N ],



where ν, λ, η, τ, and Z are the decision variables. Assume that strong duality holds. Finally,

following §2.5 Step (v), use Lemma 2.3 to pose (Oouter) as the following BnB-PEP-QCQP:

R⋆ (MN , E ,F , C)
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=



minimize νR2

subject to∑
i,j∈I⋆

N :i ̸=j λi,jai,j +∑
i∈I⋆

N
τiai,⋆ + νa⋆,0 = 0,

−∑i∈[0:N ] ηiCi,⋆ +∑
i,j∈I⋆

N :i ̸=j λi,j

(
−L

4 Θi,j + 1
2Ãi,j(h) + 1

4L
Ci,j

)
+ 1

2L

∑
i∈[0:N ] τiCi,⋆ = Z,∑

i∈[0:N ] ηi = 1,

P is lower triangular with nonnegative diagonals,

PP⊤ = Z,

Θi,j = Bi,j(h), i, j ∈ I⋆
N : i ̸= j,

ν ≥ 0, τi ≥ 0, λi,j ≥ 0, i, j ∈ I⋆
N : i ̸= j,

ηi ≥ 0, i ∈ [0 : N ],



(2.28)

where ν, λ, η, τ , Z, P , and {Θi,j}i,j∈I⋆
N :i ̸=j are the decision variables. Note that {Θi,j}i,j∈I⋆

N :i ̸=j

is introduced as a separate decision variable to formulate the cubic constraints arising from

Bi,j(h) as quadratic constraints.

Numerical results. Tables 2.13 and 2.14 present the results of solving (2.28) with L = 1,

R = 1, and N = 1, . . . , 5 using the BnB-PEP Algorithm. We compare the computed optimal

FSFOM with the FSFOMs defined by

hi,j =


1/L if j = i− 1,

0 if j ∈ [0 : i− 2],
(GD)
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which is gradient descent and

hi,j =


2/(
√

3L) if j = i− 1,

0 if j ∈ [0 : i− 2],
(AKZ)

which was proposed by Abbaszadehpeivasti, de Klerk, and Zamani and has the prior state-

of-the-art rate [51]. To clarify, the stepsizes h = {hi,j}0≤j<i≤N and h = {hi,j}0≤j<i≤N are

as defined in (2.27). We obtain the optimal h⋆ from the BnB-PEP Algorithm, solve for h⋆

with (2.4), and present h⋆ in the table. The stepsizes presented in Table 2.14 are certified

to be globally optimal by Stage 3. We again observe that the stepsizes obtained at Stage 2,

denoted by hlopt, were already near-optimal.

Figure 2.4(a) shows that the computed stepsizes h⋆ outperforms (AKZ) on the worst-case

guarantee of mini∈[0:N ] ∥∇f(xi)∥2. To ensure the comparison is precise, we set the precision

of the solver to 10−10. We observe in Figure 2.4(a) that the performance improvement

diminishes as N increases, which suggests that it will go to zero as N →∞. This observation

leads conjecture that (AKZ) has the exact optimal constant for the leading order term.

Conjecture 2.1. The optimal FSFOM for reducing gradient of smooth nonconvex functions

satisfies

min
i∈[0:N ]

∥∇f(xi)∥2 ≤ 6
√

3L(f(x0)− f⋆)
8N + 3

√
3

+ o(1/N)

where the leading term corresponds to the rate for (AKZ) [51, Theorem 2].

Also, Figure 2.4(b) shows the solution time to compute the locally optimal stepsizes hlopt.

Momentum form of optimal FSFOM. An interesting observation is that the optimal

FSFOM computed by the BnB-PEP Algorithm can be equivalently written in the “momentum
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N
#

variables
#

constraints
Worst-case mini∈[0:N ] ∥∇f(xi)∥2 Runtime of the

BnB-PEP AlgorithmOptimal GD AKZ

1 60 70 0.7875254 0.8 0.7875254 0.04 s

2 162 177 0.4902031 0.5 0.4902920 0.41 s

3 365 386 0.3558535 0.363636 0.3559478 9.79 s

4 723 751 0.2793046 0.285714 0.2793919 69.2 s

5 1302 1338 0.2298589 0.235294 0.2299378 607.52 s

10 4138 4128 0.1219308 0.125 0.1219809 2 d 15 h

25 118653 118433 0.0506221 0.051948 0.0506457 4 d 18 h

Table 2.13: Comparison between the performances of the optimal method obtained
by solving (2.28) with the BnB-PEP Algorithm, (GD), and (AKZ). The BnB-PEP
Algorithm was executed on a standard laptop for N = 1, 2, . . . , 10, and on MIT
Supercloud for N = 25. The performance difference between the optimal method
and (AKZ), while small, is genuine, as the difference is greater than precision of the
solver, set to 10−10.

N h⋆

1 [1.154700]

2
[

1.157583
0.023142 1.146857

]

3

 1.15762
0.023577 1.149576
0.003462 0.021945 1.146719



4


1.15762
0.023584 1.149611
0.003535 0.022356 1.149436
0.000549 0.003276 0.021922 1.146717



5


1.15762
0.023586 1.149611
0.003546 0.02236 1.149469
0.00061 0.003334 0.022329 1.149433
0.000149 0.000527 0.003263 0.02192 1.146717


10 See Supplementary Information or Github repository

25 See Supplementary Information or Github repository

Table 2.14: Globally optimal stepsizes obtained by solving (2.28) with the BnB-PEP
Algorithm.
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Figure 2.4: Numerical results associated with the stepsizes by solving (2.28) with
the BnB-PEP Algorithm. (Left) Improvement in the worst-case guarantee of
mini∈[0:N ] ∥∇f(xi)∥2 vs. iteration count N . (Right) Runtimes of the BnB-PEP Algo-
rithm to compute locally optimal solutions (including Stages 1 and 2 but excluding
Stage 3).

form”:
yi+1 = xi −

1
L
∇f(xi)

xi+1 = yi+1 + ζi+1(yi+1 − yi) + ηi+1(yi+1 − xi)
(2.29)

for i ∈ [0 : N − 1], with coefficients {ζi}i∈[1:N ] and {ηi}i∈[1:N ]. Table 2.15 shows the equivalent

optimal coefficients.

The class of FSFOMs in momentum form is a strict subset of the class of FSFOMs [5, §4.2].

Nesterov’s fast gradient method is expressed in the momentum form (2.29) with ηi = 0 for all

i. Many other accelerated gradient methods such as OGM [4, 8], OGM-G [34], Simple-OGM

and SC-OGM [100], FISTA [101], FISTA-G [94], EAG [37, 102], TMM [33, 94], ITEM [9],

ORC-F♭, OBL-F♭, and OBL-G♭ [74], and M-OGM-G [75, 94] can all be expressed in the

momentum form (2.29).

Furthermore, we observe that the optimal FSFOMs for N = 6, . . . , 25 also admit momentum

forms. The list of the stepsizes in the momentum form coefficients {ζ⋆
i }i∈[1:N ] and {η⋆

i }i∈[1:N ]
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N ζ⋆ η⋆

1 [0.0] [0.1547]

2 [0.0, 0.146858] [0.157583, 0]

3 [0.0, 0.149583, 0.146717] [0.157619, 0, 0]

4 [0.0, 0.149626, 0.149426, 0.146702] [0.15762, 0, 0, 0]

5 [0.0, 0.149622, 0.149464, 0.149417, 0.146707] [0.15762, 0, 0, 0, 0]

Table 2.15: Momentum form coefficients {ζ⋆
i }i∈[1:N ] and {η⋆

i }i∈[1:N ] for (2.29) of the
optimal method obtained by solving (2.28) with the BnB-PEP Algorithm.

for N = 6, . . . , 25 are provided as Supplementary Information and also as a data file at:

https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/zetaeta.jl

2.6.3 Efficient first-order method with respect to a potential function

in weakly convex setup

Consider the problem of constructing an FSFOM that efficiently reduces the subgradient

magnitude of ρ-weakly convex functions with L-bounded subgradients. Formally, we choose

the function class

F = {f | f ∈ Wρ,L, f has a global minimizer x⋆}.

Consider FSFOMs of the form

xi+1 = xi −
h

ρ
f ′(xi) (2.30)

for i ∈ [0 : N ], where f ′(xi) ∈ ∂f(xi) and h ∈ R is the stepsize to be determined. Let

L̃ = L/ρ. Since f ∈ Wρ,L ⇔ f/ρ ∈ W1,L̃
, consider f ∈ W1,L̃

and set ρ = 1 without loss of

generality.
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In this section, we show how to construct an efficient FSFOM by obtaining potential function

analyses of FSFOMs and minimizing the guarantee. Unlike in previous sections, our goal

here is not to construct an optimal FSFOM but rather is to construct an efficient FSFOM

with an analytically tractable potential function analysis.

Using optimization to find potential function analyses of FSFOMs has been studied by Lessard,

Recht, and Packard [10] and Taylor, Van Scoy, and Lessard [7] and the philosophy goes further

back to the classical Lyapunov stability problem of control theory [103]. Our approach, in

particular, closely follows and generalizes the work of Taylor and Bach [38, Appendix C],

which finds potential function analyses of FSFOMs and optimize a certain span-search based

relaxation of the FSFOMs. The relaxation retains convexity of the optimization, but it is

restricted to the convex minimization setup with performance measure f(xN)− f(x⋆). Our

proposed methodology removes this restriction; we can construct efficient FSFOMs in the

convex and nonconvex setup with various performance measures. The concrete instance of

this section illustrates our methodology and improves upon the prior state-of-the-art rate of

Davis and Drusvyatskiy in [52, 104, 105].

2.6.3.1 Measuring stationarity via Moreau envelope

In the nonsmooth nonconvex setup, performance measures commonly used in the convex

setup, such as f(xN) − f(x⋆) or dist(0; ∂f(xN)), may not go to zero as N → ∞ [52, page

3, paragraph 2]. Therefore, we define a notion of approximate stationarity via the Moreau

envelope.

Consider f ∈ W1,L̃
and let ρ̂ > 1. The proximal operator and Moreau envelope of f are

respectively defined as

prox(1/ρ̂)f (x) = argmin
y∈Rn

{
f(y) + ρ̂

2∥y − x∥
2
}
, f(1/ρ̂)(x) = min

y∈Rn

{
f(y) + ρ̂

2∥y − x∥
2
}
.
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The Moreau envelope f(1/ρ̂) is global underestimator of f that is continuously differentiable:

with y = prox(1/ρ̂)f (x), we have

x− y = 1
ρ̂
∇f(1/ρ̂)(x) ∈ ∂f(y)

[106, (2.13), (2.17)]. If x⋆ is a global minimizer of f , then f(1/ρ̂)(x⋆) = f(x⋆) and ∥∇f(1/ρ̂)(x⋆)∥ =

0. The gradient of the Moreau envelope serves as a measure of suboptimality since, with

y = prox(1/ρ̂)f (x), we have

∥y − x∥ = 1
ρ̂
∥∇f(1/ρ̂)(x)∥,

f(y) ≤ f(x),

dist(0, ∂f(y)) ≤ ∥∇f(1/ρ̂)(x)∥,

for any x ∈ Rd [52, page 4]. In other words, if ∥∇f(1/ρ̂)(x)∥ is small, then x is near some

point y that is nearly stationary for f .

We set ρ̂ = 2, the simplest choice. For a given sequence of iterates {xi}i∈[0:N ]∪{⋆}, define

yi = prox(1/2)f (xi)

f ′(yi) = 2(xi − yi).
(2.31)

Choose the performance measure

E = 1
N + 1

N∑
i=0
∥∇f(1/2)(xi)∥2 = 1

N + 1

N∑
i=0
∥f ′(yi)∥2,
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which was also used in [52]. Note that

min
i∈[0:N ]

∥∇f(1/2)(xi)∥2 ≤ 1
N + 1

N∑
i=0
∥∇f(1/2) (xi) ∥2,

so any guarantee on E translates to a guarantee on mini∈[0:N ] ∥∇f(1/2)(xi)∥2.

Finally, we provide a few points of clarification. The parameter ρ̂ is not used in the method

(2.30) and only appears in the analysis of the algorithm. Since ρ̂ is strictly larger than 1, the

weak convexity parameter, y = prox(1/ρ̂)f (x) is defined as a minimizer of a strongly convex

function and therefore uniquely exists. While f ′(xi) ∈ ∂f(xi) is chosen arbitrarily in the

method (2.30) (the i-th iteration of the method may use any subgradient at xi) the choice of

f ′(yi) ∈ ∂f(yi) (used in the analysis) is specified by (2.31) and therefore is not arbitrary.

2.6.3.2 Potential function analysis via BnB-PEP

Consider the potential function

ψk = bk

(
f(1/2)(xk)− f(1/2)(x⋆)

)
= bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
, k ∈ [0 : N + 1],

where x⋆ is a global minimizer of f , {bk}k∈[0:N+1] are parameters to be determined, and

{yk}k∈[0:N+1] are as defined in (2.31). Choose the initial condition C as

f(1/2)(x0)− f(1/2)(x⋆) = f(y0)− f(x⋆) + ∥x0 − y0∥2 ≤ R2.

Again, let x⋆ = 0 and f(x⋆) = 0 without loss of generality. If we show

∥f ′(yk)∥2 + ψk+1 − ψk ≤ ck∥f ′(xk)∥2 (2.32)
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for k ∈ [0 : N ], where {bk}k∈[0:N+1] and {ck}k∈[0:N ] are nonnegative parameters to be deter-

mined, then a telescoping sum provides the rate

1
N + 1

N∑
i=0
∥f ′(yi)∥2 ≤ 1

N + 1

(
L̃2

N∑
i=0

ci + ψ0 − ψN+1

)

≤ 1
N + 1

(
L̃2

N∑
i=0

ci + b0R
2
)
.

In a potential function analysis, we effectively choose to be oblivious to how xk was generated

and to the method’s prior evaluations of f ; we establish the potential function inequality

(2.32) one iteration at a time. Due to this restriction, our efficient FSFOM is not expected to

be optimal, but it is expected to have a simpler analytically tractable analysis.

Potential function analysis. Let

Vk(h) =
{
(bk+1, bk, ck) | ∥f ′(yk)∥2 + ψk+1 ≤ ψk − ck∥f ′(xk)∥2, ∀xk ∈ Rd, f ∈ W1,L̃

}
,

where xk+1 = xk − hf ′(xk), yk = xk − 1
2f

′(yk), and yk+1 = xk+1 − 1
2f

′(yk+1), be the set of

(bk+1 , bk, ck) such that (2.32) holds for all xk ∈ Rd and f ∈ W1,L̃
. Then, one could consider

optimizing the FSFOM by solving

 minimize 1
N+1

(
L̃2∑N

i=0 ci + b0R
2
)

subject to (bk+1, bk, ck) ∈ Vk(h), k ∈ [0 : N + 1],

 (2.33)

where {bi}i∈[0:N+1], {ci}i∈[0:N ], and h ∈ R are the decision variables.

However, checking (bk+1 , bk, ck) ∈ Vk(h) is difficult and (2.33) is difficult to solve, because

W1,L̃
is a function class without a known interpolation result. In the following, we find

Ṽk(h) ⊆ Vk(h) such that membership with respect to Ṽk(h) is easy to check. Then we
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optimize the FSFOM by solving

 minimize (1/(N + 1))
(
L̃2∑N

i=0 ci + b0R
2
)

subject to (bk+1, bk, ck) ∈ Ṽk(h), k ∈ [0 : N + 1]

 (2.34)

where {bi}i∈[0:N+1], {ci}i∈[0:N ], and h ∈ R are the decision variables. Note, (2.33) is upper

bounded by (2.34), since Vk(h) ⊇ Ṽk(h).

In the following, we show that each constraint (bk+1, bk, ck) ∈ Vk(h) in (2.34) k ∈ [0 : N + 1]

can be formulated into a QCQP feasibility problem. We then apply the feasibility problem

formulations k ∈ [0 : N + 1] to obtain the BnB-PEP-QCQP (2.42).

Sufficient SDP for potential function inequality. Note, (bk+1, bk, ck) ∈ Vk(h) if and only

if the optimal value of the following problem is less than or equal to 0:



maximize ∥f ′(yk)∥2 + bk+1 (f(yk+1)− f(x⋆) + ∥xk+1 − yk+1∥2)

−bk (f(yk)− f(x⋆) + ∥xk − yk∥2)− ck∥f ′(xk)∥2

subject to xk+1 = xk − hf ′(xk)

yk = xk − 1
2f

′(yk)

yk+1 = xk+1 − 1
2f

′(yk+1),

f ′(x⋆) = 0, x⋆ = 0, f(x⋆) = 0,

f(w) ≥ f(x⋆), w ∈ {xk, xk+1, yk, yk+1},

f ∈ W1,L̃
,



(2.35)

where f ∈ W1,L̃
and xk, xk+1, yk, yk+1 ∈ Rd are the decision variables.

Define V̂k(h) ⊆ Vk(h) such that (bk+1, bk, ck) ∈ V̂k(h) if and only if the optimal value of the
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following problem is less than or equal to 0:



maximize ∥f ′(yk)∥2 + bk+1 (f(yk+1)− f(x⋆) + ∥xk+1 − yk+1∥2)

−bk (f(yk)− f(x⋆) + ∥xk − yk∥2)− ck∥f ′(xk)∥2

subject to xk+1 = xk − hf ′(xk)

yk = xk − 1
2f

′(yk)

yk+1 = xk+1 − 1
2f

′(yk+1),

f ′(x⋆) = 0, x⋆ = 0, f(x⋆) = 0,

f(w) ≥ f(x⋆), w ∈ {xk, xk+1, yk, yk+1},

f(w′) ≥ f(w) + ⟨f ′(w) | w′ − w⟩ − 1
2∥w

′ − w∥2,

w, w′ ∈ {xk, xk+1, yk, yk+1},

∥f ′(w)∥2 ≤ L̃2, w ∈ {xk, xk+1, yk, yk+1},



(2.36)

where f , xk, xk+1, yk, and yk+1 are the decision variables. Since the constraints of (2.35)

imply the constraints of (2.36), the optimal value of (2.35) is upper bounded by (2.36) and

Vk(h) ⊇ V̂k(h). (Since W1,L̃
is a function class with no known interpolation result, two

optimal values and the sets are not necessarily equal.) For notational convenience, define

(x⋆, f
′(x⋆), f(x⋆)) = (w⋆, g⋆, f⋆),

(xk, f
′(xk), f(xk)) = (w0, g0, f0),

(xk+1, f
′(xk+1), f(xk+1)) = (w1, g1, f1),

(yk, f
′(yk), f(yk)) = (w2, g2, f2),

(yk+1, f
′(yk+1), f(yk+1)) = (w3, g3, f3).
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Then we can express (2.36) equivalently as



maximize ∥g2∥2 + bk+1 (f3 − f⋆ + ∥w1 − w3∥2)

−(bk (f2 − f⋆ + ∥w0 − w2∥2)− ck∥g0∥2

subject to w1 = w0 − hg0

w2 = w0 − 1
2g2,

w3 = w1 − 1
2g3,

(w⋆, g⋆, f⋆) = (0, 0, 0),

f(wi) ≥ f(x⋆), i ∈ [0 : 3],

fi ≥ fj + ⟨gj | wi − wj⟩ − 1
2∥wi − wj∥2, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

∥gi∥2 ≤ L̃2, i ∈ [0 : 3] ∪ {⋆},



(2.37)

where {wi, gi, fi}i∈[0:3]∪{⋆} are the decision variables.

Next, we use the Grammian formulation to formulate (2.37) as an SDP. For k ∈ [0 : N ], let

H [k] = [w0 | g0 | g1 | g2 | g3] ∈ Rd×5,

G[k] = H [k]⊤H [k] ∈ S5
+,

F [k] = [f0 | f1 | f2 | f3] ∈ R1×4.

(2.38)

Note that rankG[k] ≤ d. Define the following notation for selecting columns and elements of
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H [k] and F [k]:
g⋆ = 0 ∈ R5,gi = ei+2 ∈ R5, i ∈ [0 : 3],

f⋆ = 0 ∈ R4, fi = ei+1 ∈ R4, i ∈ [0 : 3],

w⋆ = 0 ∈ R5,

w0 = e1 ∈ R5,

w1 = w0 − hg0 ∈ R5,

w2 = w0 −
1
2g2 ∈ R5,

w3 = w1 −
1
2g3 ∈ R5.

Furthermore, define
Ai,j(h) = gj ⊙ (wi −wj),

Bi,j(h) = (wi −wj)⊙ (wi −wj),

Ci,j = (gi − gj)⊙ (gi − gj),

ai,j = fj − fi,

for i, j ∈ [0 : 3] ∪ {⋆}. Note that Ai,j(h) and Bi,j(h) are affine and quadratic as functions of

h. This notation defined so that

wi = H [k]wi, gi = H [k]gi, fi = F [k]fi,

⟨gj | wi − wj⟩ = trG[k]Ai,j(h),

∥wi − wj∥2 = trG[k]Bi,j(h), and

∥gi − gj∥2 = trG[k,]Ci,j.

for i, j ∈ [0 : 3] ∪ {⋆}. Finally, define

Q[k] = Q[k](h, bk+1, bk, ck) = C2,⋆ + bk+1B1,3(h)− bkB0,2(h)− ckC0,⋆,

q[k] = q[k](bk+1, bk) = bk+1a⋆,3 − bka⋆,2
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for k ∈ [0 : N ]. Assume the large-scale assumption d ≥ 5. Using the new notation,
equivalently formulate (2.37) as



maximize tr G[k]Q[k] + F [k]q[k]

subject to F [k]ai,⋆ ≤ 0, i ∈ [0 : 3], ▷ dual var. τ
[k]
i ≥ 0

F [k]ai,j + tr G[k] (Ai,j(h)− 1
2 Bi,j(h)

)
≤ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, ▷ dual var. λ

[k]
i,j ≥ 0

tr G[k]Ci,⋆ ≤ L̃2 i ∈ [0 : 3] ∪ {⋆}, ▷ dual var. η
[k]
i ≥ 0

−G[k] ⪯ 0, ▷ dual var. Z ⪰ 0


(2.39)

where G[k] ∈ S5
+ and F [k] ∈ R1×4 are the decision variables.

Next, we dualize. Define Ṽk(h) ⊆ Vk(h) such that (bk+1, bk, ck) ∈ Ṽk(h) if and only if the

optimal value of the following problem is less than or equal to 0:



minimize L̃2∑
i∈[0:3]∪{⋆} η

[k]
i

subject to −Q[k] +∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,j

(
Ai,j(h)− 1

2Bi,j(h)
)

+∑
i∈[0:3]∪{⋆} ηiCi,⋆ = Z [k],

−q[k] +∑
i∈[0:3] τ

[k]
i ai,⋆ +∑

i,j∈[0:3]∪{⋆}:i ̸=j λ
[k]
i,jai,j = 0,

λ
[k]
i,j ≥ 0, η[k]

i ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

τ
[k]
i ≥ 0, i ∈ [0 : 3],

Z [k] ⪰ 0,


(2.40)

where {η[k]}i∈[0:3]∪{⋆}, {λ[k]
i,j}i,∈[0:3]∪{⋆}:i ̸=j, {τ [k]

i }i∈[0:3], and Z [k] ∈ S5
+ are the decision variables.

By weak duality, the optimal value of (2.39) is upper bounded by (2.40) and V̂k(h) ⊇ Ṽk(h).

(While we expect strong duality to usually hold, we do not need to assume it.) Observe that

for the optimal value of (2.40) to be less than equal to zero, we must have η[k] = 0. Hence,
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(2.40) simplifies into the feasibility problem



minimize 0

subject to −Q[k] +∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,j

(
Ai,j(h)− 1

2Bi,j(h)
)

= Z [k],

−q[k] +∑
i∈[0:3] τ

[k]
i ai,⋆ +∑

i,j∈[0:3]∪{⋆}:i ̸=j λ
[k]
i,jai,j = 0,

λ
[k]
i,j ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

τ
[k]
i ≥ 0, i ∈ [0 : 3],

Z [k] ⪰ 0



(2.41)

for k ∈ [0 : N ].

Optimizing potential function analysis. We have shown that existence of a feasible point

for (2.41) implies (bk+1, bk, ck) ∈ Ṽk(h), which in turn implies (2.32) holds. Finally, use

Lemma 2.3 to formulate (2.34) as the following BnB-PEP-QCQP:



minimize L̃2
[

1
N+1

(∑N
i=0 ci + R2

L̃2 b0
)]

subject to −Q[k] +∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,j

(
Ai,j(h)− 1

2Θ[k]
i,j

)
= Z [k], k ∈ [0 : N ],

−q[k] +∑
i∈[0:3] τ

[k]
i ai,⋆ +∑

i,j∈[0:3]∪{⋆}:i ̸=j λ
[k]
i,jai,j = 0, k ∈ [0 : N ],

λ
[k]
i,j ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, k ∈ [0 : N ],

τ
[k]
i ≥ 0, i ∈ [0 : 3], k ∈ [0 : N ],

P [k] is lower triangular with nonnegative diagonals, k ∈ [0 : N ],

P [k](P [k])⊤ = Z [k], k ∈ [0 : N ],

Θ[k]
i,j = Bi,j(h), i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, k ∈ [0 : N ],



(2.42)

where the decision variables are {bk}k∈[0:N+1], {ck}k∈[0:N ], {λ[k]}k∈[0:N ], {τ [k]}k∈[0:N ], {Z [k]}k∈[0:N ],

{P [k]}k∈[0:N ], {Θ[k]}k∈[0:N ], and h. We call λ[k], τ [k], and Z [k] the inner-dual variables. Note

that {Θ[k]}k∈[0:N ] is introduced as a separate decision variable to formulate the cubic con-
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straints arising from Bi,j(h) as quadratic constraints. A feasible solution of (2.42) provides a

performance guarantee on the FSFOM defined by the stepsize h.

2.6.3.3 Numerical results and analytical convergence proofs

Tables 2.16 and 2.17 shows the results of solving (2.42) with L̃ = 1, R = 0.1 and N =

1, . . . , 5, 10, 25 using the BnB-PEP Algorithm. Similar to our previous experiments, we

empirically observe that the locally optimal stepsizes obtained at Stage 2, denoted by hlopt,

were already near-optimal. This motivates us to apply just the first two stages of the BnB-

PEP Algorithm for N = 26, . . . , 100. In Figure 2.5, we compare the locally optimal stepsizes

hlopt with the stepsize h = R/(L̃
√

(N + 1)) reported in the proof of [52, Theorem 3.1].

In the following, we use the numerical results to obtain an analytical form of the stepsize and

its convergence proof.
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Figure 2.5: Numerical results for the locally optimal stepsizes by solving (2.42)
the BnB-PEP Algorithm. We have verified global optimality of the locally optimal
stepsizes for N = 1, 2, . . . , 25. (Left) Objective value L̃2[(∑N

i=0 ci+(R2/L̃2)b0)/(N+1)]
for h = R/(L̃

√
(N + 1)) (as prescribed by [52]) and for the stepsizes computed by

the BnB-PEP Algorithm vs. iteration count N . (Right) Runtimes of the BnB-PEP
Algorithm (including Stages 1 and 2 but excluding Stage 3).
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N
#

variables
#

constraints
Worst-case L̃2[(

∑N
i=0 ci + (R2/L̃2)b0)/(N + 1)] Runtime of the

BnB-PEP AlgorithmOptimal h = R

(L̃
√

(N+1))

1 735 780 0.0398 0.04717 0.01 s

2 1102 1170 0.0396 0.04837 0.22 s

3 1469 1560 0.0394 0.048415 0.34 s

4 1836 1950 0.0392157 0.0480887 0.81 s

5 2203 2340 0.039026 0.0476315 2.6 s

10 4038 4290 0.038113 0.0451378 8 h 40 m

25 9543 10140 0.035692 0.0397182 19 h 15 m

Table 2.16: Comparison between the performances of the optimal method obtained by
solving (2.42) with the BnB-PEP Algorithm and the method with h = R/(L̃

√
(N + 1))

as prescribed by [52]. The BnB-PEP Algorithm was executed on a standard laptop
for N = 1, 2, . . . , 10, and on MIT Supercloud for N = 25.

N h⋆

1 0.01

2 0.0099664

3 0.0099331

4 0.0099

5 0.00986714

10 0.0097061

25 0.0092553

Table 2.17: Globally optimal stepsize obtained by solving (2.42) with the BnB-PEP
Algorithm.
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Structured inner-dual variables. To find an analytical proof of an FSFOM defined by h,

i.e., to find a feasible solution of (2.42), we use the methodology of §2.4.3 to we find the

following pattern of the optimal inner-dual variables λ⋆[k], τ ⋆[k], and Z⋆[k] for all k ∈ [0 : N ]:

• Only λ⋆[k]
2,3 , λ⋆[k]

2,0 , and λ
⋆[k]
0,2 are nonzero. Furthermore, λ⋆[k]

2,0 = λ
⋆[k]
0,2 .

• Only τ ⋆[k]
2 is nonzero.

• Only Z
⋆[k]
2,2 , Z⋆[k]

4,2 = Z
⋆[k]
2,4 , Z⋆[k]

5,2 = Z
⋆[k]
2,5 , Z⋆[k]

5,4 = Z
⋆[k]
4,5 , Z [k]

4,4, and Z
[k]
5,5 are nonzero.

Furthermore, Z⋆[k]
5,2 = −Z⋆[k]

4,2 , Z⋆[k]
4,4 = Z

⋆[k]
5,5 , and Z

⋆[k]
4,4 = −Z⋆

5,4.

Since the pattern is the same for all k, we enforce this pattern for a given k in the constraint

set of (2.42). This leads to a system of equations, and after some tedious but elementary

calculations, we get the simplified form

4 + (1− 2h)bk+1 = bk,

λ
[k]
2,3 = bk+1,

λ
[k]
2,0 = λ

[k]
0,2 = 2hbk+1,

τ
[k]
2 = bk − bk+1,

(2.43)

for all k ∈ [0 : N ]. We share Mathematica code for calculating (2.43) symbolically as follows:

https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/potential.nb

The solution numerically produced by BnB-PEP Algorithm have bN+1 = 0, so we use that

terminal value. Furthermore, from the numerical results, we also empirically observe that c⋆
k,

h⋆, and b⋆
k+1 follow the relationship ck = h2bk+1 for all k ∈ [0 : N ].
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Convergence proof 1: Analytical solution to the BnB-PEP QCQP. We restrict8 our

consideration to h ∈ (0, 1/2]. The recursive relationship 4 + (1− 2h)bk+1 = bk of (2.43) with

the terminal condition bN+1 = 0 implies

bk = 2
h

(
1− (1− 2h)N+1−k

)
for k ∈ [0 : N + 1]. (2.44)

This formula and the resulting values from (2.43) indeed make {bk}k∈[0:N+1], {ck}k∈[0:N ],

{λ[k]}k∈[0:N ], and {τ [k]}k∈[0:N ] non-negative. Plugging values from (2.43) and ck = h2bk+1 into

(2.42) we get

− q[k] +
∑

i∈[0:3]
τ

[k]
i ai,⋆ +

∑
i,j∈[0:3]∪{⋆}:i ̸=j

λ
[k]
i,jai,j = 0,

−Q[k] +
∑

i,j∈[0:3]∪{⋆}:i ̸=j

λ
[k]
i,j

(
Ai,j(h)− 1

2Bi,j(h)
)

= Z [k],

Z [k] =



0 0 0 0 0

0 1
2h

2bk+1 0 −1
4hbk+1

1
4hbk+1

0 0 0 0 0

0 −1
4hbk+1 0 1

8bk+1 −1
8bk+1

0 1
4hbk+1 0 −1

8bk+1
1
8bk+1



for all k ∈ [0 : N ]. The eigenvalues of Z [k] are {0, 0, 0, 0, (1/4)(1 + 2h2)bk+1}, so Z [k] ⪰ 0.

Thus the values of {b, c, λ, τ} defined by (2.43) and (2.44) is a feasible solution of (2.42), and

we have proved the following theorem.

Theorem 2.1. Let N ∈ N. Let f ∈ W1,L̃
have a global minimizer x⋆. Let R > 0, and let

8While unlikely, it is possible that a stepsize h /∈ (0, 1/2] achieves a better performance for some parameter
values. (Our numerical experiments indicate that this is not the case.) If so, our choice of h ∈ (0, 1/2]
excludes this better choice. Regardless, our resulting choice of h and its performance guarantee are valid.
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x0 ∈ Rd satisfy the initial condition f(y0)− f(x⋆) + ∥x0 − y0∥2 ≤ R2. Consider the method

xk+1 = xk − hf ′(xk)

for k ∈ [0 : N ], where f ′(xk) is an arbitrary subgradient of f at xk. Let yk = prox(1/2)f(xk)

and

ψk = bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
for k ∈ [0 : N + 1]. If h ∈ (0, 1/2], 4 + (1 − 2h)bk+1 = bk for k ∈ [0 : N ], bN+1 = 0, and

ck = h2bk+1 for k ∈ [0 : N ], then

∥f ′(yk)∥2 + ψk+1 − ψk ≤ ck∥f ′(xk)∥2

for all k ∈ [0 : N ], and

1
N + 1

N∑
i=0
∥∇f(1/2) (xi) ∥2 ≤ 1

N + 1

(
L̃2

N∑
i=0

ci + b0R
2
)
.

To find the optimal h⋆, one can minimize the bound of Theorem 2.1. For notational simplicity,

define κ = R/L. With (2.44), the analytical performance measure minimizes is

L̃2

N + 1

(
N∑

i=0
ci + κ2b0

)

= L̃2

N + 1

[
−1 + (1− 2h)N+1 + 2h(N + 1) + κ2 2

h

(
1− (1− 2h)N+1

)]
. (2.45)

As an aside, one can directly verify the nonnegativity of (2.45) with Bernoulli’s lower bound

inequality, which states that (1 + x)r ≥ 1 + rx for any positive integer r ≥ 1 and any real

x ≥ −1 [107, page 1]. Plotting (2.45) for different values κ and N reveals that it has a unique
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minimum in h. Hence, the optimal h⋆ can be found by setting the derivative equal to zero:

2κ2
(
(1− 2h)N − 1

)
h2 + 4κ2N(1− 2h)N

h
− 2(N + 1)

(
(1− 2h)N − 1

)
= 0.

However, this equation does not seem to admit a simple algebraic solution.

To find a simpler analytical stepsize, we construct an upper bound of (2.45) that does admits

a closed-form minimizer:

L̃2

N + 1

[
−1 + (1− 2h)N+1 + 2h(N + 1) + κ2 2

h

(
1− (1− 2h)N+1

)]
a)
<

L̃2

N + 1

[
−1 + 1

2(N + 1)h+ 1 + 2h(N + 1) + κ2 2
h

]
b)
<

L̃2

N + 1

[
−1 + 1

2(N + 1)h + 2h(N + 1) + κ2 2
h

]

= L̃2

N + 1

[
−1 + 1

2h

( 1
N + 1 + 4κ2

)
+ 2h(N + 1)

]
. (2.46)

Here, a) uses 1− (1− 2h)N+1 < 1 and

(1− 2h)N+1 ≤ 1
2(N + 1)h+ 1 ,

that follows from Bernoulli’s upper bound inequality (1+a)r ≤ 1/(1−ra) for a ∈ [−1, 0], r ∈N

[107, page 1] along with h ∈ (0, 1/2] and b) uses 1/ (2(N + 1)h+ 1) < 1/ (2(N + 1)h). The

minimum of (2.46) is achieved at

h⋆
ub =

√
4κ2(N + 1) + 1

2(N + 1) .
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Plugging this back into (2.46), we have the following analytical performance guarantee:

L̃2

N + 1

(
−1 + 1

2h⋆
ub

( 1
N + 1 + 4κ2

)
+ 2h⋆

ub(N + 1)
)

=
L̃2
(
2
√

4κ2(N + 1) + 1− 1
)

N + 1 .

We have proved the following corollary.

Corollary 2.1. In the setup of Theorem 2.1, the choice

h =

√
4κ2(N + 1) + 1

2(N + 1) ,

yields the rate

1
N + 1

N∑
i=0
∥∇f(1/2)(xi)∥2 ≤

L̃2
(
2
√

4κ2(N + 1) + 1− 1
)

N + 1 .

The result of Corollary 2.1 strictly improves upon the prior state-of-the-art rate [52, Theorem

3.1]
1

N + 1

N∑
i=0
∥∇f(1/2)(xi)∥2 ≤ L̃2 4κ√

N + 1

for large enough N satisfying N > (9 − 64κ2)/(64κ2). (This stated rate is obtained by

plugging the stepsize found in the proof of [52, Theorem 3.1] into [52, Equation 3.4] in the

noiseless setup. The claimed rate [52, Equation 3.5] has an error in the constant.)

Convergence proof 2: Classical analytical proof. While the previous analytical proof is

rigorous, its reliance on the BnB-PEP-QCQP formulation makes it inaccessible to those who

do not already understand the PEP methodology. Therefore, we translate the proof into a

classical form that does not depend on the PEP methodology.
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To clarify, the discovery of the previous proof was assisted by numerical solutions, but its

correctness can be verified by humans without the aid of any numerical solvers. The benefit

of the following alternate proof is its accessibility; the previous equivalent proof was equally

correct and rigorous.

Alternate proof of Theorem 2.1. The proof forms nonnegative combinations of valid inequali-

ties and organizes the terms to establish the stated result. The arguably mysterious weights

of the nonnegative combinations correspond to the values of the inner-dual-variables listed in

(2.43).

Note that

f(yk+1)− f(yk) + ⟨f ′(yk+1) | yk − yk+1⟩ −
1
2∥yk − yk+1∥2 ≤ 0,

f(xk)− f(yk) + ⟨f ′(xk) | yk − xk⟩ −
1
2∥yk − xk∥2 ≤ 0,

f(yk)− f(xk) + ⟨f ′(yk) | xk − yk⟩ −
1
2∥xk − yk∥2 ≤ 0,

by weak convexity of f , and

f(x⋆)− f(yk) ≤ 0

by the assumption that x⋆ is a global minimizer. Multiplying the last four inequalities with

the nonnegative weights bk+1, 2hbk+1, 2hbk+1, and bk − bk+1 = 4 − 2hbk+1 (nonnegativity

follows from (2.44)), respectively, and then adding them together, we obtain

0 ≥bk+1

(
f(yk+1)− f(yk) + ⟨f ′(yk+1) | yk − yk+1⟩ −

1
2∥yk − yk+1∥2

)
+

2hbk+1

(
f(xk)− f(yk) + ⟨f ′(xk) | yk − xk⟩ −

1
2∥yk − xk∥2

)
+

2hbk+1

(
f(yk)− f(xk) + ⟨f ′(yk) | xk − yk⟩ −

1
2∥xk − yk∥2

)
+
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(4− 2hbk+1) (f(x⋆)− f(yk))
a)=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))+

1
8bk+1

[
− 4∥f ′(xk)∥2h2 − 2 ⟨f ′(yk) | 2hf ′(xk) + f ′(yk+1)⟩

+ 4 ⟨f ′(xk) | f ′(yk+1)⟩h+ (4h− 1)∥f ′(yk)∥2 + 3∥f ′(yk+1)∥2
]

=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+ 1
4bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
+

bk+1

[1
8

(
− 4∥f ′(xk)∥2h2 − 2 ⟨f ′(yk) | 2hf ′(xk) + f ′(yk+1)⟩

+ 4 ⟨f ′(xk) | f ′(yk+1)⟩h+ (4h− 1)∥f ′(yk)∥2 + 3∥f ′(yk+1)∥2
)
−

1
4
(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

) ]
=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+ 1
4bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
+ 1

8∥2hf
′(xk)− f ′(yk) + f ′(yk+1)∥2

b)
≥bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+ 1
4bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
c)=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆)) + ∥f ′(yk)∥2

+ bk+1

4 ∥f
′(yk+1)∥2 − bk

4 ∥f
′(yk)∥2 − ck∥f ′(xk)∥2

=∥f ′(yk)∥2 + bk+1
(
f(yk+1)− f(x⋆)∥+ ∥yk+1 − w1∥2

)
− bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
− ck∥f ′(xk)∥2

d)=∥f ′(yk)∥2 + ψk+1 − ψk − ck∥f ′(xk)∥2,
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where a) uses (2.43) and

yk − yk+1 = hf ′(xk)− 1
2f

′(yk) + 1
2f

′(yk+1),

xk − yk = 1
2f

′(yk),

b) removes the non-negative term in the previous line (the last term), c) uses (2.43), and d)

uses the definition of ψk.

Remark. The convergence proof above nowhere utilizes the assumption that x⋆ exists; it

only requires that f⋆ = infx f(x) > −∞. There was no a priori guarantee that we would get

such a proof since the BnB-PEP-QCQP was allowed to use the existence of x⋆. However,

BnB-PEP-QCQP chose not use that assumption in producing an optimal solution.

2.7 Conclusion

The contribution of the BnB-PEP methodology is threefold. First, BnB-PEP poses the

problem of finding the optimal fixed-step first-order method for convex or nonconvex, smooth

or nonsmooth optimization as a nonconvex but practically tractable QCQP called BnB-

PEP-QCQP. Second, our methodology presents the BnB-PEP Algorithm that solves the

BnB-PEP-QCQP to certifiable global optimality. Through exploiting specific problem

structures, the BnB-PEP Algorithm outperforms the latest off-the-shelf implementations by

orders of magnitude, reducing the solution-time from hours to seconds and weeks to minutes.

Third, we test the BnB-PEP methodology on a variety of problem setups for which the prior

methodologies failed and obtain first-order methods with bounds, some numerical and some

analytical, that improve upon prior state-of-the-art results.

As the BnB-PEP offers significantly more flexibility compared to the prior performance
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estimation methodologies, we expect there to be many fruitful future directions of work

utilizing the BnB-PEP methodology. In particular, using the BnB-PEP to analyze and

generate composite optimization methods [6, 45, 46], randomized and stochastic methods

[38, 108], monotone operator and splitting methods [35, 36, 48, 49], mirror descent methods

[50], and adaptive methods [109] are all interesting directions of future work. Recently, novel

worst-case convergence rates for nonlinear conjugate gradient methods were established in [2]

using the BnB-PEP methodology.

2.A Appendix for Chapter 2

2.A.1 Function class

The BnB-PEP methodology applies to quadratically representable function classes. We say

F is quadratically representable if the membership f ∈ F is defined by an inequality of the

form

c0f(y) ≥ c1f(x) + q(x, y, u, v), ∀u ∈ ∂f(x), v ∈ ∂f(y), x, y ∈ Rd,

where

q(x, y, u, v) ≜ c2 ⟨x | x⟩+ c3 ⟨y | y⟩+ c4 ⟨u | u⟩+ c5 ⟨v | v⟩+ c6 ⟨x | y⟩+ c7 ⟨x | u⟩

+ c8 ⟨x | v⟩+ c9 ⟨y | u⟩+ c10 ⟨y | v⟩+ c11 ⟨u | v⟩+ c12,

with ci ∈ R for i ∈ [0 : 12] along with an optional inequality of the form

∥u∥2 ≤M, ∀u ∈ ∂f(x), x ∈ Rd,
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for some M > 0. Many of the commonly considered function classes are quadratically

representable, and we list a few in the following. The class of L-smooth convex functions

F0,L satisfies [59, Theorem 2.1.5, Equation (2.1.10)]

f(y) ≥ f(x) + ⟨∇f(x) | y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.

(L-smooth functions are differentiable everywhere.) The class of L-smooth µ-strongly convex

functions Fµ,L satisfies [9, Theorem 1]

f(y) ≥ f(x) + ⟨∇f(x) | y − x⟩+ 1
2(L− µ)∥∇f(x)−∇f(y)∥2

+ Lµ

2(L− µ)∥x− y∥
2 − µ

2(L− µ) ⟨∇f(x)−∇f(y) | x− y⟩ , ∀x, y ∈ Rd.

The class of L-smooth nonconvex functions F−L,L satisfies [99, Theorem 6]

f(y) ≥ f(x)+⟨∇f(x) | y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥2−L4 ∥x−y−

1
L

(∇f(x)−∇f(y))∥2, ∀x, y ∈ Rd.

which is also equivalent to [6, Theorem 3.10]

f(y) ≥ f(x)− L4 ∥x−y∥
2 + 1

2 ⟨∇f(x) +∇f(y) | y − x⟩+ 1
4L∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.

The class of ρ-weakly convex functions Wρ,∞ is satisfies [52, Lemma 2.1]

f(y) ≥ f(x) + ⟨u | y − x⟩ − ρ

2∥x− y∥
2, ∀u ∈ ∂f(x), x, y ∈ Rd.
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The class of nonsmooth convex functions with L-bounded subgradient FL
0,∞ satisfies [6,

Definition 3.1]

f(y) ≥ f(x) + ⟨u | y − x⟩ , ∀u ∈ ∂f(x), x, y ∈ Rd,

∥u∥2 ≤ L, ∀u ∈ ∂f(x), x ∈ Rd.

The class of ρ-weakly convex functions with L-bounded subgradients Wρ,L satisfies [52,

Lemma 2.1], [6, §3.1 (c)]

f(y) ≥ f(x) + ⟨u | y − x⟩ − ρ

2∥x− y∥
2, ∀u ∈ ∂f(x), x, y ∈ Rd,

∥u∥2 ≤ L, ∀u ∈ ∂f(x), x ∈ Rd.

Some, but not all, of the quadratically representable functions classes have interpolation

results analogous to Lemma 2.2. In particular, F0,L, Fµ,L, F−L,L, Wρ,∞, and FL
0,∞ have

interpolation results ([5, Theorem 4], [6, Theorem 3.10], [6, Theorem 3.5]), while Wρ,L does

not. We can still use the BnB-PEP methodology without an interpolation condition, as we

do in §2.6.3, but we loose the tightness guarantee.

2.A.2 Discussion on the strong duality assumption

Consider the setup of §2.3, and let us not assume strong duality. Then, by weak duality, we

have

R(M(α), E ,F , C) ≤ R(M(α), E ,F , C),

whereR is as given by (2.12),R is as defined in (2.13), and M(α) is the FSFOM parameterized

by the stepsize list α = {αi,j}0≤j<i≤N .
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Strong duality does provably hold generically. Let

Anice = {α |αi,i−1 ̸= 0, ∀ i = 1, . . . , N}

be the set of “nice” stepsize lists.

Lemma 2.6. [5, Theorem 6] If α ∈ Anice, then strong duality holds, i.e.,

R(M(α), E ,F , C) = R(M(α), E ,F , C), ∀α ∈ Anice.

Note that α is an N(N + 1)/2-dimensional and the set of α /∈ Anice is lower-dimensional. In

this sense, strong duality holds generically. When we solve the BnB-PEP-QCQP, we find

α⋆ ∈ argmin
α
R(M(α), E ,F , C).

In all of our experiments, we observe, a posteriori, that α⋆ ∈ Anice. So

R(M(α⋆), E ,F , C) = R(M(α⋆), E ,F , C).

However, the actual problem we wish to solve is

minimize
α

R(M(α), E ,F , C) ,

and it is possible that α⋆ /∈ R(M(α), E ,F , C). This would be the case if there is α⋆,true /∈ Anice

such that

R(M(α⋆,true), E ,F , C) < R(M(α⋆,true), E ,F , C) (2.47)
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R(M(α⋆,true), E ,F , C) < R(M(α⋆), E ,F , C) (2.48)

R(M(α⋆), E ,F , C) ≤ R(M(α⋆,true), E ,F , C) (2.49)

Condition(2.47) states that for α⋆,true, the duality gap is positive. Condition (2.48) states

that α⋆,true has a better performance than α⋆. Condition (2.49) reaffirms that α⋆ is optimal

for dual problem. Figure 2.6 illustrates this circumstance. While this pathology is probably

extremely unlikely, its possibility is a consequence of the gap in the reasoning.

Figure 2.6: Illustration of R(M(α), E ,F , C) and R(M(α), E ,F , C) in a pathological
setup. Even if α⋆ ∈ argminR(M(α), E ,F , C) satisfies α⋆ ∈ Anice, it is possible that
α⋆ /∈ argminR(M(α), E ,F , C).

One can rigorously exclude this pathology in most well-behaved setups using the arguments

of Park and Ryu [74, Claim 4]:

(i) Prove R(M(α), E ,F , C) is a continuous function of α.

(ii) Observe, a posteriori, that α⋆ ∈ Anice.
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(One need not show that strong duality holds for α /∈ Anice.) Then, we have

inf
α∈RN(N+1)/2

R(M(α), E ,F , C) (a)= inf
α∈Anice

R(M(α), E ,F , C)

(b)= inf
α∈Anice

R(M(α), E ,F , C)

(c)= inf
α∈RN(N+1)/2

R(M(α), E ,F , C)

(d)= R(M(α⋆), E ,F , C).

where (a) follows from continuity of R(M(α), E ,F , C) and denseness of Anice ⊆ RN(N+1)/2, (b)

follows from strong duality on Anice, and (c) and (d) follows from the a posteriori observation

that α⋆ ∈ Anice. In this case, we would have α⋆ ∈ argminR(M(α), E ,F , C), even if there is

a duality gap, as illustrated in Figure 2.7. Showing that R(M(α), E ,F , C) is a continuous

function of α can be done by carefully arguing that, for the particular setup, the performance

continuously depends on the FSFOM’s stepsize.

2.A.3 Exact rank-1 nonconvex semidefinite representation of the BnB-

PEP-QCQP

In this section, we derive the exact rank-1 nonconvex semidefinite representation of (2.14).

For the other BnB-PEP-QCQPs, the steps to construct such a nonconvex semidefinite

representation are identical.

First, we define:

w = vec(α, ν, λ), (2.50)

which stacks the elements of α, ν, λ in a column vector w, and denote its number of elements

by |w|. Then we can define an one-to-one and onto index selector function ι(·) that takes

αi,j , ν, or λi,j as an input, and provides the unique index of that element in w with the range

124



Figure 2.7: Illustration of R(M(α), E ,F , C) and R(M(α), E ,F , C) when
R(M(α), E ,F , C) is continuous. If α⋆ ∈ argminR(M(α), E ,F , C) satisfies α⋆ ∈ Anice,
then α⋆ ∈ argminR(M(α), E ,F , C), even if there is a duality gap.

{1, 2, . . . , |w|} i.e.,

αi,j = wι(αi,j), ν = wι(ν), λi,j = wι(λi,j).

Next, define W = ww⊤ ∈ S|w|. For notational convenience define, |x0| = N + 2. Defining the

map ι mathematically can be quite tedious and does not provide any insight, but it very easy

to implement through the Julia packages OrderedCollections and JuMP. Recall that for

i ∈ [1 : N ], we have:

xi = x0

1− (µ/L)
i−1∑
j=0

αi,j

− (1/L)
i−1∑
j=0

αi,jgj

125



=
I|x0|×|x0| |

−1
L

i−1∑
j=0

(µx0 + gj)e⊤
ι(αi,j)


︸ ︷︷ ︸

J[i]∈R|x0|×(|x0|+|w|)

x0

w



Also, define J[⋆] = 0|x0|×(|x0|+|w|), and J[0] = [I|x0|×|x0| | 0|x0|×|w|]. Then, for all i ∈ I⋆
N , we have:

xi = J[i]

x0

w

 .

Hence, we have for any i, j ∈ I⋆
N ,

xi − xj = (J[i] − J[j])

x0

w



=

 G[i,j]︸ ︷︷ ︸
∈R|x0|×|x0|

| H[i,j]︸ ︷︷ ︸
∈R|x0|×|w|


x0

w


= G[i,j]x0 + H[i,j]w

=

g[i,j][k]⊤x0︸ ︷︷ ︸
c[i,j][k]

+h[i,j][k]⊤w


|x0|

k=1

=
[
c[i,j][k] + h[i,j][k]⊤w

]|x0|

k=1
,

where h[i,j][k]⊤ and g[i,j][k]⊤ correspond to the k-th rows of H[i,j] and G[i,j], respectively. Thus,

for any i, j ∈ I⋆
N , k, ℓ ∈ [1 : |x0|] :

[Bi,j(α)]k,ℓ = [(xi − xj)⊙ (xi − xj)]k,ℓ

= [xi − xj]k [xi − xj]ℓ

=
[
G[i,j]x0 + H[i,j]w

]
k

[
G[i,j]x0 + H[i,j]w

]
ℓ

=
[
c[i,j][k] + h[i,j][k]⊤w

] [
c[i,j][ℓ] + h[i,j][ℓ]⊤w

]
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= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ (h[i,j][k]⊤w)(h[i,j][ℓ]⊤w)

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+
|w|∑
ĩ=1

|w|∑
j̃=1

h
[i,j][k]
ĩ

h
[i,j][ℓ]
j̃

w̃
i
w

j̃

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ w⊤H [i,j][k,ℓ]w

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ tr
(
H [i,j][k,ℓ]W

)
, (2.51)

where H [i,j][k,ℓ] ∈ S|w| with its entries defined by

H
[i,j][k,ℓ]
ĩ,̃j

= 1
2

(
h

[i,j][k]
ĩ

h
[i,j][ℓ]
j̃

+ h
[i,j][k]
j̃

h
[i,j][ℓ]
ĩ

)
,

for ĩ, j̃ ∈ [1 : |w|]. Also, for i, j ∈ I⋆
N , and k, ℓ ∈ [1 : |x0|] :

[Ai,j(α)]k,ℓ = [gj ⊙ (xi − xj)]k,ℓ

=
[1
2gj(xi − xj)⊤ + 1

2(xi − xj)g⊤
j

]
k,ℓ

= 1
2 [gj]k [xi − xj]ℓ + 1

2 [xi − xj]k [gj]ℓ

= 1
2 [gj]k (c[i,j][ℓ] + h[i,j][ℓ]⊤w) + 1

2(c[i,j][k] + h[i,j][k]⊤w) [gj]ℓ

= 1
2
[
c[i,j][ℓ] [gj]k + c[i,j][k] [gj]ℓ

]
+

1
2 [gj]k (h[i,j][ℓ]⊤w) + 1

2(h[i,j][k]⊤w) [gj]ℓ

=

=c̃[i,j][k,ℓ]︷ ︸︸ ︷
1
2
[
c[i,j][ℓ] [gj]k + c[i,j][k] [gj]ℓ

]
+
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|w|∑
ĩ=1

(1
2 [gj]k h

[i,j][ℓ]
ĩ

+ 1
2 [gj]ℓ h

[i,j][k]
ĩ

)
w̃

i

= c̃[i,j][k,ℓ] +
|w|∑
ĩ=1

(1
2 [gj]k h

[i,j][ℓ]
ĩ

+ 1
2 [gj]ℓ h

[i,j][k]
ĩ

)
︸ ︷︷ ︸

=q̃
[i,j][k,ℓ]
ĩ

w̃
i

= c̃[i,j][k,ℓ] +
|w|∑
ĩ=1

q̃
[i,j][k,ℓ]
ĩ

w̃
i
.

Next, denoting eι(λi,j) = d̃[i,j], we have for k, ℓ ∈ [1 : |x0|]

λi,j [Ai,j(α)]k,ℓ

= (d̃[i,j]⊤w)
c̃[i,j][k,ℓ] +

|w|∑
ĩ=1

q̃
[i,j][k,ℓ]
ĩ

w̃
i


= c̃[i,j][k,ℓ](d̃[i,j]⊤w) +

 |w|∑
j̃=1

d̃
[i,j]
j̃
w

j̃


 |w|∑

ĩ=1

q̃
[i,j][k,ℓ]
ĩ

w̃
i


= c̃[i,j][k,ℓ](d̃[i,j]⊤w) +

|w|∑
ĩ=1

|w|∑
j̃=1

[
d̃

[i,j]
j̃
q̃

[i,j][k,ℓ]
ĩ

]
w̃

i
w

j̃

= c̃[i,j][k,ℓ](d̃[i,j]⊤w) + w⊤S[i,j][k,ℓ]w

= c̃[i,j][k,ℓ](d̃[i,j]⊤w) + tr
(
S[i,j][k,ℓ]W

)
, (2.52)

where: S[i,j][k,ℓ] ∈ S|w| with its entries defined by

S[i,j][k,ℓ] [̃i, j̃] = 1
2

([
d̃

[i,j]
j̃
q̃

[i,j][k,ℓ]
ĩ

]
+
[
d̃

[i,j]
ĩ
q̃

[i,j][k,ℓ]
j̃

])
,

for ĩ, j̃ ∈ [1 : |w|]. Hence, we have

∑
i,j∈I⋆

N :i ̸=j

λi,j [Ai,j(α)]k,ℓ =
 ∑

i,j∈I⋆
N :i ̸=j

c̃[i,j][k,ℓ]d̃[i,j]⊤

w + tr

 ∑
i,j∈I⋆

N

S[i,j][k,ℓ]

W.
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Using (2.51) and (2.52), we have the following nonconvex semidefinite representation of

(2.14):

R⋆ (MN , E ,F , C)

=



minimize νR2

subject to∑
(i,j)∈I⋆

N
λi,jai,j = 0,

ν [B0,⋆] k,ℓ − [CN,⋆] k,ℓ − µ2 [BN,⋆(α)] k,ℓ+

2µ [A⋆,N(α)] k,ℓ +∑
(i,j)∈I⋆

N
λi,j [Ai,j(α)]k,ℓ +

1
2(L−µ)

∑
(i,j)∈I⋆

N
λi,j [Ci,j] k,ℓ = Zk,ℓ, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

[BN,⋆(α)] k,ℓ = c[N,⋆][k]c[N,⋆][ℓ] + c[N,⋆][k]h[N,⋆][ℓ]⊤w + c[N,⋆][ℓ]h[N,⋆][k]⊤w+

tr
(
H [N,⋆][k,ℓ]W

)
, k ∈ [1 : |x0|], ℓ ∈ [1 : k],∑

i,j∈I⋆
N :i ̸=j λi,j [Ai,j(α)]k,ℓ =

(∑
i,j∈I⋆

N :i ̸=j c̃
[i,j][k,ℓ]d̃[i,j]⊤

)
w+

tr
(∑

i,j∈I⋆
N
S[i,j][k,ℓ]

)
W, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

Z ⪰ 0,

W = ww⊤,

(∀i, j ∈ I⋆
N) λi,j ≥ 0, ν ≥ 0,



(2.53)

where λ, ν, Z, and W are the decision variables, and w = vec(α, ν, λ) as defined in (2.50).

The constraint W = ww⊤ is nonconvex, but if we replace this constraint with the implied

constraint W ⪰ ww⊤, then by using Schur complement, a convex semidefinite relaxation of

(2.14) is given by:
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

minimize νR2

subject to∑
i,j∈I⋆

N
λi,jai,j = 0,

ν [B0,⋆] k,ℓ − [CN,⋆] k,ℓ − µ2 [BN,⋆(α)] k,ℓ+

2µ [A⋆,N(α)] k,ℓ +∑
(i,j)∈I⋆

N
λi,j [Ai,j(α)]k,ℓ +

1
2(L−µ)

∑
(i,j)∈I⋆

N
λi,j [Ci,j] k,ℓ = Zk,ℓ, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

[BN,⋆(α)] k,ℓ = c[N,⋆][k]c[N,⋆][ℓ] + c[N,⋆][k]h[N,⋆][ℓ]⊤w + c[N,⋆][ℓ]h[N,⋆][k]⊤w+

tr
(
H [N,⋆][k,ℓ]W

)
, k ∈ [1 : |x0|], ℓ ∈ [1 : k],∑

i,j∈I⋆
N :i ̸=j λi,j [Ai,j(α)]k,ℓ =

(∑
i,j∈I⋆

N :i ̸=j c̃
[i,j][k,ℓ]d̃[i,j]⊤

)
w+

tr
(∑

i,j∈I⋆
N
S[i,j][k,ℓ]

)
W k ∈ [1 : |x0|], ℓ ∈ [1 : k],

Z ⪰ 0,W w

w⊤ 1

 ⪰ 0,

(∀i, j ∈ I⋆
N) λi,j ≥ 0, ν ≥ 0,



(2.54)

where λ, ν, Z, and W are the decision variables. The optimal objective value of (2.54) will

provide a lower bound to (2.53).
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Chapter 3

Nonlinear conjugate gradient methods:

worst-case convergence rates via

computer-assisted analyses

3.1 Introduction

We consider the standard unconstrained convex minimization problem

f⋆ ≜ min
x∈Rn

f(x), (3.1)

where f is L-smooth (i.e., it has an L-Lipschitz gradient) and µ-strongly convex. We study

the worst-case performances of a few famous variants of nonlinear conjugate gradient methods

(NCGMs) for solving (3.1). More specifically, we study Polak-Ribière-Polyak (PRP) [11, 12]

and Fletcher-Reeves (FR) [13] schemes with exact line search. With exact line search, many

other NCGMs such as the Hestenes and Stiefel method [14], the conjugate descent method
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due to Fletcher [15], and the Dai and Yuan method [16] reduce to either PRP or FR. Under

exact line search, PRP and FR can be presented in the following compact form:

γk ∈ argmin
γ ∈R

f(xk − γ dk),

xk+1 = xk − γkdk,

βk = ∥∇f(xk+1)∥2 − η ⟨∇f(xk+1) | ∇f(xk)⟩
∥∇f(xk)∥2 ,

dk+1 = ∇f(xk+1) + βkdk,

(M)

where PRP and FR are respectively obtained by setting η = 1 and η = 0. NCGMs have a long

history (see, e.g., the survey [110] and monograph [111]), but are much less studied compared

to their many first-order competitors. For instance, even though FR is generally considered

the first NCGM [110, §1], we are not aware of non-asymptotic convergence results for it. On a

similar note, some variants of NCGMs are known for their generally good empirical behaviors

(which we illustrate in Figure 3.1) with little of them being backed-up by classical complexity

analyses. In this work, we apply the performance estimation approach [4, 5] to (M) for filling

this gap by explicitly computing some worst-case convergence properties of PRP and FR with

exact line search. This work focuses on exact line search, as it is arguably the most logical

starting point to understand the non-asymptotic convergence behavior of NCGMs. In certain

cases, the minimizer associated with exact line search has an analytical form, while in others, it

can be computed efficiently [58, §9.7.1]. However, in many practical implementations, inexact

line searches are employed that try to either approximately minimize f(xk − γ dk) or even

just reduce f enough along the ray xk − γdk. These inexact methods can be either monotone,

which ensures a decrease in f but converges slowly, or nonmonotone, which may allow faster

convergence but risks nonrobust tuning [111, §1.2]. Examples of notable monotone inexact

line search schemes include backtracking [112], Goldstein [113], and Wolfe line searches [114,

115], and their variants [116]. Nonmonotone schemes include [117–119] and many others;
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see [111, pp. 10-14] for a brief review. Despite the computational differences between the

two types of line searches, both aim to emulate the exact line search method. Consequently,

when using an inexact line search process, any convergence guarantees—defined in terms of

iteration numbers—are likely to be worse compared to the exact line search (neglecting the

cost of performing exact line search).
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Figure 3.1: Convergence of a few first-order methods on a logistic regression problem
on the small-sized Sonar dataset [120]. Experiments with normalized features (zero
mean and unit variance). Left: without regularization. Right: with an ℓ2 regularization
of parameter 10−4. All methods were featured with an exact line search ( performed
numerically using the bisection method with a tolerance of 10−8): (i) gradient descent,
(ii) Nesterov’s accelerated gradient [121] (exact line search instead of backtracking),
(iii) Nesterov’s accelerated method for strongly convex problems, version [122, Algo-
rithm 28] with exact line search instead of the gradient step, (iv) optimized gradient
method [40, Algorithm (OGM-LS)], (v) FR, and (vi) PRP.

3.1.1 Contributions

The contribution of this chapter is twofold. First, we compute worst-case convergence bounds

and counter-examples for PRP and FR. These bounds are obtained by formulating the

problems of computing worst-case scenarios as nonconvex quadratically constrained quadratic

optimization problems (QCQPs), and then by solving them to global optimality. Second,

these computations enable us to construct mathematical proofs that establish an improved

non-asymptotic convergence bound for PRP, and, to the best of our knowledge, the first
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non-asymptotic convergence bound for FR. Furthermore, the worst-case bounds for PRP and

FR obtained numerically reveal that there are simple adversarial examples on which these

methods do not perform better than gradient descent with exact line search (GDEL), leaving

very little room for improvements on this class of problems. Since we demonstrate that the

convergence results of NCGMs associated with exact line search are already disappointing,

we conclude that inexact line searches, which approximate exact line search, are unlikely to

offer improvement.

From a methodological point of view, our approach to computing worst-case scenarios and

bounds through optimization is part of what is often referred to as performance estimation

framework. This framework models the computation of the worst-case performance of a

first-order method as an optimization problem itself; such optimization problems are called

performance estimation problems (PEP). While these PEPs are usually amenable to convex

semidefinite programs [4–6], this is generally not the case for adaptive first-order methods such

as PRP and FR [123, 124]. To study these methods, we evaluate the worst-case performances

of (M) by solving nonconvex QCQPs, extending the standard SDP-based approach from [4–6]

developed for non-adaptive methods. This contribution aligns with the spirit of Chapter 2

of this thesis (the content of that chapter was published in Mathematical Programming in

2023 [1]), developed for devising optimal (but non-adaptive) first-order methods.

Organization. The chapter is organized as follows. In Section 3.2, we establish non-

asymptotic convergence rates for PRP and FR by viewing the search direction dk in (M) as

an approximate gradient direction. In Section 3.3, we compute the exact numerical values

of the worst-case f(xN )−f⋆/f(x0)−f⋆ and f(xk+N )−f⋆/f(xk)−f⋆ for PRP and FR by formulating the

problems as nonconvex QCQPs and then solving them to certifiable global optimality using

a custom spatial branch-and-bound algorithm. The solutions to these QCQPs allow us to
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construct low-dimensional (dimension 4) counter-examples indicating that there is essentially

no room for further improvement of the rates that we provide. In Section 3.4, we discuss the

implementation details for solving the nonconvex QCQPs in this chapter.

Code. All the numerical results in this chapter were obtained on the MIT Supercloud

Computing Cluster with Intel-Xeon-Platinum-8260 processor with 48 cores and 128 GB of

RAM running Ubuntu 18.04.6 LTS with Linux 4.14.250-llgrid-10ms kernel [80]. We used

JuMP—a domain specific modeling language for mathematical optimization embedded in the

open-source programming language Julia [53]—to model the optimization problems. To solve

the optimization problems, we use the following solvers: Mosek 9.3 [54], KNITRO 13.0.0 [56],

and Gurobi 10.0.0 [125], which are free for academic use. The relative feasibility tolerance

and relative optimality tolerance of all the solvers are set at 1e-6. We validated the “bad”

worst-case scenarios produced by our methodology using the PEPit package [126], which is

an open-source Python library allowing to use the performance estimation problem (PEP)

framework. A PEP is an optimization problem to compute the worst-case performance of a

first-order method.

The code used to generate and validate the results in this chapter is available at:

https://github.com/Shuvomoy/NCG-PEP-code.

3.1.2 Related works

Conjugate gradient (CG) methods are particularly popular choices for solving systems of

linear equations and quadratic minimization problems; in this context, they are known to

be information-optimal in the class of first-order methods [32, Chapter 12 & Chapter 13]

or [127, Chapter 5]. There are many extensions beyond quadratics, commonly referred to

as nonlinear conjugate gradient methods (NCGMs). They are discussed at length in the

135

https://github.com/Shuvomoy/NCG-PEP-code


textbooks [128, Chapter 5 & Chapter 7] and [129, Chapter 5] and in the nice survey [110].

In particular, when exact line searches are used, many variants become equivalent and can

be seen as instances of quasi-Newton methods, see [128, Chapter 7, §“Relationship with

conjugate gradient methods”] or [129, Chapter 5, §5.5]. For instance, it is well known that

standard variants such as Hestenes-Stiefel [14] and Dai-Yuan [16] are equivalent to (M) when

exact line searches are used, while being different in the presence of more popular line search

procedures (such as Wolfe’s [128, Chapter 3]). Beyond quadratics, obtaining convergence

guarantees is often reduced to the problem of ensuring the search direction to be a descent

direction, see for instance [127, §5.5 “Extensions to non-quadratic problems”] or [116, 130].

Without exact line searches, even when f is strongly convex, there are counter-examples

showing that even popular variants may not generate descent directions [131]. Note that

NCGMs are often used together with restart strategies, which we do not consider here; see,

e.g., [132] and the references therein. Also, in [133, §5], the authors empirically demonstrate

that NCGMs work very well in training deep learning problems.

In this work, we use the performance estimation framework, which models the computation

of the worst-case performance of a first-order method as an optimization problem called

PEP [4–6]. This PEP methodology is essentially mature for analyzing “fixed-step” (i.e.,

non-adaptive) first-order methods (and for methods whose analyses are amenable to those

of fixed-step methods), whose stepsizes are essentially chosen in advance. This type of

methods include many common first-order methods and operator splitting schemes, including

the heavy-ball method [134] and Nesterov’s accelerated gradient [101, 121]. Only very few

adaptive methods were studied using the PEP methodology, namely gradient descent with

exact line searches [47], greedy first-order methods [40], and Polyak stepsizes [123]. A premise

to the study of NCGMs using PEPs was done in [124, §4.5.2], where an upper bound on

the worst-case (f(x2)−f⋆)/(f(x0)−f⋆) of FR was numerically computed for two iterations and
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two condition number values, q = 0.1 and q = 0.01, where q ≜ µ/L. This was achieved

by numerically solving an SDP relaxation through a grid search on βk. In comparison, we

compute the worst-case (f(xN )−f⋆)/(f(x0)−f⋆) by solving the nonconvex PEPs associated with

both FR and PRP to global optimality across a broader range of condition numbers over

q ∈ [0, 1] for N = 1, 2, 3, 4. Furthermore, for both methods, we also compute “Lyapunov”-type

bounds on (f(xk+N )−f⋆)/(f(xk)−f⋆) that holds for any k for N = 1, 2, 3, 4, and also establish

their analytical complexity bounds offering a more comprehensive understanding of their

performance. We run our numerical experiments for N = 1, 2, 3, 4, as the qualitative

behaviors of both PRP and FR become clear after 3-4 iterations. Our work is also closely

related in spirit with the technique developed in [1] for optimizing coefficients of fixed-step

first-order methods using nonconvex optimization.

3.1.3 Preliminaries

In this section, we recall the definition and a result on smooth strongly convex functions, as

well as a base result on steepest descent with an exact line search.

Properties of smooth strongly convex functions. We use the standard notation ⟨ · |

· ⟩ : Rn ×Rn → R to denote the Euclidean inner product, and the corresponding induced

Euclidean norm ∥ · ∥. The class of L-smooth µ-strongly convex functions is standard and can

be defined as follows.

Definition 3.1. Let f : Rn → R be a proper, closed, and convex function, and consider two

constants 0 ≤ µ < L < ∞. The function f is L-smooth and µ-strongly convex (notation

f ∈ Fµ,L(Rn)), if

• (L-smooth) f is differentiable and for all x, y ∈ Rn, it holds that ∥∇f(x)−∇f(y)∥ ≤

137



L∥x− y∥,

• (µ-strongly convex) for all x, y ∈ Rn, it holds that f(x) ≥ f(y) + ⟨∇f(y) | x − y⟩ +
µ
2∥x− y∥

2.

We simply denote f ∈ Fµ,L when the dimension is either clear from the context or unspecified.

We also denote by q ≜ µ
L

the inverse condition number. For readability, we do not explicitly

treat the (trivial) case L = µ.

Smooth strongly convex functions satisfy many inequalities, see e.g., [135, Theorem 2.1.5].

For the developments below, we need only one specific inequality characterizing functions in

Fµ,L. The following result can be found in [5, Theorem 4] and is key in our analysis.

Theorem 3.1. [5, Theorem 4, Fµ,L-interpolation] Let I be an index set and S = {(xi, gi, fi)}i∈I ⊆

Rn×Rn×R be a set of triplets. There exists f ∈ Fµ,L satisfying f(xi) = fi and ∇f(xi) = gi

for all i ∈ I if and only if

fi ≥ fj + ⟨gj | xi−xj⟩+
1

2(1− µ
L

)

( 1
L
∥gi− gj∥2 +µ∥xi−xj∥2−2µ

L
⟨gi − gj | xi − xj⟩

)
(3.2)

holds for all i, j ∈ I.

Another related result from [41, §2.1] that we record next involves constructing a strongly-

convex smooth function from a given set of triplets. In this theorem, number of elements of

index set I is denoted by |I|.

Theorem 3.2. [41, §2.1, strongly convex and smooth extension] Suppose I is a set of indices

and S = {(xi, gi, fi)}i∈I ⊆ Rn×Rn×R is a set of triplets such that (3.2) holds for all i, j ∈ I
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for some 0 ≤ µ < L <∞. Then the function f : Rn → R defined by

f(y) = max
α∈∆

[
L

2 ∥y∥
2 − L− µ

2 ∥y − 1
L− µ

∑
i∈I

αi(gi − µxi)∥2

+
∑
i∈I

αi

(
fi + 1

2(L− µ)∥gi − Lxi∥2 − L

2 ∥xi∥2
)]

(3.3)

where ∆ = {α ∈ R|I| | α ≥ 0, ∑n
i=1 αi = 1}, satisfies f ∈ Fµ,L(Rn), f(xi) = fi and

∇f(xi) = gi for all i ∈ I.

Approximate steepest descent method. Consider a function f ∈ Fµ,L and the approximate

steepest descent method:

γk = argmin
γ ∈R

f(xk − γdk),

xk+1 = xk − γkdk,

(ASD)

where the search direction dk satisfies a relative error criterion:

∥dk −∇f(xk)∥ ≤ ϵ∥∇f(xk)∥ where ϵ ∈ [0, 1). (REC)

Note that the relative tolerance ϵ needs to satisfy ϵ ∈ [0, 1) for (ASD) to converge. If ϵ ≥ 1,

then dk = 0 becomes feasible and (ASD) cannot be guaranteed to converge anymore, because

in such a case we can select dk to be orthogonal to ∇f(xk) in practice [47, §5].

The iterates of (ASD) satisfies the following two necessary (weaker) conditions for xk+1 to

follow (ASD):
⟨∇f(xk+1) | dk⟩ = 0,

⟨∇f(xk+1) | xk − xk+1⟩ = 0,
(ASDrelaxed)
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where the first condition follows from optimality of γk in the line search condition in (ASD)

as follows

0 = [∇γf(xk − γdk)]γ=γk

= −⟨∇f(xk − γkdk) | dk⟩

= −⟨∇f(xk+1) | dk⟩ , (3.4)

and the second condition comes from putting dk = (xk−xk+1)/γk in (3.4).

Convergence of approximate steepest descent method. We will use the following result

in our analysis. Note that similar results (without line searches) to that of Theorem 3.3 can

be found in [44], which might help in future analyses of NCGMs without exact line searches.

Theorem 3.3 ([47, Theorem 5.1]). Let f ∈ Fµ,L(Rn), x⋆ ≜ argminx∈Rn f(x) be the

minimizer of f , and f⋆ ≜ f(x⋆). For any xk ∈ Rn, search direction dk ∈ Rn, and xk+1 ∈ Rn

computed using (ASD) such that the relative error criterion (REC) holds, we have

f(xk+1)− f⋆ ≤
(

1− qϵ

1 + qϵ

)2

(f(xk)− f⋆) , (3.5)

where qϵ ≜ µ(1−ϵ)/L(1+ϵ).

Next, we show that the relative error criterion (REC) can be interpreted in simple geometric

fashion in the context of exact line searches in (ASD). As (ASD) uses exact line search,

it is the direction of dk that influences the convergence, not the magnitude. Scaling the

magnitude of dk by a suitable nonzero factor α = ⟨∇f(xk)|dk⟩/∥dk∥2, i.e., the scaled direction

being αdk, leads to γk getting scaled to γk/α, but this scaling does not alter xk, xk+1 and we

have | sin∠(∇f(xk), αdk)| = | sin∠(∇f(xk), dk)| (details in the proof to Corollary 3.1 below);
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here we have used the notation ∠(a, b) to denote the angle between two vectors a, b. Hence,

by appropriate scaling of search direction to αdk, we can ensure that | sin∠(∇f(xk), αdk)| =

∥αdk−∇f(xk)∥/∥∇f(xk)∥. Since the iterates remain the same, under the angle condition, we will

have the same convergence guarantees that hold for (REC) in Theorem 3.3. In short, (REC)

is equivalent to | sin θk| ≤ ϵ in the context of exact line search used in (ASD), which we

detail in Corollary 3.1 below.

Figure 3.2: This figure illustrates how for any xk ∈ Rn, search direction dk ∈ Rn,
and xk+1 ∈ Rn satisfying (ASD), one can scale dk appropriately without altering
xk, xk+1 such that the scaled search direction d′

k = αdk with α = ⟨∇f(xk)|dk⟩/∥dk∥2

ensures | sin θk| = ∥d′
k−∇f(xk)∥/∥∇f(xk)∥ with θk being the angle between ∇f(xk) and dk.

Corollary 3.1. Let f ∈ Fµ,L(Rn), x⋆ ≜ argminx∈Rn f(x) be the minimizer of f , and

f⋆ ≜ f(x⋆). Consider any xk ∈ Rn, search direction dk ∈ Rn, and xk+1 ∈ Rn computed using

(ASD) such that | sin θk| ≤ ϵ with θk being the angle between ∇f(xk) and dk and ϵ ∈ [0, 1).

Then we have

f(xk+1)− f⋆ ≤
(

1− qϵ

1 + qϵ

)2

(f(xk)− f⋆) , (3.6)

where qϵ ≜ µ(1−ϵ)/L(1+ϵ).

Proof. The proof sketch is as follows. As (ASD) uses exact line search, it is only the direction

of dk that influences the convergence, not its magnitude. Hence, we can appropriately scale the
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search direction dk to d′
k = αdk (with α = ⟨∇f(xk)|dk⟩/∥dk∥2 ̸= 0) so that the algorithm iterates

remain the same and we can ensure | sin θk| = | sin∠(∇f(xk), d′
k)| = ∥d′

k−∇f(xk)∥/∥∇f(xk)∥.

Since the iterates remain the same, under the angle condition | sin θk| ≤ ϵ we have the same

convergence guarantees that hold for (REC) in Theorem 3.3.

Now we start the proof earnestly. Consider the following method, where the search direction

dk in (ASD) is scaled by some factor α ̸= 0 with the scaled search direction denoted by

d′
k = αdk:

γ′
k = argmin

γ′
f(xk − γ′d′

k),

x′
k+1 = xk − γ′

kd
′
k,

(ASDscaled)

and we denote θ′
k to be the angle between ∇f(xk) and d′

k. We now show that (ASD) and

(ASDscaled) are equivalent in the sense that they generate an identical sequence of iterates

xk, xk+1 along with | sin θk| = | sin θ′
k|. This is so because

γ′
k = argmin

γ′
f(xk − γ′d′

k) = argmin
γ

f
(
xk −

γk

α
· αdk

)
= γk

α
,

i.e., the optimal stepsize γ′
k in (ASDscaled) is the optimal step-size γk in ASD scaled by 1/α,

leading to

x′
k+1 = xk − γ′

kd
′
k = xk − γkdk = xk+1.

Finally,

| sin θ′
k| =

√
1− cos2 θ′

k
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=

√√√√1− ⟨∇f(xk) | d′
k⟩

2

∥∇f(xk)∥2∥d′
k∥2

=

√√√√1− �α2 ⟨∇f(xk) | dk⟩2

�α2∥∇f(xk)∥2∥dk∥2

=
√

1− cos2 θk

= | sin θk|.

Hence to establish our convergence result (3.6), we can work with (ASDscaled). Next, we

carefully select a nonzero α that ensures ⟨d′
k | d′

k −∇f(xk)⟩ = 0, i.e., d′
k −∇f(xk) would be

perpendicular to d′
k (see Figure 3.2); this yields α = ⟨∇f(xk)|dk⟩/∥dk∥2 which is nonzero because

ϵ ∈ [0, 1) implies ⟨∇f(xk) | dk⟩ ≠ 0. For this value of α, we have | sin θk| = ∥d′
k−∇f(xk)∥/∥∇f(xk)∥,

which can be shown geometrically in Figure 3.2 in the right triangle (colored red) involving

∇f(xk), d′
k, and d′

k −∇f(xk).

Now we are given that | sin θk| ≤ ϵ, hence setting α = ⟨∇f(xk)|dk⟩/∥dk∥2 ensures that the

relative error criterion ∥d′
k−∇f(xk)∥/∥∇f(xk)∥ ≤ ϵ is satisfied for (ASDscaled). Finally by applying

Theorem 3.3 to (ASDscaled), we arrive at (3.6).

3.2 Base descent properties of NCGMs

In this section, we analyze NCGMs as approximate steepest descent methods satisfying

(ASD) through a computer-assisted approach, where only the generated search directions

matter, and not their magnitudes. This renders the analysis somewhat simpler, and we argue

that this is a reasonable setting for improving the analysis and understanding of NCGMs.

This section builds on the intuition that when | sin θk|, where θk is the angle between the

gradient and the search direction dk at iteration k, is upper bounded in an appropriate fashion,
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one can use Theorem 3.3 for obtaining convergence guarantees. In particular, we get nontrivial

convergence guarantees as soon as θk can be bounded away from ±π
2 , i.e., sin θk should be

bounded away from 1 for ensuring that dk’s are descent directions. Of course, viewing NCGMs

as approximate steepest descent methods is adversarial by nature, as it misses the point

that the directions of NCGMs are meant to be better than those of vanilla gradient descent,

while such analyses can only provide worse rates. Additionally, in Section 3.2.1, we provide

additional justification behind analyzing NCGMs as approximate steepest descent methods

through the lens of performance estimation problem (PEP), where we formulate the process

of computing the worst-case f(xk+1)−f⋆/f(xk)−f⋆ as optimization problems.

Albeit being pessimistic by construction, the analyses of this section are, to the best of our

knowledge, novel for FR (for which we provide the first non-asymptotic convergence bound)

and significantly better than the state-of-the-art bound for PRP. Furthermore, we show in

Section 3.3.3 and Section 3.3.4 that there is actually nearly no room for improving those

analyses.

Properties of NCGMs with exact line search. Before going into the detailed approach,

let us review a few properties of the iterates of (M). Note that the iterates of (M) satisfy

the following equalities:
⟨∇f(xk+1) | dk⟩ = 0,

⟨∇f(xk+1) | xk − xk+1⟩ = 0,

⟨∇f(xk) | dk⟩ = ∥∇f(xk)∥2,

(3.7)

where the first two equalities are the same as (ASDrelaxed) following from exact line search.

The last equality in (3.7) follows from applying the first equality to

⟨∇f(xk) | dk⟩ = ⟨∇f(xk) | ∇f(xk) + βk−1dk−1⟩ = ∥∇f(xk)∥2. (3.8)
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Combining (3.8) with ⟨∇f(xk) | dk⟩ = ∥∇f(xk)∥∥dk∥ cos θk, we obtain that ∥∇f(xk)∥/∥dk∥ =

cos θk, thereby reaching sin2 θk = 1− ∥∇f(xk)∥2/∥dk∥2. If we have ∥dk∥2/∥∇f(xk)∥2 ≤ c (c ≥ 1 due

to (3.7)), then sin2 θk = 1− (∥∇f(xk)∥2/∥dk∥2) ≤ 1− (1/c), yielding

| sin θk| ≤
√

1− 1/c. (3.9)

The first two equations of (3.7), in conjunction with (3.9), satisfied by NCGMs, correspond

to the same set of conditions required to apply Theorem 3.3. Thus, if we can establish an

upper bound for the ratio ∥dk∥/||∇f(xk)|| in the context of NCGMs, we can translate this into

their worst-case convergence rates using Theorem 3.3.

Section organization. In Section 3.2.1, we provide PEP-based perspective behind analyzing

NCGMs as methods satisfying (ASD). Section 3.2.2, first frames the problems of computing

the worst-case ∥dk∥/∥∇f(xk)∥ for PRP and FR as optimization problems for obtaining the desired

bounds measuring the quality of the angle θk as PEPs. These PEPs are nonconvex but

practically tractable QCQPs and can be solved numerically to certifiable global optimality

using spatial branch-and-bound algorithms (detailed in Section 3.4), which allows (i) to

construct “bad” functions serving as counter-examples on which the worst-case ∥dk∥/∥∇f(xk)∥

for PRP and FR is achieved, and (ii) to identify closed-form solutions to the PEPs leading to

proofs that can be verified in a standard and mathematically rigorous way. The convergence

rates for PRP and FR are provided and proved in Section 3.2.3.
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3.2.1 A PEP perspective behind viewing NCGMs as approximate steep-

est descent method

In this section, we provide a PEP-based perspective behind analyzing NCGMs as approximate

steepest descent methods satisfying (ASD) through the lens of PEP. In this PEP approach,

we formulate the problems of computing the worst-case ratios of f(xk+1)−f⋆/f(xk)−f⋆ as the

following optimization problem:



maximize
f,n,xk,xk+1,dk,dk+1,

γk,βk

f(xk+1)−f⋆

f(xk)−f⋆

subject to n ∈N, f ∈ Fµ,L(Rn), dk, xk ∈ Rn,

⟨∇f(xk) | dk⟩ = ∥∇f(xk)∥2,

∥dk∥2 ≤ c∥∇f(xk)∥2,

(xk+1, dk+1, βk) generated by (M) from xk and dk.


(3.10)

In Section 3.3.1, we will illustrate how we can formulate and solve (3.10) by casting it as a

nonconvex QCQP. Note that in (3.10), the second constraint corresponds to third equation of

(3.7) and the third constraint ∥dk∥2 ≤ c∥∇f(xk)∥2 models that if ∇f(xk) = 0 then dk = 0 for

(M). Note that ∥dk∥2/∥∇f(xk)∥2 ≥ 1 because ∥∇f(xk)∥2 ≤ ∥dk∥2, which follows from applying

Cauchy–Schwarz inequality to (3.8).

While solving the nonconvex QCQPs equivalent to (3.10) for different values of c, µ, and

L, we found that the worst-case f(xk+1)−f⋆/f(xk)−f⋆ is strictly monotonically increasing in c.

Naturally, assigning an arbitrary value to c would not be reasonable to get the best bound,

because the search direction generated by (M) may not admit such a value. For example,

for PRP, c is always upper bounded by 1 + L2/µ2 as ∥dk∥2/∥∇f(xk)∥2 ≤ 1 + L2/µ2 for PRP [11,

Theorem 2]. As we are interested in obtaining the tightest upper bound on f(xk+1)−f⋆/f(xk)−f⋆,
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the natural question is: What is the smallest admissible value of c, i.e., what is the least upper

bound on the ratio ∥dk∥2/∥∇f(xk)∥2 generated by (M)? To that end, we numerically computed

the least upper bound on c by solving a problem similar to (3.10), except we replaced the

objective f(xk+1)−f⋆/f(xk)−f⋆ with ∥dk+1∥2/∥∇f(xk+1)∥2 and then replaced the indices k, k + 1 with

k − 1, k, respectively. In Section 3.2.2, we provide the details on formulating the problems of

computing the worst-case ratios of ∥dk∥2/∥∇f(xk)∥2 as nonconvex QCQPs. After we computed

the least upper bound on c numerically, we put them in (3.10). We then solved the associated

nonconvex QCQP to global optimality, which numerically provided us with the tightest

upper bound on worst-case f(xk+1)−f⋆/f(xk)−f⋆. Remarkably, at this stage, we found that these

numerically computed worst-case f(xk+1)−f⋆/f(xk)−f⋆ for (M) exactly matched the analytical

bound prescribed in Corollary 3.1. This PEP-based observation provides us a justification for

analyzing NCGMs as approximate steepest descent methods and demonstrates the viability

of this approach.

3.2.2 Computing worst-case search directions

In this section, we formulate the problems of computing the worst-case ratios of ∥dk∥/∥∇f(xk)∥.

Following the classical steps introduced in [5, 6], we show that it can be cast as a noncon-

vex QCQP.

For doing that, we assume that at iteration k − 1 the NCGM has not reached optimality,

so ∇f(xk−1) ̸= 0. Because ∥∇f(xk−1)∥2 ≤ ∥dk−1∥2 (follows from applying Cauchy–Schwarz

inequality to (3.8)), without loss of generality we define the ratio ck−1 ≜ ∥dk−1∥2/∥∇f(xk−1)∥2

where ck−1 ≥ 1. Then, denoting by ck the worst-case ratio ∥dk∥2/∥∇f(xk)∥2 arising when

applying (M) to the minimization of an L-smooth µ-strongly convex function, we will

compute ck as a function of L, µ, and ck−1. In other words, we use a Lyapunov-type point

of view and take the stand of somewhat forgetting about how dk−1 was generated (except
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through the fact that it satisfies (3.7)). Then, we compute the worst possible next search

direction dk that the algorithm could generate given that dk−1 satisfies a certain quality.

Thereby, we obtain an upper bound on the evolution of the quality of the search directions

(quantified by ck) obtained throughout the iterative procedure. Formally, we compute

ck(µ, L, ck−1) ≜



maximize
f, xk−1, dk−1,
xk, dk, βk−1, n

∥dk∥2

∥∇f(xk)∥2

subject to n ∈N, f ∈ Fµ,L(Rn), dk−1, xk−1 ∈ Rn,

xk, dk and βk−1 generated by (M) from xk−1 and dk−1,

⟨∇f(xk−1); dk−1⟩ = ∥∇f(xk−1)∥2,

∥dk−1∥2 = ck−1∥∇f(xk−1)∥2.


(3.11)

For computing ck(µ, L, ck−1), we reformulate (3.11) as follows. Denote I ≜ {k − 1, k}. An

appropriate sampling of the variable f (which is inconveniently infinite-dimensional) allows

148



us to cast (3.11) as:

ck(µ, L, ck−1) =



maximize
{di}i∈I , γk−1, βk−1,

{(xi,gi,fi)}i∈I , n

∥dk∥2

∥gk∥2

subject to n ∈N, βk−1 ∈ R, dk−1, dk ∈ Rn,

{(xi, gi, fi)}i∈I ⊂ Rn ×Rn ×R,

∃f ∈ Fµ,L :


f(xi) = fi

∇f(xi) = gi

∀i ∈ I,

γk−1 = argmin
γ

f(xk−1 − γ dk−1),

xk = xk−1 − γk−1dk−1,

βk−1 = ∥gk∥2−η⟨gk; gk−1⟩
∥gk−1∥2 ,

dk = gk + βk−1dk−1,

⟨gk−1; dk−1⟩ = ∥gk−1∥2,

∥dk−1∥2 = ck−1∥gk−1∥2.



(3.12)

Using Theorem 3.1, the existence constraint can be replaced by a set of linear/quadratic

inequalities (3.2) for all pairs of triplets in {(xi, gi, fi)}i∈I without changing the objective

value. So, applying Theorem 3.1 to (3.12) followed by an homogeneity argument and a few

substitutions based on (3.7), we arrive at:
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ck(µ, L, ck−1) =



maximize
{di}i∈I , γk−1, βk−1,

{(xi,gi,fi)}i∈I , n

∥dk∥2

subject to n ∈N, dk−1, xk−1 ∈ Rn,

fi ≥ fj + ⟨gj; xi − xj⟩+ 1
2(1− µ

L
)

(
1
L
∥gi − gj∥2

+µ∥xi − xj∥2 − 2 µ
L
⟨gi − gj; xi − xj⟩

)
, i, j ∈ I,

⟨gk−1; dk−1⟩ = ∥gk−1∥2,

⟨gk; dk−1⟩ = 0,

⟨gk; xk−1 − xk⟩ = 0,

xk = xk−1 − γk−1dk−1,

βk−1 = ∥gk∥2−η⟨gk; gk−1⟩
∥gk−1∥2 ,

dk = gk + βk−1dk−1

∥dk−1∥2 = ck−1∥gk−1∥2,

∥gk∥2 = 1.


(3.13)

We now show how to transform (3.13) into a finite-dimensional nonconvex QCQP based on

PEP methodologies developed in [4–6]. To that goal, note that (3.13) contains function

values, inner product, and norm-squared involving {(xi, gi, fi)}i∈I and {di}i∈I , to model such

terms in a compact manner, we introduce the following Grammian matrices:

H = [xk−1 | gk−1 | gk | dk−1] ∈ Rn×4,

G = H⊤H ∈ S4
+, rankG ≤ n,

F = [fk−1 | fk] ∈ R1×2.

(3.14)
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We next define the following notation for selecting columns and elements of H and F :

xk−1 = e1, gk−1 = e2, gk = e3, dk−1 = e4, (all in R4)

fk−1 = e1, fk = e2, (all in R2),

xk = xk−1 − γk−1dk−1, (all in R4),

dk = gk + βk−1dk−1, (all in R4).

(3.15)

This ensures that xi = Hxi, gi = Hgi, di = Hdi, fi = F fi, for all i ∈ I. Next, for appropriate

choices of matrices Ai,j , Bi,j , Ci,j , C̃i,j , Di,j , D̃i,j , Ei,j , and vector ai,j , we can ensure that the

following reformulations hold for all i, j ∈ I:

⟨gj; xi − xj⟩ = trGAi,j,

∥xi − xj∥2 = trGBi,j,

∥gi − gj∥2 = trGCi,j, ∥gi∥2 = trGCi,⋆,

∥di − dj∥2 = trGC̃i,j, ∥di∥2 = trGC̃i,⋆,

⟨gi; gj⟩ = trGDi,j,

⟨gi; dj⟩ = trGD̃i,j,

⟨gi − gj; xi − xj⟩ = trGEi,j,

fj − fi = Fai,j,

(3.16)

where, using (3.15), and using symmetric outer product notation (· ⊙ ·) : Rn ×Rn → Rn×n
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such that for any x, y ∈ Rn, x⊙ y = 1/2
(
xy⊤ + yx⊤

)
, we define

Ai,j = gj ⊙ (xi − xj)

Bi,j = (xi − xj)⊙ (xi − xj)

Ci,j = (gi − gj)⊙ (gi − gj), Ci,⋆ = gi ⊙ gi,

C̃i,j = (di − dj)⊙ (di − dj), C̃i,⋆ = di ⊙ di,

Di,j = gi ⊙ gj,

D̃i,j = gi ⊙ dj,

Ei,j = (gi − gj)⊙ (xi − xj),

ai,j = fj − fi.

(3.17)

Using (3.17), we can write (3.13) as a finite-dimensional optimization problem with a positive-

semidefinite constraint:
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ck(µ, L, ck−1) =



maximize
G, F, γk−1, βk−1, n

trGC̃k,⋆

subject to trGD̃k−1,k−1 = trGCk−1,⋆,

trGD̃k,k−1 = 0,

trGAk−1,k = 0,

βk−1 × trGCk−1,⋆ = trG (Ck,⋆ − ηDk,k−1) ,

trGC̃k−1,⋆ ≤ ck−1 trGCk−1,⋆,

Fai,j + trG
[
Ai,j

+ 1
2(1− µ

L
)

(
1
L
Ci,j + µBi,j − 2 µ

L
Ei,j

) ]
≤ 0, i, j ∈ I,

trGCk,⋆ = 1,

G ∈ S4
+, rankG ≤ n.


(3.18)

In the optimization problem above, the only constraint involving n is rankG ≤ n, where

the optimal value of the problem is monotonically nondecreasing in n. As G ∈ S4
+ (implying

rankG ≤ 4), at the optimal solution, we have rankG ≤ n satisfied automatically without

impacting the optimal objective value, and the worst-case function would have a dimension

of less than or equal to 4.

Next, we model the positive semidefinite constraint G ∈ S4
+ using Cholesky factorization.

Recall that a matrix Z ∈ Sm is positive semidefinite if and only if it has a Cholesky factorization

P⊤P = Z, where P ∈ Rm×m [77, Corollary 7.2.9]. Hence, positive semidefiniteness of G can

be reformulated as G = H̃⊤H̃, where H̃ ∈ R4×4, i.e., for G = H⊤H in (3.14), we can let
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H ∈ R4×4. Thus, we can write (3.18) as the following nonconvex QCQP:

ck(µ, L, ck−1) =



maximize
G, F, H, γk−1, βk−1,

Θ, {Θi,j}i,j∈I

trGΘ

subject to trGD̃k−1,k−1 = trGCk−1,⋆,

trGD̃k,k−1 = 0,

trGAk−1,k = 0,

βk−1 × trGCk−1,⋆ = trG (Ck,⋆ − ηDk,k−1) ,

trGC̃k−1,⋆ ≤ ck−1 trGCk−1,⋆,

Fai,j + trG
[
Ai,j

+ 1
2(1− µ

L
)

(
1
L
Ci,j + µΘi,j − 2 µ

L
Ei,j

) ]
≤ 0, i, j ∈ I,

Θ = C̃k,⋆, Θi,j = Bi,j, i, j ∈ I,

G = H⊤H,

trGCk,⋆ = 1.


(D)

Note that in the problem above, Θ and {Θi,j}i,j∈I⋆
N

are introduced as separate decision

variables to formulate the cubic constraints arising from C̃k,⋆ and Bi,j as quadratic constraints,

respectively. This nonconvex QCQP can be solved to certifiable global optimality using a

custom spatial branch-and-bound algorithm described in Section 3.4.

Finally, we recall that numerical solutions to (D) correspond to worst-case functions that can

be obtained through the reconstruction procedure from Theorem 3.2. In addition, numerical

solutions can serve as inspirations for devising rigorous mathematical proofs, as presented

next.
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3.2.3 Worst-case bounds for PRP and FR

In this section, we provide explicit solutions to (D) for PRP and FR. Those results are

then used for deducing simple convergence bounds through a straightforward application of

Theorem 3.3.

The main benefit of our proof structures is that they are verifiable through both calculations

by hand and also by symbolic computer algebra systems. Our proofs to the lemmas in this

section (Lemmas 3.1, 3.2, 3.3) are obtained by linearly combining the constraints of associated

performance estimation problems with appropriate weights, where the weights themselves

correspond to dual variables for the performance estimation problems. This makes our proofs

independently verifiable programmatically using open-source symbolic computation libraries

such as SymPy [136] and Wolfram Language [137]. We have provided notebooks for the

symbolic verifications of our proofs to Lemmas 3.1, 3.2, 3.3 in the Symbolic_Verifications

folder of our open-source code available at

https://github.com/Shuvomoy/NCG-PEP-code.

3.2.3.1 A worst-case bound for Polak-Ribière-Polyak (PRP)

Solving (D) with η = 1 to global optimality allows obtaining the following worst-case bound

for PRP quantifying the quality of the search direction with respect to the gradient direction.

Lemma 3.1 (Worst-case search direction for PRP). Let f ∈ Fµ,L, and let xk−1, dk−1 ∈ Rn

and xk, dk be generated by the PRP method (i.e., (M) with η = 1). It holds that:

∥dk∥2

∥∇f(xk)∥2 ≤
(1 + q)2

4q , (3.19)
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with q ≜ µ/L. Equivalently, | sin θk| ≤ ϵ holds, where θk is the angle between ∇f(xk) and dk

and ϵ = (1−q)/(1+q).

Proof. Recall that xk = xk−1 − γk−1 dk−1 and dk = ∇f(xk) + βk−1dk−1. The proof consists of

the following weighted sum of inequalities:

• optimality condition of the line search, with weight λ1 = −β2
k−1

1+q
Lγk−1q

:

⟨∇f(xk) | dk−1⟩ = 0,

• smoothness and strong convexity of f between xk−1 and xk, with weight λ2 = β2
k−1(1+q)2

Lγ2
k−1(1−q)q :

f(xk−1) ≥f(xk) + ⟨∇f(xk) | xk−1 − xk⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥xk−1 − xk − 1

L
(∇f(xk−1)−∇f(xk))∥2

=f(xk) + γk−1⟨∇f(xk) | dk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

• smoothness and strong convexity of f between xk and xk−1, with weight λ3 = λ2:

f(xk) ≥f(xk−1) + ⟨∇f(xk−1) | xk − xk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥xk−1 − xk − 1

L
(∇f(xk−1)−∇f(xk))∥2

=f(xk−1)− γk−1⟨∇f(xk−1), dk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2
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• definition of βk−1 with weight λ4 = βk−1(1+q)
Lγk−1q

:

0 = ⟨∇f(xk−1) | ∇f(xk)⟩ − ∥∇f(xk)∥2 + βk−1∥∇f(xk−1)∥2

= ⟨∇f(xk−1) | ∇f(xk)⟩ − ∥∇f(xk)∥2 + βk−1⟨∇f(xk−1) | dk−1⟩.

We arrive at the following weighted sum:

0 ≥λ1⟨∇f(xk) | dk−1⟩

+ λ2

[
f(xk)− f(xk−1) + γk−1⟨∇f(xk) | dk−1⟩+ 1

2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

]

+ λ3

[
f(xk−1)− f(xk)− γk−1⟨∇f(xk−1) | dk−1⟩+ 1

2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

]

+ λ4
[
⟨∇f(xk−1) | ∇f(xk)⟩ − ∥∇f(xk)∥2 + βk−1⟨∇f(xk−1) | dk−1⟩

]

which can be reformulated exactly as (by expanding both expressions and then observing that

all terms match, we have shown the calculation for this reformulation in Appendix 3.A.3.1)

0 ≥∥dk∥2 − (1 + q)2

4q ∥∇f(xk)∥2

+ 4β2
k−1q

(1− q)2

∥∥∥dk−1 − 1+q
2Lγk−1q

∇f(xk−1) + 2βk−1(1+q)−Lγk−1(1−q)2

4βk−1Lγk−1q
∇f(xk)

∥∥∥2
,

≥∥dk∥2 − (1 + q)2

4q ∥∇f(xk)∥2,

thereby arriving at (3.19). Finally, using (3.9), we have | sin θk| ≤ ϵ where ϵ = (1−q)/(1+q).

In Appendix 3.A.2, we numerically showcase the tightness of the worst-case bounds (3.19) for

PRP. By tightness, we mean that we verified numerically that there exist n ∈N, functions
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f ∈ Fµ,L and xk−1, dk−1 ∈ Rn such that ∥dk∥2 = ((1+q)2/4q) ∥∇f(xk)∥2. This is done by

exhibiting feasible points to (D) (obtained by solving (D) numerically for η = 1) for different

values of the inverse condition number q and ck−1. Those feasible points were verified through

other (existing) software [126, 138].

The following rate is a direct consequence of Lemma 3.1 and Theorem 3.3. Perhaps surprisingly,

the following guaranteed convergence rate for PRP corresponds to that of gradient descent

with an exact line search (Theorem 3.3 with ϵ = 0) when the condition number is squared.

Theorem 3.4 (Worst-case bound for PRP). Let f ∈ Fµ,L, and xk, dk ∈ Rn and xk+1,

dk+1 ∈ Rn be generated by respectively k ≥ 0 and k + 1 iterations of the PRP method

(i.e., (M) with η = 1). It holds that

f(xk+1)− f⋆ ≤
(

1− q2

1 + q2

)2

(f(xk)− f⋆) ,

with q ≜ µ/L.

Proof. The desired claim is a direct consequence of Corollary 3.1 with ϵ = 1−q
1+q

. That is, the

PRP scheme can be seen as a descent method with direction dk satisfying ∥dk −∇f(xk)∥ ≤

ϵ∥∇f(xk)∥.

As a take-away from this theorem, we obtained an improved bound on the convergence rate of

PRP, but possibly not in the most satisfying way: this analysis strategy does not allow beating

steepest descent. Furthermore, this bound is tight for one iteration assuming that the current

search direction satisfies ∥dk∥2/∥∇f(xk)∥2 = (1+q)2/4q. However, it does not specify whether such

an angle can be achieved on the same worst-case instances as those where Theorem 3.3 is

achieved. In other words, there might be no worst-case instances where the bounds (3.6)
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and (3.19) are tight simultaneously, possibly leaving room for improvement in the analysis of

PRP. We show in Section 3.3 that we could indeed slightly improve this bound by taking

into account the history of the method in a more appropriate way by examining multiple

iterations of (M) rather than a single one.
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Figure 3.3: Comparison between the upper bounds on f(xk+1)−f⋆/f(xk)−f⋆ vs. condition
number q ≜ µ/L for PRP by Polyak [11, Theorem 2] and Theorem 3.4 of this chapter.

Remark 3.1. The only worst-case complexity result that we are aware of in the context of

PRP for smooth strongly convex problems was provided by Polyak in [11, Theorem 2]:

f(xk+1)− f⋆ ≤

1− q

1 + 1
q2

 (f(xk)− f⋆) .

Figure 3.3 shows that the upper bound on f(xk+1)−f⋆/f(xk)−f⋆ for PRP (for different values of

q) provided by [11, Theorem 2] is significantly worse compared to that of Theorem 3.4. From

what we can tell, this is due to two main weaknesses in the proof of Polyak [11, Theorem 2]: a

weaker analysis of gradient descent, and a weaker analysis of the direction (and in particular

that ∥dk∥2/∥∇f(xk)∥2 ≤ 1 + 1/q2). That is, whereas gradient descent with exact line searches is
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guaranteed to achieve an accuracy f(xk)− f⋆ ≤ ε in O(1/q log 1/ε), our analysis provides an

O(1/q2 log 1/ε) guarantee for PRP, where Polyak’s guarantee for PRP is O(1/q3 log 1/ε). As a

reference, note that the lower complexity bound (achieved by a few methods, including many

variations of Nesterov’s accelerated gradients) is of order O(
√

1/q log 1/ε).

3.2.3.2 A worst-case bound for Fletcher-Reeves (FR)

Similar to the obtaining of the bound for PRP, our bound for FR follows from solving (D) (for

η = 0) in closed-form. We start by quantifying the quality of the search direction with respect

to the steepest descent direction. Unlike PRP, where the worst-case ratio ∥dk∥2/∥∇f(xk)∥2

depends only on the condition number q, in FR, the ratio ∥dk∥2/∥∇f(xk)∥2 depends also on the

previous ratio ∥dk−1∥2/∥∇f(xk−1)∥2. To show this dependence, we first establish the following

bound on the FR update parameter βk−1 in terms of ∥dk−1∥2/∥∇f(xk−1)∥2 and q.

Lemma 3.2 (Bound on βk−1 for FR). Let f ∈ Fµ,L, and let xk−1, dk−1 ∈ Rn and xk, dk be

generated by the FR method (i.e., (M) where ck−1 > 1, it holds that:

0 ≤ βk−1 ≤
1
ck−1

(
1− q + 2

√
(ck−1 − 1)q

)2

4q , (3.20)

where q ≜ µ/L.

Proof. First, note that βk−1 ≥ 0 by definition. The other part of the proof consists of the

following weighted sum of inequalities:

• relation between ∇f(xk−1) and dk−1 with weight λ1 = γk−1(L+ µ)− 2
√

βk−1√
(ck−1−1)ck−1

:

0 = ⟨∇f(xk−1) | dk−1⟩ − ∥∇f(xk−1)∥2,
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• optimality condition of the line search with weight λ2 = 2
ck−1
− γk−1(L+ µ):

0 = ⟨∇f(xk) | dk−1⟩ ,

• definition of βk−1 with weight λ3 =
√

ck−1−1√
βk−1ck−1

:

0 = ∥∇f(xk)∥2 − βk−1∥∇f(xk−1)∥2,

• initial condition on the ratio ∥dk−1∥2

∥∇f(xk−1)∥2 with weight λ4 = −γ2
k−1Lµ+

√
βk−1

ck−1
√

(ck−1−1)ck−1
:

0 = ∥dk−1∥2 − ck−1∥gk−1∥2

• smoothness and strong convexity of f between xk−1 and xk, with weight λ5 = L− µ:

0 ≥− f(xk−1) + f(xk) + ⟨∇f(xk) | xk−1 − xk⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥xk−1 − xk − 1

L
(∇f(xk−1)−∇f(xk))∥2

=f(xk)−f(xk−1) + γk−1⟨∇f(xk) | dk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

where going from the first line to the second, we used xk−1 − xk = γk−1dk−1,

• smoothness and strong convexity of f between xk and xk−1, with weight λ6 = λ5:

0 ≥− f(xk) + f(xk−1) + ⟨∇f(xk−1) | xk − xk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥xk−1 − xk − 1

L
(∇f(xk−1)−∇f(xk))∥2

=f(xk−1)−f(xk)− γk−1⟨∇f(xk−1) | dk−1⟩+ 1
2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

where going from the first line to the second, we again used xk−1 − xk = γk−1dk−1,
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The final weighted sum of inequalities is:

0 ≥ λ1
[
⟨∇f(xk−1) | dk−1⟩ − ∥∇f(xk−1)∥2

]
+ λ2 [⟨∇f(xk) | dk−1⟩]

+ λ3
[
∥∇f(xk)∥2 − βk−1∥∇f(xk−1)∥2

]
+ λ4

[
∥dk−1∥2 − ck−1∥gk−1∥2

]
+ λ5

[
f(xk)− f(xk−1) + γk−1⟨∇f(xk) | dk−1⟩+ 1

2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

]
+ λ6

[
f(xk−1)− f(xk)− γk−1⟨∇f(xk−1) | dk−1⟩+ 1

2L
∥∇f(xk−1)−∇f(xk)∥2

+ µ
2(1−µ/L)∥γk−1dk−1 − 1

L
(∇f(xk−1)−∇f(xk))∥2

]
,

which can be reformulated exactly as (by expanding both expressions and then observing that

all terms match, we have shown the calculation for this reformulation in Appendix 3.A.3.2):

0 ≥∥∇f(xk)∥2 − ν(βk−1, γk−1, ck−1, µ, L)∥∇f(xk−1)∥2

+

∥∥∥∥∥∥ 4

√√√√ βk−1

(ck−1 − 1)c3
k−1

dk−1 − 4

√
βk−1ck−1

ck−1 − 1∇f(xk−1) + 4

√
ck−1 − 1
βk−1ck−1

∇f(xk)

∥∥∥∥∥∥
2

≥∥∇f(xk)∥2 − ν(βk−1, γk−1, ck−1, µ, L)∥∇f(xk−1)∥2,

where

ν(βk−1, γk−1, ck−1, µ, L) = 2
√

1− 1
ck−1

√
βk−1 − ck−1γ

2
k−1Lµ+ γk−1(L+ µ)− 1.
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So, we have:

βk−1 ≤ ν(βk−1, γk−1, ck−1, µ, L)

⇔ βk−1 − 2
√

1− 1
ck−1

√
βk−1 ≤ −ck−1γ

2
k−1Lµ+ γk−1(L+ µ)− 1

⇒ βk−1 − 2
√

1− 1
ck−1

√
βk−1 ≤ max

γ

(
−ck−1γ

2
k−1Lµ+ γk−1(L+ µ)− 1

)
.

Because, −ck−1γ
2
k−1Lµ+ γk−1(L+ µ)− 1 is a concave function in γk−1, its maximum can be

achieved by differentiating the term with respect to γk−1, equating it to 0, and then solving

for γk−1. The corresponding maximum value is equal to (L+µ)2/4ck−1Lµ − 1 and achieved at

γk−1 = (L+µ)/(2ck−1Lµ). Hence, the last inequality becomes:

βk−1−2
√

1− 1
ck−1

√
βk−1 −

(L+ µ)2

4ck−1Lµ
+ 1 ≤ 0

⇔
(√

βk−1

)2
− 2

√
1− 1

ck−1

√
βk−1 +

(√
1− 1

ck−1

)2

− (L+ µ)2

4ck−1Lµ
−
(√

1− 1
ck−1

)2

+ 1 ≤ 0

⇔
(√

βk−1 −
√

1− 1
ck−1

)2

≤ (L+ µ)2

4ck−1Lµ
+ �1−

1
ck−1

− �1 = 1
ck−1

(
(L+ µ)2

4Lµ − 1
)

⇔
√
βk−1 ≤

√
1− 1

ck−1
+

√√√√(L+ µ)2

4ck−1Lµ
− 1
ck−1

.

Thereby, squaring both sides (which are nonnegative) of the last inequality and then through

some algebra, we reach

βk−1 ≤ 1 + (L− µ)
ck−1

√
(ck−1 − 1)

µL
+ µ2 − 6µL+ L2

4ck−1µL

= 1
ck−1

(
1− q + 2

√
(ck−1 − 1)q

)2

4q ,

which completes the proof.
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Next, we prove a bound quantifying the quality of the search directions of FR.

Lemma 3.3 (Worst-case search direction for FR). Let f ∈ Fµ,L, and let xk−1, dk−1 ∈ Rn

and xk, dk be generated by the FR method (i.e., (M) with η = 0). For any ck−1 ∈ R such

that ∥dk−1∥2/∥∇f(xk−1)∥2 = ck−1, where ck−1 > 1, it holds that:

∥dk∥2

∥∇f(xk)∥2 ≤ ck ≜ 1 +

(
1− q + 2

√
(ck−1 − 1)q

)2

4q , (3.21)

with q ≜ µ/L.

Equivalently, | sin θk| ≤ ϵ holds, where θk is the angle between ∇f(xk) and dk holds with

ϵ =
√

1− 1/ck.

Proof. The proof consists of the following weighted sum of equalities:

• optimality condition of the line search with weight λ1 = 2βk−1:

0 = ⟨∇f(xk) | dk−1⟩,

• the quality of the search direction with weight λ2 = β2
k−1:

0 = ∥dk−1∥2 − ck−1∥∇f(xk−1)∥2,

• definition of βk−1 with weight λ3 = −ck−1βk−1:

0 = ∥∇f(xk)∥2 − βk−1∥∇f(xk−1)∥2.
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The weighted sum can be simplified as (calculation shown in Appendix 3.A.3.3)

0 =λ1 [⟨∇f(xk); dk−1⟩] + λ2
[
∥dk−1∥2 − ck−1∥∇f(xk−1)∥2

]
+ λ3

[
∥∇f(xk)∥2 − βk−1∥∇f(xk−1)∥2

]
= ∥dk∥2 − (1 + ck−1βk−1)∥∇f(xk)∥2.

Hence,
∥dk∥2 = (1 + ck−1βk−1)∥∇f(xk)∥2

≤

1 +

(
1− q + 2

√
(ck−1 − 1)q

)2

4q

 ∥∇f(xk)∥2,

where in the last line we have used the upper bound on βk−1 from (3.20). This gives us

(3.21). Finally, using (3.9), we have | sin θk| ≤ ϵ, where ϵ =
√

1− 1/ck.

Similar to PRP, in Appendix 3.A.2, we compare this last bound with the worst example that

we were able to find numerically (i.e., worst feasible points to (D)). Thereby, we conclude

tightness of the bound on the quality of the search direction (3.21). That is, we claim that

for all values of q and ck−1, there exist n ∈N, functions f ∈ Fµ,L and xk−1, dk−1 ∈ Rn such

that the bound from Lemma 3.3 is achieved with equality.

That being said, this bound only allows obtaining unsatisfactory convergence results for FR,

although not letting much room for improvements, as showed in the next sections.

Theorem 3.5 (Worst-case bound). Let f ∈ Fµ,L, and xk, dk ∈ Rn and xk+1, dk+1 ∈ Rn be

generated by respectively k ≥ 0 and k + 1 iterations of the FR method (i.e., (M) with η = 0).

It holds that

f(xk+1)− f⋆ ≤

1− q 1−ϵk

1+ϵk

1 + q 1−ϵk

1+ϵk

2

(f(xk)− f⋆) ,
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with ϵk =
√

(1−q)2(k−1)2/4q+(1−q)2(k−1)2.

Proof. The desired claim is a direct consequence of Corollary 3.1 with Lemma 3.3. Indeed, it

follows from

ck ≤ 1 +

(
1− µ

L
+ 2

√
(ck−1 − 1) µ

L

)2

4µ
L

(the guarantee from Lemma 3.3 for the quality of the search direction) which we can rewrite

as √
ck+1 − 1 ≤

1− q + 2
√

(ck − 1)q
2√q

with c0−1 = 0, thereby arriving to ck ≤ 1+k2(1−q)2/4q by recursion. For applying Theorem 3.3,

we compute ϵk =
√

1− 1/ck ≤
√

(1−q)2k2/4q+(1−q)2k2 and reach the desired statement.

It is clear that the statement of Theorem 3.5 is rather disappointing, as the convergence rate

of the FR variation can become arbitrarily close to 1. While this guarantee clearly does not

give a total and fair picture of the true behavior of FR in practice, it seems in line with the

practical necessity to effectively restart the method as it runs [110].

The next section is devoted to studying the possibilities for obtaining tighter guarantees

for PRP and FR beyond the simple single-iteration worst-case analyses of this section (which

are tight for one iteration, but not beyond), showing that we cannot hope to improve the

convergence rates for those methods without further assumptions on the problems at hand.

3.3 Obtaining better worst-case bounds for NCGMs

In the previous section, we established closed-form bounds on ratios between consecutive

function values for NCGMs by characterizing worst-case search directions. Albeit being tight

for the analysis of NCGMs for one iteration, the bounds that we obtained are disappointingly
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inferior to those of the vanilla gradient descent. In this section, we investigate the possibility

of obtaining better worst-case guarantees for NCGMs. For doing this using our framework,

one natural possibility for us is to go beyond the study of a single iteration (since our results

appear to be tight for this situation). Therefore, in contrast with the previous section, we

now proceed only numerically and provide worst-case bounds without closed-forms.

More precisely, we solve the corresponding PEPs in two regimes. In short, the difference

between the two regimes resides in the type of bounds under consideration.

1. The first type of bounds can be thought of as a “Lyapunov” approach which studies

N iterations of (M) starting at some iterate (xk, dk) (for which we “neglect” how

it was generated). In this first setup, we numerically compute worst-case bounds

on f(xk+N )−f⋆/f(xk)−f⋆ for different values of N (namely N = 1, 2, 3, 4). As for the

results of Section 3.2, we quantify the quality of the couple (xk, dk) by requiring that

∥dk∥2 ≤ ck∥∇f(xk)∥2. When N = 1, this setup corresponds to that of Section 3.2.

Stemming from the fact that the worst-case behaviors observed for N = 1 might not

be compatible between consecutive iterations, we expect the quality of the bounds to

improve with N . Of course, the main weakness of this approach is the fact that we

neglect how (xk, dk) was generated.

2. As a natural complementary alternative, the second type of bounds studies N iterations

of (M) initiated at x0 (with d0 = ∇f(x0)). Whereas the first type of bounds is by

construction more conservative, it has the advantage of being recursive: it is valid for

all k ≥ 0. On the other side, the second type of bounds is only valid for the first N

iterations (the bound cannot be used recursively), but it cannot be improved at all.

That is, we study exact worst-case ratio f(xN )−f⋆/f(x0)−f⋆ for a few different values of

N (namely N ∈ {1, 2, 3, 4}). In this setup, we obtain worst-case bounds that are only

valid close to initialization. However, it has the advantage of being unimprovable, as
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we do not neglect how the search direction is generated.

Section organization. This section is organized as follows. First, in Section 3.3.1 we present

the performance estimation problems for (M) specifically for computing the worst-case ratios

f(xk+N )−f⋆/f(xk)−f⋆ and f(xN )−f⋆/f(x0)−f⋆. In Section 3.3.2, we describe the steps to arrive at

the nonconvex QCQP formulations for the performance estimation problems considered.

Then, Section 3.3.3 and Section 3.3.4 presents our findings for respectively PRP and FR. In

Appendix 3.A.4, we discuss how to generate the counter-examples from the solutions to the

nonconvex QCQPs.

3.3.1 Computing numerical worst-case scenarios

Similar to (3.11), the problem of computing the worst-case ratio f(xk+N )−f⋆/f(xk)−f⋆ is framed

as the following nonconvex maximization problem (for c ≥ 1 and q ≜ µ/L):

ρN(q, c) ≜



maximize
f,n,{xk+i},{dk+i}i,

{γk+i}i,{βk+i}i

f(xk+N )−f⋆

f(xk)−f⋆

subject to n ∈N, f ∈ Fµ,L(Rn), dk, xk ∈ Rn,

⟨∇f(xk) | dk⟩ = ∥∇f(xk)∥2,

∥dk∥2 ≤ c∥∇f(xk)∥2,
xk+1

dk+1

βk

 , . . . ,

xk+N

dk+N

βk+N−1

 generated by (M) from xk and dk.


(BLyapunov)
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We proceed similarly for f(xN )−f⋆/f(x0)−f⋆:

ρN,0(q) ≜



maximize
f,n,{xk+i},{dk+i}i,

{γk+i}i,{βk+i}i

f(xN )−f⋆

f(x0)−f⋆

subject to n ∈N, f ∈ Fµ,L(Rn), x0 ∈ Rn,

d0 = ∇f(x0),
x1

d1

β0

 , . . . ,

xN

dN

βN−1

 generated by (M) from xk and dk.


(Bexact)

Obviously, ρN(q, c) ≥ ρN,0(q) for any c ≥ 1. We solve the nonconvex QCQP reformulations

of (BLyapunov) and (Bexact) numerically to high precision (reformulation details shown in

Section 3.3.2) for N ∈ {1, 2, 3, 4} and report the corresponding results in what follows. In

the numerical experiments, we fix the values of c using Lemma 3.1 for PRP in (BLyapunov),

thereby computing ρN (q, (1+q)2/4q) whose results are provided in Figure 3.4 of Section 3.3.3.

For FR, c can become arbitrarily bad and we therefore only compute ρN,0(q) via (Bexact).

The numerical values for ρN,0(q) respectively PRP and FR are provided in Figure 3.5 and

Figure 3.6, located in Section 3.3.3 and Section 3.3.4, respectively.

In the next section, we describe the nonconvex QCQP formulations for (BLyapunov) and (Bexact).

Readers interested in the findings of our numerical experiments by solving the nonconvex

QCQPs can skip to Section 3.3.3 (for PRP) and Section 3.3.4 (for FR).

3.3.2 Nonconvex QCQP reformulations of (BLyapunov) and (Bexact)

Similar to the reformulations from (D), (BLyapunov) and (Bexact) can be cast as nonconvex

QCQPs, where the number of nonconvex constraints grows quadratically with N . Thereby,

169



solving them to global optimality in reasonable time for N = 3, 4 is already challenging.

Therefore, rather than solving the nonconvex QCQP reformulations of (BLyapunov) and (Bexact)

directly, we compute upper bounds and lower bounds by solving more tractable nonconvex

QCQP formulations. We then show that the relative gap between the upper and lower

bounds is less than 10% which thereby indicates that there is essentially no room for further

improvement.

3.3.2.1 Nonconvex QCQP reformulation of (BLyapunov)

This section presents the nonconvex QCQP formulations for our upper bound ρN(q, c) and

lower bound ρ
N

(q, c) on ρN(q, c). We use the notation [a : b] = {a, a+ 1, a+ 2, . . . , b− 1, b}

where a, b are integers.

Computing ρN(q, c). Using (3.7), we have the following relaxation of (BLyapunov), which

provides upper bounds on ρN(q, c):



maximize
f,n,{xk+i}i∈[0:N ],{dk+i}i∈[0:N ]

f(xk+N )−f⋆

f(xk)−f⋆

subject to n ∈N, f ∈ Fµ,L(Rn),

xk+i, dk+i ∈ Rn, i ∈ [0 : N ]

∥dk∥2 ≤ c∥∇f(xk)∥2,

⟨∇f(xk+i+1) | dk+i⟩ = 0, i ∈ [0 : N − 1],

⟨∇f(xk+i+1) | xk+i − xk+i+1⟩ = 0, i ∈ [0 : N − 1],

⟨∇f(xk+i) | dk+i⟩ = ∥∇f(xk+i)∥2, i ∈ [0 : N − 1],

dk+i+1 = gk+i+1 + βk+idk+i, i ∈ [0 : N − 2],

βk+i = ∥gk+i+1∥2−η⟨gk+i+1|gk+i⟩
∥gk+i∥2 , i ∈ [0 : N − 2].



(3.22)
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Using the notation gi ≜ ∇f(xi) and fi ≜ f(xi) again, and then applying an homogeneity

argument, we write (3.22) as:

ρN(q, c) =



maximize fk+N − f⋆

subject to n ∈N, f ∈ Fµ,L(Rn),

xk+i, dk+i ∈ Rn, i ∈ [0 : N ]

∥dk∥2 ≤ c∥gk∥2,

⟨gk+i+1 | dk+i⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i+1 | xk+i − xk+i+1⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i | dk+i⟩ = ∥gk+i∥2, i ∈ [0 : N − 1],

dk+i+1 = gk+i+1 + βk+idk+i, i ∈ [0 : N − 2],

βk+i−1 = ∥gk+i∥2−η⟨gk+i|gk+i−1⟩
∥gk+i−1∥2 , i ∈ [1 : N − 1],

fk − f⋆ = 1,



(3.23)

where f, n, {xk+i}i∈[0:N ], {dk+i}i∈[0:N ] are the decision variables. Define I⋆
N = {⋆, k, k+1, . . . , k+

N}. Next, note that the equation dk+i+1 = gk+i+1 + βk+idk+i for i ∈ [0 : N − 2], can be

written equivalently as the following set of equations:

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2],

χi−1,i = βk+i−1, i ∈ [1 : N − 1],

dk+i = gk+i +
i−1∑
j=1

χj,igk+j + χ0,idk, i ∈ [1 : N − 1],

(3.24)

where we have introduced the intermediate variables χj,i, which will aid us in formulating

(3.23) as a nonconvex QCQP down the line. In absence of these intermediate variables in

(3.24), the resultant constraints in the final optimization problem will involve polynomials

of degree three or more in the decision variables, and such optimization problems present a
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significantly greater challenge in solving to global optimality compared to a QCQP. Next,

using (3.24) and Theorem 3.1, we can equivalently write (3.23) as:

ρN(q, c) =



maximize fk+N − f⋆

subject to n ∈N,

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2(1− µ

L
)

(
1
L
∥gi − gj∥2

+µ∥xi − xj∥2 − 2 µ
L
⟨gi − gj | xi − xj⟩

)
, i, j ∈ I⋆

N ,

∥dk∥2 ≤ c∥gk∥2,

⟨gk+i+1 | dk+i⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i+1 | xk+i − xk+i+1⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i | dk+i⟩ = ∥gk+i∥2, i ∈ [0 : N − 1],

βk+i−1 = ∥gk+i∥2−η⟨gk+i|gk+i−1⟩
∥gk+i−1∥2 , i ∈ [1 : N − 1],

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2],

χi−1,i = βk+i−1, i ∈ [1 : N − 1],

dk+i = gk+i +∑i−1
j=1 χj,igk+j + χ0,idk, i ∈ [1 : N − 1],

fk − f⋆ = 1,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

{xi, gi, fi}i∈I⋆
N
⊂ Rn ×Rn ×R, {di}i∈I⋆

N \{k+N} ⊂ Rn,

{βk+i}i∈[0:N−2] ⊂ R, {χj,i}j∈[0:N−2],i∈[0:N−1] ⊂ R,



(3.25)

where {xk+i, gk+i, fk+i}i, n, {dk+i}i, {βk+i}i, {χj,i}j,i are the decision variables. Note that we

have set g⋆ = 0, x⋆ = 0, and f⋆ = 0 without loss of generality, because both the objective and

the function class are closed and invariant under shifting variables and function values. We
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introduce Grammian matrices again:

H = [dk | gk | gk+1 | gk+2 | · · · | gk+N | xk | xk+1 | xk+2 | · · · | xk+N ] ∈ Rn×(2N+3),

G = H⊤H ∈ S(2N+3)
+ , rankG ≤ n,

F = [fk | fk+1 | . . . | fk+N ] ∈ R1×(N+1).

(3.26)

Using the same arguments described in Section 3.2.2, we can ignore the constraint rankG ≤ n,

and confine H to be in R(2N+3)×(2N+3) without loss of generality. Next, define the following

notation for selecting columns and elements of H and F :

x⋆ = 0 ∈ R2N+3, dk = e1 ∈ R2N+3, gk+i = ei+2 ∈ R2N+3,

xk+i = e(N+2)+(i+1) ∈ R2N+3,

f⋆ = 0, fk+i = ei+1 ∈ R(N+1),

dk+i = gk+i +
i−1∑
j=1

χj,igk+j + χ0,idk ∈ R2N+3,

(3.27)

where i ∈ [0 : N ]. This ensures that we have xi = Hxi, gi = Hgi, di = Hdi, fi = F fi for all

i ∈ I⋆
N . For appropriate choices of matrices Ai,j,Bi,j, Ci,j, C̃i,j, Di,j, D̃i,j, Ei,j, and vector

ai,j as defined in (3.16), where xi, gi, fi, di are taken from (3.27) now, we can ensure that

the identities in (3.17) hold for all i, j ∈ I⋆
N . Using those identities and using the definition

of G = H⊤H, where H ∈ R(2N+3)×(2N+3), we can write (3.25) as the following nonconvex
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QCQP:

ρN(q, c) =



maximize Fa⋆,k+N

subject to Fai,j + trG
[
Ai,j + 1

2(1− µ
L

)

(
1
L
Ci,j + µBi,j − 2 µ

L
Ei,j

)]
≤ 0, i, j ∈ I⋆

N ,

trGC̃k,⋆ ≤ c trGCk,⋆,

trGD̃k+i+1,k+i = 0, i ∈ [0 : N − 1],

trGAk+i,k+i+1 = 0, i ∈ [0 : N − 1],

trGD̃k+i,k+i = trGCk+i,⋆ i ∈ [0 : N − 1],

βk+i−1 × trGCk+i−1,⋆ = trG (Ck+i,⋆ − ηDk+i,k+i−1) , i ∈ [1 : N − 1],

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2],

χi−1,i = βk+i−1, i ∈ [1 : N − 1],

Fa⋆,k = 1,

G = H⊤H,

F ∈ RN+1, G ∈ S2N+3, H ∈ R(2N+3)×(2N+3),

{βk+i}i∈[0:N−2] ⊂ R, {χj,i}j∈[0:N−2],i∈[0:N−1] ⊂ R,


(3.28)

where F,G,H, {χj,i}j,i, {βk+i}i are the decision variables.

Computing ρ
N

(q, c) and corresponding counter-examples . We now discuss how we can

calculate ρ
N

(q, c) and construct the corresponding “bad” function. This function serves as a

counter-example, illustrating scenarios where (M) performs poorly. Once we have solved

(3.28), it provides us with the corresponding CG update parameters, which we denote by

βi. If we can solve (BLyapunov) with the CG update parameters fixed to the βi found from

(3.28), then it will provide us with the lower bound ρ
N

(µ, L, c). This process also yields a

“bad” function that acts as a counter-example, which we explain next. Using the notation

gi ≜ ∇f(xi) and fi ≜ f(xi), then applying the homogeneity argument, we can compute
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ρ
N

(q, c) by finding a feasible solution to the following optimization problem:



maximize fk+N − f⋆

subject to n ∈N, f ∈ Fµ,L(Rn),

xk+i, dk+i ∈ Rn, i ∈ [0 : N ]

∥dk∥2 ≤ c∥gk∥2,

γk+i = argminγf(xk+i − γdk+i), i ∈ [0 : N − 1],

xk+i+1 = xk+i − γk+idk+i, i ∈ [0 : N − 1],

dk+i+1 = gk+i+1 + βk+idk+i, i ∈ [0 : N − 2],

βk+i−1 = ∥gk+i∥2−η⟨gk+i|gk+i−1⟩
∥gk+i−1∥2 , i ∈ [1 : N − 1],

fk − f⋆ = 1,



(3.29)

where f, n, {xk+i}, {dk+i}i, {γk+i}i are the decision variables. Next, note that the NCGM

iteration scheme in (3.29) can be equivalently written as:

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2]

χi−1,i = βk+i−1, i ∈ [1 : N − 1]

αi,i−1 = γk+i−1, i ∈ [1 : N ],

αi,j = γk+j +
i−1∑

ℓ=j+1
γk+ℓχj,ℓ, i ∈ [1 : N ], j ∈ [0 : i− 2],

xk+i = xk −
i−1∑
j=1

αi,jgk+j − αi,0dk, i ∈ [1 : N ],

dk+i = gk+i +
i−1∑
j=1

χj,igk+j + χ0,idk, i ∈ [1 : N − 1].

(3.30)

where we have introduced intermediate variables χj,i and αi,j which will aid us in formulating

(3.29) as a nonconvex QCQP. Define I⋆
N = {⋆, k, k+1, . . . , k+N}. Now using (3.30), Theorem
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3.1, and (3.7), we can equivalently write (3.23) as:



maximize fk+N − f⋆

subject to n ∈N,

fi ≥ fj + ⟨gj | xi − xj⟩+ 1
2(1− µ

L
)

(
1
L
∥gi − gj∥2

+µ∥xi − xj∥2 − 2 µ
L
⟨gi − gj | xi − xj⟩

)
, i, j ∈ I⋆

N ,

∥dk∥2 ≤ c∥gk∥2,

⟨gk+i+1 | dk+i⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i+1 | xk+i − xk+i+1⟩ = 0, i ∈ [0 : N − 1],

⟨gk+i | dk+i⟩ = ∥gk+i∥2, i ∈ [0 : N − 1],

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2]

χi−1,i = βk+i−1, i ∈ [1 : N − 1]

αi,i−1 = γk+i−1, i ∈ [1 : N ],

αi,j = γk+j +∑i−1
ℓ=j+1 γk+ℓχj,ℓ, i ∈ [1 : N ], j ∈ [0 : i− 2],

xk+i = xk −
∑i−1

j=1 αi,jgk+j − αi,0dk, i ∈ [1 : N ],

dk+i = gk+i +∑i−1
j=1 χj,igk+j + χ0,idk, i ∈ [1 : N − 1].

βk+i−1 = ∥gk+i∥2−η⟨gk+i|gk+i−1⟩
∥gk+i−1∥2 , i ∈ [1 : N − 1],

fk − f⋆ = 1,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

{xi, gi, fi}i∈I⋆
N
⊂ Rn ×Rn ×R, {di}i∈[k+1:k+N−1] ⊂ Rn,

{χj,i}j∈[0:N−2],i∈[0:N−1] ⊂ R,

{γk+i}i∈[0:N ] ⊂ R, {αi,j}i∈[1:N ],j∈[0:N−1] ⊂ R,



(3.31)

where {xk+i, gk+i, fk+i}i, n, {γk+i}i, {χj,i}j,i, {αi,j}i,j are the decision variables. We introduce

the Grammian transformation:
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H = [xk | gk | gk+1 | . . . | gk+N | dk] ∈ Rn×(N+3),

G = H⊤H ∈ SN+3
+ , rankG ≤ n,

F = [fk | fk+1 | . . . | fk+N ] ∈ R1×(N+1).

(3.32)

Using the same arguments described in Section 3.2.2, we again ignore the constraint rankG ≤

n and can let H ∈ R(N+3)×(N+3) without loss of generality. We next define the following

notation for selecting columns and elements of H and F :

g⋆ = 0 ∈ RN+3, gk+i = ei+2 ∈ RN+3, i ∈ [0 : N ],

dk = eN+3 ∈ RN+3,

xk = e1 ∈ RN+2, x⋆ = 0 ∈ RN+2,

xk+i(α) = xk −
i−1∑
j=1

αi,jgk+j − αi,0dk ∈ RN+3, i ∈ [1 : N ],

dk+i(χ) = gk+i +
i−1∑
j=1

χj,igk+j + χ0,idk, i ∈ [1 : N − 1],

f⋆ = 0 ∈ RN+1, fk+i = ei+1 ∈ RN+1, i ∈ [0 : N ],

(3.33)

which ensure xi = Hxi, gi = Hgi, fi = F fi, di = Hdi for i ∈ I⋆
N . For appropriate choices

of matrices Ai,j,Bi,j, Ci,j, C̃i,j, Di,j, D̃i,j, Ei,j, and vector ai,j as defined in (3.16), where xi,

gi, fi, di are from (3.33), we can ensure that the identities in (3.17) hold for all i, j ∈ I⋆
N .

Using those identities and using the definition of G = H⊤H, where H ∈ R(N+3)×(N+3), we
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can write (3.31) as the following nonconvex QCQP:



maximize Fa⋆,N

subject to Fai,j + trG
[
Ai,j + 1

2(1− µ
L

)

(
1
L
Ci,j + µΘi,j − 2 µ

L
Ei,j

)]
≤ 0, i, j ∈ I⋆

N ,

Θi,j = Bi,j, i, j ∈ I⋆
N ,

trGC̃k,⋆ ≤ c trGCk,⋆,

trGD̃k+i+1,k+i = 0, i ∈ [0 : N − 1],

trGAk+i,k+i+1 = 0, i ∈ [0 : N − 1],

trGD̃k+i,k+i = trGCk+i,⋆ i ∈ [0 : N − 1],

χj,i = χj,i−1βk+i−1, i ∈ [1 : N − 1], j ∈ [0 : i− 2]

χi−1,i = βk+i−1, i ∈ [1 : N − 1]

αi,i−1 = γk+i−1, i ∈ [1 : N ],

αi,j = γk+j +∑i−1
ℓ=j+1 γk+ℓχj,ℓ, i ∈ [1 : N ], j ∈ [0 : i− 2],

βk+i−1 × trGCk+i−1,⋆ = trG (Ck+i,⋆ − ηDk+i,k+i−1) , i ∈ [1 : N − 1],

Fa⋆,k = 1,

G = H⊤H,

F ∈ RN+1, G ∈ SN+3, H ∈ R(N+3)×(N+3),

{χj,i}j∈[0:N−2],i∈[0:N−1] ⊂ R,

{γk+i}i∈[0:N ] ⊂ R, {αi,j}i∈[1:N ],j∈[0:N−1] ⊂ R,


(3.34)

where G,F, {Θi,j}i,j∈I⋆
N
, H, γ, α, χ are the decision variables. Note that {Θi,j}i,j∈I⋆

N
is intro-

duced as a separate decision variable to formulate the cubic constraints arising from Bi,j as

quadratic constraints. Also, to compute ρ
N

(q, c), it suffices to find just a feasible solution to

(3.34), in Section 3.4 we will discuss how to do so using our custom spatial branch-and-bound

algorithm.
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3.3.2.2 Nonconvex QCQP reformulation of (Bexact)

Now we discuss how we compute the upper bound ρN,0(q) and lower bound ρ
N,0(q) to ρN,0(q)

defined in (Bexact). The bound computation process is very similar to that of (BLyapunov).

Observe that, in (BLyapunov), if we remove the constraint ∥dk∥2 ≤ c∥∇f(xk)∥2, set k ≜ 0

, and then add the constraint d0 = ∇f(x0), then it is identical to (Bexact) (the constraint

⟨∇f(x0) | d0⟩ = ∥∇f(x0)∥2 in (BLyapunov) is a valid but redundant constraint for (Bexact)).

So, to compute the upper bound ρN,0(q), we can follow a transformation process very similar

to Section 3.3.2.1 but with a few changes. In (3.23) and (3.25), we remove the constraint

∥dk∥2 ≤ c∥gk∥2, and then add the constraint gk = dk. Second, the Grammian matrices defined

in (3.26) stays the same, and in (3.27) the vectors {xi, gi, fi}i∈I⋆
N

stays the same except we set

dk = gk = e2 ∈ R2N+3, which ensures that dk = Fdk = gk. We then remove the constraint

trGC̃k,⋆ ≤ c trGCk,⋆ from (3.28) and finally set k ≜ 0 in the resultant QCQP. The solution

to the nonconvex QCQP will provide us the upper bound ρN,0(q) in (Bexact).

To compute the lower bound ρ
N,0(q), we follow the same set of changes described in the last

paragraph but to (3.29) in Section 3.3.2.1.

3.3.2.3 The relative gap between the lower bounds and upper bounds

Tables 3.1, 3.2, 3.3 record the relative gap between lower bounds and upper bounds for a

few representative values of q obtained by solving the aforementioned nonconvex QCQPs

associated with (BLyapunov) and (Bexact) using our custom spatial branch-and-bound algorithm

described in Section 3.4. Note that the tables contain a few negative entries close to zero

which are due to the absolute gap being of the same order as the accuracy of the solver

(1e− 6). For the full list for all values, we refer to our open-source code, which also allows

for computing these bounds for a user-specified value of q as well. In all cases, the relative
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gap is less than 10%. In most cases, it is significantly better.

q = 0.001 0.005 0.02 0.04 0.06 0.08 0.1 0.3 0.5
N = 1 3e−8 −1e−6 3e−9 6e−8 9e−8 2e−7 2e−7 1e−6 3e−7
N = 2 2e−6 6e−7 −3e−8 9e−8 1e−7 8e−8 3e−7 8e−3 4e−4
N = 3 5e−6 5e−4 7e−3 2e−2 3e−2 4e−2 2e−2 5e−2 −3e−7
N = 4 2e−4 3e−3 2e−2 7e−2 1e−1 3e−2 4e−2 4e−2 4e−2

Table 3.1: Relative gaps ρN (q,c)−ρ
N

(q,c)/ρN (q,c) for PRP with c = (1+q)2/4q.

q = 0.001 0.005 0.02 0.04 0.06 0.08 0.1 0.3 0.5
N = 2 7e−6 2e−4 2e−3 7e−3 1e−2 1e−2 2e−2 1e−2 1e−6
N = 3 5e−5 9e−4 1e−2 3e−2 5e−2 6e−2 6e−2 5e−3 −7e−6
N = 4 3e−4 4e−3 3e−2 4e−2 9e−2 9e−2 7e−2 3e−2 7e−2

Table 3.2: Relative gap ρN,0(q)−ρ
N,0(q)/ρN,0(q) for PRP where N = 2, 3, 4. The case

N = 1 is omitted, as PRP is equivalent to GDEL in this case.

q = 0.001 0.005 0.02 0.04 0.06 0.08 0.1 0.3 0.5
N = 2 9e−6 2e−4 1e−3 7e−3 1e−2 1e−2 2e−2 1e−2 8e−7
N = 3 7e−5 1e−3 1e−2 2e−2 3e−2 3e−2 3e−2 3e−7 −1e−7
N = 4 2e−4 3e−3 2e−2 3e−2 3e−2 2e−2 1e−2 1e−6 4e−2

Table 3.3: The relative gap ρN,0(q)−ρ
N,0(q)/ρN,0(q) for FR where N = 2, 3, 4. The case

N = 1 is omitted again, as in this case FR is equivalent to GDEL.

The next sections discuss and draw a few conclusions from the numerical worst-case conver-

gence results for PRP and FR.

3.3.3 Improved worst-case bounds for PRP

Figure 3.4 reports the worst-case values of the “Lyapunov” ratio f(xk+N )−f⋆/f(xk)−f⋆ as a

function of the inverse condition number q ≜ µ/L and for c = (1+q)2/4q and N = 1, 2, 3, 4. This

worst-case ratio seems to improve as N grows, but does not outperform gradient descent
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with exact line search (GDEL). The diminishing improvements with N also suggests the

worst-case performance of PRP in this regime might not outperform GDEL even for larger

values of N ≥ 4, albeit probably getting close to the same asymptotic worst-case convergence

rate.
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(1
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q
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GDEL : fk+1−f⋆/fk−f⋆

PRP:N = 1
PRP:N = 2
PRP:N = 3
PRP:N = 4
(1 − √

q)2

Figure 3.4: This figure reports the worst-case values for the “Lyapunov” ratio
N

√
f(xk+N )−f⋆/f(xk)−f⋆ vs. the condition number q ≜ µ/L for PRP. We compute ρN (q, c)

with c = (1+q)2/4q for N = 1, 2, 3, 4. As N increases, the worst-case N

√
fk+N −f⋆/fk−f⋆

improves, but remains worse than that of gradient descent with exact line search
(GDEL). The curve (1−√q)2 (orange) corresponds to the rate of the lower complexity
bounds for this class of problems [41].

As a complement, Figure 3.5 shows how PRP’s worst-case ratio fN −f⋆/f0−f⋆ evolves as a

function of q for N = 1, 2, 3, 4. The worst-case performance of PRP in this setup seems to be

similar to that of GDEL. Further, for small q (which is typically the only regime of interest

for large-scale optimization), PRP’s worst-case performance seems to be slightly better than

that of GDEL. On the other hand, for larger q, PRP performs slightly worse than GDEL.

As a conclusion, we believe there is no hope to prove uniformly better worst-case bounds

for PRP than those for GDEL for smooth strongly convex minimization. However, we might

be able to prove improvements for small values of q at the cost of possibly very technical
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Figure 3.5: This figure reports the worst-case values for the ratio N

√
fN −f⋆/f0−f⋆ vs. q

for PRP for N = 1, 2, 3, 4. For N = 1, PRP and GDEL perform the same iteration.
For N = 2, 3, 4, the worst-case ratio of PRP is better than that of GDEL for q ≤ 0.1.
The curve (1−√q)2 (orange) corresponds to the rate of the lower complexity bounds
for this class of problems [41].

proofs. As for the Lyapunov approach, the numerical results from this section could be

improved by further increasing N , but we believe that the transient behavior does not

suggest this direction to be promising. We recall that we computed the bounds by solving an

optimization problem whose feasible points correspond to worst-case examples. Therefore, the

numerical results provided in this section are backed-up by numerically constructed examples

on which PRP behaves “badly”.

3.3.4 Improved worst-case bounds for FR

Figure 3.6 reports the worst-case values for the ratio fN −f⋆/f0−f⋆ as a function of q, for

N ∈ {1, 2, 3, 4}. The convergence bounds appears to be marginally better than GDEL for

some sufficiently small inverse condition numbers. Further, the range of values of q for which

there is an improvement appears to be decreasing with N ≥ 2. Beyond this range, the
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worst-case values become significantly worse than that of GDEL. Though apparently not as

dramatic as the worst-case bound from Theorem 3.5, the quality of the bound appears to be

decreasing with N , which stands in line with the practical need to restart the method [110].
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Figure 3.6: This figure reports the worst-case values for the ratio N

√
fN −f⋆/f0−f⋆ vs. q

for FR for N = 1, 2, 3, 4. For N = 1, FR and GDEL perform the same iteration. For
N = 2, 3, 4, the worst-case bound for FR is slightly better than that of GDEL for
small enough values of q, and gets larger than GDEL for larger values of q. The range
of q for which FR is better than GDEL gets smaller as N ≥ 2 increases. The curve
(1−√q)2 (orange) corresponds to the rate of the lower complexity bounds for this
class of problems [41].

As in the previous section, we recall that those curves were obtained by numerically con-

structing “bad” worst-case counter-examples satisfying our assumptions. In other words,

there is no hope to obtain better results without adding assumptions or changing the types

of bounds under consideration.
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3.4 Custom spatial branch-and-bound algorithm

This section discusses implementation details for solving the nonconvex QCQPs of this

chapter (namely (D), (3.28), or (3.34)) using a custom spatial branch-and-bound method.

This strategy proceeds in three stages, as follows.

• Stage 1: Compute a feasible solution. First, we construct a feasible solution to the

nonconvex QCQP. We do that by generating a random µ-strongly convex and L-smooth

quadratic function, and by applying the corresponding nonlinear conjugate gradient

method on it. The corresponding iterates, gradient and function values correspond to a

feasible point for the nonconvex QCQPs under consideration.

• Stage 2: Compute a locally optimal solution by warm-starting at Stage 1

solution. Stage 2 computes a locally optimal solution to the nonconvex QCQPs using

an interior-point algorithm, warm-starting at the feasible solution produced by Stage 1.

When a good warm-starting point is provided, interior-point algorithms can quickly

converge to a locally optimal solution under suitable regularity conditions [70, 78],

[71, §3.3]. In the situation where the interior-point algorithm fails to converge, we go

back to the feasible solution from Stage 1. We have empirically observed that Stage 2

consistently provides a locally optimal solution.

• Stage 3: Compute a globally optimal solution by warm-starting at Stage

2 solution. Stage 3 computes a globally optimal solution to the nonconvex QCQP

using a spatial branch-and-bound algorithm [68, 81], warm-starting at the locally-

optimal solution produced by Stage 2. For details about how spatial branch-and-bound

algorithm works, we refer the reader to [1, §4.1].

Remark 3.2. In stage 3, the most numerically challenging nonconvex quadratic constraint
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in (D), (3.28) or (3.34) is G = H⊤H. To solve those problems in reasonable times, we use

the lazy constraints approach, [1, §4.2.5].

In short, we replace the constraint G = H⊤H by the infinite set of linear constraints

tr
(
Gyy⊤

)
≥ 0 for all y, which we then sample to obtain a finite set of linear constraints (we

recursively add additional linear constraints afterwards if need be). More precisely, we use

tr
(
Gyy⊤

)
≥ 0, y ∈ Y, (3.35)

where the initial Y is generated randomly as a set of unit vectors following the methodology

described in [88, §5.1]. By replacing G = H⊤H by (3.35) we obtain a simpler (but relaxed)

QCQP. Then, we update the solution G lazily by repeating the following steps until G ⪰ 0 is

satisfied subject to a termination criterion. Practically speaking, our termination criterion

is that the minimal eigenvalue of G is larger than ϵ ≈ −1e − 6; until then, we repeat the

following procedure:

1. Solve the relaxation of the nonconvex QCQPs, where (3.35) is used instead of G = H⊤H,

which provides us an upper bound on the original nonconvex QCQP.

2. Compute the minimal eigenvalue eigmin(G) and the corresponding eigenvector u of G.

If eigmin(G) ≥ 0, we reached an optimal solution to the nonconvex QCQP and we

terminate.

3. If eigmin(G) < 0, we add a constraint tr(Guu⊤) ≥ 0 lazily, which makes the current G

infeasible for the new relaxation. We use the lazy constraint callback interface of JuMP

to add constraints lazily, which means that after adding one additional linear constraint,

updating the solution in step 1 is efficient since Gurobi and all modern solvers based

on the simplex algorithm can quickly update a solution when only one linear constraint

is added [89, pp. 205-207].
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3.5 Conclusion

This works studies the iteration complexity of two variants of nonlinear conjugate gradients,

namely the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) methods. We provide

novel complexity bounds for both those methods, and show that albeit unsatisfying, not

much can a priori be gained from a worst-case perspective, as both methods appear to

behave similar or worse to regular steepest descent in the worst-case. Further, those results

suggest that explaining the good practical performances of NCGMs might be out of reach for

traditional worst-case complexity analyses on classical classes of problems.

This work considers only somewhat “ideal” variants of nonlinear conjugate gradient methods,

as we make explicit use of exact line search procedures. However, there is a priori no reason

to believe that inexact line search procedures would improve the possibly bad worst-case

behaviors. Further, the performance estimation methodology allows taking such inexact line

search procedures into account, so the same methodology could be applied for tackling those

questions. We leave such investigations for future work.
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3.A Appendix for Chapter 3

3.A.1 Organization of the appendix

In what follows, we report detailed numerical results and computations that are not presented

in the core of the chapter. Table 3.4 details the organization of this additional material.

Section Content

Appendix 3.A.2
Numerical illustration of tightness of the worst-case search direction
(3.19) for PRP and (3.21) for FR.

Appendix 3.A.3 Reformulation for weighted sum of inequalities for Lemmas 3.1, 3.2, 3.3
Appendix 3.A.4 Constructing counter-examples

Table 3.4: Organization of the appendix.

3.A.2 Tightness of the worst-case search directions

Figure 3.7 and Figure 3.8 illustrate the tightness of the bounds (3.19) and (3.21) for PRP

and FR respectively. That is, we compare the absolute relative difference between the

numerical bounds and closed-form bounds for a few different values of q and ck−1, where

numerical bounds are obtained by solving (D) with η = 1 for PRP and η = 0 for FR. These

numerical examples strongly suggest that our bounds cannot be improved in general.
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Figure 3.7: Absolute relative differences in the worst-case analytical bound (3.19)
and numerical bounds from (D) with η = 1 (for PRP) for different values of q and
ck−1.

Figure 3.8: Absolute relative differences in the worst-case analytical bound (3.21)
and numerical bounds from (D) with η = 0 (for FR) for different values of q and ck−1.

188



3.A.3 Reformulation for weighted sum of inequalities for Lemmas 3.1,

3.2, 3.3

3.A.3.1 Reformulation for weighted sum of inequalities for Lemma 3.1

For notational ease, define f(xk) ≜ fk, f(xk−1) ≜ fk−1,∇f(xk) ≜ gk, ∇f(xk−1) ≜ gk−1,

βk−1 ≜ β, γk−1 ≜ γ, and ck−1 ≜ c. We want to show that

− β2(q + 1)
γLq

⟨gk | dk−1⟩

+ β2(q + 1)2

γ2L(1− q)q

[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]

+ β2(q + 1)2

γ2L(1− q)q

[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]

+ β(q + 1)
γLq

[
⟨gk−1 | gk⟩ − ∥gk∥2 + β⟨gk−1 | dk−1⟩

]
(3.36)

is equal to

∥dk∥2 − (1 + q)2

4q ∥gk∥2

+ 4β2q

(1− q)2

∥∥∥dk−1 − 1+q
2Lγk−1q

gk−1 + 2β(1+q)−Lγ(1−q)2

4βLγq
gk

∥∥∥2
. (3.37)

We show this by expanding both terms and do term-by-term matching.
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Expand the second summand of (3.36). First, we expand the second summand of (3.36)

as follows.

β2(q + 1)2

γ2L(1− q)q

[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]

= β2(q + 1)2

γ2L(1− q)q

[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L
(∥gk−1∥2 − 2 ⟨gk | gk−1⟩+ ∥gk∥2)

+ µ
2(1−µ/L)

(
γ2∥dk−1∥2 + 1

L2∥gk−1∥2 + 1
L2∥gk∥2 − 2

L2 ⟨gk | gk−1⟩

+ 2γ
L
⟨dk−1 | gk⟩ −

2γ
L
⟨dk−1 | gk−1⟩

)]

= β2(µ+ L)2

γ2µL(L− µ)fk −
β2(µ+ L)2

γ2µL(L− µ)fk−1

+ β2(µ+ L)2

2(L− µ)2 ∥dk−1∥2 + β2(µ+ L)2

2γ2µL(L− µ)2∥gk−1∥2 + β2(µ+ L)2

2γ2µL(L− µ)2∥gk∥2

− β2(µ+ L)2

γ2µL(L− µ)2 ⟨gk−1 | gk⟩+ β2(µ+ L)2

γµ(L− µ)2 ⟨gk | dk−1⟩ −
β2(µ+ L)2

γL(L− µ)2 ⟨gk−1 | dk−1⟩ , (3.38)

where on the second line we expand the squares and on the third line we collect the terms.

Expand the third summand of (3.36). Next, we expand the third summand of (3.36) as

follows:

β2(q + 1)2

γ2L(1− q)q

[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]

= β2(q + 1)2

γ2L(1− q)q

[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L
(∥gk−1∥2 − 2 ⟨gk | gk−1⟩+ ∥gk∥2)

+ µ
2(1−µ/L)

(
γ2∥dk−1∥2 + 1

L2∥gk−1∥2 + 1
L2∥gk∥2 − 2

L2 ⟨gk | gk−1⟩
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+ 2γ
L
⟨dk−1 | gk⟩ −

2γ
L
⟨dk−1 | gk−1⟩

)]

= β2(µ+ L)2

γ2µL(L− µ)fk−1 −
β2(µ+ L)2

γ2µL(L− µ)fk

+ β2(µ+ L)2

2(L− µ)2 ∥dk−1∥2 + β2(µ+ L)2

2γ2µL(L− µ)2∥gk−1∥2 + β2(µ+ L)2

2γ2µL(L− µ)2∥gk∥2

− β2(µ+ L)2

γ2µL(L− µ)2 ⟨gk−1 | gk⟩+ β2(µ+ L)2

γL(L− µ)2 ⟨gk | dk−1⟩ −
β2(µ+ L)2

γµ(L− µ)2 ⟨gk−1 | dk−1⟩ (3.39)

where again on the second line, we expand the squares and on the third line, we collect the

terms.

Expanded form of (3.36). Now putting (3.38) and (3.39) in (3.36), and then collecting the

terms, we arrive at the following expanded form of (3.36):

β2(µ+ L)2

γ2µL(L− µ)2∥gk−1∥2 + β2(µ+ L)2

(L− µ)2 ∥dk−1∥2

+ β(µ+ L) (µ(β − γµ)− γL2 + L(β + 2γµ))
γ2µL(L− µ)2 ∥gk∥2

+ β(µ+ L) (µ(γµ− 2β) + γL2 − 2L(β + γµ))
γ2µL(L− µ)2 ⟨gk−1 | gk⟩+ 4β2(µ+ L)

γ(L− µ)2 ⟨gk | dk−1⟩

− 4β2(µ+ L)
γ(L− µ)2 ⟨gk−1 | dk−1⟩ . (3.40)

Expand the first two summands of (3.37). Now, we expand the first two summands of

(3.37) as follows:

∥dk∥2 − (1 + (µ/L))2

4(µ/L) ∥gk∥2

=∥βdk−1 + gk∥2 − (1 + (µ/L))2

4(µ/L) ∥gk∥2
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=β2∥dk−1∥2 + ∥gk∥2 + 2β ⟨dk−1 | gk⟩ −
(1 + (µ/L))2

4(µ/L) ∥gk∥2

=β2∥dk−1∥2 − (L− µ)2

4µL ∥gk∥2 + 2β ⟨dk−1 | gk⟩ . (3.41)

Expand the third summand of (3.37). Next, we expand the third summand of (3.37) as

follows:

4β2q

(1− q)2

∥∥∥dk−1 − 1+q
2Lγk−1q

gk−1 + 2β(1+q)−Lγ(1−q)2

4βLγq
gk

∥∥∥2

= 4β2(µ/L)
(1− (µ/L))2

[
∥dk−1∥2 + (µ(γµ− 2β) + γL2 − 2L(β + γµ))2

16β2γ2µ2L2 ∥gk∥2 + (µ+ L)2

4γ2µ2L2 ∥gk−1∥2

+ (µ(2β − γµ)− γL2 + 2L(β + γµ))
2βγµL ⟨gk | dk−1⟩ −

(µ+ L)
γµL

⟨gk−1 | dk−1⟩

+ (µ+ L) (µ(γµ− 2β) + γL2 − 2L(β + γµ))
4βγ2µ2L2 ⟨gk−1 | gk⟩

]

= 4β2µL

(L− µ)2∥dk−1∥2 + (µ(γµ− 2β) + γL2 − 2L(β + γµ))2

4γ2µL(L− µ)2 ∥gk∥2 + β2(µ+ L)2

γ2µL(L− µ)2∥gk−1∥2

+ 2β
(

2β(µ+ L)
γ(L− µ)2 − 1

)
⟨gk | dk−1⟩ −

4β2(µ+ L)
γ(L− µ)2 ⟨gk−1 | dk−1⟩

+ β(µ+ L) (µ(γµ− 2β) + γL2 − 2L(β + γµ))
γ2µL(L− µ)2 ⟨gk−1 | gk⟩ . (3.42)

Expanded form of (3.37). Finally, putting the expanded expressions from (3.41) (3.42) in

(3.37) and then collecting the terms, we get:

β2∥dk−1∥2 − (L− µ)2

4µL ∥gk∥2 + 2β ⟨dk−1 | gk⟩

+ 4β2µL

(L− µ)2∥dk−1∥2 + (µ(γµ− 2β) + γL2 − 2L(β + γµ))2

4γ2µL(L− µ)2 ∥gk∥2 + β2(µ+ L)2

γ2µL(L− µ)2∥gk−1∥2

+ 2β
(

2β(µ+ L)
γ(L− µ)2 − 1

)
⟨gk | dk−1⟩ −

4β2(µ+ L)
γ(L− µ)2 ⟨gk−1 | dk−1⟩

+ β(µ+ L) (µ(γµ− 2β) + γL2 − 2L(β + γµ))
γ2µL(L− µ)2 ⟨gk−1 | gk⟩
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= β2(µ+ L)2

γ2µL(L− µ)2∥gk−1∥2 + β2(µ+ L)2

(L− µ)2 ∥dk−1∥2

+ β(µ+ L) (µ(β − γµ)− γL2 + L(β + 2γµ))
γ2µL(L− µ)2 ∥gk∥2

+ β(µ+ L) (µ(γµ− 2β) + γL2 − 2L(β + γµ))
γ2µL(L− µ)2 ⟨gk−1 | gk⟩+ 4β2(µ+ L)

γ(L− µ)2 ⟨gk | dk−1⟩

− 4β2(µ+ L)
γ(L− µ)2 ⟨gk−1 | dk−1⟩ ,

where the last line is identical to (3.40).

The calculation shown above can also be independently verified using open-source symbolic

computation libraries SymPy [136] and Wolfram Language [137] using the following notebooks

available at

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verif

y_PRP.ipynb

and

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verif

y_PRP_Wolfram_Language.ipynb

, respectively.

3.A.3.2 Reformulation for weighted sum of inequalities for Lemma 3.2

For notational ease, define f(xk) ≜ fk, f(xk−1) ≜ fk−1,∇f(xk) ≜ gk, ∇f(xk−1) ≜ gk−1,

βk−1 ≜ β, γk−1 ≜ γ, and ck−1 ≜ c. We want to show that the weighted sum
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γ(L+ µ)− 2
√
β√

(c− 1)c

[⟨gk−1 | dk−1⟩ − ∥gk−1∥2
]

+
(2
c
− γ(L+ µ)

)
[⟨gk | dk−1⟩]

+
(√

c− 1√
βc

) [
∥gk∥2 − β∥gk−1∥2

]

+
−γ2Lµ+

√
β

c
√

(c− 1)c

[∥dk−1∥2 − c∥gk−1∥2
]

+ (L− µ)
[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]
+ (L− µ)

[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L
∥gk−1 − gk∥2

+ µ
2(1−µ/L)∥γdk−1 − 1

L
(gk−1 − gk)∥2

]
(3.43)

is equal to

∥gk∥2 −

2
√

1− 1
c

√
β − cγ2Lµ+ γ(L+ µ)− 1

 ∥gk−1∥2

+

∥∥∥∥∥∥ 4

√
β

(c− 1)c3dk−1 − 4

√
βc

c− 1gk−1 + 4

√
c− 1
βc

gk

∥∥∥∥∥∥
2

(3.44)

We show this by expanding both terms and doing term-by-term matching.
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Expand the fifth summand of (3.43). First, we expand the second summand of (3.43) as

follows:

(L− µ)
[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L
∥gk−1 − gk∥2 + µ

2(1−µ/L)∥γdk−1 − 1
L

(gk−1 − gk)∥2
]

= (L− µ)
[
fk − fk−1 + γ⟨gk | dk−1⟩+ 1

2L

(
∥gk−1∥2 − 2 ⟨gk | gk−1⟩+ ∥gk∥2

)
+ µ

2(1−µ/L)

(
γ2∥dk−1∥2 + 1

L2∥gk−1∥2 + 1
L2∥gk∥2 − 2

L2 ⟨gk | gk−1⟩+ 2γ
L
⟨dk−1 | gk⟩

− 2γ
L
⟨dk−1 | gk−1⟩

)]
=(L− µ)fk + (µ− L)fk−1 + 1

2γ
2µL∥dk−1∥2 + 1

2∥gk−1∥2 + 1
2∥gk∥2

− ⟨gk−1 | gk⟩+ γL ⟨gk | dk−1⟩ − γµ ⟨gk−1 | dk−1⟩ (3.45)

where on the second line, we expand the squares, and on the third line, we collect the terms.

Expand the sixth summand of (3.43). Next, we expand the sixth summand of (3.43) as

follows:

(L− µ)
[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L
∥gk−1 − gk∥2 + µ

2(1−µ/L)∥γdk−1 − 1
L

(gk−1 − gk)∥2
]

= (L− µ)
[
fk−1 − fk − γ⟨gk−1 | dk−1⟩+ 1

2L

(
∥gk−1∥2 − 2 ⟨gk | gk−1⟩+ ∥gk∥2

)
+ µ

2(1−µ/L)

(
γ2∥dk−1∥2 + 1

L2∥gk−1∥2 + 1
L2∥gk∥2 − 2

L2 ⟨gk | gk−1⟩

+ 2γ
L
⟨dk−1 | gk⟩ −

2γ
L
⟨dk−1 | gk−1⟩

)]
=(L− µ)fk−1 + (µ− L)fk + 1

2γ
2µL∥dk−1∥2 + 1

2∥gk−1∥2 + 1
2∥gk∥2

− ⟨gk−1 | gk⟩+ γµ ⟨gk | dk−1⟩ − γL ⟨gk−1 | dk−1⟩ (3.46)

where again on the second line, we expand the squares and on the third line, we collect the

terms.
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Expanded form of (3.43). Now putting (3.45) and (3.46) in (3.43), and then collecting the

terms, we arrive at the following expanded form of (3.43):

√
β√

c− 1c3/2∥dk−1∥2 +
(√

c− 1√
c
√
β

+ 1
)
∥gk∥2 +

(
−
√
β(c− 2)√
c− 1

√
c

+ cγ2µL− γ(µ+ L) + 1
)
∥gk−1∥2

− 2 ⟨gk−1 | gk⟩+ 2
c
⟨gk | dk−1⟩ −

2
√
β√

c− 1
√
c
⟨gk−1 | dk−1⟩ (3.47)

Expand the third summand of (3.44). Next, we expand the third summand of (3.44) as

follows:

∥∥∥∥∥∥ 4

√
β

(c− 1)cdk−1 − 4

√
βc

c− 1gk−1 + 4

√
c− 1
βc

gk

∥∥∥∥∥∥
2

=
√
β√

c− 1c3/2∥dk−1∥2 +
√
β
√
c√

c− 1
∥gk−1∥2 +

√
c− 1√
c
√
β
∥gk∥2

− 2 ⟨gk−1 | gk⟩+ 2
c
⟨gk | dk−1⟩ − 2

√
β√

c− 1
√
c
⟨gk−1 | dk−1⟩ (3.48)

Expanded form of (3.44). Finally, putting the expanded expressions from (3.47) in (3.44)

and then collecting the terms, we get:

∥gk∥2 −

2
√

1− 1
c

√
β − cγ2Lµ+ γ(L+ µ)− 1

 ∥gk−1∥2

+

∥∥∥∥∥∥ 4

√
β

(c− 1)cdk−1 − 4

√
βc

c− 1gk−1 + 4

√
c− 1
βc

gk

∥∥∥∥∥∥
2
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=∥gk∥2 −

2
√

1− 1
c

√
β − cγ2Lµ+ γ(L+ µ)− 1

 ∥gk−1∥2

+
√
β√

c− 1c3/2∥dk−1∥2 +
√
β
√
c√

c− 1
∥gk−1∥2 +

√
c− 1√
c
√
β
∥gk∥2

− 2 ⟨gk−1 | gk⟩+ 2
c
⟨gk | dk−1⟩ − 2

√
β√

c− 1
√
c
⟨gk−1 | dk−1⟩

=
(√

c− 1√
c
√
β

+ 1
)
∥gk∥2 +

(
cγ2Lµ− γ(L+ µ) + 1 +

√
β

√
c√

c− 1
− 2

√
β

√
c− 1√
c

)
∥gk−1∥2

+
√
β√

c− 1c3/2∥dk−1∥2 − 2 ⟨gk−1 | gk⟩+ 2
c
⟨gk | dk−1⟩ − 2

√
β√

c− 1
√
c
⟨gk−1 | dk−1⟩

=
√
β√

c− 1c3/2∥dk−1∥2 +
(√

c− 1√
c
√
β

+ 1
)
∥gk∥2

+
(
−
√
β(c− 2)√
c− 1

√
c

+ cγ2µL− γ(µ+ L) + 1
)
∥gk−1∥2

− 2 ⟨gk−1 | gk⟩+ 2
c
⟨gk | dk−1⟩ −

2
√
β√

c− 1
√
c
⟨gk−1 | dk−1⟩

where the last line is identical to (3.47).

This symbolical calculation shown above can be independently verified using open-source

symbolic computation libraries SymPy [136] and Wolfram Language [137] using the following

notebooks available at

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verify_FR.i

pynb

and

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verify_FR.i

pynb

(in the cells titled Lemma 2.2 of the notebooks), respectively.
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3.A.3.3 Reformulation for weighted sum of inequalities for Lemma 3.3

For notational ease, define ∇f(xk) ≜ gk, ∇f(xk−1) ≜ gk−1, βk−1 ≜ β, and ck−1 ≜ c. The

reformulation of the weighted sum is as follows:

2β ⟨dk−1 | gk⟩+ β2
(
∥dk−1∥2 − c∥gk−1∥2

)
− cβ

(
∥gk∥2 − β∥gk−1∥2

)
=2β ⟨dk−1 | gk⟩+ β2∥dk−1∥2 −������

cβ2∥gk−1∥2 − cβ∥gk∥2 +������
cβ2∥gk−1∥2

=2β ⟨dk−1 | gk⟩+ β2∥dk−1∥2 − cβ∥gk∥2

=2 ⟨βdk−1 | gk⟩+ ∥βdk−1∥2 − cβ∥gk∥2

=2 ⟨dk − gk | gk⟩+ ∥dk − gk∥2 − cβ∥gk∥2

=������2 ⟨dk | gk⟩ − 2∥gk∥2 + ∥dk∥2 −������2 ⟨dk | gk⟩+ ∥gk∥2 − cβ∥gk∥2

=∥dk∥2 − ∥gk∥2 − cβ∥gk∥2

=∥dk∥2 − (1 + cβ) ∥gk∥2,

thus arriving at the simplified form used in the proof.

This symbolical calculation shown above can be independently verified using open-source

symbolic computation libraries SymPy [136] and Wolfram Language [137] using the following

notebooks available at

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verify_FR.i

pynb

and

https://github.com/Shuvomoy/NCG-PEP-code/blob/main/Symbolic_Verifications/Verify_FR.i

pynb
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(in the cells titled Lemma 2.3 of the notebooks), respectively.

3.A.4 Constructing counter-examples

Once we have solved the nonconvex QCQPs associated with (BLyapunov) or (Bexact), we can

construct the associated triplets {xi, gi, fi}i∈I⋆
N

and then apply Theorem 3.2 to construct the

corresponding “bad” function. This “bad” function serves as a counter-example, illustrating

scenarios where (M) performs poorly. One can access the numerically constructed triplets

{xi, gi, fi}i∈I⋆
N

associated with the counter-examples by following the instructions provided

in our github repository. Next, we provide a concrete example of how to construct a “bad”

function for (BLyapunov) from our provided code and datasets located in the folder titled

‘Code_for_NCG_PEP’ of the github repository. Constructing counter-examples for (Bexact) is

analogous.

x⋆ x0 x1 x2
0
0
0
0



1.67262

0
0
0




0.354109
−0.810313
0.0775561

0.000222477



−0.140817
−0.322955
−0.138845

0.000244795


Table 3.5: Numerical values of {xi}i∈{⋆,0,1,2} for constructing the counter-example of
Example 3.1.

g⋆ g0 g1 g2
0
0
0
0




1.08734
0.237212

0
0




0.303362
−0.47567
0.187527

0



−0.158567
−0.205519
−0.100196

0.000166564


Table 3.6: Numerical values of {gi}i∈{⋆,0,1,2} for constructing the counter-example of
Example 3.1.

Example 3.1 (How to construct counter-examples for (BLyapunov)). Suppose we are inter-
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f⋆ f0 f1 f2

0 1 0.267353 0.056104

Table 3.7: Numerical values of {fi}i∈{⋆,0,1,2} for constructing the counter-example of
Example 3.1.

ested in constructing a “bad” function aka counter-example for the worst-case bound on

f(xk+2)−f⋆/f(xk)−f⋆ (steps for other values of N are identical) for PRP with q ≜ µ/L = 0.5.

The resultant “bad” function from R4 to R is completely characterized by the triplets

{xi, gi, fi}i∈{⋆,0,1,2}, where the triplets can be generated or accessed in two ways:

1. we can run ‘1.Example_Julia.ipynb’ with the input parameters and generate the

function by solving the nonconvex QCQP directly and generate the triplets, or

2. we can directly access the triplets from the saved datasets in the folder Saved_Output_Files

with instructions provided in the file ‘2.Using_the_saved_datasets_Julia.ipynb’.

For the sake of completeness, we provide the numerical values of {xi}i∈{⋆,0,1,2}, {gi}i∈{⋆,0,1,2},

and {fi}i∈{⋆,0,1,2} of the function in this setup in Table 3.5, Table 3.6, and Table 3.7, re-

spectively. From the numerical values of the triplets, we can construct the “bad” function

using Theorem 3.2. For this constructed function, we have the performance guarantee

f(xk+2)−f⋆/f(xk)−f⋆ ≥ 0.056104, which closely matches the bound provided in Figure 3.4. Addi-

tionally, this guarantee can be verified through other existing open-source software [126, 138];

we provide code for this independent verification in the file called

‘3.PEPIt_verification_Python.ipynb’.
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Chapter 4

Exterior-point Optimization for Sparse

and Low-rank Optimization

4.1 Introduction

This chapter studies optimization problems involving a strongly convex and smooth cost

function over a closed nonconvex constraint set X involving sparse or low-rank constraints.

We propose a first-order algorithm nonconvex exterior-point optimization solver (NExOS) to

solve such problems numerically. We can write such problems as:

minimize f(x) + (β/2)∥x∥2

subject to x ∈ X ,
(P)

where x takes value in a finite-dimensional vector space E over the reals, f is a strongly

convex and smooth function. In Appendix 4.A.2.1, we generalize our framework to the case

when f is non-smooth convex.
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The regularization parameter β > 0 is commonly introduced in statistics and machine learning

problems to reduce the generalization error without increasing the training error [139, §5.2.2].

In this chapter, there is also a theoretical consideration behind including the term β
2∥x∥

2 in

problem (P). NExOS finds a locally optimal point of problem (P) by solving a sequence of

penalized subproblems with strictly decreasing penalty parameters, where each penalized

subproblem is solved by a first-order algorithm. Under the presence of β
2∥x∥

2 with β > 0, we

can prove that each penalized subproblem is locally strongly convex and smooth admitting a

unique local minimum (see Proposition 4.1), which in turn ensure linear convergence of the

first-order method to that local minimum (see Theorem 4.1). In the Numerical Experiments

section, we demonstrate that β can be set to a value as small as 10−8. This empirical evidence

suggests that, in practice, the impact of β on the objective value can be made negligible,

yet one can still reap the theoretical benefits. Therefore, while β plays a crucial role in the

theoretical aspects of our algorithm, its influence on the problems considered in the Numerical

Experiments section is minimal and can be adjusted as per the problem’s requirements.

Furthermore, E is equipped with inner product ⟨· | ·⟩ and norm ∥ · ∥ =
√
⟨x | x⟩. For E = Rd,

we have ⟨x | y⟩ = x⊤y for x, y ∈ Rd, and for E = Rm×n, we have ⟨X | Y ⟩ = tr(X⊤Y ), for

X, Y ∈ Rm×n. The constraint set X is closed and nonconvex and can be decomposed as

the intersection of a compact convex set and a nonconvex set involving sparse or low-rank

constraints. Sparse and low-rank constraint sets are very important in modeling many machine

learning problems, because they allow for high interpretability, speed-ups in computation,

and reduced memory requirements [18].

Sparsity-constrained optimization. Sparsity constraints have found applications in many

practical settings, e.g., gene expression analysis [17, pp. 2–4], sparse regression [18, pp.

155–157], signal transmission and recovery [19, 20], hierarchical sparse polynomial regression
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[21], and best subset selection [22], just to name a few. In these problems, the constraint set

X decomposes as X = C ⋂N , where C is a compact convex set, and

N = {x ∈ Rd | card(x) ≤ k}, (4.1)

where card(x) counts the number of nonzero elements in x. In these optimization problems, C

can be a polyhedron, infinity-norm ball, box constraint set, or probability simplex; these sets

usually show up in applications involving econometrics, housing price prediction, air-quality

prediction, signal processing, and meteorology [140–143].

In this chapter, we apply NExOS to solve the sparse regression problem for both synthetic and

real-world datasets in §4.4.1, which is concerned with approximating a vector b ∈ Rm with a

linear combination of at most k columns of a matrix A ∈ Rm×d with bounded coefficients.

This problem has the form:

minimize ∥Ax− b∥2
2 + (β/2)∥x∥2

2

subject to card(x) ≤ k, ∥x∥∞ ≤ Γ,
(SR)

where x ∈ Rd is the decision variable, and A ∈ Rm×d, b ∈ Rm, and Γ > 0 are problem data.

Low-rank optimization. We can write low-rank optimization problems in the form of

problem (P), which are common in machine learning applications such as collaborative filtering

[18, pp. 279-281], design of online recommendation systems [23, 24], bandit optimization

[25], data compression [26–28], and low rank kernel learning [29]. In these applications, the

constraint set X decomposes as X = C ⋂N , where C is a compact convex set, and

N = {X ∈ Rm×d | rank(X) ≤ r}. (4.2)
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In these optimization problems, C can be matrix-norm ball, Frobenius-norm ball, hyperplane/half-

space induced by trace [144, 145]. In this chapter, we apply NExOSto solve the affine rank

minimization problem:

minimize ∥A(X)− b∥2
2 + (β/2)∥X∥2

F

subject to rank(X) ≤ r, ∥X∥2 ≤ Γ,
(RM)

where X ∈ Rm×d is the decision variable, b ∈ Rk is noisy measurement data, and A :

Rm×d → Rk is a linear map. The parameter Γ > 0 is the upper bound for the spectral

norm of X. The affine map A is determined by k matrices A1, . . . , Ak in Rm×d where

A(X) = (tr(AT
1X), . . . , tr(AT

kX)). We present several numerical experiments to solve (RM)

using NExOSfor both synthetic and real-world datasets in §4.4.2.

4.1.1 Related work

Convex relaxation approach. Due to the presence of the nonconvex set X , the nonconvex

problem (P) is NP-hard [146]. A common way to deal with this issue is to avoid this inherent

nonconvexity altogether by convexifying the original problem. The relaxation of the sparsity

constraint leads to the popular LASSO formulation and its variants [17], whereas relaxation

of the low-rank constraints produces the nuclear norm based convex models [147].

The basic advantage of the convex relaxation technique is that, in general, a globally optimal

solution to a convex problem can be computed reliably and efficiently [58, §1.1], whereas for

nonconvex problems a local optimal solution is often the best one can hope for. Furthermore,

if certain statistical assumptions on the data generating process hold, then it is possible to

recover exact solutions to the original nonconvex problems with high probability by solving

the convex relaxations (see [17] and the references therein).
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However, when stringent assumptions do not hold, then solutions to the convex formulations

can be of poor quality and may not scale very well [18, §6.3 and §7.8]. In this situation, the

nonconvexity of the original problem must be confronted directly, because such nonconvex

formulations capture the underlying problem structures more accurately than their convex

counterparts.

First-order methods. To that goal, first-order algorithms such as hard thresholding al-

gorithms, e.g., IHT [148], NIHT [149], HTP [150], CGIHT [151], address nonconvexity in

sparse and low-rank optimization by implementing variants of projected gradient descent

with projection taken onto the sparse and/or low-rank set.

While these first-order methods have been successful in recovering low-rank and sparse

solutions in underdetermined linear systems, they too require assumptions on the data such

as the restricted isometry property for recovering true solutions [18, §7.5]. Furthermore, to

converge to a local minimum, hard thresholding algorithms require the spectral norm of the

measurement matrix to be less than one, which is a restrictive condition [148].

Besides hard thresholding algorithms, heuristics based on first-order algorithms such as the

alternating direction method of multipliers ADMM have gained a lot of traction in the last few

years. Though ADMM was originally designed to solve convex optimization problems, since

the idea of implementing this algorithm as a general purpose heuristic to solve nonconvex

optimization problems was introduced in [152, §9.1-9.2], ADMM-based heuristics have been

applied successfully to approximately solve nonconvex problems in many different application

areas [141, 153].

However, the biggest drawback of these heuristics based on first-order methods comes from

the fact that they take an algorithm designed to solve convex problems and apply it verbatim
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to a nonconvex setup. As a result, these algorithms often fail to converge, and even when they

do, it need not be a local minimum, let alone a global one [154, §2.2]. Also, empirical evidence

suggests that the iterates of these algorithms may diverge even if they come arbitrarily

close to a locally optimal solution during some iteration. The main reason is that these

heuristics do not establish a clear relationship between the local minimum of problem (P)

and the fixed point set of the underlying operator that controls the iteration scheme. An

alternative approach that has been quite successful empirically in finding low-rank solutions is

to consider an unconstrained problem with Frobenius norm penalty and then using alternating

minimization to compute a solution [155]. However, the alternating minimization approach

may not converge to a solution and should be considered a heuristic [155, §2.4].

Discrete optimization approach. For these reasons above, in the last few years, there

has been significant interest in addressing the nonconvexity present in many optimization

problems directly via a discrete optimization approach. In this way, a particular nonconvex

optimization problem is formulated exactly using discrete optimization techniques and then

specialized algorithms are developed to find a certifiably optimal solution. This approach has

found considerable success in solving machine learning problems with sparse and low-rank

optimization [67, 156]. A mixed integer optimization approach to compute near-optimal

solutions for sparse regression problem, where problem dimension d = 1000, is computed in

[22]. In [142], the authors propose a cutting plane method for a similar problem, which works

well with mild sample correlations and a sufficiently large dimension. In [157], the authors

design and implement fast algorithms based on coordinate descent and local combinatorial

optimization to solve sparse regression problem with a three-fold speedup where d ≈ 106.

In [144], the authors propose a framework for modeling and solving low-rank optimization

problems to certifiable optimality via symmetric projection matrices.
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However, the runtime of these discrete optimization based algorithms can often become

prohibitively long as the problem dimensions grow [22]. Also, these discrete optimization

algorithms have efficient implementations only for a narrow class of loss functions and

constraint sets; they do not generalize well if a minor modification is made to the problem

structure, and in such a case they often fail to find a solution point in a reasonable amount of

time even for smaller dimensions [67]. Furthermore, one often relies on commercial softwares,

such as Gurobi, Mosek, or Cplex to solve these discrete optimization problems, thus making

the solution process somewhat opaque [22, 156].

4.1.2 Contributions

The main contribution of this work is to propose NExOS: a first-order algorithm tailored for

nonconvex optimization problems of the form (P). The term exterior-point originates from

the fact that the iterates approach a local minimum from outside of the feasible region; it is

inspired by the convex exterior-point method first proposed by Fiacco and McCormick in the

1960s [71, §4]. By exploiting the underlying geometry of the constraint set, we construct an

iterative method that finds a locally optimal point of the original problem via an outer loop

consisting of increasingly accurate penalized formulations of the original problem by reducing

only one penalty parameter. Each penalized problem is then solved by applying an inner

algorithm that implements a variant of the Douglas-Rachford splitting algorithm.

We prove that NExOS, besides avoiding the drawbacks of convex relaxation and discrete

optimization approach, has the following favorable features. First, the penalized problem has

strong convexity and smoothness around local minima, but can be made arbitrarily close

to the original nonconvex problem by reducing the penalty parameter. Second, under mild

regularity conditions, the inner algorithm finds local minima for the penalized problems at

a linear convergence rate, and as the penalty parameter goes to zero, the local minima of
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the penalized problems converge to a local minimum of the original problem. Furthermore,

we show that, when those regularity conditions do not hold, the inner algorithm is still

guaranteed to subsequentially converge to a first-order stationary point of the penalized

problem at the rate o(1/
√
k).

We implement NExOS in the open-source Julia package NExOS.jl and test it extensively

on many synthetic and real-world instances of different nonconvex optimization problems of

substantial current interest. We demonstrate that NExOS very quickly computes solutions

that are competitive with or better than specialized algorithms on various performance

measures. NExOS.jl is available at https://github.com/Shuvomoy/NExOS.jl.

Organization of the chapter. The rest of the chapter is organized as follows. We describe

our NExOS framework in §4.2. We provide convergence analysis of the algorithm in §4.3.

Then we demonstrate the performance of our algorithm on several nonconvex optimization

problems of significant current interest in §4.4. The concluding remarks are presented in §4.5.

4.2 Our approach

The backbone of our approach is to address the nonconvexity by working with an asymptoti-

cally exact nonconvex penalization of problem (P), which enjoys local convexity around local

minima. We use the notation ιX (x) that denotes the indicator function of the set X at x,

which is 0 if x ∈ X and ∞ else. Using this, we can write problem (P) as an unconstrained

optimization problem, where the objective is f(x) + (β/2)∥x∥2 + ιX (x). In our penalization,

we replace the indicator function ι with its Moreau envelope with positive parameter µ:

µι(x) = min
y
{ι(y) + (1/2µ)∥y − x∥2} = (1/2µ)d2(x), (4.3)
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where d(x) is the Euclidean distance of the point x from the set X .

Properties of Moreau envelope for a nonconvex set. The function µι, though nonconvex,

has many desirable attributes that greatly simplify design and convergence analysis of our

algorithm. We summarize these properties below; See [158, Proposition 12.9] for the first

four properties, and Proposition 4.1 in §4.3 for the last one.

1. Bounded. The function µι is bounded on every compact set. In contrast, ι is an

extended valued function that takes the value +∞ outside the set X .

2. Finite and jointly continuous. For every µ > 0 and x ∈ E, the function µι(x)

is jointly continuous and finite. Therefore, µι is continuous on E. In contrast, the

indicator function ι is not continuous.

3. Accuracy of approximation controlled by µ. With decreasing µ, the approximation
µι monotonically increases to ι, i.e., for any positive µ1, µ2 such that 0 ≤ µ1 ≤ µ2, we

have

0 ≤ µ2ι(x) ≤ µ1ι(x) ≤ ι(x)

for any x ∈ E.

4. Asymptotically equal to ι. The approximation µι is asymptotically equal to ι as µ

goes to zero, i.e., we have the point-wise limit

lim
µ↓0

µι(x) = ι(x)

for all x ∈ E.

5. Local convexity and differentiability around points of interest. Adding any

quadratic regularizer to µι makes the sum locally convex and differentiable around

points of interest. To be precise, if at x, the set X is prox-regular, then for any value of
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Figure 4.1: An illustration of how the penalized cost function in problem (Pµ)
compares against the original cost function in problem (P) for different values of µ.
Note that the regularization parameter β is kept fixed at its initial value 1 throughout.

β > 0, the function µι(x) + β
2∥x∥

2 is convex and differentiable on a neighborhood of x.

The favorable features of µι motivate us to consider the following penalization formulation of

problem (P) denoted by problem (Pµ), where the subscript µ indicates the penalty parameter:

minimize f(x) + µι(x), (Pµ)

where µι ≡ µι+(β/2)∥·∥2, x ∈ E is the decision variable, and µ is a positive penalty parameter.

We call the cost function in problem (Pµ) an exterior-point minimization function; the term

is inspired by [71, §4.1]. The notation µι ≡ µι+ (β/2)∥ · ∥2 introduced in problem (Pµ) not

only reduces notational clutter, but also alludes to a specific way of splitting the objective

into two summands f and µι, which will ultimately allow us to establish convergence of our

algorithm in §4.3. Because µι is an asymptotically exact approximation of ιX as µ → 0,

solving problem (Pµ) for a small enough value of the penalty parameter µ suffices for all

practical purposes.

To provide intuition on how the exterior-point minimization function in problem (Pµ) com-
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Algorithm 2 Nonconvex Exterior-point Optimization Solver (NExOS). Here Π(x)
denotes the Euclidean projection of x on the nonconvex set X .

given: regularization parameter β > 0, an initial point zinit, initial penalty parameter µinit,
minimum penalty parameter µmin, tolerance for the fixed point gap ϵ for each inner
iteration, tolerance for stopping criterion δ for the outer iteration, and multiplicative
factor ρ ∈ (0, 1).

Initialization. µ := µinit, and z0 := zinit. Outer iteration. while stopping criterion is not
met do

Inner iteration. Using Algorithm 3, compute xµ, yµ, and zµ that solve problem (Pµ) with
tolerance ϵ, where z0

µ := z0 is input as the initial point. Stopping criterion. quit if
|(f(Πxµ) + (β/2)∥ΠXxµ∥2)− (f(xµ) + µι(xµ))| ≤ δ.
Set initial point for next inner iteration. z0 := zµ. Update µ. µ := ρµ.

end
return xµ, yµ, and zµ

pares against the original minimization function in problem (P), we provide an illustrative

one-dimensional example in Figure 4.1. Figure 4.1 captures all the key properties of our

penalization scheme. In this figure, f = (1/2)(·)2, β = 1, X = [−2,−1]⋃[2, 3]. The problem

has two local minima, one at −1 and one at −2. We see that for larger values of µ, problem

(Pµ) is not a good approximation of problem (P), but around each local minimum there

is a relatively large region where f + µι is strongly convex and smooth. As µ gets smaller,

problem (Pµ) becomes a more accurate approximation of problem (P), though the regions

of convexity and smoothness around local minima shrink. For µ = 10−4, problem (Pµ) is

identical to problem (P) for all practical purposes. Note that the regularization parameter β

is kept fixed at its initial value 1 throughout.

Now that we have intuitively justified intuition behind working with (Pµ), we are in a position

to present our algorithm.

Algorithm description. Algorithm 2 outlines NExOS. The main part is an outer loop that

solves a sequence of penalized problems of the form problem (Pµ) with strictly decreasing

penalty parameter µ, until the termination criterion is met, at which point the exterior-point
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Algorithm 3 Inner Algorithm for problem (Pµ). Here Π(x) denotes the Euclidean
projection of x on the nonconvex set X , and proxγf denotes the proximal operator
of f with parameter γ > 0 as defined in (4.4).

given: starting point z0, tolerance for the fixed point gap ϵ, and proximal parameter γ > 0.
Initialization. n := 0, κ := 1/(βγ + 1), θ := µ/(γκ+ µ).
while ∥xn − yn∥ > ϵ do

Compute xn+1 := proxγf (zn).
Compute ỹn+1 := κ (2xn+1 − zn).
Compute yn+1 := θỹn+1 + (1− θ) Π (ỹn+1).
Compute zn+1 := zn + yn+1 − xn+1.
Update n := n+ 1.

end
return xn, yn, and zn.

minimization function is a sufficiently close approximation of the original cost function. For

each µ, problem (Pµ) is solved by an inner algorithm, denoted by Algorithm 3.

One can derive Algorithm 3 by applying Douglas-Rachford splitting (DRS) [158, page 401] to

problem (Pµ) as follows. If we apply Douglas-Rachford splitting [158, page 401] to problem

(Pµ) with penalty parameter µ, we have the following variant with three sub-iterations:

xn+1 = proxγf (zn)

yn+1 = proxγ µι

(
2xn+1 − zn

)
zn+1 = zn + yn+1 − xn+1.

(DRS)

The computational cost for proxγ µι is the same as computing a projection onto the constraint

set X , as stated in Lemma 4.1 below; this result follows from [159, Theorem 6.13, Theorem

6.63]. It should be noted that [159, Theorem 6.13, Theorem 6.63] assume convexity of the

functions in the theorem statements, but its proof does not require convexity and works for

nonconvex functions as well.
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Lemma 4.1 (Computing proxγ µι(x) ). Consider the nonconvex compact constraint set X

in problem (P). Denote κ = 1/(βγ + 1) ∈ [0, 1] and θ = µ/(γκ+ µ) ∈ [0, 1]. Then, for any

x ∈ E, and for any µ, β, γ > 0, we have proxγ µι (x) = θκx+ (1− θ) Π (κx).

Finally, combining (DRS), [159, Theorem 6.13], and Lemma 4.1, we arrive at Algorithm 3.

Algorithm subroutines. The inner algorithm requires two subroutines, evaluating (i)

proxγf(x), which is the proximal operator of the convex function f at the input point

x, and (ii) Π(x), which is a projection of x on the nonconvex set X . We discuss now how

we compute them in our implementation. To that goal, we recall that, for a function g (not

necessarily convex) its proximal operator proxγg and Moreau envelope γg, where γ > 0, are

defined as:
proxγg(x) = argmin

y∈E

(
g(y) + (1/2γ)∥y − x∥2

)
,

γg(x) = miny∈E
(
g(y) + (1/2γ)∥y − x∥2

)
.

(4.4)

Computing proximal operator of f . For the convex function f , proxγf is always single-

valued and computing it is equivalent to solving a convex optimization problem, which often

can be done in closed form for many relevant cost functions in machine learning [159, pp.

449-450]. If the proximal operator of f does not admit a closed form solution, then we solve

the corresponding convex optimization problem (4.4) to a high precision solution. For this

purpose, we can select any convex optimization solver supported by MathOptInterface,

which is the abstraction layer for optimization solvers in Julia.

Computing projection onto X . The notation Π(x) denotes the projection operator of x

onto the constraint set X , defined as

ΠX (x) = proxγιX
(x) = argminy∈X (∥y − x∥2).
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A list of nonconvex sets that are easy to project onto can be found in [141, §4], this includes

nonconvex sets such as boolean vectors with fixed cardinality, vectors with bounded cardinality,

quadratic sets, matrices with bounded singular values, matrices with bounded rank etc. If X

is in this list, then we project onto X directly.

Now consider the case where the constraint set X decomposes as X = C ⋂N , where N is a

nonconvex set with tractable projection and C is any compact convex set. In this setup, let

ιC and ιN be the indicator functions of C and N , respectively. Defining ϕ = f + ιC, we write

problem (P) as: minx∈E ϕ(x) + (β/2)∥x∥2 + ιN (x).

For any convex function ϕ, its Moreau envelope νϕ, for any ν > 0, has the following three

desirable features.

1. For every x ∈ E we have νϕ(x) ≤ ϕ(x) and νϕ(x)→ ϕ(x) as ν → 0 [60, Theorem 1.25].

2. we have x⋆ ∈ argminx∈E ϕ(x) if and only if x⋆ ∈ argminx∈E
νϕ(x) with the minimizer

x⋆ satisfying ϕ(x⋆) = νϕ(x⋆) [158, Corollary 17.5].

3. the Moreau envelope νϕ is convex, and smooth (i.e., it is differentiable and its gradient

is Lipschitz continuous) everywhere irrespective of the differentiability or smoothness

of the original function ϕ. The gradient is: νϕ(x) =
(
x− proxνϕ(x)

)
/ν, which is

(1/ν)−Lipschitz continuous [158, Proposition 12.29].

These properties make νϕ a smooth approximation of ϕ for a small enough ν. Hence, we

work with the following approximation of the original problem: minx
νϕ+ (β/2)∥x∥2 + ιN (x),

where we replace f with νϕ and ιX with ιN in Algorithms 2 and 3. The proximal operator

of νϕ can be computed using proxγ νϕ(x) = x + (γ/(γ + ν))(prox(γ+ν)ϕ(x) − x), where

computing prox(γ+ν)ϕ(x) corresponds to solving the following convex optimization problem

argminy∈C ϕ(y) + 1/(2(γ + ν))∥y − x∥2, which follows from [158, Proposition 24.8].
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Remark 4.1. Problem (Pµ) involves minimizing the sum of two functions: a convex function

f and a nonconvex function µι. As the objective is split into two parts in problem (Pµ),

selecting any other two-operator splitting algorithm ( e.g., forward-backward splitting [160,

page 25], Chambolle-Pock algorithm [160, page 32], ADMM [161] etc.) can work as the

inner algorithm in principle. However, in the context of our problem setup, Douglas-Rachford

splitting might be the most suitable choice for the following reasons.

1. We have picked Douglas-Rachford splitting over ADMM, because Douglas-Rachford

operates on the original nonconvex problem, whereas ADMM can be viewed as Douglas-

Rachford splitting on the dual of the original nonconvex problem [162]. As strong duality

usually does not hold when the primal problem is nonconvex, it seems more intuitive to

work with the nonconvex problem directly over its dual.

2. We favored Douglas-Rachford splitting over proximal gradient method, because even

when the problem is convex, Douglas-Rachford splitting converges under more general

conditions, whereas proximal gradient method require more restrictive conditions to

converge [61, page 49]. Hence, we believe that Douglas-Rachford splitting represents the

most natural choice for the inner algorithm over the proximal gradient method.

3. Douglas-Rachford splitting is favorably unique in contrast with other two-operator

splitting methods, as Douglas-Rachford splitting is the only two-operator splitting method

that satisfies the following properties simultaneously [163]: (i) it is constructed only

with scalar multiplication, addition, and proximal operators, (ii) it computes proximal

operators only once every iteration, (iii) it converges unconditionally for maximally

monotone operators, and (iv) it does not increase the problem size.

In §4.3, some of these desirable properties of Douglas-Rachford splitting are exploited to

establish convergence. While other operator splitting algorithms may work to establish

convergence as well, some of the unique features of Douglas-Rachford splitting will be
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lost [163].

4.3 Convergence analysis

This section is organized as follows. We start with the definition of the key geometry property

of sets involving sparse and low-rank optimization problems. Then we define the local minima

of such problems, followed by the assumptions we use in our convergence analysis. We next

discuss the convergence roadmap, where the first step involves showing that the exterior

point minimization function is locally strongly convex and smooth around local minima, and

the second step entails connecting the local minima with the underlying operator controlling

NExOS. Then, we present the main result, which shows that, under mild regularity conditions,

the inner algorithm of NExOS finds local minima for the penalized problems at a linear

convergence rate, and as the penalty parameter goes to zero, the local minima of the penalized

problems converge to a local minimum of the original problem. Furthermore, we show that,

when those regularity conditions do not hold, the inner algorithm is still guaranteed to

subsequentially converge to a first-order stationary point at the rate o(1/
√
k).

The key geometric property of sparse and low-rank constraint sets that we use in our

convergence analysis is prox-regularity at local minima, i.e., having single-valued Euclidean

projection around local minima [164]. Prox-regularity of a set at a point is defined as follows.

Definition 4.1 (Prox-regular set [164]). A nonempty closed set S ⊆ E is prox-regular at

a point x ∈ S if projection onto S is single-valued on a neighborhood of x. The set S is

prox-regular if it is prox-regular at every point in the set.

If the constraint set X decomposes as X = C ⋂N , where C is a compact convex set, and

N is prox-regular around local minima, then the feasible set X inherits the prox-regularity
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property around local minima from the set N (see Lemma 4.4 in §4.3). The set N in (4.2) is

a prox-regular set at any point X ∈ Rm×d where rank(X) = r [165, Proposition 3.8]. One

can show that X inherits the prox-regularity property at any X with rank(X) = r from the

set N ; a formal proof is given in Lemma 4.4 in Appendix 4.A.1.1. Similarly, N in (4.1) is

prox-regular at any point x satisfying card(x) = k because we can write card(x) ≤ k as a

special case of the low-rank constraint by embedding the components of x in the diagonal

entries of a matrix and then using the prox-regularity of low-rank constraint set.

In our convergence analysis, we use the prox-regularity property of sparse and low-rank

optimization to establish our convergence results, hence NExOS can be applied to problems

involving other constraint sets that are prox-regular at local minimal. Some other notable

prox-regular sets are as follows. Closed convex sets are prox-regular everywhere [60, page

612]. Examples of well-known prox-regular sets that are not convex include sets involving

bilinear constraints [166], weakly convex sets [167], proximally smooth sets [168], strongly

amenable sets [60, page 612], and sets with Shapiro property [169]. Also, a nonconvex set

defined by a system of finitely many inequality and equality constraints for which a basic

constraint qualification holds is prox-regular [106, page 10].

We next provide the definition of local minimum of problem (P). Recall that, according to

our setup the set X is prox-regular at local minimum.

Definition 4.2 (Local minimum of problem (P)). A point x̄ ∈ X is a local minimum of

problem (P) if the set X is prox-regular at x̄, and there exists a closed ball with center

x̄ and radius r, denoted by B(x̄; r) such that for all y ∈ X ∩ B(x̄; r) \ {x̄}, we have

f(x̄) + (β/2)∥x̄∥2 < f(y) + (β/2)∥y∥2.

In the definition above, the strict inequality is due to the strongly convex nature of the
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objective f + (β/2)∥ · ∥2 and follows from [170, Proposition 2.1] and [60, Theorem 6.12]. We

now state and justify the assumptions used in our convergence analysis.

Assumption 4.1 (Strong convexity and smoothness of f). The function f in problem (Pµ)

is α-strongly convex and L-smooth where L > α > 0, i.e., f − (α/2)∥ · ∥2 is convex and

f − (L/2)∥ · ∥2 is concave.

Assumption 4.2 (Problem (P) is not trivial). The unique solution to the unconstrained

strongly convex problem minx f(x) + (β/2)∥x∥2 does not lie in X .

Assumption 4.1 corresponds to the function f + (β/2)∥ · ∥2 being (α+ β)-strongly convex and

(L+β)-smooth. In our convergence analysis, β > 0 can be arbitrarily small, so it does not fall

outside the setup described in §4.1. The L-smoothness in f is equivalent to its gradient ∇f

being L−Lipschitz everywhere on E [158, Theorem 18.15]. In our convergence analysis, this

assumption is required in establishing linear convergence of the inner algorithms of NExOS.

Assumption 4.2 imposes that a local minimum of problem (P) is not the global minimum

of its unconstrained convex relaxation, which does not incur any loss of generality. We can

solve the unconstrained strongly convex optimization problem minx f(x) + (β/2)∥x∥2 and

check if the corresponding minimizer lies in X ; if that is the case, then that minimizer is also

the global minimizer of problem (P), and there is no point in solving the nonconvex problem.

This can be easily checked by solving an unconstrained convex optimization problem, so

Assumption 4.2 does not cause any loss of generality.

To discuss our convergence roadmap, we introduce some standard operator theoretic notions

as follows. A set-valued operator A : E ⇒ E maps an element x in E to a set A(x)

in E; its domain is defined as domA = {x ∈ E | A(x) ̸= ∅}, its range is defined as
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ranA = ⋃
x∈EA(x), and it is completely characterized by its graph: graA = {(u, x) ∈

E × E | u ∈ A(x)}. Furthermore, we define fixA = {x ∈ E | x ∈ A(x)}, and zerA = {x ∈

E | 0 ∈ A(x)}. For every x, addition of two operatorsA1,A2 : E ⇒ E, denoted byA1+A2, is

defined as (A1 +A2)(x) = A1(x)+A2(x), subtraction is defined analogously, and composition

of these operators, denoted by A1A2, is defined as A1A2(x) = A1(A2(x)); note that order

matters for composition. Also, if S ⊆ E is a nonempty set, then A(S) = ∪{A(x) | x ∈ S}.

We next discuss our convergence roadmap. Convergence of NExOS is controlled by the DRS

operator of problem (Pµ):

Tµ = proxγ µι

(
2proxγf − I

)
+ I − proxγf , (4.5)

where µ > 0, and I stands for the identity operator in E, i.e., for any x ∈ E, we have

I(x) = x. Using Tµ, the inner algorithm—Algorithm 3—can be written as

zn+1 = Tµ (zn) (Aµ)

where µ is the penalty parameter and zn is initialized at the fixed point from the previous

inner algorithm.

To show the convergence of NExOS, we first show that for some µmax > 0, for any µ ∈ (0, µmax],

the exterior point minimization function f + µι is strongly convex and smooth on some open

ball with center x and radius rmax, denoted by B(x̄; rmax), where it will attain a unique local

minimum xµ. Then we show that for µ ∈ (0, µmax], the operator Tµ(x) will be contractive

in x and Lipschitz continuous in µ, and connects its fixed point set fixTµ with the local

minima xµ, via the relationship xµ = proxγf(fixTµ). In the main convergence result, we

show that for a sequence of penalty parameters M = {µ1, µ2, µ3, . . . , µN} and under proper
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initialization, if we apply NExOSto M, then for all µm ∈M,the inner algorithm will linearly

converge to xµm , and as µN → 0, we will have xµN
→ x̄. Finally, we show that, when the

regularity conditions of the prior result do not hold, the inner algorithm is still guaranteed to

subsequentially converge to a first-order stationary point (not necessarily a local minimum)

at the rate o(1/
√
k).

We next present a proposition that shows that the exterior point minimization function

in problem (Pµ) will be locally strongly convex and smooth around local minima for our

selection of penalty parameters, even though problem (P) is nonconvex. Furthermore, as the

penalty parameter goes to zero, the local minimum of problem (Pµ) converges to the local

minimum of the original problem (P). So, under proper initialization, NExOS can solve the

sequence of penalized problems {Pµ}µ∈(0,µinit] similar to convex optimization problems; we

will prove this in our main convergence result (Theorem 4.1).

Proposition 4.1 (Attainment of local minimum by f + µι). Let Assumptions 4.1 and 4.2

hold for problem (P), and let x̄ be a local minimum to problem (P). Then the following hold.

(i) There exist µmax > 0 and rmax > 0 such that for any µ ∈ (0, µmax], the exterior point

minimization function f + µι in problem (Pµ) is strongly convex and smooth in the open

ball B(x̄; rmax) and will attain a unique local minimum xµ in this ball.

(ii) As µ→ 0, this local minimum xµ will go to x̄ in limit, i.e., xµ → x̄.

Proof. See Appendix 4.A.2.2.

Because the exterior point minimization function is locally strongly convex and smooth,

intuitively the DRS operator of problem (Pµ) would behave similar to that of a DRS operator

of a composite convex optimization problem, but locally. When we minimize a sum of two
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convex functions where one of them is strongly convex and smooth, the corresponding DRS

operator is contractive [171, Theorem 1]. So, we can expect that the DRS operator for

problem (Pµ) would be locally contractive around a local minimum, which indeed turns out

to be the case as proven in the next proposition. Furthermore, the next proposition shows

that Tµ(x) is locally Lipschitz continuous in the penalty parameter µ around a local minimum

for fixed x. As Tµ(x) is locally contractive in x and Lipschitz continuous in µ, it ensures

that as we reduce the penalty parameter µ, the local minimum xµ of problem (Pµ) found by

NExOSdoes not change abruptly.

Proposition 4.2 (Characterization of Tµ). Let Assumptions 4.1 and 4.2 hold for problem

(P), and let x̄ be a local minimum to problem (P). Then the following hold.

(i) There exists a contraction factor κ′ ∈ (0, 1) such that for any x1, x2 ∈ B(x̄; rmax) and

µ ∈ (0, µmax], we have ∥Tµ(x1)− Tµ(x2)∥ ≤ κ′ ∥x1 − x2∥.

(ii) For any x ∈ B(x̄; rmax), the operator Tµ(x) is Lipschitz continuous in µ, i.e., there

exists an ℓ > 0 such that for any µ1, µ2 ∈ (0, µmax] and x ∈ B(x̄; rmax), we have

∥Tµ1(x)− Tµ2(x)∥ ≤ ℓ∥µ1 − µ2∥.

Proof. See Appendix 4.A.2.3.

If the inner algorithm (Aµ) converges to a point zµ, then zµ would be a fixed point of the

DRS operator Tµ. Establishing the convergence of NExOS necessitates connecting the local

minimum xµ of problem (Pµ) to the fixed point set of Tµ, which is achieved by the next

proposition. Because our DRS operator locally behaves in a manner similar to the DRS

operator of a convex optimization problem as shown by Proposition 4.2, it is natural to

expect that the connection between xµ and zµ in our setup would be similar to that of a

convex setup, but in a local sense. This indeed turns out to be the case as proven in the next
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proposition. The statement of this proposition is structurally similar to [158, Proposition

25.1(ii)] that establishes a similar relationship globally for a convex setup, whereas our result

is established around the local minima of problem (Pµ).

Proposition 4.3 (Relationship between local minima of problem (P) and fixTµ). Let

Assumptions 4.1 and 4.2 hold for problem (P). Let x̄ be a local minimum to problem (P),

and µ ∈ (0, µmax]. Then, xµ = argminB(x̄;rmax) f(x) + µι(x) = proxγf (fixTµ), where the sets

fixTµ, and proxγf (fixTµ) are singletons over B(x̄; rmax).

Proof. See Appendix 4.A.2.4.

Before we present the main convergence result, we provide a helper lemma, which shows how

the distances between xµ, zµ and x̄ change as µ is varied in Algorithm 2. Additionally, this

lemma provides the range for the proximal parameter γ. If X is a bounded set satisfying

∥x∥ ≤ D for all x ∈ X , then term maxx∈B(x̄;rmax)∥∇f(x)∥ in this lemma can be replaced with

L×D.

Lemma 4.2 (Distance between local minima of problem (P) with local minima of problem

(Pµ)). Let Assumptions 4.1 and 4.2 hold for problem (P), and let x̄ be a local minimum to

problem (P) over B(x̄; rmax). Then the following hold.

(i) For any µ ∈ (0, µmax], the unique local minimum xµ of problem (Pµ) over B(x̄; rmax)

satisfies ∥xµ − x̄∥ < rmax/η
′ for some η′ > 1.

(ii) Let zµ be the unique fixed point of Tµ over B(x̄; rmax) corresponding to xµ. Then for

any µ ∈ (0, µmax], we have rmax − ∥xµ − x̄∥ > (η′ − 1)rmax/η
′ and rmax − ∥zµ − x̄∥ > ψ,

where ψ = (η′ − 1)rmax/η
′ − γ maxx∈B(x̄;rmax)∥∇f(x)∥ > 0 with the proximal parameter
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γ taken to satisfy

0 < γ < (η′ − 1)rmax/
(
η′maxx∈B(x̄;rmax)∥∇f(x)∥

)
.

Furthermore, minµ∈(0,µmax] {(rmax − ∥zµ − x̄∥)− ψ} > 0.

Proof. See Appendix 4.A.2.5.

We now present our main convergence results for NExOS. For convenience, we denote the

n-th iterates of the inner algorithm of NExOSfor penalty parameter µ by {xn
µ, y

n
µ, z

n
µ}. In the

theorem, an ϵ-approximate fixed point z̃ of Tµ is defined by max{∥z̃ −Tµ(z̃)∥, ∥zµ − z̃∥} ≤ ϵ,

where zµ is the unique fixed point of Tµ over B(x̄; rmax). Furthermore, define:

ϵ := min{ min
µ∈(0,µmax]

((rmax − ∥zµ − x̄∥)− ψ)/2, (1− κ′)ψ} > 0, (4.6)

where κ′ ∈ (0, 1) is the contraction factor of Tµ for any µ > 0 (cf. Proposition 4.2) and the

right-hand side is positive due to the third and fifth equations of Lemma 4.2(ii). Theorem

4.1 states that if we have a good initial point zinit for the first penalty parameter µinit,

then NExOS will construct a finite sequence of penalty parameters such that all the inner

algorithms for these penalty parameters will linearly converge to the unique local minima of

the corresponding inner problems.

Theorem 4.1 (Convergence result for NExOS). Let Assumptions 4.1 and 4.2 hold for problem

(P), and let x̄ be a local minimum to problem (P). Suppose that the fixed-point tolerance ϵ for

Algorithm 3 satisfies ϵ ∈ [0, ϵ), where ϵ is defined in (4.6). The proximal parameter γ is selected

to satisfy the fourth equation of Lemma 4.2(ii). In this setup, NExOS will construct a finite

sequence of strictly decreasing penalty parameters M = {µ1 := µinit, µ2 = ρµ1, µ3 = ρµ2, . . .},
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with µinit ≤ µmax and ρ ∈ (0, 1), such that we have the following recursive convergence

property.

For any µ ∈M, if an ϵ-approximate fixed point of Tµ over B(x̄; rmax) is used to initialize the

inner algorithm for penalty parameter ρµ, then the corresponding inner algorithm iterates

zn
ρµ linearly converges to zρµ that is the unique fixed point of Tρµ over B (x̄, rmax), and the

iterates xn
ρµ, y

n
ρµ linearly converge to xρµ = proxγf(zρµ), which is the unique local minimum

to (Pρµ) over B(x̄; rmax).

Proof. See Appendix 4.A.2.6.

From Theorem 4.1, we see that an ϵ-approximate fixed point of Tρµ over B(x̄; rmax) can

be computed and then used to initialize the next inner algorithm for penalty parameter

ρ2µ; this chain of logic makes each inner algorithm linearly converge to the corresponding

locally optimal solution. Finally, for the convergence of the first inner algorithm we have

the following result, which states that if the initial point zinit is not “too far away" from

B(x̄; rmax), then the first inner algorithm of NExOSfor penalty parameter µ1 converges to a

locally optimal solution of (Pµ1).

Lemma 4.3 (Convergence of the first inner algorithm). Let x̄ be a local minimum to problem

(P), where Assumptions 4.1 and 4.2 hold. Let zinit be the chosen initial point for µ1 := µinit

such that B(zµ1 ; ∥zinit − zµ1∥) ⊆ B(x̄; rmax), where zµ1 be the corresponding unique fixed point

of Tµ1. Then, zn
µ1 linearly converges to zµ1 and both xn

µ1 and yn
µ1 linearly converge to the

unique local minimum xµ1 of (Pµ1) over B(x̄; rmax).

Proof. See Appendix 4.A.2.7.
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We now discuss what can be said if the initial point zinit does not necessarily satisfy the

conditions stated in Theorem 4.1 or Lemma 4.3. Unfortunately, in such a situation, we can

only show subsequential convergence of the iterates.

Theorem 4.2 (Convergence result for NExOS for zinit that is far away from B(x̄; rmax)).

Suppose, the proximal parameter γ is selected to satisfy 0 < γ < 1/L and let zinit be the any

arbitrarily chosen initial point that does not satisfy the conditions of Lemma 4.3. Then, in

this setup, NExOS will construct a finite sequence of strictly decreasing penalty parameters

M = {µ1 := µinit, µ2 = ρµ1, µ3 = ρµ2, . . .}, and ρ ∈ (0, 1), such that we have the following

recursive convergence property. For any µ ∈ M, if an ϵ-approximate fixed point of Tµ

over B(x̄; rmax) is used to initialize the inner algorithm for penalty parameter ρµ, then the

corresponding inner algorithm iterates zn
ρµ subsequentially converges to zρµ that is a fixed point

of Tρµ, and the iterates xn
ρµ, y

n
ρµsubsequentially converge to a first-order stationary point to

(Pρµ) denoted by xρµ = proxγf (zρµ) with the rate minn≤k ∥∇ (f + µι) (xn
ρµ)∥ ≤ 1−γL

2L
o(1/
√
k).

Proof. See Appendix 4.A.2.8.

4.4 Numerical experiments

In this section, we apply NExOS to the following nonconvex optimization problems of

substantial current interest for both synthetic and real-world datasets: sparse regression

problem in §4.4.1, affine rank minimization problem in §4.4.2, and low-rank factor analysis

problem in §4.4.3. We illustrate that NExOS produces solutions that are either competitive or

better in comparison with the other approaches on different performance measures. We have

implemented NExOS in NExOS.jl solver, which is an open-source software package written

in the Julia programming language. NExOS.jl can address any optimization problem of
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the form of problem (P). The code and documentation are available online at: https:

//github.com/Shuvomoy/NExOS.jl.

In our numerical experiments, we present a comprehensive evaluation of NExOS, showing both

statistical and optimization-theoretic evaluations. This dual approach is deliberate—while our

primary contribution is in developing optimization methodology, the optimization problems

considered in this section—such as sparse regression, affine rank minimization, matrix

completion, and factor analysis—are deeply rooted in the fields of statistics and machine

learning [17, 18, 147, 172–174]. Therefore, our numerical experiments are constructed not

only to demonstrate NExOS efficiently computing local minima for nonconvex problems but

also to highlight its ability to provide statistically robust solutions, which are also important

in the application context. This dual capacity is of paramount importance for practical

applications in statistics and machine learning, underlining the algorithm’s versatility and

effectiveness. By addressing these aspects, we aim to illustrate the broad applicability of

NExOS across optimization-theoretic and applied statistical or learning domains.

To compute the proximal operator of a function f with closed form or easy-to-compute

solution, NExOS.jl uses the open-source package ProximalOperators.jl [175]. When f is a

constrained convex function (i.e., a convex function over some convex constraint set) with

no closed form proximal map, NExOS.jl computes the proximal operator by using the open-

source Julia package JuMP [53] and any of the commercial or open-source solver supported

by it. The set X can be any prox-regular nonconvex set fitting our setup. Our implementation

is readily extensible using Julia abstract types so that the user can add support for additional

convex functions and prox-regular sets. The numerical study is executed on a MacBook Pro

laptop with Apple M1 Max chip with 32 GB memory. The datasets considered in this section,

unless specified otherwise, are available online at: http://tinyurl.com/NExOSDatasets.
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In applying NExOS, we use the following values that we found to be the best performing

based on our empirical observations. We take the starting value of µ to be 2, and reduce

this value with a multiplicative factor of 0.5 during each iteration of the outer loop until the

termination criterion is met. The value of the proximal parameter γ is chosen to be 10−3.

We initialize our iterates at 0. Maximum number of inner iterations for a fixed value of µ is

taken to be 1000. The tolerance for the fixed point gap for each penalized problem is taken

to be 10−4 and the tolerance for the termination criterion is taken to be 10−6.

Value of β is taken to be 10−8 for the following reasons. In §4.3, we showed that the presence

of β > 0, ensures that each penalized subproblem is locally strongly convex and smooth,

having a unique local minimum. This, in turn, helps to establish linear convergence of

the inner algorithm for each subproblem. We empirically demonstrate in this section that

the impact of the condition β > 0, despite being critical in the theoretical analysis of our

algorithm, seems to only be marginal as it can be made to be as small as 10−8. We use this

extremely small value of β to stress-test NExOS empirically and show that even for such a

small value of β, our algorithm still works well in practice.

4.4.1 Sparse regression

In (SR), we set X := {x | ∥x∥∞ ≤ Γ, card(x) ≤ k}, and f(x) := ∥Ax − b∥2
2. A projection

onto X can be computed using the formula in [18, §2.2], whereas the proximal operator for

f can be computed using the formula in [161, §6.1.1]. Now we are in a position to apply

NExOS to this problem.

4.4.1.1 Synthetic dataset: comparison with elastic net and Gurobi

We compare the solution found by NExOS with the solutions found by elastic net (glmnet

used for the implementation) and spatial branch-and-bound algorithm (Gurobi used for the
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implementation). elastic net is a well-known method for computing an approximate solution

to the regressor selection problem (SR), which empirically works extremely well in recovering

support of the original signal. On the other hand, Gurobi’s spatial branch-and-bound

algorithm is guaranteed to compute a globally optimal solution to (SR). NExOS is guaranteed

to provide a locally optimal solution under regularity conditions; so to investigate how close

NExOS can get to the globally minimum value we consider a parallel implementation of

NExOS running on multiple (20) worker processes, where each process runs NExOS with

different random initialization, and we take the solution associated with the least objective

value.

Elastic net. elastic net is a well-known method for solving the regressor selection problem,

that computes an approximate solution as follows. First, elastic net solves:

minimize ∥Ax− b∥2
2 + λ∥x∥1 + (β/2)∥x∥2

2, (4.7)

where λ is a parameter that is related to the sparsity of the decision variable x ∈ Rd. To

solve (4.7), we have used the open-source R pacakge glmnet [176].

To compute λ corresponding to card(x) ≤ k we follow the method proposed in [172, §3.4] and

[58, Example 6.4]. We solve the problem (4.7) for different values of λ, and find the smallest

value of λ for which card(x) ≤ k, and we consider the sparsity pattern of the corresponding

solution x̃. Let the index set of zero elements of x̃ be Z, where Z has d− k elements. Then

the elastic net solves:

minimize ∥Ax− b∥2
2 + (β/2)∥x∥2

2

subject to (∀j ∈ Z) xj = 0,
(4.8)

where x ∈ Rd is the decision variable. Solving this problem corresponds to solving a positive
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semidefinite linear system, which we solve using the built-in LinearAlgebra package in

Julia.

Spatial branch-and-bound algorithm. The problem (SR) can also be modeled equivalently

as the following mixed integer quadratic optimization problem [22]:

minimize ∥Ax− b∥2
2 + (β/2)∥x∥2

2

subject to |xi| ≤ Γyi, i = 1, . . . , d∑d
i=1 yi ≤ k, x ∈ Rd, y ∈ {0, 1}d,

which can be solved to a certifiable global optimality using Gurobi’s spatial branch-and-bound

algorithm.

Data generation process and setup. The data generation procedure is similar to [141]

and [173]. We consider two signal-to-noise ratio (SNR) regimes: SNR 1 and SNR 6, where

for each SNR, we vary m from 25 to 50, and for each value of m, we generate 50 random

problem instances. We limit the size of the problems because the solution time by Gurobi’s

spatial branch-and-bound algorithm becomes too large for comparison if we go beyond the

aforementioned size. For a certain value of m, the matrix A ∈ Rm×2m is generated from an

independent and identically distributed normal distribution with N (0, 1) entries. We choose

b = Ax̃+ v, where x̃ is drawn uniformly from the set of vectors satisfying card(x̃) ≤ ⌊m/5⌉

and ∥x̃∥∞ ≤ Γ with Γ = 1. The vector v corresponds to noise, and is drawn from the

distribution N (0, σ2I), where σ2 = ∥Ax̃∥2
2/(SNR2/m), which keeps the signal-to-noise ratio

to approximately equal to SNR. We consider a parallel implementation of NExOS where we

have 100 runs of NExOS distrubuted over 20 independent worker processes on 10 cores. Each

run is initialized with a random initial points chosen from the uniform distribution over the

interval [−Γ,Γ]. Gurobi’s spatial branch-and-bound algorithm also uses 10 cores.
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Figure 4.2: Sparse regression problem: comparison between NExOS (shown in blue),
glmnet (shown in red), and Gurobi (shown in green). The first and second rows
correspond to SNR 6 and SNR 1, respectively. For each SNR, the first column
compares support recovery, the second column shows how close the objective value of
the solution found by each algorithm gets to the optimal objective value (normalized
as 1), and the third column shows the solution time (s) of each algorithm.
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Results. Figure 4.2 compares NExOS (shown in blue), glmnet (shown in red) and Gurobi

(shown in green) for solving (SR). The results displayed in the figures are averaged over 50

simulations for each value of m, and also show one-standard-error bands that represent one

standard deviation confidence interval around the mean.

Figures 4.2(a) and 4.2(d) show the support recovery (%) of the solutions found by NExOS,

glmnet, and Gurobi for SNR 6 and SNR 1, respectively. Given a solution x and true signal

xTrue, the support recovery is defined as ∑d
i=1 1{sign(xi)=sign(xTrue

i )}/d, where 1{·} evaluates to 1

if (·) is true and 0 else, and sign(t) is 1 for t > 0, −1 for t < 0, and 0 for t = 0. So, higher

the support recovery, better is the quality of the found solution. For both SNRs, NExOS

and Gurobi have almost identical support recovery. For the high SNR, NExOS recovers most

of the original signal’s support and is better than glmnet consistently. On average, NExOS

recovers 4% more of the support than glmnet. However, this behaviour changes for the low

SNR, where glmnet recovers 1.26% more of the support than NExOS. This differing behavior

in low and high SNR is consistent with the observations made in [173].

Figures 4.2(b) and 4.2(e) compare the quality of the solution found by the algorithms in

terms of the normalized objective value (the objective value of the found solution divided

by the otimal objective value) for SNR 6 and SNR 1, respectively. As Gurobi’s spatial

branch-and-bound algorithm finds certifiably globally optimal solution to (SR), its normalized

objective value is always 1, though the runtime is orders of magnitude slower than glmnet and

NExOS (see the next paragraph). The closer the normalized objective value is to 1, better

is the quality of the solution in terms of minimizing the objective value. We see that for

the high SNR, on average NExOS is able to find a solution that is very close to the globally

optimal solution, whereas the solution found by glmnet has worse objective value on average.

For the low SNR, on average the normalized objective values of the solutions found by both

NExOS and glmnet get worse, though NExOS does better than glmnet in this case as well.
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Finally, in Figures 4.2(c) and 4.2(f), we compare the solution times (in seconds and on log

scale) of the algorithms for SNR 6 and SNR 1, respectively. We see that glmnet is slightly

faster than NExOS. This slower performance is due to the fact that NExOS is a general

purpose method, whereas glmnet is specifically optimized for the convexified sparse regression

problem with a specific cost function. For smaller problems, Gurobi is somewhat faster than

NExOS, however once we go beyond m ≥ 27, the solution time by Gurobi starts to increase

drastically. Beyond m ≥ 50, comparing the solution times is not meaningful as Gurobi cannot

find a solution in 2 minutes, whereas NExOS takes less than 30 seconds.

4.4.1.2 Experiments and results for real-world dataset

Description of the dataset. We now investigate the performance of our algorithm on a real-

world, publicly available dataset called the weather prediction dataset, where we consider

the problem of predicting the temperature half a day in advance in 30 US and Canadian

Cities along with 6 Israeli cities. The dataset contains hourly measurements of weather

attributes e.g., temperature, humidity, air pressure, wind speed, and so on. The dataset has

m = 45, 231 instances along with d = 1, 800 attributes. The dataset is preprocessed in the

same manner as described in [140, §8.3]. Our goal is to predict the temperature half a day in

advance as a linear function of the attributes, where at most k attributes can be nonzero.

We include a bias term in our model, i.e., in (SR) we set A = [Ā | 1]. We randomly split

80% of the data into the training set and 20% of the data into the test set.

Results. Figure 4.3 shows the RMS error for the training datasets and the test datasets for

both NExOS and glmnet. The results for training and test datasets are reasonably similar for

each value of k. This gives us confidence that the sparse regression model will have similar

performance on new and unseen data. This also suggests that our model does not suffer

from over-fitting. We also see that, for k ≥ 20 and k ≥ 5, none of the errors for NExOS and
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Figure 4.3: RMS error vs k (cardinality) for the weather prediction problem.

glmnet drop significantly, respectively. For smaller k ≤ 10, glmnet does better than NExOS,

but beyond k ≥ 10, NExOS performs better than glmnet.

4.4.2 Affine rank minimization problem

Problem description. In (SR), we set X := {X ∈ Rm×d | rank(X) ≤ r, ∥X∥2 ≤ Γ}, and

f(X) := ∥A(X)− b∥2
2. To compute the proximal operator of f , we use the formula in [161,

§6.1.1]. Finally, we use the formula in [141, page 14] for projecting onto X . Now we are in a

position to apply the NExOS to this problem.

Summary of the experiments performed. First, we apply NExOS to solve (RM) for

synthetic datasets, where we observe how the algorithm performs in recovering a low-rank

matrix given noisy measurements and also compare NExOS with NCVX—an ADMM-based

algorithm [141]. Second, we apply NExOS to a real-world dataset (MovieLens 1M Dataset)

to see how our algorithm performs in solving a matrix-completion problem).

4.4.2.1 Experiments and results for synthetic dataset

Data generation process and setup. We generate the data as follows similar to [141]. We

vary m (number of rows of the decision variable X) from 50 to 75 with a linear spacing of 5,

where we take d = 2m, and rank to be equal to m/10 rounded to the nearest integer. For

each value of m, we create 25 random instances as follows. The operator A is drawn from
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an iid normal distribution with N (0, 1) entries. Similarly, we create the low rank matrix

XTrue with rank r, first drawn from an iid normal distribution with N (0, 1) entries, and then

truncating the singular values that exceed Γ to 0. Signal-to-noise ratio is taken to be around

20 by following the same method described for the sparse regression problem.
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Figure 4.4: Affine rank minimization problem: comparison between solutions found
by NExOS and NCVX algorithm by [141].

Results. The results displayed in Figure 4.4 average over 50 simulations for each value of m

and also show one standard error band. We compare NExOS, with NCVX—an ADMM-based

algorithm [141].

Fig 4.4a plots the normalized fixed point gap of the iterates for both algorithms computed by
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∥X⋆
Alg − Y ⋆

Alg∥/∥XTrue∥with Alg ∈ {NExOS,NCV X} and X⋆
Alg, Y

⋆
Alg representing the final

iterates produced by the algorithms. This plot shows that NCVX iterates have a fixed point

gap larger than 0.17, i.e., the iterates do not converge within a reasonable fixed point gap.

On the other hand, NExOS iterates converge with a normalized fixed-point gap reaching the

desired tolerance of less than or equal to 10−4 for each instance.

Figure 4.4b shows how well NExOS and NCVX recovers the original matrix XTrue. To

quantify the recovery, we compute the max norm of the difference matrix ∥XTrue−X⋆
Alg∥max =

maxi,j |XTrue(i, j)−X⋆
Alg(i, j)|, where the solution found by Alg is denoted by X⋆

Alg. We see

that the worst-case component-wise error is very small (smaller than 0.005 for each instance)

in all the cases for NExOS, but for NCVX, it is larger than 0.5 for each instance. In other

words, the solution found by NExOS is much closer to the ground truth as compared to

NCVX.

Finally, we show how the training loss of the solutions computed by NExOS and NCVX

compare with the original matrix XTrue in Figure 4.4c. Note that for NExOS, the ratio

p⋆
True/p

⋆
sol is larger than one in most cases, i.e., NExOS find a solutions with smaller cost

compared to XTrue. This is due to the fact that under the signal-to-noise ratio that we

consider, the problem data can be explained better by another matrix with a lower training

loss. That being said, X⋆
NExOS is not too far from XTrue component-wise as we saw in Figure

4.4b. On the other hand, for NCVX algorithm, the ratio p⋆
True/p

⋆
sol is smaller than 0.05 for

each instance, i.e., the objective value of the solutions is 20 times worse than that of the

original signal.

4.4.2.2 Experiments and results for real-world dataset: matrix completion problem

Description of the dataset. To investigate the performance of our problem on a real-world

dataset, we consider the publicly available MovieLens 1M Dataset. This dataset contains
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1,000,023 ratings for 3,706 unique movies; these recommendations were made by 6,040

MovieLens users. The rating is on a scale of 1 to 5. If we construct a matrix of movie ratings

by the users (also called the preference matrix), denoted by Z, then it is a matrix of 6,040

rows (each row corresponds to a user) and 3,706 columns (each column corresponds to a

movie) with only 4.47% of the total entries are observed, while the rest being missing. Our

goal is to complete this matrix, under the assumption that the matrix is low-rank. For more

details about the model, see [18, §8.1].

To gain confidence in the generalization ability of this model, we use an out-of-sample

validation process. By random selection, we split the available data into a training set

(80% of the total data) and a test set (20% of the total data). We use the training set as

the input data for solving the underlying optimization process, and the held-out test set

is used to compute the test error for each value of r. The best rank r corresponds to the

point beyond which the improvement is rather minor. We tested rank values r ranging in

{1, 3, 5, 7, 10, 20, 25, 30, 35}. We compute the RMS error as follows. Let Ωtest be the index

set corresponding to the test data. If XNExOS
⋆ is the matrix returned by NExOS, then the

corresponding RMS error is computed by using the formula

RMS =

√√√√√∑(i,j)∈Ωtest

(
(XNExOS⋆)ij − Zij

)2

|Ωtest|
,

where |Ωtest| is the number of elements in Ωtest.

Matrix completion problem. The matrix completion problem is:

minimize ∑
(i,j)∈Ω(Xij − Zij)2 + (β/2)∥X∥2

F

subject to rank(X) ≤ r, ∥X∥2 ≤ Γ,
(MC)
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where Z ∈ Rm×d is the matrix whose entries Zij are observable for (i, j) ∈ Ω. Based on these

observed entries, our goal is to construct a matrix X ∈ Rm×d that has rank r. The problem

above can be written as a special case of affine rank minimization problem (RM).
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Figure 4.5: Matrix completion problem: comparison between solutions found by
NExOS and NCVX algorithm by [141].

Results. Figure 4.5 compares the solutions found by NExOS and NCVX.

Fig 4.5a plots the normalized fixed point gap of the iterates for both algorithms calculated by

∥X⋆
Alg − Y ⋆

Alg∥/∥XTrue∥with Alg ∈ {NExOS,NCV X} and X⋆
Alg, Y

⋆
Alg representing the final

iterates produced by the algorithms. This plot shows that NCVX iterates do not converge

within a reasonable fixed point gap, whereas NExOS iterates converge for all the instances
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with a normalized fixed-point gap less than or equal to 10−6 for each instance.

Figure 4.5b shows the RMS error of NExOS for the training datatest and test dataset for

each value of rank r. The results for training and test datasets are reasonably similar for

each value of r. We observe that beyond rank 15, the reduction in the test error is rather

minor and going beyond this rank provides only diminishing returns, which is a common

occurrence for low-rank matrix approximation [177, §7.1]. Thus we can choose the optimal

rank to be 15 for all practical purposes.

Figure 4.5c shows the RMS error of NCVX for the training dataset and test dataset for each

value of rank r. We see that, unlike NExOS, the test error for NCVX keeps increasing with r,

whereas the training error NCVX is smaller. Here we note that, because NCVX iterates do

not reach a reasonable fixed point gap, the training or test error of NCVX may not provide

meaningful information.

4.4.3 Factor analysis problem

Problem description. The factor analysis model with sparse noise (also known as low-rank

factor analysis model) involves decomposing a given positive semidefinite matrix as a sum of

a low-rank positive semidefinite matrix and a diagonal matrix with nonnegative entries [17,

page 191]. It can be posed as [174]:

minimize ∥Σ−X −D∥2
F + (β/2) (∥X∥2

F + ∥D∥2
F )

subject to D = diag(d), d ≥ 0, X ⪰ 0, rank(X) ≤ r

Σ−D ⪰ 0, ∥X∥2 ≤ Γ,

(FA)

where X ∈ Sp and the diagonal matrix D ∈ Sp with nonnegative entries are the decision

variables, and Σ ∈ Sp
+, r ∈ Z+, and Γ ∈ R++ are the problem data. A proper solution for
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(FA) requires that both X and D are positive semidefinite. The term Σ−D has to be positive

semidefinite, else statistical interpretations of the solution is not impossible [178, page 326].

In (FA), we set X := {(X,D) ∈ Sp×Sp | ∥X∥2 ≤ Γ, rank(X) ≤ r,D = diag(d), d ≥ 0}, and

f(X,D) := ∥Σ−X −D∥2
F + IP(X,D),where IP denotes the indicator function of the convex

set P = {(X,D) ∈ Sp× Sp | X ⪰ 0, D = diag(d), d ≥ 0, d ∈ Rp}. To compute the projection

onto X , we use the formula in [141, page 14] and the fact that Π{y|y≥ 0}(x) = max{x, 0},

where pointwise max is used. The proximal operator for f at (X,D) can be computed by

solving:

minimize ∥Σ− X̃ − D̃∥2
F + (1/2γ)∥X̃ −X∥2

F + (1/2γ)∥D̃ −D∥2
F

subject to X̃ ⪰ 0, D̃ = diag(d̃), Σ− D̃ ⪰ 0, d̃ ≥ 0,

where X̃ ∈ Sp
+, and d̃ ∈ Rp

+ (i.e., D̃ = diag(d̃)) are the optimization variables. Now we are

in a position to apply NExOS to this problem.

Comparison with nuclear norm heuristic. We compare the solution provided by NExOS

to that of the nuclear norm heuristic, which isthe most well-known heuristic to approximately

solve (FA) [179] via following convex relaxation:

minimize ∥Σ−X −D∥2
F + λ ∥X∥∗

subject to D = diag(d), d ≥ 0, X ⪰ 0,

Σ−D ⪰ 0, ∥X∥2 ≤ Γ,

(4.9)

where λ is a positive parameter that is related to the rank of the decision variable X. Note

that, as X is positive semidefinite, we have its nuclear norm ∥X∥∗ = tr(X).
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Figure 4.6: Figure showing performance of NExOS in solving factor analysis problem
for different datasets. Each column represents one dataset. The first and second
row compares training loss and proportion of the variance explained of the solutions
found by NExOS (shown in blue) and the nuclear norm heuristic (shown in red).
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Performance measures. We consider two performance measures. First, we compare

the training loss ∥Σ−X −D∥2
F of the solutions found by NExOS and the nuclear norm

heuristic. As both NExOS and the nuclear norm heuristic provide a point from the feasible

set of (FA), such a comparison of training losses tells us which algorithm is providing a

better quality solution. Second, we compute the proportion of explained variance, which

represents how well the r-common factors explain the residual covariance, i.e., Σ−D. For

a given r, input proportion of variance explained by the r common factors is given by:∑r
i=1 σi(X)/∑p

i=1 σi(Σ−D), where X,D are inputs, that correspond to solutions found by

NExOS or the nuclear norm heuristic. As r increases, the explained variance increases to 1.

The higher the value of the explained variance for a certain solution, the better is the quality

of the solution.

Description of the datasets. We consider three different real-world bench-mark datasets

that are popularly used for factor analysis. The bfi, neo , and Harman74 datasets contain

(2800 observations, 28 variables), (1000 observations, 30 variables), and (145 observations, 24

variables), respectively.

Setup. In applying NExOS for the factor analysis problem, we initialize our iterates with

Z0 := Σ and z0 := 0. All the other parameters are kept at their default values as stated

in the beginning of §4.4. For each dataset, we vary the number of factors from 1 to ⌊p/2⌋,

where p is the size of the underlying matrix Σ.

Results. Figure 4.6 shows performance of NExOS in solving the factor analysis problem

for different datasets, with each row representing one dataset. The first row compares the

training loss of the solution found by NExOS and the nuclear norm heuristic. We see that

for all the datasets, NExOS finds a solution with a training loss that is considerably smaller

than that of the nuclear norm heuristic. The second row shows the proportion of variance
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explained by the algorithms considered for the datasets considered (higher is better). We

see that in terms of the proportion of explained variance, NExOS delivers larger values than

that of the nuclear norm heuristic for different values of r, which is indeed desirable. NExOS

consistently provides solutions with better objective value and explained variance compared

to the nuclear norm heuristic.

4.5 Conclusion

In this chapter, we have presented NExOS, a first-order algorithm to solve optimization

problems with convex cost functions over nonconvex constraint sets— a problem structure

that is satisfied by a wide range of nonconvex optimization problems including sparse and

low-rank optimization. We have shown that, under mild technical conditions, NExOS is able

to find a locally optimal point of the original problem by solving a sequence of penalized

problems with strictly decreasing penalty parameters. We have implemented our algorithm in

the Julia package NExOS.jl and have extensively tested its performance on a wide variety

of nonconvex optimization problems. We have demonstrated that NExOS is able to compute

high quality solutions at a speed that is competitive with tailored algorithms.

4.A Appendix for Chapter 4

4.A.1 Proof and derivation to results in §4.1

4.A.1.1 Lemma regarding prox-regularity of intersection of sets

Lemma 4.4. Consider the nonempty constraint set X = C ⋂N ⊆ E, where C is compact

and convex, and N is prox-regular at x ∈ X . Then X is prox-regular at x.
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Proof to Lemma 4.4. To prove this result we record the following result from [180], where

by dS(x) we denote the Euclidean distance of a point x from the set S, and S denotes closure

of a set X .

Lemma 4.5 (Intersection of prox-regular sets [180, Corollary 7.3(a)]). Let S1,S2 be two

closed sets in E, such that S = S1
⋂S2 ≠ ∅ and both S1,S2 are prox-regular at x ∈ S. If S is

metrically calm at x, i.e., if there exist some ς > 0 and some neighborhood of x denoted by B

such that dS(y) ≤ ς(dS1(y) + dS2(y)) for all y ∈ B, then S is prox-regular at x.

Proof. (proof to Lemma 4.4) By definition, projection onto N is single-valued on some open

ball B(x; a) with center x and radius a > 0 [164, Theorem 1.3]. The set C is compact and

convex, hence projection onto C is single-valued around every point, hence single-valued on

B(x; a) as well [158, Theorem 3.14, Remark 3.15]. Note that for any y ∈ B(x; a), dX (y) = 0

if and only if both dC(y) and dN (y) are zero. Hence, for any y ∈ B(x; a)⋂X , the metrically

calmness condition is trivially satisfied. Next, recalling that the distance from a closed set is

continuous [60, Example 9.6], over the compact set B(x; a) \ X , define the function h, such

that h(y) = 1 if y ∈ X , and h(y) = dX (y)/(dC(y) + dN (y)) else. The function h is upper-

semicontinuous over B(x; a) \ X , hence it will attain a maximum ς > 0 over B(x; a) \ X

[181, Theorem 4.16], thus satisfying the metrically calmness condition on B(x; a) \ X as well.

Hence, using Lemma 4.5, the constraint set X is prox-regular at x.

4.A.2 Proofs and derivations to the results in §4.3

4.A.2.1 Modifying NExOSfor nonsmooth and convex loss function

We now discuss how to modify NExOS when the loss function is nonsmooth and convex. The

key idea is working with a strongly convex, smooth, and arbitrarily close approximation of f ;
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such smoothing techniques are very common in optimization [159, 182]. The optimization

problem in this case, where the positive regularization parameter is denoted by β̃, is given by:

minx ϕ(x) + (β̃/2)∥x∥2 + ιX (x), where the setup is same as problem (P), except the function

ϕ : E→ R ∪ {+∞} is lower-semicontinuous, proper (its domain is nonempty), and convex.

Let β := β̃/2. For a ν that is arbitrarily small, define the following β strongly convex and

(ν−1 +β)-smooth function: f := νϕ(·) + (β/2)∥ · ∥2 where νϕ is the Moreau envelope of ϕ with

paramter ν. Following the properties of the Moreau envelope of a convex function discussed

in §4.2, the following optimization problem acts as an arbitrarily close approximation to the

first nonsmooth convex problem: minx f + (β/2)∥x∥2 + ιX (x), which has the same setup as

problem (P).

We can compute proxγf(x) using the formula in by [159, Theorem 6.13, Theorem 6.63].

Then, we apply NExOS to minx f + (β/2)∥x∥2 + ιX (x) and proceed in the same manner as

discussed earlier.

4.A.2.2 Proof to Proposition 4.1

Proof to Proposition 4.1(i). We prove (i) in three steps. In the first step, we show that for

any µ > 0, f + µι will be differentiable on some B(x̄; rdiff) with rdiff > 0. In the second step,

we then show that, for any µ ∈ (0, 1/β], f + µι will be strongly convex and differentiable on

some B(x̄; rcvxdiff). In the third step, we will show that there exist µmax > 0 such that for any

µ ∈ (0, µmax], f + µι will be strongly convex and smooth on some B(x̄; rmax) and will attain

the unique local minimum xµ in this ball.

Proof of the first step. To prove the first step, we start with the following lemma regarding

differentiability of µι.
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Lemma 4.6 (Differentiability of µι). Let x̄ be a local minimum to problem (P), where

Assumptions 4.1 and 4.2 hold. Then there exists some rdiff > 0 such that for any µ > 0: (i)

the function µι is differentiable on B(x̄; rdiff) with derivative ∇ µι = (1/µ)(I −Π), and (ii)

the projection operator Π onto X is single-valued and Lipschitz continuous on B(x̄; rdiff).

Proof. From [164, Theorem 1.3(e)], there exists some rdiff > 0 such that the function d2 is

differentiable on B(x̄; rdiff). As µι = (1/2µ)d2 from (4.3), it follows that for any µ > 0, µι is

differentiable on B(x̄; rdiff) which proves the first part of (i). The second part of (i) follows

from the fact that ∇d2(x) = 2 (x−Π(x)) whenever d2 is differentiable at x [164, page 5240].

Finally, from [164, Lemma 3.2], whenever d2 is differentiable at a point, projection Π is

single-valued and Lipschitz continuous around that point, and this proves (ii).

Due to the lemma above, f + µι will be differentiable on B(x̄; rdiff) with rdiff > 0, as f and

(β/2)∥ · ∥2 are differentiable. Also, due to Lemma 4.6(ii), projection operator Π is L̃-Lipschitz

continuous on B(x̄; rdiff) for some L̃ > 0. This proves the first step.

Proof of the second step. To prove this step, we are going to record: (1) the notion of

general subdifferential of a function, followed by (2) the definition of prox-regularity of a

function and its connection with prox-regular set, and (3) a helper lemma regarding convexity

of the Moreau envelope under prox-regularity.

Definition 4.3 (Fenchel, Fréchet, and general subdifferential). For any lower-semicontinuous

function h : Rn → R ∪ {∞}, its Fenchel subdifferential ∂h is defined as [183, page 1]:

u ∈ ∂h(x) ⇔ h(y) ≥ h(x) + ⟨u | y − x⟩ for all y ∈ Rn. For the function h, its Fréchet

subdifferential ∂Fh (also known as regular subdifferential) at a point x is defined as [183,

Definition 2.5]: u ∈ ∂Fh(x) ⇔ lim infy→0 (h(x + y) − h(x) − ⟨u | y⟩)/∥y∥ ≥ 0. Finally,
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the general subdifferential of h, denoted by ∂Gh, is defined as [106, Equation (2.8)]: u ∈

∂Gh(x)⇔ un → u, xn → x, f(xn)→ f(x), for some (xn, un) ∈ gra ∂Fh. If h is additionally

convex, then ∂h = ∂Fh = ∂Gh [183, Property (2.3), Property 2.6].

Definition 4.4 (Connection between prox-regularity of a function and a set [184, Definition

1.1 ]). A function h : Rn → R ∪ {∞} that is finite at x̃ is prox-regular at x̃ for ν̃, where

ν̃ ∈ ∂Gh(x̃), if h is locally l.s.c. at x̃ and there exist a distance σ > 0 and a parameter

ρ > 0 such that whenever ∥x′ − x̃∥ < σ and ∥x − x̃∥ < σ with x′ ≠ x, ∥h(x) − h(x̃)∥ < σ,

∥ν − ν̃∥ < σ with ν ∈ ∂Gh(x), we have h(x′) > h(x) + ⟨ν | x′ − x⟩ − (ρ/2)∥x′ − x∥2. Also, a

set S is prox-regular at x̃ for ν̃ if we have the indicator function ιS is prox-regular at x̃ for

ν̃ ∈ ∂GιS(x̃) [184, Proposition 2.11]. The set S is prox-regular at x̃ if it is prox-regular at x̃

for all ν̃ ∈ ∂GιS(x̃) [60, page 612].

We have the following helper lemma from [184].

Lemma 4.7 ([184, Theorem 5.2]). Consider a function h which is lower semicontinuous at 0

with h(0) = 0 and there exists ρ > 0 such that h(x) > −(ρ/2)∥x∥2 for any x ̸= 0. Let h be

prox-regular at x̃ = 0 and ν̃ = 0 with respect to σ and ρ (σ and ρ as described in Definition

4.4), and let λ ∈ (0, 1/ρ). Then, on some neighborhood of 0, the function

λh+ ρ/(2− 2λρ)∥ · ∥2 (4.10)

is convex, where λh is the Moreau envelope of h with parameter λ.

Now we start proving step 2 earnestly. To prove this result, we assume x̄ = 0. This does not

cause any loss of generality because this is equivalent to transferring the coordinate origin

to the optimal solution and prox-regularity of a set and strong convexity of a function is
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invariant under such a coordinate transformation.

First, note that the indicator function of our constraint closed set X is lower semicontinuous

due to [60, Remark after Theorem 1.6, page 11], and as x̄, the local minimizer lies in X , we

have ιX (x̄) = 0. The set X is prox-regular at x̄ for all ν ∈ ∂GιX (x) per our setup, so using

Definition 4.4, we have ιX prox-regular at x̄ = 0 for ν̄ = 0 ∈ ∂GιX (x̄) (because x̄ ∈ X , we will

have 0 as a subgradient of ∂ιX (x̄)) with respect to some distance σ > 0 and parameter ρ > 0.

Note that the indicator function satisfies ιX (x) = cιX (x) for any c > 0 due to its definition,

so u ∈ ∂GιX (x) ⇔ cu ∈ c∂GιX (x) = ∂(cιGX (x)) = ∂ιGX (x) [60, Equation 10(6)] In our setup,

we have X prox-regular at x̄. So, setting h := ιmathcalX, x̃ := x̄ = 0, ν̃ := ν̄ = 0, and

ν := u/(β/2ρ) in Definition 4.4, we have ιX is also prox-regular at x̄ = 0 for ν̄ = 0 with

respect to distance σmin{1, β/2ρ} and parameter β/2.

Next, because the range of the indicator function is {0,∞}, we have ιX (x) > −(ρ/2)∥x∥2 for

any x ̸= 0. So, we have all the conditions of Theorem 4.7 satisfied. Hence, applying Lemma

4.7, we have (1/2µ) (d2 + βµ/(2− βµ)∥ · ∥2) convex and differentiable on

B (x̄; min {σmin{1, β/2ρ}, rdiff})

for any µ ∈ (0, 2/β), where rdiff comes from Lemma 4.6. As rdiff in this setup does not

depend on µ, the ball does not depend on µ either. Finally, note that in our exterior-point

minimization function we have µι = (1/2µ) (d2 + βµ∥ · ∥2).

So if we take µ ≤ 1
β
, then we have (β/2)µ/ (1− µ(β/2)) ≤ βµ, and on the ballB (x̄; min {σmin{1, β/2ρ}, rdiff}),

the function µι will be convex and differentiable. But f is strongly-convex and smooth, so

f + µι will be strongly convex and differentiable on B (x̄; min {σmin{1, β/2ρ}, rdiff}) for

µ ∈ (0, 1/β]. This proves step 2.
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Proof of the third step. As point x̄ ∈ X is a local minimum of problem (P), from

Definition 4.2, there is some r > 0 such that for all y ∈ B(x̄; r), we have f(x̄) + (β/2)∥x̄∥2 <

f(y) + (β/2)∥y∥2 + ι(y).

Then, due to the first two steps, for any µ ∈ (0, 1/β], the function f+µι will be strongly convex

and differentiable on B (x̄; min {σmin{1, β/2ρ}, rdiff}). For notational convenience, denote

rmax := min {σmin{1, β/2ρ}, rdiff} , which is a constant. As f + µι is a global underestimator

of and approximates the function f + (β/2)∥ · ∥2 + ι with arbitrary precision as µ→ 0, the

previous statement and [60, Theorem 1.25] imply that there exist some 0 < µmax ≤ 1/β such

that for any µ ∈ (0, µmax], the function f + µι will achieve a local minimum xµ over B(x̄; rmax)

where ∇(f + µι) vanishes, i.e.,

∇(f + µι)(xµ) = ∇f(xµ) + βxµ + (1/µ) (xµ −Π (xµ)) = 0 (4.11)

⇒ xµ = (1/(βµ+ 1)) (Π(xµ)− µ∇f(xµ)) . (4.12)

As the right hand side of the last equation is a singleton, this minimum must be unique.

Finally to show the smoothness f + µι, for any x ∈ B(x̄; rmax), we have

∇ (f + µι) (x) a)= ∇f(x) + (β + (1/µ))x− (1/µ) Π(x), (4.13)

where a) uses Lemma 4.6. Thus, for any x1, x2 ∈ B(x̄; rmax) we have ∥∇(f + (β/2)∥ · ∥2 +
µι)(x1)−∇(f + (β/2)∥ · ∥2 + µι)(x2)∥ ≤ (L+ β + (1/µ) + L̃)∥x1 − x2∥, where we have used

the following: ∇f is L-Lipschitz everywhere due to f being an L−smooth function in E

([158, Theorem 18.15]), and Π is L̃-Lipschitz continuous on B(x̄; rmax), as shown in step 1.

This completes the proof for (i).
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(ii): Using [60, Theorem 1.25], as µ → 0, we have xµ → x̄, and (f + µι) (xµ) → f(x̄) +

(β/2)∥x̄∥2. Note that xµ reaches x̄ only in limit, as otherwise Assumption 4.2 will be violated.

4.A.2.3 Proof to Proposition 4.2

Proof to Proposition 4.2(i). We will need the notions of nonexpansive and firmly nonex-

pansive operators in this proof. An operator A : E → E is nonexpansive on some set S if

it is Lipschitz continuous with Lipschitz constant 1 on S; the operator is contractive if the

Lipschitz constant is strictly smaller than 1. On the other hand, A is firmly nonexpansive on

S if and only if its reflection operator 2A − I is nonexpansive on S. A firmly nonexpansive

operator is always nonexpansive [158, page 59].

We next introduce the following definition.

Definition 4.5 (Resolvent and reflected resolvent [158, pages 333, 336]). For a lower-

semicontinuous, proper, and convex function h, the resolvent and reflected resolvent of its

subdifferential operator are defined by Jγ∂h = (I + γ∂h)−1 and Rγ∂h = 2Jγ∂h − I, respectively.

The proof of (i) is proven in two steps. First, we show that the reflection operator of Tµ,

defined by

Rµ = 2Tµ − I, (4.14)

is contractive on B(x̄, rmax), and using this we show that Tµ in also contractive there in the

second step. To that goal, note that Rµ can be represented as:

Rµ = (2proxγ µι − I)(2proxγf − I), (4.15)

which can be proven by simply using (4.5) and (4.14) on the left-hand side and by expanding

the factors on the right-hand side. Now, the operator 2proxγf − I associated with the
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α-strongly convex and L-smooth function f is a contraction mapping for any γ > 0 with the

contraction factor κ = max {(γL− 1)/(γL+ 1), (1− γα)/(γα + 1)} ∈ (0, 1), which follows

from [171, Theorem 1]. Next, we show that 2proxγ µι − I is nonexpansive on B(x̄; rmax)

for any µ ∈ (0, µmax]. For any µ ∈ (0, µmax], define the function g as follows. We have

g(y) = µι(y) if y ∈ B(x̄; rmax),g(y) = lim inf ỹ→y
µι(ỹ) if ∥y − x̄∥ = rmax, and g(y) = ∞

else. The function g is lower-semicontinuous, proper, and convex everywhere due to [158,

Lemma 1.31 and Corollary 9.10 ]. As a result for µ ∈ (0, µmax], we have proxγg = Jγ∂g on E

and proxγg is firmly nonexpansive and single-valued everywhere, which follows from [158,

Proposition 12.27, Proposition 16.34, and Example 23.3]. But, for y ∈ B(x̄; rmax), we have
µι(y) = g(y) and ∇ µι(y) = ∂g(y). Thus, on B(x̄; rmax), the operator proxγ µι = Jγ∇ µι, and it

is firmly nonexpansive and single-valued for µ ∈ (0, µmax]. Any firmly nonexpansive operator

A has a nonexpansive reflection operator 2A − I on its domain of firm nonexpansiveness

[158, Proposition 4.2]. Hence, on B(x̄; rmax), for µ ∈ (0, µmax] the operator 2proxγ µι − I is

nonexpansive using (4.15).

Now we show that Rµ is contractive for every x1, x2 ∈ B(x̄; rmax) and µ ∈ (0, µmax], we

have ∥Rµ(x1) − Rµ(x2)∥ ≤ ∥(2proxγf − I)(x1) − (2proxγf − I)(x2)∥ ≤ κ∥x1 − x2∥ where

the last inequality uses κ-contractiveness of 2proxγf − I thus proving that Rµ acts as a

contractive operator on B(x̄; rmax) for µ ∈ (0, µmax]. Similarly, for any x1, x2 ∈ B(x̄; rmax),

using (Aµ) and the triangle inequality we have ∥Tµ(x1)−Tµ(x2)∥ ≤ (1+κ)/2∥x1−x2∥ and as

κ′ = (1 + κ)/2 ∈ [0, 1); the operator Tµ is κ′−contractive on on B(x̄; rmax), for µ ∈ (0, µmax].

Proof to Proposition 4.2(ii). Recalling Tµ = (1/2)Rµ + (1/2)I from (4.14), using (4.15),

and then expanding, and finally using Lemma 4.1 and triangle inequality, we have for any

µ, µ̃ ∈ (0, µmax], x ∈ B(x̄; rmax), and y = 2proxγf (x)− x:

∥Tµ(x)− Tµ̃(x)∥ ≤ ∥(µ/(γ + µ(βγ + 1))− µ̃/(γ + µ̃(βγ + 1)))∥ ∥y∥
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+ ∥(γ/(γ + µ(βγ + 1))− γ/(γ + µ̃(βγ + 1)))∥ ∥Π (y/(βγ + 1))∥ . (4.16)

Now, in (4.16), the coefficient of ∥y∥ satisfies ∥µ/(γ + µ(βγ + 1))− µ̃/(γ + µ̃(βγ + 1))∥ ≤

(1/γ)∥µ− µ̃∥

and similarly the coefficient of ∥Π (y/(βγ + 1)) ∥ satisfies

∥γ/(γ + µ(βγ + 1))− γ/(γ + µ̃(βγ + 1))∥ ≤ (β + (1/γ))∥µ− µ̃∥.

Putting the last two inequalities in (4.16), and then replacing y = 2proxγf (x)− x, we have

for any x ∈ B, and for any µ, µ̃ ∈ R++,

∥Tµ(x)− Tµ̃(x)∥ ≤ (1/γ) ∥µ− µ̃∥ ∥y∥+ (β + (1/γ)) ∥µ− µ̃∥ ∥Π (y/(βγ + 1))∥

={(1/γ)∥2proxγf (x)− x∥+ (β + (1/γ))∥Π((2proxγf (x)− x)/(βγ + 1))∥}∥µ− µ̃∥. (4.17)

Now, as B(x̄; rmax) is a bounded set and x ∈ B, norm of the vector y = 2proxγf (x)− x can

be upper-bounded over B(x̄; rmax) because 2proxγf − I is continuous (in fact contractive)

as shown in (i). Similarly, ∥Π
(
(2proxγf (x)− x)/(βγ + 1)

)
∥ can be upper-bounded on

B(x̄; rmax). Combining the last two-statements, it follows that there exists some ℓ > 0 such

that

sup
x∈B(x̄;rmax)

(1/γ)∥2proxγf (x)− x∥+ (β + 1/γ)
∥∥∥Π (

(2proxγf (x)− x)/(βγ + 1)
)∥∥∥ ≤ ℓ,

and putting the last inequality in (4.17), we arrive at the claim.
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4.A.2.4 Proof to Proposition 4.3

The structure of the proof follows that of [158, Proposition 25.1(ii)]. Let µ ∈ (0, µmax].

Recalling Definition 4.5, and due to Proposition 4.1(i), xµ ∈ B(x̄; rmax) satisfies

xµ = argmin
B(x̄;rmax)

f(x) + µι(x) = zer(∇f +∇ µι)

a)⇔ (∃y ∈ E) xµ = Jγ∇ µιRγ∇f (y) and xµ = Jγ∇f (y), (4.18)

where a) uses the facts (shown in the proof to Proposition 4.2) that: (i) Jγ∇f is a single-

valued operator everywhere, whereas Jγ∇ µι is a single-valued operator on the region of

convexity B(x̄; rmax), and (ii) xµ = Jγ∇f(y) can be expressed as xµ = Jγ∇f(y)⇔ 2xµ − y =

(2Jγ∇f − I) y = Rγ∇f (y). Also, using the last expression, we can write the first term of (4.18)

as Jγ∇ µιRγ∇f(y) = xµ ⇔ y ∈ fix(Rγ∇ µιRγ∇f). Because for lower-semicontinuous, proper,

and convex function, the resolvent of the subdifferential is equal to its proximal operator

[158, Proposition 12.27, Proposition 16.34, and Example 23.3], we have Jγ∂f = proxγf with

both being single-valued. Using the last fact along with (4.18), y ∈ fix(Rγ∇ µιRγ∇f ), we have

xµ ∈ proxγf

(
fix

(
Rγ∇ µιRγ∂f

))
, but xµ is unique due to Proposition 4.1, so the inclusion

can be replaced with equality. Thus xµ, satisfies xµ = proxγf

(
fix

(
Rγ∇ µιRγ∂f

))
where the

sets are singletons due to Proposition 4.1 and single-valuedness of proxγf . Also, because Tµ

in (4.5) and Rµ in (4.14) have the same fixed point set (follows from (4.14)), using (4.15), we

arrive at the claim.

4.A.2.5 Proof to Lemma 4.2

(i): This follows directly from the proof to Proposition 4.1.

(ii): From Lemma 4.2(i), and recalling that η′ > 1, for any µ ∈ (0, µmax], we have the first

equation. Recalling Definition 4.5, and using the fact that for lower-semicontinuous, proper,

252



and convex function, the resolvent of the subdifferential is equal to its proximal operator

[158, Proposition 12.27, Proposition 16.34, and Example 23.3], we have Jγ∂f = proxγf with

both being single-valued. So, from Proposition 4.3: xµ = proxγf (zµ) = (I + γ∂f)−1 (zµ)⇔

zµ = xµ + γ∇f(xµ). Hence, for any µ ∈ (0, µmax]:

∥zµ − x̄∥ = ∥xµ + γ∇f(xµ)− x̄∥ ≤ ∥xµ − x̄∥+ γ∥∇f(xµ)∥

⇔rmax − ∥zµ − x̄∥ ≥ rmax − ∥xµ − x̄∥ − γ∥∇f(xµ)∥
a)
≥ (η′ − 1)rmax/η

′ − γ∥∇f(xµ)∥,

where a) uses the first equation of Lemma 4.2(ii). Because, for the strongly convex and

smooth function f, its gradient is bounded over a bounded set B(x̄; rmax) [185, Lemma 1,

§1.4.2], then for γ satisfying the fourth equation of Lemma 4.2(ii) and the definition of ψ in

the third equation of Lemma 4.2(ii), we have the second equation of Lemma 4.2(ii) for any

µ ∈ (0, µmax]. To prove the final equation of Lemma 4.2(ii), note that

lim
µ→0

(rmax − ∥zµ − x̄∥)− ψ

a)= lim
µ→0

(rmax − ∥xµ + γ∇f(xµ)− x̄∥)− (η′ − 1)rmax/η
′ + γ maxx∈B(x̄;rmax)∥∇f(x)∥

b)= (rmax − ∥x̄+ γ∇f(x̄)− x̄∥)− (η′ − 1)rmax/η
′ + γ maxx∈B(x̄;rmax)∥∇f(x)∥

= (1/η′)rmax + γ
(
maxx∈B(x̄;rmax)∥∇f(x)∥ − ∥∇f(x̄)∥

)
> 0, (4.19)

where in a) we have used zµ = xµ + γ∇f(xµ) and the third equation of Lemma 4.2(ii), in b)

we have used smoothness of f along with Proposition 4.1(ii). Inequality (4.19) along with

the second equation of Lemma 4.2(ii) implies the final equation of Lemma 4.2(ii).

4.A.2.6 Proof to Theorem 4.1

We use the following result from [186] in proving Theorem 4.1.
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Theorem 4.3 (Convergence of local contraction mapping [186, pp. 313-314]). Let A : E→ E

be some operator. If there exist x̃, ω ∈ (0, 1), and r > 0 such that (a) A is ω-contractive on

B(x̃; r), i.e., for all x1, x2 in B(x̃; r), and (b) ∥A(x̃)− x̃∥ ≤ (1− ω)r. Then A has a unique

fixed point in B(x̃; r) and the iteration scheme xn+1 = A(xn) with the initialization x0 := x̃

linearly converges to that unique fixed point.

Furthermore, recall that NExOS (Algorithm 2) can be compactly represented using (Aµ) as

follows. For any m ∈ {1, 2, . . . , N} (equivalently for each µm ∈ {µ1, . . . , µN}),

zn+1
µm

= Tµm

(
zn

µm

)
, (4.20)

where z0
µm

is initialized at zµm−1 . From Proposition 4.2, for any µ ∈M, the operator Tµ is

a κ′-contraction mapping over the region of convexity B(x̄; rmax), where κ′ ∈ (0, 1). From

Proposition 4.1, there will be a unique local minimum xµ of problem (Pµ) over B(x̄; rmax).

Suppose, instead of the exact fixed point zµm−1 ∈ fixTµm−1 , we have computed z̃, which is an

ϵ-approximate fixed point of Tµm−1 in B(x̄; rmax), i.e., ∥z̃−Tµm−1(z̃)∥ ≤ ϵ and ∥z̃−zµm−1∥ ≤ ϵ,

where ϵ ∈ [0, ϵ). Then, we have:

∥Tµm−1(z̃)− zµm−1∥ = ∥Tµm−1(z̃)− Tµm−1(zµm−1)∥
a)
≤ κ′ ∥z̃ − zµm−1∥︸ ︷︷ ︸

≤ϵ

≤ ϵ, (4.21)

where a) uses κ′-contractive nature of Tµm−1 over B(x̄; rmax). Hence, using triangle inequality,

∥z̃ − x̄∥
a)
≤ ∥z̃ − Tµm−1(z̃)∥+ ∥Tµm−1(z̃)− zµm−1∥+ ∥zµm−1 − x̄∥

b)
≤ 2ϵ+ ∥zµm−1 − x̄∥,

where a) uses triangle inequality and b) uses (4.21). As ϵ ∈ [0, ϵ), where ϵ is defined in (4.6),

due to the second equation of Lemma 4.2(ii), we have rmax − ∥z̃ − x̄∥ > ψ.
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Define ∆ = ((1− κ′)ψ − ϵ) /ℓ, which will be positive due to ϵ ∈ [0, ϵ) and (4.6). Next, select

θ ∈ (0, 1) such that ∆ = θ∆ < µ1, hence there exists a ρ ∈ (0, 1) such that ∆ = (1− ρ)µ1.

Now reduce the penalty parameter using

µm = µm−1 − ρm−2∆ = ρµm−1 = ρm−1µ1 (4.22)

for any m ≥ 2. Next, we initialize the iteration scheme zn+1
µm

= Tµm

(
zn

µm

)
at z0

µm
:= z̃.

Around this initial point, let us consider the open ball B(z̃, ψ). For any x ∈ B(z̃;ψ), we

have ∥x− x̄∥ ≤ ∥x− z̃∥+ ∥z̃ − x̄∥ < ψ + ∥z̃ − x̄∥ < rmax, where the last inequality follows

from rmax − ∥z̃ − x̄∥ > ψ. Thus we have shown that B(z̃;ψ) ⊆ B(x̄; rmax). Hence, from

Proposition 4.2, on B(z̃;ψ), the Douglas-Rachford operator Tµm is contractive. Next, we have

∥Tµm(z̃)− z̃∥ ≤ (1− κ′)ψ, because ∥Tµm(z̃)− z̃∥
a)
≤ ∥Tµm(z̃)−Tµm−1(z̃)∥+ ∥Tµm−1(z̃)− z̃∥

b)
≤

ℓ∥µm − µm−1∥ + ϵ
c)
≤ ϵ + ℓ∆

d)
≤ (1 − κ′)ψ, where a) triangle inequality, b) uses Proposition

4.2(ii) and ∥z̃ − Tµm−1(z̃)∥ ≤ ϵ, c) uses (4.22) and ∥µm − µm−1∥ ≤ ∆ ≤ ∆ d) uses the

definition of ∆. Thus, both conditions of Theorem 4.3 are satisfied, and zn
µm

in (4.20) will

linearly converge to the unique fixed point zµmof the operator Tµm , and xn
µm
, yn

µm
will linearly

converge to xµm . This completes the proof.

4.A.2.7 Proof to Lemma 4.3

First, we show that, for the given initialization of zinit, the iterates zn
µ1 stay in B(zµ1 ; ∥zinit −

zµ1∥) for any n ∈N via induction. The base case is true via given. Let, zn
µ1 ∈ B(zµ1 ; ∥zinit −

zµ1∥). Then, ∥zn+1
µ1 − zµ1∥

a)= ∥Tµ1(zn
µ1)−Tµ1(zµ1)∥

b)
≤ κ′∥zn

µ1 − zµ1∥
c)
≤ κ′∥zinit− zµ1∥, where a)

uses zµ1 ∈ fixTµ, and b) uses Proposition 4.2, and c) uses ∥zn
µ1 − zµ1∥ ≤ ∥zinit− zµ1∥. So, the

iterates zn
µ1 stay in B(zµ1 ; ∥zinit − zµ1∥). As, κ′ ∈ (0, 1), this inequality also implies that zn

µ

linearly converges to zµ with the rate of at least κ′. Then using similar reasoning presented in

the proof to Theorem 4.1, we have xn
µ and yn

µ linearly converge to the unique local minimum
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xµ of problem (Pµ). This completes the proof.

4.A.2.8 Proof to Theorem 4.2

The proof is based on the results in [187, Theorem 4] and [162, Theorem 4.3]. The function

f is L-Lipschitz continuous and strongly smooth, hence f is a coercive function satisfying

lim inf∥x∥→∞ f(x) = ∞ and is bounded below [158, Corollary 11.17]. Also, µι(x) is jointly

continuous hence lower-semicontinuous in x and µ and is bounded below by definition. Let

the proximal parameter γ be smaller than or equal to 1/L. Then due to [187, (14), (15)

and Theorem 4], {xn
µ, y

n
µ, z

n
µ} (iterates of the inner algorithm of NExOS for any penalty

parameter µ) will be bounded. This boundedness implies the existence of a cluster point

of the sequence, which allows us to use [187, Theorem 4 and Theorem 1] to show that for

any zinit, the iterates xn
µ and yn

µ subsequentially converges to a first-order stationary point xµ

satisfying ∇ (f + µι) (xµ) = 0. The rate minn≤k ∥∇ (f + µι) (xn
ρµ)∥ ≤ ((1− γL)/2L)o(1/

√
k)

is a direct application of [162, Theorem 4.3] as our setup satisfies all the conditions to apply

it.
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